1 /*
   2  * Copyright (c) 2005, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "ci/ciUtilities.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/c1/barrierSetC1.hpp"
  39 #include "oops/klass.inline.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "runtime/stubRoutines.hpp"
  43 #include "runtime/vm_version.hpp"
  44 #include "utilities/bitMap.inline.hpp"
  45 #include "utilities/macros.hpp"
  46 #include "utilities/powerOfTwo.hpp"
  47 
  48 #ifdef ASSERT
  49 #define __ gen()->lir(__FILE__, __LINE__)->
  50 #else
  51 #define __ gen()->lir()->
  52 #endif
  53 
  54 #ifndef PATCHED_ADDR
  55 #define PATCHED_ADDR  (max_jint)
  56 #endif
  57 
  58 void PhiResolverState::reset() {
  59   _virtual_operands.clear();
  60   _other_operands.clear();
  61   _vreg_table.clear();
  62 }
  63 
  64 
  65 //--------------------------------------------------------------
  66 // PhiResolver
  67 
  68 // Resolves cycles:
  69 //
  70 //  r1 := r2  becomes  temp := r1
  71 //  r2 := r1           r1 := r2
  72 //                     r2 := temp
  73 // and orders moves:
  74 //
  75 //  r2 := r3  becomes  r1 := r2
  76 //  r1 := r2           r2 := r3
  77 
  78 PhiResolver::PhiResolver(LIRGenerator* gen)
  79  : _gen(gen)
  80  , _state(gen->resolver_state())
  81  , _temp(LIR_OprFact::illegalOpr)
  82 {
  83   // reinitialize the shared state arrays
  84   _state.reset();
  85 }
  86 
  87 
  88 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  89   assert(src->is_valid(), "");
  90   assert(dest->is_valid(), "");
  91   __ move(src, dest);
  92 }
  93 
  94 
  95 void PhiResolver::move_temp_to(LIR_Opr dest) {
  96   assert(_temp->is_valid(), "");
  97   emit_move(_temp, dest);
  98   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
  99 }
 100 
 101 
 102 void PhiResolver::move_to_temp(LIR_Opr src) {
 103   assert(_temp->is_illegal(), "");
 104   _temp = _gen->new_register(src->type());
 105   emit_move(src, _temp);
 106 }
 107 
 108 
 109 // Traverse assignment graph in depth first order and generate moves in post order
 110 // ie. two assignments: b := c, a := b start with node c:
 111 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 112 // Generates moves in this order: move b to a and move c to b
 113 // ie. cycle a := b, b := a start with node a
 114 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 115 // Generates moves in this order: move b to temp, move a to b, move temp to a
 116 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 117   if (!dest->visited()) {
 118     dest->set_visited();
 119     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 120       move(dest, dest->destination_at(i));
 121     }
 122   } else if (!dest->start_node()) {
 123     // cylce in graph detected
 124     assert(_loop == NULL, "only one loop valid!");
 125     _loop = dest;
 126     move_to_temp(src->operand());
 127     return;
 128   } // else dest is a start node
 129 
 130   if (!dest->assigned()) {
 131     if (_loop == dest) {
 132       move_temp_to(dest->operand());
 133       dest->set_assigned();
 134     } else if (src != NULL) {
 135       emit_move(src->operand(), dest->operand());
 136       dest->set_assigned();
 137     }
 138   }
 139 }
 140 
 141 
 142 PhiResolver::~PhiResolver() {
 143   int i;
 144   // resolve any cycles in moves from and to virtual registers
 145   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 146     ResolveNode* node = virtual_operands().at(i);
 147     if (!node->visited()) {
 148       _loop = NULL;
 149       move(NULL, node);
 150       node->set_start_node();
 151       assert(_temp->is_illegal(), "move_temp_to() call missing");
 152     }
 153   }
 154 
 155   // generate move for move from non virtual register to abitrary destination
 156   for (i = other_operands().length() - 1; i >= 0; i --) {
 157     ResolveNode* node = other_operands().at(i);
 158     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 159       emit_move(node->operand(), node->destination_at(j)->operand());
 160     }
 161   }
 162 }
 163 
 164 
 165 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 166   ResolveNode* node;
 167   if (opr->is_virtual()) {
 168     int vreg_num = opr->vreg_number();
 169     node = vreg_table().at_grow(vreg_num, NULL);
 170     assert(node == NULL || node->operand() == opr, "");
 171     if (node == NULL) {
 172       node = new ResolveNode(opr);
 173       vreg_table().at_put(vreg_num, node);
 174     }
 175     // Make sure that all virtual operands show up in the list when
 176     // they are used as the source of a move.
 177     if (source && !virtual_operands().contains(node)) {
 178       virtual_operands().append(node);
 179     }
 180   } else {
 181     assert(source, "");
 182     node = new ResolveNode(opr);
 183     other_operands().append(node);
 184   }
 185   return node;
 186 }
 187 
 188 
 189 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 190   assert(dest->is_virtual(), "");
 191   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 192   assert(src->is_valid(), "");
 193   assert(dest->is_valid(), "");
 194   ResolveNode* source = source_node(src);
 195   source->append(destination_node(dest));
 196 }
 197 
 198 
 199 //--------------------------------------------------------------
 200 // LIRItem
 201 
 202 void LIRItem::set_result(LIR_Opr opr) {
 203   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 204   value()->set_operand(opr);
 205 
 206   if (opr->is_virtual()) {
 207     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 208   }
 209 
 210   _result = opr;
 211 }
 212 
 213 void LIRItem::load_item() {
 214   if (result()->is_illegal()) {
 215     // update the items result
 216     _result = value()->operand();
 217   }
 218   if (!result()->is_register()) {
 219     LIR_Opr reg = _gen->new_register(value()->type());
 220     __ move(result(), reg);
 221     if (result()->is_constant()) {
 222       _result = reg;
 223     } else {
 224       set_result(reg);
 225     }
 226   }
 227 }
 228 
 229 
 230 void LIRItem::load_for_store(BasicType type) {
 231   if (_gen->can_store_as_constant(value(), type)) {
 232     _result = value()->operand();
 233     if (!_result->is_constant()) {
 234       _result = LIR_OprFact::value_type(value()->type());
 235     }
 236   } else if (type == T_BYTE || type == T_BOOLEAN) {
 237     load_byte_item();
 238   } else {
 239     load_item();
 240   }
 241 }
 242 
 243 void LIRItem::load_item_force(LIR_Opr reg) {
 244   LIR_Opr r = result();
 245   if (r != reg) {
 246 #if !defined(ARM) && !defined(E500V2)
 247     if (r->type() != reg->type()) {
 248       // moves between different types need an intervening spill slot
 249       r = _gen->force_to_spill(r, reg->type());
 250     }
 251 #endif
 252     __ move(r, reg);
 253     _result = reg;
 254   }
 255 }
 256 
 257 ciObject* LIRItem::get_jobject_constant() const {
 258   ObjectType* oc = type()->as_ObjectType();
 259   if (oc) {
 260     return oc->constant_value();
 261   }
 262   return NULL;
 263 }
 264 
 265 
 266 jint LIRItem::get_jint_constant() const {
 267   assert(is_constant() && value() != NULL, "");
 268   assert(type()->as_IntConstant() != NULL, "type check");
 269   return type()->as_IntConstant()->value();
 270 }
 271 
 272 
 273 jint LIRItem::get_address_constant() const {
 274   assert(is_constant() && value() != NULL, "");
 275   assert(type()->as_AddressConstant() != NULL, "type check");
 276   return type()->as_AddressConstant()->value();
 277 }
 278 
 279 
 280 jfloat LIRItem::get_jfloat_constant() const {
 281   assert(is_constant() && value() != NULL, "");
 282   assert(type()->as_FloatConstant() != NULL, "type check");
 283   return type()->as_FloatConstant()->value();
 284 }
 285 
 286 
 287 jdouble LIRItem::get_jdouble_constant() const {
 288   assert(is_constant() && value() != NULL, "");
 289   assert(type()->as_DoubleConstant() != NULL, "type check");
 290   return type()->as_DoubleConstant()->value();
 291 }
 292 
 293 
 294 jlong LIRItem::get_jlong_constant() const {
 295   assert(is_constant() && value() != NULL, "");
 296   assert(type()->as_LongConstant() != NULL, "type check");
 297   return type()->as_LongConstant()->value();
 298 }
 299 
 300 
 301 
 302 //--------------------------------------------------------------
 303 
 304 
 305 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 306 #ifndef PRODUCT
 307   if (PrintIRWithLIR) {
 308     block->print();
 309   }
 310 #endif
 311 
 312   // set up the list of LIR instructions
 313   assert(block->lir() == NULL, "LIR list already computed for this block");
 314   _lir = new LIR_List(compilation(), block);
 315   block->set_lir(_lir);
 316 
 317   __ branch_destination(block->label());
 318 
 319   if (LIRTraceExecution &&
 320       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 321       !block->is_set(BlockBegin::exception_entry_flag)) {
 322     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 323     trace_block_entry(block);
 324   }
 325 }
 326 
 327 
 328 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 329 #ifndef PRODUCT
 330   if (PrintIRWithLIR) {
 331     tty->cr();
 332   }
 333 #endif
 334 
 335   // LIR_Opr for unpinned constants shouldn't be referenced by other
 336   // blocks so clear them out after processing the block.
 337   for (int i = 0; i < _unpinned_constants.length(); i++) {
 338     _unpinned_constants.at(i)->clear_operand();
 339   }
 340   _unpinned_constants.trunc_to(0);
 341 
 342   // clear our any registers for other local constants
 343   _constants.trunc_to(0);
 344   _reg_for_constants.trunc_to(0);
 345 }
 346 
 347 
 348 void LIRGenerator::block_do(BlockBegin* block) {
 349   CHECK_BAILOUT();
 350 
 351   block_do_prolog(block);
 352   set_block(block);
 353 
 354   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 355     if (instr->is_pinned()) do_root(instr);
 356   }
 357 
 358   set_block(NULL);
 359   block_do_epilog(block);
 360 }
 361 
 362 
 363 //-------------------------LIRGenerator-----------------------------
 364 
 365 // This is where the tree-walk starts; instr must be root;
 366 void LIRGenerator::do_root(Value instr) {
 367   CHECK_BAILOUT();
 368 
 369   InstructionMark im(compilation(), instr);
 370 
 371   assert(instr->is_pinned(), "use only with roots");
 372   assert(instr->subst() == instr, "shouldn't have missed substitution");
 373 
 374   instr->visit(this);
 375 
 376   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 377          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 378 }
 379 
 380 
 381 // This is called for each node in tree; the walk stops if a root is reached
 382 void LIRGenerator::walk(Value instr) {
 383   InstructionMark im(compilation(), instr);
 384   //stop walk when encounter a root
 385   if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) {
 386     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 387   } else {
 388     assert(instr->subst() == instr, "shouldn't have missed substitution");
 389     instr->visit(this);
 390     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 391   }
 392 }
 393 
 394 
 395 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 396   assert(state != NULL, "state must be defined");
 397 
 398 #ifndef PRODUCT
 399   state->verify();
 400 #endif
 401 
 402   ValueStack* s = state;
 403   for_each_state(s) {
 404     if (s->kind() == ValueStack::EmptyExceptionState) {
 405       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 406       continue;
 407     }
 408 
 409     int index;
 410     Value value;
 411     for_each_stack_value(s, index, value) {
 412       assert(value->subst() == value, "missed substitution");
 413       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 414         walk(value);
 415         assert(value->operand()->is_valid(), "must be evaluated now");
 416       }
 417     }
 418 
 419     int bci = s->bci();
 420     IRScope* scope = s->scope();
 421     ciMethod* method = scope->method();
 422 
 423     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 424     if (bci == SynchronizationEntryBCI) {
 425       if (x->as_ExceptionObject() || x->as_Throw()) {
 426         // all locals are dead on exit from the synthetic unlocker
 427         liveness.clear();
 428       } else {
 429         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 430       }
 431     }
 432     if (!liveness.is_valid()) {
 433       // Degenerate or breakpointed method.
 434       bailout("Degenerate or breakpointed method");
 435     } else {
 436       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 437       for_each_local_value(s, index, value) {
 438         assert(value->subst() == value, "missed substition");
 439         if (liveness.at(index) && !value->type()->is_illegal()) {
 440           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 441             walk(value);
 442             assert(value->operand()->is_valid(), "must be evaluated now");
 443           }
 444         } else {
 445           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 446           s->invalidate_local(index);
 447         }
 448       }
 449     }
 450   }
 451 
 452   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 453 }
 454 
 455 
 456 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 457   return state_for(x, x->exception_state());
 458 }
 459 
 460 
 461 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 462   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 463    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 464    * the class. */
 465   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 466     assert(info != NULL, "info must be set if class is not loaded");
 467     __ klass2reg_patch(NULL, r, info);
 468   } else {
 469     // no patching needed
 470     __ metadata2reg(obj->constant_encoding(), r);
 471   }
 472 }
 473 
 474 
 475 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 476                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 477   CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
 478   if (index->is_constant()) {
 479     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 480                 index->as_jint(), null_check_info);
 481     __ branch(lir_cond_belowEqual, stub); // forward branch
 482   } else {
 483     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 484                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 485     __ branch(lir_cond_aboveEqual, stub); // forward branch
 486   }
 487 }
 488 
 489 
 490 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 491   CodeStub* stub = new RangeCheckStub(info, index);
 492   if (index->is_constant()) {
 493     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 494     __ branch(lir_cond_belowEqual, stub); // forward branch
 495   } else {
 496     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 497                 java_nio_Buffer::limit_offset(), T_INT, info);
 498     __ branch(lir_cond_aboveEqual, stub); // forward branch
 499   }
 500   __ move(index, result);
 501 }
 502 
 503 
 504 
 505 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 506   LIR_Opr result_op = result;
 507   LIR_Opr left_op   = left;
 508   LIR_Opr right_op  = right;
 509 
 510   if (TwoOperandLIRForm && left_op != result_op) {
 511     assert(right_op != result_op, "malformed");
 512     __ move(left_op, result_op);
 513     left_op = result_op;
 514   }
 515 
 516   switch(code) {
 517     case Bytecodes::_dadd:
 518     case Bytecodes::_fadd:
 519     case Bytecodes::_ladd:
 520     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 521     case Bytecodes::_fmul:
 522     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 523 
 524     case Bytecodes::_dmul:
 525       {
 526         if (is_strictfp) {
 527           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 528         } else {
 529           __ mul(left_op, right_op, result_op); break;
 530         }
 531       }
 532       break;
 533 
 534     case Bytecodes::_imul:
 535       {
 536         bool did_strength_reduce = false;
 537 
 538         if (right->is_constant()) {
 539           jint c = right->as_jint();
 540           if (c > 0 && is_power_of_2(c)) {
 541             // do not need tmp here
 542             __ shift_left(left_op, exact_log2(c), result_op);
 543             did_strength_reduce = true;
 544           } else {
 545             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 546           }
 547         }
 548         // we couldn't strength reduce so just emit the multiply
 549         if (!did_strength_reduce) {
 550           __ mul(left_op, right_op, result_op);
 551         }
 552       }
 553       break;
 554 
 555     case Bytecodes::_dsub:
 556     case Bytecodes::_fsub:
 557     case Bytecodes::_lsub:
 558     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 559 
 560     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 561     // ldiv and lrem are implemented with a direct runtime call
 562 
 563     case Bytecodes::_ddiv:
 564       {
 565         if (is_strictfp) {
 566           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 567         } else {
 568           __ div (left_op, right_op, result_op); break;
 569         }
 570       }
 571       break;
 572 
 573     case Bytecodes::_drem:
 574     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 575 
 576     default: ShouldNotReachHere();
 577   }
 578 }
 579 
 580 
 581 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 582   arithmetic_op(code, result, left, right, false, tmp);
 583 }
 584 
 585 
 586 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 587   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 588 }
 589 
 590 
 591 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 592   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 593 }
 594 
 595 
 596 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 597 
 598   if (TwoOperandLIRForm && value != result_op
 599       // Only 32bit right shifts require two operand form on S390.
 600       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 601     assert(count != result_op, "malformed");
 602     __ move(value, result_op);
 603     value = result_op;
 604   }
 605 
 606   assert(count->is_constant() || count->is_register(), "must be");
 607   switch(code) {
 608   case Bytecodes::_ishl:
 609   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 610   case Bytecodes::_ishr:
 611   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 612   case Bytecodes::_iushr:
 613   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 614   default: ShouldNotReachHere();
 615   }
 616 }
 617 
 618 
 619 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 620   if (TwoOperandLIRForm && left_op != result_op) {
 621     assert(right_op != result_op, "malformed");
 622     __ move(left_op, result_op);
 623     left_op = result_op;
 624   }
 625 
 626   switch(code) {
 627     case Bytecodes::_iand:
 628     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 629 
 630     case Bytecodes::_ior:
 631     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 632 
 633     case Bytecodes::_ixor:
 634     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 635 
 636     default: ShouldNotReachHere();
 637   }
 638 }
 639 
 640 
 641 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 642   if (!GenerateSynchronizationCode) return;
 643   // for slow path, use debug info for state after successful locking
 644   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 645   __ load_stack_address_monitor(monitor_no, lock);
 646   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 647   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 648 }
 649 
 650 
 651 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 652   if (!GenerateSynchronizationCode) return;
 653   // setup registers
 654   LIR_Opr hdr = lock;
 655   lock = new_hdr;
 656   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 657   __ load_stack_address_monitor(monitor_no, lock);
 658   __ unlock_object(hdr, object, lock, scratch, slow_path);
 659 }
 660 
 661 #ifndef PRODUCT
 662 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 663   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 664     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 665   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 666     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 667   }
 668 }
 669 #endif
 670 
 671 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 672   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 673   // If klass is not loaded we do not know if the klass has finalizers:
 674   if (UseFastNewInstance && klass->is_loaded()
 675       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 676 
 677     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 678 
 679     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 680 
 681     assert(klass->is_loaded(), "must be loaded");
 682     // allocate space for instance
 683     assert(klass->size_helper() >= 0, "illegal instance size");
 684     const int instance_size = align_object_size(klass->size_helper());
 685     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 686                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 687   } else {
 688     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 689     __ branch(lir_cond_always, slow_path);
 690     __ branch_destination(slow_path->continuation());
 691   }
 692 }
 693 
 694 
 695 static bool is_constant_zero(Instruction* inst) {
 696   IntConstant* c = inst->type()->as_IntConstant();
 697   if (c) {
 698     return (c->value() == 0);
 699   }
 700   return false;
 701 }
 702 
 703 
 704 static bool positive_constant(Instruction* inst) {
 705   IntConstant* c = inst->type()->as_IntConstant();
 706   if (c) {
 707     return (c->value() >= 0);
 708   }
 709   return false;
 710 }
 711 
 712 
 713 static ciArrayKlass* as_array_klass(ciType* type) {
 714   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 715     return (ciArrayKlass*)type;
 716   } else {
 717     return NULL;
 718   }
 719 }
 720 
 721 static ciType* phi_declared_type(Phi* phi) {
 722   ciType* t = phi->operand_at(0)->declared_type();
 723   if (t == NULL) {
 724     return NULL;
 725   }
 726   for(int i = 1; i < phi->operand_count(); i++) {
 727     if (t != phi->operand_at(i)->declared_type()) {
 728       return NULL;
 729     }
 730   }
 731   return t;
 732 }
 733 
 734 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 735   Instruction* src     = x->argument_at(0);
 736   Instruction* src_pos = x->argument_at(1);
 737   Instruction* dst     = x->argument_at(2);
 738   Instruction* dst_pos = x->argument_at(3);
 739   Instruction* length  = x->argument_at(4);
 740 
 741   // first try to identify the likely type of the arrays involved
 742   ciArrayKlass* expected_type = NULL;
 743   bool is_exact = false, src_objarray = false, dst_objarray = false;
 744   {
 745     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 746     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 747     Phi* phi;
 748     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 749       src_declared_type = as_array_klass(phi_declared_type(phi));
 750     }
 751     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 752     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 753     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 754       dst_declared_type = as_array_klass(phi_declared_type(phi));
 755     }
 756 
 757     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 758       // the types exactly match so the type is fully known
 759       is_exact = true;
 760       expected_type = src_exact_type;
 761     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 762       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 763       ciArrayKlass* src_type = NULL;
 764       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 765         src_type = (ciArrayKlass*) src_exact_type;
 766       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 767         src_type = (ciArrayKlass*) src_declared_type;
 768       }
 769       if (src_type != NULL) {
 770         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 771           is_exact = true;
 772           expected_type = dst_type;
 773         }
 774       }
 775     }
 776     // at least pass along a good guess
 777     if (expected_type == NULL) expected_type = dst_exact_type;
 778     if (expected_type == NULL) expected_type = src_declared_type;
 779     if (expected_type == NULL) expected_type = dst_declared_type;
 780 
 781     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 782     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 783   }
 784 
 785   // if a probable array type has been identified, figure out if any
 786   // of the required checks for a fast case can be elided.
 787   int flags = LIR_OpArrayCopy::all_flags;
 788 
 789   if (!src_objarray)
 790     flags &= ~LIR_OpArrayCopy::src_objarray;
 791   if (!dst_objarray)
 792     flags &= ~LIR_OpArrayCopy::dst_objarray;
 793 
 794   if (!x->arg_needs_null_check(0))
 795     flags &= ~LIR_OpArrayCopy::src_null_check;
 796   if (!x->arg_needs_null_check(2))
 797     flags &= ~LIR_OpArrayCopy::dst_null_check;
 798 
 799 
 800   if (expected_type != NULL) {
 801     Value length_limit = NULL;
 802 
 803     IfOp* ifop = length->as_IfOp();
 804     if (ifop != NULL) {
 805       // look for expressions like min(v, a.length) which ends up as
 806       //   x > y ? y : x  or  x >= y ? y : x
 807       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 808           ifop->x() == ifop->fval() &&
 809           ifop->y() == ifop->tval()) {
 810         length_limit = ifop->y();
 811       }
 812     }
 813 
 814     // try to skip null checks and range checks
 815     NewArray* src_array = src->as_NewArray();
 816     if (src_array != NULL) {
 817       flags &= ~LIR_OpArrayCopy::src_null_check;
 818       if (length_limit != NULL &&
 819           src_array->length() == length_limit &&
 820           is_constant_zero(src_pos)) {
 821         flags &= ~LIR_OpArrayCopy::src_range_check;
 822       }
 823     }
 824 
 825     NewArray* dst_array = dst->as_NewArray();
 826     if (dst_array != NULL) {
 827       flags &= ~LIR_OpArrayCopy::dst_null_check;
 828       if (length_limit != NULL &&
 829           dst_array->length() == length_limit &&
 830           is_constant_zero(dst_pos)) {
 831         flags &= ~LIR_OpArrayCopy::dst_range_check;
 832       }
 833     }
 834 
 835     // check from incoming constant values
 836     if (positive_constant(src_pos))
 837       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 838     if (positive_constant(dst_pos))
 839       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 840     if (positive_constant(length))
 841       flags &= ~LIR_OpArrayCopy::length_positive_check;
 842 
 843     // see if the range check can be elided, which might also imply
 844     // that src or dst is non-null.
 845     ArrayLength* al = length->as_ArrayLength();
 846     if (al != NULL) {
 847       if (al->array() == src) {
 848         // it's the length of the source array
 849         flags &= ~LIR_OpArrayCopy::length_positive_check;
 850         flags &= ~LIR_OpArrayCopy::src_null_check;
 851         if (is_constant_zero(src_pos))
 852           flags &= ~LIR_OpArrayCopy::src_range_check;
 853       }
 854       if (al->array() == dst) {
 855         // it's the length of the destination array
 856         flags &= ~LIR_OpArrayCopy::length_positive_check;
 857         flags &= ~LIR_OpArrayCopy::dst_null_check;
 858         if (is_constant_zero(dst_pos))
 859           flags &= ~LIR_OpArrayCopy::dst_range_check;
 860       }
 861     }
 862     if (is_exact) {
 863       flags &= ~LIR_OpArrayCopy::type_check;
 864     }
 865   }
 866 
 867   IntConstant* src_int = src_pos->type()->as_IntConstant();
 868   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 869   if (src_int && dst_int) {
 870     int s_offs = src_int->value();
 871     int d_offs = dst_int->value();
 872     if (src_int->value() >= dst_int->value()) {
 873       flags &= ~LIR_OpArrayCopy::overlapping;
 874     }
 875     if (expected_type != NULL) {
 876       BasicType t = expected_type->element_type()->basic_type();
 877       int element_size = type2aelembytes(t);
 878       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 879           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 880         flags &= ~LIR_OpArrayCopy::unaligned;
 881       }
 882     }
 883   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 884     // src and dest positions are the same, or dst is zero so assume
 885     // nonoverlapping copy.
 886     flags &= ~LIR_OpArrayCopy::overlapping;
 887   }
 888 
 889   if (src == dst) {
 890     // moving within a single array so no type checks are needed
 891     if (flags & LIR_OpArrayCopy::type_check) {
 892       flags &= ~LIR_OpArrayCopy::type_check;
 893     }
 894   }
 895   *flagsp = flags;
 896   *expected_typep = (ciArrayKlass*)expected_type;
 897 }
 898 
 899 
 900 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 901   assert(opr->is_register(), "why spill if item is not register?");
 902 
 903   if (strict_fp_requires_explicit_rounding) {
 904 #ifdef IA32
 905     if (UseSSE < 1 && opr->is_single_fpu()) {
 906       LIR_Opr result = new_register(T_FLOAT);
 907       set_vreg_flag(result, must_start_in_memory);
 908       assert(opr->is_register(), "only a register can be spilled");
 909       assert(opr->value_type()->is_float(), "rounding only for floats available");
 910       __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 911       return result;
 912     }
 913 #else
 914     Unimplemented();
 915 #endif // IA32
 916   }
 917   return opr;
 918 }
 919 
 920 
 921 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 922   assert(type2size[t] == type2size[value->type()],
 923          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 924   if (!value->is_register()) {
 925     // force into a register
 926     LIR_Opr r = new_register(value->type());
 927     __ move(value, r);
 928     value = r;
 929   }
 930 
 931   // create a spill location
 932   LIR_Opr tmp = new_register(t);
 933   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 934 
 935   // move from register to spill
 936   __ move(value, tmp);
 937   return tmp;
 938 }
 939 
 940 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 941   if (if_instr->should_profile()) {
 942     ciMethod* method = if_instr->profiled_method();
 943     assert(method != NULL, "method should be set if branch is profiled");
 944     ciMethodData* md = method->method_data_or_null();
 945     assert(md != NULL, "Sanity");
 946     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 947     assert(data != NULL, "must have profiling data");
 948     assert(data->is_BranchData(), "need BranchData for two-way branches");
 949     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 950     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 951     if (if_instr->is_swapped()) {
 952       int t = taken_count_offset;
 953       taken_count_offset = not_taken_count_offset;
 954       not_taken_count_offset = t;
 955     }
 956 
 957     LIR_Opr md_reg = new_register(T_METADATA);
 958     __ metadata2reg(md->constant_encoding(), md_reg);
 959 
 960     LIR_Opr data_offset_reg = new_pointer_register();
 961     __ cmove(lir_cond(cond),
 962              LIR_OprFact::intptrConst(taken_count_offset),
 963              LIR_OprFact::intptrConst(not_taken_count_offset),
 964              data_offset_reg, as_BasicType(if_instr->x()->type()));
 965 
 966     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 967     LIR_Opr data_reg = new_pointer_register();
 968     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 969     __ move(data_addr, data_reg);
 970     // Use leal instead of add to avoid destroying condition codes on x86
 971     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 972     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 973     __ move(data_reg, data_addr);
 974   }
 975 }
 976 
 977 // Phi technique:
 978 // This is about passing live values from one basic block to the other.
 979 // In code generated with Java it is rather rare that more than one
 980 // value is on the stack from one basic block to the other.
 981 // We optimize our technique for efficient passing of one value
 982 // (of type long, int, double..) but it can be extended.
 983 // When entering or leaving a basic block, all registers and all spill
 984 // slots are release and empty. We use the released registers
 985 // and spill slots to pass the live values from one block
 986 // to the other. The topmost value, i.e., the value on TOS of expression
 987 // stack is passed in registers. All other values are stored in spilling
 988 // area. Every Phi has an index which designates its spill slot
 989 // At exit of a basic block, we fill the register(s) and spill slots.
 990 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 991 // and locks necessary registers and spilling slots.
 992 
 993 
 994 // move current value to referenced phi function
 995 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 996   Phi* phi = sux_val->as_Phi();
 997   // cur_val can be null without phi being null in conjunction with inlining
 998   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 999     Phi* cur_phi = cur_val->as_Phi();
1000     if (cur_phi != NULL && cur_phi->is_illegal()) {
1001       // Phi and local would need to get invalidated
1002       // (which is unexpected for Linear Scan).
1003       // But this case is very rare so we simply bail out.
1004       bailout("propagation of illegal phi");
1005       return;
1006     }
1007     LIR_Opr operand = cur_val->operand();
1008     if (operand->is_illegal()) {
1009       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1010              "these can be produced lazily");
1011       operand = operand_for_instruction(cur_val);
1012     }
1013     resolver->move(operand, operand_for_instruction(phi));
1014   }
1015 }
1016 
1017 
1018 // Moves all stack values into their PHI position
1019 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1020   BlockBegin* bb = block();
1021   if (bb->number_of_sux() == 1) {
1022     BlockBegin* sux = bb->sux_at(0);
1023     assert(sux->number_of_preds() > 0, "invalid CFG");
1024 
1025     // a block with only one predecessor never has phi functions
1026     if (sux->number_of_preds() > 1) {
1027       PhiResolver resolver(this);
1028 
1029       ValueStack* sux_state = sux->state();
1030       Value sux_value;
1031       int index;
1032 
1033       assert(cur_state->scope() == sux_state->scope(), "not matching");
1034       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1035       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1036 
1037       for_each_stack_value(sux_state, index, sux_value) {
1038         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1039       }
1040 
1041       for_each_local_value(sux_state, index, sux_value) {
1042         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1043       }
1044 
1045       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1046     }
1047   }
1048 }
1049 
1050 
1051 LIR_Opr LIRGenerator::new_register(BasicType type) {
1052   int vreg = _virtual_register_number;
1053   // add a little fudge factor for the bailout, since the bailout is
1054   // only checked periodically.  This gives a few extra registers to
1055   // hand out before we really run out, which helps us keep from
1056   // tripping over assertions.
1057   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1058     bailout("out of virtual registers");
1059     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1060       // wrap it around
1061       _virtual_register_number = LIR_OprDesc::vreg_base;
1062     }
1063   }
1064   _virtual_register_number += 1;
1065   return LIR_OprFact::virtual_register(vreg, type);
1066 }
1067 
1068 
1069 // Try to lock using register in hint
1070 LIR_Opr LIRGenerator::rlock(Value instr) {
1071   return new_register(instr->type());
1072 }
1073 
1074 
1075 // does an rlock and sets result
1076 LIR_Opr LIRGenerator::rlock_result(Value x) {
1077   LIR_Opr reg = rlock(x);
1078   set_result(x, reg);
1079   return reg;
1080 }
1081 
1082 
1083 // does an rlock and sets result
1084 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1085   LIR_Opr reg;
1086   switch (type) {
1087   case T_BYTE:
1088   case T_BOOLEAN:
1089     reg = rlock_byte(type);
1090     break;
1091   default:
1092     reg = rlock(x);
1093     break;
1094   }
1095 
1096   set_result(x, reg);
1097   return reg;
1098 }
1099 
1100 
1101 //---------------------------------------------------------------------
1102 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1103   ObjectType* oc = value->type()->as_ObjectType();
1104   if (oc) {
1105     return oc->constant_value();
1106   }
1107   return NULL;
1108 }
1109 
1110 
1111 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1112   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1113   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1114 
1115   // no moves are created for phi functions at the begin of exception
1116   // handlers, so assign operands manually here
1117   for_each_phi_fun(block(), phi,
1118                    if (!phi->is_illegal()) { operand_for_instruction(phi); });
1119 
1120   LIR_Opr thread_reg = getThreadPointer();
1121   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1122                exceptionOopOpr());
1123   __ move_wide(LIR_OprFact::oopConst(NULL),
1124                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1125   __ move_wide(LIR_OprFact::oopConst(NULL),
1126                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1127 
1128   LIR_Opr result = new_register(T_OBJECT);
1129   __ move(exceptionOopOpr(), result);
1130   set_result(x, result);
1131 }
1132 
1133 
1134 //----------------------------------------------------------------------
1135 //----------------------------------------------------------------------
1136 //----------------------------------------------------------------------
1137 //----------------------------------------------------------------------
1138 //                        visitor functions
1139 //----------------------------------------------------------------------
1140 //----------------------------------------------------------------------
1141 //----------------------------------------------------------------------
1142 //----------------------------------------------------------------------
1143 
1144 void LIRGenerator::do_Phi(Phi* x) {
1145   // phi functions are never visited directly
1146   ShouldNotReachHere();
1147 }
1148 
1149 
1150 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1151 void LIRGenerator::do_Constant(Constant* x) {
1152   if (x->state_before() != NULL) {
1153     // Any constant with a ValueStack requires patching so emit the patch here
1154     LIR_Opr reg = rlock_result(x);
1155     CodeEmitInfo* info = state_for(x, x->state_before());
1156     __ oop2reg_patch(NULL, reg, info);
1157   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1158     if (!x->is_pinned()) {
1159       // unpinned constants are handled specially so that they can be
1160       // put into registers when they are used multiple times within a
1161       // block.  After the block completes their operand will be
1162       // cleared so that other blocks can't refer to that register.
1163       set_result(x, load_constant(x));
1164     } else {
1165       LIR_Opr res = x->operand();
1166       if (!res->is_valid()) {
1167         res = LIR_OprFact::value_type(x->type());
1168       }
1169       if (res->is_constant()) {
1170         LIR_Opr reg = rlock_result(x);
1171         __ move(res, reg);
1172       } else {
1173         set_result(x, res);
1174       }
1175     }
1176   } else {
1177     set_result(x, LIR_OprFact::value_type(x->type()));
1178   }
1179 }
1180 
1181 
1182 void LIRGenerator::do_Local(Local* x) {
1183   // operand_for_instruction has the side effect of setting the result
1184   // so there's no need to do it here.
1185   operand_for_instruction(x);
1186 }
1187 
1188 
1189 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1190   Unimplemented();
1191 }
1192 
1193 
1194 void LIRGenerator::do_Return(Return* x) {
1195   if (compilation()->env()->dtrace_method_probes()) {
1196     BasicTypeList signature;
1197     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1198     signature.append(T_METADATA); // Method*
1199     LIR_OprList* args = new LIR_OprList();
1200     args->append(getThreadPointer());
1201     LIR_Opr meth = new_register(T_METADATA);
1202     __ metadata2reg(method()->constant_encoding(), meth);
1203     args->append(meth);
1204     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1205   }
1206 
1207   if (x->type()->is_void()) {
1208     __ return_op(LIR_OprFact::illegalOpr);
1209   } else {
1210     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1211     LIRItem result(x->result(), this);
1212 
1213     result.load_item_force(reg);
1214     __ return_op(result.result());
1215   }
1216   set_no_result(x);
1217 }
1218 
1219 // Examble: ref.get()
1220 // Combination of LoadField and g1 pre-write barrier
1221 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1222 
1223   const int referent_offset = java_lang_ref_Reference::referent_offset();
1224 
1225   assert(x->number_of_arguments() == 1, "wrong type");
1226 
1227   LIRItem reference(x->argument_at(0), this);
1228   reference.load_item();
1229 
1230   // need to perform the null check on the reference objecy
1231   CodeEmitInfo* info = NULL;
1232   if (x->needs_null_check()) {
1233     info = state_for(x);
1234   }
1235 
1236   LIR_Opr result = rlock_result(x, T_OBJECT);
1237   access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1238                  reference, LIR_OprFact::intConst(referent_offset), result);
1239 }
1240 
1241 // Example: clazz.isInstance(object)
1242 void LIRGenerator::do_isInstance(Intrinsic* x) {
1243   assert(x->number_of_arguments() == 2, "wrong type");
1244 
1245   // TODO could try to substitute this node with an equivalent InstanceOf
1246   // if clazz is known to be a constant Class. This will pick up newly found
1247   // constants after HIR construction. I'll leave this to a future change.
1248 
1249   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1250   // could follow the aastore example in a future change.
1251 
1252   LIRItem clazz(x->argument_at(0), this);
1253   LIRItem object(x->argument_at(1), this);
1254   clazz.load_item();
1255   object.load_item();
1256   LIR_Opr result = rlock_result(x);
1257 
1258   // need to perform null check on clazz
1259   if (x->needs_null_check()) {
1260     CodeEmitInfo* info = state_for(x);
1261     __ null_check(clazz.result(), info);
1262   }
1263 
1264   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1265                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1266                                      x->type(),
1267                                      NULL); // NULL CodeEmitInfo results in a leaf call
1268   __ move(call_result, result);
1269 }
1270 
1271 // Example: object.getClass ()
1272 void LIRGenerator::do_getClass(Intrinsic* x) {
1273   assert(x->number_of_arguments() == 1, "wrong type");
1274 
1275   LIRItem rcvr(x->argument_at(0), this);
1276   rcvr.load_item();
1277   LIR_Opr temp = new_register(T_METADATA);
1278   LIR_Opr result = rlock_result(x);
1279 
1280   // need to perform the null check on the rcvr
1281   CodeEmitInfo* info = NULL;
1282   if (x->needs_null_check()) {
1283     info = state_for(x);
1284   }
1285 
1286   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1287   // meaning of these two is mixed up (see JDK-8026837).
1288   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1289   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1290   // mirror = ((OopHandle)mirror)->resolve();
1291   access_load(IN_NATIVE, T_OBJECT,
1292               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1293 }
1294 
1295 // java.lang.Class::isPrimitive()
1296 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1297   assert(x->number_of_arguments() == 1, "wrong type");
1298 
1299   LIRItem rcvr(x->argument_at(0), this);
1300   rcvr.load_item();
1301   LIR_Opr temp = new_register(T_METADATA);
1302   LIR_Opr result = rlock_result(x);
1303 
1304   CodeEmitInfo* info = NULL;
1305   if (x->needs_null_check()) {
1306     info = state_for(x);
1307   }
1308 
1309   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset(), T_ADDRESS), temp, info);
1310   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::metadataConst(0));
1311   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1312 }
1313 
1314 
1315 // Example: Thread.currentThread()
1316 void LIRGenerator::do_currentThread(Intrinsic* x) {
1317   assert(x->number_of_arguments() == 0, "wrong type");
1318   LIR_Opr temp = new_register(T_ADDRESS);
1319   LIR_Opr reg = rlock_result(x);
1320   __ move(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_ADDRESS), temp);
1321   // threadObj = ((OopHandle)_threadObj)->resolve();
1322   access_load(IN_NATIVE, T_OBJECT,
1323               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg);
1324 }
1325 
1326 
1327 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1328   assert(x->number_of_arguments() == 1, "wrong type");
1329   LIRItem receiver(x->argument_at(0), this);
1330 
1331   receiver.load_item();
1332   BasicTypeList signature;
1333   signature.append(T_OBJECT); // receiver
1334   LIR_OprList* args = new LIR_OprList();
1335   args->append(receiver.result());
1336   CodeEmitInfo* info = state_for(x, x->state());
1337   call_runtime(&signature, args,
1338                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1339                voidType, info);
1340 
1341   set_no_result(x);
1342 }
1343 
1344 
1345 //------------------------local access--------------------------------------
1346 
1347 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1348   if (x->operand()->is_illegal()) {
1349     Constant* c = x->as_Constant();
1350     if (c != NULL) {
1351       x->set_operand(LIR_OprFact::value_type(c->type()));
1352     } else {
1353       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1354       // allocate a virtual register for this local or phi
1355       x->set_operand(rlock(x));
1356       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1357     }
1358   }
1359   return x->operand();
1360 }
1361 
1362 
1363 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1364   if (opr->is_virtual()) {
1365     return instruction_for_vreg(opr->vreg_number());
1366   }
1367   return NULL;
1368 }
1369 
1370 
1371 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1372   if (reg_num < _instruction_for_operand.length()) {
1373     return _instruction_for_operand.at(reg_num);
1374   }
1375   return NULL;
1376 }
1377 
1378 
1379 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1380   if (_vreg_flags.size_in_bits() == 0) {
1381     BitMap2D temp(100, num_vreg_flags);
1382     _vreg_flags = temp;
1383   }
1384   _vreg_flags.at_put_grow(vreg_num, f, true);
1385 }
1386 
1387 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1388   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1389     return false;
1390   }
1391   return _vreg_flags.at(vreg_num, f);
1392 }
1393 
1394 
1395 // Block local constant handling.  This code is useful for keeping
1396 // unpinned constants and constants which aren't exposed in the IR in
1397 // registers.  Unpinned Constant instructions have their operands
1398 // cleared when the block is finished so that other blocks can't end
1399 // up referring to their registers.
1400 
1401 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1402   assert(!x->is_pinned(), "only for unpinned constants");
1403   _unpinned_constants.append(x);
1404   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1405 }
1406 
1407 
1408 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1409   BasicType t = c->type();
1410   for (int i = 0; i < _constants.length(); i++) {
1411     LIR_Const* other = _constants.at(i);
1412     if (t == other->type()) {
1413       switch (t) {
1414       case T_INT:
1415       case T_FLOAT:
1416         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1417         break;
1418       case T_LONG:
1419       case T_DOUBLE:
1420         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1421         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1422         break;
1423       case T_OBJECT:
1424         if (c->as_jobject() != other->as_jobject()) continue;
1425         break;
1426       default:
1427         break;
1428       }
1429       return _reg_for_constants.at(i);
1430     }
1431   }
1432 
1433   LIR_Opr result = new_register(t);
1434   __ move((LIR_Opr)c, result);
1435   _constants.append(c);
1436   _reg_for_constants.append(result);
1437   return result;
1438 }
1439 
1440 //------------------------field access--------------------------------------
1441 
1442 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1443   assert(x->number_of_arguments() == 4, "wrong type");
1444   LIRItem obj   (x->argument_at(0), this);  // object
1445   LIRItem offset(x->argument_at(1), this);  // offset of field
1446   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1447   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1448   assert(obj.type()->tag() == objectTag, "invalid type");
1449 
1450   // In 64bit the type can be long, sparc doesn't have this assert
1451   // assert(offset.type()->tag() == intTag, "invalid type");
1452 
1453   assert(cmp.type()->tag() == type->tag(), "invalid type");
1454   assert(val.type()->tag() == type->tag(), "invalid type");
1455 
1456   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1457                                             obj, offset, cmp, val);
1458   set_result(x, result);
1459 }
1460 
1461 // Comment copied form templateTable_i486.cpp
1462 // ----------------------------------------------------------------------------
1463 // Volatile variables demand their effects be made known to all CPU's in
1464 // order.  Store buffers on most chips allow reads & writes to reorder; the
1465 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1466 // memory barrier (i.e., it's not sufficient that the interpreter does not
1467 // reorder volatile references, the hardware also must not reorder them).
1468 //
1469 // According to the new Java Memory Model (JMM):
1470 // (1) All volatiles are serialized wrt to each other.
1471 // ALSO reads & writes act as aquire & release, so:
1472 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1473 // the read float up to before the read.  It's OK for non-volatile memory refs
1474 // that happen before the volatile read to float down below it.
1475 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1476 // that happen BEFORE the write float down to after the write.  It's OK for
1477 // non-volatile memory refs that happen after the volatile write to float up
1478 // before it.
1479 //
1480 // We only put in barriers around volatile refs (they are expensive), not
1481 // _between_ memory refs (that would require us to track the flavor of the
1482 // previous memory refs).  Requirements (2) and (3) require some barriers
1483 // before volatile stores and after volatile loads.  These nearly cover
1484 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1485 // case is placed after volatile-stores although it could just as well go
1486 // before volatile-loads.
1487 
1488 
1489 void LIRGenerator::do_StoreField(StoreField* x) {
1490   bool needs_patching = x->needs_patching();
1491   bool is_volatile = x->field()->is_volatile();
1492   BasicType field_type = x->field_type();
1493 
1494   CodeEmitInfo* info = NULL;
1495   if (needs_patching) {
1496     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1497     info = state_for(x, x->state_before());
1498   } else if (x->needs_null_check()) {
1499     NullCheck* nc = x->explicit_null_check();
1500     if (nc == NULL) {
1501       info = state_for(x);
1502     } else {
1503       info = state_for(nc);
1504     }
1505   }
1506 
1507   LIRItem object(x->obj(), this);
1508   LIRItem value(x->value(),  this);
1509 
1510   object.load_item();
1511 
1512   if (is_volatile || needs_patching) {
1513     // load item if field is volatile (fewer special cases for volatiles)
1514     // load item if field not initialized
1515     // load item if field not constant
1516     // because of code patching we cannot inline constants
1517     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1518       value.load_byte_item();
1519     } else  {
1520       value.load_item();
1521     }
1522   } else {
1523     value.load_for_store(field_type);
1524   }
1525 
1526   set_no_result(x);
1527 
1528 #ifndef PRODUCT
1529   if (PrintNotLoaded && needs_patching) {
1530     tty->print_cr("   ###class not loaded at store_%s bci %d",
1531                   x->is_static() ?  "static" : "field", x->printable_bci());
1532   }
1533 #endif
1534 
1535   if (x->needs_null_check() &&
1536       (needs_patching ||
1537        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1538     // Emit an explicit null check because the offset is too large.
1539     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1540     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1541     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1542   }
1543 
1544   DecoratorSet decorators = IN_HEAP;
1545   if (is_volatile) {
1546     decorators |= MO_SEQ_CST;
1547   }
1548   if (needs_patching) {
1549     decorators |= C1_NEEDS_PATCHING;
1550   }
1551 
1552   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1553                   value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info);
1554 }
1555 
1556 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1557   assert(x->is_pinned(),"");
1558   bool needs_range_check = x->compute_needs_range_check();
1559   bool use_length = x->length() != NULL;
1560   bool obj_store = is_reference_type(x->elt_type());
1561   bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
1562                                          !get_jobject_constant(x->value())->is_null_object() ||
1563                                          x->should_profile());
1564 
1565   LIRItem array(x->array(), this);
1566   LIRItem index(x->index(), this);
1567   LIRItem value(x->value(), this);
1568   LIRItem length(this);
1569 
1570   array.load_item();
1571   index.load_nonconstant();
1572 
1573   if (use_length && needs_range_check) {
1574     length.set_instruction(x->length());
1575     length.load_item();
1576 
1577   }
1578   if (needs_store_check || x->check_boolean()) {
1579     value.load_item();
1580   } else {
1581     value.load_for_store(x->elt_type());
1582   }
1583 
1584   set_no_result(x);
1585 
1586   // the CodeEmitInfo must be duplicated for each different
1587   // LIR-instruction because spilling can occur anywhere between two
1588   // instructions and so the debug information must be different
1589   CodeEmitInfo* range_check_info = state_for(x);
1590   CodeEmitInfo* null_check_info = NULL;
1591   if (x->needs_null_check()) {
1592     null_check_info = new CodeEmitInfo(range_check_info);
1593   }
1594 
1595   if (GenerateRangeChecks && needs_range_check) {
1596     if (use_length) {
1597       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1598       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1599     } else {
1600       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1601       // range_check also does the null check
1602       null_check_info = NULL;
1603     }
1604   }
1605 
1606   if (GenerateArrayStoreCheck && needs_store_check) {
1607     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1608     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1609   }
1610 
1611   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1612   if (x->check_boolean()) {
1613     decorators |= C1_MASK_BOOLEAN;
1614   }
1615 
1616   access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1617                   NULL, null_check_info);
1618 }
1619 
1620 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1621                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1622                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1623   decorators |= ACCESS_READ;
1624   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1625   if (access.is_raw()) {
1626     _barrier_set->BarrierSetC1::load_at(access, result);
1627   } else {
1628     _barrier_set->load_at(access, result);
1629   }
1630 }
1631 
1632 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1633                                LIR_Opr addr, LIR_Opr result) {
1634   decorators |= ACCESS_READ;
1635   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1636   access.set_resolved_addr(addr);
1637   if (access.is_raw()) {
1638     _barrier_set->BarrierSetC1::load(access, result);
1639   } else {
1640     _barrier_set->load(access, result);
1641   }
1642 }
1643 
1644 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1645                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1646                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1647   decorators |= ACCESS_WRITE;
1648   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1649   if (access.is_raw()) {
1650     _barrier_set->BarrierSetC1::store_at(access, value);
1651   } else {
1652     _barrier_set->store_at(access, value);
1653   }
1654 }
1655 
1656 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1657                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1658   decorators |= ACCESS_READ;
1659   decorators |= ACCESS_WRITE;
1660   // Atomic operations are SEQ_CST by default
1661   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1662   LIRAccess access(this, decorators, base, offset, type);
1663   if (access.is_raw()) {
1664     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1665   } else {
1666     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1667   }
1668 }
1669 
1670 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1671                                             LIRItem& base, LIRItem& offset, LIRItem& value) {
1672   decorators |= ACCESS_READ;
1673   decorators |= ACCESS_WRITE;
1674   // Atomic operations are SEQ_CST by default
1675   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1676   LIRAccess access(this, decorators, base, offset, type);
1677   if (access.is_raw()) {
1678     return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1679   } else {
1680     return _barrier_set->atomic_xchg_at(access, value);
1681   }
1682 }
1683 
1684 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1685                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
1686   decorators |= ACCESS_READ;
1687   decorators |= ACCESS_WRITE;
1688   // Atomic operations are SEQ_CST by default
1689   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1690   LIRAccess access(this, decorators, base, offset, type);
1691   if (access.is_raw()) {
1692     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1693   } else {
1694     return _barrier_set->atomic_add_at(access, value);
1695   }
1696 }
1697 
1698 LIR_Opr LIRGenerator::access_resolve(DecoratorSet decorators, LIR_Opr obj) {
1699   // Use stronger ACCESS_WRITE|ACCESS_READ by default.
1700   if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) {
1701     decorators |= ACCESS_READ | ACCESS_WRITE;
1702   }
1703 
1704   return _barrier_set->resolve(this, decorators, obj);
1705 }
1706 
1707 void LIRGenerator::do_LoadField(LoadField* x) {
1708   bool needs_patching = x->needs_patching();
1709   bool is_volatile = x->field()->is_volatile();
1710   BasicType field_type = x->field_type();
1711 
1712   CodeEmitInfo* info = NULL;
1713   if (needs_patching) {
1714     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1715     info = state_for(x, x->state_before());
1716   } else if (x->needs_null_check()) {
1717     NullCheck* nc = x->explicit_null_check();
1718     if (nc == NULL) {
1719       info = state_for(x);
1720     } else {
1721       info = state_for(nc);
1722     }
1723   }
1724 
1725   LIRItem object(x->obj(), this);
1726 
1727   object.load_item();
1728 
1729 #ifndef PRODUCT
1730   if (PrintNotLoaded && needs_patching) {
1731     tty->print_cr("   ###class not loaded at load_%s bci %d",
1732                   x->is_static() ?  "static" : "field", x->printable_bci());
1733   }
1734 #endif
1735 
1736   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1737   if (x->needs_null_check() &&
1738       (needs_patching ||
1739        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1740        stress_deopt)) {
1741     LIR_Opr obj = object.result();
1742     if (stress_deopt) {
1743       obj = new_register(T_OBJECT);
1744       __ move(LIR_OprFact::oopConst(NULL), obj);
1745     }
1746     // Emit an explicit null check because the offset is too large.
1747     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1748     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1749     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1750   }
1751 
1752   DecoratorSet decorators = IN_HEAP;
1753   if (is_volatile) {
1754     decorators |= MO_SEQ_CST;
1755   }
1756   if (needs_patching) {
1757     decorators |= C1_NEEDS_PATCHING;
1758   }
1759 
1760   LIR_Opr result = rlock_result(x, field_type);
1761   access_load_at(decorators, field_type,
1762                  object, LIR_OprFact::intConst(x->offset()), result,
1763                  info ? new CodeEmitInfo(info) : NULL, info);
1764 }
1765 
1766 
1767 //------------------------java.nio.Buffer.checkIndex------------------------
1768 
1769 // int java.nio.Buffer.checkIndex(int)
1770 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1771   // NOTE: by the time we are in checkIndex() we are guaranteed that
1772   // the buffer is non-null (because checkIndex is package-private and
1773   // only called from within other methods in the buffer).
1774   assert(x->number_of_arguments() == 2, "wrong type");
1775   LIRItem buf  (x->argument_at(0), this);
1776   LIRItem index(x->argument_at(1), this);
1777   buf.load_item();
1778   index.load_item();
1779 
1780   LIR_Opr result = rlock_result(x);
1781   if (GenerateRangeChecks) {
1782     CodeEmitInfo* info = state_for(x);
1783     CodeStub* stub = new RangeCheckStub(info, index.result());
1784     LIR_Opr buf_obj = access_resolve(IS_NOT_NULL | ACCESS_READ, buf.result());
1785     if (index.result()->is_constant()) {
1786       cmp_mem_int(lir_cond_belowEqual, buf_obj, java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1787       __ branch(lir_cond_belowEqual, stub);
1788     } else {
1789       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf_obj,
1790                   java_nio_Buffer::limit_offset(), T_INT, info);
1791       __ branch(lir_cond_aboveEqual, stub);
1792     }
1793     __ move(index.result(), result);
1794   } else {
1795     // Just load the index into the result register
1796     __ move(index.result(), result);
1797   }
1798 }
1799 
1800 
1801 //------------------------array access--------------------------------------
1802 
1803 
1804 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1805   LIRItem array(x->array(), this);
1806   array.load_item();
1807   LIR_Opr reg = rlock_result(x);
1808 
1809   CodeEmitInfo* info = NULL;
1810   if (x->needs_null_check()) {
1811     NullCheck* nc = x->explicit_null_check();
1812     if (nc == NULL) {
1813       info = state_for(x);
1814     } else {
1815       info = state_for(nc);
1816     }
1817     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1818       LIR_Opr obj = new_register(T_OBJECT);
1819       __ move(LIR_OprFact::oopConst(NULL), obj);
1820       __ null_check(obj, new CodeEmitInfo(info));
1821     }
1822   }
1823   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1824 }
1825 
1826 
1827 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1828   bool use_length = x->length() != NULL;
1829   LIRItem array(x->array(), this);
1830   LIRItem index(x->index(), this);
1831   LIRItem length(this);
1832   bool needs_range_check = x->compute_needs_range_check();
1833 
1834   if (use_length && needs_range_check) {
1835     length.set_instruction(x->length());
1836     length.load_item();
1837   }
1838 
1839   array.load_item();
1840   if (index.is_constant() && can_inline_as_constant(x->index())) {
1841     // let it be a constant
1842     index.dont_load_item();
1843   } else {
1844     index.load_item();
1845   }
1846 
1847   CodeEmitInfo* range_check_info = state_for(x);
1848   CodeEmitInfo* null_check_info = NULL;
1849   if (x->needs_null_check()) {
1850     NullCheck* nc = x->explicit_null_check();
1851     if (nc != NULL) {
1852       null_check_info = state_for(nc);
1853     } else {
1854       null_check_info = range_check_info;
1855     }
1856     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1857       LIR_Opr obj = new_register(T_OBJECT);
1858       __ move(LIR_OprFact::oopConst(NULL), obj);
1859       __ null_check(obj, new CodeEmitInfo(null_check_info));
1860     }
1861   }
1862 
1863   if (GenerateRangeChecks && needs_range_check) {
1864     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1865       __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
1866     } else if (use_length) {
1867       // TODO: use a (modified) version of array_range_check that does not require a
1868       //       constant length to be loaded to a register
1869       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1870       __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1871     } else {
1872       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1873       // The range check performs the null check, so clear it out for the load
1874       null_check_info = NULL;
1875     }
1876   }
1877 
1878   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1879 
1880   LIR_Opr result = rlock_result(x, x->elt_type());
1881   access_load_at(decorators, x->elt_type(),
1882                  array, index.result(), result,
1883                  NULL, null_check_info);
1884 }
1885 
1886 
1887 void LIRGenerator::do_NullCheck(NullCheck* x) {
1888   if (x->can_trap()) {
1889     LIRItem value(x->obj(), this);
1890     value.load_item();
1891     CodeEmitInfo* info = state_for(x);
1892     __ null_check(value.result(), info);
1893   }
1894 }
1895 
1896 
1897 void LIRGenerator::do_TypeCast(TypeCast* x) {
1898   LIRItem value(x->obj(), this);
1899   value.load_item();
1900   // the result is the same as from the node we are casting
1901   set_result(x, value.result());
1902 }
1903 
1904 
1905 void LIRGenerator::do_Throw(Throw* x) {
1906   LIRItem exception(x->exception(), this);
1907   exception.load_item();
1908   set_no_result(x);
1909   LIR_Opr exception_opr = exception.result();
1910   CodeEmitInfo* info = state_for(x, x->state());
1911 
1912 #ifndef PRODUCT
1913   if (PrintC1Statistics) {
1914     increment_counter(Runtime1::throw_count_address(), T_INT);
1915   }
1916 #endif
1917 
1918   // check if the instruction has an xhandler in any of the nested scopes
1919   bool unwind = false;
1920   if (info->exception_handlers()->length() == 0) {
1921     // this throw is not inside an xhandler
1922     unwind = true;
1923   } else {
1924     // get some idea of the throw type
1925     bool type_is_exact = true;
1926     ciType* throw_type = x->exception()->exact_type();
1927     if (throw_type == NULL) {
1928       type_is_exact = false;
1929       throw_type = x->exception()->declared_type();
1930     }
1931     if (throw_type != NULL && throw_type->is_instance_klass()) {
1932       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
1933       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
1934     }
1935   }
1936 
1937   // do null check before moving exception oop into fixed register
1938   // to avoid a fixed interval with an oop during the null check.
1939   // Use a copy of the CodeEmitInfo because debug information is
1940   // different for null_check and throw.
1941   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
1942     // if the exception object wasn't created using new then it might be null.
1943     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
1944   }
1945 
1946   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
1947     // we need to go through the exception lookup path to get JVMTI
1948     // notification done
1949     unwind = false;
1950   }
1951 
1952   // move exception oop into fixed register
1953   __ move(exception_opr, exceptionOopOpr());
1954 
1955   if (unwind) {
1956     __ unwind_exception(exceptionOopOpr());
1957   } else {
1958     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
1959   }
1960 }
1961 
1962 
1963 void LIRGenerator::do_RoundFP(RoundFP* x) {
1964   assert(strict_fp_requires_explicit_rounding, "not required");
1965 
1966   LIRItem input(x->input(), this);
1967   input.load_item();
1968   LIR_Opr input_opr = input.result();
1969   assert(input_opr->is_register(), "why round if value is not in a register?");
1970   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
1971   if (input_opr->is_single_fpu()) {
1972     set_result(x, round_item(input_opr)); // This code path not currently taken
1973   } else {
1974     LIR_Opr result = new_register(T_DOUBLE);
1975     set_vreg_flag(result, must_start_in_memory);
1976     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
1977     set_result(x, result);
1978   }
1979 }
1980 
1981 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
1982 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
1983 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
1984   LIRItem base(x->base(), this);
1985   LIRItem idx(this);
1986 
1987   base.load_item();
1988   if (x->has_index()) {
1989     idx.set_instruction(x->index());
1990     idx.load_nonconstant();
1991   }
1992 
1993   LIR_Opr reg = rlock_result(x, x->basic_type());
1994 
1995   int   log2_scale = 0;
1996   if (x->has_index()) {
1997     log2_scale = x->log2_scale();
1998   }
1999 
2000   assert(!x->has_index() || idx.value() == x->index(), "should match");
2001 
2002   LIR_Opr base_op = base.result();
2003   LIR_Opr index_op = idx.result();
2004 #ifndef _LP64
2005   if (base_op->type() == T_LONG) {
2006     base_op = new_register(T_INT);
2007     __ convert(Bytecodes::_l2i, base.result(), base_op);
2008   }
2009   if (x->has_index()) {
2010     if (index_op->type() == T_LONG) {
2011       LIR_Opr long_index_op = index_op;
2012       if (index_op->is_constant()) {
2013         long_index_op = new_register(T_LONG);
2014         __ move(index_op, long_index_op);
2015       }
2016       index_op = new_register(T_INT);
2017       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2018     } else {
2019       assert(x->index()->type()->tag() == intTag, "must be");
2020     }
2021   }
2022   // At this point base and index should be all ints.
2023   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2024   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2025 #else
2026   if (x->has_index()) {
2027     if (index_op->type() == T_INT) {
2028       if (!index_op->is_constant()) {
2029         index_op = new_register(T_LONG);
2030         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2031       }
2032     } else {
2033       assert(index_op->type() == T_LONG, "must be");
2034       if (index_op->is_constant()) {
2035         index_op = new_register(T_LONG);
2036         __ move(idx.result(), index_op);
2037       }
2038     }
2039   }
2040   // At this point base is a long non-constant
2041   // Index is a long register or a int constant.
2042   // We allow the constant to stay an int because that would allow us a more compact encoding by
2043   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2044   // move it into a register first.
2045   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2046   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2047                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2048 #endif
2049 
2050   BasicType dst_type = x->basic_type();
2051 
2052   LIR_Address* addr;
2053   if (index_op->is_constant()) {
2054     assert(log2_scale == 0, "must not have a scale");
2055     assert(index_op->type() == T_INT, "only int constants supported");
2056     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2057   } else {
2058 #ifdef X86
2059     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2060 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2061     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2062 #else
2063     if (index_op->is_illegal() || log2_scale == 0) {
2064       addr = new LIR_Address(base_op, index_op, dst_type);
2065     } else {
2066       LIR_Opr tmp = new_pointer_register();
2067       __ shift_left(index_op, log2_scale, tmp);
2068       addr = new LIR_Address(base_op, tmp, dst_type);
2069     }
2070 #endif
2071   }
2072 
2073   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2074     __ unaligned_move(addr, reg);
2075   } else {
2076     if (dst_type == T_OBJECT && x->is_wide()) {
2077       __ move_wide(addr, reg);
2078     } else {
2079       __ move(addr, reg);
2080     }
2081   }
2082 }
2083 
2084 
2085 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2086   int  log2_scale = 0;
2087   BasicType type = x->basic_type();
2088 
2089   if (x->has_index()) {
2090     log2_scale = x->log2_scale();
2091   }
2092 
2093   LIRItem base(x->base(), this);
2094   LIRItem value(x->value(), this);
2095   LIRItem idx(this);
2096 
2097   base.load_item();
2098   if (x->has_index()) {
2099     idx.set_instruction(x->index());
2100     idx.load_item();
2101   }
2102 
2103   if (type == T_BYTE || type == T_BOOLEAN) {
2104     value.load_byte_item();
2105   } else {
2106     value.load_item();
2107   }
2108 
2109   set_no_result(x);
2110 
2111   LIR_Opr base_op = base.result();
2112   LIR_Opr index_op = idx.result();
2113 
2114 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2115   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2116 #else
2117 #ifndef _LP64
2118   if (base_op->type() == T_LONG) {
2119     base_op = new_register(T_INT);
2120     __ convert(Bytecodes::_l2i, base.result(), base_op);
2121   }
2122   if (x->has_index()) {
2123     if (index_op->type() == T_LONG) {
2124       index_op = new_register(T_INT);
2125       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2126     }
2127   }
2128   // At this point base and index should be all ints and not constants
2129   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2130   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2131 #else
2132   if (x->has_index()) {
2133     if (index_op->type() == T_INT) {
2134       index_op = new_register(T_LONG);
2135       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2136     }
2137   }
2138   // At this point base and index are long and non-constant
2139   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2140   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2141 #endif
2142 
2143   if (log2_scale != 0) {
2144     // temporary fix (platform dependent code without shift on Intel would be better)
2145     // TODO: ARM also allows embedded shift in the address
2146     LIR_Opr tmp = new_pointer_register();
2147     if (TwoOperandLIRForm) {
2148       __ move(index_op, tmp);
2149       index_op = tmp;
2150     }
2151     __ shift_left(index_op, log2_scale, tmp);
2152     if (!TwoOperandLIRForm) {
2153       index_op = tmp;
2154     }
2155   }
2156 
2157   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2158 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2159   __ move(value.result(), addr);
2160 }
2161 
2162 
2163 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2164   BasicType type = x->basic_type();
2165   LIRItem src(x->object(), this);
2166   LIRItem off(x->offset(), this);
2167 
2168   off.load_item();
2169   src.load_item();
2170 
2171   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2172 
2173   if (x->is_volatile()) {
2174     decorators |= MO_SEQ_CST;
2175   }
2176   if (type == T_BOOLEAN) {
2177     decorators |= C1_MASK_BOOLEAN;
2178   }
2179   if (is_reference_type(type)) {
2180     decorators |= ON_UNKNOWN_OOP_REF;
2181   }
2182 
2183   LIR_Opr result = rlock_result(x, type);
2184   access_load_at(decorators, type,
2185                  src, off.result(), result);
2186 }
2187 
2188 
2189 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2190   BasicType type = x->basic_type();
2191   LIRItem src(x->object(), this);
2192   LIRItem off(x->offset(), this);
2193   LIRItem data(x->value(), this);
2194 
2195   src.load_item();
2196   if (type == T_BOOLEAN || type == T_BYTE) {
2197     data.load_byte_item();
2198   } else {
2199     data.load_item();
2200   }
2201   off.load_item();
2202 
2203   set_no_result(x);
2204 
2205   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2206   if (is_reference_type(type)) {
2207     decorators |= ON_UNKNOWN_OOP_REF;
2208   }
2209   if (x->is_volatile()) {
2210     decorators |= MO_SEQ_CST;
2211   }
2212   access_store_at(decorators, type, src, off.result(), data.result());
2213 }
2214 
2215 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
2216   BasicType type = x->basic_type();
2217   LIRItem src(x->object(), this);
2218   LIRItem off(x->offset(), this);
2219   LIRItem value(x->value(), this);
2220 
2221   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST;
2222 
2223   if (is_reference_type(type)) {
2224     decorators |= ON_UNKNOWN_OOP_REF;
2225   }
2226 
2227   LIR_Opr result;
2228   if (x->is_add()) {
2229     result = access_atomic_add_at(decorators, type, src, off, value);
2230   } else {
2231     result = access_atomic_xchg_at(decorators, type, src, off, value);
2232   }
2233   set_result(x, result);
2234 }
2235 
2236 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2237   int lng = x->length();
2238 
2239   for (int i = 0; i < lng; i++) {
2240     C1SwitchRange* one_range = x->at(i);
2241     int low_key = one_range->low_key();
2242     int high_key = one_range->high_key();
2243     BlockBegin* dest = one_range->sux();
2244     if (low_key == high_key) {
2245       __ cmp(lir_cond_equal, value, low_key);
2246       __ branch(lir_cond_equal, dest);
2247     } else if (high_key - low_key == 1) {
2248       __ cmp(lir_cond_equal, value, low_key);
2249       __ branch(lir_cond_equal, dest);
2250       __ cmp(lir_cond_equal, value, high_key);
2251       __ branch(lir_cond_equal, dest);
2252     } else {
2253       LabelObj* L = new LabelObj();
2254       __ cmp(lir_cond_less, value, low_key);
2255       __ branch(lir_cond_less, L->label());
2256       __ cmp(lir_cond_lessEqual, value, high_key);
2257       __ branch(lir_cond_lessEqual, dest);
2258       __ branch_destination(L->label());
2259     }
2260   }
2261   __ jump(default_sux);
2262 }
2263 
2264 
2265 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2266   SwitchRangeList* res = new SwitchRangeList();
2267   int len = x->length();
2268   if (len > 0) {
2269     BlockBegin* sux = x->sux_at(0);
2270     int key = x->lo_key();
2271     BlockBegin* default_sux = x->default_sux();
2272     C1SwitchRange* range = new C1SwitchRange(key, sux);
2273     for (int i = 0; i < len; i++, key++) {
2274       BlockBegin* new_sux = x->sux_at(i);
2275       if (sux == new_sux) {
2276         // still in same range
2277         range->set_high_key(key);
2278       } else {
2279         // skip tests which explicitly dispatch to the default
2280         if (sux != default_sux) {
2281           res->append(range);
2282         }
2283         range = new C1SwitchRange(key, new_sux);
2284       }
2285       sux = new_sux;
2286     }
2287     if (res->length() == 0 || res->last() != range)  res->append(range);
2288   }
2289   return res;
2290 }
2291 
2292 
2293 // we expect the keys to be sorted by increasing value
2294 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2295   SwitchRangeList* res = new SwitchRangeList();
2296   int len = x->length();
2297   if (len > 0) {
2298     BlockBegin* default_sux = x->default_sux();
2299     int key = x->key_at(0);
2300     BlockBegin* sux = x->sux_at(0);
2301     C1SwitchRange* range = new C1SwitchRange(key, sux);
2302     for (int i = 1; i < len; i++) {
2303       int new_key = x->key_at(i);
2304       BlockBegin* new_sux = x->sux_at(i);
2305       if (key+1 == new_key && sux == new_sux) {
2306         // still in same range
2307         range->set_high_key(new_key);
2308       } else {
2309         // skip tests which explicitly dispatch to the default
2310         if (range->sux() != default_sux) {
2311           res->append(range);
2312         }
2313         range = new C1SwitchRange(new_key, new_sux);
2314       }
2315       key = new_key;
2316       sux = new_sux;
2317     }
2318     if (res->length() == 0 || res->last() != range)  res->append(range);
2319   }
2320   return res;
2321 }
2322 
2323 
2324 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2325   LIRItem tag(x->tag(), this);
2326   tag.load_item();
2327   set_no_result(x);
2328 
2329   if (x->is_safepoint()) {
2330     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2331   }
2332 
2333   // move values into phi locations
2334   move_to_phi(x->state());
2335 
2336   int lo_key = x->lo_key();
2337   int len = x->length();
2338   assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2339   LIR_Opr value = tag.result();
2340 
2341   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2342     ciMethod* method = x->state()->scope()->method();
2343     ciMethodData* md = method->method_data_or_null();
2344     assert(md != NULL, "Sanity");
2345     ciProfileData* data = md->bci_to_data(x->state()->bci());
2346     assert(data != NULL, "must have profiling data");
2347     assert(data->is_MultiBranchData(), "bad profile data?");
2348     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2349     LIR_Opr md_reg = new_register(T_METADATA);
2350     __ metadata2reg(md->constant_encoding(), md_reg);
2351     LIR_Opr data_offset_reg = new_pointer_register();
2352     LIR_Opr tmp_reg = new_pointer_register();
2353 
2354     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2355     for (int i = 0; i < len; i++) {
2356       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2357       __ cmp(lir_cond_equal, value, i + lo_key);
2358       __ move(data_offset_reg, tmp_reg);
2359       __ cmove(lir_cond_equal,
2360                LIR_OprFact::intptrConst(count_offset),
2361                tmp_reg,
2362                data_offset_reg, T_INT);
2363     }
2364 
2365     LIR_Opr data_reg = new_pointer_register();
2366     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2367     __ move(data_addr, data_reg);
2368     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2369     __ move(data_reg, data_addr);
2370   }
2371 
2372   if (UseTableRanges) {
2373     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2374   } else {
2375     for (int i = 0; i < len; i++) {
2376       __ cmp(lir_cond_equal, value, i + lo_key);
2377       __ branch(lir_cond_equal, x->sux_at(i));
2378     }
2379     __ jump(x->default_sux());
2380   }
2381 }
2382 
2383 
2384 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2385   LIRItem tag(x->tag(), this);
2386   tag.load_item();
2387   set_no_result(x);
2388 
2389   if (x->is_safepoint()) {
2390     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2391   }
2392 
2393   // move values into phi locations
2394   move_to_phi(x->state());
2395 
2396   LIR_Opr value = tag.result();
2397   int len = x->length();
2398 
2399   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2400     ciMethod* method = x->state()->scope()->method();
2401     ciMethodData* md = method->method_data_or_null();
2402     assert(md != NULL, "Sanity");
2403     ciProfileData* data = md->bci_to_data(x->state()->bci());
2404     assert(data != NULL, "must have profiling data");
2405     assert(data->is_MultiBranchData(), "bad profile data?");
2406     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2407     LIR_Opr md_reg = new_register(T_METADATA);
2408     __ metadata2reg(md->constant_encoding(), md_reg);
2409     LIR_Opr data_offset_reg = new_pointer_register();
2410     LIR_Opr tmp_reg = new_pointer_register();
2411 
2412     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2413     for (int i = 0; i < len; i++) {
2414       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2415       __ cmp(lir_cond_equal, value, x->key_at(i));
2416       __ move(data_offset_reg, tmp_reg);
2417       __ cmove(lir_cond_equal,
2418                LIR_OprFact::intptrConst(count_offset),
2419                tmp_reg,
2420                data_offset_reg, T_INT);
2421     }
2422 
2423     LIR_Opr data_reg = new_pointer_register();
2424     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2425     __ move(data_addr, data_reg);
2426     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2427     __ move(data_reg, data_addr);
2428   }
2429 
2430   if (UseTableRanges) {
2431     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2432   } else {
2433     int len = x->length();
2434     for (int i = 0; i < len; i++) {
2435       __ cmp(lir_cond_equal, value, x->key_at(i));
2436       __ branch(lir_cond_equal, x->sux_at(i));
2437     }
2438     __ jump(x->default_sux());
2439   }
2440 }
2441 
2442 
2443 void LIRGenerator::do_Goto(Goto* x) {
2444   set_no_result(x);
2445 
2446   if (block()->next()->as_OsrEntry()) {
2447     // need to free up storage used for OSR entry point
2448     LIR_Opr osrBuffer = block()->next()->operand();
2449     BasicTypeList signature;
2450     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2451     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2452     __ move(osrBuffer, cc->args()->at(0));
2453     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2454                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2455   }
2456 
2457   if (x->is_safepoint()) {
2458     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2459 
2460     // increment backedge counter if needed
2461     CodeEmitInfo* info = state_for(x, state);
2462     increment_backedge_counter(info, x->profiled_bci());
2463     CodeEmitInfo* safepoint_info = state_for(x, state);
2464     __ safepoint(safepoint_poll_register(), safepoint_info);
2465   }
2466 
2467   // Gotos can be folded Ifs, handle this case.
2468   if (x->should_profile()) {
2469     ciMethod* method = x->profiled_method();
2470     assert(method != NULL, "method should be set if branch is profiled");
2471     ciMethodData* md = method->method_data_or_null();
2472     assert(md != NULL, "Sanity");
2473     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2474     assert(data != NULL, "must have profiling data");
2475     int offset;
2476     if (x->direction() == Goto::taken) {
2477       assert(data->is_BranchData(), "need BranchData for two-way branches");
2478       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2479     } else if (x->direction() == Goto::not_taken) {
2480       assert(data->is_BranchData(), "need BranchData for two-way branches");
2481       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2482     } else {
2483       assert(data->is_JumpData(), "need JumpData for branches");
2484       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2485     }
2486     LIR_Opr md_reg = new_register(T_METADATA);
2487     __ metadata2reg(md->constant_encoding(), md_reg);
2488 
2489     increment_counter(new LIR_Address(md_reg, offset,
2490                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2491   }
2492 
2493   // emit phi-instruction move after safepoint since this simplifies
2494   // describing the state as the safepoint.
2495   move_to_phi(x->state());
2496 
2497   __ jump(x->default_sux());
2498 }
2499 
2500 /**
2501  * Emit profiling code if needed for arguments, parameters, return value types
2502  *
2503  * @param md                    MDO the code will update at runtime
2504  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2505  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2506  * @param profiled_k            current profile
2507  * @param obj                   IR node for the object to be profiled
2508  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2509  *                              Set once we find an update to make and use for next ones.
2510  * @param not_null              true if we know obj cannot be null
2511  * @param signature_at_call_k   signature at call for obj
2512  * @param callee_signature_k    signature of callee for obj
2513  *                              at call and callee signatures differ at method handle call
2514  * @return                      the only klass we know will ever be seen at this profile point
2515  */
2516 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2517                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2518                                     ciKlass* callee_signature_k) {
2519   ciKlass* result = NULL;
2520   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2521   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2522   // known not to be null or null bit already set and already set to
2523   // unknown: nothing we can do to improve profiling
2524   if (!do_null && !do_update) {
2525     return result;
2526   }
2527 
2528   ciKlass* exact_klass = NULL;
2529   Compilation* comp = Compilation::current();
2530   if (do_update) {
2531     // try to find exact type, using CHA if possible, so that loading
2532     // the klass from the object can be avoided
2533     ciType* type = obj->exact_type();
2534     if (type == NULL) {
2535       type = obj->declared_type();
2536       type = comp->cha_exact_type(type);
2537     }
2538     assert(type == NULL || type->is_klass(), "type should be class");
2539     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2540 
2541     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2542   }
2543 
2544   if (!do_null && !do_update) {
2545     return result;
2546   }
2547 
2548   ciKlass* exact_signature_k = NULL;
2549   if (do_update) {
2550     // Is the type from the signature exact (the only one possible)?
2551     exact_signature_k = signature_at_call_k->exact_klass();
2552     if (exact_signature_k == NULL) {
2553       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2554     } else {
2555       result = exact_signature_k;
2556       // Known statically. No need to emit any code: prevent
2557       // LIR_Assembler::emit_profile_type() from emitting useless code
2558       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2559     }
2560     // exact_klass and exact_signature_k can be both non NULL but
2561     // different if exact_klass is loaded after the ciObject for
2562     // exact_signature_k is created.
2563     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2564       // sometimes the type of the signature is better than the best type
2565       // the compiler has
2566       exact_klass = exact_signature_k;
2567     }
2568     if (callee_signature_k != NULL &&
2569         callee_signature_k != signature_at_call_k) {
2570       ciKlass* improved_klass = callee_signature_k->exact_klass();
2571       if (improved_klass == NULL) {
2572         improved_klass = comp->cha_exact_type(callee_signature_k);
2573       }
2574       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2575         exact_klass = exact_signature_k;
2576       }
2577     }
2578     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2579   }
2580 
2581   if (!do_null && !do_update) {
2582     return result;
2583   }
2584 
2585   if (mdp == LIR_OprFact::illegalOpr) {
2586     mdp = new_register(T_METADATA);
2587     __ metadata2reg(md->constant_encoding(), mdp);
2588     if (md_base_offset != 0) {
2589       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2590       mdp = new_pointer_register();
2591       __ leal(LIR_OprFact::address(base_type_address), mdp);
2592     }
2593   }
2594   LIRItem value(obj, this);
2595   value.load_item();
2596   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2597                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2598   return result;
2599 }
2600 
2601 // profile parameters on entry to the root of the compilation
2602 void LIRGenerator::profile_parameters(Base* x) {
2603   if (compilation()->profile_parameters()) {
2604     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2605     ciMethodData* md = scope()->method()->method_data_or_null();
2606     assert(md != NULL, "Sanity");
2607 
2608     if (md->parameters_type_data() != NULL) {
2609       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2610       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2611       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2612       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2613         LIR_Opr src = args->at(i);
2614         assert(!src->is_illegal(), "check");
2615         BasicType t = src->type();
2616         if (is_reference_type(t)) {
2617           intptr_t profiled_k = parameters->type(j);
2618           Local* local = x->state()->local_at(java_index)->as_Local();
2619           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2620                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2621                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2622           // If the profile is known statically set it once for all and do not emit any code
2623           if (exact != NULL) {
2624             md->set_parameter_type(j, exact);
2625           }
2626           j++;
2627         }
2628         java_index += type2size[t];
2629       }
2630     }
2631   }
2632 }
2633 
2634 void LIRGenerator::do_Base(Base* x) {
2635   __ std_entry(LIR_OprFact::illegalOpr);
2636   // Emit moves from physical registers / stack slots to virtual registers
2637   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2638   IRScope* irScope = compilation()->hir()->top_scope();
2639   int java_index = 0;
2640   for (int i = 0; i < args->length(); i++) {
2641     LIR_Opr src = args->at(i);
2642     assert(!src->is_illegal(), "check");
2643     BasicType t = src->type();
2644 
2645     // Types which are smaller than int are passed as int, so
2646     // correct the type which passed.
2647     switch (t) {
2648     case T_BYTE:
2649     case T_BOOLEAN:
2650     case T_SHORT:
2651     case T_CHAR:
2652       t = T_INT;
2653       break;
2654     default:
2655       break;
2656     }
2657 
2658     LIR_Opr dest = new_register(t);
2659     __ move(src, dest);
2660 
2661     // Assign new location to Local instruction for this local
2662     Local* local = x->state()->local_at(java_index)->as_Local();
2663     assert(local != NULL, "Locals for incoming arguments must have been created");
2664 #ifndef __SOFTFP__
2665     // The java calling convention passes double as long and float as int.
2666     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2667 #endif // __SOFTFP__
2668     local->set_operand(dest);
2669     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2670     java_index += type2size[t];
2671   }
2672 
2673   if (compilation()->env()->dtrace_method_probes()) {
2674     BasicTypeList signature;
2675     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2676     signature.append(T_METADATA); // Method*
2677     LIR_OprList* args = new LIR_OprList();
2678     args->append(getThreadPointer());
2679     LIR_Opr meth = new_register(T_METADATA);
2680     __ metadata2reg(method()->constant_encoding(), meth);
2681     args->append(meth);
2682     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2683   }
2684 
2685   if (method()->is_synchronized()) {
2686     LIR_Opr obj;
2687     if (method()->is_static()) {
2688       obj = new_register(T_OBJECT);
2689       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2690     } else {
2691       Local* receiver = x->state()->local_at(0)->as_Local();
2692       assert(receiver != NULL, "must already exist");
2693       obj = receiver->operand();
2694     }
2695     assert(obj->is_valid(), "must be valid");
2696 
2697     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2698       LIR_Opr lock = syncLockOpr();
2699       __ load_stack_address_monitor(0, lock);
2700 
2701       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2702       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2703 
2704       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2705       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2706     }
2707   }
2708   if (compilation()->age_code()) {
2709     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2710     decrement_age(info);
2711   }
2712   // increment invocation counters if needed
2713   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2714     profile_parameters(x);
2715     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2716     increment_invocation_counter(info);
2717   }
2718 
2719   // all blocks with a successor must end with an unconditional jump
2720   // to the successor even if they are consecutive
2721   __ jump(x->default_sux());
2722 }
2723 
2724 
2725 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2726   // construct our frame and model the production of incoming pointer
2727   // to the OSR buffer.
2728   __ osr_entry(LIR_Assembler::osrBufferPointer());
2729   LIR_Opr result = rlock_result(x);
2730   __ move(LIR_Assembler::osrBufferPointer(), result);
2731 }
2732 
2733 
2734 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2735   assert(args->length() == arg_list->length(),
2736          "args=%d, arg_list=%d", args->length(), arg_list->length());
2737   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2738     LIRItem* param = args->at(i);
2739     LIR_Opr loc = arg_list->at(i);
2740     if (loc->is_register()) {
2741       param->load_item_force(loc);
2742     } else {
2743       LIR_Address* addr = loc->as_address_ptr();
2744       param->load_for_store(addr->type());
2745       if (addr->type() == T_OBJECT) {
2746         __ move_wide(param->result(), addr);
2747       } else
2748         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2749           __ unaligned_move(param->result(), addr);
2750         } else {
2751           __ move(param->result(), addr);
2752         }
2753     }
2754   }
2755 
2756   if (x->has_receiver()) {
2757     LIRItem* receiver = args->at(0);
2758     LIR_Opr loc = arg_list->at(0);
2759     if (loc->is_register()) {
2760       receiver->load_item_force(loc);
2761     } else {
2762       assert(loc->is_address(), "just checking");
2763       receiver->load_for_store(T_OBJECT);
2764       __ move_wide(receiver->result(), loc->as_address_ptr());
2765     }
2766   }
2767 }
2768 
2769 
2770 // Visits all arguments, returns appropriate items without loading them
2771 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2772   LIRItemList* argument_items = new LIRItemList();
2773   if (x->has_receiver()) {
2774     LIRItem* receiver = new LIRItem(x->receiver(), this);
2775     argument_items->append(receiver);
2776   }
2777   for (int i = 0; i < x->number_of_arguments(); i++) {
2778     LIRItem* param = new LIRItem(x->argument_at(i), this);
2779     argument_items->append(param);
2780   }
2781   return argument_items;
2782 }
2783 
2784 
2785 // The invoke with receiver has following phases:
2786 //   a) traverse and load/lock receiver;
2787 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2788 //   c) push receiver on stack
2789 //   d) load each of the items and push on stack
2790 //   e) unlock receiver
2791 //   f) move receiver into receiver-register %o0
2792 //   g) lock result registers and emit call operation
2793 //
2794 // Before issuing a call, we must spill-save all values on stack
2795 // that are in caller-save register. "spill-save" moves those registers
2796 // either in a free callee-save register or spills them if no free
2797 // callee save register is available.
2798 //
2799 // The problem is where to invoke spill-save.
2800 // - if invoked between e) and f), we may lock callee save
2801 //   register in "spill-save" that destroys the receiver register
2802 //   before f) is executed
2803 // - if we rearrange f) to be earlier (by loading %o0) it
2804 //   may destroy a value on the stack that is currently in %o0
2805 //   and is waiting to be spilled
2806 // - if we keep the receiver locked while doing spill-save,
2807 //   we cannot spill it as it is spill-locked
2808 //
2809 void LIRGenerator::do_Invoke(Invoke* x) {
2810   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2811 
2812   LIR_OprList* arg_list = cc->args();
2813   LIRItemList* args = invoke_visit_arguments(x);
2814   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2815 
2816   // setup result register
2817   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2818   if (x->type() != voidType) {
2819     result_register = result_register_for(x->type());
2820   }
2821 
2822   CodeEmitInfo* info = state_for(x, x->state());
2823 
2824   invoke_load_arguments(x, args, arg_list);
2825 
2826   if (x->has_receiver()) {
2827     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2828     receiver = args->at(0)->result();
2829   }
2830 
2831   // emit invoke code
2832   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2833 
2834   // JSR 292
2835   // Preserve the SP over MethodHandle call sites, if needed.
2836   ciMethod* target = x->target();
2837   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2838                                   target->is_method_handle_intrinsic() ||
2839                                   target->is_compiled_lambda_form());
2840   if (is_method_handle_invoke) {
2841     info->set_is_method_handle_invoke(true);
2842     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2843         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2844     }
2845   }
2846 
2847   switch (x->code()) {
2848     case Bytecodes::_invokestatic:
2849       __ call_static(target, result_register,
2850                      SharedRuntime::get_resolve_static_call_stub(),
2851                      arg_list, info);
2852       break;
2853     case Bytecodes::_invokespecial:
2854     case Bytecodes::_invokevirtual:
2855     case Bytecodes::_invokeinterface:
2856       // for loaded and final (method or class) target we still produce an inline cache,
2857       // in order to be able to call mixed mode
2858       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
2859         __ call_opt_virtual(target, receiver, result_register,
2860                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2861                             arg_list, info);
2862       } else if (x->vtable_index() < 0) {
2863         __ call_icvirtual(target, receiver, result_register,
2864                           SharedRuntime::get_resolve_virtual_call_stub(),
2865                           arg_list, info);
2866       } else {
2867         int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes();
2868         int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes();
2869         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
2870       }
2871       break;
2872     case Bytecodes::_invokedynamic: {
2873       __ call_dynamic(target, receiver, result_register,
2874                       SharedRuntime::get_resolve_static_call_stub(),
2875                       arg_list, info);
2876       break;
2877     }
2878     default:
2879       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
2880       break;
2881   }
2882 
2883   // JSR 292
2884   // Restore the SP after MethodHandle call sites, if needed.
2885   if (is_method_handle_invoke
2886       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2887     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2888   }
2889 
2890   if (x->type()->is_float() || x->type()->is_double()) {
2891     // Force rounding of results from non-strictfp when in strictfp
2892     // scope (or when we don't know the strictness of the callee, to
2893     // be safe.)
2894     if (method()->is_strict()) {
2895       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
2896         result_register = round_item(result_register);
2897       }
2898     }
2899   }
2900 
2901   if (result_register->is_valid()) {
2902     LIR_Opr result = rlock_result(x);
2903     __ move(result_register, result);
2904   }
2905 }
2906 
2907 
2908 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2909   assert(x->number_of_arguments() == 1, "wrong type");
2910   LIRItem value       (x->argument_at(0), this);
2911   LIR_Opr reg = rlock_result(x);
2912   value.load_item();
2913   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2914   __ move(tmp, reg);
2915 }
2916 
2917 
2918 
2919 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2920 void LIRGenerator::do_IfOp(IfOp* x) {
2921 #ifdef ASSERT
2922   {
2923     ValueTag xtag = x->x()->type()->tag();
2924     ValueTag ttag = x->tval()->type()->tag();
2925     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2926     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2927     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2928   }
2929 #endif
2930 
2931   LIRItem left(x->x(), this);
2932   LIRItem right(x->y(), this);
2933   left.load_item();
2934   if (can_inline_as_constant(right.value())) {
2935     right.dont_load_item();
2936   } else {
2937     right.load_item();
2938   }
2939 
2940   LIRItem t_val(x->tval(), this);
2941   LIRItem f_val(x->fval(), this);
2942   t_val.dont_load_item();
2943   f_val.dont_load_item();
2944   LIR_Opr reg = rlock_result(x);
2945 
2946   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2947   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2948 }
2949 
2950 #ifdef JFR_HAVE_INTRINSICS
2951 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
2952   CodeEmitInfo* info = state_for(x);
2953   CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
2954 
2955   assert(info != NULL, "must have info");
2956   LIRItem arg(x->argument_at(0), this);
2957 
2958   arg.load_item();
2959   LIR_Opr klass = new_register(T_METADATA);
2960   __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset(), T_ADDRESS), klass, info);
2961   LIR_Opr id = new_register(T_LONG);
2962   ByteSize offset = KLASS_TRACE_ID_OFFSET;
2963   LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
2964 
2965   __ move(trace_id_addr, id);
2966   __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
2967   __ store(id, trace_id_addr);
2968 
2969 #ifdef TRACE_ID_META_BITS
2970   __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id);
2971 #endif
2972 #ifdef TRACE_ID_SHIFT
2973   __ unsigned_shift_right(id, TRACE_ID_SHIFT, id);
2974 #endif
2975 
2976   __ move(id, rlock_result(x));
2977 }
2978 
2979 void LIRGenerator::do_getEventWriter(Intrinsic* x) {
2980   LabelObj* L_end = new LabelObj();
2981 
2982   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
2983   // meaning of these two is mixed up (see JDK-8026837).
2984   LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
2985                                            in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR),
2986                                            T_ADDRESS);
2987   LIR_Opr result = rlock_result(x);
2988   __ move(LIR_OprFact::oopConst(NULL), result);
2989   LIR_Opr jobj = new_register(T_METADATA);
2990   __ move_wide(jobj_addr, jobj);
2991   __ cmp(lir_cond_equal, jobj, LIR_OprFact::metadataConst(0));
2992   __ branch(lir_cond_equal, L_end->label());
2993 
2994   access_load(IN_NATIVE, T_OBJECT, LIR_OprFact::address(new LIR_Address(jobj, T_OBJECT)), result);
2995 
2996   __ branch_destination(L_end->label());
2997 }
2998 
2999 #endif
3000 
3001 
3002 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3003   assert(x->number_of_arguments() == 0, "wrong type");
3004   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3005   BasicTypeList signature;
3006   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3007   LIR_Opr reg = result_register_for(x->type());
3008   __ call_runtime_leaf(routine, getThreadTemp(),
3009                        reg, new LIR_OprList());
3010   LIR_Opr result = rlock_result(x);
3011   __ move(reg, result);
3012 }
3013 
3014 
3015 
3016 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3017   switch (x->id()) {
3018   case vmIntrinsics::_intBitsToFloat      :
3019   case vmIntrinsics::_doubleToRawLongBits :
3020   case vmIntrinsics::_longBitsToDouble    :
3021   case vmIntrinsics::_floatToRawIntBits   : {
3022     do_FPIntrinsics(x);
3023     break;
3024   }
3025 
3026 #ifdef JFR_HAVE_INTRINSICS
3027   case vmIntrinsics::_getClassId:
3028     do_ClassIDIntrinsic(x);
3029     break;
3030   case vmIntrinsics::_getEventWriter:
3031     do_getEventWriter(x);
3032     break;
3033   case vmIntrinsics::_counterTime:
3034     do_RuntimeCall(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), x);
3035     break;
3036 #endif
3037 
3038   case vmIntrinsics::_currentTimeMillis:
3039     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3040     break;
3041 
3042   case vmIntrinsics::_nanoTime:
3043     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3044     break;
3045 
3046   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3047   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3048   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
3049   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3050   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3051 
3052   case vmIntrinsics::_dlog:           // fall through
3053   case vmIntrinsics::_dlog10:         // fall through
3054   case vmIntrinsics::_dabs:           // fall through
3055   case vmIntrinsics::_dsqrt:          // fall through
3056   case vmIntrinsics::_dtan:           // fall through
3057   case vmIntrinsics::_dsin :          // fall through
3058   case vmIntrinsics::_dcos :          // fall through
3059   case vmIntrinsics::_dexp :          // fall through
3060   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3061   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3062 
3063   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
3064   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
3065 
3066   // java.nio.Buffer.checkIndex
3067   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3068 
3069   case vmIntrinsics::_compareAndSetReference:
3070     do_CompareAndSwap(x, objectType);
3071     break;
3072   case vmIntrinsics::_compareAndSetInt:
3073     do_CompareAndSwap(x, intType);
3074     break;
3075   case vmIntrinsics::_compareAndSetLong:
3076     do_CompareAndSwap(x, longType);
3077     break;
3078 
3079   case vmIntrinsics::_loadFence :
3080     __ membar_acquire();
3081     break;
3082   case vmIntrinsics::_storeFence:
3083     __ membar_release();
3084     break;
3085   case vmIntrinsics::_fullFence :
3086     __ membar();
3087     break;
3088   case vmIntrinsics::_onSpinWait:
3089     __ on_spin_wait();
3090     break;
3091   case vmIntrinsics::_Reference_get:
3092     do_Reference_get(x);
3093     break;
3094 
3095   case vmIntrinsics::_updateCRC32:
3096   case vmIntrinsics::_updateBytesCRC32:
3097   case vmIntrinsics::_updateByteBufferCRC32:
3098     do_update_CRC32(x);
3099     break;
3100 
3101   case vmIntrinsics::_updateBytesCRC32C:
3102   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3103     do_update_CRC32C(x);
3104     break;
3105 
3106   case vmIntrinsics::_vectorizedMismatch:
3107     do_vectorizedMismatch(x);
3108     break;
3109 
3110   default: ShouldNotReachHere(); break;
3111   }
3112 }
3113 
3114 void LIRGenerator::profile_arguments(ProfileCall* x) {
3115   if (compilation()->profile_arguments()) {
3116     int bci = x->bci_of_invoke();
3117     ciMethodData* md = x->method()->method_data_or_null();
3118     assert(md != NULL, "Sanity");
3119     ciProfileData* data = md->bci_to_data(bci);
3120     if (data != NULL) {
3121       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3122           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3123         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3124         int base_offset = md->byte_offset_of_slot(data, extra);
3125         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3126         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3127 
3128         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3129         int start = 0;
3130         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3131         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3132           // first argument is not profiled at call (method handle invoke)
3133           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3134           start = 1;
3135         }
3136         ciSignature* callee_signature = x->callee()->signature();
3137         // method handle call to virtual method
3138         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3139         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3140 
3141         bool ignored_will_link;
3142         ciSignature* signature_at_call = NULL;
3143         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3144         ciSignatureStream signature_at_call_stream(signature_at_call);
3145 
3146         // if called through method handle invoke, some arguments may have been popped
3147         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3148           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3149           ciKlass* exact = profile_type(md, base_offset, off,
3150               args->type(i), x->profiled_arg_at(i+start), mdp,
3151               !x->arg_needs_null_check(i+start),
3152               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3153           if (exact != NULL) {
3154             md->set_argument_type(bci, i, exact);
3155           }
3156         }
3157       } else {
3158 #ifdef ASSERT
3159         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3160         int n = x->nb_profiled_args();
3161         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3162             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3163             "only at JSR292 bytecodes");
3164 #endif
3165       }
3166     }
3167   }
3168 }
3169 
3170 // profile parameters on entry to an inlined method
3171 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3172   if (compilation()->profile_parameters() && x->inlined()) {
3173     ciMethodData* md = x->callee()->method_data_or_null();
3174     if (md != NULL) {
3175       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3176       if (parameters_type_data != NULL) {
3177         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3178         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3179         bool has_receiver = !x->callee()->is_static();
3180         ciSignature* sig = x->callee()->signature();
3181         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3182         int i = 0; // to iterate on the Instructions
3183         Value arg = x->recv();
3184         bool not_null = false;
3185         int bci = x->bci_of_invoke();
3186         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3187         // The first parameter is the receiver so that's what we start
3188         // with if it exists. One exception is method handle call to
3189         // virtual method: the receiver is in the args list
3190         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3191           i = 1;
3192           arg = x->profiled_arg_at(0);
3193           not_null = !x->arg_needs_null_check(0);
3194         }
3195         int k = 0; // to iterate on the profile data
3196         for (;;) {
3197           intptr_t profiled_k = parameters->type(k);
3198           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3199                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3200                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3201           // If the profile is known statically set it once for all and do not emit any code
3202           if (exact != NULL) {
3203             md->set_parameter_type(k, exact);
3204           }
3205           k++;
3206           if (k >= parameters_type_data->number_of_parameters()) {
3207 #ifdef ASSERT
3208             int extra = 0;
3209             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3210                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3211                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3212               extra += 1;
3213             }
3214             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3215 #endif
3216             break;
3217           }
3218           arg = x->profiled_arg_at(i);
3219           not_null = !x->arg_needs_null_check(i);
3220           i++;
3221         }
3222       }
3223     }
3224   }
3225 }
3226 
3227 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3228   // Need recv in a temporary register so it interferes with the other temporaries
3229   LIR_Opr recv = LIR_OprFact::illegalOpr;
3230   LIR_Opr mdo = new_register(T_METADATA);
3231   // tmp is used to hold the counters on SPARC
3232   LIR_Opr tmp = new_pointer_register();
3233 
3234   if (x->nb_profiled_args() > 0) {
3235     profile_arguments(x);
3236   }
3237 
3238   // profile parameters on inlined method entry including receiver
3239   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3240     profile_parameters_at_call(x);
3241   }
3242 
3243   if (x->recv() != NULL) {
3244     LIRItem value(x->recv(), this);
3245     value.load_item();
3246     recv = new_register(T_OBJECT);
3247     __ move(value.result(), recv);
3248   }
3249   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3250 }
3251 
3252 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3253   int bci = x->bci_of_invoke();
3254   ciMethodData* md = x->method()->method_data_or_null();
3255   assert(md != NULL, "Sanity");
3256   ciProfileData* data = md->bci_to_data(bci);
3257   if (data != NULL) {
3258     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3259     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3260     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3261 
3262     bool ignored_will_link;
3263     ciSignature* signature_at_call = NULL;
3264     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3265 
3266     // The offset within the MDO of the entry to update may be too large
3267     // to be used in load/store instructions on some platforms. So have
3268     // profile_type() compute the address of the profile in a register.
3269     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3270         ret->type(), x->ret(), mdp,
3271         !x->needs_null_check(),
3272         signature_at_call->return_type()->as_klass(),
3273         x->callee()->signature()->return_type()->as_klass());
3274     if (exact != NULL) {
3275       md->set_return_type(bci, exact);
3276     }
3277   }
3278 }
3279 
3280 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3281   // We can safely ignore accessors here, since c2 will inline them anyway,
3282   // accessors are also always mature.
3283   if (!x->inlinee()->is_accessor()) {
3284     CodeEmitInfo* info = state_for(x, x->state(), true);
3285     // Notify the runtime very infrequently only to take care of counter overflows
3286     int freq_log = Tier23InlineeNotifyFreqLog;
3287     double scale;
3288     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3289       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3290     }
3291     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3292   }
3293 }
3294 
3295 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3296   if (compilation()->count_backedges()) {
3297 #if defined(X86) && !defined(_LP64)
3298     // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3299     LIR_Opr left_copy = new_register(left->type());
3300     __ move(left, left_copy);
3301     __ cmp(cond, left_copy, right);
3302 #else
3303     __ cmp(cond, left, right);
3304 #endif
3305     LIR_Opr step = new_register(T_INT);
3306     LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3307     LIR_Opr zero = LIR_OprFact::intConst(0);
3308     __ cmove(cond,
3309         (left_bci < bci) ? plus_one : zero,
3310         (right_bci < bci) ? plus_one : zero,
3311         step, left->type());
3312     increment_backedge_counter(info, step, bci);
3313   }
3314 }
3315 
3316 
3317 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3318   int freq_log = 0;
3319   int level = compilation()->env()->comp_level();
3320   if (level == CompLevel_limited_profile) {
3321     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3322   } else if (level == CompLevel_full_profile) {
3323     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3324   } else {
3325     ShouldNotReachHere();
3326   }
3327   // Increment the appropriate invocation/backedge counter and notify the runtime.
3328   double scale;
3329   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3330     freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3331   }
3332   increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3333 }
3334 
3335 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3336   ciMethod* method = info->scope()->method();
3337   MethodCounters* mc_adr = method->ensure_method_counters();
3338   if (mc_adr != NULL) {
3339     LIR_Opr mc = new_pointer_register();
3340     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3341     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3342     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3343     LIR_Opr result = new_register(T_INT);
3344     __ load(counter, result);
3345     __ sub(result, LIR_OprFact::intConst(1), result);
3346     __ store(result, counter);
3347     // DeoptimizeStub will reexecute from the current state in code info.
3348     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3349                                          Deoptimization::Action_make_not_entrant);
3350     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3351     __ branch(lir_cond_lessEqual, deopt);
3352   }
3353 }
3354 
3355 
3356 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3357                                                 ciMethod *method, LIR_Opr step, int frequency,
3358                                                 int bci, bool backedge, bool notify) {
3359   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3360   int level = _compilation->env()->comp_level();
3361   assert(level > CompLevel_simple, "Shouldn't be here");
3362 
3363   int offset = -1;
3364   LIR_Opr counter_holder = NULL;
3365   if (level == CompLevel_limited_profile) {
3366     MethodCounters* counters_adr = method->ensure_method_counters();
3367     if (counters_adr == NULL) {
3368       bailout("method counters allocation failed");
3369       return;
3370     }
3371     counter_holder = new_pointer_register();
3372     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3373     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3374                                  MethodCounters::invocation_counter_offset());
3375   } else if (level == CompLevel_full_profile) {
3376     counter_holder = new_register(T_METADATA);
3377     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3378                                  MethodData::invocation_counter_offset());
3379     ciMethodData* md = method->method_data_or_null();
3380     assert(md != NULL, "Sanity");
3381     __ metadata2reg(md->constant_encoding(), counter_holder);
3382   } else {
3383     ShouldNotReachHere();
3384   }
3385   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3386   LIR_Opr result = new_register(T_INT);
3387   __ load(counter, result);
3388   __ add(result, step, result);
3389   __ store(result, counter);
3390   if (notify && (!backedge || UseOnStackReplacement)) {
3391     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3392     // The bci for info can point to cmp for if's we want the if bci
3393     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3394     int freq = frequency << InvocationCounter::count_shift;
3395     if (freq == 0) {
3396       if (!step->is_constant()) {
3397         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3398         __ branch(lir_cond_notEqual, overflow);
3399       } else {
3400         __ branch(lir_cond_always, overflow);
3401       }
3402     } else {
3403       LIR_Opr mask = load_immediate(freq, T_INT);
3404       if (!step->is_constant()) {
3405         // If step is 0, make sure the overflow check below always fails
3406         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3407         __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3408       }
3409       __ logical_and(result, mask, result);
3410       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3411       __ branch(lir_cond_equal, overflow);
3412     }
3413     __ branch_destination(overflow->continuation());
3414   }
3415 }
3416 
3417 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3418   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3419   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3420 
3421   if (x->pass_thread()) {
3422     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3423     args->append(getThreadPointer());
3424   }
3425 
3426   for (int i = 0; i < x->number_of_arguments(); i++) {
3427     Value a = x->argument_at(i);
3428     LIRItem* item = new LIRItem(a, this);
3429     item->load_item();
3430     args->append(item->result());
3431     signature->append(as_BasicType(a->type()));
3432   }
3433 
3434   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3435   if (x->type() == voidType) {
3436     set_no_result(x);
3437   } else {
3438     __ move(result, rlock_result(x));
3439   }
3440 }
3441 
3442 #ifdef ASSERT
3443 void LIRGenerator::do_Assert(Assert *x) {
3444   ValueTag tag = x->x()->type()->tag();
3445   If::Condition cond = x->cond();
3446 
3447   LIRItem xitem(x->x(), this);
3448   LIRItem yitem(x->y(), this);
3449   LIRItem* xin = &xitem;
3450   LIRItem* yin = &yitem;
3451 
3452   assert(tag == intTag, "Only integer assertions are valid!");
3453 
3454   xin->load_item();
3455   yin->dont_load_item();
3456 
3457   set_no_result(x);
3458 
3459   LIR_Opr left = xin->result();
3460   LIR_Opr right = yin->result();
3461 
3462   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3463 }
3464 #endif
3465 
3466 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3467 
3468 
3469   Instruction *a = x->x();
3470   Instruction *b = x->y();
3471   if (!a || StressRangeCheckElimination) {
3472     assert(!b || StressRangeCheckElimination, "B must also be null");
3473 
3474     CodeEmitInfo *info = state_for(x, x->state());
3475     CodeStub* stub = new PredicateFailedStub(info);
3476 
3477     __ jump(stub);
3478   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3479     int a_int = a->type()->as_IntConstant()->value();
3480     int b_int = b->type()->as_IntConstant()->value();
3481 
3482     bool ok = false;
3483 
3484     switch(x->cond()) {
3485       case Instruction::eql: ok = (a_int == b_int); break;
3486       case Instruction::neq: ok = (a_int != b_int); break;
3487       case Instruction::lss: ok = (a_int < b_int); break;
3488       case Instruction::leq: ok = (a_int <= b_int); break;
3489       case Instruction::gtr: ok = (a_int > b_int); break;
3490       case Instruction::geq: ok = (a_int >= b_int); break;
3491       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3492       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3493       default: ShouldNotReachHere();
3494     }
3495 
3496     if (ok) {
3497 
3498       CodeEmitInfo *info = state_for(x, x->state());
3499       CodeStub* stub = new PredicateFailedStub(info);
3500 
3501       __ jump(stub);
3502     }
3503   } else {
3504 
3505     ValueTag tag = x->x()->type()->tag();
3506     If::Condition cond = x->cond();
3507     LIRItem xitem(x->x(), this);
3508     LIRItem yitem(x->y(), this);
3509     LIRItem* xin = &xitem;
3510     LIRItem* yin = &yitem;
3511 
3512     assert(tag == intTag, "Only integer deoptimizations are valid!");
3513 
3514     xin->load_item();
3515     yin->dont_load_item();
3516     set_no_result(x);
3517 
3518     LIR_Opr left = xin->result();
3519     LIR_Opr right = yin->result();
3520 
3521     CodeEmitInfo *info = state_for(x, x->state());
3522     CodeStub* stub = new PredicateFailedStub(info);
3523 
3524     __ cmp(lir_cond(cond), left, right);
3525     __ branch(lir_cond(cond), stub);
3526   }
3527 }
3528 
3529 
3530 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3531   LIRItemList args(1);
3532   LIRItem value(arg1, this);
3533   args.append(&value);
3534   BasicTypeList signature;
3535   signature.append(as_BasicType(arg1->type()));
3536 
3537   return call_runtime(&signature, &args, entry, result_type, info);
3538 }
3539 
3540 
3541 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3542   LIRItemList args(2);
3543   LIRItem value1(arg1, this);
3544   LIRItem value2(arg2, this);
3545   args.append(&value1);
3546   args.append(&value2);
3547   BasicTypeList signature;
3548   signature.append(as_BasicType(arg1->type()));
3549   signature.append(as_BasicType(arg2->type()));
3550 
3551   return call_runtime(&signature, &args, entry, result_type, info);
3552 }
3553 
3554 
3555 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3556                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3557   // get a result register
3558   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3559   LIR_Opr result = LIR_OprFact::illegalOpr;
3560   if (result_type->tag() != voidTag) {
3561     result = new_register(result_type);
3562     phys_reg = result_register_for(result_type);
3563   }
3564 
3565   // move the arguments into the correct location
3566   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3567   assert(cc->length() == args->length(), "argument mismatch");
3568   for (int i = 0; i < args->length(); i++) {
3569     LIR_Opr arg = args->at(i);
3570     LIR_Opr loc = cc->at(i);
3571     if (loc->is_register()) {
3572       __ move(arg, loc);
3573     } else {
3574       LIR_Address* addr = loc->as_address_ptr();
3575 //           if (!can_store_as_constant(arg)) {
3576 //             LIR_Opr tmp = new_register(arg->type());
3577 //             __ move(arg, tmp);
3578 //             arg = tmp;
3579 //           }
3580       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3581         __ unaligned_move(arg, addr);
3582       } else {
3583         __ move(arg, addr);
3584       }
3585     }
3586   }
3587 
3588   if (info) {
3589     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3590   } else {
3591     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3592   }
3593   if (result->is_valid()) {
3594     __ move(phys_reg, result);
3595   }
3596   return result;
3597 }
3598 
3599 
3600 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3601                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3602   // get a result register
3603   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3604   LIR_Opr result = LIR_OprFact::illegalOpr;
3605   if (result_type->tag() != voidTag) {
3606     result = new_register(result_type);
3607     phys_reg = result_register_for(result_type);
3608   }
3609 
3610   // move the arguments into the correct location
3611   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3612 
3613   assert(cc->length() == args->length(), "argument mismatch");
3614   for (int i = 0; i < args->length(); i++) {
3615     LIRItem* arg = args->at(i);
3616     LIR_Opr loc = cc->at(i);
3617     if (loc->is_register()) {
3618       arg->load_item_force(loc);
3619     } else {
3620       LIR_Address* addr = loc->as_address_ptr();
3621       arg->load_for_store(addr->type());
3622       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3623         __ unaligned_move(arg->result(), addr);
3624       } else {
3625         __ move(arg->result(), addr);
3626       }
3627     }
3628   }
3629 
3630   if (info) {
3631     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3632   } else {
3633     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3634   }
3635   if (result->is_valid()) {
3636     __ move(phys_reg, result);
3637   }
3638   return result;
3639 }
3640 
3641 void LIRGenerator::do_MemBar(MemBar* x) {
3642   LIR_Code code = x->code();
3643   switch(code) {
3644   case lir_membar_acquire   : __ membar_acquire(); break;
3645   case lir_membar_release   : __ membar_release(); break;
3646   case lir_membar           : __ membar(); break;
3647   case lir_membar_loadload  : __ membar_loadload(); break;
3648   case lir_membar_storestore: __ membar_storestore(); break;
3649   case lir_membar_loadstore : __ membar_loadstore(); break;
3650   case lir_membar_storeload : __ membar_storeload(); break;
3651   default                   : ShouldNotReachHere(); break;
3652   }
3653 }
3654 
3655 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3656   LIR_Opr value_fixed = rlock_byte(T_BYTE);
3657   if (TwoOperandLIRForm) {
3658     __ move(value, value_fixed);
3659     __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3660   } else {
3661     __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3662   }
3663   LIR_Opr klass = new_register(T_METADATA);
3664   __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
3665   null_check_info = NULL;
3666   LIR_Opr layout = new_register(T_INT);
3667   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3668   int diffbit = Klass::layout_helper_boolean_diffbit();
3669   __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3670   __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3671   __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3672   value = value_fixed;
3673   return value;
3674 }
3675 
3676 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3677   if (x->check_boolean()) {
3678     value = mask_boolean(array, value, null_check_info);
3679   }
3680   return value;
3681 }