< prev index next >

src/hotspot/share/gc/shenandoah/heuristics/shenandoahAdaptiveHeuristics.cpp

Print this page

 74                                                                          size_t actual_free) {
 75   size_t garbage_threshold = ShenandoahHeapRegion::region_size_bytes() * ShenandoahGarbageThreshold / 100;
 76 
 77   // The logic for cset selection in adaptive is as follows:
 78   //
 79   //   1. We cannot get cset larger than available free space. Otherwise we guarantee OOME
 80   //      during evacuation, and thus guarantee full GC. In practice, we also want to let
 81   //      application to allocate something. This is why we limit CSet to some fraction of
 82   //      available space. In non-overloaded heap, max_cset would contain all plausible candidates
 83   //      over garbage threshold.
 84   //
 85   //   2. We should not get cset too low so that free threshold would not be met right
 86   //      after the cycle. Otherwise we get back-to-back cycles for no reason if heap is
 87   //      too fragmented. In non-overloaded non-fragmented heap min_garbage would be around zero.
 88   //
 89   // Therefore, we start by sorting the regions by garbage. Then we unconditionally add the best candidates
 90   // before we meet min_garbage. Then we add all candidates that fit with a garbage threshold before
 91   // we hit max_cset. When max_cset is hit, we terminate the cset selection. Note that in this scheme,
 92   // ShenandoahGarbageThreshold is the soft threshold which would be ignored until min_garbage is hit.
 93 
 94   size_t capacity    = _space_info->soft_max_capacity();
 95   size_t max_cset    = (size_t)((1.0 * capacity / 100 * ShenandoahEvacReserve) / ShenandoahEvacWaste);
 96   size_t free_target = (capacity / 100 * ShenandoahMinFreeThreshold) + max_cset;
 97   size_t min_garbage = (free_target > actual_free ? (free_target - actual_free) : 0);
 98 
 99   log_info(gc, ergo)("Adaptive CSet Selection. Target Free: %zu%s, Actual Free: "
100                      "%zu%s, Max Evacuation: %zu%s, Min Garbage: %zu%s",
101                      byte_size_in_proper_unit(free_target), proper_unit_for_byte_size(free_target),
102                      byte_size_in_proper_unit(actual_free), proper_unit_for_byte_size(actual_free),
103                      byte_size_in_proper_unit(max_cset),    proper_unit_for_byte_size(max_cset),
104                      byte_size_in_proper_unit(min_garbage), proper_unit_for_byte_size(min_garbage));
105 
106   // Better select garbage-first regions
107   QuickSort::sort(data, size, compare_by_garbage);
108 
109   size_t cur_cset = 0;
110   size_t cur_garbage = 0;
111 
112   for (size_t idx = 0; idx < size; idx++) {
113     ShenandoahHeapRegion* r = data[idx].get_region();
114 

216 //   2. The typical workload changes.  "Suddenly", our typical workload of N TPS increases to N+delta TPS.  This means
217 //       our average allocation rate needs to be adjusted.  Once again, we need the "spike" accomodation to give us
218 //       enough runway to recalibrate our "average allocation rate".
219 //
220 //    3. Though there is an "average" allocation rate, a given workload's demand for allocation may be very bursty.  We
221 //       allocate a bunch of LABs during the 5 ms that follow completion of a GC, then we perform no more allocations for
222 //       the next 150 ms.  It seems we want the "spike" to represent the maximum divergence from average within the
223 //       period of time between consecutive evaluation of the should_start_gc() service.  Here's the thinking:
224 //
225 //       a) Between now and the next time I ask whether should_start_gc(), we might experience a spike representing
226 //          the anticipated burst of allocations.  If that would put us over budget, then we should start GC immediately.
227 //       b) Between now and the anticipated depletion of allocation pool, there may be two or more bursts of allocations.
228 //          If there are more than one of these bursts, we can "approximate" that these will be separated by spans of
229 //          time with very little or no allocations so the "average" allocation rate should be a suitable approximation
230 //          of how this will behave.
231 //
232 //    For cases 1 and 2, we need to "quickly" recalibrate the average allocation rate whenever we detect a change
233 //    in operation mode.  We want some way to decide that the average rate has changed, while keeping average
234 //    allocation rate computation independent.
235 bool ShenandoahAdaptiveHeuristics::should_start_gc() {
236   size_t capacity = _space_info->soft_max_capacity();
237   size_t available = _space_info->soft_available();
238   size_t allocated = _space_info->bytes_allocated_since_gc_start();
239 
240   log_debug(gc)("should_start_gc? available: %zu, soft_max_capacity: %zu"
241                 ", allocated: %zu", available, capacity, allocated);
242 
243   if (_start_gc_is_pending) {
244     log_trigger("GC start is already pending");
245     return true;
246   }
247 
248   // Track allocation rate even if we decide to start a cycle for other reasons.
249   double rate = _allocation_rate.sample(allocated);
250   _last_trigger = OTHER;
251 
252   size_t min_threshold = min_free_threshold();
253   if (available < min_threshold) {
254     log_trigger("Free (%zu%s) is below minimum threshold (%zu%s)",
255                  byte_size_in_proper_unit(available), proper_unit_for_byte_size(available),
256                  byte_size_in_proper_unit(min_threshold), proper_unit_for_byte_size(min_threshold));

332       break;
333     case OTHER:
334       // nothing to adjust here.
335       break;
336     default:
337       ShouldNotReachHere();
338   }
339 }
340 
341 void ShenandoahAdaptiveHeuristics::adjust_margin_of_error(double amount) {
342   _margin_of_error_sd = saturate(_margin_of_error_sd + amount, MINIMUM_CONFIDENCE, MAXIMUM_CONFIDENCE);
343   log_debug(gc, ergo)("Margin of error now %.2f", _margin_of_error_sd);
344 }
345 
346 void ShenandoahAdaptiveHeuristics::adjust_spike_threshold(double amount) {
347   _spike_threshold_sd = saturate(_spike_threshold_sd - amount, MINIMUM_CONFIDENCE, MAXIMUM_CONFIDENCE);
348   log_debug(gc, ergo)("Spike threshold now: %.2f", _spike_threshold_sd);
349 }
350 
351 size_t ShenandoahAdaptiveHeuristics::min_free_threshold() {
352   // Note that soft_max_capacity() / 100 * min_free_threshold is smaller than max_capacity() / 100 * min_free_threshold.
353   // We want to behave conservatively here, so use max_capacity().  By returning a larger value, we cause the GC to
354   // trigger when the remaining amount of free shrinks below the larger threshold.
355   return _space_info->max_capacity() / 100 * ShenandoahMinFreeThreshold;
356 }
357 
358 ShenandoahAllocationRate::ShenandoahAllocationRate() :
359   _last_sample_time(os::elapsedTime()),
360   _last_sample_value(0),
361   _interval_sec(1.0 / ShenandoahAdaptiveSampleFrequencyHz),
362   _rate(int(ShenandoahAdaptiveSampleSizeSeconds * ShenandoahAdaptiveSampleFrequencyHz), ShenandoahAdaptiveDecayFactor),
363   _rate_avg(int(ShenandoahAdaptiveSampleSizeSeconds * ShenandoahAdaptiveSampleFrequencyHz), ShenandoahAdaptiveDecayFactor) {
364 }
365 
366 double ShenandoahAllocationRate::sample(size_t allocated) {
367   double now = os::elapsedTime();
368   double rate = 0.0;
369   if (now - _last_sample_time > _interval_sec) {
370     if (allocated >= _last_sample_value) {
371       rate = instantaneous_rate(now, allocated);
372       _rate.add(rate);
373       _rate_avg.add(_rate.avg());
374     }
375 

 74                                                                          size_t actual_free) {
 75   size_t garbage_threshold = ShenandoahHeapRegion::region_size_bytes() * ShenandoahGarbageThreshold / 100;
 76 
 77   // The logic for cset selection in adaptive is as follows:
 78   //
 79   //   1. We cannot get cset larger than available free space. Otherwise we guarantee OOME
 80   //      during evacuation, and thus guarantee full GC. In practice, we also want to let
 81   //      application to allocate something. This is why we limit CSet to some fraction of
 82   //      available space. In non-overloaded heap, max_cset would contain all plausible candidates
 83   //      over garbage threshold.
 84   //
 85   //   2. We should not get cset too low so that free threshold would not be met right
 86   //      after the cycle. Otherwise we get back-to-back cycles for no reason if heap is
 87   //      too fragmented. In non-overloaded non-fragmented heap min_garbage would be around zero.
 88   //
 89   // Therefore, we start by sorting the regions by garbage. Then we unconditionally add the best candidates
 90   // before we meet min_garbage. Then we add all candidates that fit with a garbage threshold before
 91   // we hit max_cset. When max_cset is hit, we terminate the cset selection. Note that in this scheme,
 92   // ShenandoahGarbageThreshold is the soft threshold which would be ignored until min_garbage is hit.
 93 
 94   size_t capacity    = ShenandoahHeap::heap()->soft_max_capacity();
 95   size_t max_cset    = (size_t)((1.0 * capacity / 100 * ShenandoahEvacReserve) / ShenandoahEvacWaste);
 96   size_t free_target = (capacity / 100 * ShenandoahMinFreeThreshold) + max_cset;
 97   size_t min_garbage = (free_target > actual_free ? (free_target - actual_free) : 0);
 98 
 99   log_info(gc, ergo)("Adaptive CSet Selection. Target Free: %zu%s, Actual Free: "
100                      "%zu%s, Max Evacuation: %zu%s, Min Garbage: %zu%s",
101                      byte_size_in_proper_unit(free_target), proper_unit_for_byte_size(free_target),
102                      byte_size_in_proper_unit(actual_free), proper_unit_for_byte_size(actual_free),
103                      byte_size_in_proper_unit(max_cset),    proper_unit_for_byte_size(max_cset),
104                      byte_size_in_proper_unit(min_garbage), proper_unit_for_byte_size(min_garbage));
105 
106   // Better select garbage-first regions
107   QuickSort::sort(data, size, compare_by_garbage);
108 
109   size_t cur_cset = 0;
110   size_t cur_garbage = 0;
111 
112   for (size_t idx = 0; idx < size; idx++) {
113     ShenandoahHeapRegion* r = data[idx].get_region();
114 

216 //   2. The typical workload changes.  "Suddenly", our typical workload of N TPS increases to N+delta TPS.  This means
217 //       our average allocation rate needs to be adjusted.  Once again, we need the "spike" accomodation to give us
218 //       enough runway to recalibrate our "average allocation rate".
219 //
220 //    3. Though there is an "average" allocation rate, a given workload's demand for allocation may be very bursty.  We
221 //       allocate a bunch of LABs during the 5 ms that follow completion of a GC, then we perform no more allocations for
222 //       the next 150 ms.  It seems we want the "spike" to represent the maximum divergence from average within the
223 //       period of time between consecutive evaluation of the should_start_gc() service.  Here's the thinking:
224 //
225 //       a) Between now and the next time I ask whether should_start_gc(), we might experience a spike representing
226 //          the anticipated burst of allocations.  If that would put us over budget, then we should start GC immediately.
227 //       b) Between now and the anticipated depletion of allocation pool, there may be two or more bursts of allocations.
228 //          If there are more than one of these bursts, we can "approximate" that these will be separated by spans of
229 //          time with very little or no allocations so the "average" allocation rate should be a suitable approximation
230 //          of how this will behave.
231 //
232 //    For cases 1 and 2, we need to "quickly" recalibrate the average allocation rate whenever we detect a change
233 //    in operation mode.  We want some way to decide that the average rate has changed, while keeping average
234 //    allocation rate computation independent.
235 bool ShenandoahAdaptiveHeuristics::should_start_gc() {
236   size_t capacity = ShenandoahHeap::heap()->soft_max_capacity();
237   size_t available = _space_info->soft_available();
238   size_t allocated = _space_info->bytes_allocated_since_gc_start();
239 
240   log_debug(gc)("should_start_gc? available: %zu, soft_max_capacity: %zu"
241                 ", allocated: %zu", available, capacity, allocated);
242 
243   if (_start_gc_is_pending) {
244     log_trigger("GC start is already pending");
245     return true;
246   }
247 
248   // Track allocation rate even if we decide to start a cycle for other reasons.
249   double rate = _allocation_rate.sample(allocated);
250   _last_trigger = OTHER;
251 
252   size_t min_threshold = min_free_threshold();
253   if (available < min_threshold) {
254     log_trigger("Free (%zu%s) is below minimum threshold (%zu%s)",
255                  byte_size_in_proper_unit(available), proper_unit_for_byte_size(available),
256                  byte_size_in_proper_unit(min_threshold), proper_unit_for_byte_size(min_threshold));

332       break;
333     case OTHER:
334       // nothing to adjust here.
335       break;
336     default:
337       ShouldNotReachHere();
338   }
339 }
340 
341 void ShenandoahAdaptiveHeuristics::adjust_margin_of_error(double amount) {
342   _margin_of_error_sd = saturate(_margin_of_error_sd + amount, MINIMUM_CONFIDENCE, MAXIMUM_CONFIDENCE);
343   log_debug(gc, ergo)("Margin of error now %.2f", _margin_of_error_sd);
344 }
345 
346 void ShenandoahAdaptiveHeuristics::adjust_spike_threshold(double amount) {
347   _spike_threshold_sd = saturate(_spike_threshold_sd - amount, MINIMUM_CONFIDENCE, MAXIMUM_CONFIDENCE);
348   log_debug(gc, ergo)("Spike threshold now: %.2f", _spike_threshold_sd);
349 }
350 
351 size_t ShenandoahAdaptiveHeuristics::min_free_threshold() {
352   return ShenandoahHeap::heap()->soft_max_capacity() / 100 * ShenandoahMinFreeThreshold;



353 }
354 
355 ShenandoahAllocationRate::ShenandoahAllocationRate() :
356   _last_sample_time(os::elapsedTime()),
357   _last_sample_value(0),
358   _interval_sec(1.0 / ShenandoahAdaptiveSampleFrequencyHz),
359   _rate(int(ShenandoahAdaptiveSampleSizeSeconds * ShenandoahAdaptiveSampleFrequencyHz), ShenandoahAdaptiveDecayFactor),
360   _rate_avg(int(ShenandoahAdaptiveSampleSizeSeconds * ShenandoahAdaptiveSampleFrequencyHz), ShenandoahAdaptiveDecayFactor) {
361 }
362 
363 double ShenandoahAllocationRate::sample(size_t allocated) {
364   double now = os::elapsedTime();
365   double rate = 0.0;
366   if (now - _last_sample_time > _interval_sec) {
367     if (allocated >= _last_sample_value) {
368       rate = instantaneous_rate(now, allocated);
369       _rate.add(rate);
370       _rate_avg.add(_rate.avg());
371     }
372 
< prev index next >