1 /*
2 * Copyright (c) 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 */
23 package oracle.code.onnx.genai;
24
25 import java.io.IOException;
26 import java.io.RandomAccessFile;
27 import java.lang.foreign.Arena;
28 import java.lang.foreign.MemorySegment;
29 import java.nio.channels.FileChannel;
30 import java.util.stream.LongStream;
31 import oracle.code.onnx.Tensor;
32
33 public final class TensorDataStream {
34
35
36 private final Arena arena;
37 private final MemorySegment data;
38 private long offset;
39
40 public TensorDataStream(Arena arena, String dataFilePath) throws IOException {
41 this.arena = arena;
42 try (var dataFile = new RandomAccessFile(dataFilePath, "r")) {
43 this.data = dataFile.getChannel().map(FileChannel.MapMode.READ_ONLY, 0, dataFile.length(), arena);
44 }
45 }
46
47 public TensorDataStream(Arena arena, MemorySegment data) {
48 this.arena = arena;
49 this.data = data;
50 }
51
52 public <T> Tensor<T> nextTensor(Tensor.ElementType type, long... shape) {
53 long size = type.bitSize() * LongStream.of(shape).reduce(1l, (a, b) -> a * b) / 8l;
54 Tensor<T> tensor = new Tensor<>(arena, data.asSlice(offset, size), type, shape);
55 offset += size;
56 return tensor;
57 }
58 }