1 /*
  2  * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
  3  * Copyright (c) 2025, Oracle and/or its affiliates. All rights reserved.
  4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  5  *
  6  * This code is free software; you can redistribute it and/or modify it
  7  * under the terms of the GNU General Public License version 2 only, as
  8  * published by the Free Software Foundation.
  9  *
 10  * This code is distributed in the hope that it will be useful, but WITHOUT
 11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 13  * version 2 for more details (a copy is included in the LICENSE file that
 14  * accompanied this code).
 15  *
 16  * You should have received a copy of the GNU General Public License version
 17  * 2 along with this work; if not, write to the Free Software Foundation,
 18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 19  *
 20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 21  * or visit www.oracle.com if you need additional information or have any
 22  * questions.
 23  *
 24  */
 25 
 26 #include "gc/shenandoah/heuristics/shenandoahOldHeuristics.hpp"
 27 #include "gc/shenandoah/heuristics/shenandoahYoungHeuristics.hpp"
 28 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
 29 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp"
 30 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
 31 #include "gc/shenandoah/shenandoahOldGeneration.hpp"
 32 #include "gc/shenandoah/shenandoahYoungGeneration.hpp"
 33 #include "utilities/quickSort.hpp"
 34 
 35 ShenandoahYoungHeuristics::ShenandoahYoungHeuristics(ShenandoahYoungGeneration* generation)
 36         : ShenandoahGenerationalHeuristics(generation) {
 37 }
 38 
 39 
 40 void ShenandoahYoungHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
 41                                                                       RegionData* data, size_t size,
 42                                                                       size_t actual_free) {
 43   // See comments in ShenandoahAdaptiveHeuristics::choose_collection_set_from_regiondata():
 44   // we do the same here, but with the following adjustments for generational mode:
 45   //
 46   // In generational mode, the sort order within the data array is not strictly descending amounts
 47   // of garbage. In particular, regions that have reached tenure age will be sorted into this
 48   // array before younger regions that typically contain more garbage. This is one reason why,
 49   // for example, we continue examining regions even after rejecting a region that has
 50   // more live data than we can evacuate.
 51 
 52   // Better select garbage-first regions
 53   QuickSort::sort<RegionData>(data, (int) size, compare_by_garbage);
 54 
 55   size_t cur_young_garbage = add_preselected_regions_to_collection_set(cset, data, size);
 56 
 57   choose_young_collection_set(cset, data, size, actual_free, cur_young_garbage);
 58 
 59   log_cset_composition(cset);
 60 }
 61 
 62 void ShenandoahYoungHeuristics::choose_young_collection_set(ShenandoahCollectionSet* cset,
 63                                                             const RegionData* data,
 64                                                             size_t size, size_t actual_free,
 65                                                             size_t cur_young_garbage) const {
 66 
 67   auto heap = ShenandoahGenerationalHeap::heap();
 68 
 69   size_t capacity = heap->soft_max_capacity();
 70   size_t garbage_threshold = ShenandoahHeapRegion::region_size_bytes() * ShenandoahGarbageThreshold / 100;
 71   size_t ignore_threshold = ShenandoahHeapRegion::region_size_bytes() * ShenandoahIgnoreGarbageThreshold / 100;
 72   const uint tenuring_threshold = heap->age_census()->tenuring_threshold();
 73 
 74   // This is young-gen collection or a mixed evacuation.
 75   // If this is mixed evacuation, the old-gen candidate regions have already been added.
 76   size_t max_cset = (size_t) (heap->young_generation()->get_evacuation_reserve() / ShenandoahEvacWaste);
 77   size_t cur_cset = 0;
 78   size_t free_target = (capacity * ShenandoahMinFreeThreshold) / 100 + max_cset;
 79   size_t min_garbage = (free_target > actual_free) ? (free_target - actual_free) : 0;
 80 
 81 
 82   log_info(gc, ergo)(
 83           "Adaptive CSet Selection for YOUNG. Max Evacuation: %zu%s, Actual Free: %zu%s.",
 84           byte_size_in_proper_unit(max_cset), proper_unit_for_byte_size(max_cset),
 85           byte_size_in_proper_unit(actual_free), proper_unit_for_byte_size(actual_free));
 86 
 87   for (size_t idx = 0; idx < size; idx++) {
 88     ShenandoahHeapRegion* r = data[idx].get_region();
 89     if (cset->is_preselected(r->index())) {
 90       continue;
 91     }
 92     if (r->age() < tenuring_threshold) {
 93       size_t new_cset = cur_cset + r->get_live_data_bytes();
 94       size_t region_garbage = r->garbage();
 95       size_t new_garbage = cur_young_garbage + region_garbage;
 96       bool add_regardless = (region_garbage > ignore_threshold) && (new_garbage < min_garbage);
 97       assert(r->is_young(), "Only young candidates expected in the data array");
 98       if ((new_cset <= max_cset) && (add_regardless || (region_garbage > garbage_threshold))) {
 99         cur_cset = new_cset;
100         cur_young_garbage = new_garbage;
101         cset->add_region(r);
102       }
103     }
104     // Note that we do not add aged regions if they were not pre-selected.  The reason they were not preselected
105     // is because there is not sufficient room in old-gen to hold their to-be-promoted live objects or because
106     // they are to be promoted in place.
107   }
108 }
109 
110 
111 bool ShenandoahYoungHeuristics::should_start_gc() {
112   auto heap = ShenandoahGenerationalHeap::heap();
113   ShenandoahOldGeneration* old_generation = heap->old_generation();
114   ShenandoahOldHeuristics* old_heuristics = old_generation->heuristics();
115 
116   // Checks that an old cycle has run for at least ShenandoahMinimumOldTimeMs before allowing a young cycle.
117   if (ShenandoahMinimumOldTimeMs > 0) {
118     if (old_generation->is_preparing_for_mark() || old_generation->is_concurrent_mark_in_progress()) {
119       size_t old_time_elapsed = size_t(old_heuristics->elapsed_cycle_time() * 1000);
120       if (old_time_elapsed < ShenandoahMinimumOldTimeMs) {
121         // Do not decline_trigger() when waiting for minimum quantum of Old-gen marking.  It is not at our discretion
122         // to trigger at this time.
123         log_debug(gc)("Young heuristics declines to trigger because old_time_elapsed < ShenandoahMinimumOldTimeMs");
124         return false;
125       }
126     }
127   }
128 
129   // inherited triggers have already decided to start a cycle, so no further evaluation is required
130   if (ShenandoahAdaptiveHeuristics::should_start_gc()) {
131     return true;
132   }
133 
134   // Get through promotions and mixed evacuations as quickly as possible.  These cycles sometimes require significantly
135   // more time than traditional young-generation cycles so start them up as soon as possible.  This is a "mitigation"
136   // for the reality that old-gen and young-gen activities are not truly "concurrent".  If there is old-gen work to
137   // be done, we start up the young-gen GC threads so they can do some of this old-gen work.  As implemented, promotion
138   // gets priority over old-gen marking.
139   size_t promo_expedite_threshold = percent_of(heap->young_generation()->max_capacity(), ShenandoahExpeditePromotionsThreshold);
140   size_t promo_potential = old_generation->get_promotion_potential();
141   if (promo_potential > promo_expedite_threshold) {
142     // Detect unsigned arithmetic underflow
143     assert(promo_potential < heap->capacity(), "Sanity");
144     log_trigger("Expedite promotion of " PROPERFMT, PROPERFMTARGS(promo_potential));
145     accept_trigger();
146     return true;
147   }
148 
149   size_t mixed_candidates = old_heuristics->unprocessed_old_collection_candidates();
150   if (mixed_candidates > ShenandoahExpediteMixedThreshold && !heap->is_concurrent_weak_root_in_progress()) {
151     // We need to run young GC in order to open up some free heap regions so we can finish mixed evacuations.
152     // If concurrent weak root processing is in progress, it means the old cycle has chosen mixed collection
153     // candidates, but has not completed. There is no point in trying to start the young cycle before the old
154     // cycle completes.
155     log_trigger("Expedite mixed evacuation of %zu regions", mixed_candidates);
156     accept_trigger();
157     return true;
158   }
159 
160   // Don't decline_trigger() here  That was done in ShenandoahAdaptiveHeuristics::should_start_gc()
161   return false;
162 }
163 
164 // Return a conservative estimate of how much memory can be allocated before we need to start GC. The estimate is based
165 // on memory that is currently available within young generation plus all of the memory that will be added to the young
166 // generation at the end of the current cycle (as represented by young_regions_to_be_reclaimed) and on the anticipated
167 // amount of time required to perform a GC.
168 size_t ShenandoahYoungHeuristics::bytes_of_allocation_runway_before_gc_trigger(size_t young_regions_to_be_reclaimed) {
169   size_t capacity = _space_info->max_capacity();
170   size_t usage = _space_info->used();
171   size_t available = (capacity > usage)? capacity - usage: 0;
172   size_t allocated = _space_info->bytes_allocated_since_gc_start();
173 
174   size_t available_young_collected = ShenandoahHeap::heap()->collection_set()->get_young_available_bytes_collected();
175   size_t anticipated_available =
176           available + young_regions_to_be_reclaimed * ShenandoahHeapRegion::region_size_bytes() - available_young_collected;
177   size_t spike_headroom = capacity * ShenandoahAllocSpikeFactor / 100;
178   size_t penalties      = capacity * _gc_time_penalties / 100;
179 
180   double rate = _allocation_rate.sample(allocated);
181 
182   // At what value of available, would avg and spike triggers occur?
183   //  if allocation_headroom < avg_cycle_time * avg_alloc_rate, then we experience avg trigger
184   //  if allocation_headroom < avg_cycle_time * rate, then we experience spike trigger if is_spiking
185   //
186   // allocation_headroom =
187   //     0, if penalties > available or if penalties + spike_headroom > available
188   //     available - penalties - spike_headroom, otherwise
189   //
190   // so we trigger if available - penalties - spike_headroom < avg_cycle_time * avg_alloc_rate, which is to say
191   //                  available < avg_cycle_time * avg_alloc_rate + penalties + spike_headroom
192   //            or if available < penalties + spike_headroom
193   //
194   // since avg_cycle_time * avg_alloc_rate > 0, the first test is sufficient to test both conditions
195   //
196   // thus, evac_slack_avg is MIN2(0,  available - avg_cycle_time * avg_alloc_rate + penalties + spike_headroom)
197   //
198   // similarly, evac_slack_spiking is MIN2(0, available - avg_cycle_time * rate + penalties + spike_headroom)
199   // but evac_slack_spiking is only relevant if is_spiking, as defined below.
200 
201   double avg_cycle_time = _gc_cycle_time_history->davg() + (_margin_of_error_sd * _gc_cycle_time_history->dsd());
202   double avg_alloc_rate = _allocation_rate.upper_bound(_margin_of_error_sd);
203   size_t evac_slack_avg;
204   if (anticipated_available > avg_cycle_time * avg_alloc_rate + penalties + spike_headroom) {
205     evac_slack_avg = anticipated_available - (avg_cycle_time * avg_alloc_rate + penalties + spike_headroom);
206   } else {
207     // we have no slack because it's already time to trigger
208     evac_slack_avg = 0;
209   }
210 
211   bool is_spiking = _allocation_rate.is_spiking(rate, _spike_threshold_sd);
212   size_t evac_slack_spiking;
213   if (is_spiking) {
214     if (anticipated_available > avg_cycle_time * rate + penalties + spike_headroom) {
215       evac_slack_spiking = anticipated_available - (avg_cycle_time * rate + penalties + spike_headroom);
216     } else {
217       // we have no slack because it's already time to trigger
218       evac_slack_spiking = 0;
219     }
220   } else {
221     evac_slack_spiking = evac_slack_avg;
222   }
223 
224   size_t threshold = min_free_threshold();
225   size_t evac_min_threshold = (anticipated_available > threshold)? anticipated_available - threshold: 0;
226   return MIN3(evac_slack_spiking, evac_slack_avg, evac_min_threshold);
227 }