1 /* 2 * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. 3 * Copyright (c) 2025, Oracle and/or its affiliates. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "gc/shenandoah/shenandoahAgeCensus.hpp" 27 #include "gc/shenandoah/shenandoahClosures.inline.hpp" 28 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp" 29 #include "gc/shenandoah/shenandoahFreeSet.hpp" 30 #include "gc/shenandoah/shenandoahGenerationalControlThread.hpp" 31 #include "gc/shenandoah/shenandoahGenerationalEvacuationTask.hpp" 32 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp" 33 #include "gc/shenandoah/shenandoahHeap.inline.hpp" 34 #include "gc/shenandoah/shenandoahHeapRegion.hpp" 35 #include "gc/shenandoah/shenandoahHeapRegionClosures.hpp" 36 #include "gc/shenandoah/shenandoahInitLogger.hpp" 37 #include "gc/shenandoah/shenandoahMemoryPool.hpp" 38 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp" 39 #include "gc/shenandoah/shenandoahOldGeneration.hpp" 40 #include "gc/shenandoah/shenandoahPhaseTimings.hpp" 41 #include "gc/shenandoah/shenandoahRegulatorThread.hpp" 42 #include "gc/shenandoah/shenandoahScanRemembered.inline.hpp" 43 #include "gc/shenandoah/shenandoahUtils.hpp" 44 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp" 45 #include "gc/shenandoah/shenandoahYoungGeneration.hpp" 46 #include "logging/log.hpp" 47 #include "utilities/events.hpp" 48 49 50 class ShenandoahGenerationalInitLogger : public ShenandoahInitLogger { 51 public: 52 static void print() { 53 ShenandoahGenerationalInitLogger logger; 54 logger.print_all(); 55 } 56 57 void print_heap() override { 58 ShenandoahInitLogger::print_heap(); 59 60 ShenandoahGenerationalHeap* heap = ShenandoahGenerationalHeap::heap(); 61 62 ShenandoahYoungGeneration* young = heap->young_generation(); 63 log_info(gc, init)("Young Generation Soft Size: " EXACTFMT, EXACTFMTARGS(young->soft_max_capacity())); 64 log_info(gc, init)("Young Generation Max: " EXACTFMT, EXACTFMTARGS(young->max_capacity())); 65 66 ShenandoahOldGeneration* old = heap->old_generation(); 67 log_info(gc, init)("Old Generation Soft Size: " EXACTFMT, EXACTFMTARGS(old->soft_max_capacity())); 68 log_info(gc, init)("Old Generation Max: " EXACTFMT, EXACTFMTARGS(old->max_capacity())); 69 } 70 71 protected: 72 void print_gc_specific() override { 73 ShenandoahInitLogger::print_gc_specific(); 74 75 ShenandoahGenerationalHeap* heap = ShenandoahGenerationalHeap::heap(); 76 log_info(gc, init)("Young Heuristics: %s", heap->young_generation()->heuristics()->name()); 77 log_info(gc, init)("Old Heuristics: %s", heap->old_generation()->heuristics()->name()); 78 } 79 }; 80 81 size_t ShenandoahGenerationalHeap::calculate_min_plab() { 82 return align_up(PLAB::min_size(), CardTable::card_size_in_words()); 83 } 84 85 size_t ShenandoahGenerationalHeap::calculate_max_plab() { 86 size_t MaxTLABSizeWords = ShenandoahHeapRegion::max_tlab_size_words(); 87 return align_down(MaxTLABSizeWords, CardTable::card_size_in_words()); 88 } 89 90 // Returns size in bytes 91 size_t ShenandoahGenerationalHeap::unsafe_max_tlab_alloc(Thread *thread) const { 92 return MIN2(ShenandoahHeapRegion::max_tlab_size_bytes(), young_generation()->available()); 93 } 94 95 ShenandoahGenerationalHeap::ShenandoahGenerationalHeap(ShenandoahCollectorPolicy* policy) : 96 ShenandoahHeap(policy), 97 _age_census(nullptr), 98 _evac_tracker(new ShenandoahEvacuationTracker()), 99 _min_plab_size(calculate_min_plab()), 100 _max_plab_size(calculate_max_plab()), 101 _regulator_thread(nullptr), 102 _young_gen_memory_pool(nullptr), 103 _old_gen_memory_pool(nullptr) { 104 assert(is_aligned(_min_plab_size, CardTable::card_size_in_words()), "min_plab_size must be aligned"); 105 assert(is_aligned(_max_plab_size, CardTable::card_size_in_words()), "max_plab_size must be aligned"); 106 } 107 108 void ShenandoahGenerationalHeap::post_initialize() { 109 ShenandoahHeap::post_initialize(); 110 _age_census = new ShenandoahAgeCensus(); 111 } 112 113 void ShenandoahGenerationalHeap::print_init_logger() const { 114 ShenandoahGenerationalInitLogger logger; 115 logger.print_all(); 116 } 117 118 void ShenandoahGenerationalHeap::print_tracing_info() const { 119 ShenandoahHeap::print_tracing_info(); 120 121 LogTarget(Info, gc, stats) lt; 122 if (lt.is_enabled()) { 123 LogStream ls(lt); 124 ls.cr(); 125 ls.cr(); 126 evac_tracker()->print_global_on(&ls); 127 } 128 } 129 130 void ShenandoahGenerationalHeap::initialize_heuristics() { 131 // Initialize global generation and heuristics even in generational mode. 132 ShenandoahHeap::initialize_heuristics(); 133 134 // Max capacity is the maximum _allowed_ capacity. That is, the maximum allowed capacity 135 // for old would be total heap - minimum capacity of young. This means the sum of the maximum 136 // allowed for old and young could exceed the total heap size. It remains the case that the 137 // _actual_ capacity of young + old = total. 138 _generation_sizer.heap_size_changed(max_capacity()); 139 size_t initial_capacity_young = _generation_sizer.max_young_size(); 140 size_t max_capacity_young = _generation_sizer.max_young_size(); 141 size_t initial_capacity_old = max_capacity() - max_capacity_young; 142 size_t max_capacity_old = max_capacity() - initial_capacity_young; 143 144 _young_generation = new ShenandoahYoungGeneration(max_workers(), max_capacity_young, initial_capacity_young); 145 _old_generation = new ShenandoahOldGeneration(max_workers(), max_capacity_old, initial_capacity_old); 146 _young_generation->initialize_heuristics(mode()); 147 _old_generation->initialize_heuristics(mode()); 148 } 149 150 void ShenandoahGenerationalHeap::initialize_serviceability() { 151 assert(mode()->is_generational(), "Only for the generational mode"); 152 _young_gen_memory_pool = new ShenandoahYoungGenMemoryPool(this); 153 _old_gen_memory_pool = new ShenandoahOldGenMemoryPool(this); 154 cycle_memory_manager()->add_pool(_young_gen_memory_pool); 155 cycle_memory_manager()->add_pool(_old_gen_memory_pool); 156 stw_memory_manager()->add_pool(_young_gen_memory_pool); 157 stw_memory_manager()->add_pool(_old_gen_memory_pool); 158 } 159 160 GrowableArray<MemoryPool*> ShenandoahGenerationalHeap::memory_pools() { 161 assert(mode()->is_generational(), "Only for the generational mode"); 162 GrowableArray<MemoryPool*> memory_pools(2); 163 memory_pools.append(_young_gen_memory_pool); 164 memory_pools.append(_old_gen_memory_pool); 165 return memory_pools; 166 } 167 168 void ShenandoahGenerationalHeap::initialize_controller() { 169 auto control_thread = new ShenandoahGenerationalControlThread(); 170 _control_thread = control_thread; 171 _regulator_thread = new ShenandoahRegulatorThread(control_thread); 172 } 173 174 void ShenandoahGenerationalHeap::gc_threads_do(ThreadClosure* tcl) const { 175 if (!shenandoah_policy()->is_at_shutdown()) { 176 ShenandoahHeap::gc_threads_do(tcl); 177 tcl->do_thread(regulator_thread()); 178 } 179 } 180 181 void ShenandoahGenerationalHeap::stop() { 182 ShenandoahHeap::stop(); 183 regulator_thread()->stop(); 184 } 185 186 bool ShenandoahGenerationalHeap::requires_barriers(stackChunkOop obj) const { 187 if (is_idle()) { 188 return false; 189 } 190 191 if (is_concurrent_young_mark_in_progress() && is_in_young(obj) && !marking_context()->allocated_after_mark_start(obj)) { 192 // We are marking young, this object is in young, and it is below the TAMS 193 return true; 194 } 195 196 if (is_in_old(obj)) { 197 // Card marking barriers are required for objects in the old generation 198 return true; 199 } 200 201 if (has_forwarded_objects()) { 202 // Object may have pointers that need to be updated 203 return true; 204 } 205 206 return false; 207 } 208 209 void ShenandoahGenerationalHeap::evacuate_collection_set(bool concurrent) { 210 ShenandoahRegionIterator regions; 211 ShenandoahGenerationalEvacuationTask task(this, ®ions, concurrent, false /* only promote regions */); 212 workers()->run_task(&task); 213 } 214 215 void ShenandoahGenerationalHeap::promote_regions_in_place(bool concurrent) { 216 ShenandoahRegionIterator regions; 217 ShenandoahGenerationalEvacuationTask task(this, ®ions, concurrent, true /* only promote regions */); 218 workers()->run_task(&task); 219 } 220 221 oop ShenandoahGenerationalHeap::evacuate_object(oop p, Thread* thread) { 222 assert(thread == Thread::current(), "Expected thread parameter to be current thread."); 223 if (ShenandoahThreadLocalData::is_oom_during_evac(thread)) { 224 // This thread went through the OOM during evac protocol and it is safe to return 225 // the forward pointer. It must not attempt to evacuate anymore. 226 return ShenandoahBarrierSet::resolve_forwarded(p); 227 } 228 229 assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope"); 230 231 ShenandoahHeapRegion* r = heap_region_containing(p); 232 assert(!r->is_humongous(), "never evacuate humongous objects"); 233 234 ShenandoahAffiliation target_gen = r->affiliation(); 235 // gc_generation() can change asynchronously and should not be used here. 236 assert(active_generation() != nullptr, "Error"); 237 if (active_generation()->is_young() && target_gen == YOUNG_GENERATION) { 238 markWord mark = p->mark(); 239 if (mark.is_marked()) { 240 // Already forwarded. 241 return ShenandoahBarrierSet::resolve_forwarded(p); 242 } 243 244 if (mark.has_displaced_mark_helper()) { 245 // We don't want to deal with MT here just to ensure we read the right mark word. 246 // Skip the potential promotion attempt for this one. 247 } else if (r->age() + mark.age() >= age_census()->tenuring_threshold()) { 248 oop result = try_evacuate_object(p, thread, r, OLD_GENERATION); 249 if (result != nullptr) { 250 return result; 251 } 252 // If we failed to promote this aged object, we'll fall through to code below and evacuate to young-gen. 253 } 254 } 255 return try_evacuate_object(p, thread, r, target_gen); 256 } 257 258 // try_evacuate_object registers the object and dirties the associated remembered set information when evacuating 259 // to OLD_GENERATION. 260 oop ShenandoahGenerationalHeap::try_evacuate_object(oop p, Thread* thread, ShenandoahHeapRegion* from_region, 261 ShenandoahAffiliation target_gen) { 262 bool alloc_from_lab = true; 263 bool has_plab = false; 264 HeapWord* copy = nullptr; 265 size_t size = ShenandoahForwarding::size(p); 266 bool is_promotion = (target_gen == OLD_GENERATION) && from_region->is_young(); 267 268 #ifdef ASSERT 269 if (ShenandoahOOMDuringEvacALot && 270 (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call 271 copy = nullptr; 272 } else { 273 #endif 274 if (UseTLAB) { 275 switch (target_gen) { 276 case YOUNG_GENERATION: { 277 copy = allocate_from_gclab(thread, size); 278 if ((copy == nullptr) && (size < ShenandoahThreadLocalData::gclab_size(thread))) { 279 // GCLAB allocation failed because we are bumping up against the limit on young evacuation reserve. Try resetting 280 // the desired GCLAB size and retry GCLAB allocation to avoid cascading of shared memory allocations. 281 ShenandoahThreadLocalData::set_gclab_size(thread, PLAB::min_size()); 282 copy = allocate_from_gclab(thread, size); 283 // If we still get nullptr, we'll try a shared allocation below. 284 } 285 break; 286 } 287 case OLD_GENERATION: { 288 PLAB* plab = ShenandoahThreadLocalData::plab(thread); 289 if (plab != nullptr) { 290 has_plab = true; 291 copy = allocate_from_plab(thread, size, is_promotion); 292 if ((copy == nullptr) && (size < ShenandoahThreadLocalData::plab_size(thread)) && 293 ShenandoahThreadLocalData::plab_retries_enabled(thread)) { 294 // PLAB allocation failed because we are bumping up against the limit on old evacuation reserve or because 295 // the requested object does not fit within the current plab but the plab still has an "abundance" of memory, 296 // where abundance is defined as >= ShenGenHeap::plab_min_size(). In the former case, we try shrinking the 297 // desired PLAB size to the minimum and retry PLAB allocation to avoid cascading of shared memory allocations. 298 if (plab->words_remaining() < plab_min_size()) { 299 ShenandoahThreadLocalData::set_plab_size(thread, plab_min_size()); 300 copy = allocate_from_plab(thread, size, is_promotion); 301 // If we still get nullptr, we'll try a shared allocation below. 302 if (copy == nullptr) { 303 // If retry fails, don't continue to retry until we have success (probably in next GC pass) 304 ShenandoahThreadLocalData::disable_plab_retries(thread); 305 } 306 } 307 // else, copy still equals nullptr. this causes shared allocation below, preserving this plab for future needs. 308 } 309 } 310 break; 311 } 312 default: { 313 ShouldNotReachHere(); 314 break; 315 } 316 } 317 } 318 319 if (copy == nullptr) { 320 // If we failed to allocate in LAB, we'll try a shared allocation. 321 if (!is_promotion || !has_plab || (size > PLAB::min_size())) { 322 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size, target_gen, is_promotion); 323 copy = allocate_memory(req); 324 alloc_from_lab = false; 325 } 326 // else, we leave copy equal to nullptr, signaling a promotion failure below if appropriate. 327 // We choose not to promote objects smaller than PLAB::min_size() by way of shared allocations, as this is too 328 // costly. Instead, we'll simply "evacuate" to young-gen memory (using a GCLAB) and will promote in a future 329 // evacuation pass. This condition is denoted by: is_promotion && has_plab && (size <= PLAB::min_size()) 330 } 331 #ifdef ASSERT 332 } 333 #endif 334 335 if (copy == nullptr) { 336 if (target_gen == OLD_GENERATION) { 337 if (from_region->is_young()) { 338 // Signal that promotion failed. Will evacuate this old object somewhere in young gen. 339 old_generation()->handle_failed_promotion(thread, size); 340 return nullptr; 341 } else { 342 // Remember that evacuation to old gen failed. We'll want to trigger a full gc to recover from this 343 // after the evacuation threads have finished. 344 old_generation()->handle_failed_evacuation(); 345 } 346 } 347 348 control_thread()->handle_alloc_failure_evac(size); 349 350 oom_evac_handler()->handle_out_of_memory_during_evacuation(); 351 352 return ShenandoahBarrierSet::resolve_forwarded(p); 353 } 354 355 // Copy the object: 356 NOT_PRODUCT(evac_tracker()->begin_evacuation(thread, size * HeapWordSize)); 357 Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(p), copy, size); 358 oop copy_val = cast_to_oop(copy); 359 360 // Update the age of the evacuated object 361 if (target_gen == YOUNG_GENERATION && is_aging_cycle()) { 362 ShenandoahHeap::increase_object_age(copy_val, from_region->age() + 1); 363 } 364 365 // Try to install the new forwarding pointer. 366 oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val); 367 if (result == copy_val) { 368 // Successfully evacuated. Our copy is now the public one! 369 370 // This is necessary for virtual thread support. This uses the mark word without 371 // considering that it may now be a forwarding pointer (and could therefore crash). 372 // Secondarily, we do not want to spend cycles relativizing stack chunks for oops 373 // that lost the evacuation race (and will therefore not become visible). It is 374 // safe to do this on the public copy (this is also done during concurrent mark). 375 ContinuationGCSupport::relativize_stack_chunk(copy_val); 376 377 // Record that the evacuation succeeded 378 NOT_PRODUCT(evac_tracker()->end_evacuation(thread, size * HeapWordSize)); 379 380 if (target_gen == OLD_GENERATION) { 381 old_generation()->handle_evacuation(copy, size, from_region->is_young()); 382 } else { 383 // When copying to the old generation above, we don't care 384 // about recording object age in the census stats. 385 assert(target_gen == YOUNG_GENERATION, "Error"); 386 // We record this census only when simulating pre-adaptive tenuring behavior, or 387 // when we have been asked to record the census at evacuation rather than at mark 388 if (ShenandoahGenerationalCensusAtEvac || !ShenandoahGenerationalAdaptiveTenuring) { 389 evac_tracker()->record_age(thread, size * HeapWordSize, ShenandoahHeap::get_object_age(copy_val)); 390 } 391 } 392 shenandoah_assert_correct(nullptr, copy_val); 393 return copy_val; 394 } else { 395 // Failed to evacuate. We need to deal with the object that is left behind. Since this 396 // new allocation is certainly after TAMS, it will be considered live in the next cycle. 397 // But if it happens to contain references to evacuated regions, those references would 398 // not get updated for this stale copy during this cycle, and we will crash while scanning 399 // it the next cycle. 400 if (alloc_from_lab) { 401 // For LAB allocations, it is enough to rollback the allocation ptr. Either the next 402 // object will overwrite this stale copy, or the filler object on LAB retirement will 403 // do this. 404 switch (target_gen) { 405 case YOUNG_GENERATION: { 406 ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size); 407 break; 408 } 409 case OLD_GENERATION: { 410 ShenandoahThreadLocalData::plab(thread)->undo_allocation(copy, size); 411 if (is_promotion) { 412 ShenandoahThreadLocalData::subtract_from_plab_promoted(thread, size * HeapWordSize); 413 } 414 break; 415 } 416 default: { 417 ShouldNotReachHere(); 418 break; 419 } 420 } 421 } else { 422 // For non-LAB allocations, we have no way to retract the allocation, and 423 // have to explicitly overwrite the copy with the filler object. With that overwrite, 424 // we have to keep the fwdptr initialized and pointing to our (stale) copy. 425 assert(size >= ShenandoahHeap::min_fill_size(), "previously allocated object known to be larger than min_size"); 426 fill_with_object(copy, size); 427 shenandoah_assert_correct(nullptr, copy_val); 428 // For non-LAB allocations, the object has already been registered 429 } 430 shenandoah_assert_correct(nullptr, result); 431 return result; 432 } 433 } 434 435 inline HeapWord* ShenandoahGenerationalHeap::allocate_from_plab(Thread* thread, size_t size, bool is_promotion) { 436 assert(UseTLAB, "TLABs should be enabled"); 437 438 PLAB* plab = ShenandoahThreadLocalData::plab(thread); 439 HeapWord* obj; 440 441 if (plab == nullptr) { 442 assert(!thread->is_Java_thread() && !thread->is_Worker_thread(), "Performance: thread should have PLAB: %s", thread->name()); 443 // No PLABs in this thread, fallback to shared allocation 444 return nullptr; 445 } else if (is_promotion && !ShenandoahThreadLocalData::allow_plab_promotions(thread)) { 446 return nullptr; 447 } 448 // if plab->word_size() <= 0, thread's plab not yet initialized for this pass, so allow_plab_promotions() is not trustworthy 449 obj = plab->allocate(size); 450 if ((obj == nullptr) && (plab->words_remaining() < plab_min_size())) { 451 // allocate_from_plab_slow will establish allow_plab_promotions(thread) for future invocations 452 obj = allocate_from_plab_slow(thread, size, is_promotion); 453 } 454 // if plab->words_remaining() >= ShenGenHeap::heap()->plab_min_size(), just return nullptr so we can use a shared allocation 455 if (obj == nullptr) { 456 return nullptr; 457 } 458 459 if (is_promotion) { 460 ShenandoahThreadLocalData::add_to_plab_promoted(thread, size * HeapWordSize); 461 } 462 return obj; 463 } 464 465 // Establish a new PLAB and allocate size HeapWords within it. 466 HeapWord* ShenandoahGenerationalHeap::allocate_from_plab_slow(Thread* thread, size_t size, bool is_promotion) { 467 // New object should fit the PLAB size 468 469 assert(mode()->is_generational(), "PLABs only relevant to generational GC"); 470 const size_t plab_min_size = this->plab_min_size(); 471 // PLABs are aligned to card boundaries to avoid synchronization with concurrent 472 // allocations in other PLABs. 473 const size_t min_size = (size > plab_min_size)? align_up(size, CardTable::card_size_in_words()): plab_min_size; 474 475 // Figure out size of new PLAB, using value determined at last refill. 476 size_t cur_size = ShenandoahThreadLocalData::plab_size(thread); 477 if (cur_size == 0) { 478 cur_size = plab_min_size; 479 } 480 481 // Expand aggressively, doubling at each refill in this epoch, ceiling at plab_max_size() 482 size_t future_size = MIN2(cur_size * 2, plab_max_size()); 483 // Doubling, starting at a card-multiple, should give us a card-multiple. (Ceiling and floor 484 // are card multiples.) 485 assert(is_aligned(future_size, CardTable::card_size_in_words()), "Card multiple by construction, future_size: %zu" 486 ", card_size: %zu, cur_size: %zu, max: %zu", 487 future_size, (size_t) CardTable::card_size_in_words(), cur_size, plab_max_size()); 488 489 // Record new heuristic value even if we take any shortcut. This captures 490 // the case when moderately-sized objects always take a shortcut. At some point, 491 // heuristics should catch up with them. Note that the requested cur_size may 492 // not be honored, but we remember that this is the preferred size. 493 log_debug(gc, free)("Set new PLAB size: %zu", future_size); 494 ShenandoahThreadLocalData::set_plab_size(thread, future_size); 495 if (cur_size < size) { 496 // The PLAB to be allocated is still not large enough to hold the object. Fall back to shared allocation. 497 // This avoids retiring perfectly good PLABs in order to represent a single large object allocation. 498 log_debug(gc, free)("Current PLAB size (%zu) is too small for %zu", cur_size, size); 499 return nullptr; 500 } 501 502 // Retire current PLAB, and allocate a new one. 503 PLAB* plab = ShenandoahThreadLocalData::plab(thread); 504 if (plab->words_remaining() < plab_min_size) { 505 // Retire current PLAB. This takes care of any PLAB book-keeping. 506 // retire_plab() registers the remnant filler object with the remembered set scanner without a lock. 507 // Since PLABs are card-aligned, concurrent registrations in other PLABs don't interfere. 508 retire_plab(plab, thread); 509 510 size_t actual_size = 0; 511 HeapWord* plab_buf = allocate_new_plab(min_size, cur_size, &actual_size); 512 if (plab_buf == nullptr) { 513 if (min_size == plab_min_size) { 514 // Disable PLAB promotions for this thread because we cannot even allocate a minimal PLAB. This allows us 515 // to fail faster on subsequent promotion attempts. 516 ShenandoahThreadLocalData::disable_plab_promotions(thread); 517 } 518 return nullptr; 519 } else { 520 ShenandoahThreadLocalData::enable_plab_retries(thread); 521 } 522 // Since the allocated PLAB may have been down-sized for alignment, plab->allocate(size) below may still fail. 523 if (ZeroTLAB) { 524 // ... and clear it. 525 Copy::zero_to_words(plab_buf, actual_size); 526 } else { 527 // ...and zap just allocated object. 528 #ifdef ASSERT 529 // Skip mangling the space corresponding to the object header to 530 // ensure that the returned space is not considered parsable by 531 // any concurrent GC thread. 532 size_t hdr_size = oopDesc::header_size(); 533 Copy::fill_to_words(plab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal); 534 #endif // ASSERT 535 } 536 assert(is_aligned(actual_size, CardTable::card_size_in_words()), "Align by design"); 537 plab->set_buf(plab_buf, actual_size); 538 if (is_promotion && !ShenandoahThreadLocalData::allow_plab_promotions(thread)) { 539 return nullptr; 540 } 541 return plab->allocate(size); 542 } else { 543 // If there's still at least min_size() words available within the current plab, don't retire it. Let's nibble 544 // away on this plab as long as we can. Meanwhile, return nullptr to force this particular allocation request 545 // to be satisfied with a shared allocation. By packing more promotions into the previously allocated PLAB, we 546 // reduce the likelihood of evacuation failures, and we reduce the need for downsizing our PLABs. 547 return nullptr; 548 } 549 } 550 551 HeapWord* ShenandoahGenerationalHeap::allocate_new_plab(size_t min_size, size_t word_size, size_t* actual_size) { 552 // Align requested sizes to card-sized multiples. Align down so that we don't violate max size of TLAB. 553 assert(is_aligned(min_size, CardTable::card_size_in_words()), "Align by design"); 554 assert(word_size >= min_size, "Requested PLAB is too small"); 555 556 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_plab(min_size, word_size); 557 // Note that allocate_memory() sets a thread-local flag to prohibit further promotions by this thread 558 // if we are at risk of infringing on the old-gen evacuation budget. 559 HeapWord* res = allocate_memory(req); 560 if (res != nullptr) { 561 *actual_size = req.actual_size(); 562 } else { 563 *actual_size = 0; 564 } 565 assert(is_aligned(res, CardTable::card_size_in_words()), "Align by design"); 566 return res; 567 } 568 569 void ShenandoahGenerationalHeap::retire_plab(PLAB* plab, Thread* thread) { 570 // We don't enforce limits on plab evacuations. We let it consume all available old-gen memory in order to reduce 571 // probability of an evacuation failure. We do enforce limits on promotion, to make sure that excessive promotion 572 // does not result in an old-gen evacuation failure. Note that a failed promotion is relatively harmless. Any 573 // object that fails to promote in the current cycle will be eligible for promotion in a subsequent cycle. 574 575 // When the plab was instantiated, its entirety was treated as if the entire buffer was going to be dedicated to 576 // promotions. Now that we are retiring the buffer, we adjust for the reality that the plab is not entirely promotions. 577 // 1. Some of the plab may have been dedicated to evacuations. 578 // 2. Some of the plab may have been abandoned due to waste (at the end of the plab). 579 size_t not_promoted = 580 ShenandoahThreadLocalData::get_plab_actual_size(thread) - ShenandoahThreadLocalData::get_plab_promoted(thread); 581 ShenandoahThreadLocalData::reset_plab_promoted(thread); 582 ShenandoahThreadLocalData::set_plab_actual_size(thread, 0); 583 if (not_promoted > 0) { 584 old_generation()->unexpend_promoted(not_promoted); 585 } 586 const size_t original_waste = plab->waste(); 587 HeapWord* const top = plab->top(); 588 589 // plab->retire() overwrites unused memory between plab->top() and plab->hard_end() with a dummy object to make memory parsable. 590 // It adds the size of this unused memory, in words, to plab->waste(). 591 plab->retire(); 592 if (top != nullptr && plab->waste() > original_waste && is_in_old(top)) { 593 // If retiring the plab created a filler object, then we need to register it with our card scanner so it can 594 // safely walk the region backing the plab. 595 log_debug(gc)("retire_plab() is registering remnant of size %zu at " PTR_FORMAT, 596 plab->waste() - original_waste, p2i(top)); 597 // No lock is necessary because the PLAB memory is aligned on card boundaries. 598 old_generation()->card_scan()->register_object_without_lock(top); 599 } 600 } 601 602 void ShenandoahGenerationalHeap::retire_plab(PLAB* plab) { 603 Thread* thread = Thread::current(); 604 retire_plab(plab, thread); 605 } 606 607 ShenandoahGenerationalHeap::TransferResult ShenandoahGenerationalHeap::balance_generations() { 608 shenandoah_assert_heaplocked_or_safepoint(); 609 610 ShenandoahOldGeneration* old_gen = old_generation(); 611 const ssize_t old_region_balance = old_gen->get_region_balance(); 612 old_gen->set_region_balance(0); 613 614 if (old_region_balance > 0) { 615 const auto old_region_surplus = checked_cast<size_t>(old_region_balance); 616 const bool success = generation_sizer()->transfer_to_young(old_region_surplus); 617 return TransferResult { 618 success, old_region_surplus, "young" 619 }; 620 } 621 622 if (old_region_balance < 0) { 623 const auto old_region_deficit = checked_cast<size_t>(-old_region_balance); 624 const bool success = generation_sizer()->transfer_to_old(old_region_deficit); 625 if (!success) { 626 old_gen->handle_failed_transfer(); 627 } 628 return TransferResult { 629 success, old_region_deficit, "old" 630 }; 631 } 632 633 return TransferResult {true, 0, "none"}; 634 } 635 636 // Make sure old-generation is large enough, but no larger than is necessary, to hold mixed evacuations 637 // and promotions, if we anticipate either. Any deficit is provided by the young generation, subject to 638 // xfer_limit, and any surplus is transferred to the young generation. 639 // xfer_limit is the maximum we're able to transfer from young to old. 640 void ShenandoahGenerationalHeap::compute_old_generation_balance(size_t old_xfer_limit, size_t old_cset_regions) { 641 642 // We can limit the old reserve to the size of anticipated promotions: 643 // max_old_reserve is an upper bound on memory evacuated from old and promoted to old, 644 // clamped by the old generation space available. 645 // 646 // Here's the algebra. 647 // Let SOEP = ShenandoahOldEvacRatioPercent, 648 // OE = old evac, 649 // YE = young evac, and 650 // TE = total evac = OE + YE 651 // By definition: 652 // SOEP/100 = OE/TE 653 // = OE/(OE+YE) 654 // => SOEP/(100-SOEP) = OE/((OE+YE)-OE) // componendo-dividendo: If a/b = c/d, then a/(b-a) = c/(d-c) 655 // = OE/YE 656 // => OE = YE*SOEP/(100-SOEP) 657 658 // We have to be careful in the event that SOEP is set to 100 by the user. 659 assert(ShenandoahOldEvacRatioPercent <= 100, "Error"); 660 const size_t old_available = old_generation()->available(); 661 // The free set will reserve this amount of memory to hold young evacuations 662 const size_t young_reserve = (young_generation()->max_capacity() * ShenandoahEvacReserve) / 100; 663 664 // In the case that ShenandoahOldEvacRatioPercent equals 100, max_old_reserve is limited only by xfer_limit. 665 666 const double bound_on_old_reserve = old_available + old_xfer_limit + young_reserve; 667 const double max_old_reserve = (ShenandoahOldEvacRatioPercent == 100)? 668 bound_on_old_reserve: MIN2(double(young_reserve * ShenandoahOldEvacRatioPercent) / double(100 - ShenandoahOldEvacRatioPercent), 669 bound_on_old_reserve); 670 671 const size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes(); 672 673 // Decide how much old space we should reserve for a mixed collection 674 double reserve_for_mixed = 0; 675 if (old_generation()->has_unprocessed_collection_candidates()) { 676 // We want this much memory to be unfragmented in order to reliably evacuate old. This is conservative because we 677 // may not evacuate the entirety of unprocessed candidates in a single mixed evacuation. 678 const double max_evac_need = (double(old_generation()->unprocessed_collection_candidates_live_memory()) * ShenandoahOldEvacWaste); 679 assert(old_available >= old_generation()->free_unaffiliated_regions() * region_size_bytes, 680 "Unaffiliated available must be less than total available"); 681 const double old_fragmented_available = double(old_available - old_generation()->free_unaffiliated_regions() * region_size_bytes); 682 reserve_for_mixed = max_evac_need + old_fragmented_available; 683 if (reserve_for_mixed > max_old_reserve) { 684 reserve_for_mixed = max_old_reserve; 685 } 686 } 687 688 // Decide how much space we should reserve for promotions from young 689 size_t reserve_for_promo = 0; 690 const size_t promo_load = old_generation()->get_promotion_potential(); 691 const bool doing_promotions = promo_load > 0; 692 if (doing_promotions) { 693 // We're promoting and have a bound on the maximum amount that can be promoted 694 assert(max_old_reserve >= reserve_for_mixed, "Sanity"); 695 const size_t available_for_promotions = max_old_reserve - reserve_for_mixed; 696 reserve_for_promo = MIN2((size_t)(promo_load * ShenandoahPromoEvacWaste), available_for_promotions); 697 } 698 699 // This is the total old we want to ideally reserve 700 const size_t old_reserve = reserve_for_mixed + reserve_for_promo; 701 assert(old_reserve <= max_old_reserve, "cannot reserve more than max for old evacuations"); 702 703 // We now check if the old generation is running a surplus or a deficit. 704 const size_t max_old_available = old_generation()->available() + old_cset_regions * region_size_bytes; 705 if (max_old_available >= old_reserve) { 706 // We are running a surplus, so the old region surplus can go to young 707 const size_t old_surplus = (max_old_available - old_reserve) / region_size_bytes; 708 const size_t unaffiliated_old_regions = old_generation()->free_unaffiliated_regions() + old_cset_regions; 709 const size_t old_region_surplus = MIN2(old_surplus, unaffiliated_old_regions); 710 old_generation()->set_region_balance(checked_cast<ssize_t>(old_region_surplus)); 711 } else { 712 // We are running a deficit which we'd like to fill from young. 713 // Ignore that this will directly impact young_generation()->max_capacity(), 714 // indirectly impacting young_reserve and old_reserve. These computations are conservative. 715 // Note that deficit is rounded up by one region. 716 const size_t old_need = (old_reserve - max_old_available + region_size_bytes - 1) / region_size_bytes; 717 const size_t max_old_region_xfer = old_xfer_limit / region_size_bytes; 718 719 // Round down the regions we can transfer from young to old. If we're running short 720 // on young-gen memory, we restrict the xfer. Old-gen collection activities will be 721 // curtailed if the budget is restricted. 722 const size_t old_region_deficit = MIN2(old_need, max_old_region_xfer); 723 old_generation()->set_region_balance(0 - checked_cast<ssize_t>(old_region_deficit)); 724 } 725 } 726 727 void ShenandoahGenerationalHeap::reset_generation_reserves() { 728 young_generation()->set_evacuation_reserve(0); 729 old_generation()->set_evacuation_reserve(0); 730 old_generation()->set_promoted_reserve(0); 731 } 732 733 void ShenandoahGenerationalHeap::TransferResult::print_on(const char* when, outputStream* ss) const { 734 auto heap = ShenandoahGenerationalHeap::heap(); 735 ShenandoahYoungGeneration* const young_gen = heap->young_generation(); 736 ShenandoahOldGeneration* const old_gen = heap->old_generation(); 737 const size_t young_available = young_gen->available(); 738 const size_t old_available = old_gen->available(); 739 ss->print_cr("After %s, %s %zu regions to %s to prepare for next gc, old available: " 740 PROPERFMT ", young_available: " PROPERFMT, 741 when, 742 success? "successfully transferred": "failed to transfer", region_count, region_destination, 743 PROPERFMTARGS(old_available), PROPERFMTARGS(young_available)); 744 } 745 746 void ShenandoahGenerationalHeap::coalesce_and_fill_old_regions(bool concurrent) { 747 class ShenandoahGlobalCoalesceAndFill : public WorkerTask { 748 private: 749 ShenandoahPhaseTimings::Phase _phase; 750 ShenandoahRegionIterator _regions; 751 public: 752 explicit ShenandoahGlobalCoalesceAndFill(ShenandoahPhaseTimings::Phase phase) : 753 WorkerTask("Shenandoah Global Coalesce"), 754 _phase(phase) {} 755 756 void work(uint worker_id) override { 757 ShenandoahWorkerTimingsTracker timer(_phase, 758 ShenandoahPhaseTimings::ScanClusters, 759 worker_id, true); 760 ShenandoahHeapRegion* region; 761 while ((region = _regions.next()) != nullptr) { 762 // old region is not in the collection set and was not immediately trashed 763 if (region->is_old() && region->is_active() && !region->is_humongous()) { 764 // Reset the coalesce and fill boundary because this is a global collect 765 // and cannot be preempted by young collects. We want to be sure the entire 766 // region is coalesced here and does not resume from a previously interrupted 767 // or completed coalescing. 768 region->begin_preemptible_coalesce_and_fill(); 769 region->oop_coalesce_and_fill(false); 770 } 771 } 772 } 773 }; 774 775 ShenandoahPhaseTimings::Phase phase = concurrent ? 776 ShenandoahPhaseTimings::conc_coalesce_and_fill : 777 ShenandoahPhaseTimings::degen_gc_coalesce_and_fill; 778 779 // This is not cancellable 780 ShenandoahGlobalCoalesceAndFill coalesce(phase); 781 workers()->run_task(&coalesce); 782 old_generation()->set_parsable(true); 783 } 784 785 template<bool CONCURRENT> 786 class ShenandoahGenerationalUpdateHeapRefsTask : public WorkerTask { 787 private: 788 ShenandoahGenerationalHeap* _heap; 789 ShenandoahRegionIterator* _regions; 790 ShenandoahRegionChunkIterator* _work_chunks; 791 792 public: 793 explicit ShenandoahGenerationalUpdateHeapRefsTask(ShenandoahRegionIterator* regions, 794 ShenandoahRegionChunkIterator* work_chunks) : 795 WorkerTask("Shenandoah Update References"), 796 _heap(ShenandoahGenerationalHeap::heap()), 797 _regions(regions), 798 _work_chunks(work_chunks) 799 { 800 bool old_bitmap_stable = _heap->old_generation()->is_mark_complete(); 801 log_debug(gc, remset)("Update refs, scan remembered set using bitmap: %s", BOOL_TO_STR(old_bitmap_stable)); 802 } 803 804 void work(uint worker_id) { 805 if (CONCURRENT) { 806 ShenandoahConcurrentWorkerSession worker_session(worker_id); 807 ShenandoahSuspendibleThreadSetJoiner stsj; 808 do_work<ShenandoahConcUpdateRefsClosure>(worker_id); 809 } else { 810 ShenandoahParallelWorkerSession worker_session(worker_id); 811 do_work<ShenandoahNonConcUpdateRefsClosure>(worker_id); 812 } 813 } 814 815 private: 816 template<class T> 817 void do_work(uint worker_id) { 818 T cl; 819 820 if (CONCURRENT && (worker_id == 0)) { 821 // We ask the first worker to replenish the Mutator free set by moving regions previously reserved to hold the 822 // results of evacuation. These reserves are no longer necessary because evacuation has completed. 823 size_t cset_regions = _heap->collection_set()->count(); 824 825 // Now that evacuation is done, we can reassign any regions that had been reserved to hold the results of evacuation 826 // to the mutator free set. At the end of GC, we will have cset_regions newly evacuated fully empty regions from 827 // which we will be able to replenish the Collector free set and the OldCollector free set in preparation for the 828 // next GC cycle. 829 _heap->free_set()->move_regions_from_collector_to_mutator(cset_regions); 830 } 831 // If !CONCURRENT, there's no value in expanding Mutator free set 832 833 ShenandoahHeapRegion* r = _regions->next(); 834 // We update references for global, old, and young collections. 835 ShenandoahGeneration* const gc_generation = _heap->gc_generation(); 836 shenandoah_assert_generations_reconciled(); 837 assert(gc_generation->is_mark_complete(), "Expected complete marking"); 838 ShenandoahMarkingContext* const ctx = _heap->marking_context(); 839 bool is_mixed = _heap->collection_set()->has_old_regions(); 840 while (r != nullptr) { 841 HeapWord* update_watermark = r->get_update_watermark(); 842 assert(update_watermark >= r->bottom(), "sanity"); 843 844 log_debug(gc)("Update refs worker " UINT32_FORMAT ", looking at region %zu", worker_id, r->index()); 845 bool region_progress = false; 846 if (r->is_active() && !r->is_cset()) { 847 if (r->is_young()) { 848 _heap->marked_object_oop_iterate(r, &cl, update_watermark); 849 region_progress = true; 850 } else if (r->is_old()) { 851 if (gc_generation->is_global()) { 852 853 _heap->marked_object_oop_iterate(r, &cl, update_watermark); 854 region_progress = true; 855 } 856 // Otherwise, this is an old region in a young or mixed cycle. Process it during a second phase, below. 857 // Don't bother to report pacing progress in this case. 858 } else { 859 // Because updating of references runs concurrently, it is possible that a FREE inactive region transitions 860 // to a non-free active region while this loop is executing. Whenever this happens, the changing of a region's 861 // active status may propagate at a different speed than the changing of the region's affiliation. 862 863 // When we reach this control point, it is because a race has allowed a region's is_active() status to be seen 864 // by this thread before the region's affiliation() is seen by this thread. 865 866 // It's ok for this race to occur because the newly transformed region does not have any references to be 867 // updated. 868 869 assert(r->get_update_watermark() == r->bottom(), 870 "%s Region %zu is_active but not recognized as YOUNG or OLD so must be newly transitioned from FREE", 871 r->affiliation_name(), r->index()); 872 } 873 } 874 875 if (region_progress && ShenandoahPacing) { 876 _heap->pacer()->report_update_refs(pointer_delta(update_watermark, r->bottom())); 877 } 878 879 if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) { 880 return; 881 } 882 883 r = _regions->next(); 884 } 885 886 if (!gc_generation->is_global()) { 887 // Since this is generational and not GLOBAL, we have to process the remembered set. There's no remembered 888 // set processing if not in generational mode or if GLOBAL mode. 889 890 // After this thread has exhausted its traditional update-refs work, it continues with updating refs within 891 // remembered set. The remembered set workload is better balanced between threads, so threads that are "behind" 892 // can catch up with other threads during this phase, allowing all threads to work more effectively in parallel. 893 update_references_in_remembered_set(worker_id, cl, ctx, is_mixed); 894 } 895 } 896 897 template<class T> 898 void update_references_in_remembered_set(uint worker_id, T &cl, const ShenandoahMarkingContext* ctx, bool is_mixed) { 899 900 struct ShenandoahRegionChunk assignment; 901 ShenandoahScanRemembered* scanner = _heap->old_generation()->card_scan(); 902 903 while (!_heap->check_cancelled_gc_and_yield(CONCURRENT) && _work_chunks->next(&assignment)) { 904 // Keep grabbing next work chunk to process until finished, or asked to yield 905 ShenandoahHeapRegion* r = assignment._r; 906 if (r->is_active() && !r->is_cset() && r->is_old()) { 907 HeapWord* start_of_range = r->bottom() + assignment._chunk_offset; 908 HeapWord* end_of_range = r->get_update_watermark(); 909 if (end_of_range > start_of_range + assignment._chunk_size) { 910 end_of_range = start_of_range + assignment._chunk_size; 911 } 912 913 if (start_of_range >= end_of_range) { 914 continue; 915 } 916 917 // Old region in a young cycle or mixed cycle. 918 if (is_mixed) { 919 if (r->is_humongous()) { 920 // Need to examine both dirty and clean cards during mixed evac. 921 r->oop_iterate_humongous_slice_all(&cl,start_of_range, assignment._chunk_size); 922 } else { 923 // Since this is mixed evacuation, old regions that are candidates for collection have not been coalesced 924 // and filled. This will use mark bits to find objects that need to be updated. 925 update_references_in_old_region(cl, ctx, scanner, r, start_of_range, end_of_range); 926 } 927 } else { 928 // This is a young evacuation 929 size_t cluster_size = CardTable::card_size_in_words() * ShenandoahCardCluster::CardsPerCluster; 930 size_t clusters = assignment._chunk_size / cluster_size; 931 assert(clusters * cluster_size == assignment._chunk_size, "Chunk assignment must align on cluster boundaries"); 932 scanner->process_region_slice(r, assignment._chunk_offset, clusters, end_of_range, &cl, true, worker_id); 933 } 934 935 if (ShenandoahPacing) { 936 _heap->pacer()->report_update_refs(pointer_delta(end_of_range, start_of_range)); 937 } 938 } 939 } 940 } 941 942 template<class T> 943 void update_references_in_old_region(T &cl, const ShenandoahMarkingContext* ctx, ShenandoahScanRemembered* scanner, 944 const ShenandoahHeapRegion* r, HeapWord* start_of_range, 945 HeapWord* end_of_range) const { 946 // In case last object in my range spans boundary of my chunk, I may need to scan all the way to top() 947 ShenandoahObjectToOopBoundedClosure<T> objs(&cl, start_of_range, r->top()); 948 949 // Any object that begins in a previous range is part of a different scanning assignment. Any object that 950 // starts after end_of_range is also not my responsibility. (Either allocated during evacuation, so does 951 // not hold pointers to from-space, or is beyond the range of my assigned work chunk.) 952 953 // Find the first object that begins in my range, if there is one. Note that `p` will be set to `end_of_range` 954 // when no live object is found in the range. 955 HeapWord* tams = ctx->top_at_mark_start(r); 956 HeapWord* p = get_first_object_start_word(ctx, scanner, tams, start_of_range, end_of_range); 957 958 while (p < end_of_range) { 959 // p is known to point to the beginning of marked object obj 960 oop obj = cast_to_oop(p); 961 objs.do_object(obj); 962 HeapWord* prev_p = p; 963 p += obj->size(); 964 if (p < tams) { 965 p = ctx->get_next_marked_addr(p, tams); 966 // If there are no more marked objects before tams, this returns tams. Note that tams is 967 // either >= end_of_range, or tams is the start of an object that is marked. 968 } 969 assert(p != prev_p, "Lack of forward progress"); 970 } 971 } 972 973 HeapWord* get_first_object_start_word(const ShenandoahMarkingContext* ctx, ShenandoahScanRemembered* scanner, HeapWord* tams, 974 HeapWord* start_of_range, HeapWord* end_of_range) const { 975 HeapWord* p = start_of_range; 976 977 if (p >= tams) { 978 // We cannot use ctx->is_marked(obj) to test whether an object begins at this address. Instead, 979 // we need to use the remembered set crossing map to advance p to the first object that starts 980 // within the enclosing card. 981 size_t card_index = scanner->card_index_for_addr(start_of_range); 982 while (true) { 983 HeapWord* first_object = scanner->first_object_in_card(card_index); 984 if (first_object != nullptr) { 985 p = first_object; 986 break; 987 } else if (scanner->addr_for_card_index(card_index + 1) < end_of_range) { 988 card_index++; 989 } else { 990 // Signal that no object was found in range 991 p = end_of_range; 992 break; 993 } 994 } 995 } else if (!ctx->is_marked(cast_to_oop(p))) { 996 p = ctx->get_next_marked_addr(p, tams); 997 // If there are no more marked objects before tams, this returns tams. 998 // Note that tams is either >= end_of_range, or tams is the start of an object that is marked. 999 } 1000 return p; 1001 } 1002 }; 1003 1004 void ShenandoahGenerationalHeap::update_heap_references(bool concurrent) { 1005 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 1006 const uint nworkers = workers()->active_workers(); 1007 ShenandoahRegionChunkIterator work_list(nworkers); 1008 if (concurrent) { 1009 ShenandoahGenerationalUpdateHeapRefsTask<true> task(&_update_refs_iterator, &work_list); 1010 workers()->run_task(&task); 1011 } else { 1012 ShenandoahGenerationalUpdateHeapRefsTask<false> task(&_update_refs_iterator, &work_list); 1013 workers()->run_task(&task); 1014 } 1015 1016 if (ShenandoahEnableCardStats) { 1017 // Only do this if we are collecting card stats 1018 ShenandoahScanRemembered* card_scan = old_generation()->card_scan(); 1019 assert(card_scan != nullptr, "Card table must exist when card stats are enabled"); 1020 card_scan->log_card_stats(nworkers, CARD_STAT_UPDATE_REFS); 1021 } 1022 } 1023 1024 struct ShenandoahCompositeRegionClosure { 1025 template<typename C1, typename C2> 1026 class Closure : public ShenandoahHeapRegionClosure { 1027 private: 1028 C1 &_c1; 1029 C2 &_c2; 1030 1031 public: 1032 Closure(C1 &c1, C2 &c2) : ShenandoahHeapRegionClosure(), _c1(c1), _c2(c2) {} 1033 1034 void heap_region_do(ShenandoahHeapRegion* r) override { 1035 _c1.heap_region_do(r); 1036 _c2.heap_region_do(r); 1037 } 1038 1039 bool is_thread_safe() override { 1040 return _c1.is_thread_safe() && _c2.is_thread_safe(); 1041 } 1042 }; 1043 1044 template<typename C1, typename C2> 1045 static Closure<C1, C2> of(C1 &c1, C2 &c2) { 1046 return Closure<C1, C2>(c1, c2); 1047 } 1048 }; 1049 1050 class ShenandoahUpdateRegionAges : public ShenandoahHeapRegionClosure { 1051 private: 1052 ShenandoahMarkingContext* _ctx; 1053 1054 public: 1055 explicit ShenandoahUpdateRegionAges(ShenandoahMarkingContext* ctx) : _ctx(ctx) { } 1056 1057 void heap_region_do(ShenandoahHeapRegion* r) override { 1058 // Maintenance of region age must follow evacuation in order to account for 1059 // evacuation allocations within survivor regions. We consult region age during 1060 // the subsequent evacuation to determine whether certain objects need to 1061 // be promoted. 1062 if (r->is_young() && r->is_active()) { 1063 HeapWord *tams = _ctx->top_at_mark_start(r); 1064 HeapWord *top = r->top(); 1065 1066 // Allocations move the watermark when top moves. However, compacting 1067 // objects will sometimes lower top beneath the watermark, after which, 1068 // attempts to read the watermark will assert out (watermark should not be 1069 // higher than top). 1070 if (top > tams) { 1071 // There have been allocations in this region since the start of the cycle. 1072 // Any objects new to this region must not assimilate elevated age. 1073 r->reset_age(); 1074 } else if (ShenandoahGenerationalHeap::heap()->is_aging_cycle()) { 1075 r->increment_age(); 1076 } 1077 } 1078 } 1079 1080 bool is_thread_safe() override { 1081 return true; 1082 } 1083 }; 1084 1085 void ShenandoahGenerationalHeap::final_update_refs_update_region_states() { 1086 ShenandoahSynchronizePinnedRegionStates pins; 1087 ShenandoahUpdateRegionAges ages(active_generation()->complete_marking_context()); 1088 auto cl = ShenandoahCompositeRegionClosure::of(pins, ages); 1089 parallel_heap_region_iterate(&cl); 1090 } 1091 1092 void ShenandoahGenerationalHeap::complete_degenerated_cycle() { 1093 shenandoah_assert_heaplocked_or_safepoint(); 1094 if (is_concurrent_old_mark_in_progress()) { 1095 // This is still necessary for degenerated cycles because the degeneration point may occur 1096 // after final mark of the young generation. See ShenandoahConcurrentGC::op_final_update_refs for 1097 // a more detailed explanation. 1098 old_generation()->transfer_pointers_from_satb(); 1099 } 1100 1101 // We defer generation resizing actions until after cset regions have been recycled. 1102 TransferResult result = balance_generations(); 1103 LogTarget(Info, gc, ergo) lt; 1104 if (lt.is_enabled()) { 1105 LogStream ls(lt); 1106 result.print_on("Degenerated GC", &ls); 1107 } 1108 1109 // In case degeneration interrupted concurrent evacuation or update references, we need to clean up 1110 // transient state. Otherwise, these actions have no effect. 1111 reset_generation_reserves(); 1112 1113 if (!old_generation()->is_parsable()) { 1114 ShenandoahGCPhase phase(ShenandoahPhaseTimings::degen_gc_coalesce_and_fill); 1115 coalesce_and_fill_old_regions(false); 1116 } 1117 } 1118 1119 void ShenandoahGenerationalHeap::complete_concurrent_cycle() { 1120 if (!old_generation()->is_parsable()) { 1121 // Class unloading may render the card offsets unusable, so we must rebuild them before 1122 // the next remembered set scan. We _could_ let the control thread do this sometime after 1123 // the global cycle has completed and before the next young collection, but under memory 1124 // pressure the control thread may not have the time (that is, because it's running back 1125 // to back GCs). In that scenario, we would have to make the old regions parsable before 1126 // we could start a young collection. This could delay the start of the young cycle and 1127 // throw off the heuristics. 1128 entry_global_coalesce_and_fill(); 1129 } 1130 1131 TransferResult result; 1132 { 1133 ShenandoahHeapLocker locker(lock()); 1134 1135 result = balance_generations(); 1136 reset_generation_reserves(); 1137 } 1138 1139 LogTarget(Info, gc, ergo) lt; 1140 if (lt.is_enabled()) { 1141 LogStream ls(lt); 1142 result.print_on("Concurrent GC", &ls); 1143 } 1144 } 1145 1146 void ShenandoahGenerationalHeap::entry_global_coalesce_and_fill() { 1147 const char* msg = "Coalescing and filling old regions"; 1148 ShenandoahConcurrentPhase gc_phase(msg, ShenandoahPhaseTimings::conc_coalesce_and_fill); 1149 1150 TraceCollectorStats tcs(monitoring_support()->concurrent_collection_counters()); 1151 EventMark em("%s", msg); 1152 ShenandoahWorkerScope scope(workers(), 1153 ShenandoahWorkerPolicy::calc_workers_for_conc_marking(), 1154 "concurrent coalesce and fill"); 1155 1156 coalesce_and_fill_old_regions(true); 1157 } 1158 1159 void ShenandoahGenerationalHeap::update_region_ages(ShenandoahMarkingContext* ctx) { 1160 ShenandoahUpdateRegionAges cl(ctx); 1161 parallel_heap_region_iterate(&cl); 1162 }