1 /* 2 * Copyright (c) 2012, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 package java.lang.invoke; 26 27 import sun.invoke.util.Wrapper; 28 29 import java.lang.reflect.Modifier; 30 31 import static java.lang.invoke.MethodHandleInfo.*; 32 import static sun.invoke.util.Wrapper.forPrimitiveType; 33 import static sun.invoke.util.Wrapper.forWrapperType; 34 import static sun.invoke.util.Wrapper.isWrapperType; 35 36 /** 37 * Abstract implementation of a lambda metafactory which provides parameter 38 * unrolling and input validation. 39 * 40 * @see LambdaMetafactory 41 */ 42 /* package */ abstract class AbstractValidatingLambdaMetafactory { 43 44 /* 45 * For context, the comments for the following fields are marked in quotes 46 * with their values, given this program: 47 * interface II<T> { Object foo(T x); } 48 * interface JJ<R extends Number> extends II<R> { } 49 * class CC { String impl(int i) { return "impl:"+i; }} 50 * class X { 51 * public static void main(String[] args) { 52 * JJ<Integer> iii = (new CC())::impl; 53 * System.out.printf(">>> %s\n", iii.foo(44)); 54 * }} 55 */ 56 final MethodHandles.Lookup caller; // The caller's lookup context 57 final Class<?> targetClass; // The class calling the meta-factory via invokedynamic "class X" 58 final MethodType factoryType; // The type of the invoked method "(CC)II" 59 final Class<?> interfaceClass; // The type of the returned instance "interface JJ" 60 final String interfaceMethodName; // Name of the method to implement "foo" 61 final MethodType interfaceMethodType; // Type of the method to implement "(Object)Object" 62 final MethodHandle implementation; // Raw method handle for the implementation method 63 final MethodType implMethodType; // Type of the implementation MethodHandle "(CC,int)String" 64 final MethodHandleInfo implInfo; // Info about the implementation method handle "MethodHandleInfo[5 CC.impl(int)String]" 65 final int implKind; // Invocation kind for implementation "5"=invokevirtual 66 final boolean implIsInstanceMethod; // Is the implementation an instance method "true" 67 final Class<?> implClass; // Class for referencing the implementation method "class CC" 68 final MethodType dynamicMethodType; // Dynamically checked method type "(Integer)Object" 69 final boolean isSerializable; // Should the returned instance be serializable 70 final Class<?>[] altInterfaces; // Additional interfaces to be implemented 71 final MethodType[] altMethods; // Signatures of additional methods to bridge 72 final MethodHandle quotableOpGetter; // A getter method handle that is used to retrieve the 73 // the quotable lambda's associated intermediate representation (can be null). 74 final MethodHandleInfo quotableOpGetterInfo; // Info about the quotable getter method handle (can be null). 75 76 /** 77 * Meta-factory constructor. 78 * 79 * @param caller Stacked automatically by VM; represents a lookup context 80 * with the accessibility privileges of the caller. 81 * @param factoryType Stacked automatically by VM; the signature of the 82 * invoked method, which includes the expected static 83 * type of the returned lambda object, and the static 84 * types of the captured arguments for the lambda. In 85 * the event that the implementation method is an 86 * instance method, the first argument in the invocation 87 * signature will correspond to the receiver. 88 * @param interfaceMethodName Name of the method in the functional interface to 89 * which the lambda or method reference is being 90 * converted, represented as a String. 91 * @param interfaceMethodType Type of the method in the functional interface to 92 * which the lambda or method reference is being 93 * converted, represented as a MethodType. 94 * @param implementation The implementation method which should be called 95 * (with suitable adaptation of argument types, return 96 * types, and adjustment for captured arguments) when 97 * methods of the resulting functional interface instance 98 * are invoked. 99 * @param dynamicMethodType The signature of the primary functional 100 * interface method after type variables are 101 * substituted with their instantiation from 102 * the capture site 103 * @param isSerializable Should the lambda be made serializable? If set, 104 * either the target type or one of the additional SAM 105 * types must extend {@code Serializable}. 106 * @param altInterfaces Additional interfaces which the lambda object 107 * should implement. 108 * @param altMethods Method types for additional signatures to be 109 * implemented by invoking the implementation method 110 * @param reflectiveField a {@linkplain MethodHandles.Lookup#findGetter(Class, String, Class) getter} 111 * method handle that is used to retrieve the string representation of the 112 * quotable lambda's associated intermediate representation. 113 * @throws LambdaConversionException If any of the meta-factory protocol 114 * invariants are violated 115 */ 116 AbstractValidatingLambdaMetafactory(MethodHandles.Lookup caller, 117 MethodType factoryType, 118 String interfaceMethodName, 119 MethodType interfaceMethodType, 120 MethodHandle implementation, 121 MethodType dynamicMethodType, 122 boolean isSerializable, 123 Class<?>[] altInterfaces, 124 MethodType[] altMethods, 125 MethodHandle reflectiveField) 126 throws LambdaConversionException { 127 if (!caller.hasFullPrivilegeAccess()) { 128 throw new LambdaConversionException(String.format( 129 "Invalid caller: %s", 130 caller.lookupClass().getName())); 131 } 132 this.caller = caller; 133 this.targetClass = caller.lookupClass(); 134 this.factoryType = factoryType; 135 136 this.interfaceClass = factoryType.returnType(); 137 138 this.interfaceMethodName = interfaceMethodName; 139 this.interfaceMethodType = interfaceMethodType; 140 141 this.implementation = implementation; 142 this.implMethodType = implementation.type(); 143 try { 144 this.implInfo = caller.revealDirect(implementation); 145 } catch (IllegalArgumentException e) { 146 throw new LambdaConversionException(implementation + " is not direct or cannot be cracked"); 147 } 148 switch (implInfo.getReferenceKind()) { 149 case REF_invokeVirtual: 150 case REF_invokeInterface: 151 this.implClass = implMethodType.parameterType(0); 152 // reference kind reported by implInfo may not match implMethodType's first param 153 // Example: implMethodType is (Cloneable)String, implInfo is for Object.toString 154 this.implKind = implClass.isInterface() ? REF_invokeInterface : REF_invokeVirtual; 155 this.implIsInstanceMethod = true; 156 break; 157 case REF_invokeSpecial: 158 // JDK-8172817: should use referenced class here, but we don't know what it was 159 this.implClass = implInfo.getDeclaringClass(); 160 this.implIsInstanceMethod = true; 161 162 // Classes compiled prior to dynamic nestmate support invoke a private instance 163 // method with REF_invokeSpecial. Newer classes use REF_invokeVirtual or 164 // REF_invokeInterface, and we can use that instruction in the lambda class. 165 if (targetClass == implClass && Modifier.isPrivate(implInfo.getModifiers())) { 166 this.implKind = implClass.isInterface() ? REF_invokeInterface : REF_invokeVirtual; 167 } else { 168 this.implKind = REF_invokeSpecial; 169 } 170 break; 171 case REF_invokeStatic: 172 case REF_newInvokeSpecial: 173 // JDK-8172817: should use referenced class here for invokestatic, but we don't know what it was 174 this.implClass = implInfo.getDeclaringClass(); 175 this.implKind = implInfo.getReferenceKind(); 176 this.implIsInstanceMethod = false; 177 break; 178 default: 179 throw new LambdaConversionException(String.format("Unsupported MethodHandle kind: %s", implInfo)); 180 } 181 182 this.dynamicMethodType = dynamicMethodType; 183 this.isSerializable = isSerializable; 184 this.altInterfaces = altInterfaces; 185 this.altMethods = altMethods; 186 this.quotableOpGetter = reflectiveField; 187 188 if (interfaceMethodName.isEmpty() || 189 interfaceMethodName.indexOf('.') >= 0 || 190 interfaceMethodName.indexOf(';') >= 0 || 191 interfaceMethodName.indexOf('[') >= 0 || 192 interfaceMethodName.indexOf('/') >= 0 || 193 interfaceMethodName.indexOf('<') >= 0 || 194 interfaceMethodName.indexOf('>') >= 0) { 195 throw new LambdaConversionException(String.format( 196 "Method name '%s' is not legal", 197 interfaceMethodName)); 198 } 199 200 if (!interfaceClass.isInterface()) { 201 throw new LambdaConversionException(String.format( 202 "%s is not an interface", 203 interfaceClass.getName())); 204 } 205 206 for (Class<?> c : altInterfaces) { 207 if (!c.isInterface()) { 208 throw new LambdaConversionException(String.format( 209 "%s is not an interface", 210 c.getName())); 211 } 212 } 213 214 if (reflectiveField != null) { 215 try { 216 quotableOpGetterInfo = caller.revealDirect(reflectiveField); // may throw SecurityException 217 } catch (IllegalArgumentException e) { 218 throw new LambdaConversionException(implementation + " is not direct or cannot be cracked"); 219 } 220 if (quotableOpGetterInfo.getReferenceKind() != REF_invokeStatic) { 221 throw new LambdaConversionException(String.format("Unsupported MethodHandle kind: %s", quotableOpGetterInfo)); 222 } 223 } else { 224 quotableOpGetterInfo = null; 225 } 226 } 227 228 /** 229 * Build the CallSite. 230 * 231 * @return a CallSite, which, when invoked, will return an instance of the 232 * functional interface 233 * @throws LambdaConversionException 234 */ 235 abstract CallSite buildCallSite() 236 throws LambdaConversionException; 237 238 /** 239 * Check the meta-factory arguments for errors 240 * @throws LambdaConversionException if there are improper conversions 241 */ 242 void validateMetafactoryArgs() throws LambdaConversionException { 243 // Check arity: captured + SAM == impl 244 final int implArity = implMethodType.parameterCount(); 245 final int capturedArity = factoryType.parameterCount(); 246 final int samArity = interfaceMethodType.parameterCount(); 247 final int dynamicArity = dynamicMethodType.parameterCount(); 248 if (implArity != capturedArity + samArity) { 249 throw new LambdaConversionException( 250 String.format("Incorrect number of parameters for %s method %s; %d captured parameters, %d functional interface method parameters, %d implementation parameters", 251 implIsInstanceMethod ? "instance" : "static", implInfo, 252 capturedArity, samArity, implArity)); 253 } 254 if (dynamicArity != samArity) { 255 throw new LambdaConversionException( 256 String.format("Incorrect number of parameters for %s method %s; %d dynamic parameters, %d functional interface method parameters", 257 implIsInstanceMethod ? "instance" : "static", implInfo, 258 dynamicArity, samArity)); 259 } 260 for (MethodType bridgeMT : altMethods) { 261 if (bridgeMT.parameterCount() != samArity) { 262 throw new LambdaConversionException( 263 String.format("Incorrect number of parameters for bridge signature %s; incompatible with %s", 264 bridgeMT, interfaceMethodType)); 265 } 266 } 267 268 // If instance: first captured arg (receiver) must be subtype of class where impl method is defined 269 final int capturedStart; // index of first non-receiver capture parameter in implMethodType 270 final int samStart; // index of first non-receiver sam parameter in implMethodType 271 if (implIsInstanceMethod) { 272 final Class<?> receiverClass; 273 274 // implementation is an instance method, adjust for receiver in captured variables / SAM arguments 275 if (capturedArity == 0) { 276 // receiver is function parameter 277 capturedStart = 0; 278 samStart = 1; 279 receiverClass = dynamicMethodType.parameterType(0); 280 } else { 281 // receiver is a captured variable 282 capturedStart = 1; 283 samStart = capturedArity; 284 receiverClass = factoryType.parameterType(0); 285 } 286 287 // check receiver type 288 if (!implClass.isAssignableFrom(receiverClass)) { 289 throw new LambdaConversionException( 290 String.format("Invalid receiver type %s; not a subtype of implementation type %s", 291 receiverClass, implClass)); 292 } 293 } else { 294 // no receiver 295 capturedStart = 0; 296 samStart = capturedArity; 297 } 298 299 // Check for exact match on non-receiver captured arguments 300 for (int i=capturedStart; i<capturedArity; i++) { 301 Class<?> implParamType = implMethodType.parameterType(i); 302 Class<?> capturedParamType = factoryType.parameterType(i); 303 if (!capturedParamType.equals(implParamType)) { 304 throw new LambdaConversionException( 305 String.format("Type mismatch in captured lambda parameter %d: expecting %s, found %s", 306 i, capturedParamType, implParamType)); 307 } 308 } 309 // Check for adaptation match on non-receiver SAM arguments 310 for (int i=samStart; i<implArity; i++) { 311 Class<?> implParamType = implMethodType.parameterType(i); 312 Class<?> dynamicParamType = dynamicMethodType.parameterType(i - capturedArity); 313 if (!isAdaptableTo(dynamicParamType, implParamType, true)) { 314 throw new LambdaConversionException( 315 String.format("Type mismatch for lambda argument %d: %s is not convertible to %s", 316 i, dynamicParamType, implParamType)); 317 } 318 } 319 320 // Adaptation match: return type 321 Class<?> expectedType = dynamicMethodType.returnType(); 322 Class<?> actualReturnType = implMethodType.returnType(); 323 if (!isAdaptableToAsReturn(actualReturnType, expectedType)) { 324 throw new LambdaConversionException( 325 String.format("Type mismatch for lambda return: %s is not convertible to %s", 326 actualReturnType, expectedType)); 327 } 328 329 // Check descriptors of generated methods 330 checkDescriptor(interfaceMethodType); 331 for (MethodType bridgeMT : altMethods) { 332 checkDescriptor(bridgeMT); 333 } 334 } 335 336 /** Validate that the given descriptor's types are compatible with {@code dynamicMethodType} **/ 337 private void checkDescriptor(MethodType descriptor) throws LambdaConversionException { 338 for (int i = 0; i < dynamicMethodType.parameterCount(); i++) { 339 Class<?> dynamicParamType = dynamicMethodType.parameterType(i); 340 Class<?> descriptorParamType = descriptor.parameterType(i); 341 if (!descriptorParamType.isAssignableFrom(dynamicParamType)) { 342 String msg = String.format("Type mismatch for dynamic parameter %d: %s is not a subtype of %s", 343 i, dynamicParamType, descriptorParamType); 344 throw new LambdaConversionException(msg); 345 } 346 } 347 348 Class<?> dynamicReturnType = dynamicMethodType.returnType(); 349 Class<?> descriptorReturnType = descriptor.returnType(); 350 if (!isAdaptableToAsReturnStrict(dynamicReturnType, descriptorReturnType)) { 351 String msg = String.format("Type mismatch for lambda expected return: %s is not convertible to %s", 352 dynamicReturnType, descriptorReturnType); 353 throw new LambdaConversionException(msg); 354 } 355 } 356 357 /** 358 * Check type adaptability for parameter types. 359 * @param fromType Type to convert from 360 * @param toType Type to convert to 361 * @param strict If true, do strict checks, else allow that fromType may be parameterized 362 * @return True if 'fromType' can be passed to an argument of 'toType' 363 */ 364 private boolean isAdaptableTo(Class<?> fromType, Class<?> toType, boolean strict) { 365 if (fromType.equals(toType)) { 366 return true; 367 } 368 if (fromType.isPrimitive()) { 369 Wrapper wfrom = forPrimitiveType(fromType); 370 if (toType.isPrimitive()) { 371 // both are primitive: widening 372 Wrapper wto = forPrimitiveType(toType); 373 return wto.isConvertibleFrom(wfrom); 374 } else { 375 // from primitive to reference: boxing 376 return toType.isAssignableFrom(wfrom.wrapperType()); 377 } 378 } else { 379 if (toType.isPrimitive()) { 380 // from reference to primitive: unboxing 381 Wrapper wfrom; 382 if (isWrapperType(fromType) && (wfrom = forWrapperType(fromType)).primitiveType().isPrimitive()) { 383 // fromType is a primitive wrapper; unbox+widen 384 Wrapper wto = forPrimitiveType(toType); 385 return wto.isConvertibleFrom(wfrom); 386 } else { 387 // must be convertible to primitive 388 return !strict; 389 } 390 } else { 391 // both are reference types: fromType should be a superclass of toType. 392 return !strict || toType.isAssignableFrom(fromType); 393 } 394 } 395 } 396 397 /** 398 * Check type adaptability for return types -- 399 * special handling of void type) and parameterized fromType 400 * @return True if 'fromType' can be converted to 'toType' 401 */ 402 private boolean isAdaptableToAsReturn(Class<?> fromType, Class<?> toType) { 403 return toType.equals(void.class) 404 || !fromType.equals(void.class) && isAdaptableTo(fromType, toType, false); 405 } 406 private boolean isAdaptableToAsReturnStrict(Class<?> fromType, Class<?> toType) { 407 if (fromType.equals(void.class) || toType.equals(void.class)) return fromType.equals(toType); 408 else return isAdaptableTo(fromType, toType, true); 409 } 410 411 412 /*********** Logging support -- for debugging only, uncomment as needed 413 static final Executor logPool = Executors.newSingleThreadExecutor(); 414 protected static void log(final String s) { 415 MethodHandleProxyLambdaMetafactory.logPool.execute(new Runnable() { 416 @Override 417 public void run() { 418 System.out.println(s); 419 } 420 }); 421 } 422 423 protected static void log(final String s, final Throwable e) { 424 MethodHandleProxyLambdaMetafactory.logPool.execute(new Runnable() { 425 @Override 426 public void run() { 427 System.out.println(s); 428 e.printStackTrace(System.out); 429 } 430 }); 431 } 432 ***********************/ 433 434 }