1 <?xml version="1.0"?>
2 <!--
3 Smile detector
4 Contributed by Oscar Deniz Suarez
5 More information can be found at http://visilab.etsii.uclm.es/personas/oscar/oscar.html
6
7 //////////////////////////////////////////////////////////////////////////
8 | Contributors License Agreement
9 | IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
10 | By downloading, copying, installing or using the software you agree
11 | to this license.
12 | If you do not agree to this license, do not download, install,
13 | copy or use the software.
14 |
15 | Copyright (c) 2011, Modesto Castrillon-Santana (IUSIANI, Universidad de
16 | Las Palmas de Gran Canaria, Spain).
17 | All rights reserved.
18 |
19 | Redistribution and use in source and binary forms, with or without
20 | modification, are permitted provided that the following conditions are
21 | met:
22 |
23 | * Redistributions of source code must retain the above copyright
24 | notice, this list of conditions and the following disclaimer.
25 | * Redistributions in binary form must reproduce the above
26 | copyright notice, this list of conditions and the following
27 | disclaimer in the documentation and/or other materials provided
28 | with the distribution.
29 | * The name of Contributor may not used to endorse or promote products
30 | derived from this software without specific prior written permission.
31 |
32 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
35 | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36 | CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
37 | EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
38 | PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
39 | PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
40 | LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
41 | NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
42 | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Back to
43 | Top
44 //////////////////////////////////////////////////////////////////////////
45
46 -->
47 <opencv_storage>
48 <!-- Automatically converted from data/classifier, window size = 36x18 -->
49 <SmileDetector type_id="opencv-haar-classifier">
50 <size>
51 36 18</size>
52 <stages>
53 <_>
54 <!-- stage 0 -->
55 <trees>
56 <_>
57 <!-- tree 0 -->
58 <_>
59 <!-- root node -->
60 <feature>
61 <rects>
62 <_>
63 0 0 2 4 -1.</_>
64 <_>
65 0 2 2 2 2.</_></rects>
66 <tilted>0</tilted></feature>
67 <threshold>-4.8783610691316426e-004</threshold>
68 <left_val>0.5921934843063355</left_val>
69 <right_val>-0.4416360855102539</right_val></_></_>
70 <_>
71 <!-- tree 1 -->
72 <_>
73 <!-- root node -->
74 <feature>
75 <rects>
76 <_>
77 34 10 2 8 -1.</_>
78 <_>
79 34 14 2 4 2.</_></rects>
80 <tilted>0</tilted></feature>
81 <threshold>-4.2209611274302006e-004</threshold>
82 <left_val>0.3031865060329437</left_val>
83 <right_val>-0.3291291892528534</right_val></_></_>
84 <_>
85 <!-- tree 2 -->
86 <_>
87 <!-- root node -->
88 <feature>
89 <rects>
90 <_>
91 0 10 2 8 -1.</_>
92 <_>
93 0 14 2 4 2.</_></rects>
94 <tilted>0</tilted></feature>
95 <threshold>-4.9940118333324790e-004</threshold>
96 <left_val>0.4856331050395966</left_val>
97 <right_val>-0.4292306005954742</right_val></_></_>
98 <_>
99 <!-- tree 3 -->
100 <_>
101 <!-- root node -->
102 <feature>
103 <rects>
104 <_>
105 15 0 18 10 -1.</_>
106 <_>
107 24 0 9 5 2.</_>
108 <_>
109 15 5 9 5 2.</_></rects>
110 <tilted>0</tilted></feature>
111 <threshold>0.0372891984879971</threshold>
112 <left_val>-0.2866730093955994</left_val>
113 <right_val>0.5997999906539917</right_val></_></_>
114 <_>
115 <!-- tree 4 -->
116 <_>
117 <!-- root node -->
118 <feature>
119 <rects>
120 <_>
121 7 0 4 4 -1.</_>
122 <_>
123 7 0 2 4 2.</_></rects>
124 <tilted>1</tilted></feature>
125 <threshold>1.4334049774333835e-003</threshold>
126 <left_val>-0.3489313125610352</left_val>
127 <right_val>0.4048275053501129</right_val></_></_>
128 <_>
129 <!-- tree 5 -->
130 <_>
131 <!-- root node -->
132 <feature>
133 <rects>
134 <_>
135 15 5 6 4 -1.</_>
136 <_>
137 15 6 6 2 2.</_></rects>
138 <tilted>0</tilted></feature>
139 <threshold>-7.7213020995259285e-003</threshold>
140 <left_val>0.7571418881416321</left_val>
141 <right_val>-0.1222594976425171</right_val></_></_>
142 <_>
143 <!-- tree 6 -->
144 <_>
145 <!-- root node -->
146 <feature>
147 <rects>
148 <_>
149 13 6 8 3 -1.</_>
150 <_>
151 13 7 8 1 3.</_></rects>
152 <tilted>0</tilted></feature>
153 <threshold>8.1067271530628204e-003</threshold>
154 <left_val>-0.1665772050619125</left_val>
155 <right_val>0.7509614825248718</right_val></_></_>
156 <_>
157 <!-- tree 7 -->
158 <_>
159 <!-- root node -->
160 <feature>
161 <rects>
162 <_>
163 14 6 8 4 -1.</_>
164 <_>
165 14 7 8 2 2.</_></rects>
166 <tilted>0</tilted></feature>
167 <threshold>-7.7238711528480053e-003</threshold>
168 <left_val>0.6266279220581055</left_val>
169 <right_val>-0.1912745982408524</right_val></_></_>
170 <_>
171 <!-- tree 8 -->
172 <_>
173 <!-- root node -->
174 <feature>
175 <rects>
176 <_>
177 0 10 2 8 -1.</_>
178 <_>
179 0 14 2 4 2.</_></rects>
180 <tilted>0</tilted></feature>
181 <threshold>4.4225031160749495e-004</threshold>
182 <left_val>-0.2394447028636932</left_val>
183 <right_val>0.4484061896800995</right_val></_></_>
184 <_>
185 <!-- tree 9 -->
186 <_>
187 <!-- root node -->
188 <feature>
189 <rects>
190 <_>
191 34 0 2 16 -1.</_>
192 <_>
193 35 0 1 8 2.</_>
194 <_>
195 34 8 1 8 2.</_></rects>
196 <tilted>0</tilted></feature>
197 <threshold>-1.6867710510268807e-003</threshold>
198 <left_val>-0.1843906939029694</left_val>
199 <right_val>0.0917824134230614</right_val></_></_>
200 <_>
201 <!-- tree 10 -->
202 <_>
203 <!-- root node -->
204 <feature>
205 <rects>
206 <_>
207 1 0 4 7 -1.</_>
208 <_>
209 3 0 2 7 2.</_></rects>
210 <tilted>0</tilted></feature>
211 <threshold>0.0146256200969219</threshold>
212 <left_val>0.1616805940866470</left_val>
213 <right_val>-0.8150117993354797</right_val></_></_></trees>
214 <stage_threshold>-1.2678639888763428</stage_threshold>
215 <parent>-1</parent>
216 <next>-1</next></_>
217 <_>
218 <!-- stage 1 -->
219 <trees>
220 <_>
221 <!-- tree 0 -->
222 <_>
223 <!-- root node -->
224 <feature>
225 <rects>
226 <_>
227 4 7 28 3 -1.</_>
228 <_>
229 11 7 14 3 2.</_></rects>
230 <tilted>0</tilted></feature>
231 <threshold>0.0381411388516426</threshold>
232 <left_val>-0.3327588140964508</left_val>
233 <right_val>0.7783334255218506</right_val></_></_>
234 <_>
235 <!-- tree 1 -->
236 <_>
237 <!-- root node -->
238 <feature>
239 <rects>
240 <_>
241 34 0 2 2 -1.</_>
242 <_>
243 34 1 2 1 2.</_></rects>
244 <tilted>0</tilted></feature>
245 <threshold>-1.3136120105627924e-004</threshold>
246 <left_val>0.3635309040546417</left_val>
247 <right_val>-0.3204346895217896</right_val></_></_>
248 <_>
249 <!-- tree 2 -->
250 <_>
251 <!-- root node -->
252 <feature>
253 <rects>
254 <_>
255 0 12 4 6 -1.</_>
256 <_>
257 0 15 4 3 2.</_></rects>
258 <tilted>0</tilted></feature>
259 <threshold>-3.8757019210606813e-003</threshold>
260 <left_val>0.7135239243507385</left_val>
261 <right_val>-0.3518598973751068</right_val></_></_>
262 <_>
263 <!-- tree 3 -->
264 <_>
265 <!-- root node -->
266 <feature>
267 <rects>
268 <_>
269 34 0 2 2 -1.</_>
270 <_>
271 34 1 2 1 2.</_></rects>
272 <tilted>0</tilted></feature>
273 <threshold>1.4266290236264467e-003</threshold>
274 <left_val>0.0681008473038673</left_val>
275 <right_val>-0.6172732710838318</right_val></_></_>
276 <_>
277 <!-- tree 4 -->
278 <_>
279 <!-- root node -->
280 <feature>
281 <rects>
282 <_>
283 0 0 2 2 -1.</_>
284 <_>
285 0 1 2 1 2.</_></rects>
286 <tilted>0</tilted></feature>
287 <threshold>-2.4605958606116474e-004</threshold>
288 <left_val>0.5727149844169617</left_val>
289 <right_val>-0.3786099851131439</right_val></_></_>
290 <_>
291 <!-- tree 5 -->
292 <_>
293 <!-- root node -->
294 <feature>
295 <rects>
296 <_>
297 17 5 9 12 -1.</_>
298 <_>
299 20 5 3 12 3.</_></rects>
300 <tilted>0</tilted></feature>
301 <threshold>-0.0318226404488087</threshold>
302 <left_val>-0.6348456144332886</left_val>
303 <right_val>0.1164183989167213</right_val></_></_>
304 <_>
305 <!-- tree 6 -->
306 <_>
307 <!-- root node -->
308 <feature>
309 <rects>
310 <_>
311 10 5 9 12 -1.</_>
312 <_>
313 13 5 3 12 3.</_></rects>
314 <tilted>0</tilted></feature>
315 <threshold>-0.0171309504657984</threshold>
316 <left_val>-0.6279314756393433</left_val>
317 <right_val>0.3247947096824646</right_val></_></_>
318 <_>
319 <!-- tree 7 -->
320 <_>
321 <!-- root node -->
322 <feature>
323 <rects>
324 <_>
325 4 0 32 1 -1.</_>
326 <_>
327 4 0 16 1 2.</_></rects>
328 <tilted>0</tilted></feature>
329 <threshold>-9.3903783708810806e-003</threshold>
330 <left_val>-0.2757895886898041</left_val>
331 <right_val>0.2233072966337204</right_val></_></_>
332 <_>
333 <!-- tree 8 -->
334 <_>
335 <!-- root node -->
336 <feature>
337 <rects>
338 <_>
339 0 0 3 3 -1.</_>
340 <_>
341 1 0 1 3 3.</_></rects>
342 <tilted>0</tilted></feature>
343 <threshold>2.2802520543336868e-003</threshold>
344 <left_val>0.1897764056921005</left_val>
345 <right_val>-0.6881762146949768</right_val></_></_>
346 <_>
347 <!-- tree 9 -->
348 <_>
349 <!-- root node -->
350 <feature>
351 <rects>
352 <_>
353 32 7 4 7 -1.</_>
354 <_>
355 33 8 2 7 2.</_></rects>
356 <tilted>1</tilted></feature>
357 <threshold>2.6840099599212408e-003</threshold>
358 <left_val>-0.2235050052404404</left_val>
359 <right_val>0.1372579932212830</right_val></_></_>
360 <_>
361 <!-- tree 10 -->
362 <_>
363 <!-- root node -->
364 <feature>
365 <rects>
366 <_>
367 7 0 8 6 -1.</_>
368 <_>
369 7 0 4 3 2.</_>
370 <_>
371 11 3 4 3 2.</_></rects>
372 <tilted>0</tilted></feature>
373 <threshold>0.0106046395376325</threshold>
374 <left_val>-0.2142623066902161</left_val>
375 <right_val>0.5620787143707275</right_val></_></_></trees>
376 <stage_threshold>-1.5844069719314575</stage_threshold>
377 <parent>0</parent>
378 <next>-1</next></_>
379 <_>
380 <!-- stage 2 -->
381 <trees>
382 <_>
383 <!-- tree 0 -->
384 <_>
385 <!-- root node -->
386 <feature>
387 <rects>
388 <_>
389 0 0 2 2 -1.</_>
390 <_>
391 0 1 2 1 2.</_></rects>
392 <tilted>0</tilted></feature>
393 <threshold>-3.1677199876867235e-004</threshold>
394 <left_val>0.4659548103809357</left_val>
395 <right_val>-0.3742581903934479</right_val></_></_>
396 <_>
397 <!-- tree 1 -->
398 <_>
399 <!-- root node -->
400 <feature>
401 <rects>
402 <_>
403 27 1 8 9 -1.</_>
404 <_>
405 29 3 4 9 2.</_></rects>
406 <tilted>1</tilted></feature>
407 <threshold>-0.0551206283271313</threshold>
408 <left_val>0.5417978763580322</left_val>
409 <right_val>-0.2265765070915222</right_val></_></_>
410 <_>
411 <!-- tree 2 -->
412 <_>
413 <!-- root node -->
414 <feature>
415 <rects>
416 <_>
417 1 10 1 8 -1.</_>
418 <_>
419 1 14 1 4 2.</_></rects>
420 <tilted>0</tilted></feature>
421 <threshold>-6.4742640824988484e-004</threshold>
422 <left_val>0.3770307004451752</left_val>
423 <right_val>-0.3348644077777863</right_val></_></_>
424 <_>
425 <!-- tree 3 -->
426 <_>
427 <!-- root node -->
428 <feature>
429 <rects>
430 <_>
431 3 6 30 9 -1.</_>
432 <_>
433 13 9 10 3 9.</_></rects>
434 <tilted>0</tilted></feature>
435 <threshold>0.3950783908367157</threshold>
436 <left_val>-0.1814441978931427</left_val>
437 <right_val>0.8132591843605042</right_val></_></_>
438 <_>
439 <!-- tree 4 -->
440 <_>
441 <!-- root node -->
442 <feature>
443 <rects>
444 <_>
445 12 5 8 6 -1.</_>
446 <_>
447 12 7 8 2 3.</_></rects>
448 <tilted>0</tilted></feature>
449 <threshold>0.0405094102025032</threshold>
450 <left_val>-0.0953694134950638</left_val>
451 <right_val>0.8059561848640442</right_val></_></_>
452 <_>
453 <!-- tree 5 -->
454 <_>
455 <!-- root node -->
456 <feature>
457 <rects>
458 <_>
459 16 4 6 3 -1.</_>
460 <_>
461 16 5 6 1 3.</_></rects>
462 <tilted>0</tilted></feature>
463 <threshold>4.8735421150922775e-003</threshold>
464 <left_val>-0.1402366012334824</left_val>
465 <right_val>0.6164302825927734</right_val></_></_>
466 <_>
467 <!-- tree 6 -->
468 <_>
469 <!-- root node -->
470 <feature>
471 <rects>
472 <_>
473 0 0 2 18 -1.</_>
474 <_>
475 0 0 1 9 2.</_>
476 <_>
477 1 9 1 9 2.</_></rects>
478 <tilted>0</tilted></feature>
479 <threshold>0.0105780400335789</threshold>
480 <left_val>0.1293267011642456</left_val>
481 <right_val>-0.7482334971427918</right_val></_></_>
482 <_>
483 <!-- tree 7 -->
484 <_>
485 <!-- root node -->
486 <feature>
487 <rects>
488 <_>
489 34 2 2 14 -1.</_>
490 <_>
491 35 2 1 7 2.</_>
492 <_>
493 34 9 1 7 2.</_></rects>
494 <tilted>0</tilted></feature>
495 <threshold>9.2986393719911575e-003</threshold>
496 <left_val>0.0589406006038189</left_val>
497 <right_val>-0.4410730004310608</right_val></_></_>
498 <_>
499 <!-- tree 8 -->
500 <_>
501 <!-- root node -->
502 <feature>
503 <rects>
504 <_>
505 0 2 2 14 -1.</_>
506 <_>
507 0 2 1 7 2.</_>
508 <_>
509 1 9 1 7 2.</_></rects>
510 <tilted>0</tilted></feature>
511 <threshold>-5.0301607698202133e-003</threshold>
512 <left_val>-0.6630973219871521</left_val>
513 <right_val>0.1810476928949356</right_val></_></_>
514 <_>
515 <!-- tree 9 -->
516 <_>
517 <!-- root node -->
518 <feature>
519 <rects>
520 <_>
521 35 0 1 4 -1.</_>
522 <_>
523 35 2 1 2 2.</_></rects>
524 <tilted>0</tilted></feature>
525 <threshold>-1.0947990085696802e-004</threshold>
526 <left_val>0.2211259007453919</left_val>
527 <right_val>-0.2730903923511505</right_val></_></_>
528 <_>
529 <!-- tree 10 -->
530 <_>
531 <!-- root node -->
532 <feature>
533 <rects>
534 <_>
535 5 0 24 18 -1.</_>
536 <_>
537 5 0 12 9 2.</_>
538 <_>
539 17 9 12 9 2.</_></rects>
540 <tilted>0</tilted></feature>
541 <threshold>-0.1168550997972488</threshold>
542 <left_val>-0.7720596790313721</left_val>
543 <right_val>0.1248165965080261</right_val></_></_>
544 <_>
545 <!-- tree 11 -->
546 <_>
547 <!-- root node -->
548 <feature>
549 <rects>
550 <_>
551 35 16 1 2 -1.</_>
552 <_>
553 35 17 1 1 2.</_></rects>
554 <tilted>0</tilted></feature>
555 <threshold>-4.3603649828583002e-005</threshold>
556 <left_val>0.1367060989141464</left_val>
557 <right_val>-0.1612793952226639</right_val></_></_>
558 <_>
559 <!-- tree 12 -->
560 <_>
561 <!-- root node -->
562 <feature>
563 <rects>
564 <_>
565 0 16 1 2 -1.</_>
566 <_>
567 0 17 1 1 2.</_></rects>
568 <tilted>0</tilted></feature>
569 <threshold>-1.5056360280141234e-004</threshold>
570 <left_val>0.4486046135425568</left_val>
571 <right_val>-0.2171128988265991</right_val></_></_>
572 <_>
573 <!-- tree 13 -->
574 <_>
575 <!-- root node -->
576 <feature>
577 <rects>
578 <_>
579 17 6 8 12 -1.</_>
580 <_>
581 19 6 4 12 2.</_></rects>
582 <tilted>0</tilted></feature>
583 <threshold>-0.0163946095854044</threshold>
584 <left_val>-0.6582735180854797</left_val>
585 <right_val>0.1674550026655197</right_val></_></_>
586 <_>
587 <!-- tree 14 -->
588 <_>
589 <!-- root node -->
590 <feature>
591 <rects>
592 <_>
593 11 5 8 13 -1.</_>
594 <_>
595 13 5 4 13 2.</_></rects>
596 <tilted>0</tilted></feature>
597 <threshold>-0.0144828604534268</threshold>
598 <left_val>-0.6834514737129211</left_val>
599 <right_val>0.1345615983009338</right_val></_></_>
600 <_>
601 <!-- tree 15 -->
602 <_>
603 <!-- root node -->
604 <feature>
605 <rects>
606 <_>
607 35 16 1 2 -1.</_>
608 <_>
609 35 17 1 1 2.</_></rects>
610 <tilted>0</tilted></feature>
611 <threshold>3.9269471017178148e-005</threshold>
612 <left_val>-0.1499813944101334</left_val>
613 <right_val>0.1601772010326386</right_val></_></_>
614 <_>
615 <!-- tree 16 -->
616 <_>
617 <!-- root node -->
618 <feature>
619 <rects>
620 <_>
621 10 9 12 3 -1.</_>
622 <_>
623 10 10 12 1 3.</_></rects>
624 <tilted>0</tilted></feature>
625 <threshold>7.4323131702840328e-003</threshold>
626 <left_val>-0.1684845983982086</left_val>
627 <right_val>0.5396398901939392</right_val></_></_></trees>
628 <stage_threshold>-1.3820559978485107</stage_threshold>
629 <parent>1</parent>
630 <next>-1</next></_>
631 <_>
632 <!-- stage 3 -->
633 <trees>
634 <_>
635 <!-- tree 0 -->
636 <_>
637 <!-- root node -->
638 <feature>
639 <rects>
640 <_>
641 0 10 1 8 -1.</_>
642 <_>
643 0 14 1 4 2.</_></rects>
644 <tilted>0</tilted></feature>
645 <threshold>-4.3472499237395823e-004</threshold>
646 <left_val>0.4394924044609070</left_val>
647 <right_val>-0.4224875867366791</right_val></_></_>
648 <_>
649 <!-- tree 1 -->
650 <_>
651 <!-- root node -->
652 <feature>
653 <rects>
654 <_>
655 20 0 10 10 -1.</_>
656 <_>
657 25 0 5 5 2.</_>
658 <_>
659 20 5 5 5 2.</_></rects>
660 <tilted>0</tilted></feature>
661 <threshold>0.0329953208565712</threshold>
662 <left_val>-0.1979825049638748</left_val>
663 <right_val>0.5953487157821655</right_val></_></_>
664 <_>
665 <!-- tree 2 -->
666 <_>
667 <!-- root node -->
668 <feature>
669 <rects>
670 <_>
671 0 0 1 4 -1.</_>
672 <_>
673 0 2 1 2 2.</_></rects>
674 <tilted>0</tilted></feature>
675 <threshold>-4.1011828579939902e-004</threshold>
676 <left_val>0.4440306127071381</left_val>
677 <right_val>-0.3074846863746643</right_val></_></_>
678 <_>
679 <!-- tree 3 -->
680 <_>
681 <!-- root node -->
682 <feature>
683 <rects>
684 <_>
685 19 0 13 18 -1.</_>
686 <_>
687 19 9 13 9 2.</_></rects>
688 <tilted>0</tilted></feature>
689 <threshold>-0.0819697380065918</threshold>
690 <left_val>-0.5333436727523804</left_val>
691 <right_val>0.1671810001134872</right_val></_></_>
692 <_>
693 <!-- tree 4 -->
694 <_>
695 <!-- root node -->
696 <feature>
697 <rects>
698 <_>
699 4 0 14 6 -1.</_>
700 <_>
701 4 0 7 3 2.</_>
702 <_>
703 11 3 7 3 2.</_></rects>
704 <tilted>0</tilted></feature>
705 <threshold>0.0177787002176046</threshold>
706 <left_val>-0.2045017927885056</left_val>
707 <right_val>0.5144413113594055</right_val></_></_>
708 <_>
709 <!-- tree 5 -->
710 <_>
711 <!-- root node -->
712 <feature>
713 <rects>
714 <_>
715 16 5 6 6 -1.</_>
716 <_>
717 16 7 6 2 3.</_></rects>
718 <tilted>0</tilted></feature>
719 <threshold>0.0228346996009350</threshold>
720 <left_val>-0.1484607011079788</left_val>
721 <right_val>0.5624278783798218</right_val></_></_>
722 <_>
723 <!-- tree 6 -->
724 <_>
725 <!-- root node -->
726 <feature>
727 <rects>
728 <_>
729 13 7 7 8 -1.</_>
730 <_>
731 13 9 7 4 2.</_></rects>
732 <tilted>0</tilted></feature>
733 <threshold>0.0386043414473534</threshold>
734 <left_val>-0.1273147016763687</left_val>
735 <right_val>0.8149448037147522</right_val></_></_>
736 <_>
737 <!-- tree 7 -->
738 <_>
739 <!-- root node -->
740 <feature>
741 <rects>
742 <_>
743 33 0 3 1 -1.</_>
744 <_>
745 34 0 1 1 3.</_></rects>
746 <tilted>0</tilted></feature>
747 <threshold>-7.3286908445879817e-004</threshold>
748 <left_val>-0.3719344139099121</left_val>
749 <right_val>0.0676164999604225</right_val></_></_>
750 <_>
751 <!-- tree 8 -->
752 <_>
753 <!-- root node -->
754 <feature>
755 <rects>
756 <_>
757 7 1 10 4 -1.</_>
758 <_>
759 6 2 10 2 2.</_></rects>
760 <tilted>1</tilted></feature>
761 <threshold>-0.0232290402054787</threshold>
762 <left_val>0.7123206257820129</left_val>
763 <right_val>-0.1158939003944397</right_val></_></_>
764 <_>
765 <!-- tree 9 -->
766 <_>
767 <!-- root node -->
768 <feature>
769 <rects>
770 <_>
771 15 2 6 16 -1.</_>
772 <_>
773 18 2 3 8 2.</_>
774 <_>
775 15 10 3 8 2.</_></rects>
776 <tilted>0</tilted></feature>
777 <threshold>-0.0195753592997789</threshold>
778 <left_val>-0.6899073123931885</left_val>
779 <right_val>0.1399950981140137</right_val></_></_>
780 <_>
781 <!-- tree 10 -->
782 <_>
783 <!-- root node -->
784 <feature>
785 <rects>
786 <_>
787 0 10 1 8 -1.</_>
788 <_>
789 0 14 1 4 2.</_></rects>
790 <tilted>0</tilted></feature>
791 <threshold>4.1991271427832544e-004</threshold>
792 <left_val>-0.1835464984178543</left_val>
793 <right_val>0.4943555891513825</right_val></_></_>
794 <_>
795 <!-- tree 11 -->
796 <_>
797 <!-- root node -->
798 <feature>
799 <rects>
800 <_>
801 27 4 6 6 -1.</_>
802 <_>
803 29 6 2 6 3.</_></rects>
804 <tilted>1</tilted></feature>
805 <threshold>-0.0570897497236729</threshold>
806 <left_val>0.6260784864425659</left_val>
807 <right_val>-0.0785768479108810</right_val></_></_>
808 <_>
809 <!-- tree 12 -->
810 <_>
811 <!-- root node -->
812 <feature>
813 <rects>
814 <_>
815 14 5 8 8 -1.</_>
816 <_>
817 16 5 4 8 2.</_></rects>
818 <tilted>0</tilted></feature>
819 <threshold>0.0256996992975473</threshold>
820 <left_val>0.1155714020133019</left_val>
821 <right_val>-0.8193519115447998</right_val></_></_>
822 <_>
823 <!-- tree 13 -->
824 <_>
825 <!-- root node -->
826 <feature>
827 <rects>
828 <_>
829 27 5 6 6 -1.</_>
830 <_>
831 29 7 2 6 3.</_></rects>
832 <tilted>1</tilted></feature>
833 <threshold>0.0325796194374561</threshold>
834 <left_val>-0.1176773980259895</left_val>
835 <right_val>0.4277622103691101</right_val></_></_>
836 <_>
837 <!-- tree 14 -->
838 <_>
839 <!-- root node -->
840 <feature>
841 <rects>
842 <_>
843 9 5 6 6 -1.</_>
844 <_>
845 7 7 6 2 3.</_></rects>
846 <tilted>1</tilted></feature>
847 <threshold>-0.0205922499299049</threshold>
848 <left_val>0.4868524074554443</left_val>
849 <right_val>-0.2131853997707367</right_val></_></_>
850 <_>
851 <!-- tree 15 -->
852 <_>
853 <!-- root node -->
854 <feature>
855 <rects>
856 <_>
857 12 5 12 9 -1.</_>
858 <_>
859 15 5 6 9 2.</_></rects>
860 <tilted>0</tilted></feature>
861 <threshold>-0.0174852795898914</threshold>
862 <left_val>-0.5228734016418457</left_val>
863 <right_val>0.1339704990386963</right_val></_></_>
864 <_>
865 <!-- tree 16 -->
866 <_>
867 <!-- root node -->
868 <feature>
869 <rects>
870 <_>
871 0 0 3 1 -1.</_>
872 <_>
873 1 0 1 1 3.</_></rects>
874 <tilted>0</tilted></feature>
875 <threshold>8.9153228327631950e-004</threshold>
876 <left_val>0.0963044911623001</left_val>
877 <right_val>-0.6886307001113892</right_val></_></_>
878 <_>
879 <!-- tree 17 -->
880 <_>
881 <!-- root node -->
882 <feature>
883 <rects>
884 <_>
885 15 4 18 6 -1.</_>
886 <_>
887 15 6 18 2 3.</_></rects>
888 <tilted>0</tilted></feature>
889 <threshold>0.0575339011847973</threshold>
890 <left_val>-0.0870805233716965</left_val>
891 <right_val>0.4048064947128296</right_val></_></_></trees>
892 <stage_threshold>-1.3879380226135254</stage_threshold>
893 <parent>2</parent>
894 <next>-1</next></_>
895 <_>
896 <!-- stage 4 -->
897 <trees>
898 <_>
899 <!-- tree 0 -->
900 <_>
901 <!-- root node -->
902 <feature>
903 <rects>
904 <_>
905 0 10 1 6 -1.</_>
906 <_>
907 0 13 1 3 2.</_></rects>
908 <tilted>0</tilted></feature>
909 <threshold>-4.6606198884546757e-004</threshold>
910 <left_val>0.4277374148368835</left_val>
911 <right_val>-0.3542076945304871</right_val></_></_>
912 <_>
913 <!-- tree 1 -->
914 <_>
915 <!-- root node -->
916 <feature>
917 <rects>
918 <_>
919 3 6 30 6 -1.</_>
920 <_>
921 13 8 10 2 9.</_></rects>
922 <tilted>0</tilted></feature>
923 <threshold>0.3055455982685089</threshold>
924 <left_val>-0.1639281064271927</left_val>
925 <right_val>0.8606523275375366</right_val></_></_>
926 <_>
927 <!-- tree 2 -->
928 <_>
929 <!-- root node -->
930 <feature>
931 <rects>
932 <_>
933 11 7 12 4 -1.</_>
934 <_>
935 11 8 12 2 2.</_></rects>
936 <tilted>0</tilted></feature>
937 <threshold>-0.0114494003355503</threshold>
938 <left_val>0.5972732901573181</left_val>
939 <right_val>-0.2323434054851532</right_val></_></_>
940 <_>
941 <!-- tree 3 -->
942 <_>
943 <!-- root node -->
944 <feature>
945 <rects>
946 <_>
947 14 8 9 3 -1.</_>
948 <_>
949 14 9 9 1 3.</_></rects>
950 <tilted>0</tilted></feature>
951 <threshold>6.3891541212797165e-003</threshold>
952 <left_val>-0.1291541010141373</left_val>
953 <right_val>0.6105204224586487</right_val></_></_>
954 <_>
955 <!-- tree 4 -->
956 <_>
957 <!-- root node -->
958 <feature>
959 <rects>
960 <_>
961 14 8 7 4 -1.</_>
962 <_>
963 14 9 7 2 2.</_></rects>
964 <tilted>0</tilted></feature>
965 <threshold>-8.4334248676896095e-003</threshold>
966 <left_val>0.4792853891849518</left_val>
967 <right_val>-0.1900272965431213</right_val></_></_>
968 <_>
969 <!-- tree 5 -->
970 <_>
971 <!-- root node -->
972 <feature>
973 <rects>
974 <_>
975 12 7 18 6 -1.</_>
976 <_>
977 12 9 18 2 3.</_></rects>
978 <tilted>0</tilted></feature>
979 <threshold>0.0538089312613010</threshold>
980 <left_val>-0.1149377003312111</left_val>
981 <right_val>0.5339453816413879</right_val></_></_>
982 <_>
983 <!-- tree 6 -->
984 <_>
985 <!-- root node -->
986 <feature>
987 <rects>
988 <_>
989 7 8 3 10 -1.</_>
990 <_>
991 7 13 3 5 2.</_></rects>
992 <tilted>0</tilted></feature>
993 <threshold>-4.7580219688825309e-004</threshold>
994 <left_val>-0.3459854125976563</left_val>
995 <right_val>0.2548804879188538</right_val></_></_>
996 <_>
997 <!-- tree 7 -->
998 <_>
999 <!-- root node -->
1000 <feature>
1001 <rects>
1002 <_>
1003 35 10 1 6 -1.</_>
1004 <_>
1005 35 13 1 3 2.</_></rects>
1006 <tilted>0</tilted></feature>
1007 <threshold>-1.3450840197037905e-004</threshold>
1008 <left_val>0.2241459041833878</left_val>
1009 <right_val>-0.1955007016658783</right_val></_></_>
1010 <_>
1011 <!-- tree 8 -->
1012 <_>
1013 <!-- root node -->
1014 <feature>
1015 <rects>
1016 <_>
1017 0 10 1 6 -1.</_>
1018 <_>
1019 0 13 1 3 2.</_></rects>
1020 <tilted>0</tilted></feature>
1021 <threshold>5.0016911700367928e-004</threshold>
1022 <left_val>-0.1972054988145828</left_val>
1023 <right_val>0.4967764019966126</right_val></_></_>
1024 <_>
1025 <!-- tree 9 -->
1026 <_>
1027 <!-- root node -->
1028 <feature>
1029 <rects>
1030 <_>
1031 18 13 9 5 -1.</_>
1032 <_>
1033 21 13 3 5 3.</_></rects>
1034 <tilted>0</tilted></feature>
1035 <threshold>0.0150632699951530</threshold>
1036 <left_val>0.1063077002763748</left_val>
1037 <right_val>-0.4113821089267731</right_val></_></_>
1038 <_>
1039 <!-- tree 10 -->
1040 <_>
1041 <!-- root node -->
1042 <feature>
1043 <rects>
1044 <_>
1045 15 9 6 4 -1.</_>
1046 <_>
1047 15 10 6 2 2.</_></rects>
1048 <tilted>0</tilted></feature>
1049 <threshold>7.7588870190083981e-003</threshold>
1050 <left_val>-0.1537311971187592</left_val>
1051 <right_val>0.4893161952495575</right_val></_></_>
1052 <_>
1053 <!-- tree 11 -->
1054 <_>
1055 <!-- root node -->
1056 <feature>
1057 <rects>
1058 <_>
1059 16 4 18 8 -1.</_>
1060 <_>
1061 16 6 18 4 2.</_></rects>
1062 <tilted>0</tilted></feature>
1063 <threshold>0.0454101189970970</threshold>
1064 <left_val>-0.0735593065619469</left_val>
1065 <right_val>0.2773792147636414</right_val></_></_>
1066 <_>
1067 <!-- tree 12 -->
1068 <_>
1069 <!-- root node -->
1070 <feature>
1071 <rects>
1072 <_>
1073 9 14 9 3 -1.</_>
1074 <_>
1075 12 14 3 3 3.</_></rects>
1076 <tilted>0</tilted></feature>
1077 <threshold>-0.0145996697247028</threshold>
1078 <left_val>-0.7096682786941528</left_val>
1079 <right_val>0.0975155606865883</right_val></_></_>
1080 <_>
1081 <!-- tree 13 -->
1082 <_>
1083 <!-- root node -->
1084 <feature>
1085 <rects>
1086 <_>
1087 32 0 4 6 -1.</_>
1088 <_>
1089 32 0 2 6 2.</_></rects>
1090 <tilted>0</tilted></feature>
1091 <threshold>0.0172360707074404</threshold>
1092 <left_val>0.0168695393949747</left_val>
1093 <right_val>-0.5738832950592041</right_val></_></_>
1094 <_>
1095 <!-- tree 14 -->
1096 <_>
1097 <!-- root node -->
1098 <feature>
1099 <rects>
1100 <_>
1101 0 0 4 6 -1.</_>
1102 <_>
1103 2 0 2 6 2.</_></rects>
1104 <tilted>0</tilted></feature>
1105 <threshold>0.0142307104542851</threshold>
1106 <left_val>0.0947145000100136</left_val>
1107 <right_val>-0.7839525938034058</right_val></_></_>
1108 <_>
1109 <!-- tree 15 -->
1110 <_>
1111 <!-- root node -->
1112 <feature>
1113 <rects>
1114 <_>
1115 27 0 6 7 -1.</_>
1116 <_>
1117 29 2 2 7 3.</_></rects>
1118 <tilted>1</tilted></feature>
1119 <threshold>-0.0437068603932858</threshold>
1120 <left_val>0.6097965240478516</left_val>
1121 <right_val>-0.1560188978910446</right_val></_></_>
1122 <_>
1123 <!-- tree 16 -->
1124 <_>
1125 <!-- root node -->
1126 <feature>
1127 <rects>
1128 <_>
1129 0 0 1 4 -1.</_>
1130 <_>
1131 0 2 1 2 2.</_></rects>
1132 <tilted>0</tilted></feature>
1133 <threshold>-6.2343222089111805e-004</threshold>
1134 <left_val>0.3485119044780731</left_val>
1135 <right_val>-0.2170491069555283</right_val></_></_>
1136 <_>
1137 <!-- tree 17 -->
1138 <_>
1139 <!-- root node -->
1140 <feature>
1141 <rects>
1142 <_>
1143 27 8 6 4 -1.</_>
1144 <_>
1145 29 10 2 4 3.</_></rects>
1146 <tilted>1</tilted></feature>
1147 <threshold>0.0192450508475304</threshold>
1148 <left_val>-0.1171097978949547</left_val>
1149 <right_val>0.3070116043090820</right_val></_></_>
1150 <_>
1151 <!-- tree 18 -->
1152 <_>
1153 <!-- root node -->
1154 <feature>
1155 <rects>
1156 <_>
1157 4 9 27 6 -1.</_>
1158 <_>
1159 13 11 9 2 9.</_></rects>
1160 <tilted>0</tilted></feature>
1161 <threshold>0.2703577876091003</threshold>
1162 <left_val>-0.0900964364409447</left_val>
1163 <right_val>0.7665696144104004</right_val></_></_>
1164 <_>
1165 <!-- tree 19 -->
1166 <_>
1167 <!-- root node -->
1168 <feature>
1169 <rects>
1170 <_>
1171 31 14 2 3 -1.</_>
1172 <_>
1173 31 14 1 3 2.</_></rects>
1174 <tilted>0</tilted></feature>
1175 <threshold>-3.5394480801187456e-004</threshold>
1176 <left_val>-0.2002478986978531</left_val>
1177 <right_val>0.1249336004257202</right_val></_></_>
1178 <_>
1179 <!-- tree 20 -->
1180 <_>
1181 <!-- root node -->
1182 <feature>
1183 <rects>
1184 <_>
1185 10 0 5 6 -1.</_>
1186 <_>
1187 8 2 5 2 3.</_></rects>
1188 <tilted>1</tilted></feature>
1189 <threshold>-0.0360139608383179</threshold>
1190 <left_val>0.6702855825424194</left_val>
1191 <right_val>-0.1057187989354134</right_val></_></_>
1192 <_>
1193 <!-- tree 21 -->
1194 <_>
1195 <!-- root node -->
1196 <feature>
1197 <rects>
1198 <_>
1199 14 7 11 3 -1.</_>
1200 <_>
1201 14 8 11 1 3.</_></rects>
1202 <tilted>0</tilted></feature>
1203 <threshold>9.2952791601419449e-003</threshold>
1204 <left_val>-0.1057471036911011</left_val>
1205 <right_val>0.4509387910366058</right_val></_></_>
1206 <_>
1207 <!-- tree 22 -->
1208 <_>
1209 <!-- root node -->
1210 <feature>
1211 <rects>
1212 <_>
1213 0 12 2 6 -1.</_>
1214 <_>
1215 0 15 2 3 2.</_></rects>
1216 <tilted>0</tilted></feature>
1217 <threshold>-3.3304709359072149e-004</threshold>
1218 <left_val>0.2793382108211517</left_val>
1219 <right_val>-0.2457676976919174</right_val></_></_>
1220 <_>
1221 <!-- tree 23 -->
1222 <_>
1223 <!-- root node -->
1224 <feature>
1225 <rects>
1226 <_>
1227 34 13 2 4 -1.</_>
1228 <_>
1229 34 15 2 2 2.</_></rects>
1230 <tilted>0</tilted></feature>
1231 <threshold>-2.9147620807634667e-005</threshold>
1232 <left_val>0.0858138129115105</left_val>
1233 <right_val>-0.0954695865511894</right_val></_></_>
1234 <_>
1235 <!-- tree 24 -->
1236 <_>
1237 <!-- root node -->
1238 <feature>
1239 <rects>
1240 <_>
1241 0 13 2 4 -1.</_>
1242 <_>
1243 0 15 2 2 2.</_></rects>
1244 <tilted>0</tilted></feature>
1245 <threshold>4.4382669148035347e-004</threshold>
1246 <left_val>-0.2022008001804352</left_val>
1247 <right_val>0.5454357862472534</right_val></_></_></trees>
1248 <stage_threshold>-1.3538850545883179</stage_threshold>
1249 <parent>3</parent>
1250 <next>-1</next></_>
1251 <_>
1252 <!-- stage 5 -->
1253 <trees>
1254 <_>
1255 <!-- tree 0 -->
1256 <_>
1257 <!-- root node -->
1258 <feature>
1259 <rects>
1260 <_>
1261 3 6 4 12 -1.</_>
1262 <_>
1263 3 10 4 4 3.</_></rects>
1264 <tilted>0</tilted></feature>
1265 <threshold>7.9610757529735565e-003</threshold>
1266 <left_val>-0.3672207891941071</left_val>
1267 <right_val>0.4315434992313385</right_val></_></_>
1268 <_>
1269 <!-- tree 1 -->
1270 <_>
1271 <!-- root node -->
1272 <feature>
1273 <rects>
1274 <_>
1275 14 0 22 12 -1.</_>
1276 <_>
1277 25 0 11 6 2.</_>
1278 <_>
1279 14 6 11 6 2.</_></rects>
1280 <tilted>0</tilted></feature>
1281 <threshold>0.0633948296308517</threshold>
1282 <left_val>-0.2073971033096314</left_val>
1283 <right_val>0.5742601752281189</right_val></_></_>
1284 <_>
1285 <!-- tree 2 -->
1286 <_>
1287 <!-- root node -->
1288 <feature>
1289 <rects>
1290 <_>
1291 8 1 7 6 -1.</_>
1292 <_>
1293 6 3 7 2 3.</_></rects>
1294 <tilted>1</tilted></feature>
1295 <threshold>-0.0531933493912220</threshold>
1296 <left_val>0.7255092263221741</left_val>
1297 <right_val>-0.1434202045202255</right_val></_></_>
1298 <_>
1299 <!-- tree 3 -->
1300 <_>
1301 <!-- root node -->
1302 <feature>
1303 <rects>
1304 <_>
1305 12 5 14 3 -1.</_>
1306 <_>
1307 12 6 14 1 3.</_></rects>
1308 <tilted>0</tilted></feature>
1309 <threshold>0.0154607696458697</threshold>
1310 <left_val>-0.0960538163781166</left_val>
1311 <right_val>0.7578523755073547</right_val></_></_>
1312 <_>
1313 <!-- tree 4 -->
1314 <_>
1315 <!-- root node -->
1316 <feature>
1317 <rects>
1318 <_>
1319 7 6 7 4 -1.</_>
1320 <_>
1321 6 7 7 2 2.</_></rects>
1322 <tilted>1</tilted></feature>
1323 <threshold>-0.0176431406289339</threshold>
1324 <left_val>0.6681562066078186</left_val>
1325 <right_val>-0.1417672932147980</right_val></_></_>
1326 <_>
1327 <!-- tree 5 -->
1328 <_>
1329 <!-- root node -->
1330 <feature>
1331 <rects>
1332 <_>
1333 18 3 6 4 -1.</_>
1334 <_>
1335 18 4 6 2 2.</_></rects>
1336 <tilted>0</tilted></feature>
1337 <threshold>9.5065636560320854e-003</threshold>
1338 <left_val>-0.0962597429752350</left_val>
1339 <right_val>0.4699633121490479</right_val></_></_>
1340 <_>
1341 <!-- tree 6 -->
1342 <_>
1343 <!-- root node -->
1344 <feature>
1345 <rects>
1346 <_>
1347 4 5 5 6 -1.</_>
1348 <_>
1349 4 7 5 2 3.</_></rects>
1350 <tilted>0</tilted></feature>
1351 <threshold>4.0446049533784389e-003</threshold>
1352 <left_val>-0.1973251998424530</left_val>
1353 <right_val>0.4283801019191742</right_val></_></_>
1354 <_>
1355 <!-- tree 7 -->
1356 <_>
1357 <!-- root node -->
1358 <feature>
1359 <rects>
1360 <_>
1361 33 0 3 4 -1.</_>
1362 <_>
1363 34 0 1 4 3.</_></rects>
1364 <tilted>0</tilted></feature>
1365 <threshold>3.2312041148543358e-003</threshold>
1366 <left_val>0.1186169013381004</left_val>
1367 <right_val>-0.6103963255882263</right_val></_></_>
1368 <_>
1369 <!-- tree 8 -->
1370 <_>
1371 <!-- root node -->
1372 <feature>
1373 <rects>
1374 <_>
1375 9 0 6 18 -1.</_>
1376 <_>
1377 9 9 6 9 2.</_></rects>
1378 <tilted>0</tilted></feature>
1379 <threshold>-0.0401590503752232</threshold>
1380 <left_val>-0.4166434109210968</left_val>
1381 <right_val>0.2167232930660248</right_val></_></_>
1382 <_>
1383 <!-- tree 9 -->
1384 <_>
1385 <!-- root node -->
1386 <feature>
1387 <rects>
1388 <_>
1389 6 6 24 6 -1.</_>
1390 <_>
1391 14 8 8 2 9.</_></rects>
1392 <tilted>0</tilted></feature>
1393 <threshold>0.2852425873279572</threshold>
1394 <left_val>-0.1043575033545494</left_val>
1395 <right_val>0.8573396801948547</right_val></_></_>
1396 <_>
1397 <!-- tree 10 -->
1398 <_>
1399 <!-- root node -->
1400 <feature>
1401 <rects>
1402 <_>
1403 16 8 4 4 -1.</_>
1404 <_>
1405 16 9 4 2 2.</_></rects>
1406 <tilted>0</tilted></feature>
1407 <threshold>-4.9264221452176571e-003</threshold>
1408 <left_val>0.4706046879291534</left_val>
1409 <right_val>-0.1399745941162109</right_val></_></_>
1410 <_>
1411 <!-- tree 11 -->
1412 <_>
1413 <!-- root node -->
1414 <feature>
1415 <rects>
1416 <_>
1417 13 8 13 4 -1.</_>
1418 <_>
1419 13 9 13 2 2.</_></rects>
1420 <tilted>0</tilted></feature>
1421 <threshold>0.0137817002832890</threshold>
1422 <left_val>-0.1271356940269470</left_val>
1423 <right_val>0.4461891949176788</right_val></_></_>
1424 <_>
1425 <!-- tree 12 -->
1426 <_>
1427 <!-- root node -->
1428 <feature>
1429 <rects>
1430 <_>
1431 0 16 2 2 -1.</_>
1432 <_>
1433 0 17 2 1 2.</_></rects>
1434 <tilted>0</tilted></feature>
1435 <threshold>-4.9873598618432879e-004</threshold>
1436 <left_val>0.4702663123607636</left_val>
1437 <right_val>-0.1548373997211456</right_val></_></_>
1438 <_>
1439 <!-- tree 13 -->
1440 <_>
1441 <!-- root node -->
1442 <feature>
1443 <rects>
1444 <_>
1445 35 14 1 4 -1.</_>
1446 <_>
1447 35 15 1 2 2.</_></rects>
1448 <tilted>0</tilted></feature>
1449 <threshold>-1.5621389320585877e-004</threshold>
1450 <left_val>0.1885481029748917</left_val>
1451 <right_val>-0.0778397768735886</right_val></_></_>
1452 <_>
1453 <!-- tree 14 -->
1454 <_>
1455 <!-- root node -->
1456 <feature>
1457 <rects>
1458 <_>
1459 0 14 1 4 -1.</_>
1460 <_>
1461 0 15 1 2 2.</_></rects>
1462 <tilted>0</tilted></feature>
1463 <threshold>-3.7597760092467070e-004</threshold>
1464 <left_val>0.5769770145416260</left_val>
1465 <right_val>-0.1335622072219849</right_val></_></_>
1466 <_>
1467 <!-- tree 15 -->
1468 <_>
1469 <!-- root node -->
1470 <feature>
1471 <rects>
1472 <_>
1473 15 6 9 7 -1.</_>
1474 <_>
1475 18 6 3 7 3.</_></rects>
1476 <tilted>0</tilted></feature>
1477 <threshold>-0.0106659103184938</threshold>
1478 <left_val>-0.4106529951095581</left_val>
1479 <right_val>0.1556212007999420</right_val></_></_>
1480 <_>
1481 <!-- tree 16 -->
1482 <_>
1483 <!-- root node -->
1484 <feature>
1485 <rects>
1486 <_>
1487 0 0 3 4 -1.</_>
1488 <_>
1489 1 0 1 4 3.</_></rects>
1490 <tilted>0</tilted></feature>
1491 <threshold>-3.4135230816900730e-003</threshold>
1492 <left_val>-0.7636343240737915</left_val>
1493 <right_val>0.1020964980125427</right_val></_></_>
1494 <_>
1495 <!-- tree 17 -->
1496 <_>
1497 <!-- root node -->
1498 <feature>
1499 <rects>
1500 <_>
1501 34 16 2 2 -1.</_>
1502 <_>
1503 35 16 1 1 2.</_>
1504 <_>
1505 34 17 1 1 2.</_></rects>
1506 <tilted>0</tilted></feature>
1507 <threshold>5.6471868447260931e-005</threshold>
1508 <left_val>-0.1644393056631088</left_val>
1509 <right_val>0.2290841937065125</right_val></_></_>
1510 <_>
1511 <!-- tree 18 -->
1512 <_>
1513 <!-- root node -->
1514 <feature>
1515 <rects>
1516 <_>
1517 0 16 2 2 -1.</_>
1518 <_>
1519 0 16 1 1 2.</_>
1520 <_>
1521 1 17 1 1 2.</_></rects>
1522 <tilted>0</tilted></feature>
1523 <threshold>2.1611599368043244e-004</threshold>
1524 <left_val>-0.1629032939672470</left_val>
1525 <right_val>0.4575636088848114</right_val></_></_>
1526 <_>
1527 <!-- tree 19 -->
1528 <_>
1529 <!-- root node -->
1530 <feature>
1531 <rects>
1532 <_>
1533 22 0 10 4 -1.</_>
1534 <_>
1535 22 0 5 4 2.</_></rects>
1536 <tilted>1</tilted></feature>
1537 <threshold>-0.0108227198943496</threshold>
1538 <left_val>-0.2446253001689911</left_val>
1539 <right_val>0.1388894021511078</right_val></_></_>
1540 <_>
1541 <!-- tree 20 -->
1542 <_>
1543 <!-- root node -->
1544 <feature>
1545 <rects>
1546 <_>
1547 15 4 6 14 -1.</_>
1548 <_>
1549 15 4 3 7 2.</_>
1550 <_>
1551 18 11 3 7 2.</_></rects>
1552 <tilted>0</tilted></feature>
1553 <threshold>-0.0150849102064967</threshold>
1554 <left_val>-0.5781347751617432</left_val>
1555 <right_val>0.1156411990523338</right_val></_></_>
1556 <_>
1557 <!-- tree 21 -->
1558 <_>
1559 <!-- root node -->
1560 <feature>
1561 <rects>
1562 <_>
1563 15 3 8 10 -1.</_>
1564 <_>
1565 17 3 4 10 2.</_></rects>
1566 <tilted>0</tilted></feature>
1567 <threshold>0.0257159601897001</threshold>
1568 <left_val>0.0396311990916729</left_val>
1569 <right_val>-0.6527001261711121</right_val></_></_>
1570 <_>
1571 <!-- tree 22 -->
1572 <_>
1573 <!-- root node -->
1574 <feature>
1575 <rects>
1576 <_>
1577 0 0 2 5 -1.</_>
1578 <_>
1579 1 0 1 5 2.</_></rects>
1580 <tilted>0</tilted></feature>
1581 <threshold>2.6093570049852133e-003</threshold>
1582 <left_val>0.1142188981175423</left_val>
1583 <right_val>-0.5680108070373535</right_val></_></_></trees>
1584 <stage_threshold>-1.3707510232925415</stage_threshold>
1585 <parent>4</parent>
1586 <next>-1</next></_>
1587 <_>
1588 <!-- stage 6 -->
1589 <trees>
1590 <_>
1591 <!-- tree 0 -->
1592 <_>
1593 <!-- root node -->
1594 <feature>
1595 <rects>
1596 <_>
1597 7 1 8 6 -1.</_>
1598 <_>
1599 5 3 8 2 3.</_></rects>
1600 <tilted>1</tilted></feature>
1601 <threshold>-0.0518619008362293</threshold>
1602 <left_val>0.7043117284774780</left_val>
1603 <right_val>-0.2214370071887970</right_val></_></_>
1604 <_>
1605 <!-- tree 1 -->
1606 <_>
1607 <!-- root node -->
1608 <feature>
1609 <rects>
1610 <_>
1611 19 0 11 18 -1.</_>
1612 <_>
1613 19 9 11 9 2.</_></rects>
1614 <tilted>0</tilted></feature>
1615 <threshold>-0.0503416284918785</threshold>
1616 <left_val>-0.4639782905578613</left_val>
1617 <right_val>0.2804746031761169</right_val></_></_>
1618 <_>
1619 <!-- tree 2 -->
1620 <_>
1621 <!-- root node -->
1622 <feature>
1623 <rects>
1624 <_>
1625 6 8 24 6 -1.</_>
1626 <_>
1627 14 10 8 2 9.</_></rects>
1628 <tilted>0</tilted></feature>
1629 <threshold>0.2570973038673401</threshold>
1630 <left_val>-0.1312427967786789</left_val>
1631 <right_val>0.8239594101905823</right_val></_></_>
1632 <_>
1633 <!-- tree 3 -->
1634 <_>
1635 <!-- root node -->
1636 <feature>
1637 <rects>
1638 <_>
1639 14 6 10 3 -1.</_>
1640 <_>
1641 14 7 10 1 3.</_></rects>
1642 <tilted>0</tilted></feature>
1643 <threshold>0.0110318996012211</threshold>
1644 <left_val>-0.1425814032554627</left_val>
1645 <right_val>0.6382390260696411</right_val></_></_>
1646 <_>
1647 <!-- tree 4 -->
1648 <_>
1649 <!-- root node -->
1650 <feature>
1651 <rects>
1652 <_>
1653 12 7 11 4 -1.</_>
1654 <_>
1655 12 8 11 2 2.</_></rects>
1656 <tilted>0</tilted></feature>
1657 <threshold>0.0185650903731585</threshold>
1658 <left_val>-0.1512387990951538</left_val>
1659 <right_val>0.5988119244575501</right_val></_></_>
1660 <_>
1661 <!-- tree 5 -->
1662 <_>
1663 <!-- root node -->
1664 <feature>
1665 <rects>
1666 <_>
1667 18 0 16 6 -1.</_>
1668 <_>
1669 26 0 8 3 2.</_>
1670 <_>
1671 18 3 8 3 2.</_></rects>
1672 <tilted>0</tilted></feature>
1673 <threshold>0.0175023507326841</threshold>
1674 <left_val>-0.1261979937553406</left_val>
1675 <right_val>0.3817803859710693</right_val></_></_>
1676 <_>
1677 <!-- tree 6 -->
1678 <_>
1679 <!-- root node -->
1680 <feature>
1681 <rects>
1682 <_>
1683 5 3 7 3 -1.</_>
1684 <_>
1685 4 4 7 1 3.</_></rects>
1686 <tilted>1</tilted></feature>
1687 <threshold>7.2723729535937309e-003</threshold>
1688 <left_val>-0.1510328948497772</left_val>
1689 <right_val>0.5812842249870300</right_val></_></_>
1690 <_>
1691 <!-- tree 7 -->
1692 <_>
1693 <!-- root node -->
1694 <feature>
1695 <rects>
1696 <_>
1697 18 4 4 4 -1.</_>
1698 <_>
1699 18 5 4 2 2.</_></rects>
1700 <tilted>0</tilted></feature>
1701 <threshold>8.1504750996828079e-003</threshold>
1702 <left_val>-0.0654647573828697</left_val>
1703 <right_val>0.5639755129814148</right_val></_></_>
1704 <_>
1705 <!-- tree 8 -->
1706 <_>
1707 <!-- root node -->
1708 <feature>
1709 <rects>
1710 <_>
1711 5 3 10 4 -1.</_>
1712 <_>
1713 4 4 10 2 2.</_></rects>
1714 <tilted>1</tilted></feature>
1715 <threshold>-0.0185527391731739</threshold>
1716 <left_val>0.5315709710121155</left_val>
1717 <right_val>-0.1252657026052475</right_val></_></_>
1718 <_>
1719 <!-- tree 9 -->
1720 <_>
1721 <!-- root node -->
1722 <feature>
1723 <rects>
1724 <_>
1725 14 8 8 10 -1.</_>
1726 <_>
1727 18 8 4 5 2.</_>
1728 <_>
1729 14 13 4 5 2.</_></rects>
1730 <tilted>0</tilted></feature>
1731 <threshold>-0.0231014806777239</threshold>
1732 <left_val>-0.6794939041137695</left_val>
1733 <right_val>0.1104625985026360</right_val></_></_>
1734 <_>
1735 <!-- tree 10 -->
1736 <_>
1737 <!-- root node -->
1738 <feature>
1739 <rects>
1740 <_>
1741 3 0 4 1 -1.</_>
1742 <_>
1743 5 0 2 1 2.</_></rects>
1744 <tilted>0</tilted></feature>
1745 <threshold>-1.8539339362177998e-004</threshold>
1746 <left_val>0.3010003864765167</left_val>
1747 <right_val>-0.2120669931173325</right_val></_></_>
1748 <_>
1749 <!-- tree 11 -->
1750 <_>
1751 <!-- root node -->
1752 <feature>
1753 <rects>
1754 <_>
1755 20 0 10 8 -1.</_>
1756 <_>
1757 25 0 5 4 2.</_>
1758 <_>
1759 20 4 5 4 2.</_></rects>
1760 <tilted>0</tilted></feature>
1761 <threshold>0.0173191204667091</threshold>
1762 <left_val>-0.0937381312251091</left_val>
1763 <right_val>0.2100856006145477</right_val></_></_>
1764 <_>
1765 <!-- tree 12 -->
1766 <_>
1767 <!-- root node -->
1768 <feature>
1769 <rects>
1770 <_>
1771 13 0 10 8 -1.</_>
1772 <_>
1773 13 0 5 4 2.</_>
1774 <_>
1775 18 4 5 4 2.</_></rects>
1776 <tilted>0</tilted></feature>
1777 <threshold>0.0143056204542518</threshold>
1778 <left_val>0.1800594925880432</left_val>
1779 <right_val>-0.3977671861648560</right_val></_></_>
1780 <_>
1781 <!-- tree 13 -->
1782 <_>
1783 <!-- root node -->
1784 <feature>
1785 <rects>
1786 <_>
1787 21 5 6 13 -1.</_>
1788 <_>
1789 23 5 2 13 3.</_></rects>
1790 <tilted>0</tilted></feature>
1791 <threshold>0.0257633402943611</threshold>
1792 <left_val>8.7056998163461685e-003</left_val>
1793 <right_val>-0.6289495229721069</right_val></_></_>
1794 <_>
1795 <!-- tree 14 -->
1796 <_>
1797 <!-- root node -->
1798 <feature>
1799 <rects>
1800 <_>
1801 9 5 6 13 -1.</_>
1802 <_>
1803 11 5 2 13 3.</_></rects>
1804 <tilted>0</tilted></feature>
1805 <threshold>-0.0153833404183388</threshold>
1806 <left_val>-0.5341547131538391</left_val>
1807 <right_val>0.1038073003292084</right_val></_></_>
1808 <_>
1809 <!-- tree 15 -->
1810 <_>
1811 <!-- root node -->
1812 <feature>
1813 <rects>
1814 <_>
1815 27 5 5 3 -1.</_>
1816 <_>
1817 27 6 5 1 3.</_></rects>
1818 <tilted>0</tilted></feature>
1819 <threshold>1.0605469578877091e-003</threshold>
1820 <left_val>-0.0901285186409950</left_val>
1821 <right_val>0.1679212003946304</right_val></_></_>
1822 <_>
1823 <!-- tree 16 -->
1824 <_>
1825 <!-- root node -->
1826 <feature>
1827 <rects>
1828 <_>
1829 10 0 3 6 -1.</_>
1830 <_>
1831 10 2 3 2 3.</_></rects>
1832 <tilted>0</tilted></feature>
1833 <threshold>3.5230729263275862e-003</threshold>
1834 <left_val>-0.1711069047451019</left_val>
1835 <right_val>0.3259654045104981</right_val></_></_>
1836 <_>
1837 <!-- tree 17 -->
1838 <_>
1839 <!-- root node -->
1840 <feature>
1841 <rects>
1842 <_>
1843 26 6 3 6 -1.</_>
1844 <_>
1845 26 8 3 2 3.</_></rects>
1846 <tilted>0</tilted></feature>
1847 <threshold>-0.0107892798259854</threshold>
1848 <left_val>0.3610992133617401</left_val>
1849 <right_val>-0.0663391500711441</right_val></_></_>
1850 <_>
1851 <!-- tree 18 -->
1852 <_>
1853 <!-- root node -->
1854 <feature>
1855 <rects>
1856 <_>
1857 0 11 36 7 -1.</_>
1858 <_>
1859 18 11 18 7 2.</_></rects>
1860 <tilted>0</tilted></feature>
1861 <threshold>0.2795093953609467</threshold>
1862 <left_val>-0.0746058970689774</left_val>
1863 <right_val>0.7336987853050232</right_val></_></_>
1864 <_>
1865 <!-- tree 19 -->
1866 <_>
1867 <!-- root node -->
1868 <feature>
1869 <rects>
1870 <_>
1871 27 5 5 3 -1.</_>
1872 <_>
1873 27 6 5 1 3.</_></rects>
1874 <tilted>0</tilted></feature>
1875 <threshold>3.8369540125131607e-003</threshold>
1876 <left_val>0.0448735393583775</left_val>
1877 <right_val>-0.1860270053148270</right_val></_></_>
1878 <_>
1879 <!-- tree 20 -->
1880 <_>
1881 <!-- root node -->
1882 <feature>
1883 <rects>
1884 <_>
1885 4 5 5 3 -1.</_>
1886 <_>
1887 4 6 5 1 3.</_></rects>
1888 <tilted>0</tilted></feature>
1889 <threshold>1.6195949865505099e-003</threshold>
1890 <left_val>-0.1392249017953873</left_val>
1891 <right_val>0.4343700110912323</right_val></_></_>
1892 <_>
1893 <!-- tree 21 -->
1894 <_>
1895 <!-- root node -->
1896 <feature>
1897 <rects>
1898 <_>
1899 28 6 4 4 -1.</_>
1900 <_>
1901 29 7 2 4 2.</_></rects>
1902 <tilted>1</tilted></feature>
1903 <threshold>0.0116479499265552</threshold>
1904 <left_val>-0.0743575915694237</left_val>
1905 <right_val>0.5420144200325012</right_val></_></_>
1906 <_>
1907 <!-- tree 22 -->
1908 <_>
1909 <!-- root node -->
1910 <feature>
1911 <rects>
1912 <_>
1913 14 15 8 2 -1.</_>
1914 <_>
1915 16 15 4 2 2.</_></rects>
1916 <tilted>0</tilted></feature>
1917 <threshold>-5.9066400863230228e-003</threshold>
1918 <left_val>-0.7055758833885193</left_val>
1919 <right_val>0.0864336192607880</right_val></_></_>
1920 <_>
1921 <!-- tree 23 -->
1922 <_>
1923 <!-- root node -->
1924 <feature>
1925 <rects>
1926 <_>
1927 3 5 30 6 -1.</_>
1928 <_>
1929 13 7 10 2 9.</_></rects>
1930 <tilted>0</tilted></feature>
1931 <threshold>0.3968684077262878</threshold>
1932 <left_val>-0.0748983696103096</left_val>
1933 <right_val>0.9406285881996155</right_val></_></_>
1934 <_>
1935 <!-- tree 24 -->
1936 <_>
1937 <!-- root node -->
1938 <feature>
1939 <rects>
1940 <_>
1941 6 7 16 6 -1.</_>
1942 <_>
1943 6 9 16 2 3.</_></rects>
1944 <tilted>0</tilted></feature>
1945 <threshold>0.0576637797057629</threshold>
1946 <left_val>-0.0965584069490433</left_val>
1947 <right_val>0.5418242812156677</right_val></_></_>
1948 <_>
1949 <!-- tree 25 -->
1950 <_>
1951 <!-- root node -->
1952 <feature>
1953 <rects>
1954 <_>
1955 14 10 12 6 -1.</_>
1956 <_>
1957 14 12 12 2 3.</_></rects>
1958 <tilted>0</tilted></feature>
1959 <threshold>0.0603195689618587</threshold>
1960 <left_val>-0.0665010735392571</left_val>
1961 <right_val>0.6402354836463928</right_val></_></_></trees>
1962 <stage_threshold>-1.3303329944610596</stage_threshold>
1963 <parent>5</parent>
1964 <next>-1</next></_>
1965 <_>
1966 <!-- stage 7 -->
1967 <trees>
1968 <_>
1969 <!-- tree 0 -->
1970 <_>
1971 <!-- root node -->
1972 <feature>
1973 <rects>
1974 <_>
1975 6 0 12 10 -1.</_>
1976 <_>
1977 6 0 6 5 2.</_>
1978 <_>
1979 12 5 6 5 2.</_></rects>
1980 <tilted>0</tilted></feature>
1981 <threshold>0.0190502498298883</threshold>
1982 <left_val>-0.4443340897560120</left_val>
1983 <right_val>0.4394856989383698</right_val></_></_>
1984 <_>
1985 <!-- tree 1 -->
1986 <_>
1987 <!-- root node -->
1988 <feature>
1989 <rects>
1990 <_>
1991 25 2 7 16 -1.</_>
1992 <_>
1993 25 10 7 8 2.</_></rects>
1994 <tilted>0</tilted></feature>
1995 <threshold>-0.0201983004808426</threshold>
1996 <left_val>-0.3170621991157532</left_val>
1997 <right_val>0.1043293029069901</right_val></_></_>
1998 <_>
1999 <!-- tree 2 -->
2000 <_>
2001 <!-- root node -->
2002 <feature>
2003 <rects>
2004 <_>
2005 9 6 18 7 -1.</_>
2006 <_>
2007 15 6 6 7 3.</_></rects>
2008 <tilted>0</tilted></feature>
2009 <threshold>0.0214780308306217</threshold>
2010 <left_val>-0.3502483963966370</left_val>
2011 <right_val>0.2635537087917328</right_val></_></_>
2012 <_>
2013 <!-- tree 3 -->
2014 <_>
2015 <!-- root node -->
2016 <feature>
2017 <rects>
2018 <_>
2019 5 0 26 18 -1.</_>
2020 <_>
2021 18 0 13 9 2.</_>
2022 <_>
2023 5 9 13 9 2.</_></rects>
2024 <tilted>0</tilted></feature>
2025 <threshold>-0.1018775999546051</threshold>
2026 <left_val>-0.5988957881927490</left_val>
2027 <right_val>0.1768579930067062</right_val></_></_>
2028 <_>
2029 <!-- tree 4 -->
2030 <_>
2031 <!-- root node -->
2032 <feature>
2033 <rects>
2034 <_>
2035 10 6 10 3 -1.</_>
2036 <_>
2037 10 7 10 1 3.</_></rects>
2038 <tilted>0</tilted></feature>
2039 <threshold>0.0109741603955626</threshold>
2040 <left_val>-0.1489523947238922</left_val>
2041 <right_val>0.6011521816253662</right_val></_></_>
2042 <_>
2043 <!-- tree 5 -->
2044 <_>
2045 <!-- root node -->
2046 <feature>
2047 <rects>
2048 <_>
2049 17 6 6 4 -1.</_>
2050 <_>
2051 17 7 6 2 2.</_></rects>
2052 <tilted>0</tilted></feature>
2053 <threshold>-0.0114767104387283</threshold>
2054 <left_val>0.4066570997238159</left_val>
2055 <right_val>-0.1240468993782997</right_val></_></_>
2056 <_>
2057 <!-- tree 6 -->
2058 <_>
2059 <!-- root node -->
2060 <feature>
2061 <rects>
2062 <_>
2063 15 6 6 7 -1.</_>
2064 <_>
2065 18 6 3 7 2.</_></rects>
2066 <tilted>0</tilted></feature>
2067 <threshold>-0.0234311502426863</threshold>
2068 <left_val>-0.7148783206939697</left_val>
2069 <right_val>0.1427811980247498</right_val></_></_>
2070 <_>
2071 <!-- tree 7 -->
2072 <_>
2073 <!-- root node -->
2074 <feature>
2075 <rects>
2076 <_>
2077 26 6 5 4 -1.</_>
2078 <_>
2079 26 7 5 2 2.</_></rects>
2080 <tilted>0</tilted></feature>
2081 <threshold>1.4963559806346893e-003</threshold>
2082 <left_val>-0.1704585999250412</left_val>
2083 <right_val>0.1719308048486710</right_val></_></_>
2084 <_>
2085 <!-- tree 8 -->
2086 <_>
2087 <!-- root node -->
2088 <feature>
2089 <rects>
2090 <_>
2091 0 12 1 6 -1.</_>
2092 <_>
2093 0 15 1 3 2.</_></rects>
2094 <tilted>0</tilted></feature>
2095 <threshold>-5.4855772759765387e-004</threshold>
2096 <left_val>0.3155323863029480</left_val>
2097 <right_val>-0.2144445031881332</right_val></_></_>
2098 <_>
2099 <!-- tree 9 -->
2100 <_>
2101 <!-- root node -->
2102 <feature>
2103 <rects>
2104 <_>
2105 9 4 18 14 -1.</_>
2106 <_>
2107 18 4 9 7 2.</_>
2108 <_>
2109 9 11 9 7 2.</_></rects>
2110 <tilted>0</tilted></feature>
2111 <threshold>0.0749126300215721</threshold>
2112 <left_val>0.0912405624985695</left_val>
2113 <right_val>-0.6395121216773987</right_val></_></_>
2114 <_>
2115 <!-- tree 10 -->
2116 <_>
2117 <!-- root node -->
2118 <feature>
2119 <rects>
2120 <_>
2121 7 5 6 3 -1.</_>
2122 <_>
2123 6 6 6 1 3.</_></rects>
2124 <tilted>1</tilted></feature>
2125 <threshold>6.8816398270428181e-003</threshold>
2126 <left_val>-0.1490440964698792</left_val>
2127 <right_val>0.4795236885547638</right_val></_></_>
2128 <_>
2129 <!-- tree 11 -->
2130 <_>
2131 <!-- root node -->
2132 <feature>
2133 <rects>
2134 <_>
2135 27 5 6 3 -1.</_>
2136 <_>
2137 29 7 2 3 3.</_></rects>
2138 <tilted>1</tilted></feature>
2139 <threshold>-0.0382125787436962</threshold>
2140 <left_val>0.5288773775100708</left_val>
2141 <right_val>-0.0618947297334671</right_val></_></_>
2142 <_>
2143 <!-- tree 12 -->
2144 <_>
2145 <!-- root node -->
2146 <feature>
2147 <rects>
2148 <_>
2149 7 8 3 3 -1.</_>
2150 <_>
2151 6 9 3 1 3.</_></rects>
2152 <tilted>1</tilted></feature>
2153 <threshold>4.4051730073988438e-003</threshold>
2154 <left_val>-0.1193412989377976</left_val>
2155 <right_val>0.5061342120170593</right_val></_></_>
2156 <_>
2157 <!-- tree 13 -->
2158 <_>
2159 <!-- root node -->
2160 <feature>
2161 <rects>
2162 <_>
2163 28 5 6 5 -1.</_>
2164 <_>
2165 30 7 2 5 3.</_></rects>
2166 <tilted>1</tilted></feature>
2167 <threshold>0.0239668991416693</threshold>
2168 <left_val>-0.0897205099463463</left_val>
2169 <right_val>0.3315277993679047</right_val></_></_>
2170 <_>
2171 <!-- tree 14 -->
2172 <_>
2173 <!-- root node -->
2174 <feature>
2175 <rects>
2176 <_>
2177 8 5 5 6 -1.</_>
2178 <_>
2179 6 7 5 2 3.</_></rects>
2180 <tilted>1</tilted></feature>
2181 <threshold>-0.0341629907488823</threshold>
2182 <left_val>0.5313478112220764</left_val>
2183 <right_val>-0.1466650068759918</right_val></_></_>
2184 <_>
2185 <!-- tree 15 -->
2186 <_>
2187 <!-- root node -->
2188 <feature>
2189 <rects>
2190 <_>
2191 31 0 4 1 -1.</_>
2192 <_>
2193 31 0 2 1 2.</_></rects>
2194 <tilted>0</tilted></feature>
2195 <threshold>1.9642219413071871e-003</threshold>
2196 <left_val>0.0907835885882378</left_val>
2197 <right_val>-0.4303255975246429</right_val></_></_>
2198 <_>
2199 <!-- tree 16 -->
2200 <_>
2201 <!-- root node -->
2202 <feature>
2203 <rects>
2204 <_>
2205 1 0 4 1 -1.</_>
2206 <_>
2207 3 0 2 1 2.</_></rects>
2208 <tilted>0</tilted></feature>
2209 <threshold>9.6757910796441138e-005</threshold>
2210 <left_val>0.2255253940820694</left_val>
2211 <right_val>-0.2822071015834808</right_val></_></_>
2212 <_>
2213 <!-- tree 17 -->
2214 <_>
2215 <!-- root node -->
2216 <feature>
2217 <rects>
2218 <_>
2219 17 11 4 3 -1.</_>
2220 <_>
2221 17 12 4 1 3.</_></rects>
2222 <tilted>0</tilted></feature>
2223 <threshold>-3.2862399239093065e-003</threshold>
2224 <left_val>0.4051502048969269</left_val>
2225 <right_val>-0.1177619993686676</right_val></_></_>
2226 <_>
2227 <!-- tree 18 -->
2228 <_>
2229 <!-- root node -->
2230 <feature>
2231 <rects>
2232 <_>
2233 12 3 7 4 -1.</_>
2234 <_>
2235 12 4 7 2 2.</_></rects>
2236 <tilted>0</tilted></feature>
2237 <threshold>0.0116883097216487</threshold>
2238 <left_val>-0.0918571278452873</left_val>
2239 <right_val>0.6283488869667053</right_val></_></_>
2240 <_>
2241 <!-- tree 19 -->
2242 <_>
2243 <!-- root node -->
2244 <feature>
2245 <rects>
2246 <_>
2247 14 9 9 3 -1.</_>
2248 <_>
2249 14 10 9 1 3.</_></rects>
2250 <tilted>0</tilted></feature>
2251 <threshold>-6.0287420637905598e-003</threshold>
2252 <left_val>0.3926180899143219</left_val>
2253 <right_val>-0.1228715032339096</right_val></_></_>
2254 <_>
2255 <!-- tree 20 -->
2256 <_>
2257 <!-- root node -->
2258 <feature>
2259 <rects>
2260 <_>
2261 1 17 21 1 -1.</_>
2262 <_>
2263 8 17 7 1 3.</_></rects>
2264 <tilted>0</tilted></feature>
2265 <threshold>-0.0137213403359056</threshold>
2266 <left_val>-0.5529879927635193</left_val>
2267 <right_val>0.0910412818193436</right_val></_></_>
2268 <_>
2269 <!-- tree 21 -->
2270 <_>
2271 <!-- root node -->
2272 <feature>
2273 <rects>
2274 <_>
2275 12 9 20 4 -1.</_>
2276 <_>
2277 12 9 10 4 2.</_></rects>
2278 <tilted>0</tilted></feature>
2279 <threshold>0.0756266415119171</threshold>
2280 <left_val>-0.0449295900762081</left_val>
2281 <right_val>0.1744275987148285</right_val></_></_>
2282 <_>
2283 <!-- tree 22 -->
2284 <_>
2285 <!-- root node -->
2286 <feature>
2287 <rects>
2288 <_>
2289 3 9 22 4 -1.</_>
2290 <_>
2291 14 9 11 4 2.</_></rects>
2292 <tilted>0</tilted></feature>
2293 <threshold>0.0934344828128815</threshold>
2294 <left_val>-0.0845939517021179</left_val>
2295 <right_val>0.6013116240501404</right_val></_></_>
2296 <_>
2297 <!-- tree 23 -->
2298 <_>
2299 <!-- root node -->
2300 <feature>
2301 <rects>
2302 <_>
2303 25 0 3 3 -1.</_>
2304 <_>
2305 26 1 1 3 3.</_></rects>
2306 <tilted>1</tilted></feature>
2307 <threshold>5.8748829178512096e-003</threshold>
2308 <left_val>-0.0441314987838268</left_val>
2309 <right_val>0.3956570923328400</right_val></_></_>
2310 <_>
2311 <!-- tree 24 -->
2312 <_>
2313 <!-- root node -->
2314 <feature>
2315 <rects>
2316 <_>
2317 14 9 4 3 -1.</_>
2318 <_>
2319 14 10 4 1 3.</_></rects>
2320 <tilted>0</tilted></feature>
2321 <threshold>4.0064537897706032e-003</threshold>
2322 <left_val>-0.1141439974308014</left_val>
2323 <right_val>0.3792538046836853</right_val></_></_>
2324 <_>
2325 <!-- tree 25 -->
2326 <_>
2327 <!-- root node -->
2328 <feature>
2329 <rects>
2330 <_>
2331 19 4 9 3 -1.</_>
2332 <_>
2333 22 4 3 3 3.</_></rects>
2334 <tilted>0</tilted></feature>
2335 <threshold>0.0229454599320889</threshold>
2336 <left_val>0.0246731899678707</left_val>
2337 <right_val>-0.4152199923992157</right_val></_></_>
2338 <_>
2339 <!-- tree 26 -->
2340 <_>
2341 <!-- root node -->
2342 <feature>
2343 <rects>
2344 <_>
2345 8 4 9 3 -1.</_>
2346 <_>
2347 11 4 3 3 3.</_></rects>
2348 <tilted>0</tilted></feature>
2349 <threshold>-0.0128104602918029</threshold>
2350 <left_val>-0.5155742764472961</left_val>
2351 <right_val>0.0913196131587029</right_val></_></_>
2352 <_>
2353 <!-- tree 27 -->
2354 <_>
2355 <!-- root node -->
2356 <feature>
2357 <rects>
2358 <_>
2359 0 15 36 3 -1.</_>
2360 <_>
2361 12 16 12 1 9.</_></rects>
2362 <tilted>0</tilted></feature>
2363 <threshold>0.2042552977800369</threshold>
2364 <left_val>-0.0659275427460670</left_val>
2365 <right_val>0.7594249248504639</right_val></_></_>
2366 <_>
2367 <!-- tree 28 -->
2368 <_>
2369 <!-- root node -->
2370 <feature>
2371 <rects>
2372 <_>
2373 2 0 4 2 -1.</_>
2374 <_>
2375 2 0 4 1 2.</_></rects>
2376 <tilted>1</tilted></feature>
2377 <threshold>4.9796327948570251e-003</threshold>
2378 <left_val>0.1080627962946892</left_val>
2379 <right_val>-0.5001627206802368</right_val></_></_>
2380 <_>
2381 <!-- tree 29 -->
2382 <_>
2383 <!-- root node -->
2384 <feature>
2385 <rects>
2386 <_>
2387 19 9 2 9 -1.</_>
2388 <_>
2389 19 12 2 3 3.</_></rects>
2390 <tilted>0</tilted></feature>
2391 <threshold>0.0283976309001446</threshold>
2392 <left_val>-0.0371529608964920</left_val>
2393 <right_val>0.5401064753532410</right_val></_></_>
2394 <_>
2395 <!-- tree 30 -->
2396 <_>
2397 <!-- root node -->
2398 <feature>
2399 <rects>
2400 <_>
2401 13 7 8 3 -1.</_>
2402 <_>
2403 13 8 8 1 3.</_></rects>
2404 <tilted>0</tilted></feature>
2405 <threshold>6.0867150314152241e-003</threshold>
2406 <left_val>-0.1197860985994339</left_val>
2407 <right_val>0.3569226861000061</right_val></_></_>
2408 <_>
2409 <!-- tree 31 -->
2410 <_>
2411 <!-- root node -->
2412 <feature>
2413 <rects>
2414 <_>
2415 30 4 2 2 -1.</_>
2416 <_>
2417 31 4 1 1 2.</_>
2418 <_>
2419 30 5 1 1 2.</_></rects>
2420 <tilted>0</tilted></feature>
2421 <threshold>-2.1456899412441999e-004</threshold>
2422 <left_val>0.1874015033245087</left_val>
2423 <right_val>-0.0884172022342682</right_val></_></_>
2424 <_>
2425 <!-- tree 32 -->
2426 <_>
2427 <!-- root node -->
2428 <feature>
2429 <rects>
2430 <_>
2431 4 4 2 2 -1.</_>
2432 <_>
2433 4 4 1 1 2.</_>
2434 <_>
2435 5 5 1 1 2.</_></rects>
2436 <tilted>0</tilted></feature>
2437 <threshold>2.8941858909092844e-004</threshold>
2438 <left_val>-0.1259797960519791</left_val>
2439 <right_val>0.3998227119445801</right_val></_></_>
2440 <_>
2441 <!-- tree 33 -->
2442 <_>
2443 <!-- root node -->
2444 <feature>
2445 <rects>
2446 <_>
2447 18 7 4 3 -1.</_>
2448 <_>
2449 18 8 4 1 3.</_></rects>
2450 <tilted>0</tilted></feature>
2451 <threshold>-1.3047619722783566e-003</threshold>
2452 <left_val>0.1549997031688690</left_val>
2453 <right_val>-0.0753860473632813</right_val></_></_>
2454 <_>
2455 <!-- tree 34 -->
2456 <_>
2457 <!-- root node -->
2458 <feature>
2459 <rects>
2460 <_>
2461 9 0 1 8 -1.</_>
2462 <_>
2463 9 0 1 4 2.</_></rects>
2464 <tilted>1</tilted></feature>
2465 <threshold>-0.0129750100895762</threshold>
2466 <left_val>-0.5534411072731018</left_val>
2467 <right_val>0.0823542475700378</right_val></_></_>
2468 <_>
2469 <!-- tree 35 -->
2470 <_>
2471 <!-- root node -->
2472 <feature>
2473 <rects>
2474 <_>
2475 25 6 10 3 -1.</_>
2476 <_>
2477 25 7 10 1 3.</_></rects>
2478 <tilted>0</tilted></feature>
2479 <threshold>7.7442410401999950e-003</threshold>
2480 <left_val>0.0276998002082109</left_val>
2481 <right_val>-0.3483599126338959</right_val></_></_>
2482 <_>
2483 <!-- tree 36 -->
2484 <_>
2485 <!-- root node -->
2486 <feature>
2487 <rects>
2488 <_>
2489 1 6 10 3 -1.</_>
2490 <_>
2491 1 7 10 1 3.</_></rects>
2492 <tilted>0</tilted></feature>
2493 <threshold>2.4850629270076752e-003</threshold>
2494 <left_val>-0.1297612935304642</left_val>
2495 <right_val>0.3790883123874664</right_val></_></_></trees>
2496 <stage_threshold>-1.5300060510635376</stage_threshold>
2497 <parent>6</parent>
2498 <next>-1</next></_>
2499 <_>
2500 <!-- stage 8 -->
2501 <trees>
2502 <_>
2503 <!-- tree 0 -->
2504 <_>
2505 <!-- root node -->
2506 <feature>
2507 <rects>
2508 <_>
2509 6 6 14 12 -1.</_>
2510 <_>
2511 6 6 7 6 2.</_>
2512 <_>
2513 13 12 7 6 2.</_></rects>
2514 <tilted>0</tilted></feature>
2515 <threshold>-0.0403868816792965</threshold>
2516 <left_val>0.5960354804992676</left_val>
2517 <right_val>-0.3574176132678986</right_val></_></_>
2518 <_>
2519 <!-- tree 1 -->
2520 <_>
2521 <!-- root node -->
2522 <feature>
2523 <rects>
2524 <_>
2525 31 14 3 4 -1.</_>
2526 <_>
2527 31 16 3 2 2.</_></rects>
2528 <tilted>0</tilted></feature>
2529 <threshold>-6.6068649175576866e-005</threshold>
2530 <left_val>0.4462898075580597</left_val>
2531 <right_val>-0.3595947027206421</right_val></_></_>
2532 <_>
2533 <!-- tree 2 -->
2534 <_>
2535 <!-- root node -->
2536 <feature>
2537 <rects>
2538 <_>
2539 1 12 2 4 -1.</_>
2540 <_>
2541 1 14 2 2 2.</_></rects>
2542 <tilted>0</tilted></feature>
2543 <threshold>3.7622239906340837e-003</threshold>
2544 <left_val>0.1794701963663101</left_val>
2545 <right_val>-0.7563151121139526</right_val></_></_>
2546 <_>
2547 <!-- tree 3 -->
2548 <_>
2549 <!-- root node -->
2550 <feature>
2551 <rects>
2552 <_>
2553 15 0 12 5 -1.</_>
2554 <_>
2555 19 0 4 5 3.</_></rects>
2556 <tilted>0</tilted></feature>
2557 <threshold>-0.0309677198529243</threshold>
2558 <left_val>-0.2884705066680908</left_val>
2559 <right_val>0.0768705308437347</right_val></_></_>
2560 <_>
2561 <!-- tree 4 -->
2562 <_>
2563 <!-- root node -->
2564 <feature>
2565 <rects>
2566 <_>
2567 10 0 8 14 -1.</_>
2568 <_>
2569 12 0 4 14 2.</_></rects>
2570 <tilted>0</tilted></feature>
2571 <threshold>0.0305665601044893</threshold>
2572 <left_val>0.1400360018014908</left_val>
2573 <right_val>-0.7175536751747131</right_val></_></_>
2574 <_>
2575 <!-- tree 5 -->
2576 <_>
2577 <!-- root node -->
2578 <feature>
2579 <rects>
2580 <_>
2581 28 1 8 7 -1.</_>
2582 <_>
2583 30 3 4 7 2.</_></rects>
2584 <tilted>1</tilted></feature>
2585 <threshold>9.9054910242557526e-004</threshold>
2586 <left_val>0.0829155892133713</left_val>
2587 <right_val>-0.2919717133045197</right_val></_></_>
2588 <_>
2589 <!-- tree 6 -->
2590 <_>
2591 <!-- root node -->
2592 <feature>
2593 <rects>
2594 <_>
2595 8 14 20 4 -1.</_>
2596 <_>
2597 8 14 10 2 2.</_>
2598 <_>
2599 18 16 10 2 2.</_></rects>
2600 <tilted>0</tilted></feature>
2601 <threshold>0.0125777004286647</threshold>
2602 <left_val>0.1538071930408478</left_val>
2603 <right_val>-0.4688293039798737</right_val></_></_>
2604 <_>
2605 <!-- tree 7 -->
2606 <_>
2607 <!-- root node -->
2608 <feature>
2609 <rects>
2610 <_>
2611 6 11 24 3 -1.</_>
2612 <_>
2613 14 12 8 1 9.</_></rects>
2614 <tilted>0</tilted></feature>
2615 <threshold>0.1239292025566101</threshold>
2616 <left_val>-0.0908238589763641</left_val>
2617 <right_val>0.7383757233619690</right_val></_></_>
2618 <_>
2619 <!-- tree 8 -->
2620 <_>
2621 <!-- root node -->
2622 <feature>
2623 <rects>
2624 <_>
2625 4 5 27 6 -1.</_>
2626 <_>
2627 13 7 9 2 9.</_></rects>
2628 <tilted>0</tilted></feature>
2629 <threshold>0.3773748874664307</threshold>
2630 <left_val>-0.0542329512536526</left_val>
2631 <right_val>0.9229121804237366</right_val></_></_>
2632 <_>
2633 <!-- tree 9 -->
2634 <_>
2635 <!-- root node -->
2636 <feature>
2637 <rects>
2638 <_>
2639 7 0 22 18 -1.</_>
2640 <_>
2641 18 0 11 9 2.</_>
2642 <_>
2643 7 9 11 9 2.</_></rects>
2644 <tilted>0</tilted></feature>
2645 <threshold>0.1099637001752853</threshold>
2646 <left_val>0.0915962681174278</left_val>
2647 <right_val>-0.6597716808319092</right_val></_></_>
2648 <_>
2649 <!-- tree 10 -->
2650 <_>
2651 <!-- root node -->
2652 <feature>
2653 <rects>
2654 <_>
2655 16 0 3 2 -1.</_>
2656 <_>
2657 16 1 3 1 2.</_></rects>
2658 <tilted>0</tilted></feature>
2659 <threshold>-1.2721329694613814e-003</threshold>
2660 <left_val>0.3347575068473816</left_val>
2661 <right_val>-0.1829068958759308</right_val></_></_>
2662 <_>
2663 <!-- tree 11 -->
2664 <_>
2665 <!-- root node -->
2666 <feature>
2667 <rects>
2668 <_>
2669 0 17 36 1 -1.</_>
2670 <_>
2671 9 17 18 1 2.</_></rects>
2672 <tilted>0</tilted></feature>
2673 <threshold>0.0469062514603138</threshold>
2674 <left_val>-0.0839710533618927</left_val>
2675 <right_val>0.6984758973121643</right_val></_></_>
2676 <_>
2677 <!-- tree 12 -->
2678 <_>
2679 <!-- root node -->
2680 <feature>
2681 <rects>
2682 <_>
2683 5 5 12 1 -1.</_>
2684 <_>
2685 5 5 6 1 2.</_></rects>
2686 <tilted>1</tilted></feature>
2687 <threshold>3.2869930146262050e-004</threshold>
2688 <left_val>0.1879463046789169</left_val>
2689 <right_val>-0.2929005920886993</right_val></_></_>
2690 <_>
2691 <!-- tree 13 -->
2692 <_>
2693 <!-- root node -->
2694 <feature>
2695 <rects>
2696 <_>
2697 34 15 2 1 -1.</_>
2698 <_>
2699 34 15 1 1 2.</_></rects>
2700 <tilted>1</tilted></feature>
2701 <threshold>1.7333080177195370e-004</threshold>
2702 <left_val>-0.2696416079998016</left_val>
2703 <right_val>0.3494757115840912</right_val></_></_>
2704 <_>
2705 <!-- tree 14 -->
2706 <_>
2707 <!-- root node -->
2708 <feature>
2709 <rects>
2710 <_>
2711 7 8 16 4 -1.</_>
2712 <_>
2713 7 9 16 2 2.</_></rects>
2714 <tilted>0</tilted></feature>
2715 <threshold>0.0198009591549635</threshold>
2716 <left_val>-0.1467922925949097</left_val>
2717 <right_val>0.4399561882019043</right_val></_></_>
2718 <_>
2719 <!-- tree 15 -->
2720 <_>
2721 <!-- root node -->
2722 <feature>
2723 <rects>
2724 <_>
2725 35 10 1 6 -1.</_>
2726 <_>
2727 35 12 1 2 3.</_></rects>
2728 <tilted>0</tilted></feature>
2729 <threshold>2.0056760695297271e-004</threshold>
2730 <left_val>-0.1372741013765335</left_val>
2731 <right_val>0.2221331000328064</right_val></_></_>
2732 <_>
2733 <!-- tree 16 -->
2734 <_>
2735 <!-- root node -->
2736 <feature>
2737 <rects>
2738 <_>
2739 13 8 3 4 -1.</_>
2740 <_>
2741 13 9 3 2 2.</_></rects>
2742 <tilted>0</tilted></feature>
2743 <threshold>-1.4923149719834328e-003</threshold>
2744 <left_val>0.3473525941371918</left_val>
2745 <right_val>-0.1594821065664291</right_val></_></_>
2746 <_>
2747 <!-- tree 17 -->
2748 <_>
2749 <!-- root node -->
2750 <feature>
2751 <rects>
2752 <_>
2753 35 10 1 6 -1.</_>
2754 <_>
2755 35 12 1 2 3.</_></rects>
2756 <tilted>0</tilted></feature>
2757 <threshold>-4.2736999603221193e-005</threshold>
2758 <left_val>0.3152787089347839</left_val>
2759 <right_val>-0.2306694984436035</right_val></_></_>
2760 <_>
2761 <!-- tree 18 -->
2762 <_>
2763 <!-- root node -->
2764 <feature>
2765 <rects>
2766 <_>
2767 12 0 1 4 -1.</_>
2768 <_>
2769 11 1 1 2 2.</_></rects>
2770 <tilted>1</tilted></feature>
2771 <threshold>6.6625140607357025e-004</threshold>
2772 <left_val>-0.2013110071420670</left_val>
2773 <right_val>0.2869189083576202</right_val></_></_>
2774 <_>
2775 <!-- tree 19 -->
2776 <_>
2777 <!-- root node -->
2778 <feature>
2779 <rects>
2780 <_>
2781 35 10 1 6 -1.</_>
2782 <_>
2783 35 12 1 2 3.</_></rects>
2784 <tilted>0</tilted></feature>
2785 <threshold>1.3850460163666867e-005</threshold>
2786 <left_val>-0.2021923959255219</left_val>
2787 <right_val>0.2307330965995789</right_val></_></_>
2788 <_>
2789 <!-- tree 20 -->
2790 <_>
2791 <!-- root node -->
2792 <feature>
2793 <rects>
2794 <_>
2795 18 0 1 14 -1.</_>
2796 <_>
2797 18 0 1 7 2.</_></rects>
2798 <tilted>1</tilted></feature>
2799 <threshold>0.0409726314246655</threshold>
2800 <left_val>0.0795431807637215</left_val>
2801 <right_val>-0.8079563975334168</right_val></_></_></trees>
2802 <stage_threshold>-1.4114329814910889</stage_threshold>
2803 <parent>7</parent>
2804 <next>-1</next></_>
2805 <_>
2806 <!-- stage 9 -->
2807 <trees>
2808 <_>
2809 <!-- tree 0 -->
2810 <_>
2811 <!-- root node -->
2812 <feature>
2813 <rects>
2814 <_>
2815 5 6 16 12 -1.</_>
2816 <_>
2817 5 6 8 6 2.</_>
2818 <_>
2819 13 12 8 6 2.</_></rects>
2820 <tilted>0</tilted></feature>
2821 <threshold>-0.0469829291105270</threshold>
2822 <left_val>0.7082253098487854</left_val>
2823 <right_val>-0.3703424036502838</right_val></_></_>
2824 <_>
2825 <!-- tree 1 -->
2826 <_>
2827 <!-- root node -->
2828 <feature>
2829 <rects>
2830 <_>
2831 18 1 7 8 -1.</_>
2832 <_>
2833 16 3 7 4 2.</_></rects>
2834 <tilted>1</tilted></feature>
2835 <threshold>-7.5753079727292061e-004</threshold>
2836 <left_val>-0.1255030930042267</left_val>
2837 <right_val>0.1394442021846771</right_val></_></_>
2838 <_>
2839 <!-- tree 2 -->
2840 <_>
2841 <!-- root node -->
2842 <feature>
2843 <rects>
2844 <_>
2845 14 4 8 10 -1.</_>
2846 <_>
2847 14 4 4 5 2.</_>
2848 <_>
2849 18 9 4 5 2.</_></rects>
2850 <tilted>0</tilted></feature>
2851 <threshold>0.0153272999450564</threshold>
2852 <left_val>0.2161353975534439</left_val>
2853 <right_val>-0.5629395246505737</right_val></_></_>
2854 <_>
2855 <!-- tree 3 -->
2856 <_>
2857 <!-- root node -->
2858 <feature>
2859 <rects>
2860 <_>
2861 22 0 9 3 -1.</_>
2862 <_>
2863 25 0 3 3 3.</_></rects>
2864 <tilted>0</tilted></feature>
2865 <threshold>0.0181470401585102</threshold>
2866 <left_val>-0.0320796482264996</left_val>
2867 <right_val>0.3234755992889404</right_val></_></_>
2868 <_>
2869 <!-- tree 4 -->
2870 <_>
2871 <!-- root node -->
2872 <feature>
2873 <rects>
2874 <_>
2875 0 10 26 8 -1.</_>
2876 <_>
2877 0 10 13 4 2.</_>
2878 <_>
2879 13 14 13 4 2.</_></rects>
2880 <tilted>0</tilted></feature>
2881 <threshold>0.0473471917212009</threshold>
2882 <left_val>-0.1738158017396927</left_val>
2883 <right_val>0.5758044719696045</right_val></_></_>
2884 <_>
2885 <!-- tree 5 -->
2886 <_>
2887 <!-- root node -->
2888 <feature>
2889 <rects>
2890 <_>
2891 15 10 16 8 -1.</_>
2892 <_>
2893 23 10 8 4 2.</_>
2894 <_>
2895 15 14 8 4 2.</_></rects>
2896 <tilted>0</tilted></feature>
2897 <threshold>-0.0598379410803318</threshold>
2898 <left_val>0.4779787063598633</left_val>
2899 <right_val>-0.1026028022170067</right_val></_></_>
2900 <_>
2901 <!-- tree 6 -->
2902 <_>
2903 <!-- root node -->
2904 <feature>
2905 <rects>
2906 <_>
2907 6 0 24 18 -1.</_>
2908 <_>
2909 6 0 12 9 2.</_>
2910 <_>
2911 18 9 12 9 2.</_></rects>
2912 <tilted>0</tilted></feature>
2913 <threshold>-0.0527967996895313</threshold>
2914 <left_val>-0.4798848927021027</left_val>
2915 <right_val>0.1878775954246521</right_val></_></_>
2916 <_>
2917 <!-- tree 7 -->
2918 <_>
2919 <!-- root node -->
2920 <feature>
2921 <rects>
2922 <_>
2923 18 0 9 6 -1.</_>
2924 <_>
2925 21 0 3 6 3.</_></rects>
2926 <tilted>0</tilted></feature>
2927 <threshold>-0.0243854299187660</threshold>
2928 <left_val>-0.3084166944026947</left_val>
2929 <right_val>8.7605630978941917e-003</right_val></_></_>
2930 <_>
2931 <!-- tree 8 -->
2932 <_>
2933 <!-- root node -->
2934 <feature>
2935 <rects>
2936 <_>
2937 9 0 9 6 -1.</_>
2938 <_>
2939 12 0 3 6 3.</_></rects>
2940 <tilted>0</tilted></feature>
2941 <threshold>0.0252883005887270</threshold>
2942 <left_val>0.1391403973102570</left_val>
2943 <right_val>-0.7109494209289551</right_val></_></_>
2944 <_>
2945 <!-- tree 9 -->
2946 <_>
2947 <!-- root node -->
2948 <feature>
2949 <rects>
2950 <_>
2951 30 1 5 14 -1.</_>
2952 <_>
2953 30 8 5 7 2.</_></rects>
2954 <tilted>0</tilted></feature>
2955 <threshold>-0.0216124504804611</threshold>
2956 <left_val>-0.2328253984451294</left_val>
2957 <right_val>0.0809946805238724</right_val></_></_>
2958 <_>
2959 <!-- tree 10 -->
2960 <_>
2961 <!-- root node -->
2962 <feature>
2963 <rects>
2964 <_>
2965 1 1 5 14 -1.</_>
2966 <_>
2967 1 8 5 7 2.</_></rects>
2968 <tilted>0</tilted></feature>
2969 <threshold>3.4023479092866182e-003</threshold>
2970 <left_val>-0.2298990041017532</left_val>
2971 <right_val>0.3788951039314270</right_val></_></_>
2972 <_>
2973 <!-- tree 11 -->
2974 <_>
2975 <!-- root node -->
2976 <feature>
2977 <rects>
2978 <_>
2979 10 8 26 6 -1.</_>
2980 <_>
2981 23 8 13 3 2.</_>
2982 <_>
2983 10 11 13 3 2.</_></rects>
2984 <tilted>0</tilted></feature>
2985 <threshold>0.1127460002899170</threshold>
2986 <left_val>-0.0154747096821666</left_val>
2987 <right_val>0.5703054070472717</right_val></_></_>
2988 <_>
2989 <!-- tree 12 -->
2990 <_>
2991 <!-- root node -->
2992 <feature>
2993 <rects>
2994 <_>
2995 0 8 28 6 -1.</_>
2996 <_>
2997 0 8 14 3 2.</_>
2998 <_>
2999 14 11 14 3 2.</_></rects>
3000 <tilted>0</tilted></feature>
3001 <threshold>0.0345168709754944</threshold>
3002 <left_val>-0.1230008006095886</left_val>
3003 <right_val>0.5677536725997925</right_val></_></_>
3004 <_>
3005 <!-- tree 13 -->
3006 <_>
3007 <!-- root node -->
3008 <feature>
3009 <rects>
3010 <_>
3011 12 0 24 12 -1.</_>
3012 <_>
3013 24 0 12 6 2.</_>
3014 <_>
3015 12 6 12 6 2.</_></rects>
3016 <tilted>0</tilted></feature>
3017 <threshold>0.0789848119020462</threshold>
3018 <left_val>-0.1424216926097870</left_val>
3019 <right_val>0.4694185853004456</right_val></_></_>
3020 <_>
3021 <!-- tree 14 -->
3022 <_>
3023 <!-- root node -->
3024 <feature>
3025 <rects>
3026 <_>
3027 3 1 14 2 -1.</_>
3028 <_>
3029 3 1 14 1 2.</_></rects>
3030 <tilted>1</tilted></feature>
3031 <threshold>-0.0153778595849872</threshold>
3032 <left_val>0.6394686102867127</left_val>
3033 <right_val>-0.1123619005084038</right_val></_></_>
3034 <_>
3035 <!-- tree 15 -->
3036 <_>
3037 <!-- root node -->
3038 <feature>
3039 <rects>
3040 <_>
3041 33 16 3 2 -1.</_>
3042 <_>
3043 33 17 3 1 2.</_></rects>
3044 <tilted>0</tilted></feature>
3045 <threshold>-2.2373620595317334e-004</threshold>
3046 <left_val>0.5558329820632935</left_val>
3047 <right_val>-0.2724758088588715</right_val></_></_>
3048 <_>
3049 <!-- tree 16 -->
3050 <_>
3051 <!-- root node -->
3052 <feature>
3053 <rects>
3054 <_>
3055 12 0 9 14 -1.</_>
3056 <_>
3057 15 0 3 14 3.</_></rects>
3058 <tilted>0</tilted></feature>
3059 <threshold>-0.0247623901814222</threshold>
3060 <left_val>-0.5040485858917236</left_val>
3061 <right_val>0.1407779008150101</right_val></_></_>
3062 <_>
3063 <!-- tree 17 -->
3064 <_>
3065 <!-- root node -->
3066 <feature>
3067 <rects>
3068 <_>
3069 28 16 8 2 -1.</_>
3070 <_>
3071 32 16 4 1 2.</_>
3072 <_>
3073 28 17 4 1 2.</_></rects>
3074 <tilted>0</tilted></feature>
3075 <threshold>-9.4061157142277807e-005</threshold>
3076 <left_val>0.3719528019428253</left_val>
3077 <right_val>-0.2250299006700516</right_val></_></_>
3078 <_>
3079 <!-- tree 18 -->
3080 <_>
3081 <!-- root node -->
3082 <feature>
3083 <rects>
3084 <_>
3085 15 8 6 6 -1.</_>
3086 <_>
3087 15 10 6 2 3.</_></rects>
3088 <tilted>0</tilted></feature>
3089 <threshold>-0.0202563591301441</threshold>
3090 <left_val>0.5105100870132446</left_val>
3091 <right_val>-0.1429875940084457</right_val></_></_>
3092 <_>
3093 <!-- tree 19 -->
3094 <_>
3095 <!-- root node -->
3096 <feature>
3097 <rects>
3098 <_>
3099 13 6 22 6 -1.</_>
3100 <_>
3101 24 6 11 3 2.</_>
3102 <_>
3103 13 9 11 3 2.</_></rects>
3104 <tilted>0</tilted></feature>
3105 <threshold>0.0481228791177273</threshold>
3106 <left_val>-0.0669795125722885</left_val>
3107 <right_val>0.3662230968475342</right_val></_></_>
3108 <_>
3109 <!-- tree 20 -->
3110 <_>
3111 <!-- root node -->
3112 <feature>
3113 <rects>
3114 <_>
3115 0 10 26 4 -1.</_>
3116 <_>
3117 0 10 13 2 2.</_>
3118 <_>
3119 13 12 13 2 2.</_></rects>
3120 <tilted>0</tilted></feature>
3121 <threshold>-0.0237878002226353</threshold>
3122 <left_val>0.5081325173377991</left_val>
3123 <right_val>-0.1290815025568008</right_val></_></_>
3124 <_>
3125 <!-- tree 21 -->
3126 <_>
3127 <!-- root node -->
3128 <feature>
3129 <rects>
3130 <_>
3131 24 16 4 2 -1.</_>
3132 <_>
3133 24 17 4 1 2.</_></rects>
3134 <tilted>0</tilted></feature>
3135 <threshold>-1.0520319920033216e-003</threshold>
3136 <left_val>-0.1560467034578323</left_val>
3137 <right_val>0.0662133172154427</right_val></_></_>
3138 <_>
3139 <!-- tree 22 -->
3140 <_>
3141 <!-- root node -->
3142 <feature>
3143 <rects>
3144 <_>
3145 9 16 3 2 -1.</_>
3146 <_>
3147 9 17 3 1 2.</_></rects>
3148 <tilted>0</tilted></feature>
3149 <threshold>-2.6640200521796942e-003</threshold>
3150 <left_val>-0.7254558205604553</left_val>
3151 <right_val>0.0823654532432556</right_val></_></_></trees>
3152 <stage_threshold>-1.3777890205383301</stage_threshold>
3153 <parent>8</parent>
3154 <next>-1</next></_>
3155 <_>
3156 <!-- stage 10 -->
3157 <trees>
3158 <_>
3159 <!-- tree 0 -->
3160 <_>
3161 <!-- root node -->
3162 <feature>
3163 <rects>
3164 <_>
3165 3 7 18 8 -1.</_>
3166 <_>
3167 3 7 9 4 2.</_>
3168 <_>
3169 12 11 9 4 2.</_></rects>
3170 <tilted>0</tilted></feature>
3171 <threshold>-0.0502246208488941</threshold>
3172 <left_val>0.7084565758705139</left_val>
3173 <right_val>-0.2558549940586090</right_val></_></_>
3174 <_>
3175 <!-- tree 1 -->
3176 <_>
3177 <!-- root node -->
3178 <feature>
3179 <rects>
3180 <_>
3181 23 0 8 4 -1.</_>
3182 <_>
3183 23 0 4 4 2.</_></rects>
3184 <tilted>0</tilted></feature>
3185 <threshold>0.0140728699043393</threshold>
3186 <left_val>0.0630331784486771</left_val>
3187 <right_val>-0.0598385296761990</right_val></_></_>
3188 <_>
3189 <!-- tree 2 -->
3190 <_>
3191 <!-- root node -->
3192 <feature>
3193 <rects>
3194 <_>
3195 5 0 8 4 -1.</_>
3196 <_>
3197 9 0 4 4 2.</_></rects>
3198 <tilted>0</tilted></feature>
3199 <threshold>0.0178040098398924</threshold>
3200 <left_val>0.1941471993923187</left_val>
3201 <right_val>-0.5844426751136780</right_val></_></_>
3202 <_>
3203 <!-- tree 3 -->
3204 <_>
3205 <!-- root node -->
3206 <feature>
3207 <rects>
3208 <_>
3209 6 10 24 3 -1.</_>
3210 <_>
3211 14 11 8 1 9.</_></rects>
3212 <tilted>0</tilted></feature>
3213 <threshold>0.1304673999547958</threshold>
3214 <left_val>-0.1151698008179665</left_val>
3215 <right_val>0.8504030108451843</right_val></_></_>
3216 <_>
3217 <!-- tree 4 -->
3218 <_>
3219 <!-- root node -->
3220 <feature>
3221 <rects>
3222 <_>
3223 7 5 5 6 -1.</_>
3224 <_>
3225 5 7 5 2 3.</_></rects>
3226 <tilted>1</tilted></feature>
3227 <threshold>0.0175068005919456</threshold>
3228 <left_val>-0.2071896940469742</left_val>
3229 <right_val>0.4643828868865967</right_val></_></_>
3230 <_>
3231 <!-- tree 5 -->
3232 <_>
3233 <!-- root node -->
3234 <feature>
3235 <rects>
3236 <_>
3237 5 16 26 2 -1.</_>
3238 <_>
3239 18 16 13 1 2.</_>
3240 <_>
3241 5 17 13 1 2.</_></rects>
3242 <tilted>0</tilted></feature>
3243 <threshold>-7.4240020476281643e-003</threshold>
3244 <left_val>-0.6656516790390015</left_val>
3245 <right_val>0.1403498947620392</right_val></_></_>
3246 <_>
3247 <!-- tree 6 -->
3248 <_>
3249 <!-- root node -->
3250 <feature>
3251 <rects>
3252 <_>
3253 0 7 24 4 -1.</_>
3254 <_>
3255 0 7 12 2 2.</_>
3256 <_>
3257 12 9 12 2 2.</_></rects>
3258 <tilted>0</tilted></feature>
3259 <threshold>-0.0345711186528206</threshold>
3260 <left_val>0.6511297821998596</left_val>
3261 <right_val>-0.1490191966295242</right_val></_></_>
3262 <_>
3263 <!-- tree 7 -->
3264 <_>
3265 <!-- root node -->
3266 <feature>
3267 <rects>
3268 <_>
3269 23 14 13 4 -1.</_>
3270 <_>
3271 23 15 13 2 2.</_></rects>
3272 <tilted>0</tilted></feature>
3273 <threshold>4.2270249687135220e-003</threshold>
3274 <left_val>-1.6027219826355577e-003</left_val>
3275 <right_val>0.3895606100559235</right_val></_></_>
3276 <_>
3277 <!-- tree 8 -->
3278 <_>
3279 <!-- root node -->
3280 <feature>
3281 <rects>
3282 <_>
3283 2 10 18 8 -1.</_>
3284 <_>
3285 2 10 9 4 2.</_>
3286 <_>
3287 11 14 9 4 2.</_></rects>
3288 <tilted>0</tilted></feature>
3289 <threshold>-0.0506620407104492</threshold>
3290 <left_val>0.5803576707839966</left_val>
3291 <right_val>-0.1514143943786621</right_val></_></_>
3292 <_>
3293 <!-- tree 9 -->
3294 <_>
3295 <!-- root node -->
3296 <feature>
3297 <rects>
3298 <_>
3299 15 10 6 4 -1.</_>
3300 <_>
3301 15 11 6 2 2.</_></rects>
3302 <tilted>0</tilted></feature>
3303 <threshold>-7.0715770125389099e-003</threshold>
3304 <left_val>0.5300896763801575</left_val>
3305 <right_val>-0.1449830979108810</right_val></_></_>
3306 <_>
3307 <!-- tree 10 -->
3308 <_>
3309 <!-- root node -->
3310 <feature>
3311 <rects>
3312 <_>
3313 0 6 24 2 -1.</_>
3314 <_>
3315 0 6 12 1 2.</_>
3316 <_>
3317 12 7 12 1 2.</_></rects>
3318 <tilted>0</tilted></feature>
3319 <threshold>-0.0118635101243854</threshold>
3320 <left_val>0.6729742288589478</left_val>
3321 <right_val>-0.1106354966759682</right_val></_></_>
3322 <_>
3323 <!-- tree 11 -->
3324 <_>
3325 <!-- root node -->
3326 <feature>
3327 <rects>
3328 <_>
3329 17 0 18 18 -1.</_>
3330 <_>
3331 17 9 18 9 2.</_></rects>
3332 <tilted>0</tilted></feature>
3333 <threshold>-0.0605200305581093</threshold>
3334 <left_val>-0.3316448926925659</left_val>
3335 <right_val>0.2119556069374085</right_val></_></_>
3336 <_>
3337 <!-- tree 12 -->
3338 <_>
3339 <!-- root node -->
3340 <feature>
3341 <rects>
3342 <_>
3343 1 0 11 2 -1.</_>
3344 <_>
3345 1 1 11 1 2.</_></rects>
3346 <tilted>0</tilted></feature>
3347 <threshold>-7.7340779826045036e-003</threshold>
3348 <left_val>-0.6941440105438232</left_val>
3349 <right_val>0.0727053135633469</right_val></_></_>
3350 <_>
3351 <!-- tree 13 -->
3352 <_>
3353 <!-- root node -->
3354 <feature>
3355 <rects>
3356 <_>
3357 15 6 8 12 -1.</_>
3358 <_>
3359 19 6 4 6 2.</_>
3360 <_>
3361 15 12 4 6 2.</_></rects>
3362 <tilted>0</tilted></feature>
3363 <threshold>-0.0324861407279968</threshold>
3364 <left_val>-0.5185081958770752</left_val>
3365 <right_val>0.0592126213014126</right_val></_></_>
3366 <_>
3367 <!-- tree 14 -->
3368 <_>
3369 <!-- root node -->
3370 <feature>
3371 <rects>
3372 <_>
3373 2 1 32 12 -1.</_>
3374 <_>
3375 2 1 16 6 2.</_>
3376 <_>
3377 18 7 16 6 2.</_></rects>
3378 <tilted>0</tilted></feature>
3379 <threshold>0.0832797065377235</threshold>
3380 <left_val>0.1206794008612633</left_val>
3381 <right_val>-0.5309563279151917</right_val></_></_>
3382 <_>
3383 <!-- tree 15 -->
3384 <_>
3385 <!-- root node -->
3386 <feature>
3387 <rects>
3388 <_>
3389 29 10 7 8 -1.</_>
3390 <_>
3391 29 12 7 4 2.</_></rects>
3392 <tilted>0</tilted></feature>
3393 <threshold>7.8782817581668496e-004</threshold>
3394 <left_val>-0.2737655937671661</left_val>
3395 <right_val>0.2716251909732819</right_val></_></_>
3396 <_>
3397 <!-- tree 16 -->
3398 <_>
3399 <!-- root node -->
3400 <feature>
3401 <rects>
3402 <_>
3403 12 2 8 10 -1.</_>
3404 <_>
3405 12 2 4 5 2.</_>
3406 <_>
3407 16 7 4 5 2.</_></rects>
3408 <tilted>0</tilted></feature>
3409 <threshold>-0.0175391808152199</threshold>
3410 <left_val>-0.5690230131149292</left_val>
3411 <right_val>0.1228737011551857</right_val></_></_>
3412 <_>
3413 <!-- tree 17 -->
3414 <_>
3415 <!-- root node -->
3416 <feature>
3417 <rects>
3418 <_>
3419 15 12 6 4 -1.</_>
3420 <_>
3421 15 13 6 2 2.</_></rects>
3422 <tilted>0</tilted></feature>
3423 <threshold>-5.8226347900927067e-003</threshold>
3424 <left_val>0.4386585950851440</left_val>
3425 <right_val>-0.1493742018938065</right_val></_></_>
3426 <_>
3427 <!-- tree 18 -->
3428 <_>
3429 <!-- root node -->
3430 <feature>
3431 <rects>
3432 <_>
3433 0 12 8 6 -1.</_>
3434 <_>
3435 0 14 8 2 3.</_></rects>
3436 <tilted>0</tilted></feature>
3437 <threshold>-0.0100575601682067</threshold>
3438 <left_val>-0.6616886258125305</left_val>
3439 <right_val>0.1144542992115021</right_val></_></_>
3440 <_>
3441 <!-- tree 19 -->
3442 <_>
3443 <!-- root node -->
3444 <feature>
3445 <rects>
3446 <_>
3447 10 9 26 8 -1.</_>
3448 <_>
3449 23 9 13 4 2.</_>
3450 <_>
3451 10 13 13 4 2.</_></rects>
3452 <tilted>0</tilted></feature>
3453 <threshold>0.0903454273939133</threshold>
3454 <left_val>-0.0666652470827103</left_val>
3455 <right_val>0.2870647907257080</right_val></_></_>
3456 <_>
3457 <!-- tree 20 -->
3458 <_>
3459 <!-- root node -->
3460 <feature>
3461 <rects>
3462 <_>
3463 7 8 22 10 -1.</_>
3464 <_>
3465 7 8 11 5 2.</_>
3466 <_>
3467 18 13 11 5 2.</_></rects>
3468 <tilted>0</tilted></feature>
3469 <threshold>-0.0675872936844826</threshold>
3470 <left_val>-0.5363761186599731</left_val>
3471 <right_val>0.1123751997947693</right_val></_></_>
3472 <_>
3473 <!-- tree 21 -->
3474 <_>
3475 <!-- root node -->
3476 <feature>
3477 <rects>
3478 <_>
3479 14 9 8 3 -1.</_>
3480 <_>
3481 14 10 8 1 3.</_></rects>
3482 <tilted>0</tilted></feature>
3483 <threshold>-8.1747528165578842e-003</threshold>
3484 <left_val>0.4434241950511932</left_val>
3485 <right_val>-0.1297765970230103</right_val></_></_>
3486 <_>
3487 <!-- tree 22 -->
3488 <_>
3489 <!-- root node -->
3490 <feature>
3491 <rects>
3492 <_>
3493 11 3 4 9 -1.</_>
3494 <_>
3495 11 6 4 3 3.</_></rects>
3496 <tilted>0</tilted></feature>
3497 <threshold>-0.0115505503490567</threshold>
3498 <left_val>0.3273158073425293</left_val>
3499 <right_val>-0.1700761020183563</right_val></_></_>
3500 <_>
3501 <!-- tree 23 -->
3502 <_>
3503 <!-- root node -->
3504 <feature>
3505 <rects>
3506 <_>
3507 29 14 2 2 -1.</_>
3508 <_>
3509 29 14 2 1 2.</_></rects>
3510 <tilted>1</tilted></feature>
3511 <threshold>-1.7406829283572733e-004</threshold>
3512 <left_val>0.1327867954969406</left_val>
3513 <right_val>-0.1081293970346451</right_val></_></_>
3514 <_>
3515 <!-- tree 24 -->
3516 <_>
3517 <!-- root node -->
3518 <feature>
3519 <rects>
3520 <_>
3521 14 13 8 3 -1.</_>
3522 <_>
3523 14 14 8 1 3.</_></rects>
3524 <tilted>0</tilted></feature>
3525 <threshold>4.6040047891438007e-003</threshold>
3526 <left_val>-0.1226582005620003</left_val>
3527 <right_val>0.4412580132484436</right_val></_></_></trees>
3528 <stage_threshold>-1.3266400098800659</stage_threshold>
3529 <parent>9</parent>
3530 <next>-1</next></_>
3531 <_>
3532 <!-- stage 11 -->
3533 <trees>
3534 <_>
3535 <!-- tree 0 -->
3536 <_>
3537 <!-- root node -->
3538 <feature>
3539 <rects>
3540 <_>
3541 11 3 7 8 -1.</_>
3542 <_>
3543 9 5 7 4 2.</_></rects>
3544 <tilted>1</tilted></feature>
3545 <threshold>-0.0469432808458805</threshold>
3546 <left_val>0.6094344258308411</left_val>
3547 <right_val>-0.2637800872325897</right_val></_></_>
3548 <_>
3549 <!-- tree 1 -->
3550 <_>
3551 <!-- root node -->
3552 <feature>
3553 <rects>
3554 <_>
3555 28 13 1 4 -1.</_>
3556 <_>
3557 28 13 1 2 2.</_></rects>
3558 <tilted>1</tilted></feature>
3559 <threshold>-1.6899159527383745e-004</threshold>
3560 <left_val>0.1665875017642975</left_val>
3561 <right_val>-0.1254196017980576</right_val></_></_>
3562 <_>
3563 <!-- tree 2 -->
3564 <_>
3565 <!-- root node -->
3566 <feature>
3567 <rects>
3568 <_>
3569 8 13 4 1 -1.</_>
3570 <_>
3571 8 13 2 1 2.</_></rects>
3572 <tilted>1</tilted></feature>
3573 <threshold>2.7983370237052441e-003</threshold>
3574 <left_val>0.1905744969844818</left_val>
3575 <right_val>-0.6568077206611633</right_val></_></_>
3576 <_>
3577 <!-- tree 3 -->
3578 <_>
3579 <!-- root node -->
3580 <feature>
3581 <rects>
3582 <_>
3583 16 9 4 3 -1.</_>
3584 <_>
3585 16 10 4 1 3.</_></rects>
3586 <tilted>0</tilted></feature>
3587 <threshold>4.0413960814476013e-003</threshold>
3588 <left_val>-0.1731746941804886</left_val>
3589 <right_val>0.6362075209617615</right_val></_></_>
3590 <_>
3591 <!-- tree 4 -->
3592 <_>
3593 <!-- root node -->
3594 <feature>
3595 <rects>
3596 <_>
3597 13 8 10 4 -1.</_>
3598 <_>
3599 13 9 10 2 2.</_></rects>
3600 <tilted>0</tilted></feature>
3601 <threshold>-8.6033362895250320e-003</threshold>
3602 <left_val>0.6025841832160950</left_val>
3603 <right_val>-0.2316936999559403</right_val></_></_>
3604 <_>
3605 <!-- tree 5 -->
3606 <_>
3607 <!-- root node -->
3608 <feature>
3609 <rects>
3610 <_>
3611 14 8 8 3 -1.</_>
3612 <_>
3613 14 9 8 1 3.</_></rects>
3614 <tilted>0</tilted></feature>
3615 <threshold>8.8247945532202721e-003</threshold>
3616 <left_val>-0.1756583005189896</left_val>
3617 <right_val>0.7104166746139526</right_val></_></_>
3618 <_>
3619 <!-- tree 6 -->
3620 <_>
3621 <!-- root node -->
3622 <feature>
3623 <rects>
3624 <_>
3625 2 10 6 2 -1.</_>
3626 <_>
3627 4 12 2 2 3.</_></rects>
3628 <tilted>1</tilted></feature>
3629 <threshold>-9.2786159366369247e-003</threshold>
3630 <left_val>-0.6890857219696045</left_val>
3631 <right_val>0.1789650022983551</right_val></_></_>
3632 <_>
3633 <!-- tree 7 -->
3634 <_>
3635 <!-- root node -->
3636 <feature>
3637 <rects>
3638 <_>
3639 16 10 6 3 -1.</_>
3640 <_>
3641 16 11 6 1 3.</_></rects>
3642 <tilted>0</tilted></feature>
3643 <threshold>6.0826768167316914e-003</threshold>
3644 <left_val>-0.1706372052431107</left_val>
3645 <right_val>0.5375748276710510</right_val></_></_>
3646 <_>
3647 <!-- tree 8 -->
3648 <_>
3649 <!-- root node -->
3650 <feature>
3651 <rects>
3652 <_>
3653 8 5 8 13 -1.</_>
3654 <_>
3655 12 5 4 13 2.</_></rects>
3656 <tilted>0</tilted></feature>
3657 <threshold>-0.0390073694288731</threshold>
3658 <left_val>-0.6834635734558106</left_val>
3659 <right_val>0.1441708058118820</right_val></_></_>
3660 <_>
3661 <!-- tree 9 -->
3662 <_>
3663 <!-- root node -->
3664 <feature>
3665 <rects>
3666 <_>
3667 0 0 36 8 -1.</_>
3668 <_>
3669 18 0 18 4 2.</_>
3670 <_>
3671 0 4 18 4 2.</_></rects>
3672 <tilted>0</tilted></feature>
3673 <threshold>-0.0703379511833191</threshold>
3674 <left_val>-0.6508566737174988</left_val>
3675 <right_val>0.1008547991514206</right_val></_></_>
3676 <_>
3677 <!-- tree 10 -->
3678 <_>
3679 <!-- root node -->
3680 <feature>
3681 <rects>
3682 <_>
3683 1 5 8 12 -1.</_>
3684 <_>
3685 1 5 4 6 2.</_>
3686 <_>
3687 5 11 4 6 2.</_></rects>
3688 <tilted>0</tilted></feature>
3689 <threshold>0.0331666991114616</threshold>
3690 <left_val>-0.1932571977376938</left_val>
3691 <right_val>0.4779865145683289</right_val></_></_>
3692 <_>
3693 <!-- tree 11 -->
3694 <_>
3695 <!-- root node -->
3696 <feature>
3697 <rects>
3698 <_>
3699 18 8 18 10 -1.</_>
3700 <_>
3701 27 8 9 5 2.</_>
3702 <_>
3703 18 13 9 5 2.</_></rects>
3704 <tilted>0</tilted></feature>
3705 <threshold>0.0752889066934586</threshold>
3706 <left_val>-0.0695677325129509</left_val>
3707 <right_val>0.4125064909458160</right_val></_></_>
3708 <_>
3709 <!-- tree 12 -->
3710 <_>
3711 <!-- root node -->
3712 <feature>
3713 <rects>
3714 <_>
3715 0 8 18 10 -1.</_>
3716 <_>
3717 0 8 9 5 2.</_>
3718 <_>
3719 9 13 9 5 2.</_></rects>
3720 <tilted>0</tilted></feature>
3721 <threshold>-0.0705017298460007</threshold>
3722 <left_val>0.7157300710678101</left_val>
3723 <right_val>-0.1022270023822784</right_val></_></_>
3724 <_>
3725 <!-- tree 13 -->
3726 <_>
3727 <!-- root node -->
3728 <feature>
3729 <rects>
3730 <_>
3731 11 5 14 3 -1.</_>
3732 <_>
3733 11 6 14 1 3.</_></rects>
3734 <tilted>0</tilted></feature>
3735 <threshold>0.0122494902461767</threshold>
3736 <left_val>-0.1061242967844009</left_val>
3737 <right_val>0.6295958161354065</right_val></_></_>
3738 <_>
3739 <!-- tree 14 -->
3740 <_>
3741 <!-- root node -->
3742 <feature>
3743 <rects>
3744 <_>
3745 10 6 16 6 -1.</_>
3746 <_>
3747 10 8 16 2 3.</_></rects>
3748 <tilted>0</tilted></feature>
3749 <threshold>0.0706446766853333</threshold>
3750 <left_val>-0.0973746329545975</left_val>
3751 <right_val>0.6762204170227051</right_val></_></_>
3752 <_>
3753 <!-- tree 15 -->
3754 <_>
3755 <!-- root node -->
3756 <feature>
3757 <rects>
3758 <_>
3759 7 2 24 16 -1.</_>
3760 <_>
3761 19 2 12 8 2.</_>
3762 <_>
3763 7 10 12 8 2.</_></rects>
3764 <tilted>0</tilted></feature>
3765 <threshold>0.1624888032674789</threshold>
3766 <left_val>0.0527133606374264</left_val>
3767 <right_val>-0.8494657278060913</right_val></_></_>
3768 <_>
3769 <!-- tree 16 -->
3770 <_>
3771 <!-- root node -->
3772 <feature>
3773 <rects>
3774 <_>
3775 0 1 18 15 -1.</_>
3776 <_>
3777 6 6 6 5 9.</_></rects>
3778 <tilted>0</tilted></feature>
3779 <threshold>0.1380825042724609</threshold>
3780 <left_val>0.1406479030847549</left_val>
3781 <right_val>-0.4764721095561981</right_val></_></_></trees>
3782 <stage_threshold>-1.4497200250625610</stage_threshold>
3783 <parent>10</parent>
3784 <next>-1</next></_>
3785 <_>
3786 <!-- stage 12 -->
3787 <trees>
3788 <_>
3789 <!-- tree 0 -->
3790 <_>
3791 <!-- root node -->
3792 <feature>
3793 <rects>
3794 <_>
3795 4 5 16 6 -1.</_>
3796 <_>
3797 12 5 8 6 2.</_></rects>
3798 <tilted>0</tilted></feature>
3799 <threshold>-0.0418823398649693</threshold>
3800 <left_val>-0.8077452778816223</left_val>
3801 <right_val>0.2640967071056366</right_val></_></_>
3802 <_>
3803 <!-- tree 1 -->
3804 <_>
3805 <!-- root node -->
3806 <feature>
3807 <rects>
3808 <_>
3809 29 0 6 11 -1.</_>
3810 <_>
3811 31 2 2 11 3.</_></rects>
3812 <tilted>1</tilted></feature>
3813 <threshold>-0.0536229908466339</threshold>
3814 <left_val>0.5580704212188721</left_val>
3815 <right_val>-0.2498968988656998</right_val></_></_>
3816 <_>
3817 <!-- tree 2 -->
3818 <_>
3819 <!-- root node -->
3820 <feature>
3821 <rects>
3822 <_>
3823 2 8 9 1 -1.</_>
3824 <_>
3825 5 11 3 1 3.</_></rects>
3826 <tilted>1</tilted></feature>
3827 <threshold>9.3709938228130341e-003</threshold>
3828 <left_val>0.2650170028209686</left_val>
3829 <right_val>-0.5990694761276245</right_val></_></_>
3830 <_>
3831 <!-- tree 3 -->
3832 <_>
3833 <!-- root node -->
3834 <feature>
3835 <rects>
3836 <_>
3837 10 6 17 3 -1.</_>
3838 <_>
3839 10 7 17 1 3.</_></rects>
3840 <tilted>0</tilted></feature>
3841 <threshold>0.0139097301289439</threshold>
3842 <left_val>-0.1470918059349060</left_val>
3843 <right_val>0.7354667186737061</right_val></_></_>
3844 <_>
3845 <!-- tree 4 -->
3846 <_>
3847 <!-- root node -->
3848 <feature>
3849 <rects>
3850 <_>
3851 18 6 6 2 -1.</_>
3852 <_>
3853 20 8 2 2 3.</_></rects>
3854 <tilted>1</tilted></feature>
3855 <threshold>0.0190035700798035</threshold>
3856 <left_val>-0.1887511014938355</left_val>
3857 <right_val>0.7487422227859497</right_val></_></_>
3858 <_>
3859 <!-- tree 5 -->
3860 <_>
3861 <!-- root node -->
3862 <feature>
3863 <rects>
3864 <_>
3865 13 11 12 3 -1.</_>
3866 <_>
3867 13 12 12 1 3.</_></rects>
3868 <tilted>0</tilted></feature>
3869 <threshold>5.9199850074946880e-003</threshold>
3870 <left_val>-0.1599563956260681</left_val>
3871 <right_val>0.5673577785491943</right_val></_></_>
3872 <_>
3873 <!-- tree 6 -->
3874 <_>
3875 <!-- root node -->
3876 <feature>
3877 <rects>
3878 <_>
3879 2 3 8 8 -1.</_>
3880 <_>
3881 2 3 4 4 2.</_>
3882 <_>
3883 6 7 4 4 2.</_></rects>
3884 <tilted>0</tilted></feature>
3885 <threshold>-0.0247051399201155</threshold>
3886 <left_val>0.7556992173194885</left_val>
3887 <right_val>-0.1235088035464287</right_val></_></_>
3888 <_>
3889 <!-- tree 7 -->
3890 <_>
3891 <!-- root node -->
3892 <feature>
3893 <rects>
3894 <_>
3895 18 12 18 4 -1.</_>
3896 <_>
3897 27 12 9 2 2.</_>
3898 <_>
3899 18 14 9 2 2.</_></rects>
3900 <tilted>0</tilted></feature>
3901 <threshold>0.0160583592951298</threshold>
3902 <left_val>-0.1282460987567902</left_val>
3903 <right_val>0.5129454731941223</right_val></_></_>
3904 <_>
3905 <!-- tree 8 -->
3906 <_>
3907 <!-- root node -->
3908 <feature>
3909 <rects>
3910 <_>
3911 11 5 11 3 -1.</_>
3912 <_>
3913 11 6 11 1 3.</_></rects>
3914 <tilted>0</tilted></feature>
3915 <threshold>8.8288700208067894e-003</threshold>
3916 <left_val>-0.1686663925647736</left_val>
3917 <right_val>0.6152185201644898</right_val></_></_>
3918 <_>
3919 <!-- tree 9 -->
3920 <_>
3921 <!-- root node -->
3922 <feature>
3923 <rects>
3924 <_>
3925 14 7 14 4 -1.</_>
3926 <_>
3927 14 8 14 2 2.</_></rects>
3928 <tilted>0</tilted></feature>
3929 <threshold>0.0175563395023346</threshold>
3930 <left_val>-0.1090169996023178</left_val>
3931 <right_val>0.5803176164627075</right_val></_></_>
3932 <_>
3933 <!-- tree 10 -->
3934 <_>
3935 <!-- root node -->
3936 <feature>
3937 <rects>
3938 <_>
3939 9 8 16 10 -1.</_>
3940 <_>
3941 9 8 8 5 2.</_>
3942 <_>
3943 17 13 8 5 2.</_></rects>
3944 <tilted>0</tilted></feature>
3945 <threshold>0.0421881191432476</threshold>
3946 <left_val>0.1486624032258987</left_val>
3947 <right_val>-0.6922233104705811</right_val></_></_>
3948 <_>
3949 <!-- tree 11 -->
3950 <_>
3951 <!-- root node -->
3952 <feature>
3953 <rects>
3954 <_>
3955 18 17 2 1 -1.</_>
3956 <_>
3957 18 17 1 1 2.</_></rects>
3958 <tilted>0</tilted></feature>
3959 <threshold>5.0687207840383053e-004</threshold>
3960 <left_val>0.0315808691084385</left_val>
3961 <right_val>-0.3700995147228241</right_val></_></_>
3962 <_>
3963 <!-- tree 12 -->
3964 <_>
3965 <!-- root node -->
3966 <feature>
3967 <rects>
3968 <_>
3969 13 10 5 3 -1.</_>
3970 <_>
3971 13 11 5 1 3.</_></rects>
3972 <tilted>0</tilted></feature>
3973 <threshold>2.7651190757751465e-003</threshold>
3974 <left_val>-0.2133754044771195</left_val>
3975 <right_val>0.4704301059246063</right_val></_></_>
3976 <_>
3977 <!-- tree 13 -->
3978 <_>
3979 <!-- root node -->
3980 <feature>
3981 <rects>
3982 <_>
3983 18 17 2 1 -1.</_>
3984 <_>
3985 18 17 1 1 2.</_></rects>
3986 <tilted>0</tilted></feature>
3987 <threshold>-1.2231520377099514e-003</threshold>
3988 <left_val>-0.7818967103958130</left_val>
3989 <right_val>0.0209542606025934</right_val></_></_>
3990 <_>
3991 <!-- tree 14 -->
3992 <_>
3993 <!-- root node -->
3994 <feature>
3995 <rects>
3996 <_>
3997 7 5 8 3 -1.</_>
3998 <_>
3999 6 6 8 1 3.</_></rects>
4000 <tilted>1</tilted></feature>
4001 <threshold>8.5432287305593491e-003</threshold>
4002 <left_val>-0.1455352008342743</left_val>
4003 <right_val>0.6789504289627075</right_val></_></_>
4004 <_>
4005 <!-- tree 15 -->
4006 <_>
4007 <!-- root node -->
4008 <feature>
4009 <rects>
4010 <_>
4011 18 17 2 1 -1.</_>
4012 <_>
4013 18 17 1 1 2.</_></rects>
4014 <tilted>0</tilted></feature>
4015 <threshold>-2.0657219283748418e-004</threshold>
4016 <left_val>0.2437624037265778</left_val>
4017 <right_val>-0.0675588026642799</right_val></_></_>
4018 <_>
4019 <!-- tree 16 -->
4020 <_>
4021 <!-- root node -->
4022 <feature>
4023 <rects>
4024 <_>
4025 10 5 5 3 -1.</_>
4026 <_>
4027 10 6 5 1 3.</_></rects>
4028 <tilted>0</tilted></feature>
4029 <threshold>-4.6798270195722580e-003</threshold>
4030 <left_val>0.6684169769287109</left_val>
4031 <right_val>-0.1388788074254990</right_val></_></_>
4032 <_>
4033 <!-- tree 17 -->
4034 <_>
4035 <!-- root node -->
4036 <feature>
4037 <rects>
4038 <_>
4039 2 5 34 10 -1.</_>
4040 <_>
4041 19 5 17 5 2.</_>
4042 <_>
4043 2 10 17 5 2.</_></rects>
4044 <tilted>0</tilted></feature>
4045 <threshold>0.1220175996422768</threshold>
4046 <left_val>0.1102816015481949</left_val>
4047 <right_val>-0.7530742287635803</right_val></_></_>
4048 <_>
4049 <!-- tree 18 -->
4050 <_>
4051 <!-- root node -->
4052 <feature>
4053 <rects>
4054 <_>
4055 3 2 12 3 -1.</_>
4056 <_>
4057 6 5 6 3 2.</_></rects>
4058 <tilted>1</tilted></feature>
4059 <threshold>0.0204043406993151</threshold>
4060 <left_val>0.1645383983850479</left_val>
4061 <right_val>-0.5223162174224854</right_val></_></_>
4062 <_>
4063 <!-- tree 19 -->
4064 <_>
4065 <!-- root node -->
4066 <feature>
4067 <rects>
4068 <_>
4069 35 6 1 6 -1.</_>
4070 <_>
4071 35 8 1 2 3.</_></rects>
4072 <tilted>0</tilted></feature>
4073 <threshold>8.0343370791524649e-004</threshold>
4074 <left_val>-0.1301285028457642</left_val>
4075 <right_val>0.2635852992534638</right_val></_></_></trees>
4076 <stage_threshold>-1.4622910022735596</stage_threshold>
4077 <parent>11</parent>
4078 <next>-1</next></_>
4079 <_>
4080 <!-- stage 13 -->
4081 <trees>
4082 <_>
4083 <!-- tree 0 -->
4084 <_>
4085 <!-- root node -->
4086 <feature>
4087 <rects>
4088 <_>
4089 10 6 13 6 -1.</_>
4090 <_>
4091 10 8 13 2 3.</_></rects>
4092 <tilted>0</tilted></feature>
4093 <threshold>0.0727917104959488</threshold>
4094 <left_val>-0.1372790038585663</left_val>
4095 <right_val>0.8291574716567993</right_val></_></_>
4096 <_>
4097 <!-- tree 1 -->
4098 <_>
4099 <!-- root node -->
4100 <feature>
4101 <rects>
4102 <_>
4103 15 5 6 4 -1.</_>
4104 <_>
4105 15 6 6 2 2.</_></rects>
4106 <tilted>0</tilted></feature>
4107 <threshold>7.5939209200441837e-003</threshold>
4108 <left_val>-0.1678012013435364</left_val>
4109 <right_val>0.5683972239494324</right_val></_></_>
4110 <_>
4111 <!-- tree 2 -->
4112 <_>
4113 <!-- root node -->
4114 <feature>
4115 <rects>
4116 <_>
4117 5 2 11 4 -1.</_>
4118 <_>
4119 4 3 11 2 2.</_></rects>
4120 <tilted>1</tilted></feature>
4121 <threshold>-0.0235623903572559</threshold>
4122 <left_val>0.6500560045242310</left_val>
4123 <right_val>-0.1424535065889359</right_val></_></_>
4124 <_>
4125 <!-- tree 3 -->
4126 <_>
4127 <!-- root node -->
4128 <feature>
4129 <rects>
4130 <_>
4131 26 6 10 6 -1.</_>
4132 <_>
4133 31 6 5 3 2.</_>
4134 <_>
4135 26 9 5 3 2.</_></rects>
4136 <tilted>0</tilted></feature>
4137 <threshold>0.0173929501324892</threshold>
4138 <left_val>-0.1529144942760468</left_val>
4139 <right_val>0.3425354063510895</right_val></_></_>
4140 <_>
4141 <!-- tree 4 -->
4142 <_>
4143 <!-- root node -->
4144 <feature>
4145 <rects>
4146 <_>
4147 10 7 11 8 -1.</_>
4148 <_>
4149 10 9 11 4 2.</_></rects>
4150 <tilted>0</tilted></feature>
4151 <threshold>0.0718258023262024</threshold>
4152 <left_val>-0.0991311371326447</left_val>
4153 <right_val>0.8279678821563721</right_val></_></_>
4154 <_>
4155 <!-- tree 5 -->
4156 <_>
4157 <!-- root node -->
4158 <feature>
4159 <rects>
4160 <_>
4161 28 2 4 9 -1.</_>
4162 <_>
4163 29 3 2 9 2.</_></rects>
4164 <tilted>1</tilted></feature>
4165 <threshold>0.0136738000437617</threshold>
4166 <left_val>-0.0417872704565525</left_val>
4167 <right_val>0.5078148245811462</right_val></_></_>
4168 <_>
4169 <!-- tree 6 -->
4170 <_>
4171 <!-- root node -->
4172 <feature>
4173 <rects>
4174 <_>
4175 8 2 10 4 -1.</_>
4176 <_>
4177 7 3 10 2 2.</_></rects>
4178 <tilted>1</tilted></feature>
4179 <threshold>-0.0285859592258930</threshold>
4180 <left_val>0.7011532187461853</left_val>
4181 <right_val>-0.1314471065998077</right_val></_></_>
4182 <_>
4183 <!-- tree 7 -->
4184 <_>
4185 <!-- root node -->
4186 <feature>
4187 <rects>
4188 <_>
4189 31 0 5 2 -1.</_>
4190 <_>
4191 31 1 5 1 2.</_></rects>
4192 <tilted>0</tilted></feature>
4193 <threshold>-4.1845720261335373e-004</threshold>
4194 <left_val>0.2845467031002045</left_val>
4195 <right_val>-0.3123202919960022</right_val></_></_>
4196 <_>
4197 <!-- tree 8 -->
4198 <_>
4199 <!-- root node -->
4200 <feature>
4201 <rects>
4202 <_>
4203 10 6 16 12 -1.</_>
4204 <_>
4205 10 10 16 4 3.</_></rects>
4206 <tilted>0</tilted></feature>
4207 <threshold>-0.0520956814289093</threshold>
4208 <left_val>0.4181294143199921</left_val>
4209 <right_val>-0.1699313074350357</right_val></_></_>
4210 <_>
4211 <!-- tree 9 -->
4212 <_>
4213 <!-- root node -->
4214 <feature>
4215 <rects>
4216 <_>
4217 18 4 4 3 -1.</_>
4218 <_>
4219 18 5 4 1 3.</_></rects>
4220 <tilted>0</tilted></feature>
4221 <threshold>3.2256329432129860e-003</threshold>
4222 <left_val>-0.0904662087559700</left_val>
4223 <right_val>0.3008623123168945</right_val></_></_>
4224 <_>
4225 <!-- tree 10 -->
4226 <_>
4227 <!-- root node -->
4228 <feature>
4229 <rects>
4230 <_>
4231 11 10 6 6 -1.</_>
4232 <_>
4233 11 12 6 2 3.</_></rects>
4234 <tilted>0</tilted></feature>
4235 <threshold>0.0347716398537159</threshold>
4236 <left_val>-0.0842167884111404</left_val>
4237 <right_val>0.7801663875579834</right_val></_></_>
4238 <_>
4239 <!-- tree 11 -->
4240 <_>
4241 <!-- root node -->
4242 <feature>
4243 <rects>
4244 <_>
4245 35 8 1 10 -1.</_>
4246 <_>
4247 35 13 1 5 2.</_></rects>
4248 <tilted>0</tilted></feature>
4249 <threshold>-1.3356630224734545e-003</threshold>
4250 <left_val>0.3316453099250794</left_val>
4251 <right_val>-0.1696092039346695</right_val></_></_>
4252 <_>
4253 <!-- tree 12 -->
4254 <_>
4255 <!-- root node -->
4256 <feature>
4257 <rects>
4258 <_>
4259 0 10 36 8 -1.</_>
4260 <_>
4261 18 10 18 8 2.</_></rects>
4262 <tilted>0</tilted></feature>
4263 <threshold>0.2510198056697846</threshold>
4264 <left_val>-0.1392046958208084</left_val>
4265 <right_val>0.6633893251419067</right_val></_></_>
4266 <_>
4267 <!-- tree 13 -->
4268 <_>
4269 <!-- root node -->
4270 <feature>
4271 <rects>
4272 <_>
4273 16 7 6 8 -1.</_>
4274 <_>
4275 19 7 3 4 2.</_>
4276 <_>
4277 16 11 3 4 2.</_></rects>
4278 <tilted>0</tilted></feature>
4279 <threshold>-9.9689997732639313e-003</threshold>
4280 <left_val>-0.3713817000389099</left_val>
4281 <right_val>0.1290012001991272</right_val></_></_>
4282 <_>
4283 <!-- tree 14 -->
4284 <_>
4285 <!-- root node -->
4286 <feature>
4287 <rects>
4288 <_>
4289 7 6 8 4 -1.</_>
4290 <_>
4291 7 6 4 4 2.</_></rects>
4292 <tilted>1</tilted></feature>
4293 <threshold>0.0143037298694253</threshold>
4294 <left_val>0.1572919934988022</left_val>
4295 <right_val>-0.5093821287155151</right_val></_></_>
4296 <_>
4297 <!-- tree 15 -->
4298 <_>
4299 <!-- root node -->
4300 <feature>
4301 <rects>
4302 <_>
4303 21 11 4 3 -1.</_>
4304 <_>
4305 21 12 4 1 3.</_></rects>
4306 <tilted>0</tilted></feature>
4307 <threshold>-7.0856059901416302e-003</threshold>
4308 <left_val>0.4656791090965271</left_val>
4309 <right_val>-0.0662708207964897</right_val></_></_>
4310 <_>
4311 <!-- tree 16 -->
4312 <_>
4313 <!-- root node -->
4314 <feature>
4315 <rects>
4316 <_>
4317 0 9 1 8 -1.</_>
4318 <_>
4319 0 13 1 4 2.</_></rects>
4320 <tilted>0</tilted></feature>
4321 <threshold>-4.6260809176601470e-004</threshold>
4322 <left_val>0.2933731079101563</left_val>
4323 <right_val>-0.2333986014127731</right_val></_></_>
4324 <_>
4325 <!-- tree 17 -->
4326 <_>
4327 <!-- root node -->
4328 <feature>
4329 <rects>
4330 <_>
4331 27 7 6 4 -1.</_>
4332 <_>
4333 29 9 2 4 3.</_></rects>
4334 <tilted>1</tilted></feature>
4335 <threshold>-0.0344354808330536</threshold>
4336 <left_val>0.7002474069595337</left_val>
4337 <right_val>-0.1013351008296013</right_val></_></_>
4338 <_>
4339 <!-- tree 18 -->
4340 <_>
4341 <!-- root node -->
4342 <feature>
4343 <rects>
4344 <_>
4345 10 14 8 4 -1.</_>
4346 <_>
4347 12 14 4 4 2.</_></rects>
4348 <tilted>0</tilted></feature>
4349 <threshold>-7.2570890188217163e-003</threshold>
4350 <left_val>-0.5628641247749329</left_val>
4351 <right_val>0.1314862072467804</right_val></_></_>
4352 <_>
4353 <!-- tree 19 -->
4354 <_>
4355 <!-- root node -->
4356 <feature>
4357 <rects>
4358 <_>
4359 18 17 2 1 -1.</_>
4360 <_>
4361 18 17 1 1 2.</_></rects>
4362 <tilted>0</tilted></feature>
4363 <threshold>4.8352940939366817e-004</threshold>
4364 <left_val>0.0262274891138077</left_val>
4365 <right_val>-0.2605080008506775</right_val></_></_>
4366 <_>
4367 <!-- tree 20 -->
4368 <_>
4369 <!-- root node -->
4370 <feature>
4371 <rects>
4372 <_>
4373 10 4 11 4 -1.</_>
4374 <_>
4375 10 5 11 2 2.</_></rects>
4376 <tilted>0</tilted></feature>
4377 <threshold>-0.0129999397322536</threshold>
4378 <left_val>0.5311700105667114</left_val>
4379 <right_val>-0.1202305033802986</right_val></_></_>
4380 <_>
4381 <!-- tree 21 -->
4382 <_>
4383 <!-- root node -->
4384 <feature>
4385 <rects>
4386 <_>
4387 17 12 2 4 -1.</_>
4388 <_>
4389 17 13 2 2 2.</_></rects>
4390 <tilted>0</tilted></feature>
4391 <threshold>-1.0009329998865724e-003</threshold>
4392 <left_val>0.3964129984378815</left_val>
4393 <right_val>-0.1599515974521637</right_val></_></_>
4394 <_>
4395 <!-- tree 22 -->
4396 <_>
4397 <!-- root node -->
4398 <feature>
4399 <rects>
4400 <_>
4401 13 4 5 3 -1.</_>
4402 <_>
4403 13 5 5 1 3.</_></rects>
4404 <tilted>0</tilted></feature>
4405 <threshold>4.1314200498163700e-003</threshold>
4406 <left_val>-0.1492992043495178</left_val>
4407 <right_val>0.4295912086963654</right_val></_></_>
4408 <_>
4409 <!-- tree 23 -->
4410 <_>
4411 <!-- root node -->
4412 <feature>
4413 <rects>
4414 <_>
4415 13 12 11 2 -1.</_>
4416 <_>
4417 13 13 11 1 2.</_></rects>
4418 <tilted>0</tilted></feature>
4419 <threshold>8.7364455685019493e-003</threshold>
4420 <left_val>-0.1127102002501488</left_val>
4421 <right_val>0.4945647120475769</right_val></_></_>
4422 <_>
4423 <!-- tree 24 -->
4424 <_>
4425 <!-- root node -->
4426 <feature>
4427 <rects>
4428 <_>
4429 1 16 2 2 -1.</_>
4430 <_>
4431 1 16 1 1 2.</_>
4432 <_>
4433 2 17 1 1 2.</_></rects>
4434 <tilted>0</tilted></feature>
4435 <threshold>2.6352869463153183e-004</threshold>
4436 <left_val>-0.1212491989135742</left_val>
4437 <right_val>0.4943937957286835</right_val></_></_>
4438 <_>
4439 <!-- tree 25 -->
4440 <_>
4441 <!-- root node -->
4442 <feature>
4443 <rects>
4444 <_>
4445 27 7 6 4 -1.</_>
4446 <_>
4447 29 9 2 4 3.</_></rects>
4448 <tilted>1</tilted></feature>
4449 <threshold>-0.0538859590888023</threshold>
4450 <left_val>0.7035598754882813</left_val>
4451 <right_val>-0.0132305501028895</right_val></_></_>
4452 <_>
4453 <!-- tree 26 -->
4454 <_>
4455 <!-- root node -->
4456 <feature>
4457 <rects>
4458 <_>
4459 4 7 6 6 -1.</_>
4460 <_>
4461 4 9 6 2 3.</_></rects>
4462 <tilted>0</tilted></feature>
4463 <threshold>4.2885672301054001e-003</threshold>
4464 <left_val>-0.1754055023193359</left_val>
4465 <right_val>0.3567946851253510</right_val></_></_>
4466 <_>
4467 <!-- tree 27 -->
4468 <_>
4469 <!-- root node -->
4470 <feature>
4471 <rects>
4472 <_>
4473 30 6 4 5 -1.</_>
4474 <_>
4475 31 7 2 5 2.</_></rects>
4476 <tilted>1</tilted></feature>
4477 <threshold>7.9539399594068527e-003</threshold>
4478 <left_val>-0.0998840034008026</left_val>
4479 <right_val>0.3137167096138001</right_val></_></_></trees>
4480 <stage_threshold>-1.3885619640350342</stage_threshold>
4481 <parent>12</parent>
4482 <next>-1</next></_>
4483 <_>
4484 <!-- stage 14 -->
4485 <trees>
4486 <_>
4487 <!-- tree 0 -->
4488 <_>
4489 <!-- root node -->
4490 <feature>
4491 <rects>
4492 <_>
4493 8 5 20 7 -1.</_>
4494 <_>
4495 13 5 10 7 2.</_></rects>
4496 <tilted>0</tilted></feature>
4497 <threshold>0.0567523688077927</threshold>
4498 <left_val>-0.3257648050785065</left_val>
4499 <right_val>0.3737593889236450</right_val></_></_>
4500 <_>
4501 <!-- tree 1 -->
4502 <_>
4503 <!-- root node -->
4504 <feature>
4505 <rects>
4506 <_>
4507 30 2 3 12 -1.</_>
4508 <_>
4509 30 8 3 6 2.</_></rects>
4510 <tilted>0</tilted></feature>
4511 <threshold>7.0906039327383041e-003</threshold>
4512 <left_val>-0.1391862928867340</left_val>
4513 <right_val>0.1503984034061432</right_val></_></_>
4514 <_>
4515 <!-- tree 2 -->
4516 <_>
4517 <!-- root node -->
4518 <feature>
4519 <rects>
4520 <_>
4521 4 2 12 4 -1.</_>
4522 <_>
4523 4 2 12 2 2.</_></rects>
4524 <tilted>1</tilted></feature>
4525 <threshold>-0.0412988215684891</threshold>
4526 <left_val>0.4702607989311218</left_val>
4527 <right_val>-0.1617936044931412</right_val></_></_>
4528 <_>
4529 <!-- tree 3 -->
4530 <_>
4531 <!-- root node -->
4532 <feature>
4533 <rects>
4534 <_>
4535 0 8 36 6 -1.</_>
4536 <_>
4537 12 10 12 2 9.</_></rects>
4538 <tilted>0</tilted></feature>
4539 <threshold>0.4775018990039825</threshold>
4540 <left_val>-0.1006157994270325</left_val>
4541 <right_val>0.7635074257850647</right_val></_></_>
4542 <_>
4543 <!-- tree 4 -->
4544 <_>
4545 <!-- root node -->
4546 <feature>
4547 <rects>
4548 <_>
4549 3 5 30 6 -1.</_>
4550 <_>
4551 13 7 10 2 9.</_></rects>
4552 <tilted>0</tilted></feature>
4553 <threshold>0.4226649105548859</threshold>
4554 <left_val>-0.0351909101009369</left_val>
4555 <right_val>0.8303126096725464</right_val></_></_>
4556 <_>
4557 <!-- tree 5 -->
4558 <_>
4559 <!-- root node -->
4560 <feature>
4561 <rects>
4562 <_>
4563 14 4 12 9 -1.</_>
4564 <_>
4565 18 4 4 9 3.</_></rects>
4566 <tilted>0</tilted></feature>
4567 <threshold>-0.0330318994820118</threshold>
4568 <left_val>-0.3750554919242859</left_val>
4569 <right_val>0.0489026196300983</right_val></_></_>
4570 <_>
4571 <!-- tree 6 -->
4572 <_>
4573 <!-- root node -->
4574 <feature>
4575 <rects>
4576 <_>
4577 0 17 6 1 -1.</_>
4578 <_>
4579 3 17 3 1 2.</_></rects>
4580 <tilted>0</tilted></feature>
4581 <threshold>1.1923770216526464e-004</threshold>
4582 <left_val>-0.2661466896533966</left_val>
4583 <right_val>0.2234652042388916</right_val></_></_>
4584 <_>
4585 <!-- tree 7 -->
4586 <_>
4587 <!-- root node -->
4588 <feature>
4589 <rects>
4590 <_>
4591 34 0 1 2 -1.</_>
4592 <_>
4593 34 0 1 1 2.</_></rects>
4594 <tilted>1</tilted></feature>
4595 <threshold>4.2101400904357433e-003</threshold>
4596 <left_val>8.7575968354940414e-003</left_val>
4597 <right_val>-0.5938351750373840</right_val></_></_>
4598 <_>
4599 <!-- tree 8 -->
4600 <_>
4601 <!-- root node -->
4602 <feature>
4603 <rects>
4604 <_>
4605 2 0 2 1 -1.</_>
4606 <_>
4607 2 0 1 1 2.</_></rects>
4608 <tilted>1</tilted></feature>
4609 <threshold>3.3337279455736279e-004</threshold>
4610 <left_val>-0.2122765928506851</left_val>
4611 <right_val>0.2473503947257996</right_val></_></_>
4612 <_>
4613 <!-- tree 9 -->
4614 <_>
4615 <!-- root node -->
4616 <feature>
4617 <rects>
4618 <_>
4619 31 3 3 8 -1.</_>
4620 <_>
4621 32 4 1 8 3.</_></rects>
4622 <tilted>1</tilted></feature>
4623 <threshold>0.0117938900366426</threshold>
4624 <left_val>-0.0689979493618011</left_val>
4625 <right_val>0.5898082852363586</right_val></_></_>
4626 <_>
4627 <!-- tree 10 -->
4628 <_>
4629 <!-- root node -->
4630 <feature>
4631 <rects>
4632 <_>
4633 5 6 26 12 -1.</_>
4634 <_>
4635 5 6 13 6 2.</_>
4636 <_>
4637 18 12 13 6 2.</_></rects>
4638 <tilted>0</tilted></feature>
4639 <threshold>-0.1143207997083664</threshold>
4640 <left_val>-0.7733368277549744</left_val>
4641 <right_val>0.0628622919321060</right_val></_></_>
4642 <_>
4643 <!-- tree 11 -->
4644 <_>
4645 <!-- root node -->
4646 <feature>
4647 <rects>
4648 <_>
4649 14 4 12 9 -1.</_>
4650 <_>
4651 18 4 4 9 3.</_></rects>
4652 <tilted>0</tilted></feature>
4653 <threshold>0.0824010074138641</threshold>
4654 <left_val>0.0168252792209387</left_val>
4655 <right_val>-0.6170011758804321</right_val></_></_>
4656 <_>
4657 <!-- tree 12 -->
4658 <_>
4659 <!-- root node -->
4660 <feature>
4661 <rects>
4662 <_>
4663 13 7 10 10 -1.</_>
4664 <_>
4665 13 7 5 5 2.</_>
4666 <_>
4667 18 12 5 5 2.</_></rects>
4668 <tilted>0</tilted></feature>
4669 <threshold>0.0181261505931616</threshold>
4670 <left_val>0.0995334684848785</left_val>
4671 <right_val>-0.3830915987491608</right_val></_></_>
4672 <_>
4673 <!-- tree 13 -->
4674 <_>
4675 <!-- root node -->
4676 <feature>
4677 <rects>
4678 <_>
4679 30 5 4 6 -1.</_>
4680 <_>
4681 31 6 2 6 2.</_></rects>
4682 <tilted>1</tilted></feature>
4683 <threshold>8.9282449334859848e-003</threshold>
4684 <left_val>-0.1010973975062370</left_val>
4685 <right_val>0.2948305010795593</right_val></_></_>
4686 <_>
4687 <!-- tree 14 -->
4688 <_>
4689 <!-- root node -->
4690 <feature>
4691 <rects>
4692 <_>
4693 6 5 6 4 -1.</_>
4694 <_>
4695 5 6 6 2 2.</_></rects>
4696 <tilted>1</tilted></feature>
4697 <threshold>-0.0174371004104614</threshold>
4698 <left_val>0.4614987075328827</left_val>
4699 <right_val>-0.1050636023283005</right_val></_></_>
4700 <_>
4701 <!-- tree 15 -->
4702 <_>
4703 <!-- root node -->
4704 <feature>
4705 <rects>
4706 <_>
4707 29 5 4 5 -1.</_>
4708 <_>
4709 30 6 2 5 2.</_></rects>
4710 <tilted>1</tilted></feature>
4711 <threshold>-0.0112803103402257</threshold>
4712 <left_val>0.4561164975166321</left_val>
4713 <right_val>-0.1013116016983986</right_val></_></_>
4714 <_>
4715 <!-- tree 16 -->
4716 <_>
4717 <!-- root node -->
4718 <feature>
4719 <rects>
4720 <_>
4721 7 5 5 4 -1.</_>
4722 <_>
4723 6 6 5 2 2.</_></rects>
4724 <tilted>1</tilted></feature>
4725 <threshold>7.0190089754760265e-003</threshold>
4726 <left_val>-0.1368626952171326</left_val>
4727 <right_val>0.4173265993595123</right_val></_></_>
4728 <_>
4729 <!-- tree 17 -->
4730 <_>
4731 <!-- root node -->
4732 <feature>
4733 <rects>
4734 <_>
4735 0 0 36 1 -1.</_>
4736 <_>
4737 12 0 12 1 3.</_></rects>
4738 <tilted>0</tilted></feature>
4739 <threshold>-3.2439709175378084e-003</threshold>
4740 <left_val>0.2321648001670837</left_val>
4741 <right_val>-0.1791536957025528</right_val></_></_>
4742 <_>
4743 <!-- tree 18 -->
4744 <_>
4745 <!-- root node -->
4746 <feature>
4747 <rects>
4748 <_>
4749 6 3 24 6 -1.</_>
4750 <_>
4751 14 5 8 2 9.</_></rects>
4752 <tilted>0</tilted></feature>
4753 <threshold>0.3561589121818543</threshold>
4754 <left_val>-0.0486268103122711</left_val>
4755 <right_val>0.9537345767021179</right_val></_></_>
4756 <_>
4757 <!-- tree 19 -->
4758 <_>
4759 <!-- root node -->
4760 <feature>
4761 <rects>
4762 <_>
4763 15 12 6 3 -1.</_>
4764 <_>
4765 15 13 6 1 3.</_></rects>
4766 <tilted>0</tilted></feature>
4767 <threshold>3.8440749049186707e-003</threshold>
4768 <left_val>-0.1028828024864197</left_val>
4769 <right_val>0.3671778142452240</right_val></_></_>
4770 <_>
4771 <!-- tree 20 -->
4772 <_>
4773 <!-- root node -->
4774 <feature>
4775 <rects>
4776 <_>
4777 11 1 9 17 -1.</_>
4778 <_>
4779 14 1 3 17 3.</_></rects>
4780 <tilted>0</tilted></feature>
4781 <threshold>0.0609500296413898</threshold>
4782 <left_val>0.0561417415738106</left_val>
4783 <right_val>-0.6458569765090942</right_val></_></_>
4784 <_>
4785 <!-- tree 21 -->
4786 <_>
4787 <!-- root node -->
4788 <feature>
4789 <rects>
4790 <_>
4791 18 1 18 10 -1.</_>
4792 <_>
4793 18 1 9 10 2.</_></rects>
4794 <tilted>0</tilted></feature>
4795 <threshold>0.1814922988414764</threshold>
4796 <left_val>0.0308063905686140</left_val>
4797 <right_val>-0.4604896008968353</right_val></_></_>
4798 <_>
4799 <!-- tree 22 -->
4800 <_>
4801 <!-- root node -->
4802 <feature>
4803 <rects>
4804 <_>
4805 0 1 18 10 -1.</_>
4806 <_>
4807 9 1 9 10 2.</_></rects>
4808 <tilted>0</tilted></feature>
4809 <threshold>-0.0923592597246170</threshold>
4810 <left_val>-0.4524821043014526</left_val>
4811 <right_val>0.0881522372364998</right_val></_></_>
4812 <_>
4813 <!-- tree 23 -->
4814 <_>
4815 <!-- root node -->
4816 <feature>
4817 <rects>
4818 <_>
4819 30 7 4 5 -1.</_>
4820 <_>
4821 31 8 2 5 2.</_></rects>
4822 <tilted>1</tilted></feature>
4823 <threshold>7.6072998344898224e-003</threshold>
4824 <left_val>-0.0971223264932632</left_val>
4825 <right_val>0.2155224978923798</right_val></_></_>
4826 <_>
4827 <!-- tree 24 -->
4828 <_>
4829 <!-- root node -->
4830 <feature>
4831 <rects>
4832 <_>
4833 0 10 1 3 -1.</_>
4834 <_>
4835 0 11 1 1 3.</_></rects>
4836 <tilted>0</tilted></feature>
4837 <threshold>-4.6946710790507495e-004</threshold>
4838 <left_val>-0.4089371860027313</left_val>
4839 <right_val>0.0800421908497810</right_val></_></_>
4840 <_>
4841 <!-- tree 25 -->
4842 <_>
4843 <!-- root node -->
4844 <feature>
4845 <rects>
4846 <_>
4847 33 16 2 2 -1.</_>
4848 <_>
4849 34 16 1 1 2.</_>
4850 <_>
4851 33 17 1 1 2.</_></rects>
4852 <tilted>0</tilted></feature>
4853 <threshold>1.0301820293534547e-004</threshold>
4854 <left_val>-0.1153035983443260</left_val>
4855 <right_val>0.2795535027980804</right_val></_></_>
4856 <_>
4857 <!-- tree 26 -->
4858 <_>
4859 <!-- root node -->
4860 <feature>
4861 <rects>
4862 <_>
4863 1 16 2 2 -1.</_>
4864 <_>
4865 1 16 1 1 2.</_>
4866 <_>
4867 2 17 1 1 2.</_></rects>
4868 <tilted>0</tilted></feature>
4869 <threshold>2.7936851256527007e-004</threshold>
4870 <left_val>-0.1139610037207604</left_val>
4871 <right_val>0.2931660115718842</right_val></_></_>
4872 <_>
4873 <!-- tree 27 -->
4874 <_>
4875 <!-- root node -->
4876 <feature>
4877 <rects>
4878 <_>
4879 0 8 36 3 -1.</_>
4880 <_>
4881 12 9 12 1 9.</_></rects>
4882 <tilted>0</tilted></feature>
4883 <threshold>0.2467595934867859</threshold>
4884 <left_val>-0.0385956317186356</left_val>
4885 <right_val>0.8264998197555542</right_val></_></_>
4886 <_>
4887 <!-- tree 28 -->
4888 <_>
4889 <!-- root node -->
4890 <feature>
4891 <rects>
4892 <_>
4893 14 7 8 4 -1.</_>
4894 <_>
4895 14 8 8 2 2.</_></rects>
4896 <tilted>0</tilted></feature>
4897 <threshold>-8.4232958033680916e-003</threshold>
4898 <left_val>0.3299596905708313</left_val>
4899 <right_val>-0.1164536997675896</right_val></_></_>
4900 <_>
4901 <!-- tree 29 -->
4902 <_>
4903 <!-- root node -->
4904 <feature>
4905 <rects>
4906 <_>
4907 17 9 5 3 -1.</_>
4908 <_>
4909 17 10 5 1 3.</_></rects>
4910 <tilted>0</tilted></feature>
4911 <threshold>-4.2311567813158035e-003</threshold>
4912 <left_val>0.2714211940765381</left_val>
4913 <right_val>-0.1081148013472557</right_val></_></_>
4914 <_>
4915 <!-- tree 30 -->
4916 <_>
4917 <!-- root node -->
4918 <feature>
4919 <rects>
4920 <_>
4921 4 0 1 2 -1.</_>
4922 <_>
4923 4 0 1 1 2.</_></rects>
4924 <tilted>1</tilted></feature>
4925 <threshold>1.5653009759262204e-003</threshold>
4926 <left_val>0.0782537832856178</left_val>
4927 <right_val>-0.5209766030311585</right_val></_></_>
4928 <_>
4929 <!-- tree 31 -->
4930 <_>
4931 <!-- root node -->
4932 <feature>
4933 <rects>
4934 <_>
4935 31 0 3 2 -1.</_>
4936 <_>
4937 31 0 3 1 2.</_></rects>
4938 <tilted>1</tilted></feature>
4939 <threshold>-5.0341398455202579e-003</threshold>
4940 <left_val>0.2948805987834930</left_val>
4941 <right_val>-0.0469605103135109</right_val></_></_>
4942 <_>
4943 <!-- tree 32 -->
4944 <_>
4945 <!-- root node -->
4946 <feature>
4947 <rects>
4948 <_>
4949 5 0 2 3 -1.</_>
4950 <_>
4951 5 0 1 3 2.</_></rects>
4952 <tilted>1</tilted></feature>
4953 <threshold>1.4283140189945698e-003</threshold>
4954 <left_val>-0.1379459947347641</left_val>
4955 <right_val>0.2432370930910111</right_val></_></_>
4956 <_>
4957 <!-- tree 33 -->
4958 <_>
4959 <!-- root node -->
4960 <feature>
4961 <rects>
4962 <_>
4963 0 13 36 5 -1.</_>
4964 <_>
4965 0 13 18 5 2.</_></rects>
4966 <tilted>0</tilted></feature>
4967 <threshold>0.1903136968612671</threshold>
4968 <left_val>-0.0520935095846653</left_val>
4969 <right_val>0.6870803236961365</right_val></_></_>
4970 <_>
4971 <!-- tree 34 -->
4972 <_>
4973 <!-- root node -->
4974 <feature>
4975 <rects>
4976 <_>
4977 6 3 4 3 -1.</_>
4978 <_>
4979 5 4 4 1 3.</_></rects>
4980 <tilted>1</tilted></feature>
4981 <threshold>8.1368777900934219e-003</threshold>
4982 <left_val>-0.0533115193247795</left_val>
4983 <right_val>0.5827271938323975</right_val></_></_>
4984 <_>
4985 <!-- tree 35 -->
4986 <_>
4987 <!-- root node -->
4988 <feature>
4989 <rects>
4990 <_>
4991 28 7 6 3 -1.</_>
4992 <_>
4993 30 9 2 3 3.</_></rects>
4994 <tilted>1</tilted></feature>
4995 <threshold>-0.0467283688485622</threshold>
4996 <left_val>0.3552536070346832</left_val>
4997 <right_val>-0.0178062599152327</right_val></_></_>
4998 <_>
4999 <!-- tree 36 -->
5000 <_>
5001 <!-- root node -->
5002 <feature>
5003 <rects>
5004 <_>
5005 8 7 3 6 -1.</_>
5006 <_>
5007 6 9 3 2 3.</_></rects>
5008 <tilted>1</tilted></feature>
5009 <threshold>0.0143171697854996</threshold>
5010 <left_val>-0.1262664049863815</left_val>
5011 <right_val>0.2696101069450378</right_val></_></_>
5012 <_>
5013 <!-- tree 37 -->
5014 <_>
5015 <!-- root node -->
5016 <feature>
5017 <rects>
5018 <_>
5019 14 5 18 10 -1.</_>
5020 <_>
5021 23 5 9 5 2.</_>
5022 <_>
5023 14 10 9 5 2.</_></rects>
5024 <tilted>0</tilted></feature>
5025 <threshold>-0.0961097329854965</threshold>
5026 <left_val>0.3411748111248016</left_val>
5027 <right_val>-0.0392176099121571</right_val></_></_>
5028 <_>
5029 <!-- tree 38 -->
5030 <_>
5031 <!-- root node -->
5032 <feature>
5033 <rects>
5034 <_>
5035 4 5 18 10 -1.</_>
5036 <_>
5037 4 5 9 5 2.</_>
5038 <_>
5039 13 10 9 5 2.</_></rects>
5040 <tilted>0</tilted></feature>
5041 <threshold>0.0748788118362427</threshold>
5042 <left_val>-0.0648199021816254</left_val>
5043 <right_val>0.5671138167381287</right_val></_></_>
5044 <_>
5045 <!-- tree 39 -->
5046 <_>
5047 <!-- root node -->
5048 <feature>
5049 <rects>
5050 <_>
5051 32 17 3 1 -1.</_>
5052 <_>
5053 33 17 1 1 3.</_></rects>
5054 <tilted>0</tilted></feature>
5055 <threshold>-5.1972299843328074e-005</threshold>
5056 <left_val>0.2874209880828857</left_val>
5057 <right_val>-0.1642889976501465</right_val></_></_>
5058 <_>
5059 <!-- tree 40 -->
5060 <_>
5061 <!-- root node -->
5062 <feature>
5063 <rects>
5064 <_>
5065 1 17 3 1 -1.</_>
5066 <_>
5067 2 17 1 1 3.</_></rects>
5068 <tilted>0</tilted></feature>
5069 <threshold>-2.0099039829801768e-004</threshold>
5070 <left_val>0.2659021019935608</left_val>
5071 <right_val>-0.1299035996198654</right_val></_></_>
5072 <_>
5073 <!-- tree 41 -->
5074 <_>
5075 <!-- root node -->
5076 <feature>
5077 <rects>
5078 <_>
5079 5 0 26 2 -1.</_>
5080 <_>
5081 18 0 13 1 2.</_>
5082 <_>
5083 5 1 13 1 2.</_></rects>
5084 <tilted>0</tilted></feature>
5085 <threshold>0.0155834900215268</threshold>
5086 <left_val>0.0363226197659969</left_val>
5087 <right_val>-0.8874331712722778</right_val></_></_>
5088 <_>
5089 <!-- tree 42 -->
5090 <_>
5091 <!-- root node -->
5092 <feature>
5093 <rects>
5094 <_>
5095 0 3 27 9 -1.</_>
5096 <_>
5097 9 6 9 3 9.</_></rects>
5098 <tilted>0</tilted></feature>
5099 <threshold>6.7313341423869133e-003</threshold>
5100 <left_val>0.1628185957670212</left_val>
5101 <right_val>-0.1971620023250580</right_val></_></_>
5102 <_>
5103 <!-- tree 43 -->
5104 <_>
5105 <!-- root node -->
5106 <feature>
5107 <rects>
5108 <_>
5109 13 0 18 12 -1.</_>
5110 <_>
5111 13 6 18 6 2.</_></rects>
5112 <tilted>0</tilted></feature>
5113 <threshold>-0.0452514104545116</threshold>
5114 <left_val>-0.2031500935554504</left_val>
5115 <right_val>0.1573408991098404</right_val></_></_>
5116 <_>
5117 <!-- tree 44 -->
5118 <_>
5119 <!-- root node -->
5120 <feature>
5121 <rects>
5122 <_>
5123 0 17 4 1 -1.</_>
5124 <_>
5125 1 17 2 1 2.</_></rects>
5126 <tilted>0</tilted></feature>
5127 <threshold>2.8729529003612697e-004</threshold>
5128 <left_val>-0.1244959011673927</left_val>
5129 <right_val>0.2565822899341583</right_val></_></_>
5130 <_>
5131 <!-- tree 45 -->
5132 <_>
5133 <!-- root node -->
5134 <feature>
5135 <rects>
5136 <_>
5137 29 13 1 3 -1.</_>
5138 <_>
5139 28 14 1 1 3.</_></rects>
5140 <tilted>1</tilted></feature>
5141 <threshold>-2.1028579212725163e-003</threshold>
5142 <left_val>-0.5088729262351990</left_val>
5143 <right_val>0.0340831801295280</right_val></_></_>
5144 <_>
5145 <!-- tree 46 -->
5146 <_>
5147 <!-- root node -->
5148 <feature>
5149 <rects>
5150 <_>
5151 0 12 8 6 -1.</_>
5152 <_>
5153 0 14 8 2 3.</_></rects>
5154 <tilted>0</tilted></feature>
5155 <threshold>-3.9328099228441715e-003</threshold>
5156 <left_val>-0.3393375873565674</left_val>
5157 <right_val>0.0930555686354637</right_val></_></_>
5158 <_>
5159 <!-- tree 47 -->
5160 <_>
5161 <!-- root node -->
5162 <feature>
5163 <rects>
5164 <_>
5165 23 7 3 3 -1.</_>
5166 <_>
5167 24 7 1 3 3.</_></rects>
5168 <tilted>0</tilted></feature>
5169 <threshold>3.1205590348690748e-003</threshold>
5170 <left_val>-0.0227940604090691</left_val>
5171 <right_val>0.2379353046417236</right_val></_></_>
5172 <_>
5173 <!-- tree 48 -->
5174 <_>
5175 <!-- root node -->
5176 <feature>
5177 <rects>
5178 <_>
5179 11 1 12 6 -1.</_>
5180 <_>
5181 11 3 12 2 3.</_></rects>
5182 <tilted>0</tilted></feature>
5183 <threshold>0.0780286788940430</threshold>
5184 <left_val>-0.0445036217570305</left_val>
5185 <right_val>0.6776394248008728</right_val></_></_>
5186 <_>
5187 <!-- tree 49 -->
5188 <_>
5189 <!-- root node -->
5190 <feature>
5191 <rects>
5192 <_>
5193 5 10 26 8 -1.</_>
5194 <_>
5195 18 10 13 4 2.</_>
5196 <_>
5197 5 14 13 4 2.</_></rects>
5198 <tilted>0</tilted></feature>
5199 <threshold>0.0424769781529903</threshold>
5200 <left_val>0.0925821065902710</left_val>
5201 <right_val>-0.3536301851272583</right_val></_></_>
5202 <_>
5203 <!-- tree 50 -->
5204 <_>
5205 <!-- root node -->
5206 <feature>
5207 <rects>
5208 <_>
5209 11 12 9 6 -1.</_>
5210 <_>
5211 14 12 3 6 3.</_></rects>
5212 <tilted>0</tilted></feature>
5213 <threshold>-0.0257683005183935</threshold>
5214 <left_val>-0.9091991186141968</left_val>
5215 <right_val>0.0266928393393755</right_val></_></_>
5216 <_>
5217 <!-- tree 51 -->
5218 <_>
5219 <!-- root node -->
5220 <feature>
5221 <rects>
5222 <_>
5223 14 12 12 3 -1.</_>
5224 <_>
5225 18 13 4 1 9.</_></rects>
5226 <tilted>0</tilted></feature>
5227 <threshold>0.0614446699619293</threshold>
5228 <left_val>-0.0249543990939856</left_val>
5229 <right_val>0.7212049961090088</right_val></_></_>
5230 <_>
5231 <!-- tree 52 -->
5232 <_>
5233 <!-- root node -->
5234 <feature>
5235 <rects>
5236 <_>
5237 10 12 12 3 -1.</_>
5238 <_>
5239 14 13 4 1 9.</_></rects>
5240 <tilted>0</tilted></feature>
5241 <threshold>3.5776318982243538e-003</threshold>
5242 <left_val>0.1772899031639099</left_val>
5243 <right_val>-0.1972344964742661</right_val></_></_></trees>
5244 <stage_threshold>-1.2766569852828979</stage_threshold>
5245 <parent>13</parent>
5246 <next>-1</next></_>
5247 <_>
5248 <!-- stage 15 -->
5249 <trees>
5250 <_>
5251 <!-- tree 0 -->
5252 <_>
5253 <!-- root node -->
5254 <feature>
5255 <rects>
5256 <_>
5257 4 6 27 6 -1.</_>
5258 <_>
5259 13 8 9 2 9.</_></rects>
5260 <tilted>0</tilted></feature>
5261 <threshold>0.2858596146106720</threshold>
5262 <left_val>-0.1539604961872101</left_val>
5263 <right_val>0.6624677181243897</right_val></_></_>
5264 <_>
5265 <!-- tree 1 -->
5266 <_>
5267 <!-- root node -->
5268 <feature>
5269 <rects>
5270 <_>
5271 17 9 5 4 -1.</_>
5272 <_>
5273 17 10 5 2 2.</_></rects>
5274 <tilted>0</tilted></feature>
5275 <threshold>9.2271259054541588e-003</threshold>
5276 <left_val>-0.1074633970856667</left_val>
5277 <right_val>0.4311806857585907</right_val></_></_>
5278 <_>
5279 <!-- tree 2 -->
5280 <_>
5281 <!-- root node -->
5282 <feature>
5283 <rects>
5284 <_>
5285 0 0 16 2 -1.</_>
5286 <_>
5287 0 0 8 1 2.</_>
5288 <_>
5289 8 1 8 1 2.</_></rects>
5290 <tilted>0</tilted></feature>
5291 <threshold>2.2924109362065792e-003</threshold>
5292 <left_val>-0.1983013004064560</left_val>
5293 <right_val>0.3842228949069977</right_val></_></_>
5294 <_>
5295 <!-- tree 3 -->
5296 <_>
5297 <!-- root node -->
5298 <feature>
5299 <rects>
5300 <_>
5301 22 0 8 8 -1.</_>
5302 <_>
5303 26 0 4 4 2.</_>
5304 <_>
5305 22 4 4 4 2.</_></rects>
5306 <tilted>0</tilted></feature>
5307 <threshold>0.0140045098960400</threshold>
5308 <left_val>-0.1924948990345001</left_val>
5309 <right_val>0.3442491888999939</right_val></_></_>
5310 <_>
5311 <!-- tree 4 -->
5312 <_>
5313 <!-- root node -->
5314 <feature>
5315 <rects>
5316 <_>
5317 1 0 32 12 -1.</_>
5318 <_>
5319 1 0 16 6 2.</_>
5320 <_>
5321 17 6 16 6 2.</_></rects>
5322 <tilted>0</tilted></feature>
5323 <threshold>0.0960232019424438</threshold>
5324 <left_val>0.1299059987068176</left_val>
5325 <right_val>-0.6065304875373840</right_val></_></_>
5326 <_>
5327 <!-- tree 5 -->
5328 <_>
5329 <!-- root node -->
5330 <feature>
5331 <rects>
5332 <_>
5333 28 7 6 10 -1.</_>
5334 <_>
5335 31 7 3 5 2.</_>
5336 <_>
5337 28 12 3 5 2.</_></rects>
5338 <tilted>0</tilted></feature>
5339 <threshold>6.1803720891475677e-003</threshold>
5340 <left_val>-0.1904646009206772</left_val>
5341 <right_val>0.1891862004995346</right_val></_></_>
5342 <_>
5343 <!-- tree 6 -->
5344 <_>
5345 <!-- root node -->
5346 <feature>
5347 <rects>
5348 <_>
5349 2 7 6 10 -1.</_>
5350 <_>
5351 2 7 3 5 2.</_>
5352 <_>
5353 5 12 3 5 2.</_></rects>
5354 <tilted>0</tilted></feature>
5355 <threshold>8.2172285765409470e-003</threshold>
5356 <left_val>-0.2518267929553986</left_val>
5357 <right_val>0.2664459049701691</right_val></_></_>
5358 <_>
5359 <!-- tree 7 -->
5360 <_>
5361 <!-- root node -->
5362 <feature>
5363 <rects>
5364 <_>
5365 20 10 3 3 -1.</_>
5366 <_>
5367 20 11 3 1 3.</_></rects>
5368 <tilted>0</tilted></feature>
5369 <threshold>-1.4542760327458382e-003</threshold>
5370 <left_val>0.2710269093513489</left_val>
5371 <right_val>-0.1204148977994919</right_val></_></_>
5372 <_>
5373 <!-- tree 8 -->
5374 <_>
5375 <!-- root node -->
5376 <feature>
5377 <rects>
5378 <_>
5379 13 10 3 3 -1.</_>
5380 <_>
5381 13 11 3 1 3.</_></rects>
5382 <tilted>0</tilted></feature>
5383 <threshold>3.0185449868440628e-003</threshold>
5384 <left_val>-0.1353860944509506</left_val>
5385 <right_val>0.4733603000640869</right_val></_></_>
5386 <_>
5387 <!-- tree 9 -->
5388 <_>
5389 <!-- root node -->
5390 <feature>
5391 <rects>
5392 <_>
5393 17 16 6 2 -1.</_>
5394 <_>
5395 19 16 2 2 3.</_></rects>
5396 <tilted>0</tilted></feature>
5397 <threshold>-3.4214779734611511e-003</threshold>
5398 <left_val>-0.5049971938133240</left_val>
5399 <right_val>0.1042480990290642</right_val></_></_>
5400 <_>
5401 <!-- tree 10 -->
5402 <_>
5403 <!-- root node -->
5404 <feature>
5405 <rects>
5406 <_>
5407 13 11 7 3 -1.</_>
5408 <_>
5409 13 12 7 1 3.</_></rects>
5410 <tilted>0</tilted></feature>
5411 <threshold>9.5980763435363770e-003</threshold>
5412 <left_val>-0.1034729033708572</left_val>
5413 <right_val>0.5837283730506897</right_val></_></_>
5414 <_>
5415 <!-- tree 11 -->
5416 <_>
5417 <!-- root node -->
5418 <feature>
5419 <rects>
5420 <_>
5421 25 13 3 2 -1.</_>
5422 <_>
5423 25 13 3 1 2.</_></rects>
5424 <tilted>1</tilted></feature>
5425 <threshold>4.1849957779049873e-003</threshold>
5426 <left_val>0.0588967092335224</left_val>
5427 <right_val>-0.4623228907585144</right_val></_></_>
5428 <_>
5429 <!-- tree 12 -->
5430 <_>
5431 <!-- root node -->
5432 <feature>
5433 <rects>
5434 <_>
5435 13 10 4 4 -1.</_>
5436 <_>
5437 13 11 4 2 2.</_></rects>
5438 <tilted>0</tilted></feature>
5439 <threshold>-4.6107750385999680e-003</threshold>
5440 <left_val>0.3783561885356903</left_val>
5441 <right_val>-0.1259022951126099</right_val></_></_>
5442 <_>
5443 <!-- tree 13 -->
5444 <_>
5445 <!-- root node -->
5446 <feature>
5447 <rects>
5448 <_>
5449 17 16 18 2 -1.</_>
5450 <_>
5451 26 16 9 1 2.</_>
5452 <_>
5453 17 17 9 1 2.</_></rects>
5454 <tilted>0</tilted></feature>
5455 <threshold>2.8978679329156876e-003</threshold>
5456 <left_val>-0.1369954943656921</left_val>
5457 <right_val>0.2595148086547852</right_val></_></_>
5458 <_>
5459 <!-- tree 14 -->
5460 <_>
5461 <!-- root node -->
5462 <feature>
5463 <rects>
5464 <_>
5465 9 13 4 1 -1.</_>
5466 <_>
5467 9 13 2 1 2.</_></rects>
5468 <tilted>1</tilted></feature>
5469 <threshold>4.2606070637702942e-003</threshold>
5470 <left_val>0.0882339626550674</left_val>
5471 <right_val>-0.6390284895896912</right_val></_></_>
5472 <_>
5473 <!-- tree 15 -->
5474 <_>
5475 <!-- root node -->
5476 <feature>
5477 <rects>
5478 <_>
5479 34 1 2 1 -1.</_>
5480 <_>
5481 34 1 1 1 2.</_></rects>
5482 <tilted>1</tilted></feature>
5483 <threshold>-4.2996238917112350e-003</threshold>
5484 <left_val>-0.7953972816467285</left_val>
5485 <right_val>0.0170935597270727</right_val></_></_>
5486 <_>
5487 <!-- tree 16 -->
5488 <_>
5489 <!-- root node -->
5490 <feature>
5491 <rects>
5492 <_>
5493 5 4 24 6 -1.</_>
5494 <_>
5495 13 6 8 2 9.</_></rects>
5496 <tilted>0</tilted></feature>
5497 <threshold>0.3542361855506897</threshold>
5498 <left_val>-0.0593450404703617</left_val>
5499 <right_val>0.8557919859886169</right_val></_></_>
5500 <_>
5501 <!-- tree 17 -->
5502 <_>
5503 <!-- root node -->
5504 <feature>
5505 <rects>
5506 <_>
5507 33 16 3 2 -1.</_>
5508 <_>
5509 33 17 3 1 2.</_></rects>
5510 <tilted>0</tilted></feature>
5511 <threshold>-3.0245838570408523e-004</threshold>
5512 <left_val>0.3147065043449402</left_val>
5513 <right_val>-0.1448609977960587</right_val></_></_>
5514 <_>
5515 <!-- tree 18 -->
5516 <_>
5517 <!-- root node -->
5518 <feature>
5519 <rects>
5520 <_>
5521 0 17 36 1 -1.</_>
5522 <_>
5523 18 17 18 1 2.</_></rects>
5524 <tilted>0</tilted></feature>
5525 <threshold>0.0271694902330637</threshold>
5526 <left_val>-0.1249295026063919</left_val>
5527 <right_val>0.4280903935432434</right_val></_></_>
5528 <_>
5529 <!-- tree 19 -->
5530 <_>
5531 <!-- root node -->
5532 <feature>
5533 <rects>
5534 <_>
5535 34 1 2 1 -1.</_>
5536 <_>
5537 34 1 1 1 2.</_></rects>
5538 <tilted>1</tilted></feature>
5539 <threshold>3.4571529831737280e-003</threshold>
5540 <left_val>0.0397093296051025</left_val>
5541 <right_val>-0.7089157104492188</right_val></_></_>
5542 <_>
5543 <!-- tree 20 -->
5544 <_>
5545 <!-- root node -->
5546 <feature>
5547 <rects>
5548 <_>
5549 2 1 1 2 -1.</_>
5550 <_>
5551 2 1 1 1 2.</_></rects>
5552 <tilted>1</tilted></feature>
5553 <threshold>2.1742798853665590e-003</threshold>
5554 <left_val>0.0658724531531334</left_val>
5555 <right_val>-0.6949694156646729</right_val></_></_>
5556 <_>
5557 <!-- tree 21 -->
5558 <_>
5559 <!-- root node -->
5560 <feature>
5561 <rects>
5562 <_>
5563 22 0 8 10 -1.</_>
5564 <_>
5565 24 2 4 10 2.</_></rects>
5566 <tilted>1</tilted></feature>
5567 <threshold>0.0252638105303049</threshold>
5568 <left_val>-0.1169395968317986</left_val>
5569 <right_val>0.1904976963996887</right_val></_></_>
5570 <_>
5571 <!-- tree 22 -->
5572 <_>
5573 <!-- root node -->
5574 <feature>
5575 <rects>
5576 <_>
5577 12 4 8 12 -1.</_>
5578 <_>
5579 12 4 4 6 2.</_>
5580 <_>
5581 16 10 4 6 2.</_></rects>
5582 <tilted>0</tilted></feature>
5583 <threshold>-0.0247209891676903</threshold>
5584 <left_val>-0.4965795874595642</left_val>
5585 <right_val>0.1017538011074066</right_val></_></_>
5586 <_>
5587 <!-- tree 23 -->
5588 <_>
5589 <!-- root node -->
5590 <feature>
5591 <rects>
5592 <_>
5593 26 6 6 6 -1.</_>
5594 <_>
5595 29 6 3 3 2.</_>
5596 <_>
5597 26 9 3 3 2.</_></rects>
5598 <tilted>0</tilted></feature>
5599 <threshold>0.0103848800063133</threshold>
5600 <left_val>-0.1148673966526985</left_val>
5601 <right_val>0.3374153077602387</right_val></_></_>
5602 <_>
5603 <!-- tree 24 -->
5604 <_>
5605 <!-- root node -->
5606 <feature>
5607 <rects>
5608 <_>
5609 5 6 4 6 -1.</_>
5610 <_>
5611 5 6 2 3 2.</_>
5612 <_>
5613 7 9 2 3 2.</_></rects>
5614 <tilted>0</tilted></feature>
5615 <threshold>5.0045028328895569e-003</threshold>
5616 <left_val>-0.1096355020999908</left_val>
5617 <right_val>0.3925519883632660</right_val></_></_>
5618 <_>
5619 <!-- tree 25 -->
5620 <_>
5621 <!-- root node -->
5622 <feature>
5623 <rects>
5624 <_>
5625 29 5 2 4 -1.</_>
5626 <_>
5627 29 5 1 4 2.</_></rects>
5628 <tilted>1</tilted></feature>
5629 <threshold>7.1279620751738548e-003</threshold>
5630 <left_val>-0.0649081915616989</left_val>
5631 <right_val>0.4042040109634399</right_val></_></_>
5632 <_>
5633 <!-- tree 26 -->
5634 <_>
5635 <!-- root node -->
5636 <feature>
5637 <rects>
5638 <_>
5639 7 4 18 3 -1.</_>
5640 <_>
5641 7 5 18 1 3.</_></rects>
5642 <tilted>0</tilted></feature>
5643 <threshold>0.0197004191577435</threshold>
5644 <left_val>-0.0793758779764175</left_val>
5645 <right_val>0.5308234095573425</right_val></_></_>
5646 <_>
5647 <!-- tree 27 -->
5648 <_>
5649 <!-- root node -->
5650 <feature>
5651 <rects>
5652 <_>
5653 29 13 2 3 -1.</_>
5654 <_>
5655 28 14 2 1 3.</_></rects>
5656 <tilted>1</tilted></feature>
5657 <threshold>4.2097331024706364e-003</threshold>
5658 <left_val>0.0407970212399960</left_val>
5659 <right_val>-0.6044098734855652</right_val></_></_>
5660 <_>
5661 <!-- tree 28 -->
5662 <_>
5663 <!-- root node -->
5664 <feature>
5665 <rects>
5666 <_>
5667 9 5 3 3 -1.</_>
5668 <_>
5669 8 6 3 1 3.</_></rects>
5670 <tilted>1</tilted></feature>
5671 <threshold>4.4459570199251175e-003</threshold>
5672 <left_val>-0.1038623005151749</left_val>
5673 <right_val>0.4093598127365112</right_val></_></_>
5674 <_>
5675 <!-- tree 29 -->
5676 <_>
5677 <!-- root node -->
5678 <feature>
5679 <rects>
5680 <_>
5681 7 16 22 2 -1.</_>
5682 <_>
5683 18 16 11 1 2.</_>
5684 <_>
5685 7 17 11 1 2.</_></rects>
5686 <tilted>0</tilted></feature>
5687 <threshold>-5.9610428288578987e-003</threshold>
5688 <left_val>-0.5291494727134705</left_val>
5689 <right_val>0.0805394500494003</right_val></_></_>
5690 <_>
5691 <!-- tree 30 -->
5692 <_>
5693 <!-- root node -->
5694 <feature>
5695 <rects>
5696 <_>
5697 0 2 1 3 -1.</_>
5698 <_>
5699 0 3 1 1 3.</_></rects>
5700 <tilted>0</tilted></feature>
5701 <threshold>5.7519221445545554e-004</threshold>
5702 <left_val>0.0638044029474258</left_val>
5703 <right_val>-0.5863661766052246</right_val></_></_>
5704 <_>
5705 <!-- tree 31 -->
5706 <_>
5707 <!-- root node -->
5708 <feature>
5709 <rects>
5710 <_>
5711 16 3 20 6 -1.</_>
5712 <_>
5713 26 3 10 3 2.</_>
5714 <_>
5715 16 6 10 3 2.</_></rects>
5716 <tilted>0</tilted></feature>
5717 <threshold>0.0605248510837555</threshold>
5718 <left_val>-0.0337128005921841</left_val>
5719 <right_val>0.2631115913391113</right_val></_></_>
5720 <_>
5721 <!-- tree 32 -->
5722 <_>
5723 <!-- root node -->
5724 <feature>
5725 <rects>
5726 <_>
5727 10 5 8 6 -1.</_>
5728 <_>
5729 12 5 4 6 2.</_></rects>
5730 <tilted>0</tilted></feature>
5731 <threshold>-0.0103538101539016</threshold>
5732 <left_val>-0.4792002141475678</left_val>
5733 <right_val>0.0800439566373825</right_val></_></_>
5734 <_>
5735 <!-- tree 33 -->
5736 <_>
5737 <!-- root node -->
5738 <feature>
5739 <rects>
5740 <_>
5741 1 8 34 8 -1.</_>
5742 <_>
5743 18 8 17 4 2.</_>
5744 <_>
5745 1 12 17 4 2.</_></rects>
5746 <tilted>0</tilted></feature>
5747 <threshold>-0.0227775108069181</threshold>
5748 <left_val>-0.3116275072097778</left_val>
5749 <right_val>0.1189998015761375</right_val></_></_>
5750 <_>
5751 <!-- tree 34 -->
5752 <_>
5753 <!-- root node -->
5754 <feature>
5755 <rects>
5756 <_>
5757 14 9 8 8 -1.</_>
5758 <_>
5759 14 9 4 4 2.</_>
5760 <_>
5761 18 13 4 4 2.</_></rects>
5762 <tilted>0</tilted></feature>
5763 <threshold>-0.0224688798189163</threshold>
5764 <left_val>-0.6608346104621887</left_val>
5765 <right_val>0.0522344894707203</right_val></_></_>
5766 <_>
5767 <!-- tree 35 -->
5768 <_>
5769 <!-- root node -->
5770 <feature>
5771 <rects>
5772 <_>
5773 35 0 1 3 -1.</_>
5774 <_>
5775 35 1 1 1 3.</_></rects>
5776 <tilted>0</tilted></feature>
5777 <threshold>5.8432162040844560e-004</threshold>
5778 <left_val>0.0546303391456604</left_val>
5779 <right_val>-0.4639565944671631</right_val></_></_>
5780 <_>
5781 <!-- tree 36 -->
5782 <_>
5783 <!-- root node -->
5784 <feature>
5785 <rects>
5786 <_>
5787 15 8 3 5 -1.</_>
5788 <_>
5789 16 8 1 5 3.</_></rects>
5790 <tilted>0</tilted></feature>
5791 <threshold>-3.6177870351821184e-003</threshold>
5792 <left_val>0.6744704246520996</left_val>
5793 <right_val>-0.0587895289063454</right_val></_></_>
5794 <_>
5795 <!-- tree 37 -->
5796 <_>
5797 <!-- root node -->
5798 <feature>
5799 <rects>
5800 <_>
5801 19 0 10 1 -1.</_>
5802 <_>
5803 19 0 5 1 2.</_></rects>
5804 <tilted>1</tilted></feature>
5805 <threshold>0.0300888605415821</threshold>
5806 <left_val>0.0331335216760635</left_val>
5807 <right_val>-0.4646137058734894</right_val></_></_></trees>
5808 <stage_threshold>-1.4061349630355835</stage_threshold>
5809 <parent>14</parent>
5810 <next>-1</next></_>
5811 <_>
5812 <!-- stage 16 -->
5813 <trees>
5814 <_>
5815 <!-- tree 0 -->
5816 <_>
5817 <!-- root node -->
5818 <feature>
5819 <rects>
5820 <_>
5821 9 3 9 6 -1.</_>
5822 <_>
5823 7 5 9 2 3.</_></rects>
5824 <tilted>1</tilted></feature>
5825 <threshold>-0.0726009905338287</threshold>
5826 <left_val>0.6390709280967712</left_val>
5827 <right_val>-0.1512455046176910</right_val></_></_>
5828 <_>
5829 <!-- tree 1 -->
5830 <_>
5831 <!-- root node -->
5832 <feature>
5833 <rects>
5834 <_>
5835 6 6 24 6 -1.</_>
5836 <_>
5837 14 8 8 2 9.</_></rects>
5838 <tilted>0</tilted></feature>
5839 <threshold>0.3471255898475647</threshold>
5840 <left_val>-0.0790246576070786</left_val>
5841 <right_val>0.7955042123794556</right_val></_></_>
5842 <_>
5843 <!-- tree 2 -->
5844 <_>
5845 <!-- root node -->
5846 <feature>
5847 <rects>
5848 <_>
5849 4 8 27 6 -1.</_>
5850 <_>
5851 13 10 9 2 9.</_></rects>
5852 <tilted>0</tilted></feature>
5853 <threshold>0.3429723083972931</threshold>
5854 <left_val>-0.1230095997452736</left_val>
5855 <right_val>0.6572809815406799</right_val></_></_>
5856 <_>
5857 <!-- tree 3 -->
5858 <_>
5859 <!-- root node -->
5860 <feature>
5861 <rects>
5862 <_>
5863 5 4 27 6 -1.</_>
5864 <_>
5865 14 6 9 2 9.</_></rects>
5866 <tilted>0</tilted></feature>
5867 <threshold>0.3561694025993347</threshold>
5868 <left_val>-0.0537334382534027</left_val>
5869 <right_val>0.8285108208656311</right_val></_></_>
5870 <_>
5871 <!-- tree 4 -->
5872 <_>
5873 <!-- root node -->
5874 <feature>
5875 <rects>
5876 <_>
5877 5 6 5 6 -1.</_>
5878 <_>
5879 5 8 5 2 3.</_></rects>
5880 <tilted>0</tilted></feature>
5881 <threshold>6.0840700753033161e-003</threshold>
5882 <left_val>-0.1284721046686173</left_val>
5883 <right_val>0.3382267951965332</right_val></_></_>
5884 <_>
5885 <!-- tree 5 -->
5886 <_>
5887 <!-- root node -->
5888 <feature>
5889 <rects>
5890 <_>
5891 35 0 1 2 -1.</_>
5892 <_>
5893 35 1 1 1 2.</_></rects>
5894 <tilted>0</tilted></feature>
5895 <threshold>-1.6281309945043176e-004</threshold>
5896 <left_val>0.3035660982131958</left_val>
5897 <right_val>-0.2518202960491180</right_val></_></_>
5898 <_>
5899 <!-- tree 6 -->
5900 <_>
5901 <!-- root node -->
5902 <feature>
5903 <rects>
5904 <_>
5905 4 3 10 3 -1.</_>
5906 <_>
5907 3 4 10 1 3.</_></rects>
5908 <tilted>1</tilted></feature>
5909 <threshold>0.0112819001078606</threshold>
5910 <left_val>-0.0839143469929695</left_val>
5911 <right_val>0.4347592890262604</right_val></_></_>
5912 <_>
5913 <!-- tree 7 -->
5914 <_>
5915 <!-- root node -->
5916 <feature>
5917 <rects>
5918 <_>
5919 29 5 2 4 -1.</_>
5920 <_>
5921 29 5 1 4 2.</_></rects>
5922 <tilted>1</tilted></feature>
5923 <threshold>7.4357059784233570e-003</threshold>
5924 <left_val>-0.0670880377292633</left_val>
5925 <right_val>0.3722797930240631</right_val></_></_>
5926 <_>
5927 <!-- tree 8 -->
5928 <_>
5929 <!-- root node -->
5930 <feature>
5931 <rects>
5932 <_>
5933 3 0 28 16 -1.</_>
5934 <_>
5935 3 0 14 8 2.</_>
5936 <_>
5937 17 8 14 8 2.</_></rects>
5938 <tilted>0</tilted></feature>
5939 <threshold>-0.0905762165784836</threshold>
5940 <left_val>-0.5831961035728455</left_val>
5941 <right_val>0.0801467597484589</right_val></_></_>
5942 <_>
5943 <!-- tree 9 -->
5944 <_>
5945 <!-- root node -->
5946 <feature>
5947 <rects>
5948 <_>
5949 31 0 4 2 -1.</_>
5950 <_>
5951 31 0 2 2 2.</_></rects>
5952 <tilted>1</tilted></feature>
5953 <threshold>8.8247694075107574e-003</threshold>
5954 <left_val>0.1290193051099777</left_val>
5955 <right_val>-0.4760313034057617</right_val></_></_>
5956 <_>
5957 <!-- tree 10 -->
5958 <_>
5959 <!-- root node -->
5960 <feature>
5961 <rects>
5962 <_>
5963 4 9 3 9 -1.</_>
5964 <_>
5965 4 12 3 3 3.</_></rects>
5966 <tilted>0</tilted></feature>
5967 <threshold>-2.6147770695388317e-003</threshold>
5968 <left_val>-0.4000220894813538</left_val>
5969 <right_val>0.1124631017446518</right_val></_></_>
5970 <_>
5971 <!-- tree 11 -->
5972 <_>
5973 <!-- root node -->
5974 <feature>
5975 <rects>
5976 <_>
5977 32 16 4 2 -1.</_>
5978 <_>
5979 32 17 4 1 2.</_></rects>
5980 <tilted>0</tilted></feature>
5981 <threshold>-2.5541300419718027e-004</threshold>
5982 <left_val>0.3238615989685059</left_val>
5983 <right_val>-0.2333187013864517</right_val></_></_>
5984 <_>
5985 <!-- tree 12 -->
5986 <_>
5987 <!-- root node -->
5988 <feature>
5989 <rects>
5990 <_>
5991 17 0 1 10 -1.</_>
5992 <_>
5993 17 0 1 5 2.</_></rects>
5994 <tilted>1</tilted></feature>
5995 <threshold>0.0265476293861866</threshold>
5996 <left_val>0.0723338723182678</left_val>
5997 <right_val>-0.5837839841842651</right_val></_></_>
5998 <_>
5999 <!-- tree 13 -->
6000 <_>
6001 <!-- root node -->
6002 <feature>
6003 <rects>
6004 <_>
6005 17 4 14 8 -1.</_>
6006 <_>
6007 17 4 7 8 2.</_></rects>
6008 <tilted>0</tilted></feature>
6009 <threshold>-0.0513831414282322</threshold>
6010 <left_val>-0.2244618982076645</left_val>
6011 <right_val>0.0409497395157814</right_val></_></_>
6012 <_>
6013 <!-- tree 14 -->
6014 <_>
6015 <!-- root node -->
6016 <feature>
6017 <rects>
6018 <_>
6019 6 0 11 4 -1.</_>
6020 <_>
6021 6 2 11 2 2.</_></rects>
6022 <tilted>0</tilted></feature>
6023 <threshold>3.3701129723340273e-003</threshold>
6024 <left_val>-0.1671708971261978</left_val>
6025 <right_val>0.2552697062492371</right_val></_></_>
6026 <_>
6027 <!-- tree 15 -->
6028 <_>
6029 <!-- root node -->
6030 <feature>
6031 <rects>
6032 <_>
6033 35 0 1 2 -1.</_>
6034 <_>
6035 35 1 1 1 2.</_></rects>
6036 <tilted>0</tilted></feature>
6037 <threshold>-2.2581920493394136e-003</threshold>
6038 <left_val>-0.9207922816276550</left_val>
6039 <right_val>3.4371060319244862e-003</right_val></_></_>
6040 <_>
6041 <!-- tree 16 -->
6042 <_>
6043 <!-- root node -->
6044 <feature>
6045 <rects>
6046 <_>
6047 0 0 1 2 -1.</_>
6048 <_>
6049 0 1 1 1 2.</_></rects>
6050 <tilted>0</tilted></feature>
6051 <threshold>-1.3282749569043517e-004</threshold>
6052 <left_val>0.1857322007417679</left_val>
6053 <right_val>-0.2249896973371506</right_val></_></_>
6054 <_>
6055 <!-- tree 17 -->
6056 <_>
6057 <!-- root node -->
6058 <feature>
6059 <rects>
6060 <_>
6061 33 0 2 1 -1.</_>
6062 <_>
6063 33 0 1 1 2.</_></rects>
6064 <tilted>1</tilted></feature>
6065 <threshold>-2.8032590635120869e-003</threshold>
6066 <left_val>-0.8589754104614258</left_val>
6067 <right_val>0.0463845208287239</right_val></_></_>
6068 <_>
6069 <!-- tree 18 -->
6070 <_>
6071 <!-- root node -->
6072 <feature>
6073 <rects>
6074 <_>
6075 3 0 1 2 -1.</_>
6076 <_>
6077 3 0 1 1 2.</_></rects>
6078 <tilted>1</tilted></feature>
6079 <threshold>1.3141379458829761e-003</threshold>
6080 <left_val>0.0796270668506622</left_val>
6081 <right_val>-0.4610596895217896</right_val></_></_>
6082 <_>
6083 <!-- tree 19 -->
6084 <_>
6085 <!-- root node -->
6086 <feature>
6087 <rects>
6088 <_>
6089 0 17 36 1 -1.</_>
6090 <_>
6091 9 17 18 1 2.</_></rects>
6092 <tilted>0</tilted></feature>
6093 <threshold>0.0638845413923264</threshold>
6094 <left_val>-0.0534401498734951</left_val>
6095 <right_val>0.8104500174522400</right_val></_></_>
6096 <_>
6097 <!-- tree 20 -->
6098 <_>
6099 <!-- root node -->
6100 <feature>
6101 <rects>
6102 <_>
6103 7 13 3 1 -1.</_>
6104 <_>
6105 8 14 1 1 3.</_></rects>
6106 <tilted>1</tilted></feature>
6107 <threshold>-1.9811019301414490e-003</threshold>
6108 <left_val>-0.6382514834403992</left_val>
6109 <right_val>0.0766435563564301</right_val></_></_>
6110 <_>
6111 <!-- tree 21 -->
6112 <_>
6113 <!-- root node -->
6114 <feature>
6115 <rects>
6116 <_>
6117 17 4 14 8 -1.</_>
6118 <_>
6119 17 4 7 8 2.</_></rects>
6120 <tilted>0</tilted></feature>
6121 <threshold>0.0133598595857620</threshold>
6122 <left_val>-0.0950375497341156</left_val>
6123 <right_val>0.0625333487987518</right_val></_></_>
6124 <_>
6125 <!-- tree 22 -->
6126 <_>
6127 <!-- root node -->
6128 <feature>
6129 <rects>
6130 <_>
6131 0 16 4 2 -1.</_>
6132 <_>
6133 0 17 4 1 2.</_></rects>
6134 <tilted>0</tilted></feature>
6135 <threshold>-1.0935300088021904e-004</threshold>
6136 <left_val>0.1747954040765762</left_val>
6137 <right_val>-0.2287603020668030</right_val></_></_>
6138 <_>
6139 <!-- tree 23 -->
6140 <_>
6141 <!-- root node -->
6142 <feature>
6143 <rects>
6144 <_>
6145 13 12 10 3 -1.</_>
6146 <_>
6147 13 13 10 1 3.</_></rects>
6148 <tilted>0</tilted></feature>
6149 <threshold>0.0119106303900480</threshold>
6150 <left_val>-0.0770419836044312</left_val>
6151 <right_val>0.5045837759971619</right_val></_></_>
6152 <_>
6153 <!-- tree 24 -->
6154 <_>
6155 <!-- root node -->
6156 <feature>
6157 <rects>
6158 <_>
6159 0 12 36 6 -1.</_>
6160 <_>
6161 18 12 18 6 2.</_></rects>
6162 <tilted>0</tilted></feature>
6163 <threshold>0.2395170032978058</threshold>
6164 <left_val>-0.0651228874921799</left_val>
6165 <right_val>0.5042074918746948</right_val></_></_>
6166 <_>
6167 <!-- tree 25 -->
6168 <_>
6169 <!-- root node -->
6170 <feature>
6171 <rects>
6172 <_>
6173 5 3 27 6 -1.</_>
6174 <_>
6175 14 5 9 2 9.</_></rects>
6176 <tilted>0</tilted></feature>
6177 <threshold>0.3983140885829926</threshold>
6178 <left_val>-0.0299998205155134</left_val>
6179 <right_val>0.7968547940254211</right_val></_></_>
6180 <_>
6181 <!-- tree 26 -->
6182 <_>
6183 <!-- root node -->
6184 <feature>
6185 <rects>
6186 <_>
6187 9 5 5 3 -1.</_>
6188 <_>
6189 8 6 5 1 3.</_></rects>
6190 <tilted>1</tilted></feature>
6191 <threshold>6.1875800602138042e-003</threshold>
6192 <left_val>-0.0853391736745834</left_val>
6193 <right_val>0.3945176899433136</right_val></_></_>
6194 <_>
6195 <!-- tree 27 -->
6196 <_>
6197 <!-- root node -->
6198 <feature>
6199 <rects>
6200 <_>
6201 12 7 12 4 -1.</_>
6202 <_>
6203 15 7 6 4 2.</_></rects>
6204 <tilted>0</tilted></feature>
6205 <threshold>-9.4047123566269875e-003</threshold>
6206 <left_val>-0.4344133138656616</left_val>
6207 <right_val>0.0826191008090973</right_val></_></_>
6208 <_>
6209 <!-- tree 28 -->
6210 <_>
6211 <!-- root node -->
6212 <feature>
6213 <rects>
6214 <_>
6215 13 5 8 4 -1.</_>
6216 <_>
6217 15 5 4 4 2.</_></rects>
6218 <tilted>0</tilted></feature>
6219 <threshold>0.0117366304621100</threshold>
6220 <left_val>0.0694831609725952</left_val>
6221 <right_val>-0.4870649874210358</right_val></_></_>
6222 <_>
6223 <!-- tree 29 -->
6224 <_>
6225 <!-- root node -->
6226 <feature>
6227 <rects>
6228 <_>
6229 16 14 6 4 -1.</_>
6230 <_>
6231 16 14 3 4 2.</_></rects>
6232 <tilted>0</tilted></feature>
6233 <threshold>-0.0151767702773213</threshold>
6234 <left_val>-0.5854120850563049</left_val>
6235 <right_val>0.0328795611858368</right_val></_></_>
6236 <_>
6237 <!-- tree 30 -->
6238 <_>
6239 <!-- root node -->
6240 <feature>
6241 <rects>
6242 <_>
6243 14 10 5 3 -1.</_>
6244 <_>
6245 14 11 5 1 3.</_></rects>
6246 <tilted>0</tilted></feature>
6247 <threshold>3.0744259711354971e-003</threshold>
6248 <left_val>-0.1314608007669449</left_val>
6249 <right_val>0.2546674013137817</right_val></_></_>
6250 <_>
6251 <!-- tree 31 -->
6252 <_>
6253 <!-- root node -->
6254 <feature>
6255 <rects>
6256 <_>
6257 25 3 6 4 -1.</_>
6258 <_>
6259 25 4 6 2 2.</_></rects>
6260 <tilted>0</tilted></feature>
6261 <threshold>2.9391339048743248e-003</threshold>
6262 <left_val>-0.1086023002862930</left_val>
6263 <right_val>0.2783496081829071</right_val></_></_>
6264 <_>
6265 <!-- tree 32 -->
6266 <_>
6267 <!-- root node -->
6268 <feature>
6269 <rects>
6270 <_>
6271 3 6 6 8 -1.</_>
6272 <_>
6273 3 8 6 4 2.</_></rects>
6274 <tilted>0</tilted></feature>
6275 <threshold>2.1510310471057892e-003</threshold>
6276 <left_val>-0.1575057953596115</left_val>
6277 <right_val>0.2087786048650742</right_val></_></_>
6278 <_>
6279 <!-- tree 33 -->
6280 <_>
6281 <!-- root node -->
6282 <feature>
6283 <rects>
6284 <_>
6285 27 4 5 6 -1.</_>
6286 <_>
6287 27 6 5 2 3.</_></rects>
6288 <tilted>0</tilted></feature>
6289 <threshold>5.3775361739099026e-003</threshold>
6290 <left_val>-0.1320703029632568</left_val>
6291 <right_val>0.3767293989658356</right_val></_></_>
6292 <_>
6293 <!-- tree 34 -->
6294 <_>
6295 <!-- root node -->
6296 <feature>
6297 <rects>
6298 <_>
6299 4 1 6 9 -1.</_>
6300 <_>
6301 4 4 6 3 3.</_></rects>
6302 <tilted>0</tilted></feature>
6303 <threshold>0.0221741795539856</threshold>
6304 <left_val>-0.0901802927255630</left_val>
6305 <right_val>0.4157527089118958</right_val></_></_>
6306 <_>
6307 <!-- tree 35 -->
6308 <_>
6309 <!-- root node -->
6310 <feature>
6311 <rects>
6312 <_>
6313 21 9 2 4 -1.</_>
6314 <_>
6315 21 10 2 2 2.</_></rects>
6316 <tilted>0</tilted></feature>
6317 <threshold>-1.9948610570281744e-003</threshold>
6318 <left_val>0.2560858130455017</left_val>
6319 <right_val>-0.0990849286317825</right_val></_></_>
6320 <_>
6321 <!-- tree 36 -->
6322 <_>
6323 <!-- root node -->
6324 <feature>
6325 <rects>
6326 <_>
6327 1 10 34 4 -1.</_>
6328 <_>
6329 1 10 17 2 2.</_>
6330 <_>
6331 18 12 17 2 2.</_></rects>
6332 <tilted>0</tilted></feature>
6333 <threshold>0.0315575599670410</threshold>
6334 <left_val>0.0741889998316765</left_val>
6335 <right_val>-0.5494022965431213</right_val></_></_>
6336 <_>
6337 <!-- tree 37 -->
6338 <_>
6339 <!-- root node -->
6340 <feature>
6341 <rects>
6342 <_>
6343 34 15 2 3 -1.</_>
6344 <_>
6345 34 16 2 1 3.</_></rects>
6346 <tilted>0</tilted></feature>
6347 <threshold>-4.3111158447572961e-005</threshold>
6348 <left_val>0.3032462894916534</left_val>
6349 <right_val>-0.1778181046247482</right_val></_></_>
6350 <_>
6351 <!-- tree 38 -->
6352 <_>
6353 <!-- root node -->
6354 <feature>
6355 <rects>
6356 <_>
6357 3 0 2 2 -1.</_>
6358 <_>
6359 3 0 2 1 2.</_></rects>
6360 <tilted>1</tilted></feature>
6361 <threshold>-3.2675920519977808e-003</threshold>
6362 <left_val>-0.6721243262290955</left_val>
6363 <right_val>0.0591883286833763</right_val></_></_>
6364 <_>
6365 <!-- tree 39 -->
6366 <_>
6367 <!-- root node -->
6368 <feature>
6369 <rects>
6370 <_>
6371 33 0 1 2 -1.</_>
6372 <_>
6373 33 0 1 1 2.</_></rects>
6374 <tilted>1</tilted></feature>
6375 <threshold>4.2293380829505622e-004</threshold>
6376 <left_val>-0.1103409975767136</left_val>
6377 <right_val>0.1257317960262299</right_val></_></_></trees>
6378 <stage_threshold>-1.3384460210800171</stage_threshold>
6379 <parent>15</parent>
6380 <next>-1</next></_>
6381 <_>
6382 <!-- stage 17 -->
6383 <trees>
6384 <_>
6385 <!-- tree 0 -->
6386 <_>
6387 <!-- root node -->
6388 <feature>
6389 <rects>
6390 <_>
6391 8 0 10 8 -1.</_>
6392 <_>
6393 6 2 10 4 2.</_></rects>
6394 <tilted>1</tilted></feature>
6395 <threshold>-0.0425620190799236</threshold>
6396 <left_val>0.3334665894508362</left_val>
6397 <right_val>-0.2986198067665100</right_val></_></_>
6398 <_>
6399 <!-- tree 1 -->
6400 <_>
6401 <!-- root node -->
6402 <feature>
6403 <rects>
6404 <_>
6405 3 6 30 6 -1.</_>
6406 <_>
6407 13 8 10 2 9.</_></rects>
6408 <tilted>0</tilted></feature>
6409 <threshold>0.4182719886302948</threshold>
6410 <left_val>-0.0951386988162994</left_val>
6411 <right_val>0.7570992112159729</right_val></_></_>
6412 <_>
6413 <!-- tree 2 -->
6414 <_>
6415 <!-- root node -->
6416 <feature>
6417 <rects>
6418 <_>
6419 13 7 10 4 -1.</_>
6420 <_>
6421 13 8 10 2 2.</_></rects>
6422 <tilted>0</tilted></feature>
6423 <threshold>-0.0202563796192408</threshold>
6424 <left_val>0.4778389036655426</left_val>
6425 <right_val>-0.1459210067987442</right_val></_></_>
6426 <_>
6427 <!-- tree 3 -->
6428 <_>
6429 <!-- root node -->
6430 <feature>
6431 <rects>
6432 <_>
6433 16 5 6 12 -1.</_>
6434 <_>
6435 19 5 3 6 2.</_>
6436 <_>
6437 16 11 3 6 2.</_></rects>
6438 <tilted>0</tilted></feature>
6439 <threshold>-0.0189483091235161</threshold>
6440 <left_val>-0.3872750103473663</left_val>
6441 <right_val>0.0524798892438412</right_val></_></_>
6442 <_>
6443 <!-- tree 4 -->
6444 <_>
6445 <!-- root node -->
6446 <feature>
6447 <rects>
6448 <_>
6449 10 1 4 6 -1.</_>
6450 <_>
6451 8 3 4 2 3.</_></rects>
6452 <tilted>1</tilted></feature>
6453 <threshold>-0.0405505895614624</threshold>
6454 <left_val>0.5464624762535095</left_val>
6455 <right_val>-0.0813998579978943</right_val></_></_>
6456 <_>
6457 <!-- tree 5 -->
6458 <_>
6459 <!-- root node -->
6460 <feature>
6461 <rects>
6462 <_>
6463 2 7 33 6 -1.</_>
6464 <_>
6465 13 9 11 2 9.</_></rects>
6466 <tilted>0</tilted></feature>
6467 <threshold>0.5187274813652039</threshold>
6468 <left_val>-0.0279305391013622</left_val>
6469 <right_val>0.8458098173141480</right_val></_></_>
6470 <_>
6471 <!-- tree 6 -->
6472 <_>
6473 <!-- root node -->
6474 <feature>
6475 <rects>
6476 <_>
6477 3 6 30 3 -1.</_>
6478 <_>
6479 13 7 10 1 9.</_></rects>
6480 <tilted>0</tilted></feature>
6481 <threshold>0.2071361988782883</threshold>
6482 <left_val>-0.0588508695363998</left_val>
6483 <right_val>0.7960156202316284</right_val></_></_>
6484 <_>
6485 <!-- tree 7 -->
6486 <_>
6487 <!-- root node -->
6488 <feature>
6489 <rects>
6490 <_>
6491 15 11 6 3 -1.</_>
6492 <_>
6493 15 12 6 1 3.</_></rects>
6494 <tilted>0</tilted></feature>
6495 <threshold>8.1972572952508926e-003</threshold>
6496 <left_val>-0.0999663695693016</left_val>
6497 <right_val>0.4983156025409699</right_val></_></_>
6498 <_>
6499 <!-- tree 8 -->
6500 <_>
6501 <!-- root node -->
6502 <feature>
6503 <rects>
6504 <_>
6505 14 5 6 12 -1.</_>
6506 <_>
6507 14 5 3 6 2.</_>
6508 <_>
6509 17 11 3 6 2.</_></rects>
6510 <tilted>0</tilted></feature>
6511 <threshold>0.0174453891813755</threshold>
6512 <left_val>0.0680409595370293</left_val>
6513 <right_val>-0.5669981837272644</right_val></_></_>
6514 <_>
6515 <!-- tree 9 -->
6516 <_>
6517 <!-- root node -->
6518 <feature>
6519 <rects>
6520 <_>
6521 5 12 26 6 -1.</_>
6522 <_>
6523 18 12 13 3 2.</_>
6524 <_>
6525 5 15 13 3 2.</_></rects>
6526 <tilted>0</tilted></feature>
6527 <threshold>-0.0563102811574936</threshold>
6528 <left_val>-0.6862804293632507</left_val>
6529 <right_val>0.0742225572466850</right_val></_></_>
6530 <_>
6531 <!-- tree 10 -->
6532 <_>
6533 <!-- root node -->
6534 <feature>
6535 <rects>
6536 <_>
6537 4 12 27 3 -1.</_>
6538 <_>
6539 13 13 9 1 9.</_></rects>
6540 <tilted>0</tilted></feature>
6541 <threshold>0.1809556037187576</threshold>
6542 <left_val>-0.0528081282973289</left_val>
6543 <right_val>0.8448318243026733</right_val></_></_>
6544 <_>
6545 <!-- tree 11 -->
6546 <_>
6547 <!-- root node -->
6548 <feature>
6549 <rects>
6550 <_>
6551 16 11 4 3 -1.</_>
6552 <_>
6553 16 12 4 1 3.</_></rects>
6554 <tilted>0</tilted></feature>
6555 <threshold>-2.3450690787285566e-003</threshold>
6556 <left_val>0.2839694023132324</left_val>
6557 <right_val>-0.1112336963415146</right_val></_></_>
6558 <_>
6559 <!-- tree 12 -->
6560 <_>
6561 <!-- root node -->
6562 <feature>
6563 <rects>
6564 <_>
6565 5 12 4 2 -1.</_>
6566 <_>
6567 6 13 2 2 2.</_></rects>
6568 <tilted>1</tilted></feature>
6569 <threshold>3.8937770295888186e-003</threshold>
6570 <left_val>0.0654993131756783</left_val>
6571 <right_val>-0.5792096257209778</right_val></_></_>
6572 <_>
6573 <!-- tree 13 -->
6574 <_>
6575 <!-- root node -->
6576 <feature>
6577 <rects>
6578 <_>
6579 34 17 2 1 -1.</_>
6580 <_>
6581 34 17 1 1 2.</_></rects>
6582 <tilted>0</tilted></feature>
6583 <threshold>3.9383721741614863e-005</threshold>
6584 <left_val>-0.3093047142028809</left_val>
6585 <right_val>0.4223710894584656</right_val></_></_>
6586 <_>
6587 <!-- tree 14 -->
6588 <_>
6589 <!-- root node -->
6590 <feature>
6591 <rects>
6592 <_>
6593 16 0 1 12 -1.</_>
6594 <_>
6595 16 0 1 6 2.</_></rects>
6596 <tilted>1</tilted></feature>
6597 <threshold>0.0338991582393646</threshold>
6598 <left_val>0.0307075399905443</left_val>
6599 <right_val>-0.7229980826377869</right_val></_></_>
6600 <_>
6601 <!-- tree 15 -->
6602 <_>
6603 <!-- root node -->
6604 <feature>
6605 <rects>
6606 <_>
6607 2 17 34 1 -1.</_>
6608 <_>
6609 2 17 17 1 2.</_></rects>
6610 <tilted>0</tilted></feature>
6611 <threshold>-0.0336443893611431</threshold>
6612 <left_val>0.4266444146633148</left_val>
6613 <right_val>-0.0720057785511017</right_val></_></_>
6614 <_>
6615 <!-- tree 16 -->
6616 <_>
6617 <!-- root node -->
6618 <feature>
6619 <rects>
6620 <_>
6621 5 3 18 4 -1.</_>
6622 <_>
6623 5 4 18 2 2.</_></rects>
6624 <tilted>0</tilted></feature>
6625 <threshold>0.0388077609241009</threshold>
6626 <left_val>-0.0417135208845139</left_val>
6627 <right_val>0.6599556803703308</right_val></_></_>
6628 <_>
6629 <!-- tree 17 -->
6630 <_>
6631 <!-- root node -->
6632 <feature>
6633 <rects>
6634 <_>
6635 34 17 2 1 -1.</_>
6636 <_>
6637 34 17 1 1 2.</_></rects>
6638 <tilted>0</tilted></feature>
6639 <threshold>-3.9149548683781177e-005</threshold>
6640 <left_val>0.4933550059795380</left_val>
6641 <right_val>-0.2426010966300964</right_val></_></_>
6642 <_>
6643 <!-- tree 18 -->
6644 <_>
6645 <!-- root node -->
6646 <feature>
6647 <rects>
6648 <_>
6649 0 0 2 2 -1.</_>
6650 <_>
6651 0 1 2 1 2.</_></rects>
6652 <tilted>0</tilted></feature>
6653 <threshold>-2.7580570895224810e-004</threshold>
6654 <left_val>0.1791010946035385</left_val>
6655 <right_val>-0.2192519009113312</right_val></_></_>
6656 <_>
6657 <!-- tree 19 -->
6658 <_>
6659 <!-- root node -->
6660 <feature>
6661 <rects>
6662 <_>
6663 15 5 16 3 -1.</_>
6664 <_>
6665 15 6 16 1 3.</_></rects>
6666 <tilted>0</tilted></feature>
6667 <threshold>0.0126366596668959</threshold>
6668 <left_val>-0.0712336227297783</left_val>
6669 <right_val>0.2534261941909790</right_val></_></_>
6670 <_>
6671 <!-- tree 20 -->
6672 <_>
6673 <!-- root node -->
6674 <feature>
6675 <rects>
6676 <_>
6677 13 9 3 3 -1.</_>
6678 <_>
6679 13 10 3 1 3.</_></rects>
6680 <tilted>0</tilted></feature>
6681 <threshold>-3.3681739587336779e-003</threshold>
6682 <left_val>0.3310086131095886</left_val>
6683 <right_val>-0.1020777970552445</right_val></_></_>
6684 <_>
6685 <!-- tree 21 -->
6686 <_>
6687 <!-- root node -->
6688 <feature>
6689 <rects>
6690 <_>
6691 20 4 8 14 -1.</_>
6692 <_>
6693 22 4 4 14 2.</_></rects>
6694 <tilted>0</tilted></feature>
6695 <threshold>-0.0411845296621323</threshold>
6696 <left_val>-0.4787198901176453</left_val>
6697 <right_val>0.0274448096752167</right_val></_></_>
6698 <_>
6699 <!-- tree 22 -->
6700 <_>
6701 <!-- root node -->
6702 <feature>
6703 <rects>
6704 <_>
6705 7 5 20 6 -1.</_>
6706 <_>
6707 12 5 10 6 2.</_></rects>
6708 <tilted>0</tilted></feature>
6709 <threshold>0.0172852799296379</threshold>
6710 <left_val>-0.2373382002115250</left_val>
6711 <right_val>0.1541430056095123</right_val></_></_>
6712 <_>
6713 <!-- tree 23 -->
6714 <_>
6715 <!-- root node -->
6716 <feature>
6717 <rects>
6718 <_>
6719 26 3 6 6 -1.</_>
6720 <_>
6721 28 5 2 6 3.</_></rects>
6722 <tilted>1</tilted></feature>
6723 <threshold>-0.0583733208477497</threshold>
6724 <left_val>0.3635525107383728</left_val>
6725 <right_val>-0.0629119277000427</right_val></_></_>
6726 <_>
6727 <!-- tree 24 -->
6728 <_>
6729 <!-- root node -->
6730 <feature>
6731 <rects>
6732 <_>
6733 10 3 6 6 -1.</_>
6734 <_>
6735 8 5 6 2 3.</_></rects>
6736 <tilted>1</tilted></feature>
6737 <threshold>0.0252293199300766</threshold>
6738 <left_val>-0.0943458229303360</left_val>
6739 <right_val>0.4322442114353180</right_val></_></_>
6740 <_>
6741 <!-- tree 25 -->
6742 <_>
6743 <!-- root node -->
6744 <feature>
6745 <rects>
6746 <_>
6747 34 0 2 3 -1.</_>
6748 <_>
6749 34 0 1 3 2.</_></rects>
6750 <tilted>1</tilted></feature>
6751 <threshold>4.7925519756972790e-003</threshold>
6752 <left_val>0.0486642718315125</left_val>
6753 <right_val>-0.4704689085483551</right_val></_></_>
6754 <_>
6755 <!-- tree 26 -->
6756 <_>
6757 <!-- root node -->
6758 <feature>
6759 <rects>
6760 <_>
6761 0 16 2 2 -1.</_>
6762 <_>
6763 0 17 2 1 2.</_></rects>
6764 <tilted>0</tilted></feature>
6765 <threshold>-1.3549529830925167e-004</threshold>
6766 <left_val>0.1936188042163849</left_val>
6767 <right_val>-0.1933847069740295</right_val></_></_>
6768 <_>
6769 <!-- tree 27 -->
6770 <_>
6771 <!-- root node -->
6772 <feature>
6773 <rects>
6774 <_>
6775 30 6 4 8 -1.</_>
6776 <_>
6777 31 7 2 8 2.</_></rects>
6778 <tilted>1</tilted></feature>
6779 <threshold>-0.0179694108664989</threshold>
6780 <left_val>0.2900086045265198</left_val>
6781 <right_val>-0.0545452795922756</right_val></_></_>
6782 <_>
6783 <!-- tree 28 -->
6784 <_>
6785 <!-- root node -->
6786 <feature>
6787 <rects>
6788 <_>
6789 6 6 7 4 -1.</_>
6790 <_>
6791 5 7 7 2 2.</_></rects>
6792 <tilted>1</tilted></feature>
6793 <threshold>0.0111410403624177</threshold>
6794 <left_val>-0.1080225035548210</left_val>
6795 <right_val>0.3332796096801758</right_val></_></_>
6796 <_>
6797 <!-- tree 29 -->
6798 <_>
6799 <!-- root node -->
6800 <feature>
6801 <rects>
6802 <_>
6803 20 4 8 14 -1.</_>
6804 <_>
6805 22 4 4 14 2.</_></rects>
6806 <tilted>0</tilted></feature>
6807 <threshold>0.0397595092654228</threshold>
6808 <left_val>0.0192408692091703</left_val>
6809 <right_val>-0.4889996051788330</right_val></_></_>
6810 <_>
6811 <!-- tree 30 -->
6812 <_>
6813 <!-- root node -->
6814 <feature>
6815 <rects>
6816 <_>
6817 8 4 8 14 -1.</_>
6818 <_>
6819 10 4 4 14 2.</_></rects>
6820 <tilted>0</tilted></feature>
6821 <threshold>-0.0226527098566294</threshold>
6822 <left_val>-0.5036928057670593</left_val>
6823 <right_val>0.0807737335562706</right_val></_></_>
6824 <_>
6825 <!-- tree 31 -->
6826 <_>
6827 <!-- root node -->
6828 <feature>
6829 <rects>
6830 <_>
6831 17 17 6 1 -1.</_>
6832 <_>
6833 19 17 2 1 3.</_></rects>
6834 <tilted>0</tilted></feature>
6835 <threshold>1.0915650054812431e-003</threshold>
6836 <left_val>0.0655540525913239</left_val>
6837 <right_val>-0.2444387972354889</right_val></_></_>
6838 <_>
6839 <!-- tree 32 -->
6840 <_>
6841 <!-- root node -->
6842 <feature>
6843 <rects>
6844 <_>
6845 0 0 20 6 -1.</_>
6846 <_>
6847 10 0 10 6 2.</_></rects>
6848 <tilted>0</tilted></feature>
6849 <threshold>0.0687547475099564</threshold>
6850 <left_val>0.0891968086361885</left_val>
6851 <right_val>-0.3565390110015869</right_val></_></_>
6852 <_>
6853 <!-- tree 33 -->
6854 <_>
6855 <!-- root node -->
6856 <feature>
6857 <rects>
6858 <_>
6859 8 0 22 18 -1.</_>
6860 <_>
6861 8 0 11 18 2.</_></rects>
6862 <tilted>0</tilted></feature>
6863 <threshold>-0.3307105898857117</threshold>
6864 <left_val>0.4649569988250732</left_val>
6865 <right_val>-0.0581836998462677</right_val></_></_>
6866 <_>
6867 <!-- tree 34 -->
6868 <_>
6869 <!-- root node -->
6870 <feature>
6871 <rects>
6872 <_>
6873 13 2 8 12 -1.</_>
6874 <_>
6875 13 2 4 6 2.</_>
6876 <_>
6877 17 8 4 6 2.</_></rects>
6878 <tilted>0</tilted></feature>
6879 <threshold>-0.0193072296679020</threshold>
6880 <left_val>-0.4415718019008637</left_val>
6881 <right_val>0.0830501168966293</right_val></_></_>
6882 <_>
6883 <!-- tree 35 -->
6884 <_>
6885 <!-- root node -->
6886 <feature>
6887 <rects>
6888 <_>
6889 11 10 14 8 -1.</_>
6890 <_>
6891 18 10 7 4 2.</_>
6892 <_>
6893 11 14 7 4 2.</_></rects>
6894 <tilted>0</tilted></feature>
6895 <threshold>0.0348087586462498</threshold>
6896 <left_val>0.0534805804491043</left_val>
6897 <right_val>-0.5037739872932434</right_val></_></_>
6898 <_>
6899 <!-- tree 36 -->
6900 <_>
6901 <!-- root node -->
6902 <feature>
6903 <rects>
6904 <_>
6905 1 16 2 2 -1.</_>
6906 <_>
6907 1 16 1 1 2.</_>
6908 <_>
6909 2 17 1 1 2.</_></rects>
6910 <tilted>0</tilted></feature>
6911 <threshold>-3.8908151327632368e-004</threshold>
6912 <left_val>0.3427126109600067</left_val>
6913 <right_val>-0.0899231806397438</right_val></_></_>
6914 <_>
6915 <!-- tree 37 -->
6916 <_>
6917 <!-- root node -->
6918 <feature>
6919 <rects>
6920 <_>
6921 34 0 2 1 -1.</_>
6922 <_>
6923 34 0 1 1 2.</_></rects>
6924 <tilted>1</tilted></feature>
6925 <threshold>-2.1421869751065969e-003</threshold>
6926 <left_val>-0.6064280271530151</left_val>
6927 <right_val>0.0555892400443554</right_val></_></_>
6928 <_>
6929 <!-- tree 38 -->
6930 <_>
6931 <!-- root node -->
6932 <feature>
6933 <rects>
6934 <_>
6935 6 3 24 4 -1.</_>
6936 <_>
6937 12 3 12 4 2.</_></rects>
6938 <tilted>0</tilted></feature>
6939 <threshold>0.1101581007242203</threshold>
6940 <left_val>-0.0547747202217579</left_val>
6941 <right_val>0.6878091096878052</right_val></_></_>
6942 <_>
6943 <!-- tree 39 -->
6944 <_>
6945 <!-- root node -->
6946 <feature>
6947 <rects>
6948 <_>
6949 19 1 2 3 -1.</_>
6950 <_>
6951 19 2 2 1 3.</_></rects>
6952 <tilted>0</tilted></feature>
6953 <threshold>3.0875208904035389e-004</threshold>
6954 <left_val>-0.0558342188596725</left_val>
6955 <right_val>0.0931682363152504</right_val></_></_>
6956 <_>
6957 <!-- tree 40 -->
6958 <_>
6959 <!-- root node -->
6960 <feature>
6961 <rects>
6962 <_>
6963 2 0 1 2 -1.</_>
6964 <_>
6965 2 0 1 1 2.</_></rects>
6966 <tilted>1</tilted></feature>
6967 <threshold>2.1960400044918060e-003</threshold>
6968 <left_val>0.0539557486772537</left_val>
6969 <right_val>-0.6050305962562561</right_val></_></_>
6970 <_>
6971 <!-- tree 41 -->
6972 <_>
6973 <!-- root node -->
6974 <feature>
6975 <rects>
6976 <_>
6977 15 3 6 8 -1.</_>
6978 <_>
6979 18 3 3 4 2.</_>
6980 <_>
6981 15 7 3 4 2.</_></rects>
6982 <tilted>0</tilted></feature>
6983 <threshold>-0.0126062501221895</threshold>
6984 <left_val>-0.4686402976512909</left_val>
6985 <right_val>0.0599438697099686</right_val></_></_>
6986 <_>
6987 <!-- tree 42 -->
6988 <_>
6989 <!-- root node -->
6990 <feature>
6991 <rects>
6992 <_>
6993 14 5 4 2 -1.</_>
6994 <_>
6995 14 6 4 1 2.</_></rects>
6996 <tilted>0</tilted></feature>
6997 <threshold>-2.7497899718582630e-003</threshold>
6998 <left_val>0.2894253134727478</left_val>
6999 <right_val>-0.1129785031080246</right_val></_></_>
7000 <_>
7001 <!-- tree 43 -->
7002 <_>
7003 <!-- root node -->
7004 <feature>
7005 <rects>
7006 <_>
7007 3 7 30 9 -1.</_>
7008 <_>
7009 13 10 10 3 9.</_></rects>
7010 <tilted>0</tilted></feature>
7011 <threshold>0.6096264123916626</threshold>
7012 <left_val>-0.0478859916329384</left_val>
7013 <right_val>0.5946549177169800</right_val></_></_>
7014 <_>
7015 <!-- tree 44 -->
7016 <_>
7017 <!-- root node -->
7018 <feature>
7019 <rects>
7020 <_>
7021 9 8 12 9 -1.</_>
7022 <_>
7023 12 8 6 9 2.</_></rects>
7024 <tilted>0</tilted></feature>
7025 <threshold>0.0450232513248920</threshold>
7026 <left_val>0.0638310685753822</left_val>
7027 <right_val>-0.5295680165290833</right_val></_></_></trees>
7028 <stage_threshold>-1.2722699642181396</stage_threshold>
7029 <parent>16</parent>
7030 <next>-1</next></_>
7031 <_>
7032 <!-- stage 18 -->
7033 <trees>
7034 <_>
7035 <!-- tree 0 -->
7036 <_>
7037 <!-- root node -->
7038 <feature>
7039 <rects>
7040 <_>
7041 10 8 16 5 -1.</_>
7042 <_>
7043 14 8 8 5 2.</_></rects>
7044 <tilted>0</tilted></feature>
7045 <threshold>0.0159072801470757</threshold>
7046 <left_val>-0.3819232881069183</left_val>
7047 <right_val>0.2941176891326904</right_val></_></_>
7048 <_>
7049 <!-- tree 1 -->
7050 <_>
7051 <!-- root node -->
7052 <feature>
7053 <rects>
7054 <_>
7055 30 1 4 10 -1.</_>
7056 <_>
7057 31 2 2 10 2.</_></rects>
7058 <tilted>1</tilted></feature>
7059 <threshold>-0.0304830092936754</threshold>
7060 <left_val>0.6401454806327820</left_val>
7061 <right_val>-0.1133823990821838</right_val></_></_>
7062 <_>
7063 <!-- tree 2 -->
7064 <_>
7065 <!-- root node -->
7066 <feature>
7067 <rects>
7068 <_>
7069 13 0 10 8 -1.</_>
7070 <_>
7071 11 2 10 4 2.</_></rects>
7072 <tilted>1</tilted></feature>
7073 <threshold>0.0258412398397923</threshold>
7074 <left_val>-0.1765469014644623</left_val>
7075 <right_val>0.2556340098381043</right_val></_></_>
7076 <_>
7077 <!-- tree 3 -->
7078 <_>
7079 <!-- root node -->
7080 <feature>
7081 <rects>
7082 <_>
7083 32 2 2 14 -1.</_>
7084 <_>
7085 32 2 1 14 2.</_></rects>
7086 <tilted>1</tilted></feature>
7087 <threshold>0.0121606197208166</threshold>
7088 <left_val>-0.0494619905948639</left_val>
7089 <right_val>0.3473398983478546</right_val></_></_>
7090 <_>
7091 <!-- tree 4 -->
7092 <_>
7093 <!-- root node -->
7094 <feature>
7095 <rects>
7096 <_>
7097 4 2 14 2 -1.</_>
7098 <_>
7099 4 2 14 1 2.</_></rects>
7100 <tilted>1</tilted></feature>
7101 <threshold>-0.0159101597964764</threshold>
7102 <left_val>0.4796676933765411</left_val>
7103 <right_val>-0.1300950944423676</right_val></_></_>
7104 <_>
7105 <!-- tree 5 -->
7106 <_>
7107 <!-- root node -->
7108 <feature>
7109 <rects>
7110 <_>
7111 30 14 6 4 -1.</_>
7112 <_>
7113 30 14 3 4 2.</_></rects>
7114 <tilted>0</tilted></feature>
7115 <threshold>3.5282061435282230e-004</threshold>
7116 <left_val>-0.3418492972850800</left_val>
7117 <right_val>0.2309112995862961</right_val></_></_>
7118 <_>
7119 <!-- tree 6 -->
7120 <_>
7121 <!-- root node -->
7122 <feature>
7123 <rects>
7124 <_>
7125 11 13 1 4 -1.</_>
7126 <_>
7127 11 15 1 2 2.</_></rects>
7128 <tilted>0</tilted></feature>
7129 <threshold>6.7633582511916757e-004</threshold>
7130 <left_val>-0.1543250977993012</left_val>
7131 <right_val>0.2668730020523071</right_val></_></_>
7132 <_>
7133 <!-- tree 7 -->
7134 <_>
7135 <!-- root node -->
7136 <feature>
7137 <rects>
7138 <_>
7139 11 0 14 18 -1.</_>
7140 <_>
7141 18 0 7 9 2.</_>
7142 <_>
7143 11 9 7 9 2.</_></rects>
7144 <tilted>0</tilted></feature>
7145 <threshold>-0.0599361397325993</threshold>
7146 <left_val>-0.4880258142948151</left_val>
7147 <right_val>0.0933274477720261</right_val></_></_>
7148 <_>
7149 <!-- tree 8 -->
7150 <_>
7151 <!-- root node -->
7152 <feature>
7153 <rects>
7154 <_>
7155 0 1 20 9 -1.</_>
7156 <_>
7157 10 1 10 9 2.</_></rects>
7158 <tilted>0</tilted></feature>
7159 <threshold>-0.1134240999817848</threshold>
7160 <left_val>-0.6577144265174866</left_val>
7161 <right_val>0.0591668188571930</right_val></_></_>
7162 <_>
7163 <!-- tree 9 -->
7164 <_>
7165 <!-- root node -->
7166 <feature>
7167 <rects>
7168 <_>
7169 21 3 8 3 -1.</_>
7170 <_>
7171 23 3 4 3 2.</_></rects>
7172 <tilted>0</tilted></feature>
7173 <threshold>-4.3361280113458633e-003</threshold>
7174 <left_val>-0.1593652069568634</left_val>
7175 <right_val>0.0502370409667492</right_val></_></_>
7176 <_>
7177 <!-- tree 10 -->
7178 <_>
7179 <!-- root node -->
7180 <feature>
7181 <rects>
7182 <_>
7183 13 9 2 4 -1.</_>
7184 <_>
7185 13 10 2 2 2.</_></rects>
7186 <tilted>0</tilted></feature>
7187 <threshold>-1.8627740209922194e-003</threshold>
7188 <left_val>0.3073025941848755</left_val>
7189 <right_val>-0.1254066973924637</right_val></_></_>
7190 <_>
7191 <!-- tree 11 -->
7192 <_>
7193 <!-- root node -->
7194 <feature>
7195 <rects>
7196 <_>
7197 14 9 11 2 -1.</_>
7198 <_>
7199 14 10 11 1 2.</_></rects>
7200 <tilted>0</tilted></feature>
7201 <threshold>0.0126530099660158</threshold>
7202 <left_val>-0.1004493013024330</left_val>
7203 <right_val>0.3749617934226990</right_val></_></_>
7204 <_>
7205 <!-- tree 12 -->
7206 <_>
7207 <!-- root node -->
7208 <feature>
7209 <rects>
7210 <_>
7211 0 2 36 9 -1.</_>
7212 <_>
7213 12 5 12 3 9.</_></rects>
7214 <tilted>0</tilted></feature>
7215 <threshold>0.6911857724189758</threshold>
7216 <left_val>-0.0471464097499847</left_val>
7217 <right_val>0.8321244120597839</right_val></_></_>
7218 <_>
7219 <!-- tree 13 -->
7220 <_>
7221 <!-- root node -->
7222 <feature>
7223 <rects>
7224 <_>
7225 34 12 2 6 -1.</_>
7226 <_>
7227 34 15 2 3 2.</_></rects>
7228 <tilted>0</tilted></feature>
7229 <threshold>-2.6093868655152619e-004</threshold>
7230 <left_val>0.3198773860931397</left_val>
7231 <right_val>-0.2718330919742584</right_val></_></_>
7232 <_>
7233 <!-- tree 14 -->
7234 <_>
7235 <!-- root node -->
7236 <feature>
7237 <rects>
7238 <_>
7239 11 4 14 6 -1.</_>
7240 <_>
7241 11 6 14 2 3.</_></rects>
7242 <tilted>0</tilted></feature>
7243 <threshold>-0.0763450562953949</threshold>
7244 <left_val>0.4309130012989044</left_val>
7245 <right_val>-0.0908882692456245</right_val></_></_>
7246 <_>
7247 <!-- tree 15 -->
7248 <_>
7249 <!-- root node -->
7250 <feature>
7251 <rects>
7252 <_>
7253 31 0 4 1 -1.</_>
7254 <_>
7255 31 0 2 1 2.</_></rects>
7256 <tilted>0</tilted></feature>
7257 <threshold>2.8098300099372864e-003</threshold>
7258 <left_val>0.0587311200797558</left_val>
7259 <right_val>-0.6199675202369690</right_val></_></_>
7260 <_>
7261 <!-- tree 16 -->
7262 <_>
7263 <!-- root node -->
7264 <feature>
7265 <rects>
7266 <_>
7267 1 0 4 1 -1.</_>
7268 <_>
7269 3 0 2 1 2.</_></rects>
7270 <tilted>0</tilted></feature>
7271 <threshold>-1.3322039740160108e-004</threshold>
7272 <left_val>0.2000005990266800</left_val>
7273 <right_val>-0.2012010961771011</right_val></_></_>
7274 <_>
7275 <!-- tree 17 -->
7276 <_>
7277 <!-- root node -->
7278 <feature>
7279 <rects>
7280 <_>
7281 19 14 6 4 -1.</_>
7282 <_>
7283 21 14 2 4 3.</_></rects>
7284 <tilted>0</tilted></feature>
7285 <threshold>-0.0137176299467683</threshold>
7286 <left_val>-0.7309545278549194</left_val>
7287 <right_val>0.0271785296499729</right_val></_></_>
7288 <_>
7289 <!-- tree 18 -->
7290 <_>
7291 <!-- root node -->
7292 <feature>
7293 <rects>
7294 <_>
7295 11 14 6 4 -1.</_>
7296 <_>
7297 13 14 2 4 3.</_></rects>
7298 <tilted>0</tilted></feature>
7299 <threshold>-6.2303808517754078e-003</threshold>
7300 <left_val>-0.5478098988533020</left_val>
7301 <right_val>0.0687499493360519</right_val></_></_>
7302 <_>
7303 <!-- tree 19 -->
7304 <_>
7305 <!-- root node -->
7306 <feature>
7307 <rects>
7308 <_>
7309 0 14 36 1 -1.</_>
7310 <_>
7311 9 14 18 1 2.</_></rects>
7312 <tilted>0</tilted></feature>
7313 <threshold>0.0499227195978165</threshold>
7314 <left_val>-0.0473043099045753</left_val>
7315 <right_val>0.8242310285568237</right_val></_></_>
7316 <_>
7317 <!-- tree 20 -->
7318 <_>
7319 <!-- root node -->
7320 <feature>
7321 <rects>
7322 <_>
7323 5 0 2 2 -1.</_>
7324 <_>
7325 5 0 2 1 2.</_></rects>
7326 <tilted>1</tilted></feature>
7327 <threshold>-1.9126719562336802e-003</threshold>
7328 <left_val>-0.5394017100334168</left_val>
7329 <right_val>0.0774475932121277</right_val></_></_>
7330 <_>
7331 <!-- tree 21 -->
7332 <_>
7333 <!-- root node -->
7334 <feature>
7335 <rects>
7336 <_>
7337 26 3 5 3 -1.</_>
7338 <_>
7339 26 4 5 1 3.</_></rects>
7340 <tilted>0</tilted></feature>
7341 <threshold>1.1384560493752360e-003</threshold>
7342 <left_val>-0.0965376868844032</left_val>
7343 <right_val>0.1548569053411484</right_val></_></_>
7344 <_>
7345 <!-- tree 22 -->
7346 <_>
7347 <!-- root node -->
7348 <feature>
7349 <rects>
7350 <_>
7351 16 8 1 3 -1.</_>
7352 <_>
7353 15 9 1 1 3.</_></rects>
7354 <tilted>1</tilted></feature>
7355 <threshold>-2.4732090532779694e-003</threshold>
7356 <left_val>0.3559078872203827</left_val>
7357 <right_val>-0.0931698307394981</right_val></_></_>
7358 <_>
7359 <!-- tree 23 -->
7360 <_>
7361 <!-- root node -->
7362 <feature>
7363 <rects>
7364 <_>
7365 21 11 2 3 -1.</_>
7366 <_>
7367 21 12 2 1 3.</_></rects>
7368 <tilted>0</tilted></feature>
7369 <threshold>-7.1464257780462503e-004</threshold>
7370 <left_val>0.1452019065618515</left_val>
7371 <right_val>-0.0741942077875137</right_val></_></_>
7372 <_>
7373 <!-- tree 24 -->
7374 <_>
7375 <!-- root node -->
7376 <feature>
7377 <rects>
7378 <_>
7379 9 5 6 4 -1.</_>
7380 <_>
7381 8 6 6 2 2.</_></rects>
7382 <tilted>1</tilted></feature>
7383 <threshold>-0.0204371493309736</threshold>
7384 <left_val>0.4416376948356628</left_val>
7385 <right_val>-0.0809424370527267</right_val></_></_>
7386 <_>
7387 <!-- tree 25 -->
7388 <_>
7389 <!-- root node -->
7390 <feature>
7391 <rects>
7392 <_>
7393 31 0 2 2 -1.</_>
7394 <_>
7395 31 0 1 2 2.</_></rects>
7396 <tilted>1</tilted></feature>
7397 <threshold>-4.0483791381120682e-003</threshold>
7398 <left_val>-0.5999277830123901</left_val>
7399 <right_val>0.0330253802239895</right_val></_></_>
7400 <_>
7401 <!-- tree 26 -->
7402 <_>
7403 <!-- root node -->
7404 <feature>
7405 <rects>
7406 <_>
7407 6 4 3 9 -1.</_>
7408 <_>
7409 6 7 3 3 3.</_></rects>
7410 <tilted>0</tilted></feature>
7411 <threshold>0.0111480504274368</threshold>
7412 <left_val>-0.1135832965373993</left_val>
7413 <right_val>0.3264499902725220</right_val></_></_>
7414 <_>
7415 <!-- tree 27 -->
7416 <_>
7417 <!-- root node -->
7418 <feature>
7419 <rects>
7420 <_>
7421 19 0 11 2 -1.</_>
7422 <_>
7423 19 0 11 1 2.</_></rects>
7424 <tilted>1</tilted></feature>
7425 <threshold>9.8842009902000427e-003</threshold>
7426 <left_val>0.0554044805467129</left_val>
7427 <right_val>-0.3273097872734070</right_val></_></_>
7428 <_>
7429 <!-- tree 28 -->
7430 <_>
7431 <!-- root node -->
7432 <feature>
7433 <rects>
7434 <_>
7435 5 0 2 2 -1.</_>
7436 <_>
7437 5 0 2 1 2.</_></rects>
7438 <tilted>1</tilted></feature>
7439 <threshold>3.1296359375119209e-003</threshold>
7440 <left_val>0.0774086564779282</left_val>
7441 <right_val>-0.4595307111740112</right_val></_></_>
7442 <_>
7443 <!-- tree 29 -->
7444 <_>
7445 <!-- root node -->
7446 <feature>
7447 <rects>
7448 <_>
7449 22 0 14 4 -1.</_>
7450 <_>
7451 29 0 7 2 2.</_>
7452 <_>
7453 22 2 7 2 2.</_></rects>
7454 <tilted>0</tilted></feature>
7455 <threshold>2.9721839819103479e-003</threshold>
7456 <left_val>-0.1291726976633072</left_val>
7457 <right_val>0.1552311033010483</right_val></_></_>
7458 <_>
7459 <!-- tree 30 -->
7460 <_>
7461 <!-- root node -->
7462 <feature>
7463 <rects>
7464 <_>
7465 15 1 4 13 -1.</_>
7466 <_>
7467 15 1 2 13 2.</_></rects>
7468 <tilted>1</tilted></feature>
7469 <threshold>0.0205544792115688</threshold>
7470 <left_val>0.0876004695892334</left_val>
7471 <right_val>-0.4577418863773346</right_val></_></_>
7472 <_>
7473 <!-- tree 31 -->
7474 <_>
7475 <!-- root node -->
7476 <feature>
7477 <rects>
7478 <_>
7479 21 3 8 4 -1.</_>
7480 <_>
7481 23 3 4 4 2.</_></rects>
7482 <tilted>0</tilted></feature>
7483 <threshold>-0.0230272803455591</threshold>
7484 <left_val>0.3548808991909027</left_val>
7485 <right_val>-0.0205669198185205</right_val></_></_>
7486 <_>
7487 <!-- tree 32 -->
7488 <_>
7489 <!-- root node -->
7490 <feature>
7491 <rects>
7492 <_>
7493 7 3 8 4 -1.</_>
7494 <_>
7495 9 3 4 4 2.</_></rects>
7496 <tilted>0</tilted></feature>
7497 <threshold>-8.3903772756457329e-003</threshold>
7498 <left_val>-0.4324072897434235</left_val>
7499 <right_val>0.0920679792761803</right_val></_></_>
7500 <_>
7501 <!-- tree 33 -->
7502 <_>
7503 <!-- root node -->
7504 <feature>
7505 <rects>
7506 <_>
7507 32 14 2 2 -1.</_>
7508 <_>
7509 33 14 1 1 2.</_>
7510 <_>
7511 32 15 1 1 2.</_></rects>
7512 <tilted>0</tilted></feature>
7513 <threshold>-1.1431539896875620e-003</threshold>
7514 <left_val>0.3959133923053742</left_val>
7515 <right_val>-0.0231928899884224</right_val></_></_>
7516 <_>
7517 <!-- tree 34 -->
7518 <_>
7519 <!-- root node -->
7520 <feature>
7521 <rects>
7522 <_>
7523 2 14 2 2 -1.</_>
7524 <_>
7525 2 14 1 1 2.</_>
7526 <_>
7527 3 15 1 1 2.</_></rects>
7528 <tilted>0</tilted></feature>
7529 <threshold>-4.9133709399029613e-004</threshold>
7530 <left_val>0.4274964034557343</left_val>
7531 <right_val>-0.0855242162942886</right_val></_></_>
7532 <_>
7533 <!-- tree 35 -->
7534 <_>
7535 <!-- root node -->
7536 <feature>
7537 <rects>
7538 <_>
7539 35 5 1 12 -1.</_>
7540 <_>
7541 35 9 1 4 3.</_></rects>
7542 <tilted>0</tilted></feature>
7543 <threshold>5.1292928401380777e-004</threshold>
7544 <left_val>-0.1619673967361450</left_val>
7545 <right_val>0.1961497068405151</right_val></_></_>
7546 <_>
7547 <!-- tree 36 -->
7548 <_>
7549 <!-- root node -->
7550 <feature>
7551 <rects>
7552 <_>
7553 0 7 1 9 -1.</_>
7554 <_>
7555 0 10 1 3 3.</_></rects>
7556 <tilted>0</tilted></feature>
7557 <threshold>-5.8478871360421181e-003</threshold>
7558 <left_val>-0.5911636948585510</left_val>
7559 <right_val>0.0624482408165932</right_val></_></_>
7560 <_>
7561 <!-- tree 37 -->
7562 <_>
7563 <!-- root node -->
7564 <feature>
7565 <rects>
7566 <_>
7567 12 2 15 6 -1.</_>
7568 <_>
7569 12 4 15 2 3.</_></rects>
7570 <tilted>0</tilted></feature>
7571 <threshold>-0.0941330492496490</threshold>
7572 <left_val>0.4770160913467407</left_val>
7573 <right_val>-0.0567101612687111</right_val></_></_>
7574 <_>
7575 <!-- tree 38 -->
7576 <_>
7577 <!-- root node -->
7578 <feature>
7579 <rects>
7580 <_>
7581 0 17 2 1 -1.</_>
7582 <_>
7583 1 17 1 1 2.</_></rects>
7584 <tilted>0</tilted></feature>
7585 <threshold>1.0079269850393757e-004</threshold>
7586 <left_val>-0.1625709980726242</left_val>
7587 <right_val>0.2140229046344757</right_val></_></_>
7588 <_>
7589 <!-- tree 39 -->
7590 <_>
7591 <!-- root node -->
7592 <feature>
7593 <rects>
7594 <_>
7595 34 17 2 1 -1.</_>
7596 <_>
7597 34 17 1 1 2.</_></rects>
7598 <tilted>0</tilted></feature>
7599 <threshold>3.2930231100181118e-005</threshold>
7600 <left_val>-0.1859605014324188</left_val>
7601 <right_val>0.1964769065380096</right_val></_></_>
7602 <_>
7603 <!-- tree 40 -->
7604 <_>
7605 <!-- root node -->
7606 <feature>
7607 <rects>
7608 <_>
7609 0 17 2 1 -1.</_>
7610 <_>
7611 1 17 1 1 2.</_></rects>
7612 <tilted>0</tilted></feature>
7613 <threshold>-1.1743210052372888e-004</threshold>
7614 <left_val>0.3182134926319122</left_val>
7615 <right_val>-0.1328738033771515</right_val></_></_>
7616 <_>
7617 <!-- tree 41 -->
7618 <_>
7619 <!-- root node -->
7620 <feature>
7621 <rects>
7622 <_>
7623 11 0 16 10 -1.</_>
7624 <_>
7625 15 0 8 10 2.</_></rects>
7626 <tilted>0</tilted></feature>
7627 <threshold>0.1275181025266647</threshold>
7628 <left_val>0.0301400795578957</left_val>
7629 <right_val>-0.7411035895347595</right_val></_></_>
7630 <_>
7631 <!-- tree 42 -->
7632 <_>
7633 <!-- root node -->
7634 <feature>
7635 <rects>
7636 <_>
7637 5 10 24 8 -1.</_>
7638 <_>
7639 5 10 12 4 2.</_>
7640 <_>
7641 17 14 12 4 2.</_></rects>
7642 <tilted>0</tilted></feature>
7643 <threshold>0.0803262963891029</threshold>
7644 <left_val>0.0415550395846367</left_val>
7645 <right_val>-0.8263683915138245</right_val></_></_>
7646 <_>
7647 <!-- tree 43 -->
7648 <_>
7649 <!-- root node -->
7650 <feature>
7651 <rects>
7652 <_>
7653 27 4 3 3 -1.</_>
7654 <_>
7655 27 5 3 1 3.</_></rects>
7656 <tilted>0</tilted></feature>
7657 <threshold>1.6904190415516496e-003</threshold>
7658 <left_val>-0.1029061973094940</left_val>
7659 <right_val>0.2972418069839478</right_val></_></_></trees>
7660 <stage_threshold>-1.3022350072860718</stage_threshold>
7661 <parent>17</parent>
7662 <next>-1</next></_>
7663 <_>
7664 <!-- stage 19 -->
7665 <trees>
7666 <_>
7667 <!-- tree 0 -->
7668 <_>
7669 <!-- root node -->
7670 <feature>
7671 <rects>
7672 <_>
7673 6 6 14 12 -1.</_>
7674 <_>
7675 6 6 7 6 2.</_>
7676 <_>
7677 13 12 7 6 2.</_></rects>
7678 <tilted>0</tilted></feature>
7679 <threshold>-0.0461227893829346</threshold>
7680 <left_val>0.4425258934497833</left_val>
7681 <right_val>-0.2991319894790649</right_val></_></_>
7682 <_>
7683 <!-- tree 1 -->
7684 <_>
7685 <!-- root node -->
7686 <feature>
7687 <rects>
7688 <_>
7689 6 5 24 6 -1.</_>
7690 <_>
7691 14 7 8 2 9.</_></rects>
7692 <tilted>0</tilted></feature>
7693 <threshold>0.3672331869602203</threshold>
7694 <left_val>-0.0630117505788803</left_val>
7695 <right_val>0.7712538242340088</right_val></_></_>
7696 <_>
7697 <!-- tree 2 -->
7698 <_>
7699 <!-- root node -->
7700 <feature>
7701 <rects>
7702 <_>
7703 12 6 3 4 -1.</_>
7704 <_>
7705 12 7 3 2 2.</_></rects>
7706 <tilted>0</tilted></feature>
7707 <threshold>-3.0962929595261812e-003</threshold>
7708 <left_val>0.3514241874217987</left_val>
7709 <right_val>-0.1730643957853317</right_val></_></_>
7710 <_>
7711 <!-- tree 3 -->
7712 <_>
7713 <!-- root node -->
7714 <feature>
7715 <rects>
7716 <_>
7717 30 7 6 10 -1.</_>
7718 <_>
7719 33 7 3 5 2.</_>
7720 <_>
7721 30 12 3 5 2.</_></rects>
7722 <tilted>0</tilted></feature>
7723 <threshold>9.2647131532430649e-003</threshold>
7724 <left_val>-0.1607280969619751</left_val>
7725 <right_val>0.1853290945291519</right_val></_></_>
7726 <_>
7727 <!-- tree 4 -->
7728 <_>
7729 <!-- root node -->
7730 <feature>
7731 <rects>
7732 <_>
7733 3 12 6 6 -1.</_>
7734 <_>
7735 3 12 3 3 2.</_>
7736 <_>
7737 6 15 3 3 2.</_></rects>
7738 <tilted>0</tilted></feature>
7739 <threshold>3.1748649198561907e-003</threshold>
7740 <left_val>-0.1968899965286255</left_val>
7741 <right_val>0.2409728020429611</right_val></_></_>
7742 <_>
7743 <!-- tree 5 -->
7744 <_>
7745 <!-- root node -->
7746 <feature>
7747 <rects>
7748 <_>
7749 20 0 13 2 -1.</_>
7750 <_>
7751 20 0 13 1 2.</_></rects>
7752 <tilted>1</tilted></feature>
7753 <threshold>8.0439839512109756e-003</threshold>
7754 <left_val>0.0898629724979401</left_val>
7755 <right_val>-0.3655225932598114</right_val></_></_>
7756 <_>
7757 <!-- tree 6 -->
7758 <_>
7759 <!-- root node -->
7760 <feature>
7761 <rects>
7762 <_>
7763 6 10 24 6 -1.</_>
7764 <_>
7765 14 12 8 2 9.</_></rects>
7766 <tilted>0</tilted></feature>
7767 <threshold>0.3275249004364014</threshold>
7768 <left_val>-0.0568796806037426</left_val>
7769 <right_val>0.7749336957931519</right_val></_></_>
7770 <_>
7771 <!-- tree 7 -->
7772 <_>
7773 <!-- root node -->
7774 <feature>
7775 <rects>
7776 <_>
7777 15 4 8 8 -1.</_>
7778 <_>
7779 19 4 4 4 2.</_>
7780 <_>
7781 15 8 4 4 2.</_></rects>
7782 <tilted>0</tilted></feature>
7783 <threshold>-0.0190744306892157</threshold>
7784 <left_val>-0.2895380854606628</left_val>
7785 <right_val>0.0622916705906391</right_val></_></_>
7786 <_>
7787 <!-- tree 8 -->
7788 <_>
7789 <!-- root node -->
7790 <feature>
7791 <rects>
7792 <_>
7793 13 4 8 8 -1.</_>
7794 <_>
7795 13 4 4 4 2.</_>
7796 <_>
7797 17 8 4 4 2.</_></rects>
7798 <tilted>0</tilted></feature>
7799 <threshold>-0.0205017495900393</threshold>
7800 <left_val>-0.6262530088424683</left_val>
7801 <right_val>0.0682769715785980</right_val></_></_>
7802 <_>
7803 <!-- tree 9 -->
7804 <_>
7805 <!-- root node -->
7806 <feature>
7807 <rects>
7808 <_>
7809 34 16 2 2 -1.</_>
7810 <_>
7811 34 16 1 2 2.</_></rects>
7812 <tilted>0</tilted></feature>
7813 <threshold>5.3187010053079575e-005</threshold>
7814 <left_val>-0.2514955997467041</left_val>
7815 <right_val>0.2613196074962616</right_val></_></_>
7816 <_>
7817 <!-- tree 10 -->
7818 <_>
7819 <!-- root node -->
7820 <feature>
7821 <rects>
7822 <_>
7823 12 6 3 3 -1.</_>
7824 <_>
7825 12 7 3 1 3.</_></rects>
7826 <tilted>0</tilted></feature>
7827 <threshold>3.3275580499321222e-003</threshold>
7828 <left_val>-0.1199077963829041</left_val>
7829 <right_val>0.3651930093765259</right_val></_></_>
7830 <_>
7831 <!-- tree 11 -->
7832 <_>
7833 <!-- root node -->
7834 <feature>
7835 <rects>
7836 <_>
7837 21 7 4 4 -1.</_>
7838 <_>
7839 21 8 4 2 2.</_></rects>
7840 <tilted>0</tilted></feature>
7841 <threshold>5.8408430777490139e-003</threshold>
7842 <left_val>-0.0827485173940659</left_val>
7843 <right_val>0.2365082055330277</right_val></_></_>
7844 <_>
7845 <!-- tree 12 -->
7846 <_>
7847 <!-- root node -->
7848 <feature>
7849 <rects>
7850 <_>
7851 2 8 30 4 -1.</_>
7852 <_>
7853 2 8 15 2 2.</_>
7854 <_>
7855 17 10 15 2 2.</_></rects>
7856 <tilted>0</tilted></feature>
7857 <threshold>-0.0464623309671879</threshold>
7858 <left_val>-0.6928564906120300</left_val>
7859 <right_val>0.0781976729631424</right_val></_></_>
7860 <_>
7861 <!-- tree 13 -->
7862 <_>
7863 <!-- root node -->
7864 <feature>
7865 <rects>
7866 <_>
7867 27 4 3 4 -1.</_>
7868 <_>
7869 27 5 3 2 2.</_></rects>
7870 <tilted>0</tilted></feature>
7871 <threshold>-3.7785700988024473e-003</threshold>
7872 <left_val>0.3437257111072540</left_val>
7873 <right_val>-0.1027545034885407</right_val></_></_>
7874 <_>
7875 <!-- tree 14 -->
7876 <_>
7877 <!-- root node -->
7878 <feature>
7879 <rects>
7880 <_>
7881 5 4 3 4 -1.</_>
7882 <_>
7883 5 5 3 2 2.</_></rects>
7884 <tilted>0</tilted></feature>
7885 <threshold>1.6655459767207503e-003</threshold>
7886 <left_val>-0.1160527989268303</left_val>
7887 <right_val>0.3716202974319458</right_val></_></_>
7888 <_>
7889 <!-- tree 15 -->
7890 <_>
7891 <!-- root node -->
7892 <feature>
7893 <rects>
7894 <_>
7895 34 16 2 2 -1.</_>
7896 <_>
7897 34 16 1 2 2.</_></rects>
7898 <tilted>0</tilted></feature>
7899 <threshold>-5.7107670727418736e-005</threshold>
7900 <left_val>0.4589366912841797</left_val>
7901 <right_val>-0.2123643010854721</right_val></_></_>
7902 <_>
7903 <!-- tree 16 -->
7904 <_>
7905 <!-- root node -->
7906 <feature>
7907 <rects>
7908 <_>
7909 0 16 34 2 -1.</_>
7910 <_>
7911 0 16 17 1 2.</_>
7912 <_>
7913 17 17 17 1 2.</_></rects>
7914 <tilted>0</tilted></feature>
7915 <threshold>-9.0066380798816681e-003</threshold>
7916 <left_val>-0.5953341126441956</left_val>
7917 <right_val>0.0808764025568962</right_val></_></_>
7918 <_>
7919 <!-- tree 17 -->
7920 <_>
7921 <!-- root node -->
7922 <feature>
7923 <rects>
7924 <_>
7925 12 5 15 12 -1.</_>
7926 <_>
7927 12 9 15 4 3.</_></rects>
7928 <tilted>0</tilted></feature>
7929 <threshold>-0.1378971040248871</threshold>
7930 <left_val>0.3957067131996155</left_val>
7931 <right_val>-0.0898853763937950</right_val></_></_>
7932 <_>
7933 <!-- tree 18 -->
7934 <_>
7935 <!-- root node -->
7936 <feature>
7937 <rects>
7938 <_>
7939 0 8 36 6 -1.</_>
7940 <_>
7941 12 10 12 2 9.</_></rects>
7942 <tilted>0</tilted></feature>
7943 <threshold>0.5759987235069275</threshold>
7944 <left_val>-0.0538108199834824</left_val>
7945 <right_val>0.8170394897460938</right_val></_></_>
7946 <_>
7947 <!-- tree 19 -->
7948 <_>
7949 <!-- root node -->
7950 <feature>
7951 <rects>
7952 <_>
7953 25 4 6 2 -1.</_>
7954 <_>
7955 25 5 6 1 2.</_></rects>
7956 <tilted>0</tilted></feature>
7957 <threshold>-2.3918158840388060e-003</threshold>
7958 <left_val>0.1393374055624008</left_val>
7959 <right_val>-0.0421559289097786</right_val></_></_>
7960 <_>
7961 <!-- tree 20 -->
7962 <_>
7963 <!-- root node -->
7964 <feature>
7965 <rects>
7966 <_>
7967 0 17 2 1 -1.</_>
7968 <_>
7969 1 17 1 1 2.</_></rects>
7970 <tilted>0</tilted></feature>
7971 <threshold>2.4896071408875287e-004</threshold>
7972 <left_val>-0.1485866010189056</left_val>
7973 <right_val>0.2626332938671112</right_val></_></_>
7974 <_>
7975 <!-- tree 21 -->
7976 <_>
7977 <!-- root node -->
7978 <feature>
7979 <rects>
7980 <_>
7981 16 0 9 9 -1.</_>
7982 <_>
7983 19 0 3 9 3.</_></rects>
7984 <tilted>0</tilted></feature>
7985 <threshold>0.0330624915659428</threshold>
7986 <left_val>0.0306599102914333</left_val>
7987 <right_val>-0.3231860101222992</right_val></_></_>
7988 <_>
7989 <!-- tree 22 -->
7990 <_>
7991 <!-- root node -->
7992 <feature>
7993 <rects>
7994 <_>
7995 11 0 9 9 -1.</_>
7996 <_>
7997 14 0 3 9 3.</_></rects>
7998 <tilted>0</tilted></feature>
7999 <threshold>0.0443218797445297</threshold>
8000 <left_val>0.0478538200259209</left_val>
8001 <right_val>-0.7813590168952942</right_val></_></_>
8002 <_>
8003 <!-- tree 23 -->
8004 <_>
8005 <!-- root node -->
8006 <feature>
8007 <rects>
8008 <_>
8009 20 5 16 5 -1.</_>
8010 <_>
8011 24 5 8 5 2.</_></rects>
8012 <tilted>0</tilted></feature>
8013 <threshold>-0.0187181904911995</threshold>
8014 <left_val>0.1201262027025223</left_val>
8015 <right_val>-0.1121146976947784</right_val></_></_>
8016 <_>
8017 <!-- tree 24 -->
8018 <_>
8019 <!-- root node -->
8020 <feature>
8021 <rects>
8022 <_>
8023 0 3 16 9 -1.</_>
8024 <_>
8025 4 3 8 9 2.</_></rects>
8026 <tilted>0</tilted></feature>
8027 <threshold>0.0923093706369400</threshold>
8028 <left_val>0.0424630790948868</left_val>
8029 <right_val>-0.8009700179100037</right_val></_></_>
8030 <_>
8031 <!-- tree 25 -->
8032 <_>
8033 <!-- root node -->
8034 <feature>
8035 <rects>
8036 <_>
8037 7 6 26 12 -1.</_>
8038 <_>
8039 20 6 13 6 2.</_>
8040 <_>
8041 7 12 13 6 2.</_></rects>
8042 <tilted>0</tilted></feature>
8043 <threshold>0.0906654372811317</threshold>
8044 <left_val>-0.0223045293241739</left_val>
8045 <right_val>0.1284797936677933</right_val></_></_>
8046 <_>
8047 <!-- tree 26 -->
8048 <_>
8049 <!-- root node -->
8050 <feature>
8051 <rects>
8052 <_>
8053 5 6 24 12 -1.</_>
8054 <_>
8055 5 6 12 6 2.</_>
8056 <_>
8057 17 12 12 6 2.</_></rects>
8058 <tilted>0</tilted></feature>
8059 <threshold>-0.0582949295639992</threshold>
8060 <left_val>-0.3936854004859924</left_val>
8061 <right_val>0.0954821407794952</right_val></_></_>
8062 <_>
8063 <!-- tree 27 -->
8064 <_>
8065 <!-- root node -->
8066 <feature>
8067 <rects>
8068 <_>
8069 17 4 3 12 -1.</_>
8070 <_>
8071 18 4 1 12 3.</_></rects>
8072 <tilted>0</tilted></feature>
8073 <threshold>4.6649780124425888e-003</threshold>
8074 <left_val>-0.0656419470906258</left_val>
8075 <right_val>0.3640717864036560</right_val></_></_>
8076 <_>
8077 <!-- tree 28 -->
8078 <_>
8079 <!-- root node -->
8080 <feature>
8081 <rects>
8082 <_>
8083 1 11 6 1 -1.</_>
8084 <_>
8085 3 13 2 1 3.</_></rects>
8086 <tilted>1</tilted></feature>
8087 <threshold>5.2480432204902172e-003</threshold>
8088 <left_val>0.0687657818198204</left_val>
8089 <right_val>-0.5050830245018005</right_val></_></_>
8090 <_>
8091 <!-- tree 29 -->
8092 <_>
8093 <!-- root node -->
8094 <feature>
8095 <rects>
8096 <_>
8097 21 12 14 2 -1.</_>
8098 <_>
8099 28 12 7 1 2.</_>
8100 <_>
8101 21 13 7 1 2.</_></rects>
8102 <tilted>0</tilted></feature>
8103 <threshold>2.5315659586340189e-003</threshold>
8104 <left_val>-0.0933471694588661</left_val>
8105 <right_val>0.1649612933397293</right_val></_></_>
8106 <_>
8107 <!-- tree 30 -->
8108 <_>
8109 <!-- root node -->
8110 <feature>
8111 <rects>
8112 <_>
8113 1 13 2 3 -1.</_>
8114 <_>
8115 2 13 1 3 2.</_></rects>
8116 <tilted>0</tilted></feature>
8117 <threshold>2.4391160695813596e-004</threshold>
8118 <left_val>-0.1888543963432312</left_val>
8119 <right_val>0.1695670038461685</right_val></_></_>
8120 <_>
8121 <!-- tree 31 -->
8122 <_>
8123 <!-- root node -->
8124 <feature>
8125 <rects>
8126 <_>
8127 26 8 3 2 -1.</_>
8128 <_>
8129 27 9 1 2 3.</_></rects>
8130 <tilted>1</tilted></feature>
8131 <threshold>-6.3037211075425148e-003</threshold>
8132 <left_val>0.3826352953910828</left_val>
8133 <right_val>-0.0590420998632908</right_val></_></_>
8134 <_>
8135 <!-- tree 32 -->
8136 <_>
8137 <!-- root node -->
8138 <feature>
8139 <rects>
8140 <_>
8141 10 8 2 3 -1.</_>
8142 <_>
8143 9 9 2 1 3.</_></rects>
8144 <tilted>1</tilted></feature>
8145 <threshold>2.2754059173166752e-003</threshold>
8146 <left_val>-0.1224882006645203</left_val>
8147 <right_val>0.2828365862369537</right_val></_></_>
8148 <_>
8149 <!-- tree 33 -->
8150 <_>
8151 <!-- root node -->
8152 <feature>
8153 <rects>
8154 <_>
8155 12 0 18 18 -1.</_>
8156 <_>
8157 12 0 9 18 2.</_></rects>
8158 <tilted>0</tilted></feature>
8159 <threshold>-0.2769486904144287</threshold>
8160 <left_val>0.4851497113704681</left_val>
8161 <right_val>-0.0404825396835804</right_val></_></_>
8162 <_>
8163 <!-- tree 34 -->
8164 <_>
8165 <!-- root node -->
8166 <feature>
8167 <rects>
8168 <_>
8169 8 9 3 3 -1.</_>
8170 <_>
8171 7 10 3 1 3.</_></rects>
8172 <tilted>1</tilted></feature>
8173 <threshold>5.8051547966897488e-003</threshold>
8174 <left_val>-0.0835584178566933</left_val>
8175 <right_val>0.4215149879455566</right_val></_></_>
8176 <_>
8177 <!-- tree 35 -->
8178 <_>
8179 <!-- root node -->
8180 <feature>
8181 <rects>
8182 <_>
8183 28 5 5 6 -1.</_>
8184 <_>
8185 28 7 5 2 3.</_></rects>
8186 <tilted>0</tilted></feature>
8187 <threshold>2.4654529988765717e-003</threshold>
8188 <left_val>-0.1281685978174210</left_val>
8189 <right_val>0.2077662944793701</right_val></_></_>
8190 <_>
8191 <!-- tree 36 -->
8192 <_>
8193 <!-- root node -->
8194 <feature>
8195 <rects>
8196 <_>
8197 9 1 9 8 -1.</_>
8198 <_>
8199 9 1 9 4 2.</_></rects>
8200 <tilted>1</tilted></feature>
8201 <threshold>7.8863510861992836e-003</threshold>
8202 <left_val>-0.1719754040241242</left_val>
8203 <right_val>0.2079081982374191</right_val></_></_>
8204 <_>
8205 <!-- tree 37 -->
8206 <_>
8207 <!-- root node -->
8208 <feature>
8209 <rects>
8210 <_>
8211 0 0 36 2 -1.</_>
8212 <_>
8213 18 0 18 1 2.</_>
8214 <_>
8215 0 1 18 1 2.</_></rects>
8216 <tilted>0</tilted></feature>
8217 <threshold>-0.0118171302601695</threshold>
8218 <left_val>-0.5788066983222961</left_val>
8219 <right_val>0.0589591413736343</right_val></_></_>
8220 <_>
8221 <!-- tree 38 -->
8222 <_>
8223 <!-- root node -->
8224 <feature>
8225 <rects>
8226 <_>
8227 5 0 26 6 -1.</_>
8228 <_>
8229 5 0 13 3 2.</_>
8230 <_>
8231 18 3 13 3 2.</_></rects>
8232 <tilted>0</tilted></feature>
8233 <threshold>-0.0641399174928665</threshold>
8234 <left_val>-0.6368926167488098</left_val>
8235 <right_val>0.0417975001037121</right_val></_></_>
8236 <_>
8237 <!-- tree 39 -->
8238 <_>
8239 <!-- root node -->
8240 <feature>
8241 <rects>
8242 <_>
8243 28 3 3 3 -1.</_>
8244 <_>
8245 28 4 3 1 3.</_></rects>
8246 <tilted>0</tilted></feature>
8247 <threshold>-1.2179970508441329e-003</threshold>
8248 <left_val>0.2356870025396347</left_val>
8249 <right_val>-0.0805152580142021</right_val></_></_>
8250 <_>
8251 <!-- tree 40 -->
8252 <_>
8253 <!-- root node -->
8254 <feature>
8255 <rects>
8256 <_>
8257 5 3 5 3 -1.</_>
8258 <_>
8259 5 4 5 1 3.</_></rects>
8260 <tilted>0</tilted></feature>
8261 <threshold>2.8652620967477560e-003</threshold>
8262 <left_val>-0.0931371971964836</left_val>
8263 <right_val>0.3902595043182373</right_val></_></_>
8264 <_>
8265 <!-- tree 41 -->
8266 <_>
8267 <!-- root node -->
8268 <feature>
8269 <rects>
8270 <_>
8271 14 12 8 2 -1.</_>
8272 <_>
8273 16 12 4 2 2.</_></rects>
8274 <tilted>0</tilted></feature>
8275 <threshold>-5.7746102102100849e-003</threshold>
8276 <left_val>-0.5753986835479736</left_val>
8277 <right_val>0.0596776902675629</right_val></_></_>
8278 <_>
8279 <!-- tree 42 -->
8280 <_>
8281 <!-- root node -->
8282 <feature>
8283 <rects>
8284 <_>
8285 13 0 9 14 -1.</_>
8286 <_>
8287 16 0 3 14 3.</_></rects>
8288 <tilted>0</tilted></feature>
8289 <threshold>0.0653770864009857</threshold>
8290 <left_val>0.0341660715639591</left_val>
8291 <right_val>-0.7425342202186585</right_val></_></_>
8292 <_>
8293 <!-- tree 43 -->
8294 <_>
8295 <!-- root node -->
8296 <feature>
8297 <rects>
8298 <_>
8299 23 0 10 1 -1.</_>
8300 <_>
8301 23 0 5 1 2.</_></rects>
8302 <tilted>1</tilted></feature>
8303 <threshold>0.0162657108157873</threshold>
8304 <left_val>0.0536542609333992</left_val>
8305 <right_val>-0.2365860939025879</right_val></_></_>
8306 <_>
8307 <!-- tree 44 -->
8308 <_>
8309 <!-- root node -->
8310 <feature>
8311 <rects>
8312 <_>
8313 8 14 2 2 -1.</_>
8314 <_>
8315 8 14 1 2 2.</_></rects>
8316 <tilted>1</tilted></feature>
8317 <threshold>2.2717609535902739e-003</threshold>
8318 <left_val>0.0533591099083424</left_val>
8319 <right_val>-0.5494074225425720</right_val></_></_>
8320 <_>
8321 <!-- tree 45 -->
8322 <_>
8323 <!-- root node -->
8324 <feature>
8325 <rects>
8326 <_>
8327 0 12 36 3 -1.</_>
8328 <_>
8329 12 13 12 1 9.</_></rects>
8330 <tilted>0</tilted></feature>
8331 <threshold>0.2262602001428604</threshold>
8332 <left_val>-0.0420460589230061</left_val>
8333 <right_val>0.7791252136230469</right_val></_></_>
8334 <_>
8335 <!-- tree 46 -->
8336 <_>
8337 <!-- root node -->
8338 <feature>
8339 <rects>
8340 <_>
8341 0 13 34 4 -1.</_>
8342 <_>
8343 0 13 17 2 2.</_>
8344 <_>
8345 17 15 17 2 2.</_></rects>
8346 <tilted>0</tilted></feature>
8347 <threshold>-0.0293774604797363</threshold>
8348 <left_val>-0.5947058796882629</left_val>
8349 <right_val>0.0548178702592850</right_val></_></_></trees>
8350 <stage_threshold>-1.1933319568634033</stage_threshold>
8351 <parent>18</parent>
8352 <next>-1</next></_></stages></SmileDetector>
8353 </opencv_storage>