1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #include "utilities/compilerWarnings.hpp"
  29 #include "utilities/debug.hpp"
  30 #include "utilities/macros.hpp"
  31 
  32 #include COMPILER_HEADER(utilities/globalDefinitions)
  33 
  34 // Defaults for macros that might be defined per compiler.
  35 #ifndef NOINLINE
  36 #define NOINLINE
  37 #endif
  38 #ifndef ALWAYSINLINE
  39 #define ALWAYSINLINE inline
  40 #endif
  41 
  42 #ifndef ATTRIBUTE_ALIGNED
  43 #define ATTRIBUTE_ALIGNED(x)
  44 #endif
  45 
  46 // These are #defines to selectively turn on/off the Print(Opto)Assembly
  47 // capabilities. Choices should be led by a tradeoff between
  48 // code size and improved supportability.
  49 // if PRINT_ASSEMBLY then PRINT_ABSTRACT_ASSEMBLY must be true as well
  50 // to have a fallback in case hsdis is not available.
  51 #if defined(PRODUCT)
  52   #define SUPPORT_ABSTRACT_ASSEMBLY
  53   #define SUPPORT_ASSEMBLY
  54   #undef  SUPPORT_OPTO_ASSEMBLY      // Can't activate. In PRODUCT, many dump methods are missing.
  55   #undef  SUPPORT_DATA_STRUCTS       // Of limited use. In PRODUCT, many print methods are empty.
  56 #else
  57   #define SUPPORT_ABSTRACT_ASSEMBLY
  58   #define SUPPORT_ASSEMBLY
  59   #define SUPPORT_OPTO_ASSEMBLY
  60   #define SUPPORT_DATA_STRUCTS
  61 #endif
  62 #if defined(SUPPORT_ASSEMBLY) && !defined(SUPPORT_ABSTRACT_ASSEMBLY)
  63   #define SUPPORT_ABSTRACT_ASSEMBLY
  64 #endif
  65 
  66 // This file holds all globally used constants & types, class (forward)
  67 // declarations and a few frequently used utility functions.
  68 
  69 //----------------------------------------------------------------------------------------------------
  70 // Printf-style formatters for fixed- and variable-width types as pointers and
  71 // integers.  These are derived from the definitions in inttypes.h.  If the platform
  72 // doesn't provide appropriate definitions, they should be provided in
  73 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  74 
  75 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
  76 
  77 // Format 32-bit quantities.
  78 #define INT32_FORMAT           "%" PRId32
  79 #define UINT32_FORMAT          "%" PRIu32
  80 #define INT32_FORMAT_W(width)  "%" #width PRId32
  81 #define UINT32_FORMAT_W(width) "%" #width PRIu32
  82 
  83 #define PTR32_FORMAT           "0x%08" PRIx32
  84 #define PTR32_FORMAT_W(width)  "0x%" #width PRIx32
  85 
  86 // Format 64-bit quantities.
  87 #define INT64_FORMAT           "%" PRId64
  88 #define UINT64_FORMAT          "%" PRIu64
  89 #define UINT64_FORMAT_X        "%" PRIx64
  90 #define INT64_FORMAT_W(width)  "%" #width PRId64
  91 #define UINT64_FORMAT_W(width) "%" #width PRIu64
  92 #define UINT64_FORMAT_X_W(width) "%" #width PRIx64
  93 
  94 #define PTR64_FORMAT           "0x%016" PRIx64
  95 
  96 // Format jlong, if necessary
  97 #ifndef JLONG_FORMAT
  98 #define JLONG_FORMAT           INT64_FORMAT
  99 #endif
 100 #ifndef JLONG_FORMAT_W
 101 #define JLONG_FORMAT_W(width)  INT64_FORMAT_W(width)
 102 #endif
 103 #ifndef JULONG_FORMAT
 104 #define JULONG_FORMAT          UINT64_FORMAT
 105 #endif
 106 #ifndef JULONG_FORMAT_X
 107 #define JULONG_FORMAT_X        UINT64_FORMAT_X
 108 #endif
 109 
 110 // Format pointers which change size between 32- and 64-bit.
 111 #ifdef  _LP64
 112 #define INTPTR_FORMAT "0x%016" PRIxPTR
 113 #define PTR_FORMAT    "0x%016" PRIxPTR
 114 #else   // !_LP64
 115 #define INTPTR_FORMAT "0x%08"  PRIxPTR
 116 #define PTR_FORMAT    "0x%08"  PRIxPTR
 117 #endif  // _LP64
 118 
 119 // Format pointers without leading zeros
 120 #define INTPTRNZ_FORMAT "0x%"  PRIxPTR
 121 
 122 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
 123 
 124 #define SSIZE_FORMAT             "%"   PRIdPTR
 125 #define SIZE_FORMAT              "%"   PRIuPTR
 126 #define SIZE_FORMAT_HEX          "0x%" PRIxPTR
 127 #define SSIZE_FORMAT_W(width)    "%"   #width PRIdPTR
 128 #define SIZE_FORMAT_W(width)     "%"   #width PRIuPTR
 129 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
 130 
 131 #define INTX_FORMAT           "%" PRIdPTR
 132 #define UINTX_FORMAT          "%" PRIuPTR
 133 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
 134 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
 135 
 136 //----------------------------------------------------------------------------------------------------
 137 // Constants
 138 
 139 const int LogBytesPerShort   = 1;
 140 const int LogBytesPerInt     = 2;
 141 #ifdef _LP64
 142 const int LogBytesPerWord    = 3;
 143 #else
 144 const int LogBytesPerWord    = 2;
 145 #endif
 146 const int LogBytesPerLong    = 3;
 147 
 148 const int BytesPerShort      = 1 << LogBytesPerShort;
 149 const int BytesPerInt        = 1 << LogBytesPerInt;
 150 const int BytesPerWord       = 1 << LogBytesPerWord;
 151 const int BytesPerLong       = 1 << LogBytesPerLong;
 152 
 153 const int LogBitsPerByte     = 3;
 154 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
 155 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
 156 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
 157 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
 158 
 159 const int BitsPerByte        = 1 << LogBitsPerByte;
 160 const int BitsPerShort       = 1 << LogBitsPerShort;
 161 const int BitsPerInt         = 1 << LogBitsPerInt;
 162 const int BitsPerWord        = 1 << LogBitsPerWord;
 163 const int BitsPerLong        = 1 << LogBitsPerLong;
 164 
 165 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 166 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 167 
 168 const int WordsPerLong       = 2;       // Number of stack entries for longs
 169 
 170 const int oopSize            = sizeof(char*); // Full-width oop
 171 extern int heapOopSize;                       // Oop within a java object
 172 const int wordSize           = sizeof(char*);
 173 const int longSize           = sizeof(jlong);
 174 const int jintSize           = sizeof(jint);
 175 const int size_tSize         = sizeof(size_t);
 176 
 177 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 178 
 179 extern int LogBytesPerHeapOop;                // Oop within a java object
 180 extern int LogBitsPerHeapOop;
 181 extern int BytesPerHeapOop;
 182 extern int BitsPerHeapOop;
 183 
 184 const int BitsPerJavaInteger = 32;
 185 const int BitsPerJavaLong    = 64;
 186 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 187 
 188 // Size of a char[] needed to represent a jint as a string in decimal.
 189 const int jintAsStringSize = 12;
 190 
 191 // An opaque type, so that HeapWord* can be a generic pointer into the heap.
 192 // We require that object sizes be measured in units of heap words (e.g.
 193 // pointer-sized values), so that given HeapWord* hw,
 194 //   hw += oop(hw)->foo();
 195 // works, where foo is a method (like size or scavenge) that returns the
 196 // object size.
 197 class HeapWordImpl;             // Opaque, never defined.
 198 typedef HeapWordImpl* HeapWord;
 199 
 200 // Analogous opaque struct for metadata allocated from metaspaces.
 201 class MetaWordImpl;             // Opaque, never defined.
 202 typedef MetaWordImpl* MetaWord;
 203 
 204 // HeapWordSize must be 2^LogHeapWordSize.
 205 const int HeapWordSize        = sizeof(HeapWord);
 206 #ifdef _LP64
 207 const int LogHeapWordSize     = 3;
 208 #else
 209 const int LogHeapWordSize     = 2;
 210 #endif
 211 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 212 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 213 
 214 // The minimum number of native machine words necessary to contain "byte_size"
 215 // bytes.
 216 inline size_t heap_word_size(size_t byte_size) {
 217   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 218 }
 219 
 220 //-------------------------------------------
 221 // Constant for jlong (standardized by C++11)
 222 
 223 // Build a 64bit integer constant
 224 #define CONST64(x)  (x ## LL)
 225 #define UCONST64(x) (x ## ULL)
 226 
 227 const jlong min_jlong = CONST64(0x8000000000000000);
 228 const jlong max_jlong = CONST64(0x7fffffffffffffff);
 229 
 230 const size_t K                  = 1024;
 231 const size_t M                  = K*K;
 232 const size_t G                  = M*K;
 233 const size_t HWperKB            = K / sizeof(HeapWord);
 234 
 235 // Constants for converting from a base unit to milli-base units.  For
 236 // example from seconds to milliseconds and microseconds
 237 
 238 const int MILLIUNITS    = 1000;         // milli units per base unit
 239 const int MICROUNITS    = 1000000;      // micro units per base unit
 240 const int NANOUNITS     = 1000000000;   // nano units per base unit
 241 
 242 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 243 const jint  NANOSECS_PER_MILLISEC = 1000000;
 244 
 245 // Proper units routines try to maintain at least three significant digits.
 246 // In worst case, it would print five significant digits with lower prefix.
 247 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow,
 248 // and therefore we need to be careful.
 249 
 250 inline const char* proper_unit_for_byte_size(size_t s) {
 251 #ifdef _LP64
 252   if (s >= 100*G) {
 253     return "G";
 254   }
 255 #endif
 256   if (s >= 100*M) {
 257     return "M";
 258   } else if (s >= 100*K) {
 259     return "K";
 260   } else {
 261     return "B";
 262   }
 263 }
 264 
 265 template <class T>
 266 inline T byte_size_in_proper_unit(T s) {
 267 #ifdef _LP64
 268   if (s >= 100*G) {
 269     return (T)(s/G);
 270   }
 271 #endif
 272   if (s >= 100*M) {
 273     return (T)(s/M);
 274   } else if (s >= 100*K) {
 275     return (T)(s/K);
 276   } else {
 277     return s;
 278   }
 279 }
 280 
 281 inline const char* exact_unit_for_byte_size(size_t s) {
 282 #ifdef _LP64
 283   if (s >= G && (s % G) == 0) {
 284     return "G";
 285   }
 286 #endif
 287   if (s >= M && (s % M) == 0) {
 288     return "M";
 289   }
 290   if (s >= K && (s % K) == 0) {
 291     return "K";
 292   }
 293   return "B";
 294 }
 295 
 296 inline size_t byte_size_in_exact_unit(size_t s) {
 297 #ifdef _LP64
 298   if (s >= G && (s % G) == 0) {
 299     return s / G;
 300   }
 301 #endif
 302   if (s >= M && (s % M) == 0) {
 303     return s / M;
 304   }
 305   if (s >= K && (s % K) == 0) {
 306     return s / K;
 307   }
 308   return s;
 309 }
 310 
 311 //----------------------------------------------------------------------------------------------------
 312 // VM type definitions
 313 
 314 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 315 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 316 
 317 typedef intptr_t  intx;
 318 typedef uintptr_t uintx;
 319 
 320 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 321 const intx  max_intx  = (uintx)min_intx - 1;
 322 const uintx max_uintx = (uintx)-1;
 323 
 324 // Table of values:
 325 //      sizeof intx         4               8
 326 // min_intx             0x80000000      0x8000000000000000
 327 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 328 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 329 
 330 typedef unsigned int uint;   NEEDS_CLEANUP
 331 
 332 
 333 //----------------------------------------------------------------------------------------------------
 334 // Java type definitions
 335 
 336 // All kinds of 'plain' byte addresses
 337 typedef   signed char s_char;
 338 typedef unsigned char u_char;
 339 typedef u_char*       address;
 340 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 341                                     // except for some implementations of a C++
 342                                     // linkage pointer to function. Should never
 343                                     // need one of those to be placed in this
 344                                     // type anyway.
 345 
 346 //  Utility functions to "portably" (?) bit twiddle pointers
 347 //  Where portable means keep ANSI C++ compilers quiet
 348 
 349 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 350 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 351 
 352 //  Utility functions to "portably" make cast to/from function pointers.
 353 
 354 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 355 inline address_word  castable_address(address x)              { return address_word(x) ; }
 356 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 357 
 358 // Pointer subtraction.
 359 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 360 // the range we might need to find differences from one end of the heap
 361 // to the other.
 362 // A typical use might be:
 363 //     if (pointer_delta(end(), top()) >= size) {
 364 //       // enough room for an object of size
 365 //       ...
 366 // and then additions like
 367 //       ... top() + size ...
 368 // are safe because we know that top() is at least size below end().
 369 inline size_t pointer_delta(const volatile void* left,
 370                             const volatile void* right,
 371                             size_t element_size) {
 372   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 373 }
 374 
 375 // A version specialized for HeapWord*'s.
 376 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 377   return pointer_delta(left, right, sizeof(HeapWord));
 378 }
 379 // A version specialized for MetaWord*'s.
 380 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 381   return pointer_delta(left, right, sizeof(MetaWord));
 382 }
 383 
 384 //
 385 // ANSI C++ does not allow casting from one pointer type to a function pointer
 386 // directly without at best a warning. This macro accomplishes it silently
 387 // In every case that is present at this point the value be cast is a pointer
 388 // to a C linkage function. In some case the type used for the cast reflects
 389 // that linkage and a picky compiler would not complain. In other cases because
 390 // there is no convenient place to place a typedef with extern C linkage (i.e
 391 // a platform dependent header file) it doesn't. At this point no compiler seems
 392 // picky enough to catch these instances (which are few). It is possible that
 393 // using templates could fix these for all cases. This use of templates is likely
 394 // so far from the middle of the road that it is likely to be problematic in
 395 // many C++ compilers.
 396 //
 397 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
 398 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 399 
 400 // Unsigned byte types for os and stream.hpp
 401 
 402 // Unsigned one, two, four and eigth byte quantities used for describing
 403 // the .class file format. See JVM book chapter 4.
 404 
 405 typedef jubyte  u1;
 406 typedef jushort u2;
 407 typedef juint   u4;
 408 typedef julong  u8;
 409 
 410 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 411 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 412 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 413 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 414 
 415 typedef jbyte  s1;
 416 typedef jshort s2;
 417 typedef jint   s4;
 418 typedef jlong  s8;
 419 
 420 const jbyte min_jbyte = -(1 << 7);       // smallest jbyte
 421 const jbyte max_jbyte = (1 << 7) - 1;    // largest jbyte
 422 const jshort min_jshort = -(1 << 15);    // smallest jshort
 423 const jshort max_jshort = (1 << 15) - 1; // largest jshort
 424 
 425 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 426 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 427 
 428 //----------------------------------------------------------------------------------------------------
 429 // JVM spec restrictions
 430 
 431 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 432 
 433 //----------------------------------------------------------------------------------------------------
 434 // Object alignment, in units of HeapWords.
 435 //
 436 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 437 // reference fields can be naturally aligned.
 438 
 439 extern int MinObjAlignment;
 440 extern int MinObjAlignmentInBytes;
 441 extern int MinObjAlignmentInBytesMask;
 442 
 443 extern int LogMinObjAlignment;
 444 extern int LogMinObjAlignmentInBytes;
 445 
 446 const int LogKlassAlignmentInBytes = 3;
 447 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 448 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 449 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 450 
 451 // Maximal size of heap where unscaled compression can be used. Also upper bound
 452 // for heap placement: 4GB.
 453 const  uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
 454 // Maximal size of heap where compressed oops can be used. Also upper bound for heap
 455 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
 456 extern uint64_t OopEncodingHeapMax;
 457 
 458 // Maximal size of compressed class space. Above this limit compression is not possible.
 459 // Also upper bound for placement of zero based class space. (Class space is further limited
 460 // to be < 3G, see arguments.cpp.)
 461 const  uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 462 
 463 // Machine dependent stuff
 464 
 465 // The maximum size of the code cache.  Can be overridden by targets.
 466 #define CODE_CACHE_SIZE_LIMIT (2*G)
 467 // Allow targets to reduce the default size of the code cache.
 468 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
 469 
 470 #include CPU_HEADER(globalDefinitions)
 471 
 472 // To assure the IRIW property on processors that are not multiple copy
 473 // atomic, sync instructions must be issued between volatile reads to
 474 // assure their ordering, instead of after volatile stores.
 475 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 476 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 477 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
 478 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
 479 #else
 480 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 481 #endif
 482 
 483 // The expected size in bytes of a cache line, used to pad data structures.
 484 #ifndef DEFAULT_CACHE_LINE_SIZE
 485   #define DEFAULT_CACHE_LINE_SIZE 64
 486 #endif
 487 
 488 
 489 //----------------------------------------------------------------------------------------------------
 490 // Utility macros for compilers
 491 // used to silence compiler warnings
 492 
 493 #define Unused_Variable(var) var
 494 
 495 
 496 //----------------------------------------------------------------------------------------------------
 497 // Miscellaneous
 498 
 499 // 6302670 Eliminate Hotspot __fabsf dependency
 500 // All fabs() callers should call this function instead, which will implicitly
 501 // convert the operand to double, avoiding a dependency on __fabsf which
 502 // doesn't exist in early versions of Solaris 8.
 503 inline double fabsd(double value) {
 504   return fabs(value);
 505 }
 506 
 507 // Returns numerator/denominator as percentage value from 0 to 100. If denominator
 508 // is zero, return 0.0.
 509 template<typename T>
 510 inline double percent_of(T numerator, T denominator) {
 511   return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0;
 512 }
 513 
 514 //----------------------------------------------------------------------------------------------------
 515 // Special casts
 516 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 517 typedef union {
 518   jfloat f;
 519   jint i;
 520 } FloatIntConv;
 521 
 522 typedef union {
 523   jdouble d;
 524   jlong l;
 525   julong ul;
 526 } DoubleLongConv;
 527 
 528 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 529 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 530 
 531 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 532 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 533 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 534 
 535 inline jint low (jlong value)                    { return jint(value); }
 536 inline jint high(jlong value)                    { return jint(value >> 32); }
 537 
 538 // the fancy casts are a hopefully portable way
 539 // to do unsigned 32 to 64 bit type conversion
 540 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 541                                                    *value |= (jlong)(julong)(juint)low; }
 542 
 543 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 544                                                    *value |= (jlong)high       << 32; }
 545 
 546 inline jlong jlong_from(jint h, jint l) {
 547   jlong result = 0; // initialization to avoid warning
 548   set_high(&result, h);
 549   set_low(&result,  l);
 550   return result;
 551 }
 552 
 553 union jlong_accessor {
 554   jint  words[2];
 555   jlong long_value;
 556 };
 557 
 558 void basic_types_init(); // cannot define here; uses assert
 559 
 560 
 561 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 562 enum BasicType {
 563   T_BOOLEAN     =  4,
 564   T_CHAR        =  5,
 565   T_FLOAT       =  6,
 566   T_DOUBLE      =  7,
 567   T_BYTE        =  8,
 568   T_SHORT       =  9,
 569   T_INT         = 10,
 570   T_LONG        = 11,
 571   T_OBJECT      = 12,
 572   T_ARRAY       = 13,
 573   T_VOID        = 14,
 574   T_ADDRESS     = 15,
 575   T_NARROWOOP   = 16,
 576   T_METADATA    = 17,
 577   T_NARROWKLASS = 18,
 578   T_CONFLICT    = 19, // for stack value type with conflicting contents
 579   T_ILLEGAL     = 99
 580 };
 581 
 582 inline bool is_java_primitive(BasicType t) {
 583   return T_BOOLEAN <= t && t <= T_LONG;
 584 }
 585 
 586 inline bool is_subword_type(BasicType t) {
 587   // these guys are processed exactly like T_INT in calling sequences:
 588   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 589 }
 590 
 591 inline bool is_signed_subword_type(BasicType t) {
 592   return (t == T_BYTE || t == T_SHORT);
 593 }
 594 
 595 inline bool is_reference_type(BasicType t) {
 596   return (t == T_OBJECT || t == T_ARRAY);
 597 }
 598 
 599 // Convert a char from a classfile signature to a BasicType
 600 inline BasicType char2type(char c) {
 601   switch( c ) {
 602   case 'B': return T_BYTE;
 603   case 'C': return T_CHAR;
 604   case 'D': return T_DOUBLE;
 605   case 'F': return T_FLOAT;
 606   case 'I': return T_INT;
 607   case 'J': return T_LONG;
 608   case 'S': return T_SHORT;
 609   case 'Z': return T_BOOLEAN;
 610   case 'V': return T_VOID;
 611   case 'L': return T_OBJECT;
 612   case '[': return T_ARRAY;
 613   }
 614   return T_ILLEGAL;
 615 }
 616 
 617 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 618 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 619 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 620 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 621 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 622 extern BasicType name2type(const char* name);
 623 
 624 // Auxiliary math routines
 625 // least common multiple
 626 extern size_t lcm(size_t a, size_t b);
 627 
 628 
 629 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 630 enum BasicTypeSize {
 631   T_BOOLEAN_size     = 1,
 632   T_CHAR_size        = 1,
 633   T_FLOAT_size       = 1,
 634   T_DOUBLE_size      = 2,
 635   T_BYTE_size        = 1,
 636   T_SHORT_size       = 1,
 637   T_INT_size         = 1,
 638   T_LONG_size        = 2,
 639   T_OBJECT_size      = 1,
 640   T_ARRAY_size       = 1,
 641   T_NARROWOOP_size   = 1,
 642   T_NARROWKLASS_size = 1,
 643   T_VOID_size        = 0
 644 };
 645 
 646 
 647 // maps a BasicType to its instance field storage type:
 648 // all sub-word integral types are widened to T_INT
 649 extern BasicType type2field[T_CONFLICT+1];
 650 extern BasicType type2wfield[T_CONFLICT+1];
 651 
 652 
 653 // size in bytes
 654 enum ArrayElementSize {
 655   T_BOOLEAN_aelem_bytes     = 1,
 656   T_CHAR_aelem_bytes        = 2,
 657   T_FLOAT_aelem_bytes       = 4,
 658   T_DOUBLE_aelem_bytes      = 8,
 659   T_BYTE_aelem_bytes        = 1,
 660   T_SHORT_aelem_bytes       = 2,
 661   T_INT_aelem_bytes         = 4,
 662   T_LONG_aelem_bytes        = 8,
 663 #ifdef _LP64
 664   T_OBJECT_aelem_bytes      = 8,
 665   T_ARRAY_aelem_bytes       = 8,
 666 #else
 667   T_OBJECT_aelem_bytes      = 4,
 668   T_ARRAY_aelem_bytes       = 4,
 669 #endif
 670   T_NARROWOOP_aelem_bytes   = 4,
 671   T_NARROWKLASS_aelem_bytes = 4,
 672   T_VOID_aelem_bytes        = 0
 673 };
 674 
 675 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 676 #ifdef ASSERT
 677 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 678 #else
 679 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 680 #endif
 681 
 682 
 683 // JavaValue serves as a container for arbitrary Java values.
 684 
 685 class JavaValue {
 686 
 687  public:
 688   typedef union JavaCallValue {
 689     jfloat   f;
 690     jdouble  d;
 691     jint     i;
 692     jlong    l;
 693     jobject  h;
 694   } JavaCallValue;
 695 
 696  private:
 697   BasicType _type;
 698   JavaCallValue _value;
 699 
 700  public:
 701   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 702 
 703   JavaValue(jfloat value) {
 704     _type    = T_FLOAT;
 705     _value.f = value;
 706   }
 707 
 708   JavaValue(jdouble value) {
 709     _type    = T_DOUBLE;
 710     _value.d = value;
 711   }
 712 
 713  jfloat get_jfloat() const { return _value.f; }
 714  jdouble get_jdouble() const { return _value.d; }
 715  jint get_jint() const { return _value.i; }
 716  jlong get_jlong() const { return _value.l; }
 717  jobject get_jobject() const { return _value.h; }
 718  JavaCallValue* get_value_addr() { return &_value; }
 719  BasicType get_type() const { return _type; }
 720 
 721  void set_jfloat(jfloat f) { _value.f = f;}
 722  void set_jdouble(jdouble d) { _value.d = d;}
 723  void set_jint(jint i) { _value.i = i;}
 724  void set_jlong(jlong l) { _value.l = l;}
 725  void set_jobject(jobject h) { _value.h = h;}
 726  void set_type(BasicType t) { _type = t; }
 727 
 728  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 729  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 730  jchar get_jchar() const { return (jchar) (_value.i);}
 731  jshort get_jshort() const { return (jshort) (_value.i);}
 732 
 733 };
 734 
 735 
 736 #define STACK_BIAS      0
 737 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 738 // in order to extend the reach of the stack pointer.
 739 #if defined(SPARC) && defined(_LP64)
 740 #undef STACK_BIAS
 741 #define STACK_BIAS      0x7ff
 742 #endif
 743 
 744 
 745 // TosState describes the top-of-stack state before and after the execution of
 746 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 747 // registers. The TosState corresponds to the 'machine representation' of this cached
 748 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 749 // as well as a 5th state in case the top-of-stack value is actually on the top
 750 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 751 // state when it comes to machine representation but is used separately for (oop)
 752 // type specific operations (e.g. verification code).
 753 
 754 enum TosState {         // describes the tos cache contents
 755   btos = 0,             // byte, bool tos cached
 756   ztos = 1,             // byte, bool tos cached
 757   ctos = 2,             // char tos cached
 758   stos = 3,             // short tos cached
 759   itos = 4,             // int tos cached
 760   ltos = 5,             // long tos cached
 761   ftos = 6,             // float tos cached
 762   dtos = 7,             // double tos cached
 763   atos = 8,             // object cached
 764   vtos = 9,             // tos not cached
 765   number_of_states,
 766   ilgl                  // illegal state: should not occur
 767 };
 768 
 769 
 770 inline TosState as_TosState(BasicType type) {
 771   switch (type) {
 772     case T_BYTE   : return btos;
 773     case T_BOOLEAN: return ztos;
 774     case T_CHAR   : return ctos;
 775     case T_SHORT  : return stos;
 776     case T_INT    : return itos;
 777     case T_LONG   : return ltos;
 778     case T_FLOAT  : return ftos;
 779     case T_DOUBLE : return dtos;
 780     case T_VOID   : return vtos;
 781     case T_ARRAY  : // fall through
 782     case T_OBJECT : return atos;
 783     default       : return ilgl;
 784   }
 785 }
 786 
 787 inline BasicType as_BasicType(TosState state) {
 788   switch (state) {
 789     case btos : return T_BYTE;
 790     case ztos : return T_BOOLEAN;
 791     case ctos : return T_CHAR;
 792     case stos : return T_SHORT;
 793     case itos : return T_INT;
 794     case ltos : return T_LONG;
 795     case ftos : return T_FLOAT;
 796     case dtos : return T_DOUBLE;
 797     case atos : return T_OBJECT;
 798     case vtos : return T_VOID;
 799     default   : return T_ILLEGAL;
 800   }
 801 }
 802 
 803 
 804 // Helper function to convert BasicType info into TosState
 805 // Note: Cannot define here as it uses global constant at the time being.
 806 TosState as_TosState(BasicType type);
 807 
 808 
 809 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 810 // information is needed by the safepoint code.
 811 //
 812 // There are 4 essential states:
 813 //
 814 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 815 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 816 //  _thread_in_vm       : Executing in the vm
 817 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 818 //
 819 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 820 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 821 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 822 //
 823 // Given a state, the xxxx_trans state can always be found by adding 1.
 824 //
 825 enum JavaThreadState {
 826   _thread_uninitialized     =  0, // should never happen (missing initialization)
 827   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 828   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 829   _thread_in_native         =  4, // running in native code
 830   _thread_in_native_trans   =  5, // corresponding transition state
 831   _thread_in_vm             =  6, // running in VM
 832   _thread_in_vm_trans       =  7, // corresponding transition state
 833   _thread_in_Java           =  8, // running in Java or in stub code
 834   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 835   _thread_blocked           = 10, // blocked in vm
 836   _thread_blocked_trans     = 11, // corresponding transition state
 837   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 838 };
 839 
 840 //----------------------------------------------------------------------------------------------------
 841 // Special constants for debugging
 842 
 843 const jint     badInt           = -3;                       // generic "bad int" value
 844 const intptr_t badAddressVal    = -2;                       // generic "bad address" value
 845 const intptr_t badOopVal        = -1;                       // generic "bad oop" value
 846 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
 847 const int      badStackSegVal   = 0xCA;                     // value used to zap stack segments
 848 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
 849 const int      badResourceValue = 0xAB;                     // value used to zap resource area
 850 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
 851 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
 852 const juint    uninitMetaWordVal= 0xf7f7f7f7;               // value used to zap newly allocated metachunk
 853 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
 854 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
 855 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
 856 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
 857 
 858 
 859 // (These must be implemented as #defines because C++ compilers are
 860 // not obligated to inline non-integral constants!)
 861 #define       badAddress        ((address)::badAddressVal)
 862 #define       badOop            (cast_to_oop(::badOopVal))
 863 #define       badHeapWord       (::badHeapWordVal)
 864 
 865 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
 866 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
 867 
 868 //----------------------------------------------------------------------------------------------------
 869 // Utility functions for bitfield manipulations
 870 
 871 const intptr_t AllBits    = ~0; // all bits set in a word
 872 const intptr_t NoBits     =  0; // no bits set in a word
 873 const jlong    NoLongBits =  0; // no bits set in a long
 874 const intptr_t OneBit     =  1; // only right_most bit set in a word
 875 
 876 // get a word with the n.th or the right-most or left-most n bits set
 877 // (note: #define used only so that they can be used in enum constant definitions)
 878 #define nth_bit(n)        (((n) >= BitsPerWord) ? 0 : (OneBit << (n)))
 879 #define right_n_bits(n)   (nth_bit(n) - 1)
 880 #define left_n_bits(n)    (right_n_bits(n) << (((n) >= BitsPerWord) ? 0 : (BitsPerWord - (n))))
 881 
 882 // bit-operations using a mask m
 883 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
 884 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
 885 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
 886 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
 887 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
 888 
 889 // bit-operations using the n.th bit
 890 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
 891 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
 892 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
 893 
 894 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
 895 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
 896   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
 897 }
 898 
 899 
 900 //----------------------------------------------------------------------------------------------------
 901 // Utility functions for integers
 902 
 903 // Avoid use of global min/max macros which may cause unwanted double
 904 // evaluation of arguments.
 905 #ifdef max
 906 #undef max
 907 #endif
 908 
 909 #ifdef min
 910 #undef min
 911 #endif
 912 
 913 // It is necessary to use templates here. Having normal overloaded
 914 // functions does not work because it is necessary to provide both 32-
 915 // and 64-bit overloaded functions, which does not work, and having
 916 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
 917 // will be even more error-prone than macros.
 918 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
 919 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
 920 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
 921 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
 922 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
 923 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
 924 
 925 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
 926 
 927 // true if x is a power of 2, false otherwise
 928 inline bool is_power_of_2(intptr_t x) {
 929   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
 930 }
 931 
 932 // long version of is_power_of_2
 933 inline bool is_power_of_2_long(jlong x) {
 934   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
 935 }
 936 
 937 // Returns largest i such that 2^i <= x.
 938 // If x == 0, the function returns -1.
 939 inline int log2_intptr(uintptr_t x) {
 940   int i = -1;
 941   uintptr_t p = 1;
 942   while (p != 0 && p <= x) {
 943     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
 944     i++; p *= 2;
 945   }
 946   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
 947   // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size).
 948   return i;
 949 }
 950 
 951 //* largest i such that 2^i <= x
 952 inline int log2_long(julong x) {
 953   int i = -1;
 954   julong p =  1;
 955   while (p != 0 && p <= x) {
 956     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
 957     i++; p *= 2;
 958   }
 959   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
 960   // (if p = 0 then overflow occurred and i = 63)
 961   return i;
 962 }
 963 
 964 // If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine.
 965 inline int log2_intptr(intptr_t x) {
 966   return log2_intptr((uintptr_t)x);
 967 }
 968 
 969 inline int log2_int(int x) {
 970   STATIC_ASSERT(sizeof(int) <= sizeof(uintptr_t));
 971   return log2_intptr((uintptr_t)x);
 972 }
 973 
 974 inline int log2_jint(jint x) {
 975   STATIC_ASSERT(sizeof(jint) <= sizeof(uintptr_t));
 976   return log2_intptr((uintptr_t)x);
 977 }
 978 
 979 inline int log2_uint(uint x) {
 980   STATIC_ASSERT(sizeof(uint) <= sizeof(uintptr_t));
 981   return log2_intptr((uintptr_t)x);
 982 }
 983 
 984 //  A negative value of 'x' will return '63'
 985 inline int log2_jlong(jlong x) {
 986   STATIC_ASSERT(sizeof(jlong) <= sizeof(julong));
 987   return log2_long((julong)x);
 988 }
 989 
 990 //* the argument must be exactly a power of 2
 991 inline int exact_log2(intptr_t x) {
 992   assert(is_power_of_2(x), "x must be a power of 2: " INTPTR_FORMAT, x);
 993   return log2_intptr(x);
 994 }
 995 
 996 //* the argument must be exactly a power of 2
 997 inline int exact_log2_long(jlong x) {
 998   assert(is_power_of_2_long(x), "x must be a power of 2: " JLONG_FORMAT, x);
 999   return log2_long(x);
1000 }
1001 
1002 inline bool is_odd (intx x) { return x & 1;      }
1003 inline bool is_even(intx x) { return !is_odd(x); }
1004 
1005 // abs methods which cannot overflow and so are well-defined across
1006 // the entire domain of integer types.
1007 static inline unsigned int uabs(unsigned int n) {
1008   union {
1009     unsigned int result;
1010     int value;
1011   };
1012   result = n;
1013   if (value < 0) result = 0-result;
1014   return result;
1015 }
1016 static inline julong uabs(julong n) {
1017   union {
1018     julong result;
1019     jlong value;
1020   };
1021   result = n;
1022   if (value < 0) result = 0-result;
1023   return result;
1024 }
1025 static inline julong uabs(jlong n) { return uabs((julong)n); }
1026 static inline unsigned int uabs(int n) { return uabs((unsigned int)n); }
1027 
1028 // "to" should be greater than "from."
1029 inline intx byte_size(void* from, void* to) {
1030   return (address)to - (address)from;
1031 }
1032 
1033 
1034 // Pack and extract shorts to/from ints:
1035 
1036 inline int extract_low_short_from_int(jint x) {
1037   return x & 0xffff;
1038 }
1039 
1040 inline int extract_high_short_from_int(jint x) {
1041   return (x >> 16) & 0xffff;
1042 }
1043 
1044 inline int build_int_from_shorts( jushort low, jushort high ) {
1045   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1046 }
1047 
1048 // Convert pointer to intptr_t, for use in printing pointers.
1049 inline intptr_t p2i(const void * p) {
1050   return (intptr_t) p;
1051 }
1052 
1053 // swap a & b
1054 template<class T> static void swap(T& a, T& b) {
1055   T tmp = a;
1056   a = b;
1057   b = tmp;
1058 }
1059 
1060 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1061 
1062 //----------------------------------------------------------------------------------------------------
1063 // Sum and product which can never overflow: they wrap, just like the
1064 // Java operations.  Note that we don't intend these to be used for
1065 // general-purpose arithmetic: their purpose is to emulate Java
1066 // operations.
1067 
1068 // The goal of this code to avoid undefined or implementation-defined
1069 // behavior.  The use of an lvalue to reference cast is explicitly
1070 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1071 // 15 in C++03]
1072 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1073 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1074   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1075   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1076   return reinterpret_cast<TYPE&>(ures);                 \
1077 }
1078 
1079 JAVA_INTEGER_OP(+, java_add, jint, juint)
1080 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1081 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1082 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1083 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1084 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1085 
1086 #undef JAVA_INTEGER_OP
1087 
1088 //----------------------------------------------------------------------------------------------------
1089 // The goal of this code is to provide saturating operations for int/uint.
1090 // Checks overflow conditions and saturates the result to min_jint/max_jint.
1091 #define SATURATED_INTEGER_OP(OP, NAME, TYPE1, TYPE2) \
1092 inline int NAME (TYPE1 in1, TYPE2 in2) {             \
1093   jlong res = static_cast<jlong>(in1);               \
1094   res OP ## = static_cast<jlong>(in2);               \
1095   if (res > max_jint) {                              \
1096     res = max_jint;                                  \
1097   } else if (res < min_jint) {                       \
1098     res = min_jint;                                  \
1099   }                                                  \
1100   return static_cast<int>(res);                      \
1101 }
1102 
1103 SATURATED_INTEGER_OP(+, saturated_add, int, int)
1104 SATURATED_INTEGER_OP(+, saturated_add, int, uint)
1105 SATURATED_INTEGER_OP(+, saturated_add, uint, int)
1106 SATURATED_INTEGER_OP(+, saturated_add, uint, uint)
1107 
1108 #undef SATURATED_INTEGER_OP
1109 
1110 // Dereference vptr
1111 // All C++ compilers that we know of have the vtbl pointer in the first
1112 // word.  If there are exceptions, this function needs to be made compiler
1113 // specific.
1114 static inline void* dereference_vptr(const void* addr) {
1115   return *(void**)addr;
1116 }
1117 
1118 //----------------------------------------------------------------------------------------------------
1119 // String type aliases used by command line flag declarations and
1120 // processing utilities.
1121 
1122 typedef const char* ccstr;
1123 typedef const char* ccstrlist;   // represents string arguments which accumulate
1124 
1125 //----------------------------------------------------------------------------------------------------
1126 // Default hash/equals functions used by ResourceHashtable and KVHashtable
1127 
1128 template<typename K> unsigned primitive_hash(const K& k) {
1129   unsigned hash = (unsigned)((uintptr_t)k);
1130   return hash ^ (hash >> 3); // just in case we're dealing with aligned ptrs
1131 }
1132 
1133 template<typename K> bool primitive_equals(const K& k0, const K& k1) {
1134   return k0 == k1;
1135 }
1136 
1137 
1138 #endif // SHARE_UTILITIES_GLOBALDEFINITIONS_HPP