1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_COMPILE_HPP
  26 #define SHARE_OPTO_COMPILE_HPP
  27 
  28 #include "asm/codeBuffer.hpp"
  29 #include "ci/compilerInterface.hpp"
  30 #include "code/debugInfoRec.hpp"
  31 #include "code/exceptionHandlerTable.hpp"
  32 #include "compiler/compilerOracle.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "libadt/dict.hpp"
  35 #include "libadt/vectset.hpp"
  36 #include "jfr/jfrEvents.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/methodData.hpp"
  39 #include "opto/idealGraphPrinter.hpp"
  40 #include "opto/phasetype.hpp"
  41 #include "opto/phase.hpp"
  42 #include "opto/regmask.hpp"
  43 #include "runtime/deoptimization.hpp"
  44 #include "runtime/timerTrace.hpp"
  45 #include "runtime/vmThread.hpp"
  46 #include "utilities/ticks.hpp"
  47 
  48 class AddPNode;
  49 class Block;
  50 class Bundle;
  51 class C2Compiler;
  52 class CallGenerator;
  53 class CloneMap;
  54 class ConnectionGraph;
  55 class InlineTree;
  56 class Int_Array;
  57 class LoadBarrierNode;
  58 class Matcher;
  59 class MachConstantNode;
  60 class MachConstantBaseNode;
  61 class MachNode;
  62 class MachOper;
  63 class MachSafePointNode;
  64 class Node;
  65 class Node_Array;
  66 class Node_Notes;
  67 class NodeCloneInfo;
  68 class OptoReg;
  69 class PhaseCFG;
  70 class PhaseGVN;
  71 class PhaseIterGVN;
  72 class PhaseRegAlloc;
  73 class PhaseCCP;
  74 class PhaseCCP_DCE;
  75 class RootNode;
  76 class relocInfo;
  77 class Scope;
  78 class StartNode;
  79 class SafePointNode;
  80 class JVMState;
  81 class Type;
  82 class TypeData;
  83 class TypeInt;
  84 class TypePtr;
  85 class TypeOopPtr;
  86 class TypeFunc;
  87 class Unique_Node_List;
  88 class nmethod;
  89 class WarmCallInfo;
  90 class Node_Stack;
  91 struct Final_Reshape_Counts;
  92 
  93 enum LoopOptsMode {
  94   LoopOptsDefault,
  95   LoopOptsNone,
  96   LoopOptsShenandoahExpand,
  97   LoopOptsShenandoahPostExpand,
  98   LoopOptsSkipSplitIf,
  99   LoopOptsVerify,
 100   LoopOptsLastRound
 101 };
 102 
 103 typedef unsigned int node_idx_t;
 104 class NodeCloneInfo {
 105  private:
 106   uint64_t _idx_clone_orig;
 107  public:
 108 
 109   void set_idx(node_idx_t idx) {
 110     _idx_clone_orig = (_idx_clone_orig & CONST64(0xFFFFFFFF00000000)) | idx;
 111   }
 112   node_idx_t idx() const { return (node_idx_t)(_idx_clone_orig & 0xFFFFFFFF); }
 113 
 114   void set_gen(int generation) {
 115     uint64_t g = (uint64_t)generation << 32;
 116     _idx_clone_orig = (_idx_clone_orig & 0xFFFFFFFF) | g;
 117   }
 118   int gen() const { return (int)(_idx_clone_orig >> 32); }
 119 
 120   void set(uint64_t x) { _idx_clone_orig = x; }
 121   void set(node_idx_t x, int g) { set_idx(x); set_gen(g); }
 122   uint64_t get() const { return _idx_clone_orig; }
 123 
 124   NodeCloneInfo(uint64_t idx_clone_orig) : _idx_clone_orig(idx_clone_orig) {}
 125   NodeCloneInfo(node_idx_t x, int g) : _idx_clone_orig(0) { set(x, g); }
 126 
 127   void dump() const;
 128 };
 129 
 130 class CloneMap {
 131   friend class Compile;
 132  private:
 133   bool      _debug;
 134   Dict*     _dict;
 135   int       _clone_idx;   // current cloning iteration/generation in loop unroll
 136  public:
 137   void*     _2p(node_idx_t key)   const          { return (void*)(intptr_t)key; } // 2 conversion functions to make gcc happy
 138   node_idx_t _2_node_idx_t(const void* k) const  { return (node_idx_t)(intptr_t)k; }
 139   Dict*     dict()                const          { return _dict; }
 140   void insert(node_idx_t key, uint64_t val)      { assert(_dict->operator[](_2p(key)) == NULL, "key existed"); _dict->Insert(_2p(key), (void*)val); }
 141   void insert(node_idx_t key, NodeCloneInfo& ci) { insert(key, ci.get()); }
 142   void remove(node_idx_t key)                    { _dict->Delete(_2p(key)); }
 143   uint64_t value(node_idx_t key)  const          { return (uint64_t)_dict->operator[](_2p(key)); }
 144   node_idx_t idx(node_idx_t key)  const          { return NodeCloneInfo(value(key)).idx(); }
 145   int gen(node_idx_t key)         const          { return NodeCloneInfo(value(key)).gen(); }
 146   int gen(const void* k)          const          { return gen(_2_node_idx_t(k)); }
 147   int max_gen()                   const;
 148   void clone(Node* old, Node* nnn, int gen);
 149   void verify_insert_and_clone(Node* old, Node* nnn, int gen);
 150   void dump(node_idx_t key)       const;
 151 
 152   int  clone_idx() const                         { return _clone_idx; }
 153   void set_clone_idx(int x)                      { _clone_idx = x; }
 154   bool is_debug()                 const          { return _debug; }
 155   void set_debug(bool debug)                     { _debug = debug; }
 156   static const char* debug_option_name;
 157 
 158   bool same_idx(node_idx_t k1, node_idx_t k2)  const { return idx(k1) == idx(k2); }
 159   bool same_gen(node_idx_t k1, node_idx_t k2)  const { return gen(k1) == gen(k2); }
 160 };
 161 
 162 //------------------------------Compile----------------------------------------
 163 // This class defines a top-level Compiler invocation.
 164 
 165 class Compile : public Phase {
 166   friend class VMStructs;
 167 
 168  public:
 169   // Fixed alias indexes.  (See also MergeMemNode.)
 170   enum {
 171     AliasIdxTop = 1,  // pseudo-index, aliases to nothing (used as sentinel value)
 172     AliasIdxBot = 2,  // pseudo-index, aliases to everything
 173     AliasIdxRaw = 3   // hard-wired index for TypeRawPtr::BOTTOM
 174   };
 175 
 176   // Variant of TraceTime(NULL, &_t_accumulator, CITime);
 177   // Integrated with logging.  If logging is turned on, and CITimeVerbose is true,
 178   // then brackets are put into the log, with time stamps and node counts.
 179   // (The time collection itself is always conditionalized on CITime.)
 180   class TracePhase : public TraceTime {
 181    private:
 182     Compile*    C;
 183     CompileLog* _log;
 184     const char* _phase_name;
 185     bool _dolog;
 186    public:
 187     TracePhase(const char* name, elapsedTimer* accumulator);
 188     ~TracePhase();
 189   };
 190 
 191   // Information per category of alias (memory slice)
 192   class AliasType {
 193    private:
 194     friend class Compile;
 195 
 196     int             _index;         // unique index, used with MergeMemNode
 197     const TypePtr*  _adr_type;      // normalized address type
 198     ciField*        _field;         // relevant instance field, or null if none
 199     const Type*     _element;       // relevant array element type, or null if none
 200     bool            _is_rewritable; // false if the memory is write-once only
 201     int             _general_index; // if this is type is an instance, the general
 202                                     // type that this is an instance of
 203 
 204     void Init(int i, const TypePtr* at);
 205 
 206    public:
 207     int             index()         const { return _index; }
 208     const TypePtr*  adr_type()      const { return _adr_type; }
 209     ciField*        field()         const { return _field; }
 210     const Type*     element()       const { return _element; }
 211     bool            is_rewritable() const { return _is_rewritable; }
 212     bool            is_volatile()   const { return (_field ? _field->is_volatile() : false); }
 213     int             general_index() const { return (_general_index != 0) ? _general_index : _index; }
 214 
 215     void set_rewritable(bool z) { _is_rewritable = z; }
 216     void set_field(ciField* f) {
 217       assert(!_field,"");
 218       _field = f;
 219       if (f->is_final() || f->is_stable()) {
 220         // In the case of @Stable, multiple writes are possible but may be assumed to be no-ops.
 221         _is_rewritable = false;
 222       }
 223     }
 224     void set_element(const Type* e) {
 225       assert(_element == NULL, "");
 226       _element = e;
 227     }
 228 
 229     BasicType basic_type() const;
 230 
 231     void print_on(outputStream* st) PRODUCT_RETURN;
 232   };
 233 
 234   enum {
 235     logAliasCacheSize = 6,
 236     AliasCacheSize = (1<<logAliasCacheSize)
 237   };
 238   struct AliasCacheEntry { const TypePtr* _adr_type; int _index; };  // simple duple type
 239   enum {
 240     trapHistLength = MethodData::_trap_hist_limit
 241   };
 242 
 243   // Constant entry of the constant table.
 244   class Constant {
 245   private:
 246     BasicType _type;
 247     union {
 248       jvalue    _value;
 249       Metadata* _metadata;
 250     } _v;
 251     int       _offset;         // offset of this constant (in bytes) relative to the constant table base.
 252     float     _freq;
 253     bool      _can_be_reused;  // true (default) if the value can be shared with other users.
 254 
 255   public:
 256     Constant() : _type(T_ILLEGAL), _offset(-1), _freq(0.0f), _can_be_reused(true) { _v._value.l = 0; }
 257     Constant(BasicType type, jvalue value, float freq = 0.0f, bool can_be_reused = true) :
 258       _type(type),
 259       _offset(-1),
 260       _freq(freq),
 261       _can_be_reused(can_be_reused)
 262     {
 263       assert(type != T_METADATA, "wrong constructor");
 264       _v._value = value;
 265     }
 266     Constant(Metadata* metadata, bool can_be_reused = true) :
 267       _type(T_METADATA),
 268       _offset(-1),
 269       _freq(0.0f),
 270       _can_be_reused(can_be_reused)
 271     {
 272       _v._metadata = metadata;
 273     }
 274 
 275     bool operator==(const Constant& other);
 276 
 277     BasicType type()      const    { return _type; }
 278 
 279     jint    get_jint()    const    { return _v._value.i; }
 280     jlong   get_jlong()   const    { return _v._value.j; }
 281     jfloat  get_jfloat()  const    { return _v._value.f; }
 282     jdouble get_jdouble() const    { return _v._value.d; }
 283     jobject get_jobject() const    { return _v._value.l; }
 284 
 285     Metadata* get_metadata() const { return _v._metadata; }
 286 
 287     int         offset()  const    { return _offset; }
 288     void    set_offset(int offset) {        _offset = offset; }
 289 
 290     float       freq()    const    { return _freq;         }
 291     void    inc_freq(float freq)   {        _freq += freq; }
 292 
 293     bool    can_be_reused() const  { return _can_be_reused; }
 294   };
 295 
 296   // Constant table.
 297   class ConstantTable {
 298   private:
 299     GrowableArray<Constant> _constants;          // Constants of this table.
 300     int                     _size;               // Size in bytes the emitted constant table takes (including padding).
 301     int                     _table_base_offset;  // Offset of the table base that gets added to the constant offsets.
 302     int                     _nof_jump_tables;    // Number of jump-tables in this constant table.
 303 
 304     static int qsort_comparator(Constant* a, Constant* b);
 305 
 306     // We use negative frequencies to keep the order of the
 307     // jump-tables in which they were added.  Otherwise we get into
 308     // trouble with relocation.
 309     float next_jump_table_freq() { return -1.0f * (++_nof_jump_tables); }
 310 
 311   public:
 312     ConstantTable() :
 313       _size(-1),
 314       _table_base_offset(-1),  // We can use -1 here since the constant table is always bigger than 2 bytes (-(size / 2), see MachConstantBaseNode::emit).
 315       _nof_jump_tables(0)
 316     {}
 317 
 318     int size() const { assert(_size != -1, "not calculated yet"); return _size; }
 319 
 320     int calculate_table_base_offset() const;  // AD specific
 321     void set_table_base_offset(int x)  { assert(_table_base_offset == -1 || x == _table_base_offset, "can't change"); _table_base_offset = x; }
 322     int      table_base_offset() const { assert(_table_base_offset != -1, "not set yet");                      return _table_base_offset; }
 323 
 324     void emit(CodeBuffer& cb);
 325 
 326     // Returns the offset of the last entry (the top) of the constant table.
 327     int  top_offset() const { assert(_constants.top().offset() != -1, "not bound yet"); return _constants.top().offset(); }
 328 
 329     void calculate_offsets_and_size();
 330     int  find_offset(Constant& con) const;
 331 
 332     void     add(Constant& con);
 333     Constant add(MachConstantNode* n, BasicType type, jvalue value);
 334     Constant add(Metadata* metadata);
 335     Constant add(MachConstantNode* n, MachOper* oper);
 336     Constant add(MachConstantNode* n, jint i) {
 337       jvalue value; value.i = i;
 338       return add(n, T_INT, value);
 339     }
 340     Constant add(MachConstantNode* n, jlong j) {
 341       jvalue value; value.j = j;
 342       return add(n, T_LONG, value);
 343     }
 344     Constant add(MachConstantNode* n, jfloat f) {
 345       jvalue value; value.f = f;
 346       return add(n, T_FLOAT, value);
 347     }
 348     Constant add(MachConstantNode* n, jdouble d) {
 349       jvalue value; value.d = d;
 350       return add(n, T_DOUBLE, value);
 351     }
 352 
 353     // Jump-table
 354     Constant  add_jump_table(MachConstantNode* n);
 355     void     fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const;
 356   };
 357 
 358  private:
 359   // Fixed parameters to this compilation.
 360   const int             _compile_id;
 361   const bool            _save_argument_registers; // save/restore arg regs for trampolines
 362   const bool            _subsume_loads;         // Load can be matched as part of a larger op.
 363   const bool            _do_escape_analysis;    // Do escape analysis.
 364   const bool            _eliminate_boxing;      // Do boxing elimination.
 365   ciMethod*             _method;                // The method being compiled.
 366   int                   _entry_bci;             // entry bci for osr methods.
 367   const TypeFunc*       _tf;                    // My kind of signature
 368   InlineTree*           _ilt;                   // Ditto (temporary).
 369   address               _stub_function;         // VM entry for stub being compiled, or NULL
 370   const char*           _stub_name;             // Name of stub or adapter being compiled, or NULL
 371   address               _stub_entry_point;      // Compile code entry for generated stub, or NULL
 372 
 373   // Control of this compilation.
 374   int                   _max_inline_size;       // Max inline size for this compilation
 375   int                   _freq_inline_size;      // Max hot method inline size for this compilation
 376   int                   _fixed_slots;           // count of frame slots not allocated by the register
 377                                                 // allocator i.e. locks, original deopt pc, etc.
 378   uintx                 _max_node_limit;        // Max unique node count during a single compilation.
 379   // For deopt
 380   int                   _orig_pc_slot;
 381   int                   _orig_pc_slot_offset_in_bytes;
 382 
 383   int                   _major_progress;        // Count of something big happening
 384   bool                  _inlining_progress;     // progress doing incremental inlining?
 385   bool                  _inlining_incrementally;// Are we doing incremental inlining (post parse)
 386   bool                  _do_cleanup;            // Cleanup is needed before proceeding with incremental inlining
 387   bool                  _has_loops;             // True if the method _may_ have some loops
 388   bool                  _has_split_ifs;         // True if the method _may_ have some split-if
 389   bool                  _has_unsafe_access;     // True if the method _may_ produce faults in unsafe loads or stores.
 390   bool                  _has_stringbuilder;     // True StringBuffers or StringBuilders are allocated
 391   bool                  _has_boxed_value;       // True if a boxed object is allocated
 392   bool                  _has_reserved_stack_access; // True if the method or an inlined method is annotated with ReservedStackAccess
 393   uint                  _max_vector_size;       // Maximum size of generated vectors
 394   bool                  _clear_upper_avx;       // Clear upper bits of ymm registers using vzeroupper
 395   uint                  _trap_hist[trapHistLength];  // Cumulative traps
 396   bool                  _trap_can_recompile;    // Have we emitted a recompiling trap?
 397   uint                  _decompile_count;       // Cumulative decompilation counts.
 398   bool                  _do_inlining;           // True if we intend to do inlining
 399   bool                  _do_scheduling;         // True if we intend to do scheduling
 400   bool                  _do_freq_based_layout;  // True if we intend to do frequency based block layout
 401   bool                  _do_count_invocations;  // True if we generate code to count invocations
 402   bool                  _do_method_data_update; // True if we generate code to update MethodData*s
 403   bool                  _do_vector_loop;        // True if allowed to execute loop in parallel iterations
 404   bool                  _use_cmove;             // True if CMove should be used without profitability analysis
 405   bool                  _age_code;              // True if we need to profile code age (decrement the aging counter)
 406   int                   _AliasLevel;            // Locally-adjusted version of AliasLevel flag.
 407   bool                  _print_assembly;        // True if we should dump assembly code for this compilation
 408   bool                  _print_inlining;        // True if we should print inlining for this compilation
 409   bool                  _print_intrinsics;      // True if we should print intrinsics for this compilation
 410 #ifndef PRODUCT
 411   bool                  _trace_opto_output;
 412   bool                  _parsed_irreducible_loop; // True if ciTypeFlow detected irreducible loops during parsing
 413 #endif
 414   bool                  _has_irreducible_loop;  // Found irreducible loops
 415   // JSR 292
 416   bool                  _has_method_handle_invokes; // True if this method has MethodHandle invokes.
 417   RTMState              _rtm_state;             // State of Restricted Transactional Memory usage
 418   int                   _loop_opts_cnt;         // loop opts round
 419   bool                  _clinit_barrier_on_entry; // True if clinit barrier is needed on nmethod entry
 420 
 421   // Compilation environment.
 422   Arena                 _comp_arena;            // Arena with lifetime equivalent to Compile
 423   void*                 _barrier_set_state;     // Potential GC barrier state for Compile
 424   ciEnv*                _env;                   // CI interface
 425   DirectiveSet*         _directive;             // Compiler directive
 426   CompileLog*           _log;                   // from CompilerThread
 427   const char*           _failure_reason;        // for record_failure/failing pattern
 428   GrowableArray<CallGenerator*>* _intrinsics;   // List of intrinsics.
 429   GrowableArray<Node*>* _macro_nodes;           // List of nodes which need to be expanded before matching.
 430   GrowableArray<Node*>* _predicate_opaqs;       // List of Opaque1 nodes for the loop predicates.
 431   GrowableArray<Node*>* _expensive_nodes;       // List of nodes that are expensive to compute and that we'd better not let the GVN freely common
 432   GrowableArray<Node*>* _range_check_casts;     // List of CastII nodes with a range check dependency
 433   GrowableArray<Node*>* _opaque4_nodes;         // List of Opaque4 nodes that have a default value
 434   ConnectionGraph*      _congraph;
 435 #ifndef PRODUCT
 436   IdealGraphPrinter*    _printer;
 437 #endif
 438 
 439 
 440   // Node management
 441   uint                  _unique;                // Counter for unique Node indices
 442   VectorSet             _dead_node_list;        // Set of dead nodes
 443   uint                  _dead_node_count;       // Number of dead nodes; VectorSet::Size() is O(N).
 444                                                 // So use this to keep count and make the call O(1).
 445   DEBUG_ONLY( Unique_Node_List* _modified_nodes; )  // List of nodes which inputs were modified
 446 
 447   debug_only(static int _debug_idx;)            // Monotonic counter (not reset), use -XX:BreakAtNode=<idx>
 448   Arena                 _node_arena;            // Arena for new-space Nodes
 449   Arena                 _old_arena;             // Arena for old-space Nodes, lifetime during xform
 450   RootNode*             _root;                  // Unique root of compilation, or NULL after bail-out.
 451   Node*                 _top;                   // Unique top node.  (Reset by various phases.)
 452 
 453   Node*                 _immutable_memory;      // Initial memory state
 454 
 455   Node*                 _recent_alloc_obj;
 456   Node*                 _recent_alloc_ctl;
 457 
 458   // Constant table
 459   ConstantTable         _constant_table;        // The constant table for this compile.
 460   MachConstantBaseNode* _mach_constant_base_node;  // Constant table base node singleton.
 461 
 462 
 463   // Blocked array of debugging and profiling information,
 464   // tracked per node.
 465   enum { _log2_node_notes_block_size = 8,
 466          _node_notes_block_size = (1<<_log2_node_notes_block_size)
 467   };
 468   GrowableArray<Node_Notes*>* _node_note_array;
 469   Node_Notes*           _default_node_notes;  // default notes for new nodes
 470 
 471   // After parsing and every bulk phase we hang onto the Root instruction.
 472   // The RootNode instruction is where the whole program begins.  It produces
 473   // the initial Control and BOTTOM for everybody else.
 474 
 475   // Type management
 476   Arena                 _Compile_types;         // Arena for all types
 477   Arena*                _type_arena;            // Alias for _Compile_types except in Initialize_shared()
 478   Dict*                 _type_dict;             // Intern table
 479   CloneMap              _clone_map;             // used for recording history of cloned nodes
 480   void*                 _type_hwm;              // Last allocation (see Type::operator new/delete)
 481   size_t                _type_last_size;        // Last allocation size (see Type::operator new/delete)
 482   ciMethod*             _last_tf_m;             // Cache for
 483   const TypeFunc*       _last_tf;               //  TypeFunc::make
 484   AliasType**           _alias_types;           // List of alias types seen so far.
 485   int                   _num_alias_types;       // Logical length of _alias_types
 486   int                   _max_alias_types;       // Physical length of _alias_types
 487   AliasCacheEntry       _alias_cache[AliasCacheSize]; // Gets aliases w/o data structure walking
 488 
 489   // Parsing, optimization
 490   PhaseGVN*             _initial_gvn;           // Results of parse-time PhaseGVN
 491   Unique_Node_List*     _for_igvn;              // Initial work-list for next round of Iterative GVN
 492   WarmCallInfo*         _warm_calls;            // Sorted work-list for heat-based inlining.
 493 
 494   GrowableArray<CallGenerator*> _late_inlines;        // List of CallGenerators to be revisited after
 495                                                       // main parsing has finished.
 496   GrowableArray<CallGenerator*> _string_late_inlines; // same but for string operations
 497 
 498   GrowableArray<CallGenerator*> _boxing_late_inlines; // same but for boxing operations
 499 
 500   int                           _late_inlines_pos;    // Where in the queue should the next late inlining candidate go (emulate depth first inlining)
 501   uint                          _number_of_mh_late_inlines; // number of method handle late inlining still pending
 502 
 503 
 504   // Inlining may not happen in parse order which would make
 505   // PrintInlining output confusing. Keep track of PrintInlining
 506   // pieces in order.
 507   class PrintInliningBuffer : public ResourceObj {
 508    private:
 509     CallGenerator* _cg;
 510     stringStream* _ss;
 511 
 512    public:
 513     PrintInliningBuffer()
 514       : _cg(NULL) { _ss = new stringStream(); }
 515 
 516     stringStream* ss() const { return _ss; }
 517     CallGenerator* cg() const { return _cg; }
 518     void set_cg(CallGenerator* cg) { _cg = cg; }
 519   };
 520 
 521   stringStream* _print_inlining_stream;
 522   GrowableArray<PrintInliningBuffer>* _print_inlining_list;
 523   int _print_inlining_idx;
 524   char* _print_inlining_output;
 525 
 526   // Only keep nodes in the expensive node list that need to be optimized
 527   void cleanup_expensive_nodes(PhaseIterGVN &igvn);
 528   // Use for sorting expensive nodes to bring similar nodes together
 529   static int cmp_expensive_nodes(Node** n1, Node** n2);
 530   // Expensive nodes list already sorted?
 531   bool expensive_nodes_sorted() const;
 532   // Remove the speculative part of types and clean up the graph
 533   void remove_speculative_types(PhaseIterGVN &igvn);
 534 
 535   void* _replay_inline_data; // Pointer to data loaded from file
 536 
 537   void print_inlining_init();
 538   void print_inlining_reinit();
 539   void print_inlining_commit();
 540   void print_inlining_push();
 541   PrintInliningBuffer& print_inlining_current();
 542 
 543   void log_late_inline_failure(CallGenerator* cg, const char* msg);
 544 
 545  public:
 546 
 547   void* barrier_set_state() const { return _barrier_set_state; }
 548 
 549   outputStream* print_inlining_stream() const {
 550     assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
 551     return _print_inlining_stream;
 552   }
 553 
 554   void print_inlining_update(CallGenerator* cg);
 555   void print_inlining_update_delayed(CallGenerator* cg);
 556   void print_inlining_move_to(CallGenerator* cg);
 557   void print_inlining_assert_ready();
 558   void print_inlining_reset();
 559 
 560   void print_inlining(ciMethod* method, int inline_level, int bci, const char* msg = NULL) {
 561     stringStream ss;
 562     CompileTask::print_inlining_inner(&ss, method, inline_level, bci, msg);
 563     print_inlining_stream()->print("%s", ss.as_string());
 564   }
 565 
 566 #ifndef PRODUCT
 567   IdealGraphPrinter* printer() { return _printer; }
 568 #endif
 569 
 570   void log_late_inline(CallGenerator* cg);
 571   void log_inline_id(CallGenerator* cg);
 572   void log_inline_failure(const char* msg);
 573 
 574   void* replay_inline_data() const { return _replay_inline_data; }
 575 
 576   // Dump inlining replay data to the stream.
 577   void dump_inline_data(outputStream* out);
 578 
 579  private:
 580   // Matching, CFG layout, allocation, code generation
 581   PhaseCFG*             _cfg;                   // Results of CFG finding
 582   bool                  _select_24_bit_instr;   // We selected an instruction with a 24-bit result
 583   bool                  _in_24_bit_fp_mode;     // We are emitting instructions with 24-bit results
 584   int                   _java_calls;            // Number of java calls in the method
 585   int                   _inner_loops;           // Number of inner loops in the method
 586   Matcher*              _matcher;               // Engine to map ideal to machine instructions
 587   PhaseRegAlloc*        _regalloc;              // Results of register allocation.
 588   int                   _frame_slots;           // Size of total frame in stack slots
 589   CodeOffsets           _code_offsets;          // Offsets into the code for various interesting entries
 590   RegMask               _FIRST_STACK_mask;      // All stack slots usable for spills (depends on frame layout)
 591   Arena*                _indexSet_arena;        // control IndexSet allocation within PhaseChaitin
 592   void*                 _indexSet_free_block_list; // free list of IndexSet bit blocks
 593   int                   _interpreter_frame_size;
 594 
 595   uint                  _node_bundling_limit;
 596   Bundle*               _node_bundling_base;    // Information for instruction bundling
 597 
 598   // Instruction bits passed off to the VM
 599   int                   _method_size;           // Size of nmethod code segment in bytes
 600   CodeBuffer            _code_buffer;           // Where the code is assembled
 601   int                   _first_block_size;      // Size of unvalidated entry point code / OSR poison code
 602   ExceptionHandlerTable _handler_table;         // Table of native-code exception handlers
 603   ImplicitExceptionTable _inc_table;            // Table of implicit null checks in native code
 604   OopMapSet*            _oop_map_set;           // Table of oop maps (one for each safepoint location)
 605   static int            _CompiledZap_count;     // counter compared against CompileZap[First/Last]
 606   BufferBlob*           _scratch_buffer_blob;   // For temporary code buffers.
 607   relocInfo*            _scratch_locs_memory;   // For temporary code buffers.
 608   int                   _scratch_const_size;    // For temporary code buffers.
 609   bool                  _in_scratch_emit_size;  // true when in scratch_emit_size.
 610 
 611   void reshape_address(AddPNode* n);
 612 
 613  public:
 614   // Accessors
 615 
 616   // The Compile instance currently active in this (compiler) thread.
 617   static Compile* current() {
 618     return (Compile*) ciEnv::current()->compiler_data();
 619   }
 620 
 621   // ID for this compilation.  Useful for setting breakpoints in the debugger.
 622   int               compile_id() const          { return _compile_id; }
 623   DirectiveSet*     directive() const           { return _directive; }
 624 
 625   // Does this compilation allow instructions to subsume loads?  User
 626   // instructions that subsume a load may result in an unschedulable
 627   // instruction sequence.
 628   bool              subsume_loads() const       { return _subsume_loads; }
 629   /** Do escape analysis. */
 630   bool              do_escape_analysis() const  { return _do_escape_analysis; }
 631   /** Do boxing elimination. */
 632   bool              eliminate_boxing() const    { return _eliminate_boxing; }
 633   /** Do aggressive boxing elimination. */
 634   bool              aggressive_unboxing() const { return _eliminate_boxing && AggressiveUnboxing; }
 635   bool              save_argument_registers() const { return _save_argument_registers; }
 636 
 637 
 638   // Other fixed compilation parameters.
 639   ciMethod*         method() const              { return _method; }
 640   int               entry_bci() const           { return _entry_bci; }
 641   bool              is_osr_compilation() const  { return _entry_bci != InvocationEntryBci; }
 642   bool              is_method_compilation() const { return (_method != NULL && !_method->flags().is_native()); }
 643   const TypeFunc*   tf() const                  { assert(_tf!=NULL, ""); return _tf; }
 644   void         init_tf(const TypeFunc* tf)      { assert(_tf==NULL, ""); _tf = tf; }
 645   InlineTree*       ilt() const                 { return _ilt; }
 646   address           stub_function() const       { return _stub_function; }
 647   const char*       stub_name() const           { return _stub_name; }
 648   address           stub_entry_point() const    { return _stub_entry_point; }
 649 
 650   // Control of this compilation.
 651   int               fixed_slots() const         { assert(_fixed_slots >= 0, "");         return _fixed_slots; }
 652   void          set_fixed_slots(int n)          { _fixed_slots = n; }
 653   int               major_progress() const      { return _major_progress; }
 654   void          set_inlining_progress(bool z)   { _inlining_progress = z; }
 655   int               inlining_progress() const   { return _inlining_progress; }
 656   void          set_inlining_incrementally(bool z) { _inlining_incrementally = z; }
 657   int               inlining_incrementally() const { return _inlining_incrementally; }
 658   void          set_do_cleanup(bool z)          { _do_cleanup = z; }
 659   int               do_cleanup() const          { return _do_cleanup; }
 660   void          set_major_progress()            { _major_progress++; }
 661   void        clear_major_progress()            { _major_progress = 0; }
 662   int               max_inline_size() const     { return _max_inline_size; }
 663   void          set_freq_inline_size(int n)     { _freq_inline_size = n; }
 664   int               freq_inline_size() const    { return _freq_inline_size; }
 665   void          set_max_inline_size(int n)      { _max_inline_size = n; }
 666   bool              has_loops() const           { return _has_loops; }
 667   void          set_has_loops(bool z)           { _has_loops = z; }
 668   bool              has_split_ifs() const       { return _has_split_ifs; }
 669   void          set_has_split_ifs(bool z)       { _has_split_ifs = z; }
 670   bool              has_unsafe_access() const   { return _has_unsafe_access; }
 671   void          set_has_unsafe_access(bool z)   { _has_unsafe_access = z; }
 672   bool              has_stringbuilder() const   { return _has_stringbuilder; }
 673   void          set_has_stringbuilder(bool z)   { _has_stringbuilder = z; }
 674   bool              has_boxed_value() const     { return _has_boxed_value; }
 675   void          set_has_boxed_value(bool z)     { _has_boxed_value = z; }
 676   bool              has_reserved_stack_access() const { return _has_reserved_stack_access; }
 677   void          set_has_reserved_stack_access(bool z) { _has_reserved_stack_access = z; }
 678   uint              max_vector_size() const     { return _max_vector_size; }
 679   void          set_max_vector_size(uint s)     { _max_vector_size = s; }
 680   bool              clear_upper_avx() const     { return _clear_upper_avx; }
 681   void          set_clear_upper_avx(bool s)     { _clear_upper_avx = s; }
 682   void          set_trap_count(uint r, uint c)  { assert(r < trapHistLength, "oob");        _trap_hist[r] = c; }
 683   uint              trap_count(uint r) const    { assert(r < trapHistLength, "oob"); return _trap_hist[r]; }
 684   bool              trap_can_recompile() const  { return _trap_can_recompile; }
 685   void          set_trap_can_recompile(bool z)  { _trap_can_recompile = z; }
 686   uint              decompile_count() const     { return _decompile_count; }
 687   void          set_decompile_count(uint c)     { _decompile_count = c; }
 688   bool              allow_range_check_smearing() const;
 689   bool              do_inlining() const         { return _do_inlining; }
 690   void          set_do_inlining(bool z)         { _do_inlining = z; }
 691   bool              do_scheduling() const       { return _do_scheduling; }
 692   void          set_do_scheduling(bool z)       { _do_scheduling = z; }
 693   bool              do_freq_based_layout() const{ return _do_freq_based_layout; }
 694   void          set_do_freq_based_layout(bool z){ _do_freq_based_layout = z; }
 695   bool              do_count_invocations() const{ return _do_count_invocations; }
 696   void          set_do_count_invocations(bool z){ _do_count_invocations = z; }
 697   bool              do_method_data_update() const { return _do_method_data_update; }
 698   void          set_do_method_data_update(bool z) { _do_method_data_update = z; }
 699   bool              do_vector_loop() const      { return _do_vector_loop; }
 700   void          set_do_vector_loop(bool z)      { _do_vector_loop = z; }
 701   bool              use_cmove() const           { return _use_cmove; }
 702   void          set_use_cmove(bool z)           { _use_cmove = z; }
 703   bool              age_code() const             { return _age_code; }
 704   void          set_age_code(bool z)             { _age_code = z; }
 705   int               AliasLevel() const           { return _AliasLevel; }
 706   bool              print_assembly() const       { return _print_assembly; }
 707   void          set_print_assembly(bool z)       { _print_assembly = z; }
 708   bool              print_inlining() const       { return _print_inlining; }
 709   void          set_print_inlining(bool z)       { _print_inlining = z; }
 710   bool              print_intrinsics() const     { return _print_intrinsics; }
 711   void          set_print_intrinsics(bool z)     { _print_intrinsics = z; }
 712   RTMState          rtm_state()  const           { return _rtm_state; }
 713   void          set_rtm_state(RTMState s)        { _rtm_state = s; }
 714   bool              use_rtm() const              { return (_rtm_state & NoRTM) == 0; }
 715   bool          profile_rtm() const              { return _rtm_state == ProfileRTM; }
 716   uint              max_node_limit() const       { return (uint)_max_node_limit; }
 717   void          set_max_node_limit(uint n)       { _max_node_limit = n; }
 718   bool              clinit_barrier_on_entry()       { return _clinit_barrier_on_entry; }
 719   void          set_clinit_barrier_on_entry(bool z) { _clinit_barrier_on_entry = z; }
 720 
 721   // check the CompilerOracle for special behaviours for this compile
 722   bool          method_has_option(const char * option) {
 723     return method() != NULL && method()->has_option(option);
 724   }
 725 
 726 #ifndef PRODUCT
 727   bool          trace_opto_output() const       { return _trace_opto_output; }
 728   bool              parsed_irreducible_loop() const { return _parsed_irreducible_loop; }
 729   void          set_parsed_irreducible_loop(bool z) { _parsed_irreducible_loop = z; }
 730   int _in_dump_cnt;  // Required for dumping ir nodes.
 731 #endif
 732   bool              has_irreducible_loop() const { return _has_irreducible_loop; }
 733   void          set_has_irreducible_loop(bool z) { _has_irreducible_loop = z; }
 734 
 735   // JSR 292
 736   bool              has_method_handle_invokes() const { return _has_method_handle_invokes;     }
 737   void          set_has_method_handle_invokes(bool z) {        _has_method_handle_invokes = z; }
 738 
 739   Ticks _latest_stage_start_counter;
 740 
 741   void begin_method() {
 742 #ifndef PRODUCT
 743     if (_printer && _printer->should_print(1)) {
 744       _printer->begin_method();
 745     }
 746 #endif
 747     C->_latest_stage_start_counter.stamp();
 748   }
 749 
 750   void print_method(CompilerPhaseType cpt, int level = 1) {
 751     EventCompilerPhase event;
 752     if (event.should_commit()) {
 753       event.set_starttime(C->_latest_stage_start_counter);
 754       event.set_phase((u1) cpt);
 755       event.set_compileId(C->_compile_id);
 756       event.set_phaseLevel(level);
 757       event.commit();
 758     }
 759 
 760 
 761 #ifndef PRODUCT
 762     if (_printer && _printer->should_print(level)) {
 763       _printer->print_method(CompilerPhaseTypeHelper::to_string(cpt), level);
 764     }
 765 #endif
 766     C->_latest_stage_start_counter.stamp();
 767   }
 768 
 769   void end_method(int level = 1) {
 770     EventCompilerPhase event;
 771     if (event.should_commit()) {
 772       event.set_starttime(C->_latest_stage_start_counter);
 773       event.set_phase((u1) PHASE_END);
 774       event.set_compileId(C->_compile_id);
 775       event.set_phaseLevel(level);
 776       event.commit();
 777     }
 778 #ifndef PRODUCT
 779     if (_printer && _printer->should_print(level)) {
 780       _printer->end_method();
 781     }
 782 #endif
 783   }
 784 
 785   int           macro_count()             const { return _macro_nodes->length(); }
 786   int           predicate_count()         const { return _predicate_opaqs->length();}
 787   int           expensive_count()         const { return _expensive_nodes->length(); }
 788   Node*         macro_node(int idx)       const { return _macro_nodes->at(idx); }
 789   Node*         predicate_opaque1_node(int idx) const { return _predicate_opaqs->at(idx);}
 790   Node*         expensive_node(int idx)   const { return _expensive_nodes->at(idx); }
 791   ConnectionGraph* congraph()                   { return _congraph;}
 792   void set_congraph(ConnectionGraph* congraph)  { _congraph = congraph;}
 793   void add_macro_node(Node * n) {
 794     //assert(n->is_macro(), "must be a macro node");
 795     assert(!_macro_nodes->contains(n), "duplicate entry in expand list");
 796     _macro_nodes->append(n);
 797   }
 798   void remove_macro_node(Node * n) {
 799     // this function may be called twice for a node so check
 800     // that the node is in the array before attempting to remove it
 801     if (_macro_nodes->contains(n))
 802       _macro_nodes->remove(n);
 803     // remove from _predicate_opaqs list also if it is there
 804     if (predicate_count() > 0 && _predicate_opaqs->contains(n)){
 805       _predicate_opaqs->remove(n);
 806     }
 807   }
 808   void add_expensive_node(Node * n);
 809   void remove_expensive_node(Node * n) {
 810     if (_expensive_nodes->contains(n)) {
 811       _expensive_nodes->remove(n);
 812     }
 813   }
 814   void add_predicate_opaq(Node * n) {
 815     assert(!_predicate_opaqs->contains(n), "duplicate entry in predicate opaque1");
 816     assert(_macro_nodes->contains(n), "should have already been in macro list");
 817     _predicate_opaqs->append(n);
 818   }
 819 
 820   // Range check dependent CastII nodes that can be removed after loop optimizations
 821   void add_range_check_cast(Node* n);
 822   void remove_range_check_cast(Node* n) {
 823     if (_range_check_casts->contains(n)) {
 824       _range_check_casts->remove(n);
 825     }
 826   }
 827   Node* range_check_cast_node(int idx) const { return _range_check_casts->at(idx);  }
 828   int   range_check_cast_count()       const { return _range_check_casts->length(); }
 829   // Remove all range check dependent CastIINodes.
 830   void  remove_range_check_casts(PhaseIterGVN &igvn);
 831 
 832   void add_opaque4_node(Node* n);
 833   void remove_opaque4_node(Node* n) {
 834     if (_opaque4_nodes->contains(n)) {
 835       _opaque4_nodes->remove(n);
 836     }
 837   }
 838   Node* opaque4_node(int idx) const { return _opaque4_nodes->at(idx);  }
 839   int   opaque4_count()       const { return _opaque4_nodes->length(); }
 840   void  remove_opaque4_nodes(PhaseIterGVN &igvn);
 841 
 842   // remove the opaque nodes that protect the predicates so that the unused checks and
 843   // uncommon traps will be eliminated from the graph.
 844   void cleanup_loop_predicates(PhaseIterGVN &igvn);
 845   bool is_predicate_opaq(Node * n) {
 846     return _predicate_opaqs->contains(n);
 847   }
 848 
 849   // Are there candidate expensive nodes for optimization?
 850   bool should_optimize_expensive_nodes(PhaseIterGVN &igvn);
 851   // Check whether n1 and n2 are similar
 852   static int cmp_expensive_nodes(Node* n1, Node* n2);
 853   // Sort expensive nodes to locate similar expensive nodes
 854   void sort_expensive_nodes();
 855 
 856   // Compilation environment.
 857   Arena*      comp_arena()           { return &_comp_arena; }
 858   ciEnv*      env() const            { return _env; }
 859   CompileLog* log() const            { return _log; }
 860   bool        failing() const        { return _env->failing() || _failure_reason != NULL; }
 861   const char* failure_reason() const { return (_env->failing()) ? _env->failure_reason() : _failure_reason; }
 862 
 863   bool failure_reason_is(const char* r) const {
 864     return (r == _failure_reason) || (r != NULL && _failure_reason != NULL && strcmp(r, _failure_reason) == 0);
 865   }
 866 
 867   void record_failure(const char* reason);
 868   void record_method_not_compilable(const char* reason) {
 869     // Bailouts cover "all_tiers" when TieredCompilation is off.
 870     env()->record_method_not_compilable(reason, !TieredCompilation);
 871     // Record failure reason.
 872     record_failure(reason);
 873   }
 874   bool check_node_count(uint margin, const char* reason) {
 875     if (live_nodes() + margin > max_node_limit()) {
 876       record_method_not_compilable(reason);
 877       return true;
 878     } else {
 879       return false;
 880     }
 881   }
 882 
 883   // Node management
 884   uint         unique() const              { return _unique; }
 885   uint         next_unique()               { return _unique++; }
 886   void         set_unique(uint i)          { _unique = i; }
 887   static int   debug_idx()                 { return debug_only(_debug_idx)+0; }
 888   static void  set_debug_idx(int i)        { debug_only(_debug_idx = i); }
 889   Arena*       node_arena()                { return &_node_arena; }
 890   Arena*       old_arena()                 { return &_old_arena; }
 891   RootNode*    root() const                { return _root; }
 892   void         set_root(RootNode* r)       { _root = r; }
 893   StartNode*   start() const;              // (Derived from root.)
 894   void         init_start(StartNode* s);
 895   Node*        immutable_memory();
 896 
 897   Node*        recent_alloc_ctl() const    { return _recent_alloc_ctl; }
 898   Node*        recent_alloc_obj() const    { return _recent_alloc_obj; }
 899   void         set_recent_alloc(Node* ctl, Node* obj) {
 900                                                   _recent_alloc_ctl = ctl;
 901                                                   _recent_alloc_obj = obj;
 902                                            }
 903   void         record_dead_node(uint idx)  { if (_dead_node_list.test_set(idx)) return;
 904                                              _dead_node_count++;
 905                                            }
 906   bool         is_dead_node(uint idx)      { return _dead_node_list.test(idx) != 0; }
 907   uint         dead_node_count()           { return _dead_node_count; }
 908   void         reset_dead_node_list()      { _dead_node_list.Reset();
 909                                              _dead_node_count = 0;
 910                                            }
 911   uint          live_nodes() const         {
 912     int  val = _unique - _dead_node_count;
 913     assert (val >= 0, "number of tracked dead nodes %d more than created nodes %d", _unique, _dead_node_count);
 914             return (uint) val;
 915                                            }
 916 #ifdef ASSERT
 917   uint         count_live_nodes_by_graph_walk();
 918   void         print_missing_nodes();
 919 #endif
 920 
 921   // Record modified nodes to check that they are put on IGVN worklist
 922   void         record_modified_node(Node* n) NOT_DEBUG_RETURN;
 923   void         remove_modified_node(Node* n) NOT_DEBUG_RETURN;
 924   DEBUG_ONLY( Unique_Node_List*   modified_nodes() const { return _modified_nodes; } )
 925 
 926   // Constant table
 927   ConstantTable&   constant_table() { return _constant_table; }
 928 
 929   MachConstantBaseNode*     mach_constant_base_node();
 930   bool                  has_mach_constant_base_node() const { return _mach_constant_base_node != NULL; }
 931   // Generated by adlc, true if CallNode requires MachConstantBase.
 932   bool                      needs_clone_jvms();
 933 
 934   // Handy undefined Node
 935   Node*             top() const                 { return _top; }
 936 
 937   // these are used by guys who need to know about creation and transformation of top:
 938   Node*             cached_top_node()           { return _top; }
 939   void          set_cached_top_node(Node* tn);
 940 
 941   GrowableArray<Node_Notes*>* node_note_array() const { return _node_note_array; }
 942   void set_node_note_array(GrowableArray<Node_Notes*>* arr) { _node_note_array = arr; }
 943   Node_Notes* default_node_notes() const        { return _default_node_notes; }
 944   void    set_default_node_notes(Node_Notes* n) { _default_node_notes = n; }
 945 
 946   Node_Notes*       node_notes_at(int idx) {
 947     return locate_node_notes(_node_note_array, idx, false);
 948   }
 949   inline bool   set_node_notes_at(int idx, Node_Notes* value);
 950 
 951   // Copy notes from source to dest, if they exist.
 952   // Overwrite dest only if source provides something.
 953   // Return true if information was moved.
 954   bool copy_node_notes_to(Node* dest, Node* source);
 955 
 956   // Workhorse function to sort out the blocked Node_Notes array:
 957   inline Node_Notes* locate_node_notes(GrowableArray<Node_Notes*>* arr,
 958                                        int idx, bool can_grow = false);
 959 
 960   void grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by);
 961 
 962   // Type management
 963   Arena*            type_arena()                { return _type_arena; }
 964   Dict*             type_dict()                 { return _type_dict; }
 965   void*             type_hwm()                  { return _type_hwm; }
 966   size_t            type_last_size()            { return _type_last_size; }
 967   int               num_alias_types()           { return _num_alias_types; }
 968 
 969   void          init_type_arena()                       { _type_arena = &_Compile_types; }
 970   void          set_type_arena(Arena* a)                { _type_arena = a; }
 971   void          set_type_dict(Dict* d)                  { _type_dict = d; }
 972   void          set_type_hwm(void* p)                   { _type_hwm = p; }
 973   void          set_type_last_size(size_t sz)           { _type_last_size = sz; }
 974 
 975   const TypeFunc* last_tf(ciMethod* m) {
 976     return (m == _last_tf_m) ? _last_tf : NULL;
 977   }
 978   void set_last_tf(ciMethod* m, const TypeFunc* tf) {
 979     assert(m != NULL || tf == NULL, "");
 980     _last_tf_m = m;
 981     _last_tf = tf;
 982   }
 983 
 984   AliasType*        alias_type(int                idx)  { assert(idx < num_alias_types(), "oob"); return _alias_types[idx]; }
 985   AliasType*        alias_type(const TypePtr* adr_type, ciField* field = NULL) { return find_alias_type(adr_type, false, field); }
 986   bool         have_alias_type(const TypePtr* adr_type);
 987   AliasType*        alias_type(ciField*         field);
 988 
 989   int               get_alias_index(const TypePtr* at)  { return alias_type(at)->index(); }
 990   const TypePtr*    get_adr_type(uint aidx)             { return alias_type(aidx)->adr_type(); }
 991   int               get_general_index(uint aidx)        { return alias_type(aidx)->general_index(); }
 992 
 993   // Building nodes
 994   void              rethrow_exceptions(JVMState* jvms);
 995   void              return_values(JVMState* jvms);
 996   JVMState*         build_start_state(StartNode* start, const TypeFunc* tf);
 997 
 998   // Decide how to build a call.
 999   // The profile factor is a discount to apply to this site's interp. profile.
1000   CallGenerator*    call_generator(ciMethod* call_method, int vtable_index, bool call_does_dispatch,
1001                                    JVMState* jvms, bool allow_inline, float profile_factor, ciKlass* speculative_receiver_type = NULL,
1002                                    bool allow_intrinsics = true, bool delayed_forbidden = false);
1003   bool should_delay_inlining(ciMethod* call_method, JVMState* jvms) {
1004     return should_delay_string_inlining(call_method, jvms) ||
1005            should_delay_boxing_inlining(call_method, jvms);
1006   }
1007   bool should_delay_string_inlining(ciMethod* call_method, JVMState* jvms);
1008   bool should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms);
1009 
1010   // Helper functions to identify inlining potential at call-site
1011   ciMethod* optimize_virtual_call(ciMethod* caller, int bci, ciInstanceKlass* klass,
1012                                   ciKlass* holder, ciMethod* callee,
1013                                   const TypeOopPtr* receiver_type, bool is_virtual,
1014                                   bool &call_does_dispatch, int &vtable_index,
1015                                   bool check_access = true);
1016   ciMethod* optimize_inlining(ciMethod* caller, int bci, ciInstanceKlass* klass,
1017                               ciMethod* callee, const TypeOopPtr* receiver_type,
1018                               bool check_access = true);
1019 
1020   // Report if there were too many traps at a current method and bci.
1021   // Report if a trap was recorded, and/or PerMethodTrapLimit was exceeded.
1022   // If there is no MDO at all, report no trap unless told to assume it.
1023   bool too_many_traps(ciMethod* method, int bci, Deoptimization::DeoptReason reason);
1024   // This version, unspecific to a particular bci, asks if
1025   // PerMethodTrapLimit was exceeded for all inlined methods seen so far.
1026   bool too_many_traps(Deoptimization::DeoptReason reason,
1027                       // Privately used parameter for logging:
1028                       ciMethodData* logmd = NULL);
1029   // Report if there were too many recompiles at a method and bci.
1030   bool too_many_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason);
1031   // Report if there were too many traps or recompiles at a method and bci.
1032   bool too_many_traps_or_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason) {
1033     return too_many_traps(method, bci, reason) ||
1034            too_many_recompiles(method, bci, reason);
1035   }
1036   // Return a bitset with the reasons where deoptimization is allowed,
1037   // i.e., where there were not too many uncommon traps.
1038   int _allowed_reasons;
1039   int      allowed_deopt_reasons() { return _allowed_reasons; }
1040   void set_allowed_deopt_reasons();
1041 
1042   // Parsing, optimization
1043   PhaseGVN*         initial_gvn()               { return _initial_gvn; }
1044   Unique_Node_List* for_igvn()                  { return _for_igvn; }
1045   inline void       record_for_igvn(Node* n);   // Body is after class Unique_Node_List.
1046   void          set_initial_gvn(PhaseGVN *gvn)           { _initial_gvn = gvn; }
1047   void          set_for_igvn(Unique_Node_List *for_igvn) { _for_igvn = for_igvn; }
1048 
1049   // Replace n by nn using initial_gvn, calling hash_delete and
1050   // record_for_igvn as needed.
1051   void gvn_replace_by(Node* n, Node* nn);
1052 
1053 
1054   void              identify_useful_nodes(Unique_Node_List &useful);
1055   void              update_dead_node_list(Unique_Node_List &useful);
1056   void              remove_useless_nodes (Unique_Node_List &useful);
1057 
1058   WarmCallInfo*     warm_calls() const          { return _warm_calls; }
1059   void          set_warm_calls(WarmCallInfo* l) { _warm_calls = l; }
1060   WarmCallInfo* pop_warm_call();
1061 
1062   // Record this CallGenerator for inlining at the end of parsing.
1063   void              add_late_inline(CallGenerator* cg)        {
1064     _late_inlines.insert_before(_late_inlines_pos, cg);
1065     _late_inlines_pos++;
1066   }
1067 
1068   void              prepend_late_inline(CallGenerator* cg)    {
1069     _late_inlines.insert_before(0, cg);
1070   }
1071 
1072   void              add_string_late_inline(CallGenerator* cg) {
1073     _string_late_inlines.push(cg);
1074   }
1075 
1076   void              add_boxing_late_inline(CallGenerator* cg) {
1077     _boxing_late_inlines.push(cg);
1078   }
1079 
1080   void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful);
1081 
1082   void process_print_inlining();
1083   void dump_print_inlining();
1084 
1085   bool over_inlining_cutoff() const {
1086     if (!inlining_incrementally()) {
1087       return unique() > (uint)NodeCountInliningCutoff;
1088     } else {
1089       // Give some room for incremental inlining algorithm to "breathe"
1090       // and avoid thrashing when live node count is close to the limit.
1091       // Keep in mind that live_nodes() isn't accurate during inlining until
1092       // dead node elimination step happens (see Compile::inline_incrementally).
1093       return live_nodes() > (uint)LiveNodeCountInliningCutoff * 11 / 10;
1094     }
1095   }
1096 
1097   void inc_number_of_mh_late_inlines() { _number_of_mh_late_inlines++; }
1098   void dec_number_of_mh_late_inlines() { assert(_number_of_mh_late_inlines > 0, "_number_of_mh_late_inlines < 0 !"); _number_of_mh_late_inlines--; }
1099   bool has_mh_late_inlines() const     { return _number_of_mh_late_inlines > 0; }
1100 
1101   bool inline_incrementally_one();
1102   void inline_incrementally_cleanup(PhaseIterGVN& igvn);
1103   void inline_incrementally(PhaseIterGVN& igvn);
1104   void inline_string_calls(bool parse_time);
1105   void inline_boxing_calls(PhaseIterGVN& igvn);
1106   bool optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode);
1107   void remove_root_to_sfpts_edges(PhaseIterGVN& igvn);
1108 
1109   // Matching, CFG layout, allocation, code generation
1110   PhaseCFG*         cfg()                       { return _cfg; }
1111   bool              select_24_bit_instr() const { return _select_24_bit_instr; }
1112   bool              in_24_bit_fp_mode() const   { return _in_24_bit_fp_mode; }
1113   bool              has_java_calls() const      { return _java_calls > 0; }
1114   int               java_calls() const          { return _java_calls; }
1115   int               inner_loops() const         { return _inner_loops; }
1116   Matcher*          matcher()                   { return _matcher; }
1117   PhaseRegAlloc*    regalloc()                  { return _regalloc; }
1118   int               frame_slots() const         { return _frame_slots; }
1119   int               frame_size_in_words() const; // frame_slots in units of the polymorphic 'words'
1120   int               frame_size_in_bytes() const { return _frame_slots << LogBytesPerInt; }
1121   RegMask&          FIRST_STACK_mask()          { return _FIRST_STACK_mask; }
1122   Arena*            indexSet_arena()            { return _indexSet_arena; }
1123   void*             indexSet_free_block_list()  { return _indexSet_free_block_list; }
1124   uint              node_bundling_limit()       { return _node_bundling_limit; }
1125   Bundle*           node_bundling_base()        { return _node_bundling_base; }
1126   void          set_node_bundling_limit(uint n) { _node_bundling_limit = n; }
1127   void          set_node_bundling_base(Bundle* b) { _node_bundling_base = b; }
1128   bool          starts_bundle(const Node *n) const;
1129   bool          need_stack_bang(int frame_size_in_bytes) const;
1130   bool          need_register_stack_bang() const;
1131 
1132   void  update_interpreter_frame_size(int size) {
1133     if (_interpreter_frame_size < size) {
1134       _interpreter_frame_size = size;
1135     }
1136   }
1137   int           bang_size_in_bytes() const;
1138 
1139   void          set_matcher(Matcher* m)                 { _matcher = m; }
1140 //void          set_regalloc(PhaseRegAlloc* ra)           { _regalloc = ra; }
1141   void          set_indexSet_arena(Arena* a)            { _indexSet_arena = a; }
1142   void          set_indexSet_free_block_list(void* p)   { _indexSet_free_block_list = p; }
1143 
1144   // Remember if this compilation changes hardware mode to 24-bit precision
1145   void set_24_bit_selection_and_mode(bool selection, bool mode) {
1146     _select_24_bit_instr = selection;
1147     _in_24_bit_fp_mode   = mode;
1148   }
1149 
1150   void  set_java_calls(int z) { _java_calls  = z; }
1151   void set_inner_loops(int z) { _inner_loops = z; }
1152 
1153   // Instruction bits passed off to the VM
1154   int               code_size()                 { return _method_size; }
1155   CodeBuffer*       code_buffer()               { return &_code_buffer; }
1156   int               first_block_size()          { return _first_block_size; }
1157   void              set_frame_complete(int off) { if (!in_scratch_emit_size()) { _code_offsets.set_value(CodeOffsets::Frame_Complete, off); } }
1158   ExceptionHandlerTable*  handler_table()       { return &_handler_table; }
1159   ImplicitExceptionTable* inc_table()           { return &_inc_table; }
1160   OopMapSet*        oop_map_set()               { return _oop_map_set; }
1161   DebugInformationRecorder* debug_info()        { return env()->debug_info(); }
1162   Dependencies*     dependencies()              { return env()->dependencies(); }
1163   static int        CompiledZap_count()         { return _CompiledZap_count; }
1164   BufferBlob*       scratch_buffer_blob()       { return _scratch_buffer_blob; }
1165   void         init_scratch_buffer_blob(int const_size);
1166   void        clear_scratch_buffer_blob();
1167   void          set_scratch_buffer_blob(BufferBlob* b) { _scratch_buffer_blob = b; }
1168   relocInfo*        scratch_locs_memory()       { return _scratch_locs_memory; }
1169   void          set_scratch_locs_memory(relocInfo* b)  { _scratch_locs_memory = b; }
1170 
1171   // emit to scratch blob, report resulting size
1172   uint              scratch_emit_size(const Node* n);
1173   void       set_in_scratch_emit_size(bool x)   {        _in_scratch_emit_size = x; }
1174   bool           in_scratch_emit_size() const   { return _in_scratch_emit_size;     }
1175 
1176   enum ScratchBufferBlob {
1177 #if defined(PPC64)
1178     MAX_inst_size       = 2048,
1179 #else
1180     MAX_inst_size       = 1024,
1181 #endif
1182     MAX_locs_size       = 128, // number of relocInfo elements
1183     MAX_const_size      = 128,
1184     MAX_stubs_size      = 128
1185   };
1186 
1187   // Major entry point.  Given a Scope, compile the associated method.
1188   // For normal compilations, entry_bci is InvocationEntryBci.  For on stack
1189   // replacement, entry_bci indicates the bytecode for which to compile a
1190   // continuation.
1191   Compile(ciEnv* ci_env, C2Compiler* compiler, ciMethod* target,
1192           int entry_bci, bool subsume_loads, bool do_escape_analysis,
1193           bool eliminate_boxing, DirectiveSet* directive);
1194 
1195   // Second major entry point.  From the TypeFunc signature, generate code
1196   // to pass arguments from the Java calling convention to the C calling
1197   // convention.
1198   Compile(ciEnv* ci_env, const TypeFunc *(*gen)(),
1199           address stub_function, const char *stub_name,
1200           int is_fancy_jump, bool pass_tls,
1201           bool save_arg_registers, bool return_pc, DirectiveSet* directive);
1202 
1203   // From the TypeFunc signature, generate code to pass arguments
1204   // from Compiled calling convention to Interpreter's calling convention
1205   void Generate_Compiled_To_Interpreter_Graph(const TypeFunc *tf, address interpreter_entry);
1206 
1207   // From the TypeFunc signature, generate code to pass arguments
1208   // from Interpreter's calling convention to Compiler's calling convention
1209   void Generate_Interpreter_To_Compiled_Graph(const TypeFunc *tf);
1210 
1211   // Are we compiling a method?
1212   bool has_method() { return method() != NULL; }
1213 
1214   // Maybe print some information about this compile.
1215   void print_compile_messages();
1216 
1217   // Final graph reshaping, a post-pass after the regular optimizer is done.
1218   bool final_graph_reshaping();
1219 
1220   // returns true if adr is completely contained in the given alias category
1221   bool must_alias(const TypePtr* adr, int alias_idx);
1222 
1223   // returns true if adr overlaps with the given alias category
1224   bool can_alias(const TypePtr* adr, int alias_idx);
1225 
1226   // Driver for converting compiler's IR into machine code bits
1227   void Output();
1228 
1229   // Accessors for node bundling info.
1230   Bundle* node_bundling(const Node *n);
1231   bool valid_bundle_info(const Node *n);
1232 
1233   // Schedule and Bundle the instructions
1234   void ScheduleAndBundle();
1235 
1236   // Build OopMaps for each GC point
1237   void BuildOopMaps();
1238 
1239   // Append debug info for the node "local" at safepoint node "sfpt" to the
1240   // "array",   May also consult and add to "objs", which describes the
1241   // scalar-replaced objects.
1242   void FillLocArray( int idx, MachSafePointNode* sfpt,
1243                      Node *local, GrowableArray<ScopeValue*> *array,
1244                      GrowableArray<ScopeValue*> *objs );
1245 
1246   // If "objs" contains an ObjectValue whose id is "id", returns it, else NULL.
1247   static ObjectValue* sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id);
1248   // Requres that "objs" does not contains an ObjectValue whose id matches
1249   // that of "sv.  Appends "sv".
1250   static void set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
1251                                      ObjectValue* sv );
1252 
1253   // Process an OopMap Element while emitting nodes
1254   void Process_OopMap_Node(MachNode *mach, int code_offset);
1255 
1256   // Initialize code buffer
1257   CodeBuffer* init_buffer(uint* blk_starts);
1258 
1259   // Write out basic block data to code buffer
1260   void fill_buffer(CodeBuffer* cb, uint* blk_starts);
1261 
1262   // Determine which variable sized branches can be shortened
1263   void shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size);
1264 
1265   // Compute the size of first NumberOfLoopInstrToAlign instructions
1266   // at the head of a loop.
1267   void compute_loop_first_inst_sizes();
1268 
1269   // Compute the information for the exception tables
1270   void FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels);
1271 
1272   // Stack slots that may be unused by the calling convention but must
1273   // otherwise be preserved.  On Intel this includes the return address.
1274   // On PowerPC it includes the 4 words holding the old TOC & LR glue.
1275   uint in_preserve_stack_slots();
1276 
1277   // "Top of Stack" slots that may be unused by the calling convention but must
1278   // otherwise be preserved.
1279   // On Intel these are not necessary and the value can be zero.
1280   // On Sparc this describes the words reserved for storing a register window
1281   // when an interrupt occurs.
1282   static uint out_preserve_stack_slots();
1283 
1284   // Number of outgoing stack slots killed above the out_preserve_stack_slots
1285   // for calls to C.  Supports the var-args backing area for register parms.
1286   uint varargs_C_out_slots_killed() const;
1287 
1288   // Number of Stack Slots consumed by a synchronization entry
1289   int sync_stack_slots() const;
1290 
1291   // Compute the name of old_SP.  See <arch>.ad for frame layout.
1292   OptoReg::Name compute_old_SP();
1293 
1294  private:
1295   // Phase control:
1296   void Init(int aliaslevel);                     // Prepare for a single compilation
1297   int  Inline_Warm();                            // Find more inlining work.
1298   void Finish_Warm();                            // Give up on further inlines.
1299   void Optimize();                               // Given a graph, optimize it
1300   void Code_Gen();                               // Generate code from a graph
1301 
1302   // Management of the AliasType table.
1303   void grow_alias_types();
1304   AliasCacheEntry* probe_alias_cache(const TypePtr* adr_type);
1305   const TypePtr *flatten_alias_type(const TypePtr* adr_type) const;
1306   AliasType* find_alias_type(const TypePtr* adr_type, bool no_create, ciField* field);
1307 
1308   void verify_top(Node*) const PRODUCT_RETURN;
1309 
1310   // Intrinsic setup.
1311   void           register_library_intrinsics();                            // initializer
1312   CallGenerator* make_vm_intrinsic(ciMethod* m, bool is_virtual);          // constructor
1313   int            intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found);  // helper
1314   CallGenerator* find_intrinsic(ciMethod* m, bool is_virtual);             // query fn
1315   void           register_intrinsic(CallGenerator* cg);                    // update fn
1316 
1317 #ifndef PRODUCT
1318   static juint  _intrinsic_hist_count[vmIntrinsics::ID_LIMIT];
1319   static jubyte _intrinsic_hist_flags[vmIntrinsics::ID_LIMIT];
1320 #endif
1321   // Function calls made by the public function final_graph_reshaping.
1322   // No need to be made public as they are not called elsewhere.
1323   void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc);
1324   void final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop);
1325   void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc );
1326   void eliminate_redundant_card_marks(Node* n);
1327 
1328  public:
1329 
1330   // Note:  Histogram array size is about 1 Kb.
1331   enum {                        // flag bits:
1332     _intrinsic_worked = 1,      // succeeded at least once
1333     _intrinsic_failed = 2,      // tried it but it failed
1334     _intrinsic_disabled = 4,    // was requested but disabled (e.g., -XX:-InlineUnsafeOps)
1335     _intrinsic_virtual = 8,     // was seen in the virtual form (rare)
1336     _intrinsic_both = 16        // was seen in the non-virtual form (usual)
1337   };
1338   // Update histogram.  Return boolean if this is a first-time occurrence.
1339   static bool gather_intrinsic_statistics(vmIntrinsics::ID id,
1340                                           bool is_virtual, int flags) PRODUCT_RETURN0;
1341   static void print_intrinsic_statistics() PRODUCT_RETURN;
1342 
1343   // Graph verification code
1344   // Walk the node list, verifying that there is a one-to-one
1345   // correspondence between Use-Def edges and Def-Use edges
1346   // The option no_dead_code enables stronger checks that the
1347   // graph is strongly connected from root in both directions.
1348   void verify_graph_edges(bool no_dead_code = false) PRODUCT_RETURN;
1349 
1350   // End-of-run dumps.
1351   static void print_statistics() PRODUCT_RETURN;
1352 
1353   // Dump formatted assembly
1354 #if defined(SUPPORT_OPTO_ASSEMBLY)
1355   void dump_asm_on(outputStream* ost, int* pcs, uint pc_limit);
1356   void dump_asm(int* pcs = NULL, uint pc_limit = 0) { dump_asm_on(tty, pcs, pc_limit); }
1357 #else
1358   void dump_asm_on(outputStream* ost, int* pcs, uint pc_limit) { return; }
1359   void dump_asm(int* pcs = NULL, uint pc_limit = 0) { return; }
1360 #endif
1361   void dump_pc(int *pcs, int pc_limit, Node *n);
1362 
1363   // Verify ADLC assumptions during startup
1364   static void adlc_verification() PRODUCT_RETURN;
1365 
1366   // Definitions of pd methods
1367   static void pd_compiler2_init();
1368 
1369   // Static parse-time type checking logic for gen_subtype_check:
1370   enum { SSC_always_false, SSC_always_true, SSC_easy_test, SSC_full_test };
1371   int static_subtype_check(ciKlass* superk, ciKlass* subk);
1372 
1373   static Node* conv_I2X_index(PhaseGVN* phase, Node* offset, const TypeInt* sizetype,
1374                               // Optional control dependency (for example, on range check)
1375                               Node* ctrl = NULL);
1376 
1377   // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
1378   static Node* constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl);
1379 
1380   // Auxiliary method for randomized fuzzing/stressing
1381   static bool randomized_select(int count);
1382 
1383   // supporting clone_map
1384   CloneMap&     clone_map();
1385   void          set_clone_map(Dict* d);
1386 
1387   bool needs_clinit_barrier(ciField* ik,         ciMethod* accessing_method);
1388   bool needs_clinit_barrier(ciMethod* ik,        ciMethod* accessing_method);
1389   bool needs_clinit_barrier(ciInstanceKlass* ik, ciMethod* accessing_method);
1390 };
1391 
1392 #endif // SHARE_OPTO_COMPILE_HPP