1 /*
2 * Copyright (c) 2012, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 */
23
24 #include "classfile/javaClasses.inline.hpp"
25 #include "classfile/symbolTable.hpp"
26 #include "classfile/systemDictionary.hpp"
27 #include "classfile/vmClasses.hpp"
28 #include "compiler/compileBroker.hpp"
29 #include "gc/shared/collectedHeap.hpp"
30 #include "gc/shared/memAllocator.hpp"
31 #include "gc/shared/oopStorage.inline.hpp"
32 #include "jvmci/jniAccessMark.inline.hpp"
33 #include "jvmci/jvmciCodeInstaller.hpp"
34 #include "jvmci/jvmciCompilerToVM.hpp"
35 #include "jvmci/jvmciRuntime.hpp"
36 #include "jvmci/metadataHandles.hpp"
37 #include "logging/log.hpp"
38 #include "logging/logStream.hpp"
39 #include "memory/oopFactory.hpp"
40 #include "memory/universe.hpp"
41 #include "oops/constantPool.inline.hpp"
42 #include "oops/klass.inline.hpp"
43 #include "oops/method.inline.hpp"
44 #include "oops/objArrayKlass.hpp"
45 #include "oops/oop.inline.hpp"
46 #include "oops/typeArrayOop.inline.hpp"
47 #include "prims/jvmtiExport.hpp"
48 #include "prims/methodHandles.hpp"
49 #include "runtime/arguments.hpp"
50 #include "runtime/atomic.hpp"
51 #include "runtime/deoptimization.hpp"
52 #include "runtime/fieldDescriptor.inline.hpp"
53 #include "runtime/frame.inline.hpp"
54 #include "runtime/java.hpp"
55 #include "runtime/jniHandles.inline.hpp"
56 #include "runtime/mutex.hpp"
57 #include "runtime/reflection.hpp"
58 #include "runtime/sharedRuntime.hpp"
59 #include "runtime/synchronizer.hpp"
60 #if INCLUDE_G1GC
61 #include "gc/g1/g1BarrierSetRuntime.hpp"
62 #endif // INCLUDE_G1GC
63
64 // Simple helper to see if the caller of a runtime stub which
65 // entered the VM has been deoptimized
66
67 static bool caller_is_deopted() {
68 JavaThread* thread = JavaThread::current();
69 RegisterMap reg_map(thread,
70 RegisterMap::UpdateMap::skip,
71 RegisterMap::ProcessFrames::include,
72 RegisterMap::WalkContinuation::skip);
73 frame runtime_frame = thread->last_frame();
74 frame caller_frame = runtime_frame.sender(®_map);
75 assert(caller_frame.is_compiled_frame(), "must be compiled");
76 return caller_frame.is_deoptimized_frame();
77 }
78
79 // Stress deoptimization
80 static void deopt_caller() {
81 if ( !caller_is_deopted()) {
82 JavaThread* thread = JavaThread::current();
83 RegisterMap reg_map(thread,
84 RegisterMap::UpdateMap::skip,
85 RegisterMap::ProcessFrames::include,
86 RegisterMap::WalkContinuation::skip);
87 frame runtime_frame = thread->last_frame();
88 frame caller_frame = runtime_frame.sender(®_map);
89 Deoptimization::deoptimize_frame(thread, caller_frame.id(), Deoptimization::Reason_constraint);
90 assert(caller_is_deopted(), "Must be deoptimized");
91 }
92 }
93
94 // Manages a scope for a JVMCI runtime call that attempts a heap allocation.
95 // If there is a pending OutOfMemoryError upon closing the scope and the runtime
96 // call is of the variety where allocation failure returns null without an
97 // exception, the following action is taken:
98 // 1. The pending OutOfMemoryError is cleared
99 // 2. null is written to JavaThread::_vm_result_oop
100 class RetryableAllocationMark {
101 private:
102 InternalOOMEMark _iom;
103 public:
104 RetryableAllocationMark(JavaThread* thread) : _iom(thread) {}
105 ~RetryableAllocationMark() {
106 JavaThread* THREAD = _iom.thread(); // For exception macros.
107 if (THREAD != nullptr) {
108 if (HAS_PENDING_EXCEPTION) {
109 oop ex = PENDING_EXCEPTION;
110 THREAD->set_vm_result_oop(nullptr);
111 if (ex->is_a(vmClasses::OutOfMemoryError_klass())) {
112 CLEAR_PENDING_EXCEPTION;
113 }
114 }
115 }
116 }
117 };
118
119 JRT_BLOCK_ENTRY(void, JVMCIRuntime::new_instance_or_null(JavaThread* current, Klass* klass))
120 JRT_BLOCK;
121 assert(klass->is_klass(), "not a class");
122 Handle holder(current, klass->klass_holder()); // keep the klass alive
123 InstanceKlass* h = InstanceKlass::cast(klass);
124 {
125 RetryableAllocationMark ram(current);
126 h->check_valid_for_instantiation(true, CHECK);
127 if (!h->is_initialized()) {
128 // Cannot re-execute class initialization without side effects
129 // so return without attempting the initialization
130 current->set_vm_result_oop(nullptr);
131 return;
132 }
133 // allocate instance and return via TLS
134 oop obj = h->allocate_instance(CHECK);
135 current->set_vm_result_oop(obj);
136 }
137 JRT_BLOCK_END;
138 SharedRuntime::on_slowpath_allocation_exit(current);
139 JRT_END
140
141 JRT_BLOCK_ENTRY(void, JVMCIRuntime::new_array_or_null(JavaThread* current, Klass* array_klass, jint length))
142 JRT_BLOCK;
143 // Note: no handle for klass needed since they are not used
144 // anymore after new_objArray() and no GC can happen before.
145 // (This may have to change if this code changes!)
146 assert(array_klass->is_klass(), "not a class");
147 oop obj;
148 if (array_klass->is_typeArray_klass()) {
149 BasicType elt_type = TypeArrayKlass::cast(array_klass)->element_type();
150 RetryableAllocationMark ram(current);
151 obj = oopFactory::new_typeArray(elt_type, length, CHECK);
152 } else {
153 Handle holder(current, array_klass->klass_holder()); // keep the klass alive
154 Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
155 RetryableAllocationMark ram(current);
156 obj = oopFactory::new_objArray(elem_klass, length, CHECK);
157 }
158 // This is pretty rare but this runtime patch is stressful to deoptimization
159 // if we deoptimize here so force a deopt to stress the path.
160 if (DeoptimizeALot) {
161 static int deopts = 0;
162 if (deopts++ % 2 == 0) {
163 // Drop the allocation
164 obj = nullptr;
165 } else {
166 deopt_caller();
167 }
168 }
169 current->set_vm_result_oop(obj);
170 JRT_BLOCK_END;
171 SharedRuntime::on_slowpath_allocation_exit(current);
172 JRT_END
173
174 JRT_ENTRY(void, JVMCIRuntime::new_multi_array_or_null(JavaThread* current, Klass* klass, int rank, jint* dims))
175 assert(klass->is_klass(), "not a class");
176 assert(rank >= 1, "rank must be nonzero");
177 Handle holder(current, klass->klass_holder()); // keep the klass alive
178 RetryableAllocationMark ram(current);
179 oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
180 current->set_vm_result_oop(obj);
181 JRT_END
182
183 JRT_ENTRY(void, JVMCIRuntime::dynamic_new_array_or_null(JavaThread* current, oopDesc* element_mirror, jint length))
184 RetryableAllocationMark ram(current);
185 oop obj = Reflection::reflect_new_array(element_mirror, length, CHECK);
186 current->set_vm_result_oop(obj);
187 JRT_END
188
189 JRT_ENTRY(void, JVMCIRuntime::dynamic_new_instance_or_null(JavaThread* current, oopDesc* type_mirror))
190 InstanceKlass* klass = InstanceKlass::cast(java_lang_Class::as_Klass(type_mirror));
191
192 if (klass == nullptr) {
193 ResourceMark rm(current);
194 THROW(vmSymbols::java_lang_InstantiationException());
195 }
196 RetryableAllocationMark ram(current);
197
198 // Create new instance (the receiver)
199 klass->check_valid_for_instantiation(false, CHECK);
200
201 if (!klass->is_initialized()) {
202 // Cannot re-execute class initialization without side effects
203 // so return without attempting the initialization
204 current->set_vm_result_oop(nullptr);
205 return;
206 }
207
208 oop obj = klass->allocate_instance(CHECK);
209 current->set_vm_result_oop(obj);
210 JRT_END
211
212 extern void vm_exit(int code);
213
214 // Enter this method from compiled code handler below. This is where we transition
215 // to VM mode. This is done as a helper routine so that the method called directly
216 // from compiled code does not have to transition to VM. This allows the entry
217 // method to see if the nmethod that we have just looked up a handler for has
218 // been deoptimized while we were in the vm. This simplifies the assembly code
219 // cpu directories.
220 //
221 // We are entering here from exception stub (via the entry method below)
222 // If there is a compiled exception handler in this method, we will continue there;
223 // otherwise we will unwind the stack and continue at the caller of top frame method
224 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
225 // control the area where we can allow a safepoint. After we exit the safepoint area we can
226 // check to see if the handler we are going to return is now in a nmethod that has
227 // been deoptimized. If that is the case we return the deopt blob
228 // unpack_with_exception entry instead. This makes life for the exception blob easier
229 // because making that same check and diverting is painful from assembly language.
230 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm))
231 // Reset method handle flag.
232 current->set_is_method_handle_return(false);
233
234 Handle exception(current, ex);
235
236 // The frame we rethrow the exception to might not have been processed by the GC yet.
237 // The stack watermark barrier takes care of detecting that and ensuring the frame
238 // has updated oops.
239 StackWatermarkSet::after_unwind(current);
240
241 nm = CodeCache::find_nmethod(pc);
242 assert(nm != nullptr, "did not find nmethod");
243 // Adjust the pc as needed/
244 if (nm->is_deopt_pc(pc)) {
245 RegisterMap map(current,
246 RegisterMap::UpdateMap::skip,
247 RegisterMap::ProcessFrames::include,
248 RegisterMap::WalkContinuation::skip);
249 frame exception_frame = current->last_frame().sender(&map);
250 // if the frame isn't deopted then pc must not correspond to the caller of last_frame
251 assert(exception_frame.is_deoptimized_frame(), "must be deopted");
252 pc = exception_frame.pc();
253 }
254 assert(exception.not_null(), "null exceptions should be handled by throw_exception");
255 assert(oopDesc::is_oop(exception()), "just checking");
256 // Check that exception is a subclass of Throwable
257 assert(exception->is_a(vmClasses::Throwable_klass()),
258 "Exception not subclass of Throwable");
259
260 // debugging support
261 // tracing
262 if (log_is_enabled(Info, exceptions)) {
263 ResourceMark rm;
264 stringStream tempst;
265 assert(nm->method() != nullptr, "Unexpected null method()");
266 tempst.print("JVMCI compiled method <%s>\n"
267 " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
268 nm->method()->print_value_string(), p2i(pc), p2i(current));
269 Exceptions::log_exception(exception, tempst.as_string());
270 }
271 // for AbortVMOnException flag
272 Exceptions::debug_check_abort(exception);
273
274 // Check the stack guard pages and re-enable them if necessary and there is
275 // enough space on the stack to do so. Use fast exceptions only if the guard
276 // pages are enabled.
277 bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed();
278
279 if (JvmtiExport::can_post_on_exceptions()) {
280 // To ensure correct notification of exception catches and throws
281 // we have to deoptimize here. If we attempted to notify the
282 // catches and throws during this exception lookup it's possible
283 // we could deoptimize on the way out of the VM and end back in
284 // the interpreter at the throw site. This would result in double
285 // notifications since the interpreter would also notify about
286 // these same catches and throws as it unwound the frame.
287
288 RegisterMap reg_map(current,
289 RegisterMap::UpdateMap::include,
290 RegisterMap::ProcessFrames::include,
291 RegisterMap::WalkContinuation::skip);
292 frame stub_frame = current->last_frame();
293 frame caller_frame = stub_frame.sender(®_map);
294
295 // We don't really want to deoptimize the nmethod itself since we
296 // can actually continue in the exception handler ourselves but I
297 // don't see an easy way to have the desired effect.
298 Deoptimization::deoptimize_frame(current, caller_frame.id(), Deoptimization::Reason_constraint);
299 assert(caller_is_deopted(), "Must be deoptimized");
300
301 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
302 }
303
304 // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
305 if (guard_pages_enabled) {
306 address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
307 if (fast_continuation != nullptr) {
308 // Set flag if return address is a method handle call site.
309 current->set_is_method_handle_return(nm->is_method_handle_return(pc));
310 return fast_continuation;
311 }
312 }
313
314 // If the stack guard pages are enabled, check whether there is a handler in
315 // the current method. Otherwise (guard pages disabled), force an unwind and
316 // skip the exception cache update (i.e., just leave continuation==nullptr).
317 address continuation = nullptr;
318 if (guard_pages_enabled) {
319
320 // New exception handling mechanism can support inlined methods
321 // with exception handlers since the mappings are from PC to PC
322
323 // Clear out the exception oop and pc since looking up an
324 // exception handler can cause class loading, which might throw an
325 // exception and those fields are expected to be clear during
326 // normal bytecode execution.
327 current->clear_exception_oop_and_pc();
328
329 bool recursive_exception = false;
330 continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
331 // If an exception was thrown during exception dispatch, the exception oop may have changed
332 current->set_exception_oop(exception());
333 current->set_exception_pc(pc);
334
335 // The exception cache is used only for non-implicit exceptions
336 // Update the exception cache only when another exception did
337 // occur during the computation of the compiled exception handler
338 // (e.g., when loading the class of the catch type).
339 // Checking for exception oop equality is not
340 // sufficient because some exceptions are pre-allocated and reused.
341 if (continuation != nullptr && !recursive_exception && !SharedRuntime::deopt_blob()->contains(continuation)) {
342 nm->add_handler_for_exception_and_pc(exception, pc, continuation);
343 }
344 }
345
346 // Set flag if return address is a method handle call site.
347 current->set_is_method_handle_return(nm->is_method_handle_return(pc));
348
349 if (log_is_enabled(Info, exceptions)) {
350 ResourceMark rm;
351 log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
352 " for exception thrown at PC " PTR_FORMAT,
353 p2i(current), p2i(continuation), p2i(pc));
354 }
355
356 return continuation;
357 JRT_END
358
359 // Enter this method from compiled code only if there is a Java exception handler
360 // in the method handling the exception.
361 // We are entering here from exception stub. We don't do a normal VM transition here.
362 // We do it in a helper. This is so we can check to see if the nmethod we have just
363 // searched for an exception handler has been deoptimized in the meantime.
364 address JVMCIRuntime::exception_handler_for_pc(JavaThread* current) {
365 oop exception = current->exception_oop();
366 address pc = current->exception_pc();
367 // Still in Java mode
368 DEBUG_ONLY(NoHandleMark nhm);
369 nmethod* nm = nullptr;
370 address continuation = nullptr;
371 {
372 // Enter VM mode by calling the helper
373 ResetNoHandleMark rnhm;
374 continuation = exception_handler_for_pc_helper(current, exception, pc, nm);
375 }
376 // Back in JAVA, use no oops DON'T safepoint
377
378 // Now check to see if the compiled method we were called from is now deoptimized.
379 // If so we must return to the deopt blob and deoptimize the nmethod
380 if (nm != nullptr && caller_is_deopted()) {
381 continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
382 }
383
384 assert(continuation != nullptr, "no handler found");
385 return continuation;
386 }
387
388 JRT_BLOCK_ENTRY(void, JVMCIRuntime::monitorenter(JavaThread* current, oopDesc* obj, BasicLock* lock))
389 SharedRuntime::monitor_enter_helper(obj, lock, current);
390 JRT_END
391
392 JRT_LEAF(void, JVMCIRuntime::monitorexit(JavaThread* current, oopDesc* obj, BasicLock* lock))
393 assert(current == JavaThread::current(), "pre-condition");
394 assert(current->last_Java_sp(), "last_Java_sp must be set");
395 assert(oopDesc::is_oop(obj), "invalid lock object pointer dected");
396 SharedRuntime::monitor_exit_helper(obj, lock, current);
397 JRT_END
398
399 // Object.notify() fast path, caller does slow path
400 JRT_LEAF(jboolean, JVMCIRuntime::object_notify(JavaThread* current, oopDesc* obj))
401 assert(current == JavaThread::current(), "pre-condition");
402
403 // Very few notify/notifyAll operations find any threads on the waitset, so
404 // the dominant fast-path is to simply return.
405 // Relatedly, it's critical that notify/notifyAll be fast in order to
406 // reduce lock hold times.
407 if (!SafepointSynchronize::is_synchronizing()) {
408 if (ObjectSynchronizer::quick_notify(obj, current, false)) {
409 return true;
410 }
411 }
412 return false; // caller must perform slow path
413
414 JRT_END
415
416 // Object.notifyAll() fast path, caller does slow path
417 JRT_LEAF(jboolean, JVMCIRuntime::object_notifyAll(JavaThread* current, oopDesc* obj))
418 assert(current == JavaThread::current(), "pre-condition");
419
420 if (!SafepointSynchronize::is_synchronizing() ) {
421 if (ObjectSynchronizer::quick_notify(obj, current, true)) {
422 return true;
423 }
424 }
425 return false; // caller must perform slow path
426
427 JRT_END
428
429 JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_and_post_jvmti_exception(JavaThread* current, const char* exception, const char* message))
430 JRT_BLOCK;
431 TempNewSymbol symbol = SymbolTable::new_symbol(exception);
432 SharedRuntime::throw_and_post_jvmti_exception(current, symbol, message);
433 JRT_BLOCK_END;
434 return caller_is_deopted();
435 JRT_END
436
437 JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_klass_external_name_exception(JavaThread* current, const char* exception, Klass* klass))
438 JRT_BLOCK;
439 ResourceMark rm(current);
440 TempNewSymbol symbol = SymbolTable::new_symbol(exception);
441 SharedRuntime::throw_and_post_jvmti_exception(current, symbol, klass->external_name());
442 JRT_BLOCK_END;
443 return caller_is_deopted();
444 JRT_END
445
446 JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_class_cast_exception(JavaThread* current, const char* exception, Klass* caster_klass, Klass* target_klass))
447 JRT_BLOCK;
448 ResourceMark rm(current);
449 const char* message = SharedRuntime::generate_class_cast_message(caster_klass, target_klass);
450 TempNewSymbol symbol = SymbolTable::new_symbol(exception);
451 SharedRuntime::throw_and_post_jvmti_exception(current, symbol, message);
452 JRT_BLOCK_END;
453 return caller_is_deopted();
454 JRT_END
455
456 class ArgumentPusher : public SignatureIterator {
457 protected:
458 JavaCallArguments* _jca;
459 jlong _argument;
460 bool _pushed;
461
462 jlong next_arg() {
463 guarantee(!_pushed, "one argument");
464 _pushed = true;
465 return _argument;
466 }
467
468 float next_float() {
469 guarantee(!_pushed, "one argument");
470 _pushed = true;
471 jvalue v;
472 v.i = (jint) _argument;
473 return v.f;
474 }
475
476 double next_double() {
477 guarantee(!_pushed, "one argument");
478 _pushed = true;
479 jvalue v;
480 v.j = _argument;
481 return v.d;
482 }
483
484 Handle next_object() {
485 guarantee(!_pushed, "one argument");
486 _pushed = true;
487 return Handle(Thread::current(), cast_to_oop(_argument));
488 }
489
490 public:
491 ArgumentPusher(Symbol* signature, JavaCallArguments* jca, jlong argument) : SignatureIterator(signature) {
492 this->_return_type = T_ILLEGAL;
493 _jca = jca;
494 _argument = argument;
495 _pushed = false;
496 do_parameters_on(this);
497 }
498
499 void do_type(BasicType type) {
500 switch (type) {
501 case T_OBJECT:
502 case T_ARRAY: _jca->push_oop(next_object()); break;
503 case T_BOOLEAN: _jca->push_int((jboolean) next_arg()); break;
504 case T_CHAR: _jca->push_int((jchar) next_arg()); break;
505 case T_SHORT: _jca->push_int((jint) next_arg()); break;
506 case T_BYTE: _jca->push_int((jbyte) next_arg()); break;
507 case T_INT: _jca->push_int((jint) next_arg()); break;
508 case T_LONG: _jca->push_long((jlong) next_arg()); break;
509 case T_FLOAT: _jca->push_float(next_float()); break;
510 case T_DOUBLE: _jca->push_double(next_double()); break;
511 default: fatal("Unexpected type %s", type2name(type));
512 }
513 }
514 };
515
516
517 JRT_ENTRY(jlong, JVMCIRuntime::invoke_static_method_one_arg(JavaThread* current, Method* method, jlong argument))
518 ResourceMark rm;
519 HandleMark hm(current);
520
521 methodHandle mh(current, method);
522 if (mh->size_of_parameters() > 1 && !mh->is_static()) {
523 THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "Invoked method must be static and take at most one argument");
524 }
525
526 Symbol* signature = mh->signature();
527 JavaCallArguments jca(mh->size_of_parameters());
528 ArgumentPusher jap(signature, &jca, argument);
529 BasicType return_type = jap.return_type();
530 JavaValue result(return_type);
531 JavaCalls::call(&result, mh, &jca, CHECK_0);
532
533 if (return_type == T_VOID) {
534 return 0;
535 } else if (return_type == T_OBJECT || return_type == T_ARRAY) {
536 current->set_vm_result_oop(result.get_oop());
537 return 0;
538 } else {
539 jvalue *value = (jvalue *) result.get_value_addr();
540 // Narrow the value down if required (Important on big endian machines)
541 switch (return_type) {
542 case T_BOOLEAN:
543 return (jboolean) value->i;
544 case T_BYTE:
545 return (jbyte) value->i;
546 case T_CHAR:
547 return (jchar) value->i;
548 case T_SHORT:
549 return (jshort) value->i;
550 case T_INT:
551 case T_FLOAT:
552 return value->i;
553 case T_LONG:
554 case T_DOUBLE:
555 return value->j;
556 default:
557 fatal("Unexpected type %s", type2name(return_type));
558 return 0;
559 }
560 }
561 JRT_END
562
563 JRT_LEAF(void, JVMCIRuntime::log_object(JavaThread* thread, oopDesc* obj, bool as_string, bool newline))
564 ttyLocker ttyl;
565
566 if (obj == nullptr) {
567 tty->print("null");
568 } else if (oopDesc::is_oop_or_null(obj, true) && (!as_string || !java_lang_String::is_instance(obj))) {
569 if (oopDesc::is_oop_or_null(obj, true)) {
570 char buf[O_BUFLEN];
571 tty->print("%s@" INTPTR_FORMAT, obj->klass()->name()->as_C_string(buf, O_BUFLEN), p2i(obj));
572 } else {
573 tty->print(INTPTR_FORMAT, p2i(obj));
574 }
575 } else {
576 ResourceMark rm;
577 assert(obj != nullptr && java_lang_String::is_instance(obj), "must be");
578 char *buf = java_lang_String::as_utf8_string(obj);
579 tty->print_raw(buf);
580 }
581 if (newline) {
582 tty->cr();
583 }
584 JRT_END
585
586 #if INCLUDE_G1GC
587
588 void JVMCIRuntime::write_barrier_pre(JavaThread* thread, oopDesc* obj) {
589 G1BarrierSetRuntime::write_ref_field_pre_entry(obj, thread);
590 }
591
592 void JVMCIRuntime::write_barrier_post(JavaThread* thread, volatile CardValue* card_addr) {
593 G1BarrierSetRuntime::write_ref_field_post_entry(card_addr, thread);
594 }
595
596 #endif // INCLUDE_G1GC
597
598 JRT_LEAF(jboolean, JVMCIRuntime::validate_object(JavaThread* thread, oopDesc* parent, oopDesc* child))
599 bool ret = true;
600 if(!Universe::heap()->is_in(parent)) {
601 tty->print_cr("Parent Object " INTPTR_FORMAT " not in heap", p2i(parent));
602 parent->print();
603 ret=false;
604 }
605 if(!Universe::heap()->is_in(child)) {
606 tty->print_cr("Child Object " INTPTR_FORMAT " not in heap", p2i(child));
607 child->print();
608 ret=false;
609 }
610 return (jint)ret;
611 JRT_END
612
613 JRT_ENTRY(void, JVMCIRuntime::vm_error(JavaThread* current, jlong where, jlong format, jlong value))
614 ResourceMark rm(current);
615 const char *error_msg = where == 0L ? "<internal JVMCI error>" : (char*) (address) where;
616 char *detail_msg = nullptr;
617 if (format != 0L) {
618 const char* buf = (char*) (address) format;
619 size_t detail_msg_length = strlen(buf) * 2;
620 detail_msg = (char *) NEW_RESOURCE_ARRAY(u_char, detail_msg_length);
621 jio_snprintf(detail_msg, detail_msg_length, buf, value);
622 }
623 report_vm_error(__FILE__, __LINE__, error_msg, "%s", detail_msg);
624 JRT_END
625
626 JRT_LEAF(oopDesc*, JVMCIRuntime::load_and_clear_exception(JavaThread* thread))
627 oop exception = thread->exception_oop();
628 assert(exception != nullptr, "npe");
629 thread->set_exception_oop(nullptr);
630 thread->set_exception_pc(nullptr);
631 return exception;
632 JRT_END
633
634 PRAGMA_DIAG_PUSH
635 PRAGMA_FORMAT_NONLITERAL_IGNORED
636 JRT_LEAF(void, JVMCIRuntime::log_printf(JavaThread* thread, const char* format, jlong v1, jlong v2, jlong v3))
637 ResourceMark rm;
638 tty->print(format, v1, v2, v3);
639 JRT_END
640 PRAGMA_DIAG_POP
641
642 static void decipher(jlong v, bool ignoreZero) {
643 if (v != 0 || !ignoreZero) {
644 void* p = (void *)(address) v;
645 CodeBlob* cb = CodeCache::find_blob(p);
646 if (cb) {
647 if (cb->is_nmethod()) {
648 char buf[O_BUFLEN];
649 tty->print("%s [" INTPTR_FORMAT "+" JLONG_FORMAT "]", cb->as_nmethod()->method()->name_and_sig_as_C_string(buf, O_BUFLEN), p2i(cb->code_begin()), (jlong)((address)v - cb->code_begin()));
650 return;
651 }
652 cb->print_value_on(tty);
653 return;
654 }
655 if (Universe::heap()->is_in(p)) {
656 oop obj = cast_to_oop(p);
657 obj->print_value_on(tty);
658 return;
659 }
660 tty->print(INTPTR_FORMAT " [long: " JLONG_FORMAT ", double %lf, char %c]",p2i((void *)v), (jlong)v, (jdouble)v, (char)v);
661 }
662 }
663
664 PRAGMA_DIAG_PUSH
665 PRAGMA_FORMAT_NONLITERAL_IGNORED
666 JRT_LEAF(void, JVMCIRuntime::vm_message(jboolean vmError, jlong format, jlong v1, jlong v2, jlong v3))
667 ResourceMark rm;
668 const char *buf = (const char*) (address) format;
669 if (vmError) {
670 if (buf != nullptr) {
671 fatal(buf, v1, v2, v3);
672 } else {
673 fatal("<anonymous error>");
674 }
675 } else if (buf != nullptr) {
676 tty->print(buf, v1, v2, v3);
677 } else {
678 assert(v2 == 0, "v2 != 0");
679 assert(v3 == 0, "v3 != 0");
680 decipher(v1, false);
681 }
682 JRT_END
683 PRAGMA_DIAG_POP
684
685 JRT_LEAF(void, JVMCIRuntime::log_primitive(JavaThread* thread, jchar typeChar, jlong value, jboolean newline))
686 union {
687 jlong l;
688 jdouble d;
689 jfloat f;
690 } uu;
691 uu.l = value;
692 switch (typeChar) {
693 case 'Z': tty->print(value == 0 ? "false" : "true"); break;
694 case 'B': tty->print("%d", (jbyte) value); break;
695 case 'C': tty->print("%c", (jchar) value); break;
696 case 'S': tty->print("%d", (jshort) value); break;
697 case 'I': tty->print("%d", (jint) value); break;
698 case 'F': tty->print("%f", uu.f); break;
699 case 'J': tty->print(JLONG_FORMAT, value); break;
700 case 'D': tty->print("%lf", uu.d); break;
701 default: assert(false, "unknown typeChar"); break;
702 }
703 if (newline) {
704 tty->cr();
705 }
706 JRT_END
707
708 JRT_ENTRY(jint, JVMCIRuntime::identity_hash_code(JavaThread* current, oopDesc* obj))
709 return (jint) obj->identity_hash();
710 JRT_END
711
712 JRT_ENTRY(jint, JVMCIRuntime::test_deoptimize_call_int(JavaThread* current, int value))
713 deopt_caller();
714 return (jint) value;
715 JRT_END
716
717
718 // Implementation of JVMCI.initializeRuntime()
719 // When called from libjvmci, `libjvmciOrHotspotEnv` is a libjvmci env so use JVM_ENTRY_NO_ENV.
720 JVM_ENTRY_NO_ENV(jobject, JVM_GetJVMCIRuntime(JNIEnv *libjvmciOrHotspotEnv, jclass c))
721 JVMCIENV_FROM_JNI(thread, libjvmciOrHotspotEnv);
722 if (!EnableJVMCI) {
723 JVMCI_THROW_MSG_NULL(InternalError, JVMCI_NOT_ENABLED_ERROR_MESSAGE);
724 }
725 JVMCIENV->runtime()->initialize_HotSpotJVMCIRuntime(JVMCI_CHECK_NULL);
726 JVMCIObject runtime = JVMCIENV->runtime()->get_HotSpotJVMCIRuntime(JVMCI_CHECK_NULL);
727 return JVMCIENV->get_jobject(runtime);
728 JVM_END
729
730 // Implementation of Services.readSystemPropertiesInfo(int[] offsets)
731 // When called from libjvmci, `env` is a libjvmci env so use JVM_ENTRY_NO_ENV.
732 JVM_ENTRY_NO_ENV(jlong, JVM_ReadSystemPropertiesInfo(JNIEnv *env, jclass c, jintArray offsets_handle))
733 JVMCIENV_FROM_JNI(thread, env);
734 if (!EnableJVMCI) {
735 JVMCI_THROW_MSG_0(InternalError, JVMCI_NOT_ENABLED_ERROR_MESSAGE);
736 }
737 JVMCIPrimitiveArray offsets = JVMCIENV->wrap(offsets_handle);
738 JVMCIENV->put_int_at(offsets, 0, SystemProperty::next_offset_in_bytes());
739 JVMCIENV->put_int_at(offsets, 1, SystemProperty::key_offset_in_bytes());
740 JVMCIENV->put_int_at(offsets, 2, PathString::value_offset_in_bytes());
741
742 return (jlong) Arguments::system_properties();
743 JVM_END
744
745
746 void JVMCINMethodData::initialize(int nmethod_mirror_index,
747 int nmethod_entry_patch_offset,
748 const char* nmethod_mirror_name,
749 FailedSpeculation** failed_speculations)
750 {
751 _failed_speculations = failed_speculations;
752 _nmethod_mirror_index = nmethod_mirror_index;
753 guarantee(nmethod_entry_patch_offset != -1, "missing entry barrier");
754 _nmethod_entry_patch_offset = nmethod_entry_patch_offset;
755 if (nmethod_mirror_name != nullptr) {
756 _has_name = true;
757 char* dest = (char*) name();
758 strcpy(dest, nmethod_mirror_name);
759 } else {
760 _has_name = false;
761 }
762 }
763
764 void JVMCINMethodData::copy(JVMCINMethodData* data) {
765 initialize(data->_nmethod_mirror_index, data->_nmethod_entry_patch_offset, data->name(), data->_failed_speculations);
766 }
767
768 void JVMCINMethodData::add_failed_speculation(nmethod* nm, jlong speculation) {
769 jlong index = speculation >> JVMCINMethodData::SPECULATION_LENGTH_BITS;
770 guarantee(index >= 0 && index <= max_jint, "Encoded JVMCI speculation index is not a positive Java int: " INTPTR_FORMAT, index);
771 int length = speculation & JVMCINMethodData::SPECULATION_LENGTH_MASK;
772 if (index + length > (uint) nm->speculations_size()) {
773 fatal(INTPTR_FORMAT "[index: " JLONG_FORMAT ", length: %d out of bounds wrt encoded speculations of length %u", speculation, index, length, nm->speculations_size());
774 }
775 address data = nm->speculations_begin() + index;
776 FailedSpeculation::add_failed_speculation(nm, _failed_speculations, data, length);
777 }
778
779 oop JVMCINMethodData::get_nmethod_mirror(nmethod* nm) {
780 if (_nmethod_mirror_index == -1) {
781 return nullptr;
782 }
783 return nm->oop_at(_nmethod_mirror_index);
784 }
785
786 void JVMCINMethodData::set_nmethod_mirror(nmethod* nm, oop new_mirror) {
787 guarantee(_nmethod_mirror_index != -1, "cannot set JVMCI mirror for nmethod");
788 oop* addr = nm->oop_addr_at(_nmethod_mirror_index);
789 guarantee(new_mirror != nullptr, "use clear_nmethod_mirror to clear the mirror");
790 guarantee(*addr == nullptr, "cannot overwrite non-null mirror");
791
792 *addr = new_mirror;
793
794 // Since we've patched some oops in the nmethod,
795 // (re)register it with the heap.
796 MutexLocker ml(CodeCache_lock, Mutex::_no_safepoint_check_flag);
797 Universe::heap()->register_nmethod(nm);
798 }
799
800 void JVMCINMethodData::invalidate_nmethod_mirror(nmethod* nm) {
801 oop nmethod_mirror = get_nmethod_mirror(nm);
802 if (nmethod_mirror == nullptr) {
803 return;
804 }
805
806 // Update the values in the mirror if it still refers to nm.
807 // We cannot use JVMCIObject to wrap the mirror as this is called
808 // during GC, forbidding the creation of JNIHandles.
809 JVMCIEnv* jvmciEnv = nullptr;
810 nmethod* current = (nmethod*) HotSpotJVMCI::InstalledCode::address(jvmciEnv, nmethod_mirror);
811 if (nm == current) {
812 if (nm->is_unloading()) {
813 // Break the link from the mirror to nm such that
814 // future invocations via the mirror will result in
815 // an InvalidInstalledCodeException.
816 HotSpotJVMCI::InstalledCode::set_address(jvmciEnv, nmethod_mirror, 0);
817 HotSpotJVMCI::InstalledCode::set_entryPoint(jvmciEnv, nmethod_mirror, 0);
818 HotSpotJVMCI::HotSpotInstalledCode::set_codeStart(jvmciEnv, nmethod_mirror, 0);
819 } else if (nm->is_not_entrant()) {
820 // Zero the entry point so any new invocation will fail but keep
821 // the address link around that so that existing activations can
822 // be deoptimized via the mirror (i.e. JVMCIEnv::invalidate_installed_code).
823 HotSpotJVMCI::InstalledCode::set_entryPoint(jvmciEnv, nmethod_mirror, 0);
824 HotSpotJVMCI::HotSpotInstalledCode::set_codeStart(jvmciEnv, nmethod_mirror, 0);
825 }
826 }
827
828 if (_nmethod_mirror_index != -1 && nm->is_unloading()) {
829 // Drop the reference to the nmethod mirror object but don't clear the actual oop reference. Otherwise
830 // it would appear that the nmethod didn't need to be unloaded in the first place.
831 _nmethod_mirror_index = -1;
832 }
833 }
834
835 // Handles to objects in the Hotspot heap.
836 static OopStorage* object_handles() {
837 return Universe::vm_global();
838 }
839
840 jlong JVMCIRuntime::make_oop_handle(const Handle& obj) {
841 assert(!Universe::heap()->is_stw_gc_active(), "can't extend the root set during GC pause");
842 assert(oopDesc::is_oop(obj()), "not an oop");
843
844 oop* ptr = OopHandle(object_handles(), obj()).ptr_raw();
845 MutexLocker ml(_lock);
846 _oop_handles.append(ptr);
847 return reinterpret_cast<jlong>(ptr);
848 }
849
850 #ifdef ASSERT
851 bool JVMCIRuntime::is_oop_handle(jlong handle) {
852 const oop* ptr = (oop*) handle;
853 return object_handles()->allocation_status(ptr) == OopStorage::ALLOCATED_ENTRY;
854 }
855 #endif
856
857 int JVMCIRuntime::release_and_clear_oop_handles() {
858 guarantee(_num_attached_threads == cannot_be_attached, "only call during JVMCI runtime shutdown");
859 int released = release_cleared_oop_handles();
860 if (_oop_handles.length() != 0) {
861 for (int i = 0; i < _oop_handles.length(); i++) {
862 oop* oop_ptr = _oop_handles.at(i);
863 guarantee(oop_ptr != nullptr, "release_cleared_oop_handles left null entry in _oop_handles");
864 guarantee(NativeAccess<>::oop_load(oop_ptr) != nullptr, "unexpected cleared handle");
865 // Satisfy OopHandles::release precondition that all
866 // handles being released are null.
867 NativeAccess<>::oop_store(oop_ptr, (oop) nullptr);
868 }
869
870 // Do the bulk release
871 object_handles()->release(_oop_handles.adr_at(0), _oop_handles.length());
872 released += _oop_handles.length();
873 }
874 _oop_handles.clear();
875 return released;
876 }
877
878 static bool is_referent_non_null(oop* handle) {
879 return handle != nullptr && NativeAccess<>::oop_load(handle) != nullptr;
880 }
881
882 // Swaps the elements in `array` at index `a` and index `b`
883 static void swap(GrowableArray<oop*>* array, int a, int b) {
884 oop* tmp = array->at(a);
885 array->at_put(a, array->at(b));
886 array->at_put(b, tmp);
887 }
888
889 int JVMCIRuntime::release_cleared_oop_handles() {
890 // Despite this lock, it's possible for another thread
891 // to clear a handle's referent concurrently (e.g., a thread
892 // executing IndirectHotSpotObjectConstantImpl.clear()).
893 // This is benign - it means there can still be cleared
894 // handles in _oop_handles when this method returns.
895 MutexLocker ml(_lock);
896
897 int next = 0;
898 if (_oop_handles.length() != 0) {
899 // Key for _oop_handles contents in example below:
900 // H: handle with non-null referent
901 // h: handle with clear (i.e., null) referent
902 // -: null entry
903
904 // Shuffle all handles with non-null referents to the front of the list
905 // Example: Before: 0HHh-Hh-
906 // After: HHHh--h-
907 for (int i = 0; i < _oop_handles.length(); i++) {
908 oop* handle = _oop_handles.at(i);
909 if (is_referent_non_null(handle)) {
910 if (i != next && !is_referent_non_null(_oop_handles.at(next))) {
911 // Swap elements at index `next` and `i`
912 swap(&_oop_handles, next, i);
913 }
914 next++;
915 }
916 }
917
918 // `next` is now the index of the first null handle or handle with a null referent
919 int num_alive = next;
920
921 // Shuffle all null handles to the end of the list
922 // Example: Before: HHHh--h-
923 // After: HHHhh---
924 // num_alive: 3
925 for (int i = next; i < _oop_handles.length(); i++) {
926 oop* handle = _oop_handles.at(i);
927 if (handle != nullptr) {
928 if (i != next && _oop_handles.at(next) == nullptr) {
929 // Swap elements at index `next` and `i`
930 swap(&_oop_handles, next, i);
931 }
932 next++;
933 }
934 }
935 if (next != num_alive) {
936 int to_release = next - num_alive;
937
938 // `next` is now the index of the first null handle
939 // Example: to_release: 2
940
941 // Bulk release the handles with a null referent
942 object_handles()->release(_oop_handles.adr_at(num_alive), to_release);
943
944 // Truncate oop handles to only those with a non-null referent
945 JVMCI_event_2("compacted oop handles in JVMCI runtime %d from %d to %d", _id, _oop_handles.length(), num_alive);
946 _oop_handles.trunc_to(num_alive);
947 // Example: HHH
948
949 return to_release;
950 }
951 }
952 return 0;
953 }
954
955 jmetadata JVMCIRuntime::allocate_handle(const methodHandle& handle) {
956 MutexLocker ml(_lock);
957 return _metadata_handles->allocate_handle(handle);
958 }
959
960 jmetadata JVMCIRuntime::allocate_handle(const constantPoolHandle& handle) {
961 MutexLocker ml(_lock);
962 return _metadata_handles->allocate_handle(handle);
963 }
964
965 void JVMCIRuntime::release_handle(jmetadata handle) {
966 MutexLocker ml(_lock);
967 _metadata_handles->chain_free_list(handle);
968 }
969
970 // Function for redirecting shared library JavaVM output to tty
971 static void _log(const char* buf, size_t count) {
972 tty->write((char*) buf, count);
973 }
974
975 // Function for redirecting shared library JavaVM fatal error data to a log file.
976 // The log file is opened on first call to this function.
977 static void _fatal_log(const char* buf, size_t count) {
978 JVMCI::fatal_log(buf, count);
979 }
980
981 // Function for shared library JavaVM to flush tty
982 static void _flush_log() {
983 tty->flush();
984 }
985
986 // Function for shared library JavaVM to exit HotSpot on a fatal error
987 static void _fatal() {
988 Thread* thread = Thread::current_or_null_safe();
989 if (thread != nullptr && thread->is_Java_thread()) {
990 JavaThread* jthread = JavaThread::cast(thread);
991 JVMCIRuntime* runtime = jthread->libjvmci_runtime();
992 if (runtime != nullptr) {
993 int javaVM_id = runtime->get_shared_library_javavm_id();
994 fatal("Fatal error in JVMCI shared library JavaVM[%d] owned by JVMCI runtime %d", javaVM_id, runtime->id());
995 }
996 }
997 intx current_thread_id = os::current_thread_id();
998 fatal("thread %zd: Fatal error in JVMCI shared library", current_thread_id);
999 }
1000
1001 JVMCIRuntime::JVMCIRuntime(JVMCIRuntime* next, int id, bool for_compile_broker) :
1002 _init_state(uninitialized),
1003 _shared_library_javavm(nullptr),
1004 _shared_library_javavm_id(0),
1005 _id(id),
1006 _next(next),
1007 _metadata_handles(new MetadataHandles()),
1008 _oop_handles(100, mtJVMCI),
1009 _num_attached_threads(0),
1010 _for_compile_broker(for_compile_broker)
1011 {
1012 if (id == -1) {
1013 _lock = JVMCIRuntime_lock;
1014 } else {
1015 stringStream lock_name;
1016 lock_name.print("%s@%d", JVMCIRuntime_lock->name(), id);
1017 Mutex::Rank lock_rank = DEBUG_ONLY(JVMCIRuntime_lock->rank()) NOT_DEBUG(Mutex::safepoint);
1018 _lock = new PaddedMonitor(lock_rank, lock_name.as_string(/*c_heap*/true));
1019 }
1020 JVMCI_event_1("created new %s JVMCI runtime %d (" PTR_FORMAT ")",
1021 id == -1 ? "Java" : for_compile_broker ? "CompileBroker" : "Compiler", id, p2i(this));
1022 }
1023
1024 JVMCIRuntime* JVMCIRuntime::select_runtime_in_shutdown(JavaThread* thread) {
1025 assert(JVMCI_lock->owner() == thread, "must be");
1026 // When shutting down, use the first available runtime.
1027 for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) {
1028 if (runtime->_num_attached_threads != cannot_be_attached) {
1029 runtime->pre_attach_thread(thread);
1030 JVMCI_event_1("using pre-existing JVMCI runtime %d in shutdown", runtime->id());
1031 return runtime;
1032 }
1033 }
1034 // Lazily initialize JVMCI::_shutdown_compiler_runtime. Safe to
1035 // do here since JVMCI_lock is locked.
1036 if (JVMCI::_shutdown_compiler_runtime == nullptr) {
1037 JVMCI::_shutdown_compiler_runtime = new JVMCIRuntime(nullptr, -2, true);
1038 }
1039 JVMCIRuntime* runtime = JVMCI::_shutdown_compiler_runtime;
1040 JVMCI_event_1("using reserved shutdown JVMCI runtime %d", runtime->id());
1041 return runtime;
1042 }
1043
1044 JVMCIRuntime* JVMCIRuntime::select_runtime(JavaThread* thread, JVMCIRuntime* skip, int* count) {
1045 assert(JVMCI_lock->owner() == thread, "must be");
1046 bool for_compile_broker = thread->is_Compiler_thread();
1047 for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) {
1048 if (count != nullptr) {
1049 (*count)++;
1050 }
1051 if (for_compile_broker == runtime->_for_compile_broker) {
1052 int count = runtime->_num_attached_threads;
1053 if (count == cannot_be_attached || runtime == skip) {
1054 // Cannot attach to rt
1055 continue;
1056 }
1057 // If selecting for repacking, ignore a runtime without an existing JavaVM
1058 if (skip != nullptr && !runtime->has_shared_library_javavm()) {
1059 continue;
1060 }
1061
1062 // Select first runtime with sufficient capacity
1063 if (count < (int) JVMCIThreadsPerNativeLibraryRuntime) {
1064 runtime->pre_attach_thread(thread);
1065 return runtime;
1066 }
1067 }
1068 }
1069 return nullptr;
1070 }
1071
1072 JVMCIRuntime* JVMCIRuntime::select_or_create_runtime(JavaThread* thread) {
1073 assert(JVMCI_lock->owner() == thread, "must be");
1074 int id = 0;
1075 JVMCIRuntime* runtime;
1076 if (JVMCI::using_singleton_shared_library_runtime()) {
1077 runtime = JVMCI::_compiler_runtimes;
1078 guarantee(runtime != nullptr, "must be");
1079 while (runtime->_num_attached_threads == cannot_be_attached) {
1080 // Since there is only a singleton JVMCIRuntime, we
1081 // need to wait for it to be available for attaching.
1082 JVMCI_lock->wait();
1083 }
1084 runtime->pre_attach_thread(thread);
1085 } else {
1086 runtime = select_runtime(thread, nullptr, &id);
1087 }
1088 if (runtime == nullptr) {
1089 runtime = new JVMCIRuntime(JVMCI::_compiler_runtimes, id, thread->is_Compiler_thread());
1090 JVMCI::_compiler_runtimes = runtime;
1091 runtime->pre_attach_thread(thread);
1092 }
1093 return runtime;
1094 }
1095
1096 JVMCIRuntime* JVMCIRuntime::for_thread(JavaThread* thread) {
1097 assert(thread->libjvmci_runtime() == nullptr, "must be");
1098 // Find the runtime with fewest attached threads
1099 JVMCIRuntime* runtime = nullptr;
1100 {
1101 MutexLocker locker(JVMCI_lock);
1102 runtime = JVMCI::in_shutdown() ? select_runtime_in_shutdown(thread) : select_or_create_runtime(thread);
1103 }
1104 runtime->attach_thread(thread);
1105 return runtime;
1106 }
1107
1108 const char* JVMCIRuntime::attach_shared_library_thread(JavaThread* thread, JavaVM* javaVM) {
1109 MutexLocker locker(JVMCI_lock);
1110 for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) {
1111 if (runtime->_shared_library_javavm == javaVM) {
1112 if (runtime->_num_attached_threads == cannot_be_attached) {
1113 return "Cannot attach to JVMCI runtime that is shutting down";
1114 }
1115 runtime->pre_attach_thread(thread);
1116 runtime->attach_thread(thread);
1117 return nullptr;
1118 }
1119 }
1120 return "Cannot find JVMCI runtime";
1121 }
1122
1123 void JVMCIRuntime::pre_attach_thread(JavaThread* thread) {
1124 assert(JVMCI_lock->owner() == thread, "must be");
1125 _num_attached_threads++;
1126 }
1127
1128 void JVMCIRuntime::attach_thread(JavaThread* thread) {
1129 assert(thread->libjvmci_runtime() == nullptr, "must be");
1130 thread->set_libjvmci_runtime(this);
1131 guarantee(this == JVMCI::_shutdown_compiler_runtime ||
1132 _num_attached_threads > 0,
1133 "missing reservation in JVMCI runtime %d: _num_attached_threads=%d", _id, _num_attached_threads);
1134 JVMCI_event_1("attached to JVMCI runtime %d%s", _id, JVMCI::in_shutdown() ? " [in JVMCI shutdown]" : "");
1135 }
1136
1137 void JVMCIRuntime::repack(JavaThread* thread) {
1138 JVMCIRuntime* new_runtime = nullptr;
1139 {
1140 MutexLocker locker(JVMCI_lock);
1141 if (JVMCI::using_singleton_shared_library_runtime() || _num_attached_threads != 1 || JVMCI::in_shutdown()) {
1142 return;
1143 }
1144 new_runtime = select_runtime(thread, this, nullptr);
1145 }
1146 if (new_runtime != nullptr) {
1147 JVMCI_event_1("Moving thread from JVMCI runtime %d to JVMCI runtime %d (%d attached)", _id, new_runtime->_id, new_runtime->_num_attached_threads - 1);
1148 detach_thread(thread, "moving thread to another JVMCI runtime");
1149 new_runtime->attach_thread(thread);
1150 }
1151 }
1152
1153 bool JVMCIRuntime::detach_thread(JavaThread* thread, const char* reason, bool can_destroy_javavm) {
1154 if (this == JVMCI::_shutdown_compiler_runtime || JVMCI::in_shutdown()) {
1155 // Do minimal work when shutting down JVMCI
1156 thread->set_libjvmci_runtime(nullptr);
1157 return false;
1158 }
1159 bool should_shutdown;
1160 bool destroyed_javavm = false;
1161 {
1162 MutexLocker locker(JVMCI_lock);
1163 _num_attached_threads--;
1164 JVMCI_event_1("detaching from JVMCI runtime %d: %s (%d other threads still attached)", _id, reason, _num_attached_threads);
1165 should_shutdown = _num_attached_threads == 0 && !JVMCI::in_shutdown();
1166 if (should_shutdown && !can_destroy_javavm) {
1167 // If it's not possible to destroy the JavaVM on this thread then the VM must
1168 // not be shutdown. This can happen when a shared library thread is the last
1169 // thread to detach from a shared library JavaVM (e.g. GraalServiceThread).
1170 JVMCI_event_1("Cancelled shut down of JVMCI runtime %d", _id);
1171 should_shutdown = false;
1172 }
1173 if (should_shutdown) {
1174 // Prevent other threads from attaching to this runtime
1175 // while it is shutting down and destroying its JavaVM
1176 _num_attached_threads = cannot_be_attached;
1177 }
1178 }
1179 if (should_shutdown) {
1180 // Release the JavaVM resources associated with this
1181 // runtime once there are no threads attached to it.
1182 shutdown();
1183 if (can_destroy_javavm) {
1184 destroyed_javavm = destroy_shared_library_javavm();
1185 if (destroyed_javavm) {
1186 // Can release all handles now that there's no code executing
1187 // that could be using them. Handles for the Java JVMCI runtime
1188 // are never released as we cannot guarantee all compiler threads
1189 // using it have been stopped.
1190 int released = release_and_clear_oop_handles();
1191 JVMCI_event_1("releasing handles for JVMCI runtime %d: oop handles=%d, metadata handles={total=%d, live=%d, blocks=%d}",
1192 _id,
1193 released,
1194 _metadata_handles->num_handles(),
1195 _metadata_handles->num_handles() - _metadata_handles->num_free_handles(),
1196 _metadata_handles->num_blocks());
1197
1198 // No need to acquire _lock since this is the only thread accessing this runtime
1199 _metadata_handles->clear();
1200 }
1201 }
1202 // Allow other threads to attach to this runtime now
1203 MutexLocker locker(JVMCI_lock);
1204 _num_attached_threads = 0;
1205 if (JVMCI::using_singleton_shared_library_runtime()) {
1206 // Notify any thread waiting to attach to the
1207 // singleton JVMCIRuntime
1208 JVMCI_lock->notify();
1209 }
1210 }
1211 thread->set_libjvmci_runtime(nullptr);
1212 JVMCI_event_1("detached from JVMCI runtime %d", _id);
1213 return destroyed_javavm;
1214 }
1215
1216 JNIEnv* JVMCIRuntime::init_shared_library_javavm(int* create_JavaVM_err, const char** err_msg) {
1217 MutexLocker locker(_lock);
1218 JavaVM* javaVM = _shared_library_javavm;
1219 if (javaVM == nullptr) {
1220 #ifdef ASSERT
1221 const char* val = Arguments::PropertyList_get_value(Arguments::system_properties(), "test.jvmci.forceEnomemOnLibjvmciInit");
1222 if (val != nullptr && strcmp(val, "true") == 0) {
1223 *create_JavaVM_err = JNI_ENOMEM;
1224 return nullptr;
1225 }
1226 #endif
1227
1228 char* sl_path;
1229 void* sl_handle = JVMCI::get_shared_library(sl_path, true);
1230
1231 jint (*JNI_CreateJavaVM)(JavaVM **pvm, void **penv, void *args);
1232 typedef jint (*JNI_CreateJavaVM_t)(JavaVM **pvm, void **penv, void *args);
1233
1234 JNI_CreateJavaVM = CAST_TO_FN_PTR(JNI_CreateJavaVM_t, os::dll_lookup(sl_handle, "JNI_CreateJavaVM"));
1235 if (JNI_CreateJavaVM == nullptr) {
1236 fatal("Unable to find JNI_CreateJavaVM in %s", sl_path);
1237 }
1238
1239 ResourceMark rm;
1240 JavaVMInitArgs vm_args;
1241 vm_args.version = JNI_VERSION_1_2;
1242 vm_args.ignoreUnrecognized = JNI_TRUE;
1243 JavaVMOption options[6];
1244 jlong javaVM_id = 0;
1245
1246 // Protocol: JVMCI shared library JavaVM should support a non-standard "_javavm_id"
1247 // option whose extraInfo info field is a pointer to which a unique id for the
1248 // JavaVM should be written.
1249 options[0].optionString = (char*) "_javavm_id";
1250 options[0].extraInfo = &javaVM_id;
1251
1252 options[1].optionString = (char*) "_log";
1253 options[1].extraInfo = (void*) _log;
1254 options[2].optionString = (char*) "_flush_log";
1255 options[2].extraInfo = (void*) _flush_log;
1256 options[3].optionString = (char*) "_fatal";
1257 options[3].extraInfo = (void*) _fatal;
1258 options[4].optionString = (char*) "_fatal_log";
1259 options[4].extraInfo = (void*) _fatal_log;
1260 options[5].optionString = (char*) "_createvm_errorstr";
1261 options[5].extraInfo = (void*) err_msg;
1262
1263 vm_args.version = JNI_VERSION_1_2;
1264 vm_args.options = options;
1265 vm_args.nOptions = sizeof(options) / sizeof(JavaVMOption);
1266
1267 JNIEnv* env = nullptr;
1268 int result = (*JNI_CreateJavaVM)(&javaVM, (void**) &env, &vm_args);
1269 if (result == JNI_OK) {
1270 guarantee(env != nullptr, "missing env");
1271 _shared_library_javavm_id = javaVM_id;
1272 _shared_library_javavm = javaVM;
1273 JVMCI_event_1("created JavaVM[%ld]@" PTR_FORMAT " for JVMCI runtime %d", javaVM_id, p2i(javaVM), _id);
1274 return env;
1275 } else {
1276 *create_JavaVM_err = result;
1277 }
1278 }
1279 return nullptr;
1280 }
1281
1282 void JVMCIRuntime::init_JavaVM_info(jlongArray info, JVMCI_TRAPS) {
1283 if (info != nullptr) {
1284 typeArrayOop info_oop = (typeArrayOop) JNIHandles::resolve(info);
1285 if (info_oop->length() < 4) {
1286 JVMCI_THROW_MSG(ArrayIndexOutOfBoundsException, err_msg("%d < 4", info_oop->length()));
1287 }
1288 JavaVM* javaVM = _shared_library_javavm;
1289 info_oop->long_at_put(0, (jlong) (address) javaVM);
1290 info_oop->long_at_put(1, (jlong) (address) javaVM->functions->reserved0);
1291 info_oop->long_at_put(2, (jlong) (address) javaVM->functions->reserved1);
1292 info_oop->long_at_put(3, (jlong) (address) javaVM->functions->reserved2);
1293 }
1294 }
1295
1296 #define JAVAVM_CALL_BLOCK \
1297 guarantee(thread != nullptr && _shared_library_javavm != nullptr, "npe"); \
1298 ThreadToNativeFromVM ttnfv(thread); \
1299 JavaVM* javavm = _shared_library_javavm;
1300
1301 jint JVMCIRuntime::AttachCurrentThread(JavaThread* thread, void **penv, void *args) {
1302 JAVAVM_CALL_BLOCK
1303 return javavm->AttachCurrentThread(penv, args);
1304 }
1305
1306 jint JVMCIRuntime::AttachCurrentThreadAsDaemon(JavaThread* thread, void **penv, void *args) {
1307 JAVAVM_CALL_BLOCK
1308 return javavm->AttachCurrentThreadAsDaemon(penv, args);
1309 }
1310
1311 jint JVMCIRuntime::DetachCurrentThread(JavaThread* thread) {
1312 JAVAVM_CALL_BLOCK
1313 return javavm->DetachCurrentThread();
1314 }
1315
1316 jint JVMCIRuntime::GetEnv(JavaThread* thread, void **penv, jint version) {
1317 JAVAVM_CALL_BLOCK
1318 return javavm->GetEnv(penv, version);
1319 }
1320 #undef JAVAVM_CALL_BLOCK \
1321
1322 void JVMCIRuntime::initialize_HotSpotJVMCIRuntime(JVMCI_TRAPS) {
1323 if (is_HotSpotJVMCIRuntime_initialized()) {
1324 if (JVMCIENV->is_hotspot() && UseJVMCINativeLibrary) {
1325 JVMCI_THROW_MSG(InternalError, "JVMCI has already been enabled in the JVMCI shared library");
1326 }
1327 }
1328
1329 initialize(JVMCI_CHECK);
1330
1331 // This should only be called in the context of the JVMCI class being initialized
1332 JVMCIObject result = JVMCIENV->call_HotSpotJVMCIRuntime_runtime(JVMCI_CHECK);
1333 result = JVMCIENV->make_global(result);
1334
1335 OrderAccess::storestore(); // Ensure handle is fully constructed before publishing
1336 _HotSpotJVMCIRuntime_instance = result;
1337
1338 JVMCI::_is_initialized = true;
1339 }
1340
1341 JVMCIRuntime::InitState JVMCIRuntime::_shared_library_javavm_refs_init_state = JVMCIRuntime::uninitialized;
1342 JVMCIRuntime::InitState JVMCIRuntime::_hotspot_javavm_refs_init_state = JVMCIRuntime::uninitialized;
1343
1344 class JavaVMRefsInitialization: public StackObj {
1345 JVMCIRuntime::InitState *_state;
1346 int _id;
1347 public:
1348 JavaVMRefsInitialization(JVMCIRuntime::InitState *state, int id) {
1349 _state = state;
1350 _id = id;
1351 // All classes, methods and fields in the JVMCI shared library
1352 // are in the read-only part of the image. As such, these
1353 // values (and any global handle derived from them via NewGlobalRef)
1354 // are the same for all JavaVM instances created in the
1355 // shared library which means they only need to be initialized
1356 // once. In non-product mode, we check this invariant.
1357 // See com.oracle.svm.jni.JNIImageHeapHandles.
1358 // The same is true for Klass* and field offsets in HotSpotJVMCI.
1359 if (*state == JVMCIRuntime::uninitialized DEBUG_ONLY( || true)) {
1360 *state = JVMCIRuntime::being_initialized;
1361 JVMCI_event_1("initializing JavaVM references in JVMCI runtime %d", id);
1362 } else {
1363 while (*state != JVMCIRuntime::fully_initialized) {
1364 JVMCI_event_1("waiting for JavaVM references initialization in JVMCI runtime %d", id);
1365 JVMCI_lock->wait();
1366 }
1367 JVMCI_event_1("done waiting for JavaVM references initialization in JVMCI runtime %d", id);
1368 }
1369 }
1370
1371 ~JavaVMRefsInitialization() {
1372 if (*_state == JVMCIRuntime::being_initialized) {
1373 *_state = JVMCIRuntime::fully_initialized;
1374 JVMCI_event_1("initialized JavaVM references in JVMCI runtime %d", _id);
1375 JVMCI_lock->notify_all();
1376 }
1377 }
1378
1379 bool should_init() {
1380 return *_state == JVMCIRuntime::being_initialized;
1381 }
1382 };
1383
1384 void JVMCIRuntime::initialize(JVMCI_TRAPS) {
1385 // Check first without _lock
1386 if (_init_state == fully_initialized) {
1387 return;
1388 }
1389
1390 JavaThread* THREAD = JavaThread::current();
1391
1392 MutexLocker locker(_lock);
1393 // Check again under _lock
1394 if (_init_state == fully_initialized) {
1395 return;
1396 }
1397
1398 while (_init_state == being_initialized) {
1399 JVMCI_event_1("waiting for initialization of JVMCI runtime %d", _id);
1400 _lock->wait();
1401 if (_init_state == fully_initialized) {
1402 JVMCI_event_1("done waiting for initialization of JVMCI runtime %d", _id);
1403 return;
1404 }
1405 }
1406
1407 JVMCI_event_1("initializing JVMCI runtime %d", _id);
1408 _init_state = being_initialized;
1409
1410 {
1411 MutexUnlocker unlock(_lock);
1412
1413 HandleMark hm(THREAD);
1414 ResourceMark rm(THREAD);
1415 {
1416 MutexLocker lock_jvmci(JVMCI_lock);
1417 if (JVMCIENV->is_hotspot()) {
1418 JavaVMRefsInitialization initialization(&_hotspot_javavm_refs_init_state, _id);
1419 if (initialization.should_init()) {
1420 MutexUnlocker unlock_jvmci(JVMCI_lock);
1421 HotSpotJVMCI::compute_offsets(CHECK_EXIT);
1422 }
1423 } else {
1424 JavaVMRefsInitialization initialization(&_shared_library_javavm_refs_init_state, _id);
1425 if (initialization.should_init()) {
1426 MutexUnlocker unlock_jvmci(JVMCI_lock);
1427 JNIAccessMark jni(JVMCIENV, THREAD);
1428
1429 JNIJVMCI::initialize_ids(jni.env());
1430 if (jni()->ExceptionCheck()) {
1431 jni()->ExceptionDescribe();
1432 fatal("JNI exception during init");
1433 }
1434 // _lock is re-locked at this point
1435 }
1436 }
1437 }
1438
1439 if (!JVMCIENV->is_hotspot()) {
1440 JNIAccessMark jni(JVMCIENV, THREAD);
1441 JNIJVMCI::register_natives(jni.env());
1442 }
1443 create_jvmci_primitive_type(T_BOOLEAN, JVMCI_CHECK_EXIT_((void)0));
1444 create_jvmci_primitive_type(T_BYTE, JVMCI_CHECK_EXIT_((void)0));
1445 create_jvmci_primitive_type(T_CHAR, JVMCI_CHECK_EXIT_((void)0));
1446 create_jvmci_primitive_type(T_SHORT, JVMCI_CHECK_EXIT_((void)0));
1447 create_jvmci_primitive_type(T_INT, JVMCI_CHECK_EXIT_((void)0));
1448 create_jvmci_primitive_type(T_LONG, JVMCI_CHECK_EXIT_((void)0));
1449 create_jvmci_primitive_type(T_FLOAT, JVMCI_CHECK_EXIT_((void)0));
1450 create_jvmci_primitive_type(T_DOUBLE, JVMCI_CHECK_EXIT_((void)0));
1451 create_jvmci_primitive_type(T_VOID, JVMCI_CHECK_EXIT_((void)0));
1452
1453 DEBUG_ONLY(CodeInstaller::verify_bci_constants(JVMCIENV);)
1454 }
1455
1456 _init_state = fully_initialized;
1457 JVMCI_event_1("initialized JVMCI runtime %d", _id);
1458 _lock->notify_all();
1459 }
1460
1461 JVMCIObject JVMCIRuntime::create_jvmci_primitive_type(BasicType type, JVMCI_TRAPS) {
1462 JavaThread* THREAD = JavaThread::current(); // For exception macros.
1463 // These primitive types are long lived and are created before the runtime is fully set up
1464 // so skip registering them for scanning.
1465 JVMCIObject mirror = JVMCIENV->get_object_constant(java_lang_Class::primitive_mirror(type), false, true);
1466 if (JVMCIENV->is_hotspot()) {
1467 JavaValue result(T_OBJECT);
1468 JavaCallArguments args;
1469 args.push_oop(Handle(THREAD, HotSpotJVMCI::resolve(mirror)));
1470 args.push_int(type2char(type));
1471 JavaCalls::call_static(&result, HotSpotJVMCI::HotSpotResolvedPrimitiveType::klass(), vmSymbols::fromMetaspace_name(), vmSymbols::primitive_fromMetaspace_signature(), &args, CHECK_(JVMCIObject()));
1472
1473 return JVMCIENV->wrap(JNIHandles::make_local(result.get_oop()));
1474 } else {
1475 JNIAccessMark jni(JVMCIENV);
1476 jobject result = jni()->CallStaticObjectMethod(JNIJVMCI::HotSpotResolvedPrimitiveType::clazz(),
1477 JNIJVMCI::HotSpotResolvedPrimitiveType_fromMetaspace_method(),
1478 mirror.as_jobject(), type2char(type));
1479 if (jni()->ExceptionCheck()) {
1480 return JVMCIObject();
1481 }
1482 return JVMCIENV->wrap(result);
1483 }
1484 }
1485
1486 void JVMCIRuntime::initialize_JVMCI(JVMCI_TRAPS) {
1487 if (!is_HotSpotJVMCIRuntime_initialized()) {
1488 initialize(JVMCI_CHECK);
1489 JVMCIENV->call_JVMCI_getRuntime(JVMCI_CHECK);
1490 guarantee(_HotSpotJVMCIRuntime_instance.is_non_null(), "NPE in JVMCI runtime %d", _id);
1491 }
1492 }
1493
1494 JVMCIObject JVMCIRuntime::get_HotSpotJVMCIRuntime(JVMCI_TRAPS) {
1495 initialize(JVMCI_CHECK_(JVMCIObject()));
1496 initialize_JVMCI(JVMCI_CHECK_(JVMCIObject()));
1497 return _HotSpotJVMCIRuntime_instance;
1498 }
1499
1500 // Implementation of CompilerToVM.registerNatives()
1501 // When called from libjvmci, `libjvmciOrHotspotEnv` is a libjvmci env so use JVM_ENTRY_NO_ENV.
1502 JVM_ENTRY_NO_ENV(void, JVM_RegisterJVMCINatives(JNIEnv *libjvmciOrHotspotEnv, jclass c2vmClass))
1503 JVMCIENV_FROM_JNI(thread, libjvmciOrHotspotEnv);
1504
1505 if (!EnableJVMCI) {
1506 JVMCI_THROW_MSG(InternalError, JVMCI_NOT_ENABLED_ERROR_MESSAGE);
1507 }
1508
1509 JVMCIENV->runtime()->initialize(JVMCIENV);
1510
1511 {
1512 ResourceMark rm(thread);
1513 HandleMark hm(thread);
1514 ThreadToNativeFromVM trans(thread);
1515
1516 // Ensure _non_oop_bits is initialized
1517 Universe::non_oop_word();
1518 JNIEnv *env = libjvmciOrHotspotEnv;
1519 if (JNI_OK != env->RegisterNatives(c2vmClass, CompilerToVM::methods, CompilerToVM::methods_count())) {
1520 if (!env->ExceptionCheck()) {
1521 for (int i = 0; i < CompilerToVM::methods_count(); i++) {
1522 if (JNI_OK != env->RegisterNatives(c2vmClass, CompilerToVM::methods + i, 1)) {
1523 guarantee(false, "Error registering JNI method %s%s", CompilerToVM::methods[i].name, CompilerToVM::methods[i].signature);
1524 break;
1525 }
1526 }
1527 } else {
1528 env->ExceptionDescribe();
1529 }
1530 guarantee(false, "Failed registering CompilerToVM native methods");
1531 }
1532 }
1533 JVM_END
1534
1535
1536 void JVMCIRuntime::shutdown() {
1537 if (_HotSpotJVMCIRuntime_instance.is_non_null()) {
1538 JVMCI_event_1("shutting down HotSpotJVMCIRuntime for JVMCI runtime %d", _id);
1539 JVMCIEnv __stack_jvmci_env__(JavaThread::current(), _HotSpotJVMCIRuntime_instance.is_hotspot(),__FILE__, __LINE__);
1540 JVMCIEnv* JVMCIENV = &__stack_jvmci_env__;
1541 if (JVMCIENV->init_error() == JNI_OK) {
1542 JVMCIENV->call_HotSpotJVMCIRuntime_shutdown(_HotSpotJVMCIRuntime_instance);
1543 } else {
1544 JVMCI_event_1("Error in JVMCIEnv for shutdown (err: %d)", JVMCIENV->init_error());
1545 }
1546 if (_num_attached_threads == cannot_be_attached) {
1547 // Only when no other threads are attached to this runtime
1548 // is it safe to reset these fields.
1549 _HotSpotJVMCIRuntime_instance = JVMCIObject();
1550 _init_state = uninitialized;
1551 JVMCI_event_1("shut down JVMCI runtime %d", _id);
1552 }
1553 }
1554 }
1555
1556 bool JVMCIRuntime::destroy_shared_library_javavm() {
1557 guarantee(_num_attached_threads == cannot_be_attached,
1558 "cannot destroy JavaVM for JVMCI runtime %d with %d attached threads", _id, _num_attached_threads);
1559 JavaVM* javaVM;
1560 jlong javaVM_id = _shared_library_javavm_id;
1561 {
1562 // Exactly one thread can destroy the JavaVM
1563 // and release the handle to it.
1564 MutexLocker only_one(_lock);
1565 javaVM = _shared_library_javavm;
1566 if (javaVM != nullptr) {
1567 _shared_library_javavm = nullptr;
1568 _shared_library_javavm_id = 0;
1569 }
1570 }
1571 if (javaVM != nullptr) {
1572 int result;
1573 {
1574 // Must transition into native before calling into libjvmci
1575 ThreadToNativeFromVM ttnfv(JavaThread::current());
1576 result = javaVM->DestroyJavaVM();
1577 }
1578 if (result == JNI_OK) {
1579 JVMCI_event_1("destroyed JavaVM[" JLONG_FORMAT "]@" PTR_FORMAT " for JVMCI runtime %d", javaVM_id, p2i(javaVM), _id);
1580 } else {
1581 warning("Non-zero result (%d) when calling JNI_DestroyJavaVM on JavaVM[" JLONG_FORMAT "]@" PTR_FORMAT, result, javaVM_id, p2i(javaVM));
1582 }
1583 return true;
1584 }
1585 return false;
1586 }
1587
1588 void JVMCIRuntime::bootstrap_finished(TRAPS) {
1589 if (_HotSpotJVMCIRuntime_instance.is_non_null()) {
1590 JVMCIENV_FROM_THREAD(THREAD);
1591 JVMCIENV->check_init(CHECK);
1592 JVMCIENV->call_HotSpotJVMCIRuntime_bootstrapFinished(_HotSpotJVMCIRuntime_instance, JVMCIENV);
1593 }
1594 }
1595
1596 void JVMCIRuntime::describe_pending_hotspot_exception(JavaThread* THREAD) {
1597 if (HAS_PENDING_EXCEPTION) {
1598 Handle exception(THREAD, PENDING_EXCEPTION);
1599 CLEAR_PENDING_EXCEPTION;
1600 java_lang_Throwable::print_stack_trace(exception, tty);
1601
1602 // Clear and ignore any exceptions raised during printing
1603 CLEAR_PENDING_EXCEPTION;
1604 }
1605 }
1606
1607
1608 void JVMCIRuntime::fatal_exception(JVMCIEnv* JVMCIENV, const char* message) {
1609 JavaThread* THREAD = JavaThread::current(); // For exception macros.
1610
1611 static volatile int report_error = 0;
1612 if (!report_error && Atomic::cmpxchg(&report_error, 0, 1) == 0) {
1613 // Only report an error once
1614 tty->print_raw_cr(message);
1615 if (JVMCIENV != nullptr) {
1616 JVMCIENV->describe_pending_exception(tty);
1617 } else {
1618 describe_pending_hotspot_exception(THREAD);
1619 }
1620 } else {
1621 // Allow error reporting thread time to print the stack trace.
1622 THREAD->sleep(200);
1623 }
1624 fatal("Fatal JVMCI exception (see JVMCI Events for stack trace): %s", message);
1625 }
1626
1627 // ------------------------------------------------------------------
1628 // Note: the logic of this method should mirror the logic of
1629 // constantPoolOopDesc::verify_constant_pool_resolve.
1630 bool JVMCIRuntime::check_klass_accessibility(Klass* accessing_klass, Klass* resolved_klass) {
1631 if (accessing_klass->is_objArray_klass()) {
1632 accessing_klass = ObjArrayKlass::cast(accessing_klass)->bottom_klass();
1633 }
1634 if (!accessing_klass->is_instance_klass()) {
1635 return true;
1636 }
1637
1638 if (resolved_klass->is_objArray_klass()) {
1639 // Find the element klass, if this is an array.
1640 resolved_klass = ObjArrayKlass::cast(resolved_klass)->bottom_klass();
1641 }
1642 if (resolved_klass->is_instance_klass()) {
1643 Reflection::VerifyClassAccessResults result =
1644 Reflection::verify_class_access(accessing_klass, InstanceKlass::cast(resolved_klass), true);
1645 return result == Reflection::ACCESS_OK;
1646 }
1647 return true;
1648 }
1649
1650 // ------------------------------------------------------------------
1651 Klass* JVMCIRuntime::get_klass_by_name_impl(Klass*& accessing_klass,
1652 const constantPoolHandle& cpool,
1653 Symbol* sym,
1654 bool require_local) {
1655 JVMCI_EXCEPTION_CONTEXT;
1656
1657 // Now we need to check the SystemDictionary
1658 if (sym->char_at(0) == JVM_SIGNATURE_CLASS &&
1659 sym->char_at(sym->utf8_length()-1) == JVM_SIGNATURE_ENDCLASS) {
1660 // This is a name from a signature. Strip off the trimmings.
1661 // Call recursive to keep scope of strippedsym.
1662 TempNewSymbol strippedsym = SymbolTable::new_symbol(sym->as_utf8()+1,
1663 sym->utf8_length()-2);
1664 return get_klass_by_name_impl(accessing_klass, cpool, strippedsym, require_local);
1665 }
1666
1667 Handle loader;
1668 if (accessing_klass != nullptr) {
1669 loader = Handle(THREAD, accessing_klass->class_loader());
1670 }
1671
1672 Klass* found_klass = require_local ?
1673 SystemDictionary::find_instance_or_array_klass(THREAD, sym, loader) :
1674 SystemDictionary::find_constrained_instance_or_array_klass(THREAD, sym, loader);
1675
1676 // If we fail to find an array klass, look again for its element type.
1677 // The element type may be available either locally or via constraints.
1678 // In either case, if we can find the element type in the system dictionary,
1679 // we must build an array type around it. The CI requires array klasses
1680 // to be loaded if their element klasses are loaded, except when memory
1681 // is exhausted.
1682 if (sym->char_at(0) == JVM_SIGNATURE_ARRAY &&
1683 (sym->char_at(1) == JVM_SIGNATURE_ARRAY || sym->char_at(1) == JVM_SIGNATURE_CLASS)) {
1684 // We have an unloaded array.
1685 // Build it on the fly if the element class exists.
1686 TempNewSymbol elem_sym = SymbolTable::new_symbol(sym->as_utf8()+1,
1687 sym->utf8_length()-1);
1688
1689 // Get element Klass recursively.
1690 Klass* elem_klass =
1691 get_klass_by_name_impl(accessing_klass,
1692 cpool,
1693 elem_sym,
1694 require_local);
1695 if (elem_klass != nullptr) {
1696 // Now make an array for it
1697 return elem_klass->array_klass(THREAD);
1698 }
1699 }
1700
1701 if (found_klass == nullptr && !cpool.is_null() && cpool->has_preresolution()) {
1702 // Look inside the constant pool for pre-resolved class entries.
1703 for (int i = cpool->length() - 1; i >= 1; i--) {
1704 if (cpool->tag_at(i).is_klass()) {
1705 Klass* kls = cpool->resolved_klass_at(i);
1706 if (kls->name() == sym) {
1707 return kls;
1708 }
1709 }
1710 }
1711 }
1712
1713 return found_klass;
1714 }
1715
1716 // ------------------------------------------------------------------
1717 Klass* JVMCIRuntime::get_klass_by_name(Klass* accessing_klass,
1718 Symbol* klass_name,
1719 bool require_local) {
1720 ResourceMark rm;
1721 constantPoolHandle cpool;
1722 return get_klass_by_name_impl(accessing_klass,
1723 cpool,
1724 klass_name,
1725 require_local);
1726 }
1727
1728 // ------------------------------------------------------------------
1729 // Implementation of get_klass_by_index.
1730 Klass* JVMCIRuntime::get_klass_by_index_impl(const constantPoolHandle& cpool,
1731 int index,
1732 bool& is_accessible,
1733 Klass* accessor) {
1734 JVMCI_EXCEPTION_CONTEXT;
1735 Klass* klass = ConstantPool::klass_at_if_loaded(cpool, index);
1736 Symbol* klass_name = nullptr;
1737 if (klass == nullptr) {
1738 klass_name = cpool->klass_name_at(index);
1739 }
1740
1741 if (klass == nullptr) {
1742 // Not found in constant pool. Use the name to do the lookup.
1743 Klass* k = get_klass_by_name_impl(accessor,
1744 cpool,
1745 klass_name,
1746 false);
1747 // Calculate accessibility the hard way.
1748 if (k == nullptr) {
1749 is_accessible = false;
1750 } else if (k->class_loader() != accessor->class_loader() &&
1751 get_klass_by_name_impl(accessor, cpool, k->name(), true) == nullptr) {
1752 // Loaded only remotely. Not linked yet.
1753 is_accessible = false;
1754 } else {
1755 // Linked locally, and we must also check public/private, etc.
1756 is_accessible = check_klass_accessibility(accessor, k);
1757 }
1758 if (!is_accessible) {
1759 return nullptr;
1760 }
1761 return k;
1762 }
1763
1764 // It is known to be accessible, since it was found in the constant pool.
1765 is_accessible = true;
1766 return klass;
1767 }
1768
1769 // ------------------------------------------------------------------
1770 // Get a klass from the constant pool.
1771 Klass* JVMCIRuntime::get_klass_by_index(const constantPoolHandle& cpool,
1772 int index,
1773 bool& is_accessible,
1774 Klass* accessor) {
1775 ResourceMark rm;
1776 Klass* result = get_klass_by_index_impl(cpool, index, is_accessible, accessor);
1777 return result;
1778 }
1779
1780 // ------------------------------------------------------------------
1781 // Perform an appropriate method lookup based on accessor, holder,
1782 // name, signature, and bytecode.
1783 Method* JVMCIRuntime::lookup_method(InstanceKlass* accessor,
1784 Klass* holder,
1785 Symbol* name,
1786 Symbol* sig,
1787 Bytecodes::Code bc,
1788 constantTag tag) {
1789 // Accessibility checks are performed in JVMCIEnv::get_method_by_index_impl().
1790 assert(check_klass_accessibility(accessor, holder), "holder not accessible");
1791
1792 LinkInfo link_info(holder, name, sig, accessor,
1793 LinkInfo::AccessCheck::required,
1794 LinkInfo::LoaderConstraintCheck::required,
1795 tag);
1796 switch (bc) {
1797 case Bytecodes::_invokestatic:
1798 return LinkResolver::resolve_static_call_or_null(link_info);
1799 case Bytecodes::_invokespecial:
1800 return LinkResolver::resolve_special_call_or_null(link_info);
1801 case Bytecodes::_invokeinterface:
1802 return LinkResolver::linktime_resolve_interface_method_or_null(link_info);
1803 case Bytecodes::_invokevirtual:
1804 return LinkResolver::linktime_resolve_virtual_method_or_null(link_info);
1805 default:
1806 fatal("Unhandled bytecode: %s", Bytecodes::name(bc));
1807 return nullptr; // silence compiler warnings
1808 }
1809 }
1810
1811
1812 // ------------------------------------------------------------------
1813 Method* JVMCIRuntime::get_method_by_index_impl(const constantPoolHandle& cpool,
1814 int index, Bytecodes::Code bc,
1815 InstanceKlass* accessor) {
1816 if (bc == Bytecodes::_invokedynamic) {
1817 if (cpool->resolved_indy_entry_at(index)->is_resolved()) {
1818 return cpool->resolved_indy_entry_at(index)->method();
1819 }
1820
1821 return nullptr;
1822 }
1823
1824 int holder_index = cpool->klass_ref_index_at(index, bc);
1825 bool holder_is_accessible;
1826 Klass* holder = get_klass_by_index_impl(cpool, holder_index, holder_is_accessible, accessor);
1827
1828 // Get the method's name and signature.
1829 Symbol* name_sym = cpool->name_ref_at(index, bc);
1830 Symbol* sig_sym = cpool->signature_ref_at(index, bc);
1831
1832 if (cpool->has_preresolution()
1833 || ((holder == vmClasses::MethodHandle_klass() || holder == vmClasses::VarHandle_klass()) &&
1834 MethodHandles::is_signature_polymorphic_name(holder, name_sym))) {
1835 // Short-circuit lookups for JSR 292-related call sites.
1836 // That is, do not rely only on name-based lookups, because they may fail
1837 // if the names are not resolvable in the boot class loader (7056328).
1838 switch (bc) {
1839 case Bytecodes::_invokevirtual:
1840 case Bytecodes::_invokeinterface:
1841 case Bytecodes::_invokespecial:
1842 case Bytecodes::_invokestatic:
1843 {
1844 Method* m = ConstantPool::method_at_if_loaded(cpool, index);
1845 if (m != nullptr) {
1846 return m;
1847 }
1848 }
1849 break;
1850 default:
1851 break;
1852 }
1853 }
1854
1855 if (holder_is_accessible) { // Our declared holder is loaded.
1856 constantTag tag = cpool->tag_ref_at(index, bc);
1857 Method* m = lookup_method(accessor, holder, name_sym, sig_sym, bc, tag);
1858 if (m != nullptr) {
1859 // We found the method.
1860 return m;
1861 }
1862 }
1863
1864 // Either the declared holder was not loaded, or the method could
1865 // not be found.
1866
1867 return nullptr;
1868 }
1869
1870 // ------------------------------------------------------------------
1871 InstanceKlass* JVMCIRuntime::get_instance_klass_for_declared_method_holder(Klass* method_holder) {
1872 // For the case of <array>.clone(), the method holder can be an ArrayKlass*
1873 // instead of an InstanceKlass*. For that case simply pretend that the
1874 // declared holder is Object.clone since that's where the call will bottom out.
1875 if (method_holder->is_instance_klass()) {
1876 return InstanceKlass::cast(method_holder);
1877 } else if (method_holder->is_array_klass()) {
1878 return vmClasses::Object_klass();
1879 } else {
1880 ShouldNotReachHere();
1881 }
1882 return nullptr;
1883 }
1884
1885
1886 // ------------------------------------------------------------------
1887 Method* JVMCIRuntime::get_method_by_index(const constantPoolHandle& cpool,
1888 int index, Bytecodes::Code bc,
1889 InstanceKlass* accessor) {
1890 ResourceMark rm;
1891 return get_method_by_index_impl(cpool, index, bc, accessor);
1892 }
1893
1894 // ------------------------------------------------------------------
1895 // Check for changes to the system dictionary during compilation
1896 // class loads, evolution, breakpoints
1897 JVMCI::CodeInstallResult JVMCIRuntime::validate_compile_task_dependencies(Dependencies* dependencies,
1898 JVMCICompileState* compile_state,
1899 char** failure_detail,
1900 bool& failing_dep_is_call_site)
1901 {
1902 failing_dep_is_call_site = false;
1903 // If JVMTI capabilities were enabled during compile, the compilation is invalidated.
1904 if (compile_state != nullptr && compile_state->jvmti_state_changed()) {
1905 *failure_detail = (char*) "Jvmti state change during compilation invalidated dependencies";
1906 return JVMCI::dependencies_failed;
1907 }
1908
1909 CompileTask* task = compile_state == nullptr ? nullptr : compile_state->task();
1910 Dependencies::DepType result = dependencies->validate_dependencies(task, failure_detail);
1911
1912 if (result == Dependencies::end_marker) {
1913 return JVMCI::ok;
1914 }
1915 if (result == Dependencies::call_site_target_value) {
1916 failing_dep_is_call_site = true;
1917 }
1918 return JVMCI::dependencies_failed;
1919 }
1920
1921 // Called after an upcall to `function` while compiling `method`.
1922 // If an exception occurred, it is cleared, the compilation state
1923 // is updated with the failure and this method returns true.
1924 // Otherwise, it returns false.
1925 static bool after_compiler_upcall(JVMCIEnv* JVMCIENV, JVMCICompiler* compiler, const methodHandle& method, const char* function) {
1926 if (JVMCIENV->has_pending_exception()) {
1927 ResourceMark rm;
1928 bool reason_on_C_heap = true;
1929 const char* pending_string = nullptr;
1930 const char* pending_stack_trace = nullptr;
1931 JVMCIENV->pending_exception_as_string(&pending_string, &pending_stack_trace);
1932 if (pending_string == nullptr) pending_string = "null";
1933 // Using stringStream instead of err_msg to avoid truncation
1934 stringStream st;
1935 st.print("uncaught exception in %s [%s]", function, pending_string);
1936 const char* failure_reason = os::strdup(st.freeze(), mtJVMCI);
1937 if (failure_reason == nullptr) {
1938 failure_reason = "uncaught exception";
1939 reason_on_C_heap = false;
1940 }
1941 JVMCI_event_1("%s", failure_reason);
1942 Log(jit, compilation) log;
1943 if (log.is_info()) {
1944 log.info("%s while compiling %s", failure_reason, method->name_and_sig_as_C_string());
1945 if (pending_stack_trace != nullptr) {
1946 LogStream ls(log.info());
1947 ls.print_raw_cr(pending_stack_trace);
1948 }
1949 }
1950 JVMCICompileState* compile_state = JVMCIENV->compile_state();
1951 compile_state->set_failure(true, failure_reason, reason_on_C_heap);
1952 compiler->on_upcall(failure_reason, compile_state);
1953 return true;
1954 }
1955 return false;
1956 }
1957
1958 void JVMCIRuntime::compile_method(JVMCIEnv* JVMCIENV, JVMCICompiler* compiler, const methodHandle& method, int entry_bci) {
1959 JVMCI_EXCEPTION_CONTEXT
1960
1961 JVMCICompileState* compile_state = JVMCIENV->compile_state();
1962
1963 bool is_osr = entry_bci != InvocationEntryBci;
1964 if (compiler->is_bootstrapping() && is_osr) {
1965 // no OSR compilations during bootstrap - the compiler is just too slow at this point,
1966 // and we know that there are no endless loops
1967 compile_state->set_failure(true, "No OSR during bootstrap");
1968 return;
1969 }
1970 if (JVMCI::in_shutdown()) {
1971 if (UseJVMCINativeLibrary) {
1972 JVMCIRuntime *runtime = JVMCI::compiler_runtime(thread, false);
1973 if (runtime != nullptr) {
1974 runtime->detach_thread(thread, "JVMCI shutdown pre-empted compilation");
1975 }
1976 }
1977 compile_state->set_failure(false, "Avoiding compilation during shutdown");
1978 return;
1979 }
1980
1981 HandleMark hm(thread);
1982 JVMCIObject receiver = get_HotSpotJVMCIRuntime(JVMCIENV);
1983 if (after_compiler_upcall(JVMCIENV, compiler, method, "get_HotSpotJVMCIRuntime")) {
1984 return;
1985 }
1986 JVMCIObject jvmci_method = JVMCIENV->get_jvmci_method(method, JVMCIENV);
1987 if (after_compiler_upcall(JVMCIENV, compiler, method, "get_jvmci_method")) {
1988 return;
1989 }
1990
1991 JVMCIObject result_object = JVMCIENV->call_HotSpotJVMCIRuntime_compileMethod(receiver, jvmci_method, entry_bci,
1992 (jlong) compile_state, compile_state->task()->compile_id());
1993 #ifdef ASSERT
1994 if (JVMCIENV->has_pending_exception()) {
1995 const char* val = Arguments::PropertyList_get_value(Arguments::system_properties(), "test.jvmci.compileMethodExceptionIsFatal");
1996 if (val != nullptr && strcmp(val, "true") == 0) {
1997 fatal_exception(JVMCIENV, "testing JVMCI fatal exception handling");
1998 }
1999 }
2000 #endif
2001
2002 if (after_compiler_upcall(JVMCIENV, compiler, method, "call_HotSpotJVMCIRuntime_compileMethod")) {
2003 return;
2004 }
2005 compiler->on_upcall(nullptr);
2006 guarantee(result_object.is_non_null(), "call_HotSpotJVMCIRuntime_compileMethod returned null");
2007 JVMCIObject failure_message = JVMCIENV->get_HotSpotCompilationRequestResult_failureMessage(result_object);
2008 if (failure_message.is_non_null()) {
2009 // Copy failure reason into resource memory first ...
2010 const char* failure_reason = JVMCIENV->as_utf8_string(failure_message);
2011 // ... and then into the C heap.
2012 failure_reason = os::strdup(failure_reason, mtJVMCI);
2013 bool retryable = JVMCIENV->get_HotSpotCompilationRequestResult_retry(result_object) != 0;
2014 compile_state->set_failure(retryable, failure_reason, true);
2015 } else {
2016 if (!compile_state->task()->is_success()) {
2017 compile_state->set_failure(true, "no nmethod produced");
2018 } else {
2019 compile_state->task()->set_num_inlined_bytecodes(JVMCIENV->get_HotSpotCompilationRequestResult_inlinedBytecodes(result_object));
2020 compiler->inc_methods_compiled();
2021 }
2022 }
2023 if (compiler->is_bootstrapping()) {
2024 compiler->set_bootstrap_compilation_request_handled();
2025 }
2026 }
2027
2028 bool JVMCIRuntime::is_gc_supported(JVMCIEnv* JVMCIENV, CollectedHeap::Name name) {
2029 JVMCI_EXCEPTION_CONTEXT
2030
2031 JVMCIObject receiver = get_HotSpotJVMCIRuntime(JVMCIENV);
2032 if (JVMCIENV->has_pending_exception()) {
2033 fatal_exception(JVMCIENV, "Exception during HotSpotJVMCIRuntime initialization");
2034 }
2035 return JVMCIENV->call_HotSpotJVMCIRuntime_isGCSupported(receiver, (int) name);
2036 }
2037
2038 bool JVMCIRuntime::is_intrinsic_supported(JVMCIEnv* JVMCIENV, jint id) {
2039 JVMCI_EXCEPTION_CONTEXT
2040
2041 JVMCIObject receiver = get_HotSpotJVMCIRuntime(JVMCIENV);
2042 if (JVMCIENV->has_pending_exception()) {
2043 fatal_exception(JVMCIENV, "Exception during HotSpotJVMCIRuntime initialization");
2044 }
2045 return JVMCIENV->call_HotSpotJVMCIRuntime_isIntrinsicSupported(receiver, id);
2046 }
2047
2048 // ------------------------------------------------------------------
2049 JVMCI::CodeInstallResult JVMCIRuntime::register_method(JVMCIEnv* JVMCIENV,
2050 const methodHandle& method,
2051 nmethod*& nm,
2052 int entry_bci,
2053 CodeOffsets* offsets,
2054 int orig_pc_offset,
2055 CodeBuffer* code_buffer,
2056 int frame_words,
2057 OopMapSet* oop_map_set,
2058 ExceptionHandlerTable* handler_table,
2059 ImplicitExceptionTable* implicit_exception_table,
2060 AbstractCompiler* compiler,
2061 DebugInformationRecorder* debug_info,
2062 Dependencies* dependencies,
2063 int compile_id,
2064 bool has_monitors,
2065 bool has_unsafe_access,
2066 bool has_scoped_access,
2067 bool has_wide_vector,
2068 JVMCIObject compiled_code,
2069 JVMCIObject nmethod_mirror,
2070 FailedSpeculation** failed_speculations,
2071 char* speculations,
2072 int speculations_len,
2073 int nmethod_entry_patch_offset) {
2074 JVMCI_EXCEPTION_CONTEXT;
2075 CompLevel comp_level = CompLevel_full_optimization;
2076 char* failure_detail = nullptr;
2077
2078 bool install_default = JVMCIENV->get_HotSpotNmethod_isDefault(nmethod_mirror) != 0;
2079 assert(JVMCIENV->isa_HotSpotNmethod(nmethod_mirror), "must be");
2080 JVMCIObject name = JVMCIENV->get_InstalledCode_name(nmethod_mirror);
2081 const char* nmethod_mirror_name = name.is_null() ? nullptr : JVMCIENV->as_utf8_string(name);
2082 int nmethod_mirror_index;
2083 if (!install_default) {
2084 // Reserve or initialize mirror slot in the oops table.
2085 OopRecorder* oop_recorder = debug_info->oop_recorder();
2086 nmethod_mirror_index = oop_recorder->allocate_oop_index(nmethod_mirror.is_hotspot() ? nmethod_mirror.as_jobject() : nullptr);
2087 } else {
2088 // A default HotSpotNmethod mirror is never tracked by the nmethod
2089 nmethod_mirror_index = -1;
2090 }
2091
2092 JVMCI::CodeInstallResult result(JVMCI::ok);
2093
2094 // We require method counters to store some method state (max compilation levels) required by the compilation policy.
2095 if (method->get_method_counters(THREAD) == nullptr) {
2096 result = JVMCI::cache_full;
2097 failure_detail = (char*) "can't create method counters";
2098 }
2099
2100 if (result == JVMCI::ok) {
2101 // Check if memory should be freed before allocation
2102 CodeCache::gc_on_allocation();
2103
2104 // To prevent compile queue updates.
2105 MutexLocker locker(THREAD, MethodCompileQueue_lock);
2106
2107 // Prevent InstanceKlass::add_to_hierarchy from running
2108 // and invalidating our dependencies until we install this method.
2109 MutexLocker ml(Compile_lock);
2110
2111 // Encode the dependencies now, so we can check them right away.
2112 dependencies->encode_content_bytes();
2113
2114 // Record the dependencies for the current compile in the log
2115 if (LogCompilation) {
2116 for (Dependencies::DepStream deps(dependencies); deps.next(); ) {
2117 deps.log_dependency();
2118 }
2119 }
2120
2121 // Check for {class loads, evolution, breakpoints} during compilation
2122 JVMCICompileState* compile_state = JVMCIENV->compile_state();
2123 bool failing_dep_is_call_site;
2124 result = validate_compile_task_dependencies(dependencies, compile_state, &failure_detail, failing_dep_is_call_site);
2125 if (result != JVMCI::ok) {
2126 // While not a true deoptimization, it is a preemptive decompile.
2127 MethodData* mdp = method()->method_data();
2128 if (mdp != nullptr && !failing_dep_is_call_site) {
2129 mdp->inc_decompile_count();
2130 #ifdef ASSERT
2131 if (mdp->decompile_count() > (uint)PerMethodRecompilationCutoff) {
2132 ResourceMark m;
2133 tty->print_cr("WARN: endless recompilation of %s. Method was set to not compilable.", method()->name_and_sig_as_C_string());
2134 }
2135 #endif
2136 }
2137
2138 // All buffers in the CodeBuffer are allocated in the CodeCache.
2139 // If the code buffer is created on each compile attempt
2140 // as in C2, then it must be freed.
2141 //code_buffer->free_blob();
2142 } else {
2143 JVMCINMethodData* data = JVMCINMethodData::create(nmethod_mirror_index,
2144 nmethod_entry_patch_offset,
2145 nmethod_mirror_name,
2146 failed_speculations);
2147 nm = nmethod::new_nmethod(method,
2148 compile_id,
2149 entry_bci,
2150 offsets,
2151 orig_pc_offset,
2152 debug_info, dependencies, code_buffer,
2153 frame_words, oop_map_set,
2154 handler_table, implicit_exception_table,
2155 compiler, comp_level,
2156 speculations, speculations_len, data);
2157
2158
2159 // Free codeBlobs
2160 if (nm == nullptr) {
2161 // The CodeCache is full. Print out warning and disable compilation.
2162 {
2163 MutexUnlocker ml(Compile_lock);
2164 MutexUnlocker locker(MethodCompileQueue_lock);
2165 CompileBroker::handle_full_code_cache(CodeCache::get_code_blob_type(comp_level));
2166 }
2167 result = JVMCI::cache_full;
2168 } else {
2169 nm->set_has_unsafe_access(has_unsafe_access);
2170 nm->set_has_wide_vectors(has_wide_vector);
2171 nm->set_has_monitors(has_monitors);
2172 nm->set_has_scoped_access(has_scoped_access);
2173
2174 JVMCINMethodData* data = nm->jvmci_nmethod_data();
2175 assert(data != nullptr, "must be");
2176 if (install_default) {
2177 assert(!nmethod_mirror.is_hotspot() || data->get_nmethod_mirror(nm) == nullptr, "must be");
2178 if (entry_bci == InvocationEntryBci) {
2179 // If there is an old version we're done with it
2180 nmethod* old = method->code();
2181 if (TraceMethodReplacement && old != nullptr) {
2182 ResourceMark rm;
2183 char *method_name = method->name_and_sig_as_C_string();
2184 tty->print_cr("Replacing method %s", method_name);
2185 }
2186 if (old != nullptr) {
2187 old->make_not_entrant(nmethod::ChangeReason::JVMCI_register_method);
2188 }
2189
2190 LogTarget(Info, nmethod, install) lt;
2191 if (lt.is_enabled()) {
2192 ResourceMark rm;
2193 char *method_name = method->name_and_sig_as_C_string();
2194 lt.print("Installing method (%d) %s [entry point: %p]",
2195 comp_level, method_name, nm->entry_point());
2196 }
2197 // Allow the code to be executed
2198 MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag);
2199 if (nm->make_in_use()) {
2200 method->set_code(method, nm);
2201 } else {
2202 result = JVMCI::nmethod_reclaimed;
2203 }
2204 } else {
2205 LogTarget(Info, nmethod, install) lt;
2206 if (lt.is_enabled()) {
2207 ResourceMark rm;
2208 char *method_name = method->name_and_sig_as_C_string();
2209 lt.print("Installing osr method (%d) %s @ %d",
2210 comp_level, method_name, entry_bci);
2211 }
2212 MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag);
2213 if (nm->make_in_use()) {
2214 InstanceKlass::cast(method->method_holder())->add_osr_nmethod(nm);
2215 } else {
2216 result = JVMCI::nmethod_reclaimed;
2217 }
2218 }
2219 } else {
2220 assert(!nmethod_mirror.is_hotspot() || data->get_nmethod_mirror(nm) == HotSpotJVMCI::resolve(nmethod_mirror), "must be");
2221 MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag);
2222 if (!nm->make_in_use()) {
2223 result = JVMCI::nmethod_reclaimed;
2224 }
2225 }
2226 }
2227 }
2228 }
2229
2230 // String creation must be done outside lock
2231 if (failure_detail != nullptr) {
2232 // A failure to allocate the string is silently ignored.
2233 JVMCIObject message = JVMCIENV->create_string(failure_detail, JVMCIENV);
2234 JVMCIENV->set_HotSpotCompiledNmethod_installationFailureMessage(compiled_code, message);
2235 }
2236
2237 if (result == JVMCI::ok) {
2238 JVMCICompileState* state = JVMCIENV->compile_state();
2239 if (state != nullptr) {
2240 // Compilation succeeded, post what we know about it
2241 nm->post_compiled_method(state->task());
2242 }
2243 }
2244
2245 return result;
2246 }
2247
2248 void JVMCIRuntime::post_compile(JavaThread* thread) {
2249 if (UseJVMCINativeLibrary && JVMCI::one_shared_library_javavm_per_compilation()) {
2250 if (thread->libjvmci_runtime() != nullptr) {
2251 detach_thread(thread, "single use JavaVM");
2252 } else {
2253 // JVMCI shutdown may have already detached the thread
2254 }
2255 }
2256 }