1 /* 2 * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "ci/ciUtilities.inline.hpp" 28 #include "classfile/systemDictionary.hpp" 29 #include "classfile/vmSymbols.hpp" 30 #include "compiler/compileBroker.hpp" 31 #include "compiler/compileLog.hpp" 32 #include "gc/shared/barrierSet.hpp" 33 #include "jfr/support/jfrIntrinsics.hpp" 34 #include "memory/resourceArea.hpp" 35 #include "oops/klass.inline.hpp" 36 #include "oops/objArrayKlass.hpp" 37 #include "opto/addnode.hpp" 38 #include "opto/arraycopynode.hpp" 39 #include "opto/c2compiler.hpp" 40 #include "opto/callGenerator.hpp" 41 #include "opto/castnode.hpp" 42 #include "opto/cfgnode.hpp" 43 #include "opto/convertnode.hpp" 44 #include "opto/countbitsnode.hpp" 45 #include "opto/intrinsicnode.hpp" 46 #include "opto/idealKit.hpp" 47 #include "opto/mathexactnode.hpp" 48 #include "opto/movenode.hpp" 49 #include "opto/mulnode.hpp" 50 #include "opto/narrowptrnode.hpp" 51 #include "opto/opaquenode.hpp" 52 #include "opto/parse.hpp" 53 #include "opto/runtime.hpp" 54 #include "opto/rootnode.hpp" 55 #include "opto/subnode.hpp" 56 #include "prims/nativeLookup.hpp" 57 #include "prims/unsafe.hpp" 58 #include "runtime/objectMonitor.hpp" 59 #include "runtime/sharedRuntime.hpp" 60 #include "utilities/macros.hpp" 61 #include "utilities/powerOfTwo.hpp" 62 63 class LibraryIntrinsic : public InlineCallGenerator { 64 // Extend the set of intrinsics known to the runtime: 65 public: 66 private: 67 bool _is_virtual; 68 bool _does_virtual_dispatch; 69 int8_t _predicates_count; // Intrinsic is predicated by several conditions 70 int8_t _last_predicate; // Last generated predicate 71 vmIntrinsics::ID _intrinsic_id; 72 73 public: 74 LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id) 75 : InlineCallGenerator(m), 76 _is_virtual(is_virtual), 77 _does_virtual_dispatch(does_virtual_dispatch), 78 _predicates_count((int8_t)predicates_count), 79 _last_predicate((int8_t)-1), 80 _intrinsic_id(id) 81 { 82 } 83 virtual bool is_intrinsic() const { return true; } 84 virtual bool is_virtual() const { return _is_virtual; } 85 virtual bool is_predicated() const { return _predicates_count > 0; } 86 virtual int predicates_count() const { return _predicates_count; } 87 virtual bool does_virtual_dispatch() const { return _does_virtual_dispatch; } 88 virtual JVMState* generate(JVMState* jvms); 89 virtual Node* generate_predicate(JVMState* jvms, int predicate); 90 vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; } 91 }; 92 93 94 // Local helper class for LibraryIntrinsic: 95 class LibraryCallKit : public GraphKit { 96 private: 97 LibraryIntrinsic* _intrinsic; // the library intrinsic being called 98 Node* _result; // the result node, if any 99 int _reexecute_sp; // the stack pointer when bytecode needs to be reexecuted 100 101 const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type); 102 103 public: 104 LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic) 105 : GraphKit(jvms), 106 _intrinsic(intrinsic), 107 _result(NULL) 108 { 109 // Check if this is a root compile. In that case we don't have a caller. 110 if (!jvms->has_method()) { 111 _reexecute_sp = sp(); 112 } else { 113 // Find out how many arguments the interpreter needs when deoptimizing 114 // and save the stack pointer value so it can used by uncommon_trap. 115 // We find the argument count by looking at the declared signature. 116 bool ignored_will_link; 117 ciSignature* declared_signature = NULL; 118 ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature); 119 const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci())); 120 _reexecute_sp = sp() + nargs; // "push" arguments back on stack 121 } 122 } 123 124 virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; } 125 126 ciMethod* caller() const { return jvms()->method(); } 127 int bci() const { return jvms()->bci(); } 128 LibraryIntrinsic* intrinsic() const { return _intrinsic; } 129 vmIntrinsics::ID intrinsic_id() const { return _intrinsic->intrinsic_id(); } 130 ciMethod* callee() const { return _intrinsic->method(); } 131 132 bool try_to_inline(int predicate); 133 Node* try_to_predicate(int predicate); 134 135 void push_result() { 136 // Push the result onto the stack. 137 if (!stopped() && result() != NULL) { 138 BasicType bt = result()->bottom_type()->basic_type(); 139 push_node(bt, result()); 140 } 141 } 142 143 private: 144 void fatal_unexpected_iid(vmIntrinsics::ID iid) { 145 fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)); 146 } 147 148 void set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; } 149 void set_result(RegionNode* region, PhiNode* value); 150 Node* result() { return _result; } 151 152 virtual int reexecute_sp() { return _reexecute_sp; } 153 154 // Helper functions to inline natives 155 Node* generate_guard(Node* test, RegionNode* region, float true_prob); 156 Node* generate_slow_guard(Node* test, RegionNode* region); 157 Node* generate_fair_guard(Node* test, RegionNode* region); 158 Node* generate_negative_guard(Node* index, RegionNode* region, 159 // resulting CastII of index: 160 Node* *pos_index = NULL); 161 Node* generate_limit_guard(Node* offset, Node* subseq_length, 162 Node* array_length, 163 RegionNode* region); 164 void generate_string_range_check(Node* array, Node* offset, 165 Node* length, bool char_count); 166 Node* generate_current_thread(Node* &tls_output); 167 Node* load_mirror_from_klass(Node* klass); 168 Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null, 169 RegionNode* region, int null_path, 170 int offset); 171 Node* load_klass_from_mirror(Node* mirror, bool never_see_null, 172 RegionNode* region, int null_path) { 173 int offset = java_lang_Class::klass_offset(); 174 return load_klass_from_mirror_common(mirror, never_see_null, 175 region, null_path, 176 offset); 177 } 178 Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null, 179 RegionNode* region, int null_path) { 180 int offset = java_lang_Class::array_klass_offset(); 181 return load_klass_from_mirror_common(mirror, never_see_null, 182 region, null_path, 183 offset); 184 } 185 Node* generate_access_flags_guard(Node* kls, 186 int modifier_mask, int modifier_bits, 187 RegionNode* region); 188 Node* generate_interface_guard(Node* kls, RegionNode* region); 189 Node* generate_hidden_class_guard(Node* kls, RegionNode* region); 190 Node* generate_array_guard(Node* kls, RegionNode* region) { 191 return generate_array_guard_common(kls, region, false, false); 192 } 193 Node* generate_non_array_guard(Node* kls, RegionNode* region) { 194 return generate_array_guard_common(kls, region, false, true); 195 } 196 Node* generate_objArray_guard(Node* kls, RegionNode* region) { 197 return generate_array_guard_common(kls, region, true, false); 198 } 199 Node* generate_non_objArray_guard(Node* kls, RegionNode* region) { 200 return generate_array_guard_common(kls, region, true, true); 201 } 202 Node* generate_array_guard_common(Node* kls, RegionNode* region, 203 bool obj_array, bool not_array); 204 Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region); 205 CallJavaNode* generate_method_call(vmIntrinsics::ID method_id, 206 bool is_virtual = false, bool is_static = false); 207 CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) { 208 return generate_method_call(method_id, false, true); 209 } 210 CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) { 211 return generate_method_call(method_id, true, false); 212 } 213 Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls); 214 Node * field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls); 215 216 Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae); 217 bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae); 218 bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae); 219 bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae); 220 Node* make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 221 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae); 222 bool inline_string_indexOfChar(); 223 bool inline_string_equals(StrIntrinsicNode::ArgEnc ae); 224 bool inline_string_toBytesU(); 225 bool inline_string_getCharsU(); 226 bool inline_string_copy(bool compress); 227 bool inline_string_char_access(bool is_store); 228 Node* round_double_node(Node* n); 229 bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName); 230 bool inline_math_native(vmIntrinsics::ID id); 231 bool inline_math(vmIntrinsics::ID id); 232 bool inline_double_math(vmIntrinsics::ID id); 233 template <typename OverflowOp> 234 bool inline_math_overflow(Node* arg1, Node* arg2); 235 void inline_math_mathExact(Node* math, Node* test); 236 bool inline_math_addExactI(bool is_increment); 237 bool inline_math_addExactL(bool is_increment); 238 bool inline_math_multiplyExactI(); 239 bool inline_math_multiplyExactL(); 240 bool inline_math_multiplyHigh(); 241 bool inline_math_negateExactI(); 242 bool inline_math_negateExactL(); 243 bool inline_math_subtractExactI(bool is_decrement); 244 bool inline_math_subtractExactL(bool is_decrement); 245 bool inline_min_max(vmIntrinsics::ID id); 246 bool inline_notify(vmIntrinsics::ID id); 247 Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y); 248 // This returns Type::AnyPtr, RawPtr, or OopPtr. 249 int classify_unsafe_addr(Node* &base, Node* &offset, BasicType type); 250 Node* make_unsafe_address(Node*& base, Node* offset, DecoratorSet decorators, BasicType type = T_ILLEGAL, bool can_cast = false); 251 252 typedef enum { Relaxed, Opaque, Volatile, Acquire, Release } AccessKind; 253 DecoratorSet mo_decorator_for_access_kind(AccessKind kind); 254 bool inline_unsafe_access(bool is_store, BasicType type, AccessKind kind, bool is_unaligned); 255 static bool klass_needs_init_guard(Node* kls); 256 bool inline_unsafe_allocate(); 257 bool inline_unsafe_newArray(bool uninitialized); 258 bool inline_unsafe_writeback0(); 259 bool inline_unsafe_writebackSync0(bool is_pre); 260 bool inline_unsafe_copyMemory(); 261 bool inline_native_currentThread(); 262 263 bool inline_native_time_funcs(address method, const char* funcName); 264 #ifdef JFR_HAVE_INTRINSICS 265 bool inline_native_classID(); 266 bool inline_native_getEventWriter(); 267 #endif 268 bool inline_native_Class_query(vmIntrinsics::ID id); 269 bool inline_native_subtype_check(); 270 bool inline_native_getLength(); 271 bool inline_array_copyOf(bool is_copyOfRange); 272 bool inline_array_equals(StrIntrinsicNode::ArgEnc ae); 273 bool inline_preconditions_checkIndex(); 274 void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array); 275 bool inline_native_clone(bool is_virtual); 276 bool inline_native_Reflection_getCallerClass(); 277 // Helper function for inlining native object hash method 278 bool inline_native_hashcode(bool is_virtual, bool is_static); 279 bool inline_native_getClass(); 280 281 // Helper functions for inlining arraycopy 282 bool inline_arraycopy(); 283 AllocateArrayNode* tightly_coupled_allocation(Node* ptr, 284 RegionNode* slow_region); 285 JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp); 286 void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp, 287 uint new_idx); 288 289 typedef enum { LS_get_add, LS_get_set, LS_cmp_swap, LS_cmp_swap_weak, LS_cmp_exchange } LoadStoreKind; 290 bool inline_unsafe_load_store(BasicType type, LoadStoreKind kind, AccessKind access_kind); 291 bool inline_unsafe_fence(vmIntrinsics::ID id); 292 bool inline_onspinwait(); 293 bool inline_fp_conversions(vmIntrinsics::ID id); 294 bool inline_number_methods(vmIntrinsics::ID id); 295 bool inline_reference_get(); 296 bool inline_Class_cast(); 297 bool inline_aescrypt_Block(vmIntrinsics::ID id); 298 bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id); 299 bool inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id); 300 bool inline_counterMode_AESCrypt(vmIntrinsics::ID id); 301 Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting); 302 Node* inline_electronicCodeBook_AESCrypt_predicate(bool decrypting); 303 Node* inline_counterMode_AESCrypt_predicate(); 304 Node* get_key_start_from_aescrypt_object(Node* aescrypt_object); 305 Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object); 306 bool inline_ghash_processBlocks(); 307 bool inline_base64_encodeBlock(); 308 bool inline_digestBase_implCompress(vmIntrinsics::ID id); 309 bool inline_digestBase_implCompressMB(int predicate); 310 bool inline_digestBase_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass, 311 bool long_state, address stubAddr, const char *stubName, 312 Node* src_start, Node* ofs, Node* limit); 313 Node* get_state_from_digest_object(Node *digestBase_object); 314 Node* get_long_state_from_digest_object(Node *digestBase_object); 315 Node* inline_digestBase_implCompressMB_predicate(int predicate); 316 bool inline_encodeISOArray(); 317 bool inline_updateCRC32(); 318 bool inline_updateBytesCRC32(); 319 bool inline_updateByteBufferCRC32(); 320 Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class); 321 bool inline_updateBytesCRC32C(); 322 bool inline_updateDirectByteBufferCRC32C(); 323 bool inline_updateBytesAdler32(); 324 bool inline_updateByteBufferAdler32(); 325 bool inline_multiplyToLen(); 326 bool inline_hasNegatives(); 327 bool inline_squareToLen(); 328 bool inline_mulAdd(); 329 bool inline_montgomeryMultiply(); 330 bool inline_montgomerySquare(); 331 bool inline_bigIntegerShift(bool isRightShift); 332 bool inline_vectorizedMismatch(); 333 bool inline_fma(vmIntrinsics::ID id); 334 bool inline_character_compare(vmIntrinsics::ID id); 335 bool inline_fp_min_max(vmIntrinsics::ID id); 336 337 bool inline_addressOf(); 338 bool inline_sizeOf(); 339 bool inline_getReferencedObjects(); 340 341 bool inline_profileBoolean(); 342 bool inline_isCompileConstant(); 343 void clear_upper_avx() { 344 #ifdef X86 345 if (UseAVX >= 2) { 346 C->set_clear_upper_avx(true); 347 } 348 #endif 349 } 350 }; 351 352 //---------------------------make_vm_intrinsic---------------------------- 353 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { 354 vmIntrinsics::ID id = m->intrinsic_id(); 355 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 356 357 if (!m->is_loaded()) { 358 // Do not attempt to inline unloaded methods. 359 return NULL; 360 } 361 362 C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization); 363 bool is_available = false; 364 365 { 366 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag 367 // the compiler must transition to '_thread_in_vm' state because both 368 // methods access VM-internal data. 369 VM_ENTRY_MARK; 370 methodHandle mh(THREAD, m->get_Method()); 371 is_available = compiler != NULL && compiler->is_intrinsic_supported(mh, is_virtual) && 372 !C->directive()->is_intrinsic_disabled(mh) && 373 !vmIntrinsics::is_disabled_by_flags(mh); 374 375 } 376 377 if (is_available) { 378 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); 379 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); 380 return new LibraryIntrinsic(m, is_virtual, 381 vmIntrinsics::predicates_needed(id), 382 vmIntrinsics::does_virtual_dispatch(id), 383 (vmIntrinsics::ID) id); 384 } else { 385 return NULL; 386 } 387 } 388 389 //----------------------register_library_intrinsics----------------------- 390 // Initialize this file's data structures, for each Compile instance. 391 void Compile::register_library_intrinsics() { 392 // Nothing to do here. 393 } 394 395 JVMState* LibraryIntrinsic::generate(JVMState* jvms) { 396 LibraryCallKit kit(jvms, this); 397 Compile* C = kit.C; 398 int nodes = C->unique(); 399 #ifndef PRODUCT 400 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 401 char buf[1000]; 402 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 403 tty->print_cr("Intrinsic %s", str); 404 } 405 #endif 406 ciMethod* callee = kit.callee(); 407 const int bci = kit.bci(); 408 409 // Try to inline the intrinsic. 410 if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) && 411 kit.try_to_inline(_last_predicate)) { 412 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" 413 : "(intrinsic)"; 414 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg); 415 if (C->print_intrinsics() || C->print_inlining()) { 416 C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg); 417 } 418 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 419 if (C->log()) { 420 C->log()->elem("intrinsic id='%s'%s nodes='%d'", 421 vmIntrinsics::name_at(intrinsic_id()), 422 (is_virtual() ? " virtual='1'" : ""), 423 C->unique() - nodes); 424 } 425 // Push the result from the inlined method onto the stack. 426 kit.push_result(); 427 C->print_inlining_update(this); 428 return kit.transfer_exceptions_into_jvms(); 429 } 430 431 // The intrinsic bailed out 432 if (jvms->has_method()) { 433 // Not a root compile. 434 const char* msg; 435 if (callee->intrinsic_candidate()) { 436 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; 437 } else { 438 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" 439 : "failed to inline (intrinsic), method not annotated"; 440 } 441 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, msg); 442 if (C->print_intrinsics() || C->print_inlining()) { 443 C->print_inlining(callee, jvms->depth() - 1, bci, msg); 444 } 445 } else { 446 // Root compile 447 ResourceMark rm; 448 stringStream msg_stream; 449 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 450 vmIntrinsics::name_at(intrinsic_id()), 451 is_virtual() ? " (virtual)" : "", bci); 452 const char *msg = msg_stream.as_string(); 453 log_debug(jit, inlining)("%s", msg); 454 if (C->print_intrinsics() || C->print_inlining()) { 455 tty->print("%s", msg); 456 } 457 } 458 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 459 C->print_inlining_update(this); 460 return NULL; 461 } 462 463 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { 464 LibraryCallKit kit(jvms, this); 465 Compile* C = kit.C; 466 int nodes = C->unique(); 467 _last_predicate = predicate; 468 #ifndef PRODUCT 469 assert(is_predicated() && predicate < predicates_count(), "sanity"); 470 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 471 char buf[1000]; 472 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 473 tty->print_cr("Predicate for intrinsic %s", str); 474 } 475 #endif 476 ciMethod* callee = kit.callee(); 477 const int bci = kit.bci(); 478 479 Node* slow_ctl = kit.try_to_predicate(predicate); 480 if (!kit.failing()) { 481 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" 482 : "(intrinsic, predicate)"; 483 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg); 484 if (C->print_intrinsics() || C->print_inlining()) { 485 C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg); 486 } 487 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 488 if (C->log()) { 489 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", 490 vmIntrinsics::name_at(intrinsic_id()), 491 (is_virtual() ? " virtual='1'" : ""), 492 C->unique() - nodes); 493 } 494 return slow_ctl; // Could be NULL if the check folds. 495 } 496 497 // The intrinsic bailed out 498 if (jvms->has_method()) { 499 // Not a root compile. 500 const char* msg = "failed to generate predicate for intrinsic"; 501 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, msg); 502 if (C->print_intrinsics() || C->print_inlining()) { 503 C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg); 504 } 505 } else { 506 // Root compile 507 ResourceMark rm; 508 stringStream msg_stream; 509 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 510 vmIntrinsics::name_at(intrinsic_id()), 511 is_virtual() ? " (virtual)" : "", bci); 512 const char *msg = msg_stream.as_string(); 513 log_debug(jit, inlining)("%s", msg); 514 if (C->print_intrinsics() || C->print_inlining()) { 515 C->print_inlining_stream()->print("%s", msg); 516 } 517 } 518 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 519 return NULL; 520 } 521 522 bool LibraryCallKit::try_to_inline(int predicate) { 523 // Handle symbolic names for otherwise undistinguished boolean switches: 524 const bool is_store = true; 525 const bool is_compress = true; 526 const bool is_static = true; 527 const bool is_volatile = true; 528 529 if (!jvms()->has_method()) { 530 // Root JVMState has a null method. 531 assert(map()->memory()->Opcode() == Op_Parm, ""); 532 // Insert the memory aliasing node 533 set_all_memory(reset_memory()); 534 } 535 assert(merged_memory(), ""); 536 537 538 switch (intrinsic_id()) { 539 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); 540 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); 541 case vmIntrinsics::_getClass: return inline_native_getClass(); 542 543 case vmIntrinsics::_ceil: 544 case vmIntrinsics::_floor: 545 case vmIntrinsics::_rint: 546 case vmIntrinsics::_dsin: 547 case vmIntrinsics::_dcos: 548 case vmIntrinsics::_dtan: 549 case vmIntrinsics::_dabs: 550 case vmIntrinsics::_fabs: 551 case vmIntrinsics::_iabs: 552 case vmIntrinsics::_labs: 553 case vmIntrinsics::_datan2: 554 case vmIntrinsics::_dsqrt: 555 case vmIntrinsics::_dexp: 556 case vmIntrinsics::_dlog: 557 case vmIntrinsics::_dlog10: 558 case vmIntrinsics::_dpow: return inline_math_native(intrinsic_id()); 559 560 case vmIntrinsics::_min: 561 case vmIntrinsics::_max: return inline_min_max(intrinsic_id()); 562 563 case vmIntrinsics::_notify: 564 case vmIntrinsics::_notifyAll: 565 return inline_notify(intrinsic_id()); 566 567 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); 568 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); 569 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); 570 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); 571 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); 572 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); 573 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); 574 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); 575 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); 576 case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); 577 case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); 578 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); 579 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); 580 581 case vmIntrinsics::_arraycopy: return inline_arraycopy(); 582 583 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); 584 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); 585 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); 586 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); 587 588 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); 589 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); 590 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); 591 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); 592 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); 593 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); 594 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(); 595 596 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); 597 case vmIntrinsics::_equalsU: return inline_string_equals(StrIntrinsicNode::UU); 598 599 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); 600 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); 601 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); 602 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); 603 604 case vmIntrinsics::_compressStringC: 605 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); 606 case vmIntrinsics::_inflateStringC: 607 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); 608 609 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); 610 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); 611 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); 612 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); 613 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); 614 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); 615 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); 616 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); 617 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); 618 619 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); 620 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); 621 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); 622 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); 623 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); 624 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); 625 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); 626 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); 627 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); 628 629 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); 630 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); 631 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); 632 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); 633 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); 634 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); 635 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); 636 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); 637 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); 638 639 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); 640 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); 641 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); 642 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); 643 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); 644 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); 645 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); 646 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); 647 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); 648 649 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); 650 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); 651 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); 652 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); 653 654 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); 655 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); 656 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); 657 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); 658 659 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); 660 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); 661 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); 662 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); 663 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); 664 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); 665 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); 666 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); 667 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); 668 669 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); 670 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); 671 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); 672 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); 673 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); 674 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); 675 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); 676 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); 677 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); 678 679 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); 680 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); 681 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); 682 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); 683 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); 684 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); 685 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); 686 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); 687 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); 688 689 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); 690 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); 691 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); 692 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); 693 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); 694 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); 695 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); 696 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); 697 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); 698 699 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); 700 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); 701 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); 702 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); 703 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); 704 705 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); 706 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); 707 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); 708 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); 709 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); 710 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); 711 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); 712 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); 713 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); 714 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); 715 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); 716 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); 717 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); 718 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); 719 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); 720 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); 721 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); 722 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); 723 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); 724 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); 725 726 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); 727 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); 728 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); 729 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); 730 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); 731 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); 732 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); 733 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); 734 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); 735 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); 736 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); 737 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); 738 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); 739 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); 740 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); 741 742 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); 743 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); 744 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); 745 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); 746 747 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); 748 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); 749 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); 750 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); 751 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); 752 753 case vmIntrinsics::_loadFence: 754 case vmIntrinsics::_storeFence: 755 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); 756 757 case vmIntrinsics::_onSpinWait: return inline_onspinwait(); 758 759 case vmIntrinsics::_currentThread: return inline_native_currentThread(); 760 761 #ifdef JFR_HAVE_INTRINSICS 762 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), "counterTime"); 763 case vmIntrinsics::_getClassId: return inline_native_classID(); 764 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); 765 #endif 766 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); 767 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); 768 case vmIntrinsics::_writeback0: return inline_unsafe_writeback0(); 769 case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true); 770 case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false); 771 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); 772 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); 773 case vmIntrinsics::_getLength: return inline_native_getLength(); 774 case vmIntrinsics::_copyOf: return inline_array_copyOf(false); 775 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); 776 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); 777 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); 778 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(); 779 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); 780 781 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); 782 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); 783 784 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); 785 786 case vmIntrinsics::_isInstance: 787 case vmIntrinsics::_getModifiers: 788 case vmIntrinsics::_isInterface: 789 case vmIntrinsics::_isArray: 790 case vmIntrinsics::_isPrimitive: 791 case vmIntrinsics::_isHidden: 792 case vmIntrinsics::_getSuperclass: 793 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); 794 795 case vmIntrinsics::_floatToRawIntBits: 796 case vmIntrinsics::_floatToIntBits: 797 case vmIntrinsics::_intBitsToFloat: 798 case vmIntrinsics::_doubleToRawLongBits: 799 case vmIntrinsics::_doubleToLongBits: 800 case vmIntrinsics::_longBitsToDouble: return inline_fp_conversions(intrinsic_id()); 801 802 case vmIntrinsics::_numberOfLeadingZeros_i: 803 case vmIntrinsics::_numberOfLeadingZeros_l: 804 case vmIntrinsics::_numberOfTrailingZeros_i: 805 case vmIntrinsics::_numberOfTrailingZeros_l: 806 case vmIntrinsics::_bitCount_i: 807 case vmIntrinsics::_bitCount_l: 808 case vmIntrinsics::_reverseBytes_i: 809 case vmIntrinsics::_reverseBytes_l: 810 case vmIntrinsics::_reverseBytes_s: 811 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); 812 813 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); 814 815 case vmIntrinsics::_Reference_get: return inline_reference_get(); 816 817 case vmIntrinsics::_Class_cast: return inline_Class_cast(); 818 819 case vmIntrinsics::_aescrypt_encryptBlock: 820 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); 821 822 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 823 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 824 return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); 825 826 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 827 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 828 return inline_electronicCodeBook_AESCrypt(intrinsic_id()); 829 830 case vmIntrinsics::_counterMode_AESCrypt: 831 return inline_counterMode_AESCrypt(intrinsic_id()); 832 833 case vmIntrinsics::_md5_implCompress: 834 case vmIntrinsics::_sha_implCompress: 835 case vmIntrinsics::_sha2_implCompress: 836 case vmIntrinsics::_sha5_implCompress: 837 return inline_digestBase_implCompress(intrinsic_id()); 838 839 case vmIntrinsics::_digestBase_implCompressMB: 840 return inline_digestBase_implCompressMB(predicate); 841 842 case vmIntrinsics::_multiplyToLen: 843 return inline_multiplyToLen(); 844 845 case vmIntrinsics::_squareToLen: 846 return inline_squareToLen(); 847 848 case vmIntrinsics::_mulAdd: 849 return inline_mulAdd(); 850 851 case vmIntrinsics::_montgomeryMultiply: 852 return inline_montgomeryMultiply(); 853 case vmIntrinsics::_montgomerySquare: 854 return inline_montgomerySquare(); 855 856 case vmIntrinsics::_bigIntegerRightShiftWorker: 857 return inline_bigIntegerShift(true); 858 case vmIntrinsics::_bigIntegerLeftShiftWorker: 859 return inline_bigIntegerShift(false); 860 861 case vmIntrinsics::_vectorizedMismatch: 862 return inline_vectorizedMismatch(); 863 864 case vmIntrinsics::_ghash_processBlocks: 865 return inline_ghash_processBlocks(); 866 case vmIntrinsics::_base64_encodeBlock: 867 return inline_base64_encodeBlock(); 868 869 case vmIntrinsics::_encodeISOArray: 870 case vmIntrinsics::_encodeByteISOArray: 871 return inline_encodeISOArray(); 872 873 case vmIntrinsics::_updateCRC32: 874 return inline_updateCRC32(); 875 case vmIntrinsics::_updateBytesCRC32: 876 return inline_updateBytesCRC32(); 877 case vmIntrinsics::_updateByteBufferCRC32: 878 return inline_updateByteBufferCRC32(); 879 880 case vmIntrinsics::_updateBytesCRC32C: 881 return inline_updateBytesCRC32C(); 882 case vmIntrinsics::_updateDirectByteBufferCRC32C: 883 return inline_updateDirectByteBufferCRC32C(); 884 885 case vmIntrinsics::_updateBytesAdler32: 886 return inline_updateBytesAdler32(); 887 case vmIntrinsics::_updateByteBufferAdler32: 888 return inline_updateByteBufferAdler32(); 889 890 case vmIntrinsics::_profileBoolean: 891 return inline_profileBoolean(); 892 case vmIntrinsics::_isCompileConstant: 893 return inline_isCompileConstant(); 894 895 case vmIntrinsics::_hasNegatives: 896 return inline_hasNegatives(); 897 898 case vmIntrinsics::_fmaD: 899 case vmIntrinsics::_fmaF: 900 return inline_fma(intrinsic_id()); 901 902 case vmIntrinsics::_isDigit: 903 case vmIntrinsics::_isLowerCase: 904 case vmIntrinsics::_isUpperCase: 905 case vmIntrinsics::_isWhitespace: 906 return inline_character_compare(intrinsic_id()); 907 908 case vmIntrinsics::_maxF: 909 case vmIntrinsics::_minF: 910 case vmIntrinsics::_maxD: 911 case vmIntrinsics::_minD: 912 return inline_fp_min_max(intrinsic_id()); 913 914 case vmIntrinsics::_sizeOf: 915 return inline_sizeOf(); 916 917 case vmIntrinsics::_addressOf: 918 return inline_addressOf(); 919 920 case vmIntrinsics::_getReferencedObjects: 921 return inline_getReferencedObjects(); 922 923 default: 924 // If you get here, it may be that someone has added a new intrinsic 925 // to the list in vmSymbols.hpp without implementing it here. 926 #ifndef PRODUCT 927 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 928 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", 929 vmIntrinsics::name_at(intrinsic_id()), intrinsic_id()); 930 } 931 #endif 932 return false; 933 } 934 } 935 936 Node* LibraryCallKit::try_to_predicate(int predicate) { 937 if (!jvms()->has_method()) { 938 // Root JVMState has a null method. 939 assert(map()->memory()->Opcode() == Op_Parm, ""); 940 // Insert the memory aliasing node 941 set_all_memory(reset_memory()); 942 } 943 assert(merged_memory(), ""); 944 945 switch (intrinsic_id()) { 946 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 947 return inline_cipherBlockChaining_AESCrypt_predicate(false); 948 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 949 return inline_cipherBlockChaining_AESCrypt_predicate(true); 950 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 951 return inline_electronicCodeBook_AESCrypt_predicate(false); 952 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 953 return inline_electronicCodeBook_AESCrypt_predicate(true); 954 case vmIntrinsics::_counterMode_AESCrypt: 955 return inline_counterMode_AESCrypt_predicate(); 956 case vmIntrinsics::_digestBase_implCompressMB: 957 return inline_digestBase_implCompressMB_predicate(predicate); 958 959 default: 960 // If you get here, it may be that someone has added a new intrinsic 961 // to the list in vmSymbols.hpp without implementing it here. 962 #ifndef PRODUCT 963 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 964 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", 965 vmIntrinsics::name_at(intrinsic_id()), intrinsic_id()); 966 } 967 #endif 968 Node* slow_ctl = control(); 969 set_control(top()); // No fast path instrinsic 970 return slow_ctl; 971 } 972 } 973 974 //------------------------------set_result------------------------------- 975 // Helper function for finishing intrinsics. 976 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { 977 record_for_igvn(region); 978 set_control(_gvn.transform(region)); 979 set_result( _gvn.transform(value)); 980 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); 981 } 982 983 //------------------------------generate_guard--------------------------- 984 // Helper function for generating guarded fast-slow graph structures. 985 // The given 'test', if true, guards a slow path. If the test fails 986 // then a fast path can be taken. (We generally hope it fails.) 987 // In all cases, GraphKit::control() is updated to the fast path. 988 // The returned value represents the control for the slow path. 989 // The return value is never 'top'; it is either a valid control 990 // or NULL if it is obvious that the slow path can never be taken. 991 // Also, if region and the slow control are not NULL, the slow edge 992 // is appended to the region. 993 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { 994 if (stopped()) { 995 // Already short circuited. 996 return NULL; 997 } 998 999 // Build an if node and its projections. 1000 // If test is true we take the slow path, which we assume is uncommon. 1001 if (_gvn.type(test) == TypeInt::ZERO) { 1002 // The slow branch is never taken. No need to build this guard. 1003 return NULL; 1004 } 1005 1006 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); 1007 1008 Node* if_slow = _gvn.transform(new IfTrueNode(iff)); 1009 if (if_slow == top()) { 1010 // The slow branch is never taken. No need to build this guard. 1011 return NULL; 1012 } 1013 1014 if (region != NULL) 1015 region->add_req(if_slow); 1016 1017 Node* if_fast = _gvn.transform(new IfFalseNode(iff)); 1018 set_control(if_fast); 1019 1020 return if_slow; 1021 } 1022 1023 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { 1024 return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); 1025 } 1026 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { 1027 return generate_guard(test, region, PROB_FAIR); 1028 } 1029 1030 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, 1031 Node* *pos_index) { 1032 if (stopped()) 1033 return NULL; // already stopped 1034 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 1035 return NULL; // index is already adequately typed 1036 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); 1037 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 1038 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); 1039 if (is_neg != NULL && pos_index != NULL) { 1040 // Emulate effect of Parse::adjust_map_after_if. 1041 Node* ccast = new CastIINode(index, TypeInt::POS); 1042 ccast->set_req(0, control()); 1043 (*pos_index) = _gvn.transform(ccast); 1044 } 1045 return is_neg; 1046 } 1047 1048 // Make sure that 'position' is a valid limit index, in [0..length]. 1049 // There are two equivalent plans for checking this: 1050 // A. (offset + copyLength) unsigned<= arrayLength 1051 // B. offset <= (arrayLength - copyLength) 1052 // We require that all of the values above, except for the sum and 1053 // difference, are already known to be non-negative. 1054 // Plan A is robust in the face of overflow, if offset and copyLength 1055 // are both hugely positive. 1056 // 1057 // Plan B is less direct and intuitive, but it does not overflow at 1058 // all, since the difference of two non-negatives is always 1059 // representable. Whenever Java methods must perform the equivalent 1060 // check they generally use Plan B instead of Plan A. 1061 // For the moment we use Plan A. 1062 inline Node* LibraryCallKit::generate_limit_guard(Node* offset, 1063 Node* subseq_length, 1064 Node* array_length, 1065 RegionNode* region) { 1066 if (stopped()) 1067 return NULL; // already stopped 1068 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; 1069 if (zero_offset && subseq_length->eqv_uncast(array_length)) 1070 return NULL; // common case of whole-array copy 1071 Node* last = subseq_length; 1072 if (!zero_offset) // last += offset 1073 last = _gvn.transform(new AddINode(last, offset)); 1074 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); 1075 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 1076 Node* is_over = generate_guard(bol_lt, region, PROB_MIN); 1077 return is_over; 1078 } 1079 1080 // Emit range checks for the given String.value byte array 1081 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { 1082 if (stopped()) { 1083 return; // already stopped 1084 } 1085 RegionNode* bailout = new RegionNode(1); 1086 record_for_igvn(bailout); 1087 if (char_count) { 1088 // Convert char count to byte count 1089 count = _gvn.transform(new LShiftINode(count, intcon(1))); 1090 } 1091 1092 // Offset and count must not be negative 1093 generate_negative_guard(offset, bailout); 1094 generate_negative_guard(count, bailout); 1095 // Offset + count must not exceed length of array 1096 generate_limit_guard(offset, count, load_array_length(array), bailout); 1097 1098 if (bailout->req() > 1) { 1099 PreserveJVMState pjvms(this); 1100 set_control(_gvn.transform(bailout)); 1101 uncommon_trap(Deoptimization::Reason_intrinsic, 1102 Deoptimization::Action_maybe_recompile); 1103 } 1104 } 1105 1106 //--------------------------generate_current_thread-------------------- 1107 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { 1108 ciKlass* thread_klass = env()->Thread_klass(); 1109 const Type* thread_type = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); 1110 Node* thread = _gvn.transform(new ThreadLocalNode()); 1111 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset())); 1112 tls_output = thread; 1113 Node* thread_obj_handle = LoadNode::make(_gvn, NULL, immutable_memory(), p, p->bottom_type()->is_ptr(), TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 1114 thread_obj_handle = _gvn.transform(thread_obj_handle); 1115 return access_load(thread_obj_handle, thread_type, T_OBJECT, IN_NATIVE | C2_IMMUTABLE_MEMORY); 1116 } 1117 1118 1119 //------------------------------make_string_method_node------------------------ 1120 // Helper method for String intrinsic functions. This version is called with 1121 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded 1122 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes 1123 // containing the lengths of str1 and str2. 1124 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { 1125 Node* result = NULL; 1126 switch (opcode) { 1127 case Op_StrIndexOf: 1128 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), 1129 str1_start, cnt1, str2_start, cnt2, ae); 1130 break; 1131 case Op_StrComp: 1132 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), 1133 str1_start, cnt1, str2_start, cnt2, ae); 1134 break; 1135 case Op_StrEquals: 1136 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). 1137 // Use the constant length if there is one because optimized match rule may exist. 1138 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), 1139 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); 1140 break; 1141 default: 1142 ShouldNotReachHere(); 1143 return NULL; 1144 } 1145 1146 // All these intrinsics have checks. 1147 C->set_has_split_ifs(true); // Has chance for split-if optimization 1148 clear_upper_avx(); 1149 1150 return _gvn.transform(result); 1151 } 1152 1153 //------------------------------inline_string_compareTo------------------------ 1154 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { 1155 Node* arg1 = argument(0); 1156 Node* arg2 = argument(1); 1157 1158 arg1 = must_be_not_null(arg1, true); 1159 arg2 = must_be_not_null(arg2, true); 1160 1161 // Get start addr and length of first argument 1162 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1163 Node* arg1_cnt = load_array_length(arg1); 1164 1165 // Get start addr and length of second argument 1166 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1167 Node* arg2_cnt = load_array_length(arg2); 1168 1169 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1170 set_result(result); 1171 return true; 1172 } 1173 1174 //------------------------------inline_string_equals------------------------ 1175 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { 1176 Node* arg1 = argument(0); 1177 Node* arg2 = argument(1); 1178 1179 // paths (plus control) merge 1180 RegionNode* region = new RegionNode(3); 1181 Node* phi = new PhiNode(region, TypeInt::BOOL); 1182 1183 if (!stopped()) { 1184 1185 arg1 = must_be_not_null(arg1, true); 1186 arg2 = must_be_not_null(arg2, true); 1187 1188 // Get start addr and length of first argument 1189 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1190 Node* arg1_cnt = load_array_length(arg1); 1191 1192 // Get start addr and length of second argument 1193 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1194 Node* arg2_cnt = load_array_length(arg2); 1195 1196 // Check for arg1_cnt != arg2_cnt 1197 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); 1198 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 1199 Node* if_ne = generate_slow_guard(bol, NULL); 1200 if (if_ne != NULL) { 1201 phi->init_req(2, intcon(0)); 1202 region->init_req(2, if_ne); 1203 } 1204 1205 // Check for count == 0 is done by assembler code for StrEquals. 1206 1207 if (!stopped()) { 1208 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1209 phi->init_req(1, equals); 1210 region->init_req(1, control()); 1211 } 1212 } 1213 1214 // post merge 1215 set_control(_gvn.transform(region)); 1216 record_for_igvn(region); 1217 1218 set_result(_gvn.transform(phi)); 1219 return true; 1220 } 1221 1222 //------------------------------inline_array_equals---------------------------- 1223 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { 1224 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); 1225 Node* arg1 = argument(0); 1226 Node* arg2 = argument(1); 1227 1228 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; 1229 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); 1230 clear_upper_avx(); 1231 1232 return true; 1233 } 1234 1235 //------------------------------inline_hasNegatives------------------------------ 1236 bool LibraryCallKit::inline_hasNegatives() { 1237 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1238 return false; 1239 } 1240 1241 assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters"); 1242 // no receiver since it is static method 1243 Node* ba = argument(0); 1244 Node* offset = argument(1); 1245 Node* len = argument(2); 1246 1247 ba = must_be_not_null(ba, true); 1248 1249 // Range checks 1250 generate_string_range_check(ba, offset, len, false); 1251 if (stopped()) { 1252 return true; 1253 } 1254 Node* ba_start = array_element_address(ba, offset, T_BYTE); 1255 Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); 1256 set_result(_gvn.transform(result)); 1257 return true; 1258 } 1259 1260 bool LibraryCallKit::inline_preconditions_checkIndex() { 1261 Node* index = argument(0); 1262 Node* length = argument(1); 1263 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { 1264 return false; 1265 } 1266 1267 Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0))); 1268 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); 1269 1270 { 1271 BuildCutout unless(this, len_pos_bol, PROB_MAX); 1272 uncommon_trap(Deoptimization::Reason_intrinsic, 1273 Deoptimization::Action_make_not_entrant); 1274 } 1275 1276 if (stopped()) { 1277 return false; 1278 } 1279 1280 Node* rc_cmp = _gvn.transform(new CmpUNode(index, length)); 1281 BoolTest::mask btest = BoolTest::lt; 1282 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); 1283 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); 1284 _gvn.set_type(rc, rc->Value(&_gvn)); 1285 if (!rc_bool->is_Con()) { 1286 record_for_igvn(rc); 1287 } 1288 set_control(_gvn.transform(new IfTrueNode(rc))); 1289 { 1290 PreserveJVMState pjvms(this); 1291 set_control(_gvn.transform(new IfFalseNode(rc))); 1292 uncommon_trap(Deoptimization::Reason_range_check, 1293 Deoptimization::Action_make_not_entrant); 1294 } 1295 1296 if (stopped()) { 1297 return false; 1298 } 1299 1300 Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax)); 1301 result->set_req(0, control()); 1302 result = _gvn.transform(result); 1303 set_result(result); 1304 replace_in_map(index, result); 1305 clear_upper_avx(); 1306 return true; 1307 } 1308 1309 //------------------------------inline_string_indexOf------------------------ 1310 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { 1311 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1312 return false; 1313 } 1314 Node* src = argument(0); 1315 Node* tgt = argument(1); 1316 1317 // Make the merge point 1318 RegionNode* result_rgn = new RegionNode(4); 1319 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); 1320 1321 src = must_be_not_null(src, true); 1322 tgt = must_be_not_null(tgt, true); 1323 1324 // Get start addr and length of source string 1325 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 1326 Node* src_count = load_array_length(src); 1327 1328 // Get start addr and length of substring 1329 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1330 Node* tgt_count = load_array_length(tgt); 1331 1332 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { 1333 // Divide src size by 2 if String is UTF16 encoded 1334 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); 1335 } 1336 if (ae == StrIntrinsicNode::UU) { 1337 // Divide substring size by 2 if String is UTF16 encoded 1338 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); 1339 } 1340 1341 Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae); 1342 if (result != NULL) { 1343 result_phi->init_req(3, result); 1344 result_rgn->init_req(3, control()); 1345 } 1346 set_control(_gvn.transform(result_rgn)); 1347 record_for_igvn(result_rgn); 1348 set_result(_gvn.transform(result_phi)); 1349 1350 return true; 1351 } 1352 1353 //-----------------------------inline_string_indexOf----------------------- 1354 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { 1355 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1356 return false; 1357 } 1358 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1359 return false; 1360 } 1361 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); 1362 Node* src = argument(0); // byte[] 1363 Node* src_count = argument(1); // char count 1364 Node* tgt = argument(2); // byte[] 1365 Node* tgt_count = argument(3); // char count 1366 Node* from_index = argument(4); // char index 1367 1368 src = must_be_not_null(src, true); 1369 tgt = must_be_not_null(tgt, true); 1370 1371 // Multiply byte array index by 2 if String is UTF16 encoded 1372 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1373 src_count = _gvn.transform(new SubINode(src_count, from_index)); 1374 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1375 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1376 1377 // Range checks 1378 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); 1379 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); 1380 if (stopped()) { 1381 return true; 1382 } 1383 1384 RegionNode* region = new RegionNode(5); 1385 Node* phi = new PhiNode(region, TypeInt::INT); 1386 1387 Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae); 1388 if (result != NULL) { 1389 // The result is index relative to from_index if substring was found, -1 otherwise. 1390 // Generate code which will fold into cmove. 1391 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1392 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1393 1394 Node* if_lt = generate_slow_guard(bol, NULL); 1395 if (if_lt != NULL) { 1396 // result == -1 1397 phi->init_req(3, result); 1398 region->init_req(3, if_lt); 1399 } 1400 if (!stopped()) { 1401 result = _gvn.transform(new AddINode(result, from_index)); 1402 phi->init_req(4, result); 1403 region->init_req(4, control()); 1404 } 1405 } 1406 1407 set_control(_gvn.transform(region)); 1408 record_for_igvn(region); 1409 set_result(_gvn.transform(phi)); 1410 clear_upper_avx(); 1411 1412 return true; 1413 } 1414 1415 // Create StrIndexOfNode with fast path checks 1416 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 1417 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { 1418 // Check for substr count > string count 1419 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); 1420 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); 1421 Node* if_gt = generate_slow_guard(bol, NULL); 1422 if (if_gt != NULL) { 1423 phi->init_req(1, intcon(-1)); 1424 region->init_req(1, if_gt); 1425 } 1426 if (!stopped()) { 1427 // Check for substr count == 0 1428 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); 1429 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 1430 Node* if_zero = generate_slow_guard(bol, NULL); 1431 if (if_zero != NULL) { 1432 phi->init_req(2, intcon(0)); 1433 region->init_req(2, if_zero); 1434 } 1435 } 1436 if (!stopped()) { 1437 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); 1438 } 1439 return NULL; 1440 } 1441 1442 //-----------------------------inline_string_indexOfChar----------------------- 1443 bool LibraryCallKit::inline_string_indexOfChar() { 1444 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1445 return false; 1446 } 1447 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { 1448 return false; 1449 } 1450 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); 1451 Node* src = argument(0); // byte[] 1452 Node* tgt = argument(1); // tgt is int ch 1453 Node* from_index = argument(2); 1454 Node* max = argument(3); 1455 1456 src = must_be_not_null(src, true); 1457 1458 Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1))); 1459 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1460 Node* src_count = _gvn.transform(new SubINode(max, from_index)); 1461 1462 // Range checks 1463 generate_string_range_check(src, src_offset, src_count, true); 1464 if (stopped()) { 1465 return true; 1466 } 1467 1468 RegionNode* region = new RegionNode(3); 1469 Node* phi = new PhiNode(region, TypeInt::INT); 1470 1471 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none); 1472 C->set_has_split_ifs(true); // Has chance for split-if optimization 1473 _gvn.transform(result); 1474 1475 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1476 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1477 1478 Node* if_lt = generate_slow_guard(bol, NULL); 1479 if (if_lt != NULL) { 1480 // result == -1 1481 phi->init_req(2, result); 1482 region->init_req(2, if_lt); 1483 } 1484 if (!stopped()) { 1485 result = _gvn.transform(new AddINode(result, from_index)); 1486 phi->init_req(1, result); 1487 region->init_req(1, control()); 1488 } 1489 set_control(_gvn.transform(region)); 1490 record_for_igvn(region); 1491 set_result(_gvn.transform(phi)); 1492 1493 return true; 1494 } 1495 //---------------------------inline_string_copy--------------------- 1496 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) 1497 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 1498 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1499 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) 1500 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) 1501 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1502 bool LibraryCallKit::inline_string_copy(bool compress) { 1503 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1504 return false; 1505 } 1506 int nargs = 5; // 2 oops, 3 ints 1507 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); 1508 1509 Node* src = argument(0); 1510 Node* src_offset = argument(1); 1511 Node* dst = argument(2); 1512 Node* dst_offset = argument(3); 1513 Node* length = argument(4); 1514 1515 // Check for allocation before we add nodes that would confuse 1516 // tightly_coupled_allocation() 1517 AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL); 1518 1519 // Figure out the size and type of the elements we will be copying. 1520 const Type* src_type = src->Value(&_gvn); 1521 const Type* dst_type = dst->Value(&_gvn); 1522 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 1523 BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 1524 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || 1525 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), 1526 "Unsupported array types for inline_string_copy"); 1527 1528 src = must_be_not_null(src, true); 1529 dst = must_be_not_null(dst, true); 1530 1531 // Convert char[] offsets to byte[] offsets 1532 bool convert_src = (compress && src_elem == T_BYTE); 1533 bool convert_dst = (!compress && dst_elem == T_BYTE); 1534 if (convert_src) { 1535 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); 1536 } else if (convert_dst) { 1537 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); 1538 } 1539 1540 // Range checks 1541 generate_string_range_check(src, src_offset, length, convert_src); 1542 generate_string_range_check(dst, dst_offset, length, convert_dst); 1543 if (stopped()) { 1544 return true; 1545 } 1546 1547 Node* src_start = array_element_address(src, src_offset, src_elem); 1548 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 1549 // 'src_start' points to src array + scaled offset 1550 // 'dst_start' points to dst array + scaled offset 1551 Node* count = NULL; 1552 if (compress) { 1553 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); 1554 } else { 1555 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); 1556 } 1557 1558 if (alloc != NULL) { 1559 if (alloc->maybe_set_complete(&_gvn)) { 1560 // "You break it, you buy it." 1561 InitializeNode* init = alloc->initialization(); 1562 assert(init->is_complete(), "we just did this"); 1563 init->set_complete_with_arraycopy(); 1564 assert(dst->is_CheckCastPP(), "sanity"); 1565 assert(dst->in(0)->in(0) == init, "dest pinned"); 1566 } 1567 // Do not let stores that initialize this object be reordered with 1568 // a subsequent store that would make this object accessible by 1569 // other threads. 1570 // Record what AllocateNode this StoreStore protects so that 1571 // escape analysis can go from the MemBarStoreStoreNode to the 1572 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1573 // based on the escape status of the AllocateNode. 1574 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1575 } 1576 if (compress) { 1577 set_result(_gvn.transform(count)); 1578 } 1579 clear_upper_avx(); 1580 1581 return true; 1582 } 1583 1584 #ifdef _LP64 1585 #define XTOP ,top() /*additional argument*/ 1586 #else //_LP64 1587 #define XTOP /*no additional argument*/ 1588 #endif //_LP64 1589 1590 //------------------------inline_string_toBytesU-------------------------- 1591 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) 1592 bool LibraryCallKit::inline_string_toBytesU() { 1593 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1594 return false; 1595 } 1596 // Get the arguments. 1597 Node* value = argument(0); 1598 Node* offset = argument(1); 1599 Node* length = argument(2); 1600 1601 Node* newcopy = NULL; 1602 1603 // Set the original stack and the reexecute bit for the interpreter to reexecute 1604 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. 1605 { PreserveReexecuteState preexecs(this); 1606 jvms()->set_should_reexecute(true); 1607 1608 // Check if a null path was taken unconditionally. 1609 value = null_check(value); 1610 1611 RegionNode* bailout = new RegionNode(1); 1612 record_for_igvn(bailout); 1613 1614 // Range checks 1615 generate_negative_guard(offset, bailout); 1616 generate_negative_guard(length, bailout); 1617 generate_limit_guard(offset, length, load_array_length(value), bailout); 1618 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE 1619 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); 1620 1621 if (bailout->req() > 1) { 1622 PreserveJVMState pjvms(this); 1623 set_control(_gvn.transform(bailout)); 1624 uncommon_trap(Deoptimization::Reason_intrinsic, 1625 Deoptimization::Action_maybe_recompile); 1626 } 1627 if (stopped()) { 1628 return true; 1629 } 1630 1631 Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); 1632 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); 1633 newcopy = new_array(klass_node, size, 0); // no arguments to push 1634 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL); 1635 1636 // Calculate starting addresses. 1637 Node* src_start = array_element_address(value, offset, T_CHAR); 1638 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1639 1640 // Check if src array address is aligned to HeapWordSize (dst is always aligned) 1641 const TypeInt* toffset = gvn().type(offset)->is_int(); 1642 bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1643 1644 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1645 const char* copyfunc_name = "arraycopy"; 1646 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1647 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1648 OptoRuntime::fast_arraycopy_Type(), 1649 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1650 src_start, dst_start, ConvI2X(length) XTOP); 1651 // Do not let reads from the cloned object float above the arraycopy. 1652 if (alloc != NULL) { 1653 if (alloc->maybe_set_complete(&_gvn)) { 1654 // "You break it, you buy it." 1655 InitializeNode* init = alloc->initialization(); 1656 assert(init->is_complete(), "we just did this"); 1657 init->set_complete_with_arraycopy(); 1658 assert(newcopy->is_CheckCastPP(), "sanity"); 1659 assert(newcopy->in(0)->in(0) == init, "dest pinned"); 1660 } 1661 // Do not let stores that initialize this object be reordered with 1662 // a subsequent store that would make this object accessible by 1663 // other threads. 1664 // Record what AllocateNode this StoreStore protects so that 1665 // escape analysis can go from the MemBarStoreStoreNode to the 1666 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1667 // based on the escape status of the AllocateNode. 1668 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1669 } else { 1670 insert_mem_bar(Op_MemBarCPUOrder); 1671 } 1672 } // original reexecute is set back here 1673 1674 C->set_has_split_ifs(true); // Has chance for split-if optimization 1675 if (!stopped()) { 1676 set_result(newcopy); 1677 } 1678 clear_upper_avx(); 1679 1680 return true; 1681 } 1682 1683 //------------------------inline_string_getCharsU-------------------------- 1684 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) 1685 bool LibraryCallKit::inline_string_getCharsU() { 1686 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1687 return false; 1688 } 1689 1690 // Get the arguments. 1691 Node* src = argument(0); 1692 Node* src_begin = argument(1); 1693 Node* src_end = argument(2); // exclusive offset (i < src_end) 1694 Node* dst = argument(3); 1695 Node* dst_begin = argument(4); 1696 1697 // Check for allocation before we add nodes that would confuse 1698 // tightly_coupled_allocation() 1699 AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL); 1700 1701 // Check if a null path was taken unconditionally. 1702 src = null_check(src); 1703 dst = null_check(dst); 1704 if (stopped()) { 1705 return true; 1706 } 1707 1708 // Get length and convert char[] offset to byte[] offset 1709 Node* length = _gvn.transform(new SubINode(src_end, src_begin)); 1710 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); 1711 1712 // Range checks 1713 generate_string_range_check(src, src_begin, length, true); 1714 generate_string_range_check(dst, dst_begin, length, false); 1715 if (stopped()) { 1716 return true; 1717 } 1718 1719 if (!stopped()) { 1720 // Calculate starting addresses. 1721 Node* src_start = array_element_address(src, src_begin, T_BYTE); 1722 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); 1723 1724 // Check if array addresses are aligned to HeapWordSize 1725 const TypeInt* tsrc = gvn().type(src_begin)->is_int(); 1726 const TypeInt* tdst = gvn().type(dst_begin)->is_int(); 1727 bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && 1728 tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1729 1730 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1731 const char* copyfunc_name = "arraycopy"; 1732 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1733 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1734 OptoRuntime::fast_arraycopy_Type(), 1735 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1736 src_start, dst_start, ConvI2X(length) XTOP); 1737 // Do not let reads from the cloned object float above the arraycopy. 1738 if (alloc != NULL) { 1739 if (alloc->maybe_set_complete(&_gvn)) { 1740 // "You break it, you buy it." 1741 InitializeNode* init = alloc->initialization(); 1742 assert(init->is_complete(), "we just did this"); 1743 init->set_complete_with_arraycopy(); 1744 assert(dst->is_CheckCastPP(), "sanity"); 1745 assert(dst->in(0)->in(0) == init, "dest pinned"); 1746 } 1747 // Do not let stores that initialize this object be reordered with 1748 // a subsequent store that would make this object accessible by 1749 // other threads. 1750 // Record what AllocateNode this StoreStore protects so that 1751 // escape analysis can go from the MemBarStoreStoreNode to the 1752 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1753 // based on the escape status of the AllocateNode. 1754 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1755 } else { 1756 insert_mem_bar(Op_MemBarCPUOrder); 1757 } 1758 } 1759 1760 C->set_has_split_ifs(true); // Has chance for split-if optimization 1761 return true; 1762 } 1763 1764 //----------------------inline_string_char_access---------------------------- 1765 // Store/Load char to/from byte[] array. 1766 // static void StringUTF16.putChar(byte[] val, int index, int c) 1767 // static char StringUTF16.getChar(byte[] val, int index) 1768 bool LibraryCallKit::inline_string_char_access(bool is_store) { 1769 Node* value = argument(0); 1770 Node* index = argument(1); 1771 Node* ch = is_store ? argument(2) : NULL; 1772 1773 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 1774 // correctly requires matched array shapes. 1775 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 1776 "sanity: byte[] and char[] bases agree"); 1777 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 1778 "sanity: byte[] and char[] scales agree"); 1779 1780 // Bail when getChar over constants is requested: constant folding would 1781 // reject folding mismatched char access over byte[]. A normal inlining for getChar 1782 // Java method would constant fold nicely instead. 1783 if (!is_store && value->is_Con() && index->is_Con()) { 1784 return false; 1785 } 1786 1787 value = must_be_not_null(value, true); 1788 1789 Node* adr = array_element_address(value, index, T_CHAR); 1790 if (adr->is_top()) { 1791 return false; 1792 } 1793 if (is_store) { 1794 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); 1795 } else { 1796 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 1797 set_result(ch); 1798 } 1799 return true; 1800 } 1801 1802 //--------------------------round_double_node-------------------------------- 1803 // Round a double node if necessary. 1804 Node* LibraryCallKit::round_double_node(Node* n) { 1805 if (Matcher::strict_fp_requires_explicit_rounding) { 1806 #ifdef IA32 1807 if (UseSSE < 2) { 1808 n = _gvn.transform(new RoundDoubleNode(NULL, n)); 1809 } 1810 #else 1811 Unimplemented(); 1812 #endif // IA32 1813 } 1814 return n; 1815 } 1816 1817 //------------------------------inline_math----------------------------------- 1818 // public static double Math.abs(double) 1819 // public static double Math.sqrt(double) 1820 // public static double Math.log(double) 1821 // public static double Math.log10(double) 1822 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { 1823 Node* arg = round_double_node(argument(0)); 1824 Node* n = NULL; 1825 switch (id) { 1826 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; 1827 case vmIntrinsics::_dsqrt: n = new SqrtDNode(C, control(), arg); break; 1828 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break; 1829 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break; 1830 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break; 1831 default: fatal_unexpected_iid(id); break; 1832 } 1833 set_result(_gvn.transform(n)); 1834 return true; 1835 } 1836 1837 //------------------------------inline_math----------------------------------- 1838 // public static float Math.abs(float) 1839 // public static int Math.abs(int) 1840 // public static long Math.abs(long) 1841 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { 1842 Node* arg = argument(0); 1843 Node* n = NULL; 1844 switch (id) { 1845 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; 1846 case vmIntrinsics::_iabs: n = new AbsINode( arg); break; 1847 case vmIntrinsics::_labs: n = new AbsLNode( arg); break; 1848 default: fatal_unexpected_iid(id); break; 1849 } 1850 set_result(_gvn.transform(n)); 1851 return true; 1852 } 1853 1854 //------------------------------runtime_math----------------------------- 1855 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { 1856 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), 1857 "must be (DD)D or (D)D type"); 1858 1859 // Inputs 1860 Node* a = round_double_node(argument(0)); 1861 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL; 1862 1863 const TypePtr* no_memory_effects = NULL; 1864 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, 1865 no_memory_effects, 1866 a, top(), b, b ? top() : NULL); 1867 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1868 #ifdef ASSERT 1869 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1870 assert(value_top == top(), "second value must be top"); 1871 #endif 1872 1873 set_result(value); 1874 return true; 1875 } 1876 1877 //------------------------------inline_math_native----------------------------- 1878 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { 1879 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f) 1880 switch (id) { 1881 // These intrinsics are not properly supported on all hardware 1882 case vmIntrinsics::_dsin: 1883 return StubRoutines::dsin() != NULL ? 1884 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : 1885 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin), "SIN"); 1886 case vmIntrinsics::_dcos: 1887 return StubRoutines::dcos() != NULL ? 1888 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : 1889 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos), "COS"); 1890 case vmIntrinsics::_dtan: 1891 return StubRoutines::dtan() != NULL ? 1892 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : 1893 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN"); 1894 case vmIntrinsics::_dlog: 1895 return StubRoutines::dlog() != NULL ? 1896 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : 1897 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog), "LOG"); 1898 case vmIntrinsics::_dlog10: 1899 return StubRoutines::dlog10() != NULL ? 1900 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : 1901 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10"); 1902 1903 // These intrinsics are supported on all hardware 1904 case vmIntrinsics::_ceil: 1905 case vmIntrinsics::_floor: 1906 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false; 1907 case vmIntrinsics::_dsqrt: return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; 1908 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; 1909 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; 1910 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; 1911 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; 1912 1913 case vmIntrinsics::_dexp: 1914 return StubRoutines::dexp() != NULL ? 1915 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : 1916 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp), "EXP"); 1917 case vmIntrinsics::_dpow: { 1918 Node* exp = round_double_node(argument(2)); 1919 const TypeD* d = _gvn.type(exp)->isa_double_constant(); 1920 if (d != NULL && d->getd() == 2.0) { 1921 // Special case: pow(x, 2.0) => x * x 1922 Node* base = round_double_node(argument(0)); 1923 set_result(_gvn.transform(new MulDNode(base, base))); 1924 return true; 1925 } 1926 return StubRoutines::dpow() != NULL ? 1927 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : 1928 runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow), "POW"); 1929 } 1930 #undef FN_PTR 1931 1932 // These intrinsics are not yet correctly implemented 1933 case vmIntrinsics::_datan2: 1934 return false; 1935 1936 default: 1937 fatal_unexpected_iid(id); 1938 return false; 1939 } 1940 } 1941 1942 static bool is_simple_name(Node* n) { 1943 return (n->req() == 1 // constant 1944 || (n->is_Type() && n->as_Type()->type()->singleton()) 1945 || n->is_Proj() // parameter or return value 1946 || n->is_Phi() // local of some sort 1947 ); 1948 } 1949 1950 //----------------------------inline_notify-----------------------------------* 1951 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { 1952 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); 1953 address func; 1954 if (id == vmIntrinsics::_notify) { 1955 func = OptoRuntime::monitor_notify_Java(); 1956 } else { 1957 func = OptoRuntime::monitor_notifyAll_Java(); 1958 } 1959 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0)); 1960 make_slow_call_ex(call, env()->Throwable_klass(), false); 1961 return true; 1962 } 1963 1964 1965 //----------------------------inline_min_max----------------------------------- 1966 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { 1967 set_result(generate_min_max(id, argument(0), argument(1))); 1968 return true; 1969 } 1970 1971 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) { 1972 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); 1973 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 1974 Node* fast_path = _gvn.transform( new IfFalseNode(check)); 1975 Node* slow_path = _gvn.transform( new IfTrueNode(check) ); 1976 1977 { 1978 PreserveJVMState pjvms(this); 1979 PreserveReexecuteState preexecs(this); 1980 jvms()->set_should_reexecute(true); 1981 1982 set_control(slow_path); 1983 set_i_o(i_o()); 1984 1985 uncommon_trap(Deoptimization::Reason_intrinsic, 1986 Deoptimization::Action_none); 1987 } 1988 1989 set_control(fast_path); 1990 set_result(math); 1991 } 1992 1993 template <typename OverflowOp> 1994 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { 1995 typedef typename OverflowOp::MathOp MathOp; 1996 1997 MathOp* mathOp = new MathOp(arg1, arg2); 1998 Node* operation = _gvn.transform( mathOp ); 1999 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); 2000 inline_math_mathExact(operation, ofcheck); 2001 return true; 2002 } 2003 2004 bool LibraryCallKit::inline_math_addExactI(bool is_increment) { 2005 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); 2006 } 2007 2008 bool LibraryCallKit::inline_math_addExactL(bool is_increment) { 2009 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); 2010 } 2011 2012 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { 2013 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); 2014 } 2015 2016 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { 2017 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); 2018 } 2019 2020 bool LibraryCallKit::inline_math_negateExactI() { 2021 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); 2022 } 2023 2024 bool LibraryCallKit::inline_math_negateExactL() { 2025 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); 2026 } 2027 2028 bool LibraryCallKit::inline_math_multiplyExactI() { 2029 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); 2030 } 2031 2032 bool LibraryCallKit::inline_math_multiplyExactL() { 2033 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); 2034 } 2035 2036 bool LibraryCallKit::inline_math_multiplyHigh() { 2037 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); 2038 return true; 2039 } 2040 2041 Node* 2042 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) { 2043 // These are the candidate return value: 2044 Node* xvalue = x0; 2045 Node* yvalue = y0; 2046 2047 if (xvalue == yvalue) { 2048 return xvalue; 2049 } 2050 2051 bool want_max = (id == vmIntrinsics::_max); 2052 2053 const TypeInt* txvalue = _gvn.type(xvalue)->isa_int(); 2054 const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int(); 2055 if (txvalue == NULL || tyvalue == NULL) return top(); 2056 // This is not really necessary, but it is consistent with a 2057 // hypothetical MaxINode::Value method: 2058 int widen = MAX2(txvalue->_widen, tyvalue->_widen); 2059 2060 // %%% This folding logic should (ideally) be in a different place. 2061 // Some should be inside IfNode, and there to be a more reliable 2062 // transformation of ?: style patterns into cmoves. We also want 2063 // more powerful optimizations around cmove and min/max. 2064 2065 // Try to find a dominating comparison of these guys. 2066 // It can simplify the index computation for Arrays.copyOf 2067 // and similar uses of System.arraycopy. 2068 // First, compute the normalized version of CmpI(x, y). 2069 int cmp_op = Op_CmpI; 2070 Node* xkey = xvalue; 2071 Node* ykey = yvalue; 2072 Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey)); 2073 if (ideal_cmpxy->is_Cmp()) { 2074 // E.g., if we have CmpI(length - offset, count), 2075 // it might idealize to CmpI(length, count + offset) 2076 cmp_op = ideal_cmpxy->Opcode(); 2077 xkey = ideal_cmpxy->in(1); 2078 ykey = ideal_cmpxy->in(2); 2079 } 2080 2081 // Start by locating any relevant comparisons. 2082 Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey; 2083 Node* cmpxy = NULL; 2084 Node* cmpyx = NULL; 2085 for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) { 2086 Node* cmp = start_from->fast_out(k); 2087 if (cmp->outcnt() > 0 && // must have prior uses 2088 cmp->in(0) == NULL && // must be context-independent 2089 cmp->Opcode() == cmp_op) { // right kind of compare 2090 if (cmp->in(1) == xkey && cmp->in(2) == ykey) cmpxy = cmp; 2091 if (cmp->in(1) == ykey && cmp->in(2) == xkey) cmpyx = cmp; 2092 } 2093 } 2094 2095 const int NCMPS = 2; 2096 Node* cmps[NCMPS] = { cmpxy, cmpyx }; 2097 int cmpn; 2098 for (cmpn = 0; cmpn < NCMPS; cmpn++) { 2099 if (cmps[cmpn] != NULL) break; // find a result 2100 } 2101 if (cmpn < NCMPS) { 2102 // Look for a dominating test that tells us the min and max. 2103 int depth = 0; // Limit search depth for speed 2104 Node* dom = control(); 2105 for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) { 2106 if (++depth >= 100) break; 2107 Node* ifproj = dom; 2108 if (!ifproj->is_Proj()) continue; 2109 Node* iff = ifproj->in(0); 2110 if (!iff->is_If()) continue; 2111 Node* bol = iff->in(1); 2112 if (!bol->is_Bool()) continue; 2113 Node* cmp = bol->in(1); 2114 if (cmp == NULL) continue; 2115 for (cmpn = 0; cmpn < NCMPS; cmpn++) 2116 if (cmps[cmpn] == cmp) break; 2117 if (cmpn == NCMPS) continue; 2118 BoolTest::mask btest = bol->as_Bool()->_test._test; 2119 if (ifproj->is_IfFalse()) btest = BoolTest(btest).negate(); 2120 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute(); 2121 // At this point, we know that 'x btest y' is true. 2122 switch (btest) { 2123 case BoolTest::eq: 2124 // They are proven equal, so we can collapse the min/max. 2125 // Either value is the answer. Choose the simpler. 2126 if (is_simple_name(yvalue) && !is_simple_name(xvalue)) 2127 return yvalue; 2128 return xvalue; 2129 case BoolTest::lt: // x < y 2130 case BoolTest::le: // x <= y 2131 return (want_max ? yvalue : xvalue); 2132 case BoolTest::gt: // x > y 2133 case BoolTest::ge: // x >= y 2134 return (want_max ? xvalue : yvalue); 2135 default: 2136 break; 2137 } 2138 } 2139 } 2140 2141 // We failed to find a dominating test. 2142 // Let's pick a test that might GVN with prior tests. 2143 Node* best_bol = NULL; 2144 BoolTest::mask best_btest = BoolTest::illegal; 2145 for (cmpn = 0; cmpn < NCMPS; cmpn++) { 2146 Node* cmp = cmps[cmpn]; 2147 if (cmp == NULL) continue; 2148 for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) { 2149 Node* bol = cmp->fast_out(j); 2150 if (!bol->is_Bool()) continue; 2151 BoolTest::mask btest = bol->as_Bool()->_test._test; 2152 if (btest == BoolTest::eq || btest == BoolTest::ne) continue; 2153 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute(); 2154 if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) { 2155 best_bol = bol->as_Bool(); 2156 best_btest = btest; 2157 } 2158 } 2159 } 2160 2161 Node* answer_if_true = NULL; 2162 Node* answer_if_false = NULL; 2163 switch (best_btest) { 2164 default: 2165 if (cmpxy == NULL) 2166 cmpxy = ideal_cmpxy; 2167 best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt)); 2168 // and fall through: 2169 case BoolTest::lt: // x < y 2170 case BoolTest::le: // x <= y 2171 answer_if_true = (want_max ? yvalue : xvalue); 2172 answer_if_false = (want_max ? xvalue : yvalue); 2173 break; 2174 case BoolTest::gt: // x > y 2175 case BoolTest::ge: // x >= y 2176 answer_if_true = (want_max ? xvalue : yvalue); 2177 answer_if_false = (want_max ? yvalue : xvalue); 2178 break; 2179 } 2180 2181 jint hi, lo; 2182 if (want_max) { 2183 // We can sharpen the minimum. 2184 hi = MAX2(txvalue->_hi, tyvalue->_hi); 2185 lo = MAX2(txvalue->_lo, tyvalue->_lo); 2186 } else { 2187 // We can sharpen the maximum. 2188 hi = MIN2(txvalue->_hi, tyvalue->_hi); 2189 lo = MIN2(txvalue->_lo, tyvalue->_lo); 2190 } 2191 2192 // Use a flow-free graph structure, to avoid creating excess control edges 2193 // which could hinder other optimizations. 2194 // Since Math.min/max is often used with arraycopy, we want 2195 // tightly_coupled_allocation to be able to see beyond min/max expressions. 2196 Node* cmov = CMoveNode::make(NULL, best_bol, 2197 answer_if_false, answer_if_true, 2198 TypeInt::make(lo, hi, widen)); 2199 2200 return _gvn.transform(cmov); 2201 2202 /* 2203 // This is not as desirable as it may seem, since Min and Max 2204 // nodes do not have a full set of optimizations. 2205 // And they would interfere, anyway, with 'if' optimizations 2206 // and with CMoveI canonical forms. 2207 switch (id) { 2208 case vmIntrinsics::_min: 2209 result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break; 2210 case vmIntrinsics::_max: 2211 result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break; 2212 default: 2213 ShouldNotReachHere(); 2214 } 2215 */ 2216 } 2217 2218 inline int 2219 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { 2220 const TypePtr* base_type = TypePtr::NULL_PTR; 2221 if (base != NULL) base_type = _gvn.type(base)->isa_ptr(); 2222 if (base_type == NULL) { 2223 // Unknown type. 2224 return Type::AnyPtr; 2225 } else if (base_type == TypePtr::NULL_PTR) { 2226 // Since this is a NULL+long form, we have to switch to a rawptr. 2227 base = _gvn.transform(new CastX2PNode(offset)); 2228 offset = MakeConX(0); 2229 return Type::RawPtr; 2230 } else if (base_type->base() == Type::RawPtr) { 2231 return Type::RawPtr; 2232 } else if (base_type->isa_oopptr()) { 2233 // Base is never null => always a heap address. 2234 if (!TypePtr::NULL_PTR->higher_equal(base_type)) { 2235 return Type::OopPtr; 2236 } 2237 // Offset is small => always a heap address. 2238 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); 2239 if (offset_type != NULL && 2240 base_type->offset() == 0 && // (should always be?) 2241 offset_type->_lo >= 0 && 2242 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { 2243 return Type::OopPtr; 2244 } else if (type == T_OBJECT) { 2245 // off heap access to an oop doesn't make any sense. Has to be on 2246 // heap. 2247 return Type::OopPtr; 2248 } 2249 // Otherwise, it might either be oop+off or NULL+addr. 2250 return Type::AnyPtr; 2251 } else { 2252 // No information: 2253 return Type::AnyPtr; 2254 } 2255 } 2256 2257 inline Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, DecoratorSet decorators, BasicType type, bool can_cast) { 2258 Node* uncasted_base = base; 2259 int kind = classify_unsafe_addr(uncasted_base, offset, type); 2260 if (kind == Type::RawPtr) { 2261 return basic_plus_adr(top(), uncasted_base, offset); 2262 } else if (kind == Type::AnyPtr) { 2263 assert(base == uncasted_base, "unexpected base change"); 2264 if (can_cast) { 2265 if (!_gvn.type(base)->speculative_maybe_null() && 2266 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2267 // According to profiling, this access is always on 2268 // heap. Casting the base to not null and thus avoiding membars 2269 // around the access should allow better optimizations 2270 Node* null_ctl = top(); 2271 base = null_check_oop(base, &null_ctl, true, true, true); 2272 assert(null_ctl->is_top(), "no null control here"); 2273 return basic_plus_adr(base, offset); 2274 } else if (_gvn.type(base)->speculative_always_null() && 2275 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2276 // According to profiling, this access is always off 2277 // heap. 2278 base = null_assert(base); 2279 Node* raw_base = _gvn.transform(new CastX2PNode(offset)); 2280 offset = MakeConX(0); 2281 return basic_plus_adr(top(), raw_base, offset); 2282 } 2283 } 2284 // We don't know if it's an on heap or off heap access. Fall back 2285 // to raw memory access. 2286 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); 2287 return basic_plus_adr(top(), raw, offset); 2288 } else { 2289 assert(base == uncasted_base, "unexpected base change"); 2290 // We know it's an on heap access so base can't be null 2291 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { 2292 base = must_be_not_null(base, true); 2293 } 2294 return basic_plus_adr(base, offset); 2295 } 2296 } 2297 2298 //--------------------------inline_number_methods----------------------------- 2299 // inline int Integer.numberOfLeadingZeros(int) 2300 // inline int Long.numberOfLeadingZeros(long) 2301 // 2302 // inline int Integer.numberOfTrailingZeros(int) 2303 // inline int Long.numberOfTrailingZeros(long) 2304 // 2305 // inline int Integer.bitCount(int) 2306 // inline int Long.bitCount(long) 2307 // 2308 // inline char Character.reverseBytes(char) 2309 // inline short Short.reverseBytes(short) 2310 // inline int Integer.reverseBytes(int) 2311 // inline long Long.reverseBytes(long) 2312 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { 2313 Node* arg = argument(0); 2314 Node* n = NULL; 2315 switch (id) { 2316 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; 2317 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; 2318 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; 2319 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; 2320 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; 2321 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; 2322 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode(0, arg); break; 2323 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( 0, arg); break; 2324 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( 0, arg); break; 2325 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( 0, arg); break; 2326 default: fatal_unexpected_iid(id); break; 2327 } 2328 set_result(_gvn.transform(n)); 2329 return true; 2330 } 2331 2332 //----------------------------inline_unsafe_access---------------------------- 2333 2334 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { 2335 // Attempt to infer a sharper value type from the offset and base type. 2336 ciKlass* sharpened_klass = NULL; 2337 2338 // See if it is an instance field, with an object type. 2339 if (alias_type->field() != NULL) { 2340 if (alias_type->field()->type()->is_klass()) { 2341 sharpened_klass = alias_type->field()->type()->as_klass(); 2342 } 2343 } 2344 2345 // See if it is a narrow oop array. 2346 if (adr_type->isa_aryptr()) { 2347 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { 2348 const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr(); 2349 if (elem_type != NULL) { 2350 sharpened_klass = elem_type->klass(); 2351 } 2352 } 2353 } 2354 2355 // The sharpened class might be unloaded if there is no class loader 2356 // contraint in place. 2357 if (sharpened_klass != NULL && sharpened_klass->is_loaded()) { 2358 const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass); 2359 2360 #ifndef PRODUCT 2361 if (C->print_intrinsics() || C->print_inlining()) { 2362 tty->print(" from base type: "); adr_type->dump(); tty->cr(); 2363 tty->print(" sharpened value: "); tjp->dump(); tty->cr(); 2364 } 2365 #endif 2366 // Sharpen the value type. 2367 return tjp; 2368 } 2369 return NULL; 2370 } 2371 2372 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { 2373 switch (kind) { 2374 case Relaxed: 2375 return MO_UNORDERED; 2376 case Opaque: 2377 return MO_RELAXED; 2378 case Acquire: 2379 return MO_ACQUIRE; 2380 case Release: 2381 return MO_RELEASE; 2382 case Volatile: 2383 return MO_SEQ_CST; 2384 default: 2385 ShouldNotReachHere(); 2386 return 0; 2387 } 2388 } 2389 2390 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) { 2391 if (callee()->is_static()) return false; // caller must have the capability! 2392 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2393 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); 2394 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); 2395 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 2396 2397 if (is_reference_type(type)) { 2398 decorators |= ON_UNKNOWN_OOP_REF; 2399 } 2400 2401 if (unaligned) { 2402 decorators |= C2_UNALIGNED; 2403 } 2404 2405 #ifndef PRODUCT 2406 { 2407 ResourceMark rm; 2408 // Check the signatures. 2409 ciSignature* sig = callee()->signature(); 2410 #ifdef ASSERT 2411 if (!is_store) { 2412 // Object getReference(Object base, int/long offset), etc. 2413 BasicType rtype = sig->return_type()->basic_type(); 2414 assert(rtype == type, "getter must return the expected value"); 2415 assert(sig->count() == 2, "oop getter has 2 arguments"); 2416 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); 2417 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); 2418 } else { 2419 // void putReference(Object base, int/long offset, Object x), etc. 2420 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); 2421 assert(sig->count() == 3, "oop putter has 3 arguments"); 2422 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); 2423 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); 2424 BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); 2425 assert(vtype == type, "putter must accept the expected value"); 2426 } 2427 #endif // ASSERT 2428 } 2429 #endif //PRODUCT 2430 2431 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2432 2433 Node* receiver = argument(0); // type: oop 2434 2435 // Build address expression. 2436 Node* adr; 2437 Node* heap_base_oop = top(); 2438 Node* offset = top(); 2439 Node* val; 2440 2441 // The base is either a Java object or a value produced by Unsafe.staticFieldBase 2442 Node* base = argument(1); // type: oop 2443 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset 2444 offset = argument(2); // type: long 2445 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2446 // to be plain byte offsets, which are also the same as those accepted 2447 // by oopDesc::field_addr. 2448 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 2449 "fieldOffset must be byte-scaled"); 2450 // 32-bit machines ignore the high half! 2451 offset = ConvL2X(offset); 2452 adr = make_unsafe_address(base, offset, is_store ? ACCESS_WRITE : ACCESS_READ, type, kind == Relaxed); 2453 2454 if (_gvn.type(base)->isa_ptr() == TypePtr::NULL_PTR) { 2455 if (type != T_OBJECT) { 2456 decorators |= IN_NATIVE; // off-heap primitive access 2457 } else { 2458 return false; // off-heap oop accesses are not supported 2459 } 2460 } else { 2461 heap_base_oop = base; // on-heap or mixed access 2462 } 2463 2464 // Can base be NULL? Otherwise, always on-heap access. 2465 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); 2466 2467 if (!can_access_non_heap) { 2468 decorators |= IN_HEAP; 2469 } 2470 2471 val = is_store ? argument(4) : NULL; 2472 2473 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); 2474 if (adr_type == TypePtr::NULL_PTR) { 2475 return false; // off-heap access with zero address 2476 } 2477 2478 // Try to categorize the address. 2479 Compile::AliasType* alias_type = C->alias_type(adr_type); 2480 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2481 2482 if (alias_type->adr_type() == TypeInstPtr::KLASS || 2483 alias_type->adr_type() == TypeAryPtr::RANGE) { 2484 return false; // not supported 2485 } 2486 2487 bool mismatched = false; 2488 BasicType bt = alias_type->basic_type(); 2489 if (bt != T_ILLEGAL) { 2490 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); 2491 if (bt == T_BYTE && adr_type->isa_aryptr()) { 2492 // Alias type doesn't differentiate between byte[] and boolean[]). 2493 // Use address type to get the element type. 2494 bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); 2495 } 2496 if (bt == T_ARRAY || bt == T_NARROWOOP) { 2497 // accessing an array field with getReference is not a mismatch 2498 bt = T_OBJECT; 2499 } 2500 if ((bt == T_OBJECT) != (type == T_OBJECT)) { 2501 // Don't intrinsify mismatched object accesses 2502 return false; 2503 } 2504 mismatched = (bt != type); 2505 } else if (alias_type->adr_type()->isa_oopptr()) { 2506 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched 2507 } 2508 2509 assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); 2510 2511 if (mismatched) { 2512 decorators |= C2_MISMATCHED; 2513 } 2514 2515 // First guess at the value type. 2516 const Type *value_type = Type::get_const_basic_type(type); 2517 2518 // Figure out the memory ordering. 2519 decorators |= mo_decorator_for_access_kind(kind); 2520 2521 if (!is_store && type == T_OBJECT) { 2522 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2523 if (tjp != NULL) { 2524 value_type = tjp; 2525 } 2526 } 2527 2528 receiver = null_check(receiver); 2529 if (stopped()) { 2530 return true; 2531 } 2532 // Heap pointers get a null-check from the interpreter, 2533 // as a courtesy. However, this is not guaranteed by Unsafe, 2534 // and it is not possible to fully distinguish unintended nulls 2535 // from intended ones in this API. 2536 2537 if (!is_store) { 2538 Node* p = NULL; 2539 // Try to constant fold a load from a constant field 2540 ciField* field = alias_type->field(); 2541 if (heap_base_oop != top() && field != NULL && field->is_constant() && !mismatched) { 2542 // final or stable field 2543 p = make_constant_from_field(field, heap_base_oop); 2544 } 2545 2546 if (p == NULL) { // Could not constant fold the load 2547 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); 2548 // Normalize the value returned by getBoolean in the following cases 2549 if (type == T_BOOLEAN && 2550 (mismatched || 2551 heap_base_oop == top() || // - heap_base_oop is NULL or 2552 (can_access_non_heap && field == NULL)) // - heap_base_oop is potentially NULL 2553 // and the unsafe access is made to large offset 2554 // (i.e., larger than the maximum offset necessary for any 2555 // field access) 2556 ) { 2557 IdealKit ideal = IdealKit(this); 2558 #define __ ideal. 2559 IdealVariable normalized_result(ideal); 2560 __ declarations_done(); 2561 __ set(normalized_result, p); 2562 __ if_then(p, BoolTest::ne, ideal.ConI(0)); 2563 __ set(normalized_result, ideal.ConI(1)); 2564 ideal.end_if(); 2565 final_sync(ideal); 2566 p = __ value(normalized_result); 2567 #undef __ 2568 } 2569 } 2570 if (type == T_ADDRESS) { 2571 p = gvn().transform(new CastP2XNode(NULL, p)); 2572 p = ConvX2UL(p); 2573 } 2574 // The load node has the control of the preceding MemBarCPUOrder. All 2575 // following nodes will have the control of the MemBarCPUOrder inserted at 2576 // the end of this method. So, pushing the load onto the stack at a later 2577 // point is fine. 2578 set_result(p); 2579 } else { 2580 if (bt == T_ADDRESS) { 2581 // Repackage the long as a pointer. 2582 val = ConvL2X(val); 2583 val = gvn().transform(new CastX2PNode(val)); 2584 } 2585 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); 2586 } 2587 2588 return true; 2589 } 2590 2591 //----------------------------inline_unsafe_load_store---------------------------- 2592 // This method serves a couple of different customers (depending on LoadStoreKind): 2593 // 2594 // LS_cmp_swap: 2595 // 2596 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); 2597 // boolean compareAndSetInt( Object o, long offset, int expected, int x); 2598 // boolean compareAndSetLong( Object o, long offset, long expected, long x); 2599 // 2600 // LS_cmp_swap_weak: 2601 // 2602 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); 2603 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); 2604 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); 2605 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); 2606 // 2607 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); 2608 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); 2609 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); 2610 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); 2611 // 2612 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); 2613 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); 2614 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); 2615 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); 2616 // 2617 // LS_cmp_exchange: 2618 // 2619 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); 2620 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); 2621 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); 2622 // 2623 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); 2624 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); 2625 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); 2626 // 2627 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); 2628 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); 2629 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); 2630 // 2631 // LS_get_add: 2632 // 2633 // int getAndAddInt( Object o, long offset, int delta) 2634 // long getAndAddLong(Object o, long offset, long delta) 2635 // 2636 // LS_get_set: 2637 // 2638 // int getAndSet(Object o, long offset, int newValue) 2639 // long getAndSet(Object o, long offset, long newValue) 2640 // Object getAndSet(Object o, long offset, Object newValue) 2641 // 2642 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { 2643 // This basic scheme here is the same as inline_unsafe_access, but 2644 // differs in enough details that combining them would make the code 2645 // overly confusing. (This is a true fact! I originally combined 2646 // them, but even I was confused by it!) As much code/comments as 2647 // possible are retained from inline_unsafe_access though to make 2648 // the correspondences clearer. - dl 2649 2650 if (callee()->is_static()) return false; // caller must have the capability! 2651 2652 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2653 decorators |= mo_decorator_for_access_kind(access_kind); 2654 2655 #ifndef PRODUCT 2656 BasicType rtype; 2657 { 2658 ResourceMark rm; 2659 // Check the signatures. 2660 ciSignature* sig = callee()->signature(); 2661 rtype = sig->return_type()->basic_type(); 2662 switch(kind) { 2663 case LS_get_add: 2664 case LS_get_set: { 2665 // Check the signatures. 2666 #ifdef ASSERT 2667 assert(rtype == type, "get and set must return the expected type"); 2668 assert(sig->count() == 3, "get and set has 3 arguments"); 2669 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); 2670 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); 2671 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); 2672 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); 2673 #endif // ASSERT 2674 break; 2675 } 2676 case LS_cmp_swap: 2677 case LS_cmp_swap_weak: { 2678 // Check the signatures. 2679 #ifdef ASSERT 2680 assert(rtype == T_BOOLEAN, "CAS must return boolean"); 2681 assert(sig->count() == 4, "CAS has 4 arguments"); 2682 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2683 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2684 #endif // ASSERT 2685 break; 2686 } 2687 case LS_cmp_exchange: { 2688 // Check the signatures. 2689 #ifdef ASSERT 2690 assert(rtype == type, "CAS must return the expected type"); 2691 assert(sig->count() == 4, "CAS has 4 arguments"); 2692 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2693 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2694 #endif // ASSERT 2695 break; 2696 } 2697 default: 2698 ShouldNotReachHere(); 2699 } 2700 } 2701 #endif //PRODUCT 2702 2703 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2704 2705 // Get arguments: 2706 Node* receiver = NULL; 2707 Node* base = NULL; 2708 Node* offset = NULL; 2709 Node* oldval = NULL; 2710 Node* newval = NULL; 2711 switch(kind) { 2712 case LS_cmp_swap: 2713 case LS_cmp_swap_weak: 2714 case LS_cmp_exchange: { 2715 const bool two_slot_type = type2size[type] == 2; 2716 receiver = argument(0); // type: oop 2717 base = argument(1); // type: oop 2718 offset = argument(2); // type: long 2719 oldval = argument(4); // type: oop, int, or long 2720 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long 2721 break; 2722 } 2723 case LS_get_add: 2724 case LS_get_set: { 2725 receiver = argument(0); // type: oop 2726 base = argument(1); // type: oop 2727 offset = argument(2); // type: long 2728 oldval = NULL; 2729 newval = argument(4); // type: oop, int, or long 2730 break; 2731 } 2732 default: 2733 ShouldNotReachHere(); 2734 } 2735 2736 // Build field offset expression. 2737 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2738 // to be plain byte offsets, which are also the same as those accepted 2739 // by oopDesc::field_addr. 2740 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); 2741 // 32-bit machines ignore the high half of long offsets 2742 offset = ConvL2X(offset); 2743 Node* adr = make_unsafe_address(base, offset, ACCESS_WRITE | ACCESS_READ, type, false); 2744 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 2745 2746 Compile::AliasType* alias_type = C->alias_type(adr_type); 2747 BasicType bt = alias_type->basic_type(); 2748 if (bt != T_ILLEGAL && 2749 (is_reference_type(bt) != (type == T_OBJECT))) { 2750 // Don't intrinsify mismatched object accesses. 2751 return false; 2752 } 2753 2754 // For CAS, unlike inline_unsafe_access, there seems no point in 2755 // trying to refine types. Just use the coarse types here. 2756 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2757 const Type *value_type = Type::get_const_basic_type(type); 2758 2759 switch (kind) { 2760 case LS_get_set: 2761 case LS_cmp_exchange: { 2762 if (type == T_OBJECT) { 2763 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2764 if (tjp != NULL) { 2765 value_type = tjp; 2766 } 2767 } 2768 break; 2769 } 2770 case LS_cmp_swap: 2771 case LS_cmp_swap_weak: 2772 case LS_get_add: 2773 break; 2774 default: 2775 ShouldNotReachHere(); 2776 } 2777 2778 // Null check receiver. 2779 receiver = null_check(receiver); 2780 if (stopped()) { 2781 return true; 2782 } 2783 2784 int alias_idx = C->get_alias_index(adr_type); 2785 2786 if (is_reference_type(type)) { 2787 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; 2788 2789 // Transformation of a value which could be NULL pointer (CastPP #NULL) 2790 // could be delayed during Parse (for example, in adjust_map_after_if()). 2791 // Execute transformation here to avoid barrier generation in such case. 2792 if (_gvn.type(newval) == TypePtr::NULL_PTR) 2793 newval = _gvn.makecon(TypePtr::NULL_PTR); 2794 2795 if (oldval != NULL && _gvn.type(oldval) == TypePtr::NULL_PTR) { 2796 // Refine the value to a null constant, when it is known to be null 2797 oldval = _gvn.makecon(TypePtr::NULL_PTR); 2798 } 2799 } 2800 2801 Node* result = NULL; 2802 switch (kind) { 2803 case LS_cmp_exchange: { 2804 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, 2805 oldval, newval, value_type, type, decorators); 2806 break; 2807 } 2808 case LS_cmp_swap_weak: 2809 decorators |= C2_WEAK_CMPXCHG; 2810 case LS_cmp_swap: { 2811 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, 2812 oldval, newval, value_type, type, decorators); 2813 break; 2814 } 2815 case LS_get_set: { 2816 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, 2817 newval, value_type, type, decorators); 2818 break; 2819 } 2820 case LS_get_add: { 2821 result = access_atomic_add_at(base, adr, adr_type, alias_idx, 2822 newval, value_type, type, decorators); 2823 break; 2824 } 2825 default: 2826 ShouldNotReachHere(); 2827 } 2828 2829 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); 2830 set_result(result); 2831 return true; 2832 } 2833 2834 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { 2835 // Regardless of form, don't allow previous ld/st to move down, 2836 // then issue acquire, release, or volatile mem_bar. 2837 insert_mem_bar(Op_MemBarCPUOrder); 2838 switch(id) { 2839 case vmIntrinsics::_loadFence: 2840 insert_mem_bar(Op_LoadFence); 2841 return true; 2842 case vmIntrinsics::_storeFence: 2843 insert_mem_bar(Op_StoreFence); 2844 return true; 2845 case vmIntrinsics::_fullFence: 2846 insert_mem_bar(Op_MemBarVolatile); 2847 return true; 2848 default: 2849 fatal_unexpected_iid(id); 2850 return false; 2851 } 2852 } 2853 2854 bool LibraryCallKit::inline_onspinwait() { 2855 insert_mem_bar(Op_OnSpinWait); 2856 return true; 2857 } 2858 2859 bool LibraryCallKit::klass_needs_init_guard(Node* kls) { 2860 if (!kls->is_Con()) { 2861 return true; 2862 } 2863 const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr(); 2864 if (klsptr == NULL) { 2865 return true; 2866 } 2867 ciInstanceKlass* ik = klsptr->klass()->as_instance_klass(); 2868 // don't need a guard for a klass that is already initialized 2869 return !ik->is_initialized(); 2870 } 2871 2872 //----------------------------inline_unsafe_writeback0------------------------- 2873 // public native void Unsafe.writeback0(long address) 2874 bool LibraryCallKit::inline_unsafe_writeback0() { 2875 if (!Matcher::has_match_rule(Op_CacheWB)) { 2876 return false; 2877 } 2878 #ifndef PRODUCT 2879 assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync"); 2880 assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync"); 2881 ciSignature* sig = callee()->signature(); 2882 assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!"); 2883 #endif 2884 null_check_receiver(); // null-check, then ignore 2885 Node *addr = argument(1); 2886 addr = new CastX2PNode(addr); 2887 addr = _gvn.transform(addr); 2888 Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr); 2889 flush = _gvn.transform(flush); 2890 set_memory(flush, TypeRawPtr::BOTTOM); 2891 return true; 2892 } 2893 2894 //----------------------------inline_unsafe_writeback0------------------------- 2895 // public native void Unsafe.writeback0(long address) 2896 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) { 2897 if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) { 2898 return false; 2899 } 2900 if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) { 2901 return false; 2902 } 2903 #ifndef PRODUCT 2904 assert(Matcher::has_match_rule(Op_CacheWB), 2905 (is_pre ? "found match rule for CacheWBPreSync but not CacheWB" 2906 : "found match rule for CacheWBPostSync but not CacheWB")); 2907 2908 #endif 2909 null_check_receiver(); // null-check, then ignore 2910 Node *sync; 2911 if (is_pre) { 2912 sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2913 } else { 2914 sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2915 } 2916 sync = _gvn.transform(sync); 2917 set_memory(sync, TypeRawPtr::BOTTOM); 2918 return true; 2919 } 2920 2921 //----------------------------inline_unsafe_allocate--------------------------- 2922 // public native Object Unsafe.allocateInstance(Class<?> cls); 2923 bool LibraryCallKit::inline_unsafe_allocate() { 2924 if (callee()->is_static()) return false; // caller must have the capability! 2925 2926 null_check_receiver(); // null-check, then ignore 2927 Node* cls = null_check(argument(1)); 2928 if (stopped()) return true; 2929 2930 Node* kls = load_klass_from_mirror(cls, false, NULL, 0); 2931 kls = null_check(kls); 2932 if (stopped()) return true; // argument was like int.class 2933 2934 Node* test = NULL; 2935 if (LibraryCallKit::klass_needs_init_guard(kls)) { 2936 // Note: The argument might still be an illegal value like 2937 // Serializable.class or Object[].class. The runtime will handle it. 2938 // But we must make an explicit check for initialization. 2939 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); 2940 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler 2941 // can generate code to load it as unsigned byte. 2942 Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered); 2943 Node* bits = intcon(InstanceKlass::fully_initialized); 2944 test = _gvn.transform(new SubINode(inst, bits)); 2945 // The 'test' is non-zero if we need to take a slow path. 2946 } 2947 2948 Node* obj = new_instance(kls, test); 2949 set_result(obj); 2950 return true; 2951 } 2952 2953 //------------------------inline_native_time_funcs-------------- 2954 // inline code for System.currentTimeMillis() and System.nanoTime() 2955 // these have the same type and signature 2956 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { 2957 const TypeFunc* tf = OptoRuntime::void_long_Type(); 2958 const TypePtr* no_memory_effects = NULL; 2959 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); 2960 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); 2961 #ifdef ASSERT 2962 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); 2963 assert(value_top == top(), "second value must be top"); 2964 #endif 2965 set_result(value); 2966 return true; 2967 } 2968 2969 #ifdef JFR_HAVE_INTRINSICS 2970 2971 /* 2972 * oop -> myklass 2973 * myklass->trace_id |= USED 2974 * return myklass->trace_id & ~0x3 2975 */ 2976 bool LibraryCallKit::inline_native_classID() { 2977 Node* cls = null_check(argument(0), T_OBJECT); 2978 Node* kls = load_klass_from_mirror(cls, false, NULL, 0); 2979 kls = null_check(kls, T_OBJECT); 2980 2981 ByteSize offset = KLASS_TRACE_ID_OFFSET; 2982 Node* insp = basic_plus_adr(kls, in_bytes(offset)); 2983 Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered); 2984 2985 Node* clsused = longcon(0x01l); // set the class bit 2986 Node* orl = _gvn.transform(new OrLNode(tvalue, clsused)); 2987 const TypePtr *adr_type = _gvn.type(insp)->isa_ptr(); 2988 store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered); 2989 2990 #ifdef TRACE_ID_META_BITS 2991 Node* mbits = longcon(~TRACE_ID_META_BITS); 2992 tvalue = _gvn.transform(new AndLNode(tvalue, mbits)); 2993 #endif 2994 #ifdef TRACE_ID_SHIFT 2995 Node* cbits = intcon(TRACE_ID_SHIFT); 2996 tvalue = _gvn.transform(new URShiftLNode(tvalue, cbits)); 2997 #endif 2998 2999 set_result(tvalue); 3000 return true; 3001 3002 } 3003 3004 bool LibraryCallKit::inline_native_getEventWriter() { 3005 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3006 3007 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, 3008 in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); 3009 3010 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 3011 3012 Node* jobj_cmp_null = _gvn.transform( new CmpPNode(jobj, null()) ); 3013 Node* test_jobj_eq_null = _gvn.transform( new BoolNode(jobj_cmp_null, BoolTest::eq) ); 3014 3015 IfNode* iff_jobj_null = 3016 create_and_map_if(control(), test_jobj_eq_null, PROB_MIN, COUNT_UNKNOWN); 3017 3018 enum { _normal_path = 1, 3019 _null_path = 2, 3020 PATH_LIMIT }; 3021 3022 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3023 PhiNode* result_val = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); 3024 3025 Node* jobj_is_null = _gvn.transform(new IfTrueNode(iff_jobj_null)); 3026 result_rgn->init_req(_null_path, jobj_is_null); 3027 result_val->init_req(_null_path, null()); 3028 3029 Node* jobj_is_not_null = _gvn.transform(new IfFalseNode(iff_jobj_null)); 3030 set_control(jobj_is_not_null); 3031 Node* res = access_load(jobj, TypeInstPtr::NOTNULL, T_OBJECT, 3032 IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); 3033 result_rgn->init_req(_normal_path, control()); 3034 result_val->init_req(_normal_path, res); 3035 3036 set_result(result_rgn, result_val); 3037 3038 return true; 3039 } 3040 3041 #endif // JFR_HAVE_INTRINSICS 3042 3043 //------------------------inline_native_currentThread------------------ 3044 bool LibraryCallKit::inline_native_currentThread() { 3045 Node* junk = NULL; 3046 set_result(generate_current_thread(junk)); 3047 return true; 3048 } 3049 3050 //---------------------------load_mirror_from_klass---------------------------- 3051 // Given a klass oop, load its java mirror (a java.lang.Class oop). 3052 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) { 3053 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset())); 3054 Node* load = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 3055 // mirror = ((OopHandle)mirror)->resolve(); 3056 return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE); 3057 } 3058 3059 //-----------------------load_klass_from_mirror_common------------------------- 3060 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. 3061 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), 3062 // and branch to the given path on the region. 3063 // If never_see_null, take an uncommon trap on null, so we can optimistically 3064 // compile for the non-null case. 3065 // If the region is NULL, force never_see_null = true. 3066 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, 3067 bool never_see_null, 3068 RegionNode* region, 3069 int null_path, 3070 int offset) { 3071 if (region == NULL) never_see_null = true; 3072 Node* p = basic_plus_adr(mirror, offset); 3073 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL; 3074 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); 3075 Node* null_ctl = top(); 3076 kls = null_check_oop(kls, &null_ctl, never_see_null); 3077 if (region != NULL) { 3078 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). 3079 region->init_req(null_path, null_ctl); 3080 } else { 3081 assert(null_ctl == top(), "no loose ends"); 3082 } 3083 return kls; 3084 } 3085 3086 //--------------------(inline_native_Class_query helpers)--------------------- 3087 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER. 3088 // Fall through if (mods & mask) == bits, take the guard otherwise. 3089 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { 3090 // Branch around if the given klass has the given modifier bit set. 3091 // Like generate_guard, adds a new path onto the region. 3092 Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 3093 Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered); 3094 Node* mask = intcon(modifier_mask); 3095 Node* bits = intcon(modifier_bits); 3096 Node* mbit = _gvn.transform(new AndINode(mods, mask)); 3097 Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); 3098 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 3099 return generate_fair_guard(bol, region); 3100 } 3101 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { 3102 return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region); 3103 } 3104 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) { 3105 return generate_access_flags_guard(kls, JVM_ACC_IS_HIDDEN_CLASS, 0, region); 3106 } 3107 3108 //-------------------------inline_native_Class_query------------------- 3109 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { 3110 const Type* return_type = TypeInt::BOOL; 3111 Node* prim_return_value = top(); // what happens if it's a primitive class? 3112 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3113 bool expect_prim = false; // most of these guys expect to work on refs 3114 3115 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; 3116 3117 Node* mirror = argument(0); 3118 Node* obj = top(); 3119 3120 switch (id) { 3121 case vmIntrinsics::_isInstance: 3122 // nothing is an instance of a primitive type 3123 prim_return_value = intcon(0); 3124 obj = argument(1); 3125 break; 3126 case vmIntrinsics::_getModifiers: 3127 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3128 assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line"); 3129 return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin); 3130 break; 3131 case vmIntrinsics::_isInterface: 3132 prim_return_value = intcon(0); 3133 break; 3134 case vmIntrinsics::_isArray: 3135 prim_return_value = intcon(0); 3136 expect_prim = true; // cf. ObjectStreamClass.getClassSignature 3137 break; 3138 case vmIntrinsics::_isPrimitive: 3139 prim_return_value = intcon(1); 3140 expect_prim = true; // obviously 3141 break; 3142 case vmIntrinsics::_isHidden: 3143 prim_return_value = intcon(0); 3144 break; 3145 case vmIntrinsics::_getSuperclass: 3146 prim_return_value = null(); 3147 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); 3148 break; 3149 case vmIntrinsics::_getClassAccessFlags: 3150 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3151 return_type = TypeInt::INT; // not bool! 6297094 3152 break; 3153 default: 3154 fatal_unexpected_iid(id); 3155 break; 3156 } 3157 3158 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3159 if (mirror_con == NULL) return false; // cannot happen? 3160 3161 #ifndef PRODUCT 3162 if (C->print_intrinsics() || C->print_inlining()) { 3163 ciType* k = mirror_con->java_mirror_type(); 3164 if (k) { 3165 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); 3166 k->print_name(); 3167 tty->cr(); 3168 } 3169 } 3170 #endif 3171 3172 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). 3173 RegionNode* region = new RegionNode(PATH_LIMIT); 3174 record_for_igvn(region); 3175 PhiNode* phi = new PhiNode(region, return_type); 3176 3177 // The mirror will never be null of Reflection.getClassAccessFlags, however 3178 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE 3179 // if it is. See bug 4774291. 3180 3181 // For Reflection.getClassAccessFlags(), the null check occurs in 3182 // the wrong place; see inline_unsafe_access(), above, for a similar 3183 // situation. 3184 mirror = null_check(mirror); 3185 // If mirror or obj is dead, only null-path is taken. 3186 if (stopped()) return true; 3187 3188 if (expect_prim) never_see_null = false; // expect nulls (meaning prims) 3189 3190 // Now load the mirror's klass metaobject, and null-check it. 3191 // Side-effects region with the control path if the klass is null. 3192 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); 3193 // If kls is null, we have a primitive mirror. 3194 phi->init_req(_prim_path, prim_return_value); 3195 if (stopped()) { set_result(region, phi); return true; } 3196 bool safe_for_replace = (region->in(_prim_path) == top()); 3197 3198 Node* p; // handy temp 3199 Node* null_ctl; 3200 3201 // Now that we have the non-null klass, we can perform the real query. 3202 // For constant classes, the query will constant-fold in LoadNode::Value. 3203 Node* query_value = top(); 3204 switch (id) { 3205 case vmIntrinsics::_isInstance: 3206 // nothing is an instance of a primitive type 3207 query_value = gen_instanceof(obj, kls, safe_for_replace); 3208 break; 3209 3210 case vmIntrinsics::_getModifiers: 3211 p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset())); 3212 query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered); 3213 break; 3214 3215 case vmIntrinsics::_isInterface: 3216 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 3217 if (generate_interface_guard(kls, region) != NULL) 3218 // A guard was added. If the guard is taken, it was an interface. 3219 phi->add_req(intcon(1)); 3220 // If we fall through, it's a plain class. 3221 query_value = intcon(0); 3222 break; 3223 3224 case vmIntrinsics::_isArray: 3225 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.) 3226 if (generate_array_guard(kls, region) != NULL) 3227 // A guard was added. If the guard is taken, it was an array. 3228 phi->add_req(intcon(1)); 3229 // If we fall through, it's a plain class. 3230 query_value = intcon(0); 3231 break; 3232 3233 case vmIntrinsics::_isPrimitive: 3234 query_value = intcon(0); // "normal" path produces false 3235 break; 3236 3237 case vmIntrinsics::_isHidden: 3238 // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.) 3239 if (generate_hidden_class_guard(kls, region) != NULL) 3240 // A guard was added. If the guard is taken, it was an hidden class. 3241 phi->add_req(intcon(1)); 3242 // If we fall through, it's a plain class. 3243 query_value = intcon(0); 3244 break; 3245 3246 3247 case vmIntrinsics::_getSuperclass: 3248 // The rules here are somewhat unfortunate, but we can still do better 3249 // with random logic than with a JNI call. 3250 // Interfaces store null or Object as _super, but must report null. 3251 // Arrays store an intermediate super as _super, but must report Object. 3252 // Other types can report the actual _super. 3253 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 3254 if (generate_interface_guard(kls, region) != NULL) 3255 // A guard was added. If the guard is taken, it was an interface. 3256 phi->add_req(null()); 3257 if (generate_array_guard(kls, region) != NULL) 3258 // A guard was added. If the guard is taken, it was an array. 3259 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); 3260 // If we fall through, it's a plain class. Get its _super. 3261 p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); 3262 kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL)); 3263 null_ctl = top(); 3264 kls = null_check_oop(kls, &null_ctl); 3265 if (null_ctl != top()) { 3266 // If the guard is taken, Object.superClass is null (both klass and mirror). 3267 region->add_req(null_ctl); 3268 phi ->add_req(null()); 3269 } 3270 if (!stopped()) { 3271 query_value = load_mirror_from_klass(kls); 3272 } 3273 break; 3274 3275 case vmIntrinsics::_getClassAccessFlags: 3276 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 3277 query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered); 3278 break; 3279 3280 default: 3281 fatal_unexpected_iid(id); 3282 break; 3283 } 3284 3285 // Fall-through is the normal case of a query to a real class. 3286 phi->init_req(1, query_value); 3287 region->init_req(1, control()); 3288 3289 C->set_has_split_ifs(true); // Has chance for split-if optimization 3290 set_result(region, phi); 3291 return true; 3292 } 3293 3294 //-------------------------inline_Class_cast------------------- 3295 bool LibraryCallKit::inline_Class_cast() { 3296 Node* mirror = argument(0); // Class 3297 Node* obj = argument(1); 3298 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3299 if (mirror_con == NULL) { 3300 return false; // dead path (mirror->is_top()). 3301 } 3302 if (obj == NULL || obj->is_top()) { 3303 return false; // dead path 3304 } 3305 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); 3306 3307 // First, see if Class.cast() can be folded statically. 3308 // java_mirror_type() returns non-null for compile-time Class constants. 3309 ciType* tm = mirror_con->java_mirror_type(); 3310 if (tm != NULL && tm->is_klass() && 3311 tp != NULL && tp->klass() != NULL) { 3312 if (!tp->klass()->is_loaded()) { 3313 // Don't use intrinsic when class is not loaded. 3314 return false; 3315 } else { 3316 int static_res = C->static_subtype_check(tm->as_klass(), tp->klass()); 3317 if (static_res == Compile::SSC_always_true) { 3318 // isInstance() is true - fold the code. 3319 set_result(obj); 3320 return true; 3321 } else if (static_res == Compile::SSC_always_false) { 3322 // Don't use intrinsic, have to throw ClassCastException. 3323 // If the reference is null, the non-intrinsic bytecode will 3324 // be optimized appropriately. 3325 return false; 3326 } 3327 } 3328 } 3329 3330 // Bailout intrinsic and do normal inlining if exception path is frequent. 3331 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 3332 return false; 3333 } 3334 3335 // Generate dynamic checks. 3336 // Class.cast() is java implementation of _checkcast bytecode. 3337 // Do checkcast (Parse::do_checkcast()) optimizations here. 3338 3339 mirror = null_check(mirror); 3340 // If mirror is dead, only null-path is taken. 3341 if (stopped()) { 3342 return true; 3343 } 3344 3345 // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive). 3346 enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT }; 3347 RegionNode* region = new RegionNode(PATH_LIMIT); 3348 record_for_igvn(region); 3349 3350 // Now load the mirror's klass metaobject, and null-check it. 3351 // If kls is null, we have a primitive mirror and 3352 // nothing is an instance of a primitive type. 3353 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); 3354 3355 Node* res = top(); 3356 if (!stopped()) { 3357 Node* bad_type_ctrl = top(); 3358 // Do checkcast optimizations. 3359 res = gen_checkcast(obj, kls, &bad_type_ctrl); 3360 region->init_req(_bad_type_path, bad_type_ctrl); 3361 } 3362 if (region->in(_prim_path) != top() || 3363 region->in(_bad_type_path) != top()) { 3364 // Let Interpreter throw ClassCastException. 3365 PreserveJVMState pjvms(this); 3366 set_control(_gvn.transform(region)); 3367 uncommon_trap(Deoptimization::Reason_intrinsic, 3368 Deoptimization::Action_maybe_recompile); 3369 } 3370 if (!stopped()) { 3371 set_result(res); 3372 } 3373 return true; 3374 } 3375 3376 3377 //--------------------------inline_native_subtype_check------------------------ 3378 // This intrinsic takes the JNI calls out of the heart of 3379 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. 3380 bool LibraryCallKit::inline_native_subtype_check() { 3381 // Pull both arguments off the stack. 3382 Node* args[2]; // two java.lang.Class mirrors: superc, subc 3383 args[0] = argument(0); 3384 args[1] = argument(1); 3385 Node* klasses[2]; // corresponding Klasses: superk, subk 3386 klasses[0] = klasses[1] = top(); 3387 3388 enum { 3389 // A full decision tree on {superc is prim, subc is prim}: 3390 _prim_0_path = 1, // {P,N} => false 3391 // {P,P} & superc!=subc => false 3392 _prim_same_path, // {P,P} & superc==subc => true 3393 _prim_1_path, // {N,P} => false 3394 _ref_subtype_path, // {N,N} & subtype check wins => true 3395 _both_ref_path, // {N,N} & subtype check loses => false 3396 PATH_LIMIT 3397 }; 3398 3399 RegionNode* region = new RegionNode(PATH_LIMIT); 3400 Node* phi = new PhiNode(region, TypeInt::BOOL); 3401 record_for_igvn(region); 3402 3403 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads 3404 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL; 3405 int class_klass_offset = java_lang_Class::klass_offset(); 3406 3407 // First null-check both mirrors and load each mirror's klass metaobject. 3408 int which_arg; 3409 for (which_arg = 0; which_arg <= 1; which_arg++) { 3410 Node* arg = args[which_arg]; 3411 arg = null_check(arg); 3412 if (stopped()) break; 3413 args[which_arg] = arg; 3414 3415 Node* p = basic_plus_adr(arg, class_klass_offset); 3416 Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type); 3417 klasses[which_arg] = _gvn.transform(kls); 3418 } 3419 3420 // Having loaded both klasses, test each for null. 3421 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3422 for (which_arg = 0; which_arg <= 1; which_arg++) { 3423 Node* kls = klasses[which_arg]; 3424 Node* null_ctl = top(); 3425 kls = null_check_oop(kls, &null_ctl, never_see_null); 3426 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path); 3427 region->init_req(prim_path, null_ctl); 3428 if (stopped()) break; 3429 klasses[which_arg] = kls; 3430 } 3431 3432 if (!stopped()) { 3433 // now we have two reference types, in klasses[0..1] 3434 Node* subk = klasses[1]; // the argument to isAssignableFrom 3435 Node* superk = klasses[0]; // the receiver 3436 region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); 3437 // now we have a successful reference subtype check 3438 region->set_req(_ref_subtype_path, control()); 3439 } 3440 3441 // If both operands are primitive (both klasses null), then 3442 // we must return true when they are identical primitives. 3443 // It is convenient to test this after the first null klass check. 3444 set_control(region->in(_prim_0_path)); // go back to first null check 3445 if (!stopped()) { 3446 // Since superc is primitive, make a guard for the superc==subc case. 3447 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); 3448 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); 3449 generate_guard(bol_eq, region, PROB_FAIR); 3450 if (region->req() == PATH_LIMIT+1) { 3451 // A guard was added. If the added guard is taken, superc==subc. 3452 region->swap_edges(PATH_LIMIT, _prim_same_path); 3453 region->del_req(PATH_LIMIT); 3454 } 3455 region->set_req(_prim_0_path, control()); // Not equal after all. 3456 } 3457 3458 // these are the only paths that produce 'true': 3459 phi->set_req(_prim_same_path, intcon(1)); 3460 phi->set_req(_ref_subtype_path, intcon(1)); 3461 3462 // pull together the cases: 3463 assert(region->req() == PATH_LIMIT, "sane region"); 3464 for (uint i = 1; i < region->req(); i++) { 3465 Node* ctl = region->in(i); 3466 if (ctl == NULL || ctl == top()) { 3467 region->set_req(i, top()); 3468 phi ->set_req(i, top()); 3469 } else if (phi->in(i) == NULL) { 3470 phi->set_req(i, intcon(0)); // all other paths produce 'false' 3471 } 3472 } 3473 3474 set_control(_gvn.transform(region)); 3475 set_result(_gvn.transform(phi)); 3476 return true; 3477 } 3478 3479 //---------------------generate_array_guard_common------------------------ 3480 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, 3481 bool obj_array, bool not_array) { 3482 3483 if (stopped()) { 3484 return NULL; 3485 } 3486 3487 // If obj_array/non_array==false/false: 3488 // Branch around if the given klass is in fact an array (either obj or prim). 3489 // If obj_array/non_array==false/true: 3490 // Branch around if the given klass is not an array klass of any kind. 3491 // If obj_array/non_array==true/true: 3492 // Branch around if the kls is not an oop array (kls is int[], String, etc.) 3493 // If obj_array/non_array==true/false: 3494 // Branch around if the kls is an oop array (Object[] or subtype) 3495 // 3496 // Like generate_guard, adds a new path onto the region. 3497 jint layout_con = 0; 3498 Node* layout_val = get_layout_helper(kls, layout_con); 3499 if (layout_val == NULL) { 3500 bool query = (obj_array 3501 ? Klass::layout_helper_is_objArray(layout_con) 3502 : Klass::layout_helper_is_array(layout_con)); 3503 if (query == not_array) { 3504 return NULL; // never a branch 3505 } else { // always a branch 3506 Node* always_branch = control(); 3507 if (region != NULL) 3508 region->add_req(always_branch); 3509 set_control(top()); 3510 return always_branch; 3511 } 3512 } 3513 // Now test the correct condition. 3514 jint nval = (obj_array 3515 ? (jint)(Klass::_lh_array_tag_type_value 3516 << Klass::_lh_array_tag_shift) 3517 : Klass::_lh_neutral_value); 3518 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); 3519 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array 3520 // invert the test if we are looking for a non-array 3521 if (not_array) btest = BoolTest(btest).negate(); 3522 Node* bol = _gvn.transform(new BoolNode(cmp, btest)); 3523 return generate_fair_guard(bol, region); 3524 } 3525 3526 3527 //-----------------------inline_native_newArray-------------------------- 3528 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length); 3529 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); 3530 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { 3531 Node* mirror; 3532 Node* count_val; 3533 if (uninitialized) { 3534 mirror = argument(1); 3535 count_val = argument(2); 3536 } else { 3537 mirror = argument(0); 3538 count_val = argument(1); 3539 } 3540 3541 mirror = null_check(mirror); 3542 // If mirror or obj is dead, only null-path is taken. 3543 if (stopped()) return true; 3544 3545 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; 3546 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 3547 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 3548 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 3549 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 3550 3551 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3552 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, 3553 result_reg, _slow_path); 3554 Node* normal_ctl = control(); 3555 Node* no_array_ctl = result_reg->in(_slow_path); 3556 3557 // Generate code for the slow case. We make a call to newArray(). 3558 set_control(no_array_ctl); 3559 if (!stopped()) { 3560 // Either the input type is void.class, or else the 3561 // array klass has not yet been cached. Either the 3562 // ensuing call will throw an exception, or else it 3563 // will cache the array klass for next time. 3564 PreserveJVMState pjvms(this); 3565 CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray); 3566 Node* slow_result = set_results_for_java_call(slow_call); 3567 // this->control() comes from set_results_for_java_call 3568 result_reg->set_req(_slow_path, control()); 3569 result_val->set_req(_slow_path, slow_result); 3570 result_io ->set_req(_slow_path, i_o()); 3571 result_mem->set_req(_slow_path, reset_memory()); 3572 } 3573 3574 set_control(normal_ctl); 3575 if (!stopped()) { 3576 // Normal case: The array type has been cached in the java.lang.Class. 3577 // The following call works fine even if the array type is polymorphic. 3578 // It could be a dynamic mix of int[], boolean[], Object[], etc. 3579 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push 3580 result_reg->init_req(_normal_path, control()); 3581 result_val->init_req(_normal_path, obj); 3582 result_io ->init_req(_normal_path, i_o()); 3583 result_mem->init_req(_normal_path, reset_memory()); 3584 3585 if (uninitialized) { 3586 // Mark the allocation so that zeroing is skipped 3587 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn); 3588 alloc->maybe_set_complete(&_gvn); 3589 } 3590 } 3591 3592 // Return the combined state. 3593 set_i_o( _gvn.transform(result_io) ); 3594 set_all_memory( _gvn.transform(result_mem)); 3595 3596 C->set_has_split_ifs(true); // Has chance for split-if optimization 3597 set_result(result_reg, result_val); 3598 return true; 3599 } 3600 3601 //----------------------inline_native_getLength-------------------------- 3602 // public static native int java.lang.reflect.Array.getLength(Object array); 3603 bool LibraryCallKit::inline_native_getLength() { 3604 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 3605 3606 Node* array = null_check(argument(0)); 3607 // If array is dead, only null-path is taken. 3608 if (stopped()) return true; 3609 3610 // Deoptimize if it is a non-array. 3611 Node* non_array = generate_non_array_guard(load_object_klass(array), NULL); 3612 3613 if (non_array != NULL) { 3614 PreserveJVMState pjvms(this); 3615 set_control(non_array); 3616 uncommon_trap(Deoptimization::Reason_intrinsic, 3617 Deoptimization::Action_maybe_recompile); 3618 } 3619 3620 // If control is dead, only non-array-path is taken. 3621 if (stopped()) return true; 3622 3623 // The works fine even if the array type is polymorphic. 3624 // It could be a dynamic mix of int[], boolean[], Object[], etc. 3625 Node* result = load_array_length(array); 3626 3627 C->set_has_split_ifs(true); // Has chance for split-if optimization 3628 set_result(result); 3629 return true; 3630 } 3631 3632 //------------------------inline_array_copyOf---------------------------- 3633 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); 3634 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); 3635 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { 3636 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 3637 3638 // Get the arguments. 3639 Node* original = argument(0); 3640 Node* start = is_copyOfRange? argument(1): intcon(0); 3641 Node* end = is_copyOfRange? argument(2): argument(1); 3642 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); 3643 3644 Node* newcopy = NULL; 3645 3646 // Set the original stack and the reexecute bit for the interpreter to reexecute 3647 // the bytecode that invokes Arrays.copyOf if deoptimization happens. 3648 { PreserveReexecuteState preexecs(this); 3649 jvms()->set_should_reexecute(true); 3650 3651 array_type_mirror = null_check(array_type_mirror); 3652 original = null_check(original); 3653 3654 // Check if a null path was taken unconditionally. 3655 if (stopped()) return true; 3656 3657 Node* orig_length = load_array_length(original); 3658 3659 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0); 3660 klass_node = null_check(klass_node); 3661 3662 RegionNode* bailout = new RegionNode(1); 3663 record_for_igvn(bailout); 3664 3665 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. 3666 // Bail out if that is so. 3667 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout); 3668 if (not_objArray != NULL) { 3669 // Improve the klass node's type from the new optimistic assumption: 3670 ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); 3671 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); 3672 Node* cast = new CastPPNode(klass_node, akls); 3673 cast->init_req(0, control()); 3674 klass_node = _gvn.transform(cast); 3675 } 3676 3677 // Bail out if either start or end is negative. 3678 generate_negative_guard(start, bailout, &start); 3679 generate_negative_guard(end, bailout, &end); 3680 3681 Node* length = end; 3682 if (_gvn.type(start) != TypeInt::ZERO) { 3683 length = _gvn.transform(new SubINode(end, start)); 3684 } 3685 3686 // Bail out if length is negative. 3687 // Without this the new_array would throw 3688 // NegativeArraySizeException but IllegalArgumentException is what 3689 // should be thrown 3690 generate_negative_guard(length, bailout, &length); 3691 3692 if (bailout->req() > 1) { 3693 PreserveJVMState pjvms(this); 3694 set_control(_gvn.transform(bailout)); 3695 uncommon_trap(Deoptimization::Reason_intrinsic, 3696 Deoptimization::Action_maybe_recompile); 3697 } 3698 3699 if (!stopped()) { 3700 // How many elements will we copy from the original? 3701 // The answer is MinI(orig_length - start, length). 3702 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); 3703 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length); 3704 3705 // Generate a direct call to the right arraycopy function(s). 3706 // We know the copy is disjoint but we might not know if the 3707 // oop stores need checking. 3708 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). 3709 // This will fail a store-check if x contains any non-nulls. 3710 3711 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to 3712 // loads/stores but it is legal only if we're sure the 3713 // Arrays.copyOf would succeed. So we need all input arguments 3714 // to the copyOf to be validated, including that the copy to the 3715 // new array won't trigger an ArrayStoreException. That subtype 3716 // check can be optimized if we know something on the type of 3717 // the input array from type speculation. 3718 if (_gvn.type(klass_node)->singleton()) { 3719 ciKlass* subk = _gvn.type(load_object_klass(original))->is_klassptr()->klass(); 3720 ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass(); 3721 3722 int test = C->static_subtype_check(superk, subk); 3723 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { 3724 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); 3725 if (t_original->speculative_type() != NULL) { 3726 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); 3727 } 3728 } 3729 } 3730 3731 bool validated = false; 3732 // Reason_class_check rather than Reason_intrinsic because we 3733 // want to intrinsify even if this traps. 3734 if (!too_many_traps(Deoptimization::Reason_class_check)) { 3735 Node* not_subtype_ctrl = gen_subtype_check(original, klass_node); 3736 3737 if (not_subtype_ctrl != top()) { 3738 PreserveJVMState pjvms(this); 3739 set_control(not_subtype_ctrl); 3740 uncommon_trap(Deoptimization::Reason_class_check, 3741 Deoptimization::Action_make_not_entrant); 3742 assert(stopped(), "Should be stopped"); 3743 } 3744 validated = true; 3745 } 3746 3747 if (!stopped()) { 3748 newcopy = new_array(klass_node, length, 0); // no arguments to push 3749 3750 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false, 3751 load_object_klass(original), klass_node); 3752 if (!is_copyOfRange) { 3753 ac->set_copyof(validated); 3754 } else { 3755 ac->set_copyofrange(validated); 3756 } 3757 Node* n = _gvn.transform(ac); 3758 if (n == ac) { 3759 ac->connect_outputs(this); 3760 } else { 3761 assert(validated, "shouldn't transform if all arguments not validated"); 3762 set_all_memory(n); 3763 } 3764 } 3765 } 3766 } // original reexecute is set back here 3767 3768 C->set_has_split_ifs(true); // Has chance for split-if optimization 3769 if (!stopped()) { 3770 set_result(newcopy); 3771 } 3772 return true; 3773 } 3774 3775 3776 //----------------------generate_virtual_guard--------------------------- 3777 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. 3778 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, 3779 RegionNode* slow_region) { 3780 ciMethod* method = callee(); 3781 int vtable_index = method->vtable_index(); 3782 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 3783 "bad index %d", vtable_index); 3784 // Get the Method* out of the appropriate vtable entry. 3785 int entry_offset = in_bytes(Klass::vtable_start_offset()) + 3786 vtable_index*vtableEntry::size_in_bytes() + 3787 vtableEntry::method_offset_in_bytes(); 3788 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); 3789 Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); 3790 3791 // Compare the target method with the expected method (e.g., Object.hashCode). 3792 const TypePtr* native_call_addr = TypeMetadataPtr::make(method); 3793 3794 Node* native_call = makecon(native_call_addr); 3795 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); 3796 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); 3797 3798 return generate_slow_guard(test_native, slow_region); 3799 } 3800 3801 //-----------------------generate_method_call---------------------------- 3802 // Use generate_method_call to make a slow-call to the real 3803 // method if the fast path fails. An alternative would be to 3804 // use a stub like OptoRuntime::slow_arraycopy_Java. 3805 // This only works for expanding the current library call, 3806 // not another intrinsic. (E.g., don't use this for making an 3807 // arraycopy call inside of the copyOf intrinsic.) 3808 CallJavaNode* 3809 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) { 3810 // When compiling the intrinsic method itself, do not use this technique. 3811 guarantee(callee() != C->method(), "cannot make slow-call to self"); 3812 3813 ciMethod* method = callee(); 3814 // ensure the JVMS we have will be correct for this call 3815 guarantee(method_id == method->intrinsic_id(), "must match"); 3816 3817 const TypeFunc* tf = TypeFunc::make(method); 3818 CallJavaNode* slow_call; 3819 if (is_static) { 3820 assert(!is_virtual, ""); 3821 slow_call = new CallStaticJavaNode(C, tf, 3822 SharedRuntime::get_resolve_static_call_stub(), 3823 method, bci()); 3824 } else if (is_virtual) { 3825 null_check_receiver(); 3826 int vtable_index = Method::invalid_vtable_index; 3827 if (UseInlineCaches) { 3828 // Suppress the vtable call 3829 } else { 3830 // hashCode and clone are not a miranda methods, 3831 // so the vtable index is fixed. 3832 // No need to use the linkResolver to get it. 3833 vtable_index = method->vtable_index(); 3834 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 3835 "bad index %d", vtable_index); 3836 } 3837 slow_call = new CallDynamicJavaNode(tf, 3838 SharedRuntime::get_resolve_virtual_call_stub(), 3839 method, vtable_index, bci()); 3840 } else { // neither virtual nor static: opt_virtual 3841 null_check_receiver(); 3842 slow_call = new CallStaticJavaNode(C, tf, 3843 SharedRuntime::get_resolve_opt_virtual_call_stub(), 3844 method, bci()); 3845 slow_call->set_optimized_virtual(true); 3846 } 3847 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { 3848 // To be able to issue a direct call (optimized virtual or virtual) 3849 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information 3850 // about the method being invoked should be attached to the call site to 3851 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). 3852 slow_call->set_override_symbolic_info(true); 3853 } 3854 set_arguments_for_java_call(slow_call); 3855 set_edges_for_java_call(slow_call); 3856 return slow_call; 3857 } 3858 3859 3860 /** 3861 * Build special case code for calls to hashCode on an object. This call may 3862 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate 3863 * slightly different code. 3864 */ 3865 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { 3866 assert(is_static == callee()->is_static(), "correct intrinsic selection"); 3867 assert(!(is_virtual && is_static), "either virtual, special, or static"); 3868 3869 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; 3870 3871 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 3872 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); 3873 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 3874 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 3875 Node* obj = NULL; 3876 if (!is_static) { 3877 // Check for hashing null object 3878 obj = null_check_receiver(); 3879 if (stopped()) return true; // unconditionally null 3880 result_reg->init_req(_null_path, top()); 3881 result_val->init_req(_null_path, top()); 3882 } else { 3883 // Do a null check, and return zero if null. 3884 // System.identityHashCode(null) == 0 3885 obj = argument(0); 3886 Node* null_ctl = top(); 3887 obj = null_check_oop(obj, &null_ctl); 3888 result_reg->init_req(_null_path, null_ctl); 3889 result_val->init_req(_null_path, _gvn.intcon(0)); 3890 } 3891 3892 // Unconditionally null? Then return right away. 3893 if (stopped()) { 3894 set_control( result_reg->in(_null_path)); 3895 if (!stopped()) 3896 set_result(result_val->in(_null_path)); 3897 return true; 3898 } 3899 3900 // We only go to the fast case code if we pass a number of guards. The 3901 // paths which do not pass are accumulated in the slow_region. 3902 RegionNode* slow_region = new RegionNode(1); 3903 record_for_igvn(slow_region); 3904 3905 // If this is a virtual call, we generate a funny guard. We pull out 3906 // the vtable entry corresponding to hashCode() from the target object. 3907 // If the target method which we are calling happens to be the native 3908 // Object hashCode() method, we pass the guard. We do not need this 3909 // guard for non-virtual calls -- the caller is known to be the native 3910 // Object hashCode(). 3911 if (is_virtual) { 3912 // After null check, get the object's klass. 3913 Node* obj_klass = load_object_klass(obj); 3914 generate_virtual_guard(obj_klass, slow_region); 3915 } 3916 3917 // Get the header out of the object, use LoadMarkNode when available 3918 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 3919 // The control of the load must be NULL. Otherwise, the load can move before 3920 // the null check after castPP removal. 3921 Node* no_ctrl = NULL; 3922 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 3923 3924 // Test the header to see if it is unlocked. 3925 Node *lock_mask = _gvn.MakeConX(markWord::biased_lock_mask_in_place); 3926 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); 3927 Node *unlocked_val = _gvn.MakeConX(markWord::unlocked_value); 3928 Node *chk_unlocked = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val)); 3929 Node *test_unlocked = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne)); 3930 3931 generate_slow_guard(test_unlocked, slow_region); 3932 3933 // Get the hash value and check to see that it has been properly assigned. 3934 // We depend on hash_mask being at most 32 bits and avoid the use of 3935 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit 3936 // vm: see markWord.hpp. 3937 Node *hash_mask = _gvn.intcon(markWord::hash_mask); 3938 Node *hash_shift = _gvn.intcon(markWord::hash_shift); 3939 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); 3940 // This hack lets the hash bits live anywhere in the mark object now, as long 3941 // as the shift drops the relevant bits into the low 32 bits. Note that 3942 // Java spec says that HashCode is an int so there's no point in capturing 3943 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). 3944 hshifted_header = ConvX2I(hshifted_header); 3945 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); 3946 3947 Node *no_hash_val = _gvn.intcon(markWord::no_hash); 3948 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); 3949 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); 3950 3951 generate_slow_guard(test_assigned, slow_region); 3952 3953 Node* init_mem = reset_memory(); 3954 // fill in the rest of the null path: 3955 result_io ->init_req(_null_path, i_o()); 3956 result_mem->init_req(_null_path, init_mem); 3957 3958 result_val->init_req(_fast_path, hash_val); 3959 result_reg->init_req(_fast_path, control()); 3960 result_io ->init_req(_fast_path, i_o()); 3961 result_mem->init_req(_fast_path, init_mem); 3962 3963 // Generate code for the slow case. We make a call to hashCode(). 3964 set_control(_gvn.transform(slow_region)); 3965 if (!stopped()) { 3966 // No need for PreserveJVMState, because we're using up the present state. 3967 set_all_memory(init_mem); 3968 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; 3969 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static); 3970 Node* slow_result = set_results_for_java_call(slow_call); 3971 // this->control() comes from set_results_for_java_call 3972 result_reg->init_req(_slow_path, control()); 3973 result_val->init_req(_slow_path, slow_result); 3974 result_io ->set_req(_slow_path, i_o()); 3975 result_mem ->set_req(_slow_path, reset_memory()); 3976 } 3977 3978 // Return the combined state. 3979 set_i_o( _gvn.transform(result_io) ); 3980 set_all_memory( _gvn.transform(result_mem)); 3981 3982 set_result(result_reg, result_val); 3983 return true; 3984 } 3985 3986 //---------------------------inline_native_getClass---------------------------- 3987 // public final native Class<?> java.lang.Object.getClass(); 3988 // 3989 // Build special case code for calls to getClass on an object. 3990 bool LibraryCallKit::inline_native_getClass() { 3991 Node* obj = null_check_receiver(); 3992 if (stopped()) return true; 3993 set_result(load_mirror_from_klass(load_object_klass(obj))); 3994 return true; 3995 } 3996 3997 //-----------------inline_native_Reflection_getCallerClass--------------------- 3998 // public static native Class<?> sun.reflect.Reflection.getCallerClass(); 3999 // 4000 // In the presence of deep enough inlining, getCallerClass() becomes a no-op. 4001 // 4002 // NOTE: This code must perform the same logic as JVM_GetCallerClass 4003 // in that it must skip particular security frames and checks for 4004 // caller sensitive methods. 4005 bool LibraryCallKit::inline_native_Reflection_getCallerClass() { 4006 #ifndef PRODUCT 4007 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4008 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); 4009 } 4010 #endif 4011 4012 if (!jvms()->has_method()) { 4013 #ifndef PRODUCT 4014 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4015 tty->print_cr(" Bailing out because intrinsic was inlined at top level"); 4016 } 4017 #endif 4018 return false; 4019 } 4020 4021 // Walk back up the JVM state to find the caller at the required 4022 // depth. 4023 JVMState* caller_jvms = jvms(); 4024 4025 // Cf. JVM_GetCallerClass 4026 // NOTE: Start the loop at depth 1 because the current JVM state does 4027 // not include the Reflection.getCallerClass() frame. 4028 for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) { 4029 ciMethod* m = caller_jvms->method(); 4030 switch (n) { 4031 case 0: 4032 fatal("current JVM state does not include the Reflection.getCallerClass frame"); 4033 break; 4034 case 1: 4035 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). 4036 if (!m->caller_sensitive()) { 4037 #ifndef PRODUCT 4038 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4039 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); 4040 } 4041 #endif 4042 return false; // bail-out; let JVM_GetCallerClass do the work 4043 } 4044 break; 4045 default: 4046 if (!m->is_ignored_by_security_stack_walk()) { 4047 // We have reached the desired frame; return the holder class. 4048 // Acquire method holder as java.lang.Class and push as constant. 4049 ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); 4050 ciInstance* caller_mirror = caller_klass->java_mirror(); 4051 set_result(makecon(TypeInstPtr::make(caller_mirror))); 4052 4053 #ifndef PRODUCT 4054 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4055 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); 4056 tty->print_cr(" JVM state at this point:"); 4057 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4058 ciMethod* m = jvms()->of_depth(i)->method(); 4059 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4060 } 4061 } 4062 #endif 4063 return true; 4064 } 4065 break; 4066 } 4067 } 4068 4069 #ifndef PRODUCT 4070 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4071 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); 4072 tty->print_cr(" JVM state at this point:"); 4073 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4074 ciMethod* m = jvms()->of_depth(i)->method(); 4075 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4076 } 4077 } 4078 #endif 4079 4080 return false; // bail-out; let JVM_GetCallerClass do the work 4081 } 4082 4083 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { 4084 Node* arg = argument(0); 4085 Node* result = NULL; 4086 4087 switch (id) { 4088 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; 4089 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; 4090 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; 4091 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; 4092 4093 case vmIntrinsics::_doubleToLongBits: { 4094 // two paths (plus control) merge in a wood 4095 RegionNode *r = new RegionNode(3); 4096 Node *phi = new PhiNode(r, TypeLong::LONG); 4097 4098 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); 4099 // Build the boolean node 4100 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4101 4102 // Branch either way. 4103 // NaN case is less traveled, which makes all the difference. 4104 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4105 Node *opt_isnan = _gvn.transform(ifisnan); 4106 assert( opt_isnan->is_If(), "Expect an IfNode"); 4107 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4108 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4109 4110 set_control(iftrue); 4111 4112 static const jlong nan_bits = CONST64(0x7ff8000000000000); 4113 Node *slow_result = longcon(nan_bits); // return NaN 4114 phi->init_req(1, _gvn.transform( slow_result )); 4115 r->init_req(1, iftrue); 4116 4117 // Else fall through 4118 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4119 set_control(iffalse); 4120 4121 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); 4122 r->init_req(2, iffalse); 4123 4124 // Post merge 4125 set_control(_gvn.transform(r)); 4126 record_for_igvn(r); 4127 4128 C->set_has_split_ifs(true); // Has chance for split-if optimization 4129 result = phi; 4130 assert(result->bottom_type()->isa_long(), "must be"); 4131 break; 4132 } 4133 4134 case vmIntrinsics::_floatToIntBits: { 4135 // two paths (plus control) merge in a wood 4136 RegionNode *r = new RegionNode(3); 4137 Node *phi = new PhiNode(r, TypeInt::INT); 4138 4139 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); 4140 // Build the boolean node 4141 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4142 4143 // Branch either way. 4144 // NaN case is less traveled, which makes all the difference. 4145 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4146 Node *opt_isnan = _gvn.transform(ifisnan); 4147 assert( opt_isnan->is_If(), "Expect an IfNode"); 4148 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4149 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4150 4151 set_control(iftrue); 4152 4153 static const jint nan_bits = 0x7fc00000; 4154 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN 4155 phi->init_req(1, _gvn.transform( slow_result )); 4156 r->init_req(1, iftrue); 4157 4158 // Else fall through 4159 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4160 set_control(iffalse); 4161 4162 phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); 4163 r->init_req(2, iffalse); 4164 4165 // Post merge 4166 set_control(_gvn.transform(r)); 4167 record_for_igvn(r); 4168 4169 C->set_has_split_ifs(true); // Has chance for split-if optimization 4170 result = phi; 4171 assert(result->bottom_type()->isa_int(), "must be"); 4172 break; 4173 } 4174 4175 default: 4176 fatal_unexpected_iid(id); 4177 break; 4178 } 4179 set_result(_gvn.transform(result)); 4180 return true; 4181 } 4182 4183 //----------------------inline_unsafe_copyMemory------------------------- 4184 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); 4185 bool LibraryCallKit::inline_unsafe_copyMemory() { 4186 if (callee()->is_static()) return false; // caller must have the capability! 4187 null_check_receiver(); // null-check receiver 4188 if (stopped()) return true; 4189 4190 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 4191 4192 Node* src_ptr = argument(1); // type: oop 4193 Node* src_off = ConvL2X(argument(2)); // type: long 4194 Node* dst_ptr = argument(4); // type: oop 4195 Node* dst_off = ConvL2X(argument(5)); // type: long 4196 Node* size = ConvL2X(argument(7)); // type: long 4197 4198 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 4199 "fieldOffset must be byte-scaled"); 4200 4201 Node* src = make_unsafe_address(src_ptr, src_off, ACCESS_READ); 4202 Node* dst = make_unsafe_address(dst_ptr, dst_off, ACCESS_WRITE); 4203 4204 // Conservatively insert a memory barrier on all memory slices. 4205 // Do not let writes of the copy source or destination float below the copy. 4206 insert_mem_bar(Op_MemBarCPUOrder); 4207 4208 Node* thread = _gvn.transform(new ThreadLocalNode()); 4209 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 4210 BasicType doing_unsafe_access_bt = T_BYTE; 4211 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 4212 4213 // update volatile field 4214 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 4215 4216 // Call it. Note that the length argument is not scaled. 4217 make_runtime_call(RC_LEAF|RC_NO_FP, 4218 OptoRuntime::fast_arraycopy_Type(), 4219 StubRoutines::unsafe_arraycopy(), 4220 "unsafe_arraycopy", 4221 TypeRawPtr::BOTTOM, 4222 src, dst, size XTOP); 4223 4224 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 4225 4226 // Do not let reads of the copy destination float above the copy. 4227 insert_mem_bar(Op_MemBarCPUOrder); 4228 4229 return true; 4230 } 4231 4232 //------------------------clone_coping----------------------------------- 4233 // Helper function for inline_native_clone. 4234 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { 4235 assert(obj_size != NULL, ""); 4236 Node* raw_obj = alloc_obj->in(1); 4237 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); 4238 4239 AllocateNode* alloc = NULL; 4240 if (ReduceBulkZeroing) { 4241 // We will be completely responsible for initializing this object - 4242 // mark Initialize node as complete. 4243 alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn); 4244 // The object was just allocated - there should be no any stores! 4245 guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), ""); 4246 // Mark as complete_with_arraycopy so that on AllocateNode 4247 // expansion, we know this AllocateNode is initialized by an array 4248 // copy and a StoreStore barrier exists after the array copy. 4249 alloc->initialization()->set_complete_with_arraycopy(); 4250 } 4251 4252 Node* size = _gvn.transform(obj_size); 4253 access_clone(obj, alloc_obj, size, is_array); 4254 4255 // Do not let reads from the cloned object float above the arraycopy. 4256 if (alloc != NULL) { 4257 // Do not let stores that initialize this object be reordered with 4258 // a subsequent store that would make this object accessible by 4259 // other threads. 4260 // Record what AllocateNode this StoreStore protects so that 4261 // escape analysis can go from the MemBarStoreStoreNode to the 4262 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 4263 // based on the escape status of the AllocateNode. 4264 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 4265 } else { 4266 insert_mem_bar(Op_MemBarCPUOrder); 4267 } 4268 } 4269 4270 //------------------------inline_native_clone---------------------------- 4271 // protected native Object java.lang.Object.clone(); 4272 // 4273 // Here are the simple edge cases: 4274 // null receiver => normal trap 4275 // virtual and clone was overridden => slow path to out-of-line clone 4276 // not cloneable or finalizer => slow path to out-of-line Object.clone 4277 // 4278 // The general case has two steps, allocation and copying. 4279 // Allocation has two cases, and uses GraphKit::new_instance or new_array. 4280 // 4281 // Copying also has two cases, oop arrays and everything else. 4282 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). 4283 // Everything else uses the tight inline loop supplied by CopyArrayNode. 4284 // 4285 // These steps fold up nicely if and when the cloned object's klass 4286 // can be sharply typed as an object array, a type array, or an instance. 4287 // 4288 bool LibraryCallKit::inline_native_clone(bool is_virtual) { 4289 PhiNode* result_val; 4290 4291 // Set the reexecute bit for the interpreter to reexecute 4292 // the bytecode that invokes Object.clone if deoptimization happens. 4293 { PreserveReexecuteState preexecs(this); 4294 jvms()->set_should_reexecute(true); 4295 4296 Node* obj = null_check_receiver(); 4297 if (stopped()) return true; 4298 4299 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 4300 4301 // If we are going to clone an instance, we need its exact type to 4302 // know the number and types of fields to convert the clone to 4303 // loads/stores. Maybe a speculative type can help us. 4304 if (!obj_type->klass_is_exact() && 4305 obj_type->speculative_type() != NULL && 4306 obj_type->speculative_type()->is_instance_klass()) { 4307 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); 4308 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && 4309 !spec_ik->has_injected_fields()) { 4310 ciKlass* k = obj_type->klass(); 4311 if (!k->is_instance_klass() || 4312 k->as_instance_klass()->is_interface() || 4313 k->as_instance_klass()->has_subklass()) { 4314 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); 4315 } 4316 } 4317 } 4318 4319 // Conservatively insert a memory barrier on all memory slices. 4320 // Do not let writes into the original float below the clone. 4321 insert_mem_bar(Op_MemBarCPUOrder); 4322 4323 // paths into result_reg: 4324 enum { 4325 _slow_path = 1, // out-of-line call to clone method (virtual or not) 4326 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy 4327 _array_path, // plain array allocation, plus arrayof_long_arraycopy 4328 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy 4329 PATH_LIMIT 4330 }; 4331 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4332 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4333 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); 4334 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4335 record_for_igvn(result_reg); 4336 4337 Node* obj_klass = load_object_klass(obj); 4338 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL); 4339 if (array_ctl != NULL) { 4340 // It's an array. 4341 PreserveJVMState pjvms(this); 4342 set_control(array_ctl); 4343 Node* obj_length = load_array_length(obj); 4344 Node* obj_size = NULL; 4345 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size, /*deoptimize_on_exception=*/true); 4346 4347 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4348 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, BarrierSetC2::Parsing)) { 4349 // If it is an oop array, it requires very special treatment, 4350 // because gc barriers are required when accessing the array. 4351 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL); 4352 if (is_obja != NULL) { 4353 PreserveJVMState pjvms2(this); 4354 set_control(is_obja); 4355 // Generate a direct call to the right arraycopy function(s). 4356 Node* alloc = tightly_coupled_allocation(alloc_obj, NULL); 4357 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL, false); 4358 ac->set_clone_oop_array(); 4359 Node* n = _gvn.transform(ac); 4360 assert(n == ac, "cannot disappear"); 4361 ac->connect_outputs(this, /*deoptimize_on_exception=*/true); 4362 4363 result_reg->init_req(_objArray_path, control()); 4364 result_val->init_req(_objArray_path, alloc_obj); 4365 result_i_o ->set_req(_objArray_path, i_o()); 4366 result_mem ->set_req(_objArray_path, reset_memory()); 4367 } 4368 } 4369 // Otherwise, there are no barriers to worry about. 4370 // (We can dispense with card marks if we know the allocation 4371 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks 4372 // causes the non-eden paths to take compensating steps to 4373 // simulate a fresh allocation, so that no further 4374 // card marks are required in compiled code to initialize 4375 // the object.) 4376 4377 if (!stopped()) { 4378 copy_to_clone(obj, alloc_obj, obj_size, true); 4379 4380 // Present the results of the copy. 4381 result_reg->init_req(_array_path, control()); 4382 result_val->init_req(_array_path, alloc_obj); 4383 result_i_o ->set_req(_array_path, i_o()); 4384 result_mem ->set_req(_array_path, reset_memory()); 4385 } 4386 } 4387 4388 // We only go to the instance fast case code if we pass a number of guards. 4389 // The paths which do not pass are accumulated in the slow_region. 4390 RegionNode* slow_region = new RegionNode(1); 4391 record_for_igvn(slow_region); 4392 if (!stopped()) { 4393 // It's an instance (we did array above). Make the slow-path tests. 4394 // If this is a virtual call, we generate a funny guard. We grab 4395 // the vtable entry corresponding to clone() from the target object. 4396 // If the target method which we are calling happens to be the 4397 // Object clone() method, we pass the guard. We do not need this 4398 // guard for non-virtual calls; the caller is known to be the native 4399 // Object clone(). 4400 if (is_virtual) { 4401 generate_virtual_guard(obj_klass, slow_region); 4402 } 4403 4404 // The object must be easily cloneable and must not have a finalizer. 4405 // Both of these conditions may be checked in a single test. 4406 // We could optimize the test further, but we don't care. 4407 generate_access_flags_guard(obj_klass, 4408 // Test both conditions: 4409 JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER, 4410 // Must be cloneable but not finalizer: 4411 JVM_ACC_IS_CLONEABLE_FAST, 4412 slow_region); 4413 } 4414 4415 if (!stopped()) { 4416 // It's an instance, and it passed the slow-path tests. 4417 PreserveJVMState pjvms(this); 4418 Node* obj_size = NULL; 4419 // Need to deoptimize on exception from allocation since Object.clone intrinsic 4420 // is reexecuted if deoptimization occurs and there could be problems when merging 4421 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). 4422 Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true); 4423 4424 copy_to_clone(obj, alloc_obj, obj_size, false); 4425 4426 // Present the results of the slow call. 4427 result_reg->init_req(_instance_path, control()); 4428 result_val->init_req(_instance_path, alloc_obj); 4429 result_i_o ->set_req(_instance_path, i_o()); 4430 result_mem ->set_req(_instance_path, reset_memory()); 4431 } 4432 4433 // Generate code for the slow case. We make a call to clone(). 4434 set_control(_gvn.transform(slow_region)); 4435 if (!stopped()) { 4436 PreserveJVMState pjvms(this); 4437 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual); 4438 // We need to deoptimize on exception (see comment above) 4439 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); 4440 // this->control() comes from set_results_for_java_call 4441 result_reg->init_req(_slow_path, control()); 4442 result_val->init_req(_slow_path, slow_result); 4443 result_i_o ->set_req(_slow_path, i_o()); 4444 result_mem ->set_req(_slow_path, reset_memory()); 4445 } 4446 4447 // Return the combined state. 4448 set_control( _gvn.transform(result_reg)); 4449 set_i_o( _gvn.transform(result_i_o)); 4450 set_all_memory( _gvn.transform(result_mem)); 4451 } // original reexecute is set back here 4452 4453 set_result(_gvn.transform(result_val)); 4454 return true; 4455 } 4456 4457 // If we have a tightly coupled allocation, the arraycopy may take care 4458 // of the array initialization. If one of the guards we insert between 4459 // the allocation and the arraycopy causes a deoptimization, an 4460 // unitialized array will escape the compiled method. To prevent that 4461 // we set the JVM state for uncommon traps between the allocation and 4462 // the arraycopy to the state before the allocation so, in case of 4463 // deoptimization, we'll reexecute the allocation and the 4464 // initialization. 4465 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { 4466 if (alloc != NULL) { 4467 ciMethod* trap_method = alloc->jvms()->method(); 4468 int trap_bci = alloc->jvms()->bci(); 4469 4470 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 4471 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { 4472 // Make sure there's no store between the allocation and the 4473 // arraycopy otherwise visible side effects could be rexecuted 4474 // in case of deoptimization and cause incorrect execution. 4475 bool no_interfering_store = true; 4476 Node* mem = alloc->in(TypeFunc::Memory); 4477 if (mem->is_MergeMem()) { 4478 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 4479 Node* n = mms.memory(); 4480 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 4481 assert(n->is_Store(), "what else?"); 4482 no_interfering_store = false; 4483 break; 4484 } 4485 } 4486 } else { 4487 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 4488 Node* n = mms.memory(); 4489 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 4490 assert(n->is_Store(), "what else?"); 4491 no_interfering_store = false; 4492 break; 4493 } 4494 } 4495 } 4496 4497 if (no_interfering_store) { 4498 JVMState* old_jvms = alloc->jvms()->clone_shallow(C); 4499 uint size = alloc->req(); 4500 SafePointNode* sfpt = new SafePointNode(size, old_jvms); 4501 old_jvms->set_map(sfpt); 4502 for (uint i = 0; i < size; i++) { 4503 sfpt->init_req(i, alloc->in(i)); 4504 } 4505 // re-push array length for deoptimization 4506 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength)); 4507 old_jvms->set_sp(old_jvms->sp()+1); 4508 old_jvms->set_monoff(old_jvms->monoff()+1); 4509 old_jvms->set_scloff(old_jvms->scloff()+1); 4510 old_jvms->set_endoff(old_jvms->endoff()+1); 4511 old_jvms->set_should_reexecute(true); 4512 4513 sfpt->set_i_o(map()->i_o()); 4514 sfpt->set_memory(map()->memory()); 4515 sfpt->set_control(map()->control()); 4516 4517 JVMState* saved_jvms = jvms(); 4518 saved_reexecute_sp = _reexecute_sp; 4519 4520 set_jvms(sfpt->jvms()); 4521 _reexecute_sp = jvms()->sp(); 4522 4523 return saved_jvms; 4524 } 4525 } 4526 } 4527 return NULL; 4528 } 4529 4530 // In case of a deoptimization, we restart execution at the 4531 // allocation, allocating a new array. We would leave an uninitialized 4532 // array in the heap that GCs wouldn't expect. Move the allocation 4533 // after the traps so we don't allocate the array if we 4534 // deoptimize. This is possible because tightly_coupled_allocation() 4535 // guarantees there's no observer of the allocated array at this point 4536 // and the control flow is simple enough. 4537 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, 4538 int saved_reexecute_sp, uint new_idx) { 4539 if (saved_jvms != NULL && !stopped()) { 4540 assert(alloc != NULL, "only with a tightly coupled allocation"); 4541 // restore JVM state to the state at the arraycopy 4542 saved_jvms->map()->set_control(map()->control()); 4543 assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?"); 4544 assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?"); 4545 // If we've improved the types of some nodes (null check) while 4546 // emitting the guards, propagate them to the current state 4547 map()->replaced_nodes().apply(saved_jvms->map(), new_idx); 4548 set_jvms(saved_jvms); 4549 _reexecute_sp = saved_reexecute_sp; 4550 4551 // Remove the allocation from above the guards 4552 CallProjections callprojs; 4553 alloc->extract_projections(&callprojs, true); 4554 InitializeNode* init = alloc->initialization(); 4555 Node* alloc_mem = alloc->in(TypeFunc::Memory); 4556 C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 4557 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); 4558 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); 4559 4560 // move the allocation here (after the guards) 4561 _gvn.hash_delete(alloc); 4562 alloc->set_req(TypeFunc::Control, control()); 4563 alloc->set_req(TypeFunc::I_O, i_o()); 4564 Node *mem = reset_memory(); 4565 set_all_memory(mem); 4566 alloc->set_req(TypeFunc::Memory, mem); 4567 set_control(init->proj_out_or_null(TypeFunc::Control)); 4568 set_i_o(callprojs.fallthrough_ioproj); 4569 4570 // Update memory as done in GraphKit::set_output_for_allocation() 4571 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); 4572 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); 4573 if (ary_type->isa_aryptr() && length_type != NULL) { 4574 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 4575 } 4576 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); 4577 int elemidx = C->get_alias_index(telemref); 4578 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); 4579 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); 4580 4581 Node* allocx = _gvn.transform(alloc); 4582 assert(allocx == alloc, "where has the allocation gone?"); 4583 assert(dest->is_CheckCastPP(), "not an allocation result?"); 4584 4585 _gvn.hash_delete(dest); 4586 dest->set_req(0, control()); 4587 Node* destx = _gvn.transform(dest); 4588 assert(destx == dest, "where has the allocation result gone?"); 4589 } 4590 } 4591 4592 4593 //------------------------------inline_arraycopy----------------------- 4594 // public static native void java.lang.System.arraycopy(Object src, int srcPos, 4595 // Object dest, int destPos, 4596 // int length); 4597 bool LibraryCallKit::inline_arraycopy() { 4598 // Get the arguments. 4599 Node* src = argument(0); // type: oop 4600 Node* src_offset = argument(1); // type: int 4601 Node* dest = argument(2); // type: oop 4602 Node* dest_offset = argument(3); // type: int 4603 Node* length = argument(4); // type: int 4604 4605 uint new_idx = C->unique(); 4606 4607 // Check for allocation before we add nodes that would confuse 4608 // tightly_coupled_allocation() 4609 AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL); 4610 4611 int saved_reexecute_sp = -1; 4612 JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); 4613 // See arraycopy_restore_alloc_state() comment 4614 // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards 4615 // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation 4616 // if saved_jvms == NULL and alloc != NULL, we can't emit any guards 4617 bool can_emit_guards = (alloc == NULL || saved_jvms != NULL); 4618 4619 // The following tests must be performed 4620 // (1) src and dest are arrays. 4621 // (2) src and dest arrays must have elements of the same BasicType 4622 // (3) src and dest must not be null. 4623 // (4) src_offset must not be negative. 4624 // (5) dest_offset must not be negative. 4625 // (6) length must not be negative. 4626 // (7) src_offset + length must not exceed length of src. 4627 // (8) dest_offset + length must not exceed length of dest. 4628 // (9) each element of an oop array must be assignable 4629 4630 // (3) src and dest must not be null. 4631 // always do this here because we need the JVM state for uncommon traps 4632 Node* null_ctl = top(); 4633 src = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); 4634 assert(null_ctl->is_top(), "no null control here"); 4635 dest = null_check(dest, T_ARRAY); 4636 4637 if (!can_emit_guards) { 4638 // if saved_jvms == NULL and alloc != NULL, we don't emit any 4639 // guards but the arraycopy node could still take advantage of a 4640 // tightly allocated allocation. tightly_coupled_allocation() is 4641 // called again to make sure it takes the null check above into 4642 // account: the null check is mandatory and if it caused an 4643 // uncommon trap to be emitted then the allocation can't be 4644 // considered tightly coupled in this context. 4645 alloc = tightly_coupled_allocation(dest, NULL); 4646 } 4647 4648 bool validated = false; 4649 4650 const Type* src_type = _gvn.type(src); 4651 const Type* dest_type = _gvn.type(dest); 4652 const TypeAryPtr* top_src = src_type->isa_aryptr(); 4653 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 4654 4655 // Do we have the type of src? 4656 bool has_src = (top_src != NULL && top_src->klass() != NULL); 4657 // Do we have the type of dest? 4658 bool has_dest = (top_dest != NULL && top_dest->klass() != NULL); 4659 // Is the type for src from speculation? 4660 bool src_spec = false; 4661 // Is the type for dest from speculation? 4662 bool dest_spec = false; 4663 4664 if ((!has_src || !has_dest) && can_emit_guards) { 4665 // We don't have sufficient type information, let's see if 4666 // speculative types can help. We need to have types for both src 4667 // and dest so that it pays off. 4668 4669 // Do we already have or could we have type information for src 4670 bool could_have_src = has_src; 4671 // Do we already have or could we have type information for dest 4672 bool could_have_dest = has_dest; 4673 4674 ciKlass* src_k = NULL; 4675 if (!has_src) { 4676 src_k = src_type->speculative_type_not_null(); 4677 if (src_k != NULL && src_k->is_array_klass()) { 4678 could_have_src = true; 4679 } 4680 } 4681 4682 ciKlass* dest_k = NULL; 4683 if (!has_dest) { 4684 dest_k = dest_type->speculative_type_not_null(); 4685 if (dest_k != NULL && dest_k->is_array_klass()) { 4686 could_have_dest = true; 4687 } 4688 } 4689 4690 if (could_have_src && could_have_dest) { 4691 // This is going to pay off so emit the required guards 4692 if (!has_src) { 4693 src = maybe_cast_profiled_obj(src, src_k, true); 4694 src_type = _gvn.type(src); 4695 top_src = src_type->isa_aryptr(); 4696 has_src = (top_src != NULL && top_src->klass() != NULL); 4697 src_spec = true; 4698 } 4699 if (!has_dest) { 4700 dest = maybe_cast_profiled_obj(dest, dest_k, true); 4701 dest_type = _gvn.type(dest); 4702 top_dest = dest_type->isa_aryptr(); 4703 has_dest = (top_dest != NULL && top_dest->klass() != NULL); 4704 dest_spec = true; 4705 } 4706 } 4707 } 4708 4709 if (has_src && has_dest && can_emit_guards) { 4710 BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type(); 4711 BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type(); 4712 if (is_reference_type(src_elem)) src_elem = T_OBJECT; 4713 if (is_reference_type(dest_elem)) dest_elem = T_OBJECT; 4714 4715 if (src_elem == dest_elem && src_elem == T_OBJECT) { 4716 // If both arrays are object arrays then having the exact types 4717 // for both will remove the need for a subtype check at runtime 4718 // before the call and may make it possible to pick a faster copy 4719 // routine (without a subtype check on every element) 4720 // Do we have the exact type of src? 4721 bool could_have_src = src_spec; 4722 // Do we have the exact type of dest? 4723 bool could_have_dest = dest_spec; 4724 ciKlass* src_k = top_src->klass(); 4725 ciKlass* dest_k = top_dest->klass(); 4726 if (!src_spec) { 4727 src_k = src_type->speculative_type_not_null(); 4728 if (src_k != NULL && src_k->is_array_klass()) { 4729 could_have_src = true; 4730 } 4731 } 4732 if (!dest_spec) { 4733 dest_k = dest_type->speculative_type_not_null(); 4734 if (dest_k != NULL && dest_k->is_array_klass()) { 4735 could_have_dest = true; 4736 } 4737 } 4738 if (could_have_src && could_have_dest) { 4739 // If we can have both exact types, emit the missing guards 4740 if (could_have_src && !src_spec) { 4741 src = maybe_cast_profiled_obj(src, src_k, true); 4742 } 4743 if (could_have_dest && !dest_spec) { 4744 dest = maybe_cast_profiled_obj(dest, dest_k, true); 4745 } 4746 } 4747 } 4748 } 4749 4750 ciMethod* trap_method = method(); 4751 int trap_bci = bci(); 4752 if (saved_jvms != NULL) { 4753 trap_method = alloc->jvms()->method(); 4754 trap_bci = alloc->jvms()->bci(); 4755 } 4756 4757 bool negative_length_guard_generated = false; 4758 4759 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 4760 can_emit_guards && 4761 !src->is_top() && !dest->is_top()) { 4762 // validate arguments: enables transformation the ArrayCopyNode 4763 validated = true; 4764 4765 RegionNode* slow_region = new RegionNode(1); 4766 record_for_igvn(slow_region); 4767 4768 // (1) src and dest are arrays. 4769 generate_non_array_guard(load_object_klass(src), slow_region); 4770 generate_non_array_guard(load_object_klass(dest), slow_region); 4771 4772 // (2) src and dest arrays must have elements of the same BasicType 4773 // done at macro expansion or at Ideal transformation time 4774 4775 // (4) src_offset must not be negative. 4776 generate_negative_guard(src_offset, slow_region); 4777 4778 // (5) dest_offset must not be negative. 4779 generate_negative_guard(dest_offset, slow_region); 4780 4781 // (7) src_offset + length must not exceed length of src. 4782 generate_limit_guard(src_offset, length, 4783 load_array_length(src), 4784 slow_region); 4785 4786 // (8) dest_offset + length must not exceed length of dest. 4787 generate_limit_guard(dest_offset, length, 4788 load_array_length(dest), 4789 slow_region); 4790 4791 // (6) length must not be negative. 4792 // This is also checked in generate_arraycopy() during macro expansion, but 4793 // we also have to check it here for the case where the ArrayCopyNode will 4794 // be eliminated by Escape Analysis. 4795 if (EliminateAllocations) { 4796 generate_negative_guard(length, slow_region); 4797 negative_length_guard_generated = true; 4798 } 4799 4800 // (9) each element of an oop array must be assignable 4801 Node* dest_klass = load_object_klass(dest); 4802 if (src != dest) { 4803 Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass); 4804 4805 if (not_subtype_ctrl != top()) { 4806 PreserveJVMState pjvms(this); 4807 set_control(not_subtype_ctrl); 4808 uncommon_trap(Deoptimization::Reason_intrinsic, 4809 Deoptimization::Action_make_not_entrant); 4810 assert(stopped(), "Should be stopped"); 4811 } 4812 } 4813 { 4814 PreserveJVMState pjvms(this); 4815 set_control(_gvn.transform(slow_region)); 4816 uncommon_trap(Deoptimization::Reason_intrinsic, 4817 Deoptimization::Action_make_not_entrant); 4818 assert(stopped(), "Should be stopped"); 4819 } 4820 4821 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); 4822 const Type *toop = TypeOopPtr::make_from_klass(dest_klass_t->klass()); 4823 src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); 4824 } 4825 4826 arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp, new_idx); 4827 4828 if (stopped()) { 4829 return true; 4830 } 4831 4832 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL, negative_length_guard_generated, 4833 // Create LoadRange and LoadKlass nodes for use during macro expansion here 4834 // so the compiler has a chance to eliminate them: during macro expansion, 4835 // we have to set their control (CastPP nodes are eliminated). 4836 load_object_klass(src), load_object_klass(dest), 4837 load_array_length(src), load_array_length(dest)); 4838 4839 ac->set_arraycopy(validated); 4840 4841 Node* n = _gvn.transform(ac); 4842 if (n == ac) { 4843 ac->connect_outputs(this); 4844 } else { 4845 assert(validated, "shouldn't transform if all arguments not validated"); 4846 set_all_memory(n); 4847 } 4848 clear_upper_avx(); 4849 4850 4851 return true; 4852 } 4853 4854 4855 // Helper function which determines if an arraycopy immediately follows 4856 // an allocation, with no intervening tests or other escapes for the object. 4857 AllocateArrayNode* 4858 LibraryCallKit::tightly_coupled_allocation(Node* ptr, 4859 RegionNode* slow_region) { 4860 if (stopped()) return NULL; // no fast path 4861 if (C->AliasLevel() == 0) return NULL; // no MergeMems around 4862 4863 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn); 4864 if (alloc == NULL) return NULL; 4865 4866 Node* rawmem = memory(Compile::AliasIdxRaw); 4867 // Is the allocation's memory state untouched? 4868 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { 4869 // Bail out if there have been raw-memory effects since the allocation. 4870 // (Example: There might have been a call or safepoint.) 4871 return NULL; 4872 } 4873 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); 4874 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { 4875 return NULL; 4876 } 4877 4878 // There must be no unexpected observers of this allocation. 4879 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { 4880 Node* obs = ptr->fast_out(i); 4881 if (obs != this->map()) { 4882 return NULL; 4883 } 4884 } 4885 4886 // This arraycopy must unconditionally follow the allocation of the ptr. 4887 Node* alloc_ctl = ptr->in(0); 4888 Node* ctl = control(); 4889 while (ctl != alloc_ctl) { 4890 // There may be guards which feed into the slow_region. 4891 // Any other control flow means that we might not get a chance 4892 // to finish initializing the allocated object. 4893 if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) { 4894 IfNode* iff = ctl->in(0)->as_If(); 4895 Node* not_ctl = iff->proj_out_or_null(1 - ctl->as_Proj()->_con); 4896 assert(not_ctl != NULL && not_ctl != ctl, "found alternate"); 4897 if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) { 4898 ctl = iff->in(0); // This test feeds the known slow_region. 4899 continue; 4900 } 4901 // One more try: Various low-level checks bottom out in 4902 // uncommon traps. If the debug-info of the trap omits 4903 // any reference to the allocation, as we've already 4904 // observed, then there can be no objection to the trap. 4905 bool found_trap = false; 4906 for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) { 4907 Node* obs = not_ctl->fast_out(j); 4908 if (obs->in(0) == not_ctl && obs->is_Call() && 4909 (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) { 4910 found_trap = true; break; 4911 } 4912 } 4913 if (found_trap) { 4914 ctl = iff->in(0); // This test feeds a harmless uncommon trap. 4915 continue; 4916 } 4917 } 4918 return NULL; 4919 } 4920 4921 // If we get this far, we have an allocation which immediately 4922 // precedes the arraycopy, and we can take over zeroing the new object. 4923 // The arraycopy will finish the initialization, and provide 4924 // a new control state to which we will anchor the destination pointer. 4925 4926 return alloc; 4927 } 4928 4929 //-------------inline_encodeISOArray----------------------------------- 4930 // encode char[] to byte[] in ISO_8859_1 4931 bool LibraryCallKit::inline_encodeISOArray() { 4932 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); 4933 // no receiver since it is static method 4934 Node *src = argument(0); 4935 Node *src_offset = argument(1); 4936 Node *dst = argument(2); 4937 Node *dst_offset = argument(3); 4938 Node *length = argument(4); 4939 4940 src = must_be_not_null(src, true); 4941 dst = must_be_not_null(dst, true); 4942 4943 const Type* src_type = src->Value(&_gvn); 4944 const Type* dst_type = dst->Value(&_gvn); 4945 const TypeAryPtr* top_src = src_type->isa_aryptr(); 4946 const TypeAryPtr* top_dest = dst_type->isa_aryptr(); 4947 if (top_src == NULL || top_src->klass() == NULL || 4948 top_dest == NULL || top_dest->klass() == NULL) { 4949 // failed array check 4950 return false; 4951 } 4952 4953 // Figure out the size and type of the elements we will be copying. 4954 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 4955 BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 4956 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { 4957 return false; 4958 } 4959 4960 Node* src_start = array_element_address(src, src_offset, T_CHAR); 4961 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 4962 // 'src_start' points to src array + scaled offset 4963 // 'dst_start' points to dst array + scaled offset 4964 4965 const TypeAryPtr* mtype = TypeAryPtr::BYTES; 4966 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length); 4967 enc = _gvn.transform(enc); 4968 Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); 4969 set_memory(res_mem, mtype); 4970 set_result(enc); 4971 clear_upper_avx(); 4972 4973 return true; 4974 } 4975 4976 //-------------inline_multiplyToLen----------------------------------- 4977 bool LibraryCallKit::inline_multiplyToLen() { 4978 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); 4979 4980 address stubAddr = StubRoutines::multiplyToLen(); 4981 if (stubAddr == NULL) { 4982 return false; // Intrinsic's stub is not implemented on this platform 4983 } 4984 const char* stubName = "multiplyToLen"; 4985 4986 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); 4987 4988 // no receiver because it is a static method 4989 Node* x = argument(0); 4990 Node* xlen = argument(1); 4991 Node* y = argument(2); 4992 Node* ylen = argument(3); 4993 Node* z = argument(4); 4994 4995 x = must_be_not_null(x, true); 4996 y = must_be_not_null(y, true); 4997 4998 const Type* x_type = x->Value(&_gvn); 4999 const Type* y_type = y->Value(&_gvn); 5000 const TypeAryPtr* top_x = x_type->isa_aryptr(); 5001 const TypeAryPtr* top_y = y_type->isa_aryptr(); 5002 if (top_x == NULL || top_x->klass() == NULL || 5003 top_y == NULL || top_y->klass() == NULL) { 5004 // failed array check 5005 return false; 5006 } 5007 5008 BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5009 BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5010 if (x_elem != T_INT || y_elem != T_INT) { 5011 return false; 5012 } 5013 5014 // Set the original stack and the reexecute bit for the interpreter to reexecute 5015 // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens 5016 // on the return from z array allocation in runtime. 5017 { PreserveReexecuteState preexecs(this); 5018 jvms()->set_should_reexecute(true); 5019 5020 Node* x_start = array_element_address(x, intcon(0), x_elem); 5021 Node* y_start = array_element_address(y, intcon(0), y_elem); 5022 // 'x_start' points to x array + scaled xlen 5023 // 'y_start' points to y array + scaled ylen 5024 5025 // Allocate the result array 5026 Node* zlen = _gvn.transform(new AddINode(xlen, ylen)); 5027 ciKlass* klass = ciTypeArrayKlass::make(T_INT); 5028 Node* klass_node = makecon(TypeKlassPtr::make(klass)); 5029 5030 IdealKit ideal(this); 5031 5032 #define __ ideal. 5033 Node* one = __ ConI(1); 5034 Node* zero = __ ConI(0); 5035 IdealVariable need_alloc(ideal), z_alloc(ideal); __ declarations_done(); 5036 __ set(need_alloc, zero); 5037 __ set(z_alloc, z); 5038 __ if_then(z, BoolTest::eq, null()); { 5039 __ increment (need_alloc, one); 5040 } __ else_(); { 5041 // Update graphKit memory and control from IdealKit. 5042 sync_kit(ideal); 5043 Node *cast = new CastPPNode(z, TypePtr::NOTNULL); 5044 cast->init_req(0, control()); 5045 _gvn.set_type(cast, cast->bottom_type()); 5046 C->record_for_igvn(cast); 5047 5048 Node* zlen_arg = load_array_length(cast); 5049 // Update IdealKit memory and control from graphKit. 5050 __ sync_kit(this); 5051 __ if_then(zlen_arg, BoolTest::lt, zlen); { 5052 __ increment (need_alloc, one); 5053 } __ end_if(); 5054 } __ end_if(); 5055 5056 __ if_then(__ value(need_alloc), BoolTest::ne, zero); { 5057 // Update graphKit memory and control from IdealKit. 5058 sync_kit(ideal); 5059 Node * narr = new_array(klass_node, zlen, 1); 5060 // Update IdealKit memory and control from graphKit. 5061 __ sync_kit(this); 5062 __ set(z_alloc, narr); 5063 } __ end_if(); 5064 5065 sync_kit(ideal); 5066 z = __ value(z_alloc); 5067 // Can't use TypeAryPtr::INTS which uses Bottom offset. 5068 _gvn.set_type(z, TypeOopPtr::make_from_klass(klass)); 5069 // Final sync IdealKit and GraphKit. 5070 final_sync(ideal); 5071 #undef __ 5072 5073 Node* z_start = array_element_address(z, intcon(0), T_INT); 5074 5075 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5076 OptoRuntime::multiplyToLen_Type(), 5077 stubAddr, stubName, TypePtr::BOTTOM, 5078 x_start, xlen, y_start, ylen, z_start, zlen); 5079 } // original reexecute is set back here 5080 5081 C->set_has_split_ifs(true); // Has chance for split-if optimization 5082 set_result(z); 5083 return true; 5084 } 5085 5086 //-------------inline_squareToLen------------------------------------ 5087 bool LibraryCallKit::inline_squareToLen() { 5088 assert(UseSquareToLenIntrinsic, "not implemented on this platform"); 5089 5090 address stubAddr = StubRoutines::squareToLen(); 5091 if (stubAddr == NULL) { 5092 return false; // Intrinsic's stub is not implemented on this platform 5093 } 5094 const char* stubName = "squareToLen"; 5095 5096 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); 5097 5098 Node* x = argument(0); 5099 Node* len = argument(1); 5100 Node* z = argument(2); 5101 Node* zlen = argument(3); 5102 5103 x = must_be_not_null(x, true); 5104 z = must_be_not_null(z, true); 5105 5106 const Type* x_type = x->Value(&_gvn); 5107 const Type* z_type = z->Value(&_gvn); 5108 const TypeAryPtr* top_x = x_type->isa_aryptr(); 5109 const TypeAryPtr* top_z = z_type->isa_aryptr(); 5110 if (top_x == NULL || top_x->klass() == NULL || 5111 top_z == NULL || top_z->klass() == NULL) { 5112 // failed array check 5113 return false; 5114 } 5115 5116 BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5117 BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5118 if (x_elem != T_INT || z_elem != T_INT) { 5119 return false; 5120 } 5121 5122 5123 Node* x_start = array_element_address(x, intcon(0), x_elem); 5124 Node* z_start = array_element_address(z, intcon(0), z_elem); 5125 5126 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5127 OptoRuntime::squareToLen_Type(), 5128 stubAddr, stubName, TypePtr::BOTTOM, 5129 x_start, len, z_start, zlen); 5130 5131 set_result(z); 5132 return true; 5133 } 5134 5135 //-------------inline_mulAdd------------------------------------------ 5136 bool LibraryCallKit::inline_mulAdd() { 5137 assert(UseMulAddIntrinsic, "not implemented on this platform"); 5138 5139 address stubAddr = StubRoutines::mulAdd(); 5140 if (stubAddr == NULL) { 5141 return false; // Intrinsic's stub is not implemented on this platform 5142 } 5143 const char* stubName = "mulAdd"; 5144 5145 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); 5146 5147 Node* out = argument(0); 5148 Node* in = argument(1); 5149 Node* offset = argument(2); 5150 Node* len = argument(3); 5151 Node* k = argument(4); 5152 5153 out = must_be_not_null(out, true); 5154 5155 const Type* out_type = out->Value(&_gvn); 5156 const Type* in_type = in->Value(&_gvn); 5157 const TypeAryPtr* top_out = out_type->isa_aryptr(); 5158 const TypeAryPtr* top_in = in_type->isa_aryptr(); 5159 if (top_out == NULL || top_out->klass() == NULL || 5160 top_in == NULL || top_in->klass() == NULL) { 5161 // failed array check 5162 return false; 5163 } 5164 5165 BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5166 BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5167 if (out_elem != T_INT || in_elem != T_INT) { 5168 return false; 5169 } 5170 5171 Node* outlen = load_array_length(out); 5172 Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); 5173 Node* out_start = array_element_address(out, intcon(0), out_elem); 5174 Node* in_start = array_element_address(in, intcon(0), in_elem); 5175 5176 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5177 OptoRuntime::mulAdd_Type(), 5178 stubAddr, stubName, TypePtr::BOTTOM, 5179 out_start,in_start, new_offset, len, k); 5180 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5181 set_result(result); 5182 return true; 5183 } 5184 5185 //-------------inline_montgomeryMultiply----------------------------------- 5186 bool LibraryCallKit::inline_montgomeryMultiply() { 5187 address stubAddr = StubRoutines::montgomeryMultiply(); 5188 if (stubAddr == NULL) { 5189 return false; // Intrinsic's stub is not implemented on this platform 5190 } 5191 5192 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); 5193 const char* stubName = "montgomery_multiply"; 5194 5195 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); 5196 5197 Node* a = argument(0); 5198 Node* b = argument(1); 5199 Node* n = argument(2); 5200 Node* len = argument(3); 5201 Node* inv = argument(4); 5202 Node* m = argument(6); 5203 5204 const Type* a_type = a->Value(&_gvn); 5205 const TypeAryPtr* top_a = a_type->isa_aryptr(); 5206 const Type* b_type = b->Value(&_gvn); 5207 const TypeAryPtr* top_b = b_type->isa_aryptr(); 5208 const Type* n_type = a->Value(&_gvn); 5209 const TypeAryPtr* top_n = n_type->isa_aryptr(); 5210 const Type* m_type = a->Value(&_gvn); 5211 const TypeAryPtr* top_m = m_type->isa_aryptr(); 5212 if (top_a == NULL || top_a->klass() == NULL || 5213 top_b == NULL || top_b->klass() == NULL || 5214 top_n == NULL || top_n->klass() == NULL || 5215 top_m == NULL || top_m->klass() == NULL) { 5216 // failed array check 5217 return false; 5218 } 5219 5220 BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5221 BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5222 BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5223 BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5224 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 5225 return false; 5226 } 5227 5228 // Make the call 5229 { 5230 Node* a_start = array_element_address(a, intcon(0), a_elem); 5231 Node* b_start = array_element_address(b, intcon(0), b_elem); 5232 Node* n_start = array_element_address(n, intcon(0), n_elem); 5233 Node* m_start = array_element_address(m, intcon(0), m_elem); 5234 5235 Node* call = make_runtime_call(RC_LEAF, 5236 OptoRuntime::montgomeryMultiply_Type(), 5237 stubAddr, stubName, TypePtr::BOTTOM, 5238 a_start, b_start, n_start, len, inv, top(), 5239 m_start); 5240 set_result(m); 5241 } 5242 5243 return true; 5244 } 5245 5246 bool LibraryCallKit::inline_montgomerySquare() { 5247 address stubAddr = StubRoutines::montgomerySquare(); 5248 if (stubAddr == NULL) { 5249 return false; // Intrinsic's stub is not implemented on this platform 5250 } 5251 5252 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); 5253 const char* stubName = "montgomery_square"; 5254 5255 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); 5256 5257 Node* a = argument(0); 5258 Node* n = argument(1); 5259 Node* len = argument(2); 5260 Node* inv = argument(3); 5261 Node* m = argument(5); 5262 5263 const Type* a_type = a->Value(&_gvn); 5264 const TypeAryPtr* top_a = a_type->isa_aryptr(); 5265 const Type* n_type = a->Value(&_gvn); 5266 const TypeAryPtr* top_n = n_type->isa_aryptr(); 5267 const Type* m_type = a->Value(&_gvn); 5268 const TypeAryPtr* top_m = m_type->isa_aryptr(); 5269 if (top_a == NULL || top_a->klass() == NULL || 5270 top_n == NULL || top_n->klass() == NULL || 5271 top_m == NULL || top_m->klass() == NULL) { 5272 // failed array check 5273 return false; 5274 } 5275 5276 BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5277 BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5278 BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5279 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 5280 return false; 5281 } 5282 5283 // Make the call 5284 { 5285 Node* a_start = array_element_address(a, intcon(0), a_elem); 5286 Node* n_start = array_element_address(n, intcon(0), n_elem); 5287 Node* m_start = array_element_address(m, intcon(0), m_elem); 5288 5289 Node* call = make_runtime_call(RC_LEAF, 5290 OptoRuntime::montgomerySquare_Type(), 5291 stubAddr, stubName, TypePtr::BOTTOM, 5292 a_start, n_start, len, inv, top(), 5293 m_start); 5294 set_result(m); 5295 } 5296 5297 return true; 5298 } 5299 5300 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) { 5301 address stubAddr = NULL; 5302 const char* stubName = NULL; 5303 5304 stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift(); 5305 if (stubAddr == NULL) { 5306 return false; // Intrinsic's stub is not implemented on this platform 5307 } 5308 5309 stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker"; 5310 5311 assert(callee()->signature()->size() == 5, "expected 5 arguments"); 5312 5313 Node* newArr = argument(0); 5314 Node* oldArr = argument(1); 5315 Node* newIdx = argument(2); 5316 Node* shiftCount = argument(3); 5317 Node* numIter = argument(4); 5318 5319 const Type* newArr_type = newArr->Value(&_gvn); 5320 const TypeAryPtr* top_newArr = newArr_type->isa_aryptr(); 5321 const Type* oldArr_type = oldArr->Value(&_gvn); 5322 const TypeAryPtr* top_oldArr = oldArr_type->isa_aryptr(); 5323 if (top_newArr == NULL || top_newArr->klass() == NULL || top_oldArr == NULL 5324 || top_oldArr->klass() == NULL) { 5325 return false; 5326 } 5327 5328 BasicType newArr_elem = newArr_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5329 BasicType oldArr_elem = oldArr_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5330 if (newArr_elem != T_INT || oldArr_elem != T_INT) { 5331 return false; 5332 } 5333 5334 // Make the call 5335 { 5336 Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem); 5337 Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem); 5338 5339 Node* call = make_runtime_call(RC_LEAF, 5340 OptoRuntime::bigIntegerShift_Type(), 5341 stubAddr, 5342 stubName, 5343 TypePtr::BOTTOM, 5344 newArr_start, 5345 oldArr_start, 5346 newIdx, 5347 shiftCount, 5348 numIter); 5349 } 5350 5351 return true; 5352 } 5353 5354 //-------------inline_vectorizedMismatch------------------------------ 5355 bool LibraryCallKit::inline_vectorizedMismatch() { 5356 assert(UseVectorizedMismatchIntrinsic, "not implementated on this platform"); 5357 5358 address stubAddr = StubRoutines::vectorizedMismatch(); 5359 if (stubAddr == NULL) { 5360 return false; // Intrinsic's stub is not implemented on this platform 5361 } 5362 const char* stubName = "vectorizedMismatch"; 5363 int size_l = callee()->signature()->size(); 5364 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); 5365 5366 Node* obja = argument(0); 5367 Node* aoffset = argument(1); 5368 Node* objb = argument(3); 5369 Node* boffset = argument(4); 5370 Node* length = argument(6); 5371 Node* scale = argument(7); 5372 5373 const Type* a_type = obja->Value(&_gvn); 5374 const Type* b_type = objb->Value(&_gvn); 5375 const TypeAryPtr* top_a = a_type->isa_aryptr(); 5376 const TypeAryPtr* top_b = b_type->isa_aryptr(); 5377 if (top_a == NULL || top_a->klass() == NULL || 5378 top_b == NULL || top_b->klass() == NULL) { 5379 // failed array check 5380 return false; 5381 } 5382 5383 Node* call; 5384 jvms()->set_should_reexecute(true); 5385 5386 Node* obja_adr = make_unsafe_address(obja, aoffset, ACCESS_READ); 5387 Node* objb_adr = make_unsafe_address(objb, boffset, ACCESS_READ); 5388 5389 call = make_runtime_call(RC_LEAF, 5390 OptoRuntime::vectorizedMismatch_Type(), 5391 stubAddr, stubName, TypePtr::BOTTOM, 5392 obja_adr, objb_adr, length, scale); 5393 5394 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5395 set_result(result); 5396 return true; 5397 } 5398 5399 /** 5400 * Calculate CRC32 for byte. 5401 * int java.util.zip.CRC32.update(int crc, int b) 5402 */ 5403 bool LibraryCallKit::inline_updateCRC32() { 5404 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 5405 assert(callee()->signature()->size() == 2, "update has 2 parameters"); 5406 // no receiver since it is static method 5407 Node* crc = argument(0); // type: int 5408 Node* b = argument(1); // type: int 5409 5410 /* 5411 * int c = ~ crc; 5412 * b = timesXtoThe32[(b ^ c) & 0xFF]; 5413 * b = b ^ (c >>> 8); 5414 * crc = ~b; 5415 */ 5416 5417 Node* M1 = intcon(-1); 5418 crc = _gvn.transform(new XorINode(crc, M1)); 5419 Node* result = _gvn.transform(new XorINode(crc, b)); 5420 result = _gvn.transform(new AndINode(result, intcon(0xFF))); 5421 5422 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); 5423 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); 5424 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); 5425 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 5426 5427 crc = _gvn.transform(new URShiftINode(crc, intcon(8))); 5428 result = _gvn.transform(new XorINode(crc, result)); 5429 result = _gvn.transform(new XorINode(result, M1)); 5430 set_result(result); 5431 return true; 5432 } 5433 5434 /** 5435 * Calculate CRC32 for byte[] array. 5436 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) 5437 */ 5438 bool LibraryCallKit::inline_updateBytesCRC32() { 5439 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 5440 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 5441 // no receiver since it is static method 5442 Node* crc = argument(0); // type: int 5443 Node* src = argument(1); // type: oop 5444 Node* offset = argument(2); // type: int 5445 Node* length = argument(3); // type: int 5446 5447 const Type* src_type = src->Value(&_gvn); 5448 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5449 if (top_src == NULL || top_src->klass() == NULL) { 5450 // failed array check 5451 return false; 5452 } 5453 5454 // Figure out the size and type of the elements we will be copying. 5455 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5456 if (src_elem != T_BYTE) { 5457 return false; 5458 } 5459 5460 // 'src_start' points to src array + scaled offset 5461 src = must_be_not_null(src, true); 5462 Node* src_start = array_element_address(src, offset, src_elem); 5463 5464 // We assume that range check is done by caller. 5465 // TODO: generate range check (offset+length < src.length) in debug VM. 5466 5467 // Call the stub. 5468 address stubAddr = StubRoutines::updateBytesCRC32(); 5469 const char *stubName = "updateBytesCRC32"; 5470 5471 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 5472 stubAddr, stubName, TypePtr::BOTTOM, 5473 crc, src_start, length); 5474 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5475 set_result(result); 5476 return true; 5477 } 5478 5479 /** 5480 * Calculate CRC32 for ByteBuffer. 5481 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 5482 */ 5483 bool LibraryCallKit::inline_updateByteBufferCRC32() { 5484 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 5485 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 5486 // no receiver since it is static method 5487 Node* crc = argument(0); // type: int 5488 Node* src = argument(1); // type: long 5489 Node* offset = argument(3); // type: int 5490 Node* length = argument(4); // type: int 5491 5492 src = ConvL2X(src); // adjust Java long to machine word 5493 Node* base = _gvn.transform(new CastX2PNode(src)); 5494 offset = ConvI2X(offset); 5495 5496 // 'src_start' points to src array + scaled offset 5497 Node* src_start = basic_plus_adr(top(), base, offset); 5498 5499 // Call the stub. 5500 address stubAddr = StubRoutines::updateBytesCRC32(); 5501 const char *stubName = "updateBytesCRC32"; 5502 5503 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 5504 stubAddr, stubName, TypePtr::BOTTOM, 5505 crc, src_start, length); 5506 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5507 set_result(result); 5508 return true; 5509 } 5510 5511 //------------------------------get_table_from_crc32c_class----------------------- 5512 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { 5513 Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class); 5514 assert (table != NULL, "wrong version of java.util.zip.CRC32C"); 5515 5516 return table; 5517 } 5518 5519 //------------------------------inline_updateBytesCRC32C----------------------- 5520 // 5521 // Calculate CRC32C for byte[] array. 5522 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) 5523 // 5524 bool LibraryCallKit::inline_updateBytesCRC32C() { 5525 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 5526 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 5527 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 5528 // no receiver since it is a static method 5529 Node* crc = argument(0); // type: int 5530 Node* src = argument(1); // type: oop 5531 Node* offset = argument(2); // type: int 5532 Node* end = argument(3); // type: int 5533 5534 Node* length = _gvn.transform(new SubINode(end, offset)); 5535 5536 const Type* src_type = src->Value(&_gvn); 5537 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5538 if (top_src == NULL || top_src->klass() == NULL) { 5539 // failed array check 5540 return false; 5541 } 5542 5543 // Figure out the size and type of the elements we will be copying. 5544 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5545 if (src_elem != T_BYTE) { 5546 return false; 5547 } 5548 5549 // 'src_start' points to src array + scaled offset 5550 src = must_be_not_null(src, true); 5551 Node* src_start = array_element_address(src, offset, src_elem); 5552 5553 // static final int[] byteTable in class CRC32C 5554 Node* table = get_table_from_crc32c_class(callee()->holder()); 5555 table = must_be_not_null(table, true); 5556 Node* table_start = array_element_address(table, intcon(0), T_INT); 5557 5558 // We assume that range check is done by caller. 5559 // TODO: generate range check (offset+length < src.length) in debug VM. 5560 5561 // Call the stub. 5562 address stubAddr = StubRoutines::updateBytesCRC32C(); 5563 const char *stubName = "updateBytesCRC32C"; 5564 5565 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 5566 stubAddr, stubName, TypePtr::BOTTOM, 5567 crc, src_start, length, table_start); 5568 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5569 set_result(result); 5570 return true; 5571 } 5572 5573 //------------------------------inline_updateDirectByteBufferCRC32C----------------------- 5574 // 5575 // Calculate CRC32C for DirectByteBuffer. 5576 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 5577 // 5578 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { 5579 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 5580 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); 5581 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 5582 // no receiver since it is a static method 5583 Node* crc = argument(0); // type: int 5584 Node* src = argument(1); // type: long 5585 Node* offset = argument(3); // type: int 5586 Node* end = argument(4); // type: int 5587 5588 Node* length = _gvn.transform(new SubINode(end, offset)); 5589 5590 src = ConvL2X(src); // adjust Java long to machine word 5591 Node* base = _gvn.transform(new CastX2PNode(src)); 5592 offset = ConvI2X(offset); 5593 5594 // 'src_start' points to src array + scaled offset 5595 Node* src_start = basic_plus_adr(top(), base, offset); 5596 5597 // static final int[] byteTable in class CRC32C 5598 Node* table = get_table_from_crc32c_class(callee()->holder()); 5599 table = must_be_not_null(table, true); 5600 Node* table_start = array_element_address(table, intcon(0), T_INT); 5601 5602 // Call the stub. 5603 address stubAddr = StubRoutines::updateBytesCRC32C(); 5604 const char *stubName = "updateBytesCRC32C"; 5605 5606 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 5607 stubAddr, stubName, TypePtr::BOTTOM, 5608 crc, src_start, length, table_start); 5609 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5610 set_result(result); 5611 return true; 5612 } 5613 5614 //------------------------------inline_updateBytesAdler32---------------------- 5615 // 5616 // Calculate Adler32 checksum for byte[] array. 5617 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) 5618 // 5619 bool LibraryCallKit::inline_updateBytesAdler32() { 5620 assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one 5621 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 5622 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 5623 // no receiver since it is static method 5624 Node* crc = argument(0); // type: int 5625 Node* src = argument(1); // type: oop 5626 Node* offset = argument(2); // type: int 5627 Node* length = argument(3); // type: int 5628 5629 const Type* src_type = src->Value(&_gvn); 5630 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5631 if (top_src == NULL || top_src->klass() == NULL) { 5632 // failed array check 5633 return false; 5634 } 5635 5636 // Figure out the size and type of the elements we will be copying. 5637 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5638 if (src_elem != T_BYTE) { 5639 return false; 5640 } 5641 5642 // 'src_start' points to src array + scaled offset 5643 Node* src_start = array_element_address(src, offset, src_elem); 5644 5645 // We assume that range check is done by caller. 5646 // TODO: generate range check (offset+length < src.length) in debug VM. 5647 5648 // Call the stub. 5649 address stubAddr = StubRoutines::updateBytesAdler32(); 5650 const char *stubName = "updateBytesAdler32"; 5651 5652 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 5653 stubAddr, stubName, TypePtr::BOTTOM, 5654 crc, src_start, length); 5655 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5656 set_result(result); 5657 return true; 5658 } 5659 5660 //------------------------------inline_updateByteBufferAdler32--------------- 5661 // 5662 // Calculate Adler32 checksum for DirectByteBuffer. 5663 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) 5664 // 5665 bool LibraryCallKit::inline_updateByteBufferAdler32() { 5666 assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one 5667 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 5668 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 5669 // no receiver since it is static method 5670 Node* crc = argument(0); // type: int 5671 Node* src = argument(1); // type: long 5672 Node* offset = argument(3); // type: int 5673 Node* length = argument(4); // type: int 5674 5675 src = ConvL2X(src); // adjust Java long to machine word 5676 Node* base = _gvn.transform(new CastX2PNode(src)); 5677 offset = ConvI2X(offset); 5678 5679 // 'src_start' points to src array + scaled offset 5680 Node* src_start = basic_plus_adr(top(), base, offset); 5681 5682 // Call the stub. 5683 address stubAddr = StubRoutines::updateBytesAdler32(); 5684 const char *stubName = "updateBytesAdler32"; 5685 5686 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 5687 stubAddr, stubName, TypePtr::BOTTOM, 5688 crc, src_start, length); 5689 5690 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5691 set_result(result); 5692 return true; 5693 } 5694 5695 //----------------------------inline_reference_get---------------------------- 5696 // public T java.lang.ref.Reference.get(); 5697 bool LibraryCallKit::inline_reference_get() { 5698 const int referent_offset = java_lang_ref_Reference::referent_offset(); 5699 5700 // Get the argument: 5701 Node* reference_obj = null_check_receiver(); 5702 if (stopped()) return true; 5703 5704 const TypeInstPtr* tinst = _gvn.type(reference_obj)->isa_instptr(); 5705 assert(tinst != NULL, "obj is null"); 5706 assert(tinst->klass()->is_loaded(), "obj is not loaded"); 5707 ciInstanceKlass* referenceKlass = tinst->klass()->as_instance_klass(); 5708 ciField* field = referenceKlass->get_field_by_name(ciSymbol::make("referent"), 5709 ciSymbol::make("Ljava/lang/Object;"), 5710 false); 5711 assert (field != NULL, "undefined field"); 5712 5713 Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset); 5714 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 5715 5716 ciInstanceKlass* klass = env()->Object_klass(); 5717 const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass); 5718 5719 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; 5720 Node* result = access_load_at(reference_obj, adr, adr_type, object_type, T_OBJECT, decorators); 5721 // Add memory barrier to prevent commoning reads from this field 5722 // across safepoint since GC can change its value. 5723 insert_mem_bar(Op_MemBarCPUOrder); 5724 5725 set_result(result); 5726 return true; 5727 } 5728 5729 5730 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 5731 bool is_exact=true, bool is_static=false, 5732 ciInstanceKlass * fromKls=NULL) { 5733 if (fromKls == NULL) { 5734 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 5735 assert(tinst != NULL, "obj is null"); 5736 assert(tinst->klass()->is_loaded(), "obj is not loaded"); 5737 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 5738 fromKls = tinst->klass()->as_instance_klass(); 5739 } else { 5740 assert(is_static, "only for static field access"); 5741 } 5742 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 5743 ciSymbol::make(fieldTypeString), 5744 is_static); 5745 5746 assert (field != NULL, "undefined field"); 5747 if (field == NULL) return (Node *) NULL; 5748 5749 if (is_static) { 5750 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 5751 fromObj = makecon(tip); 5752 } 5753 5754 // Next code copied from Parse::do_get_xxx(): 5755 5756 // Compute address and memory type. 5757 int offset = field->offset_in_bytes(); 5758 bool is_vol = field->is_volatile(); 5759 ciType* field_klass = field->type(); 5760 assert(field_klass->is_loaded(), "should be loaded"); 5761 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 5762 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 5763 BasicType bt = field->layout_type(); 5764 5765 // Build the resultant type of the load 5766 const Type *type; 5767 if (bt == T_OBJECT) { 5768 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 5769 } else { 5770 type = Type::get_const_basic_type(bt); 5771 } 5772 5773 DecoratorSet decorators = IN_HEAP; 5774 5775 if (is_vol) { 5776 decorators |= MO_SEQ_CST; 5777 } 5778 5779 return access_load_at(fromObj, adr, adr_type, type, bt, decorators); 5780 } 5781 5782 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 5783 bool is_exact = true, bool is_static = false, 5784 ciInstanceKlass * fromKls = NULL) { 5785 if (fromKls == NULL) { 5786 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 5787 assert(tinst != NULL, "obj is null"); 5788 assert(tinst->klass()->is_loaded(), "obj is not loaded"); 5789 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 5790 fromKls = tinst->klass()->as_instance_klass(); 5791 } 5792 else { 5793 assert(is_static, "only for static field access"); 5794 } 5795 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 5796 ciSymbol::make(fieldTypeString), 5797 is_static); 5798 5799 assert(field != NULL, "undefined field"); 5800 assert(!field->is_volatile(), "not defined for volatile fields"); 5801 5802 if (is_static) { 5803 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 5804 fromObj = makecon(tip); 5805 } 5806 5807 // Next code copied from Parse::do_get_xxx(): 5808 5809 // Compute address and memory type. 5810 int offset = field->offset_in_bytes(); 5811 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 5812 5813 return adr; 5814 } 5815 5816 //------------------------------inline_aescrypt_Block----------------------- 5817 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { 5818 address stubAddr = NULL; 5819 const char *stubName; 5820 assert(UseAES, "need AES instruction support"); 5821 5822 switch(id) { 5823 case vmIntrinsics::_aescrypt_encryptBlock: 5824 stubAddr = StubRoutines::aescrypt_encryptBlock(); 5825 stubName = "aescrypt_encryptBlock"; 5826 break; 5827 case vmIntrinsics::_aescrypt_decryptBlock: 5828 stubAddr = StubRoutines::aescrypt_decryptBlock(); 5829 stubName = "aescrypt_decryptBlock"; 5830 break; 5831 default: 5832 break; 5833 } 5834 if (stubAddr == NULL) return false; 5835 5836 Node* aescrypt_object = argument(0); 5837 Node* src = argument(1); 5838 Node* src_offset = argument(2); 5839 Node* dest = argument(3); 5840 Node* dest_offset = argument(4); 5841 5842 src = must_be_not_null(src, true); 5843 dest = must_be_not_null(dest, true); 5844 5845 // (1) src and dest are arrays. 5846 const Type* src_type = src->Value(&_gvn); 5847 const Type* dest_type = dest->Value(&_gvn); 5848 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5849 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 5850 assert (top_src != NULL && top_src->klass() != NULL && top_dest != NULL && top_dest->klass() != NULL, "args are strange"); 5851 5852 // for the quick and dirty code we will skip all the checks. 5853 // we are just trying to get the call to be generated. 5854 Node* src_start = src; 5855 Node* dest_start = dest; 5856 if (src_offset != NULL || dest_offset != NULL) { 5857 assert(src_offset != NULL && dest_offset != NULL, ""); 5858 src_start = array_element_address(src, src_offset, T_BYTE); 5859 dest_start = array_element_address(dest, dest_offset, T_BYTE); 5860 } 5861 5862 // now need to get the start of its expanded key array 5863 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 5864 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 5865 if (k_start == NULL) return false; 5866 5867 if (Matcher::pass_original_key_for_aes()) { 5868 // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to 5869 // compatibility issues between Java key expansion and SPARC crypto instructions 5870 Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object); 5871 if (original_k_start == NULL) return false; 5872 5873 // Call the stub. 5874 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 5875 stubAddr, stubName, TypePtr::BOTTOM, 5876 src_start, dest_start, k_start, original_k_start); 5877 } else { 5878 // Call the stub. 5879 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 5880 stubAddr, stubName, TypePtr::BOTTOM, 5881 src_start, dest_start, k_start); 5882 } 5883 5884 return true; 5885 } 5886 5887 //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- 5888 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { 5889 address stubAddr = NULL; 5890 const char *stubName = NULL; 5891 5892 assert(UseAES, "need AES instruction support"); 5893 5894 switch(id) { 5895 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 5896 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); 5897 stubName = "cipherBlockChaining_encryptAESCrypt"; 5898 break; 5899 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 5900 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); 5901 stubName = "cipherBlockChaining_decryptAESCrypt"; 5902 break; 5903 default: 5904 break; 5905 } 5906 if (stubAddr == NULL) return false; 5907 5908 Node* cipherBlockChaining_object = argument(0); 5909 Node* src = argument(1); 5910 Node* src_offset = argument(2); 5911 Node* len = argument(3); 5912 Node* dest = argument(4); 5913 Node* dest_offset = argument(5); 5914 5915 src = must_be_not_null(src, false); 5916 dest = must_be_not_null(dest, false); 5917 5918 // (1) src and dest are arrays. 5919 const Type* src_type = src->Value(&_gvn); 5920 const Type* dest_type = dest->Value(&_gvn); 5921 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5922 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 5923 assert (top_src != NULL && top_src->klass() != NULL 5924 && top_dest != NULL && top_dest->klass() != NULL, "args are strange"); 5925 5926 // checks are the responsibility of the caller 5927 Node* src_start = src; 5928 Node* dest_start = dest; 5929 if (src_offset != NULL || dest_offset != NULL) { 5930 assert(src_offset != NULL && dest_offset != NULL, ""); 5931 src_start = array_element_address(src, src_offset, T_BYTE); 5932 dest_start = array_element_address(dest, dest_offset, T_BYTE); 5933 } 5934 5935 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 5936 // (because of the predicated logic executed earlier). 5937 // so we cast it here safely. 5938 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 5939 5940 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false); 5941 if (embeddedCipherObj == NULL) return false; 5942 5943 // cast it to what we know it will be at runtime 5944 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); 5945 assert(tinst != NULL, "CBC obj is null"); 5946 assert(tinst->klass()->is_loaded(), "CBC obj is not loaded"); 5947 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 5948 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 5949 5950 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 5951 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 5952 const TypeOopPtr* xtype = aklass->as_instance_type(); 5953 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 5954 aescrypt_object = _gvn.transform(aescrypt_object); 5955 5956 // we need to get the start of the aescrypt_object's expanded key array 5957 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 5958 if (k_start == NULL) return false; 5959 5960 // similarly, get the start address of the r vector 5961 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false); 5962 if (objRvec == NULL) return false; 5963 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); 5964 5965 Node* cbcCrypt; 5966 if (Matcher::pass_original_key_for_aes()) { 5967 // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to 5968 // compatibility issues between Java key expansion and SPARC crypto instructions 5969 Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object); 5970 if (original_k_start == NULL) return false; 5971 5972 // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start 5973 cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 5974 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 5975 stubAddr, stubName, TypePtr::BOTTOM, 5976 src_start, dest_start, k_start, r_start, len, original_k_start); 5977 } else { 5978 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 5979 cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 5980 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 5981 stubAddr, stubName, TypePtr::BOTTOM, 5982 src_start, dest_start, k_start, r_start, len); 5983 } 5984 5985 // return cipher length (int) 5986 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); 5987 set_result(retvalue); 5988 return true; 5989 } 5990 5991 //------------------------------inline_electronicCodeBook_AESCrypt----------------------- 5992 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) { 5993 address stubAddr = NULL; 5994 const char *stubName = NULL; 5995 5996 assert(UseAES, "need AES instruction support"); 5997 5998 switch (id) { 5999 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 6000 stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt(); 6001 stubName = "electronicCodeBook_encryptAESCrypt"; 6002 break; 6003 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 6004 stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt(); 6005 stubName = "electronicCodeBook_decryptAESCrypt"; 6006 break; 6007 default: 6008 break; 6009 } 6010 6011 if (stubAddr == NULL) return false; 6012 6013 Node* electronicCodeBook_object = argument(0); 6014 Node* src = argument(1); 6015 Node* src_offset = argument(2); 6016 Node* len = argument(3); 6017 Node* dest = argument(4); 6018 Node* dest_offset = argument(5); 6019 6020 // (1) src and dest are arrays. 6021 const Type* src_type = src->Value(&_gvn); 6022 const Type* dest_type = dest->Value(&_gvn); 6023 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6024 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 6025 assert(top_src != NULL && top_src->klass() != NULL 6026 && top_dest != NULL && top_dest->klass() != NULL, "args are strange"); 6027 6028 // checks are the responsibility of the caller 6029 Node* src_start = src; 6030 Node* dest_start = dest; 6031 if (src_offset != NULL || dest_offset != NULL) { 6032 assert(src_offset != NULL && dest_offset != NULL, ""); 6033 src_start = array_element_address(src, src_offset, T_BYTE); 6034 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6035 } 6036 6037 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 6038 // (because of the predicated logic executed earlier). 6039 // so we cast it here safely. 6040 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6041 6042 Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false); 6043 if (embeddedCipherObj == NULL) return false; 6044 6045 // cast it to what we know it will be at runtime 6046 const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr(); 6047 assert(tinst != NULL, "ECB obj is null"); 6048 assert(tinst->klass()->is_loaded(), "ECB obj is not loaded"); 6049 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6050 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 6051 6052 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6053 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 6054 const TypeOopPtr* xtype = aklass->as_instance_type(); 6055 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 6056 aescrypt_object = _gvn.transform(aescrypt_object); 6057 6058 // we need to get the start of the aescrypt_object's expanded key array 6059 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6060 if (k_start == NULL) return false; 6061 6062 Node* ecbCrypt; 6063 if (Matcher::pass_original_key_for_aes()) { 6064 // no SPARC version for AES/ECB intrinsics now. 6065 return false; 6066 } 6067 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 6068 ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP, 6069 OptoRuntime::electronicCodeBook_aescrypt_Type(), 6070 stubAddr, stubName, TypePtr::BOTTOM, 6071 src_start, dest_start, k_start, len); 6072 6073 // return cipher length (int) 6074 Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms)); 6075 set_result(retvalue); 6076 return true; 6077 } 6078 6079 //------------------------------inline_counterMode_AESCrypt----------------------- 6080 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { 6081 assert(UseAES, "need AES instruction support"); 6082 if (!UseAESCTRIntrinsics) return false; 6083 6084 address stubAddr = NULL; 6085 const char *stubName = NULL; 6086 if (id == vmIntrinsics::_counterMode_AESCrypt) { 6087 stubAddr = StubRoutines::counterMode_AESCrypt(); 6088 stubName = "counterMode_AESCrypt"; 6089 } 6090 if (stubAddr == NULL) return false; 6091 6092 Node* counterMode_object = argument(0); 6093 Node* src = argument(1); 6094 Node* src_offset = argument(2); 6095 Node* len = argument(3); 6096 Node* dest = argument(4); 6097 Node* dest_offset = argument(5); 6098 6099 // (1) src and dest are arrays. 6100 const Type* src_type = src->Value(&_gvn); 6101 const Type* dest_type = dest->Value(&_gvn); 6102 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6103 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 6104 assert(top_src != NULL && top_src->klass() != NULL && 6105 top_dest != NULL && top_dest->klass() != NULL, "args are strange"); 6106 6107 // checks are the responsibility of the caller 6108 Node* src_start = src; 6109 Node* dest_start = dest; 6110 if (src_offset != NULL || dest_offset != NULL) { 6111 assert(src_offset != NULL && dest_offset != NULL, ""); 6112 src_start = array_element_address(src, src_offset, T_BYTE); 6113 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6114 } 6115 6116 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 6117 // (because of the predicated logic executed earlier). 6118 // so we cast it here safely. 6119 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6120 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false); 6121 if (embeddedCipherObj == NULL) return false; 6122 // cast it to what we know it will be at runtime 6123 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); 6124 assert(tinst != NULL, "CTR obj is null"); 6125 assert(tinst->klass()->is_loaded(), "CTR obj is not loaded"); 6126 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6127 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 6128 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6129 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 6130 const TypeOopPtr* xtype = aklass->as_instance_type(); 6131 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 6132 aescrypt_object = _gvn.transform(aescrypt_object); 6133 // we need to get the start of the aescrypt_object's expanded key array 6134 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6135 if (k_start == NULL) return false; 6136 // similarly, get the start address of the r vector 6137 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B", /*is_exact*/ false); 6138 if (obj_counter == NULL) return false; 6139 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); 6140 6141 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B", /*is_exact*/ false); 6142 if (saved_encCounter == NULL) return false; 6143 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); 6144 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); 6145 6146 Node* ctrCrypt; 6147 if (Matcher::pass_original_key_for_aes()) { 6148 // no SPARC version for AES/CTR intrinsics now. 6149 return false; 6150 } 6151 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 6152 ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 6153 OptoRuntime::counterMode_aescrypt_Type(), 6154 stubAddr, stubName, TypePtr::BOTTOM, 6155 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); 6156 6157 // return cipher length (int) 6158 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); 6159 set_result(retvalue); 6160 return true; 6161 } 6162 6163 //------------------------------get_key_start_from_aescrypt_object----------------------- 6164 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { 6165 #if defined(PPC64) || defined(S390) 6166 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. 6167 // Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. 6168 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. 6169 // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]). 6170 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I", /*is_exact*/ false); 6171 assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt"); 6172 if (objSessionK == NULL) { 6173 return (Node *) NULL; 6174 } 6175 Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS); 6176 #else 6177 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false); 6178 #endif // PPC64 6179 assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt"); 6180 if (objAESCryptKey == NULL) return (Node *) NULL; 6181 6182 // now have the array, need to get the start address of the K array 6183 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); 6184 return k_start; 6185 } 6186 6187 //------------------------------get_original_key_start_from_aescrypt_object----------------------- 6188 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) { 6189 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false); 6190 assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt"); 6191 if (objAESCryptKey == NULL) return (Node *) NULL; 6192 6193 // now have the array, need to get the start address of the lastKey array 6194 Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE); 6195 return original_k_start; 6196 } 6197 6198 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- 6199 // Return node representing slow path of predicate check. 6200 // the pseudo code we want to emulate with this predicate is: 6201 // for encryption: 6202 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 6203 // for decryption: 6204 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 6205 // note cipher==plain is more conservative than the original java code but that's OK 6206 // 6207 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { 6208 // The receiver was checked for NULL already. 6209 Node* objCBC = argument(0); 6210 6211 Node* src = argument(1); 6212 Node* dest = argument(4); 6213 6214 // Load embeddedCipher field of CipherBlockChaining object. 6215 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false); 6216 6217 // get AESCrypt klass for instanceOf check 6218 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 6219 // will have same classloader as CipherBlockChaining object 6220 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); 6221 assert(tinst != NULL, "CBCobj is null"); 6222 assert(tinst->klass()->is_loaded(), "CBCobj is not loaded"); 6223 6224 // we want to do an instanceof comparison against the AESCrypt class 6225 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6226 if (!klass_AESCrypt->is_loaded()) { 6227 // if AESCrypt is not even loaded, we never take the intrinsic fast path 6228 Node* ctrl = control(); 6229 set_control(top()); // no regular fast path 6230 return ctrl; 6231 } 6232 6233 src = must_be_not_null(src, true); 6234 dest = must_be_not_null(dest, true); 6235 6236 // Resolve oops to stable for CmpP below. 6237 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6238 6239 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 6240 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 6241 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 6242 6243 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); 6244 6245 // for encryption, we are done 6246 if (!decrypting) 6247 return instof_false; // even if it is NULL 6248 6249 // for decryption, we need to add a further check to avoid 6250 // taking the intrinsic path when cipher and plain are the same 6251 // see the original java code for why. 6252 RegionNode* region = new RegionNode(3); 6253 region->init_req(1, instof_false); 6254 6255 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 6256 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 6257 Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN); 6258 region->init_req(2, src_dest_conjoint); 6259 6260 record_for_igvn(region); 6261 return _gvn.transform(region); 6262 } 6263 6264 //----------------------------inline_electronicCodeBook_AESCrypt_predicate---------------------------- 6265 // Return node representing slow path of predicate check. 6266 // the pseudo code we want to emulate with this predicate is: 6267 // for encryption: 6268 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 6269 // for decryption: 6270 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 6271 // note cipher==plain is more conservative than the original java code but that's OK 6272 // 6273 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) { 6274 // The receiver was checked for NULL already. 6275 Node* objECB = argument(0); 6276 6277 // Load embeddedCipher field of ElectronicCodeBook object. 6278 Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false); 6279 6280 // get AESCrypt klass for instanceOf check 6281 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 6282 // will have same classloader as ElectronicCodeBook object 6283 const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr(); 6284 assert(tinst != NULL, "ECBobj is null"); 6285 assert(tinst->klass()->is_loaded(), "ECBobj is not loaded"); 6286 6287 // we want to do an instanceof comparison against the AESCrypt class 6288 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6289 if (!klass_AESCrypt->is_loaded()) { 6290 // if AESCrypt is not even loaded, we never take the intrinsic fast path 6291 Node* ctrl = control(); 6292 set_control(top()); // no regular fast path 6293 return ctrl; 6294 } 6295 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6296 6297 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 6298 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 6299 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 6300 6301 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); 6302 6303 // for encryption, we are done 6304 if (!decrypting) 6305 return instof_false; // even if it is NULL 6306 6307 // for decryption, we need to add a further check to avoid 6308 // taking the intrinsic path when cipher and plain are the same 6309 // see the original java code for why. 6310 RegionNode* region = new RegionNode(3); 6311 region->init_req(1, instof_false); 6312 Node* src = argument(1); 6313 Node* dest = argument(4); 6314 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 6315 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 6316 Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN); 6317 region->init_req(2, src_dest_conjoint); 6318 6319 record_for_igvn(region); 6320 return _gvn.transform(region); 6321 } 6322 6323 //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- 6324 // Return node representing slow path of predicate check. 6325 // the pseudo code we want to emulate with this predicate is: 6326 // for encryption: 6327 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 6328 // for decryption: 6329 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 6330 // note cipher==plain is more conservative than the original java code but that's OK 6331 // 6332 6333 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { 6334 // The receiver was checked for NULL already. 6335 Node* objCTR = argument(0); 6336 6337 // Load embeddedCipher field of CipherBlockChaining object. 6338 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false); 6339 6340 // get AESCrypt klass for instanceOf check 6341 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 6342 // will have same classloader as CipherBlockChaining object 6343 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); 6344 assert(tinst != NULL, "CTRobj is null"); 6345 assert(tinst->klass()->is_loaded(), "CTRobj is not loaded"); 6346 6347 // we want to do an instanceof comparison against the AESCrypt class 6348 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6349 if (!klass_AESCrypt->is_loaded()) { 6350 // if AESCrypt is not even loaded, we never take the intrinsic fast path 6351 Node* ctrl = control(); 6352 set_control(top()); // no regular fast path 6353 return ctrl; 6354 } 6355 6356 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6357 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 6358 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 6359 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 6360 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); 6361 6362 return instof_false; // even if it is NULL 6363 } 6364 6365 //------------------------------inline_ghash_processBlocks 6366 bool LibraryCallKit::inline_ghash_processBlocks() { 6367 address stubAddr; 6368 const char *stubName; 6369 assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); 6370 6371 stubAddr = StubRoutines::ghash_processBlocks(); 6372 stubName = "ghash_processBlocks"; 6373 6374 Node* data = argument(0); 6375 Node* offset = argument(1); 6376 Node* len = argument(2); 6377 Node* state = argument(3); 6378 Node* subkeyH = argument(4); 6379 6380 state = must_be_not_null(state, true); 6381 subkeyH = must_be_not_null(subkeyH, true); 6382 data = must_be_not_null(data, true); 6383 6384 Node* state_start = array_element_address(state, intcon(0), T_LONG); 6385 assert(state_start, "state is NULL"); 6386 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); 6387 assert(subkeyH_start, "subkeyH is NULL"); 6388 Node* data_start = array_element_address(data, offset, T_BYTE); 6389 assert(data_start, "data is NULL"); 6390 6391 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, 6392 OptoRuntime::ghash_processBlocks_Type(), 6393 stubAddr, stubName, TypePtr::BOTTOM, 6394 state_start, subkeyH_start, data_start, len); 6395 return true; 6396 } 6397 6398 bool LibraryCallKit::inline_base64_encodeBlock() { 6399 address stubAddr; 6400 const char *stubName; 6401 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 6402 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters"); 6403 stubAddr = StubRoutines::base64_encodeBlock(); 6404 stubName = "encodeBlock"; 6405 6406 if (!stubAddr) return false; 6407 Node* base64obj = argument(0); 6408 Node* src = argument(1); 6409 Node* offset = argument(2); 6410 Node* len = argument(3); 6411 Node* dest = argument(4); 6412 Node* dp = argument(5); 6413 Node* isURL = argument(6); 6414 6415 src = must_be_not_null(src, true); 6416 dest = must_be_not_null(dest, true); 6417 6418 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 6419 assert(src_start, "source array is NULL"); 6420 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 6421 assert(dest_start, "destination array is NULL"); 6422 6423 Node* base64 = make_runtime_call(RC_LEAF, 6424 OptoRuntime::base64_encodeBlock_Type(), 6425 stubAddr, stubName, TypePtr::BOTTOM, 6426 src_start, offset, len, dest_start, dp, isURL); 6427 return true; 6428 } 6429 6430 //------------------------------inline_digestBase_implCompress----------------------- 6431 // 6432 // Calculate MD5 for single-block byte[] array. 6433 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs) 6434 // 6435 // Calculate SHA (i.e., SHA-1) for single-block byte[] array. 6436 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) 6437 // 6438 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. 6439 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) 6440 // 6441 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. 6442 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) 6443 // 6444 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) { 6445 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); 6446 6447 Node* digestBase_obj = argument(0); 6448 Node* src = argument(1); // type oop 6449 Node* ofs = argument(2); // type int 6450 6451 const Type* src_type = src->Value(&_gvn); 6452 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6453 if (top_src == NULL || top_src->klass() == NULL) { 6454 // failed array check 6455 return false; 6456 } 6457 // Figure out the size and type of the elements we will be copying. 6458 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 6459 if (src_elem != T_BYTE) { 6460 return false; 6461 } 6462 // 'src_start' points to src array + offset 6463 src = must_be_not_null(src, true); 6464 Node* src_start = array_element_address(src, ofs, src_elem); 6465 Node* state = NULL; 6466 address stubAddr; 6467 const char *stubName; 6468 6469 switch(id) { 6470 case vmIntrinsics::_md5_implCompress: 6471 assert(UseMD5Intrinsics, "need MD5 instruction support"); 6472 state = get_state_from_digest_object(digestBase_obj); 6473 stubAddr = StubRoutines::md5_implCompress(); 6474 stubName = "md5_implCompress"; 6475 break; 6476 case vmIntrinsics::_sha_implCompress: 6477 assert(UseSHA1Intrinsics, "need SHA1 instruction support"); 6478 state = get_state_from_digest_object(digestBase_obj); 6479 stubAddr = StubRoutines::sha1_implCompress(); 6480 stubName = "sha1_implCompress"; 6481 break; 6482 case vmIntrinsics::_sha2_implCompress: 6483 assert(UseSHA256Intrinsics, "need SHA256 instruction support"); 6484 state = get_state_from_digest_object(digestBase_obj); 6485 stubAddr = StubRoutines::sha256_implCompress(); 6486 stubName = "sha256_implCompress"; 6487 break; 6488 case vmIntrinsics::_sha5_implCompress: 6489 assert(UseSHA512Intrinsics, "need SHA512 instruction support"); 6490 state = get_long_state_from_digest_object(digestBase_obj); 6491 stubAddr = StubRoutines::sha512_implCompress(); 6492 stubName = "sha512_implCompress"; 6493 break; 6494 default: 6495 fatal_unexpected_iid(id); 6496 return false; 6497 } 6498 if (state == NULL) return false; 6499 6500 assert(stubAddr != NULL, "Stub is generated"); 6501 if (stubAddr == NULL) return false; 6502 6503 // Call the stub. 6504 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(), 6505 stubAddr, stubName, TypePtr::BOTTOM, 6506 src_start, state); 6507 6508 return true; 6509 } 6510 6511 //------------------------------inline_digestBase_implCompressMB----------------------- 6512 // 6513 // Calculate MD5/SHA/SHA2/SHA5 for multi-block byte[] array. 6514 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 6515 // 6516 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { 6517 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics, 6518 "need MD5/SHA1/SHA256/SHA512 instruction support"); 6519 assert((uint)predicate < 4, "sanity"); 6520 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); 6521 6522 Node* digestBase_obj = argument(0); // The receiver was checked for NULL already. 6523 Node* src = argument(1); // byte[] array 6524 Node* ofs = argument(2); // type int 6525 Node* limit = argument(3); // type int 6526 6527 const Type* src_type = src->Value(&_gvn); 6528 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6529 if (top_src == NULL || top_src->klass() == NULL) { 6530 // failed array check 6531 return false; 6532 } 6533 // Figure out the size and type of the elements we will be copying. 6534 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 6535 if (src_elem != T_BYTE) { 6536 return false; 6537 } 6538 // 'src_start' points to src array + offset 6539 src = must_be_not_null(src, false); 6540 Node* src_start = array_element_address(src, ofs, src_elem); 6541 6542 const char* klass_digestBase_name = NULL; 6543 const char* stub_name = NULL; 6544 address stub_addr = NULL; 6545 bool long_state = false; 6546 6547 switch (predicate) { 6548 case 0: 6549 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) { 6550 klass_digestBase_name = "sun/security/provider/MD5"; 6551 stub_name = "md5_implCompressMB"; 6552 stub_addr = StubRoutines::md5_implCompressMB(); 6553 } 6554 break; 6555 case 1: 6556 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) { 6557 klass_digestBase_name = "sun/security/provider/SHA"; 6558 stub_name = "sha1_implCompressMB"; 6559 stub_addr = StubRoutines::sha1_implCompressMB(); 6560 } 6561 break; 6562 case 2: 6563 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) { 6564 klass_digestBase_name = "sun/security/provider/SHA2"; 6565 stub_name = "sha256_implCompressMB"; 6566 stub_addr = StubRoutines::sha256_implCompressMB(); 6567 } 6568 break; 6569 case 3: 6570 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) { 6571 klass_digestBase_name = "sun/security/provider/SHA5"; 6572 stub_name = "sha512_implCompressMB"; 6573 stub_addr = StubRoutines::sha512_implCompressMB(); 6574 long_state = true; 6575 } 6576 break; 6577 default: 6578 fatal("unknown DigestBase intrinsic predicate: %d", predicate); 6579 } 6580 if (klass_digestBase_name != NULL) { 6581 assert(stub_addr != NULL, "Stub is generated"); 6582 if (stub_addr == NULL) return false; 6583 6584 // get DigestBase klass to lookup for SHA klass 6585 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); 6586 assert(tinst != NULL, "digestBase_obj is not instance???"); 6587 assert(tinst->klass()->is_loaded(), "DigestBase is not loaded"); 6588 6589 ciKlass* klass_digestBase = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name)); 6590 assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded"); 6591 ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass(); 6592 return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, long_state, stub_addr, stub_name, src_start, ofs, limit); 6593 } 6594 return false; 6595 } 6596 6597 //------------------------------inline_digestBase_implCompressMB----------------------- 6598 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase, 6599 bool long_state, address stubAddr, const char *stubName, 6600 Node* src_start, Node* ofs, Node* limit) { 6601 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase); 6602 const TypeOopPtr* xtype = aklass->as_instance_type(); 6603 Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); 6604 digest_obj = _gvn.transform(digest_obj); 6605 6606 Node* state; 6607 if (long_state) { 6608 state = get_long_state_from_digest_object(digest_obj); 6609 } else { 6610 state = get_state_from_digest_object(digest_obj); 6611 } 6612 if (state == NULL) return false; 6613 6614 // Call the stub. 6615 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6616 OptoRuntime::digestBase_implCompressMB_Type(), 6617 stubAddr, stubName, TypePtr::BOTTOM, 6618 src_start, state, ofs, limit); 6619 // return ofs (int) 6620 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6621 set_result(result); 6622 6623 return true; 6624 } 6625 6626 //------------------------------get_state_from_digest_object----------------------- 6627 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object) { 6628 Node* digest_state = load_field_from_object(digest_object, "state", "[I", /*is_exact*/ false); 6629 assert (digest_state != NULL, "wrong version of sun.security.provider.MD5/SHA/SHA2"); 6630 if (digest_state == NULL) return (Node *) NULL; 6631 6632 // now have the array, need to get the start address of the state array 6633 Node* state = array_element_address(digest_state, intcon(0), T_INT); 6634 return state; 6635 } 6636 6637 //------------------------------get_long_state_from_digest_object----------------------- 6638 Node * LibraryCallKit::get_long_state_from_digest_object(Node *digest_object) { 6639 Node* digest_state = load_field_from_object(digest_object, "state", "[J", /*is_exact*/ false); 6640 assert (digest_state != NULL, "wrong version of sun.security.provider.SHA5"); 6641 if (digest_state == NULL) return (Node *) NULL; 6642 6643 // now have the array, need to get the start address of the state array 6644 Node* state = array_element_address(digest_state, intcon(0), T_LONG); 6645 return state; 6646 } 6647 6648 //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- 6649 // Return node representing slow path of predicate check. 6650 // the pseudo code we want to emulate with this predicate is: 6651 // if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5) do_intrinsic, else do_javapath 6652 // 6653 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { 6654 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics, 6655 "need MD5/SHA1/SHA256/SHA512 instruction support"); 6656 assert((uint)predicate < 4, "sanity"); 6657 6658 // The receiver was checked for NULL already. 6659 Node* digestBaseObj = argument(0); 6660 6661 // get DigestBase klass for instanceOf check 6662 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); 6663 assert(tinst != NULL, "digestBaseObj is null"); 6664 assert(tinst->klass()->is_loaded(), "DigestBase is not loaded"); 6665 6666 const char* klass_name = NULL; 6667 switch (predicate) { 6668 case 0: 6669 if (UseMD5Intrinsics) { 6670 // we want to do an instanceof comparison against the MD5 class 6671 klass_name = "sun/security/provider/MD5"; 6672 } 6673 break; 6674 case 1: 6675 if (UseSHA1Intrinsics) { 6676 // we want to do an instanceof comparison against the SHA class 6677 klass_name = "sun/security/provider/SHA"; 6678 } 6679 break; 6680 case 2: 6681 if (UseSHA256Intrinsics) { 6682 // we want to do an instanceof comparison against the SHA2 class 6683 klass_name = "sun/security/provider/SHA2"; 6684 } 6685 break; 6686 case 3: 6687 if (UseSHA512Intrinsics) { 6688 // we want to do an instanceof comparison against the SHA5 class 6689 klass_name = "sun/security/provider/SHA5"; 6690 } 6691 break; 6692 default: 6693 fatal("unknown SHA intrinsic predicate: %d", predicate); 6694 } 6695 6696 ciKlass* klass = NULL; 6697 if (klass_name != NULL) { 6698 klass = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_name)); 6699 } 6700 if ((klass == NULL) || !klass->is_loaded()) { 6701 // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path 6702 Node* ctrl = control(); 6703 set_control(top()); // no intrinsic path 6704 return ctrl; 6705 } 6706 ciInstanceKlass* instklass = klass->as_instance_klass(); 6707 6708 Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass))); 6709 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 6710 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 6711 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); 6712 6713 return instof_false; // even if it is NULL 6714 } 6715 6716 //-------------inline_fma----------------------------------- 6717 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { 6718 Node *a = NULL; 6719 Node *b = NULL; 6720 Node *c = NULL; 6721 Node* result = NULL; 6722 switch (id) { 6723 case vmIntrinsics::_fmaD: 6724 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); 6725 // no receiver since it is static method 6726 a = round_double_node(argument(0)); 6727 b = round_double_node(argument(2)); 6728 c = round_double_node(argument(4)); 6729 result = _gvn.transform(new FmaDNode(control(), a, b, c)); 6730 break; 6731 case vmIntrinsics::_fmaF: 6732 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); 6733 a = argument(0); 6734 b = argument(1); 6735 c = argument(2); 6736 result = _gvn.transform(new FmaFNode(control(), a, b, c)); 6737 break; 6738 default: 6739 fatal_unexpected_iid(id); break; 6740 } 6741 set_result(result); 6742 return true; 6743 } 6744 6745 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { 6746 // argument(0) is receiver 6747 Node* codePoint = argument(1); 6748 Node* n = NULL; 6749 6750 switch (id) { 6751 case vmIntrinsics::_isDigit : 6752 n = new DigitNode(control(), codePoint); 6753 break; 6754 case vmIntrinsics::_isLowerCase : 6755 n = new LowerCaseNode(control(), codePoint); 6756 break; 6757 case vmIntrinsics::_isUpperCase : 6758 n = new UpperCaseNode(control(), codePoint); 6759 break; 6760 case vmIntrinsics::_isWhitespace : 6761 n = new WhitespaceNode(control(), codePoint); 6762 break; 6763 default: 6764 fatal_unexpected_iid(id); 6765 } 6766 6767 set_result(_gvn.transform(n)); 6768 return true; 6769 } 6770 6771 //------------------------------inline_fp_min_max------------------------------ 6772 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) { 6773 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416. 6774 6775 // The intrinsic should be used only when the API branches aren't predictable, 6776 // the last one performing the most important comparison. The following heuristic 6777 // uses the branch statistics to eventually bail out if necessary. 6778 6779 ciMethodData *md = callee()->method_data(); 6780 6781 if ( md != NULL && md->is_mature() && md->invocation_count() > 0 ) { 6782 ciCallProfile cp = caller()->call_profile_at_bci(bci()); 6783 6784 if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) { 6785 // Bail out if the call-site didn't contribute enough to the statistics. 6786 return false; 6787 } 6788 6789 uint taken = 0, not_taken = 0; 6790 6791 for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) { 6792 if (p->is_BranchData()) { 6793 taken = ((ciBranchData*)p)->taken(); 6794 not_taken = ((ciBranchData*)p)->not_taken(); 6795 } 6796 } 6797 6798 double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count()); 6799 balance = balance < 0 ? -balance : balance; 6800 if ( balance > 0.2 ) { 6801 // Bail out if the most important branch is predictable enough. 6802 return false; 6803 } 6804 } 6805 */ 6806 6807 Node *a = NULL; 6808 Node *b = NULL; 6809 Node *n = NULL; 6810 switch (id) { 6811 case vmIntrinsics::_maxF: 6812 case vmIntrinsics::_minF: 6813 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each."); 6814 a = argument(0); 6815 b = argument(1); 6816 break; 6817 case vmIntrinsics::_maxD: 6818 case vmIntrinsics::_minD: 6819 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each."); 6820 a = round_double_node(argument(0)); 6821 b = round_double_node(argument(2)); 6822 break; 6823 default: 6824 fatal_unexpected_iid(id); 6825 break; 6826 } 6827 switch (id) { 6828 case vmIntrinsics::_maxF: n = new MaxFNode(a, b); break; 6829 case vmIntrinsics::_minF: n = new MinFNode(a, b); break; 6830 case vmIntrinsics::_maxD: n = new MaxDNode(a, b); break; 6831 case vmIntrinsics::_minD: n = new MinDNode(a, b); break; 6832 default: fatal_unexpected_iid(id); break; 6833 } 6834 set_result(_gvn.transform(n)); 6835 return true; 6836 } 6837 6838 bool LibraryCallKit::inline_profileBoolean() { 6839 Node* counts = argument(1); 6840 const TypeAryPtr* ary = NULL; 6841 ciArray* aobj = NULL; 6842 if (counts->is_Con() 6843 && (ary = counts->bottom_type()->isa_aryptr()) != NULL 6844 && (aobj = ary->const_oop()->as_array()) != NULL 6845 && (aobj->length() == 2)) { 6846 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. 6847 jint false_cnt = aobj->element_value(0).as_int(); 6848 jint true_cnt = aobj->element_value(1).as_int(); 6849 6850 if (C->log() != NULL) { 6851 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", 6852 false_cnt, true_cnt); 6853 } 6854 6855 if (false_cnt + true_cnt == 0) { 6856 // According to profile, never executed. 6857 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 6858 Deoptimization::Action_reinterpret); 6859 return true; 6860 } 6861 6862 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) 6863 // is a number of each value occurrences. 6864 Node* result = argument(0); 6865 if (false_cnt == 0 || true_cnt == 0) { 6866 // According to profile, one value has been never seen. 6867 int expected_val = (false_cnt == 0) ? 1 : 0; 6868 6869 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); 6870 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 6871 6872 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); 6873 Node* fast_path = _gvn.transform(new IfTrueNode(check)); 6874 Node* slow_path = _gvn.transform(new IfFalseNode(check)); 6875 6876 { // Slow path: uncommon trap for never seen value and then reexecute 6877 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows 6878 // the value has been seen at least once. 6879 PreserveJVMState pjvms(this); 6880 PreserveReexecuteState preexecs(this); 6881 jvms()->set_should_reexecute(true); 6882 6883 set_control(slow_path); 6884 set_i_o(i_o()); 6885 6886 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 6887 Deoptimization::Action_reinterpret); 6888 } 6889 // The guard for never seen value enables sharpening of the result and 6890 // returning a constant. It allows to eliminate branches on the same value 6891 // later on. 6892 set_control(fast_path); 6893 result = intcon(expected_val); 6894 } 6895 // Stop profiling. 6896 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. 6897 // By replacing method body with profile data (represented as ProfileBooleanNode 6898 // on IR level) we effectively disable profiling. 6899 // It enables full speed execution once optimized code is generated. 6900 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); 6901 C->record_for_igvn(profile); 6902 set_result(profile); 6903 return true; 6904 } else { 6905 // Continue profiling. 6906 // Profile data isn't available at the moment. So, execute method's bytecode version. 6907 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod 6908 // is compiled and counters aren't available since corresponding MethodHandle 6909 // isn't a compile-time constant. 6910 return false; 6911 } 6912 } 6913 6914 bool LibraryCallKit::inline_isCompileConstant() { 6915 Node* n = argument(0); 6916 set_result(n->is_Con() ? intcon(1) : intcon(0)); 6917 return true; 6918 } 6919 6920 bool LibraryCallKit::inline_sizeOf() { 6921 if (!RuntimeSizeOf) { 6922 set_result(longcon(-1)); 6923 return true; 6924 } 6925 6926 Node* obj = argument(0); 6927 Node* klass_node = load_object_klass(obj); 6928 6929 jint layout_con = Klass::_lh_neutral_value; 6930 Node* layout_val = get_layout_helper(klass_node, layout_con); 6931 int layout_is_con = (layout_val == NULL); 6932 6933 if (layout_is_con) { 6934 // Layout helper is constant, can figure out things at compile time. 6935 assert(false, "Since sizeOf is @DontInline, this path should be unvisited"); 6936 6937 if (Klass::layout_helper_is_instance(layout_con)) { 6938 // Instance case: layout_con contains the size itself. 6939 Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con)); 6940 set_result(size); 6941 } else { 6942 // Array case: size is round(header + element_size*arraylength). 6943 // Since arraylength is different for every array instance, we have to 6944 // compute the whole thing at runtime. 6945 6946 Node* arr_length = load_array_length(obj); 6947 6948 int round_mask = MinObjAlignmentInBytes - 1; 6949 int hsize = Klass::layout_helper_header_size(layout_con); 6950 int eshift = Klass::layout_helper_log2_element_size(layout_con); 6951 6952 if ((round_mask & ~right_n_bits(eshift)) == 0) { 6953 round_mask = 0; // strength-reduce it if it goes away completely 6954 } 6955 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 6956 Node* header_size = intcon(hsize + round_mask); 6957 6958 Node* lengthx = ConvI2X(arr_length); 6959 Node* headerx = ConvI2X(header_size); 6960 6961 Node* abody = lengthx; 6962 if (eshift != 0) { 6963 abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift))); 6964 } 6965 Node* size = _gvn.transform( new AddXNode(headerx, abody) ); 6966 if (round_mask != 0) { 6967 size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) ); 6968 } 6969 size = ConvX2L(size); 6970 set_result(size); 6971 } 6972 } else { 6973 // Layout helper is not constant, need to test for array-ness at runtime. 6974 6975 enum { _instance_path = 1, _array_path, PATH_LIMIT }; 6976 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 6977 PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG); 6978 record_for_igvn(result_reg); 6979 6980 Node* array_ctl = generate_array_guard(klass_node, NULL); 6981 if (array_ctl != NULL) { 6982 // Array case: size is round(header + element_size*arraylength). 6983 // Since arraylength is different for every array instance, we have to 6984 // compute the whole thing at runtime. 6985 6986 PreserveJVMState pjvms(this); 6987 set_control(array_ctl); 6988 Node* arr_length = load_array_length(obj); 6989 6990 int round_mask = MinObjAlignmentInBytes - 1; 6991 Node* mask = intcon(round_mask); 6992 6993 Node* hss = intcon(Klass::_lh_header_size_shift); 6994 Node* hsm = intcon(Klass::_lh_header_size_mask); 6995 Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 6996 header_size = _gvn.transform(new AndINode(header_size, hsm)); 6997 header_size = _gvn.transform(new AddINode(header_size, mask)); 6998 6999 // There is no need to mask or shift this value. 7000 // The semantics of LShiftINode include an implicit mask to 0x1F. 7001 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 7002 Node* elem_shift = layout_val; 7003 7004 Node* lengthx = ConvI2X(arr_length); 7005 Node* headerx = ConvI2X(header_size); 7006 7007 Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 7008 Node* size = _gvn.transform(new AddXNode(headerx, abody)); 7009 if (round_mask != 0) { 7010 size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask))); 7011 } 7012 size = ConvX2L(size); 7013 7014 result_reg->init_req(_array_path, control()); 7015 result_val->init_req(_array_path, size); 7016 } 7017 7018 if (!stopped()) { 7019 // Instance case: the layout helper gives us instance size almost directly, 7020 // but we need to mask out the _lh_instance_slow_path_bit. 7021 Node* size = ConvI2X(layout_val); 7022 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 7023 Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong)); 7024 size = _gvn.transform(new AndXNode(size, mask)); 7025 size = ConvX2L(size); 7026 7027 result_reg->init_req(_instance_path, control()); 7028 result_val->init_req(_instance_path, size); 7029 } 7030 7031 set_result(result_reg, result_val); 7032 } 7033 7034 return true; 7035 } 7036 7037 bool LibraryCallKit::inline_addressOf() { 7038 if (!RuntimeAddressOf) { 7039 set_result(longcon(-1)); 7040 return true; 7041 } 7042 7043 Node* obj = argument(0); 7044 Node* raw_val = _gvn.transform(new CastP2XNode(NULL, obj)); 7045 Node* off_val = _gvn.transform(new AddXNode(raw_val, MakeConX(Universe::non_heap_offset()))); 7046 Node* long_val = ConvX2L(off_val); 7047 7048 set_result(long_val); 7049 return true; 7050 } 7051 7052 bool LibraryCallKit::inline_getReferencedObjects() { 7053 Node* a1 = argument(0); 7054 Node* a2 = argument(1); 7055 7056 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 7057 OptoRuntime::get_referenced_objects_Type(), 7058 CAST_FROM_FN_PTR(address, SharedRuntime::get_referenced_objects), 7059 "get_referenced_objects", 7060 TypePtr::BOTTOM, 7061 a1, a2); 7062 7063 Node* value = _gvn.transform(new ProjNode(call, TypeFunc::Parms+0)); 7064 set_result(value); 7065 return true; 7066 }