1 /*
   2  * Copyright (c) 1999, 2021, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.jvm;
  27 
  28 import java.util.HashMap;
  29 import java.util.Map;
  30 import java.util.Set;
  31 
  32 import com.sun.tools.javac.jvm.PoolConstant.LoadableConstant;
  33 import com.sun.tools.javac.tree.TreeInfo.PosKind;
  34 import com.sun.tools.javac.util.*;
  35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  36 import com.sun.tools.javac.util.List;
  37 import com.sun.tools.javac.code.*;
  38 import com.sun.tools.javac.code.Attribute.TypeCompound;
  39 import com.sun.tools.javac.code.Symbol.VarSymbol;
  40 import com.sun.tools.javac.comp.*;
  41 import com.sun.tools.javac.tree.*;
  42 
  43 import com.sun.tools.javac.code.Symbol.*;
  44 import com.sun.tools.javac.code.Type.*;
  45 import com.sun.tools.javac.jvm.Code.*;
  46 import com.sun.tools.javac.jvm.Items.*;
  47 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  48 import com.sun.tools.javac.tree.EndPosTable;
  49 import com.sun.tools.javac.tree.JCTree.*;
  50 
  51 import static com.sun.tools.javac.code.Flags.*;
  52 import static com.sun.tools.javac.code.Kinds.Kind.*;
  53 import static com.sun.tools.javac.code.TypeTag.*;
  54 import static com.sun.tools.javac.jvm.ByteCodes.*;
  55 import static com.sun.tools.javac.jvm.CRTFlags.*;
  56 import static com.sun.tools.javac.main.Option.*;
  57 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  58 
  59 /** This pass maps flat Java (i.e. without inner classes) to bytecodes.
  60  *
  61  *  <p><b>This is NOT part of any supported API.
  62  *  If you write code that depends on this, you do so at your own risk.
  63  *  This code and its internal interfaces are subject to change or
  64  *  deletion without notice.</b>
  65  */
  66 public class Gen extends JCTree.Visitor {
  67     protected static final Context.Key<Gen> genKey = new Context.Key<>();
  68 
  69     private final Log log;
  70     private final Symtab syms;
  71     private final Check chk;
  72     private final Resolve rs;
  73     private final TreeMaker make;
  74     private final Names names;
  75     private final Target target;
  76     private final String accessDollar;
  77     private final Types types;
  78     private final Lower lower;
  79     private final Annotate annotate;
  80     private final StringConcat concat;
  81 
  82     /** Format of stackmap tables to be generated. */
  83     private final Code.StackMapFormat stackMap;
  84 
  85     /** A type that serves as the expected type for all method expressions.
  86      */
  87     private final Type methodType;
  88 
  89     public static Gen instance(Context context) {
  90         Gen instance = context.get(genKey);
  91         if (instance == null)
  92             instance = new Gen(context);
  93         return instance;
  94     }
  95 
  96     /** Constant pool writer, set by genClass.
  97      */
  98     final PoolWriter poolWriter;
  99 
 100     @SuppressWarnings("this-escape")
 101     protected Gen(Context context) {
 102         context.put(genKey, this);
 103 
 104         names = Names.instance(context);
 105         log = Log.instance(context);
 106         syms = Symtab.instance(context);
 107         chk = Check.instance(context);
 108         rs = Resolve.instance(context);
 109         make = TreeMaker.instance(context);
 110         target = Target.instance(context);
 111         types = Types.instance(context);
 112         concat = StringConcat.instance(context);
 113 
 114         methodType = new MethodType(null, null, null, syms.methodClass);
 115         accessDollar = "access" + target.syntheticNameChar();
 116         lower = Lower.instance(context);
 117 
 118         Options options = Options.instance(context);
 119         lineDebugInfo =
 120             options.isUnset(G_CUSTOM) ||
 121             options.isSet(G_CUSTOM, "lines");
 122         varDebugInfo =
 123             options.isUnset(G_CUSTOM)
 124             ? options.isSet(G)
 125             : options.isSet(G_CUSTOM, "vars");
 126         genCrt = options.isSet(XJCOV);
 127         debugCode = options.isSet("debug.code");
 128         disableVirtualizedPrivateInvoke = options.isSet("disableVirtualizedPrivateInvoke");
 129         poolWriter = new PoolWriter(types, names);
 130 
 131         // ignore cldc because we cannot have both stackmap formats
 132         this.stackMap = StackMapFormat.JSR202;
 133         annotate = Annotate.instance(context);
 134         qualifiedSymbolCache = new HashMap<>();
 135     }
 136 
 137     /** Switches
 138      */
 139     private final boolean lineDebugInfo;
 140     private final boolean varDebugInfo;
 141     private final boolean genCrt;
 142     private final boolean debugCode;
 143     private boolean disableVirtualizedPrivateInvoke;
 144 
 145     /** Code buffer, set by genMethod.
 146      */
 147     private Code code;
 148 
 149     /** Items structure, set by genMethod.
 150      */
 151     private Items items;
 152 
 153     /** Environment for symbol lookup, set by genClass
 154      */
 155     private Env<AttrContext> attrEnv;
 156 
 157     /** The top level tree.
 158      */
 159     private JCCompilationUnit toplevel;
 160 
 161     /** The number of code-gen errors in this class.
 162      */
 163     private int nerrs = 0;
 164 
 165     /** An object containing mappings of syntax trees to their
 166      *  ending source positions.
 167      */
 168     EndPosTable endPosTable;
 169 
 170     boolean inCondSwitchExpression;
 171     Chain switchExpressionTrueChain;
 172     Chain switchExpressionFalseChain;
 173     List<LocalItem> stackBeforeSwitchExpression;
 174     LocalItem switchResult;
 175     Set<JCMethodInvocation> invocationsWithPatternMatchingCatch = Set.of();
 176     ListBuffer<int[]> patternMatchingInvocationRanges;
 177 
 178     /** Cache the symbol to reflect the qualifying type.
 179      *  key: corresponding type
 180      *  value: qualified symbol
 181      */
 182     Map<Type, Symbol> qualifiedSymbolCache;
 183 
 184     /** Generate code to load an integer constant.
 185      *  @param n     The integer to be loaded.
 186      */
 187     void loadIntConst(int n) {
 188         items.makeImmediateItem(syms.intType, n).load();
 189     }
 190 
 191     /** The opcode that loads a zero constant of a given type code.
 192      *  @param tc   The given type code (@see ByteCode).
 193      */
 194     public static int zero(int tc) {
 195         switch(tc) {
 196         case INTcode: case BYTEcode: case SHORTcode: case CHARcode:
 197             return iconst_0;
 198         case LONGcode:
 199             return lconst_0;
 200         case FLOATcode:
 201             return fconst_0;
 202         case DOUBLEcode:
 203             return dconst_0;
 204         default:
 205             throw new AssertionError("zero");
 206         }
 207     }
 208 
 209     /** The opcode that loads a one constant of a given type code.
 210      *  @param tc   The given type code (@see ByteCode).
 211      */
 212     public static int one(int tc) {
 213         return zero(tc) + 1;
 214     }
 215 
 216     /** Generate code to load -1 of the given type code (either int or long).
 217      *  @param tc   The given type code (@see ByteCode).
 218      */
 219     void emitMinusOne(int tc) {
 220         if (tc == LONGcode) {
 221             items.makeImmediateItem(syms.longType, Long.valueOf(-1)).load();
 222         } else {
 223             code.emitop0(iconst_m1);
 224         }
 225     }
 226 
 227     /** Construct a symbol to reflect the qualifying type that should
 228      *  appear in the byte code as per JLS 13.1.
 229      *
 230      *  For {@literal target >= 1.2}: Clone a method with the qualifier as owner (except
 231      *  for those cases where we need to work around VM bugs).
 232      *
 233      *  For {@literal target <= 1.1}: If qualified variable or method is defined in a
 234      *  non-accessible class, clone it with the qualifier class as owner.
 235      *
 236      *  @param sym    The accessed symbol
 237      *  @param site   The qualifier's type.
 238      */
 239     Symbol binaryQualifier(Symbol sym, Type site) {
 240 
 241         if (site.hasTag(ARRAY)) {
 242             if (sym == syms.lengthVar ||
 243                 sym.owner != syms.arrayClass)
 244                 return sym;
 245             // array clone can be qualified by the array type in later targets
 246             Symbol qualifier;
 247             if ((qualifier = qualifiedSymbolCache.get(site)) == null) {
 248                 qualifier = new ClassSymbol(Flags.PUBLIC, site.tsym.name, site, syms.noSymbol);
 249                 qualifiedSymbolCache.put(site, qualifier);
 250             }
 251             return sym.clone(qualifier);
 252         }
 253 
 254         if (sym.owner == site.tsym ||
 255             (sym.flags() & (STATIC | SYNTHETIC)) == (STATIC | SYNTHETIC)) {
 256             return sym;
 257         }
 258 
 259         // leave alone methods inherited from Object
 260         // JLS 13.1.
 261         if (sym.owner == syms.objectType.tsym)
 262             return sym;
 263 
 264         return sym.clone(site.tsym);
 265     }
 266 
 267     /** Insert a reference to given type in the constant pool,
 268      *  checking for an array with too many dimensions;
 269      *  return the reference's index.
 270      *  @param type   The type for which a reference is inserted.
 271      */
 272     int makeRef(DiagnosticPosition pos, Type type) {
 273         return poolWriter.putClass(checkDimension(pos, type));
 274     }
 275 
 276     /** Check if the given type is an array with too many dimensions.
 277      */
 278     private Type checkDimension(DiagnosticPosition pos, Type t) {
 279         checkDimensionInternal(pos, t);
 280         return t;
 281     }
 282 
 283     private void checkDimensionInternal(DiagnosticPosition pos, Type t) {
 284         switch (t.getTag()) {
 285         case METHOD:
 286             checkDimension(pos, t.getReturnType());
 287             for (List<Type> args = t.getParameterTypes(); args.nonEmpty(); args = args.tail)
 288                 checkDimension(pos, args.head);
 289             break;
 290         case ARRAY:
 291             if (types.dimensions(t) > ClassFile.MAX_DIMENSIONS) {
 292                 log.error(pos, Errors.LimitDimensions);
 293                 nerrs++;
 294             }
 295             break;
 296         default:
 297             break;
 298         }
 299     }
 300 
 301     /** Create a temporary variable.
 302      *  @param type   The variable's type.
 303      */
 304     LocalItem makeTemp(Type type) {
 305         VarSymbol v = new VarSymbol(Flags.SYNTHETIC,
 306                                     names.empty,
 307                                     type,
 308                                     env.enclMethod.sym);
 309         code.newLocal(v);
 310         return items.makeLocalItem(v);
 311     }
 312 
 313     /** Generate code to call a non-private method or constructor.
 314      *  @param pos         Position to be used for error reporting.
 315      *  @param site        The type of which the method is a member.
 316      *  @param name        The method's name.
 317      *  @param argtypes    The method's argument types.
 318      *  @param isStatic    A flag that indicates whether we call a
 319      *                     static or instance method.
 320      */
 321     void callMethod(DiagnosticPosition pos,
 322                     Type site, Name name, List<Type> argtypes,
 323                     boolean isStatic) {
 324         Symbol msym = rs.
 325             resolveInternalMethod(pos, attrEnv, site, name, argtypes, null);
 326         if (isStatic) items.makeStaticItem(msym).invoke();
 327         else items.makeMemberItem(msym, name == names.init).invoke();
 328     }
 329 
 330     /** Is the given method definition an access method
 331      *  resulting from a qualified super? This is signified by an odd
 332      *  access code.
 333      */
 334     private boolean isAccessSuper(JCMethodDecl enclMethod) {
 335         return
 336             (enclMethod.mods.flags & SYNTHETIC) != 0 &&
 337             isOddAccessName(enclMethod.name);
 338     }
 339 
 340     /** Does given name start with "access$" and end in an odd digit?
 341      */
 342     private boolean isOddAccessName(Name name) {
 343         final String string = name.toString();
 344         return
 345             string.startsWith(accessDollar) &&
 346             (string.charAt(string.length() - 1) & 1) != 0;
 347     }
 348 
 349 /* ************************************************************************
 350  * Non-local exits
 351  *************************************************************************/
 352 
 353     /** Generate code to invoke the finalizer associated with given
 354      *  environment.
 355      *  Any calls to finalizers are appended to the environments `cont' chain.
 356      *  Mark beginning of gap in catch all range for finalizer.
 357      */
 358     void genFinalizer(Env<GenContext> env) {
 359         if (code.isAlive() && env.info.finalize != null)
 360             env.info.finalize.gen();
 361     }
 362 
 363     /** Generate code to call all finalizers of structures aborted by
 364      *  a non-local
 365      *  exit.  Return target environment of the non-local exit.
 366      *  @param target      The tree representing the structure that's aborted
 367      *  @param env         The environment current at the non-local exit.
 368      */
 369     Env<GenContext> unwind(JCTree target, Env<GenContext> env) {
 370         Env<GenContext> env1 = env;
 371         while (true) {
 372             genFinalizer(env1);
 373             if (env1.tree == target) break;
 374             env1 = env1.next;
 375         }
 376         return env1;
 377     }
 378 
 379     /** Mark end of gap in catch-all range for finalizer.
 380      *  @param env   the environment which might contain the finalizer
 381      *               (if it does, env.info.gaps != null).
 382      */
 383     void endFinalizerGap(Env<GenContext> env) {
 384         if (env.info.gaps != null && env.info.gaps.length() % 2 == 1)
 385             env.info.gaps.append(code.curCP());
 386     }
 387 
 388     /** Mark end of all gaps in catch-all ranges for finalizers of environments
 389      *  lying between, and including to two environments.
 390      *  @param from    the most deeply nested environment to mark
 391      *  @param to      the least deeply nested environment to mark
 392      */
 393     void endFinalizerGaps(Env<GenContext> from, Env<GenContext> to) {
 394         Env<GenContext> last = null;
 395         while (last != to) {
 396             endFinalizerGap(from);
 397             last = from;
 398             from = from.next;
 399         }
 400     }
 401 
 402     /** Do any of the structures aborted by a non-local exit have
 403      *  finalizers that require an empty stack?
 404      *  @param target      The tree representing the structure that's aborted
 405      *  @param env         The environment current at the non-local exit.
 406      */
 407     boolean hasFinally(JCTree target, Env<GenContext> env) {
 408         while (env.tree != target) {
 409             if (env.tree.hasTag(TRY) && env.info.finalize.hasFinalizer())
 410                 return true;
 411             env = env.next;
 412         }
 413         return false;
 414     }
 415 
 416 /* ************************************************************************
 417  * Normalizing class-members.
 418  *************************************************************************/
 419 
 420     /** Distribute member initializer code into constructors and {@code <clinit>}
 421      *  method.
 422      *  @param defs         The list of class member declarations.
 423      *  @param c            The enclosing class.
 424      */
 425     List<JCTree> normalizeDefs(List<JCTree> defs, ClassSymbol c) {
 426         ListBuffer<JCStatement> initCode = new ListBuffer<>();
 427         ListBuffer<Attribute.TypeCompound> initTAs = new ListBuffer<>();
 428         ListBuffer<JCStatement> clinitCode = new ListBuffer<>();
 429         ListBuffer<Attribute.TypeCompound> clinitTAs = new ListBuffer<>();
 430         ListBuffer<JCTree> methodDefs = new ListBuffer<>();
 431         // Sort definitions into three listbuffers:
 432         //  - initCode for instance initializers
 433         //  - clinitCode for class initializers
 434         //  - methodDefs for method definitions
 435         for (List<JCTree> l = defs; l.nonEmpty(); l = l.tail) {
 436             JCTree def = l.head;
 437             switch (def.getTag()) {
 438             case BLOCK:
 439                 JCBlock block = (JCBlock)def;
 440                 if ((block.flags & STATIC) != 0)
 441                     clinitCode.append(block);
 442                 else if ((block.flags & SYNTHETIC) == 0)
 443                     initCode.append(block);
 444                 break;
 445             case METHODDEF:
 446                 methodDefs.append(def);
 447                 break;
 448             case VARDEF:
 449                 JCVariableDecl vdef = (JCVariableDecl) def;
 450                 VarSymbol sym = vdef.sym;
 451                 checkDimension(vdef.pos(), sym.type);
 452                 if (vdef.init != null) {
 453                     if ((sym.flags() & STATIC) == 0) {
 454                         // Always initialize instance variables.
 455                         JCStatement init = make.at(vdef.pos()).
 456                             Assignment(sym, vdef.init);
 457                         initCode.append(init);
 458                         endPosTable.replaceTree(vdef, init);
 459                         initTAs.addAll(getAndRemoveNonFieldTAs(sym));
 460                     } else if (sym.getConstValue() == null) {
 461                         // Initialize class (static) variables only if
 462                         // they are not compile-time constants.
 463                         JCStatement init = make.at(vdef.pos).
 464                             Assignment(sym, vdef.init);
 465                         clinitCode.append(init);
 466                         endPosTable.replaceTree(vdef, init);
 467                         clinitTAs.addAll(getAndRemoveNonFieldTAs(sym));
 468                     } else {
 469                         checkStringConstant(vdef.init.pos(), sym.getConstValue());
 470                         /* if the init contains a reference to an external class, add it to the
 471                          * constant's pool
 472                          */
 473                         vdef.init.accept(classReferenceVisitor);
 474                     }
 475                 }
 476                 break;
 477             default:
 478                 Assert.error();
 479             }
 480         }
 481         // Insert any instance initializers into all constructors.
 482         if (initCode.length() != 0) {
 483             List<JCStatement> inits = initCode.toList();
 484             initTAs.addAll(c.getInitTypeAttributes());
 485             List<Attribute.TypeCompound> initTAlist = initTAs.toList();
 486             for (JCTree t : methodDefs) {
 487                 normalizeMethod((JCMethodDecl)t, inits, initTAlist);
 488             }
 489         }
 490         // If there are class initializers, create a <clinit> method
 491         // that contains them as its body.
 492         if (clinitCode.length() != 0) {
 493             MethodSymbol clinit = new MethodSymbol(
 494                 STATIC | (c.flags() & STRICTFP),
 495                 names.clinit,
 496                 new MethodType(
 497                     List.nil(), syms.voidType,
 498                     List.nil(), syms.methodClass),
 499                 c);
 500             c.members().enter(clinit);
 501             List<JCStatement> clinitStats = clinitCode.toList();
 502             JCBlock block = make.at(clinitStats.head.pos()).Block(0, clinitStats);
 503             block.endpos = TreeInfo.endPos(clinitStats.last());
 504             methodDefs.append(make.MethodDef(clinit, block));
 505 
 506             if (!clinitTAs.isEmpty())
 507                 clinit.appendUniqueTypeAttributes(clinitTAs.toList());
 508             if (!c.getClassInitTypeAttributes().isEmpty())
 509                 clinit.appendUniqueTypeAttributes(c.getClassInitTypeAttributes());
 510         }
 511         // Return all method definitions.
 512         return methodDefs.toList();
 513     }
 514 
 515     private List<Attribute.TypeCompound> getAndRemoveNonFieldTAs(VarSymbol sym) {
 516         List<TypeCompound> tas = sym.getRawTypeAttributes();
 517         ListBuffer<Attribute.TypeCompound> fieldTAs = new ListBuffer<>();
 518         ListBuffer<Attribute.TypeCompound> nonfieldTAs = new ListBuffer<>();
 519         for (TypeCompound ta : tas) {
 520             Assert.check(ta.getPosition().type != TargetType.UNKNOWN);
 521             if (ta.getPosition().type == TargetType.FIELD) {
 522                 fieldTAs.add(ta);
 523             } else {
 524                 nonfieldTAs.add(ta);
 525             }
 526         }
 527         sym.setTypeAttributes(fieldTAs.toList());
 528         return nonfieldTAs.toList();
 529     }
 530 
 531     /** Check a constant value and report if it is a string that is
 532      *  too large.
 533      */
 534     private void checkStringConstant(DiagnosticPosition pos, Object constValue) {
 535         if (nerrs != 0 || // only complain about a long string once
 536             constValue == null ||
 537             !(constValue instanceof String str) ||
 538             str.length() < PoolWriter.MAX_STRING_LENGTH)
 539             return;
 540         log.error(pos, Errors.LimitString);
 541         nerrs++;
 542     }
 543 
 544     /** Insert instance initializer code into constructors prior to the super() call.
 545      *  @param md        The tree potentially representing a
 546      *                   constructor's definition.
 547      *  @param initCode  The list of instance initializer statements.
 548      *  @param initTAs  Type annotations from the initializer expression.
 549      */
 550     void normalizeMethod(JCMethodDecl md, List<JCStatement> initCode, List<TypeCompound> initTAs) {
 551         if (TreeInfo.isConstructor(md) && TreeInfo.hasConstructorCall(md, names._super)) {
 552             // We are seeing a constructor that has a super() call.
 553             // Find the super() invocation and append the given initializer code.
 554             TreeInfo.mapSuperCalls(md.body, supercall -> make.Block(0, initCode.prepend(supercall)));
 555 
 556             if (md.body.endpos == Position.NOPOS)
 557                 md.body.endpos = TreeInfo.endPos(md.body.stats.last());
 558 
 559             md.sym.appendUniqueTypeAttributes(initTAs);
 560         }
 561     }
 562 
 563 /* ************************************************************************
 564  * Traversal methods
 565  *************************************************************************/
 566 
 567     /** Visitor argument: The current environment.
 568      */
 569     Env<GenContext> env;
 570 
 571     /** Visitor argument: The expected type (prototype).
 572      */
 573     Type pt;
 574 
 575     /** Visitor result: The item representing the computed value.
 576      */
 577     Item result;
 578 
 579     /** Visitor method: generate code for a definition, catching and reporting
 580      *  any completion failures.
 581      *  @param tree    The definition to be visited.
 582      *  @param env     The environment current at the definition.
 583      */
 584     public void genDef(JCTree tree, Env<GenContext> env) {
 585         Env<GenContext> prevEnv = this.env;
 586         try {
 587             this.env = env;
 588             tree.accept(this);
 589         } catch (CompletionFailure ex) {
 590             chk.completionError(tree.pos(), ex);
 591         } finally {
 592             this.env = prevEnv;
 593         }
 594     }
 595 
 596     /** Derived visitor method: check whether CharacterRangeTable
 597      *  should be emitted, if so, put a new entry into CRTable
 598      *  and call method to generate bytecode.
 599      *  If not, just call method to generate bytecode.
 600      *  @see    #genStat(JCTree, Env)
 601      *
 602      *  @param  tree     The tree to be visited.
 603      *  @param  env      The environment to use.
 604      *  @param  crtFlags The CharacterRangeTable flags
 605      *                   indicating type of the entry.
 606      */
 607     public void genStat(JCTree tree, Env<GenContext> env, int crtFlags) {
 608         if (!genCrt) {
 609             genStat(tree, env);
 610             return;
 611         }
 612         int startpc = code.curCP();
 613         genStat(tree, env);
 614         if (tree.hasTag(Tag.BLOCK)) crtFlags |= CRT_BLOCK;
 615         code.crt.put(tree, crtFlags, startpc, code.curCP());
 616     }
 617 
 618     /** Derived visitor method: generate code for a statement.
 619      */
 620     public void genStat(JCTree tree, Env<GenContext> env) {
 621         if (code.isAlive()) {
 622             code.statBegin(tree.pos);
 623             genDef(tree, env);
 624         } else if (env.info.isSwitch && tree.hasTag(VARDEF)) {
 625             // variables whose declarations are in a switch
 626             // can be used even if the decl is unreachable.
 627             code.newLocal(((JCVariableDecl) tree).sym);
 628         }
 629     }
 630 
 631     /** Derived visitor method: check whether CharacterRangeTable
 632      *  should be emitted, if so, put a new entry into CRTable
 633      *  and call method to generate bytecode.
 634      *  If not, just call method to generate bytecode.
 635      *  @see    #genStats(List, Env)
 636      *
 637      *  @param  trees    The list of trees to be visited.
 638      *  @param  env      The environment to use.
 639      *  @param  crtFlags The CharacterRangeTable flags
 640      *                   indicating type of the entry.
 641      */
 642     public void genStats(List<JCStatement> trees, Env<GenContext> env, int crtFlags) {
 643         if (!genCrt) {
 644             genStats(trees, env);
 645             return;
 646         }
 647         if (trees.length() == 1) {        // mark one statement with the flags
 648             genStat(trees.head, env, crtFlags | CRT_STATEMENT);
 649         } else {
 650             int startpc = code.curCP();
 651             genStats(trees, env);
 652             code.crt.put(trees, crtFlags, startpc, code.curCP());
 653         }
 654     }
 655 
 656     /** Derived visitor method: generate code for a list of statements.
 657      */
 658     public void genStats(List<? extends JCTree> trees, Env<GenContext> env) {
 659         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
 660             genStat(l.head, env, CRT_STATEMENT);
 661     }
 662 
 663     /** Derived visitor method: check whether CharacterRangeTable
 664      *  should be emitted, if so, put a new entry into CRTable
 665      *  and call method to generate bytecode.
 666      *  If not, just call method to generate bytecode.
 667      *  @see    #genCond(JCTree,boolean)
 668      *
 669      *  @param  tree     The tree to be visited.
 670      *  @param  crtFlags The CharacterRangeTable flags
 671      *                   indicating type of the entry.
 672      */
 673     public CondItem genCond(JCTree tree, int crtFlags) {
 674         if (!genCrt) return genCond(tree, false);
 675         int startpc = code.curCP();
 676         CondItem item = genCond(tree, (crtFlags & CRT_FLOW_CONTROLLER) != 0);
 677         code.crt.put(tree, crtFlags, startpc, code.curCP());
 678         return item;
 679     }
 680 
 681     /** Derived visitor method: generate code for a boolean
 682      *  expression in a control-flow context.
 683      *  @param _tree         The expression to be visited.
 684      *  @param markBranches The flag to indicate that the condition is
 685      *                      a flow controller so produced conditions
 686      *                      should contain a proper tree to generate
 687      *                      CharacterRangeTable branches for them.
 688      */
 689     public CondItem genCond(JCTree _tree, boolean markBranches) {
 690         JCTree inner_tree = TreeInfo.skipParens(_tree);
 691         if (inner_tree.hasTag(CONDEXPR)) {
 692             JCConditional tree = (JCConditional)inner_tree;
 693             CondItem cond = genCond(tree.cond, CRT_FLOW_CONTROLLER);
 694             if (cond.isTrue()) {
 695                 code.resolve(cond.trueJumps);
 696                 CondItem result = genCond(tree.truepart, CRT_FLOW_TARGET);
 697                 if (markBranches) result.tree = tree.truepart;
 698                 return result;
 699             }
 700             if (cond.isFalse()) {
 701                 code.resolve(cond.falseJumps);
 702                 CondItem result = genCond(tree.falsepart, CRT_FLOW_TARGET);
 703                 if (markBranches) result.tree = tree.falsepart;
 704                 return result;
 705             }
 706             Chain secondJumps = cond.jumpFalse();
 707             code.resolve(cond.trueJumps);
 708             CondItem first = genCond(tree.truepart, CRT_FLOW_TARGET);
 709             if (markBranches) first.tree = tree.truepart;
 710             Chain falseJumps = first.jumpFalse();
 711             code.resolve(first.trueJumps);
 712             Chain trueJumps = code.branch(goto_);
 713             code.resolve(secondJumps);
 714             CondItem second = genCond(tree.falsepart, CRT_FLOW_TARGET);
 715             CondItem result = items.makeCondItem(second.opcode,
 716                                       Code.mergeChains(trueJumps, second.trueJumps),
 717                                       Code.mergeChains(falseJumps, second.falseJumps));
 718             if (markBranches) result.tree = tree.falsepart;
 719             return result;
 720         } else if (inner_tree.hasTag(SWITCH_EXPRESSION)) {
 721             code.resolvePending();
 722 
 723             boolean prevInCondSwitchExpression = inCondSwitchExpression;
 724             Chain prevSwitchExpressionTrueChain = switchExpressionTrueChain;
 725             Chain prevSwitchExpressionFalseChain = switchExpressionFalseChain;
 726             try {
 727                 inCondSwitchExpression = true;
 728                 switchExpressionTrueChain = null;
 729                 switchExpressionFalseChain = null;
 730                 try {
 731                     doHandleSwitchExpression((JCSwitchExpression) inner_tree);
 732                 } catch (CompletionFailure ex) {
 733                     chk.completionError(_tree.pos(), ex);
 734                     code.state.stacksize = 1;
 735                 }
 736                 CondItem result = items.makeCondItem(goto_,
 737                                                      switchExpressionTrueChain,
 738                                                      switchExpressionFalseChain);
 739                 if (markBranches) result.tree = _tree;
 740                 return result;
 741             } finally {
 742                 inCondSwitchExpression = prevInCondSwitchExpression;
 743                 switchExpressionTrueChain = prevSwitchExpressionTrueChain;
 744                 switchExpressionFalseChain = prevSwitchExpressionFalseChain;
 745             }
 746         } else if (inner_tree.hasTag(LETEXPR) && ((LetExpr) inner_tree).needsCond) {
 747             code.resolvePending();
 748 
 749             LetExpr tree = (LetExpr) inner_tree;
 750             int limit = code.nextreg;
 751             int prevLetExprStart = code.setLetExprStackPos(code.state.stacksize);
 752             try {
 753                 genStats(tree.defs, env);
 754             } finally {
 755                 code.setLetExprStackPos(prevLetExprStart);
 756             }
 757             CondItem result = genCond(tree.expr, markBranches);
 758             code.endScopes(limit);
 759             return result;
 760         } else {
 761             CondItem result = genExpr(_tree, syms.booleanType).mkCond();
 762             if (markBranches) result.tree = _tree;
 763             return result;
 764         }
 765     }
 766 
 767     public Code getCode() {
 768         return code;
 769     }
 770 
 771     public Items getItems() {
 772         return items;
 773     }
 774 
 775     public Env<AttrContext> getAttrEnv() {
 776         return attrEnv;
 777     }
 778 
 779     /** Visitor class for expressions which might be constant expressions.
 780      *  This class is a subset of TreeScanner. Intended to visit trees pruned by
 781      *  Lower as long as constant expressions looking for references to any
 782      *  ClassSymbol. Any such reference will be added to the constant pool so
 783      *  automated tools can detect class dependencies better.
 784      */
 785     class ClassReferenceVisitor extends JCTree.Visitor {
 786 
 787         @Override
 788         public void visitTree(JCTree tree) {}
 789 
 790         @Override
 791         public void visitBinary(JCBinary tree) {
 792             tree.lhs.accept(this);
 793             tree.rhs.accept(this);
 794         }
 795 
 796         @Override
 797         public void visitSelect(JCFieldAccess tree) {
 798             if (tree.selected.type.hasTag(CLASS)) {
 799                 makeRef(tree.selected.pos(), tree.selected.type);
 800             }
 801         }
 802 
 803         @Override
 804         public void visitIdent(JCIdent tree) {
 805             if (tree.sym.owner instanceof ClassSymbol classSymbol) {
 806                 poolWriter.putClass(classSymbol);
 807             }
 808         }
 809 
 810         @Override
 811         public void visitConditional(JCConditional tree) {
 812             tree.cond.accept(this);
 813             tree.truepart.accept(this);
 814             tree.falsepart.accept(this);
 815         }
 816 
 817         @Override
 818         public void visitUnary(JCUnary tree) {
 819             tree.arg.accept(this);
 820         }
 821 
 822         @Override
 823         public void visitParens(JCParens tree) {
 824             tree.expr.accept(this);
 825         }
 826 
 827         @Override
 828         public void visitTypeCast(JCTypeCast tree) {
 829             tree.expr.accept(this);
 830         }
 831     }
 832 
 833     private ClassReferenceVisitor classReferenceVisitor = new ClassReferenceVisitor();
 834 
 835     /** Visitor method: generate code for an expression, catching and reporting
 836      *  any completion failures.
 837      *  @param tree    The expression to be visited.
 838      *  @param pt      The expression's expected type (proto-type).
 839      */
 840     public Item genExpr(JCTree tree, Type pt) {
 841         if (!code.isAlive()) {
 842             return items.makeStackItem(pt);
 843         }
 844 
 845         Type prevPt = this.pt;
 846         try {
 847             if (tree.type.constValue() != null) {
 848                 // Short circuit any expressions which are constants
 849                 tree.accept(classReferenceVisitor);
 850                 checkStringConstant(tree.pos(), tree.type.constValue());
 851                 Symbol sym = TreeInfo.symbol(tree);
 852                 if (sym != null && isConstantDynamic(sym)) {
 853                     result = items.makeDynamicItem(sym);
 854                 } else {
 855                     result = items.makeImmediateItem(tree.type, tree.type.constValue());
 856                 }
 857             } else {
 858                 this.pt = pt;
 859                 tree.accept(this);
 860             }
 861             return result.coerce(pt);
 862         } catch (CompletionFailure ex) {
 863             chk.completionError(tree.pos(), ex);
 864             code.state.stacksize = 1;
 865             return items.makeStackItem(pt);
 866         } finally {
 867             this.pt = prevPt;
 868         }
 869     }
 870 
 871     public boolean isConstantDynamic(Symbol sym) {
 872         return sym.kind == VAR &&
 873                 sym instanceof DynamicVarSymbol dynamicVarSymbol &&
 874                 dynamicVarSymbol.isDynamic();
 875     }
 876 
 877     /** Derived visitor method: generate code for a list of method arguments.
 878      *  @param trees    The argument expressions to be visited.
 879      *  @param pts      The expression's expected types (i.e. the formal parameter
 880      *                  types of the invoked method).
 881      */
 882     public void genArgs(List<JCExpression> trees, List<Type> pts) {
 883         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) {
 884             genExpr(l.head, pts.head).load();
 885             pts = pts.tail;
 886         }
 887         // require lists be of same length
 888         Assert.check(pts.isEmpty());
 889     }
 890 
 891 /* ************************************************************************
 892  * Visitor methods for statements and definitions
 893  *************************************************************************/
 894 
 895     /** Thrown when the byte code size exceeds limit.
 896      */
 897     public static class CodeSizeOverflow extends RuntimeException {
 898         private static final long serialVersionUID = 0;
 899         public CodeSizeOverflow() {}
 900     }
 901 
 902     public void visitMethodDef(JCMethodDecl tree) {
 903         // Create a new local environment that points pack at method
 904         // definition.
 905         Env<GenContext> localEnv = env.dup(tree);
 906         localEnv.enclMethod = tree;
 907         // The expected type of every return statement in this method
 908         // is the method's return type.
 909         this.pt = tree.sym.erasure(types).getReturnType();
 910 
 911         checkDimension(tree.pos(), tree.sym.erasure(types));
 912         genMethod(tree, localEnv, false);
 913     }
 914 //where
 915         /** Generate code for a method.
 916          *  @param tree     The tree representing the method definition.
 917          *  @param env      The environment current for the method body.
 918          *  @param fatcode  A flag that indicates whether all jumps are
 919          *                  within 32K.  We first invoke this method under
 920          *                  the assumption that fatcode == false, i.e. all
 921          *                  jumps are within 32K.  If this fails, fatcode
 922          *                  is set to true and we try again.
 923          */
 924         void genMethod(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
 925             MethodSymbol meth = tree.sym;
 926             int extras = 0;
 927             // Count up extra parameters
 928             if (meth.isConstructor()) {
 929                 extras++;
 930                 if (meth.enclClass().isInner() &&
 931                     !meth.enclClass().isStatic()) {
 932                     extras++;
 933                 }
 934             } else if ((tree.mods.flags & STATIC) == 0) {
 935                 extras++;
 936             }
 937             //      System.err.println("Generating " + meth + " in " + meth.owner); //DEBUG
 938             if (Code.width(types.erasure(env.enclMethod.sym.type).getParameterTypes()) + extras >
 939                 ClassFile.MAX_PARAMETERS) {
 940                 log.error(tree.pos(), Errors.LimitParameters);
 941                 nerrs++;
 942             }
 943 
 944             else if (tree.body != null) {
 945                 // Create a new code structure and initialize it.
 946                 int startpcCrt = initCode(tree, env, fatcode);
 947 
 948                 try {
 949                     genStat(tree.body, env);
 950                 } catch (CodeSizeOverflow e) {
 951                     // Failed due to code limit, try again with jsr/ret
 952                     startpcCrt = initCode(tree, env, fatcode);
 953                     genStat(tree.body, env);
 954                 }
 955 
 956                 if (code.state.stacksize != 0) {
 957                     log.error(tree.body.pos(), Errors.StackSimError(tree.sym));
 958                     throw new AssertionError();
 959                 }
 960 
 961                 // If last statement could complete normally, insert a
 962                 // return at the end.
 963                 if (code.isAlive()) {
 964                     code.statBegin(TreeInfo.endPos(tree.body));
 965                     if (env.enclMethod == null ||
 966                         env.enclMethod.sym.type.getReturnType().hasTag(VOID)) {
 967                         code.emitop0(return_);
 968                     } else {
 969                         // sometime dead code seems alive (4415991);
 970                         // generate a small loop instead
 971                         int startpc = code.entryPoint();
 972                         CondItem c = items.makeCondItem(goto_);
 973                         code.resolve(c.jumpTrue(), startpc);
 974                     }
 975                 }
 976                 if (genCrt)
 977                     code.crt.put(tree.body,
 978                                  CRT_BLOCK,
 979                                  startpcCrt,
 980                                  code.curCP());
 981 
 982                 code.endScopes(0);
 983 
 984                 // If we exceeded limits, panic
 985                 if (code.checkLimits(tree.pos(), log)) {
 986                     nerrs++;
 987                     return;
 988                 }
 989 
 990                 // If we generated short code but got a long jump, do it again
 991                 // with fatCode = true.
 992                 if (!fatcode && code.fatcode) genMethod(tree, env, true);
 993 
 994                 // Clean up
 995                 if(stackMap == StackMapFormat.JSR202) {
 996                     code.lastFrame = null;
 997                     code.frameBeforeLast = null;
 998                 }
 999 
1000                 // Compress exception table
1001                 code.compressCatchTable();
1002 
1003                 // Fill in type annotation positions for exception parameters
1004                 code.fillExceptionParameterPositions();
1005             }
1006         }
1007 
1008         private int initCode(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
1009             MethodSymbol meth = tree.sym;
1010 
1011             // Create a new code structure.
1012             meth.code = code = new Code(meth,
1013                                         fatcode,
1014                                         lineDebugInfo ? toplevel.lineMap : null,
1015                                         varDebugInfo,
1016                                         stackMap,
1017                                         debugCode,
1018                                         genCrt ? new CRTable(tree, env.toplevel.endPositions)
1019                                                : null,
1020                                         syms,
1021                                         types,
1022                                         poolWriter);
1023             items = new Items(poolWriter, code, syms, types);
1024             if (code.debugCode) {
1025                 System.err.println(meth + " for body " + tree);
1026             }
1027 
1028             // If method is not static, create a new local variable address
1029             // for `this'.
1030             if ((tree.mods.flags & STATIC) == 0) {
1031                 Type selfType = meth.owner.type;
1032                 if (meth.isConstructor() && selfType != syms.objectType)
1033                     selfType = UninitializedType.uninitializedThis(selfType);
1034                 code.setDefined(
1035                         code.newLocal(
1036                             new VarSymbol(FINAL, names._this, selfType, meth.owner)));
1037             }
1038 
1039             // Mark all parameters as defined from the beginning of
1040             // the method.
1041             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
1042                 checkDimension(l.head.pos(), l.head.sym.type);
1043                 code.setDefined(code.newLocal(l.head.sym));
1044             }
1045 
1046             // Get ready to generate code for method body.
1047             int startpcCrt = genCrt ? code.curCP() : 0;
1048             code.entryPoint();
1049 
1050             // Suppress initial stackmap
1051             code.pendingStackMap = false;
1052 
1053             return startpcCrt;
1054         }
1055 
1056     public void visitVarDef(JCVariableDecl tree) {
1057         VarSymbol v = tree.sym;
1058         if (tree.init != null) {
1059             checkStringConstant(tree.init.pos(), v.getConstValue());
1060             if (v.getConstValue() == null || varDebugInfo) {
1061                 Assert.check(code.isStatementStart());
1062                 code.newLocal(v);
1063                 genExpr(tree.init, v.erasure(types)).load();
1064                 items.makeLocalItem(v).store();
1065                 Assert.check(code.isStatementStart());
1066             }
1067         } else {
1068             code.newLocal(v);
1069         }
1070         checkDimension(tree.pos(), v.type);
1071     }
1072 
1073     public void visitSkip(JCSkip tree) {
1074     }
1075 
1076     public void visitBlock(JCBlock tree) {
1077         /* this method is heavily invoked, as expected, for deeply nested blocks, if blocks doesn't happen to have
1078          * patterns there will be an unnecessary tax on memory consumption every time this method is executed, for this
1079          * reason we have created helper methods and here at a higher level we just discriminate depending on the
1080          * presence, or not, of patterns in a given block
1081          */
1082         if (tree.patternMatchingCatch != null) {
1083             visitBlockWithPatterns(tree);
1084         } else {
1085             internalVisitBlock(tree);
1086         }
1087     }
1088 
1089     private void visitBlockWithPatterns(JCBlock tree) {
1090         Set<JCMethodInvocation> prevInvocationsWithPatternMatchingCatch = invocationsWithPatternMatchingCatch;
1091         ListBuffer<int[]> prevRanges = patternMatchingInvocationRanges;
1092         State startState = code.state.dup();
1093         try {
1094             invocationsWithPatternMatchingCatch = tree.patternMatchingCatch.calls2Handle();
1095             patternMatchingInvocationRanges = new ListBuffer<>();
1096             internalVisitBlock(tree);
1097         } finally {
1098             Chain skipCatch = code.branch(goto_);
1099             JCCatch handler = tree.patternMatchingCatch.handler();
1100             code.entryPoint(startState, handler.param.sym.type);
1101             genPatternMatchingCatch(handler, env, patternMatchingInvocationRanges.toList());
1102             code.resolve(skipCatch);
1103             invocationsWithPatternMatchingCatch = prevInvocationsWithPatternMatchingCatch;
1104             patternMatchingInvocationRanges = prevRanges;
1105         }
1106     }
1107 
1108     private void internalVisitBlock(JCBlock tree) {
1109         int limit = code.nextreg;
1110         Env<GenContext> localEnv = env.dup(tree, new GenContext());
1111         genStats(tree.stats, localEnv);
1112         // End the scope of all block-local variables in variable info.
1113         if (!env.tree.hasTag(METHODDEF)) {
1114             code.statBegin(tree.endpos);
1115             code.endScopes(limit);
1116             code.pendingStatPos = Position.NOPOS;
1117         }
1118     }
1119 
1120     public void visitDoLoop(JCDoWhileLoop tree) {
1121         genLoop(tree, tree.body, tree.cond, List.nil(), false);
1122     }
1123 
1124     public void visitWhileLoop(JCWhileLoop tree) {
1125         genLoop(tree, tree.body, tree.cond, List.nil(), true);
1126     }
1127 
1128     public void visitForLoop(JCForLoop tree) {
1129         int limit = code.nextreg;
1130         genStats(tree.init, env);
1131         genLoop(tree, tree.body, tree.cond, tree.step, true);
1132         code.endScopes(limit);
1133     }
1134     //where
1135         /** Generate code for a loop.
1136          *  @param loop       The tree representing the loop.
1137          *  @param body       The loop's body.
1138          *  @param cond       The loop's controlling condition.
1139          *  @param step       "Step" statements to be inserted at end of
1140          *                    each iteration.
1141          *  @param testFirst  True if the loop test belongs before the body.
1142          */
1143         private void genLoop(JCStatement loop,
1144                              JCStatement body,
1145                              JCExpression cond,
1146                              List<JCExpressionStatement> step,
1147                              boolean testFirst) {
1148             Env<GenContext> loopEnv = env.dup(loop, new GenContext());
1149             int startpc = code.entryPoint();
1150             if (testFirst) { //while or for loop
1151                 CondItem c;
1152                 if (cond != null) {
1153                     code.statBegin(cond.pos);
1154                     Assert.check(code.isStatementStart());
1155                     c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
1156                 } else {
1157                     c = items.makeCondItem(goto_);
1158                 }
1159                 Chain loopDone = c.jumpFalse();
1160                 code.resolve(c.trueJumps);
1161                 Assert.check(code.isStatementStart());
1162                 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
1163                 code.resolve(loopEnv.info.cont);
1164                 genStats(step, loopEnv);
1165                 code.resolve(code.branch(goto_), startpc);
1166                 code.resolve(loopDone);
1167             } else {
1168                 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
1169                 code.resolve(loopEnv.info.cont);
1170                 genStats(step, loopEnv);
1171                 if (code.isAlive()) {
1172                     CondItem c;
1173                     if (cond != null) {
1174                         code.statBegin(cond.pos);
1175                         Assert.check(code.isStatementStart());
1176                         c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
1177                     } else {
1178                         c = items.makeCondItem(goto_);
1179                     }
1180                     code.resolve(c.jumpTrue(), startpc);
1181                     Assert.check(code.isStatementStart());
1182                     code.resolve(c.falseJumps);
1183                 }
1184             }
1185             Chain exit = loopEnv.info.exit;
1186             if (exit != null) {
1187                 code.resolve(exit);
1188                 exit.state.defined.excludeFrom(code.nextreg);
1189             }
1190         }
1191 
1192     public void visitForeachLoop(JCEnhancedForLoop tree) {
1193         throw new AssertionError(); // should have been removed by Lower.
1194     }
1195 
1196     public void visitLabelled(JCLabeledStatement tree) {
1197         Env<GenContext> localEnv = env.dup(tree, new GenContext());
1198         genStat(tree.body, localEnv, CRT_STATEMENT);
1199         Chain exit = localEnv.info.exit;
1200         if (exit != null) {
1201             code.resolve(exit);
1202             exit.state.defined.excludeFrom(code.nextreg);
1203         }
1204     }
1205 
1206     public void visitSwitch(JCSwitch tree) {
1207         handleSwitch(tree, tree.selector, tree.cases, tree.patternSwitch);
1208     }
1209 
1210     @Override
1211     public void visitSwitchExpression(JCSwitchExpression tree) {
1212         code.resolvePending();
1213         boolean prevInCondSwitchExpression = inCondSwitchExpression;
1214         try {
1215             inCondSwitchExpression = false;
1216             doHandleSwitchExpression(tree);
1217         } finally {
1218             inCondSwitchExpression = prevInCondSwitchExpression;
1219         }
1220         result = items.makeStackItem(pt);
1221     }
1222 
1223     private void doHandleSwitchExpression(JCSwitchExpression tree) {
1224         List<LocalItem> prevStackBeforeSwitchExpression = stackBeforeSwitchExpression;
1225         LocalItem prevSwitchResult = switchResult;
1226         int limit = code.nextreg;
1227         try {
1228             stackBeforeSwitchExpression = List.nil();
1229             switchResult = null;
1230             if (hasTry(tree)) {
1231                 //if the switch expression contains try-catch, the catch handlers need to have
1232                 //an empty stack. So stash whole stack to local variables, and restore it before
1233                 //breaks:
1234                 while (code.state.stacksize > 0) {
1235                     Type type = code.state.peek();
1236                     Name varName = names.fromString(target.syntheticNameChar() +
1237                                                     "stack" +
1238                                                     target.syntheticNameChar() +
1239                                                     tree.pos +
1240                                                     target.syntheticNameChar() +
1241                                                     code.state.stacksize);
1242                     VarSymbol var = new VarSymbol(Flags.SYNTHETIC, varName, type,
1243                                                   this.env.enclMethod.sym);
1244                     LocalItem item = items.new LocalItem(type, code.newLocal(var));
1245                     stackBeforeSwitchExpression = stackBeforeSwitchExpression.prepend(item);
1246                     item.store();
1247                 }
1248                 switchResult = makeTemp(tree.type);
1249             }
1250             int prevLetExprStart = code.setLetExprStackPos(code.state.stacksize);
1251             try {
1252                 handleSwitch(tree, tree.selector, tree.cases, tree.patternSwitch);
1253             } finally {
1254                 code.setLetExprStackPos(prevLetExprStart);
1255             }
1256         } finally {
1257             stackBeforeSwitchExpression = prevStackBeforeSwitchExpression;
1258             switchResult = prevSwitchResult;
1259             code.endScopes(limit);
1260         }
1261     }
1262     //where:
1263         private boolean hasTry(JCSwitchExpression tree) {
1264             class HasTryScanner extends TreeScanner {
1265                 private boolean hasTry;
1266 
1267                 @Override
1268                 public void visitTry(JCTry tree) {
1269                     hasTry = true;
1270                 }
1271 
1272                 @Override
1273                 public void visitSynchronized(JCSynchronized tree) {
1274                     hasTry = true;
1275                 }
1276 
1277                 @Override
1278                 public void visitClassDef(JCClassDecl tree) {
1279                 }
1280 
1281                 @Override
1282                 public void visitLambda(JCLambda tree) {
1283                 }
1284             };
1285 
1286             HasTryScanner hasTryScanner = new HasTryScanner();
1287 
1288             hasTryScanner.scan(tree);
1289             return hasTryScanner.hasTry;
1290         }
1291 
1292     private void handleSwitch(JCTree swtch, JCExpression selector, List<JCCase> cases,
1293                               boolean patternSwitch) {
1294         int limit = code.nextreg;
1295         Assert.check(!selector.type.hasTag(CLASS));
1296         int switchStart = patternSwitch ? code.entryPoint() : -1;
1297         int startpcCrt = genCrt ? code.curCP() : 0;
1298         Assert.check(code.isStatementStart());
1299         Item sel = genExpr(selector, syms.intType);
1300         if (cases.isEmpty()) {
1301             // We are seeing:  switch <sel> {}
1302             sel.load().drop();
1303             if (genCrt)
1304                 code.crt.put(TreeInfo.skipParens(selector),
1305                              CRT_FLOW_CONTROLLER, startpcCrt, code.curCP());
1306         } else {
1307             // We are seeing a nonempty switch.
1308             sel.load();
1309             if (genCrt)
1310                 code.crt.put(TreeInfo.skipParens(selector),
1311                              CRT_FLOW_CONTROLLER, startpcCrt, code.curCP());
1312             Env<GenContext> switchEnv = env.dup(swtch, new GenContext());
1313             switchEnv.info.isSwitch = true;
1314 
1315             // Compute number of labels and minimum and maximum label values.
1316             // For each case, store its label in an array.
1317             int lo = Integer.MAX_VALUE;  // minimum label.
1318             int hi = Integer.MIN_VALUE;  // maximum label.
1319             int nlabels = 0;               // number of labels.
1320 
1321             int[] labels = new int[cases.length()];  // the label array.
1322             int defaultIndex = -1;     // the index of the default clause.
1323 
1324             List<JCCase> l = cases;
1325             for (int i = 0; i < labels.length; i++) {
1326                 if (l.head.labels.head instanceof JCConstantCaseLabel constLabel) {
1327                     Assert.check(l.head.labels.size() == 1);
1328                     int val = ((Number) constLabel.expr.type.constValue()).intValue();
1329                     labels[i] = val;
1330                     if (val < lo) lo = val;
1331                     if (hi < val) hi = val;
1332                     nlabels++;
1333                 } else {
1334                     Assert.check(defaultIndex == -1);
1335                     defaultIndex = i;
1336                 }
1337                 l = l.tail;
1338             }
1339 
1340             // Determine whether to issue a tableswitch or a lookupswitch
1341             // instruction.
1342             long table_space_cost = 4 + ((long) hi - lo + 1); // words
1343             long table_time_cost = 3; // comparisons
1344             long lookup_space_cost = 3 + 2 * (long) nlabels;
1345             long lookup_time_cost = nlabels;
1346             int opcode =
1347                 nlabels > 0 &&
1348                 table_space_cost + 3 * table_time_cost <=
1349                 lookup_space_cost + 3 * lookup_time_cost
1350                 ?
1351                 tableswitch : lookupswitch;
1352 
1353             int startpc = code.curCP();    // the position of the selector operation
1354             code.emitop0(opcode);
1355             code.align(4);
1356             int tableBase = code.curCP();  // the start of the jump table
1357             int[] offsets = null;          // a table of offsets for a lookupswitch
1358             code.emit4(-1);                // leave space for default offset
1359             if (opcode == tableswitch) {
1360                 code.emit4(lo);            // minimum label
1361                 code.emit4(hi);            // maximum label
1362                 for (long i = lo; i <= hi; i++) {  // leave space for jump table
1363                     code.emit4(-1);
1364                 }
1365             } else {
1366                 code.emit4(nlabels);    // number of labels
1367                 for (int i = 0; i < nlabels; i++) {
1368                     code.emit4(-1); code.emit4(-1); // leave space for lookup table
1369                 }
1370                 offsets = new int[labels.length];
1371             }
1372             Code.State stateSwitch = code.state.dup();
1373             code.markDead();
1374 
1375             // For each case do:
1376             l = cases;
1377             for (int i = 0; i < labels.length; i++) {
1378                 JCCase c = l.head;
1379                 l = l.tail;
1380 
1381                 int pc = code.entryPoint(stateSwitch);
1382                 // Insert offset directly into code or else into the
1383                 // offsets table.
1384                 if (i != defaultIndex) {
1385                     if (opcode == tableswitch) {
1386                         code.put4(
1387                             tableBase + 4 * (labels[i] - lo + 3),
1388                             pc - startpc);
1389                     } else {
1390                         offsets[i] = pc - startpc;
1391                     }
1392                 } else {
1393                     code.put4(tableBase, pc - startpc);
1394                 }
1395 
1396                 // Generate code for the statements in this case.
1397                 genStats(c.stats, switchEnv, CRT_FLOW_TARGET);
1398             }
1399 
1400             if (switchEnv.info.cont != null) {
1401                 Assert.check(patternSwitch);
1402                 code.resolve(switchEnv.info.cont, switchStart);
1403             }
1404 
1405             // Resolve all breaks.
1406             Chain exit = switchEnv.info.exit;
1407             if  (exit != null) {
1408                 code.resolve(exit);
1409                 exit.state.defined.excludeFrom(limit);
1410             }
1411 
1412             // If we have not set the default offset, we do so now.
1413             if (code.get4(tableBase) == -1) {
1414                 code.put4(tableBase, code.entryPoint(stateSwitch) - startpc);
1415             }
1416 
1417             if (opcode == tableswitch) {
1418                 // Let any unfilled slots point to the default case.
1419                 int defaultOffset = code.get4(tableBase);
1420                 for (long i = lo; i <= hi; i++) {
1421                     int t = (int)(tableBase + 4 * (i - lo + 3));
1422                     if (code.get4(t) == -1)
1423                         code.put4(t, defaultOffset);
1424                 }
1425             } else {
1426                 // Sort non-default offsets and copy into lookup table.
1427                 if (defaultIndex >= 0)
1428                     for (int i = defaultIndex; i < labels.length - 1; i++) {
1429                         labels[i] = labels[i+1];
1430                         offsets[i] = offsets[i+1];
1431                     }
1432                 if (nlabels > 0)
1433                     qsort2(labels, offsets, 0, nlabels - 1);
1434                 for (int i = 0; i < nlabels; i++) {
1435                     int caseidx = tableBase + 8 * (i + 1);
1436                     code.put4(caseidx, labels[i]);
1437                     code.put4(caseidx + 4, offsets[i]);
1438                 }
1439             }
1440 
1441             if (swtch instanceof JCSwitchExpression) {
1442                  // Emit line position for the end of a switch expression
1443                  code.statBegin(TreeInfo.endPos(swtch));
1444             }
1445         }
1446         code.endScopes(limit);
1447     }
1448 //where
1449         /** Sort (int) arrays of keys and values
1450          */
1451        static void qsort2(int[] keys, int[] values, int lo, int hi) {
1452             int i = lo;
1453             int j = hi;
1454             int pivot = keys[(i+j)/2];
1455             do {
1456                 while (keys[i] < pivot) i++;
1457                 while (pivot < keys[j]) j--;
1458                 if (i <= j) {
1459                     int temp1 = keys[i];
1460                     keys[i] = keys[j];
1461                     keys[j] = temp1;
1462                     int temp2 = values[i];
1463                     values[i] = values[j];
1464                     values[j] = temp2;
1465                     i++;
1466                     j--;
1467                 }
1468             } while (i <= j);
1469             if (lo < j) qsort2(keys, values, lo, j);
1470             if (i < hi) qsort2(keys, values, i, hi);
1471         }
1472 
1473     public void visitSynchronized(JCSynchronized tree) {
1474         int limit = code.nextreg;
1475         // Generate code to evaluate lock and save in temporary variable.
1476         final LocalItem lockVar = makeTemp(syms.objectType);
1477         Assert.check(code.isStatementStart());
1478         genExpr(tree.lock, tree.lock.type).load().duplicate();
1479         lockVar.store();
1480 
1481         // Generate code to enter monitor.
1482         code.emitop0(monitorenter);
1483         code.state.lock(lockVar.reg);
1484 
1485         // Generate code for a try statement with given body, no catch clauses
1486         // in a new environment with the "exit-monitor" operation as finalizer.
1487         final Env<GenContext> syncEnv = env.dup(tree, new GenContext());
1488         syncEnv.info.finalize = new GenFinalizer() {
1489             void gen() {
1490                 genLast();
1491                 Assert.check(syncEnv.info.gaps.length() % 2 == 0);
1492                 syncEnv.info.gaps.append(code.curCP());
1493             }
1494             void genLast() {
1495                 if (code.isAlive()) {
1496                     lockVar.load();
1497                     code.emitop0(monitorexit);
1498                     code.state.unlock(lockVar.reg);
1499                 }
1500             }
1501         };
1502         syncEnv.info.gaps = new ListBuffer<>();
1503         genTry(tree.body, List.nil(), syncEnv);
1504         code.endScopes(limit);
1505     }
1506 
1507     public void visitTry(final JCTry tree) {
1508         // Generate code for a try statement with given body and catch clauses,
1509         // in a new environment which calls the finally block if there is one.
1510         final Env<GenContext> tryEnv = env.dup(tree, new GenContext());
1511         final Env<GenContext> oldEnv = env;
1512         tryEnv.info.finalize = new GenFinalizer() {
1513             void gen() {
1514                 Assert.check(tryEnv.info.gaps.length() % 2 == 0);
1515                 tryEnv.info.gaps.append(code.curCP());
1516                 genLast();
1517             }
1518             void genLast() {
1519                 if (tree.finalizer != null)
1520                     genStat(tree.finalizer, oldEnv, CRT_BLOCK);
1521             }
1522             boolean hasFinalizer() {
1523                 return tree.finalizer != null;
1524             }
1525 
1526             @Override
1527             void afterBody() {
1528                 if (tree.finalizer != null && (tree.finalizer.flags & BODY_ONLY_FINALIZE) != 0) {
1529                     //for body-only finally, remove the GenFinalizer after try body
1530                     //so that the finally is not generated to catch bodies:
1531                     tryEnv.info.finalize = null;
1532                 }
1533             }
1534 
1535         };
1536         tryEnv.info.gaps = new ListBuffer<>();
1537         genTry(tree.body, tree.catchers, tryEnv);
1538     }
1539     //where
1540         /** Generate code for a try or synchronized statement
1541          *  @param body      The body of the try or synchronized statement.
1542          *  @param catchers  The list of catch clauses.
1543          *  @param env       The current environment of the body.
1544          */
1545         void genTry(JCTree body, List<JCCatch> catchers, Env<GenContext> env) {
1546             int limit = code.nextreg;
1547             int startpc = code.curCP();
1548             Code.State stateTry = code.state.dup();
1549             genStat(body, env, CRT_BLOCK);
1550             int endpc = code.curCP();
1551             List<Integer> gaps = env.info.gaps.toList();
1552             code.statBegin(TreeInfo.endPos(body));
1553             genFinalizer(env);
1554             code.statBegin(TreeInfo.endPos(env.tree));
1555             Chain exitChain;
1556             boolean actualTry = env.tree.hasTag(TRY);
1557             if (startpc == endpc && actualTry) {
1558                 exitChain = code.branch(dontgoto);
1559             } else {
1560                 exitChain = code.branch(goto_);
1561             }
1562             endFinalizerGap(env);
1563             env.info.finalize.afterBody();
1564             boolean hasFinalizer =
1565                 env.info.finalize != null &&
1566                 env.info.finalize.hasFinalizer();
1567             if (startpc != endpc) for (List<JCCatch> l = catchers; l.nonEmpty(); l = l.tail) {
1568                 // start off with exception on stack
1569                 code.entryPoint(stateTry, l.head.param.sym.type);
1570                 genCatch(l.head, env, startpc, endpc, gaps);
1571                 genFinalizer(env);
1572                 if (hasFinalizer || l.tail.nonEmpty()) {
1573                     code.statBegin(TreeInfo.endPos(env.tree));
1574                     exitChain = Code.mergeChains(exitChain,
1575                                                  code.branch(goto_));
1576                 }
1577                 endFinalizerGap(env);
1578             }
1579             if (hasFinalizer && (startpc != endpc || !actualTry)) {
1580                 // Create a new register segment to avoid allocating
1581                 // the same variables in finalizers and other statements.
1582                 code.newRegSegment();
1583 
1584                 // Add a catch-all clause.
1585 
1586                 // start off with exception on stack
1587                 int catchallpc = code.entryPoint(stateTry, syms.throwableType);
1588 
1589                 // Register all exception ranges for catch all clause.
1590                 // The range of the catch all clause is from the beginning
1591                 // of the try or synchronized block until the present
1592                 // code pointer excluding all gaps in the current
1593                 // environment's GenContext.
1594                 int startseg = startpc;
1595                 while (env.info.gaps.nonEmpty()) {
1596                     int endseg = env.info.gaps.next().intValue();
1597                     registerCatch(body.pos(), startseg, endseg,
1598                                   catchallpc, 0);
1599                     startseg = env.info.gaps.next().intValue();
1600                 }
1601                 code.statBegin(TreeInfo.finalizerPos(env.tree, PosKind.FIRST_STAT_POS));
1602                 code.markStatBegin();
1603 
1604                 Item excVar = makeTemp(syms.throwableType);
1605                 excVar.store();
1606                 genFinalizer(env);
1607                 code.resolvePending();
1608                 code.statBegin(TreeInfo.finalizerPos(env.tree, PosKind.END_POS));
1609                 code.markStatBegin();
1610 
1611                 excVar.load();
1612                 registerCatch(body.pos(), startseg,
1613                               env.info.gaps.next().intValue(),
1614                               catchallpc, 0);
1615                 code.emitop0(athrow);
1616                 code.markDead();
1617 
1618                 // If there are jsr's to this finalizer, ...
1619                 if (env.info.cont != null) {
1620                     // Resolve all jsr's.
1621                     code.resolve(env.info.cont);
1622 
1623                     // Mark statement line number
1624                     code.statBegin(TreeInfo.finalizerPos(env.tree, PosKind.FIRST_STAT_POS));
1625                     code.markStatBegin();
1626 
1627                     // Save return address.
1628                     LocalItem retVar = makeTemp(syms.throwableType);
1629                     retVar.store();
1630 
1631                     // Generate finalizer code.
1632                     env.info.finalize.genLast();
1633 
1634                     // Return.
1635                     code.emitop1w(ret, retVar.reg);
1636                     code.markDead();
1637                 }
1638             }
1639             // Resolve all breaks.
1640             code.resolve(exitChain);
1641 
1642             code.endScopes(limit);
1643         }
1644 
1645         /** Generate code for a catch clause.
1646          *  @param tree     The catch clause.
1647          *  @param env      The environment current in the enclosing try.
1648          *  @param startpc  Start pc of try-block.
1649          *  @param endpc    End pc of try-block.
1650          */
1651         void genCatch(JCCatch tree,
1652                       Env<GenContext> env,
1653                       int startpc, int endpc,
1654                       List<Integer> gaps) {
1655             if (startpc != endpc) {
1656                 List<Pair<List<Attribute.TypeCompound>, JCExpression>> catchTypeExprs
1657                         = catchTypesWithAnnotations(tree);
1658                 while (gaps.nonEmpty()) {
1659                     for (Pair<List<Attribute.TypeCompound>, JCExpression> subCatch1 : catchTypeExprs) {
1660                         JCExpression subCatch = subCatch1.snd;
1661                         int catchType = makeRef(tree.pos(), subCatch.type);
1662                         int end = gaps.head.intValue();
1663                         registerCatch(tree.pos(),
1664                                       startpc,  end, code.curCP(),
1665                                       catchType);
1666                         for (Attribute.TypeCompound tc :  subCatch1.fst) {
1667                                 tc.position.setCatchInfo(catchType, startpc);
1668                         }
1669                     }
1670                     gaps = gaps.tail;
1671                     startpc = gaps.head.intValue();
1672                     gaps = gaps.tail;
1673                 }
1674                 if (startpc < endpc) {
1675                     for (Pair<List<Attribute.TypeCompound>, JCExpression> subCatch1 : catchTypeExprs) {
1676                         JCExpression subCatch = subCatch1.snd;
1677                         int catchType = makeRef(tree.pos(), subCatch.type);
1678                         registerCatch(tree.pos(),
1679                                       startpc, endpc, code.curCP(),
1680                                       catchType);
1681                         for (Attribute.TypeCompound tc :  subCatch1.fst) {
1682                             tc.position.setCatchInfo(catchType, startpc);
1683                         }
1684                     }
1685                 }
1686                 genCatchBlock(tree, env);
1687             }
1688         }
1689         void genPatternMatchingCatch(JCCatch tree,
1690                                      Env<GenContext> env,
1691                                      List<int[]> ranges) {
1692             for (int[] range : ranges) {
1693                 JCExpression subCatch = tree.param.vartype;
1694                 int catchType = makeRef(tree.pos(), subCatch.type);
1695                 registerCatch(tree.pos(),
1696                               range[0], range[1], code.curCP(),
1697                               catchType);
1698             }
1699             genCatchBlock(tree, env);
1700         }
1701         void genCatchBlock(JCCatch tree, Env<GenContext> env) {
1702             VarSymbol exparam = tree.param.sym;
1703             code.statBegin(tree.pos);
1704             code.markStatBegin();
1705             int limit = code.nextreg;
1706             code.newLocal(exparam);
1707             items.makeLocalItem(exparam).store();
1708             code.statBegin(TreeInfo.firstStatPos(tree.body));
1709             genStat(tree.body, env, CRT_BLOCK);
1710             code.endScopes(limit);
1711             code.statBegin(TreeInfo.endPos(tree.body));
1712         }
1713         // where
1714         List<Pair<List<Attribute.TypeCompound>, JCExpression>> catchTypesWithAnnotations(JCCatch tree) {
1715             return TreeInfo.isMultiCatch(tree) ?
1716                     catchTypesWithAnnotationsFromMulticatch((JCTypeUnion)tree.param.vartype, tree.param.sym.getRawTypeAttributes()) :
1717                     List.of(new Pair<>(tree.param.sym.getRawTypeAttributes(), tree.param.vartype));
1718         }
1719         // where
1720         List<Pair<List<Attribute.TypeCompound>, JCExpression>> catchTypesWithAnnotationsFromMulticatch(JCTypeUnion tree, List<TypeCompound> first) {
1721             List<JCExpression> alts = tree.alternatives;
1722             List<Pair<List<TypeCompound>, JCExpression>> res = List.of(new Pair<>(first, alts.head));
1723             alts = alts.tail;
1724 
1725             while(alts != null && alts.head != null) {
1726                 JCExpression alt = alts.head;
1727                 if (alt instanceof JCAnnotatedType annotatedType) {
1728                     res = res.prepend(new Pair<>(annotate.fromAnnotations(annotatedType.annotations), alt));
1729                 } else {
1730                     res = res.prepend(new Pair<>(List.nil(), alt));
1731                 }
1732                 alts = alts.tail;
1733             }
1734             return res.reverse();
1735         }
1736 
1737         /** Register a catch clause in the "Exceptions" code-attribute.
1738          */
1739         void registerCatch(DiagnosticPosition pos,
1740                            int startpc, int endpc,
1741                            int handler_pc, int catch_type) {
1742             char startpc1 = (char)startpc;
1743             char endpc1 = (char)endpc;
1744             char handler_pc1 = (char)handler_pc;
1745             if (startpc1 == startpc &&
1746                 endpc1 == endpc &&
1747                 handler_pc1 == handler_pc) {
1748                 code.addCatch(startpc1, endpc1, handler_pc1,
1749                               (char)catch_type);
1750             } else {
1751                 log.error(pos, Errors.LimitCodeTooLargeForTryStmt);
1752                 nerrs++;
1753             }
1754         }
1755 
1756     public void visitIf(JCIf tree) {
1757         int limit = code.nextreg;
1758         Chain thenExit = null;
1759         Assert.check(code.isStatementStart());
1760         CondItem c = genCond(TreeInfo.skipParens(tree.cond),
1761                              CRT_FLOW_CONTROLLER);
1762         Chain elseChain = c.jumpFalse();
1763         Assert.check(code.isStatementStart());
1764         if (!c.isFalse()) {
1765             code.resolve(c.trueJumps);
1766             genStat(tree.thenpart, env, CRT_STATEMENT | CRT_FLOW_TARGET);
1767             thenExit = code.branch(goto_);
1768         }
1769         if (elseChain != null) {
1770             code.resolve(elseChain);
1771             if (tree.elsepart != null) {
1772                 genStat(tree.elsepart, env,CRT_STATEMENT | CRT_FLOW_TARGET);
1773             }
1774         }
1775         code.resolve(thenExit);
1776         code.endScopes(limit);
1777         Assert.check(code.isStatementStart());
1778     }
1779 
1780     public void visitExec(JCExpressionStatement tree) {
1781         // Optimize x++ to ++x and x-- to --x.
1782         JCExpression e = tree.expr;
1783         switch (e.getTag()) {
1784             case POSTINC:
1785                 ((JCUnary) e).setTag(PREINC);
1786                 break;
1787             case POSTDEC:
1788                 ((JCUnary) e).setTag(PREDEC);
1789                 break;
1790         }
1791         Assert.check(code.isStatementStart());
1792         genExpr(tree.expr, tree.expr.type).drop();
1793         Assert.check(code.isStatementStart());
1794     }
1795 
1796     public void visitBreak(JCBreak tree) {
1797         Assert.check(code.isStatementStart());
1798         final Env<GenContext> targetEnv = unwindBreak(tree.target);
1799         targetEnv.info.addExit(code.branch(goto_));
1800         endFinalizerGaps(env, targetEnv);
1801     }
1802 
1803     public void visitYield(JCYield tree) {
1804         Assert.check(code.isStatementStart());
1805         final Env<GenContext> targetEnv;
1806         if (inCondSwitchExpression) {
1807             CondItem value = genCond(tree.value, CRT_FLOW_TARGET);
1808             Chain falseJumps = value.jumpFalse();
1809 
1810             code.resolve(value.trueJumps);
1811             Env<GenContext> localEnv = unwindBreak(tree.target);
1812             reloadStackBeforeSwitchExpr();
1813             Chain trueJumps = code.branch(goto_);
1814 
1815             endFinalizerGaps(env, localEnv);
1816 
1817             code.resolve(falseJumps);
1818             targetEnv = unwindBreak(tree.target);
1819             reloadStackBeforeSwitchExpr();
1820             falseJumps = code.branch(goto_);
1821 
1822             if (switchExpressionTrueChain == null) {
1823                 switchExpressionTrueChain = trueJumps;
1824             } else {
1825                 switchExpressionTrueChain =
1826                         Code.mergeChains(switchExpressionTrueChain, trueJumps);
1827             }
1828             if (switchExpressionFalseChain == null) {
1829                 switchExpressionFalseChain = falseJumps;
1830             } else {
1831                 switchExpressionFalseChain =
1832                         Code.mergeChains(switchExpressionFalseChain, falseJumps);
1833             }
1834         } else {
1835             genExpr(tree.value, pt).load();
1836             if (switchResult != null)
1837                 switchResult.store();
1838 
1839             targetEnv = unwindBreak(tree.target);
1840 
1841             if (code.isAlive()) {
1842                 reloadStackBeforeSwitchExpr();
1843                 if (switchResult != null)
1844                     switchResult.load();
1845 
1846                 code.state.forceStackTop(tree.target.type);
1847                 targetEnv.info.addExit(code.branch(goto_));
1848                 code.markDead();
1849             }
1850         }
1851         endFinalizerGaps(env, targetEnv);
1852     }
1853     //where:
1854         /** As side-effect, might mark code as dead disabling any further emission.
1855          */
1856         private Env<GenContext> unwindBreak(JCTree target) {
1857             int tmpPos = code.pendingStatPos;
1858             Env<GenContext> targetEnv = unwind(target, env);
1859             code.pendingStatPos = tmpPos;
1860             return targetEnv;
1861         }
1862 
1863         private void reloadStackBeforeSwitchExpr() {
1864             for (LocalItem li : stackBeforeSwitchExpression)
1865                 li.load();
1866         }
1867 
1868     public void visitContinue(JCContinue tree) {
1869         int tmpPos = code.pendingStatPos;
1870         Env<GenContext> targetEnv = unwind(tree.target, env);
1871         code.pendingStatPos = tmpPos;
1872         Assert.check(code.isStatementStart());
1873         targetEnv.info.addCont(code.branch(goto_));
1874         endFinalizerGaps(env, targetEnv);
1875     }
1876 
1877     public void visitReturn(JCReturn tree) {
1878         int limit = code.nextreg;
1879         final Env<GenContext> targetEnv;
1880 
1881         /* Save and then restore the location of the return in case a finally
1882          * is expanded (with unwind()) in the middle of our bytecodes.
1883          */
1884         int tmpPos = code.pendingStatPos;
1885         if (tree.expr != null) {
1886             Assert.check(code.isStatementStart());
1887             Item r = genExpr(tree.expr, pt).load();
1888             if (hasFinally(env.enclMethod, env)) {
1889                 r = makeTemp(pt);
1890                 r.store();
1891             }
1892             targetEnv = unwind(env.enclMethod, env);
1893             code.pendingStatPos = tmpPos;
1894             r.load();
1895             code.emitop0(ireturn + Code.truncate(Code.typecode(pt)));
1896         } else {
1897             targetEnv = unwind(env.enclMethod, env);
1898             code.pendingStatPos = tmpPos;
1899             code.emitop0(return_);
1900         }
1901         endFinalizerGaps(env, targetEnv);
1902         code.endScopes(limit);
1903     }
1904 
1905     public void visitThrow(JCThrow tree) {
1906         Assert.check(code.isStatementStart());
1907         genExpr(tree.expr, tree.expr.type).load();
1908         code.emitop0(athrow);
1909         Assert.check(code.isStatementStart());
1910     }
1911 
1912 /* ************************************************************************
1913  * Visitor methods for expressions
1914  *************************************************************************/
1915 
1916     public void visitApply(JCMethodInvocation tree) {
1917         setTypeAnnotationPositions(tree.pos);
1918         // Generate code for method.
1919         Item m = genExpr(tree.meth, methodType);
1920         // Generate code for all arguments, where the expected types are
1921         // the parameters of the method's external type (that is, any implicit
1922         // outer instance of a super(...) call appears as first parameter).
1923         MethodSymbol msym = (MethodSymbol)TreeInfo.symbol(tree.meth);
1924         genArgs(tree.args,
1925                 msym.externalType(types).getParameterTypes());
1926         if (!msym.isDynamic()) {
1927             code.statBegin(tree.pos);
1928         }
1929         if (invocationsWithPatternMatchingCatch.contains(tree)) {
1930             int start = code.curCP();
1931             result = m.invoke();
1932             patternMatchingInvocationRanges.add(new int[] {start, code.curCP()});
1933         } else {
1934             result = m.invoke();
1935         }
1936     }
1937 
1938     public void visitConditional(JCConditional tree) {
1939         Chain thenExit = null;
1940         code.statBegin(tree.cond.pos);
1941         CondItem c = genCond(tree.cond, CRT_FLOW_CONTROLLER);
1942         Chain elseChain = c.jumpFalse();
1943         if (!c.isFalse()) {
1944             code.resolve(c.trueJumps);
1945             int startpc = genCrt ? code.curCP() : 0;
1946             code.statBegin(tree.truepart.pos);
1947             genExpr(tree.truepart, pt).load();
1948             code.state.forceStackTop(tree.type);
1949             if (genCrt) code.crt.put(tree.truepart, CRT_FLOW_TARGET,
1950                                      startpc, code.curCP());
1951             thenExit = code.branch(goto_);
1952         }
1953         if (elseChain != null) {
1954             code.resolve(elseChain);
1955             int startpc = genCrt ? code.curCP() : 0;
1956             code.statBegin(tree.falsepart.pos);
1957             genExpr(tree.falsepart, pt).load();
1958             code.state.forceStackTop(tree.type);
1959             if (genCrt) code.crt.put(tree.falsepart, CRT_FLOW_TARGET,
1960                                      startpc, code.curCP());
1961         }
1962         code.resolve(thenExit);
1963         result = items.makeStackItem(pt);
1964     }
1965 
1966     private void setTypeAnnotationPositions(int treePos) {
1967         MethodSymbol meth = code.meth;
1968         boolean initOrClinit = code.meth.getKind() == javax.lang.model.element.ElementKind.CONSTRUCTOR
1969                 || code.meth.getKind() == javax.lang.model.element.ElementKind.STATIC_INIT;
1970 
1971         for (Attribute.TypeCompound ta : meth.getRawTypeAttributes()) {
1972             if (ta.hasUnknownPosition())
1973                 ta.tryFixPosition();
1974 
1975             if (ta.position.matchesPos(treePos))
1976                 ta.position.updatePosOffset(code.cp);
1977         }
1978 
1979         if (!initOrClinit)
1980             return;
1981 
1982         for (Attribute.TypeCompound ta : meth.owner.getRawTypeAttributes()) {
1983             if (ta.hasUnknownPosition())
1984                 ta.tryFixPosition();
1985 
1986             if (ta.position.matchesPos(treePos))
1987                 ta.position.updatePosOffset(code.cp);
1988         }
1989 
1990         ClassSymbol clazz = meth.enclClass();
1991         for (Symbol s : new com.sun.tools.javac.model.FilteredMemberList(clazz.members())) {
1992             if (!s.getKind().isField())
1993                 continue;
1994 
1995             for (Attribute.TypeCompound ta : s.getRawTypeAttributes()) {
1996                 if (ta.hasUnknownPosition())
1997                     ta.tryFixPosition();
1998 
1999                 if (ta.position.matchesPos(treePos))
2000                     ta.position.updatePosOffset(code.cp);
2001             }
2002         }
2003     }
2004 
2005     public void visitNewClass(JCNewClass tree) {
2006         // Enclosing instances or anonymous classes should have been eliminated
2007         // by now.
2008         Assert.check(tree.encl == null && tree.def == null);
2009         setTypeAnnotationPositions(tree.pos);
2010 
2011         code.emitop2(new_, checkDimension(tree.pos(), tree.type), PoolWriter::putClass);
2012         code.emitop0(dup);
2013 
2014         // Generate code for all arguments, where the expected types are
2015         // the parameters of the constructor's external type (that is,
2016         // any implicit outer instance appears as first parameter).
2017         genArgs(tree.args, tree.constructor.externalType(types).getParameterTypes());
2018 
2019         items.makeMemberItem(tree.constructor, true).invoke();
2020         result = items.makeStackItem(tree.type);
2021     }
2022 
2023     public void visitNewArray(JCNewArray tree) {
2024         setTypeAnnotationPositions(tree.pos);
2025 
2026         if (tree.elems != null) {
2027             Type elemtype = types.elemtype(tree.type);
2028             loadIntConst(tree.elems.length());
2029             Item arr = makeNewArray(tree.pos(), tree.type, 1);
2030             int i = 0;
2031             for (List<JCExpression> l = tree.elems; l.nonEmpty(); l = l.tail) {
2032                 arr.duplicate();
2033                 loadIntConst(i);
2034                 i++;
2035                 genExpr(l.head, elemtype).load();
2036                 items.makeIndexedItem(elemtype).store();
2037             }
2038             result = arr;
2039         } else {
2040             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
2041                 genExpr(l.head, syms.intType).load();
2042             }
2043             result = makeNewArray(tree.pos(), tree.type, tree.dims.length());
2044         }
2045     }
2046 //where
2047         /** Generate code to create an array with given element type and number
2048          *  of dimensions.
2049          */
2050         Item makeNewArray(DiagnosticPosition pos, Type type, int ndims) {
2051             Type elemtype = types.elemtype(type);
2052             if (types.dimensions(type) > ClassFile.MAX_DIMENSIONS) {
2053                 log.error(pos, Errors.LimitDimensions);
2054                 nerrs++;
2055             }
2056             int elemcode = Code.arraycode(elemtype);
2057             if (elemcode == 0 || (elemcode == 1 && ndims == 1)) {
2058                 code.emitAnewarray(makeRef(pos, elemtype), type);
2059             } else if (elemcode == 1) {
2060                 code.emitMultianewarray(ndims, makeRef(pos, type), type);
2061             } else {
2062                 code.emitNewarray(elemcode, type);
2063             }
2064             return items.makeStackItem(type);
2065         }
2066 
2067     public void visitParens(JCParens tree) {
2068         result = genExpr(tree.expr, tree.expr.type);
2069     }
2070 
2071     public void visitAssign(JCAssign tree) {
2072         Item l = genExpr(tree.lhs, tree.lhs.type);
2073         genExpr(tree.rhs, tree.lhs.type).load();
2074         if (tree.rhs.type.hasTag(BOT)) {
2075             /* This is just a case of widening reference conversion that per 5.1.5 simply calls
2076                for "regarding a reference as having some other type in a manner that can be proved
2077                correct at compile time."
2078             */
2079             code.state.forceStackTop(tree.lhs.type);
2080         }
2081         result = items.makeAssignItem(l);
2082     }
2083 
2084     public void visitAssignop(JCAssignOp tree) {
2085         OperatorSymbol operator = tree.operator;
2086         Item l;
2087         if (operator.opcode == string_add) {
2088             l = concat.makeConcat(tree);
2089         } else {
2090             // Generate code for first expression
2091             l = genExpr(tree.lhs, tree.lhs.type);
2092 
2093             // If we have an increment of -32768 to +32767 of a local
2094             // int variable we can use an incr instruction instead of
2095             // proceeding further.
2096             if ((tree.hasTag(PLUS_ASG) || tree.hasTag(MINUS_ASG)) &&
2097                 l instanceof LocalItem localItem &&
2098                 tree.lhs.type.getTag().isSubRangeOf(INT) &&
2099                 tree.rhs.type.getTag().isSubRangeOf(INT) &&
2100                 tree.rhs.type.constValue() != null) {
2101                 int ival = ((Number) tree.rhs.type.constValue()).intValue();
2102                 if (tree.hasTag(MINUS_ASG)) ival = -ival;
2103                 localItem.incr(ival);
2104                 result = l;
2105                 return;
2106             }
2107             // Otherwise, duplicate expression, load one copy
2108             // and complete binary operation.
2109             l.duplicate();
2110             l.coerce(operator.type.getParameterTypes().head).load();
2111             completeBinop(tree.lhs, tree.rhs, operator).coerce(tree.lhs.type);
2112         }
2113         result = items.makeAssignItem(l);
2114     }
2115 
2116     public void visitUnary(JCUnary tree) {
2117         OperatorSymbol operator = tree.operator;
2118         if (tree.hasTag(NOT)) {
2119             CondItem od = genCond(tree.arg, false);
2120             result = od.negate();
2121         } else {
2122             Item od = genExpr(tree.arg, operator.type.getParameterTypes().head);
2123             switch (tree.getTag()) {
2124             case POS:
2125                 result = od.load();
2126                 break;
2127             case NEG:
2128                 result = od.load();
2129                 code.emitop0(operator.opcode);
2130                 break;
2131             case COMPL:
2132                 result = od.load();
2133                 emitMinusOne(od.typecode);
2134                 code.emitop0(operator.opcode);
2135                 break;
2136             case PREINC: case PREDEC:
2137                 od.duplicate();
2138                 if (od instanceof LocalItem localItem &&
2139                     (operator.opcode == iadd || operator.opcode == isub)) {
2140                     localItem.incr(tree.hasTag(PREINC) ? 1 : -1);
2141                     result = od;
2142                 } else {
2143                     od.load();
2144                     code.emitop0(one(od.typecode));
2145                     code.emitop0(operator.opcode);
2146                     // Perform narrowing primitive conversion if byte,
2147                     // char, or short.  Fix for 4304655.
2148                     if (od.typecode != INTcode &&
2149                         Code.truncate(od.typecode) == INTcode)
2150                       code.emitop0(int2byte + od.typecode - BYTEcode);
2151                     result = items.makeAssignItem(od);
2152                 }
2153                 break;
2154             case POSTINC: case POSTDEC:
2155                 od.duplicate();
2156                 if (od instanceof LocalItem localItem &&
2157                     (operator.opcode == iadd || operator.opcode == isub)) {
2158                     Item res = od.load();
2159                     localItem.incr(tree.hasTag(POSTINC) ? 1 : -1);
2160                     result = res;
2161                 } else {
2162                     Item res = od.load();
2163                     od.stash(od.typecode);
2164                     code.emitop0(one(od.typecode));
2165                     code.emitop0(operator.opcode);
2166                     // Perform narrowing primitive conversion if byte,
2167                     // char, or short.  Fix for 4304655.
2168                     if (od.typecode != INTcode &&
2169                         Code.truncate(od.typecode) == INTcode)
2170                       code.emitop0(int2byte + od.typecode - BYTEcode);
2171                     od.store();
2172                     result = res;
2173                 }
2174                 break;
2175             case NULLCHK:
2176                 result = od.load();
2177                 code.emitop0(dup);
2178                 genNullCheck(tree);
2179                 break;
2180             default:
2181                 Assert.error();
2182             }
2183         }
2184     }
2185 
2186     /** Generate a null check from the object value at stack top. */
2187     private void genNullCheck(JCTree tree) {
2188         code.statBegin(tree.pos);
2189         callMethod(tree.pos(), syms.objectsType, names.requireNonNull,
2190                    List.of(syms.objectType), true);
2191         code.emitop0(pop);
2192     }
2193 
2194     public void visitBinary(JCBinary tree) {
2195         OperatorSymbol operator = tree.operator;
2196         if (operator.opcode == string_add) {
2197             result = concat.makeConcat(tree);
2198         } else if (tree.hasTag(AND)) {
2199             CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
2200             if (!lcond.isFalse()) {
2201                 Chain falseJumps = lcond.jumpFalse();
2202                 code.resolve(lcond.trueJumps);
2203                 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
2204                 result = items.
2205                     makeCondItem(rcond.opcode,
2206                                  rcond.trueJumps,
2207                                  Code.mergeChains(falseJumps,
2208                                                   rcond.falseJumps));
2209             } else {
2210                 result = lcond;
2211             }
2212         } else if (tree.hasTag(OR)) {
2213             CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
2214             if (!lcond.isTrue()) {
2215                 Chain trueJumps = lcond.jumpTrue();
2216                 code.resolve(lcond.falseJumps);
2217                 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
2218                 result = items.
2219                     makeCondItem(rcond.opcode,
2220                                  Code.mergeChains(trueJumps, rcond.trueJumps),
2221                                  rcond.falseJumps);
2222             } else {
2223                 result = lcond;
2224             }
2225         } else {
2226             Item od = genExpr(tree.lhs, operator.type.getParameterTypes().head);
2227             od.load();
2228             result = completeBinop(tree.lhs, tree.rhs, operator);
2229         }
2230     }
2231 
2232 
2233         /** Complete generating code for operation, with left operand
2234          *  already on stack.
2235          *  @param lhs       The tree representing the left operand.
2236          *  @param rhs       The tree representing the right operand.
2237          *  @param operator  The operator symbol.
2238          */
2239         Item completeBinop(JCTree lhs, JCTree rhs, OperatorSymbol operator) {
2240             MethodType optype = (MethodType)operator.type;
2241             int opcode = operator.opcode;
2242             if (opcode >= if_icmpeq && opcode <= if_icmple &&
2243                     rhs.type.constValue() instanceof Number number &&
2244                     number.intValue() == 0) {
2245                 opcode = opcode + (ifeq - if_icmpeq);
2246             } else if (opcode >= if_acmpeq && opcode <= if_acmpne &&
2247                        TreeInfo.isNull(rhs)) {
2248                 opcode = opcode + (if_acmp_null - if_acmpeq);
2249             } else {
2250                 // The expected type of the right operand is
2251                 // the second parameter type of the operator, except for
2252                 // shifts with long shiftcount, where we convert the opcode
2253                 // to a short shift and the expected type to int.
2254                 Type rtype = operator.erasure(types).getParameterTypes().tail.head;
2255                 if (opcode >= ishll && opcode <= lushrl) {
2256                     opcode = opcode + (ishl - ishll);
2257                     rtype = syms.intType;
2258                 }
2259                 // Generate code for right operand and load.
2260                 genExpr(rhs, rtype).load();
2261                 // If there are two consecutive opcode instructions,
2262                 // emit the first now.
2263                 if (opcode >= (1 << preShift)) {
2264                     code.emitop0(opcode >> preShift);
2265                     opcode = opcode & 0xFF;
2266                 }
2267             }
2268             if (opcode >= ifeq && opcode <= if_acmpne ||
2269                 opcode == if_acmp_null || opcode == if_acmp_nonnull) {
2270                 return items.makeCondItem(opcode);
2271             } else {
2272                 code.emitop0(opcode);
2273                 return items.makeStackItem(optype.restype);
2274             }
2275         }
2276 
2277     public void visitTypeCast(JCTypeCast tree) {
2278         result = genExpr(tree.expr, tree.clazz.type).load();
2279         setTypeAnnotationPositions(tree.pos);
2280         // Additional code is only needed if we cast to a reference type
2281         // which is not statically a supertype of the expression's type.
2282         // For basic types, the coerce(...) in genExpr(...) will do
2283         // the conversion.
2284         if (!tree.clazz.type.isPrimitive() &&
2285            !types.isSameType(tree.expr.type, tree.clazz.type) &&
2286            types.asSuper(tree.expr.type, tree.clazz.type.tsym) == null) {
2287             code.emitop2(checkcast, checkDimension(tree.pos(), tree.clazz.type), PoolWriter::putClass);
2288         }
2289     }
2290 
2291     public void visitWildcard(JCWildcard tree) {
2292         throw new AssertionError(this.getClass().getName());
2293     }
2294 
2295     public void visitTypeTest(JCInstanceOf tree) {
2296         genExpr(tree.expr, tree.expr.type).load();
2297         setTypeAnnotationPositions(tree.pos);
2298         code.emitop2(instanceof_, makeRef(tree.pos(), tree.pattern.type));
2299         result = items.makeStackItem(syms.booleanType);
2300     }
2301 
2302     public void visitIndexed(JCArrayAccess tree) {
2303         genExpr(tree.indexed, tree.indexed.type).load();
2304         genExpr(tree.index, syms.intType).load();
2305         result = items.makeIndexedItem(tree.type);
2306     }
2307 
2308     public void visitIdent(JCIdent tree) {
2309         Symbol sym = tree.sym;
2310         if (tree.name == names._this || tree.name == names._super) {
2311             Item res = tree.name == names._this
2312                 ? items.makeThisItem()
2313                 : items.makeSuperItem();
2314             if (sym.kind == MTH) {
2315                 // Generate code to address the constructor.
2316                 res.load();
2317                 res = items.makeMemberItem(sym, true);
2318             }
2319             result = res;
2320        } else if (isInvokeDynamic(sym) || isConstantDynamic(sym)) {
2321             if (isConstantDynamic(sym)) {
2322                 setTypeAnnotationPositions(tree.pos);
2323             }
2324             result = items.makeDynamicItem(sym);
2325         } else if (sym.kind == VAR && (sym.owner.kind == MTH || sym.owner.kind == VAR)) {
2326             result = items.makeLocalItem((VarSymbol)sym);
2327         } else if ((sym.flags() & STATIC) != 0) {
2328             if (!isAccessSuper(env.enclMethod))
2329                 sym = binaryQualifier(sym, env.enclClass.type);
2330             result = items.makeStaticItem(sym);
2331         } else {
2332             items.makeThisItem().load();
2333             sym = binaryQualifier(sym, env.enclClass.type);
2334             result = items.makeMemberItem(sym, nonVirtualForPrivateAccess(sym));
2335         }
2336     }
2337 
2338     //where
2339     private boolean nonVirtualForPrivateAccess(Symbol sym) {
2340         boolean useVirtual = target.hasVirtualPrivateInvoke() &&
2341                              !disableVirtualizedPrivateInvoke;
2342         return !useVirtual && ((sym.flags() & PRIVATE) != 0);
2343     }
2344 
2345     public void visitSelect(JCFieldAccess tree) {
2346         Symbol sym = tree.sym;
2347 
2348         if (tree.name == names._class) {
2349             code.emitLdc((LoadableConstant)checkDimension(tree.pos(), tree.selected.type));
2350             result = items.makeStackItem(pt);
2351             return;
2352        }
2353 
2354         Symbol ssym = TreeInfo.symbol(tree.selected);
2355 
2356         // Are we selecting via super?
2357         boolean selectSuper =
2358             ssym != null && (ssym.kind == TYP || ssym.name == names._super);
2359 
2360         // Are we accessing a member of the superclass in an access method
2361         // resulting from a qualified super?
2362         boolean accessSuper = isAccessSuper(env.enclMethod);
2363 
2364         Item base = (selectSuper)
2365             ? items.makeSuperItem()
2366             : genExpr(tree.selected, tree.selected.type);
2367 
2368         if (sym.kind == VAR && ((VarSymbol) sym).getConstValue() != null) {
2369             // We are seeing a variable that is constant but its selecting
2370             // expression is not.
2371             if ((sym.flags() & STATIC) != 0) {
2372                 if (!selectSuper && (ssym == null || ssym.kind != TYP))
2373                     base = base.load();
2374                 base.drop();
2375             } else {
2376                 base.load();
2377                 genNullCheck(tree.selected);
2378             }
2379             result = items.
2380                 makeImmediateItem(sym.type, ((VarSymbol) sym).getConstValue());
2381         } else {
2382             if (isInvokeDynamic(sym)) {
2383                 result = items.makeDynamicItem(sym);
2384                 return;
2385             } else {
2386                 sym = binaryQualifier(sym, tree.selected.type);
2387             }
2388             if ((sym.flags() & STATIC) != 0) {
2389                 if (!selectSuper && (ssym == null || ssym.kind != TYP))
2390                     base = base.load();
2391                 base.drop();
2392                 result = items.makeStaticItem(sym);
2393             } else {
2394                 base.load();
2395                 if (sym == syms.lengthVar) {
2396                     code.emitop0(arraylength);
2397                     result = items.makeStackItem(syms.intType);
2398                 } else {
2399                     result = items.
2400                         makeMemberItem(sym,
2401                                        nonVirtualForPrivateAccess(sym) ||
2402                                        selectSuper || accessSuper);
2403                 }
2404             }
2405         }
2406     }
2407 
2408     public boolean isInvokeDynamic(Symbol sym) {
2409         return sym.kind == MTH && ((MethodSymbol)sym).isDynamic();
2410     }
2411 
2412     public void visitLiteral(JCLiteral tree) {
2413         if (tree.type.hasTag(BOT)) {
2414             code.emitop0(aconst_null);
2415             result = items.makeStackItem(tree.type);
2416         }
2417         else
2418             result = items.makeImmediateItem(tree.type, tree.value);
2419     }
2420 
2421     public void visitLetExpr(LetExpr tree) {
2422         code.resolvePending();
2423 
2424         int limit = code.nextreg;
2425         int prevLetExprStart = code.setLetExprStackPos(code.state.stacksize);
2426         try {
2427             genStats(tree.defs, env);
2428         } finally {
2429             code.setLetExprStackPos(prevLetExprStart);
2430         }
2431         result = genExpr(tree.expr, tree.expr.type).load();
2432         code.endScopes(limit);
2433     }
2434 
2435     private void generateReferencesToPrunedTree(ClassSymbol classSymbol) {
2436         List<JCTree> prunedInfo = lower.prunedTree.get(classSymbol);
2437         if (prunedInfo != null) {
2438             for (JCTree prunedTree: prunedInfo) {
2439                 prunedTree.accept(classReferenceVisitor);
2440             }
2441         }
2442     }
2443 
2444 /* ************************************************************************
2445  * main method
2446  *************************************************************************/
2447 
2448     /** Generate code for a class definition.
2449      *  @param env   The attribution environment that belongs to the
2450      *               outermost class containing this class definition.
2451      *               We need this for resolving some additional symbols.
2452      *  @param cdef  The tree representing the class definition.
2453      *  @return      True if code is generated with no errors.
2454      */
2455     public boolean genClass(Env<AttrContext> env, JCClassDecl cdef) {
2456         try {
2457             attrEnv = env;
2458             ClassSymbol c = cdef.sym;
2459             this.toplevel = env.toplevel;
2460             this.endPosTable = toplevel.endPositions;
2461             /* method normalizeDefs() can add references to external classes into the constant pool
2462              */
2463             cdef.defs = normalizeDefs(cdef.defs, c);
2464             generateReferencesToPrunedTree(c);
2465             Env<GenContext> localEnv = new Env<>(cdef, new GenContext());
2466             localEnv.toplevel = env.toplevel;
2467             localEnv.enclClass = cdef;
2468 
2469             for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
2470                 genDef(l.head, localEnv);
2471             }
2472             if (poolWriter.size() > PoolWriter.MAX_ENTRIES) {
2473                 log.error(cdef.pos(), Errors.LimitPool);
2474                 nerrs++;
2475             }
2476             if (nerrs != 0) {
2477                 // if errors, discard code
2478                 for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
2479                     if (l.head.hasTag(METHODDEF))
2480                         ((JCMethodDecl) l.head).sym.code = null;
2481                 }
2482             }
2483             cdef.defs = List.nil(); // discard trees
2484             return nerrs == 0;
2485         } finally {
2486             // note: this method does NOT support recursion.
2487             attrEnv = null;
2488             this.env = null;
2489             toplevel = null;
2490             endPosTable = null;
2491             nerrs = 0;
2492             qualifiedSymbolCache.clear();
2493         }
2494     }
2495 
2496 /* ************************************************************************
2497  * Auxiliary classes
2498  *************************************************************************/
2499 
2500     /** An abstract class for finalizer generation.
2501      */
2502     abstract class GenFinalizer {
2503         /** Generate code to clean up when unwinding. */
2504         abstract void gen();
2505 
2506         /** Generate code to clean up at last. */
2507         abstract void genLast();
2508 
2509         /** Does this finalizer have some nontrivial cleanup to perform? */
2510         boolean hasFinalizer() { return true; }
2511 
2512         /** Should be invoked after the try's body has been visited. */
2513         void afterBody() {}
2514     }
2515 
2516     /** code generation contexts,
2517      *  to be used as type parameter for environments.
2518      */
2519     static class GenContext {
2520 
2521         /** A chain for all unresolved jumps that exit the current environment.
2522          */
2523         Chain exit = null;
2524 
2525         /** A chain for all unresolved jumps that continue in the
2526          *  current environment.
2527          */
2528         Chain cont = null;
2529 
2530         /** A closure that generates the finalizer of the current environment.
2531          *  Only set for Synchronized and Try contexts.
2532          */
2533         GenFinalizer finalize = null;
2534 
2535         /** Is this a switch statement?  If so, allocate registers
2536          * even when the variable declaration is unreachable.
2537          */
2538         boolean isSwitch = false;
2539 
2540         /** A list buffer containing all gaps in the finalizer range,
2541          *  where a catch all exception should not apply.
2542          */
2543         ListBuffer<Integer> gaps = null;
2544 
2545         /** Add given chain to exit chain.
2546          */
2547         void addExit(Chain c)  {
2548             exit = Code.mergeChains(c, exit);
2549         }
2550 
2551         /** Add given chain to cont chain.
2552          */
2553         void addCont(Chain c) {
2554             cont = Code.mergeChains(c, cont);
2555         }
2556     }
2557 
2558 }