1 /* 2 * Copyright (c) 2012, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 package java.lang.invoke; 26 27 import sun.invoke.util.Wrapper; 28 29 import java.lang.reflect.Modifier; 30 31 import static java.lang.invoke.MethodHandleInfo.*; 32 import static sun.invoke.util.Wrapper.forPrimitiveType; 33 import static sun.invoke.util.Wrapper.forWrapperType; 34 import static sun.invoke.util.Wrapper.isWrapperType; 35 36 /** 37 * Abstract implementation of a lambda metafactory which provides parameter 38 * unrolling and input validation. 39 * 40 * @see LambdaMetafactory 41 */ 42 /* package */ abstract class AbstractValidatingLambdaMetafactory { 43 44 /* 45 * For context, the comments for the following fields are marked in quotes 46 * with their values, given this program: 47 * interface II<T> { Object foo(T x); } 48 * interface JJ<R extends Number> extends II<R> { } 49 * class CC { String impl(int i) { return "impl:"+i; }} 50 * class X { 51 * public static void main(String[] args) { 52 * JJ<Integer> iii = (new CC())::impl; 53 * System.out.printf(">>> %s\n", iii.foo(44)); 54 * }} 55 */ 56 final MethodHandles.Lookup caller; // The caller's lookup context 57 final Class<?> targetClass; // The class calling the meta-factory via invokedynamic "class X" 58 final MethodType factoryType; // The type of the invoked method "(CC)II" 59 final Class<?> interfaceClass; // The type of the returned instance "interface JJ" 60 final String interfaceMethodName; // Name of the method to implement "foo" 61 final MethodType interfaceMethodType; // Type of the method to implement "(Object)Object" 62 final MethodHandle implementation; // Raw method handle for the implementation method 63 final MethodType implMethodType; // Type of the implementation MethodHandle "(CC,int)String" 64 final MethodHandleInfo implInfo; // Info about the implementation method handle "MethodHandleInfo[5 CC.impl(int)String]" 65 final int implKind; // Invocation kind for implementation "5"=invokevirtual 66 final boolean implIsInstanceMethod; // Is the implementation an instance method "true" 67 final Class<?> implClass; // Class for referencing the implementation method "class CC" 68 final MethodType dynamicMethodType; // Dynamically checked method type "(Integer)Object" 69 final boolean isSerializable; // Should the returned instance be serializable 70 final Class<?>[] altInterfaces; // Additional interfaces to be implemented 71 final MethodType[] altMethods; // Signatures of additional methods to bridge 72 73 74 /** 75 * Meta-factory constructor. 76 * 77 * @param caller Stacked automatically by VM; represents a lookup context 78 * with the accessibility privileges of the caller. 79 * @param factoryType Stacked automatically by VM; the signature of the 80 * invoked method, which includes the expected static 81 * type of the returned lambda object, and the static 82 * types of the captured arguments for the lambda. In 83 * the event that the implementation method is an 84 * instance method, the first argument in the invocation 85 * signature will correspond to the receiver. 86 * @param interfaceMethodName Name of the method in the functional interface to 87 * which the lambda or method reference is being 88 * converted, represented as a String. 89 * @param interfaceMethodType Type of the method in the functional interface to 90 * which the lambda or method reference is being 91 * converted, represented as a MethodType. 92 * @param implementation The implementation method which should be called 93 * (with suitable adaptation of argument types, return 94 * types, and adjustment for captured arguments) when 95 * methods of the resulting functional interface instance 96 * are invoked. 97 * @param dynamicMethodType The signature of the primary functional 98 * interface method after type variables are 99 * substituted with their instantiation from 100 * the capture site 101 * @param isSerializable Should the lambda be made serializable? If set, 102 * either the target type or one of the additional SAM 103 * types must extend {@code Serializable}. 104 * @param altInterfaces Additional interfaces which the lambda object 105 * should implement. 106 * @param altMethods Method types for additional signatures to be 107 * implemented by invoking the implementation method 108 * @throws LambdaConversionException If any of the meta-factory protocol 109 * invariants are violated 110 */ 111 AbstractValidatingLambdaMetafactory(MethodHandles.Lookup caller, 112 MethodType factoryType, 113 String interfaceMethodName, 114 MethodType interfaceMethodType, 115 MethodHandle implementation, 116 MethodType dynamicMethodType, 117 boolean isSerializable, 118 Class<?>[] altInterfaces, 119 MethodType[] altMethods) 120 throws LambdaConversionException { 121 if (!caller.hasFullPrivilegeAccess()) { 122 throw new LambdaConversionException(String.format( 123 "Invalid caller: %s", 124 caller.lookupClass().getName())); 125 } 126 this.caller = caller; 127 this.targetClass = caller.lookupClass(); 128 this.factoryType = factoryType; 129 130 this.interfaceClass = factoryType.returnType(); 131 132 this.interfaceMethodName = interfaceMethodName; 133 this.interfaceMethodType = interfaceMethodType; 134 135 this.implementation = implementation; 136 this.implMethodType = implementation.type(); 137 try { 138 this.implInfo = caller.revealDirect(implementation); 139 } catch (IllegalArgumentException e) { 140 throw new LambdaConversionException(implementation + " is not direct or cannot be cracked"); 141 } 142 switch (implInfo.getReferenceKind()) { 143 case REF_invokeVirtual: 144 case REF_invokeInterface: 145 this.implClass = implMethodType.parameterType(0); 146 // reference kind reported by implInfo may not match implMethodType's first param 147 // Example: implMethodType is (Cloneable)String, implInfo is for Object.toString 148 this.implKind = implClass.isInterface() ? REF_invokeInterface : REF_invokeVirtual; 149 this.implIsInstanceMethod = true; 150 break; 151 case REF_invokeSpecial: 152 // JDK-8172817: should use referenced class here, but we don't know what it was 153 this.implClass = implInfo.getDeclaringClass(); 154 this.implIsInstanceMethod = true; 155 156 // Classes compiled prior to dynamic nestmate support invoke a private instance 157 // method with REF_invokeSpecial. Newer classes use REF_invokeVirtual or 158 // REF_invokeInterface, and we can use that instruction in the lambda class. 159 if (targetClass == implClass && Modifier.isPrivate(implInfo.getModifiers())) { 160 this.implKind = implClass.isInterface() ? REF_invokeInterface : REF_invokeVirtual; 161 } else { 162 this.implKind = REF_invokeSpecial; 163 } 164 break; 165 case REF_invokeStatic: 166 case REF_newInvokeSpecial: 167 // JDK-8172817: should use referenced class here for invokestatic, but we don't know what it was 168 this.implClass = implInfo.getDeclaringClass(); 169 this.implKind = implInfo.getReferenceKind(); 170 this.implIsInstanceMethod = false; 171 break; 172 default: 173 throw new LambdaConversionException(String.format("Unsupported MethodHandle kind: %s", implInfo)); 174 } 175 176 this.dynamicMethodType = dynamicMethodType; 177 this.isSerializable = isSerializable; 178 this.altInterfaces = altInterfaces; 179 this.altMethods = altMethods; 180 181 if (interfaceMethodName.isEmpty() || 182 interfaceMethodName.indexOf('.') >= 0 || 183 interfaceMethodName.indexOf(';') >= 0 || 184 interfaceMethodName.indexOf('[') >= 0 || 185 interfaceMethodName.indexOf('/') >= 0 || 186 interfaceMethodName.indexOf('<') >= 0 || 187 interfaceMethodName.indexOf('>') >= 0) { 188 throw new LambdaConversionException(String.format( 189 "Method name '%s' is not legal", 190 interfaceMethodName)); 191 } 192 193 if (!interfaceClass.isInterface()) { 194 throw new LambdaConversionException(String.format( 195 "%s is not an interface", 196 interfaceClass.getName())); 197 } 198 199 for (Class<?> c : altInterfaces) { 200 if (!c.isInterface()) { 201 throw new LambdaConversionException(String.format( 202 "%s is not an interface", 203 c.getName())); 204 } 205 } 206 } 207 208 /** 209 * Build the CallSite. 210 * 211 * @return a CallSite, which, when invoked, will return an instance of the 212 * functional interface 213 * @throws LambdaConversionException 214 */ 215 abstract CallSite buildCallSite() 216 throws LambdaConversionException; 217 218 /** 219 * Check the meta-factory arguments for errors 220 * @throws LambdaConversionException if there are improper conversions 221 */ 222 void validateMetafactoryArgs() throws LambdaConversionException { 223 // Check arity: captured + SAM == impl 224 final int implArity = implMethodType.parameterCount(); 225 final int capturedArity = factoryType.parameterCount(); 226 final int samArity = interfaceMethodType.parameterCount(); 227 final int dynamicArity = dynamicMethodType.parameterCount(); 228 if (implArity != capturedArity + samArity) { 229 throw new LambdaConversionException( 230 String.format("Incorrect number of parameters for %s method %s; %d captured parameters, %d functional interface method parameters, %d implementation parameters", 231 implIsInstanceMethod ? "instance" : "static", implInfo, 232 capturedArity, samArity, implArity)); 233 } 234 if (dynamicArity != samArity) { 235 throw new LambdaConversionException( 236 String.format("Incorrect number of parameters for %s method %s; %d dynamic parameters, %d functional interface method parameters", 237 implIsInstanceMethod ? "instance" : "static", implInfo, 238 dynamicArity, samArity)); 239 } 240 for (MethodType bridgeMT : altMethods) { 241 if (bridgeMT.parameterCount() != samArity) { 242 throw new LambdaConversionException( 243 String.format("Incorrect number of parameters for bridge signature %s; incompatible with %s", 244 bridgeMT, interfaceMethodType)); 245 } 246 } 247 248 // If instance: first captured arg (receiver) must be subtype of class where impl method is defined 249 final int capturedStart; // index of first non-receiver capture parameter in implMethodType 250 final int samStart; // index of first non-receiver sam parameter in implMethodType 251 if (implIsInstanceMethod) { 252 final Class<?> receiverClass; 253 254 // implementation is an instance method, adjust for receiver in captured variables / SAM arguments 255 if (capturedArity == 0) { 256 // receiver is function parameter 257 capturedStart = 0; 258 samStart = 1; 259 receiverClass = dynamicMethodType.parameterType(0); 260 } else { 261 // receiver is a captured variable 262 capturedStart = 1; 263 samStart = capturedArity; 264 receiverClass = factoryType.parameterType(0); 265 } 266 267 // check receiver type 268 if (!implClass.isAssignableFrom(receiverClass)) { 269 throw new LambdaConversionException( 270 String.format("Invalid receiver type %s; not a subtype of implementation type %s", 271 receiverClass, implClass)); 272 } 273 } else { 274 // no receiver 275 capturedStart = 0; 276 samStart = capturedArity; 277 } 278 279 // Check for exact match on non-receiver captured arguments 280 for (int i=capturedStart; i<capturedArity; i++) { 281 Class<?> implParamType = implMethodType.parameterType(i); 282 Class<?> capturedParamType = factoryType.parameterType(i); 283 if (!capturedParamType.equals(implParamType)) { 284 throw new LambdaConversionException( 285 String.format("Type mismatch in captured lambda parameter %d: expecting %s, found %s", 286 i, capturedParamType, implParamType)); 287 } 288 } 289 // Check for adaptation match on non-receiver SAM arguments 290 for (int i=samStart; i<implArity; i++) { 291 Class<?> implParamType = implMethodType.parameterType(i); 292 Class<?> dynamicParamType = dynamicMethodType.parameterType(i - capturedArity); 293 if (!isAdaptableTo(dynamicParamType, implParamType, true)) { 294 throw new LambdaConversionException( 295 String.format("Type mismatch for lambda argument %d: %s is not convertible to %s", 296 i, dynamicParamType, implParamType)); 297 } 298 } 299 300 // Adaptation match: return type 301 Class<?> expectedType = dynamicMethodType.returnType(); 302 Class<?> actualReturnType = implMethodType.returnType(); 303 if (!isAdaptableToAsReturn(actualReturnType, expectedType)) { 304 throw new LambdaConversionException( 305 String.format("Type mismatch for lambda return: %s is not convertible to %s", 306 actualReturnType, expectedType)); 307 } 308 309 // Check descriptors of generated methods 310 checkDescriptor(interfaceMethodType); 311 for (MethodType bridgeMT : altMethods) { 312 checkDescriptor(bridgeMT); 313 } 314 } 315 316 /** Validate that the given descriptor's types are compatible with {@code dynamicMethodType} **/ 317 private void checkDescriptor(MethodType descriptor) throws LambdaConversionException { 318 for (int i = 0; i < dynamicMethodType.parameterCount(); i++) { 319 Class<?> dynamicParamType = dynamicMethodType.parameterType(i); 320 Class<?> descriptorParamType = descriptor.parameterType(i); 321 if (!descriptorParamType.isAssignableFrom(dynamicParamType)) { 322 String msg = String.format("Type mismatch for dynamic parameter %d: %s is not a subtype of %s", 323 i, dynamicParamType, descriptorParamType); 324 throw new LambdaConversionException(msg); 325 } 326 } 327 328 Class<?> dynamicReturnType = dynamicMethodType.returnType(); 329 Class<?> descriptorReturnType = descriptor.returnType(); 330 if (!isAdaptableToAsReturnStrict(dynamicReturnType, descriptorReturnType)) { 331 String msg = String.format("Type mismatch for lambda expected return: %s is not convertible to %s", 332 dynamicReturnType, descriptorReturnType); 333 throw new LambdaConversionException(msg); 334 } 335 } 336 337 /** 338 * Check type adaptability for parameter types. 339 * @param fromType Type to convert from 340 * @param toType Type to convert to 341 * @param strict If true, do strict checks, else allow that fromType may be parameterized 342 * @return True if 'fromType' can be passed to an argument of 'toType' 343 */ 344 private boolean isAdaptableTo(Class<?> fromType, Class<?> toType, boolean strict) { 345 if (fromType.equals(toType)) { 346 return true; 347 } 348 if (fromType.isPrimitive()) { 349 Wrapper wfrom = forPrimitiveType(fromType); 350 if (toType.isPrimitive()) { 351 // both are primitive: widening 352 Wrapper wto = forPrimitiveType(toType); 353 return wto.isConvertibleFrom(wfrom); 354 } else { 355 // from primitive to reference: boxing 356 return toType.isAssignableFrom(wfrom.wrapperType()); 357 } 358 } else { 359 if (toType.isPrimitive()) { 360 // from reference to primitive: unboxing 361 Wrapper wfrom; 362 if (isWrapperType(fromType) && (wfrom = forWrapperType(fromType)).primitiveType().isPrimitive()) { 363 // fromType is a primitive wrapper; unbox+widen 364 Wrapper wto = forPrimitiveType(toType); 365 return wto.isConvertibleFrom(wfrom); 366 } else { 367 // must be convertible to primitive 368 return !strict; 369 } 370 } else { 371 // both are reference types: fromType should be a superclass of toType. 372 return !strict || toType.isAssignableFrom(fromType); 373 } 374 } 375 } 376 377 /** 378 * Check type adaptability for return types -- 379 * special handling of void type) and parameterized fromType 380 * @return True if 'fromType' can be converted to 'toType' 381 */ 382 private boolean isAdaptableToAsReturn(Class<?> fromType, Class<?> toType) { 383 return toType.equals(void.class) 384 || !fromType.equals(void.class) && isAdaptableTo(fromType, toType, false); 385 } 386 private boolean isAdaptableToAsReturnStrict(Class<?> fromType, Class<?> toType) { 387 if (fromType.equals(void.class) || toType.equals(void.class)) return fromType.equals(toType); 388 else return isAdaptableTo(fromType, toType, true); 389 } 390 391 392 /*********** Logging support -- for debugging only, uncomment as needed 393 static final Executor logPool = Executors.newSingleThreadExecutor(); 394 protected static void log(final String s) { 395 MethodHandleProxyLambdaMetafactory.logPool.execute(new Runnable() { 396 @Override 397 public void run() { 398 System.out.println(s); 399 } 400 }); 401 } 402 403 protected static void log(final String s, final Throwable e) { 404 MethodHandleProxyLambdaMetafactory.logPool.execute(new Runnable() { 405 @Override 406 public void run() { 407 System.out.println(s); 408 e.printStackTrace(System.out); 409 } 410 }); 411 } 412 ***********************/ 413 414 }