1 /*
   2  * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 import java.util.function.BiConsumer;
  30 import java.util.function.Consumer;
  31 import java.util.function.Function;
  32 import java.util.stream.Stream;
  33 
  34 import javax.lang.model.element.ElementKind;
  35 import javax.tools.JavaFileObject;
  36 
  37 import com.sun.source.tree.CaseTree;
  38 import com.sun.source.tree.IdentifierTree;
  39 import com.sun.source.tree.LambdaExpressionTree.BodyKind;
  40 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
  41 import com.sun.source.tree.MemberSelectTree;
  42 import com.sun.source.tree.TreeVisitor;
  43 import com.sun.source.util.SimpleTreeVisitor;
  44 import com.sun.tools.javac.code.*;
  45 import com.sun.tools.javac.code.Lint.LintCategory;
  46 import com.sun.tools.javac.code.Scope.WriteableScope;
  47 import com.sun.tools.javac.code.Source.Feature;
  48 import com.sun.tools.javac.code.Symbol.*;
  49 import com.sun.tools.javac.code.Type.*;
  50 import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError;
  51 import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext;
  52 import com.sun.tools.javac.comp.Attr.ResultInfo;
  53 import com.sun.tools.javac.comp.Check.CheckContext;
  54 import com.sun.tools.javac.comp.Check.NestedCheckContext;
  55 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
  56 import com.sun.tools.javac.comp.DeferredAttr.LambdaReturnScanner;
  57 import com.sun.tools.javac.comp.MatchBindingsComputer.MatchBindings;
  58 import com.sun.tools.javac.jvm.*;
  59 
  60 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond;
  61 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg;
  62 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs;
  63 
  64 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  65 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
  66 import com.sun.tools.javac.resources.CompilerProperties.LintWarnings;
  67 import com.sun.tools.javac.resources.CompilerProperties.Warnings;
  68 import com.sun.tools.javac.tree.*;
  69 import com.sun.tools.javac.tree.JCTree.*;
  70 import com.sun.tools.javac.tree.JCTree.JCLambda.ParameterKind;
  71 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
  72 import com.sun.tools.javac.util.*;
  73 import com.sun.tools.javac.util.DefinedBy.Api;
  74 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  75 import com.sun.tools.javac.util.JCDiagnostic.Error;
  76 import com.sun.tools.javac.util.JCDiagnostic.Fragment;
  77 import com.sun.tools.javac.util.JCDiagnostic.Warning;
  78 import com.sun.tools.javac.util.List;
  79 
  80 import static com.sun.tools.javac.code.Flags.*;
  81 import static com.sun.tools.javac.code.Flags.ANNOTATION;
  82 import static com.sun.tools.javac.code.Flags.BLOCK;
  83 import static com.sun.tools.javac.code.Kinds.*;
  84 import static com.sun.tools.javac.code.Kinds.Kind.*;
  85 import static com.sun.tools.javac.code.TypeTag.*;
  86 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
  87 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  88 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
  89 
  90 /** This is the main context-dependent analysis phase in GJC. It
  91  *  encompasses name resolution, type checking and constant folding as
  92  *  subtasks. Some subtasks involve auxiliary classes.
  93  *  @see Check
  94  *  @see Resolve
  95  *  @see ConstFold
  96  *  @see Infer
  97  *
  98  *  <p><b>This is NOT part of any supported API.
  99  *  If you write code that depends on this, you do so at your own risk.
 100  *  This code and its internal interfaces are subject to change or
 101  *  deletion without notice.</b>
 102  */
 103 public class Attr extends JCTree.Visitor {
 104     protected static final Context.Key<Attr> attrKey = new Context.Key<>();
 105 
 106     final Names names;
 107     final Log log;
 108     final Symtab syms;
 109     final Resolve rs;
 110     final Operators operators;
 111     final Infer infer;
 112     final Analyzer analyzer;
 113     final DeferredAttr deferredAttr;
 114     final Check chk;
 115     final Flow flow;
 116     final MemberEnter memberEnter;
 117     final TypeEnter typeEnter;
 118     final TreeMaker make;
 119     final ConstFold cfolder;
 120     final Enter enter;
 121     final Target target;
 122     final Types types;
 123     final Preview preview;
 124     final JCDiagnostic.Factory diags;
 125     final TypeAnnotations typeAnnotations;
 126     final DeferredLintHandler deferredLintHandler;
 127     final TypeEnvs typeEnvs;
 128     final Dependencies dependencies;
 129     final Annotate annotate;
 130     final ArgumentAttr argumentAttr;
 131     final MatchBindingsComputer matchBindingsComputer;
 132     final AttrRecover attrRecover;
 133 
 134     public static Attr instance(Context context) {
 135         Attr instance = context.get(attrKey);
 136         if (instance == null)
 137             instance = new Attr(context);
 138         return instance;
 139     }
 140 
 141     @SuppressWarnings("this-escape")
 142     protected Attr(Context context) {
 143         context.put(attrKey, this);
 144 
 145         names = Names.instance(context);
 146         log = Log.instance(context);
 147         syms = Symtab.instance(context);
 148         rs = Resolve.instance(context);
 149         operators = Operators.instance(context);
 150         chk = Check.instance(context);
 151         flow = Flow.instance(context);
 152         memberEnter = MemberEnter.instance(context);
 153         typeEnter = TypeEnter.instance(context);
 154         make = TreeMaker.instance(context);
 155         enter = Enter.instance(context);
 156         infer = Infer.instance(context);
 157         analyzer = Analyzer.instance(context);
 158         deferredAttr = DeferredAttr.instance(context);
 159         cfolder = ConstFold.instance(context);
 160         target = Target.instance(context);
 161         types = Types.instance(context);
 162         preview = Preview.instance(context);
 163         diags = JCDiagnostic.Factory.instance(context);
 164         annotate = Annotate.instance(context);
 165         typeAnnotations = TypeAnnotations.instance(context);
 166         deferredLintHandler = DeferredLintHandler.instance(context);
 167         typeEnvs = TypeEnvs.instance(context);
 168         dependencies = Dependencies.instance(context);
 169         argumentAttr = ArgumentAttr.instance(context);
 170         matchBindingsComputer = MatchBindingsComputer.instance(context);
 171         attrRecover = AttrRecover.instance(context);
 172 
 173         Options options = Options.instance(context);
 174 
 175         Source source = Source.instance(context);
 176         allowReifiableTypesInInstanceof = Feature.REIFIABLE_TYPES_INSTANCEOF.allowedInSource(source);
 177         allowRecords = Feature.RECORDS.allowedInSource(source);
 178         allowPatternSwitch = (preview.isEnabled() || !preview.isPreview(Feature.PATTERN_SWITCH)) &&
 179                              Feature.PATTERN_SWITCH.allowedInSource(source);
 180         allowUnconditionalPatternsInstanceOf =
 181                              Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.allowedInSource(source);
 182         sourceName = source.name;
 183         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
 184 
 185         statInfo = new ResultInfo(KindSelector.NIL, Type.noType);
 186         varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType);
 187         unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType);
 188         methodAttrInfo = new MethodAttrInfo();
 189         unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType);
 190         unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType);
 191         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
 192         initBlockType = new MethodType(List.nil(), syms.voidType, List.nil(), syms.methodClass);
 193     }
 194 
 195     /** Switch: reifiable types in instanceof enabled?
 196      */
 197     boolean allowReifiableTypesInInstanceof;
 198 
 199     /** Are records allowed
 200      */
 201     private final boolean allowRecords;
 202 
 203     /** Are patterns in switch allowed
 204      */
 205     private final boolean allowPatternSwitch;
 206 
 207     /** Are unconditional patterns in instanceof allowed
 208      */
 209     private final boolean allowUnconditionalPatternsInstanceOf;
 210 
 211     /**
 212      * Switch: warn about use of variable before declaration?
 213      * RFE: 6425594
 214      */
 215     boolean useBeforeDeclarationWarning;
 216 
 217     /**
 218      * Switch: name of source level; used for error reporting.
 219      */
 220     String sourceName;
 221 
 222     /** Check kind and type of given tree against protokind and prototype.
 223      *  If check succeeds, store type in tree and return it.
 224      *  If check fails, store errType in tree and return it.
 225      *  No checks are performed if the prototype is a method type.
 226      *  It is not necessary in this case since we know that kind and type
 227      *  are correct.
 228      *
 229      *  @param tree     The tree whose kind and type is checked
 230      *  @param found    The computed type of the tree
 231      *  @param ownkind  The computed kind of the tree
 232      *  @param resultInfo  The expected result of the tree
 233      */
 234     Type check(final JCTree tree,
 235                final Type found,
 236                final KindSelector ownkind,
 237                final ResultInfo resultInfo) {
 238         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
 239         Type owntype;
 240         boolean shouldCheck = !found.hasTag(ERROR) &&
 241                 !resultInfo.pt.hasTag(METHOD) &&
 242                 !resultInfo.pt.hasTag(FORALL);
 243         if (shouldCheck && !ownkind.subset(resultInfo.pkind)) {
 244             log.error(tree.pos(),
 245                       Errors.UnexpectedType(resultInfo.pkind.kindNames(),
 246                                             ownkind.kindNames()));
 247             owntype = types.createErrorType(found);
 248         } else if (inferenceContext.free(found)) {
 249             //delay the check if there are inference variables in the found type
 250             //this means we are dealing with a partially inferred poly expression
 251             owntype = shouldCheck ? resultInfo.pt : found;
 252             if (resultInfo.checkMode.installPostInferenceHook()) {
 253                 inferenceContext.addFreeTypeListener(List.of(found),
 254                         instantiatedContext -> {
 255                             ResultInfo pendingResult =
 256                                     resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
 257                             check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
 258                         });
 259             }
 260         } else {
 261             owntype = shouldCheck ?
 262             resultInfo.check(tree, found) :
 263             found;
 264         }
 265         if (resultInfo.checkMode.updateTreeType()) {
 266             tree.type = owntype;
 267         }
 268         return owntype;
 269     }
 270 
 271     /** Is given blank final variable assignable, i.e. in a scope where it
 272      *  may be assigned to even though it is final?
 273      *  @param v      The blank final variable.
 274      *  @param env    The current environment.
 275      */
 276     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
 277         Symbol owner = env.info.scope.owner;
 278            // owner refers to the innermost variable, method or
 279            // initializer block declaration at this point.
 280         boolean isAssignable =
 281             v.owner == owner
 282             ||
 283             ((owner.name == names.init ||    // i.e. we are in a constructor
 284               owner.kind == VAR ||           // i.e. we are in a variable initializer
 285               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
 286              &&
 287              v.owner == owner.owner
 288              &&
 289              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
 290         boolean insideCompactConstructor = env.enclMethod != null && TreeInfo.isCompactConstructor(env.enclMethod);
 291         return isAssignable & !insideCompactConstructor;
 292     }
 293 
 294     /** Check that variable can be assigned to.
 295      *  @param pos    The current source code position.
 296      *  @param v      The assigned variable
 297      *  @param base   If the variable is referred to in a Select, the part
 298      *                to the left of the `.', null otherwise.
 299      *  @param env    The current environment.
 300      */
 301     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
 302         if (v.name == names._this) {
 303             log.error(pos, Errors.CantAssignValToThis);
 304             return;
 305         }
 306         if ((v.flags() & FINAL) != 0 &&
 307             ((v.flags() & HASINIT) != 0
 308              ||
 309              !((base == null ||
 310                TreeInfo.isThisQualifier(base)) &&
 311                isAssignableAsBlankFinal(v, env)))) {
 312             if (v.isResourceVariable()) { //TWR resource
 313                 log.error(pos, Errors.TryResourceMayNotBeAssigned(v));
 314             } else {
 315                 log.error(pos, Errors.CantAssignValToVar(Flags.toSource(v.flags() & (STATIC | FINAL)), v));
 316             }
 317             return;
 318         }
 319 
 320         // Check instance field assignments that appear in constructor prologues
 321         if (rs.isEarlyReference(env, base, v)) {
 322 
 323             // Field may not be inherited from a superclass
 324             if (v.owner != env.enclClass.sym) {
 325                 log.error(pos, Errors.CantRefBeforeCtorCalled(v));
 326                 return;
 327             }
 328 
 329             // Field may not have an initializer
 330             if ((v.flags() & HASINIT) != 0) {
 331                 log.error(pos, Errors.CantAssignInitializedBeforeCtorCalled(v));
 332                 return;
 333             }
 334         }
 335     }
 336 
 337     /** Does tree represent a static reference to an identifier?
 338      *  It is assumed that tree is either a SELECT or an IDENT.
 339      *  We have to weed out selects from non-type names here.
 340      *  @param tree    The candidate tree.
 341      */
 342     boolean isStaticReference(JCTree tree) {
 343         if (tree.hasTag(SELECT)) {
 344             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
 345             if (lsym == null || lsym.kind != TYP) {
 346                 return false;
 347             }
 348         }
 349         return true;
 350     }
 351 
 352     /** Is this symbol a type?
 353      */
 354     static boolean isType(Symbol sym) {
 355         return sym != null && sym.kind == TYP;
 356     }
 357 
 358     /** Attribute a parsed identifier.
 359      * @param tree Parsed identifier name
 360      * @param topLevel The toplevel to use
 361      */
 362     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
 363         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
 364         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
 365                                            syms.errSymbol.name,
 366                                            null, null, null, null);
 367         localEnv.enclClass.sym = syms.errSymbol;
 368         return attribIdent(tree, localEnv);
 369     }
 370 
 371     /** Attribute a parsed identifier.
 372      * @param tree Parsed identifier name
 373      * @param env The env to use
 374      */
 375     public Symbol attribIdent(JCTree tree, Env<AttrContext> env) {
 376         return tree.accept(identAttributer, env);
 377     }
 378     // where
 379         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
 380         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
 381             @Override @DefinedBy(Api.COMPILER_TREE)
 382             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
 383                 Symbol site = visit(node.getExpression(), env);
 384                 if (site.kind == ERR || site.kind == ABSENT_TYP || site.kind == HIDDEN)
 385                     return site;
 386                 Name name = (Name)node.getIdentifier();
 387                 if (site.kind == PCK) {
 388                     env.toplevel.packge = (PackageSymbol)site;
 389                     return rs.findIdentInPackage(null, env, (TypeSymbol)site, name,
 390                             KindSelector.TYP_PCK);
 391                 } else {
 392                     env.enclClass.sym = (ClassSymbol)site;
 393                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
 394                 }
 395             }
 396 
 397             @Override @DefinedBy(Api.COMPILER_TREE)
 398             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
 399                 return rs.findIdent(null, env, (Name)node.getName(), KindSelector.TYP_PCK);
 400             }
 401         }
 402 
 403     public Type coerce(Type etype, Type ttype) {
 404         return cfolder.coerce(etype, ttype);
 405     }
 406 
 407     public Type attribType(JCTree node, TypeSymbol sym) {
 408         Env<AttrContext> env = typeEnvs.get(sym);
 409         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
 410         return attribTree(node, localEnv, unknownTypeInfo);
 411     }
 412 
 413     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
 414         // Attribute qualifying package or class.
 415         JCFieldAccess s = tree.qualid;
 416         return attribTree(s.selected, env,
 417                           new ResultInfo(tree.staticImport ?
 418                                          KindSelector.TYP : KindSelector.TYP_PCK,
 419                        Type.noType));
 420     }
 421 
 422     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
 423         return attribToTree(expr, env, tree, unknownExprInfo);
 424     }
 425 
 426     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
 427         return attribToTree(stmt, env, tree, statInfo);
 428     }
 429 
 430     private Env<AttrContext> attribToTree(JCTree root, Env<AttrContext> env, JCTree tree, ResultInfo resultInfo) {
 431         breakTree = tree;
 432         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 433         try {
 434             deferredAttr.attribSpeculative(root, env, resultInfo,
 435                     null, DeferredAttr.AttributionMode.ATTRIB_TO_TREE,
 436                     argumentAttr.withLocalCacheContext());
 437             attrRecover.doRecovery();
 438         } catch (BreakAttr b) {
 439             return b.env;
 440         } catch (AssertionError ae) {
 441             if (ae.getCause() instanceof BreakAttr breakAttr) {
 442                 return breakAttr.env;
 443             } else {
 444                 throw ae;
 445             }
 446         } finally {
 447             breakTree = null;
 448             log.useSource(prev);
 449         }
 450         return env;
 451     }
 452 
 453     public <R> R runWithAttributedMethod(Env<AttrContext> env, JCMethodDecl tree, Function<JCBlock, R> attributedAction) {
 454         JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
 455         try {
 456             JCBlock dupTree = (JCBlock)deferredAttr.attribSpeculative(tree.body, env, statInfo,
 457                     null, DeferredAttr.AttributionMode.ATTRIB_TO_TREE,
 458                     argumentAttr.withLocalCacheContext());
 459             return attributedAction.apply(dupTree);
 460         } finally {
 461             attrRecover.doRecovery();
 462             log.useSource(prevSource);
 463         }
 464     }
 465 
 466     private JCTree breakTree = null;
 467 
 468     private static class BreakAttr extends RuntimeException {
 469         static final long serialVersionUID = -6924771130405446405L;
 470         private transient Env<AttrContext> env;
 471         private BreakAttr(Env<AttrContext> env) {
 472             this.env = env;
 473         }
 474     }
 475 
 476     /**
 477      * Mode controlling behavior of Attr.Check
 478      */
 479     enum CheckMode {
 480 
 481         NORMAL,
 482 
 483         /**
 484          * Mode signalling 'fake check' - skip tree update. A side-effect of this mode is
 485          * that the captured var cache in {@code InferenceContext} will be used in read-only
 486          * mode when performing inference checks.
 487          */
 488         NO_TREE_UPDATE {
 489             @Override
 490             public boolean updateTreeType() {
 491                 return false;
 492             }
 493         },
 494         /**
 495          * Mode signalling that caller will manage free types in tree decorations.
 496          */
 497         NO_INFERENCE_HOOK {
 498             @Override
 499             public boolean installPostInferenceHook() {
 500                 return false;
 501             }
 502         };
 503 
 504         public boolean updateTreeType() {
 505             return true;
 506         }
 507         public boolean installPostInferenceHook() {
 508             return true;
 509         }
 510     }
 511 
 512 
 513     class ResultInfo {
 514         final KindSelector pkind;
 515         final Type pt;
 516         final CheckContext checkContext;
 517         final CheckMode checkMode;
 518 
 519         ResultInfo(KindSelector pkind, Type pt) {
 520             this(pkind, pt, chk.basicHandler, CheckMode.NORMAL);
 521         }
 522 
 523         ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) {
 524             this(pkind, pt, chk.basicHandler, checkMode);
 525         }
 526 
 527         protected ResultInfo(KindSelector pkind,
 528                              Type pt, CheckContext checkContext) {
 529             this(pkind, pt, checkContext, CheckMode.NORMAL);
 530         }
 531 
 532         protected ResultInfo(KindSelector pkind,
 533                              Type pt, CheckContext checkContext, CheckMode checkMode) {
 534             this.pkind = pkind;
 535             this.pt = pt;
 536             this.checkContext = checkContext;
 537             this.checkMode = checkMode;
 538         }
 539 
 540         /**
 541          * Should {@link Attr#attribTree} use the {@code ArgumentAttr} visitor instead of this one?
 542          * @param tree The tree to be type-checked.
 543          * @return true if {@code ArgumentAttr} should be used.
 544          */
 545         protected boolean needsArgumentAttr(JCTree tree) { return false; }
 546 
 547         protected Type check(final DiagnosticPosition pos, final Type found) {
 548             return chk.checkType(pos, found, pt, checkContext);
 549         }
 550 
 551         protected ResultInfo dup(Type newPt) {
 552             return new ResultInfo(pkind, newPt, checkContext, checkMode);
 553         }
 554 
 555         protected ResultInfo dup(CheckContext newContext) {
 556             return new ResultInfo(pkind, pt, newContext, checkMode);
 557         }
 558 
 559         protected ResultInfo dup(Type newPt, CheckContext newContext) {
 560             return new ResultInfo(pkind, newPt, newContext, checkMode);
 561         }
 562 
 563         protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
 564             return new ResultInfo(pkind, newPt, newContext, newMode);
 565         }
 566 
 567         protected ResultInfo dup(CheckMode newMode) {
 568             return new ResultInfo(pkind, pt, checkContext, newMode);
 569         }
 570 
 571         @Override
 572         public String toString() {
 573             if (pt != null) {
 574                 return pt.toString();
 575             } else {
 576                 return "";
 577             }
 578         }
 579     }
 580 
 581     class MethodAttrInfo extends ResultInfo {
 582         public MethodAttrInfo() {
 583             this(chk.basicHandler);
 584         }
 585 
 586         public MethodAttrInfo(CheckContext checkContext) {
 587             super(KindSelector.VAL, Infer.anyPoly, checkContext);
 588         }
 589 
 590         @Override
 591         protected boolean needsArgumentAttr(JCTree tree) {
 592             return true;
 593         }
 594 
 595         protected ResultInfo dup(Type newPt) {
 596             throw new IllegalStateException();
 597         }
 598 
 599         protected ResultInfo dup(CheckContext newContext) {
 600             return new MethodAttrInfo(newContext);
 601         }
 602 
 603         protected ResultInfo dup(Type newPt, CheckContext newContext) {
 604             throw new IllegalStateException();
 605         }
 606 
 607         protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
 608             throw new IllegalStateException();
 609         }
 610 
 611         protected ResultInfo dup(CheckMode newMode) {
 612             throw new IllegalStateException();
 613         }
 614     }
 615 
 616     class RecoveryInfo extends ResultInfo {
 617 
 618         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
 619             this(deferredAttrContext, Type.recoveryType);
 620         }
 621 
 622         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext, Type pt) {
 623             super(KindSelector.VAL, pt, new Check.NestedCheckContext(chk.basicHandler) {
 624                 @Override
 625                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
 626                     return deferredAttrContext;
 627                 }
 628                 @Override
 629                 public boolean compatible(Type found, Type req, Warner warn) {
 630                     return true;
 631                 }
 632                 @Override
 633                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
 634                     boolean needsReport = pt == Type.recoveryType ||
 635                             (details.getDiagnosticPosition() != null &&
 636                             details.getDiagnosticPosition().getTree().hasTag(LAMBDA));
 637                     if (needsReport) {
 638                         chk.basicHandler.report(pos, details);
 639                     }
 640                 }
 641             });
 642         }
 643     }
 644 
 645     final ResultInfo statInfo;
 646     final ResultInfo varAssignmentInfo;
 647     final ResultInfo methodAttrInfo;
 648     final ResultInfo unknownExprInfo;
 649     final ResultInfo unknownTypeInfo;
 650     final ResultInfo unknownTypeExprInfo;
 651     final ResultInfo recoveryInfo;
 652     final MethodType initBlockType;
 653 
 654     Type pt() {
 655         return resultInfo.pt;
 656     }
 657 
 658     KindSelector pkind() {
 659         return resultInfo.pkind;
 660     }
 661 
 662 /* ************************************************************************
 663  * Visitor methods
 664  *************************************************************************/
 665 
 666     /** Visitor argument: the current environment.
 667      */
 668     Env<AttrContext> env;
 669 
 670     /** Visitor argument: the currently expected attribution result.
 671      */
 672     ResultInfo resultInfo;
 673 
 674     /** Visitor result: the computed type.
 675      */
 676     Type result;
 677 
 678     MatchBindings matchBindings = MatchBindingsComputer.EMPTY;
 679 
 680     /** Visitor method: attribute a tree, catching any completion failure
 681      *  exceptions. Return the tree's type.
 682      *
 683      *  @param tree    The tree to be visited.
 684      *  @param env     The environment visitor argument.
 685      *  @param resultInfo   The result info visitor argument.
 686      */
 687     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
 688         Env<AttrContext> prevEnv = this.env;
 689         ResultInfo prevResult = this.resultInfo;
 690         try {
 691             this.env = env;
 692             this.resultInfo = resultInfo;
 693             if (resultInfo.needsArgumentAttr(tree)) {
 694                 result = argumentAttr.attribArg(tree, env);
 695             } else {
 696                 tree.accept(this);
 697             }
 698             matchBindings = matchBindingsComputer.finishBindings(tree,
 699                                                                  matchBindings);
 700             if (tree == breakTree &&
 701                     resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
 702                 breakTreeFound(copyEnv(env));
 703             }
 704             return result;
 705         } catch (CompletionFailure ex) {
 706             tree.type = syms.errType;
 707             return chk.completionError(tree.pos(), ex);
 708         } finally {
 709             this.env = prevEnv;
 710             this.resultInfo = prevResult;
 711         }
 712     }
 713 
 714     protected void breakTreeFound(Env<AttrContext> env) {
 715         throw new BreakAttr(env);
 716     }
 717 
 718     Env<AttrContext> copyEnv(Env<AttrContext> env) {
 719         Env<AttrContext> newEnv =
 720                 env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
 721         if (newEnv.outer != null) {
 722             newEnv.outer = copyEnv(newEnv.outer);
 723         }
 724         return newEnv;
 725     }
 726 
 727     WriteableScope copyScope(WriteableScope sc) {
 728         WriteableScope newScope = WriteableScope.create(sc.owner);
 729         List<Symbol> elemsList = List.nil();
 730         for (Symbol sym : sc.getSymbols()) {
 731             elemsList = elemsList.prepend(sym);
 732         }
 733         for (Symbol s : elemsList) {
 734             newScope.enter(s);
 735         }
 736         return newScope;
 737     }
 738 
 739     /** Derived visitor method: attribute an expression tree.
 740      */
 741     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
 742         return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
 743     }
 744 
 745     /** Derived visitor method: attribute an expression tree with
 746      *  no constraints on the computed type.
 747      */
 748     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
 749         return attribTree(tree, env, unknownExprInfo);
 750     }
 751 
 752     /** Derived visitor method: attribute a type tree.
 753      */
 754     public Type attribType(JCTree tree, Env<AttrContext> env) {
 755         Type result = attribType(tree, env, Type.noType);
 756         return result;
 757     }
 758 
 759     /** Derived visitor method: attribute a type tree.
 760      */
 761     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
 762         Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt));
 763         return result;
 764     }
 765 
 766     /** Derived visitor method: attribute a statement or definition tree.
 767      */
 768     public Type attribStat(JCTree tree, Env<AttrContext> env) {
 769         Env<AttrContext> analyzeEnv = analyzer.copyEnvIfNeeded(tree, env);
 770         Type result = attribTree(tree, env, statInfo);
 771         analyzer.analyzeIfNeeded(tree, analyzeEnv);
 772         attrRecover.doRecovery();
 773         return result;
 774     }
 775 
 776     /** Attribute a list of expressions, returning a list of types.
 777      */
 778     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
 779         ListBuffer<Type> ts = new ListBuffer<>();
 780         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 781             ts.append(attribExpr(l.head, env, pt));
 782         return ts.toList();
 783     }
 784 
 785     /** Attribute a list of statements, returning nothing.
 786      */
 787     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
 788         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
 789             attribStat(l.head, env);
 790     }
 791 
 792     /** Attribute the arguments in a method call, returning the method kind.
 793      */
 794     KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
 795         KindSelector kind = initialKind;
 796         for (JCExpression arg : trees) {
 797             Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, methodAttrInfo));
 798             if (argtype.hasTag(DEFERRED)) {
 799                 kind = KindSelector.of(KindSelector.POLY, kind);
 800             }
 801             argtypes.append(argtype);
 802         }
 803         return kind;
 804     }
 805 
 806     /** Attribute a type argument list, returning a list of types.
 807      *  Caller is responsible for calling checkRefTypes.
 808      */
 809     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
 810         ListBuffer<Type> argtypes = new ListBuffer<>();
 811         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 812             argtypes.append(attribType(l.head, env));
 813         return argtypes.toList();
 814     }
 815 
 816     /** Attribute a type argument list, returning a list of types.
 817      *  Check that all the types are references.
 818      */
 819     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
 820         List<Type> types = attribAnyTypes(trees, env);
 821         return chk.checkRefTypes(trees, types);
 822     }
 823 
 824     /**
 825      * Attribute type variables (of generic classes or methods).
 826      * Compound types are attributed later in attribBounds.
 827      * @param typarams the type variables to enter
 828      * @param env      the current environment
 829      */
 830     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env, boolean checkCyclic) {
 831         for (JCTypeParameter tvar : typarams) {
 832             TypeVar a = (TypeVar)tvar.type;
 833             a.tsym.flags_field |= UNATTRIBUTED;
 834             a.setUpperBound(Type.noType);
 835             if (!tvar.bounds.isEmpty()) {
 836                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
 837                 for (JCExpression bound : tvar.bounds.tail)
 838                     bounds = bounds.prepend(attribType(bound, env));
 839                 types.setBounds(a, bounds.reverse());
 840             } else {
 841                 // if no bounds are given, assume a single bound of
 842                 // java.lang.Object.
 843                 types.setBounds(a, List.of(syms.objectType));
 844             }
 845             a.tsym.flags_field &= ~UNATTRIBUTED;
 846         }
 847         if (checkCyclic) {
 848             for (JCTypeParameter tvar : typarams) {
 849                 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
 850             }
 851         }
 852     }
 853 
 854     /**
 855      * Attribute the type references in a list of annotations.
 856      */
 857     void attribAnnotationTypes(List<JCAnnotation> annotations,
 858                                Env<AttrContext> env) {
 859         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
 860             JCAnnotation a = al.head;
 861             attribType(a.annotationType, env);
 862         }
 863     }
 864 
 865     /**
 866      * Attribute a "lazy constant value".
 867      *  @param env         The env for the const value
 868      *  @param variable    The initializer for the const value
 869      *  @param type        The expected type, or null
 870      *  @see VarSymbol#setLazyConstValue
 871      */
 872     public Object attribLazyConstantValue(Env<AttrContext> env,
 873                                       Env<AttrContext> enclosingEnv,
 874                                       JCVariableDecl variable,
 875                                       Type type) {
 876         deferredLintHandler.push(variable);
 877         final JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
 878         try {
 879             doQueueScanTreeAndTypeAnnotateForVarInit(variable, enclosingEnv);
 880             Type itype = attribExpr(variable.init, env, type);
 881             if (variable.isImplicitlyTyped()) {
 882                 //fixup local variable type
 883                 type = variable.type = variable.sym.type = chk.checkLocalVarType(variable, itype, variable.name);
 884             }
 885             if (itype.constValue() != null) {
 886                 return coerce(itype, type).constValue();
 887             } else {
 888                 return null;
 889             }
 890         } finally {
 891             log.useSource(prevSource);
 892             deferredLintHandler.pop();
 893         }
 894     }
 895 
 896     /** Attribute type reference in an `extends', `implements', or 'permits' clause.
 897      *  Supertypes of anonymous inner classes are usually already attributed.
 898      *
 899      *  @param tree              The tree making up the type reference.
 900      *  @param env               The environment current at the reference.
 901      *  @param classExpected     true if only a class is expected here.
 902      *  @param interfaceExpected true if only an interface is expected here.
 903      */
 904     Type attribBase(JCTree tree,
 905                     Env<AttrContext> env,
 906                     boolean classExpected,
 907                     boolean interfaceExpected,
 908                     boolean checkExtensible) {
 909         Type t = tree.type != null ?
 910             tree.type :
 911             attribType(tree, env);
 912         try {
 913             return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
 914         } catch (CompletionFailure ex) {
 915             chk.completionError(tree.pos(), ex);
 916             return t;
 917         }
 918     }
 919     Type checkBase(Type t,
 920                    JCTree tree,
 921                    Env<AttrContext> env,
 922                    boolean classExpected,
 923                    boolean interfaceExpected,
 924                    boolean checkExtensible) {
 925         final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ?
 926                 (((JCTypeApply) tree).clazz).pos() : tree.pos();
 927         if (t.tsym.isAnonymous()) {
 928             log.error(pos, Errors.CantInheritFromAnon);
 929             return types.createErrorType(t);
 930         }
 931         if (t.isErroneous())
 932             return t;
 933         if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
 934             // check that type variable is already visible
 935             if (t.getUpperBound() == null) {
 936                 log.error(pos, Errors.IllegalForwardRef);
 937                 return types.createErrorType(t);
 938             }
 939         } else {
 940             t = chk.checkClassType(pos, t, checkExtensible);
 941         }
 942         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
 943             log.error(pos, Errors.IntfExpectedHere);
 944             // return errType is necessary since otherwise there might
 945             // be undetected cycles which cause attribution to loop
 946             return types.createErrorType(t);
 947         } else if (checkExtensible &&
 948                    classExpected &&
 949                    (t.tsym.flags() & INTERFACE) != 0) {
 950             log.error(pos, Errors.NoIntfExpectedHere);
 951             return types.createErrorType(t);
 952         }
 953         if (checkExtensible &&
 954             ((t.tsym.flags() & FINAL) != 0)) {
 955             log.error(pos,
 956                       Errors.CantInheritFromFinal(t.tsym));
 957         }
 958         chk.checkNonCyclic(pos, t);
 959         return t;
 960     }
 961 
 962     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
 963         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
 964         id.type = env.info.scope.owner.enclClass().type;
 965         id.sym = env.info.scope.owner.enclClass();
 966         return id.type;
 967     }
 968 
 969     public void visitClassDef(JCClassDecl tree) {
 970         Optional<ArgumentAttr.LocalCacheContext> localCacheContext =
 971                 Optional.ofNullable(env.info.attributionMode.isSpeculative ?
 972                         argumentAttr.withLocalCacheContext() : null);
 973         boolean ctorProloguePrev = env.info.ctorPrologue;
 974         try {
 975             // Local and anonymous classes have not been entered yet, so we need to
 976             // do it now.
 977             if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) {
 978                 enter.classEnter(tree, env);
 979             } else {
 980                 // If this class declaration is part of a class level annotation,
 981                 // as in @MyAnno(new Object() {}) class MyClass {}, enter it in
 982                 // order to simplify later steps and allow for sensible error
 983                 // messages.
 984                 if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree))
 985                     enter.classEnter(tree, env);
 986             }
 987 
 988             ClassSymbol c = tree.sym;
 989             if (c == null) {
 990                 // exit in case something drastic went wrong during enter.
 991                 result = null;
 992             } else {
 993                 // make sure class has been completed:
 994                 c.complete();
 995 
 996                 // If a class declaration appears in a constructor prologue,
 997                 // that means it's either a local class or an anonymous class.
 998                 // Either way, there is no immediately enclosing instance.
 999                 if (ctorProloguePrev) {
1000                     c.flags_field |= NOOUTERTHIS;
1001                 }
1002                 attribClass(tree.pos(), c);
1003                 result = tree.type = c.type;
1004             }
1005         } finally {
1006             localCacheContext.ifPresent(LocalCacheContext::leave);
1007             env.info.ctorPrologue = ctorProloguePrev;
1008         }
1009     }
1010 
1011     public void visitMethodDef(JCMethodDecl tree) {
1012         MethodSymbol m = tree.sym;
1013         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
1014 
1015         Lint lint = env.info.lint.augment(m);
1016         Lint prevLint = chk.setLint(lint);
1017         boolean ctorProloguePrev = env.info.ctorPrologue;
1018         Assert.check(!env.info.ctorPrologue);
1019         MethodSymbol prevMethod = chk.setMethod(m);
1020         try {
1021             deferredLintHandler.flush(tree, lint);
1022             chk.checkDeprecatedAnnotation(tree.pos(), m);
1023 
1024 
1025             // Create a new environment with local scope
1026             // for attributing the method.
1027             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
1028             localEnv.info.lint = lint;
1029 
1030             attribStats(tree.typarams, localEnv);
1031 
1032             // If we override any other methods, check that we do so properly.
1033             // JLS ???
1034             if (m.isStatic()) {
1035                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
1036             } else {
1037                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
1038             }
1039             chk.checkOverride(env, tree, m);
1040 
1041             if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
1042                 log.error(tree, Errors.DefaultOverridesObjectMember(m.name, Kinds.kindName(m.location()), m.location()));
1043             }
1044 
1045             // Enter all type parameters into the local method scope.
1046             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
1047                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
1048 
1049             ClassSymbol owner = env.enclClass.sym;
1050             if ((owner.flags() & ANNOTATION) != 0 &&
1051                     (tree.params.nonEmpty() ||
1052                     tree.recvparam != null))
1053                 log.error(tree.params.nonEmpty() ?
1054                         tree.params.head.pos() :
1055                         tree.recvparam.pos(),
1056                         Errors.IntfAnnotationMembersCantHaveParams);
1057 
1058             // Attribute all value parameters.
1059             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
1060                 attribStat(l.head, localEnv);
1061             }
1062 
1063             chk.checkVarargsMethodDecl(localEnv, tree);
1064 
1065             // Check that type parameters are well-formed.
1066             chk.validate(tree.typarams, localEnv);
1067 
1068             // Check that result type is well-formed.
1069             if (tree.restype != null && !tree.restype.type.hasTag(VOID)) {
1070                 chk.validate(tree.restype, localEnv);
1071             }
1072             chk.checkRequiresIdentity(tree, env.info.lint);
1073 
1074             // Check that receiver type is well-formed.
1075             if (tree.recvparam != null) {
1076                 // Use a new environment to check the receiver parameter.
1077                 // Otherwise I get "might not have been initialized" errors.
1078                 // Is there a better way?
1079                 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
1080                 attribType(tree.recvparam, newEnv);
1081                 chk.validate(tree.recvparam, newEnv);
1082             }
1083 
1084             // Is this method a constructor?
1085             boolean isConstructor = TreeInfo.isConstructor(tree);
1086 
1087             if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP) {
1088                 // lets find if this method is an accessor
1089                 Optional<? extends RecordComponent> recordComponent = env.enclClass.sym.getRecordComponents().stream()
1090                         .filter(rc -> rc.accessor == tree.sym && (rc.accessor.flags_field & GENERATED_MEMBER) == 0).findFirst();
1091                 if (recordComponent.isPresent()) {
1092                     // the method is a user defined accessor lets check that everything is fine
1093                     if (!tree.sym.isPublic()) {
1094                         log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.MethodMustBePublic));
1095                     }
1096                     if (!types.isSameType(tree.sym.type.getReturnType(), recordComponent.get().type)) {
1097                         log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym,
1098                                 Fragments.AccessorReturnTypeDoesntMatch(tree.sym, recordComponent.get())));
1099                     }
1100                     if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) {
1101                         log.error(tree,
1102                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodCantThrowException));
1103                     }
1104                     if (!tree.typarams.isEmpty()) {
1105                         log.error(tree,
1106                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeGeneric));
1107                     }
1108                     if (tree.sym.isStatic()) {
1109                         log.error(tree,
1110                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeStatic));
1111                     }
1112                 }
1113 
1114                 if (isConstructor) {
1115                     // if this a constructor other than the canonical one
1116                     if ((tree.sym.flags_field & RECORD) == 0) {
1117                         if (!TreeInfo.hasConstructorCall(tree, names._this)) {
1118                             log.error(tree, Errors.NonCanonicalConstructorInvokeAnotherConstructor(env.enclClass.sym));
1119                         }
1120                     } else {
1121                         // but if it is the canonical:
1122 
1123                         /* if user generated, then it shouldn't:
1124                          *     - have an accessibility stricter than that of the record type
1125                          *     - explicitly invoke any other constructor
1126                          */
1127                         if ((tree.sym.flags_field & GENERATEDCONSTR) == 0) {
1128                             if (Check.protection(m.flags()) > Check.protection(env.enclClass.sym.flags())) {
1129                                 log.error(tree,
1130                                         (env.enclClass.sym.flags() & AccessFlags) == 0 ?
1131                                             Errors.InvalidCanonicalConstructorInRecord(
1132                                                 Fragments.Canonical,
1133                                                 env.enclClass.sym.name,
1134                                                 Fragments.CanonicalMustNotHaveStrongerAccess("package")
1135                                             ) :
1136                                             Errors.InvalidCanonicalConstructorInRecord(
1137                                                     Fragments.Canonical,
1138                                                     env.enclClass.sym.name,
1139                                                     Fragments.CanonicalMustNotHaveStrongerAccess(asFlagSet(env.enclClass.sym.flags() & AccessFlags))
1140                                             )
1141                                 );
1142                             }
1143 
1144                             if (TreeInfo.hasAnyConstructorCall(tree)) {
1145                                 log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1146                                         Fragments.Canonical, env.enclClass.sym.name,
1147                                         Fragments.CanonicalMustNotContainExplicitConstructorInvocation));
1148                             }
1149                         }
1150 
1151                         // also we want to check that no type variables have been defined
1152                         if (!tree.typarams.isEmpty()) {
1153                             log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1154                                     Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalMustNotDeclareTypeVariables));
1155                         }
1156 
1157                         /* and now we need to check that the constructor's arguments are exactly the same as those of the
1158                          * record components
1159                          */
1160                         List<? extends RecordComponent> recordComponents = env.enclClass.sym.getRecordComponents();
1161                         List<Type> recordFieldTypes = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.type);
1162                         for (JCVariableDecl param: tree.params) {
1163                             boolean paramIsVarArgs = (param.sym.flags_field & VARARGS) != 0;
1164                             if (!types.isSameType(param.type, recordFieldTypes.head) ||
1165                                     (recordComponents.head.isVarargs() != paramIsVarArgs)) {
1166                                 log.error(param, Errors.InvalidCanonicalConstructorInRecord(
1167                                         Fragments.Canonical, env.enclClass.sym.name,
1168                                         Fragments.TypeMustBeIdenticalToCorrespondingRecordComponentType));
1169                             }
1170                             recordComponents = recordComponents.tail;
1171                             recordFieldTypes = recordFieldTypes.tail;
1172                         }
1173                     }
1174                 }
1175             }
1176 
1177             // annotation method checks
1178             if ((owner.flags() & ANNOTATION) != 0) {
1179                 // annotation method cannot have throws clause
1180                 if (tree.thrown.nonEmpty()) {
1181                     log.error(tree.thrown.head.pos(),
1182                               Errors.ThrowsNotAllowedInIntfAnnotation);
1183                 }
1184                 // annotation method cannot declare type-parameters
1185                 if (tree.typarams.nonEmpty()) {
1186                     log.error(tree.typarams.head.pos(),
1187                               Errors.IntfAnnotationMembersCantHaveTypeParams);
1188                 }
1189                 // validate annotation method's return type (could be an annotation type)
1190                 chk.validateAnnotationType(tree.restype);
1191                 // ensure that annotation method does not clash with members of Object/Annotation
1192                 chk.validateAnnotationMethod(tree.pos(), m);
1193             }
1194 
1195             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
1196                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
1197 
1198             if (tree.body == null) {
1199                 // Empty bodies are only allowed for
1200                 // abstract, native, or interface methods, or for methods
1201                 // in a retrofit signature class.
1202                 if (tree.defaultValue != null) {
1203                     if ((owner.flags() & ANNOTATION) == 0)
1204                         log.error(tree.pos(),
1205                                   Errors.DefaultAllowedInIntfAnnotationMember);
1206                 }
1207                 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0)
1208                     log.error(tree.pos(), Errors.MissingMethBodyOrDeclAbstract);
1209             } else {
1210                 if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
1211                     if ((owner.flags() & INTERFACE) != 0) {
1212                         log.error(tree.body.pos(), Errors.IntfMethCantHaveBody);
1213                     } else {
1214                         log.error(tree.pos(), Errors.AbstractMethCantHaveBody);
1215                     }
1216                 } else if ((tree.mods.flags & NATIVE) != 0) {
1217                     log.error(tree.pos(), Errors.NativeMethCantHaveBody);
1218                 }
1219                 // Add an implicit super() call unless an explicit call to
1220                 // super(...) or this(...) is given
1221                 // or we are compiling class java.lang.Object.
1222                 if (isConstructor && owner.type != syms.objectType) {
1223                     if (!TreeInfo.hasAnyConstructorCall(tree)) {
1224                         JCStatement supCall = make.at(tree.body.pos).Exec(make.Apply(List.nil(),
1225                                 make.Ident(names._super), make.Idents(List.nil())));
1226                         tree.body.stats = tree.body.stats.prepend(supCall);
1227                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
1228                             (tree.mods.flags & GENERATEDCONSTR) == 0 &&
1229                             TreeInfo.hasConstructorCall(tree, names._super)) {
1230                         // enum constructors are not allowed to call super
1231                         // directly, so make sure there aren't any super calls
1232                         // in enum constructors, except in the compiler
1233                         // generated one.
1234                         log.error(tree.body.stats.head.pos(),
1235                                   Errors.CallToSuperNotAllowedInEnumCtor(env.enclClass.sym));
1236                     }
1237                     if (env.enclClass.sym.isRecord() && (tree.sym.flags_field & RECORD) != 0) { // we are seeing the canonical constructor
1238                         List<Name> recordComponentNames = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.name);
1239                         List<Name> initParamNames = tree.sym.params.map(p -> p.name);
1240                         if (!initParamNames.equals(recordComponentNames)) {
1241                             log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1242                                     Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalWithNameMismatch));
1243                         }
1244                         if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) {
1245                             log.error(tree,
1246                                     Errors.InvalidCanonicalConstructorInRecord(
1247                                             TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical,
1248                                             env.enclClass.sym.name,
1249                                             Fragments.ThrowsClauseNotAllowedForCanonicalConstructor(
1250                                                     TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical)));
1251                         }
1252                     }
1253                 }
1254 
1255                 // Attribute all type annotations in the body
1256                 annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null);
1257                 annotate.flush();
1258 
1259                 // Start of constructor prologue
1260                 localEnv.info.ctorPrologue = isConstructor;
1261 
1262                 // Attribute method body.
1263                 attribStat(tree.body, localEnv);
1264             }
1265 
1266             localEnv.info.scope.leave();
1267             result = tree.type = m.type;
1268         } finally {
1269             chk.setLint(prevLint);
1270             chk.setMethod(prevMethod);
1271             env.info.ctorPrologue = ctorProloguePrev;
1272         }
1273     }
1274 
1275     public void visitVarDef(JCVariableDecl tree) {
1276         // Local variables have not been entered yet, so we need to do it now:
1277         if (env.info.scope.owner.kind == MTH || env.info.scope.owner.kind == VAR) {
1278             if (tree.sym != null) {
1279                 // parameters have already been entered
1280                 env.info.scope.enter(tree.sym);
1281             } else {
1282                 if (tree.isImplicitlyTyped() && (tree.getModifiers().flags & PARAMETER) == 0) {
1283                     if (tree.init == null) {
1284                         //cannot use 'var' without initializer
1285                         log.error(tree, Errors.CantInferLocalVarType(tree.name, Fragments.LocalMissingInit));
1286                         tree.vartype = make.Erroneous();
1287                     } else {
1288                         Fragment msg = canInferLocalVarType(tree);
1289                         if (msg != null) {
1290                             //cannot use 'var' with initializer which require an explicit target
1291                             //(e.g. lambda, method reference, array initializer).
1292                             log.error(tree, Errors.CantInferLocalVarType(tree.name, msg));
1293                             tree.vartype = make.Erroneous();
1294                         }
1295                     }
1296                 }
1297                 try {
1298                     annotate.blockAnnotations();
1299                     memberEnter.memberEnter(tree, env);
1300                 } finally {
1301                     annotate.unblockAnnotations();
1302                 }
1303             }
1304         } else {
1305             doQueueScanTreeAndTypeAnnotateForVarInit(tree, env);
1306         }
1307 
1308         VarSymbol v = tree.sym;
1309         Lint lint = env.info.lint.augment(v);
1310         Lint prevLint = chk.setLint(lint);
1311 
1312         // Check that the variable's declared type is well-formed.
1313         boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1314                 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1315                 (tree.sym.flags() & PARAMETER) != 0;
1316         chk.validate(tree.vartype, env, !isImplicitLambdaParameter && !tree.isImplicitlyTyped());
1317 
1318         try {
1319             v.getConstValue(); // ensure compile-time constant initializer is evaluated
1320             deferredLintHandler.flush(tree, lint);
1321             chk.checkDeprecatedAnnotation(tree.pos(), v);
1322 
1323             if (tree.init != null) {
1324                 if ((v.flags_field & FINAL) == 0 ||
1325                     !memberEnter.needsLazyConstValue(tree.init)) {
1326                     // Not a compile-time constant
1327                     // Attribute initializer in a new environment
1328                     // with the declared variable as owner.
1329                     // Check that initializer conforms to variable's declared type.
1330                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1331                     initEnv.info.lint = lint;
1332                     // In order to catch self-references, we set the variable's
1333                     // declaration position to maximal possible value, effectively
1334                     // marking the variable as undefined.
1335                     initEnv.info.enclVar = v;
1336                     attribExpr(tree.init, initEnv, v.type);
1337                     if (tree.isImplicitlyTyped()) {
1338                         //fixup local variable type
1339                         v.type = chk.checkLocalVarType(tree, tree.init.type, tree.name);
1340                     }
1341                 }
1342                 if (tree.isImplicitlyTyped()) {
1343                     setSyntheticVariableType(tree, v.type);
1344                 }
1345             }
1346             result = tree.type = v.type;
1347             if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP && !v.isStatic()) {
1348                 if (isNonArgsMethodInObject(v.name)) {
1349                     log.error(tree, Errors.IllegalRecordComponentName(v));
1350                 }
1351             }
1352             chk.checkRequiresIdentity(tree, env.info.lint);
1353         }
1354         finally {
1355             chk.setLint(prevLint);
1356         }
1357     }
1358 
1359     private void doQueueScanTreeAndTypeAnnotateForVarInit(JCVariableDecl tree, Env<AttrContext> env) {
1360         if (tree.init != null &&
1361             (tree.mods.flags & Flags.FIELD_INIT_TYPE_ANNOTATIONS_QUEUED) == 0 &&
1362             env.info.scope.owner.kind != MTH && env.info.scope.owner.kind != VAR) {
1363             tree.mods.flags |= Flags.FIELD_INIT_TYPE_ANNOTATIONS_QUEUED;
1364             // Field initializer expression need to be entered.
1365             annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree);
1366             annotate.flush();
1367         }
1368     }
1369 
1370     private boolean isNonArgsMethodInObject(Name name) {
1371         for (Symbol s : syms.objectType.tsym.members().getSymbolsByName(name, s -> s.kind == MTH)) {
1372             if (s.type.getParameterTypes().isEmpty()) {
1373                 return true;
1374             }
1375         }
1376         return false;
1377     }
1378 
1379     Fragment canInferLocalVarType(JCVariableDecl tree) {
1380         LocalInitScanner lis = new LocalInitScanner();
1381         lis.scan(tree.init);
1382         return lis.badInferenceMsg;
1383     }
1384 
1385     static class LocalInitScanner extends TreeScanner {
1386         Fragment badInferenceMsg = null;
1387         boolean needsTarget = true;
1388 
1389         @Override
1390         public void visitNewArray(JCNewArray tree) {
1391             if (tree.elemtype == null && needsTarget) {
1392                 badInferenceMsg = Fragments.LocalArrayMissingTarget;
1393             }
1394         }
1395 
1396         @Override
1397         public void visitLambda(JCLambda tree) {
1398             if (needsTarget) {
1399                 badInferenceMsg = Fragments.LocalLambdaMissingTarget;
1400             }
1401         }
1402 
1403         @Override
1404         public void visitTypeCast(JCTypeCast tree) {
1405             boolean prevNeedsTarget = needsTarget;
1406             try {
1407                 needsTarget = false;
1408                 super.visitTypeCast(tree);
1409             } finally {
1410                 needsTarget = prevNeedsTarget;
1411             }
1412         }
1413 
1414         @Override
1415         public void visitReference(JCMemberReference tree) {
1416             if (needsTarget) {
1417                 badInferenceMsg = Fragments.LocalMrefMissingTarget;
1418             }
1419         }
1420 
1421         @Override
1422         public void visitNewClass(JCNewClass tree) {
1423             boolean prevNeedsTarget = needsTarget;
1424             try {
1425                 needsTarget = false;
1426                 super.visitNewClass(tree);
1427             } finally {
1428                 needsTarget = prevNeedsTarget;
1429             }
1430         }
1431 
1432         @Override
1433         public void visitApply(JCMethodInvocation tree) {
1434             boolean prevNeedsTarget = needsTarget;
1435             try {
1436                 needsTarget = false;
1437                 super.visitApply(tree);
1438             } finally {
1439                 needsTarget = prevNeedsTarget;
1440             }
1441         }
1442     }
1443 
1444     public void visitSkip(JCSkip tree) {
1445         result = null;
1446     }
1447 
1448     public void visitBlock(JCBlock tree) {
1449         if (env.info.scope.owner.kind == TYP || env.info.scope.owner.kind == ERR) {
1450             // Block is a static or instance initializer;
1451             // let the owner of the environment be a freshly
1452             // created BLOCK-method.
1453             Symbol fakeOwner =
1454                 new MethodSymbol(tree.flags | BLOCK |
1455                     env.info.scope.owner.flags() & STRICTFP, names.empty, initBlockType,
1456                     env.info.scope.owner);
1457             final Env<AttrContext> localEnv =
1458                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner)));
1459 
1460             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
1461             // Attribute all type annotations in the block
1462             annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
1463             annotate.flush();
1464             attribStats(tree.stats, localEnv);
1465 
1466             {
1467                 // Store init and clinit type annotations with the ClassSymbol
1468                 // to allow output in Gen.normalizeDefs.
1469                 ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
1470                 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
1471                 if ((tree.flags & STATIC) != 0) {
1472                     cs.appendClassInitTypeAttributes(tas);
1473                 } else {
1474                     cs.appendInitTypeAttributes(tas);
1475                 }
1476             }
1477         } else {
1478             // Create a new local environment with a local scope.
1479             Env<AttrContext> localEnv =
1480                 env.dup(tree, env.info.dup(env.info.scope.dup()));
1481             try {
1482                 attribStats(tree.stats, localEnv);
1483             } finally {
1484                 localEnv.info.scope.leave();
1485             }
1486         }
1487         result = null;
1488     }
1489 
1490     public void visitDoLoop(JCDoWhileLoop tree) {
1491         attribStat(tree.body, env.dup(tree));
1492         attribExpr(tree.cond, env, syms.booleanType);
1493         handleLoopConditionBindings(matchBindings, tree, tree.body);
1494         result = null;
1495     }
1496 
1497     public void visitWhileLoop(JCWhileLoop tree) {
1498         attribExpr(tree.cond, env, syms.booleanType);
1499         MatchBindings condBindings = matchBindings;
1500         // include condition's bindings when true in the body:
1501         Env<AttrContext> whileEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
1502         try {
1503             attribStat(tree.body, whileEnv.dup(tree));
1504         } finally {
1505             whileEnv.info.scope.leave();
1506         }
1507         handleLoopConditionBindings(condBindings, tree, tree.body);
1508         result = null;
1509     }
1510 
1511     public void visitForLoop(JCForLoop tree) {
1512         Env<AttrContext> loopEnv =
1513             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1514         MatchBindings condBindings = MatchBindingsComputer.EMPTY;
1515         try {
1516             attribStats(tree.init, loopEnv);
1517             if (tree.cond != null) {
1518                 attribExpr(tree.cond, loopEnv, syms.booleanType);
1519                 // include condition's bindings when true in the body and step:
1520                 condBindings = matchBindings;
1521             }
1522             Env<AttrContext> bodyEnv = bindingEnv(loopEnv, condBindings.bindingsWhenTrue);
1523             try {
1524                 bodyEnv.tree = tree; // before, we were not in loop!
1525                 attribStats(tree.step, bodyEnv);
1526                 attribStat(tree.body, bodyEnv);
1527             } finally {
1528                 bodyEnv.info.scope.leave();
1529             }
1530             result = null;
1531         }
1532         finally {
1533             loopEnv.info.scope.leave();
1534         }
1535         handleLoopConditionBindings(condBindings, tree, tree.body);
1536     }
1537 
1538     /**
1539      * Include condition's bindings when false after the loop, if cannot get out of the loop
1540      */
1541     private void handleLoopConditionBindings(MatchBindings condBindings,
1542                                              JCStatement loop,
1543                                              JCStatement loopBody) {
1544         if (condBindings.bindingsWhenFalse.nonEmpty() &&
1545             !breaksTo(env, loop, loopBody)) {
1546             addBindings2Scope(loop, condBindings.bindingsWhenFalse);
1547         }
1548     }
1549 
1550     private boolean breaksTo(Env<AttrContext> env, JCTree loop, JCTree body) {
1551         preFlow(body);
1552         return flow.breaksToTree(env, loop, body, make);
1553     }
1554 
1555     /**
1556      * Add given bindings to the current scope, unless there's a break to
1557      * an immediately enclosing labeled statement.
1558      */
1559     private void addBindings2Scope(JCStatement introducingStatement,
1560                                    List<BindingSymbol> bindings) {
1561         if (bindings.isEmpty()) {
1562             return ;
1563         }
1564 
1565         var searchEnv = env;
1566         while (searchEnv.tree instanceof JCLabeledStatement labeled &&
1567                labeled.body == introducingStatement) {
1568             if (breaksTo(env, labeled, labeled.body)) {
1569                 //breaking to an immediately enclosing labeled statement
1570                 return ;
1571             }
1572             searchEnv = searchEnv.next;
1573             introducingStatement = labeled;
1574         }
1575 
1576         //include condition's body when false after the while, if cannot get out of the loop
1577         bindings.forEach(env.info.scope::enter);
1578         bindings.forEach(BindingSymbol::preserveBinding);
1579     }
1580 
1581     public void visitForeachLoop(JCEnhancedForLoop tree) {
1582         Env<AttrContext> loopEnv =
1583             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1584         try {
1585             //the Formal Parameter of a for-each loop is not in the scope when
1586             //attributing the for-each expression; we mimic this by attributing
1587             //the for-each expression first (against original scope).
1588             Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
1589             chk.checkNonVoid(tree.pos(), exprType);
1590             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1591             if (elemtype == null) {
1592                 // or perhaps expr implements Iterable<T>?
1593                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
1594                 if (base == null) {
1595                     log.error(tree.expr.pos(),
1596                               Errors.ForeachNotApplicableToType(exprType,
1597                                                                 Fragments.TypeReqArrayOrIterable));
1598                     elemtype = types.createErrorType(exprType);
1599                 } else {
1600                     List<Type> iterableParams = base.allparams();
1601                     elemtype = iterableParams.isEmpty()
1602                         ? syms.objectType
1603                         : types.wildUpperBound(iterableParams.head);
1604 
1605                     // Check the return type of the method iterator().
1606                     // This is the bare minimum we need to verify to make sure code generation doesn't crash.
1607                     Symbol iterSymbol = rs.resolveInternalMethod(tree.pos(),
1608                             loopEnv, types.skipTypeVars(exprType, false), names.iterator, List.nil(), List.nil());
1609                     if (types.asSuper(iterSymbol.type.getReturnType(), syms.iteratorType.tsym) == null) {
1610                         log.error(tree.pos(),
1611                                 Errors.ForeachNotApplicableToType(exprType, Fragments.TypeReqArrayOrIterable));
1612                     }
1613                 }
1614             }
1615             if (tree.var.isImplicitlyTyped()) {
1616                 Type inferredType = chk.checkLocalVarType(tree.var, elemtype, tree.var.name);
1617                 setSyntheticVariableType(tree.var, inferredType);
1618             }
1619             attribStat(tree.var, loopEnv);
1620             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1621             loopEnv.tree = tree; // before, we were not in loop!
1622             attribStat(tree.body, loopEnv);
1623             result = null;
1624         }
1625         finally {
1626             loopEnv.info.scope.leave();
1627         }
1628     }
1629 
1630     public void visitLabelled(JCLabeledStatement tree) {
1631         // Check that label is not used in an enclosing statement
1632         Env<AttrContext> env1 = env;
1633         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1634             if (env1.tree.hasTag(LABELLED) &&
1635                 ((JCLabeledStatement) env1.tree).label == tree.label) {
1636                 log.error(tree.pos(),
1637                           Errors.LabelAlreadyInUse(tree.label));
1638                 break;
1639             }
1640             env1 = env1.next;
1641         }
1642 
1643         attribStat(tree.body, env.dup(tree));
1644         result = null;
1645     }
1646 
1647     public void visitSwitch(JCSwitch tree) {
1648         handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> {
1649             attribStats(c.stats, caseEnv);
1650         });
1651         result = null;
1652     }
1653 
1654     public void visitSwitchExpression(JCSwitchExpression tree) {
1655         boolean wrongContext = false;
1656 
1657         tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly) ?
1658                 PolyKind.STANDALONE : PolyKind.POLY;
1659 
1660         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
1661             //this means we are returning a poly conditional from void-compatible lambda expression
1662             resultInfo.checkContext.report(tree, diags.fragment(Fragments.SwitchExpressionTargetCantBeVoid));
1663             resultInfo = recoveryInfo;
1664             wrongContext = true;
1665         }
1666 
1667         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
1668                 unknownExprInfo :
1669                 resultInfo.dup(switchExpressionContext(resultInfo.checkContext));
1670 
1671         ListBuffer<DiagnosticPosition> caseTypePositions = new ListBuffer<>();
1672         ListBuffer<Type> caseTypes = new ListBuffer<>();
1673 
1674         handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> {
1675             caseEnv.info.yieldResult = condInfo;
1676             attribStats(c.stats, caseEnv);
1677             new TreeScanner() {
1678                 @Override
1679                 public void visitYield(JCYield brk) {
1680                     if (brk.target == tree) {
1681                         caseTypePositions.append(brk.value != null ? brk.value.pos() : brk.pos());
1682                         caseTypes.append(brk.value != null ? brk.value.type : syms.errType);
1683                     }
1684                     super.visitYield(brk);
1685                 }
1686 
1687                 @Override public void visitClassDef(JCClassDecl tree) {}
1688                 @Override public void visitLambda(JCLambda tree) {}
1689             }.scan(c.stats);
1690         });
1691 
1692         if (tree.cases.isEmpty()) {
1693             log.error(tree.pos(),
1694                       Errors.SwitchExpressionEmpty);
1695         } else if (caseTypes.isEmpty()) {
1696             log.error(tree.pos(),
1697                       Errors.SwitchExpressionNoResultExpressions);
1698         }
1699 
1700         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(caseTypePositions.toList(), caseTypes.toList()) : pt();
1701 
1702         result = tree.type = wrongContext? types.createErrorType(pt()) : check(tree, owntype, KindSelector.VAL, resultInfo);
1703     }
1704     //where:
1705         CheckContext switchExpressionContext(CheckContext checkContext) {
1706             return new Check.NestedCheckContext(checkContext) {
1707                 //this will use enclosing check context to check compatibility of
1708                 //subexpression against target type; if we are in a method check context,
1709                 //depending on whether boxing is allowed, we could have incompatibilities
1710                 @Override
1711                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
1712                     enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInSwitchExpression(details)));
1713                 }
1714             };
1715         }
1716 
1717     private void handleSwitch(JCTree switchTree,
1718                               JCExpression selector,
1719                               List<JCCase> cases,
1720                               BiConsumer<JCCase, Env<AttrContext>> attribCase) {
1721         Type seltype = attribExpr(selector, env);
1722         Type seltypeUnboxed = types.unboxedTypeOrType(seltype);
1723 
1724         Env<AttrContext> switchEnv =
1725             env.dup(switchTree, env.info.dup(env.info.scope.dup()));
1726 
1727         try {
1728             boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0;
1729             boolean stringSwitch = types.isSameType(seltype, syms.stringType);
1730             boolean booleanSwitch = types.isSameType(seltypeUnboxed, syms.booleanType);
1731             boolean errorEnumSwitch = TreeInfo.isErrorEnumSwitch(selector, cases);
1732             boolean intSwitch = types.isAssignable(seltype, syms.intType);
1733             boolean patternSwitch;
1734             if (seltype.isPrimitive() && !intSwitch) {
1735                 preview.checkSourceLevel(selector.pos(), Feature.PRIMITIVE_PATTERNS);
1736                 patternSwitch = true;
1737             }
1738             if (!enumSwitch && !stringSwitch && !errorEnumSwitch &&
1739                 !intSwitch) {
1740                 preview.checkSourceLevel(selector.pos(), Feature.PATTERN_SWITCH);
1741                 patternSwitch = true;
1742             } else {
1743                 patternSwitch = cases.stream()
1744                                      .flatMap(c -> c.labels.stream())
1745                                      .anyMatch(l -> l.hasTag(PATTERNCASELABEL) ||
1746                                                     TreeInfo.isNullCaseLabel(l));
1747             }
1748 
1749             // Attribute all cases and
1750             // check that there are no duplicate case labels or default clauses.
1751             Set<Object> constants = new HashSet<>(); // The set of case constants.
1752             boolean hasDefault = false;           // Is there a default label?
1753             boolean hasUnconditionalPattern = false; // Is there a unconditional pattern?
1754             boolean lastPatternErroneous = false; // Has the last pattern erroneous type?
1755             boolean hasNullPattern = false;       // Is there a null pattern?
1756             CaseTree.CaseKind caseKind = null;
1757             boolean wasError = false;
1758             JCCaseLabel unconditionalCaseLabel = null;
1759             for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
1760                 JCCase c = l.head;
1761                 if (caseKind == null) {
1762                     caseKind = c.caseKind;
1763                 } else if (caseKind != c.caseKind && !wasError) {
1764                     log.error(c.pos(),
1765                               Errors.SwitchMixingCaseTypes);
1766                     wasError = true;
1767                 }
1768                 MatchBindings currentBindings = null;
1769                 MatchBindings guardBindings = null;
1770                 for (List<JCCaseLabel> labels = c.labels; labels.nonEmpty(); labels = labels.tail) {
1771                     JCCaseLabel label = labels.head;
1772                     if (label instanceof JCConstantCaseLabel constLabel) {
1773                         JCExpression expr = constLabel.expr;
1774                         if (TreeInfo.isNull(expr)) {
1775                             preview.checkSourceLevel(expr.pos(), Feature.CASE_NULL);
1776                             if (hasNullPattern) {
1777                                 log.error(label.pos(), Errors.DuplicateCaseLabel);
1778                             }
1779                             hasNullPattern = true;
1780                             attribExpr(expr, switchEnv, seltype);
1781                             matchBindings = new MatchBindings(matchBindings.bindingsWhenTrue, matchBindings.bindingsWhenFalse, true);
1782                         } else if (enumSwitch) {
1783                             Symbol sym = enumConstant(expr, seltype);
1784                             if (sym == null) {
1785                                 if (allowPatternSwitch) {
1786                                     attribTree(expr, switchEnv, caseLabelResultInfo(seltype));
1787                                     Symbol enumSym = TreeInfo.symbol(expr);
1788                                     if (enumSym == null || !enumSym.isEnum() || enumSym.kind != VAR) {
1789                                         log.error(expr.pos(), Errors.EnumLabelMustBeEnumConstant);
1790                                     } else if (!constants.add(enumSym)) {
1791                                         log.error(label.pos(), Errors.DuplicateCaseLabel);
1792                                     }
1793                                 } else {
1794                                     log.error(expr.pos(), Errors.EnumLabelMustBeUnqualifiedEnum);
1795                                 }
1796                             } else if (!constants.add(sym)) {
1797                                 log.error(label.pos(), Errors.DuplicateCaseLabel);
1798                             }
1799                         } else if (errorEnumSwitch) {
1800                             //error recovery: the selector is erroneous, and all the case labels
1801                             //are identifiers. This could be an enum switch - don't report resolve
1802                             //error for the case label:
1803                             var prevResolveHelper = rs.basicLogResolveHelper;
1804                             try {
1805                                 rs.basicLogResolveHelper = rs.silentLogResolveHelper;
1806                                 attribExpr(expr, switchEnv, seltype);
1807                             } finally {
1808                                 rs.basicLogResolveHelper = prevResolveHelper;
1809                             }
1810                         } else {
1811                             Type pattype = attribTree(expr, switchEnv, caseLabelResultInfo(seltype));
1812                             if (!pattype.hasTag(ERROR)) {
1813                                 if (pattype.constValue() == null) {
1814                                     Symbol s = TreeInfo.symbol(expr);
1815                                     if (s != null && s.kind == TYP) {
1816                                         log.error(expr.pos(),
1817                                                   Errors.PatternExpected);
1818                                     } else if (s == null || !s.isEnum()) {
1819                                         log.error(expr.pos(),
1820                                                   (stringSwitch ? Errors.StringConstReq
1821                                                                 : intSwitch ? Errors.ConstExprReq
1822                                                                             : Errors.PatternOrEnumReq));
1823                                     } else if (!constants.add(s)) {
1824                                         log.error(label.pos(), Errors.DuplicateCaseLabel);
1825                                     }
1826                                 }
1827                                 else {
1828                                     boolean isLongFloatDoubleOrBooleanConstant =
1829                                             pattype.getTag().isInSuperClassesOf(LONG) || pattype.getTag().equals(BOOLEAN);
1830                                     if (isLongFloatDoubleOrBooleanConstant) {
1831                                         preview.checkSourceLevel(label.pos(), Feature.PRIMITIVE_PATTERNS);
1832                                     }
1833                                     if (!stringSwitch && !intSwitch && !(isLongFloatDoubleOrBooleanConstant && types.isSameType(seltypeUnboxed, pattype))) {
1834                                         log.error(label.pos(), Errors.ConstantLabelNotCompatible(pattype, seltype));
1835                                     } else if (!constants.add(pattype.constValue())) {
1836                                         log.error(c.pos(), Errors.DuplicateCaseLabel);
1837                                     }
1838                                 }
1839                             }
1840                         }
1841                     } else if (label instanceof JCDefaultCaseLabel def) {
1842                         if (hasDefault) {
1843                             log.error(label.pos(), Errors.DuplicateDefaultLabel);
1844                         } else if (hasUnconditionalPattern) {
1845                             log.error(label.pos(), Errors.UnconditionalPatternAndDefault);
1846                         }  else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) {
1847                             log.error(label.pos(), Errors.DefaultAndBothBooleanValues);
1848                         }
1849                         hasDefault = true;
1850                         matchBindings = MatchBindingsComputer.EMPTY;
1851                     } else if (label instanceof JCPatternCaseLabel patternlabel) {
1852                         //pattern
1853                         JCPattern pat = patternlabel.pat;
1854                         attribExpr(pat, switchEnv, seltype);
1855                         Type primaryType = TreeInfo.primaryPatternType(pat);
1856 
1857                         if (primaryType.isPrimitive()) {
1858                             preview.checkSourceLevel(pat.pos(), Feature.PRIMITIVE_PATTERNS);
1859                         } else if (!primaryType.hasTag(TYPEVAR)) {
1860                             primaryType = chk.checkClassOrArrayType(pat.pos(), primaryType);
1861                         }
1862                         checkCastablePattern(pat.pos(), seltype, primaryType);
1863                         Type patternType = types.erasure(primaryType);
1864                         JCExpression guard = c.guard;
1865                         if (guardBindings == null && guard != null) {
1866                             MatchBindings afterPattern = matchBindings;
1867                             Env<AttrContext> bodyEnv = bindingEnv(switchEnv, matchBindings.bindingsWhenTrue);
1868                             try {
1869                                 attribExpr(guard, bodyEnv, syms.booleanType);
1870                             } finally {
1871                                 bodyEnv.info.scope.leave();
1872                             }
1873 
1874                             guardBindings = matchBindings;
1875                             matchBindings = afterPattern;
1876 
1877                             if (TreeInfo.isBooleanWithValue(guard, 0)) {
1878                                 log.error(guard.pos(), Errors.GuardHasConstantExpressionFalse);
1879                             }
1880                         }
1881                         boolean unguarded = TreeInfo.unguardedCase(c) && !pat.hasTag(RECORDPATTERN);
1882                         boolean unconditional =
1883                                 unguarded &&
1884                                 !patternType.isErroneous() &&
1885                                 types.isUnconditionallyExact(seltype, patternType);
1886                         if (unconditional) {
1887                             if (hasUnconditionalPattern) {
1888                                 log.error(pat.pos(), Errors.DuplicateUnconditionalPattern);
1889                             } else if (hasDefault) {
1890                                 log.error(pat.pos(), Errors.UnconditionalPatternAndDefault);
1891                             } else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) {
1892                                 log.error(pat.pos(), Errors.UnconditionalPatternAndBothBooleanValues);
1893                             }
1894                             hasUnconditionalPattern = true;
1895                             unconditionalCaseLabel = label;
1896                         }
1897                         lastPatternErroneous = patternType.isErroneous();
1898                     } else {
1899                         Assert.error();
1900                     }
1901                     currentBindings = matchBindingsComputer.switchCase(label, currentBindings, matchBindings);
1902                 }
1903 
1904                 if (guardBindings != null) {
1905                     currentBindings = matchBindingsComputer.caseGuard(c, currentBindings, guardBindings);
1906                 }
1907 
1908                 Env<AttrContext> caseEnv =
1909                         bindingEnv(switchEnv, c, currentBindings.bindingsWhenTrue);
1910                 try {
1911                     attribCase.accept(c, caseEnv);
1912                 } finally {
1913                     caseEnv.info.scope.leave();
1914                 }
1915                 addVars(c.stats, switchEnv.info.scope);
1916 
1917                 preFlow(c);
1918                 c.completesNormally = flow.aliveAfter(caseEnv, c, make);
1919             }
1920             if (patternSwitch) {
1921                 chk.checkSwitchCaseStructure(cases);
1922                 chk.checkSwitchCaseLabelDominated(unconditionalCaseLabel, cases);
1923             }
1924             if (switchTree.hasTag(SWITCH)) {
1925                 ((JCSwitch) switchTree).hasUnconditionalPattern =
1926                         hasDefault || hasUnconditionalPattern || lastPatternErroneous;
1927                 ((JCSwitch) switchTree).patternSwitch = patternSwitch;
1928             } else if (switchTree.hasTag(SWITCH_EXPRESSION)) {
1929                 ((JCSwitchExpression) switchTree).hasUnconditionalPattern =
1930                         hasDefault || hasUnconditionalPattern || lastPatternErroneous;
1931                 ((JCSwitchExpression) switchTree).patternSwitch = patternSwitch;
1932             } else {
1933                 Assert.error(switchTree.getTag().name());
1934             }
1935         } finally {
1936             switchEnv.info.scope.leave();
1937         }
1938     }
1939     // where
1940         private ResultInfo caseLabelResultInfo(Type seltype) {
1941             return new ResultInfo(KindSelector.VAL_TYP,
1942                                   !seltype.hasTag(ERROR) ? seltype
1943                                                          : Type.noType);
1944         }
1945         /** Add any variables defined in stats to the switch scope. */
1946         private static void addVars(List<JCStatement> stats, WriteableScope switchScope) {
1947             for (;stats.nonEmpty(); stats = stats.tail) {
1948                 JCTree stat = stats.head;
1949                 if (stat.hasTag(VARDEF))
1950                     switchScope.enter(((JCVariableDecl) stat).sym);
1951             }
1952         }
1953     // where
1954     /** Return the selected enumeration constant symbol, or null. */
1955     private Symbol enumConstant(JCTree tree, Type enumType) {
1956         if (tree.hasTag(IDENT)) {
1957             JCIdent ident = (JCIdent)tree;
1958             Name name = ident.name;
1959             for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) {
1960                 if (sym.kind == VAR) {
1961                     Symbol s = ident.sym = sym;
1962                     ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1963                     ident.type = s.type;
1964                     return ((s.flags_field & Flags.ENUM) == 0)
1965                         ? null : s;
1966                 }
1967             }
1968         }
1969         return null;
1970     }
1971 
1972     public void visitSynchronized(JCSynchronized tree) {
1973         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
1974         if (tree.lock.type != null && tree.lock.type.isValueBased()) {
1975             env.info.lint.logIfEnabled(tree.pos(), LintWarnings.AttemptToSynchronizeOnInstanceOfValueBasedClass);
1976         }
1977         attribStat(tree.body, env);
1978         result = null;
1979     }
1980 
1981     public void visitTry(JCTry tree) {
1982         // Create a new local environment with a local
1983         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1984         try {
1985             boolean isTryWithResource = tree.resources.nonEmpty();
1986             // Create a nested environment for attributing the try block if needed
1987             Env<AttrContext> tryEnv = isTryWithResource ?
1988                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
1989                 localEnv;
1990             try {
1991                 // Attribute resource declarations
1992                 for (JCTree resource : tree.resources) {
1993                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
1994                         @Override
1995                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
1996                             chk.basicHandler.report(pos, diags.fragment(Fragments.TryNotApplicableToType(details)));
1997                         }
1998                     };
1999                     ResultInfo twrResult =
2000                         new ResultInfo(KindSelector.VAR,
2001                                        syms.autoCloseableType,
2002                                        twrContext);
2003                     if (resource.hasTag(VARDEF)) {
2004                         attribStat(resource, tryEnv);
2005                         twrResult.check(resource, resource.type);
2006 
2007                         //check that resource type cannot throw InterruptedException
2008                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
2009 
2010                         VarSymbol var = ((JCVariableDecl) resource).sym;
2011 
2012                         var.flags_field |= Flags.FINAL;
2013                         var.setData(ElementKind.RESOURCE_VARIABLE);
2014                     } else {
2015                         attribTree(resource, tryEnv, twrResult);
2016                     }
2017                 }
2018                 // Attribute body
2019                 attribStat(tree.body, tryEnv);
2020             } finally {
2021                 if (isTryWithResource)
2022                     tryEnv.info.scope.leave();
2023             }
2024 
2025             // Attribute catch clauses
2026             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
2027                 JCCatch c = l.head;
2028                 Env<AttrContext> catchEnv =
2029                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
2030                 try {
2031                     Type ctype = attribStat(c.param, catchEnv);
2032                     if (TreeInfo.isMultiCatch(c)) {
2033                         //multi-catch parameter is implicitly marked as final
2034                         c.param.sym.flags_field |= FINAL | UNION;
2035                     }
2036                     if (c.param.sym.kind == VAR) {
2037                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
2038                     }
2039                     chk.checkType(c.param.vartype.pos(),
2040                                   chk.checkClassType(c.param.vartype.pos(), ctype),
2041                                   syms.throwableType);
2042                     attribStat(c.body, catchEnv);
2043                 } finally {
2044                     catchEnv.info.scope.leave();
2045                 }
2046             }
2047 
2048             // Attribute finalizer
2049             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
2050             result = null;
2051         }
2052         finally {
2053             localEnv.info.scope.leave();
2054         }
2055     }
2056 
2057     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
2058         if (!resource.isErroneous() &&
2059             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
2060             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
2061             Symbol close = syms.noSymbol;
2062             Log.DiagnosticHandler discardHandler = log.new DiscardDiagnosticHandler();
2063             try {
2064                 close = rs.resolveQualifiedMethod(pos,
2065                         env,
2066                         types.skipTypeVars(resource, false),
2067                         names.close,
2068                         List.nil(),
2069                         List.nil());
2070             }
2071             finally {
2072                 log.popDiagnosticHandler(discardHandler);
2073             }
2074             if (close.kind == MTH &&
2075                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
2076                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes())) {
2077                 env.info.lint.logIfEnabled(pos, LintWarnings.TryResourceThrowsInterruptedExc(resource));
2078             }
2079         }
2080     }
2081 
2082     public void visitConditional(JCConditional tree) {
2083         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
2084         MatchBindings condBindings = matchBindings;
2085 
2086         tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly ||
2087                 isBooleanOrNumeric(env, tree)) ?
2088                 PolyKind.STANDALONE : PolyKind.POLY;
2089 
2090         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
2091             //this means we are returning a poly conditional from void-compatible lambda expression
2092             resultInfo.checkContext.report(tree, diags.fragment(Fragments.ConditionalTargetCantBeVoid));
2093             result = tree.type = types.createErrorType(resultInfo.pt);
2094             return;
2095         }
2096 
2097         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
2098                 unknownExprInfo :
2099                 resultInfo.dup(conditionalContext(resultInfo.checkContext));
2100 
2101 
2102         // x ? y : z
2103         // include x's bindings when true in y
2104         // include x's bindings when false in z
2105 
2106         Type truetype;
2107         Env<AttrContext> trueEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
2108         try {
2109             truetype = attribTree(tree.truepart, trueEnv, condInfo);
2110         } finally {
2111             trueEnv.info.scope.leave();
2112         }
2113 
2114         MatchBindings trueBindings = matchBindings;
2115 
2116         Type falsetype;
2117         Env<AttrContext> falseEnv = bindingEnv(env, condBindings.bindingsWhenFalse);
2118         try {
2119             falsetype = attribTree(tree.falsepart, falseEnv, condInfo);
2120         } finally {
2121             falseEnv.info.scope.leave();
2122         }
2123 
2124         MatchBindings falseBindings = matchBindings;
2125 
2126         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ?
2127                 condType(List.of(tree.truepart.pos(), tree.falsepart.pos()),
2128                          List.of(truetype, falsetype)) : pt();
2129         if (condtype.constValue() != null &&
2130                 truetype.constValue() != null &&
2131                 falsetype.constValue() != null &&
2132                 !owntype.hasTag(NONE)) {
2133             //constant folding
2134             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
2135         }
2136         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2137         matchBindings = matchBindingsComputer.conditional(tree, condBindings, trueBindings, falseBindings);
2138     }
2139     //where
2140         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
2141             switch (tree.getTag()) {
2142                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
2143                               ((JCLiteral)tree).typetag == BOOLEAN ||
2144                               ((JCLiteral)tree).typetag == BOT;
2145                 case LAMBDA: case REFERENCE: return false;
2146                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
2147                 case CONDEXPR:
2148                     JCConditional condTree = (JCConditional)tree;
2149                     return isBooleanOrNumeric(env, condTree.truepart) &&
2150                             isBooleanOrNumeric(env, condTree.falsepart);
2151                 case APPLY:
2152                     JCMethodInvocation speculativeMethodTree =
2153                             (JCMethodInvocation)deferredAttr.attribSpeculative(
2154                                     tree, env, unknownExprInfo,
2155                                     argumentAttr.withLocalCacheContext());
2156                     Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth);
2157                     Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ?
2158                             env.enclClass.type :
2159                             ((JCFieldAccess)speculativeMethodTree.meth).selected.type;
2160                     Type owntype = types.memberType(receiverType, msym).getReturnType();
2161                     return primitiveOrBoxed(owntype);
2162                 case NEWCLASS:
2163                     JCExpression className =
2164                             removeClassParams.translate(((JCNewClass)tree).clazz);
2165                     JCExpression speculativeNewClassTree =
2166                             (JCExpression)deferredAttr.attribSpeculative(
2167                                     className, env, unknownTypeInfo,
2168                                     argumentAttr.withLocalCacheContext());
2169                     return primitiveOrBoxed(speculativeNewClassTree.type);
2170                 default:
2171                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo,
2172                             argumentAttr.withLocalCacheContext()).type;
2173                     return primitiveOrBoxed(speculativeType);
2174             }
2175         }
2176         //where
2177             boolean primitiveOrBoxed(Type t) {
2178                 return (!t.hasTag(TYPEVAR) && !t.isErroneous() && types.unboxedTypeOrType(t).isPrimitive());
2179             }
2180 
2181             TreeTranslator removeClassParams = new TreeTranslator() {
2182                 @Override
2183                 public void visitTypeApply(JCTypeApply tree) {
2184                     result = translate(tree.clazz);
2185                 }
2186             };
2187 
2188         CheckContext conditionalContext(CheckContext checkContext) {
2189             return new Check.NestedCheckContext(checkContext) {
2190                 //this will use enclosing check context to check compatibility of
2191                 //subexpression against target type; if we are in a method check context,
2192                 //depending on whether boxing is allowed, we could have incompatibilities
2193                 @Override
2194                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
2195                     enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInConditional(details)));
2196                 }
2197             };
2198         }
2199 
2200         /** Compute the type of a conditional expression, after
2201          *  checking that it exists.  See JLS 15.25. Does not take into
2202          *  account the special case where condition and both arms
2203          *  are constants.
2204          *
2205          *  @param pos      The source position to be used for error
2206          *                  diagnostics.
2207          *  @param thentype The type of the expression's then-part.
2208          *  @param elsetype The type of the expression's else-part.
2209          */
2210         Type condType(List<DiagnosticPosition> positions, List<Type> condTypes) {
2211             if (condTypes.isEmpty()) {
2212                 return syms.objectType; //TODO: how to handle?
2213             }
2214             Type first = condTypes.head;
2215             // If same type, that is the result
2216             if (condTypes.tail.stream().allMatch(t -> types.isSameType(first, t)))
2217                 return first.baseType();
2218 
2219             List<Type> unboxedTypes = condTypes.stream()
2220                                                .map(t -> t.isPrimitive() ? t : types.unboxedType(t))
2221                                                .collect(List.collector());
2222 
2223             // Otherwise, if both arms can be converted to a numeric
2224             // type, return the least numeric type that fits both arms
2225             // (i.e. return larger of the two, or return int if one
2226             // arm is short, the other is char).
2227             if (unboxedTypes.stream().allMatch(t -> t.isPrimitive())) {
2228                 // If one arm has an integer subrange type (i.e., byte,
2229                 // short, or char), and the other is an integer constant
2230                 // that fits into the subrange, return the subrange type.
2231                 for (Type type : unboxedTypes) {
2232                     if (!type.getTag().isStrictSubRangeOf(INT)) {
2233                         continue;
2234                     }
2235                     if (unboxedTypes.stream().filter(t -> t != type).allMatch(t -> t.hasTag(INT) && types.isAssignable(t, type)))
2236                         return type.baseType();
2237                 }
2238 
2239                 for (TypeTag tag : primitiveTags) {
2240                     Type candidate = syms.typeOfTag[tag.ordinal()];
2241                     if (unboxedTypes.stream().allMatch(t -> types.isSubtype(t, candidate))) {
2242                         return candidate;
2243                     }
2244                 }
2245             }
2246 
2247             // Those were all the cases that could result in a primitive
2248             condTypes = condTypes.stream()
2249                                  .map(t -> t.isPrimitive() ? types.boxedClass(t).type : t)
2250                                  .collect(List.collector());
2251 
2252             for (Type type : condTypes) {
2253                 if (condTypes.stream().filter(t -> t != type).allMatch(t -> types.isAssignable(t, type)))
2254                     return type.baseType();
2255             }
2256 
2257             Iterator<DiagnosticPosition> posIt = positions.iterator();
2258 
2259             condTypes = condTypes.stream()
2260                                  .map(t -> chk.checkNonVoid(posIt.next(), t))
2261                                  .collect(List.collector());
2262 
2263             // both are known to be reference types.  The result is
2264             // lub(thentype,elsetype). This cannot fail, as it will
2265             // always be possible to infer "Object" if nothing better.
2266             return types.lub(condTypes.stream()
2267                         .map(t -> t.baseType())
2268                         .filter(t -> !t.hasTag(BOT))
2269                         .collect(List.collector()));
2270         }
2271 
2272     static final TypeTag[] primitiveTags = new TypeTag[]{
2273         BYTE,
2274         CHAR,
2275         SHORT,
2276         INT,
2277         LONG,
2278         FLOAT,
2279         DOUBLE,
2280         BOOLEAN,
2281     };
2282 
2283     Env<AttrContext> bindingEnv(Env<AttrContext> env, List<BindingSymbol> bindings) {
2284         return bindingEnv(env, env.tree, bindings);
2285     }
2286 
2287     Env<AttrContext> bindingEnv(Env<AttrContext> env, JCTree newTree, List<BindingSymbol> bindings) {
2288         Env<AttrContext> env1 = env.dup(newTree, env.info.dup(env.info.scope.dup()));
2289         bindings.forEach(env1.info.scope::enter);
2290         return env1;
2291     }
2292 
2293     public void visitIf(JCIf tree) {
2294         attribExpr(tree.cond, env, syms.booleanType);
2295 
2296         // if (x) { y } [ else z ]
2297         // include x's bindings when true in y
2298         // include x's bindings when false in z
2299 
2300         MatchBindings condBindings = matchBindings;
2301         Env<AttrContext> thenEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
2302 
2303         try {
2304             attribStat(tree.thenpart, thenEnv);
2305         } finally {
2306             thenEnv.info.scope.leave();
2307         }
2308 
2309         preFlow(tree.thenpart);
2310         boolean aliveAfterThen = flow.aliveAfter(env, tree.thenpart, make);
2311         boolean aliveAfterElse;
2312 
2313         if (tree.elsepart != null) {
2314             Env<AttrContext> elseEnv = bindingEnv(env, condBindings.bindingsWhenFalse);
2315             try {
2316                 attribStat(tree.elsepart, elseEnv);
2317             } finally {
2318                 elseEnv.info.scope.leave();
2319             }
2320             preFlow(tree.elsepart);
2321             aliveAfterElse = flow.aliveAfter(env, tree.elsepart, make);
2322         } else {
2323             aliveAfterElse = true;
2324         }
2325 
2326         chk.checkEmptyIf(tree);
2327 
2328         List<BindingSymbol> afterIfBindings = List.nil();
2329 
2330         if (aliveAfterThen && !aliveAfterElse) {
2331             afterIfBindings = condBindings.bindingsWhenTrue;
2332         } else if (aliveAfterElse && !aliveAfterThen) {
2333             afterIfBindings = condBindings.bindingsWhenFalse;
2334         }
2335 
2336         addBindings2Scope(tree, afterIfBindings);
2337 
2338         result = null;
2339     }
2340 
2341         void preFlow(JCTree tree) {
2342             attrRecover.doRecovery();
2343             new PostAttrAnalyzer() {
2344                 @Override
2345                 public void scan(JCTree tree) {
2346                     if (tree == null ||
2347                             (tree.type != null &&
2348                             tree.type == Type.stuckType)) {
2349                         //don't touch stuck expressions!
2350                         return;
2351                     }
2352                     super.scan(tree);
2353                 }
2354 
2355                 @Override
2356                 public void visitClassDef(JCClassDecl that) {
2357                     if (that.sym != null) {
2358                         // Method preFlow shouldn't visit class definitions
2359                         // that have not been entered and attributed.
2360                         // See JDK-8254557 and JDK-8203277 for more details.
2361                         super.visitClassDef(that);
2362                     }
2363                 }
2364 
2365                 @Override
2366                 public void visitLambda(JCLambda that) {
2367                     if (that.type != null) {
2368                         // Method preFlow shouldn't visit lambda expressions
2369                         // that have not been entered and attributed.
2370                         // See JDK-8254557 and JDK-8203277 for more details.
2371                         super.visitLambda(that);
2372                     }
2373                 }
2374             }.scan(tree);
2375         }
2376 
2377     public void visitExec(JCExpressionStatement tree) {
2378         //a fresh environment is required for 292 inference to work properly ---
2379         //see Infer.instantiatePolymorphicSignatureInstance()
2380         Env<AttrContext> localEnv = env.dup(tree);
2381         attribExpr(tree.expr, localEnv);
2382         result = null;
2383     }
2384 
2385     public void visitBreak(JCBreak tree) {
2386         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
2387         result = null;
2388     }
2389 
2390     public void visitYield(JCYield tree) {
2391         if (env.info.yieldResult != null) {
2392             attribTree(tree.value, env, env.info.yieldResult);
2393             tree.target = findJumpTarget(tree.pos(), tree.getTag(), names.empty, env);
2394         } else {
2395             log.error(tree.pos(), tree.value.hasTag(PARENS)
2396                     ? Errors.NoSwitchExpressionQualify
2397                     : Errors.NoSwitchExpression);
2398             attribTree(tree.value, env, unknownExprInfo);
2399         }
2400         result = null;
2401     }
2402 
2403     public void visitContinue(JCContinue tree) {
2404         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
2405         result = null;
2406     }
2407     //where
2408         /** Return the target of a break, continue or yield statement,
2409          *  if it exists, report an error if not.
2410          *  Note: The target of a labelled break or continue is the
2411          *  (non-labelled) statement tree referred to by the label,
2412          *  not the tree representing the labelled statement itself.
2413          *
2414          *  @param pos     The position to be used for error diagnostics
2415          *  @param tag     The tag of the jump statement. This is either
2416          *                 Tree.BREAK or Tree.CONTINUE.
2417          *  @param label   The label of the jump statement, or null if no
2418          *                 label is given.
2419          *  @param env     The environment current at the jump statement.
2420          */
2421         private JCTree findJumpTarget(DiagnosticPosition pos,
2422                                                    JCTree.Tag tag,
2423                                                    Name label,
2424                                                    Env<AttrContext> env) {
2425             Pair<JCTree, Error> jumpTarget = findJumpTargetNoError(tag, label, env);
2426 
2427             if (jumpTarget.snd != null) {
2428                 log.error(pos, jumpTarget.snd);
2429             }
2430 
2431             return jumpTarget.fst;
2432         }
2433         /** Return the target of a break or continue statement, if it exists,
2434          *  report an error if not.
2435          *  Note: The target of a labelled break or continue is the
2436          *  (non-labelled) statement tree referred to by the label,
2437          *  not the tree representing the labelled statement itself.
2438          *
2439          *  @param tag     The tag of the jump statement. This is either
2440          *                 Tree.BREAK or Tree.CONTINUE.
2441          *  @param label   The label of the jump statement, or null if no
2442          *                 label is given.
2443          *  @param env     The environment current at the jump statement.
2444          */
2445         private Pair<JCTree, JCDiagnostic.Error> findJumpTargetNoError(JCTree.Tag tag,
2446                                                                        Name label,
2447                                                                        Env<AttrContext> env) {
2448             // Search environments outwards from the point of jump.
2449             Env<AttrContext> env1 = env;
2450             JCDiagnostic.Error pendingError = null;
2451             LOOP:
2452             while (env1 != null) {
2453                 switch (env1.tree.getTag()) {
2454                     case LABELLED:
2455                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
2456                         if (label == labelled.label) {
2457                             // If jump is a continue, check that target is a loop.
2458                             if (tag == CONTINUE) {
2459                                 if (!labelled.body.hasTag(DOLOOP) &&
2460                                         !labelled.body.hasTag(WHILELOOP) &&
2461                                         !labelled.body.hasTag(FORLOOP) &&
2462                                         !labelled.body.hasTag(FOREACHLOOP)) {
2463                                     pendingError = Errors.NotLoopLabel(label);
2464                                 }
2465                                 // Found labelled statement target, now go inwards
2466                                 // to next non-labelled tree.
2467                                 return Pair.of(TreeInfo.referencedStatement(labelled), pendingError);
2468                             } else {
2469                                 return Pair.of(labelled, pendingError);
2470                             }
2471                         }
2472                         break;
2473                     case DOLOOP:
2474                     case WHILELOOP:
2475                     case FORLOOP:
2476                     case FOREACHLOOP:
2477                         if (label == null) return Pair.of(env1.tree, pendingError);
2478                         break;
2479                     case SWITCH:
2480                         if (label == null && tag == BREAK) return Pair.of(env1.tree, null);
2481                         break;
2482                     case SWITCH_EXPRESSION:
2483                         if (tag == YIELD) {
2484                             return Pair.of(env1.tree, null);
2485                         } else if (tag == BREAK) {
2486                             pendingError = Errors.BreakOutsideSwitchExpression;
2487                         } else {
2488                             pendingError = Errors.ContinueOutsideSwitchExpression;
2489                         }
2490                         break;
2491                     case LAMBDA:
2492                     case METHODDEF:
2493                     case CLASSDEF:
2494                         break LOOP;
2495                     default:
2496                 }
2497                 env1 = env1.next;
2498             }
2499             if (label != null)
2500                 return Pair.of(null, Errors.UndefLabel(label));
2501             else if (pendingError != null)
2502                 return Pair.of(null, pendingError);
2503             else if (tag == CONTINUE)
2504                 return Pair.of(null, Errors.ContOutsideLoop);
2505             else
2506                 return Pair.of(null, Errors.BreakOutsideSwitchLoop);
2507         }
2508 
2509     public void visitReturn(JCReturn tree) {
2510         // Check that there is an enclosing method which is
2511         // nested within than the enclosing class.
2512         if (env.info.returnResult == null) {
2513             log.error(tree.pos(), Errors.RetOutsideMeth);
2514         } else if (env.info.yieldResult != null) {
2515             log.error(tree.pos(), Errors.ReturnOutsideSwitchExpression);
2516             if (tree.expr != null) {
2517                 attribExpr(tree.expr, env, env.info.yieldResult.pt);
2518             }
2519         } else if (!env.info.isLambda &&
2520                 env.enclMethod != null &&
2521                 TreeInfo.isCompactConstructor(env.enclMethod)) {
2522             log.error(env.enclMethod,
2523                     Errors.InvalidCanonicalConstructorInRecord(Fragments.Compact, env.enclMethod.sym.name, Fragments.CanonicalCantHaveReturnStatement));
2524         } else {
2525             // Attribute return expression, if it exists, and check that
2526             // it conforms to result type of enclosing method.
2527             if (tree.expr != null) {
2528                 if (env.info.returnResult.pt.hasTag(VOID)) {
2529                     env.info.returnResult.checkContext.report(tree.expr.pos(),
2530                               diags.fragment(Fragments.UnexpectedRetVal));
2531                 }
2532                 attribTree(tree.expr, env, env.info.returnResult);
2533             } else if (!env.info.returnResult.pt.hasTag(VOID) &&
2534                     !env.info.returnResult.pt.hasTag(NONE)) {
2535                 env.info.returnResult.checkContext.report(tree.pos(),
2536                               diags.fragment(Fragments.MissingRetVal(env.info.returnResult.pt)));
2537             }
2538         }
2539         result = null;
2540     }
2541 
2542     public void visitThrow(JCThrow tree) {
2543         Type owntype = attribExpr(tree.expr, env, Type.noType);
2544         chk.checkType(tree, owntype, syms.throwableType);
2545         result = null;
2546     }
2547 
2548     public void visitAssert(JCAssert tree) {
2549         attribExpr(tree.cond, env, syms.booleanType);
2550         if (tree.detail != null) {
2551             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
2552         }
2553         result = null;
2554     }
2555 
2556      /** Visitor method for method invocations.
2557      *  NOTE: The method part of an application will have in its type field
2558      *        the return type of the method, not the method's type itself!
2559      */
2560     public void visitApply(JCMethodInvocation tree) {
2561         // The local environment of a method application is
2562         // a new environment nested in the current one.
2563         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
2564 
2565         // The types of the actual method arguments.
2566         List<Type> argtypes;
2567 
2568         // The types of the actual method type arguments.
2569         List<Type> typeargtypes = null;
2570 
2571         Name methName = TreeInfo.name(tree.meth);
2572 
2573         boolean isConstructorCall =
2574             methName == names._this || methName == names._super;
2575 
2576         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2577         if (isConstructorCall) {
2578 
2579             // Attribute arguments, yielding list of argument types.
2580             KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf);
2581             argtypes = argtypesBuf.toList();
2582             typeargtypes = attribTypes(tree.typeargs, localEnv);
2583 
2584             // Done with this()/super() parameters. End of constructor prologue.
2585             env.info.ctorPrologue = false;
2586 
2587             // Variable `site' points to the class in which the called
2588             // constructor is defined.
2589             Type site = env.enclClass.sym.type;
2590             if (methName == names._super) {
2591                 if (site == syms.objectType) {
2592                     log.error(tree.meth.pos(), Errors.NoSuperclass(site));
2593                     site = types.createErrorType(syms.objectType);
2594                 } else {
2595                     site = types.supertype(site);
2596                 }
2597             }
2598 
2599             if (site.hasTag(CLASS)) {
2600                 Type encl = site.getEnclosingType();
2601                 while (encl != null && encl.hasTag(TYPEVAR))
2602                     encl = encl.getUpperBound();
2603                 if (encl.hasTag(CLASS)) {
2604                     // we are calling a nested class
2605 
2606                     if (tree.meth.hasTag(SELECT)) {
2607                         JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
2608 
2609                         // We are seeing a prefixed call, of the form
2610                         //     <expr>.super(...).
2611                         // Check that the prefix expression conforms
2612                         // to the outer instance type of the class.
2613                         chk.checkRefType(qualifier.pos(),
2614                                          attribExpr(qualifier, localEnv,
2615                                                     encl));
2616                     }
2617                 } else if (tree.meth.hasTag(SELECT)) {
2618                     log.error(tree.meth.pos(),
2619                               Errors.IllegalQualNotIcls(site.tsym));
2620                     attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site);
2621                 }
2622 
2623                 if (tree.meth.hasTag(IDENT)) {
2624                     // non-qualified super(...) call; check whether explicit constructor
2625                     // invocation is well-formed. If the super class is an inner class,
2626                     // make sure that an appropriate implicit qualifier exists. If the super
2627                     // class is a local class, make sure that the current class is defined
2628                     // in the same context as the local class.
2629                     checkNewInnerClass(tree.meth.pos(), localEnv, site, true);
2630                 }
2631 
2632                 // if we're calling a java.lang.Enum constructor,
2633                 // prefix the implicit String and int parameters
2634                 if (site.tsym == syms.enumSym)
2635                     argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
2636 
2637                 // Resolve the called constructor under the assumption
2638                 // that we are referring to a superclass instance of the
2639                 // current instance (JLS ???).
2640                 boolean selectSuperPrev = localEnv.info.selectSuper;
2641                 localEnv.info.selectSuper = true;
2642                 localEnv.info.pendingResolutionPhase = null;
2643                 Symbol sym = rs.resolveConstructor(
2644                     tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
2645                 localEnv.info.selectSuper = selectSuperPrev;
2646 
2647                 // Set method symbol to resolved constructor...
2648                 TreeInfo.setSymbol(tree.meth, sym);
2649 
2650                 // ...and check that it is legal in the current context.
2651                 // (this will also set the tree's type)
2652                 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
2653                 checkId(tree.meth, site, sym, localEnv,
2654                         new ResultInfo(kind, mpt));
2655             } else if (site.hasTag(ERROR) && tree.meth.hasTag(SELECT)) {
2656                 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site);
2657             }
2658             // Otherwise, `site' is an error type and we do nothing
2659             result = tree.type = syms.voidType;
2660         } else {
2661             // Otherwise, we are seeing a regular method call.
2662             // Attribute the arguments, yielding list of argument types, ...
2663             KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2664             argtypes = argtypesBuf.toList();
2665             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
2666 
2667             // ... and attribute the method using as a prototype a methodtype
2668             // whose formal argument types is exactly the list of actual
2669             // arguments (this will also set the method symbol).
2670             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
2671             localEnv.info.pendingResolutionPhase = null;
2672             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
2673 
2674             // Compute the result type.
2675             Type restype = mtype.getReturnType();
2676             if (restype.hasTag(WILDCARD))
2677                 throw new AssertionError(mtype);
2678 
2679             Type qualifier = (tree.meth.hasTag(SELECT))
2680                     ? ((JCFieldAccess) tree.meth).selected.type
2681                     : env.enclClass.sym.type;
2682             Symbol msym = TreeInfo.symbol(tree.meth);
2683             restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype);
2684 
2685             chk.checkRefTypes(tree.typeargs, typeargtypes);
2686 
2687             // Check that value of resulting type is admissible in the
2688             // current context.  Also, capture the return type
2689             Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true);
2690             result = check(tree, capturedRes, KindSelector.VAL, resultInfo);
2691         }
2692         chk.checkRequiresIdentity(tree, env.info.lint);
2693         chk.validate(tree.typeargs, localEnv);
2694     }
2695     //where
2696         Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
2697             if (msym != null &&
2698                     (msym.owner == syms.objectType.tsym || msym.owner.isInterface()) &&
2699                     methodName == names.getClass &&
2700                     argtypes.isEmpty()) {
2701                 // as a special case, x.getClass() has type Class<? extends |X|>
2702                 return new ClassType(restype.getEnclosingType(),
2703                         List.of(new WildcardType(types.erasure(qualifierType.baseType()),
2704                                 BoundKind.EXTENDS,
2705                                 syms.boundClass)),
2706                         restype.tsym,
2707                         restype.getMetadata());
2708             } else if (msym != null &&
2709                     msym.owner == syms.arrayClass &&
2710                     methodName == names.clone &&
2711                     types.isArray(qualifierType)) {
2712                 // as a special case, array.clone() has a result that is
2713                 // the same as static type of the array being cloned
2714                 return qualifierType;
2715             } else {
2716                 return restype;
2717             }
2718         }
2719 
2720         /** Obtain a method type with given argument types.
2721          */
2722         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
2723             MethodType mt = new MethodType(argtypes, restype, List.nil(), syms.methodClass);
2724             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
2725         }
2726 
2727     public void visitNewClass(final JCNewClass tree) {
2728         Type owntype = types.createErrorType(tree.type);
2729 
2730         // The local environment of a class creation is
2731         // a new environment nested in the current one.
2732         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
2733 
2734         // The anonymous inner class definition of the new expression,
2735         // if one is defined by it.
2736         JCClassDecl cdef = tree.def;
2737 
2738         // If enclosing class is given, attribute it, and
2739         // complete class name to be fully qualified
2740         JCExpression clazz = tree.clazz; // Class field following new
2741         JCExpression clazzid;            // Identifier in class field
2742         JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
2743         annoclazzid = null;
2744 
2745         if (clazz.hasTag(TYPEAPPLY)) {
2746             clazzid = ((JCTypeApply) clazz).clazz;
2747             if (clazzid.hasTag(ANNOTATED_TYPE)) {
2748                 annoclazzid = (JCAnnotatedType) clazzid;
2749                 clazzid = annoclazzid.underlyingType;
2750             }
2751         } else {
2752             if (clazz.hasTag(ANNOTATED_TYPE)) {
2753                 annoclazzid = (JCAnnotatedType) clazz;
2754                 clazzid = annoclazzid.underlyingType;
2755             } else {
2756                 clazzid = clazz;
2757             }
2758         }
2759 
2760         JCExpression clazzid1 = clazzid; // The same in fully qualified form
2761 
2762         if (tree.encl != null) {
2763             // We are seeing a qualified new, of the form
2764             //    <expr>.new C <...> (...) ...
2765             // In this case, we let clazz stand for the name of the
2766             // allocated class C prefixed with the type of the qualifier
2767             // expression, so that we can
2768             // resolve it with standard techniques later. I.e., if
2769             // <expr> has type T, then <expr>.new C <...> (...)
2770             // yields a clazz T.C.
2771             Type encltype = chk.checkRefType(tree.encl.pos(),
2772                                              attribExpr(tree.encl, env));
2773             // TODO 308: in <expr>.new C, do we also want to add the type annotations
2774             // from expr to the combined type, or not? Yes, do this.
2775             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
2776                                                  ((JCIdent) clazzid).name);
2777 
2778             EndPosTable endPosTable = this.env.toplevel.endPositions;
2779             endPosTable.storeEnd(clazzid1, clazzid.getEndPosition(endPosTable));
2780             if (clazz.hasTag(ANNOTATED_TYPE)) {
2781                 JCAnnotatedType annoType = (JCAnnotatedType) clazz;
2782                 List<JCAnnotation> annos = annoType.annotations;
2783 
2784                 if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
2785                     clazzid1 = make.at(tree.pos).
2786                         TypeApply(clazzid1,
2787                                   ((JCTypeApply) clazz).arguments);
2788                 }
2789 
2790                 clazzid1 = make.at(tree.pos).
2791                     AnnotatedType(annos, clazzid1);
2792             } else if (clazz.hasTag(TYPEAPPLY)) {
2793                 clazzid1 = make.at(tree.pos).
2794                     TypeApply(clazzid1,
2795                               ((JCTypeApply) clazz).arguments);
2796             }
2797 
2798             clazz = clazzid1;
2799         }
2800 
2801         // Attribute clazz expression and store
2802         // symbol + type back into the attributed tree.
2803         Type clazztype;
2804 
2805         try {
2806             env.info.isAnonymousNewClass = tree.def != null;
2807             clazztype = TreeInfo.isEnumInit(env.tree) ?
2808                 attribIdentAsEnumType(env, (JCIdent)clazz) :
2809                 attribType(clazz, env);
2810         } finally {
2811             env.info.isAnonymousNewClass = false;
2812         }
2813 
2814         clazztype = chk.checkDiamond(tree, clazztype);
2815         chk.validate(clazz, localEnv);
2816         if (tree.encl != null) {
2817             // We have to work in this case to store
2818             // symbol + type back into the attributed tree.
2819             tree.clazz.type = clazztype;
2820             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
2821             clazzid.type = ((JCIdent) clazzid).sym.type;
2822             if (annoclazzid != null) {
2823                 annoclazzid.type = clazzid.type;
2824             }
2825             if (!clazztype.isErroneous()) {
2826                 if (cdef != null && clazztype.tsym.isInterface()) {
2827                     log.error(tree.encl.pos(), Errors.AnonClassImplIntfNoQualForNew);
2828                 } else if (clazztype.tsym.isStatic()) {
2829                     log.error(tree.encl.pos(), Errors.QualifiedNewOfStaticClass(clazztype.tsym));
2830                 }
2831             }
2832         } else {
2833             // Check for the existence of an apropos outer instance
2834             checkNewInnerClass(tree.pos(), env, clazztype, false);
2835         }
2836 
2837         // Attribute constructor arguments.
2838         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2839         final KindSelector pkind =
2840             attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2841         List<Type> argtypes = argtypesBuf.toList();
2842         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
2843 
2844         if (clazztype.hasTag(CLASS) || clazztype.hasTag(ERROR)) {
2845             // Enums may not be instantiated except implicitly
2846             if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 &&
2847                 (!env.tree.hasTag(VARDEF) ||
2848                  (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 ||
2849                  ((JCVariableDecl) env.tree).init != tree))
2850                 log.error(tree.pos(), Errors.EnumCantBeInstantiated);
2851 
2852             boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) &&
2853                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2854             boolean skipNonDiamondPath = false;
2855             // Check that class is not abstract
2856             if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy
2857                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
2858                 log.error(tree.pos(),
2859                           Errors.AbstractCantBeInstantiated(clazztype.tsym));
2860                 skipNonDiamondPath = true;
2861             } else if (cdef != null && clazztype.tsym.isInterface()) {
2862                 // Check that no constructor arguments are given to
2863                 // anonymous classes implementing an interface
2864                 if (!argtypes.isEmpty())
2865                     log.error(tree.args.head.pos(), Errors.AnonClassImplIntfNoArgs);
2866 
2867                 if (!typeargtypes.isEmpty())
2868                     log.error(tree.typeargs.head.pos(), Errors.AnonClassImplIntfNoTypeargs);
2869 
2870                 // Error recovery: pretend no arguments were supplied.
2871                 argtypes = List.nil();
2872                 typeargtypes = List.nil();
2873                 skipNonDiamondPath = true;
2874             }
2875             if (TreeInfo.isDiamond(tree)) {
2876                 ClassType site = new ClassType(clazztype.getEnclosingType(),
2877                             clazztype.tsym.type.getTypeArguments(),
2878                                                clazztype.tsym,
2879                                                clazztype.getMetadata());
2880 
2881                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
2882                 diamondEnv.info.selectSuper = cdef != null || tree.classDeclRemoved();
2883                 diamondEnv.info.pendingResolutionPhase = null;
2884 
2885                 //if the type of the instance creation expression is a class type
2886                 //apply method resolution inference (JLS 15.12.2.7). The return type
2887                 //of the resolved constructor will be a partially instantiated type
2888                 Symbol constructor = rs.resolveDiamond(tree.pos(),
2889                             diamondEnv,
2890                             site,
2891                             argtypes,
2892                             typeargtypes);
2893                 tree.constructor = constructor.baseSymbol();
2894 
2895                 final TypeSymbol csym = clazztype.tsym;
2896                 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes),
2897                         diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
2898                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
2899                 constructorType = checkId(tree, site,
2900                         constructor,
2901                         diamondEnv,
2902                         diamondResult);
2903 
2904                 tree.clazz.type = types.createErrorType(clazztype);
2905                 if (!constructorType.isErroneous()) {
2906                     tree.clazz.type = clazz.type = constructorType.getReturnType();
2907                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
2908                 }
2909                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
2910             }
2911 
2912             // Resolve the called constructor under the assumption
2913             // that we are referring to a superclass instance of the
2914             // current instance (JLS ???).
2915             else if (!skipNonDiamondPath) {
2916                 //the following code alters some of the fields in the current
2917                 //AttrContext - hence, the current context must be dup'ed in
2918                 //order to avoid downstream failures
2919                 Env<AttrContext> rsEnv = localEnv.dup(tree);
2920                 rsEnv.info.selectSuper = cdef != null;
2921                 rsEnv.info.pendingResolutionPhase = null;
2922                 tree.constructor = rs.resolveConstructor(
2923                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
2924                 if (cdef == null) { //do not check twice!
2925                     tree.constructorType = checkId(tree,
2926                             clazztype,
2927                             tree.constructor,
2928                             rsEnv,
2929                             new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2930                     if (rsEnv.info.lastResolveVarargs())
2931                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
2932                 }
2933             }
2934 
2935             chk.checkRequiresIdentity(tree, env.info.lint);
2936 
2937             if (cdef != null) {
2938                 visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind);
2939                 return;
2940             }
2941 
2942             if (tree.constructor != null && tree.constructor.kind == MTH)
2943                 owntype = clazztype;
2944         }
2945         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2946         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2947         if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) {
2948             //we need to wait for inference to finish and then replace inference vars in the constructor type
2949             inferenceContext.addFreeTypeListener(List.of(tree.constructorType),
2950                     instantiatedContext -> {
2951                         tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2952                     });
2953         }
2954         chk.validate(tree.typeargs, localEnv);
2955     }
2956 
2957         // where
2958         private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype,
2959                                                    JCClassDecl cdef, Env<AttrContext> localEnv,
2960                                                    List<Type> argtypes, List<Type> typeargtypes,
2961                                                    KindSelector pkind) {
2962             // We are seeing an anonymous class instance creation.
2963             // In this case, the class instance creation
2964             // expression
2965             //
2966             //    E.new <typeargs1>C<typargs2>(args) { ... }
2967             //
2968             // is represented internally as
2969             //
2970             //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
2971             //
2972             // This expression is then *transformed* as follows:
2973             //
2974             // (1) add an extends or implements clause
2975             // (2) add a constructor.
2976             //
2977             // For instance, if C is a class, and ET is the type of E,
2978             // the expression
2979             //
2980             //    E.new <typeargs1>C<typargs2>(args) { ... }
2981             //
2982             // is translated to (where X is a fresh name and typarams is the
2983             // parameter list of the super constructor):
2984             //
2985             //   new <typeargs1>X(<*nullchk*>E, args) where
2986             //     X extends C<typargs2> {
2987             //       <typarams> X(ET e, args) {
2988             //         e.<typeargs1>super(args)
2989             //       }
2990             //       ...
2991             //     }
2992             InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2993             Type enclType = clazztype.getEnclosingType();
2994             if (enclType != null &&
2995                     enclType.hasTag(CLASS) &&
2996                     !chk.checkDenotable((ClassType)enclType)) {
2997                 log.error(tree.encl, Errors.EnclosingClassTypeNonDenotable(enclType));
2998             }
2999             final boolean isDiamond = TreeInfo.isDiamond(tree);
3000             if (isDiamond
3001                     && ((tree.constructorType != null && inferenceContext.free(tree.constructorType))
3002                     || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) {
3003                 final ResultInfo resultInfoForClassDefinition = this.resultInfo;
3004                 Env<AttrContext> dupLocalEnv = copyEnv(localEnv);
3005                 inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type),
3006                         instantiatedContext -> {
3007                             tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
3008                             tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type);
3009                             ResultInfo prevResult = this.resultInfo;
3010                             try {
3011                                 this.resultInfo = resultInfoForClassDefinition;
3012                                 visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef,
3013                                         dupLocalEnv, argtypes, typeargtypes, pkind);
3014                             } finally {
3015                                 this.resultInfo = prevResult;
3016                             }
3017                         });
3018             } else {
3019                 if (isDiamond && clazztype.hasTag(CLASS)) {
3020                     List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype);
3021                     if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
3022                         // One or more types inferred in the previous steps is non-denotable.
3023                         Fragment fragment = Diamond(clazztype.tsym);
3024                         log.error(tree.clazz.pos(),
3025                                 Errors.CantApplyDiamond1(
3026                                         fragment,
3027                                         invalidDiamondArgs.size() > 1 ?
3028                                                 DiamondInvalidArgs(invalidDiamondArgs, fragment) :
3029                                                 DiamondInvalidArg(invalidDiamondArgs, fragment)));
3030                     }
3031                     // For <>(){}, inferred types must also be accessible.
3032                     for (Type t : clazztype.getTypeArguments()) {
3033                         rs.checkAccessibleType(env, t);
3034                     }
3035                 }
3036 
3037                 // If we already errored, be careful to avoid a further avalanche. ErrorType answers
3038                 // false for isInterface call even when the original type is an interface.
3039                 boolean implementing = clazztype.tsym.isInterface() ||
3040                         clazztype.isErroneous() && !clazztype.getOriginalType().hasTag(NONE) &&
3041                         clazztype.getOriginalType().tsym.isInterface();
3042 
3043                 if (implementing) {
3044                     cdef.implementing = List.of(clazz);
3045                 } else {
3046                     cdef.extending = clazz;
3047                 }
3048 
3049                 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3050                     rs.isSerializable(clazztype)) {
3051                     localEnv.info.isSerializable = true;
3052                 }
3053 
3054                 attribStat(cdef, localEnv);
3055 
3056                 List<Type> finalargtypes;
3057                 // If an outer instance is given,
3058                 // prefix it to the constructor arguments
3059                 // and delete it from the new expression
3060                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
3061                     finalargtypes = argtypes.prepend(tree.encl.type);
3062                 } else {
3063                     finalargtypes = argtypes;
3064                 }
3065 
3066                 // Reassign clazztype and recompute constructor. As this necessarily involves
3067                 // another attribution pass for deferred types in the case of <>, replicate
3068                 // them. Original arguments have right decorations already.
3069                 if (isDiamond && pkind.contains(KindSelector.POLY)) {
3070                     finalargtypes = finalargtypes.map(deferredAttr.deferredCopier);
3071                 }
3072 
3073                 clazztype = clazztype.hasTag(ERROR) ? types.createErrorType(cdef.sym.type)
3074                                                     : cdef.sym.type;
3075                 Symbol sym = tree.constructor = rs.resolveConstructor(
3076                         tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes);
3077                 Assert.check(!sym.kind.isResolutionError());
3078                 tree.constructor = sym;
3079                 tree.constructorType = checkId(tree,
3080                         clazztype,
3081                         tree.constructor,
3082                         localEnv,
3083                         new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
3084             }
3085             Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ?
3086                                 clazztype : types.createErrorType(tree.type);
3087             result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK));
3088             chk.validate(tree.typeargs, localEnv);
3089         }
3090 
3091         CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) {
3092             return new Check.NestedCheckContext(checkContext) {
3093                 @Override
3094                 public void report(DiagnosticPosition _unused, JCDiagnostic details) {
3095                     enclosingContext.report(clazz.clazz,
3096                             diags.fragment(Fragments.CantApplyDiamond1(Fragments.Diamond(tsym), details)));
3097                 }
3098             };
3099         }
3100 
3101         void checkNewInnerClass(DiagnosticPosition pos, Env<AttrContext> env, Type type, boolean isSuper) {
3102             boolean isLocal = type.tsym.owner.kind == VAR || type.tsym.owner.kind == MTH;
3103             if ((type.tsym.flags() & (INTERFACE | ENUM | RECORD)) != 0 ||
3104                     (!isLocal && !type.tsym.isInner()) ||
3105                     (isSuper && env.enclClass.sym.isAnonymous())) {
3106                 // nothing to check
3107                 return;
3108             }
3109             Symbol res = isLocal ?
3110                     rs.findLocalClassOwner(env, type.tsym) :
3111                     rs.findSelfContaining(pos, env, type.getEnclosingType().tsym, isSuper);
3112             if (res.exists()) {
3113                 rs.accessBase(res, pos, env.enclClass.sym.type, names._this, true);
3114             } else {
3115                 log.error(pos, Errors.EnclClassRequired(type.tsym));
3116             }
3117         }
3118 
3119     /** Make an attributed null check tree.
3120      */
3121     public JCExpression makeNullCheck(JCExpression arg) {
3122         // optimization: new Outer() can never be null; skip null check
3123         if (arg.getTag() == NEWCLASS)
3124             return arg;
3125         // optimization: X.this is never null; skip null check
3126         Name name = TreeInfo.name(arg);
3127         if (name == names._this || name == names._super) return arg;
3128 
3129         JCTree.Tag optag = NULLCHK;
3130         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
3131         tree.operator = operators.resolveUnary(arg, optag, arg.type);
3132         tree.type = arg.type;
3133         return tree;
3134     }
3135 
3136     public void visitNewArray(JCNewArray tree) {
3137         Type owntype = types.createErrorType(tree.type);
3138         Env<AttrContext> localEnv = env.dup(tree);
3139         Type elemtype;
3140         if (tree.elemtype != null) {
3141             elemtype = attribType(tree.elemtype, localEnv);
3142             chk.validate(tree.elemtype, localEnv);
3143             owntype = elemtype;
3144             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
3145                 attribExpr(l.head, localEnv, syms.intType);
3146                 owntype = new ArrayType(owntype, syms.arrayClass);
3147             }
3148         } else {
3149             // we are seeing an untyped aggregate { ... }
3150             // this is allowed only if the prototype is an array
3151             if (pt().hasTag(ARRAY)) {
3152                 elemtype = types.elemtype(pt());
3153             } else {
3154                 if (!pt().hasTag(ERROR) &&
3155                         (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
3156                     log.error(tree.pos(),
3157                               Errors.IllegalInitializerForType(pt()));
3158                 }
3159                 elemtype = types.createErrorType(pt());
3160             }
3161         }
3162         if (tree.elems != null) {
3163             attribExprs(tree.elems, localEnv, elemtype);
3164             owntype = new ArrayType(elemtype, syms.arrayClass);
3165         }
3166         if (!types.isReifiable(elemtype))
3167             log.error(tree.pos(), Errors.GenericArrayCreation);
3168         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3169     }
3170 
3171     /*
3172      * A lambda expression can only be attributed when a target-type is available.
3173      * In addition, if the target-type is that of a functional interface whose
3174      * descriptor contains inference variables in argument position the lambda expression
3175      * is 'stuck' (see DeferredAttr).
3176      */
3177     @Override
3178     public void visitLambda(final JCLambda that) {
3179         boolean wrongContext = false;
3180         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
3181             if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
3182                 //lambda only allowed in assignment or method invocation/cast context
3183                 log.error(that.pos(), Errors.UnexpectedLambda);
3184             }
3185             resultInfo = recoveryInfo;
3186             wrongContext = true;
3187         }
3188         if (types.isQuoted(pt())) {
3189             attribQuotedLambda(that);
3190         } else {
3191             attribFunctionalLambda(that, wrongContext);
3192         }
3193     }
3194 
3195     void attribFunctionalLambda(JCLambda that, boolean wrongContext) {
3196         //create an environment for attribution of the lambda expression
3197         final Env<AttrContext> localEnv = lambdaEnv(that, env);
3198         boolean needsRecovery =
3199                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
3200         try {
3201             if (needsRecovery && rs.isSerializable(pt())) {
3202                 localEnv.info.isSerializable = true;
3203                 localEnv.info.isSerializableLambda = true;
3204             }
3205             List<Type> explicitParamTypes = null;
3206             if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
3207                 //attribute lambda parameters
3208                 attribStats(that.params, localEnv);
3209                 explicitParamTypes = TreeInfo.types(that.params);
3210             }
3211 
3212             TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes);
3213             Type currentTarget = targetInfo.target;
3214             Type lambdaType = targetInfo.descriptor;
3215 
3216             if (currentTarget.isErroneous()) {
3217                 result = that.type = currentTarget;
3218                 return;
3219             }
3220 
3221             setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
3222 
3223             if (lambdaType.hasTag(FORALL)) {
3224                 //lambda expression target desc cannot be a generic method
3225                 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
3226                                                                     kindName(currentTarget.tsym),
3227                                                                     currentTarget.tsym);
3228                 resultInfo.checkContext.report(that, diags.fragment(msg));
3229                 result = that.type = types.createErrorType(pt());
3230                 return;
3231             }
3232 
3233             if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
3234                 //add param type info in the AST
3235                 List<Type> actuals = lambdaType.getParameterTypes();
3236                 List<JCVariableDecl> params = that.params;
3237 
3238                 boolean arityMismatch = false;
3239 
3240                 while (params.nonEmpty()) {
3241                     if (actuals.isEmpty()) {
3242                         //not enough actuals to perform lambda parameter inference
3243                         arityMismatch = true;
3244                     }
3245                     //reset previously set info
3246                     Type argType = arityMismatch ?
3247                             syms.errType :
3248                             actuals.head;
3249                     if (params.head.isImplicitlyTyped()) {
3250                         setSyntheticVariableType(params.head, argType);
3251                     }
3252                     params.head.sym = null;
3253                     actuals = actuals.isEmpty() ?
3254                             actuals :
3255                             actuals.tail;
3256                     params = params.tail;
3257                 }
3258 
3259                 //attribute lambda parameters
3260                 attribStats(that.params, localEnv);
3261 
3262                 if (arityMismatch) {
3263                     resultInfo.checkContext.report(that, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
3264                         result = that.type = types.createErrorType(currentTarget);
3265                         return;
3266                 }
3267             }
3268 
3269             //from this point on, no recovery is needed; if we are in assignment context
3270             //we will be able to attribute the whole lambda body, regardless of errors;
3271             //if we are in a 'check' method context, and the lambda is not compatible
3272             //with the target-type, it will be recovered anyway in Attr.checkId
3273             needsRecovery = false;
3274 
3275             ResultInfo bodyResultInfo = localEnv.info.returnResult =
3276                     lambdaBodyResult(that, lambdaType, resultInfo);
3277 
3278             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
3279                 attribTree(that.getBody(), localEnv, bodyResultInfo);
3280             } else {
3281                 JCBlock body = (JCBlock)that.body;
3282                 if (body == breakTree &&
3283                         resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
3284                     breakTreeFound(copyEnv(localEnv));
3285                 }
3286                 attribStats(body.stats, localEnv);
3287             }
3288 
3289             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
3290 
3291             boolean isSpeculativeRound =
3292                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
3293 
3294             preFlow(that);
3295             flow.analyzeLambda(env, that, make, isSpeculativeRound);
3296 
3297             that.type = currentTarget; //avoids recovery at this stage
3298             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
3299 
3300             if (!isSpeculativeRound) {
3301                 //add thrown types as bounds to the thrown types free variables if needed:
3302                 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
3303                     List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
3304                     if(!checkExConstraints(inferredThrownTypes, lambdaType.getThrownTypes(), resultInfo.checkContext.inferenceContext())) {
3305                         log.error(that, Errors.IncompatibleThrownTypesInMref(lambdaType.getThrownTypes()));
3306                     }
3307                 }
3308 
3309                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
3310             }
3311             result = wrongContext ? that.type = types.createErrorType(pt())
3312                                   : check(that, currentTarget, KindSelector.VAL, resultInfo);
3313         } catch (Types.FunctionDescriptorLookupError ex) {
3314             JCDiagnostic cause = ex.getDiagnostic();
3315             resultInfo.checkContext.report(that, cause);
3316             result = that.type = types.createErrorType(pt());
3317             return;
3318         } catch (CompletionFailure cf) {
3319             chk.completionError(that.pos(), cf);
3320         } catch (Throwable t) {
3321             //when an unexpected exception happens, avoid attempts to attribute the same tree again
3322             //as that would likely cause the same exception again.
3323             needsRecovery = false;
3324             throw t;
3325         } finally {
3326             localEnv.info.scope.leave();
3327             if (needsRecovery) {
3328                 Type prevResult = result;
3329                 try {
3330                     attribTree(that, env, recoveryInfo);
3331                 } finally {
3332                     if (result == Type.recoveryType) {
3333                         result = prevResult;
3334                     }
3335                 }
3336             }
3337         }
3338     }
3339 
3340     void attribQuotedLambda(JCLambda that) {
3341         // create an environment for attribution of the lambda expression
3342         final Env<AttrContext> localEnv = lambdaEnv(that, env);
3343         try {
3344             // if quoted lambda is implicit, issue error, and recover
3345             if (that.paramKind == ParameterKind.IMPLICIT) {
3346                 log.error(that, Errors.QuotedLambdaMustBeExplicit);
3347                 // recovery
3348                 List<JCVariableDecl> params = that.params;
3349                 while (params.nonEmpty()) {
3350                     Type argType = syms.errType;
3351                     if (params.head.isImplicitlyTyped()) {
3352                         setSyntheticVariableType(params.head, argType);
3353                     }
3354                     params = params.tail;
3355                 }
3356             }
3357             // attribute lambda parameters
3358             attribStats(that.params, localEnv);
3359             List<Type> explicitParamTypes = TreeInfo.types(that.params);
3360 
3361             ListBuffer<Type> restypes = new ListBuffer<>();
3362             ListBuffer<DiagnosticPosition> resPositions = new ListBuffer<>();
3363             ResultInfo bodyResultInfo = localEnv.info.returnResult = unknownExprInfo;
3364 
3365             // type-check lambda body, and capture return types
3366             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
3367                 attribTree(that.getBody(), localEnv, bodyResultInfo);
3368                 restypes.add(that.getBody().type);
3369             } else {
3370                 JCBlock body = (JCBlock)that.body;
3371                 if (body == breakTree &&
3372                         resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
3373                     breakTreeFound(copyEnv(localEnv));
3374                 }
3375                 attribStats(body.stats, localEnv);
3376                 new LambdaReturnScanner() {
3377                     @Override
3378                     public void visitReturn(JCReturn tree) {
3379                         if (tree.expr != null) {
3380                             resPositions.add(tree);
3381                         }
3382                         restypes.add(tree.expr == null ? syms.voidType : tree.expr.type);
3383                     }
3384                 }.scan(body);
3385             }
3386 
3387             // check if lambda body can complete normally
3388             preFlow(that);
3389             flow.analyzeLambda(localEnv, that, make, false);
3390 
3391             final Type restype;
3392             if (that.getBodyKind() == BodyKind.STATEMENT) {
3393                 if (that.canCompleteNormally) {
3394                     // a lambda that completes normally has an implicit void return
3395                     restypes.add(syms.voidType);
3396                 }
3397 
3398                 boolean hasNonVoidReturn = restypes.toList()
3399                         .stream().anyMatch(t -> t != syms.voidType);
3400                 boolean hasVoidReturn = restypes.toList()
3401                         .stream().anyMatch(t -> t == syms.voidType);
3402 
3403                 if (hasVoidReturn && hasNonVoidReturn) {
3404                     // void vs. non-void mismatch
3405                     log.error(that.body, Errors.CantInferQuotedLambdaReturnType(restypes.toList()));
3406                     restype = syms.errorType;
3407                 } else if (hasVoidReturn) {
3408                     restype = syms.voidType;
3409                 } else {
3410                     restype = condType(resPositions.toList(), restypes.toList());
3411                 }
3412             } else {
3413                 restype = restypes.first();
3414             }
3415 
3416             // infer lambda return type using lub
3417             if (restype.hasTag(ERROR)) {
3418                 // some other error occurred
3419                 log.error(that.body, Errors.CantInferQuotedLambdaReturnType(restypes.toList()));
3420             }
3421 
3422             // infer thrown types
3423             List<Type> thrownTypes = flow.analyzeLambdaThrownTypes(localEnv, that, make);
3424 
3425             // set up target descriptor with explicit parameter types, and inferred thrown/return types
3426             that.target = new MethodType(explicitParamTypes, restype, thrownTypes, syms.methodClass);
3427             result = that.type = pt();
3428         } finally {
3429             localEnv.info.scope.leave();
3430         }
3431     }
3432     //where
3433         class TargetInfo {
3434             Type target;
3435             Type descriptor;
3436 
3437             public TargetInfo(Type target, Type descriptor) {
3438                 this.target = target;
3439                 this.descriptor = descriptor;
3440             }
3441         }
3442 
3443         TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) {
3444             Type lambdaType;
3445             Type currentTarget = resultInfo.pt;
3446             if (resultInfo.pt != Type.recoveryType) {
3447                 /* We need to adjust the target. If the target is an
3448                  * intersection type, for example: SAM & I1 & I2 ...
3449                  * the target will be updated to SAM
3450                  */
3451                 currentTarget = targetChecker.visit(currentTarget, that);
3452                 if (!currentTarget.isIntersection()) {
3453                     if (explicitParamTypes != null) {
3454                         currentTarget = infer.instantiateFunctionalInterface(that,
3455                                 currentTarget, explicitParamTypes, resultInfo.checkContext);
3456                     }
3457                     currentTarget = types.removeWildcards(currentTarget);
3458                     lambdaType = types.findDescriptorType(currentTarget);
3459                 } else {
3460                     IntersectionClassType ict = (IntersectionClassType)currentTarget;
3461                     ListBuffer<Type> components = new ListBuffer<>();
3462                     for (Type bound : ict.getExplicitComponents()) {
3463                         if (explicitParamTypes != null) {
3464                             try {
3465                                 bound = infer.instantiateFunctionalInterface(that,
3466                                         bound, explicitParamTypes, resultInfo.checkContext);
3467                             } catch (FunctionDescriptorLookupError t) {
3468                                 // do nothing
3469                             }
3470                         }
3471                         if (bound.tsym != syms.objectType.tsym && (!bound.isInterface() || (bound.tsym.flags() & ANNOTATION) != 0)) {
3472                             // bound must be j.l.Object or an interface, but not an annotation
3473                             reportIntersectionError(that, "not.an.intf.component", bound);
3474                         }
3475                         bound = types.removeWildcards(bound);
3476                         components.add(bound);
3477                     }
3478                     currentTarget = types.makeIntersectionType(components.toList());
3479                     currentTarget.tsym.flags_field |= INTERFACE;
3480                     lambdaType = types.findDescriptorType(currentTarget);
3481                 }
3482 
3483             } else {
3484                 currentTarget = Type.recoveryType;
3485                 lambdaType = fallbackDescriptorType(that);
3486             }
3487             if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) {
3488                 //lambda expression target desc cannot be a generic method
3489                 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
3490                                                                     kindName(currentTarget.tsym),
3491                                                                     currentTarget.tsym);
3492                 resultInfo.checkContext.report(that, diags.fragment(msg));
3493                 currentTarget = types.createErrorType(pt());
3494             }
3495             return new TargetInfo(currentTarget, lambdaType);
3496         }
3497 
3498         private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) {
3499              resultInfo.checkContext.report(pos,
3500                  diags.fragment(Fragments.BadIntersectionTargetForFunctionalExpr(diags.fragment(key, args))));
3501         }
3502 
3503         void preFlow(JCLambda tree) {
3504             attrRecover.doRecovery();
3505             new PostAttrAnalyzer() {
3506                 @Override
3507                 public void scan(JCTree tree) {
3508                     if (tree == null ||
3509                             (tree.type != null &&
3510                             tree.type == Type.stuckType)) {
3511                         //don't touch stuck expressions!
3512                         return;
3513                     }
3514                     super.scan(tree);
3515                 }
3516 
3517                 @Override
3518                 public void visitClassDef(JCClassDecl that) {
3519                     // or class declaration trees!
3520                 }
3521 
3522                 public void visitLambda(JCLambda that) {
3523                     // or lambda expressions!
3524                 }
3525             }.scan(tree.body);
3526         }
3527 
3528         Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
3529 
3530             @Override
3531             public Type visitClassType(ClassType t, DiagnosticPosition pos) {
3532                 return t.isIntersection() ?
3533                         visitIntersectionClassType((IntersectionClassType)t, pos) : t;
3534             }
3535 
3536             public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
3537                 types.findDescriptorSymbol(makeNotionalInterface(ict, pos));
3538                 return ict;
3539             }
3540 
3541             private TypeSymbol makeNotionalInterface(IntersectionClassType ict, DiagnosticPosition pos) {
3542                 ListBuffer<Type> targs = new ListBuffer<>();
3543                 ListBuffer<Type> supertypes = new ListBuffer<>();
3544                 for (Type i : ict.interfaces_field) {
3545                     if (i.isParameterized()) {
3546                         targs.appendList(i.tsym.type.allparams());
3547                     }
3548                     supertypes.append(i.tsym.type);
3549                 }
3550                 IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList());
3551                 notionalIntf.allparams_field = targs.toList();
3552                 notionalIntf.tsym.flags_field |= INTERFACE;
3553                 return notionalIntf.tsym;
3554             }
3555         };
3556 
3557         private Type fallbackDescriptorType(JCExpression tree) {
3558             switch (tree.getTag()) {
3559                 case LAMBDA:
3560                     JCLambda lambda = (JCLambda)tree;
3561                     List<Type> argtypes = List.nil();
3562                     for (JCVariableDecl param : lambda.params) {
3563                         argtypes = param.vartype != null && param.vartype.type != null ?
3564                                 argtypes.append(param.vartype.type) :
3565                                 argtypes.append(syms.errType);
3566                     }
3567                     return new MethodType(argtypes, Type.recoveryType,
3568                             List.of(syms.throwableType), syms.methodClass);
3569                 case REFERENCE:
3570                     return new MethodType(List.nil(), Type.recoveryType,
3571                             List.of(syms.throwableType), syms.methodClass);
3572                 default:
3573                     Assert.error("Cannot get here!");
3574             }
3575             return null;
3576         }
3577 
3578         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
3579                 final InferenceContext inferenceContext, final Type... ts) {
3580             checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
3581         }
3582 
3583         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
3584                 final InferenceContext inferenceContext, final List<Type> ts) {
3585             if (inferenceContext.free(ts)) {
3586                 inferenceContext.addFreeTypeListener(ts,
3587                         solvedContext -> checkAccessibleTypes(pos, env, solvedContext, solvedContext.asInstTypes(ts)));
3588             } else {
3589                 for (Type t : ts) {
3590                     rs.checkAccessibleType(env, t);
3591                 }
3592             }
3593         }
3594 
3595         /**
3596          * Lambda/method reference have a special check context that ensures
3597          * that i.e. a lambda return type is compatible with the expected
3598          * type according to both the inherited context and the assignment
3599          * context.
3600          */
3601         class FunctionalReturnContext extends Check.NestedCheckContext {
3602 
3603             FunctionalReturnContext(CheckContext enclosingContext) {
3604                 super(enclosingContext);
3605             }
3606 
3607             @Override
3608             public boolean compatible(Type found, Type req, Warner warn) {
3609                 //return type must be compatible in both current context and assignment context
3610                 return chk.basicHandler.compatible(inferenceContext().asUndetVar(found), inferenceContext().asUndetVar(req), warn);
3611             }
3612 
3613             @Override
3614             public void report(DiagnosticPosition pos, JCDiagnostic details) {
3615                 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleRetTypeInLambda(details)));
3616             }
3617         }
3618 
3619         class ExpressionLambdaReturnContext extends FunctionalReturnContext {
3620 
3621             JCExpression expr;
3622             boolean expStmtExpected;
3623 
3624             ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
3625                 super(enclosingContext);
3626                 this.expr = expr;
3627             }
3628 
3629             @Override
3630             public void report(DiagnosticPosition pos, JCDiagnostic details) {
3631                 if (expStmtExpected) {
3632                     enclosingContext.report(pos, diags.fragment(Fragments.StatExprExpected));
3633                 } else {
3634                     super.report(pos, details);
3635                 }
3636             }
3637 
3638             @Override
3639             public boolean compatible(Type found, Type req, Warner warn) {
3640                 //a void return is compatible with an expression statement lambda
3641                 if (req.hasTag(VOID)) {
3642                     expStmtExpected = true;
3643                     return TreeInfo.isExpressionStatement(expr);
3644                 } else {
3645                     return super.compatible(found, req, warn);
3646                 }
3647             }
3648         }
3649 
3650         ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) {
3651             FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
3652                     new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
3653                     new FunctionalReturnContext(resultInfo.checkContext);
3654 
3655             return descriptor.getReturnType() == Type.recoveryType ?
3656                     recoveryInfo :
3657                     new ResultInfo(KindSelector.VAL,
3658                             descriptor.getReturnType(), funcContext);
3659         }
3660 
3661         /**
3662         * Lambda compatibility. Check that given return types, thrown types, parameter types
3663         * are compatible with the expected functional interface descriptor. This means that:
3664         * (i) parameter types must be identical to those of the target descriptor; (ii) return
3665         * types must be compatible with the return type of the expected descriptor.
3666         */
3667         void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
3668             Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
3669 
3670             //return values have already been checked - but if lambda has no return
3671             //values, we must ensure that void/value compatibility is correct;
3672             //this amounts at checking that, if a lambda body can complete normally,
3673             //the descriptor's return type must be void
3674             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
3675                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
3676                 Fragment msg =
3677                         Fragments.IncompatibleRetTypeInLambda(Fragments.MissingRetVal(returnType));
3678                 checkContext.report(tree,
3679                                     diags.fragment(msg));
3680             }
3681 
3682             List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
3683             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
3684                 checkContext.report(tree, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
3685             }
3686         }
3687 
3688         /* This method returns an environment to be used to attribute a lambda
3689          * expression.
3690          *
3691          * The owner of this environment is a method symbol. If the current owner
3692          * is not a method (e.g. if the lambda occurs in a field initializer), then
3693          * a synthetic method symbol owner is created.
3694          */
3695         public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
3696             Env<AttrContext> lambdaEnv;
3697             Symbol owner = env.info.scope.owner;
3698             if (owner.kind == VAR && owner.owner.kind == TYP) {
3699                 // If the lambda is nested in a field initializer, we need to create a fake init method.
3700                 // Uniqueness of this symbol is not important (as e.g. annotations will be added on the
3701                 // init symbol's owner).
3702                 ClassSymbol enclClass = owner.enclClass();
3703                 Name initName = owner.isStatic() ? names.clinit : names.init;
3704                 MethodSymbol initSym = new MethodSymbol(BLOCK | (owner.isStatic() ? STATIC : 0) | SYNTHETIC | PRIVATE,
3705                         initName, initBlockType, enclClass);
3706                 initSym.params = List.nil();
3707                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(initSym)));
3708             } else {
3709                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
3710             }
3711             lambdaEnv.info.yieldResult = null;
3712             lambdaEnv.info.isLambda = true;
3713             return lambdaEnv;
3714         }
3715 
3716     @Override
3717     public void visitReference(final JCMemberReference that) {
3718         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
3719             if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
3720                 //method reference only allowed in assignment or method invocation/cast context
3721                 log.error(that.pos(), Errors.UnexpectedMref);
3722             }
3723             result = that.type = types.createErrorType(pt());
3724             return;
3725         }
3726         final Env<AttrContext> localEnv = env.dup(that);
3727         try {
3728             //attribute member reference qualifier - if this is a constructor
3729             //reference, the expected kind must be a type
3730             Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
3731 
3732             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
3733                 exprType = chk.checkConstructorRefType(that.expr, exprType);
3734                 if (!exprType.isErroneous() &&
3735                     exprType.isRaw() &&
3736                     that.typeargs != null) {
3737                     log.error(that.expr.pos(),
3738                               Errors.InvalidMref(Kinds.kindName(that.getMode()),
3739                                                  Fragments.MrefInferAndExplicitParams));
3740                     exprType = types.createErrorType(exprType);
3741                 }
3742             }
3743 
3744             if (exprType.isErroneous()) {
3745                 //if the qualifier expression contains problems,
3746                 //give up attribution of method reference
3747                 result = that.type = exprType;
3748                 return;
3749             }
3750 
3751             if (TreeInfo.isStaticSelector(that.expr, names)) {
3752                 //if the qualifier is a type, validate it; raw warning check is
3753                 //omitted as we don't know at this stage as to whether this is a
3754                 //raw selector (because of inference)
3755                 chk.validate(that.expr, env, false);
3756             } else {
3757                 Symbol lhsSym = TreeInfo.symbol(that.expr);
3758                 localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super;
3759             }
3760             //attrib type-arguments
3761             List<Type> typeargtypes = List.nil();
3762             if (that.typeargs != null) {
3763                 typeargtypes = attribTypes(that.typeargs, localEnv);
3764             }
3765 
3766             boolean isTargetSerializable =
3767                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3768                     rs.isSerializable(pt());
3769             TargetInfo targetInfo = getTargetInfo(that, resultInfo, null);
3770             Type currentTarget = targetInfo.target;
3771             Type desc = targetInfo.descriptor;
3772 
3773             setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
3774             List<Type> argtypes = desc.getParameterTypes();
3775             Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
3776 
3777             if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
3778                 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
3779             }
3780 
3781             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
3782             List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
3783             try {
3784                 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
3785                         that.name, argtypes, typeargtypes, targetInfo.descriptor, referenceCheck,
3786                         resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser);
3787             } finally {
3788                 resultInfo.checkContext.inferenceContext().rollback(saved_undet);
3789             }
3790 
3791             Symbol refSym = refResult.fst;
3792             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
3793 
3794             /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing
3795              *  JDK-8075541
3796              */
3797             if (refSym.kind != MTH) {
3798                 boolean targetError;
3799                 switch (refSym.kind) {
3800                     case ABSENT_MTH:
3801                         targetError = false;
3802                         break;
3803                     case WRONG_MTH:
3804                     case WRONG_MTHS:
3805                     case AMBIGUOUS:
3806                     case HIDDEN:
3807                     case STATICERR:
3808                         targetError = true;
3809                         break;
3810                     default:
3811                         Assert.error("unexpected result kind " + refSym.kind);
3812                         targetError = false;
3813                 }
3814 
3815                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol())
3816                         .getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
3817                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
3818 
3819                 JCDiagnostic diag = diags.create(log.currentSource(), that,
3820                         targetError ?
3821                             Fragments.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag) :
3822                             Errors.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag));
3823 
3824                 if (targetError && currentTarget == Type.recoveryType) {
3825                     //a target error doesn't make sense during recovery stage
3826                     //as we don't know what actual parameter types are
3827                     result = that.type = currentTarget;
3828                     return;
3829                 } else {
3830                     if (targetError) {
3831                         resultInfo.checkContext.report(that, diag);
3832                     } else {
3833                         log.report(diag);
3834                     }
3835                     result = that.type = types.createErrorType(currentTarget);
3836                     return;
3837                 }
3838             }
3839 
3840             that.sym = refSym.isConstructor() ? refSym.baseSymbol() : refSym;
3841             that.kind = lookupHelper.referenceKind(that.sym);
3842             that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
3843 
3844             if (desc.getReturnType() == Type.recoveryType) {
3845                 // stop here
3846                 result = that.type = currentTarget;
3847                 return;
3848             }
3849 
3850             if (!env.info.attributionMode.isSpeculative && that.getMode() == JCMemberReference.ReferenceMode.NEW) {
3851                 checkNewInnerClass(that.pos(), env, exprType, false);
3852             }
3853 
3854             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
3855 
3856                 if (that.getMode() == ReferenceMode.INVOKE &&
3857                         TreeInfo.isStaticSelector(that.expr, names) &&
3858                         that.kind.isUnbound() &&
3859                         lookupHelper.site.isRaw()) {
3860                     chk.checkRaw(that.expr, localEnv);
3861                 }
3862 
3863                 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
3864                         exprType.getTypeArguments().nonEmpty()) {
3865                     //static ref with class type-args
3866                     log.error(that.expr.pos(),
3867                               Errors.InvalidMref(Kinds.kindName(that.getMode()),
3868                                                  Fragments.StaticMrefWithTargs));
3869                     result = that.type = types.createErrorType(currentTarget);
3870                     return;
3871                 }
3872 
3873                 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
3874                     // Check that super-qualified symbols are not abstract (JLS)
3875                     rs.checkNonAbstract(that.pos(), that.sym);
3876                 }
3877 
3878                 if (isTargetSerializable) {
3879                     chk.checkAccessFromSerializableElement(that, true);
3880                 }
3881             }
3882 
3883             ResultInfo checkInfo =
3884                     resultInfo.dup(newMethodTemplate(
3885                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
3886                         that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
3887                         new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
3888 
3889             Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
3890 
3891             if (that.kind.isUnbound() &&
3892                     resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
3893                 //re-generate inference constraints for unbound receiver
3894                 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
3895                     //cannot happen as this has already been checked - we just need
3896                     //to regenerate the inference constraints, as that has been lost
3897                     //as a result of the call to inferenceContext.save()
3898                     Assert.error("Can't get here");
3899                 }
3900             }
3901 
3902             if (!refType.isErroneous()) {
3903                 refType = types.createMethodTypeWithReturn(refType,
3904                         adjustMethodReturnType(refSym, lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
3905             }
3906 
3907             //go ahead with standard method reference compatibility check - note that param check
3908             //is a no-op (as this has been taken care during method applicability)
3909             boolean isSpeculativeRound =
3910                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
3911 
3912             that.type = currentTarget; //avoids recovery at this stage
3913             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
3914             if (!isSpeculativeRound) {
3915                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
3916             }
3917             chk.checkRequiresIdentity(that, localEnv.info.lint);
3918             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
3919         } catch (Types.FunctionDescriptorLookupError ex) {
3920             JCDiagnostic cause = ex.getDiagnostic();
3921             resultInfo.checkContext.report(that, cause);
3922             result = that.type = types.createErrorType(pt());
3923             return;
3924         }
3925     }
3926     //where
3927         ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
3928             //if this is a constructor reference, the expected kind must be a type
3929             return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ?
3930                                   KindSelector.VAL_TYP : KindSelector.TYP,
3931                                   Type.noType);
3932         }
3933 
3934 
3935     @SuppressWarnings("fallthrough")
3936     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
3937         InferenceContext inferenceContext = checkContext.inferenceContext();
3938         Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType());
3939 
3940         Type resType;
3941         switch (tree.getMode()) {
3942             case NEW:
3943                 if (!tree.expr.type.isRaw()) {
3944                     resType = tree.expr.type;
3945                     break;
3946                 }
3947             default:
3948                 resType = refType.getReturnType();
3949         }
3950 
3951         Type incompatibleReturnType = resType;
3952 
3953         if (returnType.hasTag(VOID)) {
3954             incompatibleReturnType = null;
3955         }
3956 
3957         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
3958             if (resType.isErroneous() ||
3959                     new FunctionalReturnContext(checkContext).compatible(resType, returnType,
3960                             checkContext.checkWarner(tree, resType, returnType))) {
3961                 incompatibleReturnType = null;
3962             }
3963         }
3964 
3965         if (incompatibleReturnType != null) {
3966             Fragment msg =
3967                     Fragments.IncompatibleRetTypeInMref(Fragments.InconvertibleTypes(resType, descriptor.getReturnType()));
3968             checkContext.report(tree, diags.fragment(msg));
3969         } else {
3970             if (inferenceContext.free(refType)) {
3971                 // we need to wait for inference to finish and then replace inference vars in the referent type
3972                 inferenceContext.addFreeTypeListener(List.of(refType),
3973                         instantiatedContext -> {
3974                             tree.referentType = instantiatedContext.asInstType(refType);
3975                         });
3976             } else {
3977                 tree.referentType = refType;
3978             }
3979         }
3980 
3981         if (!speculativeAttr) {
3982             if (!checkExConstraints(refType.getThrownTypes(), descriptor.getThrownTypes(), inferenceContext)) {
3983                 log.error(tree, Errors.IncompatibleThrownTypesInMref(refType.getThrownTypes()));
3984             }
3985         }
3986     }
3987 
3988     boolean checkExConstraints(
3989             List<Type> thrownByFuncExpr,
3990             List<Type> thrownAtFuncType,
3991             InferenceContext inferenceContext) {
3992         /** 18.2.5: Otherwise, let E1, ..., En be the types in the function type's throws clause that
3993          *  are not proper types
3994          */
3995         List<Type> nonProperList = thrownAtFuncType.stream()
3996                 .filter(e -> inferenceContext.free(e)).collect(List.collector());
3997         List<Type> properList = thrownAtFuncType.diff(nonProperList);
3998 
3999         /** Let X1,...,Xm be the checked exception types that the lambda body can throw or
4000          *  in the throws clause of the invocation type of the method reference's compile-time
4001          *  declaration
4002          */
4003         List<Type> checkedList = thrownByFuncExpr.stream()
4004                 .filter(e -> chk.isChecked(e)).collect(List.collector());
4005 
4006         /** If n = 0 (the function type's throws clause consists only of proper types), then
4007          *  if there exists some i (1 <= i <= m) such that Xi is not a subtype of any proper type
4008          *  in the throws clause, the constraint reduces to false; otherwise, the constraint
4009          *  reduces to true
4010          */
4011         ListBuffer<Type> uncaughtByProperTypes = new ListBuffer<>();
4012         for (Type checked : checkedList) {
4013             boolean isSubtype = false;
4014             for (Type proper : properList) {
4015                 if (types.isSubtype(checked, proper)) {
4016                     isSubtype = true;
4017                     break;
4018                 }
4019             }
4020             if (!isSubtype) {
4021                 uncaughtByProperTypes.add(checked);
4022             }
4023         }
4024 
4025         if (nonProperList.isEmpty() && !uncaughtByProperTypes.isEmpty()) {
4026             return false;
4027         }
4028 
4029         /** If n > 0, the constraint reduces to a set of subtyping constraints:
4030          *  for all i (1 <= i <= m), if Xi is not a subtype of any proper type in the
4031          *  throws clause, then the constraints include, for all j (1 <= j <= n), <Xi <: Ej>
4032          */
4033         List<Type> nonProperAsUndet = inferenceContext.asUndetVars(nonProperList);
4034         uncaughtByProperTypes.forEach(checkedEx -> {
4035             nonProperAsUndet.forEach(nonProper -> {
4036                 types.isSubtype(checkedEx, nonProper);
4037             });
4038         });
4039 
4040         /** In addition, for all j (1 <= j <= n), the constraint reduces to the bound throws Ej
4041          */
4042         nonProperAsUndet.stream()
4043                 .filter(t -> t.hasTag(UNDETVAR))
4044                 .forEach(t -> ((UndetVar)t).setThrow());
4045         return true;
4046     }
4047 
4048     /**
4049      * Set functional type info on the underlying AST. Note: as the target descriptor
4050      * might contain inference variables, we might need to register an hook in the
4051      * current inference context.
4052      */
4053     private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
4054             final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
4055         if (checkContext.inferenceContext().free(descriptorType)) {
4056             checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType),
4057                     inferenceContext -> setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
4058                     inferenceContext.asInstType(primaryTarget), checkContext));
4059         } else {
4060             fExpr.owner = env.info.scope.owner;
4061             if (pt.hasTag(CLASS)) {
4062                 fExpr.target = primaryTarget;
4063             }
4064             if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
4065                     pt != Type.recoveryType) {
4066                 //check that functional interface class is well-formed
4067                 try {
4068                     /* Types.makeFunctionalInterfaceClass() may throw an exception
4069                      * when it's executed post-inference. See the listener code
4070                      * above.
4071                      */
4072                     ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
4073                             names.empty, fExpr.target, ABSTRACT);
4074                     if (csym != null) {
4075                         chk.checkImplementations(env.tree, csym, csym);
4076                         try {
4077                             //perform an additional functional interface check on the synthetic class,
4078                             //as there may be spurious errors for raw targets - because of existing issues
4079                             //with membership and inheritance (see JDK-8074570).
4080                             csym.flags_field |= INTERFACE;
4081                             types.findDescriptorType(csym.type);
4082                         } catch (FunctionDescriptorLookupError err) {
4083                             resultInfo.checkContext.report(fExpr,
4084                                     diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.target)));
4085                         }
4086                     }
4087                 } catch (Types.FunctionDescriptorLookupError ex) {
4088                     JCDiagnostic cause = ex.getDiagnostic();
4089                     resultInfo.checkContext.report(env.tree, cause);
4090                 }
4091             }
4092         }
4093     }
4094 
4095     public void visitParens(JCParens tree) {
4096         Type owntype = attribTree(tree.expr, env, resultInfo);
4097         result = check(tree, owntype, pkind(), resultInfo);
4098         Symbol sym = TreeInfo.symbol(tree);
4099         if (sym != null && sym.kind.matches(KindSelector.TYP_PCK) && sym.kind != Kind.ERR)
4100             log.error(tree.pos(), Errors.IllegalParenthesizedExpression);
4101     }
4102 
4103     public void visitAssign(JCAssign tree) {
4104         Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo);
4105         Type capturedType = capture(owntype);
4106         attribExpr(tree.rhs, env, owntype);
4107         result = check(tree, capturedType, KindSelector.VAL, resultInfo);
4108     }
4109 
4110     public void visitAssignop(JCAssignOp tree) {
4111         // Attribute arguments.
4112         Type owntype = attribTree(tree.lhs, env, varAssignmentInfo);
4113         Type operand = attribExpr(tree.rhs, env);
4114         // Find operator.
4115         Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand);
4116         if (operator != operators.noOpSymbol &&
4117                 !owntype.isErroneous() &&
4118                 !operand.isErroneous()) {
4119             chk.checkDivZero(tree.rhs.pos(), operator, operand);
4120             chk.checkCastable(tree.rhs.pos(),
4121                               operator.type.getReturnType(),
4122                               owntype);
4123             chk.checkLossOfPrecision(tree.rhs.pos(), operand, owntype);
4124         }
4125         result = check(tree, owntype, KindSelector.VAL, resultInfo);
4126     }
4127 
4128     public void visitUnary(JCUnary tree) {
4129         // Attribute arguments.
4130         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
4131             ? attribTree(tree.arg, env, varAssignmentInfo)
4132             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
4133 
4134         // Find operator.
4135         OperatorSymbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype);
4136         Type owntype = types.createErrorType(tree.type);
4137         if (operator != operators.noOpSymbol &&
4138                 !argtype.isErroneous()) {
4139             owntype = (tree.getTag().isIncOrDecUnaryOp())
4140                 ? tree.arg.type
4141                 : operator.type.getReturnType();
4142             int opc = operator.opcode;
4143 
4144             // If the argument is constant, fold it.
4145             if (argtype.constValue() != null) {
4146                 Type ctype = cfolder.fold1(opc, argtype);
4147                 if (ctype != null) {
4148                     owntype = cfolder.coerce(ctype, owntype);
4149                 }
4150             }
4151         }
4152         result = check(tree, owntype, KindSelector.VAL, resultInfo);
4153         matchBindings = matchBindingsComputer.unary(tree, matchBindings);
4154     }
4155 
4156     public void visitBinary(JCBinary tree) {
4157         // Attribute arguments.
4158         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
4159         // x && y
4160         // include x's bindings when true in y
4161 
4162         // x || y
4163         // include x's bindings when false in y
4164 
4165         MatchBindings lhsBindings = matchBindings;
4166         List<BindingSymbol> propagatedBindings;
4167         switch (tree.getTag()) {
4168             case AND:
4169                 propagatedBindings = lhsBindings.bindingsWhenTrue;
4170                 break;
4171             case OR:
4172                 propagatedBindings = lhsBindings.bindingsWhenFalse;
4173                 break;
4174             default:
4175                 propagatedBindings = List.nil();
4176                 break;
4177         }
4178         Env<AttrContext> rhsEnv = bindingEnv(env, propagatedBindings);
4179         Type right;
4180         try {
4181             right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, rhsEnv));
4182         } finally {
4183             rhsEnv.info.scope.leave();
4184         }
4185 
4186         matchBindings = matchBindingsComputer.binary(tree, lhsBindings, matchBindings);
4187 
4188         // Find operator.
4189         OperatorSymbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right);
4190         Type owntype = types.createErrorType(tree.type);
4191         if (operator != operators.noOpSymbol &&
4192                 !left.isErroneous() &&
4193                 !right.isErroneous()) {
4194             owntype = operator.type.getReturnType();
4195             int opc = operator.opcode;
4196             // If both arguments are constants, fold them.
4197             if (left.constValue() != null && right.constValue() != null) {
4198                 Type ctype = cfolder.fold2(opc, left, right);
4199                 if (ctype != null) {
4200                     owntype = cfolder.coerce(ctype, owntype);
4201                 }
4202             }
4203 
4204             // Check that argument types of a reference ==, != are
4205             // castable to each other, (JLS 15.21).  Note: unboxing
4206             // comparisons will not have an acmp* opc at this point.
4207             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
4208                 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
4209                     log.error(tree.pos(), Errors.IncomparableTypes(left, right));
4210                 }
4211             }
4212 
4213             chk.checkDivZero(tree.rhs.pos(), operator, right);
4214         }
4215         result = check(tree, owntype, KindSelector.VAL, resultInfo);
4216     }
4217 
4218     public void visitTypeCast(final JCTypeCast tree) {
4219         Type clazztype = attribType(tree.clazz, env);
4220         chk.validate(tree.clazz, env, false);
4221         chk.checkRequiresIdentity(tree, env.info.lint);
4222         //a fresh environment is required for 292 inference to work properly ---
4223         //see Infer.instantiatePolymorphicSignatureInstance()
4224         Env<AttrContext> localEnv = env.dup(tree);
4225         //should we propagate the target type?
4226         final ResultInfo castInfo;
4227         JCExpression expr = TreeInfo.skipParens(tree.expr);
4228         boolean isPoly = (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
4229         if (isPoly) {
4230             //expression is a poly - we need to propagate target type info
4231             castInfo = new ResultInfo(KindSelector.VAL, clazztype,
4232                                       new Check.NestedCheckContext(resultInfo.checkContext) {
4233                 @Override
4234                 public boolean compatible(Type found, Type req, Warner warn) {
4235                     return types.isCastable(found, req, warn);
4236                 }
4237             });
4238         } else {
4239             //standalone cast - target-type info is not propagated
4240             castInfo = unknownExprInfo;
4241         }
4242         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
4243         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
4244         if (exprtype.constValue() != null)
4245             owntype = cfolder.coerce(exprtype, owntype);
4246         result = check(tree, capture(owntype), KindSelector.VAL, resultInfo);
4247         if (!isPoly)
4248             chk.checkRedundantCast(localEnv, tree);
4249     }
4250 
4251     public void visitTypeTest(JCInstanceOf tree) {
4252         Type exprtype = attribExpr(tree.expr, env);
4253         if (exprtype.isPrimitive()) {
4254             preview.checkSourceLevel(tree.expr.pos(), Feature.PRIMITIVE_PATTERNS);
4255         } else {
4256             exprtype = chk.checkNullOrRefType(
4257                     tree.expr.pos(), exprtype);
4258         }
4259         Type clazztype;
4260         JCTree typeTree;
4261         if (tree.pattern.getTag() == BINDINGPATTERN ||
4262             tree.pattern.getTag() == RECORDPATTERN) {
4263             attribExpr(tree.pattern, env, exprtype);
4264             clazztype = tree.pattern.type;
4265             if (types.isSubtype(exprtype, clazztype) &&
4266                 !exprtype.isErroneous() && !clazztype.isErroneous() &&
4267                 tree.pattern.getTag() != RECORDPATTERN) {
4268                 if (!allowUnconditionalPatternsInstanceOf) {
4269                     log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(),
4270                               Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.error(this.sourceName));
4271                 }
4272             }
4273             typeTree = TreeInfo.primaryPatternTypeTree((JCPattern) tree.pattern);
4274         } else {
4275             clazztype = attribType(tree.pattern, env);
4276             typeTree = tree.pattern;
4277             chk.validate(typeTree, env, false);
4278         }
4279         if (clazztype.isPrimitive()) {
4280             preview.checkSourceLevel(tree.pattern.pos(), Feature.PRIMITIVE_PATTERNS);
4281         } else {
4282             if (!clazztype.hasTag(TYPEVAR)) {
4283                 clazztype = chk.checkClassOrArrayType(typeTree.pos(), clazztype);
4284             }
4285             if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
4286                 boolean valid = false;
4287                 if (allowReifiableTypesInInstanceof) {
4288                     valid = checkCastablePattern(tree.expr.pos(), exprtype, clazztype);
4289                 } else {
4290                     log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(),
4291                             Feature.REIFIABLE_TYPES_INSTANCEOF.error(this.sourceName));
4292                     allowReifiableTypesInInstanceof = true;
4293                 }
4294                 if (!valid) {
4295                     clazztype = types.createErrorType(clazztype);
4296                 }
4297             }
4298         }
4299         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
4300         result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo);
4301     }
4302 
4303     private boolean checkCastablePattern(DiagnosticPosition pos,
4304                                          Type exprType,
4305                                          Type pattType) {
4306         Warner warner = new Warner();
4307         // if any type is erroneous, the problem is reported elsewhere
4308         if (exprType.isErroneous() || pattType.isErroneous()) {
4309             return false;
4310         }
4311         if (!types.isCastable(exprType, pattType, warner)) {
4312             chk.basicHandler.report(pos,
4313                     diags.fragment(Fragments.InconvertibleTypes(exprType, pattType)));
4314             return false;
4315         } else if ((exprType.isPrimitive() || pattType.isPrimitive()) &&
4316                 (!exprType.isPrimitive() || !pattType.isPrimitive() || !types.isSameType(exprType, pattType))) {
4317             preview.checkSourceLevel(pos, Feature.PRIMITIVE_PATTERNS);
4318             return true;
4319         } else if (warner.hasLint(LintCategory.UNCHECKED)) {
4320             log.error(pos,
4321                     Errors.InstanceofReifiableNotSafe(exprType, pattType));
4322             return false;
4323         } else {
4324             return true;
4325         }
4326     }
4327 
4328     @Override
4329     public void visitAnyPattern(JCAnyPattern tree) {
4330         result = tree.type = resultInfo.pt;
4331     }
4332 
4333     public void visitBindingPattern(JCBindingPattern tree) {
4334         Type type;
4335         if (tree.var.vartype != null) {
4336             type = attribType(tree.var.vartype, env);
4337         } else {
4338             type = resultInfo.pt;
4339         }
4340         tree.type = tree.var.type = type;
4341         BindingSymbol v = new BindingSymbol(tree.var.mods.flags, tree.var.name, type, env.info.scope.owner);
4342         v.pos = tree.pos;
4343         tree.var.sym = v;
4344         if (chk.checkUnique(tree.var.pos(), v, env.info.scope)) {
4345             chk.checkTransparentVar(tree.var.pos(), v, env.info.scope);
4346         }
4347         chk.validate(tree.var.vartype, env, true);
4348         if (tree.var.isImplicitlyTyped()) {
4349             setSyntheticVariableType(tree.var, type == Type.noType ? syms.errType
4350                                                                    : type);
4351         }
4352         annotate.annotateLater(tree.var.mods.annotations, env, v, tree.var);
4353         if (!tree.var.isImplicitlyTyped()) {
4354             annotate.queueScanTreeAndTypeAnnotate(tree.var.vartype, env, v, tree.var);
4355         }
4356         annotate.flush();
4357         result = tree.type;
4358         if (v.isUnnamedVariable()) {
4359             matchBindings = MatchBindingsComputer.EMPTY;
4360         } else {
4361             matchBindings = new MatchBindings(List.of(v), List.nil());
4362         }
4363         chk.checkRequiresIdentity(tree, env.info.lint);
4364     }
4365 
4366     @Override
4367     public void visitRecordPattern(JCRecordPattern tree) {
4368         Type site;
4369 
4370         if (tree.deconstructor == null) {
4371             log.error(tree.pos(), Errors.DeconstructionPatternVarNotAllowed);
4372             tree.record = syms.errSymbol;
4373             site = tree.type = types.createErrorType(tree.record.type);
4374         } else {
4375             Type type = attribType(tree.deconstructor, env);
4376             if (type.isRaw() && type.tsym.getTypeParameters().nonEmpty()) {
4377                 Type inferred = infer.instantiatePatternType(resultInfo.pt, type.tsym);
4378                 if (inferred == null) {
4379                     log.error(tree.pos(), Errors.PatternTypeCannotInfer);
4380                 } else {
4381                     type = inferred;
4382                 }
4383             }
4384             tree.type = tree.deconstructor.type = type;
4385             site = types.capture(tree.type);
4386         }
4387 
4388         List<Type> expectedRecordTypes;
4389         if (site.tsym.kind == Kind.TYP && ((ClassSymbol) site.tsym).isRecord()) {
4390             ClassSymbol record = (ClassSymbol) site.tsym;
4391             expectedRecordTypes = record.getRecordComponents()
4392                                         .stream()
4393                                         .map(rc -> types.memberType(site, rc))
4394                                         .map(t -> types.upward(t, types.captures(t)).baseType())
4395                                         .collect(List.collector());
4396             tree.record = record;
4397         } else {
4398             log.error(tree.pos(), Errors.DeconstructionPatternOnlyRecords(site.tsym));
4399             expectedRecordTypes = Stream.generate(() -> types.createErrorType(tree.type))
4400                                 .limit(tree.nested.size())
4401                                 .collect(List.collector());
4402             tree.record = syms.errSymbol;
4403         }
4404         ListBuffer<BindingSymbol> outBindings = new ListBuffer<>();
4405         List<Type> recordTypes = expectedRecordTypes;
4406         List<JCPattern> nestedPatterns = tree.nested;
4407         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
4408         try {
4409             while (recordTypes.nonEmpty() && nestedPatterns.nonEmpty()) {
4410                 attribExpr(nestedPatterns.head, localEnv, recordTypes.head);
4411                 checkCastablePattern(nestedPatterns.head.pos(), recordTypes.head, nestedPatterns.head.type);
4412                 outBindings.addAll(matchBindings.bindingsWhenTrue);
4413                 matchBindings.bindingsWhenTrue.forEach(localEnv.info.scope::enter);
4414                 nestedPatterns = nestedPatterns.tail;
4415                 recordTypes = recordTypes.tail;
4416             }
4417             if (recordTypes.nonEmpty() || nestedPatterns.nonEmpty()) {
4418                 while (nestedPatterns.nonEmpty()) {
4419                     attribExpr(nestedPatterns.head, localEnv, Type.noType);
4420                     nestedPatterns = nestedPatterns.tail;
4421                 }
4422                 List<Type> nestedTypes =
4423                         tree.nested.stream().map(p -> p.type).collect(List.collector());
4424                 log.error(tree.pos(),
4425                           Errors.IncorrectNumberOfNestedPatterns(expectedRecordTypes,
4426                                                                  nestedTypes));
4427             }
4428         } finally {
4429             localEnv.info.scope.leave();
4430         }
4431         chk.validate(tree.deconstructor, env, true);
4432         result = tree.type;
4433         matchBindings = new MatchBindings(outBindings.toList(), List.nil());
4434     }
4435 
4436     public void visitIndexed(JCArrayAccess tree) {
4437         Type owntype = types.createErrorType(tree.type);
4438         Type atype = attribExpr(tree.indexed, env);
4439         attribExpr(tree.index, env, syms.intType);
4440         if (types.isArray(atype))
4441             owntype = types.elemtype(atype);
4442         else if (!atype.hasTag(ERROR))
4443             log.error(tree.pos(), Errors.ArrayReqButFound(atype));
4444         if (!pkind().contains(KindSelector.VAL))
4445             owntype = capture(owntype);
4446         result = check(tree, owntype, KindSelector.VAR, resultInfo);
4447     }
4448 
4449     public void visitIdent(JCIdent tree) {
4450         Symbol sym;
4451 
4452         // Find symbol
4453         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
4454             // If we are looking for a method, the prototype `pt' will be a
4455             // method type with the type of the call's arguments as parameters.
4456             env.info.pendingResolutionPhase = null;
4457             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
4458         } else if (tree.sym != null && tree.sym.kind != VAR) {
4459             sym = tree.sym;
4460         } else {
4461             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
4462         }
4463         tree.sym = sym;
4464 
4465         // Also find the environment current for the class where
4466         // sym is defined (`symEnv').
4467         Env<AttrContext> symEnv = env;
4468         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
4469             sym.kind.matches(KindSelector.VAL_MTH) &&
4470             sym.owner.kind == TYP &&
4471             tree.name != names._this && tree.name != names._super) {
4472 
4473             // Find environment in which identifier is defined.
4474             while (symEnv.outer != null &&
4475                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
4476                 symEnv = symEnv.outer;
4477             }
4478         }
4479 
4480         // If symbol is a variable, ...
4481         if (sym.kind == VAR) {
4482             VarSymbol v = (VarSymbol)sym;
4483 
4484             // ..., evaluate its initializer, if it has one, and check for
4485             // illegal forward reference.
4486             checkInit(tree, env, v, false);
4487 
4488             // If we are expecting a variable (as opposed to a value), check
4489             // that the variable is assignable in the current environment.
4490             if (KindSelector.ASG.subset(pkind()))
4491                 checkAssignable(tree.pos(), v, null, env);
4492         }
4493 
4494         Env<AttrContext> env1 = env;
4495         if (sym.kind != ERR && sym.kind != TYP &&
4496             sym.owner != null && sym.owner != env1.enclClass.sym) {
4497             // If the found symbol is inaccessible, then it is
4498             // accessed through an enclosing instance.  Locate this
4499             // enclosing instance:
4500             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
4501                 env1 = env1.outer;
4502         }
4503 
4504         if (env.info.isSerializable) {
4505             chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda);
4506         }
4507 
4508         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
4509     }
4510 
4511     public void visitSelect(JCFieldAccess tree) {
4512         // Determine the expected kind of the qualifier expression.
4513         KindSelector skind = KindSelector.NIL;
4514         if (tree.name == names._this || tree.name == names._super ||
4515                 tree.name == names._class)
4516         {
4517             skind = KindSelector.TYP;
4518         } else {
4519             if (pkind().contains(KindSelector.PCK))
4520                 skind = KindSelector.of(skind, KindSelector.PCK);
4521             if (pkind().contains(KindSelector.TYP))
4522                 skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK);
4523             if (pkind().contains(KindSelector.VAL_MTH))
4524                 skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP);
4525         }
4526 
4527         // Attribute the qualifier expression, and determine its symbol (if any).
4528         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType));
4529         if (!pkind().contains(KindSelector.TYP_PCK))
4530             site = capture(site); // Capture field access
4531 
4532         // don't allow T.class T[].class, etc
4533         if (skind == KindSelector.TYP) {
4534             Type elt = site;
4535             while (elt.hasTag(ARRAY))
4536                 elt = ((ArrayType)elt).elemtype;
4537             if (elt.hasTag(TYPEVAR)) {
4538                 log.error(tree.pos(), Errors.TypeVarCantBeDeref);
4539                 result = tree.type = types.createErrorType(tree.name, site.tsym, site);
4540                 tree.sym = tree.type.tsym;
4541                 return ;
4542             }
4543         }
4544 
4545         // If qualifier symbol is a type or `super', assert `selectSuper'
4546         // for the selection. This is relevant for determining whether
4547         // protected symbols are accessible.
4548         Symbol sitesym = TreeInfo.symbol(tree.selected);
4549         boolean selectSuperPrev = env.info.selectSuper;
4550         env.info.selectSuper =
4551             sitesym != null &&
4552             sitesym.name == names._super;
4553 
4554         // Determine the symbol represented by the selection.
4555         env.info.pendingResolutionPhase = null;
4556         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
4557         if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
4558             log.error(tree.selected.pos(), Errors.NotEnclClass(site.tsym));
4559             sym = syms.errSymbol;
4560         }
4561         if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) {
4562             site = capture(site);
4563             sym = selectSym(tree, sitesym, site, env, resultInfo);
4564         }
4565         boolean varArgs = env.info.lastResolveVarargs();
4566         tree.sym = sym;
4567 
4568         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
4569             site = types.skipTypeVars(site, true);
4570         }
4571 
4572         // If that symbol is a variable, ...
4573         if (sym.kind == VAR) {
4574             VarSymbol v = (VarSymbol)sym;
4575 
4576             // ..., evaluate its initializer, if it has one, and check for
4577             // illegal forward reference.
4578             checkInit(tree, env, v, true);
4579 
4580             // If we are expecting a variable (as opposed to a value), check
4581             // that the variable is assignable in the current environment.
4582             if (KindSelector.ASG.subset(pkind()))
4583                 checkAssignable(tree.pos(), v, tree.selected, env);
4584         }
4585 
4586         if (sitesym != null &&
4587                 sitesym.kind == VAR &&
4588                 ((VarSymbol)sitesym).isResourceVariable() &&
4589                 sym.kind == MTH &&
4590                 sym.name.equals(names.close) &&
4591                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true)) {
4592             env.info.lint.logIfEnabled(tree, LintWarnings.TryExplicitCloseCall);
4593         }
4594 
4595         // Disallow selecting a type from an expression
4596         if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) {
4597             tree.type = check(tree.selected, pt(),
4598                               sitesym == null ?
4599                                       KindSelector.VAL : sitesym.kind.toSelector(),
4600                               new ResultInfo(KindSelector.TYP_PCK, pt()));
4601         }
4602 
4603         if (isType(sitesym)) {
4604             if (sym.name != names._this && sym.name != names._super) {
4605                 // Check if type-qualified fields or methods are static (JLS)
4606                 if ((sym.flags() & STATIC) == 0 &&
4607                     sym.name != names._super &&
4608                     (sym.kind == VAR || sym.kind == MTH)) {
4609                     rs.accessBase(rs.new StaticError(sym),
4610                               tree.pos(), site, sym.name, true);
4611                 }
4612             }
4613         } else if (sym.kind != ERR &&
4614                    (sym.flags() & STATIC) != 0 &&
4615                    sym.name != names._class) {
4616             // If the qualified item is not a type and the selected item is static, report
4617             // a warning. Make allowance for the class of an array type e.g. Object[].class)
4618             if (!sym.owner.isAnonymous()) {
4619                 chk.lint.logIfEnabled(tree, LintWarnings.StaticNotQualifiedByType(sym.kind.kindName(), sym.owner));
4620             } else {
4621                 chk.lint.logIfEnabled(tree, LintWarnings.StaticNotQualifiedByType2(sym.kind.kindName()));
4622             }
4623         }
4624 
4625         // If we are selecting an instance member via a `super', ...
4626         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
4627 
4628             // Check that super-qualified symbols are not abstract (JLS)
4629             rs.checkNonAbstract(tree.pos(), sym);
4630 
4631             if (site.isRaw()) {
4632                 // Determine argument types for site.
4633                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
4634                 if (site1 != null) site = site1;
4635             }
4636         }
4637 
4638         if (env.info.isSerializable) {
4639             chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda);
4640         }
4641 
4642         env.info.selectSuper = selectSuperPrev;
4643         result = checkId(tree, site, sym, env, resultInfo);
4644     }
4645     //where
4646         /** Determine symbol referenced by a Select expression,
4647          *
4648          *  @param tree   The select tree.
4649          *  @param site   The type of the selected expression,
4650          *  @param env    The current environment.
4651          *  @param resultInfo The current result.
4652          */
4653         private Symbol selectSym(JCFieldAccess tree,
4654                                  Symbol location,
4655                                  Type site,
4656                                  Env<AttrContext> env,
4657                                  ResultInfo resultInfo) {
4658             DiagnosticPosition pos = tree.pos();
4659             Name name = tree.name;
4660             switch (site.getTag()) {
4661             case PACKAGE:
4662                 return rs.accessBase(
4663                     rs.findIdentInPackage(pos, env, site.tsym, name, resultInfo.pkind),
4664                     pos, location, site, name, true);
4665             case ARRAY:
4666             case CLASS:
4667                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
4668                     return rs.resolveQualifiedMethod(
4669                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
4670                 } else if (name == names._this || name == names._super) {
4671                     return rs.resolveSelf(pos, env, site.tsym, tree);
4672                 } else if (name == names._class) {
4673                     // In this case, we have already made sure in
4674                     // visitSelect that qualifier expression is a type.
4675                     return syms.getClassField(site, types);
4676                 } else {
4677                     // We are seeing a plain identifier as selector.
4678                     Symbol sym = rs.findIdentInType(pos, env, site, name, resultInfo.pkind);
4679                         sym = rs.accessBase(sym, pos, location, site, name, true);
4680                     return sym;
4681                 }
4682             case WILDCARD:
4683                 throw new AssertionError(tree);
4684             case TYPEVAR:
4685                 // Normally, site.getUpperBound() shouldn't be null.
4686                 // It should only happen during memberEnter/attribBase
4687                 // when determining the supertype which *must* be
4688                 // done before attributing the type variables.  In
4689                 // other words, we are seeing this illegal program:
4690                 // class B<T> extends A<T.foo> {}
4691                 Symbol sym = (site.getUpperBound() != null)
4692                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
4693                     : null;
4694                 if (sym == null) {
4695                     log.error(pos, Errors.TypeVarCantBeDeref);
4696                     return syms.errSymbol;
4697                 } else {
4698                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
4699                         rs.new AccessError(env, site, sym) :
4700                                 sym;
4701                     rs.accessBase(sym2, pos, location, site, name, true);
4702                     return sym;
4703                 }
4704             case ERROR:
4705                 // preserve identifier names through errors
4706                 return types.createErrorType(name, site.tsym, site).tsym;
4707             default:
4708                 // The qualifier expression is of a primitive type -- only
4709                 // .class is allowed for these.
4710                 if (name == names._class) {
4711                     // In this case, we have already made sure in Select that
4712                     // qualifier expression is a type.
4713                     return syms.getClassField(site, types);
4714                 } else {
4715                     log.error(pos, Errors.CantDeref(site));
4716                     return syms.errSymbol;
4717                 }
4718             }
4719         }
4720 
4721         /** Determine type of identifier or select expression and check that
4722          *  (1) the referenced symbol is not deprecated
4723          *  (2) the symbol's type is safe (@see checkSafe)
4724          *  (3) if symbol is a variable, check that its type and kind are
4725          *      compatible with the prototype and protokind.
4726          *  (4) if symbol is an instance field of a raw type,
4727          *      which is being assigned to, issue an unchecked warning if its
4728          *      type changes under erasure.
4729          *  (5) if symbol is an instance method of a raw type, issue an
4730          *      unchecked warning if its argument types change under erasure.
4731          *  If checks succeed:
4732          *    If symbol is a constant, return its constant type
4733          *    else if symbol is a method, return its result type
4734          *    otherwise return its type.
4735          *  Otherwise return errType.
4736          *
4737          *  @param tree       The syntax tree representing the identifier
4738          *  @param site       If this is a select, the type of the selected
4739          *                    expression, otherwise the type of the current class.
4740          *  @param sym        The symbol representing the identifier.
4741          *  @param env        The current environment.
4742          *  @param resultInfo    The expected result
4743          */
4744         Type checkId(JCTree tree,
4745                      Type site,
4746                      Symbol sym,
4747                      Env<AttrContext> env,
4748                      ResultInfo resultInfo) {
4749             return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
4750                     checkMethodIdInternal(tree, site, sym, env, resultInfo) :
4751                     checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
4752         }
4753 
4754         Type checkMethodIdInternal(JCTree tree,
4755                      Type site,
4756                      Symbol sym,
4757                      Env<AttrContext> env,
4758                      ResultInfo resultInfo) {
4759             if (resultInfo.pkind.contains(KindSelector.POLY)) {
4760                 return attrRecover.recoverMethodInvocation(tree, site, sym, env, resultInfo);
4761             } else {
4762                 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
4763             }
4764         }
4765 
4766         Type checkIdInternal(JCTree tree,
4767                      Type site,
4768                      Symbol sym,
4769                      Type pt,
4770                      Env<AttrContext> env,
4771                      ResultInfo resultInfo) {
4772             Type owntype; // The computed type of this identifier occurrence.
4773             switch (sym.kind) {
4774             case TYP:
4775                 // For types, the computed type equals the symbol's type,
4776                 // except for two situations:
4777                 owntype = sym.type;
4778                 if (owntype.hasTag(CLASS)) {
4779                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
4780                     Type ownOuter = owntype.getEnclosingType();
4781 
4782                     // (a) If the symbol's type is parameterized, erase it
4783                     // because no type parameters were given.
4784                     // We recover generic outer type later in visitTypeApply.
4785                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
4786                         owntype = types.erasure(owntype);
4787                     }
4788 
4789                     // (b) If the symbol's type is an inner class, then
4790                     // we have to interpret its outer type as a superclass
4791                     // of the site type. Example:
4792                     //
4793                     // class Tree<A> { class Visitor { ... } }
4794                     // class PointTree extends Tree<Point> { ... }
4795                     // ...PointTree.Visitor...
4796                     //
4797                     // Then the type of the last expression above is
4798                     // Tree<Point>.Visitor.
4799                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
4800                         Type normOuter = site;
4801                         if (normOuter.hasTag(CLASS)) {
4802                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
4803                         }
4804                         if (normOuter == null) // perhaps from an import
4805                             normOuter = types.erasure(ownOuter);
4806                         if (normOuter != ownOuter)
4807                             owntype = new ClassType(
4808                                 normOuter, List.nil(), owntype.tsym,
4809                                 owntype.getMetadata());
4810                     }
4811                 }
4812                 break;
4813             case VAR:
4814                 VarSymbol v = (VarSymbol)sym;
4815 
4816                 if (env.info.enclVar != null
4817                         && v.type.hasTag(NONE)) {
4818                     //self reference to implicitly typed variable declaration
4819                     log.error(TreeInfo.positionFor(v, env.enclClass), Errors.CantInferLocalVarType(v.name, Fragments.LocalSelfRef));
4820                     return tree.type = v.type = types.createErrorType(v.type);
4821                 }
4822 
4823                 // Test (4): if symbol is an instance field of a raw type,
4824                 // which is being assigned to, issue an unchecked warning if
4825                 // its type changes under erasure.
4826                 if (KindSelector.ASG.subset(pkind()) &&
4827                     v.owner.kind == TYP &&
4828                     (v.flags() & STATIC) == 0 &&
4829                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
4830                     Type s = types.asOuterSuper(site, v.owner);
4831                     if (s != null &&
4832                         s.isRaw() &&
4833                         !types.isSameType(v.type, v.erasure(types))) {
4834                         chk.warnUnchecked(tree.pos(), LintWarnings.UncheckedAssignToVar(v, s));
4835                     }
4836                 }
4837                 // The computed type of a variable is the type of the
4838                 // variable symbol, taken as a member of the site type.
4839                 owntype = (sym.owner.kind == TYP &&
4840                            sym.name != names._this && sym.name != names._super)
4841                     ? types.memberType(site, sym)
4842                     : sym.type;
4843 
4844                 // If the variable is a constant, record constant value in
4845                 // computed type.
4846                 if (v.getConstValue() != null && isStaticReference(tree))
4847                     owntype = owntype.constType(v.getConstValue());
4848 
4849                 if (resultInfo.pkind == KindSelector.VAL) {
4850                     owntype = capture(owntype); // capture "names as expressions"
4851                 }
4852                 break;
4853             case MTH: {
4854                 owntype = checkMethod(site, sym,
4855                         new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext, resultInfo.checkMode),
4856                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
4857                         resultInfo.pt.getTypeArguments());
4858                 chk.checkRestricted(tree.pos(), sym);
4859                 break;
4860             }
4861             case PCK: case ERR:
4862                 owntype = sym.type;
4863                 break;
4864             default:
4865                 throw new AssertionError("unexpected kind: " + sym.kind +
4866                                          " in tree " + tree);
4867             }
4868 
4869             // Emit a `deprecation' warning if symbol is deprecated.
4870             // (for constructors (but not for constructor references), the error
4871             // was given when the constructor was resolved)
4872 
4873             if (sym.name != names.init || tree.hasTag(REFERENCE)) {
4874                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
4875                 chk.checkSunAPI(tree.pos(), sym);
4876                 chk.checkProfile(tree.pos(), sym);
4877                 chk.checkPreview(tree.pos(), env.info.scope.owner, site, sym);
4878             }
4879 
4880             if (pt.isErroneous()) {
4881                 owntype = types.createErrorType(owntype);
4882             }
4883 
4884             // If symbol is a variable, check that its type and
4885             // kind are compatible with the prototype and protokind.
4886             return check(tree, owntype, sym.kind.toSelector(), resultInfo);
4887         }
4888 
4889         /** Check that variable is initialized and evaluate the variable's
4890          *  initializer, if not yet done. Also check that variable is not
4891          *  referenced before it is defined.
4892          *  @param tree    The tree making up the variable reference.
4893          *  @param env     The current environment.
4894          *  @param v       The variable's symbol.
4895          */
4896         private void checkInit(JCTree tree,
4897                                Env<AttrContext> env,
4898                                VarSymbol v,
4899                                boolean onlyWarning) {
4900             // A forward reference is diagnosed if the declaration position
4901             // of the variable is greater than the current tree position
4902             // and the tree and variable definition occur in the same class
4903             // definition.  Note that writes don't count as references.
4904             // This check applies only to class and instance
4905             // variables.  Local variables follow different scope rules,
4906             // and are subject to definite assignment checking.
4907             Env<AttrContext> initEnv = enclosingInitEnv(env);
4908             if (initEnv != null &&
4909                 (initEnv.info.enclVar == v || v.pos > tree.pos) &&
4910                 v.owner.kind == TYP &&
4911                 v.owner == env.info.scope.owner.enclClass() &&
4912                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
4913                 (!env.tree.hasTag(ASSIGN) ||
4914                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
4915                 if (!onlyWarning || isStaticEnumField(v)) {
4916                     Error errkey = (initEnv.info.enclVar == v) ?
4917                                 Errors.IllegalSelfRef : Errors.IllegalForwardRef;
4918                     log.error(tree.pos(), errkey);
4919                 } else if (useBeforeDeclarationWarning) {
4920                     Warning warnkey = (initEnv.info.enclVar == v) ?
4921                                 Warnings.SelfRef(v) : Warnings.ForwardRef(v);
4922                     log.warning(tree.pos(), warnkey);
4923                 }
4924             }
4925 
4926             v.getConstValue(); // ensure initializer is evaluated
4927 
4928             checkEnumInitializer(tree, env, v);
4929         }
4930 
4931         /**
4932          * Returns the enclosing init environment associated with this env (if any). An init env
4933          * can be either a field declaration env or a static/instance initializer env.
4934          */
4935         Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) {
4936             while (true) {
4937                 switch (env.tree.getTag()) {
4938                     case VARDEF:
4939                         JCVariableDecl vdecl = (JCVariableDecl)env.tree;
4940                         if (vdecl.sym.owner.kind == TYP) {
4941                             //field
4942                             return env;
4943                         }
4944                         break;
4945                     case BLOCK:
4946                         if (env.next.tree.hasTag(CLASSDEF)) {
4947                             //instance/static initializer
4948                             return env;
4949                         }
4950                         break;
4951                     case METHODDEF:
4952                     case CLASSDEF:
4953                     case TOPLEVEL:
4954                         return null;
4955                 }
4956                 Assert.checkNonNull(env.next);
4957                 env = env.next;
4958             }
4959         }
4960 
4961         /**
4962          * Check for illegal references to static members of enum.  In
4963          * an enum type, constructors and initializers may not
4964          * reference its static members unless they are constant.
4965          *
4966          * @param tree    The tree making up the variable reference.
4967          * @param env     The current environment.
4968          * @param v       The variable's symbol.
4969          * @jls 8.9 Enum Types
4970          */
4971         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
4972             // JLS:
4973             //
4974             // "It is a compile-time error to reference a static field
4975             // of an enum type that is not a compile-time constant
4976             // (15.28) from constructors, instance initializer blocks,
4977             // or instance variable initializer expressions of that
4978             // type. It is a compile-time error for the constructors,
4979             // instance initializer blocks, or instance variable
4980             // initializer expressions of an enum constant e to refer
4981             // to itself or to an enum constant of the same type that
4982             // is declared to the right of e."
4983             if (isStaticEnumField(v)) {
4984                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
4985 
4986                 if (enclClass == null || enclClass.owner == null)
4987                     return;
4988 
4989                 // See if the enclosing class is the enum (or a
4990                 // subclass thereof) declaring v.  If not, this
4991                 // reference is OK.
4992                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
4993                     return;
4994 
4995                 // If the reference isn't from an initializer, then
4996                 // the reference is OK.
4997                 if (!Resolve.isInitializer(env))
4998                     return;
4999 
5000                 log.error(tree.pos(), Errors.IllegalEnumStaticRef);
5001             }
5002         }
5003 
5004         /** Is the given symbol a static, non-constant field of an Enum?
5005          *  Note: enum literals should not be regarded as such
5006          */
5007         private boolean isStaticEnumField(VarSymbol v) {
5008             return Flags.isEnum(v.owner) &&
5009                    Flags.isStatic(v) &&
5010                    !Flags.isConstant(v) &&
5011                    v.name != names._class;
5012         }
5013 
5014     /**
5015      * Check that method arguments conform to its instantiation.
5016      **/
5017     public Type checkMethod(Type site,
5018                             final Symbol sym,
5019                             ResultInfo resultInfo,
5020                             Env<AttrContext> env,
5021                             final List<JCExpression> argtrees,
5022                             List<Type> argtypes,
5023                             List<Type> typeargtypes) {
5024         // Test (5): if symbol is an instance method of a raw type, issue
5025         // an unchecked warning if its argument types change under erasure.
5026         if ((sym.flags() & STATIC) == 0 &&
5027             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
5028             Type s = types.asOuterSuper(site, sym.owner);
5029             if (s != null && s.isRaw() &&
5030                 !types.isSameTypes(sym.type.getParameterTypes(),
5031                                    sym.erasure(types).getParameterTypes())) {
5032                 chk.warnUnchecked(env.tree.pos(), LintWarnings.UncheckedCallMbrOfRawType(sym, s));
5033             }
5034         }
5035 
5036         if (env.info.defaultSuperCallSite != null) {
5037             for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
5038                 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
5039                         types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
5040                 List<MethodSymbol> icand_sup =
5041                         types.interfaceCandidates(sup, (MethodSymbol)sym);
5042                 if (icand_sup.nonEmpty() &&
5043                         icand_sup.head != sym &&
5044                         icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
5045                     log.error(env.tree.pos(),
5046                               Errors.IllegalDefaultSuperCall(env.info.defaultSuperCallSite, Fragments.OverriddenDefault(sym, sup)));
5047                     break;
5048                 }
5049             }
5050             env.info.defaultSuperCallSite = null;
5051         }
5052 
5053         if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
5054             JCMethodInvocation app = (JCMethodInvocation)env.tree;
5055             if (app.meth.hasTag(SELECT) &&
5056                     !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
5057                 log.error(env.tree.pos(), Errors.IllegalStaticIntfMethCall(site));
5058             }
5059         }
5060 
5061         // Compute the identifier's instantiated type.
5062         // For methods, we need to compute the instance type by
5063         // Resolve.instantiate from the symbol's type as well as
5064         // any type arguments and value arguments.
5065         Warner noteWarner = new Warner();
5066         try {
5067             Type owntype = rs.checkMethod(
5068                     env,
5069                     site,
5070                     sym,
5071                     resultInfo,
5072                     argtypes,
5073                     typeargtypes,
5074                     noteWarner);
5075 
5076             DeferredAttr.DeferredTypeMap<Void> checkDeferredMap =
5077                 deferredAttr.new DeferredTypeMap<>(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
5078 
5079             argtypes = argtypes.map(checkDeferredMap);
5080 
5081             if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
5082                 chk.warnUnchecked(env.tree.pos(), LintWarnings.UncheckedMethInvocationApplied(kindName(sym),
5083                         sym.name,
5084                         rs.methodArguments(sym.type.getParameterTypes()),
5085                         rs.methodArguments(argtypes.map(checkDeferredMap)),
5086                         kindName(sym.location()),
5087                         sym.location()));
5088                 if (resultInfo.pt != Infer.anyPoly ||
5089                         !owntype.hasTag(METHOD) ||
5090                         !owntype.isPartial()) {
5091                     //if this is not a partially inferred method type, erase return type. Otherwise,
5092                     //erasure is carried out in PartiallyInferredMethodType.check().
5093                     owntype = new MethodType(owntype.getParameterTypes(),
5094                             types.erasure(owntype.getReturnType()),
5095                             types.erasure(owntype.getThrownTypes()),
5096                             syms.methodClass);
5097                 }
5098             }
5099 
5100             PolyKind pkind = (sym.type.hasTag(FORALL) &&
5101                  sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
5102                  PolyKind.POLY : PolyKind.STANDALONE;
5103             TreeInfo.setPolyKind(env.tree, pkind);
5104 
5105             return (resultInfo.pt == Infer.anyPoly) ?
5106                     owntype :
5107                     chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
5108                             resultInfo.checkContext.inferenceContext());
5109         } catch (Infer.InferenceException ex) {
5110             //invalid target type - propagate exception outwards or report error
5111             //depending on the current check context
5112             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
5113             return types.createErrorType(site);
5114         } catch (Resolve.InapplicableMethodException ex) {
5115             final JCDiagnostic diag = ex.getDiagnostic();
5116             Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
5117                 @Override
5118                 protected Pair<Symbol, JCDiagnostic> errCandidate() {
5119                     return new Pair<>(sym, diag);
5120                 }
5121             };
5122             List<Type> argtypes2 = argtypes.map(
5123                     rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
5124             JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
5125                     env.tree, sym, site, sym.name, argtypes2, typeargtypes);
5126             log.report(errDiag);
5127             return types.createErrorType(site);
5128         }
5129     }
5130 
5131     public void visitLiteral(JCLiteral tree) {
5132         result = check(tree, litType(tree.typetag).constType(tree.value),
5133                 KindSelector.VAL, resultInfo);
5134     }
5135     //where
5136     /** Return the type of a literal with given type tag.
5137      */
5138     Type litType(TypeTag tag) {
5139         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
5140     }
5141 
5142     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
5143         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo);
5144     }
5145 
5146     public void visitTypeArray(JCArrayTypeTree tree) {
5147         Type etype = attribType(tree.elemtype, env);
5148         Type type = new ArrayType(etype, syms.arrayClass);
5149         result = check(tree, type, KindSelector.TYP, resultInfo);
5150     }
5151 
5152     /** Visitor method for parameterized types.
5153      *  Bound checking is left until later, since types are attributed
5154      *  before supertype structure is completely known
5155      */
5156     public void visitTypeApply(JCTypeApply tree) {
5157         Type owntype = types.createErrorType(tree.type);
5158 
5159         // Attribute functor part of application and make sure it's a class.
5160         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
5161 
5162         // Attribute type parameters
5163         List<Type> actuals = attribTypes(tree.arguments, env);
5164 
5165         if (clazztype.hasTag(CLASS)) {
5166             List<Type> formals = clazztype.tsym.type.getTypeArguments();
5167             if (actuals.isEmpty()) //diamond
5168                 actuals = formals;
5169 
5170             if (actuals.length() == formals.length()) {
5171                 List<Type> a = actuals;
5172                 List<Type> f = formals;
5173                 while (a.nonEmpty()) {
5174                     a.head = a.head.withTypeVar(f.head);
5175                     a = a.tail;
5176                     f = f.tail;
5177                 }
5178                 // Compute the proper generic outer
5179                 Type clazzOuter = clazztype.getEnclosingType();
5180                 if (clazzOuter.hasTag(CLASS)) {
5181                     Type site;
5182                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
5183                     if (clazz.hasTag(IDENT)) {
5184                         site = env.enclClass.sym.type;
5185                     } else if (clazz.hasTag(SELECT)) {
5186                         site = ((JCFieldAccess) clazz).selected.type;
5187                     } else throw new AssertionError(""+tree);
5188                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
5189                         if (site.hasTag(CLASS))
5190                             site = types.asOuterSuper(site, clazzOuter.tsym);
5191                         if (site == null)
5192                             site = types.erasure(clazzOuter);
5193                         clazzOuter = site;
5194                     }
5195                 }
5196                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym,
5197                                         clazztype.getMetadata());
5198             } else {
5199                 if (formals.length() != 0) {
5200                     log.error(tree.pos(),
5201                               Errors.WrongNumberTypeArgs(Integer.toString(formals.length())));
5202                 } else {
5203                     log.error(tree.pos(), Errors.TypeDoesntTakeParams(clazztype.tsym));
5204                 }
5205                 owntype = types.createErrorType(tree.type);
5206             }
5207         } else if (clazztype.hasTag(ERROR)) {
5208             ErrorType parameterizedErroneous =
5209                     new ErrorType(clazztype.getOriginalType(),
5210                                   clazztype.tsym,
5211                                   clazztype.getMetadata());
5212 
5213             parameterizedErroneous.typarams_field = actuals;
5214             owntype = parameterizedErroneous;
5215         }
5216         result = check(tree, owntype, KindSelector.TYP, resultInfo);
5217     }
5218 
5219     public void visitTypeUnion(JCTypeUnion tree) {
5220         ListBuffer<Type> multicatchTypes = new ListBuffer<>();
5221         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
5222         for (JCExpression typeTree : tree.alternatives) {
5223             Type ctype = attribType(typeTree, env);
5224             ctype = chk.checkType(typeTree.pos(),
5225                           chk.checkClassType(typeTree.pos(), ctype),
5226                           syms.throwableType);
5227             if (!ctype.isErroneous()) {
5228                 //check that alternatives of a union type are pairwise
5229                 //unrelated w.r.t. subtyping
5230                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
5231                     for (Type t : multicatchTypes) {
5232                         boolean sub = types.isSubtype(ctype, t);
5233                         boolean sup = types.isSubtype(t, ctype);
5234                         if (sub || sup) {
5235                             //assume 'a' <: 'b'
5236                             Type a = sub ? ctype : t;
5237                             Type b = sub ? t : ctype;
5238                             log.error(typeTree.pos(), Errors.MulticatchTypesMustBeDisjoint(a, b));
5239                         }
5240                     }
5241                 }
5242                 multicatchTypes.append(ctype);
5243                 if (all_multicatchTypes != null)
5244                     all_multicatchTypes.append(ctype);
5245             } else {
5246                 if (all_multicatchTypes == null) {
5247                     all_multicatchTypes = new ListBuffer<>();
5248                     all_multicatchTypes.appendList(multicatchTypes);
5249                 }
5250                 all_multicatchTypes.append(ctype);
5251             }
5252         }
5253         Type t = check(tree, types.lub(multicatchTypes.toList()),
5254                 KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE));
5255         if (t.hasTag(CLASS)) {
5256             List<Type> alternatives =
5257                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
5258             t = new UnionClassType((ClassType) t, alternatives);
5259         }
5260         tree.type = result = t;
5261     }
5262 
5263     public void visitTypeIntersection(JCTypeIntersection tree) {
5264         attribTypes(tree.bounds, env);
5265         tree.type = result = checkIntersection(tree, tree.bounds);
5266     }
5267 
5268     public void visitTypeParameter(JCTypeParameter tree) {
5269         TypeVar typeVar = (TypeVar) tree.type;
5270 
5271         if (tree.annotations != null && tree.annotations.nonEmpty()) {
5272             annotate.annotateTypeParameterSecondStage(tree, tree.annotations);
5273         }
5274 
5275         if (!typeVar.getUpperBound().isErroneous()) {
5276             //fixup type-parameter bound computed in 'attribTypeVariables'
5277             typeVar.setUpperBound(checkIntersection(tree, tree.bounds));
5278         }
5279     }
5280 
5281     Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
5282         Set<Symbol> boundSet = new HashSet<>();
5283         if (bounds.nonEmpty()) {
5284             // accept class or interface or typevar as first bound.
5285             bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
5286             boundSet.add(types.erasure(bounds.head.type).tsym);
5287             if (bounds.head.type.isErroneous()) {
5288                 return bounds.head.type;
5289             }
5290             else if (bounds.head.type.hasTag(TYPEVAR)) {
5291                 // if first bound was a typevar, do not accept further bounds.
5292                 if (bounds.tail.nonEmpty()) {
5293                     log.error(bounds.tail.head.pos(),
5294                               Errors.TypeVarMayNotBeFollowedByOtherBounds);
5295                     return bounds.head.type;
5296                 }
5297             } else {
5298                 // if first bound was a class or interface, accept only interfaces
5299                 // as further bounds.
5300                 for (JCExpression bound : bounds.tail) {
5301                     bound.type = checkBase(bound.type, bound, env, false, true, false);
5302                     if (bound.type.isErroneous()) {
5303                         bounds = List.of(bound);
5304                     }
5305                     else if (bound.type.hasTag(CLASS)) {
5306                         chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
5307                     }
5308                 }
5309             }
5310         }
5311 
5312         if (bounds.length() == 0) {
5313             return syms.objectType;
5314         } else if (bounds.length() == 1) {
5315             return bounds.head.type;
5316         } else {
5317             Type owntype = types.makeIntersectionType(TreeInfo.types(bounds));
5318             // ... the variable's bound is a class type flagged COMPOUND
5319             // (see comment for TypeVar.bound).
5320             // In this case, generate a class tree that represents the
5321             // bound class, ...
5322             JCExpression extending;
5323             List<JCExpression> implementing;
5324             if (!bounds.head.type.isInterface()) {
5325                 extending = bounds.head;
5326                 implementing = bounds.tail;
5327             } else {
5328                 extending = null;
5329                 implementing = bounds;
5330             }
5331             JCClassDecl cd = make.at(tree).ClassDef(
5332                 make.Modifiers(PUBLIC | ABSTRACT),
5333                 names.empty, List.nil(),
5334                 extending, implementing, List.nil());
5335 
5336             ClassSymbol c = (ClassSymbol)owntype.tsym;
5337             Assert.check((c.flags() & COMPOUND) != 0);
5338             cd.sym = c;
5339             c.sourcefile = env.toplevel.sourcefile;
5340 
5341             // ... and attribute the bound class
5342             c.flags_field |= UNATTRIBUTED;
5343             Env<AttrContext> cenv = enter.classEnv(cd, env);
5344             typeEnvs.put(c, cenv);
5345             attribClass(c);
5346             return owntype;
5347         }
5348     }
5349 
5350     public void visitWildcard(JCWildcard tree) {
5351         //- System.err.println("visitWildcard("+tree+");");//DEBUG
5352         Type type = (tree.kind.kind == BoundKind.UNBOUND)
5353             ? syms.objectType
5354             : attribType(tree.inner, env);
5355         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
5356                                               tree.kind.kind,
5357                                               syms.boundClass),
5358                 KindSelector.TYP, resultInfo);
5359     }
5360 
5361     public void visitAnnotation(JCAnnotation tree) {
5362         Assert.error("should be handled in annotate");
5363     }
5364 
5365     @Override
5366     public void visitModifiers(JCModifiers tree) {
5367         //error recovery only:
5368         Assert.check(resultInfo.pkind == KindSelector.ERR);
5369 
5370         attribAnnotationTypes(tree.annotations, env);
5371     }
5372 
5373     public void visitAnnotatedType(JCAnnotatedType tree) {
5374         attribAnnotationTypes(tree.annotations, env);
5375         Type underlyingType = attribType(tree.underlyingType, env);
5376         Type annotatedType = underlyingType.preannotatedType();
5377 
5378         if (!env.info.isAnonymousNewClass)
5379             annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType);
5380         result = tree.type = annotatedType;
5381     }
5382 
5383     public void visitErroneous(JCErroneous tree) {
5384         if (tree.errs != null) {
5385             WriteableScope newScope = env.info.scope;
5386 
5387             if (env.tree instanceof JCClassDecl) {
5388                 Symbol fakeOwner =
5389                     new MethodSymbol(BLOCK, names.empty, null,
5390                         env.info.scope.owner);
5391                 newScope = newScope.dupUnshared(fakeOwner);
5392             }
5393 
5394             Env<AttrContext> errEnv =
5395                     env.dup(env.tree,
5396                             env.info.dup(newScope));
5397             errEnv.info.returnResult = unknownExprInfo;
5398             for (JCTree err : tree.errs)
5399                 attribTree(err, errEnv, new ResultInfo(KindSelector.ERR, pt()));
5400         }
5401         result = tree.type = syms.errType;
5402     }
5403 
5404     /** Default visitor method for all other trees.
5405      */
5406     public void visitTree(JCTree tree) {
5407         throw new AssertionError();
5408     }
5409 
5410     /**
5411      * Attribute an env for either a top level tree or class or module declaration.
5412      */
5413     public void attrib(Env<AttrContext> env) {
5414         switch (env.tree.getTag()) {
5415             case MODULEDEF:
5416                 attribModule(env.tree.pos(), ((JCModuleDecl)env.tree).sym);
5417                 break;
5418             case PACKAGEDEF:
5419                 attribPackage(env.tree.pos(), ((JCPackageDecl) env.tree).packge);
5420                 break;
5421             default:
5422                 attribClass(env.tree.pos(), env.enclClass.sym);
5423         }
5424 
5425         annotate.flush();
5426     }
5427 
5428     public void attribPackage(DiagnosticPosition pos, PackageSymbol p) {
5429         try {
5430             annotate.flush();
5431             attribPackage(p);
5432         } catch (CompletionFailure ex) {
5433             chk.completionError(pos, ex);
5434         }
5435     }
5436 
5437     void attribPackage(PackageSymbol p) {
5438         attribWithLint(p,
5439                        env -> chk.checkDeprecatedAnnotation(((JCPackageDecl) env.tree).pid.pos(), p));
5440     }
5441 
5442     public void attribModule(DiagnosticPosition pos, ModuleSymbol m) {
5443         try {
5444             annotate.flush();
5445             attribModule(m);
5446         } catch (CompletionFailure ex) {
5447             chk.completionError(pos, ex);
5448         }
5449     }
5450 
5451     void attribModule(ModuleSymbol m) {
5452         attribWithLint(m, env -> attribStat(env.tree, env));
5453     }
5454 
5455     private void attribWithLint(TypeSymbol sym, Consumer<Env<AttrContext>> attrib) {
5456         Env<AttrContext> env = typeEnvs.get(sym);
5457 
5458         Env<AttrContext> lintEnv = env;
5459         while (lintEnv.info.lint == null)
5460             lintEnv = lintEnv.next;
5461 
5462         Lint lint = lintEnv.info.lint.augment(sym);
5463 
5464         Lint prevLint = chk.setLint(lint);
5465         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
5466 
5467         try {
5468             deferredLintHandler.flush(env.tree, lint);
5469             attrib.accept(env);
5470         } finally {
5471             log.useSource(prev);
5472             chk.setLint(prevLint);
5473         }
5474     }
5475 
5476     /** Main method: attribute class definition associated with given class symbol.
5477      *  reporting completion failures at the given position.
5478      *  @param pos The source position at which completion errors are to be
5479      *             reported.
5480      *  @param c   The class symbol whose definition will be attributed.
5481      */
5482     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
5483         try {
5484             annotate.flush();
5485             attribClass(c);
5486         } catch (CompletionFailure ex) {
5487             chk.completionError(pos, ex);
5488         }
5489     }
5490 
5491     /** Attribute class definition associated with given class symbol.
5492      *  @param c   The class symbol whose definition will be attributed.
5493      */
5494     void attribClass(ClassSymbol c) throws CompletionFailure {
5495         if (c.type.hasTag(ERROR)) return;
5496 
5497         // Check for cycles in the inheritance graph, which can arise from
5498         // ill-formed class files.
5499         chk.checkNonCyclic(null, c.type);
5500 
5501         Type st = types.supertype(c.type);
5502         if ((c.flags_field & Flags.COMPOUND) == 0 &&
5503             (c.flags_field & Flags.SUPER_OWNER_ATTRIBUTED) == 0) {
5504             // First, attribute superclass.
5505             if (st.hasTag(CLASS))
5506                 attribClass((ClassSymbol)st.tsym);
5507 
5508             // Next attribute owner, if it is a class.
5509             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
5510                 attribClass((ClassSymbol)c.owner);
5511 
5512             c.flags_field |= Flags.SUPER_OWNER_ATTRIBUTED;
5513         }
5514 
5515         // The previous operations might have attributed the current class
5516         // if there was a cycle. So we test first whether the class is still
5517         // UNATTRIBUTED.
5518         if ((c.flags_field & UNATTRIBUTED) != 0) {
5519             c.flags_field &= ~UNATTRIBUTED;
5520 
5521             // Get environment current at the point of class definition.
5522             Env<AttrContext> env = typeEnvs.get(c);
5523 
5524             // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
5525             // because the annotations were not available at the time the env was created. Therefore,
5526             // we look up the environment chain for the first enclosing environment for which the
5527             // lint value is set. Typically, this is the parent env, but might be further if there
5528             // are any envs created as a result of TypeParameter nodes.
5529             Env<AttrContext> lintEnv = env;
5530             while (lintEnv.info.lint == null)
5531                 lintEnv = lintEnv.next;
5532 
5533             // Having found the enclosing lint value, we can initialize the lint value for this class
5534             env.info.lint = lintEnv.info.lint.augment(c);
5535 
5536             Lint prevLint = chk.setLint(env.info.lint);
5537             JavaFileObject prev = log.useSource(c.sourcefile);
5538             ResultInfo prevReturnRes = env.info.returnResult;
5539 
5540             try {
5541                 if (c.isSealed() &&
5542                         !c.isEnum() &&
5543                         !c.isPermittedExplicit &&
5544                         c.getPermittedSubclasses().isEmpty()) {
5545                     log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.SealedClassMustHaveSubclasses);
5546                 }
5547 
5548                 if (c.isSealed()) {
5549                     Set<Symbol> permittedTypes = new HashSet<>();
5550                     boolean sealedInUnnamed = c.packge().modle == syms.unnamedModule || c.packge().modle == syms.noModule;
5551                     for (Type subType : c.getPermittedSubclasses()) {
5552                         if (subType.isErroneous()) {
5553                             // the type already caused errors, don't produce more potentially misleading errors
5554                             continue;
5555                         }
5556                         boolean isTypeVar = false;
5557                         if (subType.getTag() == TYPEVAR) {
5558                             isTypeVar = true; //error recovery
5559                             log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5560                                     Errors.InvalidPermitsClause(Fragments.IsATypeVariable(subType)));
5561                         }
5562                         if (subType.tsym.isAnonymous() && !c.isEnum()) {
5563                             log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),  Errors.LocalClassesCantExtendSealed(Fragments.Anonymous));
5564                         }
5565                         if (permittedTypes.contains(subType.tsym)) {
5566                             DiagnosticPosition pos =
5567                                     env.enclClass.permitting.stream()
5568                                             .filter(permittedExpr -> TreeInfo.diagnosticPositionFor(subType.tsym, permittedExpr, true) != null)
5569                                             .limit(2).collect(List.collector()).get(1);
5570                             log.error(pos, Errors.InvalidPermitsClause(Fragments.IsDuplicated(subType)));
5571                         } else {
5572                             permittedTypes.add(subType.tsym);
5573                         }
5574                         if (sealedInUnnamed) {
5575                             if (subType.tsym.packge() != c.packge()) {
5576                                 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5577                                         Errors.ClassInUnnamedModuleCantExtendSealedInDiffPackage(c)
5578                                 );
5579                             }
5580                         } else if (subType.tsym.packge().modle != c.packge().modle) {
5581                             log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5582                                     Errors.ClassInModuleCantExtendSealedInDiffModule(c, c.packge().modle)
5583                             );
5584                         }
5585                         if (subType.tsym == c.type.tsym || types.isSuperType(subType, c.type)) {
5586                             log.error(TreeInfo.diagnosticPositionFor(subType.tsym, ((JCClassDecl)env.tree).permitting),
5587                                     Errors.InvalidPermitsClause(
5588                                             subType.tsym == c.type.tsym ?
5589                                                     Fragments.MustNotBeSameClass :
5590                                                     Fragments.MustNotBeSupertype(subType)
5591                                     )
5592                             );
5593                         } else if (!isTypeVar) {
5594                             boolean thisIsASuper = types.directSupertypes(subType)
5595                                                         .stream()
5596                                                         .anyMatch(d -> d.tsym == c);
5597                             if (!thisIsASuper) {
5598                                 if(c.isInterface()) {
5599                                     log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5600                                             Errors.InvalidPermitsClause(Fragments.DoesntImplementSealed(kindName(subType.tsym), subType)));
5601                                 } else {
5602                                     log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5603                                             Errors.InvalidPermitsClause(Fragments.DoesntExtendSealed(subType)));
5604                                 }
5605                             }
5606                         }
5607                     }
5608                 }
5609 
5610                 List<ClassSymbol> sealedSupers = types.directSupertypes(c.type)
5611                                                       .stream()
5612                                                       .filter(s -> s.tsym.isSealed())
5613                                                       .map(s -> (ClassSymbol) s.tsym)
5614                                                       .collect(List.collector());
5615 
5616                 if (sealedSupers.isEmpty()) {
5617                     if ((c.flags_field & Flags.NON_SEALED) != 0) {
5618                         boolean hasErrorSuper = false;
5619 
5620                         hasErrorSuper |= types.directSupertypes(c.type)
5621                                               .stream()
5622                                               .anyMatch(s -> s.tsym.kind == Kind.ERR);
5623 
5624                         ClassType ct = (ClassType) c.type;
5625 
5626                         hasErrorSuper |= !ct.isCompound() && ct.interfaces_field != ct.all_interfaces_field;
5627 
5628                         if (!hasErrorSuper) {
5629                             log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.NonSealedWithNoSealedSupertype(c));
5630                         }
5631                     }
5632                 } else {
5633                     if (c.isDirectlyOrIndirectlyLocal() && !c.isEnum()) {
5634                         log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.LocalClassesCantExtendSealed(c.isAnonymous() ? Fragments.Anonymous : Fragments.Local));
5635                     }
5636 
5637                     if (!c.type.isCompound()) {
5638                         for (ClassSymbol supertypeSym : sealedSupers) {
5639                             if (!supertypeSym.isPermittedSubclass(c.type.tsym)) {
5640                                 log.error(TreeInfo.diagnosticPositionFor(c.type.tsym, env.tree), Errors.CantInheritFromSealed(supertypeSym));
5641                             }
5642                         }
5643                         if (!c.isNonSealed() && !c.isFinal() && !c.isSealed()) {
5644                             log.error(TreeInfo.diagnosticPositionFor(c, env.tree),
5645                                     c.isInterface() ?
5646                                             Errors.NonSealedOrSealedExpected :
5647                                             Errors.NonSealedSealedOrFinalExpected);
5648                         }
5649                     }
5650                 }
5651 
5652                 deferredLintHandler.flush(env.tree, env.info.lint);
5653                 env.info.returnResult = null;
5654                 // java.lang.Enum may not be subclassed by a non-enum
5655                 if (st.tsym == syms.enumSym &&
5656                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
5657                     log.error(env.tree.pos(), Errors.EnumNoSubclassing);
5658 
5659                 // Enums may not be extended by source-level classes
5660                 if (st.tsym != null &&
5661                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
5662                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
5663                     log.error(env.tree.pos(), Errors.EnumTypesNotExtensible);
5664                 }
5665 
5666                 if (rs.isSerializable(c.type)) {
5667                     env.info.isSerializable = true;
5668                 }
5669 
5670                 attribClassBody(env, c);
5671 
5672                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
5673                 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
5674                 chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
5675                 chk.checkLeaksNotAccessible(env, (JCClassDecl) env.tree);
5676 
5677                 if (c.isImplicit()) {
5678                     chk.checkHasMain(env.tree.pos(), c);
5679                 }
5680             } finally {
5681                 env.info.returnResult = prevReturnRes;
5682                 log.useSource(prev);
5683                 chk.setLint(prevLint);
5684             }
5685 
5686         }
5687     }
5688 
5689     public void visitImport(JCImport tree) {
5690         // nothing to do
5691     }
5692 
5693     public void visitModuleDef(JCModuleDecl tree) {
5694         tree.sym.completeUsesProvides();
5695         ModuleSymbol msym = tree.sym;
5696         Lint lint = env.outer.info.lint = env.outer.info.lint.augment(msym);
5697         Lint prevLint = chk.setLint(lint);
5698         chk.checkModuleName(tree);
5699         chk.checkDeprecatedAnnotation(tree, msym);
5700 
5701         try {
5702             deferredLintHandler.flush(tree, lint);
5703         } finally {
5704             chk.setLint(prevLint);
5705         }
5706     }
5707 
5708     /** Finish the attribution of a class. */
5709     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
5710         JCClassDecl tree = (JCClassDecl)env.tree;
5711         Assert.check(c == tree.sym);
5712 
5713         // Validate type parameters, supertype and interfaces.
5714         attribStats(tree.typarams, env);
5715         if (!c.isAnonymous()) {
5716             //already checked if anonymous
5717             chk.validate(tree.typarams, env);
5718             chk.validate(tree.extending, env);
5719             chk.validate(tree.implementing, env);
5720         }
5721 
5722         chk.checkRequiresIdentity(tree, env.info.lint);
5723 
5724         c.markAbstractIfNeeded(types);
5725 
5726         // If this is a non-abstract class, check that it has no abstract
5727         // methods or unimplemented methods of an implemented interface.
5728         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
5729             chk.checkAllDefined(tree.pos(), c);
5730         }
5731 
5732         if ((c.flags() & ANNOTATION) != 0) {
5733             if (tree.implementing.nonEmpty())
5734                 log.error(tree.implementing.head.pos(),
5735                           Errors.CantExtendIntfAnnotation);
5736             if (tree.typarams.nonEmpty()) {
5737                 log.error(tree.typarams.head.pos(),
5738                           Errors.IntfAnnotationCantHaveTypeParams(c));
5739             }
5740 
5741             // If this annotation type has a @Repeatable, validate
5742             Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable();
5743             // If this annotation type has a @Repeatable, validate
5744             if (repeatable != null) {
5745                 // get diagnostic position for error reporting
5746                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
5747                 Assert.checkNonNull(cbPos);
5748 
5749                 chk.validateRepeatable(c, repeatable, cbPos);
5750             }
5751         } else {
5752             // Check that all extended classes and interfaces
5753             // are compatible (i.e. no two define methods with same arguments
5754             // yet different return types).  (JLS 8.4.8.3)
5755             chk.checkCompatibleSupertypes(tree.pos(), c.type);
5756             chk.checkDefaultMethodClashes(tree.pos(), c.type);
5757             chk.checkPotentiallyAmbiguousOverloads(tree, c.type);
5758         }
5759 
5760         // Check that class does not import the same parameterized interface
5761         // with two different argument lists.
5762         chk.checkClassBounds(tree.pos(), c.type);
5763 
5764         tree.type = c.type;
5765 
5766         for (List<JCTypeParameter> l = tree.typarams;
5767              l.nonEmpty(); l = l.tail) {
5768              Assert.checkNonNull(env.info.scope.findFirst(l.head.name));
5769         }
5770 
5771         // Check that a generic class doesn't extend Throwable
5772         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
5773             log.error(tree.extending.pos(), Errors.GenericThrowable);
5774 
5775         // Check that all methods which implement some
5776         // method conform to the method they implement.
5777         chk.checkImplementations(tree);
5778 
5779         //check that a resource implementing AutoCloseable cannot throw InterruptedException
5780         checkAutoCloseable(tree.pos(), env, c.type);
5781 
5782         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
5783             // Attribute declaration
5784             attribStat(l.head, env);
5785             // Check that declarations in inner classes are not static (JLS 8.1.2)
5786             // Make an exception for static constants.
5787             if (!allowRecords &&
5788                     c.owner.kind != PCK &&
5789                     ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
5790                     (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
5791                 VarSymbol sym = null;
5792                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
5793                 if (sym == null ||
5794                         sym.kind != VAR ||
5795                         sym.getConstValue() == null)
5796                     log.error(l.head.pos(), Errors.IclsCantHaveStaticDecl(c));
5797             }
5798         }
5799 
5800         // Check for proper placement of super()/this() calls.
5801         chk.checkSuperInitCalls(tree);
5802 
5803         // Check for cycles among non-initial constructors.
5804         chk.checkCyclicConstructors(tree);
5805 
5806         // Check for cycles among annotation elements.
5807         chk.checkNonCyclicElements(tree);
5808 
5809         // Check for proper use of serialVersionUID and other
5810         // serialization-related fields and methods
5811         if (env.info.lint.isEnabled(LintCategory.SERIAL)
5812                 && rs.isSerializable(c.type)
5813                 && !c.isAnonymous()) {
5814             chk.checkSerialStructure(tree, c);
5815         }
5816         // Correctly organize the positions of the type annotations
5817         typeAnnotations.organizeTypeAnnotationsBodies(tree);
5818 
5819         // Check type annotations applicability rules
5820         validateTypeAnnotations(tree, false);
5821     }
5822         // where
5823         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
5824         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
5825             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
5826                 if (types.isSameType(al.head.annotationType.type, t))
5827                     return al.head.pos();
5828             }
5829 
5830             return null;
5831         }
5832 
5833     private Type capture(Type type) {
5834         return types.capture(type);
5835     }
5836 
5837     private void setSyntheticVariableType(JCVariableDecl tree, Type type) {
5838         if (type.isErroneous()) {
5839             tree.vartype = make.at(tree.pos()).Erroneous();
5840         } else {
5841             tree.vartype = make.at(tree.pos()).Type(type);
5842         }
5843     }
5844 
5845     public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
5846         tree.accept(new TypeAnnotationsValidator(sigOnly));
5847     }
5848     //where
5849     private final class TypeAnnotationsValidator extends TreeScanner {
5850 
5851         private final boolean sigOnly;
5852         public TypeAnnotationsValidator(boolean sigOnly) {
5853             this.sigOnly = sigOnly;
5854         }
5855 
5856         public void visitAnnotation(JCAnnotation tree) {
5857             chk.validateTypeAnnotation(tree, null, false);
5858             super.visitAnnotation(tree);
5859         }
5860         public void visitAnnotatedType(JCAnnotatedType tree) {
5861             if (!tree.underlyingType.type.isErroneous()) {
5862                 super.visitAnnotatedType(tree);
5863             }
5864         }
5865         public void visitTypeParameter(JCTypeParameter tree) {
5866             chk.validateTypeAnnotations(tree.annotations, tree.type.tsym, true);
5867             scan(tree.bounds);
5868             // Don't call super.
5869             // This is needed because above we call validateTypeAnnotation with
5870             // false, which would forbid annotations on type parameters.
5871             // super.visitTypeParameter(tree);
5872         }
5873         public void visitMethodDef(JCMethodDecl tree) {
5874             if (tree.recvparam != null &&
5875                     !tree.recvparam.vartype.type.isErroneous()) {
5876                 checkForDeclarationAnnotations(tree.recvparam.mods.annotations, tree.recvparam.sym);
5877             }
5878             if (tree.restype != null && tree.restype.type != null) {
5879                 validateAnnotatedType(tree.restype, tree.restype.type);
5880             }
5881             if (sigOnly) {
5882                 scan(tree.mods);
5883                 scan(tree.restype);
5884                 scan(tree.typarams);
5885                 scan(tree.recvparam);
5886                 scan(tree.params);
5887                 scan(tree.thrown);
5888             } else {
5889                 scan(tree.defaultValue);
5890                 scan(tree.body);
5891             }
5892         }
5893         public void visitVarDef(final JCVariableDecl tree) {
5894             //System.err.println("validateTypeAnnotations.visitVarDef " + tree);
5895             if (tree.sym != null && tree.sym.type != null && !tree.isImplicitlyTyped())
5896                 validateAnnotatedType(tree.vartype, tree.sym.type);
5897             scan(tree.mods);
5898             scan(tree.vartype);
5899             if (!sigOnly) {
5900                 scan(tree.init);
5901             }
5902         }
5903         public void visitTypeCast(JCTypeCast tree) {
5904             if (tree.clazz != null && tree.clazz.type != null)
5905                 validateAnnotatedType(tree.clazz, tree.clazz.type);
5906             super.visitTypeCast(tree);
5907         }
5908         public void visitTypeTest(JCInstanceOf tree) {
5909             if (tree.pattern != null && !(tree.pattern instanceof JCPattern) && tree.pattern.type != null)
5910                 validateAnnotatedType(tree.pattern, tree.pattern.type);
5911             super.visitTypeTest(tree);
5912         }
5913         public void visitNewClass(JCNewClass tree) {
5914             if (tree.clazz != null && tree.clazz.type != null) {
5915                 if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
5916                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
5917                             tree.clazz.type.tsym);
5918                 }
5919                 if (tree.def != null) {
5920                     checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
5921                 }
5922 
5923                 validateAnnotatedType(tree.clazz, tree.clazz.type);
5924             }
5925             super.visitNewClass(tree);
5926         }
5927         public void visitNewArray(JCNewArray tree) {
5928             if (tree.elemtype != null && tree.elemtype.type != null) {
5929                 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
5930                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
5931                             tree.elemtype.type.tsym);
5932                 }
5933                 validateAnnotatedType(tree.elemtype, tree.elemtype.type);
5934             }
5935             super.visitNewArray(tree);
5936         }
5937         public void visitClassDef(JCClassDecl tree) {
5938             //System.err.println("validateTypeAnnotations.visitClassDef " + tree);
5939             if (sigOnly) {
5940                 scan(tree.mods);
5941                 scan(tree.typarams);
5942                 scan(tree.extending);
5943                 scan(tree.implementing);
5944             }
5945             for (JCTree member : tree.defs) {
5946                 if (member.hasTag(Tag.CLASSDEF)) {
5947                     continue;
5948                 }
5949                 scan(member);
5950             }
5951         }
5952         public void visitBlock(JCBlock tree) {
5953             if (!sigOnly) {
5954                 scan(tree.stats);
5955             }
5956         }
5957 
5958         /* I would want to model this after
5959          * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
5960          * and override visitSelect and visitTypeApply.
5961          * However, we only set the annotated type in the top-level type
5962          * of the symbol.
5963          * Therefore, we need to override each individual location where a type
5964          * can occur.
5965          */
5966         private void validateAnnotatedType(final JCTree errtree, final Type type) {
5967             //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
5968 
5969             if (type.isPrimitiveOrVoid()) {
5970                 return;
5971             }
5972 
5973             JCTree enclTr = errtree;
5974             Type enclTy = type;
5975 
5976             boolean repeat = true;
5977             while (repeat) {
5978                 if (enclTr.hasTag(TYPEAPPLY)) {
5979                     List<Type> tyargs = enclTy.getTypeArguments();
5980                     List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
5981                     if (trargs.length() > 0) {
5982                         // Nothing to do for diamonds
5983                         if (tyargs.length() == trargs.length()) {
5984                             for (int i = 0; i < tyargs.length(); ++i) {
5985                                 validateAnnotatedType(trargs.get(i), tyargs.get(i));
5986                             }
5987                         }
5988                         // If the lengths don't match, it's either a diamond
5989                         // or some nested type that redundantly provides
5990                         // type arguments in the tree.
5991                     }
5992 
5993                     // Look at the clazz part of a generic type
5994                     enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
5995                 }
5996 
5997                 if (enclTr.hasTag(SELECT)) {
5998                     enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
5999                     if (enclTy != null &&
6000                             !enclTy.hasTag(NONE)) {
6001                         enclTy = enclTy.getEnclosingType();
6002                     }
6003                 } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
6004                     JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
6005                     if (enclTy == null || enclTy.hasTag(NONE)) {
6006                         ListBuffer<Attribute.TypeCompound> onlyTypeAnnotationsBuf = new ListBuffer<>();
6007                         for (JCAnnotation an : at.getAnnotations()) {
6008                             if (chk.isTypeAnnotation(an, false)) {
6009                                 onlyTypeAnnotationsBuf.add((Attribute.TypeCompound) an.attribute);
6010                             }
6011                         }
6012                         List<Attribute.TypeCompound> onlyTypeAnnotations = onlyTypeAnnotationsBuf.toList();
6013                         if (!onlyTypeAnnotations.isEmpty()) {
6014                             Fragment annotationFragment = onlyTypeAnnotations.size() == 1 ?
6015                                     Fragments.TypeAnnotation1(onlyTypeAnnotations.head) :
6016                                     Fragments.TypeAnnotation(onlyTypeAnnotations);
6017                             JCDiagnostic.AnnotatedType annotatedType = new JCDiagnostic.AnnotatedType(
6018                                     type.stripMetadata().annotatedType(onlyTypeAnnotations));
6019                             log.error(at.underlyingType.pos(), Errors.TypeAnnotationInadmissible(annotationFragment,
6020                                     type.tsym.owner, annotatedType));
6021                         }
6022                         repeat = false;
6023                     }
6024                     enclTr = at.underlyingType;
6025                     // enclTy doesn't need to be changed
6026                 } else if (enclTr.hasTag(IDENT)) {
6027                     repeat = false;
6028                 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
6029                     JCWildcard wc = (JCWildcard) enclTr;
6030                     if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD ||
6031                             wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
6032                         validateAnnotatedType(wc.getBound(), wc.getBound().type);
6033                     } else {
6034                         // Nothing to do for UNBOUND
6035                     }
6036                     repeat = false;
6037                 } else if (enclTr.hasTag(TYPEARRAY)) {
6038                     JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
6039                     validateAnnotatedType(art.getType(), art.elemtype.type);
6040                     repeat = false;
6041                 } else if (enclTr.hasTag(TYPEUNION)) {
6042                     JCTypeUnion ut = (JCTypeUnion) enclTr;
6043                     for (JCTree t : ut.getTypeAlternatives()) {
6044                         validateAnnotatedType(t, t.type);
6045                     }
6046                     repeat = false;
6047                 } else if (enclTr.hasTag(TYPEINTERSECTION)) {
6048                     JCTypeIntersection it = (JCTypeIntersection) enclTr;
6049                     for (JCTree t : it.getBounds()) {
6050                         validateAnnotatedType(t, t.type);
6051                     }
6052                     repeat = false;
6053                 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
6054                            enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
6055                     repeat = false;
6056                 } else {
6057                     Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
6058                             " within: "+ errtree + " with kind: " + errtree.getKind());
6059                 }
6060             }
6061         }
6062 
6063         private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
6064                 Symbol sym) {
6065             // Ensure that no declaration annotations are present.
6066             // Note that a tree type might be an AnnotatedType with
6067             // empty annotations, if only declaration annotations were given.
6068             // This method will raise an error for such a type.
6069             for (JCAnnotation ai : annotations) {
6070                 if (!ai.type.isErroneous() &&
6071                         typeAnnotations.annotationTargetType(ai, ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
6072                     log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type));
6073                 }
6074             }
6075         }
6076     }
6077 
6078     // <editor-fold desc="post-attribution visitor">
6079 
6080     /**
6081      * Handle missing types/symbols in an AST. This routine is useful when
6082      * the compiler has encountered some errors (which might have ended up
6083      * terminating attribution abruptly); if the compiler is used in fail-over
6084      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
6085      * prevents NPE to be propagated during subsequent compilation steps.
6086      */
6087     public void postAttr(JCTree tree) {
6088         new PostAttrAnalyzer().scan(tree);
6089     }
6090 
6091     class PostAttrAnalyzer extends TreeScanner {
6092 
6093         private void initTypeIfNeeded(JCTree that) {
6094             if (that.type == null) {
6095                 if (that.hasTag(METHODDEF)) {
6096                     that.type = dummyMethodType((JCMethodDecl)that);
6097                 } else {
6098                     that.type = syms.unknownType;
6099                 }
6100             }
6101         }
6102 
6103         /* Construct a dummy method type. If we have a method declaration,
6104          * and the declared return type is void, then use that return type
6105          * instead of UNKNOWN to avoid spurious error messages in lambda
6106          * bodies (see:JDK-8041704).
6107          */
6108         private Type dummyMethodType(JCMethodDecl md) {
6109             Type restype = syms.unknownType;
6110             if (md != null && md.restype != null && md.restype.hasTag(TYPEIDENT)) {
6111                 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
6112                 if (prim.typetag == VOID)
6113                     restype = syms.voidType;
6114             }
6115             return new MethodType(List.nil(), restype,
6116                                   List.nil(), syms.methodClass);
6117         }
6118         private Type dummyMethodType() {
6119             return dummyMethodType(null);
6120         }
6121 
6122         @Override
6123         public void scan(JCTree tree) {
6124             if (tree == null) return;
6125             if (tree instanceof JCExpression) {
6126                 initTypeIfNeeded(tree);
6127             }
6128             super.scan(tree);
6129         }
6130 
6131         @Override
6132         public void visitIdent(JCIdent that) {
6133             if (that.sym == null) {
6134                 that.sym = syms.unknownSymbol;
6135             }
6136         }
6137 
6138         @Override
6139         public void visitSelect(JCFieldAccess that) {
6140             if (that.sym == null) {
6141                 that.sym = syms.unknownSymbol;
6142             }
6143             super.visitSelect(that);
6144         }
6145 
6146         @Override
6147         public void visitClassDef(JCClassDecl that) {
6148             initTypeIfNeeded(that);
6149             if (that.sym == null) {
6150                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
6151             }
6152             super.visitClassDef(that);
6153         }
6154 
6155         @Override
6156         public void visitMethodDef(JCMethodDecl that) {
6157             initTypeIfNeeded(that);
6158             if (that.sym == null) {
6159                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
6160             }
6161             super.visitMethodDef(that);
6162         }
6163 
6164         @Override
6165         public void visitVarDef(JCVariableDecl that) {
6166             initTypeIfNeeded(that);
6167             if (that.sym == null) {
6168                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
6169                 that.sym.adr = 0;
6170             }
6171             if (that.vartype == null) {
6172                 that.vartype = make.at(Position.NOPOS).Erroneous();
6173             }
6174             super.visitVarDef(that);
6175         }
6176 
6177         @Override
6178         public void visitBindingPattern(JCBindingPattern that) {
6179             initTypeIfNeeded(that);
6180             initTypeIfNeeded(that.var);
6181             if (that.var.sym == null) {
6182                 that.var.sym = new BindingSymbol(0, that.var.name, that.var.type, syms.noSymbol);
6183                 that.var.sym.adr = 0;
6184             }
6185             super.visitBindingPattern(that);
6186         }
6187 
6188         @Override
6189         public void visitRecordPattern(JCRecordPattern that) {
6190             initTypeIfNeeded(that);
6191             if (that.record == null) {
6192                 that.record = new ClassSymbol(0, TreeInfo.name(that.deconstructor),
6193                                               that.type, syms.noSymbol);
6194             }
6195             if (that.fullComponentTypes == null) {
6196                 that.fullComponentTypes = List.nil();
6197             }
6198             super.visitRecordPattern(that);
6199         }
6200 
6201         @Override
6202         public void visitNewClass(JCNewClass that) {
6203             if (that.constructor == null) {
6204                 that.constructor = new MethodSymbol(0, names.init,
6205                         dummyMethodType(), syms.noSymbol);
6206             }
6207             if (that.constructorType == null) {
6208                 that.constructorType = syms.unknownType;
6209             }
6210             super.visitNewClass(that);
6211         }
6212 
6213         @Override
6214         public void visitAssignop(JCAssignOp that) {
6215             if (that.operator == null) {
6216                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
6217                         -1, syms.noSymbol);
6218             }
6219             super.visitAssignop(that);
6220         }
6221 
6222         @Override
6223         public void visitBinary(JCBinary that) {
6224             if (that.operator == null) {
6225                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
6226                         -1, syms.noSymbol);
6227             }
6228             super.visitBinary(that);
6229         }
6230 
6231         @Override
6232         public void visitUnary(JCUnary that) {
6233             if (that.operator == null) {
6234                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
6235                         -1, syms.noSymbol);
6236             }
6237             super.visitUnary(that);
6238         }
6239 
6240         @Override
6241         public void visitReference(JCMemberReference that) {
6242             super.visitReference(that);
6243             if (that.sym == null) {
6244                 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
6245                         syms.noSymbol);
6246             }
6247         }
6248     }
6249     // </editor-fold>
6250 
6251     public void setPackageSymbols(JCExpression pid, Symbol pkg) {
6252         new TreeScanner() {
6253             Symbol packge = pkg;
6254             @Override
6255             public void visitIdent(JCIdent that) {
6256                 that.sym = packge;
6257             }
6258 
6259             @Override
6260             public void visitSelect(JCFieldAccess that) {
6261                 that.sym = packge;
6262                 packge = packge.owner;
6263                 super.visitSelect(that);
6264             }
6265         }.scan(pid);
6266     }
6267 
6268 }