1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26 #ifndef CPU_AARCH64_ASSEMBLER_AARCH64_HPP
27 #define CPU_AARCH64_ASSEMBLER_AARCH64_HPP
28
29 #include "asm/register.hpp"
30 #include "metaprogramming/enableIf.hpp"
31 #include "utilities/checkedCast.hpp"
32 #include "utilities/debug.hpp"
33 #include "utilities/globalDefinitions.hpp"
34 #include "utilities/macros.hpp"
35 #include <type_traits>
36
37 #ifdef __GNUC__
38
39 // __nop needs volatile so that compiler doesn't optimize it away
40 #define NOP() asm volatile ("nop");
41
42 #elif defined(_MSC_VER)
43
44 // Use MSVC intrinsic: https://docs.microsoft.com/en-us/cpp/intrinsics/arm64-intrinsics?view=vs-2019#I
45 #define NOP() __nop();
46
47 #endif
48
49
50 // definitions of various symbolic names for machine registers
51
52 // First intercalls between C and Java which use 8 general registers
53 // and 8 floating registers
54
55 // we also have to copy between x86 and ARM registers but that's a
56 // secondary complication -- not all code employing C call convention
57 // executes as x86 code though -- we generate some of it
58
59 class Argument {
60 public:
61 enum {
62 n_int_register_parameters_c = 8, // r0, r1, ... r7 (c_rarg0, c_rarg1, ...)
63 n_float_register_parameters_c = 8, // v0, v1, ... v7 (c_farg0, c_farg1, ... )
64
65 n_int_register_parameters_j = 8, // r1, ... r7, r0 (rj_rarg0, j_rarg1, ...
66 n_float_register_parameters_j = 8 // v0, v1, ... v7 (j_farg0, j_farg1, ...
67 };
68 };
69
70 constexpr Register c_rarg0 = r0;
71 constexpr Register c_rarg1 = r1;
72 constexpr Register c_rarg2 = r2;
73 constexpr Register c_rarg3 = r3;
74 constexpr Register c_rarg4 = r4;
75 constexpr Register c_rarg5 = r5;
76 constexpr Register c_rarg6 = r6;
77 constexpr Register c_rarg7 = r7;
78
79 constexpr FloatRegister c_farg0 = v0;
80 constexpr FloatRegister c_farg1 = v1;
81 constexpr FloatRegister c_farg2 = v2;
82 constexpr FloatRegister c_farg3 = v3;
83 constexpr FloatRegister c_farg4 = v4;
84 constexpr FloatRegister c_farg5 = v5;
85 constexpr FloatRegister c_farg6 = v6;
86 constexpr FloatRegister c_farg7 = v7;
87
88 // Symbolically name the register arguments used by the Java calling convention.
89 // We have control over the convention for java so we can do what we please.
90 // What pleases us is to offset the java calling convention so that when
91 // we call a suitable jni method the arguments are lined up and we don't
92 // have to do much shuffling. A suitable jni method is non-static and a
93 // small number of arguments
94 //
95 // |--------------------------------------------------------------------|
96 // | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 c_rarg6 c_rarg7 |
97 // |--------------------------------------------------------------------|
98 // | r0 r1 r2 r3 r4 r5 r6 r7 |
99 // |--------------------------------------------------------------------|
100 // | j_rarg7 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 j_rarg5 j_rarg6 |
101 // |--------------------------------------------------------------------|
102
103
104 constexpr Register j_rarg0 = c_rarg1;
105 constexpr Register j_rarg1 = c_rarg2;
106 constexpr Register j_rarg2 = c_rarg3;
107 constexpr Register j_rarg3 = c_rarg4;
108 constexpr Register j_rarg4 = c_rarg5;
109 constexpr Register j_rarg5 = c_rarg6;
110 constexpr Register j_rarg6 = c_rarg7;
111 constexpr Register j_rarg7 = c_rarg0;
112
113 // Java floating args are passed as per C
114
115 constexpr FloatRegister j_farg0 = v0;
116 constexpr FloatRegister j_farg1 = v1;
117 constexpr FloatRegister j_farg2 = v2;
118 constexpr FloatRegister j_farg3 = v3;
119 constexpr FloatRegister j_farg4 = v4;
120 constexpr FloatRegister j_farg5 = v5;
121 constexpr FloatRegister j_farg6 = v6;
122 constexpr FloatRegister j_farg7 = v7;
123
124 // registers used to hold VM data either temporarily within a method
125 // or across method calls
126
127 // volatile (caller-save) registers
128
129 // r8 is used for indirect result location return
130 // we use it and r9 as scratch registers
131 constexpr Register rscratch1 = r8;
132 constexpr Register rscratch2 = r9;
133
134 // current method -- must be in a call-clobbered register
135 constexpr Register rmethod = r12;
136
137 // non-volatile (callee-save) registers are r16-29
138 // of which the following are dedicated global state
139
140 constexpr Register lr = r30; // link register
141 constexpr Register rfp = r29; // frame pointer
142 constexpr Register rthread = r28; // current thread
143 constexpr Register rheapbase = r27; // base of heap
144 constexpr Register rcpool = r26; // constant pool cache
145 constexpr Register rlocals = r24; // locals on stack
146 constexpr Register rbcp = r22; // bytecode pointer
147 constexpr Register rdispatch = r21; // dispatch table base
148 constexpr Register esp = r20; // Java expression stack pointer
149 constexpr Register r19_sender_sp = r19; // sender's SP while in interpreter
150
151 // Preserved predicate register with all elements set TRUE.
152 constexpr PRegister ptrue = p7;
153
154 #define assert_cond(ARG1) assert(ARG1, #ARG1)
155
156 namespace asm_util {
157 uint32_t encode_logical_immediate(bool is32, uint64_t imm);
158 uint32_t encode_sve_logical_immediate(unsigned elembits, uint64_t imm);
159 bool operand_valid_for_immediate_bits(int64_t imm, unsigned nbits);
160 };
161
162 using namespace asm_util;
163
164
165 class Assembler;
166
167 class Instruction_aarch64 {
168 unsigned insn;
169 #ifdef ASSERT
170 unsigned bits;
171 #endif
172 Assembler *assem;
173
174 public:
175
176 Instruction_aarch64(class Assembler *as) {
177 #ifdef ASSERT
178 bits = 0;
179 #endif
180 insn = 0;
181 assem = as;
182 }
183
184 inline ~Instruction_aarch64();
185
186 unsigned &get_insn() { return insn; }
187 #ifdef ASSERT
188 unsigned &get_bits() { return bits; }
189 #endif
190
191 static inline int32_t extend(unsigned val, int hi = 31, int lo = 0) {
192 union {
193 unsigned u;
194 int n;
195 };
196
197 u = val << (31 - hi);
198 n = n >> (31 - hi + lo);
199 return n;
200 }
201
202 static inline uint32_t extract(uint32_t val, int msb, int lsb) {
203 int nbits = msb - lsb + 1;
204 assert_cond(msb >= lsb);
205 uint32_t mask = checked_cast<uint32_t>(right_n_bits(nbits));
206 uint32_t result = val >> lsb;
207 result &= mask;
208 return result;
209 }
210
211 static inline int32_t sextract(uint32_t val, int msb, int lsb) {
212 uint32_t uval = extract(val, msb, lsb);
213 return extend(uval, msb - lsb);
214 }
215
216 static ALWAYSINLINE void patch(address a, int msb, int lsb, uint64_t val) {
217 int nbits = msb - lsb + 1;
218 guarantee(val < (1ULL << nbits), "Field too big for insn");
219 assert_cond(msb >= lsb);
220 unsigned mask = checked_cast<unsigned>(right_n_bits(nbits));
221 val <<= lsb;
222 mask <<= lsb;
223 unsigned target = *(unsigned *)a;
224 target &= ~mask;
225 target |= (unsigned)val;
226 *(unsigned *)a = target;
227 }
228
229 static void spatch(address a, int msb, int lsb, int64_t val) {
230 int nbits = msb - lsb + 1;
231 int64_t chk = val >> (nbits - 1);
232 guarantee (chk == -1 || chk == 0, "Field too big for insn at " INTPTR_FORMAT, p2i(a));
233 uint64_t uval = val;
234 unsigned mask = checked_cast<unsigned>(right_n_bits(nbits));
235 uval &= mask;
236 uval <<= lsb;
237 mask <<= lsb;
238 unsigned target = *(unsigned *)a;
239 target &= ~mask;
240 target |= (unsigned)uval;
241 *(unsigned *)a = target;
242 }
243
244 void f(unsigned val, int msb, int lsb) {
245 int nbits = msb - lsb + 1;
246 guarantee(val < (1ULL << nbits), "Field too big for insn");
247 assert_cond(msb >= lsb);
248 val <<= lsb;
249 insn |= val;
250 #ifdef ASSERT
251 unsigned mask = checked_cast<unsigned>(right_n_bits(nbits));
252 mask <<= lsb;
253 assert_cond((bits & mask) == 0);
254 bits |= mask;
255 #endif
256 }
257
258 void f(unsigned val, int bit) {
259 f(val, bit, bit);
260 }
261
262 void sf(int64_t val, int msb, int lsb) {
263 int nbits = msb - lsb + 1;
264 int64_t chk = val >> (nbits - 1);
265 guarantee (chk == -1 || chk == 0, "Field too big for insn");
266 uint64_t uval = val;
267 unsigned mask = checked_cast<unsigned>(right_n_bits(nbits));
268 uval &= mask;
269 f((unsigned)uval, lsb + nbits - 1, lsb);
270 }
271
272 void rf(Register r, int lsb) {
273 f(r->raw_encoding(), lsb + 4, lsb);
274 }
275
276 // reg|ZR
277 void zrf(Register r, int lsb) {
278 f(r->raw_encoding() - (r == zr), lsb + 4, lsb);
279 }
280
281 // reg|SP
282 void srf(Register r, int lsb) {
283 f(r == sp ? 31 : r->raw_encoding(), lsb + 4, lsb);
284 }
285
286 void rf(FloatRegister r, int lsb) {
287 f(r->raw_encoding(), lsb + 4, lsb);
288 }
289
290 //<0-15>reg: As `rf(FloatRegister)`, but only the lower 16 FloatRegisters are allowed.
291 void lrf(FloatRegister r, int lsb) {
292 f(r->raw_encoding(), lsb + 3, lsb);
293 }
294
295 void prf(PRegister r, int lsb) {
296 f(r->raw_encoding(), lsb + 3, lsb);
297 }
298
299 void pgrf(PRegister r, int lsb) {
300 f(r->raw_encoding(), lsb + 2, lsb);
301 }
302
303 unsigned get(int msb = 31, int lsb = 0) {
304 int nbits = msb - lsb + 1;
305 unsigned mask = checked_cast<unsigned>(right_n_bits(nbits)) << lsb;
306 assert_cond((bits & mask) == mask);
307 return (insn & mask) >> lsb;
308 }
309 };
310
311 #define starti Instruction_aarch64 current_insn(this);
312
313 class PrePost {
314 int _offset;
315 Register _r;
316 protected:
317 PrePost(Register reg, int o) : _offset(o), _r(reg) { }
318 ~PrePost() = default;
319 PrePost(const PrePost&) = default;
320 PrePost& operator=(const PrePost&) = default;
321 public:
322 int offset() const { return _offset; }
323 Register reg() const { return _r; }
324 };
325
326 class Pre : public PrePost {
327 public:
328 Pre(Register reg, int o) : PrePost(reg, o) { }
329 };
330
331 class Post : public PrePost {
332 Register _idx;
333 bool _is_postreg;
334 public:
335 Post(Register reg, int o) : PrePost(reg, o), _idx(noreg), _is_postreg(false) {}
336 Post(Register reg, Register idx) : PrePost(reg, 0), _idx(idx), _is_postreg(true) {}
337 Register idx_reg() const { return _idx; }
338 bool is_postreg() const { return _is_postreg; }
339 };
340
341 namespace ext
342 {
343 enum operation { uxtb, uxth, uxtw, uxtx, sxtb, sxth, sxtw, sxtx };
344 };
345
346 // Addressing modes
347 class Address {
348 public:
349
350 enum mode { no_mode, base_plus_offset, pre, post, post_reg,
351 base_plus_offset_reg, literal };
352
353 // Shift and extend for base reg + reg offset addressing
354 class extend {
355 int _option, _shift;
356 ext::operation _op;
357 public:
358 extend() { }
359 extend(int s, int o, ext::operation op) : _option(o), _shift(s), _op(op) { }
360 int option() const{ return _option; }
361 int shift() const { return _shift; }
362 ext::operation op() const { return _op; }
363 };
364
365 static extend uxtw(int shift = -1) { return extend(shift, 0b010, ext::uxtw); }
366 static extend lsl(int shift = -1) { return extend(shift, 0b011, ext::uxtx); }
367 static extend sxtw(int shift = -1) { return extend(shift, 0b110, ext::sxtw); }
368 static extend sxtx(int shift = -1) { return extend(shift, 0b111, ext::sxtx); }
369
370 private:
371 struct Nonliteral {
372 Nonliteral(Register base, Register index, int64_t offset, extend ext = extend())
373 : _base(base), _index(index), _offset(offset), _ext(ext) {}
374 Register _base;
375 Register _index;
376 int64_t _offset;
377 extend _ext;
378 };
379
380 struct Literal {
381 Literal(address target, const RelocationHolder& rspec)
382 : _target(target), _rspec(rspec) {}
383
384 // If the target is far we'll need to load the ea of this to a
385 // register to reach it. Otherwise if near we can do PC-relative
386 // addressing.
387 address _target;
388
389 RelocationHolder _rspec;
390 };
391
392 void assert_is_nonliteral() const NOT_DEBUG_RETURN;
393 void assert_is_literal() const NOT_DEBUG_RETURN;
394
395 // Discriminated union, based on _mode.
396 // - no_mode: uses dummy _nonliteral, for ease of copying.
397 // - literal: only _literal is used.
398 // - others: only _nonliteral is used.
399 enum mode _mode;
400 union {
401 Nonliteral _nonliteral;
402 Literal _literal;
403 };
404
405 // Helper for copy constructor and assignment operator.
406 // Copy mode-relevant part of a into this.
407 void copy_data(const Address& a) {
408 assert(_mode == a._mode, "precondition");
409 if (_mode == literal) {
410 new (&_literal) Literal(a._literal);
411 } else {
412 // non-literal mode or no_mode.
413 new (&_nonliteral) Nonliteral(a._nonliteral);
414 }
415 }
416
417 public:
418 // no_mode initializes _nonliteral for ease of copying.
419 Address() :
420 _mode(no_mode),
421 _nonliteral(noreg, noreg, 0)
422 {}
423
424 Address(Register r) :
425 _mode(base_plus_offset),
426 _nonliteral(r, noreg, 0)
427 {}
428
429 template<typename T, ENABLE_IF(std::is_integral<T>::value)>
430 Address(Register r, T o) :
431 _mode(base_plus_offset),
432 _nonliteral(r, noreg, o)
433 {}
434
435 Address(Register r, ByteSize disp) : Address(r, in_bytes(disp)) {}
436
437 Address(Register r, Register r1, extend ext = lsl()) :
438 _mode(base_plus_offset_reg),
439 _nonliteral(r, r1, 0, ext)
440 {}
441
442 Address(Pre p) :
443 _mode(pre),
444 _nonliteral(p.reg(), noreg, p.offset())
445 {}
446
447 Address(Post p) :
448 _mode(p.is_postreg() ? post_reg : post),
449 _nonliteral(p.reg(), p.idx_reg(), p.offset())
450 {}
451
452 Address(address target, const RelocationHolder& rspec) :
453 _mode(literal),
454 _literal(target, rspec)
455 {}
456
457 Address(address target, relocInfo::relocType rtype = relocInfo::external_word_type);
458
459 Address(Register base, RegisterOrConstant index, extend ext = lsl()) {
460 if (index.is_register()) {
461 _mode = base_plus_offset_reg;
462 new (&_nonliteral) Nonliteral(base, index.as_register(), 0, ext);
463 } else {
464 guarantee(ext.option() == ext::uxtx, "should be");
465 assert(index.is_constant(), "should be");
466 _mode = base_plus_offset;
467 new (&_nonliteral) Nonliteral(base,
468 noreg,
469 index.as_constant() << ext.shift());
470 }
471 }
472
473 Address(const Address& a) : _mode(a._mode) { copy_data(a); }
474
475 // Verify the value is trivially destructible regardless of mode, so our
476 // destructor can also be trivial, and so our assignment operator doesn't
477 // need to destruct the old value before copying over it.
478 static_assert(std::is_trivially_destructible<Literal>::value, "must be");
479 static_assert(std::is_trivially_destructible<Nonliteral>::value, "must be");
480
481 Address& operator=(const Address& a) {
482 _mode = a._mode;
483 copy_data(a);
484 return *this;
485 }
486
487 ~Address() = default;
488
489 Register base() const {
490 assert_is_nonliteral();
491 return _nonliteral._base;
492 }
493
494 int64_t offset() const {
495 assert_is_nonliteral();
496 return _nonliteral._offset;
497 }
498
499 Register index() const {
500 assert_is_nonliteral();
501 return _nonliteral._index;
502 }
503
504 extend ext() const {
505 assert_is_nonliteral();
506 return _nonliteral._ext;
507 }
508
509 mode getMode() const {
510 return _mode;
511 }
512
513 bool uses(Register reg) const {
514 switch (_mode) {
515 case literal:
516 case no_mode:
517 return false;
518 case base_plus_offset:
519 case base_plus_offset_reg:
520 case pre:
521 case post:
522 case post_reg:
523 return base() == reg || index() == reg;
524 default:
525 ShouldNotReachHere();
526 return false;
527 }
528 }
529
530 address target() const {
531 assert_is_literal();
532 return _literal._target;
533 }
534
535 const RelocationHolder& rspec() const {
536 assert_is_literal();
537 return _literal._rspec;
538 }
539
540 void encode(Instruction_aarch64 *i) const {
541 i->f(0b111, 29, 27);
542 i->srf(base(), 5);
543
544 switch(_mode) {
545 case base_plus_offset:
546 {
547 unsigned size = i->get(31, 30);
548 if (i->get(26, 26) && i->get(23, 23)) {
549 // SIMD Q Type - Size = 128 bits
550 assert(size == 0, "bad size");
551 size = 0b100;
552 }
553 assert(offset_ok_for_immed(offset(), size),
554 "must be, was: " INT64_FORMAT ", %d", offset(), size);
555 unsigned mask = (1 << size) - 1;
556 if (offset() < 0 || offset() & mask) {
557 i->f(0b00, 25, 24);
558 i->f(0, 21), i->f(0b00, 11, 10);
559 i->sf(offset(), 20, 12);
560 } else {
561 i->f(0b01, 25, 24);
562 i->f(checked_cast<unsigned>(offset() >> size), 21, 10);
563 }
564 }
565 break;
566
567 case base_plus_offset_reg:
568 {
569 i->f(0b00, 25, 24);
570 i->f(1, 21);
571 i->rf(index(), 16);
572 i->f(ext().option(), 15, 13);
573 unsigned size = i->get(31, 30);
574 if (i->get(26, 26) && i->get(23, 23)) {
575 // SIMD Q Type - Size = 128 bits
576 assert(size == 0, "bad size");
577 size = 0b100;
578 }
579 if (size == 0) // It's a byte
580 i->f(ext().shift() >= 0, 12);
581 else {
582 guarantee(ext().shift() <= 0 || ext().shift() == (int)size, "bad shift");
583 i->f(ext().shift() > 0, 12);
584 }
585 i->f(0b10, 11, 10);
586 }
587 break;
588
589 case pre:
590 i->f(0b00, 25, 24);
591 i->f(0, 21), i->f(0b11, 11, 10);
592 i->sf(offset(), 20, 12);
593 break;
594
595 case post:
596 i->f(0b00, 25, 24);
597 i->f(0, 21), i->f(0b01, 11, 10);
598 i->sf(offset(), 20, 12);
599 break;
600
601 default:
602 ShouldNotReachHere();
603 }
604 }
605
606 void encode_pair(Instruction_aarch64 *i) const {
607 switch(_mode) {
608 case base_plus_offset:
609 i->f(0b010, 25, 23);
610 break;
611 case pre:
612 i->f(0b011, 25, 23);
613 break;
614 case post:
615 i->f(0b001, 25, 23);
616 break;
617 default:
618 ShouldNotReachHere();
619 }
620
621 unsigned size; // Operand shift in 32-bit words
622
623 if (i->get(26, 26)) { // float
624 switch(i->get(31, 30)) {
625 case 0b10:
626 size = 2; break;
627 case 0b01:
628 size = 1; break;
629 case 0b00:
630 size = 0; break;
631 default:
632 ShouldNotReachHere();
633 size = 0; // unreachable
634 }
635 } else {
636 size = i->get(31, 31);
637 }
638
639 size = 4 << size;
640 guarantee(offset() % size == 0, "bad offset");
641 i->sf(offset() / size, 21, 15);
642 i->srf(base(), 5);
643 }
644
645 void encode_nontemporal_pair(Instruction_aarch64 *i) const {
646 guarantee(_mode == base_plus_offset, "Bad addressing mode for nontemporal op");
647 i->f(0b000, 25, 23);
648 unsigned size = i->get(31, 31);
649 size = 4 << size;
650 guarantee(offset() % size == 0, "bad offset");
651 i->sf(offset() / size, 21, 15);
652 i->srf(base(), 5);
653 }
654
655 void lea(MacroAssembler *, Register) const;
656
657 static bool offset_ok_for_immed(int64_t offset, uint shift);
658
659 static bool offset_ok_for_sve_immed(int64_t offset, int shift, int vl /* sve vector length */) {
660 if (offset % vl == 0) {
661 // Convert address offset into sve imm offset (MUL VL).
662 int64_t sve_offset = offset / vl;
663 int32_t range = 1 << (shift - 1);
664 if ((-range <= sve_offset) && (sve_offset < range)) {
665 // sve_offset can be encoded
666 return true;
667 }
668 }
669 return false;
670 }
671 };
672
673 // Convenience classes
674 class RuntimeAddress: public Address {
675
676 public:
677
678 RuntimeAddress(address target) : Address(target, relocInfo::runtime_call_type) {}
679
680 };
681
682 class OopAddress: public Address {
683
684 public:
685
686 OopAddress(address target) : Address(target, relocInfo::oop_type){}
687
688 };
689
690 class ExternalAddress: public Address {
691 private:
692 static relocInfo::relocType reloc_for_target(address target) {
693 // Sometimes ExternalAddress is used for values which aren't
694 // exactly addresses, like the card table base.
695 // external_word_type can't be used for values in the first page
696 // so just skip the reloc in that case.
697 return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
698 }
699
700 public:
701
702 ExternalAddress(address target) : Address(target, reloc_for_target(target)) {}
703
704 };
705
706 class InternalAddress: public Address {
707
708 public:
709
710 InternalAddress(address target) : Address(target, relocInfo::internal_word_type) {}
711 };
712
713 const int FPUStateSizeInWords = FloatRegister::number_of_registers * FloatRegister::save_slots_per_register;
714
715 typedef enum {
716 PLDL1KEEP = 0b00000, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM,
717 PSTL1KEEP = 0b10000, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM,
718 PLIL1KEEP = 0b01000, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM
719 } prfop;
720
721 class Assembler : public AbstractAssembler {
722
723 public:
724
725 #ifndef PRODUCT
726 static const uintptr_t asm_bp;
727
728 void emit_int32(jint x) {
729 if ((uintptr_t)pc() == asm_bp)
730 NOP();
731 AbstractAssembler::emit_int32(x);
732 }
733 #else
734 void emit_int32(jint x) {
735 AbstractAssembler::emit_int32(x);
736 }
737 #endif
738
739 enum { instruction_size = 4 };
740
741 //---< calculate length of instruction >---
742 // We just use the values set above.
743 // instruction must start at passed address
744 static unsigned int instr_len(unsigned char *instr) { return instruction_size; }
745
746 //---< longest instructions >---
747 static unsigned int instr_maxlen() { return instruction_size; }
748
749 Address adjust(Register base, int offset, bool preIncrement) {
750 if (preIncrement)
751 return Address(Pre(base, offset));
752 else
753 return Address(Post(base, offset));
754 }
755
756 Address pre(Register base, int offset) {
757 return adjust(base, offset, true);
758 }
759
760 Address post(Register base, int offset) {
761 return adjust(base, offset, false);
762 }
763
764 Address post(Register base, Register idx) {
765 return Address(Post(base, idx));
766 }
767
768 static address locate_next_instruction(address inst);
769
770 #define f current_insn.f
771 #define sf current_insn.sf
772 #define rf current_insn.rf
773 #define lrf current_insn.lrf
774 #define srf current_insn.srf
775 #define zrf current_insn.zrf
776 #define prf current_insn.prf
777 #define pgrf current_insn.pgrf
778
779 typedef void (Assembler::* uncond_branch_insn)(address dest);
780 typedef void (Assembler::* compare_and_branch_insn)(Register Rt, address dest);
781 typedef void (Assembler::* test_and_branch_insn)(Register Rt, int bitpos, address dest);
782 typedef void (Assembler::* prefetch_insn)(address target, prfop);
783
784 void wrap_label(Label &L, uncond_branch_insn insn);
785 void wrap_label(Register r, Label &L, compare_and_branch_insn insn);
786 void wrap_label(Register r, int bitpos, Label &L, test_and_branch_insn insn);
787 void wrap_label(Label &L, prfop, prefetch_insn insn);
788
789 // PC-rel. addressing
790
791 void adr(Register Rd, address dest);
792 void _adrp(Register Rd, address dest);
793
794 void adr(Register Rd, const Address &dest);
795 void _adrp(Register Rd, const Address &dest);
796
797 void adr(Register Rd, Label &L) {
798 wrap_label(Rd, L, &Assembler::Assembler::adr);
799 }
800 void _adrp(Register Rd, Label &L) {
801 wrap_label(Rd, L, &Assembler::_adrp);
802 }
803
804 void adrp(Register Rd, const Address &dest, uint64_t &offset) = delete;
805
806 void prfm(const Address &adr, prfop pfop = PLDL1KEEP);
807
808 #undef INSN
809
810 void add_sub_immediate(Instruction_aarch64 ¤t_insn, Register Rd, Register Rn,
811 unsigned uimm, int op, int negated_op);
812
813 // Add/subtract (immediate)
814 #define INSN(NAME, decode, negated) \
815 void NAME(Register Rd, Register Rn, unsigned imm, unsigned shift) { \
816 starti; \
817 f(decode, 31, 29), f(0b10001, 28, 24), f(shift, 23, 22), f(imm, 21, 10); \
818 zrf(Rd, 0), srf(Rn, 5); \
819 } \
820 \
821 void NAME(Register Rd, Register Rn, unsigned imm) { \
822 starti; \
823 add_sub_immediate(current_insn, Rd, Rn, imm, decode, negated); \
824 }
825
826 INSN(addsw, 0b001, 0b011);
827 INSN(subsw, 0b011, 0b001);
828 INSN(adds, 0b101, 0b111);
829 INSN(subs, 0b111, 0b101);
830
831 #undef INSN
832
833 #define INSN(NAME, decode, negated) \
834 void NAME(Register Rd, Register Rn, unsigned imm) { \
835 starti; \
836 add_sub_immediate(current_insn, Rd, Rn, imm, decode, negated); \
837 }
838
839 INSN(addw, 0b000, 0b010);
840 INSN(subw, 0b010, 0b000);
841 INSN(add, 0b100, 0b110);
842 INSN(sub, 0b110, 0b100);
843
844 #undef INSN
845
846 // Logical (immediate)
847 #define INSN(NAME, decode, is32) \
848 void NAME(Register Rd, Register Rn, uint64_t imm) { \
849 starti; \
850 uint32_t val = encode_logical_immediate(is32, imm); \
851 f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10); \
852 srf(Rd, 0), zrf(Rn, 5); \
853 }
854
855 INSN(andw, 0b000, true);
856 INSN(orrw, 0b001, true);
857 INSN(eorw, 0b010, true);
858 INSN(andr, 0b100, false);
859 INSN(orr, 0b101, false);
860 INSN(eor, 0b110, false);
861
862 #undef INSN
863
864 #define INSN(NAME, decode, is32) \
865 void NAME(Register Rd, Register Rn, uint64_t imm) { \
866 starti; \
867 uint32_t val = encode_logical_immediate(is32, imm); \
868 f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10); \
869 zrf(Rd, 0), zrf(Rn, 5); \
870 }
871
872 INSN(ands, 0b111, false);
873 INSN(andsw, 0b011, true);
874
875 #undef INSN
876
877 // Move wide (immediate)
878 #define INSN(NAME, opcode) \
879 void NAME(Register Rd, unsigned imm, unsigned shift = 0) { \
880 assert_cond((shift/16)*16 == shift); \
881 starti; \
882 f(opcode, 31, 29), f(0b100101, 28, 23), f(shift/16, 22, 21), \
883 f(imm, 20, 5); \
884 zrf(Rd, 0); \
885 }
886
887 INSN(movnw, 0b000);
888 INSN(movzw, 0b010);
889 INSN(movkw, 0b011);
890 INSN(movn, 0b100);
891 INSN(movz, 0b110);
892 INSN(movk, 0b111);
893
894 #undef INSN
895
896 // Bitfield
897 #define INSN(NAME, opcode, size) \
898 void NAME(Register Rd, Register Rn, unsigned immr, unsigned imms) { \
899 starti; \
900 guarantee(size == 1 || (immr < 32 && imms < 32), "incorrect immr/imms");\
901 f(opcode, 31, 22), f(immr, 21, 16), f(imms, 15, 10); \
902 zrf(Rn, 5), rf(Rd, 0); \
903 }
904
905 INSN(sbfmw, 0b0001001100, 0);
906 INSN(bfmw, 0b0011001100, 0);
907 INSN(ubfmw, 0b0101001100, 0);
908 INSN(sbfm, 0b1001001101, 1);
909 INSN(bfm, 0b1011001101, 1);
910 INSN(ubfm, 0b1101001101, 1);
911
912 #undef INSN
913
914 // Extract
915 #define INSN(NAME, opcode, size) \
916 void NAME(Register Rd, Register Rn, Register Rm, unsigned imms) { \
917 starti; \
918 guarantee(size == 1 || imms < 32, "incorrect imms"); \
919 f(opcode, 31, 21), f(imms, 15, 10); \
920 zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0); \
921 }
922
923 INSN(extrw, 0b00010011100, 0);
924 INSN(extr, 0b10010011110, 1);
925
926 #undef INSN
927
928 // The maximum range of a branch is fixed for the AArch64
929 // architecture. In debug mode we shrink it in order to test
930 // trampolines, but not so small that branches in the interpreter
931 // are out of range.
932 static const uint64_t branch_range = NOT_DEBUG(128 * M) DEBUG_ONLY(2 * M);
933
934 static bool reachable_from_branch_at(address branch, address target) {
935 return g_uabs(target - branch) < branch_range;
936 }
937
938 // Unconditional branch (immediate)
939 #define INSN(NAME, opcode) \
940 void NAME(address dest) { \
941 starti; \
942 int64_t offset = (dest - pc()) >> 2; \
943 DEBUG_ONLY(assert(reachable_from_branch_at(pc(), dest), "debug only")); \
944 f(opcode, 31), f(0b00101, 30, 26), sf(offset, 25, 0); \
945 } \
946 void NAME(Label &L) { \
947 wrap_label(L, &Assembler::NAME); \
948 } \
949 void NAME(const Address &dest);
950
951 INSN(b, 0);
952 INSN(bl, 1);
953
954 #undef INSN
955
956 // Compare & branch (immediate)
957 #define INSN(NAME, opcode) \
958 void NAME(Register Rt, address dest) { \
959 int64_t offset = (dest - pc()) >> 2; \
960 starti; \
961 f(opcode, 31, 24), sf(offset, 23, 5), rf(Rt, 0); \
962 } \
963 void NAME(Register Rt, Label &L) { \
964 wrap_label(Rt, L, &Assembler::NAME); \
965 }
966
967 INSN(cbzw, 0b00110100);
968 INSN(cbnzw, 0b00110101);
969 INSN(cbz, 0b10110100);
970 INSN(cbnz, 0b10110101);
971
972 #undef INSN
973
974 // Test & branch (immediate)
975 #define INSN(NAME, opcode) \
976 void NAME(Register Rt, int bitpos, address dest) { \
977 int64_t offset = (dest - pc()) >> 2; \
978 int b5 = bitpos >> 5; \
979 bitpos &= 0x1f; \
980 starti; \
981 f(b5, 31), f(opcode, 30, 24), f(bitpos, 23, 19), sf(offset, 18, 5); \
982 rf(Rt, 0); \
983 } \
984 void NAME(Register Rt, int bitpos, Label &L) { \
985 wrap_label(Rt, bitpos, L, &Assembler::NAME); \
986 }
987
988 INSN(tbz, 0b0110110);
989 INSN(tbnz, 0b0110111);
990
991 #undef INSN
992
993 // Conditional branch (immediate)
994 enum Condition
995 {EQ, NE, HS, CS=HS, LO, CC=LO, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE, AL, NV};
996
997 void br(Condition cond, address dest) {
998 int64_t offset = (dest - pc()) >> 2;
999 starti;
1000 f(0b0101010, 31, 25), f(0, 24), sf(offset, 23, 5), f(0, 4), f(cond, 3, 0);
1001 }
1002
1003 #define INSN(NAME, cond) \
1004 void NAME(address dest) { \
1005 br(cond, dest); \
1006 }
1007
1008 INSN(beq, EQ);
1009 INSN(bne, NE);
1010 INSN(bhs, HS);
1011 INSN(bcs, CS);
1012 INSN(blo, LO);
1013 INSN(bcc, CC);
1014 INSN(bmi, MI);
1015 INSN(bpl, PL);
1016 INSN(bvs, VS);
1017 INSN(bvc, VC);
1018 INSN(bhi, HI);
1019 INSN(bls, LS);
1020 INSN(bge, GE);
1021 INSN(blt, LT);
1022 INSN(bgt, GT);
1023 INSN(ble, LE);
1024 INSN(bal, AL);
1025 INSN(bnv, NV);
1026
1027 void br(Condition cc, Label &L);
1028
1029 #undef INSN
1030
1031 // Exception generation
1032 void generate_exception(int opc, int op2, int LL, unsigned imm) {
1033 starti;
1034 f(0b11010100, 31, 24);
1035 f(opc, 23, 21), f(imm, 20, 5), f(op2, 4, 2), f(LL, 1, 0);
1036 }
1037
1038 #define INSN(NAME, opc, op2, LL) \
1039 void NAME(unsigned imm) { \
1040 generate_exception(opc, op2, LL, imm); \
1041 }
1042
1043 INSN(svc, 0b000, 0, 0b01);
1044 INSN(hvc, 0b000, 0, 0b10);
1045 INSN(smc, 0b000, 0, 0b11);
1046 INSN(brk, 0b001, 0, 0b00);
1047 INSN(hlt, 0b010, 0, 0b00);
1048 INSN(dcps1, 0b101, 0, 0b01);
1049 INSN(dcps2, 0b101, 0, 0b10);
1050 INSN(dcps3, 0b101, 0, 0b11);
1051
1052 #undef INSN
1053
1054 // System
1055 void system(int op0, int op1, int CRn, int CRm, int op2,
1056 Register rt = dummy_reg)
1057 {
1058 starti;
1059 f(0b11010101000, 31, 21);
1060 f(op0, 20, 19);
1061 f(op1, 18, 16);
1062 f(CRn, 15, 12);
1063 f(CRm, 11, 8);
1064 f(op2, 7, 5);
1065 rf(rt, 0);
1066 }
1067
1068 // Hint instructions
1069
1070 #define INSN(NAME, crm, op2) \
1071 void NAME() { \
1072 system(0b00, 0b011, 0b0010, crm, op2); \
1073 }
1074
1075 INSN(nop, 0b000, 0b0000);
1076 INSN(yield, 0b000, 0b0001);
1077 INSN(wfe, 0b000, 0b0010);
1078 INSN(wfi, 0b000, 0b0011);
1079 INSN(sev, 0b000, 0b0100);
1080 INSN(sevl, 0b000, 0b0101);
1081
1082 INSN(autia1716, 0b0001, 0b100);
1083 INSN(autiasp, 0b0011, 0b101);
1084 INSN(autiaz, 0b0011, 0b100);
1085 INSN(autib1716, 0b0001, 0b110);
1086 INSN(autibsp, 0b0011, 0b111);
1087 INSN(autibz, 0b0011, 0b110);
1088 INSN(pacia1716, 0b0001, 0b000);
1089 INSN(paciasp, 0b0011, 0b001);
1090 INSN(paciaz, 0b0011, 0b000);
1091 INSN(pacib1716, 0b0001, 0b010);
1092 INSN(pacibsp, 0b0011, 0b011);
1093 INSN(pacibz, 0b0011, 0b010);
1094 INSN(xpaclri, 0b0000, 0b111);
1095
1096 #undef INSN
1097
1098 // we only provide mrs and msr for the special purpose system
1099 // registers where op1 (instr[20:19]) == 11
1100 // n.b msr has L (instr[21]) == 0 mrs has L == 1
1101
1102 void msr(int op1, int CRn, int CRm, int op2, Register rt) {
1103 starti;
1104 f(0b1101010100011, 31, 19);
1105 f(op1, 18, 16);
1106 f(CRn, 15, 12);
1107 f(CRm, 11, 8);
1108 f(op2, 7, 5);
1109 // writing zr is ok
1110 zrf(rt, 0);
1111 }
1112
1113 void mrs(int op1, int CRn, int CRm, int op2, Register rt) {
1114 starti;
1115 f(0b1101010100111, 31, 19);
1116 f(op1, 18, 16);
1117 f(CRn, 15, 12);
1118 f(CRm, 11, 8);
1119 f(op2, 7, 5);
1120 // reading to zr is a mistake
1121 rf(rt, 0);
1122 }
1123
1124 enum barrier {OSHLD = 0b0001, OSHST, OSH, NSHLD=0b0101, NSHST, NSH,
1125 ISHLD = 0b1001, ISHST, ISH, LD=0b1101, ST, SY};
1126
1127 void dsb(barrier imm) {
1128 system(0b00, 0b011, 0b00011, imm, 0b100);
1129 }
1130
1131 void dmb(barrier imm) {
1132 system(0b00, 0b011, 0b00011, imm, 0b101);
1133 }
1134
1135 void isb() {
1136 system(0b00, 0b011, 0b00011, SY, 0b110);
1137 }
1138
1139 void sys(int op1, int CRn, int CRm, int op2,
1140 Register rt = as_Register(0b11111)) {
1141 system(0b01, op1, CRn, CRm, op2, rt);
1142 }
1143
1144 // Only implement operations accessible from EL0 or higher, i.e.,
1145 // op1 CRn CRm op2
1146 // IC IVAU 3 7 5 1
1147 // DC CVAC 3 7 10 1
1148 // DC CVAP 3 7 12 1
1149 // DC CVAU 3 7 11 1
1150 // DC CIVAC 3 7 14 1
1151 // DC ZVA 3 7 4 1
1152 // So only deal with the CRm field.
1153 enum icache_maintenance {IVAU = 0b0101};
1154 enum dcache_maintenance {CVAC = 0b1010, CVAP = 0b1100, CVAU = 0b1011, CIVAC = 0b1110, ZVA = 0b100};
1155
1156 void dc(dcache_maintenance cm, Register Rt) {
1157 sys(0b011, 0b0111, cm, 0b001, Rt);
1158 }
1159
1160 void ic(icache_maintenance cm, Register Rt) {
1161 sys(0b011, 0b0111, cm, 0b001, Rt);
1162 }
1163
1164 // A more convenient access to dmb for our purposes
1165 enum Membar_mask_bits {
1166 // We can use ISH for a barrier because the Arm ARM says "This
1167 // architecture assumes that all Processing Elements that use the
1168 // same operating system or hypervisor are in the same Inner
1169 // Shareable shareability domain."
1170 StoreStore = ISHST,
1171 LoadStore = ISHLD,
1172 LoadLoad = ISHLD,
1173 StoreLoad = ISH,
1174 AnyAny = ISH
1175 };
1176
1177 void membar(Membar_mask_bits order_constraint) {
1178 dmb(Assembler::barrier(order_constraint));
1179 }
1180
1181 // Unconditional branch (register)
1182
1183 void branch_reg(int OP, int A, int M, Register RN, Register RM) {
1184 starti;
1185 f(0b1101011, 31, 25);
1186 f(OP, 24, 21);
1187 f(0b111110000, 20, 12);
1188 f(A, 11, 11);
1189 f(M, 10, 10);
1190 rf(RN, 5);
1191 rf(RM, 0);
1192 }
1193
1194 #define INSN(NAME, opc) \
1195 void NAME(Register RN) { \
1196 branch_reg(opc, 0, 0, RN, r0); \
1197 }
1198
1199 INSN(br, 0b0000);
1200 INSN(blr, 0b0001);
1201 INSN(ret, 0b0010);
1202
1203 void ret(void *p); // This forces a compile-time error for ret(0)
1204
1205 #undef INSN
1206
1207 #define INSN(NAME, opc) \
1208 void NAME() { \
1209 branch_reg(opc, 0, 0, dummy_reg, r0); \
1210 }
1211
1212 INSN(eret, 0b0100);
1213 INSN(drps, 0b0101);
1214
1215 #undef INSN
1216
1217 #define INSN(NAME, M) \
1218 void NAME() { \
1219 branch_reg(0b0010, 1, M, dummy_reg, dummy_reg); \
1220 }
1221
1222 INSN(retaa, 0);
1223 INSN(retab, 1);
1224
1225 #undef INSN
1226
1227 #define INSN(NAME, OP, M) \
1228 void NAME(Register rn) { \
1229 branch_reg(OP, 1, M, rn, dummy_reg); \
1230 }
1231
1232 INSN(braaz, 0b0000, 0);
1233 INSN(brabz, 0b0000, 1);
1234 INSN(blraaz, 0b0001, 0);
1235 INSN(blrabz, 0b0001, 1);
1236
1237 #undef INSN
1238
1239 #define INSN(NAME, OP, M) \
1240 void NAME(Register rn, Register rm) { \
1241 branch_reg(OP, 1, M, rn, rm); \
1242 }
1243
1244 INSN(braa, 0b1000, 0);
1245 INSN(brab, 0b1000, 1);
1246 INSN(blraa, 0b1001, 0);
1247 INSN(blrab, 0b1001, 1);
1248
1249 #undef INSN
1250
1251 // Load/store exclusive
1252 enum operand_size { byte, halfword, word, xword };
1253
1254 void load_store_exclusive(Register Rs, Register Rt1, Register Rt2,
1255 Register Rn, enum operand_size sz, int op, bool ordered) {
1256 starti;
1257 f(sz, 31, 30), f(0b001000, 29, 24), f(op, 23, 21);
1258 rf(Rs, 16), f(ordered, 15), zrf(Rt2, 10), srf(Rn, 5), zrf(Rt1, 0);
1259 }
1260
1261 void load_exclusive(Register dst, Register addr,
1262 enum operand_size sz, bool ordered) {
1263 load_store_exclusive(dummy_reg, dst, dummy_reg, addr,
1264 sz, 0b010, ordered);
1265 }
1266
1267 void store_exclusive(Register status, Register new_val, Register addr,
1268 enum operand_size sz, bool ordered) {
1269 load_store_exclusive(status, new_val, dummy_reg, addr,
1270 sz, 0b000, ordered);
1271 }
1272
1273 #define INSN4(NAME, sz, op, o0) /* Four registers */ \
1274 void NAME(Register Rs, Register Rt1, Register Rt2, Register Rn) { \
1275 guarantee(Rs != Rn && Rs != Rt1 && Rs != Rt2, "unpredictable instruction"); \
1276 load_store_exclusive(Rs, Rt1, Rt2, Rn, sz, op, o0); \
1277 }
1278
1279 #define INSN3(NAME, sz, op, o0) /* Three registers */ \
1280 void NAME(Register Rs, Register Rt, Register Rn) { \
1281 guarantee(Rs != Rn && Rs != Rt, "unpredictable instruction"); \
1282 load_store_exclusive(Rs, Rt, dummy_reg, Rn, sz, op, o0); \
1283 }
1284
1285 #define INSN2(NAME, sz, op, o0) /* Two registers */ \
1286 void NAME(Register Rt, Register Rn) { \
1287 load_store_exclusive(dummy_reg, Rt, dummy_reg, \
1288 Rn, sz, op, o0); \
1289 }
1290
1291 #define INSN_FOO(NAME, sz, op, o0) /* Three registers, encoded differently */ \
1292 void NAME(Register Rt1, Register Rt2, Register Rn) { \
1293 guarantee(Rt1 != Rt2, "unpredictable instruction"); \
1294 load_store_exclusive(dummy_reg, Rt1, Rt2, Rn, sz, op, o0); \
1295 }
1296
1297 // bytes
1298 INSN3(stxrb, byte, 0b000, 0);
1299 INSN3(stlxrb, byte, 0b000, 1);
1300 INSN2(ldxrb, byte, 0b010, 0);
1301 INSN2(ldaxrb, byte, 0b010, 1);
1302 INSN2(stlrb, byte, 0b100, 1);
1303 INSN2(ldarb, byte, 0b110, 1);
1304
1305 // halfwords
1306 INSN3(stxrh, halfword, 0b000, 0);
1307 INSN3(stlxrh, halfword, 0b000, 1);
1308 INSN2(ldxrh, halfword, 0b010, 0);
1309 INSN2(ldaxrh, halfword, 0b010, 1);
1310 INSN2(stlrh, halfword, 0b100, 1);
1311 INSN2(ldarh, halfword, 0b110, 1);
1312
1313 // words
1314 INSN3(stxrw, word, 0b000, 0);
1315 INSN3(stlxrw, word, 0b000, 1);
1316 INSN4(stxpw, word, 0b001, 0);
1317 INSN4(stlxpw, word, 0b001, 1);
1318 INSN2(ldxrw, word, 0b010, 0);
1319 INSN2(ldaxrw, word, 0b010, 1);
1320 INSN2(stlrw, word, 0b100, 1);
1321 INSN2(ldarw, word, 0b110, 1);
1322 // pairs of words
1323 INSN_FOO(ldxpw, word, 0b011, 0);
1324 INSN_FOO(ldaxpw, word, 0b011, 1);
1325
1326 // xwords
1327 INSN3(stxr, xword, 0b000, 0);
1328 INSN3(stlxr, xword, 0b000, 1);
1329 INSN4(stxp, xword, 0b001, 0);
1330 INSN4(stlxp, xword, 0b001, 1);
1331 INSN2(ldxr, xword, 0b010, 0);
1332 INSN2(ldaxr, xword, 0b010, 1);
1333 INSN2(stlr, xword, 0b100, 1);
1334 INSN2(ldar, xword, 0b110, 1);
1335 // pairs of xwords
1336 INSN_FOO(ldxp, xword, 0b011, 0);
1337 INSN_FOO(ldaxp, xword, 0b011, 1);
1338
1339 #undef INSN2
1340 #undef INSN3
1341 #undef INSN4
1342 #undef INSN_FOO
1343
1344 // 8.1 Compare and swap extensions
1345 void lse_cas(Register Rs, Register Rt, Register Rn,
1346 enum operand_size sz, bool a, bool r, bool not_pair) {
1347 starti;
1348 if (! not_pair) { // Pair
1349 assert(sz == word || sz == xword, "invalid size");
1350 /* The size bit is in bit 30, not 31 */
1351 sz = (operand_size)(sz == word ? 0b00:0b01);
1352 }
1353 f(sz, 31, 30), f(0b001000, 29, 24), f(not_pair ? 1 : 0, 23), f(a, 22), f(1, 21);
1354 zrf(Rs, 16), f(r, 15), f(0b11111, 14, 10), srf(Rn, 5), zrf(Rt, 0);
1355 }
1356
1357 // CAS
1358 #define INSN(NAME, a, r) \
1359 void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1360 assert(Rs != Rn && Rs != Rt, "unpredictable instruction"); \
1361 lse_cas(Rs, Rt, Rn, sz, a, r, true); \
1362 }
1363 INSN(cas, false, false)
1364 INSN(casa, true, false)
1365 INSN(casl, false, true)
1366 INSN(casal, true, true)
1367 #undef INSN
1368
1369 // CASP
1370 #define INSN(NAME, a, r) \
1371 void NAME(operand_size sz, Register Rs, Register Rs1, \
1372 Register Rt, Register Rt1, Register Rn) { \
1373 assert((Rs->encoding() & 1) == 0 && (Rt->encoding() & 1) == 0 && \
1374 Rs->successor() == Rs1 && Rt->successor() == Rt1 && \
1375 Rs != Rn && Rs1 != Rn && Rs != Rt, "invalid registers"); \
1376 lse_cas(Rs, Rt, Rn, sz, a, r, false); \
1377 }
1378 INSN(casp, false, false)
1379 INSN(caspa, true, false)
1380 INSN(caspl, false, true)
1381 INSN(caspal, true, true)
1382 #undef INSN
1383
1384 // 8.1 Atomic operations
1385 void lse_atomic(Register Rs, Register Rt, Register Rn,
1386 enum operand_size sz, int op1, int op2, bool a, bool r) {
1387 starti;
1388 f(sz, 31, 30), f(0b111000, 29, 24), f(a, 23), f(r, 22), f(1, 21);
1389 zrf(Rs, 16), f(op1, 15), f(op2, 14, 12), f(0, 11, 10), srf(Rn, 5), zrf(Rt, 0);
1390 }
1391
1392 #define INSN(NAME, NAME_A, NAME_L, NAME_AL, op1, op2) \
1393 void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1394 lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, false); \
1395 } \
1396 void NAME_A(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1397 lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, false); \
1398 } \
1399 void NAME_L(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1400 lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, true); \
1401 } \
1402 void NAME_AL(operand_size sz, Register Rs, Register Rt, Register Rn) {\
1403 lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, true); \
1404 }
1405 INSN(ldadd, ldadda, ldaddl, ldaddal, 0, 0b000);
1406 INSN(ldbic, ldbica, ldbicl, ldbical, 0, 0b001);
1407 INSN(ldeor, ldeora, ldeorl, ldeoral, 0, 0b010);
1408 INSN(ldorr, ldorra, ldorrl, ldorral, 0, 0b011);
1409 INSN(ldsmax, ldsmaxa, ldsmaxl, ldsmaxal, 0, 0b100);
1410 INSN(ldsmin, ldsmina, ldsminl, ldsminal, 0, 0b101);
1411 INSN(ldumax, ldumaxa, ldumaxl, ldumaxal, 0, 0b110);
1412 INSN(ldumin, ldumina, lduminl, lduminal, 0, 0b111);
1413 INSN(swp, swpa, swpl, swpal, 1, 0b000);
1414 #undef INSN
1415
1416 // Load register (literal)
1417 #define INSN(NAME, opc, V) \
1418 void NAME(Register Rt, address dest) { \
1419 int64_t offset = (dest - pc()) >> 2; \
1420 starti; \
1421 f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24), \
1422 sf(offset, 23, 5); \
1423 rf(Rt, 0); \
1424 } \
1425 void NAME(Register Rt, address dest, relocInfo::relocType rtype) { \
1426 InstructionMark im(this); \
1427 guarantee(rtype == relocInfo::internal_word_type, \
1428 "only internal_word_type relocs make sense here"); \
1429 code_section()->relocate(inst_mark(), InternalAddress(dest).rspec()); \
1430 NAME(Rt, dest); \
1431 } \
1432 void NAME(Register Rt, Label &L) { \
1433 wrap_label(Rt, L, &Assembler::NAME); \
1434 }
1435
1436 INSN(ldrw, 0b00, 0);
1437 INSN(ldr, 0b01, 0);
1438 INSN(ldrsw, 0b10, 0);
1439
1440 #undef INSN
1441
1442 #define INSN(NAME, opc, V) \
1443 void NAME(FloatRegister Rt, address dest) { \
1444 int64_t offset = (dest - pc()) >> 2; \
1445 starti; \
1446 f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24), \
1447 sf(offset, 23, 5); \
1448 rf(as_Register(Rt), 0); \
1449 }
1450
1451 INSN(ldrs, 0b00, 1);
1452 INSN(ldrd, 0b01, 1);
1453 INSN(ldrq, 0b10, 1);
1454
1455 #undef INSN
1456
1457 #define INSN(NAME, size, opc) \
1458 void NAME(FloatRegister Rt, Register Rn) { \
1459 starti; \
1460 f(size, 31, 30), f(0b111100, 29, 24), f(opc, 23, 22), f(0, 21); \
1461 f(0, 20, 12), f(0b01, 11, 10); \
1462 rf(Rn, 5), rf(as_Register(Rt), 0); \
1463 }
1464
1465 INSN(ldrs, 0b10, 0b01);
1466 INSN(ldrd, 0b11, 0b01);
1467 INSN(ldrq, 0b00, 0b11);
1468
1469 #undef INSN
1470
1471
1472 #define INSN(NAME, opc, V) \
1473 void NAME(address dest, prfop op = PLDL1KEEP) { \
1474 int64_t offset = (dest - pc()) >> 2; \
1475 starti; \
1476 f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24), \
1477 sf(offset, 23, 5); \
1478 f(op, 4, 0); \
1479 } \
1480 void NAME(Label &L, prfop op = PLDL1KEEP) { \
1481 wrap_label(L, op, &Assembler::NAME); \
1482 }
1483
1484 INSN(prfm, 0b11, 0);
1485
1486 #undef INSN
1487
1488 // Load/store
1489 void ld_st1(int opc, int p1, int V, int L,
1490 Register Rt1, Register Rt2, Address adr, bool no_allocate) {
1491 starti;
1492 f(opc, 31, 30), f(p1, 29, 27), f(V, 26), f(L, 22);
1493 zrf(Rt2, 10), zrf(Rt1, 0);
1494 if (no_allocate) {
1495 adr.encode_nontemporal_pair(¤t_insn);
1496 } else {
1497 adr.encode_pair(¤t_insn);
1498 }
1499 }
1500
1501 // Load/store register pair (offset)
1502 #define INSN(NAME, size, p1, V, L, no_allocate) \
1503 void NAME(Register Rt1, Register Rt2, Address adr) { \
1504 ld_st1(size, p1, V, L, Rt1, Rt2, adr, no_allocate); \
1505 }
1506
1507 INSN(stpw, 0b00, 0b101, 0, 0, false);
1508 INSN(ldpw, 0b00, 0b101, 0, 1, false);
1509 INSN(ldpsw, 0b01, 0b101, 0, 1, false);
1510 INSN(stp, 0b10, 0b101, 0, 0, false);
1511 INSN(ldp, 0b10, 0b101, 0, 1, false);
1512
1513 // Load/store no-allocate pair (offset)
1514 INSN(stnpw, 0b00, 0b101, 0, 0, true);
1515 INSN(ldnpw, 0b00, 0b101, 0, 1, true);
1516 INSN(stnp, 0b10, 0b101, 0, 0, true);
1517 INSN(ldnp, 0b10, 0b101, 0, 1, true);
1518
1519 #undef INSN
1520
1521 #define INSN(NAME, size, p1, V, L, no_allocate) \
1522 void NAME(FloatRegister Rt1, FloatRegister Rt2, Address adr) { \
1523 ld_st1(size, p1, V, L, \
1524 as_Register(Rt1), as_Register(Rt2), adr, no_allocate); \
1525 }
1526
1527 INSN(stps, 0b00, 0b101, 1, 0, false);
1528 INSN(ldps, 0b00, 0b101, 1, 1, false);
1529 INSN(stpd, 0b01, 0b101, 1, 0, false);
1530 INSN(ldpd, 0b01, 0b101, 1, 1, false);
1531 INSN(stpq, 0b10, 0b101, 1, 0, false);
1532 INSN(ldpq, 0b10, 0b101, 1, 1, false);
1533
1534 #undef INSN
1535
1536 // Load/store register (all modes)
1537 void ld_st2(Register Rt, const Address &adr, int size, int op, int V = 0) {
1538 starti;
1539
1540 f(V, 26); // general reg?
1541 zrf(Rt, 0);
1542
1543 // Encoding for literal loads is done here (rather than pushed
1544 // down into Address::encode) because the encoding of this
1545 // instruction is too different from all of the other forms to
1546 // make it worth sharing.
1547 if (adr.getMode() == Address::literal) {
1548 assert(size == 0b10 || size == 0b11, "bad operand size in ldr");
1549 assert(op == 0b01, "literal form can only be used with loads");
1550 f(size & 0b01, 31, 30), f(0b011, 29, 27), f(0b00, 25, 24);
1551 int64_t offset = (adr.target() - pc()) >> 2;
1552 sf(offset, 23, 5);
1553 code_section()->relocate(pc(), adr.rspec());
1554 return;
1555 }
1556
1557 f(size, 31, 30);
1558 f(op, 23, 22); // str
1559 adr.encode(¤t_insn);
1560 }
1561
1562 #define INSN(NAME, size, op) \
1563 void NAME(Register Rt, const Address &adr) { \
1564 ld_st2(Rt, adr, size, op); \
1565 } \
1566
1567 INSN(str, 0b11, 0b00);
1568 INSN(strw, 0b10, 0b00);
1569 INSN(strb, 0b00, 0b00);
1570 INSN(strh, 0b01, 0b00);
1571
1572 INSN(ldr, 0b11, 0b01);
1573 INSN(ldrw, 0b10, 0b01);
1574 INSN(ldrb, 0b00, 0b01);
1575 INSN(ldrh, 0b01, 0b01);
1576
1577 INSN(ldrsb, 0b00, 0b10);
1578 INSN(ldrsbw, 0b00, 0b11);
1579 INSN(ldrsh, 0b01, 0b10);
1580 INSN(ldrshw, 0b01, 0b11);
1581 INSN(ldrsw, 0b10, 0b10);
1582
1583 #undef INSN
1584
1585 #define INSN(NAME, size, op) \
1586 void NAME(FloatRegister Rt, const Address &adr) { \
1587 ld_st2(as_Register(Rt), adr, size, op, 1); \
1588 }
1589
1590 INSN(strd, 0b11, 0b00);
1591 INSN(strs, 0b10, 0b00);
1592 INSN(ldrd, 0b11, 0b01);
1593 INSN(ldrs, 0b10, 0b01);
1594 INSN(strq, 0b00, 0b10);
1595 INSN(ldrq, 0x00, 0b11);
1596
1597 #undef INSN
1598
1599 // Load/store a register, but with a BasicType parameter. Loaded signed integer values are
1600 // extended to 64 bits.
1601 void load(Register Rt, const Address &adr, BasicType bt) {
1602 int op = (is_signed_subword_type(bt) || bt == T_INT) ? 0b10 : 0b01;
1603 ld_st2(Rt, adr, exact_log2(type2aelembytes(bt)), op);
1604 }
1605 void store(Register Rt, const Address &adr, BasicType bt) {
1606 ld_st2(Rt, adr, exact_log2(type2aelembytes(bt)), 0b00);
1607 }
1608
1609 /* SIMD extensions
1610 *
1611 * We just use FloatRegister in the following. They are exactly the same
1612 * as SIMD registers.
1613 */
1614 public:
1615
1616 enum SIMD_Arrangement {
1617 T8B, T16B, T4H, T8H, T2S, T4S, T1D, T2D, T1Q, INVALID_ARRANGEMENT
1618 };
1619
1620 enum SIMD_RegVariant {
1621 B, H, S, D, Q, INVALID
1622 };
1623
1624 private:
1625
1626 static SIMD_Arrangement _esize2arrangement_table[9][2];
1627 static SIMD_RegVariant _esize2regvariant[9];
1628
1629 public:
1630
1631 static SIMD_Arrangement esize2arrangement(unsigned esize, bool isQ);
1632 static SIMD_RegVariant elemType_to_regVariant(BasicType bt);
1633 static SIMD_RegVariant elemBytes_to_regVariant(unsigned esize);
1634 // Return the corresponding bits for different SIMD_RegVariant value.
1635 static unsigned regVariant_to_elemBits(SIMD_RegVariant T);
1636
1637 enum shift_kind { LSL, LSR, ASR, ROR };
1638
1639 void op_shifted_reg(Instruction_aarch64 ¤t_insn, unsigned decode,
1640 enum shift_kind kind, unsigned shift,
1641 unsigned size, unsigned op) {
1642 f(size, 31);
1643 f(op, 30, 29);
1644 f(decode, 28, 24);
1645 f(shift, 15, 10);
1646 f(kind, 23, 22);
1647 }
1648
1649 // Logical (shifted register)
1650 #define INSN(NAME, size, op, N) \
1651 void NAME(Register Rd, Register Rn, Register Rm, \
1652 enum shift_kind kind = LSL, unsigned shift = 0) { \
1653 starti; \
1654 guarantee(size == 1 || shift < 32, "incorrect shift"); \
1655 f(N, 21); \
1656 zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0); \
1657 op_shifted_reg(current_insn, 0b01010, kind, shift, size, op); \
1658 }
1659
1660 INSN(andr, 1, 0b00, 0);
1661 INSN(orr, 1, 0b01, 0);
1662 INSN(eor, 1, 0b10, 0);
1663 INSN(ands, 1, 0b11, 0);
1664 INSN(andw, 0, 0b00, 0);
1665 INSN(orrw, 0, 0b01, 0);
1666 INSN(eorw, 0, 0b10, 0);
1667 INSN(andsw, 0, 0b11, 0);
1668
1669 #undef INSN
1670
1671 #define INSN(NAME, size, op, N) \
1672 void NAME(Register Rd, Register Rn, Register Rm, \
1673 enum shift_kind kind = LSL, unsigned shift = 0) { \
1674 starti; \
1675 f(N, 21); \
1676 zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0); \
1677 op_shifted_reg(current_insn, 0b01010, kind, shift, size, op); \
1678 } \
1679 \
1680 /* These instructions have no immediate form. Provide an overload so \
1681 that if anyone does try to use an immediate operand -- this has \
1682 happened! -- we'll get a compile-time error. */ \
1683 void NAME(Register Rd, Register Rn, unsigned imm, \
1684 enum shift_kind kind = LSL, unsigned shift = 0) { \
1685 assert(false, " can't be used with immediate operand"); \
1686 }
1687
1688 INSN(bic, 1, 0b00, 1);
1689 INSN(orn, 1, 0b01, 1);
1690 INSN(eon, 1, 0b10, 1);
1691 INSN(bics, 1, 0b11, 1);
1692 INSN(bicw, 0, 0b00, 1);
1693 INSN(ornw, 0, 0b01, 1);
1694 INSN(eonw, 0, 0b10, 1);
1695 INSN(bicsw, 0, 0b11, 1);
1696
1697 #undef INSN
1698
1699 #ifdef _WIN64
1700 // In MSVC, `mvn` is defined as a macro and it affects compilation
1701 #undef mvn
1702 #endif
1703
1704 // Aliases for short forms of orn
1705 void mvn(Register Rd, Register Rm,
1706 enum shift_kind kind = LSL, unsigned shift = 0) {
1707 orn(Rd, zr, Rm, kind, shift);
1708 }
1709
1710 void mvnw(Register Rd, Register Rm,
1711 enum shift_kind kind = LSL, unsigned shift = 0) {
1712 ornw(Rd, zr, Rm, kind, shift);
1713 }
1714
1715 // Add/subtract (shifted register)
1716 #define INSN(NAME, size, op) \
1717 void NAME(Register Rd, Register Rn, Register Rm, \
1718 enum shift_kind kind, unsigned shift = 0) { \
1719 starti; \
1720 f(0, 21); \
1721 assert_cond(kind != ROR); \
1722 guarantee(size == 1 || shift < 32, "incorrect shift");\
1723 zrf(Rd, 0), zrf(Rn, 5), zrf(Rm, 16); \
1724 op_shifted_reg(current_insn, 0b01011, kind, shift, size, op); \
1725 }
1726
1727 INSN(add, 1, 0b000);
1728 INSN(sub, 1, 0b10);
1729 INSN(addw, 0, 0b000);
1730 INSN(subw, 0, 0b10);
1731
1732 INSN(adds, 1, 0b001);
1733 INSN(subs, 1, 0b11);
1734 INSN(addsw, 0, 0b001);
1735 INSN(subsw, 0, 0b11);
1736
1737 #undef INSN
1738
1739 // Add/subtract (extended register)
1740 #define INSN(NAME, op) \
1741 void NAME(Register Rd, Register Rn, Register Rm, \
1742 ext::operation option, int amount = 0) { \
1743 starti; \
1744 zrf(Rm, 16), srf(Rn, 5), srf(Rd, 0); \
1745 add_sub_extended_reg(current_insn, op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1746 }
1747
1748 void add_sub_extended_reg(Instruction_aarch64 ¤t_insn, unsigned op, unsigned decode,
1749 Register Rd, Register Rn, Register Rm,
1750 unsigned opt, ext::operation option, unsigned imm) {
1751 guarantee(imm <= 4, "shift amount must be <= 4");
1752 f(op, 31, 29), f(decode, 28, 24), f(opt, 23, 22), f(1, 21);
1753 f(option, 15, 13), f(imm, 12, 10);
1754 }
1755
1756 INSN(addw, 0b000);
1757 INSN(subw, 0b010);
1758 INSN(add, 0b100);
1759 INSN(sub, 0b110);
1760
1761 #undef INSN
1762
1763 #define INSN(NAME, op) \
1764 void NAME(Register Rd, Register Rn, Register Rm, \
1765 ext::operation option, int amount = 0) { \
1766 starti; \
1767 zrf(Rm, 16), srf(Rn, 5), zrf(Rd, 0); \
1768 add_sub_extended_reg(current_insn, op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1769 }
1770
1771 INSN(addsw, 0b001);
1772 INSN(subsw, 0b011);
1773 INSN(adds, 0b101);
1774 INSN(subs, 0b111);
1775
1776 #undef INSN
1777
1778 // Aliases for short forms of add and sub
1779 #define INSN(NAME) \
1780 void NAME(Register Rd, Register Rn, Register Rm) { \
1781 if (Rd == sp || Rn == sp) \
1782 NAME(Rd, Rn, Rm, ext::uxtx); \
1783 else \
1784 NAME(Rd, Rn, Rm, LSL); \
1785 }
1786
1787 INSN(addw);
1788 INSN(subw);
1789 INSN(add);
1790 INSN(sub);
1791
1792 INSN(addsw);
1793 INSN(subsw);
1794 INSN(adds);
1795 INSN(subs);
1796
1797 #undef INSN
1798
1799 // Add/subtract (with carry)
1800 void add_sub_carry(unsigned op, Register Rd, Register Rn, Register Rm) {
1801 starti;
1802 f(op, 31, 29);
1803 f(0b11010000, 28, 21);
1804 f(0b000000, 15, 10);
1805 zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);
1806 }
1807
1808 #define INSN(NAME, op) \
1809 void NAME(Register Rd, Register Rn, Register Rm) { \
1810 add_sub_carry(op, Rd, Rn, Rm); \
1811 }
1812
1813 INSN(adcw, 0b000);
1814 INSN(adcsw, 0b001);
1815 INSN(sbcw, 0b010);
1816 INSN(sbcsw, 0b011);
1817 INSN(adc, 0b100);
1818 INSN(adcs, 0b101);
1819 INSN(sbc, 0b110);
1820 INSN(sbcs, 0b111);
1821
1822 #undef INSN
1823
1824 // Conditional compare (both kinds)
1825 void conditional_compare(unsigned op, int o1, int o2, int o3,
1826 Register Rn, unsigned imm5, unsigned nzcv,
1827 unsigned cond) {
1828 starti;
1829 f(op, 31, 29);
1830 f(0b11010010, 28, 21);
1831 f(cond, 15, 12);
1832 f(o1, 11);
1833 f(o2, 10);
1834 f(o3, 4);
1835 f(nzcv, 3, 0);
1836 f(imm5, 20, 16), zrf(Rn, 5);
1837 }
1838
1839 #define INSN(NAME, op) \
1840 void NAME(Register Rn, Register Rm, int imm, Condition cond) { \
1841 int regNumber = (Rm == zr ? 31 : Rm->encoding()); \
1842 conditional_compare(op, 0, 0, 0, Rn, regNumber, imm, cond); \
1843 } \
1844 \
1845 void NAME(Register Rn, int imm5, int imm, Condition cond) { \
1846 conditional_compare(op, 1, 0, 0, Rn, imm5, imm, cond); \
1847 }
1848
1849 INSN(ccmnw, 0b001);
1850 INSN(ccmpw, 0b011);
1851 INSN(ccmn, 0b101);
1852 INSN(ccmp, 0b111);
1853
1854 #undef INSN
1855
1856 // Conditional select
1857 void conditional_select(unsigned op, unsigned op2,
1858 Register Rd, Register Rn, Register Rm,
1859 unsigned cond) {
1860 starti;
1861 f(op, 31, 29);
1862 f(0b11010100, 28, 21);
1863 f(cond, 15, 12);
1864 f(op2, 11, 10);
1865 zrf(Rm, 16), zrf(Rn, 5), rf(Rd, 0);
1866 }
1867
1868 #define INSN(NAME, op, op2) \
1869 void NAME(Register Rd, Register Rn, Register Rm, Condition cond) { \
1870 conditional_select(op, op2, Rd, Rn, Rm, cond); \
1871 }
1872
1873 INSN(cselw, 0b000, 0b00);
1874 INSN(csincw, 0b000, 0b01);
1875 INSN(csinvw, 0b010, 0b00);
1876 INSN(csnegw, 0b010, 0b01);
1877 INSN(csel, 0b100, 0b00);
1878 INSN(csinc, 0b100, 0b01);
1879 INSN(csinv, 0b110, 0b00);
1880 INSN(csneg, 0b110, 0b01);
1881
1882 #undef INSN
1883
1884 // Data processing
1885 void data_processing(Instruction_aarch64 ¤t_insn, unsigned op29, unsigned opcode,
1886 Register Rd, Register Rn) {
1887 f(op29, 31, 29), f(0b11010110, 28, 21);
1888 f(opcode, 15, 10);
1889 rf(Rn, 5), rf(Rd, 0);
1890 }
1891
1892 // (1 source)
1893 #define INSN(NAME, op29, opcode2, opcode) \
1894 void NAME(Register Rd, Register Rn) { \
1895 starti; \
1896 f(opcode2, 20, 16); \
1897 data_processing(current_insn, op29, opcode, Rd, Rn); \
1898 }
1899
1900 INSN(rbitw, 0b010, 0b00000, 0b00000);
1901 INSN(rev16w, 0b010, 0b00000, 0b00001);
1902 INSN(revw, 0b010, 0b00000, 0b00010);
1903 INSN(clzw, 0b010, 0b00000, 0b00100);
1904 INSN(clsw, 0b010, 0b00000, 0b00101);
1905
1906 INSN(rbit, 0b110, 0b00000, 0b00000);
1907 INSN(rev16, 0b110, 0b00000, 0b00001);
1908 INSN(rev32, 0b110, 0b00000, 0b00010);
1909 INSN(rev, 0b110, 0b00000, 0b00011);
1910 INSN(clz, 0b110, 0b00000, 0b00100);
1911 INSN(cls, 0b110, 0b00000, 0b00101);
1912
1913 // PAC instructions
1914 INSN(pacia, 0b110, 0b00001, 0b00000);
1915 INSN(pacib, 0b110, 0b00001, 0b00001);
1916 INSN(pacda, 0b110, 0b00001, 0b00010);
1917 INSN(pacdb, 0b110, 0b00001, 0b00011);
1918 INSN(autia, 0b110, 0b00001, 0b00100);
1919 INSN(autib, 0b110, 0b00001, 0b00101);
1920 INSN(autda, 0b110, 0b00001, 0b00110);
1921 INSN(autdb, 0b110, 0b00001, 0b00111);
1922
1923 #undef INSN
1924
1925 #define INSN(NAME, op29, opcode2, opcode) \
1926 void NAME(Register Rd) { \
1927 starti; \
1928 f(opcode2, 20, 16); \
1929 data_processing(current_insn, op29, opcode, Rd, dummy_reg); \
1930 }
1931
1932 // PAC instructions (with zero modifier)
1933 INSN(paciza, 0b110, 0b00001, 0b01000);
1934 INSN(pacizb, 0b110, 0b00001, 0b01001);
1935 INSN(pacdza, 0b110, 0b00001, 0b01010);
1936 INSN(pacdzb, 0b110, 0b00001, 0b01011);
1937 INSN(autiza, 0b110, 0b00001, 0b01100);
1938 INSN(autizb, 0b110, 0b00001, 0b01101);
1939 INSN(autdza, 0b110, 0b00001, 0b01110);
1940 INSN(autdzb, 0b110, 0b00001, 0b01111);
1941 INSN(xpaci, 0b110, 0b00001, 0b10000);
1942 INSN(xpacd, 0b110, 0b00001, 0b10001);
1943
1944 #undef INSN
1945
1946 // Data-processing (2 source)
1947 #define INSN(NAME, op29, opcode) \
1948 void NAME(Register Rd, Register Rn, Register Rm) { \
1949 starti; \
1950 rf(Rm, 16); \
1951 data_processing(current_insn, op29, opcode, Rd, Rn); \
1952 }
1953
1954 INSN(udivw, 0b000, 0b000010);
1955 INSN(sdivw, 0b000, 0b000011);
1956 INSN(lslvw, 0b000, 0b001000);
1957 INSN(lsrvw, 0b000, 0b001001);
1958 INSN(asrvw, 0b000, 0b001010);
1959 INSN(rorvw, 0b000, 0b001011);
1960
1961 INSN(udiv, 0b100, 0b000010);
1962 INSN(sdiv, 0b100, 0b000011);
1963 INSN(lslv, 0b100, 0b001000);
1964 INSN(lsrv, 0b100, 0b001001);
1965 INSN(asrv, 0b100, 0b001010);
1966 INSN(rorv, 0b100, 0b001011);
1967
1968 #undef INSN
1969
1970 // Data-processing (3 source)
1971 void data_processing(unsigned op54, unsigned op31, unsigned o0,
1972 Register Rd, Register Rn, Register Rm,
1973 Register Ra) {
1974 starti;
1975 f(op54, 31, 29), f(0b11011, 28, 24);
1976 f(op31, 23, 21), f(o0, 15);
1977 zrf(Rm, 16), zrf(Ra, 10), zrf(Rn, 5), zrf(Rd, 0);
1978 }
1979
1980 #define INSN(NAME, op54, op31, o0) \
1981 void NAME(Register Rd, Register Rn, Register Rm, Register Ra) { \
1982 data_processing(op54, op31, o0, Rd, Rn, Rm, Ra); \
1983 }
1984
1985 INSN(maddw, 0b000, 0b000, 0);
1986 INSN(msubw, 0b000, 0b000, 1);
1987 INSN(madd, 0b100, 0b000, 0);
1988 INSN(msub, 0b100, 0b000, 1);
1989 INSN(smaddl, 0b100, 0b001, 0);
1990 INSN(smsubl, 0b100, 0b001, 1);
1991 INSN(umaddl, 0b100, 0b101, 0);
1992 INSN(umsubl, 0b100, 0b101, 1);
1993
1994 #undef INSN
1995
1996 #define INSN(NAME, op54, op31, o0) \
1997 void NAME(Register Rd, Register Rn, Register Rm) { \
1998 data_processing(op54, op31, o0, Rd, Rn, Rm, as_Register(31)); \
1999 }
2000
2001 INSN(smulh, 0b100, 0b010, 0);
2002 INSN(umulh, 0b100, 0b110, 0);
2003
2004 #undef INSN
2005
2006 // Floating-point data-processing (1 source)
2007 void data_processing(unsigned type, unsigned opcode,
2008 FloatRegister Vd, FloatRegister Vn) {
2009 starti;
2010 f(0b000, 31, 29);
2011 f(0b11110, 28, 24);
2012 f(type, 23, 22), f(1, 21), f(opcode, 20, 15), f(0b10000, 14, 10);
2013 rf(Vn, 5), rf(Vd, 0);
2014 }
2015
2016 #define INSN(NAME, type, opcode) \
2017 void NAME(FloatRegister Vd, FloatRegister Vn) { \
2018 data_processing(type, opcode, Vd, Vn); \
2019 }
2020
2021 INSN(fmovs, 0b00, 0b000000);
2022 INSN(fabss, 0b00, 0b000001);
2023 INSN(fnegs, 0b00, 0b000010);
2024 INSN(fsqrts, 0b00, 0b000011);
2025 INSN(fcvts, 0b00, 0b000101); // Single-precision to double-precision
2026 INSN(fcvths, 0b11, 0b000100); // Half-precision to single-precision
2027 INSN(fcvtsh, 0b00, 0b000111); // Single-precision to half-precision
2028
2029 INSN(fmovd, 0b01, 0b000000);
2030 INSN(fabsd, 0b01, 0b000001);
2031 INSN(fnegd, 0b01, 0b000010);
2032 INSN(fsqrtd, 0b01, 0b000011);
2033 INSN(fcvtd, 0b01, 0b000100); // Double-precision to single-precision
2034
2035 INSN(fsqrth, 0b11, 0b000011); // Half-precision sqrt
2036
2037 private:
2038 void _fcvt_narrow_extend(FloatRegister Vd, SIMD_Arrangement Ta,
2039 FloatRegister Vn, SIMD_Arrangement Tb, bool do_extend) {
2040 assert((do_extend && (Tb >> 1) + 1 == (Ta >> 1))
2041 || (!do_extend && (Ta >> 1) + 1 == (Tb >> 1)), "Incompatible arrangement");
2042 starti;
2043 int op30 = (do_extend ? Tb : Ta) & 1;
2044 int op22 = ((do_extend ? Ta : Tb) >> 1) & 1;
2045 f(0, 31), f(op30, 30), f(0b0011100, 29, 23), f(op22, 22);
2046 f(0b100001011, 21, 13), f(do_extend ? 1 : 0, 12), f(0b10, 11, 10);
2047 rf(Vn, 5), rf(Vd, 0);
2048 }
2049
2050 public:
2051 void fcvtl(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb) {
2052 assert(Tb == T4H || Tb == T8H|| Tb == T2S || Tb == T4S, "invalid arrangement");
2053 _fcvt_narrow_extend(Vd, Ta, Vn, Tb, true);
2054 }
2055
2056 void fcvtn(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb) {
2057 assert(Ta == T4H || Ta == T8H|| Ta == T2S || Ta == T4S, "invalid arrangement");
2058 _fcvt_narrow_extend(Vd, Ta, Vn, Tb, false);
2059 }
2060
2061 #undef INSN
2062
2063 // Floating-point data-processing (2 source)
2064 void data_processing(unsigned op31, unsigned type, unsigned opcode, unsigned op21,
2065 FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {
2066 starti;
2067 f(op31, 31, 29);
2068 f(0b11110, 28, 24);
2069 f(type, 23, 22), f(op21, 21), f(opcode, 15, 10);
2070 rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
2071 }
2072
2073 #define INSN(NAME, op31, type, opcode, op21) \
2074 void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) { \
2075 data_processing(op31, type, opcode, op21, Vd, Vn, Vm); \
2076 }
2077
2078 INSN(fmuls, 0b000, 0b00, 0b000010, 0b1);
2079 INSN(fdivs, 0b000, 0b00, 0b000110, 0b1);
2080 INSN(fadds, 0b000, 0b00, 0b001010, 0b1);
2081 INSN(fsubs, 0b000, 0b00, 0b001110, 0b1);
2082 INSN(fmaxs, 0b000, 0b00, 0b010010, 0b1);
2083 INSN(fmins, 0b000, 0b00, 0b010110, 0b1);
2084 INSN(fnmuls, 0b000, 0b00, 0b100010, 0b1);
2085
2086 INSN(fmuld, 0b000, 0b01, 0b000010, 0b1);
2087 INSN(fdivd, 0b000, 0b01, 0b000110, 0b1);
2088 INSN(faddd, 0b000, 0b01, 0b001010, 0b1);
2089 INSN(fsubd, 0b000, 0b01, 0b001110, 0b1);
2090 INSN(fmaxd, 0b000, 0b01, 0b010010, 0b1);
2091 INSN(fmind, 0b000, 0b01, 0b010110, 0b1);
2092 INSN(fnmuld, 0b000, 0b01, 0b100010, 0b1);
2093
2094 // Half-precision floating-point instructions
2095 INSN(fmulh, 0b000, 0b11, 0b000010, 0b1);
2096 INSN(fdivh, 0b000, 0b11, 0b000110, 0b1);
2097 INSN(faddh, 0b000, 0b11, 0b001010, 0b1);
2098 INSN(fsubh, 0b000, 0b11, 0b001110, 0b1);
2099 INSN(fmaxh, 0b000, 0b11, 0b010010, 0b1);
2100 INSN(fminh, 0b000, 0b11, 0b010110, 0b1);
2101 INSN(fnmulh, 0b000, 0b11, 0b100010, 0b1);
2102 #undef INSN
2103
2104 // Advanced SIMD scalar three same
2105 #define INSN(NAME, U, size, opcode) \
2106 void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) { \
2107 starti; \
2108 f(0b01, 31, 30), f(U, 29), f(0b11110, 28, 24), f(size, 23, 22), f(1, 21); \
2109 rf(Vm, 16), f(opcode, 15, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0); \
2110 }
2111
2112 INSN(fabds, 0b1, 0b10, 0b11010); // Floating-point Absolute Difference (single-precision)
2113 INSN(fabdd, 0b1, 0b11, 0b11010); // Floating-point Absolute Difference (double-precision)
2114
2115 #undef INSN
2116
2117 // Advanced SIMD scalar three same FP16
2118 #define INSN(NAME, U, a, opcode) \
2119 void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) { \
2120 starti; \
2121 f(0b01, 31, 30), f(U, 29), f(0b11110, 28, 24), f(a, 23), f(0b10, 22, 21); \
2122 rf(Vm, 16), f(0b00, 15, 14), f(opcode, 13, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0); \
2123 }
2124
2125 INSN(fabdh, 0b1, 0b1, 0b010); // Floating-point Absolute Difference (half-precision float)
2126
2127 #undef INSN
2128
2129 // Floating-point data-processing (3 source)
2130 void data_processing(unsigned op31, unsigned type, unsigned o1, unsigned o0,
2131 FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,
2132 FloatRegister Va) {
2133 starti;
2134 f(op31, 31, 29);
2135 f(0b11111, 28, 24);
2136 f(type, 23, 22), f(o1, 21), f(o0, 15);
2137 rf(Vm, 16), rf(Va, 10), rf(Vn, 5), rf(Vd, 0);
2138 }
2139
2140 #define INSN(NAME, op31, type, o1, o0) \
2141 void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm, \
2142 FloatRegister Va) { \
2143 data_processing(op31, type, o1, o0, Vd, Vn, Vm, Va); \
2144 }
2145
2146 INSN(fmadds, 0b000, 0b00, 0, 0);
2147 INSN(fmsubs, 0b000, 0b00, 0, 1);
2148 INSN(fnmadds, 0b000, 0b00, 1, 0);
2149 INSN(fnmsubs, 0b000, 0b00, 1, 1);
2150
2151 INSN(fmaddd, 0b000, 0b01, 0, 0);
2152 INSN(fmsubd, 0b000, 0b01, 0, 1);
2153 INSN(fnmaddd, 0b000, 0b01, 1, 0);
2154 INSN(fnmsub, 0b000, 0b01, 1, 1);
2155
2156 INSN(fmaddh, 0b000, 0b11, 0, 0); // half-precision fused multiply-add (scalar)
2157 #undef INSN
2158
2159 // Floating-point conditional select
2160 void fp_conditional_select(unsigned op31, unsigned type,
2161 unsigned op1, unsigned op2,
2162 Condition cond, FloatRegister Vd,
2163 FloatRegister Vn, FloatRegister Vm) {
2164 starti;
2165 f(op31, 31, 29);
2166 f(0b11110, 28, 24);
2167 f(type, 23, 22);
2168 f(op1, 21, 21);
2169 f(op2, 11, 10);
2170 f(cond, 15, 12);
2171 rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
2172 }
2173
2174 #define INSN(NAME, op31, type, op1, op2) \
2175 void NAME(FloatRegister Vd, FloatRegister Vn, \
2176 FloatRegister Vm, Condition cond) { \
2177 fp_conditional_select(op31, type, op1, op2, cond, Vd, Vn, Vm); \
2178 }
2179
2180 INSN(fcsels, 0b000, 0b00, 0b1, 0b11);
2181 INSN(fcseld, 0b000, 0b01, 0b1, 0b11);
2182
2183 #undef INSN
2184
2185 // Conversion between floating-point and integer
2186 void float_int_convert(unsigned sflag, unsigned ftype,
2187 unsigned rmode, unsigned opcode,
2188 Register Rd, Register Rn) {
2189 starti;
2190 f(sflag, 31);
2191 f(0b00, 30, 29);
2192 f(0b11110, 28, 24);
2193 f(ftype, 23, 22), f(1, 21), f(rmode, 20, 19);
2194 f(opcode, 18, 16), f(0b000000, 15, 10);
2195 zrf(Rn, 5), zrf(Rd, 0);
2196 }
2197
2198 #define INSN(NAME, sflag, ftype, rmode, opcode) \
2199 void NAME(Register Rd, FloatRegister Vn) { \
2200 float_int_convert(sflag, ftype, rmode, opcode, Rd, as_Register(Vn)); \
2201 }
2202
2203 INSN(fcvtzsw, 0b0, 0b00, 0b11, 0b000);
2204 INSN(fcvtzs, 0b1, 0b00, 0b11, 0b000);
2205 INSN(fcvtzdw, 0b0, 0b01, 0b11, 0b000);
2206 INSN(fcvtzd, 0b1, 0b01, 0b11, 0b000);
2207
2208 // RoundToNearestTiesAway
2209 INSN(fcvtassw, 0b0, 0b00, 0b00, 0b100); // float -> signed word
2210 INSN(fcvtasd, 0b1, 0b01, 0b00, 0b100); // double -> signed xword
2211
2212 // RoundTowardsNegative
2213 INSN(fcvtmssw, 0b0, 0b00, 0b10, 0b000); // float -> signed word
2214 INSN(fcvtmsd, 0b1, 0b01, 0b10, 0b000); // double -> signed xword
2215
2216 INSN(fmovs, 0b0, 0b00, 0b00, 0b110);
2217 INSN(fmovd, 0b1, 0b01, 0b00, 0b110);
2218
2219 INSN(fmovhid, 0b1, 0b10, 0b01, 0b110);
2220
2221 #undef INSN
2222
2223 #define INSN(NAME, sflag, type, rmode, opcode) \
2224 void NAME(FloatRegister Vd, Register Rn) { \
2225 float_int_convert(sflag, type, rmode, opcode, as_Register(Vd), Rn); \
2226 }
2227
2228 INSN(fmovs, 0b0, 0b00, 0b00, 0b111);
2229 INSN(fmovd, 0b1, 0b01, 0b00, 0b111);
2230
2231 INSN(scvtfws, 0b0, 0b00, 0b00, 0b010);
2232 INSN(scvtfs, 0b1, 0b00, 0b00, 0b010);
2233 INSN(scvtfwd, 0b0, 0b01, 0b00, 0b010);
2234 INSN(scvtfd, 0b1, 0b01, 0b00, 0b010);
2235
2236 // INSN(fmovhid, 0b100, 0b10, 0b01, 0b111);
2237
2238 #undef INSN
2239
2240 private:
2241 void _xcvtf_vector_integer(bool is_unsigned, SIMD_Arrangement T,
2242 FloatRegister Rd, FloatRegister Rn) {
2243 assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");
2244 starti;
2245 f(0, 31), f(T & 1, 30), f(is_unsigned ? 1 : 0, 29);
2246 f(0b011100, 28, 23), f((T >> 1) & 1, 22), f(0b100001110110, 21, 10);
2247 rf(Rn, 5), rf(Rd, 0);
2248 }
2249
2250 public:
2251
2252 void scvtfv(SIMD_Arrangement T, FloatRegister Rd, FloatRegister Rn) {
2253 _xcvtf_vector_integer(/* is_unsigned */ false, T, Rd, Rn);
2254 }
2255
2256 // Floating-point compare
2257 void float_compare(unsigned op31, unsigned type,
2258 unsigned op, unsigned op2,
2259 FloatRegister Vn, FloatRegister Vm = as_FloatRegister(0)) {
2260 starti;
2261 f(op31, 31, 29);
2262 f(0b11110, 28, 24);
2263 f(type, 23, 22), f(1, 21);
2264 f(op, 15, 14), f(0b1000, 13, 10), f(op2, 4, 0);
2265 rf(Vn, 5), rf(Vm, 16);
2266 }
2267
2268
2269 #define INSN(NAME, op31, type, op, op2) \
2270 void NAME(FloatRegister Vn, FloatRegister Vm) { \
2271 float_compare(op31, type, op, op2, Vn, Vm); \
2272 }
2273
2274 #define INSN1(NAME, op31, type, op, op2) \
2275 void NAME(FloatRegister Vn, double d) { \
2276 assert_cond(d == 0.0); \
2277 float_compare(op31, type, op, op2, Vn); \
2278 }
2279
2280 INSN(fcmps, 0b000, 0b00, 0b00, 0b00000);
2281 INSN1(fcmps, 0b000, 0b00, 0b00, 0b01000);
2282 // INSN(fcmpes, 0b000, 0b00, 0b00, 0b10000);
2283 // INSN1(fcmpes, 0b000, 0b00, 0b00, 0b11000);
2284
2285 INSN(fcmpd, 0b000, 0b01, 0b00, 0b00000);
2286 INSN1(fcmpd, 0b000, 0b01, 0b00, 0b01000);
2287 // INSN(fcmped, 0b000, 0b01, 0b00, 0b10000);
2288 // INSN1(fcmped, 0b000, 0b01, 0b00, 0b11000);
2289
2290 #undef INSN
2291 #undef INSN1
2292
2293 // Floating-point compare. 3-registers versions (scalar).
2294 #define INSN(NAME, sz, e) \
2295 void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) { \
2296 starti; \
2297 f(0b01111110, 31, 24), f(e, 23), f(sz, 22), f(1, 21), rf(Vm, 16); \
2298 f(0b111011, 15, 10), rf(Vn, 5), rf(Vd, 0); \
2299 } \
2300
2301 INSN(facged, 1, 0); // facge-double
2302 INSN(facges, 0, 0); // facge-single
2303 INSN(facgtd, 1, 1); // facgt-double
2304 INSN(facgts, 0, 1); // facgt-single
2305
2306 #undef INSN
2307
2308 // Floating-point Move (immediate)
2309 private:
2310 unsigned pack(double value);
2311
2312 void fmov_imm(FloatRegister Vn, double value, unsigned size) {
2313 starti;
2314 f(0b00011110, 31, 24), f(size, 23, 22), f(1, 21);
2315 f(pack(value), 20, 13), f(0b10000000, 12, 5);
2316 rf(Vn, 0);
2317 }
2318
2319 public:
2320
2321 void fmovs(FloatRegister Vn, double value) {
2322 if (value)
2323 fmov_imm(Vn, value, 0b00);
2324 else
2325 movi(Vn, T2S, 0);
2326 }
2327 void fmovd(FloatRegister Vn, double value) {
2328 if (value)
2329 fmov_imm(Vn, value, 0b01);
2330 else
2331 movi(Vn, T1D, 0);
2332 }
2333
2334 // Floating-point data-processing (1 source)
2335
2336 // Floating-point rounding
2337 // type: half-precision = 11
2338 // single = 00
2339 // double = 01
2340 // rmode: A = Away = 100
2341 // I = current = 111
2342 // M = MinusInf = 010
2343 // N = eveN = 000
2344 // P = PlusInf = 001
2345 // X = eXact = 110
2346 // Z = Zero = 011
2347 void float_round(unsigned type, unsigned rmode, FloatRegister Rd, FloatRegister Rn) {
2348 starti;
2349 f(0b00011110, 31, 24);
2350 f(type, 23, 22);
2351 f(0b1001, 21, 18);
2352 f(rmode, 17, 15);
2353 f(0b10000, 14, 10);
2354 rf(Rn, 5), rf(Rd, 0);
2355 }
2356 #define INSN(NAME, type, rmode) \
2357 void NAME(FloatRegister Vd, FloatRegister Vn) { \
2358 float_round(type, rmode, Vd, Vn); \
2359 }
2360
2361 public:
2362 INSN(frintah, 0b11, 0b100);
2363 INSN(frintih, 0b11, 0b111);
2364 INSN(frintmh, 0b11, 0b010);
2365 INSN(frintnh, 0b11, 0b000);
2366 INSN(frintph, 0b11, 0b001);
2367 INSN(frintxh, 0b11, 0b110);
2368 INSN(frintzh, 0b11, 0b011);
2369
2370 INSN(frintas, 0b00, 0b100);
2371 INSN(frintis, 0b00, 0b111);
2372 INSN(frintms, 0b00, 0b010);
2373 INSN(frintns, 0b00, 0b000);
2374 INSN(frintps, 0b00, 0b001);
2375 INSN(frintxs, 0b00, 0b110);
2376 INSN(frintzs, 0b00, 0b011);
2377
2378 INSN(frintad, 0b01, 0b100);
2379 INSN(frintid, 0b01, 0b111);
2380 INSN(frintmd, 0b01, 0b010);
2381 INSN(frintnd, 0b01, 0b000);
2382 INSN(frintpd, 0b01, 0b001);
2383 INSN(frintxd, 0b01, 0b110);
2384 INSN(frintzd, 0b01, 0b011);
2385 #undef INSN
2386
2387 private:
2388 static short SIMD_Size_in_bytes[];
2389
2390 public:
2391 #define INSN(NAME, op) \
2392 void NAME(FloatRegister Rt, SIMD_RegVariant T, const Address &adr) { \
2393 ld_st2(as_Register(Rt), adr, (int)T & 3, op + ((T==Q) ? 0b10:0b00), 1); \
2394 }
2395
2396 INSN(ldr, 1);
2397 INSN(str, 0);
2398
2399 #undef INSN
2400
2401 private:
2402
2403 void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn, int op1, int op2) {
2404 starti;
2405 f(0,31), f((int)T & 1, 30);
2406 f(op1, 29, 21), f(0, 20, 16), f(op2, 15, 12);
2407 f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2408 }
2409 void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
2410 int imm, int op1, int op2, int regs) {
2411
2412 bool replicate = op2 >> 2 == 3;
2413 // post-index value (imm) is formed differently for replicate/non-replicate ld* instructions
2414 int expectedImmediate = replicate ? regs * (1 << (T >> 1)) : SIMD_Size_in_bytes[T] * regs;
2415 guarantee(T < T1Q , "incorrect arrangement");
2416 guarantee(imm == expectedImmediate, "bad offset");
2417 starti;
2418 f(0,31), f((int)T & 1, 30);
2419 f(op1 | 0b100, 29, 21), f(0b11111, 20, 16), f(op2, 15, 12);
2420 f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2421 }
2422 void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
2423 Register Xm, int op1, int op2) {
2424 starti;
2425 f(0,31), f((int)T & 1, 30);
2426 f(op1 | 0b100, 29, 21), rf(Xm, 16), f(op2, 15, 12);
2427 f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2428 }
2429
2430 void ld_st(FloatRegister Vt, SIMD_Arrangement T, Address a, int op1, int op2, int regs) {
2431 switch (a.getMode()) {
2432 case Address::base_plus_offset:
2433 guarantee(a.offset() == 0, "no offset allowed here");
2434 ld_st(Vt, T, a.base(), op1, op2);
2435 break;
2436 case Address::post:
2437 ld_st(Vt, T, a.base(), checked_cast<int>(a.offset()), op1, op2, regs);
2438 break;
2439 case Address::post_reg:
2440 ld_st(Vt, T, a.base(), a.index(), op1, op2);
2441 break;
2442 default:
2443 ShouldNotReachHere();
2444 }
2445 }
2446
2447 // Single-structure load/store method (all addressing variants)
2448 void ld_st(FloatRegister Vt, SIMD_RegVariant T, int index, Address a,
2449 int op1, int op2, int regs) {
2450 int expectedImmediate = (regVariant_to_elemBits(T) >> 3) * regs;
2451 int sVal = (T < D) ? (index >> (2 - T)) & 0x01 : 0;
2452 int opcode = (T < D) ? (T << 2) : ((T & 0x02) << 2);
2453 int size = (T < D) ? (index & (0x3 << T)) : 1; // only care about low 2b
2454 Register Xn = a.base();
2455 int Rm;
2456
2457 switch (a.getMode()) {
2458 case Address::base_plus_offset:
2459 guarantee(a.offset() == 0, "no offset allowed here");
2460 Rm = 0;
2461 break;
2462 case Address::post:
2463 guarantee(a.offset() == expectedImmediate, "bad offset");
2464 op1 |= 0b100;
2465 Rm = 0b11111;
2466 break;
2467 case Address::post_reg:
2468 op1 |= 0b100;
2469 Rm = a.index()->encoding();
2470 break;
2471 default:
2472 ShouldNotReachHere();
2473 Rm = 0; // unreachable
2474 }
2475
2476 starti;
2477 f(0,31), f((index >> (3 - T)), 30);
2478 f(op1, 29, 21), f(Rm, 20, 16), f(op2 | opcode | sVal, 15, 12);
2479 f(size, 11, 10), srf(Xn, 5), rf(Vt, 0);
2480 }
2481
2482 public:
2483
2484 #define INSN1(NAME, op1, op2) \
2485 void NAME(FloatRegister Vt, SIMD_Arrangement T, const Address &a) { \
2486 ld_st(Vt, T, a, op1, op2, 1); \
2487 }
2488
2489 #define INSN2(NAME, op1, op2) \
2490 void NAME(FloatRegister Vt, FloatRegister Vt2, SIMD_Arrangement T, const Address &a) { \
2491 assert(Vt->successor() == Vt2, "Registers must be ordered"); \
2492 ld_st(Vt, T, a, op1, op2, 2); \
2493 }
2494
2495 #define INSN3(NAME, op1, op2) \
2496 void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3, \
2497 SIMD_Arrangement T, const Address &a) { \
2498 assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3, \
2499 "Registers must be ordered"); \
2500 ld_st(Vt, T, a, op1, op2, 3); \
2501 }
2502
2503 #define INSN4(NAME, op1, op2) \
2504 void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3, \
2505 FloatRegister Vt4, SIMD_Arrangement T, const Address &a) { \
2506 assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 && \
2507 Vt3->successor() == Vt4, "Registers must be ordered"); \
2508 ld_st(Vt, T, a, op1, op2, 4); \
2509 }
2510
2511 INSN1(ld1, 0b001100010, 0b0111);
2512 INSN2(ld1, 0b001100010, 0b1010);
2513 INSN3(ld1, 0b001100010, 0b0110);
2514 INSN4(ld1, 0b001100010, 0b0010);
2515
2516 INSN2(ld2, 0b001100010, 0b1000);
2517 INSN3(ld3, 0b001100010, 0b0100);
2518 INSN4(ld4, 0b001100010, 0b0000);
2519
2520 INSN1(st1, 0b001100000, 0b0111);
2521 INSN2(st1, 0b001100000, 0b1010);
2522 INSN3(st1, 0b001100000, 0b0110);
2523 INSN4(st1, 0b001100000, 0b0010);
2524
2525 INSN2(st2, 0b001100000, 0b1000);
2526 INSN3(st3, 0b001100000, 0b0100);
2527 INSN4(st4, 0b001100000, 0b0000);
2528
2529 INSN1(ld1r, 0b001101010, 0b1100);
2530 INSN2(ld2r, 0b001101011, 0b1100);
2531 INSN3(ld3r, 0b001101010, 0b1110);
2532 INSN4(ld4r, 0b001101011, 0b1110);
2533
2534 #undef INSN1
2535 #undef INSN2
2536 #undef INSN3
2537 #undef INSN4
2538
2539 // Handle common single-structure ld/st parameter sanity checks
2540 // for all variations (1 to 4) of SIMD reigster inputs. This
2541 // method will call the routine that generates the opcode.
2542 template<typename R, typename... Rx>
2543 void ldst_sstr(SIMD_RegVariant T, int index, const Address &a,
2544 int op1, int op2, R firstReg, Rx... otherRegs) {
2545 const FloatRegister vtSet[] = { firstReg, otherRegs... };
2546 const int regCount = sizeof...(otherRegs) + 1;
2547 assert(index >= 0 && (T <= D) && ((T == B && index <= 15) ||
2548 (T == H && index <= 7) || (T == S && index <= 3) ||
2549 (T == D && index <= 1)), "invalid index");
2550 assert(regCount >= 1 && regCount <= 4, "illegal register count");
2551
2552 // Check to make sure when multiple SIMD registers are used
2553 // that they are in successive order.
2554 for (int i = 0; i < regCount - 1; i++) {
2555 assert(vtSet[i]->successor() == vtSet[i + 1],
2556 "Registers must be ordered");
2557 }
2558
2559 ld_st(firstReg, T, index, a, op1, op2, regCount);
2560 }
2561
2562 // Define a set of INSN1/2/3/4 macros to handle single-structure
2563 // load/store instructions.
2564 #define INSN1(NAME, op1, op2) \
2565 void NAME(FloatRegister Vt, SIMD_RegVariant T, int index, \
2566 const Address &a) { \
2567 ldst_sstr(T, index, a, op1, op2, Vt); \
2568 }
2569
2570 #define INSN2(NAME, op1, op2) \
2571 void NAME(FloatRegister Vt, FloatRegister Vt2, SIMD_RegVariant T, \
2572 int index, const Address &a) { \
2573 ldst_sstr(T, index, a, op1, op2, Vt, Vt2); \
2574 }
2575
2576 #define INSN3(NAME, op1, op2) \
2577 void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3, \
2578 SIMD_RegVariant T, int index, const Address &a) { \
2579 ldst_sstr(T, index, a, op1, op2, Vt, Vt2, Vt3); \
2580 }
2581
2582 #define INSN4(NAME, op1, op2) \
2583 void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3, \
2584 FloatRegister Vt4, SIMD_RegVariant T, int index, \
2585 const Address &a) { \
2586 ldst_sstr(T, index, a, op1, op2, Vt, Vt2, Vt3, Vt4); \
2587 }
2588
2589 INSN1(ld1, 0b001101010, 0b0000);
2590 INSN2(ld2, 0b001101011, 0b0000);
2591 INSN3(ld3, 0b001101010, 0b0010);
2592 INSN4(ld4, 0b001101011, 0b0010);
2593
2594 INSN1(st1, 0b001101000, 0b0000);
2595 INSN2(st2, 0b001101001, 0b0000);
2596 INSN3(st3, 0b001101000, 0b0010);
2597 INSN4(st4, 0b001101001, 0b0010);
2598
2599 #undef INSN1
2600 #undef INSN2
2601 #undef INSN3
2602 #undef INSN4
2603
2604 #define INSN(NAME, opc) \
2605 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2606 starti; \
2607 assert(T == T8B || T == T16B, "must be T8B or T16B"); \
2608 f(0, 31), f((int)T & 1, 30), f(opc, 29, 21); \
2609 rf(Vm, 16), f(0b000111, 15, 10), rf(Vn, 5), rf(Vd, 0); \
2610 }
2611
2612 INSN(eor, 0b101110001);
2613 INSN(orr, 0b001110101);
2614 INSN(andr, 0b001110001);
2615 INSN(bic, 0b001110011);
2616 INSN(bif, 0b101110111);
2617 INSN(bit, 0b101110101);
2618 INSN(bsl, 0b101110011);
2619 INSN(orn, 0b001110111);
2620
2621 #undef INSN
2622
2623 // Advanced SIMD three different
2624 #define INSN(NAME, opc, opc2, acceptT2D) \
2625 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2626 guarantee(T != T1Q && T != T1D, "incorrect arrangement"); \
2627 if (!acceptT2D) guarantee(T != T2D, "incorrect arrangement"); \
2628 if (opc2 == 0b101101) guarantee(T != T8B && T != T16B, "incorrect arrangement"); \
2629 starti; \
2630 f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24); \
2631 f((int)T >> 1, 23, 22), f(1, 21), rf(Vm, 16), f(opc2, 15, 10); \
2632 rf(Vn, 5), rf(Vd, 0); \
2633 }
2634
2635 INSN(addv, 0, 0b100001, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2636 INSN(subv, 1, 0b100001, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2637 INSN(sqaddv, 0, 0b000011, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2638 INSN(sqsubv, 0, 0b001011, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2639 INSN(uqaddv, 1, 0b000011, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2640 INSN(uqsubv, 1, 0b001011, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2641 INSN(mulv, 0, 0b100111, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2642 INSN(mlav, 0, 0b100101, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2643 INSN(mlsv, 1, 0b100101, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2644 INSN(sshl, 0, 0b010001, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2645 INSN(ushl, 1, 0b010001, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2646 INSN(addpv, 0, 0b101111, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2647 INSN(smullv, 0, 0b110000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2648 INSN(umullv, 1, 0b110000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2649 INSN(smlalv, 0, 0b100000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2650 INSN(umlalv, 1, 0b100000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2651 INSN(maxv, 0, 0b011001, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2652 INSN(minv, 0, 0b011011, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2653 INSN(umaxv, 1, 0b011001, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2654 INSN(uminv, 1, 0b011011, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2655 INSN(smaxp, 0, 0b101001, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2656 INSN(sminp, 0, 0b101011, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2657 INSN(sqdmulh,0, 0b101101, false); // accepted arrangements: T4H, T8H, T2S, T4S
2658 INSN(shsubv, 0, 0b001001, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2659
2660 #undef INSN
2661
2662 // Advanced SIMD across lanes
2663 #define INSN(NAME, opc, opc2, accepted) \
2664 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \
2665 guarantee(T != T1Q && T != T1D, "incorrect arrangement"); \
2666 if (accepted < 3) guarantee(T != T2D, "incorrect arrangement"); \
2667 if (accepted < 2) guarantee(T != T2S, "incorrect arrangement"); \
2668 if (accepted < 1) guarantee(T == T8B || T == T16B, "incorrect arrangement"); \
2669 starti; \
2670 f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24); \
2671 f((int)T >> 1, 23, 22), f(opc2, 21, 10); \
2672 rf(Vn, 5), rf(Vd, 0); \
2673 }
2674
2675 INSN(absr, 0, 0b100000101110, 3); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2676 INSN(negr, 1, 0b100000101110, 3); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2677 INSN(notr, 1, 0b100000010110, 0); // accepted arrangements: T8B, T16B
2678 INSN(addv, 0, 0b110001101110, 1); // accepted arrangements: T8B, T16B, T4H, T8H, T4S
2679 INSN(smaxv, 0, 0b110000101010, 1); // accepted arrangements: T8B, T16B, T4H, T8H, T4S
2680 INSN(umaxv, 1, 0b110000101010, 1); // accepted arrangements: T8B, T16B, T4H, T8H, T4S
2681 INSN(sminv, 0, 0b110001101010, 1); // accepted arrangements: T8B, T16B, T4H, T8H, T4S
2682 INSN(uminv, 1, 0b110001101010, 1); // accepted arrangements: T8B, T16B, T4H, T8H, T4S
2683 INSN(cls, 0, 0b100000010010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2684 INSN(clz, 1, 0b100000010010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2685 INSN(cnt, 0, 0b100000010110, 0); // accepted arrangements: T8B, T16B
2686 INSN(uaddlp, 1, 0b100000001010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2687 INSN(uaddlv, 1, 0b110000001110, 1); // accepted arrangements: T8B, T16B, T4H, T8H, T4S
2688
2689 #undef INSN
2690
2691 #define INSN(NAME, opc) \
2692 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \
2693 starti; \
2694 assert(T == T4S, "arrangement must be T4S"); \
2695 f(0, 31), f((int)T & 1, 30), f(0b101110, 29, 24), f(opc, 23), \
2696 f(T == T4S ? 0 : 1, 22), f(0b110000111110, 21, 10); rf(Vn, 5), rf(Vd, 0); \
2697 }
2698
2699 INSN(fmaxv, 0);
2700 INSN(fminv, 1);
2701
2702 #undef INSN
2703
2704 // Advanced SIMD modified immediate
2705 #define INSN(NAME, op0, cmode0) \
2706 void NAME(FloatRegister Vd, SIMD_Arrangement T, unsigned imm8, unsigned lsl = 0) { \
2707 unsigned cmode = cmode0; \
2708 unsigned op = op0; \
2709 starti; \
2710 assert(lsl == 0 || \
2711 ((T == T4H || T == T8H) && lsl == 8) || \
2712 ((T == T2S || T == T4S) && ((lsl >> 3) < 4) && ((lsl & 7) == 0)), "invalid shift");\
2713 cmode |= lsl >> 2; \
2714 if (T == T4H || T == T8H) cmode |= 0b1000; \
2715 if (!(T == T4H || T == T8H || T == T2S || T == T4S)) { \
2716 assert(op == 0 && cmode0 == 0, "must be MOVI"); \
2717 cmode = 0b1110; \
2718 if (T == T1D || T == T2D) op = 1; \
2719 } \
2720 f(0, 31), f((int)T & 1, 30), f(op, 29), f(0b0111100000, 28, 19); \
2721 f(imm8 >> 5, 18, 16), f(cmode, 15, 12), f(0x01, 11, 10), f(imm8 & 0b11111, 9, 5); \
2722 rf(Vd, 0); \
2723 }
2724
2725 INSN(movi, 0, 0);
2726 INSN(orri, 0, 1);
2727 INSN(mvni, 1, 0);
2728 INSN(bici, 1, 1);
2729
2730 #undef INSN
2731
2732 #define INSN(NAME, op, cmode) \
2733 void NAME(FloatRegister Vd, SIMD_Arrangement T, double imm) { \
2734 unsigned imm8 = pack(imm); \
2735 starti; \
2736 f(0, 31), f((int)T & 1, 30), f(op, 29), f(0b0111100000, 28, 19); \
2737 f(imm8 >> 5, 18, 16), f(cmode, 15, 12), f(0x01, 11, 10), f(imm8 & 0b11111, 9, 5); \
2738 rf(Vd, 0); \
2739 }
2740
2741 INSN(fmovs, 0, 0b1111);
2742 INSN(fmovd, 1, 0b1111);
2743
2744 #undef INSN
2745
2746 // Advanced SIMD three same
2747 void adv_simd_three_same(Instruction_aarch64 ¤t_insn, FloatRegister Vd,
2748 SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm,
2749 int op1, int op2, int op3);
2750 #define INSN(NAME, op1, op2, op3) \
2751 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2752 starti; \
2753 adv_simd_three_same(current_insn, Vd, T, Vn, Vm, op1, op2, op3); \
2754 }
2755 INSN(fabd, 1, 1, 0b0101);
2756 INSN(fadd, 0, 0, 0b0101);
2757 INSN(fdiv, 1, 0, 0b1111);
2758 INSN(faddp, 1, 0, 0b0101);
2759 INSN(fmul, 1, 0, 0b0111);
2760 INSN(fsub, 0, 1, 0b0101);
2761 INSN(fmla, 0, 0, 0b0011);
2762 INSN(fmls, 0, 1, 0b0011);
2763 INSN(fmax, 0, 0, 0b1101);
2764 INSN(fmin, 0, 1, 0b1101);
2765 INSN(facgt, 1, 1, 0b1011);
2766
2767 #undef INSN
2768
2769 // AdvSIMD vector compare
2770 void cm(Condition cond, FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) {
2771 starti;
2772 assert(T != T1Q && T != T1D, "incorrect arrangement");
2773 int cond_op;
2774 switch (cond) {
2775 case EQ: cond_op = 0b110001; break;
2776 case GT: cond_op = 0b000110; break;
2777 case GE: cond_op = 0b000111; break;
2778 case HI: cond_op = 0b100110; break;
2779 case HS: cond_op = 0b100111; break;
2780 default:
2781 ShouldNotReachHere();
2782 break;
2783 }
2784
2785 f(0, 31), f((int)T & 1, 30), f((cond_op >> 5) & 1, 29);
2786 f(0b01110, 28, 24), f((int)T >> 1, 23, 22), f(1, 21), rf(Vm, 16);
2787 f(cond_op & 0b11111, 15, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0);
2788 }
2789
2790 // AdvSIMD Floating-point vector compare
2791 void fcm(Condition cond, FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) {
2792 starti;
2793 assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");
2794 int cond_op;
2795 switch (cond) {
2796 case EQ: cond_op = 0b00; break;
2797 case GT: cond_op = 0b11; break;
2798 case GE: cond_op = 0b10; break;
2799 default:
2800 ShouldNotReachHere();
2801 break;
2802 }
2803
2804 f(0, 31), f((int)T & 1, 30), f((cond_op >> 1) & 1, 29);
2805 f(0b01110, 28, 24), f(cond_op & 1, 23), f(T == T2D ? 1 : 0, 22);
2806 f(1, 21), rf(Vm, 16), f(0b111001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2807 }
2808
2809 #define INSN(NAME, opc) \
2810 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2811 starti; \
2812 assert(T == T4S, "arrangement must be T4S"); \
2813 f(0b01011110000, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0); \
2814 }
2815
2816 INSN(sha1c, 0b000000);
2817 INSN(sha1m, 0b001000);
2818 INSN(sha1p, 0b000100);
2819 INSN(sha1su0, 0b001100);
2820 INSN(sha256h2, 0b010100);
2821 INSN(sha256h, 0b010000);
2822 INSN(sha256su1, 0b011000);
2823
2824 #undef INSN
2825
2826 #define INSN(NAME, opc) \
2827 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \
2828 starti; \
2829 assert(T == T4S, "arrangement must be T4S"); \
2830 f(0b0101111000101000, 31, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0); \
2831 }
2832
2833 INSN(sha1h, 0b000010);
2834 INSN(sha1su1, 0b000110);
2835 INSN(sha256su0, 0b001010);
2836
2837 #undef INSN
2838
2839 #define INSN(NAME, opc) \
2840 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2841 starti; \
2842 assert(T == T2D, "arrangement must be T2D"); \
2843 f(0b11001110011, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0); \
2844 }
2845
2846 INSN(sha512h, 0b100000);
2847 INSN(sha512h2, 0b100001);
2848 INSN(sha512su1, 0b100010);
2849
2850 #undef INSN
2851
2852 #define INSN(NAME, opc) \
2853 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \
2854 starti; \
2855 assert(T == T2D, "arrangement must be T2D"); \
2856 f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0); \
2857 }
2858
2859 INSN(sha512su0, 0b1100111011000000100000);
2860
2861 #undef INSN
2862
2863 #define INSN(NAME, opc) \
2864 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, FloatRegister Va) { \
2865 starti; \
2866 assert(T == T16B, "arrangement must be T16B"); \
2867 f(0b11001110, 31, 24), f(opc, 23, 21), rf(Vm, 16), f(0b0, 15, 15), rf(Va, 10), rf(Vn, 5), rf(Vd, 0); \
2868 }
2869
2870 INSN(eor3, 0b000);
2871 INSN(bcax, 0b001);
2872
2873 #undef INSN
2874
2875 #define INSN(NAME, opc) \
2876 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, unsigned imm) { \
2877 starti; \
2878 assert(T == T2D, "arrangement must be T2D"); \
2879 f(0b11001110, 31, 24), f(opc, 23, 21), rf(Vm, 16), f(imm, 15, 10), rf(Vn, 5), rf(Vd, 0); \
2880 }
2881
2882 INSN(xar, 0b100);
2883
2884 #undef INSN
2885
2886 #define INSN(NAME, opc) \
2887 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2888 starti; \
2889 assert(T == T2D, "arrangement must be T2D"); \
2890 f(0b11001110, 31, 24), f(opc, 23, 21), rf(Vm, 16), f(0b100011, 15, 10), rf(Vn, 5), rf(Vd, 0); \
2891 }
2892
2893 INSN(rax1, 0b011);
2894
2895 #undef INSN
2896
2897 #define INSN(NAME, opc) \
2898 void NAME(FloatRegister Vd, FloatRegister Vn) { \
2899 starti; \
2900 f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0); \
2901 }
2902
2903 INSN(aese, 0b0100111000101000010010);
2904 INSN(aesd, 0b0100111000101000010110);
2905 INSN(aesmc, 0b0100111000101000011010);
2906 INSN(aesimc, 0b0100111000101000011110);
2907
2908 #undef INSN
2909
2910 #define INSN(NAME, op1, op2) \
2911 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index = 0) { \
2912 starti; \
2913 assert(T == T2S || T == T4S || T == T2D, "invalid arrangement"); \
2914 assert(index >= 0 && ((T == T2D && index <= 1) || (T != T2D && index <= 3)), "invalid index"); \
2915 f(0, 31), f((int)T & 1, 30), f(op1, 29); f(0b011111, 28, 23); \
2916 f(T == T2D ? 1 : 0, 22), f(T == T2D ? 0 : index & 1, 21), rf(Vm, 16); \
2917 f(op2, 15, 12), f(T == T2D ? index : (index >> 1), 11), f(0, 10); \
2918 rf(Vn, 5), rf(Vd, 0); \
2919 }
2920
2921 // FMLA/FMLS - Vector - Scalar
2922 INSN(fmlavs, 0, 0b0001);
2923 INSN(fmlsvs, 0, 0b0101);
2924 // FMULX - Vector - Scalar
2925 INSN(fmulxvs, 1, 0b1001);
2926
2927 #undef INSN
2928
2929 #define INSN(NAME, op1, op2) \
2930 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index) { \
2931 starti; \
2932 assert(T == T4H || T == T8H || T == T2S || T == T4S, "invalid arrangement"); \
2933 assert(index >= 0 && \
2934 ((T == T2S && index <= 1) || (T != T2S && index <= 3) || (T == T8H && index <= 7)), \
2935 "invalid index"); \
2936 assert((T != T4H && T != T8H) || Vm->encoding() < 16, "invalid source SIMD&FP register"); \
2937 f(0, 31), f((int)T & 1, 30), f(op1, 29), f(0b01111, 28, 24); \
2938 if (T == T4H || T == T8H) { \
2939 f(0b01, 23, 22), f(index & 0b11, 21, 20), lrf(Vm, 16), f(index >> 2 & 1, 11); \
2940 } else { \
2941 f(0b10, 23, 22), f(index & 1, 21), rf(Vm, 16), f(index >> 1, 11); \
2942 } \
2943 f(op2, 15, 12), f(0, 10), rf(Vn, 5), rf(Vd, 0); \
2944 }
2945
2946 // MUL - Vector - Scalar
2947 INSN(mulvs, 0, 0b1000);
2948
2949 #undef INSN
2950
2951 // Floating-point Reciprocal Estimate
2952 void frecpe(FloatRegister Vd, FloatRegister Vn, SIMD_RegVariant type) {
2953 assert(type == D || type == S, "Wrong type for frecpe");
2954 starti;
2955 f(0b010111101, 31, 23);
2956 f(type == D ? 1 : 0, 22);
2957 f(0b100001110110, 21, 10);
2958 rf(Vn, 5), rf(Vd, 0);
2959 }
2960
2961 // (long) {a, b} -> (a + b)
2962 void addpd(FloatRegister Vd, FloatRegister Vn) {
2963 starti;
2964 f(0b0101111011110001101110, 31, 10);
2965 rf(Vn, 5), rf(Vd, 0);
2966 }
2967
2968 // Floating-point AdvSIMD scalar pairwise
2969 #define INSN(NAME, op1, op2) \
2970 void NAME(FloatRegister Vd, FloatRegister Vn, SIMD_RegVariant type) { \
2971 starti; \
2972 assert(type == D || type == S, "Wrong type for faddp/fmaxp/fminp"); \
2973 f(0b0111111, 31, 25), f(op1, 24, 23), \
2974 f(type == S ? 0 : 1, 22), f(0b11000, 21, 17), f(op2, 16, 10), rf(Vn, 5), rf(Vd, 0); \
2975 }
2976
2977 INSN(faddp, 0b00, 0b0110110);
2978 INSN(fmaxp, 0b00, 0b0111110);
2979 INSN(fminp, 0b01, 0b0111110);
2980
2981 #undef INSN
2982
2983 void ins(FloatRegister Vd, SIMD_RegVariant T, FloatRegister Vn, int didx, int sidx) {
2984 starti;
2985 assert(T != Q, "invalid register variant");
2986 f(0b01101110000, 31, 21), f(((didx<<1)|1)<<(int)T, 20, 16), f(0, 15);
2987 f(sidx<<(int)T, 14, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0);
2988 }
2989
2990 #define INSN(NAME, cond, op1, op2) \
2991 void NAME(Register Rd, FloatRegister Vn, SIMD_RegVariant T, int idx) { \
2992 starti; \
2993 assert(cond, "invalid register variant"); \
2994 f(0, 31), f(op1, 30), f(0b001110000, 29, 21); \
2995 f(((idx << 1) | 1) << (int)T, 20, 16), f(op2, 15, 10); \
2996 rf(Vn, 5), rf(Rd, 0); \
2997 }
2998
2999 INSN(umov, (T != Q), (T == D ? 1 : 0), 0b001111);
3000 INSN(smov, (T < D), 1, 0b001011);
3001
3002 #undef INSN
3003
3004 #define INSN(NAME, opc, opc2, isSHR) \
3005 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int shift){ \
3006 starti; \
3007 /* The encodings for the immh:immb fields (bits 22:16) in *SHR are \
3008 * 0001 xxx 8B/16B, shift = 16 - UInt(immh:immb) \
3009 * 001x xxx 4H/8H, shift = 32 - UInt(immh:immb) \
3010 * 01xx xxx 2S/4S, shift = 64 - UInt(immh:immb) \
3011 * 1xxx xxx 1D/2D, shift = 128 - UInt(immh:immb) \
3012 * (1D is RESERVED) \
3013 * for SHL shift is calculated as: \
3014 * 0001 xxx 8B/16B, shift = UInt(immh:immb) - 8 \
3015 * 001x xxx 4H/8H, shift = UInt(immh:immb) - 16 \
3016 * 01xx xxx 2S/4S, shift = UInt(immh:immb) - 32 \
3017 * 1xxx xxx 1D/2D, shift = UInt(immh:immb) - 64 \
3018 * (1D is RESERVED) \
3019 */ \
3020 guarantee(!isSHR || (isSHR && (shift != 0)), "impossible encoding");\
3021 assert((1 << ((T>>1)+3)) > shift, "Invalid Shift value"); \
3022 int cVal = (1 << (((T >> 1) + 3) + (isSHR ? 1 : 0))); \
3023 int encodedShift = isSHR ? cVal - shift : cVal + shift; \
3024 f(0, 31), f(T & 1, 30), f(opc, 29), f(0b011110, 28, 23), \
3025 f(encodedShift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0); \
3026 }
3027
3028 INSN(shl, 0, 0b010101, /* isSHR = */ false);
3029 INSN(sshr, 0, 0b000001, /* isSHR = */ true);
3030 INSN(ushr, 1, 0b000001, /* isSHR = */ true);
3031 INSN(usra, 1, 0b000101, /* isSHR = */ true);
3032 INSN(ssra, 0, 0b000101, /* isSHR = */ true);
3033 INSN(sli, 1, 0b010101, /* isSHR = */ false);
3034
3035 #undef INSN
3036
3037 #define INSN(NAME, opc, opc2, isSHR) \
3038 void NAME(FloatRegister Vd, FloatRegister Vn, int shift){ \
3039 starti; \
3040 int encodedShift = isSHR ? 128 - shift : 64 + shift; \
3041 f(0b01, 31, 30), f(opc, 29), f(0b111110, 28, 23), \
3042 f(encodedShift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0); \
3043 }
3044
3045 INSN(shld, 0, 0b010101, /* isSHR = */ false);
3046 INSN(sshrd, 0, 0b000001, /* isSHR = */ true);
3047 INSN(ushrd, 1, 0b000001, /* isSHR = */ true);
3048
3049 #undef INSN
3050
3051 protected:
3052 void _xshll(bool is_unsigned, FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
3053 starti;
3054 /* The encodings for the immh:immb fields (bits 22:16) are
3055 * 0001 xxx 8H, 8B/16B shift = xxx
3056 * 001x xxx 4S, 4H/8H shift = xxxx
3057 * 01xx xxx 2D, 2S/4S shift = xxxxx
3058 * 1xxx xxx RESERVED
3059 */
3060 assert((Tb >> 1) + 1 == (Ta >> 1), "Incompatible arrangement");
3061 assert((1 << ((Tb>>1)+3)) > shift, "Invalid shift value");
3062 f(0, 31), f(Tb & 1, 30), f(is_unsigned ? 1 : 0, 29), f(0b011110, 28, 23);
3063 f((1 << ((Tb>>1)+3))|shift, 22, 16);
3064 f(0b101001, 15, 10), rf(Vn, 5), rf(Vd, 0);
3065 }
3066
3067 public:
3068 void ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
3069 assert(Tb == T8B || Tb == T4H || Tb == T2S, "invalid arrangement");
3070 _xshll(/* is_unsigned */ true, Vd, Ta, Vn, Tb, shift);
3071 }
3072
3073 void ushll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
3074 assert(Tb == T16B || Tb == T8H || Tb == T4S, "invalid arrangement");
3075 _xshll(/* is_unsigned */ true, Vd, Ta, Vn, Tb, shift);
3076 }
3077
3078 void uxtl(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb) {
3079 ushll(Vd, Ta, Vn, Tb, 0);
3080 }
3081
3082 void sshll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
3083 assert(Tb == T8B || Tb == T4H || Tb == T2S, "invalid arrangement");
3084 _xshll(/* is_unsigned */ false, Vd, Ta, Vn, Tb, shift);
3085 }
3086
3087 void sshll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
3088 assert(Tb == T16B || Tb == T8H || Tb == T4S, "invalid arrangement");
3089 _xshll(/* is_unsigned */ false, Vd, Ta, Vn, Tb, shift);
3090 }
3091
3092 void sxtl(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb) {
3093 sshll(Vd, Ta, Vn, Tb, 0);
3094 }
3095
3096 // Move from general purpose register
3097 // mov Vd.T[index], Rn
3098 void mov(FloatRegister Vd, SIMD_RegVariant T, int index, Register Xn) {
3099 guarantee(T != Q, "invalid register variant");
3100 starti;
3101 f(0b01001110000, 31, 21), f(((1 << T) | (index << (T + 1))), 20, 16);
3102 f(0b000111, 15, 10), zrf(Xn, 5), rf(Vd, 0);
3103 }
3104
3105 // Move to general purpose register
3106 // mov Rd, Vn.T[index]
3107 void mov(Register Xd, FloatRegister Vn, SIMD_RegVariant T, int index) {
3108 guarantee(T == S || T == D, "invalid register variant");
3109 umov(Xd, Vn, T, index);
3110 }
3111
3112 protected:
3113 void _xaddwv(bool is_unsigned, FloatRegister Vd, FloatRegister Vn, SIMD_Arrangement Ta,
3114 FloatRegister Vm, SIMD_Arrangement Tb) {
3115 starti;
3116 assert((Tb >> 1) + 1 == (Ta >> 1), "Incompatible arrangement");
3117 f(0, 31), f((int)Tb & 1, 30), f(is_unsigned ? 1 : 0, 29), f(0b01110, 28, 24);
3118 f((int)(Ta >> 1) - 1, 23, 22), f(1, 21), rf(Vm, 16), f(0b000100, 15, 10), rf(Vn, 5), rf(Vd, 0);
3119 }
3120
3121 public:
3122 #define INSN(NAME, assertion, is_unsigned) \
3123 void NAME(FloatRegister Vd, FloatRegister Vn, SIMD_Arrangement Ta, FloatRegister Vm, \
3124 SIMD_Arrangement Tb) { \
3125 assert((assertion), "invalid arrangement"); \
3126 _xaddwv(is_unsigned, Vd, Vn, Ta, Vm, Tb); \
3127 }
3128
3129 public:
3130
3131 INSN(uaddwv, Tb == T8B || Tb == T4H || Tb == T2S, /*is_unsigned*/true)
3132 INSN(uaddwv2, Tb == T16B || Tb == T8H || Tb == T4S, /*is_unsigned*/true)
3133 INSN(saddwv, Tb == T8B || Tb == T4H || Tb == T2S, /*is_unsigned*/false)
3134 INSN(saddwv2, Tb == T16B || Tb == T8H || Tb == T4S, /*is_unsigned*/false)
3135
3136 #undef INSN
3137
3138
3139 private:
3140 void _pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
3141 starti;
3142 assert((Ta == T1Q && (Tb == T1D || Tb == T2D)) ||
3143 (Ta == T8H && (Tb == T8B || Tb == T16B)), "Invalid Size specifier");
3144 int size = (Ta == T1Q) ? 0b11 : 0b00;
3145 f(0, 31), f(Tb & 1, 30), f(0b001110, 29, 24), f(size, 23, 22);
3146 f(1, 21), rf(Vm, 16), f(0b111000, 15, 10), rf(Vn, 5), rf(Vd, 0);
3147 }
3148
3149 public:
3150 void pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
3151 assert(Tb == T1D || Tb == T8B, "pmull assumes T1D or T8B as the second size specifier");
3152 _pmull(Vd, Ta, Vn, Vm, Tb);
3153 }
3154
3155 void pmull2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
3156 assert(Tb == T2D || Tb == T16B, "pmull2 assumes T2D or T16B as the second size specifier");
3157 _pmull(Vd, Ta, Vn, Vm, Tb);
3158 }
3159
3160 void uqxtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) {
3161 starti;
3162 int size_b = (int)Tb >> 1;
3163 int size_a = (int)Ta >> 1;
3164 assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier");
3165 f(0, 31), f(Tb & 1, 30), f(0b101110, 29, 24), f(size_b, 23, 22);
3166 f(0b100001010010, 21, 10), rf(Vn, 5), rf(Vd, 0);
3167 }
3168
3169 void xtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) {
3170 starti;
3171 int size_b = (int)Tb >> 1;
3172 int size_a = (int)Ta >> 1;
3173 assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier");
3174 f(0, 31), f(Tb & 1, 30), f(0b001110, 29, 24), f(size_b, 23, 22);
3175 f(0b100001001010, 21, 10), rf(Vn, 5), rf(Vd, 0);
3176 }
3177
3178 void dup(FloatRegister Vd, SIMD_Arrangement T, Register Xs)
3179 {
3180 starti;
3181 assert(T != T1D, "reserved encoding");
3182 f(0,31), f((int)T & 1, 30), f(0b001110000, 29, 21);
3183 f((1 << (T >> 1)), 20, 16), f(0b000011, 15, 10), zrf(Xs, 5), rf(Vd, 0);
3184 }
3185
3186 void dup(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int index = 0)
3187 {
3188 starti;
3189 assert(T != T1D, "reserved encoding");
3190 f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21);
3191 f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
3192 f(0b000001, 15, 10), rf(Vn, 5), rf(Vd, 0);
3193 }
3194
3195 // Advanced SIMD scalar copy
3196 void dup(FloatRegister Vd, SIMD_RegVariant T, FloatRegister Vn, int index = 0)
3197 {
3198 starti;
3199 assert(T != Q, "invalid size");
3200 f(0b01011110000, 31, 21);
3201 f((1 << T) | (index << (T + 1)), 20, 16);
3202 f(0b000001, 15, 10), rf(Vn, 5), rf(Vd, 0);
3203 }
3204
3205 // AdvSIMD ZIP/UZP/TRN
3206 #define INSN(NAME, opcode) \
3207 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
3208 guarantee(T != T1D && T != T1Q, "invalid arrangement"); \
3209 starti; \
3210 f(0, 31), f(0b001110, 29, 24), f(0, 21), f(0, 15); \
3211 f(opcode, 14, 12), f(0b10, 11, 10); \
3212 rf(Vm, 16), rf(Vn, 5), rf(Vd, 0); \
3213 f(T & 1, 30), f(T >> 1, 23, 22); \
3214 }
3215
3216 INSN(uzp1, 0b001);
3217 INSN(trn1, 0b010);
3218 INSN(zip1, 0b011);
3219 INSN(uzp2, 0b101);
3220 INSN(trn2, 0b110);
3221 INSN(zip2, 0b111);
3222
3223 #undef INSN
3224
3225 // CRC32 instructions
3226 #define INSN(NAME, c, sf, sz) \
3227 void NAME(Register Rd, Register Rn, Register Rm) { \
3228 starti; \
3229 f(sf, 31), f(0b0011010110, 30, 21), f(0b010, 15, 13), f(c, 12); \
3230 f(sz, 11, 10), rf(Rm, 16), rf(Rn, 5), rf(Rd, 0); \
3231 }
3232
3233 INSN(crc32b, 0, 0, 0b00);
3234 INSN(crc32h, 0, 0, 0b01);
3235 INSN(crc32w, 0, 0, 0b10);
3236 INSN(crc32x, 0, 1, 0b11);
3237 INSN(crc32cb, 1, 0, 0b00);
3238 INSN(crc32ch, 1, 0, 0b01);
3239 INSN(crc32cw, 1, 0, 0b10);
3240 INSN(crc32cx, 1, 1, 0b11);
3241
3242 #undef INSN
3243
3244 // Table vector lookup
3245 #define INSN(NAME, op) \
3246 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, unsigned registers, FloatRegister Vm) { \
3247 starti; \
3248 assert(T == T8B || T == T16B, "invalid arrangement"); \
3249 assert(0 < registers && registers <= 4, "invalid number of registers"); \
3250 f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21), rf(Vm, 16), f(0, 15); \
3251 f(registers - 1, 14, 13), f(op, 12),f(0b00, 11, 10), rf(Vn, 5), rf(Vd, 0); \
3252 }
3253
3254 INSN(tbl, 0);
3255 INSN(tbx, 1);
3256
3257 #undef INSN
3258
3259 // AdvSIMD two-reg misc
3260 // In this instruction group, the 2 bits in the size field ([23:22]) may be
3261 // fixed or determined by the "SIMD_Arrangement T", or both. The additional
3262 // parameter "tmask" is a 2-bit mask used to indicate which bits in the size
3263 // field are determined by the SIMD_Arrangement. The bit of "tmask" should be
3264 // set to 1 if corresponding bit marked as "x" in the ArmARM.
3265 #define INSN(NAME, U, size, tmask, opcode) \
3266 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \
3267 starti; \
3268 assert((ASSERTION), MSG); \
3269 int op22 = (int)(T >> 1) & tmask; \
3270 int op19 = 0b00; \
3271 if (tmask == 0b01 && (T == T4H || T == T8H)) { \
3272 op22 = 0b1; \
3273 op19 = 0b11; \
3274 } \
3275 f(0, 31), f((int)T & 1, 30), f(U, 29), f(0b01110, 28, 24); \
3276 f(size | op22, 23, 22), f(1, 21), f(op19, 20, 19), f(0b00, 18, 17); \
3277 f(opcode, 16, 12), f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0); \
3278 }
3279
3280 #define MSG "invalid arrangement"
3281
3282 #define ASSERTION (T == T4H || T == T8H || T == T2S || T == T4S || T == T2D)
3283 INSN(fsqrt, 1, 0b10, 0b01, 0b11111);
3284 INSN(fabs, 0, 0b10, 0b01, 0b01111);
3285 INSN(fneg, 1, 0b10, 0b01, 0b01111);
3286 INSN(frintn, 0, 0b00, 0b01, 0b11000);
3287 INSN(frintm, 0, 0b00, 0b01, 0b11001);
3288 INSN(frintp, 0, 0b10, 0b01, 0b11000);
3289 INSN(fcvtas, 0, 0b00, 0b01, 0b11100);
3290 INSN(fcvtzs, 0, 0b10, 0b01, 0b11011);
3291 INSN(fcvtms, 0, 0b00, 0b01, 0b11011);
3292 #undef ASSERTION
3293
3294 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H || T == T2S || T == T4S)
3295 INSN(rev64, 0, 0b00, 0b11, 0b00000);
3296 #undef ASSERTION
3297
3298 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H)
3299 INSN(rev32, 1, 0b00, 0b11, 0b00000);
3300 #undef ASSERTION
3301
3302 #define ASSERTION (T == T8B || T == T16B)
3303 INSN(rev16, 0, 0b00, 0b11, 0b00001);
3304 INSN(rbit, 1, 0b01, 0b00, 0b00101);
3305 #undef ASSERTION
3306
3307 #undef MSG
3308
3309 #undef INSN
3310
3311 // AdvSIMD compare with zero (vector)
3312 void cm(Condition cond, FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
3313 starti;
3314 assert(T != T1Q && T != T1D, "invalid arrangement");
3315 int cond_op;
3316 switch (cond) {
3317 case EQ: cond_op = 0b001; break;
3318 case GE: cond_op = 0b100; break;
3319 case GT: cond_op = 0b000; break;
3320 case LE: cond_op = 0b101; break;
3321 case LT: cond_op = 0b010; break;
3322 default:
3323 ShouldNotReachHere();
3324 break;
3325 }
3326
3327 f(0, 31), f((int)T & 1, 30), f((cond_op >> 2) & 1, 29);
3328 f(0b01110, 28, 24), f((int)T >> 1, 23, 22), f(0b10000010, 21, 14);
3329 f(cond_op & 0b11, 13, 12), f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0);
3330 }
3331
3332 // AdvSIMD Floating-point compare with zero (vector)
3333 void fcm(Condition cond, FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
3334 starti;
3335 assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");
3336 int cond_op;
3337 switch (cond) {
3338 case EQ: cond_op = 0b010; break;
3339 case GT: cond_op = 0b000; break;
3340 case GE: cond_op = 0b001; break;
3341 case LE: cond_op = 0b011; break;
3342 case LT: cond_op = 0b100; break;
3343 default:
3344 ShouldNotReachHere();
3345 break;
3346 }
3347
3348 f(0, 31), f((int)T & 1, 30), f(cond_op & 1, 29), f(0b011101, 28, 23);
3349 f(((int)(T >> 1) & 1), 22), f(0b10000011, 21, 14);
3350 f((cond_op >> 1) & 0b11, 13, 12), f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0);
3351 }
3352
3353 void ext(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index)
3354 {
3355 starti;
3356 assert(T == T8B || T == T16B, "invalid arrangement");
3357 assert((T == T8B && index <= 0b0111) || (T == T16B && index <= 0b1111), "Invalid index value");
3358 f(0, 31), f((int)T & 1, 30), f(0b101110000, 29, 21);
3359 rf(Vm, 16), f(0, 15), f(index, 14, 11);
3360 f(0, 10), rf(Vn, 5), rf(Vd, 0);
3361 }
3362
3363 // SVE arithmetic - unpredicated
3364 #define INSN(NAME, opcode) \
3365 void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, FloatRegister Zm) { \
3366 starti; \
3367 assert(T != Q, "invalid register variant"); \
3368 f(0b00000100, 31, 24), f(T, 23, 22), f(1, 21), \
3369 rf(Zm, 16), f(0, 15, 13), f(opcode, 12, 10), rf(Zn, 5), rf(Zd, 0); \
3370 }
3371 INSN(sve_add, 0b000);
3372 INSN(sve_sub, 0b001);
3373 INSN(sve_sqadd, 0b100);
3374 INSN(sve_sqsub, 0b110);
3375 INSN(sve_uqadd, 0b101);
3376 INSN(sve_uqsub, 0b111);
3377 #undef INSN
3378
3379 // SVE integer add/subtract immediate (unpredicated)
3380 #define INSN(NAME, op) \
3381 void NAME(FloatRegister Zd, SIMD_RegVariant T, unsigned imm8) { \
3382 starti; \
3383 /* The immediate is an unsigned value in the range 0 to 255, and \
3384 * for element width of 16 bits or higher it may also be a \
3385 * positive multiple of 256 in the range 256 to 65280. \
3386 */ \
3387 assert(T != Q, "invalid size"); \
3388 int sh = 0; \
3389 if (imm8 <= 0xff) { \
3390 sh = 0; \
3391 } else if (T != B && imm8 <= 0xff00 && (imm8 & 0xff) == 0) { \
3392 sh = 1; \
3393 imm8 = (imm8 >> 8); \
3394 } else { \
3395 guarantee(false, "invalid immediate"); \
3396 } \
3397 f(0b00100101, 31, 24), f(T, 23, 22), f(0b10000, 21, 17); \
3398 f(op, 16, 14), f(sh, 13), f(imm8, 12, 5), rf(Zd, 0); \
3399 }
3400
3401 INSN(sve_add, 0b011);
3402 INSN(sve_sub, 0b111);
3403 #undef INSN
3404
3405 // SVE floating-point arithmetic - unpredicated
3406 #define INSN(NAME, opcode) \
3407 void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, FloatRegister Zm) { \
3408 starti; \
3409 assert(T == H || T == S || T == D, "invalid register variant"); \
3410 f(0b01100101, 31, 24), f(T, 23, 22), f(0, 21), \
3411 rf(Zm, 16), f(0, 15, 13), f(opcode, 12, 10), rf(Zn, 5), rf(Zd, 0); \
3412 }
3413
3414 INSN(sve_fadd, 0b000);
3415 INSN(sve_fmul, 0b010);
3416 INSN(sve_fsub, 0b001);
3417 #undef INSN
3418
3419 private:
3420 void sve_predicate_reg_insn(unsigned op24, unsigned op13,
3421 FloatRegister Zd_or_Vd, SIMD_RegVariant T,
3422 PRegister Pg, FloatRegister Zn_or_Vn) {
3423 starti;
3424 f(op24, 31, 24), f(T, 23, 22), f(op13, 21, 13);
3425 pgrf(Pg, 10), rf(Zn_or_Vn, 5), rf(Zd_or_Vd, 0);
3426 }
3427
3428 void sve_shift_imm_encoding(SIMD_RegVariant T, int shift, bool isSHR,
3429 int& tszh, int& tszl_imm) {
3430 /* The encodings for the tszh:tszl:imm3 fields
3431 * for shift right is calculated as:
3432 * 0001 xxx B, shift = 16 - UInt(tszh:tszl:imm3)
3433 * 001x xxx H, shift = 32 - UInt(tszh:tszl:imm3)
3434 * 01xx xxx S, shift = 64 - UInt(tszh:tszl:imm3)
3435 * 1xxx xxx D, shift = 128 - UInt(tszh:tszl:imm3)
3436 * for shift left is calculated as:
3437 * 0001 xxx B, shift = UInt(tszh:tszl:imm3) - 8
3438 * 001x xxx H, shift = UInt(tszh:tszl:imm3) - 16
3439 * 01xx xxx S, shift = UInt(tszh:tszl:imm3) - 32
3440 * 1xxx xxx D, shift = UInt(tszh:tszl:imm3) - 64
3441 */
3442 assert(T != Q, "Invalid register variant");
3443 if (isSHR) {
3444 assert(((1 << (T + 3)) >= shift) && (shift > 0) , "Invalid shift value");
3445 } else {
3446 assert(((1 << (T + 3)) > shift) && (shift >= 0) , "Invalid shift value");
3447 }
3448 int cVal = (1 << ((T + 3) + (isSHR ? 1 : 0)));
3449 int encodedShift = isSHR ? cVal - shift : cVal + shift;
3450 tszh = encodedShift >> 5;
3451 tszl_imm = encodedShift & 0x1f;
3452 }
3453
3454 public:
3455
3456 // SVE integer arithmetic - predicate
3457 #define INSN(NAME, op1, op2) \
3458 void NAME(FloatRegister Zdn_or_Zd_or_Vd, SIMD_RegVariant T, PRegister Pg, FloatRegister Znm_or_Vn) { \
3459 assert(T != Q, "invalid register variant"); \
3460 sve_predicate_reg_insn(op1, op2, Zdn_or_Zd_or_Vd, T, Pg, Znm_or_Vn); \
3461 }
3462
3463 INSN(sve_abs, 0b00000100, 0b010110101); // vector abs, unary
3464 INSN(sve_add, 0b00000100, 0b000000000); // vector add
3465 INSN(sve_and, 0b00000100, 0b011010000); // vector and
3466 INSN(sve_andv, 0b00000100, 0b011010001); // bitwise and reduction to scalar
3467 INSN(sve_asr, 0b00000100, 0b010000100); // vector arithmetic shift right
3468 INSN(sve_bic, 0b00000100, 0b011011000); // vector bitwise clear
3469 INSN(sve_clz, 0b00000100, 0b011001101); // vector count leading zero bits
3470 INSN(sve_cnt, 0b00000100, 0b011010101); // count non-zero bits
3471 INSN(sve_cpy, 0b00000101, 0b100000100); // copy scalar to each active vector element
3472 INSN(sve_eor, 0b00000100, 0b011001000); // vector eor
3473 INSN(sve_eorv, 0b00000100, 0b011001001); // bitwise xor reduction to scalar
3474 INSN(sve_lsl, 0b00000100, 0b010011100); // vector logical shift left
3475 INSN(sve_lsr, 0b00000100, 0b010001100); // vector logical shift right
3476 INSN(sve_mul, 0b00000100, 0b010000000); // vector mul
3477 INSN(sve_neg, 0b00000100, 0b010111101); // vector neg, unary
3478 INSN(sve_not, 0b00000100, 0b011110101); // bitwise invert vector, unary
3479 INSN(sve_orr, 0b00000100, 0b011000000); // vector or
3480 INSN(sve_orv, 0b00000100, 0b011000001); // bitwise or reduction to scalar
3481 INSN(sve_smax, 0b00000100, 0b001000000); // signed maximum vectors
3482 INSN(sve_smaxv, 0b00000100, 0b001000001); // signed maximum reduction to scalar
3483 INSN(sve_smin, 0b00000100, 0b001010000); // signed minimum vectors
3484 INSN(sve_sminv, 0b00000100, 0b001010001); // signed minimum reduction to scalar
3485 INSN(sve_sub, 0b00000100, 0b000001000); // vector sub
3486 INSN(sve_uaddv, 0b00000100, 0b000001001); // unsigned add reduction to scalar
3487 INSN(sve_umax, 0b00000100, 0b001001000); // unsigned maximum vectors
3488 INSN(sve_umin, 0b00000100, 0b001011000); // unsigned minimum vectors
3489 #undef INSN
3490
3491 // SVE floating-point arithmetic - predicate
3492 #define INSN(NAME, op1, op2) \
3493 void NAME(FloatRegister Zd_or_Zdn_or_Vd, SIMD_RegVariant T, PRegister Pg, FloatRegister Zn_or_Zm) { \
3494 assert(T == H || T == S || T == D, "invalid register variant"); \
3495 sve_predicate_reg_insn(op1, op2, Zd_or_Zdn_or_Vd, T, Pg, Zn_or_Zm); \
3496 }
3497
3498 INSN(sve_fabd, 0b01100101, 0b001000100); // floating-point absolute difference
3499 INSN(sve_fabs, 0b00000100, 0b011100101);
3500 INSN(sve_fadd, 0b01100101, 0b000000100);
3501 INSN(sve_fadda, 0b01100101, 0b011000001); // add strictly-ordered reduction to scalar Vd
3502 INSN(sve_fdiv, 0b01100101, 0b001101100);
3503 INSN(sve_fmax, 0b01100101, 0b000110100); // floating-point maximum
3504 INSN(sve_fmaxv, 0b01100101, 0b000110001); // floating-point maximum recursive reduction to scalar
3505 INSN(sve_fmin, 0b01100101, 0b000111100); // floating-point minimum
3506 INSN(sve_fminv, 0b01100101, 0b000111001); // floating-point minimum recursive reduction to scalar
3507 INSN(sve_fmul, 0b01100101, 0b000010100);
3508 INSN(sve_fneg, 0b00000100, 0b011101101);
3509 INSN(sve_frintm, 0b01100101, 0b000010101); // floating-point round to integral value, toward minus infinity
3510 INSN(sve_frintn, 0b01100101, 0b000000101); // floating-point round to integral value, nearest with ties to even
3511 INSN(sve_frinta, 0b01100101, 0b000100101); // floating-point round to integral value, nearest with ties to away
3512 INSN(sve_frintp, 0b01100101, 0b000001101); // floating-point round to integral value, toward plus infinity
3513 INSN(sve_fsqrt, 0b01100101, 0b001101101);
3514 INSN(sve_fsub, 0b01100101, 0b000001100);
3515 #undef INSN
3516
3517 // SVE multiple-add/sub - predicated
3518 #define INSN(NAME, op0, op1, op2) \
3519 void NAME(FloatRegister Zda, SIMD_RegVariant T, PRegister Pg, FloatRegister Zn, FloatRegister Zm) { \
3520 starti; \
3521 assert(T != Q, "invalid size"); \
3522 f(op0, 31, 24), f(T, 23, 22), f(op1, 21), rf(Zm, 16); \
3523 f(op2, 15, 13), pgrf(Pg, 10), rf(Zn, 5), rf(Zda, 0); \
3524 }
3525
3526 INSN(sve_fmla, 0b01100101, 1, 0b000); // floating-point fused multiply-add, writing addend: Zda = Zda + Zn * Zm
3527 INSN(sve_fmls, 0b01100101, 1, 0b001); // floating-point fused multiply-subtract: Zda = Zda + -Zn * Zm
3528 INSN(sve_fnmla, 0b01100101, 1, 0b010); // floating-point negated fused multiply-add: Zda = -Zda + -Zn * Zm
3529 INSN(sve_fnmls, 0b01100101, 1, 0b011); // floating-point negated fused multiply-subtract: Zda = -Zda + Zn * Zm
3530 INSN(sve_fmad, 0b01100101, 1, 0b100); // floating-point fused multiply-add, writing multiplicand: Zda = Zm + Zda * Zn
3531 INSN(sve_fmsb, 0b01100101, 1, 0b101); // floating-point fused multiply-subtract, writing multiplicand: Zda = Zm + -Zda * Zn
3532 INSN(sve_fnmad, 0b01100101, 1, 0b110); // floating-point negated fused multiply-add, writing multiplicand: Zda = -Zm + -Zda * Zn
3533 INSN(sve_fnmsb, 0b01100101, 1, 0b111); // floating-point negated fused multiply-subtract, writing multiplicand: Zda = -Zm + Zda * Zn
3534 INSN(sve_mla, 0b00000100, 0, 0b010); // multiply-add, writing addend: Zda = Zda + Zn*Zm
3535 INSN(sve_mls, 0b00000100, 0, 0b011); // multiply-subtract, writing addend: Zda = Zda + -Zn*Zm
3536 #undef INSN
3537
3538 // SVE bitwise logical - unpredicated
3539 #define INSN(NAME, opc) \
3540 void NAME(FloatRegister Zd, FloatRegister Zn, FloatRegister Zm) { \
3541 starti; \
3542 f(0b00000100, 31, 24), f(opc, 23, 22), f(1, 21), \
3543 rf(Zm, 16), f(0b001100, 15, 10), rf(Zn, 5), rf(Zd, 0); \
3544 }
3545 INSN(sve_and, 0b00);
3546 INSN(sve_eor, 0b10);
3547 INSN(sve_orr, 0b01);
3548 INSN(sve_bic, 0b11);
3549 #undef INSN
3550
3551 // SVE bitwise logical with immediate (unpredicated)
3552 #define INSN(NAME, opc) \
3553 void NAME(FloatRegister Zd, SIMD_RegVariant T, uint64_t imm) { \
3554 starti; \
3555 unsigned elembits = regVariant_to_elemBits(T); \
3556 uint32_t val = encode_sve_logical_immediate(elembits, imm); \
3557 f(0b00000101, 31, 24), f(opc, 23, 22), f(0b0000, 21, 18); \
3558 f(val, 17, 5), rf(Zd, 0); \
3559 }
3560 INSN(sve_and, 0b10);
3561 INSN(sve_eor, 0b01);
3562 INSN(sve_orr, 0b00);
3563 #undef INSN
3564
3565 // SVE shift immediate - unpredicated
3566 #define INSN(NAME, opc, isSHR) \
3567 void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, int shift) { \
3568 starti; \
3569 int tszh, tszl_imm; \
3570 sve_shift_imm_encoding(T, shift, isSHR, tszh, tszl_imm); \
3571 f(0b00000100, 31, 24); \
3572 f(tszh, 23, 22), f(1,21), f(tszl_imm, 20, 16); \
3573 f(0b100, 15, 13), f(opc, 12, 10), rf(Zn, 5), rf(Zd, 0); \
3574 }
3575
3576 INSN(sve_asr, 0b100, /* isSHR = */ true);
3577 INSN(sve_lsl, 0b111, /* isSHR = */ false);
3578 INSN(sve_lsr, 0b101, /* isSHR = */ true);
3579 #undef INSN
3580
3581 // SVE bitwise shift by immediate (predicated)
3582 #define INSN(NAME, opc, isSHR) \
3583 void NAME(FloatRegister Zdn, SIMD_RegVariant T, PRegister Pg, int shift) { \
3584 starti; \
3585 int tszh, tszl_imm; \
3586 sve_shift_imm_encoding(T, shift, isSHR, tszh, tszl_imm); \
3587 f(0b00000100, 31, 24), f(tszh, 23, 22), f(0b00, 21, 20), f(opc, 19, 16); \
3588 f(0b100, 15, 13), pgrf(Pg, 10), f(tszl_imm, 9, 5), rf(Zdn, 0); \
3589 }
3590
3591 INSN(sve_asr, 0b0000, /* isSHR = */ true);
3592 INSN(sve_lsl, 0b0011, /* isSHR = */ false);
3593 INSN(sve_lsr, 0b0001, /* isSHR = */ true);
3594 #undef INSN
3595
3596 private:
3597
3598 // Scalar base + immediate index
3599 void sve_ld_st1(FloatRegister Zt, Register Xn, int imm, PRegister Pg,
3600 SIMD_RegVariant T, int op1, int type, int op2) {
3601 starti;
3602 assert_cond(T >= type);
3603 f(op1, 31, 25), f(type, 24, 23), f(T, 22, 21);
3604 f(0, 20), sf(imm, 19, 16), f(op2, 15, 13);
3605 pgrf(Pg, 10), srf(Xn, 5), rf(Zt, 0);
3606 }
3607
3608 // Scalar base + scalar index
3609 void sve_ld_st1(FloatRegister Zt, Register Xn, Register Xm, PRegister Pg,
3610 SIMD_RegVariant T, int op1, int type, int op2) {
3611 starti;
3612 assert_cond(T >= type);
3613 f(op1, 31, 25), f(type, 24, 23), f(T, 22, 21);
3614 rf(Xm, 16), f(op2, 15, 13);
3615 pgrf(Pg, 10), srf(Xn, 5), rf(Zt, 0);
3616 }
3617
3618 void sve_ld_st1(FloatRegister Zt, PRegister Pg,
3619 SIMD_RegVariant T, const Address &a,
3620 int op1, int type, int imm_op2, int scalar_op2) {
3621 switch (a.getMode()) {
3622 case Address::base_plus_offset:
3623 sve_ld_st1(Zt, a.base(), checked_cast<int>(a.offset()), Pg, T, op1, type, imm_op2);
3624 break;
3625 case Address::base_plus_offset_reg:
3626 sve_ld_st1(Zt, a.base(), a.index(), Pg, T, op1, type, scalar_op2);
3627 break;
3628 default:
3629 ShouldNotReachHere();
3630 }
3631 }
3632
3633 public:
3634
3635 // SVE contiguous load/store
3636 #define INSN(NAME, op1, type, imm_op2, scalar_op2) \
3637 void NAME(FloatRegister Zt, SIMD_RegVariant T, PRegister Pg, const Address &a) { \
3638 assert(T != Q, "invalid register variant"); \
3639 sve_ld_st1(Zt, Pg, T, a, op1, type, imm_op2, scalar_op2); \
3640 }
3641
3642 INSN(sve_ld1b, 0b1010010, 0b00, 0b101, 0b010);
3643 INSN(sve_st1b, 0b1110010, 0b00, 0b111, 0b010);
3644 INSN(sve_ld1h, 0b1010010, 0b01, 0b101, 0b010);
3645 INSN(sve_st1h, 0b1110010, 0b01, 0b111, 0b010);
3646 INSN(sve_ld1w, 0b1010010, 0b10, 0b101, 0b010);
3647 INSN(sve_st1w, 0b1110010, 0b10, 0b111, 0b010);
3648 INSN(sve_ld1d, 0b1010010, 0b11, 0b101, 0b010);
3649 INSN(sve_st1d, 0b1110010, 0b11, 0b111, 0b010);
3650 #undef INSN
3651
3652 // Gather/scatter load/store (SVE) - scalar plus vector
3653 #define INSN(NAME, op1, type, op2, op3) \
3654 void NAME(FloatRegister Zt, PRegister Pg, Register Xn, FloatRegister Zm) { \
3655 starti; \
3656 f(op1, 31, 25), f(type, 24, 23), f(op2, 22, 21), rf(Zm, 16); \
3657 f(op3, 15, 13), pgrf(Pg, 10), srf(Xn, 5), rf(Zt, 0); \
3658 }
3659 // SVE 32-bit gather load words (scalar plus 32-bit scaled offsets)
3660 INSN(sve_ld1w_gather, 0b1000010, 0b10, 0b01, 0b010);
3661 // SVE 64-bit gather load (scalar plus 32-bit unpacked scaled offsets)
3662 INSN(sve_ld1d_gather, 0b1100010, 0b11, 0b01, 0b010);
3663 // SVE 32-bit scatter store (scalar plus 32-bit scaled offsets)
3664 INSN(sve_st1w_scatter, 0b1110010, 0b10, 0b11, 0b100);
3665 // SVE 64-bit scatter store (scalar plus unpacked 32-bit scaled offsets)
3666 INSN(sve_st1d_scatter, 0b1110010, 0b11, 0b01, 0b100);
3667 #undef INSN
3668
3669 // SVE load/store - unpredicated
3670 #define INSN(NAME, op1) \
3671 void NAME(FloatRegister Zt, const Address &a) { \
3672 starti; \
3673 assert(a.index() == noreg, "invalid address variant"); \
3674 f(op1, 31, 29), f(0b0010110, 28, 22), sf(a.offset() >> 3, 21, 16), \
3675 f(0b010, 15, 13), f(a.offset() & 0x7, 12, 10), srf(a.base(), 5), rf(Zt, 0); \
3676 }
3677
3678 INSN(sve_ldr, 0b100); // LDR (vector)
3679 INSN(sve_str, 0b111); // STR (vector)
3680 #undef INSN
3681
3682 // SVE stack frame adjustment
3683 #define INSN(NAME, op) \
3684 void NAME(Register Xd, Register Xn, int imm6) { \
3685 starti; \
3686 f(0b000001000, 31, 23), f(op, 22, 21); \
3687 srf(Xn, 16), f(0b01010, 15, 11), sf(imm6, 10, 5), srf(Xd, 0); \
3688 }
3689
3690 INSN(sve_addvl, 0b01); // Add multiple of vector register size to scalar register
3691 INSN(sve_addpl, 0b11); // Add multiple of predicate register size to scalar register
3692 #undef INSN
3693
3694 // SVE inc/dec register by element count
3695 #define INSN(NAME, op) \
3696 void NAME(Register Xdn, SIMD_RegVariant T, unsigned imm4 = 1, int pattern = 0b11111) { \
3697 starti; \
3698 assert(T != Q, "invalid size"); \
3699 f(0b00000100,31, 24), f(T, 23, 22), f(0b11, 21, 20); \
3700 f(imm4 - 1, 19, 16), f(0b11100, 15, 11), f(op, 10), f(pattern, 9, 5), rf(Xdn, 0); \
3701 }
3702
3703 INSN(sve_inc, 0);
3704 INSN(sve_dec, 1);
3705 #undef INSN
3706
3707 // SVE predicate logical operations
3708 #define INSN(NAME, op1, op2, op3) \
3709 void NAME(PRegister Pd, PRegister Pg, PRegister Pn, PRegister Pm) { \
3710 starti; \
3711 f(0b00100101, 31, 24), f(op1, 23, 22), f(0b00, 21, 20); \
3712 prf(Pm, 16), f(0b01, 15, 14), prf(Pg, 10), f(op2, 9); \
3713 prf(Pn, 5), f(op3, 4), prf(Pd, 0); \
3714 }
3715
3716 INSN(sve_and, 0b00, 0b0, 0b0);
3717 INSN(sve_ands, 0b01, 0b0, 0b0);
3718 INSN(sve_eor, 0b00, 0b1, 0b0);
3719 INSN(sve_eors, 0b01, 0b1, 0b0);
3720 INSN(sve_orr, 0b10, 0b0, 0b0);
3721 INSN(sve_orrs, 0b11, 0b0, 0b0);
3722 INSN(sve_bic, 0b00, 0b0, 0b1);
3723 #undef INSN
3724
3725 // SVE increment register by predicate count
3726 void sve_incp(const Register rd, SIMD_RegVariant T, PRegister pg) {
3727 starti;
3728 assert(T != Q, "invalid size");
3729 f(0b00100101, 31, 24), f(T, 23, 22), f(0b1011001000100, 21, 9),
3730 prf(pg, 5), rf(rd, 0);
3731 }
3732
3733 // SVE broadcast general-purpose register to vector elements (unpredicated)
3734 void sve_dup(FloatRegister Zd, SIMD_RegVariant T, Register Rn) {
3735 starti;
3736 assert(T != Q, "invalid size");
3737 f(0b00000101, 31, 24), f(T, 23, 22), f(0b100000001110, 21, 10);
3738 srf(Rn, 5), rf(Zd, 0);
3739 }
3740
3741 // SVE broadcast signed immediate to vector elements (unpredicated)
3742 void sve_dup(FloatRegister Zd, SIMD_RegVariant T, int imm8) {
3743 starti;
3744 assert(T != Q, "invalid size");
3745 int sh = 0;
3746 if (imm8 <= 127 && imm8 >= -128) {
3747 sh = 0;
3748 } else if (T != B && imm8 <= 32512 && imm8 >= -32768 && (imm8 & 0xff) == 0) {
3749 sh = 1;
3750 imm8 = (imm8 >> 8);
3751 } else {
3752 guarantee(false, "invalid immediate");
3753 }
3754 f(0b00100101, 31, 24), f(T, 23, 22), f(0b11100011, 21, 14);
3755 f(sh, 13), sf(imm8, 12, 5), rf(Zd, 0);
3756 }
3757
3758 // SVE predicate test
3759 void sve_ptest(PRegister Pg, PRegister Pn) {
3760 starti;
3761 f(0b001001010101000011, 31, 14), prf(Pg, 10), f(0, 9), prf(Pn, 5), f(0, 4, 0);
3762 }
3763
3764 // SVE predicate initialize
3765 void sve_ptrue(PRegister pd, SIMD_RegVariant esize, int pattern = 0b11111) {
3766 starti;
3767 f(0b00100101, 31, 24), f(esize, 23, 22), f(0b011000111000, 21, 10);
3768 f(pattern, 9, 5), f(0b0, 4), prf(pd, 0);
3769 }
3770
3771 // SVE predicate zero
3772 void sve_pfalse(PRegister pd) {
3773 starti;
3774 f(0b00100101, 31, 24), f(0b00, 23, 22), f(0b011000111001, 21, 10);
3775 f(0b000000, 9, 4), prf(pd, 0);
3776 }
3777
3778 // SVE load/store predicate register
3779 #define INSN(NAME, op1) \
3780 void NAME(PRegister Pt, const Address &a) { \
3781 starti; \
3782 assert(a.index() == noreg, "invalid address variant"); \
3783 f(op1, 31, 29), f(0b0010110, 28, 22), sf(a.offset() >> 3, 21, 16), \
3784 f(0b000, 15, 13), f(a.offset() & 0x7, 12, 10), srf(a.base(), 5), \
3785 f(0, 4), prf(Pt, 0); \
3786 }
3787
3788 INSN(sve_ldr, 0b100); // LDR (predicate)
3789 INSN(sve_str, 0b111); // STR (predicate)
3790 #undef INSN
3791
3792 // SVE move predicate register
3793 void sve_mov(PRegister Pd, PRegister Pn) {
3794 starti;
3795 f(0b001001011000, 31, 20), prf(Pn, 16), f(0b01, 15, 14), prf(Pn, 10);
3796 f(0, 9), prf(Pn, 5), f(0, 4), prf(Pd, 0);
3797 }
3798
3799 // SVE copy general-purpose register to vector elements (predicated)
3800 void sve_cpy(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg, Register Rn) {
3801 starti;
3802 assert(T != Q, "invalid size");
3803 f(0b00000101, 31, 24), f(T, 23, 22), f(0b101000101, 21, 13);
3804 pgrf(Pg, 10), srf(Rn, 5), rf(Zd, 0);
3805 }
3806
3807 private:
3808 void sve_cpy(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg, int imm8,
3809 bool isMerge, bool isFloat) {
3810 starti;
3811 assert(T != Q, "invalid size");
3812 int sh = 0;
3813 if (imm8 <= 127 && imm8 >= -128) {
3814 sh = 0;
3815 } else if (T != B && imm8 <= 32512 && imm8 >= -32768 && (imm8 & 0xff) == 0) {
3816 sh = 1;
3817 imm8 = (imm8 >> 8);
3818 } else {
3819 guarantee(false, "invalid immediate");
3820 }
3821 int m = isMerge ? 1 : 0;
3822 f(0b00000101, 31, 24), f(T, 23, 22), f(0b01, 21, 20);
3823 prf(Pg, 16), f(isFloat ? 1 : 0, 15), f(m, 14), f(sh, 13), sf(imm8, 12, 5), rf(Zd, 0);
3824 }
3825
3826 public:
3827 // SVE copy signed integer immediate to vector elements (predicated)
3828 void sve_cpy(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg, int imm8, bool isMerge) {
3829 sve_cpy(Zd, T, Pg, imm8, isMerge, /*isFloat*/false);
3830 }
3831 // SVE copy floating-point immediate to vector elements (predicated)
3832 void sve_cpy(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg, double d) {
3833 sve_cpy(Zd, T, Pg, checked_cast<int8_t>(pack(d)), /*isMerge*/true, /*isFloat*/true);
3834 }
3835
3836 // SVE conditionally select elements from two vectors
3837 void sve_sel(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg,
3838 FloatRegister Zn, FloatRegister Zm) {
3839 starti;
3840 assert(T != Q, "invalid size");
3841 f(0b00000101, 31, 24), f(T, 23, 22), f(0b1, 21), rf(Zm, 16);
3842 f(0b11, 15, 14), prf(Pg, 10), rf(Zn, 5), rf(Zd, 0);
3843 }
3844
3845 // SVE Permute Vector - Extract
3846 void sve_ext(FloatRegister Zdn, FloatRegister Zm, int imm8) {
3847 starti;
3848 f(0b00000101001, 31, 21), f(imm8 >> 3, 20, 16), f(0b000, 15, 13);
3849 f(imm8 & 0b111, 12, 10), rf(Zm, 5), rf(Zdn, 0);
3850 }
3851
3852 // SVE Integer/Floating-Point Compare - Vectors
3853 #define INSN(NAME, op1, op2, fp) \
3854 void NAME(Condition cond, PRegister Pd, SIMD_RegVariant T, PRegister Pg, \
3855 FloatRegister Zn, FloatRegister Zm) { \
3856 starti; \
3857 assert(T != Q, "invalid size"); \
3858 bool is_absolute = op2 == 0b11; \
3859 if (fp == 1) { \
3860 assert(T != B, "invalid size"); \
3861 if (is_absolute) { \
3862 assert(cond == GT || cond == GE, "invalid condition for fac"); \
3863 } else { \
3864 assert(cond != HI && cond != HS, "invalid condition for fcm"); \
3865 } \
3866 } \
3867 int cond_op; \
3868 switch(cond) { \
3869 case EQ: cond_op = (op2 << 2) | 0b10; break; \
3870 case NE: cond_op = (op2 << 2) | 0b11; break; \
3871 case GE: cond_op = (op2 << 2) | (is_absolute ? 0b01 : 0b00); break; \
3872 case GT: cond_op = (op2 << 2) | (is_absolute ? 0b11 : 0b01); break; \
3873 case HI: cond_op = 0b0001; break; \
3874 case HS: cond_op = 0b0000; break; \
3875 default: \
3876 ShouldNotReachHere(); \
3877 } \
3878 f(op1, 31, 24), f(T, 23, 22), f(0, 21), rf(Zm, 16), f((cond_op >> 1) & 7, 15, 13); \
3879 pgrf(Pg, 10), rf(Zn, 5), f(cond_op & 1, 4), prf(Pd, 0); \
3880 }
3881
3882 INSN(sve_cmp, 0b00100100, 0b10, 0); // Integer compare vectors
3883 INSN(sve_fcm, 0b01100101, 0b01, 1); // Floating-point compare vectors
3884 INSN(sve_fac, 0b01100101, 0b11, 1); // Floating-point absolute compare vectors
3885 #undef INSN
3886
3887 private:
3888 // Convert Assembler::Condition to op encoding - used by sve integer compare encoding
3889 static int assembler_cond_to_sve_op(Condition cond, bool &is_unsigned) {
3890 if (cond == HI || cond == HS || cond == LO || cond == LS) {
3891 is_unsigned = true;
3892 } else {
3893 is_unsigned = false;
3894 }
3895
3896 switch (cond) {
3897 case HI:
3898 case GT:
3899 return 0b0001;
3900 case HS:
3901 case GE:
3902 return 0b0000;
3903 case LO:
3904 case LT:
3905 return 0b0010;
3906 case LS:
3907 case LE:
3908 return 0b0011;
3909 case EQ:
3910 return 0b1000;
3911 case NE:
3912 return 0b1001;
3913 default:
3914 ShouldNotReachHere();
3915 return -1;
3916 }
3917 }
3918
3919 public:
3920 // SVE Integer Compare - 5 bits signed imm and 7 bits unsigned imm
3921 void sve_cmp(Condition cond, PRegister Pd, SIMD_RegVariant T,
3922 PRegister Pg, FloatRegister Zn, int imm) {
3923 starti;
3924 assert(T != Q, "invalid size");
3925 bool is_unsigned = false;
3926 int cond_op = assembler_cond_to_sve_op(cond, is_unsigned);
3927 f(is_unsigned ? 0b00100100 : 0b00100101, 31, 24), f(T, 23, 22);
3928 f(is_unsigned ? 0b1 : 0b0, 21);
3929 if (is_unsigned) {
3930 f(imm, 20, 14), f((cond_op >> 1) & 0x1, 13);
3931 } else {
3932 sf(imm, 20, 16), f((cond_op >> 1) & 0x7, 15, 13);
3933 }
3934 pgrf(Pg, 10), rf(Zn, 5), f(cond_op & 0x1, 4), prf(Pd, 0);
3935 }
3936
3937 // SVE Floating-point compare vector with zero
3938 void sve_fcm(Condition cond, PRegister Pd, SIMD_RegVariant T,
3939 PRegister Pg, FloatRegister Zn, double d) {
3940 starti;
3941 assert(T != Q, "invalid size");
3942 guarantee(d == 0.0, "invalid immediate");
3943 int cond_op;
3944 switch(cond) {
3945 case EQ: cond_op = 0b100; break;
3946 case GT: cond_op = 0b001; break;
3947 case GE: cond_op = 0b000; break;
3948 case LT: cond_op = 0b010; break;
3949 case LE: cond_op = 0b011; break;
3950 case NE: cond_op = 0b110; break;
3951 default:
3952 ShouldNotReachHere();
3953 }
3954 f(0b01100101, 31, 24), f(T, 23, 22), f(0b0100, 21, 18),
3955 f((cond_op >> 1) & 0x3, 17, 16), f(0b001, 15, 13),
3956 pgrf(Pg, 10), rf(Zn, 5);
3957 f(cond_op & 0x1, 4), prf(Pd, 0);
3958 }
3959
3960 // SVE unpack vector elements
3961 protected:
3962 void _sve_xunpk(bool is_unsigned, bool is_high, FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn) {
3963 starti;
3964 assert(T != B && T != Q, "invalid size");
3965 f(0b00000101, 31, 24), f(T, 23, 22), f(0b1100, 21, 18);
3966 f(is_unsigned ? 1 : 0, 17), f(is_high ? 1 : 0, 16),
3967 f(0b001110, 15, 10), rf(Zn, 5), rf(Zd, 0);
3968 }
3969
3970 public:
3971 #define INSN(NAME, is_unsigned, is_high) \
3972 void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn) { \
3973 _sve_xunpk(is_unsigned, is_high, Zd, T, Zn); \
3974 }
3975
3976 INSN(sve_uunpkhi, true, true ); // Unsigned unpack and extend half of vector - high half
3977 INSN(sve_uunpklo, true, false); // Unsigned unpack and extend half of vector - low half
3978 INSN(sve_sunpkhi, false, true ); // Signed unpack and extend half of vector - high half
3979 INSN(sve_sunpklo, false, false); // Signed unpack and extend half of vector - low half
3980 #undef INSN
3981
3982 // SVE unpack predicate elements
3983 #define INSN(NAME, op) \
3984 void NAME(PRegister Pd, PRegister Pn) { \
3985 starti; \
3986 f(0b000001010011000, 31, 17), f(op, 16), f(0b0100000, 15, 9); \
3987 prf(Pn, 5), f(0b0, 4), prf(Pd, 0); \
3988 }
3989
3990 INSN(sve_punpkhi, 0b1); // Unpack and widen high half of predicate
3991 INSN(sve_punpklo, 0b0); // Unpack and widen low half of predicate
3992 #undef INSN
3993
3994 // SVE permute vector elements
3995 #define INSN(NAME, op) \
3996 void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, FloatRegister Zm) { \
3997 starti; \
3998 assert(T != Q, "invalid size"); \
3999 f(0b00000101, 31, 24), f(T, 23, 22), f(0b1, 21), rf(Zm, 16); \
4000 f(0b01101, 15, 11), f(op, 10), rf(Zn, 5), rf(Zd, 0); \
4001 }
4002
4003 INSN(sve_uzp1, 0b0); // Concatenate even elements from two vectors
4004 INSN(sve_uzp2, 0b1); // Concatenate odd elements from two vectors
4005 #undef INSN
4006
4007 // SVE permute predicate elements
4008 #define INSN(NAME, op) \
4009 void NAME(PRegister Pd, SIMD_RegVariant T, PRegister Pn, PRegister Pm) { \
4010 starti; \
4011 assert(T != Q, "invalid size"); \
4012 f(0b00000101, 31, 24), f(T, 23, 22), f(0b10, 21, 20), prf(Pm, 16); \
4013 f(0b01001, 15, 11), f(op, 10), f(0b0, 9), prf(Pn, 5), f(0b0, 4), prf(Pd, 0); \
4014 }
4015
4016 INSN(sve_uzp1, 0b0); // Concatenate even elements from two predicates
4017 INSN(sve_uzp2, 0b1); // Concatenate odd elements from two predicates
4018 #undef INSN
4019
4020 // SVE integer compare scalar count and limit
4021 #define INSN(NAME, sf, op) \
4022 void NAME(PRegister Pd, SIMD_RegVariant T, Register Rn, Register Rm) { \
4023 starti; \
4024 assert(T != Q, "invalid register variant"); \
4025 f(0b00100101, 31, 24), f(T, 23, 22), f(1, 21), \
4026 zrf(Rm, 16), f(0, 15, 13), f(sf, 12), f(op >> 1, 11, 10), \
4027 zrf(Rn, 5), f(op & 1, 4), prf(Pd, 0); \
4028 }
4029 // While incrementing signed scalar less than scalar
4030 INSN(sve_whileltw, 0b0, 0b010);
4031 INSN(sve_whilelt, 0b1, 0b010);
4032 // While incrementing signed scalar less than or equal to scalar
4033 INSN(sve_whilelew, 0b0, 0b011);
4034 INSN(sve_whilele, 0b1, 0b011);
4035 // While incrementing unsigned scalar lower than scalar
4036 INSN(sve_whilelow, 0b0, 0b110);
4037 INSN(sve_whilelo, 0b1, 0b110);
4038 // While incrementing unsigned scalar lower than or the same as scalar
4039 INSN(sve_whilelsw, 0b0, 0b111);
4040 INSN(sve_whilels, 0b1, 0b111);
4041 #undef INSN
4042
4043 // SVE predicate reverse
4044 void sve_rev(PRegister Pd, SIMD_RegVariant T, PRegister Pn) {
4045 starti;
4046 assert(T != Q, "invalid size");
4047 f(0b00000101, 31, 24), f(T, 23, 22), f(0b1101000100000, 21, 9);
4048 prf(Pn, 5), f(0, 4), prf(Pd, 0);
4049 }
4050
4051 // SVE partition break condition
4052 #define INSN(NAME, op) \
4053 void NAME(PRegister Pd, PRegister Pg, PRegister Pn, bool isMerge) { \
4054 starti; \
4055 f(0b00100101, 31, 24), f(op, 23, 22), f(0b01000001, 21, 14); \
4056 prf(Pg, 10), f(0b0, 9), prf(Pn, 5), f(isMerge ? 1 : 0, 4), prf(Pd, 0); \
4057 }
4058
4059 INSN(sve_brka, 0b00); // Break after first true condition
4060 INSN(sve_brkb, 0b10); // Break before first true condition
4061 #undef INSN
4062
4063 // Element count and increment scalar (SVE)
4064 #define INSN(NAME, TYPE) \
4065 void NAME(Register Xdn, unsigned imm4 = 1, int pattern = 0b11111) { \
4066 starti; \
4067 f(0b00000100, 31, 24), f(TYPE, 23, 22), f(0b10, 21, 20); \
4068 f(imm4 - 1, 19, 16), f(0b11100, 15, 11), f(0, 10), f(pattern, 9, 5), rf(Xdn, 0); \
4069 }
4070
4071 INSN(sve_cntb, B); // Set scalar to multiple of 8-bit predicate constraint element count
4072 INSN(sve_cnth, H); // Set scalar to multiple of 16-bit predicate constraint element count
4073 INSN(sve_cntw, S); // Set scalar to multiple of 32-bit predicate constraint element count
4074 INSN(sve_cntd, D); // Set scalar to multiple of 64-bit predicate constraint element count
4075 #undef INSN
4076
4077 // Set scalar to active predicate element count
4078 void sve_cntp(Register Xd, SIMD_RegVariant T, PRegister Pg, PRegister Pn) {
4079 starti;
4080 assert(T != Q, "invalid size");
4081 f(0b00100101, 31, 24), f(T, 23, 22), f(0b10000010, 21, 14);
4082 prf(Pg, 10), f(0, 9), prf(Pn, 5), rf(Xd, 0);
4083 }
4084
4085 // SVE convert signed integer to floating-point (predicated)
4086 void sve_scvtf(FloatRegister Zd, SIMD_RegVariant T_dst, PRegister Pg,
4087 FloatRegister Zn, SIMD_RegVariant T_src) {
4088 starti;
4089 assert(T_src != B && T_dst != B && T_src != Q && T_dst != Q &&
4090 (T_src != H || T_dst == T_src), "invalid register variant");
4091 int opc = T_dst;
4092 int opc2 = T_src;
4093 // In most cases we can treat T_dst, T_src as opc, opc2,
4094 // except for the following two combinations.
4095 // +-----+------+---+------------------------------------+
4096 // | opc | opc2 | U | Instruction Details |
4097 // +-----+------+---+------------------------------------+
4098 // | 11 | 00 | 0 | SCVTF - 32-bit to double-precision |
4099 // | 11 | 10 | 0 | SCVTF - 64-bit to single-precision |
4100 // +-----+------+---+------------------------------------+
4101 if (T_src == S && T_dst == D) {
4102 opc = 0b11;
4103 opc2 = 0b00;
4104 } else if (T_src == D && T_dst == S) {
4105 opc = 0b11;
4106 opc2 = 0b10;
4107 }
4108 f(0b01100101, 31, 24), f(opc, 23, 22), f(0b010, 21, 19);
4109 f(opc2, 18, 17), f(0b0101, 16, 13);
4110 pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0);
4111 }
4112
4113 // SVE floating-point convert to signed integer, rounding toward zero (predicated)
4114 void sve_fcvtzs(FloatRegister Zd, SIMD_RegVariant T_dst, PRegister Pg,
4115 FloatRegister Zn, SIMD_RegVariant T_src) {
4116 starti;
4117 assert(T_src != B && T_dst != B && T_src != Q && T_dst != Q &&
4118 (T_dst != H || T_src == H), "invalid register variant");
4119 int opc = T_src;
4120 int opc2 = T_dst;
4121 // In most cases we can treat T_src, T_dst as opc, opc2,
4122 // except for the following two combinations.
4123 // +-----+------+---+-------------------------------------+
4124 // | opc | opc2 | U | Instruction Details |
4125 // +-----+------+---+-------------------------------------+
4126 // | 11 | 10 | 0 | FCVTZS - single-precision to 64-bit |
4127 // | 11 | 00 | 0 | FCVTZS - double-precision to 32-bit |
4128 // +-----+------+---+-------------------------------------+
4129 if (T_src == S && T_dst == D) {
4130 opc = 0b11;
4131 opc2 = 0b10;
4132 } else if (T_src == D && T_dst == S) {
4133 opc = 0b11;
4134 opc2 = 0b00;
4135 }
4136 f(0b01100101, 31, 24), f(opc, 23, 22), f(0b011, 21, 19);
4137 f(opc2, 18, 17), f(0b0101, 16, 13);
4138 pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0);
4139 }
4140
4141 // SVE floating-point convert precision (predicated)
4142 void sve_fcvt(FloatRegister Zd, SIMD_RegVariant T_dst, PRegister Pg,
4143 FloatRegister Zn, SIMD_RegVariant T_src) {
4144 starti;
4145 assert(T_src != B && T_dst != B && T_src != Q && T_dst != Q &&
4146 T_src != T_dst, "invalid register variant");
4147 // The encodings of fields op1 (bits 17-16) and op2 (bits 23-22)
4148 // depend on T_src and T_dst as given below -
4149 // +-----+------+---------------------------------------------+
4150 // | op2 | op1 | Instruction Details |
4151 // +-----+------+---------------------------------------------+
4152 // | 10 | 01 | FCVT - half-precision to single-precision |
4153 // | 11 | 01 | FCVT - half-precision to double-precision |
4154 // | 10 | 00 | FCVT - single-precision to half-precision |
4155 // | 11 | 11 | FCVT - single-precision to double-precision |
4156 // | 11 | 00 | FCVT - double-preciison to half-precision |
4157 // | 11 | 10 | FCVT - double-precision to single-precision |
4158 // +-----+------+---+-----------------------------------------+
4159 int op1 = 0b00;
4160 int op2 = (T_src == D || T_dst == D) ? 0b11 : 0b10;
4161 if (T_src == H) {
4162 op1 = 0b01;
4163 } else if (T_dst == S) {
4164 op1 = 0b10;
4165 } else if (T_dst == D) {
4166 op1 = 0b11;
4167 }
4168 f(0b01100101, 31, 24), f(op2, 23, 22), f(0b0010, 21, 18);
4169 f(op1, 17, 16), f(0b101, 15, 13);
4170 pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0);
4171 }
4172
4173 // SVE extract element to general-purpose register
4174 #define INSN(NAME, before) \
4175 void NAME(Register Rd, SIMD_RegVariant T, PRegister Pg, FloatRegister Zn) { \
4176 starti; \
4177 f(0b00000101, 31, 24), f(T, 23, 22), f(0b10000, 21, 17); \
4178 f(before, 16), f(0b101, 15, 13); \
4179 pgrf(Pg, 10), rf(Zn, 5), rf(Rd, 0); \
4180 }
4181
4182 INSN(sve_lasta, 0b0);
4183 INSN(sve_lastb, 0b1);
4184 #undef INSN
4185
4186 // SVE extract element to SIMD&FP scalar register
4187 #define INSN(NAME, before) \
4188 void NAME(FloatRegister Vd, SIMD_RegVariant T, PRegister Pg, FloatRegister Zn) { \
4189 starti; \
4190 f(0b00000101, 31, 24), f(T, 23, 22), f(0b10001, 21, 17); \
4191 f(before, 16), f(0b100, 15, 13); \
4192 pgrf(Pg, 10), rf(Zn, 5), rf(Vd, 0); \
4193 }
4194
4195 INSN(sve_lasta, 0b0);
4196 INSN(sve_lastb, 0b1);
4197 #undef INSN
4198
4199 // SVE reverse within elements
4200 #define INSN(NAME, opc, cond) \
4201 void NAME(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg, FloatRegister Zn) { \
4202 starti; \
4203 assert(cond, "invalid size"); \
4204 f(0b00000101, 31, 24), f(T, 23, 22), f(0b1001, 21, 18), f(opc, 17, 16); \
4205 f(0b100, 15, 13), pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0); \
4206 }
4207
4208 INSN(sve_revb, 0b00, T == H || T == S || T == D);
4209 INSN(sve_rbit, 0b11, T != Q);
4210 #undef INSN
4211
4212 // SVE Create index starting from general-purpose register and incremented by immediate
4213 void sve_index(FloatRegister Zd, SIMD_RegVariant T, Register Rn, int imm) {
4214 starti;
4215 assert(T != Q, "invalid size");
4216 f(0b00000100, 31, 24), f(T, 23, 22), f(0b1, 21);
4217 sf(imm, 20, 16), f(0b010001, 15, 10);
4218 rf(Rn, 5), rf(Zd, 0);
4219 }
4220
4221 // SVE create index starting from and incremented by immediate
4222 void sve_index(FloatRegister Zd, SIMD_RegVariant T, int imm1, int imm2) {
4223 starti;
4224 assert(T != Q, "invalid size");
4225 f(0b00000100, 31, 24), f(T, 23, 22), f(0b1, 21);
4226 sf(imm2, 20, 16), f(0b010000, 15, 10);
4227 sf(imm1, 9, 5), rf(Zd, 0);
4228 }
4229
4230 // SVE programmable table lookup/permute using vector of element indices
4231 void sve_tbl(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, FloatRegister Zm) {
4232 starti;
4233 assert(T != Q, "invalid size");
4234 f(0b00000101, 31, 24), f(T, 23, 22), f(0b1, 21), rf(Zm, 16);
4235 f(0b001100, 15, 10), rf(Zn, 5), rf(Zd, 0);
4236 }
4237
4238 // Shuffle active elements of vector to the right and fill with zero
4239 void sve_compact(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, PRegister Pg) {
4240 starti;
4241 assert(T == S || T == D, "invalid size");
4242 f(0b00000101, 31, 24), f(T, 23, 22), f(0b100001100, 21, 13);
4243 pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0);
4244 }
4245
4246 // SVE2 Count matching elements in vector
4247 void sve_histcnt(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg,
4248 FloatRegister Zn, FloatRegister Zm) {
4249 starti;
4250 assert(T == S || T == D, "invalid size");
4251 f(0b01000101, 31, 24), f(T, 23, 22), f(0b1, 21), rf(Zm, 16);
4252 f(0b110, 15, 13), pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0);
4253 }
4254
4255 // SVE2 bitwise permute
4256 #define INSN(NAME, opc) \
4257 void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, FloatRegister Zm) { \
4258 starti; \
4259 assert(T != Q, "invalid size"); \
4260 f(0b01000101, 31, 24), f(T, 23, 22), f(0b0, 21); \
4261 rf(Zm, 16), f(0b1011, 15, 12), f(opc, 11, 10); \
4262 rf(Zn, 5), rf(Zd, 0); \
4263 }
4264
4265 INSN(sve_bext, 0b00);
4266 INSN(sve_bdep, 0b01);
4267 #undef INSN
4268
4269 // SVE2 bitwise ternary operations
4270 #define INSN(NAME, opc) \
4271 void NAME(FloatRegister Zdn, FloatRegister Zm, FloatRegister Zk) { \
4272 starti; \
4273 f(0b00000100, 31, 24), f(opc, 23, 21), rf(Zm, 16); \
4274 f(0b001110, 15, 10), rf(Zk, 5), rf(Zdn, 0); \
4275 }
4276
4277 INSN(sve_eor3, 0b001); // Bitwise exclusive OR of three vectors
4278 #undef INSN
4279
4280 // SVE2 saturating operations - predicate
4281 #define INSN(NAME, op1, op2) \
4282 void NAME(FloatRegister Zdn, SIMD_RegVariant T, PRegister Pg, FloatRegister Znm) { \
4283 assert(T != Q, "invalid register variant"); \
4284 sve_predicate_reg_insn(op1, op2, Zdn, T, Pg, Znm); \
4285 }
4286
4287 INSN(sve_sqadd, 0b01000100, 0b011000100); // signed saturating add
4288 INSN(sve_sqsub, 0b01000100, 0b011010100); // signed saturating sub
4289 INSN(sve_uqadd, 0b01000100, 0b011001100); // unsigned saturating add
4290 INSN(sve_uqsub, 0b01000100, 0b011011100); // unsigned saturating sub
4291
4292 #undef INSN
4293
4294 Assembler(CodeBuffer* code) : AbstractAssembler(code) {
4295 }
4296
4297 // Stack overflow checking
4298 virtual void bang_stack_with_offset(int offset);
4299
4300 static bool operand_valid_for_logical_immediate(bool is32, uint64_t imm);
4301 static bool operand_valid_for_sve_logical_immediate(unsigned elembits, uint64_t imm);
4302 static bool operand_valid_for_add_sub_immediate(int64_t imm);
4303 static bool operand_valid_for_sve_add_sub_immediate(int64_t imm);
4304 static bool operand_valid_for_float_immediate(double imm);
4305 static int operand_valid_for_movi_immediate(uint64_t imm64, SIMD_Arrangement T);
4306
4307 void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
4308 void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
4309 };
4310
4311 inline Assembler::Membar_mask_bits operator|(Assembler::Membar_mask_bits a,
4312 Assembler::Membar_mask_bits b) {
4313 return Assembler::Membar_mask_bits(unsigned(a)|unsigned(b));
4314 }
4315
4316 Instruction_aarch64::~Instruction_aarch64() {
4317 assem->emit_int32(insn);
4318 assert_cond(get_bits() == 0xffffffff);
4319 }
4320
4321 #undef f
4322 #undef sf
4323 #undef rf
4324 #undef srf
4325 #undef zrf
4326 #undef prf
4327 #undef pgrf
4328 #undef fixed
4329
4330 #undef starti
4331
4332 // Invert a condition
4333 inline Assembler::Condition operator~(const Assembler::Condition cond) {
4334 return Assembler::Condition(int(cond) ^ 1);
4335 }
4336
4337 extern "C" void das(uint64_t start, int len);
4338
4339 #endif // CPU_AARCH64_ASSEMBLER_AARCH64_HPP