1 /*
  2  * Copyright (c) 2012, 2024, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.  Oracle designates this
  8  * particular file as subject to the "Classpath" exception as provided
  9  * by Oracle in the LICENSE file that accompanied this code.
 10  *
 11  * This code is distributed in the hope that it will be useful, but WITHOUT
 12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 14  * version 2 for more details (a copy is included in the LICENSE file that
 15  * accompanied this code).
 16  *
 17  * You should have received a copy of the GNU General Public License version
 18  * 2 along with this work; if not, write to the Free Software Foundation,
 19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 20  *
 21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 22  * or visit www.oracle.com if you need additional information or have any
 23  * questions.
 24  */
 25 
 26 package java.lang.invoke;
 27 
 28 import java.io.Serializable;
 29 import java.util.Arrays;
 30 import java.lang.reflect.Array;
 31 import java.util.Objects;
 32 
 33 /**
 34  * <p>Methods to facilitate the creation of simple "function objects" that
 35  * implement one or more interfaces by delegation to a provided {@link MethodHandle},
 36  * possibly after type adaptation and partial evaluation of arguments.  These
 37  * methods are typically used as <em>bootstrap methods</em> for {@code invokedynamic}
 38  * call sites, to support the <em>lambda expression</em> and <em>method
 39  * reference expression</em> features of the Java Programming Language.
 40  *
 41  * <p>Indirect access to the behavior specified by the provided {@code MethodHandle}
 42  * proceeds in order through three phases:
 43  * <ul>
 44  *     <li><p><em>Linkage</em> occurs when the methods in this class are invoked.
 45  *     They take as arguments an interface to be implemented (typically a
 46  *     <em>functional interface</em>, one with a single abstract method), a
 47  *     name and signature of a method from that interface to be implemented, a
 48  *     {@linkplain MethodHandleInfo direct method handle} describing the desired
 49  *     implementation behavior for that method, and possibly other additional
 50  *     metadata, and produce a {@link CallSite} whose target can be used to
 51  *     create suitable function objects.
 52  *
 53  *     <p>Linkage may involve dynamically loading a new class that implements
 54  *     the target interface, or re-using a suitable existing class.
 55  *
 56  *     <p>The {@code CallSite} can be considered a "factory" for function
 57  *     objects and so these linkage methods are referred to as
 58  *     "metafactories".</li>
 59  *
 60  *     <li><p><em>Capture</em> occurs when the {@code CallSite}'s target is
 61  *     invoked, typically through an {@code invokedynamic} call site,
 62  *     producing a function object. This may occur many times for
 63  *     a single factory {@code CallSite}.
 64  *
 65  *     <p>If the behavior {@code MethodHandle} has additional parameters beyond
 66  *     those of the specified interface method, these are referred to as
 67  *     <em>captured parameters</em>, which must be provided as arguments to the
 68  *     {@code CallSite} target. The expected number and types of captured
 69  *     parameters are determined during linkage.
 70  *
 71  *     <p>Capture may involve allocation of a new function object, or may return
 72  *     a suitable existing function object. The identity of a function object
 73  *     produced by capture is unpredictable, and therefore identity-sensitive
 74  *     operations (such as reference equality, object locking, and {@code
 75  *     System.identityHashCode()}) may produce different results in different
 76  *     implementations, or even upon different invocations in the same
 77  *     implementation.</li>
 78  *
 79  *     <li><p><em>Invocation</em> occurs when an implemented interface method is
 80  *     invoked on a function object. This may occur many times for a single
 81  *     function object. The method referenced by the implementation
 82  *     {@code MethodHandle} is invoked, passing to it the captured arguments and
 83  *     the invocation arguments. The result of the method is returned.
 84  *     </li>
 85  * </ul>
 86  *
 87  * <p>It is sometimes useful to restrict the set of inputs or results permitted
 88  * at invocation.  For example, when the generic interface {@code Predicate<T>}
 89  * is parameterized as {@code Predicate<String>}, the input must be a
 90  * {@code String}, even though the method to implement allows any {@code Object}.
 91  * At linkage time, an additional {@link MethodType} parameter describes the
 92  * "dynamic" method type; on invocation, the arguments and eventual result
 93  * are checked against this {@code MethodType}.
 94  *
 95  * <p>This class provides two forms of linkage methods: a standard version
 96  * ({@link #metafactory(MethodHandles.Lookup, String, MethodType, MethodType, MethodHandle, MethodType)})
 97  * using an optimized protocol, and an alternate version
 98  * {@link #altMetafactory(MethodHandles.Lookup, String, MethodType, Object...)}).
 99  * The alternate version is a generalization of the standard version, providing
100  * additional control over the behavior of the generated function objects via
101  * flags and additional arguments.  The alternate version adds the ability to
102  * manage the following attributes of function objects:
103  *
104  * <ul>
105  *     <li><em>Multiple methods.</em>  It is sometimes useful to implement multiple
106  *     variations of the method signature, involving argument or return type
107  *     adaptation.  This occurs when multiple distinct VM signatures for a method
108  *     are logically considered to be the same method by the language.  The
109  *     flag {@code FLAG_BRIDGES} indicates that a list of additional
110  *     {@code MethodType}s will be provided, each of which will be implemented
111  *     by the resulting function object.  These methods will share the same
112  *     name and instantiated type.</li>
113  *
114  *     <li><em>Multiple interfaces.</em>  If needed, more than one interface
115  *     can be implemented by the function object.  (These additional interfaces
116  *     are typically marker interfaces with no methods.)  The flag {@code FLAG_MARKERS}
117  *     indicates that a list of additional interfaces will be provided, each of
118  *     which should be implemented by the resulting function object.</li>
119  *
120  *     <li><em>Serializability.</em>  The generated function objects do not
121  *     generally support serialization.  If desired, {@code FLAG_SERIALIZABLE}
122  *     can be used to indicate that the function objects should be serializable.
123  *     Serializable function objects will use, as their serialized form,
124  *     instances of the class {@code SerializedLambda}, which requires additional
125  *     assistance from the capturing class (the class described by the
126  *     {@link MethodHandles.Lookup} parameter {@code caller}); see
127  *     {@link SerializedLambda} for details.</li>
128  * </ul>
129  *
130  * <p>Assume the linkage arguments are as follows:
131  * <ul>
132  *      <li>{@code factoryType} (describing the {@code CallSite} signature) has
133  *      K parameters of types (D1..Dk) and return type Rd;</li>
134  *      <li>{@code interfaceMethodType} (describing the implemented method type) has N
135  *      parameters, of types (U1..Un) and return type Ru;</li>
136  *      <li>{@code implementation} (the {@code MethodHandle} providing the
137  *      implementation) has M parameters, of types (A1..Am) and return type Ra
138  *      (if the method describes an instance method, the method type of this
139  *      method handle already includes an extra first argument corresponding to
140  *      the receiver);</li>
141  *      <li>{@code dynamicMethodType} (allowing restrictions on invocation)
142  *      has N parameters, of types (T1..Tn) and return type Rt.</li>
143  * </ul>
144  *
145  * <p>Then the following linkage invariants must hold:
146  * <ul>
147  *     <li>{@code interfaceMethodType} and {@code dynamicMethodType} have the same
148  *     arity N, and for i=1..N, Ti and Ui are the same type, or Ti and Ui are
149  *     both reference types and Ti is a subtype of Ui</li>
150  *     <li>Either Rt and Ru are the same type, or both are reference types and
151  *     Rt is a subtype of Ru</li>
152  *     <li>K + N = M</li>
153  *     <li>For i=1..K, Di = Ai</li>
154  *     <li>For i=1..N, Ti is adaptable to Aj, where j=i+k</li>
155  *     <li>The return type Rt is void, or the return type Ra is not void and is
156  *     adaptable to Rt</li>
157  * </ul>
158  *
159  * <p>Further, at capture time, if {@code implementation} corresponds to an instance
160  * method, and there are any capture arguments ({@code K > 0}), then the first
161  * capture argument (corresponding to the receiver) must be non-null.
162  *
163  * <p>A type Q is considered adaptable to S as follows:
164  * <table class="striped">
165  *   <caption style="display:none">adaptable types</caption>
166  *   <thead>
167  *     <tr><th scope="col">Q</th><th scope="col">S</th><th scope="col">Link-time checks</th><th scope="col">Invocation-time checks</th></tr>
168  *   </thead>
169  *   <tbody>
170  *     <tr>
171  *         <th scope="row">Primitive</th><th scope="row">Primitive</th>
172  *         <td>Q can be converted to S via a primitive widening conversion</td>
173  *         <td>None</td>
174  *     </tr>
175  *     <tr>
176  *         <th scope="row">Primitive</th><th scope="row">Reference</th>
177  *         <td>S is a supertype of the Wrapper(Q)</td>
178  *         <td>Cast from Wrapper(Q) to S</td>
179  *     </tr>
180  *     <tr>
181  *         <th scope="row">Reference</th><th scope="row">Primitive</th>
182  *         <td>for parameter types: Q is a primitive wrapper and Primitive(Q)
183  *         can be widened to S
184  *         <br>for return types: If Q is a primitive wrapper, check that
185  *         Primitive(Q) can be widened to S</td>
186  *         <td>If Q is not a primitive wrapper, cast Q to the base Wrapper(S);
187  *         for example Number for numeric types</td>
188  *     </tr>
189  *     <tr>
190  *         <th scope="row">Reference</th><th scope="row">Reference</th>
191  *         <td>for parameter types: S is a supertype of Q
192  *         <br>for return types: none</td>
193  *         <td>Cast from Q to S</td>
194  *     </tr>
195  *   </tbody>
196  * </table>
197  *
198  * @apiNote These linkage methods are designed to support the evaluation
199  * of <em>lambda expressions</em> and <em>method references</em> in the Java
200  * Language.  For every lambda expressions or method reference in the source code,
201  * there is a target type which is a functional interface.  Evaluating a lambda
202  * expression produces an object of its target type. The recommended mechanism
203  * for evaluating lambda expressions is to desugar the lambda body to a method,
204  * invoke an invokedynamic call site whose static argument list describes the
205  * sole method of the functional interface and the desugared implementation
206  * method, and returns an object (the lambda object) that implements the target
207  * type. (For method references, the implementation method is simply the
208  * referenced method; no desugaring is needed.)
209  *
210  * <p>The argument list of the implementation method and the argument list of
211  * the interface method(s) may differ in several ways.  The implementation
212  * methods may have additional arguments to accommodate arguments captured by
213  * the lambda expression; there may also be differences resulting from permitted
214  * adaptations of arguments, such as casting, boxing, unboxing, and primitive
215  * widening. (Varargs adaptations are not handled by the metafactories; these are
216  * expected to be handled by the caller.)
217  *
218  * <p>Invokedynamic call sites have two argument lists: a static argument list
219  * and a dynamic argument list.  The static argument list is stored in the
220  * constant pool; the dynamic argument is pushed on the operand stack at capture
221  * time.  The bootstrap method has access to the entire static argument list
222  * (which in this case, includes information describing the implementation method,
223  * the target interface, and the target interface method(s)), as well as a
224  * method signature describing the number and static types (but not the values)
225  * of the dynamic arguments and the static return type of the invokedynamic site.
226  *
227  * <p>The implementation method is described with a direct method handle
228  * referencing a method or constructor. In theory, any method handle could be
229  * used, but this is not compatible with some implementation techniques and
230  * would complicate the work implementations must do.
231  *
232  * <p>Uses besides evaluation of lambda expressions and method references are
233  * unintended.  These linkage methods may change their unspecified behaviors at
234  * any time to better suit the Java language features they were designed to
235  * support, and such changes may impact unintended uses.  Unintended uses of
236  * these linkage methods may lead to resource leaks, or other unspecified
237  * negative effects.
238  *
239  * @implNote In the reference implementation, the classes implementing the created
240  * function objects are strongly reachable from the defining class loader of the
241  * caller, like classes and interfaces in Java source code.  This technique
242  * reduces heap memory use, but as a consequence, the implementation classes can
243  * be unloaded only if the caller class can be unloaded.  In particular, if the
244  * caller is a {@linkplain MethodHandles.Lookup.ClassOption#STRONG weak hidden
245  * class}, the implementation class, a strong hidden class, may not be unloaded
246  * even if the caller may be unloaded.
247  *
248  * @since 1.8
249  */
250 public final class LambdaMetafactory {
251 
252     private LambdaMetafactory() {}
253 
254     /** Flag for {@link #altMetafactory} indicating the lambda object
255      * must be serializable */
256     public static final int FLAG_SERIALIZABLE = 1 << 0;
257 
258     /**
259      * Flag for {@link #altMetafactory} indicating the lambda object implements
260      * other interfaces besides {@code Serializable}
261      */
262     public static final int FLAG_MARKERS = 1 << 1;
263 
264     /**
265      * Flag for alternate metafactories indicating the lambda object requires
266      * additional methods that invoke the {@code implementation}
267      */
268     public static final int FLAG_BRIDGES = 1 << 2;
269 
270     /** Flag for {@link #altMetafactory} indicating the lambda object
271      * must be a {@code Quotable} object, inspectable using code reflection. */
272     public static final int FLAG_QUOTABLE = 1 << 3;
273 
274     private static final Class<?>[] EMPTY_CLASS_ARRAY = new Class<?>[0];
275     private static final MethodType[] EMPTY_MT_ARRAY = new MethodType[0];
276 
277     // LambdaMetafactory bootstrap methods are startup sensitive, and may be
278     // special cased in java.lang.invoke.BootstrapMethodInvoker to ensure
279     // methods are invoked with exact type information to avoid generating
280     // code for runtime checks. Take care any changes or additions here are
281     // reflected there as appropriate.
282 
283     /**
284      * Facilitates the creation of simple "function objects" that implement one
285      * or more interfaces by delegation to a provided {@link MethodHandle},
286      * after appropriate type adaptation and partial evaluation of arguments.
287      * Typically used as a <em>bootstrap method</em> for {@code invokedynamic}
288      * call sites, to support the <em>lambda expression</em> and <em>method
289      * reference expression</em> features of the Java Programming Language.
290      *
291      * <p>This is the standard, streamlined metafactory; additional flexibility
292      * is provided by {@link #altMetafactory(MethodHandles.Lookup, String, MethodType, Object...)}.
293      * A general description of the behavior of this method is provided
294      * {@link LambdaMetafactory above}.
295      *
296      * <p>When the target of the {@code CallSite} returned from this method is
297      * invoked, the resulting function objects are instances of a class which
298      * implements the interface named by the return type of {@code factoryType},
299      * declares a method with the name given by {@code interfaceMethodName} and the
300      * signature given by {@code interfaceMethodType}.  It may also override additional
301      * methods from {@code Object}.
302      *
303      * @param caller Represents a lookup context with the accessibility
304      *               privileges of the caller.  Specifically, the lookup context
305      *               must have {@linkplain MethodHandles.Lookup#hasFullPrivilegeAccess()
306      *               full privilege access}.
307      *               When used with {@code invokedynamic}, this is stacked
308      *               automatically by the VM.
309      * @param interfaceMethodName The name of the method to implement.  When used with
310      *                            {@code invokedynamic}, this is provided by the
311      *                            {@code NameAndType} of the {@code InvokeDynamic}
312      *                            structure and is stacked automatically by the VM.
313      * @param factoryType The expected signature of the {@code CallSite}.  The
314      *                    parameter types represent the types of capture variables;
315      *                    the return type is the interface to implement.   When
316      *                    used with {@code invokedynamic}, this is provided by
317      *                    the {@code NameAndType} of the {@code InvokeDynamic}
318      *                    structure and is stacked automatically by the VM.
319      * @param interfaceMethodType Signature and return type of method to be
320      *                            implemented by the function object.
321      * @param implementation A direct method handle describing the implementation
322      *                       method which should be called (with suitable adaptation
323      *                       of argument types and return types, and with captured
324      *                       arguments prepended to the invocation arguments) at
325      *                       invocation time.
326      * @param dynamicMethodType The signature and return type that should
327      *                          be enforced dynamically at invocation time.
328      *                          In simple use cases this is the same as
329      *                          {@code interfaceMethodType}.
330      * @return a CallSite whose target can be used to perform capture, generating
331      *         instances of the interface named by {@code factoryType}
332      * @throws LambdaConversionException If {@code caller} does not have full privilege
333      *         access, or if {@code interfaceMethodName} is not a valid JVM
334      *         method name, or if the return type of {@code factoryType} is not
335      *         an interface, or if {@code implementation} is not a direct method
336      *         handle referencing a method or constructor, or if the linkage
337      *         invariants are violated, as defined {@link LambdaMetafactory above}.
338      * @throws NullPointerException If any argument is {@code null}.
339      */
340     public static CallSite metafactory(MethodHandles.Lookup caller,
341                                        String interfaceMethodName,
342                                        MethodType factoryType,
343                                        MethodType interfaceMethodType,
344                                        MethodHandle implementation,
345                                        MethodType dynamicMethodType)
346             throws LambdaConversionException {
347         AbstractValidatingLambdaMetafactory mf;
348         mf = new InnerClassLambdaMetafactory(Objects.requireNonNull(caller),
349                                              Objects.requireNonNull(factoryType),
350                                              Objects.requireNonNull(interfaceMethodName),
351                                              Objects.requireNonNull(interfaceMethodType),
352                                              Objects.requireNonNull(implementation),
353                                              Objects.requireNonNull(dynamicMethodType),
354                                              false,
355                                              EMPTY_CLASS_ARRAY,
356                                              EMPTY_MT_ARRAY,
357                                  null);
358         mf.validateMetafactoryArgs();
359         return mf.buildCallSite();
360     }
361 
362     /**
363      * Facilitates the creation of simple "function objects" that implement one
364      * or more interfaces by delegation to a provided {@link MethodHandle},
365      * after appropriate type adaptation and partial evaluation of arguments.
366      * Typically used as a <em>bootstrap method</em> for {@code invokedynamic}
367      * call sites, to support the <em>lambda expression</em> and <em>method
368      * reference expression</em> features of the Java Programming Language.
369      *
370      * <p>This is the general, more flexible metafactory; a streamlined version
371      * is provided by {@link #metafactory(java.lang.invoke.MethodHandles.Lookup,
372      * String, MethodType, MethodType, MethodHandle, MethodType)}.
373      * A general description of the behavior of this method is provided
374      * {@link LambdaMetafactory above}.
375      *
376      * <p>The argument list for this method includes three fixed parameters,
377      * corresponding to the parameters automatically stacked by the VM for the
378      * bootstrap method in an {@code invokedynamic} invocation, and an {@code Object[]}
379      * parameter that contains additional parameters.  The declared argument
380      * list for this method is:
381      *
382      * <pre>{@code
383      *  CallSite altMetafactory(MethodHandles.Lookup caller,
384      *                          String interfaceMethodName,
385      *                          MethodType factoryType,
386      *                          Object... args)
387      * }</pre>
388      *
389      * <p>but it behaves as if the argument list is as follows:
390      *
391      * <pre>{@code
392      *  CallSite altMetafactory(MethodHandles.Lookup caller,
393      *                          String interfaceMethodName,
394      *                          MethodType factoryType,
395      *                          MethodType interfaceMethodType,
396      *                          MethodHandle implementation,
397      *                          MethodType dynamicMethodType,
398      *                          int flags,
399      *                          int altInterfaceCount,        // IF flags has MARKERS set
400      *                          Class... altInterfaces,       // IF flags has MARKERS set
401      *                          int altMethodCount,           // IF flags has BRIDGES set
402      *                          MethodType... altMethods      // IF flags has BRIDGES set
403      *                          MethodHandle quotableField    // IF flags has QUOTABLE set
404      *                          )
405      * }</pre>
406      *
407      * <p>Arguments that appear in the argument list for
408      * {@link #metafactory(MethodHandles.Lookup, String, MethodType, MethodType, MethodHandle, MethodType)}
409      * have the same specification as in that method.  The additional arguments
410      * are interpreted as follows:
411      * <ul>
412      *     <li>{@code flags} indicates additional options; this is a bitwise
413      *     OR of desired flags.  Defined flags are {@link #FLAG_BRIDGES},
414      *     {@link #FLAG_MARKERS}, and {@link #FLAG_SERIALIZABLE}.</li>
415      *     <li>{@code altInterfaceCount} is the number of additional interfaces
416      *     the function object should implement, and is present if and only if the
417      *     {@code FLAG_MARKERS} flag is set.</li>
418      *     <li>{@code altInterfaces} is a variable-length list of additional
419      *     interfaces to implement, whose length equals {@code altInterfaceCount},
420      *     and is present if and only if the {@code FLAG_MARKERS} flag is set.</li>
421      *     <li>{@code altMethodCount} is the number of additional method signatures
422      *     the function object should implement, and is present if and only if
423      *     the {@code FLAG_BRIDGES} flag is set.</li>
424      *     <li>{@code altMethods} is a variable-length list of additional
425      *     methods signatures to implement, whose length equals {@code altMethodCount},
426      *     and is present if and only if the {@code FLAG_BRIDGES} flag is set.</li>
427      *     <li>{@code quotableField} is a
428      *     {@linkplain MethodHandles.Lookup#findGetter(Class, String, Class) getter} method handle
429      *     that is used to retrieve the string representation of the quotable lambda's associated
430      *     intermediate representation.</li>
431      * </ul>
432      *
433      * <p>Each class named by {@code altInterfaces} is subject to the same
434      * restrictions as {@code Rd}, the return type of {@code factoryType},
435      * as described {@link LambdaMetafactory above}.  Each {@code MethodType}
436      * named by {@code altMethods} is subject to the same restrictions as
437      * {@code interfaceMethodType}, as described {@link LambdaMetafactory above}.
438      *
439      * <p>When FLAG_SERIALIZABLE is set in {@code flags}, the function objects
440      * will implement {@code Serializable}, and will have a {@code writeReplace}
441      * method that returns an appropriate {@link SerializedLambda}.  The
442      * {@code caller} class must have an appropriate {@code $deserializeLambda$}
443      * method, as described in {@link SerializedLambda}.
444      *
445      * <p>When FLAG_QUOTABLE is set in {@code flags}, the function objects
446      * will implement {@code Quotable}.
447      *
448      * <p>When the target of the {@code CallSite} returned from this method is
449      * invoked, the resulting function objects are instances of a class with
450      * the following properties:
451      * <ul>
452      *     <li>The class implements the interface named by the return type
453      *     of {@code factoryType} and any interfaces named by {@code altInterfaces}</li>
454      *     <li>The class declares methods with the name given by {@code interfaceMethodName},
455      *     and the signature given by {@code interfaceMethodType} and additional signatures
456      *     given by {@code altMethods}</li>
457      *     <li>The class may override methods from {@code Object}, and may
458      *     implement methods related to serialization.</li>
459      * </ul>
460      *
461      * @param caller Represents a lookup context with the accessibility
462      *               privileges of the caller.  Specifically, the lookup context
463      *               must have {@linkplain MethodHandles.Lookup#hasFullPrivilegeAccess()
464      *               full privilege access}.
465      *               When used with {@code invokedynamic}, this is stacked
466      *               automatically by the VM.
467      * @param interfaceMethodName The name of the method to implement.  When used with
468      *                            {@code invokedynamic}, this is provided by the
469      *                            {@code NameAndType} of the {@code InvokeDynamic}
470      *                            structure and is stacked automatically by the VM.
471      * @param factoryType The expected signature of the {@code CallSite}.  The
472      *                    parameter types represent the types of capture variables;
473      *                    the return type is the interface to implement.   When
474      *                    used with {@code invokedynamic}, this is provided by
475      *                    the {@code NameAndType} of the {@code InvokeDynamic}
476      *                    structure and is stacked automatically by the VM.
477      * @param  args An array of {@code Object} containing the required
478      *              arguments {@code interfaceMethodType}, {@code implementation},
479      *              {@code dynamicMethodType}, {@code flags}, and any
480      *              optional arguments, as described above
481      * @return a CallSite whose target can be used to perform capture, generating
482      *         instances of the interface named by {@code factoryType}
483      * @throws LambdaConversionException If {@code caller} does not have full privilege
484      *         access, or if {@code interfaceMethodName} is not a valid JVM
485      *         method name, or if the return type of {@code factoryType} is not
486      *         an interface, or if any of {@code altInterfaces} is not an
487      *         interface, or if {@code implementation} is not a direct method
488      *         handle referencing a method or constructor, or if the linkage
489      *         invariants are violated, as defined {@link LambdaMetafactory above}.
490      * @throws NullPointerException If any argument, or any component of {@code args},
491      *         is {@code null}.
492      * @throws IllegalArgumentException If the number or types of the components
493      *         of {@code args} do not follow the above rules, or if
494      *         {@code altInterfaceCount} or {@code altMethodCount} are negative
495      *         integers.
496      */
497     public static CallSite altMetafactory(MethodHandles.Lookup caller,
498                                           String interfaceMethodName,
499                                           MethodType factoryType,
500                                           Object... args)
501             throws LambdaConversionException {
502         Objects.requireNonNull(caller);
503         Objects.requireNonNull(interfaceMethodName);
504         Objects.requireNonNull(factoryType);
505         Objects.requireNonNull(args);
506         int argIndex = 0;
507         MethodType interfaceMethodType = extractArg(args, argIndex++, MethodType.class);
508         MethodHandle implementation = extractArg(args, argIndex++, MethodHandle.class);
509         MethodType dynamicMethodType = extractArg(args, argIndex++, MethodType.class);
510         int flags = extractArg(args, argIndex++, Integer.class);
511         Class<?>[] altInterfaces = EMPTY_CLASS_ARRAY;
512         MethodType[] altMethods = EMPTY_MT_ARRAY;
513         // Getter that returns the op of a Quotable instance
514         MethodHandle quotableOpGetter = null;
515         if ((flags & FLAG_MARKERS) != 0) {
516             int altInterfaceCount = extractArg(args, argIndex++, Integer.class);
517             if (altInterfaceCount < 0) {
518                 throw new IllegalArgumentException("negative argument count");
519             }
520             if (altInterfaceCount > 0) {
521                 altInterfaces = extractArgs(args, argIndex, Class.class, altInterfaceCount);
522                 argIndex += altInterfaceCount;
523             }
524         }
525         if ((flags & FLAG_BRIDGES) != 0) {
526             int altMethodCount = extractArg(args, argIndex++, Integer.class);
527             if (altMethodCount < 0) {
528                 throw new IllegalArgumentException("negative argument count");
529             }
530             if (altMethodCount > 0) {
531                 altMethods = extractArgs(args, argIndex, MethodType.class, altMethodCount);
532                 argIndex += altMethodCount;
533             }
534         }
535         if ((flags & FLAG_QUOTABLE) != 0) {
536             quotableOpGetter = extractArg(args, argIndex++, MethodHandle.class);
537             altInterfaces = Arrays.copyOf(altInterfaces, altInterfaces.length + 1);
538             altInterfaces[altInterfaces.length-1] = InnerClassLambdaMetafactory.CodeReflectionSupport.QUOTABLE_CLASS;
539         }
540         if (argIndex < args.length) {
541             throw new IllegalArgumentException("too many arguments");
542         }
543 
544         boolean isSerializable = ((flags & FLAG_SERIALIZABLE) != 0);
545         if (isSerializable) {
546             boolean foundSerializableSupertype = Serializable.class.isAssignableFrom(factoryType.returnType());
547             for (Class<?> c : altInterfaces)
548                 foundSerializableSupertype |= Serializable.class.isAssignableFrom(c);
549             if (!foundSerializableSupertype) {
550                 altInterfaces = Arrays.copyOf(altInterfaces, altInterfaces.length + 1);
551                 altInterfaces[altInterfaces.length-1] = Serializable.class;
552             }
553         }
554 
555         AbstractValidatingLambdaMetafactory mf
556                 = new InnerClassLambdaMetafactory(caller,
557                                                   factoryType,
558                                                   interfaceMethodName,
559                                                   interfaceMethodType,
560                                                   implementation,
561                                                   dynamicMethodType,
562                                                   isSerializable,
563                                                   altInterfaces,
564                                                   altMethods,
565                                                   quotableOpGetter);
566         mf.validateMetafactoryArgs();
567         return mf.buildCallSite();
568     }
569 
570     private static <T> T extractArg(Object[] args, int index, Class<T> type) {
571         if (index >= args.length) {
572             throw new IllegalArgumentException("missing argument");
573         }
574         Object result = Objects.requireNonNull(args[index]);
575         if (!type.isInstance(result)) {
576             throw new IllegalArgumentException("argument has wrong type");
577         }
578         return type.cast(result);
579     }
580 
581     private static <T> T[] extractArgs(Object[] args, int index, Class<T> type, int count) {
582         @SuppressWarnings("unchecked")
583         T[] result = (T[]) Array.newInstance(type, count);
584         for (int i = 0; i < count; i++) {
585             result[i] = extractArg(args, index + i, type);
586         }
587         return result;
588     }
589 
590 }