1 /* 2 * Copyright (c) 2012, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package java.lang.invoke; 27 28 import java.io.Serializable; 29 import java.util.Arrays; 30 import java.lang.reflect.Array; 31 import java.util.Objects; 32 33 /** 34 * <p>Methods to facilitate the creation of simple "function objects" that 35 * implement one or more interfaces by delegation to a provided {@link MethodHandle}, 36 * possibly after type adaptation and partial evaluation of arguments. These 37 * methods are typically used as <em>bootstrap methods</em> for {@code invokedynamic} 38 * call sites, to support the <em>lambda expression</em> and <em>method 39 * reference expression</em> features of the Java Programming Language. 40 * 41 * <p>Indirect access to the behavior specified by the provided {@code MethodHandle} 42 * proceeds in order through three phases: 43 * <ul> 44 * <li><p><em>Linkage</em> occurs when the methods in this class are invoked. 45 * They take as arguments an interface to be implemented (typically a 46 * <em>functional interface</em>, one with a single abstract method), a 47 * name and signature of a method from that interface to be implemented, a 48 * {@linkplain MethodHandleInfo direct method handle} describing the desired 49 * implementation behavior for that method, and possibly other additional 50 * metadata, and produce a {@link CallSite} whose target can be used to 51 * create suitable function objects. 52 * 53 * <p>Linkage may involve dynamically loading a new class that implements 54 * the target interface, or re-using a suitable existing class. 55 * 56 * <p>The {@code CallSite} can be considered a "factory" for function 57 * objects and so these linkage methods are referred to as 58 * "metafactories".</li> 59 * 60 * <li><p><em>Capture</em> occurs when the {@code CallSite}'s target is 61 * invoked, typically through an {@code invokedynamic} call site, 62 * producing a function object. This may occur many times for 63 * a single factory {@code CallSite}. 64 * 65 * <p>If the behavior {@code MethodHandle} has additional parameters beyond 66 * those of the specified interface method, these are referred to as 67 * <em>captured parameters</em>, which must be provided as arguments to the 68 * {@code CallSite} target. The expected number and types of captured 69 * parameters are determined during linkage. 70 * 71 * <p>Capture may involve allocation of a new function object, or may return 72 * a suitable existing function object. The identity of a function object 73 * produced by capture is unpredictable, and therefore identity-sensitive 74 * operations (such as reference equality, object locking, and {@code 75 * System.identityHashCode()}) may produce different results in different 76 * implementations, or even upon different invocations in the same 77 * implementation.</li> 78 * 79 * <li><p><em>Invocation</em> occurs when an implemented interface method is 80 * invoked on a function object. This may occur many times for a single 81 * function object. The method referenced by the implementation 82 * {@code MethodHandle} is invoked, passing to it the captured arguments and 83 * the invocation arguments. The result of the method is returned. 84 * </li> 85 * </ul> 86 * 87 * <p>It is sometimes useful to restrict the set of inputs or results permitted 88 * at invocation. For example, when the generic interface {@code Predicate<T>} 89 * is parameterized as {@code Predicate<String>}, the input must be a 90 * {@code String}, even though the method to implement allows any {@code Object}. 91 * At linkage time, an additional {@link MethodType} parameter describes the 92 * "dynamic" method type; on invocation, the arguments and eventual result 93 * are checked against this {@code MethodType}. 94 * 95 * <p>This class provides two forms of linkage methods: a standard version 96 * ({@link #metafactory(MethodHandles.Lookup, String, MethodType, MethodType, MethodHandle, MethodType)}) 97 * using an optimized protocol, and an alternate version 98 * {@link #altMetafactory(MethodHandles.Lookup, String, MethodType, Object...)}). 99 * The alternate version is a generalization of the standard version, providing 100 * additional control over the behavior of the generated function objects via 101 * flags and additional arguments. The alternate version adds the ability to 102 * manage the following attributes of function objects: 103 * 104 * <ul> 105 * <li><em>Multiple methods.</em> It is sometimes useful to implement multiple 106 * variations of the method signature, involving argument or return type 107 * adaptation. This occurs when multiple distinct VM signatures for a method 108 * are logically considered to be the same method by the language. The 109 * flag {@code FLAG_BRIDGES} indicates that a list of additional 110 * {@code MethodType}s will be provided, each of which will be implemented 111 * by the resulting function object. These methods will share the same 112 * name and instantiated type.</li> 113 * 114 * <li><em>Multiple interfaces.</em> If needed, more than one interface 115 * can be implemented by the function object. (These additional interfaces 116 * are typically marker interfaces with no methods.) The flag {@code FLAG_MARKERS} 117 * indicates that a list of additional interfaces will be provided, each of 118 * which should be implemented by the resulting function object.</li> 119 * 120 * <li><em>Serializability.</em> The generated function objects do not 121 * generally support serialization. If desired, {@code FLAG_SERIALIZABLE} 122 * can be used to indicate that the function objects should be serializable. 123 * Serializable function objects will use, as their serialized form, 124 * instances of the class {@code SerializedLambda}, which requires additional 125 * assistance from the capturing class (the class described by the 126 * {@link MethodHandles.Lookup} parameter {@code caller}); see 127 * {@link SerializedLambda} for details.</li> 128 * </ul> 129 * 130 * <p>Assume the linkage arguments are as follows: 131 * <ul> 132 * <li>{@code factoryType} (describing the {@code CallSite} signature) has 133 * K parameters of types (D1..Dk) and return type Rd;</li> 134 * <li>{@code interfaceMethodType} (describing the implemented method type) has N 135 * parameters, of types (U1..Un) and return type Ru;</li> 136 * <li>{@code implementation} (the {@code MethodHandle} providing the 137 * implementation) has M parameters, of types (A1..Am) and return type Ra 138 * (if the method describes an instance method, the method type of this 139 * method handle already includes an extra first argument corresponding to 140 * the receiver);</li> 141 * <li>{@code dynamicMethodType} (allowing restrictions on invocation) 142 * has N parameters, of types (T1..Tn) and return type Rt.</li> 143 * </ul> 144 * 145 * <p>Then the following linkage invariants must hold: 146 * <ul> 147 * <li>{@code interfaceMethodType} and {@code dynamicMethodType} have the same 148 * arity N, and for i=1..N, Ti and Ui are the same type, or Ti and Ui are 149 * both reference types and Ti is a subtype of Ui</li> 150 * <li>Either Rt and Ru are the same type, or both are reference types and 151 * Rt is a subtype of Ru</li> 152 * <li>K + N = M</li> 153 * <li>For i=1..K, Di = Ai</li> 154 * <li>For i=1..N, Ti is adaptable to Aj, where j=i+k</li> 155 * <li>The return type Rt is void, or the return type Ra is not void and is 156 * adaptable to Rt</li> 157 * </ul> 158 * 159 * <p>Further, at capture time, if {@code implementation} corresponds to an instance 160 * method, and there are any capture arguments ({@code K > 0}), then the first 161 * capture argument (corresponding to the receiver) must be non-null. 162 * 163 * <p>A type Q is considered adaptable to S as follows: 164 * <table class="striped"> 165 * <caption style="display:none">adaptable types</caption> 166 * <thead> 167 * <tr><th scope="col">Q</th><th scope="col">S</th><th scope="col">Link-time checks</th><th scope="col">Invocation-time checks</th></tr> 168 * </thead> 169 * <tbody> 170 * <tr> 171 * <th scope="row">Primitive</th><th scope="row">Primitive</th> 172 * <td>Q can be converted to S via a primitive widening conversion</td> 173 * <td>None</td> 174 * </tr> 175 * <tr> 176 * <th scope="row">Primitive</th><th scope="row">Reference</th> 177 * <td>S is a supertype of the Wrapper(Q)</td> 178 * <td>Cast from Wrapper(Q) to S</td> 179 * </tr> 180 * <tr> 181 * <th scope="row">Reference</th><th scope="row">Primitive</th> 182 * <td>for parameter types: Q is a primitive wrapper and Primitive(Q) 183 * can be widened to S 184 * <br>for return types: If Q is a primitive wrapper, check that 185 * Primitive(Q) can be widened to S</td> 186 * <td>If Q is not a primitive wrapper, cast Q to the base Wrapper(S); 187 * for example Number for numeric types</td> 188 * </tr> 189 * <tr> 190 * <th scope="row">Reference</th><th scope="row">Reference</th> 191 * <td>for parameter types: S is a supertype of Q 192 * <br>for return types: none</td> 193 * <td>Cast from Q to S</td> 194 * </tr> 195 * </tbody> 196 * </table> 197 * 198 * @apiNote These linkage methods are designed to support the evaluation 199 * of <em>lambda expressions</em> and <em>method references</em> in the Java 200 * Language. For every lambda expressions or method reference in the source code, 201 * there is a target type which is a functional interface. Evaluating a lambda 202 * expression produces an object of its target type. The recommended mechanism 203 * for evaluating lambda expressions is to desugar the lambda body to a method, 204 * invoke an invokedynamic call site whose static argument list describes the 205 * sole method of the functional interface and the desugared implementation 206 * method, and returns an object (the lambda object) that implements the target 207 * type. (For method references, the implementation method is simply the 208 * referenced method; no desugaring is needed.) 209 * 210 * <p>The argument list of the implementation method and the argument list of 211 * the interface method(s) may differ in several ways. The implementation 212 * methods may have additional arguments to accommodate arguments captured by 213 * the lambda expression; there may also be differences resulting from permitted 214 * adaptations of arguments, such as casting, boxing, unboxing, and primitive 215 * widening. (Varargs adaptations are not handled by the metafactories; these are 216 * expected to be handled by the caller.) 217 * 218 * <p>Invokedynamic call sites have two argument lists: a static argument list 219 * and a dynamic argument list. The static argument list is stored in the 220 * constant pool; the dynamic argument is pushed on the operand stack at capture 221 * time. The bootstrap method has access to the entire static argument list 222 * (which in this case, includes information describing the implementation method, 223 * the target interface, and the target interface method(s)), as well as a 224 * method signature describing the number and static types (but not the values) 225 * of the dynamic arguments and the static return type of the invokedynamic site. 226 * 227 * <p>The implementation method is described with a direct method handle 228 * referencing a method or constructor. In theory, any method handle could be 229 * used, but this is not compatible with some implementation techniques and 230 * would complicate the work implementations must do. 231 * 232 * @since 1.8 233 */ 234 public final class LambdaMetafactory { 235 236 private LambdaMetafactory() {} 237 238 /** Flag for {@link #altMetafactory} indicating the lambda object 239 * must be serializable */ 240 public static final int FLAG_SERIALIZABLE = 1 << 0; 241 242 /** 243 * Flag for {@link #altMetafactory} indicating the lambda object implements 244 * other interfaces besides {@code Serializable} 245 */ 246 public static final int FLAG_MARKERS = 1 << 1; 247 248 /** 249 * Flag for alternate metafactories indicating the lambda object requires 250 * additional methods that invoke the {@code implementation} 251 */ 252 public static final int FLAG_BRIDGES = 1 << 2; 253 254 /** Flag for {@link #altMetafactory} indicating the lambda object 255 * must be a {@code Quotable} object, inspectable using code reflection. */ 256 public static final int FLAG_QUOTABLE = 1 << 3; 257 258 private static final Class<?>[] EMPTY_CLASS_ARRAY = new Class<?>[0]; 259 private static final MethodType[] EMPTY_MT_ARRAY = new MethodType[0]; 260 261 // LambdaMetafactory bootstrap methods are startup sensitive, and may be 262 // special cased in java.lang.invoke.BootstrapMethodInvoker to ensure 263 // methods are invoked with exact type information to avoid generating 264 // code for runtime checks. Take care any changes or additions here are 265 // reflected there as appropriate. 266 267 /** 268 * Facilitates the creation of simple "function objects" that implement one 269 * or more interfaces by delegation to a provided {@link MethodHandle}, 270 * after appropriate type adaptation and partial evaluation of arguments. 271 * Typically used as a <em>bootstrap method</em> for {@code invokedynamic} 272 * call sites, to support the <em>lambda expression</em> and <em>method 273 * reference expression</em> features of the Java Programming Language. 274 * 275 * <p>This is the standard, streamlined metafactory; additional flexibility 276 * is provided by {@link #altMetafactory(MethodHandles.Lookup, String, MethodType, Object...)}. 277 * A general description of the behavior of this method is provided 278 * {@link LambdaMetafactory above}. 279 * 280 * <p>When the target of the {@code CallSite} returned from this method is 281 * invoked, the resulting function objects are instances of a class which 282 * implements the interface named by the return type of {@code factoryType}, 283 * declares a method with the name given by {@code interfaceMethodName} and the 284 * signature given by {@code interfaceMethodType}. It may also override additional 285 * methods from {@code Object}. 286 * 287 * @param caller Represents a lookup context with the accessibility 288 * privileges of the caller. Specifically, the lookup context 289 * must have {@linkplain MethodHandles.Lookup#hasFullPrivilegeAccess() 290 * full privilege access}. 291 * When used with {@code invokedynamic}, this is stacked 292 * automatically by the VM. 293 * @param interfaceMethodName The name of the method to implement. When used with 294 * {@code invokedynamic}, this is provided by the 295 * {@code NameAndType} of the {@code InvokeDynamic} 296 * structure and is stacked automatically by the VM. 297 * @param factoryType The expected signature of the {@code CallSite}. The 298 * parameter types represent the types of capture variables; 299 * the return type is the interface to implement. When 300 * used with {@code invokedynamic}, this is provided by 301 * the {@code NameAndType} of the {@code InvokeDynamic} 302 * structure and is stacked automatically by the VM. 303 * @param interfaceMethodType Signature and return type of method to be 304 * implemented by the function object. 305 * @param implementation A direct method handle describing the implementation 306 * method which should be called (with suitable adaptation 307 * of argument types and return types, and with captured 308 * arguments prepended to the invocation arguments) at 309 * invocation time. 310 * @param dynamicMethodType The signature and return type that should 311 * be enforced dynamically at invocation time. 312 * In simple use cases this is the same as 313 * {@code interfaceMethodType}. 314 * @return a CallSite whose target can be used to perform capture, generating 315 * instances of the interface named by {@code factoryType} 316 * @throws LambdaConversionException If {@code caller} does not have full privilege 317 * access, or if {@code interfaceMethodName} is not a valid JVM 318 * method name, or if the return type of {@code factoryType} is not 319 * an interface, or if {@code implementation} is not a direct method 320 * handle referencing a method or constructor, or if the linkage 321 * invariants are violated, as defined {@link LambdaMetafactory above}. 322 * @throws NullPointerException If any argument is {@code null}. 323 * @throws SecurityException If a security manager is present, and it 324 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 325 * from {@code caller} to the package of {@code implementation}. 326 */ 327 public static CallSite metafactory(MethodHandles.Lookup caller, 328 String interfaceMethodName, 329 MethodType factoryType, 330 MethodType interfaceMethodType, 331 MethodHandle implementation, 332 MethodType dynamicMethodType) 333 throws LambdaConversionException { 334 AbstractValidatingLambdaMetafactory mf; 335 mf = new InnerClassLambdaMetafactory(Objects.requireNonNull(caller), 336 Objects.requireNonNull(factoryType), 337 Objects.requireNonNull(interfaceMethodName), 338 Objects.requireNonNull(interfaceMethodType), 339 Objects.requireNonNull(implementation), 340 Objects.requireNonNull(dynamicMethodType), 341 false, 342 EMPTY_CLASS_ARRAY, 343 EMPTY_MT_ARRAY, 344 null); 345 mf.validateMetafactoryArgs(); 346 return mf.buildCallSite(); 347 } 348 349 /** 350 * Facilitates the creation of simple "function objects" that implement one 351 * or more interfaces by delegation to a provided {@link MethodHandle}, 352 * after appropriate type adaptation and partial evaluation of arguments. 353 * Typically used as a <em>bootstrap method</em> for {@code invokedynamic} 354 * call sites, to support the <em>lambda expression</em> and <em>method 355 * reference expression</em> features of the Java Programming Language. 356 * 357 * <p>This is the general, more flexible metafactory; a streamlined version 358 * is provided by {@link #metafactory(java.lang.invoke.MethodHandles.Lookup, 359 * String, MethodType, MethodType, MethodHandle, MethodType)}. 360 * A general description of the behavior of this method is provided 361 * {@link LambdaMetafactory above}. 362 * 363 * <p>The argument list for this method includes three fixed parameters, 364 * corresponding to the parameters automatically stacked by the VM for the 365 * bootstrap method in an {@code invokedynamic} invocation, and an {@code Object[]} 366 * parameter that contains additional parameters. The declared argument 367 * list for this method is: 368 * 369 * <pre>{@code 370 * CallSite altMetafactory(MethodHandles.Lookup caller, 371 * String interfaceMethodName, 372 * MethodType factoryType, 373 * Object... args) 374 * }</pre> 375 * 376 * <p>but it behaves as if the argument list is as follows: 377 * 378 * <pre>{@code 379 * CallSite altMetafactory(MethodHandles.Lookup caller, 380 * String interfaceMethodName, 381 * MethodType factoryType, 382 * MethodType interfaceMethodType, 383 * MethodHandle implementation, 384 * MethodType dynamicMethodType, 385 * int flags, 386 * int altInterfaceCount, // IF flags has MARKERS set 387 * Class... altInterfaces, // IF flags has MARKERS set 388 * int altMethodCount, // IF flags has BRIDGES set 389 * MethodType... altMethods // IF flags has BRIDGES set 390 * MethodHandle quotableField // IF flags has QUOTABLE set 391 * ) 392 * }</pre> 393 * 394 * <p>Arguments that appear in the argument list for 395 * {@link #metafactory(MethodHandles.Lookup, String, MethodType, MethodType, MethodHandle, MethodType)} 396 * have the same specification as in that method. The additional arguments 397 * are interpreted as follows: 398 * <ul> 399 * <li>{@code flags} indicates additional options; this is a bitwise 400 * OR of desired flags. Defined flags are {@link #FLAG_BRIDGES}, 401 * {@link #FLAG_MARKERS}, and {@link #FLAG_SERIALIZABLE}.</li> 402 * <li>{@code altInterfaceCount} is the number of additional interfaces 403 * the function object should implement, and is present if and only if the 404 * {@code FLAG_MARKERS} flag is set.</li> 405 * <li>{@code altInterfaces} is a variable-length list of additional 406 * interfaces to implement, whose length equals {@code altInterfaceCount}, 407 * and is present if and only if the {@code FLAG_MARKERS} flag is set.</li> 408 * <li>{@code altMethodCount} is the number of additional method signatures 409 * the function object should implement, and is present if and only if 410 * the {@code FLAG_BRIDGES} flag is set.</li> 411 * <li>{@code altMethods} is a variable-length list of additional 412 * methods signatures to implement, whose length equals {@code altMethodCount}, 413 * and is present if and only if the {@code FLAG_BRIDGES} flag is set.</li> 414 * <li>{@code quotableField} is a 415 * {@linkplain MethodHandles.Lookup#findGetter(Class, String, Class) getter} method handle 416 * that is used to retrieve the string representation of the quotable lambda's associated 417 * intermediate representation.</li> 418 * </ul> 419 * 420 * <p>Each class named by {@code altInterfaces} is subject to the same 421 * restrictions as {@code Rd}, the return type of {@code factoryType}, 422 * as described {@link LambdaMetafactory above}. Each {@code MethodType} 423 * named by {@code altMethods} is subject to the same restrictions as 424 * {@code interfaceMethodType}, as described {@link LambdaMetafactory above}. 425 * 426 * <p>When FLAG_SERIALIZABLE is set in {@code flags}, the function objects 427 * will implement {@code Serializable}, and will have a {@code writeReplace} 428 * method that returns an appropriate {@link SerializedLambda}. The 429 * {@code caller} class must have an appropriate {@code $deserializeLambda$} 430 * method, as described in {@link SerializedLambda}. 431 * 432 * <p>When FLAG_QUOTABLE is set in {@code flags}, the function objects 433 * will implement {@code Quotable}. 434 * 435 * <p>When the target of the {@code CallSite} returned from this method is 436 * invoked, the resulting function objects are instances of a class with 437 * the following properties: 438 * <ul> 439 * <li>The class implements the interface named by the return type 440 * of {@code factoryType} and any interfaces named by {@code altInterfaces}</li> 441 * <li>The class declares methods with the name given by {@code interfaceMethodName}, 442 * and the signature given by {@code interfaceMethodType} and additional signatures 443 * given by {@code altMethods}</li> 444 * <li>The class may override methods from {@code Object}, and may 445 * implement methods related to serialization.</li> 446 * </ul> 447 * 448 * @param caller Represents a lookup context with the accessibility 449 * privileges of the caller. Specifically, the lookup context 450 * must have {@linkplain MethodHandles.Lookup#hasFullPrivilegeAccess() 451 * full privilege access}. 452 * When used with {@code invokedynamic}, this is stacked 453 * automatically by the VM. 454 * @param interfaceMethodName The name of the method to implement. When used with 455 * {@code invokedynamic}, this is provided by the 456 * {@code NameAndType} of the {@code InvokeDynamic} 457 * structure and is stacked automatically by the VM. 458 * @param factoryType The expected signature of the {@code CallSite}. The 459 * parameter types represent the types of capture variables; 460 * the return type is the interface to implement. When 461 * used with {@code invokedynamic}, this is provided by 462 * the {@code NameAndType} of the {@code InvokeDynamic} 463 * structure and is stacked automatically by the VM. 464 * @param args An array of {@code Object} containing the required 465 * arguments {@code interfaceMethodType}, {@code implementation}, 466 * {@code dynamicMethodType}, {@code flags}, and any 467 * optional arguments, as described above 468 * @return a CallSite whose target can be used to perform capture, generating 469 * instances of the interface named by {@code factoryType} 470 * @throws LambdaConversionException If {@code caller} does not have full privilege 471 * access, or if {@code interfaceMethodName} is not a valid JVM 472 * method name, or if the return type of {@code factoryType} is not 473 * an interface, or if any of {@code altInterfaces} is not an 474 * interface, or if {@code implementation} is not a direct method 475 * handle referencing a method or constructor, or if the linkage 476 * invariants are violated, as defined {@link LambdaMetafactory above}. 477 * @throws NullPointerException If any argument, or any component of {@code args}, 478 * is {@code null}. 479 * @throws IllegalArgumentException If the number or types of the components 480 * of {@code args} do not follow the above rules, or if 481 * {@code altInterfaceCount} or {@code altMethodCount} are negative 482 * integers. 483 * @throws SecurityException If a security manager is present, and it 484 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 485 * from {@code caller} to the package of {@code implementation}. 486 */ 487 public static CallSite altMetafactory(MethodHandles.Lookup caller, 488 String interfaceMethodName, 489 MethodType factoryType, 490 Object... args) 491 throws LambdaConversionException { 492 Objects.requireNonNull(caller); 493 Objects.requireNonNull(interfaceMethodName); 494 Objects.requireNonNull(factoryType); 495 Objects.requireNonNull(args); 496 int argIndex = 0; 497 MethodType interfaceMethodType = extractArg(args, argIndex++, MethodType.class); 498 MethodHandle implementation = extractArg(args, argIndex++, MethodHandle.class); 499 MethodType dynamicMethodType = extractArg(args, argIndex++, MethodType.class); 500 int flags = extractArg(args, argIndex++, Integer.class); 501 Class<?>[] altInterfaces = EMPTY_CLASS_ARRAY; 502 MethodType[] altMethods = EMPTY_MT_ARRAY; 503 MethodHandle quotableField = null; 504 if ((flags & FLAG_MARKERS) != 0) { 505 int altInterfaceCount = extractArg(args, argIndex++, Integer.class); 506 if (altInterfaceCount < 0) { 507 throw new IllegalArgumentException("negative argument count"); 508 } 509 if (altInterfaceCount > 0) { 510 altInterfaces = extractArgs(args, argIndex, Class.class, altInterfaceCount); 511 argIndex += altInterfaceCount; 512 } 513 } 514 if ((flags & FLAG_BRIDGES) != 0) { 515 int altMethodCount = extractArg(args, argIndex++, Integer.class); 516 if (altMethodCount < 0) { 517 throw new IllegalArgumentException("negative argument count"); 518 } 519 if (altMethodCount > 0) { 520 altMethods = extractArgs(args, argIndex, MethodType.class, altMethodCount); 521 argIndex += altMethodCount; 522 } 523 } 524 if ((flags & FLAG_QUOTABLE) != 0) { 525 quotableField = extractArg(args, argIndex++, MethodHandle.class); 526 altInterfaces = Arrays.copyOf(altInterfaces, altInterfaces.length + 1); 527 altInterfaces[altInterfaces.length-1] = InnerClassLambdaMetafactory.CodeReflectionSupport.QUOTABLE_CLASS; 528 } 529 if (argIndex < args.length) { 530 throw new IllegalArgumentException("too many arguments"); 531 } 532 533 boolean isSerializable = ((flags & FLAG_SERIALIZABLE) != 0); 534 if (isSerializable) { 535 boolean foundSerializableSupertype = Serializable.class.isAssignableFrom(factoryType.returnType()); 536 for (Class<?> c : altInterfaces) 537 foundSerializableSupertype |= Serializable.class.isAssignableFrom(c); 538 if (!foundSerializableSupertype) { 539 altInterfaces = Arrays.copyOf(altInterfaces, altInterfaces.length + 1); 540 altInterfaces[altInterfaces.length-1] = Serializable.class; 541 } 542 } 543 544 AbstractValidatingLambdaMetafactory mf 545 = new InnerClassLambdaMetafactory(caller, 546 factoryType, 547 interfaceMethodName, 548 interfaceMethodType, 549 implementation, 550 dynamicMethodType, 551 isSerializable, 552 altInterfaces, 553 altMethods, 554 quotableField); 555 mf.validateMetafactoryArgs(); 556 return mf.buildCallSite(); 557 } 558 559 private static <T> T extractArg(Object[] args, int index, Class<T> type) { 560 if (index >= args.length) { 561 throw new IllegalArgumentException("missing argument"); 562 } 563 Object result = Objects.requireNonNull(args[index]); 564 if (!type.isInstance(result)) { 565 throw new IllegalArgumentException("argument has wrong type"); 566 } 567 return type.cast(result); 568 } 569 570 private static <T> T[] extractArgs(Object[] args, int index, Class<T> type, int count) { 571 @SuppressWarnings("unchecked") 572 T[] result = (T[]) Array.newInstance(type, count); 573 for (int i = 0; i < count; i++) { 574 result[i] = extractArg(args, index + i, type); 575 } 576 return result; 577 } 578 579 }