1 /* 2 * Copyright (c) 2012, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 */ 23 24 #include "classfile/javaClasses.inline.hpp" 25 #include "classfile/symbolTable.hpp" 26 #include "classfile/systemDictionary.hpp" 27 #include "classfile/vmClasses.hpp" 28 #include "compiler/compileBroker.hpp" 29 #include "gc/shared/collectedHeap.hpp" 30 #include "gc/shared/memAllocator.hpp" 31 #include "gc/shared/oopStorage.inline.hpp" 32 #include "jvmci/jniAccessMark.inline.hpp" 33 #include "jvmci/jvmciCodeInstaller.hpp" 34 #include "jvmci/jvmciCompilerToVM.hpp" 35 #include "jvmci/jvmciRuntime.hpp" 36 #include "jvmci/metadataHandles.hpp" 37 #include "logging/log.hpp" 38 #include "logging/logStream.hpp" 39 #include "memory/oopFactory.hpp" 40 #include "memory/universe.hpp" 41 #include "oops/constantPool.inline.hpp" 42 #include "oops/klass.inline.hpp" 43 #include "oops/method.inline.hpp" 44 #include "oops/objArrayKlass.hpp" 45 #include "oops/oop.inline.hpp" 46 #include "oops/typeArrayOop.inline.hpp" 47 #include "prims/jvmtiExport.hpp" 48 #include "prims/methodHandles.hpp" 49 #include "runtime/arguments.hpp" 50 #include "runtime/atomic.hpp" 51 #include "runtime/deoptimization.hpp" 52 #include "runtime/fieldDescriptor.inline.hpp" 53 #include "runtime/frame.inline.hpp" 54 #include "runtime/java.hpp" 55 #include "runtime/jniHandles.inline.hpp" 56 #include "runtime/mutex.hpp" 57 #include "runtime/reflection.hpp" 58 #include "runtime/sharedRuntime.hpp" 59 #include "runtime/synchronizer.hpp" 60 #if INCLUDE_G1GC 61 #include "gc/g1/g1BarrierSetRuntime.hpp" 62 #endif // INCLUDE_G1GC 63 64 // Simple helper to see if the caller of a runtime stub which 65 // entered the VM has been deoptimized 66 67 static bool caller_is_deopted() { 68 JavaThread* thread = JavaThread::current(); 69 RegisterMap reg_map(thread, 70 RegisterMap::UpdateMap::skip, 71 RegisterMap::ProcessFrames::include, 72 RegisterMap::WalkContinuation::skip); 73 frame runtime_frame = thread->last_frame(); 74 frame caller_frame = runtime_frame.sender(®_map); 75 assert(caller_frame.is_compiled_frame(), "must be compiled"); 76 return caller_frame.is_deoptimized_frame(); 77 } 78 79 // Stress deoptimization 80 static void deopt_caller() { 81 if ( !caller_is_deopted()) { 82 JavaThread* thread = JavaThread::current(); 83 RegisterMap reg_map(thread, 84 RegisterMap::UpdateMap::skip, 85 RegisterMap::ProcessFrames::include, 86 RegisterMap::WalkContinuation::skip); 87 frame runtime_frame = thread->last_frame(); 88 frame caller_frame = runtime_frame.sender(®_map); 89 Deoptimization::deoptimize_frame(thread, caller_frame.id(), Deoptimization::Reason_constraint); 90 assert(caller_is_deopted(), "Must be deoptimized"); 91 } 92 } 93 94 // Manages a scope for a JVMCI runtime call that attempts a heap allocation. 95 // If there is a pending OutOfMemoryError upon closing the scope and the runtime 96 // call is of the variety where allocation failure returns null without an 97 // exception, the following action is taken: 98 // 1. The pending OutOfMemoryError is cleared 99 // 2. null is written to JavaThread::_vm_result_oop 100 class RetryableAllocationMark { 101 private: 102 InternalOOMEMark _iom; 103 public: 104 RetryableAllocationMark(JavaThread* thread) : _iom(thread) {} 105 ~RetryableAllocationMark() { 106 JavaThread* THREAD = _iom.thread(); // For exception macros. 107 if (THREAD != nullptr) { 108 if (HAS_PENDING_EXCEPTION) { 109 oop ex = PENDING_EXCEPTION; 110 THREAD->set_vm_result_oop(nullptr); 111 if (ex->is_a(vmClasses::OutOfMemoryError_klass())) { 112 CLEAR_PENDING_EXCEPTION; 113 } 114 } 115 } 116 } 117 }; 118 119 JRT_BLOCK_ENTRY(void, JVMCIRuntime::new_instance_or_null(JavaThread* current, Klass* klass)) 120 JRT_BLOCK; 121 assert(klass->is_klass(), "not a class"); 122 Handle holder(current, klass->klass_holder()); // keep the klass alive 123 InstanceKlass* h = InstanceKlass::cast(klass); 124 { 125 RetryableAllocationMark ram(current); 126 h->check_valid_for_instantiation(true, CHECK); 127 if (!h->is_initialized()) { 128 // Cannot re-execute class initialization without side effects 129 // so return without attempting the initialization 130 current->set_vm_result_oop(nullptr); 131 return; 132 } 133 // allocate instance and return via TLS 134 oop obj = h->allocate_instance(CHECK); 135 current->set_vm_result_oop(obj); 136 } 137 JRT_BLOCK_END; 138 SharedRuntime::on_slowpath_allocation_exit(current); 139 JRT_END 140 141 JRT_BLOCK_ENTRY(void, JVMCIRuntime::new_array_or_null(JavaThread* current, Klass* array_klass, jint length)) 142 JRT_BLOCK; 143 // Note: no handle for klass needed since they are not used 144 // anymore after new_objArray() and no GC can happen before. 145 // (This may have to change if this code changes!) 146 assert(array_klass->is_klass(), "not a class"); 147 oop obj; 148 if (array_klass->is_typeArray_klass()) { 149 BasicType elt_type = TypeArrayKlass::cast(array_klass)->element_type(); 150 RetryableAllocationMark ram(current); 151 obj = oopFactory::new_typeArray(elt_type, length, CHECK); 152 } else { 153 Handle holder(current, array_klass->klass_holder()); // keep the klass alive 154 Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass(); 155 RetryableAllocationMark ram(current); 156 obj = oopFactory::new_objArray(elem_klass, length, CHECK); 157 } 158 // This is pretty rare but this runtime patch is stressful to deoptimization 159 // if we deoptimize here so force a deopt to stress the path. 160 if (DeoptimizeALot) { 161 static int deopts = 0; 162 if (deopts++ % 2 == 0) { 163 // Drop the allocation 164 obj = nullptr; 165 } else { 166 deopt_caller(); 167 } 168 } 169 current->set_vm_result_oop(obj); 170 JRT_BLOCK_END; 171 SharedRuntime::on_slowpath_allocation_exit(current); 172 JRT_END 173 174 JRT_ENTRY(void, JVMCIRuntime::new_multi_array_or_null(JavaThread* current, Klass* klass, int rank, jint* dims)) 175 assert(klass->is_klass(), "not a class"); 176 assert(rank >= 1, "rank must be nonzero"); 177 Handle holder(current, klass->klass_holder()); // keep the klass alive 178 RetryableAllocationMark ram(current); 179 oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK); 180 current->set_vm_result_oop(obj); 181 JRT_END 182 183 JRT_ENTRY(void, JVMCIRuntime::dynamic_new_array_or_null(JavaThread* current, oopDesc* element_mirror, jint length)) 184 RetryableAllocationMark ram(current); 185 oop obj = Reflection::reflect_new_array(element_mirror, length, CHECK); 186 current->set_vm_result_oop(obj); 187 JRT_END 188 189 JRT_ENTRY(void, JVMCIRuntime::dynamic_new_instance_or_null(JavaThread* current, oopDesc* type_mirror)) 190 InstanceKlass* klass = InstanceKlass::cast(java_lang_Class::as_Klass(type_mirror)); 191 192 if (klass == nullptr) { 193 ResourceMark rm(current); 194 THROW(vmSymbols::java_lang_InstantiationException()); 195 } 196 RetryableAllocationMark ram(current); 197 198 // Create new instance (the receiver) 199 klass->check_valid_for_instantiation(false, CHECK); 200 201 if (!klass->is_initialized()) { 202 // Cannot re-execute class initialization without side effects 203 // so return without attempting the initialization 204 current->set_vm_result_oop(nullptr); 205 return; 206 } 207 208 oop obj = klass->allocate_instance(CHECK); 209 current->set_vm_result_oop(obj); 210 JRT_END 211 212 extern void vm_exit(int code); 213 214 // Enter this method from compiled code handler below. This is where we transition 215 // to VM mode. This is done as a helper routine so that the method called directly 216 // from compiled code does not have to transition to VM. This allows the entry 217 // method to see if the nmethod that we have just looked up a handler for has 218 // been deoptimized while we were in the vm. This simplifies the assembly code 219 // cpu directories. 220 // 221 // We are entering here from exception stub (via the entry method below) 222 // If there is a compiled exception handler in this method, we will continue there; 223 // otherwise we will unwind the stack and continue at the caller of top frame method 224 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to 225 // control the area where we can allow a safepoint. After we exit the safepoint area we can 226 // check to see if the handler we are going to return is now in a nmethod that has 227 // been deoptimized. If that is the case we return the deopt blob 228 // unpack_with_exception entry instead. This makes life for the exception blob easier 229 // because making that same check and diverting is painful from assembly language. 230 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm)) 231 // Reset method handle flag. 232 current->set_is_method_handle_return(false); 233 234 Handle exception(current, ex); 235 236 // The frame we rethrow the exception to might not have been processed by the GC yet. 237 // The stack watermark barrier takes care of detecting that and ensuring the frame 238 // has updated oops. 239 StackWatermarkSet::after_unwind(current); 240 241 nm = CodeCache::find_nmethod(pc); 242 assert(nm != nullptr, "did not find nmethod"); 243 // Adjust the pc as needed/ 244 if (nm->is_deopt_pc(pc)) { 245 RegisterMap map(current, 246 RegisterMap::UpdateMap::skip, 247 RegisterMap::ProcessFrames::include, 248 RegisterMap::WalkContinuation::skip); 249 frame exception_frame = current->last_frame().sender(&map); 250 // if the frame isn't deopted then pc must not correspond to the caller of last_frame 251 assert(exception_frame.is_deoptimized_frame(), "must be deopted"); 252 pc = exception_frame.pc(); 253 } 254 assert(exception.not_null(), "null exceptions should be handled by throw_exception"); 255 assert(oopDesc::is_oop(exception()), "just checking"); 256 // Check that exception is a subclass of Throwable 257 assert(exception->is_a(vmClasses::Throwable_klass()), 258 "Exception not subclass of Throwable"); 259 260 // debugging support 261 // tracing 262 if (log_is_enabled(Info, exceptions)) { 263 ResourceMark rm; 264 stringStream tempst; 265 assert(nm->method() != nullptr, "Unexpected null method()"); 266 tempst.print("JVMCI compiled method <%s>\n" 267 " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT, 268 nm->method()->print_value_string(), p2i(pc), p2i(current)); 269 Exceptions::log_exception(exception, tempst.as_string()); 270 } 271 // for AbortVMOnException flag 272 Exceptions::debug_check_abort(exception); 273 274 // Check the stack guard pages and re-enable them if necessary and there is 275 // enough space on the stack to do so. Use fast exceptions only if the guard 276 // pages are enabled. 277 bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed(); 278 279 if (JvmtiExport::can_post_on_exceptions()) { 280 // To ensure correct notification of exception catches and throws 281 // we have to deoptimize here. If we attempted to notify the 282 // catches and throws during this exception lookup it's possible 283 // we could deoptimize on the way out of the VM and end back in 284 // the interpreter at the throw site. This would result in double 285 // notifications since the interpreter would also notify about 286 // these same catches and throws as it unwound the frame. 287 288 RegisterMap reg_map(current, 289 RegisterMap::UpdateMap::include, 290 RegisterMap::ProcessFrames::include, 291 RegisterMap::WalkContinuation::skip); 292 frame stub_frame = current->last_frame(); 293 frame caller_frame = stub_frame.sender(®_map); 294 295 // We don't really want to deoptimize the nmethod itself since we 296 // can actually continue in the exception handler ourselves but I 297 // don't see an easy way to have the desired effect. 298 Deoptimization::deoptimize_frame(current, caller_frame.id(), Deoptimization::Reason_constraint); 299 assert(caller_is_deopted(), "Must be deoptimized"); 300 301 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 302 } 303 304 // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions 305 if (guard_pages_enabled) { 306 address fast_continuation = nm->handler_for_exception_and_pc(exception, pc); 307 if (fast_continuation != nullptr) { 308 // Set flag if return address is a method handle call site. 309 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 310 return fast_continuation; 311 } 312 } 313 314 // If the stack guard pages are enabled, check whether there is a handler in 315 // the current method. Otherwise (guard pages disabled), force an unwind and 316 // skip the exception cache update (i.e., just leave continuation==nullptr). 317 address continuation = nullptr; 318 if (guard_pages_enabled) { 319 320 // New exception handling mechanism can support inlined methods 321 // with exception handlers since the mappings are from PC to PC 322 323 // Clear out the exception oop and pc since looking up an 324 // exception handler can cause class loading, which might throw an 325 // exception and those fields are expected to be clear during 326 // normal bytecode execution. 327 current->clear_exception_oop_and_pc(); 328 329 bool recursive_exception = false; 330 continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception); 331 // If an exception was thrown during exception dispatch, the exception oop may have changed 332 current->set_exception_oop(exception()); 333 current->set_exception_pc(pc); 334 335 // The exception cache is used only for non-implicit exceptions 336 // Update the exception cache only when another exception did 337 // occur during the computation of the compiled exception handler 338 // (e.g., when loading the class of the catch type). 339 // Checking for exception oop equality is not 340 // sufficient because some exceptions are pre-allocated and reused. 341 if (continuation != nullptr && !recursive_exception && !SharedRuntime::deopt_blob()->contains(continuation)) { 342 nm->add_handler_for_exception_and_pc(exception, pc, continuation); 343 } 344 } 345 346 // Set flag if return address is a method handle call site. 347 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 348 349 if (log_is_enabled(Info, exceptions)) { 350 ResourceMark rm; 351 log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT 352 " for exception thrown at PC " PTR_FORMAT, 353 p2i(current), p2i(continuation), p2i(pc)); 354 } 355 356 return continuation; 357 JRT_END 358 359 // Enter this method from compiled code only if there is a Java exception handler 360 // in the method handling the exception. 361 // We are entering here from exception stub. We don't do a normal VM transition here. 362 // We do it in a helper. This is so we can check to see if the nmethod we have just 363 // searched for an exception handler has been deoptimized in the meantime. 364 address JVMCIRuntime::exception_handler_for_pc(JavaThread* current) { 365 oop exception = current->exception_oop(); 366 address pc = current->exception_pc(); 367 // Still in Java mode 368 DEBUG_ONLY(NoHandleMark nhm); 369 nmethod* nm = nullptr; 370 address continuation = nullptr; 371 { 372 // Enter VM mode by calling the helper 373 ResetNoHandleMark rnhm; 374 continuation = exception_handler_for_pc_helper(current, exception, pc, nm); 375 } 376 // Back in JAVA, use no oops DON'T safepoint 377 378 // Now check to see if the compiled method we were called from is now deoptimized. 379 // If so we must return to the deopt blob and deoptimize the nmethod 380 if (nm != nullptr && caller_is_deopted()) { 381 continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 382 } 383 384 assert(continuation != nullptr, "no handler found"); 385 return continuation; 386 } 387 388 JRT_BLOCK_ENTRY(void, JVMCIRuntime::monitorenter(JavaThread* current, oopDesc* obj, BasicLock* lock)) 389 SharedRuntime::monitor_enter_helper(obj, lock, current); 390 JRT_END 391 392 JRT_LEAF(void, JVMCIRuntime::monitorexit(JavaThread* current, oopDesc* obj, BasicLock* lock)) 393 assert(current == JavaThread::current(), "pre-condition"); 394 assert(current->last_Java_sp(), "last_Java_sp must be set"); 395 assert(oopDesc::is_oop(obj), "invalid lock object pointer dected"); 396 SharedRuntime::monitor_exit_helper(obj, lock, current); 397 JRT_END 398 399 // Object.notify() fast path, caller does slow path 400 JRT_LEAF(jboolean, JVMCIRuntime::object_notify(JavaThread* current, oopDesc* obj)) 401 assert(current == JavaThread::current(), "pre-condition"); 402 403 // Very few notify/notifyAll operations find any threads on the waitset, so 404 // the dominant fast-path is to simply return. 405 // Relatedly, it's critical that notify/notifyAll be fast in order to 406 // reduce lock hold times. 407 if (!SafepointSynchronize::is_synchronizing()) { 408 if (ObjectSynchronizer::quick_notify(obj, current, false)) { 409 return true; 410 } 411 } 412 return false; // caller must perform slow path 413 414 JRT_END 415 416 // Object.notifyAll() fast path, caller does slow path 417 JRT_LEAF(jboolean, JVMCIRuntime::object_notifyAll(JavaThread* current, oopDesc* obj)) 418 assert(current == JavaThread::current(), "pre-condition"); 419 420 if (!SafepointSynchronize::is_synchronizing() ) { 421 if (ObjectSynchronizer::quick_notify(obj, current, true)) { 422 return true; 423 } 424 } 425 return false; // caller must perform slow path 426 427 JRT_END 428 429 JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_and_post_jvmti_exception(JavaThread* current, const char* exception, const char* message)) 430 JRT_BLOCK; 431 TempNewSymbol symbol = SymbolTable::new_symbol(exception); 432 SharedRuntime::throw_and_post_jvmti_exception(current, symbol, message); 433 JRT_BLOCK_END; 434 return caller_is_deopted(); 435 JRT_END 436 437 JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_klass_external_name_exception(JavaThread* current, const char* exception, Klass* klass)) 438 JRT_BLOCK; 439 ResourceMark rm(current); 440 TempNewSymbol symbol = SymbolTable::new_symbol(exception); 441 SharedRuntime::throw_and_post_jvmti_exception(current, symbol, klass->external_name()); 442 JRT_BLOCK_END; 443 return caller_is_deopted(); 444 JRT_END 445 446 JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_class_cast_exception(JavaThread* current, const char* exception, Klass* caster_klass, Klass* target_klass)) 447 JRT_BLOCK; 448 ResourceMark rm(current); 449 const char* message = SharedRuntime::generate_class_cast_message(caster_klass, target_klass); 450 TempNewSymbol symbol = SymbolTable::new_symbol(exception); 451 SharedRuntime::throw_and_post_jvmti_exception(current, symbol, message); 452 JRT_BLOCK_END; 453 return caller_is_deopted(); 454 JRT_END 455 456 class ArgumentPusher : public SignatureIterator { 457 protected: 458 JavaCallArguments* _jca; 459 jlong _argument; 460 bool _pushed; 461 462 jlong next_arg() { 463 guarantee(!_pushed, "one argument"); 464 _pushed = true; 465 return _argument; 466 } 467 468 float next_float() { 469 guarantee(!_pushed, "one argument"); 470 _pushed = true; 471 jvalue v; 472 v.i = (jint) _argument; 473 return v.f; 474 } 475 476 double next_double() { 477 guarantee(!_pushed, "one argument"); 478 _pushed = true; 479 jvalue v; 480 v.j = _argument; 481 return v.d; 482 } 483 484 Handle next_object() { 485 guarantee(!_pushed, "one argument"); 486 _pushed = true; 487 return Handle(Thread::current(), cast_to_oop(_argument)); 488 } 489 490 public: 491 ArgumentPusher(Symbol* signature, JavaCallArguments* jca, jlong argument) : SignatureIterator(signature) { 492 this->_return_type = T_ILLEGAL; 493 _jca = jca; 494 _argument = argument; 495 _pushed = false; 496 do_parameters_on(this); 497 } 498 499 void do_type(BasicType type) { 500 switch (type) { 501 case T_OBJECT: 502 case T_ARRAY: _jca->push_oop(next_object()); break; 503 case T_BOOLEAN: _jca->push_int((jboolean) next_arg()); break; 504 case T_CHAR: _jca->push_int((jchar) next_arg()); break; 505 case T_SHORT: _jca->push_int((jint) next_arg()); break; 506 case T_BYTE: _jca->push_int((jbyte) next_arg()); break; 507 case T_INT: _jca->push_int((jint) next_arg()); break; 508 case T_LONG: _jca->push_long((jlong) next_arg()); break; 509 case T_FLOAT: _jca->push_float(next_float()); break; 510 case T_DOUBLE: _jca->push_double(next_double()); break; 511 default: fatal("Unexpected type %s", type2name(type)); 512 } 513 } 514 }; 515 516 517 JRT_ENTRY(jlong, JVMCIRuntime::invoke_static_method_one_arg(JavaThread* current, Method* method, jlong argument)) 518 ResourceMark rm; 519 HandleMark hm(current); 520 521 methodHandle mh(current, method); 522 if (mh->size_of_parameters() > 1 && !mh->is_static()) { 523 THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "Invoked method must be static and take at most one argument"); 524 } 525 526 Symbol* signature = mh->signature(); 527 JavaCallArguments jca(mh->size_of_parameters()); 528 ArgumentPusher jap(signature, &jca, argument); 529 BasicType return_type = jap.return_type(); 530 JavaValue result(return_type); 531 JavaCalls::call(&result, mh, &jca, CHECK_0); 532 533 if (return_type == T_VOID) { 534 return 0; 535 } else if (return_type == T_OBJECT || return_type == T_ARRAY) { 536 current->set_vm_result_oop(result.get_oop()); 537 return 0; 538 } else { 539 jvalue *value = (jvalue *) result.get_value_addr(); 540 // Narrow the value down if required (Important on big endian machines) 541 switch (return_type) { 542 case T_BOOLEAN: 543 return (jboolean) value->i; 544 case T_BYTE: 545 return (jbyte) value->i; 546 case T_CHAR: 547 return (jchar) value->i; 548 case T_SHORT: 549 return (jshort) value->i; 550 case T_INT: 551 case T_FLOAT: 552 return value->i; 553 case T_LONG: 554 case T_DOUBLE: 555 return value->j; 556 default: 557 fatal("Unexpected type %s", type2name(return_type)); 558 return 0; 559 } 560 } 561 JRT_END 562 563 JRT_LEAF(void, JVMCIRuntime::log_object(JavaThread* thread, oopDesc* obj, bool as_string, bool newline)) 564 ttyLocker ttyl; 565 566 if (obj == nullptr) { 567 tty->print("null"); 568 } else if (oopDesc::is_oop_or_null(obj, true) && (!as_string || !java_lang_String::is_instance(obj))) { 569 if (oopDesc::is_oop_or_null(obj, true)) { 570 char buf[O_BUFLEN]; 571 tty->print("%s@" INTPTR_FORMAT, obj->klass()->name()->as_C_string(buf, O_BUFLEN), p2i(obj)); 572 } else { 573 tty->print(INTPTR_FORMAT, p2i(obj)); 574 } 575 } else { 576 ResourceMark rm; 577 assert(obj != nullptr && java_lang_String::is_instance(obj), "must be"); 578 char *buf = java_lang_String::as_utf8_string(obj); 579 tty->print_raw(buf); 580 } 581 if (newline) { 582 tty->cr(); 583 } 584 JRT_END 585 586 #if INCLUDE_G1GC 587 588 void JVMCIRuntime::write_barrier_pre(JavaThread* thread, oopDesc* obj) { 589 G1BarrierSetRuntime::write_ref_field_pre_entry(obj, thread); 590 } 591 592 void JVMCIRuntime::write_barrier_post(JavaThread* thread, volatile CardValue* card_addr) { 593 G1BarrierSetRuntime::write_ref_field_post_entry(card_addr, thread); 594 } 595 596 #endif // INCLUDE_G1GC 597 598 JRT_LEAF(jboolean, JVMCIRuntime::validate_object(JavaThread* thread, oopDesc* parent, oopDesc* child)) 599 bool ret = true; 600 if(!Universe::heap()->is_in(parent)) { 601 tty->print_cr("Parent Object " INTPTR_FORMAT " not in heap", p2i(parent)); 602 parent->print(); 603 ret=false; 604 } 605 if(!Universe::heap()->is_in(child)) { 606 tty->print_cr("Child Object " INTPTR_FORMAT " not in heap", p2i(child)); 607 child->print(); 608 ret=false; 609 } 610 return (jint)ret; 611 JRT_END 612 613 JRT_ENTRY(void, JVMCIRuntime::vm_error(JavaThread* current, jlong where, jlong format, jlong value)) 614 ResourceMark rm(current); 615 const char *error_msg = where == 0L ? "<internal JVMCI error>" : (char*) (address) where; 616 char *detail_msg = nullptr; 617 if (format != 0L) { 618 const char* buf = (char*) (address) format; 619 size_t detail_msg_length = strlen(buf) * 2; 620 detail_msg = (char *) NEW_RESOURCE_ARRAY(u_char, detail_msg_length); 621 jio_snprintf(detail_msg, detail_msg_length, buf, value); 622 } 623 report_vm_error(__FILE__, __LINE__, error_msg, "%s", detail_msg); 624 JRT_END 625 626 JRT_LEAF(oopDesc*, JVMCIRuntime::load_and_clear_exception(JavaThread* thread)) 627 oop exception = thread->exception_oop(); 628 assert(exception != nullptr, "npe"); 629 thread->set_exception_oop(nullptr); 630 thread->set_exception_pc(nullptr); 631 return exception; 632 JRT_END 633 634 PRAGMA_DIAG_PUSH 635 PRAGMA_FORMAT_NONLITERAL_IGNORED 636 JRT_LEAF(void, JVMCIRuntime::log_printf(JavaThread* thread, const char* format, jlong v1, jlong v2, jlong v3)) 637 ResourceMark rm; 638 tty->print(format, v1, v2, v3); 639 JRT_END 640 PRAGMA_DIAG_POP 641 642 static void decipher(jlong v, bool ignoreZero) { 643 if (v != 0 || !ignoreZero) { 644 void* p = (void *)(address) v; 645 CodeBlob* cb = CodeCache::find_blob(p); 646 if (cb) { 647 if (cb->is_nmethod()) { 648 char buf[O_BUFLEN]; 649 tty->print("%s [" INTPTR_FORMAT "+" JLONG_FORMAT "]", cb->as_nmethod()->method()->name_and_sig_as_C_string(buf, O_BUFLEN), p2i(cb->code_begin()), (jlong)((address)v - cb->code_begin())); 650 return; 651 } 652 cb->print_value_on(tty); 653 return; 654 } 655 if (Universe::heap()->is_in(p)) { 656 oop obj = cast_to_oop(p); 657 obj->print_value_on(tty); 658 return; 659 } 660 tty->print(INTPTR_FORMAT " [long: " JLONG_FORMAT ", double %lf, char %c]",p2i((void *)v), (jlong)v, (jdouble)v, (char)v); 661 } 662 } 663 664 PRAGMA_DIAG_PUSH 665 PRAGMA_FORMAT_NONLITERAL_IGNORED 666 JRT_LEAF(void, JVMCIRuntime::vm_message(jboolean vmError, jlong format, jlong v1, jlong v2, jlong v3)) 667 ResourceMark rm; 668 const char *buf = (const char*) (address) format; 669 if (vmError) { 670 if (buf != nullptr) { 671 fatal(buf, v1, v2, v3); 672 } else { 673 fatal("<anonymous error>"); 674 } 675 } else if (buf != nullptr) { 676 tty->print(buf, v1, v2, v3); 677 } else { 678 assert(v2 == 0, "v2 != 0"); 679 assert(v3 == 0, "v3 != 0"); 680 decipher(v1, false); 681 } 682 JRT_END 683 PRAGMA_DIAG_POP 684 685 JRT_LEAF(void, JVMCIRuntime::log_primitive(JavaThread* thread, jchar typeChar, jlong value, jboolean newline)) 686 union { 687 jlong l; 688 jdouble d; 689 jfloat f; 690 } uu; 691 uu.l = value; 692 switch (typeChar) { 693 case 'Z': tty->print(value == 0 ? "false" : "true"); break; 694 case 'B': tty->print("%d", (jbyte) value); break; 695 case 'C': tty->print("%c", (jchar) value); break; 696 case 'S': tty->print("%d", (jshort) value); break; 697 case 'I': tty->print("%d", (jint) value); break; 698 case 'F': tty->print("%f", uu.f); break; 699 case 'J': tty->print(JLONG_FORMAT, value); break; 700 case 'D': tty->print("%lf", uu.d); break; 701 default: assert(false, "unknown typeChar"); break; 702 } 703 if (newline) { 704 tty->cr(); 705 } 706 JRT_END 707 708 JRT_ENTRY(jint, JVMCIRuntime::identity_hash_code(JavaThread* current, oopDesc* obj)) 709 return (jint) obj->identity_hash(); 710 JRT_END 711 712 JRT_ENTRY(jint, JVMCIRuntime::test_deoptimize_call_int(JavaThread* current, int value)) 713 deopt_caller(); 714 return (jint) value; 715 JRT_END 716 717 718 // Implementation of JVMCI.initializeRuntime() 719 // When called from libjvmci, `libjvmciOrHotspotEnv` is a libjvmci env so use JVM_ENTRY_NO_ENV. 720 JVM_ENTRY_NO_ENV(jobject, JVM_GetJVMCIRuntime(JNIEnv *libjvmciOrHotspotEnv, jclass c)) 721 JVMCIENV_FROM_JNI(thread, libjvmciOrHotspotEnv); 722 if (!EnableJVMCI) { 723 JVMCI_THROW_MSG_NULL(InternalError, JVMCI_NOT_ENABLED_ERROR_MESSAGE); 724 } 725 JVMCIENV->runtime()->initialize_HotSpotJVMCIRuntime(JVMCI_CHECK_NULL); 726 JVMCIObject runtime = JVMCIENV->runtime()->get_HotSpotJVMCIRuntime(JVMCI_CHECK_NULL); 727 return JVMCIENV->get_jobject(runtime); 728 JVM_END 729 730 // Implementation of Services.readSystemPropertiesInfo(int[] offsets) 731 // When called from libjvmci, `env` is a libjvmci env so use JVM_ENTRY_NO_ENV. 732 JVM_ENTRY_NO_ENV(jlong, JVM_ReadSystemPropertiesInfo(JNIEnv *env, jclass c, jintArray offsets_handle)) 733 JVMCIENV_FROM_JNI(thread, env); 734 if (!EnableJVMCI) { 735 JVMCI_THROW_MSG_0(InternalError, JVMCI_NOT_ENABLED_ERROR_MESSAGE); 736 } 737 JVMCIPrimitiveArray offsets = JVMCIENV->wrap(offsets_handle); 738 JVMCIENV->put_int_at(offsets, 0, SystemProperty::next_offset_in_bytes()); 739 JVMCIENV->put_int_at(offsets, 1, SystemProperty::key_offset_in_bytes()); 740 JVMCIENV->put_int_at(offsets, 2, PathString::value_offset_in_bytes()); 741 742 return (jlong) Arguments::system_properties(); 743 JVM_END 744 745 746 void JVMCINMethodData::initialize(int nmethod_mirror_index, 747 int nmethod_entry_patch_offset, 748 const char* nmethod_mirror_name, 749 FailedSpeculation** failed_speculations) 750 { 751 _failed_speculations = failed_speculations; 752 _nmethod_mirror_index = nmethod_mirror_index; 753 guarantee(nmethod_entry_patch_offset != -1, "missing entry barrier"); 754 _nmethod_entry_patch_offset = nmethod_entry_patch_offset; 755 if (nmethod_mirror_name != nullptr) { 756 _has_name = true; 757 char* dest = (char*) name(); 758 strcpy(dest, nmethod_mirror_name); 759 } else { 760 _has_name = false; 761 } 762 } 763 764 void JVMCINMethodData::copy(JVMCINMethodData* data) { 765 initialize(data->_nmethod_mirror_index, data->_nmethod_entry_patch_offset, data->name(), data->_failed_speculations); 766 } 767 768 void JVMCINMethodData::add_failed_speculation(nmethod* nm, jlong speculation) { 769 jlong index = speculation >> JVMCINMethodData::SPECULATION_LENGTH_BITS; 770 guarantee(index >= 0 && index <= max_jint, "Encoded JVMCI speculation index is not a positive Java int: " INTPTR_FORMAT, index); 771 int length = speculation & JVMCINMethodData::SPECULATION_LENGTH_MASK; 772 if (index + length > (uint) nm->speculations_size()) { 773 fatal(INTPTR_FORMAT "[index: " JLONG_FORMAT ", length: %d out of bounds wrt encoded speculations of length %u", speculation, index, length, nm->speculations_size()); 774 } 775 address data = nm->speculations_begin() + index; 776 FailedSpeculation::add_failed_speculation(nm, _failed_speculations, data, length); 777 } 778 779 oop JVMCINMethodData::get_nmethod_mirror(nmethod* nm) { 780 if (_nmethod_mirror_index == -1) { 781 return nullptr; 782 } 783 return nm->oop_at(_nmethod_mirror_index); 784 } 785 786 void JVMCINMethodData::set_nmethod_mirror(nmethod* nm, oop new_mirror) { 787 guarantee(_nmethod_mirror_index != -1, "cannot set JVMCI mirror for nmethod"); 788 oop* addr = nm->oop_addr_at(_nmethod_mirror_index); 789 guarantee(new_mirror != nullptr, "use clear_nmethod_mirror to clear the mirror"); 790 guarantee(*addr == nullptr, "cannot overwrite non-null mirror"); 791 792 *addr = new_mirror; 793 794 // Since we've patched some oops in the nmethod, 795 // (re)register it with the heap. 796 MutexLocker ml(CodeCache_lock, Mutex::_no_safepoint_check_flag); 797 Universe::heap()->register_nmethod(nm); 798 } 799 800 void JVMCINMethodData::invalidate_nmethod_mirror(nmethod* nm) { 801 oop nmethod_mirror = get_nmethod_mirror(nm); 802 if (nmethod_mirror == nullptr) { 803 return; 804 } 805 806 // Update the values in the mirror if it still refers to nm. 807 // We cannot use JVMCIObject to wrap the mirror as this is called 808 // during GC, forbidding the creation of JNIHandles. 809 JVMCIEnv* jvmciEnv = nullptr; 810 nmethod* current = (nmethod*) HotSpotJVMCI::InstalledCode::address(jvmciEnv, nmethod_mirror); 811 if (nm == current) { 812 if (nm->is_unloading()) { 813 // Break the link from the mirror to nm such that 814 // future invocations via the mirror will result in 815 // an InvalidInstalledCodeException. 816 HotSpotJVMCI::InstalledCode::set_address(jvmciEnv, nmethod_mirror, 0); 817 HotSpotJVMCI::InstalledCode::set_entryPoint(jvmciEnv, nmethod_mirror, 0); 818 HotSpotJVMCI::HotSpotInstalledCode::set_codeStart(jvmciEnv, nmethod_mirror, 0); 819 } else if (nm->is_not_entrant()) { 820 // Zero the entry point so any new invocation will fail but keep 821 // the address link around that so that existing activations can 822 // be deoptimized via the mirror (i.e. JVMCIEnv::invalidate_installed_code). 823 HotSpotJVMCI::InstalledCode::set_entryPoint(jvmciEnv, nmethod_mirror, 0); 824 HotSpotJVMCI::HotSpotInstalledCode::set_codeStart(jvmciEnv, nmethod_mirror, 0); 825 } 826 } 827 828 if (_nmethod_mirror_index != -1 && nm->is_unloading()) { 829 // Drop the reference to the nmethod mirror object but don't clear the actual oop reference. Otherwise 830 // it would appear that the nmethod didn't need to be unloaded in the first place. 831 _nmethod_mirror_index = -1; 832 } 833 } 834 835 // Handles to objects in the Hotspot heap. 836 static OopStorage* object_handles() { 837 return Universe::vm_global(); 838 } 839 840 jlong JVMCIRuntime::make_oop_handle(const Handle& obj) { 841 assert(!Universe::heap()->is_stw_gc_active(), "can't extend the root set during GC pause"); 842 assert(oopDesc::is_oop(obj()), "not an oop"); 843 844 oop* ptr = OopHandle(object_handles(), obj()).ptr_raw(); 845 MutexLocker ml(_lock); 846 _oop_handles.append(ptr); 847 return reinterpret_cast<jlong>(ptr); 848 } 849 850 #ifdef ASSERT 851 bool JVMCIRuntime::is_oop_handle(jlong handle) { 852 const oop* ptr = (oop*) handle; 853 return object_handles()->allocation_status(ptr) == OopStorage::ALLOCATED_ENTRY; 854 } 855 #endif 856 857 int JVMCIRuntime::release_and_clear_oop_handles() { 858 guarantee(_num_attached_threads == cannot_be_attached, "only call during JVMCI runtime shutdown"); 859 int released = release_cleared_oop_handles(); 860 if (_oop_handles.length() != 0) { 861 for (int i = 0; i < _oop_handles.length(); i++) { 862 oop* oop_ptr = _oop_handles.at(i); 863 guarantee(oop_ptr != nullptr, "release_cleared_oop_handles left null entry in _oop_handles"); 864 guarantee(NativeAccess<>::oop_load(oop_ptr) != nullptr, "unexpected cleared handle"); 865 // Satisfy OopHandles::release precondition that all 866 // handles being released are null. 867 NativeAccess<>::oop_store(oop_ptr, (oop) nullptr); 868 } 869 870 // Do the bulk release 871 object_handles()->release(_oop_handles.adr_at(0), _oop_handles.length()); 872 released += _oop_handles.length(); 873 } 874 _oop_handles.clear(); 875 return released; 876 } 877 878 static bool is_referent_non_null(oop* handle) { 879 return handle != nullptr && NativeAccess<>::oop_load(handle) != nullptr; 880 } 881 882 // Swaps the elements in `array` at index `a` and index `b` 883 static void swap(GrowableArray<oop*>* array, int a, int b) { 884 oop* tmp = array->at(a); 885 array->at_put(a, array->at(b)); 886 array->at_put(b, tmp); 887 } 888 889 int JVMCIRuntime::release_cleared_oop_handles() { 890 // Despite this lock, it's possible for another thread 891 // to clear a handle's referent concurrently (e.g., a thread 892 // executing IndirectHotSpotObjectConstantImpl.clear()). 893 // This is benign - it means there can still be cleared 894 // handles in _oop_handles when this method returns. 895 MutexLocker ml(_lock); 896 897 int next = 0; 898 if (_oop_handles.length() != 0) { 899 // Key for _oop_handles contents in example below: 900 // H: handle with non-null referent 901 // h: handle with clear (i.e., null) referent 902 // -: null entry 903 904 // Shuffle all handles with non-null referents to the front of the list 905 // Example: Before: 0HHh-Hh- 906 // After: HHHh--h- 907 for (int i = 0; i < _oop_handles.length(); i++) { 908 oop* handle = _oop_handles.at(i); 909 if (is_referent_non_null(handle)) { 910 if (i != next && !is_referent_non_null(_oop_handles.at(next))) { 911 // Swap elements at index `next` and `i` 912 swap(&_oop_handles, next, i); 913 } 914 next++; 915 } 916 } 917 918 // `next` is now the index of the first null handle or handle with a null referent 919 int num_alive = next; 920 921 // Shuffle all null handles to the end of the list 922 // Example: Before: HHHh--h- 923 // After: HHHhh--- 924 // num_alive: 3 925 for (int i = next; i < _oop_handles.length(); i++) { 926 oop* handle = _oop_handles.at(i); 927 if (handle != nullptr) { 928 if (i != next && _oop_handles.at(next) == nullptr) { 929 // Swap elements at index `next` and `i` 930 swap(&_oop_handles, next, i); 931 } 932 next++; 933 } 934 } 935 if (next != num_alive) { 936 int to_release = next - num_alive; 937 938 // `next` is now the index of the first null handle 939 // Example: to_release: 2 940 941 // Bulk release the handles with a null referent 942 object_handles()->release(_oop_handles.adr_at(num_alive), to_release); 943 944 // Truncate oop handles to only those with a non-null referent 945 JVMCI_event_2("compacted oop handles in JVMCI runtime %d from %d to %d", _id, _oop_handles.length(), num_alive); 946 _oop_handles.trunc_to(num_alive); 947 // Example: HHH 948 949 return to_release; 950 } 951 } 952 return 0; 953 } 954 955 jmetadata JVMCIRuntime::allocate_handle(const methodHandle& handle) { 956 MutexLocker ml(_lock); 957 return _metadata_handles->allocate_handle(handle); 958 } 959 960 jmetadata JVMCIRuntime::allocate_handle(const constantPoolHandle& handle) { 961 MutexLocker ml(_lock); 962 return _metadata_handles->allocate_handle(handle); 963 } 964 965 void JVMCIRuntime::release_handle(jmetadata handle) { 966 MutexLocker ml(_lock); 967 _metadata_handles->chain_free_list(handle); 968 } 969 970 // Function for redirecting shared library JavaVM output to tty 971 static void _log(const char* buf, size_t count) { 972 tty->write((char*) buf, count); 973 } 974 975 // Function for redirecting shared library JavaVM fatal error data to a log file. 976 // The log file is opened on first call to this function. 977 static void _fatal_log(const char* buf, size_t count) { 978 JVMCI::fatal_log(buf, count); 979 } 980 981 // Function for shared library JavaVM to flush tty 982 static void _flush_log() { 983 tty->flush(); 984 } 985 986 // Function for shared library JavaVM to exit HotSpot on a fatal error 987 static void _fatal() { 988 Thread* thread = Thread::current_or_null_safe(); 989 if (thread != nullptr && thread->is_Java_thread()) { 990 JavaThread* jthread = JavaThread::cast(thread); 991 JVMCIRuntime* runtime = jthread->libjvmci_runtime(); 992 if (runtime != nullptr) { 993 int javaVM_id = runtime->get_shared_library_javavm_id(); 994 fatal("Fatal error in JVMCI shared library JavaVM[%d] owned by JVMCI runtime %d", javaVM_id, runtime->id()); 995 } 996 } 997 intx current_thread_id = os::current_thread_id(); 998 fatal("thread %zd: Fatal error in JVMCI shared library", current_thread_id); 999 } 1000 1001 JVMCIRuntime::JVMCIRuntime(JVMCIRuntime* next, int id, bool for_compile_broker) : 1002 _init_state(uninitialized), 1003 _shared_library_javavm(nullptr), 1004 _shared_library_javavm_id(0), 1005 _id(id), 1006 _next(next), 1007 _metadata_handles(new MetadataHandles()), 1008 _oop_handles(100, mtJVMCI), 1009 _num_attached_threads(0), 1010 _for_compile_broker(for_compile_broker) 1011 { 1012 if (id == -1) { 1013 _lock = JVMCIRuntime_lock; 1014 } else { 1015 stringStream lock_name; 1016 lock_name.print("%s@%d", JVMCIRuntime_lock->name(), id); 1017 Mutex::Rank lock_rank = DEBUG_ONLY(JVMCIRuntime_lock->rank()) NOT_DEBUG(Mutex::safepoint); 1018 _lock = new PaddedMonitor(lock_rank, lock_name.as_string(/*c_heap*/true)); 1019 } 1020 JVMCI_event_1("created new %s JVMCI runtime %d (" PTR_FORMAT ")", 1021 id == -1 ? "Java" : for_compile_broker ? "CompileBroker" : "Compiler", id, p2i(this)); 1022 } 1023 1024 JVMCIRuntime* JVMCIRuntime::select_runtime_in_shutdown(JavaThread* thread) { 1025 assert(JVMCI_lock->owner() == thread, "must be"); 1026 // When shutting down, use the first available runtime. 1027 for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) { 1028 if (runtime->_num_attached_threads != cannot_be_attached) { 1029 runtime->pre_attach_thread(thread); 1030 JVMCI_event_1("using pre-existing JVMCI runtime %d in shutdown", runtime->id()); 1031 return runtime; 1032 } 1033 } 1034 // Lazily initialize JVMCI::_shutdown_compiler_runtime. Safe to 1035 // do here since JVMCI_lock is locked. 1036 if (JVMCI::_shutdown_compiler_runtime == nullptr) { 1037 JVMCI::_shutdown_compiler_runtime = new JVMCIRuntime(nullptr, -2, true); 1038 } 1039 JVMCIRuntime* runtime = JVMCI::_shutdown_compiler_runtime; 1040 JVMCI_event_1("using reserved shutdown JVMCI runtime %d", runtime->id()); 1041 return runtime; 1042 } 1043 1044 JVMCIRuntime* JVMCIRuntime::select_runtime(JavaThread* thread, JVMCIRuntime* skip, int* count) { 1045 assert(JVMCI_lock->owner() == thread, "must be"); 1046 bool for_compile_broker = thread->is_Compiler_thread(); 1047 for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) { 1048 if (count != nullptr) { 1049 (*count)++; 1050 } 1051 if (for_compile_broker == runtime->_for_compile_broker) { 1052 int count = runtime->_num_attached_threads; 1053 if (count == cannot_be_attached || runtime == skip) { 1054 // Cannot attach to rt 1055 continue; 1056 } 1057 // If selecting for repacking, ignore a runtime without an existing JavaVM 1058 if (skip != nullptr && !runtime->has_shared_library_javavm()) { 1059 continue; 1060 } 1061 1062 // Select first runtime with sufficient capacity 1063 if (count < (int) JVMCIThreadsPerNativeLibraryRuntime) { 1064 runtime->pre_attach_thread(thread); 1065 return runtime; 1066 } 1067 } 1068 } 1069 return nullptr; 1070 } 1071 1072 JVMCIRuntime* JVMCIRuntime::select_or_create_runtime(JavaThread* thread) { 1073 assert(JVMCI_lock->owner() == thread, "must be"); 1074 int id = 0; 1075 JVMCIRuntime* runtime; 1076 if (JVMCI::using_singleton_shared_library_runtime()) { 1077 runtime = JVMCI::_compiler_runtimes; 1078 guarantee(runtime != nullptr, "must be"); 1079 while (runtime->_num_attached_threads == cannot_be_attached) { 1080 // Since there is only a singleton JVMCIRuntime, we 1081 // need to wait for it to be available for attaching. 1082 JVMCI_lock->wait(); 1083 } 1084 runtime->pre_attach_thread(thread); 1085 } else { 1086 runtime = select_runtime(thread, nullptr, &id); 1087 } 1088 if (runtime == nullptr) { 1089 runtime = new JVMCIRuntime(JVMCI::_compiler_runtimes, id, thread->is_Compiler_thread()); 1090 JVMCI::_compiler_runtimes = runtime; 1091 runtime->pre_attach_thread(thread); 1092 } 1093 return runtime; 1094 } 1095 1096 JVMCIRuntime* JVMCIRuntime::for_thread(JavaThread* thread) { 1097 assert(thread->libjvmci_runtime() == nullptr, "must be"); 1098 // Find the runtime with fewest attached threads 1099 JVMCIRuntime* runtime = nullptr; 1100 { 1101 MutexLocker locker(JVMCI_lock); 1102 runtime = JVMCI::in_shutdown() ? select_runtime_in_shutdown(thread) : select_or_create_runtime(thread); 1103 } 1104 runtime->attach_thread(thread); 1105 return runtime; 1106 } 1107 1108 const char* JVMCIRuntime::attach_shared_library_thread(JavaThread* thread, JavaVM* javaVM) { 1109 MutexLocker locker(JVMCI_lock); 1110 for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) { 1111 if (runtime->_shared_library_javavm == javaVM) { 1112 if (runtime->_num_attached_threads == cannot_be_attached) { 1113 return "Cannot attach to JVMCI runtime that is shutting down"; 1114 } 1115 runtime->pre_attach_thread(thread); 1116 runtime->attach_thread(thread); 1117 return nullptr; 1118 } 1119 } 1120 return "Cannot find JVMCI runtime"; 1121 } 1122 1123 void JVMCIRuntime::pre_attach_thread(JavaThread* thread) { 1124 assert(JVMCI_lock->owner() == thread, "must be"); 1125 _num_attached_threads++; 1126 } 1127 1128 void JVMCIRuntime::attach_thread(JavaThread* thread) { 1129 assert(thread->libjvmci_runtime() == nullptr, "must be"); 1130 thread->set_libjvmci_runtime(this); 1131 guarantee(this == JVMCI::_shutdown_compiler_runtime || 1132 _num_attached_threads > 0, 1133 "missing reservation in JVMCI runtime %d: _num_attached_threads=%d", _id, _num_attached_threads); 1134 JVMCI_event_1("attached to JVMCI runtime %d%s", _id, JVMCI::in_shutdown() ? " [in JVMCI shutdown]" : ""); 1135 } 1136 1137 void JVMCIRuntime::repack(JavaThread* thread) { 1138 JVMCIRuntime* new_runtime = nullptr; 1139 { 1140 MutexLocker locker(JVMCI_lock); 1141 if (JVMCI::using_singleton_shared_library_runtime() || _num_attached_threads != 1 || JVMCI::in_shutdown()) { 1142 return; 1143 } 1144 new_runtime = select_runtime(thread, this, nullptr); 1145 } 1146 if (new_runtime != nullptr) { 1147 JVMCI_event_1("Moving thread from JVMCI runtime %d to JVMCI runtime %d (%d attached)", _id, new_runtime->_id, new_runtime->_num_attached_threads - 1); 1148 detach_thread(thread, "moving thread to another JVMCI runtime"); 1149 new_runtime->attach_thread(thread); 1150 } 1151 } 1152 1153 bool JVMCIRuntime::detach_thread(JavaThread* thread, const char* reason, bool can_destroy_javavm) { 1154 if (this == JVMCI::_shutdown_compiler_runtime || JVMCI::in_shutdown()) { 1155 // Do minimal work when shutting down JVMCI 1156 thread->set_libjvmci_runtime(nullptr); 1157 return false; 1158 } 1159 bool should_shutdown; 1160 bool destroyed_javavm = false; 1161 { 1162 MutexLocker locker(JVMCI_lock); 1163 _num_attached_threads--; 1164 JVMCI_event_1("detaching from JVMCI runtime %d: %s (%d other threads still attached)", _id, reason, _num_attached_threads); 1165 should_shutdown = _num_attached_threads == 0 && !JVMCI::in_shutdown(); 1166 if (should_shutdown && !can_destroy_javavm) { 1167 // If it's not possible to destroy the JavaVM on this thread then the VM must 1168 // not be shutdown. This can happen when a shared library thread is the last 1169 // thread to detach from a shared library JavaVM (e.g. GraalServiceThread). 1170 JVMCI_event_1("Cancelled shut down of JVMCI runtime %d", _id); 1171 should_shutdown = false; 1172 } 1173 if (should_shutdown) { 1174 // Prevent other threads from attaching to this runtime 1175 // while it is shutting down and destroying its JavaVM 1176 _num_attached_threads = cannot_be_attached; 1177 } 1178 } 1179 if (should_shutdown) { 1180 // Release the JavaVM resources associated with this 1181 // runtime once there are no threads attached to it. 1182 shutdown(); 1183 if (can_destroy_javavm) { 1184 destroyed_javavm = destroy_shared_library_javavm(); 1185 if (destroyed_javavm) { 1186 // Can release all handles now that there's no code executing 1187 // that could be using them. Handles for the Java JVMCI runtime 1188 // are never released as we cannot guarantee all compiler threads 1189 // using it have been stopped. 1190 int released = release_and_clear_oop_handles(); 1191 JVMCI_event_1("releasing handles for JVMCI runtime %d: oop handles=%d, metadata handles={total=%d, live=%d, blocks=%d}", 1192 _id, 1193 released, 1194 _metadata_handles->num_handles(), 1195 _metadata_handles->num_handles() - _metadata_handles->num_free_handles(), 1196 _metadata_handles->num_blocks()); 1197 1198 // No need to acquire _lock since this is the only thread accessing this runtime 1199 _metadata_handles->clear(); 1200 } 1201 } 1202 // Allow other threads to attach to this runtime now 1203 MutexLocker locker(JVMCI_lock); 1204 _num_attached_threads = 0; 1205 if (JVMCI::using_singleton_shared_library_runtime()) { 1206 // Notify any thread waiting to attach to the 1207 // singleton JVMCIRuntime 1208 JVMCI_lock->notify(); 1209 } 1210 } 1211 thread->set_libjvmci_runtime(nullptr); 1212 JVMCI_event_1("detached from JVMCI runtime %d", _id); 1213 return destroyed_javavm; 1214 } 1215 1216 JNIEnv* JVMCIRuntime::init_shared_library_javavm(int* create_JavaVM_err, const char** err_msg) { 1217 MutexLocker locker(_lock); 1218 JavaVM* javaVM = _shared_library_javavm; 1219 if (javaVM == nullptr) { 1220 #ifdef ASSERT 1221 const char* val = Arguments::PropertyList_get_value(Arguments::system_properties(), "test.jvmci.forceEnomemOnLibjvmciInit"); 1222 if (val != nullptr && strcmp(val, "true") == 0) { 1223 *create_JavaVM_err = JNI_ENOMEM; 1224 return nullptr; 1225 } 1226 #endif 1227 1228 char* sl_path; 1229 void* sl_handle = JVMCI::get_shared_library(sl_path, true); 1230 1231 jint (*JNI_CreateJavaVM)(JavaVM **pvm, void **penv, void *args); 1232 typedef jint (*JNI_CreateJavaVM_t)(JavaVM **pvm, void **penv, void *args); 1233 1234 JNI_CreateJavaVM = CAST_TO_FN_PTR(JNI_CreateJavaVM_t, os::dll_lookup(sl_handle, "JNI_CreateJavaVM")); 1235 if (JNI_CreateJavaVM == nullptr) { 1236 fatal("Unable to find JNI_CreateJavaVM in %s", sl_path); 1237 } 1238 1239 ResourceMark rm; 1240 JavaVMInitArgs vm_args; 1241 vm_args.version = JNI_VERSION_1_2; 1242 vm_args.ignoreUnrecognized = JNI_TRUE; 1243 JavaVMOption options[6]; 1244 jlong javaVM_id = 0; 1245 1246 // Protocol: JVMCI shared library JavaVM should support a non-standard "_javavm_id" 1247 // option whose extraInfo info field is a pointer to which a unique id for the 1248 // JavaVM should be written. 1249 options[0].optionString = (char*) "_javavm_id"; 1250 options[0].extraInfo = &javaVM_id; 1251 1252 options[1].optionString = (char*) "_log"; 1253 options[1].extraInfo = (void*) _log; 1254 options[2].optionString = (char*) "_flush_log"; 1255 options[2].extraInfo = (void*) _flush_log; 1256 options[3].optionString = (char*) "_fatal"; 1257 options[3].extraInfo = (void*) _fatal; 1258 options[4].optionString = (char*) "_fatal_log"; 1259 options[4].extraInfo = (void*) _fatal_log; 1260 options[5].optionString = (char*) "_createvm_errorstr"; 1261 options[5].extraInfo = (void*) err_msg; 1262 1263 vm_args.version = JNI_VERSION_1_2; 1264 vm_args.options = options; 1265 vm_args.nOptions = sizeof(options) / sizeof(JavaVMOption); 1266 1267 JNIEnv* env = nullptr; 1268 int result = (*JNI_CreateJavaVM)(&javaVM, (void**) &env, &vm_args); 1269 if (result == JNI_OK) { 1270 guarantee(env != nullptr, "missing env"); 1271 _shared_library_javavm_id = javaVM_id; 1272 _shared_library_javavm = javaVM; 1273 JVMCI_event_1("created JavaVM[%ld]@" PTR_FORMAT " for JVMCI runtime %d", javaVM_id, p2i(javaVM), _id); 1274 return env; 1275 } else { 1276 *create_JavaVM_err = result; 1277 } 1278 } 1279 return nullptr; 1280 } 1281 1282 void JVMCIRuntime::init_JavaVM_info(jlongArray info, JVMCI_TRAPS) { 1283 if (info != nullptr) { 1284 typeArrayOop info_oop = (typeArrayOop) JNIHandles::resolve(info); 1285 if (info_oop->length() < 4) { 1286 JVMCI_THROW_MSG(ArrayIndexOutOfBoundsException, err_msg("%d < 4", info_oop->length())); 1287 } 1288 JavaVM* javaVM = _shared_library_javavm; 1289 info_oop->long_at_put(0, (jlong) (address) javaVM); 1290 info_oop->long_at_put(1, (jlong) (address) javaVM->functions->reserved0); 1291 info_oop->long_at_put(2, (jlong) (address) javaVM->functions->reserved1); 1292 info_oop->long_at_put(3, (jlong) (address) javaVM->functions->reserved2); 1293 } 1294 } 1295 1296 #define JAVAVM_CALL_BLOCK \ 1297 guarantee(thread != nullptr && _shared_library_javavm != nullptr, "npe"); \ 1298 ThreadToNativeFromVM ttnfv(thread); \ 1299 JavaVM* javavm = _shared_library_javavm; 1300 1301 jint JVMCIRuntime::AttachCurrentThread(JavaThread* thread, void **penv, void *args) { 1302 JAVAVM_CALL_BLOCK 1303 return javavm->AttachCurrentThread(penv, args); 1304 } 1305 1306 jint JVMCIRuntime::AttachCurrentThreadAsDaemon(JavaThread* thread, void **penv, void *args) { 1307 JAVAVM_CALL_BLOCK 1308 return javavm->AttachCurrentThreadAsDaemon(penv, args); 1309 } 1310 1311 jint JVMCIRuntime::DetachCurrentThread(JavaThread* thread) { 1312 JAVAVM_CALL_BLOCK 1313 return javavm->DetachCurrentThread(); 1314 } 1315 1316 jint JVMCIRuntime::GetEnv(JavaThread* thread, void **penv, jint version) { 1317 JAVAVM_CALL_BLOCK 1318 return javavm->GetEnv(penv, version); 1319 } 1320 #undef JAVAVM_CALL_BLOCK \ 1321 1322 void JVMCIRuntime::initialize_HotSpotJVMCIRuntime(JVMCI_TRAPS) { 1323 if (is_HotSpotJVMCIRuntime_initialized()) { 1324 if (JVMCIENV->is_hotspot() && UseJVMCINativeLibrary) { 1325 JVMCI_THROW_MSG(InternalError, "JVMCI has already been enabled in the JVMCI shared library"); 1326 } 1327 } 1328 1329 initialize(JVMCI_CHECK); 1330 1331 // This should only be called in the context of the JVMCI class being initialized 1332 JVMCIObject result = JVMCIENV->call_HotSpotJVMCIRuntime_runtime(JVMCI_CHECK); 1333 result = JVMCIENV->make_global(result); 1334 1335 OrderAccess::storestore(); // Ensure handle is fully constructed before publishing 1336 _HotSpotJVMCIRuntime_instance = result; 1337 1338 JVMCI::_is_initialized = true; 1339 } 1340 1341 JVMCIRuntime::InitState JVMCIRuntime::_shared_library_javavm_refs_init_state = JVMCIRuntime::uninitialized; 1342 JVMCIRuntime::InitState JVMCIRuntime::_hotspot_javavm_refs_init_state = JVMCIRuntime::uninitialized; 1343 1344 class JavaVMRefsInitialization: public StackObj { 1345 JVMCIRuntime::InitState *_state; 1346 int _id; 1347 public: 1348 JavaVMRefsInitialization(JVMCIRuntime::InitState *state, int id) { 1349 _state = state; 1350 _id = id; 1351 // All classes, methods and fields in the JVMCI shared library 1352 // are in the read-only part of the image. As such, these 1353 // values (and any global handle derived from them via NewGlobalRef) 1354 // are the same for all JavaVM instances created in the 1355 // shared library which means they only need to be initialized 1356 // once. In non-product mode, we check this invariant. 1357 // See com.oracle.svm.jni.JNIImageHeapHandles. 1358 // The same is true for Klass* and field offsets in HotSpotJVMCI. 1359 if (*state == JVMCIRuntime::uninitialized DEBUG_ONLY( || true)) { 1360 *state = JVMCIRuntime::being_initialized; 1361 JVMCI_event_1("initializing JavaVM references in JVMCI runtime %d", id); 1362 } else { 1363 while (*state != JVMCIRuntime::fully_initialized) { 1364 JVMCI_event_1("waiting for JavaVM references initialization in JVMCI runtime %d", id); 1365 JVMCI_lock->wait(); 1366 } 1367 JVMCI_event_1("done waiting for JavaVM references initialization in JVMCI runtime %d", id); 1368 } 1369 } 1370 1371 ~JavaVMRefsInitialization() { 1372 if (*_state == JVMCIRuntime::being_initialized) { 1373 *_state = JVMCIRuntime::fully_initialized; 1374 JVMCI_event_1("initialized JavaVM references in JVMCI runtime %d", _id); 1375 JVMCI_lock->notify_all(); 1376 } 1377 } 1378 1379 bool should_init() { 1380 return *_state == JVMCIRuntime::being_initialized; 1381 } 1382 }; 1383 1384 void JVMCIRuntime::initialize(JVMCI_TRAPS) { 1385 // Check first without _lock 1386 if (_init_state == fully_initialized) { 1387 return; 1388 } 1389 1390 JavaThread* THREAD = JavaThread::current(); 1391 1392 MutexLocker locker(_lock); 1393 // Check again under _lock 1394 if (_init_state == fully_initialized) { 1395 return; 1396 } 1397 1398 while (_init_state == being_initialized) { 1399 JVMCI_event_1("waiting for initialization of JVMCI runtime %d", _id); 1400 _lock->wait(); 1401 if (_init_state == fully_initialized) { 1402 JVMCI_event_1("done waiting for initialization of JVMCI runtime %d", _id); 1403 return; 1404 } 1405 } 1406 1407 JVMCI_event_1("initializing JVMCI runtime %d", _id); 1408 _init_state = being_initialized; 1409 1410 { 1411 MutexUnlocker unlock(_lock); 1412 1413 HandleMark hm(THREAD); 1414 ResourceMark rm(THREAD); 1415 { 1416 MutexLocker lock_jvmci(JVMCI_lock); 1417 if (JVMCIENV->is_hotspot()) { 1418 JavaVMRefsInitialization initialization(&_hotspot_javavm_refs_init_state, _id); 1419 if (initialization.should_init()) { 1420 MutexUnlocker unlock_jvmci(JVMCI_lock); 1421 HotSpotJVMCI::compute_offsets(CHECK_EXIT); 1422 } 1423 } else { 1424 JavaVMRefsInitialization initialization(&_shared_library_javavm_refs_init_state, _id); 1425 if (initialization.should_init()) { 1426 MutexUnlocker unlock_jvmci(JVMCI_lock); 1427 JNIAccessMark jni(JVMCIENV, THREAD); 1428 1429 JNIJVMCI::initialize_ids(jni.env()); 1430 if (jni()->ExceptionCheck()) { 1431 jni()->ExceptionDescribe(); 1432 fatal("JNI exception during init"); 1433 } 1434 // _lock is re-locked at this point 1435 } 1436 } 1437 } 1438 1439 if (!JVMCIENV->is_hotspot()) { 1440 JNIAccessMark jni(JVMCIENV, THREAD); 1441 JNIJVMCI::register_natives(jni.env()); 1442 } 1443 create_jvmci_primitive_type(T_BOOLEAN, JVMCI_CHECK_EXIT_((void)0)); 1444 create_jvmci_primitive_type(T_BYTE, JVMCI_CHECK_EXIT_((void)0)); 1445 create_jvmci_primitive_type(T_CHAR, JVMCI_CHECK_EXIT_((void)0)); 1446 create_jvmci_primitive_type(T_SHORT, JVMCI_CHECK_EXIT_((void)0)); 1447 create_jvmci_primitive_type(T_INT, JVMCI_CHECK_EXIT_((void)0)); 1448 create_jvmci_primitive_type(T_LONG, JVMCI_CHECK_EXIT_((void)0)); 1449 create_jvmci_primitive_type(T_FLOAT, JVMCI_CHECK_EXIT_((void)0)); 1450 create_jvmci_primitive_type(T_DOUBLE, JVMCI_CHECK_EXIT_((void)0)); 1451 create_jvmci_primitive_type(T_VOID, JVMCI_CHECK_EXIT_((void)0)); 1452 1453 DEBUG_ONLY(CodeInstaller::verify_bci_constants(JVMCIENV);) 1454 } 1455 1456 _init_state = fully_initialized; 1457 JVMCI_event_1("initialized JVMCI runtime %d", _id); 1458 _lock->notify_all(); 1459 } 1460 1461 JVMCIObject JVMCIRuntime::create_jvmci_primitive_type(BasicType type, JVMCI_TRAPS) { 1462 JavaThread* THREAD = JavaThread::current(); // For exception macros. 1463 // These primitive types are long lived and are created before the runtime is fully set up 1464 // so skip registering them for scanning. 1465 JVMCIObject mirror = JVMCIENV->get_object_constant(java_lang_Class::primitive_mirror(type), false, true); 1466 if (JVMCIENV->is_hotspot()) { 1467 JavaValue result(T_OBJECT); 1468 JavaCallArguments args; 1469 args.push_oop(Handle(THREAD, HotSpotJVMCI::resolve(mirror))); 1470 args.push_int(type2char(type)); 1471 JavaCalls::call_static(&result, HotSpotJVMCI::HotSpotResolvedPrimitiveType::klass(), vmSymbols::fromMetaspace_name(), vmSymbols::primitive_fromMetaspace_signature(), &args, CHECK_(JVMCIObject())); 1472 1473 return JVMCIENV->wrap(JNIHandles::make_local(result.get_oop())); 1474 } else { 1475 JNIAccessMark jni(JVMCIENV); 1476 jobject result = jni()->CallStaticObjectMethod(JNIJVMCI::HotSpotResolvedPrimitiveType::clazz(), 1477 JNIJVMCI::HotSpotResolvedPrimitiveType_fromMetaspace_method(), 1478 mirror.as_jobject(), type2char(type)); 1479 if (jni()->ExceptionCheck()) { 1480 return JVMCIObject(); 1481 } 1482 return JVMCIENV->wrap(result); 1483 } 1484 } 1485 1486 void JVMCIRuntime::initialize_JVMCI(JVMCI_TRAPS) { 1487 if (!is_HotSpotJVMCIRuntime_initialized()) { 1488 initialize(JVMCI_CHECK); 1489 JVMCIENV->call_JVMCI_getRuntime(JVMCI_CHECK); 1490 guarantee(_HotSpotJVMCIRuntime_instance.is_non_null(), "NPE in JVMCI runtime %d", _id); 1491 } 1492 } 1493 1494 JVMCIObject JVMCIRuntime::get_HotSpotJVMCIRuntime(JVMCI_TRAPS) { 1495 initialize(JVMCI_CHECK_(JVMCIObject())); 1496 initialize_JVMCI(JVMCI_CHECK_(JVMCIObject())); 1497 return _HotSpotJVMCIRuntime_instance; 1498 } 1499 1500 // Implementation of CompilerToVM.registerNatives() 1501 // When called from libjvmci, `libjvmciOrHotspotEnv` is a libjvmci env so use JVM_ENTRY_NO_ENV. 1502 JVM_ENTRY_NO_ENV(void, JVM_RegisterJVMCINatives(JNIEnv *libjvmciOrHotspotEnv, jclass c2vmClass)) 1503 JVMCIENV_FROM_JNI(thread, libjvmciOrHotspotEnv); 1504 1505 if (!EnableJVMCI) { 1506 JVMCI_THROW_MSG(InternalError, JVMCI_NOT_ENABLED_ERROR_MESSAGE); 1507 } 1508 1509 JVMCIENV->runtime()->initialize(JVMCIENV); 1510 1511 { 1512 ResourceMark rm(thread); 1513 HandleMark hm(thread); 1514 ThreadToNativeFromVM trans(thread); 1515 1516 // Ensure _non_oop_bits is initialized 1517 Universe::non_oop_word(); 1518 JNIEnv *env = libjvmciOrHotspotEnv; 1519 if (JNI_OK != env->RegisterNatives(c2vmClass, CompilerToVM::methods, CompilerToVM::methods_count())) { 1520 if (!env->ExceptionCheck()) { 1521 for (int i = 0; i < CompilerToVM::methods_count(); i++) { 1522 if (JNI_OK != env->RegisterNatives(c2vmClass, CompilerToVM::methods + i, 1)) { 1523 guarantee(false, "Error registering JNI method %s%s", CompilerToVM::methods[i].name, CompilerToVM::methods[i].signature); 1524 break; 1525 } 1526 } 1527 } else { 1528 env->ExceptionDescribe(); 1529 } 1530 guarantee(false, "Failed registering CompilerToVM native methods"); 1531 } 1532 } 1533 JVM_END 1534 1535 1536 void JVMCIRuntime::shutdown() { 1537 if (_HotSpotJVMCIRuntime_instance.is_non_null()) { 1538 JVMCI_event_1("shutting down HotSpotJVMCIRuntime for JVMCI runtime %d", _id); 1539 JVMCIEnv __stack_jvmci_env__(JavaThread::current(), _HotSpotJVMCIRuntime_instance.is_hotspot(),__FILE__, __LINE__); 1540 JVMCIEnv* JVMCIENV = &__stack_jvmci_env__; 1541 if (JVMCIENV->init_error() == JNI_OK) { 1542 JVMCIENV->call_HotSpotJVMCIRuntime_shutdown(_HotSpotJVMCIRuntime_instance); 1543 } else { 1544 JVMCI_event_1("Error in JVMCIEnv for shutdown (err: %d)", JVMCIENV->init_error()); 1545 } 1546 if (_num_attached_threads == cannot_be_attached) { 1547 // Only when no other threads are attached to this runtime 1548 // is it safe to reset these fields. 1549 _HotSpotJVMCIRuntime_instance = JVMCIObject(); 1550 _init_state = uninitialized; 1551 JVMCI_event_1("shut down JVMCI runtime %d", _id); 1552 } 1553 } 1554 } 1555 1556 bool JVMCIRuntime::destroy_shared_library_javavm() { 1557 guarantee(_num_attached_threads == cannot_be_attached, 1558 "cannot destroy JavaVM for JVMCI runtime %d with %d attached threads", _id, _num_attached_threads); 1559 JavaVM* javaVM; 1560 jlong javaVM_id = _shared_library_javavm_id; 1561 { 1562 // Exactly one thread can destroy the JavaVM 1563 // and release the handle to it. 1564 MutexLocker only_one(_lock); 1565 javaVM = _shared_library_javavm; 1566 if (javaVM != nullptr) { 1567 _shared_library_javavm = nullptr; 1568 _shared_library_javavm_id = 0; 1569 } 1570 } 1571 if (javaVM != nullptr) { 1572 int result; 1573 { 1574 // Must transition into native before calling into libjvmci 1575 ThreadToNativeFromVM ttnfv(JavaThread::current()); 1576 result = javaVM->DestroyJavaVM(); 1577 } 1578 if (result == JNI_OK) { 1579 JVMCI_event_1("destroyed JavaVM[" JLONG_FORMAT "]@" PTR_FORMAT " for JVMCI runtime %d", javaVM_id, p2i(javaVM), _id); 1580 } else { 1581 warning("Non-zero result (%d) when calling JNI_DestroyJavaVM on JavaVM[" JLONG_FORMAT "]@" PTR_FORMAT, result, javaVM_id, p2i(javaVM)); 1582 } 1583 return true; 1584 } 1585 return false; 1586 } 1587 1588 void JVMCIRuntime::bootstrap_finished(TRAPS) { 1589 if (_HotSpotJVMCIRuntime_instance.is_non_null()) { 1590 JVMCIENV_FROM_THREAD(THREAD); 1591 JVMCIENV->check_init(CHECK); 1592 JVMCIENV->call_HotSpotJVMCIRuntime_bootstrapFinished(_HotSpotJVMCIRuntime_instance, JVMCIENV); 1593 } 1594 } 1595 1596 void JVMCIRuntime::describe_pending_hotspot_exception(JavaThread* THREAD) { 1597 if (HAS_PENDING_EXCEPTION) { 1598 Handle exception(THREAD, PENDING_EXCEPTION); 1599 CLEAR_PENDING_EXCEPTION; 1600 java_lang_Throwable::print_stack_trace(exception, tty); 1601 1602 // Clear and ignore any exceptions raised during printing 1603 CLEAR_PENDING_EXCEPTION; 1604 } 1605 } 1606 1607 1608 void JVMCIRuntime::fatal_exception(JVMCIEnv* JVMCIENV, const char* message) { 1609 JavaThread* THREAD = JavaThread::current(); // For exception macros. 1610 1611 static volatile int report_error = 0; 1612 if (!report_error && Atomic::cmpxchg(&report_error, 0, 1) == 0) { 1613 // Only report an error once 1614 tty->print_raw_cr(message); 1615 if (JVMCIENV != nullptr) { 1616 JVMCIENV->describe_pending_exception(tty); 1617 } else { 1618 describe_pending_hotspot_exception(THREAD); 1619 } 1620 } else { 1621 // Allow error reporting thread time to print the stack trace. 1622 THREAD->sleep(200); 1623 } 1624 fatal("Fatal JVMCI exception (see JVMCI Events for stack trace): %s", message); 1625 } 1626 1627 // ------------------------------------------------------------------ 1628 // Note: the logic of this method should mirror the logic of 1629 // constantPoolOopDesc::verify_constant_pool_resolve. 1630 bool JVMCIRuntime::check_klass_accessibility(Klass* accessing_klass, Klass* resolved_klass) { 1631 if (accessing_klass->is_objArray_klass()) { 1632 accessing_klass = ObjArrayKlass::cast(accessing_klass)->bottom_klass(); 1633 } 1634 if (!accessing_klass->is_instance_klass()) { 1635 return true; 1636 } 1637 1638 if (resolved_klass->is_objArray_klass()) { 1639 // Find the element klass, if this is an array. 1640 resolved_klass = ObjArrayKlass::cast(resolved_klass)->bottom_klass(); 1641 } 1642 if (resolved_klass->is_instance_klass()) { 1643 Reflection::VerifyClassAccessResults result = 1644 Reflection::verify_class_access(accessing_klass, InstanceKlass::cast(resolved_klass), true); 1645 return result == Reflection::ACCESS_OK; 1646 } 1647 return true; 1648 } 1649 1650 // ------------------------------------------------------------------ 1651 Klass* JVMCIRuntime::get_klass_by_name_impl(Klass*& accessing_klass, 1652 const constantPoolHandle& cpool, 1653 Symbol* sym, 1654 bool require_local) { 1655 JVMCI_EXCEPTION_CONTEXT; 1656 1657 // Now we need to check the SystemDictionary 1658 if (sym->char_at(0) == JVM_SIGNATURE_CLASS && 1659 sym->char_at(sym->utf8_length()-1) == JVM_SIGNATURE_ENDCLASS) { 1660 // This is a name from a signature. Strip off the trimmings. 1661 // Call recursive to keep scope of strippedsym. 1662 TempNewSymbol strippedsym = SymbolTable::new_symbol(sym->as_utf8()+1, 1663 sym->utf8_length()-2); 1664 return get_klass_by_name_impl(accessing_klass, cpool, strippedsym, require_local); 1665 } 1666 1667 Handle loader; 1668 if (accessing_klass != nullptr) { 1669 loader = Handle(THREAD, accessing_klass->class_loader()); 1670 } 1671 1672 Klass* found_klass = require_local ? 1673 SystemDictionary::find_instance_or_array_klass(THREAD, sym, loader) : 1674 SystemDictionary::find_constrained_instance_or_array_klass(THREAD, sym, loader); 1675 1676 // If we fail to find an array klass, look again for its element type. 1677 // The element type may be available either locally or via constraints. 1678 // In either case, if we can find the element type in the system dictionary, 1679 // we must build an array type around it. The CI requires array klasses 1680 // to be loaded if their element klasses are loaded, except when memory 1681 // is exhausted. 1682 if (sym->char_at(0) == JVM_SIGNATURE_ARRAY && 1683 (sym->char_at(1) == JVM_SIGNATURE_ARRAY || sym->char_at(1) == JVM_SIGNATURE_CLASS)) { 1684 // We have an unloaded array. 1685 // Build it on the fly if the element class exists. 1686 TempNewSymbol elem_sym = SymbolTable::new_symbol(sym->as_utf8()+1, 1687 sym->utf8_length()-1); 1688 1689 // Get element Klass recursively. 1690 Klass* elem_klass = 1691 get_klass_by_name_impl(accessing_klass, 1692 cpool, 1693 elem_sym, 1694 require_local); 1695 if (elem_klass != nullptr) { 1696 // Now make an array for it 1697 return elem_klass->array_klass(THREAD); 1698 } 1699 } 1700 1701 if (found_klass == nullptr && !cpool.is_null() && cpool->has_preresolution()) { 1702 // Look inside the constant pool for pre-resolved class entries. 1703 for (int i = cpool->length() - 1; i >= 1; i--) { 1704 if (cpool->tag_at(i).is_klass()) { 1705 Klass* kls = cpool->resolved_klass_at(i); 1706 if (kls->name() == sym) { 1707 return kls; 1708 } 1709 } 1710 } 1711 } 1712 1713 return found_klass; 1714 } 1715 1716 // ------------------------------------------------------------------ 1717 Klass* JVMCIRuntime::get_klass_by_name(Klass* accessing_klass, 1718 Symbol* klass_name, 1719 bool require_local) { 1720 ResourceMark rm; 1721 constantPoolHandle cpool; 1722 return get_klass_by_name_impl(accessing_klass, 1723 cpool, 1724 klass_name, 1725 require_local); 1726 } 1727 1728 // ------------------------------------------------------------------ 1729 // Implementation of get_klass_by_index. 1730 Klass* JVMCIRuntime::get_klass_by_index_impl(const constantPoolHandle& cpool, 1731 int index, 1732 bool& is_accessible, 1733 Klass* accessor) { 1734 JVMCI_EXCEPTION_CONTEXT; 1735 Klass* klass = ConstantPool::klass_at_if_loaded(cpool, index); 1736 Symbol* klass_name = nullptr; 1737 if (klass == nullptr) { 1738 klass_name = cpool->klass_name_at(index); 1739 } 1740 1741 if (klass == nullptr) { 1742 // Not found in constant pool. Use the name to do the lookup. 1743 Klass* k = get_klass_by_name_impl(accessor, 1744 cpool, 1745 klass_name, 1746 false); 1747 // Calculate accessibility the hard way. 1748 if (k == nullptr) { 1749 is_accessible = false; 1750 } else if (k->class_loader() != accessor->class_loader() && 1751 get_klass_by_name_impl(accessor, cpool, k->name(), true) == nullptr) { 1752 // Loaded only remotely. Not linked yet. 1753 is_accessible = false; 1754 } else { 1755 // Linked locally, and we must also check public/private, etc. 1756 is_accessible = check_klass_accessibility(accessor, k); 1757 } 1758 if (!is_accessible) { 1759 return nullptr; 1760 } 1761 return k; 1762 } 1763 1764 // It is known to be accessible, since it was found in the constant pool. 1765 is_accessible = true; 1766 return klass; 1767 } 1768 1769 // ------------------------------------------------------------------ 1770 // Get a klass from the constant pool. 1771 Klass* JVMCIRuntime::get_klass_by_index(const constantPoolHandle& cpool, 1772 int index, 1773 bool& is_accessible, 1774 Klass* accessor) { 1775 ResourceMark rm; 1776 Klass* result = get_klass_by_index_impl(cpool, index, is_accessible, accessor); 1777 return result; 1778 } 1779 1780 // ------------------------------------------------------------------ 1781 // Perform an appropriate method lookup based on accessor, holder, 1782 // name, signature, and bytecode. 1783 Method* JVMCIRuntime::lookup_method(InstanceKlass* accessor, 1784 Klass* holder, 1785 Symbol* name, 1786 Symbol* sig, 1787 Bytecodes::Code bc, 1788 constantTag tag) { 1789 // Accessibility checks are performed in JVMCIEnv::get_method_by_index_impl(). 1790 assert(check_klass_accessibility(accessor, holder), "holder not accessible"); 1791 1792 LinkInfo link_info(holder, name, sig, accessor, 1793 LinkInfo::AccessCheck::required, 1794 LinkInfo::LoaderConstraintCheck::required, 1795 tag); 1796 switch (bc) { 1797 case Bytecodes::_invokestatic: 1798 return LinkResolver::resolve_static_call_or_null(link_info); 1799 case Bytecodes::_invokespecial: 1800 return LinkResolver::resolve_special_call_or_null(link_info); 1801 case Bytecodes::_invokeinterface: 1802 return LinkResolver::linktime_resolve_interface_method_or_null(link_info); 1803 case Bytecodes::_invokevirtual: 1804 return LinkResolver::linktime_resolve_virtual_method_or_null(link_info); 1805 default: 1806 fatal("Unhandled bytecode: %s", Bytecodes::name(bc)); 1807 return nullptr; // silence compiler warnings 1808 } 1809 } 1810 1811 1812 // ------------------------------------------------------------------ 1813 Method* JVMCIRuntime::get_method_by_index_impl(const constantPoolHandle& cpool, 1814 int index, Bytecodes::Code bc, 1815 InstanceKlass* accessor) { 1816 if (bc == Bytecodes::_invokedynamic) { 1817 if (cpool->resolved_indy_entry_at(index)->is_resolved()) { 1818 return cpool->resolved_indy_entry_at(index)->method(); 1819 } 1820 1821 return nullptr; 1822 } 1823 1824 int holder_index = cpool->klass_ref_index_at(index, bc); 1825 bool holder_is_accessible; 1826 Klass* holder = get_klass_by_index_impl(cpool, holder_index, holder_is_accessible, accessor); 1827 1828 // Get the method's name and signature. 1829 Symbol* name_sym = cpool->name_ref_at(index, bc); 1830 Symbol* sig_sym = cpool->signature_ref_at(index, bc); 1831 1832 if (cpool->has_preresolution() 1833 || ((holder == vmClasses::MethodHandle_klass() || holder == vmClasses::VarHandle_klass()) && 1834 MethodHandles::is_signature_polymorphic_name(holder, name_sym))) { 1835 // Short-circuit lookups for JSR 292-related call sites. 1836 // That is, do not rely only on name-based lookups, because they may fail 1837 // if the names are not resolvable in the boot class loader (7056328). 1838 switch (bc) { 1839 case Bytecodes::_invokevirtual: 1840 case Bytecodes::_invokeinterface: 1841 case Bytecodes::_invokespecial: 1842 case Bytecodes::_invokestatic: 1843 { 1844 Method* m = ConstantPool::method_at_if_loaded(cpool, index); 1845 if (m != nullptr) { 1846 return m; 1847 } 1848 } 1849 break; 1850 default: 1851 break; 1852 } 1853 } 1854 1855 if (holder_is_accessible) { // Our declared holder is loaded. 1856 constantTag tag = cpool->tag_ref_at(index, bc); 1857 Method* m = lookup_method(accessor, holder, name_sym, sig_sym, bc, tag); 1858 if (m != nullptr) { 1859 // We found the method. 1860 return m; 1861 } 1862 } 1863 1864 // Either the declared holder was not loaded, or the method could 1865 // not be found. 1866 1867 return nullptr; 1868 } 1869 1870 // ------------------------------------------------------------------ 1871 InstanceKlass* JVMCIRuntime::get_instance_klass_for_declared_method_holder(Klass* method_holder) { 1872 // For the case of <array>.clone(), the method holder can be an ArrayKlass* 1873 // instead of an InstanceKlass*. For that case simply pretend that the 1874 // declared holder is Object.clone since that's where the call will bottom out. 1875 if (method_holder->is_instance_klass()) { 1876 return InstanceKlass::cast(method_holder); 1877 } else if (method_holder->is_array_klass()) { 1878 return vmClasses::Object_klass(); 1879 } else { 1880 ShouldNotReachHere(); 1881 } 1882 return nullptr; 1883 } 1884 1885 1886 // ------------------------------------------------------------------ 1887 Method* JVMCIRuntime::get_method_by_index(const constantPoolHandle& cpool, 1888 int index, Bytecodes::Code bc, 1889 InstanceKlass* accessor) { 1890 ResourceMark rm; 1891 return get_method_by_index_impl(cpool, index, bc, accessor); 1892 } 1893 1894 // ------------------------------------------------------------------ 1895 // Check for changes to the system dictionary during compilation 1896 // class loads, evolution, breakpoints 1897 JVMCI::CodeInstallResult JVMCIRuntime::validate_compile_task_dependencies(Dependencies* dependencies, 1898 JVMCICompileState* compile_state, 1899 char** failure_detail, 1900 bool& failing_dep_is_call_site) 1901 { 1902 failing_dep_is_call_site = false; 1903 // If JVMTI capabilities were enabled during compile, the compilation is invalidated. 1904 if (compile_state != nullptr && compile_state->jvmti_state_changed()) { 1905 *failure_detail = (char*) "Jvmti state change during compilation invalidated dependencies"; 1906 return JVMCI::dependencies_failed; 1907 } 1908 1909 CompileTask* task = compile_state == nullptr ? nullptr : compile_state->task(); 1910 Dependencies::DepType result = dependencies->validate_dependencies(task, failure_detail); 1911 1912 if (result == Dependencies::end_marker) { 1913 return JVMCI::ok; 1914 } 1915 if (result == Dependencies::call_site_target_value) { 1916 failing_dep_is_call_site = true; 1917 } 1918 return JVMCI::dependencies_failed; 1919 } 1920 1921 // Called after an upcall to `function` while compiling `method`. 1922 // If an exception occurred, it is cleared, the compilation state 1923 // is updated with the failure and this method returns true. 1924 // Otherwise, it returns false. 1925 static bool after_compiler_upcall(JVMCIEnv* JVMCIENV, JVMCICompiler* compiler, const methodHandle& method, const char* function) { 1926 if (JVMCIENV->has_pending_exception()) { 1927 ResourceMark rm; 1928 bool reason_on_C_heap = true; 1929 const char* pending_string = nullptr; 1930 const char* pending_stack_trace = nullptr; 1931 JVMCIENV->pending_exception_as_string(&pending_string, &pending_stack_trace); 1932 if (pending_string == nullptr) pending_string = "null"; 1933 // Using stringStream instead of err_msg to avoid truncation 1934 stringStream st; 1935 st.print("uncaught exception in %s [%s]", function, pending_string); 1936 const char* failure_reason = os::strdup(st.freeze(), mtJVMCI); 1937 if (failure_reason == nullptr) { 1938 failure_reason = "uncaught exception"; 1939 reason_on_C_heap = false; 1940 } 1941 JVMCI_event_1("%s", failure_reason); 1942 Log(jit, compilation) log; 1943 if (log.is_info()) { 1944 log.info("%s while compiling %s", failure_reason, method->name_and_sig_as_C_string()); 1945 if (pending_stack_trace != nullptr) { 1946 LogStream ls(log.info()); 1947 ls.print_raw_cr(pending_stack_trace); 1948 } 1949 } 1950 JVMCICompileState* compile_state = JVMCIENV->compile_state(); 1951 compile_state->set_failure(true, failure_reason, reason_on_C_heap); 1952 compiler->on_upcall(failure_reason, compile_state); 1953 return true; 1954 } 1955 return false; 1956 } 1957 1958 void JVMCIRuntime::compile_method(JVMCIEnv* JVMCIENV, JVMCICompiler* compiler, const methodHandle& method, int entry_bci) { 1959 JVMCI_EXCEPTION_CONTEXT 1960 1961 JVMCICompileState* compile_state = JVMCIENV->compile_state(); 1962 1963 bool is_osr = entry_bci != InvocationEntryBci; 1964 if (compiler->is_bootstrapping() && is_osr) { 1965 // no OSR compilations during bootstrap - the compiler is just too slow at this point, 1966 // and we know that there are no endless loops 1967 compile_state->set_failure(true, "No OSR during bootstrap"); 1968 return; 1969 } 1970 if (JVMCI::in_shutdown()) { 1971 if (UseJVMCINativeLibrary) { 1972 JVMCIRuntime *runtime = JVMCI::compiler_runtime(thread, false); 1973 if (runtime != nullptr) { 1974 runtime->detach_thread(thread, "JVMCI shutdown pre-empted compilation"); 1975 } 1976 } 1977 compile_state->set_failure(false, "Avoiding compilation during shutdown"); 1978 return; 1979 } 1980 1981 HandleMark hm(thread); 1982 JVMCIObject receiver = get_HotSpotJVMCIRuntime(JVMCIENV); 1983 if (after_compiler_upcall(JVMCIENV, compiler, method, "get_HotSpotJVMCIRuntime")) { 1984 return; 1985 } 1986 JVMCIObject jvmci_method = JVMCIENV->get_jvmci_method(method, JVMCIENV); 1987 if (after_compiler_upcall(JVMCIENV, compiler, method, "get_jvmci_method")) { 1988 return; 1989 } 1990 1991 JVMCIObject result_object = JVMCIENV->call_HotSpotJVMCIRuntime_compileMethod(receiver, jvmci_method, entry_bci, 1992 (jlong) compile_state, compile_state->task()->compile_id()); 1993 #ifdef ASSERT 1994 if (JVMCIENV->has_pending_exception()) { 1995 const char* val = Arguments::PropertyList_get_value(Arguments::system_properties(), "test.jvmci.compileMethodExceptionIsFatal"); 1996 if (val != nullptr && strcmp(val, "true") == 0) { 1997 fatal_exception(JVMCIENV, "testing JVMCI fatal exception handling"); 1998 } 1999 } 2000 #endif 2001 2002 if (after_compiler_upcall(JVMCIENV, compiler, method, "call_HotSpotJVMCIRuntime_compileMethod")) { 2003 return; 2004 } 2005 compiler->on_upcall(nullptr); 2006 guarantee(result_object.is_non_null(), "call_HotSpotJVMCIRuntime_compileMethod returned null"); 2007 JVMCIObject failure_message = JVMCIENV->get_HotSpotCompilationRequestResult_failureMessage(result_object); 2008 if (failure_message.is_non_null()) { 2009 // Copy failure reason into resource memory first ... 2010 const char* failure_reason = JVMCIENV->as_utf8_string(failure_message); 2011 // ... and then into the C heap. 2012 failure_reason = os::strdup(failure_reason, mtJVMCI); 2013 bool retryable = JVMCIENV->get_HotSpotCompilationRequestResult_retry(result_object) != 0; 2014 compile_state->set_failure(retryable, failure_reason, true); 2015 } else { 2016 if (!compile_state->task()->is_success()) { 2017 compile_state->set_failure(true, "no nmethod produced"); 2018 } else { 2019 compile_state->task()->set_num_inlined_bytecodes(JVMCIENV->get_HotSpotCompilationRequestResult_inlinedBytecodes(result_object)); 2020 compiler->inc_methods_compiled(); 2021 } 2022 } 2023 if (compiler->is_bootstrapping()) { 2024 compiler->set_bootstrap_compilation_request_handled(); 2025 } 2026 } 2027 2028 bool JVMCIRuntime::is_gc_supported(JVMCIEnv* JVMCIENV, CollectedHeap::Name name) { 2029 JVMCI_EXCEPTION_CONTEXT 2030 2031 JVMCIObject receiver = get_HotSpotJVMCIRuntime(JVMCIENV); 2032 if (JVMCIENV->has_pending_exception()) { 2033 fatal_exception(JVMCIENV, "Exception during HotSpotJVMCIRuntime initialization"); 2034 } 2035 return JVMCIENV->call_HotSpotJVMCIRuntime_isGCSupported(receiver, (int) name); 2036 } 2037 2038 bool JVMCIRuntime::is_intrinsic_supported(JVMCIEnv* JVMCIENV, jint id) { 2039 JVMCI_EXCEPTION_CONTEXT 2040 2041 JVMCIObject receiver = get_HotSpotJVMCIRuntime(JVMCIENV); 2042 if (JVMCIENV->has_pending_exception()) { 2043 fatal_exception(JVMCIENV, "Exception during HotSpotJVMCIRuntime initialization"); 2044 } 2045 return JVMCIENV->call_HotSpotJVMCIRuntime_isIntrinsicSupported(receiver, id); 2046 } 2047 2048 // ------------------------------------------------------------------ 2049 JVMCI::CodeInstallResult JVMCIRuntime::register_method(JVMCIEnv* JVMCIENV, 2050 const methodHandle& method, 2051 nmethod*& nm, 2052 int entry_bci, 2053 CodeOffsets* offsets, 2054 int orig_pc_offset, 2055 CodeBuffer* code_buffer, 2056 int frame_words, 2057 OopMapSet* oop_map_set, 2058 ExceptionHandlerTable* handler_table, 2059 ImplicitExceptionTable* implicit_exception_table, 2060 AbstractCompiler* compiler, 2061 DebugInformationRecorder* debug_info, 2062 Dependencies* dependencies, 2063 int compile_id, 2064 bool has_monitors, 2065 bool has_unsafe_access, 2066 bool has_scoped_access, 2067 bool has_wide_vector, 2068 JVMCIObject compiled_code, 2069 JVMCIObject nmethod_mirror, 2070 FailedSpeculation** failed_speculations, 2071 char* speculations, 2072 int speculations_len, 2073 int nmethod_entry_patch_offset) { 2074 JVMCI_EXCEPTION_CONTEXT; 2075 CompLevel comp_level = CompLevel_full_optimization; 2076 char* failure_detail = nullptr; 2077 2078 bool install_default = JVMCIENV->get_HotSpotNmethod_isDefault(nmethod_mirror) != 0; 2079 assert(JVMCIENV->isa_HotSpotNmethod(nmethod_mirror), "must be"); 2080 JVMCIObject name = JVMCIENV->get_InstalledCode_name(nmethod_mirror); 2081 const char* nmethod_mirror_name = name.is_null() ? nullptr : JVMCIENV->as_utf8_string(name); 2082 int nmethod_mirror_index; 2083 if (!install_default) { 2084 // Reserve or initialize mirror slot in the oops table. 2085 OopRecorder* oop_recorder = debug_info->oop_recorder(); 2086 nmethod_mirror_index = oop_recorder->allocate_oop_index(nmethod_mirror.is_hotspot() ? nmethod_mirror.as_jobject() : nullptr); 2087 } else { 2088 // A default HotSpotNmethod mirror is never tracked by the nmethod 2089 nmethod_mirror_index = -1; 2090 } 2091 2092 JVMCI::CodeInstallResult result(JVMCI::ok); 2093 2094 // We require method counters to store some method state (max compilation levels) required by the compilation policy. 2095 if (method->get_method_counters(THREAD) == nullptr) { 2096 result = JVMCI::cache_full; 2097 failure_detail = (char*) "can't create method counters"; 2098 } 2099 2100 if (result == JVMCI::ok) { 2101 // Check if memory should be freed before allocation 2102 CodeCache::gc_on_allocation(); 2103 2104 // To prevent compile queue updates. 2105 MutexLocker locker(THREAD, MethodCompileQueue_lock); 2106 2107 // Prevent InstanceKlass::add_to_hierarchy from running 2108 // and invalidating our dependencies until we install this method. 2109 MutexLocker ml(Compile_lock); 2110 2111 // Encode the dependencies now, so we can check them right away. 2112 dependencies->encode_content_bytes(); 2113 2114 // Record the dependencies for the current compile in the log 2115 if (LogCompilation) { 2116 for (Dependencies::DepStream deps(dependencies); deps.next(); ) { 2117 deps.log_dependency(); 2118 } 2119 } 2120 2121 // Check for {class loads, evolution, breakpoints} during compilation 2122 JVMCICompileState* compile_state = JVMCIENV->compile_state(); 2123 bool failing_dep_is_call_site; 2124 result = validate_compile_task_dependencies(dependencies, compile_state, &failure_detail, failing_dep_is_call_site); 2125 if (result != JVMCI::ok) { 2126 // While not a true deoptimization, it is a preemptive decompile. 2127 MethodData* mdp = method()->method_data(); 2128 if (mdp != nullptr && !failing_dep_is_call_site) { 2129 mdp->inc_decompile_count(); 2130 #ifdef ASSERT 2131 if (mdp->decompile_count() > (uint)PerMethodRecompilationCutoff) { 2132 ResourceMark m; 2133 tty->print_cr("WARN: endless recompilation of %s. Method was set to not compilable.", method()->name_and_sig_as_C_string()); 2134 } 2135 #endif 2136 } 2137 2138 // All buffers in the CodeBuffer are allocated in the CodeCache. 2139 // If the code buffer is created on each compile attempt 2140 // as in C2, then it must be freed. 2141 //code_buffer->free_blob(); 2142 } else { 2143 JVMCINMethodData* data = JVMCINMethodData::create(nmethod_mirror_index, 2144 nmethod_entry_patch_offset, 2145 nmethod_mirror_name, 2146 failed_speculations); 2147 nm = nmethod::new_nmethod(method, 2148 compile_id, 2149 entry_bci, 2150 offsets, 2151 orig_pc_offset, 2152 debug_info, dependencies, code_buffer, 2153 frame_words, oop_map_set, 2154 handler_table, implicit_exception_table, 2155 compiler, comp_level, 2156 speculations, speculations_len, data); 2157 2158 2159 // Free codeBlobs 2160 if (nm == nullptr) { 2161 // The CodeCache is full. Print out warning and disable compilation. 2162 { 2163 MutexUnlocker ml(Compile_lock); 2164 MutexUnlocker locker(MethodCompileQueue_lock); 2165 CompileBroker::handle_full_code_cache(CodeCache::get_code_blob_type(comp_level)); 2166 } 2167 result = JVMCI::cache_full; 2168 } else { 2169 nm->set_has_unsafe_access(has_unsafe_access); 2170 nm->set_has_wide_vectors(has_wide_vector); 2171 nm->set_has_monitors(has_monitors); 2172 nm->set_has_scoped_access(has_scoped_access); 2173 2174 JVMCINMethodData* data = nm->jvmci_nmethod_data(); 2175 assert(data != nullptr, "must be"); 2176 if (install_default) { 2177 assert(!nmethod_mirror.is_hotspot() || data->get_nmethod_mirror(nm) == nullptr, "must be"); 2178 if (entry_bci == InvocationEntryBci) { 2179 // If there is an old version we're done with it 2180 nmethod* old = method->code(); 2181 if (TraceMethodReplacement && old != nullptr) { 2182 ResourceMark rm; 2183 char *method_name = method->name_and_sig_as_C_string(); 2184 tty->print_cr("Replacing method %s", method_name); 2185 } 2186 if (old != nullptr) { 2187 old->make_not_entrant("JVMCI register method"); 2188 } 2189 2190 LogTarget(Info, nmethod, install) lt; 2191 if (lt.is_enabled()) { 2192 ResourceMark rm; 2193 char *method_name = method->name_and_sig_as_C_string(); 2194 lt.print("Installing method (%d) %s [entry point: %p]", 2195 comp_level, method_name, nm->entry_point()); 2196 } 2197 // Allow the code to be executed 2198 MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag); 2199 if (nm->make_in_use()) { 2200 method->set_code(method, nm); 2201 } else { 2202 result = JVMCI::nmethod_reclaimed; 2203 } 2204 } else { 2205 LogTarget(Info, nmethod, install) lt; 2206 if (lt.is_enabled()) { 2207 ResourceMark rm; 2208 char *method_name = method->name_and_sig_as_C_string(); 2209 lt.print("Installing osr method (%d) %s @ %d", 2210 comp_level, method_name, entry_bci); 2211 } 2212 MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag); 2213 if (nm->make_in_use()) { 2214 InstanceKlass::cast(method->method_holder())->add_osr_nmethod(nm); 2215 } else { 2216 result = JVMCI::nmethod_reclaimed; 2217 } 2218 } 2219 } else { 2220 assert(!nmethod_mirror.is_hotspot() || data->get_nmethod_mirror(nm) == HotSpotJVMCI::resolve(nmethod_mirror), "must be"); 2221 MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag); 2222 if (!nm->make_in_use()) { 2223 result = JVMCI::nmethod_reclaimed; 2224 } 2225 } 2226 } 2227 } 2228 } 2229 2230 // String creation must be done outside lock 2231 if (failure_detail != nullptr) { 2232 // A failure to allocate the string is silently ignored. 2233 JVMCIObject message = JVMCIENV->create_string(failure_detail, JVMCIENV); 2234 JVMCIENV->set_HotSpotCompiledNmethod_installationFailureMessage(compiled_code, message); 2235 } 2236 2237 if (result == JVMCI::ok) { 2238 JVMCICompileState* state = JVMCIENV->compile_state(); 2239 if (state != nullptr) { 2240 // Compilation succeeded, post what we know about it 2241 nm->post_compiled_method(state->task()); 2242 } 2243 } 2244 2245 return result; 2246 } 2247 2248 void JVMCIRuntime::post_compile(JavaThread* thread) { 2249 if (UseJVMCINativeLibrary && JVMCI::one_shared_library_javavm_per_compilation()) { 2250 if (thread->libjvmci_runtime() != nullptr) { 2251 detach_thread(thread, "single use JavaVM"); 2252 } else { 2253 // JVMCI shutdown may have already detached the thread 2254 } 2255 } 2256 }