1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/compiledIC.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/compiledMethod.inline.hpp"
  35 #include "code/scopeDesc.hpp"
  36 #include "code/vtableStubs.hpp"
  37 #include "compiler/abstractCompiler.hpp"
  38 #include "compiler/compileBroker.hpp"
  39 #include "compiler/disassembler.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/gcLocker.inline.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "interpreter/interpreterRuntime.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/iterator.inline.hpp"
  47 #include "memory/metaspaceShared.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "memory/universe.hpp"
  50 #include "oops/instanceKlass.inline.hpp"
  51 #include "oops/klass.hpp"
  52 #include "oops/method.inline.hpp"
  53 #include "oops/objArrayKlass.hpp"
  54 #include "oops/oop.inline.hpp"
  55 #include "prims/forte.hpp"
  56 #include "prims/jvmtiExport.hpp"
  57 #include "prims/methodHandles.hpp"
  58 #include "prims/nativeLookup.hpp"
  59 #include "runtime/arguments.hpp"
  60 #include "runtime/atomic.hpp"
  61 #include "runtime/biasedLocking.hpp"
  62 #include "runtime/frame.inline.hpp"
  63 #include "runtime/handles.inline.hpp"
  64 #include "runtime/init.hpp"
  65 #include "runtime/interfaceSupport.inline.hpp"
  66 #include "runtime/java.hpp"
  67 #include "runtime/javaCalls.hpp"
  68 #include "runtime/jniHandles.inline.hpp"
  69 #include "runtime/sharedRuntime.hpp"
  70 #include "runtime/stubRoutines.hpp"
  71 #include "runtime/synchronizer.hpp"
  72 #include "runtime/vframe.inline.hpp"
  73 #include "runtime/vframeArray.hpp"
  74 #include "utilities/copy.hpp"
  75 #include "utilities/dtrace.hpp"
  76 #include "utilities/events.hpp"
  77 #include "utilities/hashtable.inline.hpp"
  78 #include "utilities/macros.hpp"
  79 #include "utilities/xmlstream.hpp"
  80 #ifdef COMPILER1
  81 #include "c1/c1_Runtime1.hpp"
  82 #endif
  83 
  84 // Shared stub locations
  85 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  86 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  87 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  88 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  89 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  90 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  91 address             SharedRuntime::_resolve_static_call_entry;
  92 
  93 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  94 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  95 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  96 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  97 
  98 #ifdef COMPILER2
  99 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
 100 #endif // COMPILER2
 101 
 102 
 103 //----------------------------generate_stubs-----------------------------------
 104 void SharedRuntime::generate_stubs() {
 105   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 106   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 107   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 108   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 109   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 110   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 111   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 112 
 113 #if COMPILER2_OR_JVMCI
 114   // Vectors are generated only by C2 and JVMCI.
 115   bool support_wide = is_wide_vector(MaxVectorSize);
 116   if (support_wide) {
 117     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 118   }
 119 #endif // COMPILER2_OR_JVMCI
 120   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 121   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 122 
 123   generate_deopt_blob();
 124 
 125 #ifdef COMPILER2
 126   generate_uncommon_trap_blob();
 127 #endif // COMPILER2
 128 }
 129 
 130 #include <math.h>
 131 
 132 // Implementation of SharedRuntime
 133 
 134 #ifndef PRODUCT
 135 // For statistics
 136 int SharedRuntime::_ic_miss_ctr = 0;
 137 int SharedRuntime::_wrong_method_ctr = 0;
 138 int SharedRuntime::_resolve_static_ctr = 0;
 139 int SharedRuntime::_resolve_virtual_ctr = 0;
 140 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 141 int SharedRuntime::_implicit_null_throws = 0;
 142 int SharedRuntime::_implicit_div0_throws = 0;
 143 int SharedRuntime::_throw_null_ctr = 0;
 144 
 145 int SharedRuntime::_nof_normal_calls = 0;
 146 int SharedRuntime::_nof_optimized_calls = 0;
 147 int SharedRuntime::_nof_inlined_calls = 0;
 148 int SharedRuntime::_nof_megamorphic_calls = 0;
 149 int SharedRuntime::_nof_static_calls = 0;
 150 int SharedRuntime::_nof_inlined_static_calls = 0;
 151 int SharedRuntime::_nof_interface_calls = 0;
 152 int SharedRuntime::_nof_optimized_interface_calls = 0;
 153 int SharedRuntime::_nof_inlined_interface_calls = 0;
 154 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 155 int SharedRuntime::_nof_removable_exceptions = 0;
 156 
 157 int SharedRuntime::_new_instance_ctr=0;
 158 int SharedRuntime::_new_array_ctr=0;
 159 int SharedRuntime::_multi1_ctr=0;
 160 int SharedRuntime::_multi2_ctr=0;
 161 int SharedRuntime::_multi3_ctr=0;
 162 int SharedRuntime::_multi4_ctr=0;
 163 int SharedRuntime::_multi5_ctr=0;
 164 int SharedRuntime::_mon_enter_stub_ctr=0;
 165 int SharedRuntime::_mon_exit_stub_ctr=0;
 166 int SharedRuntime::_mon_enter_ctr=0;
 167 int SharedRuntime::_mon_exit_ctr=0;
 168 int SharedRuntime::_partial_subtype_ctr=0;
 169 int SharedRuntime::_jbyte_array_copy_ctr=0;
 170 int SharedRuntime::_jshort_array_copy_ctr=0;
 171 int SharedRuntime::_jint_array_copy_ctr=0;
 172 int SharedRuntime::_jlong_array_copy_ctr=0;
 173 int SharedRuntime::_oop_array_copy_ctr=0;
 174 int SharedRuntime::_checkcast_array_copy_ctr=0;
 175 int SharedRuntime::_unsafe_array_copy_ctr=0;
 176 int SharedRuntime::_generic_array_copy_ctr=0;
 177 int SharedRuntime::_slow_array_copy_ctr=0;
 178 int SharedRuntime::_find_handler_ctr=0;
 179 int SharedRuntime::_rethrow_ctr=0;
 180 
 181 int     SharedRuntime::_ICmiss_index                    = 0;
 182 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 183 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 184 
 185 
 186 void SharedRuntime::trace_ic_miss(address at) {
 187   for (int i = 0; i < _ICmiss_index; i++) {
 188     if (_ICmiss_at[i] == at) {
 189       _ICmiss_count[i]++;
 190       return;
 191     }
 192   }
 193   int index = _ICmiss_index++;
 194   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 195   _ICmiss_at[index] = at;
 196   _ICmiss_count[index] = 1;
 197 }
 198 
 199 void SharedRuntime::print_ic_miss_histogram() {
 200   if (ICMissHistogram) {
 201     tty->print_cr("IC Miss Histogram:");
 202     int tot_misses = 0;
 203     for (int i = 0; i < _ICmiss_index; i++) {
 204       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 205       tot_misses += _ICmiss_count[i];
 206     }
 207     tty->print_cr("Total IC misses: %7d", tot_misses);
 208   }
 209 }
 210 #endif // PRODUCT
 211 
 212 
 213 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 214   return x * y;
 215 JRT_END
 216 
 217 
 218 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 219   if (x == min_jlong && y == CONST64(-1)) {
 220     return x;
 221   } else {
 222     return x / y;
 223   }
 224 JRT_END
 225 
 226 
 227 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 228   if (x == min_jlong && y == CONST64(-1)) {
 229     return 0;
 230   } else {
 231     return x % y;
 232   }
 233 JRT_END
 234 
 235 
 236 const juint  float_sign_mask  = 0x7FFFFFFF;
 237 const juint  float_infinity   = 0x7F800000;
 238 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 239 const julong double_infinity  = CONST64(0x7FF0000000000000);
 240 
 241 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 242 #ifdef _WIN64
 243   // 64-bit Windows on amd64 returns the wrong values for
 244   // infinity operands.
 245   union { jfloat f; juint i; } xbits, ybits;
 246   xbits.f = x;
 247   ybits.f = y;
 248   // x Mod Infinity == x unless x is infinity
 249   if (((xbits.i & float_sign_mask) != float_infinity) &&
 250        ((ybits.i & float_sign_mask) == float_infinity) ) {
 251     return x;
 252   }
 253   return ((jfloat)fmod_winx64((double)x, (double)y));
 254 #else
 255   return ((jfloat)fmod((double)x,(double)y));
 256 #endif
 257 JRT_END
 258 
 259 
 260 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 261 #ifdef _WIN64
 262   union { jdouble d; julong l; } xbits, ybits;
 263   xbits.d = x;
 264   ybits.d = y;
 265   // x Mod Infinity == x unless x is infinity
 266   if (((xbits.l & double_sign_mask) != double_infinity) &&
 267        ((ybits.l & double_sign_mask) == double_infinity) ) {
 268     return x;
 269   }
 270   return ((jdouble)fmod_winx64((double)x, (double)y));
 271 #else
 272   return ((jdouble)fmod((double)x,(double)y));
 273 #endif
 274 JRT_END
 275 
 276 #ifdef __SOFTFP__
 277 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 278   return x + y;
 279 JRT_END
 280 
 281 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 282   return x - y;
 283 JRT_END
 284 
 285 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 286   return x * y;
 287 JRT_END
 288 
 289 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 290   return x / y;
 291 JRT_END
 292 
 293 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 294   return x + y;
 295 JRT_END
 296 
 297 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 298   return x - y;
 299 JRT_END
 300 
 301 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 302   return x * y;
 303 JRT_END
 304 
 305 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 306   return x / y;
 307 JRT_END
 308 
 309 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 310   return (jfloat)x;
 311 JRT_END
 312 
 313 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 314   return (jdouble)x;
 315 JRT_END
 316 
 317 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 318   return (jdouble)x;
 319 JRT_END
 320 
 321 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 322   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 323 JRT_END
 324 
 325 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 326   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 327 JRT_END
 328 
 329 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 330   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 331 JRT_END
 332 
 333 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 334   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 335 JRT_END
 336 
 337 // Functions to return the opposite of the aeabi functions for nan.
 338 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 339   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 340 JRT_END
 341 
 342 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 343   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 344 JRT_END
 345 
 346 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 347   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 348 JRT_END
 349 
 350 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 351   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 352 JRT_END
 353 
 354 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 355   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 356 JRT_END
 357 
 358 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 359   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 360 JRT_END
 361 
 362 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 363   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 364 JRT_END
 365 
 366 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 367   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 368 JRT_END
 369 
 370 // Intrinsics make gcc generate code for these.
 371 float  SharedRuntime::fneg(float f)   {
 372   return -f;
 373 }
 374 
 375 double SharedRuntime::dneg(double f)  {
 376   return -f;
 377 }
 378 
 379 #endif // __SOFTFP__
 380 
 381 #if defined(__SOFTFP__) || defined(E500V2)
 382 // Intrinsics make gcc generate code for these.
 383 double SharedRuntime::dabs(double f)  {
 384   return (f <= (double)0.0) ? (double)0.0 - f : f;
 385 }
 386 
 387 #endif
 388 
 389 #if defined(__SOFTFP__) || defined(PPC)
 390 double SharedRuntime::dsqrt(double f) {
 391   return sqrt(f);
 392 }
 393 #endif
 394 
 395 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 396   if (g_isnan(x))
 397     return 0;
 398   if (x >= (jfloat) max_jint)
 399     return max_jint;
 400   if (x <= (jfloat) min_jint)
 401     return min_jint;
 402   return (jint) x;
 403 JRT_END
 404 
 405 
 406 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 407   if (g_isnan(x))
 408     return 0;
 409   if (x >= (jfloat) max_jlong)
 410     return max_jlong;
 411   if (x <= (jfloat) min_jlong)
 412     return min_jlong;
 413   return (jlong) x;
 414 JRT_END
 415 
 416 
 417 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 418   if (g_isnan(x))
 419     return 0;
 420   if (x >= (jdouble) max_jint)
 421     return max_jint;
 422   if (x <= (jdouble) min_jint)
 423     return min_jint;
 424   return (jint) x;
 425 JRT_END
 426 
 427 
 428 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 429   if (g_isnan(x))
 430     return 0;
 431   if (x >= (jdouble) max_jlong)
 432     return max_jlong;
 433   if (x <= (jdouble) min_jlong)
 434     return min_jlong;
 435   return (jlong) x;
 436 JRT_END
 437 
 438 
 439 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 440   return (jfloat)x;
 441 JRT_END
 442 
 443 
 444 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 445   return (jfloat)x;
 446 JRT_END
 447 
 448 
 449 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 450   return (jdouble)x;
 451 JRT_END
 452 
 453 // Exception handling across interpreter/compiler boundaries
 454 //
 455 // exception_handler_for_return_address(...) returns the continuation address.
 456 // The continuation address is the entry point of the exception handler of the
 457 // previous frame depending on the return address.
 458 
 459 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 460   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 461   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 462 
 463   // Reset method handle flag.
 464   thread->set_is_method_handle_return(false);
 465 
 466 #if INCLUDE_JVMCI
 467   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 468   // and other exception handler continuations do not read it
 469   thread->set_exception_pc(NULL);
 470 #endif // INCLUDE_JVMCI
 471 
 472   // The fastest case first
 473   CodeBlob* blob = CodeCache::find_blob(return_address);
 474   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 475   if (nm != NULL) {
 476     // Set flag if return address is a method handle call site.
 477     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 478     // native nmethods don't have exception handlers
 479     assert(!nm->is_native_method(), "no exception handler");
 480     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 481     if (nm->is_deopt_pc(return_address)) {
 482       // If we come here because of a stack overflow, the stack may be
 483       // unguarded. Reguard the stack otherwise if we return to the
 484       // deopt blob and the stack bang causes a stack overflow we
 485       // crash.
 486       bool guard_pages_enabled = thread->stack_guards_enabled();
 487       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 488       if (thread->reserved_stack_activation() != thread->stack_base()) {
 489         thread->set_reserved_stack_activation(thread->stack_base());
 490       }
 491       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 492       return SharedRuntime::deopt_blob()->unpack_with_exception();
 493     } else {
 494       return nm->exception_begin();
 495     }
 496   }
 497 
 498   // Entry code
 499   if (StubRoutines::returns_to_call_stub(return_address)) {
 500     return StubRoutines::catch_exception_entry();
 501   }
 502   // Interpreted code
 503   if (Interpreter::contains(return_address)) {
 504     return Interpreter::rethrow_exception_entry();
 505   }
 506 
 507   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 508   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 509 
 510 #ifndef PRODUCT
 511   { ResourceMark rm;
 512     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 513     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 514     tty->print_cr("b) other problem");
 515   }
 516 #endif // PRODUCT
 517 
 518   ShouldNotReachHere();
 519   return NULL;
 520 }
 521 
 522 
 523 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 524   return raw_exception_handler_for_return_address(thread, return_address);
 525 JRT_END
 526 
 527 
 528 address SharedRuntime::get_poll_stub(address pc) {
 529   address stub;
 530   // Look up the code blob
 531   CodeBlob *cb = CodeCache::find_blob(pc);
 532 
 533   // Should be an nmethod
 534   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 535 
 536   // Look up the relocation information
 537   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 538     "safepoint polling: type must be poll");
 539 
 540 #ifdef ASSERT
 541   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 542     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 543     Disassembler::decode(cb);
 544     fatal("Only polling locations are used for safepoint");
 545   }
 546 #endif
 547 
 548   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 549   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 550   if (at_poll_return) {
 551     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 552            "polling page return stub not created yet");
 553     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 554   } else if (has_wide_vectors) {
 555     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 556            "polling page vectors safepoint stub not created yet");
 557     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 558   } else {
 559     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 560            "polling page safepoint stub not created yet");
 561     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 562   }
 563   log_debug(safepoint)("... found polling page %s exception at pc = "
 564                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 565                        at_poll_return ? "return" : "loop",
 566                        (intptr_t)pc, (intptr_t)stub);
 567   return stub;
 568 }
 569 
 570 
 571 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 572   assert(caller.is_interpreted_frame(), "");
 573   int args_size = ArgumentSizeComputer(sig).size() + 1;
 574   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 575   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 576   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 577   return result;
 578 }
 579 
 580 
 581 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 582   if (JvmtiExport::can_post_on_exceptions()) {
 583     vframeStream vfst(thread, true);
 584     methodHandle method = methodHandle(thread, vfst.method());
 585     address bcp = method()->bcp_from(vfst.bci());
 586     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 587   }
 588   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 589 }
 590 
 591 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 592   Handle h_exception = Exceptions::new_exception(thread, name, message);
 593   throw_and_post_jvmti_exception(thread, h_exception);
 594 }
 595 
 596 // The interpreter code to call this tracing function is only
 597 // called/generated when UL is on for redefine, class and has the right level
 598 // and tags. Since obsolete methods are never compiled, we don't have
 599 // to modify the compilers to generate calls to this function.
 600 //
 601 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 602     JavaThread* thread, Method* method))
 603   if (method->is_obsolete()) {
 604     // We are calling an obsolete method, but this is not necessarily
 605     // an error. Our method could have been redefined just after we
 606     // fetched the Method* from the constant pool.
 607     ResourceMark rm;
 608     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 609   }
 610   return 0;
 611 JRT_END
 612 
 613 // ret_pc points into caller; we are returning caller's exception handler
 614 // for given exception
 615 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 616                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 617   assert(cm != NULL, "must exist");
 618   ResourceMark rm;
 619 
 620 #if INCLUDE_JVMCI
 621   if (cm->is_compiled_by_jvmci()) {
 622     // lookup exception handler for this pc
 623     int catch_pco = ret_pc - cm->code_begin();
 624     ExceptionHandlerTable table(cm);
 625     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 626     if (t != NULL) {
 627       return cm->code_begin() + t->pco();
 628     } else {
 629       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 630     }
 631   }
 632 #endif // INCLUDE_JVMCI
 633 
 634   nmethod* nm = cm->as_nmethod();
 635   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 636   // determine handler bci, if any
 637   EXCEPTION_MARK;
 638 
 639   int handler_bci = -1;
 640   int scope_depth = 0;
 641   if (!force_unwind) {
 642     int bci = sd->bci();
 643     bool recursive_exception = false;
 644     do {
 645       bool skip_scope_increment = false;
 646       // exception handler lookup
 647       Klass* ek = exception->klass();
 648       methodHandle mh(THREAD, sd->method());
 649       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 650       if (HAS_PENDING_EXCEPTION) {
 651         recursive_exception = true;
 652         // We threw an exception while trying to find the exception handler.
 653         // Transfer the new exception to the exception handle which will
 654         // be set into thread local storage, and do another lookup for an
 655         // exception handler for this exception, this time starting at the
 656         // BCI of the exception handler which caused the exception to be
 657         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 658         // argument to ensure that the correct exception is thrown (4870175).
 659         recursive_exception_occurred = true;
 660         exception = Handle(THREAD, PENDING_EXCEPTION);
 661         CLEAR_PENDING_EXCEPTION;
 662         if (handler_bci >= 0) {
 663           bci = handler_bci;
 664           handler_bci = -1;
 665           skip_scope_increment = true;
 666         }
 667       }
 668       else {
 669         recursive_exception = false;
 670       }
 671       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 672         sd = sd->sender();
 673         if (sd != NULL) {
 674           bci = sd->bci();
 675         }
 676         ++scope_depth;
 677       }
 678     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 679   }
 680 
 681   // found handling method => lookup exception handler
 682   int catch_pco = ret_pc - nm->code_begin();
 683 
 684   ExceptionHandlerTable table(nm);
 685   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 686   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 687     // Allow abbreviated catch tables.  The idea is to allow a method
 688     // to materialize its exceptions without committing to the exact
 689     // routing of exceptions.  In particular this is needed for adding
 690     // a synthetic handler to unlock monitors when inlining
 691     // synchronized methods since the unlock path isn't represented in
 692     // the bytecodes.
 693     t = table.entry_for(catch_pco, -1, 0);
 694   }
 695 
 696 #ifdef COMPILER1
 697   if (t == NULL && nm->is_compiled_by_c1()) {
 698     assert(nm->unwind_handler_begin() != NULL, "");
 699     return nm->unwind_handler_begin();
 700   }
 701 #endif
 702 
 703   if (t == NULL) {
 704     ttyLocker ttyl;
 705     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 706     tty->print_cr("   Exception:");
 707     exception->print();
 708     tty->cr();
 709     tty->print_cr(" Compiled exception table :");
 710     table.print();
 711     nm->print_code();
 712     guarantee(false, "missing exception handler");
 713     return NULL;
 714   }
 715 
 716   return nm->code_begin() + t->pco();
 717 }
 718 
 719 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 720   // These errors occur only at call sites
 721   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 722 JRT_END
 723 
 724 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 725   // These errors occur only at call sites
 726   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 727 JRT_END
 728 
 729 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 730   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 731 JRT_END
 732 
 733 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 734   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 735 JRT_END
 736 
 737 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 738   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 739   // cache sites (when the callee activation is not yet set up) so we are at a call site
 740   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 741 JRT_END
 742 
 743 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 744   throw_StackOverflowError_common(thread, false);
 745 JRT_END
 746 
 747 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 748   throw_StackOverflowError_common(thread, true);
 749 JRT_END
 750 
 751 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 752   // We avoid using the normal exception construction in this case because
 753   // it performs an upcall to Java, and we're already out of stack space.
 754   Thread* THREAD = thread;
 755   Klass* k = SystemDictionary::StackOverflowError_klass();
 756   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 757   if (delayed) {
 758     java_lang_Throwable::set_message(exception_oop,
 759                                      Universe::delayed_stack_overflow_error_message());
 760   }
 761   Handle exception (thread, exception_oop);
 762   if (StackTraceInThrowable) {
 763     java_lang_Throwable::fill_in_stack_trace(exception);
 764   }
 765   // Increment counter for hs_err file reporting
 766   Atomic::inc(&Exceptions::_stack_overflow_errors);
 767   throw_and_post_jvmti_exception(thread, exception);
 768 }
 769 
 770 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 771                                                            address pc,
 772                                                            ImplicitExceptionKind exception_kind)
 773 {
 774   address target_pc = NULL;
 775 
 776   if (Interpreter::contains(pc)) {
 777     switch (exception_kind) {
 778       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 779       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 780       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 781       default:                      ShouldNotReachHere();
 782     }
 783   } else {
 784     switch (exception_kind) {
 785       case STACK_OVERFLOW: {
 786         // Stack overflow only occurs upon frame setup; the callee is
 787         // going to be unwound. Dispatch to a shared runtime stub
 788         // which will cause the StackOverflowError to be fabricated
 789         // and processed.
 790         // Stack overflow should never occur during deoptimization:
 791         // the compiled method bangs the stack by as much as the
 792         // interpreter would need in case of a deoptimization. The
 793         // deoptimization blob and uncommon trap blob bang the stack
 794         // in a debug VM to verify the correctness of the compiled
 795         // method stack banging.
 796         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 797         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 798         return StubRoutines::throw_StackOverflowError_entry();
 799       }
 800 
 801       case IMPLICIT_NULL: {
 802         if (VtableStubs::contains(pc)) {
 803           // We haven't yet entered the callee frame. Fabricate an
 804           // exception and begin dispatching it in the caller. Since
 805           // the caller was at a call site, it's safe to destroy all
 806           // caller-saved registers, as these entry points do.
 807           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 808 
 809           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 810           if (vt_stub == NULL) return NULL;
 811 
 812           if (vt_stub->is_abstract_method_error(pc)) {
 813             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 814             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 815             // Instead of throwing the abstract method error here directly, we re-resolve
 816             // and will throw the AbstractMethodError during resolve. As a result, we'll
 817             // get a more detailed error message.
 818             return SharedRuntime::get_handle_wrong_method_stub();
 819           } else {
 820             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 821             // Assert that the signal comes from the expected location in stub code.
 822             assert(vt_stub->is_null_pointer_exception(pc),
 823                    "obtained signal from unexpected location in stub code");
 824             return StubRoutines::throw_NullPointerException_at_call_entry();
 825           }
 826         } else {
 827           CodeBlob* cb = CodeCache::find_blob(pc);
 828 
 829           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 830           if (cb == NULL) return NULL;
 831 
 832           // Exception happened in CodeCache. Must be either:
 833           // 1. Inline-cache check in C2I handler blob,
 834           // 2. Inline-cache check in nmethod, or
 835           // 3. Implicit null exception in nmethod
 836 
 837           if (!cb->is_compiled()) {
 838             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 839             if (!is_in_blob) {
 840               // Allow normal crash reporting to handle this
 841               return NULL;
 842             }
 843             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 844             // There is no handler here, so we will simply unwind.
 845             return StubRoutines::throw_NullPointerException_at_call_entry();
 846           }
 847 
 848           // Otherwise, it's a compiled method.  Consult its exception handlers.
 849           CompiledMethod* cm = (CompiledMethod*)cb;
 850           if (cm->inlinecache_check_contains(pc)) {
 851             // exception happened inside inline-cache check code
 852             // => the nmethod is not yet active (i.e., the frame
 853             // is not set up yet) => use return address pushed by
 854             // caller => don't push another return address
 855             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 856             return StubRoutines::throw_NullPointerException_at_call_entry();
 857           }
 858 
 859           if (cm->method()->is_method_handle_intrinsic()) {
 860             // exception happened inside MH dispatch code, similar to a vtable stub
 861             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 862             return StubRoutines::throw_NullPointerException_at_call_entry();
 863           }
 864 
 865 #ifndef PRODUCT
 866           _implicit_null_throws++;
 867 #endif
 868           target_pc = cm->continuation_for_implicit_null_exception(pc);
 869           // If there's an unexpected fault, target_pc might be NULL,
 870           // in which case we want to fall through into the normal
 871           // error handling code.
 872         }
 873 
 874         break; // fall through
 875       }
 876 
 877 
 878       case IMPLICIT_DIVIDE_BY_ZERO: {
 879         CompiledMethod* cm = CodeCache::find_compiled(pc);
 880         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 881 #ifndef PRODUCT
 882         _implicit_div0_throws++;
 883 #endif
 884         target_pc = cm->continuation_for_implicit_div0_exception(pc);
 885         // If there's an unexpected fault, target_pc might be NULL,
 886         // in which case we want to fall through into the normal
 887         // error handling code.
 888         break; // fall through
 889       }
 890 
 891       default: ShouldNotReachHere();
 892     }
 893 
 894     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 895 
 896     if (exception_kind == IMPLICIT_NULL) {
 897 #ifndef PRODUCT
 898       // for AbortVMOnException flag
 899       Exceptions::debug_check_abort("java.lang.NullPointerException");
 900 #endif //PRODUCT
 901       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 902     } else {
 903 #ifndef PRODUCT
 904       // for AbortVMOnException flag
 905       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 906 #endif //PRODUCT
 907       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 908     }
 909     return target_pc;
 910   }
 911 
 912   ShouldNotReachHere();
 913   return NULL;
 914 }
 915 
 916 
 917 /**
 918  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 919  * installed in the native function entry of all native Java methods before
 920  * they get linked to their actual native methods.
 921  *
 922  * \note
 923  * This method actually never gets called!  The reason is because
 924  * the interpreter's native entries call NativeLookup::lookup() which
 925  * throws the exception when the lookup fails.  The exception is then
 926  * caught and forwarded on the return from NativeLookup::lookup() call
 927  * before the call to the native function.  This might change in the future.
 928  */
 929 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 930 {
 931   // We return a bad value here to make sure that the exception is
 932   // forwarded before we look at the return value.
 933   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 934 }
 935 JNI_END
 936 
 937 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 938   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 939 }
 940 
 941 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 942 #if INCLUDE_JVMCI
 943   if (!obj->klass()->has_finalizer()) {
 944     return;
 945   }
 946 #endif // INCLUDE_JVMCI
 947   assert(oopDesc::is_oop(obj), "must be a valid oop");
 948   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 949   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 950 JRT_END
 951 
 952 
 953 jlong SharedRuntime::get_java_tid(Thread* thread) {
 954   if (thread != NULL) {
 955     if (thread->is_Java_thread()) {
 956       oop obj = ((JavaThread*)thread)->threadObj();
 957       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 958     }
 959   }
 960   return 0;
 961 }
 962 
 963 /**
 964  * This function ought to be a void function, but cannot be because
 965  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 966  * 6254741.  Once that is fixed we can remove the dummy return value.
 967  */
 968 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
 969   return dtrace_object_alloc_base(Thread::current(), o, size);
 970 }
 971 
 972 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
 973   assert(DTraceAllocProbes, "wrong call");
 974   Klass* klass = o->klass();
 975   Symbol* name = klass->name();
 976   HOTSPOT_OBJECT_ALLOC(
 977                    get_java_tid(thread),
 978                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 979   return 0;
 980 }
 981 
 982 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 983     JavaThread* thread, Method* method))
 984   assert(DTraceMethodProbes, "wrong call");
 985   Symbol* kname = method->klass_name();
 986   Symbol* name = method->name();
 987   Symbol* sig = method->signature();
 988   HOTSPOT_METHOD_ENTRY(
 989       get_java_tid(thread),
 990       (char *) kname->bytes(), kname->utf8_length(),
 991       (char *) name->bytes(), name->utf8_length(),
 992       (char *) sig->bytes(), sig->utf8_length());
 993   return 0;
 994 JRT_END
 995 
 996 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
 997     JavaThread* thread, Method* method))
 998   assert(DTraceMethodProbes, "wrong call");
 999   Symbol* kname = method->klass_name();
1000   Symbol* name = method->name();
1001   Symbol* sig = method->signature();
1002   HOTSPOT_METHOD_RETURN(
1003       get_java_tid(thread),
1004       (char *) kname->bytes(), kname->utf8_length(),
1005       (char *) name->bytes(), name->utf8_length(),
1006       (char *) sig->bytes(), sig->utf8_length());
1007   return 0;
1008 JRT_END
1009 
1010 
1011 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1012 // for a call current in progress, i.e., arguments has been pushed on stack
1013 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1014 // vtable updates, etc.  Caller frame must be compiled.
1015 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1016   ResourceMark rm(THREAD);
1017 
1018   // last java frame on stack (which includes native call frames)
1019   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1020 
1021   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1022 }
1023 
1024 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) {
1025   CompiledMethod* caller = vfst.nm();
1026 
1027   nmethodLocker caller_lock(caller);
1028 
1029   address pc = vfst.frame_pc();
1030   { // Get call instruction under lock because another thread may be busy patching it.
1031     CompiledICLocker ic_locker(caller);
1032     return caller->attached_method_before_pc(pc);
1033   }
1034   return NULL;
1035 }
1036 
1037 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1038 // for a call current in progress, i.e., arguments has been pushed on stack
1039 // but callee has not been invoked yet.  Caller frame must be compiled.
1040 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1041                                               vframeStream& vfst,
1042                                               Bytecodes::Code& bc,
1043                                               CallInfo& callinfo, TRAPS) {
1044   Handle receiver;
1045   Handle nullHandle;  //create a handy null handle for exception returns
1046 
1047   assert(!vfst.at_end(), "Java frame must exist");
1048 
1049   // Find caller and bci from vframe
1050   methodHandle caller(THREAD, vfst.method());
1051   int          bci   = vfst.bci();
1052 
1053   Bytecode_invoke bytecode(caller, bci);
1054   int bytecode_index = bytecode.index();
1055   bc = bytecode.invoke_code();
1056 
1057   methodHandle attached_method(THREAD, extract_attached_method(vfst));
1058   if (attached_method.not_null()) {
1059     Method* callee = bytecode.static_target(CHECK_NH);
1060     vmIntrinsics::ID id = callee->intrinsic_id();
1061     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1062     // it attaches statically resolved method to the call site.
1063     if (MethodHandles::is_signature_polymorphic(id) &&
1064         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1065       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1066 
1067       // Adjust invocation mode according to the attached method.
1068       switch (bc) {
1069         case Bytecodes::_invokevirtual:
1070           if (attached_method->method_holder()->is_interface()) {
1071             bc = Bytecodes::_invokeinterface;
1072           }
1073           break;
1074         case Bytecodes::_invokeinterface:
1075           if (!attached_method->method_holder()->is_interface()) {
1076             bc = Bytecodes::_invokevirtual;
1077           }
1078           break;
1079         case Bytecodes::_invokehandle:
1080           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1081             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1082                                               : Bytecodes::_invokevirtual;
1083           }
1084           break;
1085         default:
1086           break;
1087       }
1088     }
1089   }
1090 
1091   assert(bc != Bytecodes::_illegal, "not initialized");
1092 
1093   bool has_receiver = bc != Bytecodes::_invokestatic &&
1094                       bc != Bytecodes::_invokedynamic &&
1095                       bc != Bytecodes::_invokehandle;
1096 
1097   // Find receiver for non-static call
1098   if (has_receiver) {
1099     // This register map must be update since we need to find the receiver for
1100     // compiled frames. The receiver might be in a register.
1101     RegisterMap reg_map2(thread);
1102     frame stubFrame   = thread->last_frame();
1103     // Caller-frame is a compiled frame
1104     frame callerFrame = stubFrame.sender(&reg_map2);
1105 
1106     if (attached_method.is_null()) {
1107       Method* callee = bytecode.static_target(CHECK_NH);
1108       if (callee == NULL) {
1109         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1110       }
1111     }
1112 
1113     // Retrieve from a compiled argument list
1114     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1115 
1116     if (receiver.is_null()) {
1117       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1118     }
1119   }
1120 
1121   // Resolve method
1122   if (attached_method.not_null()) {
1123     // Parameterized by attached method.
1124     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1125   } else {
1126     // Parameterized by bytecode.
1127     constantPoolHandle constants(THREAD, caller->constants());
1128     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1129   }
1130 
1131 #ifdef ASSERT
1132   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1133   if (has_receiver) {
1134     assert(receiver.not_null(), "should have thrown exception");
1135     Klass* receiver_klass = receiver->klass();
1136     Klass* rk = NULL;
1137     if (attached_method.not_null()) {
1138       // In case there's resolved method attached, use its holder during the check.
1139       rk = attached_method->method_holder();
1140     } else {
1141       // Klass is already loaded.
1142       constantPoolHandle constants(THREAD, caller->constants());
1143       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1144     }
1145     Klass* static_receiver_klass = rk;
1146     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1147            "actual receiver must be subclass of static receiver klass");
1148     if (receiver_klass->is_instance_klass()) {
1149       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1150         tty->print_cr("ERROR: Klass not yet initialized!!");
1151         receiver_klass->print();
1152       }
1153       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1154     }
1155   }
1156 #endif
1157 
1158   return receiver;
1159 }
1160 
1161 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1162   ResourceMark rm(THREAD);
1163   // We need first to check if any Java activations (compiled, interpreted)
1164   // exist on the stack since last JavaCall.  If not, we need
1165   // to get the target method from the JavaCall wrapper.
1166   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1167   methodHandle callee_method;
1168   if (vfst.at_end()) {
1169     // No Java frames were found on stack since we did the JavaCall.
1170     // Hence the stack can only contain an entry_frame.  We need to
1171     // find the target method from the stub frame.
1172     RegisterMap reg_map(thread, false);
1173     frame fr = thread->last_frame();
1174     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1175     fr = fr.sender(&reg_map);
1176     assert(fr.is_entry_frame(), "must be");
1177     // fr is now pointing to the entry frame.
1178     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1179   } else {
1180     Bytecodes::Code bc;
1181     CallInfo callinfo;
1182     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1183     callee_method = methodHandle(THREAD, callinfo.selected_method());
1184   }
1185   assert(callee_method()->is_method(), "must be");
1186   return callee_method;
1187 }
1188 
1189 // Resolves a call.
1190 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1191                                            bool is_virtual,
1192                                            bool is_optimized, TRAPS) {
1193   methodHandle callee_method;
1194   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1195   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1196     int retry_count = 0;
1197     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1198            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1199       // If has a pending exception then there is no need to re-try to
1200       // resolve this method.
1201       // If the method has been redefined, we need to try again.
1202       // Hack: we have no way to update the vtables of arrays, so don't
1203       // require that java.lang.Object has been updated.
1204 
1205       // It is very unlikely that method is redefined more than 100 times
1206       // in the middle of resolve. If it is looping here more than 100 times
1207       // means then there could be a bug here.
1208       guarantee((retry_count++ < 100),
1209                 "Could not resolve to latest version of redefined method");
1210       // method is redefined in the middle of resolve so re-try.
1211       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1212     }
1213   }
1214   return callee_method;
1215 }
1216 
1217 // This fails if resolution required refilling of IC stubs
1218 bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame,
1219                                                 CompiledMethod* caller_nm, bool is_virtual, bool is_optimized,
1220                                                 Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) {
1221   StaticCallInfo static_call_info;
1222   CompiledICInfo virtual_call_info;
1223 
1224   // Make sure the callee nmethod does not get deoptimized and removed before
1225   // we are done patching the code.
1226   CompiledMethod* callee = callee_method->code();
1227 
1228   if (callee != NULL) {
1229     assert(callee->is_compiled(), "must be nmethod for patching");
1230   }
1231 
1232   if (callee != NULL && !callee->is_in_use()) {
1233     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1234     callee = NULL;
1235   }
1236   nmethodLocker nl_callee(callee);
1237 #ifdef ASSERT
1238   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1239 #endif
1240 
1241   bool is_nmethod = caller_nm->is_nmethod();
1242 
1243   if (is_virtual) {
1244     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1245     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1246     Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1247     CompiledIC::compute_monomorphic_entry(callee_method, klass,
1248                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1249                      CHECK_false);
1250   } else {
1251     // static call
1252     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1253   }
1254 
1255   // grab lock, check for deoptimization and potentially patch caller
1256   {
1257     CompiledICLocker ml(caller_nm);
1258 
1259     // Lock blocks for safepoint during which both nmethods can change state.
1260 
1261     // Now that we are ready to patch if the Method* was redefined then
1262     // don't update call site and let the caller retry.
1263     // Don't update call site if callee nmethod was unloaded or deoptimized.
1264     // Don't update call site if callee nmethod was replaced by an other nmethod
1265     // which may happen when multiply alive nmethod (tiered compilation)
1266     // will be supported.
1267     if (!callee_method->is_old() &&
1268         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1269       NoSafepointVerifier nsv;
1270 #ifdef ASSERT
1271       // We must not try to patch to jump to an already unloaded method.
1272       if (dest_entry_point != 0) {
1273         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1274         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1275                "should not call unloaded nmethod");
1276       }
1277 #endif
1278       if (is_virtual) {
1279         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1280         if (inline_cache->is_clean()) {
1281           if (!inline_cache->set_to_monomorphic(virtual_call_info)) {
1282             return false;
1283           }
1284         }
1285       } else {
1286         if (VM_Version::supports_fast_class_init_checks() &&
1287             invoke_code == Bytecodes::_invokestatic &&
1288             callee_method->needs_clinit_barrier() &&
1289             callee != NULL && (callee->is_compiled_by_jvmci() || callee->is_aot())) {
1290           return true; // skip patching for JVMCI or AOT code
1291         }
1292         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1293         if (ssc->is_clean()) ssc->set(static_call_info);
1294       }
1295     }
1296   } // unlock CompiledICLocker
1297   return true;
1298 }
1299 
1300 // Resolves a call.  The compilers generate code for calls that go here
1301 // and are patched with the real destination of the call.
1302 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1303                                                bool is_virtual,
1304                                                bool is_optimized, TRAPS) {
1305 
1306   ResourceMark rm(thread);
1307   RegisterMap cbl_map(thread, false);
1308   frame caller_frame = thread->last_frame().sender(&cbl_map);
1309 
1310   CodeBlob* caller_cb = caller_frame.cb();
1311   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1312   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1313 
1314   // make sure caller is not getting deoptimized
1315   // and removed before we are done with it.
1316   // CLEANUP - with lazy deopt shouldn't need this lock
1317   nmethodLocker caller_lock(caller_nm);
1318 
1319   // determine call info & receiver
1320   // note: a) receiver is NULL for static calls
1321   //       b) an exception is thrown if receiver is NULL for non-static calls
1322   CallInfo call_info;
1323   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1324   Handle receiver = find_callee_info(thread, invoke_code,
1325                                      call_info, CHECK_(methodHandle()));
1326   methodHandle callee_method(THREAD, call_info.selected_method());
1327 
1328   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1329          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1330          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1331          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1332          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1333 
1334   assert(caller_nm->is_alive() && !caller_nm->is_unloading(), "It should be alive");
1335 
1336 #ifndef PRODUCT
1337   // tracing/debugging/statistics
1338   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1339                 (is_virtual) ? (&_resolve_virtual_ctr) :
1340                                (&_resolve_static_ctr);
1341   Atomic::inc(addr);
1342 
1343   if (TraceCallFixup) {
1344     ResourceMark rm(thread);
1345     tty->print("resolving %s%s (%s) call to",
1346       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1347       Bytecodes::name(invoke_code));
1348     callee_method->print_short_name(tty);
1349     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1350                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1351   }
1352 #endif
1353 
1354   if (invoke_code == Bytecodes::_invokestatic) {
1355     assert(callee_method->method_holder()->is_initialized() ||
1356            callee_method->method_holder()->is_reentrant_initialization(thread),
1357            "invalid class initialization state for invoke_static");
1358     if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1359       // In order to keep class initialization check, do not patch call
1360       // site for static call when the class is not fully initialized.
1361       // Proper check is enforced by call site re-resolution on every invocation.
1362       //
1363       // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1364       // explicit class initialization check is put in nmethod entry (VEP).
1365       assert(callee_method->method_holder()->is_linked(), "must be");
1366       return callee_method;
1367     }
1368   }
1369 
1370   // JSR 292 key invariant:
1371   // If the resolved method is a MethodHandle invoke target, the call
1372   // site must be a MethodHandle call site, because the lambda form might tail-call
1373   // leaving the stack in a state unknown to either caller or callee
1374   // TODO detune for now but we might need it again
1375 //  assert(!callee_method->is_compiled_lambda_form() ||
1376 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1377 
1378   // Compute entry points. This might require generation of C2I converter
1379   // frames, so we cannot be holding any locks here. Furthermore, the
1380   // computation of the entry points is independent of patching the call.  We
1381   // always return the entry-point, but we only patch the stub if the call has
1382   // not been deoptimized.  Return values: For a virtual call this is an
1383   // (cached_oop, destination address) pair. For a static call/optimized
1384   // virtual this is just a destination address.
1385 
1386   // Patching IC caches may fail if we run out if transition stubs.
1387   // We refill the ic stubs then and try again.
1388   for (;;) {
1389     ICRefillVerifier ic_refill_verifier;
1390     bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm,
1391                                                   is_virtual, is_optimized, receiver,
1392                                                   call_info, invoke_code, CHECK_(methodHandle()));
1393     if (successful) {
1394       return callee_method;
1395     } else {
1396       InlineCacheBuffer::refill_ic_stubs();
1397     }
1398   }
1399 
1400 }
1401 
1402 
1403 // Inline caches exist only in compiled code
1404 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1405 #ifdef ASSERT
1406   RegisterMap reg_map(thread, false);
1407   frame stub_frame = thread->last_frame();
1408   assert(stub_frame.is_runtime_frame(), "sanity check");
1409   frame caller_frame = stub_frame.sender(&reg_map);
1410   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1411 #endif /* ASSERT */
1412 
1413   methodHandle callee_method;
1414   JRT_BLOCK
1415     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1416     // Return Method* through TLS
1417     thread->set_vm_result_2(callee_method());
1418   JRT_BLOCK_END
1419   // return compiled code entry point after potential safepoints
1420   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1421   return callee_method->verified_code_entry();
1422 JRT_END
1423 
1424 
1425 // Handle call site that has been made non-entrant
1426 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1427   // 6243940 We might end up in here if the callee is deoptimized
1428   // as we race to call it.  We don't want to take a safepoint if
1429   // the caller was interpreted because the caller frame will look
1430   // interpreted to the stack walkers and arguments are now
1431   // "compiled" so it is much better to make this transition
1432   // invisible to the stack walking code. The i2c path will
1433   // place the callee method in the callee_target. It is stashed
1434   // there because if we try and find the callee by normal means a
1435   // safepoint is possible and have trouble gc'ing the compiled args.
1436   RegisterMap reg_map(thread, false);
1437   frame stub_frame = thread->last_frame();
1438   assert(stub_frame.is_runtime_frame(), "sanity check");
1439   frame caller_frame = stub_frame.sender(&reg_map);
1440 
1441   if (caller_frame.is_interpreted_frame() ||
1442       caller_frame.is_entry_frame()) {
1443     Method* callee = thread->callee_target();
1444     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1445     thread->set_vm_result_2(callee);
1446     thread->set_callee_target(NULL);
1447     if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1448       // Bypass class initialization checks in c2i when caller is in native.
1449       // JNI calls to static methods don't have class initialization checks.
1450       // Fast class initialization checks are present in c2i adapters and call into
1451       // SharedRuntime::handle_wrong_method() on the slow path.
1452       //
1453       // JVM upcalls may land here as well, but there's a proper check present in
1454       // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1455       // so bypassing it in c2i adapter is benign.
1456       return callee->get_c2i_no_clinit_check_entry();
1457     } else {
1458       return callee->get_c2i_entry();
1459     }
1460   }
1461 
1462   // Must be compiled to compiled path which is safe to stackwalk
1463   methodHandle callee_method;
1464   JRT_BLOCK
1465     // Force resolving of caller (if we called from compiled frame)
1466     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1467     thread->set_vm_result_2(callee_method());
1468   JRT_BLOCK_END
1469   // return compiled code entry point after potential safepoints
1470   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1471   return callee_method->verified_code_entry();
1472 JRT_END
1473 
1474 // Handle abstract method call
1475 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1476   // Verbose error message for AbstractMethodError.
1477   // Get the called method from the invoke bytecode.
1478   vframeStream vfst(thread, true);
1479   assert(!vfst.at_end(), "Java frame must exist");
1480   methodHandle caller(thread, vfst.method());
1481   Bytecode_invoke invoke(caller, vfst.bci());
1482   DEBUG_ONLY( invoke.verify(); )
1483 
1484   // Find the compiled caller frame.
1485   RegisterMap reg_map(thread);
1486   frame stubFrame = thread->last_frame();
1487   assert(stubFrame.is_runtime_frame(), "must be");
1488   frame callerFrame = stubFrame.sender(&reg_map);
1489   assert(callerFrame.is_compiled_frame(), "must be");
1490 
1491   // Install exception and return forward entry.
1492   address res = StubRoutines::throw_AbstractMethodError_entry();
1493   JRT_BLOCK
1494     methodHandle callee(thread, invoke.static_target(thread));
1495     if (!callee.is_null()) {
1496       oop recv = callerFrame.retrieve_receiver(&reg_map);
1497       Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1498       LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
1499       res = StubRoutines::forward_exception_entry();
1500     }
1501   JRT_BLOCK_END
1502   return res;
1503 JRT_END
1504 
1505 
1506 // resolve a static call and patch code
1507 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1508   methodHandle callee_method;
1509   JRT_BLOCK
1510     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1511     thread->set_vm_result_2(callee_method());
1512   JRT_BLOCK_END
1513   // return compiled code entry point after potential safepoints
1514   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1515   return callee_method->verified_code_entry();
1516 JRT_END
1517 
1518 
1519 // resolve virtual call and update inline cache to monomorphic
1520 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1521   methodHandle callee_method;
1522   JRT_BLOCK
1523     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1524     thread->set_vm_result_2(callee_method());
1525   JRT_BLOCK_END
1526   // return compiled code entry point after potential safepoints
1527   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1528   return callee_method->verified_code_entry();
1529 JRT_END
1530 
1531 
1532 // Resolve a virtual call that can be statically bound (e.g., always
1533 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1534 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1535   methodHandle callee_method;
1536   JRT_BLOCK
1537     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1538     thread->set_vm_result_2(callee_method());
1539   JRT_BLOCK_END
1540   // return compiled code entry point after potential safepoints
1541   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1542   return callee_method->verified_code_entry();
1543 JRT_END
1544 
1545 // The handle_ic_miss_helper_internal function returns false if it failed due
1546 // to either running out of vtable stubs or ic stubs due to IC transitions
1547 // to transitional states. The needs_ic_stub_refill value will be set if
1548 // the failure was due to running out of IC stubs, in which case handle_ic_miss_helper
1549 // refills the IC stubs and tries again.
1550 bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm,
1551                                                    const frame& caller_frame, methodHandle callee_method,
1552                                                    Bytecodes::Code bc, CallInfo& call_info,
1553                                                    bool& needs_ic_stub_refill, TRAPS) {
1554   CompiledICLocker ml(caller_nm);
1555   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1556   bool should_be_mono = false;
1557   if (inline_cache->is_optimized()) {
1558     if (TraceCallFixup) {
1559       ResourceMark rm(THREAD);
1560       tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1561       callee_method->print_short_name(tty);
1562       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1563     }
1564     should_be_mono = true;
1565   } else if (inline_cache->is_icholder_call()) {
1566     CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1567     if (ic_oop != NULL) {
1568       if (!ic_oop->is_loader_alive()) {
1569         // Deferred IC cleaning due to concurrent class unloading
1570         if (!inline_cache->set_to_clean()) {
1571           needs_ic_stub_refill = true;
1572           return false;
1573         }
1574       } else if (receiver()->klass() == ic_oop->holder_klass()) {
1575         // This isn't a real miss. We must have seen that compiled code
1576         // is now available and we want the call site converted to a
1577         // monomorphic compiled call site.
1578         // We can't assert for callee_method->code() != NULL because it
1579         // could have been deoptimized in the meantime
1580         if (TraceCallFixup) {
1581           ResourceMark rm(THREAD);
1582           tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1583           callee_method->print_short_name(tty);
1584           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1585         }
1586         should_be_mono = true;
1587       }
1588     }
1589   }
1590 
1591   if (should_be_mono) {
1592     // We have a path that was monomorphic but was going interpreted
1593     // and now we have (or had) a compiled entry. We correct the IC
1594     // by using a new icBuffer.
1595     CompiledICInfo info;
1596     Klass* receiver_klass = receiver()->klass();
1597     inline_cache->compute_monomorphic_entry(callee_method,
1598                                             receiver_klass,
1599                                             inline_cache->is_optimized(),
1600                                             false, caller_nm->is_nmethod(),
1601                                             info, CHECK_false);
1602     if (!inline_cache->set_to_monomorphic(info)) {
1603       needs_ic_stub_refill = true;
1604       return false;
1605     }
1606   } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1607     // Potential change to megamorphic
1608 
1609     bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, CHECK_false);
1610     if (needs_ic_stub_refill) {
1611       return false;
1612     }
1613     if (!successful) {
1614       if (!inline_cache->set_to_clean()) {
1615         needs_ic_stub_refill = true;
1616         return false;
1617       }
1618     }
1619   } else {
1620     // Either clean or megamorphic
1621   }
1622   return true;
1623 }
1624 
1625 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1626   ResourceMark rm(thread);
1627   CallInfo call_info;
1628   Bytecodes::Code bc;
1629 
1630   // receiver is NULL for static calls. An exception is thrown for NULL
1631   // receivers for non-static calls
1632   Handle receiver = find_callee_info(thread, bc, call_info,
1633                                      CHECK_(methodHandle()));
1634   // Compiler1 can produce virtual call sites that can actually be statically bound
1635   // If we fell thru to below we would think that the site was going megamorphic
1636   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1637   // we'd try and do a vtable dispatch however methods that can be statically bound
1638   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1639   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1640   // plain ic_miss) and the site will be converted to an optimized virtual call site
1641   // never to miss again. I don't believe C2 will produce code like this but if it
1642   // did this would still be the correct thing to do for it too, hence no ifdef.
1643   //
1644   if (call_info.resolved_method()->can_be_statically_bound()) {
1645     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1646     if (TraceCallFixup) {
1647       RegisterMap reg_map(thread, false);
1648       frame caller_frame = thread->last_frame().sender(&reg_map);
1649       ResourceMark rm(thread);
1650       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1651       callee_method->print_short_name(tty);
1652       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1653       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1654     }
1655     return callee_method;
1656   }
1657 
1658   methodHandle callee_method(thread, call_info.selected_method());
1659 
1660 #ifndef PRODUCT
1661   Atomic::inc(&_ic_miss_ctr);
1662 
1663   // Statistics & Tracing
1664   if (TraceCallFixup) {
1665     ResourceMark rm(thread);
1666     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1667     callee_method->print_short_name(tty);
1668     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1669   }
1670 
1671   if (ICMissHistogram) {
1672     MutexLocker m(VMStatistic_lock);
1673     RegisterMap reg_map(thread, false);
1674     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1675     // produce statistics under the lock
1676     trace_ic_miss(f.pc());
1677   }
1678 #endif
1679 
1680   // install an event collector so that when a vtable stub is created the
1681   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1682   // event can't be posted when the stub is created as locks are held
1683   // - instead the event will be deferred until the event collector goes
1684   // out of scope.
1685   JvmtiDynamicCodeEventCollector event_collector;
1686 
1687   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1688   // Transitioning IC caches may require transition stubs. If we run out
1689   // of transition stubs, we have to drop locks and perform a safepoint
1690   // that refills them.
1691   RegisterMap reg_map(thread, false);
1692   frame caller_frame = thread->last_frame().sender(&reg_map);
1693   CodeBlob* cb = caller_frame.cb();
1694   CompiledMethod* caller_nm = cb->as_compiled_method();
1695 
1696   for (;;) {
1697     ICRefillVerifier ic_refill_verifier;
1698     bool needs_ic_stub_refill = false;
1699     bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method,
1700                                                      bc, call_info, needs_ic_stub_refill, CHECK_(methodHandle()));
1701     if (successful || !needs_ic_stub_refill) {
1702       return callee_method;
1703     } else {
1704       InlineCacheBuffer::refill_ic_stubs();
1705     }
1706   }
1707 }
1708 
1709 static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) {
1710   CompiledICLocker ml(caller_nm);
1711   if (is_static_call) {
1712     CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1713     if (!ssc->is_clean()) {
1714       return ssc->set_to_clean();
1715     }
1716   } else {
1717     // compiled, dispatched call (which used to call an interpreted method)
1718     CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1719     if (!inline_cache->is_clean()) {
1720       return inline_cache->set_to_clean();
1721     }
1722   }
1723   return true;
1724 }
1725 
1726 //
1727 // Resets a call-site in compiled code so it will get resolved again.
1728 // This routines handles both virtual call sites, optimized virtual call
1729 // sites, and static call sites. Typically used to change a call sites
1730 // destination from compiled to interpreted.
1731 //
1732 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1733   ResourceMark rm(thread);
1734   RegisterMap reg_map(thread, false);
1735   frame stub_frame = thread->last_frame();
1736   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1737   frame caller = stub_frame.sender(&reg_map);
1738 
1739   // Do nothing if the frame isn't a live compiled frame.
1740   // nmethod could be deoptimized by the time we get here
1741   // so no update to the caller is needed.
1742 
1743   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1744 
1745     address pc = caller.pc();
1746 
1747     // Check for static or virtual call
1748     bool is_static_call = false;
1749     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1750 
1751     // Default call_addr is the location of the "basic" call.
1752     // Determine the address of the call we a reresolving. With
1753     // Inline Caches we will always find a recognizable call.
1754     // With Inline Caches disabled we may or may not find a
1755     // recognizable call. We will always find a call for static
1756     // calls and for optimized virtual calls. For vanilla virtual
1757     // calls it depends on the state of the UseInlineCaches switch.
1758     //
1759     // With Inline Caches disabled we can get here for a virtual call
1760     // for two reasons:
1761     //   1 - calling an abstract method. The vtable for abstract methods
1762     //       will run us thru handle_wrong_method and we will eventually
1763     //       end up in the interpreter to throw the ame.
1764     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1765     //       call and between the time we fetch the entry address and
1766     //       we jump to it the target gets deoptimized. Similar to 1
1767     //       we will wind up in the interprter (thru a c2i with c2).
1768     //
1769     address call_addr = NULL;
1770     {
1771       // Get call instruction under lock because another thread may be
1772       // busy patching it.
1773       CompiledICLocker ml(caller_nm);
1774       // Location of call instruction
1775       call_addr = caller_nm->call_instruction_address(pc);
1776     }
1777     // Make sure nmethod doesn't get deoptimized and removed until
1778     // this is done with it.
1779     // CLEANUP - with lazy deopt shouldn't need this lock
1780     nmethodLocker nmlock(caller_nm);
1781 
1782     if (call_addr != NULL) {
1783       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1784       int ret = iter.next(); // Get item
1785       if (ret) {
1786         assert(iter.addr() == call_addr, "must find call");
1787         if (iter.type() == relocInfo::static_call_type) {
1788           is_static_call = true;
1789         } else {
1790           assert(iter.type() == relocInfo::virtual_call_type ||
1791                  iter.type() == relocInfo::opt_virtual_call_type
1792                 , "unexpected relocInfo. type");
1793         }
1794       } else {
1795         assert(!UseInlineCaches, "relocation info. must exist for this address");
1796       }
1797 
1798       // Cleaning the inline cache will force a new resolve. This is more robust
1799       // than directly setting it to the new destination, since resolving of calls
1800       // is always done through the same code path. (experience shows that it
1801       // leads to very hard to track down bugs, if an inline cache gets updated
1802       // to a wrong method). It should not be performance critical, since the
1803       // resolve is only done once.
1804 
1805       for (;;) {
1806         ICRefillVerifier ic_refill_verifier;
1807         if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) {
1808           InlineCacheBuffer::refill_ic_stubs();
1809         } else {
1810           break;
1811         }
1812       }
1813     }
1814   }
1815 
1816   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1817 
1818 
1819 #ifndef PRODUCT
1820   Atomic::inc(&_wrong_method_ctr);
1821 
1822   if (TraceCallFixup) {
1823     ResourceMark rm(thread);
1824     tty->print("handle_wrong_method reresolving call to");
1825     callee_method->print_short_name(tty);
1826     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1827   }
1828 #endif
1829 
1830   return callee_method;
1831 }
1832 
1833 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1834   // The faulting unsafe accesses should be changed to throw the error
1835   // synchronously instead. Meanwhile the faulting instruction will be
1836   // skipped over (effectively turning it into a no-op) and an
1837   // asynchronous exception will be raised which the thread will
1838   // handle at a later point. If the instruction is a load it will
1839   // return garbage.
1840 
1841   // Request an async exception.
1842   thread->set_pending_unsafe_access_error();
1843 
1844   // Return address of next instruction to execute.
1845   return next_pc;
1846 }
1847 
1848 #ifdef ASSERT
1849 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1850                                                                 const BasicType* sig_bt,
1851                                                                 const VMRegPair* regs) {
1852   ResourceMark rm;
1853   const int total_args_passed = method->size_of_parameters();
1854   const VMRegPair*    regs_with_member_name = regs;
1855         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1856 
1857   const int member_arg_pos = total_args_passed - 1;
1858   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1859   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1860 
1861   const bool is_outgoing = method->is_method_handle_intrinsic();
1862   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1863 
1864   for (int i = 0; i < member_arg_pos; i++) {
1865     VMReg a =    regs_with_member_name[i].first();
1866     VMReg b = regs_without_member_name[i].first();
1867     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1868   }
1869   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1870 }
1871 #endif
1872 
1873 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1874   if (destination != entry_point) {
1875     CodeBlob* callee = CodeCache::find_blob(destination);
1876     // callee == cb seems weird. It means calling interpreter thru stub.
1877     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1878       // static call or optimized virtual
1879       if (TraceCallFixup) {
1880         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1881         moop->print_short_name(tty);
1882         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1883       }
1884       return true;
1885     } else {
1886       if (TraceCallFixup) {
1887         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1888         moop->print_short_name(tty);
1889         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1890       }
1891       // assert is too strong could also be resolve destinations.
1892       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1893     }
1894   } else {
1895     if (TraceCallFixup) {
1896       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1897       moop->print_short_name(tty);
1898       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1899     }
1900   }
1901   return false;
1902 }
1903 
1904 // ---------------------------------------------------------------------------
1905 // We are calling the interpreter via a c2i. Normally this would mean that
1906 // we were called by a compiled method. However we could have lost a race
1907 // where we went int -> i2c -> c2i and so the caller could in fact be
1908 // interpreted. If the caller is compiled we attempt to patch the caller
1909 // so he no longer calls into the interpreter.
1910 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1911   Method* moop(method);
1912 
1913   address entry_point = moop->from_compiled_entry_no_trampoline();
1914 
1915   // It's possible that deoptimization can occur at a call site which hasn't
1916   // been resolved yet, in which case this function will be called from
1917   // an nmethod that has been patched for deopt and we can ignore the
1918   // request for a fixup.
1919   // Also it is possible that we lost a race in that from_compiled_entry
1920   // is now back to the i2c in that case we don't need to patch and if
1921   // we did we'd leap into space because the callsite needs to use
1922   // "to interpreter" stub in order to load up the Method*. Don't
1923   // ask me how I know this...
1924 
1925   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1926   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1927     return;
1928   }
1929 
1930   // The check above makes sure this is a nmethod.
1931   CompiledMethod* nm = cb->as_compiled_method_or_null();
1932   assert(nm, "must be");
1933 
1934   // Get the return PC for the passed caller PC.
1935   address return_pc = caller_pc + frame::pc_return_offset;
1936 
1937   // There is a benign race here. We could be attempting to patch to a compiled
1938   // entry point at the same time the callee is being deoptimized. If that is
1939   // the case then entry_point may in fact point to a c2i and we'd patch the
1940   // call site with the same old data. clear_code will set code() to NULL
1941   // at the end of it. If we happen to see that NULL then we can skip trying
1942   // to patch. If we hit the window where the callee has a c2i in the
1943   // from_compiled_entry and the NULL isn't present yet then we lose the race
1944   // and patch the code with the same old data. Asi es la vida.
1945 
1946   if (moop->code() == NULL) return;
1947 
1948   if (nm->is_in_use()) {
1949     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1950     CompiledICLocker ic_locker(nm);
1951     if (NativeCall::is_call_before(return_pc)) {
1952       ResourceMark mark;
1953       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1954       //
1955       // bug 6281185. We might get here after resolving a call site to a vanilla
1956       // virtual call. Because the resolvee uses the verified entry it may then
1957       // see compiled code and attempt to patch the site by calling us. This would
1958       // then incorrectly convert the call site to optimized and its downhill from
1959       // there. If you're lucky you'll get the assert in the bugid, if not you've
1960       // just made a call site that could be megamorphic into a monomorphic site
1961       // for the rest of its life! Just another racing bug in the life of
1962       // fixup_callers_callsite ...
1963       //
1964       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1965       iter.next();
1966       assert(iter.has_current(), "must have a reloc at java call site");
1967       relocInfo::relocType typ = iter.reloc()->type();
1968       if (typ != relocInfo::static_call_type &&
1969            typ != relocInfo::opt_virtual_call_type &&
1970            typ != relocInfo::static_stub_type) {
1971         return;
1972       }
1973       address destination = call->destination();
1974       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1975         call->set_destination_mt_safe(entry_point);
1976       }
1977     }
1978   }
1979 JRT_END
1980 
1981 
1982 // same as JVM_Arraycopy, but called directly from compiled code
1983 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1984                                                 oopDesc* dest, jint dest_pos,
1985                                                 jint length,
1986                                                 JavaThread* thread)) {
1987 #ifndef PRODUCT
1988   _slow_array_copy_ctr++;
1989 #endif
1990   // Check if we have null pointers
1991   if (src == NULL || dest == NULL) {
1992     THROW(vmSymbols::java_lang_NullPointerException());
1993   }
1994   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1995   // even though the copy_array API also performs dynamic checks to ensure
1996   // that src and dest are truly arrays (and are conformable).
1997   // The copy_array mechanism is awkward and could be removed, but
1998   // the compilers don't call this function except as a last resort,
1999   // so it probably doesn't matter.
2000   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
2001                                         (arrayOopDesc*)dest, dest_pos,
2002                                         length, thread);
2003 }
2004 JRT_END
2005 
2006 // The caller of generate_class_cast_message() (or one of its callers)
2007 // must use a ResourceMark in order to correctly free the result.
2008 char* SharedRuntime::generate_class_cast_message(
2009     JavaThread* thread, Klass* caster_klass) {
2010 
2011   // Get target class name from the checkcast instruction
2012   vframeStream vfst(thread, true);
2013   assert(!vfst.at_end(), "Java frame must exist");
2014   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2015   constantPoolHandle cpool(thread, vfst.method()->constants());
2016   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2017   Symbol* target_klass_name = NULL;
2018   if (target_klass == NULL) {
2019     // This klass should be resolved, but just in case, get the name in the klass slot.
2020     target_klass_name = cpool->klass_name_at(cc.index());
2021   }
2022   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2023 }
2024 
2025 
2026 // The caller of generate_class_cast_message() (or one of its callers)
2027 // must use a ResourceMark in order to correctly free the result.
2028 char* SharedRuntime::generate_class_cast_message(
2029     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2030   const char* caster_name = caster_klass->external_name();
2031 
2032   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
2033   const char* target_name = target_klass == NULL ? target_klass_name->as_klass_external_name() :
2034                                                    target_klass->external_name();
2035 
2036   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2037 
2038   const char* caster_klass_description = "";
2039   const char* target_klass_description = "";
2040   const char* klass_separator = "";
2041   if (target_klass != NULL && caster_klass->module() == target_klass->module()) {
2042     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2043   } else {
2044     caster_klass_description = caster_klass->class_in_module_of_loader();
2045     target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "";
2046     klass_separator = (target_klass != NULL) ? "; " : "";
2047   }
2048 
2049   // add 3 for parenthesis and preceeding space
2050   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2051 
2052   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2053   if (message == NULL) {
2054     // Shouldn't happen, but don't cause even more problems if it does
2055     message = const_cast<char*>(caster_klass->external_name());
2056   } else {
2057     jio_snprintf(message,
2058                  msglen,
2059                  "class %s cannot be cast to class %s (%s%s%s)",
2060                  caster_name,
2061                  target_name,
2062                  caster_klass_description,
2063                  klass_separator,
2064                  target_klass_description
2065                  );
2066   }
2067   return message;
2068 }
2069 
2070 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2071   (void) JavaThread::current()->reguard_stack();
2072 JRT_END
2073 
2074 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* thread) {
2075   if (!SafepointSynchronize::is_synchronizing()) {
2076     // Only try quick_enter() if we're not trying to reach a safepoint
2077     // so that the calling thread reaches the safepoint more quickly.
2078     if (ObjectSynchronizer::quick_enter(obj, thread, lock)) return;
2079   }
2080   // NO_ASYNC required because an async exception on the state transition destructor
2081   // would leave you with the lock held and it would never be released.
2082   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2083   // and the model is that an exception implies the method failed.
2084   JRT_BLOCK_NO_ASYNC
2085   if (PrintBiasedLockingStatistics) {
2086     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2087   }
2088   Handle h_obj(THREAD, obj);
2089   ObjectSynchronizer::enter(h_obj, lock, CHECK);
2090   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2091   JRT_BLOCK_END
2092 }
2093 
2094 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2095 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* thread))
2096   SharedRuntime::monitor_enter_helper(obj, lock, thread);
2097 JRT_END
2098 
2099 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* thread) {
2100   assert(JavaThread::current() == thread, "invariant");
2101   // Exit must be non-blocking, and therefore no exceptions can be thrown.
2102   EXCEPTION_MARK;
2103   ObjectSynchronizer::exit(obj, lock, THREAD);
2104 }
2105 
2106 // Handles the uncommon cases of monitor unlocking in compiled code
2107 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* thread))
2108   SharedRuntime::monitor_exit_helper(obj, lock, thread);
2109 JRT_END
2110 
2111 #ifndef PRODUCT
2112 
2113 void SharedRuntime::print_statistics() {
2114   ttyLocker ttyl;
2115   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2116 
2117   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2118 
2119   SharedRuntime::print_ic_miss_histogram();
2120 
2121   if (CountRemovableExceptions) {
2122     if (_nof_removable_exceptions > 0) {
2123       Unimplemented(); // this counter is not yet incremented
2124       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2125     }
2126   }
2127 
2128   // Dump the JRT_ENTRY counters
2129   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2130   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2131   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2132   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2133   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2134   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2135   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2136 
2137   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2138   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2139   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2140   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2141   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2142 
2143   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2144   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2145   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2146   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2147   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2148   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2149   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2150   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2151   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2152   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2153   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2154   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2155   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2156   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2157   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2158   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2159 
2160   AdapterHandlerLibrary::print_statistics();
2161 
2162   if (xtty != NULL)  xtty->tail("statistics");
2163 }
2164 
2165 inline double percent(int x, int y) {
2166   return 100.0 * x / MAX2(y, 1);
2167 }
2168 
2169 class MethodArityHistogram {
2170  public:
2171   enum { MAX_ARITY = 256 };
2172  private:
2173   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2174   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2175   static int _max_arity;                      // max. arity seen
2176   static int _max_size;                       // max. arg size seen
2177 
2178   static void add_method_to_histogram(nmethod* nm) {
2179     if (CompiledMethod::nmethod_access_is_safe(nm)) {
2180       Method* method = nm->method();
2181       ArgumentCount args(method->signature());
2182       int arity   = args.size() + (method->is_static() ? 0 : 1);
2183       int argsize = method->size_of_parameters();
2184       arity   = MIN2(arity, MAX_ARITY-1);
2185       argsize = MIN2(argsize, MAX_ARITY-1);
2186       int count = method->compiled_invocation_count();
2187       _arity_histogram[arity]  += count;
2188       _size_histogram[argsize] += count;
2189       _max_arity = MAX2(_max_arity, arity);
2190       _max_size  = MAX2(_max_size, argsize);
2191     }
2192   }
2193 
2194   void print_histogram_helper(int n, int* histo, const char* name) {
2195     const int N = MIN2(5, n);
2196     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2197     double sum = 0;
2198     double weighted_sum = 0;
2199     int i;
2200     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2201     double rest = sum;
2202     double percent = sum / 100;
2203     for (i = 0; i <= N; i++) {
2204       rest -= histo[i];
2205       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2206     }
2207     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2208     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2209   }
2210 
2211   void print_histogram() {
2212     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2213     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2214     tty->print_cr("\nSame for parameter size (in words):");
2215     print_histogram_helper(_max_size, _size_histogram, "size");
2216     tty->cr();
2217   }
2218 
2219  public:
2220   MethodArityHistogram() {
2221     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2222     _max_arity = _max_size = 0;
2223     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2224     CodeCache::nmethods_do(add_method_to_histogram);
2225     print_histogram();
2226   }
2227 };
2228 
2229 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2230 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2231 int MethodArityHistogram::_max_arity;
2232 int MethodArityHistogram::_max_size;
2233 
2234 void SharedRuntime::print_call_statistics(int comp_total) {
2235   tty->print_cr("Calls from compiled code:");
2236   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2237   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2238   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2239   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2240   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2241   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2242   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2243   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2244   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2245   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2246   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2247   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2248   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2249   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2250   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2251   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2252   tty->cr();
2253   tty->print_cr("Note 1: counter updates are not MT-safe.");
2254   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2255   tty->print_cr("        %% in nested categories are relative to their category");
2256   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2257   tty->cr();
2258 
2259   MethodArityHistogram h;
2260 }
2261 #endif
2262 
2263 
2264 // A simple wrapper class around the calling convention information
2265 // that allows sharing of adapters for the same calling convention.
2266 class AdapterFingerPrint : public CHeapObj<mtCode> {
2267  private:
2268   enum {
2269     _basic_type_bits = 4,
2270     _basic_type_mask = right_n_bits(_basic_type_bits),
2271     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2272     _compact_int_count = 3
2273   };
2274   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2275   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2276 
2277   union {
2278     int  _compact[_compact_int_count];
2279     int* _fingerprint;
2280   } _value;
2281   int _length; // A negative length indicates the fingerprint is in the compact form,
2282                // Otherwise _value._fingerprint is the array.
2283 
2284   // Remap BasicTypes that are handled equivalently by the adapters.
2285   // These are correct for the current system but someday it might be
2286   // necessary to make this mapping platform dependent.
2287   static int adapter_encoding(BasicType in) {
2288     switch (in) {
2289       case T_BOOLEAN:
2290       case T_BYTE:
2291       case T_SHORT:
2292       case T_CHAR:
2293         // There are all promoted to T_INT in the calling convention
2294         return T_INT;
2295 
2296       case T_OBJECT:
2297       case T_ARRAY:
2298         // In other words, we assume that any register good enough for
2299         // an int or long is good enough for a managed pointer.
2300 #ifdef _LP64
2301         return T_LONG;
2302 #else
2303         return T_INT;
2304 #endif
2305 
2306       case T_INT:
2307       case T_LONG:
2308       case T_FLOAT:
2309       case T_DOUBLE:
2310       case T_VOID:
2311         return in;
2312 
2313       default:
2314         ShouldNotReachHere();
2315         return T_CONFLICT;
2316     }
2317   }
2318 
2319  public:
2320   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2321     // The fingerprint is based on the BasicType signature encoded
2322     // into an array of ints with eight entries per int.
2323     int* ptr;
2324     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2325     if (len <= _compact_int_count) {
2326       assert(_compact_int_count == 3, "else change next line");
2327       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2328       // Storing the signature encoded as signed chars hits about 98%
2329       // of the time.
2330       _length = -len;
2331       ptr = _value._compact;
2332     } else {
2333       _length = len;
2334       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2335       ptr = _value._fingerprint;
2336     }
2337 
2338     // Now pack the BasicTypes with 8 per int
2339     int sig_index = 0;
2340     for (int index = 0; index < len; index++) {
2341       int value = 0;
2342       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2343         int bt = ((sig_index < total_args_passed)
2344                   ? adapter_encoding(sig_bt[sig_index++])
2345                   : 0);
2346         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2347         value = (value << _basic_type_bits) | bt;
2348       }
2349       ptr[index] = value;
2350     }
2351   }
2352 
2353   ~AdapterFingerPrint() {
2354     if (_length > 0) {
2355       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2356     }
2357   }
2358 
2359   int value(int index) {
2360     if (_length < 0) {
2361       return _value._compact[index];
2362     }
2363     return _value._fingerprint[index];
2364   }
2365   int length() {
2366     if (_length < 0) return -_length;
2367     return _length;
2368   }
2369 
2370   bool is_compact() {
2371     return _length <= 0;
2372   }
2373 
2374   unsigned int compute_hash() {
2375     int hash = 0;
2376     for (int i = 0; i < length(); i++) {
2377       int v = value(i);
2378       hash = (hash << 8) ^ v ^ (hash >> 5);
2379     }
2380     return (unsigned int)hash;
2381   }
2382 
2383   const char* as_string() {
2384     stringStream st;
2385     st.print("0x");
2386     for (int i = 0; i < length(); i++) {
2387       st.print("%08x", value(i));
2388     }
2389     return st.as_string();
2390   }
2391 
2392   bool equals(AdapterFingerPrint* other) {
2393     if (other->_length != _length) {
2394       return false;
2395     }
2396     if (_length < 0) {
2397       assert(_compact_int_count == 3, "else change next line");
2398       return _value._compact[0] == other->_value._compact[0] &&
2399              _value._compact[1] == other->_value._compact[1] &&
2400              _value._compact[2] == other->_value._compact[2];
2401     } else {
2402       for (int i = 0; i < _length; i++) {
2403         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2404           return false;
2405         }
2406       }
2407     }
2408     return true;
2409   }
2410 };
2411 
2412 
2413 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2414 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2415   friend class AdapterHandlerTableIterator;
2416 
2417  private:
2418 
2419 #ifndef PRODUCT
2420   static int _lookups; // number of calls to lookup
2421   static int _buckets; // number of buckets checked
2422   static int _equals;  // number of buckets checked with matching hash
2423   static int _hits;    // number of successful lookups
2424   static int _compact; // number of equals calls with compact signature
2425 #endif
2426 
2427   AdapterHandlerEntry* bucket(int i) {
2428     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2429   }
2430 
2431  public:
2432   AdapterHandlerTable()
2433     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2434 
2435   // Create a new entry suitable for insertion in the table
2436   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry, address c2i_no_clinit_check_entry) {
2437     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2438     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
2439     if (DumpSharedSpaces) {
2440       ((CDSAdapterHandlerEntry*)entry)->init();
2441     }
2442     return entry;
2443   }
2444 
2445   // Insert an entry into the table
2446   void add(AdapterHandlerEntry* entry) {
2447     int index = hash_to_index(entry->hash());
2448     add_entry(index, entry);
2449   }
2450 
2451   void free_entry(AdapterHandlerEntry* entry) {
2452     entry->deallocate();
2453     BasicHashtable<mtCode>::free_entry(entry);
2454   }
2455 
2456   // Find a entry with the same fingerprint if it exists
2457   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2458     NOT_PRODUCT(_lookups++);
2459     AdapterFingerPrint fp(total_args_passed, sig_bt);
2460     unsigned int hash = fp.compute_hash();
2461     int index = hash_to_index(hash);
2462     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2463       NOT_PRODUCT(_buckets++);
2464       if (e->hash() == hash) {
2465         NOT_PRODUCT(_equals++);
2466         if (fp.equals(e->fingerprint())) {
2467 #ifndef PRODUCT
2468           if (fp.is_compact()) _compact++;
2469           _hits++;
2470 #endif
2471           return e;
2472         }
2473       }
2474     }
2475     return NULL;
2476   }
2477 
2478 #ifndef PRODUCT
2479   void print_statistics() {
2480     ResourceMark rm;
2481     int longest = 0;
2482     int empty = 0;
2483     int total = 0;
2484     int nonempty = 0;
2485     for (int index = 0; index < table_size(); index++) {
2486       int count = 0;
2487       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2488         count++;
2489       }
2490       if (count != 0) nonempty++;
2491       if (count == 0) empty++;
2492       if (count > longest) longest = count;
2493       total += count;
2494     }
2495     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2496                   empty, longest, total, total / (double)nonempty);
2497     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2498                   _lookups, _buckets, _equals, _hits, _compact);
2499   }
2500 #endif
2501 };
2502 
2503 
2504 #ifndef PRODUCT
2505 
2506 int AdapterHandlerTable::_lookups;
2507 int AdapterHandlerTable::_buckets;
2508 int AdapterHandlerTable::_equals;
2509 int AdapterHandlerTable::_hits;
2510 int AdapterHandlerTable::_compact;
2511 
2512 #endif
2513 
2514 class AdapterHandlerTableIterator : public StackObj {
2515  private:
2516   AdapterHandlerTable* _table;
2517   int _index;
2518   AdapterHandlerEntry* _current;
2519 
2520   void scan() {
2521     while (_index < _table->table_size()) {
2522       AdapterHandlerEntry* a = _table->bucket(_index);
2523       _index++;
2524       if (a != NULL) {
2525         _current = a;
2526         return;
2527       }
2528     }
2529   }
2530 
2531  public:
2532   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2533     scan();
2534   }
2535   bool has_next() {
2536     return _current != NULL;
2537   }
2538   AdapterHandlerEntry* next() {
2539     if (_current != NULL) {
2540       AdapterHandlerEntry* result = _current;
2541       _current = _current->next();
2542       if (_current == NULL) scan();
2543       return result;
2544     } else {
2545       return NULL;
2546     }
2547   }
2548 };
2549 
2550 
2551 // ---------------------------------------------------------------------------
2552 // Implementation of AdapterHandlerLibrary
2553 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2554 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2555 const int AdapterHandlerLibrary_size = 16*K;
2556 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2557 
2558 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2559   // Should be called only when AdapterHandlerLibrary_lock is active.
2560   if (_buffer == NULL) // Initialize lazily
2561       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2562   return _buffer;
2563 }
2564 
2565 extern "C" void unexpected_adapter_call() {
2566   ShouldNotCallThis();
2567 }
2568 
2569 void AdapterHandlerLibrary::initialize() {
2570   if (_adapters != NULL) return;
2571   _adapters = new AdapterHandlerTable();
2572 
2573   // Create a special handler for abstract methods.  Abstract methods
2574   // are never compiled so an i2c entry is somewhat meaningless, but
2575   // throw AbstractMethodError just in case.
2576   // Pass wrong_method_abstract for the c2i transitions to return
2577   // AbstractMethodError for invalid invocations.
2578   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2579   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2580                                                               StubRoutines::throw_AbstractMethodError_entry(),
2581                                                               wrong_method_abstract, wrong_method_abstract);
2582 }
2583 
2584 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2585                                                       address i2c_entry,
2586                                                       address c2i_entry,
2587                                                       address c2i_unverified_entry,
2588                                                       address c2i_no_clinit_check_entry) {
2589   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
2590 }
2591 
2592 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2593   AdapterHandlerEntry* entry = get_adapter0(method);
2594   if (entry != NULL && method->is_shared()) {
2595     // See comments around Method::link_method()
2596     MutexLocker mu(AdapterHandlerLibrary_lock);
2597     if (method->adapter() == NULL) {
2598       method->update_adapter_trampoline(entry);
2599     }
2600     address trampoline = method->from_compiled_entry();
2601     if (*(int*)trampoline == 0) {
2602       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2603       MacroAssembler _masm(&buffer);
2604       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2605       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2606       _masm.flush();
2607 
2608       if (PrintInterpreter) {
2609         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2610       }
2611     }
2612   }
2613 
2614   return entry;
2615 }
2616 
2617 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2618   // Use customized signature handler.  Need to lock around updates to
2619   // the AdapterHandlerTable (it is not safe for concurrent readers
2620   // and a single writer: this could be fixed if it becomes a
2621   // problem).
2622 
2623   ResourceMark rm;
2624 
2625   NOT_PRODUCT(int insts_size);
2626   AdapterBlob* new_adapter = NULL;
2627   AdapterHandlerEntry* entry = NULL;
2628   AdapterFingerPrint* fingerprint = NULL;
2629   {
2630     MutexLocker mu(AdapterHandlerLibrary_lock);
2631     // make sure data structure is initialized
2632     initialize();
2633 
2634     if (method->is_abstract()) {
2635       return _abstract_method_handler;
2636     }
2637 
2638     // Fill in the signature array, for the calling-convention call.
2639     int total_args_passed = method->size_of_parameters(); // All args on stack
2640 
2641     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2642     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2643     int i = 0;
2644     if (!method->is_static())  // Pass in receiver first
2645       sig_bt[i++] = T_OBJECT;
2646     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2647       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2648       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2649         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2650     }
2651     assert(i == total_args_passed, "");
2652 
2653     // Lookup method signature's fingerprint
2654     entry = _adapters->lookup(total_args_passed, sig_bt);
2655 
2656 #ifdef ASSERT
2657     AdapterHandlerEntry* shared_entry = NULL;
2658     // Start adapter sharing verification only after the VM is booted.
2659     if (VerifyAdapterSharing && (entry != NULL)) {
2660       shared_entry = entry;
2661       entry = NULL;
2662     }
2663 #endif
2664 
2665     if (entry != NULL) {
2666       return entry;
2667     }
2668 
2669     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2670     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2671 
2672     // Make a C heap allocated version of the fingerprint to store in the adapter
2673     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2674 
2675     // StubRoutines::code2() is initialized after this function can be called. As a result,
2676     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2677     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2678     // stub that ensure that an I2C stub is called from an interpreter frame.
2679     bool contains_all_checks = StubRoutines::code2() != NULL;
2680 
2681     // Create I2C & C2I handlers
2682     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2683     if (buf != NULL) {
2684       CodeBuffer buffer(buf);
2685       short buffer_locs[20];
2686       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2687                                              sizeof(buffer_locs)/sizeof(relocInfo));
2688 
2689       MacroAssembler _masm(&buffer);
2690       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2691                                                      total_args_passed,
2692                                                      comp_args_on_stack,
2693                                                      sig_bt,
2694                                                      regs,
2695                                                      fingerprint);
2696 #ifdef ASSERT
2697       if (VerifyAdapterSharing) {
2698         if (shared_entry != NULL) {
2699           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2700           // Release the one just created and return the original
2701           _adapters->free_entry(entry);
2702           return shared_entry;
2703         } else  {
2704           entry->save_code(buf->code_begin(), buffer.insts_size());
2705         }
2706       }
2707 #endif
2708 
2709       new_adapter = AdapterBlob::create(&buffer);
2710       NOT_PRODUCT(insts_size = buffer.insts_size());
2711     }
2712     if (new_adapter == NULL) {
2713       // CodeCache is full, disable compilation
2714       // Ought to log this but compile log is only per compile thread
2715       // and we're some non descript Java thread.
2716       return NULL; // Out of CodeCache space
2717     }
2718     entry->relocate(new_adapter->content_begin());
2719 #ifndef PRODUCT
2720     // debugging suppport
2721     if (PrintAdapterHandlers || PrintStubCode) {
2722       ttyLocker ttyl;
2723       entry->print_adapter_on(tty);
2724       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2725                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2726                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2727       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2728       if (Verbose || PrintStubCode) {
2729         address first_pc = entry->base_address();
2730         if (first_pc != NULL) {
2731           Disassembler::decode(first_pc, first_pc + insts_size);
2732           tty->cr();
2733         }
2734       }
2735     }
2736 #endif
2737     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2738     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2739     if (contains_all_checks || !VerifyAdapterCalls) {
2740       _adapters->add(entry);
2741     }
2742   }
2743   // Outside of the lock
2744   if (new_adapter != NULL) {
2745     char blob_id[256];
2746     jio_snprintf(blob_id,
2747                  sizeof(blob_id),
2748                  "%s(%s)@" PTR_FORMAT,
2749                  new_adapter->name(),
2750                  fingerprint->as_string(),
2751                  new_adapter->content_begin());
2752     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2753 
2754     if (JvmtiExport::should_post_dynamic_code_generated()) {
2755       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2756     }
2757   }
2758   return entry;
2759 }
2760 
2761 address AdapterHandlerEntry::base_address() {
2762   address base = _i2c_entry;
2763   if (base == NULL)  base = _c2i_entry;
2764   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2765   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2766   assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == NULL, "");
2767   return base;
2768 }
2769 
2770 void AdapterHandlerEntry::relocate(address new_base) {
2771   address old_base = base_address();
2772   assert(old_base != NULL, "");
2773   ptrdiff_t delta = new_base - old_base;
2774   if (_i2c_entry != NULL)
2775     _i2c_entry += delta;
2776   if (_c2i_entry != NULL)
2777     _c2i_entry += delta;
2778   if (_c2i_unverified_entry != NULL)
2779     _c2i_unverified_entry += delta;
2780   if (_c2i_no_clinit_check_entry != NULL)
2781     _c2i_no_clinit_check_entry += delta;
2782   assert(base_address() == new_base, "");
2783 }
2784 
2785 
2786 void AdapterHandlerEntry::deallocate() {
2787   delete _fingerprint;
2788 #ifdef ASSERT
2789   FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2790 #endif
2791 }
2792 
2793 
2794 #ifdef ASSERT
2795 // Capture the code before relocation so that it can be compared
2796 // against other versions.  If the code is captured after relocation
2797 // then relative instructions won't be equivalent.
2798 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2799   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2800   _saved_code_length = length;
2801   memcpy(_saved_code, buffer, length);
2802 }
2803 
2804 
2805 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2806   if (length != _saved_code_length) {
2807     return false;
2808   }
2809 
2810   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2811 }
2812 #endif
2813 
2814 
2815 /**
2816  * Create a native wrapper for this native method.  The wrapper converts the
2817  * Java-compiled calling convention to the native convention, handles
2818  * arguments, and transitions to native.  On return from the native we transition
2819  * back to java blocking if a safepoint is in progress.
2820  */
2821 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2822   ResourceMark rm;
2823   nmethod* nm = NULL;
2824   address critical_entry = NULL;
2825 
2826   assert(method->is_native(), "must be native");
2827   assert(method->is_method_handle_intrinsic() ||
2828          method->has_native_function(), "must have something valid to call!");
2829 
2830   if (CriticalJNINatives && !method->is_method_handle_intrinsic()) {
2831     // We perform the I/O with transition to native before acquiring AdapterHandlerLibrary_lock.
2832     critical_entry = NativeLookup::lookup_critical_entry(method);
2833   }
2834 
2835   {
2836     // Perform the work while holding the lock, but perform any printing outside the lock
2837     MutexLocker mu(AdapterHandlerLibrary_lock);
2838     // See if somebody beat us to it
2839     if (method->code() != NULL) {
2840       return;
2841     }
2842 
2843     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2844     assert(compile_id > 0, "Must generate native wrapper");
2845 
2846 
2847     ResourceMark rm;
2848     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2849     if (buf != NULL) {
2850       CodeBuffer buffer(buf);
2851       double locs_buf[20];
2852       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2853 #if defined(AARCH64)
2854       // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be
2855       // in the constant pool to ensure ordering between the barrier and oops
2856       // accesses. For native_wrappers we need a constant.
2857       buffer.initialize_consts_size(8);
2858 #endif
2859       MacroAssembler _masm(&buffer);
2860 
2861       // Fill in the signature array, for the calling-convention call.
2862       const int total_args_passed = method->size_of_parameters();
2863 
2864       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2865       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2866       int i=0;
2867       if (!method->is_static())  // Pass in receiver first
2868         sig_bt[i++] = T_OBJECT;
2869       SignatureStream ss(method->signature());
2870       for (; !ss.at_return_type(); ss.next()) {
2871         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2872         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2873           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2874       }
2875       assert(i == total_args_passed, "");
2876       BasicType ret_type = ss.type();
2877 
2878       // Now get the compiled-Java layout as input (or output) arguments.
2879       // NOTE: Stubs for compiled entry points of method handle intrinsics
2880       // are just trampolines so the argument registers must be outgoing ones.
2881       const bool is_outgoing = method->is_method_handle_intrinsic();
2882       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2883 
2884       // Generate the compiled-to-native wrapper code
2885       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type, critical_entry);
2886 
2887       if (nm != NULL) {
2888         {
2889           MutexLocker pl(CompiledMethod_lock, Mutex::_no_safepoint_check_flag);
2890           if (nm->make_in_use()) {
2891             method->set_code(method, nm);
2892           }
2893         }
2894 
2895         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2896         if (directive->PrintAssemblyOption) {
2897           nm->print_code();
2898         }
2899         DirectivesStack::release(directive);
2900       }
2901     }
2902   } // Unlock AdapterHandlerLibrary_lock
2903 
2904 
2905   // Install the generated code.
2906   if (nm != NULL) {
2907     const char *msg = method->is_static() ? "(static)" : "";
2908     CompileTask::print_ul(nm, msg);
2909     if (PrintCompilation) {
2910       ttyLocker ttyl;
2911       CompileTask::print(tty, nm, msg);
2912     }
2913     nm->post_compiled_method_load_event();
2914   }
2915 }
2916 
2917 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2918   assert(thread == JavaThread::current(), "must be");
2919   // The code is about to enter a JNI lazy critical native method and
2920   // _needs_gc is true, so if this thread is already in a critical
2921   // section then just return, otherwise this thread should block
2922   // until needs_gc has been cleared.
2923   if (thread->in_critical()) {
2924     return;
2925   }
2926   // Lock and unlock a critical section to give the system a chance to block
2927   GCLocker::lock_critical(thread);
2928   GCLocker::unlock_critical(thread);
2929 JRT_END
2930 
2931 JRT_LEAF(oopDesc*, SharedRuntime::pin_object(JavaThread* thread, oopDesc* obj))
2932   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
2933   assert(obj != NULL, "Should not be null");
2934   oop o(obj);
2935   o = Universe::heap()->pin_object(thread, o);
2936   assert(o != NULL, "Should not be null");
2937   return o;
2938 JRT_END
2939 
2940 JRT_LEAF(void, SharedRuntime::unpin_object(JavaThread* thread, oopDesc* obj))
2941   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
2942   assert(obj != NULL, "Should not be null");
2943   oop o(obj);
2944   Universe::heap()->unpin_object(thread, o);
2945 JRT_END
2946 
2947 // -------------------------------------------------------------------------
2948 // Java-Java calling convention
2949 // (what you use when Java calls Java)
2950 
2951 //------------------------------name_for_receiver----------------------------------
2952 // For a given signature, return the VMReg for parameter 0.
2953 VMReg SharedRuntime::name_for_receiver() {
2954   VMRegPair regs;
2955   BasicType sig_bt = T_OBJECT;
2956   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2957   // Return argument 0 register.  In the LP64 build pointers
2958   // take 2 registers, but the VM wants only the 'main' name.
2959   return regs.first();
2960 }
2961 
2962 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2963   // This method is returning a data structure allocating as a
2964   // ResourceObject, so do not put any ResourceMarks in here.
2965 
2966   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2967   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2968   int cnt = 0;
2969   if (has_receiver) {
2970     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2971   }
2972 
2973   for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) {
2974     BasicType type = ss.type();
2975     sig_bt[cnt++] = type;
2976     if (is_double_word_type(type))
2977       sig_bt[cnt++] = T_VOID;
2978   }
2979 
2980   if (has_appendix) {
2981     sig_bt[cnt++] = T_OBJECT;
2982   }
2983 
2984   assert(cnt < 256, "grow table size");
2985 
2986   int comp_args_on_stack;
2987   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2988 
2989   // the calling convention doesn't count out_preserve_stack_slots so
2990   // we must add that in to get "true" stack offsets.
2991 
2992   if (comp_args_on_stack) {
2993     for (int i = 0; i < cnt; i++) {
2994       VMReg reg1 = regs[i].first();
2995       if (reg1->is_stack()) {
2996         // Yuck
2997         reg1 = reg1->bias(out_preserve_stack_slots());
2998       }
2999       VMReg reg2 = regs[i].second();
3000       if (reg2->is_stack()) {
3001         // Yuck
3002         reg2 = reg2->bias(out_preserve_stack_slots());
3003       }
3004       regs[i].set_pair(reg2, reg1);
3005     }
3006   }
3007 
3008   // results
3009   *arg_size = cnt;
3010   return regs;
3011 }
3012 
3013 // OSR Migration Code
3014 //
3015 // This code is used convert interpreter frames into compiled frames.  It is
3016 // called from very start of a compiled OSR nmethod.  A temp array is
3017 // allocated to hold the interesting bits of the interpreter frame.  All
3018 // active locks are inflated to allow them to move.  The displaced headers and
3019 // active interpreter locals are copied into the temp buffer.  Then we return
3020 // back to the compiled code.  The compiled code then pops the current
3021 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3022 // copies the interpreter locals and displaced headers where it wants.
3023 // Finally it calls back to free the temp buffer.
3024 //
3025 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3026 
3027 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3028 
3029   //
3030   // This code is dependent on the memory layout of the interpreter local
3031   // array and the monitors. On all of our platforms the layout is identical
3032   // so this code is shared. If some platform lays the their arrays out
3033   // differently then this code could move to platform specific code or
3034   // the code here could be modified to copy items one at a time using
3035   // frame accessor methods and be platform independent.
3036 
3037   frame fr = thread->last_frame();
3038   assert(fr.is_interpreted_frame(), "");
3039   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3040 
3041   // Figure out how many monitors are active.
3042   int active_monitor_count = 0;
3043   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3044        kptr < fr.interpreter_frame_monitor_begin();
3045        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3046     if (kptr->obj() != NULL) active_monitor_count++;
3047   }
3048 
3049   // QQQ we could place number of active monitors in the array so that compiled code
3050   // could double check it.
3051 
3052   Method* moop = fr.interpreter_frame_method();
3053   int max_locals = moop->max_locals();
3054   // Allocate temp buffer, 1 word per local & 2 per active monitor
3055   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3056   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3057 
3058   // Copy the locals.  Order is preserved so that loading of longs works.
3059   // Since there's no GC I can copy the oops blindly.
3060   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3061   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3062                        (HeapWord*)&buf[0],
3063                        max_locals);
3064 
3065   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3066   int i = max_locals;
3067   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3068        kptr2 < fr.interpreter_frame_monitor_begin();
3069        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3070     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3071       BasicLock *lock = kptr2->lock();
3072       // Inflate so the object's header no longer refers to the BasicLock.
3073       if (lock->displaced_header().is_unlocked()) {
3074         // The object is locked and the resulting ObjectMonitor* will also be
3075         // locked so it can't be async deflated until ownership is dropped.
3076         // See the big comment in basicLock.cpp: BasicLock::move_to().
3077         ObjectSynchronizer::inflate_helper(kptr2->obj());
3078       }
3079       // Now the displaced header is free to move because the
3080       // object's header no longer refers to it.
3081       buf[i++] = (intptr_t)lock->displaced_header().value();
3082       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3083     }
3084   }
3085   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3086 
3087   return buf;
3088 JRT_END
3089 
3090 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3091   FREE_C_HEAP_ARRAY(intptr_t, buf);
3092 JRT_END
3093 
3094 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3095   AdapterHandlerTableIterator iter(_adapters);
3096   while (iter.has_next()) {
3097     AdapterHandlerEntry* a = iter.next();
3098     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3099   }
3100   return false;
3101 }
3102 
3103 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3104   AdapterHandlerTableIterator iter(_adapters);
3105   while (iter.has_next()) {
3106     AdapterHandlerEntry* a = iter.next();
3107     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3108       st->print("Adapter for signature: ");
3109       a->print_adapter_on(tty);
3110       return;
3111     }
3112   }
3113   assert(false, "Should have found handler");
3114 }
3115 
3116 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3117   st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3118   if (get_i2c_entry() != NULL) {
3119     st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3120   }
3121   if (get_c2i_entry() != NULL) {
3122     st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3123   }
3124   if (get_c2i_unverified_entry() != NULL) {
3125     st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3126   }
3127   if (get_c2i_no_clinit_check_entry() != NULL) {
3128     st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3129   }
3130   st->cr();
3131 }
3132 
3133 #if INCLUDE_CDS
3134 
3135 void CDSAdapterHandlerEntry::init() {
3136   assert(DumpSharedSpaces, "used during dump time only");
3137   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3138   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3139 };
3140 
3141 #endif // INCLUDE_CDS
3142 
3143 
3144 #ifndef PRODUCT
3145 
3146 void AdapterHandlerLibrary::print_statistics() {
3147   _adapters->print_statistics();
3148 }
3149 
3150 #endif /* PRODUCT */
3151 
3152 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3153   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3154   if (thread->stack_reserved_zone_disabled()) {
3155   thread->enable_stack_reserved_zone();
3156   }
3157   thread->set_reserved_stack_activation(thread->stack_base());
3158 JRT_END
3159 
3160 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3161   ResourceMark rm(thread);
3162   frame activation;
3163   CompiledMethod* nm = NULL;
3164   int count = 1;
3165 
3166   assert(fr.is_java_frame(), "Must start on Java frame");
3167 
3168   while (true) {
3169     Method* method = NULL;
3170     bool found = false;
3171     if (fr.is_interpreted_frame()) {
3172       method = fr.interpreter_frame_method();
3173       if (method != NULL && method->has_reserved_stack_access()) {
3174         found = true;
3175       }
3176     } else {
3177       CodeBlob* cb = fr.cb();
3178       if (cb != NULL && cb->is_compiled()) {
3179         nm = cb->as_compiled_method();
3180         method = nm->method();
3181         // scope_desc_near() must be used, instead of scope_desc_at() because on
3182         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3183         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3184           method = sd->method();
3185           if (method != NULL && method->has_reserved_stack_access()) {
3186             found = true;
3187       }
3188     }
3189       }
3190     }
3191     if (found) {
3192       activation = fr;
3193       warning("Potentially dangerous stack overflow in "
3194               "ReservedStackAccess annotated method %s [%d]",
3195               method->name_and_sig_as_C_string(), count++);
3196       EventReservedStackActivation event;
3197       if (event.should_commit()) {
3198         event.set_method(method);
3199         event.commit();
3200       }
3201     }
3202     if (fr.is_first_java_frame()) {
3203       break;
3204     } else {
3205       fr = fr.java_sender();
3206     }
3207   }
3208   return activation;
3209 }
3210 
3211 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3212   // After any safepoint, just before going back to compiled code,
3213   // we inform the GC that we will be doing initializing writes to
3214   // this object in the future without emitting card-marks, so
3215   // GC may take any compensating steps.
3216 
3217   oop new_obj = thread->vm_result();
3218   if (new_obj == NULL) return;
3219 
3220   BarrierSet *bs = BarrierSet::barrier_set();
3221   bs->on_slowpath_allocation_exit(thread, new_obj);
3222 }
3223 
3224 class GetReferencedObjectsClosure : public BasicOopIterateClosure {
3225 private:
3226   objArrayOopDesc* const _result;
3227   int _count;
3228 public:
3229   GetReferencedObjectsClosure(objArrayOopDesc* result) : _result(result), _count(0) {}
3230 
3231   template <typename T> void do_oop_nv(T* p) {
3232     oop o = HeapAccess<>::oop_load(p);
3233     if (!CompressedOops::is_null(o)) {
3234       _result->obj_at_put(_count++, o);
3235     }
3236   }
3237 
3238   int count() { return _count; }
3239 
3240   virtual void do_oop(oop* p)       { do_oop_nv(p); }
3241   virtual void do_oop(narrowOop* p) { do_oop_nv(p); }
3242 
3243   // Don't use the oop verification code in the oop_oop_iterate framework.
3244   debug_only(virtual bool should_verify_oops() { return false; })
3245 };
3246 
3247 JRT_LEAF(jint, SharedRuntime::get_referenced_objects(oopDesc* obj, objArrayOopDesc* ref_buf))
3248   assert(Universe::heap()->is_in(obj), "object should be in heap: " PTR_FORMAT, p2i(obj));
3249   assert(Universe::heap()->is_in(ref_buf), "ref buf should be in heap: " PTR_FORMAT, p2i(ref_buf));
3250 
3251   InstanceKlass* k = InstanceKlass::cast(obj->klass());
3252 
3253   int count = 0;
3254   {
3255     InstanceKlass* ik = k;
3256     while (ik != NULL) {
3257       count += ik->nonstatic_oop_field_count();
3258       ik = ik->superklass();
3259     }
3260   }
3261 
3262   if (count == 0) {
3263     return 0;
3264   }
3265 
3266   if (count > ref_buf->length()) {
3267     return -1;
3268   }
3269 
3270   GetReferencedObjectsClosure cl(ref_buf);
3271 
3272 #ifdef _LP64
3273   if (UseCompressedOops) {
3274     k->oop_oop_iterate<narrowOop>(obj, &cl);
3275   } else
3276 #endif
3277   {
3278     k->oop_oop_iterate<oop>(obj, &cl);
3279   }
3280 
3281   return cl.count();
3282 JRT_END