1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package com.sun.tools.javac.comp; 27 28 import java.util.*; 29 import java.util.function.BiConsumer; 30 import java.util.function.Consumer; 31 import java.util.function.Function; 32 import java.util.stream.Stream; 33 34 import javax.lang.model.element.ElementKind; 35 import javax.tools.JavaFileObject; 36 37 import com.sun.source.tree.CaseTree; 38 import com.sun.source.tree.IdentifierTree; 39 import com.sun.source.tree.LambdaExpressionTree.BodyKind; 40 import com.sun.source.tree.MemberReferenceTree.ReferenceMode; 41 import com.sun.source.tree.MemberSelectTree; 42 import com.sun.source.tree.TreeVisitor; 43 import com.sun.source.util.SimpleTreeVisitor; 44 import com.sun.tools.javac.code.*; 45 import com.sun.tools.javac.code.Lint.LintCategory; 46 import com.sun.tools.javac.code.Scope.WriteableScope; 47 import com.sun.tools.javac.code.Source.Feature; 48 import com.sun.tools.javac.code.Symbol.*; 49 import com.sun.tools.javac.code.Type.*; 50 import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError; 51 import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext; 52 import com.sun.tools.javac.comp.Attr.ResultInfo; 53 import com.sun.tools.javac.comp.Check.CheckContext; 54 import com.sun.tools.javac.comp.Check.NestedCheckContext; 55 import com.sun.tools.javac.comp.DeferredAttr.AttrMode; 56 import com.sun.tools.javac.comp.DeferredAttr.LambdaReturnScanner; 57 import com.sun.tools.javac.comp.MatchBindingsComputer.MatchBindings; 58 import com.sun.tools.javac.jvm.*; 59 60 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond; 61 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg; 62 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs; 63 64 import com.sun.tools.javac.resources.CompilerProperties.Errors; 65 import com.sun.tools.javac.resources.CompilerProperties.Fragments; 66 import com.sun.tools.javac.resources.CompilerProperties.LintWarnings; 67 import com.sun.tools.javac.resources.CompilerProperties.Warnings; 68 import com.sun.tools.javac.tree.*; 69 import com.sun.tools.javac.tree.JCTree.*; 70 import com.sun.tools.javac.tree.JCTree.JCLambda.ParameterKind; 71 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*; 72 import com.sun.tools.javac.util.*; 73 import com.sun.tools.javac.util.DefinedBy.Api; 74 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition; 75 import com.sun.tools.javac.util.JCDiagnostic.Error; 76 import com.sun.tools.javac.util.JCDiagnostic.Fragment; 77 import com.sun.tools.javac.util.JCDiagnostic.Warning; 78 import com.sun.tools.javac.util.List; 79 80 import static com.sun.tools.javac.code.Flags.*; 81 import static com.sun.tools.javac.code.Flags.ANNOTATION; 82 import static com.sun.tools.javac.code.Flags.BLOCK; 83 import static com.sun.tools.javac.code.Kinds.*; 84 import static com.sun.tools.javac.code.Kinds.Kind.*; 85 import static com.sun.tools.javac.code.TypeTag.*; 86 import static com.sun.tools.javac.code.TypeTag.WILDCARD; 87 import static com.sun.tools.javac.tree.JCTree.Tag.*; 88 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag; 89 90 /** This is the main context-dependent analysis phase in GJC. It 91 * encompasses name resolution, type checking and constant folding as 92 * subtasks. Some subtasks involve auxiliary classes. 93 * @see Check 94 * @see Resolve 95 * @see ConstFold 96 * @see Infer 97 * 98 * <p><b>This is NOT part of any supported API. 99 * If you write code that depends on this, you do so at your own risk. 100 * This code and its internal interfaces are subject to change or 101 * deletion without notice.</b> 102 */ 103 public class Attr extends JCTree.Visitor { 104 protected static final Context.Key<Attr> attrKey = new Context.Key<>(); 105 106 final Names names; 107 final Log log; 108 final Symtab syms; 109 final Resolve rs; 110 final Operators operators; 111 final Infer infer; 112 final Analyzer analyzer; 113 final DeferredAttr deferredAttr; 114 final Check chk; 115 final Flow flow; 116 final MemberEnter memberEnter; 117 final TypeEnter typeEnter; 118 final TreeMaker make; 119 final ConstFold cfolder; 120 final Enter enter; 121 final Target target; 122 final Types types; 123 final Preview preview; 124 final JCDiagnostic.Factory diags; 125 final TypeAnnotations typeAnnotations; 126 final DeferredLintHandler deferredLintHandler; 127 final TypeEnvs typeEnvs; 128 final Dependencies dependencies; 129 final Annotate annotate; 130 final ArgumentAttr argumentAttr; 131 final MatchBindingsComputer matchBindingsComputer; 132 final AttrRecover attrRecover; 133 134 public static Attr instance(Context context) { 135 Attr instance = context.get(attrKey); 136 if (instance == null) 137 instance = new Attr(context); 138 return instance; 139 } 140 141 @SuppressWarnings("this-escape") 142 protected Attr(Context context) { 143 context.put(attrKey, this); 144 145 names = Names.instance(context); 146 log = Log.instance(context); 147 syms = Symtab.instance(context); 148 rs = Resolve.instance(context); 149 operators = Operators.instance(context); 150 chk = Check.instance(context); 151 flow = Flow.instance(context); 152 memberEnter = MemberEnter.instance(context); 153 typeEnter = TypeEnter.instance(context); 154 make = TreeMaker.instance(context); 155 enter = Enter.instance(context); 156 infer = Infer.instance(context); 157 analyzer = Analyzer.instance(context); 158 deferredAttr = DeferredAttr.instance(context); 159 cfolder = ConstFold.instance(context); 160 target = Target.instance(context); 161 types = Types.instance(context); 162 preview = Preview.instance(context); 163 diags = JCDiagnostic.Factory.instance(context); 164 annotate = Annotate.instance(context); 165 typeAnnotations = TypeAnnotations.instance(context); 166 deferredLintHandler = DeferredLintHandler.instance(context); 167 typeEnvs = TypeEnvs.instance(context); 168 dependencies = Dependencies.instance(context); 169 argumentAttr = ArgumentAttr.instance(context); 170 matchBindingsComputer = MatchBindingsComputer.instance(context); 171 attrRecover = AttrRecover.instance(context); 172 173 Options options = Options.instance(context); 174 175 Source source = Source.instance(context); 176 allowReifiableTypesInInstanceof = Feature.REIFIABLE_TYPES_INSTANCEOF.allowedInSource(source); 177 allowRecords = Feature.RECORDS.allowedInSource(source); 178 allowPatternSwitch = (preview.isEnabled() || !preview.isPreview(Feature.PATTERN_SWITCH)) && 179 Feature.PATTERN_SWITCH.allowedInSource(source); 180 allowUnconditionalPatternsInstanceOf = 181 Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.allowedInSource(source); 182 sourceName = source.name; 183 useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning"); 184 185 statInfo = new ResultInfo(KindSelector.NIL, Type.noType); 186 varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType); 187 unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType); 188 methodAttrInfo = new MethodAttrInfo(); 189 unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType); 190 unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType); 191 recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext); 192 initBlockType = new MethodType(List.nil(), syms.voidType, List.nil(), syms.methodClass); 193 } 194 195 /** Switch: reifiable types in instanceof enabled? 196 */ 197 boolean allowReifiableTypesInInstanceof; 198 199 /** Are records allowed 200 */ 201 private final boolean allowRecords; 202 203 /** Are patterns in switch allowed 204 */ 205 private final boolean allowPatternSwitch; 206 207 /** Are unconditional patterns in instanceof allowed 208 */ 209 private final boolean allowUnconditionalPatternsInstanceOf; 210 211 /** 212 * Switch: warn about use of variable before declaration? 213 * RFE: 6425594 214 */ 215 boolean useBeforeDeclarationWarning; 216 217 /** 218 * Switch: name of source level; used for error reporting. 219 */ 220 String sourceName; 221 222 /** Check kind and type of given tree against protokind and prototype. 223 * If check succeeds, store type in tree and return it. 224 * If check fails, store errType in tree and return it. 225 * No checks are performed if the prototype is a method type. 226 * It is not necessary in this case since we know that kind and type 227 * are correct. 228 * 229 * @param tree The tree whose kind and type is checked 230 * @param found The computed type of the tree 231 * @param ownkind The computed kind of the tree 232 * @param resultInfo The expected result of the tree 233 */ 234 Type check(final JCTree tree, 235 final Type found, 236 final KindSelector ownkind, 237 final ResultInfo resultInfo) { 238 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext(); 239 Type owntype; 240 boolean shouldCheck = !found.hasTag(ERROR) && 241 !resultInfo.pt.hasTag(METHOD) && 242 !resultInfo.pt.hasTag(FORALL); 243 if (shouldCheck && !ownkind.subset(resultInfo.pkind)) { 244 log.error(tree.pos(), 245 Errors.UnexpectedType(resultInfo.pkind.kindNames(), 246 ownkind.kindNames())); 247 owntype = types.createErrorType(found); 248 } else if (inferenceContext.free(found)) { 249 //delay the check if there are inference variables in the found type 250 //this means we are dealing with a partially inferred poly expression 251 owntype = shouldCheck ? resultInfo.pt : found; 252 if (resultInfo.checkMode.installPostInferenceHook()) { 253 inferenceContext.addFreeTypeListener(List.of(found), 254 instantiatedContext -> { 255 ResultInfo pendingResult = 256 resultInfo.dup(inferenceContext.asInstType(resultInfo.pt)); 257 check(tree, inferenceContext.asInstType(found), ownkind, pendingResult); 258 }); 259 } 260 } else { 261 owntype = shouldCheck ? 262 resultInfo.check(tree, found) : 263 found; 264 } 265 if (resultInfo.checkMode.updateTreeType()) { 266 tree.type = owntype; 267 } 268 return owntype; 269 } 270 271 /** Is given blank final variable assignable, i.e. in a scope where it 272 * may be assigned to even though it is final? 273 * @param v The blank final variable. 274 * @param env The current environment. 275 */ 276 boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) { 277 Symbol owner = env.info.scope.owner; 278 // owner refers to the innermost variable, method or 279 // initializer block declaration at this point. 280 boolean isAssignable = 281 v.owner == owner 282 || 283 ((owner.name == names.init || // i.e. we are in a constructor 284 owner.kind == VAR || // i.e. we are in a variable initializer 285 (owner.flags() & BLOCK) != 0) // i.e. we are in an initializer block 286 && 287 v.owner == owner.owner 288 && 289 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env)); 290 boolean insideCompactConstructor = env.enclMethod != null && TreeInfo.isCompactConstructor(env.enclMethod); 291 return isAssignable & !insideCompactConstructor; 292 } 293 294 /** Check that variable can be assigned to. 295 * @param pos The current source code position. 296 * @param v The assigned variable 297 * @param base If the variable is referred to in a Select, the part 298 * to the left of the `.', null otherwise. 299 * @param env The current environment. 300 */ 301 void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) { 302 if (v.name == names._this) { 303 log.error(pos, Errors.CantAssignValToThis); 304 return; 305 } 306 if ((v.flags() & FINAL) != 0 && 307 ((v.flags() & HASINIT) != 0 308 || 309 !((base == null || 310 TreeInfo.isThisQualifier(base)) && 311 isAssignableAsBlankFinal(v, env)))) { 312 if (v.isResourceVariable()) { //TWR resource 313 log.error(pos, Errors.TryResourceMayNotBeAssigned(v)); 314 } else { 315 log.error(pos, Errors.CantAssignValToVar(Flags.toSource(v.flags() & (STATIC | FINAL)), v)); 316 } 317 return; 318 } 319 320 // Check instance field assignments that appear in constructor prologues 321 if (rs.isEarlyReference(env, base, v)) { 322 323 // Field may not be inherited from a superclass 324 if (v.owner != env.enclClass.sym) { 325 log.error(pos, Errors.CantRefBeforeCtorCalled(v)); 326 return; 327 } 328 329 // Field may not have an initializer 330 if ((v.flags() & HASINIT) != 0) { 331 log.error(pos, Errors.CantAssignInitializedBeforeCtorCalled(v)); 332 return; 333 } 334 } 335 } 336 337 /** Does tree represent a static reference to an identifier? 338 * It is assumed that tree is either a SELECT or an IDENT. 339 * We have to weed out selects from non-type names here. 340 * @param tree The candidate tree. 341 */ 342 boolean isStaticReference(JCTree tree) { 343 if (tree.hasTag(SELECT)) { 344 Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected); 345 if (lsym == null || lsym.kind != TYP) { 346 return false; 347 } 348 } 349 return true; 350 } 351 352 /** Is this symbol a type? 353 */ 354 static boolean isType(Symbol sym) { 355 return sym != null && sym.kind == TYP; 356 } 357 358 /** Attribute a parsed identifier. 359 * @param tree Parsed identifier name 360 * @param topLevel The toplevel to use 361 */ 362 public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) { 363 Env<AttrContext> localEnv = enter.topLevelEnv(topLevel); 364 localEnv.enclClass = make.ClassDef(make.Modifiers(0), 365 syms.errSymbol.name, 366 null, null, null, null); 367 localEnv.enclClass.sym = syms.errSymbol; 368 return attribIdent(tree, localEnv); 369 } 370 371 /** Attribute a parsed identifier. 372 * @param tree Parsed identifier name 373 * @param env The env to use 374 */ 375 public Symbol attribIdent(JCTree tree, Env<AttrContext> env) { 376 return tree.accept(identAttributer, env); 377 } 378 // where 379 private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer(); 380 private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> { 381 @Override @DefinedBy(Api.COMPILER_TREE) 382 public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) { 383 Symbol site = visit(node.getExpression(), env); 384 if (site.kind == ERR || site.kind == ABSENT_TYP || site.kind == HIDDEN) 385 return site; 386 Name name = (Name)node.getIdentifier(); 387 if (site.kind == PCK) { 388 env.toplevel.packge = (PackageSymbol)site; 389 return rs.findIdentInPackage(null, env, (TypeSymbol)site, name, 390 KindSelector.TYP_PCK); 391 } else { 392 env.enclClass.sym = (ClassSymbol)site; 393 return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site); 394 } 395 } 396 397 @Override @DefinedBy(Api.COMPILER_TREE) 398 public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) { 399 return rs.findIdent(null, env, (Name)node.getName(), KindSelector.TYP_PCK); 400 } 401 } 402 403 public Type coerce(Type etype, Type ttype) { 404 return cfolder.coerce(etype, ttype); 405 } 406 407 public Type attribType(JCTree node, TypeSymbol sym) { 408 Env<AttrContext> env = typeEnvs.get(sym); 409 Env<AttrContext> localEnv = env.dup(node, env.info.dup()); 410 return attribTree(node, localEnv, unknownTypeInfo); 411 } 412 413 public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) { 414 // Attribute qualifying package or class. 415 JCFieldAccess s = tree.qualid; 416 return attribTree(s.selected, env, 417 new ResultInfo(tree.staticImport ? 418 KindSelector.TYP : KindSelector.TYP_PCK, 419 Type.noType)); 420 } 421 422 public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) { 423 return attribToTree(expr, env, tree, unknownExprInfo); 424 } 425 426 public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) { 427 return attribToTree(stmt, env, tree, statInfo); 428 } 429 430 private Env<AttrContext> attribToTree(JCTree root, Env<AttrContext> env, JCTree tree, ResultInfo resultInfo) { 431 breakTree = tree; 432 JavaFileObject prev = log.useSource(env.toplevel.sourcefile); 433 try { 434 deferredAttr.attribSpeculative(root, env, resultInfo, 435 null, DeferredAttr.AttributionMode.ATTRIB_TO_TREE, 436 argumentAttr.withLocalCacheContext()); 437 attrRecover.doRecovery(); 438 } catch (BreakAttr b) { 439 return b.env; 440 } catch (AssertionError ae) { 441 if (ae.getCause() instanceof BreakAttr breakAttr) { 442 return breakAttr.env; 443 } else { 444 throw ae; 445 } 446 } finally { 447 breakTree = null; 448 log.useSource(prev); 449 } 450 return env; 451 } 452 453 public <R> R runWithAttributedMethod(Env<AttrContext> env, JCMethodDecl tree, Function<JCBlock, R> attributedAction) { 454 JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile); 455 try { 456 JCBlock dupTree = (JCBlock)deferredAttr.attribSpeculative(tree.body, env, statInfo, 457 null, DeferredAttr.AttributionMode.ATTRIB_TO_TREE, 458 argumentAttr.withLocalCacheContext()); 459 return attributedAction.apply(dupTree); 460 } finally { 461 attrRecover.doRecovery(); 462 log.useSource(prevSource); 463 } 464 } 465 466 private JCTree breakTree = null; 467 468 private static class BreakAttr extends RuntimeException { 469 static final long serialVersionUID = -6924771130405446405L; 470 private transient Env<AttrContext> env; 471 private BreakAttr(Env<AttrContext> env) { 472 this.env = env; 473 } 474 } 475 476 /** 477 * Mode controlling behavior of Attr.Check 478 */ 479 enum CheckMode { 480 481 NORMAL, 482 483 /** 484 * Mode signalling 'fake check' - skip tree update. A side-effect of this mode is 485 * that the captured var cache in {@code InferenceContext} will be used in read-only 486 * mode when performing inference checks. 487 */ 488 NO_TREE_UPDATE { 489 @Override 490 public boolean updateTreeType() { 491 return false; 492 } 493 }, 494 /** 495 * Mode signalling that caller will manage free types in tree decorations. 496 */ 497 NO_INFERENCE_HOOK { 498 @Override 499 public boolean installPostInferenceHook() { 500 return false; 501 } 502 }; 503 504 public boolean updateTreeType() { 505 return true; 506 } 507 public boolean installPostInferenceHook() { 508 return true; 509 } 510 } 511 512 513 class ResultInfo { 514 final KindSelector pkind; 515 final Type pt; 516 final CheckContext checkContext; 517 final CheckMode checkMode; 518 519 ResultInfo(KindSelector pkind, Type pt) { 520 this(pkind, pt, chk.basicHandler, CheckMode.NORMAL); 521 } 522 523 ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) { 524 this(pkind, pt, chk.basicHandler, checkMode); 525 } 526 527 protected ResultInfo(KindSelector pkind, 528 Type pt, CheckContext checkContext) { 529 this(pkind, pt, checkContext, CheckMode.NORMAL); 530 } 531 532 protected ResultInfo(KindSelector pkind, 533 Type pt, CheckContext checkContext, CheckMode checkMode) { 534 this.pkind = pkind; 535 this.pt = pt; 536 this.checkContext = checkContext; 537 this.checkMode = checkMode; 538 } 539 540 /** 541 * Should {@link Attr#attribTree} use the {@code ArgumentAttr} visitor instead of this one? 542 * @param tree The tree to be type-checked. 543 * @return true if {@code ArgumentAttr} should be used. 544 */ 545 protected boolean needsArgumentAttr(JCTree tree) { return false; } 546 547 protected Type check(final DiagnosticPosition pos, final Type found) { 548 return chk.checkType(pos, found, pt, checkContext); 549 } 550 551 protected ResultInfo dup(Type newPt) { 552 return new ResultInfo(pkind, newPt, checkContext, checkMode); 553 } 554 555 protected ResultInfo dup(CheckContext newContext) { 556 return new ResultInfo(pkind, pt, newContext, checkMode); 557 } 558 559 protected ResultInfo dup(Type newPt, CheckContext newContext) { 560 return new ResultInfo(pkind, newPt, newContext, checkMode); 561 } 562 563 protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) { 564 return new ResultInfo(pkind, newPt, newContext, newMode); 565 } 566 567 protected ResultInfo dup(CheckMode newMode) { 568 return new ResultInfo(pkind, pt, checkContext, newMode); 569 } 570 571 @Override 572 public String toString() { 573 if (pt != null) { 574 return pt.toString(); 575 } else { 576 return ""; 577 } 578 } 579 } 580 581 class MethodAttrInfo extends ResultInfo { 582 public MethodAttrInfo() { 583 this(chk.basicHandler); 584 } 585 586 public MethodAttrInfo(CheckContext checkContext) { 587 super(KindSelector.VAL, Infer.anyPoly, checkContext); 588 } 589 590 @Override 591 protected boolean needsArgumentAttr(JCTree tree) { 592 return true; 593 } 594 595 protected ResultInfo dup(Type newPt) { 596 throw new IllegalStateException(); 597 } 598 599 protected ResultInfo dup(CheckContext newContext) { 600 return new MethodAttrInfo(newContext); 601 } 602 603 protected ResultInfo dup(Type newPt, CheckContext newContext) { 604 throw new IllegalStateException(); 605 } 606 607 protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) { 608 throw new IllegalStateException(); 609 } 610 611 protected ResultInfo dup(CheckMode newMode) { 612 throw new IllegalStateException(); 613 } 614 } 615 616 class RecoveryInfo extends ResultInfo { 617 618 public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) { 619 this(deferredAttrContext, Type.recoveryType); 620 } 621 622 public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext, Type pt) { 623 super(KindSelector.VAL, pt, new Check.NestedCheckContext(chk.basicHandler) { 624 @Override 625 public DeferredAttr.DeferredAttrContext deferredAttrContext() { 626 return deferredAttrContext; 627 } 628 @Override 629 public boolean compatible(Type found, Type req, Warner warn) { 630 return true; 631 } 632 @Override 633 public void report(DiagnosticPosition pos, JCDiagnostic details) { 634 boolean needsReport = pt == Type.recoveryType || 635 (details.getDiagnosticPosition() != null && 636 details.getDiagnosticPosition().getTree().hasTag(LAMBDA)); 637 if (needsReport) { 638 chk.basicHandler.report(pos, details); 639 } 640 } 641 }); 642 } 643 } 644 645 final ResultInfo statInfo; 646 final ResultInfo varAssignmentInfo; 647 final ResultInfo methodAttrInfo; 648 final ResultInfo unknownExprInfo; 649 final ResultInfo unknownTypeInfo; 650 final ResultInfo unknownTypeExprInfo; 651 final ResultInfo recoveryInfo; 652 final MethodType initBlockType; 653 654 Type pt() { 655 return resultInfo.pt; 656 } 657 658 KindSelector pkind() { 659 return resultInfo.pkind; 660 } 661 662 /* ************************************************************************ 663 * Visitor methods 664 *************************************************************************/ 665 666 /** Visitor argument: the current environment. 667 */ 668 Env<AttrContext> env; 669 670 /** Visitor argument: the currently expected attribution result. 671 */ 672 ResultInfo resultInfo; 673 674 /** Visitor result: the computed type. 675 */ 676 Type result; 677 678 MatchBindings matchBindings = MatchBindingsComputer.EMPTY; 679 680 /** Visitor method: attribute a tree, catching any completion failure 681 * exceptions. Return the tree's type. 682 * 683 * @param tree The tree to be visited. 684 * @param env The environment visitor argument. 685 * @param resultInfo The result info visitor argument. 686 */ 687 Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) { 688 Env<AttrContext> prevEnv = this.env; 689 ResultInfo prevResult = this.resultInfo; 690 try { 691 this.env = env; 692 this.resultInfo = resultInfo; 693 if (resultInfo.needsArgumentAttr(tree)) { 694 result = argumentAttr.attribArg(tree, env); 695 } else { 696 tree.accept(this); 697 } 698 matchBindings = matchBindingsComputer.finishBindings(tree, 699 matchBindings); 700 if (tree == breakTree && 701 resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { 702 breakTreeFound(copyEnv(env)); 703 } 704 return result; 705 } catch (CompletionFailure ex) { 706 tree.type = syms.errType; 707 return chk.completionError(tree.pos(), ex); 708 } finally { 709 this.env = prevEnv; 710 this.resultInfo = prevResult; 711 } 712 } 713 714 protected void breakTreeFound(Env<AttrContext> env) { 715 throw new BreakAttr(env); 716 } 717 718 Env<AttrContext> copyEnv(Env<AttrContext> env) { 719 Env<AttrContext> newEnv = 720 env.dup(env.tree, env.info.dup(copyScope(env.info.scope))); 721 if (newEnv.outer != null) { 722 newEnv.outer = copyEnv(newEnv.outer); 723 } 724 return newEnv; 725 } 726 727 WriteableScope copyScope(WriteableScope sc) { 728 WriteableScope newScope = WriteableScope.create(sc.owner); 729 List<Symbol> elemsList = List.nil(); 730 for (Symbol sym : sc.getSymbols()) { 731 elemsList = elemsList.prepend(sym); 732 } 733 for (Symbol s : elemsList) { 734 newScope.enter(s); 735 } 736 return newScope; 737 } 738 739 /** Derived visitor method: attribute an expression tree. 740 */ 741 public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) { 742 return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType)); 743 } 744 745 /** Derived visitor method: attribute an expression tree with 746 * no constraints on the computed type. 747 */ 748 public Type attribExpr(JCTree tree, Env<AttrContext> env) { 749 return attribTree(tree, env, unknownExprInfo); 750 } 751 752 /** Derived visitor method: attribute a type tree. 753 */ 754 public Type attribType(JCTree tree, Env<AttrContext> env) { 755 Type result = attribType(tree, env, Type.noType); 756 return result; 757 } 758 759 /** Derived visitor method: attribute a type tree. 760 */ 761 Type attribType(JCTree tree, Env<AttrContext> env, Type pt) { 762 Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt)); 763 return result; 764 } 765 766 /** Derived visitor method: attribute a statement or definition tree. 767 */ 768 public Type attribStat(JCTree tree, Env<AttrContext> env) { 769 Env<AttrContext> analyzeEnv = analyzer.copyEnvIfNeeded(tree, env); 770 Type result = attribTree(tree, env, statInfo); 771 analyzer.analyzeIfNeeded(tree, analyzeEnv); 772 attrRecover.doRecovery(); 773 return result; 774 } 775 776 /** Attribute a list of expressions, returning a list of types. 777 */ 778 List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) { 779 ListBuffer<Type> ts = new ListBuffer<>(); 780 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) 781 ts.append(attribExpr(l.head, env, pt)); 782 return ts.toList(); 783 } 784 785 /** Attribute a list of statements, returning nothing. 786 */ 787 <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) { 788 for (List<T> l = trees; l.nonEmpty(); l = l.tail) 789 attribStat(l.head, env); 790 } 791 792 /** Attribute the arguments in a method call, returning the method kind. 793 */ 794 KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) { 795 KindSelector kind = initialKind; 796 for (JCExpression arg : trees) { 797 Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, methodAttrInfo)); 798 if (argtype.hasTag(DEFERRED)) { 799 kind = KindSelector.of(KindSelector.POLY, kind); 800 } 801 argtypes.append(argtype); 802 } 803 return kind; 804 } 805 806 /** Attribute a type argument list, returning a list of types. 807 * Caller is responsible for calling checkRefTypes. 808 */ 809 List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) { 810 ListBuffer<Type> argtypes = new ListBuffer<>(); 811 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) 812 argtypes.append(attribType(l.head, env)); 813 return argtypes.toList(); 814 } 815 816 /** Attribute a type argument list, returning a list of types. 817 * Check that all the types are references. 818 */ 819 List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) { 820 List<Type> types = attribAnyTypes(trees, env); 821 return chk.checkRefTypes(trees, types); 822 } 823 824 /** 825 * Attribute type variables (of generic classes or methods). 826 * Compound types are attributed later in attribBounds. 827 * @param typarams the type variables to enter 828 * @param env the current environment 829 */ 830 void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env, boolean checkCyclic) { 831 for (JCTypeParameter tvar : typarams) { 832 TypeVar a = (TypeVar)tvar.type; 833 a.tsym.flags_field |= UNATTRIBUTED; 834 a.setUpperBound(Type.noType); 835 if (!tvar.bounds.isEmpty()) { 836 List<Type> bounds = List.of(attribType(tvar.bounds.head, env)); 837 for (JCExpression bound : tvar.bounds.tail) 838 bounds = bounds.prepend(attribType(bound, env)); 839 types.setBounds(a, bounds.reverse()); 840 } else { 841 // if no bounds are given, assume a single bound of 842 // java.lang.Object. 843 types.setBounds(a, List.of(syms.objectType)); 844 } 845 a.tsym.flags_field &= ~UNATTRIBUTED; 846 } 847 if (checkCyclic) { 848 for (JCTypeParameter tvar : typarams) { 849 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type); 850 } 851 } 852 } 853 854 /** 855 * Attribute the type references in a list of annotations. 856 */ 857 void attribAnnotationTypes(List<JCAnnotation> annotations, 858 Env<AttrContext> env) { 859 for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) { 860 JCAnnotation a = al.head; 861 attribType(a.annotationType, env); 862 } 863 } 864 865 /** 866 * Attribute a "lazy constant value". 867 * @param env The env for the const value 868 * @param variable The initializer for the const value 869 * @param type The expected type, or null 870 * @see VarSymbol#setLazyConstValue 871 */ 872 public Object attribLazyConstantValue(Env<AttrContext> env, 873 Env<AttrContext> enclosingEnv, 874 JCVariableDecl variable, 875 Type type) { 876 deferredLintHandler.push(variable); 877 final JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile); 878 try { 879 doQueueScanTreeAndTypeAnnotateForVarInit(variable, enclosingEnv); 880 Type itype = attribExpr(variable.init, env, type); 881 if (variable.isImplicitlyTyped()) { 882 //fixup local variable type 883 type = variable.type = variable.sym.type = chk.checkLocalVarType(variable, itype, variable.name); 884 } 885 if (itype.constValue() != null) { 886 return coerce(itype, type).constValue(); 887 } else { 888 return null; 889 } 890 } finally { 891 log.useSource(prevSource); 892 deferredLintHandler.pop(); 893 } 894 } 895 896 /** Attribute type reference in an `extends', `implements', or 'permits' clause. 897 * Supertypes of anonymous inner classes are usually already attributed. 898 * 899 * @param tree The tree making up the type reference. 900 * @param env The environment current at the reference. 901 * @param classExpected true if only a class is expected here. 902 * @param interfaceExpected true if only an interface is expected here. 903 */ 904 Type attribBase(JCTree tree, 905 Env<AttrContext> env, 906 boolean classExpected, 907 boolean interfaceExpected, 908 boolean checkExtensible) { 909 Type t = tree.type != null ? 910 tree.type : 911 attribType(tree, env); 912 try { 913 return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible); 914 } catch (CompletionFailure ex) { 915 chk.completionError(tree.pos(), ex); 916 return t; 917 } 918 } 919 Type checkBase(Type t, 920 JCTree tree, 921 Env<AttrContext> env, 922 boolean classExpected, 923 boolean interfaceExpected, 924 boolean checkExtensible) { 925 final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ? 926 (((JCTypeApply) tree).clazz).pos() : tree.pos(); 927 if (t.tsym.isAnonymous()) { 928 log.error(pos, Errors.CantInheritFromAnon); 929 return types.createErrorType(t); 930 } 931 if (t.isErroneous()) 932 return t; 933 if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) { 934 // check that type variable is already visible 935 if (t.getUpperBound() == null) { 936 log.error(pos, Errors.IllegalForwardRef); 937 return types.createErrorType(t); 938 } 939 } else { 940 t = chk.checkClassType(pos, t, checkExtensible); 941 } 942 if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) { 943 log.error(pos, Errors.IntfExpectedHere); 944 // return errType is necessary since otherwise there might 945 // be undetected cycles which cause attribution to loop 946 return types.createErrorType(t); 947 } else if (checkExtensible && 948 classExpected && 949 (t.tsym.flags() & INTERFACE) != 0) { 950 log.error(pos, Errors.NoIntfExpectedHere); 951 return types.createErrorType(t); 952 } 953 if (checkExtensible && 954 ((t.tsym.flags() & FINAL) != 0)) { 955 log.error(pos, 956 Errors.CantInheritFromFinal(t.tsym)); 957 } 958 chk.checkNonCyclic(pos, t); 959 return t; 960 } 961 962 Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) { 963 Assert.check((env.enclClass.sym.flags() & ENUM) != 0); 964 id.type = env.info.scope.owner.enclClass().type; 965 id.sym = env.info.scope.owner.enclClass(); 966 return id.type; 967 } 968 969 public void visitClassDef(JCClassDecl tree) { 970 Optional<ArgumentAttr.LocalCacheContext> localCacheContext = 971 Optional.ofNullable(env.info.attributionMode.isSpeculative ? 972 argumentAttr.withLocalCacheContext() : null); 973 boolean ctorProloguePrev = env.info.ctorPrologue; 974 try { 975 // Local and anonymous classes have not been entered yet, so we need to 976 // do it now. 977 if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) { 978 enter.classEnter(tree, env); 979 } else { 980 // If this class declaration is part of a class level annotation, 981 // as in @MyAnno(new Object() {}) class MyClass {}, enter it in 982 // order to simplify later steps and allow for sensible error 983 // messages. 984 if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree)) 985 enter.classEnter(tree, env); 986 } 987 988 ClassSymbol c = tree.sym; 989 if (c == null) { 990 // exit in case something drastic went wrong during enter. 991 result = null; 992 } else { 993 // make sure class has been completed: 994 c.complete(); 995 996 // If a class declaration appears in a constructor prologue, 997 // that means it's either a local class or an anonymous class. 998 // Either way, there is no immediately enclosing instance. 999 if (ctorProloguePrev) { 1000 c.flags_field |= NOOUTERTHIS; 1001 } 1002 attribClass(tree.pos(), c); 1003 result = tree.type = c.type; 1004 } 1005 } finally { 1006 localCacheContext.ifPresent(LocalCacheContext::leave); 1007 env.info.ctorPrologue = ctorProloguePrev; 1008 } 1009 } 1010 1011 public void visitMethodDef(JCMethodDecl tree) { 1012 MethodSymbol m = tree.sym; 1013 boolean isDefaultMethod = (m.flags() & DEFAULT) != 0; 1014 1015 Lint lint = env.info.lint.augment(m); 1016 Lint prevLint = chk.setLint(lint); 1017 boolean ctorProloguePrev = env.info.ctorPrologue; 1018 Assert.check(!env.info.ctorPrologue); 1019 MethodSymbol prevMethod = chk.setMethod(m); 1020 try { 1021 deferredLintHandler.flush(tree, lint); 1022 chk.checkDeprecatedAnnotation(tree.pos(), m); 1023 1024 1025 // Create a new environment with local scope 1026 // for attributing the method. 1027 Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env); 1028 localEnv.info.lint = lint; 1029 1030 attribStats(tree.typarams, localEnv); 1031 1032 // If we override any other methods, check that we do so properly. 1033 // JLS ??? 1034 if (m.isStatic()) { 1035 chk.checkHideClashes(tree.pos(), env.enclClass.type, m); 1036 } else { 1037 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m); 1038 } 1039 chk.checkOverride(env, tree, m); 1040 1041 if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) { 1042 log.error(tree, Errors.DefaultOverridesObjectMember(m.name, Kinds.kindName(m.location()), m.location())); 1043 } 1044 1045 // Enter all type parameters into the local method scope. 1046 for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail) 1047 localEnv.info.scope.enterIfAbsent(l.head.type.tsym); 1048 1049 ClassSymbol owner = env.enclClass.sym; 1050 if ((owner.flags() & ANNOTATION) != 0 && 1051 (tree.params.nonEmpty() || 1052 tree.recvparam != null)) 1053 log.error(tree.params.nonEmpty() ? 1054 tree.params.head.pos() : 1055 tree.recvparam.pos(), 1056 Errors.IntfAnnotationMembersCantHaveParams); 1057 1058 // Attribute all value parameters. 1059 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) { 1060 attribStat(l.head, localEnv); 1061 } 1062 1063 chk.checkVarargsMethodDecl(localEnv, tree); 1064 1065 // Check that type parameters are well-formed. 1066 chk.validate(tree.typarams, localEnv); 1067 1068 // Check that result type is well-formed. 1069 if (tree.restype != null && !tree.restype.type.hasTag(VOID)) 1070 chk.validate(tree.restype, localEnv); 1071 1072 // Check that receiver type is well-formed. 1073 if (tree.recvparam != null) { 1074 // Use a new environment to check the receiver parameter. 1075 // Otherwise I get "might not have been initialized" errors. 1076 // Is there a better way? 1077 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env); 1078 attribType(tree.recvparam, newEnv); 1079 chk.validate(tree.recvparam, newEnv); 1080 } 1081 1082 // Is this method a constructor? 1083 boolean isConstructor = TreeInfo.isConstructor(tree); 1084 1085 if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP) { 1086 // lets find if this method is an accessor 1087 Optional<? extends RecordComponent> recordComponent = env.enclClass.sym.getRecordComponents().stream() 1088 .filter(rc -> rc.accessor == tree.sym && (rc.accessor.flags_field & GENERATED_MEMBER) == 0).findFirst(); 1089 if (recordComponent.isPresent()) { 1090 // the method is a user defined accessor lets check that everything is fine 1091 if (!tree.sym.isPublic()) { 1092 log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.MethodMustBePublic)); 1093 } 1094 if (!types.isSameType(tree.sym.type.getReturnType(), recordComponent.get().type)) { 1095 log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, 1096 Fragments.AccessorReturnTypeDoesntMatch(tree.sym, recordComponent.get()))); 1097 } 1098 if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) { 1099 log.error(tree, 1100 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodCantThrowException)); 1101 } 1102 if (!tree.typarams.isEmpty()) { 1103 log.error(tree, 1104 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeGeneric)); 1105 } 1106 if (tree.sym.isStatic()) { 1107 log.error(tree, 1108 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeStatic)); 1109 } 1110 } 1111 1112 if (isConstructor) { 1113 // if this a constructor other than the canonical one 1114 if ((tree.sym.flags_field & RECORD) == 0) { 1115 if (!TreeInfo.hasConstructorCall(tree, names._this)) { 1116 log.error(tree, Errors.NonCanonicalConstructorInvokeAnotherConstructor(env.enclClass.sym)); 1117 } 1118 } else { 1119 // but if it is the canonical: 1120 1121 /* if user generated, then it shouldn't: 1122 * - have an accessibility stricter than that of the record type 1123 * - explicitly invoke any other constructor 1124 */ 1125 if ((tree.sym.flags_field & GENERATEDCONSTR) == 0) { 1126 if (Check.protection(m.flags()) > Check.protection(env.enclClass.sym.flags())) { 1127 log.error(tree, 1128 (env.enclClass.sym.flags() & AccessFlags) == 0 ? 1129 Errors.InvalidCanonicalConstructorInRecord( 1130 Fragments.Canonical, 1131 env.enclClass.sym.name, 1132 Fragments.CanonicalMustNotHaveStrongerAccess("package") 1133 ) : 1134 Errors.InvalidCanonicalConstructorInRecord( 1135 Fragments.Canonical, 1136 env.enclClass.sym.name, 1137 Fragments.CanonicalMustNotHaveStrongerAccess(asFlagSet(env.enclClass.sym.flags() & AccessFlags)) 1138 ) 1139 ); 1140 } 1141 1142 if (TreeInfo.hasAnyConstructorCall(tree)) { 1143 log.error(tree, Errors.InvalidCanonicalConstructorInRecord( 1144 Fragments.Canonical, env.enclClass.sym.name, 1145 Fragments.CanonicalMustNotContainExplicitConstructorInvocation)); 1146 } 1147 } 1148 1149 // also we want to check that no type variables have been defined 1150 if (!tree.typarams.isEmpty()) { 1151 log.error(tree, Errors.InvalidCanonicalConstructorInRecord( 1152 Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalMustNotDeclareTypeVariables)); 1153 } 1154 1155 /* and now we need to check that the constructor's arguments are exactly the same as those of the 1156 * record components 1157 */ 1158 List<? extends RecordComponent> recordComponents = env.enclClass.sym.getRecordComponents(); 1159 List<Type> recordFieldTypes = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.type); 1160 for (JCVariableDecl param: tree.params) { 1161 boolean paramIsVarArgs = (param.sym.flags_field & VARARGS) != 0; 1162 if (!types.isSameType(param.type, recordFieldTypes.head) || 1163 (recordComponents.head.isVarargs() != paramIsVarArgs)) { 1164 log.error(param, Errors.InvalidCanonicalConstructorInRecord( 1165 Fragments.Canonical, env.enclClass.sym.name, 1166 Fragments.TypeMustBeIdenticalToCorrespondingRecordComponentType)); 1167 } 1168 recordComponents = recordComponents.tail; 1169 recordFieldTypes = recordFieldTypes.tail; 1170 } 1171 } 1172 } 1173 } 1174 1175 // annotation method checks 1176 if ((owner.flags() & ANNOTATION) != 0) { 1177 // annotation method cannot have throws clause 1178 if (tree.thrown.nonEmpty()) { 1179 log.error(tree.thrown.head.pos(), 1180 Errors.ThrowsNotAllowedInIntfAnnotation); 1181 } 1182 // annotation method cannot declare type-parameters 1183 if (tree.typarams.nonEmpty()) { 1184 log.error(tree.typarams.head.pos(), 1185 Errors.IntfAnnotationMembersCantHaveTypeParams); 1186 } 1187 // validate annotation method's return type (could be an annotation type) 1188 chk.validateAnnotationType(tree.restype); 1189 // ensure that annotation method does not clash with members of Object/Annotation 1190 chk.validateAnnotationMethod(tree.pos(), m); 1191 } 1192 1193 for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail) 1194 chk.checkType(l.head.pos(), l.head.type, syms.throwableType); 1195 1196 if (tree.body == null) { 1197 // Empty bodies are only allowed for 1198 // abstract, native, or interface methods, or for methods 1199 // in a retrofit signature class. 1200 if (tree.defaultValue != null) { 1201 if ((owner.flags() & ANNOTATION) == 0) 1202 log.error(tree.pos(), 1203 Errors.DefaultAllowedInIntfAnnotationMember); 1204 } 1205 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0) 1206 log.error(tree.pos(), Errors.MissingMethBodyOrDeclAbstract); 1207 } else { 1208 if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) { 1209 if ((owner.flags() & INTERFACE) != 0) { 1210 log.error(tree.body.pos(), Errors.IntfMethCantHaveBody); 1211 } else { 1212 log.error(tree.pos(), Errors.AbstractMethCantHaveBody); 1213 } 1214 } else if ((tree.mods.flags & NATIVE) != 0) { 1215 log.error(tree.pos(), Errors.NativeMethCantHaveBody); 1216 } 1217 // Add an implicit super() call unless an explicit call to 1218 // super(...) or this(...) is given 1219 // or we are compiling class java.lang.Object. 1220 if (isConstructor && owner.type != syms.objectType) { 1221 if (!TreeInfo.hasAnyConstructorCall(tree)) { 1222 JCStatement supCall = make.at(tree.body.pos).Exec(make.Apply(List.nil(), 1223 make.Ident(names._super), make.Idents(List.nil()))); 1224 tree.body.stats = tree.body.stats.prepend(supCall); 1225 } else if ((env.enclClass.sym.flags() & ENUM) != 0 && 1226 (tree.mods.flags & GENERATEDCONSTR) == 0 && 1227 TreeInfo.hasConstructorCall(tree, names._super)) { 1228 // enum constructors are not allowed to call super 1229 // directly, so make sure there aren't any super calls 1230 // in enum constructors, except in the compiler 1231 // generated one. 1232 log.error(tree.body.stats.head.pos(), 1233 Errors.CallToSuperNotAllowedInEnumCtor(env.enclClass.sym)); 1234 } 1235 if (env.enclClass.sym.isRecord() && (tree.sym.flags_field & RECORD) != 0) { // we are seeing the canonical constructor 1236 List<Name> recordComponentNames = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.name); 1237 List<Name> initParamNames = tree.sym.params.map(p -> p.name); 1238 if (!initParamNames.equals(recordComponentNames)) { 1239 log.error(tree, Errors.InvalidCanonicalConstructorInRecord( 1240 Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalWithNameMismatch)); 1241 } 1242 if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) { 1243 log.error(tree, 1244 Errors.InvalidCanonicalConstructorInRecord( 1245 TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical, 1246 env.enclClass.sym.name, 1247 Fragments.ThrowsClauseNotAllowedForCanonicalConstructor( 1248 TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical))); 1249 } 1250 } 1251 } 1252 1253 // Attribute all type annotations in the body 1254 annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null); 1255 annotate.flush(); 1256 1257 // Start of constructor prologue 1258 localEnv.info.ctorPrologue = isConstructor; 1259 1260 // Attribute method body. 1261 attribStat(tree.body, localEnv); 1262 } 1263 1264 localEnv.info.scope.leave(); 1265 result = tree.type = m.type; 1266 } finally { 1267 chk.setLint(prevLint); 1268 chk.setMethod(prevMethod); 1269 env.info.ctorPrologue = ctorProloguePrev; 1270 } 1271 } 1272 1273 public void visitVarDef(JCVariableDecl tree) { 1274 // Local variables have not been entered yet, so we need to do it now: 1275 if (env.info.scope.owner.kind == MTH || env.info.scope.owner.kind == VAR) { 1276 if (tree.sym != null) { 1277 // parameters have already been entered 1278 env.info.scope.enter(tree.sym); 1279 } else { 1280 if (tree.isImplicitlyTyped() && (tree.getModifiers().flags & PARAMETER) == 0) { 1281 if (tree.init == null) { 1282 //cannot use 'var' without initializer 1283 log.error(tree, Errors.CantInferLocalVarType(tree.name, Fragments.LocalMissingInit)); 1284 tree.vartype = make.Erroneous(); 1285 } else { 1286 Fragment msg = canInferLocalVarType(tree); 1287 if (msg != null) { 1288 //cannot use 'var' with initializer which require an explicit target 1289 //(e.g. lambda, method reference, array initializer). 1290 log.error(tree, Errors.CantInferLocalVarType(tree.name, msg)); 1291 tree.vartype = make.Erroneous(); 1292 } 1293 } 1294 } 1295 try { 1296 annotate.blockAnnotations(); 1297 memberEnter.memberEnter(tree, env); 1298 } finally { 1299 annotate.unblockAnnotations(); 1300 } 1301 } 1302 } else { 1303 doQueueScanTreeAndTypeAnnotateForVarInit(tree, env); 1304 } 1305 1306 VarSymbol v = tree.sym; 1307 Lint lint = env.info.lint.augment(v); 1308 Lint prevLint = chk.setLint(lint); 1309 1310 // Check that the variable's declared type is well-formed. 1311 boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) && 1312 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT && 1313 (tree.sym.flags() & PARAMETER) != 0; 1314 chk.validate(tree.vartype, env, !isImplicitLambdaParameter && !tree.isImplicitlyTyped()); 1315 1316 try { 1317 v.getConstValue(); // ensure compile-time constant initializer is evaluated 1318 deferredLintHandler.flush(tree, lint); 1319 chk.checkDeprecatedAnnotation(tree.pos(), v); 1320 1321 if (tree.init != null) { 1322 if ((v.flags_field & FINAL) == 0 || 1323 !memberEnter.needsLazyConstValue(tree.init)) { 1324 // Not a compile-time constant 1325 // Attribute initializer in a new environment 1326 // with the declared variable as owner. 1327 // Check that initializer conforms to variable's declared type. 1328 Env<AttrContext> initEnv = memberEnter.initEnv(tree, env); 1329 initEnv.info.lint = lint; 1330 // In order to catch self-references, we set the variable's 1331 // declaration position to maximal possible value, effectively 1332 // marking the variable as undefined. 1333 initEnv.info.enclVar = v; 1334 attribExpr(tree.init, initEnv, v.type); 1335 if (tree.isImplicitlyTyped()) { 1336 //fixup local variable type 1337 v.type = chk.checkLocalVarType(tree, tree.init.type, tree.name); 1338 } 1339 } 1340 if (tree.isImplicitlyTyped()) { 1341 setSyntheticVariableType(tree, v.type); 1342 } 1343 } 1344 result = tree.type = v.type; 1345 if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP && !v.isStatic()) { 1346 if (isNonArgsMethodInObject(v.name)) { 1347 log.error(tree, Errors.IllegalRecordComponentName(v)); 1348 } 1349 } 1350 } 1351 finally { 1352 chk.setLint(prevLint); 1353 } 1354 } 1355 1356 private void doQueueScanTreeAndTypeAnnotateForVarInit(JCVariableDecl tree, Env<AttrContext> env) { 1357 if (tree.init != null && 1358 (tree.mods.flags & Flags.FIELD_INIT_TYPE_ANNOTATIONS_QUEUED) == 0 && 1359 env.info.scope.owner.kind != MTH && env.info.scope.owner.kind != VAR) { 1360 tree.mods.flags |= Flags.FIELD_INIT_TYPE_ANNOTATIONS_QUEUED; 1361 // Field initializer expression need to be entered. 1362 annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree); 1363 annotate.flush(); 1364 } 1365 } 1366 1367 private boolean isNonArgsMethodInObject(Name name) { 1368 for (Symbol s : syms.objectType.tsym.members().getSymbolsByName(name, s -> s.kind == MTH)) { 1369 if (s.type.getParameterTypes().isEmpty()) { 1370 return true; 1371 } 1372 } 1373 return false; 1374 } 1375 1376 Fragment canInferLocalVarType(JCVariableDecl tree) { 1377 LocalInitScanner lis = new LocalInitScanner(); 1378 lis.scan(tree.init); 1379 return lis.badInferenceMsg; 1380 } 1381 1382 static class LocalInitScanner extends TreeScanner { 1383 Fragment badInferenceMsg = null; 1384 boolean needsTarget = true; 1385 1386 @Override 1387 public void visitNewArray(JCNewArray tree) { 1388 if (tree.elemtype == null && needsTarget) { 1389 badInferenceMsg = Fragments.LocalArrayMissingTarget; 1390 } 1391 } 1392 1393 @Override 1394 public void visitLambda(JCLambda tree) { 1395 if (needsTarget) { 1396 badInferenceMsg = Fragments.LocalLambdaMissingTarget; 1397 } 1398 } 1399 1400 @Override 1401 public void visitTypeCast(JCTypeCast tree) { 1402 boolean prevNeedsTarget = needsTarget; 1403 try { 1404 needsTarget = false; 1405 super.visitTypeCast(tree); 1406 } finally { 1407 needsTarget = prevNeedsTarget; 1408 } 1409 } 1410 1411 @Override 1412 public void visitReference(JCMemberReference tree) { 1413 if (needsTarget) { 1414 badInferenceMsg = Fragments.LocalMrefMissingTarget; 1415 } 1416 } 1417 1418 @Override 1419 public void visitNewClass(JCNewClass tree) { 1420 boolean prevNeedsTarget = needsTarget; 1421 try { 1422 needsTarget = false; 1423 super.visitNewClass(tree); 1424 } finally { 1425 needsTarget = prevNeedsTarget; 1426 } 1427 } 1428 1429 @Override 1430 public void visitApply(JCMethodInvocation tree) { 1431 boolean prevNeedsTarget = needsTarget; 1432 try { 1433 needsTarget = false; 1434 super.visitApply(tree); 1435 } finally { 1436 needsTarget = prevNeedsTarget; 1437 } 1438 } 1439 } 1440 1441 public void visitSkip(JCSkip tree) { 1442 result = null; 1443 } 1444 1445 public void visitBlock(JCBlock tree) { 1446 if (env.info.scope.owner.kind == TYP || env.info.scope.owner.kind == ERR) { 1447 // Block is a static or instance initializer; 1448 // let the owner of the environment be a freshly 1449 // created BLOCK-method. 1450 Symbol fakeOwner = 1451 new MethodSymbol(tree.flags | BLOCK | 1452 env.info.scope.owner.flags() & STRICTFP, names.empty, initBlockType, 1453 env.info.scope.owner); 1454 final Env<AttrContext> localEnv = 1455 env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner))); 1456 1457 if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++; 1458 // Attribute all type annotations in the block 1459 annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null); 1460 annotate.flush(); 1461 attribStats(tree.stats, localEnv); 1462 1463 { 1464 // Store init and clinit type annotations with the ClassSymbol 1465 // to allow output in Gen.normalizeDefs. 1466 ClassSymbol cs = (ClassSymbol)env.info.scope.owner; 1467 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes(); 1468 if ((tree.flags & STATIC) != 0) { 1469 cs.appendClassInitTypeAttributes(tas); 1470 } else { 1471 cs.appendInitTypeAttributes(tas); 1472 } 1473 } 1474 } else { 1475 // Create a new local environment with a local scope. 1476 Env<AttrContext> localEnv = 1477 env.dup(tree, env.info.dup(env.info.scope.dup())); 1478 try { 1479 attribStats(tree.stats, localEnv); 1480 } finally { 1481 localEnv.info.scope.leave(); 1482 } 1483 } 1484 result = null; 1485 } 1486 1487 public void visitDoLoop(JCDoWhileLoop tree) { 1488 attribStat(tree.body, env.dup(tree)); 1489 attribExpr(tree.cond, env, syms.booleanType); 1490 handleLoopConditionBindings(matchBindings, tree, tree.body); 1491 result = null; 1492 } 1493 1494 public void visitWhileLoop(JCWhileLoop tree) { 1495 attribExpr(tree.cond, env, syms.booleanType); 1496 MatchBindings condBindings = matchBindings; 1497 // include condition's bindings when true in the body: 1498 Env<AttrContext> whileEnv = bindingEnv(env, condBindings.bindingsWhenTrue); 1499 try { 1500 attribStat(tree.body, whileEnv.dup(tree)); 1501 } finally { 1502 whileEnv.info.scope.leave(); 1503 } 1504 handleLoopConditionBindings(condBindings, tree, tree.body); 1505 result = null; 1506 } 1507 1508 public void visitForLoop(JCForLoop tree) { 1509 Env<AttrContext> loopEnv = 1510 env.dup(env.tree, env.info.dup(env.info.scope.dup())); 1511 MatchBindings condBindings = MatchBindingsComputer.EMPTY; 1512 try { 1513 attribStats(tree.init, loopEnv); 1514 if (tree.cond != null) { 1515 attribExpr(tree.cond, loopEnv, syms.booleanType); 1516 // include condition's bindings when true in the body and step: 1517 condBindings = matchBindings; 1518 } 1519 Env<AttrContext> bodyEnv = bindingEnv(loopEnv, condBindings.bindingsWhenTrue); 1520 try { 1521 bodyEnv.tree = tree; // before, we were not in loop! 1522 attribStats(tree.step, bodyEnv); 1523 attribStat(tree.body, bodyEnv); 1524 } finally { 1525 bodyEnv.info.scope.leave(); 1526 } 1527 result = null; 1528 } 1529 finally { 1530 loopEnv.info.scope.leave(); 1531 } 1532 handleLoopConditionBindings(condBindings, tree, tree.body); 1533 } 1534 1535 /** 1536 * Include condition's bindings when false after the loop, if cannot get out of the loop 1537 */ 1538 private void handleLoopConditionBindings(MatchBindings condBindings, 1539 JCStatement loop, 1540 JCStatement loopBody) { 1541 if (condBindings.bindingsWhenFalse.nonEmpty() && 1542 !breaksTo(env, loop, loopBody)) { 1543 addBindings2Scope(loop, condBindings.bindingsWhenFalse); 1544 } 1545 } 1546 1547 private boolean breaksTo(Env<AttrContext> env, JCTree loop, JCTree body) { 1548 preFlow(body); 1549 return flow.breaksToTree(env, loop, body, make); 1550 } 1551 1552 /** 1553 * Add given bindings to the current scope, unless there's a break to 1554 * an immediately enclosing labeled statement. 1555 */ 1556 private void addBindings2Scope(JCStatement introducingStatement, 1557 List<BindingSymbol> bindings) { 1558 if (bindings.isEmpty()) { 1559 return ; 1560 } 1561 1562 var searchEnv = env; 1563 while (searchEnv.tree instanceof JCLabeledStatement labeled && 1564 labeled.body == introducingStatement) { 1565 if (breaksTo(env, labeled, labeled.body)) { 1566 //breaking to an immediately enclosing labeled statement 1567 return ; 1568 } 1569 searchEnv = searchEnv.next; 1570 introducingStatement = labeled; 1571 } 1572 1573 //include condition's body when false after the while, if cannot get out of the loop 1574 bindings.forEach(env.info.scope::enter); 1575 bindings.forEach(BindingSymbol::preserveBinding); 1576 } 1577 1578 public void visitForeachLoop(JCEnhancedForLoop tree) { 1579 Env<AttrContext> loopEnv = 1580 env.dup(env.tree, env.info.dup(env.info.scope.dup())); 1581 try { 1582 //the Formal Parameter of a for-each loop is not in the scope when 1583 //attributing the for-each expression; we mimic this by attributing 1584 //the for-each expression first (against original scope). 1585 Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv)); 1586 chk.checkNonVoid(tree.pos(), exprType); 1587 Type elemtype = types.elemtype(exprType); // perhaps expr is an array? 1588 if (elemtype == null) { 1589 // or perhaps expr implements Iterable<T>? 1590 Type base = types.asSuper(exprType, syms.iterableType.tsym); 1591 if (base == null) { 1592 log.error(tree.expr.pos(), 1593 Errors.ForeachNotApplicableToType(exprType, 1594 Fragments.TypeReqArrayOrIterable)); 1595 elemtype = types.createErrorType(exprType); 1596 } else { 1597 List<Type> iterableParams = base.allparams(); 1598 elemtype = iterableParams.isEmpty() 1599 ? syms.objectType 1600 : types.wildUpperBound(iterableParams.head); 1601 1602 // Check the return type of the method iterator(). 1603 // This is the bare minimum we need to verify to make sure code generation doesn't crash. 1604 Symbol iterSymbol = rs.resolveInternalMethod(tree.pos(), 1605 loopEnv, types.skipTypeVars(exprType, false), names.iterator, List.nil(), List.nil()); 1606 if (types.asSuper(iterSymbol.type.getReturnType(), syms.iteratorType.tsym) == null) { 1607 log.error(tree.pos(), 1608 Errors.ForeachNotApplicableToType(exprType, Fragments.TypeReqArrayOrIterable)); 1609 } 1610 } 1611 } 1612 if (tree.var.isImplicitlyTyped()) { 1613 Type inferredType = chk.checkLocalVarType(tree.var, elemtype, tree.var.name); 1614 setSyntheticVariableType(tree.var, inferredType); 1615 } 1616 attribStat(tree.var, loopEnv); 1617 chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type); 1618 loopEnv.tree = tree; // before, we were not in loop! 1619 attribStat(tree.body, loopEnv); 1620 result = null; 1621 } 1622 finally { 1623 loopEnv.info.scope.leave(); 1624 } 1625 } 1626 1627 public void visitLabelled(JCLabeledStatement tree) { 1628 // Check that label is not used in an enclosing statement 1629 Env<AttrContext> env1 = env; 1630 while (env1 != null && !env1.tree.hasTag(CLASSDEF)) { 1631 if (env1.tree.hasTag(LABELLED) && 1632 ((JCLabeledStatement) env1.tree).label == tree.label) { 1633 log.error(tree.pos(), 1634 Errors.LabelAlreadyInUse(tree.label)); 1635 break; 1636 } 1637 env1 = env1.next; 1638 } 1639 1640 attribStat(tree.body, env.dup(tree)); 1641 result = null; 1642 } 1643 1644 public void visitSwitch(JCSwitch tree) { 1645 handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> { 1646 attribStats(c.stats, caseEnv); 1647 }); 1648 result = null; 1649 } 1650 1651 public void visitSwitchExpression(JCSwitchExpression tree) { 1652 boolean wrongContext = false; 1653 1654 tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly) ? 1655 PolyKind.STANDALONE : PolyKind.POLY; 1656 1657 if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) { 1658 //this means we are returning a poly conditional from void-compatible lambda expression 1659 resultInfo.checkContext.report(tree, diags.fragment(Fragments.SwitchExpressionTargetCantBeVoid)); 1660 resultInfo = recoveryInfo; 1661 wrongContext = true; 1662 } 1663 1664 ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ? 1665 unknownExprInfo : 1666 resultInfo.dup(switchExpressionContext(resultInfo.checkContext)); 1667 1668 ListBuffer<DiagnosticPosition> caseTypePositions = new ListBuffer<>(); 1669 ListBuffer<Type> caseTypes = new ListBuffer<>(); 1670 1671 handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> { 1672 caseEnv.info.yieldResult = condInfo; 1673 attribStats(c.stats, caseEnv); 1674 new TreeScanner() { 1675 @Override 1676 public void visitYield(JCYield brk) { 1677 if (brk.target == tree) { 1678 caseTypePositions.append(brk.value != null ? brk.value.pos() : brk.pos()); 1679 caseTypes.append(brk.value != null ? brk.value.type : syms.errType); 1680 } 1681 super.visitYield(brk); 1682 } 1683 1684 @Override public void visitClassDef(JCClassDecl tree) {} 1685 @Override public void visitLambda(JCLambda tree) {} 1686 }.scan(c.stats); 1687 }); 1688 1689 if (tree.cases.isEmpty()) { 1690 log.error(tree.pos(), 1691 Errors.SwitchExpressionEmpty); 1692 } else if (caseTypes.isEmpty()) { 1693 log.error(tree.pos(), 1694 Errors.SwitchExpressionNoResultExpressions); 1695 } 1696 1697 Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(caseTypePositions.toList(), caseTypes.toList()) : pt(); 1698 1699 result = tree.type = wrongContext? types.createErrorType(pt()) : check(tree, owntype, KindSelector.VAL, resultInfo); 1700 } 1701 //where: 1702 CheckContext switchExpressionContext(CheckContext checkContext) { 1703 return new Check.NestedCheckContext(checkContext) { 1704 //this will use enclosing check context to check compatibility of 1705 //subexpression against target type; if we are in a method check context, 1706 //depending on whether boxing is allowed, we could have incompatibilities 1707 @Override 1708 public void report(DiagnosticPosition pos, JCDiagnostic details) { 1709 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInSwitchExpression(details))); 1710 } 1711 }; 1712 } 1713 1714 private void handleSwitch(JCTree switchTree, 1715 JCExpression selector, 1716 List<JCCase> cases, 1717 BiConsumer<JCCase, Env<AttrContext>> attribCase) { 1718 Type seltype = attribExpr(selector, env); 1719 1720 Env<AttrContext> switchEnv = 1721 env.dup(switchTree, env.info.dup(env.info.scope.dup())); 1722 1723 try { 1724 boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0; 1725 boolean stringSwitch = types.isSameType(seltype, syms.stringType); 1726 boolean booleanSwitch = types.isSameType(types.unboxedTypeOrType(seltype), syms.booleanType); 1727 boolean errorEnumSwitch = TreeInfo.isErrorEnumSwitch(selector, cases); 1728 boolean intSwitch = types.isAssignable(seltype, syms.intType); 1729 boolean patternSwitch; 1730 if (seltype.isPrimitive() && !intSwitch) { 1731 preview.checkSourceLevel(selector.pos(), Feature.PRIMITIVE_PATTERNS); 1732 patternSwitch = true; 1733 } 1734 if (!enumSwitch && !stringSwitch && !errorEnumSwitch && 1735 !intSwitch) { 1736 preview.checkSourceLevel(selector.pos(), Feature.PATTERN_SWITCH); 1737 patternSwitch = true; 1738 } else { 1739 patternSwitch = cases.stream() 1740 .flatMap(c -> c.labels.stream()) 1741 .anyMatch(l -> l.hasTag(PATTERNCASELABEL) || 1742 TreeInfo.isNullCaseLabel(l)); 1743 } 1744 1745 // Attribute all cases and 1746 // check that there are no duplicate case labels or default clauses. 1747 Set<Object> constants = new HashSet<>(); // The set of case constants. 1748 boolean hasDefault = false; // Is there a default label? 1749 boolean hasUnconditionalPattern = false; // Is there a unconditional pattern? 1750 boolean lastPatternErroneous = false; // Has the last pattern erroneous type? 1751 boolean hasNullPattern = false; // Is there a null pattern? 1752 CaseTree.CaseKind caseKind = null; 1753 boolean wasError = false; 1754 JCCaseLabel unconditionalCaseLabel = null; 1755 for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) { 1756 JCCase c = l.head; 1757 if (caseKind == null) { 1758 caseKind = c.caseKind; 1759 } else if (caseKind != c.caseKind && !wasError) { 1760 log.error(c.pos(), 1761 Errors.SwitchMixingCaseTypes); 1762 wasError = true; 1763 } 1764 MatchBindings currentBindings = null; 1765 MatchBindings guardBindings = null; 1766 for (List<JCCaseLabel> labels = c.labels; labels.nonEmpty(); labels = labels.tail) { 1767 JCCaseLabel label = labels.head; 1768 if (label instanceof JCConstantCaseLabel constLabel) { 1769 JCExpression expr = constLabel.expr; 1770 if (TreeInfo.isNull(expr)) { 1771 preview.checkSourceLevel(expr.pos(), Feature.CASE_NULL); 1772 if (hasNullPattern) { 1773 log.error(label.pos(), Errors.DuplicateCaseLabel); 1774 } 1775 hasNullPattern = true; 1776 attribExpr(expr, switchEnv, seltype); 1777 matchBindings = new MatchBindings(matchBindings.bindingsWhenTrue, matchBindings.bindingsWhenFalse, true); 1778 } else if (enumSwitch) { 1779 Symbol sym = enumConstant(expr, seltype); 1780 if (sym == null) { 1781 if (allowPatternSwitch) { 1782 attribTree(expr, switchEnv, caseLabelResultInfo(seltype)); 1783 Symbol enumSym = TreeInfo.symbol(expr); 1784 if (enumSym == null || !enumSym.isEnum() || enumSym.kind != VAR) { 1785 log.error(expr.pos(), Errors.EnumLabelMustBeEnumConstant); 1786 } else if (!constants.add(enumSym)) { 1787 log.error(label.pos(), Errors.DuplicateCaseLabel); 1788 } 1789 } else { 1790 log.error(expr.pos(), Errors.EnumLabelMustBeUnqualifiedEnum); 1791 } 1792 } else if (!constants.add(sym)) { 1793 log.error(label.pos(), Errors.DuplicateCaseLabel); 1794 } 1795 } else if (errorEnumSwitch) { 1796 //error recovery: the selector is erroneous, and all the case labels 1797 //are identifiers. This could be an enum switch - don't report resolve 1798 //error for the case label: 1799 var prevResolveHelper = rs.basicLogResolveHelper; 1800 try { 1801 rs.basicLogResolveHelper = rs.silentLogResolveHelper; 1802 attribExpr(expr, switchEnv, seltype); 1803 } finally { 1804 rs.basicLogResolveHelper = prevResolveHelper; 1805 } 1806 } else { 1807 Type pattype = attribTree(expr, switchEnv, caseLabelResultInfo(seltype)); 1808 if (!pattype.hasTag(ERROR)) { 1809 if (pattype.constValue() == null) { 1810 Symbol s = TreeInfo.symbol(expr); 1811 if (s != null && s.kind == TYP) { 1812 log.error(expr.pos(), 1813 Errors.PatternExpected); 1814 } else if (s == null || !s.isEnum()) { 1815 log.error(expr.pos(), 1816 (stringSwitch ? Errors.StringConstReq 1817 : intSwitch ? Errors.ConstExprReq 1818 : Errors.PatternOrEnumReq)); 1819 } else if (!constants.add(s)) { 1820 log.error(label.pos(), Errors.DuplicateCaseLabel); 1821 } 1822 } 1823 else { 1824 if (!stringSwitch && !intSwitch && 1825 !((pattype.getTag().isInSuperClassesOf(LONG) || pattype.getTag().equals(BOOLEAN)) && 1826 types.isSameType(types.unboxedTypeOrType(seltype), pattype))) { 1827 log.error(label.pos(), Errors.ConstantLabelNotCompatible(pattype, seltype)); 1828 } else if (!constants.add(pattype.constValue())) { 1829 log.error(c.pos(), Errors.DuplicateCaseLabel); 1830 } 1831 } 1832 } 1833 } 1834 } else if (label instanceof JCDefaultCaseLabel def) { 1835 if (hasDefault) { 1836 log.error(label.pos(), Errors.DuplicateDefaultLabel); 1837 } else if (hasUnconditionalPattern) { 1838 log.error(label.pos(), Errors.UnconditionalPatternAndDefault); 1839 } else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) { 1840 log.error(label.pos(), Errors.DefaultAndBothBooleanValues); 1841 } 1842 hasDefault = true; 1843 matchBindings = MatchBindingsComputer.EMPTY; 1844 } else if (label instanceof JCPatternCaseLabel patternlabel) { 1845 //pattern 1846 JCPattern pat = patternlabel.pat; 1847 attribExpr(pat, switchEnv, seltype); 1848 Type primaryType = TreeInfo.primaryPatternType(pat); 1849 1850 if (primaryType.isPrimitive()) { 1851 preview.checkSourceLevel(pat.pos(), Feature.PRIMITIVE_PATTERNS); 1852 } else if (!primaryType.hasTag(TYPEVAR)) { 1853 primaryType = chk.checkClassOrArrayType(pat.pos(), primaryType); 1854 } 1855 checkCastablePattern(pat.pos(), seltype, primaryType); 1856 Type patternType = types.erasure(primaryType); 1857 JCExpression guard = c.guard; 1858 if (guardBindings == null && guard != null) { 1859 MatchBindings afterPattern = matchBindings; 1860 Env<AttrContext> bodyEnv = bindingEnv(switchEnv, matchBindings.bindingsWhenTrue); 1861 try { 1862 attribExpr(guard, bodyEnv, syms.booleanType); 1863 } finally { 1864 bodyEnv.info.scope.leave(); 1865 } 1866 1867 guardBindings = matchBindings; 1868 matchBindings = afterPattern; 1869 1870 if (TreeInfo.isBooleanWithValue(guard, 0)) { 1871 log.error(guard.pos(), Errors.GuardHasConstantExpressionFalse); 1872 } 1873 } 1874 boolean unguarded = TreeInfo.unguardedCase(c) && !pat.hasTag(RECORDPATTERN); 1875 boolean unconditional = 1876 unguarded && 1877 !patternType.isErroneous() && 1878 types.isUnconditionallyExact(seltype, patternType); 1879 if (unconditional) { 1880 if (hasUnconditionalPattern) { 1881 log.error(pat.pos(), Errors.DuplicateUnconditionalPattern); 1882 } else if (hasDefault) { 1883 log.error(pat.pos(), Errors.UnconditionalPatternAndDefault); 1884 } else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) { 1885 log.error(pat.pos(), Errors.UnconditionalPatternAndBothBooleanValues); 1886 } 1887 hasUnconditionalPattern = true; 1888 unconditionalCaseLabel = label; 1889 } 1890 lastPatternErroneous = patternType.isErroneous(); 1891 } else { 1892 Assert.error(); 1893 } 1894 currentBindings = matchBindingsComputer.switchCase(label, currentBindings, matchBindings); 1895 } 1896 1897 if (guardBindings != null) { 1898 currentBindings = matchBindingsComputer.caseGuard(c, currentBindings, guardBindings); 1899 } 1900 1901 Env<AttrContext> caseEnv = 1902 bindingEnv(switchEnv, c, currentBindings.bindingsWhenTrue); 1903 try { 1904 attribCase.accept(c, caseEnv); 1905 } finally { 1906 caseEnv.info.scope.leave(); 1907 } 1908 addVars(c.stats, switchEnv.info.scope); 1909 1910 preFlow(c); 1911 c.completesNormally = flow.aliveAfter(caseEnv, c, make); 1912 } 1913 if (patternSwitch) { 1914 chk.checkSwitchCaseStructure(cases); 1915 chk.checkSwitchCaseLabelDominated(unconditionalCaseLabel, cases); 1916 } 1917 if (switchTree.hasTag(SWITCH)) { 1918 ((JCSwitch) switchTree).hasUnconditionalPattern = 1919 hasDefault || hasUnconditionalPattern || lastPatternErroneous; 1920 ((JCSwitch) switchTree).patternSwitch = patternSwitch; 1921 } else if (switchTree.hasTag(SWITCH_EXPRESSION)) { 1922 ((JCSwitchExpression) switchTree).hasUnconditionalPattern = 1923 hasDefault || hasUnconditionalPattern || lastPatternErroneous; 1924 ((JCSwitchExpression) switchTree).patternSwitch = patternSwitch; 1925 } else { 1926 Assert.error(switchTree.getTag().name()); 1927 } 1928 } finally { 1929 switchEnv.info.scope.leave(); 1930 } 1931 } 1932 // where 1933 private ResultInfo caseLabelResultInfo(Type seltype) { 1934 return new ResultInfo(KindSelector.VAL_TYP, 1935 !seltype.hasTag(ERROR) ? seltype 1936 : Type.noType); 1937 } 1938 /** Add any variables defined in stats to the switch scope. */ 1939 private static void addVars(List<JCStatement> stats, WriteableScope switchScope) { 1940 for (;stats.nonEmpty(); stats = stats.tail) { 1941 JCTree stat = stats.head; 1942 if (stat.hasTag(VARDEF)) 1943 switchScope.enter(((JCVariableDecl) stat).sym); 1944 } 1945 } 1946 // where 1947 /** Return the selected enumeration constant symbol, or null. */ 1948 private Symbol enumConstant(JCTree tree, Type enumType) { 1949 if (tree.hasTag(IDENT)) { 1950 JCIdent ident = (JCIdent)tree; 1951 Name name = ident.name; 1952 for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) { 1953 if (sym.kind == VAR) { 1954 Symbol s = ident.sym = sym; 1955 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated 1956 ident.type = s.type; 1957 return ((s.flags_field & Flags.ENUM) == 0) 1958 ? null : s; 1959 } 1960 } 1961 } 1962 return null; 1963 } 1964 1965 public void visitSynchronized(JCSynchronized tree) { 1966 chk.checkRefType(tree.pos(), attribExpr(tree.lock, env)); 1967 if (isValueBased(tree.lock.type)) { 1968 env.info.lint.logIfEnabled(tree.pos(), LintWarnings.AttemptToSynchronizeOnInstanceOfValueBasedClass); 1969 } 1970 attribStat(tree.body, env); 1971 result = null; 1972 } 1973 // where 1974 private boolean isValueBased(Type t) { 1975 return t != null && t.tsym != null && (t.tsym.flags() & VALUE_BASED) != 0; 1976 } 1977 1978 1979 public void visitTry(JCTry tree) { 1980 // Create a new local environment with a local 1981 Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup())); 1982 try { 1983 boolean isTryWithResource = tree.resources.nonEmpty(); 1984 // Create a nested environment for attributing the try block if needed 1985 Env<AttrContext> tryEnv = isTryWithResource ? 1986 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) : 1987 localEnv; 1988 try { 1989 // Attribute resource declarations 1990 for (JCTree resource : tree.resources) { 1991 CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) { 1992 @Override 1993 public void report(DiagnosticPosition pos, JCDiagnostic details) { 1994 chk.basicHandler.report(pos, diags.fragment(Fragments.TryNotApplicableToType(details))); 1995 } 1996 }; 1997 ResultInfo twrResult = 1998 new ResultInfo(KindSelector.VAR, 1999 syms.autoCloseableType, 2000 twrContext); 2001 if (resource.hasTag(VARDEF)) { 2002 attribStat(resource, tryEnv); 2003 twrResult.check(resource, resource.type); 2004 2005 //check that resource type cannot throw InterruptedException 2006 checkAutoCloseable(resource.pos(), localEnv, resource.type); 2007 2008 VarSymbol var = ((JCVariableDecl) resource).sym; 2009 2010 var.flags_field |= Flags.FINAL; 2011 var.setData(ElementKind.RESOURCE_VARIABLE); 2012 } else { 2013 attribTree(resource, tryEnv, twrResult); 2014 } 2015 } 2016 // Attribute body 2017 attribStat(tree.body, tryEnv); 2018 } finally { 2019 if (isTryWithResource) 2020 tryEnv.info.scope.leave(); 2021 } 2022 2023 // Attribute catch clauses 2024 for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) { 2025 JCCatch c = l.head; 2026 Env<AttrContext> catchEnv = 2027 localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup())); 2028 try { 2029 Type ctype = attribStat(c.param, catchEnv); 2030 if (TreeInfo.isMultiCatch(c)) { 2031 //multi-catch parameter is implicitly marked as final 2032 c.param.sym.flags_field |= FINAL | UNION; 2033 } 2034 if (c.param.sym.kind == VAR) { 2035 c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER); 2036 } 2037 chk.checkType(c.param.vartype.pos(), 2038 chk.checkClassType(c.param.vartype.pos(), ctype), 2039 syms.throwableType); 2040 attribStat(c.body, catchEnv); 2041 } finally { 2042 catchEnv.info.scope.leave(); 2043 } 2044 } 2045 2046 // Attribute finalizer 2047 if (tree.finalizer != null) attribStat(tree.finalizer, localEnv); 2048 result = null; 2049 } 2050 finally { 2051 localEnv.info.scope.leave(); 2052 } 2053 } 2054 2055 void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) { 2056 if (!resource.isErroneous() && 2057 types.asSuper(resource, syms.autoCloseableType.tsym) != null && 2058 !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself 2059 Symbol close = syms.noSymbol; 2060 Log.DiagnosticHandler discardHandler = log.new DiscardDiagnosticHandler(); 2061 try { 2062 close = rs.resolveQualifiedMethod(pos, 2063 env, 2064 types.skipTypeVars(resource, false), 2065 names.close, 2066 List.nil(), 2067 List.nil()); 2068 } 2069 finally { 2070 log.popDiagnosticHandler(discardHandler); 2071 } 2072 if (close.kind == MTH && 2073 close.overrides(syms.autoCloseableClose, resource.tsym, types, true) && 2074 chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes())) { 2075 env.info.lint.logIfEnabled(pos, LintWarnings.TryResourceThrowsInterruptedExc(resource)); 2076 } 2077 } 2078 } 2079 2080 public void visitConditional(JCConditional tree) { 2081 Type condtype = attribExpr(tree.cond, env, syms.booleanType); 2082 MatchBindings condBindings = matchBindings; 2083 2084 tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly || 2085 isBooleanOrNumeric(env, tree)) ? 2086 PolyKind.STANDALONE : PolyKind.POLY; 2087 2088 if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) { 2089 //this means we are returning a poly conditional from void-compatible lambda expression 2090 resultInfo.checkContext.report(tree, diags.fragment(Fragments.ConditionalTargetCantBeVoid)); 2091 result = tree.type = types.createErrorType(resultInfo.pt); 2092 return; 2093 } 2094 2095 ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ? 2096 unknownExprInfo : 2097 resultInfo.dup(conditionalContext(resultInfo.checkContext)); 2098 2099 2100 // x ? y : z 2101 // include x's bindings when true in y 2102 // include x's bindings when false in z 2103 2104 Type truetype; 2105 Env<AttrContext> trueEnv = bindingEnv(env, condBindings.bindingsWhenTrue); 2106 try { 2107 truetype = attribTree(tree.truepart, trueEnv, condInfo); 2108 } finally { 2109 trueEnv.info.scope.leave(); 2110 } 2111 2112 MatchBindings trueBindings = matchBindings; 2113 2114 Type falsetype; 2115 Env<AttrContext> falseEnv = bindingEnv(env, condBindings.bindingsWhenFalse); 2116 try { 2117 falsetype = attribTree(tree.falsepart, falseEnv, condInfo); 2118 } finally { 2119 falseEnv.info.scope.leave(); 2120 } 2121 2122 MatchBindings falseBindings = matchBindings; 2123 2124 Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? 2125 condType(List.of(tree.truepart.pos(), tree.falsepart.pos()), 2126 List.of(truetype, falsetype)) : pt(); 2127 if (condtype.constValue() != null && 2128 truetype.constValue() != null && 2129 falsetype.constValue() != null && 2130 !owntype.hasTag(NONE)) { 2131 //constant folding 2132 owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype); 2133 } 2134 result = check(tree, owntype, KindSelector.VAL, resultInfo); 2135 matchBindings = matchBindingsComputer.conditional(tree, condBindings, trueBindings, falseBindings); 2136 } 2137 //where 2138 private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) { 2139 switch (tree.getTag()) { 2140 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) || 2141 ((JCLiteral)tree).typetag == BOOLEAN || 2142 ((JCLiteral)tree).typetag == BOT; 2143 case LAMBDA: case REFERENCE: return false; 2144 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr); 2145 case CONDEXPR: 2146 JCConditional condTree = (JCConditional)tree; 2147 return isBooleanOrNumeric(env, condTree.truepart) && 2148 isBooleanOrNumeric(env, condTree.falsepart); 2149 case APPLY: 2150 JCMethodInvocation speculativeMethodTree = 2151 (JCMethodInvocation)deferredAttr.attribSpeculative( 2152 tree, env, unknownExprInfo, 2153 argumentAttr.withLocalCacheContext()); 2154 Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth); 2155 Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ? 2156 env.enclClass.type : 2157 ((JCFieldAccess)speculativeMethodTree.meth).selected.type; 2158 Type owntype = types.memberType(receiverType, msym).getReturnType(); 2159 return primitiveOrBoxed(owntype); 2160 case NEWCLASS: 2161 JCExpression className = 2162 removeClassParams.translate(((JCNewClass)tree).clazz); 2163 JCExpression speculativeNewClassTree = 2164 (JCExpression)deferredAttr.attribSpeculative( 2165 className, env, unknownTypeInfo, 2166 argumentAttr.withLocalCacheContext()); 2167 return primitiveOrBoxed(speculativeNewClassTree.type); 2168 default: 2169 Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo, 2170 argumentAttr.withLocalCacheContext()).type; 2171 return primitiveOrBoxed(speculativeType); 2172 } 2173 } 2174 //where 2175 boolean primitiveOrBoxed(Type t) { 2176 return (!t.hasTag(TYPEVAR) && !t.isErroneous() && types.unboxedTypeOrType(t).isPrimitive()); 2177 } 2178 2179 TreeTranslator removeClassParams = new TreeTranslator() { 2180 @Override 2181 public void visitTypeApply(JCTypeApply tree) { 2182 result = translate(tree.clazz); 2183 } 2184 }; 2185 2186 CheckContext conditionalContext(CheckContext checkContext) { 2187 return new Check.NestedCheckContext(checkContext) { 2188 //this will use enclosing check context to check compatibility of 2189 //subexpression against target type; if we are in a method check context, 2190 //depending on whether boxing is allowed, we could have incompatibilities 2191 @Override 2192 public void report(DiagnosticPosition pos, JCDiagnostic details) { 2193 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInConditional(details))); 2194 } 2195 }; 2196 } 2197 2198 /** Compute the type of a conditional expression, after 2199 * checking that it exists. See JLS 15.25. Does not take into 2200 * account the special case where condition and both arms 2201 * are constants. 2202 * 2203 * @param pos The source position to be used for error 2204 * diagnostics. 2205 * @param thentype The type of the expression's then-part. 2206 * @param elsetype The type of the expression's else-part. 2207 */ 2208 Type condType(List<DiagnosticPosition> positions, List<Type> condTypes) { 2209 if (condTypes.isEmpty()) { 2210 return syms.objectType; //TODO: how to handle? 2211 } 2212 Type first = condTypes.head; 2213 // If same type, that is the result 2214 if (condTypes.tail.stream().allMatch(t -> types.isSameType(first, t))) 2215 return first.baseType(); 2216 2217 List<Type> unboxedTypes = condTypes.stream() 2218 .map(t -> t.isPrimitive() ? t : types.unboxedType(t)) 2219 .collect(List.collector()); 2220 2221 // Otherwise, if both arms can be converted to a numeric 2222 // type, return the least numeric type that fits both arms 2223 // (i.e. return larger of the two, or return int if one 2224 // arm is short, the other is char). 2225 if (unboxedTypes.stream().allMatch(t -> t.isPrimitive())) { 2226 // If one arm has an integer subrange type (i.e., byte, 2227 // short, or char), and the other is an integer constant 2228 // that fits into the subrange, return the subrange type. 2229 for (Type type : unboxedTypes) { 2230 if (!type.getTag().isStrictSubRangeOf(INT)) { 2231 continue; 2232 } 2233 if (unboxedTypes.stream().filter(t -> t != type).allMatch(t -> t.hasTag(INT) && types.isAssignable(t, type))) 2234 return type.baseType(); 2235 } 2236 2237 for (TypeTag tag : primitiveTags) { 2238 Type candidate = syms.typeOfTag[tag.ordinal()]; 2239 if (unboxedTypes.stream().allMatch(t -> types.isSubtype(t, candidate))) { 2240 return candidate; 2241 } 2242 } 2243 } 2244 2245 // Those were all the cases that could result in a primitive 2246 condTypes = condTypes.stream() 2247 .map(t -> t.isPrimitive() ? types.boxedClass(t).type : t) 2248 .collect(List.collector()); 2249 2250 for (Type type : condTypes) { 2251 if (condTypes.stream().filter(t -> t != type).allMatch(t -> types.isAssignable(t, type))) 2252 return type.baseType(); 2253 } 2254 2255 Iterator<DiagnosticPosition> posIt = positions.iterator(); 2256 2257 condTypes = condTypes.stream() 2258 .map(t -> chk.checkNonVoid(posIt.next(), t)) 2259 .collect(List.collector()); 2260 2261 // both are known to be reference types. The result is 2262 // lub(thentype,elsetype). This cannot fail, as it will 2263 // always be possible to infer "Object" if nothing better. 2264 return types.lub(condTypes.stream() 2265 .map(t -> t.baseType()) 2266 .filter(t -> !t.hasTag(BOT)) 2267 .collect(List.collector())); 2268 } 2269 2270 static final TypeTag[] primitiveTags = new TypeTag[]{ 2271 BYTE, 2272 CHAR, 2273 SHORT, 2274 INT, 2275 LONG, 2276 FLOAT, 2277 DOUBLE, 2278 BOOLEAN, 2279 }; 2280 2281 Env<AttrContext> bindingEnv(Env<AttrContext> env, List<BindingSymbol> bindings) { 2282 return bindingEnv(env, env.tree, bindings); 2283 } 2284 2285 Env<AttrContext> bindingEnv(Env<AttrContext> env, JCTree newTree, List<BindingSymbol> bindings) { 2286 Env<AttrContext> env1 = env.dup(newTree, env.info.dup(env.info.scope.dup())); 2287 bindings.forEach(env1.info.scope::enter); 2288 return env1; 2289 } 2290 2291 public void visitIf(JCIf tree) { 2292 attribExpr(tree.cond, env, syms.booleanType); 2293 2294 // if (x) { y } [ else z ] 2295 // include x's bindings when true in y 2296 // include x's bindings when false in z 2297 2298 MatchBindings condBindings = matchBindings; 2299 Env<AttrContext> thenEnv = bindingEnv(env, condBindings.bindingsWhenTrue); 2300 2301 try { 2302 attribStat(tree.thenpart, thenEnv); 2303 } finally { 2304 thenEnv.info.scope.leave(); 2305 } 2306 2307 preFlow(tree.thenpart); 2308 boolean aliveAfterThen = flow.aliveAfter(env, tree.thenpart, make); 2309 boolean aliveAfterElse; 2310 2311 if (tree.elsepart != null) { 2312 Env<AttrContext> elseEnv = bindingEnv(env, condBindings.bindingsWhenFalse); 2313 try { 2314 attribStat(tree.elsepart, elseEnv); 2315 } finally { 2316 elseEnv.info.scope.leave(); 2317 } 2318 preFlow(tree.elsepart); 2319 aliveAfterElse = flow.aliveAfter(env, tree.elsepart, make); 2320 } else { 2321 aliveAfterElse = true; 2322 } 2323 2324 chk.checkEmptyIf(tree); 2325 2326 List<BindingSymbol> afterIfBindings = List.nil(); 2327 2328 if (aliveAfterThen && !aliveAfterElse) { 2329 afterIfBindings = condBindings.bindingsWhenTrue; 2330 } else if (aliveAfterElse && !aliveAfterThen) { 2331 afterIfBindings = condBindings.bindingsWhenFalse; 2332 } 2333 2334 addBindings2Scope(tree, afterIfBindings); 2335 2336 result = null; 2337 } 2338 2339 void preFlow(JCTree tree) { 2340 attrRecover.doRecovery(); 2341 new PostAttrAnalyzer() { 2342 @Override 2343 public void scan(JCTree tree) { 2344 if (tree == null || 2345 (tree.type != null && 2346 tree.type == Type.stuckType)) { 2347 //don't touch stuck expressions! 2348 return; 2349 } 2350 super.scan(tree); 2351 } 2352 2353 @Override 2354 public void visitClassDef(JCClassDecl that) { 2355 if (that.sym != null) { 2356 // Method preFlow shouldn't visit class definitions 2357 // that have not been entered and attributed. 2358 // See JDK-8254557 and JDK-8203277 for more details. 2359 super.visitClassDef(that); 2360 } 2361 } 2362 2363 @Override 2364 public void visitLambda(JCLambda that) { 2365 if (that.type != null) { 2366 // Method preFlow shouldn't visit lambda expressions 2367 // that have not been entered and attributed. 2368 // See JDK-8254557 and JDK-8203277 for more details. 2369 super.visitLambda(that); 2370 } 2371 } 2372 }.scan(tree); 2373 } 2374 2375 public void visitExec(JCExpressionStatement tree) { 2376 //a fresh environment is required for 292 inference to work properly --- 2377 //see Infer.instantiatePolymorphicSignatureInstance() 2378 Env<AttrContext> localEnv = env.dup(tree); 2379 attribExpr(tree.expr, localEnv); 2380 result = null; 2381 } 2382 2383 public void visitBreak(JCBreak tree) { 2384 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env); 2385 result = null; 2386 } 2387 2388 public void visitYield(JCYield tree) { 2389 if (env.info.yieldResult != null) { 2390 attribTree(tree.value, env, env.info.yieldResult); 2391 tree.target = findJumpTarget(tree.pos(), tree.getTag(), names.empty, env); 2392 } else { 2393 log.error(tree.pos(), tree.value.hasTag(PARENS) 2394 ? Errors.NoSwitchExpressionQualify 2395 : Errors.NoSwitchExpression); 2396 attribTree(tree.value, env, unknownExprInfo); 2397 } 2398 result = null; 2399 } 2400 2401 public void visitContinue(JCContinue tree) { 2402 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env); 2403 result = null; 2404 } 2405 //where 2406 /** Return the target of a break, continue or yield statement, 2407 * if it exists, report an error if not. 2408 * Note: The target of a labelled break or continue is the 2409 * (non-labelled) statement tree referred to by the label, 2410 * not the tree representing the labelled statement itself. 2411 * 2412 * @param pos The position to be used for error diagnostics 2413 * @param tag The tag of the jump statement. This is either 2414 * Tree.BREAK or Tree.CONTINUE. 2415 * @param label The label of the jump statement, or null if no 2416 * label is given. 2417 * @param env The environment current at the jump statement. 2418 */ 2419 private JCTree findJumpTarget(DiagnosticPosition pos, 2420 JCTree.Tag tag, 2421 Name label, 2422 Env<AttrContext> env) { 2423 Pair<JCTree, Error> jumpTarget = findJumpTargetNoError(tag, label, env); 2424 2425 if (jumpTarget.snd != null) { 2426 log.error(pos, jumpTarget.snd); 2427 } 2428 2429 return jumpTarget.fst; 2430 } 2431 /** Return the target of a break or continue statement, if it exists, 2432 * report an error if not. 2433 * Note: The target of a labelled break or continue is the 2434 * (non-labelled) statement tree referred to by the label, 2435 * not the tree representing the labelled statement itself. 2436 * 2437 * @param tag The tag of the jump statement. This is either 2438 * Tree.BREAK or Tree.CONTINUE. 2439 * @param label The label of the jump statement, or null if no 2440 * label is given. 2441 * @param env The environment current at the jump statement. 2442 */ 2443 private Pair<JCTree, JCDiagnostic.Error> findJumpTargetNoError(JCTree.Tag tag, 2444 Name label, 2445 Env<AttrContext> env) { 2446 // Search environments outwards from the point of jump. 2447 Env<AttrContext> env1 = env; 2448 JCDiagnostic.Error pendingError = null; 2449 LOOP: 2450 while (env1 != null) { 2451 switch (env1.tree.getTag()) { 2452 case LABELLED: 2453 JCLabeledStatement labelled = (JCLabeledStatement)env1.tree; 2454 if (label == labelled.label) { 2455 // If jump is a continue, check that target is a loop. 2456 if (tag == CONTINUE) { 2457 if (!labelled.body.hasTag(DOLOOP) && 2458 !labelled.body.hasTag(WHILELOOP) && 2459 !labelled.body.hasTag(FORLOOP) && 2460 !labelled.body.hasTag(FOREACHLOOP)) { 2461 pendingError = Errors.NotLoopLabel(label); 2462 } 2463 // Found labelled statement target, now go inwards 2464 // to next non-labelled tree. 2465 return Pair.of(TreeInfo.referencedStatement(labelled), pendingError); 2466 } else { 2467 return Pair.of(labelled, pendingError); 2468 } 2469 } 2470 break; 2471 case DOLOOP: 2472 case WHILELOOP: 2473 case FORLOOP: 2474 case FOREACHLOOP: 2475 if (label == null) return Pair.of(env1.tree, pendingError); 2476 break; 2477 case SWITCH: 2478 if (label == null && tag == BREAK) return Pair.of(env1.tree, null); 2479 break; 2480 case SWITCH_EXPRESSION: 2481 if (tag == YIELD) { 2482 return Pair.of(env1.tree, null); 2483 } else if (tag == BREAK) { 2484 pendingError = Errors.BreakOutsideSwitchExpression; 2485 } else { 2486 pendingError = Errors.ContinueOutsideSwitchExpression; 2487 } 2488 break; 2489 case LAMBDA: 2490 case METHODDEF: 2491 case CLASSDEF: 2492 break LOOP; 2493 default: 2494 } 2495 env1 = env1.next; 2496 } 2497 if (label != null) 2498 return Pair.of(null, Errors.UndefLabel(label)); 2499 else if (pendingError != null) 2500 return Pair.of(null, pendingError); 2501 else if (tag == CONTINUE) 2502 return Pair.of(null, Errors.ContOutsideLoop); 2503 else 2504 return Pair.of(null, Errors.BreakOutsideSwitchLoop); 2505 } 2506 2507 public void visitReturn(JCReturn tree) { 2508 // Check that there is an enclosing method which is 2509 // nested within than the enclosing class. 2510 if (env.info.returnResult == null) { 2511 log.error(tree.pos(), Errors.RetOutsideMeth); 2512 } else if (env.info.yieldResult != null) { 2513 log.error(tree.pos(), Errors.ReturnOutsideSwitchExpression); 2514 if (tree.expr != null) { 2515 attribExpr(tree.expr, env, env.info.yieldResult.pt); 2516 } 2517 } else if (!env.info.isLambda && 2518 env.enclMethod != null && 2519 TreeInfo.isCompactConstructor(env.enclMethod)) { 2520 log.error(env.enclMethod, 2521 Errors.InvalidCanonicalConstructorInRecord(Fragments.Compact, env.enclMethod.sym.name, Fragments.CanonicalCantHaveReturnStatement)); 2522 } else { 2523 // Attribute return expression, if it exists, and check that 2524 // it conforms to result type of enclosing method. 2525 if (tree.expr != null) { 2526 if (env.info.returnResult.pt.hasTag(VOID)) { 2527 env.info.returnResult.checkContext.report(tree.expr.pos(), 2528 diags.fragment(Fragments.UnexpectedRetVal)); 2529 } 2530 attribTree(tree.expr, env, env.info.returnResult); 2531 } else if (!env.info.returnResult.pt.hasTag(VOID) && 2532 !env.info.returnResult.pt.hasTag(NONE)) { 2533 env.info.returnResult.checkContext.report(tree.pos(), 2534 diags.fragment(Fragments.MissingRetVal(env.info.returnResult.pt))); 2535 } 2536 } 2537 result = null; 2538 } 2539 2540 public void visitThrow(JCThrow tree) { 2541 Type owntype = attribExpr(tree.expr, env, Type.noType); 2542 chk.checkType(tree, owntype, syms.throwableType); 2543 result = null; 2544 } 2545 2546 public void visitAssert(JCAssert tree) { 2547 attribExpr(tree.cond, env, syms.booleanType); 2548 if (tree.detail != null) { 2549 chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env)); 2550 } 2551 result = null; 2552 } 2553 2554 /** Visitor method for method invocations. 2555 * NOTE: The method part of an application will have in its type field 2556 * the return type of the method, not the method's type itself! 2557 */ 2558 public void visitApply(JCMethodInvocation tree) { 2559 // The local environment of a method application is 2560 // a new environment nested in the current one. 2561 Env<AttrContext> localEnv = env.dup(tree, env.info.dup()); 2562 2563 // The types of the actual method arguments. 2564 List<Type> argtypes; 2565 2566 // The types of the actual method type arguments. 2567 List<Type> typeargtypes = null; 2568 2569 Name methName = TreeInfo.name(tree.meth); 2570 2571 boolean isConstructorCall = 2572 methName == names._this || methName == names._super; 2573 2574 ListBuffer<Type> argtypesBuf = new ListBuffer<>(); 2575 if (isConstructorCall) { 2576 2577 // Attribute arguments, yielding list of argument types. 2578 KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf); 2579 argtypes = argtypesBuf.toList(); 2580 typeargtypes = attribTypes(tree.typeargs, localEnv); 2581 2582 // Done with this()/super() parameters. End of constructor prologue. 2583 env.info.ctorPrologue = false; 2584 2585 // Variable `site' points to the class in which the called 2586 // constructor is defined. 2587 Type site = env.enclClass.sym.type; 2588 if (methName == names._super) { 2589 if (site == syms.objectType) { 2590 log.error(tree.meth.pos(), Errors.NoSuperclass(site)); 2591 site = types.createErrorType(syms.objectType); 2592 } else { 2593 site = types.supertype(site); 2594 } 2595 } 2596 2597 if (site.hasTag(CLASS)) { 2598 Type encl = site.getEnclosingType(); 2599 while (encl != null && encl.hasTag(TYPEVAR)) 2600 encl = encl.getUpperBound(); 2601 if (encl.hasTag(CLASS)) { 2602 // we are calling a nested class 2603 2604 if (tree.meth.hasTag(SELECT)) { 2605 JCTree qualifier = ((JCFieldAccess) tree.meth).selected; 2606 2607 // We are seeing a prefixed call, of the form 2608 // <expr>.super(...). 2609 // Check that the prefix expression conforms 2610 // to the outer instance type of the class. 2611 chk.checkRefType(qualifier.pos(), 2612 attribExpr(qualifier, localEnv, 2613 encl)); 2614 } 2615 } else if (tree.meth.hasTag(SELECT)) { 2616 log.error(tree.meth.pos(), 2617 Errors.IllegalQualNotIcls(site.tsym)); 2618 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site); 2619 } 2620 2621 if (tree.meth.hasTag(IDENT)) { 2622 // non-qualified super(...) call; check whether explicit constructor 2623 // invocation is well-formed. If the super class is an inner class, 2624 // make sure that an appropriate implicit qualifier exists. If the super 2625 // class is a local class, make sure that the current class is defined 2626 // in the same context as the local class. 2627 checkNewInnerClass(tree.meth.pos(), localEnv, site, true); 2628 } 2629 2630 // if we're calling a java.lang.Enum constructor, 2631 // prefix the implicit String and int parameters 2632 if (site.tsym == syms.enumSym) 2633 argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType); 2634 2635 // Resolve the called constructor under the assumption 2636 // that we are referring to a superclass instance of the 2637 // current instance (JLS ???). 2638 boolean selectSuperPrev = localEnv.info.selectSuper; 2639 localEnv.info.selectSuper = true; 2640 localEnv.info.pendingResolutionPhase = null; 2641 Symbol sym = rs.resolveConstructor( 2642 tree.meth.pos(), localEnv, site, argtypes, typeargtypes); 2643 localEnv.info.selectSuper = selectSuperPrev; 2644 2645 // Set method symbol to resolved constructor... 2646 TreeInfo.setSymbol(tree.meth, sym); 2647 2648 // ...and check that it is legal in the current context. 2649 // (this will also set the tree's type) 2650 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes); 2651 checkId(tree.meth, site, sym, localEnv, 2652 new ResultInfo(kind, mpt)); 2653 } else if (site.hasTag(ERROR) && tree.meth.hasTag(SELECT)) { 2654 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site); 2655 } 2656 // Otherwise, `site' is an error type and we do nothing 2657 result = tree.type = syms.voidType; 2658 } else { 2659 // Otherwise, we are seeing a regular method call. 2660 // Attribute the arguments, yielding list of argument types, ... 2661 KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf); 2662 argtypes = argtypesBuf.toList(); 2663 typeargtypes = attribAnyTypes(tree.typeargs, localEnv); 2664 2665 // ... and attribute the method using as a prototype a methodtype 2666 // whose formal argument types is exactly the list of actual 2667 // arguments (this will also set the method symbol). 2668 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes); 2669 localEnv.info.pendingResolutionPhase = null; 2670 Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext)); 2671 2672 // Compute the result type. 2673 Type restype = mtype.getReturnType(); 2674 if (restype.hasTag(WILDCARD)) 2675 throw new AssertionError(mtype); 2676 2677 Type qualifier = (tree.meth.hasTag(SELECT)) 2678 ? ((JCFieldAccess) tree.meth).selected.type 2679 : env.enclClass.sym.type; 2680 Symbol msym = TreeInfo.symbol(tree.meth); 2681 restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype); 2682 2683 chk.checkRefTypes(tree.typeargs, typeargtypes); 2684 2685 // Check that value of resulting type is admissible in the 2686 // current context. Also, capture the return type 2687 Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true); 2688 result = check(tree, capturedRes, KindSelector.VAL, resultInfo); 2689 } 2690 chk.validate(tree.typeargs, localEnv); 2691 } 2692 //where 2693 Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) { 2694 if (msym != null && 2695 (msym.owner == syms.objectType.tsym || msym.owner.isInterface()) && 2696 methodName == names.getClass && 2697 argtypes.isEmpty()) { 2698 // as a special case, x.getClass() has type Class<? extends |X|> 2699 return new ClassType(restype.getEnclosingType(), 2700 List.of(new WildcardType(types.erasure(qualifierType.baseType()), 2701 BoundKind.EXTENDS, 2702 syms.boundClass)), 2703 restype.tsym, 2704 restype.getMetadata()); 2705 } else if (msym != null && 2706 msym.owner == syms.arrayClass && 2707 methodName == names.clone && 2708 types.isArray(qualifierType)) { 2709 // as a special case, array.clone() has a result that is 2710 // the same as static type of the array being cloned 2711 return qualifierType; 2712 } else { 2713 return restype; 2714 } 2715 } 2716 2717 /** Obtain a method type with given argument types. 2718 */ 2719 Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) { 2720 MethodType mt = new MethodType(argtypes, restype, List.nil(), syms.methodClass); 2721 return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt); 2722 } 2723 2724 public void visitNewClass(final JCNewClass tree) { 2725 Type owntype = types.createErrorType(tree.type); 2726 2727 // The local environment of a class creation is 2728 // a new environment nested in the current one. 2729 Env<AttrContext> localEnv = env.dup(tree, env.info.dup()); 2730 2731 // The anonymous inner class definition of the new expression, 2732 // if one is defined by it. 2733 JCClassDecl cdef = tree.def; 2734 2735 // If enclosing class is given, attribute it, and 2736 // complete class name to be fully qualified 2737 JCExpression clazz = tree.clazz; // Class field following new 2738 JCExpression clazzid; // Identifier in class field 2739 JCAnnotatedType annoclazzid; // Annotated type enclosing clazzid 2740 annoclazzid = null; 2741 2742 if (clazz.hasTag(TYPEAPPLY)) { 2743 clazzid = ((JCTypeApply) clazz).clazz; 2744 if (clazzid.hasTag(ANNOTATED_TYPE)) { 2745 annoclazzid = (JCAnnotatedType) clazzid; 2746 clazzid = annoclazzid.underlyingType; 2747 } 2748 } else { 2749 if (clazz.hasTag(ANNOTATED_TYPE)) { 2750 annoclazzid = (JCAnnotatedType) clazz; 2751 clazzid = annoclazzid.underlyingType; 2752 } else { 2753 clazzid = clazz; 2754 } 2755 } 2756 2757 JCExpression clazzid1 = clazzid; // The same in fully qualified form 2758 2759 if (tree.encl != null) { 2760 // We are seeing a qualified new, of the form 2761 // <expr>.new C <...> (...) ... 2762 // In this case, we let clazz stand for the name of the 2763 // allocated class C prefixed with the type of the qualifier 2764 // expression, so that we can 2765 // resolve it with standard techniques later. I.e., if 2766 // <expr> has type T, then <expr>.new C <...> (...) 2767 // yields a clazz T.C. 2768 Type encltype = chk.checkRefType(tree.encl.pos(), 2769 attribExpr(tree.encl, env)); 2770 // TODO 308: in <expr>.new C, do we also want to add the type annotations 2771 // from expr to the combined type, or not? Yes, do this. 2772 clazzid1 = make.at(clazz.pos).Select(make.Type(encltype), 2773 ((JCIdent) clazzid).name); 2774 2775 EndPosTable endPosTable = this.env.toplevel.endPositions; 2776 endPosTable.storeEnd(clazzid1, clazzid.getEndPosition(endPosTable)); 2777 if (clazz.hasTag(ANNOTATED_TYPE)) { 2778 JCAnnotatedType annoType = (JCAnnotatedType) clazz; 2779 List<JCAnnotation> annos = annoType.annotations; 2780 2781 if (annoType.underlyingType.hasTag(TYPEAPPLY)) { 2782 clazzid1 = make.at(tree.pos). 2783 TypeApply(clazzid1, 2784 ((JCTypeApply) clazz).arguments); 2785 } 2786 2787 clazzid1 = make.at(tree.pos). 2788 AnnotatedType(annos, clazzid1); 2789 } else if (clazz.hasTag(TYPEAPPLY)) { 2790 clazzid1 = make.at(tree.pos). 2791 TypeApply(clazzid1, 2792 ((JCTypeApply) clazz).arguments); 2793 } 2794 2795 clazz = clazzid1; 2796 } 2797 2798 // Attribute clazz expression and store 2799 // symbol + type back into the attributed tree. 2800 Type clazztype; 2801 2802 try { 2803 env.info.isAnonymousNewClass = tree.def != null; 2804 clazztype = TreeInfo.isEnumInit(env.tree) ? 2805 attribIdentAsEnumType(env, (JCIdent)clazz) : 2806 attribType(clazz, env); 2807 } finally { 2808 env.info.isAnonymousNewClass = false; 2809 } 2810 2811 clazztype = chk.checkDiamond(tree, clazztype); 2812 chk.validate(clazz, localEnv); 2813 if (tree.encl != null) { 2814 // We have to work in this case to store 2815 // symbol + type back into the attributed tree. 2816 tree.clazz.type = clazztype; 2817 TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1)); 2818 clazzid.type = ((JCIdent) clazzid).sym.type; 2819 if (annoclazzid != null) { 2820 annoclazzid.type = clazzid.type; 2821 } 2822 if (!clazztype.isErroneous()) { 2823 if (cdef != null && clazztype.tsym.isInterface()) { 2824 log.error(tree.encl.pos(), Errors.AnonClassImplIntfNoQualForNew); 2825 } else if (clazztype.tsym.isStatic()) { 2826 log.error(tree.encl.pos(), Errors.QualifiedNewOfStaticClass(clazztype.tsym)); 2827 } 2828 } 2829 } else { 2830 // Check for the existence of an apropos outer instance 2831 checkNewInnerClass(tree.pos(), env, clazztype, false); 2832 } 2833 2834 // Attribute constructor arguments. 2835 ListBuffer<Type> argtypesBuf = new ListBuffer<>(); 2836 final KindSelector pkind = 2837 attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf); 2838 List<Type> argtypes = argtypesBuf.toList(); 2839 List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv); 2840 2841 if (clazztype.hasTag(CLASS) || clazztype.hasTag(ERROR)) { 2842 // Enums may not be instantiated except implicitly 2843 if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 && 2844 (!env.tree.hasTag(VARDEF) || 2845 (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 || 2846 ((JCVariableDecl) env.tree).init != tree)) 2847 log.error(tree.pos(), Errors.EnumCantBeInstantiated); 2848 2849 boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) && 2850 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE; 2851 boolean skipNonDiamondPath = false; 2852 // Check that class is not abstract 2853 if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy 2854 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) { 2855 log.error(tree.pos(), 2856 Errors.AbstractCantBeInstantiated(clazztype.tsym)); 2857 skipNonDiamondPath = true; 2858 } else if (cdef != null && clazztype.tsym.isInterface()) { 2859 // Check that no constructor arguments are given to 2860 // anonymous classes implementing an interface 2861 if (!argtypes.isEmpty()) 2862 log.error(tree.args.head.pos(), Errors.AnonClassImplIntfNoArgs); 2863 2864 if (!typeargtypes.isEmpty()) 2865 log.error(tree.typeargs.head.pos(), Errors.AnonClassImplIntfNoTypeargs); 2866 2867 // Error recovery: pretend no arguments were supplied. 2868 argtypes = List.nil(); 2869 typeargtypes = List.nil(); 2870 skipNonDiamondPath = true; 2871 } 2872 if (TreeInfo.isDiamond(tree)) { 2873 ClassType site = new ClassType(clazztype.getEnclosingType(), 2874 clazztype.tsym.type.getTypeArguments(), 2875 clazztype.tsym, 2876 clazztype.getMetadata()); 2877 2878 Env<AttrContext> diamondEnv = localEnv.dup(tree); 2879 diamondEnv.info.selectSuper = cdef != null || tree.classDeclRemoved(); 2880 diamondEnv.info.pendingResolutionPhase = null; 2881 2882 //if the type of the instance creation expression is a class type 2883 //apply method resolution inference (JLS 15.12.2.7). The return type 2884 //of the resolved constructor will be a partially instantiated type 2885 Symbol constructor = rs.resolveDiamond(tree.pos(), 2886 diamondEnv, 2887 site, 2888 argtypes, 2889 typeargtypes); 2890 tree.constructor = constructor.baseSymbol(); 2891 2892 final TypeSymbol csym = clazztype.tsym; 2893 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), 2894 diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE); 2895 Type constructorType = tree.constructorType = types.createErrorType(clazztype); 2896 constructorType = checkId(tree, site, 2897 constructor, 2898 diamondEnv, 2899 diamondResult); 2900 2901 tree.clazz.type = types.createErrorType(clazztype); 2902 if (!constructorType.isErroneous()) { 2903 tree.clazz.type = clazz.type = constructorType.getReturnType(); 2904 tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType); 2905 } 2906 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true); 2907 } 2908 2909 // Resolve the called constructor under the assumption 2910 // that we are referring to a superclass instance of the 2911 // current instance (JLS ???). 2912 else if (!skipNonDiamondPath) { 2913 //the following code alters some of the fields in the current 2914 //AttrContext - hence, the current context must be dup'ed in 2915 //order to avoid downstream failures 2916 Env<AttrContext> rsEnv = localEnv.dup(tree); 2917 rsEnv.info.selectSuper = cdef != null; 2918 rsEnv.info.pendingResolutionPhase = null; 2919 tree.constructor = rs.resolveConstructor( 2920 tree.pos(), rsEnv, clazztype, argtypes, typeargtypes); 2921 if (cdef == null) { //do not check twice! 2922 tree.constructorType = checkId(tree, 2923 clazztype, 2924 tree.constructor, 2925 rsEnv, 2926 new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE)); 2927 if (rsEnv.info.lastResolveVarargs()) 2928 Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null); 2929 } 2930 } 2931 2932 if (cdef != null) { 2933 visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind); 2934 return; 2935 } 2936 2937 if (tree.constructor != null && tree.constructor.kind == MTH) 2938 owntype = clazztype; 2939 } 2940 result = check(tree, owntype, KindSelector.VAL, resultInfo); 2941 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext(); 2942 if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) { 2943 //we need to wait for inference to finish and then replace inference vars in the constructor type 2944 inferenceContext.addFreeTypeListener(List.of(tree.constructorType), 2945 instantiatedContext -> { 2946 tree.constructorType = instantiatedContext.asInstType(tree.constructorType); 2947 }); 2948 } 2949 chk.validate(tree.typeargs, localEnv); 2950 } 2951 2952 // where 2953 private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype, 2954 JCClassDecl cdef, Env<AttrContext> localEnv, 2955 List<Type> argtypes, List<Type> typeargtypes, 2956 KindSelector pkind) { 2957 // We are seeing an anonymous class instance creation. 2958 // In this case, the class instance creation 2959 // expression 2960 // 2961 // E.new <typeargs1>C<typargs2>(args) { ... } 2962 // 2963 // is represented internally as 2964 // 2965 // E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } ) . 2966 // 2967 // This expression is then *transformed* as follows: 2968 // 2969 // (1) add an extends or implements clause 2970 // (2) add a constructor. 2971 // 2972 // For instance, if C is a class, and ET is the type of E, 2973 // the expression 2974 // 2975 // E.new <typeargs1>C<typargs2>(args) { ... } 2976 // 2977 // is translated to (where X is a fresh name and typarams is the 2978 // parameter list of the super constructor): 2979 // 2980 // new <typeargs1>X(<*nullchk*>E, args) where 2981 // X extends C<typargs2> { 2982 // <typarams> X(ET e, args) { 2983 // e.<typeargs1>super(args) 2984 // } 2985 // ... 2986 // } 2987 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext(); 2988 Type enclType = clazztype.getEnclosingType(); 2989 if (enclType != null && 2990 enclType.hasTag(CLASS) && 2991 !chk.checkDenotable((ClassType)enclType)) { 2992 log.error(tree.encl, Errors.EnclosingClassTypeNonDenotable(enclType)); 2993 } 2994 final boolean isDiamond = TreeInfo.isDiamond(tree); 2995 if (isDiamond 2996 && ((tree.constructorType != null && inferenceContext.free(tree.constructorType)) 2997 || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) { 2998 final ResultInfo resultInfoForClassDefinition = this.resultInfo; 2999 Env<AttrContext> dupLocalEnv = copyEnv(localEnv); 3000 inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type), 3001 instantiatedContext -> { 3002 tree.constructorType = instantiatedContext.asInstType(tree.constructorType); 3003 tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type); 3004 ResultInfo prevResult = this.resultInfo; 3005 try { 3006 this.resultInfo = resultInfoForClassDefinition; 3007 visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef, 3008 dupLocalEnv, argtypes, typeargtypes, pkind); 3009 } finally { 3010 this.resultInfo = prevResult; 3011 } 3012 }); 3013 } else { 3014 if (isDiamond && clazztype.hasTag(CLASS)) { 3015 List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype); 3016 if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) { 3017 // One or more types inferred in the previous steps is non-denotable. 3018 Fragment fragment = Diamond(clazztype.tsym); 3019 log.error(tree.clazz.pos(), 3020 Errors.CantApplyDiamond1( 3021 fragment, 3022 invalidDiamondArgs.size() > 1 ? 3023 DiamondInvalidArgs(invalidDiamondArgs, fragment) : 3024 DiamondInvalidArg(invalidDiamondArgs, fragment))); 3025 } 3026 // For <>(){}, inferred types must also be accessible. 3027 for (Type t : clazztype.getTypeArguments()) { 3028 rs.checkAccessibleType(env, t); 3029 } 3030 } 3031 3032 // If we already errored, be careful to avoid a further avalanche. ErrorType answers 3033 // false for isInterface call even when the original type is an interface. 3034 boolean implementing = clazztype.tsym.isInterface() || 3035 clazztype.isErroneous() && !clazztype.getOriginalType().hasTag(NONE) && 3036 clazztype.getOriginalType().tsym.isInterface(); 3037 3038 if (implementing) { 3039 cdef.implementing = List.of(clazz); 3040 } else { 3041 cdef.extending = clazz; 3042 } 3043 3044 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK && 3045 rs.isSerializable(clazztype)) { 3046 localEnv.info.isSerializable = true; 3047 } 3048 3049 attribStat(cdef, localEnv); 3050 3051 List<Type> finalargtypes; 3052 // If an outer instance is given, 3053 // prefix it to the constructor arguments 3054 // and delete it from the new expression 3055 if (tree.encl != null && !clazztype.tsym.isInterface()) { 3056 finalargtypes = argtypes.prepend(tree.encl.type); 3057 } else { 3058 finalargtypes = argtypes; 3059 } 3060 3061 // Reassign clazztype and recompute constructor. As this necessarily involves 3062 // another attribution pass for deferred types in the case of <>, replicate 3063 // them. Original arguments have right decorations already. 3064 if (isDiamond && pkind.contains(KindSelector.POLY)) { 3065 finalargtypes = finalargtypes.map(deferredAttr.deferredCopier); 3066 } 3067 3068 clazztype = clazztype.hasTag(ERROR) ? types.createErrorType(cdef.sym.type) 3069 : cdef.sym.type; 3070 Symbol sym = tree.constructor = rs.resolveConstructor( 3071 tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes); 3072 Assert.check(!sym.kind.isResolutionError()); 3073 tree.constructor = sym; 3074 tree.constructorType = checkId(tree, 3075 clazztype, 3076 tree.constructor, 3077 localEnv, 3078 new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE)); 3079 } 3080 Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ? 3081 clazztype : types.createErrorType(tree.type); 3082 result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK)); 3083 chk.validate(tree.typeargs, localEnv); 3084 } 3085 3086 CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) { 3087 return new Check.NestedCheckContext(checkContext) { 3088 @Override 3089 public void report(DiagnosticPosition _unused, JCDiagnostic details) { 3090 enclosingContext.report(clazz.clazz, 3091 diags.fragment(Fragments.CantApplyDiamond1(Fragments.Diamond(tsym), details))); 3092 } 3093 }; 3094 } 3095 3096 void checkNewInnerClass(DiagnosticPosition pos, Env<AttrContext> env, Type type, boolean isSuper) { 3097 boolean isLocal = type.tsym.owner.kind == VAR || type.tsym.owner.kind == MTH; 3098 if ((type.tsym.flags() & (INTERFACE | ENUM | RECORD)) != 0 || 3099 (!isLocal && !type.tsym.isInner()) || 3100 (isSuper && env.enclClass.sym.isAnonymous())) { 3101 // nothing to check 3102 return; 3103 } 3104 Symbol res = isLocal ? 3105 rs.findLocalClassOwner(env, type.tsym) : 3106 rs.findSelfContaining(pos, env, type.getEnclosingType().tsym, isSuper); 3107 if (res.exists()) { 3108 rs.accessBase(res, pos, env.enclClass.sym.type, names._this, true); 3109 } else { 3110 log.error(pos, Errors.EnclClassRequired(type.tsym)); 3111 } 3112 } 3113 3114 /** Make an attributed null check tree. 3115 */ 3116 public JCExpression makeNullCheck(JCExpression arg) { 3117 // optimization: new Outer() can never be null; skip null check 3118 if (arg.getTag() == NEWCLASS) 3119 return arg; 3120 // optimization: X.this is never null; skip null check 3121 Name name = TreeInfo.name(arg); 3122 if (name == names._this || name == names._super) return arg; 3123 3124 JCTree.Tag optag = NULLCHK; 3125 JCUnary tree = make.at(arg.pos).Unary(optag, arg); 3126 tree.operator = operators.resolveUnary(arg, optag, arg.type); 3127 tree.type = arg.type; 3128 return tree; 3129 } 3130 3131 public void visitNewArray(JCNewArray tree) { 3132 Type owntype = types.createErrorType(tree.type); 3133 Env<AttrContext> localEnv = env.dup(tree); 3134 Type elemtype; 3135 if (tree.elemtype != null) { 3136 elemtype = attribType(tree.elemtype, localEnv); 3137 chk.validate(tree.elemtype, localEnv); 3138 owntype = elemtype; 3139 for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) { 3140 attribExpr(l.head, localEnv, syms.intType); 3141 owntype = new ArrayType(owntype, syms.arrayClass); 3142 } 3143 } else { 3144 // we are seeing an untyped aggregate { ... } 3145 // this is allowed only if the prototype is an array 3146 if (pt().hasTag(ARRAY)) { 3147 elemtype = types.elemtype(pt()); 3148 } else { 3149 if (!pt().hasTag(ERROR) && 3150 (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) { 3151 log.error(tree.pos(), 3152 Errors.IllegalInitializerForType(pt())); 3153 } 3154 elemtype = types.createErrorType(pt()); 3155 } 3156 } 3157 if (tree.elems != null) { 3158 attribExprs(tree.elems, localEnv, elemtype); 3159 owntype = new ArrayType(elemtype, syms.arrayClass); 3160 } 3161 if (!types.isReifiable(elemtype)) 3162 log.error(tree.pos(), Errors.GenericArrayCreation); 3163 result = check(tree, owntype, KindSelector.VAL, resultInfo); 3164 } 3165 3166 /* 3167 * A lambda expression can only be attributed when a target-type is available. 3168 * In addition, if the target-type is that of a functional interface whose 3169 * descriptor contains inference variables in argument position the lambda expression 3170 * is 'stuck' (see DeferredAttr). 3171 */ 3172 @Override 3173 public void visitLambda(final JCLambda that) { 3174 boolean wrongContext = false; 3175 if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) { 3176 if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) { 3177 //lambda only allowed in assignment or method invocation/cast context 3178 log.error(that.pos(), Errors.UnexpectedLambda); 3179 } 3180 resultInfo = recoveryInfo; 3181 wrongContext = true; 3182 } 3183 if (types.isQuoted(pt())) { 3184 attribQuotedLambda(that); 3185 } else { 3186 attribFunctionalLambda(that, wrongContext); 3187 } 3188 } 3189 3190 void attribFunctionalLambda(JCLambda that, boolean wrongContext) { 3191 //create an environment for attribution of the lambda expression 3192 final Env<AttrContext> localEnv = lambdaEnv(that, env); 3193 boolean needsRecovery = 3194 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK; 3195 try { 3196 if (needsRecovery && rs.isSerializable(pt())) { 3197 localEnv.info.isSerializable = true; 3198 localEnv.info.isSerializableLambda = true; 3199 } 3200 List<Type> explicitParamTypes = null; 3201 if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) { 3202 //attribute lambda parameters 3203 attribStats(that.params, localEnv); 3204 explicitParamTypes = TreeInfo.types(that.params); 3205 } 3206 3207 TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes); 3208 Type currentTarget = targetInfo.target; 3209 Type lambdaType = targetInfo.descriptor; 3210 3211 if (currentTarget.isErroneous()) { 3212 result = that.type = currentTarget; 3213 return; 3214 } 3215 3216 setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext); 3217 3218 if (lambdaType.hasTag(FORALL)) { 3219 //lambda expression target desc cannot be a generic method 3220 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType, 3221 kindName(currentTarget.tsym), 3222 currentTarget.tsym); 3223 resultInfo.checkContext.report(that, diags.fragment(msg)); 3224 result = that.type = types.createErrorType(pt()); 3225 return; 3226 } 3227 3228 if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) { 3229 //add param type info in the AST 3230 List<Type> actuals = lambdaType.getParameterTypes(); 3231 List<JCVariableDecl> params = that.params; 3232 3233 boolean arityMismatch = false; 3234 3235 while (params.nonEmpty()) { 3236 if (actuals.isEmpty()) { 3237 //not enough actuals to perform lambda parameter inference 3238 arityMismatch = true; 3239 } 3240 //reset previously set info 3241 Type argType = arityMismatch ? 3242 syms.errType : 3243 actuals.head; 3244 if (params.head.isImplicitlyTyped()) { 3245 setSyntheticVariableType(params.head, argType); 3246 } 3247 params.head.sym = null; 3248 actuals = actuals.isEmpty() ? 3249 actuals : 3250 actuals.tail; 3251 params = params.tail; 3252 } 3253 3254 //attribute lambda parameters 3255 attribStats(that.params, localEnv); 3256 3257 if (arityMismatch) { 3258 resultInfo.checkContext.report(that, diags.fragment(Fragments.IncompatibleArgTypesInLambda)); 3259 result = that.type = types.createErrorType(currentTarget); 3260 return; 3261 } 3262 } 3263 3264 //from this point on, no recovery is needed; if we are in assignment context 3265 //we will be able to attribute the whole lambda body, regardless of errors; 3266 //if we are in a 'check' method context, and the lambda is not compatible 3267 //with the target-type, it will be recovered anyway in Attr.checkId 3268 needsRecovery = false; 3269 3270 ResultInfo bodyResultInfo = localEnv.info.returnResult = 3271 lambdaBodyResult(that, lambdaType, resultInfo); 3272 3273 if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) { 3274 attribTree(that.getBody(), localEnv, bodyResultInfo); 3275 } else { 3276 JCBlock body = (JCBlock)that.body; 3277 if (body == breakTree && 3278 resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { 3279 breakTreeFound(copyEnv(localEnv)); 3280 } 3281 attribStats(body.stats, localEnv); 3282 } 3283 3284 result = check(that, currentTarget, KindSelector.VAL, resultInfo); 3285 3286 boolean isSpeculativeRound = 3287 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE; 3288 3289 preFlow(that); 3290 flow.analyzeLambda(env, that, make, isSpeculativeRound); 3291 3292 that.type = currentTarget; //avoids recovery at this stage 3293 checkLambdaCompatible(that, lambdaType, resultInfo.checkContext); 3294 3295 if (!isSpeculativeRound) { 3296 //add thrown types as bounds to the thrown types free variables if needed: 3297 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) { 3298 List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make); 3299 if(!checkExConstraints(inferredThrownTypes, lambdaType.getThrownTypes(), resultInfo.checkContext.inferenceContext())) { 3300 log.error(that, Errors.IncompatibleThrownTypesInMref(lambdaType.getThrownTypes())); 3301 } 3302 } 3303 3304 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget); 3305 } 3306 result = wrongContext ? that.type = types.createErrorType(pt()) 3307 : check(that, currentTarget, KindSelector.VAL, resultInfo); 3308 } catch (Types.FunctionDescriptorLookupError ex) { 3309 JCDiagnostic cause = ex.getDiagnostic(); 3310 resultInfo.checkContext.report(that, cause); 3311 result = that.type = types.createErrorType(pt()); 3312 return; 3313 } catch (CompletionFailure cf) { 3314 chk.completionError(that.pos(), cf); 3315 } catch (Throwable t) { 3316 //when an unexpected exception happens, avoid attempts to attribute the same tree again 3317 //as that would likely cause the same exception again. 3318 needsRecovery = false; 3319 throw t; 3320 } finally { 3321 localEnv.info.scope.leave(); 3322 if (needsRecovery) { 3323 Type prevResult = result; 3324 try { 3325 attribTree(that, env, recoveryInfo); 3326 } finally { 3327 if (result == Type.recoveryType) { 3328 result = prevResult; 3329 } 3330 } 3331 } 3332 } 3333 } 3334 3335 void attribQuotedLambda(JCLambda that) { 3336 // create an environment for attribution of the lambda expression 3337 final Env<AttrContext> localEnv = lambdaEnv(that, env); 3338 try { 3339 // if quoted lambda is implicit, issue error, and recover 3340 if (that.paramKind == ParameterKind.IMPLICIT) { 3341 log.error(that, Errors.QuotedLambdaMustBeExplicit); 3342 // recovery 3343 List<JCVariableDecl> params = that.params; 3344 while (params.nonEmpty()) { 3345 Type argType = syms.errType; 3346 if (params.head.isImplicitlyTyped()) { 3347 setSyntheticVariableType(params.head, argType); 3348 } 3349 params = params.tail; 3350 } 3351 } 3352 // attribute lambda parameters 3353 attribStats(that.params, localEnv); 3354 List<Type> explicitParamTypes = TreeInfo.types(that.params); 3355 3356 ListBuffer<Type> restypes = new ListBuffer<>(); 3357 ListBuffer<DiagnosticPosition> resPositions = new ListBuffer<>(); 3358 ResultInfo bodyResultInfo = localEnv.info.returnResult = unknownExprInfo; 3359 3360 // type-check lambda body, and capture return types 3361 if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) { 3362 attribTree(that.getBody(), localEnv, bodyResultInfo); 3363 restypes.add(that.getBody().type); 3364 } else { 3365 JCBlock body = (JCBlock)that.body; 3366 if (body == breakTree && 3367 resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { 3368 breakTreeFound(copyEnv(localEnv)); 3369 } 3370 attribStats(body.stats, localEnv); 3371 new LambdaReturnScanner() { 3372 @Override 3373 public void visitReturn(JCReturn tree) { 3374 if (tree.expr != null) { 3375 resPositions.add(tree); 3376 } 3377 restypes.add(tree.expr == null ? syms.voidType : tree.expr.type); 3378 } 3379 }.scan(body); 3380 } 3381 3382 // check if lambda body can complete normally 3383 preFlow(that); 3384 flow.analyzeLambda(localEnv, that, make, false); 3385 3386 final Type restype; 3387 if (that.getBodyKind() == BodyKind.STATEMENT) { 3388 if (that.canCompleteNormally) { 3389 // a lambda that completes normally has an implicit void return 3390 restypes.add(syms.voidType); 3391 } 3392 3393 boolean hasNonVoidReturn = restypes.toList() 3394 .stream().anyMatch(t -> t != syms.voidType); 3395 boolean hasVoidReturn = restypes.toList() 3396 .stream().anyMatch(t -> t == syms.voidType); 3397 3398 if (hasVoidReturn && hasNonVoidReturn) { 3399 // void vs. non-void mismatch 3400 log.error(that.body, Errors.CantInferQuotedLambdaReturnType(restypes.toList())); 3401 restype = syms.errorType; 3402 } else if (hasVoidReturn) { 3403 restype = syms.voidType; 3404 } else { 3405 restype = condType(resPositions.toList(), restypes.toList()); 3406 } 3407 } else { 3408 restype = restypes.first(); 3409 } 3410 3411 // infer lambda return type using lub 3412 if (restype.hasTag(ERROR)) { 3413 // some other error occurred 3414 log.error(that.body, Errors.CantInferQuotedLambdaReturnType(restypes.toList())); 3415 } 3416 3417 // infer thrown types 3418 List<Type> thrownTypes = flow.analyzeLambdaThrownTypes(localEnv, that, make); 3419 3420 // set up target descriptor with explicit parameter types, and inferred thrown/return types 3421 that.target = new MethodType(explicitParamTypes, restype, thrownTypes, syms.methodClass); 3422 result = that.type = pt(); 3423 } finally { 3424 localEnv.info.scope.leave(); 3425 } 3426 } 3427 //where 3428 class TargetInfo { 3429 Type target; 3430 Type descriptor; 3431 3432 public TargetInfo(Type target, Type descriptor) { 3433 this.target = target; 3434 this.descriptor = descriptor; 3435 } 3436 } 3437 3438 TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) { 3439 Type lambdaType; 3440 Type currentTarget = resultInfo.pt; 3441 if (resultInfo.pt != Type.recoveryType) { 3442 /* We need to adjust the target. If the target is an 3443 * intersection type, for example: SAM & I1 & I2 ... 3444 * the target will be updated to SAM 3445 */ 3446 currentTarget = targetChecker.visit(currentTarget, that); 3447 if (!currentTarget.isIntersection()) { 3448 if (explicitParamTypes != null) { 3449 currentTarget = infer.instantiateFunctionalInterface(that, 3450 currentTarget, explicitParamTypes, resultInfo.checkContext); 3451 } 3452 currentTarget = types.removeWildcards(currentTarget); 3453 lambdaType = types.findDescriptorType(currentTarget); 3454 } else { 3455 IntersectionClassType ict = (IntersectionClassType)currentTarget; 3456 ListBuffer<Type> components = new ListBuffer<>(); 3457 for (Type bound : ict.getExplicitComponents()) { 3458 if (explicitParamTypes != null) { 3459 try { 3460 bound = infer.instantiateFunctionalInterface(that, 3461 bound, explicitParamTypes, resultInfo.checkContext); 3462 } catch (FunctionDescriptorLookupError t) { 3463 // do nothing 3464 } 3465 } 3466 bound = types.removeWildcards(bound); 3467 components.add(bound); 3468 } 3469 currentTarget = types.makeIntersectionType(components.toList()); 3470 currentTarget.tsym.flags_field |= INTERFACE; 3471 lambdaType = types.findDescriptorType(currentTarget); 3472 } 3473 3474 } else { 3475 currentTarget = Type.recoveryType; 3476 lambdaType = fallbackDescriptorType(that); 3477 } 3478 if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) { 3479 //lambda expression target desc cannot be a generic method 3480 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType, 3481 kindName(currentTarget.tsym), 3482 currentTarget.tsym); 3483 resultInfo.checkContext.report(that, diags.fragment(msg)); 3484 currentTarget = types.createErrorType(pt()); 3485 } 3486 return new TargetInfo(currentTarget, lambdaType); 3487 } 3488 3489 void preFlow(JCLambda tree) { 3490 attrRecover.doRecovery(); 3491 new PostAttrAnalyzer() { 3492 @Override 3493 public void scan(JCTree tree) { 3494 if (tree == null || 3495 (tree.type != null && 3496 tree.type == Type.stuckType)) { 3497 //don't touch stuck expressions! 3498 return; 3499 } 3500 super.scan(tree); 3501 } 3502 3503 @Override 3504 public void visitClassDef(JCClassDecl that) { 3505 // or class declaration trees! 3506 } 3507 3508 public void visitLambda(JCLambda that) { 3509 // or lambda expressions! 3510 } 3511 }.scan(tree.body); 3512 } 3513 3514 Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() { 3515 3516 @Override 3517 public Type visitClassType(ClassType t, DiagnosticPosition pos) { 3518 return t.isIntersection() ? 3519 visitIntersectionClassType((IntersectionClassType)t, pos) : t; 3520 } 3521 3522 public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) { 3523 types.findDescriptorSymbol(makeNotionalInterface(ict, pos)); 3524 return ict; 3525 } 3526 3527 private TypeSymbol makeNotionalInterface(IntersectionClassType ict, DiagnosticPosition pos) { 3528 ListBuffer<Type> targs = new ListBuffer<>(); 3529 ListBuffer<Type> supertypes = new ListBuffer<>(); 3530 for (Type i : ict.interfaces_field) { 3531 if (i.isParameterized()) { 3532 targs.appendList(i.tsym.type.allparams()); 3533 } 3534 supertypes.append(i.tsym.type); 3535 } 3536 IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList()); 3537 notionalIntf.allparams_field = targs.toList(); 3538 notionalIntf.tsym.flags_field |= INTERFACE; 3539 return notionalIntf.tsym; 3540 } 3541 }; 3542 3543 private Type fallbackDescriptorType(JCExpression tree) { 3544 switch (tree.getTag()) { 3545 case LAMBDA: 3546 JCLambda lambda = (JCLambda)tree; 3547 List<Type> argtypes = List.nil(); 3548 for (JCVariableDecl param : lambda.params) { 3549 argtypes = param.vartype != null && param.vartype.type != null ? 3550 argtypes.append(param.vartype.type) : 3551 argtypes.append(syms.errType); 3552 } 3553 return new MethodType(argtypes, Type.recoveryType, 3554 List.of(syms.throwableType), syms.methodClass); 3555 case REFERENCE: 3556 return new MethodType(List.nil(), Type.recoveryType, 3557 List.of(syms.throwableType), syms.methodClass); 3558 default: 3559 Assert.error("Cannot get here!"); 3560 } 3561 return null; 3562 } 3563 3564 private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env, 3565 final InferenceContext inferenceContext, final Type... ts) { 3566 checkAccessibleTypes(pos, env, inferenceContext, List.from(ts)); 3567 } 3568 3569 private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env, 3570 final InferenceContext inferenceContext, final List<Type> ts) { 3571 if (inferenceContext.free(ts)) { 3572 inferenceContext.addFreeTypeListener(ts, 3573 solvedContext -> checkAccessibleTypes(pos, env, solvedContext, solvedContext.asInstTypes(ts))); 3574 } else { 3575 for (Type t : ts) { 3576 rs.checkAccessibleType(env, t); 3577 } 3578 } 3579 } 3580 3581 /** 3582 * Lambda/method reference have a special check context that ensures 3583 * that i.e. a lambda return type is compatible with the expected 3584 * type according to both the inherited context and the assignment 3585 * context. 3586 */ 3587 class FunctionalReturnContext extends Check.NestedCheckContext { 3588 3589 FunctionalReturnContext(CheckContext enclosingContext) { 3590 super(enclosingContext); 3591 } 3592 3593 @Override 3594 public boolean compatible(Type found, Type req, Warner warn) { 3595 //return type must be compatible in both current context and assignment context 3596 return chk.basicHandler.compatible(inferenceContext().asUndetVar(found), inferenceContext().asUndetVar(req), warn); 3597 } 3598 3599 @Override 3600 public void report(DiagnosticPosition pos, JCDiagnostic details) { 3601 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleRetTypeInLambda(details))); 3602 } 3603 } 3604 3605 class ExpressionLambdaReturnContext extends FunctionalReturnContext { 3606 3607 JCExpression expr; 3608 boolean expStmtExpected; 3609 3610 ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) { 3611 super(enclosingContext); 3612 this.expr = expr; 3613 } 3614 3615 @Override 3616 public void report(DiagnosticPosition pos, JCDiagnostic details) { 3617 if (expStmtExpected) { 3618 enclosingContext.report(pos, diags.fragment(Fragments.StatExprExpected)); 3619 } else { 3620 super.report(pos, details); 3621 } 3622 } 3623 3624 @Override 3625 public boolean compatible(Type found, Type req, Warner warn) { 3626 //a void return is compatible with an expression statement lambda 3627 if (req.hasTag(VOID)) { 3628 expStmtExpected = true; 3629 return TreeInfo.isExpressionStatement(expr); 3630 } else { 3631 return super.compatible(found, req, warn); 3632 } 3633 } 3634 } 3635 3636 ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) { 3637 FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ? 3638 new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) : 3639 new FunctionalReturnContext(resultInfo.checkContext); 3640 3641 return descriptor.getReturnType() == Type.recoveryType ? 3642 recoveryInfo : 3643 new ResultInfo(KindSelector.VAL, 3644 descriptor.getReturnType(), funcContext); 3645 } 3646 3647 /** 3648 * Lambda compatibility. Check that given return types, thrown types, parameter types 3649 * are compatible with the expected functional interface descriptor. This means that: 3650 * (i) parameter types must be identical to those of the target descriptor; (ii) return 3651 * types must be compatible with the return type of the expected descriptor. 3652 */ 3653 void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) { 3654 Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType()); 3655 3656 //return values have already been checked - but if lambda has no return 3657 //values, we must ensure that void/value compatibility is correct; 3658 //this amounts at checking that, if a lambda body can complete normally, 3659 //the descriptor's return type must be void 3660 if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally && 3661 !returnType.hasTag(VOID) && returnType != Type.recoveryType) { 3662 Fragment msg = 3663 Fragments.IncompatibleRetTypeInLambda(Fragments.MissingRetVal(returnType)); 3664 checkContext.report(tree, 3665 diags.fragment(msg)); 3666 } 3667 3668 List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes()); 3669 if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) { 3670 checkContext.report(tree, diags.fragment(Fragments.IncompatibleArgTypesInLambda)); 3671 } 3672 } 3673 3674 /* This method returns an environment to be used to attribute a lambda 3675 * expression. 3676 * 3677 * The owner of this environment is a method symbol. If the current owner 3678 * is not a method (e.g. if the lambda occurs in a field initializer), then 3679 * a synthetic method symbol owner is created. 3680 */ 3681 public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) { 3682 Env<AttrContext> lambdaEnv; 3683 Symbol owner = env.info.scope.owner; 3684 if (owner.kind == VAR && owner.owner.kind == TYP) { 3685 // If the lambda is nested in a field initializer, we need to create a fake init method. 3686 // Uniqueness of this symbol is not important (as e.g. annotations will be added on the 3687 // init symbol's owner). 3688 ClassSymbol enclClass = owner.enclClass(); 3689 Name initName = owner.isStatic() ? names.clinit : names.init; 3690 MethodSymbol initSym = new MethodSymbol(BLOCK | (owner.isStatic() ? STATIC : 0) | SYNTHETIC | PRIVATE, 3691 initName, initBlockType, enclClass); 3692 initSym.params = List.nil(); 3693 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(initSym))); 3694 } else { 3695 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup())); 3696 } 3697 lambdaEnv.info.yieldResult = null; 3698 lambdaEnv.info.isLambda = true; 3699 return lambdaEnv; 3700 } 3701 3702 @Override 3703 public void visitReference(final JCMemberReference that) { 3704 if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) { 3705 if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) { 3706 //method reference only allowed in assignment or method invocation/cast context 3707 log.error(that.pos(), Errors.UnexpectedMref); 3708 } 3709 result = that.type = types.createErrorType(pt()); 3710 return; 3711 } 3712 final Env<AttrContext> localEnv = env.dup(that); 3713 try { 3714 //attribute member reference qualifier - if this is a constructor 3715 //reference, the expected kind must be a type 3716 Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that)); 3717 3718 if (that.getMode() == JCMemberReference.ReferenceMode.NEW) { 3719 exprType = chk.checkConstructorRefType(that.expr, exprType); 3720 if (!exprType.isErroneous() && 3721 exprType.isRaw() && 3722 that.typeargs != null) { 3723 log.error(that.expr.pos(), 3724 Errors.InvalidMref(Kinds.kindName(that.getMode()), 3725 Fragments.MrefInferAndExplicitParams)); 3726 exprType = types.createErrorType(exprType); 3727 } 3728 } 3729 3730 if (exprType.isErroneous()) { 3731 //if the qualifier expression contains problems, 3732 //give up attribution of method reference 3733 result = that.type = exprType; 3734 return; 3735 } 3736 3737 if (TreeInfo.isStaticSelector(that.expr, names)) { 3738 //if the qualifier is a type, validate it; raw warning check is 3739 //omitted as we don't know at this stage as to whether this is a 3740 //raw selector (because of inference) 3741 chk.validate(that.expr, env, false); 3742 } else { 3743 Symbol lhsSym = TreeInfo.symbol(that.expr); 3744 localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super; 3745 } 3746 //attrib type-arguments 3747 List<Type> typeargtypes = List.nil(); 3748 if (that.typeargs != null) { 3749 typeargtypes = attribTypes(that.typeargs, localEnv); 3750 } 3751 3752 boolean isTargetSerializable = 3753 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK && 3754 rs.isSerializable(pt()); 3755 TargetInfo targetInfo = getTargetInfo(that, resultInfo, null); 3756 Type currentTarget = targetInfo.target; 3757 Type desc = targetInfo.descriptor; 3758 3759 setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext); 3760 List<Type> argtypes = desc.getParameterTypes(); 3761 Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck; 3762 3763 if (resultInfo.checkContext.inferenceContext().free(argtypes)) { 3764 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext()); 3765 } 3766 3767 Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null; 3768 List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save(); 3769 try { 3770 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type, 3771 that.name, argtypes, typeargtypes, targetInfo.descriptor, referenceCheck, 3772 resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser); 3773 } finally { 3774 resultInfo.checkContext.inferenceContext().rollback(saved_undet); 3775 } 3776 3777 Symbol refSym = refResult.fst; 3778 Resolve.ReferenceLookupHelper lookupHelper = refResult.snd; 3779 3780 /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing 3781 * JDK-8075541 3782 */ 3783 if (refSym.kind != MTH) { 3784 boolean targetError; 3785 switch (refSym.kind) { 3786 case ABSENT_MTH: 3787 targetError = false; 3788 break; 3789 case WRONG_MTH: 3790 case WRONG_MTHS: 3791 case AMBIGUOUS: 3792 case HIDDEN: 3793 case STATICERR: 3794 targetError = true; 3795 break; 3796 default: 3797 Assert.error("unexpected result kind " + refSym.kind); 3798 targetError = false; 3799 } 3800 3801 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol()) 3802 .getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT, 3803 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes); 3804 3805 JCDiagnostic diag = diags.create(log.currentSource(), that, 3806 targetError ? 3807 Fragments.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag) : 3808 Errors.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag)); 3809 3810 if (targetError && currentTarget == Type.recoveryType) { 3811 //a target error doesn't make sense during recovery stage 3812 //as we don't know what actual parameter types are 3813 result = that.type = currentTarget; 3814 return; 3815 } else { 3816 if (targetError) { 3817 resultInfo.checkContext.report(that, diag); 3818 } else { 3819 log.report(diag); 3820 } 3821 result = that.type = types.createErrorType(currentTarget); 3822 return; 3823 } 3824 } 3825 3826 that.sym = refSym.isConstructor() ? refSym.baseSymbol() : refSym; 3827 that.kind = lookupHelper.referenceKind(that.sym); 3828 that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass()); 3829 3830 if (desc.getReturnType() == Type.recoveryType) { 3831 // stop here 3832 result = that.type = currentTarget; 3833 return; 3834 } 3835 3836 if (!env.info.attributionMode.isSpeculative && that.getMode() == JCMemberReference.ReferenceMode.NEW) { 3837 checkNewInnerClass(that.pos(), env, exprType, false); 3838 } 3839 3840 if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { 3841 3842 if (that.getMode() == ReferenceMode.INVOKE && 3843 TreeInfo.isStaticSelector(that.expr, names) && 3844 that.kind.isUnbound() && 3845 lookupHelper.site.isRaw()) { 3846 chk.checkRaw(that.expr, localEnv); 3847 } 3848 3849 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) && 3850 exprType.getTypeArguments().nonEmpty()) { 3851 //static ref with class type-args 3852 log.error(that.expr.pos(), 3853 Errors.InvalidMref(Kinds.kindName(that.getMode()), 3854 Fragments.StaticMrefWithTargs)); 3855 result = that.type = types.createErrorType(currentTarget); 3856 return; 3857 } 3858 3859 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) { 3860 // Check that super-qualified symbols are not abstract (JLS) 3861 rs.checkNonAbstract(that.pos(), that.sym); 3862 } 3863 3864 if (isTargetSerializable) { 3865 chk.checkAccessFromSerializableElement(that, true); 3866 } 3867 } 3868 3869 ResultInfo checkInfo = 3870 resultInfo.dup(newMethodTemplate( 3871 desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(), 3872 that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes), 3873 new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE); 3874 3875 Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo); 3876 3877 if (that.kind.isUnbound() && 3878 resultInfo.checkContext.inferenceContext().free(argtypes.head)) { 3879 //re-generate inference constraints for unbound receiver 3880 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) { 3881 //cannot happen as this has already been checked - we just need 3882 //to regenerate the inference constraints, as that has been lost 3883 //as a result of the call to inferenceContext.save() 3884 Assert.error("Can't get here"); 3885 } 3886 } 3887 3888 if (!refType.isErroneous()) { 3889 refType = types.createMethodTypeWithReturn(refType, 3890 adjustMethodReturnType(refSym, lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType())); 3891 } 3892 3893 //go ahead with standard method reference compatibility check - note that param check 3894 //is a no-op (as this has been taken care during method applicability) 3895 boolean isSpeculativeRound = 3896 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE; 3897 3898 that.type = currentTarget; //avoids recovery at this stage 3899 checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound); 3900 if (!isSpeculativeRound) { 3901 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget); 3902 } 3903 result = check(that, currentTarget, KindSelector.VAL, resultInfo); 3904 } catch (Types.FunctionDescriptorLookupError ex) { 3905 JCDiagnostic cause = ex.getDiagnostic(); 3906 resultInfo.checkContext.report(that, cause); 3907 result = that.type = types.createErrorType(pt()); 3908 return; 3909 } 3910 } 3911 //where 3912 ResultInfo memberReferenceQualifierResult(JCMemberReference tree) { 3913 //if this is a constructor reference, the expected kind must be a type 3914 return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ? 3915 KindSelector.VAL_TYP : KindSelector.TYP, 3916 Type.noType); 3917 } 3918 3919 3920 @SuppressWarnings("fallthrough") 3921 void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) { 3922 InferenceContext inferenceContext = checkContext.inferenceContext(); 3923 Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType()); 3924 3925 Type resType; 3926 switch (tree.getMode()) { 3927 case NEW: 3928 if (!tree.expr.type.isRaw()) { 3929 resType = tree.expr.type; 3930 break; 3931 } 3932 default: 3933 resType = refType.getReturnType(); 3934 } 3935 3936 Type incompatibleReturnType = resType; 3937 3938 if (returnType.hasTag(VOID)) { 3939 incompatibleReturnType = null; 3940 } 3941 3942 if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) { 3943 if (resType.isErroneous() || 3944 new FunctionalReturnContext(checkContext).compatible(resType, returnType, 3945 checkContext.checkWarner(tree, resType, returnType))) { 3946 incompatibleReturnType = null; 3947 } 3948 } 3949 3950 if (incompatibleReturnType != null) { 3951 Fragment msg = 3952 Fragments.IncompatibleRetTypeInMref(Fragments.InconvertibleTypes(resType, descriptor.getReturnType())); 3953 checkContext.report(tree, diags.fragment(msg)); 3954 } else { 3955 if (inferenceContext.free(refType)) { 3956 // we need to wait for inference to finish and then replace inference vars in the referent type 3957 inferenceContext.addFreeTypeListener(List.of(refType), 3958 instantiatedContext -> { 3959 tree.referentType = instantiatedContext.asInstType(refType); 3960 }); 3961 } else { 3962 tree.referentType = refType; 3963 } 3964 } 3965 3966 if (!speculativeAttr) { 3967 if (!checkExConstraints(refType.getThrownTypes(), descriptor.getThrownTypes(), inferenceContext)) { 3968 log.error(tree, Errors.IncompatibleThrownTypesInMref(refType.getThrownTypes())); 3969 } 3970 } 3971 } 3972 3973 boolean checkExConstraints( 3974 List<Type> thrownByFuncExpr, 3975 List<Type> thrownAtFuncType, 3976 InferenceContext inferenceContext) { 3977 /** 18.2.5: Otherwise, let E1, ..., En be the types in the function type's throws clause that 3978 * are not proper types 3979 */ 3980 List<Type> nonProperList = thrownAtFuncType.stream() 3981 .filter(e -> inferenceContext.free(e)).collect(List.collector()); 3982 List<Type> properList = thrownAtFuncType.diff(nonProperList); 3983 3984 /** Let X1,...,Xm be the checked exception types that the lambda body can throw or 3985 * in the throws clause of the invocation type of the method reference's compile-time 3986 * declaration 3987 */ 3988 List<Type> checkedList = thrownByFuncExpr.stream() 3989 .filter(e -> chk.isChecked(e)).collect(List.collector()); 3990 3991 /** If n = 0 (the function type's throws clause consists only of proper types), then 3992 * if there exists some i (1 <= i <= m) such that Xi is not a subtype of any proper type 3993 * in the throws clause, the constraint reduces to false; otherwise, the constraint 3994 * reduces to true 3995 */ 3996 ListBuffer<Type> uncaughtByProperTypes = new ListBuffer<>(); 3997 for (Type checked : checkedList) { 3998 boolean isSubtype = false; 3999 for (Type proper : properList) { 4000 if (types.isSubtype(checked, proper)) { 4001 isSubtype = true; 4002 break; 4003 } 4004 } 4005 if (!isSubtype) { 4006 uncaughtByProperTypes.add(checked); 4007 } 4008 } 4009 4010 if (nonProperList.isEmpty() && !uncaughtByProperTypes.isEmpty()) { 4011 return false; 4012 } 4013 4014 /** If n > 0, the constraint reduces to a set of subtyping constraints: 4015 * for all i (1 <= i <= m), if Xi is not a subtype of any proper type in the 4016 * throws clause, then the constraints include, for all j (1 <= j <= n), <Xi <: Ej> 4017 */ 4018 List<Type> nonProperAsUndet = inferenceContext.asUndetVars(nonProperList); 4019 uncaughtByProperTypes.forEach(checkedEx -> { 4020 nonProperAsUndet.forEach(nonProper -> { 4021 types.isSubtype(checkedEx, nonProper); 4022 }); 4023 }); 4024 4025 /** In addition, for all j (1 <= j <= n), the constraint reduces to the bound throws Ej 4026 */ 4027 nonProperAsUndet.stream() 4028 .filter(t -> t.hasTag(UNDETVAR)) 4029 .forEach(t -> ((UndetVar)t).setThrow()); 4030 return true; 4031 } 4032 4033 /** 4034 * Set functional type info on the underlying AST. Note: as the target descriptor 4035 * might contain inference variables, we might need to register an hook in the 4036 * current inference context. 4037 */ 4038 private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr, 4039 final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) { 4040 if (checkContext.inferenceContext().free(descriptorType)) { 4041 checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType), 4042 inferenceContext -> setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType), 4043 inferenceContext.asInstType(primaryTarget), checkContext)); 4044 } else { 4045 fExpr.owner = env.info.scope.owner; 4046 if (pt.hasTag(CLASS)) { 4047 fExpr.target = primaryTarget; 4048 } 4049 if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK && 4050 pt != Type.recoveryType) { 4051 //check that functional interface class is well-formed 4052 try { 4053 /* Types.makeFunctionalInterfaceClass() may throw an exception 4054 * when it's executed post-inference. See the listener code 4055 * above. 4056 */ 4057 ClassSymbol csym = types.makeFunctionalInterfaceClass(env, 4058 names.empty, fExpr.target, ABSTRACT); 4059 if (csym != null) { 4060 chk.checkImplementations(env.tree, csym, csym); 4061 try { 4062 //perform an additional functional interface check on the synthetic class, 4063 //as there may be spurious errors for raw targets - because of existing issues 4064 //with membership and inheritance (see JDK-8074570). 4065 csym.flags_field |= INTERFACE; 4066 types.findDescriptorType(csym.type); 4067 } catch (FunctionDescriptorLookupError err) { 4068 resultInfo.checkContext.report(fExpr, 4069 diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.target))); 4070 } 4071 } 4072 } catch (Types.FunctionDescriptorLookupError ex) { 4073 JCDiagnostic cause = ex.getDiagnostic(); 4074 resultInfo.checkContext.report(env.tree, cause); 4075 } 4076 } 4077 } 4078 } 4079 4080 public void visitParens(JCParens tree) { 4081 Type owntype = attribTree(tree.expr, env, resultInfo); 4082 result = check(tree, owntype, pkind(), resultInfo); 4083 Symbol sym = TreeInfo.symbol(tree); 4084 if (sym != null && sym.kind.matches(KindSelector.TYP_PCK) && sym.kind != Kind.ERR) 4085 log.error(tree.pos(), Errors.IllegalParenthesizedExpression); 4086 } 4087 4088 public void visitAssign(JCAssign tree) { 4089 Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo); 4090 Type capturedType = capture(owntype); 4091 attribExpr(tree.rhs, env, owntype); 4092 result = check(tree, capturedType, KindSelector.VAL, resultInfo); 4093 } 4094 4095 public void visitAssignop(JCAssignOp tree) { 4096 // Attribute arguments. 4097 Type owntype = attribTree(tree.lhs, env, varAssignmentInfo); 4098 Type operand = attribExpr(tree.rhs, env); 4099 // Find operator. 4100 Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand); 4101 if (operator != operators.noOpSymbol && 4102 !owntype.isErroneous() && 4103 !operand.isErroneous()) { 4104 chk.checkDivZero(tree.rhs.pos(), operator, operand); 4105 chk.checkCastable(tree.rhs.pos(), 4106 operator.type.getReturnType(), 4107 owntype); 4108 chk.checkLossOfPrecision(tree.rhs.pos(), operand, owntype); 4109 } 4110 result = check(tree, owntype, KindSelector.VAL, resultInfo); 4111 } 4112 4113 public void visitUnary(JCUnary tree) { 4114 // Attribute arguments. 4115 Type argtype = (tree.getTag().isIncOrDecUnaryOp()) 4116 ? attribTree(tree.arg, env, varAssignmentInfo) 4117 : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env)); 4118 4119 // Find operator. 4120 OperatorSymbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype); 4121 Type owntype = types.createErrorType(tree.type); 4122 if (operator != operators.noOpSymbol && 4123 !argtype.isErroneous()) { 4124 owntype = (tree.getTag().isIncOrDecUnaryOp()) 4125 ? tree.arg.type 4126 : operator.type.getReturnType(); 4127 int opc = operator.opcode; 4128 4129 // If the argument is constant, fold it. 4130 if (argtype.constValue() != null) { 4131 Type ctype = cfolder.fold1(opc, argtype); 4132 if (ctype != null) { 4133 owntype = cfolder.coerce(ctype, owntype); 4134 } 4135 } 4136 } 4137 result = check(tree, owntype, KindSelector.VAL, resultInfo); 4138 matchBindings = matchBindingsComputer.unary(tree, matchBindings); 4139 } 4140 4141 public void visitBinary(JCBinary tree) { 4142 // Attribute arguments. 4143 Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env)); 4144 // x && y 4145 // include x's bindings when true in y 4146 4147 // x || y 4148 // include x's bindings when false in y 4149 4150 MatchBindings lhsBindings = matchBindings; 4151 List<BindingSymbol> propagatedBindings; 4152 switch (tree.getTag()) { 4153 case AND: 4154 propagatedBindings = lhsBindings.bindingsWhenTrue; 4155 break; 4156 case OR: 4157 propagatedBindings = lhsBindings.bindingsWhenFalse; 4158 break; 4159 default: 4160 propagatedBindings = List.nil(); 4161 break; 4162 } 4163 Env<AttrContext> rhsEnv = bindingEnv(env, propagatedBindings); 4164 Type right; 4165 try { 4166 right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, rhsEnv)); 4167 } finally { 4168 rhsEnv.info.scope.leave(); 4169 } 4170 4171 matchBindings = matchBindingsComputer.binary(tree, lhsBindings, matchBindings); 4172 4173 // Find operator. 4174 OperatorSymbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right); 4175 Type owntype = types.createErrorType(tree.type); 4176 if (operator != operators.noOpSymbol && 4177 !left.isErroneous() && 4178 !right.isErroneous()) { 4179 owntype = operator.type.getReturnType(); 4180 int opc = operator.opcode; 4181 // If both arguments are constants, fold them. 4182 if (left.constValue() != null && right.constValue() != null) { 4183 Type ctype = cfolder.fold2(opc, left, right); 4184 if (ctype != null) { 4185 owntype = cfolder.coerce(ctype, owntype); 4186 } 4187 } 4188 4189 // Check that argument types of a reference ==, != are 4190 // castable to each other, (JLS 15.21). Note: unboxing 4191 // comparisons will not have an acmp* opc at this point. 4192 if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) { 4193 if (!types.isCastable(left, right, new Warner(tree.pos()))) { 4194 log.error(tree.pos(), Errors.IncomparableTypes(left, right)); 4195 } 4196 } 4197 4198 chk.checkDivZero(tree.rhs.pos(), operator, right); 4199 } 4200 result = check(tree, owntype, KindSelector.VAL, resultInfo); 4201 } 4202 4203 public void visitTypeCast(final JCTypeCast tree) { 4204 Type clazztype = attribType(tree.clazz, env); 4205 chk.validate(tree.clazz, env, false); 4206 //a fresh environment is required for 292 inference to work properly --- 4207 //see Infer.instantiatePolymorphicSignatureInstance() 4208 Env<AttrContext> localEnv = env.dup(tree); 4209 //should we propagate the target type? 4210 final ResultInfo castInfo; 4211 JCExpression expr = TreeInfo.skipParens(tree.expr); 4212 boolean isPoly = (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE)); 4213 if (isPoly) { 4214 //expression is a poly - we need to propagate target type info 4215 castInfo = new ResultInfo(KindSelector.VAL, clazztype, 4216 new Check.NestedCheckContext(resultInfo.checkContext) { 4217 @Override 4218 public boolean compatible(Type found, Type req, Warner warn) { 4219 return types.isCastable(found, req, warn); 4220 } 4221 }); 4222 } else { 4223 //standalone cast - target-type info is not propagated 4224 castInfo = unknownExprInfo; 4225 } 4226 Type exprtype = attribTree(tree.expr, localEnv, castInfo); 4227 Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype); 4228 if (exprtype.constValue() != null) 4229 owntype = cfolder.coerce(exprtype, owntype); 4230 result = check(tree, capture(owntype), KindSelector.VAL, resultInfo); 4231 if (!isPoly) 4232 chk.checkRedundantCast(localEnv, tree); 4233 } 4234 4235 public void visitTypeTest(JCInstanceOf tree) { 4236 Type exprtype = attribExpr(tree.expr, env); 4237 if (exprtype.isPrimitive()) { 4238 preview.checkSourceLevel(tree.expr.pos(), Feature.PRIMITIVE_PATTERNS); 4239 } else { 4240 exprtype = chk.checkNullOrRefType( 4241 tree.expr.pos(), exprtype); 4242 } 4243 Type clazztype; 4244 JCTree typeTree; 4245 if (tree.pattern.getTag() == BINDINGPATTERN || 4246 tree.pattern.getTag() == RECORDPATTERN) { 4247 attribExpr(tree.pattern, env, exprtype); 4248 clazztype = tree.pattern.type; 4249 if (types.isSubtype(exprtype, clazztype) && 4250 !exprtype.isErroneous() && !clazztype.isErroneous() && 4251 tree.pattern.getTag() != RECORDPATTERN) { 4252 if (!allowUnconditionalPatternsInstanceOf) { 4253 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(), 4254 Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.error(this.sourceName)); 4255 } 4256 } 4257 typeTree = TreeInfo.primaryPatternTypeTree((JCPattern) tree.pattern); 4258 } else { 4259 clazztype = attribType(tree.pattern, env); 4260 typeTree = tree.pattern; 4261 chk.validate(typeTree, env, false); 4262 } 4263 if (clazztype.isPrimitive()) { 4264 preview.checkSourceLevel(tree.pattern.pos(), Feature.PRIMITIVE_PATTERNS); 4265 } else { 4266 if (!clazztype.hasTag(TYPEVAR)) { 4267 clazztype = chk.checkClassOrArrayType(typeTree.pos(), clazztype); 4268 } 4269 if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) { 4270 boolean valid = false; 4271 if (allowReifiableTypesInInstanceof) { 4272 valid = checkCastablePattern(tree.expr.pos(), exprtype, clazztype); 4273 } else { 4274 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(), 4275 Feature.REIFIABLE_TYPES_INSTANCEOF.error(this.sourceName)); 4276 allowReifiableTypesInInstanceof = true; 4277 } 4278 if (!valid) { 4279 clazztype = types.createErrorType(clazztype); 4280 } 4281 } 4282 } 4283 chk.checkCastable(tree.expr.pos(), exprtype, clazztype); 4284 result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo); 4285 } 4286 4287 private boolean checkCastablePattern(DiagnosticPosition pos, 4288 Type exprType, 4289 Type pattType) { 4290 Warner warner = new Warner(); 4291 // if any type is erroneous, the problem is reported elsewhere 4292 if (exprType.isErroneous() || pattType.isErroneous()) { 4293 return false; 4294 } 4295 if (!types.isCastable(exprType, pattType, warner)) { 4296 chk.basicHandler.report(pos, 4297 diags.fragment(Fragments.InconvertibleTypes(exprType, pattType))); 4298 return false; 4299 } else if ((exprType.isPrimitive() || pattType.isPrimitive()) && 4300 (!exprType.isPrimitive() || !pattType.isPrimitive() || !types.isSameType(exprType, pattType))) { 4301 preview.checkSourceLevel(pos, Feature.PRIMITIVE_PATTERNS); 4302 return true; 4303 } else if (warner.hasLint(LintCategory.UNCHECKED)) { 4304 log.error(pos, 4305 Errors.InstanceofReifiableNotSafe(exprType, pattType)); 4306 return false; 4307 } else { 4308 return true; 4309 } 4310 } 4311 4312 @Override 4313 public void visitAnyPattern(JCAnyPattern tree) { 4314 result = tree.type = resultInfo.pt; 4315 } 4316 4317 public void visitBindingPattern(JCBindingPattern tree) { 4318 Type type; 4319 if (tree.var.vartype != null) { 4320 type = attribType(tree.var.vartype, env); 4321 } else { 4322 type = resultInfo.pt; 4323 } 4324 tree.type = tree.var.type = type; 4325 BindingSymbol v = new BindingSymbol(tree.var.mods.flags, tree.var.name, type, env.info.scope.owner); 4326 v.pos = tree.pos; 4327 tree.var.sym = v; 4328 if (chk.checkUnique(tree.var.pos(), v, env.info.scope)) { 4329 chk.checkTransparentVar(tree.var.pos(), v, env.info.scope); 4330 } 4331 chk.validate(tree.var.vartype, env, true); 4332 if (tree.var.isImplicitlyTyped()) { 4333 setSyntheticVariableType(tree.var, type == Type.noType ? syms.errType 4334 : type); 4335 } 4336 annotate.annotateLater(tree.var.mods.annotations, env, v, tree.var); 4337 if (!tree.var.isImplicitlyTyped()) { 4338 annotate.queueScanTreeAndTypeAnnotate(tree.var.vartype, env, v, tree.var); 4339 } 4340 annotate.flush(); 4341 result = tree.type; 4342 if (v.isUnnamedVariable()) { 4343 matchBindings = MatchBindingsComputer.EMPTY; 4344 } else { 4345 matchBindings = new MatchBindings(List.of(v), List.nil()); 4346 } 4347 } 4348 4349 @Override 4350 public void visitRecordPattern(JCRecordPattern tree) { 4351 Type site; 4352 4353 if (tree.deconstructor == null) { 4354 log.error(tree.pos(), Errors.DeconstructionPatternVarNotAllowed); 4355 tree.record = syms.errSymbol; 4356 site = tree.type = types.createErrorType(tree.record.type); 4357 } else { 4358 Type type = attribType(tree.deconstructor, env); 4359 if (type.isRaw() && type.tsym.getTypeParameters().nonEmpty()) { 4360 Type inferred = infer.instantiatePatternType(resultInfo.pt, type.tsym); 4361 if (inferred == null) { 4362 log.error(tree.pos(), Errors.PatternTypeCannotInfer); 4363 } else { 4364 type = inferred; 4365 } 4366 } 4367 tree.type = tree.deconstructor.type = type; 4368 site = types.capture(tree.type); 4369 } 4370 4371 List<Type> expectedRecordTypes; 4372 if (site.tsym.kind == Kind.TYP && ((ClassSymbol) site.tsym).isRecord()) { 4373 ClassSymbol record = (ClassSymbol) site.tsym; 4374 expectedRecordTypes = record.getRecordComponents() 4375 .stream() 4376 .map(rc -> types.memberType(site, rc)) 4377 .map(t -> types.upward(t, types.captures(t)).baseType()) 4378 .collect(List.collector()); 4379 tree.record = record; 4380 } else { 4381 log.error(tree.pos(), Errors.DeconstructionPatternOnlyRecords(site.tsym)); 4382 expectedRecordTypes = Stream.generate(() -> types.createErrorType(tree.type)) 4383 .limit(tree.nested.size()) 4384 .collect(List.collector()); 4385 tree.record = syms.errSymbol; 4386 } 4387 ListBuffer<BindingSymbol> outBindings = new ListBuffer<>(); 4388 List<Type> recordTypes = expectedRecordTypes; 4389 List<JCPattern> nestedPatterns = tree.nested; 4390 Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup())); 4391 try { 4392 while (recordTypes.nonEmpty() && nestedPatterns.nonEmpty()) { 4393 attribExpr(nestedPatterns.head, localEnv, recordTypes.head); 4394 checkCastablePattern(nestedPatterns.head.pos(), recordTypes.head, nestedPatterns.head.type); 4395 outBindings.addAll(matchBindings.bindingsWhenTrue); 4396 matchBindings.bindingsWhenTrue.forEach(localEnv.info.scope::enter); 4397 nestedPatterns = nestedPatterns.tail; 4398 recordTypes = recordTypes.tail; 4399 } 4400 if (recordTypes.nonEmpty() || nestedPatterns.nonEmpty()) { 4401 while (nestedPatterns.nonEmpty()) { 4402 attribExpr(nestedPatterns.head, localEnv, Type.noType); 4403 nestedPatterns = nestedPatterns.tail; 4404 } 4405 List<Type> nestedTypes = 4406 tree.nested.stream().map(p -> p.type).collect(List.collector()); 4407 log.error(tree.pos(), 4408 Errors.IncorrectNumberOfNestedPatterns(expectedRecordTypes, 4409 nestedTypes)); 4410 } 4411 } finally { 4412 localEnv.info.scope.leave(); 4413 } 4414 chk.validate(tree.deconstructor, env, true); 4415 result = tree.type; 4416 matchBindings = new MatchBindings(outBindings.toList(), List.nil()); 4417 } 4418 4419 public void visitIndexed(JCArrayAccess tree) { 4420 Type owntype = types.createErrorType(tree.type); 4421 Type atype = attribExpr(tree.indexed, env); 4422 attribExpr(tree.index, env, syms.intType); 4423 if (types.isArray(atype)) 4424 owntype = types.elemtype(atype); 4425 else if (!atype.hasTag(ERROR)) 4426 log.error(tree.pos(), Errors.ArrayReqButFound(atype)); 4427 if (!pkind().contains(KindSelector.VAL)) 4428 owntype = capture(owntype); 4429 result = check(tree, owntype, KindSelector.VAR, resultInfo); 4430 } 4431 4432 public void visitIdent(JCIdent tree) { 4433 Symbol sym; 4434 4435 // Find symbol 4436 if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) { 4437 // If we are looking for a method, the prototype `pt' will be a 4438 // method type with the type of the call's arguments as parameters. 4439 env.info.pendingResolutionPhase = null; 4440 sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments()); 4441 } else if (tree.sym != null && tree.sym.kind != VAR) { 4442 sym = tree.sym; 4443 } else { 4444 sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind()); 4445 } 4446 tree.sym = sym; 4447 4448 // Also find the environment current for the class where 4449 // sym is defined (`symEnv'). 4450 Env<AttrContext> symEnv = env; 4451 if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class 4452 sym.kind.matches(KindSelector.VAL_MTH) && 4453 sym.owner.kind == TYP && 4454 tree.name != names._this && tree.name != names._super) { 4455 4456 // Find environment in which identifier is defined. 4457 while (symEnv.outer != null && 4458 !sym.isMemberOf(symEnv.enclClass.sym, types)) { 4459 symEnv = symEnv.outer; 4460 } 4461 } 4462 4463 // If symbol is a variable, ... 4464 if (sym.kind == VAR) { 4465 VarSymbol v = (VarSymbol)sym; 4466 4467 // ..., evaluate its initializer, if it has one, and check for 4468 // illegal forward reference. 4469 checkInit(tree, env, v, false); 4470 4471 // If we are expecting a variable (as opposed to a value), check 4472 // that the variable is assignable in the current environment. 4473 if (KindSelector.ASG.subset(pkind())) 4474 checkAssignable(tree.pos(), v, null, env); 4475 } 4476 4477 Env<AttrContext> env1 = env; 4478 if (sym.kind != ERR && sym.kind != TYP && 4479 sym.owner != null && sym.owner != env1.enclClass.sym) { 4480 // If the found symbol is inaccessible, then it is 4481 // accessed through an enclosing instance. Locate this 4482 // enclosing instance: 4483 while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym)) 4484 env1 = env1.outer; 4485 } 4486 4487 if (env.info.isSerializable) { 4488 chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda); 4489 } 4490 4491 result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo); 4492 } 4493 4494 public void visitSelect(JCFieldAccess tree) { 4495 // Determine the expected kind of the qualifier expression. 4496 KindSelector skind = KindSelector.NIL; 4497 if (tree.name == names._this || tree.name == names._super || 4498 tree.name == names._class) 4499 { 4500 skind = KindSelector.TYP; 4501 } else { 4502 if (pkind().contains(KindSelector.PCK)) 4503 skind = KindSelector.of(skind, KindSelector.PCK); 4504 if (pkind().contains(KindSelector.TYP)) 4505 skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK); 4506 if (pkind().contains(KindSelector.VAL_MTH)) 4507 skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP); 4508 } 4509 4510 // Attribute the qualifier expression, and determine its symbol (if any). 4511 Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType)); 4512 if (!pkind().contains(KindSelector.TYP_PCK)) 4513 site = capture(site); // Capture field access 4514 4515 // don't allow T.class T[].class, etc 4516 if (skind == KindSelector.TYP) { 4517 Type elt = site; 4518 while (elt.hasTag(ARRAY)) 4519 elt = ((ArrayType)elt).elemtype; 4520 if (elt.hasTag(TYPEVAR)) { 4521 log.error(tree.pos(), Errors.TypeVarCantBeDeref); 4522 result = tree.type = types.createErrorType(tree.name, site.tsym, site); 4523 tree.sym = tree.type.tsym; 4524 return ; 4525 } 4526 } 4527 4528 // If qualifier symbol is a type or `super', assert `selectSuper' 4529 // for the selection. This is relevant for determining whether 4530 // protected symbols are accessible. 4531 Symbol sitesym = TreeInfo.symbol(tree.selected); 4532 boolean selectSuperPrev = env.info.selectSuper; 4533 env.info.selectSuper = 4534 sitesym != null && 4535 sitesym.name == names._super; 4536 4537 // Determine the symbol represented by the selection. 4538 env.info.pendingResolutionPhase = null; 4539 Symbol sym = selectSym(tree, sitesym, site, env, resultInfo); 4540 if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) { 4541 log.error(tree.selected.pos(), Errors.NotEnclClass(site.tsym)); 4542 sym = syms.errSymbol; 4543 } 4544 if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) { 4545 site = capture(site); 4546 sym = selectSym(tree, sitesym, site, env, resultInfo); 4547 } 4548 boolean varArgs = env.info.lastResolveVarargs(); 4549 tree.sym = sym; 4550 4551 if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) { 4552 site = types.skipTypeVars(site, true); 4553 } 4554 4555 // If that symbol is a variable, ... 4556 if (sym.kind == VAR) { 4557 VarSymbol v = (VarSymbol)sym; 4558 4559 // ..., evaluate its initializer, if it has one, and check for 4560 // illegal forward reference. 4561 checkInit(tree, env, v, true); 4562 4563 // If we are expecting a variable (as opposed to a value), check 4564 // that the variable is assignable in the current environment. 4565 if (KindSelector.ASG.subset(pkind())) 4566 checkAssignable(tree.pos(), v, tree.selected, env); 4567 } 4568 4569 if (sitesym != null && 4570 sitesym.kind == VAR && 4571 ((VarSymbol)sitesym).isResourceVariable() && 4572 sym.kind == MTH && 4573 sym.name.equals(names.close) && 4574 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true)) { 4575 env.info.lint.logIfEnabled(tree, LintWarnings.TryExplicitCloseCall); 4576 } 4577 4578 // Disallow selecting a type from an expression 4579 if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) { 4580 tree.type = check(tree.selected, pt(), 4581 sitesym == null ? 4582 KindSelector.VAL : sitesym.kind.toSelector(), 4583 new ResultInfo(KindSelector.TYP_PCK, pt())); 4584 } 4585 4586 if (isType(sitesym)) { 4587 if (sym.name != names._this && sym.name != names._super) { 4588 // Check if type-qualified fields or methods are static (JLS) 4589 if ((sym.flags() & STATIC) == 0 && 4590 sym.name != names._super && 4591 (sym.kind == VAR || sym.kind == MTH)) { 4592 rs.accessBase(rs.new StaticError(sym), 4593 tree.pos(), site, sym.name, true); 4594 } 4595 } 4596 } else if (sym.kind != ERR && 4597 (sym.flags() & STATIC) != 0 && 4598 sym.name != names._class) { 4599 // If the qualified item is not a type and the selected item is static, report 4600 // a warning. Make allowance for the class of an array type e.g. Object[].class) 4601 if (!sym.owner.isAnonymous()) { 4602 chk.lint.logIfEnabled(tree, LintWarnings.StaticNotQualifiedByType(sym.kind.kindName(), sym.owner)); 4603 } else { 4604 chk.lint.logIfEnabled(tree, LintWarnings.StaticNotQualifiedByType2(sym.kind.kindName())); 4605 } 4606 } 4607 4608 // If we are selecting an instance member via a `super', ... 4609 if (env.info.selectSuper && (sym.flags() & STATIC) == 0) { 4610 4611 // Check that super-qualified symbols are not abstract (JLS) 4612 rs.checkNonAbstract(tree.pos(), sym); 4613 4614 if (site.isRaw()) { 4615 // Determine argument types for site. 4616 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym); 4617 if (site1 != null) site = site1; 4618 } 4619 } 4620 4621 if (env.info.isSerializable) { 4622 chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda); 4623 } 4624 4625 env.info.selectSuper = selectSuperPrev; 4626 result = checkId(tree, site, sym, env, resultInfo); 4627 } 4628 //where 4629 /** Determine symbol referenced by a Select expression, 4630 * 4631 * @param tree The select tree. 4632 * @param site The type of the selected expression, 4633 * @param env The current environment. 4634 * @param resultInfo The current result. 4635 */ 4636 private Symbol selectSym(JCFieldAccess tree, 4637 Symbol location, 4638 Type site, 4639 Env<AttrContext> env, 4640 ResultInfo resultInfo) { 4641 DiagnosticPosition pos = tree.pos(); 4642 Name name = tree.name; 4643 switch (site.getTag()) { 4644 case PACKAGE: 4645 return rs.accessBase( 4646 rs.findIdentInPackage(pos, env, site.tsym, name, resultInfo.pkind), 4647 pos, location, site, name, true); 4648 case ARRAY: 4649 case CLASS: 4650 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) { 4651 return rs.resolveQualifiedMethod( 4652 pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments()); 4653 } else if (name == names._this || name == names._super) { 4654 return rs.resolveSelf(pos, env, site.tsym, name); 4655 } else if (name == names._class) { 4656 // In this case, we have already made sure in 4657 // visitSelect that qualifier expression is a type. 4658 return syms.getClassField(site, types); 4659 } else { 4660 // We are seeing a plain identifier as selector. 4661 Symbol sym = rs.findIdentInType(pos, env, site, name, resultInfo.pkind); 4662 sym = rs.accessBase(sym, pos, location, site, name, true); 4663 return sym; 4664 } 4665 case WILDCARD: 4666 throw new AssertionError(tree); 4667 case TYPEVAR: 4668 // Normally, site.getUpperBound() shouldn't be null. 4669 // It should only happen during memberEnter/attribBase 4670 // when determining the supertype which *must* be 4671 // done before attributing the type variables. In 4672 // other words, we are seeing this illegal program: 4673 // class B<T> extends A<T.foo> {} 4674 Symbol sym = (site.getUpperBound() != null) 4675 ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo) 4676 : null; 4677 if (sym == null) { 4678 log.error(pos, Errors.TypeVarCantBeDeref); 4679 return syms.errSymbol; 4680 } else { 4681 Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ? 4682 rs.new AccessError(env, site, sym) : 4683 sym; 4684 rs.accessBase(sym2, pos, location, site, name, true); 4685 return sym; 4686 } 4687 case ERROR: 4688 // preserve identifier names through errors 4689 return types.createErrorType(name, site.tsym, site).tsym; 4690 default: 4691 // The qualifier expression is of a primitive type -- only 4692 // .class is allowed for these. 4693 if (name == names._class) { 4694 // In this case, we have already made sure in Select that 4695 // qualifier expression is a type. 4696 return syms.getClassField(site, types); 4697 } else { 4698 log.error(pos, Errors.CantDeref(site)); 4699 return syms.errSymbol; 4700 } 4701 } 4702 } 4703 4704 /** Determine type of identifier or select expression and check that 4705 * (1) the referenced symbol is not deprecated 4706 * (2) the symbol's type is safe (@see checkSafe) 4707 * (3) if symbol is a variable, check that its type and kind are 4708 * compatible with the prototype and protokind. 4709 * (4) if symbol is an instance field of a raw type, 4710 * which is being assigned to, issue an unchecked warning if its 4711 * type changes under erasure. 4712 * (5) if symbol is an instance method of a raw type, issue an 4713 * unchecked warning if its argument types change under erasure. 4714 * If checks succeed: 4715 * If symbol is a constant, return its constant type 4716 * else if symbol is a method, return its result type 4717 * otherwise return its type. 4718 * Otherwise return errType. 4719 * 4720 * @param tree The syntax tree representing the identifier 4721 * @param site If this is a select, the type of the selected 4722 * expression, otherwise the type of the current class. 4723 * @param sym The symbol representing the identifier. 4724 * @param env The current environment. 4725 * @param resultInfo The expected result 4726 */ 4727 Type checkId(JCTree tree, 4728 Type site, 4729 Symbol sym, 4730 Env<AttrContext> env, 4731 ResultInfo resultInfo) { 4732 return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ? 4733 checkMethodIdInternal(tree, site, sym, env, resultInfo) : 4734 checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo); 4735 } 4736 4737 Type checkMethodIdInternal(JCTree tree, 4738 Type site, 4739 Symbol sym, 4740 Env<AttrContext> env, 4741 ResultInfo resultInfo) { 4742 if (resultInfo.pkind.contains(KindSelector.POLY)) { 4743 return attrRecover.recoverMethodInvocation(tree, site, sym, env, resultInfo); 4744 } else { 4745 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo); 4746 } 4747 } 4748 4749 Type checkIdInternal(JCTree tree, 4750 Type site, 4751 Symbol sym, 4752 Type pt, 4753 Env<AttrContext> env, 4754 ResultInfo resultInfo) { 4755 Type owntype; // The computed type of this identifier occurrence. 4756 switch (sym.kind) { 4757 case TYP: 4758 // For types, the computed type equals the symbol's type, 4759 // except for two situations: 4760 owntype = sym.type; 4761 if (owntype.hasTag(CLASS)) { 4762 chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym); 4763 Type ownOuter = owntype.getEnclosingType(); 4764 4765 // (a) If the symbol's type is parameterized, erase it 4766 // because no type parameters were given. 4767 // We recover generic outer type later in visitTypeApply. 4768 if (owntype.tsym.type.getTypeArguments().nonEmpty()) { 4769 owntype = types.erasure(owntype); 4770 } 4771 4772 // (b) If the symbol's type is an inner class, then 4773 // we have to interpret its outer type as a superclass 4774 // of the site type. Example: 4775 // 4776 // class Tree<A> { class Visitor { ... } } 4777 // class PointTree extends Tree<Point> { ... } 4778 // ...PointTree.Visitor... 4779 // 4780 // Then the type of the last expression above is 4781 // Tree<Point>.Visitor. 4782 else if (ownOuter.hasTag(CLASS) && site != ownOuter) { 4783 Type normOuter = site; 4784 if (normOuter.hasTag(CLASS)) { 4785 normOuter = types.asEnclosingSuper(site, ownOuter.tsym); 4786 } 4787 if (normOuter == null) // perhaps from an import 4788 normOuter = types.erasure(ownOuter); 4789 if (normOuter != ownOuter) 4790 owntype = new ClassType( 4791 normOuter, List.nil(), owntype.tsym, 4792 owntype.getMetadata()); 4793 } 4794 } 4795 break; 4796 case VAR: 4797 VarSymbol v = (VarSymbol)sym; 4798 4799 if (env.info.enclVar != null 4800 && v.type.hasTag(NONE)) { 4801 //self reference to implicitly typed variable declaration 4802 log.error(TreeInfo.positionFor(v, env.enclClass), Errors.CantInferLocalVarType(v.name, Fragments.LocalSelfRef)); 4803 return tree.type = v.type = types.createErrorType(v.type); 4804 } 4805 4806 // Test (4): if symbol is an instance field of a raw type, 4807 // which is being assigned to, issue an unchecked warning if 4808 // its type changes under erasure. 4809 if (KindSelector.ASG.subset(pkind()) && 4810 v.owner.kind == TYP && 4811 (v.flags() & STATIC) == 0 && 4812 (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) { 4813 Type s = types.asOuterSuper(site, v.owner); 4814 if (s != null && 4815 s.isRaw() && 4816 !types.isSameType(v.type, v.erasure(types))) { 4817 chk.warnUnchecked(tree.pos(), LintWarnings.UncheckedAssignToVar(v, s)); 4818 } 4819 } 4820 // The computed type of a variable is the type of the 4821 // variable symbol, taken as a member of the site type. 4822 owntype = (sym.owner.kind == TYP && 4823 sym.name != names._this && sym.name != names._super) 4824 ? types.memberType(site, sym) 4825 : sym.type; 4826 4827 // If the variable is a constant, record constant value in 4828 // computed type. 4829 if (v.getConstValue() != null && isStaticReference(tree)) 4830 owntype = owntype.constType(v.getConstValue()); 4831 4832 if (resultInfo.pkind == KindSelector.VAL) { 4833 owntype = capture(owntype); // capture "names as expressions" 4834 } 4835 break; 4836 case MTH: { 4837 owntype = checkMethod(site, sym, 4838 new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext, resultInfo.checkMode), 4839 env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(), 4840 resultInfo.pt.getTypeArguments()); 4841 chk.checkRestricted(tree.pos(), sym); 4842 break; 4843 } 4844 case PCK: case ERR: 4845 owntype = sym.type; 4846 break; 4847 default: 4848 throw new AssertionError("unexpected kind: " + sym.kind + 4849 " in tree " + tree); 4850 } 4851 4852 // Emit a `deprecation' warning if symbol is deprecated. 4853 // (for constructors (but not for constructor references), the error 4854 // was given when the constructor was resolved) 4855 4856 if (sym.name != names.init || tree.hasTag(REFERENCE)) { 4857 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym); 4858 chk.checkSunAPI(tree.pos(), sym); 4859 chk.checkProfile(tree.pos(), sym); 4860 chk.checkPreview(tree.pos(), env.info.scope.owner, site, sym); 4861 } 4862 4863 if (pt.isErroneous()) { 4864 owntype = types.createErrorType(owntype); 4865 } 4866 4867 // If symbol is a variable, check that its type and 4868 // kind are compatible with the prototype and protokind. 4869 return check(tree, owntype, sym.kind.toSelector(), resultInfo); 4870 } 4871 4872 /** Check that variable is initialized and evaluate the variable's 4873 * initializer, if not yet done. Also check that variable is not 4874 * referenced before it is defined. 4875 * @param tree The tree making up the variable reference. 4876 * @param env The current environment. 4877 * @param v The variable's symbol. 4878 */ 4879 private void checkInit(JCTree tree, 4880 Env<AttrContext> env, 4881 VarSymbol v, 4882 boolean onlyWarning) { 4883 // A forward reference is diagnosed if the declaration position 4884 // of the variable is greater than the current tree position 4885 // and the tree and variable definition occur in the same class 4886 // definition. Note that writes don't count as references. 4887 // This check applies only to class and instance 4888 // variables. Local variables follow different scope rules, 4889 // and are subject to definite assignment checking. 4890 Env<AttrContext> initEnv = enclosingInitEnv(env); 4891 if (initEnv != null && 4892 (initEnv.info.enclVar == v || v.pos > tree.pos) && 4893 v.owner.kind == TYP && 4894 v.owner == env.info.scope.owner.enclClass() && 4895 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) && 4896 (!env.tree.hasTag(ASSIGN) || 4897 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) { 4898 if (!onlyWarning || isStaticEnumField(v)) { 4899 Error errkey = (initEnv.info.enclVar == v) ? 4900 Errors.IllegalSelfRef : Errors.IllegalForwardRef; 4901 log.error(tree.pos(), errkey); 4902 } else if (useBeforeDeclarationWarning) { 4903 Warning warnkey = (initEnv.info.enclVar == v) ? 4904 Warnings.SelfRef(v) : Warnings.ForwardRef(v); 4905 log.warning(tree.pos(), warnkey); 4906 } 4907 } 4908 4909 v.getConstValue(); // ensure initializer is evaluated 4910 4911 checkEnumInitializer(tree, env, v); 4912 } 4913 4914 /** 4915 * Returns the enclosing init environment associated with this env (if any). An init env 4916 * can be either a field declaration env or a static/instance initializer env. 4917 */ 4918 Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) { 4919 while (true) { 4920 switch (env.tree.getTag()) { 4921 case VARDEF: 4922 JCVariableDecl vdecl = (JCVariableDecl)env.tree; 4923 if (vdecl.sym.owner.kind == TYP) { 4924 //field 4925 return env; 4926 } 4927 break; 4928 case BLOCK: 4929 if (env.next.tree.hasTag(CLASSDEF)) { 4930 //instance/static initializer 4931 return env; 4932 } 4933 break; 4934 case METHODDEF: 4935 case CLASSDEF: 4936 case TOPLEVEL: 4937 return null; 4938 } 4939 Assert.checkNonNull(env.next); 4940 env = env.next; 4941 } 4942 } 4943 4944 /** 4945 * Check for illegal references to static members of enum. In 4946 * an enum type, constructors and initializers may not 4947 * reference its static members unless they are constant. 4948 * 4949 * @param tree The tree making up the variable reference. 4950 * @param env The current environment. 4951 * @param v The variable's symbol. 4952 * @jls 8.9 Enum Types 4953 */ 4954 private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) { 4955 // JLS: 4956 // 4957 // "It is a compile-time error to reference a static field 4958 // of an enum type that is not a compile-time constant 4959 // (15.28) from constructors, instance initializer blocks, 4960 // or instance variable initializer expressions of that 4961 // type. It is a compile-time error for the constructors, 4962 // instance initializer blocks, or instance variable 4963 // initializer expressions of an enum constant e to refer 4964 // to itself or to an enum constant of the same type that 4965 // is declared to the right of e." 4966 if (isStaticEnumField(v)) { 4967 ClassSymbol enclClass = env.info.scope.owner.enclClass(); 4968 4969 if (enclClass == null || enclClass.owner == null) 4970 return; 4971 4972 // See if the enclosing class is the enum (or a 4973 // subclass thereof) declaring v. If not, this 4974 // reference is OK. 4975 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type)) 4976 return; 4977 4978 // If the reference isn't from an initializer, then 4979 // the reference is OK. 4980 if (!Resolve.isInitializer(env)) 4981 return; 4982 4983 log.error(tree.pos(), Errors.IllegalEnumStaticRef); 4984 } 4985 } 4986 4987 /** Is the given symbol a static, non-constant field of an Enum? 4988 * Note: enum literals should not be regarded as such 4989 */ 4990 private boolean isStaticEnumField(VarSymbol v) { 4991 return Flags.isEnum(v.owner) && 4992 Flags.isStatic(v) && 4993 !Flags.isConstant(v) && 4994 v.name != names._class; 4995 } 4996 4997 /** 4998 * Check that method arguments conform to its instantiation. 4999 **/ 5000 public Type checkMethod(Type site, 5001 final Symbol sym, 5002 ResultInfo resultInfo, 5003 Env<AttrContext> env, 5004 final List<JCExpression> argtrees, 5005 List<Type> argtypes, 5006 List<Type> typeargtypes) { 5007 // Test (5): if symbol is an instance method of a raw type, issue 5008 // an unchecked warning if its argument types change under erasure. 5009 if ((sym.flags() & STATIC) == 0 && 5010 (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) { 5011 Type s = types.asOuterSuper(site, sym.owner); 5012 if (s != null && s.isRaw() && 5013 !types.isSameTypes(sym.type.getParameterTypes(), 5014 sym.erasure(types).getParameterTypes())) { 5015 chk.warnUnchecked(env.tree.pos(), LintWarnings.UncheckedCallMbrOfRawType(sym, s)); 5016 } 5017 } 5018 5019 if (env.info.defaultSuperCallSite != null) { 5020 for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) { 5021 if (!sup.tsym.isSubClass(sym.enclClass(), types) || 5022 types.isSameType(sup, env.info.defaultSuperCallSite)) continue; 5023 List<MethodSymbol> icand_sup = 5024 types.interfaceCandidates(sup, (MethodSymbol)sym); 5025 if (icand_sup.nonEmpty() && 5026 icand_sup.head != sym && 5027 icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) { 5028 log.error(env.tree.pos(), 5029 Errors.IllegalDefaultSuperCall(env.info.defaultSuperCallSite, Fragments.OverriddenDefault(sym, sup))); 5030 break; 5031 } 5032 } 5033 env.info.defaultSuperCallSite = null; 5034 } 5035 5036 if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) { 5037 JCMethodInvocation app = (JCMethodInvocation)env.tree; 5038 if (app.meth.hasTag(SELECT) && 5039 !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) { 5040 log.error(env.tree.pos(), Errors.IllegalStaticIntfMethCall(site)); 5041 } 5042 } 5043 5044 // Compute the identifier's instantiated type. 5045 // For methods, we need to compute the instance type by 5046 // Resolve.instantiate from the symbol's type as well as 5047 // any type arguments and value arguments. 5048 Warner noteWarner = new Warner(); 5049 try { 5050 Type owntype = rs.checkMethod( 5051 env, 5052 site, 5053 sym, 5054 resultInfo, 5055 argtypes, 5056 typeargtypes, 5057 noteWarner); 5058 5059 DeferredAttr.DeferredTypeMap<Void> checkDeferredMap = 5060 deferredAttr.new DeferredTypeMap<>(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase); 5061 5062 argtypes = argtypes.map(checkDeferredMap); 5063 5064 if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) { 5065 chk.warnUnchecked(env.tree.pos(), LintWarnings.UncheckedMethInvocationApplied(kindName(sym), 5066 sym.name, 5067 rs.methodArguments(sym.type.getParameterTypes()), 5068 rs.methodArguments(argtypes.map(checkDeferredMap)), 5069 kindName(sym.location()), 5070 sym.location())); 5071 if (resultInfo.pt != Infer.anyPoly || 5072 !owntype.hasTag(METHOD) || 5073 !owntype.isPartial()) { 5074 //if this is not a partially inferred method type, erase return type. Otherwise, 5075 //erasure is carried out in PartiallyInferredMethodType.check(). 5076 owntype = new MethodType(owntype.getParameterTypes(), 5077 types.erasure(owntype.getReturnType()), 5078 types.erasure(owntype.getThrownTypes()), 5079 syms.methodClass); 5080 } 5081 } 5082 5083 PolyKind pkind = (sym.type.hasTag(FORALL) && 5084 sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ? 5085 PolyKind.POLY : PolyKind.STANDALONE; 5086 TreeInfo.setPolyKind(env.tree, pkind); 5087 5088 return (resultInfo.pt == Infer.anyPoly) ? 5089 owntype : 5090 chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(), 5091 resultInfo.checkContext.inferenceContext()); 5092 } catch (Infer.InferenceException ex) { 5093 //invalid target type - propagate exception outwards or report error 5094 //depending on the current check context 5095 resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic()); 5096 return types.createErrorType(site); 5097 } catch (Resolve.InapplicableMethodException ex) { 5098 final JCDiagnostic diag = ex.getDiagnostic(); 5099 Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) { 5100 @Override 5101 protected Pair<Symbol, JCDiagnostic> errCandidate() { 5102 return new Pair<>(sym, diag); 5103 } 5104 }; 5105 List<Type> argtypes2 = argtypes.map( 5106 rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase)); 5107 JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR, 5108 env.tree, sym, site, sym.name, argtypes2, typeargtypes); 5109 log.report(errDiag); 5110 return types.createErrorType(site); 5111 } 5112 } 5113 5114 public void visitLiteral(JCLiteral tree) { 5115 result = check(tree, litType(tree.typetag).constType(tree.value), 5116 KindSelector.VAL, resultInfo); 5117 } 5118 //where 5119 /** Return the type of a literal with given type tag. 5120 */ 5121 Type litType(TypeTag tag) { 5122 return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()]; 5123 } 5124 5125 public void visitTypeIdent(JCPrimitiveTypeTree tree) { 5126 result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo); 5127 } 5128 5129 public void visitTypeArray(JCArrayTypeTree tree) { 5130 Type etype = attribType(tree.elemtype, env); 5131 Type type = new ArrayType(etype, syms.arrayClass); 5132 result = check(tree, type, KindSelector.TYP, resultInfo); 5133 } 5134 5135 /** Visitor method for parameterized types. 5136 * Bound checking is left until later, since types are attributed 5137 * before supertype structure is completely known 5138 */ 5139 public void visitTypeApply(JCTypeApply tree) { 5140 Type owntype = types.createErrorType(tree.type); 5141 5142 // Attribute functor part of application and make sure it's a class. 5143 Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env)); 5144 5145 // Attribute type parameters 5146 List<Type> actuals = attribTypes(tree.arguments, env); 5147 5148 if (clazztype.hasTag(CLASS)) { 5149 List<Type> formals = clazztype.tsym.type.getTypeArguments(); 5150 if (actuals.isEmpty()) //diamond 5151 actuals = formals; 5152 5153 if (actuals.length() == formals.length()) { 5154 List<Type> a = actuals; 5155 List<Type> f = formals; 5156 while (a.nonEmpty()) { 5157 a.head = a.head.withTypeVar(f.head); 5158 a = a.tail; 5159 f = f.tail; 5160 } 5161 // Compute the proper generic outer 5162 Type clazzOuter = clazztype.getEnclosingType(); 5163 if (clazzOuter.hasTag(CLASS)) { 5164 Type site; 5165 JCExpression clazz = TreeInfo.typeIn(tree.clazz); 5166 if (clazz.hasTag(IDENT)) { 5167 site = env.enclClass.sym.type; 5168 } else if (clazz.hasTag(SELECT)) { 5169 site = ((JCFieldAccess) clazz).selected.type; 5170 } else throw new AssertionError(""+tree); 5171 if (clazzOuter.hasTag(CLASS) && site != clazzOuter) { 5172 if (site.hasTag(CLASS)) 5173 site = types.asOuterSuper(site, clazzOuter.tsym); 5174 if (site == null) 5175 site = types.erasure(clazzOuter); 5176 clazzOuter = site; 5177 } 5178 } 5179 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym, 5180 clazztype.getMetadata()); 5181 } else { 5182 if (formals.length() != 0) { 5183 log.error(tree.pos(), 5184 Errors.WrongNumberTypeArgs(Integer.toString(formals.length()))); 5185 } else { 5186 log.error(tree.pos(), Errors.TypeDoesntTakeParams(clazztype.tsym)); 5187 } 5188 owntype = types.createErrorType(tree.type); 5189 } 5190 } else if (clazztype.hasTag(ERROR)) { 5191 ErrorType parameterizedErroneous = 5192 new ErrorType(clazztype.getOriginalType(), 5193 clazztype.tsym, 5194 clazztype.getMetadata()); 5195 5196 parameterizedErroneous.typarams_field = actuals; 5197 owntype = parameterizedErroneous; 5198 } 5199 result = check(tree, owntype, KindSelector.TYP, resultInfo); 5200 } 5201 5202 public void visitTypeUnion(JCTypeUnion tree) { 5203 ListBuffer<Type> multicatchTypes = new ListBuffer<>(); 5204 ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed 5205 for (JCExpression typeTree : tree.alternatives) { 5206 Type ctype = attribType(typeTree, env); 5207 ctype = chk.checkType(typeTree.pos(), 5208 chk.checkClassType(typeTree.pos(), ctype), 5209 syms.throwableType); 5210 if (!ctype.isErroneous()) { 5211 //check that alternatives of a union type are pairwise 5212 //unrelated w.r.t. subtyping 5213 if (chk.intersects(ctype, multicatchTypes.toList())) { 5214 for (Type t : multicatchTypes) { 5215 boolean sub = types.isSubtype(ctype, t); 5216 boolean sup = types.isSubtype(t, ctype); 5217 if (sub || sup) { 5218 //assume 'a' <: 'b' 5219 Type a = sub ? ctype : t; 5220 Type b = sub ? t : ctype; 5221 log.error(typeTree.pos(), Errors.MulticatchTypesMustBeDisjoint(a, b)); 5222 } 5223 } 5224 } 5225 multicatchTypes.append(ctype); 5226 if (all_multicatchTypes != null) 5227 all_multicatchTypes.append(ctype); 5228 } else { 5229 if (all_multicatchTypes == null) { 5230 all_multicatchTypes = new ListBuffer<>(); 5231 all_multicatchTypes.appendList(multicatchTypes); 5232 } 5233 all_multicatchTypes.append(ctype); 5234 } 5235 } 5236 Type t = check(tree, types.lub(multicatchTypes.toList()), 5237 KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE)); 5238 if (t.hasTag(CLASS)) { 5239 List<Type> alternatives = 5240 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList(); 5241 t = new UnionClassType((ClassType) t, alternatives); 5242 } 5243 tree.type = result = t; 5244 } 5245 5246 public void visitTypeIntersection(JCTypeIntersection tree) { 5247 attribTypes(tree.bounds, env); 5248 tree.type = result = checkIntersection(tree, tree.bounds); 5249 } 5250 5251 public void visitTypeParameter(JCTypeParameter tree) { 5252 TypeVar typeVar = (TypeVar) tree.type; 5253 5254 if (tree.annotations != null && tree.annotations.nonEmpty()) { 5255 annotate.annotateTypeParameterSecondStage(tree, tree.annotations); 5256 } 5257 5258 if (!typeVar.getUpperBound().isErroneous()) { 5259 //fixup type-parameter bound computed in 'attribTypeVariables' 5260 typeVar.setUpperBound(checkIntersection(tree, tree.bounds)); 5261 } 5262 } 5263 5264 Type checkIntersection(JCTree tree, List<JCExpression> bounds) { 5265 Set<Symbol> boundSet = new HashSet<>(); 5266 if (bounds.nonEmpty()) { 5267 // accept class or interface or typevar as first bound. 5268 bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false); 5269 boundSet.add(types.erasure(bounds.head.type).tsym); 5270 if (bounds.head.type.isErroneous()) { 5271 return bounds.head.type; 5272 } 5273 else if (bounds.head.type.hasTag(TYPEVAR)) { 5274 // if first bound was a typevar, do not accept further bounds. 5275 if (bounds.tail.nonEmpty()) { 5276 log.error(bounds.tail.head.pos(), 5277 Errors.TypeVarMayNotBeFollowedByOtherBounds); 5278 return bounds.head.type; 5279 } 5280 } else { 5281 // if first bound was a class or interface, accept only interfaces 5282 // as further bounds. 5283 for (JCExpression bound : bounds.tail) { 5284 bound.type = checkBase(bound.type, bound, env, false, true, false); 5285 if (bound.type.isErroneous()) { 5286 bounds = List.of(bound); 5287 } 5288 else if (bound.type.hasTag(CLASS)) { 5289 chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet); 5290 } 5291 } 5292 } 5293 } 5294 5295 if (bounds.length() == 0) { 5296 return syms.objectType; 5297 } else if (bounds.length() == 1) { 5298 return bounds.head.type; 5299 } else { 5300 Type owntype = types.makeIntersectionType(TreeInfo.types(bounds)); 5301 // ... the variable's bound is a class type flagged COMPOUND 5302 // (see comment for TypeVar.bound). 5303 // In this case, generate a class tree that represents the 5304 // bound class, ... 5305 JCExpression extending; 5306 List<JCExpression> implementing; 5307 if (!bounds.head.type.isInterface()) { 5308 extending = bounds.head; 5309 implementing = bounds.tail; 5310 } else { 5311 extending = null; 5312 implementing = bounds; 5313 } 5314 JCClassDecl cd = make.at(tree).ClassDef( 5315 make.Modifiers(PUBLIC | ABSTRACT), 5316 names.empty, List.nil(), 5317 extending, implementing, List.nil()); 5318 5319 ClassSymbol c = (ClassSymbol)owntype.tsym; 5320 Assert.check((c.flags() & COMPOUND) != 0); 5321 cd.sym = c; 5322 c.sourcefile = env.toplevel.sourcefile; 5323 5324 // ... and attribute the bound class 5325 c.flags_field |= UNATTRIBUTED; 5326 Env<AttrContext> cenv = enter.classEnv(cd, env); 5327 typeEnvs.put(c, cenv); 5328 attribClass(c); 5329 return owntype; 5330 } 5331 } 5332 5333 public void visitWildcard(JCWildcard tree) { 5334 //- System.err.println("visitWildcard("+tree+");");//DEBUG 5335 Type type = (tree.kind.kind == BoundKind.UNBOUND) 5336 ? syms.objectType 5337 : attribType(tree.inner, env); 5338 result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type), 5339 tree.kind.kind, 5340 syms.boundClass), 5341 KindSelector.TYP, resultInfo); 5342 } 5343 5344 public void visitAnnotation(JCAnnotation tree) { 5345 Assert.error("should be handled in annotate"); 5346 } 5347 5348 @Override 5349 public void visitModifiers(JCModifiers tree) { 5350 //error recovery only: 5351 Assert.check(resultInfo.pkind == KindSelector.ERR); 5352 5353 attribAnnotationTypes(tree.annotations, env); 5354 } 5355 5356 public void visitAnnotatedType(JCAnnotatedType tree) { 5357 attribAnnotationTypes(tree.annotations, env); 5358 Type underlyingType = attribType(tree.underlyingType, env); 5359 Type annotatedType = underlyingType.preannotatedType(); 5360 5361 if (!env.info.isAnonymousNewClass) 5362 annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType); 5363 result = tree.type = annotatedType; 5364 } 5365 5366 public void visitErroneous(JCErroneous tree) { 5367 if (tree.errs != null) { 5368 WriteableScope newScope = env.info.scope; 5369 5370 if (env.tree instanceof JCClassDecl) { 5371 Symbol fakeOwner = 5372 new MethodSymbol(BLOCK, names.empty, null, 5373 env.info.scope.owner); 5374 newScope = newScope.dupUnshared(fakeOwner); 5375 } 5376 5377 Env<AttrContext> errEnv = 5378 env.dup(env.tree, 5379 env.info.dup(newScope)); 5380 errEnv.info.returnResult = unknownExprInfo; 5381 for (JCTree err : tree.errs) 5382 attribTree(err, errEnv, new ResultInfo(KindSelector.ERR, pt())); 5383 } 5384 result = tree.type = syms.errType; 5385 } 5386 5387 /** Default visitor method for all other trees. 5388 */ 5389 public void visitTree(JCTree tree) { 5390 throw new AssertionError(); 5391 } 5392 5393 /** 5394 * Attribute an env for either a top level tree or class or module declaration. 5395 */ 5396 public void attrib(Env<AttrContext> env) { 5397 switch (env.tree.getTag()) { 5398 case MODULEDEF: 5399 attribModule(env.tree.pos(), ((JCModuleDecl)env.tree).sym); 5400 break; 5401 case PACKAGEDEF: 5402 attribPackage(env.tree.pos(), ((JCPackageDecl) env.tree).packge); 5403 break; 5404 default: 5405 attribClass(env.tree.pos(), env.enclClass.sym); 5406 } 5407 5408 annotate.flush(); 5409 } 5410 5411 public void attribPackage(DiagnosticPosition pos, PackageSymbol p) { 5412 try { 5413 annotate.flush(); 5414 attribPackage(p); 5415 } catch (CompletionFailure ex) { 5416 chk.completionError(pos, ex); 5417 } 5418 } 5419 5420 void attribPackage(PackageSymbol p) { 5421 attribWithLint(p, 5422 env -> chk.checkDeprecatedAnnotation(((JCPackageDecl) env.tree).pid.pos(), p)); 5423 } 5424 5425 public void attribModule(DiagnosticPosition pos, ModuleSymbol m) { 5426 try { 5427 annotate.flush(); 5428 attribModule(m); 5429 } catch (CompletionFailure ex) { 5430 chk.completionError(pos, ex); 5431 } 5432 } 5433 5434 void attribModule(ModuleSymbol m) { 5435 attribWithLint(m, env -> attribStat(env.tree, env)); 5436 } 5437 5438 private void attribWithLint(TypeSymbol sym, Consumer<Env<AttrContext>> attrib) { 5439 Env<AttrContext> env = typeEnvs.get(sym); 5440 5441 Env<AttrContext> lintEnv = env; 5442 while (lintEnv.info.lint == null) 5443 lintEnv = lintEnv.next; 5444 5445 Lint lint = lintEnv.info.lint.augment(sym); 5446 5447 Lint prevLint = chk.setLint(lint); 5448 JavaFileObject prev = log.useSource(env.toplevel.sourcefile); 5449 5450 try { 5451 deferredLintHandler.flush(env.tree, lint); 5452 attrib.accept(env); 5453 } finally { 5454 log.useSource(prev); 5455 chk.setLint(prevLint); 5456 } 5457 } 5458 5459 /** Main method: attribute class definition associated with given class symbol. 5460 * reporting completion failures at the given position. 5461 * @param pos The source position at which completion errors are to be 5462 * reported. 5463 * @param c The class symbol whose definition will be attributed. 5464 */ 5465 public void attribClass(DiagnosticPosition pos, ClassSymbol c) { 5466 try { 5467 annotate.flush(); 5468 attribClass(c); 5469 } catch (CompletionFailure ex) { 5470 chk.completionError(pos, ex); 5471 } 5472 } 5473 5474 /** Attribute class definition associated with given class symbol. 5475 * @param c The class symbol whose definition will be attributed. 5476 */ 5477 void attribClass(ClassSymbol c) throws CompletionFailure { 5478 if (c.type.hasTag(ERROR)) return; 5479 5480 // Check for cycles in the inheritance graph, which can arise from 5481 // ill-formed class files. 5482 chk.checkNonCyclic(null, c.type); 5483 5484 Type st = types.supertype(c.type); 5485 if ((c.flags_field & Flags.COMPOUND) == 0 && 5486 (c.flags_field & Flags.SUPER_OWNER_ATTRIBUTED) == 0) { 5487 // First, attribute superclass. 5488 if (st.hasTag(CLASS)) 5489 attribClass((ClassSymbol)st.tsym); 5490 5491 // Next attribute owner, if it is a class. 5492 if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS)) 5493 attribClass((ClassSymbol)c.owner); 5494 5495 c.flags_field |= Flags.SUPER_OWNER_ATTRIBUTED; 5496 } 5497 5498 // The previous operations might have attributed the current class 5499 // if there was a cycle. So we test first whether the class is still 5500 // UNATTRIBUTED. 5501 if ((c.flags_field & UNATTRIBUTED) != 0) { 5502 c.flags_field &= ~UNATTRIBUTED; 5503 5504 // Get environment current at the point of class definition. 5505 Env<AttrContext> env = typeEnvs.get(c); 5506 5507 // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized, 5508 // because the annotations were not available at the time the env was created. Therefore, 5509 // we look up the environment chain for the first enclosing environment for which the 5510 // lint value is set. Typically, this is the parent env, but might be further if there 5511 // are any envs created as a result of TypeParameter nodes. 5512 Env<AttrContext> lintEnv = env; 5513 while (lintEnv.info.lint == null) 5514 lintEnv = lintEnv.next; 5515 5516 // Having found the enclosing lint value, we can initialize the lint value for this class 5517 env.info.lint = lintEnv.info.lint.augment(c); 5518 5519 Lint prevLint = chk.setLint(env.info.lint); 5520 JavaFileObject prev = log.useSource(c.sourcefile); 5521 ResultInfo prevReturnRes = env.info.returnResult; 5522 5523 try { 5524 if (c.isSealed() && 5525 !c.isEnum() && 5526 !c.isPermittedExplicit && 5527 c.getPermittedSubclasses().isEmpty()) { 5528 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.SealedClassMustHaveSubclasses); 5529 } 5530 5531 if (c.isSealed()) { 5532 Set<Symbol> permittedTypes = new HashSet<>(); 5533 boolean sealedInUnnamed = c.packge().modle == syms.unnamedModule || c.packge().modle == syms.noModule; 5534 for (Type subType : c.getPermittedSubclasses()) { 5535 if (subType.isErroneous()) { 5536 // the type already caused errors, don't produce more potentially misleading errors 5537 continue; 5538 } 5539 boolean isTypeVar = false; 5540 if (subType.getTag() == TYPEVAR) { 5541 isTypeVar = true; //error recovery 5542 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), 5543 Errors.InvalidPermitsClause(Fragments.IsATypeVariable(subType))); 5544 } 5545 if (subType.tsym.isAnonymous() && !c.isEnum()) { 5546 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), Errors.LocalClassesCantExtendSealed(Fragments.Anonymous)); 5547 } 5548 if (permittedTypes.contains(subType.tsym)) { 5549 DiagnosticPosition pos = 5550 env.enclClass.permitting.stream() 5551 .filter(permittedExpr -> TreeInfo.diagnosticPositionFor(subType.tsym, permittedExpr, true) != null) 5552 .limit(2).collect(List.collector()).get(1); 5553 log.error(pos, Errors.InvalidPermitsClause(Fragments.IsDuplicated(subType))); 5554 } else { 5555 permittedTypes.add(subType.tsym); 5556 } 5557 if (sealedInUnnamed) { 5558 if (subType.tsym.packge() != c.packge()) { 5559 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), 5560 Errors.ClassInUnnamedModuleCantExtendSealedInDiffPackage(c) 5561 ); 5562 } 5563 } else if (subType.tsym.packge().modle != c.packge().modle) { 5564 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), 5565 Errors.ClassInModuleCantExtendSealedInDiffModule(c, c.packge().modle) 5566 ); 5567 } 5568 if (subType.tsym == c.type.tsym || types.isSuperType(subType, c.type)) { 5569 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, ((JCClassDecl)env.tree).permitting), 5570 Errors.InvalidPermitsClause( 5571 subType.tsym == c.type.tsym ? 5572 Fragments.MustNotBeSameClass : 5573 Fragments.MustNotBeSupertype(subType) 5574 ) 5575 ); 5576 } else if (!isTypeVar) { 5577 boolean thisIsASuper = types.directSupertypes(subType) 5578 .stream() 5579 .anyMatch(d -> d.tsym == c); 5580 if (!thisIsASuper) { 5581 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), 5582 Errors.InvalidPermitsClause(Fragments.DoesntExtendSealed(subType))); 5583 } 5584 } 5585 } 5586 } 5587 5588 List<ClassSymbol> sealedSupers = types.directSupertypes(c.type) 5589 .stream() 5590 .filter(s -> s.tsym.isSealed()) 5591 .map(s -> (ClassSymbol) s.tsym) 5592 .collect(List.collector()); 5593 5594 if (sealedSupers.isEmpty()) { 5595 if ((c.flags_field & Flags.NON_SEALED) != 0) { 5596 boolean hasErrorSuper = false; 5597 5598 hasErrorSuper |= types.directSupertypes(c.type) 5599 .stream() 5600 .anyMatch(s -> s.tsym.kind == Kind.ERR); 5601 5602 ClassType ct = (ClassType) c.type; 5603 5604 hasErrorSuper |= !ct.isCompound() && ct.interfaces_field != ct.all_interfaces_field; 5605 5606 if (!hasErrorSuper) { 5607 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.NonSealedWithNoSealedSupertype(c)); 5608 } 5609 } 5610 } else { 5611 if (c.isDirectlyOrIndirectlyLocal() && !c.isEnum()) { 5612 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.LocalClassesCantExtendSealed(c.isAnonymous() ? Fragments.Anonymous : Fragments.Local)); 5613 } 5614 5615 if (!c.type.isCompound()) { 5616 for (ClassSymbol supertypeSym : sealedSupers) { 5617 if (!supertypeSym.isPermittedSubclass(c.type.tsym)) { 5618 log.error(TreeInfo.diagnosticPositionFor(c.type.tsym, env.tree), Errors.CantInheritFromSealed(supertypeSym)); 5619 } 5620 } 5621 if (!c.isNonSealed() && !c.isFinal() && !c.isSealed()) { 5622 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), 5623 c.isInterface() ? 5624 Errors.NonSealedOrSealedExpected : 5625 Errors.NonSealedSealedOrFinalExpected); 5626 } 5627 } 5628 } 5629 5630 deferredLintHandler.flush(env.tree, env.info.lint); 5631 env.info.returnResult = null; 5632 // java.lang.Enum may not be subclassed by a non-enum 5633 if (st.tsym == syms.enumSym && 5634 ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0)) 5635 log.error(env.tree.pos(), Errors.EnumNoSubclassing); 5636 5637 // Enums may not be extended by source-level classes 5638 if (st.tsym != null && 5639 ((st.tsym.flags_field & Flags.ENUM) != 0) && 5640 ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) { 5641 log.error(env.tree.pos(), Errors.EnumTypesNotExtensible); 5642 } 5643 5644 if (rs.isSerializable(c.type)) { 5645 env.info.isSerializable = true; 5646 } 5647 5648 attribClassBody(env, c); 5649 5650 chk.checkDeprecatedAnnotation(env.tree.pos(), c); 5651 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c); 5652 chk.checkFunctionalInterface((JCClassDecl) env.tree, c); 5653 chk.checkLeaksNotAccessible(env, (JCClassDecl) env.tree); 5654 5655 if (c.isImplicit()) { 5656 chk.checkHasMain(env.tree.pos(), c); 5657 } 5658 } finally { 5659 env.info.returnResult = prevReturnRes; 5660 log.useSource(prev); 5661 chk.setLint(prevLint); 5662 } 5663 5664 } 5665 } 5666 5667 public void visitImport(JCImport tree) { 5668 // nothing to do 5669 } 5670 5671 public void visitModuleDef(JCModuleDecl tree) { 5672 tree.sym.completeUsesProvides(); 5673 ModuleSymbol msym = tree.sym; 5674 Lint lint = env.outer.info.lint = env.outer.info.lint.augment(msym); 5675 Lint prevLint = chk.setLint(lint); 5676 chk.checkModuleName(tree); 5677 chk.checkDeprecatedAnnotation(tree, msym); 5678 5679 try { 5680 deferredLintHandler.flush(tree, lint); 5681 } finally { 5682 chk.setLint(prevLint); 5683 } 5684 } 5685 5686 /** Finish the attribution of a class. */ 5687 private void attribClassBody(Env<AttrContext> env, ClassSymbol c) { 5688 JCClassDecl tree = (JCClassDecl)env.tree; 5689 Assert.check(c == tree.sym); 5690 5691 // Validate type parameters, supertype and interfaces. 5692 attribStats(tree.typarams, env); 5693 if (!c.isAnonymous()) { 5694 //already checked if anonymous 5695 chk.validate(tree.typarams, env); 5696 chk.validate(tree.extending, env); 5697 chk.validate(tree.implementing, env); 5698 } 5699 5700 c.markAbstractIfNeeded(types); 5701 5702 // If this is a non-abstract class, check that it has no abstract 5703 // methods or unimplemented methods of an implemented interface. 5704 if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) { 5705 chk.checkAllDefined(tree.pos(), c); 5706 } 5707 5708 if ((c.flags() & ANNOTATION) != 0) { 5709 if (tree.implementing.nonEmpty()) 5710 log.error(tree.implementing.head.pos(), 5711 Errors.CantExtendIntfAnnotation); 5712 if (tree.typarams.nonEmpty()) { 5713 log.error(tree.typarams.head.pos(), 5714 Errors.IntfAnnotationCantHaveTypeParams(c)); 5715 } 5716 5717 // If this annotation type has a @Repeatable, validate 5718 Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable(); 5719 // If this annotation type has a @Repeatable, validate 5720 if (repeatable != null) { 5721 // get diagnostic position for error reporting 5722 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type); 5723 Assert.checkNonNull(cbPos); 5724 5725 chk.validateRepeatable(c, repeatable, cbPos); 5726 } 5727 } else { 5728 // Check that all extended classes and interfaces 5729 // are compatible (i.e. no two define methods with same arguments 5730 // yet different return types). (JLS 8.4.8.3) 5731 chk.checkCompatibleSupertypes(tree.pos(), c.type); 5732 chk.checkDefaultMethodClashes(tree.pos(), c.type); 5733 chk.checkPotentiallyAmbiguousOverloads(tree, c.type); 5734 } 5735 5736 // Check that class does not import the same parameterized interface 5737 // with two different argument lists. 5738 chk.checkClassBounds(tree.pos(), c.type); 5739 5740 tree.type = c.type; 5741 5742 for (List<JCTypeParameter> l = tree.typarams; 5743 l.nonEmpty(); l = l.tail) { 5744 Assert.checkNonNull(env.info.scope.findFirst(l.head.name)); 5745 } 5746 5747 // Check that a generic class doesn't extend Throwable 5748 if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType)) 5749 log.error(tree.extending.pos(), Errors.GenericThrowable); 5750 5751 // Check that all methods which implement some 5752 // method conform to the method they implement. 5753 chk.checkImplementations(tree); 5754 5755 //check that a resource implementing AutoCloseable cannot throw InterruptedException 5756 checkAutoCloseable(tree.pos(), env, c.type); 5757 5758 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) { 5759 // Attribute declaration 5760 attribStat(l.head, env); 5761 // Check that declarations in inner classes are not static (JLS 8.1.2) 5762 // Make an exception for static constants. 5763 if (!allowRecords && 5764 c.owner.kind != PCK && 5765 ((c.flags() & STATIC) == 0 || c.name == names.empty) && 5766 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) { 5767 VarSymbol sym = null; 5768 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym; 5769 if (sym == null || 5770 sym.kind != VAR || 5771 sym.getConstValue() == null) 5772 log.error(l.head.pos(), Errors.IclsCantHaveStaticDecl(c)); 5773 } 5774 } 5775 5776 // Check for proper placement of super()/this() calls. 5777 chk.checkSuperInitCalls(tree); 5778 5779 // Check for cycles among non-initial constructors. 5780 chk.checkCyclicConstructors(tree); 5781 5782 // Check for cycles among annotation elements. 5783 chk.checkNonCyclicElements(tree); 5784 5785 // Check for proper use of serialVersionUID and other 5786 // serialization-related fields and methods 5787 if (env.info.lint.isEnabled(LintCategory.SERIAL) 5788 && rs.isSerializable(c.type) 5789 && !c.isAnonymous()) { 5790 chk.checkSerialStructure(tree, c); 5791 } 5792 // Correctly organize the positions of the type annotations 5793 typeAnnotations.organizeTypeAnnotationsBodies(tree); 5794 5795 // Check type annotations applicability rules 5796 validateTypeAnnotations(tree, false); 5797 } 5798 // where 5799 /** get a diagnostic position for an attribute of Type t, or null if attribute missing */ 5800 private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) { 5801 for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) { 5802 if (types.isSameType(al.head.annotationType.type, t)) 5803 return al.head.pos(); 5804 } 5805 5806 return null; 5807 } 5808 5809 private Type capture(Type type) { 5810 return types.capture(type); 5811 } 5812 5813 private void setSyntheticVariableType(JCVariableDecl tree, Type type) { 5814 if (type.isErroneous()) { 5815 tree.vartype = make.at(Position.NOPOS).Erroneous(); 5816 } else { 5817 tree.vartype = make.at(Position.NOPOS).Type(type); 5818 } 5819 } 5820 5821 public void validateTypeAnnotations(JCTree tree, boolean sigOnly) { 5822 tree.accept(new TypeAnnotationsValidator(sigOnly)); 5823 } 5824 //where 5825 private final class TypeAnnotationsValidator extends TreeScanner { 5826 5827 private final boolean sigOnly; 5828 public TypeAnnotationsValidator(boolean sigOnly) { 5829 this.sigOnly = sigOnly; 5830 } 5831 5832 public void visitAnnotation(JCAnnotation tree) { 5833 chk.validateTypeAnnotation(tree, null, false); 5834 super.visitAnnotation(tree); 5835 } 5836 public void visitAnnotatedType(JCAnnotatedType tree) { 5837 if (!tree.underlyingType.type.isErroneous()) { 5838 super.visitAnnotatedType(tree); 5839 } 5840 } 5841 public void visitTypeParameter(JCTypeParameter tree) { 5842 chk.validateTypeAnnotations(tree.annotations, tree.type.tsym, true); 5843 scan(tree.bounds); 5844 // Don't call super. 5845 // This is needed because above we call validateTypeAnnotation with 5846 // false, which would forbid annotations on type parameters. 5847 // super.visitTypeParameter(tree); 5848 } 5849 public void visitMethodDef(JCMethodDecl tree) { 5850 if (tree.recvparam != null && 5851 !tree.recvparam.vartype.type.isErroneous()) { 5852 checkForDeclarationAnnotations(tree.recvparam.mods.annotations, tree.recvparam.sym); 5853 } 5854 if (tree.restype != null && tree.restype.type != null) { 5855 validateAnnotatedType(tree.restype, tree.restype.type); 5856 } 5857 if (sigOnly) { 5858 scan(tree.mods); 5859 scan(tree.restype); 5860 scan(tree.typarams); 5861 scan(tree.recvparam); 5862 scan(tree.params); 5863 scan(tree.thrown); 5864 } else { 5865 scan(tree.defaultValue); 5866 scan(tree.body); 5867 } 5868 } 5869 public void visitVarDef(final JCVariableDecl tree) { 5870 //System.err.println("validateTypeAnnotations.visitVarDef " + tree); 5871 if (tree.sym != null && tree.sym.type != null && !tree.isImplicitlyTyped()) 5872 validateAnnotatedType(tree.vartype, tree.sym.type); 5873 scan(tree.mods); 5874 scan(tree.vartype); 5875 if (!sigOnly) { 5876 scan(tree.init); 5877 } 5878 } 5879 public void visitTypeCast(JCTypeCast tree) { 5880 if (tree.clazz != null && tree.clazz.type != null) 5881 validateAnnotatedType(tree.clazz, tree.clazz.type); 5882 super.visitTypeCast(tree); 5883 } 5884 public void visitTypeTest(JCInstanceOf tree) { 5885 if (tree.pattern != null && !(tree.pattern instanceof JCPattern) && tree.pattern.type != null) 5886 validateAnnotatedType(tree.pattern, tree.pattern.type); 5887 super.visitTypeTest(tree); 5888 } 5889 public void visitNewClass(JCNewClass tree) { 5890 if (tree.clazz != null && tree.clazz.type != null) { 5891 if (tree.clazz.hasTag(ANNOTATED_TYPE)) { 5892 checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations, 5893 tree.clazz.type.tsym); 5894 } 5895 if (tree.def != null) { 5896 checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym); 5897 } 5898 5899 validateAnnotatedType(tree.clazz, tree.clazz.type); 5900 } 5901 super.visitNewClass(tree); 5902 } 5903 public void visitNewArray(JCNewArray tree) { 5904 if (tree.elemtype != null && tree.elemtype.type != null) { 5905 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) { 5906 checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations, 5907 tree.elemtype.type.tsym); 5908 } 5909 validateAnnotatedType(tree.elemtype, tree.elemtype.type); 5910 } 5911 super.visitNewArray(tree); 5912 } 5913 public void visitClassDef(JCClassDecl tree) { 5914 //System.err.println("validateTypeAnnotations.visitClassDef " + tree); 5915 if (sigOnly) { 5916 scan(tree.mods); 5917 scan(tree.typarams); 5918 scan(tree.extending); 5919 scan(tree.implementing); 5920 } 5921 for (JCTree member : tree.defs) { 5922 if (member.hasTag(Tag.CLASSDEF)) { 5923 continue; 5924 } 5925 scan(member); 5926 } 5927 } 5928 public void visitBlock(JCBlock tree) { 5929 if (!sigOnly) { 5930 scan(tree.stats); 5931 } 5932 } 5933 5934 /* I would want to model this after 5935 * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess) 5936 * and override visitSelect and visitTypeApply. 5937 * However, we only set the annotated type in the top-level type 5938 * of the symbol. 5939 * Therefore, we need to override each individual location where a type 5940 * can occur. 5941 */ 5942 private void validateAnnotatedType(final JCTree errtree, final Type type) { 5943 //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type); 5944 5945 if (type.isPrimitiveOrVoid()) { 5946 return; 5947 } 5948 5949 JCTree enclTr = errtree; 5950 Type enclTy = type; 5951 5952 boolean repeat = true; 5953 while (repeat) { 5954 if (enclTr.hasTag(TYPEAPPLY)) { 5955 List<Type> tyargs = enclTy.getTypeArguments(); 5956 List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments(); 5957 if (trargs.length() > 0) { 5958 // Nothing to do for diamonds 5959 if (tyargs.length() == trargs.length()) { 5960 for (int i = 0; i < tyargs.length(); ++i) { 5961 validateAnnotatedType(trargs.get(i), tyargs.get(i)); 5962 } 5963 } 5964 // If the lengths don't match, it's either a diamond 5965 // or some nested type that redundantly provides 5966 // type arguments in the tree. 5967 } 5968 5969 // Look at the clazz part of a generic type 5970 enclTr = ((JCTree.JCTypeApply)enclTr).clazz; 5971 } 5972 5973 if (enclTr.hasTag(SELECT)) { 5974 enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression(); 5975 if (enclTy != null && 5976 !enclTy.hasTag(NONE)) { 5977 enclTy = enclTy.getEnclosingType(); 5978 } 5979 } else if (enclTr.hasTag(ANNOTATED_TYPE)) { 5980 JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr; 5981 if (enclTy == null || enclTy.hasTag(NONE)) { 5982 ListBuffer<Attribute.TypeCompound> onlyTypeAnnotationsBuf = new ListBuffer<>(); 5983 for (JCAnnotation an : at.getAnnotations()) { 5984 if (chk.isTypeAnnotation(an, false)) { 5985 onlyTypeAnnotationsBuf.add((Attribute.TypeCompound) an.attribute); 5986 } 5987 } 5988 List<Attribute.TypeCompound> onlyTypeAnnotations = onlyTypeAnnotationsBuf.toList(); 5989 if (!onlyTypeAnnotations.isEmpty()) { 5990 Fragment annotationFragment = onlyTypeAnnotations.size() == 1 ? 5991 Fragments.TypeAnnotation1(onlyTypeAnnotations.head) : 5992 Fragments.TypeAnnotation(onlyTypeAnnotations); 5993 JCDiagnostic.AnnotatedType annotatedType = new JCDiagnostic.AnnotatedType( 5994 type.stripMetadata().annotatedType(onlyTypeAnnotations)); 5995 log.error(at.underlyingType.pos(), Errors.TypeAnnotationInadmissible(annotationFragment, 5996 type.tsym.owner, annotatedType)); 5997 } 5998 repeat = false; 5999 } 6000 enclTr = at.underlyingType; 6001 // enclTy doesn't need to be changed 6002 } else if (enclTr.hasTag(IDENT)) { 6003 repeat = false; 6004 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) { 6005 JCWildcard wc = (JCWildcard) enclTr; 6006 if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD || 6007 wc.getKind() == JCTree.Kind.SUPER_WILDCARD) { 6008 validateAnnotatedType(wc.getBound(), wc.getBound().type); 6009 } else { 6010 // Nothing to do for UNBOUND 6011 } 6012 repeat = false; 6013 } else if (enclTr.hasTag(TYPEARRAY)) { 6014 JCArrayTypeTree art = (JCArrayTypeTree) enclTr; 6015 validateAnnotatedType(art.getType(), art.elemtype.type); 6016 repeat = false; 6017 } else if (enclTr.hasTag(TYPEUNION)) { 6018 JCTypeUnion ut = (JCTypeUnion) enclTr; 6019 for (JCTree t : ut.getTypeAlternatives()) { 6020 validateAnnotatedType(t, t.type); 6021 } 6022 repeat = false; 6023 } else if (enclTr.hasTag(TYPEINTERSECTION)) { 6024 JCTypeIntersection it = (JCTypeIntersection) enclTr; 6025 for (JCTree t : it.getBounds()) { 6026 validateAnnotatedType(t, t.type); 6027 } 6028 repeat = false; 6029 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE || 6030 enclTr.getKind() == JCTree.Kind.ERRONEOUS) { 6031 repeat = false; 6032 } else { 6033 Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() + 6034 " within: "+ errtree + " with kind: " + errtree.getKind()); 6035 } 6036 } 6037 } 6038 6039 private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations, 6040 Symbol sym) { 6041 // Ensure that no declaration annotations are present. 6042 // Note that a tree type might be an AnnotatedType with 6043 // empty annotations, if only declaration annotations were given. 6044 // This method will raise an error for such a type. 6045 for (JCAnnotation ai : annotations) { 6046 if (!ai.type.isErroneous() && 6047 typeAnnotations.annotationTargetType(ai, ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) { 6048 log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type)); 6049 } 6050 } 6051 } 6052 } 6053 6054 // <editor-fold desc="post-attribution visitor"> 6055 6056 /** 6057 * Handle missing types/symbols in an AST. This routine is useful when 6058 * the compiler has encountered some errors (which might have ended up 6059 * terminating attribution abruptly); if the compiler is used in fail-over 6060 * mode (e.g. by an IDE) and the AST contains semantic errors, this routine 6061 * prevents NPE to be propagated during subsequent compilation steps. 6062 */ 6063 public void postAttr(JCTree tree) { 6064 new PostAttrAnalyzer().scan(tree); 6065 } 6066 6067 class PostAttrAnalyzer extends TreeScanner { 6068 6069 private void initTypeIfNeeded(JCTree that) { 6070 if (that.type == null) { 6071 if (that.hasTag(METHODDEF)) { 6072 that.type = dummyMethodType((JCMethodDecl)that); 6073 } else { 6074 that.type = syms.unknownType; 6075 } 6076 } 6077 } 6078 6079 /* Construct a dummy method type. If we have a method declaration, 6080 * and the declared return type is void, then use that return type 6081 * instead of UNKNOWN to avoid spurious error messages in lambda 6082 * bodies (see:JDK-8041704). 6083 */ 6084 private Type dummyMethodType(JCMethodDecl md) { 6085 Type restype = syms.unknownType; 6086 if (md != null && md.restype != null && md.restype.hasTag(TYPEIDENT)) { 6087 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype; 6088 if (prim.typetag == VOID) 6089 restype = syms.voidType; 6090 } 6091 return new MethodType(List.nil(), restype, 6092 List.nil(), syms.methodClass); 6093 } 6094 private Type dummyMethodType() { 6095 return dummyMethodType(null); 6096 } 6097 6098 @Override 6099 public void scan(JCTree tree) { 6100 if (tree == null) return; 6101 if (tree instanceof JCExpression) { 6102 initTypeIfNeeded(tree); 6103 } 6104 super.scan(tree); 6105 } 6106 6107 @Override 6108 public void visitIdent(JCIdent that) { 6109 if (that.sym == null) { 6110 that.sym = syms.unknownSymbol; 6111 } 6112 } 6113 6114 @Override 6115 public void visitSelect(JCFieldAccess that) { 6116 if (that.sym == null) { 6117 that.sym = syms.unknownSymbol; 6118 } 6119 super.visitSelect(that); 6120 } 6121 6122 @Override 6123 public void visitClassDef(JCClassDecl that) { 6124 initTypeIfNeeded(that); 6125 if (that.sym == null) { 6126 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol); 6127 } 6128 super.visitClassDef(that); 6129 } 6130 6131 @Override 6132 public void visitMethodDef(JCMethodDecl that) { 6133 initTypeIfNeeded(that); 6134 if (that.sym == null) { 6135 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol); 6136 } 6137 super.visitMethodDef(that); 6138 } 6139 6140 @Override 6141 public void visitVarDef(JCVariableDecl that) { 6142 initTypeIfNeeded(that); 6143 if (that.sym == null) { 6144 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol); 6145 that.sym.adr = 0; 6146 } 6147 if (that.vartype == null) { 6148 that.vartype = make.at(Position.NOPOS).Erroneous(); 6149 } 6150 super.visitVarDef(that); 6151 } 6152 6153 @Override 6154 public void visitBindingPattern(JCBindingPattern that) { 6155 initTypeIfNeeded(that); 6156 initTypeIfNeeded(that.var); 6157 if (that.var.sym == null) { 6158 that.var.sym = new BindingSymbol(0, that.var.name, that.var.type, syms.noSymbol); 6159 that.var.sym.adr = 0; 6160 } 6161 super.visitBindingPattern(that); 6162 } 6163 6164 @Override 6165 public void visitRecordPattern(JCRecordPattern that) { 6166 initTypeIfNeeded(that); 6167 if (that.record == null) { 6168 that.record = new ClassSymbol(0, TreeInfo.name(that.deconstructor), 6169 that.type, syms.noSymbol); 6170 } 6171 if (that.fullComponentTypes == null) { 6172 that.fullComponentTypes = List.nil(); 6173 } 6174 super.visitRecordPattern(that); 6175 } 6176 6177 @Override 6178 public void visitNewClass(JCNewClass that) { 6179 if (that.constructor == null) { 6180 that.constructor = new MethodSymbol(0, names.init, 6181 dummyMethodType(), syms.noSymbol); 6182 } 6183 if (that.constructorType == null) { 6184 that.constructorType = syms.unknownType; 6185 } 6186 super.visitNewClass(that); 6187 } 6188 6189 @Override 6190 public void visitAssignop(JCAssignOp that) { 6191 if (that.operator == null) { 6192 that.operator = new OperatorSymbol(names.empty, dummyMethodType(), 6193 -1, syms.noSymbol); 6194 } 6195 super.visitAssignop(that); 6196 } 6197 6198 @Override 6199 public void visitBinary(JCBinary that) { 6200 if (that.operator == null) { 6201 that.operator = new OperatorSymbol(names.empty, dummyMethodType(), 6202 -1, syms.noSymbol); 6203 } 6204 super.visitBinary(that); 6205 } 6206 6207 @Override 6208 public void visitUnary(JCUnary that) { 6209 if (that.operator == null) { 6210 that.operator = new OperatorSymbol(names.empty, dummyMethodType(), 6211 -1, syms.noSymbol); 6212 } 6213 super.visitUnary(that); 6214 } 6215 6216 @Override 6217 public void visitReference(JCMemberReference that) { 6218 super.visitReference(that); 6219 if (that.sym == null) { 6220 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(), 6221 syms.noSymbol); 6222 } 6223 } 6224 } 6225 // </editor-fold> 6226 6227 public void setPackageSymbols(JCExpression pid, Symbol pkg) { 6228 new TreeScanner() { 6229 Symbol packge = pkg; 6230 @Override 6231 public void visitIdent(JCIdent that) { 6232 that.sym = packge; 6233 } 6234 6235 @Override 6236 public void visitSelect(JCFieldAccess that) { 6237 that.sym = packge; 6238 packge = packge.owner; 6239 super.visitSelect(that); 6240 } 6241 }.scan(pid); 6242 } 6243 6244 }