1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "logging/logStream.hpp"
  37 #include "memory/allocation.inline.hpp"
  38 #include "memory/filemap.hpp"
  39 #include "memory/universe.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "os_share_solaris.hpp"
  42 #include "os_solaris.inline.hpp"
  43 #include "prims/jniFastGetField.hpp"
  44 #include "prims/jvm_misc.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/atomic.hpp"
  47 #include "runtime/extendedPC.hpp"
  48 #include "runtime/globals.hpp"
  49 #include "runtime/interfaceSupport.inline.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "runtime/vm_version.hpp"
  64 #include "semaphore_posix.hpp"
  65 #include "services/attachListener.hpp"
  66 #include "services/memTracker.hpp"
  67 #include "services/runtimeService.hpp"
  68 #include "utilities/align.hpp"
  69 #include "utilities/decoder.hpp"
  70 #include "utilities/defaultStream.hpp"
  71 #include "utilities/events.hpp"
  72 #include "utilities/growableArray.hpp"
  73 #include "utilities/macros.hpp"
  74 #include "utilities/vmError.hpp"
  75 
  76 // put OS-includes here
  77 # include <dlfcn.h>
  78 # include <errno.h>
  79 # include <exception>
  80 # include <link.h>
  81 # include <poll.h>
  82 # include <pthread.h>
  83 # include <setjmp.h>
  84 # include <signal.h>
  85 # include <stdio.h>
  86 # include <alloca.h>
  87 # include <sys/filio.h>
  88 # include <sys/ipc.h>
  89 # include <sys/lwp.h>
  90 # include <sys/machelf.h>     // for elf Sym structure used by dladdr1
  91 # include <sys/mman.h>
  92 # include <sys/processor.h>
  93 # include <sys/procset.h>
  94 # include <sys/pset.h>
  95 # include <sys/resource.h>
  96 # include <sys/shm.h>
  97 # include <sys/socket.h>
  98 # include <sys/stat.h>
  99 # include <sys/systeminfo.h>
 100 # include <sys/time.h>
 101 # include <sys/times.h>
 102 # include <sys/types.h>
 103 # include <sys/wait.h>
 104 # include <sys/utsname.h>
 105 # include <thread.h>
 106 # include <unistd.h>
 107 # include <sys/priocntl.h>
 108 # include <sys/rtpriocntl.h>
 109 # include <sys/tspriocntl.h>
 110 # include <sys/iapriocntl.h>
 111 # include <sys/fxpriocntl.h>
 112 # include <sys/loadavg.h>
 113 # include <string.h>
 114 # include <stdio.h>
 115 
 116 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
 117 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
 118 
 119 #define MAX_PATH (2 * K)
 120 
 121 // for timer info max values which include all bits
 122 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 123 
 124 
 125 // Here are some liblgrp types from sys/lgrp_user.h to be able to
 126 // compile on older systems without this header file.
 127 
 128 #ifndef MADV_ACCESS_LWP
 129   #define  MADV_ACCESS_LWP   7       /* next LWP to access heavily */
 130 #endif
 131 #ifndef MADV_ACCESS_MANY
 132   #define  MADV_ACCESS_MANY  8       /* many processes to access heavily */
 133 #endif
 134 
 135 #ifndef LGRP_RSRC_CPU
 136   #define LGRP_RSRC_CPU      0       /* CPU resources */
 137 #endif
 138 #ifndef LGRP_RSRC_MEM
 139   #define LGRP_RSRC_MEM      1       /* memory resources */
 140 #endif
 141 
 142 // Values for ThreadPriorityPolicy == 1
 143 int prio_policy1[CriticalPriority+1] = {
 144   -99999,  0, 16,  32,  48,  64,
 145           80, 96, 112, 124, 127, 127 };
 146 
 147 // System parameters used internally
 148 static clock_t clock_tics_per_sec = 100;
 149 
 150 // Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
 151 static bool enabled_extended_FILE_stdio = false;
 152 
 153 // For diagnostics to print a message once. see run_periodic_checks
 154 static bool check_addr0_done = false;
 155 static sigset_t check_signal_done;
 156 static bool check_signals = true;
 157 
 158 address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
 159 address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
 160 
 161 address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
 162 
 163 os::Solaris::pthread_setname_np_func_t os::Solaris::_pthread_setname_np = NULL;
 164 
 165 // "default" initializers for missing libc APIs
 166 extern "C" {
 167   static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
 168   static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
 169 
 170   static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
 171   static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
 172 }
 173 
 174 // "default" initializers for pthread-based synchronization
 175 extern "C" {
 176   static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
 177   static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
 178 }
 179 
 180 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 181 
 182 static inline size_t adjust_stack_size(address base, size_t size) {
 183   if ((ssize_t)size < 0) {
 184     // 4759953: Compensate for ridiculous stack size.
 185     size = max_intx;
 186   }
 187   if (size > (size_t)base) {
 188     // 4812466: Make sure size doesn't allow the stack to wrap the address space.
 189     size = (size_t)base;
 190   }
 191   return size;
 192 }
 193 
 194 static inline stack_t get_stack_info() {
 195   stack_t st;
 196   int retval = thr_stksegment(&st);
 197   st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
 198   assert(retval == 0, "incorrect return value from thr_stksegment");
 199   assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
 200   assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
 201   return st;
 202 }
 203 
 204 static void _handle_uncaught_cxx_exception() {
 205   VMError::report_and_die("An uncaught C++ exception");
 206 }
 207 
 208 bool os::is_primordial_thread(void) {
 209   int r = thr_main();
 210   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
 211   return r == 1;
 212 }
 213 
 214 address os::current_stack_base() {
 215   bool _is_primordial_thread = is_primordial_thread();
 216 
 217   // Workaround 4352906, avoid calls to thr_stksegment by
 218   // thr_main after the first one (it looks like we trash
 219   // some data, causing the value for ss_sp to be incorrect).
 220   if (!_is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
 221     stack_t st = get_stack_info();
 222     if (_is_primordial_thread) {
 223       // cache initial value of stack base
 224       os::Solaris::_main_stack_base = (address)st.ss_sp;
 225     }
 226     return (address)st.ss_sp;
 227   } else {
 228     guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
 229     return os::Solaris::_main_stack_base;
 230   }
 231 }
 232 
 233 size_t os::current_stack_size() {
 234   size_t size;
 235 
 236   if (!is_primordial_thread()) {
 237     size = get_stack_info().ss_size;
 238   } else {
 239     struct rlimit limits;
 240     getrlimit(RLIMIT_STACK, &limits);
 241     size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
 242   }
 243   // base may not be page aligned
 244   address base = current_stack_base();
 245   address bottom = align_up(base - size, os::vm_page_size());;
 246   return (size_t)(base - bottom);
 247 }
 248 
 249 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
 250   return localtime_r(clock, res);
 251 }
 252 
 253 void os::Solaris::try_enable_extended_io() {
 254   typedef int (*enable_extended_FILE_stdio_t)(int, int);
 255 
 256   if (!UseExtendedFileIO) {
 257     return;
 258   }
 259 
 260   enable_extended_FILE_stdio_t enabler =
 261     (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
 262                                          "enable_extended_FILE_stdio");
 263   if (enabler) {
 264     enabler(-1, -1);
 265   }
 266 }
 267 
 268 static int _processors_online = 0;
 269 
 270 jint os::Solaris::_os_thread_limit = 0;
 271 volatile jint os::Solaris::_os_thread_count = 0;
 272 
 273 julong os::available_memory() {
 274   return Solaris::available_memory();
 275 }
 276 
 277 julong os::Solaris::available_memory() {
 278   return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
 279 }
 280 
 281 julong os::Solaris::_physical_memory = 0;
 282 
 283 julong os::physical_memory() {
 284   return Solaris::physical_memory();
 285 }
 286 
 287 static hrtime_t first_hrtime = 0;
 288 static const hrtime_t hrtime_hz = 1000*1000*1000;
 289 static volatile hrtime_t max_hrtime = 0;
 290 
 291 
 292 void os::Solaris::initialize_system_info() {
 293   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 294   _processors_online = sysconf(_SC_NPROCESSORS_ONLN);
 295   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) *
 296                                      (julong)sysconf(_SC_PAGESIZE);
 297 }
 298 
 299 uint os::processor_id() {
 300   const processorid_t id = ::getcpuid();
 301   assert(id >= 0 && id < _processor_count, "Invalid processor id");
 302   return (uint)id;
 303 }
 304 
 305 int os::active_processor_count() {
 306   // User has overridden the number of active processors
 307   if (ActiveProcessorCount > 0) {
 308     log_trace(os)("active_processor_count: "
 309                   "active processor count set by user : %d",
 310                   ActiveProcessorCount);
 311     return ActiveProcessorCount;
 312   }
 313 
 314   int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
 315   pid_t pid = getpid();
 316   psetid_t pset = PS_NONE;
 317   // Are we running in a processor set or is there any processor set around?
 318   if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
 319     uint_t pset_cpus;
 320     // Query the number of cpus available to us.
 321     if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
 322       assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
 323       _processors_online = pset_cpus;
 324       return pset_cpus;
 325     }
 326   }
 327   // Otherwise return number of online cpus
 328   return online_cpus;
 329 }
 330 
 331 static bool find_processors_in_pset(psetid_t        pset,
 332                                     processorid_t** id_array,
 333                                     uint_t*         id_length) {
 334   bool result = false;
 335   // Find the number of processors in the processor set.
 336   if (pset_info(pset, NULL, id_length, NULL) == 0) {
 337     // Make up an array to hold their ids.
 338     *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
 339     // Fill in the array with their processor ids.
 340     if (pset_info(pset, NULL, id_length, *id_array) == 0) {
 341       result = true;
 342     }
 343   }
 344   return result;
 345 }
 346 
 347 // Callers of find_processors_online() must tolerate imprecise results --
 348 // the system configuration can change asynchronously because of DR
 349 // or explicit psradm operations.
 350 //
 351 // We also need to take care that the loop (below) terminates as the
 352 // number of processors online can change between the _SC_NPROCESSORS_ONLN
 353 // request and the loop that builds the list of processor ids.   Unfortunately
 354 // there's no reliable way to determine the maximum valid processor id,
 355 // so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
 356 // man pages, which claim the processor id set is "sparse, but
 357 // not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
 358 // exit the loop.
 359 //
 360 // In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
 361 // not available on S8.0.
 362 
 363 static bool find_processors_online(processorid_t** id_array,
 364                                    uint*           id_length) {
 365   const processorid_t MAX_PROCESSOR_ID = 100000;
 366   // Find the number of processors online.
 367   *id_length = sysconf(_SC_NPROCESSORS_ONLN);
 368   // Make up an array to hold their ids.
 369   *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
 370   // Processors need not be numbered consecutively.
 371   long found = 0;
 372   processorid_t next = 0;
 373   while (found < *id_length && next < MAX_PROCESSOR_ID) {
 374     processor_info_t info;
 375     if (processor_info(next, &info) == 0) {
 376       // NB, PI_NOINTR processors are effectively online ...
 377       if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
 378         (*id_array)[found] = next;
 379         found += 1;
 380       }
 381     }
 382     next += 1;
 383   }
 384   if (found < *id_length) {
 385     // The loop above didn't identify the expected number of processors.
 386     // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
 387     // and re-running the loop, above, but there's no guarantee of progress
 388     // if the system configuration is in flux.  Instead, we just return what
 389     // we've got.  Note that in the worst case find_processors_online() could
 390     // return an empty set.  (As a fall-back in the case of the empty set we
 391     // could just return the ID of the current processor).
 392     *id_length = found;
 393   }
 394 
 395   return true;
 396 }
 397 
 398 static bool assign_distribution(processorid_t* id_array,
 399                                 uint           id_length,
 400                                 uint*          distribution,
 401                                 uint           distribution_length) {
 402   // We assume we can assign processorid_t's to uint's.
 403   assert(sizeof(processorid_t) == sizeof(uint),
 404          "can't convert processorid_t to uint");
 405   // Quick check to see if we won't succeed.
 406   if (id_length < distribution_length) {
 407     return false;
 408   }
 409   // Assign processor ids to the distribution.
 410   // Try to shuffle processors to distribute work across boards,
 411   // assuming 4 processors per board.
 412   const uint processors_per_board = ProcessDistributionStride;
 413   // Find the maximum processor id.
 414   processorid_t max_id = 0;
 415   for (uint m = 0; m < id_length; m += 1) {
 416     max_id = MAX2(max_id, id_array[m]);
 417   }
 418   // The next id, to limit loops.
 419   const processorid_t limit_id = max_id + 1;
 420   // Make up markers for available processors.
 421   bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
 422   for (uint c = 0; c < limit_id; c += 1) {
 423     available_id[c] = false;
 424   }
 425   for (uint a = 0; a < id_length; a += 1) {
 426     available_id[id_array[a]] = true;
 427   }
 428   // Step by "boards", then by "slot", copying to "assigned".
 429   // NEEDS_CLEANUP: The assignment of processors should be stateful,
 430   //                remembering which processors have been assigned by
 431   //                previous calls, etc., so as to distribute several
 432   //                independent calls of this method.  What we'd like is
 433   //                It would be nice to have an API that let us ask
 434   //                how many processes are bound to a processor,
 435   //                but we don't have that, either.
 436   //                In the short term, "board" is static so that
 437   //                subsequent distributions don't all start at board 0.
 438   static uint board = 0;
 439   uint assigned = 0;
 440   // Until we've found enough processors ....
 441   while (assigned < distribution_length) {
 442     // ... find the next available processor in the board.
 443     for (uint slot = 0; slot < processors_per_board; slot += 1) {
 444       uint try_id = board * processors_per_board + slot;
 445       if ((try_id < limit_id) && (available_id[try_id] == true)) {
 446         distribution[assigned] = try_id;
 447         available_id[try_id] = false;
 448         assigned += 1;
 449         break;
 450       }
 451     }
 452     board += 1;
 453     if (board * processors_per_board + 0 >= limit_id) {
 454       board = 0;
 455     }
 456   }
 457   if (available_id != NULL) {
 458     FREE_C_HEAP_ARRAY(bool, available_id);
 459   }
 460   return true;
 461 }
 462 
 463 void os::set_native_thread_name(const char *name) {
 464   if (Solaris::_pthread_setname_np != NULL) {
 465     // Only the first 31 bytes of 'name' are processed by pthread_setname_np
 466     // but we explicitly copy into a size-limited buffer to avoid any
 467     // possible overflow.
 468     char buf[32];
 469     snprintf(buf, sizeof(buf), "%s", name);
 470     buf[sizeof(buf) - 1] = '\0';
 471     Solaris::_pthread_setname_np(pthread_self(), buf);
 472   }
 473 }
 474 
 475 bool os::distribute_processes(uint length, uint* distribution) {
 476   bool result = false;
 477   // Find the processor id's of all the available CPUs.
 478   processorid_t* id_array  = NULL;
 479   uint           id_length = 0;
 480   // There are some races between querying information and using it,
 481   // since processor sets can change dynamically.
 482   psetid_t pset = PS_NONE;
 483   // Are we running in a processor set?
 484   if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
 485     result = find_processors_in_pset(pset, &id_array, &id_length);
 486   } else {
 487     result = find_processors_online(&id_array, &id_length);
 488   }
 489   if (result == true) {
 490     if (id_length >= length) {
 491       result = assign_distribution(id_array, id_length, distribution, length);
 492     } else {
 493       result = false;
 494     }
 495   }
 496   if (id_array != NULL) {
 497     FREE_C_HEAP_ARRAY(processorid_t, id_array);
 498   }
 499   return result;
 500 }
 501 
 502 bool os::bind_to_processor(uint processor_id) {
 503   // We assume that a processorid_t can be stored in a uint.
 504   assert(sizeof(uint) == sizeof(processorid_t),
 505          "can't convert uint to processorid_t");
 506   int bind_result =
 507     processor_bind(P_LWPID,                       // bind LWP.
 508                    P_MYID,                        // bind current LWP.
 509                    (processorid_t) processor_id,  // id.
 510                    NULL);                         // don't return old binding.
 511   return (bind_result == 0);
 512 }
 513 
 514 // Return true if user is running as root.
 515 
 516 bool os::have_special_privileges() {
 517   static bool init = false;
 518   static bool privileges = false;
 519   if (!init) {
 520     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 521     init = true;
 522   }
 523   return privileges;
 524 }
 525 
 526 
 527 void os::init_system_properties_values() {
 528   // The next steps are taken in the product version:
 529   //
 530   // Obtain the JAVA_HOME value from the location of libjvm.so.
 531   // This library should be located at:
 532   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 533   //
 534   // If "/jre/lib/" appears at the right place in the path, then we
 535   // assume libjvm.so is installed in a JDK and we use this path.
 536   //
 537   // Otherwise exit with message: "Could not create the Java virtual machine."
 538   //
 539   // The following extra steps are taken in the debugging version:
 540   //
 541   // If "/jre/lib/" does NOT appear at the right place in the path
 542   // instead of exit check for $JAVA_HOME environment variable.
 543   //
 544   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 545   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 546   // it looks like libjvm.so is installed there
 547   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 548   //
 549   // Otherwise exit.
 550   //
 551   // Important note: if the location of libjvm.so changes this
 552   // code needs to be changed accordingly.
 553 
 554 // Base path of extensions installed on the system.
 555 #define SYS_EXT_DIR     "/usr/jdk/packages"
 556 #define EXTENSIONS_DIR  "/lib/ext"
 557 
 558   // Buffer that fits several sprintfs.
 559   // Note that the space for the colon and the trailing null are provided
 560   // by the nulls included by the sizeof operator.
 561   const size_t bufsize =
 562     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 563          sizeof(SYS_EXT_DIR) + sizeof("/lib/"), // invariant ld_library_path
 564          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 565   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 566 
 567   // sysclasspath, java_home, dll_dir
 568   {
 569     char *pslash;
 570     os::jvm_path(buf, bufsize);
 571 
 572     // Found the full path to libjvm.so.
 573     // Now cut the path to <java_home>/jre if we can.
 574     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 575     pslash = strrchr(buf, '/');
 576     if (pslash != NULL) {
 577       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 578     }
 579     Arguments::set_dll_dir(buf);
 580 
 581     if (pslash != NULL) {
 582       pslash = strrchr(buf, '/');
 583       if (pslash != NULL) {
 584         *pslash = '\0';        // Get rid of /lib.
 585       }
 586     }
 587     Arguments::set_java_home(buf);
 588     if (!set_boot_path('/', ':')) {
 589       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 590     }
 591   }
 592 
 593   // Where to look for native libraries.
 594   {
 595     // Use dlinfo() to determine the correct java.library.path.
 596     //
 597     // If we're launched by the Java launcher, and the user
 598     // does not set java.library.path explicitly on the commandline,
 599     // the Java launcher sets LD_LIBRARY_PATH for us and unsets
 600     // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
 601     // dlinfo returns LD_LIBRARY_PATH + crle settings (including
 602     // /usr/lib), which is exactly what we want.
 603     //
 604     // If the user does set java.library.path, it completely
 605     // overwrites this setting, and always has.
 606     //
 607     // If we're not launched by the Java launcher, we may
 608     // get here with any/all of the LD_LIBRARY_PATH[_32|64]
 609     // settings.  Again, dlinfo does exactly what we want.
 610 
 611     Dl_serinfo     info_sz, *info = &info_sz;
 612     Dl_serpath     *path;
 613     char           *library_path;
 614     char           *common_path = buf;
 615 
 616     // Determine search path count and required buffer size.
 617     if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
 618       FREE_C_HEAP_ARRAY(char, buf);
 619       vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
 620     }
 621 
 622     // Allocate new buffer and initialize.
 623     info = (Dl_serinfo*)NEW_C_HEAP_ARRAY(char, info_sz.dls_size, mtInternal);
 624     info->dls_size = info_sz.dls_size;
 625     info->dls_cnt = info_sz.dls_cnt;
 626 
 627     // Obtain search path information.
 628     if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
 629       FREE_C_HEAP_ARRAY(char, buf);
 630       FREE_C_HEAP_ARRAY(char, info);
 631       vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
 632     }
 633 
 634     path = &info->dls_serpath[0];
 635 
 636     // Note: Due to a legacy implementation, most of the library path
 637     // is set in the launcher. This was to accomodate linking restrictions
 638     // on legacy Solaris implementations (which are no longer supported).
 639     // Eventually, all the library path setting will be done here.
 640     //
 641     // However, to prevent the proliferation of improperly built native
 642     // libraries, the new path component /usr/jdk/packages is added here.
 643 
 644     // Construct the invariant part of ld_library_path.
 645     sprintf(common_path, SYS_EXT_DIR "/lib");
 646 
 647     // Struct size is more than sufficient for the path components obtained
 648     // through the dlinfo() call, so only add additional space for the path
 649     // components explicitly added here.
 650     size_t library_path_size = info->dls_size + strlen(common_path);
 651     library_path = (char *)NEW_C_HEAP_ARRAY(char, library_path_size, mtInternal);
 652     library_path[0] = '\0';
 653 
 654     // Construct the desired Java library path from the linker's library
 655     // search path.
 656     //
 657     // For compatibility, it is optimal that we insert the additional path
 658     // components specific to the Java VM after those components specified
 659     // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
 660     // infrastructure.
 661     if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it.
 662       strcpy(library_path, common_path);
 663     } else {
 664       int inserted = 0;
 665       int i;
 666       for (i = 0; i < info->dls_cnt; i++, path++) {
 667         uint_t flags = path->dls_flags & LA_SER_MASK;
 668         if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
 669           strcat(library_path, common_path);
 670           strcat(library_path, os::path_separator());
 671           inserted = 1;
 672         }
 673         strcat(library_path, path->dls_name);
 674         strcat(library_path, os::path_separator());
 675       }
 676       // Eliminate trailing path separator.
 677       library_path[strlen(library_path)-1] = '\0';
 678     }
 679 
 680     // happens before argument parsing - can't use a trace flag
 681     // tty->print_raw("init_system_properties_values: native lib path: ");
 682     // tty->print_raw_cr(library_path);
 683 
 684     // Callee copies into its own buffer.
 685     Arguments::set_library_path(library_path);
 686 
 687     FREE_C_HEAP_ARRAY(char, library_path);
 688     FREE_C_HEAP_ARRAY(char, info);
 689   }
 690 
 691   // Extensions directories.
 692   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 693   Arguments::set_ext_dirs(buf);
 694 
 695   FREE_C_HEAP_ARRAY(char, buf);
 696 
 697 #undef SYS_EXT_DIR
 698 #undef EXTENSIONS_DIR
 699 }
 700 
 701 void os::breakpoint() {
 702   BREAKPOINT;
 703 }
 704 
 705 bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
 706   address  stackStart  = (address)thread->stack_base();
 707   address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
 708   if (sp < stackStart && sp >= stackEnd) return true;
 709   return false;
 710 }
 711 
 712 extern "C" void breakpoint() {
 713   // use debugger to set breakpoint here
 714 }
 715 
 716 static thread_t main_thread;
 717 
 718 // Thread start routine for all newly created threads
 719 extern "C" void* thread_native_entry(void* thread_addr) {
 720 
 721   Thread* thread = (Thread*)thread_addr;
 722 
 723   thread->record_stack_base_and_size();
 724 
 725   // Try to randomize the cache line index of hot stack frames.
 726   // This helps when threads of the same stack traces evict each other's
 727   // cache lines. The threads can be either from the same JVM instance, or
 728   // from different JVM instances. The benefit is especially true for
 729   // processors with hyperthreading technology.
 730   static int counter = 0;
 731   int pid = os::current_process_id();
 732   alloca(((pid ^ counter++) & 7) * 128);
 733 
 734   int prio;
 735 
 736   thread->initialize_thread_current();
 737 
 738   OSThread* osthr = thread->osthread();
 739 
 740   osthr->set_lwp_id(_lwp_self());  // Store lwp in case we are bound
 741 
 742   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").",
 743     os::current_thread_id());
 744 
 745   if (UseNUMA) {
 746     int lgrp_id = os::numa_get_group_id();
 747     if (lgrp_id != -1) {
 748       thread->set_lgrp_id(lgrp_id);
 749     }
 750   }
 751 
 752   // Our priority was set when we were created, and stored in the
 753   // osthread, but couldn't be passed through to our LWP until now.
 754   // So read back the priority and set it again.
 755 
 756   if (osthr->thread_id() != -1) {
 757     if (UseThreadPriorities) {
 758       int prio = osthr->native_priority();
 759       if (ThreadPriorityVerbose) {
 760         tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
 761                       INTPTR_FORMAT ", setting priority: %d\n",
 762                       osthr->thread_id(), osthr->lwp_id(), prio);
 763       }
 764       os::set_native_priority(thread, prio);
 765     }
 766   } else if (ThreadPriorityVerbose) {
 767     warning("Can't set priority in _start routine, thread id hasn't been set\n");
 768   }
 769 
 770   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 771 
 772   // initialize signal mask for this thread
 773   os::Solaris::hotspot_sigmask(thread);
 774 
 775   os::Solaris::init_thread_fpu_state();
 776   std::set_terminate(_handle_uncaught_cxx_exception);
 777 
 778   thread->call_run();
 779 
 780   // Note: at this point the thread object may already have deleted itself.
 781   // Do not dereference it from here on out.
 782 
 783   // One less thread is executing
 784   // When the VMThread gets here, the main thread may have already exited
 785   // which frees the CodeHeap containing the Atomic::dec code
 786   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 787     Atomic::dec(&os::Solaris::_os_thread_count);
 788   }
 789 
 790   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
 791 
 792   if (UseDetachedThreads) {
 793     thr_exit(NULL);
 794     ShouldNotReachHere();
 795   }
 796   return NULL;
 797 }
 798 
 799 static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
 800   // Allocate the OSThread object
 801   OSThread* osthread = new OSThread(NULL, NULL);
 802   if (osthread == NULL) return NULL;
 803 
 804   // Store info on the Solaris thread into the OSThread
 805   osthread->set_thread_id(thread_id);
 806   osthread->set_lwp_id(_lwp_self());
 807 
 808   if (UseNUMA) {
 809     int lgrp_id = os::numa_get_group_id();
 810     if (lgrp_id != -1) {
 811       thread->set_lgrp_id(lgrp_id);
 812     }
 813   }
 814 
 815   if (ThreadPriorityVerbose) {
 816     tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
 817                   osthread->thread_id(), osthread->lwp_id());
 818   }
 819 
 820   // Initial thread state is INITIALIZED, not SUSPENDED
 821   osthread->set_state(INITIALIZED);
 822 
 823   return osthread;
 824 }
 825 
 826 void os::Solaris::hotspot_sigmask(Thread* thread) {
 827   //Save caller's signal mask
 828   sigset_t sigmask;
 829   pthread_sigmask(SIG_SETMASK, NULL, &sigmask);
 830   OSThread *osthread = thread->osthread();
 831   osthread->set_caller_sigmask(sigmask);
 832 
 833   pthread_sigmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
 834   if (!ReduceSignalUsage) {
 835     if (thread->is_VM_thread()) {
 836       // Only the VM thread handles BREAK_SIGNAL ...
 837       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 838     } else {
 839       // ... all other threads block BREAK_SIGNAL
 840       assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
 841       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 842     }
 843   }
 844 }
 845 
 846 bool os::create_attached_thread(JavaThread* thread) {
 847 #ifdef ASSERT
 848   thread->verify_not_published();
 849 #endif
 850   OSThread* osthread = create_os_thread(thread, thr_self());
 851   if (osthread == NULL) {
 852     return false;
 853   }
 854 
 855   // Initial thread state is RUNNABLE
 856   osthread->set_state(RUNNABLE);
 857   thread->set_osthread(osthread);
 858 
 859   // initialize signal mask for this thread
 860   // and save the caller's signal mask
 861   os::Solaris::hotspot_sigmask(thread);
 862 
 863   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
 864     os::current_thread_id());
 865 
 866   return true;
 867 }
 868 
 869 bool os::create_main_thread(JavaThread* thread) {
 870 #ifdef ASSERT
 871   thread->verify_not_published();
 872 #endif
 873   if (_starting_thread == NULL) {
 874     _starting_thread = create_os_thread(thread, main_thread);
 875     if (_starting_thread == NULL) {
 876       return false;
 877     }
 878   }
 879 
 880   // The primodial thread is runnable from the start
 881   _starting_thread->set_state(RUNNABLE);
 882 
 883   thread->set_osthread(_starting_thread);
 884 
 885   // initialize signal mask for this thread
 886   // and save the caller's signal mask
 887   os::Solaris::hotspot_sigmask(thread);
 888 
 889   return true;
 890 }
 891 
 892 // Helper function to trace thread attributes, similar to os::Posix::describe_pthread_attr()
 893 static char* describe_thr_create_attributes(char* buf, size_t buflen,
 894                                             size_t stacksize, long flags) {
 895   stringStream ss(buf, buflen);
 896   ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
 897   ss.print("flags: ");
 898   #define PRINT_FLAG(f) if (flags & f) ss.print( #f " ");
 899   #define ALL(X) \
 900     X(THR_SUSPENDED) \
 901     X(THR_DETACHED) \
 902     X(THR_BOUND) \
 903     X(THR_NEW_LWP) \
 904     X(THR_DAEMON)
 905   ALL(PRINT_FLAG)
 906   #undef ALL
 907   #undef PRINT_FLAG
 908   return buf;
 909 }
 910 
 911 // return default stack size for thr_type
 912 size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
 913   // default stack size when not specified by caller is 1M (2M for LP64)
 914   size_t s = (BytesPerWord >> 2) * K * K;
 915   return s;
 916 }
 917 
 918 bool os::create_thread(Thread* thread, ThreadType thr_type,
 919                        size_t req_stack_size) {
 920   // Allocate the OSThread object
 921   OSThread* osthread = new OSThread(NULL, NULL);
 922   if (osthread == NULL) {
 923     return false;
 924   }
 925 
 926   if (ThreadPriorityVerbose) {
 927     char *thrtyp;
 928     switch (thr_type) {
 929     case vm_thread:
 930       thrtyp = (char *)"vm";
 931       break;
 932     case cgc_thread:
 933       thrtyp = (char *)"cgc";
 934       break;
 935     case pgc_thread:
 936       thrtyp = (char *)"pgc";
 937       break;
 938     case java_thread:
 939       thrtyp = (char *)"java";
 940       break;
 941     case compiler_thread:
 942       thrtyp = (char *)"compiler";
 943       break;
 944     case watcher_thread:
 945       thrtyp = (char *)"watcher";
 946       break;
 947     default:
 948       thrtyp = (char *)"unknown";
 949       break;
 950     }
 951     tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
 952   }
 953 
 954   // calculate stack size if it's not specified by caller
 955   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 956 
 957   // Initial state is ALLOCATED but not INITIALIZED
 958   osthread->set_state(ALLOCATED);
 959 
 960   if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
 961     // We got lots of threads. Check if we still have some address space left.
 962     // Need to be at least 5Mb of unreserved address space. We do check by
 963     // trying to reserve some.
 964     const size_t VirtualMemoryBangSize = 20*K*K;
 965     char* mem = os::reserve_memory(VirtualMemoryBangSize);
 966     if (mem == NULL) {
 967       delete osthread;
 968       return false;
 969     } else {
 970       // Release the memory again
 971       os::release_memory(mem, VirtualMemoryBangSize);
 972     }
 973   }
 974 
 975   // Setup osthread because the child thread may need it.
 976   thread->set_osthread(osthread);
 977 
 978   // Create the Solaris thread
 979   thread_t tid = 0;
 980   long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED;
 981   int      status;
 982 
 983   // Mark that we don't have an lwp or thread id yet.
 984   // In case we attempt to set the priority before the thread starts.
 985   osthread->set_lwp_id(-1);
 986   osthread->set_thread_id(-1);
 987 
 988   status = thr_create(NULL, stack_size, thread_native_entry, thread, flags, &tid);
 989 
 990   char buf[64];
 991   if (status == 0) {
 992     log_info(os, thread)("Thread started (tid: " UINTX_FORMAT ", attributes: %s). ",
 993       (uintx) tid, describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
 994   } else {
 995     log_warning(os, thread)("Failed to start thread - thr_create failed (%s) for attributes: %s.",
 996       os::errno_name(status), describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
 997     // Log some OS information which might explain why creating the thread failed.
 998     log_info(os, thread)("Number of threads approx. running in the VM: %d", Threads::number_of_threads());
 999     LogStream st(Log(os, thread)::info());
1000     os::Posix::print_rlimit_info(&st);
1001     os::print_memory_info(&st);
1002   }
1003 
1004   if (status != 0) {
1005     thread->set_osthread(NULL);
1006     // Need to clean up stuff we've allocated so far
1007     delete osthread;
1008     return false;
1009   }
1010 
1011   Atomic::inc(&os::Solaris::_os_thread_count);
1012 
1013   // Store info on the Solaris thread into the OSThread
1014   osthread->set_thread_id(tid);
1015 
1016   // Remember that we created this thread so we can set priority on it
1017   osthread->set_vm_created();
1018 
1019   // Most thread types will set an explicit priority before starting the thread,
1020   // but for those that don't we need a valid value to read back in thread_native_entry.
1021   osthread->set_native_priority(NormPriority);
1022 
1023   // Initial thread state is INITIALIZED, not SUSPENDED
1024   osthread->set_state(INITIALIZED);
1025 
1026   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
1027   return true;
1028 }
1029 
1030 debug_only(static bool signal_sets_initialized = false);
1031 static sigset_t unblocked_sigs, vm_sigs;
1032 
1033 void os::Solaris::signal_sets_init() {
1034   // Should also have an assertion stating we are still single-threaded.
1035   assert(!signal_sets_initialized, "Already initialized");
1036   // Fill in signals that are necessarily unblocked for all threads in
1037   // the VM. Currently, we unblock the following signals:
1038   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
1039   //                         by -Xrs (=ReduceSignalUsage));
1040   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
1041   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
1042   // the dispositions or masks wrt these signals.
1043   // Programs embedding the VM that want to use the above signals for their
1044   // own purposes must, at this time, use the "-Xrs" option to prevent
1045   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
1046   // (See bug 4345157, and other related bugs).
1047   // In reality, though, unblocking these signals is really a nop, since
1048   // these signals are not blocked by default.
1049   sigemptyset(&unblocked_sigs);
1050   sigaddset(&unblocked_sigs, SIGILL);
1051   sigaddset(&unblocked_sigs, SIGSEGV);
1052   sigaddset(&unblocked_sigs, SIGBUS);
1053   sigaddset(&unblocked_sigs, SIGFPE);
1054   sigaddset(&unblocked_sigs, ASYNC_SIGNAL);
1055 
1056   if (!ReduceSignalUsage) {
1057     if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
1058       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
1059     }
1060     if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
1061       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
1062     }
1063     if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
1064       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
1065     }
1066   }
1067   // Fill in signals that are blocked by all but the VM thread.
1068   sigemptyset(&vm_sigs);
1069   if (!ReduceSignalUsage) {
1070     sigaddset(&vm_sigs, BREAK_SIGNAL);
1071   }
1072   debug_only(signal_sets_initialized = true);
1073 
1074   // For diagnostics only used in run_periodic_checks
1075   sigemptyset(&check_signal_done);
1076 }
1077 
1078 // These are signals that are unblocked while a thread is running Java.
1079 // (For some reason, they get blocked by default.)
1080 sigset_t* os::Solaris::unblocked_signals() {
1081   assert(signal_sets_initialized, "Not initialized");
1082   return &unblocked_sigs;
1083 }
1084 
1085 // These are the signals that are blocked while a (non-VM) thread is
1086 // running Java. Only the VM thread handles these signals.
1087 sigset_t* os::Solaris::vm_signals() {
1088   assert(signal_sets_initialized, "Not initialized");
1089   return &vm_sigs;
1090 }
1091 
1092 // CR 7190089: on Solaris, primordial thread's stack needs adjusting.
1093 // Without the adjustment, stack size is incorrect if stack is set to unlimited (ulimit -s unlimited).
1094 void os::Solaris::correct_stack_boundaries_for_primordial_thread(Thread* thr) {
1095   assert(is_primordial_thread(), "Call only for primordial thread");
1096 
1097   JavaThread* jt = (JavaThread *)thr;
1098   assert(jt != NULL, "Sanity check");
1099   size_t stack_size;
1100   address base = jt->stack_base();
1101   if (Arguments::created_by_java_launcher()) {
1102     // Use 2MB to allow for Solaris 7 64 bit mode.
1103     stack_size = JavaThread::stack_size_at_create() == 0
1104       ? 2048*K : JavaThread::stack_size_at_create();
1105 
1106     // There are rare cases when we may have already used more than
1107     // the basic stack size allotment before this method is invoked.
1108     // Attempt to allow for a normally sized java_stack.
1109     size_t current_stack_offset = (size_t)(base - (address)&stack_size);
1110     stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
1111   } else {
1112     // 6269555: If we were not created by a Java launcher, i.e. if we are
1113     // running embedded in a native application, treat the primordial thread
1114     // as much like a native attached thread as possible.  This means using
1115     // the current stack size from thr_stksegment(), unless it is too large
1116     // to reliably setup guard pages.  A reasonable max size is 8MB.
1117     size_t current_size = os::current_stack_size();
1118     // This should never happen, but just in case....
1119     if (current_size == 0) current_size = 2 * K * K;
1120     stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
1121   }
1122   address bottom = align_up(base - stack_size, os::vm_page_size());;
1123   stack_size = (size_t)(base - bottom);
1124 
1125   assert(stack_size > 0, "Stack size calculation problem");
1126 
1127   if (stack_size > jt->stack_size()) {
1128 #ifndef PRODUCT
1129     struct rlimit limits;
1130     getrlimit(RLIMIT_STACK, &limits);
1131     size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
1132     assert(size >= jt->stack_size(), "Stack size problem in main thread");
1133 #endif
1134     tty->print_cr("Stack size of %d Kb exceeds current limit of %d Kb.\n"
1135                   "(Stack sizes are rounded up to a multiple of the system page size.)\n"
1136                   "See limit(1) to increase the stack size limit.",
1137                   stack_size / K, jt->stack_size() / K);
1138     vm_exit(1);
1139   }
1140   assert(jt->stack_size() >= stack_size,
1141          "Attempt to map more stack than was allocated");
1142   jt->set_stack_size(stack_size);
1143 
1144 }
1145 
1146 
1147 
1148 // Free Solaris resources related to the OSThread
1149 void os::free_thread(OSThread* osthread) {
1150   assert(osthread != NULL, "os::free_thread but osthread not set");
1151 
1152   // We are told to free resources of the argument thread,
1153   // but we can only really operate on the current thread.
1154   assert(Thread::current()->osthread() == osthread,
1155          "os::free_thread but not current thread");
1156 
1157   // Restore caller's signal mask
1158   sigset_t sigmask = osthread->caller_sigmask();
1159   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1160 
1161   delete osthread;
1162 }
1163 
1164 void os::pd_start_thread(Thread* thread) {
1165   int status = thr_continue(thread->osthread()->thread_id());
1166   assert_status(status == 0, status, "thr_continue failed");
1167 }
1168 
1169 
1170 intx os::current_thread_id() {
1171   return (intx)thr_self();
1172 }
1173 
1174 static pid_t _initial_pid = 0;
1175 
1176 int os::current_process_id() {
1177   return (int)(_initial_pid ? _initial_pid : getpid());
1178 }
1179 
1180 // gethrtime() should be monotonic according to the documentation,
1181 // but some virtualized platforms are known to break this guarantee.
1182 // getTimeNanos() must be guaranteed not to move backwards, so we
1183 // are forced to add a check here.
1184 inline hrtime_t getTimeNanos() {
1185   const hrtime_t now = gethrtime();
1186   const hrtime_t prev = max_hrtime;
1187   if (now <= prev) {
1188     return prev;   // same or retrograde time;
1189   }
1190   const hrtime_t obsv = Atomic::cmpxchg(now, &max_hrtime, prev);
1191   assert(obsv >= prev, "invariant");   // Monotonicity
1192   // If the CAS succeeded then we're done and return "now".
1193   // If the CAS failed and the observed value "obsv" is >= now then
1194   // we should return "obsv".  If the CAS failed and now > obsv > prv then
1195   // some other thread raced this thread and installed a new value, in which case
1196   // we could either (a) retry the entire operation, (b) retry trying to install now
1197   // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1198   // we might discard a higher "now" value in deference to a slightly lower but freshly
1199   // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1200   // to (a) or (b) -- and greatly reduces coherence traffic.
1201   // We might also condition (c) on the magnitude of the delta between obsv and now.
1202   // Avoiding excessive CAS operations to hot RW locations is critical.
1203   // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1204   return (prev == obsv) ? now : obsv;
1205 }
1206 
1207 // Time since start-up in seconds to a fine granularity.
1208 // Used by VMSelfDestructTimer and the MemProfiler.
1209 double os::elapsedTime() {
1210   return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
1211 }
1212 
1213 jlong os::elapsed_counter() {
1214   return (jlong)(getTimeNanos() - first_hrtime);
1215 }
1216 
1217 jlong os::elapsed_frequency() {
1218   return hrtime_hz;
1219 }
1220 
1221 // Return the real, user, and system times in seconds from an
1222 // arbitrary fixed point in the past.
1223 bool os::getTimesSecs(double* process_real_time,
1224                       double* process_user_time,
1225                       double* process_system_time) {
1226   struct tms ticks;
1227   clock_t real_ticks = times(&ticks);
1228 
1229   if (real_ticks == (clock_t) (-1)) {
1230     return false;
1231   } else {
1232     double ticks_per_second = (double) clock_tics_per_sec;
1233     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1234     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1235     // For consistency return the real time from getTimeNanos()
1236     // converted to seconds.
1237     *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
1238 
1239     return true;
1240   }
1241 }
1242 
1243 bool os::supports_vtime() { return true; }
1244 bool os::enable_vtime() { return false; }
1245 bool os::vtime_enabled() { return false; }
1246 
1247 double os::elapsedVTime() {
1248   return (double)gethrvtime() / (double)hrtime_hz;
1249 }
1250 
1251 // Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1252 jlong os::javaTimeMillis() {
1253   timeval t;
1254   if (gettimeofday(&t, NULL) == -1) {
1255     fatal("os::javaTimeMillis: gettimeofday (%s)", os::strerror(errno));
1256   }
1257   return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
1258 }
1259 
1260 // Must return seconds+nanos since Jan 1 1970. This must use the same
1261 // time source as javaTimeMillis and can't use get_nsec_fromepoch as
1262 // we need better than 1ms accuracy
1263 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1264   timeval t;
1265   if (gettimeofday(&t, NULL) == -1) {
1266     fatal("os::javaTimeSystemUTC: gettimeofday (%s)", os::strerror(errno));
1267   }
1268   seconds = jlong(t.tv_sec);
1269   nanos = jlong(t.tv_usec) * 1000;
1270 }
1271 
1272 
1273 jlong os::javaTimeNanos() {
1274   return (jlong)getTimeNanos();
1275 }
1276 
1277 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1278   info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
1279   info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
1280   info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
1281   info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
1282 }
1283 
1284 char * os::local_time_string(char *buf, size_t buflen) {
1285   struct tm t;
1286   time_t long_time;
1287   time(&long_time);
1288   localtime_r(&long_time, &t);
1289   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1290                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1291                t.tm_hour, t.tm_min, t.tm_sec);
1292   return buf;
1293 }
1294 
1295 // Note: os::shutdown() might be called very early during initialization, or
1296 // called from signal handler. Before adding something to os::shutdown(), make
1297 // sure it is async-safe and can handle partially initialized VM.
1298 void os::shutdown() {
1299 
1300   // allow PerfMemory to attempt cleanup of any persistent resources
1301   perfMemory_exit();
1302 
1303   // needs to remove object in file system
1304   AttachListener::abort();
1305 
1306   // flush buffered output, finish log files
1307   ostream_abort();
1308 
1309   // Check for abort hook
1310   abort_hook_t abort_hook = Arguments::abort_hook();
1311   if (abort_hook != NULL) {
1312     abort_hook();
1313   }
1314 }
1315 
1316 // Note: os::abort() might be called very early during initialization, or
1317 // called from signal handler. Before adding something to os::abort(), make
1318 // sure it is async-safe and can handle partially initialized VM.
1319 void os::abort(bool dump_core, void* siginfo, const void* context) {
1320   os::shutdown();
1321   if (dump_core) {
1322 #ifndef PRODUCT
1323     fdStream out(defaultStream::output_fd());
1324     out.print_raw("Current thread is ");
1325     char buf[16];
1326     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1327     out.print_raw_cr(buf);
1328     out.print_raw_cr("Dumping core ...");
1329 #endif
1330     ::abort(); // dump core (for debugging)
1331   }
1332 
1333   ::exit(1);
1334 }
1335 
1336 // Die immediately, no exit hook, no abort hook, no cleanup.
1337 void os::die() {
1338   ::abort(); // dump core (for debugging)
1339 }
1340 
1341 // DLL functions
1342 
1343 const char* os::dll_file_extension() { return ".so"; }
1344 
1345 // This must be hard coded because it's the system's temporary
1346 // directory not the java application's temp directory, ala java.io.tmpdir.
1347 const char* os::get_temp_directory() { return "/tmp"; }
1348 
1349 // check if addr is inside libjvm.so
1350 bool os::address_is_in_vm(address addr) {
1351   static address libjvm_base_addr;
1352   Dl_info dlinfo;
1353 
1354   if (libjvm_base_addr == NULL) {
1355     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1356       libjvm_base_addr = (address)dlinfo.dli_fbase;
1357     }
1358     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1359   }
1360 
1361   if (dladdr((void *)addr, &dlinfo) != 0) {
1362     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1363   }
1364 
1365   return false;
1366 }
1367 
1368 typedef int (*dladdr1_func_type)(void *, Dl_info *, void **, int);
1369 static dladdr1_func_type dladdr1_func = NULL;
1370 
1371 bool os::dll_address_to_function_name(address addr, char *buf,
1372                                       int buflen, int * offset,
1373                                       bool demangle) {
1374   // buf is not optional, but offset is optional
1375   assert(buf != NULL, "sanity check");
1376 
1377   Dl_info dlinfo;
1378 
1379   // dladdr1_func was initialized in os::init()
1380   if (dladdr1_func != NULL) {
1381     // yes, we have dladdr1
1382 
1383     // Support for dladdr1 is checked at runtime; it may be
1384     // available even if the vm is built on a machine that does
1385     // not have dladdr1 support.  Make sure there is a value for
1386     // RTLD_DL_SYMENT.
1387 #ifndef RTLD_DL_SYMENT
1388   #define RTLD_DL_SYMENT 1
1389 #endif
1390 #ifdef _LP64
1391     Elf64_Sym * info;
1392 #else
1393     Elf32_Sym * info;
1394 #endif
1395     if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
1396                      RTLD_DL_SYMENT) != 0) {
1397       // see if we have a matching symbol that covers our address
1398       if (dlinfo.dli_saddr != NULL &&
1399           (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
1400         if (dlinfo.dli_sname != NULL) {
1401           if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1402             jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1403           }
1404           if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1405           return true;
1406         }
1407       }
1408       // no matching symbol so try for just file info
1409       if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1410         if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1411                             buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1412           return true;
1413         }
1414       }
1415     }
1416     buf[0] = '\0';
1417     if (offset != NULL) *offset  = -1;
1418     return false;
1419   }
1420 
1421   // no, only dladdr is available
1422   if (dladdr((void *)addr, &dlinfo) != 0) {
1423     // see if we have a matching symbol
1424     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1425       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1426         jio_snprintf(buf, buflen, dlinfo.dli_sname);
1427       }
1428       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1429       return true;
1430     }
1431     // no matching symbol so try for just file info
1432     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1433       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1434                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1435         return true;
1436       }
1437     }
1438   }
1439   buf[0] = '\0';
1440   if (offset != NULL) *offset  = -1;
1441   return false;
1442 }
1443 
1444 bool os::dll_address_to_library_name(address addr, char* buf,
1445                                      int buflen, int* offset) {
1446   // buf is not optional, but offset is optional
1447   assert(buf != NULL, "sanity check");
1448 
1449   Dl_info dlinfo;
1450 
1451   if (dladdr((void*)addr, &dlinfo) != 0) {
1452     if (dlinfo.dli_fname != NULL) {
1453       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1454     }
1455     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1456       *offset = addr - (address)dlinfo.dli_fbase;
1457     }
1458     return true;
1459   }
1460 
1461   buf[0] = '\0';
1462   if (offset) *offset = -1;
1463   return false;
1464 }
1465 
1466 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1467   Dl_info dli;
1468   // Sanity check?
1469   if (dladdr(CAST_FROM_FN_PTR(void *, os::get_loaded_modules_info), &dli) == 0 ||
1470       dli.dli_fname == NULL) {
1471     return 1;
1472   }
1473 
1474   void * handle = dlopen(dli.dli_fname, RTLD_LAZY);
1475   if (handle == NULL) {
1476     return 1;
1477   }
1478 
1479   Link_map *map;
1480   dlinfo(handle, RTLD_DI_LINKMAP, &map);
1481   if (map == NULL) {
1482     dlclose(handle);
1483     return 1;
1484   }
1485 
1486   while (map->l_prev != NULL) {
1487     map = map->l_prev;
1488   }
1489 
1490   while (map != NULL) {
1491     // Iterate through all map entries and call callback with fields of interest
1492     if(callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1493       dlclose(handle);
1494       return 1;
1495     }
1496     map = map->l_next;
1497   }
1498 
1499   dlclose(handle);
1500   return 0;
1501 }
1502 
1503 int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1504   outputStream * out = (outputStream *) param;
1505   out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1506   return 0;
1507 }
1508 
1509 void os::print_dll_info(outputStream * st) {
1510   st->print_cr("Dynamic libraries:"); st->flush();
1511   if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1512     st->print_cr("Error: Cannot print dynamic libraries.");
1513   }
1514 }
1515 
1516 // Loads .dll/.so and
1517 // in case of error it checks if .dll/.so was built for the
1518 // same architecture as Hotspot is running on
1519 
1520 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1521   void * result= ::dlopen(filename, RTLD_LAZY);
1522   if (result != NULL) {
1523     // Successful loading
1524     return result;
1525   }
1526 
1527   Elf32_Ehdr elf_head;
1528 
1529   // Read system error message into ebuf
1530   // It may or may not be overwritten below
1531   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1532   ebuf[ebuflen-1]='\0';
1533   int diag_msg_max_length=ebuflen-strlen(ebuf);
1534   char* diag_msg_buf=ebuf+strlen(ebuf);
1535 
1536   if (diag_msg_max_length==0) {
1537     // No more space in ebuf for additional diagnostics message
1538     return NULL;
1539   }
1540 
1541 
1542   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1543 
1544   if (file_descriptor < 0) {
1545     // Can't open library, report dlerror() message
1546     return NULL;
1547   }
1548 
1549   bool failed_to_read_elf_head=
1550     (sizeof(elf_head)!=
1551      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1552 
1553   ::close(file_descriptor);
1554   if (failed_to_read_elf_head) {
1555     // file i/o error - report dlerror() msg
1556     return NULL;
1557   }
1558 
1559   typedef struct {
1560     Elf32_Half    code;         // Actual value as defined in elf.h
1561     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1562     unsigned char elf_class;    // 32 or 64 bit
1563     unsigned char endianess;    // MSB or LSB
1564     char*         name;         // String representation
1565   } arch_t;
1566 
1567   static const arch_t arch_array[]={
1568     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1569     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1570     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1571     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1572     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1573     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1574     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1575     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1576     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1577     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
1578   };
1579 
1580 #if  (defined IA32)
1581   static  Elf32_Half running_arch_code=EM_386;
1582 #elif   (defined AMD64)
1583   static  Elf32_Half running_arch_code=EM_X86_64;
1584 #elif  (defined IA64)
1585   static  Elf32_Half running_arch_code=EM_IA_64;
1586 #elif  (defined __sparc) && (defined _LP64)
1587   static  Elf32_Half running_arch_code=EM_SPARCV9;
1588 #elif  (defined __sparc) && (!defined _LP64)
1589   static  Elf32_Half running_arch_code=EM_SPARC;
1590 #elif  (defined __powerpc64__)
1591   static  Elf32_Half running_arch_code=EM_PPC64;
1592 #elif  (defined __powerpc__)
1593   static  Elf32_Half running_arch_code=EM_PPC;
1594 #elif (defined ARM)
1595   static  Elf32_Half running_arch_code=EM_ARM;
1596 #else
1597   #error Method os::dll_load requires that one of following is defined:\
1598        IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
1599 #endif
1600 
1601   // Identify compatability class for VM's architecture and library's architecture
1602   // Obtain string descriptions for architectures
1603 
1604   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1605   int running_arch_index=-1;
1606 
1607   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1608     if (running_arch_code == arch_array[i].code) {
1609       running_arch_index    = i;
1610     }
1611     if (lib_arch.code == arch_array[i].code) {
1612       lib_arch.compat_class = arch_array[i].compat_class;
1613       lib_arch.name         = arch_array[i].name;
1614     }
1615   }
1616 
1617   assert(running_arch_index != -1,
1618          "Didn't find running architecture code (running_arch_code) in arch_array");
1619   if (running_arch_index == -1) {
1620     // Even though running architecture detection failed
1621     // we may still continue with reporting dlerror() message
1622     return NULL;
1623   }
1624 
1625   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1626     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1627     return NULL;
1628   }
1629 
1630   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1631     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1632     return NULL;
1633   }
1634 
1635   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1636     if (lib_arch.name!=NULL) {
1637       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1638                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1639                  lib_arch.name, arch_array[running_arch_index].name);
1640     } else {
1641       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1642                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1643                  lib_arch.code,
1644                  arch_array[running_arch_index].name);
1645     }
1646   }
1647 
1648   return NULL;
1649 }
1650 
1651 void* os::dll_lookup(void* handle, const char* name) {
1652   return dlsym(handle, name);
1653 }
1654 
1655 void* os::get_default_process_handle() {
1656   return (void*)::dlopen(NULL, RTLD_LAZY);
1657 }
1658 
1659 static inline time_t get_mtime(const char* filename) {
1660   struct stat st;
1661   int ret = os::stat(filename, &st);
1662   assert(ret == 0, "failed to stat() file '%s': %s", filename, os::strerror(errno));
1663   return st.st_mtime;
1664 }
1665 
1666 int os::compare_file_modified_times(const char* file1, const char* file2) {
1667   time_t t1 = get_mtime(file1);
1668   time_t t2 = get_mtime(file2);
1669   return t1 - t2;
1670 }
1671 
1672 static bool _print_ascii_file(const char* filename, outputStream* st) {
1673   int fd = ::open(filename, O_RDONLY);
1674   if (fd == -1) {
1675     return false;
1676   }
1677 
1678   char buf[32];
1679   int bytes;
1680   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1681     st->print_raw(buf, bytes);
1682   }
1683 
1684   ::close(fd);
1685 
1686   return true;
1687 }
1688 
1689 void os::print_os_info_brief(outputStream* st) {
1690   os::Solaris::print_distro_info(st);
1691 
1692   os::Posix::print_uname_info(st);
1693 
1694   os::Solaris::print_libversion_info(st);
1695 }
1696 
1697 void os::print_os_info(outputStream* st) {
1698   st->print("OS:");
1699 
1700   os::Solaris::print_distro_info(st);
1701 
1702   os::Posix::print_uname_info(st);
1703 
1704   os::Solaris::print_libversion_info(st);
1705 
1706   os::Posix::print_rlimit_info(st);
1707 
1708   os::Posix::print_load_average(st);
1709 }
1710 
1711 void os::Solaris::print_distro_info(outputStream* st) {
1712   if (!_print_ascii_file("/etc/release", st)) {
1713     st->print("Solaris");
1714   }
1715   st->cr();
1716 }
1717 
1718 void os::get_summary_os_info(char* buf, size_t buflen) {
1719   strncpy(buf, "Solaris", buflen);  // default to plain solaris
1720   FILE* fp = fopen("/etc/release", "r");
1721   if (fp != NULL) {
1722     char tmp[256];
1723     // Only get the first line and chop out everything but the os name.
1724     if (fgets(tmp, sizeof(tmp), fp)) {
1725       char* ptr = tmp;
1726       // skip past whitespace characters
1727       while (*ptr != '\0' && (*ptr == ' ' || *ptr == '\t' || *ptr == '\n')) ptr++;
1728       if (*ptr != '\0') {
1729         char* nl = strchr(ptr, '\n');
1730         if (nl != NULL) *nl = '\0';
1731         strncpy(buf, ptr, buflen);
1732       }
1733     }
1734     fclose(fp);
1735   }
1736 }
1737 
1738 void os::Solaris::print_libversion_info(outputStream* st) {
1739   st->print("  (T2 libthread)");
1740   st->cr();
1741 }
1742 
1743 static bool check_addr0(outputStream* st) {
1744   jboolean status = false;
1745   const int read_chunk = 200;
1746   int ret = 0;
1747   int nmap = 0;
1748   int fd = ::open("/proc/self/map",O_RDONLY);
1749   if (fd >= 0) {
1750     prmap_t *p = NULL;
1751     char *mbuff = (char *) calloc(read_chunk, sizeof(prmap_t));
1752     if (NULL == mbuff) {
1753       ::close(fd);
1754       return status;
1755     }
1756     while ((ret = ::read(fd, mbuff, read_chunk*sizeof(prmap_t))) > 0) {
1757       //check if read() has not read partial data
1758       if( 0 != ret % sizeof(prmap_t)){
1759         break;
1760       }
1761       nmap = ret / sizeof(prmap_t);
1762       p = (prmap_t *)mbuff;
1763       for(int i = 0; i < nmap; i++){
1764         if (p->pr_vaddr == 0x0) {
1765           st->print("Warning: Address: " PTR_FORMAT ", Size: " SIZE_FORMAT "K, ",p->pr_vaddr, p->pr_size/1024);
1766           st->print("Mapped file: %s, ", p->pr_mapname[0] == '\0' ? "None" : p->pr_mapname);
1767           st->print("Access: ");
1768           st->print("%s",(p->pr_mflags & MA_READ)  ? "r" : "-");
1769           st->print("%s",(p->pr_mflags & MA_WRITE) ? "w" : "-");
1770           st->print("%s",(p->pr_mflags & MA_EXEC)  ? "x" : "-");
1771           st->cr();
1772           status = true;
1773         }
1774         p++;
1775       }
1776     }
1777     free(mbuff);
1778     ::close(fd);
1779   }
1780   return status;
1781 }
1782 
1783 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1784   // Get MHz with system call. We don't seem to already have this.
1785   processor_info_t stats;
1786   processorid_t id = getcpuid();
1787   int clock = 0;
1788   if (processor_info(id, &stats) != -1) {
1789     clock = stats.pi_clock;  // pi_processor_type isn't more informative than below
1790   }
1791 #ifdef AMD64
1792   snprintf(buf, buflen, "x86 64 bit %d MHz", clock);
1793 #else
1794   // must be sparc
1795   snprintf(buf, buflen, "Sparcv9 64 bit %d MHz", clock);
1796 #endif
1797 }
1798 
1799 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1800   // Nothing to do for now.
1801 }
1802 
1803 void os::print_memory_info(outputStream* st) {
1804   st->print("Memory:");
1805   st->print(" %dk page", os::vm_page_size()>>10);
1806   st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
1807   st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
1808   st->cr();
1809   (void) check_addr0(st);
1810 }
1811 
1812 // Moved from whole group, because we need them here for diagnostic
1813 // prints.
1814 static int Maxsignum = 0;
1815 static int *ourSigFlags = NULL;
1816 
1817 int os::Solaris::get_our_sigflags(int sig) {
1818   assert(ourSigFlags!=NULL, "signal data structure not initialized");
1819   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1820   return ourSigFlags[sig];
1821 }
1822 
1823 void os::Solaris::set_our_sigflags(int sig, int flags) {
1824   assert(ourSigFlags!=NULL, "signal data structure not initialized");
1825   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1826   ourSigFlags[sig] = flags;
1827 }
1828 
1829 
1830 static const char* get_signal_handler_name(address handler,
1831                                            char* buf, int buflen) {
1832   int offset;
1833   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
1834   if (found) {
1835     // skip directory names
1836     const char *p1, *p2;
1837     p1 = buf;
1838     size_t len = strlen(os::file_separator());
1839     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
1840     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
1841   } else {
1842     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
1843   }
1844   return buf;
1845 }
1846 
1847 static void print_signal_handler(outputStream* st, int sig,
1848                                  char* buf, size_t buflen) {
1849   struct sigaction sa;
1850 
1851   sigaction(sig, NULL, &sa);
1852 
1853   st->print("%s: ", os::exception_name(sig, buf, buflen));
1854 
1855   address handler = (sa.sa_flags & SA_SIGINFO)
1856                   ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
1857                   : CAST_FROM_FN_PTR(address, sa.sa_handler);
1858 
1859   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
1860     st->print("SIG_DFL");
1861   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
1862     st->print("SIG_IGN");
1863   } else {
1864     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
1865   }
1866 
1867   st->print(", sa_mask[0]=");
1868   os::Posix::print_signal_set_short(st, &sa.sa_mask);
1869 
1870   address rh = VMError::get_resetted_sighandler(sig);
1871   // May be, handler was resetted by VMError?
1872   if (rh != NULL) {
1873     handler = rh;
1874     sa.sa_flags = VMError::get_resetted_sigflags(sig);
1875   }
1876 
1877   st->print(", sa_flags=");
1878   os::Posix::print_sa_flags(st, sa.sa_flags);
1879 
1880   // Check: is it our handler?
1881   if (handler == CAST_FROM_FN_PTR(address, signalHandler)) {
1882     // It is our signal handler
1883     // check for flags
1884     if (sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
1885       st->print(
1886                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
1887                 os::Solaris::get_our_sigflags(sig));
1888     }
1889   }
1890   st->cr();
1891 }
1892 
1893 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1894   st->print_cr("Signal Handlers:");
1895   print_signal_handler(st, SIGSEGV, buf, buflen);
1896   print_signal_handler(st, SIGBUS , buf, buflen);
1897   print_signal_handler(st, SIGFPE , buf, buflen);
1898   print_signal_handler(st, SIGPIPE, buf, buflen);
1899   print_signal_handler(st, SIGXFSZ, buf, buflen);
1900   print_signal_handler(st, SIGILL , buf, buflen);
1901   print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
1902   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1903   print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
1904   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1905   print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
1906 }
1907 
1908 static char saved_jvm_path[MAXPATHLEN] = { 0 };
1909 
1910 // Find the full path to the current module, libjvm.so
1911 void os::jvm_path(char *buf, jint buflen) {
1912   // Error checking.
1913   if (buflen < MAXPATHLEN) {
1914     assert(false, "must use a large-enough buffer");
1915     buf[0] = '\0';
1916     return;
1917   }
1918   // Lazy resolve the path to current module.
1919   if (saved_jvm_path[0] != 0) {
1920     strcpy(buf, saved_jvm_path);
1921     return;
1922   }
1923 
1924   Dl_info dlinfo;
1925   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
1926   assert(ret != 0, "cannot locate libjvm");
1927   if (ret != 0 && dlinfo.dli_fname != NULL) {
1928     if (os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen) == NULL) {
1929       return;
1930     }
1931   } else {
1932     buf[0] = '\0';
1933     return;
1934   }
1935 
1936   if (Arguments::sun_java_launcher_is_altjvm()) {
1937     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1938     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
1939     // If "/jre/lib/" appears at the right place in the string, then
1940     // assume we are installed in a JDK and we're done.  Otherwise, check
1941     // for a JAVA_HOME environment variable and fix up the path so it
1942     // looks like libjvm.so is installed there (append a fake suffix
1943     // hotspot/libjvm.so).
1944     const char *p = buf + strlen(buf) - 1;
1945     for (int count = 0; p > buf && count < 5; ++count) {
1946       for (--p; p > buf && *p != '/'; --p)
1947         /* empty */ ;
1948     }
1949 
1950     if (strncmp(p, "/jre/lib/", 9) != 0) {
1951       // Look for JAVA_HOME in the environment.
1952       char* java_home_var = ::getenv("JAVA_HOME");
1953       if (java_home_var != NULL && java_home_var[0] != 0) {
1954         char* jrelib_p;
1955         int   len;
1956 
1957         // Check the current module name "libjvm.so".
1958         p = strrchr(buf, '/');
1959         assert(strstr(p, "/libjvm") == p, "invalid library name");
1960 
1961         if (os::Posix::realpath(java_home_var, buf, buflen) == NULL) {
1962           return;
1963         }
1964         // determine if this is a legacy image or modules image
1965         // modules image doesn't have "jre" subdirectory
1966         len = strlen(buf);
1967         assert(len < buflen, "Ran out of buffer space");
1968         jrelib_p = buf + len;
1969         snprintf(jrelib_p, buflen-len, "/jre/lib");
1970         if (0 != access(buf, F_OK)) {
1971           snprintf(jrelib_p, buflen-len, "/lib");
1972         }
1973 
1974         if (0 == access(buf, F_OK)) {
1975           // Use current module name "libjvm.so"
1976           len = strlen(buf);
1977           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
1978         } else {
1979           // Go back to path of .so
1980           if (os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen) == NULL) {
1981             return;
1982           }
1983         }
1984       }
1985     }
1986   }
1987 
1988   strncpy(saved_jvm_path, buf, MAXPATHLEN);
1989   saved_jvm_path[MAXPATHLEN - 1] = '\0';
1990 }
1991 
1992 
1993 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1994   // no prefix required, not even "_"
1995 }
1996 
1997 
1998 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1999   // no suffix required
2000 }
2001 
2002 // sun.misc.Signal
2003 
2004 extern "C" {
2005   static void UserHandler(int sig, void *siginfo, void *context) {
2006     // Ctrl-C is pressed during error reporting, likely because the error
2007     // handler fails to abort. Let VM die immediately.
2008     if (sig == SIGINT && VMError::is_error_reported()) {
2009       os::die();
2010     }
2011 
2012     os::signal_notify(sig);
2013     // We do not need to reinstate the signal handler each time...
2014   }
2015 }
2016 
2017 void* os::user_handler() {
2018   return CAST_FROM_FN_PTR(void*, UserHandler);
2019 }
2020 
2021 extern "C" {
2022   typedef void (*sa_handler_t)(int);
2023   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2024 }
2025 
2026 void* os::signal(int signal_number, void* handler) {
2027   struct sigaction sigAct, oldSigAct;
2028   sigfillset(&(sigAct.sa_mask));
2029   sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
2030   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2031 
2032   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2033     // -1 means registration failed
2034     return (void *)-1;
2035   }
2036 
2037   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2038 }
2039 
2040 void os::signal_raise(int signal_number) {
2041   raise(signal_number);
2042 }
2043 
2044 // The following code is moved from os.cpp for making this
2045 // code platform specific, which it is by its very nature.
2046 
2047 // a counter for each possible signal value
2048 static int Sigexit = 0;
2049 static jint *pending_signals = NULL;
2050 static int *preinstalled_sigs = NULL;
2051 static struct sigaction *chainedsigactions = NULL;
2052 static Semaphore* sig_sem = NULL;
2053 
2054 int os::sigexitnum_pd() {
2055   assert(Sigexit > 0, "signal memory not yet initialized");
2056   return Sigexit;
2057 }
2058 
2059 void os::Solaris::init_signal_mem() {
2060   // Initialize signal structures
2061   Maxsignum = SIGRTMAX;
2062   Sigexit = Maxsignum+1;
2063   assert(Maxsignum >0, "Unable to obtain max signal number");
2064 
2065   // Initialize signal structures
2066   // pending_signals has one int per signal
2067   // The additional signal is for SIGEXIT - exit signal to signal_thread
2068   pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
2069   memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
2070 
2071   if (UseSignalChaining) {
2072     chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
2073                                                    * (Maxsignum + 1), mtInternal);
2074     memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
2075     preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2076     memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
2077   }
2078   ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2079   memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
2080 }
2081 
2082 static void jdk_misc_signal_init() {
2083   // Initialize signal semaphore
2084   sig_sem = new Semaphore();
2085 }
2086 
2087 void os::signal_notify(int sig) {
2088   if (sig_sem != NULL) {
2089     Atomic::inc(&pending_signals[sig]);
2090     sig_sem->signal();
2091   } else {
2092     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
2093     // initialization isn't called.
2094     assert(ReduceSignalUsage, "signal semaphore should be created");
2095   }
2096 }
2097 
2098 static int check_pending_signals() {
2099   int ret;
2100   while (true) {
2101     for (int i = 0; i < Sigexit + 1; i++) {
2102       jint n = pending_signals[i];
2103       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2104         return i;
2105       }
2106     }
2107     JavaThread *thread = JavaThread::current();
2108     ThreadBlockInVM tbivm(thread);
2109 
2110     bool threadIsSuspended;
2111     do {
2112       thread->set_suspend_equivalent();
2113       sig_sem->wait();
2114 
2115       // were we externally suspended while we were waiting?
2116       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2117       if (threadIsSuspended) {
2118         // The semaphore has been incremented, but while we were waiting
2119         // another thread suspended us. We don't want to continue running
2120         // while suspended because that would surprise the thread that
2121         // suspended us.
2122         sig_sem->signal();
2123 
2124         thread->java_suspend_self();
2125       }
2126     } while (threadIsSuspended);
2127   }
2128 }
2129 
2130 int os::signal_wait() {
2131   return check_pending_signals();
2132 }
2133 
2134 ////////////////////////////////////////////////////////////////////////////////
2135 // Virtual Memory
2136 
2137 static int page_size = -1;
2138 
2139 int os::vm_page_size() {
2140   assert(page_size != -1, "must call os::init");
2141   return page_size;
2142 }
2143 
2144 // Solaris allocates memory by pages.
2145 int os::vm_allocation_granularity() {
2146   assert(page_size != -1, "must call os::init");
2147   return page_size;
2148 }
2149 
2150 static bool recoverable_mmap_error(int err) {
2151   // See if the error is one we can let the caller handle. This
2152   // list of errno values comes from the Solaris mmap(2) man page.
2153   switch (err) {
2154   case EBADF:
2155   case EINVAL:
2156   case ENOTSUP:
2157     // let the caller deal with these errors
2158     return true;
2159 
2160   default:
2161     // Any remaining errors on this OS can cause our reserved mapping
2162     // to be lost. That can cause confusion where different data
2163     // structures think they have the same memory mapped. The worst
2164     // scenario is if both the VM and a library think they have the
2165     // same memory mapped.
2166     return false;
2167   }
2168 }
2169 
2170 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
2171                                     int err) {
2172   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2173           ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
2174           os::strerror(err), err);
2175 }
2176 
2177 static void warn_fail_commit_memory(char* addr, size_t bytes,
2178                                     size_t alignment_hint, bool exec,
2179                                     int err) {
2180   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2181           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
2182           alignment_hint, exec, os::strerror(err), err);
2183 }
2184 
2185 int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
2186   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2187   size_t size = bytes;
2188   char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
2189   if (res != NULL) {
2190     if (UseNUMAInterleaving) {
2191       numa_make_global(addr, bytes);
2192     }
2193     return 0;
2194   }
2195 
2196   int err = errno;  // save errno from mmap() call in mmap_chunk()
2197 
2198   if (!recoverable_mmap_error(err)) {
2199     warn_fail_commit_memory(addr, bytes, exec, err);
2200     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
2201   }
2202 
2203   return err;
2204 }
2205 
2206 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2207   return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
2208 }
2209 
2210 void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
2211                                   const char* mesg) {
2212   assert(mesg != NULL, "mesg must be specified");
2213   int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
2214   if (err != 0) {
2215     // the caller wants all commit errors to exit with the specified mesg:
2216     warn_fail_commit_memory(addr, bytes, exec, err);
2217     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2218   }
2219 }
2220 
2221 size_t os::Solaris::page_size_for_alignment(size_t alignment) {
2222   assert(is_aligned(alignment, (size_t) vm_page_size()),
2223          SIZE_FORMAT " is not aligned to " SIZE_FORMAT,
2224          alignment, (size_t) vm_page_size());
2225 
2226   for (int i = 0; _page_sizes[i] != 0; i++) {
2227     if (is_aligned(alignment, _page_sizes[i])) {
2228       return _page_sizes[i];
2229     }
2230   }
2231 
2232   return (size_t) vm_page_size();
2233 }
2234 
2235 int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
2236                                     size_t alignment_hint, bool exec) {
2237   int err = Solaris::commit_memory_impl(addr, bytes, exec);
2238   if (err == 0 && UseLargePages && alignment_hint > 0) {
2239     assert(is_aligned(bytes, alignment_hint),
2240            SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, alignment_hint);
2241 
2242     // The syscall memcntl requires an exact page size (see man memcntl for details).
2243     size_t page_size = page_size_for_alignment(alignment_hint);
2244     if (page_size > (size_t) vm_page_size()) {
2245       (void)Solaris::setup_large_pages(addr, bytes, page_size);
2246     }
2247   }
2248   return err;
2249 }
2250 
2251 bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
2252                           bool exec) {
2253   return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
2254 }
2255 
2256 void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
2257                                   size_t alignment_hint, bool exec,
2258                                   const char* mesg) {
2259   assert(mesg != NULL, "mesg must be specified");
2260   int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
2261   if (err != 0) {
2262     // the caller wants all commit errors to exit with the specified mesg:
2263     warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
2264     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2265   }
2266 }
2267 
2268 // Uncommit the pages in a specified region.
2269 void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
2270   if (madvise(addr, bytes, MADV_FREE) < 0) {
2271     debug_only(warning("MADV_FREE failed."));
2272     return;
2273   }
2274 }
2275 
2276 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2277   return os::commit_memory(addr, size, !ExecMem);
2278 }
2279 
2280 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2281   return os::uncommit_memory(addr, size);
2282 }
2283 
2284 // Change the page size in a given range.
2285 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2286   assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
2287   assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
2288   if (UseLargePages) {
2289     size_t page_size = Solaris::page_size_for_alignment(alignment_hint);
2290     if (page_size > (size_t) vm_page_size()) {
2291       Solaris::setup_large_pages(addr, bytes, page_size);
2292     }
2293   }
2294 }
2295 
2296 // Tell the OS to make the range local to the first-touching LWP
2297 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2298   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2299   if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
2300     debug_only(warning("MADV_ACCESS_LWP failed."));
2301   }
2302 }
2303 
2304 // Tell the OS that this range would be accessed from different LWPs.
2305 void os::numa_make_global(char *addr, size_t bytes) {
2306   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2307   if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
2308     debug_only(warning("MADV_ACCESS_MANY failed."));
2309   }
2310 }
2311 
2312 // Get the number of the locality groups.
2313 size_t os::numa_get_groups_num() {
2314   size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
2315   return n != -1 ? n : 1;
2316 }
2317 
2318 // Get a list of leaf locality groups. A leaf lgroup is group that
2319 // doesn't have any children. Typical leaf group is a CPU or a CPU/memory
2320 // board. An LWP is assigned to one of these groups upon creation.
2321 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2322   if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
2323     ids[0] = 0;
2324     return 1;
2325   }
2326   int result_size = 0, top = 1, bottom = 0, cur = 0;
2327   for (int k = 0; k < size; k++) {
2328     int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
2329                                    (Solaris::lgrp_id_t*)&ids[top], size - top);
2330     if (r == -1) {
2331       ids[0] = 0;
2332       return 1;
2333     }
2334     if (!r) {
2335       // That's a leaf node.
2336       assert(bottom <= cur, "Sanity check");
2337       // Check if the node has memory
2338       if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
2339                                   NULL, 0, LGRP_RSRC_MEM) > 0) {
2340         ids[bottom++] = ids[cur];
2341       }
2342     }
2343     top += r;
2344     cur++;
2345   }
2346   if (bottom == 0) {
2347     // Handle a situation, when the OS reports no memory available.
2348     // Assume UMA architecture.
2349     ids[0] = 0;
2350     return 1;
2351   }
2352   return bottom;
2353 }
2354 
2355 // Detect the topology change. Typically happens during CPU plugging-unplugging.
2356 bool os::numa_topology_changed() {
2357   int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
2358   if (is_stale != -1 && is_stale) {
2359     Solaris::lgrp_fini(Solaris::lgrp_cookie());
2360     Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
2361     assert(c != 0, "Failure to initialize LGRP API");
2362     Solaris::set_lgrp_cookie(c);
2363     return true;
2364   }
2365   return false;
2366 }
2367 
2368 // Get the group id of the current LWP.
2369 int os::numa_get_group_id() {
2370   int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
2371   if (lgrp_id == -1) {
2372     return 0;
2373   }
2374   const int size = os::numa_get_groups_num();
2375   int *ids = (int*)alloca(size * sizeof(int));
2376 
2377   // Get the ids of all lgroups with memory; r is the count.
2378   int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
2379                                   (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
2380   if (r <= 0) {
2381     return 0;
2382   }
2383   return ids[os::random() % r];
2384 }
2385 
2386 // Request information about the page.
2387 bool os::get_page_info(char *start, page_info* info) {
2388   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2389   uint64_t addr = (uintptr_t)start;
2390   uint64_t outdata[2];
2391   uint_t validity = 0;
2392 
2393   if (meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
2394     return false;
2395   }
2396 
2397   info->size = 0;
2398   info->lgrp_id = -1;
2399 
2400   if ((validity & 1) != 0) {
2401     if ((validity & 2) != 0) {
2402       info->lgrp_id = outdata[0];
2403     }
2404     if ((validity & 4) != 0) {
2405       info->size = outdata[1];
2406     }
2407     return true;
2408   }
2409   return false;
2410 }
2411 
2412 // Scan the pages from start to end until a page different than
2413 // the one described in the info parameter is encountered.
2414 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2415                      page_info* page_found) {
2416   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2417   const size_t types = sizeof(info_types) / sizeof(info_types[0]);
2418   uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT + 1];
2419   uint_t validity[MAX_MEMINFO_CNT];
2420 
2421   size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
2422   uint64_t p = (uint64_t)start;
2423   while (p < (uint64_t)end) {
2424     addrs[0] = p;
2425     size_t addrs_count = 1;
2426     while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
2427       addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
2428       addrs_count++;
2429     }
2430 
2431     if (meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
2432       return NULL;
2433     }
2434 
2435     size_t i = 0;
2436     for (; i < addrs_count; i++) {
2437       if ((validity[i] & 1) != 0) {
2438         if ((validity[i] & 4) != 0) {
2439           if (outdata[types * i + 1] != page_expected->size) {
2440             break;
2441           }
2442         } else if (page_expected->size != 0) {
2443           break;
2444         }
2445 
2446         if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
2447           if (outdata[types * i] != page_expected->lgrp_id) {
2448             break;
2449           }
2450         }
2451       } else {
2452         return NULL;
2453       }
2454     }
2455 
2456     if (i < addrs_count) {
2457       if ((validity[i] & 2) != 0) {
2458         page_found->lgrp_id = outdata[types * i];
2459       } else {
2460         page_found->lgrp_id = -1;
2461       }
2462       if ((validity[i] & 4) != 0) {
2463         page_found->size = outdata[types * i + 1];
2464       } else {
2465         page_found->size = 0;
2466       }
2467       return (char*)addrs[i];
2468     }
2469 
2470     p = addrs[addrs_count - 1] + page_size;
2471   }
2472   return end;
2473 }
2474 
2475 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
2476   size_t size = bytes;
2477   // Map uncommitted pages PROT_NONE so we fail early if we touch an
2478   // uncommitted page. Otherwise, the read/write might succeed if we
2479   // have enough swap space to back the physical page.
2480   return
2481     NULL != Solaris::mmap_chunk(addr, size,
2482                                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
2483                                 PROT_NONE);
2484 }
2485 
2486 char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
2487   char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
2488 
2489   if (b == MAP_FAILED) {
2490     return NULL;
2491   }
2492   return b;
2493 }
2494 
2495 char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes,
2496                              size_t alignment_hint, bool fixed) {
2497   char* addr = requested_addr;
2498   int flags = MAP_PRIVATE | MAP_NORESERVE;
2499 
2500   assert(!(fixed && (alignment_hint > 0)),
2501          "alignment hint meaningless with fixed mmap");
2502 
2503   if (fixed) {
2504     flags |= MAP_FIXED;
2505   } else if (alignment_hint > (size_t) vm_page_size()) {
2506     flags |= MAP_ALIGN;
2507     addr = (char*) alignment_hint;
2508   }
2509 
2510   // Map uncommitted pages PROT_NONE so we fail early if we touch an
2511   // uncommitted page. Otherwise, the read/write might succeed if we
2512   // have enough swap space to back the physical page.
2513   return mmap_chunk(addr, bytes, flags, PROT_NONE);
2514 }
2515 
2516 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2517                             size_t alignment_hint) {
2518   char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint,
2519                                   (requested_addr != NULL));
2520 
2521   guarantee(requested_addr == NULL || requested_addr == addr,
2522             "OS failed to return requested mmap address.");
2523   return addr;
2524 }
2525 
2526 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
2527   assert(file_desc >= 0, "file_desc is not valid");
2528   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
2529   if (result != NULL) {
2530     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
2531       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
2532     }
2533   }
2534   return result;
2535 }
2536 
2537 // Reserve memory at an arbitrary address, only if that area is
2538 // available (and not reserved for something else).
2539 
2540 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2541   const int max_tries = 10;
2542   char* base[max_tries];
2543   size_t size[max_tries];
2544 
2545   // Solaris adds a gap between mmap'ed regions.  The size of the gap
2546   // is dependent on the requested size and the MMU.  Our initial gap
2547   // value here is just a guess and will be corrected later.
2548   bool had_top_overlap = false;
2549   bool have_adjusted_gap = false;
2550   size_t gap = 0x400000;
2551 
2552   // Assert only that the size is a multiple of the page size, since
2553   // that's all that mmap requires, and since that's all we really know
2554   // about at this low abstraction level.  If we need higher alignment,
2555   // we can either pass an alignment to this method or verify alignment
2556   // in one of the methods further up the call chain.  See bug 5044738.
2557   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2558 
2559   // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
2560   // Give it a try, if the kernel honors the hint we can return immediately.
2561   char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
2562 
2563   volatile int err = errno;
2564   if (addr == requested_addr) {
2565     return addr;
2566   } else if (addr != NULL) {
2567     pd_unmap_memory(addr, bytes);
2568   }
2569 
2570   if (log_is_enabled(Warning, os)) {
2571     char buf[256];
2572     buf[0] = '\0';
2573     if (addr == NULL) {
2574       jio_snprintf(buf, sizeof(buf), ": %s", os::strerror(err));
2575     }
2576     log_info(os)("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
2577             PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
2578             "%s", bytes, requested_addr, addr, buf);
2579   }
2580 
2581   // Address hint method didn't work.  Fall back to the old method.
2582   // In theory, once SNV becomes our oldest supported platform, this
2583   // code will no longer be needed.
2584   //
2585   // Repeatedly allocate blocks until the block is allocated at the
2586   // right spot. Give up after max_tries.
2587   int i;
2588   for (i = 0; i < max_tries; ++i) {
2589     base[i] = reserve_memory(bytes);
2590 
2591     if (base[i] != NULL) {
2592       // Is this the block we wanted?
2593       if (base[i] == requested_addr) {
2594         size[i] = bytes;
2595         break;
2596       }
2597 
2598       // check that the gap value is right
2599       if (had_top_overlap && !have_adjusted_gap) {
2600         size_t actual_gap = base[i-1] - base[i] - bytes;
2601         if (gap != actual_gap) {
2602           // adjust the gap value and retry the last 2 allocations
2603           assert(i > 0, "gap adjustment code problem");
2604           have_adjusted_gap = true;  // adjust the gap only once, just in case
2605           gap = actual_gap;
2606           log_info(os)("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
2607           unmap_memory(base[i], bytes);
2608           unmap_memory(base[i-1], size[i-1]);
2609           i-=2;
2610           continue;
2611         }
2612       }
2613 
2614       // Does this overlap the block we wanted? Give back the overlapped
2615       // parts and try again.
2616       //
2617       // There is still a bug in this code: if top_overlap == bytes,
2618       // the overlap is offset from requested region by the value of gap.
2619       // In this case giving back the overlapped part will not work,
2620       // because we'll give back the entire block at base[i] and
2621       // therefore the subsequent allocation will not generate a new gap.
2622       // This could be fixed with a new algorithm that used larger
2623       // or variable size chunks to find the requested region -
2624       // but such a change would introduce additional complications.
2625       // It's rare enough that the planets align for this bug,
2626       // so we'll just wait for a fix for 6204603/5003415 which
2627       // will provide a mmap flag to allow us to avoid this business.
2628 
2629       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2630       if (top_overlap >= 0 && top_overlap < bytes) {
2631         had_top_overlap = true;
2632         unmap_memory(base[i], top_overlap);
2633         base[i] += top_overlap;
2634         size[i] = bytes - top_overlap;
2635       } else {
2636         size_t bottom_overlap = base[i] + bytes - requested_addr;
2637         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2638           if (bottom_overlap == 0) {
2639             log_info(os)("attempt_reserve_memory_at: possible alignment bug");
2640           }
2641           unmap_memory(requested_addr, bottom_overlap);
2642           size[i] = bytes - bottom_overlap;
2643         } else {
2644           size[i] = bytes;
2645         }
2646       }
2647     }
2648   }
2649 
2650   // Give back the unused reserved pieces.
2651 
2652   for (int j = 0; j < i; ++j) {
2653     if (base[j] != NULL) {
2654       unmap_memory(base[j], size[j]);
2655     }
2656   }
2657 
2658   return (i < max_tries) ? requested_addr : NULL;
2659 }
2660 
2661 bool os::pd_release_memory(char* addr, size_t bytes) {
2662   size_t size = bytes;
2663   return munmap(addr, size) == 0;
2664 }
2665 
2666 static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
2667   assert(addr == (char*)align_down((uintptr_t)addr, os::vm_page_size()),
2668          "addr must be page aligned");
2669   Events::log(NULL, "Protecting memory [" INTPTR_FORMAT "," INTPTR_FORMAT "] with protection modes %x", p2i(addr), p2i(addr+bytes), prot);
2670   int retVal = mprotect(addr, bytes, prot);
2671   return retVal == 0;
2672 }
2673 
2674 // Protect memory (Used to pass readonly pages through
2675 // JNI GetArray<type>Elements with empty arrays.)
2676 // Also, used for serialization page and for compressed oops null pointer
2677 // checking.
2678 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2679                         bool is_committed) {
2680   unsigned int p = 0;
2681   switch (prot) {
2682   case MEM_PROT_NONE: p = PROT_NONE; break;
2683   case MEM_PROT_READ: p = PROT_READ; break;
2684   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2685   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2686   default:
2687     ShouldNotReachHere();
2688   }
2689   // is_committed is unused.
2690   return solaris_mprotect(addr, bytes, p);
2691 }
2692 
2693 // guard_memory and unguard_memory only happens within stack guard pages.
2694 // Since ISM pertains only to the heap, guard and unguard memory should not
2695 /// happen with an ISM region.
2696 bool os::guard_memory(char* addr, size_t bytes) {
2697   return solaris_mprotect(addr, bytes, PROT_NONE);
2698 }
2699 
2700 bool os::unguard_memory(char* addr, size_t bytes) {
2701   return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
2702 }
2703 
2704 // Large page support
2705 static size_t _large_page_size = 0;
2706 
2707 // Insertion sort for small arrays (descending order).
2708 static void insertion_sort_descending(size_t* array, int len) {
2709   for (int i = 0; i < len; i++) {
2710     size_t val = array[i];
2711     for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
2712       size_t tmp = array[key];
2713       array[key] = array[key - 1];
2714       array[key - 1] = tmp;
2715     }
2716   }
2717 }
2718 
2719 bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
2720   const unsigned int usable_count = VM_Version::page_size_count();
2721   if (usable_count == 1) {
2722     return false;
2723   }
2724 
2725   // Find the right getpagesizes interface.  When solaris 11 is the minimum
2726   // build platform, getpagesizes() (without the '2') can be called directly.
2727   typedef int (*gps_t)(size_t[], int);
2728   gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
2729   if (gps_func == NULL) {
2730     gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
2731     if (gps_func == NULL) {
2732       if (warn) {
2733         warning("MPSS is not supported by the operating system.");
2734       }
2735       return false;
2736     }
2737   }
2738 
2739   // Fill the array of page sizes.
2740   int n = (*gps_func)(_page_sizes, page_sizes_max);
2741   assert(n > 0, "Solaris bug?");
2742 
2743   if (n == page_sizes_max) {
2744     // Add a sentinel value (necessary only if the array was completely filled
2745     // since it is static (zeroed at initialization)).
2746     _page_sizes[--n] = 0;
2747     DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
2748   }
2749   assert(_page_sizes[n] == 0, "missing sentinel");
2750   trace_page_sizes("available page sizes", _page_sizes, n);
2751 
2752   if (n == 1) return false;     // Only one page size available.
2753 
2754   // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
2755   // select up to usable_count elements.  First sort the array, find the first
2756   // acceptable value, then copy the usable sizes to the top of the array and
2757   // trim the rest.  Make sure to include the default page size :-).
2758   //
2759   // A better policy could get rid of the 4M limit by taking the sizes of the
2760   // important VM memory regions (java heap and possibly the code cache) into
2761   // account.
2762   insertion_sort_descending(_page_sizes, n);
2763   const size_t size_limit =
2764     FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
2765   int beg;
2766   for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */;
2767   const int end = MIN2((int)usable_count, n) - 1;
2768   for (int cur = 0; cur < end; ++cur, ++beg) {
2769     _page_sizes[cur] = _page_sizes[beg];
2770   }
2771   _page_sizes[end] = vm_page_size();
2772   _page_sizes[end + 1] = 0;
2773 
2774   if (_page_sizes[end] > _page_sizes[end - 1]) {
2775     // Default page size is not the smallest; sort again.
2776     insertion_sort_descending(_page_sizes, end + 1);
2777   }
2778   *page_size = _page_sizes[0];
2779 
2780   trace_page_sizes("usable page sizes", _page_sizes, end + 1);
2781   return true;
2782 }
2783 
2784 void os::large_page_init() {
2785   if (UseLargePages) {
2786     // print a warning if any large page related flag is specified on command line
2787     bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
2788                            !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2789 
2790     UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
2791   }
2792 }
2793 
2794 bool os::Solaris::is_valid_page_size(size_t bytes) {
2795   for (int i = 0; _page_sizes[i] != 0; i++) {
2796     if (_page_sizes[i] == bytes) {
2797       return true;
2798     }
2799   }
2800   return false;
2801 }
2802 
2803 bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
2804   assert(is_valid_page_size(align), SIZE_FORMAT " is not a valid page size", align);
2805   assert(is_aligned((void*) start, align),
2806          PTR_FORMAT " is not aligned to " SIZE_FORMAT, p2i((void*) start), align);
2807   assert(is_aligned(bytes, align),
2808          SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, align);
2809 
2810   // Signal to OS that we want large pages for addresses
2811   // from addr, addr + bytes
2812   struct memcntl_mha mpss_struct;
2813   mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
2814   mpss_struct.mha_pagesize = align;
2815   mpss_struct.mha_flags = 0;
2816   // Upon successful completion, memcntl() returns 0
2817   if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
2818     debug_only(warning("Attempt to use MPSS failed."));
2819     return false;
2820   }
2821   return true;
2822 }
2823 
2824 char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
2825   fatal("os::reserve_memory_special should not be called on Solaris.");
2826   return NULL;
2827 }
2828 
2829 bool os::release_memory_special(char* base, size_t bytes) {
2830   fatal("os::release_memory_special should not be called on Solaris.");
2831   return false;
2832 }
2833 
2834 size_t os::large_page_size() {
2835   return _large_page_size;
2836 }
2837 
2838 // MPSS allows application to commit large page memory on demand; with ISM
2839 // the entire memory region must be allocated as shared memory.
2840 bool os::can_commit_large_page_memory() {
2841   return true;
2842 }
2843 
2844 bool os::can_execute_large_page_memory() {
2845   return true;
2846 }
2847 
2848 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2849 void os::infinite_sleep() {
2850   while (true) {    // sleep forever ...
2851     ::sleep(100);   // ... 100 seconds at a time
2852   }
2853 }
2854 
2855 // Used to convert frequent JVM_Yield() to nops
2856 bool os::dont_yield() {
2857   if (DontYieldALot) {
2858     static hrtime_t last_time = 0;
2859     hrtime_t diff = getTimeNanos() - last_time;
2860 
2861     if (diff < DontYieldALotInterval * 1000000) {
2862       return true;
2863     }
2864 
2865     last_time += diff;
2866 
2867     return false;
2868   } else {
2869     return false;
2870   }
2871 }
2872 
2873 // Note that yield semantics are defined by the scheduling class to which
2874 // the thread currently belongs.  Typically, yield will _not yield to
2875 // other equal or higher priority threads that reside on the dispatch queues
2876 // of other CPUs.
2877 
2878 void os::naked_yield() {
2879   thr_yield();
2880 }
2881 
2882 // Interface for setting lwp priorities.  We are using T2 libthread,
2883 // which forces the use of bound threads, so all of our threads will
2884 // be assigned to real lwp's.  Using the thr_setprio function is
2885 // meaningless in this mode so we must adjust the real lwp's priority.
2886 // The routines below implement the getting and setting of lwp priorities.
2887 //
2888 // Note: There are three priority scales used on Solaris.  Java priotities
2889 //       which range from 1 to 10, libthread "thr_setprio" scale which range
2890 //       from 0 to 127, and the current scheduling class of the process we
2891 //       are running in.  This is typically from -60 to +60.
2892 //       The setting of the lwp priorities in done after a call to thr_setprio
2893 //       so Java priorities are mapped to libthread priorities and we map from
2894 //       the latter to lwp priorities.  We don't keep priorities stored in
2895 //       Java priorities since some of our worker threads want to set priorities
2896 //       higher than all Java threads.
2897 //
2898 // For related information:
2899 // (1)  man -s 2 priocntl
2900 // (2)  man -s 4 priocntl
2901 // (3)  man dispadmin
2902 // =    librt.so
2903 // =    libthread/common/rtsched.c - thrp_setlwpprio().
2904 // =    ps -cL <pid> ... to validate priority.
2905 // =    sched_get_priority_min and _max
2906 //              pthread_create
2907 //              sched_setparam
2908 //              pthread_setschedparam
2909 //
2910 // Assumptions:
2911 // +    We assume that all threads in the process belong to the same
2912 //              scheduling class.   IE. an homogenous process.
2913 // +    Must be root or in IA group to change change "interactive" attribute.
2914 //              Priocntl() will fail silently.  The only indication of failure is when
2915 //              we read-back the value and notice that it hasn't changed.
2916 // +    Interactive threads enter the runq at the head, non-interactive at the tail.
2917 // +    For RT, change timeslice as well.  Invariant:
2918 //              constant "priority integral"
2919 //              Konst == TimeSlice * (60-Priority)
2920 //              Given a priority, compute appropriate timeslice.
2921 // +    Higher numerical values have higher priority.
2922 
2923 // sched class attributes
2924 typedef struct {
2925   int   schedPolicy;              // classID
2926   int   maxPrio;
2927   int   minPrio;
2928 } SchedInfo;
2929 
2930 
2931 static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
2932 
2933 #ifdef ASSERT
2934 static int  ReadBackValidate = 1;
2935 #endif
2936 static int  myClass     = 0;
2937 static int  myMin       = 0;
2938 static int  myMax       = 0;
2939 static int  myCur       = 0;
2940 static bool priocntl_enable = false;
2941 
2942 static const int criticalPrio = FXCriticalPriority;
2943 static int java_MaxPriority_to_os_priority = 0; // Saved mapping
2944 
2945 
2946 // lwp_priocntl_init
2947 //
2948 // Try to determine the priority scale for our process.
2949 //
2950 // Return errno or 0 if OK.
2951 //
2952 static int lwp_priocntl_init() {
2953   int rslt;
2954   pcinfo_t ClassInfo;
2955   pcparms_t ParmInfo;
2956   int i;
2957 
2958   if (!UseThreadPriorities) return 0;
2959 
2960   // If ThreadPriorityPolicy is 1, switch tables
2961   if (ThreadPriorityPolicy == 1) {
2962     for (i = 0; i < CriticalPriority+1; i++)
2963       os::java_to_os_priority[i] = prio_policy1[i];
2964   }
2965   if (UseCriticalJavaThreadPriority) {
2966     // MaxPriority always maps to the FX scheduling class and criticalPrio.
2967     // See set_native_priority() and set_lwp_class_and_priority().
2968     // Save original MaxPriority mapping in case attempt to
2969     // use critical priority fails.
2970     java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
2971     // Set negative to distinguish from other priorities
2972     os::java_to_os_priority[MaxPriority] = -criticalPrio;
2973   }
2974 
2975   // Get IDs for a set of well-known scheduling classes.
2976   // TODO-FIXME: GETCLINFO returns the current # of classes in the
2977   // the system.  We should have a loop that iterates over the
2978   // classID values, which are known to be "small" integers.
2979 
2980   strcpy(ClassInfo.pc_clname, "TS");
2981   ClassInfo.pc_cid = -1;
2982   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
2983   if (rslt < 0) return errno;
2984   assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
2985   tsLimits.schedPolicy = ClassInfo.pc_cid;
2986   tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
2987   tsLimits.minPrio = -tsLimits.maxPrio;
2988 
2989   strcpy(ClassInfo.pc_clname, "IA");
2990   ClassInfo.pc_cid = -1;
2991   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
2992   if (rslt < 0) return errno;
2993   assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
2994   iaLimits.schedPolicy = ClassInfo.pc_cid;
2995   iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
2996   iaLimits.minPrio = -iaLimits.maxPrio;
2997 
2998   strcpy(ClassInfo.pc_clname, "RT");
2999   ClassInfo.pc_cid = -1;
3000   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3001   if (rslt < 0) return errno;
3002   assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
3003   rtLimits.schedPolicy = ClassInfo.pc_cid;
3004   rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
3005   rtLimits.minPrio = 0;
3006 
3007   strcpy(ClassInfo.pc_clname, "FX");
3008   ClassInfo.pc_cid = -1;
3009   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3010   if (rslt < 0) return errno;
3011   assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
3012   fxLimits.schedPolicy = ClassInfo.pc_cid;
3013   fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
3014   fxLimits.minPrio = 0;
3015 
3016   // Query our "current" scheduling class.
3017   // This will normally be IA, TS or, rarely, FX or RT.
3018   memset(&ParmInfo, 0, sizeof(ParmInfo));
3019   ParmInfo.pc_cid = PC_CLNULL;
3020   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3021   if (rslt < 0) return errno;
3022   myClass = ParmInfo.pc_cid;
3023 
3024   // We now know our scheduling classId, get specific information
3025   // about the class.
3026   ClassInfo.pc_cid = myClass;
3027   ClassInfo.pc_clname[0] = 0;
3028   rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
3029   if (rslt < 0) return errno;
3030 
3031   if (ThreadPriorityVerbose) {
3032     tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
3033   }
3034 
3035   memset(&ParmInfo, 0, sizeof(pcparms_t));
3036   ParmInfo.pc_cid = PC_CLNULL;
3037   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3038   if (rslt < 0) return errno;
3039 
3040   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3041     myMin = rtLimits.minPrio;
3042     myMax = rtLimits.maxPrio;
3043   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3044     iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3045     myMin = iaLimits.minPrio;
3046     myMax = iaLimits.maxPrio;
3047     myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
3048   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3049     tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3050     myMin = tsLimits.minPrio;
3051     myMax = tsLimits.maxPrio;
3052     myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
3053   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3054     fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
3055     myMin = fxLimits.minPrio;
3056     myMax = fxLimits.maxPrio;
3057     myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
3058   } else {
3059     // No clue - punt
3060     if (ThreadPriorityVerbose) {
3061       tty->print_cr("Unknown scheduling class: %s ... \n",
3062                     ClassInfo.pc_clname);
3063     }
3064     return EINVAL;      // no clue, punt
3065   }
3066 
3067   if (ThreadPriorityVerbose) {
3068     tty->print_cr("Thread priority Range: [%d..%d]\n", myMin, myMax);
3069   }
3070 
3071   priocntl_enable = true;  // Enable changing priorities
3072   return 0;
3073 }
3074 
3075 #define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
3076 #define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
3077 #define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
3078 #define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
3079 
3080 
3081 // scale_to_lwp_priority
3082 //
3083 // Convert from the libthread "thr_setprio" scale to our current
3084 // lwp scheduling class scale.
3085 //
3086 static int scale_to_lwp_priority(int rMin, int rMax, int x) {
3087   int v;
3088 
3089   if (x == 127) return rMax;            // avoid round-down
3090   v = (((x*(rMax-rMin)))/128)+rMin;
3091   return v;
3092 }
3093 
3094 
3095 // set_lwp_class_and_priority
3096 int set_lwp_class_and_priority(int ThreadID, int lwpid,
3097                                int newPrio, int new_class, bool scale) {
3098   int rslt;
3099   int Actual, Expected, prv;
3100   pcparms_t ParmInfo;                   // for GET-SET
3101 #ifdef ASSERT
3102   pcparms_t ReadBack;                   // for readback
3103 #endif
3104 
3105   // Set priority via PC_GETPARMS, update, PC_SETPARMS
3106   // Query current values.
3107   // TODO: accelerate this by eliminating the PC_GETPARMS call.
3108   // Cache "pcparms_t" in global ParmCache.
3109   // TODO: elide set-to-same-value
3110 
3111   // If something went wrong on init, don't change priorities.
3112   if (!priocntl_enable) {
3113     if (ThreadPriorityVerbose) {
3114       tty->print_cr("Trying to set priority but init failed, ignoring");
3115     }
3116     return EINVAL;
3117   }
3118 
3119   // If lwp hasn't started yet, just return
3120   // the _start routine will call us again.
3121   if (lwpid <= 0) {
3122     if (ThreadPriorityVerbose) {
3123       tty->print_cr("deferring the set_lwp_class_and_priority of thread "
3124                     INTPTR_FORMAT " to %d, lwpid not set",
3125                     ThreadID, newPrio);
3126     }
3127     return 0;
3128   }
3129 
3130   if (ThreadPriorityVerbose) {
3131     tty->print_cr ("set_lwp_class_and_priority("
3132                    INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
3133                    ThreadID, lwpid, newPrio);
3134   }
3135 
3136   memset(&ParmInfo, 0, sizeof(pcparms_t));
3137   ParmInfo.pc_cid = PC_CLNULL;
3138   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
3139   if (rslt < 0) return errno;
3140 
3141   int cur_class = ParmInfo.pc_cid;
3142   ParmInfo.pc_cid = (id_t)new_class;
3143 
3144   if (new_class == rtLimits.schedPolicy) {
3145     rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
3146     rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
3147                                                        rtLimits.maxPrio, newPrio)
3148                                : newPrio;
3149     rtInfo->rt_tqsecs  = RT_NOCHANGE;
3150     rtInfo->rt_tqnsecs = RT_NOCHANGE;
3151     if (ThreadPriorityVerbose) {
3152       tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
3153     }
3154   } else if (new_class == iaLimits.schedPolicy) {
3155     iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3156     int maxClamped     = MIN2(iaLimits.maxPrio,
3157                               cur_class == new_class
3158                               ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
3159     iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
3160                                                        maxClamped, newPrio)
3161                                : newPrio;
3162     iaInfo->ia_uprilim = cur_class == new_class
3163                            ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
3164     iaInfo->ia_mode    = IA_NOCHANGE;
3165     if (ThreadPriorityVerbose) {
3166       tty->print_cr("IA: [%d...%d] %d->%d\n",
3167                     iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
3168     }
3169   } else if (new_class == tsLimits.schedPolicy) {
3170     tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3171     int maxClamped     = MIN2(tsLimits.maxPrio,
3172                               cur_class == new_class
3173                               ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
3174     tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
3175                                                        maxClamped, newPrio)
3176                                : newPrio;
3177     tsInfo->ts_uprilim = cur_class == new_class
3178                            ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
3179     if (ThreadPriorityVerbose) {
3180       tty->print_cr("TS: [%d...%d] %d->%d\n",
3181                     tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
3182     }
3183   } else if (new_class == fxLimits.schedPolicy) {
3184     fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
3185     int maxClamped     = MIN2(fxLimits.maxPrio,
3186                               cur_class == new_class
3187                               ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
3188     fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
3189                                                        maxClamped, newPrio)
3190                                : newPrio;
3191     fxInfo->fx_uprilim = cur_class == new_class
3192                            ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
3193     fxInfo->fx_tqsecs  = FX_NOCHANGE;
3194     fxInfo->fx_tqnsecs = FX_NOCHANGE;
3195     if (ThreadPriorityVerbose) {
3196       tty->print_cr("FX: [%d...%d] %d->%d\n",
3197                     fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
3198     }
3199   } else {
3200     if (ThreadPriorityVerbose) {
3201       tty->print_cr("Unknown new scheduling class %d\n", new_class);
3202     }
3203     return EINVAL;    // no clue, punt
3204   }
3205 
3206   rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
3207   if (ThreadPriorityVerbose && rslt) {
3208     tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
3209   }
3210   if (rslt < 0) return errno;
3211 
3212 #ifdef ASSERT
3213   // Sanity check: read back what we just attempted to set.
3214   // In theory it could have changed in the interim ...
3215   //
3216   // The priocntl system call is tricky.
3217   // Sometimes it'll validate the priority value argument and
3218   // return EINVAL if unhappy.  At other times it fails silently.
3219   // Readbacks are prudent.
3220 
3221   if (!ReadBackValidate) return 0;
3222 
3223   memset(&ReadBack, 0, sizeof(pcparms_t));
3224   ReadBack.pc_cid = PC_CLNULL;
3225   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
3226   assert(rslt >= 0, "priocntl failed");
3227   Actual = Expected = 0xBAD;
3228   assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
3229   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3230     Actual   = RTPRI(ReadBack)->rt_pri;
3231     Expected = RTPRI(ParmInfo)->rt_pri;
3232   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3233     Actual   = IAPRI(ReadBack)->ia_upri;
3234     Expected = IAPRI(ParmInfo)->ia_upri;
3235   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3236     Actual   = TSPRI(ReadBack)->ts_upri;
3237     Expected = TSPRI(ParmInfo)->ts_upri;
3238   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3239     Actual   = FXPRI(ReadBack)->fx_upri;
3240     Expected = FXPRI(ParmInfo)->fx_upri;
3241   } else {
3242     if (ThreadPriorityVerbose) {
3243       tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
3244                     ParmInfo.pc_cid);
3245     }
3246   }
3247 
3248   if (Actual != Expected) {
3249     if (ThreadPriorityVerbose) {
3250       tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
3251                      lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
3252     }
3253   }
3254 #endif
3255 
3256   return 0;
3257 }
3258 
3259 // Solaris only gives access to 128 real priorities at a time,
3260 // so we expand Java's ten to fill this range.  This would be better
3261 // if we dynamically adjusted relative priorities.
3262 //
3263 // The ThreadPriorityPolicy option allows us to select 2 different
3264 // priority scales.
3265 //
3266 // ThreadPriorityPolicy=0
3267 // Since the Solaris' default priority is MaximumPriority, we do not
3268 // set a priority lower than Max unless a priority lower than
3269 // NormPriority is requested.
3270 //
3271 // ThreadPriorityPolicy=1
3272 // This mode causes the priority table to get filled with
3273 // linear values.  NormPriority get's mapped to 50% of the
3274 // Maximum priority an so on.  This will cause VM threads
3275 // to get unfair treatment against other Solaris processes
3276 // which do not explicitly alter their thread priorities.
3277 
3278 int os::java_to_os_priority[CriticalPriority + 1] = {
3279   -99999,         // 0 Entry should never be used
3280 
3281   0,              // 1 MinPriority
3282   32,             // 2
3283   64,             // 3
3284 
3285   96,             // 4
3286   127,            // 5 NormPriority
3287   127,            // 6
3288 
3289   127,            // 7
3290   127,            // 8
3291   127,            // 9 NearMaxPriority
3292 
3293   127,            // 10 MaxPriority
3294 
3295   -criticalPrio   // 11 CriticalPriority
3296 };
3297 
3298 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3299   OSThread* osthread = thread->osthread();
3300 
3301   // Save requested priority in case the thread hasn't been started
3302   osthread->set_native_priority(newpri);
3303 
3304   // Check for critical priority request
3305   bool fxcritical = false;
3306   if (newpri == -criticalPrio) {
3307     fxcritical = true;
3308     newpri = criticalPrio;
3309   }
3310 
3311   assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
3312   if (!UseThreadPriorities) return OS_OK;
3313 
3314   int status = 0;
3315 
3316   if (!fxcritical) {
3317     // Use thr_setprio only if we have a priority that thr_setprio understands
3318     status = thr_setprio(thread->osthread()->thread_id(), newpri);
3319   }
3320 
3321   int lwp_status =
3322           set_lwp_class_and_priority(osthread->thread_id(),
3323                                      osthread->lwp_id(),
3324                                      newpri,
3325                                      fxcritical ? fxLimits.schedPolicy : myClass,
3326                                      !fxcritical);
3327   if (lwp_status != 0 && fxcritical) {
3328     // Try again, this time without changing the scheduling class
3329     newpri = java_MaxPriority_to_os_priority;
3330     lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
3331                                             osthread->lwp_id(),
3332                                             newpri, myClass, false);
3333   }
3334   status |= lwp_status;
3335   return (status == 0) ? OS_OK : OS_ERR;
3336 }
3337 
3338 
3339 OSReturn os::get_native_priority(const Thread* const thread,
3340                                  int *priority_ptr) {
3341   int p;
3342   if (!UseThreadPriorities) {
3343     *priority_ptr = NormalPriority;
3344     return OS_OK;
3345   }
3346   int status = thr_getprio(thread->osthread()->thread_id(), &p);
3347   if (status != 0) {
3348     return OS_ERR;
3349   }
3350   *priority_ptr = p;
3351   return OS_OK;
3352 }
3353 
3354 ////////////////////////////////////////////////////////////////////////////////
3355 // suspend/resume support
3356 
3357 //  The low-level signal-based suspend/resume support is a remnant from the
3358 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3359 //  within hotspot. Currently used by JFR's OSThreadSampler
3360 //
3361 //  The remaining code is greatly simplified from the more general suspension
3362 //  code that used to be used.
3363 //
3364 //  The protocol is quite simple:
3365 //  - suspend:
3366 //      - sends a signal to the target thread
3367 //      - polls the suspend state of the osthread using a yield loop
3368 //      - target thread signal handler (SR_handler) sets suspend state
3369 //        and blocks in sigsuspend until continued
3370 //  - resume:
3371 //      - sets target osthread state to continue
3372 //      - sends signal to end the sigsuspend loop in the SR_handler
3373 //
3374 //  Note that the SR_lock plays no role in this suspend/resume protocol,
3375 //  but is checked for NULL in SR_handler as a thread termination indicator.
3376 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
3377 //
3378 //  Note that resume_clear_context() and suspend_save_context() are needed
3379 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
3380 //  which in part is used by:
3381 //    - Forte Analyzer: AsyncGetCallTrace()
3382 //    - StackBanging: get_frame_at_stack_banging_point()
3383 //    - JFR: get_topframe()-->....-->get_valid_uc_in_signal_handler()
3384 
3385 static void resume_clear_context(OSThread *osthread) {
3386   osthread->set_ucontext(NULL);
3387 }
3388 
3389 static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
3390   osthread->set_ucontext(context);
3391 }
3392 
3393 static PosixSemaphore sr_semaphore;
3394 
3395 void os::Solaris::SR_handler(Thread* thread, ucontext_t* context) {
3396   // Save and restore errno to avoid confusing native code with EINTR
3397   // after sigsuspend.
3398   int old_errno = errno;
3399 
3400   OSThread* osthread = thread->osthread();
3401   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3402 
3403   os::SuspendResume::State current = osthread->sr.state();
3404   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3405     suspend_save_context(osthread, context);
3406 
3407     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3408     os::SuspendResume::State state = osthread->sr.suspended();
3409     if (state == os::SuspendResume::SR_SUSPENDED) {
3410       sigset_t suspend_set;  // signals for sigsuspend()
3411 
3412       // get current set of blocked signals and unblock resume signal
3413       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3414       sigdelset(&suspend_set, ASYNC_SIGNAL);
3415 
3416       sr_semaphore.signal();
3417       // wait here until we are resumed
3418       while (1) {
3419         sigsuspend(&suspend_set);
3420 
3421         os::SuspendResume::State result = osthread->sr.running();
3422         if (result == os::SuspendResume::SR_RUNNING) {
3423           sr_semaphore.signal();
3424           break;
3425         }
3426       }
3427 
3428     } else if (state == os::SuspendResume::SR_RUNNING) {
3429       // request was cancelled, continue
3430     } else {
3431       ShouldNotReachHere();
3432     }
3433 
3434     resume_clear_context(osthread);
3435   } else if (current == os::SuspendResume::SR_RUNNING) {
3436     // request was cancelled, continue
3437   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3438     // ignore
3439   } else {
3440     // ignore
3441   }
3442 
3443   errno = old_errno;
3444 }
3445 
3446 void os::print_statistics() {
3447 }
3448 
3449 bool os::message_box(const char* title, const char* message) {
3450   int i;
3451   fdStream err(defaultStream::error_fd());
3452   for (i = 0; i < 78; i++) err.print_raw("=");
3453   err.cr();
3454   err.print_raw_cr(title);
3455   for (i = 0; i < 78; i++) err.print_raw("-");
3456   err.cr();
3457   err.print_raw_cr(message);
3458   for (i = 0; i < 78; i++) err.print_raw("=");
3459   err.cr();
3460 
3461   char buf[16];
3462   // Prevent process from exiting upon "read error" without consuming all CPU
3463   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3464 
3465   return buf[0] == 'y' || buf[0] == 'Y';
3466 }
3467 
3468 static int sr_notify(OSThread* osthread) {
3469   int status = thr_kill(osthread->thread_id(), ASYNC_SIGNAL);
3470   assert_status(status == 0, status, "thr_kill");
3471   return status;
3472 }
3473 
3474 // "Randomly" selected value for how long we want to spin
3475 // before bailing out on suspending a thread, also how often
3476 // we send a signal to a thread we want to resume
3477 static const int RANDOMLY_LARGE_INTEGER = 1000000;
3478 static const int RANDOMLY_LARGE_INTEGER2 = 100;
3479 
3480 static bool do_suspend(OSThread* osthread) {
3481   assert(osthread->sr.is_running(), "thread should be running");
3482   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3483 
3484   // mark as suspended and send signal
3485   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3486     // failed to switch, state wasn't running?
3487     ShouldNotReachHere();
3488     return false;
3489   }
3490 
3491   if (sr_notify(osthread) != 0) {
3492     ShouldNotReachHere();
3493   }
3494 
3495   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3496   while (true) {
3497     if (sr_semaphore.timedwait(2000)) {
3498       break;
3499     } else {
3500       // timeout
3501       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3502       if (cancelled == os::SuspendResume::SR_RUNNING) {
3503         return false;
3504       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3505         // make sure that we consume the signal on the semaphore as well
3506         sr_semaphore.wait();
3507         break;
3508       } else {
3509         ShouldNotReachHere();
3510         return false;
3511       }
3512     }
3513   }
3514 
3515   guarantee(osthread->sr.is_suspended(), "Must be suspended");
3516   return true;
3517 }
3518 
3519 static void do_resume(OSThread* osthread) {
3520   assert(osthread->sr.is_suspended(), "thread should be suspended");
3521   assert(!sr_semaphore.trywait(), "invalid semaphore state");
3522 
3523   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3524     // failed to switch to WAKEUP_REQUEST
3525     ShouldNotReachHere();
3526     return;
3527   }
3528 
3529   while (true) {
3530     if (sr_notify(osthread) == 0) {
3531       if (sr_semaphore.timedwait(2)) {
3532         if (osthread->sr.is_running()) {
3533           return;
3534         }
3535       }
3536     } else {
3537       ShouldNotReachHere();
3538     }
3539   }
3540 
3541   guarantee(osthread->sr.is_running(), "Must be running!");
3542 }
3543 
3544 void os::SuspendedThreadTask::internal_do_task() {
3545   if (do_suspend(_thread->osthread())) {
3546     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3547     do_task(context);
3548     do_resume(_thread->osthread());
3549   }
3550 }
3551 
3552 // This does not do anything on Solaris. This is basically a hook for being
3553 // able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
3554 void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3555                               const methodHandle& method, JavaCallArguments* args,
3556                               Thread* thread) {
3557   f(value, method, args, thread);
3558 }
3559 
3560 // This routine may be used by user applications as a "hook" to catch signals.
3561 // The user-defined signal handler must pass unrecognized signals to this
3562 // routine, and if it returns true (non-zero), then the signal handler must
3563 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3564 // routine will never retun false (zero), but instead will execute a VM panic
3565 // routine kill the process.
3566 //
3567 // If this routine returns false, it is OK to call it again.  This allows
3568 // the user-defined signal handler to perform checks either before or after
3569 // the VM performs its own checks.  Naturally, the user code would be making
3570 // a serious error if it tried to handle an exception (such as a null check
3571 // or breakpoint) that the VM was generating for its own correct operation.
3572 //
3573 // This routine may recognize any of the following kinds of signals:
3574 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
3575 // ASYNC_SIGNAL.
3576 // It should be consulted by handlers for any of those signals.
3577 //
3578 // The caller of this routine must pass in the three arguments supplied
3579 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3580 // field of the structure passed to sigaction().  This routine assumes that
3581 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3582 //
3583 // Note that the VM will print warnings if it detects conflicting signal
3584 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3585 //
3586 extern "C" JNIEXPORT int JVM_handle_solaris_signal(int signo,
3587                                                    siginfo_t* siginfo,
3588                                                    void* ucontext,
3589                                                    int abort_if_unrecognized);
3590 
3591 
3592 void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
3593   int orig_errno = errno;  // Preserve errno value over signal handler.
3594   JVM_handle_solaris_signal(sig, info, ucVoid, true);
3595   errno = orig_errno;
3596 }
3597 
3598 // This boolean allows users to forward their own non-matching signals
3599 // to JVM_handle_solaris_signal, harmlessly.
3600 bool os::Solaris::signal_handlers_are_installed = false;
3601 
3602 // For signal-chaining
3603 bool os::Solaris::libjsig_is_loaded = false;
3604 typedef struct sigaction *(*get_signal_t)(int);
3605 get_signal_t os::Solaris::get_signal_action = NULL;
3606 
3607 struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
3608   struct sigaction *actp = NULL;
3609 
3610   if ((libjsig_is_loaded)  && (sig <= Maxsignum)) {
3611     // Retrieve the old signal handler from libjsig
3612     actp = (*get_signal_action)(sig);
3613   }
3614   if (actp == NULL) {
3615     // Retrieve the preinstalled signal handler from jvm
3616     actp = get_preinstalled_handler(sig);
3617   }
3618 
3619   return actp;
3620 }
3621 
3622 static bool call_chained_handler(struct sigaction *actp, int sig,
3623                                  siginfo_t *siginfo, void *context) {
3624   // Call the old signal handler
3625   if (actp->sa_handler == SIG_DFL) {
3626     // It's more reasonable to let jvm treat it as an unexpected exception
3627     // instead of taking the default action.
3628     return false;
3629   } else if (actp->sa_handler != SIG_IGN) {
3630     if ((actp->sa_flags & SA_NODEFER) == 0) {
3631       // automaticlly block the signal
3632       sigaddset(&(actp->sa_mask), sig);
3633     }
3634 
3635     sa_handler_t hand;
3636     sa_sigaction_t sa;
3637     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3638     // retrieve the chained handler
3639     if (siginfo_flag_set) {
3640       sa = actp->sa_sigaction;
3641     } else {
3642       hand = actp->sa_handler;
3643     }
3644 
3645     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3646       actp->sa_handler = SIG_DFL;
3647     }
3648 
3649     // try to honor the signal mask
3650     sigset_t oset;
3651     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3652 
3653     // call into the chained handler
3654     if (siginfo_flag_set) {
3655       (*sa)(sig, siginfo, context);
3656     } else {
3657       (*hand)(sig);
3658     }
3659 
3660     // restore the signal mask
3661     pthread_sigmask(SIG_SETMASK, &oset, 0);
3662   }
3663   // Tell jvm's signal handler the signal is taken care of.
3664   return true;
3665 }
3666 
3667 bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3668   bool chained = false;
3669   // signal-chaining
3670   if (UseSignalChaining) {
3671     struct sigaction *actp = get_chained_signal_action(sig);
3672     if (actp != NULL) {
3673       chained = call_chained_handler(actp, sig, siginfo, context);
3674     }
3675   }
3676   return chained;
3677 }
3678 
3679 struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
3680   assert((chainedsigactions != (struct sigaction *)NULL) &&
3681          (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3682   if (preinstalled_sigs[sig] != 0) {
3683     return &chainedsigactions[sig];
3684   }
3685   return NULL;
3686 }
3687 
3688 void os::Solaris::save_preinstalled_handler(int sig,
3689                                             struct sigaction& oldAct) {
3690   assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
3691   assert((chainedsigactions != (struct sigaction *)NULL) &&
3692          (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3693   chainedsigactions[sig] = oldAct;
3694   preinstalled_sigs[sig] = 1;
3695 }
3696 
3697 void os::Solaris::set_signal_handler(int sig, bool set_installed,
3698                                      bool oktochain) {
3699   // Check for overwrite.
3700   struct sigaction oldAct;
3701   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3702   void* oldhand =
3703       oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3704                           : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3705   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3706       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3707       oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
3708     if (AllowUserSignalHandlers || !set_installed) {
3709       // Do not overwrite; user takes responsibility to forward to us.
3710       return;
3711     } else if (UseSignalChaining) {
3712       if (oktochain) {
3713         // save the old handler in jvm
3714         save_preinstalled_handler(sig, oldAct);
3715       } else {
3716         vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal.");
3717       }
3718       // libjsig also interposes the sigaction() call below and saves the
3719       // old sigaction on it own.
3720     } else {
3721       fatal("Encountered unexpected pre-existing sigaction handler "
3722             "%#lx for signal %d.", (long)oldhand, sig);
3723     }
3724   }
3725 
3726   struct sigaction sigAct;
3727   sigfillset(&(sigAct.sa_mask));
3728   sigAct.sa_handler = SIG_DFL;
3729 
3730   sigAct.sa_sigaction = signalHandler;
3731   // Handle SIGSEGV on alternate signal stack if
3732   // not using stack banging
3733   if (!UseStackBanging && sig == SIGSEGV) {
3734     sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
3735   } else {
3736     sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
3737   }
3738   os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
3739 
3740   sigaction(sig, &sigAct, &oldAct);
3741 
3742   void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3743                                        : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3744   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3745 }
3746 
3747 
3748 #define DO_SIGNAL_CHECK(sig)                      \
3749   do {                                            \
3750     if (!sigismember(&check_signal_done, sig)) {  \
3751       os::Solaris::check_signal_handler(sig);     \
3752     }                                             \
3753   } while (0)
3754 
3755 // This method is a periodic task to check for misbehaving JNI applications
3756 // under CheckJNI, we can add any periodic checks here
3757 
3758 void os::run_periodic_checks() {
3759   // A big source of grief is hijacking virt. addr 0x0 on Solaris,
3760   // thereby preventing a NULL checks.
3761   if (!check_addr0_done) check_addr0_done = check_addr0(tty);
3762 
3763   if (check_signals == false) return;
3764 
3765   // SEGV and BUS if overridden could potentially prevent
3766   // generation of hs*.log in the event of a crash, debugging
3767   // such a case can be very challenging, so we absolutely
3768   // check for the following for a good measure:
3769   DO_SIGNAL_CHECK(SIGSEGV);
3770   DO_SIGNAL_CHECK(SIGILL);
3771   DO_SIGNAL_CHECK(SIGFPE);
3772   DO_SIGNAL_CHECK(SIGBUS);
3773   DO_SIGNAL_CHECK(SIGPIPE);
3774   DO_SIGNAL_CHECK(SIGXFSZ);
3775   DO_SIGNAL_CHECK(ASYNC_SIGNAL);
3776 
3777   // ReduceSignalUsage allows the user to override these handlers
3778   // see comments at the very top and jvm_solaris.h
3779   if (!ReduceSignalUsage) {
3780     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3781     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3782     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3783     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3784   }
3785 }
3786 
3787 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3788 
3789 static os_sigaction_t os_sigaction = NULL;
3790 
3791 void os::Solaris::check_signal_handler(int sig) {
3792   char buf[O_BUFLEN];
3793   address jvmHandler = NULL;
3794 
3795   struct sigaction act;
3796   if (os_sigaction == NULL) {
3797     // only trust the default sigaction, in case it has been interposed
3798     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3799     if (os_sigaction == NULL) return;
3800   }
3801 
3802   os_sigaction(sig, (struct sigaction*)NULL, &act);
3803 
3804   address thisHandler = (act.sa_flags & SA_SIGINFO)
3805     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3806     : CAST_FROM_FN_PTR(address, act.sa_handler);
3807 
3808 
3809   switch (sig) {
3810   case SIGSEGV:
3811   case SIGBUS:
3812   case SIGFPE:
3813   case SIGPIPE:
3814   case SIGXFSZ:
3815   case SIGILL:
3816   case ASYNC_SIGNAL:
3817     jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
3818     break;
3819 
3820   case SHUTDOWN1_SIGNAL:
3821   case SHUTDOWN2_SIGNAL:
3822   case SHUTDOWN3_SIGNAL:
3823   case BREAK_SIGNAL:
3824     jvmHandler = (address)user_handler();
3825     break;
3826 
3827   default:
3828       return;
3829   }
3830 
3831   if (thisHandler != jvmHandler) {
3832     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3833     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3834     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3835     // No need to check this sig any longer
3836     sigaddset(&check_signal_done, sig);
3837     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3838     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3839       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3840                     exception_name(sig, buf, O_BUFLEN));
3841     }
3842   } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
3843     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3844     tty->print("expected:");
3845     os::Posix::print_sa_flags(tty, os::Solaris::get_our_sigflags(sig));
3846     tty->cr();
3847     tty->print("  found:");
3848     os::Posix::print_sa_flags(tty, act.sa_flags);
3849     tty->cr();
3850     // No need to check this sig any longer
3851     sigaddset(&check_signal_done, sig);
3852   }
3853 
3854   // Print all the signal handler state
3855   if (sigismember(&check_signal_done, sig)) {
3856     print_signal_handlers(tty, buf, O_BUFLEN);
3857   }
3858 
3859 }
3860 
3861 void os::Solaris::install_signal_handlers() {
3862   signal_handlers_are_installed = true;
3863 
3864   // signal-chaining
3865   typedef void (*signal_setting_t)();
3866   signal_setting_t begin_signal_setting = NULL;
3867   signal_setting_t end_signal_setting = NULL;
3868   begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3869                                         dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3870   if (begin_signal_setting != NULL) {
3871     end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3872                                         dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3873     get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3874                                        dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3875     libjsig_is_loaded = true;
3876     assert(UseSignalChaining, "should enable signal-chaining");
3877   }
3878   if (libjsig_is_loaded) {
3879     // Tell libjsig jvm is setting signal handlers
3880     (*begin_signal_setting)();
3881   }
3882 
3883   set_signal_handler(SIGSEGV, true, true);
3884   set_signal_handler(SIGPIPE, true, true);
3885   set_signal_handler(SIGXFSZ, true, true);
3886   set_signal_handler(SIGBUS, true, true);
3887   set_signal_handler(SIGILL, true, true);
3888   set_signal_handler(SIGFPE, true, true);
3889   set_signal_handler(ASYNC_SIGNAL, true, true);
3890 
3891   if (libjsig_is_loaded) {
3892     // Tell libjsig jvm finishes setting signal handlers
3893     (*end_signal_setting)();
3894   }
3895 
3896   // We don't activate signal checker if libjsig is in place, we trust ourselves
3897   // and if UserSignalHandler is installed all bets are off.
3898   // Log that signal checking is off only if -verbose:jni is specified.
3899   if (CheckJNICalls) {
3900     if (libjsig_is_loaded) {
3901       if (PrintJNIResolving) {
3902         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3903       }
3904       check_signals = false;
3905     }
3906     if (AllowUserSignalHandlers) {
3907       if (PrintJNIResolving) {
3908         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3909       }
3910       check_signals = false;
3911     }
3912   }
3913 }
3914 
3915 
3916 void report_error(const char* file_name, int line_no, const char* title,
3917                   const char* format, ...);
3918 
3919 // (Static) wrappers for the liblgrp API
3920 os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
3921 os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
3922 os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
3923 os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
3924 os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
3925 os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
3926 os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
3927 os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
3928 os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
3929 
3930 static address resolve_symbol_lazy(const char* name) {
3931   address addr = (address) dlsym(RTLD_DEFAULT, name);
3932   if (addr == NULL) {
3933     // RTLD_DEFAULT was not defined on some early versions of 2.5.1
3934     addr = (address) dlsym(RTLD_NEXT, name);
3935   }
3936   return addr;
3937 }
3938 
3939 static address resolve_symbol(const char* name) {
3940   address addr = resolve_symbol_lazy(name);
3941   if (addr == NULL) {
3942     fatal(dlerror());
3943   }
3944   return addr;
3945 }
3946 
3947 void os::Solaris::libthread_init() {
3948   address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
3949 
3950   lwp_priocntl_init();
3951 
3952   // RTLD_DEFAULT was not defined on some early versions of 5.5.1
3953   if (func == NULL) {
3954     func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
3955     // Guarantee that this VM is running on an new enough OS (5.6 or
3956     // later) that it will have a new enough libthread.so.
3957     guarantee(func != NULL, "libthread.so is too old.");
3958   }
3959 
3960   int size;
3961   void (*handler_info_func)(address *, int *);
3962   handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
3963   handler_info_func(&handler_start, &size);
3964   handler_end = handler_start + size;
3965 }
3966 
3967 
3968 int_fnP_mutex_tP os::Solaris::_mutex_lock;
3969 int_fnP_mutex_tP os::Solaris::_mutex_trylock;
3970 int_fnP_mutex_tP os::Solaris::_mutex_unlock;
3971 int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
3972 int_fnP_mutex_tP os::Solaris::_mutex_destroy;
3973 int os::Solaris::_mutex_scope = USYNC_THREAD;
3974 
3975 int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
3976 int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
3977 int_fnP_cond_tP os::Solaris::_cond_signal;
3978 int_fnP_cond_tP os::Solaris::_cond_broadcast;
3979 int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
3980 int_fnP_cond_tP os::Solaris::_cond_destroy;
3981 int os::Solaris::_cond_scope = USYNC_THREAD;
3982 bool os::Solaris::_synchronization_initialized;
3983 
3984 void os::Solaris::synchronization_init() {
3985   if (UseLWPSynchronization) {
3986     os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
3987     os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
3988     os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
3989     os::Solaris::set_mutex_init(lwp_mutex_init);
3990     os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
3991     os::Solaris::set_mutex_scope(USYNC_THREAD);
3992 
3993     os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
3994     os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
3995     os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
3996     os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
3997     os::Solaris::set_cond_init(lwp_cond_init);
3998     os::Solaris::set_cond_destroy(lwp_cond_destroy);
3999     os::Solaris::set_cond_scope(USYNC_THREAD);
4000   } else {
4001     os::Solaris::set_mutex_scope(USYNC_THREAD);
4002     os::Solaris::set_cond_scope(USYNC_THREAD);
4003 
4004     if (UsePthreads) {
4005       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
4006       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
4007       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
4008       os::Solaris::set_mutex_init(pthread_mutex_default_init);
4009       os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
4010 
4011       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
4012       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
4013       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
4014       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
4015       os::Solaris::set_cond_init(pthread_cond_default_init);
4016       os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
4017     } else {
4018       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
4019       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
4020       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
4021       os::Solaris::set_mutex_init(::mutex_init);
4022       os::Solaris::set_mutex_destroy(::mutex_destroy);
4023 
4024       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
4025       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
4026       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
4027       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
4028       os::Solaris::set_cond_init(::cond_init);
4029       os::Solaris::set_cond_destroy(::cond_destroy);
4030     }
4031   }
4032   _synchronization_initialized = true;
4033 }
4034 
4035 bool os::Solaris::liblgrp_init() {
4036   void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
4037   if (handle != NULL) {
4038     os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
4039     os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
4040     os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
4041     os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
4042     os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
4043     os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
4044     os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
4045     os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
4046                                                       dlsym(handle, "lgrp_cookie_stale")));
4047 
4048     lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
4049     set_lgrp_cookie(c);
4050     return true;
4051   }
4052   return false;
4053 }
4054 
4055 // int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
4056 typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
4057 static pset_getloadavg_type pset_getloadavg_ptr = NULL;
4058 
4059 void init_pset_getloadavg_ptr(void) {
4060   pset_getloadavg_ptr =
4061     (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
4062   if (pset_getloadavg_ptr == NULL) {
4063     log_warning(os)("pset_getloadavg function not found");
4064   }
4065 }
4066 
4067 int os::Solaris::_dev_zero_fd = -1;
4068 
4069 // this is called _before_ the global arguments have been parsed
4070 void os::init(void) {
4071   _initial_pid = getpid();
4072 
4073   max_hrtime = first_hrtime = gethrtime();
4074 
4075   init_random(1234567);
4076 
4077   page_size = sysconf(_SC_PAGESIZE);
4078   if (page_size == -1) {
4079     fatal("os_solaris.cpp: os::init: sysconf failed (%s)", os::strerror(errno));
4080   }
4081   init_page_sizes((size_t) page_size);
4082 
4083   Solaris::initialize_system_info();
4084 
4085   int fd = ::open("/dev/zero", O_RDWR);
4086   if (fd < 0) {
4087     fatal("os::init: cannot open /dev/zero (%s)", os::strerror(errno));
4088   } else {
4089     Solaris::set_dev_zero_fd(fd);
4090 
4091     // Close on exec, child won't inherit.
4092     fcntl(fd, F_SETFD, FD_CLOEXEC);
4093   }
4094 
4095   clock_tics_per_sec = CLK_TCK;
4096 
4097   // check if dladdr1() exists; dladdr1 can provide more information than
4098   // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
4099   // and is available on linker patches for 5.7 and 5.8.
4100   // libdl.so must have been loaded, this call is just an entry lookup
4101   void * hdl = dlopen("libdl.so", RTLD_NOW);
4102   if (hdl) {
4103     dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
4104   }
4105 
4106   // main_thread points to the thread that created/loaded the JVM.
4107   main_thread = thr_self();
4108 
4109   // dynamic lookup of functions that may not be available in our lowest
4110   // supported Solaris release
4111   void * handle = dlopen("libc.so.1", RTLD_LAZY);
4112   if (handle != NULL) {
4113     Solaris::_pthread_setname_np =  // from 11.3
4114         (Solaris::pthread_setname_np_func_t)dlsym(handle, "pthread_setname_np");
4115   }
4116 
4117   // Shared Posix initialization
4118   os::Posix::init();
4119 }
4120 
4121 // To install functions for atexit system call
4122 extern "C" {
4123   static void perfMemory_exit_helper() {
4124     perfMemory_exit();
4125   }
4126 }
4127 
4128 // this is called _after_ the global arguments have been parsed
4129 jint os::init_2(void) {
4130   // try to enable extended file IO ASAP, see 6431278
4131   os::Solaris::try_enable_extended_io();
4132 
4133   // Check and sets minimum stack sizes against command line options
4134   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4135     return JNI_ERR;
4136   }
4137 
4138   Solaris::libthread_init();
4139 
4140   if (UseNUMA) {
4141     if (!Solaris::liblgrp_init()) {
4142       UseNUMA = false;
4143     } else {
4144       size_t lgrp_limit = os::numa_get_groups_num();
4145       int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
4146       size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
4147       FREE_C_HEAP_ARRAY(int, lgrp_ids);
4148       if (lgrp_num < 2) {
4149         // There's only one locality group, disable NUMA.
4150         UseNUMA = false;
4151       }
4152     }
4153     if (!UseNUMA && ForceNUMA) {
4154       UseNUMA = true;
4155     }
4156   }
4157 
4158   Solaris::signal_sets_init();
4159   Solaris::init_signal_mem();
4160   Solaris::install_signal_handlers();
4161   // Initialize data for jdk.internal.misc.Signal
4162   if (!ReduceSignalUsage) {
4163     jdk_misc_signal_init();
4164   }
4165 
4166   // initialize synchronization primitives to use either thread or
4167   // lwp synchronization (controlled by UseLWPSynchronization)
4168   Solaris::synchronization_init();
4169   DEBUG_ONLY(os::set_mutex_init_done();)
4170 
4171   if (MaxFDLimit) {
4172     // set the number of file descriptors to max. print out error
4173     // if getrlimit/setrlimit fails but continue regardless.
4174     struct rlimit nbr_files;
4175     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4176     if (status != 0) {
4177       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4178     } else {
4179       nbr_files.rlim_cur = nbr_files.rlim_max;
4180       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4181       if (status != 0) {
4182         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4183       }
4184     }
4185   }
4186 
4187   // Calculate theoretical max. size of Threads to guard gainst
4188   // artifical out-of-memory situations, where all available address-
4189   // space has been reserved by thread stacks. Default stack size is 1Mb.
4190   size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
4191     JavaThread::stack_size_at_create() : (1*K*K);
4192   assert(pre_thread_stack_size != 0, "Must have a stack");
4193   // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
4194   // we should start doing Virtual Memory banging. Currently when the threads will
4195   // have used all but 200Mb of space.
4196   size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
4197   Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
4198 
4199   // at-exit methods are called in the reverse order of their registration.
4200   // In Solaris 7 and earlier, atexit functions are called on return from
4201   // main or as a result of a call to exit(3C). There can be only 32 of
4202   // these functions registered and atexit() does not set errno. In Solaris
4203   // 8 and later, there is no limit to the number of functions registered
4204   // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
4205   // functions are called upon dlclose(3DL) in addition to return from main
4206   // and exit(3C).
4207 
4208   if (PerfAllowAtExitRegistration) {
4209     // only register atexit functions if PerfAllowAtExitRegistration is set.
4210     // atexit functions can be delayed until process exit time, which
4211     // can be problematic for embedded VM situations. Embedded VMs should
4212     // call DestroyJavaVM() to assure that VM resources are released.
4213 
4214     // note: perfMemory_exit_helper atexit function may be removed in
4215     // the future if the appropriate cleanup code can be added to the
4216     // VM_Exit VMOperation's doit method.
4217     if (atexit(perfMemory_exit_helper) != 0) {
4218       warning("os::init2 atexit(perfMemory_exit_helper) failed");
4219     }
4220   }
4221 
4222   // Init pset_loadavg function pointer
4223   init_pset_getloadavg_ptr();
4224 
4225   // Shared Posix initialization
4226   os::Posix::init_2();
4227 
4228   return JNI_OK;
4229 }
4230 
4231 // Mark the polling page as unreadable
4232 void os::make_polling_page_unreadable(void) {
4233   Events::log(NULL, "Protecting polling page " INTPTR_FORMAT " with PROT_NONE", p2i(_polling_page));
4234   if (mprotect((char *)_polling_page, page_size, PROT_NONE) != 0) {
4235     fatal("Could not disable polling page");
4236   }
4237 }
4238 
4239 // Mark the polling page as readable
4240 void os::make_polling_page_readable(void) {
4241   Events::log(NULL, "Protecting polling page " INTPTR_FORMAT " with PROT_READ", p2i(_polling_page));
4242   if (mprotect((char *)_polling_page, page_size, PROT_READ) != 0) {
4243     fatal("Could not enable polling page");
4244   }
4245 }
4246 
4247 // Is a (classpath) directory empty?
4248 bool os::dir_is_empty(const char* path) {
4249   DIR *dir = NULL;
4250   struct dirent *ptr;
4251 
4252   dir = opendir(path);
4253   if (dir == NULL) return true;
4254 
4255   // Scan the directory
4256   bool result = true;
4257   while (result && (ptr = readdir(dir)) != NULL) {
4258     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4259       result = false;
4260     }
4261   }
4262   closedir(dir);
4263   return result;
4264 }
4265 
4266 // This code originates from JDK's sysOpen and open64_w
4267 // from src/solaris/hpi/src/system_md.c
4268 
4269 int os::open(const char *path, int oflag, int mode) {
4270   if (strlen(path) > MAX_PATH - 1) {
4271     errno = ENAMETOOLONG;
4272     return -1;
4273   }
4274   int fd;
4275 
4276   fd = ::open64(path, oflag, mode);
4277   if (fd == -1) return -1;
4278 
4279   // If the open succeeded, the file might still be a directory
4280   {
4281     struct stat64 buf64;
4282     int ret = ::fstat64(fd, &buf64);
4283     int st_mode = buf64.st_mode;
4284 
4285     if (ret != -1) {
4286       if ((st_mode & S_IFMT) == S_IFDIR) {
4287         errno = EISDIR;
4288         ::close(fd);
4289         return -1;
4290       }
4291     } else {
4292       ::close(fd);
4293       return -1;
4294     }
4295   }
4296 
4297   // 32-bit Solaris systems suffer from:
4298   //
4299   // - an historical default soft limit of 256 per-process file
4300   //   descriptors that is too low for many Java programs.
4301   //
4302   // - a design flaw where file descriptors created using stdio
4303   //   fopen must be less than 256, _even_ when the first limit above
4304   //   has been raised.  This can cause calls to fopen (but not calls to
4305   //   open, for example) to fail mysteriously, perhaps in 3rd party
4306   //   native code (although the JDK itself uses fopen).  One can hardly
4307   //   criticize them for using this most standard of all functions.
4308   //
4309   // We attempt to make everything work anyways by:
4310   //
4311   // - raising the soft limit on per-process file descriptors beyond
4312   //   256
4313   //
4314   // - As of Solaris 10u4, we can request that Solaris raise the 256
4315   //   stdio fopen limit by calling function enable_extended_FILE_stdio.
4316   //   This is done in init_2 and recorded in enabled_extended_FILE_stdio
4317   //
4318   // - If we are stuck on an old (pre 10u4) Solaris system, we can
4319   //   workaround the bug by remapping non-stdio file descriptors below
4320   //   256 to ones beyond 256, which is done below.
4321   //
4322   // See:
4323   // 1085341: 32-bit stdio routines should support file descriptors >255
4324   // 6533291: Work around 32-bit Solaris stdio limit of 256 open files
4325   // 6431278: Netbeans crash on 32 bit Solaris: need to call
4326   //          enable_extended_FILE_stdio() in VM initialisation
4327   // Giri Mandalika's blog
4328   // http://technopark02.blogspot.com/2005_05_01_archive.html
4329   //
4330 #ifndef  _LP64
4331   if ((!enabled_extended_FILE_stdio) && fd < 256) {
4332     int newfd = ::fcntl(fd, F_DUPFD, 256);
4333     if (newfd != -1) {
4334       ::close(fd);
4335       fd = newfd;
4336     }
4337   }
4338 #endif // 32-bit Solaris
4339 
4340   // All file descriptors that are opened in the JVM and not
4341   // specifically destined for a subprocess should have the
4342   // close-on-exec flag set.  If we don't set it, then careless 3rd
4343   // party native code might fork and exec without closing all
4344   // appropriate file descriptors (e.g. as we do in closeDescriptors in
4345   // UNIXProcess.c), and this in turn might:
4346   //
4347   // - cause end-of-file to fail to be detected on some file
4348   //   descriptors, resulting in mysterious hangs, or
4349   //
4350   // - might cause an fopen in the subprocess to fail on a system
4351   //   suffering from bug 1085341.
4352   //
4353   // (Yes, the default setting of the close-on-exec flag is a Unix
4354   // design flaw)
4355   //
4356   // See:
4357   // 1085341: 32-bit stdio routines should support file descriptors >255
4358   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4359   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4360   //
4361 #ifdef FD_CLOEXEC
4362   {
4363     int flags = ::fcntl(fd, F_GETFD);
4364     if (flags != -1) {
4365       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4366     }
4367   }
4368 #endif
4369 
4370   return fd;
4371 }
4372 
4373 // create binary file, rewriting existing file if required
4374 int os::create_binary_file(const char* path, bool rewrite_existing) {
4375   int oflags = O_WRONLY | O_CREAT;
4376   if (!rewrite_existing) {
4377     oflags |= O_EXCL;
4378   }
4379   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4380 }
4381 
4382 // return current position of file pointer
4383 jlong os::current_file_offset(int fd) {
4384   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4385 }
4386 
4387 // move file pointer to the specified offset
4388 jlong os::seek_to_file_offset(int fd, jlong offset) {
4389   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4390 }
4391 
4392 jlong os::lseek(int fd, jlong offset, int whence) {
4393   return (jlong) ::lseek64(fd, offset, whence);
4394 }
4395 
4396 int os::ftruncate(int fd, jlong length) {
4397   return ::ftruncate64(fd, length);
4398 }
4399 
4400 int os::fsync(int fd)  {
4401   RESTARTABLE_RETURN_INT(::fsync(fd));
4402 }
4403 
4404 int os::available(int fd, jlong *bytes) {
4405   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
4406          "Assumed _thread_in_native");
4407   jlong cur, end;
4408   int mode;
4409   struct stat64 buf64;
4410 
4411   if (::fstat64(fd, &buf64) >= 0) {
4412     mode = buf64.st_mode;
4413     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4414       int n,ioctl_return;
4415 
4416       RESTARTABLE(::ioctl(fd, FIONREAD, &n), ioctl_return);
4417       if (ioctl_return>= 0) {
4418         *bytes = n;
4419         return 1;
4420       }
4421     }
4422   }
4423   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4424     return 0;
4425   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4426     return 0;
4427   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4428     return 0;
4429   }
4430   *bytes = end - cur;
4431   return 1;
4432 }
4433 
4434 // Map a block of memory.
4435 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4436                         char *addr, size_t bytes, bool read_only,
4437                         bool allow_exec) {
4438   int prot;
4439   int flags;
4440 
4441   if (read_only) {
4442     prot = PROT_READ;
4443     flags = MAP_SHARED;
4444   } else {
4445     prot = PROT_READ | PROT_WRITE;
4446     flags = MAP_PRIVATE;
4447   }
4448 
4449   if (allow_exec) {
4450     prot |= PROT_EXEC;
4451   }
4452 
4453   if (addr != NULL) {
4454     flags |= MAP_FIXED;
4455   }
4456 
4457   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4458                                      fd, file_offset);
4459   if (mapped_address == MAP_FAILED) {
4460     return NULL;
4461   }
4462   return mapped_address;
4463 }
4464 
4465 
4466 // Remap a block of memory.
4467 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4468                           char *addr, size_t bytes, bool read_only,
4469                           bool allow_exec) {
4470   // same as map_memory() on this OS
4471   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4472                         allow_exec);
4473 }
4474 
4475 
4476 // Unmap a block of memory.
4477 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4478   return munmap(addr, bytes) == 0;
4479 }
4480 
4481 void os::pause() {
4482   char filename[MAX_PATH];
4483   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4484     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4485   } else {
4486     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4487   }
4488 
4489   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4490   if (fd != -1) {
4491     struct stat buf;
4492     ::close(fd);
4493     while (::stat(filename, &buf) == 0) {
4494       (void)::poll(NULL, 0, 100);
4495     }
4496   } else {
4497     jio_fprintf(stderr,
4498                 "Could not open pause file '%s', continuing immediately.\n", filename);
4499   }
4500 }
4501 
4502 #ifndef PRODUCT
4503 #ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4504 // Turn this on if you need to trace synch operations.
4505 // Set RECORD_SYNCH_LIMIT to a large-enough value,
4506 // and call record_synch_enable and record_synch_disable
4507 // around the computation of interest.
4508 
4509 void record_synch(char* name, bool returning);  // defined below
4510 
4511 class RecordSynch {
4512   char* _name;
4513  public:
4514   RecordSynch(char* name) :_name(name) { record_synch(_name, false); }
4515   ~RecordSynch()                       { record_synch(_name, true); }
4516 };
4517 
4518 #define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
4519 extern "C" ret name params {                                    \
4520   typedef ret name##_t params;                                  \
4521   static name##_t* implem = NULL;                               \
4522   static int callcount = 0;                                     \
4523   if (implem == NULL) {                                         \
4524     implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
4525     if (implem == NULL)  fatal(dlerror());                      \
4526   }                                                             \
4527   ++callcount;                                                  \
4528   RecordSynch _rs(#name);                                       \
4529   inner;                                                        \
4530   return implem args;                                           \
4531 }
4532 // in dbx, examine callcounts this way:
4533 // for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
4534 
4535 #define CHECK_POINTER_OK(p) \
4536   (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
4537 #define CHECK_MU \
4538   if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
4539 #define CHECK_CV \
4540   if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
4541 #define CHECK_P(p) \
4542   if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
4543 
4544 #define CHECK_MUTEX(mutex_op) \
4545   CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
4546 
4547 CHECK_MUTEX(   mutex_lock)
4548 CHECK_MUTEX(  _mutex_lock)
4549 CHECK_MUTEX( mutex_unlock)
4550 CHECK_MUTEX(_mutex_unlock)
4551 CHECK_MUTEX( mutex_trylock)
4552 CHECK_MUTEX(_mutex_trylock)
4553 
4554 #define CHECK_COND(cond_op) \
4555   CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU; CHECK_CV);
4556 
4557 CHECK_COND( cond_wait);
4558 CHECK_COND(_cond_wait);
4559 CHECK_COND(_cond_wait_cancel);
4560 
4561 #define CHECK_COND2(cond_op) \
4562   CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU; CHECK_CV);
4563 
4564 CHECK_COND2( cond_timedwait);
4565 CHECK_COND2(_cond_timedwait);
4566 CHECK_COND2(_cond_timedwait_cancel);
4567 
4568 // do the _lwp_* versions too
4569 #define mutex_t lwp_mutex_t
4570 #define cond_t  lwp_cond_t
4571 CHECK_MUTEX(  _lwp_mutex_lock)
4572 CHECK_MUTEX(  _lwp_mutex_unlock)
4573 CHECK_MUTEX(  _lwp_mutex_trylock)
4574 CHECK_MUTEX( __lwp_mutex_lock)
4575 CHECK_MUTEX( __lwp_mutex_unlock)
4576 CHECK_MUTEX( __lwp_mutex_trylock)
4577 CHECK_MUTEX(___lwp_mutex_lock)
4578 CHECK_MUTEX(___lwp_mutex_unlock)
4579 
4580 CHECK_COND(  _lwp_cond_wait);
4581 CHECK_COND( __lwp_cond_wait);
4582 CHECK_COND(___lwp_cond_wait);
4583 
4584 CHECK_COND2(  _lwp_cond_timedwait);
4585 CHECK_COND2( __lwp_cond_timedwait);
4586 #undef mutex_t
4587 #undef cond_t
4588 
4589 CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4590 CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4591 CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4592 CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4593 CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4594 CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4595 CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4596 CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4597 
4598 
4599 // recording machinery:
4600 
4601 enum { RECORD_SYNCH_LIMIT = 200 };
4602 char* record_synch_name[RECORD_SYNCH_LIMIT];
4603 void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
4604 bool record_synch_returning[RECORD_SYNCH_LIMIT];
4605 thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
4606 int record_synch_count = 0;
4607 bool record_synch_enabled = false;
4608 
4609 // in dbx, examine recorded data this way:
4610 // for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
4611 
4612 void record_synch(char* name, bool returning) {
4613   if (record_synch_enabled) {
4614     if (record_synch_count < RECORD_SYNCH_LIMIT) {
4615       record_synch_name[record_synch_count] = name;
4616       record_synch_returning[record_synch_count] = returning;
4617       record_synch_thread[record_synch_count] = thr_self();
4618       record_synch_arg0ptr[record_synch_count] = &name;
4619       record_synch_count++;
4620     }
4621     // put more checking code here:
4622     // ...
4623   }
4624 }
4625 
4626 void record_synch_enable() {
4627   // start collecting trace data, if not already doing so
4628   if (!record_synch_enabled)  record_synch_count = 0;
4629   record_synch_enabled = true;
4630 }
4631 
4632 void record_synch_disable() {
4633   // stop collecting trace data
4634   record_synch_enabled = false;
4635 }
4636 
4637 #endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4638 #endif // PRODUCT
4639 
4640 const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4641 const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
4642                                (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4643 
4644 
4645 // JVMTI & JVM monitoring and management support
4646 // The thread_cpu_time() and current_thread_cpu_time() are only
4647 // supported if is_thread_cpu_time_supported() returns true.
4648 // They are not supported on Solaris T1.
4649 
4650 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4651 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4652 // of a thread.
4653 //
4654 // current_thread_cpu_time() and thread_cpu_time(Thread *)
4655 // returns the fast estimate available on the platform.
4656 
4657 // hrtime_t gethrvtime() return value includes
4658 // user time but does not include system time
4659 jlong os::current_thread_cpu_time() {
4660   return (jlong) gethrvtime();
4661 }
4662 
4663 jlong os::thread_cpu_time(Thread *thread) {
4664   // return user level CPU time only to be consistent with
4665   // what current_thread_cpu_time returns.
4666   // thread_cpu_time_info() must be changed if this changes
4667   return os::thread_cpu_time(thread, false /* user time only */);
4668 }
4669 
4670 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4671   if (user_sys_cpu_time) {
4672     return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4673   } else {
4674     return os::current_thread_cpu_time();
4675   }
4676 }
4677 
4678 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4679   char proc_name[64];
4680   int count;
4681   prusage_t prusage;
4682   jlong lwp_time;
4683   int fd;
4684 
4685   sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
4686           getpid(),
4687           thread->osthread()->lwp_id());
4688   fd = ::open(proc_name, O_RDONLY);
4689   if (fd == -1) return -1;
4690 
4691   do {
4692     count = ::pread(fd,
4693                     (void *)&prusage.pr_utime,
4694                     thr_time_size,
4695                     thr_time_off);
4696   } while (count < 0 && errno == EINTR);
4697   ::close(fd);
4698   if (count < 0) return -1;
4699 
4700   if (user_sys_cpu_time) {
4701     // user + system CPU time
4702     lwp_time = (((jlong)prusage.pr_stime.tv_sec +
4703                  (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
4704                  (jlong)prusage.pr_stime.tv_nsec +
4705                  (jlong)prusage.pr_utime.tv_nsec;
4706   } else {
4707     // user level CPU time only
4708     lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
4709                 (jlong)prusage.pr_utime.tv_nsec;
4710   }
4711 
4712   return (lwp_time);
4713 }
4714 
4715 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4716   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
4717   info_ptr->may_skip_backward = false;    // elapsed time not wall time
4718   info_ptr->may_skip_forward = false;     // elapsed time not wall time
4719   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
4720 }
4721 
4722 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4723   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
4724   info_ptr->may_skip_backward = false;    // elapsed time not wall time
4725   info_ptr->may_skip_forward = false;     // elapsed time not wall time
4726   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
4727 }
4728 
4729 bool os::is_thread_cpu_time_supported() {
4730   return true;
4731 }
4732 
4733 // System loadavg support.  Returns -1 if load average cannot be obtained.
4734 // Return the load average for our processor set if the primitive exists
4735 // (Solaris 9 and later).  Otherwise just return system wide loadavg.
4736 int os::loadavg(double loadavg[], int nelem) {
4737   if (pset_getloadavg_ptr != NULL) {
4738     return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
4739   } else {
4740     return ::getloadavg(loadavg, nelem);
4741   }
4742 }
4743 
4744 //---------------------------------------------------------------------------------
4745 
4746 bool os::find(address addr, outputStream* st) {
4747   Dl_info dlinfo;
4748   memset(&dlinfo, 0, sizeof(dlinfo));
4749   if (dladdr(addr, &dlinfo) != 0) {
4750     st->print(PTR_FORMAT ": ", addr);
4751     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4752       st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
4753     } else if (dlinfo.dli_fbase != NULL) {
4754       st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
4755     } else {
4756       st->print("<absolute address>");
4757     }
4758     if (dlinfo.dli_fname != NULL) {
4759       st->print(" in %s", dlinfo.dli_fname);
4760     }
4761     if (dlinfo.dli_fbase != NULL) {
4762       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4763     }
4764     st->cr();
4765 
4766     if (Verbose) {
4767       // decode some bytes around the PC
4768       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4769       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4770       address       lowest = (address) dlinfo.dli_sname;
4771       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4772       if (begin < lowest)  begin = lowest;
4773       Dl_info dlinfo2;
4774       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4775           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4776         end = (address) dlinfo2.dli_saddr;
4777       }
4778       Disassembler::decode(begin, end, st);
4779     }
4780     return true;
4781   }
4782   return false;
4783 }
4784 
4785 // Following function has been added to support HotSparc's libjvm.so running
4786 // under Solaris production JDK 1.2.2 / 1.3.0.  These came from
4787 // src/solaris/hpi/native_threads in the EVM codebase.
4788 //
4789 // NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
4790 // libraries and should thus be removed. We will leave it behind for a while
4791 // until we no longer want to able to run on top of 1.3.0 Solaris production
4792 // JDK. See 4341971.
4793 
4794 #define STACK_SLACK 0x800
4795 
4796 extern "C" {
4797   intptr_t sysThreadAvailableStackWithSlack() {
4798     stack_t st;
4799     intptr_t retval, stack_top;
4800     retval = thr_stksegment(&st);
4801     assert(retval == 0, "incorrect return value from thr_stksegment");
4802     assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
4803     assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
4804     stack_top=(intptr_t)st.ss_sp-st.ss_size;
4805     return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
4806   }
4807 }
4808 
4809 // ObjectMonitor park-unpark infrastructure ...
4810 //
4811 // We implement Solaris and Linux PlatformEvents with the
4812 // obvious condvar-mutex-flag triple.
4813 // Another alternative that works quite well is pipes:
4814 // Each PlatformEvent consists of a pipe-pair.
4815 // The thread associated with the PlatformEvent
4816 // calls park(), which reads from the input end of the pipe.
4817 // Unpark() writes into the other end of the pipe.
4818 // The write-side of the pipe must be set NDELAY.
4819 // Unfortunately pipes consume a large # of handles.
4820 // Native solaris lwp_park() and lwp_unpark() work nicely, too.
4821 // Using pipes for the 1st few threads might be workable, however.
4822 //
4823 // park() is permitted to return spuriously.
4824 // Callers of park() should wrap the call to park() in
4825 // an appropriate loop.  A litmus test for the correct
4826 // usage of park is the following: if park() were modified
4827 // to immediately return 0 your code should still work,
4828 // albeit degenerating to a spin loop.
4829 //
4830 // In a sense, park()-unpark() just provides more polite spinning
4831 // and polling with the key difference over naive spinning being
4832 // that a parked thread needs to be explicitly unparked() in order
4833 // to wake up and to poll the underlying condition.
4834 //
4835 // Assumption:
4836 //    Only one parker can exist on an event, which is why we allocate
4837 //    them per-thread. Multiple unparkers can coexist.
4838 //
4839 // _Event transitions in park()
4840 //   -1 => -1 : illegal
4841 //    1 =>  0 : pass - return immediately
4842 //    0 => -1 : block; then set _Event to 0 before returning
4843 //
4844 // _Event transitions in unpark()
4845 //    0 => 1 : just return
4846 //    1 => 1 : just return
4847 //   -1 => either 0 or 1; must signal target thread
4848 //         That is, we can safely transition _Event from -1 to either
4849 //         0 or 1.
4850 //
4851 // _Event serves as a restricted-range semaphore.
4852 //   -1 : thread is blocked, i.e. there is a waiter
4853 //    0 : neutral: thread is running or ready,
4854 //        could have been signaled after a wait started
4855 //    1 : signaled - thread is running or ready
4856 //
4857 // Another possible encoding of _Event would be with
4858 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
4859 //
4860 // TODO-FIXME: add DTRACE probes for:
4861 // 1.   Tx parks
4862 // 2.   Ty unparks Tx
4863 // 3.   Tx resumes from park
4864 
4865 
4866 // value determined through experimentation
4867 #define ROUNDINGFIX 11
4868 
4869 // utility to compute the abstime argument to timedwait.
4870 // TODO-FIXME: switch from compute_abstime() to unpackTime().
4871 
4872 static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
4873   // millis is the relative timeout time
4874   // abstime will be the absolute timeout time
4875   if (millis < 0)  millis = 0;
4876   struct timeval now;
4877   int status = gettimeofday(&now, NULL);
4878   assert(status == 0, "gettimeofday");
4879   jlong seconds = millis / 1000;
4880   jlong max_wait_period;
4881 
4882   if (UseLWPSynchronization) {
4883     // forward port of fix for 4275818 (not sleeping long enough)
4884     // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
4885     // _lwp_cond_timedwait() used a round_down algorithm rather
4886     // than a round_up. For millis less than our roundfactor
4887     // it rounded down to 0 which doesn't meet the spec.
4888     // For millis > roundfactor we may return a bit sooner, but
4889     // since we can not accurately identify the patch level and
4890     // this has already been fixed in Solaris 9 and 8 we will
4891     // leave it alone rather than always rounding down.
4892 
4893     if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
4894     // It appears that when we go directly through Solaris _lwp_cond_timedwait()
4895     // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
4896     max_wait_period = 21000000;
4897   } else {
4898     max_wait_period = 50000000;
4899   }
4900   millis %= 1000;
4901   if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
4902     seconds = max_wait_period;
4903   }
4904   abstime->tv_sec = now.tv_sec  + seconds;
4905   long       usec = now.tv_usec + millis * 1000;
4906   if (usec >= 1000000) {
4907     abstime->tv_sec += 1;
4908     usec -= 1000000;
4909   }
4910   abstime->tv_nsec = usec * 1000;
4911   return abstime;
4912 }
4913 
4914 void os::PlatformEvent::park() {           // AKA: down()
4915   // Transitions for _Event:
4916   //   -1 => -1 : illegal
4917   //    1 =>  0 : pass - return immediately
4918   //    0 => -1 : block; then set _Event to 0 before returning
4919 
4920   // Invariant: Only the thread associated with the Event/PlatformEvent
4921   // may call park().
4922   assert(_nParked == 0, "invariant");
4923 
4924   int v;
4925   for (;;) {
4926     v = _Event;
4927     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4928   }
4929   guarantee(v >= 0, "invariant");
4930   if (v == 0) {
4931     // Do this the hard way by blocking ...
4932     // See http://monaco.sfbay/detail.jsf?cr=5094058.
4933     int status = os::Solaris::mutex_lock(_mutex);
4934     assert_status(status == 0, status, "mutex_lock");
4935     guarantee(_nParked == 0, "invariant");
4936     ++_nParked;
4937     while (_Event < 0) {
4938       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4939       // Treat this the same as if the wait was interrupted
4940       // With usr/lib/lwp going to kernel, always handle ETIME
4941       status = os::Solaris::cond_wait(_cond, _mutex);
4942       if (status == ETIME) status = EINTR;
4943       assert_status(status == 0 || status == EINTR, status, "cond_wait");
4944     }
4945     --_nParked;
4946     _Event = 0;
4947     status = os::Solaris::mutex_unlock(_mutex);
4948     assert_status(status == 0, status, "mutex_unlock");
4949     // Paranoia to ensure our locked and lock-free paths interact
4950     // correctly with each other.
4951     OrderAccess::fence();
4952   }
4953 }
4954 
4955 int os::PlatformEvent::park(jlong millis) {
4956   // Transitions for _Event:
4957   //   -1 => -1 : illegal
4958   //    1 =>  0 : pass - return immediately
4959   //    0 => -1 : block; then set _Event to 0 before returning
4960 
4961   guarantee(_nParked == 0, "invariant");
4962   int v;
4963   for (;;) {
4964     v = _Event;
4965     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4966   }
4967   guarantee(v >= 0, "invariant");
4968   if (v != 0) return OS_OK;
4969 
4970   int ret = OS_TIMEOUT;
4971   timestruc_t abst;
4972   compute_abstime(&abst, millis);
4973 
4974   // See http://monaco.sfbay/detail.jsf?cr=5094058.
4975   int status = os::Solaris::mutex_lock(_mutex);
4976   assert_status(status == 0, status, "mutex_lock");
4977   guarantee(_nParked == 0, "invariant");
4978   ++_nParked;
4979   while (_Event < 0) {
4980     int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
4981     assert_status(status == 0 || status == EINTR ||
4982                   status == ETIME || status == ETIMEDOUT,
4983                   status, "cond_timedwait");
4984     if (!FilterSpuriousWakeups) break;                // previous semantics
4985     if (status == ETIME || status == ETIMEDOUT) break;
4986     // We consume and ignore EINTR and spurious wakeups.
4987   }
4988   --_nParked;
4989   if (_Event >= 0) ret = OS_OK;
4990   _Event = 0;
4991   status = os::Solaris::mutex_unlock(_mutex);
4992   assert_status(status == 0, status, "mutex_unlock");
4993   // Paranoia to ensure our locked and lock-free paths interact
4994   // correctly with each other.
4995   OrderAccess::fence();
4996   return ret;
4997 }
4998 
4999 void os::PlatformEvent::unpark() {
5000   // Transitions for _Event:
5001   //    0 => 1 : just return
5002   //    1 => 1 : just return
5003   //   -1 => either 0 or 1; must signal target thread
5004   //         That is, we can safely transition _Event from -1 to either
5005   //         0 or 1.
5006   // See also: "Semaphores in Plan 9" by Mullender & Cox
5007   //
5008   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5009   // that it will take two back-to-back park() calls for the owning
5010   // thread to block. This has the benefit of forcing a spurious return
5011   // from the first park() call after an unpark() call which will help
5012   // shake out uses of park() and unpark() without condition variables.
5013 
5014   if (Atomic::xchg(1, &_Event) >= 0) return;
5015 
5016   // If the thread associated with the event was parked, wake it.
5017   // Wait for the thread assoc with the PlatformEvent to vacate.
5018   int status = os::Solaris::mutex_lock(_mutex);
5019   assert_status(status == 0, status, "mutex_lock");
5020   int AnyWaiters = _nParked;
5021   status = os::Solaris::mutex_unlock(_mutex);
5022   assert_status(status == 0, status, "mutex_unlock");
5023   guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5024   if (AnyWaiters != 0) {
5025     // Note that we signal() *after* dropping the lock for "immortal" Events.
5026     // This is safe and avoids a common class of  futile wakeups.  In rare
5027     // circumstances this can cause a thread to return prematurely from
5028     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5029     // will simply re-test the condition and re-park itself.
5030     // This provides particular benefit if the underlying platform does not
5031     // provide wait morphing.
5032     status = os::Solaris::cond_signal(_cond);
5033     assert_status(status == 0, status, "cond_signal");
5034   }
5035 }
5036 
5037 // JSR166
5038 // -------------------------------------------------------
5039 
5040 // The solaris and linux implementations of park/unpark are fairly
5041 // conservative for now, but can be improved. They currently use a
5042 // mutex/condvar pair, plus _counter.
5043 // Park decrements _counter if > 0, else does a condvar wait.  Unpark
5044 // sets count to 1 and signals condvar.  Only one thread ever waits
5045 // on the condvar. Contention seen when trying to park implies that someone
5046 // is unparking you, so don't wait. And spurious returns are fine, so there
5047 // is no need to track notifications.
5048 
5049 #define MAX_SECS 100000000
5050 
5051 // This code is common to linux and solaris and will be moved to a
5052 // common place in dolphin.
5053 //
5054 // The passed in time value is either a relative time in nanoseconds
5055 // or an absolute time in milliseconds. Either way it has to be unpacked
5056 // into suitable seconds and nanoseconds components and stored in the
5057 // given timespec structure.
5058 // Given time is a 64-bit value and the time_t used in the timespec is only
5059 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5060 // overflow if times way in the future are given. Further on Solaris versions
5061 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5062 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5063 // As it will be 28 years before "now + 100000000" will overflow we can
5064 // ignore overflow and just impose a hard-limit on seconds using the value
5065 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5066 // years from "now".
5067 //
5068 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5069   assert(time > 0, "convertTime");
5070 
5071   struct timeval now;
5072   int status = gettimeofday(&now, NULL);
5073   assert(status == 0, "gettimeofday");
5074 
5075   time_t max_secs = now.tv_sec + MAX_SECS;
5076 
5077   if (isAbsolute) {
5078     jlong secs = time / 1000;
5079     if (secs > max_secs) {
5080       absTime->tv_sec = max_secs;
5081     } else {
5082       absTime->tv_sec = secs;
5083     }
5084     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5085   } else {
5086     jlong secs = time / NANOSECS_PER_SEC;
5087     if (secs >= MAX_SECS) {
5088       absTime->tv_sec = max_secs;
5089       absTime->tv_nsec = 0;
5090     } else {
5091       absTime->tv_sec = now.tv_sec + secs;
5092       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5093       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5094         absTime->tv_nsec -= NANOSECS_PER_SEC;
5095         ++absTime->tv_sec; // note: this must be <= max_secs
5096       }
5097     }
5098   }
5099   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5100   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5101   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5102   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5103 }
5104 
5105 void Parker::park(bool isAbsolute, jlong time) {
5106   // Ideally we'd do something useful while spinning, such
5107   // as calling unpackTime().
5108 
5109   // Optional fast-path check:
5110   // Return immediately if a permit is available.
5111   // We depend on Atomic::xchg() having full barrier semantics
5112   // since we are doing a lock-free update to _counter.
5113   if (Atomic::xchg(0, &_counter) > 0) return;
5114 
5115   // Optional fast-exit: Check interrupt before trying to wait
5116   Thread* thread = Thread::current();
5117   assert(thread->is_Java_thread(), "Must be JavaThread");
5118   JavaThread *jt = (JavaThread *)thread;
5119   if (Thread::is_interrupted(thread, false)) {
5120     return;
5121   }
5122 
5123   // First, demultiplex/decode time arguments
5124   timespec absTime;
5125   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5126     return;
5127   }
5128   if (time > 0) {
5129     // Warning: this code might be exposed to the old Solaris time
5130     // round-down bugs.  Grep "roundingFix" for details.
5131     unpackTime(&absTime, isAbsolute, time);
5132   }
5133 
5134   // Enter safepoint region
5135   // Beware of deadlocks such as 6317397.
5136   // The per-thread Parker:: _mutex is a classic leaf-lock.
5137   // In particular a thread must never block on the Threads_lock while
5138   // holding the Parker:: mutex.  If safepoints are pending both the
5139   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5140   ThreadBlockInVM tbivm(jt);
5141 
5142   // Don't wait if cannot get lock since interference arises from
5143   // unblocking.  Also. check interrupt before trying wait
5144   if (Thread::is_interrupted(thread, false) ||
5145       os::Solaris::mutex_trylock(_mutex) != 0) {
5146     return;
5147   }
5148 
5149   int status;
5150 
5151   if (_counter > 0)  { // no wait needed
5152     _counter = 0;
5153     status = os::Solaris::mutex_unlock(_mutex);
5154     assert(status == 0, "invariant");
5155     // Paranoia to ensure our locked and lock-free paths interact
5156     // correctly with each other and Java-level accesses.
5157     OrderAccess::fence();
5158     return;
5159   }
5160 
5161   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5162   jt->set_suspend_equivalent();
5163   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5164 
5165   // Do this the hard way by blocking ...
5166   // See http://monaco.sfbay/detail.jsf?cr=5094058.
5167   if (time == 0) {
5168     status = os::Solaris::cond_wait(_cond, _mutex);
5169   } else {
5170     status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
5171   }
5172   // Note that an untimed cond_wait() can sometimes return ETIME on older
5173   // versions of the Solaris.
5174   assert_status(status == 0 || status == EINTR ||
5175                 status == ETIME || status == ETIMEDOUT,
5176                 status, "cond_timedwait");
5177 
5178   _counter = 0;
5179   status = os::Solaris::mutex_unlock(_mutex);
5180   assert_status(status == 0, status, "mutex_unlock");
5181   // Paranoia to ensure our locked and lock-free paths interact
5182   // correctly with each other and Java-level accesses.
5183   OrderAccess::fence();
5184 
5185   // If externally suspended while waiting, re-suspend
5186   if (jt->handle_special_suspend_equivalent_condition()) {
5187     jt->java_suspend_self();
5188   }
5189 }
5190 
5191 void Parker::unpark() {
5192   int status = os::Solaris::mutex_lock(_mutex);
5193   assert(status == 0, "invariant");
5194   const int s = _counter;
5195   _counter = 1;
5196   status = os::Solaris::mutex_unlock(_mutex);
5197   assert(status == 0, "invariant");
5198 
5199   if (s < 1) {
5200     status = os::Solaris::cond_signal(_cond);
5201     assert(status == 0, "invariant");
5202   }
5203 }
5204 
5205 // Platform Monitor implementation
5206 
5207 os::PlatformMonitor::PlatformMonitor() {
5208   int status = os::Solaris::cond_init(&_cond);
5209   assert_status(status == 0, status, "cond_init");
5210   status = os::Solaris::mutex_init(&_mutex);
5211   assert_status(status == 0, status, "mutex_init");
5212 }
5213 
5214 os::PlatformMonitor::~PlatformMonitor() {
5215   int status = os::Solaris::cond_destroy(&_cond);
5216   assert_status(status == 0, status, "cond_destroy");
5217   status = os::Solaris::mutex_destroy(&_mutex);
5218   assert_status(status == 0, status, "mutex_destroy");
5219 }
5220 
5221 void os::PlatformMonitor::lock() {
5222   int status = os::Solaris::mutex_lock(&_mutex);
5223   assert_status(status == 0, status, "mutex_lock");
5224 }
5225 
5226 void os::PlatformMonitor::unlock() {
5227   int status = os::Solaris::mutex_unlock(&_mutex);
5228   assert_status(status == 0, status, "mutex_unlock");
5229 }
5230 
5231 bool os::PlatformMonitor::try_lock() {
5232   int status = os::Solaris::mutex_trylock(&_mutex);
5233   assert_status(status == 0 || status == EBUSY, status, "mutex_trylock");
5234   return status == 0;
5235 }
5236 
5237 // Must already be locked
5238 int os::PlatformMonitor::wait(jlong millis) {
5239   assert(millis >= 0, "negative timeout");
5240   if (millis > 0) {
5241     timestruc_t abst;
5242     int ret = OS_TIMEOUT;
5243     compute_abstime(&abst, millis);
5244     int status = os::Solaris::cond_timedwait(&_cond, &_mutex, &abst);
5245     assert_status(status == 0 || status == EINTR ||
5246                   status == ETIME || status == ETIMEDOUT,
5247                   status, "cond_timedwait");
5248     // EINTR acts as spurious wakeup - which is permitted anyway
5249     if (status == 0 || status == EINTR) {
5250       ret = OS_OK;
5251     }
5252     return ret;
5253   } else {
5254     int status = os::Solaris::cond_wait(&_cond, &_mutex);
5255     assert_status(status == 0 || status == EINTR,
5256                   status, "cond_wait");
5257     return OS_OK;
5258   }
5259 }
5260 
5261 void os::PlatformMonitor::notify() {
5262   int status = os::Solaris::cond_signal(&_cond);
5263   assert_status(status == 0, status, "cond_signal");
5264 }
5265 
5266 void os::PlatformMonitor::notify_all() {
5267   int status = os::Solaris::cond_broadcast(&_cond);
5268   assert_status(status == 0, status, "cond_broadcast");
5269 }
5270 
5271 extern char** environ;
5272 
5273 // Run the specified command in a separate process. Return its exit value,
5274 // or -1 on failure (e.g. can't fork a new process).
5275 // Unlike system(), this function can be called from signal handler. It
5276 // doesn't block SIGINT et al.
5277 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
5278   char * argv[4];
5279   argv[0] = (char *)"sh";
5280   argv[1] = (char *)"-c";
5281   argv[2] = cmd;
5282   argv[3] = NULL;
5283 
5284   // fork is async-safe, fork1 is not so can't use in signal handler
5285   pid_t pid;
5286   Thread* t = Thread::current_or_null_safe();
5287   if (t != NULL && t->is_inside_signal_handler()) {
5288     pid = fork();
5289   } else {
5290     pid = fork1();
5291   }
5292 
5293   if (pid < 0) {
5294     // fork failed
5295     warning("fork failed: %s", os::strerror(errno));
5296     return -1;
5297 
5298   } else if (pid == 0) {
5299     // child process
5300 
5301     // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
5302     execve("/usr/bin/sh", argv, environ);
5303 
5304     // execve failed
5305     _exit(-1);
5306 
5307   } else  {
5308     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5309     // care about the actual exit code, for now.
5310 
5311     int status;
5312 
5313     // Wait for the child process to exit.  This returns immediately if
5314     // the child has already exited. */
5315     while (waitpid(pid, &status, 0) < 0) {
5316       switch (errno) {
5317       case ECHILD: return 0;
5318       case EINTR: break;
5319       default: return -1;
5320       }
5321     }
5322 
5323     if (WIFEXITED(status)) {
5324       // The child exited normally; get its exit code.
5325       return WEXITSTATUS(status);
5326     } else if (WIFSIGNALED(status)) {
5327       // The child exited because of a signal
5328       // The best value to return is 0x80 + signal number,
5329       // because that is what all Unix shells do, and because
5330       // it allows callers to distinguish between process exit and
5331       // process death by signal.
5332       return 0x80 + WTERMSIG(status);
5333     } else {
5334       // Unknown exit code; pass it through
5335       return status;
5336     }
5337   }
5338 }
5339 
5340 size_t os::write(int fd, const void *buf, unsigned int nBytes) {
5341   size_t res;
5342   RESTARTABLE((size_t) ::write(fd, buf, (size_t) nBytes), res);
5343   return res;
5344 }
5345 
5346 int os::close(int fd) {
5347   return ::close(fd);
5348 }
5349 
5350 int os::socket_close(int fd) {
5351   return ::close(fd);
5352 }
5353 
5354 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5355   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5356          "Assumed _thread_in_native");
5357   RESTARTABLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags));
5358 }
5359 
5360 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5361   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5362          "Assumed _thread_in_native");
5363   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5364 }
5365 
5366 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5367   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5368 }
5369 
5370 // As both poll and select can be interrupted by signals, we have to be
5371 // prepared to restart the system call after updating the timeout, unless
5372 // a poll() is done with timeout == -1, in which case we repeat with this
5373 // "wait forever" value.
5374 
5375 int os::connect(int fd, struct sockaddr *him, socklen_t len) {
5376   int _result;
5377   _result = ::connect(fd, him, len);
5378 
5379   // On Solaris, when a connect() call is interrupted, the connection
5380   // can be established asynchronously (see 6343810). Subsequent calls
5381   // to connect() must check the errno value which has the semantic
5382   // described below (copied from the connect() man page). Handling
5383   // of asynchronously established connections is required for both
5384   // blocking and non-blocking sockets.
5385   //     EINTR            The  connection  attempt  was   interrupted
5386   //                      before  any data arrived by the delivery of
5387   //                      a signal. The connection, however, will  be
5388   //                      established asynchronously.
5389   //
5390   //     EINPROGRESS      The socket is non-blocking, and the connec-
5391   //                      tion  cannot  be completed immediately.
5392   //
5393   //     EALREADY         The socket is non-blocking,  and a previous
5394   //                      connection  attempt  has  not yet been com-
5395   //                      pleted.
5396   //
5397   //     EISCONN          The socket is already connected.
5398   if (_result == OS_ERR && errno == EINTR) {
5399     // restarting a connect() changes its errno semantics
5400     RESTARTABLE(::connect(fd, him, len), _result);
5401     // undo these changes
5402     if (_result == OS_ERR) {
5403       if (errno == EALREADY) {
5404         errno = EINPROGRESS; // fall through
5405       } else if (errno == EISCONN) {
5406         errno = 0;
5407         return OS_OK;
5408       }
5409     }
5410   }
5411   return _result;
5412 }
5413 
5414 // Get the default path to the core file
5415 // Returns the length of the string
5416 int os::get_core_path(char* buffer, size_t bufferSize) {
5417   const char* p = get_current_directory(buffer, bufferSize);
5418 
5419   if (p == NULL) {
5420     assert(p != NULL, "failed to get current directory");
5421     return 0;
5422   }
5423 
5424   jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
5425                                               p, current_process_id());
5426 
5427   return strlen(buffer);
5428 }
5429 
5430 #ifndef PRODUCT
5431 void TestReserveMemorySpecial_test() {
5432   // No tests available for this platform
5433 }
5434 #endif
5435 
5436 bool os::start_debugging(char *buf, int buflen) {
5437   int len = (int)strlen(buf);
5438   char *p = &buf[len];
5439 
5440   jio_snprintf(p, buflen-len,
5441                "\n\n"
5442                "Do you want to debug the problem?\n\n"
5443                "To debug, run 'dbx - %d'; then switch to thread " INTX_FORMAT "\n"
5444                "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
5445                "Otherwise, press RETURN to abort...",
5446                os::current_process_id(), os::current_thread_id());
5447 
5448   bool yes = os::message_box("Unexpected Error", buf);
5449 
5450   if (yes) {
5451     // yes, user asked VM to launch debugger
5452     jio_snprintf(buf, sizeof(buf), "dbx - %d", os::current_process_id());
5453 
5454     os::fork_and_exec(buf);
5455     yes = false;
5456   }
5457   return yes;
5458 }