1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #ifndef __STDC_FORMAT_MACROS
  29 #define __STDC_FORMAT_MACROS
  30 #endif
  31 
  32 #ifdef TARGET_COMPILER_gcc
  33 # include "utilities/globalDefinitions_gcc.hpp"
  34 #endif
  35 #ifdef TARGET_COMPILER_visCPP
  36 # include "utilities/globalDefinitions_visCPP.hpp"
  37 #endif
  38 #ifdef TARGET_COMPILER_sparcWorks
  39 # include "utilities/globalDefinitions_sparcWorks.hpp"
  40 #endif
  41 #ifdef TARGET_COMPILER_xlc
  42 # include "utilities/globalDefinitions_xlc.hpp"
  43 #endif
  44 
  45 #ifndef PRAGMA_DIAG_PUSH
  46 #define PRAGMA_DIAG_PUSH
  47 #endif
  48 #ifndef PRAGMA_DIAG_POP
  49 #define PRAGMA_DIAG_POP
  50 #endif
  51 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED
  52 #define PRAGMA_FORMAT_NONLITERAL_IGNORED
  53 #endif
  54 #ifndef PRAGMA_FORMAT_IGNORED
  55 #define PRAGMA_FORMAT_IGNORED
  56 #endif
  57 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
  58 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
  59 #endif
  60 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
  61 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
  62 #endif
  63 #ifndef PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  64 #define PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  65 #endif
  66 #ifndef ATTRIBUTE_PRINTF
  67 #define ATTRIBUTE_PRINTF(fmt, vargs)
  68 #endif
  69 
  70 
  71 #include "utilities/macros.hpp"
  72 
  73 // This file holds all globally used constants & types, class (forward)
  74 // declarations and a few frequently used utility functions.
  75 
  76 //----------------------------------------------------------------------------------------------------
  77 // Constants
  78 
  79 const int LogBytesPerShort   = 1;
  80 const int LogBytesPerInt     = 2;
  81 #ifdef _LP64
  82 const int LogBytesPerWord    = 3;
  83 #else
  84 const int LogBytesPerWord    = 2;
  85 #endif
  86 const int LogBytesPerLong    = 3;
  87 
  88 const int BytesPerShort      = 1 << LogBytesPerShort;
  89 const int BytesPerInt        = 1 << LogBytesPerInt;
  90 const int BytesPerWord       = 1 << LogBytesPerWord;
  91 const int BytesPerLong       = 1 << LogBytesPerLong;
  92 
  93 const int LogBitsPerByte     = 3;
  94 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
  95 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
  96 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
  97 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
  98 
  99 const int BitsPerByte        = 1 << LogBitsPerByte;
 100 const int BitsPerShort       = 1 << LogBitsPerShort;
 101 const int BitsPerInt         = 1 << LogBitsPerInt;
 102 const int BitsPerWord        = 1 << LogBitsPerWord;
 103 const int BitsPerLong        = 1 << LogBitsPerLong;
 104 
 105 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 106 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 107 
 108 const int WordsPerLong       = 2;       // Number of stack entries for longs
 109 
 110 const int oopSize            = sizeof(char*); // Full-width oop
 111 extern int heapOopSize;                       // Oop within a java object
 112 const int wordSize           = sizeof(char*);
 113 const int longSize           = sizeof(jlong);
 114 const int jintSize           = sizeof(jint);
 115 const int size_tSize         = sizeof(size_t);
 116 
 117 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 118 
 119 extern int LogBytesPerHeapOop;                // Oop within a java object
 120 extern int LogBitsPerHeapOop;
 121 extern int BytesPerHeapOop;
 122 extern int BitsPerHeapOop;
 123 
 124 // Oop encoding heap max
 125 extern uint64_t OopEncodingHeapMax;
 126 
 127 const int BitsPerJavaInteger = 32;
 128 const int BitsPerJavaLong    = 64;
 129 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 130 
 131 // Size of a char[] needed to represent a jint as a string in decimal.
 132 const int jintAsStringSize = 12;
 133 
 134 // In fact this should be
 135 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
 136 // see os::set_memory_serialize_page()
 137 #ifdef _LP64
 138 const int SerializePageShiftCount = 4;
 139 #else
 140 const int SerializePageShiftCount = 3;
 141 #endif
 142 
 143 // An opaque struct of heap-word width, so that HeapWord* can be a generic
 144 // pointer into the heap.  We require that object sizes be measured in
 145 // units of heap words, so that that
 146 //   HeapWord* hw;
 147 //   hw += oop(hw)->foo();
 148 // works, where foo is a method (like size or scavenge) that returns the
 149 // object size.
 150 class HeapWord {
 151   friend class VMStructs;
 152  private:
 153   char* i;
 154 #ifndef PRODUCT
 155  public:
 156   char* value() { return i; }
 157 #endif
 158 };
 159 
 160 // Analogous opaque struct for metadata allocated from
 161 // metaspaces.
 162 class MetaWord {
 163   friend class VMStructs;
 164  private:
 165   char* i;
 166 };
 167 
 168 // HeapWordSize must be 2^LogHeapWordSize.
 169 const int HeapWordSize        = sizeof(HeapWord);
 170 #ifdef _LP64
 171 const int LogHeapWordSize     = 3;
 172 #else
 173 const int LogHeapWordSize     = 2;
 174 #endif
 175 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 176 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 177 
 178 // The larger HeapWordSize for 64bit requires larger heaps
 179 // for the same application running in 64bit.  See bug 4967770.
 180 // The minimum alignment to a heap word size is done.  Other
 181 // parts of the memory system may required additional alignment
 182 // and are responsible for those alignments.
 183 #ifdef _LP64
 184 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
 185 #else
 186 #define ScaleForWordSize(x) (x)
 187 #endif
 188 
 189 // The minimum number of native machine words necessary to contain "byte_size"
 190 // bytes.
 191 inline size_t heap_word_size(size_t byte_size) {
 192   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 193 }
 194 
 195 
 196 const size_t K                  = 1024;
 197 const size_t M                  = K*K;
 198 const size_t G                  = M*K;
 199 const size_t HWperKB            = K / sizeof(HeapWord);
 200 
 201 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 202 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 203 
 204 // Constants for converting from a base unit to milli-base units.  For
 205 // example from seconds to milliseconds and microseconds
 206 
 207 const int MILLIUNITS    = 1000;         // milli units per base unit
 208 const int MICROUNITS    = 1000000;      // micro units per base unit
 209 const int NANOUNITS     = 1000000000;   // nano units per base unit
 210 
 211 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 212 const jint  NANOSECS_PER_MILLISEC = 1000000;
 213 
 214 // Proper units routines try to maintain at least three significant digits.
 215 // In worst case, it would print five significant digits with lower prefix.
 216 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow,
 217 // and therefore we need to be careful.
 218 
 219 inline const char* proper_unit_for_byte_size(size_t s) {
 220 #ifdef _LP64
 221   if (s >= 100*G) {
 222     return "G";
 223   }
 224 #endif
 225   if (s >= 100*M) {
 226     return "M";
 227   } else if (s >= 100*K) {
 228     return "K";
 229   } else {
 230     return "B";
 231   }
 232 }
 233 
 234 template <class T>
 235 inline T byte_size_in_proper_unit(T s) {
 236 #ifdef _LP64
 237   if (s >= 100*G) {
 238     return (T)(s/G);
 239   }
 240 #endif
 241   if (s >= 100*M) {
 242     return (T)(s/M);
 243   } else if (s >= 100*K) {
 244     return (T)(s/K);
 245   } else {
 246     return s;
 247   }
 248 }
 249 
 250 //----------------------------------------------------------------------------------------------------
 251 // VM type definitions
 252 
 253 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 254 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 255 
 256 typedef intptr_t  intx;
 257 typedef uintptr_t uintx;
 258 
 259 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 260 const intx  max_intx  = (uintx)min_intx - 1;
 261 const uintx max_uintx = (uintx)-1;
 262 
 263 // Table of values:
 264 //      sizeof intx         4               8
 265 // min_intx             0x80000000      0x8000000000000000
 266 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 267 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 268 
 269 typedef unsigned int uint;   NEEDS_CLEANUP
 270 
 271 
 272 //----------------------------------------------------------------------------------------------------
 273 // Java type definitions
 274 
 275 // All kinds of 'plain' byte addresses
 276 typedef   signed char s_char;
 277 typedef unsigned char u_char;
 278 typedef u_char*       address;
 279 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 280                                     // except for some implementations of a C++
 281                                     // linkage pointer to function. Should never
 282                                     // need one of those to be placed in this
 283                                     // type anyway.
 284 
 285 //  Utility functions to "portably" (?) bit twiddle pointers
 286 //  Where portable means keep ANSI C++ compilers quiet
 287 
 288 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 289 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 290 
 291 //  Utility functions to "portably" make cast to/from function pointers.
 292 
 293 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 294 inline address_word  castable_address(address x)              { return address_word(x) ; }
 295 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 296 
 297 // Pointer subtraction.
 298 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 299 // the range we might need to find differences from one end of the heap
 300 // to the other.
 301 // A typical use might be:
 302 //     if (pointer_delta(end(), top()) >= size) {
 303 //       // enough room for an object of size
 304 //       ...
 305 // and then additions like
 306 //       ... top() + size ...
 307 // are safe because we know that top() is at least size below end().
 308 inline size_t pointer_delta(const void* left,
 309                             const void* right,
 310                             size_t element_size) {
 311   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 312 }
 313 // A version specialized for HeapWord*'s.
 314 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 315   return pointer_delta(left, right, sizeof(HeapWord));
 316 }
 317 // A version specialized for MetaWord*'s.
 318 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 319   return pointer_delta(left, right, sizeof(MetaWord));
 320 }
 321 
 322 //
 323 // ANSI C++ does not allow casting from one pointer type to a function pointer
 324 // directly without at best a warning. This macro accomplishes it silently
 325 // In every case that is present at this point the value be cast is a pointer
 326 // to a C linkage function. In somecase the type used for the cast reflects
 327 // that linkage and a picky compiler would not complain. In other cases because
 328 // there is no convenient place to place a typedef with extern C linkage (i.e
 329 // a platform dependent header file) it doesn't. At this point no compiler seems
 330 // picky enough to catch these instances (which are few). It is possible that
 331 // using templates could fix these for all cases. This use of templates is likely
 332 // so far from the middle of the road that it is likely to be problematic in
 333 // many C++ compilers.
 334 //
 335 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
 336 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 337 
 338 // Unsigned byte types for os and stream.hpp
 339 
 340 // Unsigned one, two, four and eigth byte quantities used for describing
 341 // the .class file format. See JVM book chapter 4.
 342 
 343 typedef jubyte  u1;
 344 typedef jushort u2;
 345 typedef juint   u4;
 346 typedef julong  u8;
 347 
 348 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 349 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 350 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 351 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 352 
 353 typedef jbyte  s1;
 354 typedef jshort s2;
 355 typedef jint   s4;
 356 typedef jlong  s8;
 357 
 358 //----------------------------------------------------------------------------------------------------
 359 // JVM spec restrictions
 360 
 361 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 362 
 363 // Default ProtectionDomainCacheSize values
 364 
 365 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
 366 
 367 //----------------------------------------------------------------------------------------------------
 368 // Default and minimum StringTableSize values
 369 
 370 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
 371 const int minimumStringTableSize = 1009;
 372 
 373 const int defaultSymbolTableSize = 20011;
 374 const int minimumSymbolTableSize = 1009;
 375 
 376 
 377 //----------------------------------------------------------------------------------------------------
 378 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 379 //
 380 // Determines whether on-the-fly class replacement and frame popping are enabled.
 381 
 382 #define HOTSWAP
 383 
 384 //----------------------------------------------------------------------------------------------------
 385 // Object alignment, in units of HeapWords.
 386 //
 387 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 388 // reference fields can be naturally aligned.
 389 
 390 extern int MinObjAlignment;
 391 extern int MinObjAlignmentInBytes;
 392 extern int MinObjAlignmentInBytesMask;
 393 
 394 extern int LogMinObjAlignment;
 395 extern int LogMinObjAlignmentInBytes;
 396 
 397 const int LogKlassAlignmentInBytes = 3;
 398 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 399 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 400 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 401 
 402 // Klass encoding metaspace max size
 403 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 404 
 405 // Machine dependent stuff
 406 
 407 #if defined(X86) && defined(COMPILER2) && !defined(JAVASE_EMBEDDED)
 408 // Include Restricted Transactional Memory lock eliding optimization
 409 #define INCLUDE_RTM_OPT 1
 410 #define RTM_OPT_ONLY(code) code
 411 #else
 412 #define INCLUDE_RTM_OPT 0
 413 #define RTM_OPT_ONLY(code)
 414 #endif
 415 // States of Restricted Transactional Memory usage.
 416 enum RTMState {
 417   NoRTM      = 0x2, // Don't use RTM
 418   UseRTM     = 0x1, // Use RTM
 419   ProfileRTM = 0x0  // Use RTM with abort ratio calculation
 420 };
 421 
 422 #ifdef TARGET_ARCH_x86
 423 # include "globalDefinitions_x86.hpp"
 424 #endif
 425 #ifdef TARGET_ARCH_sparc
 426 # include "globalDefinitions_sparc.hpp"
 427 #endif
 428 #ifdef TARGET_ARCH_zero
 429 # include "globalDefinitions_zero.hpp"
 430 #endif
 431 #ifdef TARGET_ARCH_arm
 432 # include "globalDefinitions_arm.hpp"
 433 #endif
 434 #ifdef TARGET_ARCH_ppc
 435 # include "globalDefinitions_ppc.hpp"
 436 #endif
 437 #ifdef TARGET_ARCH_aarch32
 438 # include "globalDefinitions_aarch32.hpp"
 439 #endif
 440 
 441 /*
 442  * If a platform does not support native stack walking
 443  * the platform specific globalDefinitions (above)
 444  * can set PLATFORM_NATIVE_STACK_WALKING_SUPPORTED to 0
 445  */
 446 #ifndef PLATFORM_NATIVE_STACK_WALKING_SUPPORTED
 447 #define PLATFORM_NATIVE_STACK_WALKING_SUPPORTED 1
 448 #endif
 449 
 450 // To assure the IRIW property on processors that are not multiple copy
 451 // atomic, sync instructions must be issued between volatile reads to
 452 // assure their ordering, instead of after volatile stores.
 453 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 454 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 455 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
 456 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
 457 #else
 458 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 459 #endif
 460 
 461 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
 462 // Note: this value must be a power of 2
 463 
 464 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
 465 
 466 // Signed variants of alignment helpers.  There are two versions of each, a macro
 467 // for use in places like enum definitions that require compile-time constant
 468 // expressions and a function for all other places so as to get type checking.
 469 
 470 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
 471 
 472 inline bool is_size_aligned(size_t size, size_t alignment) {
 473   return align_size_up_(size, alignment) == size;
 474 }
 475 
 476 inline bool is_ptr_aligned(void* ptr, size_t alignment) {
 477   return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
 478 }
 479 
 480 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
 481   return align_size_up_(size, alignment);
 482 }
 483 
 484 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
 485 
 486 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
 487   return align_size_down_(size, alignment);
 488 }
 489 
 490 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
 491 
 492 inline void* align_ptr_up(void* ptr, size_t alignment) {
 493   return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
 494 }
 495 
 496 inline void* align_ptr_down(void* ptr, size_t alignment) {
 497   return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
 498 }
 499 
 500 // Align objects by rounding up their size, in HeapWord units.
 501 
 502 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
 503 
 504 inline intptr_t align_object_size(intptr_t size) {
 505   return align_size_up(size, MinObjAlignment);
 506 }
 507 
 508 inline bool is_object_aligned(intptr_t addr) {
 509   return addr == align_object_size(addr);
 510 }
 511 
 512 // Pad out certain offsets to jlong alignment, in HeapWord units.
 513 
 514 inline intptr_t align_object_offset(intptr_t offset) {
 515   return align_size_up(offset, HeapWordsPerLong);
 516 }
 517 
 518 inline void* align_pointer_up(const void* addr, size_t size) {
 519   return (void*) align_size_up_((uintptr_t)addr, size);
 520 }
 521 
 522 // Align down with a lower bound. If the aligning results in 0, return 'alignment'.
 523 
 524 inline size_t align_size_down_bounded(size_t size, size_t alignment) {
 525   size_t aligned_size = align_size_down_(size, alignment);
 526   return aligned_size > 0 ? aligned_size : alignment;
 527 }
 528 
 529 // Clamp an address to be within a specific page
 530 // 1. If addr is on the page it is returned as is
 531 // 2. If addr is above the page_address the start of the *next* page will be returned
 532 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
 533 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
 534   if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
 535     // address is in the specified page, just return it as is
 536     return addr;
 537   } else if (addr > page_address) {
 538     // address is above specified page, return start of next page
 539     return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
 540   } else {
 541     // address is below specified page, return start of page
 542     return (address)align_size_down(intptr_t(page_address), page_size);
 543   }
 544 }
 545 
 546 
 547 // The expected size in bytes of a cache line, used to pad data structures.
 548 #define DEFAULT_CACHE_LINE_SIZE 64
 549 
 550 
 551 //----------------------------------------------------------------------------------------------------
 552 // Utility macros for compilers
 553 // used to silence compiler warnings
 554 
 555 #define Unused_Variable(var) var
 556 
 557 
 558 //----------------------------------------------------------------------------------------------------
 559 // Miscellaneous
 560 
 561 // 6302670 Eliminate Hotspot __fabsf dependency
 562 // All fabs() callers should call this function instead, which will implicitly
 563 // convert the operand to double, avoiding a dependency on __fabsf which
 564 // doesn't exist in early versions of Solaris 8.
 565 inline double fabsd(double value) {
 566   return fabs(value);
 567 }
 568 
 569 //----------------------------------------------------------------------------------------------------
 570 // Special casts
 571 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 572 typedef union {
 573   jfloat f;
 574   jint i;
 575 } FloatIntConv;
 576 
 577 typedef union {
 578   jdouble d;
 579   jlong l;
 580   julong ul;
 581 } DoubleLongConv;
 582 
 583 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 584 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 585 
 586 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 587 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 588 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 589 
 590 inline jint low (jlong value)                    { return jint(value); }
 591 inline jint high(jlong value)                    { return jint(value >> 32); }
 592 
 593 // the fancy casts are a hopefully portable way
 594 // to do unsigned 32 to 64 bit type conversion
 595 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 596                                                    *value |= (jlong)(julong)(juint)low; }
 597 
 598 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 599                                                    *value |= (jlong)high       << 32; }
 600 
 601 inline jlong jlong_from(jint h, jint l) {
 602   jlong result = 0; // initialization to avoid warning
 603   set_high(&result, h);
 604   set_low(&result,  l);
 605   return result;
 606 }
 607 
 608 union jlong_accessor {
 609   jint  words[2];
 610   jlong long_value;
 611 };
 612 
 613 void basic_types_init(); // cannot define here; uses assert
 614 
 615 
 616 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 617 enum BasicType {
 618   T_BOOLEAN     =  4,
 619   T_CHAR        =  5,
 620   T_FLOAT       =  6,
 621   T_DOUBLE      =  7,
 622   T_BYTE        =  8,
 623   T_SHORT       =  9,
 624   T_INT         = 10,
 625   T_LONG        = 11,
 626   T_OBJECT      = 12,
 627   T_ARRAY       = 13,
 628   T_VOID        = 14,
 629   T_ADDRESS     = 15,
 630   T_NARROWOOP   = 16,
 631   T_METADATA    = 17,
 632   T_NARROWKLASS = 18,
 633   T_CONFLICT    = 19, // for stack value type with conflicting contents
 634   T_ILLEGAL     = 99
 635 };
 636 
 637 inline bool is_java_primitive(BasicType t) {
 638   return T_BOOLEAN <= t && t <= T_LONG;
 639 }
 640 
 641 inline bool is_subword_type(BasicType t) {
 642   // these guys are processed exactly like T_INT in calling sequences:
 643   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 644 }
 645 
 646 inline bool is_signed_subword_type(BasicType t) {
 647   return (t == T_BYTE || t == T_SHORT);
 648 }
 649 
 650 // Convert a char from a classfile signature to a BasicType
 651 inline BasicType char2type(char c) {
 652   switch( c ) {
 653   case 'B': return T_BYTE;
 654   case 'C': return T_CHAR;
 655   case 'D': return T_DOUBLE;
 656   case 'F': return T_FLOAT;
 657   case 'I': return T_INT;
 658   case 'J': return T_LONG;
 659   case 'S': return T_SHORT;
 660   case 'Z': return T_BOOLEAN;
 661   case 'V': return T_VOID;
 662   case 'L': return T_OBJECT;
 663   case '[': return T_ARRAY;
 664   }
 665   return T_ILLEGAL;
 666 }
 667 
 668 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 669 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 670 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 671 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 672 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 673 extern BasicType name2type(const char* name);
 674 
 675 // Auxilary math routines
 676 // least common multiple
 677 extern size_t lcm(size_t a, size_t b);
 678 
 679 
 680 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 681 enum BasicTypeSize {
 682   T_BOOLEAN_size     = 1,
 683   T_CHAR_size        = 1,
 684   T_FLOAT_size       = 1,
 685   T_DOUBLE_size      = 2,
 686   T_BYTE_size        = 1,
 687   T_SHORT_size       = 1,
 688   T_INT_size         = 1,
 689   T_LONG_size        = 2,
 690   T_OBJECT_size      = 1,
 691   T_ARRAY_size       = 1,
 692   T_NARROWOOP_size   = 1,
 693   T_NARROWKLASS_size = 1,
 694   T_VOID_size        = 0
 695 };
 696 
 697 
 698 // maps a BasicType to its instance field storage type:
 699 // all sub-word integral types are widened to T_INT
 700 extern BasicType type2field[T_CONFLICT+1];
 701 extern BasicType type2wfield[T_CONFLICT+1];
 702 
 703 
 704 // size in bytes
 705 enum ArrayElementSize {
 706   T_BOOLEAN_aelem_bytes     = 1,
 707   T_CHAR_aelem_bytes        = 2,
 708   T_FLOAT_aelem_bytes       = 4,
 709   T_DOUBLE_aelem_bytes      = 8,
 710   T_BYTE_aelem_bytes        = 1,
 711   T_SHORT_aelem_bytes       = 2,
 712   T_INT_aelem_bytes         = 4,
 713   T_LONG_aelem_bytes        = 8,
 714 #ifdef _LP64
 715   T_OBJECT_aelem_bytes      = 8,
 716   T_ARRAY_aelem_bytes       = 8,
 717 #else
 718   T_OBJECT_aelem_bytes      = 4,
 719   T_ARRAY_aelem_bytes       = 4,
 720 #endif
 721   T_NARROWOOP_aelem_bytes   = 4,
 722   T_NARROWKLASS_aelem_bytes = 4,
 723   T_VOID_aelem_bytes        = 0
 724 };
 725 
 726 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 727 #ifdef ASSERT
 728 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 729 #else
 730 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 731 #endif
 732 
 733 
 734 // JavaValue serves as a container for arbitrary Java values.
 735 
 736 class JavaValue {
 737 
 738  public:
 739   typedef union JavaCallValue {
 740     jfloat   f;
 741     jdouble  d;
 742     jint     i;
 743     jlong    l;
 744     jobject  h;
 745   } JavaCallValue;
 746 
 747  private:
 748   BasicType _type;
 749   JavaCallValue _value;
 750 
 751  public:
 752   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 753 
 754   JavaValue(jfloat value) {
 755     _type    = T_FLOAT;
 756     _value.f = value;
 757   }
 758 
 759   JavaValue(jdouble value) {
 760     _type    = T_DOUBLE;
 761     _value.d = value;
 762   }
 763 
 764  jfloat get_jfloat() const { return _value.f; }
 765  jdouble get_jdouble() const { return _value.d; }
 766  jint get_jint() const { return _value.i; }
 767  jlong get_jlong() const { return _value.l; }
 768  jobject get_jobject() const { return _value.h; }
 769  JavaCallValue* get_value_addr() { return &_value; }
 770  BasicType get_type() const { return _type; }
 771 
 772  void set_jfloat(jfloat f) { _value.f = f;}
 773  void set_jdouble(jdouble d) { _value.d = d;}
 774  void set_jint(jint i) { _value.i = i;}
 775  void set_jlong(jlong l) { _value.l = l;}
 776  void set_jobject(jobject h) { _value.h = h;}
 777  void set_type(BasicType t) { _type = t; }
 778 
 779  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 780  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 781  jchar get_jchar() const { return (jchar) (_value.i);}
 782  jshort get_jshort() const { return (jshort) (_value.i);}
 783 
 784 };
 785 
 786 
 787 #define STACK_BIAS      0
 788 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 789 // in order to extend the reach of the stack pointer.
 790 #if defined(SPARC) && defined(_LP64)
 791 #undef STACK_BIAS
 792 #define STACK_BIAS      0x7ff
 793 #endif
 794 
 795 
 796 // TosState describes the top-of-stack state before and after the execution of
 797 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 798 // registers. The TosState corresponds to the 'machine represention' of this cached
 799 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 800 // as well as a 5th state in case the top-of-stack value is actually on the top
 801 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 802 // state when it comes to machine representation but is used separately for (oop)
 803 // type specific operations (e.g. verification code).
 804 
 805 enum TosState {         // describes the tos cache contents
 806   btos = 0,             // byte, bool tos cached
 807   ztos = 1,             // byte, bool tos cached
 808   ctos = 2,             // char tos cached
 809   stos = 3,             // short tos cached
 810   itos = 4,             // int tos cached
 811   ltos = 5,             // long tos cached
 812   ftos = 6,             // float tos cached
 813   dtos = 7,             // double tos cached
 814   atos = 8,             // object cached
 815   vtos = 9,             // tos not cached
 816   number_of_states,
 817   ilgl                  // illegal state: should not occur
 818 };
 819 
 820 
 821 inline TosState as_TosState(BasicType type) {
 822   switch (type) {
 823     case T_BYTE   : return btos;
 824     case T_BOOLEAN: return ztos;
 825     case T_CHAR   : return ctos;
 826     case T_SHORT  : return stos;
 827     case T_INT    : return itos;
 828     case T_LONG   : return ltos;
 829     case T_FLOAT  : return ftos;
 830     case T_DOUBLE : return dtos;
 831     case T_VOID   : return vtos;
 832     case T_ARRAY  : // fall through
 833     case T_OBJECT : return atos;
 834   }
 835   return ilgl;
 836 }
 837 
 838 inline BasicType as_BasicType(TosState state) {
 839   switch (state) {
 840     case btos : return T_BYTE;
 841     case ztos : return T_BOOLEAN;
 842     case ctos : return T_CHAR;
 843     case stos : return T_SHORT;
 844     case itos : return T_INT;
 845     case ltos : return T_LONG;
 846     case ftos : return T_FLOAT;
 847     case dtos : return T_DOUBLE;
 848     case atos : return T_OBJECT;
 849     case vtos : return T_VOID;
 850   }
 851   return T_ILLEGAL;
 852 }
 853 
 854 
 855 // Helper function to convert BasicType info into TosState
 856 // Note: Cannot define here as it uses global constant at the time being.
 857 TosState as_TosState(BasicType type);
 858 
 859 
 860 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 861 // information is needed by the safepoint code.
 862 //
 863 // There are 4 essential states:
 864 //
 865 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 866 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 867 //  _thread_in_vm       : Executing in the vm
 868 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 869 //
 870 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 871 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 872 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 873 //
 874 // Given a state, the xxx_trans state can always be found by adding 1.
 875 //
 876 enum JavaThreadState {
 877   _thread_uninitialized     =  0, // should never happen (missing initialization)
 878   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 879   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 880   _thread_in_native         =  4, // running in native code
 881   _thread_in_native_trans   =  5, // corresponding transition state
 882   _thread_in_vm             =  6, // running in VM
 883   _thread_in_vm_trans       =  7, // corresponding transition state
 884   _thread_in_Java           =  8, // running in Java or in stub code
 885   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 886   _thread_blocked           = 10, // blocked in vm
 887   _thread_blocked_trans     = 11, // corresponding transition state
 888   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 889 };
 890 
 891 
 892 // Handy constants for deciding which compiler mode to use.
 893 enum MethodCompilation {
 894   InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
 895   InvalidOSREntryBci = -2
 896 };
 897 
 898 // Enumeration to distinguish tiers of compilation
 899 enum CompLevel {
 900   CompLevel_any               = -1,
 901   CompLevel_all               = -1,
 902   CompLevel_none              = 0,         // Interpreter
 903   CompLevel_simple            = 1,         // C1
 904   CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
 905   CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
 906   CompLevel_full_optimization = 4,         // C2 or Shark
 907 
 908 #if defined(COMPILER2) || defined(SHARK)
 909   CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered
 910 #elif defined(COMPILER1)
 911   CompLevel_highest_tier      = CompLevel_simple,             // pure C1
 912 #else
 913   CompLevel_highest_tier      = CompLevel_none,
 914 #endif
 915 
 916 #if defined(TIERED)
 917   CompLevel_initial_compile   = CompLevel_full_profile        // tiered
 918 #elif defined(COMPILER1)
 919   CompLevel_initial_compile   = CompLevel_simple              // pure C1
 920 #elif defined(COMPILER2) || defined(SHARK)
 921   CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
 922 #else
 923   CompLevel_initial_compile   = CompLevel_none
 924 #endif
 925 };
 926 
 927 inline bool is_c1_compile(int comp_level) {
 928   return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
 929 }
 930 
 931 inline bool is_c2_compile(int comp_level) {
 932   return comp_level == CompLevel_full_optimization;
 933 }
 934 
 935 inline bool is_highest_tier_compile(int comp_level) {
 936   return comp_level == CompLevel_highest_tier;
 937 }
 938 
 939 inline bool is_compile(int comp_level) {
 940   return is_c1_compile(comp_level) || is_c2_compile(comp_level);
 941 }
 942 
 943 //----------------------------------------------------------------------------------------------------
 944 // 'Forward' declarations of frequently used classes
 945 // (in order to reduce interface dependencies & reduce
 946 // number of unnecessary compilations after changes)
 947 
 948 class symbolTable;
 949 class ClassFileStream;
 950 
 951 class Event;
 952 
 953 class Thread;
 954 class  VMThread;
 955 class  JavaThread;
 956 class Threads;
 957 
 958 class VM_Operation;
 959 class VMOperationQueue;
 960 
 961 class CodeBlob;
 962 class  nmethod;
 963 class  OSRAdapter;
 964 class  I2CAdapter;
 965 class  C2IAdapter;
 966 class CompiledIC;
 967 class relocInfo;
 968 class ScopeDesc;
 969 class PcDesc;
 970 
 971 class Recompiler;
 972 class Recompilee;
 973 class RecompilationPolicy;
 974 class RFrame;
 975 class  CompiledRFrame;
 976 class  InterpretedRFrame;
 977 
 978 class frame;
 979 
 980 class vframe;
 981 class   javaVFrame;
 982 class     interpretedVFrame;
 983 class     compiledVFrame;
 984 class     deoptimizedVFrame;
 985 class   externalVFrame;
 986 class     entryVFrame;
 987 
 988 class RegisterMap;
 989 
 990 class Mutex;
 991 class Monitor;
 992 class BasicLock;
 993 class BasicObjectLock;
 994 
 995 class PeriodicTask;
 996 
 997 class JavaCallWrapper;
 998 
 999 class   oopDesc;
1000 class   metaDataOopDesc;
1001 
1002 class NativeCall;
1003 
1004 class zone;
1005 
1006 class StubQueue;
1007 
1008 class outputStream;
1009 
1010 class ResourceArea;
1011 
1012 class DebugInformationRecorder;
1013 class ScopeValue;
1014 class CompressedStream;
1015 class   DebugInfoReadStream;
1016 class   DebugInfoWriteStream;
1017 class LocationValue;
1018 class ConstantValue;
1019 class IllegalValue;
1020 
1021 class PrivilegedElement;
1022 class MonitorArray;
1023 
1024 class MonitorInfo;
1025 
1026 class OffsetClosure;
1027 class OopMapCache;
1028 class InterpreterOopMap;
1029 class OopMapCacheEntry;
1030 class OSThread;
1031 
1032 typedef int (*OSThreadStartFunc)(void*);
1033 
1034 class Space;
1035 
1036 class JavaValue;
1037 class methodHandle;
1038 class JavaCallArguments;
1039 
1040 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
1041 
1042 extern void basic_fatal(const char* msg);
1043 
1044 
1045 //----------------------------------------------------------------------------------------------------
1046 // Special constants for debugging
1047 
1048 const jint     badInt           = -3;                       // generic "bad int" value
1049 const intptr_t badAddressVal    = -2;                       // generic "bad address" value
1050 const intptr_t badOopVal        = -1;                       // generic "bad oop" value
1051 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
1052 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
1053 const int      badResourceValue = 0xAB;                     // value used to zap resource area
1054 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
1055 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
1056 const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
1057 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
1058 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
1059 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
1060 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
1061 
1062 
1063 // (These must be implemented as #defines because C++ compilers are
1064 // not obligated to inline non-integral constants!)
1065 #define       badAddress        ((address)::badAddressVal)
1066 #define       badOop            (cast_to_oop(::badOopVal))
1067 #define       badHeapWord       (::badHeapWordVal)
1068 #define       badJNIHandle      (cast_to_oop(::badJNIHandleVal))
1069 
1070 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
1071 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
1072 
1073 //----------------------------------------------------------------------------------------------------
1074 // Utility functions for bitfield manipulations
1075 
1076 const intptr_t AllBits    = ~0; // all bits set in a word
1077 const intptr_t NoBits     =  0; // no bits set in a word
1078 const jlong    NoLongBits =  0; // no bits set in a long
1079 const intptr_t OneBit     =  1; // only right_most bit set in a word
1080 
1081 // get a word with the n.th or the right-most or left-most n bits set
1082 // (note: #define used only so that they can be used in enum constant definitions)
1083 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
1084 #define right_n_bits(n)   (nth_bit(n) - 1)
1085 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
1086 
1087 // bit-operations using a mask m
1088 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
1089 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
1090 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
1091 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
1092 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1093 
1094 // bit-operations using the n.th bit
1095 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1096 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1097 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1098 
1099 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1100 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1101   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1102 }
1103 
1104 
1105 //----------------------------------------------------------------------------------------------------
1106 // Utility functions for integers
1107 
1108 // Avoid use of global min/max macros which may cause unwanted double
1109 // evaluation of arguments.
1110 #ifdef max
1111 #undef max
1112 #endif
1113 
1114 #ifdef min
1115 #undef min
1116 #endif
1117 
1118 #define max(a,b) Do_not_use_max_use_MAX2_instead
1119 #define min(a,b) Do_not_use_min_use_MIN2_instead
1120 
1121 // It is necessary to use templates here. Having normal overloaded
1122 // functions does not work because it is necessary to provide both 32-
1123 // and 64-bit overloaded functions, which does not work, and having
1124 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1125 // will be even more error-prone than macros.
1126 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1127 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1128 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1129 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1130 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1131 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1132 
1133 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1134 
1135 // true if x is a power of 2, false otherwise
1136 inline bool is_power_of_2(intptr_t x) {
1137   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1138 }
1139 
1140 // long version of is_power_of_2
1141 inline bool is_power_of_2_long(jlong x) {
1142   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1143 }
1144 
1145 //* largest i such that 2^i <= x
1146 //  A negative value of 'x' will return '31'
1147 inline int log2_intptr(uintptr_t x) {
1148   int i = -1;
1149   uintptr_t p =  1;
1150   while (p != 0 && p <= x) {
1151     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1152     i++; p *= 2;
1153   }
1154   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1155   // (if p = 0 then overflow occurred and i = 31)
1156   return i;
1157 }
1158 
1159 //* largest i such that 2^i <= x
1160 inline int log2_long(julong x) {
1161   int i = -1;
1162   julong p =  1;
1163   while (p != 0 && p <= x) {
1164     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1165     i++; p *= 2;
1166   }
1167   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1168   // (if p = 0 then overflow occurred and i = 63)
1169   return i;
1170 }
1171 
1172 inline int log2_intptr(intptr_t x) {
1173   return log2_intptr((uintptr_t)x);
1174 }
1175 
1176 inline int log2_int(int x) {
1177   return log2_intptr((uintptr_t)x);
1178 }
1179 
1180 inline int log2_jint(jint x) {
1181   return log2_intptr((uintptr_t)x);
1182 }
1183 
1184 inline int log2_uint(uint x) {
1185   return log2_intptr((uintptr_t)x);
1186 }
1187 
1188 //  A negative value of 'x' will return '63'
1189 inline int log2_jlong(jlong x) {
1190   return log2_long((julong)x);
1191 }
1192 
1193 //* the argument must be exactly a power of 2
1194 inline int exact_log2(intptr_t x) {
1195   #ifdef ASSERT
1196     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
1197   #endif
1198   return log2_intptr(x);
1199 }
1200 
1201 //* the argument must be exactly a power of 2
1202 inline int exact_log2_long(jlong x) {
1203   #ifdef ASSERT
1204     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
1205   #endif
1206   return log2_long(x);
1207 }
1208 
1209 
1210 // returns integer round-up to the nearest multiple of s (s must be a power of two)
1211 inline intptr_t round_to(intptr_t x, uintx s) {
1212   #ifdef ASSERT
1213     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1214   #endif
1215   const uintx m = s - 1;
1216   return mask_bits(x + m, ~m);
1217 }
1218 
1219 // returns integer round-down to the nearest multiple of s (s must be a power of two)
1220 inline intptr_t round_down(intptr_t x, uintx s) {
1221   #ifdef ASSERT
1222     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1223   #endif
1224   const uintx m = s - 1;
1225   return mask_bits(x, ~m);
1226 }
1227 
1228 
1229 inline bool is_odd (intx x) { return x & 1;      }
1230 inline bool is_even(intx x) { return !is_odd(x); }
1231 
1232 // abs methods which cannot overflow and so are well-defined across
1233 // the entire domain of integer types.
1234 static inline unsigned int uabs(unsigned int n) {
1235   union {
1236     unsigned int result;
1237     int value;
1238   };
1239   result = n;
1240   if (value < 0) result = 0-result;
1241   return result;
1242 }
1243 static inline julong uabs(julong n) {
1244   union {
1245     julong result;
1246     jlong value;
1247   };
1248   result = n;
1249   if (value < 0) result = 0-result;
1250   return result;
1251 }
1252 static inline julong uabs(jlong n) { return uabs((julong)n); }
1253 static inline unsigned int uabs(int n) { return uabs((unsigned int)n); }
1254 
1255 // "to" should be greater than "from."
1256 inline intx byte_size(void* from, void* to) {
1257   return (address)to - (address)from;
1258 }
1259 
1260 //----------------------------------------------------------------------------------------------------
1261 // Avoid non-portable casts with these routines (DEPRECATED)
1262 
1263 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1264 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1265 
1266 // Given sequence of four bytes, build into a 32-bit word
1267 // following the conventions used in class files.
1268 // On the 386, this could be realized with a simple address cast.
1269 //
1270 
1271 // This routine takes eight bytes:
1272 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1273   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1274        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1275        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1276        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1277        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1278        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1279        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1280        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1281 }
1282 
1283 // This routine takes four bytes:
1284 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1285   return  (( u4(c1) << 24 )  &  0xff000000)
1286        |  (( u4(c2) << 16 )  &  0x00ff0000)
1287        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1288        |  (( u4(c4) <<  0 )  &  0x000000ff);
1289 }
1290 
1291 // And this one works if the four bytes are contiguous in memory:
1292 inline u4 build_u4_from( u1* p ) {
1293   return  build_u4_from( p[0], p[1], p[2], p[3] );
1294 }
1295 
1296 // Ditto for two-byte ints:
1297 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1298   return  u2((( u2(c1) <<  8 )  &  0xff00)
1299           |  (( u2(c2) <<  0 )  &  0x00ff));
1300 }
1301 
1302 // And this one works if the two bytes are contiguous in memory:
1303 inline u2 build_u2_from( u1* p ) {
1304   return  build_u2_from( p[0], p[1] );
1305 }
1306 
1307 // Ditto for floats:
1308 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1309   u4 u = build_u4_from( c1, c2, c3, c4 );
1310   return  *(jfloat*)&u;
1311 }
1312 
1313 inline jfloat build_float_from( u1* p ) {
1314   u4 u = build_u4_from( p );
1315   return  *(jfloat*)&u;
1316 }
1317 
1318 
1319 // now (64-bit) longs
1320 
1321 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1322   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1323        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1324        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1325        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1326        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1327        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1328        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1329        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1330 }
1331 
1332 inline jlong build_long_from( u1* p ) {
1333   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1334 }
1335 
1336 
1337 // Doubles, too!
1338 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1339   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1340   return  *(jdouble*)&u;
1341 }
1342 
1343 inline jdouble build_double_from( u1* p ) {
1344   jlong u = build_long_from( p );
1345   return  *(jdouble*)&u;
1346 }
1347 
1348 
1349 // Portable routines to go the other way:
1350 
1351 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1352   c1 = u1(x >> 8);
1353   c2 = u1(x);
1354 }
1355 
1356 inline void explode_short_to( u2 x, u1* p ) {
1357   explode_short_to( x, p[0], p[1]);
1358 }
1359 
1360 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1361   c1 = u1(x >> 24);
1362   c2 = u1(x >> 16);
1363   c3 = u1(x >>  8);
1364   c4 = u1(x);
1365 }
1366 
1367 inline void explode_int_to( u4 x, u1* p ) {
1368   explode_int_to( x, p[0], p[1], p[2], p[3]);
1369 }
1370 
1371 
1372 // Pack and extract shorts to/from ints:
1373 
1374 inline int extract_low_short_from_int(jint x) {
1375   return x & 0xffff;
1376 }
1377 
1378 inline int extract_high_short_from_int(jint x) {
1379   return (x >> 16) & 0xffff;
1380 }
1381 
1382 inline int build_int_from_shorts( jushort low, jushort high ) {
1383   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1384 }
1385 
1386 // Convert pointer to intptr_t, for use in printing pointers.
1387 inline intptr_t p2i(const void * p) {
1388   return (intptr_t) p;
1389 }
1390 
1391 // Printf-style formatters for fixed- and variable-width types as pointers and
1392 // integers.  These are derived from the definitions in inttypes.h.  If the platform
1393 // doesn't provide appropriate definitions, they should be provided in
1394 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1395 
1396 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
1397 
1398 // Format 32-bit quantities.
1399 #define INT32_FORMAT           "%" PRId32
1400 #define UINT32_FORMAT          "%" PRIu32
1401 #define INT32_FORMAT_W(width)  "%" #width PRId32
1402 #define UINT32_FORMAT_W(width) "%" #width PRIu32
1403 
1404 #define PTR32_FORMAT           "0x%08" PRIx32
1405 
1406 // Format 64-bit quantities.
1407 #define INT64_FORMAT           "%" PRId64
1408 #define UINT64_FORMAT          "%" PRIu64
1409 #define UINT64_FORMAT_X        "%" PRIx64
1410 #define INT64_FORMAT_W(width)  "%" #width PRId64
1411 #define UINT64_FORMAT_W(width) "%" #width PRIu64
1412 
1413 #define PTR64_FORMAT           "0x%016" PRIx64
1414 
1415 // Format jlong, if necessary
1416 #ifndef JLONG_FORMAT
1417 #define JLONG_FORMAT           INT64_FORMAT
1418 #endif
1419 #ifndef JULONG_FORMAT
1420 #define JULONG_FORMAT          UINT64_FORMAT
1421 #endif
1422 
1423 // Format pointers which change size between 32- and 64-bit.
1424 #ifdef  _LP64
1425 #define INTPTR_FORMAT "0x%016" PRIxPTR
1426 #define PTR_FORMAT    "0x%016" PRIxPTR
1427 #else   // !_LP64
1428 #define INTPTR_FORMAT "0x%08"  PRIxPTR
1429 #define PTR_FORMAT    "0x%08"  PRIxPTR
1430 #endif  // _LP64
1431 
1432 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
1433 
1434 #define SSIZE_FORMAT          "%"   PRIdPTR
1435 #define SIZE_FORMAT           "%"   PRIuPTR
1436 #define SIZE_FORMAT_HEX       "0x%" PRIxPTR
1437 #define SSIZE_FORMAT_W(width) "%"   #width PRIdPTR
1438 #define SIZE_FORMAT_W(width)  "%"   #width PRIuPTR
1439 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
1440 
1441 #define INTX_FORMAT           "%" PRIdPTR
1442 #define UINTX_FORMAT          "%" PRIuPTR
1443 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
1444 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
1445 
1446 
1447 // Enable zap-a-lot if in debug version.
1448 
1449 # ifdef ASSERT
1450 # ifdef COMPILER2
1451 #   define ENABLE_ZAP_DEAD_LOCALS
1452 #endif /* COMPILER2 */
1453 # endif /* ASSERT */
1454 
1455 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1456 
1457 //----------------------------------------------------------------------------------------------------
1458 // Sum and product which can never overflow: they wrap, just like the
1459 // Java operations.  Note that we don't intend these to be used for
1460 // general-purpose arithmetic: their purpose is to emulate Java
1461 // operations.
1462 
1463 // The goal of this code to avoid undefined or implementation-defined
1464 // behaviour.  The use of an lvalue to reference cast is explicitly
1465 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1466 // 15 in C++03]
1467 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1468 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1469   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1470   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1471   return reinterpret_cast<TYPE&>(ures);                 \
1472 }
1473 
1474 JAVA_INTEGER_OP(+, java_add, jint, juint)
1475 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1476 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1477 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1478 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1479 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1480 
1481 #undef JAVA_INTEGER_OP
1482 
1483 // Dereference vptr
1484 // All C++ compilers that we know of have the vtbl pointer in the first
1485 // word.  If there are exceptions, this function needs to be made compiler
1486 // specific.
1487 static inline void* dereference_vptr(const void* addr) {
1488   return *(void**)addr;
1489 }
1490 
1491 #ifndef PRODUCT
1492 
1493 // For unit testing only
1494 class GlobalDefinitions {
1495 public:
1496   static void test_globals();
1497   static void test_proper_unit();
1498 };
1499 
1500 #endif // PRODUCT
1501 
1502 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP