1 /*
  2  * Copyright (c) 2012, 2024, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.  Oracle designates this
  8  * particular file as subject to the "Classpath" exception as provided
  9  * by Oracle in the LICENSE file that accompanied this code.
 10  *
 11  * This code is distributed in the hope that it will be useful, but WITHOUT
 12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 14  * version 2 for more details (a copy is included in the LICENSE file that
 15  * accompanied this code).
 16  *
 17  * You should have received a copy of the GNU General Public License version
 18  * 2 along with this work; if not, write to the Free Software Foundation,
 19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 20  *
 21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 22  * or visit www.oracle.com if you need additional information or have any
 23  * questions.
 24  */
 25 package java.lang.invoke;
 26 
 27 import sun.invoke.util.Wrapper;
 28 
 29 import java.lang.reflect.Modifier;
 30 
 31 import static java.lang.invoke.MethodHandleInfo.*;
 32 import static sun.invoke.util.Wrapper.forPrimitiveType;
 33 import static sun.invoke.util.Wrapper.forWrapperType;
 34 import static sun.invoke.util.Wrapper.isWrapperType;
 35 
 36 /**
 37  * Abstract implementation of a lambda metafactory which provides parameter
 38  * unrolling and input validation.
 39  *
 40  * @see LambdaMetafactory
 41  */
 42 /* package */ abstract class AbstractValidatingLambdaMetafactory {
 43 
 44     /*
 45      * For context, the comments for the following fields are marked in quotes
 46      * with their values, given this program:
 47      * interface II<T> {  Object foo(T x); }
 48      * interface JJ<R extends Number> extends II<R> { }
 49      * class CC {  String impl(int i) { return "impl:"+i; }}
 50      * class X {
 51      *     public static void main(String[] args) {
 52      *         JJ<Integer> iii = (new CC())::impl;
 53      *         System.out.printf(">>> %s\n", iii.foo(44));
 54      * }}
 55      */
 56     final MethodHandles.Lookup caller;        // The caller's lookup context
 57     final Class<?> targetClass;               // The class calling the meta-factory via invokedynamic "class X"
 58     final MethodType factoryType;             // The type of the invoked method "(CC)II"
 59     final Class<?> interfaceClass;            // The type of the returned instance "interface JJ"
 60     final String interfaceMethodName;         // Name of the method to implement "foo"
 61     final MethodType interfaceMethodType;     // Type of the method to implement "(Object)Object"
 62     final MethodHandle implementation;        // Raw method handle for the implementation method
 63     final MethodType implMethodType;          // Type of the implementation MethodHandle "(CC,int)String"
 64     final MethodHandleInfo implInfo;          // Info about the implementation method handle "MethodHandleInfo[5 CC.impl(int)String]"
 65     final int implKind;                       // Invocation kind for implementation "5"=invokevirtual
 66     final boolean implIsInstanceMethod;       // Is the implementation an instance method "true"
 67     final Class<?> implClass;                 // Class for referencing the implementation method "class CC"
 68     final MethodType dynamicMethodType;       // Dynamically checked method type "(Integer)Object"
 69     final boolean isSerializable;             // Should the returned instance be serializable
 70     final Class<?>[] altInterfaces;           // Additional interfaces to be implemented
 71     final MethodType[] altMethods;            // Signatures of additional methods to bridge
 72     final MethodHandle quotableOpField;       // A getter method handle that is used to retrieve the
 73                                               // string representation of the quotable lambda's associated
 74                                               // intermediate representation (can be null).
 75     final MethodHandleInfo quotableOpFieldInfo;  // Info about the quotable getter method handle (can be null).
 76 
 77     /**
 78      * Meta-factory constructor.
 79      *
 80      * @param caller Stacked automatically by VM; represents a lookup context
 81      *               with the accessibility privileges of the caller.
 82      * @param factoryType Stacked automatically by VM; the signature of the
 83      *                    invoked method, which includes the expected static
 84      *                    type of the returned lambda object, and the static
 85      *                    types of the captured arguments for the lambda.  In
 86      *                    the event that the implementation method is an
 87      *                    instance method, the first argument in the invocation
 88      *                    signature will correspond to the receiver.
 89      * @param interfaceMethodName Name of the method in the functional interface to
 90      *                            which the lambda or method reference is being
 91      *                            converted, represented as a String.
 92      * @param interfaceMethodType Type of the method in the functional interface to
 93      *                            which the lambda or method reference is being
 94      *                            converted, represented as a MethodType.
 95      * @param implementation The implementation method which should be called
 96      *                       (with suitable adaptation of argument types, return
 97      *                       types, and adjustment for captured arguments) when
 98      *                       methods of the resulting functional interface instance
 99      *                       are invoked.
100      * @param dynamicMethodType The signature of the primary functional
101      *                          interface method after type variables are
102      *                          substituted with their instantiation from
103      *                          the capture site
104      * @param isSerializable Should the lambda be made serializable?  If set,
105      *                       either the target type or one of the additional SAM
106      *                       types must extend {@code Serializable}.
107      * @param altInterfaces Additional interfaces which the lambda object
108      *                      should implement.
109      * @param altMethods Method types for additional signatures to be
110      *                   implemented by invoking the implementation method
111      * @param reflectiveField a {@linkplain MethodHandles.Lookup#findGetter(Class, String, Class) getter}
112      *                   method handle that is used to retrieve the string representation of the
113      *                   quotable lambda's associated intermediate representation.
114      * @throws LambdaConversionException If any of the meta-factory protocol
115      *         invariants are violated
116      * @throws SecurityException If a security manager is present, and it
117      *         <a href="MethodHandles.Lookup.html#secmgr">denies access</a>
118      *         from {@code caller} to the package of {@code implementation}.
119      */
120     AbstractValidatingLambdaMetafactory(MethodHandles.Lookup caller,
121                                         MethodType factoryType,
122                                         String interfaceMethodName,
123                                         MethodType interfaceMethodType,
124                                         MethodHandle implementation,
125                                         MethodType dynamicMethodType,
126                                         boolean isSerializable,
127                                         Class<?>[] altInterfaces,
128                                         MethodType[] altMethods,
129                                         MethodHandle reflectiveField)
130             throws LambdaConversionException {
131         if (!caller.hasFullPrivilegeAccess()) {
132             throw new LambdaConversionException(String.format(
133                     "Invalid caller: %s",
134                     caller.lookupClass().getName()));
135         }
136         this.caller = caller;
137         this.targetClass = caller.lookupClass();
138         this.factoryType = factoryType;
139 
140         this.interfaceClass = factoryType.returnType();
141 
142         this.interfaceMethodName = interfaceMethodName;
143         this.interfaceMethodType  = interfaceMethodType;
144 
145         this.implementation = implementation;
146         this.implMethodType = implementation.type();
147         try {
148             this.implInfo = caller.revealDirect(implementation); // may throw SecurityException
149         } catch (IllegalArgumentException e) {
150             throw new LambdaConversionException(implementation + " is not direct or cannot be cracked");
151         }
152         switch (implInfo.getReferenceKind()) {
153             case REF_invokeVirtual:
154             case REF_invokeInterface:
155                 this.implClass = implMethodType.parameterType(0);
156                 // reference kind reported by implInfo may not match implMethodType's first param
157                 // Example: implMethodType is (Cloneable)String, implInfo is for Object.toString
158                 this.implKind = implClass.isInterface() ? REF_invokeInterface : REF_invokeVirtual;
159                 this.implIsInstanceMethod = true;
160                 break;
161             case REF_invokeSpecial:
162                 // JDK-8172817: should use referenced class here, but we don't know what it was
163                 this.implClass = implInfo.getDeclaringClass();
164                 this.implIsInstanceMethod = true;
165 
166                 // Classes compiled prior to dynamic nestmate support invoke a private instance
167                 // method with REF_invokeSpecial. Newer classes use REF_invokeVirtual or
168                 // REF_invokeInterface, and we can use that instruction in the lambda class.
169                 if (targetClass == implClass && Modifier.isPrivate(implInfo.getModifiers())) {
170                     this.implKind = implClass.isInterface() ? REF_invokeInterface : REF_invokeVirtual;
171                 } else {
172                     this.implKind = REF_invokeSpecial;
173                 }
174                 break;
175             case REF_invokeStatic:
176             case REF_newInvokeSpecial:
177                 // JDK-8172817: should use referenced class here for invokestatic, but we don't know what it was
178                 this.implClass = implInfo.getDeclaringClass();
179                 this.implKind = implInfo.getReferenceKind();
180                 this.implIsInstanceMethod = false;
181                 break;
182             default:
183                 throw new LambdaConversionException(String.format("Unsupported MethodHandle kind: %s", implInfo));
184         }
185 
186         this.dynamicMethodType = dynamicMethodType;
187         this.isSerializable = isSerializable;
188         this.altInterfaces = altInterfaces;
189         this.altMethods = altMethods;
190         this.quotableOpField = reflectiveField;
191 
192         if (interfaceMethodName.isEmpty() ||
193                 interfaceMethodName.indexOf('.') >= 0 ||
194                 interfaceMethodName.indexOf(';') >= 0 ||
195                 interfaceMethodName.indexOf('[') >= 0 ||
196                 interfaceMethodName.indexOf('/') >= 0 ||
197                 interfaceMethodName.indexOf('<') >= 0 ||
198                 interfaceMethodName.indexOf('>') >= 0) {
199             throw new LambdaConversionException(String.format(
200                     "Method name '%s' is not legal",
201                     interfaceMethodName));
202         }
203 
204         if (!interfaceClass.isInterface()) {
205             throw new LambdaConversionException(String.format(
206                     "%s is not an interface",
207                     interfaceClass.getName()));
208         }
209 
210         for (Class<?> c : altInterfaces) {
211             if (!c.isInterface()) {
212                 throw new LambdaConversionException(String.format(
213                         "%s is not an interface",
214                         c.getName()));
215             }
216         }
217 
218         if (reflectiveField != null) {
219             try {
220                 quotableOpFieldInfo = caller.revealDirect(reflectiveField); // may throw SecurityException
221             } catch (IllegalArgumentException e) {
222                 throw new LambdaConversionException(implementation + " is not direct or cannot be cracked");
223             }
224             if (quotableOpFieldInfo.getReferenceKind() != REF_getField &&
225                     quotableOpFieldInfo.getReferenceKind() != REF_getStatic) {
226                 throw new LambdaConversionException(String.format("Unsupported MethodHandle kind: %s", quotableOpFieldInfo));
227             }
228         } else {
229             quotableOpFieldInfo = null;
230         }
231     }
232 
233     /**
234      * Build the CallSite.
235      *
236      * @return a CallSite, which, when invoked, will return an instance of the
237      * functional interface
238      * @throws LambdaConversionException
239      */
240     abstract CallSite buildCallSite()
241             throws LambdaConversionException;
242 
243     /**
244      * Check the meta-factory arguments for errors
245      * @throws LambdaConversionException if there are improper conversions
246      */
247     void validateMetafactoryArgs() throws LambdaConversionException {
248         // Check arity: captured + SAM == impl
249         final int implArity = implMethodType.parameterCount();
250         final int capturedArity = factoryType.parameterCount();
251         final int samArity = interfaceMethodType.parameterCount();
252         final int dynamicArity = dynamicMethodType.parameterCount();
253         if (implArity != capturedArity + samArity) {
254             throw new LambdaConversionException(
255                     String.format("Incorrect number of parameters for %s method %s; %d captured parameters, %d functional interface method parameters, %d implementation parameters",
256                                   implIsInstanceMethod ? "instance" : "static", implInfo,
257                                   capturedArity, samArity, implArity));
258         }
259         if (dynamicArity != samArity) {
260             throw new LambdaConversionException(
261                     String.format("Incorrect number of parameters for %s method %s; %d dynamic parameters, %d functional interface method parameters",
262                                   implIsInstanceMethod ? "instance" : "static", implInfo,
263                                   dynamicArity, samArity));
264         }
265         for (MethodType bridgeMT : altMethods) {
266             if (bridgeMT.parameterCount() != samArity) {
267                 throw new LambdaConversionException(
268                         String.format("Incorrect number of parameters for bridge signature %s; incompatible with %s",
269                                       bridgeMT, interfaceMethodType));
270             }
271         }
272 
273         // If instance: first captured arg (receiver) must be subtype of class where impl method is defined
274         final int capturedStart; // index of first non-receiver capture parameter in implMethodType
275         final int samStart; // index of first non-receiver sam parameter in implMethodType
276         if (implIsInstanceMethod) {
277             final Class<?> receiverClass;
278 
279             // implementation is an instance method, adjust for receiver in captured variables / SAM arguments
280             if (capturedArity == 0) {
281                 // receiver is function parameter
282                 capturedStart = 0;
283                 samStart = 1;
284                 receiverClass = dynamicMethodType.parameterType(0);
285             } else {
286                 // receiver is a captured variable
287                 capturedStart = 1;
288                 samStart = capturedArity;
289                 receiverClass = factoryType.parameterType(0);
290             }
291 
292             // check receiver type
293             if (!implClass.isAssignableFrom(receiverClass)) {
294                 throw new LambdaConversionException(
295                         String.format("Invalid receiver type %s; not a subtype of implementation type %s",
296                                       receiverClass, implClass));
297             }
298         } else {
299             // no receiver
300             capturedStart = 0;
301             samStart = capturedArity;
302         }
303 
304         // Check for exact match on non-receiver captured arguments
305         for (int i=capturedStart; i<capturedArity; i++) {
306             Class<?> implParamType = implMethodType.parameterType(i);
307             Class<?> capturedParamType = factoryType.parameterType(i);
308             if (!capturedParamType.equals(implParamType)) {
309                 throw new LambdaConversionException(
310                         String.format("Type mismatch in captured lambda parameter %d: expecting %s, found %s",
311                                       i, capturedParamType, implParamType));
312             }
313         }
314         // Check for adaptation match on non-receiver SAM arguments
315         for (int i=samStart; i<implArity; i++) {
316             Class<?> implParamType = implMethodType.parameterType(i);
317             Class<?> dynamicParamType = dynamicMethodType.parameterType(i - capturedArity);
318             if (!isAdaptableTo(dynamicParamType, implParamType, true)) {
319                 throw new LambdaConversionException(
320                         String.format("Type mismatch for lambda argument %d: %s is not convertible to %s",
321                                       i, dynamicParamType, implParamType));
322             }
323         }
324 
325         // Adaptation match: return type
326         Class<?> expectedType = dynamicMethodType.returnType();
327         Class<?> actualReturnType = implMethodType.returnType();
328         if (!isAdaptableToAsReturn(actualReturnType, expectedType)) {
329             throw new LambdaConversionException(
330                     String.format("Type mismatch for lambda return: %s is not convertible to %s",
331                                   actualReturnType, expectedType));
332         }
333 
334         // Check descriptors of generated methods
335         checkDescriptor(interfaceMethodType);
336         for (MethodType bridgeMT : altMethods) {
337             checkDescriptor(bridgeMT);
338         }
339     }
340 
341     /** Validate that the given descriptor's types are compatible with {@code dynamicMethodType} **/
342     private void checkDescriptor(MethodType descriptor) throws LambdaConversionException {
343         for (int i = 0; i < dynamicMethodType.parameterCount(); i++) {
344             Class<?> dynamicParamType = dynamicMethodType.parameterType(i);
345             Class<?> descriptorParamType = descriptor.parameterType(i);
346             if (!descriptorParamType.isAssignableFrom(dynamicParamType)) {
347                 String msg = String.format("Type mismatch for dynamic parameter %d: %s is not a subtype of %s",
348                                            i, dynamicParamType, descriptorParamType);
349                 throw new LambdaConversionException(msg);
350             }
351         }
352 
353         Class<?> dynamicReturnType = dynamicMethodType.returnType();
354         Class<?> descriptorReturnType = descriptor.returnType();
355         if (!isAdaptableToAsReturnStrict(dynamicReturnType, descriptorReturnType)) {
356             String msg = String.format("Type mismatch for lambda expected return: %s is not convertible to %s",
357                                        dynamicReturnType, descriptorReturnType);
358             throw new LambdaConversionException(msg);
359         }
360     }
361 
362     /**
363      * Check type adaptability for parameter types.
364      * @param fromType Type to convert from
365      * @param toType Type to convert to
366      * @param strict If true, do strict checks, else allow that fromType may be parameterized
367      * @return True if 'fromType' can be passed to an argument of 'toType'
368      */
369     private boolean isAdaptableTo(Class<?> fromType, Class<?> toType, boolean strict) {
370         if (fromType.equals(toType)) {
371             return true;
372         }
373         if (fromType.isPrimitive()) {
374             Wrapper wfrom = forPrimitiveType(fromType);
375             if (toType.isPrimitive()) {
376                 // both are primitive: widening
377                 Wrapper wto = forPrimitiveType(toType);
378                 return wto.isConvertibleFrom(wfrom);
379             } else {
380                 // from primitive to reference: boxing
381                 return toType.isAssignableFrom(wfrom.wrapperType());
382             }
383         } else {
384             if (toType.isPrimitive()) {
385                 // from reference to primitive: unboxing
386                 Wrapper wfrom;
387                 if (isWrapperType(fromType) && (wfrom = forWrapperType(fromType)).primitiveType().isPrimitive()) {
388                     // fromType is a primitive wrapper; unbox+widen
389                     Wrapper wto = forPrimitiveType(toType);
390                     return wto.isConvertibleFrom(wfrom);
391                 } else {
392                     // must be convertible to primitive
393                     return !strict;
394                 }
395             } else {
396                 // both are reference types: fromType should be a superclass of toType.
397                 return !strict || toType.isAssignableFrom(fromType);
398             }
399         }
400     }
401 
402     /**
403      * Check type adaptability for return types --
404      * special handling of void type) and parameterized fromType
405      * @return True if 'fromType' can be converted to 'toType'
406      */
407     private boolean isAdaptableToAsReturn(Class<?> fromType, Class<?> toType) {
408         return toType.equals(void.class)
409                || !fromType.equals(void.class) && isAdaptableTo(fromType, toType, false);
410     }
411     private boolean isAdaptableToAsReturnStrict(Class<?> fromType, Class<?> toType) {
412         if (fromType.equals(void.class) || toType.equals(void.class)) return fromType.equals(toType);
413         else return isAdaptableTo(fromType, toType, true);
414     }
415 
416 
417     /*********** Logging support -- for debugging only, uncomment as needed
418     static final Executor logPool = Executors.newSingleThreadExecutor();
419     protected static void log(final String s) {
420         MethodHandleProxyLambdaMetafactory.logPool.execute(new Runnable() {
421             @Override
422             public void run() {
423                 System.out.println(s);
424             }
425         });
426     }
427 
428     protected static void log(final String s, final Throwable e) {
429         MethodHandleProxyLambdaMetafactory.logPool.execute(new Runnable() {
430             @Override
431             public void run() {
432                 System.out.println(s);
433                 e.printStackTrace(System.out);
434             }
435         });
436     }
437     ***********************/
438 
439 }