1 /*
   2  * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 import java.util.function.BiConsumer;
  30 import java.util.function.Consumer;
  31 import java.util.stream.Stream;
  32 
  33 import javax.lang.model.element.ElementKind;
  34 import javax.tools.JavaFileObject;
  35 
  36 import com.sun.source.tree.CaseTree;
  37 import com.sun.source.tree.IdentifierTree;
  38 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
  39 import com.sun.source.tree.MemberSelectTree;
  40 import com.sun.source.tree.TreeVisitor;
  41 import com.sun.source.util.SimpleTreeVisitor;
  42 import com.sun.tools.javac.code.*;
  43 import com.sun.tools.javac.code.Lint.LintCategory;
  44 import com.sun.tools.javac.code.Scope.WriteableScope;
  45 import com.sun.tools.javac.code.Source.Feature;
  46 import com.sun.tools.javac.code.Symbol.*;
  47 import com.sun.tools.javac.code.Type.*;
  48 import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError;
  49 import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext;
  50 import com.sun.tools.javac.comp.Check.CheckContext;
  51 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
  52 import com.sun.tools.javac.comp.MatchBindingsComputer.MatchBindings;
  53 import com.sun.tools.javac.jvm.*;
  54 
  55 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond;
  56 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg;
  57 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs;
  58 
  59 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  60 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
  61 import com.sun.tools.javac.resources.CompilerProperties.Warnings;
  62 import com.sun.tools.javac.tree.*;
  63 import com.sun.tools.javac.tree.JCTree.*;
  64 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
  65 import com.sun.tools.javac.util.*;
  66 import com.sun.tools.javac.util.DefinedBy.Api;
  67 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  68 import com.sun.tools.javac.util.JCDiagnostic.Error;
  69 import com.sun.tools.javac.util.JCDiagnostic.Fragment;
  70 import com.sun.tools.javac.util.JCDiagnostic.Warning;
  71 import com.sun.tools.javac.util.List;
  72 
  73 import static com.sun.tools.javac.code.Flags.*;
  74 import static com.sun.tools.javac.code.Flags.ANNOTATION;
  75 import static com.sun.tools.javac.code.Flags.BLOCK;
  76 import static com.sun.tools.javac.code.Kinds.*;
  77 import static com.sun.tools.javac.code.Kinds.Kind.*;
  78 import static com.sun.tools.javac.code.TypeTag.*;
  79 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
  80 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  81 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
  82 
  83 /** This is the main context-dependent analysis phase in GJC. It
  84  *  encompasses name resolution, type checking and constant folding as
  85  *  subtasks. Some subtasks involve auxiliary classes.
  86  *  @see Check
  87  *  @see Resolve
  88  *  @see ConstFold
  89  *  @see Infer
  90  *
  91  *  <p><b>This is NOT part of any supported API.
  92  *  If you write code that depends on this, you do so at your own risk.
  93  *  This code and its internal interfaces are subject to change or
  94  *  deletion without notice.</b>
  95  */
  96 public class Attr extends JCTree.Visitor {
  97     protected static final Context.Key<Attr> attrKey = new Context.Key<>();
  98 
  99     final Names names;
 100     final Log log;
 101     final Symtab syms;
 102     final Resolve rs;
 103     final Operators operators;
 104     final Infer infer;
 105     final Analyzer analyzer;
 106     final DeferredAttr deferredAttr;
 107     final Check chk;
 108     final Flow flow;
 109     final MemberEnter memberEnter;
 110     final TypeEnter typeEnter;
 111     final TreeMaker make;
 112     final ConstFold cfolder;
 113     final Enter enter;
 114     final Target target;
 115     final Types types;
 116     final Preview preview;
 117     final JCDiagnostic.Factory diags;
 118     final TypeAnnotations typeAnnotations;
 119     final DeferredLintHandler deferredLintHandler;
 120     final TypeEnvs typeEnvs;
 121     final Dependencies dependencies;
 122     final Annotate annotate;
 123     final ArgumentAttr argumentAttr;
 124     final MatchBindingsComputer matchBindingsComputer;
 125     final AttrRecover attrRecover;
 126 
 127     public static Attr instance(Context context) {
 128         Attr instance = context.get(attrKey);
 129         if (instance == null)
 130             instance = new Attr(context);
 131         return instance;
 132     }
 133 
 134     @SuppressWarnings("this-escape")
 135     protected Attr(Context context) {
 136         context.put(attrKey, this);
 137 
 138         names = Names.instance(context);
 139         log = Log.instance(context);
 140         syms = Symtab.instance(context);
 141         rs = Resolve.instance(context);
 142         operators = Operators.instance(context);
 143         chk = Check.instance(context);
 144         flow = Flow.instance(context);
 145         memberEnter = MemberEnter.instance(context);
 146         typeEnter = TypeEnter.instance(context);
 147         make = TreeMaker.instance(context);
 148         enter = Enter.instance(context);
 149         infer = Infer.instance(context);
 150         analyzer = Analyzer.instance(context);
 151         deferredAttr = DeferredAttr.instance(context);
 152         cfolder = ConstFold.instance(context);
 153         target = Target.instance(context);
 154         types = Types.instance(context);
 155         preview = Preview.instance(context);
 156         diags = JCDiagnostic.Factory.instance(context);
 157         annotate = Annotate.instance(context);
 158         typeAnnotations = TypeAnnotations.instance(context);
 159         deferredLintHandler = DeferredLintHandler.instance(context);
 160         typeEnvs = TypeEnvs.instance(context);
 161         dependencies = Dependencies.instance(context);
 162         argumentAttr = ArgumentAttr.instance(context);
 163         matchBindingsComputer = MatchBindingsComputer.instance(context);
 164         attrRecover = AttrRecover.instance(context);
 165 
 166         Options options = Options.instance(context);
 167 
 168         Source source = Source.instance(context);
 169         allowReifiableTypesInInstanceof = Feature.REIFIABLE_TYPES_INSTANCEOF.allowedInSource(source);
 170         allowRecords = Feature.RECORDS.allowedInSource(source);
 171         allowPatternSwitch = (preview.isEnabled() || !preview.isPreview(Feature.PATTERN_SWITCH)) &&
 172                              Feature.PATTERN_SWITCH.allowedInSource(source);
 173         allowUnconditionalPatternsInstanceOf =
 174                              Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.allowedInSource(source);
 175         sourceName = source.name;
 176         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
 177 
 178         statInfo = new ResultInfo(KindSelector.NIL, Type.noType);
 179         varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType);
 180         unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType);
 181         methodAttrInfo = new MethodAttrInfo();
 182         unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType);
 183         unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType);
 184         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
 185     }
 186 
 187     /** Switch: reifiable types in instanceof enabled?
 188      */
 189     boolean allowReifiableTypesInInstanceof;
 190 
 191     /** Are records allowed
 192      */
 193     private final boolean allowRecords;
 194 
 195     /** Are patterns in switch allowed
 196      */
 197     private final boolean allowPatternSwitch;
 198 
 199     /** Are unconditional patterns in instanceof allowed
 200      */
 201     private final boolean allowUnconditionalPatternsInstanceOf;
 202 
 203     /**
 204      * Switch: warn about use of variable before declaration?
 205      * RFE: 6425594
 206      */
 207     boolean useBeforeDeclarationWarning;
 208 
 209     /**
 210      * Switch: name of source level; used for error reporting.
 211      */
 212     String sourceName;
 213 
 214     /** Check kind and type of given tree against protokind and prototype.
 215      *  If check succeeds, store type in tree and return it.
 216      *  If check fails, store errType in tree and return it.
 217      *  No checks are performed if the prototype is a method type.
 218      *  It is not necessary in this case since we know that kind and type
 219      *  are correct.
 220      *
 221      *  @param tree     The tree whose kind and type is checked
 222      *  @param found    The computed type of the tree
 223      *  @param ownkind  The computed kind of the tree
 224      *  @param resultInfo  The expected result of the tree
 225      */
 226     Type check(final JCTree tree,
 227                final Type found,
 228                final KindSelector ownkind,
 229                final ResultInfo resultInfo) {
 230         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
 231         Type owntype;
 232         boolean shouldCheck = !found.hasTag(ERROR) &&
 233                 !resultInfo.pt.hasTag(METHOD) &&
 234                 !resultInfo.pt.hasTag(FORALL);
 235         if (shouldCheck && !ownkind.subset(resultInfo.pkind)) {
 236             log.error(tree.pos(),
 237                       Errors.UnexpectedType(resultInfo.pkind.kindNames(),
 238                                             ownkind.kindNames()));
 239             owntype = types.createErrorType(found);
 240         } else if (inferenceContext.free(found)) {
 241             //delay the check if there are inference variables in the found type
 242             //this means we are dealing with a partially inferred poly expression
 243             owntype = shouldCheck ? resultInfo.pt : found;
 244             if (resultInfo.checkMode.installPostInferenceHook()) {
 245                 inferenceContext.addFreeTypeListener(List.of(found),
 246                         instantiatedContext -> {
 247                             ResultInfo pendingResult =
 248                                     resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
 249                             check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
 250                         });
 251             }
 252         } else {
 253             owntype = shouldCheck ?
 254             resultInfo.check(tree, found) :
 255             found;
 256         }
 257         if (resultInfo.checkMode.updateTreeType()) {
 258             tree.type = owntype;
 259         }
 260         return owntype;
 261     }
 262 
 263     /** Is given blank final variable assignable, i.e. in a scope where it
 264      *  may be assigned to even though it is final?
 265      *  @param v      The blank final variable.
 266      *  @param env    The current environment.
 267      */
 268     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
 269         Symbol owner = env.info.scope.owner;
 270            // owner refers to the innermost variable, method or
 271            // initializer block declaration at this point.
 272         boolean isAssignable =
 273             v.owner == owner
 274             ||
 275             ((owner.name == names.init ||    // i.e. we are in a constructor
 276               owner.kind == VAR ||           // i.e. we are in a variable initializer
 277               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
 278              &&
 279              v.owner == owner.owner
 280              &&
 281              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
 282         boolean insideCompactConstructor = env.enclMethod != null && TreeInfo.isCompactConstructor(env.enclMethod);
 283         return isAssignable & !insideCompactConstructor;
 284     }
 285 
 286     /** Check that variable can be assigned to.
 287      *  @param pos    The current source code position.
 288      *  @param v      The assigned variable
 289      *  @param base   If the variable is referred to in a Select, the part
 290      *                to the left of the `.', null otherwise.
 291      *  @param env    The current environment.
 292      */
 293     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
 294         if (v.name == names._this) {
 295             log.error(pos, Errors.CantAssignValToThis);
 296         } else if ((v.flags() & FINAL) != 0 &&
 297             ((v.flags() & HASINIT) != 0
 298              ||
 299              !((base == null ||
 300                TreeInfo.isThisQualifier(base)) &&
 301                isAssignableAsBlankFinal(v, env)))) {
 302             if (v.isResourceVariable()) { //TWR resource
 303                 log.error(pos, Errors.TryResourceMayNotBeAssigned(v));
 304             } else {
 305                 log.error(pos, Errors.CantAssignValToVar(Flags.toSource(v.flags() & (STATIC | FINAL)), v));
 306             }
 307         }
 308     }
 309 
 310     /** Does tree represent a static reference to an identifier?
 311      *  It is assumed that tree is either a SELECT or an IDENT.
 312      *  We have to weed out selects from non-type names here.
 313      *  @param tree    The candidate tree.
 314      */
 315     boolean isStaticReference(JCTree tree) {
 316         if (tree.hasTag(SELECT)) {
 317             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
 318             if (lsym == null || lsym.kind != TYP) {
 319                 return false;
 320             }
 321         }
 322         return true;
 323     }
 324 
 325     /** Is this symbol a type?
 326      */
 327     static boolean isType(Symbol sym) {
 328         return sym != null && sym.kind == TYP;
 329     }
 330 
 331     /** Attribute a parsed identifier.
 332      * @param tree Parsed identifier name
 333      * @param topLevel The toplevel to use
 334      */
 335     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
 336         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
 337         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
 338                                            syms.errSymbol.name,
 339                                            null, null, null, null);
 340         localEnv.enclClass.sym = syms.errSymbol;
 341         return attribIdent(tree, localEnv);
 342     }
 343 
 344     /** Attribute a parsed identifier.
 345      * @param tree Parsed identifier name
 346      * @param env The env to use
 347      */
 348     public Symbol attribIdent(JCTree tree, Env<AttrContext> env) {
 349         return tree.accept(identAttributer, env);
 350     }
 351     // where
 352         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
 353         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
 354             @Override @DefinedBy(Api.COMPILER_TREE)
 355             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
 356                 Symbol site = visit(node.getExpression(), env);
 357                 if (site.kind == ERR || site.kind == ABSENT_TYP || site.kind == HIDDEN)
 358                     return site;
 359                 Name name = (Name)node.getIdentifier();
 360                 if (site.kind == PCK) {
 361                     env.toplevel.packge = (PackageSymbol)site;
 362                     return rs.findIdentInPackage(null, env, (TypeSymbol)site, name,
 363                             KindSelector.TYP_PCK);
 364                 } else {
 365                     env.enclClass.sym = (ClassSymbol)site;
 366                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
 367                 }
 368             }
 369 
 370             @Override @DefinedBy(Api.COMPILER_TREE)
 371             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
 372                 return rs.findIdent(null, env, (Name)node.getName(), KindSelector.TYP_PCK);
 373             }
 374         }
 375 
 376     public Type coerce(Type etype, Type ttype) {
 377         return cfolder.coerce(etype, ttype);
 378     }
 379 
 380     public Type attribType(JCTree node, TypeSymbol sym) {
 381         Env<AttrContext> env = typeEnvs.get(sym);
 382         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
 383         return attribTree(node, localEnv, unknownTypeInfo);
 384     }
 385 
 386     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
 387         // Attribute qualifying package or class.
 388         JCFieldAccess s = tree.qualid;
 389         return attribTree(s.selected, env,
 390                           new ResultInfo(tree.staticImport ?
 391                                          KindSelector.TYP : KindSelector.TYP_PCK,
 392                        Type.noType));
 393     }
 394 
 395     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
 396         return attribToTree(expr, env, tree, unknownExprInfo);
 397     }
 398 
 399     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
 400         return attribToTree(stmt, env, tree, statInfo);
 401     }
 402 
 403     private Env<AttrContext> attribToTree(JCTree root, Env<AttrContext> env, JCTree tree, ResultInfo resultInfo) {
 404         breakTree = tree;
 405         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 406         try {
 407             deferredAttr.attribSpeculative(root, env, resultInfo,
 408                     null, DeferredAttr.AttributionMode.ATTRIB_TO_TREE,
 409                     argumentAttr.withLocalCacheContext());
 410             attrRecover.doRecovery();
 411         } catch (BreakAttr b) {
 412             return b.env;
 413         } catch (AssertionError ae) {
 414             if (ae.getCause() instanceof BreakAttr breakAttr) {
 415                 return breakAttr.env;
 416             } else {
 417                 throw ae;
 418             }
 419         } finally {
 420             breakTree = null;
 421             log.useSource(prev);
 422         }
 423         return env;
 424     }
 425 
 426     private JCTree breakTree = null;
 427 
 428     private static class BreakAttr extends RuntimeException {
 429         static final long serialVersionUID = -6924771130405446405L;
 430         private transient Env<AttrContext> env;
 431         private BreakAttr(Env<AttrContext> env) {
 432             this.env = env;
 433         }
 434     }
 435 
 436     /**
 437      * Mode controlling behavior of Attr.Check
 438      */
 439     enum CheckMode {
 440 
 441         NORMAL,
 442 
 443         /**
 444          * Mode signalling 'fake check' - skip tree update. A side-effect of this mode is
 445          * that the captured var cache in {@code InferenceContext} will be used in read-only
 446          * mode when performing inference checks.
 447          */
 448         NO_TREE_UPDATE {
 449             @Override
 450             public boolean updateTreeType() {
 451                 return false;
 452             }
 453         },
 454         /**
 455          * Mode signalling that caller will manage free types in tree decorations.
 456          */
 457         NO_INFERENCE_HOOK {
 458             @Override
 459             public boolean installPostInferenceHook() {
 460                 return false;
 461             }
 462         };
 463 
 464         public boolean updateTreeType() {
 465             return true;
 466         }
 467         public boolean installPostInferenceHook() {
 468             return true;
 469         }
 470     }
 471 
 472 
 473     class ResultInfo {
 474         final KindSelector pkind;
 475         final Type pt;
 476         final CheckContext checkContext;
 477         final CheckMode checkMode;
 478 
 479         ResultInfo(KindSelector pkind, Type pt) {
 480             this(pkind, pt, chk.basicHandler, CheckMode.NORMAL);
 481         }
 482 
 483         ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) {
 484             this(pkind, pt, chk.basicHandler, checkMode);
 485         }
 486 
 487         protected ResultInfo(KindSelector pkind,
 488                              Type pt, CheckContext checkContext) {
 489             this(pkind, pt, checkContext, CheckMode.NORMAL);
 490         }
 491 
 492         protected ResultInfo(KindSelector pkind,
 493                              Type pt, CheckContext checkContext, CheckMode checkMode) {
 494             this.pkind = pkind;
 495             this.pt = pt;
 496             this.checkContext = checkContext;
 497             this.checkMode = checkMode;
 498         }
 499 
 500         /**
 501          * Should {@link Attr#attribTree} use the {@code ArgumentAttr} visitor instead of this one?
 502          * @param tree The tree to be type-checked.
 503          * @return true if {@code ArgumentAttr} should be used.
 504          */
 505         protected boolean needsArgumentAttr(JCTree tree) { return false; }
 506 
 507         protected Type check(final DiagnosticPosition pos, final Type found) {
 508             return chk.checkType(pos, found, pt, checkContext);
 509         }
 510 
 511         protected ResultInfo dup(Type newPt) {
 512             return new ResultInfo(pkind, newPt, checkContext, checkMode);
 513         }
 514 
 515         protected ResultInfo dup(CheckContext newContext) {
 516             return new ResultInfo(pkind, pt, newContext, checkMode);
 517         }
 518 
 519         protected ResultInfo dup(Type newPt, CheckContext newContext) {
 520             return new ResultInfo(pkind, newPt, newContext, checkMode);
 521         }
 522 
 523         protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
 524             return new ResultInfo(pkind, newPt, newContext, newMode);
 525         }
 526 
 527         protected ResultInfo dup(CheckMode newMode) {
 528             return new ResultInfo(pkind, pt, checkContext, newMode);
 529         }
 530 
 531         @Override
 532         public String toString() {
 533             if (pt != null) {
 534                 return pt.toString();
 535             } else {
 536                 return "";
 537             }
 538         }
 539     }
 540 
 541     class MethodAttrInfo extends ResultInfo {
 542         public MethodAttrInfo() {
 543             this(chk.basicHandler);
 544         }
 545 
 546         public MethodAttrInfo(CheckContext checkContext) {
 547             super(KindSelector.VAL, Infer.anyPoly, checkContext);
 548         }
 549 
 550         @Override
 551         protected boolean needsArgumentAttr(JCTree tree) {
 552             return true;
 553         }
 554 
 555         protected ResultInfo dup(Type newPt) {
 556             throw new IllegalStateException();
 557         }
 558 
 559         protected ResultInfo dup(CheckContext newContext) {
 560             return new MethodAttrInfo(newContext);
 561         }
 562 
 563         protected ResultInfo dup(Type newPt, CheckContext newContext) {
 564             throw new IllegalStateException();
 565         }
 566 
 567         protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
 568             throw new IllegalStateException();
 569         }
 570 
 571         protected ResultInfo dup(CheckMode newMode) {
 572             throw new IllegalStateException();
 573         }
 574     }
 575 
 576     class RecoveryInfo extends ResultInfo {
 577 
 578         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
 579             this(deferredAttrContext, Type.recoveryType);
 580         }
 581 
 582         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext, Type pt) {
 583             super(KindSelector.VAL, pt, new Check.NestedCheckContext(chk.basicHandler) {
 584                 @Override
 585                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
 586                     return deferredAttrContext;
 587                 }
 588                 @Override
 589                 public boolean compatible(Type found, Type req, Warner warn) {
 590                     return true;
 591                 }
 592                 @Override
 593                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
 594                     boolean needsReport = pt == Type.recoveryType ||
 595                             (details.getDiagnosticPosition() != null &&
 596                             details.getDiagnosticPosition().getTree().hasTag(LAMBDA));
 597                     if (needsReport) {
 598                         chk.basicHandler.report(pos, details);
 599                     }
 600                 }
 601             });
 602         }
 603     }
 604 
 605     final ResultInfo statInfo;
 606     final ResultInfo varAssignmentInfo;
 607     final ResultInfo methodAttrInfo;
 608     final ResultInfo unknownExprInfo;
 609     final ResultInfo unknownTypeInfo;
 610     final ResultInfo unknownTypeExprInfo;
 611     final ResultInfo recoveryInfo;
 612 
 613     Type pt() {
 614         return resultInfo.pt;
 615     }
 616 
 617     KindSelector pkind() {
 618         return resultInfo.pkind;
 619     }
 620 
 621 /* ************************************************************************
 622  * Visitor methods
 623  *************************************************************************/
 624 
 625     /** Visitor argument: the current environment.
 626      */
 627     Env<AttrContext> env;
 628 
 629     /** Visitor argument: the currently expected attribution result.
 630      */
 631     ResultInfo resultInfo;
 632 
 633     /** Visitor result: the computed type.
 634      */
 635     Type result;
 636 
 637     MatchBindings matchBindings = MatchBindingsComputer.EMPTY;
 638 
 639     /** Visitor method: attribute a tree, catching any completion failure
 640      *  exceptions. Return the tree's type.
 641      *
 642      *  @param tree    The tree to be visited.
 643      *  @param env     The environment visitor argument.
 644      *  @param resultInfo   The result info visitor argument.
 645      */
 646     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
 647         Env<AttrContext> prevEnv = this.env;
 648         ResultInfo prevResult = this.resultInfo;
 649         try {
 650             this.env = env;
 651             this.resultInfo = resultInfo;
 652             if (resultInfo.needsArgumentAttr(tree)) {
 653                 result = argumentAttr.attribArg(tree, env);
 654             } else {
 655                 tree.accept(this);
 656             }
 657             matchBindings = matchBindingsComputer.finishBindings(tree,
 658                                                                  matchBindings);
 659             if (tree == breakTree &&
 660                     resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
 661                 breakTreeFound(copyEnv(env));
 662             }
 663             return result;
 664         } catch (CompletionFailure ex) {
 665             tree.type = syms.errType;
 666             return chk.completionError(tree.pos(), ex);
 667         } finally {
 668             this.env = prevEnv;
 669             this.resultInfo = prevResult;
 670         }
 671     }
 672 
 673     protected void breakTreeFound(Env<AttrContext> env) {
 674         throw new BreakAttr(env);
 675     }
 676 
 677     Env<AttrContext> copyEnv(Env<AttrContext> env) {
 678         Env<AttrContext> newEnv =
 679                 env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
 680         if (newEnv.outer != null) {
 681             newEnv.outer = copyEnv(newEnv.outer);
 682         }
 683         return newEnv;
 684     }
 685 
 686     WriteableScope copyScope(WriteableScope sc) {
 687         WriteableScope newScope = WriteableScope.create(sc.owner);
 688         List<Symbol> elemsList = List.nil();
 689         for (Symbol sym : sc.getSymbols()) {
 690             elemsList = elemsList.prepend(sym);
 691         }
 692         for (Symbol s : elemsList) {
 693             newScope.enter(s);
 694         }
 695         return newScope;
 696     }
 697 
 698     /** Derived visitor method: attribute an expression tree.
 699      */
 700     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
 701         return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
 702     }
 703 
 704     /** Derived visitor method: attribute an expression tree with
 705      *  no constraints on the computed type.
 706      */
 707     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
 708         return attribTree(tree, env, unknownExprInfo);
 709     }
 710 
 711     /** Derived visitor method: attribute a type tree.
 712      */
 713     public Type attribType(JCTree tree, Env<AttrContext> env) {
 714         Type result = attribType(tree, env, Type.noType);
 715         return result;
 716     }
 717 
 718     /** Derived visitor method: attribute a type tree.
 719      */
 720     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
 721         Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt));
 722         return result;
 723     }
 724 
 725     /** Derived visitor method: attribute a statement or definition tree.
 726      */
 727     public Type attribStat(JCTree tree, Env<AttrContext> env) {
 728         Env<AttrContext> analyzeEnv = analyzer.copyEnvIfNeeded(tree, env);
 729         Type result = attribTree(tree, env, statInfo);
 730         analyzer.analyzeIfNeeded(tree, analyzeEnv);
 731         attrRecover.doRecovery();
 732         return result;
 733     }
 734 
 735     /** Attribute a list of expressions, returning a list of types.
 736      */
 737     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
 738         ListBuffer<Type> ts = new ListBuffer<>();
 739         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 740             ts.append(attribExpr(l.head, env, pt));
 741         return ts.toList();
 742     }
 743 
 744     /** Attribute a list of statements, returning nothing.
 745      */
 746     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
 747         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
 748             attribStat(l.head, env);
 749     }
 750 
 751     /** Attribute the arguments in a method call, returning the method kind.
 752      */
 753     KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
 754         KindSelector kind = initialKind;
 755         for (JCExpression arg : trees) {
 756             Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, methodAttrInfo));
 757             if (argtype.hasTag(DEFERRED)) {
 758                 kind = KindSelector.of(KindSelector.POLY, kind);
 759             }
 760             argtypes.append(argtype);
 761         }
 762         return kind;
 763     }
 764 
 765     /** Attribute a type argument list, returning a list of types.
 766      *  Caller is responsible for calling checkRefTypes.
 767      */
 768     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
 769         ListBuffer<Type> argtypes = new ListBuffer<>();
 770         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 771             argtypes.append(attribType(l.head, env));
 772         return argtypes.toList();
 773     }
 774 
 775     /** Attribute a type argument list, returning a list of types.
 776      *  Check that all the types are references.
 777      */
 778     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
 779         List<Type> types = attribAnyTypes(trees, env);
 780         return chk.checkRefTypes(trees, types);
 781     }
 782 
 783     /**
 784      * Attribute type variables (of generic classes or methods).
 785      * Compound types are attributed later in attribBounds.
 786      * @param typarams the type variables to enter
 787      * @param env      the current environment
 788      */
 789     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env, boolean checkCyclic) {
 790         for (JCTypeParameter tvar : typarams) {
 791             TypeVar a = (TypeVar)tvar.type;
 792             a.tsym.flags_field |= UNATTRIBUTED;
 793             a.setUpperBound(Type.noType);
 794             if (!tvar.bounds.isEmpty()) {
 795                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
 796                 for (JCExpression bound : tvar.bounds.tail)
 797                     bounds = bounds.prepend(attribType(bound, env));
 798                 types.setBounds(a, bounds.reverse());
 799             } else {
 800                 // if no bounds are given, assume a single bound of
 801                 // java.lang.Object.
 802                 types.setBounds(a, List.of(syms.objectType));
 803             }
 804             a.tsym.flags_field &= ~UNATTRIBUTED;
 805         }
 806         if (checkCyclic) {
 807             for (JCTypeParameter tvar : typarams) {
 808                 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
 809             }
 810         }
 811     }
 812 
 813     /**
 814      * Attribute the type references in a list of annotations.
 815      */
 816     void attribAnnotationTypes(List<JCAnnotation> annotations,
 817                                Env<AttrContext> env) {
 818         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
 819             JCAnnotation a = al.head;
 820             attribType(a.annotationType, env);
 821         }
 822     }
 823 
 824     /**
 825      * Attribute a "lazy constant value".
 826      *  @param env         The env for the const value
 827      *  @param variable    The initializer for the const value
 828      *  @param type        The expected type, or null
 829      *  @see VarSymbol#setLazyConstValue
 830      */
 831     public Object attribLazyConstantValue(Env<AttrContext> env,
 832                                       JCVariableDecl variable,
 833                                       Type type) {
 834 
 835         DiagnosticPosition prevLintPos
 836                 = deferredLintHandler.setPos(variable.pos());
 837 
 838         final JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
 839         try {
 840             Type itype = attribExpr(variable.init, env, type);
 841             if (variable.isImplicitlyTyped()) {
 842                 //fixup local variable type
 843                 type = variable.type = variable.sym.type = chk.checkLocalVarType(variable, itype, variable.name);
 844             }
 845             if (itype.constValue() != null) {
 846                 return coerce(itype, type).constValue();
 847             } else {
 848                 return null;
 849             }
 850         } finally {
 851             log.useSource(prevSource);
 852             deferredLintHandler.setPos(prevLintPos);
 853         }
 854     }
 855 
 856     /** Attribute type reference in an `extends' or `implements' clause.
 857      *  Supertypes of anonymous inner classes are usually already attributed.
 858      *
 859      *  @param tree              The tree making up the type reference.
 860      *  @param env               The environment current at the reference.
 861      *  @param classExpected     true if only a class is expected here.
 862      *  @param interfaceExpected true if only an interface is expected here.
 863      */
 864     Type attribBase(JCTree tree,
 865                     Env<AttrContext> env,
 866                     boolean classExpected,
 867                     boolean interfaceExpected,
 868                     boolean checkExtensible) {
 869         Type t = tree.type != null ?
 870             tree.type :
 871             attribType(tree, env);
 872         try {
 873             return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
 874         } catch (CompletionFailure ex) {
 875             chk.completionError(tree.pos(), ex);
 876             return t;
 877         }
 878     }
 879     Type checkBase(Type t,
 880                    JCTree tree,
 881                    Env<AttrContext> env,
 882                    boolean classExpected,
 883                    boolean interfaceExpected,
 884                    boolean checkExtensible) {
 885         final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ?
 886                 (((JCTypeApply) tree).clazz).pos() : tree.pos();
 887         if (t.tsym.isAnonymous()) {
 888             log.error(pos, Errors.CantInheritFromAnon);
 889             return types.createErrorType(t);
 890         }
 891         if (t.isErroneous())
 892             return t;
 893         if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
 894             // check that type variable is already visible
 895             if (t.getUpperBound() == null) {
 896                 log.error(pos, Errors.IllegalForwardRef);
 897                 return types.createErrorType(t);
 898             }
 899         } else {
 900             t = chk.checkClassType(pos, t, checkExtensible);
 901         }
 902         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
 903             log.error(pos, Errors.IntfExpectedHere);
 904             // return errType is necessary since otherwise there might
 905             // be undetected cycles which cause attribution to loop
 906             return types.createErrorType(t);
 907         } else if (checkExtensible &&
 908                    classExpected &&
 909                    (t.tsym.flags() & INTERFACE) != 0) {
 910             log.error(pos, Errors.NoIntfExpectedHere);
 911             return types.createErrorType(t);
 912         }
 913         if (checkExtensible &&
 914             ((t.tsym.flags() & FINAL) != 0)) {
 915             log.error(pos,
 916                       Errors.CantInheritFromFinal(t.tsym));
 917         }
 918         chk.checkNonCyclic(pos, t);
 919         return t;
 920     }
 921 
 922     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
 923         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
 924         id.type = env.info.scope.owner.enclClass().type;
 925         id.sym = env.info.scope.owner.enclClass();
 926         return id.type;
 927     }
 928 
 929     public void visitClassDef(JCClassDecl tree) {
 930         Optional<ArgumentAttr.LocalCacheContext> localCacheContext =
 931                 Optional.ofNullable(env.info.attributionMode.isSpeculative ?
 932                         argumentAttr.withLocalCacheContext() : null);
 933         boolean ctorProloguePrev = env.info.ctorPrologue;
 934         env.info.ctorPrologue = false;
 935         try {
 936             // Local and anonymous classes have not been entered yet, so we need to
 937             // do it now.
 938             if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) {
 939                 enter.classEnter(tree, env);
 940             } else {
 941                 // If this class declaration is part of a class level annotation,
 942                 // as in @MyAnno(new Object() {}) class MyClass {}, enter it in
 943                 // order to simplify later steps and allow for sensible error
 944                 // messages.
 945                 if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree))
 946                     enter.classEnter(tree, env);
 947             }
 948 
 949             ClassSymbol c = tree.sym;
 950             if (c == null) {
 951                 // exit in case something drastic went wrong during enter.
 952                 result = null;
 953             } else {
 954                 // make sure class has been completed:
 955                 c.complete();
 956 
 957                 // If a class declaration appears in a constructor prologue,
 958                 // that means it's either a local class or an anonymous class.
 959                 // Either way, there is no immediately enclosing instance.
 960                 if (ctorProloguePrev) {
 961                     c.flags_field |= NOOUTERTHIS;
 962                 }
 963                 attribClass(tree.pos(), c);
 964                 result = tree.type = c.type;
 965             }
 966         } finally {
 967             localCacheContext.ifPresent(LocalCacheContext::leave);
 968             env.info.ctorPrologue = ctorProloguePrev;
 969         }
 970     }
 971 
 972     public void visitMethodDef(JCMethodDecl tree) {
 973         MethodSymbol m = tree.sym;
 974         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
 975 
 976         Lint lint = env.info.lint.augment(m);
 977         Lint prevLint = chk.setLint(lint);
 978         boolean ctorProloguePrev = env.info.ctorPrologue;
 979         env.info.ctorPrologue = false;
 980         MethodSymbol prevMethod = chk.setMethod(m);
 981         try {
 982             deferredLintHandler.flush(tree.pos(), lint);
 983             chk.checkDeprecatedAnnotation(tree.pos(), m);
 984 
 985 
 986             // Create a new environment with local scope
 987             // for attributing the method.
 988             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
 989             localEnv.info.lint = lint;
 990 
 991             attribStats(tree.typarams, localEnv);
 992 
 993             // If we override any other methods, check that we do so properly.
 994             // JLS ???
 995             if (m.isStatic()) {
 996                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
 997             } else {
 998                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
 999             }
1000             chk.checkOverride(env, tree, m);
1001 
1002             if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
1003                 log.error(tree, Errors.DefaultOverridesObjectMember(m.name, Kinds.kindName(m.location()), m.location()));
1004             }
1005 
1006             // Enter all type parameters into the local method scope.
1007             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
1008                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
1009 
1010             ClassSymbol owner = env.enclClass.sym;
1011             if ((owner.flags() & ANNOTATION) != 0 &&
1012                     (tree.params.nonEmpty() ||
1013                     tree.recvparam != null))
1014                 log.error(tree.params.nonEmpty() ?
1015                         tree.params.head.pos() :
1016                         tree.recvparam.pos(),
1017                         Errors.IntfAnnotationMembersCantHaveParams);
1018 
1019             // Attribute all value parameters.
1020             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
1021                 attribStat(l.head, localEnv);
1022             }
1023 
1024             chk.checkVarargsMethodDecl(localEnv, tree);
1025 
1026             // Check that type parameters are well-formed.
1027             chk.validate(tree.typarams, localEnv);
1028 
1029             // Check that result type is well-formed.
1030             if (tree.restype != null && !tree.restype.type.hasTag(VOID))
1031                 chk.validate(tree.restype, localEnv);
1032 
1033             // Check that receiver type is well-formed.
1034             if (tree.recvparam != null) {
1035                 // Use a new environment to check the receiver parameter.
1036                 // Otherwise I get "might not have been initialized" errors.
1037                 // Is there a better way?
1038                 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
1039                 attribType(tree.recvparam, newEnv);
1040                 chk.validate(tree.recvparam, newEnv);
1041             }
1042 
1043             // Is this method a constructor?
1044             boolean isConstructor = TreeInfo.isConstructor(tree);
1045 
1046             if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP) {
1047                 // lets find if this method is an accessor
1048                 Optional<? extends RecordComponent> recordComponent = env.enclClass.sym.getRecordComponents().stream()
1049                         .filter(rc -> rc.accessor == tree.sym && (rc.accessor.flags_field & GENERATED_MEMBER) == 0).findFirst();
1050                 if (recordComponent.isPresent()) {
1051                     // the method is a user defined accessor lets check that everything is fine
1052                     if (!tree.sym.isPublic()) {
1053                         log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.MethodMustBePublic));
1054                     }
1055                     if (!types.isSameType(tree.sym.type.getReturnType(), recordComponent.get().type)) {
1056                         log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym,
1057                                 Fragments.AccessorReturnTypeDoesntMatch(tree.sym, recordComponent.get())));
1058                     }
1059                     if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) {
1060                         log.error(tree,
1061                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodCantThrowException));
1062                     }
1063                     if (!tree.typarams.isEmpty()) {
1064                         log.error(tree,
1065                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeGeneric));
1066                     }
1067                     if (tree.sym.isStatic()) {
1068                         log.error(tree,
1069                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeStatic));
1070                     }
1071                 }
1072 
1073                 if (isConstructor) {
1074                     // if this a constructor other than the canonical one
1075                     if ((tree.sym.flags_field & RECORD) == 0) {
1076                         if (!TreeInfo.hasConstructorCall(tree, names._this)) {
1077                             log.error(tree, Errors.NonCanonicalConstructorInvokeAnotherConstructor(env.enclClass.sym));
1078                         }
1079                     } else {
1080                         // but if it is the canonical:
1081 
1082                         /* if user generated, then it shouldn't:
1083                          *     - have an accessibility stricter than that of the record type
1084                          *     - explicitly invoke any other constructor
1085                          */
1086                         if ((tree.sym.flags_field & GENERATEDCONSTR) == 0) {
1087                             if (Check.protection(m.flags()) > Check.protection(env.enclClass.sym.flags())) {
1088                                 log.error(tree,
1089                                         (env.enclClass.sym.flags() & AccessFlags) == 0 ?
1090                                             Errors.InvalidCanonicalConstructorInRecord(
1091                                                 Fragments.Canonical,
1092                                                 env.enclClass.sym.name,
1093                                                 Fragments.CanonicalMustNotHaveStrongerAccess("package")
1094                                             ) :
1095                                             Errors.InvalidCanonicalConstructorInRecord(
1096                                                     Fragments.Canonical,
1097                                                     env.enclClass.sym.name,
1098                                                     Fragments.CanonicalMustNotHaveStrongerAccess(asFlagSet(env.enclClass.sym.flags() & AccessFlags))
1099                                             )
1100                                 );
1101                             }
1102 
1103                             if (TreeInfo.hasAnyConstructorCall(tree)) {
1104                                 log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1105                                         Fragments.Canonical, env.enclClass.sym.name,
1106                                         Fragments.CanonicalMustNotContainExplicitConstructorInvocation));
1107                             }
1108                         }
1109 
1110                         // also we want to check that no type variables have been defined
1111                         if (!tree.typarams.isEmpty()) {
1112                             log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1113                                     Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalMustNotDeclareTypeVariables));
1114                         }
1115 
1116                         /* and now we need to check that the constructor's arguments are exactly the same as those of the
1117                          * record components
1118                          */
1119                         List<? extends RecordComponent> recordComponents = env.enclClass.sym.getRecordComponents();
1120                         List<Type> recordFieldTypes = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.type);
1121                         for (JCVariableDecl param: tree.params) {
1122                             boolean paramIsVarArgs = (param.sym.flags_field & VARARGS) != 0;
1123                             if (!types.isSameType(param.type, recordFieldTypes.head) ||
1124                                     (recordComponents.head.isVarargs() != paramIsVarArgs)) {
1125                                 log.error(param, Errors.InvalidCanonicalConstructorInRecord(
1126                                         Fragments.Canonical, env.enclClass.sym.name,
1127                                         Fragments.TypeMustBeIdenticalToCorrespondingRecordComponentType));
1128                             }
1129                             recordComponents = recordComponents.tail;
1130                             recordFieldTypes = recordFieldTypes.tail;
1131                         }
1132                     }
1133                 }
1134             }
1135 
1136             // annotation method checks
1137             if ((owner.flags() & ANNOTATION) != 0) {
1138                 // annotation method cannot have throws clause
1139                 if (tree.thrown.nonEmpty()) {
1140                     log.error(tree.thrown.head.pos(),
1141                               Errors.ThrowsNotAllowedInIntfAnnotation);
1142                 }
1143                 // annotation method cannot declare type-parameters
1144                 if (tree.typarams.nonEmpty()) {
1145                     log.error(tree.typarams.head.pos(),
1146                               Errors.IntfAnnotationMembersCantHaveTypeParams);
1147                 }
1148                 // validate annotation method's return type (could be an annotation type)
1149                 chk.validateAnnotationType(tree.restype);
1150                 // ensure that annotation method does not clash with members of Object/Annotation
1151                 chk.validateAnnotationMethod(tree.pos(), m);
1152             }
1153 
1154             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
1155                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
1156 
1157             if (tree.body == null) {
1158                 // Empty bodies are only allowed for
1159                 // abstract, native, or interface methods, or for methods
1160                 // in a retrofit signature class.
1161                 if (tree.defaultValue != null) {
1162                     if ((owner.flags() & ANNOTATION) == 0)
1163                         log.error(tree.pos(),
1164                                   Errors.DefaultAllowedInIntfAnnotationMember);
1165                 }
1166                 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0)
1167                     log.error(tree.pos(), Errors.MissingMethBodyOrDeclAbstract);
1168             } else {
1169                 if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
1170                     if ((owner.flags() & INTERFACE) != 0) {
1171                         log.error(tree.body.pos(), Errors.IntfMethCantHaveBody);
1172                     } else {
1173                         log.error(tree.pos(), Errors.AbstractMethCantHaveBody);
1174                     }
1175                 } else if ((tree.mods.flags & NATIVE) != 0) {
1176                     log.error(tree.pos(), Errors.NativeMethCantHaveBody);
1177                 }
1178                 // Add an implicit super() call unless an explicit call to
1179                 // super(...) or this(...) is given
1180                 // or we are compiling class java.lang.Object.
1181                 if (isConstructor && owner.type != syms.objectType) {
1182                     if (!TreeInfo.hasAnyConstructorCall(tree)) {
1183                         JCStatement supCall = make.at(tree.body.pos).Exec(make.Apply(List.nil(),
1184                                 make.Ident(names._super), make.Idents(List.nil())));
1185                         tree.body.stats = tree.body.stats.prepend(supCall);
1186                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
1187                             (tree.mods.flags & GENERATEDCONSTR) == 0 &&
1188                             TreeInfo.hasConstructorCall(tree, names._super)) {
1189                         // enum constructors are not allowed to call super
1190                         // directly, so make sure there aren't any super calls
1191                         // in enum constructors, except in the compiler
1192                         // generated one.
1193                         log.error(tree.body.stats.head.pos(),
1194                                   Errors.CallToSuperNotAllowedInEnumCtor(env.enclClass.sym));
1195                     }
1196                     if (env.enclClass.sym.isRecord() && (tree.sym.flags_field & RECORD) != 0) { // we are seeing the canonical constructor
1197                         List<Name> recordComponentNames = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.name);
1198                         List<Name> initParamNames = tree.sym.params.map(p -> p.name);
1199                         if (!initParamNames.equals(recordComponentNames)) {
1200                             log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1201                                     Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalWithNameMismatch));
1202                         }
1203                         if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) {
1204                             log.error(tree,
1205                                     Errors.InvalidCanonicalConstructorInRecord(
1206                                             TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical,
1207                                             env.enclClass.sym.name,
1208                                             Fragments.ThrowsClauseNotAllowedForCanonicalConstructor(
1209                                                     TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical)));
1210                         }
1211                     }
1212                 }
1213 
1214                 // Attribute all type annotations in the body
1215                 annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null);
1216                 annotate.flush();
1217 
1218                 // Start of constructor prologue
1219                 localEnv.info.ctorPrologue = isConstructor;
1220 
1221                 // Attribute method body.
1222                 attribStat(tree.body, localEnv);
1223             }
1224 
1225             localEnv.info.scope.leave();
1226             result = tree.type = m.type;
1227         } finally {
1228             chk.setLint(prevLint);
1229             chk.setMethod(prevMethod);
1230             env.info.ctorPrologue = ctorProloguePrev;
1231         }
1232     }
1233 
1234     public void visitVarDef(JCVariableDecl tree) {
1235         // Local variables have not been entered yet, so we need to do it now:
1236         if (env.info.scope.owner.kind == MTH || env.info.scope.owner.kind == VAR) {
1237             if (tree.sym != null) {
1238                 // parameters have already been entered
1239                 env.info.scope.enter(tree.sym);
1240             } else {
1241                 if (tree.isImplicitlyTyped() && (tree.getModifiers().flags & PARAMETER) == 0) {
1242                     if (tree.init == null) {
1243                         //cannot use 'var' without initializer
1244                         log.error(tree, Errors.CantInferLocalVarType(tree.name, Fragments.LocalMissingInit));
1245                         tree.vartype = make.Erroneous();
1246                     } else {
1247                         Fragment msg = canInferLocalVarType(tree);
1248                         if (msg != null) {
1249                             //cannot use 'var' with initializer which require an explicit target
1250                             //(e.g. lambda, method reference, array initializer).
1251                             log.error(tree, Errors.CantInferLocalVarType(tree.name, msg));
1252                             tree.vartype = make.Erroneous();
1253                         }
1254                     }
1255                 }
1256                 try {
1257                     annotate.blockAnnotations();
1258                     memberEnter.memberEnter(tree, env);
1259                 } finally {
1260                     annotate.unblockAnnotations();
1261                 }
1262             }
1263         } else {
1264             if (tree.init != null) {
1265                 // Field initializer expression need to be entered.
1266                 annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree.pos());
1267                 annotate.flush();
1268             }
1269         }
1270 
1271         VarSymbol v = tree.sym;
1272         Lint lint = env.info.lint.augment(v);
1273         Lint prevLint = chk.setLint(lint);
1274 
1275         // Check that the variable's declared type is well-formed.
1276         boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1277                 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1278                 (tree.sym.flags() & PARAMETER) != 0;
1279         chk.validate(tree.vartype, env, !isImplicitLambdaParameter && !tree.isImplicitlyTyped());
1280 
1281         try {
1282             v.getConstValue(); // ensure compile-time constant initializer is evaluated
1283             deferredLintHandler.flush(tree.pos(), lint);
1284             chk.checkDeprecatedAnnotation(tree.pos(), v);
1285 
1286             if (tree.init != null) {
1287                 if ((v.flags_field & FINAL) == 0 ||
1288                     !memberEnter.needsLazyConstValue(tree.init)) {
1289                     // Not a compile-time constant
1290                     // Attribute initializer in a new environment
1291                     // with the declared variable as owner.
1292                     // Check that initializer conforms to variable's declared type.
1293                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1294                     initEnv.info.lint = lint;
1295                     // In order to catch self-references, we set the variable's
1296                     // declaration position to maximal possible value, effectively
1297                     // marking the variable as undefined.
1298                     initEnv.info.enclVar = v;
1299                     attribExpr(tree.init, initEnv, v.type);
1300                     if (tree.isImplicitlyTyped()) {
1301                         //fixup local variable type
1302                         v.type = chk.checkLocalVarType(tree, tree.init.type, tree.name);
1303                     }
1304                 }
1305                 if (tree.isImplicitlyTyped()) {
1306                     setSyntheticVariableType(tree, v.type);
1307                 }
1308             }
1309             result = tree.type = v.type;
1310             if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP && !v.isStatic()) {
1311                 if (isNonArgsMethodInObject(v.name)) {
1312                     log.error(tree, Errors.IllegalRecordComponentName(v));
1313                 }
1314             }
1315         }
1316         finally {
1317             chk.setLint(prevLint);
1318         }
1319     }
1320 
1321     private boolean isNonArgsMethodInObject(Name name) {
1322         for (Symbol s : syms.objectType.tsym.members().getSymbolsByName(name, s -> s.kind == MTH)) {
1323             if (s.type.getParameterTypes().isEmpty()) {
1324                 return true;
1325             }
1326         }
1327         return false;
1328     }
1329 
1330     Fragment canInferLocalVarType(JCVariableDecl tree) {
1331         LocalInitScanner lis = new LocalInitScanner();
1332         lis.scan(tree.init);
1333         return lis.badInferenceMsg;
1334     }
1335 
1336     static class LocalInitScanner extends TreeScanner {
1337         Fragment badInferenceMsg = null;
1338         boolean needsTarget = true;
1339 
1340         @Override
1341         public void visitNewArray(JCNewArray tree) {
1342             if (tree.elemtype == null && needsTarget) {
1343                 badInferenceMsg = Fragments.LocalArrayMissingTarget;
1344             }
1345         }
1346 
1347         @Override
1348         public void visitLambda(JCLambda tree) {
1349             if (needsTarget) {
1350                 badInferenceMsg = Fragments.LocalLambdaMissingTarget;
1351             }
1352         }
1353 
1354         @Override
1355         public void visitTypeCast(JCTypeCast tree) {
1356             boolean prevNeedsTarget = needsTarget;
1357             try {
1358                 needsTarget = false;
1359                 super.visitTypeCast(tree);
1360             } finally {
1361                 needsTarget = prevNeedsTarget;
1362             }
1363         }
1364 
1365         @Override
1366         public void visitReference(JCMemberReference tree) {
1367             if (needsTarget) {
1368                 badInferenceMsg = Fragments.LocalMrefMissingTarget;
1369             }
1370         }
1371 
1372         @Override
1373         public void visitNewClass(JCNewClass tree) {
1374             boolean prevNeedsTarget = needsTarget;
1375             try {
1376                 needsTarget = false;
1377                 super.visitNewClass(tree);
1378             } finally {
1379                 needsTarget = prevNeedsTarget;
1380             }
1381         }
1382 
1383         @Override
1384         public void visitApply(JCMethodInvocation tree) {
1385             boolean prevNeedsTarget = needsTarget;
1386             try {
1387                 needsTarget = false;
1388                 super.visitApply(tree);
1389             } finally {
1390                 needsTarget = prevNeedsTarget;
1391             }
1392         }
1393     }
1394 
1395     public void visitSkip(JCSkip tree) {
1396         result = null;
1397     }
1398 
1399     public void visitBlock(JCBlock tree) {
1400         if (env.info.scope.owner.kind == TYP || env.info.scope.owner.kind == ERR) {
1401             // Block is a static or instance initializer;
1402             // let the owner of the environment be a freshly
1403             // created BLOCK-method.
1404             Symbol fakeOwner =
1405                 new MethodSymbol(tree.flags | BLOCK |
1406                     env.info.scope.owner.flags() & STRICTFP, names.empty, null,
1407                     env.info.scope.owner);
1408             final Env<AttrContext> localEnv =
1409                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner)));
1410 
1411             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
1412             // Attribute all type annotations in the block
1413             annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
1414             annotate.flush();
1415             attribStats(tree.stats, localEnv);
1416 
1417             {
1418                 // Store init and clinit type annotations with the ClassSymbol
1419                 // to allow output in Gen.normalizeDefs.
1420                 ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
1421                 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
1422                 if ((tree.flags & STATIC) != 0) {
1423                     cs.appendClassInitTypeAttributes(tas);
1424                 } else {
1425                     cs.appendInitTypeAttributes(tas);
1426                 }
1427             }
1428         } else {
1429             // Create a new local environment with a local scope.
1430             Env<AttrContext> localEnv =
1431                 env.dup(tree, env.info.dup(env.info.scope.dup()));
1432             try {
1433                 attribStats(tree.stats, localEnv);
1434             } finally {
1435                 localEnv.info.scope.leave();
1436             }
1437         }
1438         result = null;
1439     }
1440 
1441     public void visitDoLoop(JCDoWhileLoop tree) {
1442         attribStat(tree.body, env.dup(tree));
1443         attribExpr(tree.cond, env, syms.booleanType);
1444         handleLoopConditionBindings(matchBindings, tree, tree.body);
1445         result = null;
1446     }
1447 
1448     public void visitWhileLoop(JCWhileLoop tree) {
1449         attribExpr(tree.cond, env, syms.booleanType);
1450         MatchBindings condBindings = matchBindings;
1451         // include condition's bindings when true in the body:
1452         Env<AttrContext> whileEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
1453         try {
1454             attribStat(tree.body, whileEnv.dup(tree));
1455         } finally {
1456             whileEnv.info.scope.leave();
1457         }
1458         handleLoopConditionBindings(condBindings, tree, tree.body);
1459         result = null;
1460     }
1461 
1462     public void visitForLoop(JCForLoop tree) {
1463         Env<AttrContext> loopEnv =
1464             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1465         MatchBindings condBindings = MatchBindingsComputer.EMPTY;
1466         try {
1467             attribStats(tree.init, loopEnv);
1468             if (tree.cond != null) {
1469                 attribExpr(tree.cond, loopEnv, syms.booleanType);
1470                 // include condition's bindings when true in the body and step:
1471                 condBindings = matchBindings;
1472             }
1473             Env<AttrContext> bodyEnv = bindingEnv(loopEnv, condBindings.bindingsWhenTrue);
1474             try {
1475                 bodyEnv.tree = tree; // before, we were not in loop!
1476                 attribStats(tree.step, bodyEnv);
1477                 attribStat(tree.body, bodyEnv);
1478             } finally {
1479                 bodyEnv.info.scope.leave();
1480             }
1481             result = null;
1482         }
1483         finally {
1484             loopEnv.info.scope.leave();
1485         }
1486         handleLoopConditionBindings(condBindings, tree, tree.body);
1487     }
1488 
1489     /**
1490      * Include condition's bindings when false after the loop, if cannot get out of the loop
1491      */
1492     private void handleLoopConditionBindings(MatchBindings condBindings,
1493                                              JCStatement loop,
1494                                              JCStatement loopBody) {
1495         if (condBindings.bindingsWhenFalse.nonEmpty() &&
1496             !breaksTo(env, loop, loopBody)) {
1497             addBindings2Scope(loop, condBindings.bindingsWhenFalse);
1498         }
1499     }
1500 
1501     private boolean breaksTo(Env<AttrContext> env, JCTree loop, JCTree body) {
1502         preFlow(body);
1503         return flow.breaksToTree(env, loop, body, make);
1504     }
1505 
1506     /**
1507      * Add given bindings to the current scope, unless there's a break to
1508      * an immediately enclosing labeled statement.
1509      */
1510     private void addBindings2Scope(JCStatement introducingStatement,
1511                                    List<BindingSymbol> bindings) {
1512         if (bindings.isEmpty()) {
1513             return ;
1514         }
1515 
1516         var searchEnv = env;
1517         while (searchEnv.tree instanceof JCLabeledStatement labeled &&
1518                labeled.body == introducingStatement) {
1519             if (breaksTo(env, labeled, labeled.body)) {
1520                 //breaking to an immediately enclosing labeled statement
1521                 return ;
1522             }
1523             searchEnv = searchEnv.next;
1524             introducingStatement = labeled;
1525         }
1526 
1527         //include condition's body when false after the while, if cannot get out of the loop
1528         bindings.forEach(env.info.scope::enter);
1529         bindings.forEach(BindingSymbol::preserveBinding);
1530     }
1531 
1532     public void visitForeachLoop(JCEnhancedForLoop tree) {
1533         Env<AttrContext> loopEnv =
1534             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1535         try {
1536             //the Formal Parameter of a for-each loop is not in the scope when
1537             //attributing the for-each expression; we mimic this by attributing
1538             //the for-each expression first (against original scope).
1539             Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
1540             chk.checkNonVoid(tree.pos(), exprType);
1541             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1542             if (elemtype == null) {
1543                 // or perhaps expr implements Iterable<T>?
1544                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
1545                 if (base == null) {
1546                     log.error(tree.expr.pos(),
1547                               Errors.ForeachNotApplicableToType(exprType,
1548                                                                 Fragments.TypeReqArrayOrIterable));
1549                     elemtype = types.createErrorType(exprType);
1550                 } else {
1551                     List<Type> iterableParams = base.allparams();
1552                     elemtype = iterableParams.isEmpty()
1553                         ? syms.objectType
1554                         : types.wildUpperBound(iterableParams.head);
1555 
1556                     // Check the return type of the method iterator().
1557                     // This is the bare minimum we need to verify to make sure code generation doesn't crash.
1558                     Symbol iterSymbol = rs.resolveInternalMethod(tree.pos(),
1559                             loopEnv, types.skipTypeVars(exprType, false), names.iterator, List.nil(), List.nil());
1560                     if (types.asSuper(iterSymbol.type.getReturnType(), syms.iteratorType.tsym) == null) {
1561                         log.error(tree.pos(),
1562                                 Errors.ForeachNotApplicableToType(exprType, Fragments.TypeReqArrayOrIterable));
1563                     }
1564                 }
1565             }
1566             if (tree.var.isImplicitlyTyped()) {
1567                 Type inferredType = chk.checkLocalVarType(tree.var, elemtype, tree.var.name);
1568                 setSyntheticVariableType(tree.var, inferredType);
1569             }
1570             attribStat(tree.var, loopEnv);
1571             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1572             loopEnv.tree = tree; // before, we were not in loop!
1573             attribStat(tree.body, loopEnv);
1574             result = null;
1575         }
1576         finally {
1577             loopEnv.info.scope.leave();
1578         }
1579     }
1580 
1581     public void visitLabelled(JCLabeledStatement tree) {
1582         // Check that label is not used in an enclosing statement
1583         Env<AttrContext> env1 = env;
1584         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1585             if (env1.tree.hasTag(LABELLED) &&
1586                 ((JCLabeledStatement) env1.tree).label == tree.label) {
1587                 log.error(tree.pos(),
1588                           Errors.LabelAlreadyInUse(tree.label));
1589                 break;
1590             }
1591             env1 = env1.next;
1592         }
1593 
1594         attribStat(tree.body, env.dup(tree));
1595         result = null;
1596     }
1597 
1598     public void visitSwitch(JCSwitch tree) {
1599         handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> {
1600             attribStats(c.stats, caseEnv);
1601         });
1602         result = null;
1603     }
1604 
1605     public void visitSwitchExpression(JCSwitchExpression tree) {
1606         boolean wrongContext = false;
1607 
1608         tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly) ?
1609                 PolyKind.STANDALONE : PolyKind.POLY;
1610 
1611         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
1612             //this means we are returning a poly conditional from void-compatible lambda expression
1613             resultInfo.checkContext.report(tree, diags.fragment(Fragments.SwitchExpressionTargetCantBeVoid));
1614             resultInfo = recoveryInfo;
1615             wrongContext = true;
1616         }
1617 
1618         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
1619                 unknownExprInfo :
1620                 resultInfo.dup(switchExpressionContext(resultInfo.checkContext));
1621 
1622         ListBuffer<DiagnosticPosition> caseTypePositions = new ListBuffer<>();
1623         ListBuffer<Type> caseTypes = new ListBuffer<>();
1624 
1625         handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> {
1626             caseEnv.info.yieldResult = condInfo;
1627             attribStats(c.stats, caseEnv);
1628             new TreeScanner() {
1629                 @Override
1630                 public void visitYield(JCYield brk) {
1631                     if (brk.target == tree) {
1632                         caseTypePositions.append(brk.value != null ? brk.value.pos() : brk.pos());
1633                         caseTypes.append(brk.value != null ? brk.value.type : syms.errType);
1634                     }
1635                     super.visitYield(brk);
1636                 }
1637 
1638                 @Override public void visitClassDef(JCClassDecl tree) {}
1639                 @Override public void visitLambda(JCLambda tree) {}
1640             }.scan(c.stats);
1641         });
1642 
1643         if (tree.cases.isEmpty()) {
1644             log.error(tree.pos(),
1645                       Errors.SwitchExpressionEmpty);
1646         } else if (caseTypes.isEmpty()) {
1647             log.error(tree.pos(),
1648                       Errors.SwitchExpressionNoResultExpressions);
1649         }
1650 
1651         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(caseTypePositions.toList(), caseTypes.toList()) : pt();
1652 
1653         result = tree.type = wrongContext? types.createErrorType(pt()) : check(tree, owntype, KindSelector.VAL, resultInfo);
1654     }
1655     //where:
1656         CheckContext switchExpressionContext(CheckContext checkContext) {
1657             return new Check.NestedCheckContext(checkContext) {
1658                 //this will use enclosing check context to check compatibility of
1659                 //subexpression against target type; if we are in a method check context,
1660                 //depending on whether boxing is allowed, we could have incompatibilities
1661                 @Override
1662                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
1663                     enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInSwitchExpression(details)));
1664                 }
1665             };
1666         }
1667 
1668     private void handleSwitch(JCTree switchTree,
1669                               JCExpression selector,
1670                               List<JCCase> cases,
1671                               BiConsumer<JCCase, Env<AttrContext>> attribCase) {
1672         Type seltype = attribExpr(selector, env);
1673 
1674         Env<AttrContext> switchEnv =
1675             env.dup(switchTree, env.info.dup(env.info.scope.dup()));
1676 
1677         try {
1678             boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0;
1679             boolean stringSwitch = types.isSameType(seltype, syms.stringType);
1680             boolean booleanSwitch = types.isSameType(types.unboxedTypeOrType(seltype), syms.booleanType);
1681             boolean errorEnumSwitch = TreeInfo.isErrorEnumSwitch(selector, cases);
1682             boolean intSwitch = types.isAssignable(seltype, syms.intType);
1683             boolean patternSwitch;
1684             if (seltype.isPrimitive() && !intSwitch) {
1685                 preview.checkSourceLevel(selector.pos(), Feature.PRIMITIVE_PATTERNS);
1686                 patternSwitch = true;
1687             }
1688             if (!enumSwitch && !stringSwitch && !errorEnumSwitch &&
1689                 !intSwitch) {
1690                 preview.checkSourceLevel(selector.pos(), Feature.PATTERN_SWITCH);
1691                 patternSwitch = true;
1692             } else {
1693                 patternSwitch = cases.stream()
1694                                      .flatMap(c -> c.labels.stream())
1695                                      .anyMatch(l -> l.hasTag(PATTERNCASELABEL) ||
1696                                                     TreeInfo.isNullCaseLabel(l));
1697             }
1698 
1699             // Attribute all cases and
1700             // check that there are no duplicate case labels or default clauses.
1701             Set<Object> constants = new HashSet<>(); // The set of case constants.
1702             boolean hasDefault = false;           // Is there a default label?
1703             boolean hasUnconditionalPattern = false; // Is there a unconditional pattern?
1704             boolean lastPatternErroneous = false; // Has the last pattern erroneous type?
1705             boolean hasNullPattern = false;       // Is there a null pattern?
1706             CaseTree.CaseKind caseKind = null;
1707             boolean wasError = false;
1708             JCCaseLabel unconditionalCaseLabel = null;
1709             for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
1710                 JCCase c = l.head;
1711                 if (caseKind == null) {
1712                     caseKind = c.caseKind;
1713                 } else if (caseKind != c.caseKind && !wasError) {
1714                     log.error(c.pos(),
1715                               Errors.SwitchMixingCaseTypes);
1716                     wasError = true;
1717                 }
1718                 MatchBindings currentBindings = null;
1719                 MatchBindings guardBindings = null;
1720                 for (List<JCCaseLabel> labels = c.labels; labels.nonEmpty(); labels = labels.tail) {
1721                     JCCaseLabel label = labels.head;
1722                     if (label instanceof JCConstantCaseLabel constLabel) {
1723                         JCExpression expr = constLabel.expr;
1724                         if (TreeInfo.isNull(expr)) {
1725                             preview.checkSourceLevel(expr.pos(), Feature.CASE_NULL);
1726                             if (hasNullPattern) {
1727                                 log.error(label.pos(), Errors.DuplicateCaseLabel);
1728                             }
1729                             hasNullPattern = true;
1730                             attribExpr(expr, switchEnv, seltype);
1731                             matchBindings = new MatchBindings(matchBindings.bindingsWhenTrue, matchBindings.bindingsWhenFalse, true);
1732                         } else if (enumSwitch) {
1733                             Symbol sym = enumConstant(expr, seltype);
1734                             if (sym == null) {
1735                                 if (allowPatternSwitch) {
1736                                     attribTree(expr, switchEnv, caseLabelResultInfo(seltype));
1737                                     Symbol enumSym = TreeInfo.symbol(expr);
1738                                     if (enumSym == null || !enumSym.isEnum() || enumSym.kind != VAR) {
1739                                         log.error(expr.pos(), Errors.EnumLabelMustBeEnumConstant);
1740                                     } else if (!constants.add(enumSym)) {
1741                                         log.error(label.pos(), Errors.DuplicateCaseLabel);
1742                                     }
1743                                 } else {
1744                                     log.error(expr.pos(), Errors.EnumLabelMustBeUnqualifiedEnum);
1745                                 }
1746                             } else if (!constants.add(sym)) {
1747                                 log.error(label.pos(), Errors.DuplicateCaseLabel);
1748                             }
1749                         } else if (errorEnumSwitch) {
1750                             //error recovery: the selector is erroneous, and all the case labels
1751                             //are identifiers. This could be an enum switch - don't report resolve
1752                             //error for the case label:
1753                             var prevResolveHelper = rs.basicLogResolveHelper;
1754                             try {
1755                                 rs.basicLogResolveHelper = rs.silentLogResolveHelper;
1756                                 attribExpr(expr, switchEnv, seltype);
1757                             } finally {
1758                                 rs.basicLogResolveHelper = prevResolveHelper;
1759                             }
1760                         } else {
1761                             Type pattype = attribTree(expr, switchEnv, caseLabelResultInfo(seltype));
1762                             if (!pattype.hasTag(ERROR)) {
1763                                 if (pattype.constValue() == null) {
1764                                     Symbol s = TreeInfo.symbol(expr);
1765                                     if (s != null && s.kind == TYP) {
1766                                         log.error(expr.pos(),
1767                                                   Errors.PatternExpected);
1768                                     } else if (s == null || !s.isEnum()) {
1769                                         log.error(expr.pos(),
1770                                                   (stringSwitch ? Errors.StringConstReq
1771                                                                 : intSwitch ? Errors.ConstExprReq
1772                                                                             : Errors.PatternOrEnumReq));
1773                                     } else if (!constants.add(s)) {
1774                                         log.error(label.pos(), Errors.DuplicateCaseLabel);
1775                                     }
1776                                 }
1777                                 else {
1778                                     if (!stringSwitch && !intSwitch &&
1779                                             !((pattype.getTag().isInSuperClassesOf(LONG) || pattype.getTag().equals(BOOLEAN)) &&
1780                                               types.isSameType(types.unboxedTypeOrType(seltype), pattype))) {
1781                                         log.error(label.pos(), Errors.ConstantLabelNotCompatible(pattype, seltype));
1782                                     } else if (!constants.add(pattype.constValue())) {
1783                                         log.error(c.pos(), Errors.DuplicateCaseLabel);
1784                                     }
1785                                 }
1786                             }
1787                         }
1788                     } else if (label instanceof JCDefaultCaseLabel def) {
1789                         if (hasDefault) {
1790                             log.error(label.pos(), Errors.DuplicateDefaultLabel);
1791                         } else if (hasUnconditionalPattern) {
1792                             log.error(label.pos(), Errors.UnconditionalPatternAndDefault);
1793                         }  else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) {
1794                             log.error(label.pos(), Errors.DefaultAndBothBooleanValues);
1795                         }
1796                         hasDefault = true;
1797                         matchBindings = MatchBindingsComputer.EMPTY;
1798                     } else if (label instanceof JCPatternCaseLabel patternlabel) {
1799                         //pattern
1800                         JCPattern pat = patternlabel.pat;
1801                         attribExpr(pat, switchEnv, seltype);
1802                         Type primaryType = TreeInfo.primaryPatternType(pat);
1803 
1804                         if (primaryType.isPrimitive()) {
1805                             preview.checkSourceLevel(pat.pos(), Feature.PRIMITIVE_PATTERNS);
1806                         } else if (!primaryType.hasTag(TYPEVAR)) {
1807                             primaryType = chk.checkClassOrArrayType(pat.pos(), primaryType);
1808                         }
1809                         checkCastablePattern(pat.pos(), seltype, primaryType);
1810                         Type patternType = types.erasure(primaryType);
1811                         JCExpression guard = c.guard;
1812                         if (guardBindings == null && guard != null) {
1813                             MatchBindings afterPattern = matchBindings;
1814                             Env<AttrContext> bodyEnv = bindingEnv(switchEnv, matchBindings.bindingsWhenTrue);
1815                             try {
1816                                 attribExpr(guard, bodyEnv, syms.booleanType);
1817                             } finally {
1818                                 bodyEnv.info.scope.leave();
1819                             }
1820 
1821                             guardBindings = matchBindings;
1822                             matchBindings = afterPattern;
1823 
1824                             if (TreeInfo.isBooleanWithValue(guard, 0)) {
1825                                 log.error(guard.pos(), Errors.GuardHasConstantExpressionFalse);
1826                             }
1827                         }
1828                         boolean unguarded = TreeInfo.unguardedCase(c) && !pat.hasTag(RECORDPATTERN);
1829                         boolean unconditional =
1830                                 unguarded &&
1831                                 !patternType.isErroneous() &&
1832                                 types.isUnconditionallyExact(seltype, patternType);
1833                         if (unconditional) {
1834                             if (hasUnconditionalPattern) {
1835                                 log.error(pat.pos(), Errors.DuplicateUnconditionalPattern);
1836                             } else if (hasDefault) {
1837                                 log.error(pat.pos(), Errors.UnconditionalPatternAndDefault);
1838                             } else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) {
1839                                 log.error(pat.pos(), Errors.UnconditionalPatternAndBothBooleanValues);
1840                             }
1841                             hasUnconditionalPattern = true;
1842                             unconditionalCaseLabel = label;
1843                         }
1844                         lastPatternErroneous = patternType.isErroneous();
1845                     } else {
1846                         Assert.error();
1847                     }
1848                     currentBindings = matchBindingsComputer.switchCase(label, currentBindings, matchBindings);
1849                 }
1850 
1851                 if (guardBindings != null) {
1852                     currentBindings = matchBindingsComputer.caseGuard(c, currentBindings, guardBindings);
1853                 }
1854 
1855                 Env<AttrContext> caseEnv =
1856                         bindingEnv(switchEnv, c, currentBindings.bindingsWhenTrue);
1857                 try {
1858                     attribCase.accept(c, caseEnv);
1859                 } finally {
1860                     caseEnv.info.scope.leave();
1861                 }
1862                 addVars(c.stats, switchEnv.info.scope);
1863 
1864                 preFlow(c);
1865                 c.completesNormally = flow.aliveAfter(caseEnv, c, make);
1866             }
1867             if (patternSwitch) {
1868                 chk.checkSwitchCaseStructure(cases);
1869                 chk.checkSwitchCaseLabelDominated(unconditionalCaseLabel, cases);
1870             }
1871             if (switchTree.hasTag(SWITCH)) {
1872                 ((JCSwitch) switchTree).hasUnconditionalPattern =
1873                         hasDefault || hasUnconditionalPattern || lastPatternErroneous;
1874                 ((JCSwitch) switchTree).patternSwitch = patternSwitch;
1875             } else if (switchTree.hasTag(SWITCH_EXPRESSION)) {
1876                 ((JCSwitchExpression) switchTree).hasUnconditionalPattern =
1877                         hasDefault || hasUnconditionalPattern || lastPatternErroneous;
1878                 ((JCSwitchExpression) switchTree).patternSwitch = patternSwitch;
1879             } else {
1880                 Assert.error(switchTree.getTag().name());
1881             }
1882         } finally {
1883             switchEnv.info.scope.leave();
1884         }
1885     }
1886     // where
1887         private ResultInfo caseLabelResultInfo(Type seltype) {
1888             return new ResultInfo(KindSelector.VAL_TYP,
1889                                   !seltype.hasTag(ERROR) ? seltype
1890                                                          : Type.noType);
1891         }
1892         /** Add any variables defined in stats to the switch scope. */
1893         private static void addVars(List<JCStatement> stats, WriteableScope switchScope) {
1894             for (;stats.nonEmpty(); stats = stats.tail) {
1895                 JCTree stat = stats.head;
1896                 if (stat.hasTag(VARDEF))
1897                     switchScope.enter(((JCVariableDecl) stat).sym);
1898             }
1899         }
1900     // where
1901     /** Return the selected enumeration constant symbol, or null. */
1902     private Symbol enumConstant(JCTree tree, Type enumType) {
1903         if (tree.hasTag(IDENT)) {
1904             JCIdent ident = (JCIdent)tree;
1905             Name name = ident.name;
1906             for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) {
1907                 if (sym.kind == VAR) {
1908                     Symbol s = ident.sym = sym;
1909                     ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1910                     ident.type = s.type;
1911                     return ((s.flags_field & Flags.ENUM) == 0)
1912                         ? null : s;
1913                 }
1914             }
1915         }
1916         return null;
1917     }
1918 
1919     public void visitSynchronized(JCSynchronized tree) {
1920         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
1921         if (env.info.lint.isEnabled(LintCategory.SYNCHRONIZATION) && isValueBased(tree.lock.type)) {
1922             log.warning(LintCategory.SYNCHRONIZATION, tree.pos(), Warnings.AttemptToSynchronizeOnInstanceOfValueBasedClass);
1923         }
1924         attribStat(tree.body, env);
1925         result = null;
1926     }
1927         // where
1928         private boolean isValueBased(Type t) {
1929             return t != null && t.tsym != null && (t.tsym.flags() & VALUE_BASED) != 0;
1930         }
1931 
1932 
1933     public void visitTry(JCTry tree) {
1934         // Create a new local environment with a local
1935         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1936         try {
1937             boolean isTryWithResource = tree.resources.nonEmpty();
1938             // Create a nested environment for attributing the try block if needed
1939             Env<AttrContext> tryEnv = isTryWithResource ?
1940                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
1941                 localEnv;
1942             try {
1943                 // Attribute resource declarations
1944                 for (JCTree resource : tree.resources) {
1945                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
1946                         @Override
1947                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
1948                             chk.basicHandler.report(pos, diags.fragment(Fragments.TryNotApplicableToType(details)));
1949                         }
1950                     };
1951                     ResultInfo twrResult =
1952                         new ResultInfo(KindSelector.VAR,
1953                                        syms.autoCloseableType,
1954                                        twrContext);
1955                     if (resource.hasTag(VARDEF)) {
1956                         attribStat(resource, tryEnv);
1957                         twrResult.check(resource, resource.type);
1958 
1959                         //check that resource type cannot throw InterruptedException
1960                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
1961 
1962                         VarSymbol var = ((JCVariableDecl) resource).sym;
1963 
1964                         var.flags_field |= Flags.FINAL;
1965                         var.setData(ElementKind.RESOURCE_VARIABLE);
1966                     } else {
1967                         attribTree(resource, tryEnv, twrResult);
1968                     }
1969                 }
1970                 // Attribute body
1971                 attribStat(tree.body, tryEnv);
1972             } finally {
1973                 if (isTryWithResource)
1974                     tryEnv.info.scope.leave();
1975             }
1976 
1977             // Attribute catch clauses
1978             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
1979                 JCCatch c = l.head;
1980                 Env<AttrContext> catchEnv =
1981                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
1982                 try {
1983                     Type ctype = attribStat(c.param, catchEnv);
1984                     if (TreeInfo.isMultiCatch(c)) {
1985                         //multi-catch parameter is implicitly marked as final
1986                         c.param.sym.flags_field |= FINAL | UNION;
1987                     }
1988                     if (c.param.sym.kind == VAR) {
1989                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
1990                     }
1991                     chk.checkType(c.param.vartype.pos(),
1992                                   chk.checkClassType(c.param.vartype.pos(), ctype),
1993                                   syms.throwableType);
1994                     attribStat(c.body, catchEnv);
1995                 } finally {
1996                     catchEnv.info.scope.leave();
1997                 }
1998             }
1999 
2000             // Attribute finalizer
2001             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
2002             result = null;
2003         }
2004         finally {
2005             localEnv.info.scope.leave();
2006         }
2007     }
2008 
2009     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
2010         if (!resource.isErroneous() &&
2011             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
2012             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
2013             Symbol close = syms.noSymbol;
2014             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
2015             try {
2016                 close = rs.resolveQualifiedMethod(pos,
2017                         env,
2018                         types.skipTypeVars(resource, false),
2019                         names.close,
2020                         List.nil(),
2021                         List.nil());
2022             }
2023             finally {
2024                 log.popDiagnosticHandler(discardHandler);
2025             }
2026             if (close.kind == MTH &&
2027                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
2028                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
2029                     env.info.lint.isEnabled(LintCategory.TRY)) {
2030                 log.warning(LintCategory.TRY, pos, Warnings.TryResourceThrowsInterruptedExc(resource));
2031             }
2032         }
2033     }
2034 
2035     public void visitConditional(JCConditional tree) {
2036         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
2037         MatchBindings condBindings = matchBindings;
2038 
2039         tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly ||
2040                 isBooleanOrNumeric(env, tree)) ?
2041                 PolyKind.STANDALONE : PolyKind.POLY;
2042 
2043         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
2044             //this means we are returning a poly conditional from void-compatible lambda expression
2045             resultInfo.checkContext.report(tree, diags.fragment(Fragments.ConditionalTargetCantBeVoid));
2046             result = tree.type = types.createErrorType(resultInfo.pt);
2047             return;
2048         }
2049 
2050         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
2051                 unknownExprInfo :
2052                 resultInfo.dup(conditionalContext(resultInfo.checkContext));
2053 
2054 
2055         // x ? y : z
2056         // include x's bindings when true in y
2057         // include x's bindings when false in z
2058 
2059         Type truetype;
2060         Env<AttrContext> trueEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
2061         try {
2062             truetype = attribTree(tree.truepart, trueEnv, condInfo);
2063         } finally {
2064             trueEnv.info.scope.leave();
2065         }
2066 
2067         MatchBindings trueBindings = matchBindings;
2068 
2069         Type falsetype;
2070         Env<AttrContext> falseEnv = bindingEnv(env, condBindings.bindingsWhenFalse);
2071         try {
2072             falsetype = attribTree(tree.falsepart, falseEnv, condInfo);
2073         } finally {
2074             falseEnv.info.scope.leave();
2075         }
2076 
2077         MatchBindings falseBindings = matchBindings;
2078 
2079         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ?
2080                 condType(List.of(tree.truepart.pos(), tree.falsepart.pos()),
2081                          List.of(truetype, falsetype)) : pt();
2082         if (condtype.constValue() != null &&
2083                 truetype.constValue() != null &&
2084                 falsetype.constValue() != null &&
2085                 !owntype.hasTag(NONE)) {
2086             //constant folding
2087             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
2088         }
2089         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2090         matchBindings = matchBindingsComputer.conditional(tree, condBindings, trueBindings, falseBindings);
2091     }
2092     //where
2093         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
2094             switch (tree.getTag()) {
2095                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
2096                               ((JCLiteral)tree).typetag == BOOLEAN ||
2097                               ((JCLiteral)tree).typetag == BOT;
2098                 case LAMBDA: case REFERENCE: return false;
2099                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
2100                 case CONDEXPR:
2101                     JCConditional condTree = (JCConditional)tree;
2102                     return isBooleanOrNumeric(env, condTree.truepart) &&
2103                             isBooleanOrNumeric(env, condTree.falsepart);
2104                 case APPLY:
2105                     JCMethodInvocation speculativeMethodTree =
2106                             (JCMethodInvocation)deferredAttr.attribSpeculative(
2107                                     tree, env, unknownExprInfo,
2108                                     argumentAttr.withLocalCacheContext());
2109                     Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth);
2110                     Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ?
2111                             env.enclClass.type :
2112                             ((JCFieldAccess)speculativeMethodTree.meth).selected.type;
2113                     Type owntype = types.memberType(receiverType, msym).getReturnType();
2114                     return primitiveOrBoxed(owntype);
2115                 case NEWCLASS:
2116                     JCExpression className =
2117                             removeClassParams.translate(((JCNewClass)tree).clazz);
2118                     JCExpression speculativeNewClassTree =
2119                             (JCExpression)deferredAttr.attribSpeculative(
2120                                     className, env, unknownTypeInfo,
2121                                     argumentAttr.withLocalCacheContext());
2122                     return primitiveOrBoxed(speculativeNewClassTree.type);
2123                 default:
2124                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo,
2125                             argumentAttr.withLocalCacheContext()).type;
2126                     return primitiveOrBoxed(speculativeType);
2127             }
2128         }
2129         //where
2130             boolean primitiveOrBoxed(Type t) {
2131                 return (!t.hasTag(TYPEVAR) && !t.isErroneous() && types.unboxedTypeOrType(t).isPrimitive());
2132             }
2133 
2134             TreeTranslator removeClassParams = new TreeTranslator() {
2135                 @Override
2136                 public void visitTypeApply(JCTypeApply tree) {
2137                     result = translate(tree.clazz);
2138                 }
2139             };
2140 
2141         CheckContext conditionalContext(CheckContext checkContext) {
2142             return new Check.NestedCheckContext(checkContext) {
2143                 //this will use enclosing check context to check compatibility of
2144                 //subexpression against target type; if we are in a method check context,
2145                 //depending on whether boxing is allowed, we could have incompatibilities
2146                 @Override
2147                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
2148                     enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInConditional(details)));
2149                 }
2150             };
2151         }
2152 
2153         /** Compute the type of a conditional expression, after
2154          *  checking that it exists.  See JLS 15.25. Does not take into
2155          *  account the special case where condition and both arms
2156          *  are constants.
2157          *
2158          *  @param pos      The source position to be used for error
2159          *                  diagnostics.
2160          *  @param thentype The type of the expression's then-part.
2161          *  @param elsetype The type of the expression's else-part.
2162          */
2163         Type condType(List<DiagnosticPosition> positions, List<Type> condTypes) {
2164             if (condTypes.isEmpty()) {
2165                 return syms.objectType; //TODO: how to handle?
2166             }
2167             Type first = condTypes.head;
2168             // If same type, that is the result
2169             if (condTypes.tail.stream().allMatch(t -> types.isSameType(first, t)))
2170                 return first.baseType();
2171 
2172             List<Type> unboxedTypes = condTypes.stream()
2173                                                .map(t -> t.isPrimitive() ? t : types.unboxedType(t))
2174                                                .collect(List.collector());
2175 
2176             // Otherwise, if both arms can be converted to a numeric
2177             // type, return the least numeric type that fits both arms
2178             // (i.e. return larger of the two, or return int if one
2179             // arm is short, the other is char).
2180             if (unboxedTypes.stream().allMatch(t -> t.isPrimitive())) {
2181                 // If one arm has an integer subrange type (i.e., byte,
2182                 // short, or char), and the other is an integer constant
2183                 // that fits into the subrange, return the subrange type.
2184                 for (Type type : unboxedTypes) {
2185                     if (!type.getTag().isStrictSubRangeOf(INT)) {
2186                         continue;
2187                     }
2188                     if (unboxedTypes.stream().filter(t -> t != type).allMatch(t -> t.hasTag(INT) && types.isAssignable(t, type)))
2189                         return type.baseType();
2190                 }
2191 
2192                 for (TypeTag tag : primitiveTags) {
2193                     Type candidate = syms.typeOfTag[tag.ordinal()];
2194                     if (unboxedTypes.stream().allMatch(t -> types.isSubtype(t, candidate))) {
2195                         return candidate;
2196                     }
2197                 }
2198             }
2199 
2200             // Those were all the cases that could result in a primitive
2201             condTypes = condTypes.stream()
2202                                  .map(t -> t.isPrimitive() ? types.boxedClass(t).type : t)
2203                                  .collect(List.collector());
2204 
2205             for (Type type : condTypes) {
2206                 if (condTypes.stream().filter(t -> t != type).allMatch(t -> types.isAssignable(t, type)))
2207                     return type.baseType();
2208             }
2209 
2210             Iterator<DiagnosticPosition> posIt = positions.iterator();
2211 
2212             condTypes = condTypes.stream()
2213                                  .map(t -> chk.checkNonVoid(posIt.next(), t))
2214                                  .collect(List.collector());
2215 
2216             // both are known to be reference types.  The result is
2217             // lub(thentype,elsetype). This cannot fail, as it will
2218             // always be possible to infer "Object" if nothing better.
2219             return types.lub(condTypes.stream()
2220                         .map(t -> t.baseType())
2221                         .filter(t -> !t.hasTag(BOT))
2222                         .collect(List.collector()));
2223         }
2224 
2225     static final TypeTag[] primitiveTags = new TypeTag[]{
2226         BYTE,
2227         CHAR,
2228         SHORT,
2229         INT,
2230         LONG,
2231         FLOAT,
2232         DOUBLE,
2233         BOOLEAN,
2234     };
2235 
2236     Env<AttrContext> bindingEnv(Env<AttrContext> env, List<BindingSymbol> bindings) {
2237         return bindingEnv(env, env.tree, bindings);
2238     }
2239 
2240     Env<AttrContext> bindingEnv(Env<AttrContext> env, JCTree newTree, List<BindingSymbol> bindings) {
2241         Env<AttrContext> env1 = env.dup(newTree, env.info.dup(env.info.scope.dup()));
2242         bindings.forEach(env1.info.scope::enter);
2243         return env1;
2244     }
2245 
2246     public void visitIf(JCIf tree) {
2247         attribExpr(tree.cond, env, syms.booleanType);
2248 
2249         // if (x) { y } [ else z ]
2250         // include x's bindings when true in y
2251         // include x's bindings when false in z
2252 
2253         MatchBindings condBindings = matchBindings;
2254         Env<AttrContext> thenEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
2255 
2256         try {
2257             attribStat(tree.thenpart, thenEnv);
2258         } finally {
2259             thenEnv.info.scope.leave();
2260         }
2261 
2262         preFlow(tree.thenpart);
2263         boolean aliveAfterThen = flow.aliveAfter(env, tree.thenpart, make);
2264         boolean aliveAfterElse;
2265 
2266         if (tree.elsepart != null) {
2267             Env<AttrContext> elseEnv = bindingEnv(env, condBindings.bindingsWhenFalse);
2268             try {
2269                 attribStat(tree.elsepart, elseEnv);
2270             } finally {
2271                 elseEnv.info.scope.leave();
2272             }
2273             preFlow(tree.elsepart);
2274             aliveAfterElse = flow.aliveAfter(env, tree.elsepart, make);
2275         } else {
2276             aliveAfterElse = true;
2277         }
2278 
2279         chk.checkEmptyIf(tree);
2280 
2281         List<BindingSymbol> afterIfBindings = List.nil();
2282 
2283         if (aliveAfterThen && !aliveAfterElse) {
2284             afterIfBindings = condBindings.bindingsWhenTrue;
2285         } else if (aliveAfterElse && !aliveAfterThen) {
2286             afterIfBindings = condBindings.bindingsWhenFalse;
2287         }
2288 
2289         addBindings2Scope(tree, afterIfBindings);
2290 
2291         result = null;
2292     }
2293 
2294         void preFlow(JCTree tree) {
2295             attrRecover.doRecovery();
2296             new PostAttrAnalyzer() {
2297                 @Override
2298                 public void scan(JCTree tree) {
2299                     if (tree == null ||
2300                             (tree.type != null &&
2301                             tree.type == Type.stuckType)) {
2302                         //don't touch stuck expressions!
2303                         return;
2304                     }
2305                     super.scan(tree);
2306                 }
2307 
2308                 @Override
2309                 public void visitClassDef(JCClassDecl that) {
2310                     if (that.sym != null) {
2311                         // Method preFlow shouldn't visit class definitions
2312                         // that have not been entered and attributed.
2313                         // See JDK-8254557 and JDK-8203277 for more details.
2314                         super.visitClassDef(that);
2315                     }
2316                 }
2317 
2318                 @Override
2319                 public void visitLambda(JCLambda that) {
2320                     if (that.type != null) {
2321                         // Method preFlow shouldn't visit lambda expressions
2322                         // that have not been entered and attributed.
2323                         // See JDK-8254557 and JDK-8203277 for more details.
2324                         super.visitLambda(that);
2325                     }
2326                 }
2327             }.scan(tree);
2328         }
2329 
2330     public void visitExec(JCExpressionStatement tree) {
2331         //a fresh environment is required for 292 inference to work properly ---
2332         //see Infer.instantiatePolymorphicSignatureInstance()
2333         Env<AttrContext> localEnv = env.dup(tree);
2334         attribExpr(tree.expr, localEnv);
2335         result = null;
2336     }
2337 
2338     public void visitBreak(JCBreak tree) {
2339         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
2340         result = null;
2341     }
2342 
2343     public void visitYield(JCYield tree) {
2344         if (env.info.yieldResult != null) {
2345             attribTree(tree.value, env, env.info.yieldResult);
2346             tree.target = findJumpTarget(tree.pos(), tree.getTag(), names.empty, env);
2347         } else {
2348             log.error(tree.pos(), tree.value.hasTag(PARENS)
2349                     ? Errors.NoSwitchExpressionQualify
2350                     : Errors.NoSwitchExpression);
2351             attribTree(tree.value, env, unknownExprInfo);
2352         }
2353         result = null;
2354     }
2355 
2356     public void visitContinue(JCContinue tree) {
2357         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
2358         result = null;
2359     }
2360     //where
2361         /** Return the target of a break, continue or yield statement,
2362          *  if it exists, report an error if not.
2363          *  Note: The target of a labelled break or continue is the
2364          *  (non-labelled) statement tree referred to by the label,
2365          *  not the tree representing the labelled statement itself.
2366          *
2367          *  @param pos     The position to be used for error diagnostics
2368          *  @param tag     The tag of the jump statement. This is either
2369          *                 Tree.BREAK or Tree.CONTINUE.
2370          *  @param label   The label of the jump statement, or null if no
2371          *                 label is given.
2372          *  @param env     The environment current at the jump statement.
2373          */
2374         private JCTree findJumpTarget(DiagnosticPosition pos,
2375                                                    JCTree.Tag tag,
2376                                                    Name label,
2377                                                    Env<AttrContext> env) {
2378             Pair<JCTree, Error> jumpTarget = findJumpTargetNoError(tag, label, env);
2379 
2380             if (jumpTarget.snd != null) {
2381                 log.error(pos, jumpTarget.snd);
2382             }
2383 
2384             return jumpTarget.fst;
2385         }
2386         /** Return the target of a break or continue statement, if it exists,
2387          *  report an error if not.
2388          *  Note: The target of a labelled break or continue is the
2389          *  (non-labelled) statement tree referred to by the label,
2390          *  not the tree representing the labelled statement itself.
2391          *
2392          *  @param tag     The tag of the jump statement. This is either
2393          *                 Tree.BREAK or Tree.CONTINUE.
2394          *  @param label   The label of the jump statement, or null if no
2395          *                 label is given.
2396          *  @param env     The environment current at the jump statement.
2397          */
2398         private Pair<JCTree, JCDiagnostic.Error> findJumpTargetNoError(JCTree.Tag tag,
2399                                                                        Name label,
2400                                                                        Env<AttrContext> env) {
2401             // Search environments outwards from the point of jump.
2402             Env<AttrContext> env1 = env;
2403             JCDiagnostic.Error pendingError = null;
2404             LOOP:
2405             while (env1 != null) {
2406                 switch (env1.tree.getTag()) {
2407                     case LABELLED:
2408                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
2409                         if (label == labelled.label) {
2410                             // If jump is a continue, check that target is a loop.
2411                             if (tag == CONTINUE) {
2412                                 if (!labelled.body.hasTag(DOLOOP) &&
2413                                         !labelled.body.hasTag(WHILELOOP) &&
2414                                         !labelled.body.hasTag(FORLOOP) &&
2415                                         !labelled.body.hasTag(FOREACHLOOP)) {
2416                                     pendingError = Errors.NotLoopLabel(label);
2417                                 }
2418                                 // Found labelled statement target, now go inwards
2419                                 // to next non-labelled tree.
2420                                 return Pair.of(TreeInfo.referencedStatement(labelled), pendingError);
2421                             } else {
2422                                 return Pair.of(labelled, pendingError);
2423                             }
2424                         }
2425                         break;
2426                     case DOLOOP:
2427                     case WHILELOOP:
2428                     case FORLOOP:
2429                     case FOREACHLOOP:
2430                         if (label == null) return Pair.of(env1.tree, pendingError);
2431                         break;
2432                     case SWITCH:
2433                         if (label == null && tag == BREAK) return Pair.of(env1.tree, null);
2434                         break;
2435                     case SWITCH_EXPRESSION:
2436                         if (tag == YIELD) {
2437                             return Pair.of(env1.tree, null);
2438                         } else if (tag == BREAK) {
2439                             pendingError = Errors.BreakOutsideSwitchExpression;
2440                         } else {
2441                             pendingError = Errors.ContinueOutsideSwitchExpression;
2442                         }
2443                         break;
2444                     case LAMBDA:
2445                     case METHODDEF:
2446                     case CLASSDEF:
2447                         break LOOP;
2448                     default:
2449                 }
2450                 env1 = env1.next;
2451             }
2452             if (label != null)
2453                 return Pair.of(null, Errors.UndefLabel(label));
2454             else if (pendingError != null)
2455                 return Pair.of(null, pendingError);
2456             else if (tag == CONTINUE)
2457                 return Pair.of(null, Errors.ContOutsideLoop);
2458             else
2459                 return Pair.of(null, Errors.BreakOutsideSwitchLoop);
2460         }
2461 
2462     public void visitReturn(JCReturn tree) {
2463         // Check that there is an enclosing method which is
2464         // nested within than the enclosing class.
2465         if (env.info.returnResult == null) {
2466             log.error(tree.pos(), Errors.RetOutsideMeth);
2467         } else if (env.info.yieldResult != null) {
2468             log.error(tree.pos(), Errors.ReturnOutsideSwitchExpression);
2469             if (tree.expr != null) {
2470                 attribExpr(tree.expr, env, env.info.yieldResult.pt);
2471             }
2472         } else if (!env.info.isLambda &&
2473                 !env.info.isNewClass &&
2474                 env.enclMethod != null &&
2475                 TreeInfo.isCompactConstructor(env.enclMethod)) {
2476             log.error(env.enclMethod,
2477                     Errors.InvalidCanonicalConstructorInRecord(Fragments.Compact, env.enclMethod.sym.name, Fragments.CanonicalCantHaveReturnStatement));
2478         } else {
2479             // Attribute return expression, if it exists, and check that
2480             // it conforms to result type of enclosing method.
2481             if (tree.expr != null) {
2482                 if (env.info.returnResult.pt.hasTag(VOID)) {
2483                     env.info.returnResult.checkContext.report(tree.expr.pos(),
2484                               diags.fragment(Fragments.UnexpectedRetVal));
2485                 }
2486                 attribTree(tree.expr, env, env.info.returnResult);
2487             } else if (!env.info.returnResult.pt.hasTag(VOID) &&
2488                     !env.info.returnResult.pt.hasTag(NONE)) {
2489                 env.info.returnResult.checkContext.report(tree.pos(),
2490                               diags.fragment(Fragments.MissingRetVal(env.info.returnResult.pt)));
2491             }
2492         }
2493         result = null;
2494     }
2495 
2496     public void visitThrow(JCThrow tree) {
2497         Type owntype = attribExpr(tree.expr, env, Type.noType);
2498         chk.checkType(tree, owntype, syms.throwableType);
2499         result = null;
2500     }
2501 
2502     public void visitAssert(JCAssert tree) {
2503         attribExpr(tree.cond, env, syms.booleanType);
2504         if (tree.detail != null) {
2505             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
2506         }
2507         result = null;
2508     }
2509 
2510      /** Visitor method for method invocations.
2511      *  NOTE: The method part of an application will have in its type field
2512      *        the return type of the method, not the method's type itself!
2513      */
2514     public void visitApply(JCMethodInvocation tree) {
2515         // The local environment of a method application is
2516         // a new environment nested in the current one.
2517         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
2518 
2519         // The types of the actual method arguments.
2520         List<Type> argtypes;
2521 
2522         // The types of the actual method type arguments.
2523         List<Type> typeargtypes = null;
2524 
2525         Name methName = TreeInfo.name(tree.meth);
2526 
2527         boolean isConstructorCall =
2528             methName == names._this || methName == names._super;
2529 
2530         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2531         if (isConstructorCall) {
2532 
2533             // Attribute arguments, yielding list of argument types.
2534             KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf);
2535             argtypes = argtypesBuf.toList();
2536             typeargtypes = attribTypes(tree.typeargs, localEnv);
2537 
2538             // Done with this()/super() parameters. End of constructor prologue.
2539             env.info.ctorPrologue = false;
2540 
2541             // Variable `site' points to the class in which the called
2542             // constructor is defined.
2543             Type site = env.enclClass.sym.type;
2544             if (methName == names._super) {
2545                 if (site == syms.objectType) {
2546                     log.error(tree.meth.pos(), Errors.NoSuperclass(site));
2547                     site = types.createErrorType(syms.objectType);
2548                 } else {
2549                     site = types.supertype(site);
2550                 }
2551             }
2552 
2553             if (site.hasTag(CLASS)) {
2554                 Type encl = site.getEnclosingType();
2555                 while (encl != null && encl.hasTag(TYPEVAR))
2556                     encl = encl.getUpperBound();
2557                 if (encl.hasTag(CLASS)) {
2558                     // we are calling a nested class
2559 
2560                     if (tree.meth.hasTag(SELECT)) {
2561                         JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
2562 
2563                         // We are seeing a prefixed call, of the form
2564                         //     <expr>.super(...).
2565                         // Check that the prefix expression conforms
2566                         // to the outer instance type of the class.
2567                         chk.checkRefType(qualifier.pos(),
2568                                          attribExpr(qualifier, localEnv,
2569                                                     encl));
2570                     } else if (methName == names._super) {
2571                         // qualifier omitted; check for existence
2572                         // of an appropriate implicit qualifier.
2573                         rs.resolveImplicitThis(tree.meth.pos(),
2574                                                localEnv, site, true);
2575                     }
2576                 } else if (tree.meth.hasTag(SELECT)) {
2577                     log.error(tree.meth.pos(),
2578                               Errors.IllegalQualNotIcls(site.tsym));
2579                     attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site);
2580                 }
2581 
2582                 // if we're calling a java.lang.Enum constructor,
2583                 // prefix the implicit String and int parameters
2584                 if (site.tsym == syms.enumSym)
2585                     argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
2586 
2587                 // Resolve the called constructor under the assumption
2588                 // that we are referring to a superclass instance of the
2589                 // current instance (JLS ???).
2590                 boolean selectSuperPrev = localEnv.info.selectSuper;
2591                 localEnv.info.selectSuper = true;
2592                 localEnv.info.pendingResolutionPhase = null;
2593                 Symbol sym = rs.resolveConstructor(
2594                     tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
2595                 localEnv.info.selectSuper = selectSuperPrev;
2596 
2597                 // Set method symbol to resolved constructor...
2598                 TreeInfo.setSymbol(tree.meth, sym);
2599 
2600                 // ...and check that it is legal in the current context.
2601                 // (this will also set the tree's type)
2602                 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
2603                 checkId(tree.meth, site, sym, localEnv,
2604                         new ResultInfo(kind, mpt));
2605             } else if (site.hasTag(ERROR) && tree.meth.hasTag(SELECT)) {
2606                 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site);
2607             }
2608             // Otherwise, `site' is an error type and we do nothing
2609             result = tree.type = syms.voidType;
2610         } else {
2611             // Otherwise, we are seeing a regular method call.
2612             // Attribute the arguments, yielding list of argument types, ...
2613             KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2614             argtypes = argtypesBuf.toList();
2615             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
2616 
2617             // ... and attribute the method using as a prototype a methodtype
2618             // whose formal argument types is exactly the list of actual
2619             // arguments (this will also set the method symbol).
2620             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
2621             localEnv.info.pendingResolutionPhase = null;
2622             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
2623 
2624             // Compute the result type.
2625             Type restype = mtype.getReturnType();
2626             if (restype.hasTag(WILDCARD))
2627                 throw new AssertionError(mtype);
2628 
2629             Type qualifier = (tree.meth.hasTag(SELECT))
2630                     ? ((JCFieldAccess) tree.meth).selected.type
2631                     : env.enclClass.sym.type;
2632             Symbol msym = TreeInfo.symbol(tree.meth);
2633             restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype);
2634 
2635             chk.checkRefTypes(tree.typeargs, typeargtypes);
2636 
2637             // Check that value of resulting type is admissible in the
2638             // current context.  Also, capture the return type
2639             Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true);
2640             result = check(tree, capturedRes, KindSelector.VAL, resultInfo);
2641         }
2642         chk.validate(tree.typeargs, localEnv);
2643     }
2644     //where
2645         Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
2646             if (msym != null &&
2647                     (msym.owner == syms.objectType.tsym || msym.owner.isInterface()) &&
2648                     methodName == names.getClass &&
2649                     argtypes.isEmpty()) {
2650                 // as a special case, x.getClass() has type Class<? extends |X|>
2651                 return new ClassType(restype.getEnclosingType(),
2652                         List.of(new WildcardType(types.erasure(qualifierType.baseType()),
2653                                 BoundKind.EXTENDS,
2654                                 syms.boundClass)),
2655                         restype.tsym,
2656                         restype.getMetadata());
2657             } else if (msym != null &&
2658                     msym.owner == syms.arrayClass &&
2659                     methodName == names.clone &&
2660                     types.isArray(qualifierType)) {
2661                 // as a special case, array.clone() has a result that is
2662                 // the same as static type of the array being cloned
2663                 return qualifierType;
2664             } else {
2665                 return restype;
2666             }
2667         }
2668 
2669         /** Obtain a method type with given argument types.
2670          */
2671         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
2672             MethodType mt = new MethodType(argtypes, restype, List.nil(), syms.methodClass);
2673             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
2674         }
2675 
2676     public void visitNewClass(final JCNewClass tree) {
2677         Type owntype = types.createErrorType(tree.type);
2678 
2679         // The local environment of a class creation is
2680         // a new environment nested in the current one.
2681         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
2682 
2683         // The anonymous inner class definition of the new expression,
2684         // if one is defined by it.
2685         JCClassDecl cdef = tree.def;
2686 
2687         // If enclosing class is given, attribute it, and
2688         // complete class name to be fully qualified
2689         JCExpression clazz = tree.clazz; // Class field following new
2690         JCExpression clazzid;            // Identifier in class field
2691         JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
2692         annoclazzid = null;
2693 
2694         if (clazz.hasTag(TYPEAPPLY)) {
2695             clazzid = ((JCTypeApply) clazz).clazz;
2696             if (clazzid.hasTag(ANNOTATED_TYPE)) {
2697                 annoclazzid = (JCAnnotatedType) clazzid;
2698                 clazzid = annoclazzid.underlyingType;
2699             }
2700         } else {
2701             if (clazz.hasTag(ANNOTATED_TYPE)) {
2702                 annoclazzid = (JCAnnotatedType) clazz;
2703                 clazzid = annoclazzid.underlyingType;
2704             } else {
2705                 clazzid = clazz;
2706             }
2707         }
2708 
2709         JCExpression clazzid1 = clazzid; // The same in fully qualified form
2710 
2711         if (tree.encl != null) {
2712             // We are seeing a qualified new, of the form
2713             //    <expr>.new C <...> (...) ...
2714             // In this case, we let clazz stand for the name of the
2715             // allocated class C prefixed with the type of the qualifier
2716             // expression, so that we can
2717             // resolve it with standard techniques later. I.e., if
2718             // <expr> has type T, then <expr>.new C <...> (...)
2719             // yields a clazz T.C.
2720             Type encltype = chk.checkRefType(tree.encl.pos(),
2721                                              attribExpr(tree.encl, env));
2722             // TODO 308: in <expr>.new C, do we also want to add the type annotations
2723             // from expr to the combined type, or not? Yes, do this.
2724             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
2725                                                  ((JCIdent) clazzid).name);
2726 
2727             EndPosTable endPosTable = this.env.toplevel.endPositions;
2728             endPosTable.storeEnd(clazzid1, clazzid.getEndPosition(endPosTable));
2729             if (clazz.hasTag(ANNOTATED_TYPE)) {
2730                 JCAnnotatedType annoType = (JCAnnotatedType) clazz;
2731                 List<JCAnnotation> annos = annoType.annotations;
2732 
2733                 if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
2734                     clazzid1 = make.at(tree.pos).
2735                         TypeApply(clazzid1,
2736                                   ((JCTypeApply) clazz).arguments);
2737                 }
2738 
2739                 clazzid1 = make.at(tree.pos).
2740                     AnnotatedType(annos, clazzid1);
2741             } else if (clazz.hasTag(TYPEAPPLY)) {
2742                 clazzid1 = make.at(tree.pos).
2743                     TypeApply(clazzid1,
2744                               ((JCTypeApply) clazz).arguments);
2745             }
2746 
2747             clazz = clazzid1;
2748         }
2749 
2750         // Attribute clazz expression and store
2751         // symbol + type back into the attributed tree.
2752         Type clazztype;
2753 
2754         try {
2755             env.info.isNewClass = true;
2756             clazztype = TreeInfo.isEnumInit(env.tree) ?
2757                 attribIdentAsEnumType(env, (JCIdent)clazz) :
2758                 attribType(clazz, env);
2759         } finally {
2760             env.info.isNewClass = false;
2761         }
2762 
2763         clazztype = chk.checkDiamond(tree, clazztype);
2764         chk.validate(clazz, localEnv);
2765         if (tree.encl != null) {
2766             // We have to work in this case to store
2767             // symbol + type back into the attributed tree.
2768             tree.clazz.type = clazztype;
2769             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
2770             clazzid.type = ((JCIdent) clazzid).sym.type;
2771             if (annoclazzid != null) {
2772                 annoclazzid.type = clazzid.type;
2773             }
2774             if (!clazztype.isErroneous()) {
2775                 if (cdef != null && clazztype.tsym.isInterface()) {
2776                     log.error(tree.encl.pos(), Errors.AnonClassImplIntfNoQualForNew);
2777                 } else if (clazztype.tsym.isStatic()) {
2778                     log.error(tree.encl.pos(), Errors.QualifiedNewOfStaticClass(clazztype.tsym));
2779                 }
2780             }
2781         } else if (!clazztype.tsym.isInterface() &&
2782                    clazztype.getEnclosingType().hasTag(CLASS)) {
2783             // Check for the existence of an apropos outer instance
2784             rs.resolveImplicitThis(tree.pos(), env, clazztype);
2785         }
2786 
2787         // Attribute constructor arguments.
2788         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2789         final KindSelector pkind =
2790             attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2791         List<Type> argtypes = argtypesBuf.toList();
2792         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
2793 
2794         if (clazztype.hasTag(CLASS) || clazztype.hasTag(ERROR)) {
2795             // Enums may not be instantiated except implicitly
2796             if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 &&
2797                 (!env.tree.hasTag(VARDEF) ||
2798                  (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 ||
2799                  ((JCVariableDecl) env.tree).init != tree))
2800                 log.error(tree.pos(), Errors.EnumCantBeInstantiated);
2801 
2802             boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) &&
2803                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2804             boolean skipNonDiamondPath = false;
2805             // Check that class is not abstract
2806             if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy
2807                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
2808                 log.error(tree.pos(),
2809                           Errors.AbstractCantBeInstantiated(clazztype.tsym));
2810                 skipNonDiamondPath = true;
2811             } else if (cdef != null && clazztype.tsym.isInterface()) {
2812                 // Check that no constructor arguments are given to
2813                 // anonymous classes implementing an interface
2814                 if (!argtypes.isEmpty())
2815                     log.error(tree.args.head.pos(), Errors.AnonClassImplIntfNoArgs);
2816 
2817                 if (!typeargtypes.isEmpty())
2818                     log.error(tree.typeargs.head.pos(), Errors.AnonClassImplIntfNoTypeargs);
2819 
2820                 // Error recovery: pretend no arguments were supplied.
2821                 argtypes = List.nil();
2822                 typeargtypes = List.nil();
2823                 skipNonDiamondPath = true;
2824             }
2825             if (TreeInfo.isDiamond(tree)) {
2826                 ClassType site = new ClassType(clazztype.getEnclosingType(),
2827                             clazztype.tsym.type.getTypeArguments(),
2828                                                clazztype.tsym,
2829                                                clazztype.getMetadata());
2830 
2831                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
2832                 diamondEnv.info.selectSuper = cdef != null || tree.classDeclRemoved();
2833                 diamondEnv.info.pendingResolutionPhase = null;
2834 
2835                 //if the type of the instance creation expression is a class type
2836                 //apply method resolution inference (JLS 15.12.2.7). The return type
2837                 //of the resolved constructor will be a partially instantiated type
2838                 Symbol constructor = rs.resolveDiamond(tree.pos(),
2839                             diamondEnv,
2840                             site,
2841                             argtypes,
2842                             typeargtypes);
2843                 tree.constructor = constructor.baseSymbol();
2844 
2845                 final TypeSymbol csym = clazztype.tsym;
2846                 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes),
2847                         diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
2848                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
2849                 constructorType = checkId(tree, site,
2850                         constructor,
2851                         diamondEnv,
2852                         diamondResult);
2853 
2854                 tree.clazz.type = types.createErrorType(clazztype);
2855                 if (!constructorType.isErroneous()) {
2856                     tree.clazz.type = clazz.type = constructorType.getReturnType();
2857                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
2858                 }
2859                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
2860             }
2861 
2862             // Resolve the called constructor under the assumption
2863             // that we are referring to a superclass instance of the
2864             // current instance (JLS ???).
2865             else if (!skipNonDiamondPath) {
2866                 //the following code alters some of the fields in the current
2867                 //AttrContext - hence, the current context must be dup'ed in
2868                 //order to avoid downstream failures
2869                 Env<AttrContext> rsEnv = localEnv.dup(tree);
2870                 rsEnv.info.selectSuper = cdef != null;
2871                 rsEnv.info.pendingResolutionPhase = null;
2872                 tree.constructor = rs.resolveConstructor(
2873                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
2874                 if (cdef == null) { //do not check twice!
2875                     tree.constructorType = checkId(tree,
2876                             clazztype,
2877                             tree.constructor,
2878                             rsEnv,
2879                             new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2880                     if (rsEnv.info.lastResolveVarargs())
2881                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
2882                 }
2883             }
2884 
2885             if (cdef != null) {
2886                 visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind);
2887                 return;
2888             }
2889 
2890             if (tree.constructor != null && tree.constructor.kind == MTH)
2891                 owntype = clazztype;
2892         }
2893         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2894         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2895         if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) {
2896             //we need to wait for inference to finish and then replace inference vars in the constructor type
2897             inferenceContext.addFreeTypeListener(List.of(tree.constructorType),
2898                     instantiatedContext -> {
2899                         tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2900                     });
2901         }
2902         chk.validate(tree.typeargs, localEnv);
2903     }
2904 
2905         // where
2906         private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype,
2907                                                    JCClassDecl cdef, Env<AttrContext> localEnv,
2908                                                    List<Type> argtypes, List<Type> typeargtypes,
2909                                                    KindSelector pkind) {
2910             // We are seeing an anonymous class instance creation.
2911             // In this case, the class instance creation
2912             // expression
2913             //
2914             //    E.new <typeargs1>C<typargs2>(args) { ... }
2915             //
2916             // is represented internally as
2917             //
2918             //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
2919             //
2920             // This expression is then *transformed* as follows:
2921             //
2922             // (1) add an extends or implements clause
2923             // (2) add a constructor.
2924             //
2925             // For instance, if C is a class, and ET is the type of E,
2926             // the expression
2927             //
2928             //    E.new <typeargs1>C<typargs2>(args) { ... }
2929             //
2930             // is translated to (where X is a fresh name and typarams is the
2931             // parameter list of the super constructor):
2932             //
2933             //   new <typeargs1>X(<*nullchk*>E, args) where
2934             //     X extends C<typargs2> {
2935             //       <typarams> X(ET e, args) {
2936             //         e.<typeargs1>super(args)
2937             //       }
2938             //       ...
2939             //     }
2940             InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2941             Type enclType = clazztype.getEnclosingType();
2942             if (enclType != null &&
2943                     enclType.hasTag(CLASS) &&
2944                     !chk.checkDenotable((ClassType)enclType)) {
2945                 log.error(tree.encl, Errors.EnclosingClassTypeNonDenotable(enclType));
2946             }
2947             final boolean isDiamond = TreeInfo.isDiamond(tree);
2948             if (isDiamond
2949                     && ((tree.constructorType != null && inferenceContext.free(tree.constructorType))
2950                     || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) {
2951                 final ResultInfo resultInfoForClassDefinition = this.resultInfo;
2952                 Env<AttrContext> dupLocalEnv = copyEnv(localEnv);
2953                 inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type),
2954                         instantiatedContext -> {
2955                             tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2956                             tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type);
2957                             ResultInfo prevResult = this.resultInfo;
2958                             try {
2959                                 this.resultInfo = resultInfoForClassDefinition;
2960                                 visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef,
2961                                         dupLocalEnv, argtypes, typeargtypes, pkind);
2962                             } finally {
2963                                 this.resultInfo = prevResult;
2964                             }
2965                         });
2966             } else {
2967                 if (isDiamond && clazztype.hasTag(CLASS)) {
2968                     List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype);
2969                     if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
2970                         // One or more types inferred in the previous steps is non-denotable.
2971                         Fragment fragment = Diamond(clazztype.tsym);
2972                         log.error(tree.clazz.pos(),
2973                                 Errors.CantApplyDiamond1(
2974                                         fragment,
2975                                         invalidDiamondArgs.size() > 1 ?
2976                                                 DiamondInvalidArgs(invalidDiamondArgs, fragment) :
2977                                                 DiamondInvalidArg(invalidDiamondArgs, fragment)));
2978                     }
2979                     // For <>(){}, inferred types must also be accessible.
2980                     for (Type t : clazztype.getTypeArguments()) {
2981                         rs.checkAccessibleType(env, t);
2982                     }
2983                 }
2984 
2985                 // If we already errored, be careful to avoid a further avalanche. ErrorType answers
2986                 // false for isInterface call even when the original type is an interface.
2987                 boolean implementing = clazztype.tsym.isInterface() ||
2988                         clazztype.isErroneous() && !clazztype.getOriginalType().hasTag(NONE) &&
2989                         clazztype.getOriginalType().tsym.isInterface();
2990 
2991                 if (implementing) {
2992                     cdef.implementing = List.of(clazz);
2993                 } else {
2994                     cdef.extending = clazz;
2995                 }
2996 
2997                 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2998                     rs.isSerializable(clazztype)) {
2999                     localEnv.info.isSerializable = true;
3000                 }
3001 
3002                 attribStat(cdef, localEnv);
3003 
3004                 List<Type> finalargtypes;
3005                 // If an outer instance is given,
3006                 // prefix it to the constructor arguments
3007                 // and delete it from the new expression
3008                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
3009                     finalargtypes = argtypes.prepend(tree.encl.type);
3010                 } else {
3011                     finalargtypes = argtypes;
3012                 }
3013 
3014                 // Reassign clazztype and recompute constructor. As this necessarily involves
3015                 // another attribution pass for deferred types in the case of <>, replicate
3016                 // them. Original arguments have right decorations already.
3017                 if (isDiamond && pkind.contains(KindSelector.POLY)) {
3018                     finalargtypes = finalargtypes.map(deferredAttr.deferredCopier);
3019                 }
3020 
3021                 clazztype = clazztype.hasTag(ERROR) ? types.createErrorType(cdef.sym.type)
3022                                                     : cdef.sym.type;
3023                 Symbol sym = tree.constructor = rs.resolveConstructor(
3024                         tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes);
3025                 Assert.check(!sym.kind.isResolutionError());
3026                 tree.constructor = sym;
3027                 tree.constructorType = checkId(tree,
3028                         clazztype,
3029                         tree.constructor,
3030                         localEnv,
3031                         new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
3032             }
3033             Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ?
3034                                 clazztype : types.createErrorType(tree.type);
3035             result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK));
3036             chk.validate(tree.typeargs, localEnv);
3037         }
3038 
3039         CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) {
3040             return new Check.NestedCheckContext(checkContext) {
3041                 @Override
3042                 public void report(DiagnosticPosition _unused, JCDiagnostic details) {
3043                     enclosingContext.report(clazz.clazz,
3044                             diags.fragment(Fragments.CantApplyDiamond1(Fragments.Diamond(tsym), details)));
3045                 }
3046             };
3047         }
3048 
3049     /** Make an attributed null check tree.
3050      */
3051     public JCExpression makeNullCheck(JCExpression arg) {
3052         // optimization: new Outer() can never be null; skip null check
3053         if (arg.getTag() == NEWCLASS)
3054             return arg;
3055         // optimization: X.this is never null; skip null check
3056         Name name = TreeInfo.name(arg);
3057         if (name == names._this || name == names._super) return arg;
3058 
3059         JCTree.Tag optag = NULLCHK;
3060         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
3061         tree.operator = operators.resolveUnary(arg, optag, arg.type);
3062         tree.type = arg.type;
3063         return tree;
3064     }
3065 
3066     public void visitNewArray(JCNewArray tree) {
3067         Type owntype = types.createErrorType(tree.type);
3068         Env<AttrContext> localEnv = env.dup(tree);
3069         Type elemtype;
3070         if (tree.elemtype != null) {
3071             elemtype = attribType(tree.elemtype, localEnv);
3072             chk.validate(tree.elemtype, localEnv);
3073             owntype = elemtype;
3074             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
3075                 attribExpr(l.head, localEnv, syms.intType);
3076                 owntype = new ArrayType(owntype, syms.arrayClass);
3077             }
3078         } else {
3079             // we are seeing an untyped aggregate { ... }
3080             // this is allowed only if the prototype is an array
3081             if (pt().hasTag(ARRAY)) {
3082                 elemtype = types.elemtype(pt());
3083             } else {
3084                 if (!pt().hasTag(ERROR) &&
3085                         (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
3086                     log.error(tree.pos(),
3087                               Errors.IllegalInitializerForType(pt()));
3088                 }
3089                 elemtype = types.createErrorType(pt());
3090             }
3091         }
3092         if (tree.elems != null) {
3093             attribExprs(tree.elems, localEnv, elemtype);
3094             owntype = new ArrayType(elemtype, syms.arrayClass);
3095         }
3096         if (!types.isReifiable(elemtype))
3097             log.error(tree.pos(), Errors.GenericArrayCreation);
3098         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3099     }
3100 
3101     /*
3102      * A lambda expression can only be attributed when a target-type is available.
3103      * In addition, if the target-type is that of a functional interface whose
3104      * descriptor contains inference variables in argument position the lambda expression
3105      * is 'stuck' (see DeferredAttr).
3106      */
3107     @Override
3108     public void visitLambda(final JCLambda that) {
3109         boolean wrongContext = false;
3110         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
3111             if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
3112                 //lambda only allowed in assignment or method invocation/cast context
3113                 log.error(that.pos(), Errors.UnexpectedLambda);
3114             }
3115             resultInfo = recoveryInfo;
3116             wrongContext = true;
3117         }
3118         //create an environment for attribution of the lambda expression
3119         final Env<AttrContext> localEnv = lambdaEnv(that, env);
3120         boolean needsRecovery =
3121                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
3122         try {
3123             if (needsRecovery && rs.isSerializable(pt())) {
3124                 localEnv.info.isSerializable = true;
3125                 localEnv.info.isSerializableLambda = true;
3126             }
3127             List<Type> explicitParamTypes = null;
3128             if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
3129                 //attribute lambda parameters
3130                 attribStats(that.params, localEnv);
3131                 explicitParamTypes = TreeInfo.types(that.params);
3132             }
3133 
3134             TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes);
3135             Type currentTarget = targetInfo.target;
3136             Type lambdaType = targetInfo.descriptor;
3137 
3138             if (currentTarget.isErroneous()) {
3139                 result = that.type = currentTarget;
3140                 return;
3141             }
3142 
3143             setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
3144 
3145             if (lambdaType.hasTag(FORALL)) {
3146                 //lambda expression target desc cannot be a generic method
3147                 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
3148                                                                     kindName(currentTarget.tsym),
3149                                                                     currentTarget.tsym);
3150                 resultInfo.checkContext.report(that, diags.fragment(msg));
3151                 result = that.type = types.createErrorType(pt());
3152                 return;
3153             }
3154 
3155             if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
3156                 //add param type info in the AST
3157                 List<Type> actuals = lambdaType.getParameterTypes();
3158                 List<JCVariableDecl> params = that.params;
3159 
3160                 boolean arityMismatch = false;
3161 
3162                 while (params.nonEmpty()) {
3163                     if (actuals.isEmpty()) {
3164                         //not enough actuals to perform lambda parameter inference
3165                         arityMismatch = true;
3166                     }
3167                     //reset previously set info
3168                     Type argType = arityMismatch ?
3169                             syms.errType :
3170                             actuals.head;
3171                     if (params.head.isImplicitlyTyped()) {
3172                         setSyntheticVariableType(params.head, argType);
3173                     }
3174                     params.head.sym = null;
3175                     actuals = actuals.isEmpty() ?
3176                             actuals :
3177                             actuals.tail;
3178                     params = params.tail;
3179                 }
3180 
3181                 //attribute lambda parameters
3182                 attribStats(that.params, localEnv);
3183 
3184                 if (arityMismatch) {
3185                     resultInfo.checkContext.report(that, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
3186                         result = that.type = types.createErrorType(currentTarget);
3187                         return;
3188                 }
3189             }
3190 
3191             //from this point on, no recovery is needed; if we are in assignment context
3192             //we will be able to attribute the whole lambda body, regardless of errors;
3193             //if we are in a 'check' method context, and the lambda is not compatible
3194             //with the target-type, it will be recovered anyway in Attr.checkId
3195             needsRecovery = false;
3196 
3197             ResultInfo bodyResultInfo = localEnv.info.returnResult =
3198                     lambdaBodyResult(that, lambdaType, resultInfo);
3199 
3200             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
3201                 attribTree(that.getBody(), localEnv, bodyResultInfo);
3202             } else {
3203                 JCBlock body = (JCBlock)that.body;
3204                 if (body == breakTree &&
3205                         resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
3206                     breakTreeFound(copyEnv(localEnv));
3207                 }
3208                 attribStats(body.stats, localEnv);
3209             }
3210 
3211             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
3212 
3213             boolean isSpeculativeRound =
3214                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
3215 
3216             preFlow(that);
3217             flow.analyzeLambda(env, that, make, isSpeculativeRound);
3218 
3219             that.type = currentTarget; //avoids recovery at this stage
3220             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
3221 
3222             if (!isSpeculativeRound) {
3223                 //add thrown types as bounds to the thrown types free variables if needed:
3224                 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
3225                     List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
3226                     if(!checkExConstraints(inferredThrownTypes, lambdaType.getThrownTypes(), resultInfo.checkContext.inferenceContext())) {
3227                         log.error(that, Errors.IncompatibleThrownTypesInMref(lambdaType.getThrownTypes()));
3228                     }
3229                 }
3230 
3231                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
3232             }
3233             result = wrongContext ? that.type = types.createErrorType(pt())
3234                                   : check(that, currentTarget, KindSelector.VAL, resultInfo);
3235         } catch (Types.FunctionDescriptorLookupError ex) {
3236             JCDiagnostic cause = ex.getDiagnostic();
3237             resultInfo.checkContext.report(that, cause);
3238             result = that.type = types.createErrorType(pt());
3239             return;
3240         } catch (CompletionFailure cf) {
3241             chk.completionError(that.pos(), cf);
3242         } catch (Throwable t) {
3243             //when an unexpected exception happens, avoid attempts to attribute the same tree again
3244             //as that would likely cause the same exception again.
3245             needsRecovery = false;
3246             throw t;
3247         } finally {
3248             localEnv.info.scope.leave();
3249             if (needsRecovery) {
3250                 Type prevResult = result;
3251                 try {
3252                     attribTree(that, env, recoveryInfo);
3253                 } finally {
3254                     if (result == Type.recoveryType) {
3255                         result = prevResult;
3256                     }
3257                 }
3258             }
3259         }
3260     }
3261     //where
3262         class TargetInfo {
3263             Type target;
3264             Type descriptor;
3265 
3266             public TargetInfo(Type target, Type descriptor) {
3267                 this.target = target;
3268                 this.descriptor = descriptor;
3269             }
3270         }
3271 
3272         TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) {
3273             Type lambdaType;
3274             Type currentTarget = resultInfo.pt;
3275             if (resultInfo.pt != Type.recoveryType) {
3276                 /* We need to adjust the target. If the target is an
3277                  * intersection type, for example: SAM & I1 & I2 ...
3278                  * the target will be updated to SAM
3279                  */
3280                 currentTarget = targetChecker.visit(currentTarget, that);
3281                 if (!currentTarget.isIntersection()) {
3282                     if (explicitParamTypes != null) {
3283                         currentTarget = infer.instantiateFunctionalInterface(that,
3284                                 currentTarget, explicitParamTypes, resultInfo.checkContext);
3285                     }
3286                     currentTarget = types.removeWildcards(currentTarget);
3287                     lambdaType = types.findDescriptorType(currentTarget);
3288                 } else {
3289                     IntersectionClassType ict = (IntersectionClassType)currentTarget;
3290                     ListBuffer<Type> components = new ListBuffer<>();
3291                     for (Type bound : ict.getExplicitComponents()) {
3292                         if (explicitParamTypes != null) {
3293                             try {
3294                                 bound = infer.instantiateFunctionalInterface(that,
3295                                         bound, explicitParamTypes, resultInfo.checkContext);
3296                             } catch (FunctionDescriptorLookupError t) {
3297                                 // do nothing
3298                             }
3299                         }
3300                         bound = types.removeWildcards(bound);
3301                         components.add(bound);
3302                     }
3303                     currentTarget = types.makeIntersectionType(components.toList());
3304                     currentTarget.tsym.flags_field |= INTERFACE;
3305                     lambdaType = types.findDescriptorType(currentTarget);
3306                 }
3307 
3308             } else {
3309                 currentTarget = Type.recoveryType;
3310                 lambdaType = fallbackDescriptorType(that);
3311             }
3312             if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) {
3313                 //lambda expression target desc cannot be a generic method
3314                 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
3315                                                                     kindName(currentTarget.tsym),
3316                                                                     currentTarget.tsym);
3317                 resultInfo.checkContext.report(that, diags.fragment(msg));
3318                 currentTarget = types.createErrorType(pt());
3319             }
3320             return new TargetInfo(currentTarget, lambdaType);
3321         }
3322 
3323         void preFlow(JCLambda tree) {
3324             attrRecover.doRecovery();
3325             new PostAttrAnalyzer() {
3326                 @Override
3327                 public void scan(JCTree tree) {
3328                     if (tree == null ||
3329                             (tree.type != null &&
3330                             tree.type == Type.stuckType)) {
3331                         //don't touch stuck expressions!
3332                         return;
3333                     }
3334                     super.scan(tree);
3335                 }
3336 
3337                 @Override
3338                 public void visitClassDef(JCClassDecl that) {
3339                     // or class declaration trees!
3340                 }
3341 
3342                 public void visitLambda(JCLambda that) {
3343                     // or lambda expressions!
3344                 }
3345             }.scan(tree.body);
3346         }
3347 
3348         Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
3349 
3350             @Override
3351             public Type visitClassType(ClassType t, DiagnosticPosition pos) {
3352                 return t.isIntersection() ?
3353                         visitIntersectionClassType((IntersectionClassType)t, pos) : t;
3354             }
3355 
3356             public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
3357                 types.findDescriptorSymbol(makeNotionalInterface(ict, pos));
3358                 return ict;
3359             }
3360 
3361             private TypeSymbol makeNotionalInterface(IntersectionClassType ict, DiagnosticPosition pos) {
3362                 ListBuffer<Type> targs = new ListBuffer<>();
3363                 ListBuffer<Type> supertypes = new ListBuffer<>();
3364                 for (Type i : ict.interfaces_field) {
3365                     if (i.isParameterized()) {
3366                         targs.appendList(i.tsym.type.allparams());
3367                     }
3368                     supertypes.append(i.tsym.type);
3369                 }
3370                 IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList());
3371                 notionalIntf.allparams_field = targs.toList();
3372                 notionalIntf.tsym.flags_field |= INTERFACE;
3373                 return notionalIntf.tsym;
3374             }
3375         };
3376 
3377         private Type fallbackDescriptorType(JCExpression tree) {
3378             switch (tree.getTag()) {
3379                 case LAMBDA:
3380                     JCLambda lambda = (JCLambda)tree;
3381                     List<Type> argtypes = List.nil();
3382                     for (JCVariableDecl param : lambda.params) {
3383                         argtypes = param.vartype != null && param.vartype.type != null ?
3384                                 argtypes.append(param.vartype.type) :
3385                                 argtypes.append(syms.errType);
3386                     }
3387                     return new MethodType(argtypes, Type.recoveryType,
3388                             List.of(syms.throwableType), syms.methodClass);
3389                 case REFERENCE:
3390                     return new MethodType(List.nil(), Type.recoveryType,
3391                             List.of(syms.throwableType), syms.methodClass);
3392                 default:
3393                     Assert.error("Cannot get here!");
3394             }
3395             return null;
3396         }
3397 
3398         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
3399                 final InferenceContext inferenceContext, final Type... ts) {
3400             checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
3401         }
3402 
3403         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
3404                 final InferenceContext inferenceContext, final List<Type> ts) {
3405             if (inferenceContext.free(ts)) {
3406                 inferenceContext.addFreeTypeListener(ts,
3407                         solvedContext -> checkAccessibleTypes(pos, env, solvedContext, solvedContext.asInstTypes(ts)));
3408             } else {
3409                 for (Type t : ts) {
3410                     rs.checkAccessibleType(env, t);
3411                 }
3412             }
3413         }
3414 
3415         /**
3416          * Lambda/method reference have a special check context that ensures
3417          * that i.e. a lambda return type is compatible with the expected
3418          * type according to both the inherited context and the assignment
3419          * context.
3420          */
3421         class FunctionalReturnContext extends Check.NestedCheckContext {
3422 
3423             FunctionalReturnContext(CheckContext enclosingContext) {
3424                 super(enclosingContext);
3425             }
3426 
3427             @Override
3428             public boolean compatible(Type found, Type req, Warner warn) {
3429                 //return type must be compatible in both current context and assignment context
3430                 return chk.basicHandler.compatible(inferenceContext().asUndetVar(found), inferenceContext().asUndetVar(req), warn);
3431             }
3432 
3433             @Override
3434             public void report(DiagnosticPosition pos, JCDiagnostic details) {
3435                 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleRetTypeInLambda(details)));
3436             }
3437         }
3438 
3439         class ExpressionLambdaReturnContext extends FunctionalReturnContext {
3440 
3441             JCExpression expr;
3442             boolean expStmtExpected;
3443 
3444             ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
3445                 super(enclosingContext);
3446                 this.expr = expr;
3447             }
3448 
3449             @Override
3450             public void report(DiagnosticPosition pos, JCDiagnostic details) {
3451                 if (expStmtExpected) {
3452                     enclosingContext.report(pos, diags.fragment(Fragments.StatExprExpected));
3453                 } else {
3454                     super.report(pos, details);
3455                 }
3456             }
3457 
3458             @Override
3459             public boolean compatible(Type found, Type req, Warner warn) {
3460                 //a void return is compatible with an expression statement lambda
3461                 if (req.hasTag(VOID)) {
3462                     expStmtExpected = true;
3463                     return TreeInfo.isExpressionStatement(expr);
3464                 } else {
3465                     return super.compatible(found, req, warn);
3466                 }
3467             }
3468         }
3469 
3470         ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) {
3471             FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
3472                     new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
3473                     new FunctionalReturnContext(resultInfo.checkContext);
3474 
3475             return descriptor.getReturnType() == Type.recoveryType ?
3476                     recoveryInfo :
3477                     new ResultInfo(KindSelector.VAL,
3478                             descriptor.getReturnType(), funcContext);
3479         }
3480 
3481         /**
3482         * Lambda compatibility. Check that given return types, thrown types, parameter types
3483         * are compatible with the expected functional interface descriptor. This means that:
3484         * (i) parameter types must be identical to those of the target descriptor; (ii) return
3485         * types must be compatible with the return type of the expected descriptor.
3486         */
3487         void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
3488             Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
3489 
3490             //return values have already been checked - but if lambda has no return
3491             //values, we must ensure that void/value compatibility is correct;
3492             //this amounts at checking that, if a lambda body can complete normally,
3493             //the descriptor's return type must be void
3494             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
3495                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
3496                 Fragment msg =
3497                         Fragments.IncompatibleRetTypeInLambda(Fragments.MissingRetVal(returnType));
3498                 checkContext.report(tree,
3499                                     diags.fragment(msg));
3500             }
3501 
3502             List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
3503             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
3504                 checkContext.report(tree, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
3505             }
3506         }
3507 
3508         /* Map to hold 'fake' clinit methods. If a lambda is used to initialize a
3509          * static field and that lambda has type annotations, these annotations will
3510          * also be stored at these fake clinit methods.
3511          *
3512          * LambdaToMethod also use fake clinit methods so they can be reused.
3513          * Also as LTM is a phase subsequent to attribution, the methods from
3514          * clinits can be safely removed by LTM to save memory.
3515          */
3516         private Map<ClassSymbol, MethodSymbol> clinits = new HashMap<>();
3517 
3518         public MethodSymbol removeClinit(ClassSymbol sym) {
3519             return clinits.remove(sym);
3520         }
3521 
3522         /* This method returns an environment to be used to attribute a lambda
3523          * expression.
3524          *
3525          * The owner of this environment is a method symbol. If the current owner
3526          * is not a method, for example if the lambda is used to initialize
3527          * a field, then if the field is:
3528          *
3529          * - an instance field, we use the first constructor.
3530          * - a static field, we create a fake clinit method.
3531          */
3532         public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
3533             Env<AttrContext> lambdaEnv;
3534             Symbol owner = env.info.scope.owner;
3535             if (owner.kind == VAR && owner.owner.kind == TYP) {
3536                 //field initializer
3537                 ClassSymbol enclClass = owner.enclClass();
3538                 Symbol newScopeOwner = env.info.scope.owner;
3539                 /* if the field isn't static, then we can get the first constructor
3540                  * and use it as the owner of the environment. This is what
3541                  * LTM code is doing to look for type annotations so we are fine.
3542                  */
3543                 if ((owner.flags() & STATIC) == 0) {
3544                     for (Symbol s : enclClass.members_field.getSymbolsByName(names.init)) {
3545                         newScopeOwner = s;
3546                         break;
3547                     }
3548                 } else {
3549                     /* if the field is static then we need to create a fake clinit
3550                      * method, this method can later be reused by LTM.
3551                      */
3552                     MethodSymbol clinit = clinits.get(enclClass);
3553                     if (clinit == null) {
3554                         Type clinitType = new MethodType(List.nil(),
3555                                 syms.voidType, List.nil(), syms.methodClass);
3556                         clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE,
3557                                 names.clinit, clinitType, enclClass);
3558                         clinit.params = List.nil();
3559                         clinits.put(enclClass, clinit);
3560                     }
3561                     newScopeOwner = clinit;
3562                 }
3563                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(newScopeOwner)));
3564             } else {
3565                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
3566             }
3567             lambdaEnv.info.yieldResult = null;
3568             lambdaEnv.info.isLambda = true;
3569             return lambdaEnv;
3570         }
3571 
3572     @Override
3573     public void visitReference(final JCMemberReference that) {
3574         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
3575             if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
3576                 //method reference only allowed in assignment or method invocation/cast context
3577                 log.error(that.pos(), Errors.UnexpectedMref);
3578             }
3579             result = that.type = types.createErrorType(pt());
3580             return;
3581         }
3582         final Env<AttrContext> localEnv = env.dup(that);
3583         try {
3584             //attribute member reference qualifier - if this is a constructor
3585             //reference, the expected kind must be a type
3586             Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
3587 
3588             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
3589                 exprType = chk.checkConstructorRefType(that.expr, exprType);
3590                 if (!exprType.isErroneous() &&
3591                     exprType.isRaw() &&
3592                     that.typeargs != null) {
3593                     log.error(that.expr.pos(),
3594                               Errors.InvalidMref(Kinds.kindName(that.getMode()),
3595                                                  Fragments.MrefInferAndExplicitParams));
3596                     exprType = types.createErrorType(exprType);
3597                 }
3598             }
3599 
3600             if (exprType.isErroneous()) {
3601                 //if the qualifier expression contains problems,
3602                 //give up attribution of method reference
3603                 result = that.type = exprType;
3604                 return;
3605             }
3606 
3607             if (TreeInfo.isStaticSelector(that.expr, names)) {
3608                 //if the qualifier is a type, validate it; raw warning check is
3609                 //omitted as we don't know at this stage as to whether this is a
3610                 //raw selector (because of inference)
3611                 chk.validate(that.expr, env, false);
3612             } else {
3613                 Symbol lhsSym = TreeInfo.symbol(that.expr);
3614                 localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super;
3615             }
3616             //attrib type-arguments
3617             List<Type> typeargtypes = List.nil();
3618             if (that.typeargs != null) {
3619                 typeargtypes = attribTypes(that.typeargs, localEnv);
3620             }
3621 
3622             boolean isTargetSerializable =
3623                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3624                     rs.isSerializable(pt());
3625             TargetInfo targetInfo = getTargetInfo(that, resultInfo, null);
3626             Type currentTarget = targetInfo.target;
3627             Type desc = targetInfo.descriptor;
3628 
3629             setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
3630             List<Type> argtypes = desc.getParameterTypes();
3631             Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
3632 
3633             if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
3634                 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
3635             }
3636 
3637             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
3638             List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
3639             try {
3640                 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
3641                         that.name, argtypes, typeargtypes, targetInfo.descriptor, referenceCheck,
3642                         resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser);
3643             } finally {
3644                 resultInfo.checkContext.inferenceContext().rollback(saved_undet);
3645             }
3646 
3647             Symbol refSym = refResult.fst;
3648             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
3649 
3650             /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing
3651              *  JDK-8075541
3652              */
3653             if (refSym.kind != MTH) {
3654                 boolean targetError;
3655                 switch (refSym.kind) {
3656                     case ABSENT_MTH:
3657                     case MISSING_ENCL:
3658                         targetError = false;
3659                         break;
3660                     case WRONG_MTH:
3661                     case WRONG_MTHS:
3662                     case AMBIGUOUS:
3663                     case HIDDEN:
3664                     case STATICERR:
3665                         targetError = true;
3666                         break;
3667                     default:
3668                         Assert.error("unexpected result kind " + refSym.kind);
3669                         targetError = false;
3670                 }
3671 
3672                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol())
3673                         .getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
3674                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
3675 
3676                 JCDiagnostic diag = diags.create(log.currentSource(), that,
3677                         targetError ?
3678                             Fragments.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag) :
3679                             Errors.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag));
3680 
3681                 if (targetError && currentTarget == Type.recoveryType) {
3682                     //a target error doesn't make sense during recovery stage
3683                     //as we don't know what actual parameter types are
3684                     result = that.type = currentTarget;
3685                     return;
3686                 } else {
3687                     if (targetError) {
3688                         resultInfo.checkContext.report(that, diag);
3689                     } else {
3690                         log.report(diag);
3691                     }
3692                     result = that.type = types.createErrorType(currentTarget);
3693                     return;
3694                 }
3695             }
3696 
3697             that.sym = refSym.isConstructor() ? refSym.baseSymbol() : refSym;
3698             that.kind = lookupHelper.referenceKind(that.sym);
3699             that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
3700 
3701             if (desc.getReturnType() == Type.recoveryType) {
3702                 // stop here
3703                 result = that.type = currentTarget;
3704                 return;
3705             }
3706 
3707             if (!env.info.attributionMode.isSpeculative && that.getMode() == JCMemberReference.ReferenceMode.NEW) {
3708                 Type enclosingType = exprType.getEnclosingType();
3709                 if (enclosingType != null && enclosingType.hasTag(CLASS)) {
3710                     // Check for the existence of an appropriate outer instance
3711                     rs.resolveImplicitThis(that.pos(), env, exprType);
3712                 }
3713             }
3714 
3715             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
3716 
3717                 if (that.getMode() == ReferenceMode.INVOKE &&
3718                         TreeInfo.isStaticSelector(that.expr, names) &&
3719                         that.kind.isUnbound() &&
3720                         lookupHelper.site.isRaw()) {
3721                     chk.checkRaw(that.expr, localEnv);
3722                 }
3723 
3724                 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
3725                         exprType.getTypeArguments().nonEmpty()) {
3726                     //static ref with class type-args
3727                     log.error(that.expr.pos(),
3728                               Errors.InvalidMref(Kinds.kindName(that.getMode()),
3729                                                  Fragments.StaticMrefWithTargs));
3730                     result = that.type = types.createErrorType(currentTarget);
3731                     return;
3732                 }
3733 
3734                 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
3735                     // Check that super-qualified symbols are not abstract (JLS)
3736                     rs.checkNonAbstract(that.pos(), that.sym);
3737                 }
3738 
3739                 if (isTargetSerializable) {
3740                     chk.checkAccessFromSerializableElement(that, true);
3741                 }
3742             }
3743 
3744             ResultInfo checkInfo =
3745                     resultInfo.dup(newMethodTemplate(
3746                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
3747                         that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
3748                         new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
3749 
3750             Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
3751 
3752             if (that.kind.isUnbound() &&
3753                     resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
3754                 //re-generate inference constraints for unbound receiver
3755                 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
3756                     //cannot happen as this has already been checked - we just need
3757                     //to regenerate the inference constraints, as that has been lost
3758                     //as a result of the call to inferenceContext.save()
3759                     Assert.error("Can't get here");
3760                 }
3761             }
3762 
3763             if (!refType.isErroneous()) {
3764                 refType = types.createMethodTypeWithReturn(refType,
3765                         adjustMethodReturnType(refSym, lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
3766             }
3767 
3768             //go ahead with standard method reference compatibility check - note that param check
3769             //is a no-op (as this has been taken care during method applicability)
3770             boolean isSpeculativeRound =
3771                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
3772 
3773             that.type = currentTarget; //avoids recovery at this stage
3774             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
3775             if (!isSpeculativeRound) {
3776                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
3777             }
3778             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
3779         } catch (Types.FunctionDescriptorLookupError ex) {
3780             JCDiagnostic cause = ex.getDiagnostic();
3781             resultInfo.checkContext.report(that, cause);
3782             result = that.type = types.createErrorType(pt());
3783             return;
3784         }
3785     }
3786     //where
3787         ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
3788             //if this is a constructor reference, the expected kind must be a type
3789             return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ?
3790                                   KindSelector.VAL_TYP : KindSelector.TYP,
3791                                   Type.noType);
3792         }
3793 
3794 
3795     @SuppressWarnings("fallthrough")
3796     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
3797         InferenceContext inferenceContext = checkContext.inferenceContext();
3798         Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType());
3799 
3800         Type resType;
3801         switch (tree.getMode()) {
3802             case NEW:
3803                 if (!tree.expr.type.isRaw()) {
3804                     resType = tree.expr.type;
3805                     break;
3806                 }
3807             default:
3808                 resType = refType.getReturnType();
3809         }
3810 
3811         Type incompatibleReturnType = resType;
3812 
3813         if (returnType.hasTag(VOID)) {
3814             incompatibleReturnType = null;
3815         }
3816 
3817         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
3818             if (resType.isErroneous() ||
3819                     new FunctionalReturnContext(checkContext).compatible(resType, returnType,
3820                             checkContext.checkWarner(tree, resType, returnType))) {
3821                 incompatibleReturnType = null;
3822             }
3823         }
3824 
3825         if (incompatibleReturnType != null) {
3826             Fragment msg =
3827                     Fragments.IncompatibleRetTypeInMref(Fragments.InconvertibleTypes(resType, descriptor.getReturnType()));
3828             checkContext.report(tree, diags.fragment(msg));
3829         } else {
3830             if (inferenceContext.free(refType)) {
3831                 // we need to wait for inference to finish and then replace inference vars in the referent type
3832                 inferenceContext.addFreeTypeListener(List.of(refType),
3833                         instantiatedContext -> {
3834                             tree.referentType = instantiatedContext.asInstType(refType);
3835                         });
3836             } else {
3837                 tree.referentType = refType;
3838             }
3839         }
3840 
3841         if (!speculativeAttr) {
3842             if (!checkExConstraints(refType.getThrownTypes(), descriptor.getThrownTypes(), inferenceContext)) {
3843                 log.error(tree, Errors.IncompatibleThrownTypesInMref(refType.getThrownTypes()));
3844             }
3845         }
3846     }
3847 
3848     boolean checkExConstraints(
3849             List<Type> thrownByFuncExpr,
3850             List<Type> thrownAtFuncType,
3851             InferenceContext inferenceContext) {
3852         /** 18.2.5: Otherwise, let E1, ..., En be the types in the function type's throws clause that
3853          *  are not proper types
3854          */
3855         List<Type> nonProperList = thrownAtFuncType.stream()
3856                 .filter(e -> inferenceContext.free(e)).collect(List.collector());
3857         List<Type> properList = thrownAtFuncType.diff(nonProperList);
3858 
3859         /** Let X1,...,Xm be the checked exception types that the lambda body can throw or
3860          *  in the throws clause of the invocation type of the method reference's compile-time
3861          *  declaration
3862          */
3863         List<Type> checkedList = thrownByFuncExpr.stream()
3864                 .filter(e -> chk.isChecked(e)).collect(List.collector());
3865 
3866         /** If n = 0 (the function type's throws clause consists only of proper types), then
3867          *  if there exists some i (1 <= i <= m) such that Xi is not a subtype of any proper type
3868          *  in the throws clause, the constraint reduces to false; otherwise, the constraint
3869          *  reduces to true
3870          */
3871         ListBuffer<Type> uncaughtByProperTypes = new ListBuffer<>();
3872         for (Type checked : checkedList) {
3873             boolean isSubtype = false;
3874             for (Type proper : properList) {
3875                 if (types.isSubtype(checked, proper)) {
3876                     isSubtype = true;
3877                     break;
3878                 }
3879             }
3880             if (!isSubtype) {
3881                 uncaughtByProperTypes.add(checked);
3882             }
3883         }
3884 
3885         if (nonProperList.isEmpty() && !uncaughtByProperTypes.isEmpty()) {
3886             return false;
3887         }
3888 
3889         /** If n > 0, the constraint reduces to a set of subtyping constraints:
3890          *  for all i (1 <= i <= m), if Xi is not a subtype of any proper type in the
3891          *  throws clause, then the constraints include, for all j (1 <= j <= n), <Xi <: Ej>
3892          */
3893         List<Type> nonProperAsUndet = inferenceContext.asUndetVars(nonProperList);
3894         uncaughtByProperTypes.forEach(checkedEx -> {
3895             nonProperAsUndet.forEach(nonProper -> {
3896                 types.isSubtype(checkedEx, nonProper);
3897             });
3898         });
3899 
3900         /** In addition, for all j (1 <= j <= n), the constraint reduces to the bound throws Ej
3901          */
3902         nonProperAsUndet.stream()
3903                 .filter(t -> t.hasTag(UNDETVAR))
3904                 .forEach(t -> ((UndetVar)t).setThrow());
3905         return true;
3906     }
3907 
3908     /**
3909      * Set functional type info on the underlying AST. Note: as the target descriptor
3910      * might contain inference variables, we might need to register an hook in the
3911      * current inference context.
3912      */
3913     private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
3914             final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
3915         if (checkContext.inferenceContext().free(descriptorType)) {
3916             checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType),
3917                     inferenceContext -> setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
3918                     inferenceContext.asInstType(primaryTarget), checkContext));
3919         } else {
3920             if (pt.hasTag(CLASS)) {
3921                 fExpr.target = primaryTarget;
3922             }
3923             if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3924                     pt != Type.recoveryType) {
3925                 //check that functional interface class is well-formed
3926                 try {
3927                     /* Types.makeFunctionalInterfaceClass() may throw an exception
3928                      * when it's executed post-inference. See the listener code
3929                      * above.
3930                      */
3931                     ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
3932                             names.empty, fExpr.target, ABSTRACT);
3933                     if (csym != null) {
3934                         chk.checkImplementations(env.tree, csym, csym);
3935                         try {
3936                             //perform an additional functional interface check on the synthetic class,
3937                             //as there may be spurious errors for raw targets - because of existing issues
3938                             //with membership and inheritance (see JDK-8074570).
3939                             csym.flags_field |= INTERFACE;
3940                             types.findDescriptorType(csym.type);
3941                         } catch (FunctionDescriptorLookupError err) {
3942                             resultInfo.checkContext.report(fExpr,
3943                                     diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.target)));
3944                         }
3945                     }
3946                 } catch (Types.FunctionDescriptorLookupError ex) {
3947                     JCDiagnostic cause = ex.getDiagnostic();
3948                     resultInfo.checkContext.report(env.tree, cause);
3949                 }
3950             }
3951         }
3952     }
3953 
3954     public void visitParens(JCParens tree) {
3955         Type owntype = attribTree(tree.expr, env, resultInfo);
3956         result = check(tree, owntype, pkind(), resultInfo);
3957         Symbol sym = TreeInfo.symbol(tree);
3958         if (sym != null && sym.kind.matches(KindSelector.TYP_PCK) && sym.kind != Kind.ERR)
3959             log.error(tree.pos(), Errors.IllegalParenthesizedExpression);
3960     }
3961 
3962     public void visitAssign(JCAssign tree) {
3963         Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo);
3964         Type capturedType = capture(owntype);
3965         attribExpr(tree.rhs, env, owntype);
3966         result = check(tree, capturedType, KindSelector.VAL, resultInfo);
3967     }
3968 
3969     public void visitAssignop(JCAssignOp tree) {
3970         // Attribute arguments.
3971         Type owntype = attribTree(tree.lhs, env, varAssignmentInfo);
3972         Type operand = attribExpr(tree.rhs, env);
3973         // Find operator.
3974         Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand);
3975         if (operator != operators.noOpSymbol &&
3976                 !owntype.isErroneous() &&
3977                 !operand.isErroneous()) {
3978             chk.checkDivZero(tree.rhs.pos(), operator, operand);
3979             chk.checkCastable(tree.rhs.pos(),
3980                               operator.type.getReturnType(),
3981                               owntype);
3982             chk.checkLossOfPrecision(tree.rhs.pos(), operand, owntype);
3983         }
3984         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3985     }
3986 
3987     public void visitUnary(JCUnary tree) {
3988         // Attribute arguments.
3989         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
3990             ? attribTree(tree.arg, env, varAssignmentInfo)
3991             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
3992 
3993         // Find operator.
3994         OperatorSymbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype);
3995         Type owntype = types.createErrorType(tree.type);
3996         if (operator != operators.noOpSymbol &&
3997                 !argtype.isErroneous()) {
3998             owntype = (tree.getTag().isIncOrDecUnaryOp())
3999                 ? tree.arg.type
4000                 : operator.type.getReturnType();
4001             int opc = operator.opcode;
4002 
4003             // If the argument is constant, fold it.
4004             if (argtype.constValue() != null) {
4005                 Type ctype = cfolder.fold1(opc, argtype);
4006                 if (ctype != null) {
4007                     owntype = cfolder.coerce(ctype, owntype);
4008                 }
4009             }
4010         }
4011         result = check(tree, owntype, KindSelector.VAL, resultInfo);
4012         matchBindings = matchBindingsComputer.unary(tree, matchBindings);
4013     }
4014 
4015     public void visitBinary(JCBinary tree) {
4016         // Attribute arguments.
4017         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
4018         // x && y
4019         // include x's bindings when true in y
4020 
4021         // x || y
4022         // include x's bindings when false in y
4023 
4024         MatchBindings lhsBindings = matchBindings;
4025         List<BindingSymbol> propagatedBindings;
4026         switch (tree.getTag()) {
4027             case AND:
4028                 propagatedBindings = lhsBindings.bindingsWhenTrue;
4029                 break;
4030             case OR:
4031                 propagatedBindings = lhsBindings.bindingsWhenFalse;
4032                 break;
4033             default:
4034                 propagatedBindings = List.nil();
4035                 break;
4036         }
4037         Env<AttrContext> rhsEnv = bindingEnv(env, propagatedBindings);
4038         Type right;
4039         try {
4040             right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, rhsEnv));
4041         } finally {
4042             rhsEnv.info.scope.leave();
4043         }
4044 
4045         matchBindings = matchBindingsComputer.binary(tree, lhsBindings, matchBindings);
4046 
4047         // Find operator.
4048         OperatorSymbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right);
4049         Type owntype = types.createErrorType(tree.type);
4050         if (operator != operators.noOpSymbol &&
4051                 !left.isErroneous() &&
4052                 !right.isErroneous()) {
4053             owntype = operator.type.getReturnType();
4054             int opc = operator.opcode;
4055             // If both arguments are constants, fold them.
4056             if (left.constValue() != null && right.constValue() != null) {
4057                 Type ctype = cfolder.fold2(opc, left, right);
4058                 if (ctype != null) {
4059                     owntype = cfolder.coerce(ctype, owntype);
4060                 }
4061             }
4062 
4063             // Check that argument types of a reference ==, != are
4064             // castable to each other, (JLS 15.21).  Note: unboxing
4065             // comparisons will not have an acmp* opc at this point.
4066             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
4067                 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
4068                     log.error(tree.pos(), Errors.IncomparableTypes(left, right));
4069                 }
4070             }
4071 
4072             chk.checkDivZero(tree.rhs.pos(), operator, right);
4073         }
4074         result = check(tree, owntype, KindSelector.VAL, resultInfo);
4075     }
4076 
4077     public void visitTypeCast(final JCTypeCast tree) {
4078         Type clazztype = attribType(tree.clazz, env);
4079         chk.validate(tree.clazz, env, false);
4080         //a fresh environment is required for 292 inference to work properly ---
4081         //see Infer.instantiatePolymorphicSignatureInstance()
4082         Env<AttrContext> localEnv = env.dup(tree);
4083         //should we propagate the target type?
4084         final ResultInfo castInfo;
4085         JCExpression expr = TreeInfo.skipParens(tree.expr);
4086         boolean isPoly = (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
4087         if (isPoly) {
4088             //expression is a poly - we need to propagate target type info
4089             castInfo = new ResultInfo(KindSelector.VAL, clazztype,
4090                                       new Check.NestedCheckContext(resultInfo.checkContext) {
4091                 @Override
4092                 public boolean compatible(Type found, Type req, Warner warn) {
4093                     return types.isCastable(found, req, warn);
4094                 }
4095             });
4096         } else {
4097             //standalone cast - target-type info is not propagated
4098             castInfo = unknownExprInfo;
4099         }
4100         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
4101         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
4102         if (exprtype.constValue() != null)
4103             owntype = cfolder.coerce(exprtype, owntype);
4104         result = check(tree, capture(owntype), KindSelector.VAL, resultInfo);
4105         if (!isPoly)
4106             chk.checkRedundantCast(localEnv, tree);
4107     }
4108 
4109     public void visitTypeTest(JCInstanceOf tree) {
4110         Type exprtype = attribExpr(tree.expr, env);
4111         if (exprtype.isPrimitive()) {
4112             preview.checkSourceLevel(tree.expr.pos(), Feature.PRIMITIVE_PATTERNS);
4113         } else {
4114             exprtype = chk.checkNullOrRefType(
4115                     tree.expr.pos(), exprtype);
4116         }
4117         Type clazztype;
4118         JCTree typeTree;
4119         if (tree.pattern.getTag() == BINDINGPATTERN ||
4120             tree.pattern.getTag() == RECORDPATTERN) {
4121             attribExpr(tree.pattern, env, exprtype);
4122             clazztype = tree.pattern.type;
4123             if (types.isSubtype(exprtype, clazztype) &&
4124                 !exprtype.isErroneous() && !clazztype.isErroneous() &&
4125                 tree.pattern.getTag() != RECORDPATTERN) {
4126                 if (!allowUnconditionalPatternsInstanceOf) {
4127                     log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(),
4128                               Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.error(this.sourceName));
4129                 }
4130             }
4131             typeTree = TreeInfo.primaryPatternTypeTree((JCPattern) tree.pattern);
4132         } else {
4133             clazztype = attribType(tree.pattern, env);
4134             typeTree = tree.pattern;
4135             chk.validate(typeTree, env, false);
4136         }
4137         if (clazztype.isPrimitive()) {
4138             preview.checkSourceLevel(tree.pattern.pos(), Feature.PRIMITIVE_PATTERNS);
4139         } else {
4140             if (!clazztype.hasTag(TYPEVAR)) {
4141                 clazztype = chk.checkClassOrArrayType(typeTree.pos(), clazztype);
4142             }
4143             if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
4144                 boolean valid = false;
4145                 if (allowReifiableTypesInInstanceof) {
4146                     valid = checkCastablePattern(tree.expr.pos(), exprtype, clazztype);
4147                 } else {
4148                     log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(),
4149                             Feature.REIFIABLE_TYPES_INSTANCEOF.error(this.sourceName));
4150                     allowReifiableTypesInInstanceof = true;
4151                 }
4152                 if (!valid) {
4153                     clazztype = types.createErrorType(clazztype);
4154                 }
4155             }
4156         }
4157         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
4158         result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo);
4159     }
4160 
4161     private boolean checkCastablePattern(DiagnosticPosition pos,
4162                                          Type exprType,
4163                                          Type pattType) {
4164         Warner warner = new Warner();
4165         // if any type is erroneous, the problem is reported elsewhere
4166         if (exprType.isErroneous() || pattType.isErroneous()) {
4167             return false;
4168         }
4169         if (!types.isCastable(exprType, pattType, warner)) {
4170             chk.basicHandler.report(pos,
4171                     diags.fragment(Fragments.InconvertibleTypes(exprType, pattType)));
4172             return false;
4173         } else if ((exprType.isPrimitive() || pattType.isPrimitive()) &&
4174                 (!exprType.isPrimitive() || !pattType.isPrimitive() || !types.isSameType(exprType, pattType))) {
4175             preview.checkSourceLevel(pos, Feature.PRIMITIVE_PATTERNS);
4176             return true;
4177         } else if (warner.hasLint(LintCategory.UNCHECKED)) {
4178             log.error(pos,
4179                     Errors.InstanceofReifiableNotSafe(exprType, pattType));
4180             return false;
4181         } else {
4182             return true;
4183         }
4184     }
4185 
4186     @Override
4187     public void visitAnyPattern(JCAnyPattern tree) {
4188         result = tree.type = resultInfo.pt;
4189     }
4190 
4191     public void visitBindingPattern(JCBindingPattern tree) {
4192         Type type;
4193         if (tree.var.vartype != null) {
4194             type = attribType(tree.var.vartype, env);
4195         } else {
4196             type = resultInfo.pt;
4197         }
4198         tree.type = tree.var.type = type;
4199         BindingSymbol v = new BindingSymbol(tree.var.mods.flags, tree.var.name, type, env.info.scope.owner);
4200         v.pos = tree.pos;
4201         tree.var.sym = v;
4202         if (chk.checkUnique(tree.var.pos(), v, env.info.scope)) {
4203             chk.checkTransparentVar(tree.var.pos(), v, env.info.scope);
4204         }
4205         annotate.annotateLater(tree.var.mods.annotations, env, v, tree.pos());
4206         if (!tree.var.isImplicitlyTyped()) {
4207             annotate.queueScanTreeAndTypeAnnotate(tree.var.vartype, env, v, tree.var.pos());
4208         }
4209         annotate.flush();
4210         chk.validate(tree.var.vartype, env, true);
4211         result = tree.type;
4212         if (v.isUnnamedVariable()) {
4213             matchBindings = MatchBindingsComputer.EMPTY;
4214         } else {
4215             matchBindings = new MatchBindings(List.of(v), List.nil());
4216         }
4217     }
4218 
4219     @Override
4220     public void visitRecordPattern(JCRecordPattern tree) {
4221         Type site;
4222 
4223         if (tree.deconstructor == null) {
4224             log.error(tree.pos(), Errors.DeconstructionPatternVarNotAllowed);
4225             tree.record = syms.errSymbol;
4226             site = tree.type = types.createErrorType(tree.record.type);
4227         } else {
4228             Type type = attribType(tree.deconstructor, env);
4229             if (type.isRaw() && type.tsym.getTypeParameters().nonEmpty()) {
4230                 Type inferred = infer.instantiatePatternType(resultInfo.pt, type.tsym);
4231                 if (inferred == null) {
4232                     log.error(tree.pos(), Errors.PatternTypeCannotInfer);
4233                 } else {
4234                     type = inferred;
4235                 }
4236             }
4237             tree.type = tree.deconstructor.type = type;
4238             site = types.capture(tree.type);
4239         }
4240 
4241         List<Type> expectedRecordTypes;
4242         if (site.tsym.kind == Kind.TYP && ((ClassSymbol) site.tsym).isRecord()) {
4243             ClassSymbol record = (ClassSymbol) site.tsym;
4244             expectedRecordTypes = record.getRecordComponents()
4245                                         .stream()
4246                                         .map(rc -> types.memberType(site, rc))
4247                                         .map(t -> types.upward(t, types.captures(t)).baseType())
4248                                         .collect(List.collector());
4249             tree.record = record;
4250         } else {
4251             log.error(tree.pos(), Errors.DeconstructionPatternOnlyRecords(site.tsym));
4252             expectedRecordTypes = Stream.generate(() -> types.createErrorType(tree.type))
4253                                 .limit(tree.nested.size())
4254                                 .collect(List.collector());
4255             tree.record = syms.errSymbol;
4256         }
4257         ListBuffer<BindingSymbol> outBindings = new ListBuffer<>();
4258         List<Type> recordTypes = expectedRecordTypes;
4259         List<JCPattern> nestedPatterns = tree.nested;
4260         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
4261         try {
4262             while (recordTypes.nonEmpty() && nestedPatterns.nonEmpty()) {
4263                 attribExpr(nestedPatterns.head, localEnv, recordTypes.head);
4264                 checkCastablePattern(nestedPatterns.head.pos(), recordTypes.head, nestedPatterns.head.type);
4265                 outBindings.addAll(matchBindings.bindingsWhenTrue);
4266                 matchBindings.bindingsWhenTrue.forEach(localEnv.info.scope::enter);
4267                 nestedPatterns = nestedPatterns.tail;
4268                 recordTypes = recordTypes.tail;
4269             }
4270             if (recordTypes.nonEmpty() || nestedPatterns.nonEmpty()) {
4271                 while (nestedPatterns.nonEmpty()) {
4272                     attribExpr(nestedPatterns.head, localEnv, Type.noType);
4273                     nestedPatterns = nestedPatterns.tail;
4274                 }
4275                 List<Type> nestedTypes =
4276                         tree.nested.stream().map(p -> p.type).collect(List.collector());
4277                 log.error(tree.pos(),
4278                           Errors.IncorrectNumberOfNestedPatterns(expectedRecordTypes,
4279                                                                  nestedTypes));
4280             }
4281         } finally {
4282             localEnv.info.scope.leave();
4283         }
4284         chk.validate(tree.deconstructor, env, true);
4285         result = tree.type;
4286         matchBindings = new MatchBindings(outBindings.toList(), List.nil());
4287     }
4288 
4289     public void visitIndexed(JCArrayAccess tree) {
4290         Type owntype = types.createErrorType(tree.type);
4291         Type atype = attribExpr(tree.indexed, env);
4292         attribExpr(tree.index, env, syms.intType);
4293         if (types.isArray(atype))
4294             owntype = types.elemtype(atype);
4295         else if (!atype.hasTag(ERROR))
4296             log.error(tree.pos(), Errors.ArrayReqButFound(atype));
4297         if (!pkind().contains(KindSelector.VAL))
4298             owntype = capture(owntype);
4299         result = check(tree, owntype, KindSelector.VAR, resultInfo);
4300     }
4301 
4302     public void visitIdent(JCIdent tree) {
4303         Symbol sym;
4304 
4305         // Find symbol
4306         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
4307             // If we are looking for a method, the prototype `pt' will be a
4308             // method type with the type of the call's arguments as parameters.
4309             env.info.pendingResolutionPhase = null;
4310             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
4311         } else if (tree.sym != null && tree.sym.kind != VAR) {
4312             sym = tree.sym;
4313         } else {
4314             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
4315         }
4316         tree.sym = sym;
4317 
4318         // Also find the environment current for the class where
4319         // sym is defined (`symEnv').
4320         Env<AttrContext> symEnv = env;
4321         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
4322             sym.kind.matches(KindSelector.VAL_MTH) &&
4323             sym.owner.kind == TYP &&
4324             tree.name != names._this && tree.name != names._super) {
4325 
4326             // Find environment in which identifier is defined.
4327             while (symEnv.outer != null &&
4328                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
4329                 symEnv = symEnv.outer;
4330             }
4331         }
4332 
4333         // If symbol is a variable, ...
4334         if (sym.kind == VAR) {
4335             VarSymbol v = (VarSymbol)sym;
4336 
4337             // ..., evaluate its initializer, if it has one, and check for
4338             // illegal forward reference.
4339             checkInit(tree, env, v, false);
4340 
4341             // If we are expecting a variable (as opposed to a value), check
4342             // that the variable is assignable in the current environment.
4343             if (KindSelector.ASG.subset(pkind()))
4344                 checkAssignable(tree.pos(), v, null, env);
4345         }
4346 
4347         Env<AttrContext> env1 = env;
4348         if (sym.kind != ERR && sym.kind != TYP &&
4349             sym.owner != null && sym.owner != env1.enclClass.sym) {
4350             // If the found symbol is inaccessible, then it is
4351             // accessed through an enclosing instance.  Locate this
4352             // enclosing instance:
4353             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
4354                 env1 = env1.outer;
4355         }
4356 
4357         if (env.info.isSerializable) {
4358             chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda);
4359         }
4360 
4361         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
4362     }
4363 
4364     public void visitSelect(JCFieldAccess tree) {
4365         // Determine the expected kind of the qualifier expression.
4366         KindSelector skind = KindSelector.NIL;
4367         if (tree.name == names._this || tree.name == names._super ||
4368                 tree.name == names._class)
4369         {
4370             skind = KindSelector.TYP;
4371         } else {
4372             if (pkind().contains(KindSelector.PCK))
4373                 skind = KindSelector.of(skind, KindSelector.PCK);
4374             if (pkind().contains(KindSelector.TYP))
4375                 skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK);
4376             if (pkind().contains(KindSelector.VAL_MTH))
4377                 skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP);
4378         }
4379 
4380         // Attribute the qualifier expression, and determine its symbol (if any).
4381         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType));
4382         if (!pkind().contains(KindSelector.TYP_PCK))
4383             site = capture(site); // Capture field access
4384 
4385         // don't allow T.class T[].class, etc
4386         if (skind == KindSelector.TYP) {
4387             Type elt = site;
4388             while (elt.hasTag(ARRAY))
4389                 elt = ((ArrayType)elt).elemtype;
4390             if (elt.hasTag(TYPEVAR)) {
4391                 log.error(tree.pos(), Errors.TypeVarCantBeDeref);
4392                 result = tree.type = types.createErrorType(tree.name, site.tsym, site);
4393                 tree.sym = tree.type.tsym;
4394                 return ;
4395             }
4396         }
4397 
4398         // If qualifier symbol is a type or `super', assert `selectSuper'
4399         // for the selection. This is relevant for determining whether
4400         // protected symbols are accessible.
4401         Symbol sitesym = TreeInfo.symbol(tree.selected);
4402         boolean selectSuperPrev = env.info.selectSuper;
4403         env.info.selectSuper =
4404             sitesym != null &&
4405             sitesym.name == names._super;
4406 
4407         // Determine the symbol represented by the selection.
4408         env.info.pendingResolutionPhase = null;
4409         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
4410         if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
4411             log.error(tree.selected.pos(), Errors.NotEnclClass(site.tsym));
4412             sym = syms.errSymbol;
4413         }
4414         if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) {
4415             site = capture(site);
4416             sym = selectSym(tree, sitesym, site, env, resultInfo);
4417         }
4418         boolean varArgs = env.info.lastResolveVarargs();
4419         tree.sym = sym;
4420 
4421         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
4422             site = types.skipTypeVars(site, true);
4423         }
4424 
4425         // If that symbol is a variable, ...
4426         if (sym.kind == VAR) {
4427             VarSymbol v = (VarSymbol)sym;
4428 
4429             // ..., evaluate its initializer, if it has one, and check for
4430             // illegal forward reference.
4431             checkInit(tree, env, v, true);
4432 
4433             // If we are expecting a variable (as opposed to a value), check
4434             // that the variable is assignable in the current environment.
4435             if (KindSelector.ASG.subset(pkind()))
4436                 checkAssignable(tree.pos(), v, tree.selected, env);
4437         }
4438 
4439         if (sitesym != null &&
4440                 sitesym.kind == VAR &&
4441                 ((VarSymbol)sitesym).isResourceVariable() &&
4442                 sym.kind == MTH &&
4443                 sym.name.equals(names.close) &&
4444                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
4445                 env.info.lint.isEnabled(LintCategory.TRY)) {
4446             log.warning(LintCategory.TRY, tree, Warnings.TryExplicitCloseCall);
4447         }
4448 
4449         // Disallow selecting a type from an expression
4450         if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) {
4451             tree.type = check(tree.selected, pt(),
4452                               sitesym == null ?
4453                                       KindSelector.VAL : sitesym.kind.toSelector(),
4454                               new ResultInfo(KindSelector.TYP_PCK, pt()));
4455         }
4456 
4457         if (isType(sitesym)) {
4458             if (sym.name != names._this && sym.name != names._super) {
4459                 // Check if type-qualified fields or methods are static (JLS)
4460                 if ((sym.flags() & STATIC) == 0 &&
4461                     sym.name != names._super &&
4462                     (sym.kind == VAR || sym.kind == MTH)) {
4463                     rs.accessBase(rs.new StaticError(sym),
4464                               tree.pos(), site, sym.name, true);
4465                 }
4466             }
4467         } else if (sym.kind != ERR &&
4468                    (sym.flags() & STATIC) != 0 &&
4469                    sym.name != names._class) {
4470             // If the qualified item is not a type and the selected item is static, report
4471             // a warning. Make allowance for the class of an array type e.g. Object[].class)
4472             if (!sym.owner.isAnonymous()) {
4473                 chk.warnStatic(tree, Warnings.StaticNotQualifiedByType(sym.kind.kindName(), sym.owner));
4474             } else {
4475                 chk.warnStatic(tree, Warnings.StaticNotQualifiedByType2(sym.kind.kindName()));
4476             }
4477         }
4478 
4479         // If we are selecting an instance member via a `super', ...
4480         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
4481 
4482             // Check that super-qualified symbols are not abstract (JLS)
4483             rs.checkNonAbstract(tree.pos(), sym);
4484 
4485             if (site.isRaw()) {
4486                 // Determine argument types for site.
4487                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
4488                 if (site1 != null) site = site1;
4489             }
4490         }
4491 
4492         if (env.info.isSerializable) {
4493             chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda);
4494         }
4495 
4496         env.info.selectSuper = selectSuperPrev;
4497         result = checkId(tree, site, sym, env, resultInfo);
4498     }
4499     //where
4500         /** Determine symbol referenced by a Select expression,
4501          *
4502          *  @param tree   The select tree.
4503          *  @param site   The type of the selected expression,
4504          *  @param env    The current environment.
4505          *  @param resultInfo The current result.
4506          */
4507         private Symbol selectSym(JCFieldAccess tree,
4508                                  Symbol location,
4509                                  Type site,
4510                                  Env<AttrContext> env,
4511                                  ResultInfo resultInfo) {
4512             DiagnosticPosition pos = tree.pos();
4513             Name name = tree.name;
4514             switch (site.getTag()) {
4515             case PACKAGE:
4516                 return rs.accessBase(
4517                     rs.findIdentInPackage(pos, env, site.tsym, name, resultInfo.pkind),
4518                     pos, location, site, name, true);
4519             case ARRAY:
4520             case CLASS:
4521                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
4522                     return rs.resolveQualifiedMethod(
4523                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
4524                 } else if (name == names._this || name == names._super) {
4525                     return rs.resolveSelf(pos, env, site.tsym, name);
4526                 } else if (name == names._class) {
4527                     // In this case, we have already made sure in
4528                     // visitSelect that qualifier expression is a type.
4529                     return syms.getClassField(site, types);
4530                 } else {
4531                     // We are seeing a plain identifier as selector.
4532                     Symbol sym = rs.findIdentInType(pos, env, site, name, resultInfo.pkind);
4533                         sym = rs.accessBase(sym, pos, location, site, name, true);
4534                     return sym;
4535                 }
4536             case WILDCARD:
4537                 throw new AssertionError(tree);
4538             case TYPEVAR:
4539                 // Normally, site.getUpperBound() shouldn't be null.
4540                 // It should only happen during memberEnter/attribBase
4541                 // when determining the supertype which *must* be
4542                 // done before attributing the type variables.  In
4543                 // other words, we are seeing this illegal program:
4544                 // class B<T> extends A<T.foo> {}
4545                 Symbol sym = (site.getUpperBound() != null)
4546                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
4547                     : null;
4548                 if (sym == null) {
4549                     log.error(pos, Errors.TypeVarCantBeDeref);
4550                     return syms.errSymbol;
4551                 } else {
4552                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
4553                         rs.new AccessError(env, site, sym) :
4554                                 sym;
4555                     rs.accessBase(sym2, pos, location, site, name, true);
4556                     return sym;
4557                 }
4558             case ERROR:
4559                 // preserve identifier names through errors
4560                 return types.createErrorType(name, site.tsym, site).tsym;
4561             default:
4562                 // The qualifier expression is of a primitive type -- only
4563                 // .class is allowed for these.
4564                 if (name == names._class) {
4565                     // In this case, we have already made sure in Select that
4566                     // qualifier expression is a type.
4567                     return syms.getClassField(site, types);
4568                 } else {
4569                     log.error(pos, Errors.CantDeref(site));
4570                     return syms.errSymbol;
4571                 }
4572             }
4573         }
4574 
4575         /** Determine type of identifier or select expression and check that
4576          *  (1) the referenced symbol is not deprecated
4577          *  (2) the symbol's type is safe (@see checkSafe)
4578          *  (3) if symbol is a variable, check that its type and kind are
4579          *      compatible with the prototype and protokind.
4580          *  (4) if symbol is an instance field of a raw type,
4581          *      which is being assigned to, issue an unchecked warning if its
4582          *      type changes under erasure.
4583          *  (5) if symbol is an instance method of a raw type, issue an
4584          *      unchecked warning if its argument types change under erasure.
4585          *  If checks succeed:
4586          *    If symbol is a constant, return its constant type
4587          *    else if symbol is a method, return its result type
4588          *    otherwise return its type.
4589          *  Otherwise return errType.
4590          *
4591          *  @param tree       The syntax tree representing the identifier
4592          *  @param site       If this is a select, the type of the selected
4593          *                    expression, otherwise the type of the current class.
4594          *  @param sym        The symbol representing the identifier.
4595          *  @param env        The current environment.
4596          *  @param resultInfo    The expected result
4597          */
4598         Type checkId(JCTree tree,
4599                      Type site,
4600                      Symbol sym,
4601                      Env<AttrContext> env,
4602                      ResultInfo resultInfo) {
4603             return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
4604                     checkMethodIdInternal(tree, site, sym, env, resultInfo) :
4605                     checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
4606         }
4607 
4608         Type checkMethodIdInternal(JCTree tree,
4609                      Type site,
4610                      Symbol sym,
4611                      Env<AttrContext> env,
4612                      ResultInfo resultInfo) {
4613             if (resultInfo.pkind.contains(KindSelector.POLY)) {
4614                 return attrRecover.recoverMethodInvocation(tree, site, sym, env, resultInfo);
4615             } else {
4616                 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
4617             }
4618         }
4619 
4620         Type checkIdInternal(JCTree tree,
4621                      Type site,
4622                      Symbol sym,
4623                      Type pt,
4624                      Env<AttrContext> env,
4625                      ResultInfo resultInfo) {
4626             if (pt.isErroneous()) {
4627                 return types.createErrorType(site);
4628             }
4629             Type owntype; // The computed type of this identifier occurrence.
4630             switch (sym.kind) {
4631             case TYP:
4632                 // For types, the computed type equals the symbol's type,
4633                 // except for two situations:
4634                 owntype = sym.type;
4635                 if (owntype.hasTag(CLASS)) {
4636                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
4637                     Type ownOuter = owntype.getEnclosingType();
4638 
4639                     // (a) If the symbol's type is parameterized, erase it
4640                     // because no type parameters were given.
4641                     // We recover generic outer type later in visitTypeApply.
4642                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
4643                         owntype = types.erasure(owntype);
4644                     }
4645 
4646                     // (b) If the symbol's type is an inner class, then
4647                     // we have to interpret its outer type as a superclass
4648                     // of the site type. Example:
4649                     //
4650                     // class Tree<A> { class Visitor { ... } }
4651                     // class PointTree extends Tree<Point> { ... }
4652                     // ...PointTree.Visitor...
4653                     //
4654                     // Then the type of the last expression above is
4655                     // Tree<Point>.Visitor.
4656                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
4657                         Type normOuter = site;
4658                         if (normOuter.hasTag(CLASS)) {
4659                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
4660                         }
4661                         if (normOuter == null) // perhaps from an import
4662                             normOuter = types.erasure(ownOuter);
4663                         if (normOuter != ownOuter)
4664                             owntype = new ClassType(
4665                                 normOuter, List.nil(), owntype.tsym,
4666                                 owntype.getMetadata());
4667                     }
4668                 }
4669                 break;
4670             case VAR:
4671                 VarSymbol v = (VarSymbol)sym;
4672 
4673                 if (env.info.enclVar != null
4674                         && v.type.hasTag(NONE)) {
4675                     //self reference to implicitly typed variable declaration
4676                     log.error(TreeInfo.positionFor(v, env.enclClass), Errors.CantInferLocalVarType(v.name, Fragments.LocalSelfRef));
4677                     return tree.type = v.type = types.createErrorType(v.type);
4678                 }
4679 
4680                 // Test (4): if symbol is an instance field of a raw type,
4681                 // which is being assigned to, issue an unchecked warning if
4682                 // its type changes under erasure.
4683                 if (KindSelector.ASG.subset(pkind()) &&
4684                     v.owner.kind == TYP &&
4685                     (v.flags() & STATIC) == 0 &&
4686                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
4687                     Type s = types.asOuterSuper(site, v.owner);
4688                     if (s != null &&
4689                         s.isRaw() &&
4690                         !types.isSameType(v.type, v.erasure(types))) {
4691                         chk.warnUnchecked(tree.pos(), Warnings.UncheckedAssignToVar(v, s));
4692                     }
4693                 }
4694                 // The computed type of a variable is the type of the
4695                 // variable symbol, taken as a member of the site type.
4696                 owntype = (sym.owner.kind == TYP &&
4697                            sym.name != names._this && sym.name != names._super)
4698                     ? types.memberType(site, sym)
4699                     : sym.type;
4700 
4701                 // If the variable is a constant, record constant value in
4702                 // computed type.
4703                 if (v.getConstValue() != null && isStaticReference(tree))
4704                     owntype = owntype.constType(v.getConstValue());
4705 
4706                 if (resultInfo.pkind == KindSelector.VAL) {
4707                     owntype = capture(owntype); // capture "names as expressions"
4708                 }
4709                 break;
4710             case MTH: {
4711                 owntype = checkMethod(site, sym,
4712                         new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext, resultInfo.checkMode),
4713                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
4714                         resultInfo.pt.getTypeArguments());
4715                 chk.checkRestricted(tree.pos(), sym);
4716                 break;
4717             }
4718             case PCK: case ERR:
4719                 owntype = sym.type;
4720                 break;
4721             default:
4722                 throw new AssertionError("unexpected kind: " + sym.kind +
4723                                          " in tree " + tree);
4724             }
4725 
4726             // Emit a `deprecation' warning if symbol is deprecated.
4727             // (for constructors (but not for constructor references), the error
4728             // was given when the constructor was resolved)
4729 
4730             if (sym.name != names.init || tree.hasTag(REFERENCE)) {
4731                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
4732                 chk.checkSunAPI(tree.pos(), sym);
4733                 chk.checkProfile(tree.pos(), sym);
4734                 chk.checkPreview(tree.pos(), env.info.scope.owner, sym);
4735             }
4736 
4737             // If symbol is a variable, check that its type and
4738             // kind are compatible with the prototype and protokind.
4739             return check(tree, owntype, sym.kind.toSelector(), resultInfo);
4740         }
4741 
4742         /** Check that variable is initialized and evaluate the variable's
4743          *  initializer, if not yet done. Also check that variable is not
4744          *  referenced before it is defined.
4745          *  @param tree    The tree making up the variable reference.
4746          *  @param env     The current environment.
4747          *  @param v       The variable's symbol.
4748          */
4749         private void checkInit(JCTree tree,
4750                                Env<AttrContext> env,
4751                                VarSymbol v,
4752                                boolean onlyWarning) {
4753             // A forward reference is diagnosed if the declaration position
4754             // of the variable is greater than the current tree position
4755             // and the tree and variable definition occur in the same class
4756             // definition.  Note that writes don't count as references.
4757             // This check applies only to class and instance
4758             // variables.  Local variables follow different scope rules,
4759             // and are subject to definite assignment checking.
4760             Env<AttrContext> initEnv = enclosingInitEnv(env);
4761             if (initEnv != null &&
4762                 (initEnv.info.enclVar == v || v.pos > tree.pos) &&
4763                 v.owner.kind == TYP &&
4764                 v.owner == env.info.scope.owner.enclClass() &&
4765                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
4766                 (!env.tree.hasTag(ASSIGN) ||
4767                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
4768                 if (!onlyWarning || isStaticEnumField(v)) {
4769                     Error errkey = (initEnv.info.enclVar == v) ?
4770                                 Errors.IllegalSelfRef : Errors.IllegalForwardRef;
4771                     log.error(tree.pos(), errkey);
4772                 } else if (useBeforeDeclarationWarning) {
4773                     Warning warnkey = (initEnv.info.enclVar == v) ?
4774                                 Warnings.SelfRef(v) : Warnings.ForwardRef(v);
4775                     log.warning(tree.pos(), warnkey);
4776                 }
4777             }
4778 
4779             v.getConstValue(); // ensure initializer is evaluated
4780 
4781             checkEnumInitializer(tree, env, v);
4782         }
4783 
4784         /**
4785          * Returns the enclosing init environment associated with this env (if any). An init env
4786          * can be either a field declaration env or a static/instance initializer env.
4787          */
4788         Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) {
4789             while (true) {
4790                 switch (env.tree.getTag()) {
4791                     case VARDEF:
4792                         JCVariableDecl vdecl = (JCVariableDecl)env.tree;
4793                         if (vdecl.sym.owner.kind == TYP) {
4794                             //field
4795                             return env;
4796                         }
4797                         break;
4798                     case BLOCK:
4799                         if (env.next.tree.hasTag(CLASSDEF)) {
4800                             //instance/static initializer
4801                             return env;
4802                         }
4803                         break;
4804                     case METHODDEF:
4805                     case CLASSDEF:
4806                     case TOPLEVEL:
4807                         return null;
4808                 }
4809                 Assert.checkNonNull(env.next);
4810                 env = env.next;
4811             }
4812         }
4813 
4814         /**
4815          * Check for illegal references to static members of enum.  In
4816          * an enum type, constructors and initializers may not
4817          * reference its static members unless they are constant.
4818          *
4819          * @param tree    The tree making up the variable reference.
4820          * @param env     The current environment.
4821          * @param v       The variable's symbol.
4822          * @jls 8.9 Enum Types
4823          */
4824         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
4825             // JLS:
4826             //
4827             // "It is a compile-time error to reference a static field
4828             // of an enum type that is not a compile-time constant
4829             // (15.28) from constructors, instance initializer blocks,
4830             // or instance variable initializer expressions of that
4831             // type. It is a compile-time error for the constructors,
4832             // instance initializer blocks, or instance variable
4833             // initializer expressions of an enum constant e to refer
4834             // to itself or to an enum constant of the same type that
4835             // is declared to the right of e."
4836             if (isStaticEnumField(v)) {
4837                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
4838 
4839                 if (enclClass == null || enclClass.owner == null)
4840                     return;
4841 
4842                 // See if the enclosing class is the enum (or a
4843                 // subclass thereof) declaring v.  If not, this
4844                 // reference is OK.
4845                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
4846                     return;
4847 
4848                 // If the reference isn't from an initializer, then
4849                 // the reference is OK.
4850                 if (!Resolve.isInitializer(env))
4851                     return;
4852 
4853                 log.error(tree.pos(), Errors.IllegalEnumStaticRef);
4854             }
4855         }
4856 
4857         /** Is the given symbol a static, non-constant field of an Enum?
4858          *  Note: enum literals should not be regarded as such
4859          */
4860         private boolean isStaticEnumField(VarSymbol v) {
4861             return Flags.isEnum(v.owner) &&
4862                    Flags.isStatic(v) &&
4863                    !Flags.isConstant(v) &&
4864                    v.name != names._class;
4865         }
4866 
4867     /**
4868      * Check that method arguments conform to its instantiation.
4869      **/
4870     public Type checkMethod(Type site,
4871                             final Symbol sym,
4872                             ResultInfo resultInfo,
4873                             Env<AttrContext> env,
4874                             final List<JCExpression> argtrees,
4875                             List<Type> argtypes,
4876                             List<Type> typeargtypes) {
4877         // Test (5): if symbol is an instance method of a raw type, issue
4878         // an unchecked warning if its argument types change under erasure.
4879         if ((sym.flags() & STATIC) == 0 &&
4880             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
4881             Type s = types.asOuterSuper(site, sym.owner);
4882             if (s != null && s.isRaw() &&
4883                 !types.isSameTypes(sym.type.getParameterTypes(),
4884                                    sym.erasure(types).getParameterTypes())) {
4885                 chk.warnUnchecked(env.tree.pos(), Warnings.UncheckedCallMbrOfRawType(sym, s));
4886             }
4887         }
4888 
4889         if (env.info.defaultSuperCallSite != null) {
4890             for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
4891                 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
4892                         types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
4893                 List<MethodSymbol> icand_sup =
4894                         types.interfaceCandidates(sup, (MethodSymbol)sym);
4895                 if (icand_sup.nonEmpty() &&
4896                         icand_sup.head != sym &&
4897                         icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
4898                     log.error(env.tree.pos(),
4899                               Errors.IllegalDefaultSuperCall(env.info.defaultSuperCallSite, Fragments.OverriddenDefault(sym, sup)));
4900                     break;
4901                 }
4902             }
4903             env.info.defaultSuperCallSite = null;
4904         }
4905 
4906         if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
4907             JCMethodInvocation app = (JCMethodInvocation)env.tree;
4908             if (app.meth.hasTag(SELECT) &&
4909                     !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
4910                 log.error(env.tree.pos(), Errors.IllegalStaticIntfMethCall(site));
4911             }
4912         }
4913 
4914         // Compute the identifier's instantiated type.
4915         // For methods, we need to compute the instance type by
4916         // Resolve.instantiate from the symbol's type as well as
4917         // any type arguments and value arguments.
4918         Warner noteWarner = new Warner();
4919         try {
4920             Type owntype = rs.checkMethod(
4921                     env,
4922                     site,
4923                     sym,
4924                     resultInfo,
4925                     argtypes,
4926                     typeargtypes,
4927                     noteWarner);
4928 
4929             DeferredAttr.DeferredTypeMap<Void> checkDeferredMap =
4930                 deferredAttr.new DeferredTypeMap<>(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
4931 
4932             argtypes = argtypes.map(checkDeferredMap);
4933 
4934             if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
4935                 chk.warnUnchecked(env.tree.pos(), Warnings.UncheckedMethInvocationApplied(kindName(sym),
4936                         sym.name,
4937                         rs.methodArguments(sym.type.getParameterTypes()),
4938                         rs.methodArguments(argtypes.map(checkDeferredMap)),
4939                         kindName(sym.location()),
4940                         sym.location()));
4941                 if (resultInfo.pt != Infer.anyPoly ||
4942                         !owntype.hasTag(METHOD) ||
4943                         !owntype.isPartial()) {
4944                     //if this is not a partially inferred method type, erase return type. Otherwise,
4945                     //erasure is carried out in PartiallyInferredMethodType.check().
4946                     owntype = new MethodType(owntype.getParameterTypes(),
4947                             types.erasure(owntype.getReturnType()),
4948                             types.erasure(owntype.getThrownTypes()),
4949                             syms.methodClass);
4950                 }
4951             }
4952 
4953             PolyKind pkind = (sym.type.hasTag(FORALL) &&
4954                  sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
4955                  PolyKind.POLY : PolyKind.STANDALONE;
4956             TreeInfo.setPolyKind(env.tree, pkind);
4957 
4958             return (resultInfo.pt == Infer.anyPoly) ?
4959                     owntype :
4960                     chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
4961                             resultInfo.checkContext.inferenceContext());
4962         } catch (Infer.InferenceException ex) {
4963             //invalid target type - propagate exception outwards or report error
4964             //depending on the current check context
4965             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
4966             return types.createErrorType(site);
4967         } catch (Resolve.InapplicableMethodException ex) {
4968             final JCDiagnostic diag = ex.getDiagnostic();
4969             Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
4970                 @Override
4971                 protected Pair<Symbol, JCDiagnostic> errCandidate() {
4972                     return new Pair<>(sym, diag);
4973                 }
4974             };
4975             List<Type> argtypes2 = argtypes.map(
4976                     rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
4977             JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
4978                     env.tree, sym, site, sym.name, argtypes2, typeargtypes);
4979             log.report(errDiag);
4980             return types.createErrorType(site);
4981         }
4982     }
4983 
4984     public void visitLiteral(JCLiteral tree) {
4985         result = check(tree, litType(tree.typetag).constType(tree.value),
4986                 KindSelector.VAL, resultInfo);
4987     }
4988     //where
4989     /** Return the type of a literal with given type tag.
4990      */
4991     Type litType(TypeTag tag) {
4992         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
4993     }
4994 
4995     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
4996         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo);
4997     }
4998 
4999     public void visitTypeArray(JCArrayTypeTree tree) {
5000         Type etype = attribType(tree.elemtype, env);
5001         Type type = new ArrayType(etype, syms.arrayClass);
5002         result = check(tree, type, KindSelector.TYP, resultInfo);
5003     }
5004 
5005     /** Visitor method for parameterized types.
5006      *  Bound checking is left until later, since types are attributed
5007      *  before supertype structure is completely known
5008      */
5009     public void visitTypeApply(JCTypeApply tree) {
5010         Type owntype = types.createErrorType(tree.type);
5011 
5012         // Attribute functor part of application and make sure it's a class.
5013         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
5014 
5015         // Attribute type parameters
5016         List<Type> actuals = attribTypes(tree.arguments, env);
5017 
5018         if (clazztype.hasTag(CLASS)) {
5019             List<Type> formals = clazztype.tsym.type.getTypeArguments();
5020             if (actuals.isEmpty()) //diamond
5021                 actuals = formals;
5022 
5023             if (actuals.length() == formals.length()) {
5024                 List<Type> a = actuals;
5025                 List<Type> f = formals;
5026                 while (a.nonEmpty()) {
5027                     a.head = a.head.withTypeVar(f.head);
5028                     a = a.tail;
5029                     f = f.tail;
5030                 }
5031                 // Compute the proper generic outer
5032                 Type clazzOuter = clazztype.getEnclosingType();
5033                 if (clazzOuter.hasTag(CLASS)) {
5034                     Type site;
5035                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
5036                     if (clazz.hasTag(IDENT)) {
5037                         site = env.enclClass.sym.type;
5038                     } else if (clazz.hasTag(SELECT)) {
5039                         site = ((JCFieldAccess) clazz).selected.type;
5040                     } else throw new AssertionError(""+tree);
5041                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
5042                         if (site.hasTag(CLASS))
5043                             site = types.asOuterSuper(site, clazzOuter.tsym);
5044                         if (site == null)
5045                             site = types.erasure(clazzOuter);
5046                         clazzOuter = site;
5047                     }
5048                 }
5049                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym,
5050                                         clazztype.getMetadata());
5051             } else {
5052                 if (formals.length() != 0) {
5053                     log.error(tree.pos(),
5054                               Errors.WrongNumberTypeArgs(Integer.toString(formals.length())));
5055                 } else {
5056                     log.error(tree.pos(), Errors.TypeDoesntTakeParams(clazztype.tsym));
5057                 }
5058                 owntype = types.createErrorType(tree.type);
5059             }
5060         }
5061         result = check(tree, owntype, KindSelector.TYP, resultInfo);
5062     }
5063 
5064     public void visitTypeUnion(JCTypeUnion tree) {
5065         ListBuffer<Type> multicatchTypes = new ListBuffer<>();
5066         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
5067         for (JCExpression typeTree : tree.alternatives) {
5068             Type ctype = attribType(typeTree, env);
5069             ctype = chk.checkType(typeTree.pos(),
5070                           chk.checkClassType(typeTree.pos(), ctype),
5071                           syms.throwableType);
5072             if (!ctype.isErroneous()) {
5073                 //check that alternatives of a union type are pairwise
5074                 //unrelated w.r.t. subtyping
5075                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
5076                     for (Type t : multicatchTypes) {
5077                         boolean sub = types.isSubtype(ctype, t);
5078                         boolean sup = types.isSubtype(t, ctype);
5079                         if (sub || sup) {
5080                             //assume 'a' <: 'b'
5081                             Type a = sub ? ctype : t;
5082                             Type b = sub ? t : ctype;
5083                             log.error(typeTree.pos(), Errors.MulticatchTypesMustBeDisjoint(a, b));
5084                         }
5085                     }
5086                 }
5087                 multicatchTypes.append(ctype);
5088                 if (all_multicatchTypes != null)
5089                     all_multicatchTypes.append(ctype);
5090             } else {
5091                 if (all_multicatchTypes == null) {
5092                     all_multicatchTypes = new ListBuffer<>();
5093                     all_multicatchTypes.appendList(multicatchTypes);
5094                 }
5095                 all_multicatchTypes.append(ctype);
5096             }
5097         }
5098         Type t = check(tree, types.lub(multicatchTypes.toList()),
5099                 KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE));
5100         if (t.hasTag(CLASS)) {
5101             List<Type> alternatives =
5102                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
5103             t = new UnionClassType((ClassType) t, alternatives);
5104         }
5105         tree.type = result = t;
5106     }
5107 
5108     public void visitTypeIntersection(JCTypeIntersection tree) {
5109         attribTypes(tree.bounds, env);
5110         tree.type = result = checkIntersection(tree, tree.bounds);
5111     }
5112 
5113     public void visitTypeParameter(JCTypeParameter tree) {
5114         TypeVar typeVar = (TypeVar) tree.type;
5115 
5116         if (tree.annotations != null && tree.annotations.nonEmpty()) {
5117             annotate.annotateTypeParameterSecondStage(tree, tree.annotations);
5118         }
5119 
5120         if (!typeVar.getUpperBound().isErroneous()) {
5121             //fixup type-parameter bound computed in 'attribTypeVariables'
5122             typeVar.setUpperBound(checkIntersection(tree, tree.bounds));
5123         }
5124     }
5125 
5126     Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
5127         Set<Symbol> boundSet = new HashSet<>();
5128         if (bounds.nonEmpty()) {
5129             // accept class or interface or typevar as first bound.
5130             bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
5131             boundSet.add(types.erasure(bounds.head.type).tsym);
5132             if (bounds.head.type.isErroneous()) {
5133                 return bounds.head.type;
5134             }
5135             else if (bounds.head.type.hasTag(TYPEVAR)) {
5136                 // if first bound was a typevar, do not accept further bounds.
5137                 if (bounds.tail.nonEmpty()) {
5138                     log.error(bounds.tail.head.pos(),
5139                               Errors.TypeVarMayNotBeFollowedByOtherBounds);
5140                     return bounds.head.type;
5141                 }
5142             } else {
5143                 // if first bound was a class or interface, accept only interfaces
5144                 // as further bounds.
5145                 for (JCExpression bound : bounds.tail) {
5146                     bound.type = checkBase(bound.type, bound, env, false, true, false);
5147                     if (bound.type.isErroneous()) {
5148                         bounds = List.of(bound);
5149                     }
5150                     else if (bound.type.hasTag(CLASS)) {
5151                         chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
5152                     }
5153                 }
5154             }
5155         }
5156 
5157         if (bounds.length() == 0) {
5158             return syms.objectType;
5159         } else if (bounds.length() == 1) {
5160             return bounds.head.type;
5161         } else {
5162             Type owntype = types.makeIntersectionType(TreeInfo.types(bounds));
5163             // ... the variable's bound is a class type flagged COMPOUND
5164             // (see comment for TypeVar.bound).
5165             // In this case, generate a class tree that represents the
5166             // bound class, ...
5167             JCExpression extending;
5168             List<JCExpression> implementing;
5169             if (!bounds.head.type.isInterface()) {
5170                 extending = bounds.head;
5171                 implementing = bounds.tail;
5172             } else {
5173                 extending = null;
5174                 implementing = bounds;
5175             }
5176             JCClassDecl cd = make.at(tree).ClassDef(
5177                 make.Modifiers(PUBLIC | ABSTRACT),
5178                 names.empty, List.nil(),
5179                 extending, implementing, List.nil());
5180 
5181             ClassSymbol c = (ClassSymbol)owntype.tsym;
5182             Assert.check((c.flags() & COMPOUND) != 0);
5183             cd.sym = c;
5184             c.sourcefile = env.toplevel.sourcefile;
5185 
5186             // ... and attribute the bound class
5187             c.flags_field |= UNATTRIBUTED;
5188             Env<AttrContext> cenv = enter.classEnv(cd, env);
5189             typeEnvs.put(c, cenv);
5190             attribClass(c);
5191             return owntype;
5192         }
5193     }
5194 
5195     public void visitWildcard(JCWildcard tree) {
5196         //- System.err.println("visitWildcard("+tree+");");//DEBUG
5197         Type type = (tree.kind.kind == BoundKind.UNBOUND)
5198             ? syms.objectType
5199             : attribType(tree.inner, env);
5200         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
5201                                               tree.kind.kind,
5202                                               syms.boundClass),
5203                 KindSelector.TYP, resultInfo);
5204     }
5205 
5206     public void visitAnnotation(JCAnnotation tree) {
5207         Assert.error("should be handled in annotate");
5208     }
5209 
5210     @Override
5211     public void visitModifiers(JCModifiers tree) {
5212         //error recovery only:
5213         Assert.check(resultInfo.pkind == KindSelector.ERR);
5214 
5215         attribAnnotationTypes(tree.annotations, env);
5216     }
5217 
5218     public void visitAnnotatedType(JCAnnotatedType tree) {
5219         attribAnnotationTypes(tree.annotations, env);
5220         Type underlyingType = attribType(tree.underlyingType, env);
5221         Type annotatedType = underlyingType.preannotatedType();
5222 
5223         if (!env.info.isNewClass)
5224             annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType);
5225         result = tree.type = annotatedType;
5226     }
5227 
5228     public void visitErroneous(JCErroneous tree) {
5229         if (tree.errs != null) {
5230             Env<AttrContext> errEnv = env.dup(env.tree, env.info.dup());
5231             errEnv.info.returnResult = unknownExprInfo;
5232             for (JCTree err : tree.errs)
5233                 attribTree(err, errEnv, new ResultInfo(KindSelector.ERR, pt()));
5234         }
5235         result = tree.type = syms.errType;
5236     }
5237 
5238     /** Default visitor method for all other trees.
5239      */
5240     public void visitTree(JCTree tree) {
5241         throw new AssertionError();
5242     }
5243 
5244     /**
5245      * Attribute an env for either a top level tree or class or module declaration.
5246      */
5247     public void attrib(Env<AttrContext> env) {
5248         switch (env.tree.getTag()) {
5249             case MODULEDEF:
5250                 attribModule(env.tree.pos(), ((JCModuleDecl)env.tree).sym);
5251                 break;
5252             case PACKAGEDEF:
5253                 attribPackage(env.tree.pos(), ((JCPackageDecl) env.tree).packge);
5254                 break;
5255             default:
5256                 attribClass(env.tree.pos(), env.enclClass.sym);
5257         }
5258     }
5259 
5260     public void attribPackage(DiagnosticPosition pos, PackageSymbol p) {
5261         try {
5262             annotate.flush();
5263             attribPackage(p);
5264         } catch (CompletionFailure ex) {
5265             chk.completionError(pos, ex);
5266         }
5267     }
5268 
5269     void attribPackage(PackageSymbol p) {
5270         attribWithLint(p,
5271                        env -> chk.checkDeprecatedAnnotation(((JCPackageDecl) env.tree).pid.pos(), p));
5272     }
5273 
5274     public void attribModule(DiagnosticPosition pos, ModuleSymbol m) {
5275         try {
5276             annotate.flush();
5277             attribModule(m);
5278         } catch (CompletionFailure ex) {
5279             chk.completionError(pos, ex);
5280         }
5281     }
5282 
5283     void attribModule(ModuleSymbol m) {
5284         attribWithLint(m, env -> attribStat(env.tree, env));
5285     }
5286 
5287     private void attribWithLint(TypeSymbol sym, Consumer<Env<AttrContext>> attrib) {
5288         Env<AttrContext> env = typeEnvs.get(sym);
5289 
5290         Env<AttrContext> lintEnv = env;
5291         while (lintEnv.info.lint == null)
5292             lintEnv = lintEnv.next;
5293 
5294         Lint lint = lintEnv.info.lint.augment(sym);
5295 
5296         Lint prevLint = chk.setLint(lint);
5297         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
5298 
5299         try {
5300             deferredLintHandler.flush(env.tree.pos(), lint);
5301             attrib.accept(env);
5302         } finally {
5303             log.useSource(prev);
5304             chk.setLint(prevLint);
5305         }
5306     }
5307 
5308     /** Main method: attribute class definition associated with given class symbol.
5309      *  reporting completion failures at the given position.
5310      *  @param pos The source position at which completion errors are to be
5311      *             reported.
5312      *  @param c   The class symbol whose definition will be attributed.
5313      */
5314     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
5315         try {
5316             annotate.flush();
5317             attribClass(c);
5318         } catch (CompletionFailure ex) {
5319             chk.completionError(pos, ex);
5320         }
5321     }
5322 
5323     /** Attribute class definition associated with given class symbol.
5324      *  @param c   The class symbol whose definition will be attributed.
5325      */
5326     void attribClass(ClassSymbol c) throws CompletionFailure {
5327         if (c.type.hasTag(ERROR)) return;
5328 
5329         // Check for cycles in the inheritance graph, which can arise from
5330         // ill-formed class files.
5331         chk.checkNonCyclic(null, c.type);
5332 
5333         Type st = types.supertype(c.type);
5334         if ((c.flags_field & Flags.COMPOUND) == 0 &&
5335             (c.flags_field & Flags.SUPER_OWNER_ATTRIBUTED) == 0) {
5336             // First, attribute superclass.
5337             if (st.hasTag(CLASS))
5338                 attribClass((ClassSymbol)st.tsym);
5339 
5340             // Next attribute owner, if it is a class.
5341             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
5342                 attribClass((ClassSymbol)c.owner);
5343 
5344             c.flags_field |= Flags.SUPER_OWNER_ATTRIBUTED;
5345         }
5346 
5347         // The previous operations might have attributed the current class
5348         // if there was a cycle. So we test first whether the class is still
5349         // UNATTRIBUTED.
5350         if ((c.flags_field & UNATTRIBUTED) != 0) {
5351             c.flags_field &= ~UNATTRIBUTED;
5352 
5353             // Get environment current at the point of class definition.
5354             Env<AttrContext> env = typeEnvs.get(c);
5355 
5356             // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
5357             // because the annotations were not available at the time the env was created. Therefore,
5358             // we look up the environment chain for the first enclosing environment for which the
5359             // lint value is set. Typically, this is the parent env, but might be further if there
5360             // are any envs created as a result of TypeParameter nodes.
5361             Env<AttrContext> lintEnv = env;
5362             while (lintEnv.info.lint == null)
5363                 lintEnv = lintEnv.next;
5364 
5365             // Having found the enclosing lint value, we can initialize the lint value for this class
5366             env.info.lint = lintEnv.info.lint.augment(c);
5367 
5368             Lint prevLint = chk.setLint(env.info.lint);
5369             JavaFileObject prev = log.useSource(c.sourcefile);
5370             ResultInfo prevReturnRes = env.info.returnResult;
5371 
5372             try {
5373                 if (c.isSealed() &&
5374                         !c.isEnum() &&
5375                         !c.isPermittedExplicit &&
5376                         c.getPermittedSubclasses().isEmpty()) {
5377                     log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.SealedClassMustHaveSubclasses);
5378                 }
5379 
5380                 if (c.isSealed()) {
5381                     Set<Symbol> permittedTypes = new HashSet<>();
5382                     boolean sealedInUnnamed = c.packge().modle == syms.unnamedModule || c.packge().modle == syms.noModule;
5383                     for (Type subType : c.getPermittedSubclasses()) {
5384                         boolean isTypeVar = false;
5385                         if (subType.getTag() == TYPEVAR) {
5386                             isTypeVar = true; //error recovery
5387                             log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5388                                     Errors.InvalidPermitsClause(Fragments.IsATypeVariable(subType)));
5389                         }
5390                         if (subType.tsym.isAnonymous() && !c.isEnum()) {
5391                             log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),  Errors.LocalClassesCantExtendSealed(Fragments.Anonymous));
5392                         }
5393                         if (permittedTypes.contains(subType.tsym)) {
5394                             DiagnosticPosition pos =
5395                                     env.enclClass.permitting.stream()
5396                                             .filter(permittedExpr -> TreeInfo.diagnosticPositionFor(subType.tsym, permittedExpr, true) != null)
5397                                             .limit(2).collect(List.collector()).get(1);
5398                             log.error(pos, Errors.InvalidPermitsClause(Fragments.IsDuplicated(subType)));
5399                         } else {
5400                             permittedTypes.add(subType.tsym);
5401                         }
5402                         if (sealedInUnnamed) {
5403                             if (subType.tsym.packge() != c.packge()) {
5404                                 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5405                                         Errors.ClassInUnnamedModuleCantExtendSealedInDiffPackage(c)
5406                                 );
5407                             }
5408                         } else if (subType.tsym.packge().modle != c.packge().modle) {
5409                             log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5410                                     Errors.ClassInModuleCantExtendSealedInDiffModule(c, c.packge().modle)
5411                             );
5412                         }
5413                         if (subType.tsym == c.type.tsym || types.isSuperType(subType, c.type)) {
5414                             log.error(TreeInfo.diagnosticPositionFor(subType.tsym, ((JCClassDecl)env.tree).permitting),
5415                                     Errors.InvalidPermitsClause(
5416                                             subType.tsym == c.type.tsym ?
5417                                                     Fragments.MustNotBeSameClass :
5418                                                     Fragments.MustNotBeSupertype(subType)
5419                                     )
5420                             );
5421                         } else if (!isTypeVar) {
5422                             boolean thisIsASuper = types.directSupertypes(subType)
5423                                                         .stream()
5424                                                         .anyMatch(d -> d.tsym == c);
5425                             if (!thisIsASuper) {
5426                                 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5427                                         Errors.InvalidPermitsClause(Fragments.DoesntExtendSealed(subType)));
5428                             }
5429                         }
5430                     }
5431                 }
5432 
5433                 List<ClassSymbol> sealedSupers = types.directSupertypes(c.type)
5434                                                       .stream()
5435                                                       .filter(s -> s.tsym.isSealed())
5436                                                       .map(s -> (ClassSymbol) s.tsym)
5437                                                       .collect(List.collector());
5438 
5439                 if (sealedSupers.isEmpty()) {
5440                     if ((c.flags_field & Flags.NON_SEALED) != 0) {
5441                         boolean hasErrorSuper = false;
5442 
5443                         hasErrorSuper |= types.directSupertypes(c.type)
5444                                               .stream()
5445                                               .anyMatch(s -> s.tsym.kind == Kind.ERR);
5446 
5447                         ClassType ct = (ClassType) c.type;
5448 
5449                         hasErrorSuper |= !ct.isCompound() && ct.interfaces_field != ct.all_interfaces_field;
5450 
5451                         if (!hasErrorSuper) {
5452                             log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.NonSealedWithNoSealedSupertype(c));
5453                         }
5454                     }
5455                 } else {
5456                     if (c.isDirectlyOrIndirectlyLocal() && !c.isEnum()) {
5457                         log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.LocalClassesCantExtendSealed(c.isAnonymous() ? Fragments.Anonymous : Fragments.Local));
5458                     }
5459 
5460                     if (!c.type.isCompound()) {
5461                         for (ClassSymbol supertypeSym : sealedSupers) {
5462                             if (!supertypeSym.isPermittedSubclass(c.type.tsym)) {
5463                                 log.error(TreeInfo.diagnosticPositionFor(c.type.tsym, env.tree), Errors.CantInheritFromSealed(supertypeSym));
5464                             }
5465                         }
5466                         if (!c.isNonSealed() && !c.isFinal() && !c.isSealed()) {
5467                             log.error(TreeInfo.diagnosticPositionFor(c, env.tree),
5468                                     c.isInterface() ?
5469                                             Errors.NonSealedOrSealedExpected :
5470                                             Errors.NonSealedSealedOrFinalExpected);
5471                         }
5472                     }
5473                 }
5474 
5475                 deferredLintHandler.flush(env.tree, env.info.lint);
5476                 env.info.returnResult = null;
5477                 // java.lang.Enum may not be subclassed by a non-enum
5478                 if (st.tsym == syms.enumSym &&
5479                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
5480                     log.error(env.tree.pos(), Errors.EnumNoSubclassing);
5481 
5482                 // Enums may not be extended by source-level classes
5483                 if (st.tsym != null &&
5484                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
5485                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
5486                     log.error(env.tree.pos(), Errors.EnumTypesNotExtensible);
5487                 }
5488 
5489                 if (rs.isSerializable(c.type)) {
5490                     env.info.isSerializable = true;
5491                 }
5492 
5493                 attribClassBody(env, c);
5494 
5495                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
5496                 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
5497                 chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
5498                 chk.checkLeaksNotAccessible(env, (JCClassDecl) env.tree);
5499 
5500                 if (c.isImplicit()) {
5501                     chk.checkHasMain(env.tree.pos(), c);
5502                 }
5503             } finally {
5504                 env.info.returnResult = prevReturnRes;
5505                 log.useSource(prev);
5506                 chk.setLint(prevLint);
5507             }
5508 
5509         }
5510     }
5511 
5512     public void visitImport(JCImport tree) {
5513         // nothing to do
5514     }
5515 
5516     public void visitModuleDef(JCModuleDecl tree) {
5517         tree.sym.completeUsesProvides();
5518         ModuleSymbol msym = tree.sym;
5519         Lint lint = env.outer.info.lint = env.outer.info.lint.augment(msym);
5520         Lint prevLint = chk.setLint(lint);
5521         chk.checkModuleName(tree);
5522         chk.checkDeprecatedAnnotation(tree, msym);
5523 
5524         try {
5525             deferredLintHandler.flush(tree.pos(), lint);
5526         } finally {
5527             chk.setLint(prevLint);
5528         }
5529     }
5530 
5531     /** Finish the attribution of a class. */
5532     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
5533         JCClassDecl tree = (JCClassDecl)env.tree;
5534         Assert.check(c == tree.sym);
5535 
5536         // Validate type parameters, supertype and interfaces.
5537         attribStats(tree.typarams, env);
5538         if (!c.isAnonymous()) {
5539             //already checked if anonymous
5540             chk.validate(tree.typarams, env);
5541             chk.validate(tree.extending, env);
5542             chk.validate(tree.implementing, env);
5543         }
5544 
5545         c.markAbstractIfNeeded(types);
5546 
5547         // If this is a non-abstract class, check that it has no abstract
5548         // methods or unimplemented methods of an implemented interface.
5549         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
5550             chk.checkAllDefined(tree.pos(), c);
5551         }
5552 
5553         if ((c.flags() & ANNOTATION) != 0) {
5554             if (tree.implementing.nonEmpty())
5555                 log.error(tree.implementing.head.pos(),
5556                           Errors.CantExtendIntfAnnotation);
5557             if (tree.typarams.nonEmpty()) {
5558                 log.error(tree.typarams.head.pos(),
5559                           Errors.IntfAnnotationCantHaveTypeParams(c));
5560             }
5561 
5562             // If this annotation type has a @Repeatable, validate
5563             Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable();
5564             // If this annotation type has a @Repeatable, validate
5565             if (repeatable != null) {
5566                 // get diagnostic position for error reporting
5567                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
5568                 Assert.checkNonNull(cbPos);
5569 
5570                 chk.validateRepeatable(c, repeatable, cbPos);
5571             }
5572         } else {
5573             // Check that all extended classes and interfaces
5574             // are compatible (i.e. no two define methods with same arguments
5575             // yet different return types).  (JLS 8.4.8.3)
5576             chk.checkCompatibleSupertypes(tree.pos(), c.type);
5577             chk.checkDefaultMethodClashes(tree.pos(), c.type);
5578             chk.checkPotentiallyAmbiguousOverloads(tree, c.type);
5579         }
5580 
5581         // Check that class does not import the same parameterized interface
5582         // with two different argument lists.
5583         chk.checkClassBounds(tree.pos(), c.type);
5584 
5585         tree.type = c.type;
5586 
5587         for (List<JCTypeParameter> l = tree.typarams;
5588              l.nonEmpty(); l = l.tail) {
5589              Assert.checkNonNull(env.info.scope.findFirst(l.head.name));
5590         }
5591 
5592         // Check that a generic class doesn't extend Throwable
5593         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
5594             log.error(tree.extending.pos(), Errors.GenericThrowable);
5595 
5596         // Check that all methods which implement some
5597         // method conform to the method they implement.
5598         chk.checkImplementations(tree);
5599 
5600         //check that a resource implementing AutoCloseable cannot throw InterruptedException
5601         checkAutoCloseable(tree.pos(), env, c.type);
5602 
5603         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
5604             // Attribute declaration
5605             attribStat(l.head, env);
5606             // Check that declarations in inner classes are not static (JLS 8.1.2)
5607             // Make an exception for static constants.
5608             if (!allowRecords &&
5609                     c.owner.kind != PCK &&
5610                     ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
5611                     (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
5612                 VarSymbol sym = null;
5613                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
5614                 if (sym == null ||
5615                         sym.kind != VAR ||
5616                         sym.getConstValue() == null)
5617                     log.error(l.head.pos(), Errors.IclsCantHaveStaticDecl(c));
5618             }
5619         }
5620 
5621         // Check for proper placement of super()/this() calls.
5622         chk.checkSuperInitCalls(tree);
5623 
5624         // Check for cycles among non-initial constructors.
5625         chk.checkCyclicConstructors(tree);
5626 
5627         // Check for cycles among annotation elements.
5628         chk.checkNonCyclicElements(tree);
5629 
5630         // Check for proper use of serialVersionUID and other
5631         // serialization-related fields and methods
5632         if (env.info.lint.isEnabled(LintCategory.SERIAL)
5633                 && rs.isSerializable(c.type)
5634                 && !c.isAnonymous()) {
5635             chk.checkSerialStructure(tree, c);
5636         }
5637         // Correctly organize the positions of the type annotations
5638         typeAnnotations.organizeTypeAnnotationsBodies(tree);
5639 
5640         // Check type annotations applicability rules
5641         validateTypeAnnotations(tree, false);
5642     }
5643         // where
5644         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
5645         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
5646             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
5647                 if (types.isSameType(al.head.annotationType.type, t))
5648                     return al.head.pos();
5649             }
5650 
5651             return null;
5652         }
5653 
5654     private Type capture(Type type) {
5655         return types.capture(type);
5656     }
5657 
5658     private void setSyntheticVariableType(JCVariableDecl tree, Type type) {
5659         if (type.isErroneous()) {
5660             tree.vartype = make.at(Position.NOPOS).Erroneous();
5661         } else {
5662             tree.vartype = make.at(Position.NOPOS).Type(type);
5663         }
5664     }
5665 
5666     public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
5667         tree.accept(new TypeAnnotationsValidator(sigOnly));
5668     }
5669     //where
5670     private final class TypeAnnotationsValidator extends TreeScanner {
5671 
5672         private final boolean sigOnly;
5673         public TypeAnnotationsValidator(boolean sigOnly) {
5674             this.sigOnly = sigOnly;
5675         }
5676 
5677         public void visitAnnotation(JCAnnotation tree) {
5678             chk.validateTypeAnnotation(tree, null, false);
5679             super.visitAnnotation(tree);
5680         }
5681         public void visitAnnotatedType(JCAnnotatedType tree) {
5682             if (!tree.underlyingType.type.isErroneous()) {
5683                 super.visitAnnotatedType(tree);
5684             }
5685         }
5686         public void visitTypeParameter(JCTypeParameter tree) {
5687             chk.validateTypeAnnotations(tree.annotations, tree.type.tsym, true);
5688             scan(tree.bounds);
5689             // Don't call super.
5690             // This is needed because above we call validateTypeAnnotation with
5691             // false, which would forbid annotations on type parameters.
5692             // super.visitTypeParameter(tree);
5693         }
5694         public void visitMethodDef(JCMethodDecl tree) {
5695             if (tree.recvparam != null &&
5696                     !tree.recvparam.vartype.type.isErroneous()) {
5697                 checkForDeclarationAnnotations(tree.recvparam.mods.annotations, tree.recvparam.sym);
5698             }
5699             if (tree.restype != null && tree.restype.type != null) {
5700                 validateAnnotatedType(tree.restype, tree.restype.type);
5701             }
5702             if (sigOnly) {
5703                 scan(tree.mods);
5704                 scan(tree.restype);
5705                 scan(tree.typarams);
5706                 scan(tree.recvparam);
5707                 scan(tree.params);
5708                 scan(tree.thrown);
5709             } else {
5710                 scan(tree.defaultValue);
5711                 scan(tree.body);
5712             }
5713         }
5714         public void visitVarDef(final JCVariableDecl tree) {
5715             //System.err.println("validateTypeAnnotations.visitVarDef " + tree);
5716             if (tree.sym != null && tree.sym.type != null && !tree.isImplicitlyTyped())
5717                 validateAnnotatedType(tree.vartype, tree.sym.type);
5718             scan(tree.mods);
5719             scan(tree.vartype);
5720             if (!sigOnly) {
5721                 scan(tree.init);
5722             }
5723         }
5724         public void visitTypeCast(JCTypeCast tree) {
5725             if (tree.clazz != null && tree.clazz.type != null)
5726                 validateAnnotatedType(tree.clazz, tree.clazz.type);
5727             super.visitTypeCast(tree);
5728         }
5729         public void visitTypeTest(JCInstanceOf tree) {
5730             if (tree.pattern != null && !(tree.pattern instanceof JCPattern) && tree.pattern.type != null)
5731                 validateAnnotatedType(tree.pattern, tree.pattern.type);
5732             super.visitTypeTest(tree);
5733         }
5734         public void visitNewClass(JCNewClass tree) {
5735             if (tree.clazz != null && tree.clazz.type != null) {
5736                 if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
5737                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
5738                             tree.clazz.type.tsym);
5739                 }
5740                 if (tree.def != null) {
5741                     checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
5742                 }
5743 
5744                 validateAnnotatedType(tree.clazz, tree.clazz.type);
5745             }
5746             super.visitNewClass(tree);
5747         }
5748         public void visitNewArray(JCNewArray tree) {
5749             if (tree.elemtype != null && tree.elemtype.type != null) {
5750                 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
5751                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
5752                             tree.elemtype.type.tsym);
5753                 }
5754                 validateAnnotatedType(tree.elemtype, tree.elemtype.type);
5755             }
5756             super.visitNewArray(tree);
5757         }
5758         public void visitClassDef(JCClassDecl tree) {
5759             //System.err.println("validateTypeAnnotations.visitClassDef " + tree);
5760             if (sigOnly) {
5761                 scan(tree.mods);
5762                 scan(tree.typarams);
5763                 scan(tree.extending);
5764                 scan(tree.implementing);
5765             }
5766             for (JCTree member : tree.defs) {
5767                 if (member.hasTag(Tag.CLASSDEF)) {
5768                     continue;
5769                 }
5770                 scan(member);
5771             }
5772         }
5773         public void visitBlock(JCBlock tree) {
5774             if (!sigOnly) {
5775                 scan(tree.stats);
5776             }
5777         }
5778 
5779         /* I would want to model this after
5780          * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
5781          * and override visitSelect and visitTypeApply.
5782          * However, we only set the annotated type in the top-level type
5783          * of the symbol.
5784          * Therefore, we need to override each individual location where a type
5785          * can occur.
5786          */
5787         private void validateAnnotatedType(final JCTree errtree, final Type type) {
5788             //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
5789 
5790             if (type.isPrimitiveOrVoid()) {
5791                 return;
5792             }
5793 
5794             JCTree enclTr = errtree;
5795             Type enclTy = type;
5796 
5797             boolean repeat = true;
5798             while (repeat) {
5799                 if (enclTr.hasTag(TYPEAPPLY)) {
5800                     List<Type> tyargs = enclTy.getTypeArguments();
5801                     List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
5802                     if (trargs.length() > 0) {
5803                         // Nothing to do for diamonds
5804                         if (tyargs.length() == trargs.length()) {
5805                             for (int i = 0; i < tyargs.length(); ++i) {
5806                                 validateAnnotatedType(trargs.get(i), tyargs.get(i));
5807                             }
5808                         }
5809                         // If the lengths don't match, it's either a diamond
5810                         // or some nested type that redundantly provides
5811                         // type arguments in the tree.
5812                     }
5813 
5814                     // Look at the clazz part of a generic type
5815                     enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
5816                 }
5817 
5818                 if (enclTr.hasTag(SELECT)) {
5819                     enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
5820                     if (enclTy != null &&
5821                             !enclTy.hasTag(NONE)) {
5822                         enclTy = enclTy.getEnclosingType();
5823                     }
5824                 } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
5825                     JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
5826                     if (enclTy == null || enclTy.hasTag(NONE)) {
5827                         if (at.getAnnotations().size() == 1) {
5828                             log.error(at.underlyingType.pos(), Errors.CantTypeAnnotateScoping1(at.getAnnotations().head.attribute));
5829                         } else {
5830                             ListBuffer<Attribute.Compound> comps = new ListBuffer<>();
5831                             for (JCAnnotation an : at.getAnnotations()) {
5832                                 comps.add(an.attribute);
5833                             }
5834                             log.error(at.underlyingType.pos(), Errors.CantTypeAnnotateScoping(comps.toList()));
5835                         }
5836                         repeat = false;
5837                     }
5838                     enclTr = at.underlyingType;
5839                     // enclTy doesn't need to be changed
5840                 } else if (enclTr.hasTag(IDENT)) {
5841                     repeat = false;
5842                 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
5843                     JCWildcard wc = (JCWildcard) enclTr;
5844                     if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD ||
5845                             wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
5846                         validateAnnotatedType(wc.getBound(), wc.getBound().type);
5847                     } else {
5848                         // Nothing to do for UNBOUND
5849                     }
5850                     repeat = false;
5851                 } else if (enclTr.hasTag(TYPEARRAY)) {
5852                     JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
5853                     validateAnnotatedType(art.getType(), art.elemtype.type);
5854                     repeat = false;
5855                 } else if (enclTr.hasTag(TYPEUNION)) {
5856                     JCTypeUnion ut = (JCTypeUnion) enclTr;
5857                     for (JCTree t : ut.getTypeAlternatives()) {
5858                         validateAnnotatedType(t, t.type);
5859                     }
5860                     repeat = false;
5861                 } else if (enclTr.hasTag(TYPEINTERSECTION)) {
5862                     JCTypeIntersection it = (JCTypeIntersection) enclTr;
5863                     for (JCTree t : it.getBounds()) {
5864                         validateAnnotatedType(t, t.type);
5865                     }
5866                     repeat = false;
5867                 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
5868                            enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
5869                     repeat = false;
5870                 } else {
5871                     Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
5872                             " within: "+ errtree + " with kind: " + errtree.getKind());
5873                 }
5874             }
5875         }
5876 
5877         private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
5878                 Symbol sym) {
5879             // Ensure that no declaration annotations are present.
5880             // Note that a tree type might be an AnnotatedType with
5881             // empty annotations, if only declaration annotations were given.
5882             // This method will raise an error for such a type.
5883             for (JCAnnotation ai : annotations) {
5884                 if (!ai.type.isErroneous() &&
5885                         typeAnnotations.annotationTargetType(ai, ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
5886                     log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type));
5887                 }
5888             }
5889         }
5890     }
5891 
5892     // <editor-fold desc="post-attribution visitor">
5893 
5894     /**
5895      * Handle missing types/symbols in an AST. This routine is useful when
5896      * the compiler has encountered some errors (which might have ended up
5897      * terminating attribution abruptly); if the compiler is used in fail-over
5898      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
5899      * prevents NPE to be propagated during subsequent compilation steps.
5900      */
5901     public void postAttr(JCTree tree) {
5902         new PostAttrAnalyzer().scan(tree);
5903     }
5904 
5905     class PostAttrAnalyzer extends TreeScanner {
5906 
5907         private void initTypeIfNeeded(JCTree that) {
5908             if (that.type == null) {
5909                 if (that.hasTag(METHODDEF)) {
5910                     that.type = dummyMethodType((JCMethodDecl)that);
5911                 } else {
5912                     that.type = syms.unknownType;
5913                 }
5914             }
5915         }
5916 
5917         /* Construct a dummy method type. If we have a method declaration,
5918          * and the declared return type is void, then use that return type
5919          * instead of UNKNOWN to avoid spurious error messages in lambda
5920          * bodies (see:JDK-8041704).
5921          */
5922         private Type dummyMethodType(JCMethodDecl md) {
5923             Type restype = syms.unknownType;
5924             if (md != null && md.restype != null && md.restype.hasTag(TYPEIDENT)) {
5925                 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
5926                 if (prim.typetag == VOID)
5927                     restype = syms.voidType;
5928             }
5929             return new MethodType(List.nil(), restype,
5930                                   List.nil(), syms.methodClass);
5931         }
5932         private Type dummyMethodType() {
5933             return dummyMethodType(null);
5934         }
5935 
5936         @Override
5937         public void scan(JCTree tree) {
5938             if (tree == null) return;
5939             if (tree instanceof JCExpression) {
5940                 initTypeIfNeeded(tree);
5941             }
5942             super.scan(tree);
5943         }
5944 
5945         @Override
5946         public void visitIdent(JCIdent that) {
5947             if (that.sym == null) {
5948                 that.sym = syms.unknownSymbol;
5949             }
5950         }
5951 
5952         @Override
5953         public void visitSelect(JCFieldAccess that) {
5954             if (that.sym == null) {
5955                 that.sym = syms.unknownSymbol;
5956             }
5957             super.visitSelect(that);
5958         }
5959 
5960         @Override
5961         public void visitClassDef(JCClassDecl that) {
5962             initTypeIfNeeded(that);
5963             if (that.sym == null) {
5964                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
5965             }
5966             super.visitClassDef(that);
5967         }
5968 
5969         @Override
5970         public void visitMethodDef(JCMethodDecl that) {
5971             initTypeIfNeeded(that);
5972             if (that.sym == null) {
5973                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
5974             }
5975             super.visitMethodDef(that);
5976         }
5977 
5978         @Override
5979         public void visitVarDef(JCVariableDecl that) {
5980             initTypeIfNeeded(that);
5981             if (that.sym == null) {
5982                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
5983                 that.sym.adr = 0;
5984             }
5985             if (that.vartype == null) {
5986                 that.vartype = make.at(Position.NOPOS).Erroneous();
5987             }
5988             super.visitVarDef(that);
5989         }
5990 
5991         @Override
5992         public void visitBindingPattern(JCBindingPattern that) {
5993             initTypeIfNeeded(that);
5994             initTypeIfNeeded(that.var);
5995             if (that.var.sym == null) {
5996                 that.var.sym = new BindingSymbol(0, that.var.name, that.var.type, syms.noSymbol);
5997                 that.var.sym.adr = 0;
5998             }
5999             super.visitBindingPattern(that);
6000         }
6001 
6002         @Override
6003         public void visitNewClass(JCNewClass that) {
6004             if (that.constructor == null) {
6005                 that.constructor = new MethodSymbol(0, names.init,
6006                         dummyMethodType(), syms.noSymbol);
6007             }
6008             if (that.constructorType == null) {
6009                 that.constructorType = syms.unknownType;
6010             }
6011             super.visitNewClass(that);
6012         }
6013 
6014         @Override
6015         public void visitAssignop(JCAssignOp that) {
6016             if (that.operator == null) {
6017                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
6018                         -1, syms.noSymbol);
6019             }
6020             super.visitAssignop(that);
6021         }
6022 
6023         @Override
6024         public void visitBinary(JCBinary that) {
6025             if (that.operator == null) {
6026                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
6027                         -1, syms.noSymbol);
6028             }
6029             super.visitBinary(that);
6030         }
6031 
6032         @Override
6033         public void visitUnary(JCUnary that) {
6034             if (that.operator == null) {
6035                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
6036                         -1, syms.noSymbol);
6037             }
6038             super.visitUnary(that);
6039         }
6040 
6041         @Override
6042         public void visitReference(JCMemberReference that) {
6043             super.visitReference(that);
6044             if (that.sym == null) {
6045                 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
6046                         syms.noSymbol);
6047             }
6048         }
6049     }
6050     // </editor-fold>
6051 
6052     public void setPackageSymbols(JCExpression pid, Symbol pkg) {
6053         new TreeScanner() {
6054             Symbol packge = pkg;
6055             @Override
6056             public void visitIdent(JCIdent that) {
6057                 that.sym = packge;
6058             }
6059 
6060             @Override
6061             public void visitSelect(JCFieldAccess that) {
6062                 that.sym = packge;
6063                 packge = packge.owner;
6064                 super.visitSelect(that);
6065             }
6066         }.scan(pid);
6067     }
6068 
6069 }