1 /* 2 * Copyright (c) 2005, 2020, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "c1/c1_Compilation.hpp" 27 #include "c1/c1_Defs.hpp" 28 #include "c1/c1_FrameMap.hpp" 29 #include "c1/c1_Instruction.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_LIRGenerator.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArrayKlass.hpp" 34 #include "ci/ciInstance.hpp" 35 #include "ci/ciObjArray.hpp" 36 #include "ci/ciUtilities.hpp" 37 #include "gc/shared/barrierSet.hpp" 38 #include "gc/shared/c1/barrierSetC1.hpp" 39 #include "oops/klass.inline.hpp" 40 #include "runtime/arguments.hpp" 41 #include "runtime/sharedRuntime.hpp" 42 #include "runtime/stubRoutines.hpp" 43 #include "runtime/vm_version.hpp" 44 #include "utilities/bitMap.inline.hpp" 45 #include "utilities/macros.hpp" 46 #include "utilities/powerOfTwo.hpp" 47 48 #ifdef ASSERT 49 #define __ gen()->lir(__FILE__, __LINE__)-> 50 #else 51 #define __ gen()->lir()-> 52 #endif 53 54 #ifndef PATCHED_ADDR 55 #define PATCHED_ADDR (max_jint) 56 #endif 57 58 void PhiResolverState::reset() { 59 _virtual_operands.clear(); 60 _other_operands.clear(); 61 _vreg_table.clear(); 62 } 63 64 65 //-------------------------------------------------------------- 66 // PhiResolver 67 68 // Resolves cycles: 69 // 70 // r1 := r2 becomes temp := r1 71 // r2 := r1 r1 := r2 72 // r2 := temp 73 // and orders moves: 74 // 75 // r2 := r3 becomes r1 := r2 76 // r1 := r2 r2 := r3 77 78 PhiResolver::PhiResolver(LIRGenerator* gen) 79 : _gen(gen) 80 , _state(gen->resolver_state()) 81 , _temp(LIR_OprFact::illegalOpr) 82 { 83 // reinitialize the shared state arrays 84 _state.reset(); 85 } 86 87 88 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) { 89 assert(src->is_valid(), ""); 90 assert(dest->is_valid(), ""); 91 __ move(src, dest); 92 } 93 94 95 void PhiResolver::move_temp_to(LIR_Opr dest) { 96 assert(_temp->is_valid(), ""); 97 emit_move(_temp, dest); 98 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr); 99 } 100 101 102 void PhiResolver::move_to_temp(LIR_Opr src) { 103 assert(_temp->is_illegal(), ""); 104 _temp = _gen->new_register(src->type()); 105 emit_move(src, _temp); 106 } 107 108 109 // Traverse assignment graph in depth first order and generate moves in post order 110 // ie. two assignments: b := c, a := b start with node c: 111 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a) 112 // Generates moves in this order: move b to a and move c to b 113 // ie. cycle a := b, b := a start with node a 114 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a) 115 // Generates moves in this order: move b to temp, move a to b, move temp to a 116 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) { 117 if (!dest->visited()) { 118 dest->set_visited(); 119 for (int i = dest->no_of_destinations()-1; i >= 0; i --) { 120 move(dest, dest->destination_at(i)); 121 } 122 } else if (!dest->start_node()) { 123 // cylce in graph detected 124 assert(_loop == NULL, "only one loop valid!"); 125 _loop = dest; 126 move_to_temp(src->operand()); 127 return; 128 } // else dest is a start node 129 130 if (!dest->assigned()) { 131 if (_loop == dest) { 132 move_temp_to(dest->operand()); 133 dest->set_assigned(); 134 } else if (src != NULL) { 135 emit_move(src->operand(), dest->operand()); 136 dest->set_assigned(); 137 } 138 } 139 } 140 141 142 PhiResolver::~PhiResolver() { 143 int i; 144 // resolve any cycles in moves from and to virtual registers 145 for (i = virtual_operands().length() - 1; i >= 0; i --) { 146 ResolveNode* node = virtual_operands().at(i); 147 if (!node->visited()) { 148 _loop = NULL; 149 move(NULL, node); 150 node->set_start_node(); 151 assert(_temp->is_illegal(), "move_temp_to() call missing"); 152 } 153 } 154 155 // generate move for move from non virtual register to abitrary destination 156 for (i = other_operands().length() - 1; i >= 0; i --) { 157 ResolveNode* node = other_operands().at(i); 158 for (int j = node->no_of_destinations() - 1; j >= 0; j --) { 159 emit_move(node->operand(), node->destination_at(j)->operand()); 160 } 161 } 162 } 163 164 165 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) { 166 ResolveNode* node; 167 if (opr->is_virtual()) { 168 int vreg_num = opr->vreg_number(); 169 node = vreg_table().at_grow(vreg_num, NULL); 170 assert(node == NULL || node->operand() == opr, ""); 171 if (node == NULL) { 172 node = new ResolveNode(opr); 173 vreg_table().at_put(vreg_num, node); 174 } 175 // Make sure that all virtual operands show up in the list when 176 // they are used as the source of a move. 177 if (source && !virtual_operands().contains(node)) { 178 virtual_operands().append(node); 179 } 180 } else { 181 assert(source, ""); 182 node = new ResolveNode(opr); 183 other_operands().append(node); 184 } 185 return node; 186 } 187 188 189 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) { 190 assert(dest->is_virtual(), ""); 191 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr(); 192 assert(src->is_valid(), ""); 193 assert(dest->is_valid(), ""); 194 ResolveNode* source = source_node(src); 195 source->append(destination_node(dest)); 196 } 197 198 199 //-------------------------------------------------------------- 200 // LIRItem 201 202 void LIRItem::set_result(LIR_Opr opr) { 203 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change"); 204 value()->set_operand(opr); 205 206 if (opr->is_virtual()) { 207 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL); 208 } 209 210 _result = opr; 211 } 212 213 void LIRItem::load_item() { 214 if (result()->is_illegal()) { 215 // update the items result 216 _result = value()->operand(); 217 } 218 if (!result()->is_register()) { 219 LIR_Opr reg = _gen->new_register(value()->type()); 220 __ move(result(), reg); 221 if (result()->is_constant()) { 222 _result = reg; 223 } else { 224 set_result(reg); 225 } 226 } 227 } 228 229 230 void LIRItem::load_for_store(BasicType type) { 231 if (_gen->can_store_as_constant(value(), type)) { 232 _result = value()->operand(); 233 if (!_result->is_constant()) { 234 _result = LIR_OprFact::value_type(value()->type()); 235 } 236 } else if (type == T_BYTE || type == T_BOOLEAN) { 237 load_byte_item(); 238 } else { 239 load_item(); 240 } 241 } 242 243 void LIRItem::load_item_force(LIR_Opr reg) { 244 LIR_Opr r = result(); 245 if (r != reg) { 246 #if !defined(ARM) && !defined(E500V2) 247 if (r->type() != reg->type()) { 248 // moves between different types need an intervening spill slot 249 r = _gen->force_to_spill(r, reg->type()); 250 } 251 #endif 252 __ move(r, reg); 253 _result = reg; 254 } 255 } 256 257 ciObject* LIRItem::get_jobject_constant() const { 258 ObjectType* oc = type()->as_ObjectType(); 259 if (oc) { 260 return oc->constant_value(); 261 } 262 return NULL; 263 } 264 265 266 jint LIRItem::get_jint_constant() const { 267 assert(is_constant() && value() != NULL, ""); 268 assert(type()->as_IntConstant() != NULL, "type check"); 269 return type()->as_IntConstant()->value(); 270 } 271 272 273 jint LIRItem::get_address_constant() const { 274 assert(is_constant() && value() != NULL, ""); 275 assert(type()->as_AddressConstant() != NULL, "type check"); 276 return type()->as_AddressConstant()->value(); 277 } 278 279 280 jfloat LIRItem::get_jfloat_constant() const { 281 assert(is_constant() && value() != NULL, ""); 282 assert(type()->as_FloatConstant() != NULL, "type check"); 283 return type()->as_FloatConstant()->value(); 284 } 285 286 287 jdouble LIRItem::get_jdouble_constant() const { 288 assert(is_constant() && value() != NULL, ""); 289 assert(type()->as_DoubleConstant() != NULL, "type check"); 290 return type()->as_DoubleConstant()->value(); 291 } 292 293 294 jlong LIRItem::get_jlong_constant() const { 295 assert(is_constant() && value() != NULL, ""); 296 assert(type()->as_LongConstant() != NULL, "type check"); 297 return type()->as_LongConstant()->value(); 298 } 299 300 301 302 //-------------------------------------------------------------- 303 304 305 void LIRGenerator::block_do_prolog(BlockBegin* block) { 306 #ifndef PRODUCT 307 if (PrintIRWithLIR) { 308 block->print(); 309 } 310 #endif 311 312 // set up the list of LIR instructions 313 assert(block->lir() == NULL, "LIR list already computed for this block"); 314 _lir = new LIR_List(compilation(), block); 315 block->set_lir(_lir); 316 317 __ branch_destination(block->label()); 318 319 if (LIRTraceExecution && 320 Compilation::current()->hir()->start()->block_id() != block->block_id() && 321 !block->is_set(BlockBegin::exception_entry_flag)) { 322 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst"); 323 trace_block_entry(block); 324 } 325 } 326 327 328 void LIRGenerator::block_do_epilog(BlockBegin* block) { 329 #ifndef PRODUCT 330 if (PrintIRWithLIR) { 331 tty->cr(); 332 } 333 #endif 334 335 // LIR_Opr for unpinned constants shouldn't be referenced by other 336 // blocks so clear them out after processing the block. 337 for (int i = 0; i < _unpinned_constants.length(); i++) { 338 _unpinned_constants.at(i)->clear_operand(); 339 } 340 _unpinned_constants.trunc_to(0); 341 342 // clear our any registers for other local constants 343 _constants.trunc_to(0); 344 _reg_for_constants.trunc_to(0); 345 } 346 347 348 void LIRGenerator::block_do(BlockBegin* block) { 349 CHECK_BAILOUT(); 350 351 block_do_prolog(block); 352 set_block(block); 353 354 for (Instruction* instr = block; instr != NULL; instr = instr->next()) { 355 if (instr->is_pinned()) do_root(instr); 356 } 357 358 set_block(NULL); 359 block_do_epilog(block); 360 } 361 362 363 //-------------------------LIRGenerator----------------------------- 364 365 // This is where the tree-walk starts; instr must be root; 366 void LIRGenerator::do_root(Value instr) { 367 CHECK_BAILOUT(); 368 369 InstructionMark im(compilation(), instr); 370 371 assert(instr->is_pinned(), "use only with roots"); 372 assert(instr->subst() == instr, "shouldn't have missed substitution"); 373 374 instr->visit(this); 375 376 assert(!instr->has_uses() || instr->operand()->is_valid() || 377 instr->as_Constant() != NULL || bailed_out(), "invalid item set"); 378 } 379 380 381 // This is called for each node in tree; the walk stops if a root is reached 382 void LIRGenerator::walk(Value instr) { 383 InstructionMark im(compilation(), instr); 384 //stop walk when encounter a root 385 if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) { 386 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited"); 387 } else { 388 assert(instr->subst() == instr, "shouldn't have missed substitution"); 389 instr->visit(this); 390 // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use"); 391 } 392 } 393 394 395 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) { 396 assert(state != NULL, "state must be defined"); 397 398 #ifndef PRODUCT 399 state->verify(); 400 #endif 401 402 ValueStack* s = state; 403 for_each_state(s) { 404 if (s->kind() == ValueStack::EmptyExceptionState) { 405 assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty"); 406 continue; 407 } 408 409 int index; 410 Value value; 411 for_each_stack_value(s, index, value) { 412 assert(value->subst() == value, "missed substitution"); 413 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) { 414 walk(value); 415 assert(value->operand()->is_valid(), "must be evaluated now"); 416 } 417 } 418 419 int bci = s->bci(); 420 IRScope* scope = s->scope(); 421 ciMethod* method = scope->method(); 422 423 MethodLivenessResult liveness = method->liveness_at_bci(bci); 424 if (bci == SynchronizationEntryBCI) { 425 if (x->as_ExceptionObject() || x->as_Throw()) { 426 // all locals are dead on exit from the synthetic unlocker 427 liveness.clear(); 428 } else { 429 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke"); 430 } 431 } 432 if (!liveness.is_valid()) { 433 // Degenerate or breakpointed method. 434 bailout("Degenerate or breakpointed method"); 435 } else { 436 assert((int)liveness.size() == s->locals_size(), "error in use of liveness"); 437 for_each_local_value(s, index, value) { 438 assert(value->subst() == value, "missed substition"); 439 if (liveness.at(index) && !value->type()->is_illegal()) { 440 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) { 441 walk(value); 442 assert(value->operand()->is_valid(), "must be evaluated now"); 443 } 444 } else { 445 // NULL out this local so that linear scan can assume that all non-NULL values are live. 446 s->invalidate_local(index); 447 } 448 } 449 } 450 } 451 452 return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException)); 453 } 454 455 456 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) { 457 return state_for(x, x->exception_state()); 458 } 459 460 461 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) { 462 /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation 463 * is active and the class hasn't yet been resolved we need to emit a patch that resolves 464 * the class. */ 465 if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) { 466 assert(info != NULL, "info must be set if class is not loaded"); 467 __ klass2reg_patch(NULL, r, info); 468 } else { 469 // no patching needed 470 __ metadata2reg(obj->constant_encoding(), r); 471 } 472 } 473 474 475 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index, 476 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) { 477 CodeStub* stub = new RangeCheckStub(range_check_info, index, array); 478 if (index->is_constant()) { 479 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(), 480 index->as_jint(), null_check_info); 481 __ branch(lir_cond_belowEqual, stub); // forward branch 482 } else { 483 cmp_reg_mem(lir_cond_aboveEqual, index, array, 484 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info); 485 __ branch(lir_cond_aboveEqual, stub); // forward branch 486 } 487 } 488 489 490 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) { 491 CodeStub* stub = new RangeCheckStub(info, index); 492 if (index->is_constant()) { 493 cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info); 494 __ branch(lir_cond_belowEqual, stub); // forward branch 495 } else { 496 cmp_reg_mem(lir_cond_aboveEqual, index, buffer, 497 java_nio_Buffer::limit_offset(), T_INT, info); 498 __ branch(lir_cond_aboveEqual, stub); // forward branch 499 } 500 __ move(index, result); 501 } 502 503 504 505 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) { 506 LIR_Opr result_op = result; 507 LIR_Opr left_op = left; 508 LIR_Opr right_op = right; 509 510 if (TwoOperandLIRForm && left_op != result_op) { 511 assert(right_op != result_op, "malformed"); 512 __ move(left_op, result_op); 513 left_op = result_op; 514 } 515 516 switch(code) { 517 case Bytecodes::_dadd: 518 case Bytecodes::_fadd: 519 case Bytecodes::_ladd: 520 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break; 521 case Bytecodes::_fmul: 522 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break; 523 524 case Bytecodes::_dmul: 525 { 526 if (is_strictfp) { 527 __ mul_strictfp(left_op, right_op, result_op, tmp_op); break; 528 } else { 529 __ mul(left_op, right_op, result_op); break; 530 } 531 } 532 break; 533 534 case Bytecodes::_imul: 535 { 536 bool did_strength_reduce = false; 537 538 if (right->is_constant()) { 539 jint c = right->as_jint(); 540 if (c > 0 && is_power_of_2(c)) { 541 // do not need tmp here 542 __ shift_left(left_op, exact_log2(c), result_op); 543 did_strength_reduce = true; 544 } else { 545 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op); 546 } 547 } 548 // we couldn't strength reduce so just emit the multiply 549 if (!did_strength_reduce) { 550 __ mul(left_op, right_op, result_op); 551 } 552 } 553 break; 554 555 case Bytecodes::_dsub: 556 case Bytecodes::_fsub: 557 case Bytecodes::_lsub: 558 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break; 559 560 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break; 561 // ldiv and lrem are implemented with a direct runtime call 562 563 case Bytecodes::_ddiv: 564 { 565 if (is_strictfp) { 566 __ div_strictfp (left_op, right_op, result_op, tmp_op); break; 567 } else { 568 __ div (left_op, right_op, result_op); break; 569 } 570 } 571 break; 572 573 case Bytecodes::_drem: 574 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break; 575 576 default: ShouldNotReachHere(); 577 } 578 } 579 580 581 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 582 arithmetic_op(code, result, left, right, false, tmp); 583 } 584 585 586 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) { 587 arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info); 588 } 589 590 591 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) { 592 arithmetic_op(code, result, left, right, is_strictfp, tmp); 593 } 594 595 596 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) { 597 598 if (TwoOperandLIRForm && value != result_op 599 // Only 32bit right shifts require two operand form on S390. 600 S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) { 601 assert(count != result_op, "malformed"); 602 __ move(value, result_op); 603 value = result_op; 604 } 605 606 assert(count->is_constant() || count->is_register(), "must be"); 607 switch(code) { 608 case Bytecodes::_ishl: 609 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break; 610 case Bytecodes::_ishr: 611 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break; 612 case Bytecodes::_iushr: 613 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break; 614 default: ShouldNotReachHere(); 615 } 616 } 617 618 619 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) { 620 if (TwoOperandLIRForm && left_op != result_op) { 621 assert(right_op != result_op, "malformed"); 622 __ move(left_op, result_op); 623 left_op = result_op; 624 } 625 626 switch(code) { 627 case Bytecodes::_iand: 628 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break; 629 630 case Bytecodes::_ior: 631 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break; 632 633 case Bytecodes::_ixor: 634 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break; 635 636 default: ShouldNotReachHere(); 637 } 638 } 639 640 641 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) { 642 if (!GenerateSynchronizationCode) return; 643 // for slow path, use debug info for state after successful locking 644 CodeStub* slow_path = new MonitorEnterStub(object, lock, info); 645 __ load_stack_address_monitor(monitor_no, lock); 646 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter 647 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception); 648 } 649 650 651 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) { 652 if (!GenerateSynchronizationCode) return; 653 // setup registers 654 LIR_Opr hdr = lock; 655 lock = new_hdr; 656 CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no); 657 __ load_stack_address_monitor(monitor_no, lock); 658 __ unlock_object(hdr, object, lock, scratch, slow_path); 659 } 660 661 #ifndef PRODUCT 662 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) { 663 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) { 664 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci()); 665 } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) { 666 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci()); 667 } 668 } 669 #endif 670 671 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) { 672 klass2reg_with_patching(klass_reg, klass, info, is_unresolved); 673 // If klass is not loaded we do not know if the klass has finalizers: 674 if (UseFastNewInstance && klass->is_loaded() 675 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) { 676 677 Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id; 678 679 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id); 680 681 assert(klass->is_loaded(), "must be loaded"); 682 // allocate space for instance 683 assert(klass->size_helper() >= 0, "illegal instance size"); 684 const int instance_size = align_object_size(klass->size_helper()); 685 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4, 686 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path); 687 } else { 688 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id); 689 __ branch(lir_cond_always, slow_path); 690 __ branch_destination(slow_path->continuation()); 691 } 692 } 693 694 695 static bool is_constant_zero(Instruction* inst) { 696 IntConstant* c = inst->type()->as_IntConstant(); 697 if (c) { 698 return (c->value() == 0); 699 } 700 return false; 701 } 702 703 704 static bool positive_constant(Instruction* inst) { 705 IntConstant* c = inst->type()->as_IntConstant(); 706 if (c) { 707 return (c->value() >= 0); 708 } 709 return false; 710 } 711 712 713 static ciArrayKlass* as_array_klass(ciType* type) { 714 if (type != NULL && type->is_array_klass() && type->is_loaded()) { 715 return (ciArrayKlass*)type; 716 } else { 717 return NULL; 718 } 719 } 720 721 static ciType* phi_declared_type(Phi* phi) { 722 ciType* t = phi->operand_at(0)->declared_type(); 723 if (t == NULL) { 724 return NULL; 725 } 726 for(int i = 1; i < phi->operand_count(); i++) { 727 if (t != phi->operand_at(i)->declared_type()) { 728 return NULL; 729 } 730 } 731 return t; 732 } 733 734 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) { 735 Instruction* src = x->argument_at(0); 736 Instruction* src_pos = x->argument_at(1); 737 Instruction* dst = x->argument_at(2); 738 Instruction* dst_pos = x->argument_at(3); 739 Instruction* length = x->argument_at(4); 740 741 // first try to identify the likely type of the arrays involved 742 ciArrayKlass* expected_type = NULL; 743 bool is_exact = false, src_objarray = false, dst_objarray = false; 744 { 745 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type()); 746 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type()); 747 Phi* phi; 748 if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) { 749 src_declared_type = as_array_klass(phi_declared_type(phi)); 750 } 751 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type()); 752 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type()); 753 if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) { 754 dst_declared_type = as_array_klass(phi_declared_type(phi)); 755 } 756 757 if (src_exact_type != NULL && src_exact_type == dst_exact_type) { 758 // the types exactly match so the type is fully known 759 is_exact = true; 760 expected_type = src_exact_type; 761 } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) { 762 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type; 763 ciArrayKlass* src_type = NULL; 764 if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) { 765 src_type = (ciArrayKlass*) src_exact_type; 766 } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) { 767 src_type = (ciArrayKlass*) src_declared_type; 768 } 769 if (src_type != NULL) { 770 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) { 771 is_exact = true; 772 expected_type = dst_type; 773 } 774 } 775 } 776 // at least pass along a good guess 777 if (expected_type == NULL) expected_type = dst_exact_type; 778 if (expected_type == NULL) expected_type = src_declared_type; 779 if (expected_type == NULL) expected_type = dst_declared_type; 780 781 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass()); 782 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass()); 783 } 784 785 // if a probable array type has been identified, figure out if any 786 // of the required checks for a fast case can be elided. 787 int flags = LIR_OpArrayCopy::all_flags; 788 789 if (!src_objarray) 790 flags &= ~LIR_OpArrayCopy::src_objarray; 791 if (!dst_objarray) 792 flags &= ~LIR_OpArrayCopy::dst_objarray; 793 794 if (!x->arg_needs_null_check(0)) 795 flags &= ~LIR_OpArrayCopy::src_null_check; 796 if (!x->arg_needs_null_check(2)) 797 flags &= ~LIR_OpArrayCopy::dst_null_check; 798 799 800 if (expected_type != NULL) { 801 Value length_limit = NULL; 802 803 IfOp* ifop = length->as_IfOp(); 804 if (ifop != NULL) { 805 // look for expressions like min(v, a.length) which ends up as 806 // x > y ? y : x or x >= y ? y : x 807 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) && 808 ifop->x() == ifop->fval() && 809 ifop->y() == ifop->tval()) { 810 length_limit = ifop->y(); 811 } 812 } 813 814 // try to skip null checks and range checks 815 NewArray* src_array = src->as_NewArray(); 816 if (src_array != NULL) { 817 flags &= ~LIR_OpArrayCopy::src_null_check; 818 if (length_limit != NULL && 819 src_array->length() == length_limit && 820 is_constant_zero(src_pos)) { 821 flags &= ~LIR_OpArrayCopy::src_range_check; 822 } 823 } 824 825 NewArray* dst_array = dst->as_NewArray(); 826 if (dst_array != NULL) { 827 flags &= ~LIR_OpArrayCopy::dst_null_check; 828 if (length_limit != NULL && 829 dst_array->length() == length_limit && 830 is_constant_zero(dst_pos)) { 831 flags &= ~LIR_OpArrayCopy::dst_range_check; 832 } 833 } 834 835 // check from incoming constant values 836 if (positive_constant(src_pos)) 837 flags &= ~LIR_OpArrayCopy::src_pos_positive_check; 838 if (positive_constant(dst_pos)) 839 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check; 840 if (positive_constant(length)) 841 flags &= ~LIR_OpArrayCopy::length_positive_check; 842 843 // see if the range check can be elided, which might also imply 844 // that src or dst is non-null. 845 ArrayLength* al = length->as_ArrayLength(); 846 if (al != NULL) { 847 if (al->array() == src) { 848 // it's the length of the source array 849 flags &= ~LIR_OpArrayCopy::length_positive_check; 850 flags &= ~LIR_OpArrayCopy::src_null_check; 851 if (is_constant_zero(src_pos)) 852 flags &= ~LIR_OpArrayCopy::src_range_check; 853 } 854 if (al->array() == dst) { 855 // it's the length of the destination array 856 flags &= ~LIR_OpArrayCopy::length_positive_check; 857 flags &= ~LIR_OpArrayCopy::dst_null_check; 858 if (is_constant_zero(dst_pos)) 859 flags &= ~LIR_OpArrayCopy::dst_range_check; 860 } 861 } 862 if (is_exact) { 863 flags &= ~LIR_OpArrayCopy::type_check; 864 } 865 } 866 867 IntConstant* src_int = src_pos->type()->as_IntConstant(); 868 IntConstant* dst_int = dst_pos->type()->as_IntConstant(); 869 if (src_int && dst_int) { 870 int s_offs = src_int->value(); 871 int d_offs = dst_int->value(); 872 if (src_int->value() >= dst_int->value()) { 873 flags &= ~LIR_OpArrayCopy::overlapping; 874 } 875 if (expected_type != NULL) { 876 BasicType t = expected_type->element_type()->basic_type(); 877 int element_size = type2aelembytes(t); 878 if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) && 879 ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) { 880 flags &= ~LIR_OpArrayCopy::unaligned; 881 } 882 } 883 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) { 884 // src and dest positions are the same, or dst is zero so assume 885 // nonoverlapping copy. 886 flags &= ~LIR_OpArrayCopy::overlapping; 887 } 888 889 if (src == dst) { 890 // moving within a single array so no type checks are needed 891 if (flags & LIR_OpArrayCopy::type_check) { 892 flags &= ~LIR_OpArrayCopy::type_check; 893 } 894 } 895 *flagsp = flags; 896 *expected_typep = (ciArrayKlass*)expected_type; 897 } 898 899 900 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) { 901 assert(opr->is_register(), "why spill if item is not register?"); 902 903 if (strict_fp_requires_explicit_rounding) { 904 #ifdef IA32 905 if (UseSSE < 1 && opr->is_single_fpu()) { 906 LIR_Opr result = new_register(T_FLOAT); 907 set_vreg_flag(result, must_start_in_memory); 908 assert(opr->is_register(), "only a register can be spilled"); 909 assert(opr->value_type()->is_float(), "rounding only for floats available"); 910 __ roundfp(opr, LIR_OprFact::illegalOpr, result); 911 return result; 912 } 913 #else 914 Unimplemented(); 915 #endif // IA32 916 } 917 return opr; 918 } 919 920 921 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) { 922 assert(type2size[t] == type2size[value->type()], 923 "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())); 924 if (!value->is_register()) { 925 // force into a register 926 LIR_Opr r = new_register(value->type()); 927 __ move(value, r); 928 value = r; 929 } 930 931 // create a spill location 932 LIR_Opr tmp = new_register(t); 933 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory); 934 935 // move from register to spill 936 __ move(value, tmp); 937 return tmp; 938 } 939 940 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) { 941 if (if_instr->should_profile()) { 942 ciMethod* method = if_instr->profiled_method(); 943 assert(method != NULL, "method should be set if branch is profiled"); 944 ciMethodData* md = method->method_data_or_null(); 945 assert(md != NULL, "Sanity"); 946 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci()); 947 assert(data != NULL, "must have profiling data"); 948 assert(data->is_BranchData(), "need BranchData for two-way branches"); 949 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 950 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 951 if (if_instr->is_swapped()) { 952 int t = taken_count_offset; 953 taken_count_offset = not_taken_count_offset; 954 not_taken_count_offset = t; 955 } 956 957 LIR_Opr md_reg = new_register(T_METADATA); 958 __ metadata2reg(md->constant_encoding(), md_reg); 959 960 LIR_Opr data_offset_reg = new_pointer_register(); 961 __ cmove(lir_cond(cond), 962 LIR_OprFact::intptrConst(taken_count_offset), 963 LIR_OprFact::intptrConst(not_taken_count_offset), 964 data_offset_reg, as_BasicType(if_instr->x()->type())); 965 966 // MDO cells are intptr_t, so the data_reg width is arch-dependent. 967 LIR_Opr data_reg = new_pointer_register(); 968 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 969 __ move(data_addr, data_reg); 970 // Use leal instead of add to avoid destroying condition codes on x86 971 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT); 972 __ leal(LIR_OprFact::address(fake_incr_value), data_reg); 973 __ move(data_reg, data_addr); 974 } 975 } 976 977 // Phi technique: 978 // This is about passing live values from one basic block to the other. 979 // In code generated with Java it is rather rare that more than one 980 // value is on the stack from one basic block to the other. 981 // We optimize our technique for efficient passing of one value 982 // (of type long, int, double..) but it can be extended. 983 // When entering or leaving a basic block, all registers and all spill 984 // slots are release and empty. We use the released registers 985 // and spill slots to pass the live values from one block 986 // to the other. The topmost value, i.e., the value on TOS of expression 987 // stack is passed in registers. All other values are stored in spilling 988 // area. Every Phi has an index which designates its spill slot 989 // At exit of a basic block, we fill the register(s) and spill slots. 990 // At entry of a basic block, the block_prolog sets up the content of phi nodes 991 // and locks necessary registers and spilling slots. 992 993 994 // move current value to referenced phi function 995 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) { 996 Phi* phi = sux_val->as_Phi(); 997 // cur_val can be null without phi being null in conjunction with inlining 998 if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) { 999 Phi* cur_phi = cur_val->as_Phi(); 1000 if (cur_phi != NULL && cur_phi->is_illegal()) { 1001 // Phi and local would need to get invalidated 1002 // (which is unexpected for Linear Scan). 1003 // But this case is very rare so we simply bail out. 1004 bailout("propagation of illegal phi"); 1005 return; 1006 } 1007 LIR_Opr operand = cur_val->operand(); 1008 if (operand->is_illegal()) { 1009 assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL, 1010 "these can be produced lazily"); 1011 operand = operand_for_instruction(cur_val); 1012 } 1013 resolver->move(operand, operand_for_instruction(phi)); 1014 } 1015 } 1016 1017 1018 // Moves all stack values into their PHI position 1019 void LIRGenerator::move_to_phi(ValueStack* cur_state) { 1020 BlockBegin* bb = block(); 1021 if (bb->number_of_sux() == 1) { 1022 BlockBegin* sux = bb->sux_at(0); 1023 assert(sux->number_of_preds() > 0, "invalid CFG"); 1024 1025 // a block with only one predecessor never has phi functions 1026 if (sux->number_of_preds() > 1) { 1027 PhiResolver resolver(this); 1028 1029 ValueStack* sux_state = sux->state(); 1030 Value sux_value; 1031 int index; 1032 1033 assert(cur_state->scope() == sux_state->scope(), "not matching"); 1034 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching"); 1035 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching"); 1036 1037 for_each_stack_value(sux_state, index, sux_value) { 1038 move_to_phi(&resolver, cur_state->stack_at(index), sux_value); 1039 } 1040 1041 for_each_local_value(sux_state, index, sux_value) { 1042 move_to_phi(&resolver, cur_state->local_at(index), sux_value); 1043 } 1044 1045 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal"); 1046 } 1047 } 1048 } 1049 1050 1051 LIR_Opr LIRGenerator::new_register(BasicType type) { 1052 int vreg = _virtual_register_number; 1053 // add a little fudge factor for the bailout, since the bailout is 1054 // only checked periodically. This gives a few extra registers to 1055 // hand out before we really run out, which helps us keep from 1056 // tripping over assertions. 1057 if (vreg + 20 >= LIR_OprDesc::vreg_max) { 1058 bailout("out of virtual registers"); 1059 if (vreg + 2 >= LIR_OprDesc::vreg_max) { 1060 // wrap it around 1061 _virtual_register_number = LIR_OprDesc::vreg_base; 1062 } 1063 } 1064 _virtual_register_number += 1; 1065 return LIR_OprFact::virtual_register(vreg, type); 1066 } 1067 1068 1069 // Try to lock using register in hint 1070 LIR_Opr LIRGenerator::rlock(Value instr) { 1071 return new_register(instr->type()); 1072 } 1073 1074 1075 // does an rlock and sets result 1076 LIR_Opr LIRGenerator::rlock_result(Value x) { 1077 LIR_Opr reg = rlock(x); 1078 set_result(x, reg); 1079 return reg; 1080 } 1081 1082 1083 // does an rlock and sets result 1084 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) { 1085 LIR_Opr reg; 1086 switch (type) { 1087 case T_BYTE: 1088 case T_BOOLEAN: 1089 reg = rlock_byte(type); 1090 break; 1091 default: 1092 reg = rlock(x); 1093 break; 1094 } 1095 1096 set_result(x, reg); 1097 return reg; 1098 } 1099 1100 1101 //--------------------------------------------------------------------- 1102 ciObject* LIRGenerator::get_jobject_constant(Value value) { 1103 ObjectType* oc = value->type()->as_ObjectType(); 1104 if (oc) { 1105 return oc->constant_value(); 1106 } 1107 return NULL; 1108 } 1109 1110 1111 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) { 1112 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block"); 1113 assert(block()->next() == x, "ExceptionObject must be first instruction of block"); 1114 1115 // no moves are created for phi functions at the begin of exception 1116 // handlers, so assign operands manually here 1117 for_each_phi_fun(block(), phi, 1118 if (!phi->is_illegal()) { operand_for_instruction(phi); }); 1119 1120 LIR_Opr thread_reg = getThreadPointer(); 1121 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT), 1122 exceptionOopOpr()); 1123 __ move_wide(LIR_OprFact::oopConst(NULL), 1124 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT)); 1125 __ move_wide(LIR_OprFact::oopConst(NULL), 1126 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT)); 1127 1128 LIR_Opr result = new_register(T_OBJECT); 1129 __ move(exceptionOopOpr(), result); 1130 set_result(x, result); 1131 } 1132 1133 1134 //---------------------------------------------------------------------- 1135 //---------------------------------------------------------------------- 1136 //---------------------------------------------------------------------- 1137 //---------------------------------------------------------------------- 1138 // visitor functions 1139 //---------------------------------------------------------------------- 1140 //---------------------------------------------------------------------- 1141 //---------------------------------------------------------------------- 1142 //---------------------------------------------------------------------- 1143 1144 void LIRGenerator::do_Phi(Phi* x) { 1145 // phi functions are never visited directly 1146 ShouldNotReachHere(); 1147 } 1148 1149 1150 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined. 1151 void LIRGenerator::do_Constant(Constant* x) { 1152 if (x->state_before() != NULL) { 1153 // Any constant with a ValueStack requires patching so emit the patch here 1154 LIR_Opr reg = rlock_result(x); 1155 CodeEmitInfo* info = state_for(x, x->state_before()); 1156 __ oop2reg_patch(NULL, reg, info); 1157 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) { 1158 if (!x->is_pinned()) { 1159 // unpinned constants are handled specially so that they can be 1160 // put into registers when they are used multiple times within a 1161 // block. After the block completes their operand will be 1162 // cleared so that other blocks can't refer to that register. 1163 set_result(x, load_constant(x)); 1164 } else { 1165 LIR_Opr res = x->operand(); 1166 if (!res->is_valid()) { 1167 res = LIR_OprFact::value_type(x->type()); 1168 } 1169 if (res->is_constant()) { 1170 LIR_Opr reg = rlock_result(x); 1171 __ move(res, reg); 1172 } else { 1173 set_result(x, res); 1174 } 1175 } 1176 } else { 1177 set_result(x, LIR_OprFact::value_type(x->type())); 1178 } 1179 } 1180 1181 1182 void LIRGenerator::do_Local(Local* x) { 1183 // operand_for_instruction has the side effect of setting the result 1184 // so there's no need to do it here. 1185 operand_for_instruction(x); 1186 } 1187 1188 1189 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) { 1190 Unimplemented(); 1191 } 1192 1193 1194 void LIRGenerator::do_Return(Return* x) { 1195 if (compilation()->env()->dtrace_method_probes()) { 1196 BasicTypeList signature; 1197 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 1198 signature.append(T_METADATA); // Method* 1199 LIR_OprList* args = new LIR_OprList(); 1200 args->append(getThreadPointer()); 1201 LIR_Opr meth = new_register(T_METADATA); 1202 __ metadata2reg(method()->constant_encoding(), meth); 1203 args->append(meth); 1204 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL); 1205 } 1206 1207 if (x->type()->is_void()) { 1208 __ return_op(LIR_OprFact::illegalOpr); 1209 } else { 1210 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true); 1211 LIRItem result(x->result(), this); 1212 1213 result.load_item_force(reg); 1214 __ return_op(result.result()); 1215 } 1216 set_no_result(x); 1217 } 1218 1219 // Examble: ref.get() 1220 // Combination of LoadField and g1 pre-write barrier 1221 void LIRGenerator::do_Reference_get(Intrinsic* x) { 1222 1223 const int referent_offset = java_lang_ref_Reference::referent_offset(); 1224 1225 assert(x->number_of_arguments() == 1, "wrong type"); 1226 1227 LIRItem reference(x->argument_at(0), this); 1228 reference.load_item(); 1229 1230 // need to perform the null check on the reference objecy 1231 CodeEmitInfo* info = NULL; 1232 if (x->needs_null_check()) { 1233 info = state_for(x); 1234 } 1235 1236 LIR_Opr result = rlock_result(x, T_OBJECT); 1237 access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, 1238 reference, LIR_OprFact::intConst(referent_offset), result); 1239 } 1240 1241 // Example: clazz.isInstance(object) 1242 void LIRGenerator::do_isInstance(Intrinsic* x) { 1243 assert(x->number_of_arguments() == 2, "wrong type"); 1244 1245 // TODO could try to substitute this node with an equivalent InstanceOf 1246 // if clazz is known to be a constant Class. This will pick up newly found 1247 // constants after HIR construction. I'll leave this to a future change. 1248 1249 // as a first cut, make a simple leaf call to runtime to stay platform independent. 1250 // could follow the aastore example in a future change. 1251 1252 LIRItem clazz(x->argument_at(0), this); 1253 LIRItem object(x->argument_at(1), this); 1254 clazz.load_item(); 1255 object.load_item(); 1256 LIR_Opr result = rlock_result(x); 1257 1258 // need to perform null check on clazz 1259 if (x->needs_null_check()) { 1260 CodeEmitInfo* info = state_for(x); 1261 __ null_check(clazz.result(), info); 1262 } 1263 1264 LIR_Opr call_result = call_runtime(clazz.value(), object.value(), 1265 CAST_FROM_FN_PTR(address, Runtime1::is_instance_of), 1266 x->type(), 1267 NULL); // NULL CodeEmitInfo results in a leaf call 1268 __ move(call_result, result); 1269 } 1270 1271 // Example: object.getClass () 1272 void LIRGenerator::do_getClass(Intrinsic* x) { 1273 assert(x->number_of_arguments() == 1, "wrong type"); 1274 1275 LIRItem rcvr(x->argument_at(0), this); 1276 rcvr.load_item(); 1277 LIR_Opr temp = new_register(T_METADATA); 1278 LIR_Opr result = rlock_result(x); 1279 1280 // need to perform the null check on the rcvr 1281 CodeEmitInfo* info = NULL; 1282 if (x->needs_null_check()) { 1283 info = state_for(x); 1284 } 1285 1286 // FIXME T_ADDRESS should actually be T_METADATA but it can't because the 1287 // meaning of these two is mixed up (see JDK-8026837). 1288 __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info); 1289 __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp); 1290 // mirror = ((OopHandle)mirror)->resolve(); 1291 access_load(IN_NATIVE, T_OBJECT, 1292 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result); 1293 } 1294 1295 // java.lang.Class::isPrimitive() 1296 void LIRGenerator::do_isPrimitive(Intrinsic* x) { 1297 assert(x->number_of_arguments() == 1, "wrong type"); 1298 1299 LIRItem rcvr(x->argument_at(0), this); 1300 rcvr.load_item(); 1301 LIR_Opr temp = new_register(T_METADATA); 1302 LIR_Opr result = rlock_result(x); 1303 1304 CodeEmitInfo* info = NULL; 1305 if (x->needs_null_check()) { 1306 info = state_for(x); 1307 } 1308 1309 __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset(), T_ADDRESS), temp, info); 1310 __ cmp(lir_cond_notEqual, temp, LIR_OprFact::metadataConst(0)); 1311 __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN); 1312 } 1313 1314 1315 // Example: Thread.currentThread() 1316 void LIRGenerator::do_currentThread(Intrinsic* x) { 1317 assert(x->number_of_arguments() == 0, "wrong type"); 1318 LIR_Opr temp = new_register(T_ADDRESS); 1319 LIR_Opr reg = rlock_result(x); 1320 __ move(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_ADDRESS), temp); 1321 // threadObj = ((OopHandle)_threadObj)->resolve(); 1322 access_load(IN_NATIVE, T_OBJECT, 1323 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg); 1324 } 1325 1326 void LIRGenerator::do_getReferencedObjects(Intrinsic* x) { 1327 BasicTypeList signature; 1328 signature.append(T_OBJECT); // obj 1329 signature.append(T_ARRAY); // reference buffer 1330 1331 LIRItem a0(x->argument_at(0), this); 1332 LIRItem a1(x->argument_at(1), this); 1333 a0.load_item(); 1334 a1.load_item(); 1335 1336 LIR_OprList* args = new LIR_OprList(); 1337 args->append(a0.result()); 1338 args->append(a1.result()); 1339 1340 LIR_Opr result = call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::get_referenced_objects), intType, NULL); 1341 __ move(result, rlock_result(x), NULL); 1342 } 1343 1344 void LIRGenerator::do_addressOf(Intrinsic* x) { 1345 assert(x->number_of_arguments() == 1, "wrong type"); 1346 LIR_Opr reg = rlock_result(x); 1347 1348 if (!RuntimeAddressOf) { 1349 __ move(LIR_OprFact::longConst(-1), reg, NULL); 1350 return; 1351 } 1352 1353 LIRItem value(x->argument_at(0), this); 1354 value.load_item(); 1355 1356 #ifdef _LP64 1357 __ move(value.result(), reg, NULL); 1358 __ add(reg, LIR_OprFact::intptrConst(Universe::non_heap_offset()), reg); 1359 #else 1360 LIR_Opr res = new_register(T_INT); 1361 __ move(value.result(), res, NULL); 1362 __ add(res, LIR_OprFact::intptrConst(Universe::non_heap_offset()), res); 1363 __ convert(Bytecodes::_i2l, res, reg); 1364 #endif 1365 } 1366 1367 void LIRGenerator::do_sizeOf(Intrinsic* x) { 1368 assert(x->number_of_arguments() == 1, "wrong type"); 1369 LIR_Opr result_reg = rlock_result(x); 1370 1371 if (!RuntimeSizeOf) { 1372 __ move(LIR_OprFact::longConst(-1), result_reg); 1373 return; 1374 } 1375 1376 LIRItem value(x->argument_at(0), this); 1377 value.load_item(); 1378 1379 LIR_Opr klass = new_register(T_METADATA); 1380 __ move(new LIR_Address(value.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, NULL); 1381 LIR_Opr layout = new_register(T_INT); 1382 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 1383 1384 LabelObj* L_done = new LabelObj(); 1385 LabelObj* L_array = new LabelObj(); 1386 1387 __ cmp(lir_cond_lessEqual, layout, 0); 1388 __ branch(lir_cond_lessEqual, L_array->label()); 1389 1390 // Instance case: the layout helper gives us instance size almost directly, 1391 // but we need to mask out the _lh_instance_slow_path_bit. 1392 __ convert(Bytecodes::_i2l, layout, result_reg); 1393 1394 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 1395 jlong mask = ~(jlong) right_n_bits(LogBytesPerLong); 1396 __ logical_and(result_reg, LIR_OprFact::longConst(mask), result_reg); 1397 1398 __ branch(lir_cond_always, L_done->label()); 1399 1400 // Array case: size is round(header + element_size*arraylength). 1401 // Since arraylength is different for every array instance, we have to 1402 // compute the whole thing at runtime. 1403 1404 __ branch_destination(L_array->label()); 1405 1406 int round_mask = MinObjAlignmentInBytes - 1; 1407 1408 // Figure out header sizes first. 1409 LIR_Opr hss = LIR_OprFact::intConst(Klass::_lh_header_size_shift); 1410 LIR_Opr hsm = LIR_OprFact::intConst(Klass::_lh_header_size_mask); 1411 1412 LIR_Opr header_size = new_register(T_INT); 1413 __ move(layout, header_size); 1414 LIR_Opr tmp = new_register(T_INT); 1415 __ unsigned_shift_right(header_size, hss, header_size, tmp); 1416 __ logical_and(header_size, hsm, header_size); 1417 __ add(header_size, LIR_OprFact::intConst(round_mask), header_size); 1418 1419 // Figure out the array length in bytes 1420 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 1421 LIR_Opr l2esm = LIR_OprFact::intConst(Klass::_lh_log2_element_size_mask); 1422 __ logical_and(layout, l2esm, layout); 1423 1424 LIR_Opr length_int = new_register(T_INT); 1425 __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int); 1426 1427 #ifdef _LP64 1428 LIR_Opr length = new_register(T_LONG); 1429 __ convert(Bytecodes::_i2l, length_int, length); 1430 #endif 1431 1432 // Shift-left awkwardness. Normally it is just: 1433 // __ shift_left(length, layout, length); 1434 // But C1 cannot perform shift_left with non-constant count, so we end up 1435 // doing the per-bit loop dance here. x86_32 also does not know how to shift 1436 // longs, so we have to act on ints. 1437 LabelObj* L_shift_loop = new LabelObj(); 1438 LabelObj* L_shift_exit = new LabelObj(); 1439 1440 __ branch_destination(L_shift_loop->label()); 1441 __ cmp(lir_cond_equal, layout, 0); 1442 __ branch(lir_cond_equal, L_shift_exit->label()); 1443 1444 #ifdef _LP64 1445 __ shift_left(length, 1, length); 1446 #else 1447 __ shift_left(length_int, 1, length_int); 1448 #endif 1449 1450 __ sub(layout, LIR_OprFact::intConst(1), layout); 1451 1452 __ branch(lir_cond_always, L_shift_loop->label()); 1453 __ branch_destination(L_shift_exit->label()); 1454 1455 // Mix all up, round, and push to the result. 1456 #ifdef _LP64 1457 LIR_Opr header_size_long = new_register(T_LONG); 1458 __ convert(Bytecodes::_i2l, header_size, header_size_long); 1459 __ add(length, header_size_long, length); 1460 if (round_mask != 0) { 1461 __ logical_and(length, LIR_OprFact::longConst(~round_mask), length); 1462 } 1463 __ move(length, result_reg); 1464 #else 1465 __ add(length_int, header_size, length_int); 1466 if (round_mask != 0) { 1467 __ logical_and(length_int, LIR_OprFact::intConst(~round_mask), length_int); 1468 } 1469 __ convert(Bytecodes::_i2l, length_int, result_reg); 1470 #endif 1471 1472 __ branch_destination(L_done->label()); 1473 } 1474 1475 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) { 1476 assert(x->number_of_arguments() == 1, "wrong type"); 1477 LIRItem receiver(x->argument_at(0), this); 1478 1479 receiver.load_item(); 1480 BasicTypeList signature; 1481 signature.append(T_OBJECT); // receiver 1482 LIR_OprList* args = new LIR_OprList(); 1483 args->append(receiver.result()); 1484 CodeEmitInfo* info = state_for(x, x->state()); 1485 call_runtime(&signature, args, 1486 CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)), 1487 voidType, info); 1488 1489 set_no_result(x); 1490 } 1491 1492 1493 //------------------------local access-------------------------------------- 1494 1495 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) { 1496 if (x->operand()->is_illegal()) { 1497 Constant* c = x->as_Constant(); 1498 if (c != NULL) { 1499 x->set_operand(LIR_OprFact::value_type(c->type())); 1500 } else { 1501 assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local"); 1502 // allocate a virtual register for this local or phi 1503 x->set_operand(rlock(x)); 1504 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL); 1505 } 1506 } 1507 return x->operand(); 1508 } 1509 1510 1511 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) { 1512 if (opr->is_virtual()) { 1513 return instruction_for_vreg(opr->vreg_number()); 1514 } 1515 return NULL; 1516 } 1517 1518 1519 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) { 1520 if (reg_num < _instruction_for_operand.length()) { 1521 return _instruction_for_operand.at(reg_num); 1522 } 1523 return NULL; 1524 } 1525 1526 1527 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) { 1528 if (_vreg_flags.size_in_bits() == 0) { 1529 BitMap2D temp(100, num_vreg_flags); 1530 _vreg_flags = temp; 1531 } 1532 _vreg_flags.at_put_grow(vreg_num, f, true); 1533 } 1534 1535 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) { 1536 if (!_vreg_flags.is_valid_index(vreg_num, f)) { 1537 return false; 1538 } 1539 return _vreg_flags.at(vreg_num, f); 1540 } 1541 1542 1543 // Block local constant handling. This code is useful for keeping 1544 // unpinned constants and constants which aren't exposed in the IR in 1545 // registers. Unpinned Constant instructions have their operands 1546 // cleared when the block is finished so that other blocks can't end 1547 // up referring to their registers. 1548 1549 LIR_Opr LIRGenerator::load_constant(Constant* x) { 1550 assert(!x->is_pinned(), "only for unpinned constants"); 1551 _unpinned_constants.append(x); 1552 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr()); 1553 } 1554 1555 1556 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) { 1557 BasicType t = c->type(); 1558 for (int i = 0; i < _constants.length(); i++) { 1559 LIR_Const* other = _constants.at(i); 1560 if (t == other->type()) { 1561 switch (t) { 1562 case T_INT: 1563 case T_FLOAT: 1564 if (c->as_jint_bits() != other->as_jint_bits()) continue; 1565 break; 1566 case T_LONG: 1567 case T_DOUBLE: 1568 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue; 1569 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue; 1570 break; 1571 case T_OBJECT: 1572 if (c->as_jobject() != other->as_jobject()) continue; 1573 break; 1574 default: 1575 break; 1576 } 1577 return _reg_for_constants.at(i); 1578 } 1579 } 1580 1581 LIR_Opr result = new_register(t); 1582 __ move((LIR_Opr)c, result); 1583 _constants.append(c); 1584 _reg_for_constants.append(result); 1585 return result; 1586 } 1587 1588 //------------------------field access-------------------------------------- 1589 1590 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) { 1591 assert(x->number_of_arguments() == 4, "wrong type"); 1592 LIRItem obj (x->argument_at(0), this); // object 1593 LIRItem offset(x->argument_at(1), this); // offset of field 1594 LIRItem cmp (x->argument_at(2), this); // value to compare with field 1595 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp 1596 assert(obj.type()->tag() == objectTag, "invalid type"); 1597 1598 // In 64bit the type can be long, sparc doesn't have this assert 1599 // assert(offset.type()->tag() == intTag, "invalid type"); 1600 1601 assert(cmp.type()->tag() == type->tag(), "invalid type"); 1602 assert(val.type()->tag() == type->tag(), "invalid type"); 1603 1604 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type), 1605 obj, offset, cmp, val); 1606 set_result(x, result); 1607 } 1608 1609 // Comment copied form templateTable_i486.cpp 1610 // ---------------------------------------------------------------------------- 1611 // Volatile variables demand their effects be made known to all CPU's in 1612 // order. Store buffers on most chips allow reads & writes to reorder; the 1613 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of 1614 // memory barrier (i.e., it's not sufficient that the interpreter does not 1615 // reorder volatile references, the hardware also must not reorder them). 1616 // 1617 // According to the new Java Memory Model (JMM): 1618 // (1) All volatiles are serialized wrt to each other. 1619 // ALSO reads & writes act as aquire & release, so: 1620 // (2) A read cannot let unrelated NON-volatile memory refs that happen after 1621 // the read float up to before the read. It's OK for non-volatile memory refs 1622 // that happen before the volatile read to float down below it. 1623 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs 1624 // that happen BEFORE the write float down to after the write. It's OK for 1625 // non-volatile memory refs that happen after the volatile write to float up 1626 // before it. 1627 // 1628 // We only put in barriers around volatile refs (they are expensive), not 1629 // _between_ memory refs (that would require us to track the flavor of the 1630 // previous memory refs). Requirements (2) and (3) require some barriers 1631 // before volatile stores and after volatile loads. These nearly cover 1632 // requirement (1) but miss the volatile-store-volatile-load case. This final 1633 // case is placed after volatile-stores although it could just as well go 1634 // before volatile-loads. 1635 1636 1637 void LIRGenerator::do_StoreField(StoreField* x) { 1638 bool needs_patching = x->needs_patching(); 1639 bool is_volatile = x->field()->is_volatile(); 1640 BasicType field_type = x->field_type(); 1641 1642 CodeEmitInfo* info = NULL; 1643 if (needs_patching) { 1644 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access"); 1645 info = state_for(x, x->state_before()); 1646 } else if (x->needs_null_check()) { 1647 NullCheck* nc = x->explicit_null_check(); 1648 if (nc == NULL) { 1649 info = state_for(x); 1650 } else { 1651 info = state_for(nc); 1652 } 1653 } 1654 1655 LIRItem object(x->obj(), this); 1656 LIRItem value(x->value(), this); 1657 1658 object.load_item(); 1659 1660 if (is_volatile || needs_patching) { 1661 // load item if field is volatile (fewer special cases for volatiles) 1662 // load item if field not initialized 1663 // load item if field not constant 1664 // because of code patching we cannot inline constants 1665 if (field_type == T_BYTE || field_type == T_BOOLEAN) { 1666 value.load_byte_item(); 1667 } else { 1668 value.load_item(); 1669 } 1670 } else { 1671 value.load_for_store(field_type); 1672 } 1673 1674 set_no_result(x); 1675 1676 #ifndef PRODUCT 1677 if (PrintNotLoaded && needs_patching) { 1678 tty->print_cr(" ###class not loaded at store_%s bci %d", 1679 x->is_static() ? "static" : "field", x->printable_bci()); 1680 } 1681 #endif 1682 1683 if (x->needs_null_check() && 1684 (needs_patching || 1685 MacroAssembler::needs_explicit_null_check(x->offset()))) { 1686 // Emit an explicit null check because the offset is too large. 1687 // If the class is not loaded and the object is NULL, we need to deoptimize to throw a 1688 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1689 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1690 } 1691 1692 DecoratorSet decorators = IN_HEAP; 1693 if (is_volatile) { 1694 decorators |= MO_SEQ_CST; 1695 } 1696 if (needs_patching) { 1697 decorators |= C1_NEEDS_PATCHING; 1698 } 1699 1700 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()), 1701 value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info); 1702 } 1703 1704 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) { 1705 assert(x->is_pinned(),""); 1706 bool needs_range_check = x->compute_needs_range_check(); 1707 bool use_length = x->length() != NULL; 1708 bool obj_store = is_reference_type(x->elt_type()); 1709 bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL || 1710 !get_jobject_constant(x->value())->is_null_object() || 1711 x->should_profile()); 1712 1713 LIRItem array(x->array(), this); 1714 LIRItem index(x->index(), this); 1715 LIRItem value(x->value(), this); 1716 LIRItem length(this); 1717 1718 array.load_item(); 1719 index.load_nonconstant(); 1720 1721 if (use_length && needs_range_check) { 1722 length.set_instruction(x->length()); 1723 length.load_item(); 1724 1725 } 1726 if (needs_store_check || x->check_boolean()) { 1727 value.load_item(); 1728 } else { 1729 value.load_for_store(x->elt_type()); 1730 } 1731 1732 set_no_result(x); 1733 1734 // the CodeEmitInfo must be duplicated for each different 1735 // LIR-instruction because spilling can occur anywhere between two 1736 // instructions and so the debug information must be different 1737 CodeEmitInfo* range_check_info = state_for(x); 1738 CodeEmitInfo* null_check_info = NULL; 1739 if (x->needs_null_check()) { 1740 null_check_info = new CodeEmitInfo(range_check_info); 1741 } 1742 1743 if (GenerateRangeChecks && needs_range_check) { 1744 if (use_length) { 1745 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1746 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1747 } else { 1748 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1749 // range_check also does the null check 1750 null_check_info = NULL; 1751 } 1752 } 1753 1754 if (GenerateArrayStoreCheck && needs_store_check) { 1755 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info); 1756 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci()); 1757 } 1758 1759 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1760 if (x->check_boolean()) { 1761 decorators |= C1_MASK_BOOLEAN; 1762 } 1763 1764 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), 1765 NULL, null_check_info); 1766 } 1767 1768 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type, 1769 LIRItem& base, LIR_Opr offset, LIR_Opr result, 1770 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) { 1771 decorators |= ACCESS_READ; 1772 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info); 1773 if (access.is_raw()) { 1774 _barrier_set->BarrierSetC1::load_at(access, result); 1775 } else { 1776 _barrier_set->load_at(access, result); 1777 } 1778 } 1779 1780 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type, 1781 LIR_Opr addr, LIR_Opr result) { 1782 decorators |= ACCESS_READ; 1783 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type); 1784 access.set_resolved_addr(addr); 1785 if (access.is_raw()) { 1786 _barrier_set->BarrierSetC1::load(access, result); 1787 } else { 1788 _barrier_set->load(access, result); 1789 } 1790 } 1791 1792 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type, 1793 LIRItem& base, LIR_Opr offset, LIR_Opr value, 1794 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) { 1795 decorators |= ACCESS_WRITE; 1796 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info); 1797 if (access.is_raw()) { 1798 _barrier_set->BarrierSetC1::store_at(access, value); 1799 } else { 1800 _barrier_set->store_at(access, value); 1801 } 1802 } 1803 1804 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type, 1805 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) { 1806 decorators |= ACCESS_READ; 1807 decorators |= ACCESS_WRITE; 1808 // Atomic operations are SEQ_CST by default 1809 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1810 LIRAccess access(this, decorators, base, offset, type); 1811 if (access.is_raw()) { 1812 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value); 1813 } else { 1814 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value); 1815 } 1816 } 1817 1818 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type, 1819 LIRItem& base, LIRItem& offset, LIRItem& value) { 1820 decorators |= ACCESS_READ; 1821 decorators |= ACCESS_WRITE; 1822 // Atomic operations are SEQ_CST by default 1823 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1824 LIRAccess access(this, decorators, base, offset, type); 1825 if (access.is_raw()) { 1826 return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value); 1827 } else { 1828 return _barrier_set->atomic_xchg_at(access, value); 1829 } 1830 } 1831 1832 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type, 1833 LIRItem& base, LIRItem& offset, LIRItem& value) { 1834 decorators |= ACCESS_READ; 1835 decorators |= ACCESS_WRITE; 1836 // Atomic operations are SEQ_CST by default 1837 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1838 LIRAccess access(this, decorators, base, offset, type); 1839 if (access.is_raw()) { 1840 return _barrier_set->BarrierSetC1::atomic_add_at(access, value); 1841 } else { 1842 return _barrier_set->atomic_add_at(access, value); 1843 } 1844 } 1845 1846 LIR_Opr LIRGenerator::access_resolve(DecoratorSet decorators, LIR_Opr obj) { 1847 // Use stronger ACCESS_WRITE|ACCESS_READ by default. 1848 if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) { 1849 decorators |= ACCESS_READ | ACCESS_WRITE; 1850 } 1851 1852 return _barrier_set->resolve(this, decorators, obj); 1853 } 1854 1855 void LIRGenerator::do_LoadField(LoadField* x) { 1856 bool needs_patching = x->needs_patching(); 1857 bool is_volatile = x->field()->is_volatile(); 1858 BasicType field_type = x->field_type(); 1859 1860 CodeEmitInfo* info = NULL; 1861 if (needs_patching) { 1862 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access"); 1863 info = state_for(x, x->state_before()); 1864 } else if (x->needs_null_check()) { 1865 NullCheck* nc = x->explicit_null_check(); 1866 if (nc == NULL) { 1867 info = state_for(x); 1868 } else { 1869 info = state_for(nc); 1870 } 1871 } 1872 1873 LIRItem object(x->obj(), this); 1874 1875 object.load_item(); 1876 1877 #ifndef PRODUCT 1878 if (PrintNotLoaded && needs_patching) { 1879 tty->print_cr(" ###class not loaded at load_%s bci %d", 1880 x->is_static() ? "static" : "field", x->printable_bci()); 1881 } 1882 #endif 1883 1884 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception(); 1885 if (x->needs_null_check() && 1886 (needs_patching || 1887 MacroAssembler::needs_explicit_null_check(x->offset()) || 1888 stress_deopt)) { 1889 LIR_Opr obj = object.result(); 1890 if (stress_deopt) { 1891 obj = new_register(T_OBJECT); 1892 __ move(LIR_OprFact::oopConst(NULL), obj); 1893 } 1894 // Emit an explicit null check because the offset is too large. 1895 // If the class is not loaded and the object is NULL, we need to deoptimize to throw a 1896 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1897 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1898 } 1899 1900 DecoratorSet decorators = IN_HEAP; 1901 if (is_volatile) { 1902 decorators |= MO_SEQ_CST; 1903 } 1904 if (needs_patching) { 1905 decorators |= C1_NEEDS_PATCHING; 1906 } 1907 1908 LIR_Opr result = rlock_result(x, field_type); 1909 access_load_at(decorators, field_type, 1910 object, LIR_OprFact::intConst(x->offset()), result, 1911 info ? new CodeEmitInfo(info) : NULL, info); 1912 } 1913 1914 1915 //------------------------java.nio.Buffer.checkIndex------------------------ 1916 1917 // int java.nio.Buffer.checkIndex(int) 1918 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) { 1919 // NOTE: by the time we are in checkIndex() we are guaranteed that 1920 // the buffer is non-null (because checkIndex is package-private and 1921 // only called from within other methods in the buffer). 1922 assert(x->number_of_arguments() == 2, "wrong type"); 1923 LIRItem buf (x->argument_at(0), this); 1924 LIRItem index(x->argument_at(1), this); 1925 buf.load_item(); 1926 index.load_item(); 1927 1928 LIR_Opr result = rlock_result(x); 1929 if (GenerateRangeChecks) { 1930 CodeEmitInfo* info = state_for(x); 1931 CodeStub* stub = new RangeCheckStub(info, index.result()); 1932 LIR_Opr buf_obj = access_resolve(IS_NOT_NULL | ACCESS_READ, buf.result()); 1933 if (index.result()->is_constant()) { 1934 cmp_mem_int(lir_cond_belowEqual, buf_obj, java_nio_Buffer::limit_offset(), index.result()->as_jint(), info); 1935 __ branch(lir_cond_belowEqual, stub); 1936 } else { 1937 cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf_obj, 1938 java_nio_Buffer::limit_offset(), T_INT, info); 1939 __ branch(lir_cond_aboveEqual, stub); 1940 } 1941 __ move(index.result(), result); 1942 } else { 1943 // Just load the index into the result register 1944 __ move(index.result(), result); 1945 } 1946 } 1947 1948 1949 //------------------------array access-------------------------------------- 1950 1951 1952 void LIRGenerator::do_ArrayLength(ArrayLength* x) { 1953 LIRItem array(x->array(), this); 1954 array.load_item(); 1955 LIR_Opr reg = rlock_result(x); 1956 1957 CodeEmitInfo* info = NULL; 1958 if (x->needs_null_check()) { 1959 NullCheck* nc = x->explicit_null_check(); 1960 if (nc == NULL) { 1961 info = state_for(x); 1962 } else { 1963 info = state_for(nc); 1964 } 1965 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) { 1966 LIR_Opr obj = new_register(T_OBJECT); 1967 __ move(LIR_OprFact::oopConst(NULL), obj); 1968 __ null_check(obj, new CodeEmitInfo(info)); 1969 } 1970 } 1971 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none); 1972 } 1973 1974 1975 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) { 1976 bool use_length = x->length() != NULL; 1977 LIRItem array(x->array(), this); 1978 LIRItem index(x->index(), this); 1979 LIRItem length(this); 1980 bool needs_range_check = x->compute_needs_range_check(); 1981 1982 if (use_length && needs_range_check) { 1983 length.set_instruction(x->length()); 1984 length.load_item(); 1985 } 1986 1987 array.load_item(); 1988 if (index.is_constant() && can_inline_as_constant(x->index())) { 1989 // let it be a constant 1990 index.dont_load_item(); 1991 } else { 1992 index.load_item(); 1993 } 1994 1995 CodeEmitInfo* range_check_info = state_for(x); 1996 CodeEmitInfo* null_check_info = NULL; 1997 if (x->needs_null_check()) { 1998 NullCheck* nc = x->explicit_null_check(); 1999 if (nc != NULL) { 2000 null_check_info = state_for(nc); 2001 } else { 2002 null_check_info = range_check_info; 2003 } 2004 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) { 2005 LIR_Opr obj = new_register(T_OBJECT); 2006 __ move(LIR_OprFact::oopConst(NULL), obj); 2007 __ null_check(obj, new CodeEmitInfo(null_check_info)); 2008 } 2009 } 2010 2011 if (GenerateRangeChecks && needs_range_check) { 2012 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) { 2013 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result())); 2014 } else if (use_length) { 2015 // TODO: use a (modified) version of array_range_check that does not require a 2016 // constant length to be loaded to a register 2017 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 2018 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 2019 } else { 2020 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 2021 // The range check performs the null check, so clear it out for the load 2022 null_check_info = NULL; 2023 } 2024 } 2025 2026 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 2027 2028 LIR_Opr result = rlock_result(x, x->elt_type()); 2029 access_load_at(decorators, x->elt_type(), 2030 array, index.result(), result, 2031 NULL, null_check_info); 2032 } 2033 2034 2035 void LIRGenerator::do_NullCheck(NullCheck* x) { 2036 if (x->can_trap()) { 2037 LIRItem value(x->obj(), this); 2038 value.load_item(); 2039 CodeEmitInfo* info = state_for(x); 2040 __ null_check(value.result(), info); 2041 } 2042 } 2043 2044 2045 void LIRGenerator::do_TypeCast(TypeCast* x) { 2046 LIRItem value(x->obj(), this); 2047 value.load_item(); 2048 // the result is the same as from the node we are casting 2049 set_result(x, value.result()); 2050 } 2051 2052 2053 void LIRGenerator::do_Throw(Throw* x) { 2054 LIRItem exception(x->exception(), this); 2055 exception.load_item(); 2056 set_no_result(x); 2057 LIR_Opr exception_opr = exception.result(); 2058 CodeEmitInfo* info = state_for(x, x->state()); 2059 2060 #ifndef PRODUCT 2061 if (PrintC1Statistics) { 2062 increment_counter(Runtime1::throw_count_address(), T_INT); 2063 } 2064 #endif 2065 2066 // check if the instruction has an xhandler in any of the nested scopes 2067 bool unwind = false; 2068 if (info->exception_handlers()->length() == 0) { 2069 // this throw is not inside an xhandler 2070 unwind = true; 2071 } else { 2072 // get some idea of the throw type 2073 bool type_is_exact = true; 2074 ciType* throw_type = x->exception()->exact_type(); 2075 if (throw_type == NULL) { 2076 type_is_exact = false; 2077 throw_type = x->exception()->declared_type(); 2078 } 2079 if (throw_type != NULL && throw_type->is_instance_klass()) { 2080 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type; 2081 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact); 2082 } 2083 } 2084 2085 // do null check before moving exception oop into fixed register 2086 // to avoid a fixed interval with an oop during the null check. 2087 // Use a copy of the CodeEmitInfo because debug information is 2088 // different for null_check and throw. 2089 if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) { 2090 // if the exception object wasn't created using new then it might be null. 2091 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci()))); 2092 } 2093 2094 if (compilation()->env()->jvmti_can_post_on_exceptions()) { 2095 // we need to go through the exception lookup path to get JVMTI 2096 // notification done 2097 unwind = false; 2098 } 2099 2100 // move exception oop into fixed register 2101 __ move(exception_opr, exceptionOopOpr()); 2102 2103 if (unwind) { 2104 __ unwind_exception(exceptionOopOpr()); 2105 } else { 2106 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info); 2107 } 2108 } 2109 2110 2111 void LIRGenerator::do_RoundFP(RoundFP* x) { 2112 assert(strict_fp_requires_explicit_rounding, "not required"); 2113 2114 LIRItem input(x->input(), this); 2115 input.load_item(); 2116 LIR_Opr input_opr = input.result(); 2117 assert(input_opr->is_register(), "why round if value is not in a register?"); 2118 assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value"); 2119 if (input_opr->is_single_fpu()) { 2120 set_result(x, round_item(input_opr)); // This code path not currently taken 2121 } else { 2122 LIR_Opr result = new_register(T_DOUBLE); 2123 set_vreg_flag(result, must_start_in_memory); 2124 __ roundfp(input_opr, LIR_OprFact::illegalOpr, result); 2125 set_result(x, result); 2126 } 2127 } 2128 2129 // Here UnsafeGetRaw may have x->base() and x->index() be int or long 2130 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit. 2131 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) { 2132 LIRItem base(x->base(), this); 2133 LIRItem idx(this); 2134 2135 base.load_item(); 2136 if (x->has_index()) { 2137 idx.set_instruction(x->index()); 2138 idx.load_nonconstant(); 2139 } 2140 2141 LIR_Opr reg = rlock_result(x, x->basic_type()); 2142 2143 int log2_scale = 0; 2144 if (x->has_index()) { 2145 log2_scale = x->log2_scale(); 2146 } 2147 2148 assert(!x->has_index() || idx.value() == x->index(), "should match"); 2149 2150 LIR_Opr base_op = base.result(); 2151 LIR_Opr index_op = idx.result(); 2152 #ifndef _LP64 2153 if (base_op->type() == T_LONG) { 2154 base_op = new_register(T_INT); 2155 __ convert(Bytecodes::_l2i, base.result(), base_op); 2156 } 2157 if (x->has_index()) { 2158 if (index_op->type() == T_LONG) { 2159 LIR_Opr long_index_op = index_op; 2160 if (index_op->is_constant()) { 2161 long_index_op = new_register(T_LONG); 2162 __ move(index_op, long_index_op); 2163 } 2164 index_op = new_register(T_INT); 2165 __ convert(Bytecodes::_l2i, long_index_op, index_op); 2166 } else { 2167 assert(x->index()->type()->tag() == intTag, "must be"); 2168 } 2169 } 2170 // At this point base and index should be all ints. 2171 assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int"); 2172 assert(!x->has_index() || index_op->type() == T_INT, "index should be an int"); 2173 #else 2174 if (x->has_index()) { 2175 if (index_op->type() == T_INT) { 2176 if (!index_op->is_constant()) { 2177 index_op = new_register(T_LONG); 2178 __ convert(Bytecodes::_i2l, idx.result(), index_op); 2179 } 2180 } else { 2181 assert(index_op->type() == T_LONG, "must be"); 2182 if (index_op->is_constant()) { 2183 index_op = new_register(T_LONG); 2184 __ move(idx.result(), index_op); 2185 } 2186 } 2187 } 2188 // At this point base is a long non-constant 2189 // Index is a long register or a int constant. 2190 // We allow the constant to stay an int because that would allow us a more compact encoding by 2191 // embedding an immediate offset in the address expression. If we have a long constant, we have to 2192 // move it into a register first. 2193 assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant"); 2194 assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) || 2195 (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type"); 2196 #endif 2197 2198 BasicType dst_type = x->basic_type(); 2199 2200 LIR_Address* addr; 2201 if (index_op->is_constant()) { 2202 assert(log2_scale == 0, "must not have a scale"); 2203 assert(index_op->type() == T_INT, "only int constants supported"); 2204 addr = new LIR_Address(base_op, index_op->as_jint(), dst_type); 2205 } else { 2206 #ifdef X86 2207 addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type); 2208 #elif defined(GENERATE_ADDRESS_IS_PREFERRED) 2209 addr = generate_address(base_op, index_op, log2_scale, 0, dst_type); 2210 #else 2211 if (index_op->is_illegal() || log2_scale == 0) { 2212 addr = new LIR_Address(base_op, index_op, dst_type); 2213 } else { 2214 LIR_Opr tmp = new_pointer_register(); 2215 __ shift_left(index_op, log2_scale, tmp); 2216 addr = new LIR_Address(base_op, tmp, dst_type); 2217 } 2218 #endif 2219 } 2220 2221 if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) { 2222 __ unaligned_move(addr, reg); 2223 } else { 2224 if (dst_type == T_OBJECT && x->is_wide()) { 2225 __ move_wide(addr, reg); 2226 } else { 2227 __ move(addr, reg); 2228 } 2229 } 2230 } 2231 2232 2233 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) { 2234 int log2_scale = 0; 2235 BasicType type = x->basic_type(); 2236 2237 if (x->has_index()) { 2238 log2_scale = x->log2_scale(); 2239 } 2240 2241 LIRItem base(x->base(), this); 2242 LIRItem value(x->value(), this); 2243 LIRItem idx(this); 2244 2245 base.load_item(); 2246 if (x->has_index()) { 2247 idx.set_instruction(x->index()); 2248 idx.load_item(); 2249 } 2250 2251 if (type == T_BYTE || type == T_BOOLEAN) { 2252 value.load_byte_item(); 2253 } else { 2254 value.load_item(); 2255 } 2256 2257 set_no_result(x); 2258 2259 LIR_Opr base_op = base.result(); 2260 LIR_Opr index_op = idx.result(); 2261 2262 #ifdef GENERATE_ADDRESS_IS_PREFERRED 2263 LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type()); 2264 #else 2265 #ifndef _LP64 2266 if (base_op->type() == T_LONG) { 2267 base_op = new_register(T_INT); 2268 __ convert(Bytecodes::_l2i, base.result(), base_op); 2269 } 2270 if (x->has_index()) { 2271 if (index_op->type() == T_LONG) { 2272 index_op = new_register(T_INT); 2273 __ convert(Bytecodes::_l2i, idx.result(), index_op); 2274 } 2275 } 2276 // At this point base and index should be all ints and not constants 2277 assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int"); 2278 assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int"); 2279 #else 2280 if (x->has_index()) { 2281 if (index_op->type() == T_INT) { 2282 index_op = new_register(T_LONG); 2283 __ convert(Bytecodes::_i2l, idx.result(), index_op); 2284 } 2285 } 2286 // At this point base and index are long and non-constant 2287 assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long"); 2288 assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long"); 2289 #endif 2290 2291 if (log2_scale != 0) { 2292 // temporary fix (platform dependent code without shift on Intel would be better) 2293 // TODO: ARM also allows embedded shift in the address 2294 LIR_Opr tmp = new_pointer_register(); 2295 if (TwoOperandLIRForm) { 2296 __ move(index_op, tmp); 2297 index_op = tmp; 2298 } 2299 __ shift_left(index_op, log2_scale, tmp); 2300 if (!TwoOperandLIRForm) { 2301 index_op = tmp; 2302 } 2303 } 2304 2305 LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type()); 2306 #endif // !GENERATE_ADDRESS_IS_PREFERRED 2307 __ move(value.result(), addr); 2308 } 2309 2310 2311 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) { 2312 BasicType type = x->basic_type(); 2313 LIRItem src(x->object(), this); 2314 LIRItem off(x->offset(), this); 2315 2316 off.load_item(); 2317 src.load_item(); 2318 2319 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2320 2321 if (x->is_volatile()) { 2322 decorators |= MO_SEQ_CST; 2323 } 2324 if (type == T_BOOLEAN) { 2325 decorators |= C1_MASK_BOOLEAN; 2326 } 2327 if (is_reference_type(type)) { 2328 decorators |= ON_UNKNOWN_OOP_REF; 2329 } 2330 2331 LIR_Opr result = rlock_result(x, type); 2332 access_load_at(decorators, type, 2333 src, off.result(), result); 2334 } 2335 2336 2337 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) { 2338 BasicType type = x->basic_type(); 2339 LIRItem src(x->object(), this); 2340 LIRItem off(x->offset(), this); 2341 LIRItem data(x->value(), this); 2342 2343 src.load_item(); 2344 if (type == T_BOOLEAN || type == T_BYTE) { 2345 data.load_byte_item(); 2346 } else { 2347 data.load_item(); 2348 } 2349 off.load_item(); 2350 2351 set_no_result(x); 2352 2353 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2354 if (is_reference_type(type)) { 2355 decorators |= ON_UNKNOWN_OOP_REF; 2356 } 2357 if (x->is_volatile()) { 2358 decorators |= MO_SEQ_CST; 2359 } 2360 access_store_at(decorators, type, src, off.result(), data.result()); 2361 } 2362 2363 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) { 2364 BasicType type = x->basic_type(); 2365 LIRItem src(x->object(), this); 2366 LIRItem off(x->offset(), this); 2367 LIRItem value(x->value(), this); 2368 2369 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST; 2370 2371 if (is_reference_type(type)) { 2372 decorators |= ON_UNKNOWN_OOP_REF; 2373 } 2374 2375 LIR_Opr result; 2376 if (x->is_add()) { 2377 result = access_atomic_add_at(decorators, type, src, off, value); 2378 } else { 2379 result = access_atomic_xchg_at(decorators, type, src, off, value); 2380 } 2381 set_result(x, result); 2382 } 2383 2384 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) { 2385 int lng = x->length(); 2386 2387 for (int i = 0; i < lng; i++) { 2388 C1SwitchRange* one_range = x->at(i); 2389 int low_key = one_range->low_key(); 2390 int high_key = one_range->high_key(); 2391 BlockBegin* dest = one_range->sux(); 2392 if (low_key == high_key) { 2393 __ cmp(lir_cond_equal, value, low_key); 2394 __ branch(lir_cond_equal, dest); 2395 } else if (high_key - low_key == 1) { 2396 __ cmp(lir_cond_equal, value, low_key); 2397 __ branch(lir_cond_equal, dest); 2398 __ cmp(lir_cond_equal, value, high_key); 2399 __ branch(lir_cond_equal, dest); 2400 } else { 2401 LabelObj* L = new LabelObj(); 2402 __ cmp(lir_cond_less, value, low_key); 2403 __ branch(lir_cond_less, L->label()); 2404 __ cmp(lir_cond_lessEqual, value, high_key); 2405 __ branch(lir_cond_lessEqual, dest); 2406 __ branch_destination(L->label()); 2407 } 2408 } 2409 __ jump(default_sux); 2410 } 2411 2412 2413 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) { 2414 SwitchRangeList* res = new SwitchRangeList(); 2415 int len = x->length(); 2416 if (len > 0) { 2417 BlockBegin* sux = x->sux_at(0); 2418 int key = x->lo_key(); 2419 BlockBegin* default_sux = x->default_sux(); 2420 C1SwitchRange* range = new C1SwitchRange(key, sux); 2421 for (int i = 0; i < len; i++, key++) { 2422 BlockBegin* new_sux = x->sux_at(i); 2423 if (sux == new_sux) { 2424 // still in same range 2425 range->set_high_key(key); 2426 } else { 2427 // skip tests which explicitly dispatch to the default 2428 if (sux != default_sux) { 2429 res->append(range); 2430 } 2431 range = new C1SwitchRange(key, new_sux); 2432 } 2433 sux = new_sux; 2434 } 2435 if (res->length() == 0 || res->last() != range) res->append(range); 2436 } 2437 return res; 2438 } 2439 2440 2441 // we expect the keys to be sorted by increasing value 2442 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) { 2443 SwitchRangeList* res = new SwitchRangeList(); 2444 int len = x->length(); 2445 if (len > 0) { 2446 BlockBegin* default_sux = x->default_sux(); 2447 int key = x->key_at(0); 2448 BlockBegin* sux = x->sux_at(0); 2449 C1SwitchRange* range = new C1SwitchRange(key, sux); 2450 for (int i = 1; i < len; i++) { 2451 int new_key = x->key_at(i); 2452 BlockBegin* new_sux = x->sux_at(i); 2453 if (key+1 == new_key && sux == new_sux) { 2454 // still in same range 2455 range->set_high_key(new_key); 2456 } else { 2457 // skip tests which explicitly dispatch to the default 2458 if (range->sux() != default_sux) { 2459 res->append(range); 2460 } 2461 range = new C1SwitchRange(new_key, new_sux); 2462 } 2463 key = new_key; 2464 sux = new_sux; 2465 } 2466 if (res->length() == 0 || res->last() != range) res->append(range); 2467 } 2468 return res; 2469 } 2470 2471 2472 void LIRGenerator::do_TableSwitch(TableSwitch* x) { 2473 LIRItem tag(x->tag(), this); 2474 tag.load_item(); 2475 set_no_result(x); 2476 2477 if (x->is_safepoint()) { 2478 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2479 } 2480 2481 // move values into phi locations 2482 move_to_phi(x->state()); 2483 2484 int lo_key = x->lo_key(); 2485 int len = x->length(); 2486 assert(lo_key <= (lo_key + (len - 1)), "integer overflow"); 2487 LIR_Opr value = tag.result(); 2488 2489 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2490 ciMethod* method = x->state()->scope()->method(); 2491 ciMethodData* md = method->method_data_or_null(); 2492 assert(md != NULL, "Sanity"); 2493 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2494 assert(data != NULL, "must have profiling data"); 2495 assert(data->is_MultiBranchData(), "bad profile data?"); 2496 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2497 LIR_Opr md_reg = new_register(T_METADATA); 2498 __ metadata2reg(md->constant_encoding(), md_reg); 2499 LIR_Opr data_offset_reg = new_pointer_register(); 2500 LIR_Opr tmp_reg = new_pointer_register(); 2501 2502 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2503 for (int i = 0; i < len; i++) { 2504 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2505 __ cmp(lir_cond_equal, value, i + lo_key); 2506 __ move(data_offset_reg, tmp_reg); 2507 __ cmove(lir_cond_equal, 2508 LIR_OprFact::intptrConst(count_offset), 2509 tmp_reg, 2510 data_offset_reg, T_INT); 2511 } 2512 2513 LIR_Opr data_reg = new_pointer_register(); 2514 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2515 __ move(data_addr, data_reg); 2516 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2517 __ move(data_reg, data_addr); 2518 } 2519 2520 if (UseTableRanges) { 2521 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2522 } else { 2523 for (int i = 0; i < len; i++) { 2524 __ cmp(lir_cond_equal, value, i + lo_key); 2525 __ branch(lir_cond_equal, x->sux_at(i)); 2526 } 2527 __ jump(x->default_sux()); 2528 } 2529 } 2530 2531 2532 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) { 2533 LIRItem tag(x->tag(), this); 2534 tag.load_item(); 2535 set_no_result(x); 2536 2537 if (x->is_safepoint()) { 2538 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2539 } 2540 2541 // move values into phi locations 2542 move_to_phi(x->state()); 2543 2544 LIR_Opr value = tag.result(); 2545 int len = x->length(); 2546 2547 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2548 ciMethod* method = x->state()->scope()->method(); 2549 ciMethodData* md = method->method_data_or_null(); 2550 assert(md != NULL, "Sanity"); 2551 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2552 assert(data != NULL, "must have profiling data"); 2553 assert(data->is_MultiBranchData(), "bad profile data?"); 2554 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2555 LIR_Opr md_reg = new_register(T_METADATA); 2556 __ metadata2reg(md->constant_encoding(), md_reg); 2557 LIR_Opr data_offset_reg = new_pointer_register(); 2558 LIR_Opr tmp_reg = new_pointer_register(); 2559 2560 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2561 for (int i = 0; i < len; i++) { 2562 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2563 __ cmp(lir_cond_equal, value, x->key_at(i)); 2564 __ move(data_offset_reg, tmp_reg); 2565 __ cmove(lir_cond_equal, 2566 LIR_OprFact::intptrConst(count_offset), 2567 tmp_reg, 2568 data_offset_reg, T_INT); 2569 } 2570 2571 LIR_Opr data_reg = new_pointer_register(); 2572 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2573 __ move(data_addr, data_reg); 2574 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2575 __ move(data_reg, data_addr); 2576 } 2577 2578 if (UseTableRanges) { 2579 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2580 } else { 2581 int len = x->length(); 2582 for (int i = 0; i < len; i++) { 2583 __ cmp(lir_cond_equal, value, x->key_at(i)); 2584 __ branch(lir_cond_equal, x->sux_at(i)); 2585 } 2586 __ jump(x->default_sux()); 2587 } 2588 } 2589 2590 2591 void LIRGenerator::do_Goto(Goto* x) { 2592 set_no_result(x); 2593 2594 if (block()->next()->as_OsrEntry()) { 2595 // need to free up storage used for OSR entry point 2596 LIR_Opr osrBuffer = block()->next()->operand(); 2597 BasicTypeList signature; 2598 signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer 2599 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2600 __ move(osrBuffer, cc->args()->at(0)); 2601 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 2602 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args()); 2603 } 2604 2605 if (x->is_safepoint()) { 2606 ValueStack* state = x->state_before() ? x->state_before() : x->state(); 2607 2608 // increment backedge counter if needed 2609 CodeEmitInfo* info = state_for(x, state); 2610 increment_backedge_counter(info, x->profiled_bci()); 2611 CodeEmitInfo* safepoint_info = state_for(x, state); 2612 __ safepoint(safepoint_poll_register(), safepoint_info); 2613 } 2614 2615 // Gotos can be folded Ifs, handle this case. 2616 if (x->should_profile()) { 2617 ciMethod* method = x->profiled_method(); 2618 assert(method != NULL, "method should be set if branch is profiled"); 2619 ciMethodData* md = method->method_data_or_null(); 2620 assert(md != NULL, "Sanity"); 2621 ciProfileData* data = md->bci_to_data(x->profiled_bci()); 2622 assert(data != NULL, "must have profiling data"); 2623 int offset; 2624 if (x->direction() == Goto::taken) { 2625 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2626 offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 2627 } else if (x->direction() == Goto::not_taken) { 2628 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2629 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 2630 } else { 2631 assert(data->is_JumpData(), "need JumpData for branches"); 2632 offset = md->byte_offset_of_slot(data, JumpData::taken_offset()); 2633 } 2634 LIR_Opr md_reg = new_register(T_METADATA); 2635 __ metadata2reg(md->constant_encoding(), md_reg); 2636 2637 increment_counter(new LIR_Address(md_reg, offset, 2638 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment); 2639 } 2640 2641 // emit phi-instruction move after safepoint since this simplifies 2642 // describing the state as the safepoint. 2643 move_to_phi(x->state()); 2644 2645 __ jump(x->default_sux()); 2646 } 2647 2648 /** 2649 * Emit profiling code if needed for arguments, parameters, return value types 2650 * 2651 * @param md MDO the code will update at runtime 2652 * @param md_base_offset common offset in the MDO for this profile and subsequent ones 2653 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile 2654 * @param profiled_k current profile 2655 * @param obj IR node for the object to be profiled 2656 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset). 2657 * Set once we find an update to make and use for next ones. 2658 * @param not_null true if we know obj cannot be null 2659 * @param signature_at_call_k signature at call for obj 2660 * @param callee_signature_k signature of callee for obj 2661 * at call and callee signatures differ at method handle call 2662 * @return the only klass we know will ever be seen at this profile point 2663 */ 2664 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k, 2665 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k, 2666 ciKlass* callee_signature_k) { 2667 ciKlass* result = NULL; 2668 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k); 2669 bool do_update = !TypeEntries::is_type_unknown(profiled_k); 2670 // known not to be null or null bit already set and already set to 2671 // unknown: nothing we can do to improve profiling 2672 if (!do_null && !do_update) { 2673 return result; 2674 } 2675 2676 ciKlass* exact_klass = NULL; 2677 Compilation* comp = Compilation::current(); 2678 if (do_update) { 2679 // try to find exact type, using CHA if possible, so that loading 2680 // the klass from the object can be avoided 2681 ciType* type = obj->exact_type(); 2682 if (type == NULL) { 2683 type = obj->declared_type(); 2684 type = comp->cha_exact_type(type); 2685 } 2686 assert(type == NULL || type->is_klass(), "type should be class"); 2687 exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL; 2688 2689 do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2690 } 2691 2692 if (!do_null && !do_update) { 2693 return result; 2694 } 2695 2696 ciKlass* exact_signature_k = NULL; 2697 if (do_update) { 2698 // Is the type from the signature exact (the only one possible)? 2699 exact_signature_k = signature_at_call_k->exact_klass(); 2700 if (exact_signature_k == NULL) { 2701 exact_signature_k = comp->cha_exact_type(signature_at_call_k); 2702 } else { 2703 result = exact_signature_k; 2704 // Known statically. No need to emit any code: prevent 2705 // LIR_Assembler::emit_profile_type() from emitting useless code 2706 profiled_k = ciTypeEntries::with_status(result, profiled_k); 2707 } 2708 // exact_klass and exact_signature_k can be both non NULL but 2709 // different if exact_klass is loaded after the ciObject for 2710 // exact_signature_k is created. 2711 if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) { 2712 // sometimes the type of the signature is better than the best type 2713 // the compiler has 2714 exact_klass = exact_signature_k; 2715 } 2716 if (callee_signature_k != NULL && 2717 callee_signature_k != signature_at_call_k) { 2718 ciKlass* improved_klass = callee_signature_k->exact_klass(); 2719 if (improved_klass == NULL) { 2720 improved_klass = comp->cha_exact_type(callee_signature_k); 2721 } 2722 if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) { 2723 exact_klass = exact_signature_k; 2724 } 2725 } 2726 do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2727 } 2728 2729 if (!do_null && !do_update) { 2730 return result; 2731 } 2732 2733 if (mdp == LIR_OprFact::illegalOpr) { 2734 mdp = new_register(T_METADATA); 2735 __ metadata2reg(md->constant_encoding(), mdp); 2736 if (md_base_offset != 0) { 2737 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS); 2738 mdp = new_pointer_register(); 2739 __ leal(LIR_OprFact::address(base_type_address), mdp); 2740 } 2741 } 2742 LIRItem value(obj, this); 2743 value.load_item(); 2744 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA), 2745 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL); 2746 return result; 2747 } 2748 2749 // profile parameters on entry to the root of the compilation 2750 void LIRGenerator::profile_parameters(Base* x) { 2751 if (compilation()->profile_parameters()) { 2752 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2753 ciMethodData* md = scope()->method()->method_data_or_null(); 2754 assert(md != NULL, "Sanity"); 2755 2756 if (md->parameters_type_data() != NULL) { 2757 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 2758 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 2759 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2760 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) { 2761 LIR_Opr src = args->at(i); 2762 assert(!src->is_illegal(), "check"); 2763 BasicType t = src->type(); 2764 if (is_reference_type(t)) { 2765 intptr_t profiled_k = parameters->type(j); 2766 Local* local = x->state()->local_at(java_index)->as_Local(); 2767 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 2768 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)), 2769 profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL); 2770 // If the profile is known statically set it once for all and do not emit any code 2771 if (exact != NULL) { 2772 md->set_parameter_type(j, exact); 2773 } 2774 j++; 2775 } 2776 java_index += type2size[t]; 2777 } 2778 } 2779 } 2780 } 2781 2782 void LIRGenerator::do_Base(Base* x) { 2783 __ std_entry(LIR_OprFact::illegalOpr); 2784 // Emit moves from physical registers / stack slots to virtual registers 2785 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2786 IRScope* irScope = compilation()->hir()->top_scope(); 2787 int java_index = 0; 2788 for (int i = 0; i < args->length(); i++) { 2789 LIR_Opr src = args->at(i); 2790 assert(!src->is_illegal(), "check"); 2791 BasicType t = src->type(); 2792 2793 // Types which are smaller than int are passed as int, so 2794 // correct the type which passed. 2795 switch (t) { 2796 case T_BYTE: 2797 case T_BOOLEAN: 2798 case T_SHORT: 2799 case T_CHAR: 2800 t = T_INT; 2801 break; 2802 default: 2803 break; 2804 } 2805 2806 LIR_Opr dest = new_register(t); 2807 __ move(src, dest); 2808 2809 // Assign new location to Local instruction for this local 2810 Local* local = x->state()->local_at(java_index)->as_Local(); 2811 assert(local != NULL, "Locals for incoming arguments must have been created"); 2812 #ifndef __SOFTFP__ 2813 // The java calling convention passes double as long and float as int. 2814 assert(as_ValueType(t)->tag() == local->type()->tag(), "check"); 2815 #endif // __SOFTFP__ 2816 local->set_operand(dest); 2817 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL); 2818 java_index += type2size[t]; 2819 } 2820 2821 if (compilation()->env()->dtrace_method_probes()) { 2822 BasicTypeList signature; 2823 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 2824 signature.append(T_METADATA); // Method* 2825 LIR_OprList* args = new LIR_OprList(); 2826 args->append(getThreadPointer()); 2827 LIR_Opr meth = new_register(T_METADATA); 2828 __ metadata2reg(method()->constant_encoding(), meth); 2829 args->append(meth); 2830 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL); 2831 } 2832 2833 if (method()->is_synchronized()) { 2834 LIR_Opr obj; 2835 if (method()->is_static()) { 2836 obj = new_register(T_OBJECT); 2837 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj); 2838 } else { 2839 Local* receiver = x->state()->local_at(0)->as_Local(); 2840 assert(receiver != NULL, "must already exist"); 2841 obj = receiver->operand(); 2842 } 2843 assert(obj->is_valid(), "must be valid"); 2844 2845 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2846 LIR_Opr lock = syncLockOpr(); 2847 __ load_stack_address_monitor(0, lock); 2848 2849 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException)); 2850 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info); 2851 2852 // receiver is guaranteed non-NULL so don't need CodeEmitInfo 2853 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL); 2854 } 2855 } 2856 if (compilation()->age_code()) { 2857 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false); 2858 decrement_age(info); 2859 } 2860 // increment invocation counters if needed 2861 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting. 2862 profile_parameters(x); 2863 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false); 2864 increment_invocation_counter(info); 2865 } 2866 2867 // all blocks with a successor must end with an unconditional jump 2868 // to the successor even if they are consecutive 2869 __ jump(x->default_sux()); 2870 } 2871 2872 2873 void LIRGenerator::do_OsrEntry(OsrEntry* x) { 2874 // construct our frame and model the production of incoming pointer 2875 // to the OSR buffer. 2876 __ osr_entry(LIR_Assembler::osrBufferPointer()); 2877 LIR_Opr result = rlock_result(x); 2878 __ move(LIR_Assembler::osrBufferPointer(), result); 2879 } 2880 2881 2882 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) { 2883 assert(args->length() == arg_list->length(), 2884 "args=%d, arg_list=%d", args->length(), arg_list->length()); 2885 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) { 2886 LIRItem* param = args->at(i); 2887 LIR_Opr loc = arg_list->at(i); 2888 if (loc->is_register()) { 2889 param->load_item_force(loc); 2890 } else { 2891 LIR_Address* addr = loc->as_address_ptr(); 2892 param->load_for_store(addr->type()); 2893 if (addr->type() == T_OBJECT) { 2894 __ move_wide(param->result(), addr); 2895 } else 2896 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { 2897 __ unaligned_move(param->result(), addr); 2898 } else { 2899 __ move(param->result(), addr); 2900 } 2901 } 2902 } 2903 2904 if (x->has_receiver()) { 2905 LIRItem* receiver = args->at(0); 2906 LIR_Opr loc = arg_list->at(0); 2907 if (loc->is_register()) { 2908 receiver->load_item_force(loc); 2909 } else { 2910 assert(loc->is_address(), "just checking"); 2911 receiver->load_for_store(T_OBJECT); 2912 __ move_wide(receiver->result(), loc->as_address_ptr()); 2913 } 2914 } 2915 } 2916 2917 2918 // Visits all arguments, returns appropriate items without loading them 2919 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) { 2920 LIRItemList* argument_items = new LIRItemList(); 2921 if (x->has_receiver()) { 2922 LIRItem* receiver = new LIRItem(x->receiver(), this); 2923 argument_items->append(receiver); 2924 } 2925 for (int i = 0; i < x->number_of_arguments(); i++) { 2926 LIRItem* param = new LIRItem(x->argument_at(i), this); 2927 argument_items->append(param); 2928 } 2929 return argument_items; 2930 } 2931 2932 2933 // The invoke with receiver has following phases: 2934 // a) traverse and load/lock receiver; 2935 // b) traverse all arguments -> item-array (invoke_visit_argument) 2936 // c) push receiver on stack 2937 // d) load each of the items and push on stack 2938 // e) unlock receiver 2939 // f) move receiver into receiver-register %o0 2940 // g) lock result registers and emit call operation 2941 // 2942 // Before issuing a call, we must spill-save all values on stack 2943 // that are in caller-save register. "spill-save" moves those registers 2944 // either in a free callee-save register or spills them if no free 2945 // callee save register is available. 2946 // 2947 // The problem is where to invoke spill-save. 2948 // - if invoked between e) and f), we may lock callee save 2949 // register in "spill-save" that destroys the receiver register 2950 // before f) is executed 2951 // - if we rearrange f) to be earlier (by loading %o0) it 2952 // may destroy a value on the stack that is currently in %o0 2953 // and is waiting to be spilled 2954 // - if we keep the receiver locked while doing spill-save, 2955 // we cannot spill it as it is spill-locked 2956 // 2957 void LIRGenerator::do_Invoke(Invoke* x) { 2958 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true); 2959 2960 LIR_OprList* arg_list = cc->args(); 2961 LIRItemList* args = invoke_visit_arguments(x); 2962 LIR_Opr receiver = LIR_OprFact::illegalOpr; 2963 2964 // setup result register 2965 LIR_Opr result_register = LIR_OprFact::illegalOpr; 2966 if (x->type() != voidType) { 2967 result_register = result_register_for(x->type()); 2968 } 2969 2970 CodeEmitInfo* info = state_for(x, x->state()); 2971 2972 invoke_load_arguments(x, args, arg_list); 2973 2974 if (x->has_receiver()) { 2975 args->at(0)->load_item_force(LIR_Assembler::receiverOpr()); 2976 receiver = args->at(0)->result(); 2977 } 2978 2979 // emit invoke code 2980 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match"); 2981 2982 // JSR 292 2983 // Preserve the SP over MethodHandle call sites, if needed. 2984 ciMethod* target = x->target(); 2985 bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant? 2986 target->is_method_handle_intrinsic() || 2987 target->is_compiled_lambda_form()); 2988 if (is_method_handle_invoke) { 2989 info->set_is_method_handle_invoke(true); 2990 if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2991 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr()); 2992 } 2993 } 2994 2995 switch (x->code()) { 2996 case Bytecodes::_invokestatic: 2997 __ call_static(target, result_register, 2998 SharedRuntime::get_resolve_static_call_stub(), 2999 arg_list, info); 3000 break; 3001 case Bytecodes::_invokespecial: 3002 case Bytecodes::_invokevirtual: 3003 case Bytecodes::_invokeinterface: 3004 // for loaded and final (method or class) target we still produce an inline cache, 3005 // in order to be able to call mixed mode 3006 if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) { 3007 __ call_opt_virtual(target, receiver, result_register, 3008 SharedRuntime::get_resolve_opt_virtual_call_stub(), 3009 arg_list, info); 3010 } else if (x->vtable_index() < 0) { 3011 __ call_icvirtual(target, receiver, result_register, 3012 SharedRuntime::get_resolve_virtual_call_stub(), 3013 arg_list, info); 3014 } else { 3015 int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes(); 3016 int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes(); 3017 __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info); 3018 } 3019 break; 3020 case Bytecodes::_invokedynamic: { 3021 __ call_dynamic(target, receiver, result_register, 3022 SharedRuntime::get_resolve_static_call_stub(), 3023 arg_list, info); 3024 break; 3025 } 3026 default: 3027 fatal("unexpected bytecode: %s", Bytecodes::name(x->code())); 3028 break; 3029 } 3030 3031 // JSR 292 3032 // Restore the SP after MethodHandle call sites, if needed. 3033 if (is_method_handle_invoke 3034 && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 3035 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer()); 3036 } 3037 3038 if (x->type()->is_float() || x->type()->is_double()) { 3039 // Force rounding of results from non-strictfp when in strictfp 3040 // scope (or when we don't know the strictness of the callee, to 3041 // be safe.) 3042 if (method()->is_strict()) { 3043 if (!x->target_is_loaded() || !x->target_is_strictfp()) { 3044 result_register = round_item(result_register); 3045 } 3046 } 3047 } 3048 3049 if (result_register->is_valid()) { 3050 LIR_Opr result = rlock_result(x); 3051 __ move(result_register, result); 3052 } 3053 } 3054 3055 3056 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) { 3057 assert(x->number_of_arguments() == 1, "wrong type"); 3058 LIRItem value (x->argument_at(0), this); 3059 LIR_Opr reg = rlock_result(x); 3060 value.load_item(); 3061 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type())); 3062 __ move(tmp, reg); 3063 } 3064 3065 3066 3067 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval() 3068 void LIRGenerator::do_IfOp(IfOp* x) { 3069 #ifdef ASSERT 3070 { 3071 ValueTag xtag = x->x()->type()->tag(); 3072 ValueTag ttag = x->tval()->type()->tag(); 3073 assert(xtag == intTag || xtag == objectTag, "cannot handle others"); 3074 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others"); 3075 assert(ttag == x->fval()->type()->tag(), "cannot handle others"); 3076 } 3077 #endif 3078 3079 LIRItem left(x->x(), this); 3080 LIRItem right(x->y(), this); 3081 left.load_item(); 3082 if (can_inline_as_constant(right.value())) { 3083 right.dont_load_item(); 3084 } else { 3085 right.load_item(); 3086 } 3087 3088 LIRItem t_val(x->tval(), this); 3089 LIRItem f_val(x->fval(), this); 3090 t_val.dont_load_item(); 3091 f_val.dont_load_item(); 3092 LIR_Opr reg = rlock_result(x); 3093 3094 __ cmp(lir_cond(x->cond()), left.result(), right.result()); 3095 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type())); 3096 } 3097 3098 #ifdef JFR_HAVE_INTRINSICS 3099 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) { 3100 CodeEmitInfo* info = state_for(x); 3101 CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check 3102 3103 assert(info != NULL, "must have info"); 3104 LIRItem arg(x->argument_at(0), this); 3105 3106 arg.load_item(); 3107 LIR_Opr klass = new_register(T_METADATA); 3108 __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset(), T_ADDRESS), klass, info); 3109 LIR_Opr id = new_register(T_LONG); 3110 ByteSize offset = KLASS_TRACE_ID_OFFSET; 3111 LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG); 3112 3113 __ move(trace_id_addr, id); 3114 __ logical_or(id, LIR_OprFact::longConst(0x01l), id); 3115 __ store(id, trace_id_addr); 3116 3117 #ifdef TRACE_ID_META_BITS 3118 __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id); 3119 #endif 3120 #ifdef TRACE_ID_SHIFT 3121 __ unsigned_shift_right(id, TRACE_ID_SHIFT, id); 3122 #endif 3123 3124 __ move(id, rlock_result(x)); 3125 } 3126 3127 void LIRGenerator::do_getEventWriter(Intrinsic* x) { 3128 LabelObj* L_end = new LabelObj(); 3129 3130 // FIXME T_ADDRESS should actually be T_METADATA but it can't because the 3131 // meaning of these two is mixed up (see JDK-8026837). 3132 LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(), 3133 in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR), 3134 T_ADDRESS); 3135 LIR_Opr result = rlock_result(x); 3136 __ move(LIR_OprFact::oopConst(NULL), result); 3137 LIR_Opr jobj = new_register(T_METADATA); 3138 __ move_wide(jobj_addr, jobj); 3139 __ cmp(lir_cond_equal, jobj, LIR_OprFact::metadataConst(0)); 3140 __ branch(lir_cond_equal, L_end->label()); 3141 3142 access_load(IN_NATIVE, T_OBJECT, LIR_OprFact::address(new LIR_Address(jobj, T_OBJECT)), result); 3143 3144 __ branch_destination(L_end->label()); 3145 } 3146 3147 #endif 3148 3149 3150 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) { 3151 assert(x->number_of_arguments() == 0, "wrong type"); 3152 // Enforce computation of _reserved_argument_area_size which is required on some platforms. 3153 BasicTypeList signature; 3154 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 3155 LIR_Opr reg = result_register_for(x->type()); 3156 __ call_runtime_leaf(routine, getThreadTemp(), 3157 reg, new LIR_OprList()); 3158 LIR_Opr result = rlock_result(x); 3159 __ move(reg, result); 3160 } 3161 3162 3163 3164 void LIRGenerator::do_Intrinsic(Intrinsic* x) { 3165 switch (x->id()) { 3166 case vmIntrinsics::_intBitsToFloat : 3167 case vmIntrinsics::_doubleToRawLongBits : 3168 case vmIntrinsics::_longBitsToDouble : 3169 case vmIntrinsics::_floatToRawIntBits : { 3170 do_FPIntrinsics(x); 3171 break; 3172 } 3173 3174 #ifdef JFR_HAVE_INTRINSICS 3175 case vmIntrinsics::_getClassId: 3176 do_ClassIDIntrinsic(x); 3177 break; 3178 case vmIntrinsics::_getEventWriter: 3179 do_getEventWriter(x); 3180 break; 3181 case vmIntrinsics::_counterTime: 3182 do_RuntimeCall(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), x); 3183 break; 3184 #endif 3185 3186 case vmIntrinsics::_currentTimeMillis: 3187 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x); 3188 break; 3189 3190 case vmIntrinsics::_nanoTime: 3191 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x); 3192 break; 3193 3194 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break; 3195 case vmIntrinsics::_isInstance: do_isInstance(x); break; 3196 case vmIntrinsics::_isPrimitive: do_isPrimitive(x); break; 3197 case vmIntrinsics::_getClass: do_getClass(x); break; 3198 case vmIntrinsics::_currentThread: do_currentThread(x); break; 3199 case vmIntrinsics::_addressOf: do_addressOf(x); break; 3200 case vmIntrinsics::_sizeOf: do_sizeOf(x); break; 3201 case vmIntrinsics::_getReferencedObjects: do_getReferencedObjects(x); break; 3202 3203 case vmIntrinsics::_dlog: // fall through 3204 case vmIntrinsics::_dlog10: // fall through 3205 case vmIntrinsics::_dabs: // fall through 3206 case vmIntrinsics::_dsqrt: // fall through 3207 case vmIntrinsics::_dtan: // fall through 3208 case vmIntrinsics::_dsin : // fall through 3209 case vmIntrinsics::_dcos : // fall through 3210 case vmIntrinsics::_dexp : // fall through 3211 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break; 3212 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break; 3213 3214 case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break; 3215 case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break; 3216 3217 // java.nio.Buffer.checkIndex 3218 case vmIntrinsics::_checkIndex: do_NIOCheckIndex(x); break; 3219 3220 case vmIntrinsics::_compareAndSetReference: 3221 do_CompareAndSwap(x, objectType); 3222 break; 3223 case vmIntrinsics::_compareAndSetInt: 3224 do_CompareAndSwap(x, intType); 3225 break; 3226 case vmIntrinsics::_compareAndSetLong: 3227 do_CompareAndSwap(x, longType); 3228 break; 3229 3230 case vmIntrinsics::_loadFence : 3231 __ membar_acquire(); 3232 break; 3233 case vmIntrinsics::_storeFence: 3234 __ membar_release(); 3235 break; 3236 case vmIntrinsics::_fullFence : 3237 __ membar(); 3238 break; 3239 case vmIntrinsics::_onSpinWait: 3240 __ on_spin_wait(); 3241 break; 3242 case vmIntrinsics::_Reference_get: 3243 do_Reference_get(x); 3244 break; 3245 3246 case vmIntrinsics::_updateCRC32: 3247 case vmIntrinsics::_updateBytesCRC32: 3248 case vmIntrinsics::_updateByteBufferCRC32: 3249 do_update_CRC32(x); 3250 break; 3251 3252 case vmIntrinsics::_updateBytesCRC32C: 3253 case vmIntrinsics::_updateDirectByteBufferCRC32C: 3254 do_update_CRC32C(x); 3255 break; 3256 3257 case vmIntrinsics::_vectorizedMismatch: 3258 do_vectorizedMismatch(x); 3259 break; 3260 3261 default: ShouldNotReachHere(); break; 3262 } 3263 } 3264 3265 void LIRGenerator::profile_arguments(ProfileCall* x) { 3266 if (compilation()->profile_arguments()) { 3267 int bci = x->bci_of_invoke(); 3268 ciMethodData* md = x->method()->method_data_or_null(); 3269 assert(md != NULL, "Sanity"); 3270 ciProfileData* data = md->bci_to_data(bci); 3271 if (data != NULL) { 3272 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) || 3273 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) { 3274 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset(); 3275 int base_offset = md->byte_offset_of_slot(data, extra); 3276 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3277 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args(); 3278 3279 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3280 int start = 0; 3281 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments(); 3282 if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) { 3283 // first argument is not profiled at call (method handle invoke) 3284 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected"); 3285 start = 1; 3286 } 3287 ciSignature* callee_signature = x->callee()->signature(); 3288 // method handle call to virtual method 3289 bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc); 3290 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL); 3291 3292 bool ignored_will_link; 3293 ciSignature* signature_at_call = NULL; 3294 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3295 ciSignatureStream signature_at_call_stream(signature_at_call); 3296 3297 // if called through method handle invoke, some arguments may have been popped 3298 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) { 3299 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset()); 3300 ciKlass* exact = profile_type(md, base_offset, off, 3301 args->type(i), x->profiled_arg_at(i+start), mdp, 3302 !x->arg_needs_null_check(i+start), 3303 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass()); 3304 if (exact != NULL) { 3305 md->set_argument_type(bci, i, exact); 3306 } 3307 } 3308 } else { 3309 #ifdef ASSERT 3310 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke()); 3311 int n = x->nb_profiled_args(); 3312 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() || 3313 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))), 3314 "only at JSR292 bytecodes"); 3315 #endif 3316 } 3317 } 3318 } 3319 } 3320 3321 // profile parameters on entry to an inlined method 3322 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) { 3323 if (compilation()->profile_parameters() && x->inlined()) { 3324 ciMethodData* md = x->callee()->method_data_or_null(); 3325 if (md != NULL) { 3326 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 3327 if (parameters_type_data != NULL) { 3328 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 3329 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3330 bool has_receiver = !x->callee()->is_static(); 3331 ciSignature* sig = x->callee()->signature(); 3332 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL); 3333 int i = 0; // to iterate on the Instructions 3334 Value arg = x->recv(); 3335 bool not_null = false; 3336 int bci = x->bci_of_invoke(); 3337 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3338 // The first parameter is the receiver so that's what we start 3339 // with if it exists. One exception is method handle call to 3340 // virtual method: the receiver is in the args list 3341 if (arg == NULL || !Bytecodes::has_receiver(bc)) { 3342 i = 1; 3343 arg = x->profiled_arg_at(0); 3344 not_null = !x->arg_needs_null_check(0); 3345 } 3346 int k = 0; // to iterate on the profile data 3347 for (;;) { 3348 intptr_t profiled_k = parameters->type(k); 3349 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 3350 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)), 3351 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL); 3352 // If the profile is known statically set it once for all and do not emit any code 3353 if (exact != NULL) { 3354 md->set_parameter_type(k, exact); 3355 } 3356 k++; 3357 if (k >= parameters_type_data->number_of_parameters()) { 3358 #ifdef ASSERT 3359 int extra = 0; 3360 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 && 3361 x->nb_profiled_args() >= TypeProfileParmsLimit && 3362 x->recv() != NULL && Bytecodes::has_receiver(bc)) { 3363 extra += 1; 3364 } 3365 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?"); 3366 #endif 3367 break; 3368 } 3369 arg = x->profiled_arg_at(i); 3370 not_null = !x->arg_needs_null_check(i); 3371 i++; 3372 } 3373 } 3374 } 3375 } 3376 } 3377 3378 void LIRGenerator::do_ProfileCall(ProfileCall* x) { 3379 // Need recv in a temporary register so it interferes with the other temporaries 3380 LIR_Opr recv = LIR_OprFact::illegalOpr; 3381 LIR_Opr mdo = new_register(T_METADATA); 3382 // tmp is used to hold the counters on SPARC 3383 LIR_Opr tmp = new_pointer_register(); 3384 3385 if (x->nb_profiled_args() > 0) { 3386 profile_arguments(x); 3387 } 3388 3389 // profile parameters on inlined method entry including receiver 3390 if (x->recv() != NULL || x->nb_profiled_args() > 0) { 3391 profile_parameters_at_call(x); 3392 } 3393 3394 if (x->recv() != NULL) { 3395 LIRItem value(x->recv(), this); 3396 value.load_item(); 3397 recv = new_register(T_OBJECT); 3398 __ move(value.result(), recv); 3399 } 3400 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder()); 3401 } 3402 3403 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) { 3404 int bci = x->bci_of_invoke(); 3405 ciMethodData* md = x->method()->method_data_or_null(); 3406 assert(md != NULL, "Sanity"); 3407 ciProfileData* data = md->bci_to_data(bci); 3408 if (data != NULL) { 3409 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type"); 3410 ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret(); 3411 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3412 3413 bool ignored_will_link; 3414 ciSignature* signature_at_call = NULL; 3415 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3416 3417 // The offset within the MDO of the entry to update may be too large 3418 // to be used in load/store instructions on some platforms. So have 3419 // profile_type() compute the address of the profile in a register. 3420 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0, 3421 ret->type(), x->ret(), mdp, 3422 !x->needs_null_check(), 3423 signature_at_call->return_type()->as_klass(), 3424 x->callee()->signature()->return_type()->as_klass()); 3425 if (exact != NULL) { 3426 md->set_return_type(bci, exact); 3427 } 3428 } 3429 } 3430 3431 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) { 3432 // We can safely ignore accessors here, since c2 will inline them anyway, 3433 // accessors are also always mature. 3434 if (!x->inlinee()->is_accessor()) { 3435 CodeEmitInfo* info = state_for(x, x->state(), true); 3436 // Notify the runtime very infrequently only to take care of counter overflows 3437 int freq_log = Tier23InlineeNotifyFreqLog; 3438 double scale; 3439 if (_method->has_option_value("CompileThresholdScaling", scale)) { 3440 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3441 } 3442 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true); 3443 } 3444 } 3445 3446 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) { 3447 if (compilation()->count_backedges()) { 3448 #if defined(X86) && !defined(_LP64) 3449 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 3450 LIR_Opr left_copy = new_register(left->type()); 3451 __ move(left, left_copy); 3452 __ cmp(cond, left_copy, right); 3453 #else 3454 __ cmp(cond, left, right); 3455 #endif 3456 LIR_Opr step = new_register(T_INT); 3457 LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment); 3458 LIR_Opr zero = LIR_OprFact::intConst(0); 3459 __ cmove(cond, 3460 (left_bci < bci) ? plus_one : zero, 3461 (right_bci < bci) ? plus_one : zero, 3462 step, left->type()); 3463 increment_backedge_counter(info, step, bci); 3464 } 3465 } 3466 3467 3468 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) { 3469 int freq_log = 0; 3470 int level = compilation()->env()->comp_level(); 3471 if (level == CompLevel_limited_profile) { 3472 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog); 3473 } else if (level == CompLevel_full_profile) { 3474 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog); 3475 } else { 3476 ShouldNotReachHere(); 3477 } 3478 // Increment the appropriate invocation/backedge counter and notify the runtime. 3479 double scale; 3480 if (_method->has_option_value("CompileThresholdScaling", scale)) { 3481 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3482 } 3483 increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true); 3484 } 3485 3486 void LIRGenerator::decrement_age(CodeEmitInfo* info) { 3487 ciMethod* method = info->scope()->method(); 3488 MethodCounters* mc_adr = method->ensure_method_counters(); 3489 if (mc_adr != NULL) { 3490 LIR_Opr mc = new_pointer_register(); 3491 __ move(LIR_OprFact::intptrConst(mc_adr), mc); 3492 int offset = in_bytes(MethodCounters::nmethod_age_offset()); 3493 LIR_Address* counter = new LIR_Address(mc, offset, T_INT); 3494 LIR_Opr result = new_register(T_INT); 3495 __ load(counter, result); 3496 __ sub(result, LIR_OprFact::intConst(1), result); 3497 __ store(result, counter); 3498 // DeoptimizeStub will reexecute from the current state in code info. 3499 CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured, 3500 Deoptimization::Action_make_not_entrant); 3501 __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0)); 3502 __ branch(lir_cond_lessEqual, deopt); 3503 } 3504 } 3505 3506 3507 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info, 3508 ciMethod *method, LIR_Opr step, int frequency, 3509 int bci, bool backedge, bool notify) { 3510 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0"); 3511 int level = _compilation->env()->comp_level(); 3512 assert(level > CompLevel_simple, "Shouldn't be here"); 3513 3514 int offset = -1; 3515 LIR_Opr counter_holder = NULL; 3516 if (level == CompLevel_limited_profile) { 3517 MethodCounters* counters_adr = method->ensure_method_counters(); 3518 if (counters_adr == NULL) { 3519 bailout("method counters allocation failed"); 3520 return; 3521 } 3522 counter_holder = new_pointer_register(); 3523 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder); 3524 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() : 3525 MethodCounters::invocation_counter_offset()); 3526 } else if (level == CompLevel_full_profile) { 3527 counter_holder = new_register(T_METADATA); 3528 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() : 3529 MethodData::invocation_counter_offset()); 3530 ciMethodData* md = method->method_data_or_null(); 3531 assert(md != NULL, "Sanity"); 3532 __ metadata2reg(md->constant_encoding(), counter_holder); 3533 } else { 3534 ShouldNotReachHere(); 3535 } 3536 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT); 3537 LIR_Opr result = new_register(T_INT); 3538 __ load(counter, result); 3539 __ add(result, step, result); 3540 __ store(result, counter); 3541 if (notify && (!backedge || UseOnStackReplacement)) { 3542 LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding()); 3543 // The bci for info can point to cmp for if's we want the if bci 3544 CodeStub* overflow = new CounterOverflowStub(info, bci, meth); 3545 int freq = frequency << InvocationCounter::count_shift; 3546 if (freq == 0) { 3547 if (!step->is_constant()) { 3548 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3549 __ branch(lir_cond_notEqual, overflow); 3550 } else { 3551 __ branch(lir_cond_always, overflow); 3552 } 3553 } else { 3554 LIR_Opr mask = load_immediate(freq, T_INT); 3555 if (!step->is_constant()) { 3556 // If step is 0, make sure the overflow check below always fails 3557 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3558 __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT); 3559 } 3560 __ logical_and(result, mask, result); 3561 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0)); 3562 __ branch(lir_cond_equal, overflow); 3563 } 3564 __ branch_destination(overflow->continuation()); 3565 } 3566 } 3567 3568 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) { 3569 LIR_OprList* args = new LIR_OprList(x->number_of_arguments()); 3570 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments()); 3571 3572 if (x->pass_thread()) { 3573 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 3574 args->append(getThreadPointer()); 3575 } 3576 3577 for (int i = 0; i < x->number_of_arguments(); i++) { 3578 Value a = x->argument_at(i); 3579 LIRItem* item = new LIRItem(a, this); 3580 item->load_item(); 3581 args->append(item->result()); 3582 signature->append(as_BasicType(a->type())); 3583 } 3584 3585 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL); 3586 if (x->type() == voidType) { 3587 set_no_result(x); 3588 } else { 3589 __ move(result, rlock_result(x)); 3590 } 3591 } 3592 3593 #ifdef ASSERT 3594 void LIRGenerator::do_Assert(Assert *x) { 3595 ValueTag tag = x->x()->type()->tag(); 3596 If::Condition cond = x->cond(); 3597 3598 LIRItem xitem(x->x(), this); 3599 LIRItem yitem(x->y(), this); 3600 LIRItem* xin = &xitem; 3601 LIRItem* yin = &yitem; 3602 3603 assert(tag == intTag, "Only integer assertions are valid!"); 3604 3605 xin->load_item(); 3606 yin->dont_load_item(); 3607 3608 set_no_result(x); 3609 3610 LIR_Opr left = xin->result(); 3611 LIR_Opr right = yin->result(); 3612 3613 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true); 3614 } 3615 #endif 3616 3617 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) { 3618 3619 3620 Instruction *a = x->x(); 3621 Instruction *b = x->y(); 3622 if (!a || StressRangeCheckElimination) { 3623 assert(!b || StressRangeCheckElimination, "B must also be null"); 3624 3625 CodeEmitInfo *info = state_for(x, x->state()); 3626 CodeStub* stub = new PredicateFailedStub(info); 3627 3628 __ jump(stub); 3629 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) { 3630 int a_int = a->type()->as_IntConstant()->value(); 3631 int b_int = b->type()->as_IntConstant()->value(); 3632 3633 bool ok = false; 3634 3635 switch(x->cond()) { 3636 case Instruction::eql: ok = (a_int == b_int); break; 3637 case Instruction::neq: ok = (a_int != b_int); break; 3638 case Instruction::lss: ok = (a_int < b_int); break; 3639 case Instruction::leq: ok = (a_int <= b_int); break; 3640 case Instruction::gtr: ok = (a_int > b_int); break; 3641 case Instruction::geq: ok = (a_int >= b_int); break; 3642 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break; 3643 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break; 3644 default: ShouldNotReachHere(); 3645 } 3646 3647 if (ok) { 3648 3649 CodeEmitInfo *info = state_for(x, x->state()); 3650 CodeStub* stub = new PredicateFailedStub(info); 3651 3652 __ jump(stub); 3653 } 3654 } else { 3655 3656 ValueTag tag = x->x()->type()->tag(); 3657 If::Condition cond = x->cond(); 3658 LIRItem xitem(x->x(), this); 3659 LIRItem yitem(x->y(), this); 3660 LIRItem* xin = &xitem; 3661 LIRItem* yin = &yitem; 3662 3663 assert(tag == intTag, "Only integer deoptimizations are valid!"); 3664 3665 xin->load_item(); 3666 yin->dont_load_item(); 3667 set_no_result(x); 3668 3669 LIR_Opr left = xin->result(); 3670 LIR_Opr right = yin->result(); 3671 3672 CodeEmitInfo *info = state_for(x, x->state()); 3673 CodeStub* stub = new PredicateFailedStub(info); 3674 3675 __ cmp(lir_cond(cond), left, right); 3676 __ branch(lir_cond(cond), stub); 3677 } 3678 } 3679 3680 3681 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) { 3682 LIRItemList args(1); 3683 LIRItem value(arg1, this); 3684 args.append(&value); 3685 BasicTypeList signature; 3686 signature.append(as_BasicType(arg1->type())); 3687 3688 return call_runtime(&signature, &args, entry, result_type, info); 3689 } 3690 3691 3692 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) { 3693 LIRItemList args(2); 3694 LIRItem value1(arg1, this); 3695 LIRItem value2(arg2, this); 3696 args.append(&value1); 3697 args.append(&value2); 3698 BasicTypeList signature; 3699 signature.append(as_BasicType(arg1->type())); 3700 signature.append(as_BasicType(arg2->type())); 3701 3702 return call_runtime(&signature, &args, entry, result_type, info); 3703 } 3704 3705 3706 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args, 3707 address entry, ValueType* result_type, CodeEmitInfo* info) { 3708 // get a result register 3709 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3710 LIR_Opr result = LIR_OprFact::illegalOpr; 3711 if (result_type->tag() != voidTag) { 3712 result = new_register(result_type); 3713 phys_reg = result_register_for(result_type); 3714 } 3715 3716 // move the arguments into the correct location 3717 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3718 assert(cc->length() == args->length(), "argument mismatch"); 3719 for (int i = 0; i < args->length(); i++) { 3720 LIR_Opr arg = args->at(i); 3721 LIR_Opr loc = cc->at(i); 3722 if (loc->is_register()) { 3723 __ move(arg, loc); 3724 } else { 3725 LIR_Address* addr = loc->as_address_ptr(); 3726 // if (!can_store_as_constant(arg)) { 3727 // LIR_Opr tmp = new_register(arg->type()); 3728 // __ move(arg, tmp); 3729 // arg = tmp; 3730 // } 3731 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { 3732 __ unaligned_move(arg, addr); 3733 } else { 3734 __ move(arg, addr); 3735 } 3736 } 3737 } 3738 3739 if (info) { 3740 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3741 } else { 3742 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3743 } 3744 if (result->is_valid()) { 3745 __ move(phys_reg, result); 3746 } 3747 return result; 3748 } 3749 3750 3751 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args, 3752 address entry, ValueType* result_type, CodeEmitInfo* info) { 3753 // get a result register 3754 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3755 LIR_Opr result = LIR_OprFact::illegalOpr; 3756 if (result_type->tag() != voidTag) { 3757 result = new_register(result_type); 3758 phys_reg = result_register_for(result_type); 3759 } 3760 3761 // move the arguments into the correct location 3762 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3763 3764 assert(cc->length() == args->length(), "argument mismatch"); 3765 for (int i = 0; i < args->length(); i++) { 3766 LIRItem* arg = args->at(i); 3767 LIR_Opr loc = cc->at(i); 3768 if (loc->is_register()) { 3769 arg->load_item_force(loc); 3770 } else { 3771 LIR_Address* addr = loc->as_address_ptr(); 3772 arg->load_for_store(addr->type()); 3773 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { 3774 __ unaligned_move(arg->result(), addr); 3775 } else { 3776 __ move(arg->result(), addr); 3777 } 3778 } 3779 } 3780 3781 if (info) { 3782 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3783 } else { 3784 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3785 } 3786 if (result->is_valid()) { 3787 __ move(phys_reg, result); 3788 } 3789 return result; 3790 } 3791 3792 void LIRGenerator::do_MemBar(MemBar* x) { 3793 LIR_Code code = x->code(); 3794 switch(code) { 3795 case lir_membar_acquire : __ membar_acquire(); break; 3796 case lir_membar_release : __ membar_release(); break; 3797 case lir_membar : __ membar(); break; 3798 case lir_membar_loadload : __ membar_loadload(); break; 3799 case lir_membar_storestore: __ membar_storestore(); break; 3800 case lir_membar_loadstore : __ membar_loadstore(); break; 3801 case lir_membar_storeload : __ membar_storeload(); break; 3802 default : ShouldNotReachHere(); break; 3803 } 3804 } 3805 3806 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { 3807 LIR_Opr value_fixed = rlock_byte(T_BYTE); 3808 if (TwoOperandLIRForm) { 3809 __ move(value, value_fixed); 3810 __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed); 3811 } else { 3812 __ logical_and(value, LIR_OprFact::intConst(1), value_fixed); 3813 } 3814 LIR_Opr klass = new_register(T_METADATA); 3815 __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info); 3816 null_check_info = NULL; 3817 LIR_Opr layout = new_register(T_INT); 3818 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 3819 int diffbit = Klass::layout_helper_boolean_diffbit(); 3820 __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout); 3821 __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0)); 3822 __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE); 3823 value = value_fixed; 3824 return value; 3825 } 3826 3827 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { 3828 if (x->check_boolean()) { 3829 value = mask_boolean(array, value, null_check_info); 3830 } 3831 return value; 3832 }