1 /*
   2  * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 import java.util.function.BiConsumer;
  30 import java.util.function.Consumer;
  31 import java.util.function.Function;
  32 import java.util.stream.Stream;
  33 
  34 import javax.lang.model.element.ElementKind;
  35 import javax.tools.JavaFileObject;
  36 
  37 import com.sun.source.tree.CaseTree;
  38 import com.sun.source.tree.IdentifierTree;
  39 import com.sun.source.tree.LambdaExpressionTree.BodyKind;
  40 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
  41 import com.sun.source.tree.MemberSelectTree;
  42 import com.sun.source.tree.TreeVisitor;
  43 import com.sun.source.util.SimpleTreeVisitor;
  44 import com.sun.tools.javac.code.*;
  45 import com.sun.tools.javac.code.Lint.LintCategory;
  46 import com.sun.tools.javac.code.Scope.WriteableScope;
  47 import com.sun.tools.javac.code.Source.Feature;
  48 import com.sun.tools.javac.code.Symbol.*;
  49 import com.sun.tools.javac.code.Type.*;
  50 import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError;
  51 import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext;
  52 import com.sun.tools.javac.comp.Attr.ResultInfo;
  53 import com.sun.tools.javac.comp.Check.CheckContext;
  54 import com.sun.tools.javac.comp.Check.NestedCheckContext;
  55 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
  56 import com.sun.tools.javac.comp.DeferredAttr.LambdaReturnScanner;
  57 import com.sun.tools.javac.comp.MatchBindingsComputer.MatchBindings;
  58 import com.sun.tools.javac.jvm.*;
  59 
  60 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond;
  61 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg;
  62 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs;
  63 
  64 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  65 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
  66 import com.sun.tools.javac.resources.CompilerProperties.Warnings;
  67 import com.sun.tools.javac.tree.*;
  68 import com.sun.tools.javac.tree.JCTree.*;
  69 import com.sun.tools.javac.tree.JCTree.JCLambda.ParameterKind;
  70 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
  71 import com.sun.tools.javac.util.*;
  72 import com.sun.tools.javac.util.DefinedBy.Api;
  73 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  74 import com.sun.tools.javac.util.JCDiagnostic.Error;
  75 import com.sun.tools.javac.util.JCDiagnostic.Fragment;
  76 import com.sun.tools.javac.util.JCDiagnostic.Warning;
  77 import com.sun.tools.javac.util.List;
  78 
  79 import static com.sun.tools.javac.code.Flags.*;
  80 import static com.sun.tools.javac.code.Flags.ANNOTATION;
  81 import static com.sun.tools.javac.code.Flags.BLOCK;
  82 import static com.sun.tools.javac.code.Kinds.*;
  83 import static com.sun.tools.javac.code.Kinds.Kind.*;
  84 import static com.sun.tools.javac.code.TypeTag.*;
  85 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
  86 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  87 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
  88 
  89 /** This is the main context-dependent analysis phase in GJC. It
  90  *  encompasses name resolution, type checking and constant folding as
  91  *  subtasks. Some subtasks involve auxiliary classes.
  92  *  @see Check
  93  *  @see Resolve
  94  *  @see ConstFold
  95  *  @see Infer
  96  *
  97  *  <p><b>This is NOT part of any supported API.
  98  *  If you write code that depends on this, you do so at your own risk.
  99  *  This code and its internal interfaces are subject to change or
 100  *  deletion without notice.</b>
 101  */
 102 public class Attr extends JCTree.Visitor {
 103     protected static final Context.Key<Attr> attrKey = new Context.Key<>();
 104 
 105     final Names names;
 106     final Log log;
 107     final Symtab syms;
 108     final Resolve rs;
 109     final Operators operators;
 110     final Infer infer;
 111     final Analyzer analyzer;
 112     final DeferredAttr deferredAttr;
 113     final Check chk;
 114     final Flow flow;
 115     final MemberEnter memberEnter;
 116     final TypeEnter typeEnter;
 117     final TreeMaker make;
 118     final ConstFold cfolder;
 119     final Enter enter;
 120     final Target target;
 121     final Types types;
 122     final Preview preview;
 123     final JCDiagnostic.Factory diags;
 124     final TypeAnnotations typeAnnotations;
 125     final DeferredLintHandler deferredLintHandler;
 126     final TypeEnvs typeEnvs;
 127     final Dependencies dependencies;
 128     final Annotate annotate;
 129     final ArgumentAttr argumentAttr;
 130     final MatchBindingsComputer matchBindingsComputer;
 131     final AttrRecover attrRecover;
 132 
 133     public static Attr instance(Context context) {
 134         Attr instance = context.get(attrKey);
 135         if (instance == null)
 136             instance = new Attr(context);
 137         return instance;
 138     }
 139 
 140     @SuppressWarnings("this-escape")
 141     protected Attr(Context context) {
 142         context.put(attrKey, this);
 143 
 144         names = Names.instance(context);
 145         log = Log.instance(context);
 146         syms = Symtab.instance(context);
 147         rs = Resolve.instance(context);
 148         operators = Operators.instance(context);
 149         chk = Check.instance(context);
 150         flow = Flow.instance(context);
 151         memberEnter = MemberEnter.instance(context);
 152         typeEnter = TypeEnter.instance(context);
 153         make = TreeMaker.instance(context);
 154         enter = Enter.instance(context);
 155         infer = Infer.instance(context);
 156         analyzer = Analyzer.instance(context);
 157         deferredAttr = DeferredAttr.instance(context);
 158         cfolder = ConstFold.instance(context);
 159         target = Target.instance(context);
 160         types = Types.instance(context);
 161         preview = Preview.instance(context);
 162         diags = JCDiagnostic.Factory.instance(context);
 163         annotate = Annotate.instance(context);
 164         typeAnnotations = TypeAnnotations.instance(context);
 165         deferredLintHandler = DeferredLintHandler.instance(context);
 166         typeEnvs = TypeEnvs.instance(context);
 167         dependencies = Dependencies.instance(context);
 168         argumentAttr = ArgumentAttr.instance(context);
 169         matchBindingsComputer = MatchBindingsComputer.instance(context);
 170         attrRecover = AttrRecover.instance(context);
 171 
 172         Options options = Options.instance(context);
 173 
 174         Source source = Source.instance(context);
 175         allowReifiableTypesInInstanceof = Feature.REIFIABLE_TYPES_INSTANCEOF.allowedInSource(source);
 176         allowRecords = Feature.RECORDS.allowedInSource(source);
 177         allowPatternSwitch = (preview.isEnabled() || !preview.isPreview(Feature.PATTERN_SWITCH)) &&
 178                              Feature.PATTERN_SWITCH.allowedInSource(source);
 179         allowUnconditionalPatternsInstanceOf =
 180                              Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.allowedInSource(source);
 181         sourceName = source.name;
 182         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
 183 
 184         statInfo = new ResultInfo(KindSelector.NIL, Type.noType);
 185         varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType);
 186         unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType);
 187         methodAttrInfo = new MethodAttrInfo();
 188         unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType);
 189         unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType);
 190         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
 191         initBlockType = new MethodType(List.nil(), syms.voidType, List.nil(), syms.methodClass);
 192     }
 193 
 194     /** Switch: reifiable types in instanceof enabled?
 195      */
 196     boolean allowReifiableTypesInInstanceof;
 197 
 198     /** Are records allowed
 199      */
 200     private final boolean allowRecords;
 201 
 202     /** Are patterns in switch allowed
 203      */
 204     private final boolean allowPatternSwitch;
 205 
 206     /** Are unconditional patterns in instanceof allowed
 207      */
 208     private final boolean allowUnconditionalPatternsInstanceOf;
 209 
 210     /**
 211      * Switch: warn about use of variable before declaration?
 212      * RFE: 6425594
 213      */
 214     boolean useBeforeDeclarationWarning;
 215 
 216     /**
 217      * Switch: name of source level; used for error reporting.
 218      */
 219     String sourceName;
 220 
 221     /** Check kind and type of given tree against protokind and prototype.
 222      *  If check succeeds, store type in tree and return it.
 223      *  If check fails, store errType in tree and return it.
 224      *  No checks are performed if the prototype is a method type.
 225      *  It is not necessary in this case since we know that kind and type
 226      *  are correct.
 227      *
 228      *  @param tree     The tree whose kind and type is checked
 229      *  @param found    The computed type of the tree
 230      *  @param ownkind  The computed kind of the tree
 231      *  @param resultInfo  The expected result of the tree
 232      */
 233     Type check(final JCTree tree,
 234                final Type found,
 235                final KindSelector ownkind,
 236                final ResultInfo resultInfo) {
 237         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
 238         Type owntype;
 239         boolean shouldCheck = !found.hasTag(ERROR) &&
 240                 !resultInfo.pt.hasTag(METHOD) &&
 241                 !resultInfo.pt.hasTag(FORALL);
 242         if (shouldCheck && !ownkind.subset(resultInfo.pkind)) {
 243             log.error(tree.pos(),
 244                       Errors.UnexpectedType(resultInfo.pkind.kindNames(),
 245                                             ownkind.kindNames()));
 246             owntype = types.createErrorType(found);
 247         } else if (inferenceContext.free(found)) {
 248             //delay the check if there are inference variables in the found type
 249             //this means we are dealing with a partially inferred poly expression
 250             owntype = shouldCheck ? resultInfo.pt : found;
 251             if (resultInfo.checkMode.installPostInferenceHook()) {
 252                 inferenceContext.addFreeTypeListener(List.of(found),
 253                         instantiatedContext -> {
 254                             ResultInfo pendingResult =
 255                                     resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
 256                             check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
 257                         });
 258             }
 259         } else {
 260             owntype = shouldCheck ?
 261             resultInfo.check(tree, found) :
 262             found;
 263         }
 264         if (resultInfo.checkMode.updateTreeType()) {
 265             tree.type = owntype;
 266         }
 267         return owntype;
 268     }
 269 
 270     /** Is given blank final variable assignable, i.e. in a scope where it
 271      *  may be assigned to even though it is final?
 272      *  @param v      The blank final variable.
 273      *  @param env    The current environment.
 274      */
 275     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
 276         Symbol owner = env.info.scope.owner;
 277            // owner refers to the innermost variable, method or
 278            // initializer block declaration at this point.
 279         boolean isAssignable =
 280             v.owner == owner
 281             ||
 282             ((owner.name == names.init ||    // i.e. we are in a constructor
 283               owner.kind == VAR ||           // i.e. we are in a variable initializer
 284               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
 285              &&
 286              v.owner == owner.owner
 287              &&
 288              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
 289         boolean insideCompactConstructor = env.enclMethod != null && TreeInfo.isCompactConstructor(env.enclMethod);
 290         return isAssignable & !insideCompactConstructor;
 291     }
 292 
 293     /** Check that variable can be assigned to.
 294      *  @param pos    The current source code position.
 295      *  @param v      The assigned variable
 296      *  @param base   If the variable is referred to in a Select, the part
 297      *                to the left of the `.', null otherwise.
 298      *  @param env    The current environment.
 299      */
 300     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
 301         if (v.name == names._this) {
 302             log.error(pos, Errors.CantAssignValToThis);
 303             return;
 304         }
 305         if ((v.flags() & FINAL) != 0 &&
 306             ((v.flags() & HASINIT) != 0
 307              ||
 308              !((base == null ||
 309                TreeInfo.isThisQualifier(base)) &&
 310                isAssignableAsBlankFinal(v, env)))) {
 311             if (v.isResourceVariable()) { //TWR resource
 312                 log.error(pos, Errors.TryResourceMayNotBeAssigned(v));
 313             } else {
 314                 log.error(pos, Errors.CantAssignValToVar(Flags.toSource(v.flags() & (STATIC | FINAL)), v));
 315             }
 316             return;
 317         }
 318 
 319         // Check instance field assignments that appear in constructor prologues
 320         if (rs.isEarlyReference(env, base, v)) {
 321 
 322             // Field may not be inherited from a superclass
 323             if (v.owner != env.enclClass.sym) {
 324                 log.error(pos, Errors.CantRefBeforeCtorCalled(v));
 325                 return;
 326             }
 327 
 328             // Field may not have an initializer
 329             if ((v.flags() & HASINIT) != 0) {
 330                 log.error(pos, Errors.CantAssignInitializedBeforeCtorCalled(v));
 331                 return;
 332             }
 333         }
 334     }
 335 
 336     /** Does tree represent a static reference to an identifier?
 337      *  It is assumed that tree is either a SELECT or an IDENT.
 338      *  We have to weed out selects from non-type names here.
 339      *  @param tree    The candidate tree.
 340      */
 341     boolean isStaticReference(JCTree tree) {
 342         if (tree.hasTag(SELECT)) {
 343             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
 344             if (lsym == null || lsym.kind != TYP) {
 345                 return false;
 346             }
 347         }
 348         return true;
 349     }
 350 
 351     /** Is this symbol a type?
 352      */
 353     static boolean isType(Symbol sym) {
 354         return sym != null && sym.kind == TYP;
 355     }
 356 
 357     /** Attribute a parsed identifier.
 358      * @param tree Parsed identifier name
 359      * @param topLevel The toplevel to use
 360      */
 361     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
 362         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
 363         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
 364                                            syms.errSymbol.name,
 365                                            null, null, null, null);
 366         localEnv.enclClass.sym = syms.errSymbol;
 367         return attribIdent(tree, localEnv);
 368     }
 369 
 370     /** Attribute a parsed identifier.
 371      * @param tree Parsed identifier name
 372      * @param env The env to use
 373      */
 374     public Symbol attribIdent(JCTree tree, Env<AttrContext> env) {
 375         return tree.accept(identAttributer, env);
 376     }
 377     // where
 378         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
 379         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
 380             @Override @DefinedBy(Api.COMPILER_TREE)
 381             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
 382                 Symbol site = visit(node.getExpression(), env);
 383                 if (site.kind == ERR || site.kind == ABSENT_TYP || site.kind == HIDDEN)
 384                     return site;
 385                 Name name = (Name)node.getIdentifier();
 386                 if (site.kind == PCK) {
 387                     env.toplevel.packge = (PackageSymbol)site;
 388                     return rs.findIdentInPackage(null, env, (TypeSymbol)site, name,
 389                             KindSelector.TYP_PCK);
 390                 } else {
 391                     env.enclClass.sym = (ClassSymbol)site;
 392                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
 393                 }
 394             }
 395 
 396             @Override @DefinedBy(Api.COMPILER_TREE)
 397             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
 398                 return rs.findIdent(null, env, (Name)node.getName(), KindSelector.TYP_PCK);
 399             }
 400         }
 401 
 402     public Type coerce(Type etype, Type ttype) {
 403         return cfolder.coerce(etype, ttype);
 404     }
 405 
 406     public Type attribType(JCTree node, TypeSymbol sym) {
 407         Env<AttrContext> env = typeEnvs.get(sym);
 408         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
 409         return attribTree(node, localEnv, unknownTypeInfo);
 410     }
 411 
 412     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
 413         // Attribute qualifying package or class.
 414         JCFieldAccess s = tree.qualid;
 415         return attribTree(s.selected, env,
 416                           new ResultInfo(tree.staticImport ?
 417                                          KindSelector.TYP : KindSelector.TYP_PCK,
 418                        Type.noType));
 419     }
 420 
 421     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
 422         return attribToTree(expr, env, tree, unknownExprInfo);
 423     }
 424 
 425     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
 426         return attribToTree(stmt, env, tree, statInfo);
 427     }
 428 
 429     private Env<AttrContext> attribToTree(JCTree root, Env<AttrContext> env, JCTree tree, ResultInfo resultInfo) {
 430         breakTree = tree;
 431         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 432         try {
 433             deferredAttr.attribSpeculative(root, env, resultInfo,
 434                     null, DeferredAttr.AttributionMode.ATTRIB_TO_TREE,
 435                     argumentAttr.withLocalCacheContext());
 436             attrRecover.doRecovery();
 437         } catch (BreakAttr b) {
 438             return b.env;
 439         } catch (AssertionError ae) {
 440             if (ae.getCause() instanceof BreakAttr breakAttr) {
 441                 return breakAttr.env;
 442             } else {
 443                 throw ae;
 444             }
 445         } finally {
 446             breakTree = null;
 447             log.useSource(prev);
 448         }
 449         return env;
 450     }
 451 
 452     public <R> R runWithAttributedMethod(Env<AttrContext> env, JCMethodDecl tree, Function<JCBlock, R> attributedAction) {
 453         JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
 454         try {
 455             JCBlock dupTree = (JCBlock)deferredAttr.attribSpeculative(tree.body, env, statInfo,
 456                     null, DeferredAttr.AttributionMode.ATTRIB_TO_TREE,
 457                     argumentAttr.withLocalCacheContext());
 458             return attributedAction.apply(dupTree);
 459         } finally {
 460             attrRecover.doRecovery();
 461             log.useSource(prevSource);
 462         }
 463     }
 464 
 465     private JCTree breakTree = null;
 466 
 467     private static class BreakAttr extends RuntimeException {
 468         static final long serialVersionUID = -6924771130405446405L;
 469         private transient Env<AttrContext> env;
 470         private BreakAttr(Env<AttrContext> env) {
 471             this.env = env;
 472         }
 473     }
 474 
 475     /**
 476      * Mode controlling behavior of Attr.Check
 477      */
 478     enum CheckMode {
 479 
 480         NORMAL,
 481 
 482         /**
 483          * Mode signalling 'fake check' - skip tree update. A side-effect of this mode is
 484          * that the captured var cache in {@code InferenceContext} will be used in read-only
 485          * mode when performing inference checks.
 486          */
 487         NO_TREE_UPDATE {
 488             @Override
 489             public boolean updateTreeType() {
 490                 return false;
 491             }
 492         },
 493         /**
 494          * Mode signalling that caller will manage free types in tree decorations.
 495          */
 496         NO_INFERENCE_HOOK {
 497             @Override
 498             public boolean installPostInferenceHook() {
 499                 return false;
 500             }
 501         };
 502 
 503         public boolean updateTreeType() {
 504             return true;
 505         }
 506         public boolean installPostInferenceHook() {
 507             return true;
 508         }
 509     }
 510 
 511 
 512     class ResultInfo {
 513         final KindSelector pkind;
 514         final Type pt;
 515         final CheckContext checkContext;
 516         final CheckMode checkMode;
 517 
 518         ResultInfo(KindSelector pkind, Type pt) {
 519             this(pkind, pt, chk.basicHandler, CheckMode.NORMAL);
 520         }
 521 
 522         ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) {
 523             this(pkind, pt, chk.basicHandler, checkMode);
 524         }
 525 
 526         protected ResultInfo(KindSelector pkind,
 527                              Type pt, CheckContext checkContext) {
 528             this(pkind, pt, checkContext, CheckMode.NORMAL);
 529         }
 530 
 531         protected ResultInfo(KindSelector pkind,
 532                              Type pt, CheckContext checkContext, CheckMode checkMode) {
 533             this.pkind = pkind;
 534             this.pt = pt;
 535             this.checkContext = checkContext;
 536             this.checkMode = checkMode;
 537         }
 538 
 539         /**
 540          * Should {@link Attr#attribTree} use the {@code ArgumentAttr} visitor instead of this one?
 541          * @param tree The tree to be type-checked.
 542          * @return true if {@code ArgumentAttr} should be used.
 543          */
 544         protected boolean needsArgumentAttr(JCTree tree) { return false; }
 545 
 546         protected Type check(final DiagnosticPosition pos, final Type found) {
 547             return chk.checkType(pos, found, pt, checkContext);
 548         }
 549 
 550         protected ResultInfo dup(Type newPt) {
 551             return new ResultInfo(pkind, newPt, checkContext, checkMode);
 552         }
 553 
 554         protected ResultInfo dup(CheckContext newContext) {
 555             return new ResultInfo(pkind, pt, newContext, checkMode);
 556         }
 557 
 558         protected ResultInfo dup(Type newPt, CheckContext newContext) {
 559             return new ResultInfo(pkind, newPt, newContext, checkMode);
 560         }
 561 
 562         protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
 563             return new ResultInfo(pkind, newPt, newContext, newMode);
 564         }
 565 
 566         protected ResultInfo dup(CheckMode newMode) {
 567             return new ResultInfo(pkind, pt, checkContext, newMode);
 568         }
 569 
 570         @Override
 571         public String toString() {
 572             if (pt != null) {
 573                 return pt.toString();
 574             } else {
 575                 return "";
 576             }
 577         }
 578     }
 579 
 580     class MethodAttrInfo extends ResultInfo {
 581         public MethodAttrInfo() {
 582             this(chk.basicHandler);
 583         }
 584 
 585         public MethodAttrInfo(CheckContext checkContext) {
 586             super(KindSelector.VAL, Infer.anyPoly, checkContext);
 587         }
 588 
 589         @Override
 590         protected boolean needsArgumentAttr(JCTree tree) {
 591             return true;
 592         }
 593 
 594         protected ResultInfo dup(Type newPt) {
 595             throw new IllegalStateException();
 596         }
 597 
 598         protected ResultInfo dup(CheckContext newContext) {
 599             return new MethodAttrInfo(newContext);
 600         }
 601 
 602         protected ResultInfo dup(Type newPt, CheckContext newContext) {
 603             throw new IllegalStateException();
 604         }
 605 
 606         protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
 607             throw new IllegalStateException();
 608         }
 609 
 610         protected ResultInfo dup(CheckMode newMode) {
 611             throw new IllegalStateException();
 612         }
 613     }
 614 
 615     class RecoveryInfo extends ResultInfo {
 616 
 617         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
 618             this(deferredAttrContext, Type.recoveryType);
 619         }
 620 
 621         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext, Type pt) {
 622             super(KindSelector.VAL, pt, new Check.NestedCheckContext(chk.basicHandler) {
 623                 @Override
 624                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
 625                     return deferredAttrContext;
 626                 }
 627                 @Override
 628                 public boolean compatible(Type found, Type req, Warner warn) {
 629                     return true;
 630                 }
 631                 @Override
 632                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
 633                     boolean needsReport = pt == Type.recoveryType ||
 634                             (details.getDiagnosticPosition() != null &&
 635                             details.getDiagnosticPosition().getTree().hasTag(LAMBDA));
 636                     if (needsReport) {
 637                         chk.basicHandler.report(pos, details);
 638                     }
 639                 }
 640             });
 641         }
 642     }
 643 
 644     final ResultInfo statInfo;
 645     final ResultInfo varAssignmentInfo;
 646     final ResultInfo methodAttrInfo;
 647     final ResultInfo unknownExprInfo;
 648     final ResultInfo unknownTypeInfo;
 649     final ResultInfo unknownTypeExprInfo;
 650     final ResultInfo recoveryInfo;
 651     final MethodType initBlockType;
 652 
 653     Type pt() {
 654         return resultInfo.pt;
 655     }
 656 
 657     KindSelector pkind() {
 658         return resultInfo.pkind;
 659     }
 660 
 661 /* ************************************************************************
 662  * Visitor methods
 663  *************************************************************************/
 664 
 665     /** Visitor argument: the current environment.
 666      */
 667     Env<AttrContext> env;
 668 
 669     /** Visitor argument: the currently expected attribution result.
 670      */
 671     ResultInfo resultInfo;
 672 
 673     /** Visitor result: the computed type.
 674      */
 675     Type result;
 676 
 677     MatchBindings matchBindings = MatchBindingsComputer.EMPTY;
 678 
 679     /** Visitor method: attribute a tree, catching any completion failure
 680      *  exceptions. Return the tree's type.
 681      *
 682      *  @param tree    The tree to be visited.
 683      *  @param env     The environment visitor argument.
 684      *  @param resultInfo   The result info visitor argument.
 685      */
 686     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
 687         Env<AttrContext> prevEnv = this.env;
 688         ResultInfo prevResult = this.resultInfo;
 689         try {
 690             this.env = env;
 691             this.resultInfo = resultInfo;
 692             if (resultInfo.needsArgumentAttr(tree)) {
 693                 result = argumentAttr.attribArg(tree, env);
 694             } else {
 695                 tree.accept(this);
 696             }
 697             matchBindings = matchBindingsComputer.finishBindings(tree,
 698                                                                  matchBindings);
 699             if (tree == breakTree &&
 700                     resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
 701                 breakTreeFound(copyEnv(env));
 702             }
 703             return result;
 704         } catch (CompletionFailure ex) {
 705             tree.type = syms.errType;
 706             return chk.completionError(tree.pos(), ex);
 707         } finally {
 708             this.env = prevEnv;
 709             this.resultInfo = prevResult;
 710         }
 711     }
 712 
 713     protected void breakTreeFound(Env<AttrContext> env) {
 714         throw new BreakAttr(env);
 715     }
 716 
 717     Env<AttrContext> copyEnv(Env<AttrContext> env) {
 718         Env<AttrContext> newEnv =
 719                 env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
 720         if (newEnv.outer != null) {
 721             newEnv.outer = copyEnv(newEnv.outer);
 722         }
 723         return newEnv;
 724     }
 725 
 726     WriteableScope copyScope(WriteableScope sc) {
 727         WriteableScope newScope = WriteableScope.create(sc.owner);
 728         List<Symbol> elemsList = List.nil();
 729         for (Symbol sym : sc.getSymbols()) {
 730             elemsList = elemsList.prepend(sym);
 731         }
 732         for (Symbol s : elemsList) {
 733             newScope.enter(s);
 734         }
 735         return newScope;
 736     }
 737 
 738     /** Derived visitor method: attribute an expression tree.
 739      */
 740     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
 741         return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
 742     }
 743 
 744     /** Derived visitor method: attribute an expression tree with
 745      *  no constraints on the computed type.
 746      */
 747     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
 748         return attribTree(tree, env, unknownExprInfo);
 749     }
 750 
 751     /** Derived visitor method: attribute a type tree.
 752      */
 753     public Type attribType(JCTree tree, Env<AttrContext> env) {
 754         Type result = attribType(tree, env, Type.noType);
 755         return result;
 756     }
 757 
 758     /** Derived visitor method: attribute a type tree.
 759      */
 760     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
 761         Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt));
 762         return result;
 763     }
 764 
 765     /** Derived visitor method: attribute a statement or definition tree.
 766      */
 767     public Type attribStat(JCTree tree, Env<AttrContext> env) {
 768         Env<AttrContext> analyzeEnv = analyzer.copyEnvIfNeeded(tree, env);
 769         Type result = attribTree(tree, env, statInfo);
 770         analyzer.analyzeIfNeeded(tree, analyzeEnv);
 771         attrRecover.doRecovery();
 772         return result;
 773     }
 774 
 775     /** Attribute a list of expressions, returning a list of types.
 776      */
 777     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
 778         ListBuffer<Type> ts = new ListBuffer<>();
 779         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 780             ts.append(attribExpr(l.head, env, pt));
 781         return ts.toList();
 782     }
 783 
 784     /** Attribute a list of statements, returning nothing.
 785      */
 786     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
 787         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
 788             attribStat(l.head, env);
 789     }
 790 
 791     /** Attribute the arguments in a method call, returning the method kind.
 792      */
 793     KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
 794         KindSelector kind = initialKind;
 795         for (JCExpression arg : trees) {
 796             Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, methodAttrInfo));
 797             if (argtype.hasTag(DEFERRED)) {
 798                 kind = KindSelector.of(KindSelector.POLY, kind);
 799             }
 800             argtypes.append(argtype);
 801         }
 802         return kind;
 803     }
 804 
 805     /** Attribute a type argument list, returning a list of types.
 806      *  Caller is responsible for calling checkRefTypes.
 807      */
 808     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
 809         ListBuffer<Type> argtypes = new ListBuffer<>();
 810         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 811             argtypes.append(attribType(l.head, env));
 812         return argtypes.toList();
 813     }
 814 
 815     /** Attribute a type argument list, returning a list of types.
 816      *  Check that all the types are references.
 817      */
 818     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
 819         List<Type> types = attribAnyTypes(trees, env);
 820         return chk.checkRefTypes(trees, types);
 821     }
 822 
 823     /**
 824      * Attribute type variables (of generic classes or methods).
 825      * Compound types are attributed later in attribBounds.
 826      * @param typarams the type variables to enter
 827      * @param env      the current environment
 828      */
 829     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env, boolean checkCyclic) {
 830         for (JCTypeParameter tvar : typarams) {
 831             TypeVar a = (TypeVar)tvar.type;
 832             a.tsym.flags_field |= UNATTRIBUTED;
 833             a.setUpperBound(Type.noType);
 834             if (!tvar.bounds.isEmpty()) {
 835                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
 836                 for (JCExpression bound : tvar.bounds.tail)
 837                     bounds = bounds.prepend(attribType(bound, env));
 838                 types.setBounds(a, bounds.reverse());
 839             } else {
 840                 // if no bounds are given, assume a single bound of
 841                 // java.lang.Object.
 842                 types.setBounds(a, List.of(syms.objectType));
 843             }
 844             a.tsym.flags_field &= ~UNATTRIBUTED;
 845         }
 846         if (checkCyclic) {
 847             for (JCTypeParameter tvar : typarams) {
 848                 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
 849             }
 850         }
 851     }
 852 
 853     /**
 854      * Attribute the type references in a list of annotations.
 855      */
 856     void attribAnnotationTypes(List<JCAnnotation> annotations,
 857                                Env<AttrContext> env) {
 858         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
 859             JCAnnotation a = al.head;
 860             attribType(a.annotationType, env);
 861         }
 862     }
 863 
 864     /**
 865      * Attribute a "lazy constant value".
 866      *  @param env         The env for the const value
 867      *  @param variable    The initializer for the const value
 868      *  @param type        The expected type, or null
 869      *  @see VarSymbol#setLazyConstValue
 870      */
 871     public Object attribLazyConstantValue(Env<AttrContext> env,
 872                                       JCVariableDecl variable,
 873                                       Type type) {
 874 
 875         DiagnosticPosition prevLintPos
 876                 = deferredLintHandler.setPos(variable.pos());
 877 
 878         final JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
 879         try {
 880             Type itype = attribExpr(variable.init, env, type);
 881             if (variable.isImplicitlyTyped()) {
 882                 //fixup local variable type
 883                 type = variable.type = variable.sym.type = chk.checkLocalVarType(variable, itype, variable.name);
 884             }
 885             if (itype.constValue() != null) {
 886                 return coerce(itype, type).constValue();
 887             } else {
 888                 return null;
 889             }
 890         } finally {
 891             log.useSource(prevSource);
 892             deferredLintHandler.setPos(prevLintPos);
 893         }
 894     }
 895 
 896     /** Attribute type reference in an `extends' or `implements' clause.
 897      *  Supertypes of anonymous inner classes are usually already attributed.
 898      *
 899      *  @param tree              The tree making up the type reference.
 900      *  @param env               The environment current at the reference.
 901      *  @param classExpected     true if only a class is expected here.
 902      *  @param interfaceExpected true if only an interface is expected here.
 903      */
 904     Type attribBase(JCTree tree,
 905                     Env<AttrContext> env,
 906                     boolean classExpected,
 907                     boolean interfaceExpected,
 908                     boolean checkExtensible) {
 909         Type t = tree.type != null ?
 910             tree.type :
 911             attribType(tree, env);
 912         try {
 913             return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
 914         } catch (CompletionFailure ex) {
 915             chk.completionError(tree.pos(), ex);
 916             return t;
 917         }
 918     }
 919     Type checkBase(Type t,
 920                    JCTree tree,
 921                    Env<AttrContext> env,
 922                    boolean classExpected,
 923                    boolean interfaceExpected,
 924                    boolean checkExtensible) {
 925         final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ?
 926                 (((JCTypeApply) tree).clazz).pos() : tree.pos();
 927         if (t.tsym.isAnonymous()) {
 928             log.error(pos, Errors.CantInheritFromAnon);
 929             return types.createErrorType(t);
 930         }
 931         if (t.isErroneous())
 932             return t;
 933         if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
 934             // check that type variable is already visible
 935             if (t.getUpperBound() == null) {
 936                 log.error(pos, Errors.IllegalForwardRef);
 937                 return types.createErrorType(t);
 938             }
 939         } else {
 940             t = chk.checkClassType(pos, t, checkExtensible);
 941         }
 942         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
 943             log.error(pos, Errors.IntfExpectedHere);
 944             // return errType is necessary since otherwise there might
 945             // be undetected cycles which cause attribution to loop
 946             return types.createErrorType(t);
 947         } else if (checkExtensible &&
 948                    classExpected &&
 949                    (t.tsym.flags() & INTERFACE) != 0) {
 950             log.error(pos, Errors.NoIntfExpectedHere);
 951             return types.createErrorType(t);
 952         }
 953         if (checkExtensible &&
 954             ((t.tsym.flags() & FINAL) != 0)) {
 955             log.error(pos,
 956                       Errors.CantInheritFromFinal(t.tsym));
 957         }
 958         chk.checkNonCyclic(pos, t);
 959         return t;
 960     }
 961 
 962     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
 963         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
 964         id.type = env.info.scope.owner.enclClass().type;
 965         id.sym = env.info.scope.owner.enclClass();
 966         return id.type;
 967     }
 968 
 969     public void visitClassDef(JCClassDecl tree) {
 970         Optional<ArgumentAttr.LocalCacheContext> localCacheContext =
 971                 Optional.ofNullable(env.info.attributionMode.isSpeculative ?
 972                         argumentAttr.withLocalCacheContext() : null);
 973         boolean ctorProloguePrev = env.info.ctorPrologue;
 974         try {
 975             // Local and anonymous classes have not been entered yet, so we need to
 976             // do it now.
 977             if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) {
 978                 enter.classEnter(tree, env);
 979             } else {
 980                 // If this class declaration is part of a class level annotation,
 981                 // as in @MyAnno(new Object() {}) class MyClass {}, enter it in
 982                 // order to simplify later steps and allow for sensible error
 983                 // messages.
 984                 if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree))
 985                     enter.classEnter(tree, env);
 986             }
 987 
 988             ClassSymbol c = tree.sym;
 989             if (c == null) {
 990                 // exit in case something drastic went wrong during enter.
 991                 result = null;
 992             } else {
 993                 // make sure class has been completed:
 994                 c.complete();
 995 
 996                 // If a class declaration appears in a constructor prologue,
 997                 // that means it's either a local class or an anonymous class.
 998                 // Either way, there is no immediately enclosing instance.
 999                 if (ctorProloguePrev) {
1000                     c.flags_field |= NOOUTERTHIS;
1001                 }
1002                 attribClass(tree.pos(), c);
1003                 result = tree.type = c.type;
1004             }
1005         } finally {
1006             localCacheContext.ifPresent(LocalCacheContext::leave);
1007             env.info.ctorPrologue = ctorProloguePrev;
1008         }
1009     }
1010 
1011     public void visitMethodDef(JCMethodDecl tree) {
1012         MethodSymbol m = tree.sym;
1013         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
1014 
1015         Lint lint = env.info.lint.augment(m);
1016         Lint prevLint = chk.setLint(lint);
1017         boolean ctorProloguePrev = env.info.ctorPrologue;
1018         Assert.check(!env.info.ctorPrologue);
1019         MethodSymbol prevMethod = chk.setMethod(m);
1020         try {
1021             deferredLintHandler.flush(tree.pos(), lint);
1022             chk.checkDeprecatedAnnotation(tree.pos(), m);
1023 
1024 
1025             // Create a new environment with local scope
1026             // for attributing the method.
1027             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
1028             localEnv.info.lint = lint;
1029 
1030             attribStats(tree.typarams, localEnv);
1031 
1032             // If we override any other methods, check that we do so properly.
1033             // JLS ???
1034             if (m.isStatic()) {
1035                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
1036             } else {
1037                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
1038             }
1039             chk.checkOverride(env, tree, m);
1040 
1041             if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
1042                 log.error(tree, Errors.DefaultOverridesObjectMember(m.name, Kinds.kindName(m.location()), m.location()));
1043             }
1044 
1045             // Enter all type parameters into the local method scope.
1046             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
1047                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
1048 
1049             ClassSymbol owner = env.enclClass.sym;
1050             if ((owner.flags() & ANNOTATION) != 0 &&
1051                     (tree.params.nonEmpty() ||
1052                     tree.recvparam != null))
1053                 log.error(tree.params.nonEmpty() ?
1054                         tree.params.head.pos() :
1055                         tree.recvparam.pos(),
1056                         Errors.IntfAnnotationMembersCantHaveParams);
1057 
1058             // Attribute all value parameters.
1059             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
1060                 attribStat(l.head, localEnv);
1061             }
1062 
1063             chk.checkVarargsMethodDecl(localEnv, tree);
1064 
1065             // Check that type parameters are well-formed.
1066             chk.validate(tree.typarams, localEnv);
1067 
1068             // Check that result type is well-formed.
1069             if (tree.restype != null && !tree.restype.type.hasTag(VOID))
1070                 chk.validate(tree.restype, localEnv);
1071 
1072             // Check that receiver type is well-formed.
1073             if (tree.recvparam != null) {
1074                 // Use a new environment to check the receiver parameter.
1075                 // Otherwise I get "might not have been initialized" errors.
1076                 // Is there a better way?
1077                 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
1078                 attribType(tree.recvparam, newEnv);
1079                 chk.validate(tree.recvparam, newEnv);
1080             }
1081 
1082             // Is this method a constructor?
1083             boolean isConstructor = TreeInfo.isConstructor(tree);
1084 
1085             if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP) {
1086                 // lets find if this method is an accessor
1087                 Optional<? extends RecordComponent> recordComponent = env.enclClass.sym.getRecordComponents().stream()
1088                         .filter(rc -> rc.accessor == tree.sym && (rc.accessor.flags_field & GENERATED_MEMBER) == 0).findFirst();
1089                 if (recordComponent.isPresent()) {
1090                     // the method is a user defined accessor lets check that everything is fine
1091                     if (!tree.sym.isPublic()) {
1092                         log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.MethodMustBePublic));
1093                     }
1094                     if (!types.isSameType(tree.sym.type.getReturnType(), recordComponent.get().type)) {
1095                         log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym,
1096                                 Fragments.AccessorReturnTypeDoesntMatch(tree.sym, recordComponent.get())));
1097                     }
1098                     if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) {
1099                         log.error(tree,
1100                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodCantThrowException));
1101                     }
1102                     if (!tree.typarams.isEmpty()) {
1103                         log.error(tree,
1104                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeGeneric));
1105                     }
1106                     if (tree.sym.isStatic()) {
1107                         log.error(tree,
1108                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeStatic));
1109                     }
1110                 }
1111 
1112                 if (isConstructor) {
1113                     // if this a constructor other than the canonical one
1114                     if ((tree.sym.flags_field & RECORD) == 0) {
1115                         if (!TreeInfo.hasConstructorCall(tree, names._this)) {
1116                             log.error(tree, Errors.NonCanonicalConstructorInvokeAnotherConstructor(env.enclClass.sym));
1117                         }
1118                     } else {
1119                         // but if it is the canonical:
1120 
1121                         /* if user generated, then it shouldn't:
1122                          *     - have an accessibility stricter than that of the record type
1123                          *     - explicitly invoke any other constructor
1124                          */
1125                         if ((tree.sym.flags_field & GENERATEDCONSTR) == 0) {
1126                             if (Check.protection(m.flags()) > Check.protection(env.enclClass.sym.flags())) {
1127                                 log.error(tree,
1128                                         (env.enclClass.sym.flags() & AccessFlags) == 0 ?
1129                                             Errors.InvalidCanonicalConstructorInRecord(
1130                                                 Fragments.Canonical,
1131                                                 env.enclClass.sym.name,
1132                                                 Fragments.CanonicalMustNotHaveStrongerAccess("package")
1133                                             ) :
1134                                             Errors.InvalidCanonicalConstructorInRecord(
1135                                                     Fragments.Canonical,
1136                                                     env.enclClass.sym.name,
1137                                                     Fragments.CanonicalMustNotHaveStrongerAccess(asFlagSet(env.enclClass.sym.flags() & AccessFlags))
1138                                             )
1139                                 );
1140                             }
1141 
1142                             if (TreeInfo.hasAnyConstructorCall(tree)) {
1143                                 log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1144                                         Fragments.Canonical, env.enclClass.sym.name,
1145                                         Fragments.CanonicalMustNotContainExplicitConstructorInvocation));
1146                             }
1147                         }
1148 
1149                         // also we want to check that no type variables have been defined
1150                         if (!tree.typarams.isEmpty()) {
1151                             log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1152                                     Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalMustNotDeclareTypeVariables));
1153                         }
1154 
1155                         /* and now we need to check that the constructor's arguments are exactly the same as those of the
1156                          * record components
1157                          */
1158                         List<? extends RecordComponent> recordComponents = env.enclClass.sym.getRecordComponents();
1159                         List<Type> recordFieldTypes = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.type);
1160                         for (JCVariableDecl param: tree.params) {
1161                             boolean paramIsVarArgs = (param.sym.flags_field & VARARGS) != 0;
1162                             if (!types.isSameType(param.type, recordFieldTypes.head) ||
1163                                     (recordComponents.head.isVarargs() != paramIsVarArgs)) {
1164                                 log.error(param, Errors.InvalidCanonicalConstructorInRecord(
1165                                         Fragments.Canonical, env.enclClass.sym.name,
1166                                         Fragments.TypeMustBeIdenticalToCorrespondingRecordComponentType));
1167                             }
1168                             recordComponents = recordComponents.tail;
1169                             recordFieldTypes = recordFieldTypes.tail;
1170                         }
1171                     }
1172                 }
1173             }
1174 
1175             // annotation method checks
1176             if ((owner.flags() & ANNOTATION) != 0) {
1177                 // annotation method cannot have throws clause
1178                 if (tree.thrown.nonEmpty()) {
1179                     log.error(tree.thrown.head.pos(),
1180                               Errors.ThrowsNotAllowedInIntfAnnotation);
1181                 }
1182                 // annotation method cannot declare type-parameters
1183                 if (tree.typarams.nonEmpty()) {
1184                     log.error(tree.typarams.head.pos(),
1185                               Errors.IntfAnnotationMembersCantHaveTypeParams);
1186                 }
1187                 // validate annotation method's return type (could be an annotation type)
1188                 chk.validateAnnotationType(tree.restype);
1189                 // ensure that annotation method does not clash with members of Object/Annotation
1190                 chk.validateAnnotationMethod(tree.pos(), m);
1191             }
1192 
1193             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
1194                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
1195 
1196             if (tree.body == null) {
1197                 // Empty bodies are only allowed for
1198                 // abstract, native, or interface methods, or for methods
1199                 // in a retrofit signature class.
1200                 if (tree.defaultValue != null) {
1201                     if ((owner.flags() & ANNOTATION) == 0)
1202                         log.error(tree.pos(),
1203                                   Errors.DefaultAllowedInIntfAnnotationMember);
1204                 }
1205                 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0)
1206                     log.error(tree.pos(), Errors.MissingMethBodyOrDeclAbstract);
1207             } else {
1208                 if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
1209                     if ((owner.flags() & INTERFACE) != 0) {
1210                         log.error(tree.body.pos(), Errors.IntfMethCantHaveBody);
1211                     } else {
1212                         log.error(tree.pos(), Errors.AbstractMethCantHaveBody);
1213                     }
1214                 } else if ((tree.mods.flags & NATIVE) != 0) {
1215                     log.error(tree.pos(), Errors.NativeMethCantHaveBody);
1216                 }
1217                 // Add an implicit super() call unless an explicit call to
1218                 // super(...) or this(...) is given
1219                 // or we are compiling class java.lang.Object.
1220                 if (isConstructor && owner.type != syms.objectType) {
1221                     if (!TreeInfo.hasAnyConstructorCall(tree)) {
1222                         JCStatement supCall = make.at(tree.body.pos).Exec(make.Apply(List.nil(),
1223                                 make.Ident(names._super), make.Idents(List.nil())));
1224                         tree.body.stats = tree.body.stats.prepend(supCall);
1225                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
1226                             (tree.mods.flags & GENERATEDCONSTR) == 0 &&
1227                             TreeInfo.hasConstructorCall(tree, names._super)) {
1228                         // enum constructors are not allowed to call super
1229                         // directly, so make sure there aren't any super calls
1230                         // in enum constructors, except in the compiler
1231                         // generated one.
1232                         log.error(tree.body.stats.head.pos(),
1233                                   Errors.CallToSuperNotAllowedInEnumCtor(env.enclClass.sym));
1234                     }
1235                     if (env.enclClass.sym.isRecord() && (tree.sym.flags_field & RECORD) != 0) { // we are seeing the canonical constructor
1236                         List<Name> recordComponentNames = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.name);
1237                         List<Name> initParamNames = tree.sym.params.map(p -> p.name);
1238                         if (!initParamNames.equals(recordComponentNames)) {
1239                             log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1240                                     Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalWithNameMismatch));
1241                         }
1242                         if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) {
1243                             log.error(tree,
1244                                     Errors.InvalidCanonicalConstructorInRecord(
1245                                             TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical,
1246                                             env.enclClass.sym.name,
1247                                             Fragments.ThrowsClauseNotAllowedForCanonicalConstructor(
1248                                                     TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical)));
1249                         }
1250                     }
1251                 }
1252 
1253                 // Attribute all type annotations in the body
1254                 annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null);
1255                 annotate.flush();
1256 
1257                 // Start of constructor prologue
1258                 localEnv.info.ctorPrologue = isConstructor;
1259 
1260                 // Attribute method body.
1261                 attribStat(tree.body, localEnv);
1262             }
1263 
1264             localEnv.info.scope.leave();
1265             result = tree.type = m.type;
1266         } finally {
1267             chk.setLint(prevLint);
1268             chk.setMethod(prevMethod);
1269             env.info.ctorPrologue = ctorProloguePrev;
1270         }
1271     }
1272 
1273     public void visitVarDef(JCVariableDecl tree) {
1274         // Local variables have not been entered yet, so we need to do it now:
1275         if (env.info.scope.owner.kind == MTH || env.info.scope.owner.kind == VAR) {
1276             if (tree.sym != null) {
1277                 // parameters have already been entered
1278                 env.info.scope.enter(tree.sym);
1279             } else {
1280                 if (tree.isImplicitlyTyped() && (tree.getModifiers().flags & PARAMETER) == 0) {
1281                     if (tree.init == null) {
1282                         //cannot use 'var' without initializer
1283                         log.error(tree, Errors.CantInferLocalVarType(tree.name, Fragments.LocalMissingInit));
1284                         tree.vartype = make.Erroneous();
1285                     } else {
1286                         Fragment msg = canInferLocalVarType(tree);
1287                         if (msg != null) {
1288                             //cannot use 'var' with initializer which require an explicit target
1289                             //(e.g. lambda, method reference, array initializer).
1290                             log.error(tree, Errors.CantInferLocalVarType(tree.name, msg));
1291                             tree.vartype = make.Erroneous();
1292                         }
1293                     }
1294                 }
1295                 try {
1296                     annotate.blockAnnotations();
1297                     memberEnter.memberEnter(tree, env);
1298                 } finally {
1299                     annotate.unblockAnnotations();
1300                 }
1301             }
1302         } else {
1303             if (tree.init != null) {
1304                 // Field initializer expression need to be entered.
1305                 annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree.pos());
1306                 annotate.flush();
1307             }
1308         }
1309 
1310         VarSymbol v = tree.sym;
1311         Lint lint = env.info.lint.augment(v);
1312         Lint prevLint = chk.setLint(lint);
1313 
1314         // Check that the variable's declared type is well-formed.
1315         boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1316                 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1317                 (tree.sym.flags() & PARAMETER) != 0;
1318         chk.validate(tree.vartype, env, !isImplicitLambdaParameter && !tree.isImplicitlyTyped());
1319 
1320         try {
1321             v.getConstValue(); // ensure compile-time constant initializer is evaluated
1322             deferredLintHandler.flush(tree.pos(), lint);
1323             chk.checkDeprecatedAnnotation(tree.pos(), v);
1324 
1325             if (tree.init != null) {
1326                 if ((v.flags_field & FINAL) == 0 ||
1327                     !memberEnter.needsLazyConstValue(tree.init)) {
1328                     // Not a compile-time constant
1329                     // Attribute initializer in a new environment
1330                     // with the declared variable as owner.
1331                     // Check that initializer conforms to variable's declared type.
1332                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1333                     initEnv.info.lint = lint;
1334                     // In order to catch self-references, we set the variable's
1335                     // declaration position to maximal possible value, effectively
1336                     // marking the variable as undefined.
1337                     initEnv.info.enclVar = v;
1338                     attribExpr(tree.init, initEnv, v.type);
1339                     if (tree.isImplicitlyTyped()) {
1340                         //fixup local variable type
1341                         v.type = chk.checkLocalVarType(tree, tree.init.type, tree.name);
1342                     }
1343                 }
1344                 if (tree.isImplicitlyTyped()) {
1345                     setSyntheticVariableType(tree, v.type);
1346                 }
1347             }
1348             result = tree.type = v.type;
1349             if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP && !v.isStatic()) {
1350                 if (isNonArgsMethodInObject(v.name)) {
1351                     log.error(tree, Errors.IllegalRecordComponentName(v));
1352                 }
1353             }
1354         }
1355         finally {
1356             chk.setLint(prevLint);
1357         }
1358     }
1359 
1360     private boolean isNonArgsMethodInObject(Name name) {
1361         for (Symbol s : syms.objectType.tsym.members().getSymbolsByName(name, s -> s.kind == MTH)) {
1362             if (s.type.getParameterTypes().isEmpty()) {
1363                 return true;
1364             }
1365         }
1366         return false;
1367     }
1368 
1369     Fragment canInferLocalVarType(JCVariableDecl tree) {
1370         LocalInitScanner lis = new LocalInitScanner();
1371         lis.scan(tree.init);
1372         return lis.badInferenceMsg;
1373     }
1374 
1375     static class LocalInitScanner extends TreeScanner {
1376         Fragment badInferenceMsg = null;
1377         boolean needsTarget = true;
1378 
1379         @Override
1380         public void visitNewArray(JCNewArray tree) {
1381             if (tree.elemtype == null && needsTarget) {
1382                 badInferenceMsg = Fragments.LocalArrayMissingTarget;
1383             }
1384         }
1385 
1386         @Override
1387         public void visitLambda(JCLambda tree) {
1388             if (needsTarget) {
1389                 badInferenceMsg = Fragments.LocalLambdaMissingTarget;
1390             }
1391         }
1392 
1393         @Override
1394         public void visitTypeCast(JCTypeCast tree) {
1395             boolean prevNeedsTarget = needsTarget;
1396             try {
1397                 needsTarget = false;
1398                 super.visitTypeCast(tree);
1399             } finally {
1400                 needsTarget = prevNeedsTarget;
1401             }
1402         }
1403 
1404         @Override
1405         public void visitReference(JCMemberReference tree) {
1406             if (needsTarget) {
1407                 badInferenceMsg = Fragments.LocalMrefMissingTarget;
1408             }
1409         }
1410 
1411         @Override
1412         public void visitNewClass(JCNewClass tree) {
1413             boolean prevNeedsTarget = needsTarget;
1414             try {
1415                 needsTarget = false;
1416                 super.visitNewClass(tree);
1417             } finally {
1418                 needsTarget = prevNeedsTarget;
1419             }
1420         }
1421 
1422         @Override
1423         public void visitApply(JCMethodInvocation tree) {
1424             boolean prevNeedsTarget = needsTarget;
1425             try {
1426                 needsTarget = false;
1427                 super.visitApply(tree);
1428             } finally {
1429                 needsTarget = prevNeedsTarget;
1430             }
1431         }
1432     }
1433 
1434     public void visitSkip(JCSkip tree) {
1435         result = null;
1436     }
1437 
1438     public void visitBlock(JCBlock tree) {
1439         if (env.info.scope.owner.kind == TYP || env.info.scope.owner.kind == ERR) {
1440             // Block is a static or instance initializer;
1441             // let the owner of the environment be a freshly
1442             // created BLOCK-method.
1443             Symbol fakeOwner =
1444                 new MethodSymbol(tree.flags | BLOCK |
1445                     env.info.scope.owner.flags() & STRICTFP, names.empty, initBlockType,
1446                     env.info.scope.owner);
1447             final Env<AttrContext> localEnv =
1448                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner)));
1449 
1450             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
1451             // Attribute all type annotations in the block
1452             annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
1453             annotate.flush();
1454             attribStats(tree.stats, localEnv);
1455 
1456             {
1457                 // Store init and clinit type annotations with the ClassSymbol
1458                 // to allow output in Gen.normalizeDefs.
1459                 ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
1460                 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
1461                 if ((tree.flags & STATIC) != 0) {
1462                     cs.appendClassInitTypeAttributes(tas);
1463                 } else {
1464                     cs.appendInitTypeAttributes(tas);
1465                 }
1466             }
1467         } else {
1468             // Create a new local environment with a local scope.
1469             Env<AttrContext> localEnv =
1470                 env.dup(tree, env.info.dup(env.info.scope.dup()));
1471             try {
1472                 attribStats(tree.stats, localEnv);
1473             } finally {
1474                 localEnv.info.scope.leave();
1475             }
1476         }
1477         result = null;
1478     }
1479 
1480     public void visitDoLoop(JCDoWhileLoop tree) {
1481         attribStat(tree.body, env.dup(tree));
1482         attribExpr(tree.cond, env, syms.booleanType);
1483         handleLoopConditionBindings(matchBindings, tree, tree.body);
1484         result = null;
1485     }
1486 
1487     public void visitWhileLoop(JCWhileLoop tree) {
1488         attribExpr(tree.cond, env, syms.booleanType);
1489         MatchBindings condBindings = matchBindings;
1490         // include condition's bindings when true in the body:
1491         Env<AttrContext> whileEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
1492         try {
1493             attribStat(tree.body, whileEnv.dup(tree));
1494         } finally {
1495             whileEnv.info.scope.leave();
1496         }
1497         handleLoopConditionBindings(condBindings, tree, tree.body);
1498         result = null;
1499     }
1500 
1501     public void visitForLoop(JCForLoop tree) {
1502         Env<AttrContext> loopEnv =
1503             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1504         MatchBindings condBindings = MatchBindingsComputer.EMPTY;
1505         try {
1506             attribStats(tree.init, loopEnv);
1507             if (tree.cond != null) {
1508                 attribExpr(tree.cond, loopEnv, syms.booleanType);
1509                 // include condition's bindings when true in the body and step:
1510                 condBindings = matchBindings;
1511             }
1512             Env<AttrContext> bodyEnv = bindingEnv(loopEnv, condBindings.bindingsWhenTrue);
1513             try {
1514                 bodyEnv.tree = tree; // before, we were not in loop!
1515                 attribStats(tree.step, bodyEnv);
1516                 attribStat(tree.body, bodyEnv);
1517             } finally {
1518                 bodyEnv.info.scope.leave();
1519             }
1520             result = null;
1521         }
1522         finally {
1523             loopEnv.info.scope.leave();
1524         }
1525         handleLoopConditionBindings(condBindings, tree, tree.body);
1526     }
1527 
1528     /**
1529      * Include condition's bindings when false after the loop, if cannot get out of the loop
1530      */
1531     private void handleLoopConditionBindings(MatchBindings condBindings,
1532                                              JCStatement loop,
1533                                              JCStatement loopBody) {
1534         if (condBindings.bindingsWhenFalse.nonEmpty() &&
1535             !breaksTo(env, loop, loopBody)) {
1536             addBindings2Scope(loop, condBindings.bindingsWhenFalse);
1537         }
1538     }
1539 
1540     private boolean breaksTo(Env<AttrContext> env, JCTree loop, JCTree body) {
1541         preFlow(body);
1542         return flow.breaksToTree(env, loop, body, make);
1543     }
1544 
1545     /**
1546      * Add given bindings to the current scope, unless there's a break to
1547      * an immediately enclosing labeled statement.
1548      */
1549     private void addBindings2Scope(JCStatement introducingStatement,
1550                                    List<BindingSymbol> bindings) {
1551         if (bindings.isEmpty()) {
1552             return ;
1553         }
1554 
1555         var searchEnv = env;
1556         while (searchEnv.tree instanceof JCLabeledStatement labeled &&
1557                labeled.body == introducingStatement) {
1558             if (breaksTo(env, labeled, labeled.body)) {
1559                 //breaking to an immediately enclosing labeled statement
1560                 return ;
1561             }
1562             searchEnv = searchEnv.next;
1563             introducingStatement = labeled;
1564         }
1565 
1566         //include condition's body when false after the while, if cannot get out of the loop
1567         bindings.forEach(env.info.scope::enter);
1568         bindings.forEach(BindingSymbol::preserveBinding);
1569     }
1570 
1571     public void visitForeachLoop(JCEnhancedForLoop tree) {
1572         Env<AttrContext> loopEnv =
1573             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1574         try {
1575             //the Formal Parameter of a for-each loop is not in the scope when
1576             //attributing the for-each expression; we mimic this by attributing
1577             //the for-each expression first (against original scope).
1578             Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
1579             chk.checkNonVoid(tree.pos(), exprType);
1580             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1581             if (elemtype == null) {
1582                 // or perhaps expr implements Iterable<T>?
1583                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
1584                 if (base == null) {
1585                     log.error(tree.expr.pos(),
1586                               Errors.ForeachNotApplicableToType(exprType,
1587                                                                 Fragments.TypeReqArrayOrIterable));
1588                     elemtype = types.createErrorType(exprType);
1589                 } else {
1590                     List<Type> iterableParams = base.allparams();
1591                     elemtype = iterableParams.isEmpty()
1592                         ? syms.objectType
1593                         : types.wildUpperBound(iterableParams.head);
1594 
1595                     // Check the return type of the method iterator().
1596                     // This is the bare minimum we need to verify to make sure code generation doesn't crash.
1597                     Symbol iterSymbol = rs.resolveInternalMethod(tree.pos(),
1598                             loopEnv, types.skipTypeVars(exprType, false), names.iterator, List.nil(), List.nil());
1599                     if (types.asSuper(iterSymbol.type.getReturnType(), syms.iteratorType.tsym) == null) {
1600                         log.error(tree.pos(),
1601                                 Errors.ForeachNotApplicableToType(exprType, Fragments.TypeReqArrayOrIterable));
1602                     }
1603                 }
1604             }
1605             if (tree.var.isImplicitlyTyped()) {
1606                 Type inferredType = chk.checkLocalVarType(tree.var, elemtype, tree.var.name);
1607                 setSyntheticVariableType(tree.var, inferredType);
1608             }
1609             attribStat(tree.var, loopEnv);
1610             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1611             loopEnv.tree = tree; // before, we were not in loop!
1612             attribStat(tree.body, loopEnv);
1613             result = null;
1614         }
1615         finally {
1616             loopEnv.info.scope.leave();
1617         }
1618     }
1619 
1620     public void visitLabelled(JCLabeledStatement tree) {
1621         // Check that label is not used in an enclosing statement
1622         Env<AttrContext> env1 = env;
1623         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1624             if (env1.tree.hasTag(LABELLED) &&
1625                 ((JCLabeledStatement) env1.tree).label == tree.label) {
1626                 log.error(tree.pos(),
1627                           Errors.LabelAlreadyInUse(tree.label));
1628                 break;
1629             }
1630             env1 = env1.next;
1631         }
1632 
1633         attribStat(tree.body, env.dup(tree));
1634         result = null;
1635     }
1636 
1637     public void visitSwitch(JCSwitch tree) {
1638         handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> {
1639             attribStats(c.stats, caseEnv);
1640         });
1641         result = null;
1642     }
1643 
1644     public void visitSwitchExpression(JCSwitchExpression tree) {
1645         boolean wrongContext = false;
1646 
1647         tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly) ?
1648                 PolyKind.STANDALONE : PolyKind.POLY;
1649 
1650         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
1651             //this means we are returning a poly conditional from void-compatible lambda expression
1652             resultInfo.checkContext.report(tree, diags.fragment(Fragments.SwitchExpressionTargetCantBeVoid));
1653             resultInfo = recoveryInfo;
1654             wrongContext = true;
1655         }
1656 
1657         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
1658                 unknownExprInfo :
1659                 resultInfo.dup(switchExpressionContext(resultInfo.checkContext));
1660 
1661         ListBuffer<DiagnosticPosition> caseTypePositions = new ListBuffer<>();
1662         ListBuffer<Type> caseTypes = new ListBuffer<>();
1663 
1664         handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> {
1665             caseEnv.info.yieldResult = condInfo;
1666             attribStats(c.stats, caseEnv);
1667             new TreeScanner() {
1668                 @Override
1669                 public void visitYield(JCYield brk) {
1670                     if (brk.target == tree) {
1671                         caseTypePositions.append(brk.value != null ? brk.value.pos() : brk.pos());
1672                         caseTypes.append(brk.value != null ? brk.value.type : syms.errType);
1673                     }
1674                     super.visitYield(brk);
1675                 }
1676 
1677                 @Override public void visitClassDef(JCClassDecl tree) {}
1678                 @Override public void visitLambda(JCLambda tree) {}
1679             }.scan(c.stats);
1680         });
1681 
1682         if (tree.cases.isEmpty()) {
1683             log.error(tree.pos(),
1684                       Errors.SwitchExpressionEmpty);
1685         } else if (caseTypes.isEmpty()) {
1686             log.error(tree.pos(),
1687                       Errors.SwitchExpressionNoResultExpressions);
1688         }
1689 
1690         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(caseTypePositions.toList(), caseTypes.toList()) : pt();
1691 
1692         result = tree.type = wrongContext? types.createErrorType(pt()) : check(tree, owntype, KindSelector.VAL, resultInfo);
1693     }
1694     //where:
1695         CheckContext switchExpressionContext(CheckContext checkContext) {
1696             return new Check.NestedCheckContext(checkContext) {
1697                 //this will use enclosing check context to check compatibility of
1698                 //subexpression against target type; if we are in a method check context,
1699                 //depending on whether boxing is allowed, we could have incompatibilities
1700                 @Override
1701                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
1702                     enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInSwitchExpression(details)));
1703                 }
1704             };
1705         }
1706 
1707     private void handleSwitch(JCTree switchTree,
1708                               JCExpression selector,
1709                               List<JCCase> cases,
1710                               BiConsumer<JCCase, Env<AttrContext>> attribCase) {
1711         Type seltype = attribExpr(selector, env);
1712 
1713         Env<AttrContext> switchEnv =
1714             env.dup(switchTree, env.info.dup(env.info.scope.dup()));
1715 
1716         try {
1717             boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0;
1718             boolean stringSwitch = types.isSameType(seltype, syms.stringType);
1719             boolean booleanSwitch = types.isSameType(types.unboxedTypeOrType(seltype), syms.booleanType);
1720             boolean errorEnumSwitch = TreeInfo.isErrorEnumSwitch(selector, cases);
1721             boolean intSwitch = types.isAssignable(seltype, syms.intType);
1722             boolean patternSwitch;
1723             if (seltype.isPrimitive() && !intSwitch) {
1724                 preview.checkSourceLevel(selector.pos(), Feature.PRIMITIVE_PATTERNS);
1725                 patternSwitch = true;
1726             }
1727             if (!enumSwitch && !stringSwitch && !errorEnumSwitch &&
1728                 !intSwitch) {
1729                 preview.checkSourceLevel(selector.pos(), Feature.PATTERN_SWITCH);
1730                 patternSwitch = true;
1731             } else {
1732                 patternSwitch = cases.stream()
1733                                      .flatMap(c -> c.labels.stream())
1734                                      .anyMatch(l -> l.hasTag(PATTERNCASELABEL) ||
1735                                                     TreeInfo.isNullCaseLabel(l));
1736             }
1737 
1738             // Attribute all cases and
1739             // check that there are no duplicate case labels or default clauses.
1740             Set<Object> constants = new HashSet<>(); // The set of case constants.
1741             boolean hasDefault = false;           // Is there a default label?
1742             boolean hasUnconditionalPattern = false; // Is there a unconditional pattern?
1743             boolean lastPatternErroneous = false; // Has the last pattern erroneous type?
1744             boolean hasNullPattern = false;       // Is there a null pattern?
1745             CaseTree.CaseKind caseKind = null;
1746             boolean wasError = false;
1747             JCCaseLabel unconditionalCaseLabel = null;
1748             for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
1749                 JCCase c = l.head;
1750                 if (caseKind == null) {
1751                     caseKind = c.caseKind;
1752                 } else if (caseKind != c.caseKind && !wasError) {
1753                     log.error(c.pos(),
1754                               Errors.SwitchMixingCaseTypes);
1755                     wasError = true;
1756                 }
1757                 MatchBindings currentBindings = null;
1758                 MatchBindings guardBindings = null;
1759                 for (List<JCCaseLabel> labels = c.labels; labels.nonEmpty(); labels = labels.tail) {
1760                     JCCaseLabel label = labels.head;
1761                     if (label instanceof JCConstantCaseLabel constLabel) {
1762                         JCExpression expr = constLabel.expr;
1763                         if (TreeInfo.isNull(expr)) {
1764                             preview.checkSourceLevel(expr.pos(), Feature.CASE_NULL);
1765                             if (hasNullPattern) {
1766                                 log.error(label.pos(), Errors.DuplicateCaseLabel);
1767                             }
1768                             hasNullPattern = true;
1769                             attribExpr(expr, switchEnv, seltype);
1770                             matchBindings = new MatchBindings(matchBindings.bindingsWhenTrue, matchBindings.bindingsWhenFalse, true);
1771                         } else if (enumSwitch) {
1772                             Symbol sym = enumConstant(expr, seltype);
1773                             if (sym == null) {
1774                                 if (allowPatternSwitch) {
1775                                     attribTree(expr, switchEnv, caseLabelResultInfo(seltype));
1776                                     Symbol enumSym = TreeInfo.symbol(expr);
1777                                     if (enumSym == null || !enumSym.isEnum() || enumSym.kind != VAR) {
1778                                         log.error(expr.pos(), Errors.EnumLabelMustBeEnumConstant);
1779                                     } else if (!constants.add(enumSym)) {
1780                                         log.error(label.pos(), Errors.DuplicateCaseLabel);
1781                                     }
1782                                 } else {
1783                                     log.error(expr.pos(), Errors.EnumLabelMustBeUnqualifiedEnum);
1784                                 }
1785                             } else if (!constants.add(sym)) {
1786                                 log.error(label.pos(), Errors.DuplicateCaseLabel);
1787                             }
1788                         } else if (errorEnumSwitch) {
1789                             //error recovery: the selector is erroneous, and all the case labels
1790                             //are identifiers. This could be an enum switch - don't report resolve
1791                             //error for the case label:
1792                             var prevResolveHelper = rs.basicLogResolveHelper;
1793                             try {
1794                                 rs.basicLogResolveHelper = rs.silentLogResolveHelper;
1795                                 attribExpr(expr, switchEnv, seltype);
1796                             } finally {
1797                                 rs.basicLogResolveHelper = prevResolveHelper;
1798                             }
1799                         } else {
1800                             Type pattype = attribTree(expr, switchEnv, caseLabelResultInfo(seltype));
1801                             if (!pattype.hasTag(ERROR)) {
1802                                 if (pattype.constValue() == null) {
1803                                     Symbol s = TreeInfo.symbol(expr);
1804                                     if (s != null && s.kind == TYP) {
1805                                         log.error(expr.pos(),
1806                                                   Errors.PatternExpected);
1807                                     } else if (s == null || !s.isEnum()) {
1808                                         log.error(expr.pos(),
1809                                                   (stringSwitch ? Errors.StringConstReq
1810                                                                 : intSwitch ? Errors.ConstExprReq
1811                                                                             : Errors.PatternOrEnumReq));
1812                                     } else if (!constants.add(s)) {
1813                                         log.error(label.pos(), Errors.DuplicateCaseLabel);
1814                                     }
1815                                 }
1816                                 else {
1817                                     if (!stringSwitch && !intSwitch &&
1818                                             !((pattype.getTag().isInSuperClassesOf(LONG) || pattype.getTag().equals(BOOLEAN)) &&
1819                                               types.isSameType(types.unboxedTypeOrType(seltype), pattype))) {
1820                                         log.error(label.pos(), Errors.ConstantLabelNotCompatible(pattype, seltype));
1821                                     } else if (!constants.add(pattype.constValue())) {
1822                                         log.error(c.pos(), Errors.DuplicateCaseLabel);
1823                                     }
1824                                 }
1825                             }
1826                         }
1827                     } else if (label instanceof JCDefaultCaseLabel def) {
1828                         if (hasDefault) {
1829                             log.error(label.pos(), Errors.DuplicateDefaultLabel);
1830                         } else if (hasUnconditionalPattern) {
1831                             log.error(label.pos(), Errors.UnconditionalPatternAndDefault);
1832                         }  else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) {
1833                             log.error(label.pos(), Errors.DefaultAndBothBooleanValues);
1834                         }
1835                         hasDefault = true;
1836                         matchBindings = MatchBindingsComputer.EMPTY;
1837                     } else if (label instanceof JCPatternCaseLabel patternlabel) {
1838                         //pattern
1839                         JCPattern pat = patternlabel.pat;
1840                         attribExpr(pat, switchEnv, seltype);
1841                         Type primaryType = TreeInfo.primaryPatternType(pat);
1842 
1843                         if (primaryType.isPrimitive()) {
1844                             preview.checkSourceLevel(pat.pos(), Feature.PRIMITIVE_PATTERNS);
1845                         } else if (!primaryType.hasTag(TYPEVAR)) {
1846                             primaryType = chk.checkClassOrArrayType(pat.pos(), primaryType);
1847                         }
1848                         checkCastablePattern(pat.pos(), seltype, primaryType);
1849                         Type patternType = types.erasure(primaryType);
1850                         JCExpression guard = c.guard;
1851                         if (guardBindings == null && guard != null) {
1852                             MatchBindings afterPattern = matchBindings;
1853                             Env<AttrContext> bodyEnv = bindingEnv(switchEnv, matchBindings.bindingsWhenTrue);
1854                             try {
1855                                 attribExpr(guard, bodyEnv, syms.booleanType);
1856                             } finally {
1857                                 bodyEnv.info.scope.leave();
1858                             }
1859 
1860                             guardBindings = matchBindings;
1861                             matchBindings = afterPattern;
1862 
1863                             if (TreeInfo.isBooleanWithValue(guard, 0)) {
1864                                 log.error(guard.pos(), Errors.GuardHasConstantExpressionFalse);
1865                             }
1866                         }
1867                         boolean unguarded = TreeInfo.unguardedCase(c) && !pat.hasTag(RECORDPATTERN);
1868                         boolean unconditional =
1869                                 unguarded &&
1870                                 !patternType.isErroneous() &&
1871                                 types.isUnconditionallyExact(seltype, patternType);
1872                         if (unconditional) {
1873                             if (hasUnconditionalPattern) {
1874                                 log.error(pat.pos(), Errors.DuplicateUnconditionalPattern);
1875                             } else if (hasDefault) {
1876                                 log.error(pat.pos(), Errors.UnconditionalPatternAndDefault);
1877                             } else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) {
1878                                 log.error(pat.pos(), Errors.UnconditionalPatternAndBothBooleanValues);
1879                             }
1880                             hasUnconditionalPattern = true;
1881                             unconditionalCaseLabel = label;
1882                         }
1883                         lastPatternErroneous = patternType.isErroneous();
1884                     } else {
1885                         Assert.error();
1886                     }
1887                     currentBindings = matchBindingsComputer.switchCase(label, currentBindings, matchBindings);
1888                 }
1889 
1890                 if (guardBindings != null) {
1891                     currentBindings = matchBindingsComputer.caseGuard(c, currentBindings, guardBindings);
1892                 }
1893 
1894                 Env<AttrContext> caseEnv =
1895                         bindingEnv(switchEnv, c, currentBindings.bindingsWhenTrue);
1896                 try {
1897                     attribCase.accept(c, caseEnv);
1898                 } finally {
1899                     caseEnv.info.scope.leave();
1900                 }
1901                 addVars(c.stats, switchEnv.info.scope);
1902 
1903                 preFlow(c);
1904                 c.completesNormally = flow.aliveAfter(caseEnv, c, make);
1905             }
1906             if (patternSwitch) {
1907                 chk.checkSwitchCaseStructure(cases);
1908                 chk.checkSwitchCaseLabelDominated(unconditionalCaseLabel, cases);
1909             }
1910             if (switchTree.hasTag(SWITCH)) {
1911                 ((JCSwitch) switchTree).hasUnconditionalPattern =
1912                         hasDefault || hasUnconditionalPattern || lastPatternErroneous;
1913                 ((JCSwitch) switchTree).patternSwitch = patternSwitch;
1914             } else if (switchTree.hasTag(SWITCH_EXPRESSION)) {
1915                 ((JCSwitchExpression) switchTree).hasUnconditionalPattern =
1916                         hasDefault || hasUnconditionalPattern || lastPatternErroneous;
1917                 ((JCSwitchExpression) switchTree).patternSwitch = patternSwitch;
1918             } else {
1919                 Assert.error(switchTree.getTag().name());
1920             }
1921         } finally {
1922             switchEnv.info.scope.leave();
1923         }
1924     }
1925     // where
1926         private ResultInfo caseLabelResultInfo(Type seltype) {
1927             return new ResultInfo(KindSelector.VAL_TYP,
1928                                   !seltype.hasTag(ERROR) ? seltype
1929                                                          : Type.noType);
1930         }
1931         /** Add any variables defined in stats to the switch scope. */
1932         private static void addVars(List<JCStatement> stats, WriteableScope switchScope) {
1933             for (;stats.nonEmpty(); stats = stats.tail) {
1934                 JCTree stat = stats.head;
1935                 if (stat.hasTag(VARDEF))
1936                     switchScope.enter(((JCVariableDecl) stat).sym);
1937             }
1938         }
1939     // where
1940     /** Return the selected enumeration constant symbol, or null. */
1941     private Symbol enumConstant(JCTree tree, Type enumType) {
1942         if (tree.hasTag(IDENT)) {
1943             JCIdent ident = (JCIdent)tree;
1944             Name name = ident.name;
1945             for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) {
1946                 if (sym.kind == VAR) {
1947                     Symbol s = ident.sym = sym;
1948                     ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1949                     ident.type = s.type;
1950                     return ((s.flags_field & Flags.ENUM) == 0)
1951                         ? null : s;
1952                 }
1953             }
1954         }
1955         return null;
1956     }
1957 
1958     public void visitSynchronized(JCSynchronized tree) {
1959         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
1960         if (env.info.lint.isEnabled(LintCategory.SYNCHRONIZATION) && isValueBased(tree.lock.type)) {
1961             log.warning(LintCategory.SYNCHRONIZATION, tree.pos(), Warnings.AttemptToSynchronizeOnInstanceOfValueBasedClass);
1962         }
1963         attribStat(tree.body, env);
1964         result = null;
1965     }
1966         // where
1967         private boolean isValueBased(Type t) {
1968             return t != null && t.tsym != null && (t.tsym.flags() & VALUE_BASED) != 0;
1969         }
1970 
1971 
1972     public void visitTry(JCTry tree) {
1973         // Create a new local environment with a local
1974         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1975         try {
1976             boolean isTryWithResource = tree.resources.nonEmpty();
1977             // Create a nested environment for attributing the try block if needed
1978             Env<AttrContext> tryEnv = isTryWithResource ?
1979                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
1980                 localEnv;
1981             try {
1982                 // Attribute resource declarations
1983                 for (JCTree resource : tree.resources) {
1984                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
1985                         @Override
1986                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
1987                             chk.basicHandler.report(pos, diags.fragment(Fragments.TryNotApplicableToType(details)));
1988                         }
1989                     };
1990                     ResultInfo twrResult =
1991                         new ResultInfo(KindSelector.VAR,
1992                                        syms.autoCloseableType,
1993                                        twrContext);
1994                     if (resource.hasTag(VARDEF)) {
1995                         attribStat(resource, tryEnv);
1996                         twrResult.check(resource, resource.type);
1997 
1998                         //check that resource type cannot throw InterruptedException
1999                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
2000 
2001                         VarSymbol var = ((JCVariableDecl) resource).sym;
2002 
2003                         var.flags_field |= Flags.FINAL;
2004                         var.setData(ElementKind.RESOURCE_VARIABLE);
2005                     } else {
2006                         attribTree(resource, tryEnv, twrResult);
2007                     }
2008                 }
2009                 // Attribute body
2010                 attribStat(tree.body, tryEnv);
2011             } finally {
2012                 if (isTryWithResource)
2013                     tryEnv.info.scope.leave();
2014             }
2015 
2016             // Attribute catch clauses
2017             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
2018                 JCCatch c = l.head;
2019                 Env<AttrContext> catchEnv =
2020                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
2021                 try {
2022                     Type ctype = attribStat(c.param, catchEnv);
2023                     if (TreeInfo.isMultiCatch(c)) {
2024                         //multi-catch parameter is implicitly marked as final
2025                         c.param.sym.flags_field |= FINAL | UNION;
2026                     }
2027                     if (c.param.sym.kind == VAR) {
2028                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
2029                     }
2030                     chk.checkType(c.param.vartype.pos(),
2031                                   chk.checkClassType(c.param.vartype.pos(), ctype),
2032                                   syms.throwableType);
2033                     attribStat(c.body, catchEnv);
2034                 } finally {
2035                     catchEnv.info.scope.leave();
2036                 }
2037             }
2038 
2039             // Attribute finalizer
2040             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
2041             result = null;
2042         }
2043         finally {
2044             localEnv.info.scope.leave();
2045         }
2046     }
2047 
2048     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
2049         if (!resource.isErroneous() &&
2050             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
2051             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
2052             Symbol close = syms.noSymbol;
2053             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
2054             try {
2055                 close = rs.resolveQualifiedMethod(pos,
2056                         env,
2057                         types.skipTypeVars(resource, false),
2058                         names.close,
2059                         List.nil(),
2060                         List.nil());
2061             }
2062             finally {
2063                 log.popDiagnosticHandler(discardHandler);
2064             }
2065             if (close.kind == MTH &&
2066                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
2067                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
2068                     env.info.lint.isEnabled(LintCategory.TRY)) {
2069                 log.warning(LintCategory.TRY, pos, Warnings.TryResourceThrowsInterruptedExc(resource));
2070             }
2071         }
2072     }
2073 
2074     public void visitConditional(JCConditional tree) {
2075         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
2076         MatchBindings condBindings = matchBindings;
2077 
2078         tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly ||
2079                 isBooleanOrNumeric(env, tree)) ?
2080                 PolyKind.STANDALONE : PolyKind.POLY;
2081 
2082         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
2083             //this means we are returning a poly conditional from void-compatible lambda expression
2084             resultInfo.checkContext.report(tree, diags.fragment(Fragments.ConditionalTargetCantBeVoid));
2085             result = tree.type = types.createErrorType(resultInfo.pt);
2086             return;
2087         }
2088 
2089         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
2090                 unknownExprInfo :
2091                 resultInfo.dup(conditionalContext(resultInfo.checkContext));
2092 
2093 
2094         // x ? y : z
2095         // include x's bindings when true in y
2096         // include x's bindings when false in z
2097 
2098         Type truetype;
2099         Env<AttrContext> trueEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
2100         try {
2101             truetype = attribTree(tree.truepart, trueEnv, condInfo);
2102         } finally {
2103             trueEnv.info.scope.leave();
2104         }
2105 
2106         MatchBindings trueBindings = matchBindings;
2107 
2108         Type falsetype;
2109         Env<AttrContext> falseEnv = bindingEnv(env, condBindings.bindingsWhenFalse);
2110         try {
2111             falsetype = attribTree(tree.falsepart, falseEnv, condInfo);
2112         } finally {
2113             falseEnv.info.scope.leave();
2114         }
2115 
2116         MatchBindings falseBindings = matchBindings;
2117 
2118         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ?
2119                 condType(List.of(tree.truepart.pos(), tree.falsepart.pos()),
2120                          List.of(truetype, falsetype)) : pt();
2121         if (condtype.constValue() != null &&
2122                 truetype.constValue() != null &&
2123                 falsetype.constValue() != null &&
2124                 !owntype.hasTag(NONE)) {
2125             //constant folding
2126             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
2127         }
2128         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2129         matchBindings = matchBindingsComputer.conditional(tree, condBindings, trueBindings, falseBindings);
2130     }
2131     //where
2132         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
2133             switch (tree.getTag()) {
2134                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
2135                               ((JCLiteral)tree).typetag == BOOLEAN ||
2136                               ((JCLiteral)tree).typetag == BOT;
2137                 case LAMBDA: case REFERENCE: return false;
2138                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
2139                 case CONDEXPR:
2140                     JCConditional condTree = (JCConditional)tree;
2141                     return isBooleanOrNumeric(env, condTree.truepart) &&
2142                             isBooleanOrNumeric(env, condTree.falsepart);
2143                 case APPLY:
2144                     JCMethodInvocation speculativeMethodTree =
2145                             (JCMethodInvocation)deferredAttr.attribSpeculative(
2146                                     tree, env, unknownExprInfo,
2147                                     argumentAttr.withLocalCacheContext());
2148                     Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth);
2149                     Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ?
2150                             env.enclClass.type :
2151                             ((JCFieldAccess)speculativeMethodTree.meth).selected.type;
2152                     Type owntype = types.memberType(receiverType, msym).getReturnType();
2153                     return primitiveOrBoxed(owntype);
2154                 case NEWCLASS:
2155                     JCExpression className =
2156                             removeClassParams.translate(((JCNewClass)tree).clazz);
2157                     JCExpression speculativeNewClassTree =
2158                             (JCExpression)deferredAttr.attribSpeculative(
2159                                     className, env, unknownTypeInfo,
2160                                     argumentAttr.withLocalCacheContext());
2161                     return primitiveOrBoxed(speculativeNewClassTree.type);
2162                 default:
2163                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo,
2164                             argumentAttr.withLocalCacheContext()).type;
2165                     return primitiveOrBoxed(speculativeType);
2166             }
2167         }
2168         //where
2169             boolean primitiveOrBoxed(Type t) {
2170                 return (!t.hasTag(TYPEVAR) && !t.isErroneous() && types.unboxedTypeOrType(t).isPrimitive());
2171             }
2172 
2173             TreeTranslator removeClassParams = new TreeTranslator() {
2174                 @Override
2175                 public void visitTypeApply(JCTypeApply tree) {
2176                     result = translate(tree.clazz);
2177                 }
2178             };
2179 
2180         CheckContext conditionalContext(CheckContext checkContext) {
2181             return new Check.NestedCheckContext(checkContext) {
2182                 //this will use enclosing check context to check compatibility of
2183                 //subexpression against target type; if we are in a method check context,
2184                 //depending on whether boxing is allowed, we could have incompatibilities
2185                 @Override
2186                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
2187                     enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInConditional(details)));
2188                 }
2189             };
2190         }
2191 
2192         /** Compute the type of a conditional expression, after
2193          *  checking that it exists.  See JLS 15.25. Does not take into
2194          *  account the special case where condition and both arms
2195          *  are constants.
2196          *
2197          *  @param pos      The source position to be used for error
2198          *                  diagnostics.
2199          *  @param thentype The type of the expression's then-part.
2200          *  @param elsetype The type of the expression's else-part.
2201          */
2202         Type condType(List<DiagnosticPosition> positions, List<Type> condTypes) {
2203             if (condTypes.isEmpty()) {
2204                 return syms.objectType; //TODO: how to handle?
2205             }
2206             Type first = condTypes.head;
2207             // If same type, that is the result
2208             if (condTypes.tail.stream().allMatch(t -> types.isSameType(first, t)))
2209                 return first.baseType();
2210 
2211             List<Type> unboxedTypes = condTypes.stream()
2212                                                .map(t -> t.isPrimitive() ? t : types.unboxedType(t))
2213                                                .collect(List.collector());
2214 
2215             // Otherwise, if both arms can be converted to a numeric
2216             // type, return the least numeric type that fits both arms
2217             // (i.e. return larger of the two, or return int if one
2218             // arm is short, the other is char).
2219             if (unboxedTypes.stream().allMatch(t -> t.isPrimitive())) {
2220                 // If one arm has an integer subrange type (i.e., byte,
2221                 // short, or char), and the other is an integer constant
2222                 // that fits into the subrange, return the subrange type.
2223                 for (Type type : unboxedTypes) {
2224                     if (!type.getTag().isStrictSubRangeOf(INT)) {
2225                         continue;
2226                     }
2227                     if (unboxedTypes.stream().filter(t -> t != type).allMatch(t -> t.hasTag(INT) && types.isAssignable(t, type)))
2228                         return type.baseType();
2229                 }
2230 
2231                 for (TypeTag tag : primitiveTags) {
2232                     Type candidate = syms.typeOfTag[tag.ordinal()];
2233                     if (unboxedTypes.stream().allMatch(t -> types.isSubtype(t, candidate))) {
2234                         return candidate;
2235                     }
2236                 }
2237             }
2238 
2239             // Those were all the cases that could result in a primitive
2240             condTypes = condTypes.stream()
2241                                  .map(t -> t.isPrimitive() ? types.boxedClass(t).type : t)
2242                                  .collect(List.collector());
2243 
2244             for (Type type : condTypes) {
2245                 if (condTypes.stream().filter(t -> t != type).allMatch(t -> types.isAssignable(t, type)))
2246                     return type.baseType();
2247             }
2248 
2249             Iterator<DiagnosticPosition> posIt = positions.iterator();
2250 
2251             condTypes = condTypes.stream()
2252                                  .map(t -> chk.checkNonVoid(posIt.next(), t))
2253                                  .collect(List.collector());
2254 
2255             // both are known to be reference types.  The result is
2256             // lub(thentype,elsetype). This cannot fail, as it will
2257             // always be possible to infer "Object" if nothing better.
2258             return types.lub(condTypes.stream()
2259                         .map(t -> t.baseType())
2260                         .filter(t -> !t.hasTag(BOT))
2261                         .collect(List.collector()));
2262         }
2263 
2264     static final TypeTag[] primitiveTags = new TypeTag[]{
2265         BYTE,
2266         CHAR,
2267         SHORT,
2268         INT,
2269         LONG,
2270         FLOAT,
2271         DOUBLE,
2272         BOOLEAN,
2273     };
2274 
2275     Env<AttrContext> bindingEnv(Env<AttrContext> env, List<BindingSymbol> bindings) {
2276         return bindingEnv(env, env.tree, bindings);
2277     }
2278 
2279     Env<AttrContext> bindingEnv(Env<AttrContext> env, JCTree newTree, List<BindingSymbol> bindings) {
2280         Env<AttrContext> env1 = env.dup(newTree, env.info.dup(env.info.scope.dup()));
2281         bindings.forEach(env1.info.scope::enter);
2282         return env1;
2283     }
2284 
2285     public void visitIf(JCIf tree) {
2286         attribExpr(tree.cond, env, syms.booleanType);
2287 
2288         // if (x) { y } [ else z ]
2289         // include x's bindings when true in y
2290         // include x's bindings when false in z
2291 
2292         MatchBindings condBindings = matchBindings;
2293         Env<AttrContext> thenEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
2294 
2295         try {
2296             attribStat(tree.thenpart, thenEnv);
2297         } finally {
2298             thenEnv.info.scope.leave();
2299         }
2300 
2301         preFlow(tree.thenpart);
2302         boolean aliveAfterThen = flow.aliveAfter(env, tree.thenpart, make);
2303         boolean aliveAfterElse;
2304 
2305         if (tree.elsepart != null) {
2306             Env<AttrContext> elseEnv = bindingEnv(env, condBindings.bindingsWhenFalse);
2307             try {
2308                 attribStat(tree.elsepart, elseEnv);
2309             } finally {
2310                 elseEnv.info.scope.leave();
2311             }
2312             preFlow(tree.elsepart);
2313             aliveAfterElse = flow.aliveAfter(env, tree.elsepart, make);
2314         } else {
2315             aliveAfterElse = true;
2316         }
2317 
2318         chk.checkEmptyIf(tree);
2319 
2320         List<BindingSymbol> afterIfBindings = List.nil();
2321 
2322         if (aliveAfterThen && !aliveAfterElse) {
2323             afterIfBindings = condBindings.bindingsWhenTrue;
2324         } else if (aliveAfterElse && !aliveAfterThen) {
2325             afterIfBindings = condBindings.bindingsWhenFalse;
2326         }
2327 
2328         addBindings2Scope(tree, afterIfBindings);
2329 
2330         result = null;
2331     }
2332 
2333         void preFlow(JCTree tree) {
2334             attrRecover.doRecovery();
2335             new PostAttrAnalyzer() {
2336                 @Override
2337                 public void scan(JCTree tree) {
2338                     if (tree == null ||
2339                             (tree.type != null &&
2340                             tree.type == Type.stuckType)) {
2341                         //don't touch stuck expressions!
2342                         return;
2343                     }
2344                     super.scan(tree);
2345                 }
2346 
2347                 @Override
2348                 public void visitClassDef(JCClassDecl that) {
2349                     if (that.sym != null) {
2350                         // Method preFlow shouldn't visit class definitions
2351                         // that have not been entered and attributed.
2352                         // See JDK-8254557 and JDK-8203277 for more details.
2353                         super.visitClassDef(that);
2354                     }
2355                 }
2356 
2357                 @Override
2358                 public void visitLambda(JCLambda that) {
2359                     if (that.type != null) {
2360                         // Method preFlow shouldn't visit lambda expressions
2361                         // that have not been entered and attributed.
2362                         // See JDK-8254557 and JDK-8203277 for more details.
2363                         super.visitLambda(that);
2364                     }
2365                 }
2366             }.scan(tree);
2367         }
2368 
2369     public void visitExec(JCExpressionStatement tree) {
2370         //a fresh environment is required for 292 inference to work properly ---
2371         //see Infer.instantiatePolymorphicSignatureInstance()
2372         Env<AttrContext> localEnv = env.dup(tree);
2373         attribExpr(tree.expr, localEnv);
2374         result = null;
2375     }
2376 
2377     public void visitBreak(JCBreak tree) {
2378         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
2379         result = null;
2380     }
2381 
2382     public void visitYield(JCYield tree) {
2383         if (env.info.yieldResult != null) {
2384             attribTree(tree.value, env, env.info.yieldResult);
2385             tree.target = findJumpTarget(tree.pos(), tree.getTag(), names.empty, env);
2386         } else {
2387             log.error(tree.pos(), tree.value.hasTag(PARENS)
2388                     ? Errors.NoSwitchExpressionQualify
2389                     : Errors.NoSwitchExpression);
2390             attribTree(tree.value, env, unknownExprInfo);
2391         }
2392         result = null;
2393     }
2394 
2395     public void visitContinue(JCContinue tree) {
2396         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
2397         result = null;
2398     }
2399     //where
2400         /** Return the target of a break, continue or yield statement,
2401          *  if it exists, report an error if not.
2402          *  Note: The target of a labelled break or continue is the
2403          *  (non-labelled) statement tree referred to by the label,
2404          *  not the tree representing the labelled statement itself.
2405          *
2406          *  @param pos     The position to be used for error diagnostics
2407          *  @param tag     The tag of the jump statement. This is either
2408          *                 Tree.BREAK or Tree.CONTINUE.
2409          *  @param label   The label of the jump statement, or null if no
2410          *                 label is given.
2411          *  @param env     The environment current at the jump statement.
2412          */
2413         private JCTree findJumpTarget(DiagnosticPosition pos,
2414                                                    JCTree.Tag tag,
2415                                                    Name label,
2416                                                    Env<AttrContext> env) {
2417             Pair<JCTree, Error> jumpTarget = findJumpTargetNoError(tag, label, env);
2418 
2419             if (jumpTarget.snd != null) {
2420                 log.error(pos, jumpTarget.snd);
2421             }
2422 
2423             return jumpTarget.fst;
2424         }
2425         /** Return the target of a break or continue statement, if it exists,
2426          *  report an error if not.
2427          *  Note: The target of a labelled break or continue is the
2428          *  (non-labelled) statement tree referred to by the label,
2429          *  not the tree representing the labelled statement itself.
2430          *
2431          *  @param tag     The tag of the jump statement. This is either
2432          *                 Tree.BREAK or Tree.CONTINUE.
2433          *  @param label   The label of the jump statement, or null if no
2434          *                 label is given.
2435          *  @param env     The environment current at the jump statement.
2436          */
2437         private Pair<JCTree, JCDiagnostic.Error> findJumpTargetNoError(JCTree.Tag tag,
2438                                                                        Name label,
2439                                                                        Env<AttrContext> env) {
2440             // Search environments outwards from the point of jump.
2441             Env<AttrContext> env1 = env;
2442             JCDiagnostic.Error pendingError = null;
2443             LOOP:
2444             while (env1 != null) {
2445                 switch (env1.tree.getTag()) {
2446                     case LABELLED:
2447                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
2448                         if (label == labelled.label) {
2449                             // If jump is a continue, check that target is a loop.
2450                             if (tag == CONTINUE) {
2451                                 if (!labelled.body.hasTag(DOLOOP) &&
2452                                         !labelled.body.hasTag(WHILELOOP) &&
2453                                         !labelled.body.hasTag(FORLOOP) &&
2454                                         !labelled.body.hasTag(FOREACHLOOP)) {
2455                                     pendingError = Errors.NotLoopLabel(label);
2456                                 }
2457                                 // Found labelled statement target, now go inwards
2458                                 // to next non-labelled tree.
2459                                 return Pair.of(TreeInfo.referencedStatement(labelled), pendingError);
2460                             } else {
2461                                 return Pair.of(labelled, pendingError);
2462                             }
2463                         }
2464                         break;
2465                     case DOLOOP:
2466                     case WHILELOOP:
2467                     case FORLOOP:
2468                     case FOREACHLOOP:
2469                         if (label == null) return Pair.of(env1.tree, pendingError);
2470                         break;
2471                     case SWITCH:
2472                         if (label == null && tag == BREAK) return Pair.of(env1.tree, null);
2473                         break;
2474                     case SWITCH_EXPRESSION:
2475                         if (tag == YIELD) {
2476                             return Pair.of(env1.tree, null);
2477                         } else if (tag == BREAK) {
2478                             pendingError = Errors.BreakOutsideSwitchExpression;
2479                         } else {
2480                             pendingError = Errors.ContinueOutsideSwitchExpression;
2481                         }
2482                         break;
2483                     case LAMBDA:
2484                     case METHODDEF:
2485                     case CLASSDEF:
2486                         break LOOP;
2487                     default:
2488                 }
2489                 env1 = env1.next;
2490             }
2491             if (label != null)
2492                 return Pair.of(null, Errors.UndefLabel(label));
2493             else if (pendingError != null)
2494                 return Pair.of(null, pendingError);
2495             else if (tag == CONTINUE)
2496                 return Pair.of(null, Errors.ContOutsideLoop);
2497             else
2498                 return Pair.of(null, Errors.BreakOutsideSwitchLoop);
2499         }
2500 
2501     public void visitReturn(JCReturn tree) {
2502         // Check that there is an enclosing method which is
2503         // nested within than the enclosing class.
2504         if (env.info.returnResult == null) {
2505             log.error(tree.pos(), Errors.RetOutsideMeth);
2506         } else if (env.info.yieldResult != null) {
2507             log.error(tree.pos(), Errors.ReturnOutsideSwitchExpression);
2508             if (tree.expr != null) {
2509                 attribExpr(tree.expr, env, env.info.yieldResult.pt);
2510             }
2511         } else if (!env.info.isLambda &&
2512                 !env.info.isNewClass &&
2513                 env.enclMethod != null &&
2514                 TreeInfo.isCompactConstructor(env.enclMethod)) {
2515             log.error(env.enclMethod,
2516                     Errors.InvalidCanonicalConstructorInRecord(Fragments.Compact, env.enclMethod.sym.name, Fragments.CanonicalCantHaveReturnStatement));
2517         } else {
2518             // Attribute return expression, if it exists, and check that
2519             // it conforms to result type of enclosing method.
2520             if (tree.expr != null) {
2521                 if (env.info.returnResult.pt.hasTag(VOID)) {
2522                     env.info.returnResult.checkContext.report(tree.expr.pos(),
2523                               diags.fragment(Fragments.UnexpectedRetVal));
2524                 }
2525                 attribTree(tree.expr, env, env.info.returnResult);
2526             } else if (!env.info.returnResult.pt.hasTag(VOID) &&
2527                     !env.info.returnResult.pt.hasTag(NONE)) {
2528                 env.info.returnResult.checkContext.report(tree.pos(),
2529                               diags.fragment(Fragments.MissingRetVal(env.info.returnResult.pt)));
2530             }
2531         }
2532         result = null;
2533     }
2534 
2535     public void visitThrow(JCThrow tree) {
2536         Type owntype = attribExpr(tree.expr, env, Type.noType);
2537         chk.checkType(tree, owntype, syms.throwableType);
2538         result = null;
2539     }
2540 
2541     public void visitAssert(JCAssert tree) {
2542         attribExpr(tree.cond, env, syms.booleanType);
2543         if (tree.detail != null) {
2544             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
2545         }
2546         result = null;
2547     }
2548 
2549      /** Visitor method for method invocations.
2550      *  NOTE: The method part of an application will have in its type field
2551      *        the return type of the method, not the method's type itself!
2552      */
2553     public void visitApply(JCMethodInvocation tree) {
2554         // The local environment of a method application is
2555         // a new environment nested in the current one.
2556         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
2557 
2558         // The types of the actual method arguments.
2559         List<Type> argtypes;
2560 
2561         // The types of the actual method type arguments.
2562         List<Type> typeargtypes = null;
2563 
2564         Name methName = TreeInfo.name(tree.meth);
2565 
2566         boolean isConstructorCall =
2567             methName == names._this || methName == names._super;
2568 
2569         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2570         if (isConstructorCall) {
2571 
2572             // Attribute arguments, yielding list of argument types.
2573             KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf);
2574             argtypes = argtypesBuf.toList();
2575             typeargtypes = attribTypes(tree.typeargs, localEnv);
2576 
2577             // Done with this()/super() parameters. End of constructor prologue.
2578             env.info.ctorPrologue = false;
2579 
2580             // Variable `site' points to the class in which the called
2581             // constructor is defined.
2582             Type site = env.enclClass.sym.type;
2583             if (methName == names._super) {
2584                 if (site == syms.objectType) {
2585                     log.error(tree.meth.pos(), Errors.NoSuperclass(site));
2586                     site = types.createErrorType(syms.objectType);
2587                 } else {
2588                     site = types.supertype(site);
2589                 }
2590             }
2591 
2592             if (site.hasTag(CLASS)) {
2593                 Type encl = site.getEnclosingType();
2594                 while (encl != null && encl.hasTag(TYPEVAR))
2595                     encl = encl.getUpperBound();
2596                 if (encl.hasTag(CLASS)) {
2597                     // we are calling a nested class
2598 
2599                     if (tree.meth.hasTag(SELECT)) {
2600                         JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
2601 
2602                         // We are seeing a prefixed call, of the form
2603                         //     <expr>.super(...).
2604                         // Check that the prefix expression conforms
2605                         // to the outer instance type of the class.
2606                         chk.checkRefType(qualifier.pos(),
2607                                          attribExpr(qualifier, localEnv,
2608                                                     encl));
2609                     } else if (methName == names._super) {
2610                         // qualifier omitted; check for existence
2611                         // of an appropriate implicit qualifier.
2612                         rs.resolveImplicitThis(tree.meth.pos(),
2613                                                localEnv, site, true);
2614                     }
2615                 } else if (tree.meth.hasTag(SELECT)) {
2616                     log.error(tree.meth.pos(),
2617                               Errors.IllegalQualNotIcls(site.tsym));
2618                     attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site);
2619                 }
2620 
2621                 // if we're calling a java.lang.Enum constructor,
2622                 // prefix the implicit String and int parameters
2623                 if (site.tsym == syms.enumSym)
2624                     argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
2625 
2626                 // Resolve the called constructor under the assumption
2627                 // that we are referring to a superclass instance of the
2628                 // current instance (JLS ???).
2629                 boolean selectSuperPrev = localEnv.info.selectSuper;
2630                 localEnv.info.selectSuper = true;
2631                 localEnv.info.pendingResolutionPhase = null;
2632                 Symbol sym = rs.resolveConstructor(
2633                     tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
2634                 localEnv.info.selectSuper = selectSuperPrev;
2635 
2636                 // Set method symbol to resolved constructor...
2637                 TreeInfo.setSymbol(tree.meth, sym);
2638 
2639                 // ...and check that it is legal in the current context.
2640                 // (this will also set the tree's type)
2641                 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
2642                 checkId(tree.meth, site, sym, localEnv,
2643                         new ResultInfo(kind, mpt));
2644             } else if (site.hasTag(ERROR) && tree.meth.hasTag(SELECT)) {
2645                 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site);
2646             }
2647             // Otherwise, `site' is an error type and we do nothing
2648             result = tree.type = syms.voidType;
2649         } else {
2650             // Otherwise, we are seeing a regular method call.
2651             // Attribute the arguments, yielding list of argument types, ...
2652             KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2653             argtypes = argtypesBuf.toList();
2654             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
2655 
2656             // ... and attribute the method using as a prototype a methodtype
2657             // whose formal argument types is exactly the list of actual
2658             // arguments (this will also set the method symbol).
2659             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
2660             localEnv.info.pendingResolutionPhase = null;
2661             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
2662 
2663             // Compute the result type.
2664             Type restype = mtype.getReturnType();
2665             if (restype.hasTag(WILDCARD))
2666                 throw new AssertionError(mtype);
2667 
2668             Type qualifier = (tree.meth.hasTag(SELECT))
2669                     ? ((JCFieldAccess) tree.meth).selected.type
2670                     : env.enclClass.sym.type;
2671             Symbol msym = TreeInfo.symbol(tree.meth);
2672             restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype);
2673 
2674             chk.checkRefTypes(tree.typeargs, typeargtypes);
2675 
2676             // Check that value of resulting type is admissible in the
2677             // current context.  Also, capture the return type
2678             Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true);
2679             result = check(tree, capturedRes, KindSelector.VAL, resultInfo);
2680         }
2681         chk.validate(tree.typeargs, localEnv);
2682     }
2683     //where
2684         Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
2685             if (msym != null &&
2686                     (msym.owner == syms.objectType.tsym || msym.owner.isInterface()) &&
2687                     methodName == names.getClass &&
2688                     argtypes.isEmpty()) {
2689                 // as a special case, x.getClass() has type Class<? extends |X|>
2690                 return new ClassType(restype.getEnclosingType(),
2691                         List.of(new WildcardType(types.erasure(qualifierType.baseType()),
2692                                 BoundKind.EXTENDS,
2693                                 syms.boundClass)),
2694                         restype.tsym,
2695                         restype.getMetadata());
2696             } else if (msym != null &&
2697                     msym.owner == syms.arrayClass &&
2698                     methodName == names.clone &&
2699                     types.isArray(qualifierType)) {
2700                 // as a special case, array.clone() has a result that is
2701                 // the same as static type of the array being cloned
2702                 return qualifierType;
2703             } else {
2704                 return restype;
2705             }
2706         }
2707 
2708         /** Obtain a method type with given argument types.
2709          */
2710         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
2711             MethodType mt = new MethodType(argtypes, restype, List.nil(), syms.methodClass);
2712             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
2713         }
2714 
2715     public void visitNewClass(final JCNewClass tree) {
2716         Type owntype = types.createErrorType(tree.type);
2717 
2718         // The local environment of a class creation is
2719         // a new environment nested in the current one.
2720         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
2721 
2722         // The anonymous inner class definition of the new expression,
2723         // if one is defined by it.
2724         JCClassDecl cdef = tree.def;
2725 
2726         // If enclosing class is given, attribute it, and
2727         // complete class name to be fully qualified
2728         JCExpression clazz = tree.clazz; // Class field following new
2729         JCExpression clazzid;            // Identifier in class field
2730         JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
2731         annoclazzid = null;
2732 
2733         if (clazz.hasTag(TYPEAPPLY)) {
2734             clazzid = ((JCTypeApply) clazz).clazz;
2735             if (clazzid.hasTag(ANNOTATED_TYPE)) {
2736                 annoclazzid = (JCAnnotatedType) clazzid;
2737                 clazzid = annoclazzid.underlyingType;
2738             }
2739         } else {
2740             if (clazz.hasTag(ANNOTATED_TYPE)) {
2741                 annoclazzid = (JCAnnotatedType) clazz;
2742                 clazzid = annoclazzid.underlyingType;
2743             } else {
2744                 clazzid = clazz;
2745             }
2746         }
2747 
2748         JCExpression clazzid1 = clazzid; // The same in fully qualified form
2749 
2750         if (tree.encl != null) {
2751             // We are seeing a qualified new, of the form
2752             //    <expr>.new C <...> (...) ...
2753             // In this case, we let clazz stand for the name of the
2754             // allocated class C prefixed with the type of the qualifier
2755             // expression, so that we can
2756             // resolve it with standard techniques later. I.e., if
2757             // <expr> has type T, then <expr>.new C <...> (...)
2758             // yields a clazz T.C.
2759             Type encltype = chk.checkRefType(tree.encl.pos(),
2760                                              attribExpr(tree.encl, env));
2761             // TODO 308: in <expr>.new C, do we also want to add the type annotations
2762             // from expr to the combined type, or not? Yes, do this.
2763             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
2764                                                  ((JCIdent) clazzid).name);
2765 
2766             EndPosTable endPosTable = this.env.toplevel.endPositions;
2767             endPosTable.storeEnd(clazzid1, clazzid.getEndPosition(endPosTable));
2768             if (clazz.hasTag(ANNOTATED_TYPE)) {
2769                 JCAnnotatedType annoType = (JCAnnotatedType) clazz;
2770                 List<JCAnnotation> annos = annoType.annotations;
2771 
2772                 if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
2773                     clazzid1 = make.at(tree.pos).
2774                         TypeApply(clazzid1,
2775                                   ((JCTypeApply) clazz).arguments);
2776                 }
2777 
2778                 clazzid1 = make.at(tree.pos).
2779                     AnnotatedType(annos, clazzid1);
2780             } else if (clazz.hasTag(TYPEAPPLY)) {
2781                 clazzid1 = make.at(tree.pos).
2782                     TypeApply(clazzid1,
2783                               ((JCTypeApply) clazz).arguments);
2784             }
2785 
2786             clazz = clazzid1;
2787         }
2788 
2789         // Attribute clazz expression and store
2790         // symbol + type back into the attributed tree.
2791         Type clazztype;
2792 
2793         try {
2794             env.info.isNewClass = true;
2795             clazztype = TreeInfo.isEnumInit(env.tree) ?
2796                 attribIdentAsEnumType(env, (JCIdent)clazz) :
2797                 attribType(clazz, env);
2798         } finally {
2799             env.info.isNewClass = false;
2800         }
2801 
2802         clazztype = chk.checkDiamond(tree, clazztype);
2803         chk.validate(clazz, localEnv);
2804         if (tree.encl != null) {
2805             // We have to work in this case to store
2806             // symbol + type back into the attributed tree.
2807             tree.clazz.type = clazztype;
2808             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
2809             clazzid.type = ((JCIdent) clazzid).sym.type;
2810             if (annoclazzid != null) {
2811                 annoclazzid.type = clazzid.type;
2812             }
2813             if (!clazztype.isErroneous()) {
2814                 if (cdef != null && clazztype.tsym.isInterface()) {
2815                     log.error(tree.encl.pos(), Errors.AnonClassImplIntfNoQualForNew);
2816                 } else if (clazztype.tsym.isStatic()) {
2817                     log.error(tree.encl.pos(), Errors.QualifiedNewOfStaticClass(clazztype.tsym));
2818                 }
2819             }
2820         } else if (!clazztype.tsym.isInterface() &&
2821                    (clazztype.tsym.flags_field & NOOUTERTHIS) == 0 &&
2822                    clazztype.getEnclosingType().hasTag(CLASS)) {
2823             // Check for the existence of an apropos outer instance
2824             rs.resolveImplicitThis(tree.pos(), env, clazztype);
2825         }
2826 
2827         // Attribute constructor arguments.
2828         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2829         final KindSelector pkind =
2830             attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2831         List<Type> argtypes = argtypesBuf.toList();
2832         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
2833 
2834         if (clazztype.hasTag(CLASS) || clazztype.hasTag(ERROR)) {
2835             // Enums may not be instantiated except implicitly
2836             if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 &&
2837                 (!env.tree.hasTag(VARDEF) ||
2838                  (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 ||
2839                  ((JCVariableDecl) env.tree).init != tree))
2840                 log.error(tree.pos(), Errors.EnumCantBeInstantiated);
2841 
2842             boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) &&
2843                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2844             boolean skipNonDiamondPath = false;
2845             // Check that class is not abstract
2846             if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy
2847                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
2848                 log.error(tree.pos(),
2849                           Errors.AbstractCantBeInstantiated(clazztype.tsym));
2850                 skipNonDiamondPath = true;
2851             } else if (cdef != null && clazztype.tsym.isInterface()) {
2852                 // Check that no constructor arguments are given to
2853                 // anonymous classes implementing an interface
2854                 if (!argtypes.isEmpty())
2855                     log.error(tree.args.head.pos(), Errors.AnonClassImplIntfNoArgs);
2856 
2857                 if (!typeargtypes.isEmpty())
2858                     log.error(tree.typeargs.head.pos(), Errors.AnonClassImplIntfNoTypeargs);
2859 
2860                 // Error recovery: pretend no arguments were supplied.
2861                 argtypes = List.nil();
2862                 typeargtypes = List.nil();
2863                 skipNonDiamondPath = true;
2864             }
2865             if (TreeInfo.isDiamond(tree)) {
2866                 ClassType site = new ClassType(clazztype.getEnclosingType(),
2867                             clazztype.tsym.type.getTypeArguments(),
2868                                                clazztype.tsym,
2869                                                clazztype.getMetadata());
2870 
2871                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
2872                 diamondEnv.info.selectSuper = cdef != null || tree.classDeclRemoved();
2873                 diamondEnv.info.pendingResolutionPhase = null;
2874 
2875                 //if the type of the instance creation expression is a class type
2876                 //apply method resolution inference (JLS 15.12.2.7). The return type
2877                 //of the resolved constructor will be a partially instantiated type
2878                 Symbol constructor = rs.resolveDiamond(tree.pos(),
2879                             diamondEnv,
2880                             site,
2881                             argtypes,
2882                             typeargtypes);
2883                 tree.constructor = constructor.baseSymbol();
2884 
2885                 final TypeSymbol csym = clazztype.tsym;
2886                 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes),
2887                         diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
2888                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
2889                 constructorType = checkId(tree, site,
2890                         constructor,
2891                         diamondEnv,
2892                         diamondResult);
2893 
2894                 tree.clazz.type = types.createErrorType(clazztype);
2895                 if (!constructorType.isErroneous()) {
2896                     tree.clazz.type = clazz.type = constructorType.getReturnType();
2897                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
2898                 }
2899                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
2900             }
2901 
2902             // Resolve the called constructor under the assumption
2903             // that we are referring to a superclass instance of the
2904             // current instance (JLS ???).
2905             else if (!skipNonDiamondPath) {
2906                 //the following code alters some of the fields in the current
2907                 //AttrContext - hence, the current context must be dup'ed in
2908                 //order to avoid downstream failures
2909                 Env<AttrContext> rsEnv = localEnv.dup(tree);
2910                 rsEnv.info.selectSuper = cdef != null;
2911                 rsEnv.info.pendingResolutionPhase = null;
2912                 tree.constructor = rs.resolveConstructor(
2913                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
2914                 if (cdef == null) { //do not check twice!
2915                     tree.constructorType = checkId(tree,
2916                             clazztype,
2917                             tree.constructor,
2918                             rsEnv,
2919                             new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2920                     if (rsEnv.info.lastResolveVarargs())
2921                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
2922                 }
2923             }
2924 
2925             if (cdef != null) {
2926                 visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind);
2927                 return;
2928             }
2929 
2930             if (tree.constructor != null && tree.constructor.kind == MTH)
2931                 owntype = clazztype;
2932         }
2933         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2934         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2935         if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) {
2936             //we need to wait for inference to finish and then replace inference vars in the constructor type
2937             inferenceContext.addFreeTypeListener(List.of(tree.constructorType),
2938                     instantiatedContext -> {
2939                         tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2940                     });
2941         }
2942         chk.validate(tree.typeargs, localEnv);
2943     }
2944 
2945         // where
2946         private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype,
2947                                                    JCClassDecl cdef, Env<AttrContext> localEnv,
2948                                                    List<Type> argtypes, List<Type> typeargtypes,
2949                                                    KindSelector pkind) {
2950             // We are seeing an anonymous class instance creation.
2951             // In this case, the class instance creation
2952             // expression
2953             //
2954             //    E.new <typeargs1>C<typargs2>(args) { ... }
2955             //
2956             // is represented internally as
2957             //
2958             //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
2959             //
2960             // This expression is then *transformed* as follows:
2961             //
2962             // (1) add an extends or implements clause
2963             // (2) add a constructor.
2964             //
2965             // For instance, if C is a class, and ET is the type of E,
2966             // the expression
2967             //
2968             //    E.new <typeargs1>C<typargs2>(args) { ... }
2969             //
2970             // is translated to (where X is a fresh name and typarams is the
2971             // parameter list of the super constructor):
2972             //
2973             //   new <typeargs1>X(<*nullchk*>E, args) where
2974             //     X extends C<typargs2> {
2975             //       <typarams> X(ET e, args) {
2976             //         e.<typeargs1>super(args)
2977             //       }
2978             //       ...
2979             //     }
2980             InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2981             Type enclType = clazztype.getEnclosingType();
2982             if (enclType != null &&
2983                     enclType.hasTag(CLASS) &&
2984                     !chk.checkDenotable((ClassType)enclType)) {
2985                 log.error(tree.encl, Errors.EnclosingClassTypeNonDenotable(enclType));
2986             }
2987             final boolean isDiamond = TreeInfo.isDiamond(tree);
2988             if (isDiamond
2989                     && ((tree.constructorType != null && inferenceContext.free(tree.constructorType))
2990                     || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) {
2991                 final ResultInfo resultInfoForClassDefinition = this.resultInfo;
2992                 Env<AttrContext> dupLocalEnv = copyEnv(localEnv);
2993                 inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type),
2994                         instantiatedContext -> {
2995                             tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2996                             tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type);
2997                             ResultInfo prevResult = this.resultInfo;
2998                             try {
2999                                 this.resultInfo = resultInfoForClassDefinition;
3000                                 visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef,
3001                                         dupLocalEnv, argtypes, typeargtypes, pkind);
3002                             } finally {
3003                                 this.resultInfo = prevResult;
3004                             }
3005                         });
3006             } else {
3007                 if (isDiamond && clazztype.hasTag(CLASS)) {
3008                     List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype);
3009                     if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
3010                         // One or more types inferred in the previous steps is non-denotable.
3011                         Fragment fragment = Diamond(clazztype.tsym);
3012                         log.error(tree.clazz.pos(),
3013                                 Errors.CantApplyDiamond1(
3014                                         fragment,
3015                                         invalidDiamondArgs.size() > 1 ?
3016                                                 DiamondInvalidArgs(invalidDiamondArgs, fragment) :
3017                                                 DiamondInvalidArg(invalidDiamondArgs, fragment)));
3018                     }
3019                     // For <>(){}, inferred types must also be accessible.
3020                     for (Type t : clazztype.getTypeArguments()) {
3021                         rs.checkAccessibleType(env, t);
3022                     }
3023                 }
3024 
3025                 // If we already errored, be careful to avoid a further avalanche. ErrorType answers
3026                 // false for isInterface call even when the original type is an interface.
3027                 boolean implementing = clazztype.tsym.isInterface() ||
3028                         clazztype.isErroneous() && !clazztype.getOriginalType().hasTag(NONE) &&
3029                         clazztype.getOriginalType().tsym.isInterface();
3030 
3031                 if (implementing) {
3032                     cdef.implementing = List.of(clazz);
3033                 } else {
3034                     cdef.extending = clazz;
3035                 }
3036 
3037                 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3038                     rs.isSerializable(clazztype)) {
3039                     localEnv.info.isSerializable = true;
3040                 }
3041 
3042                 attribStat(cdef, localEnv);
3043 
3044                 List<Type> finalargtypes;
3045                 // If an outer instance is given,
3046                 // prefix it to the constructor arguments
3047                 // and delete it from the new expression
3048                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
3049                     finalargtypes = argtypes.prepend(tree.encl.type);
3050                 } else {
3051                     finalargtypes = argtypes;
3052                 }
3053 
3054                 // Reassign clazztype and recompute constructor. As this necessarily involves
3055                 // another attribution pass for deferred types in the case of <>, replicate
3056                 // them. Original arguments have right decorations already.
3057                 if (isDiamond && pkind.contains(KindSelector.POLY)) {
3058                     finalargtypes = finalargtypes.map(deferredAttr.deferredCopier);
3059                 }
3060 
3061                 clazztype = clazztype.hasTag(ERROR) ? types.createErrorType(cdef.sym.type)
3062                                                     : cdef.sym.type;
3063                 Symbol sym = tree.constructor = rs.resolveConstructor(
3064                         tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes);
3065                 Assert.check(!sym.kind.isResolutionError());
3066                 tree.constructor = sym;
3067                 tree.constructorType = checkId(tree,
3068                         clazztype,
3069                         tree.constructor,
3070                         localEnv,
3071                         new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
3072             }
3073             Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ?
3074                                 clazztype : types.createErrorType(tree.type);
3075             result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK));
3076             chk.validate(tree.typeargs, localEnv);
3077         }
3078 
3079         CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) {
3080             return new Check.NestedCheckContext(checkContext) {
3081                 @Override
3082                 public void report(DiagnosticPosition _unused, JCDiagnostic details) {
3083                     enclosingContext.report(clazz.clazz,
3084                             diags.fragment(Fragments.CantApplyDiamond1(Fragments.Diamond(tsym), details)));
3085                 }
3086             };
3087         }
3088 
3089     /** Make an attributed null check tree.
3090      */
3091     public JCExpression makeNullCheck(JCExpression arg) {
3092         // optimization: new Outer() can never be null; skip null check
3093         if (arg.getTag() == NEWCLASS)
3094             return arg;
3095         // optimization: X.this is never null; skip null check
3096         Name name = TreeInfo.name(arg);
3097         if (name == names._this || name == names._super) return arg;
3098 
3099         JCTree.Tag optag = NULLCHK;
3100         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
3101         tree.operator = operators.resolveUnary(arg, optag, arg.type);
3102         tree.type = arg.type;
3103         return tree;
3104     }
3105 
3106     public void visitNewArray(JCNewArray tree) {
3107         Type owntype = types.createErrorType(tree.type);
3108         Env<AttrContext> localEnv = env.dup(tree);
3109         Type elemtype;
3110         if (tree.elemtype != null) {
3111             elemtype = attribType(tree.elemtype, localEnv);
3112             chk.validate(tree.elemtype, localEnv);
3113             owntype = elemtype;
3114             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
3115                 attribExpr(l.head, localEnv, syms.intType);
3116                 owntype = new ArrayType(owntype, syms.arrayClass);
3117             }
3118         } else {
3119             // we are seeing an untyped aggregate { ... }
3120             // this is allowed only if the prototype is an array
3121             if (pt().hasTag(ARRAY)) {
3122                 elemtype = types.elemtype(pt());
3123             } else {
3124                 if (!pt().hasTag(ERROR) &&
3125                         (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
3126                     log.error(tree.pos(),
3127                               Errors.IllegalInitializerForType(pt()));
3128                 }
3129                 elemtype = types.createErrorType(pt());
3130             }
3131         }
3132         if (tree.elems != null) {
3133             attribExprs(tree.elems, localEnv, elemtype);
3134             owntype = new ArrayType(elemtype, syms.arrayClass);
3135         }
3136         if (!types.isReifiable(elemtype))
3137             log.error(tree.pos(), Errors.GenericArrayCreation);
3138         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3139     }
3140 
3141     /*
3142      * A lambda expression can only be attributed when a target-type is available.
3143      * In addition, if the target-type is that of a functional interface whose
3144      * descriptor contains inference variables in argument position the lambda expression
3145      * is 'stuck' (see DeferredAttr).
3146      */
3147     @Override
3148     public void visitLambda(final JCLambda that) {
3149         boolean wrongContext = false;
3150         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
3151             if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
3152                 //lambda only allowed in assignment or method invocation/cast context
3153                 log.error(that.pos(), Errors.UnexpectedLambda);
3154             }
3155             resultInfo = recoveryInfo;
3156             wrongContext = true;
3157         }
3158         if (types.isQuoted(pt())) {
3159             attribQuotedLambda(that);
3160         } else {
3161             attribFunctionalLambda(that, wrongContext);
3162         }
3163     }
3164 
3165     void attribFunctionalLambda(JCLambda that, boolean wrongContext) {
3166         //create an environment for attribution of the lambda expression
3167         final Env<AttrContext> localEnv = lambdaEnv(that, env);
3168         boolean needsRecovery =
3169                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
3170         try {
3171             if (needsRecovery && rs.isSerializable(pt())) {
3172                 localEnv.info.isSerializable = true;
3173                 localEnv.info.isSerializableLambda = true;
3174             }
3175             List<Type> explicitParamTypes = null;
3176             if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
3177                 //attribute lambda parameters
3178                 attribStats(that.params, localEnv);
3179                 explicitParamTypes = TreeInfo.types(that.params);
3180             }
3181 
3182             TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes);
3183             Type currentTarget = targetInfo.target;
3184             Type lambdaType = targetInfo.descriptor;
3185 
3186             if (currentTarget.isErroneous()) {
3187                 result = that.type = currentTarget;
3188                 return;
3189             }
3190 
3191             setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
3192 
3193             if (lambdaType.hasTag(FORALL)) {
3194                 //lambda expression target desc cannot be a generic method
3195                 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
3196                                                                     kindName(currentTarget.tsym),
3197                                                                     currentTarget.tsym);
3198                 resultInfo.checkContext.report(that, diags.fragment(msg));
3199                 result = that.type = types.createErrorType(pt());
3200                 return;
3201             }
3202 
3203             if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
3204                 //add param type info in the AST
3205                 List<Type> actuals = lambdaType.getParameterTypes();
3206                 List<JCVariableDecl> params = that.params;
3207 
3208                 boolean arityMismatch = false;
3209 
3210                 while (params.nonEmpty()) {
3211                     if (actuals.isEmpty()) {
3212                         //not enough actuals to perform lambda parameter inference
3213                         arityMismatch = true;
3214                     }
3215                     //reset previously set info
3216                     Type argType = arityMismatch ?
3217                             syms.errType :
3218                             actuals.head;
3219                     if (params.head.isImplicitlyTyped()) {
3220                         setSyntheticVariableType(params.head, argType);
3221                     }
3222                     params.head.sym = null;
3223                     actuals = actuals.isEmpty() ?
3224                             actuals :
3225                             actuals.tail;
3226                     params = params.tail;
3227                 }
3228 
3229                 //attribute lambda parameters
3230                 attribStats(that.params, localEnv);
3231 
3232                 if (arityMismatch) {
3233                     resultInfo.checkContext.report(that, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
3234                         result = that.type = types.createErrorType(currentTarget);
3235                         return;
3236                 }
3237             }
3238 
3239             //from this point on, no recovery is needed; if we are in assignment context
3240             //we will be able to attribute the whole lambda body, regardless of errors;
3241             //if we are in a 'check' method context, and the lambda is not compatible
3242             //with the target-type, it will be recovered anyway in Attr.checkId
3243             needsRecovery = false;
3244 
3245             ResultInfo bodyResultInfo = localEnv.info.returnResult =
3246                     lambdaBodyResult(that, lambdaType, resultInfo);
3247 
3248             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
3249                 attribTree(that.getBody(), localEnv, bodyResultInfo);
3250             } else {
3251                 JCBlock body = (JCBlock)that.body;
3252                 if (body == breakTree &&
3253                         resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
3254                     breakTreeFound(copyEnv(localEnv));
3255                 }
3256                 attribStats(body.stats, localEnv);
3257             }
3258 
3259             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
3260 
3261             boolean isSpeculativeRound =
3262                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
3263 
3264             preFlow(that);
3265             flow.analyzeLambda(env, that, make, isSpeculativeRound);
3266 
3267             that.type = currentTarget; //avoids recovery at this stage
3268             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
3269 
3270             if (!isSpeculativeRound) {
3271                 //add thrown types as bounds to the thrown types free variables if needed:
3272                 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
3273                     List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
3274                     if(!checkExConstraints(inferredThrownTypes, lambdaType.getThrownTypes(), resultInfo.checkContext.inferenceContext())) {
3275                         log.error(that, Errors.IncompatibleThrownTypesInMref(lambdaType.getThrownTypes()));
3276                     }
3277                 }
3278 
3279                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
3280             }
3281             result = wrongContext ? that.type = types.createErrorType(pt())
3282                                   : check(that, currentTarget, KindSelector.VAL, resultInfo);
3283         } catch (Types.FunctionDescriptorLookupError ex) {
3284             JCDiagnostic cause = ex.getDiagnostic();
3285             resultInfo.checkContext.report(that, cause);
3286             result = that.type = types.createErrorType(pt());
3287             return;
3288         } catch (CompletionFailure cf) {
3289             chk.completionError(that.pos(), cf);
3290         } catch (Throwable t) {
3291             //when an unexpected exception happens, avoid attempts to attribute the same tree again
3292             //as that would likely cause the same exception again.
3293             needsRecovery = false;
3294             throw t;
3295         } finally {
3296             localEnv.info.scope.leave();
3297             if (needsRecovery) {
3298                 Type prevResult = result;
3299                 try {
3300                     attribTree(that, env, recoveryInfo);
3301                 } finally {
3302                     if (result == Type.recoveryType) {
3303                         result = prevResult;
3304                     }
3305                 }
3306             }
3307         }
3308     }
3309 
3310     void attribQuotedLambda(JCLambda that) {
3311         // create an environment for attribution of the lambda expression
3312         final Env<AttrContext> localEnv = lambdaEnv(that, env);
3313         try {
3314             // if quoted lambda is implicit, issue error, and recover
3315             if (that.paramKind == ParameterKind.IMPLICIT) {
3316                 log.error(that, Errors.QuotedLambdaMustBeExplicit);
3317                 // recovery
3318                 List<JCVariableDecl> params = that.params;
3319                 while (params.nonEmpty()) {
3320                     Type argType = syms.errType;
3321                     if (params.head.isImplicitlyTyped()) {
3322                         setSyntheticVariableType(params.head, argType);
3323                     }
3324                     params = params.tail;
3325                 }
3326             }
3327             // attribute lambda parameters
3328             attribStats(that.params, localEnv);
3329             List<Type> explicitParamTypes = TreeInfo.types(that.params);
3330 
3331             ListBuffer<Type> restypes = new ListBuffer<>();
3332             ListBuffer<DiagnosticPosition> resPositions = new ListBuffer<>();
3333             ResultInfo bodyResultInfo = localEnv.info.returnResult = unknownExprInfo;
3334 
3335             // type-check lambda body, and capture return types
3336             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
3337                 attribTree(that.getBody(), localEnv, bodyResultInfo);
3338                 restypes.add(that.getBody().type);
3339             } else {
3340                 JCBlock body = (JCBlock)that.body;
3341                 if (body == breakTree &&
3342                         resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
3343                     breakTreeFound(copyEnv(localEnv));
3344                 }
3345                 attribStats(body.stats, localEnv);
3346                 new LambdaReturnScanner() {
3347                     @Override
3348                     public void visitReturn(JCReturn tree) {
3349                         if (tree.expr != null) {
3350                             resPositions.add(tree);
3351                         }
3352                         restypes.add(tree.expr == null ? syms.voidType : tree.expr.type);
3353                     }
3354                 }.scan(body);
3355             }
3356 
3357             // check if lambda body can complete normally
3358             preFlow(that);
3359             flow.analyzeLambda(localEnv, that, make, false);
3360 
3361             final Type restype;
3362             if (that.getBodyKind() == BodyKind.STATEMENT) {
3363                 if (that.canCompleteNormally) {
3364                     // a lambda that completes normally has an implicit void return
3365                     restypes.add(syms.voidType);
3366                 }
3367 
3368                 boolean hasNonVoidReturn = restypes.toList()
3369                         .stream().anyMatch(t -> t != syms.voidType);
3370                 boolean hasVoidReturn = restypes.toList()
3371                         .stream().anyMatch(t -> t == syms.voidType);
3372 
3373                 if (hasVoidReturn && hasNonVoidReturn) {
3374                     // void vs. non-void mismatch
3375                     log.error(that.body, Errors.CantInferQuotedLambdaReturnType(restypes.toList()));
3376                     restype = syms.errorType;
3377                 } else if (hasVoidReturn) {
3378                     restype = syms.voidType;
3379                 } else {
3380                     restype = condType(resPositions.toList(), restypes.toList());
3381                 }
3382             } else {
3383                 restype = restypes.first();
3384             }
3385 
3386             // infer lambda return type using lub
3387             if (restype.hasTag(ERROR)) {
3388                 // some other error occurred
3389                 log.error(that.body, Errors.CantInferQuotedLambdaReturnType(restypes.toList()));
3390             }
3391 
3392             // infer thrown types
3393             List<Type> thrownTypes = flow.analyzeLambdaThrownTypes(localEnv, that, make);
3394 
3395             // set up target descriptor with explicit parameter types, and inferred thrown/return types
3396             that.target = new MethodType(explicitParamTypes, restype, thrownTypes, syms.methodClass);
3397             result = that.type = pt();
3398         } finally {
3399             localEnv.info.scope.leave();
3400         }
3401     }
3402     //where
3403         class TargetInfo {
3404             Type target;
3405             Type descriptor;
3406 
3407             public TargetInfo(Type target, Type descriptor) {
3408                 this.target = target;
3409                 this.descriptor = descriptor;
3410             }
3411         }
3412 
3413         TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) {
3414             Type lambdaType;
3415             Type currentTarget = resultInfo.pt;
3416             if (resultInfo.pt != Type.recoveryType) {
3417                 /* We need to adjust the target. If the target is an
3418                  * intersection type, for example: SAM & I1 & I2 ...
3419                  * the target will be updated to SAM
3420                  */
3421                 currentTarget = targetChecker.visit(currentTarget, that);
3422                 if (!currentTarget.isIntersection()) {
3423                     if (explicitParamTypes != null) {
3424                         currentTarget = infer.instantiateFunctionalInterface(that,
3425                                 currentTarget, explicitParamTypes, resultInfo.checkContext);
3426                     }
3427                     currentTarget = types.removeWildcards(currentTarget);
3428                     lambdaType = types.findDescriptorType(currentTarget);
3429                 } else {
3430                     IntersectionClassType ict = (IntersectionClassType)currentTarget;
3431                     ListBuffer<Type> components = new ListBuffer<>();
3432                     for (Type bound : ict.getExplicitComponents()) {
3433                         if (explicitParamTypes != null) {
3434                             try {
3435                                 bound = infer.instantiateFunctionalInterface(that,
3436                                         bound, explicitParamTypes, resultInfo.checkContext);
3437                             } catch (FunctionDescriptorLookupError t) {
3438                                 // do nothing
3439                             }
3440                         }
3441                         bound = types.removeWildcards(bound);
3442                         components.add(bound);
3443                     }
3444                     currentTarget = types.makeIntersectionType(components.toList());
3445                     currentTarget.tsym.flags_field |= INTERFACE;
3446                     lambdaType = types.findDescriptorType(currentTarget);
3447                 }
3448 
3449             } else {
3450                 currentTarget = Type.recoveryType;
3451                 lambdaType = fallbackDescriptorType(that);
3452             }
3453             if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) {
3454                 //lambda expression target desc cannot be a generic method
3455                 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
3456                                                                     kindName(currentTarget.tsym),
3457                                                                     currentTarget.tsym);
3458                 resultInfo.checkContext.report(that, diags.fragment(msg));
3459                 currentTarget = types.createErrorType(pt());
3460             }
3461             return new TargetInfo(currentTarget, lambdaType);
3462         }
3463 
3464         void preFlow(JCLambda tree) {
3465             attrRecover.doRecovery();
3466             new PostAttrAnalyzer() {
3467                 @Override
3468                 public void scan(JCTree tree) {
3469                     if (tree == null ||
3470                             (tree.type != null &&
3471                             tree.type == Type.stuckType)) {
3472                         //don't touch stuck expressions!
3473                         return;
3474                     }
3475                     super.scan(tree);
3476                 }
3477 
3478                 @Override
3479                 public void visitClassDef(JCClassDecl that) {
3480                     // or class declaration trees!
3481                 }
3482 
3483                 public void visitLambda(JCLambda that) {
3484                     // or lambda expressions!
3485                 }
3486             }.scan(tree.body);
3487         }
3488 
3489         Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
3490 
3491             @Override
3492             public Type visitClassType(ClassType t, DiagnosticPosition pos) {
3493                 return t.isIntersection() ?
3494                         visitIntersectionClassType((IntersectionClassType)t, pos) : t;
3495             }
3496 
3497             public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
3498                 types.findDescriptorSymbol(makeNotionalInterface(ict, pos));
3499                 return ict;
3500             }
3501 
3502             private TypeSymbol makeNotionalInterface(IntersectionClassType ict, DiagnosticPosition pos) {
3503                 ListBuffer<Type> targs = new ListBuffer<>();
3504                 ListBuffer<Type> supertypes = new ListBuffer<>();
3505                 for (Type i : ict.interfaces_field) {
3506                     if (i.isParameterized()) {
3507                         targs.appendList(i.tsym.type.allparams());
3508                     }
3509                     supertypes.append(i.tsym.type);
3510                 }
3511                 IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList());
3512                 notionalIntf.allparams_field = targs.toList();
3513                 notionalIntf.tsym.flags_field |= INTERFACE;
3514                 return notionalIntf.tsym;
3515             }
3516         };
3517 
3518         private Type fallbackDescriptorType(JCExpression tree) {
3519             switch (tree.getTag()) {
3520                 case LAMBDA:
3521                     JCLambda lambda = (JCLambda)tree;
3522                     List<Type> argtypes = List.nil();
3523                     for (JCVariableDecl param : lambda.params) {
3524                         argtypes = param.vartype != null && param.vartype.type != null ?
3525                                 argtypes.append(param.vartype.type) :
3526                                 argtypes.append(syms.errType);
3527                     }
3528                     return new MethodType(argtypes, Type.recoveryType,
3529                             List.of(syms.throwableType), syms.methodClass);
3530                 case REFERENCE:
3531                     return new MethodType(List.nil(), Type.recoveryType,
3532                             List.of(syms.throwableType), syms.methodClass);
3533                 default:
3534                     Assert.error("Cannot get here!");
3535             }
3536             return null;
3537         }
3538 
3539         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
3540                 final InferenceContext inferenceContext, final Type... ts) {
3541             checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
3542         }
3543 
3544         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
3545                 final InferenceContext inferenceContext, final List<Type> ts) {
3546             if (inferenceContext.free(ts)) {
3547                 inferenceContext.addFreeTypeListener(ts,
3548                         solvedContext -> checkAccessibleTypes(pos, env, solvedContext, solvedContext.asInstTypes(ts)));
3549             } else {
3550                 for (Type t : ts) {
3551                     rs.checkAccessibleType(env, t);
3552                 }
3553             }
3554         }
3555 
3556         /**
3557          * Lambda/method reference have a special check context that ensures
3558          * that i.e. a lambda return type is compatible with the expected
3559          * type according to both the inherited context and the assignment
3560          * context.
3561          */
3562         class FunctionalReturnContext extends Check.NestedCheckContext {
3563 
3564             FunctionalReturnContext(CheckContext enclosingContext) {
3565                 super(enclosingContext);
3566             }
3567 
3568             @Override
3569             public boolean compatible(Type found, Type req, Warner warn) {
3570                 //return type must be compatible in both current context and assignment context
3571                 return chk.basicHandler.compatible(inferenceContext().asUndetVar(found), inferenceContext().asUndetVar(req), warn);
3572             }
3573 
3574             @Override
3575             public void report(DiagnosticPosition pos, JCDiagnostic details) {
3576                 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleRetTypeInLambda(details)));
3577             }
3578         }
3579 
3580         class ExpressionLambdaReturnContext extends FunctionalReturnContext {
3581 
3582             JCExpression expr;
3583             boolean expStmtExpected;
3584 
3585             ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
3586                 super(enclosingContext);
3587                 this.expr = expr;
3588             }
3589 
3590             @Override
3591             public void report(DiagnosticPosition pos, JCDiagnostic details) {
3592                 if (expStmtExpected) {
3593                     enclosingContext.report(pos, diags.fragment(Fragments.StatExprExpected));
3594                 } else {
3595                     super.report(pos, details);
3596                 }
3597             }
3598 
3599             @Override
3600             public boolean compatible(Type found, Type req, Warner warn) {
3601                 //a void return is compatible with an expression statement lambda
3602                 if (req.hasTag(VOID)) {
3603                     expStmtExpected = true;
3604                     return TreeInfo.isExpressionStatement(expr);
3605                 } else {
3606                     return super.compatible(found, req, warn);
3607                 }
3608             }
3609         }
3610 
3611         ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) {
3612             FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
3613                     new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
3614                     new FunctionalReturnContext(resultInfo.checkContext);
3615 
3616             return descriptor.getReturnType() == Type.recoveryType ?
3617                     recoveryInfo :
3618                     new ResultInfo(KindSelector.VAL,
3619                             descriptor.getReturnType(), funcContext);
3620         }
3621 
3622         /**
3623         * Lambda compatibility. Check that given return types, thrown types, parameter types
3624         * are compatible with the expected functional interface descriptor. This means that:
3625         * (i) parameter types must be identical to those of the target descriptor; (ii) return
3626         * types must be compatible with the return type of the expected descriptor.
3627         */
3628         void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
3629             Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
3630 
3631             //return values have already been checked - but if lambda has no return
3632             //values, we must ensure that void/value compatibility is correct;
3633             //this amounts at checking that, if a lambda body can complete normally,
3634             //the descriptor's return type must be void
3635             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
3636                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
3637                 Fragment msg =
3638                         Fragments.IncompatibleRetTypeInLambda(Fragments.MissingRetVal(returnType));
3639                 checkContext.report(tree,
3640                                     diags.fragment(msg));
3641             }
3642 
3643             List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
3644             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
3645                 checkContext.report(tree, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
3646             }
3647         }
3648 
3649         /* This method returns an environment to be used to attribute a lambda
3650          * expression.
3651          *
3652          * The owner of this environment is a method symbol. If the current owner
3653          * is not a method (e.g. if the lambda occurs in a field initializer), then
3654          * a synthetic method symbol owner is created.
3655          */
3656         public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
3657             Env<AttrContext> lambdaEnv;
3658             Symbol owner = env.info.scope.owner;
3659             if (owner.kind == VAR && owner.owner.kind == TYP) {
3660                 // If the lambda is nested in a field initializer, we need to create a fake init method.
3661                 // Uniqueness of this symbol is not important (as e.g. annotations will be added on the
3662                 // init symbol's owner).
3663                 ClassSymbol enclClass = owner.enclClass();
3664                 Name initName = owner.isStatic() ? names.clinit : names.init;
3665                 MethodSymbol initSym = new MethodSymbol(BLOCK | (owner.isStatic() ? STATIC : 0) | SYNTHETIC | PRIVATE,
3666                         initName, initBlockType, enclClass);
3667                 initSym.params = List.nil();
3668                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(initSym)));
3669             } else {
3670                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
3671             }
3672             lambdaEnv.info.yieldResult = null;
3673             lambdaEnv.info.isLambda = true;
3674             return lambdaEnv;
3675         }
3676 
3677     @Override
3678     public void visitReference(final JCMemberReference that) {
3679         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
3680             if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
3681                 //method reference only allowed in assignment or method invocation/cast context
3682                 log.error(that.pos(), Errors.UnexpectedMref);
3683             }
3684             result = that.type = types.createErrorType(pt());
3685             return;
3686         }
3687         final Env<AttrContext> localEnv = env.dup(that);
3688         try {
3689             //attribute member reference qualifier - if this is a constructor
3690             //reference, the expected kind must be a type
3691             Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
3692 
3693             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
3694                 exprType = chk.checkConstructorRefType(that.expr, exprType);
3695                 if (!exprType.isErroneous() &&
3696                     exprType.isRaw() &&
3697                     that.typeargs != null) {
3698                     log.error(that.expr.pos(),
3699                               Errors.InvalidMref(Kinds.kindName(that.getMode()),
3700                                                  Fragments.MrefInferAndExplicitParams));
3701                     exprType = types.createErrorType(exprType);
3702                 }
3703             }
3704 
3705             if (exprType.isErroneous()) {
3706                 //if the qualifier expression contains problems,
3707                 //give up attribution of method reference
3708                 result = that.type = exprType;
3709                 return;
3710             }
3711 
3712             if (TreeInfo.isStaticSelector(that.expr, names)) {
3713                 //if the qualifier is a type, validate it; raw warning check is
3714                 //omitted as we don't know at this stage as to whether this is a
3715                 //raw selector (because of inference)
3716                 chk.validate(that.expr, env, false);
3717             } else {
3718                 Symbol lhsSym = TreeInfo.symbol(that.expr);
3719                 localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super;
3720             }
3721             //attrib type-arguments
3722             List<Type> typeargtypes = List.nil();
3723             if (that.typeargs != null) {
3724                 typeargtypes = attribTypes(that.typeargs, localEnv);
3725             }
3726 
3727             boolean isTargetSerializable =
3728                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3729                     rs.isSerializable(pt());
3730             TargetInfo targetInfo = getTargetInfo(that, resultInfo, null);
3731             Type currentTarget = targetInfo.target;
3732             Type desc = targetInfo.descriptor;
3733 
3734             setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
3735             List<Type> argtypes = desc.getParameterTypes();
3736             Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
3737 
3738             if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
3739                 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
3740             }
3741 
3742             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
3743             List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
3744             try {
3745                 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
3746                         that.name, argtypes, typeargtypes, targetInfo.descriptor, referenceCheck,
3747                         resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser);
3748             } finally {
3749                 resultInfo.checkContext.inferenceContext().rollback(saved_undet);
3750             }
3751 
3752             Symbol refSym = refResult.fst;
3753             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
3754 
3755             /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing
3756              *  JDK-8075541
3757              */
3758             if (refSym.kind != MTH) {
3759                 boolean targetError;
3760                 switch (refSym.kind) {
3761                     case ABSENT_MTH:
3762                     case MISSING_ENCL:
3763                         targetError = false;
3764                         break;
3765                     case WRONG_MTH:
3766                     case WRONG_MTHS:
3767                     case AMBIGUOUS:
3768                     case HIDDEN:
3769                     case STATICERR:
3770                         targetError = true;
3771                         break;
3772                     default:
3773                         Assert.error("unexpected result kind " + refSym.kind);
3774                         targetError = false;
3775                 }
3776 
3777                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol())
3778                         .getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
3779                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
3780 
3781                 JCDiagnostic diag = diags.create(log.currentSource(), that,
3782                         targetError ?
3783                             Fragments.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag) :
3784                             Errors.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag));
3785 
3786                 if (targetError && currentTarget == Type.recoveryType) {
3787                     //a target error doesn't make sense during recovery stage
3788                     //as we don't know what actual parameter types are
3789                     result = that.type = currentTarget;
3790                     return;
3791                 } else {
3792                     if (targetError) {
3793                         resultInfo.checkContext.report(that, diag);
3794                     } else {
3795                         log.report(diag);
3796                     }
3797                     result = that.type = types.createErrorType(currentTarget);
3798                     return;
3799                 }
3800             }
3801 
3802             that.sym = refSym.isConstructor() ? refSym.baseSymbol() : refSym;
3803             that.kind = lookupHelper.referenceKind(that.sym);
3804             that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
3805 
3806             if (desc.getReturnType() == Type.recoveryType) {
3807                 // stop here
3808                 result = that.type = currentTarget;
3809                 return;
3810             }
3811 
3812             if (!env.info.attributionMode.isSpeculative && that.getMode() == JCMemberReference.ReferenceMode.NEW) {
3813                 Type enclosingType = exprType.getEnclosingType();
3814                 if (enclosingType != null && enclosingType.hasTag(CLASS)) {
3815                     // Check for the existence of an appropriate outer instance
3816                     rs.resolveImplicitThis(that.pos(), env, exprType);
3817                 }
3818             }
3819 
3820             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
3821 
3822                 if (that.getMode() == ReferenceMode.INVOKE &&
3823                         TreeInfo.isStaticSelector(that.expr, names) &&
3824                         that.kind.isUnbound() &&
3825                         lookupHelper.site.isRaw()) {
3826                     chk.checkRaw(that.expr, localEnv);
3827                 }
3828 
3829                 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
3830                         exprType.getTypeArguments().nonEmpty()) {
3831                     //static ref with class type-args
3832                     log.error(that.expr.pos(),
3833                               Errors.InvalidMref(Kinds.kindName(that.getMode()),
3834                                                  Fragments.StaticMrefWithTargs));
3835                     result = that.type = types.createErrorType(currentTarget);
3836                     return;
3837                 }
3838 
3839                 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
3840                     // Check that super-qualified symbols are not abstract (JLS)
3841                     rs.checkNonAbstract(that.pos(), that.sym);
3842                 }
3843 
3844                 if (isTargetSerializable) {
3845                     chk.checkAccessFromSerializableElement(that, true);
3846                 }
3847             }
3848 
3849             ResultInfo checkInfo =
3850                     resultInfo.dup(newMethodTemplate(
3851                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
3852                         that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
3853                         new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
3854 
3855             Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
3856 
3857             if (that.kind.isUnbound() &&
3858                     resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
3859                 //re-generate inference constraints for unbound receiver
3860                 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
3861                     //cannot happen as this has already been checked - we just need
3862                     //to regenerate the inference constraints, as that has been lost
3863                     //as a result of the call to inferenceContext.save()
3864                     Assert.error("Can't get here");
3865                 }
3866             }
3867 
3868             if (!refType.isErroneous()) {
3869                 refType = types.createMethodTypeWithReturn(refType,
3870                         adjustMethodReturnType(refSym, lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
3871             }
3872 
3873             //go ahead with standard method reference compatibility check - note that param check
3874             //is a no-op (as this has been taken care during method applicability)
3875             boolean isSpeculativeRound =
3876                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
3877 
3878             that.type = currentTarget; //avoids recovery at this stage
3879             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
3880             if (!isSpeculativeRound) {
3881                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
3882             }
3883             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
3884         } catch (Types.FunctionDescriptorLookupError ex) {
3885             JCDiagnostic cause = ex.getDiagnostic();
3886             resultInfo.checkContext.report(that, cause);
3887             result = that.type = types.createErrorType(pt());
3888             return;
3889         }
3890     }
3891     //where
3892         ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
3893             //if this is a constructor reference, the expected kind must be a type
3894             return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ?
3895                                   KindSelector.VAL_TYP : KindSelector.TYP,
3896                                   Type.noType);
3897         }
3898 
3899 
3900     @SuppressWarnings("fallthrough")
3901     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
3902         InferenceContext inferenceContext = checkContext.inferenceContext();
3903         Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType());
3904 
3905         Type resType;
3906         switch (tree.getMode()) {
3907             case NEW:
3908                 if (!tree.expr.type.isRaw()) {
3909                     resType = tree.expr.type;
3910                     break;
3911                 }
3912             default:
3913                 resType = refType.getReturnType();
3914         }
3915 
3916         Type incompatibleReturnType = resType;
3917 
3918         if (returnType.hasTag(VOID)) {
3919             incompatibleReturnType = null;
3920         }
3921 
3922         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
3923             if (resType.isErroneous() ||
3924                     new FunctionalReturnContext(checkContext).compatible(resType, returnType,
3925                             checkContext.checkWarner(tree, resType, returnType))) {
3926                 incompatibleReturnType = null;
3927             }
3928         }
3929 
3930         if (incompatibleReturnType != null) {
3931             Fragment msg =
3932                     Fragments.IncompatibleRetTypeInMref(Fragments.InconvertibleTypes(resType, descriptor.getReturnType()));
3933             checkContext.report(tree, diags.fragment(msg));
3934         } else {
3935             if (inferenceContext.free(refType)) {
3936                 // we need to wait for inference to finish and then replace inference vars in the referent type
3937                 inferenceContext.addFreeTypeListener(List.of(refType),
3938                         instantiatedContext -> {
3939                             tree.referentType = instantiatedContext.asInstType(refType);
3940                         });
3941             } else {
3942                 tree.referentType = refType;
3943             }
3944         }
3945 
3946         if (!speculativeAttr) {
3947             if (!checkExConstraints(refType.getThrownTypes(), descriptor.getThrownTypes(), inferenceContext)) {
3948                 log.error(tree, Errors.IncompatibleThrownTypesInMref(refType.getThrownTypes()));
3949             }
3950         }
3951     }
3952 
3953     boolean checkExConstraints(
3954             List<Type> thrownByFuncExpr,
3955             List<Type> thrownAtFuncType,
3956             InferenceContext inferenceContext) {
3957         /** 18.2.5: Otherwise, let E1, ..., En be the types in the function type's throws clause that
3958          *  are not proper types
3959          */
3960         List<Type> nonProperList = thrownAtFuncType.stream()
3961                 .filter(e -> inferenceContext.free(e)).collect(List.collector());
3962         List<Type> properList = thrownAtFuncType.diff(nonProperList);
3963 
3964         /** Let X1,...,Xm be the checked exception types that the lambda body can throw or
3965          *  in the throws clause of the invocation type of the method reference's compile-time
3966          *  declaration
3967          */
3968         List<Type> checkedList = thrownByFuncExpr.stream()
3969                 .filter(e -> chk.isChecked(e)).collect(List.collector());
3970 
3971         /** If n = 0 (the function type's throws clause consists only of proper types), then
3972          *  if there exists some i (1 <= i <= m) such that Xi is not a subtype of any proper type
3973          *  in the throws clause, the constraint reduces to false; otherwise, the constraint
3974          *  reduces to true
3975          */
3976         ListBuffer<Type> uncaughtByProperTypes = new ListBuffer<>();
3977         for (Type checked : checkedList) {
3978             boolean isSubtype = false;
3979             for (Type proper : properList) {
3980                 if (types.isSubtype(checked, proper)) {
3981                     isSubtype = true;
3982                     break;
3983                 }
3984             }
3985             if (!isSubtype) {
3986                 uncaughtByProperTypes.add(checked);
3987             }
3988         }
3989 
3990         if (nonProperList.isEmpty() && !uncaughtByProperTypes.isEmpty()) {
3991             return false;
3992         }
3993 
3994         /** If n > 0, the constraint reduces to a set of subtyping constraints:
3995          *  for all i (1 <= i <= m), if Xi is not a subtype of any proper type in the
3996          *  throws clause, then the constraints include, for all j (1 <= j <= n), <Xi <: Ej>
3997          */
3998         List<Type> nonProperAsUndet = inferenceContext.asUndetVars(nonProperList);
3999         uncaughtByProperTypes.forEach(checkedEx -> {
4000             nonProperAsUndet.forEach(nonProper -> {
4001                 types.isSubtype(checkedEx, nonProper);
4002             });
4003         });
4004 
4005         /** In addition, for all j (1 <= j <= n), the constraint reduces to the bound throws Ej
4006          */
4007         nonProperAsUndet.stream()
4008                 .filter(t -> t.hasTag(UNDETVAR))
4009                 .forEach(t -> ((UndetVar)t).setThrow());
4010         return true;
4011     }
4012 
4013     /**
4014      * Set functional type info on the underlying AST. Note: as the target descriptor
4015      * might contain inference variables, we might need to register an hook in the
4016      * current inference context.
4017      */
4018     private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
4019             final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
4020         if (checkContext.inferenceContext().free(descriptorType)) {
4021             checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType),
4022                     inferenceContext -> setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
4023                     inferenceContext.asInstType(primaryTarget), checkContext));
4024         } else {
4025             fExpr.owner = env.info.scope.owner;
4026             if (pt.hasTag(CLASS)) {
4027                 fExpr.target = primaryTarget;
4028             }
4029             if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
4030                     pt != Type.recoveryType) {
4031                 //check that functional interface class is well-formed
4032                 try {
4033                     /* Types.makeFunctionalInterfaceClass() may throw an exception
4034                      * when it's executed post-inference. See the listener code
4035                      * above.
4036                      */
4037                     ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
4038                             names.empty, fExpr.target, ABSTRACT);
4039                     if (csym != null) {
4040                         chk.checkImplementations(env.tree, csym, csym);
4041                         try {
4042                             //perform an additional functional interface check on the synthetic class,
4043                             //as there may be spurious errors for raw targets - because of existing issues
4044                             //with membership and inheritance (see JDK-8074570).
4045                             csym.flags_field |= INTERFACE;
4046                             types.findDescriptorType(csym.type);
4047                         } catch (FunctionDescriptorLookupError err) {
4048                             resultInfo.checkContext.report(fExpr,
4049                                     diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.target)));
4050                         }
4051                     }
4052                 } catch (Types.FunctionDescriptorLookupError ex) {
4053                     JCDiagnostic cause = ex.getDiagnostic();
4054                     resultInfo.checkContext.report(env.tree, cause);
4055                 }
4056             }
4057         }
4058     }
4059 
4060     public void visitParens(JCParens tree) {
4061         Type owntype = attribTree(tree.expr, env, resultInfo);
4062         result = check(tree, owntype, pkind(), resultInfo);
4063         Symbol sym = TreeInfo.symbol(tree);
4064         if (sym != null && sym.kind.matches(KindSelector.TYP_PCK) && sym.kind != Kind.ERR)
4065             log.error(tree.pos(), Errors.IllegalParenthesizedExpression);
4066     }
4067 
4068     public void visitAssign(JCAssign tree) {
4069         Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo);
4070         Type capturedType = capture(owntype);
4071         attribExpr(tree.rhs, env, owntype);
4072         result = check(tree, capturedType, KindSelector.VAL, resultInfo);
4073     }
4074 
4075     public void visitAssignop(JCAssignOp tree) {
4076         // Attribute arguments.
4077         Type owntype = attribTree(tree.lhs, env, varAssignmentInfo);
4078         Type operand = attribExpr(tree.rhs, env);
4079         // Find operator.
4080         Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand);
4081         if (operator != operators.noOpSymbol &&
4082                 !owntype.isErroneous() &&
4083                 !operand.isErroneous()) {
4084             chk.checkDivZero(tree.rhs.pos(), operator, operand);
4085             chk.checkCastable(tree.rhs.pos(),
4086                               operator.type.getReturnType(),
4087                               owntype);
4088             chk.checkLossOfPrecision(tree.rhs.pos(), operand, owntype);
4089         }
4090         result = check(tree, owntype, KindSelector.VAL, resultInfo);
4091     }
4092 
4093     public void visitUnary(JCUnary tree) {
4094         // Attribute arguments.
4095         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
4096             ? attribTree(tree.arg, env, varAssignmentInfo)
4097             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
4098 
4099         // Find operator.
4100         OperatorSymbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype);
4101         Type owntype = types.createErrorType(tree.type);
4102         if (operator != operators.noOpSymbol &&
4103                 !argtype.isErroneous()) {
4104             owntype = (tree.getTag().isIncOrDecUnaryOp())
4105                 ? tree.arg.type
4106                 : operator.type.getReturnType();
4107             int opc = operator.opcode;
4108 
4109             // If the argument is constant, fold it.
4110             if (argtype.constValue() != null) {
4111                 Type ctype = cfolder.fold1(opc, argtype);
4112                 if (ctype != null) {
4113                     owntype = cfolder.coerce(ctype, owntype);
4114                 }
4115             }
4116         }
4117         result = check(tree, owntype, KindSelector.VAL, resultInfo);
4118         matchBindings = matchBindingsComputer.unary(tree, matchBindings);
4119     }
4120 
4121     public void visitBinary(JCBinary tree) {
4122         // Attribute arguments.
4123         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
4124         // x && y
4125         // include x's bindings when true in y
4126 
4127         // x || y
4128         // include x's bindings when false in y
4129 
4130         MatchBindings lhsBindings = matchBindings;
4131         List<BindingSymbol> propagatedBindings;
4132         switch (tree.getTag()) {
4133             case AND:
4134                 propagatedBindings = lhsBindings.bindingsWhenTrue;
4135                 break;
4136             case OR:
4137                 propagatedBindings = lhsBindings.bindingsWhenFalse;
4138                 break;
4139             default:
4140                 propagatedBindings = List.nil();
4141                 break;
4142         }
4143         Env<AttrContext> rhsEnv = bindingEnv(env, propagatedBindings);
4144         Type right;
4145         try {
4146             right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, rhsEnv));
4147         } finally {
4148             rhsEnv.info.scope.leave();
4149         }
4150 
4151         matchBindings = matchBindingsComputer.binary(tree, lhsBindings, matchBindings);
4152 
4153         // Find operator.
4154         OperatorSymbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right);
4155         Type owntype = types.createErrorType(tree.type);
4156         if (operator != operators.noOpSymbol &&
4157                 !left.isErroneous() &&
4158                 !right.isErroneous()) {
4159             owntype = operator.type.getReturnType();
4160             int opc = operator.opcode;
4161             // If both arguments are constants, fold them.
4162             if (left.constValue() != null && right.constValue() != null) {
4163                 Type ctype = cfolder.fold2(opc, left, right);
4164                 if (ctype != null) {
4165                     owntype = cfolder.coerce(ctype, owntype);
4166                 }
4167             }
4168 
4169             // Check that argument types of a reference ==, != are
4170             // castable to each other, (JLS 15.21).  Note: unboxing
4171             // comparisons will not have an acmp* opc at this point.
4172             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
4173                 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
4174                     log.error(tree.pos(), Errors.IncomparableTypes(left, right));
4175                 }
4176             }
4177 
4178             chk.checkDivZero(tree.rhs.pos(), operator, right);
4179         }
4180         result = check(tree, owntype, KindSelector.VAL, resultInfo);
4181     }
4182 
4183     public void visitTypeCast(final JCTypeCast tree) {
4184         Type clazztype = attribType(tree.clazz, env);
4185         chk.validate(tree.clazz, env, false);
4186         //a fresh environment is required for 292 inference to work properly ---
4187         //see Infer.instantiatePolymorphicSignatureInstance()
4188         Env<AttrContext> localEnv = env.dup(tree);
4189         //should we propagate the target type?
4190         final ResultInfo castInfo;
4191         JCExpression expr = TreeInfo.skipParens(tree.expr);
4192         boolean isPoly = (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
4193         if (isPoly) {
4194             //expression is a poly - we need to propagate target type info
4195             castInfo = new ResultInfo(KindSelector.VAL, clazztype,
4196                                       new Check.NestedCheckContext(resultInfo.checkContext) {
4197                 @Override
4198                 public boolean compatible(Type found, Type req, Warner warn) {
4199                     return types.isCastable(found, req, warn);
4200                 }
4201             });
4202         } else {
4203             //standalone cast - target-type info is not propagated
4204             castInfo = unknownExprInfo;
4205         }
4206         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
4207         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
4208         if (exprtype.constValue() != null)
4209             owntype = cfolder.coerce(exprtype, owntype);
4210         result = check(tree, capture(owntype), KindSelector.VAL, resultInfo);
4211         if (!isPoly)
4212             chk.checkRedundantCast(localEnv, tree);
4213     }
4214 
4215     public void visitTypeTest(JCInstanceOf tree) {
4216         Type exprtype = attribExpr(tree.expr, env);
4217         if (exprtype.isPrimitive()) {
4218             preview.checkSourceLevel(tree.expr.pos(), Feature.PRIMITIVE_PATTERNS);
4219         } else {
4220             exprtype = chk.checkNullOrRefType(
4221                     tree.expr.pos(), exprtype);
4222         }
4223         Type clazztype;
4224         JCTree typeTree;
4225         if (tree.pattern.getTag() == BINDINGPATTERN ||
4226             tree.pattern.getTag() == RECORDPATTERN) {
4227             attribExpr(tree.pattern, env, exprtype);
4228             clazztype = tree.pattern.type;
4229             if (types.isSubtype(exprtype, clazztype) &&
4230                 !exprtype.isErroneous() && !clazztype.isErroneous() &&
4231                 tree.pattern.getTag() != RECORDPATTERN) {
4232                 if (!allowUnconditionalPatternsInstanceOf) {
4233                     log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(),
4234                               Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.error(this.sourceName));
4235                 }
4236             }
4237             typeTree = TreeInfo.primaryPatternTypeTree((JCPattern) tree.pattern);
4238         } else {
4239             clazztype = attribType(tree.pattern, env);
4240             typeTree = tree.pattern;
4241             chk.validate(typeTree, env, false);
4242         }
4243         if (clazztype.isPrimitive()) {
4244             preview.checkSourceLevel(tree.pattern.pos(), Feature.PRIMITIVE_PATTERNS);
4245         } else {
4246             if (!clazztype.hasTag(TYPEVAR)) {
4247                 clazztype = chk.checkClassOrArrayType(typeTree.pos(), clazztype);
4248             }
4249             if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
4250                 boolean valid = false;
4251                 if (allowReifiableTypesInInstanceof) {
4252                     valid = checkCastablePattern(tree.expr.pos(), exprtype, clazztype);
4253                 } else {
4254                     log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(),
4255                             Feature.REIFIABLE_TYPES_INSTANCEOF.error(this.sourceName));
4256                     allowReifiableTypesInInstanceof = true;
4257                 }
4258                 if (!valid) {
4259                     clazztype = types.createErrorType(clazztype);
4260                 }
4261             }
4262         }
4263         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
4264         result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo);
4265     }
4266 
4267     private boolean checkCastablePattern(DiagnosticPosition pos,
4268                                          Type exprType,
4269                                          Type pattType) {
4270         Warner warner = new Warner();
4271         // if any type is erroneous, the problem is reported elsewhere
4272         if (exprType.isErroneous() || pattType.isErroneous()) {
4273             return false;
4274         }
4275         if (!types.isCastable(exprType, pattType, warner)) {
4276             chk.basicHandler.report(pos,
4277                     diags.fragment(Fragments.InconvertibleTypes(exprType, pattType)));
4278             return false;
4279         } else if ((exprType.isPrimitive() || pattType.isPrimitive()) &&
4280                 (!exprType.isPrimitive() || !pattType.isPrimitive() || !types.isSameType(exprType, pattType))) {
4281             preview.checkSourceLevel(pos, Feature.PRIMITIVE_PATTERNS);
4282             return true;
4283         } else if (warner.hasLint(LintCategory.UNCHECKED)) {
4284             log.error(pos,
4285                     Errors.InstanceofReifiableNotSafe(exprType, pattType));
4286             return false;
4287         } else {
4288             return true;
4289         }
4290     }
4291 
4292     @Override
4293     public void visitAnyPattern(JCAnyPattern tree) {
4294         result = tree.type = resultInfo.pt;
4295     }
4296 
4297     public void visitBindingPattern(JCBindingPattern tree) {
4298         Type type;
4299         if (tree.var.vartype != null) {
4300             type = attribType(tree.var.vartype, env);
4301         } else {
4302             type = resultInfo.pt;
4303         }
4304         tree.type = tree.var.type = type;
4305         BindingSymbol v = new BindingSymbol(tree.var.mods.flags, tree.var.name, type, env.info.scope.owner);
4306         v.pos = tree.pos;
4307         tree.var.sym = v;
4308         if (chk.checkUnique(tree.var.pos(), v, env.info.scope)) {
4309             chk.checkTransparentVar(tree.var.pos(), v, env.info.scope);
4310         }
4311         if (tree.var.isImplicitlyTyped()) {
4312             setSyntheticVariableType(tree.var, type == Type.noType ? syms.errType
4313                                                                    : type);
4314         }
4315         annotate.annotateLater(tree.var.mods.annotations, env, v, tree.pos());
4316         if (!tree.var.isImplicitlyTyped()) {
4317             annotate.queueScanTreeAndTypeAnnotate(tree.var.vartype, env, v, tree.var.pos());
4318         }
4319         annotate.flush();
4320         chk.validate(tree.var.vartype, env, true);
4321         result = tree.type;
4322         if (v.isUnnamedVariable()) {
4323             matchBindings = MatchBindingsComputer.EMPTY;
4324         } else {
4325             matchBindings = new MatchBindings(List.of(v), List.nil());
4326         }
4327     }
4328 
4329     @Override
4330     public void visitRecordPattern(JCRecordPattern tree) {
4331         Type site;
4332 
4333         if (tree.deconstructor == null) {
4334             log.error(tree.pos(), Errors.DeconstructionPatternVarNotAllowed);
4335             tree.record = syms.errSymbol;
4336             site = tree.type = types.createErrorType(tree.record.type);
4337         } else {
4338             Type type = attribType(tree.deconstructor, env);
4339             if (type.isRaw() && type.tsym.getTypeParameters().nonEmpty()) {
4340                 Type inferred = infer.instantiatePatternType(resultInfo.pt, type.tsym);
4341                 if (inferred == null) {
4342                     log.error(tree.pos(), Errors.PatternTypeCannotInfer);
4343                 } else {
4344                     type = inferred;
4345                 }
4346             }
4347             tree.type = tree.deconstructor.type = type;
4348             site = types.capture(tree.type);
4349         }
4350 
4351         List<Type> expectedRecordTypes;
4352         if (site.tsym.kind == Kind.TYP && ((ClassSymbol) site.tsym).isRecord()) {
4353             ClassSymbol record = (ClassSymbol) site.tsym;
4354             expectedRecordTypes = record.getRecordComponents()
4355                                         .stream()
4356                                         .map(rc -> types.memberType(site, rc))
4357                                         .map(t -> types.upward(t, types.captures(t)).baseType())
4358                                         .collect(List.collector());
4359             tree.record = record;
4360         } else {
4361             log.error(tree.pos(), Errors.DeconstructionPatternOnlyRecords(site.tsym));
4362             expectedRecordTypes = Stream.generate(() -> types.createErrorType(tree.type))
4363                                 .limit(tree.nested.size())
4364                                 .collect(List.collector());
4365             tree.record = syms.errSymbol;
4366         }
4367         ListBuffer<BindingSymbol> outBindings = new ListBuffer<>();
4368         List<Type> recordTypes = expectedRecordTypes;
4369         List<JCPattern> nestedPatterns = tree.nested;
4370         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
4371         try {
4372             while (recordTypes.nonEmpty() && nestedPatterns.nonEmpty()) {
4373                 attribExpr(nestedPatterns.head, localEnv, recordTypes.head);
4374                 checkCastablePattern(nestedPatterns.head.pos(), recordTypes.head, nestedPatterns.head.type);
4375                 outBindings.addAll(matchBindings.bindingsWhenTrue);
4376                 matchBindings.bindingsWhenTrue.forEach(localEnv.info.scope::enter);
4377                 nestedPatterns = nestedPatterns.tail;
4378                 recordTypes = recordTypes.tail;
4379             }
4380             if (recordTypes.nonEmpty() || nestedPatterns.nonEmpty()) {
4381                 while (nestedPatterns.nonEmpty()) {
4382                     attribExpr(nestedPatterns.head, localEnv, Type.noType);
4383                     nestedPatterns = nestedPatterns.tail;
4384                 }
4385                 List<Type> nestedTypes =
4386                         tree.nested.stream().map(p -> p.type).collect(List.collector());
4387                 log.error(tree.pos(),
4388                           Errors.IncorrectNumberOfNestedPatterns(expectedRecordTypes,
4389                                                                  nestedTypes));
4390             }
4391         } finally {
4392             localEnv.info.scope.leave();
4393         }
4394         chk.validate(tree.deconstructor, env, true);
4395         result = tree.type;
4396         matchBindings = new MatchBindings(outBindings.toList(), List.nil());
4397     }
4398 
4399     public void visitIndexed(JCArrayAccess tree) {
4400         Type owntype = types.createErrorType(tree.type);
4401         Type atype = attribExpr(tree.indexed, env);
4402         attribExpr(tree.index, env, syms.intType);
4403         if (types.isArray(atype))
4404             owntype = types.elemtype(atype);
4405         else if (!atype.hasTag(ERROR))
4406             log.error(tree.pos(), Errors.ArrayReqButFound(atype));
4407         if (!pkind().contains(KindSelector.VAL))
4408             owntype = capture(owntype);
4409         result = check(tree, owntype, KindSelector.VAR, resultInfo);
4410     }
4411 
4412     public void visitIdent(JCIdent tree) {
4413         Symbol sym;
4414 
4415         // Find symbol
4416         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
4417             // If we are looking for a method, the prototype `pt' will be a
4418             // method type with the type of the call's arguments as parameters.
4419             env.info.pendingResolutionPhase = null;
4420             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
4421         } else if (tree.sym != null && tree.sym.kind != VAR) {
4422             sym = tree.sym;
4423         } else {
4424             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
4425         }
4426         tree.sym = sym;
4427 
4428         // Also find the environment current for the class where
4429         // sym is defined (`symEnv').
4430         Env<AttrContext> symEnv = env;
4431         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
4432             sym.kind.matches(KindSelector.VAL_MTH) &&
4433             sym.owner.kind == TYP &&
4434             tree.name != names._this && tree.name != names._super) {
4435 
4436             // Find environment in which identifier is defined.
4437             while (symEnv.outer != null &&
4438                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
4439                 symEnv = symEnv.outer;
4440             }
4441         }
4442 
4443         // If symbol is a variable, ...
4444         if (sym.kind == VAR) {
4445             VarSymbol v = (VarSymbol)sym;
4446 
4447             // ..., evaluate its initializer, if it has one, and check for
4448             // illegal forward reference.
4449             checkInit(tree, env, v, false);
4450 
4451             // If we are expecting a variable (as opposed to a value), check
4452             // that the variable is assignable in the current environment.
4453             if (KindSelector.ASG.subset(pkind()))
4454                 checkAssignable(tree.pos(), v, null, env);
4455         }
4456 
4457         Env<AttrContext> env1 = env;
4458         if (sym.kind != ERR && sym.kind != TYP &&
4459             sym.owner != null && sym.owner != env1.enclClass.sym) {
4460             // If the found symbol is inaccessible, then it is
4461             // accessed through an enclosing instance.  Locate this
4462             // enclosing instance:
4463             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
4464                 env1 = env1.outer;
4465         }
4466 
4467         if (env.info.isSerializable) {
4468             chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda);
4469         }
4470 
4471         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
4472     }
4473 
4474     public void visitSelect(JCFieldAccess tree) {
4475         // Determine the expected kind of the qualifier expression.
4476         KindSelector skind = KindSelector.NIL;
4477         if (tree.name == names._this || tree.name == names._super ||
4478                 tree.name == names._class)
4479         {
4480             skind = KindSelector.TYP;
4481         } else {
4482             if (pkind().contains(KindSelector.PCK))
4483                 skind = KindSelector.of(skind, KindSelector.PCK);
4484             if (pkind().contains(KindSelector.TYP))
4485                 skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK);
4486             if (pkind().contains(KindSelector.VAL_MTH))
4487                 skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP);
4488         }
4489 
4490         // Attribute the qualifier expression, and determine its symbol (if any).
4491         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType));
4492         if (!pkind().contains(KindSelector.TYP_PCK))
4493             site = capture(site); // Capture field access
4494 
4495         // don't allow T.class T[].class, etc
4496         if (skind == KindSelector.TYP) {
4497             Type elt = site;
4498             while (elt.hasTag(ARRAY))
4499                 elt = ((ArrayType)elt).elemtype;
4500             if (elt.hasTag(TYPEVAR)) {
4501                 log.error(tree.pos(), Errors.TypeVarCantBeDeref);
4502                 result = tree.type = types.createErrorType(tree.name, site.tsym, site);
4503                 tree.sym = tree.type.tsym;
4504                 return ;
4505             }
4506         }
4507 
4508         // If qualifier symbol is a type or `super', assert `selectSuper'
4509         // for the selection. This is relevant for determining whether
4510         // protected symbols are accessible.
4511         Symbol sitesym = TreeInfo.symbol(tree.selected);
4512         boolean selectSuperPrev = env.info.selectSuper;
4513         env.info.selectSuper =
4514             sitesym != null &&
4515             sitesym.name == names._super;
4516 
4517         // Determine the symbol represented by the selection.
4518         env.info.pendingResolutionPhase = null;
4519         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
4520         if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
4521             log.error(tree.selected.pos(), Errors.NotEnclClass(site.tsym));
4522             sym = syms.errSymbol;
4523         }
4524         if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) {
4525             site = capture(site);
4526             sym = selectSym(tree, sitesym, site, env, resultInfo);
4527         }
4528         boolean varArgs = env.info.lastResolveVarargs();
4529         tree.sym = sym;
4530 
4531         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
4532             site = types.skipTypeVars(site, true);
4533         }
4534 
4535         // If that symbol is a variable, ...
4536         if (sym.kind == VAR) {
4537             VarSymbol v = (VarSymbol)sym;
4538 
4539             // ..., evaluate its initializer, if it has one, and check for
4540             // illegal forward reference.
4541             checkInit(tree, env, v, true);
4542 
4543             // If we are expecting a variable (as opposed to a value), check
4544             // that the variable is assignable in the current environment.
4545             if (KindSelector.ASG.subset(pkind()))
4546                 checkAssignable(tree.pos(), v, tree.selected, env);
4547         }
4548 
4549         if (sitesym != null &&
4550                 sitesym.kind == VAR &&
4551                 ((VarSymbol)sitesym).isResourceVariable() &&
4552                 sym.kind == MTH &&
4553                 sym.name.equals(names.close) &&
4554                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
4555                 env.info.lint.isEnabled(LintCategory.TRY)) {
4556             log.warning(LintCategory.TRY, tree, Warnings.TryExplicitCloseCall);
4557         }
4558 
4559         // Disallow selecting a type from an expression
4560         if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) {
4561             tree.type = check(tree.selected, pt(),
4562                               sitesym == null ?
4563                                       KindSelector.VAL : sitesym.kind.toSelector(),
4564                               new ResultInfo(KindSelector.TYP_PCK, pt()));
4565         }
4566 
4567         if (isType(sitesym)) {
4568             if (sym.name != names._this && sym.name != names._super) {
4569                 // Check if type-qualified fields or methods are static (JLS)
4570                 if ((sym.flags() & STATIC) == 0 &&
4571                     sym.name != names._super &&
4572                     (sym.kind == VAR || sym.kind == MTH)) {
4573                     rs.accessBase(rs.new StaticError(sym),
4574                               tree.pos(), site, sym.name, true);
4575                 }
4576             }
4577         } else if (sym.kind != ERR &&
4578                    (sym.flags() & STATIC) != 0 &&
4579                    sym.name != names._class) {
4580             // If the qualified item is not a type and the selected item is static, report
4581             // a warning. Make allowance for the class of an array type e.g. Object[].class)
4582             if (!sym.owner.isAnonymous()) {
4583                 chk.warnStatic(tree, Warnings.StaticNotQualifiedByType(sym.kind.kindName(), sym.owner));
4584             } else {
4585                 chk.warnStatic(tree, Warnings.StaticNotQualifiedByType2(sym.kind.kindName()));
4586             }
4587         }
4588 
4589         // If we are selecting an instance member via a `super', ...
4590         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
4591 
4592             // Check that super-qualified symbols are not abstract (JLS)
4593             rs.checkNonAbstract(tree.pos(), sym);
4594 
4595             if (site.isRaw()) {
4596                 // Determine argument types for site.
4597                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
4598                 if (site1 != null) site = site1;
4599             }
4600         }
4601 
4602         if (env.info.isSerializable) {
4603             chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda);
4604         }
4605 
4606         env.info.selectSuper = selectSuperPrev;
4607         result = checkId(tree, site, sym, env, resultInfo);
4608     }
4609     //where
4610         /** Determine symbol referenced by a Select expression,
4611          *
4612          *  @param tree   The select tree.
4613          *  @param site   The type of the selected expression,
4614          *  @param env    The current environment.
4615          *  @param resultInfo The current result.
4616          */
4617         private Symbol selectSym(JCFieldAccess tree,
4618                                  Symbol location,
4619                                  Type site,
4620                                  Env<AttrContext> env,
4621                                  ResultInfo resultInfo) {
4622             DiagnosticPosition pos = tree.pos();
4623             Name name = tree.name;
4624             switch (site.getTag()) {
4625             case PACKAGE:
4626                 return rs.accessBase(
4627                     rs.findIdentInPackage(pos, env, site.tsym, name, resultInfo.pkind),
4628                     pos, location, site, name, true);
4629             case ARRAY:
4630             case CLASS:
4631                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
4632                     return rs.resolveQualifiedMethod(
4633                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
4634                 } else if (name == names._this || name == names._super) {
4635                     return rs.resolveSelf(pos, env, site.tsym, name);
4636                 } else if (name == names._class) {
4637                     // In this case, we have already made sure in
4638                     // visitSelect that qualifier expression is a type.
4639                     return syms.getClassField(site, types);
4640                 } else {
4641                     // We are seeing a plain identifier as selector.
4642                     Symbol sym = rs.findIdentInType(pos, env, site, name, resultInfo.pkind);
4643                         sym = rs.accessBase(sym, pos, location, site, name, true);
4644                     return sym;
4645                 }
4646             case WILDCARD:
4647                 throw new AssertionError(tree);
4648             case TYPEVAR:
4649                 // Normally, site.getUpperBound() shouldn't be null.
4650                 // It should only happen during memberEnter/attribBase
4651                 // when determining the supertype which *must* be
4652                 // done before attributing the type variables.  In
4653                 // other words, we are seeing this illegal program:
4654                 // class B<T> extends A<T.foo> {}
4655                 Symbol sym = (site.getUpperBound() != null)
4656                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
4657                     : null;
4658                 if (sym == null) {
4659                     log.error(pos, Errors.TypeVarCantBeDeref);
4660                     return syms.errSymbol;
4661                 } else {
4662                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
4663                         rs.new AccessError(env, site, sym) :
4664                                 sym;
4665                     rs.accessBase(sym2, pos, location, site, name, true);
4666                     return sym;
4667                 }
4668             case ERROR:
4669                 // preserve identifier names through errors
4670                 return types.createErrorType(name, site.tsym, site).tsym;
4671             default:
4672                 // The qualifier expression is of a primitive type -- only
4673                 // .class is allowed for these.
4674                 if (name == names._class) {
4675                     // In this case, we have already made sure in Select that
4676                     // qualifier expression is a type.
4677                     return syms.getClassField(site, types);
4678                 } else {
4679                     log.error(pos, Errors.CantDeref(site));
4680                     return syms.errSymbol;
4681                 }
4682             }
4683         }
4684 
4685         /** Determine type of identifier or select expression and check that
4686          *  (1) the referenced symbol is not deprecated
4687          *  (2) the symbol's type is safe (@see checkSafe)
4688          *  (3) if symbol is a variable, check that its type and kind are
4689          *      compatible with the prototype and protokind.
4690          *  (4) if symbol is an instance field of a raw type,
4691          *      which is being assigned to, issue an unchecked warning if its
4692          *      type changes under erasure.
4693          *  (5) if symbol is an instance method of a raw type, issue an
4694          *      unchecked warning if its argument types change under erasure.
4695          *  If checks succeed:
4696          *    If symbol is a constant, return its constant type
4697          *    else if symbol is a method, return its result type
4698          *    otherwise return its type.
4699          *  Otherwise return errType.
4700          *
4701          *  @param tree       The syntax tree representing the identifier
4702          *  @param site       If this is a select, the type of the selected
4703          *                    expression, otherwise the type of the current class.
4704          *  @param sym        The symbol representing the identifier.
4705          *  @param env        The current environment.
4706          *  @param resultInfo    The expected result
4707          */
4708         Type checkId(JCTree tree,
4709                      Type site,
4710                      Symbol sym,
4711                      Env<AttrContext> env,
4712                      ResultInfo resultInfo) {
4713             return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
4714                     checkMethodIdInternal(tree, site, sym, env, resultInfo) :
4715                     checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
4716         }
4717 
4718         Type checkMethodIdInternal(JCTree tree,
4719                      Type site,
4720                      Symbol sym,
4721                      Env<AttrContext> env,
4722                      ResultInfo resultInfo) {
4723             if (resultInfo.pkind.contains(KindSelector.POLY)) {
4724                 return attrRecover.recoverMethodInvocation(tree, site, sym, env, resultInfo);
4725             } else {
4726                 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
4727             }
4728         }
4729 
4730         Type checkIdInternal(JCTree tree,
4731                      Type site,
4732                      Symbol sym,
4733                      Type pt,
4734                      Env<AttrContext> env,
4735                      ResultInfo resultInfo) {
4736             Type owntype; // The computed type of this identifier occurrence.
4737             switch (sym.kind) {
4738             case TYP:
4739                 // For types, the computed type equals the symbol's type,
4740                 // except for two situations:
4741                 owntype = sym.type;
4742                 if (owntype.hasTag(CLASS)) {
4743                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
4744                     Type ownOuter = owntype.getEnclosingType();
4745 
4746                     // (a) If the symbol's type is parameterized, erase it
4747                     // because no type parameters were given.
4748                     // We recover generic outer type later in visitTypeApply.
4749                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
4750                         owntype = types.erasure(owntype);
4751                     }
4752 
4753                     // (b) If the symbol's type is an inner class, then
4754                     // we have to interpret its outer type as a superclass
4755                     // of the site type. Example:
4756                     //
4757                     // class Tree<A> { class Visitor { ... } }
4758                     // class PointTree extends Tree<Point> { ... }
4759                     // ...PointTree.Visitor...
4760                     //
4761                     // Then the type of the last expression above is
4762                     // Tree<Point>.Visitor.
4763                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
4764                         Type normOuter = site;
4765                         if (normOuter.hasTag(CLASS)) {
4766                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
4767                         }
4768                         if (normOuter == null) // perhaps from an import
4769                             normOuter = types.erasure(ownOuter);
4770                         if (normOuter != ownOuter)
4771                             owntype = new ClassType(
4772                                 normOuter, List.nil(), owntype.tsym,
4773                                 owntype.getMetadata());
4774                     }
4775                 }
4776                 break;
4777             case VAR:
4778                 VarSymbol v = (VarSymbol)sym;
4779 
4780                 if (env.info.enclVar != null
4781                         && v.type.hasTag(NONE)) {
4782                     //self reference to implicitly typed variable declaration
4783                     log.error(TreeInfo.positionFor(v, env.enclClass), Errors.CantInferLocalVarType(v.name, Fragments.LocalSelfRef));
4784                     return tree.type = v.type = types.createErrorType(v.type);
4785                 }
4786 
4787                 // Test (4): if symbol is an instance field of a raw type,
4788                 // which is being assigned to, issue an unchecked warning if
4789                 // its type changes under erasure.
4790                 if (KindSelector.ASG.subset(pkind()) &&
4791                     v.owner.kind == TYP &&
4792                     (v.flags() & STATIC) == 0 &&
4793                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
4794                     Type s = types.asOuterSuper(site, v.owner);
4795                     if (s != null &&
4796                         s.isRaw() &&
4797                         !types.isSameType(v.type, v.erasure(types))) {
4798                         chk.warnUnchecked(tree.pos(), Warnings.UncheckedAssignToVar(v, s));
4799                     }
4800                 }
4801                 // The computed type of a variable is the type of the
4802                 // variable symbol, taken as a member of the site type.
4803                 owntype = (sym.owner.kind == TYP &&
4804                            sym.name != names._this && sym.name != names._super)
4805                     ? types.memberType(site, sym)
4806                     : sym.type;
4807 
4808                 // If the variable is a constant, record constant value in
4809                 // computed type.
4810                 if (v.getConstValue() != null && isStaticReference(tree))
4811                     owntype = owntype.constType(v.getConstValue());
4812 
4813                 if (resultInfo.pkind == KindSelector.VAL) {
4814                     owntype = capture(owntype); // capture "names as expressions"
4815                 }
4816                 break;
4817             case MTH: {
4818                 owntype = checkMethod(site, sym,
4819                         new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext, resultInfo.checkMode),
4820                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
4821                         resultInfo.pt.getTypeArguments());
4822                 chk.checkRestricted(tree.pos(), sym);
4823                 break;
4824             }
4825             case PCK: case ERR:
4826                 owntype = sym.type;
4827                 break;
4828             default:
4829                 throw new AssertionError("unexpected kind: " + sym.kind +
4830                                          " in tree " + tree);
4831             }
4832 
4833             // Emit a `deprecation' warning if symbol is deprecated.
4834             // (for constructors (but not for constructor references), the error
4835             // was given when the constructor was resolved)
4836 
4837             if (sym.name != names.init || tree.hasTag(REFERENCE)) {
4838                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
4839                 chk.checkSunAPI(tree.pos(), sym);
4840                 chk.checkProfile(tree.pos(), sym);
4841                 chk.checkPreview(tree.pos(), env.info.scope.owner, sym);
4842             }
4843 
4844             if (pt.isErroneous()) {
4845                 owntype = types.createErrorType(owntype);
4846             }
4847 
4848             // If symbol is a variable, check that its type and
4849             // kind are compatible with the prototype and protokind.
4850             return check(tree, owntype, sym.kind.toSelector(), resultInfo);
4851         }
4852 
4853         /** Check that variable is initialized and evaluate the variable's
4854          *  initializer, if not yet done. Also check that variable is not
4855          *  referenced before it is defined.
4856          *  @param tree    The tree making up the variable reference.
4857          *  @param env     The current environment.
4858          *  @param v       The variable's symbol.
4859          */
4860         private void checkInit(JCTree tree,
4861                                Env<AttrContext> env,
4862                                VarSymbol v,
4863                                boolean onlyWarning) {
4864             // A forward reference is diagnosed if the declaration position
4865             // of the variable is greater than the current tree position
4866             // and the tree and variable definition occur in the same class
4867             // definition.  Note that writes don't count as references.
4868             // This check applies only to class and instance
4869             // variables.  Local variables follow different scope rules,
4870             // and are subject to definite assignment checking.
4871             Env<AttrContext> initEnv = enclosingInitEnv(env);
4872             if (initEnv != null &&
4873                 (initEnv.info.enclVar == v || v.pos > tree.pos) &&
4874                 v.owner.kind == TYP &&
4875                 v.owner == env.info.scope.owner.enclClass() &&
4876                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
4877                 (!env.tree.hasTag(ASSIGN) ||
4878                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
4879                 if (!onlyWarning || isStaticEnumField(v)) {
4880                     Error errkey = (initEnv.info.enclVar == v) ?
4881                                 Errors.IllegalSelfRef : Errors.IllegalForwardRef;
4882                     log.error(tree.pos(), errkey);
4883                 } else if (useBeforeDeclarationWarning) {
4884                     Warning warnkey = (initEnv.info.enclVar == v) ?
4885                                 Warnings.SelfRef(v) : Warnings.ForwardRef(v);
4886                     log.warning(tree.pos(), warnkey);
4887                 }
4888             }
4889 
4890             v.getConstValue(); // ensure initializer is evaluated
4891 
4892             checkEnumInitializer(tree, env, v);
4893         }
4894 
4895         /**
4896          * Returns the enclosing init environment associated with this env (if any). An init env
4897          * can be either a field declaration env or a static/instance initializer env.
4898          */
4899         Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) {
4900             while (true) {
4901                 switch (env.tree.getTag()) {
4902                     case VARDEF:
4903                         JCVariableDecl vdecl = (JCVariableDecl)env.tree;
4904                         if (vdecl.sym.owner.kind == TYP) {
4905                             //field
4906                             return env;
4907                         }
4908                         break;
4909                     case BLOCK:
4910                         if (env.next.tree.hasTag(CLASSDEF)) {
4911                             //instance/static initializer
4912                             return env;
4913                         }
4914                         break;
4915                     case METHODDEF:
4916                     case CLASSDEF:
4917                     case TOPLEVEL:
4918                         return null;
4919                 }
4920                 Assert.checkNonNull(env.next);
4921                 env = env.next;
4922             }
4923         }
4924 
4925         /**
4926          * Check for illegal references to static members of enum.  In
4927          * an enum type, constructors and initializers may not
4928          * reference its static members unless they are constant.
4929          *
4930          * @param tree    The tree making up the variable reference.
4931          * @param env     The current environment.
4932          * @param v       The variable's symbol.
4933          * @jls 8.9 Enum Types
4934          */
4935         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
4936             // JLS:
4937             //
4938             // "It is a compile-time error to reference a static field
4939             // of an enum type that is not a compile-time constant
4940             // (15.28) from constructors, instance initializer blocks,
4941             // or instance variable initializer expressions of that
4942             // type. It is a compile-time error for the constructors,
4943             // instance initializer blocks, or instance variable
4944             // initializer expressions of an enum constant e to refer
4945             // to itself or to an enum constant of the same type that
4946             // is declared to the right of e."
4947             if (isStaticEnumField(v)) {
4948                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
4949 
4950                 if (enclClass == null || enclClass.owner == null)
4951                     return;
4952 
4953                 // See if the enclosing class is the enum (or a
4954                 // subclass thereof) declaring v.  If not, this
4955                 // reference is OK.
4956                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
4957                     return;
4958 
4959                 // If the reference isn't from an initializer, then
4960                 // the reference is OK.
4961                 if (!Resolve.isInitializer(env))
4962                     return;
4963 
4964                 log.error(tree.pos(), Errors.IllegalEnumStaticRef);
4965             }
4966         }
4967 
4968         /** Is the given symbol a static, non-constant field of an Enum?
4969          *  Note: enum literals should not be regarded as such
4970          */
4971         private boolean isStaticEnumField(VarSymbol v) {
4972             return Flags.isEnum(v.owner) &&
4973                    Flags.isStatic(v) &&
4974                    !Flags.isConstant(v) &&
4975                    v.name != names._class;
4976         }
4977 
4978     /**
4979      * Check that method arguments conform to its instantiation.
4980      **/
4981     public Type checkMethod(Type site,
4982                             final Symbol sym,
4983                             ResultInfo resultInfo,
4984                             Env<AttrContext> env,
4985                             final List<JCExpression> argtrees,
4986                             List<Type> argtypes,
4987                             List<Type> typeargtypes) {
4988         // Test (5): if symbol is an instance method of a raw type, issue
4989         // an unchecked warning if its argument types change under erasure.
4990         if ((sym.flags() & STATIC) == 0 &&
4991             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
4992             Type s = types.asOuterSuper(site, sym.owner);
4993             if (s != null && s.isRaw() &&
4994                 !types.isSameTypes(sym.type.getParameterTypes(),
4995                                    sym.erasure(types).getParameterTypes())) {
4996                 chk.warnUnchecked(env.tree.pos(), Warnings.UncheckedCallMbrOfRawType(sym, s));
4997             }
4998         }
4999 
5000         if (env.info.defaultSuperCallSite != null) {
5001             for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
5002                 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
5003                         types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
5004                 List<MethodSymbol> icand_sup =
5005                         types.interfaceCandidates(sup, (MethodSymbol)sym);
5006                 if (icand_sup.nonEmpty() &&
5007                         icand_sup.head != sym &&
5008                         icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
5009                     log.error(env.tree.pos(),
5010                               Errors.IllegalDefaultSuperCall(env.info.defaultSuperCallSite, Fragments.OverriddenDefault(sym, sup)));
5011                     break;
5012                 }
5013             }
5014             env.info.defaultSuperCallSite = null;
5015         }
5016 
5017         if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
5018             JCMethodInvocation app = (JCMethodInvocation)env.tree;
5019             if (app.meth.hasTag(SELECT) &&
5020                     !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
5021                 log.error(env.tree.pos(), Errors.IllegalStaticIntfMethCall(site));
5022             }
5023         }
5024 
5025         // Compute the identifier's instantiated type.
5026         // For methods, we need to compute the instance type by
5027         // Resolve.instantiate from the symbol's type as well as
5028         // any type arguments and value arguments.
5029         Warner noteWarner = new Warner();
5030         try {
5031             Type owntype = rs.checkMethod(
5032                     env,
5033                     site,
5034                     sym,
5035                     resultInfo,
5036                     argtypes,
5037                     typeargtypes,
5038                     noteWarner);
5039 
5040             DeferredAttr.DeferredTypeMap<Void> checkDeferredMap =
5041                 deferredAttr.new DeferredTypeMap<>(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
5042 
5043             argtypes = argtypes.map(checkDeferredMap);
5044 
5045             if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
5046                 chk.warnUnchecked(env.tree.pos(), Warnings.UncheckedMethInvocationApplied(kindName(sym),
5047                         sym.name,
5048                         rs.methodArguments(sym.type.getParameterTypes()),
5049                         rs.methodArguments(argtypes.map(checkDeferredMap)),
5050                         kindName(sym.location()),
5051                         sym.location()));
5052                 if (resultInfo.pt != Infer.anyPoly ||
5053                         !owntype.hasTag(METHOD) ||
5054                         !owntype.isPartial()) {
5055                     //if this is not a partially inferred method type, erase return type. Otherwise,
5056                     //erasure is carried out in PartiallyInferredMethodType.check().
5057                     owntype = new MethodType(owntype.getParameterTypes(),
5058                             types.erasure(owntype.getReturnType()),
5059                             types.erasure(owntype.getThrownTypes()),
5060                             syms.methodClass);
5061                 }
5062             }
5063 
5064             PolyKind pkind = (sym.type.hasTag(FORALL) &&
5065                  sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
5066                  PolyKind.POLY : PolyKind.STANDALONE;
5067             TreeInfo.setPolyKind(env.tree, pkind);
5068 
5069             return (resultInfo.pt == Infer.anyPoly) ?
5070                     owntype :
5071                     chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
5072                             resultInfo.checkContext.inferenceContext());
5073         } catch (Infer.InferenceException ex) {
5074             //invalid target type - propagate exception outwards or report error
5075             //depending on the current check context
5076             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
5077             return types.createErrorType(site);
5078         } catch (Resolve.InapplicableMethodException ex) {
5079             final JCDiagnostic diag = ex.getDiagnostic();
5080             Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
5081                 @Override
5082                 protected Pair<Symbol, JCDiagnostic> errCandidate() {
5083                     return new Pair<>(sym, diag);
5084                 }
5085             };
5086             List<Type> argtypes2 = argtypes.map(
5087                     rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
5088             JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
5089                     env.tree, sym, site, sym.name, argtypes2, typeargtypes);
5090             log.report(errDiag);
5091             return types.createErrorType(site);
5092         }
5093     }
5094 
5095     public void visitLiteral(JCLiteral tree) {
5096         result = check(tree, litType(tree.typetag).constType(tree.value),
5097                 KindSelector.VAL, resultInfo);
5098     }
5099     //where
5100     /** Return the type of a literal with given type tag.
5101      */
5102     Type litType(TypeTag tag) {
5103         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
5104     }
5105 
5106     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
5107         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo);
5108     }
5109 
5110     public void visitTypeArray(JCArrayTypeTree tree) {
5111         Type etype = attribType(tree.elemtype, env);
5112         Type type = new ArrayType(etype, syms.arrayClass);
5113         result = check(tree, type, KindSelector.TYP, resultInfo);
5114     }
5115 
5116     /** Visitor method for parameterized types.
5117      *  Bound checking is left until later, since types are attributed
5118      *  before supertype structure is completely known
5119      */
5120     public void visitTypeApply(JCTypeApply tree) {
5121         Type owntype = types.createErrorType(tree.type);
5122 
5123         // Attribute functor part of application and make sure it's a class.
5124         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
5125 
5126         // Attribute type parameters
5127         List<Type> actuals = attribTypes(tree.arguments, env);
5128 
5129         if (clazztype.hasTag(CLASS)) {
5130             List<Type> formals = clazztype.tsym.type.getTypeArguments();
5131             if (actuals.isEmpty()) //diamond
5132                 actuals = formals;
5133 
5134             if (actuals.length() == formals.length()) {
5135                 List<Type> a = actuals;
5136                 List<Type> f = formals;
5137                 while (a.nonEmpty()) {
5138                     a.head = a.head.withTypeVar(f.head);
5139                     a = a.tail;
5140                     f = f.tail;
5141                 }
5142                 // Compute the proper generic outer
5143                 Type clazzOuter = clazztype.getEnclosingType();
5144                 if (clazzOuter.hasTag(CLASS)) {
5145                     Type site;
5146                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
5147                     if (clazz.hasTag(IDENT)) {
5148                         site = env.enclClass.sym.type;
5149                     } else if (clazz.hasTag(SELECT)) {
5150                         site = ((JCFieldAccess) clazz).selected.type;
5151                     } else throw new AssertionError(""+tree);
5152                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
5153                         if (site.hasTag(CLASS))
5154                             site = types.asOuterSuper(site, clazzOuter.tsym);
5155                         if (site == null)
5156                             site = types.erasure(clazzOuter);
5157                         clazzOuter = site;
5158                     }
5159                 }
5160                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym,
5161                                         clazztype.getMetadata());
5162             } else {
5163                 if (formals.length() != 0) {
5164                     log.error(tree.pos(),
5165                               Errors.WrongNumberTypeArgs(Integer.toString(formals.length())));
5166                 } else {
5167                     log.error(tree.pos(), Errors.TypeDoesntTakeParams(clazztype.tsym));
5168                 }
5169                 owntype = types.createErrorType(tree.type);
5170             }
5171         } else if (clazztype.hasTag(ERROR)) {
5172             ErrorType parameterizedErroneous =
5173                     new ErrorType(clazztype.getOriginalType(),
5174                                   clazztype.tsym,
5175                                   clazztype.getMetadata());
5176 
5177             parameterizedErroneous.typarams_field = actuals;
5178             owntype = parameterizedErroneous;
5179         }
5180         result = check(tree, owntype, KindSelector.TYP, resultInfo);
5181     }
5182 
5183     public void visitTypeUnion(JCTypeUnion tree) {
5184         ListBuffer<Type> multicatchTypes = new ListBuffer<>();
5185         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
5186         for (JCExpression typeTree : tree.alternatives) {
5187             Type ctype = attribType(typeTree, env);
5188             ctype = chk.checkType(typeTree.pos(),
5189                           chk.checkClassType(typeTree.pos(), ctype),
5190                           syms.throwableType);
5191             if (!ctype.isErroneous()) {
5192                 //check that alternatives of a union type are pairwise
5193                 //unrelated w.r.t. subtyping
5194                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
5195                     for (Type t : multicatchTypes) {
5196                         boolean sub = types.isSubtype(ctype, t);
5197                         boolean sup = types.isSubtype(t, ctype);
5198                         if (sub || sup) {
5199                             //assume 'a' <: 'b'
5200                             Type a = sub ? ctype : t;
5201                             Type b = sub ? t : ctype;
5202                             log.error(typeTree.pos(), Errors.MulticatchTypesMustBeDisjoint(a, b));
5203                         }
5204                     }
5205                 }
5206                 multicatchTypes.append(ctype);
5207                 if (all_multicatchTypes != null)
5208                     all_multicatchTypes.append(ctype);
5209             } else {
5210                 if (all_multicatchTypes == null) {
5211                     all_multicatchTypes = new ListBuffer<>();
5212                     all_multicatchTypes.appendList(multicatchTypes);
5213                 }
5214                 all_multicatchTypes.append(ctype);
5215             }
5216         }
5217         Type t = check(tree, types.lub(multicatchTypes.toList()),
5218                 KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE));
5219         if (t.hasTag(CLASS)) {
5220             List<Type> alternatives =
5221                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
5222             t = new UnionClassType((ClassType) t, alternatives);
5223         }
5224         tree.type = result = t;
5225     }
5226 
5227     public void visitTypeIntersection(JCTypeIntersection tree) {
5228         attribTypes(tree.bounds, env);
5229         tree.type = result = checkIntersection(tree, tree.bounds);
5230     }
5231 
5232     public void visitTypeParameter(JCTypeParameter tree) {
5233         TypeVar typeVar = (TypeVar) tree.type;
5234 
5235         if (tree.annotations != null && tree.annotations.nonEmpty()) {
5236             annotate.annotateTypeParameterSecondStage(tree, tree.annotations);
5237         }
5238 
5239         if (!typeVar.getUpperBound().isErroneous()) {
5240             //fixup type-parameter bound computed in 'attribTypeVariables'
5241             typeVar.setUpperBound(checkIntersection(tree, tree.bounds));
5242         }
5243     }
5244 
5245     Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
5246         Set<Symbol> boundSet = new HashSet<>();
5247         if (bounds.nonEmpty()) {
5248             // accept class or interface or typevar as first bound.
5249             bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
5250             boundSet.add(types.erasure(bounds.head.type).tsym);
5251             if (bounds.head.type.isErroneous()) {
5252                 return bounds.head.type;
5253             }
5254             else if (bounds.head.type.hasTag(TYPEVAR)) {
5255                 // if first bound was a typevar, do not accept further bounds.
5256                 if (bounds.tail.nonEmpty()) {
5257                     log.error(bounds.tail.head.pos(),
5258                               Errors.TypeVarMayNotBeFollowedByOtherBounds);
5259                     return bounds.head.type;
5260                 }
5261             } else {
5262                 // if first bound was a class or interface, accept only interfaces
5263                 // as further bounds.
5264                 for (JCExpression bound : bounds.tail) {
5265                     bound.type = checkBase(bound.type, bound, env, false, true, false);
5266                     if (bound.type.isErroneous()) {
5267                         bounds = List.of(bound);
5268                     }
5269                     else if (bound.type.hasTag(CLASS)) {
5270                         chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
5271                     }
5272                 }
5273             }
5274         }
5275 
5276         if (bounds.length() == 0) {
5277             return syms.objectType;
5278         } else if (bounds.length() == 1) {
5279             return bounds.head.type;
5280         } else {
5281             Type owntype = types.makeIntersectionType(TreeInfo.types(bounds));
5282             // ... the variable's bound is a class type flagged COMPOUND
5283             // (see comment for TypeVar.bound).
5284             // In this case, generate a class tree that represents the
5285             // bound class, ...
5286             JCExpression extending;
5287             List<JCExpression> implementing;
5288             if (!bounds.head.type.isInterface()) {
5289                 extending = bounds.head;
5290                 implementing = bounds.tail;
5291             } else {
5292                 extending = null;
5293                 implementing = bounds;
5294             }
5295             JCClassDecl cd = make.at(tree).ClassDef(
5296                 make.Modifiers(PUBLIC | ABSTRACT),
5297                 names.empty, List.nil(),
5298                 extending, implementing, List.nil());
5299 
5300             ClassSymbol c = (ClassSymbol)owntype.tsym;
5301             Assert.check((c.flags() & COMPOUND) != 0);
5302             cd.sym = c;
5303             c.sourcefile = env.toplevel.sourcefile;
5304 
5305             // ... and attribute the bound class
5306             c.flags_field |= UNATTRIBUTED;
5307             Env<AttrContext> cenv = enter.classEnv(cd, env);
5308             typeEnvs.put(c, cenv);
5309             attribClass(c);
5310             return owntype;
5311         }
5312     }
5313 
5314     public void visitWildcard(JCWildcard tree) {
5315         //- System.err.println("visitWildcard("+tree+");");//DEBUG
5316         Type type = (tree.kind.kind == BoundKind.UNBOUND)
5317             ? syms.objectType
5318             : attribType(tree.inner, env);
5319         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
5320                                               tree.kind.kind,
5321                                               syms.boundClass),
5322                 KindSelector.TYP, resultInfo);
5323     }
5324 
5325     public void visitAnnotation(JCAnnotation tree) {
5326         Assert.error("should be handled in annotate");
5327     }
5328 
5329     @Override
5330     public void visitModifiers(JCModifiers tree) {
5331         //error recovery only:
5332         Assert.check(resultInfo.pkind == KindSelector.ERR);
5333 
5334         attribAnnotationTypes(tree.annotations, env);
5335     }
5336 
5337     public void visitAnnotatedType(JCAnnotatedType tree) {
5338         attribAnnotationTypes(tree.annotations, env);
5339         Type underlyingType = attribType(tree.underlyingType, env);
5340         Type annotatedType = underlyingType.preannotatedType();
5341 
5342         if (!env.info.isNewClass)
5343             annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType);
5344         result = tree.type = annotatedType;
5345     }
5346 
5347     public void visitErroneous(JCErroneous tree) {
5348         if (tree.errs != null) {
5349             WriteableScope newScope = env.info.scope;
5350 
5351             if (env.tree instanceof JCClassDecl) {
5352                 Symbol fakeOwner =
5353                     new MethodSymbol(BLOCK, names.empty, null,
5354                         env.info.scope.owner);
5355                 newScope = newScope.dupUnshared(fakeOwner);
5356             }
5357 
5358             Env<AttrContext> errEnv =
5359                     env.dup(env.tree,
5360                             env.info.dup(newScope));
5361             errEnv.info.returnResult = unknownExprInfo;
5362             for (JCTree err : tree.errs)
5363                 attribTree(err, errEnv, new ResultInfo(KindSelector.ERR, pt()));
5364         }
5365         result = tree.type = syms.errType;
5366     }
5367 
5368     /** Default visitor method for all other trees.
5369      */
5370     public void visitTree(JCTree tree) {
5371         throw new AssertionError();
5372     }
5373 
5374     /**
5375      * Attribute an env for either a top level tree or class or module declaration.
5376      */
5377     public void attrib(Env<AttrContext> env) {
5378         switch (env.tree.getTag()) {
5379             case MODULEDEF:
5380                 attribModule(env.tree.pos(), ((JCModuleDecl)env.tree).sym);
5381                 break;
5382             case PACKAGEDEF:
5383                 attribPackage(env.tree.pos(), ((JCPackageDecl) env.tree).packge);
5384                 break;
5385             default:
5386                 attribClass(env.tree.pos(), env.enclClass.sym);
5387         }
5388 
5389         annotate.flush();
5390     }
5391 
5392     public void attribPackage(DiagnosticPosition pos, PackageSymbol p) {
5393         try {
5394             annotate.flush();
5395             attribPackage(p);
5396         } catch (CompletionFailure ex) {
5397             chk.completionError(pos, ex);
5398         }
5399     }
5400 
5401     void attribPackage(PackageSymbol p) {
5402         attribWithLint(p,
5403                        env -> chk.checkDeprecatedAnnotation(((JCPackageDecl) env.tree).pid.pos(), p));
5404     }
5405 
5406     public void attribModule(DiagnosticPosition pos, ModuleSymbol m) {
5407         try {
5408             annotate.flush();
5409             attribModule(m);
5410         } catch (CompletionFailure ex) {
5411             chk.completionError(pos, ex);
5412         }
5413     }
5414 
5415     void attribModule(ModuleSymbol m) {
5416         attribWithLint(m, env -> attribStat(env.tree, env));
5417     }
5418 
5419     private void attribWithLint(TypeSymbol sym, Consumer<Env<AttrContext>> attrib) {
5420         Env<AttrContext> env = typeEnvs.get(sym);
5421 
5422         Env<AttrContext> lintEnv = env;
5423         while (lintEnv.info.lint == null)
5424             lintEnv = lintEnv.next;
5425 
5426         Lint lint = lintEnv.info.lint.augment(sym);
5427 
5428         Lint prevLint = chk.setLint(lint);
5429         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
5430 
5431         try {
5432             deferredLintHandler.flush(env.tree.pos(), lint);
5433             attrib.accept(env);
5434         } finally {
5435             log.useSource(prev);
5436             chk.setLint(prevLint);
5437         }
5438     }
5439 
5440     /** Main method: attribute class definition associated with given class symbol.
5441      *  reporting completion failures at the given position.
5442      *  @param pos The source position at which completion errors are to be
5443      *             reported.
5444      *  @param c   The class symbol whose definition will be attributed.
5445      */
5446     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
5447         try {
5448             annotate.flush();
5449             attribClass(c);
5450         } catch (CompletionFailure ex) {
5451             chk.completionError(pos, ex);
5452         }
5453     }
5454 
5455     /** Attribute class definition associated with given class symbol.
5456      *  @param c   The class symbol whose definition will be attributed.
5457      */
5458     void attribClass(ClassSymbol c) throws CompletionFailure {
5459         if (c.type.hasTag(ERROR)) return;
5460 
5461         // Check for cycles in the inheritance graph, which can arise from
5462         // ill-formed class files.
5463         chk.checkNonCyclic(null, c.type);
5464 
5465         Type st = types.supertype(c.type);
5466         if ((c.flags_field & Flags.COMPOUND) == 0 &&
5467             (c.flags_field & Flags.SUPER_OWNER_ATTRIBUTED) == 0) {
5468             // First, attribute superclass.
5469             if (st.hasTag(CLASS))
5470                 attribClass((ClassSymbol)st.tsym);
5471 
5472             // Next attribute owner, if it is a class.
5473             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
5474                 attribClass((ClassSymbol)c.owner);
5475 
5476             c.flags_field |= Flags.SUPER_OWNER_ATTRIBUTED;
5477         }
5478 
5479         // The previous operations might have attributed the current class
5480         // if there was a cycle. So we test first whether the class is still
5481         // UNATTRIBUTED.
5482         if ((c.flags_field & UNATTRIBUTED) != 0) {
5483             c.flags_field &= ~UNATTRIBUTED;
5484 
5485             // Get environment current at the point of class definition.
5486             Env<AttrContext> env = typeEnvs.get(c);
5487 
5488             // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
5489             // because the annotations were not available at the time the env was created. Therefore,
5490             // we look up the environment chain for the first enclosing environment for which the
5491             // lint value is set. Typically, this is the parent env, but might be further if there
5492             // are any envs created as a result of TypeParameter nodes.
5493             Env<AttrContext> lintEnv = env;
5494             while (lintEnv.info.lint == null)
5495                 lintEnv = lintEnv.next;
5496 
5497             // Having found the enclosing lint value, we can initialize the lint value for this class
5498             env.info.lint = lintEnv.info.lint.augment(c);
5499 
5500             Lint prevLint = chk.setLint(env.info.lint);
5501             JavaFileObject prev = log.useSource(c.sourcefile);
5502             ResultInfo prevReturnRes = env.info.returnResult;
5503 
5504             try {
5505                 if (c.isSealed() &&
5506                         !c.isEnum() &&
5507                         !c.isPermittedExplicit &&
5508                         c.getPermittedSubclasses().isEmpty()) {
5509                     log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.SealedClassMustHaveSubclasses);
5510                 }
5511 
5512                 if (c.isSealed()) {
5513                     Set<Symbol> permittedTypes = new HashSet<>();
5514                     boolean sealedInUnnamed = c.packge().modle == syms.unnamedModule || c.packge().modle == syms.noModule;
5515                     for (Type subType : c.getPermittedSubclasses()) {
5516                         boolean isTypeVar = false;
5517                         if (subType.getTag() == TYPEVAR) {
5518                             isTypeVar = true; //error recovery
5519                             log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5520                                     Errors.InvalidPermitsClause(Fragments.IsATypeVariable(subType)));
5521                         }
5522                         if (subType.tsym.isAnonymous() && !c.isEnum()) {
5523                             log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),  Errors.LocalClassesCantExtendSealed(Fragments.Anonymous));
5524                         }
5525                         if (permittedTypes.contains(subType.tsym)) {
5526                             DiagnosticPosition pos =
5527                                     env.enclClass.permitting.stream()
5528                                             .filter(permittedExpr -> TreeInfo.diagnosticPositionFor(subType.tsym, permittedExpr, true) != null)
5529                                             .limit(2).collect(List.collector()).get(1);
5530                             log.error(pos, Errors.InvalidPermitsClause(Fragments.IsDuplicated(subType)));
5531                         } else {
5532                             permittedTypes.add(subType.tsym);
5533                         }
5534                         if (sealedInUnnamed) {
5535                             if (subType.tsym.packge() != c.packge()) {
5536                                 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5537                                         Errors.ClassInUnnamedModuleCantExtendSealedInDiffPackage(c)
5538                                 );
5539                             }
5540                         } else if (subType.tsym.packge().modle != c.packge().modle) {
5541                             log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5542                                     Errors.ClassInModuleCantExtendSealedInDiffModule(c, c.packge().modle)
5543                             );
5544                         }
5545                         if (subType.tsym == c.type.tsym || types.isSuperType(subType, c.type)) {
5546                             log.error(TreeInfo.diagnosticPositionFor(subType.tsym, ((JCClassDecl)env.tree).permitting),
5547                                     Errors.InvalidPermitsClause(
5548                                             subType.tsym == c.type.tsym ?
5549                                                     Fragments.MustNotBeSameClass :
5550                                                     Fragments.MustNotBeSupertype(subType)
5551                                     )
5552                             );
5553                         } else if (!isTypeVar) {
5554                             boolean thisIsASuper = types.directSupertypes(subType)
5555                                                         .stream()
5556                                                         .anyMatch(d -> d.tsym == c);
5557                             if (!thisIsASuper) {
5558                                 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5559                                         Errors.InvalidPermitsClause(Fragments.DoesntExtendSealed(subType)));
5560                             }
5561                         }
5562                     }
5563                 }
5564 
5565                 List<ClassSymbol> sealedSupers = types.directSupertypes(c.type)
5566                                                       .stream()
5567                                                       .filter(s -> s.tsym.isSealed())
5568                                                       .map(s -> (ClassSymbol) s.tsym)
5569                                                       .collect(List.collector());
5570 
5571                 if (sealedSupers.isEmpty()) {
5572                     if ((c.flags_field & Flags.NON_SEALED) != 0) {
5573                         boolean hasErrorSuper = false;
5574 
5575                         hasErrorSuper |= types.directSupertypes(c.type)
5576                                               .stream()
5577                                               .anyMatch(s -> s.tsym.kind == Kind.ERR);
5578 
5579                         ClassType ct = (ClassType) c.type;
5580 
5581                         hasErrorSuper |= !ct.isCompound() && ct.interfaces_field != ct.all_interfaces_field;
5582 
5583                         if (!hasErrorSuper) {
5584                             log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.NonSealedWithNoSealedSupertype(c));
5585                         }
5586                     }
5587                 } else {
5588                     if (c.isDirectlyOrIndirectlyLocal() && !c.isEnum()) {
5589                         log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.LocalClassesCantExtendSealed(c.isAnonymous() ? Fragments.Anonymous : Fragments.Local));
5590                     }
5591 
5592                     if (!c.type.isCompound()) {
5593                         for (ClassSymbol supertypeSym : sealedSupers) {
5594                             if (!supertypeSym.isPermittedSubclass(c.type.tsym)) {
5595                                 log.error(TreeInfo.diagnosticPositionFor(c.type.tsym, env.tree), Errors.CantInheritFromSealed(supertypeSym));
5596                             }
5597                         }
5598                         if (!c.isNonSealed() && !c.isFinal() && !c.isSealed()) {
5599                             log.error(TreeInfo.diagnosticPositionFor(c, env.tree),
5600                                     c.isInterface() ?
5601                                             Errors.NonSealedOrSealedExpected :
5602                                             Errors.NonSealedSealedOrFinalExpected);
5603                         }
5604                     }
5605                 }
5606 
5607                 deferredLintHandler.flush(env.tree, env.info.lint);
5608                 env.info.returnResult = null;
5609                 // java.lang.Enum may not be subclassed by a non-enum
5610                 if (st.tsym == syms.enumSym &&
5611                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
5612                     log.error(env.tree.pos(), Errors.EnumNoSubclassing);
5613 
5614                 // Enums may not be extended by source-level classes
5615                 if (st.tsym != null &&
5616                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
5617                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
5618                     log.error(env.tree.pos(), Errors.EnumTypesNotExtensible);
5619                 }
5620 
5621                 if (rs.isSerializable(c.type)) {
5622                     env.info.isSerializable = true;
5623                 }
5624 
5625                 attribClassBody(env, c);
5626 
5627                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
5628                 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
5629                 chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
5630                 chk.checkLeaksNotAccessible(env, (JCClassDecl) env.tree);
5631 
5632                 if (c.isImplicit()) {
5633                     chk.checkHasMain(env.tree.pos(), c);
5634                 }
5635             } finally {
5636                 env.info.returnResult = prevReturnRes;
5637                 log.useSource(prev);
5638                 chk.setLint(prevLint);
5639             }
5640 
5641         }
5642     }
5643 
5644     public void visitImport(JCImport tree) {
5645         // nothing to do
5646     }
5647 
5648     public void visitModuleDef(JCModuleDecl tree) {
5649         tree.sym.completeUsesProvides();
5650         ModuleSymbol msym = tree.sym;
5651         Lint lint = env.outer.info.lint = env.outer.info.lint.augment(msym);
5652         Lint prevLint = chk.setLint(lint);
5653         chk.checkModuleName(tree);
5654         chk.checkDeprecatedAnnotation(tree, msym);
5655 
5656         try {
5657             deferredLintHandler.flush(tree.pos(), lint);
5658         } finally {
5659             chk.setLint(prevLint);
5660         }
5661     }
5662 
5663     /** Finish the attribution of a class. */
5664     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
5665         JCClassDecl tree = (JCClassDecl)env.tree;
5666         Assert.check(c == tree.sym);
5667 
5668         // Validate type parameters, supertype and interfaces.
5669         attribStats(tree.typarams, env);
5670         if (!c.isAnonymous()) {
5671             //already checked if anonymous
5672             chk.validate(tree.typarams, env);
5673             chk.validate(tree.extending, env);
5674             chk.validate(tree.implementing, env);
5675         }
5676 
5677         c.markAbstractIfNeeded(types);
5678 
5679         // If this is a non-abstract class, check that it has no abstract
5680         // methods or unimplemented methods of an implemented interface.
5681         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
5682             chk.checkAllDefined(tree.pos(), c);
5683         }
5684 
5685         if ((c.flags() & ANNOTATION) != 0) {
5686             if (tree.implementing.nonEmpty())
5687                 log.error(tree.implementing.head.pos(),
5688                           Errors.CantExtendIntfAnnotation);
5689             if (tree.typarams.nonEmpty()) {
5690                 log.error(tree.typarams.head.pos(),
5691                           Errors.IntfAnnotationCantHaveTypeParams(c));
5692             }
5693 
5694             // If this annotation type has a @Repeatable, validate
5695             Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable();
5696             // If this annotation type has a @Repeatable, validate
5697             if (repeatable != null) {
5698                 // get diagnostic position for error reporting
5699                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
5700                 Assert.checkNonNull(cbPos);
5701 
5702                 chk.validateRepeatable(c, repeatable, cbPos);
5703             }
5704         } else {
5705             // Check that all extended classes and interfaces
5706             // are compatible (i.e. no two define methods with same arguments
5707             // yet different return types).  (JLS 8.4.8.3)
5708             chk.checkCompatibleSupertypes(tree.pos(), c.type);
5709             chk.checkDefaultMethodClashes(tree.pos(), c.type);
5710             chk.checkPotentiallyAmbiguousOverloads(tree, c.type);
5711         }
5712 
5713         // Check that class does not import the same parameterized interface
5714         // with two different argument lists.
5715         chk.checkClassBounds(tree.pos(), c.type);
5716 
5717         tree.type = c.type;
5718 
5719         for (List<JCTypeParameter> l = tree.typarams;
5720              l.nonEmpty(); l = l.tail) {
5721              Assert.checkNonNull(env.info.scope.findFirst(l.head.name));
5722         }
5723 
5724         // Check that a generic class doesn't extend Throwable
5725         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
5726             log.error(tree.extending.pos(), Errors.GenericThrowable);
5727 
5728         // Check that all methods which implement some
5729         // method conform to the method they implement.
5730         chk.checkImplementations(tree);
5731 
5732         //check that a resource implementing AutoCloseable cannot throw InterruptedException
5733         checkAutoCloseable(tree.pos(), env, c.type);
5734 
5735         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
5736             // Attribute declaration
5737             attribStat(l.head, env);
5738             // Check that declarations in inner classes are not static (JLS 8.1.2)
5739             // Make an exception for static constants.
5740             if (!allowRecords &&
5741                     c.owner.kind != PCK &&
5742                     ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
5743                     (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
5744                 VarSymbol sym = null;
5745                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
5746                 if (sym == null ||
5747                         sym.kind != VAR ||
5748                         sym.getConstValue() == null)
5749                     log.error(l.head.pos(), Errors.IclsCantHaveStaticDecl(c));
5750             }
5751         }
5752 
5753         // Check for proper placement of super()/this() calls.
5754         chk.checkSuperInitCalls(tree);
5755 
5756         // Check for cycles among non-initial constructors.
5757         chk.checkCyclicConstructors(tree);
5758 
5759         // Check for cycles among annotation elements.
5760         chk.checkNonCyclicElements(tree);
5761 
5762         // Check for proper use of serialVersionUID and other
5763         // serialization-related fields and methods
5764         if (env.info.lint.isEnabled(LintCategory.SERIAL)
5765                 && rs.isSerializable(c.type)
5766                 && !c.isAnonymous()) {
5767             chk.checkSerialStructure(tree, c);
5768         }
5769         // Correctly organize the positions of the type annotations
5770         typeAnnotations.organizeTypeAnnotationsBodies(tree);
5771 
5772         // Check type annotations applicability rules
5773         validateTypeAnnotations(tree, false);
5774     }
5775         // where
5776         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
5777         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
5778             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
5779                 if (types.isSameType(al.head.annotationType.type, t))
5780                     return al.head.pos();
5781             }
5782 
5783             return null;
5784         }
5785 
5786     private Type capture(Type type) {
5787         return types.capture(type);
5788     }
5789 
5790     private void setSyntheticVariableType(JCVariableDecl tree, Type type) {
5791         if (type.isErroneous()) {
5792             tree.vartype = make.at(Position.NOPOS).Erroneous();
5793         } else {
5794             tree.vartype = make.at(Position.NOPOS).Type(type);
5795         }
5796     }
5797 
5798     public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
5799         tree.accept(new TypeAnnotationsValidator(sigOnly));
5800     }
5801     //where
5802     private final class TypeAnnotationsValidator extends TreeScanner {
5803 
5804         private final boolean sigOnly;
5805         public TypeAnnotationsValidator(boolean sigOnly) {
5806             this.sigOnly = sigOnly;
5807         }
5808 
5809         public void visitAnnotation(JCAnnotation tree) {
5810             chk.validateTypeAnnotation(tree, null, false);
5811             super.visitAnnotation(tree);
5812         }
5813         public void visitAnnotatedType(JCAnnotatedType tree) {
5814             if (!tree.underlyingType.type.isErroneous()) {
5815                 super.visitAnnotatedType(tree);
5816             }
5817         }
5818         public void visitTypeParameter(JCTypeParameter tree) {
5819             chk.validateTypeAnnotations(tree.annotations, tree.type.tsym, true);
5820             scan(tree.bounds);
5821             // Don't call super.
5822             // This is needed because above we call validateTypeAnnotation with
5823             // false, which would forbid annotations on type parameters.
5824             // super.visitTypeParameter(tree);
5825         }
5826         public void visitMethodDef(JCMethodDecl tree) {
5827             if (tree.recvparam != null &&
5828                     !tree.recvparam.vartype.type.isErroneous()) {
5829                 checkForDeclarationAnnotations(tree.recvparam.mods.annotations, tree.recvparam.sym);
5830             }
5831             if (tree.restype != null && tree.restype.type != null) {
5832                 validateAnnotatedType(tree.restype, tree.restype.type);
5833             }
5834             if (sigOnly) {
5835                 scan(tree.mods);
5836                 scan(tree.restype);
5837                 scan(tree.typarams);
5838                 scan(tree.recvparam);
5839                 scan(tree.params);
5840                 scan(tree.thrown);
5841             } else {
5842                 scan(tree.defaultValue);
5843                 scan(tree.body);
5844             }
5845         }
5846         public void visitVarDef(final JCVariableDecl tree) {
5847             //System.err.println("validateTypeAnnotations.visitVarDef " + tree);
5848             if (tree.sym != null && tree.sym.type != null && !tree.isImplicitlyTyped())
5849                 validateAnnotatedType(tree.vartype, tree.sym.type);
5850             scan(tree.mods);
5851             scan(tree.vartype);
5852             if (!sigOnly) {
5853                 scan(tree.init);
5854             }
5855         }
5856         public void visitTypeCast(JCTypeCast tree) {
5857             if (tree.clazz != null && tree.clazz.type != null)
5858                 validateAnnotatedType(tree.clazz, tree.clazz.type);
5859             super.visitTypeCast(tree);
5860         }
5861         public void visitTypeTest(JCInstanceOf tree) {
5862             if (tree.pattern != null && !(tree.pattern instanceof JCPattern) && tree.pattern.type != null)
5863                 validateAnnotatedType(tree.pattern, tree.pattern.type);
5864             super.visitTypeTest(tree);
5865         }
5866         public void visitNewClass(JCNewClass tree) {
5867             if (tree.clazz != null && tree.clazz.type != null) {
5868                 if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
5869                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
5870                             tree.clazz.type.tsym);
5871                 }
5872                 if (tree.def != null) {
5873                     checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
5874                 }
5875 
5876                 validateAnnotatedType(tree.clazz, tree.clazz.type);
5877             }
5878             super.visitNewClass(tree);
5879         }
5880         public void visitNewArray(JCNewArray tree) {
5881             if (tree.elemtype != null && tree.elemtype.type != null) {
5882                 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
5883                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
5884                             tree.elemtype.type.tsym);
5885                 }
5886                 validateAnnotatedType(tree.elemtype, tree.elemtype.type);
5887             }
5888             super.visitNewArray(tree);
5889         }
5890         public void visitClassDef(JCClassDecl tree) {
5891             //System.err.println("validateTypeAnnotations.visitClassDef " + tree);
5892             if (sigOnly) {
5893                 scan(tree.mods);
5894                 scan(tree.typarams);
5895                 scan(tree.extending);
5896                 scan(tree.implementing);
5897             }
5898             for (JCTree member : tree.defs) {
5899                 if (member.hasTag(Tag.CLASSDEF)) {
5900                     continue;
5901                 }
5902                 scan(member);
5903             }
5904         }
5905         public void visitBlock(JCBlock tree) {
5906             if (!sigOnly) {
5907                 scan(tree.stats);
5908             }
5909         }
5910 
5911         /* I would want to model this after
5912          * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
5913          * and override visitSelect and visitTypeApply.
5914          * However, we only set the annotated type in the top-level type
5915          * of the symbol.
5916          * Therefore, we need to override each individual location where a type
5917          * can occur.
5918          */
5919         private void validateAnnotatedType(final JCTree errtree, final Type type) {
5920             //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
5921 
5922             if (type.isPrimitiveOrVoid()) {
5923                 return;
5924             }
5925 
5926             JCTree enclTr = errtree;
5927             Type enclTy = type;
5928 
5929             boolean repeat = true;
5930             while (repeat) {
5931                 if (enclTr.hasTag(TYPEAPPLY)) {
5932                     List<Type> tyargs = enclTy.getTypeArguments();
5933                     List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
5934                     if (trargs.length() > 0) {
5935                         // Nothing to do for diamonds
5936                         if (tyargs.length() == trargs.length()) {
5937                             for (int i = 0; i < tyargs.length(); ++i) {
5938                                 validateAnnotatedType(trargs.get(i), tyargs.get(i));
5939                             }
5940                         }
5941                         // If the lengths don't match, it's either a diamond
5942                         // or some nested type that redundantly provides
5943                         // type arguments in the tree.
5944                     }
5945 
5946                     // Look at the clazz part of a generic type
5947                     enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
5948                 }
5949 
5950                 if (enclTr.hasTag(SELECT)) {
5951                     enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
5952                     if (enclTy != null &&
5953                             !enclTy.hasTag(NONE)) {
5954                         enclTy = enclTy.getEnclosingType();
5955                     }
5956                 } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
5957                     JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
5958                     if (enclTy == null || enclTy.hasTag(NONE)) {
5959                         ListBuffer<Attribute.TypeCompound> onlyTypeAnnotationsBuf = new ListBuffer<>();
5960                         for (JCAnnotation an : at.getAnnotations()) {
5961                             if (chk.isTypeAnnotation(an, false)) {
5962                                 onlyTypeAnnotationsBuf.add((Attribute.TypeCompound) an.attribute);
5963                             }
5964                         }
5965                         List<Attribute.TypeCompound> onlyTypeAnnotations = onlyTypeAnnotationsBuf.toList();
5966                         if (!onlyTypeAnnotations.isEmpty()) {
5967                             Fragment annotationFragment = onlyTypeAnnotations.size() == 1 ?
5968                                     Fragments.TypeAnnotation1(onlyTypeAnnotations.head) :
5969                                     Fragments.TypeAnnotation(onlyTypeAnnotations);
5970                             JCDiagnostic.AnnotatedType annotatedType = new JCDiagnostic.AnnotatedType(
5971                                     type.stripMetadata().annotatedType(onlyTypeAnnotations));
5972                             log.error(at.underlyingType.pos(), Errors.TypeAnnotationInadmissible(annotationFragment,
5973                                     type.tsym.owner, annotatedType));
5974                         }
5975                         repeat = false;
5976                     }
5977                     enclTr = at.underlyingType;
5978                     // enclTy doesn't need to be changed
5979                 } else if (enclTr.hasTag(IDENT)) {
5980                     repeat = false;
5981                 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
5982                     JCWildcard wc = (JCWildcard) enclTr;
5983                     if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD ||
5984                             wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
5985                         validateAnnotatedType(wc.getBound(), wc.getBound().type);
5986                     } else {
5987                         // Nothing to do for UNBOUND
5988                     }
5989                     repeat = false;
5990                 } else if (enclTr.hasTag(TYPEARRAY)) {
5991                     JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
5992                     validateAnnotatedType(art.getType(), art.elemtype.type);
5993                     repeat = false;
5994                 } else if (enclTr.hasTag(TYPEUNION)) {
5995                     JCTypeUnion ut = (JCTypeUnion) enclTr;
5996                     for (JCTree t : ut.getTypeAlternatives()) {
5997                         validateAnnotatedType(t, t.type);
5998                     }
5999                     repeat = false;
6000                 } else if (enclTr.hasTag(TYPEINTERSECTION)) {
6001                     JCTypeIntersection it = (JCTypeIntersection) enclTr;
6002                     for (JCTree t : it.getBounds()) {
6003                         validateAnnotatedType(t, t.type);
6004                     }
6005                     repeat = false;
6006                 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
6007                            enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
6008                     repeat = false;
6009                 } else {
6010                     Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
6011                             " within: "+ errtree + " with kind: " + errtree.getKind());
6012                 }
6013             }
6014         }
6015 
6016         private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
6017                 Symbol sym) {
6018             // Ensure that no declaration annotations are present.
6019             // Note that a tree type might be an AnnotatedType with
6020             // empty annotations, if only declaration annotations were given.
6021             // This method will raise an error for such a type.
6022             for (JCAnnotation ai : annotations) {
6023                 if (!ai.type.isErroneous() &&
6024                         typeAnnotations.annotationTargetType(ai, ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
6025                     log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type));
6026                 }
6027             }
6028         }
6029     }
6030 
6031     // <editor-fold desc="post-attribution visitor">
6032 
6033     /**
6034      * Handle missing types/symbols in an AST. This routine is useful when
6035      * the compiler has encountered some errors (which might have ended up
6036      * terminating attribution abruptly); if the compiler is used in fail-over
6037      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
6038      * prevents NPE to be propagated during subsequent compilation steps.
6039      */
6040     public void postAttr(JCTree tree) {
6041         new PostAttrAnalyzer().scan(tree);
6042     }
6043 
6044     class PostAttrAnalyzer extends TreeScanner {
6045 
6046         private void initTypeIfNeeded(JCTree that) {
6047             if (that.type == null) {
6048                 if (that.hasTag(METHODDEF)) {
6049                     that.type = dummyMethodType((JCMethodDecl)that);
6050                 } else {
6051                     that.type = syms.unknownType;
6052                 }
6053             }
6054         }
6055 
6056         /* Construct a dummy method type. If we have a method declaration,
6057          * and the declared return type is void, then use that return type
6058          * instead of UNKNOWN to avoid spurious error messages in lambda
6059          * bodies (see:JDK-8041704).
6060          */
6061         private Type dummyMethodType(JCMethodDecl md) {
6062             Type restype = syms.unknownType;
6063             if (md != null && md.restype != null && md.restype.hasTag(TYPEIDENT)) {
6064                 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
6065                 if (prim.typetag == VOID)
6066                     restype = syms.voidType;
6067             }
6068             return new MethodType(List.nil(), restype,
6069                                   List.nil(), syms.methodClass);
6070         }
6071         private Type dummyMethodType() {
6072             return dummyMethodType(null);
6073         }
6074 
6075         @Override
6076         public void scan(JCTree tree) {
6077             if (tree == null) return;
6078             if (tree instanceof JCExpression) {
6079                 initTypeIfNeeded(tree);
6080             }
6081             super.scan(tree);
6082         }
6083 
6084         @Override
6085         public void visitIdent(JCIdent that) {
6086             if (that.sym == null) {
6087                 that.sym = syms.unknownSymbol;
6088             }
6089         }
6090 
6091         @Override
6092         public void visitSelect(JCFieldAccess that) {
6093             if (that.sym == null) {
6094                 that.sym = syms.unknownSymbol;
6095             }
6096             super.visitSelect(that);
6097         }
6098 
6099         @Override
6100         public void visitClassDef(JCClassDecl that) {
6101             initTypeIfNeeded(that);
6102             if (that.sym == null) {
6103                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
6104             }
6105             super.visitClassDef(that);
6106         }
6107 
6108         @Override
6109         public void visitMethodDef(JCMethodDecl that) {
6110             initTypeIfNeeded(that);
6111             if (that.sym == null) {
6112                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
6113             }
6114             super.visitMethodDef(that);
6115         }
6116 
6117         @Override
6118         public void visitVarDef(JCVariableDecl that) {
6119             initTypeIfNeeded(that);
6120             if (that.sym == null) {
6121                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
6122                 that.sym.adr = 0;
6123             }
6124             if (that.vartype == null) {
6125                 that.vartype = make.at(Position.NOPOS).Erroneous();
6126             }
6127             super.visitVarDef(that);
6128         }
6129 
6130         @Override
6131         public void visitBindingPattern(JCBindingPattern that) {
6132             initTypeIfNeeded(that);
6133             initTypeIfNeeded(that.var);
6134             if (that.var.sym == null) {
6135                 that.var.sym = new BindingSymbol(0, that.var.name, that.var.type, syms.noSymbol);
6136                 that.var.sym.adr = 0;
6137             }
6138             super.visitBindingPattern(that);
6139         }
6140 
6141         @Override
6142         public void visitRecordPattern(JCRecordPattern that) {
6143             initTypeIfNeeded(that);
6144             if (that.record == null) {
6145                 that.record = new ClassSymbol(0, TreeInfo.name(that.deconstructor),
6146                                               that.type, syms.noSymbol);
6147             }
6148             if (that.fullComponentTypes == null) {
6149                 that.fullComponentTypes = List.nil();
6150             }
6151             super.visitRecordPattern(that);
6152         }
6153 
6154         @Override
6155         public void visitNewClass(JCNewClass that) {
6156             if (that.constructor == null) {
6157                 that.constructor = new MethodSymbol(0, names.init,
6158                         dummyMethodType(), syms.noSymbol);
6159             }
6160             if (that.constructorType == null) {
6161                 that.constructorType = syms.unknownType;
6162             }
6163             super.visitNewClass(that);
6164         }
6165 
6166         @Override
6167         public void visitAssignop(JCAssignOp that) {
6168             if (that.operator == null) {
6169                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
6170                         -1, syms.noSymbol);
6171             }
6172             super.visitAssignop(that);
6173         }
6174 
6175         @Override
6176         public void visitBinary(JCBinary that) {
6177             if (that.operator == null) {
6178                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
6179                         -1, syms.noSymbol);
6180             }
6181             super.visitBinary(that);
6182         }
6183 
6184         @Override
6185         public void visitUnary(JCUnary that) {
6186             if (that.operator == null) {
6187                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
6188                         -1, syms.noSymbol);
6189             }
6190             super.visitUnary(that);
6191         }
6192 
6193         @Override
6194         public void visitReference(JCMemberReference that) {
6195             super.visitReference(that);
6196             if (that.sym == null) {
6197                 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
6198                         syms.noSymbol);
6199             }
6200         }
6201     }
6202     // </editor-fold>
6203 
6204     public void setPackageSymbols(JCExpression pid, Symbol pkg) {
6205         new TreeScanner() {
6206             Symbol packge = pkg;
6207             @Override
6208             public void visitIdent(JCIdent that) {
6209                 that.sym = packge;
6210             }
6211 
6212             @Override
6213             public void visitSelect(JCFieldAccess that) {
6214                 that.sym = packge;
6215                 packge = packge.owner;
6216                 super.visitSelect(that);
6217             }
6218         }.scan(pid);
6219     }
6220 
6221 }