1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/compiledIC.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/compiledMethod.inline.hpp"
  35 #include "code/scopeDesc.hpp"
  36 #include "code/vtableStubs.hpp"
  37 #include "compiler/abstractCompiler.hpp"
  38 #include "compiler/compileBroker.hpp"
  39 #include "compiler/disassembler.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/gcLocker.inline.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "interpreter/interpreterRuntime.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/metaspaceShared.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "memory/universe.hpp"
  49 #include "oops/klass.hpp"
  50 #include "oops/method.inline.hpp"
  51 #include "oops/objArrayKlass.hpp"
  52 #include "oops/oop.inline.hpp"
  53 #include "prims/forte.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/methodHandles.hpp"
  56 #include "prims/nativeLookup.hpp"
  57 #include "runtime/arguments.hpp"
  58 #include "runtime/atomic.hpp"
  59 #include "runtime/biasedLocking.hpp"
  60 #include "runtime/frame.inline.hpp"
  61 #include "runtime/handles.inline.hpp"
  62 #include "runtime/init.hpp"
  63 #include "runtime/interfaceSupport.inline.hpp"
  64 #include "runtime/java.hpp"
  65 #include "runtime/javaCalls.hpp"
  66 #include "runtime/sharedRuntime.hpp"
  67 #include "runtime/stubRoutines.hpp"
  68 #include "runtime/synchronizer.hpp"
  69 #include "runtime/vframe.inline.hpp"
  70 #include "runtime/vframeArray.hpp"
  71 #include "utilities/copy.hpp"
  72 #include "utilities/dtrace.hpp"
  73 #include "utilities/events.hpp"
  74 #include "utilities/hashtable.inline.hpp"
  75 #include "utilities/macros.hpp"
  76 #include "utilities/xmlstream.hpp"
  77 #ifdef COMPILER1
  78 #include "c1/c1_Runtime1.hpp"
  79 #endif
  80 
  81 // Shared stub locations
  82 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  83 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  84 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  85 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  86 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  87 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  88 address             SharedRuntime::_resolve_static_call_entry;
  89 
  90 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  91 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  92 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  93 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  94 
  95 #ifdef COMPILER2
  96 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  97 #endif // COMPILER2
  98 
  99 
 100 //----------------------------generate_stubs-----------------------------------
 101 void SharedRuntime::generate_stubs() {
 102   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 103   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 104   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 105   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 106   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 107   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 108   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 109 
 110 #if COMPILER2_OR_JVMCI
 111   // Vectors are generated only by C2 and JVMCI.
 112   bool support_wide = is_wide_vector(MaxVectorSize);
 113   if (support_wide) {
 114     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 115   }
 116 #endif // COMPILER2_OR_JVMCI
 117   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 118   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 119 
 120   generate_deopt_blob();
 121 
 122 #ifdef COMPILER2
 123   generate_uncommon_trap_blob();
 124 #endif // COMPILER2
 125 }
 126 
 127 #include <math.h>
 128 
 129 // Implementation of SharedRuntime
 130 
 131 #ifndef PRODUCT
 132 // For statistics
 133 int SharedRuntime::_ic_miss_ctr = 0;
 134 int SharedRuntime::_wrong_method_ctr = 0;
 135 int SharedRuntime::_resolve_static_ctr = 0;
 136 int SharedRuntime::_resolve_virtual_ctr = 0;
 137 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 138 int SharedRuntime::_implicit_null_throws = 0;
 139 int SharedRuntime::_implicit_div0_throws = 0;
 140 int SharedRuntime::_throw_null_ctr = 0;
 141 
 142 int SharedRuntime::_nof_normal_calls = 0;
 143 int SharedRuntime::_nof_optimized_calls = 0;
 144 int SharedRuntime::_nof_inlined_calls = 0;
 145 int SharedRuntime::_nof_megamorphic_calls = 0;
 146 int SharedRuntime::_nof_static_calls = 0;
 147 int SharedRuntime::_nof_inlined_static_calls = 0;
 148 int SharedRuntime::_nof_interface_calls = 0;
 149 int SharedRuntime::_nof_optimized_interface_calls = 0;
 150 int SharedRuntime::_nof_inlined_interface_calls = 0;
 151 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 152 int SharedRuntime::_nof_removable_exceptions = 0;
 153 
 154 int SharedRuntime::_new_instance_ctr=0;
 155 int SharedRuntime::_new_array_ctr=0;
 156 int SharedRuntime::_multi1_ctr=0;
 157 int SharedRuntime::_multi2_ctr=0;
 158 int SharedRuntime::_multi3_ctr=0;
 159 int SharedRuntime::_multi4_ctr=0;
 160 int SharedRuntime::_multi5_ctr=0;
 161 int SharedRuntime::_mon_enter_stub_ctr=0;
 162 int SharedRuntime::_mon_exit_stub_ctr=0;
 163 int SharedRuntime::_mon_enter_ctr=0;
 164 int SharedRuntime::_mon_exit_ctr=0;
 165 int SharedRuntime::_partial_subtype_ctr=0;
 166 int SharedRuntime::_jbyte_array_copy_ctr=0;
 167 int SharedRuntime::_jshort_array_copy_ctr=0;
 168 int SharedRuntime::_jint_array_copy_ctr=0;
 169 int SharedRuntime::_jlong_array_copy_ctr=0;
 170 int SharedRuntime::_oop_array_copy_ctr=0;
 171 int SharedRuntime::_checkcast_array_copy_ctr=0;
 172 int SharedRuntime::_unsafe_array_copy_ctr=0;
 173 int SharedRuntime::_generic_array_copy_ctr=0;
 174 int SharedRuntime::_slow_array_copy_ctr=0;
 175 int SharedRuntime::_find_handler_ctr=0;
 176 int SharedRuntime::_rethrow_ctr=0;
 177 
 178 int     SharedRuntime::_ICmiss_index                    = 0;
 179 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 180 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 181 
 182 
 183 void SharedRuntime::trace_ic_miss(address at) {
 184   for (int i = 0; i < _ICmiss_index; i++) {
 185     if (_ICmiss_at[i] == at) {
 186       _ICmiss_count[i]++;
 187       return;
 188     }
 189   }
 190   int index = _ICmiss_index++;
 191   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 192   _ICmiss_at[index] = at;
 193   _ICmiss_count[index] = 1;
 194 }
 195 
 196 void SharedRuntime::print_ic_miss_histogram() {
 197   if (ICMissHistogram) {
 198     tty->print_cr("IC Miss Histogram:");
 199     int tot_misses = 0;
 200     for (int i = 0; i < _ICmiss_index; i++) {
 201       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 202       tot_misses += _ICmiss_count[i];
 203     }
 204     tty->print_cr("Total IC misses: %7d", tot_misses);
 205   }
 206 }
 207 #endif // PRODUCT
 208 
 209 
 210 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 211   return x * y;
 212 JRT_END
 213 
 214 
 215 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 216   if (x == min_jlong && y == CONST64(-1)) {
 217     return x;
 218   } else {
 219     return x / y;
 220   }
 221 JRT_END
 222 
 223 
 224 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 225   if (x == min_jlong && y == CONST64(-1)) {
 226     return 0;
 227   } else {
 228     return x % y;
 229   }
 230 JRT_END
 231 
 232 
 233 const juint  float_sign_mask  = 0x7FFFFFFF;
 234 const juint  float_infinity   = 0x7F800000;
 235 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 236 const julong double_infinity  = CONST64(0x7FF0000000000000);
 237 
 238 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 239 #ifdef _WIN64
 240   // 64-bit Windows on amd64 returns the wrong values for
 241   // infinity operands.
 242   union { jfloat f; juint i; } xbits, ybits;
 243   xbits.f = x;
 244   ybits.f = y;
 245   // x Mod Infinity == x unless x is infinity
 246   if (((xbits.i & float_sign_mask) != float_infinity) &&
 247        ((ybits.i & float_sign_mask) == float_infinity) ) {
 248     return x;
 249   }
 250   return ((jfloat)fmod_winx64((double)x, (double)y));
 251 #else
 252   return ((jfloat)fmod((double)x,(double)y));
 253 #endif
 254 JRT_END
 255 
 256 
 257 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 258 #ifdef _WIN64
 259   union { jdouble d; julong l; } xbits, ybits;
 260   xbits.d = x;
 261   ybits.d = y;
 262   // x Mod Infinity == x unless x is infinity
 263   if (((xbits.l & double_sign_mask) != double_infinity) &&
 264        ((ybits.l & double_sign_mask) == double_infinity) ) {
 265     return x;
 266   }
 267   return ((jdouble)fmod_winx64((double)x, (double)y));
 268 #else
 269   return ((jdouble)fmod((double)x,(double)y));
 270 #endif
 271 JRT_END
 272 
 273 #ifdef __SOFTFP__
 274 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 275   return x + y;
 276 JRT_END
 277 
 278 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 279   return x - y;
 280 JRT_END
 281 
 282 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 283   return x * y;
 284 JRT_END
 285 
 286 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 287   return x / y;
 288 JRT_END
 289 
 290 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 291   return x + y;
 292 JRT_END
 293 
 294 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 295   return x - y;
 296 JRT_END
 297 
 298 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 299   return x * y;
 300 JRT_END
 301 
 302 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 303   return x / y;
 304 JRT_END
 305 
 306 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 307   return (jfloat)x;
 308 JRT_END
 309 
 310 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 311   return (jdouble)x;
 312 JRT_END
 313 
 314 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 315   return (jdouble)x;
 316 JRT_END
 317 
 318 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 319   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 320 JRT_END
 321 
 322 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 323   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 324 JRT_END
 325 
 326 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 327   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 328 JRT_END
 329 
 330 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 331   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 332 JRT_END
 333 
 334 // Functions to return the opposite of the aeabi functions for nan.
 335 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 336   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 337 JRT_END
 338 
 339 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 340   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 341 JRT_END
 342 
 343 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 344   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 345 JRT_END
 346 
 347 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 348   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 349 JRT_END
 350 
 351 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 352   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 353 JRT_END
 354 
 355 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 356   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 357 JRT_END
 358 
 359 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 360   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 361 JRT_END
 362 
 363 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 364   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 365 JRT_END
 366 
 367 // Intrinsics make gcc generate code for these.
 368 float  SharedRuntime::fneg(float f)   {
 369   return -f;
 370 }
 371 
 372 double SharedRuntime::dneg(double f)  {
 373   return -f;
 374 }
 375 
 376 #endif // __SOFTFP__
 377 
 378 #if defined(__SOFTFP__) || defined(E500V2)
 379 // Intrinsics make gcc generate code for these.
 380 double SharedRuntime::dabs(double f)  {
 381   return (f <= (double)0.0) ? (double)0.0 - f : f;
 382 }
 383 
 384 #endif
 385 
 386 #if defined(__SOFTFP__) || defined(PPC)
 387 double SharedRuntime::dsqrt(double f) {
 388   return sqrt(f);
 389 }
 390 #endif
 391 
 392 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 393   if (g_isnan(x))
 394     return 0;
 395   if (x >= (jfloat) max_jint)
 396     return max_jint;
 397   if (x <= (jfloat) min_jint)
 398     return min_jint;
 399   return (jint) x;
 400 JRT_END
 401 
 402 
 403 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 404   if (g_isnan(x))
 405     return 0;
 406   if (x >= (jfloat) max_jlong)
 407     return max_jlong;
 408   if (x <= (jfloat) min_jlong)
 409     return min_jlong;
 410   return (jlong) x;
 411 JRT_END
 412 
 413 
 414 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 415   if (g_isnan(x))
 416     return 0;
 417   if (x >= (jdouble) max_jint)
 418     return max_jint;
 419   if (x <= (jdouble) min_jint)
 420     return min_jint;
 421   return (jint) x;
 422 JRT_END
 423 
 424 
 425 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 426   if (g_isnan(x))
 427     return 0;
 428   if (x >= (jdouble) max_jlong)
 429     return max_jlong;
 430   if (x <= (jdouble) min_jlong)
 431     return min_jlong;
 432   return (jlong) x;
 433 JRT_END
 434 
 435 
 436 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 437   return (jfloat)x;
 438 JRT_END
 439 
 440 
 441 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 442   return (jfloat)x;
 443 JRT_END
 444 
 445 
 446 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 447   return (jdouble)x;
 448 JRT_END
 449 
 450 // Exception handling across interpreter/compiler boundaries
 451 //
 452 // exception_handler_for_return_address(...) returns the continuation address.
 453 // The continuation address is the entry point of the exception handler of the
 454 // previous frame depending on the return address.
 455 
 456 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 457   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 458   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 459 
 460   // Reset method handle flag.
 461   thread->set_is_method_handle_return(false);
 462 
 463 #if INCLUDE_JVMCI
 464   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 465   // and other exception handler continuations do not read it
 466   thread->set_exception_pc(NULL);
 467 #endif // INCLUDE_JVMCI
 468 
 469   // The fastest case first
 470   CodeBlob* blob = CodeCache::find_blob(return_address);
 471   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 472   if (nm != NULL) {
 473     // Set flag if return address is a method handle call site.
 474     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 475     // native nmethods don't have exception handlers
 476     assert(!nm->is_native_method(), "no exception handler");
 477     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 478     if (nm->is_deopt_pc(return_address)) {
 479       // If we come here because of a stack overflow, the stack may be
 480       // unguarded. Reguard the stack otherwise if we return to the
 481       // deopt blob and the stack bang causes a stack overflow we
 482       // crash.
 483       bool guard_pages_enabled = thread->stack_guards_enabled();
 484       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 485       if (thread->reserved_stack_activation() != thread->stack_base()) {
 486         thread->set_reserved_stack_activation(thread->stack_base());
 487       }
 488       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 489       return SharedRuntime::deopt_blob()->unpack_with_exception();
 490     } else {
 491       return nm->exception_begin();
 492     }
 493   }
 494 
 495   // Entry code
 496   if (StubRoutines::returns_to_call_stub(return_address)) {
 497     return StubRoutines::catch_exception_entry();
 498   }
 499   // Interpreted code
 500   if (Interpreter::contains(return_address)) {
 501     return Interpreter::rethrow_exception_entry();
 502   }
 503 
 504   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 505   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 506 
 507 #ifndef PRODUCT
 508   { ResourceMark rm;
 509     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 510     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 511     tty->print_cr("b) other problem");
 512   }
 513 #endif // PRODUCT
 514 
 515   ShouldNotReachHere();
 516   return NULL;
 517 }
 518 
 519 
 520 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 521   return raw_exception_handler_for_return_address(thread, return_address);
 522 JRT_END
 523 
 524 
 525 address SharedRuntime::get_poll_stub(address pc) {
 526   address stub;
 527   // Look up the code blob
 528   CodeBlob *cb = CodeCache::find_blob(pc);
 529 
 530   // Should be an nmethod
 531   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 532 
 533   // Look up the relocation information
 534   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 535     "safepoint polling: type must be poll");
 536 
 537 #ifdef ASSERT
 538   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 539     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 540     Disassembler::decode(cb);
 541     fatal("Only polling locations are used for safepoint");
 542   }
 543 #endif
 544 
 545   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 546   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 547   if (at_poll_return) {
 548     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 549            "polling page return stub not created yet");
 550     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 551   } else if (has_wide_vectors) {
 552     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 553            "polling page vectors safepoint stub not created yet");
 554     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 555   } else {
 556     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 557            "polling page safepoint stub not created yet");
 558     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 559   }
 560   log_debug(safepoint)("... found polling page %s exception at pc = "
 561                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 562                        at_poll_return ? "return" : "loop",
 563                        (intptr_t)pc, (intptr_t)stub);
 564   return stub;
 565 }
 566 
 567 
 568 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 569   assert(caller.is_interpreted_frame(), "");
 570   int args_size = ArgumentSizeComputer(sig).size() + 1;
 571   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 572   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 573   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 574   return result;
 575 }
 576 
 577 
 578 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 579   if (JvmtiExport::can_post_on_exceptions()) {
 580     vframeStream vfst(thread, true);
 581     methodHandle method = methodHandle(thread, vfst.method());
 582     address bcp = method()->bcp_from(vfst.bci());
 583     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 584   }
 585   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 586 }
 587 
 588 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 589   Handle h_exception = Exceptions::new_exception(thread, name, message);
 590   throw_and_post_jvmti_exception(thread, h_exception);
 591 }
 592 
 593 // The interpreter code to call this tracing function is only
 594 // called/generated when UL is on for redefine, class and has the right level
 595 // and tags. Since obsolete methods are never compiled, we don't have
 596 // to modify the compilers to generate calls to this function.
 597 //
 598 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 599     JavaThread* thread, Method* method))
 600   if (method->is_obsolete()) {
 601     // We are calling an obsolete method, but this is not necessarily
 602     // an error. Our method could have been redefined just after we
 603     // fetched the Method* from the constant pool.
 604     ResourceMark rm;
 605     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 606   }
 607   return 0;
 608 JRT_END
 609 
 610 // ret_pc points into caller; we are returning caller's exception handler
 611 // for given exception
 612 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 613                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 614   assert(cm != NULL, "must exist");
 615   ResourceMark rm;
 616 
 617 #if INCLUDE_JVMCI
 618   if (cm->is_compiled_by_jvmci()) {
 619     // lookup exception handler for this pc
 620     int catch_pco = ret_pc - cm->code_begin();
 621     ExceptionHandlerTable table(cm);
 622     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 623     if (t != NULL) {
 624       return cm->code_begin() + t->pco();
 625     } else {
 626       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 627     }
 628   }
 629 #endif // INCLUDE_JVMCI
 630 
 631   nmethod* nm = cm->as_nmethod();
 632   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 633   // determine handler bci, if any
 634   EXCEPTION_MARK;
 635 
 636   int handler_bci = -1;
 637   int scope_depth = 0;
 638   if (!force_unwind) {
 639     int bci = sd->bci();
 640     bool recursive_exception = false;
 641     do {
 642       bool skip_scope_increment = false;
 643       // exception handler lookup
 644       Klass* ek = exception->klass();
 645       methodHandle mh(THREAD, sd->method());
 646       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 647       if (HAS_PENDING_EXCEPTION) {
 648         recursive_exception = true;
 649         // We threw an exception while trying to find the exception handler.
 650         // Transfer the new exception to the exception handle which will
 651         // be set into thread local storage, and do another lookup for an
 652         // exception handler for this exception, this time starting at the
 653         // BCI of the exception handler which caused the exception to be
 654         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 655         // argument to ensure that the correct exception is thrown (4870175).
 656         recursive_exception_occurred = true;
 657         exception = Handle(THREAD, PENDING_EXCEPTION);
 658         CLEAR_PENDING_EXCEPTION;
 659         if (handler_bci >= 0) {
 660           bci = handler_bci;
 661           handler_bci = -1;
 662           skip_scope_increment = true;
 663         }
 664       }
 665       else {
 666         recursive_exception = false;
 667       }
 668       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 669         sd = sd->sender();
 670         if (sd != NULL) {
 671           bci = sd->bci();
 672         }
 673         ++scope_depth;
 674       }
 675     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 676   }
 677 
 678   // found handling method => lookup exception handler
 679   int catch_pco = ret_pc - nm->code_begin();
 680 
 681   ExceptionHandlerTable table(nm);
 682   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 683   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 684     // Allow abbreviated catch tables.  The idea is to allow a method
 685     // to materialize its exceptions without committing to the exact
 686     // routing of exceptions.  In particular this is needed for adding
 687     // a synthetic handler to unlock monitors when inlining
 688     // synchronized methods since the unlock path isn't represented in
 689     // the bytecodes.
 690     t = table.entry_for(catch_pco, -1, 0);
 691   }
 692 
 693 #ifdef COMPILER1
 694   if (t == NULL && nm->is_compiled_by_c1()) {
 695     assert(nm->unwind_handler_begin() != NULL, "");
 696     return nm->unwind_handler_begin();
 697   }
 698 #endif
 699 
 700   if (t == NULL) {
 701     ttyLocker ttyl;
 702     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 703     tty->print_cr("   Exception:");
 704     exception->print();
 705     tty->cr();
 706     tty->print_cr(" Compiled exception table :");
 707     table.print();
 708     nm->print_code();
 709     guarantee(false, "missing exception handler");
 710     return NULL;
 711   }
 712 
 713   return nm->code_begin() + t->pco();
 714 }
 715 
 716 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 717   // These errors occur only at call sites
 718   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 719 JRT_END
 720 
 721 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 722   // These errors occur only at call sites
 723   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 724 JRT_END
 725 
 726 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 727   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 728 JRT_END
 729 
 730 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 731   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 732 JRT_END
 733 
 734 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 735   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 736   // cache sites (when the callee activation is not yet set up) so we are at a call site
 737   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 738 JRT_END
 739 
 740 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 741   throw_StackOverflowError_common(thread, false);
 742 JRT_END
 743 
 744 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 745   throw_StackOverflowError_common(thread, true);
 746 JRT_END
 747 
 748 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 749   // We avoid using the normal exception construction in this case because
 750   // it performs an upcall to Java, and we're already out of stack space.
 751   Thread* THREAD = thread;
 752   Klass* k = SystemDictionary::StackOverflowError_klass();
 753   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 754   if (delayed) {
 755     java_lang_Throwable::set_message(exception_oop,
 756                                      Universe::delayed_stack_overflow_error_message());
 757   }
 758   Handle exception (thread, exception_oop);
 759   if (StackTraceInThrowable) {
 760     java_lang_Throwable::fill_in_stack_trace(exception);
 761   }
 762   // Increment counter for hs_err file reporting
 763   Atomic::inc(&Exceptions::_stack_overflow_errors);
 764   throw_and_post_jvmti_exception(thread, exception);
 765 }
 766 
 767 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 768                                                            address pc,
 769                                                            ImplicitExceptionKind exception_kind)
 770 {
 771   address target_pc = NULL;
 772 
 773   if (Interpreter::contains(pc)) {
 774     switch (exception_kind) {
 775       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 776       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 777       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 778       default:                      ShouldNotReachHere();
 779     }
 780   } else {
 781     switch (exception_kind) {
 782       case STACK_OVERFLOW: {
 783         // Stack overflow only occurs upon frame setup; the callee is
 784         // going to be unwound. Dispatch to a shared runtime stub
 785         // which will cause the StackOverflowError to be fabricated
 786         // and processed.
 787         // Stack overflow should never occur during deoptimization:
 788         // the compiled method bangs the stack by as much as the
 789         // interpreter would need in case of a deoptimization. The
 790         // deoptimization blob and uncommon trap blob bang the stack
 791         // in a debug VM to verify the correctness of the compiled
 792         // method stack banging.
 793         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 794         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 795         return StubRoutines::throw_StackOverflowError_entry();
 796       }
 797 
 798       case IMPLICIT_NULL: {
 799         if (VtableStubs::contains(pc)) {
 800           // We haven't yet entered the callee frame. Fabricate an
 801           // exception and begin dispatching it in the caller. Since
 802           // the caller was at a call site, it's safe to destroy all
 803           // caller-saved registers, as these entry points do.
 804           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 805 
 806           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 807           if (vt_stub == NULL) return NULL;
 808 
 809           if (vt_stub->is_abstract_method_error(pc)) {
 810             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 811             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 812             // Instead of throwing the abstract method error here directly, we re-resolve
 813             // and will throw the AbstractMethodError during resolve. As a result, we'll
 814             // get a more detailed error message.
 815             return SharedRuntime::get_handle_wrong_method_stub();
 816           } else {
 817             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 818             // Assert that the signal comes from the expected location in stub code.
 819             assert(vt_stub->is_null_pointer_exception(pc),
 820                    "obtained signal from unexpected location in stub code");
 821             return StubRoutines::throw_NullPointerException_at_call_entry();
 822           }
 823         } else {
 824           CodeBlob* cb = CodeCache::find_blob(pc);
 825 
 826           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 827           if (cb == NULL) return NULL;
 828 
 829           // Exception happened in CodeCache. Must be either:
 830           // 1. Inline-cache check in C2I handler blob,
 831           // 2. Inline-cache check in nmethod, or
 832           // 3. Implicit null exception in nmethod
 833 
 834           if (!cb->is_compiled()) {
 835             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 836             if (!is_in_blob) {
 837               // Allow normal crash reporting to handle this
 838               return NULL;
 839             }
 840             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 841             // There is no handler here, so we will simply unwind.
 842             return StubRoutines::throw_NullPointerException_at_call_entry();
 843           }
 844 
 845           // Otherwise, it's a compiled method.  Consult its exception handlers.
 846           CompiledMethod* cm = (CompiledMethod*)cb;
 847           if (cm->inlinecache_check_contains(pc)) {
 848             // exception happened inside inline-cache check code
 849             // => the nmethod is not yet active (i.e., the frame
 850             // is not set up yet) => use return address pushed by
 851             // caller => don't push another return address
 852             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 853             return StubRoutines::throw_NullPointerException_at_call_entry();
 854           }
 855 
 856           if (cm->method()->is_method_handle_intrinsic()) {
 857             // exception happened inside MH dispatch code, similar to a vtable stub
 858             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 859             return StubRoutines::throw_NullPointerException_at_call_entry();
 860           }
 861 
 862 #ifndef PRODUCT
 863           _implicit_null_throws++;
 864 #endif
 865           target_pc = cm->continuation_for_implicit_null_exception(pc);
 866           // If there's an unexpected fault, target_pc might be NULL,
 867           // in which case we want to fall through into the normal
 868           // error handling code.
 869         }
 870 
 871         break; // fall through
 872       }
 873 
 874 
 875       case IMPLICIT_DIVIDE_BY_ZERO: {
 876         CompiledMethod* cm = CodeCache::find_compiled(pc);
 877         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 878 #ifndef PRODUCT
 879         _implicit_div0_throws++;
 880 #endif
 881         target_pc = cm->continuation_for_implicit_div0_exception(pc);
 882         // If there's an unexpected fault, target_pc might be NULL,
 883         // in which case we want to fall through into the normal
 884         // error handling code.
 885         break; // fall through
 886       }
 887 
 888       default: ShouldNotReachHere();
 889     }
 890 
 891     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 892 
 893     if (exception_kind == IMPLICIT_NULL) {
 894 #ifndef PRODUCT
 895       // for AbortVMOnException flag
 896       Exceptions::debug_check_abort("java.lang.NullPointerException");
 897 #endif //PRODUCT
 898       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 899     } else {
 900 #ifndef PRODUCT
 901       // for AbortVMOnException flag
 902       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 903 #endif //PRODUCT
 904       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 905     }
 906     return target_pc;
 907   }
 908 
 909   ShouldNotReachHere();
 910   return NULL;
 911 }
 912 
 913 
 914 /**
 915  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 916  * installed in the native function entry of all native Java methods before
 917  * they get linked to their actual native methods.
 918  *
 919  * \note
 920  * This method actually never gets called!  The reason is because
 921  * the interpreter's native entries call NativeLookup::lookup() which
 922  * throws the exception when the lookup fails.  The exception is then
 923  * caught and forwarded on the return from NativeLookup::lookup() call
 924  * before the call to the native function.  This might change in the future.
 925  */
 926 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 927 {
 928   // We return a bad value here to make sure that the exception is
 929   // forwarded before we look at the return value.
 930   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 931 }
 932 JNI_END
 933 
 934 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 935   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 936 }
 937 
 938 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 939 #if INCLUDE_JVMCI
 940   if (!obj->klass()->has_finalizer()) {
 941     return;
 942   }
 943 #endif // INCLUDE_JVMCI
 944   assert(oopDesc::is_oop(obj), "must be a valid oop");
 945   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 946   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 947 JRT_END
 948 
 949 
 950 jlong SharedRuntime::get_java_tid(Thread* thread) {
 951   if (thread != NULL) {
 952     if (thread->is_Java_thread()) {
 953       oop obj = ((JavaThread*)thread)->threadObj();
 954       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 955     }
 956   }
 957   return 0;
 958 }
 959 
 960 /**
 961  * This function ought to be a void function, but cannot be because
 962  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 963  * 6254741.  Once that is fixed we can remove the dummy return value.
 964  */
 965 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
 966   return dtrace_object_alloc_base(Thread::current(), o, size);
 967 }
 968 
 969 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
 970   assert(DTraceAllocProbes, "wrong call");
 971   Klass* klass = o->klass();
 972   Symbol* name = klass->name();
 973   HOTSPOT_OBJECT_ALLOC(
 974                    get_java_tid(thread),
 975                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 976   return 0;
 977 }
 978 
 979 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 980     JavaThread* thread, Method* method))
 981   assert(DTraceMethodProbes, "wrong call");
 982   Symbol* kname = method->klass_name();
 983   Symbol* name = method->name();
 984   Symbol* sig = method->signature();
 985   HOTSPOT_METHOD_ENTRY(
 986       get_java_tid(thread),
 987       (char *) kname->bytes(), kname->utf8_length(),
 988       (char *) name->bytes(), name->utf8_length(),
 989       (char *) sig->bytes(), sig->utf8_length());
 990   return 0;
 991 JRT_END
 992 
 993 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
 994     JavaThread* thread, Method* method))
 995   assert(DTraceMethodProbes, "wrong call");
 996   Symbol* kname = method->klass_name();
 997   Symbol* name = method->name();
 998   Symbol* sig = method->signature();
 999   HOTSPOT_METHOD_RETURN(
1000       get_java_tid(thread),
1001       (char *) kname->bytes(), kname->utf8_length(),
1002       (char *) name->bytes(), name->utf8_length(),
1003       (char *) sig->bytes(), sig->utf8_length());
1004   return 0;
1005 JRT_END
1006 
1007 
1008 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1009 // for a call current in progress, i.e., arguments has been pushed on stack
1010 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1011 // vtable updates, etc.  Caller frame must be compiled.
1012 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1013   ResourceMark rm(THREAD);
1014 
1015   // last java frame on stack (which includes native call frames)
1016   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1017 
1018   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1019 }
1020 
1021 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) {
1022   CompiledMethod* caller = vfst.nm();
1023 
1024   nmethodLocker caller_lock(caller);
1025 
1026   address pc = vfst.frame_pc();
1027   { // Get call instruction under lock because another thread may be busy patching it.
1028     CompiledICLocker ic_locker(caller);
1029     return caller->attached_method_before_pc(pc);
1030   }
1031   return NULL;
1032 }
1033 
1034 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1035 // for a call current in progress, i.e., arguments has been pushed on stack
1036 // but callee has not been invoked yet.  Caller frame must be compiled.
1037 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1038                                               vframeStream& vfst,
1039                                               Bytecodes::Code& bc,
1040                                               CallInfo& callinfo, TRAPS) {
1041   Handle receiver;
1042   Handle nullHandle;  //create a handy null handle for exception returns
1043 
1044   assert(!vfst.at_end(), "Java frame must exist");
1045 
1046   // Find caller and bci from vframe
1047   methodHandle caller(THREAD, vfst.method());
1048   int          bci   = vfst.bci();
1049 
1050   Bytecode_invoke bytecode(caller, bci);
1051   int bytecode_index = bytecode.index();
1052   bc = bytecode.invoke_code();
1053 
1054   methodHandle attached_method(THREAD, extract_attached_method(vfst));
1055   if (attached_method.not_null()) {
1056     Method* callee = bytecode.static_target(CHECK_NH);
1057     vmIntrinsics::ID id = callee->intrinsic_id();
1058     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1059     // it attaches statically resolved method to the call site.
1060     if (MethodHandles::is_signature_polymorphic(id) &&
1061         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1062       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1063 
1064       // Adjust invocation mode according to the attached method.
1065       switch (bc) {
1066         case Bytecodes::_invokevirtual:
1067           if (attached_method->method_holder()->is_interface()) {
1068             bc = Bytecodes::_invokeinterface;
1069           }
1070           break;
1071         case Bytecodes::_invokeinterface:
1072           if (!attached_method->method_holder()->is_interface()) {
1073             bc = Bytecodes::_invokevirtual;
1074           }
1075           break;
1076         case Bytecodes::_invokehandle:
1077           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1078             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1079                                               : Bytecodes::_invokevirtual;
1080           }
1081           break;
1082         default:
1083           break;
1084       }
1085     }
1086   }
1087 
1088   assert(bc != Bytecodes::_illegal, "not initialized");
1089 
1090   bool has_receiver = bc != Bytecodes::_invokestatic &&
1091                       bc != Bytecodes::_invokedynamic &&
1092                       bc != Bytecodes::_invokehandle;
1093 
1094   // Find receiver for non-static call
1095   if (has_receiver) {
1096     // This register map must be update since we need to find the receiver for
1097     // compiled frames. The receiver might be in a register.
1098     RegisterMap reg_map2(thread);
1099     frame stubFrame   = thread->last_frame();
1100     // Caller-frame is a compiled frame
1101     frame callerFrame = stubFrame.sender(&reg_map2);
1102 
1103     if (attached_method.is_null()) {
1104       Method* callee = bytecode.static_target(CHECK_NH);
1105       if (callee == NULL) {
1106         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1107       }
1108     }
1109 
1110     // Retrieve from a compiled argument list
1111     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1112 
1113     if (receiver.is_null()) {
1114       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1115     }
1116   }
1117 
1118   // Resolve method
1119   if (attached_method.not_null()) {
1120     // Parameterized by attached method.
1121     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1122   } else {
1123     // Parameterized by bytecode.
1124     constantPoolHandle constants(THREAD, caller->constants());
1125     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1126   }
1127 
1128 #ifdef ASSERT
1129   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1130   if (has_receiver) {
1131     assert(receiver.not_null(), "should have thrown exception");
1132     Klass* receiver_klass = receiver->klass();
1133     Klass* rk = NULL;
1134     if (attached_method.not_null()) {
1135       // In case there's resolved method attached, use its holder during the check.
1136       rk = attached_method->method_holder();
1137     } else {
1138       // Klass is already loaded.
1139       constantPoolHandle constants(THREAD, caller->constants());
1140       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1141     }
1142     Klass* static_receiver_klass = rk;
1143     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1144            "actual receiver must be subclass of static receiver klass");
1145     if (receiver_klass->is_instance_klass()) {
1146       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1147         tty->print_cr("ERROR: Klass not yet initialized!!");
1148         receiver_klass->print();
1149       }
1150       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1151     }
1152   }
1153 #endif
1154 
1155   return receiver;
1156 }
1157 
1158 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1159   ResourceMark rm(THREAD);
1160   // We need first to check if any Java activations (compiled, interpreted)
1161   // exist on the stack since last JavaCall.  If not, we need
1162   // to get the target method from the JavaCall wrapper.
1163   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1164   methodHandle callee_method;
1165   if (vfst.at_end()) {
1166     // No Java frames were found on stack since we did the JavaCall.
1167     // Hence the stack can only contain an entry_frame.  We need to
1168     // find the target method from the stub frame.
1169     RegisterMap reg_map(thread, false);
1170     frame fr = thread->last_frame();
1171     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1172     fr = fr.sender(&reg_map);
1173     assert(fr.is_entry_frame(), "must be");
1174     // fr is now pointing to the entry frame.
1175     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1176   } else {
1177     Bytecodes::Code bc;
1178     CallInfo callinfo;
1179     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1180     callee_method = methodHandle(THREAD, callinfo.selected_method());
1181   }
1182   assert(callee_method()->is_method(), "must be");
1183   return callee_method;
1184 }
1185 
1186 // Resolves a call.
1187 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1188                                            bool is_virtual,
1189                                            bool is_optimized, TRAPS) {
1190   methodHandle callee_method;
1191   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1192   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1193     int retry_count = 0;
1194     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1195            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1196       // If has a pending exception then there is no need to re-try to
1197       // resolve this method.
1198       // If the method has been redefined, we need to try again.
1199       // Hack: we have no way to update the vtables of arrays, so don't
1200       // require that java.lang.Object has been updated.
1201 
1202       // It is very unlikely that method is redefined more than 100 times
1203       // in the middle of resolve. If it is looping here more than 100 times
1204       // means then there could be a bug here.
1205       guarantee((retry_count++ < 100),
1206                 "Could not resolve to latest version of redefined method");
1207       // method is redefined in the middle of resolve so re-try.
1208       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1209     }
1210   }
1211   return callee_method;
1212 }
1213 
1214 // This fails if resolution required refilling of IC stubs
1215 bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame,
1216                                                 CompiledMethod* caller_nm, bool is_virtual, bool is_optimized,
1217                                                 Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) {
1218   StaticCallInfo static_call_info;
1219   CompiledICInfo virtual_call_info;
1220 
1221   // Make sure the callee nmethod does not get deoptimized and removed before
1222   // we are done patching the code.
1223   CompiledMethod* callee = callee_method->code();
1224 
1225   if (callee != NULL) {
1226     assert(callee->is_compiled(), "must be nmethod for patching");
1227   }
1228 
1229   if (callee != NULL && !callee->is_in_use()) {
1230     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1231     callee = NULL;
1232   }
1233   nmethodLocker nl_callee(callee);
1234 #ifdef ASSERT
1235   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1236 #endif
1237 
1238   bool is_nmethod = caller_nm->is_nmethod();
1239 
1240   if (is_virtual) {
1241     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1242     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1243     Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1244     CompiledIC::compute_monomorphic_entry(callee_method, klass,
1245                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1246                      CHECK_false);
1247   } else {
1248     // static call
1249     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1250   }
1251 
1252   // grab lock, check for deoptimization and potentially patch caller
1253   {
1254     CompiledICLocker ml(caller_nm);
1255 
1256     // Lock blocks for safepoint during which both nmethods can change state.
1257 
1258     // Now that we are ready to patch if the Method* was redefined then
1259     // don't update call site and let the caller retry.
1260     // Don't update call site if callee nmethod was unloaded or deoptimized.
1261     // Don't update call site if callee nmethod was replaced by an other nmethod
1262     // which may happen when multiply alive nmethod (tiered compilation)
1263     // will be supported.
1264     if (!callee_method->is_old() &&
1265         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1266       NoSafepointVerifier nsv;
1267 #ifdef ASSERT
1268       // We must not try to patch to jump to an already unloaded method.
1269       if (dest_entry_point != 0) {
1270         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1271         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1272                "should not call unloaded nmethod");
1273       }
1274 #endif
1275       if (is_virtual) {
1276         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1277         if (inline_cache->is_clean()) {
1278           if (!inline_cache->set_to_monomorphic(virtual_call_info)) {
1279             return false;
1280           }
1281         }
1282       } else {
1283         if (VM_Version::supports_fast_class_init_checks() &&
1284             invoke_code == Bytecodes::_invokestatic &&
1285             callee_method->needs_clinit_barrier() &&
1286             callee != NULL && (callee->is_compiled_by_jvmci() || callee->is_aot())) {
1287           return true; // skip patching for JVMCI or AOT code
1288         }
1289         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1290         if (ssc->is_clean()) ssc->set(static_call_info);
1291       }
1292     }
1293   } // unlock CompiledICLocker
1294   return true;
1295 }
1296 
1297 // Resolves a call.  The compilers generate code for calls that go here
1298 // and are patched with the real destination of the call.
1299 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1300                                                bool is_virtual,
1301                                                bool is_optimized, TRAPS) {
1302 
1303   ResourceMark rm(thread);
1304   RegisterMap cbl_map(thread, false);
1305   frame caller_frame = thread->last_frame().sender(&cbl_map);
1306 
1307   CodeBlob* caller_cb = caller_frame.cb();
1308   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1309   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1310 
1311   // make sure caller is not getting deoptimized
1312   // and removed before we are done with it.
1313   // CLEANUP - with lazy deopt shouldn't need this lock
1314   nmethodLocker caller_lock(caller_nm);
1315 
1316   // determine call info & receiver
1317   // note: a) receiver is NULL for static calls
1318   //       b) an exception is thrown if receiver is NULL for non-static calls
1319   CallInfo call_info;
1320   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1321   Handle receiver = find_callee_info(thread, invoke_code,
1322                                      call_info, CHECK_(methodHandle()));
1323   methodHandle callee_method(THREAD, call_info.selected_method());
1324 
1325   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1326          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1327          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1328          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1329          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1330 
1331   assert(caller_nm->is_alive() && !caller_nm->is_unloading(), "It should be alive");
1332 
1333 #ifndef PRODUCT
1334   // tracing/debugging/statistics
1335   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1336                 (is_virtual) ? (&_resolve_virtual_ctr) :
1337                                (&_resolve_static_ctr);
1338   Atomic::inc(addr);
1339 
1340   if (TraceCallFixup) {
1341     ResourceMark rm(thread);
1342     tty->print("resolving %s%s (%s) call to",
1343       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1344       Bytecodes::name(invoke_code));
1345     callee_method->print_short_name(tty);
1346     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1347                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1348   }
1349 #endif
1350 
1351   if (invoke_code == Bytecodes::_invokestatic) {
1352     assert(callee_method->method_holder()->is_initialized() ||
1353            callee_method->method_holder()->is_reentrant_initialization(thread),
1354            "invalid class initialization state for invoke_static");
1355     if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1356       // In order to keep class initialization check, do not patch call
1357       // site for static call when the class is not fully initialized.
1358       // Proper check is enforced by call site re-resolution on every invocation.
1359       //
1360       // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1361       // explicit class initialization check is put in nmethod entry (VEP).
1362       assert(callee_method->method_holder()->is_linked(), "must be");
1363       return callee_method;
1364     }
1365   }
1366 
1367   // JSR 292 key invariant:
1368   // If the resolved method is a MethodHandle invoke target, the call
1369   // site must be a MethodHandle call site, because the lambda form might tail-call
1370   // leaving the stack in a state unknown to either caller or callee
1371   // TODO detune for now but we might need it again
1372 //  assert(!callee_method->is_compiled_lambda_form() ||
1373 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1374 
1375   // Compute entry points. This might require generation of C2I converter
1376   // frames, so we cannot be holding any locks here. Furthermore, the
1377   // computation of the entry points is independent of patching the call.  We
1378   // always return the entry-point, but we only patch the stub if the call has
1379   // not been deoptimized.  Return values: For a virtual call this is an
1380   // (cached_oop, destination address) pair. For a static call/optimized
1381   // virtual this is just a destination address.
1382 
1383   // Patching IC caches may fail if we run out if transition stubs.
1384   // We refill the ic stubs then and try again.
1385   for (;;) {
1386     ICRefillVerifier ic_refill_verifier;
1387     bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm,
1388                                                   is_virtual, is_optimized, receiver,
1389                                                   call_info, invoke_code, CHECK_(methodHandle()));
1390     if (successful) {
1391       return callee_method;
1392     } else {
1393       InlineCacheBuffer::refill_ic_stubs();
1394     }
1395   }
1396 
1397 }
1398 
1399 
1400 // Inline caches exist only in compiled code
1401 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1402 #ifdef ASSERT
1403   RegisterMap reg_map(thread, false);
1404   frame stub_frame = thread->last_frame();
1405   assert(stub_frame.is_runtime_frame(), "sanity check");
1406   frame caller_frame = stub_frame.sender(&reg_map);
1407   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1408 #endif /* ASSERT */
1409 
1410   methodHandle callee_method;
1411   JRT_BLOCK
1412     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1413     // Return Method* through TLS
1414     thread->set_vm_result_2(callee_method());
1415   JRT_BLOCK_END
1416   // return compiled code entry point after potential safepoints
1417   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1418   return callee_method->verified_code_entry();
1419 JRT_END
1420 
1421 
1422 // Handle call site that has been made non-entrant
1423 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1424   // 6243940 We might end up in here if the callee is deoptimized
1425   // as we race to call it.  We don't want to take a safepoint if
1426   // the caller was interpreted because the caller frame will look
1427   // interpreted to the stack walkers and arguments are now
1428   // "compiled" so it is much better to make this transition
1429   // invisible to the stack walking code. The i2c path will
1430   // place the callee method in the callee_target. It is stashed
1431   // there because if we try and find the callee by normal means a
1432   // safepoint is possible and have trouble gc'ing the compiled args.
1433   RegisterMap reg_map(thread, false);
1434   frame stub_frame = thread->last_frame();
1435   assert(stub_frame.is_runtime_frame(), "sanity check");
1436   frame caller_frame = stub_frame.sender(&reg_map);
1437 
1438   if (caller_frame.is_interpreted_frame() ||
1439       caller_frame.is_entry_frame()) {
1440     Method* callee = thread->callee_target();
1441     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1442     thread->set_vm_result_2(callee);
1443     thread->set_callee_target(NULL);
1444     if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1445       // Bypass class initialization checks in c2i when caller is in native.
1446       // JNI calls to static methods don't have class initialization checks.
1447       // Fast class initialization checks are present in c2i adapters and call into
1448       // SharedRuntime::handle_wrong_method() on the slow path.
1449       //
1450       // JVM upcalls may land here as well, but there's a proper check present in
1451       // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1452       // so bypassing it in c2i adapter is benign.
1453       return callee->get_c2i_no_clinit_check_entry();
1454     } else {
1455       return callee->get_c2i_entry();
1456     }
1457   }
1458 
1459   // Must be compiled to compiled path which is safe to stackwalk
1460   methodHandle callee_method;
1461   JRT_BLOCK
1462     // Force resolving of caller (if we called from compiled frame)
1463     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1464     thread->set_vm_result_2(callee_method());
1465   JRT_BLOCK_END
1466   // return compiled code entry point after potential safepoints
1467   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1468   return callee_method->verified_code_entry();
1469 JRT_END
1470 
1471 // Handle abstract method call
1472 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1473   // Verbose error message for AbstractMethodError.
1474   // Get the called method from the invoke bytecode.
1475   vframeStream vfst(thread, true);
1476   assert(!vfst.at_end(), "Java frame must exist");
1477   methodHandle caller(thread, vfst.method());
1478   Bytecode_invoke invoke(caller, vfst.bci());
1479   DEBUG_ONLY( invoke.verify(); )
1480 
1481   // Find the compiled caller frame.
1482   RegisterMap reg_map(thread);
1483   frame stubFrame = thread->last_frame();
1484   assert(stubFrame.is_runtime_frame(), "must be");
1485   frame callerFrame = stubFrame.sender(&reg_map);
1486   assert(callerFrame.is_compiled_frame(), "must be");
1487 
1488   // Install exception and return forward entry.
1489   address res = StubRoutines::throw_AbstractMethodError_entry();
1490   JRT_BLOCK
1491     methodHandle callee(thread, invoke.static_target(thread));
1492     if (!callee.is_null()) {
1493       oop recv = callerFrame.retrieve_receiver(&reg_map);
1494       Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1495       LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
1496       res = StubRoutines::forward_exception_entry();
1497     }
1498   JRT_BLOCK_END
1499   return res;
1500 JRT_END
1501 
1502 
1503 // resolve a static call and patch code
1504 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1505   methodHandle callee_method;
1506   JRT_BLOCK
1507     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1508     thread->set_vm_result_2(callee_method());
1509   JRT_BLOCK_END
1510   // return compiled code entry point after potential safepoints
1511   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1512   return callee_method->verified_code_entry();
1513 JRT_END
1514 
1515 
1516 // resolve virtual call and update inline cache to monomorphic
1517 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1518   methodHandle callee_method;
1519   JRT_BLOCK
1520     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1521     thread->set_vm_result_2(callee_method());
1522   JRT_BLOCK_END
1523   // return compiled code entry point after potential safepoints
1524   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1525   return callee_method->verified_code_entry();
1526 JRT_END
1527 
1528 
1529 // Resolve a virtual call that can be statically bound (e.g., always
1530 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1531 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1532   methodHandle callee_method;
1533   JRT_BLOCK
1534     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1535     thread->set_vm_result_2(callee_method());
1536   JRT_BLOCK_END
1537   // return compiled code entry point after potential safepoints
1538   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1539   return callee_method->verified_code_entry();
1540 JRT_END
1541 
1542 // The handle_ic_miss_helper_internal function returns false if it failed due
1543 // to either running out of vtable stubs or ic stubs due to IC transitions
1544 // to transitional states. The needs_ic_stub_refill value will be set if
1545 // the failure was due to running out of IC stubs, in which case handle_ic_miss_helper
1546 // refills the IC stubs and tries again.
1547 bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm,
1548                                                    const frame& caller_frame, methodHandle callee_method,
1549                                                    Bytecodes::Code bc, CallInfo& call_info,
1550                                                    bool& needs_ic_stub_refill, TRAPS) {
1551   CompiledICLocker ml(caller_nm);
1552   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1553   bool should_be_mono = false;
1554   if (inline_cache->is_optimized()) {
1555     if (TraceCallFixup) {
1556       ResourceMark rm(THREAD);
1557       tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1558       callee_method->print_short_name(tty);
1559       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1560     }
1561     should_be_mono = true;
1562   } else if (inline_cache->is_icholder_call()) {
1563     CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1564     if (ic_oop != NULL) {
1565       if (!ic_oop->is_loader_alive()) {
1566         // Deferred IC cleaning due to concurrent class unloading
1567         if (!inline_cache->set_to_clean()) {
1568           needs_ic_stub_refill = true;
1569           return false;
1570         }
1571       } else if (receiver()->klass() == ic_oop->holder_klass()) {
1572         // This isn't a real miss. We must have seen that compiled code
1573         // is now available and we want the call site converted to a
1574         // monomorphic compiled call site.
1575         // We can't assert for callee_method->code() != NULL because it
1576         // could have been deoptimized in the meantime
1577         if (TraceCallFixup) {
1578           ResourceMark rm(THREAD);
1579           tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1580           callee_method->print_short_name(tty);
1581           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1582         }
1583         should_be_mono = true;
1584       }
1585     }
1586   }
1587 
1588   if (should_be_mono) {
1589     // We have a path that was monomorphic but was going interpreted
1590     // and now we have (or had) a compiled entry. We correct the IC
1591     // by using a new icBuffer.
1592     CompiledICInfo info;
1593     Klass* receiver_klass = receiver()->klass();
1594     inline_cache->compute_monomorphic_entry(callee_method,
1595                                             receiver_klass,
1596                                             inline_cache->is_optimized(),
1597                                             false, caller_nm->is_nmethod(),
1598                                             info, CHECK_false);
1599     if (!inline_cache->set_to_monomorphic(info)) {
1600       needs_ic_stub_refill = true;
1601       return false;
1602     }
1603   } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1604     // Potential change to megamorphic
1605 
1606     bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, CHECK_false);
1607     if (needs_ic_stub_refill) {
1608       return false;
1609     }
1610     if (!successful) {
1611       if (!inline_cache->set_to_clean()) {
1612         needs_ic_stub_refill = true;
1613         return false;
1614       }
1615     }
1616   } else {
1617     // Either clean or megamorphic
1618   }
1619   return true;
1620 }
1621 
1622 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1623   ResourceMark rm(thread);
1624   CallInfo call_info;
1625   Bytecodes::Code bc;
1626 
1627   // receiver is NULL for static calls. An exception is thrown for NULL
1628   // receivers for non-static calls
1629   Handle receiver = find_callee_info(thread, bc, call_info,
1630                                      CHECK_(methodHandle()));
1631   // Compiler1 can produce virtual call sites that can actually be statically bound
1632   // If we fell thru to below we would think that the site was going megamorphic
1633   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1634   // we'd try and do a vtable dispatch however methods that can be statically bound
1635   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1636   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1637   // plain ic_miss) and the site will be converted to an optimized virtual call site
1638   // never to miss again. I don't believe C2 will produce code like this but if it
1639   // did this would still be the correct thing to do for it too, hence no ifdef.
1640   //
1641   if (call_info.resolved_method()->can_be_statically_bound()) {
1642     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1643     if (TraceCallFixup) {
1644       RegisterMap reg_map(thread, false);
1645       frame caller_frame = thread->last_frame().sender(&reg_map);
1646       ResourceMark rm(thread);
1647       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1648       callee_method->print_short_name(tty);
1649       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1650       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1651     }
1652     return callee_method;
1653   }
1654 
1655   methodHandle callee_method(thread, call_info.selected_method());
1656 
1657 #ifndef PRODUCT
1658   Atomic::inc(&_ic_miss_ctr);
1659 
1660   // Statistics & Tracing
1661   if (TraceCallFixup) {
1662     ResourceMark rm(thread);
1663     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1664     callee_method->print_short_name(tty);
1665     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1666   }
1667 
1668   if (ICMissHistogram) {
1669     MutexLocker m(VMStatistic_lock);
1670     RegisterMap reg_map(thread, false);
1671     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1672     // produce statistics under the lock
1673     trace_ic_miss(f.pc());
1674   }
1675 #endif
1676 
1677   // install an event collector so that when a vtable stub is created the
1678   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1679   // event can't be posted when the stub is created as locks are held
1680   // - instead the event will be deferred until the event collector goes
1681   // out of scope.
1682   JvmtiDynamicCodeEventCollector event_collector;
1683 
1684   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1685   // Transitioning IC caches may require transition stubs. If we run out
1686   // of transition stubs, we have to drop locks and perform a safepoint
1687   // that refills them.
1688   RegisterMap reg_map(thread, false);
1689   frame caller_frame = thread->last_frame().sender(&reg_map);
1690   CodeBlob* cb = caller_frame.cb();
1691   CompiledMethod* caller_nm = cb->as_compiled_method();
1692 
1693   for (;;) {
1694     ICRefillVerifier ic_refill_verifier;
1695     bool needs_ic_stub_refill = false;
1696     bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method,
1697                                                      bc, call_info, needs_ic_stub_refill, CHECK_(methodHandle()));
1698     if (successful || !needs_ic_stub_refill) {
1699       return callee_method;
1700     } else {
1701       InlineCacheBuffer::refill_ic_stubs();
1702     }
1703   }
1704 }
1705 
1706 static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) {
1707   CompiledICLocker ml(caller_nm);
1708   if (is_static_call) {
1709     CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1710     if (!ssc->is_clean()) {
1711       return ssc->set_to_clean();
1712     }
1713   } else {
1714     // compiled, dispatched call (which used to call an interpreted method)
1715     CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1716     if (!inline_cache->is_clean()) {
1717       return inline_cache->set_to_clean();
1718     }
1719   }
1720   return true;
1721 }
1722 
1723 //
1724 // Resets a call-site in compiled code so it will get resolved again.
1725 // This routines handles both virtual call sites, optimized virtual call
1726 // sites, and static call sites. Typically used to change a call sites
1727 // destination from compiled to interpreted.
1728 //
1729 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1730   ResourceMark rm(thread);
1731   RegisterMap reg_map(thread, false);
1732   frame stub_frame = thread->last_frame();
1733   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1734   frame caller = stub_frame.sender(&reg_map);
1735 
1736   // Do nothing if the frame isn't a live compiled frame.
1737   // nmethod could be deoptimized by the time we get here
1738   // so no update to the caller is needed.
1739 
1740   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1741 
1742     address pc = caller.pc();
1743 
1744     // Check for static or virtual call
1745     bool is_static_call = false;
1746     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1747 
1748     // Default call_addr is the location of the "basic" call.
1749     // Determine the address of the call we a reresolving. With
1750     // Inline Caches we will always find a recognizable call.
1751     // With Inline Caches disabled we may or may not find a
1752     // recognizable call. We will always find a call for static
1753     // calls and for optimized virtual calls. For vanilla virtual
1754     // calls it depends on the state of the UseInlineCaches switch.
1755     //
1756     // With Inline Caches disabled we can get here for a virtual call
1757     // for two reasons:
1758     //   1 - calling an abstract method. The vtable for abstract methods
1759     //       will run us thru handle_wrong_method and we will eventually
1760     //       end up in the interpreter to throw the ame.
1761     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1762     //       call and between the time we fetch the entry address and
1763     //       we jump to it the target gets deoptimized. Similar to 1
1764     //       we will wind up in the interprter (thru a c2i with c2).
1765     //
1766     address call_addr = NULL;
1767     {
1768       // Get call instruction under lock because another thread may be
1769       // busy patching it.
1770       CompiledICLocker ml(caller_nm);
1771       // Location of call instruction
1772       call_addr = caller_nm->call_instruction_address(pc);
1773     }
1774     // Make sure nmethod doesn't get deoptimized and removed until
1775     // this is done with it.
1776     // CLEANUP - with lazy deopt shouldn't need this lock
1777     nmethodLocker nmlock(caller_nm);
1778 
1779     if (call_addr != NULL) {
1780       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1781       int ret = iter.next(); // Get item
1782       if (ret) {
1783         assert(iter.addr() == call_addr, "must find call");
1784         if (iter.type() == relocInfo::static_call_type) {
1785           is_static_call = true;
1786         } else {
1787           assert(iter.type() == relocInfo::virtual_call_type ||
1788                  iter.type() == relocInfo::opt_virtual_call_type
1789                 , "unexpected relocInfo. type");
1790         }
1791       } else {
1792         assert(!UseInlineCaches, "relocation info. must exist for this address");
1793       }
1794 
1795       // Cleaning the inline cache will force a new resolve. This is more robust
1796       // than directly setting it to the new destination, since resolving of calls
1797       // is always done through the same code path. (experience shows that it
1798       // leads to very hard to track down bugs, if an inline cache gets updated
1799       // to a wrong method). It should not be performance critical, since the
1800       // resolve is only done once.
1801 
1802       for (;;) {
1803         ICRefillVerifier ic_refill_verifier;
1804         if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) {
1805           InlineCacheBuffer::refill_ic_stubs();
1806         } else {
1807           break;
1808         }
1809       }
1810     }
1811   }
1812 
1813   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1814 
1815 
1816 #ifndef PRODUCT
1817   Atomic::inc(&_wrong_method_ctr);
1818 
1819   if (TraceCallFixup) {
1820     ResourceMark rm(thread);
1821     tty->print("handle_wrong_method reresolving call to");
1822     callee_method->print_short_name(tty);
1823     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1824   }
1825 #endif
1826 
1827   return callee_method;
1828 }
1829 
1830 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1831   // The faulting unsafe accesses should be changed to throw the error
1832   // synchronously instead. Meanwhile the faulting instruction will be
1833   // skipped over (effectively turning it into a no-op) and an
1834   // asynchronous exception will be raised which the thread will
1835   // handle at a later point. If the instruction is a load it will
1836   // return garbage.
1837 
1838   // Request an async exception.
1839   thread->set_pending_unsafe_access_error();
1840 
1841   // Return address of next instruction to execute.
1842   return next_pc;
1843 }
1844 
1845 #ifdef ASSERT
1846 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1847                                                                 const BasicType* sig_bt,
1848                                                                 const VMRegPair* regs) {
1849   ResourceMark rm;
1850   const int total_args_passed = method->size_of_parameters();
1851   const VMRegPair*    regs_with_member_name = regs;
1852         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1853 
1854   const int member_arg_pos = total_args_passed - 1;
1855   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1856   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1857 
1858   const bool is_outgoing = method->is_method_handle_intrinsic();
1859   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1860 
1861   for (int i = 0; i < member_arg_pos; i++) {
1862     VMReg a =    regs_with_member_name[i].first();
1863     VMReg b = regs_without_member_name[i].first();
1864     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1865   }
1866   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1867 }
1868 #endif
1869 
1870 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1871   if (destination != entry_point) {
1872     CodeBlob* callee = CodeCache::find_blob(destination);
1873     // callee == cb seems weird. It means calling interpreter thru stub.
1874     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1875       // static call or optimized virtual
1876       if (TraceCallFixup) {
1877         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1878         moop->print_short_name(tty);
1879         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1880       }
1881       return true;
1882     } else {
1883       if (TraceCallFixup) {
1884         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1885         moop->print_short_name(tty);
1886         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1887       }
1888       // assert is too strong could also be resolve destinations.
1889       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1890     }
1891   } else {
1892     if (TraceCallFixup) {
1893       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1894       moop->print_short_name(tty);
1895       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1896     }
1897   }
1898   return false;
1899 }
1900 
1901 // ---------------------------------------------------------------------------
1902 // We are calling the interpreter via a c2i. Normally this would mean that
1903 // we were called by a compiled method. However we could have lost a race
1904 // where we went int -> i2c -> c2i and so the caller could in fact be
1905 // interpreted. If the caller is compiled we attempt to patch the caller
1906 // so he no longer calls into the interpreter.
1907 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1908   Method* moop(method);
1909 
1910   address entry_point = moop->from_compiled_entry_no_trampoline();
1911 
1912   // It's possible that deoptimization can occur at a call site which hasn't
1913   // been resolved yet, in which case this function will be called from
1914   // an nmethod that has been patched for deopt and we can ignore the
1915   // request for a fixup.
1916   // Also it is possible that we lost a race in that from_compiled_entry
1917   // is now back to the i2c in that case we don't need to patch and if
1918   // we did we'd leap into space because the callsite needs to use
1919   // "to interpreter" stub in order to load up the Method*. Don't
1920   // ask me how I know this...
1921 
1922   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1923   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1924     return;
1925   }
1926 
1927   // The check above makes sure this is a nmethod.
1928   CompiledMethod* nm = cb->as_compiled_method_or_null();
1929   assert(nm, "must be");
1930 
1931   // Get the return PC for the passed caller PC.
1932   address return_pc = caller_pc + frame::pc_return_offset;
1933 
1934   // There is a benign race here. We could be attempting to patch to a compiled
1935   // entry point at the same time the callee is being deoptimized. If that is
1936   // the case then entry_point may in fact point to a c2i and we'd patch the
1937   // call site with the same old data. clear_code will set code() to NULL
1938   // at the end of it. If we happen to see that NULL then we can skip trying
1939   // to patch. If we hit the window where the callee has a c2i in the
1940   // from_compiled_entry and the NULL isn't present yet then we lose the race
1941   // and patch the code with the same old data. Asi es la vida.
1942 
1943   if (moop->code() == NULL) return;
1944 
1945   if (nm->is_in_use()) {
1946     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1947     CompiledICLocker ic_locker(nm);
1948     if (NativeCall::is_call_before(return_pc)) {
1949       ResourceMark mark;
1950       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1951       //
1952       // bug 6281185. We might get here after resolving a call site to a vanilla
1953       // virtual call. Because the resolvee uses the verified entry it may then
1954       // see compiled code and attempt to patch the site by calling us. This would
1955       // then incorrectly convert the call site to optimized and its downhill from
1956       // there. If you're lucky you'll get the assert in the bugid, if not you've
1957       // just made a call site that could be megamorphic into a monomorphic site
1958       // for the rest of its life! Just another racing bug in the life of
1959       // fixup_callers_callsite ...
1960       //
1961       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1962       iter.next();
1963       assert(iter.has_current(), "must have a reloc at java call site");
1964       relocInfo::relocType typ = iter.reloc()->type();
1965       if (typ != relocInfo::static_call_type &&
1966            typ != relocInfo::opt_virtual_call_type &&
1967            typ != relocInfo::static_stub_type) {
1968         return;
1969       }
1970       address destination = call->destination();
1971       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1972         call->set_destination_mt_safe(entry_point);
1973       }
1974     }
1975   }
1976 JRT_END
1977 
1978 
1979 // same as JVM_Arraycopy, but called directly from compiled code
1980 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1981                                                 oopDesc* dest, jint dest_pos,
1982                                                 jint length,
1983                                                 JavaThread* thread)) {
1984 #ifndef PRODUCT
1985   _slow_array_copy_ctr++;
1986 #endif
1987   // Check if we have null pointers
1988   if (src == NULL || dest == NULL) {
1989     THROW(vmSymbols::java_lang_NullPointerException());
1990   }
1991   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1992   // even though the copy_array API also performs dynamic checks to ensure
1993   // that src and dest are truly arrays (and are conformable).
1994   // The copy_array mechanism is awkward and could be removed, but
1995   // the compilers don't call this function except as a last resort,
1996   // so it probably doesn't matter.
1997   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1998                                         (arrayOopDesc*)dest, dest_pos,
1999                                         length, thread);
2000 }
2001 JRT_END
2002 
2003 // The caller of generate_class_cast_message() (or one of its callers)
2004 // must use a ResourceMark in order to correctly free the result.
2005 char* SharedRuntime::generate_class_cast_message(
2006     JavaThread* thread, Klass* caster_klass) {
2007 
2008   // Get target class name from the checkcast instruction
2009   vframeStream vfst(thread, true);
2010   assert(!vfst.at_end(), "Java frame must exist");
2011   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2012   constantPoolHandle cpool(thread, vfst.method()->constants());
2013   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2014   Symbol* target_klass_name = NULL;
2015   if (target_klass == NULL) {
2016     // This klass should be resolved, but just in case, get the name in the klass slot.
2017     target_klass_name = cpool->klass_name_at(cc.index());
2018   }
2019   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2020 }
2021 
2022 
2023 // The caller of generate_class_cast_message() (or one of its callers)
2024 // must use a ResourceMark in order to correctly free the result.
2025 char* SharedRuntime::generate_class_cast_message(
2026     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2027   const char* caster_name = caster_klass->external_name();
2028 
2029   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
2030   const char* target_name = target_klass == NULL ? target_klass_name->as_klass_external_name() :
2031                                                    target_klass->external_name();
2032 
2033   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2034 
2035   const char* caster_klass_description = "";
2036   const char* target_klass_description = "";
2037   const char* klass_separator = "";
2038   if (target_klass != NULL && caster_klass->module() == target_klass->module()) {
2039     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2040   } else {
2041     caster_klass_description = caster_klass->class_in_module_of_loader();
2042     target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "";
2043     klass_separator = (target_klass != NULL) ? "; " : "";
2044   }
2045 
2046   // add 3 for parenthesis and preceeding space
2047   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2048 
2049   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2050   if (message == NULL) {
2051     // Shouldn't happen, but don't cause even more problems if it does
2052     message = const_cast<char*>(caster_klass->external_name());
2053   } else {
2054     jio_snprintf(message,
2055                  msglen,
2056                  "class %s cannot be cast to class %s (%s%s%s)",
2057                  caster_name,
2058                  target_name,
2059                  caster_klass_description,
2060                  klass_separator,
2061                  target_klass_description
2062                  );
2063   }
2064   return message;
2065 }
2066 
2067 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2068   (void) JavaThread::current()->reguard_stack();
2069 JRT_END
2070 
2071 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* thread) {
2072   if (!SafepointSynchronize::is_synchronizing()) {
2073     // Only try quick_enter() if we're not trying to reach a safepoint
2074     // so that the calling thread reaches the safepoint more quickly.
2075     if (ObjectSynchronizer::quick_enter(obj, thread, lock)) return;
2076   }
2077   // NO_ASYNC required because an async exception on the state transition destructor
2078   // would leave you with the lock held and it would never be released.
2079   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2080   // and the model is that an exception implies the method failed.
2081   JRT_BLOCK_NO_ASYNC
2082   if (PrintBiasedLockingStatistics) {
2083     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2084   }
2085   Handle h_obj(THREAD, obj);
2086   ObjectSynchronizer::enter(h_obj, lock, CHECK);
2087   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2088   JRT_BLOCK_END
2089 }
2090 
2091 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2092 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* thread))
2093   SharedRuntime::monitor_enter_helper(obj, lock, thread);
2094 JRT_END
2095 
2096 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* thread) {
2097   assert(JavaThread::current() == thread, "invariant");
2098   // Exit must be non-blocking, and therefore no exceptions can be thrown.
2099   EXCEPTION_MARK;
2100   ObjectSynchronizer::exit(obj, lock, THREAD);
2101 }
2102 
2103 // Handles the uncommon cases of monitor unlocking in compiled code
2104 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* thread))
2105   SharedRuntime::monitor_exit_helper(obj, lock, thread);
2106 JRT_END
2107 
2108 #ifndef PRODUCT
2109 
2110 void SharedRuntime::print_statistics() {
2111   ttyLocker ttyl;
2112   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2113 
2114   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2115 
2116   SharedRuntime::print_ic_miss_histogram();
2117 
2118   if (CountRemovableExceptions) {
2119     if (_nof_removable_exceptions > 0) {
2120       Unimplemented(); // this counter is not yet incremented
2121       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2122     }
2123   }
2124 
2125   // Dump the JRT_ENTRY counters
2126   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2127   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2128   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2129   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2130   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2131   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2132   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2133 
2134   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2135   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2136   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2137   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2138   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2139 
2140   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2141   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2142   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2143   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2144   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2145   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2146   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2147   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2148   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2149   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2150   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2151   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2152   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2153   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2154   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2155   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2156 
2157   AdapterHandlerLibrary::print_statistics();
2158 
2159   if (xtty != NULL)  xtty->tail("statistics");
2160 }
2161 
2162 inline double percent(int x, int y) {
2163   return 100.0 * x / MAX2(y, 1);
2164 }
2165 
2166 class MethodArityHistogram {
2167  public:
2168   enum { MAX_ARITY = 256 };
2169  private:
2170   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2171   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2172   static int _max_arity;                      // max. arity seen
2173   static int _max_size;                       // max. arg size seen
2174 
2175   static void add_method_to_histogram(nmethod* nm) {
2176     if (CompiledMethod::nmethod_access_is_safe(nm)) {
2177       Method* method = nm->method();
2178       ArgumentCount args(method->signature());
2179       int arity   = args.size() + (method->is_static() ? 0 : 1);
2180       int argsize = method->size_of_parameters();
2181       arity   = MIN2(arity, MAX_ARITY-1);
2182       argsize = MIN2(argsize, MAX_ARITY-1);
2183       int count = method->compiled_invocation_count();
2184       _arity_histogram[arity]  += count;
2185       _size_histogram[argsize] += count;
2186       _max_arity = MAX2(_max_arity, arity);
2187       _max_size  = MAX2(_max_size, argsize);
2188     }
2189   }
2190 
2191   void print_histogram_helper(int n, int* histo, const char* name) {
2192     const int N = MIN2(5, n);
2193     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2194     double sum = 0;
2195     double weighted_sum = 0;
2196     int i;
2197     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2198     double rest = sum;
2199     double percent = sum / 100;
2200     for (i = 0; i <= N; i++) {
2201       rest -= histo[i];
2202       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2203     }
2204     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2205     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2206   }
2207 
2208   void print_histogram() {
2209     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2210     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2211     tty->print_cr("\nSame for parameter size (in words):");
2212     print_histogram_helper(_max_size, _size_histogram, "size");
2213     tty->cr();
2214   }
2215 
2216  public:
2217   MethodArityHistogram() {
2218     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2219     _max_arity = _max_size = 0;
2220     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2221     CodeCache::nmethods_do(add_method_to_histogram);
2222     print_histogram();
2223   }
2224 };
2225 
2226 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2227 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2228 int MethodArityHistogram::_max_arity;
2229 int MethodArityHistogram::_max_size;
2230 
2231 void SharedRuntime::print_call_statistics(int comp_total) {
2232   tty->print_cr("Calls from compiled code:");
2233   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2234   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2235   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2236   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2237   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2238   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2239   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2240   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2241   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2242   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2243   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2244   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2245   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2246   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2247   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2248   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2249   tty->cr();
2250   tty->print_cr("Note 1: counter updates are not MT-safe.");
2251   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2252   tty->print_cr("        %% in nested categories are relative to their category");
2253   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2254   tty->cr();
2255 
2256   MethodArityHistogram h;
2257 }
2258 #endif
2259 
2260 
2261 // A simple wrapper class around the calling convention information
2262 // that allows sharing of adapters for the same calling convention.
2263 class AdapterFingerPrint : public CHeapObj<mtCode> {
2264  private:
2265   enum {
2266     _basic_type_bits = 4,
2267     _basic_type_mask = right_n_bits(_basic_type_bits),
2268     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2269     _compact_int_count = 3
2270   };
2271   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2272   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2273 
2274   union {
2275     int  _compact[_compact_int_count];
2276     int* _fingerprint;
2277   } _value;
2278   int _length; // A negative length indicates the fingerprint is in the compact form,
2279                // Otherwise _value._fingerprint is the array.
2280 
2281   // Remap BasicTypes that are handled equivalently by the adapters.
2282   // These are correct for the current system but someday it might be
2283   // necessary to make this mapping platform dependent.
2284   static int adapter_encoding(BasicType in) {
2285     switch (in) {
2286       case T_BOOLEAN:
2287       case T_BYTE:
2288       case T_SHORT:
2289       case T_CHAR:
2290         // There are all promoted to T_INT in the calling convention
2291         return T_INT;
2292 
2293       case T_OBJECT:
2294       case T_ARRAY:
2295         // In other words, we assume that any register good enough for
2296         // an int or long is good enough for a managed pointer.
2297 #ifdef _LP64
2298         return T_LONG;
2299 #else
2300         return T_INT;
2301 #endif
2302 
2303       case T_INT:
2304       case T_LONG:
2305       case T_FLOAT:
2306       case T_DOUBLE:
2307       case T_VOID:
2308         return in;
2309 
2310       default:
2311         ShouldNotReachHere();
2312         return T_CONFLICT;
2313     }
2314   }
2315 
2316  public:
2317   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2318     // The fingerprint is based on the BasicType signature encoded
2319     // into an array of ints with eight entries per int.
2320     int* ptr;
2321     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2322     if (len <= _compact_int_count) {
2323       assert(_compact_int_count == 3, "else change next line");
2324       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2325       // Storing the signature encoded as signed chars hits about 98%
2326       // of the time.
2327       _length = -len;
2328       ptr = _value._compact;
2329     } else {
2330       _length = len;
2331       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2332       ptr = _value._fingerprint;
2333     }
2334 
2335     // Now pack the BasicTypes with 8 per int
2336     int sig_index = 0;
2337     for (int index = 0; index < len; index++) {
2338       int value = 0;
2339       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2340         int bt = ((sig_index < total_args_passed)
2341                   ? adapter_encoding(sig_bt[sig_index++])
2342                   : 0);
2343         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2344         value = (value << _basic_type_bits) | bt;
2345       }
2346       ptr[index] = value;
2347     }
2348   }
2349 
2350   ~AdapterFingerPrint() {
2351     if (_length > 0) {
2352       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2353     }
2354   }
2355 
2356   int value(int index) {
2357     if (_length < 0) {
2358       return _value._compact[index];
2359     }
2360     return _value._fingerprint[index];
2361   }
2362   int length() {
2363     if (_length < 0) return -_length;
2364     return _length;
2365   }
2366 
2367   bool is_compact() {
2368     return _length <= 0;
2369   }
2370 
2371   unsigned int compute_hash() {
2372     int hash = 0;
2373     for (int i = 0; i < length(); i++) {
2374       int v = value(i);
2375       hash = (hash << 8) ^ v ^ (hash >> 5);
2376     }
2377     return (unsigned int)hash;
2378   }
2379 
2380   const char* as_string() {
2381     stringStream st;
2382     st.print("0x");
2383     for (int i = 0; i < length(); i++) {
2384       st.print("%08x", value(i));
2385     }
2386     return st.as_string();
2387   }
2388 
2389   bool equals(AdapterFingerPrint* other) {
2390     if (other->_length != _length) {
2391       return false;
2392     }
2393     if (_length < 0) {
2394       assert(_compact_int_count == 3, "else change next line");
2395       return _value._compact[0] == other->_value._compact[0] &&
2396              _value._compact[1] == other->_value._compact[1] &&
2397              _value._compact[2] == other->_value._compact[2];
2398     } else {
2399       for (int i = 0; i < _length; i++) {
2400         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2401           return false;
2402         }
2403       }
2404     }
2405     return true;
2406   }
2407 };
2408 
2409 
2410 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2411 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2412   friend class AdapterHandlerTableIterator;
2413 
2414  private:
2415 
2416 #ifndef PRODUCT
2417   static int _lookups; // number of calls to lookup
2418   static int _buckets; // number of buckets checked
2419   static int _equals;  // number of buckets checked with matching hash
2420   static int _hits;    // number of successful lookups
2421   static int _compact; // number of equals calls with compact signature
2422 #endif
2423 
2424   AdapterHandlerEntry* bucket(int i) {
2425     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2426   }
2427 
2428  public:
2429   AdapterHandlerTable()
2430     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2431 
2432   // Create a new entry suitable for insertion in the table
2433   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry, address c2i_no_clinit_check_entry) {
2434     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2435     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
2436     if (DumpSharedSpaces) {
2437       ((CDSAdapterHandlerEntry*)entry)->init();
2438     }
2439     return entry;
2440   }
2441 
2442   // Insert an entry into the table
2443   void add(AdapterHandlerEntry* entry) {
2444     int index = hash_to_index(entry->hash());
2445     add_entry(index, entry);
2446   }
2447 
2448   void free_entry(AdapterHandlerEntry* entry) {
2449     entry->deallocate();
2450     BasicHashtable<mtCode>::free_entry(entry);
2451   }
2452 
2453   // Find a entry with the same fingerprint if it exists
2454   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2455     NOT_PRODUCT(_lookups++);
2456     AdapterFingerPrint fp(total_args_passed, sig_bt);
2457     unsigned int hash = fp.compute_hash();
2458     int index = hash_to_index(hash);
2459     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2460       NOT_PRODUCT(_buckets++);
2461       if (e->hash() == hash) {
2462         NOT_PRODUCT(_equals++);
2463         if (fp.equals(e->fingerprint())) {
2464 #ifndef PRODUCT
2465           if (fp.is_compact()) _compact++;
2466           _hits++;
2467 #endif
2468           return e;
2469         }
2470       }
2471     }
2472     return NULL;
2473   }
2474 
2475 #ifndef PRODUCT
2476   void print_statistics() {
2477     ResourceMark rm;
2478     int longest = 0;
2479     int empty = 0;
2480     int total = 0;
2481     int nonempty = 0;
2482     for (int index = 0; index < table_size(); index++) {
2483       int count = 0;
2484       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2485         count++;
2486       }
2487       if (count != 0) nonempty++;
2488       if (count == 0) empty++;
2489       if (count > longest) longest = count;
2490       total += count;
2491     }
2492     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2493                   empty, longest, total, total / (double)nonempty);
2494     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2495                   _lookups, _buckets, _equals, _hits, _compact);
2496   }
2497 #endif
2498 };
2499 
2500 
2501 #ifndef PRODUCT
2502 
2503 int AdapterHandlerTable::_lookups;
2504 int AdapterHandlerTable::_buckets;
2505 int AdapterHandlerTable::_equals;
2506 int AdapterHandlerTable::_hits;
2507 int AdapterHandlerTable::_compact;
2508 
2509 #endif
2510 
2511 class AdapterHandlerTableIterator : public StackObj {
2512  private:
2513   AdapterHandlerTable* _table;
2514   int _index;
2515   AdapterHandlerEntry* _current;
2516 
2517   void scan() {
2518     while (_index < _table->table_size()) {
2519       AdapterHandlerEntry* a = _table->bucket(_index);
2520       _index++;
2521       if (a != NULL) {
2522         _current = a;
2523         return;
2524       }
2525     }
2526   }
2527 
2528  public:
2529   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2530     scan();
2531   }
2532   bool has_next() {
2533     return _current != NULL;
2534   }
2535   AdapterHandlerEntry* next() {
2536     if (_current != NULL) {
2537       AdapterHandlerEntry* result = _current;
2538       _current = _current->next();
2539       if (_current == NULL) scan();
2540       return result;
2541     } else {
2542       return NULL;
2543     }
2544   }
2545 };
2546 
2547 
2548 // ---------------------------------------------------------------------------
2549 // Implementation of AdapterHandlerLibrary
2550 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2551 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2552 const int AdapterHandlerLibrary_size = 16*K;
2553 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2554 
2555 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2556   // Should be called only when AdapterHandlerLibrary_lock is active.
2557   if (_buffer == NULL) // Initialize lazily
2558       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2559   return _buffer;
2560 }
2561 
2562 extern "C" void unexpected_adapter_call() {
2563   ShouldNotCallThis();
2564 }
2565 
2566 void AdapterHandlerLibrary::initialize() {
2567   if (_adapters != NULL) return;
2568   _adapters = new AdapterHandlerTable();
2569 
2570   // Create a special handler for abstract methods.  Abstract methods
2571   // are never compiled so an i2c entry is somewhat meaningless, but
2572   // throw AbstractMethodError just in case.
2573   // Pass wrong_method_abstract for the c2i transitions to return
2574   // AbstractMethodError for invalid invocations.
2575   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2576   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2577                                                               StubRoutines::throw_AbstractMethodError_entry(),
2578                                                               wrong_method_abstract, wrong_method_abstract);
2579 }
2580 
2581 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2582                                                       address i2c_entry,
2583                                                       address c2i_entry,
2584                                                       address c2i_unverified_entry,
2585                                                       address c2i_no_clinit_check_entry) {
2586   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
2587 }
2588 
2589 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2590   AdapterHandlerEntry* entry = get_adapter0(method);
2591   if (entry != NULL && method->is_shared()) {
2592     // See comments around Method::link_method()
2593     MutexLocker mu(AdapterHandlerLibrary_lock);
2594     if (method->adapter() == NULL) {
2595       method->update_adapter_trampoline(entry);
2596     }
2597     address trampoline = method->from_compiled_entry();
2598     if (*(int*)trampoline == 0) {
2599       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2600       MacroAssembler _masm(&buffer);
2601       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2602       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2603       _masm.flush();
2604 
2605       if (PrintInterpreter) {
2606         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2607       }
2608     }
2609   }
2610 
2611   return entry;
2612 }
2613 
2614 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2615   // Use customized signature handler.  Need to lock around updates to
2616   // the AdapterHandlerTable (it is not safe for concurrent readers
2617   // and a single writer: this could be fixed if it becomes a
2618   // problem).
2619 
2620   ResourceMark rm;
2621 
2622   NOT_PRODUCT(int insts_size);
2623   AdapterBlob* new_adapter = NULL;
2624   AdapterHandlerEntry* entry = NULL;
2625   AdapterFingerPrint* fingerprint = NULL;
2626   {
2627     MutexLocker mu(AdapterHandlerLibrary_lock);
2628     // make sure data structure is initialized
2629     initialize();
2630 
2631     if (method->is_abstract()) {
2632       return _abstract_method_handler;
2633     }
2634 
2635     // Fill in the signature array, for the calling-convention call.
2636     int total_args_passed = method->size_of_parameters(); // All args on stack
2637 
2638     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2639     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2640     int i = 0;
2641     if (!method->is_static())  // Pass in receiver first
2642       sig_bt[i++] = T_OBJECT;
2643     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2644       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2645       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2646         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2647     }
2648     assert(i == total_args_passed, "");
2649 
2650     // Lookup method signature's fingerprint
2651     entry = _adapters->lookup(total_args_passed, sig_bt);
2652 
2653 #ifdef ASSERT
2654     AdapterHandlerEntry* shared_entry = NULL;
2655     // Start adapter sharing verification only after the VM is booted.
2656     if (VerifyAdapterSharing && (entry != NULL)) {
2657       shared_entry = entry;
2658       entry = NULL;
2659     }
2660 #endif
2661 
2662     if (entry != NULL) {
2663       return entry;
2664     }
2665 
2666     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2667     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2668 
2669     // Make a C heap allocated version of the fingerprint to store in the adapter
2670     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2671 
2672     // StubRoutines::code2() is initialized after this function can be called. As a result,
2673     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2674     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2675     // stub that ensure that an I2C stub is called from an interpreter frame.
2676     bool contains_all_checks = StubRoutines::code2() != NULL;
2677 
2678     // Create I2C & C2I handlers
2679     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2680     if (buf != NULL) {
2681       CodeBuffer buffer(buf);
2682       short buffer_locs[20];
2683       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2684                                              sizeof(buffer_locs)/sizeof(relocInfo));
2685 
2686       MacroAssembler _masm(&buffer);
2687       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2688                                                      total_args_passed,
2689                                                      comp_args_on_stack,
2690                                                      sig_bt,
2691                                                      regs,
2692                                                      fingerprint);
2693 #ifdef ASSERT
2694       if (VerifyAdapterSharing) {
2695         if (shared_entry != NULL) {
2696           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2697           // Release the one just created and return the original
2698           _adapters->free_entry(entry);
2699           return shared_entry;
2700         } else  {
2701           entry->save_code(buf->code_begin(), buffer.insts_size());
2702         }
2703       }
2704 #endif
2705 
2706       new_adapter = AdapterBlob::create(&buffer);
2707       NOT_PRODUCT(insts_size = buffer.insts_size());
2708     }
2709     if (new_adapter == NULL) {
2710       // CodeCache is full, disable compilation
2711       // Ought to log this but compile log is only per compile thread
2712       // and we're some non descript Java thread.
2713       return NULL; // Out of CodeCache space
2714     }
2715     entry->relocate(new_adapter->content_begin());
2716 #ifndef PRODUCT
2717     // debugging suppport
2718     if (PrintAdapterHandlers || PrintStubCode) {
2719       ttyLocker ttyl;
2720       entry->print_adapter_on(tty);
2721       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2722                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2723                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2724       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2725       if (Verbose || PrintStubCode) {
2726         address first_pc = entry->base_address();
2727         if (first_pc != NULL) {
2728           Disassembler::decode(first_pc, first_pc + insts_size);
2729           tty->cr();
2730         }
2731       }
2732     }
2733 #endif
2734     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2735     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2736     if (contains_all_checks || !VerifyAdapterCalls) {
2737       _adapters->add(entry);
2738     }
2739   }
2740   // Outside of the lock
2741   if (new_adapter != NULL) {
2742     char blob_id[256];
2743     jio_snprintf(blob_id,
2744                  sizeof(blob_id),
2745                  "%s(%s)@" PTR_FORMAT,
2746                  new_adapter->name(),
2747                  fingerprint->as_string(),
2748                  new_adapter->content_begin());
2749     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2750 
2751     if (JvmtiExport::should_post_dynamic_code_generated()) {
2752       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2753     }
2754   }
2755   return entry;
2756 }
2757 
2758 address AdapterHandlerEntry::base_address() {
2759   address base = _i2c_entry;
2760   if (base == NULL)  base = _c2i_entry;
2761   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2762   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2763   assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == NULL, "");
2764   return base;
2765 }
2766 
2767 void AdapterHandlerEntry::relocate(address new_base) {
2768   address old_base = base_address();
2769   assert(old_base != NULL, "");
2770   ptrdiff_t delta = new_base - old_base;
2771   if (_i2c_entry != NULL)
2772     _i2c_entry += delta;
2773   if (_c2i_entry != NULL)
2774     _c2i_entry += delta;
2775   if (_c2i_unverified_entry != NULL)
2776     _c2i_unverified_entry += delta;
2777   if (_c2i_no_clinit_check_entry != NULL)
2778     _c2i_no_clinit_check_entry += delta;
2779   assert(base_address() == new_base, "");
2780 }
2781 
2782 
2783 void AdapterHandlerEntry::deallocate() {
2784   delete _fingerprint;
2785 #ifdef ASSERT
2786   FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2787 #endif
2788 }
2789 
2790 
2791 #ifdef ASSERT
2792 // Capture the code before relocation so that it can be compared
2793 // against other versions.  If the code is captured after relocation
2794 // then relative instructions won't be equivalent.
2795 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2796   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2797   _saved_code_length = length;
2798   memcpy(_saved_code, buffer, length);
2799 }
2800 
2801 
2802 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2803   if (length != _saved_code_length) {
2804     return false;
2805   }
2806 
2807   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2808 }
2809 #endif
2810 
2811 
2812 /**
2813  * Create a native wrapper for this native method.  The wrapper converts the
2814  * Java-compiled calling convention to the native convention, handles
2815  * arguments, and transitions to native.  On return from the native we transition
2816  * back to java blocking if a safepoint is in progress.
2817  */
2818 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2819   ResourceMark rm;
2820   nmethod* nm = NULL;
2821   address critical_entry = NULL;
2822 
2823   assert(method->is_native(), "must be native");
2824   assert(method->is_method_handle_intrinsic() ||
2825          method->has_native_function(), "must have something valid to call!");
2826 
2827   if (CriticalJNINatives && !method->is_method_handle_intrinsic()) {
2828     // We perform the I/O with transition to native before acquiring AdapterHandlerLibrary_lock.
2829     critical_entry = NativeLookup::lookup_critical_entry(method);
2830   }
2831 
2832   {
2833     // Perform the work while holding the lock, but perform any printing outside the lock
2834     MutexLocker mu(AdapterHandlerLibrary_lock);
2835     // See if somebody beat us to it
2836     if (method->code() != NULL) {
2837       return;
2838     }
2839 
2840     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2841     assert(compile_id > 0, "Must generate native wrapper");
2842 
2843 
2844     ResourceMark rm;
2845     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2846     if (buf != NULL) {
2847       CodeBuffer buffer(buf);
2848       double locs_buf[20];
2849       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2850 #if defined(AARCH64)
2851       // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be
2852       // in the constant pool to ensure ordering between the barrier and oops
2853       // accesses. For native_wrappers we need a constant.
2854       buffer.initialize_consts_size(8);
2855 #endif
2856       MacroAssembler _masm(&buffer);
2857 
2858       // Fill in the signature array, for the calling-convention call.
2859       const int total_args_passed = method->size_of_parameters();
2860 
2861       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2862       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2863       int i=0;
2864       if (!method->is_static())  // Pass in receiver first
2865         sig_bt[i++] = T_OBJECT;
2866       SignatureStream ss(method->signature());
2867       for (; !ss.at_return_type(); ss.next()) {
2868         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2869         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2870           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2871       }
2872       assert(i == total_args_passed, "");
2873       BasicType ret_type = ss.type();
2874 
2875       // Now get the compiled-Java layout as input (or output) arguments.
2876       // NOTE: Stubs for compiled entry points of method handle intrinsics
2877       // are just trampolines so the argument registers must be outgoing ones.
2878       const bool is_outgoing = method->is_method_handle_intrinsic();
2879       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2880 
2881       // Generate the compiled-to-native wrapper code
2882       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type, critical_entry);
2883 
2884       if (nm != NULL) {
2885         {
2886           MutexLocker pl(CompiledMethod_lock, Mutex::_no_safepoint_check_flag);
2887           if (nm->make_in_use()) {
2888             method->set_code(method, nm);
2889           }
2890         }
2891 
2892         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2893         if (directive->PrintAssemblyOption) {
2894           nm->print_code();
2895         }
2896         DirectivesStack::release(directive);
2897       }
2898     }
2899   } // Unlock AdapterHandlerLibrary_lock
2900 
2901 
2902   // Install the generated code.
2903   if (nm != NULL) {
2904     const char *msg = method->is_static() ? "(static)" : "";
2905     CompileTask::print_ul(nm, msg);
2906     if (PrintCompilation) {
2907       ttyLocker ttyl;
2908       CompileTask::print(tty, nm, msg);
2909     }
2910     nm->post_compiled_method_load_event();
2911   }
2912 }
2913 
2914 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2915   assert(thread == JavaThread::current(), "must be");
2916   // The code is about to enter a JNI lazy critical native method and
2917   // _needs_gc is true, so if this thread is already in a critical
2918   // section then just return, otherwise this thread should block
2919   // until needs_gc has been cleared.
2920   if (thread->in_critical()) {
2921     return;
2922   }
2923   // Lock and unlock a critical section to give the system a chance to block
2924   GCLocker::lock_critical(thread);
2925   GCLocker::unlock_critical(thread);
2926 JRT_END
2927 
2928 JRT_LEAF(oopDesc*, SharedRuntime::pin_object(JavaThread* thread, oopDesc* obj))
2929   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
2930   assert(obj != NULL, "Should not be null");
2931   oop o(obj);
2932   o = Universe::heap()->pin_object(thread, o);
2933   assert(o != NULL, "Should not be null");
2934   return o;
2935 JRT_END
2936 
2937 JRT_LEAF(void, SharedRuntime::unpin_object(JavaThread* thread, oopDesc* obj))
2938   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
2939   assert(obj != NULL, "Should not be null");
2940   oop o(obj);
2941   Universe::heap()->unpin_object(thread, o);
2942 JRT_END
2943 
2944 // -------------------------------------------------------------------------
2945 // Java-Java calling convention
2946 // (what you use when Java calls Java)
2947 
2948 //------------------------------name_for_receiver----------------------------------
2949 // For a given signature, return the VMReg for parameter 0.
2950 VMReg SharedRuntime::name_for_receiver() {
2951   VMRegPair regs;
2952   BasicType sig_bt = T_OBJECT;
2953   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2954   // Return argument 0 register.  In the LP64 build pointers
2955   // take 2 registers, but the VM wants only the 'main' name.
2956   return regs.first();
2957 }
2958 
2959 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2960   // This method is returning a data structure allocating as a
2961   // ResourceObject, so do not put any ResourceMarks in here.
2962 
2963   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2964   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2965   int cnt = 0;
2966   if (has_receiver) {
2967     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2968   }
2969 
2970   for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) {
2971     BasicType type = ss.type();
2972     sig_bt[cnt++] = type;
2973     if (is_double_word_type(type))
2974       sig_bt[cnt++] = T_VOID;
2975   }
2976 
2977   if (has_appendix) {
2978     sig_bt[cnt++] = T_OBJECT;
2979   }
2980 
2981   assert(cnt < 256, "grow table size");
2982 
2983   int comp_args_on_stack;
2984   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2985 
2986   // the calling convention doesn't count out_preserve_stack_slots so
2987   // we must add that in to get "true" stack offsets.
2988 
2989   if (comp_args_on_stack) {
2990     for (int i = 0; i < cnt; i++) {
2991       VMReg reg1 = regs[i].first();
2992       if (reg1->is_stack()) {
2993         // Yuck
2994         reg1 = reg1->bias(out_preserve_stack_slots());
2995       }
2996       VMReg reg2 = regs[i].second();
2997       if (reg2->is_stack()) {
2998         // Yuck
2999         reg2 = reg2->bias(out_preserve_stack_slots());
3000       }
3001       regs[i].set_pair(reg2, reg1);
3002     }
3003   }
3004 
3005   // results
3006   *arg_size = cnt;
3007   return regs;
3008 }
3009 
3010 // OSR Migration Code
3011 //
3012 // This code is used convert interpreter frames into compiled frames.  It is
3013 // called from very start of a compiled OSR nmethod.  A temp array is
3014 // allocated to hold the interesting bits of the interpreter frame.  All
3015 // active locks are inflated to allow them to move.  The displaced headers and
3016 // active interpreter locals are copied into the temp buffer.  Then we return
3017 // back to the compiled code.  The compiled code then pops the current
3018 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3019 // copies the interpreter locals and displaced headers where it wants.
3020 // Finally it calls back to free the temp buffer.
3021 //
3022 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3023 
3024 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3025 
3026   //
3027   // This code is dependent on the memory layout of the interpreter local
3028   // array and the monitors. On all of our platforms the layout is identical
3029   // so this code is shared. If some platform lays the their arrays out
3030   // differently then this code could move to platform specific code or
3031   // the code here could be modified to copy items one at a time using
3032   // frame accessor methods and be platform independent.
3033 
3034   frame fr = thread->last_frame();
3035   assert(fr.is_interpreted_frame(), "");
3036   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3037 
3038   // Figure out how many monitors are active.
3039   int active_monitor_count = 0;
3040   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3041        kptr < fr.interpreter_frame_monitor_begin();
3042        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3043     if (kptr->obj() != NULL) active_monitor_count++;
3044   }
3045 
3046   // QQQ we could place number of active monitors in the array so that compiled code
3047   // could double check it.
3048 
3049   Method* moop = fr.interpreter_frame_method();
3050   int max_locals = moop->max_locals();
3051   // Allocate temp buffer, 1 word per local & 2 per active monitor
3052   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3053   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3054 
3055   // Copy the locals.  Order is preserved so that loading of longs works.
3056   // Since there's no GC I can copy the oops blindly.
3057   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3058   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3059                        (HeapWord*)&buf[0],
3060                        max_locals);
3061 
3062   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3063   int i = max_locals;
3064   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3065        kptr2 < fr.interpreter_frame_monitor_begin();
3066        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3067     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3068       BasicLock *lock = kptr2->lock();
3069       // Inflate so the object's header no longer refers to the BasicLock.
3070       if (lock->displaced_header().is_unlocked()) {
3071         // The object is locked and the resulting ObjectMonitor* will also be
3072         // locked so it can't be async deflated until ownership is dropped.
3073         // See the big comment in basicLock.cpp: BasicLock::move_to().
3074         ObjectSynchronizer::inflate_helper(kptr2->obj());
3075       }
3076       // Now the displaced header is free to move because the
3077       // object's header no longer refers to it.
3078       buf[i++] = (intptr_t)lock->displaced_header().value();
3079       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3080     }
3081   }
3082   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3083 
3084   return buf;
3085 JRT_END
3086 
3087 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3088   FREE_C_HEAP_ARRAY(intptr_t, buf);
3089 JRT_END
3090 
3091 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3092   AdapterHandlerTableIterator iter(_adapters);
3093   while (iter.has_next()) {
3094     AdapterHandlerEntry* a = iter.next();
3095     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3096   }
3097   return false;
3098 }
3099 
3100 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3101   AdapterHandlerTableIterator iter(_adapters);
3102   while (iter.has_next()) {
3103     AdapterHandlerEntry* a = iter.next();
3104     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3105       st->print("Adapter for signature: ");
3106       a->print_adapter_on(tty);
3107       return;
3108     }
3109   }
3110   assert(false, "Should have found handler");
3111 }
3112 
3113 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3114   st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3115   if (get_i2c_entry() != NULL) {
3116     st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3117   }
3118   if (get_c2i_entry() != NULL) {
3119     st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3120   }
3121   if (get_c2i_unverified_entry() != NULL) {
3122     st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3123   }
3124   if (get_c2i_no_clinit_check_entry() != NULL) {
3125     st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3126   }
3127   st->cr();
3128 }
3129 
3130 #if INCLUDE_CDS
3131 
3132 void CDSAdapterHandlerEntry::init() {
3133   assert(DumpSharedSpaces, "used during dump time only");
3134   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3135   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3136 };
3137 
3138 #endif // INCLUDE_CDS
3139 
3140 
3141 #ifndef PRODUCT
3142 
3143 void AdapterHandlerLibrary::print_statistics() {
3144   _adapters->print_statistics();
3145 }
3146 
3147 #endif /* PRODUCT */
3148 
3149 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3150   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3151   if (thread->stack_reserved_zone_disabled()) {
3152   thread->enable_stack_reserved_zone();
3153   }
3154   thread->set_reserved_stack_activation(thread->stack_base());
3155 JRT_END
3156 
3157 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3158   ResourceMark rm(thread);
3159   frame activation;
3160   CompiledMethod* nm = NULL;
3161   int count = 1;
3162 
3163   assert(fr.is_java_frame(), "Must start on Java frame");
3164 
3165   while (true) {
3166     Method* method = NULL;
3167     bool found = false;
3168     if (fr.is_interpreted_frame()) {
3169       method = fr.interpreter_frame_method();
3170       if (method != NULL && method->has_reserved_stack_access()) {
3171         found = true;
3172       }
3173     } else {
3174       CodeBlob* cb = fr.cb();
3175       if (cb != NULL && cb->is_compiled()) {
3176         nm = cb->as_compiled_method();
3177         method = nm->method();
3178         // scope_desc_near() must be used, instead of scope_desc_at() because on
3179         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3180         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3181           method = sd->method();
3182           if (method != NULL && method->has_reserved_stack_access()) {
3183             found = true;
3184       }
3185     }
3186       }
3187     }
3188     if (found) {
3189       activation = fr;
3190       warning("Potentially dangerous stack overflow in "
3191               "ReservedStackAccess annotated method %s [%d]",
3192               method->name_and_sig_as_C_string(), count++);
3193       EventReservedStackActivation event;
3194       if (event.should_commit()) {
3195         event.set_method(method);
3196         event.commit();
3197       }
3198     }
3199     if (fr.is_first_java_frame()) {
3200       break;
3201     } else {
3202       fr = fr.java_sender();
3203     }
3204   }
3205   return activation;
3206 }
3207 
3208 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3209   // After any safepoint, just before going back to compiled code,
3210   // we inform the GC that we will be doing initializing writes to
3211   // this object in the future without emitting card-marks, so
3212   // GC may take any compensating steps.
3213 
3214   oop new_obj = thread->vm_result();
3215   if (new_obj == NULL) return;
3216 
3217   BarrierSet *bs = BarrierSet::barrier_set();
3218   bs->on_slowpath_allocation_exit(thread, new_obj);
3219 }