1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_C1_C1_LIR_HPP
  26 #define SHARE_VM_C1_C1_LIR_HPP
  27 
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_ValueType.hpp"
  30 #include "oops/method.hpp"
  31 
  32 class BlockBegin;
  33 class BlockList;
  34 class LIR_Assembler;
  35 class CodeEmitInfo;
  36 class CodeStub;
  37 class CodeStubList;
  38 class ArrayCopyStub;
  39 class LIR_Op;
  40 class ciType;
  41 class ValueType;
  42 class LIR_OpVisitState;
  43 class FpuStackSim;
  44 
  45 //---------------------------------------------------------------------
  46 //                 LIR Operands
  47 //  LIR_OprDesc
  48 //    LIR_OprPtr
  49 //      LIR_Const
  50 //      LIR_Address
  51 //---------------------------------------------------------------------
  52 class LIR_OprDesc;
  53 class LIR_OprPtr;
  54 class LIR_Const;
  55 class LIR_Address;
  56 class LIR_OprVisitor;
  57 
  58 
  59 typedef LIR_OprDesc* LIR_Opr;
  60 typedef int          RegNr;
  61 
  62 define_array(LIR_OprArray, LIR_Opr)
  63 define_stack(LIR_OprList, LIR_OprArray)
  64 
  65 define_array(LIR_OprRefArray, LIR_Opr*)
  66 define_stack(LIR_OprRefList, LIR_OprRefArray)
  67 
  68 define_array(CodeEmitInfoArray, CodeEmitInfo*)
  69 define_stack(CodeEmitInfoList, CodeEmitInfoArray)
  70 
  71 define_array(LIR_OpArray, LIR_Op*)
  72 define_stack(LIR_OpList, LIR_OpArray)
  73 
  74 // define LIR_OprPtr early so LIR_OprDesc can refer to it
  75 class LIR_OprPtr: public CompilationResourceObj {
  76  public:
  77   bool is_oop_pointer() const                    { return (type() == T_OBJECT); }
  78   bool is_float_kind() const                     { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); }
  79 
  80   virtual LIR_Const*  as_constant()              { return NULL; }
  81   virtual LIR_Address* as_address()              { return NULL; }
  82   virtual BasicType type() const                 = 0;
  83   virtual void print_value_on(outputStream* out) const = 0;
  84 };
  85 
  86 
  87 
  88 // LIR constants
  89 class LIR_Const: public LIR_OprPtr {
  90  private:
  91   JavaValue _value;
  92 
  93   void type_check(BasicType t) const   { assert(type() == t, "type check"); }
  94   void type_check(BasicType t1, BasicType t2) const   { assert(type() == t1 || type() == t2, "type check"); }
  95   void type_check(BasicType t1, BasicType t2, BasicType t3) const   { assert(type() == t1 || type() == t2 || type() == t3, "type check"); }
  96 
  97  public:
  98   LIR_Const(jint i, bool is_address=false)       { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); }
  99   LIR_Const(jlong l)                             { _value.set_type(T_LONG);    _value.set_jlong(l); }
 100   LIR_Const(jfloat f)                            { _value.set_type(T_FLOAT);   _value.set_jfloat(f); }
 101   LIR_Const(jdouble d)                           { _value.set_type(T_DOUBLE);  _value.set_jdouble(d); }
 102   LIR_Const(jobject o)                           { _value.set_type(T_OBJECT);  _value.set_jobject(o); }
 103   LIR_Const(void* p) {
 104 #ifdef _LP64
 105     assert(sizeof(jlong) >= sizeof(p), "too small");;
 106     _value.set_type(T_LONG);    _value.set_jlong((jlong)p);
 107 #else
 108     assert(sizeof(jint) >= sizeof(p), "too small");;
 109     _value.set_type(T_INT);     _value.set_jint((jint)p);
 110 #endif
 111   }
 112   LIR_Const(Metadata* m) {
 113     _value.set_type(T_METADATA);
 114 #ifdef _LP64
 115     _value.set_jlong((jlong)m);
 116 #else
 117     _value.set_jint((jint)m);
 118 #endif // _LP64
 119   }
 120 
 121   virtual BasicType type()       const { return _value.get_type(); }
 122   virtual LIR_Const* as_constant()     { return this; }
 123 
 124   jint      as_jint()    const         { type_check(T_INT, T_ADDRESS); return _value.get_jint(); }
 125   jlong     as_jlong()   const         { type_check(T_LONG  ); return _value.get_jlong(); }
 126   jfloat    as_jfloat()  const         { type_check(T_FLOAT ); return _value.get_jfloat(); }
 127   jdouble   as_jdouble() const         { type_check(T_DOUBLE); return _value.get_jdouble(); }
 128   jobject   as_jobject() const         { type_check(T_OBJECT); return _value.get_jobject(); }
 129   jint      as_jint_lo() const         { type_check(T_LONG  ); return low(_value.get_jlong()); }
 130   jint      as_jint_hi() const         { type_check(T_LONG  ); return high(_value.get_jlong()); }
 131 
 132 #ifdef _LP64
 133   address   as_pointer() const         { type_check(T_LONG  ); return (address)_value.get_jlong(); }
 134   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jlong(); }
 135 #else
 136   address   as_pointer() const         { type_check(T_INT   ); return (address)_value.get_jint(); }
 137   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jint(); }
 138 #endif
 139 
 140 
 141   jint      as_jint_bits() const       { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); }
 142   jint      as_jint_lo_bits() const    {
 143     if (type() == T_DOUBLE) {
 144       return low(jlong_cast(_value.get_jdouble()));
 145     } else {
 146       return as_jint_lo();
 147     }
 148   }
 149   jint      as_jint_hi_bits() const    {
 150     if (type() == T_DOUBLE) {
 151       return high(jlong_cast(_value.get_jdouble()));
 152     } else {
 153       return as_jint_hi();
 154     }
 155   }
 156   jlong      as_jlong_bits() const    {
 157     if (type() == T_DOUBLE) {
 158       return jlong_cast(_value.get_jdouble());
 159     } else {
 160       return as_jlong();
 161     }
 162   }
 163 
 164   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 165 
 166 
 167   bool is_zero_float() {
 168     jfloat f = as_jfloat();
 169     jfloat ok = 0.0f;
 170     return jint_cast(f) == jint_cast(ok);
 171   }
 172 
 173   bool is_one_float() {
 174     jfloat f = as_jfloat();
 175     return !g_isnan(f) && g_isfinite(f) && f == 1.0;
 176   }
 177 
 178   bool is_zero_double() {
 179     jdouble d = as_jdouble();
 180     jdouble ok = 0.0;
 181     return jlong_cast(d) == jlong_cast(ok);
 182   }
 183 
 184   bool is_one_double() {
 185     jdouble d = as_jdouble();
 186     return !g_isnan(d) && g_isfinite(d) && d == 1.0;
 187   }
 188 };
 189 
 190 
 191 //---------------------LIR Operand descriptor------------------------------------
 192 //
 193 // The class LIR_OprDesc represents a LIR instruction operand;
 194 // it can be a register (ALU/FPU), stack location or a constant;
 195 // Constants and addresses are represented as resource area allocated
 196 // structures (see above).
 197 // Registers and stack locations are inlined into the this pointer
 198 // (see value function).
 199 
 200 class LIR_OprDesc: public CompilationResourceObj {
 201  public:
 202   // value structure:
 203   //     data       opr-type opr-kind
 204   // +--------------+-------+-------+
 205   // [max...........|7 6 5 4|3 2 1 0]
 206   //                             ^
 207   //                    is_pointer bit
 208   //
 209   // lowest bit cleared, means it is a structure pointer
 210   // we need  4 bits to represent types
 211 
 212  private:
 213   friend class LIR_OprFact;
 214 
 215   // Conversion
 216   intptr_t value() const                         { return (intptr_t) this; }
 217 
 218   bool check_value_mask(intptr_t mask, intptr_t masked_value) const {
 219     return (value() & mask) == masked_value;
 220   }
 221 
 222   enum OprKind {
 223       pointer_value      = 0
 224     , stack_value        = 1
 225     , cpu_register       = 3
 226     , fpu_register       = 5
 227     , illegal_value      = 7
 228   };
 229 
 230   enum OprBits {
 231       pointer_bits   = 1
 232     , kind_bits      = 3
 233     , type_bits      = 4
 234     , size_bits      = 2
 235     , destroys_bits  = 1
 236     , virtual_bits   = 1
 237     , is_xmm_bits    = 1
 238     , last_use_bits  = 1
 239     , is_fpu_stack_offset_bits = 1        // used in assertion checking on x86 for FPU stack slot allocation
 240     , non_data_bits  = kind_bits + type_bits + size_bits + destroys_bits + last_use_bits +
 241                        is_fpu_stack_offset_bits + virtual_bits + is_xmm_bits
 242     , data_bits      = BitsPerInt - non_data_bits
 243     , reg_bits       = data_bits / 2      // for two registers in one value encoding
 244   };
 245 
 246   enum OprShift {
 247       kind_shift     = 0
 248     , type_shift     = kind_shift     + kind_bits
 249     , size_shift     = type_shift     + type_bits
 250     , destroys_shift = size_shift     + size_bits
 251     , last_use_shift = destroys_shift + destroys_bits
 252     , is_fpu_stack_offset_shift = last_use_shift + last_use_bits
 253     , virtual_shift  = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits
 254     , is_xmm_shift   = virtual_shift + virtual_bits
 255     , data_shift     = is_xmm_shift + is_xmm_bits
 256     , reg1_shift = data_shift
 257     , reg2_shift = data_shift + reg_bits
 258 
 259   };
 260 
 261   enum OprSize {
 262       single_size = 0 << size_shift
 263     , double_size = 1 << size_shift
 264   };
 265 
 266   enum OprMask {
 267       kind_mask      = right_n_bits(kind_bits)
 268     , type_mask      = right_n_bits(type_bits) << type_shift
 269     , size_mask      = right_n_bits(size_bits) << size_shift
 270     , last_use_mask  = right_n_bits(last_use_bits) << last_use_shift
 271     , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift
 272     , virtual_mask   = right_n_bits(virtual_bits) << virtual_shift
 273     , is_xmm_mask    = right_n_bits(is_xmm_bits) << is_xmm_shift
 274     , pointer_mask   = right_n_bits(pointer_bits)
 275     , lower_reg_mask = right_n_bits(reg_bits)
 276     , no_type_mask   = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask))
 277   };
 278 
 279   uintptr_t data() const                         { return value() >> data_shift; }
 280   int lo_reg_half() const                        { return data() & lower_reg_mask; }
 281   int hi_reg_half() const                        { return (data() >> reg_bits) & lower_reg_mask; }
 282   OprKind kind_field() const                     { return (OprKind)(value() & kind_mask); }
 283   OprSize size_field() const                     { return (OprSize)(value() & size_mask); }
 284 
 285   static char type_char(BasicType t);
 286 
 287  public:
 288   enum {
 289     vreg_base = ConcreteRegisterImpl::number_of_registers,
 290     vreg_max = (1 << data_bits) - 1
 291   };
 292 
 293   static inline LIR_Opr illegalOpr();
 294 
 295   enum OprType {
 296       unknown_type  = 0 << type_shift    // means: not set (catch uninitialized types)
 297     , int_type      = 1 << type_shift
 298     , long_type     = 2 << type_shift
 299     , object_type   = 3 << type_shift
 300     , address_type  = 4 << type_shift
 301     , float_type    = 5 << type_shift
 302     , double_type   = 6 << type_shift
 303     , metadata_type = 7 << type_shift
 304   };
 305   friend OprType as_OprType(BasicType t);
 306   friend BasicType as_BasicType(OprType t);
 307 
 308   OprType type_field_valid() const               { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); }
 309   OprType type_field() const                     { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); }
 310 
 311   static OprSize size_for(BasicType t) {
 312     switch (t) {
 313       case T_LONG:
 314       case T_DOUBLE:
 315         return double_size;
 316         break;
 317 
 318       case T_FLOAT:
 319       case T_BOOLEAN:
 320       case T_CHAR:
 321       case T_BYTE:
 322       case T_SHORT:
 323       case T_INT:
 324       case T_ADDRESS:
 325       case T_OBJECT:
 326       case T_ARRAY:
 327       case T_METADATA:
 328         return single_size;
 329         break;
 330 
 331       default:
 332         ShouldNotReachHere();
 333         return single_size;
 334       }
 335   }
 336 
 337 
 338   void validate_type() const PRODUCT_RETURN;
 339 
 340   BasicType type() const {
 341     if (is_pointer()) {
 342       return pointer()->type();
 343     }
 344     return as_BasicType(type_field());
 345   }
 346 
 347 
 348   ValueType* value_type() const                  { return as_ValueType(type()); }
 349 
 350   char type_char() const                         { return type_char((is_pointer()) ? pointer()->type() : type()); }
 351 
 352   bool is_equal(LIR_Opr opr) const         { return this == opr; }
 353   // checks whether types are same
 354   bool is_same_type(LIR_Opr opr) const     {
 355     assert(type_field() != unknown_type &&
 356            opr->type_field() != unknown_type, "shouldn't see unknown_type");
 357     return type_field() == opr->type_field();
 358   }
 359   bool is_same_register(LIR_Opr opr) {
 360     return (is_register() && opr->is_register() &&
 361             kind_field() == opr->kind_field() &&
 362             (value() & no_type_mask) == (opr->value() & no_type_mask));
 363   }
 364 
 365   bool is_pointer() const      { return check_value_mask(pointer_mask, pointer_value); }
 366   bool is_illegal() const      { return kind_field() == illegal_value; }
 367   bool is_valid() const        { return kind_field() != illegal_value; }
 368 
 369   bool is_register() const     { return is_cpu_register() || is_fpu_register(); }
 370   bool is_virtual() const      { return is_virtual_cpu()  || is_virtual_fpu();  }
 371 
 372   bool is_constant() const     { return is_pointer() && pointer()->as_constant() != NULL; }
 373   bool is_address() const      { return is_pointer() && pointer()->as_address() != NULL; }
 374 
 375   bool is_float_kind() const   { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); }
 376   bool is_oop() const;
 377 
 378   // semantic for fpu- and xmm-registers:
 379   // * is_float and is_double return true for xmm_registers
 380   //   (so is_single_fpu and is_single_xmm are true)
 381   // * So you must always check for is_???_xmm prior to is_???_fpu to
 382   //   distinguish between fpu- and xmm-registers
 383 
 384   bool is_stack() const        { validate_type(); return check_value_mask(kind_mask,                stack_value);                 }
 385   bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | single_size);  }
 386   bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | double_size);  }
 387 
 388   bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask,                cpu_register);                }
 389   bool is_virtual_cpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); }
 390   bool is_fixed_cpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register);                }
 391   bool is_single_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | single_size);  }
 392   bool is_double_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | double_size);  }
 393 
 394   bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask,                fpu_register);                }
 395   bool is_virtual_fpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); }
 396   bool is_fixed_fpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register);                }
 397   bool is_single_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | single_size);  }
 398   bool is_double_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | double_size);  }
 399 
 400   bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask,             fpu_register | is_xmm_mask); }
 401   bool is_single_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); }
 402   bool is_double_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); }
 403 
 404   // fast accessor functions for special bits that do not work for pointers
 405   // (in this functions, the check for is_pointer() is omitted)
 406   bool is_single_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); }
 407   bool is_double_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); }
 408   bool is_virtual_register() const { assert(is_register(),               "type check"); return check_value_mask(virtual_mask, virtual_mask); }
 409   bool is_oop_register() const     { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; }
 410   BasicType type_register() const  { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid());  }
 411 
 412   bool is_last_use() const         { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; }
 413   bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; }
 414   LIR_Opr make_last_use()          { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); }
 415   LIR_Opr make_fpu_stack_offset()  { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); }
 416 
 417 
 418   int single_stack_ix() const  { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); }
 419   int double_stack_ix() const  { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); }
 420   RegNr cpu_regnr() const      { assert(is_single_cpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 421   RegNr cpu_regnrLo() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 422   RegNr cpu_regnrHi() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 423   RegNr fpu_regnr() const      { assert(is_single_fpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 424   RegNr fpu_regnrLo() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 425   RegNr fpu_regnrHi() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 426   RegNr xmm_regnr() const      { assert(is_single_xmm()   && !is_virtual(), "type check"); return (RegNr)data(); }
 427   RegNr xmm_regnrLo() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 428   RegNr xmm_regnrHi() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 429   int   vreg_number() const    { assert(is_virtual(),                       "type check"); return (RegNr)data(); }
 430 
 431   LIR_OprPtr* pointer()  const                   { assert(is_pointer(), "type check");      return (LIR_OprPtr*)this; }
 432   LIR_Const* as_constant_ptr() const             { return pointer()->as_constant(); }
 433   LIR_Address* as_address_ptr() const            { return pointer()->as_address(); }
 434 
 435   Register as_register()    const;
 436   Register as_register_lo() const;
 437   Register as_register_hi() const;
 438 
 439   Register as_pointer_register() {
 440 #ifdef _LP64
 441     if (is_double_cpu()) {
 442       assert(as_register_lo() == as_register_hi(), "should be a single register");
 443       return as_register_lo();
 444     }
 445 #endif
 446     return as_register();
 447   }
 448 
 449 #ifdef X86
 450   XMMRegister as_xmm_float_reg() const;
 451   XMMRegister as_xmm_double_reg() const;
 452   // for compatibility with RInfo
 453   int fpu () const                                  { return lo_reg_half(); }
 454 #endif // X86
 455 #if defined(SPARC) || defined(ARM) || defined(PPC)
 456   FloatRegister as_float_reg   () const;
 457   FloatRegister as_double_reg  () const;
 458 #endif
 459 
 460   jint      as_jint()    const { return as_constant_ptr()->as_jint(); }
 461   jlong     as_jlong()   const { return as_constant_ptr()->as_jlong(); }
 462   jfloat    as_jfloat()  const { return as_constant_ptr()->as_jfloat(); }
 463   jdouble   as_jdouble() const { return as_constant_ptr()->as_jdouble(); }
 464   jobject   as_jobject() const { return as_constant_ptr()->as_jobject(); }
 465 
 466   void print() const PRODUCT_RETURN;
 467   void print(outputStream* out) const PRODUCT_RETURN;
 468 };
 469 
 470 
 471 inline LIR_OprDesc::OprType as_OprType(BasicType type) {
 472   switch (type) {
 473   case T_INT:      return LIR_OprDesc::int_type;
 474   case T_LONG:     return LIR_OprDesc::long_type;
 475   case T_FLOAT:    return LIR_OprDesc::float_type;
 476   case T_DOUBLE:   return LIR_OprDesc::double_type;
 477   case T_OBJECT:
 478   case T_ARRAY:    return LIR_OprDesc::object_type;
 479   case T_ADDRESS:  return LIR_OprDesc::address_type;
 480   case T_METADATA: return LIR_OprDesc::metadata_type;
 481   case T_ILLEGAL:  // fall through
 482   default: ShouldNotReachHere(); return LIR_OprDesc::unknown_type;
 483   }
 484 }
 485 
 486 inline BasicType as_BasicType(LIR_OprDesc::OprType t) {
 487   switch (t) {
 488   case LIR_OprDesc::int_type:     return T_INT;
 489   case LIR_OprDesc::long_type:    return T_LONG;
 490   case LIR_OprDesc::float_type:   return T_FLOAT;
 491   case LIR_OprDesc::double_type:  return T_DOUBLE;
 492   case LIR_OprDesc::object_type:  return T_OBJECT;
 493   case LIR_OprDesc::address_type: return T_ADDRESS;
 494   case LIR_OprDesc::metadata_type:return T_METADATA;
 495   case LIR_OprDesc::unknown_type: // fall through
 496   default: ShouldNotReachHere();  return T_ILLEGAL;
 497   }
 498 }
 499 
 500 
 501 // LIR_Address
 502 class LIR_Address: public LIR_OprPtr {
 503  friend class LIR_OpVisitState;
 504 
 505  public:
 506   // NOTE: currently these must be the log2 of the scale factor (and
 507   // must also be equivalent to the ScaleFactor enum in
 508   // assembler_i486.hpp)
 509   enum Scale {
 510     times_1  =  0,
 511     times_2  =  1,
 512     times_4  =  2,
 513     times_8  =  3
 514   };
 515 
 516  private:
 517   LIR_Opr   _base;
 518   LIR_Opr   _index;
 519   Scale     _scale;
 520   intx      _disp;
 521   BasicType _type;
 522 
 523  public:
 524   LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type):
 525        _base(base)
 526      , _index(index)
 527      , _scale(times_1)
 528      , _type(type)
 529      , _disp(0) { verify(); }
 530 
 531   LIR_Address(LIR_Opr base, intx disp, BasicType type):
 532        _base(base)
 533      , _index(LIR_OprDesc::illegalOpr())
 534      , _scale(times_1)
 535      , _type(type)
 536      , _disp(disp) { verify(); }
 537 
 538   LIR_Address(LIR_Opr base, BasicType type):
 539        _base(base)
 540      , _index(LIR_OprDesc::illegalOpr())
 541      , _scale(times_1)
 542      , _type(type)
 543      , _disp(0) { verify(); }
 544 
 545 #if defined(X86) || defined(ARM)
 546   LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type):
 547        _base(base)
 548      , _index(index)
 549      , _scale(scale)
 550      , _type(type)
 551      , _disp(disp) { verify(); }
 552 #endif // X86 || ARM
 553 
 554   LIR_Opr base()  const                          { return _base;  }
 555   LIR_Opr index() const                          { return _index; }
 556   Scale   scale() const                          { return _scale; }
 557   intx    disp()  const                          { return _disp;  }
 558 
 559   bool equals(LIR_Address* other) const          { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); }
 560 
 561   virtual LIR_Address* as_address()              { return this;   }
 562   virtual BasicType type() const                 { return _type; }
 563   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 564 
 565   void verify0() const PRODUCT_RETURN;
 566 #if defined(LIR_ADDRESS_PD_VERIFY) && !defined(PRODUCT)
 567   void pd_verify() const;
 568   void verify() const { pd_verify(); }
 569 #else
 570   void verify() const { verify0(); }
 571 #endif
 572 
 573   static Scale scale(BasicType type);
 574 };
 575 
 576 
 577 // operand factory
 578 class LIR_OprFact: public AllStatic {
 579  public:
 580 
 581   static LIR_Opr illegalOpr;
 582 
 583   static LIR_Opr single_cpu(int reg) {
 584     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 585                                LIR_OprDesc::int_type             |
 586                                LIR_OprDesc::cpu_register         |
 587                                LIR_OprDesc::single_size);
 588   }
 589   static LIR_Opr single_cpu_oop(int reg) {
 590     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 591                                LIR_OprDesc::object_type          |
 592                                LIR_OprDesc::cpu_register         |
 593                                LIR_OprDesc::single_size);
 594   }
 595   static LIR_Opr single_cpu_address(int reg) {
 596     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 597                                LIR_OprDesc::address_type         |
 598                                LIR_OprDesc::cpu_register         |
 599                                LIR_OprDesc::single_size);
 600   }
 601   static LIR_Opr single_cpu_metadata(int reg) {
 602     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 603                                LIR_OprDesc::metadata_type        |
 604                                LIR_OprDesc::cpu_register         |
 605                                LIR_OprDesc::single_size);
 606   }
 607   static LIR_Opr double_cpu(int reg1, int reg2) {
 608     LP64_ONLY(assert(reg1 == reg2, "must be identical"));
 609     return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 610                                (reg2 << LIR_OprDesc::reg2_shift) |
 611                                LIR_OprDesc::long_type            |
 612                                LIR_OprDesc::cpu_register         |
 613                                LIR_OprDesc::double_size);
 614   }
 615 
 616   static LIR_Opr single_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 617                                                                              LIR_OprDesc::float_type           |
 618                                                                              LIR_OprDesc::fpu_register         |
 619                                                                              LIR_OprDesc::single_size); }
 620 #if defined(C1_LIR_MD_HPP)
 621 # include C1_LIR_MD_HPP
 622 #elif defined(SPARC) || defined(AARCH32)
 623   static LIR_Opr double_fpu(int reg1, int reg2) { return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 624                                                                              (reg2 << LIR_OprDesc::reg2_shift) |
 625                                                                              LIR_OprDesc::double_type          |
 626                                                                              LIR_OprDesc::fpu_register         |
 627                                                                              LIR_OprDesc::double_size); }
 628 #elif defined(X86)
 629   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 630                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 631                                                                              LIR_OprDesc::double_type          |
 632                                                                              LIR_OprDesc::fpu_register         |
 633                                                                              LIR_OprDesc::double_size); }
 634 
 635   static LIR_Opr single_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 636                                                                              LIR_OprDesc::float_type           |
 637                                                                              LIR_OprDesc::fpu_register         |
 638                                                                              LIR_OprDesc::single_size          |
 639                                                                              LIR_OprDesc::is_xmm_mask); }
 640   static LIR_Opr double_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 641                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 642                                                                              LIR_OprDesc::double_type          |
 643                                                                              LIR_OprDesc::fpu_register         |
 644                                                                              LIR_OprDesc::double_size          |
 645                                                                              LIR_OprDesc::is_xmm_mask); }
 646 #elif defined(PPC)
 647   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 648                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 649                                                                              LIR_OprDesc::double_type          |
 650                                                                              LIR_OprDesc::fpu_register         |
 651                                                                              LIR_OprDesc::double_size); }
 652   static LIR_Opr single_softfp(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift)        |
 653                                                                              LIR_OprDesc::float_type           |
 654                                                                              LIR_OprDesc::cpu_register         |
 655                                                                              LIR_OprDesc::single_size); }
 656   static LIR_Opr double_softfp(int reg1, int reg2) { return (LIR_Opr)((reg2 << LIR_OprDesc::reg1_shift)        |
 657                                                                              (reg1 << LIR_OprDesc::reg2_shift) |
 658                                                                              LIR_OprDesc::double_type          |
 659                                                                              LIR_OprDesc::cpu_register         |
 660                                                                              LIR_OprDesc::double_size); }
 661 #endif // PPC
 662 
 663   static LIR_Opr virtual_register(int index, BasicType type) {
 664     LIR_Opr res;
 665     switch (type) {
 666       case T_OBJECT: // fall through
 667       case T_ARRAY:
 668         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
 669                                             LIR_OprDesc::object_type  |
 670                                             LIR_OprDesc::cpu_register |
 671                                             LIR_OprDesc::single_size  |
 672                                             LIR_OprDesc::virtual_mask);
 673         break;
 674 
 675       case T_METADATA:
 676         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
 677                                             LIR_OprDesc::metadata_type|
 678                                             LIR_OprDesc::cpu_register |
 679                                             LIR_OprDesc::single_size  |
 680                                             LIR_OprDesc::virtual_mask);
 681         break;
 682 
 683       case T_INT:
 684         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 685                                   LIR_OprDesc::int_type              |
 686                                   LIR_OprDesc::cpu_register          |
 687                                   LIR_OprDesc::single_size           |
 688                                   LIR_OprDesc::virtual_mask);
 689         break;
 690 
 691       case T_ADDRESS:
 692         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 693                                   LIR_OprDesc::address_type          |
 694                                   LIR_OprDesc::cpu_register          |
 695                                   LIR_OprDesc::single_size           |
 696                                   LIR_OprDesc::virtual_mask);
 697         break;
 698 
 699       case T_LONG:
 700         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 701                                   LIR_OprDesc::long_type             |
 702                                   LIR_OprDesc::cpu_register          |
 703                                   LIR_OprDesc::double_size           |
 704                                   LIR_OprDesc::virtual_mask);
 705         break;
 706 
 707 #ifdef __SOFTFP__
 708       case T_FLOAT:
 709 #ifdef AARCH32
 710         if (hasFPU()) {
 711         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 712                                   LIR_OprDesc::float_type  |
 713                                       LIR_OprDesc::fpu_register         |
 714                                       LIR_OprDesc::single_size          |
 715                                       LIR_OprDesc::virtual_mask);
 716         } else
 717 #endif // AARCH32
 718         {
 719             res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 720                                       LIR_OprDesc::float_type  |
 721                                   LIR_OprDesc::cpu_register |
 722                                   LIR_OprDesc::single_size |
 723                                   LIR_OprDesc::virtual_mask);
 724         }
 725         break;
 726       case T_DOUBLE:
 727 #ifdef AARCH32
 728         if(hasFPU()) {
 729         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 730                                   LIR_OprDesc::double_type |
 731                                                 LIR_OprDesc::fpu_register          |
 732                                                 LIR_OprDesc::double_size           |
 733                                                 LIR_OprDesc::virtual_mask);
 734         } else
 735 #endif
 736         {
 737             res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 738                                       LIR_OprDesc::double_type |
 739                                   LIR_OprDesc::cpu_register |
 740                                   LIR_OprDesc::double_size |
 741                                   LIR_OprDesc::virtual_mask);
 742         }
 743         break;
 744 #else // __SOFTFP__
 745       case T_FLOAT:
 746         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 747                                   LIR_OprDesc::float_type           |
 748                                   LIR_OprDesc::fpu_register         |
 749                                   LIR_OprDesc::single_size          |
 750                                   LIR_OprDesc::virtual_mask);
 751         break;
 752 
 753       case
 754         T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 755                                             LIR_OprDesc::double_type           |
 756                                             LIR_OprDesc::fpu_register          |
 757                                             LIR_OprDesc::double_size           |
 758                                             LIR_OprDesc::virtual_mask);
 759         break;
 760 #endif // __SOFTFP__
 761       default:       ShouldNotReachHere(); res = illegalOpr;
 762     }
 763 
 764 #ifdef ASSERT
 765     res->validate_type();
 766     assert(res->vreg_number() == index, "conversion check");
 767     assert(index >= LIR_OprDesc::vreg_base, "must start at vreg_base");
 768     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 769 
 770     // old-style calculation; check if old and new method are equal
 771     LIR_OprDesc::OprType t = as_OprType(type);
 772 #ifdef __SOFTFP__
 773     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 774                                t |
 775                                LIR_OprDesc::cpu_register |
 776                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
 777 #else // __SOFTFP__
 778     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | t |
 779                                           ((type == T_FLOAT || type == T_DOUBLE) ?  LIR_OprDesc::fpu_register : LIR_OprDesc::cpu_register) |
 780                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
 781     assert(res == old_res, "old and new method not equal");
 782 #endif // __SOFTFP__
 783 #endif // ASSERT
 784 
 785     return res;
 786   }
 787 
 788   // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as
 789   // the index is platform independent; a double stack useing indeces 2 and 3 has always
 790   // index 2.
 791   static LIR_Opr stack(int index, BasicType type) {
 792     LIR_Opr res;
 793     switch (type) {
 794       case T_OBJECT: // fall through
 795       case T_ARRAY:
 796         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 797                                   LIR_OprDesc::object_type           |
 798                                   LIR_OprDesc::stack_value           |
 799                                   LIR_OprDesc::single_size);
 800         break;
 801 
 802       case T_METADATA:
 803         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 804                                   LIR_OprDesc::metadata_type         |
 805                                   LIR_OprDesc::stack_value           |
 806                                   LIR_OprDesc::single_size);
 807         break;
 808       case T_INT:
 809         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 810                                   LIR_OprDesc::int_type              |
 811                                   LIR_OprDesc::stack_value           |
 812                                   LIR_OprDesc::single_size);
 813         break;
 814 
 815       case T_ADDRESS:
 816         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 817                                   LIR_OprDesc::address_type          |
 818                                   LIR_OprDesc::stack_value           |
 819                                   LIR_OprDesc::single_size);
 820         break;
 821 
 822       case T_LONG:
 823         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 824                                   LIR_OprDesc::long_type             |
 825                                   LIR_OprDesc::stack_value           |
 826                                   LIR_OprDesc::double_size);
 827         break;
 828 
 829       case T_FLOAT:
 830         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 831                                   LIR_OprDesc::float_type            |
 832                                   LIR_OprDesc::stack_value           |
 833                                   LIR_OprDesc::single_size);
 834         break;
 835       case T_DOUBLE:
 836         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 837                                   LIR_OprDesc::double_type           |
 838                                   LIR_OprDesc::stack_value           |
 839                                   LIR_OprDesc::double_size);
 840         break;
 841 
 842       default:       ShouldNotReachHere(); res = illegalOpr;
 843     }
 844 
 845 #ifdef ASSERT
 846     assert(index >= 0, "index must be positive");
 847     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 848 
 849     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 850                                           LIR_OprDesc::stack_value           |
 851                                           as_OprType(type)                   |
 852                                           LIR_OprDesc::size_for(type));
 853     assert(res == old_res, "old and new method not equal");
 854 #endif
 855 
 856     return res;
 857   }
 858 
 859   static LIR_Opr intConst(jint i)                { return (LIR_Opr)(new LIR_Const(i)); }
 860   static LIR_Opr longConst(jlong l)              { return (LIR_Opr)(new LIR_Const(l)); }
 861   static LIR_Opr floatConst(jfloat f)            { return (LIR_Opr)(new LIR_Const(f)); }
 862   static LIR_Opr doubleConst(jdouble d)          { return (LIR_Opr)(new LIR_Const(d)); }
 863   static LIR_Opr oopConst(jobject o)             { return (LIR_Opr)(new LIR_Const(o)); }
 864   static LIR_Opr address(LIR_Address* a)         { return (LIR_Opr)a; }
 865   static LIR_Opr intptrConst(void* p)            { return (LIR_Opr)(new LIR_Const(p)); }
 866   static LIR_Opr intptrConst(intptr_t v)         { return (LIR_Opr)(new LIR_Const((void*)v)); }
 867   static LIR_Opr illegal()                       { return (LIR_Opr)-1; }
 868   static LIR_Opr addressConst(jint i)            { return (LIR_Opr)(new LIR_Const(i, true)); }
 869   static LIR_Opr metadataConst(Metadata* m)      { return (LIR_Opr)(new LIR_Const(m)); }
 870 
 871   static LIR_Opr value_type(ValueType* type);
 872   static LIR_Opr dummy_value_type(ValueType* type);
 873 };
 874 
 875 
 876 //-------------------------------------------------------------------------------
 877 //                   LIR Instructions
 878 //-------------------------------------------------------------------------------
 879 //
 880 // Note:
 881 //  - every instruction has a result operand
 882 //  - every instruction has an CodeEmitInfo operand (can be revisited later)
 883 //  - every instruction has a LIR_OpCode operand
 884 //  - LIR_OpN, means an instruction that has N input operands
 885 //
 886 // class hierarchy:
 887 //
 888 class  LIR_Op;
 889 class    LIR_Op0;
 890 class      LIR_OpLabel;
 891 class    LIR_Op1;
 892 class      LIR_OpBranch;
 893 class      LIR_OpConvert;
 894 class      LIR_OpAllocObj;
 895 class      LIR_OpRoundFP;
 896 class    LIR_Op2;
 897 class    LIR_OpDelay;
 898 class    LIR_Op3;
 899 class      LIR_OpAllocArray;
 900 class    LIR_OpCall;
 901 class      LIR_OpJavaCall;
 902 class      LIR_OpRTCall;
 903 class    LIR_OpArrayCopy;
 904 class    LIR_OpUpdateCRC32;
 905 class    LIR_OpLock;
 906 class    LIR_OpTypeCheck;
 907 class    LIR_OpCompareAndSwap;
 908 class    LIR_OpProfileCall;
 909 class    LIR_OpProfileType;
 910 #ifdef ASSERT
 911 class    LIR_OpAssert;
 912 #endif
 913 
 914 // LIR operation codes
 915 enum LIR_Code {
 916     lir_none
 917   , begin_op0
 918       , lir_word_align
 919       , lir_label
 920       , lir_nop
 921       , lir_backwardbranch_target
 922       , lir_std_entry
 923       , lir_osr_entry
 924       , lir_build_frame
 925       , lir_fpop_raw
 926       , lir_24bit_FPU
 927       , lir_reset_FPU
 928       , lir_breakpoint
 929       , lir_rtcall
 930       , lir_membar
 931       , lir_membar_acquire
 932       , lir_membar_release
 933       , lir_membar_loadload
 934       , lir_membar_storestore
 935       , lir_membar_loadstore
 936       , lir_membar_storeload
 937       , lir_get_thread
 938   , end_op0
 939   , begin_op1
 940       , lir_fxch
 941       , lir_fld
 942       , lir_ffree
 943       , lir_push
 944       , lir_pop
 945       , lir_null_check
 946       , lir_return
 947       , lir_leal
 948       , lir_neg
 949       , lir_branch
 950       , lir_cond_float_branch
 951       , lir_move
 952       , lir_prefetchr
 953       , lir_prefetchw
 954       , lir_convert
 955       , lir_alloc_object
 956       , lir_monaddr
 957       , lir_roundfp
 958       , lir_safepoint
 959       , lir_pack64
 960       , lir_unpack64
 961       , lir_unwind
 962   , end_op1
 963   , begin_op2
 964       , lir_cmp
 965       , lir_cmp_l2i
 966       , lir_ucmp_fd2i
 967       , lir_cmp_fd2i
 968       , lir_cmove
 969       , lir_add
 970       , lir_sub
 971       , lir_mul
 972       , lir_mul_strictfp
 973       , lir_div
 974       , lir_div_strictfp
 975       , lir_rem
 976       , lir_sqrt
 977       , lir_abs
 978       , lir_sin
 979       , lir_cos
 980       , lir_tan
 981       , lir_log
 982       , lir_log10
 983       , lir_exp
 984       , lir_pow
 985       , lir_logic_and
 986       , lir_logic_or
 987       , lir_logic_xor
 988       , lir_shl
 989       , lir_shr
 990       , lir_ushr
 991       , lir_alloc_array
 992       , lir_throw
 993       , lir_compare_to
 994       , lir_xadd
 995       , lir_xchg
 996   , end_op2
 997   , begin_op3
 998       , lir_idiv
 999       , lir_irem
1000   , end_op3
1001   , begin_opJavaCall
1002       , lir_static_call
1003       , lir_optvirtual_call
1004       , lir_icvirtual_call
1005       , lir_virtual_call
1006       , lir_dynamic_call
1007   , end_opJavaCall
1008   , begin_opArrayCopy
1009       , lir_arraycopy
1010   , end_opArrayCopy
1011   , begin_opUpdateCRC32
1012       , lir_updatecrc32
1013   , end_opUpdateCRC32
1014   , begin_opLock
1015     , lir_lock
1016     , lir_unlock
1017   , end_opLock
1018   , begin_delay_slot
1019     , lir_delay_slot
1020   , end_delay_slot
1021   , begin_opTypeCheck
1022     , lir_instanceof
1023     , lir_checkcast
1024     , lir_store_check
1025   , end_opTypeCheck
1026   , begin_opCompareAndSwap
1027     , lir_cas_long
1028     , lir_cas_obj
1029     , lir_cas_int
1030   , end_opCompareAndSwap
1031   , begin_opMDOProfile
1032     , lir_profile_call
1033     , lir_profile_type
1034   , end_opMDOProfile
1035   , begin_opAssert
1036     , lir_assert
1037   , end_opAssert
1038 };
1039 
1040 
1041 enum LIR_Condition {
1042     lir_cond_equal
1043   , lir_cond_notEqual
1044   , lir_cond_less
1045   , lir_cond_lessEqual
1046   , lir_cond_greaterEqual
1047   , lir_cond_greater
1048   , lir_cond_belowEqual
1049   , lir_cond_aboveEqual
1050   , lir_cond_always
1051   , lir_cond_unknown = -1
1052 };
1053 
1054 
1055 enum LIR_PatchCode {
1056   lir_patch_none,
1057   lir_patch_low,
1058   lir_patch_high,
1059   lir_patch_normal
1060 };
1061 
1062 
1063 enum LIR_MoveKind {
1064   lir_move_normal,
1065   lir_move_volatile,
1066   lir_move_unaligned,
1067   lir_move_wide,
1068   lir_move_max_flag
1069 };
1070 
1071 
1072 // --------------------------------------------------
1073 // LIR_Op
1074 // --------------------------------------------------
1075 class LIR_Op: public CompilationResourceObj {
1076  friend class LIR_OpVisitState;
1077 
1078 #ifdef ASSERT
1079  private:
1080   const char *  _file;
1081   int           _line;
1082 #endif
1083 
1084  protected:
1085   LIR_Opr       _result;
1086   unsigned short _code;
1087   unsigned short _flags;
1088   CodeEmitInfo* _info;
1089   int           _id;     // value id for register allocation
1090   int           _fpu_pop_count;
1091   Instruction*  _source; // for debugging
1092 
1093   static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN;
1094 
1095  protected:
1096   static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end)  { return start < test && test < end; }
1097 
1098  public:
1099   LIR_Op()
1100     : _result(LIR_OprFact::illegalOpr)
1101     , _code(lir_none)
1102     , _flags(0)
1103     , _info(NULL)
1104 #ifdef ASSERT
1105     , _file(NULL)
1106     , _line(0)
1107 #endif
1108     , _fpu_pop_count(0)
1109     , _source(NULL)
1110     , _id(-1)                             {}
1111 
1112   LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info)
1113     : _result(result)
1114     , _code(code)
1115     , _flags(0)
1116     , _info(info)
1117 #ifdef ASSERT
1118     , _file(NULL)
1119     , _line(0)
1120 #endif
1121     , _fpu_pop_count(0)
1122     , _source(NULL)
1123     , _id(-1)                             {}
1124 
1125   CodeEmitInfo* info() const                  { return _info;   }
1126   LIR_Code code()      const                  { return (LIR_Code)_code;   }
1127   LIR_Opr result_opr() const                  { return _result; }
1128   void    set_result_opr(LIR_Opr opr)         { _result = opr;  }
1129 
1130 #ifdef ASSERT
1131   void set_file_and_line(const char * file, int line) {
1132     _file = file;
1133     _line = line;
1134   }
1135 #endif
1136 
1137   virtual const char * name() const PRODUCT_RETURN0;
1138 
1139   int id()             const                  { return _id;     }
1140   void set_id(int id)                         { _id = id; }
1141 
1142   // FPU stack simulation helpers -- only used on Intel
1143   void set_fpu_pop_count(int count)           { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; }
1144   int  fpu_pop_count() const                  { return _fpu_pop_count; }
1145   bool pop_fpu_stack()                        { return _fpu_pop_count > 0; }
1146 
1147   Instruction* source() const                 { return _source; }
1148   void set_source(Instruction* ins)           { _source = ins; }
1149 
1150   virtual void emit_code(LIR_Assembler* masm) = 0;
1151   virtual void print_instr(outputStream* out) const   = 0;
1152   virtual void print_on(outputStream* st) const PRODUCT_RETURN;
1153 
1154   virtual bool is_patching() { return false; }
1155   virtual LIR_OpCall* as_OpCall() { return NULL; }
1156   virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; }
1157   virtual LIR_OpLabel* as_OpLabel() { return NULL; }
1158   virtual LIR_OpDelay* as_OpDelay() { return NULL; }
1159   virtual LIR_OpLock* as_OpLock() { return NULL; }
1160   virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; }
1161   virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; }
1162   virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; }
1163   virtual LIR_OpBranch* as_OpBranch() { return NULL; }
1164   virtual LIR_OpRTCall* as_OpRTCall() { return NULL; }
1165   virtual LIR_OpConvert* as_OpConvert() { return NULL; }
1166   virtual LIR_Op0* as_Op0() { return NULL; }
1167   virtual LIR_Op1* as_Op1() { return NULL; }
1168   virtual LIR_Op2* as_Op2() { return NULL; }
1169   virtual LIR_Op3* as_Op3() { return NULL; }
1170   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; }
1171   virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return NULL; }
1172   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; }
1173   virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; }
1174   virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; }
1175   virtual LIR_OpProfileType* as_OpProfileType() { return NULL; }
1176 #ifdef ASSERT
1177   virtual LIR_OpAssert* as_OpAssert() { return NULL; }
1178 #endif
1179 
1180   virtual void verify() const {}
1181 };
1182 
1183 // for calls
1184 class LIR_OpCall: public LIR_Op {
1185  friend class LIR_OpVisitState;
1186 
1187  protected:
1188   address      _addr;
1189   LIR_OprList* _arguments;
1190  protected:
1191   LIR_OpCall(LIR_Code code, address addr, LIR_Opr result,
1192              LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1193     : LIR_Op(code, result, info)
1194     , _arguments(arguments)
1195     , _addr(addr) {}
1196 
1197  public:
1198   address addr() const                           { return _addr; }
1199   const LIR_OprList* arguments() const           { return _arguments; }
1200   virtual LIR_OpCall* as_OpCall()                { return this; }
1201 };
1202 
1203 
1204 // --------------------------------------------------
1205 // LIR_OpJavaCall
1206 // --------------------------------------------------
1207 class LIR_OpJavaCall: public LIR_OpCall {
1208  friend class LIR_OpVisitState;
1209 
1210  private:
1211   ciMethod* _method;
1212   LIR_Opr   _receiver;
1213   LIR_Opr   _method_handle_invoke_SP_save_opr;  // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr.
1214 
1215  public:
1216   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1217                  LIR_Opr receiver, LIR_Opr result,
1218                  address addr, LIR_OprList* arguments,
1219                  CodeEmitInfo* info)
1220   : LIR_OpCall(code, addr, result, arguments, info)
1221   , _receiver(receiver)
1222   , _method(method)
1223   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1224   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1225 
1226   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1227                  LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset,
1228                  LIR_OprList* arguments, CodeEmitInfo* info)
1229   : LIR_OpCall(code, (address)vtable_offset, result, arguments, info)
1230   , _receiver(receiver)
1231   , _method(method)
1232   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1233   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1234 
1235   LIR_Opr receiver() const                       { return _receiver; }
1236   ciMethod* method() const                       { return _method;   }
1237 
1238   // JSR 292 support.
1239   bool is_invokedynamic() const                  { return code() == lir_dynamic_call; }
1240   bool is_method_handle_invoke() const {
1241     return method()->is_compiled_lambda_form() ||   // Java-generated lambda form
1242            method()->is_method_handle_intrinsic();  // JVM-generated MH intrinsic
1243   }
1244 
1245   intptr_t vtable_offset() const {
1246     assert(_code == lir_virtual_call, "only have vtable for real vcall");
1247     return (intptr_t) addr();
1248   }
1249 
1250   virtual void emit_code(LIR_Assembler* masm);
1251   virtual LIR_OpJavaCall* as_OpJavaCall() { return this; }
1252   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1253 };
1254 
1255 // --------------------------------------------------
1256 // LIR_OpLabel
1257 // --------------------------------------------------
1258 // Location where a branch can continue
1259 class LIR_OpLabel: public LIR_Op {
1260  friend class LIR_OpVisitState;
1261 
1262  private:
1263   Label* _label;
1264  public:
1265   LIR_OpLabel(Label* lbl)
1266    : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL)
1267    , _label(lbl)                                 {}
1268   Label* label() const                           { return _label; }
1269 
1270   virtual void emit_code(LIR_Assembler* masm);
1271   virtual LIR_OpLabel* as_OpLabel() { return this; }
1272   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1273 };
1274 
1275 // LIR_OpArrayCopy
1276 class LIR_OpArrayCopy: public LIR_Op {
1277  friend class LIR_OpVisitState;
1278 
1279  private:
1280   ArrayCopyStub*  _stub;
1281   LIR_Opr   _src;
1282   LIR_Opr   _src_pos;
1283   LIR_Opr   _dst;
1284   LIR_Opr   _dst_pos;
1285   LIR_Opr   _length;
1286   LIR_Opr   _tmp;
1287   ciArrayKlass* _expected_type;
1288   int       _flags;
1289 
1290 public:
1291   enum Flags {
1292     src_null_check         = 1 << 0,
1293     dst_null_check         = 1 << 1,
1294     src_pos_positive_check = 1 << 2,
1295     dst_pos_positive_check = 1 << 3,
1296     length_positive_check  = 1 << 4,
1297     src_range_check        = 1 << 5,
1298     dst_range_check        = 1 << 6,
1299     type_check             = 1 << 7,
1300     overlapping            = 1 << 8,
1301     unaligned              = 1 << 9,
1302     src_objarray           = 1 << 10,
1303     dst_objarray           = 1 << 11,
1304     all_flags              = (1 << 12) - 1
1305   };
1306 
1307   LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp,
1308                   ciArrayKlass* expected_type, int flags, CodeEmitInfo* info);
1309 
1310   LIR_Opr src() const                            { return _src; }
1311   LIR_Opr src_pos() const                        { return _src_pos; }
1312   LIR_Opr dst() const                            { return _dst; }
1313   LIR_Opr dst_pos() const                        { return _dst_pos; }
1314   LIR_Opr length() const                         { return _length; }
1315   LIR_Opr tmp() const                            { return _tmp; }
1316   int flags() const                              { return _flags; }
1317   ciArrayKlass* expected_type() const            { return _expected_type; }
1318   ArrayCopyStub* stub() const                    { return _stub; }
1319 
1320   virtual void emit_code(LIR_Assembler* masm);
1321   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; }
1322   void print_instr(outputStream* out) const PRODUCT_RETURN;
1323 };
1324 
1325 // LIR_OpUpdateCRC32
1326 class LIR_OpUpdateCRC32: public LIR_Op {
1327   friend class LIR_OpVisitState;
1328 
1329 private:
1330   LIR_Opr   _crc;
1331   LIR_Opr   _val;
1332 
1333 public:
1334 
1335   LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res);
1336 
1337   LIR_Opr crc() const                            { return _crc; }
1338   LIR_Opr val() const                            { return _val; }
1339 
1340   virtual void emit_code(LIR_Assembler* masm);
1341   virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32()  { return this; }
1342   void print_instr(outputStream* out) const PRODUCT_RETURN;
1343 };
1344 
1345 // --------------------------------------------------
1346 // LIR_Op0
1347 // --------------------------------------------------
1348 class LIR_Op0: public LIR_Op {
1349  friend class LIR_OpVisitState;
1350 
1351  public:
1352   LIR_Op0(LIR_Code code)
1353    : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1354   LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL)
1355    : LIR_Op(code, result, info)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1356 
1357   virtual void emit_code(LIR_Assembler* masm);
1358   virtual LIR_Op0* as_Op0() { return this; }
1359   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1360 };
1361 
1362 
1363 // --------------------------------------------------
1364 // LIR_Op1
1365 // --------------------------------------------------
1366 
1367 class LIR_Op1: public LIR_Op {
1368  friend class LIR_OpVisitState;
1369 
1370  protected:
1371   LIR_Opr         _opr;   // input operand
1372   BasicType       _type;  // Operand types
1373   LIR_PatchCode   _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?)
1374 
1375   static void print_patch_code(outputStream* out, LIR_PatchCode code);
1376 
1377   void set_kind(LIR_MoveKind kind) {
1378     assert(code() == lir_move, "must be");
1379     _flags = kind;
1380   }
1381 
1382  public:
1383   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL)
1384     : LIR_Op(code, result, info)
1385     , _opr(opr)
1386     , _patch(patch)
1387     , _type(type)                      { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1388 
1389   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind)
1390     : LIR_Op(code, result, info)
1391     , _opr(opr)
1392     , _patch(patch)
1393     , _type(type)                      {
1394     assert(code == lir_move, "must be");
1395     set_kind(kind);
1396   }
1397 
1398   LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info)
1399     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1400     , _opr(opr)
1401     , _patch(lir_patch_none)
1402     , _type(T_ILLEGAL)                 { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1403 
1404   LIR_Opr in_opr()           const               { return _opr;   }
1405   LIR_PatchCode patch_code() const               { return _patch; }
1406   BasicType type()           const               { return _type;  }
1407 
1408   LIR_MoveKind move_kind() const {
1409     assert(code() == lir_move, "must be");
1410     return (LIR_MoveKind)_flags;
1411   }
1412 
1413   virtual bool is_patching() { return _patch != lir_patch_none; }
1414   virtual void emit_code(LIR_Assembler* masm);
1415   virtual LIR_Op1* as_Op1() { return this; }
1416   virtual const char * name() const PRODUCT_RETURN0;
1417 
1418   void set_in_opr(LIR_Opr opr) { _opr = opr; }
1419 
1420   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1421   virtual void verify() const;
1422 };
1423 
1424 
1425 // for runtime calls
1426 class LIR_OpRTCall: public LIR_OpCall {
1427  friend class LIR_OpVisitState;
1428 
1429  private:
1430   LIR_Opr _tmp;
1431  public:
1432   LIR_OpRTCall(address addr, LIR_Opr tmp,
1433                LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1434     : LIR_OpCall(lir_rtcall, addr, result, arguments, info)
1435     , _tmp(tmp) {}
1436 
1437   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1438   virtual void emit_code(LIR_Assembler* masm);
1439   virtual LIR_OpRTCall* as_OpRTCall() { return this; }
1440 
1441   LIR_Opr tmp() const                            { return _tmp; }
1442 
1443   virtual void verify() const;
1444 };
1445 
1446 
1447 class LIR_OpBranch: public LIR_Op {
1448  friend class LIR_OpVisitState;
1449 
1450  private:
1451   LIR_Condition _cond;
1452   BasicType     _type;
1453   Label*        _label;
1454   BlockBegin*   _block;  // if this is a branch to a block, this is the block
1455   BlockBegin*   _ublock; // if this is a float-branch, this is the unorderd block
1456   CodeStub*     _stub;   // if this is a branch to a stub, this is the stub
1457 
1458  public:
1459   LIR_OpBranch(LIR_Condition cond, BasicType type, Label* lbl)
1460     : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
1461     , _cond(cond)
1462     , _type(type)
1463     , _label(lbl)
1464     , _block(NULL)
1465     , _ublock(NULL)
1466     , _stub(NULL) { }
1467 
1468   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block);
1469   LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub);
1470 
1471   // for unordered comparisons
1472   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock);
1473 
1474   LIR_Condition cond()        const              { return _cond;        }
1475   BasicType     type()        const              { return _type;        }
1476   Label*        label()       const              { return _label;       }
1477   BlockBegin*   block()       const              { return _block;       }
1478   BlockBegin*   ublock()      const              { return _ublock;      }
1479   CodeStub*     stub()        const              { return _stub;       }
1480 
1481   void          change_block(BlockBegin* b);
1482   void          change_ublock(BlockBegin* b);
1483   void          negate_cond();
1484 
1485   virtual void emit_code(LIR_Assembler* masm);
1486   virtual LIR_OpBranch* as_OpBranch() { return this; }
1487   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1488 };
1489 
1490 
1491 class ConversionStub;
1492 
1493 class LIR_OpConvert: public LIR_Op1 {
1494  friend class LIR_OpVisitState;
1495 
1496  private:
1497    Bytecodes::Code _bytecode;
1498    ConversionStub* _stub;
1499 #ifdef PPC
1500   LIR_Opr _tmp1;
1501   LIR_Opr _tmp2;
1502 #endif
1503 
1504  public:
1505    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub)
1506      : LIR_Op1(lir_convert, opr, result)
1507      , _stub(stub)
1508 #ifdef PPC
1509      , _tmp1(LIR_OprDesc::illegalOpr())
1510      , _tmp2(LIR_OprDesc::illegalOpr())
1511 #endif
1512      , _bytecode(code)                           {}
1513 
1514 #ifdef PPC
1515    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub
1516                  ,LIR_Opr tmp1, LIR_Opr tmp2)
1517      : LIR_Op1(lir_convert, opr, result)
1518      , _stub(stub)
1519      , _tmp1(tmp1)
1520      , _tmp2(tmp2)
1521      , _bytecode(code)                           {}
1522 #endif
1523 
1524   Bytecodes::Code bytecode() const               { return _bytecode; }
1525   ConversionStub* stub() const                   { return _stub; }
1526 #ifdef PPC
1527   LIR_Opr tmp1() const                           { return _tmp1; }
1528   LIR_Opr tmp2() const                           { return _tmp2; }
1529 #endif
1530 
1531   virtual void emit_code(LIR_Assembler* masm);
1532   virtual LIR_OpConvert* as_OpConvert() { return this; }
1533   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1534 
1535   static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN;
1536 };
1537 
1538 
1539 // LIR_OpAllocObj
1540 class LIR_OpAllocObj : public LIR_Op1 {
1541  friend class LIR_OpVisitState;
1542 
1543  private:
1544   LIR_Opr _tmp1;
1545   LIR_Opr _tmp2;
1546   LIR_Opr _tmp3;
1547   LIR_Opr _tmp4;
1548   int     _hdr_size;
1549   int     _obj_size;
1550   CodeStub* _stub;
1551   bool    _init_check;
1552 
1553  public:
1554   LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result,
1555                  LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1556                  int hdr_size, int obj_size, bool init_check, CodeStub* stub)
1557     : LIR_Op1(lir_alloc_object, klass, result)
1558     , _tmp1(t1)
1559     , _tmp2(t2)
1560     , _tmp3(t3)
1561     , _tmp4(t4)
1562     , _hdr_size(hdr_size)
1563     , _obj_size(obj_size)
1564     , _init_check(init_check)
1565     , _stub(stub)                                { }
1566 
1567   LIR_Opr klass()        const                   { return in_opr();     }
1568   LIR_Opr obj()          const                   { return result_opr(); }
1569   LIR_Opr tmp1()         const                   { return _tmp1;        }
1570   LIR_Opr tmp2()         const                   { return _tmp2;        }
1571   LIR_Opr tmp3()         const                   { return _tmp3;        }
1572   LIR_Opr tmp4()         const                   { return _tmp4;        }
1573   int     header_size()  const                   { return _hdr_size;    }
1574   int     object_size()  const                   { return _obj_size;    }
1575   bool    init_check()   const                   { return _init_check;  }
1576   CodeStub* stub()       const                   { return _stub;        }
1577 
1578   virtual void emit_code(LIR_Assembler* masm);
1579   virtual LIR_OpAllocObj * as_OpAllocObj () { return this; }
1580   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1581 };
1582 
1583 
1584 // LIR_OpRoundFP
1585 class LIR_OpRoundFP : public LIR_Op1 {
1586  friend class LIR_OpVisitState;
1587 
1588  private:
1589   LIR_Opr _tmp;
1590 
1591  public:
1592   LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result)
1593     : LIR_Op1(lir_roundfp, reg, result)
1594     , _tmp(stack_loc_temp) {}
1595 
1596   LIR_Opr tmp() const                            { return _tmp; }
1597   virtual LIR_OpRoundFP* as_OpRoundFP()          { return this; }
1598   void print_instr(outputStream* out) const PRODUCT_RETURN;
1599 };
1600 
1601 // LIR_OpTypeCheck
1602 class LIR_OpTypeCheck: public LIR_Op {
1603  friend class LIR_OpVisitState;
1604 
1605  private:
1606   LIR_Opr       _object;
1607   LIR_Opr       _array;
1608   ciKlass*      _klass;
1609   LIR_Opr       _tmp1;
1610   LIR_Opr       _tmp2;
1611   LIR_Opr       _tmp3;
1612   bool          _fast_check;
1613   CodeEmitInfo* _info_for_patch;
1614   CodeEmitInfo* _info_for_exception;
1615   CodeStub*     _stub;
1616   ciMethod*     _profiled_method;
1617   int           _profiled_bci;
1618   bool          _should_profile;
1619 
1620 public:
1621   LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
1622                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1623                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub);
1624   LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array,
1625                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
1626 
1627   LIR_Opr object() const                         { return _object;         }
1628   LIR_Opr array() const                          { assert(code() == lir_store_check, "not valid"); return _array;         }
1629   LIR_Opr tmp1() const                           { return _tmp1;           }
1630   LIR_Opr tmp2() const                           { return _tmp2;           }
1631   LIR_Opr tmp3() const                           { return _tmp3;           }
1632   ciKlass* klass() const                         { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass;          }
1633   bool fast_check() const                        { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check;     }
1634   CodeEmitInfo* info_for_patch() const           { return _info_for_patch;  }
1635   CodeEmitInfo* info_for_exception() const       { return _info_for_exception; }
1636   CodeStub* stub() const                         { return _stub;           }
1637 
1638   // MethodData* profiling
1639   void set_profiled_method(ciMethod *method)     { _profiled_method = method; }
1640   void set_profiled_bci(int bci)                 { _profiled_bci = bci;       }
1641   void set_should_profile(bool b)                { _should_profile = b;       }
1642   ciMethod* profiled_method() const              { return _profiled_method;   }
1643   int       profiled_bci() const                 { return _profiled_bci;      }
1644   bool      should_profile() const               { return _should_profile;    }
1645 
1646   virtual bool is_patching() { return _info_for_patch != NULL; }
1647   virtual void emit_code(LIR_Assembler* masm);
1648   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; }
1649   void print_instr(outputStream* out) const PRODUCT_RETURN;
1650 };
1651 
1652 // LIR_Op2
1653 class LIR_Op2: public LIR_Op {
1654  friend class LIR_OpVisitState;
1655 
1656   int  _fpu_stack_size; // for sin/cos implementation on Intel
1657 
1658  protected:
1659   LIR_Opr   _opr1;
1660   LIR_Opr   _opr2;
1661   BasicType _type;
1662   LIR_Opr   _tmp1;
1663   LIR_Opr   _tmp2;
1664   LIR_Opr   _tmp3;
1665   LIR_Opr   _tmp4;
1666   LIR_Opr   _tmp5;
1667   LIR_Condition _condition;
1668 
1669   void verify() const;
1670 
1671  public:
1672   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL)
1673     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1674     , _opr1(opr1)
1675     , _opr2(opr2)
1676     , _type(T_ILLEGAL)
1677     , _condition(condition)
1678     , _fpu_stack_size(0)
1679     , _tmp1(LIR_OprFact::illegalOpr)
1680     , _tmp2(LIR_OprFact::illegalOpr)
1681     , _tmp3(LIR_OprFact::illegalOpr)
1682     , _tmp4(LIR_OprFact::illegalOpr)
1683     , _tmp5(LIR_OprFact::illegalOpr) {
1684     assert(code == lir_cmp || code == lir_assert, "code check");
1685   }
1686 
1687   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type)
1688     : LIR_Op(code, result, NULL)
1689     , _opr1(opr1)
1690     , _opr2(opr2)
1691     , _type(type)
1692     , _condition(condition)
1693     , _fpu_stack_size(0)
1694     , _tmp1(LIR_OprFact::illegalOpr)
1695     , _tmp2(LIR_OprFact::illegalOpr)
1696     , _tmp3(LIR_OprFact::illegalOpr)
1697     , _tmp4(LIR_OprFact::illegalOpr)
1698     , _tmp5(LIR_OprFact::illegalOpr) {
1699     assert(code == lir_cmove, "code check");
1700     assert(type != T_ILLEGAL, "cmove should have type");
1701   }
1702 
1703   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr,
1704           CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
1705     : LIR_Op(code, result, info)
1706     , _opr1(opr1)
1707     , _opr2(opr2)
1708     , _type(type)
1709     , _condition(lir_cond_unknown)
1710     , _fpu_stack_size(0)
1711     , _tmp1(LIR_OprFact::illegalOpr)
1712     , _tmp2(LIR_OprFact::illegalOpr)
1713     , _tmp3(LIR_OprFact::illegalOpr)
1714     , _tmp4(LIR_OprFact::illegalOpr)
1715     , _tmp5(LIR_OprFact::illegalOpr) {
1716     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1717   }
1718 
1719   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr,
1720           LIR_Opr tmp3 = LIR_OprFact::illegalOpr, LIR_Opr tmp4 = LIR_OprFact::illegalOpr, LIR_Opr tmp5 = LIR_OprFact::illegalOpr)
1721     : LIR_Op(code, result, NULL)
1722     , _opr1(opr1)
1723     , _opr2(opr2)
1724     , _type(T_ILLEGAL)
1725     , _condition(lir_cond_unknown)
1726     , _fpu_stack_size(0)
1727     , _tmp1(tmp1)
1728     , _tmp2(tmp2)
1729     , _tmp3(tmp3)
1730     , _tmp4(tmp4)
1731     , _tmp5(tmp5) {
1732     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1733   }
1734 
1735   LIR_Opr in_opr1() const                        { return _opr1; }
1736   LIR_Opr in_opr2() const                        { return _opr2; }
1737   BasicType type()  const                        { return _type; }
1738   LIR_Opr tmp1_opr() const                       { return _tmp1; }
1739   LIR_Opr tmp2_opr() const                       { return _tmp2; }
1740   LIR_Opr tmp3_opr() const                       { return _tmp3; }
1741   LIR_Opr tmp4_opr() const                       { return _tmp4; }
1742   LIR_Opr tmp5_opr() const                       { return _tmp5; }
1743   LIR_Condition condition() const  {
1744     assert(code() == lir_cmp || code() == lir_cmove || code() == lir_assert, "only valid for cmp and cmove and assert"); return _condition;
1745   }
1746   void set_condition(LIR_Condition condition) {
1747     assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove");  _condition = condition;
1748   }
1749 
1750   void set_fpu_stack_size(int size)              { _fpu_stack_size = size; }
1751   int  fpu_stack_size() const                    { return _fpu_stack_size; }
1752 
1753   void set_in_opr1(LIR_Opr opr)                  { _opr1 = opr; }
1754   void set_in_opr2(LIR_Opr opr)                  { _opr2 = opr; }
1755 
1756   virtual void emit_code(LIR_Assembler* masm);
1757   virtual LIR_Op2* as_Op2() { return this; }
1758   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1759 };
1760 
1761 class LIR_OpAllocArray : public LIR_Op {
1762  friend class LIR_OpVisitState;
1763 
1764  private:
1765   LIR_Opr   _klass;
1766   LIR_Opr   _len;
1767   LIR_Opr   _tmp1;
1768   LIR_Opr   _tmp2;
1769   LIR_Opr   _tmp3;
1770   LIR_Opr   _tmp4;
1771   BasicType _type;
1772   CodeStub* _stub;
1773 
1774  public:
1775   LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub)
1776     : LIR_Op(lir_alloc_array, result, NULL)
1777     , _klass(klass)
1778     , _len(len)
1779     , _tmp1(t1)
1780     , _tmp2(t2)
1781     , _tmp3(t3)
1782     , _tmp4(t4)
1783     , _type(type)
1784     , _stub(stub) {}
1785 
1786   LIR_Opr   klass()   const                      { return _klass;       }
1787   LIR_Opr   len()     const                      { return _len;         }
1788   LIR_Opr   obj()     const                      { return result_opr(); }
1789   LIR_Opr   tmp1()    const                      { return _tmp1;        }
1790   LIR_Opr   tmp2()    const                      { return _tmp2;        }
1791   LIR_Opr   tmp3()    const                      { return _tmp3;        }
1792   LIR_Opr   tmp4()    const                      { return _tmp4;        }
1793   BasicType type()    const                      { return _type;        }
1794   CodeStub* stub()    const                      { return _stub;        }
1795 
1796   virtual void emit_code(LIR_Assembler* masm);
1797   virtual LIR_OpAllocArray * as_OpAllocArray () { return this; }
1798   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1799 };
1800 
1801 
1802 class LIR_Op3: public LIR_Op {
1803  friend class LIR_OpVisitState;
1804 
1805  private:
1806   LIR_Opr _opr1;
1807   LIR_Opr _opr2;
1808   LIR_Opr _opr3;
1809  public:
1810   LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL)
1811     : LIR_Op(code, result, info)
1812     , _opr1(opr1)
1813     , _opr2(opr2)
1814     , _opr3(opr3)                                { assert(is_in_range(code, begin_op3, end_op3), "code check"); }
1815   LIR_Opr in_opr1() const                        { return _opr1; }
1816   LIR_Opr in_opr2() const                        { return _opr2; }
1817   LIR_Opr in_opr3() const                        { return _opr3; }
1818 
1819   virtual void emit_code(LIR_Assembler* masm);
1820   virtual LIR_Op3* as_Op3() { return this; }
1821   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1822 };
1823 
1824 
1825 //--------------------------------
1826 class LabelObj: public CompilationResourceObj {
1827  private:
1828   Label _label;
1829  public:
1830   LabelObj()                                     {}
1831   Label* label()                                 { return &_label; }
1832 };
1833 
1834 
1835 class LIR_OpLock: public LIR_Op {
1836  friend class LIR_OpVisitState;
1837 
1838  private:
1839   LIR_Opr _hdr;
1840   LIR_Opr _obj;
1841   LIR_Opr _lock;
1842   LIR_Opr _scratch;
1843   CodeStub* _stub;
1844  public:
1845   LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info)
1846     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1847     , _hdr(hdr)
1848     , _obj(obj)
1849     , _lock(lock)
1850     , _scratch(scratch)
1851     , _stub(stub)                      {}
1852 
1853   LIR_Opr hdr_opr() const                        { return _hdr; }
1854   LIR_Opr obj_opr() const                        { return _obj; }
1855   LIR_Opr lock_opr() const                       { return _lock; }
1856   LIR_Opr scratch_opr() const                    { return _scratch; }
1857   CodeStub* stub() const                         { return _stub; }
1858 
1859   virtual void emit_code(LIR_Assembler* masm);
1860   virtual LIR_OpLock* as_OpLock() { return this; }
1861   void print_instr(outputStream* out) const PRODUCT_RETURN;
1862 };
1863 
1864 
1865 class LIR_OpDelay: public LIR_Op {
1866  friend class LIR_OpVisitState;
1867 
1868  private:
1869   LIR_Op* _op;
1870 
1871  public:
1872   LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info):
1873     LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info),
1874     _op(op) {
1875     assert(op->code() == lir_nop || LIRFillDelaySlots, "should be filling with nops");
1876   }
1877   virtual void emit_code(LIR_Assembler* masm);
1878   virtual LIR_OpDelay* as_OpDelay() { return this; }
1879   void print_instr(outputStream* out) const PRODUCT_RETURN;
1880   LIR_Op* delay_op() const { return _op; }
1881   CodeEmitInfo* call_info() const { return info(); }
1882 };
1883 
1884 #ifdef ASSERT
1885 // LIR_OpAssert
1886 class LIR_OpAssert : public LIR_Op2 {
1887  friend class LIR_OpVisitState;
1888 
1889  private:
1890   const char* _msg;
1891   bool        _halt;
1892 
1893  public:
1894   LIR_OpAssert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt)
1895     : LIR_Op2(lir_assert, condition, opr1, opr2)
1896     , _halt(halt)
1897     , _msg(msg) {
1898   }
1899 
1900   const char* msg() const                        { return _msg; }
1901   bool        halt() const                       { return _halt; }
1902 
1903   virtual void emit_code(LIR_Assembler* masm);
1904   virtual LIR_OpAssert* as_OpAssert()            { return this; }
1905   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1906 };
1907 #endif
1908 
1909 // LIR_OpCompareAndSwap
1910 class LIR_OpCompareAndSwap : public LIR_Op {
1911  friend class LIR_OpVisitState;
1912 
1913  private:
1914   LIR_Opr _addr;
1915   LIR_Opr _cmp_value;
1916   LIR_Opr _new_value;
1917   LIR_Opr _tmp1;
1918   LIR_Opr _tmp2;
1919 
1920  public:
1921   LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1922                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result)
1923     : LIR_Op(code, result, NULL)  // no result, no info
1924     , _addr(addr)
1925     , _cmp_value(cmp_value)
1926     , _new_value(new_value)
1927     , _tmp1(t1)
1928     , _tmp2(t2)                                  { }
1929 
1930   LIR_Opr addr()        const                    { return _addr;  }
1931   LIR_Opr cmp_value()   const                    { return _cmp_value; }
1932   LIR_Opr new_value()   const                    { return _new_value; }
1933   LIR_Opr tmp1()        const                    { return _tmp1;      }
1934   LIR_Opr tmp2()        const                    { return _tmp2;      }
1935 
1936   virtual void emit_code(LIR_Assembler* masm);
1937   virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; }
1938   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1939 };
1940 
1941 // LIR_OpProfileCall
1942 class LIR_OpProfileCall : public LIR_Op {
1943  friend class LIR_OpVisitState;
1944 
1945  private:
1946   ciMethod* _profiled_method;
1947   int       _profiled_bci;
1948   ciMethod* _profiled_callee;
1949   LIR_Opr   _mdo;
1950   LIR_Opr   _recv;
1951   LIR_Opr   _tmp1;
1952   ciKlass*  _known_holder;
1953 
1954  public:
1955   // Destroys recv
1956   LIR_OpProfileCall(ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
1957     : LIR_Op(lir_profile_call, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1958     , _profiled_method(profiled_method)
1959     , _profiled_bci(profiled_bci)
1960     , _profiled_callee(profiled_callee)
1961     , _mdo(mdo)
1962     , _recv(recv)
1963     , _tmp1(t1)
1964     , _known_holder(known_holder)                { }
1965 
1966   ciMethod* profiled_method() const              { return _profiled_method;  }
1967   int       profiled_bci()    const              { return _profiled_bci;     }
1968   ciMethod* profiled_callee() const              { return _profiled_callee;  }
1969   LIR_Opr   mdo()             const              { return _mdo;              }
1970   LIR_Opr   recv()            const              { return _recv;             }
1971   LIR_Opr   tmp1()            const              { return _tmp1;             }
1972   ciKlass*  known_holder()    const              { return _known_holder;     }
1973 
1974   virtual void emit_code(LIR_Assembler* masm);
1975   virtual LIR_OpProfileCall* as_OpProfileCall() { return this; }
1976   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1977 };
1978 
1979 // LIR_OpProfileType
1980 class LIR_OpProfileType : public LIR_Op {
1981  friend class LIR_OpVisitState;
1982 
1983  private:
1984   LIR_Opr      _mdp;
1985   LIR_Opr      _obj;
1986   LIR_Opr      _tmp;
1987   ciKlass*     _exact_klass;   // non NULL if we know the klass statically (no need to load it from _obj)
1988   intptr_t     _current_klass; // what the profiling currently reports
1989   bool         _not_null;      // true if we know statically that _obj cannot be null
1990   bool         _no_conflict;   // true if we're profling parameters, _exact_klass is not NULL and we know
1991                                // _exact_klass it the only possible type for this parameter in any context.
1992 
1993  public:
1994   // Destroys recv
1995   LIR_OpProfileType(LIR_Opr mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict)
1996     : LIR_Op(lir_profile_type, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1997     , _mdp(mdp)
1998     , _obj(obj)
1999     , _exact_klass(exact_klass)
2000     , _current_klass(current_klass)
2001     , _tmp(tmp)
2002     , _not_null(not_null)
2003     , _no_conflict(no_conflict) { }
2004 
2005   LIR_Opr      mdp()              const             { return _mdp;              }
2006   LIR_Opr      obj()              const             { return _obj;              }
2007   LIR_Opr      tmp()              const             { return _tmp;              }
2008   ciKlass*     exact_klass()      const             { return _exact_klass;      }
2009   intptr_t     current_klass()    const             { return _current_klass;    }
2010   bool         not_null()         const             { return _not_null;         }
2011   bool         no_conflict()      const             { return _no_conflict;      }
2012 
2013   virtual void emit_code(LIR_Assembler* masm);
2014   virtual LIR_OpProfileType* as_OpProfileType() { return this; }
2015   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
2016 };
2017 
2018 class LIR_InsertionBuffer;
2019 
2020 //--------------------------------LIR_List---------------------------------------------------
2021 // Maintains a list of LIR instructions (one instance of LIR_List per basic block)
2022 // The LIR instructions are appended by the LIR_List class itself;
2023 //
2024 // Notes:
2025 // - all offsets are(should be) in bytes
2026 // - local positions are specified with an offset, with offset 0 being local 0
2027 
2028 class LIR_List: public CompilationResourceObj {
2029  private:
2030   LIR_OpList  _operations;
2031 
2032   Compilation*  _compilation;
2033 #ifndef PRODUCT
2034   BlockBegin*   _block;
2035 #endif
2036 #ifdef ASSERT
2037   const char *  _file;
2038   int           _line;
2039 #endif
2040 
2041   void append(LIR_Op* op) {
2042     if (op->source() == NULL)
2043       op->set_source(_compilation->current_instruction());
2044 #ifndef PRODUCT
2045     if (PrintIRWithLIR) {
2046       _compilation->maybe_print_current_instruction();
2047       op->print(); tty->cr();
2048     }
2049 #endif // PRODUCT
2050 
2051     _operations.append(op);
2052 
2053 #ifdef ASSERT
2054     op->verify();
2055     op->set_file_and_line(_file, _line);
2056     _file = NULL;
2057     _line = 0;
2058 #endif
2059   }
2060 
2061  public:
2062   LIR_List(Compilation* compilation, BlockBegin* block = NULL);
2063 
2064 #ifdef ASSERT
2065   void set_file_and_line(const char * file, int line);
2066 #endif
2067 
2068   //---------- accessors ---------------
2069   LIR_OpList* instructions_list()                { return &_operations; }
2070   int         length() const                     { return _operations.length(); }
2071   LIR_Op*     at(int i) const                    { return _operations.at(i); }
2072 
2073   NOT_PRODUCT(BlockBegin* block() const          { return _block; });
2074 
2075   // insert LIR_Ops in buffer to right places in LIR_List
2076   void append(LIR_InsertionBuffer* buffer);
2077 
2078   //---------- mutators ---------------
2079   void insert_before(int i, LIR_List* op_list)   { _operations.insert_before(i, op_list->instructions_list()); }
2080   void insert_before(int i, LIR_Op* op)          { _operations.insert_before(i, op); }
2081   void remove_at(int i)                          { _operations.remove_at(i); }
2082 
2083   //---------- printing -------------
2084   void print_instructions() PRODUCT_RETURN;
2085 
2086 
2087   //---------- instructions -------------
2088   void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2089                         address dest, LIR_OprList* arguments,
2090                         CodeEmitInfo* info) {
2091     append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info));
2092   }
2093   void call_static(ciMethod* method, LIR_Opr result,
2094                    address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2095     append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info));
2096   }
2097   void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2098                       address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2099     append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info));
2100   }
2101   void call_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2102                     intptr_t vtable_offset, LIR_OprList* arguments, CodeEmitInfo* info) {
2103     append(new LIR_OpJavaCall(lir_virtual_call, method, receiver, result, vtable_offset, arguments, info));
2104   }
2105   void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2106                     address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2107     append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info));
2108   }
2109 
2110   void get_thread(LIR_Opr result)                { append(new LIR_Op0(lir_get_thread, result)); }
2111   void word_align()                              { append(new LIR_Op0(lir_word_align)); }
2112   void membar()                                  { append(new LIR_Op0(lir_membar)); }
2113   void membar_acquire()                          { append(new LIR_Op0(lir_membar_acquire)); }
2114   void membar_release()                          { append(new LIR_Op0(lir_membar_release)); }
2115   void membar_loadload()                         { append(new LIR_Op0(lir_membar_loadload)); }
2116   void membar_storestore()                       { append(new LIR_Op0(lir_membar_storestore)); }
2117   void membar_loadstore()                        { append(new LIR_Op0(lir_membar_loadstore)); }
2118   void membar_storeload()                        { append(new LIR_Op0(lir_membar_storeload)); }
2119 
2120   void nop()                                     { append(new LIR_Op0(lir_nop)); }
2121   void build_frame()                             { append(new LIR_Op0(lir_build_frame)); }
2122 
2123   void std_entry(LIR_Opr receiver)               { append(new LIR_Op0(lir_std_entry, receiver)); }
2124   void osr_entry(LIR_Opr osrPointer)             { append(new LIR_Op0(lir_osr_entry, osrPointer)); }
2125 
2126   void branch_destination(Label* lbl)            { append(new LIR_OpLabel(lbl)); }
2127 
2128   void negate(LIR_Opr from, LIR_Opr to)          { append(new LIR_Op1(lir_neg, from, to)); }
2129   void leal(LIR_Opr from, LIR_Opr result_reg)    { append(new LIR_Op1(lir_leal, from, result_reg)); }
2130 
2131   // result is a stack location for old backend and vreg for UseLinearScan
2132   // stack_loc_temp is an illegal register for old backend
2133   void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); }
2134   void unaligned_move(LIR_Address* src, LIR_Opr dst) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2135   void unaligned_move(LIR_Opr src, LIR_Address* dst) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), src->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2136   void unaligned_move(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2137   void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2138   void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); }
2139   void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); }
2140   void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) {
2141     if (UseCompressedOops) {
2142       append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide));
2143     } else {
2144       move(src, dst, info);
2145     }
2146   }
2147   void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) {
2148     if (UseCompressedOops) {
2149       append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide));
2150     } else {
2151       move(src, dst, info);
2152     }
2153   }
2154   void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); }
2155 
2156   void oop2reg  (jobject o, LIR_Opr reg)         { assert(reg->type() == T_OBJECT, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),    reg));   }
2157   void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info);
2158 
2159   void metadata2reg  (Metadata* o, LIR_Opr reg)  { assert(reg->type() == T_METADATA, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg));   }
2160   void klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info);
2161 
2162   void return_op(LIR_Opr result)                 { append(new LIR_Op1(lir_return, result)); }
2163 
2164   void safepoint(LIR_Opr tmp, CodeEmitInfo* info)  { append(new LIR_Op1(lir_safepoint, tmp, info)); }
2165 
2166 #ifdef PPC
2167   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_OpConvert(code, left, dst, NULL, tmp1, tmp2)); }
2168 #endif
2169   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); }
2170 
2171   void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and,  left, right, dst)); }
2172   void logical_or  (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or,   left, right, dst)); }
2173   void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor,  left, right, dst)); }
2174 
2175   void   pack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_pack64,   src, dst, T_LONG, lir_patch_none, NULL)); }
2176   void unpack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_unpack64, src, dst, T_LONG, lir_patch_none, NULL)); }
2177 
2178   void null_check(LIR_Opr opr, CodeEmitInfo* info, bool deoptimize_on_null = false);
2179   void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2180     append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info));
2181   }
2182   void unwind_exception(LIR_Opr exceptionOop) {
2183     append(new LIR_Op1(lir_unwind, exceptionOop));
2184   }
2185 
2186   void compare_to (LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2187     append(new LIR_Op2(lir_compare_to,  left, right, dst));
2188   }
2189 
2190   void push(LIR_Opr opr)                                   { append(new LIR_Op1(lir_push, opr)); }
2191   void pop(LIR_Opr reg)                                    { append(new LIR_Op1(lir_pop,  reg)); }
2192 
2193   void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) {
2194     append(new LIR_Op2(lir_cmp, condition, left, right, info));
2195   }
2196   void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) {
2197     cmp(condition, left, LIR_OprFact::intConst(right), info);
2198   }
2199 
2200   void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
2201   void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
2202 
2203   void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type) {
2204     append(new LIR_Op2(lir_cmove, condition, src1, src2, dst, type));
2205   }
2206 
2207   void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2208                 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2209   void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2210                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2211   void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2212                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2213 
2214   void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_abs , from, tmp, to)); }
2215   void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_sqrt, from, tmp, to)); }
2216   void log (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_log,  from, LIR_OprFact::illegalOpr, to, tmp)); }
2217   void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)              { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); }
2218   void sin (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_sin , from, tmp1, to, tmp2)); }
2219   void cos (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_cos , from, tmp1, to, tmp2)); }
2220   void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); }
2221   void exp (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, LIR_Opr tmp4, LIR_Opr tmp5)                { append(new LIR_Op2(lir_exp , from, tmp1, to, tmp2, tmp3, tmp4, tmp5)); }
2222   void pow (LIR_Opr arg1, LIR_Opr arg2, LIR_Opr res, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, LIR_Opr tmp4, LIR_Opr tmp5) { append(new LIR_Op2(lir_pow, arg1, arg2, res, tmp1, tmp2, tmp3, tmp4, tmp5)); }
2223 
2224   void add (LIR_Opr left, LIR_Opr right, LIR_Opr res)      { append(new LIR_Op2(lir_add, left, right, res)); }
2225   void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); }
2226   void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); }
2227   void mul_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul_strictfp, left, right, res, tmp)); }
2228   void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_div, left, right, res, info)); }
2229   void div_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div_strictfp, left, right, res, tmp)); }
2230   void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_rem, left, right, res, info)); }
2231 
2232   void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2233   void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2234 
2235   void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2236 
2237   void prefetch(LIR_Address* addr, bool is_store);
2238 
2239   void store_mem_int(jint v,    LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2240   void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2241   void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2242   void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2243   void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2244 
2245   void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2246   void idiv(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2247   void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2248   void irem(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2249 
2250   void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub);
2251   void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub);
2252 
2253   // jump is an unconditional branch
2254   void jump(BlockBegin* block) {
2255     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, block));
2256   }
2257   void jump(CodeStub* stub) {
2258     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, stub));
2259   }
2260   void branch(LIR_Condition cond, BasicType type, Label* lbl)        { append(new LIR_OpBranch(cond, type, lbl)); }
2261   void branch(LIR_Condition cond, BasicType type, BlockBegin* block) {
2262     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
2263     append(new LIR_OpBranch(cond, type, block));
2264   }
2265   void branch(LIR_Condition cond, BasicType type, CodeStub* stub)    {
2266     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
2267     append(new LIR_OpBranch(cond, type, stub));
2268   }
2269   void branch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* unordered) {
2270     assert(type == T_FLOAT || type == T_DOUBLE, "fp comparisons only");
2271     append(new LIR_OpBranch(cond, type, block, unordered));
2272   }
2273 
2274   void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2275   void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2276   void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2277 
2278   void shift_left(LIR_Opr value, int count, LIR_Opr dst)       { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2279   void shift_right(LIR_Opr value, int count, LIR_Opr dst)      { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2280   void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2281 
2282   void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst)        { append(new LIR_Op2(lir_cmp_l2i,  left, right, dst)); }
2283   void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less);
2284 
2285   void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) {
2286     append(new LIR_OpRTCall(routine, tmp, result, arguments));
2287   }
2288 
2289   void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result,
2290                     LIR_OprList* arguments, CodeEmitInfo* info) {
2291     append(new LIR_OpRTCall(routine, tmp, result, arguments, info));
2292   }
2293 
2294   void load_stack_address_monitor(int monitor_ix, LIR_Opr dst)  { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); }
2295   void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub);
2296   void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info);
2297 
2298   void set_24bit_fpu()                                               { append(new LIR_Op0(lir_24bit_FPU )); }
2299   void restore_fpu()                                                 { append(new LIR_Op0(lir_reset_FPU )); }
2300   void breakpoint()                                                  { append(new LIR_Op0(lir_breakpoint)); }
2301 
2302   void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); }
2303 
2304   void update_crc32(LIR_Opr crc, LIR_Opr val, LIR_Opr res)  { append(new LIR_OpUpdateCRC32(crc, val, res)); }
2305 
2306   void fpop_raw()                                { append(new LIR_Op0(lir_fpop_raw)); }
2307 
2308   void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci);
2309   void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci);
2310 
2311   void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
2312                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
2313                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
2314                   ciMethod* profiled_method, int profiled_bci);
2315   // MethodData* profiling
2316   void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) {
2317     append(new LIR_OpProfileCall(method, bci, callee, mdo, recv, t1, cha_klass));
2318   }
2319   void profile_type(LIR_Address* mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) {
2320     append(new LIR_OpProfileType(LIR_OprFact::address(mdp), obj, exact_klass, current_klass, tmp, not_null, no_conflict));
2321   }
2322 
2323   void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); }
2324   void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); }
2325 #ifdef ASSERT
2326   void lir_assert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) { append(new LIR_OpAssert(condition, opr1, opr2, msg, halt)); }
2327 #endif
2328 };
2329 
2330 void print_LIR(BlockList* blocks);
2331 
2332 class LIR_InsertionBuffer : public CompilationResourceObj {
2333  private:
2334   LIR_List*   _lir;   // the lir list where ops of this buffer should be inserted later (NULL when uninitialized)
2335 
2336   // list of insertion points. index and count are stored alternately:
2337   // _index_and_count[i * 2]:     the index into lir list where "count" ops should be inserted
2338   // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index
2339   intStack    _index_and_count;
2340 
2341   // the LIR_Ops to be inserted
2342   LIR_OpList  _ops;
2343 
2344   void append_new(int index, int count)  { _index_and_count.append(index); _index_and_count.append(count); }
2345   void set_index_at(int i, int value)    { _index_and_count.at_put((i << 1),     value); }
2346   void set_count_at(int i, int value)    { _index_and_count.at_put((i << 1) + 1, value); }
2347 
2348 #ifdef ASSERT
2349   void verify();
2350 #endif
2351  public:
2352   LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { }
2353 
2354   // must be called before using the insertion buffer
2355   void init(LIR_List* lir)  { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); }
2356   bool initialized() const  { return _lir != NULL; }
2357   // called automatically when the buffer is appended to the LIR_List
2358   void finish()             { _lir = NULL; }
2359 
2360   // accessors
2361   LIR_List*  lir_list() const             { return _lir; }
2362   int number_of_insertion_points() const  { return _index_and_count.length() >> 1; }
2363   int index_at(int i) const               { return _index_and_count.at((i << 1));     }
2364   int count_at(int i) const               { return _index_and_count.at((i << 1) + 1); }
2365 
2366   int number_of_ops() const               { return _ops.length(); }
2367   LIR_Op* op_at(int i) const              { return _ops.at(i); }
2368 
2369   // append an instruction to the buffer
2370   void append(int index, LIR_Op* op);
2371 
2372   // instruction
2373   void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2374 };
2375 
2376 
2377 //
2378 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way.
2379 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes
2380 // information about the input, output and temporaries used by the
2381 // op to be recorded.  It also records whether the op has call semantics
2382 // and also records all the CodeEmitInfos used by this op.
2383 //
2384 
2385 
2386 class LIR_OpVisitState: public StackObj {
2387  public:
2388   typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode;
2389 
2390   enum {
2391     maxNumberOfOperands = 20,
2392     maxNumberOfInfos = 4
2393   };
2394 
2395  private:
2396   LIR_Op*          _op;
2397 
2398   // optimization: the operands and infos are not stored in a variable-length
2399   //               list, but in a fixed-size array to save time of size checks and resizing
2400   int              _oprs_len[numModes];
2401   LIR_Opr*         _oprs_new[numModes][maxNumberOfOperands];
2402   int _info_len;
2403   CodeEmitInfo*    _info_new[maxNumberOfInfos];
2404 
2405   bool             _has_call;
2406   bool             _has_slow_case;
2407 
2408 
2409   // only include register operands
2410   // addresses are decomposed to the base and index registers
2411   // constants and stack operands are ignored
2412   void append(LIR_Opr& opr, OprMode mode) {
2413     assert(opr->is_valid(), "should not call this otherwise");
2414     assert(mode >= 0 && mode < numModes, "bad mode");
2415 
2416     if (opr->is_register()) {
2417        assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2418       _oprs_new[mode][_oprs_len[mode]++] = &opr;
2419 
2420     } else if (opr->is_pointer()) {
2421       LIR_Address* address = opr->as_address_ptr();
2422       if (address != NULL) {
2423         // special handling for addresses: add base and index register of the address
2424         // both are always input operands or temp if we want to extend
2425         // their liveness!
2426         if (mode == outputMode) {
2427           mode = inputMode;
2428         }
2429         assert (mode == inputMode || mode == tempMode, "input or temp only for addresses");
2430         if (address->_base->is_valid()) {
2431           assert(address->_base->is_register(), "must be");
2432           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2433           _oprs_new[mode][_oprs_len[mode]++] = &address->_base;
2434         }
2435         if (address->_index->is_valid()) {
2436           assert(address->_index->is_register(), "must be");
2437           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2438           _oprs_new[mode][_oprs_len[mode]++] = &address->_index;
2439         }
2440 
2441       } else {
2442         assert(opr->is_constant(), "constant operands are not processed");
2443       }
2444     } else {
2445       assert(opr->is_stack(), "stack operands are not processed");
2446     }
2447   }
2448 
2449   void append(CodeEmitInfo* info) {
2450     assert(info != NULL, "should not call this otherwise");
2451     assert(_info_len < maxNumberOfInfos, "array overflow");
2452     _info_new[_info_len++] = info;
2453   }
2454 
2455  public:
2456   LIR_OpVisitState()         { reset(); }
2457 
2458   LIR_Op* op() const         { return _op; }
2459   void set_op(LIR_Op* op)    { reset(); _op = op; }
2460 
2461   bool has_call() const      { return _has_call; }
2462   bool has_slow_case() const { return _has_slow_case; }
2463 
2464   void reset() {
2465     _op = NULL;
2466     _has_call = false;
2467     _has_slow_case = false;
2468 
2469     _oprs_len[inputMode] = 0;
2470     _oprs_len[tempMode] = 0;
2471     _oprs_len[outputMode] = 0;
2472     _info_len = 0;
2473   }
2474 
2475 
2476   int opr_count(OprMode mode) const {
2477     assert(mode >= 0 && mode < numModes, "bad mode");
2478     return _oprs_len[mode];
2479   }
2480 
2481   LIR_Opr opr_at(OprMode mode, int index) const {
2482     assert(mode >= 0 && mode < numModes, "bad mode");
2483     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2484     return *_oprs_new[mode][index];
2485   }
2486 
2487   void set_opr_at(OprMode mode, int index, LIR_Opr opr) const {
2488     assert(mode >= 0 && mode < numModes, "bad mode");
2489     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2490     *_oprs_new[mode][index] = opr;
2491   }
2492 
2493   int info_count() const {
2494     return _info_len;
2495   }
2496 
2497   CodeEmitInfo* info_at(int index) const {
2498     assert(index < _info_len, "index out of bounds");
2499     return _info_new[index];
2500   }
2501 
2502   XHandlers* all_xhandler();
2503 
2504   // collects all register operands of the instruction
2505   void visit(LIR_Op* op);
2506 
2507 #ifdef ASSERT
2508   // check that an operation has no operands
2509   bool no_operands(LIR_Op* op);
2510 #endif
2511 
2512   // LIR_Op visitor functions use these to fill in the state
2513   void do_input(LIR_Opr& opr)             { append(opr, LIR_OpVisitState::inputMode); }
2514   void do_output(LIR_Opr& opr)            { append(opr, LIR_OpVisitState::outputMode); }
2515   void do_temp(LIR_Opr& opr)              { append(opr, LIR_OpVisitState::tempMode); }
2516   void do_info(CodeEmitInfo* info)        { append(info); }
2517 
2518   void do_stub(CodeStub* stub);
2519   void do_call()                          { _has_call = true; }
2520   void do_slow_case()                     { _has_slow_case = true; }
2521   void do_slow_case(CodeEmitInfo* info) {
2522     _has_slow_case = true;
2523     append(info);
2524   }
2525 };
2526 
2527 
2528 inline LIR_Opr LIR_OprDesc::illegalOpr()   { return LIR_OprFact::illegalOpr; };
2529 
2530 #endif // SHARE_VM_C1_C1_LIR_HPP