1 /* 2 * Copyright (c) 2023, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2013, 2022, Red Hat, Inc. All rights reserved. 4 * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 28 #include "cds/archiveHeapWriter.hpp" 29 #include "classfile/systemDictionary.hpp" 30 #include "gc/shared/classUnloadingContext.hpp" 31 #include "gc/shared/fullGCForwarding.hpp" 32 #include "gc/shared/gcArguments.hpp" 33 #include "gc/shared/gcTimer.hpp" 34 #include "gc/shared/gcTraceTime.inline.hpp" 35 #include "gc/shared/gc_globals.hpp" 36 #include "gc/shared/locationPrinter.inline.hpp" 37 #include "gc/shared/memAllocator.hpp" 38 #include "gc/shared/plab.hpp" 39 #include "gc/shared/tlab_globals.hpp" 40 #include "gc/shenandoah/heuristics/shenandoahOldHeuristics.hpp" 41 #include "gc/shenandoah/heuristics/shenandoahYoungHeuristics.hpp" 42 #include "gc/shenandoah/mode/shenandoahGenerationalMode.hpp" 43 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp" 44 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp" 45 #include "gc/shenandoah/shenandoahAllocRequest.hpp" 46 #include "gc/shenandoah/shenandoahBarrierSet.hpp" 47 #include "gc/shenandoah/shenandoahClosures.inline.hpp" 48 #include "gc/shenandoah/shenandoahCodeRoots.hpp" 49 #include "gc/shenandoah/shenandoahCollectionSet.hpp" 50 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp" 51 #include "gc/shenandoah/shenandoahConcurrentMark.hpp" 52 #include "gc/shenandoah/shenandoahControlThread.hpp" 53 #include "gc/shenandoah/shenandoahFreeSet.hpp" 54 #include "gc/shenandoah/shenandoahGenerationalEvacuationTask.hpp" 55 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp" 56 #include "gc/shenandoah/shenandoahGlobalGeneration.hpp" 57 #include "gc/shenandoah/shenandoahHeap.inline.hpp" 58 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp" 59 #include "gc/shenandoah/shenandoahHeapRegionClosures.hpp" 60 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp" 61 #include "gc/shenandoah/shenandoahInitLogger.hpp" 62 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 63 #include "gc/shenandoah/shenandoahMemoryPool.hpp" 64 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp" 65 #include "gc/shenandoah/shenandoahOldGeneration.hpp" 66 #include "gc/shenandoah/shenandoahPacer.inline.hpp" 67 #include "gc/shenandoah/shenandoahPadding.hpp" 68 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp" 69 #include "gc/shenandoah/shenandoahPhaseTimings.hpp" 70 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp" 71 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp" 72 #include "gc/shenandoah/shenandoahScanRemembered.inline.hpp" 73 #include "gc/shenandoah/shenandoahSTWMark.hpp" 74 #include "gc/shenandoah/shenandoahUncommitThread.hpp" 75 #include "gc/shenandoah/shenandoahUtils.hpp" 76 #include "gc/shenandoah/shenandoahVerifier.hpp" 77 #include "gc/shenandoah/shenandoahVMOperations.hpp" 78 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp" 79 #include "gc/shenandoah/shenandoahWorkGroup.hpp" 80 #include "gc/shenandoah/shenandoahYoungGeneration.hpp" 81 #include "memory/allocation.hpp" 82 #include "memory/classLoaderMetaspace.hpp" 83 #include "memory/memoryReserver.hpp" 84 #include "memory/metaspaceUtils.hpp" 85 #include "memory/universe.hpp" 86 #include "nmt/mallocTracker.hpp" 87 #include "nmt/memTracker.hpp" 88 #include "oops/compressedOops.inline.hpp" 89 #include "prims/jvmtiTagMap.hpp" 90 #include "runtime/atomic.hpp" 91 #include "runtime/globals.hpp" 92 #include "runtime/interfaceSupport.inline.hpp" 93 #include "runtime/java.hpp" 94 #include "runtime/orderAccess.hpp" 95 #include "runtime/safepointMechanism.hpp" 96 #include "runtime/stackWatermarkSet.hpp" 97 #include "runtime/threads.hpp" 98 #include "runtime/vmThread.hpp" 99 #include "utilities/events.hpp" 100 #include "utilities/globalDefinitions.hpp" 101 #include "utilities/powerOfTwo.hpp" 102 #if INCLUDE_JVMCI 103 #include "jvmci/jvmci.hpp" 104 #endif 105 #if INCLUDE_JFR 106 #include "gc/shenandoah/shenandoahJfrSupport.hpp" 107 #endif 108 109 class ShenandoahPretouchHeapTask : public WorkerTask { 110 private: 111 ShenandoahRegionIterator _regions; 112 const size_t _page_size; 113 public: 114 ShenandoahPretouchHeapTask(size_t page_size) : 115 WorkerTask("Shenandoah Pretouch Heap"), 116 _page_size(page_size) {} 117 118 virtual void work(uint worker_id) { 119 ShenandoahHeapRegion* r = _regions.next(); 120 while (r != nullptr) { 121 if (r->is_committed()) { 122 os::pretouch_memory(r->bottom(), r->end(), _page_size); 123 } 124 r = _regions.next(); 125 } 126 } 127 }; 128 129 class ShenandoahPretouchBitmapTask : public WorkerTask { 130 private: 131 ShenandoahRegionIterator _regions; 132 char* _bitmap_base; 133 const size_t _bitmap_size; 134 const size_t _page_size; 135 public: 136 ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) : 137 WorkerTask("Shenandoah Pretouch Bitmap"), 138 _bitmap_base(bitmap_base), 139 _bitmap_size(bitmap_size), 140 _page_size(page_size) {} 141 142 virtual void work(uint worker_id) { 143 ShenandoahHeapRegion* r = _regions.next(); 144 while (r != nullptr) { 145 size_t start = r->index() * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 146 size_t end = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 147 assert (end <= _bitmap_size, "end is sane: %zu < %zu", end, _bitmap_size); 148 149 if (r->is_committed()) { 150 os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size); 151 } 152 153 r = _regions.next(); 154 } 155 } 156 }; 157 158 static ReservedSpace reserve(size_t size, size_t preferred_page_size) { 159 // When a page size is given we don't want to mix large 160 // and normal pages. If the size is not a multiple of the 161 // page size it will be aligned up to achieve this. 162 size_t alignment = os::vm_allocation_granularity(); 163 if (preferred_page_size != os::vm_page_size()) { 164 alignment = MAX2(preferred_page_size, alignment); 165 size = align_up(size, alignment); 166 } 167 168 const ReservedSpace reserved = MemoryReserver::reserve(size, alignment, preferred_page_size, mtGC); 169 if (!reserved.is_reserved()) { 170 vm_exit_during_initialization("Could not reserve space"); 171 } 172 return reserved; 173 } 174 175 jint ShenandoahHeap::initialize() { 176 // 177 // Figure out heap sizing 178 // 179 180 size_t init_byte_size = InitialHeapSize; 181 size_t min_byte_size = MinHeapSize; 182 size_t max_byte_size = MaxHeapSize; 183 size_t heap_alignment = HeapAlignment; 184 185 size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes(); 186 187 Universe::check_alignment(max_byte_size, reg_size_bytes, "Shenandoah heap"); 188 Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap"); 189 190 _num_regions = ShenandoahHeapRegion::region_count(); 191 assert(_num_regions == (max_byte_size / reg_size_bytes), 192 "Regions should cover entire heap exactly: %zu != %zu/%zu", 193 _num_regions, max_byte_size, reg_size_bytes); 194 195 size_t num_committed_regions = init_byte_size / reg_size_bytes; 196 num_committed_regions = MIN2(num_committed_regions, _num_regions); 197 assert(num_committed_regions <= _num_regions, "sanity"); 198 _initial_size = num_committed_regions * reg_size_bytes; 199 200 size_t num_min_regions = min_byte_size / reg_size_bytes; 201 num_min_regions = MIN2(num_min_regions, _num_regions); 202 assert(num_min_regions <= _num_regions, "sanity"); 203 _minimum_size = num_min_regions * reg_size_bytes; 204 205 _soft_max_size = SoftMaxHeapSize; 206 207 _committed = _initial_size; 208 209 size_t heap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 210 size_t bitmap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 211 size_t region_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 212 213 // 214 // Reserve and commit memory for heap 215 // 216 217 ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment); 218 initialize_reserved_region(heap_rs); 219 _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize); 220 _heap_region_special = heap_rs.special(); 221 222 assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0, 223 "Misaligned heap: " PTR_FORMAT, p2i(base())); 224 os::trace_page_sizes_for_requested_size("Heap", 225 max_byte_size, heap_alignment, 226 heap_rs.base(), 227 heap_rs.size(), heap_rs.page_size()); 228 229 #if SHENANDOAH_OPTIMIZED_MARKTASK 230 // The optimized ShenandoahMarkTask takes some bits away from the full object bits. 231 // Fail if we ever attempt to address more than we can. 232 if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) { 233 FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n" 234 "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n" 235 "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).", 236 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable()); 237 vm_exit_during_initialization("Fatal Error", buf); 238 } 239 #endif 240 241 ReservedSpace sh_rs = heap_rs.first_part(max_byte_size); 242 if (!_heap_region_special) { 243 os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false, 244 "Cannot commit heap memory"); 245 } 246 247 BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this, _heap_region)); 248 249 // Now we know the number of regions and heap sizes, initialize the heuristics. 250 initialize_heuristics(); 251 252 assert(_heap_region.byte_size() == heap_rs.size(), "Need to know reserved size for card table"); 253 254 // 255 // Worker threads must be initialized after the barrier is configured 256 // 257 _workers = new ShenandoahWorkerThreads("Shenandoah GC Threads", _max_workers); 258 if (_workers == nullptr) { 259 vm_exit_during_initialization("Failed necessary allocation."); 260 } else { 261 _workers->initialize_workers(); 262 } 263 264 if (ParallelGCThreads > 1) { 265 _safepoint_workers = new ShenandoahWorkerThreads("Safepoint Cleanup Thread", ParallelGCThreads); 266 _safepoint_workers->initialize_workers(); 267 } 268 269 // 270 // Reserve and commit memory for bitmap(s) 271 // 272 273 size_t bitmap_size_orig = ShenandoahMarkBitMap::compute_size(heap_rs.size()); 274 _bitmap_size = align_up(bitmap_size_orig, bitmap_page_size); 275 276 size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor(); 277 278 guarantee(bitmap_bytes_per_region != 0, 279 "Bitmap bytes per region should not be zero"); 280 guarantee(is_power_of_2(bitmap_bytes_per_region), 281 "Bitmap bytes per region should be power of two: %zu", bitmap_bytes_per_region); 282 283 if (bitmap_page_size > bitmap_bytes_per_region) { 284 _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region; 285 _bitmap_bytes_per_slice = bitmap_page_size; 286 } else { 287 _bitmap_regions_per_slice = 1; 288 _bitmap_bytes_per_slice = bitmap_bytes_per_region; 289 } 290 291 guarantee(_bitmap_regions_per_slice >= 1, 292 "Should have at least one region per slice: %zu", 293 _bitmap_regions_per_slice); 294 295 guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0, 296 "Bitmap slices should be page-granular: bps = %zu, page size = %zu", 297 _bitmap_bytes_per_slice, bitmap_page_size); 298 299 ReservedSpace bitmap = reserve(_bitmap_size, bitmap_page_size); 300 os::trace_page_sizes_for_requested_size("Mark Bitmap", 301 bitmap_size_orig, bitmap_page_size, 302 bitmap.base(), 303 bitmap.size(), bitmap.page_size()); 304 MemTracker::record_virtual_memory_tag(bitmap, mtGC); 305 _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize); 306 _bitmap_region_special = bitmap.special(); 307 308 size_t bitmap_init_commit = _bitmap_bytes_per_slice * 309 align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice; 310 bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit); 311 if (!_bitmap_region_special) { 312 os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false, 313 "Cannot commit bitmap memory"); 314 } 315 316 _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions); 317 318 if (ShenandoahVerify) { 319 ReservedSpace verify_bitmap = reserve(_bitmap_size, bitmap_page_size); 320 os::trace_page_sizes_for_requested_size("Verify Bitmap", 321 bitmap_size_orig, bitmap_page_size, 322 verify_bitmap.base(), 323 verify_bitmap.size(), verify_bitmap.page_size()); 324 if (!verify_bitmap.special()) { 325 os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false, 326 "Cannot commit verification bitmap memory"); 327 } 328 MemTracker::record_virtual_memory_tag(verify_bitmap, mtGC); 329 MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize); 330 _verification_bit_map.initialize(_heap_region, verify_bitmap_region); 331 _verifier = new ShenandoahVerifier(this, &_verification_bit_map); 332 } 333 334 // Reserve aux bitmap for use in object_iterate(). We don't commit it here. 335 size_t aux_bitmap_page_size = bitmap_page_size; 336 337 ReservedSpace aux_bitmap = reserve(_bitmap_size, aux_bitmap_page_size); 338 os::trace_page_sizes_for_requested_size("Aux Bitmap", 339 bitmap_size_orig, aux_bitmap_page_size, 340 aux_bitmap.base(), 341 aux_bitmap.size(), aux_bitmap.page_size()); 342 MemTracker::record_virtual_memory_tag(aux_bitmap, mtGC); 343 _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize); 344 _aux_bitmap_region_special = aux_bitmap.special(); 345 _aux_bit_map.initialize(_heap_region, _aux_bitmap_region); 346 347 // 348 // Create regions and region sets 349 // 350 size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE); 351 size_t region_storage_size_orig = region_align * _num_regions; 352 size_t region_storage_size = align_up(region_storage_size_orig, 353 MAX2(region_page_size, os::vm_allocation_granularity())); 354 355 ReservedSpace region_storage = reserve(region_storage_size, region_page_size); 356 os::trace_page_sizes_for_requested_size("Region Storage", 357 region_storage_size_orig, region_page_size, 358 region_storage.base(), 359 region_storage.size(), region_storage.page_size()); 360 MemTracker::record_virtual_memory_tag(region_storage, mtGC); 361 if (!region_storage.special()) { 362 os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false, 363 "Cannot commit region memory"); 364 } 365 366 // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks. 367 // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there. 368 // If not successful, bite a bullet and allocate at whatever address. 369 { 370 const size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity()); 371 const size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align); 372 const size_t cset_page_size = os::vm_page_size(); 373 374 uintptr_t min = round_up_power_of_2(cset_align); 375 uintptr_t max = (1u << 30u); 376 ReservedSpace cset_rs; 377 378 for (uintptr_t addr = min; addr <= max; addr <<= 1u) { 379 char* req_addr = (char*)addr; 380 assert(is_aligned(req_addr, cset_align), "Should be aligned"); 381 cset_rs = MemoryReserver::reserve(req_addr, cset_size, cset_align, cset_page_size, mtGC); 382 if (cset_rs.is_reserved()) { 383 assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr); 384 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 385 break; 386 } 387 } 388 389 if (_collection_set == nullptr) { 390 cset_rs = MemoryReserver::reserve(cset_size, cset_align, os::vm_page_size(), mtGC); 391 if (!cset_rs.is_reserved()) { 392 vm_exit_during_initialization("Cannot reserve memory for collection set"); 393 } 394 395 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 396 } 397 os::trace_page_sizes_for_requested_size("Collection Set", 398 cset_size, cset_page_size, 399 cset_rs.base(), 400 cset_rs.size(), cset_rs.page_size()); 401 } 402 403 _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC); 404 _affiliations = NEW_C_HEAP_ARRAY(uint8_t, _num_regions, mtGC); 405 406 { 407 ShenandoahHeapLocker locker(lock()); 408 _free_set = new ShenandoahFreeSet(this, _num_regions); 409 for (size_t i = 0; i < _num_regions; i++) { 410 HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i; 411 bool is_committed = i < num_committed_regions; 412 void* loc = region_storage.base() + i * region_align; 413 414 ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed); 415 assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity"); 416 417 _marking_context->initialize_top_at_mark_start(r); 418 _regions[i] = r; 419 assert(!collection_set()->is_in(i), "New region should not be in collection set"); 420 421 _affiliations[i] = ShenandoahAffiliation::FREE; 422 } 423 424 size_t young_cset_regions, old_cset_regions; 425 426 // We are initializing free set. We ignore cset region tallies. 427 size_t first_old, last_old, num_old; 428 _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old, last_old, num_old); 429 _free_set->finish_rebuild(young_cset_regions, old_cset_regions, num_old); 430 } 431 432 if (AlwaysPreTouch) { 433 // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads, 434 // before initialize() below zeroes it with initializing thread. For any given region, 435 // we touch the region and the corresponding bitmaps from the same thread. 436 ShenandoahPushWorkerScope scope(workers(), _max_workers, false); 437 438 _pretouch_heap_page_size = heap_page_size; 439 _pretouch_bitmap_page_size = bitmap_page_size; 440 441 // OS memory managers may want to coalesce back-to-back pages. Make their jobs 442 // simpler by pre-touching continuous spaces (heap and bitmap) separately. 443 444 ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size); 445 _workers->run_task(&bcl); 446 447 ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size); 448 _workers->run_task(&hcl); 449 } 450 451 // 452 // Initialize the rest of GC subsystems 453 // 454 455 _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC); 456 for (uint worker = 0; worker < _max_workers; worker++) { 457 _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC); 458 Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData)); 459 } 460 461 // There should probably be Shenandoah-specific options for these, 462 // just as there are G1-specific options. 463 { 464 ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set(); 465 satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold 466 satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent 467 } 468 469 _monitoring_support = new ShenandoahMonitoringSupport(this); 470 _phase_timings = new ShenandoahPhaseTimings(max_workers()); 471 ShenandoahCodeRoots::initialize(); 472 473 if (ShenandoahPacing) { 474 _pacer = new ShenandoahPacer(this); 475 _pacer->setup_for_idle(); 476 } 477 478 initialize_controller(); 479 480 if (ShenandoahUncommit) { 481 _uncommit_thread = new ShenandoahUncommitThread(this); 482 } 483 484 print_init_logger(); 485 486 FullGCForwarding::initialize(_heap_region); 487 488 return JNI_OK; 489 } 490 491 void ShenandoahHeap::initialize_controller() { 492 _control_thread = new ShenandoahControlThread(); 493 } 494 495 void ShenandoahHeap::print_init_logger() const { 496 ShenandoahInitLogger::print(); 497 } 498 499 void ShenandoahHeap::initialize_mode() { 500 if (ShenandoahGCMode != nullptr) { 501 if (strcmp(ShenandoahGCMode, "satb") == 0) { 502 _gc_mode = new ShenandoahSATBMode(); 503 } else if (strcmp(ShenandoahGCMode, "passive") == 0) { 504 _gc_mode = new ShenandoahPassiveMode(); 505 } else if (strcmp(ShenandoahGCMode, "generational") == 0) { 506 _gc_mode = new ShenandoahGenerationalMode(); 507 } else { 508 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option"); 509 } 510 } else { 511 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)"); 512 } 513 _gc_mode->initialize_flags(); 514 if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) { 515 vm_exit_during_initialization( 516 err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.", 517 _gc_mode->name())); 518 } 519 if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) { 520 vm_exit_during_initialization( 521 err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.", 522 _gc_mode->name())); 523 } 524 } 525 526 void ShenandoahHeap::initialize_heuristics() { 527 _global_generation = new ShenandoahGlobalGeneration(mode()->is_generational(), max_workers(), max_capacity()); 528 _global_generation->initialize_heuristics(mode()); 529 } 530 531 #ifdef _MSC_VER 532 #pragma warning( push ) 533 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list 534 #endif 535 536 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) : 537 CollectedHeap(), 538 _gc_generation(nullptr), 539 _active_generation(nullptr), 540 _initial_size(0), 541 _committed(0), 542 _max_workers(MAX3(ConcGCThreads, ParallelGCThreads, 1U)), 543 _workers(nullptr), 544 _safepoint_workers(nullptr), 545 _heap_region_special(false), 546 _num_regions(0), 547 _regions(nullptr), 548 _affiliations(nullptr), 549 _gc_state_changed(false), 550 _gc_no_progress_count(0), 551 _cancel_requested_time(0), 552 _update_refs_iterator(this), 553 _global_generation(nullptr), 554 _control_thread(nullptr), 555 _uncommit_thread(nullptr), 556 _young_generation(nullptr), 557 _old_generation(nullptr), 558 _shenandoah_policy(policy), 559 _gc_mode(nullptr), 560 _free_set(nullptr), 561 _pacer(nullptr), 562 _verifier(nullptr), 563 _phase_timings(nullptr), 564 _monitoring_support(nullptr), 565 _memory_pool(nullptr), 566 _stw_memory_manager("Shenandoah Pauses"), 567 _cycle_memory_manager("Shenandoah Cycles"), 568 _gc_timer(new ConcurrentGCTimer()), 569 _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes), 570 _marking_context(nullptr), 571 _bitmap_size(0), 572 _bitmap_regions_per_slice(0), 573 _bitmap_bytes_per_slice(0), 574 _bitmap_region_special(false), 575 _aux_bitmap_region_special(false), 576 _liveness_cache(nullptr), 577 _collection_set(nullptr) 578 { 579 // Initialize GC mode early, many subsequent initialization procedures depend on it 580 initialize_mode(); 581 _cancelled_gc.set(GCCause::_no_gc); 582 } 583 584 #ifdef _MSC_VER 585 #pragma warning( pop ) 586 #endif 587 588 void ShenandoahHeap::print_heap_on(outputStream* st) const { 589 st->print_cr("Shenandoah Heap"); 590 st->print_cr(" %zu%s max, %zu%s soft max, %zu%s committed, %zu%s used", 591 byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()), 592 byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()), 593 byte_size_in_proper_unit(committed()), proper_unit_for_byte_size(committed()), 594 byte_size_in_proper_unit(used()), proper_unit_for_byte_size(used())); 595 st->print_cr(" %zu x %zu %s regions", 596 num_regions(), 597 byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()), 598 proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes())); 599 600 st->print("Status: "); 601 if (has_forwarded_objects()) st->print("has forwarded objects, "); 602 if (!mode()->is_generational()) { 603 if (is_concurrent_mark_in_progress()) st->print("marking,"); 604 } else { 605 if (is_concurrent_old_mark_in_progress()) st->print("old marking, "); 606 if (is_concurrent_young_mark_in_progress()) st->print("young marking, "); 607 } 608 if (is_evacuation_in_progress()) st->print("evacuating, "); 609 if (is_update_refs_in_progress()) st->print("updating refs, "); 610 if (is_degenerated_gc_in_progress()) st->print("degenerated gc, "); 611 if (is_full_gc_in_progress()) st->print("full gc, "); 612 if (is_full_gc_move_in_progress()) st->print("full gc move, "); 613 if (is_concurrent_weak_root_in_progress()) st->print("concurrent weak roots, "); 614 if (is_concurrent_strong_root_in_progress() && 615 !is_concurrent_weak_root_in_progress()) st->print("concurrent strong roots, "); 616 617 if (cancelled_gc()) { 618 st->print("cancelled"); 619 } else { 620 st->print("not cancelled"); 621 } 622 st->cr(); 623 624 st->print_cr("Reserved region:"); 625 st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ", 626 p2i(reserved_region().start()), 627 p2i(reserved_region().end())); 628 629 ShenandoahCollectionSet* cset = collection_set(); 630 st->print_cr("Collection set:"); 631 if (cset != nullptr) { 632 st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address())); 633 st->print_cr(" - map (biased): " PTR_FORMAT, p2i(cset->biased_map_address())); 634 } else { 635 st->print_cr(" (null)"); 636 } 637 638 st->cr(); 639 640 if (Verbose) { 641 st->cr(); 642 print_heap_regions_on(st); 643 } 644 } 645 646 void ShenandoahHeap::print_gc_on(outputStream* st) const { 647 print_heap_regions_on(st); 648 } 649 650 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure { 651 public: 652 void do_thread(Thread* thread) { 653 assert(thread != nullptr, "Sanity"); 654 ShenandoahThreadLocalData::initialize_gclab(thread); 655 } 656 }; 657 658 void ShenandoahHeap::post_initialize() { 659 CollectedHeap::post_initialize(); 660 661 // Schedule periodic task to report on gc thread CPU utilization 662 _mmu_tracker.initialize(); 663 664 MutexLocker ml(Threads_lock); 665 666 ShenandoahInitWorkerGCLABClosure init_gclabs; 667 _workers->threads_do(&init_gclabs); 668 669 // gclab can not be initialized early during VM startup, as it can not determinate its max_size. 670 // Now, we will let WorkerThreads to initialize gclab when new worker is created. 671 _workers->set_initialize_gclab(); 672 673 // Note that the safepoint workers may require gclabs if the threads are used to create a heap dump 674 // during a concurrent evacuation phase. 675 if (_safepoint_workers != nullptr) { 676 _safepoint_workers->threads_do(&init_gclabs); 677 _safepoint_workers->set_initialize_gclab(); 678 } 679 680 JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers();) 681 } 682 683 ShenandoahHeuristics* ShenandoahHeap::heuristics() { 684 return _global_generation->heuristics(); 685 } 686 687 size_t ShenandoahHeap::used() const { 688 return global_generation()->used(); 689 } 690 691 size_t ShenandoahHeap::committed() const { 692 return Atomic::load(&_committed); 693 } 694 695 void ShenandoahHeap::increase_committed(size_t bytes) { 696 shenandoah_assert_heaplocked_or_safepoint(); 697 _committed += bytes; 698 } 699 700 void ShenandoahHeap::decrease_committed(size_t bytes) { 701 shenandoah_assert_heaplocked_or_safepoint(); 702 _committed -= bytes; 703 } 704 705 // For tracking usage based on allocations, it should be the case that: 706 // * The sum of regions::used == heap::used 707 // * The sum of a generation's regions::used == generation::used 708 // * The sum of a generation's humongous regions::free == generation::humongous_waste 709 // These invariants are checked by the verifier on GC safepoints. 710 // 711 // Additional notes: 712 // * When a mutator's allocation request causes a region to be retired, the 713 // free memory left in that region is considered waste. It does not contribute 714 // to the usage, but it _does_ contribute to allocation rate. 715 // * The bottom of a PLAB must be aligned on card size. In some cases this will 716 // require padding in front of the PLAB (a filler object). Because this padding 717 // is included in the region's used memory we include the padding in the usage 718 // accounting as waste. 719 // * Mutator allocations are used to compute an allocation rate. They are also 720 // sent to the Pacer for those purposes. 721 // * There are three sources of waste: 722 // 1. The padding used to align a PLAB on card size 723 // 2. Region's free is less than minimum TLAB size and is retired 724 // 3. The unused portion of memory in the last region of a humongous object 725 void ShenandoahHeap::increase_used(const ShenandoahAllocRequest& req) { 726 size_t actual_bytes = req.actual_size() * HeapWordSize; 727 size_t wasted_bytes = req.waste() * HeapWordSize; 728 ShenandoahGeneration* generation = generation_for(req.affiliation()); 729 730 if (req.is_gc_alloc()) { 731 assert(wasted_bytes == 0 || req.type() == ShenandoahAllocRequest::_alloc_plab, "Only PLABs have waste"); 732 increase_used(generation, actual_bytes + wasted_bytes); 733 } else { 734 assert(req.is_mutator_alloc(), "Expected mutator alloc here"); 735 // padding and actual size both count towards allocation counter 736 generation->increase_allocated(actual_bytes + wasted_bytes); 737 738 // only actual size counts toward usage for mutator allocations 739 increase_used(generation, actual_bytes); 740 741 // notify pacer of both actual size and waste 742 notify_mutator_alloc_words(req.actual_size(), req.waste()); 743 744 if (wasted_bytes > 0 && ShenandoahHeapRegion::requires_humongous(req.actual_size())) { 745 increase_humongous_waste(generation,wasted_bytes); 746 } 747 } 748 } 749 750 void ShenandoahHeap::increase_humongous_waste(ShenandoahGeneration* generation, size_t bytes) { 751 generation->increase_humongous_waste(bytes); 752 if (!generation->is_global()) { 753 global_generation()->increase_humongous_waste(bytes); 754 } 755 } 756 757 void ShenandoahHeap::decrease_humongous_waste(ShenandoahGeneration* generation, size_t bytes) { 758 generation->decrease_humongous_waste(bytes); 759 if (!generation->is_global()) { 760 global_generation()->decrease_humongous_waste(bytes); 761 } 762 } 763 764 void ShenandoahHeap::increase_used(ShenandoahGeneration* generation, size_t bytes) { 765 generation->increase_used(bytes); 766 if (!generation->is_global()) { 767 global_generation()->increase_used(bytes); 768 } 769 } 770 771 void ShenandoahHeap::decrease_used(ShenandoahGeneration* generation, size_t bytes) { 772 generation->decrease_used(bytes); 773 if (!generation->is_global()) { 774 global_generation()->decrease_used(bytes); 775 } 776 } 777 778 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, size_t waste) { 779 if (ShenandoahPacing) { 780 control_thread()->pacing_notify_alloc(words); 781 if (waste > 0) { 782 pacer()->claim_for_alloc<true>(waste); 783 } 784 } 785 } 786 787 size_t ShenandoahHeap::capacity() const { 788 return committed(); 789 } 790 791 size_t ShenandoahHeap::max_capacity() const { 792 return _num_regions * ShenandoahHeapRegion::region_size_bytes(); 793 } 794 795 size_t ShenandoahHeap::soft_max_capacity() const { 796 size_t v = Atomic::load(&_soft_max_size); 797 assert(min_capacity() <= v && v <= max_capacity(), 798 "Should be in bounds: %zu <= %zu <= %zu", 799 min_capacity(), v, max_capacity()); 800 return v; 801 } 802 803 void ShenandoahHeap::set_soft_max_capacity(size_t v) { 804 assert(min_capacity() <= v && v <= max_capacity(), 805 "Should be in bounds: %zu <= %zu <= %zu", 806 min_capacity(), v, max_capacity()); 807 Atomic::store(&_soft_max_size, v); 808 } 809 810 size_t ShenandoahHeap::min_capacity() const { 811 return _minimum_size; 812 } 813 814 size_t ShenandoahHeap::initial_capacity() const { 815 return _initial_size; 816 } 817 818 bool ShenandoahHeap::is_in(const void* p) const { 819 if (!is_in_reserved(p)) { 820 return false; 821 } 822 823 if (is_full_gc_move_in_progress()) { 824 // Full GC move is running, we do not have a consistent region 825 // information yet. But we know the pointer is in heap. 826 return true; 827 } 828 829 // Now check if we point to a live section in active region. 830 const ShenandoahHeapRegion* r = heap_region_containing(p); 831 if (p >= r->top()) { 832 return false; 833 } 834 835 if (r->is_active()) { 836 return true; 837 } 838 839 // The region is trash, but won't be recycled until after concurrent weak 840 // roots. We also don't allow mutators to allocate from trash regions 841 // during weak roots. Concurrent class unloading may access unmarked oops 842 // in trash regions. 843 return r->is_trash() && is_concurrent_weak_root_in_progress(); 844 } 845 846 void ShenandoahHeap::notify_soft_max_changed() { 847 if (_uncommit_thread != nullptr) { 848 _uncommit_thread->notify_soft_max_changed(); 849 } 850 } 851 852 void ShenandoahHeap::notify_explicit_gc_requested() { 853 if (_uncommit_thread != nullptr) { 854 _uncommit_thread->notify_explicit_gc_requested(); 855 } 856 } 857 858 bool ShenandoahHeap::check_soft_max_changed() { 859 size_t new_soft_max = Atomic::load(&SoftMaxHeapSize); 860 size_t old_soft_max = soft_max_capacity(); 861 if (new_soft_max != old_soft_max) { 862 new_soft_max = MAX2(min_capacity(), new_soft_max); 863 new_soft_max = MIN2(max_capacity(), new_soft_max); 864 if (new_soft_max != old_soft_max) { 865 log_info(gc)("Soft Max Heap Size: %zu%s -> %zu%s", 866 byte_size_in_proper_unit(old_soft_max), proper_unit_for_byte_size(old_soft_max), 867 byte_size_in_proper_unit(new_soft_max), proper_unit_for_byte_size(new_soft_max) 868 ); 869 set_soft_max_capacity(new_soft_max); 870 return true; 871 } 872 } 873 return false; 874 } 875 876 void ShenandoahHeap::notify_heap_changed() { 877 // Update monitoring counters when we took a new region. This amortizes the 878 // update costs on slow path. 879 monitoring_support()->notify_heap_changed(); 880 _heap_changed.try_set(); 881 } 882 883 void ShenandoahHeap::set_forced_counters_update(bool value) { 884 monitoring_support()->set_forced_counters_update(value); 885 } 886 887 void ShenandoahHeap::handle_force_counters_update() { 888 monitoring_support()->handle_force_counters_update(); 889 } 890 891 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) { 892 // New object should fit the GCLAB size 893 size_t min_size = MAX2(size, PLAB::min_size()); 894 895 // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively. 896 size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2; 897 898 new_size = MIN2(new_size, PLAB::max_size()); 899 new_size = MAX2(new_size, PLAB::min_size()); 900 901 // Record new heuristic value even if we take any shortcut. This captures 902 // the case when moderately-sized objects always take a shortcut. At some point, 903 // heuristics should catch up with them. 904 log_debug(gc, free)("Set new GCLAB size: %zu", new_size); 905 ShenandoahThreadLocalData::set_gclab_size(thread, new_size); 906 907 if (new_size < size) { 908 // New size still does not fit the object. Fall back to shared allocation. 909 // This avoids retiring perfectly good GCLABs, when we encounter a large object. 910 log_debug(gc, free)("New gclab size (%zu) is too small for %zu", new_size, size); 911 return nullptr; 912 } 913 914 // Retire current GCLAB, and allocate a new one. 915 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 916 gclab->retire(); 917 918 size_t actual_size = 0; 919 HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size); 920 if (gclab_buf == nullptr) { 921 return nullptr; 922 } 923 924 assert (size <= actual_size, "allocation should fit"); 925 926 // ...and clear or zap just allocated TLAB, if needed. 927 if (ZeroTLAB) { 928 Copy::zero_to_words(gclab_buf, actual_size); 929 } else if (ZapTLAB) { 930 // Skip mangling the space corresponding to the object header to 931 // ensure that the returned space is not considered parsable by 932 // any concurrent GC thread. 933 size_t hdr_size = oopDesc::header_size(); 934 Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal); 935 } 936 gclab->set_buf(gclab_buf, actual_size); 937 return gclab->allocate(size); 938 } 939 940 // Called from stubs in JIT code or interpreter 941 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size, 942 size_t requested_size, 943 size_t* actual_size) { 944 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size); 945 HeapWord* res = allocate_memory(req); 946 if (res != nullptr) { 947 *actual_size = req.actual_size(); 948 } else { 949 *actual_size = 0; 950 } 951 return res; 952 } 953 954 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size, 955 size_t word_size, 956 size_t* actual_size) { 957 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size); 958 HeapWord* res = allocate_memory(req); 959 if (res != nullptr) { 960 *actual_size = req.actual_size(); 961 } else { 962 *actual_size = 0; 963 } 964 return res; 965 } 966 967 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) { 968 intptr_t pacer_epoch = 0; 969 bool in_new_region = false; 970 HeapWord* result = nullptr; 971 972 if (req.is_mutator_alloc()) { 973 if (ShenandoahPacing) { 974 pacer()->pace_for_alloc(req.size()); 975 pacer_epoch = pacer()->epoch(); 976 } 977 978 if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) { 979 result = allocate_memory_under_lock(req, in_new_region); 980 } 981 982 // Check that gc overhead is not exceeded. 983 // 984 // Shenandoah will grind along for quite a while allocating one 985 // object at a time using shared (non-tlab) allocations. This check 986 // is testing that the GC overhead limit has not been exceeded. 987 // This will notify the collector to start a cycle, but will raise 988 // an OOME to the mutator if the last Full GCs have not made progress. 989 // gc_no_progress_count is incremented following each degen or full GC that fails to achieve is_good_progress(). 990 if (result == nullptr && !req.is_lab_alloc() && get_gc_no_progress_count() > ShenandoahNoProgressThreshold) { 991 control_thread()->handle_alloc_failure(req, false); 992 req.set_actual_size(0); 993 return nullptr; 994 } 995 996 if (result == nullptr) { 997 // Block until control thread reacted, then retry allocation. 998 // 999 // It might happen that one of the threads requesting allocation would unblock 1000 // way later after GC happened, only to fail the second allocation, because 1001 // other threads have already depleted the free storage. In this case, a better 1002 // strategy is to try again, until at least one full GC has completed. 1003 // 1004 // Stop retrying and return nullptr to cause OOMError exception if our allocation failed even after: 1005 // a) We experienced a GC that had good progress, or 1006 // b) We experienced at least one Full GC (whether or not it had good progress) 1007 1008 const size_t original_count = shenandoah_policy()->full_gc_count(); 1009 while (result == nullptr && should_retry_allocation(original_count)) { 1010 control_thread()->handle_alloc_failure(req, true); 1011 result = allocate_memory_under_lock(req, in_new_region); 1012 } 1013 if (result != nullptr) { 1014 // If our allocation request has been satisfied after it initially failed, we count this as good gc progress 1015 notify_gc_progress(); 1016 } 1017 if (log_develop_is_enabled(Debug, gc, alloc)) { 1018 ResourceMark rm; 1019 log_debug(gc, alloc)("Thread: %s, Result: " PTR_FORMAT ", Request: %s, Size: %zu" 1020 ", Original: %zu, Latest: %zu", 1021 Thread::current()->name(), p2i(result), req.type_string(), req.size(), 1022 original_count, get_gc_no_progress_count()); 1023 } 1024 } 1025 } else { 1026 assert(req.is_gc_alloc(), "Can only accept GC allocs here"); 1027 result = allocate_memory_under_lock(req, in_new_region); 1028 // Do not call handle_alloc_failure() here, because we cannot block. 1029 // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac(). 1030 } 1031 1032 if (in_new_region) { 1033 notify_heap_changed(); 1034 } 1035 1036 if (result == nullptr) { 1037 req.set_actual_size(0); 1038 } 1039 1040 // This is called regardless of the outcome of the allocation to account 1041 // for any waste created by retiring regions with this request. 1042 increase_used(req); 1043 1044 if (result != nullptr) { 1045 size_t requested = req.size(); 1046 size_t actual = req.actual_size(); 1047 1048 assert (req.is_lab_alloc() || (requested == actual), 1049 "Only LAB allocations are elastic: %s, requested = %zu, actual = %zu", 1050 ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual); 1051 1052 if (req.is_mutator_alloc()) { 1053 // If we requested more than we were granted, give the rest back to pacer. 1054 // This only matters if we are in the same pacing epoch: do not try to unpace 1055 // over the budget for the other phase. 1056 if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) { 1057 pacer()->unpace_for_alloc(pacer_epoch, requested - actual); 1058 } 1059 } 1060 } 1061 1062 return result; 1063 } 1064 1065 inline bool ShenandoahHeap::should_retry_allocation(size_t original_full_gc_count) const { 1066 return shenandoah_policy()->full_gc_count() == original_full_gc_count 1067 && !shenandoah_policy()->is_at_shutdown(); 1068 } 1069 1070 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) { 1071 // If we are dealing with mutator allocation, then we may need to block for safepoint. 1072 // We cannot block for safepoint for GC allocations, because there is a high chance 1073 // we are already running at safepoint or from stack watermark machinery, and we cannot 1074 // block again. 1075 ShenandoahHeapLocker locker(lock(), req.is_mutator_alloc()); 1076 1077 // Make sure the old generation has room for either evacuations or promotions before trying to allocate. 1078 if (req.is_old() && !old_generation()->can_allocate(req)) { 1079 return nullptr; 1080 } 1081 1082 // If TLAB request size is greater than available, allocate() will attempt to downsize request to fit within available 1083 // memory. 1084 HeapWord* result = _free_set->allocate(req, in_new_region); 1085 1086 // Record the plab configuration for this result and register the object. 1087 if (result != nullptr && req.is_old()) { 1088 old_generation()->configure_plab_for_current_thread(req); 1089 if (req.type() == ShenandoahAllocRequest::_alloc_shared_gc) { 1090 // Register the newly allocated object while we're holding the global lock since there's no synchronization 1091 // built in to the implementation of register_object(). There are potential races when multiple independent 1092 // threads are allocating objects, some of which might span the same card region. For example, consider 1093 // a card table's memory region within which three objects are being allocated by three different threads: 1094 // 1095 // objects being "concurrently" allocated: 1096 // [-----a------][-----b-----][--------------c------------------] 1097 // [---- card table memory range --------------] 1098 // 1099 // Before any objects are allocated, this card's memory range holds no objects. Note that allocation of object a 1100 // wants to set the starts-object, first-start, and last-start attributes of the preceding card region. 1101 // Allocation of object b wants to set the starts-object, first-start, and last-start attributes of this card region. 1102 // Allocation of object c also wants to set the starts-object, first-start, and last-start attributes of this 1103 // card region. 1104 // 1105 // The thread allocating b and the thread allocating c can "race" in various ways, resulting in confusion, such as 1106 // last-start representing object b while first-start represents object c. This is why we need to require all 1107 // register_object() invocations to be "mutually exclusive" with respect to each card's memory range. 1108 old_generation()->card_scan()->register_object(result); 1109 } 1110 } 1111 1112 return result; 1113 } 1114 1115 HeapWord* ShenandoahHeap::mem_allocate(size_t size, 1116 bool* gc_overhead_limit_was_exceeded) { 1117 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size); 1118 return allocate_memory(req); 1119 } 1120 1121 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data, 1122 size_t size, 1123 Metaspace::MetadataType mdtype) { 1124 MetaWord* result; 1125 1126 // Inform metaspace OOM to GC heuristics if class unloading is possible. 1127 ShenandoahHeuristics* h = global_generation()->heuristics(); 1128 if (h->can_unload_classes()) { 1129 h->record_metaspace_oom(); 1130 } 1131 1132 // Expand and retry allocation 1133 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 1134 if (result != nullptr) { 1135 return result; 1136 } 1137 1138 // Start full GC 1139 collect(GCCause::_metadata_GC_clear_soft_refs); 1140 1141 // Retry allocation 1142 result = loader_data->metaspace_non_null()->allocate(size, mdtype); 1143 if (result != nullptr) { 1144 return result; 1145 } 1146 1147 // Expand and retry allocation 1148 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 1149 if (result != nullptr) { 1150 return result; 1151 } 1152 1153 // Out of memory 1154 return nullptr; 1155 } 1156 1157 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure { 1158 private: 1159 ShenandoahHeap* const _heap; 1160 Thread* const _thread; 1161 public: 1162 ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) : 1163 _heap(heap), _thread(Thread::current()) {} 1164 1165 void do_object(oop p) { 1166 shenandoah_assert_marked(nullptr, p); 1167 if (!p->is_forwarded()) { 1168 _heap->evacuate_object(p, _thread); 1169 } 1170 } 1171 }; 1172 1173 class ShenandoahEvacuationTask : public WorkerTask { 1174 private: 1175 ShenandoahHeap* const _sh; 1176 ShenandoahCollectionSet* const _cs; 1177 bool _concurrent; 1178 public: 1179 ShenandoahEvacuationTask(ShenandoahHeap* sh, 1180 ShenandoahCollectionSet* cs, 1181 bool concurrent) : 1182 WorkerTask("Shenandoah Evacuation"), 1183 _sh(sh), 1184 _cs(cs), 1185 _concurrent(concurrent) 1186 {} 1187 1188 void work(uint worker_id) { 1189 if (_concurrent) { 1190 ShenandoahConcurrentWorkerSession worker_session(worker_id); 1191 ShenandoahSuspendibleThreadSetJoiner stsj; 1192 ShenandoahEvacOOMScope oom_evac_scope; 1193 do_work(); 1194 } else { 1195 ShenandoahParallelWorkerSession worker_session(worker_id); 1196 ShenandoahEvacOOMScope oom_evac_scope; 1197 do_work(); 1198 } 1199 } 1200 1201 private: 1202 void do_work() { 1203 ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh); 1204 ShenandoahHeapRegion* r; 1205 while ((r =_cs->claim_next()) != nullptr) { 1206 assert(r->has_live(), "Region %zu should have been reclaimed early", r->index()); 1207 _sh->marked_object_iterate(r, &cl); 1208 1209 if (ShenandoahPacing) { 1210 _sh->pacer()->report_evac(r->used() >> LogHeapWordSize); 1211 } 1212 1213 if (_sh->check_cancelled_gc_and_yield(_concurrent)) { 1214 break; 1215 } 1216 } 1217 } 1218 }; 1219 1220 class ShenandoahRetireGCLABClosure : public ThreadClosure { 1221 private: 1222 bool const _resize; 1223 public: 1224 explicit ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {} 1225 void do_thread(Thread* thread) override { 1226 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1227 assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name()); 1228 gclab->retire(); 1229 if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) { 1230 ShenandoahThreadLocalData::set_gclab_size(thread, 0); 1231 } 1232 1233 if (ShenandoahHeap::heap()->mode()->is_generational()) { 1234 PLAB* plab = ShenandoahThreadLocalData::plab(thread); 1235 assert(plab != nullptr, "PLAB should be initialized for %s", thread->name()); 1236 1237 // There are two reasons to retire all plabs between old-gen evacuation passes. 1238 // 1. We need to make the plab memory parsable by remembered-set scanning. 1239 // 2. We need to establish a trustworthy UpdateWaterMark value within each old-gen heap region 1240 ShenandoahGenerationalHeap::heap()->retire_plab(plab, thread); 1241 1242 // Re-enable promotions for the next evacuation phase. 1243 ShenandoahThreadLocalData::enable_plab_promotions(thread); 1244 1245 // Reset the fill size for next evacuation phase. 1246 if (_resize && ShenandoahThreadLocalData::plab_size(thread) > 0) { 1247 ShenandoahThreadLocalData::set_plab_size(thread, 0); 1248 } 1249 } 1250 } 1251 }; 1252 1253 class ShenandoahGCStatePropagator : public HandshakeClosure { 1254 public: 1255 explicit ShenandoahGCStatePropagator(char gc_state) : 1256 HandshakeClosure("Shenandoah GC State Change"), 1257 _gc_state(gc_state) {} 1258 1259 void do_thread(Thread* thread) override { 1260 ShenandoahThreadLocalData::set_gc_state(thread, _gc_state); 1261 } 1262 private: 1263 char _gc_state; 1264 }; 1265 1266 class ShenandoahPrepareForUpdateRefs : public HandshakeClosure { 1267 public: 1268 explicit ShenandoahPrepareForUpdateRefs(char gc_state) : 1269 HandshakeClosure("Shenandoah Prepare for Update Refs"), 1270 _retire(ResizeTLAB), _propagator(gc_state) {} 1271 1272 void do_thread(Thread* thread) override { 1273 _propagator.do_thread(thread); 1274 if (ShenandoahThreadLocalData::gclab(thread) != nullptr) { 1275 _retire.do_thread(thread); 1276 } 1277 } 1278 private: 1279 ShenandoahRetireGCLABClosure _retire; 1280 ShenandoahGCStatePropagator _propagator; 1281 }; 1282 1283 void ShenandoahHeap::evacuate_collection_set(bool concurrent) { 1284 ShenandoahEvacuationTask task(this, _collection_set, concurrent); 1285 workers()->run_task(&task); 1286 } 1287 1288 void ShenandoahHeap::concurrent_prepare_for_update_refs() { 1289 { 1290 // Java threads take this lock while they are being attached and added to the list of thread. 1291 // If another thread holds this lock before we update the gc state, it will receive a stale 1292 // gc state, but they will have been added to the list of java threads and so will be corrected 1293 // by the following handshake. 1294 MutexLocker lock(Threads_lock); 1295 1296 // A cancellation at this point means the degenerated cycle must resume from update-refs. 1297 set_gc_state_concurrent(EVACUATION, false); 1298 set_gc_state_concurrent(WEAK_ROOTS, false); 1299 set_gc_state_concurrent(UPDATE_REFS, true); 1300 } 1301 1302 // This will propagate the gc state and retire gclabs and plabs for threads that require it. 1303 ShenandoahPrepareForUpdateRefs prepare_for_update_refs(_gc_state.raw_value()); 1304 1305 // The handshake won't touch worker threads (or control thread, or VM thread), so do those separately. 1306 Threads::non_java_threads_do(&prepare_for_update_refs); 1307 1308 // Now retire gclabs and plabs and propagate gc_state for mutator threads 1309 Handshake::execute(&prepare_for_update_refs); 1310 1311 _update_refs_iterator.reset(); 1312 } 1313 1314 class ShenandoahCompositeHandshakeClosure : public HandshakeClosure { 1315 HandshakeClosure* _handshake_1; 1316 HandshakeClosure* _handshake_2; 1317 public: 1318 ShenandoahCompositeHandshakeClosure(HandshakeClosure* handshake_1, HandshakeClosure* handshake_2) : 1319 HandshakeClosure(handshake_2->name()), 1320 _handshake_1(handshake_1), _handshake_2(handshake_2) {} 1321 1322 void do_thread(Thread* thread) override { 1323 _handshake_1->do_thread(thread); 1324 _handshake_2->do_thread(thread); 1325 } 1326 }; 1327 1328 void ShenandoahHeap::concurrent_final_roots(HandshakeClosure* handshake_closure) { 1329 { 1330 assert(!is_evacuation_in_progress(), "Should not evacuate for abbreviated or old cycles"); 1331 MutexLocker lock(Threads_lock); 1332 set_gc_state_concurrent(WEAK_ROOTS, false); 1333 } 1334 1335 ShenandoahGCStatePropagator propagator(_gc_state.raw_value()); 1336 Threads::non_java_threads_do(&propagator); 1337 if (handshake_closure == nullptr) { 1338 Handshake::execute(&propagator); 1339 } else { 1340 ShenandoahCompositeHandshakeClosure composite(&propagator, handshake_closure); 1341 Handshake::execute(&composite); 1342 } 1343 } 1344 1345 oop ShenandoahHeap::evacuate_object(oop p, Thread* thread) { 1346 assert(thread == Thread::current(), "Expected thread parameter to be current thread."); 1347 if (ShenandoahThreadLocalData::is_oom_during_evac(thread)) { 1348 // This thread went through the OOM during evac protocol. It is safe to return 1349 // the forward pointer. It must not attempt to evacuate any other objects. 1350 return ShenandoahBarrierSet::resolve_forwarded(p); 1351 } 1352 1353 assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope"); 1354 1355 ShenandoahHeapRegion* r = heap_region_containing(p); 1356 assert(!r->is_humongous(), "never evacuate humongous objects"); 1357 1358 ShenandoahAffiliation target_gen = r->affiliation(); 1359 return try_evacuate_object(p, thread, r, target_gen); 1360 } 1361 1362 oop ShenandoahHeap::try_evacuate_object(oop p, Thread* thread, ShenandoahHeapRegion* from_region, 1363 ShenandoahAffiliation target_gen) { 1364 assert(target_gen == YOUNG_GENERATION, "Only expect evacuations to young in this mode"); 1365 assert(from_region->is_young(), "Only expect evacuations from young in this mode"); 1366 bool alloc_from_lab = true; 1367 HeapWord* copy = nullptr; 1368 size_t size = ShenandoahForwarding::size(p); 1369 1370 #ifdef ASSERT 1371 if (ShenandoahOOMDuringEvacALot && 1372 (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call 1373 copy = nullptr; 1374 } else { 1375 #endif 1376 if (UseTLAB) { 1377 copy = allocate_from_gclab(thread, size); 1378 } 1379 if (copy == nullptr) { 1380 // If we failed to allocate in LAB, we'll try a shared allocation. 1381 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size, target_gen); 1382 copy = allocate_memory(req); 1383 alloc_from_lab = false; 1384 } 1385 #ifdef ASSERT 1386 } 1387 #endif 1388 1389 if (copy == nullptr) { 1390 control_thread()->handle_alloc_failure_evac(size); 1391 1392 _oom_evac_handler.handle_out_of_memory_during_evacuation(); 1393 1394 return ShenandoahBarrierSet::resolve_forwarded(p); 1395 } 1396 1397 // Copy the object: 1398 Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(p), copy, size); 1399 1400 // Try to install the new forwarding pointer. 1401 oop copy_val = cast_to_oop(copy); 1402 oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val); 1403 if (result == copy_val) { 1404 // Successfully evacuated. Our copy is now the public one! 1405 ContinuationGCSupport::relativize_stack_chunk(copy_val); 1406 shenandoah_assert_correct(nullptr, copy_val); 1407 return copy_val; 1408 } else { 1409 // Failed to evacuate. We need to deal with the object that is left behind. Since this 1410 // new allocation is certainly after TAMS, it will be considered live in the next cycle. 1411 // But if it happens to contain references to evacuated regions, those references would 1412 // not get updated for this stale copy during this cycle, and we will crash while scanning 1413 // it the next cycle. 1414 if (alloc_from_lab) { 1415 // For LAB allocations, it is enough to rollback the allocation ptr. Either the next 1416 // object will overwrite this stale copy, or the filler object on LAB retirement will 1417 // do this. 1418 ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size); 1419 } else { 1420 // For non-LAB allocations, we have no way to retract the allocation, and 1421 // have to explicitly overwrite the copy with the filler object. With that overwrite, 1422 // we have to keep the fwdptr initialized and pointing to our (stale) copy. 1423 assert(size >= ShenandoahHeap::min_fill_size(), "previously allocated object known to be larger than min_size"); 1424 fill_with_object(copy, size); 1425 shenandoah_assert_correct(nullptr, copy_val); 1426 // For non-LAB allocations, the object has already been registered 1427 } 1428 shenandoah_assert_correct(nullptr, result); 1429 return result; 1430 } 1431 } 1432 1433 void ShenandoahHeap::trash_cset_regions() { 1434 ShenandoahHeapLocker locker(lock()); 1435 1436 ShenandoahCollectionSet* set = collection_set(); 1437 ShenandoahHeapRegion* r; 1438 set->clear_current_index(); 1439 while ((r = set->next()) != nullptr) { 1440 r->make_trash(); 1441 } 1442 collection_set()->clear(); 1443 } 1444 1445 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const { 1446 st->print_cr("Heap Regions:"); 1447 st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start"); 1448 st->print_cr(" HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set"); 1449 st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start"); 1450 st->print_cr("UWM=update watermark, U=used"); 1451 st->print_cr("T=TLAB allocs, G=GCLAB allocs"); 1452 st->print_cr("S=shared allocs, L=live data"); 1453 st->print_cr("CP=critical pins"); 1454 1455 for (size_t i = 0; i < num_regions(); i++) { 1456 get_region(i)->print_on(st); 1457 } 1458 } 1459 1460 size_t ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) const { 1461 assert(start->is_humongous_start(), "reclaim regions starting with the first one"); 1462 assert(!start->has_live(), "liveness must be zero"); 1463 1464 // Do not try to get the size of this humongous object. STW collections will 1465 // have already unloaded classes, so an unmarked object may have a bad klass pointer. 1466 ShenandoahHeapRegion* region = start; 1467 size_t index = region->index(); 1468 do { 1469 assert(region->is_humongous(), "Expect correct humongous start or continuation"); 1470 assert(!region->is_cset(), "Humongous region should not be in collection set"); 1471 region->make_trash_immediate(); 1472 region = get_region(++index); 1473 } while (region != nullptr && region->is_humongous_continuation()); 1474 1475 // Return number of regions trashed 1476 return index - start->index(); 1477 } 1478 1479 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure { 1480 public: 1481 ShenandoahCheckCleanGCLABClosure() {} 1482 void do_thread(Thread* thread) { 1483 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1484 assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name()); 1485 assert(gclab->words_remaining() == 0, "GCLAB should not need retirement"); 1486 1487 if (ShenandoahHeap::heap()->mode()->is_generational()) { 1488 PLAB* plab = ShenandoahThreadLocalData::plab(thread); 1489 assert(plab != nullptr, "PLAB should be initialized for %s", thread->name()); 1490 assert(plab->words_remaining() == 0, "PLAB should not need retirement"); 1491 } 1492 } 1493 }; 1494 1495 void ShenandoahHeap::labs_make_parsable() { 1496 assert(UseTLAB, "Only call with UseTLAB"); 1497 1498 ShenandoahRetireGCLABClosure cl(false); 1499 1500 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1501 ThreadLocalAllocBuffer& tlab = t->tlab(); 1502 tlab.make_parsable(); 1503 if (ZeroTLAB) { 1504 t->retire_tlab(); 1505 } 1506 cl.do_thread(t); 1507 } 1508 1509 workers()->threads_do(&cl); 1510 1511 if (safepoint_workers() != nullptr) { 1512 safepoint_workers()->threads_do(&cl); 1513 } 1514 } 1515 1516 void ShenandoahHeap::tlabs_retire(bool resize) { 1517 assert(UseTLAB, "Only call with UseTLAB"); 1518 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1519 1520 ThreadLocalAllocStats stats; 1521 1522 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1523 t->retire_tlab(&stats); 1524 if (resize) { 1525 t->tlab().resize(); 1526 } 1527 } 1528 1529 stats.publish(); 1530 1531 #ifdef ASSERT 1532 ShenandoahCheckCleanGCLABClosure cl; 1533 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1534 cl.do_thread(t); 1535 } 1536 workers()->threads_do(&cl); 1537 #endif 1538 } 1539 1540 void ShenandoahHeap::gclabs_retire(bool resize) { 1541 assert(UseTLAB, "Only call with UseTLAB"); 1542 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1543 1544 ShenandoahRetireGCLABClosure cl(resize); 1545 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1546 cl.do_thread(t); 1547 } 1548 1549 workers()->threads_do(&cl); 1550 1551 if (safepoint_workers() != nullptr) { 1552 safepoint_workers()->threads_do(&cl); 1553 } 1554 } 1555 1556 // Returns size in bytes 1557 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const { 1558 // Return the max allowed size, and let the allocation path 1559 // figure out the safe size for current allocation. 1560 return ShenandoahHeapRegion::max_tlab_size_bytes(); 1561 } 1562 1563 size_t ShenandoahHeap::max_tlab_size() const { 1564 // Returns size in words 1565 return ShenandoahHeapRegion::max_tlab_size_words(); 1566 } 1567 1568 void ShenandoahHeap::collect_as_vm_thread(GCCause::Cause cause) { 1569 // These requests are ignored because we can't easily have Shenandoah jump into 1570 // a synchronous (degenerated or full) cycle while it is in the middle of a concurrent 1571 // cycle. We _could_ cancel the concurrent cycle and then try to run a cycle directly 1572 // on the VM thread, but this would confuse the control thread mightily and doesn't 1573 // seem worth the trouble. Instead, we will have the caller thread run (and wait for) a 1574 // concurrent cycle in the prologue of the heap inspect/dump operation. This is how 1575 // other concurrent collectors in the JVM handle this scenario as well. 1576 assert(Thread::current()->is_VM_thread(), "Should be the VM thread"); 1577 guarantee(cause == GCCause::_heap_dump || cause == GCCause::_heap_inspection, "Invalid cause"); 1578 } 1579 1580 void ShenandoahHeap::collect(GCCause::Cause cause) { 1581 control_thread()->request_gc(cause); 1582 } 1583 1584 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) { 1585 //assert(false, "Shouldn't need to do full collections"); 1586 } 1587 1588 HeapWord* ShenandoahHeap::block_start(const void* addr) const { 1589 ShenandoahHeapRegion* r = heap_region_containing(addr); 1590 if (r != nullptr) { 1591 return r->block_start(addr); 1592 } 1593 return nullptr; 1594 } 1595 1596 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const { 1597 ShenandoahHeapRegion* r = heap_region_containing(addr); 1598 return r->block_is_obj(addr); 1599 } 1600 1601 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const { 1602 return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr); 1603 } 1604 1605 void ShenandoahHeap::prepare_for_verify() { 1606 if (SafepointSynchronize::is_at_safepoint() && UseTLAB) { 1607 labs_make_parsable(); 1608 } 1609 } 1610 1611 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const { 1612 if (_shenandoah_policy->is_at_shutdown()) { 1613 return; 1614 } 1615 1616 if (_control_thread != nullptr) { 1617 tcl->do_thread(_control_thread); 1618 } 1619 1620 if (_uncommit_thread != nullptr) { 1621 tcl->do_thread(_uncommit_thread); 1622 } 1623 1624 workers()->threads_do(tcl); 1625 if (_safepoint_workers != nullptr) { 1626 _safepoint_workers->threads_do(tcl); 1627 } 1628 } 1629 1630 void ShenandoahHeap::print_tracing_info() const { 1631 LogTarget(Info, gc, stats) lt; 1632 if (lt.is_enabled()) { 1633 ResourceMark rm; 1634 LogStream ls(lt); 1635 1636 phase_timings()->print_global_on(&ls); 1637 1638 ls.cr(); 1639 ls.cr(); 1640 1641 shenandoah_policy()->print_gc_stats(&ls); 1642 1643 ls.cr(); 1644 ls.cr(); 1645 } 1646 } 1647 1648 void ShenandoahHeap::set_gc_generation(ShenandoahGeneration* generation) { 1649 shenandoah_assert_control_or_vm_thread_at_safepoint(); 1650 _gc_generation = generation; 1651 } 1652 1653 // Active generation may only be set by the VM thread at a safepoint. 1654 void ShenandoahHeap::set_active_generation() { 1655 assert(Thread::current()->is_VM_thread(), "Only the VM Thread"); 1656 assert(SafepointSynchronize::is_at_safepoint(), "Only at a safepoint!"); 1657 assert(_gc_generation != nullptr, "Will set _active_generation to nullptr"); 1658 _active_generation = _gc_generation; 1659 } 1660 1661 void ShenandoahHeap::on_cycle_start(GCCause::Cause cause, ShenandoahGeneration* generation) { 1662 shenandoah_policy()->record_collection_cause(cause); 1663 1664 const GCCause::Cause current = gc_cause(); 1665 assert(current == GCCause::_no_gc, "Over-writing cause: %s, with: %s", 1666 GCCause::to_string(current), GCCause::to_string(cause)); 1667 assert(_gc_generation == nullptr, "Over-writing _gc_generation"); 1668 1669 set_gc_cause(cause); 1670 set_gc_generation(generation); 1671 1672 generation->heuristics()->record_cycle_start(); 1673 } 1674 1675 void ShenandoahHeap::on_cycle_end(ShenandoahGeneration* generation) { 1676 assert(gc_cause() != GCCause::_no_gc, "cause wasn't set"); 1677 assert(_gc_generation != nullptr, "_gc_generation wasn't set"); 1678 1679 generation->heuristics()->record_cycle_end(); 1680 if (mode()->is_generational() && generation->is_global()) { 1681 // If we just completed a GLOBAL GC, claim credit for completion of young-gen and old-gen GC as well 1682 young_generation()->heuristics()->record_cycle_end(); 1683 old_generation()->heuristics()->record_cycle_end(); 1684 } 1685 1686 set_gc_generation(nullptr); 1687 set_gc_cause(GCCause::_no_gc); 1688 } 1689 1690 void ShenandoahHeap::verify(VerifyOption vo) { 1691 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 1692 if (ShenandoahVerify) { 1693 verifier()->verify_generic(vo); 1694 } else { 1695 // TODO: Consider allocating verification bitmaps on demand, 1696 // and turn this on unconditionally. 1697 } 1698 } 1699 } 1700 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const { 1701 return _free_set->capacity(); 1702 } 1703 1704 class ObjectIterateScanRootClosure : public BasicOopIterateClosure { 1705 private: 1706 MarkBitMap* _bitmap; 1707 ShenandoahScanObjectStack* _oop_stack; 1708 ShenandoahHeap* const _heap; 1709 ShenandoahMarkingContext* const _marking_context; 1710 1711 template <class T> 1712 void do_oop_work(T* p) { 1713 T o = RawAccess<>::oop_load(p); 1714 if (!CompressedOops::is_null(o)) { 1715 oop obj = CompressedOops::decode_not_null(o); 1716 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1717 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1718 return; 1719 } 1720 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1721 1722 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1723 if (!_bitmap->is_marked(obj)) { 1724 _bitmap->mark(obj); 1725 _oop_stack->push(obj); 1726 } 1727 } 1728 } 1729 public: 1730 ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) : 1731 _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()), 1732 _marking_context(_heap->marking_context()) {} 1733 void do_oop(oop* p) { do_oop_work(p); } 1734 void do_oop(narrowOop* p) { do_oop_work(p); } 1735 }; 1736 1737 /* 1738 * This is public API, used in preparation of object_iterate(). 1739 * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't 1740 * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can 1741 * control, we call SH::tlabs_retire, SH::gclabs_retire. 1742 */ 1743 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) { 1744 // No-op. 1745 } 1746 1747 /* 1748 * Iterates objects in the heap. This is public API, used for, e.g., heap dumping. 1749 * 1750 * We cannot safely iterate objects by doing a linear scan at random points in time. Linear 1751 * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g. 1752 * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear 1753 * scanning therefore depends on having a valid marking bitmap to support it. However, we only 1754 * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid 1755 * marking bitmap during marking, after aborted marking or during/after cleanup (when we just 1756 * wiped the bitmap in preparation for next marking). 1757 * 1758 * For all those reasons, we implement object iteration as a single marking traversal, reporting 1759 * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap 1760 * is allowed to report dead objects, but is not required to do so. 1761 */ 1762 void ShenandoahHeap::object_iterate(ObjectClosure* cl) { 1763 // Reset bitmap 1764 if (!prepare_aux_bitmap_for_iteration()) 1765 return; 1766 1767 ShenandoahScanObjectStack oop_stack; 1768 ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack); 1769 // Seed the stack with root scan 1770 scan_roots_for_iteration(&oop_stack, &oops); 1771 1772 // Work through the oop stack to traverse heap 1773 while (! oop_stack.is_empty()) { 1774 oop obj = oop_stack.pop(); 1775 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1776 cl->do_object(obj); 1777 obj->oop_iterate(&oops); 1778 } 1779 1780 assert(oop_stack.is_empty(), "should be empty"); 1781 // Reclaim bitmap 1782 reclaim_aux_bitmap_for_iteration(); 1783 } 1784 1785 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() { 1786 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1787 if (!_aux_bitmap_region_special) { 1788 bool success = os::commit_memory((char *) _aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false); 1789 if (!success) { 1790 log_warning(gc)("Auxiliary marking bitmap commit failed: " PTR_FORMAT " (%zu bytes)", 1791 p2i(_aux_bitmap_region.start()), _aux_bitmap_region.byte_size()); 1792 return false; 1793 } 1794 } 1795 _aux_bit_map.clear(); 1796 return true; 1797 } 1798 1799 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) { 1800 // Process GC roots according to current GC cycle 1801 // This populates the work stack with initial objects 1802 // It is important to relinquish the associated locks before diving 1803 // into heap dumper 1804 uint n_workers = safepoint_workers() != nullptr ? safepoint_workers()->active_workers() : 1; 1805 ShenandoahHeapIterationRootScanner rp(n_workers); 1806 rp.roots_do(oops); 1807 } 1808 1809 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() { 1810 if (!_aux_bitmap_region_special) { 1811 bool success = os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size()); 1812 if (!success) { 1813 log_warning(gc)("Auxiliary marking bitmap uncommit failed: " PTR_FORMAT " (%zu bytes)", 1814 p2i(_aux_bitmap_region.start()), _aux_bitmap_region.byte_size()); 1815 assert(false, "Auxiliary marking bitmap uncommit should always succeed"); 1816 } 1817 } 1818 } 1819 1820 // Closure for parallelly iterate objects 1821 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure { 1822 private: 1823 MarkBitMap* _bitmap; 1824 ShenandoahObjToScanQueue* _queue; 1825 ShenandoahHeap* const _heap; 1826 ShenandoahMarkingContext* const _marking_context; 1827 1828 template <class T> 1829 void do_oop_work(T* p) { 1830 T o = RawAccess<>::oop_load(p); 1831 if (!CompressedOops::is_null(o)) { 1832 oop obj = CompressedOops::decode_not_null(o); 1833 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1834 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1835 return; 1836 } 1837 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1838 1839 assert(oopDesc::is_oop(obj), "Must be a valid oop"); 1840 if (_bitmap->par_mark(obj)) { 1841 _queue->push(ShenandoahMarkTask(obj)); 1842 } 1843 } 1844 } 1845 public: 1846 ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) : 1847 _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()), 1848 _marking_context(_heap->marking_context()) {} 1849 void do_oop(oop* p) { do_oop_work(p); } 1850 void do_oop(narrowOop* p) { do_oop_work(p); } 1851 }; 1852 1853 // Object iterator for parallel heap iteraion. 1854 // The root scanning phase happenes in construction as a preparation of 1855 // parallel marking queues. 1856 // Every worker processes it's own marking queue. work-stealing is used 1857 // to balance workload. 1858 class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl { 1859 private: 1860 uint _num_workers; 1861 bool _init_ready; 1862 MarkBitMap* _aux_bit_map; 1863 ShenandoahHeap* _heap; 1864 ShenandoahScanObjectStack _roots_stack; // global roots stack 1865 ShenandoahObjToScanQueueSet* _task_queues; 1866 public: 1867 ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) : 1868 _num_workers(num_workers), 1869 _init_ready(false), 1870 _aux_bit_map(bitmap), 1871 _heap(ShenandoahHeap::heap()) { 1872 // Initialize bitmap 1873 _init_ready = _heap->prepare_aux_bitmap_for_iteration(); 1874 if (!_init_ready) { 1875 return; 1876 } 1877 1878 ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack); 1879 _heap->scan_roots_for_iteration(&_roots_stack, &oops); 1880 1881 _init_ready = prepare_worker_queues(); 1882 } 1883 1884 ~ShenandoahParallelObjectIterator() { 1885 // Reclaim bitmap 1886 _heap->reclaim_aux_bitmap_for_iteration(); 1887 // Reclaim queue for workers 1888 if (_task_queues!= nullptr) { 1889 for (uint i = 0; i < _num_workers; ++i) { 1890 ShenandoahObjToScanQueue* q = _task_queues->queue(i); 1891 if (q != nullptr) { 1892 delete q; 1893 _task_queues->register_queue(i, nullptr); 1894 } 1895 } 1896 delete _task_queues; 1897 _task_queues = nullptr; 1898 } 1899 } 1900 1901 virtual void object_iterate(ObjectClosure* cl, uint worker_id) { 1902 if (_init_ready) { 1903 object_iterate_parallel(cl, worker_id, _task_queues); 1904 } 1905 } 1906 1907 private: 1908 // Divide global root_stack into worker queues 1909 bool prepare_worker_queues() { 1910 _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers); 1911 // Initialize queues for every workers 1912 for (uint i = 0; i < _num_workers; ++i) { 1913 ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue(); 1914 _task_queues->register_queue(i, task_queue); 1915 } 1916 // Divide roots among the workers. Assume that object referencing distribution 1917 // is related with root kind, use round-robin to make every worker have same chance 1918 // to process every kind of roots 1919 size_t roots_num = _roots_stack.size(); 1920 if (roots_num == 0) { 1921 // No work to do 1922 return false; 1923 } 1924 1925 for (uint j = 0; j < roots_num; j++) { 1926 uint stack_id = j % _num_workers; 1927 oop obj = _roots_stack.pop(); 1928 _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj)); 1929 } 1930 return true; 1931 } 1932 1933 void object_iterate_parallel(ObjectClosure* cl, 1934 uint worker_id, 1935 ShenandoahObjToScanQueueSet* queue_set) { 1936 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1937 assert(queue_set != nullptr, "task queue must not be null"); 1938 1939 ShenandoahObjToScanQueue* q = queue_set->queue(worker_id); 1940 assert(q != nullptr, "object iterate queue must not be null"); 1941 1942 ShenandoahMarkTask t; 1943 ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q); 1944 1945 // Work through the queue to traverse heap. 1946 // Steal when there is no task in queue. 1947 while (q->pop(t) || queue_set->steal(worker_id, t)) { 1948 oop obj = t.obj(); 1949 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1950 cl->do_object(obj); 1951 obj->oop_iterate(&oops); 1952 } 1953 assert(q->is_empty(), "should be empty"); 1954 } 1955 }; 1956 1957 ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) { 1958 return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map); 1959 } 1960 1961 // Keep alive an object that was loaded with AS_NO_KEEPALIVE. 1962 void ShenandoahHeap::keep_alive(oop obj) { 1963 if (is_concurrent_mark_in_progress() && (obj != nullptr)) { 1964 ShenandoahBarrierSet::barrier_set()->enqueue(obj); 1965 } 1966 } 1967 1968 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1969 for (size_t i = 0; i < num_regions(); i++) { 1970 ShenandoahHeapRegion* current = get_region(i); 1971 blk->heap_region_do(current); 1972 } 1973 } 1974 1975 class ShenandoahParallelHeapRegionTask : public WorkerTask { 1976 private: 1977 ShenandoahHeap* const _heap; 1978 ShenandoahHeapRegionClosure* const _blk; 1979 size_t const _stride; 1980 1981 shenandoah_padding(0); 1982 volatile size_t _index; 1983 shenandoah_padding(1); 1984 1985 public: 1986 ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk, size_t stride) : 1987 WorkerTask("Shenandoah Parallel Region Operation"), 1988 _heap(ShenandoahHeap::heap()), _blk(blk), _stride(stride), _index(0) {} 1989 1990 void work(uint worker_id) { 1991 ShenandoahParallelWorkerSession worker_session(worker_id); 1992 size_t stride = _stride; 1993 1994 size_t max = _heap->num_regions(); 1995 while (Atomic::load(&_index) < max) { 1996 size_t cur = Atomic::fetch_then_add(&_index, stride, memory_order_relaxed); 1997 size_t start = cur; 1998 size_t end = MIN2(cur + stride, max); 1999 if (start >= max) break; 2000 2001 for (size_t i = cur; i < end; i++) { 2002 ShenandoahHeapRegion* current = _heap->get_region(i); 2003 _blk->heap_region_do(current); 2004 } 2005 } 2006 } 2007 }; 2008 2009 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 2010 assert(blk->is_thread_safe(), "Only thread-safe closures here"); 2011 const uint active_workers = workers()->active_workers(); 2012 const size_t n_regions = num_regions(); 2013 size_t stride = ShenandoahParallelRegionStride; 2014 if (stride == 0 && active_workers > 1) { 2015 // Automatically derive the stride to balance the work between threads 2016 // evenly. Do not try to split work if below the reasonable threshold. 2017 constexpr size_t threshold = 4096; 2018 stride = n_regions <= threshold ? 2019 threshold : 2020 (n_regions + active_workers - 1) / active_workers; 2021 } 2022 2023 if (n_regions > stride && active_workers > 1) { 2024 ShenandoahParallelHeapRegionTask task(blk, stride); 2025 workers()->run_task(&task); 2026 } else { 2027 heap_region_iterate(blk); 2028 } 2029 } 2030 2031 class ShenandoahRendezvousClosure : public HandshakeClosure { 2032 public: 2033 inline ShenandoahRendezvousClosure(const char* name) : HandshakeClosure(name) {} 2034 inline void do_thread(Thread* thread) {} 2035 }; 2036 2037 void ShenandoahHeap::rendezvous_threads(const char* name) { 2038 ShenandoahRendezvousClosure cl(name); 2039 Handshake::execute(&cl); 2040 } 2041 2042 void ShenandoahHeap::recycle_trash() { 2043 free_set()->recycle_trash(); 2044 } 2045 2046 void ShenandoahHeap::do_class_unloading() { 2047 _unloader.unload(); 2048 if (mode()->is_generational()) { 2049 old_generation()->set_parsable(false); 2050 } 2051 } 2052 2053 void ShenandoahHeap::stw_weak_refs(bool full_gc) { 2054 // Weak refs processing 2055 ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs 2056 : ShenandoahPhaseTimings::degen_gc_weakrefs; 2057 ShenandoahTimingsTracker t(phase); 2058 ShenandoahGCWorkerPhase worker_phase(phase); 2059 shenandoah_assert_generations_reconciled(); 2060 gc_generation()->ref_processor()->process_references(phase, workers(), false /* concurrent */); 2061 } 2062 2063 void ShenandoahHeap::prepare_update_heap_references() { 2064 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint"); 2065 2066 // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to 2067 // make them parsable for update code to work correctly. Plus, we can compute new sizes 2068 // for future GCLABs here. 2069 if (UseTLAB) { 2070 ShenandoahGCPhase phase(ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs); 2071 gclabs_retire(ResizeTLAB); 2072 } 2073 2074 _update_refs_iterator.reset(); 2075 } 2076 2077 void ShenandoahHeap::propagate_gc_state_to_all_threads() { 2078 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 2079 if (_gc_state_changed) { 2080 ShenandoahGCStatePropagator propagator(_gc_state.raw_value()); 2081 Threads::threads_do(&propagator); 2082 _gc_state_changed = false; 2083 } 2084 } 2085 2086 void ShenandoahHeap::set_gc_state_at_safepoint(uint mask, bool value) { 2087 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 2088 _gc_state.set_cond(mask, value); 2089 _gc_state_changed = true; 2090 } 2091 2092 void ShenandoahHeap::set_gc_state_concurrent(uint mask, bool value) { 2093 // Holding the thread lock here assures that any thread created after we change the gc 2094 // state will have the correct state. It also prevents attaching threads from seeing 2095 // an inconsistent state. See ShenandoahBarrierSet::on_thread_attach for reference. Established 2096 // threads will use their thread local copy of the gc state (changed by a handshake, or on a 2097 // safepoint). 2098 assert(Threads_lock->is_locked(), "Must hold thread lock for concurrent gc state change"); 2099 _gc_state.set_cond(mask, value); 2100 } 2101 2102 void ShenandoahHeap::set_concurrent_young_mark_in_progress(bool in_progress) { 2103 uint mask; 2104 assert(!has_forwarded_objects(), "Young marking is not concurrent with evacuation"); 2105 if (!in_progress && is_concurrent_old_mark_in_progress()) { 2106 assert(mode()->is_generational(), "Only generational GC has old marking"); 2107 assert(_gc_state.is_set(MARKING), "concurrent_old_marking_in_progress implies MARKING"); 2108 // If old-marking is in progress when we turn off YOUNG_MARKING, leave MARKING (and OLD_MARKING) on 2109 mask = YOUNG_MARKING; 2110 } else { 2111 mask = MARKING | YOUNG_MARKING; 2112 } 2113 set_gc_state_at_safepoint(mask, in_progress); 2114 manage_satb_barrier(in_progress); 2115 } 2116 2117 void ShenandoahHeap::set_concurrent_old_mark_in_progress(bool in_progress) { 2118 #ifdef ASSERT 2119 // has_forwarded_objects() iff UPDATE_REFS or EVACUATION 2120 bool has_forwarded = has_forwarded_objects(); 2121 bool updating_or_evacuating = _gc_state.is_set(UPDATE_REFS | EVACUATION); 2122 bool evacuating = _gc_state.is_set(EVACUATION); 2123 assert ((has_forwarded == updating_or_evacuating) || (evacuating && !has_forwarded && collection_set()->is_empty()), 2124 "Updating or evacuating iff has forwarded objects, or if evacuation phase is promoting in place without forwarding"); 2125 #endif 2126 if (!in_progress && is_concurrent_young_mark_in_progress()) { 2127 // If young-marking is in progress when we turn off OLD_MARKING, leave MARKING (and YOUNG_MARKING) on 2128 assert(_gc_state.is_set(MARKING), "concurrent_young_marking_in_progress implies MARKING"); 2129 set_gc_state_at_safepoint(OLD_MARKING, in_progress); 2130 } else { 2131 set_gc_state_at_safepoint(MARKING | OLD_MARKING, in_progress); 2132 } 2133 manage_satb_barrier(in_progress); 2134 } 2135 2136 bool ShenandoahHeap::is_prepare_for_old_mark_in_progress() const { 2137 return old_generation()->is_preparing_for_mark(); 2138 } 2139 2140 void ShenandoahHeap::manage_satb_barrier(bool active) { 2141 if (is_concurrent_mark_in_progress()) { 2142 // Ignore request to deactivate barrier while concurrent mark is in progress. 2143 // Do not attempt to re-activate the barrier if it is already active. 2144 if (active && !ShenandoahBarrierSet::satb_mark_queue_set().is_active()) { 2145 ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(active, !active); 2146 } 2147 } else { 2148 // No concurrent marking is in progress so honor request to deactivate, 2149 // but only if the barrier is already active. 2150 if (!active && ShenandoahBarrierSet::satb_mark_queue_set().is_active()) { 2151 ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(active, !active); 2152 } 2153 } 2154 } 2155 2156 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) { 2157 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint"); 2158 set_gc_state_at_safepoint(EVACUATION, in_progress); 2159 } 2160 2161 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) { 2162 if (in_progress) { 2163 _concurrent_strong_root_in_progress.set(); 2164 } else { 2165 _concurrent_strong_root_in_progress.unset(); 2166 } 2167 } 2168 2169 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) { 2170 set_gc_state_at_safepoint(WEAK_ROOTS, cond); 2171 } 2172 2173 GCTracer* ShenandoahHeap::tracer() { 2174 return shenandoah_policy()->tracer(); 2175 } 2176 2177 size_t ShenandoahHeap::tlab_used(Thread* thread) const { 2178 return _free_set->used(); 2179 } 2180 2181 bool ShenandoahHeap::try_cancel_gc(GCCause::Cause cause) { 2182 const GCCause::Cause prev = _cancelled_gc.xchg(cause); 2183 return prev == GCCause::_no_gc || prev == GCCause::_shenandoah_concurrent_gc; 2184 } 2185 2186 void ShenandoahHeap::cancel_concurrent_mark() { 2187 if (mode()->is_generational()) { 2188 young_generation()->cancel_marking(); 2189 old_generation()->cancel_marking(); 2190 } 2191 2192 global_generation()->cancel_marking(); 2193 2194 ShenandoahBarrierSet::satb_mark_queue_set().abandon_partial_marking(); 2195 } 2196 2197 bool ShenandoahHeap::cancel_gc(GCCause::Cause cause) { 2198 if (try_cancel_gc(cause)) { 2199 FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause)); 2200 log_info(gc,thread)("%s", msg.buffer()); 2201 Events::log(Thread::current(), "%s", msg.buffer()); 2202 _cancel_requested_time = os::elapsedTime(); 2203 return true; 2204 } 2205 return false; 2206 } 2207 2208 uint ShenandoahHeap::max_workers() { 2209 return _max_workers; 2210 } 2211 2212 void ShenandoahHeap::stop() { 2213 // The shutdown sequence should be able to terminate when GC is running. 2214 2215 // Step 0. Notify policy to disable event recording and prevent visiting gc threads during shutdown 2216 _shenandoah_policy->record_shutdown(); 2217 2218 // Step 1. Stop reporting on gc thread cpu utilization 2219 mmu_tracker()->stop(); 2220 2221 // Step 2. Wait until GC worker exits normally (this will cancel any ongoing GC). 2222 control_thread()->stop(); 2223 2224 // Stop 4. Shutdown uncommit thread. 2225 if (_uncommit_thread != nullptr) { 2226 _uncommit_thread->stop(); 2227 } 2228 } 2229 2230 void ShenandoahHeap::stw_unload_classes(bool full_gc) { 2231 if (!unload_classes()) return; 2232 ClassUnloadingContext ctx(_workers->active_workers(), 2233 true /* unregister_nmethods_during_purge */, 2234 false /* lock_nmethod_free_separately */); 2235 2236 // Unload classes and purge SystemDictionary. 2237 { 2238 ShenandoahPhaseTimings::Phase phase = full_gc ? 2239 ShenandoahPhaseTimings::full_gc_purge_class_unload : 2240 ShenandoahPhaseTimings::degen_gc_purge_class_unload; 2241 ShenandoahIsAliveSelector is_alive; 2242 { 2243 CodeCache::UnlinkingScope scope(is_alive.is_alive_closure()); 2244 ShenandoahGCPhase gc_phase(phase); 2245 ShenandoahGCWorkerPhase worker_phase(phase); 2246 bool unloading_occurred = SystemDictionary::do_unloading(gc_timer()); 2247 2248 // Clean JVMCI metadata handles. 2249 JVMCI_ONLY(JVMCI::do_unloading(unloading_occurred)); 2250 2251 uint num_workers = _workers->active_workers(); 2252 ShenandoahClassUnloadingTask unlink_task(phase, num_workers, unloading_occurred); 2253 _workers->run_task(&unlink_task); 2254 } 2255 // Release unloaded nmethods's memory. 2256 ClassUnloadingContext::context()->purge_and_free_nmethods(); 2257 } 2258 2259 { 2260 ShenandoahGCPhase phase(full_gc ? 2261 ShenandoahPhaseTimings::full_gc_purge_cldg : 2262 ShenandoahPhaseTimings::degen_gc_purge_cldg); 2263 ClassLoaderDataGraph::purge(true /* at_safepoint */); 2264 } 2265 // Resize and verify metaspace 2266 MetaspaceGC::compute_new_size(); 2267 DEBUG_ONLY(MetaspaceUtils::verify();) 2268 } 2269 2270 // Weak roots are either pre-evacuated (final mark) or updated (final update refs), 2271 // so they should not have forwarded oops. 2272 // However, we do need to "null" dead oops in the roots, if can not be done 2273 // in concurrent cycles. 2274 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) { 2275 uint num_workers = _workers->active_workers(); 2276 ShenandoahPhaseTimings::Phase timing_phase = full_gc ? 2277 ShenandoahPhaseTimings::full_gc_purge_weak_par : 2278 ShenandoahPhaseTimings::degen_gc_purge_weak_par; 2279 ShenandoahGCPhase phase(timing_phase); 2280 ShenandoahGCWorkerPhase worker_phase(timing_phase); 2281 // Cleanup weak roots 2282 if (has_forwarded_objects()) { 2283 ShenandoahForwardedIsAliveClosure is_alive; 2284 ShenandoahNonConcUpdateRefsClosure keep_alive; 2285 ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahNonConcUpdateRefsClosure> 2286 cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers); 2287 _workers->run_task(&cleaning_task); 2288 } else { 2289 ShenandoahIsAliveClosure is_alive; 2290 #ifdef ASSERT 2291 ShenandoahAssertNotForwardedClosure verify_cl; 2292 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure> 2293 cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers); 2294 #else 2295 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure> 2296 cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers); 2297 #endif 2298 _workers->run_task(&cleaning_task); 2299 } 2300 } 2301 2302 void ShenandoahHeap::parallel_cleaning(bool full_gc) { 2303 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2304 assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC"); 2305 ShenandoahGCPhase phase(full_gc ? 2306 ShenandoahPhaseTimings::full_gc_purge : 2307 ShenandoahPhaseTimings::degen_gc_purge); 2308 stw_weak_refs(full_gc); 2309 stw_process_weak_roots(full_gc); 2310 stw_unload_classes(full_gc); 2311 } 2312 2313 void ShenandoahHeap::set_has_forwarded_objects(bool cond) { 2314 set_gc_state_at_safepoint(HAS_FORWARDED, cond); 2315 } 2316 2317 void ShenandoahHeap::set_unload_classes(bool uc) { 2318 _unload_classes.set_cond(uc); 2319 } 2320 2321 bool ShenandoahHeap::unload_classes() const { 2322 return _unload_classes.is_set(); 2323 } 2324 2325 address ShenandoahHeap::in_cset_fast_test_addr() { 2326 ShenandoahHeap* heap = ShenandoahHeap::heap(); 2327 assert(heap->collection_set() != nullptr, "Sanity"); 2328 return (address) heap->collection_set()->biased_map_address(); 2329 } 2330 2331 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() { 2332 if (mode()->is_generational()) { 2333 young_generation()->reset_bytes_allocated_since_gc_start(); 2334 old_generation()->reset_bytes_allocated_since_gc_start(); 2335 } 2336 2337 global_generation()->reset_bytes_allocated_since_gc_start(); 2338 } 2339 2340 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) { 2341 _degenerated_gc_in_progress.set_cond(in_progress); 2342 } 2343 2344 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) { 2345 _full_gc_in_progress.set_cond(in_progress); 2346 } 2347 2348 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) { 2349 assert (is_full_gc_in_progress(), "should be"); 2350 _full_gc_move_in_progress.set_cond(in_progress); 2351 } 2352 2353 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) { 2354 set_gc_state_at_safepoint(UPDATE_REFS, in_progress); 2355 } 2356 2357 void ShenandoahHeap::register_nmethod(nmethod* nm) { 2358 ShenandoahCodeRoots::register_nmethod(nm); 2359 } 2360 2361 void ShenandoahHeap::unregister_nmethod(nmethod* nm) { 2362 ShenandoahCodeRoots::unregister_nmethod(nm); 2363 } 2364 2365 void ShenandoahHeap::pin_object(JavaThread* thr, oop o) { 2366 heap_region_containing(o)->record_pin(); 2367 } 2368 2369 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) { 2370 ShenandoahHeapRegion* r = heap_region_containing(o); 2371 assert(r != nullptr, "Sanity"); 2372 assert(r->pin_count() > 0, "Region %zu should have non-zero pins", r->index()); 2373 r->record_unpin(); 2374 } 2375 2376 void ShenandoahHeap::sync_pinned_region_status() { 2377 ShenandoahHeapLocker locker(lock()); 2378 2379 for (size_t i = 0; i < num_regions(); i++) { 2380 ShenandoahHeapRegion *r = get_region(i); 2381 if (r->is_active()) { 2382 if (r->is_pinned()) { 2383 if (r->pin_count() == 0) { 2384 r->make_unpinned(); 2385 } 2386 } else { 2387 if (r->pin_count() > 0) { 2388 r->make_pinned(); 2389 } 2390 } 2391 } 2392 } 2393 2394 assert_pinned_region_status(); 2395 } 2396 2397 #ifdef ASSERT 2398 void ShenandoahHeap::assert_pinned_region_status() { 2399 for (size_t i = 0; i < num_regions(); i++) { 2400 ShenandoahHeapRegion* r = get_region(i); 2401 shenandoah_assert_generations_reconciled(); 2402 if (gc_generation()->contains(r)) { 2403 assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0), 2404 "Region %zu pinning status is inconsistent", i); 2405 } 2406 } 2407 } 2408 #endif 2409 2410 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const { 2411 return _gc_timer; 2412 } 2413 2414 void ShenandoahHeap::prepare_concurrent_roots() { 2415 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2416 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 2417 set_concurrent_strong_root_in_progress(!collection_set()->is_empty()); 2418 set_concurrent_weak_root_in_progress(true); 2419 if (unload_classes()) { 2420 _unloader.prepare(); 2421 } 2422 } 2423 2424 void ShenandoahHeap::finish_concurrent_roots() { 2425 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2426 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 2427 if (unload_classes()) { 2428 _unloader.finish(); 2429 } 2430 } 2431 2432 #ifdef ASSERT 2433 void ShenandoahHeap::assert_gc_workers(uint nworkers) { 2434 assert(nworkers > 0 && nworkers <= max_workers(), "Sanity"); 2435 2436 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 2437 // Use ParallelGCThreads inside safepoints 2438 assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads (%u) within safepoint, not %u", 2439 ParallelGCThreads, nworkers); 2440 } else { 2441 // Use ConcGCThreads outside safepoints 2442 assert(nworkers == ConcGCThreads, "Use ConcGCThreads (%u) outside safepoints, %u", 2443 ConcGCThreads, nworkers); 2444 } 2445 } 2446 #endif 2447 2448 ShenandoahVerifier* ShenandoahHeap::verifier() { 2449 guarantee(ShenandoahVerify, "Should be enabled"); 2450 assert (_verifier != nullptr, "sanity"); 2451 return _verifier; 2452 } 2453 2454 template<bool CONCURRENT> 2455 class ShenandoahUpdateHeapRefsTask : public WorkerTask { 2456 private: 2457 ShenandoahHeap* _heap; 2458 ShenandoahRegionIterator* _regions; 2459 public: 2460 explicit ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) : 2461 WorkerTask("Shenandoah Update References"), 2462 _heap(ShenandoahHeap::heap()), 2463 _regions(regions) { 2464 } 2465 2466 void work(uint worker_id) { 2467 if (CONCURRENT) { 2468 ShenandoahConcurrentWorkerSession worker_session(worker_id); 2469 ShenandoahSuspendibleThreadSetJoiner stsj; 2470 do_work<ShenandoahConcUpdateRefsClosure>(worker_id); 2471 } else { 2472 ShenandoahParallelWorkerSession worker_session(worker_id); 2473 do_work<ShenandoahNonConcUpdateRefsClosure>(worker_id); 2474 } 2475 } 2476 2477 private: 2478 template<class T> 2479 void do_work(uint worker_id) { 2480 if (CONCURRENT && (worker_id == 0)) { 2481 // We ask the first worker to replenish the Mutator free set by moving regions previously reserved to hold the 2482 // results of evacuation. These reserves are no longer necessary because evacuation has completed. 2483 size_t cset_regions = _heap->collection_set()->count(); 2484 2485 // Now that evacuation is done, we can reassign any regions that had been reserved to hold the results of evacuation 2486 // to the mutator free set. At the end of GC, we will have cset_regions newly evacuated fully empty regions from 2487 // which we will be able to replenish the Collector free set and the OldCollector free set in preparation for the 2488 // next GC cycle. 2489 _heap->free_set()->move_regions_from_collector_to_mutator(cset_regions); 2490 } 2491 // If !CONCURRENT, there's no value in expanding Mutator free set 2492 T cl; 2493 ShenandoahHeapRegion* r = _regions->next(); 2494 while (r != nullptr) { 2495 HeapWord* update_watermark = r->get_update_watermark(); 2496 assert (update_watermark >= r->bottom(), "sanity"); 2497 if (r->is_active() && !r->is_cset()) { 2498 _heap->marked_object_oop_iterate(r, &cl, update_watermark); 2499 if (ShenandoahPacing) { 2500 _heap->pacer()->report_update_refs(pointer_delta(update_watermark, r->bottom())); 2501 } 2502 } 2503 if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) { 2504 return; 2505 } 2506 r = _regions->next(); 2507 } 2508 } 2509 }; 2510 2511 void ShenandoahHeap::update_heap_references(bool concurrent) { 2512 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2513 2514 if (concurrent) { 2515 ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator); 2516 workers()->run_task(&task); 2517 } else { 2518 ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator); 2519 workers()->run_task(&task); 2520 } 2521 } 2522 2523 void ShenandoahHeap::update_heap_region_states(bool concurrent) { 2524 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2525 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2526 2527 { 2528 ShenandoahGCPhase phase(concurrent ? 2529 ShenandoahPhaseTimings::final_update_refs_update_region_states : 2530 ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states); 2531 2532 final_update_refs_update_region_states(); 2533 2534 assert_pinned_region_status(); 2535 } 2536 2537 { 2538 ShenandoahGCPhase phase(concurrent ? 2539 ShenandoahPhaseTimings::final_update_refs_trash_cset : 2540 ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset); 2541 trash_cset_regions(); 2542 } 2543 } 2544 2545 void ShenandoahHeap::final_update_refs_update_region_states() { 2546 ShenandoahSynchronizePinnedRegionStates cl; 2547 parallel_heap_region_iterate(&cl); 2548 } 2549 2550 void ShenandoahHeap::rebuild_free_set(bool concurrent) { 2551 ShenandoahGCPhase phase(concurrent ? 2552 ShenandoahPhaseTimings::final_update_refs_rebuild_freeset : 2553 ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset); 2554 ShenandoahHeapLocker locker(lock()); 2555 size_t young_cset_regions, old_cset_regions; 2556 size_t first_old_region, last_old_region, old_region_count; 2557 _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old_region, last_old_region, old_region_count); 2558 // If there are no old regions, first_old_region will be greater than last_old_region 2559 assert((first_old_region > last_old_region) || 2560 ((last_old_region + 1 - first_old_region >= old_region_count) && 2561 get_region(first_old_region)->is_old() && get_region(last_old_region)->is_old()), 2562 "sanity: old_region_count: %zu, first_old_region: %zu, last_old_region: %zu", 2563 old_region_count, first_old_region, last_old_region); 2564 2565 if (mode()->is_generational()) { 2566 #ifdef ASSERT 2567 if (ShenandoahVerify) { 2568 verifier()->verify_before_rebuilding_free_set(); 2569 } 2570 #endif 2571 2572 // The computation of bytes_of_allocation_runway_before_gc_trigger is quite conservative so consider all of this 2573 // available for transfer to old. Note that transfer of humongous regions does not impact available. 2574 ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap(); 2575 size_t allocation_runway = gen_heap->young_generation()->heuristics()->bytes_of_allocation_runway_before_gc_trigger(young_cset_regions); 2576 gen_heap->compute_old_generation_balance(allocation_runway, old_cset_regions); 2577 2578 // Total old_available may have been expanded to hold anticipated promotions. We trigger if the fragmented available 2579 // memory represents more than 16 regions worth of data. Note that fragmentation may increase when we promote regular 2580 // regions in place when many of these regular regions have an abundant amount of available memory within them. Fragmentation 2581 // will decrease as promote-by-copy consumes the available memory within these partially consumed regions. 2582 // 2583 // We consider old-gen to have excessive fragmentation if more than 12.5% of old-gen is free memory that resides 2584 // within partially consumed regions of memory. 2585 } 2586 // Rebuild free set based on adjusted generation sizes. 2587 _free_set->finish_rebuild(young_cset_regions, old_cset_regions, old_region_count); 2588 2589 if (mode()->is_generational()) { 2590 ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap(); 2591 ShenandoahOldGeneration* old_gen = gen_heap->old_generation(); 2592 old_gen->heuristics()->evaluate_triggers(first_old_region, last_old_region, old_region_count, num_regions()); 2593 } 2594 } 2595 2596 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) { 2597 size_t slice = r->index() / _bitmap_regions_per_slice; 2598 2599 size_t regions_from = _bitmap_regions_per_slice * slice; 2600 size_t regions_to = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1)); 2601 for (size_t g = regions_from; g < regions_to; g++) { 2602 assert (g / _bitmap_regions_per_slice == slice, "same slice"); 2603 if (skip_self && g == r->index()) continue; 2604 if (get_region(g)->is_committed()) { 2605 return true; 2606 } 2607 } 2608 return false; 2609 } 2610 2611 void ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) { 2612 shenandoah_assert_heaplocked(); 2613 assert(!is_bitmap_region_special(), "Not for special memory"); 2614 2615 if (is_bitmap_slice_committed(r, true)) { 2616 // Some other region from the group is already committed, meaning the bitmap 2617 // slice is already committed, we exit right away. 2618 return; 2619 } 2620 2621 // Commit the bitmap slice: 2622 size_t slice = r->index() / _bitmap_regions_per_slice; 2623 size_t off = _bitmap_bytes_per_slice * slice; 2624 size_t len = _bitmap_bytes_per_slice; 2625 char* start = (char*) _bitmap_region.start() + off; 2626 2627 os::commit_memory_or_exit(start, len, false, "Unable to commit bitmap slice"); 2628 2629 if (AlwaysPreTouch) { 2630 os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size); 2631 } 2632 } 2633 2634 void ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) { 2635 shenandoah_assert_heaplocked(); 2636 assert(!is_bitmap_region_special(), "Not for special memory"); 2637 2638 if (is_bitmap_slice_committed(r, true)) { 2639 // Some other region from the group is still committed, meaning the bitmap 2640 // slice should stay committed, exit right away. 2641 return; 2642 } 2643 2644 // Uncommit the bitmap slice: 2645 size_t slice = r->index() / _bitmap_regions_per_slice; 2646 size_t off = _bitmap_bytes_per_slice * slice; 2647 size_t len = _bitmap_bytes_per_slice; 2648 2649 char* addr = (char*) _bitmap_region.start() + off; 2650 bool success = os::uncommit_memory(addr, len); 2651 if (!success) { 2652 log_warning(gc)("Bitmap slice uncommit failed: " PTR_FORMAT " (%zu bytes)", p2i(addr), len); 2653 assert(false, "Bitmap slice uncommit should always succeed"); 2654 } 2655 } 2656 2657 void ShenandoahHeap::forbid_uncommit() { 2658 if (_uncommit_thread != nullptr) { 2659 _uncommit_thread->forbid_uncommit(); 2660 } 2661 } 2662 2663 void ShenandoahHeap::allow_uncommit() { 2664 if (_uncommit_thread != nullptr) { 2665 _uncommit_thread->allow_uncommit(); 2666 } 2667 } 2668 2669 #ifdef ASSERT 2670 bool ShenandoahHeap::is_uncommit_in_progress() { 2671 if (_uncommit_thread != nullptr) { 2672 return _uncommit_thread->is_uncommit_in_progress(); 2673 } 2674 return false; 2675 } 2676 #endif 2677 2678 void ShenandoahHeap::safepoint_synchronize_begin() { 2679 StackWatermarkSet::safepoint_synchronize_begin(); 2680 SuspendibleThreadSet::synchronize(); 2681 } 2682 2683 void ShenandoahHeap::safepoint_synchronize_end() { 2684 SuspendibleThreadSet::desynchronize(); 2685 } 2686 2687 void ShenandoahHeap::try_inject_alloc_failure() { 2688 if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) { 2689 _inject_alloc_failure.set(); 2690 os::naked_short_sleep(1); 2691 if (cancelled_gc()) { 2692 log_info(gc)("Allocation failure was successfully injected"); 2693 } 2694 } 2695 } 2696 2697 bool ShenandoahHeap::should_inject_alloc_failure() { 2698 return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset(); 2699 } 2700 2701 void ShenandoahHeap::initialize_serviceability() { 2702 _memory_pool = new ShenandoahMemoryPool(this); 2703 _cycle_memory_manager.add_pool(_memory_pool); 2704 _stw_memory_manager.add_pool(_memory_pool); 2705 } 2706 2707 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() { 2708 GrowableArray<GCMemoryManager*> memory_managers(2); 2709 memory_managers.append(&_cycle_memory_manager); 2710 memory_managers.append(&_stw_memory_manager); 2711 return memory_managers; 2712 } 2713 2714 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() { 2715 GrowableArray<MemoryPool*> memory_pools(1); 2716 memory_pools.append(_memory_pool); 2717 return memory_pools; 2718 } 2719 2720 MemoryUsage ShenandoahHeap::memory_usage() { 2721 return MemoryUsage(_initial_size, used(), committed(), max_capacity()); 2722 } 2723 2724 ShenandoahRegionIterator::ShenandoahRegionIterator() : 2725 _heap(ShenandoahHeap::heap()), 2726 _index(0) {} 2727 2728 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) : 2729 _heap(heap), 2730 _index(0) {} 2731 2732 void ShenandoahRegionIterator::reset() { 2733 _index = 0; 2734 } 2735 2736 bool ShenandoahRegionIterator::has_next() const { 2737 return _index < _heap->num_regions(); 2738 } 2739 2740 char ShenandoahHeap::gc_state() const { 2741 return _gc_state.raw_value(); 2742 } 2743 2744 bool ShenandoahHeap::is_gc_state(GCState state) const { 2745 // If the global gc state has been changed, but hasn't yet been propagated to all threads, then 2746 // the global gc state is the correct value. Once the gc state has been synchronized with all threads, 2747 // _gc_state_changed will be toggled to false and we need to use the thread local state. 2748 return _gc_state_changed ? _gc_state.is_set(state) : ShenandoahThreadLocalData::is_gc_state(state); 2749 } 2750 2751 2752 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) { 2753 #ifdef ASSERT 2754 assert(_liveness_cache != nullptr, "sanity"); 2755 assert(worker_id < _max_workers, "sanity"); 2756 for (uint i = 0; i < num_regions(); i++) { 2757 assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty"); 2758 } 2759 #endif 2760 return _liveness_cache[worker_id]; 2761 } 2762 2763 void ShenandoahHeap::flush_liveness_cache(uint worker_id) { 2764 assert(worker_id < _max_workers, "sanity"); 2765 assert(_liveness_cache != nullptr, "sanity"); 2766 ShenandoahLiveData* ld = _liveness_cache[worker_id]; 2767 for (uint i = 0; i < num_regions(); i++) { 2768 ShenandoahLiveData live = ld[i]; 2769 if (live > 0) { 2770 ShenandoahHeapRegion* r = get_region(i); 2771 r->increase_live_data_gc_words(live); 2772 ld[i] = 0; 2773 } 2774 } 2775 } 2776 2777 bool ShenandoahHeap::requires_barriers(stackChunkOop obj) const { 2778 if (is_idle()) return false; 2779 2780 // Objects allocated after marking start are implicitly alive, don't need any barriers during 2781 // marking phase. 2782 if (is_concurrent_mark_in_progress() && 2783 !marking_context()->allocated_after_mark_start(obj)) { 2784 return true; 2785 } 2786 2787 // Can not guarantee obj is deeply good. 2788 if (has_forwarded_objects()) { 2789 return true; 2790 } 2791 2792 return false; 2793 } 2794 2795 HeapWord* ShenandoahHeap::allocate_loaded_archive_space(size_t size) { 2796 #if INCLUDE_CDS_JAVA_HEAP 2797 // CDS wants a continuous memory range to load a bunch of objects. 2798 // This effectively bypasses normal allocation paths, and requires 2799 // a bit of massaging to unbreak GC invariants. 2800 2801 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size); 2802 2803 // Easy case: a single regular region, no further adjustments needed. 2804 if (!ShenandoahHeapRegion::requires_humongous(size)) { 2805 return allocate_memory(req); 2806 } 2807 2808 // Hard case: the requested size would cause a humongous allocation. 2809 // We need to make sure it looks like regular allocation to the rest of GC. 2810 2811 // CDS code would guarantee no objects straddle multiple regions, as long as 2812 // regions are as large as MIN_GC_REGION_ALIGNMENT. It is impractical at this 2813 // point to deal with case when Shenandoah runs with smaller regions. 2814 // TODO: This check can be dropped once MIN_GC_REGION_ALIGNMENT agrees more with Shenandoah. 2815 if (ShenandoahHeapRegion::region_size_bytes() < ArchiveHeapWriter::MIN_GC_REGION_ALIGNMENT) { 2816 return nullptr; 2817 } 2818 2819 HeapWord* mem = allocate_memory(req); 2820 size_t start_idx = heap_region_index_containing(mem); 2821 size_t num_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize); 2822 2823 // Flip humongous -> regular. 2824 { 2825 ShenandoahHeapLocker locker(lock(), false); 2826 for (size_t c = start_idx; c < start_idx + num_regions; c++) { 2827 get_region(c)->make_regular_bypass(); 2828 } 2829 } 2830 2831 return mem; 2832 #else 2833 assert(false, "Archive heap loader should not be available, should not be here"); 2834 return nullptr; 2835 #endif // INCLUDE_CDS_JAVA_HEAP 2836 } 2837 2838 void ShenandoahHeap::complete_loaded_archive_space(MemRegion archive_space) { 2839 // Nothing to do here, except checking that heap looks fine. 2840 #ifdef ASSERT 2841 HeapWord* start = archive_space.start(); 2842 HeapWord* end = archive_space.end(); 2843 2844 // No unclaimed space between the objects. 2845 // Objects are properly allocated in correct regions. 2846 HeapWord* cur = start; 2847 while (cur < end) { 2848 oop oop = cast_to_oop(cur); 2849 shenandoah_assert_in_correct_region(nullptr, oop); 2850 cur += oop->size(); 2851 } 2852 2853 // No unclaimed tail at the end of archive space. 2854 assert(cur == end, 2855 "Archive space should be fully used: " PTR_FORMAT " " PTR_FORMAT, 2856 p2i(cur), p2i(end)); 2857 2858 // Region bounds are good. 2859 ShenandoahHeapRegion* begin_reg = heap_region_containing(start); 2860 ShenandoahHeapRegion* end_reg = heap_region_containing(end); 2861 assert(begin_reg->is_regular(), "Must be"); 2862 assert(end_reg->is_regular(), "Must be"); 2863 assert(begin_reg->bottom() == start, 2864 "Must agree: archive-space-start: " PTR_FORMAT ", begin-region-bottom: " PTR_FORMAT, 2865 p2i(start), p2i(begin_reg->bottom())); 2866 assert(end_reg->top() == end, 2867 "Must agree: archive-space-end: " PTR_FORMAT ", end-region-top: " PTR_FORMAT, 2868 p2i(end), p2i(end_reg->top())); 2869 #endif 2870 } 2871 2872 ShenandoahGeneration* ShenandoahHeap::generation_for(ShenandoahAffiliation affiliation) const { 2873 if (!mode()->is_generational()) { 2874 return global_generation(); 2875 } else if (affiliation == YOUNG_GENERATION) { 2876 return young_generation(); 2877 } else if (affiliation == OLD_GENERATION) { 2878 return old_generation(); 2879 } 2880 2881 ShouldNotReachHere(); 2882 return nullptr; 2883 } 2884 2885 void ShenandoahHeap::log_heap_status(const char* msg) const { 2886 if (mode()->is_generational()) { 2887 young_generation()->log_status(msg); 2888 old_generation()->log_status(msg); 2889 } else { 2890 global_generation()->log_status(msg); 2891 } 2892 }