1 /* 2 * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2013, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.hpp" 28 #include "interpreter/bytecodeHistogram.hpp" 29 #include "interpreter/interpreter.hpp" 30 #include "interpreter/interpreterGenerator.hpp" 31 #include "interpreter/interpreterRuntime.hpp" 32 #include "interpreter/templateTable.hpp" 33 #include "interpreter/bytecodeTracer.hpp" 34 #include "oops/arrayOop.hpp" 35 #include "oops/methodData.hpp" 36 #include "oops/method.hpp" 37 #include "oops/oop.inline.hpp" 38 #include "prims/jvmtiExport.hpp" 39 #include "prims/jvmtiThreadState.hpp" 40 #include "runtime/arguments.hpp" 41 #include "runtime/deoptimization.hpp" 42 #include "runtime/frame.inline.hpp" 43 #include "runtime/sharedRuntime.hpp" 44 #include "runtime/stubRoutines.hpp" 45 #include "runtime/synchronizer.hpp" 46 #include "runtime/timer.hpp" 47 #include "runtime/vframeArray.hpp" 48 #include "utilities/debug.hpp" 49 #include <sys/types.h> 50 51 #ifndef PRODUCT 52 #include "oops/method.hpp" 53 #endif // !PRODUCT 54 55 #define __ _masm-> 56 57 #ifndef CC_INTERP 58 59 //----------------------------------------------------------------------------- 60 61 extern "C" void entry(CodeBuffer*); 62 63 //----------------------------------------------------------------------------- 64 65 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() { 66 address entry = __ pc(); 67 68 #ifdef ASSERT 69 { 70 Label L; 71 __ ldr(rscratch1, Address(rfp, 72 frame::interpreter_frame_monitor_block_top_offset * 73 wordSize)); 74 __ mov(rscratch2, sp); 75 __ cmp(rscratch1, rscratch2); // maximal rsp for current rfp (stack 76 // grows negative) 77 __ br(Assembler::HS, L); // check if frame is complete 78 __ stop ("interpreter frame not set up"); 79 __ bind(L); 80 } 81 #endif // ASSERT 82 // Restore bcp under the assumption that the current frame is still 83 // interpreted 84 __ restore_bcp(); 85 86 // expression stack must be empty before entering the VM if an 87 // exception happened 88 __ empty_expression_stack(); 89 // throw exception 90 __ call_VM(noreg, 91 CAST_FROM_FN_PTR(address, 92 InterpreterRuntime::throw_StackOverflowError)); 93 return entry; 94 } 95 96 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler( 97 const char* name) { 98 address entry = __ pc(); 99 // expression stack must be empty before entering the VM if an 100 // exception happened 101 __ empty_expression_stack(); 102 // setup parameters 103 // ??? convention: expect aberrant index in register r1 104 __ movw(c_rarg2, r1); 105 __ mov(c_rarg1, (address)name); 106 __ call_VM(noreg, 107 CAST_FROM_FN_PTR(address, 108 InterpreterRuntime:: 109 throw_ArrayIndexOutOfBoundsException), 110 c_rarg1, c_rarg2); 111 return entry; 112 } 113 114 address TemplateInterpreterGenerator::generate_ClassCastException_handler() { 115 address entry = __ pc(); 116 117 // object is at TOS 118 __ pop(c_rarg1); 119 120 // expression stack must be empty before entering the VM if an 121 // exception happened 122 __ empty_expression_stack(); 123 124 __ call_VM(noreg, 125 CAST_FROM_FN_PTR(address, 126 InterpreterRuntime:: 127 throw_ClassCastException), 128 c_rarg1); 129 return entry; 130 } 131 132 address TemplateInterpreterGenerator::generate_exception_handler_common( 133 const char* name, const char* message, bool pass_oop) { 134 assert(!pass_oop || message == NULL, "either oop or message but not both"); 135 address entry = __ pc(); 136 if (pass_oop) { 137 // object is at TOS 138 __ pop(c_rarg2); 139 } 140 // expression stack must be empty before entering the VM if an 141 // exception happened 142 __ empty_expression_stack(); 143 // setup parameters 144 __ lea(c_rarg1, Address((address)name)); 145 if (pass_oop) { 146 __ call_VM(r0, CAST_FROM_FN_PTR(address, 147 InterpreterRuntime:: 148 create_klass_exception), 149 c_rarg1, c_rarg2); 150 } else { 151 // kind of lame ExternalAddress can't take NULL because 152 // external_word_Relocation will assert. 153 if (message != NULL) { 154 __ lea(c_rarg2, Address((address)message)); 155 } else { 156 __ mov(c_rarg2, NULL_WORD); 157 } 158 __ call_VM(r0, 159 CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), 160 c_rarg1, c_rarg2); 161 } 162 // throw exception 163 __ b(address(Interpreter::throw_exception_entry())); 164 return entry; 165 } 166 167 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) { 168 address entry = __ pc(); 169 // NULL last_sp until next java call 170 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 171 __ dispatch_next(state); 172 return entry; 173 } 174 175 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) { 176 address entry = __ pc(); 177 178 // Restore stack bottom in case i2c adjusted stack 179 __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 180 // and NULL it as marker that esp is now tos until next java call 181 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 182 __ restore_bcp(); 183 __ restore_locals(); 184 __ restore_constant_pool_cache(); 185 __ get_method(rmethod); 186 187 // Pop N words from the stack 188 __ get_cache_and_index_at_bcp(r1, r2, 1, index_size); 189 __ ldr(r1, Address(r1, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset())); 190 __ andr(r1, r1, ConstantPoolCacheEntry::parameter_size_mask); 191 192 __ add(esp, esp, r1, Assembler::LSL, 3); 193 194 // Restore machine SP 195 __ ldr(rscratch1, Address(rmethod, Method::const_offset())); 196 __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset())); 197 __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 2); 198 __ ldr(rscratch2, 199 Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize)); 200 __ sub(rscratch1, rscratch2, rscratch1, ext::uxtw, 3); 201 __ andr(sp, rscratch1, -16); 202 203 __ get_dispatch(); 204 __ dispatch_next(state, step); 205 206 return entry; 207 } 208 209 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, 210 int step) { 211 address entry = __ pc(); 212 __ restore_bcp(); 213 __ restore_locals(); 214 __ restore_constant_pool_cache(); 215 __ get_method(rmethod); 216 __ get_dispatch(); 217 218 // Calculate stack limit 219 __ ldr(rscratch1, Address(rmethod, Method::const_offset())); 220 __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset())); 221 __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() 222 + (EnableInvokeDynamic ? 2 : 0)); 223 __ ldr(rscratch2, 224 Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize)); 225 __ sub(rscratch1, rscratch2, rscratch1, ext::uxtx, 3); 226 __ andr(sp, rscratch1, -16); 227 228 // Restore expression stack pointer 229 __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 230 // NULL last_sp until next java call 231 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 232 233 // handle exceptions 234 { 235 Label L; 236 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 237 __ cbz(rscratch1, L); 238 __ call_VM(noreg, 239 CAST_FROM_FN_PTR(address, 240 InterpreterRuntime::throw_pending_exception)); 241 __ should_not_reach_here(); 242 __ bind(L); 243 } 244 245 __ dispatch_next(state, step); 246 return entry; 247 } 248 249 250 int AbstractInterpreter::BasicType_as_index(BasicType type) { 251 int i = 0; 252 switch (type) { 253 case T_BOOLEAN: i = 0; break; 254 case T_CHAR : i = 1; break; 255 case T_BYTE : i = 2; break; 256 case T_SHORT : i = 3; break; 257 case T_INT : i = 4; break; 258 case T_LONG : i = 5; break; 259 case T_VOID : i = 6; break; 260 case T_FLOAT : i = 7; break; 261 case T_DOUBLE : i = 8; break; 262 case T_OBJECT : i = 9; break; 263 case T_ARRAY : i = 9; break; 264 default : ShouldNotReachHere(); 265 } 266 assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, 267 "index out of bounds"); 268 return i; 269 } 270 271 272 address TemplateInterpreterGenerator::generate_result_handler_for( 273 BasicType type) { 274 address entry = __ pc(); 275 switch (type) { 276 case T_BOOLEAN: __ c2bool(r0); break; 277 case T_CHAR : __ uxth(r0, r0); break; 278 case T_BYTE : __ sxtb(r0, r0); break; 279 case T_SHORT : __ sxth(r0, r0); break; 280 case T_INT : __ uxtw(r0, r0); break; // FIXME: We almost certainly don't need this 281 case T_LONG : /* nothing to do */ break; 282 case T_VOID : /* nothing to do */ break; 283 case T_FLOAT : /* nothing to do */ break; 284 case T_DOUBLE : /* nothing to do */ break; 285 case T_OBJECT : 286 // retrieve result from frame 287 __ ldr(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize)); 288 // and verify it 289 __ verify_oop(r0); 290 break; 291 default : ShouldNotReachHere(); 292 } 293 __ ret(lr); // return from result handler 294 return entry; 295 } 296 297 address TemplateInterpreterGenerator::generate_safept_entry_for( 298 TosState state, 299 address runtime_entry) { 300 address entry = __ pc(); 301 __ push(state); 302 __ call_VM(noreg, runtime_entry); 303 __ membar(Assembler::AnyAny); 304 __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos)); 305 return entry; 306 } 307 308 // Helpers for commoning out cases in the various type of method entries. 309 // 310 311 312 // increment invocation count & check for overflow 313 // 314 // Note: checking for negative value instead of overflow 315 // so we have a 'sticky' overflow test 316 // 317 // rmethod: method 318 // 319 void InterpreterGenerator::generate_counter_incr( 320 Label* overflow, 321 Label* profile_method, 322 Label* profile_method_continue) { 323 Label done; 324 // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not. 325 if (TieredCompilation) { 326 int increment = InvocationCounter::count_increment; 327 int mask = ((1 << Tier0InvokeNotifyFreqLog) - 1) << InvocationCounter::count_shift; 328 Label no_mdo; 329 if (ProfileInterpreter) { 330 // Are we profiling? 331 __ ldr(r0, Address(rmethod, Method::method_data_offset())); 332 __ cbz(r0, no_mdo); 333 // Increment counter in the MDO 334 const Address mdo_invocation_counter(r0, in_bytes(MethodData::invocation_counter_offset()) + 335 in_bytes(InvocationCounter::counter_offset())); 336 __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rscratch1, rscratch2, false, Assembler::EQ, overflow); 337 __ b(done); 338 } 339 __ bind(no_mdo); 340 // Increment counter in MethodCounters 341 const Address invocation_counter(rscratch2, 342 MethodCounters::invocation_counter_offset() + 343 InvocationCounter::counter_offset()); 344 __ get_method_counters(rmethod, rscratch2, done); 345 __ increment_mask_and_jump(invocation_counter, increment, mask, rscratch1, rscratch2, false, Assembler::EQ, overflow); 346 __ bind(done); 347 } else { 348 const Address backedge_counter(rscratch2, 349 MethodCounters::backedge_counter_offset() + 350 InvocationCounter::counter_offset()); 351 const Address invocation_counter(rscratch2, 352 MethodCounters::invocation_counter_offset() + 353 InvocationCounter::counter_offset()); 354 355 __ get_method_counters(rmethod, rscratch2, done); 356 357 if (ProfileInterpreter) { // %%% Merge this into MethodData* 358 __ ldrw(r1, Address(rscratch2, MethodCounters::interpreter_invocation_counter_offset())); 359 __ addw(r1, r1, 1); 360 __ strw(r1, Address(rscratch2, MethodCounters::interpreter_invocation_counter_offset())); 361 } 362 // Update standard invocation counters 363 __ ldrw(r1, invocation_counter); 364 __ ldrw(r0, backedge_counter); 365 366 __ addw(r1, r1, InvocationCounter::count_increment); 367 __ andw(r0, r0, InvocationCounter::count_mask_value); 368 369 __ strw(r1, invocation_counter); 370 __ addw(r0, r0, r1); // add both counters 371 372 // profile_method is non-null only for interpreted method so 373 // profile_method != NULL == !native_call 374 375 if (ProfileInterpreter && profile_method != NULL) { 376 // Test to see if we should create a method data oop 377 unsigned long offset; 378 __ adrp(rscratch2, ExternalAddress((address)&InvocationCounter::InterpreterProfileLimit), 379 offset); 380 __ ldrw(rscratch2, Address(rscratch2, offset)); 381 __ cmp(r0, rscratch2); 382 __ br(Assembler::LT, *profile_method_continue); 383 384 // if no method data exists, go to profile_method 385 __ test_method_data_pointer(rscratch2, *profile_method); 386 } 387 388 { 389 unsigned long offset; 390 __ adrp(rscratch2, 391 ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit), 392 offset); 393 __ ldrw(rscratch2, Address(rscratch2, offset)); 394 __ cmpw(r0, rscratch2); 395 __ br(Assembler::HS, *overflow); 396 } 397 __ bind(done); 398 } 399 } 400 401 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) { 402 403 // Asm interpreter on entry 404 // On return (i.e. jump to entry_point) [ back to invocation of interpreter ] 405 // Everything as it was on entry 406 407 // InterpreterRuntime::frequency_counter_overflow takes two 408 // arguments, the first (thread) is passed by call_VM, the second 409 // indicates if the counter overflow occurs at a backwards branch 410 // (NULL bcp). We pass zero for it. The call returns the address 411 // of the verified entry point for the method or NULL if the 412 // compilation did not complete (either went background or bailed 413 // out). 414 __ mov(c_rarg1, 0); 415 __ call_VM(noreg, 416 CAST_FROM_FN_PTR(address, 417 InterpreterRuntime::frequency_counter_overflow), 418 c_rarg1); 419 420 __ b(*do_continue); 421 } 422 423 // See if we've got enough room on the stack for locals plus overhead. 424 // The expression stack grows down incrementally, so the normal guard 425 // page mechanism will work for that. 426 // 427 // NOTE: Since the additional locals are also always pushed (wasn't 428 // obvious in generate_method_entry) so the guard should work for them 429 // too. 430 // 431 // Args: 432 // r3: number of additional locals this frame needs (what we must check) 433 // rmethod: Method* 434 // 435 // Kills: 436 // r0 437 void InterpreterGenerator::generate_stack_overflow_check(void) { 438 439 // monitor entry size: see picture of stack set 440 // (generate_method_entry) and frame_amd64.hpp 441 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 442 443 // total overhead size: entry_size + (saved rbp through expr stack 444 // bottom). be sure to change this if you add/subtract anything 445 // to/from the overhead area 446 const int overhead_size = 447 -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size; 448 449 const int page_size = os::vm_page_size(); 450 451 Label after_frame_check; 452 453 // see if the frame is greater than one page in size. If so, 454 // then we need to verify there is enough stack space remaining 455 // for the additional locals. 456 // 457 // Note that we use SUBS rather than CMP here because the immediate 458 // field of this instruction may overflow. SUBS can cope with this 459 // because it is a macro that will expand to some number of MOV 460 // instructions and a register operation. 461 __ subs(rscratch1, r3, (page_size - overhead_size) / Interpreter::stackElementSize); 462 __ br(Assembler::LS, after_frame_check); 463 464 // compute rsp as if this were going to be the last frame on 465 // the stack before the red zone 466 467 const Address stack_base(rthread, Thread::stack_base_offset()); 468 const Address stack_size(rthread, Thread::stack_size_offset()); 469 470 // locals + overhead, in bytes 471 __ mov(r0, overhead_size); 472 __ add(r0, r0, r3, Assembler::LSL, Interpreter::logStackElementSize); // 2 slots per parameter. 473 474 __ ldr(rscratch1, stack_base); 475 __ ldr(rscratch2, stack_size); 476 477 #ifdef ASSERT 478 Label stack_base_okay, stack_size_okay; 479 // verify that thread stack base is non-zero 480 __ cbnz(rscratch1, stack_base_okay); 481 __ stop("stack base is zero"); 482 __ bind(stack_base_okay); 483 // verify that thread stack size is non-zero 484 __ cbnz(rscratch2, stack_size_okay); 485 __ stop("stack size is zero"); 486 __ bind(stack_size_okay); 487 #endif 488 489 // Add stack base to locals and subtract stack size 490 __ sub(rscratch1, rscratch1, rscratch2); // Stack limit 491 __ add(r0, r0, rscratch1); 492 493 // Use the maximum number of pages we might bang. 494 const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages : 495 (StackRedPages+StackYellowPages); 496 497 // add in the red and yellow zone sizes 498 __ add(r0, r0, max_pages * page_size * 2); 499 500 // check against the current stack bottom 501 __ cmp(sp, r0); 502 __ br(Assembler::HI, after_frame_check); 503 504 // Remove the incoming args, peeling the machine SP back to where it 505 // was in the caller. This is not strictly necessary, but unless we 506 // do so the stack frame may have a garbage FP; this ensures a 507 // correct call stack that we can always unwind. The ANDR should be 508 // unnecessary because the sender SP in r13 is always aligned, but 509 // it doesn't hurt. 510 __ andr(sp, r13, -16); 511 512 // Note: the restored frame is not necessarily interpreted. 513 // Use the shared runtime version of the StackOverflowError. 514 assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated"); 515 __ far_jump(RuntimeAddress(StubRoutines::throw_StackOverflowError_entry())); 516 517 // all done with frame size check 518 __ bind(after_frame_check); 519 } 520 521 // Allocate monitor and lock method (asm interpreter) 522 // 523 // Args: 524 // rmethod: Method* 525 // rlocals: locals 526 // 527 // Kills: 528 // r0 529 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs) 530 // rscratch1, rscratch2 (scratch regs) 531 void InterpreterGenerator::lock_method(void) { 532 // synchronize method 533 const Address access_flags(rmethod, Method::access_flags_offset()); 534 const Address monitor_block_top( 535 rfp, 536 frame::interpreter_frame_monitor_block_top_offset * wordSize); 537 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 538 539 #ifdef ASSERT 540 { 541 Label L; 542 __ ldrw(r0, access_flags); 543 __ tst(r0, JVM_ACC_SYNCHRONIZED); 544 __ br(Assembler::NE, L); 545 __ stop("method doesn't need synchronization"); 546 __ bind(L); 547 } 548 #endif // ASSERT 549 550 // get synchronization object 551 { 552 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 553 Label done; 554 __ ldrw(r0, access_flags); 555 __ tst(r0, JVM_ACC_STATIC); 556 // get receiver (assume this is frequent case) 557 __ ldr(r0, Address(rlocals, Interpreter::local_offset_in_bytes(0))); 558 __ br(Assembler::EQ, done); 559 __ ldr(r0, Address(rmethod, Method::const_offset())); 560 __ ldr(r0, Address(r0, ConstMethod::constants_offset())); 561 __ ldr(r0, Address(r0, 562 ConstantPool::pool_holder_offset_in_bytes())); 563 __ ldr(r0, Address(r0, mirror_offset)); 564 565 #ifdef ASSERT 566 { 567 Label L; 568 __ cbnz(r0, L); 569 __ stop("synchronization object is NULL"); 570 __ bind(L); 571 } 572 #endif // ASSERT 573 574 __ bind(done); 575 } 576 577 // add space for monitor & lock 578 __ sub(sp, sp, entry_size); // add space for a monitor entry 579 __ sub(esp, esp, entry_size); 580 __ mov(rscratch1, esp); 581 __ str(rscratch1, monitor_block_top); // set new monitor block top 582 // store object 583 __ str(r0, Address(esp, BasicObjectLock::obj_offset_in_bytes())); 584 __ mov(c_rarg1, esp); // object address 585 __ lock_object(c_rarg1); 586 } 587 588 // Generate a fixed interpreter frame. This is identical setup for 589 // interpreted methods and for native methods hence the shared code. 590 // 591 // Args: 592 // lr: return address 593 // rmethod: Method* 594 // rlocals: pointer to locals 595 // rcpool: cp cache 596 // stack_pointer: previous sp 597 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) { 598 // initialize fixed part of activation frame 599 if (native_call) { 600 __ sub(esp, sp, 12 * wordSize); 601 __ mov(rbcp, zr); 602 __ stp(esp, zr, Address(__ pre(sp, -12 * wordSize))); 603 // add 2 zero-initialized slots for native calls 604 __ stp(zr, zr, Address(sp, 10 * wordSize)); 605 } else { 606 __ sub(esp, sp, 10 * wordSize); 607 __ ldr(rscratch1, Address(rmethod, Method::const_offset())); // get ConstMethod 608 __ add(rbcp, rscratch1, in_bytes(ConstMethod::codes_offset())); // get codebase 609 __ stp(esp, rbcp, Address(__ pre(sp, -10 * wordSize))); 610 } 611 612 if (ProfileInterpreter) { 613 Label method_data_continue; 614 __ ldr(rscratch1, Address(rmethod, Method::method_data_offset())); 615 __ cbz(rscratch1, method_data_continue); 616 __ lea(rscratch1, Address(rscratch1, in_bytes(MethodData::data_offset()))); 617 __ bind(method_data_continue); 618 __ stp(rscratch1, rmethod, Address(sp, 4 * wordSize)); // save Method* and mdp (method data pointer) 619 } else { 620 __ stp(zr, rmethod, Address(sp, 4 * wordSize)); // save Method* (no mdp) 621 } 622 623 __ ldr(rcpool, Address(rmethod, Method::const_offset())); 624 __ ldr(rcpool, Address(rcpool, ConstMethod::constants_offset())); 625 __ ldr(rcpool, Address(rcpool, ConstantPool::cache_offset_in_bytes())); 626 __ stp(rlocals, rcpool, Address(sp, 2 * wordSize)); 627 628 __ stp(rfp, lr, Address(sp, 8 * wordSize)); 629 __ lea(rfp, Address(sp, 8 * wordSize)); 630 631 // set sender sp 632 // leave last_sp as null 633 __ stp(zr, r13, Address(sp, 6 * wordSize)); 634 635 // Move SP out of the way 636 if (! native_call) { 637 __ ldr(rscratch1, Address(rmethod, Method::const_offset())); 638 __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset())); 639 __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() 640 + (EnableInvokeDynamic ? 2 : 0)); 641 __ sub(rscratch1, sp, rscratch1, ext::uxtw, 3); 642 __ andr(sp, rscratch1, -16); 643 } 644 } 645 646 // End of helpers 647 648 // Various method entries 649 //------------------------------------------------------------------------------------------------------------------------ 650 // 651 // 652 653 // Call an accessor method (assuming it is resolved, otherwise drop 654 // into vanilla (slow path) entry 655 address InterpreterGenerator::generate_accessor_entry(void) { 656 return NULL; 657 } 658 659 // Method entry for java.lang.ref.Reference.get. 660 address InterpreterGenerator::generate_Reference_get_entry(void) { 661 #if INCLUDE_ALL_GCS 662 // Code: _aload_0, _getfield, _areturn 663 // parameter size = 1 664 // 665 // The code that gets generated by this routine is split into 2 parts: 666 // 1. The "intrinsified" code for G1 (or any SATB based GC), 667 // 2. The slow path - which is an expansion of the regular method entry. 668 // 669 // Notes:- 670 // * In the G1 code we do not check whether we need to block for 671 // a safepoint. If G1 is enabled then we must execute the specialized 672 // code for Reference.get (except when the Reference object is null) 673 // so that we can log the value in the referent field with an SATB 674 // update buffer. 675 // If the code for the getfield template is modified so that the 676 // G1 pre-barrier code is executed when the current method is 677 // Reference.get() then going through the normal method entry 678 // will be fine. 679 // * The G1 code can, however, check the receiver object (the instance 680 // of java.lang.Reference) and jump to the slow path if null. If the 681 // Reference object is null then we obviously cannot fetch the referent 682 // and so we don't need to call the G1 pre-barrier. Thus we can use the 683 // regular method entry code to generate the NPE. 684 // 685 // This code is based on generate_accessor_entry. 686 // 687 // rmethod: Method* 688 // r13: senderSP must preserve for slow path, set SP to it on fast path 689 690 address entry = __ pc(); 691 692 const int referent_offset = java_lang_ref_Reference::referent_offset; 693 guarantee(referent_offset > 0, "referent offset not initialized"); 694 695 if (UseG1GC || (UseShenandoahGC && ShenandoahSATBBarrier)) { 696 Label slow_path; 697 const Register local_0 = c_rarg0; 698 // Check if local 0 != NULL 699 // If the receiver is null then it is OK to jump to the slow path. 700 __ ldr(local_0, Address(esp, 0)); 701 __ mov(r19, r13); // First call-saved register 702 __ cbz(local_0, slow_path); 703 704 // Load the value of the referent field. 705 const Address field_address(local_0, referent_offset); 706 __ load_heap_oop(local_0, field_address); 707 708 __ mov(r19, r13); // Move senderSP to a callee-saved register 709 // Generate the G1 pre-barrier code to log the value of 710 // the referent field in an SATB buffer. 711 __ enter(); // g1_write may call runtime 712 if (UseShenandoahGC) { 713 __ push_call_clobbered_registers(); 714 } 715 __ g1_write_barrier_pre(noreg /* obj */, 716 local_0 /* pre_val */, 717 rthread /* thread */, 718 rscratch2 /* tmp */, 719 true /* tosca_live */, 720 true /* expand_call */); 721 if (UseShenandoahGC) { 722 __ pop_call_clobbered_registers(); 723 } 724 __ leave(); 725 // areturn 726 __ andr(sp, r19, -16); // done with stack 727 __ ret(lr); 728 729 // generate a vanilla interpreter entry as the slow path 730 __ bind(slow_path); 731 (void) generate_normal_entry(false); 732 733 return entry; 734 } 735 #endif // INCLUDE_ALL_GCS 736 737 // If G1 is not enabled then attempt to go through the accessor entry point 738 // Reference.get is an accessor 739 return generate_accessor_entry(); 740 } 741 742 /** 743 * Method entry for static native methods: 744 * int java.util.zip.CRC32.update(int crc, int b) 745 */ 746 address InterpreterGenerator::generate_CRC32_update_entry() { 747 if (UseCRC32Intrinsics) { 748 address entry = __ pc(); 749 750 // rmethod: Method* 751 // r13: senderSP must preserved for slow path 752 // esp: args 753 754 Label slow_path; 755 // If we need a safepoint check, generate full interpreter entry. 756 ExternalAddress state(SafepointSynchronize::address_of_state()); 757 unsigned long offset; 758 __ adrp(rscratch1, ExternalAddress(SafepointSynchronize::address_of_state()), offset); 759 __ ldrw(rscratch1, Address(rscratch1, offset)); 760 assert(SafepointSynchronize::_not_synchronized == 0, "rewrite this code"); 761 __ cbnz(rscratch1, slow_path); 762 763 // We don't generate local frame and don't align stack because 764 // we call stub code and there is no safepoint on this path. 765 766 // Load parameters 767 const Register crc = c_rarg0; // crc 768 const Register val = c_rarg1; // source java byte value 769 const Register tbl = c_rarg2; // scratch 770 771 // Arguments are reversed on java expression stack 772 __ ldrw(val, Address(esp, 0)); // byte value 773 __ ldrw(crc, Address(esp, wordSize)); // Initial CRC 774 775 __ adrp(tbl, ExternalAddress(StubRoutines::crc_table_addr()), offset); 776 __ add(tbl, tbl, offset); 777 778 __ ornw(crc, zr, crc); // ~crc 779 __ update_byte_crc32(crc, val, tbl); 780 __ ornw(crc, zr, crc); // ~crc 781 782 // result in c_rarg0 783 784 __ andr(sp, r13, -16); 785 __ ret(lr); 786 787 // generate a vanilla native entry as the slow path 788 __ bind(slow_path); 789 790 (void) generate_native_entry(false); 791 792 return entry; 793 } 794 return generate_native_entry(false); 795 } 796 797 /** 798 * Method entry for static native methods: 799 * int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len) 800 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 801 */ 802 address InterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) { 803 if (UseCRC32Intrinsics) { 804 address entry = __ pc(); 805 806 // rmethod,: Method* 807 // r13: senderSP must preserved for slow path 808 809 Label slow_path; 810 // If we need a safepoint check, generate full interpreter entry. 811 ExternalAddress state(SafepointSynchronize::address_of_state()); 812 unsigned long offset; 813 __ adrp(rscratch1, ExternalAddress(SafepointSynchronize::address_of_state()), offset); 814 __ ldrw(rscratch1, Address(rscratch1, offset)); 815 assert(SafepointSynchronize::_not_synchronized == 0, "rewrite this code"); 816 __ cbnz(rscratch1, slow_path); 817 818 // We don't generate local frame and don't align stack because 819 // we call stub code and there is no safepoint on this path. 820 821 // Load parameters 822 const Register crc = c_rarg0; // crc 823 const Register buf = c_rarg1; // source java byte array address 824 const Register len = c_rarg2; // length 825 const Register off = len; // offset (never overlaps with 'len') 826 827 // Arguments are reversed on java expression stack 828 // Calculate address of start element 829 if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { 830 __ ldr(buf, Address(esp, 2*wordSize)); // long buf 831 __ ldrw(off, Address(esp, wordSize)); // offset 832 __ add(buf, buf, off); // + offset 833 __ ldrw(crc, Address(esp, 4*wordSize)); // Initial CRC 834 } else { 835 __ ldr(buf, Address(esp, 2*wordSize)); // byte[] array 836 __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size 837 __ ldrw(off, Address(esp, wordSize)); // offset 838 __ add(buf, buf, off); // + offset 839 __ ldrw(crc, Address(esp, 3*wordSize)); // Initial CRC 840 } 841 // Can now load 'len' since we're finished with 'off' 842 __ ldrw(len, Address(esp, 0x0)); // Length 843 844 __ andr(sp, r13, -16); // Restore the caller's SP 845 846 // We are frameless so we can just jump to the stub. 847 __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32())); 848 849 // generate a vanilla native entry as the slow path 850 __ bind(slow_path); 851 852 (void) generate_native_entry(false); 853 854 return entry; 855 } 856 return generate_native_entry(false); 857 } 858 859 void InterpreterGenerator::bang_stack_shadow_pages(bool native_call) { 860 // Bang each page in the shadow zone. We can't assume it's been done for 861 // an interpreter frame with greater than a page of locals, so each page 862 // needs to be checked. Only true for non-native. 863 if (UseStackBanging) { 864 const int start_page = native_call ? StackShadowPages : 1; 865 const int page_size = os::vm_page_size(); 866 for (int pages = start_page; pages <= StackShadowPages ; pages++) { 867 __ sub(rscratch2, sp, pages*page_size); 868 __ str(zr, Address(rscratch2)); 869 } 870 } 871 } 872 873 874 // Interpreter stub for calling a native method. (asm interpreter) 875 // This sets up a somewhat different looking stack for calling the 876 // native method than the typical interpreter frame setup. 877 address InterpreterGenerator::generate_native_entry(bool synchronized) { 878 // determine code generation flags 879 bool inc_counter = UseCompiler || CountCompiledCalls; 880 881 // r1: Method* 882 // rscratch1: sender sp 883 884 address entry_point = __ pc(); 885 886 const Address constMethod (rmethod, Method::const_offset()); 887 const Address access_flags (rmethod, Method::access_flags_offset()); 888 const Address size_of_parameters(r2, ConstMethod:: 889 size_of_parameters_offset()); 890 891 // get parameter size (always needed) 892 __ ldr(r2, constMethod); 893 __ load_unsigned_short(r2, size_of_parameters); 894 895 // native calls don't need the stack size check since they have no 896 // expression stack and the arguments are already on the stack and 897 // we only add a handful of words to the stack 898 899 // rmethod: Method* 900 // r2: size of parameters 901 // rscratch1: sender sp 902 903 // for natives the size of locals is zero 904 905 // compute beginning of parameters (rlocals) 906 __ add(rlocals, esp, r2, ext::uxtx, 3); 907 __ add(rlocals, rlocals, -wordSize); 908 909 // Pull SP back to minimum size: this avoids holes in the stack 910 __ andr(sp, esp, -16); 911 912 // initialize fixed part of activation frame 913 generate_fixed_frame(true); 914 915 // make sure method is native & not abstract 916 #ifdef ASSERT 917 __ ldrw(r0, access_flags); 918 { 919 Label L; 920 __ tst(r0, JVM_ACC_NATIVE); 921 __ br(Assembler::NE, L); 922 __ stop("tried to execute non-native method as native"); 923 __ bind(L); 924 } 925 { 926 Label L; 927 __ tst(r0, JVM_ACC_ABSTRACT); 928 __ br(Assembler::EQ, L); 929 __ stop("tried to execute abstract method in interpreter"); 930 __ bind(L); 931 } 932 #endif 933 934 // Since at this point in the method invocation the exception 935 // handler would try to exit the monitor of synchronized methods 936 // which hasn't been entered yet, we set the thread local variable 937 // _do_not_unlock_if_synchronized to true. The remove_activation 938 // will check this flag. 939 940 const Address do_not_unlock_if_synchronized(rthread, 941 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 942 __ mov(rscratch2, true); 943 __ strb(rscratch2, do_not_unlock_if_synchronized); 944 945 // increment invocation count & check for overflow 946 Label invocation_counter_overflow; 947 if (inc_counter) { 948 generate_counter_incr(&invocation_counter_overflow, NULL, NULL); 949 } 950 951 Label continue_after_compile; 952 __ bind(continue_after_compile); 953 954 bang_stack_shadow_pages(true); 955 956 // reset the _do_not_unlock_if_synchronized flag 957 __ strb(zr, do_not_unlock_if_synchronized); 958 959 // check for synchronized methods 960 // Must happen AFTER invocation_counter check and stack overflow check, 961 // so method is not locked if overflows. 962 if (synchronized) { 963 lock_method(); 964 } else { 965 // no synchronization necessary 966 #ifdef ASSERT 967 { 968 Label L; 969 __ ldrw(r0, access_flags); 970 __ tst(r0, JVM_ACC_SYNCHRONIZED); 971 __ br(Assembler::EQ, L); 972 __ stop("method needs synchronization"); 973 __ bind(L); 974 } 975 #endif 976 } 977 978 // start execution 979 #ifdef ASSERT 980 { 981 Label L; 982 const Address monitor_block_top(rfp, 983 frame::interpreter_frame_monitor_block_top_offset * wordSize); 984 __ ldr(rscratch1, monitor_block_top); 985 __ cmp(esp, rscratch1); 986 __ br(Assembler::EQ, L); 987 __ stop("broken stack frame setup in interpreter"); 988 __ bind(L); 989 } 990 #endif 991 992 // jvmti support 993 __ notify_method_entry(); 994 995 // work registers 996 const Register t = r17; 997 const Register result_handler = r19; 998 999 // allocate space for parameters 1000 __ ldr(t, Address(rmethod, Method::const_offset())); 1001 __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset())); 1002 1003 __ sub(rscratch1, esp, t, ext::uxtx, Interpreter::logStackElementSize); 1004 __ andr(sp, rscratch1, -16); 1005 __ mov(esp, rscratch1); 1006 1007 // get signature handler 1008 { 1009 Label L; 1010 __ ldr(t, Address(rmethod, Method::signature_handler_offset())); 1011 __ cbnz(t, L); 1012 __ call_VM(noreg, 1013 CAST_FROM_FN_PTR(address, 1014 InterpreterRuntime::prepare_native_call), 1015 rmethod); 1016 __ ldr(t, Address(rmethod, Method::signature_handler_offset())); 1017 __ bind(L); 1018 } 1019 1020 // call signature handler 1021 assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rlocals, 1022 "adjust this code"); 1023 assert(InterpreterRuntime::SignatureHandlerGenerator::to() == sp, 1024 "adjust this code"); 1025 assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1, 1026 "adjust this code"); 1027 1028 // The generated handlers do not touch rmethod (the method). 1029 // However, large signatures cannot be cached and are generated 1030 // each time here. The slow-path generator can do a GC on return, 1031 // so we must reload it after the call. 1032 __ blr(t); 1033 __ get_method(rmethod); // slow path can do a GC, reload rmethod 1034 1035 1036 // result handler is in r0 1037 // set result handler 1038 __ mov(result_handler, r0); 1039 // pass mirror handle if static call 1040 { 1041 Label L; 1042 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 1043 __ ldrw(t, Address(rmethod, Method::access_flags_offset())); 1044 __ tst(t, JVM_ACC_STATIC); 1045 __ br(Assembler::EQ, L); 1046 // get mirror 1047 __ ldr(t, Address(rmethod, Method::const_offset())); 1048 __ ldr(t, Address(t, ConstMethod::constants_offset())); 1049 __ ldr(t, Address(t, ConstantPool::pool_holder_offset_in_bytes())); 1050 __ ldr(t, Address(t, mirror_offset)); 1051 // copy mirror into activation frame 1052 __ str(t, Address(rfp, frame::interpreter_frame_oop_temp_offset * wordSize)); 1053 // pass handle to mirror 1054 __ add(c_rarg1, rfp, frame::interpreter_frame_oop_temp_offset * wordSize); 1055 __ bind(L); 1056 } 1057 1058 // get native function entry point in r10 1059 { 1060 Label L; 1061 __ ldr(r10, Address(rmethod, Method::native_function_offset())); 1062 address unsatisfied = (SharedRuntime::native_method_throw_unsatisfied_link_error_entry()); 1063 __ mov(rscratch2, unsatisfied); 1064 __ ldr(rscratch2, rscratch2); 1065 __ cmp(r10, rscratch2); 1066 __ br(Assembler::NE, L); 1067 __ call_VM(noreg, 1068 CAST_FROM_FN_PTR(address, 1069 InterpreterRuntime::prepare_native_call), 1070 rmethod); 1071 __ get_method(rmethod); 1072 __ ldr(r10, Address(rmethod, Method::native_function_offset())); 1073 __ bind(L); 1074 } 1075 1076 // pass JNIEnv 1077 __ add(c_rarg0, rthread, in_bytes(JavaThread::jni_environment_offset())); 1078 1079 // Set the last Java PC in the frame anchor to be the return address from 1080 // the call to the native method: this will allow the debugger to 1081 // generate an accurate stack trace. 1082 Label native_return; 1083 __ set_last_Java_frame(esp, rfp, native_return, rscratch1); 1084 1085 // change thread state 1086 #ifdef ASSERT 1087 { 1088 Label L; 1089 __ ldrw(t, Address(rthread, JavaThread::thread_state_offset())); 1090 __ cmp(t, _thread_in_Java); 1091 __ br(Assembler::EQ, L); 1092 __ stop("Wrong thread state in native stub"); 1093 __ bind(L); 1094 } 1095 #endif 1096 1097 // Change state to native 1098 __ mov(rscratch1, _thread_in_native); 1099 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1100 __ stlrw(rscratch1, rscratch2); 1101 1102 // Call the native method. 1103 __ blr(r10); 1104 __ bind(native_return); 1105 __ maybe_isb(); 1106 __ get_method(rmethod); 1107 // result potentially in r0 or v0 1108 1109 // make room for the pushes we're about to do 1110 __ sub(rscratch1, esp, 4 * wordSize); 1111 __ andr(sp, rscratch1, -16); 1112 1113 // NOTE: The order of these pushes is known to frame::interpreter_frame_result 1114 // in order to extract the result of a method call. If the order of these 1115 // pushes change or anything else is added to the stack then the code in 1116 // interpreter_frame_result must also change. 1117 __ push(dtos); 1118 __ push(ltos); 1119 1120 // change thread state 1121 __ mov(rscratch1, _thread_in_native_trans); 1122 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1123 __ stlrw(rscratch1, rscratch2); 1124 1125 if (os::is_MP()) { 1126 if (UseMembar) { 1127 // Force this write out before the read below 1128 __ dsb(Assembler::SY); 1129 } else { 1130 // Write serialization page so VM thread can do a pseudo remote membar. 1131 // We use the current thread pointer to calculate a thread specific 1132 // offset to write to within the page. This minimizes bus traffic 1133 // due to cache line collision. 1134 __ serialize_memory(rthread, rscratch2); 1135 } 1136 } 1137 1138 // check for safepoint operation in progress and/or pending suspend requests 1139 { 1140 Label Continue; 1141 { 1142 unsigned long offset; 1143 __ adrp(rscratch2, SafepointSynchronize::address_of_state(), offset); 1144 __ ldrw(rscratch2, Address(rscratch2, offset)); 1145 } 1146 assert(SafepointSynchronize::_not_synchronized == 0, 1147 "SafepointSynchronize::_not_synchronized"); 1148 Label L; 1149 __ cbnz(rscratch2, L); 1150 __ ldrw(rscratch2, Address(rthread, JavaThread::suspend_flags_offset())); 1151 __ cbz(rscratch2, Continue); 1152 __ bind(L); 1153 1154 // Don't use call_VM as it will see a possible pending exception 1155 // and forward it and never return here preventing us from 1156 // clearing _last_native_pc down below. Also can't use 1157 // call_VM_leaf either as it will check to see if r13 & r14 are 1158 // preserved and correspond to the bcp/locals pointers. So we do a 1159 // runtime call by hand. 1160 // 1161 __ mov(c_rarg0, rthread); 1162 __ mov(rscratch2, CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)); 1163 __ blr(rscratch2); 1164 __ maybe_isb(); 1165 __ get_method(rmethod); 1166 __ reinit_heapbase(); 1167 __ bind(Continue); 1168 } 1169 1170 // change thread state 1171 __ mov(rscratch1, _thread_in_Java); 1172 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1173 __ stlrw(rscratch1, rscratch2); 1174 1175 // reset_last_Java_frame 1176 __ reset_last_Java_frame(true); 1177 1178 // reset handle block 1179 __ ldr(t, Address(rthread, JavaThread::active_handles_offset())); 1180 __ str(zr, Address(t, JNIHandleBlock::top_offset_in_bytes())); 1181 1182 // If result is an oop unbox and store it in frame where gc will see it 1183 // and result handler will pick it up 1184 1185 { 1186 Label no_oop, not_weak, store_result; 1187 __ adr(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT))); 1188 __ cmp(t, result_handler); 1189 __ br(Assembler::NE, no_oop); 1190 // Unbox oop result, e.g. JNIHandles::resolve result. 1191 __ pop(ltos); 1192 __ cbz(r0, store_result); // Use NULL as-is. 1193 STATIC_ASSERT(JNIHandles::weak_tag_mask == 1u); 1194 __ tbz(r0, 0, not_weak); // Test for jweak tag. 1195 // Resolve jweak. 1196 __ ldr(r0, Address(r0, -JNIHandles::weak_tag_value)); 1197 #if INCLUDE_ALL_GCS 1198 if (UseG1GC || (UseShenandoahGC && ShenandoahSATBBarrier)) { 1199 __ enter(); // Barrier may call runtime. 1200 __ g1_write_barrier_pre(noreg /* obj */, 1201 r0 /* pre_val */, 1202 rthread /* thread */, 1203 t /* tmp */, 1204 true /* tosca_live */, 1205 true /* expand_call */); 1206 __ leave(); 1207 } 1208 #endif // INCLUDE_ALL_GCS 1209 __ b(store_result); 1210 __ bind(not_weak); 1211 // Resolve (untagged) jobject. 1212 __ ldr(r0, Address(r0, 0)); 1213 __ bind(store_result); 1214 __ str(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize)); 1215 // keep stack depth as expected by pushing oop which will eventually be discarded 1216 __ push(ltos); 1217 __ bind(no_oop); 1218 } 1219 1220 { 1221 Label no_reguard; 1222 __ lea(rscratch1, Address(rthread, in_bytes(JavaThread::stack_guard_state_offset()))); 1223 __ ldrb(rscratch1, Address(rscratch1)); 1224 __ cmp(rscratch1, JavaThread::stack_guard_yellow_disabled); 1225 __ br(Assembler::NE, no_reguard); 1226 1227 __ pusha(); // XXX only save smashed registers 1228 __ mov(c_rarg0, rthread); 1229 __ mov(rscratch2, CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)); 1230 __ blr(rscratch2); 1231 __ popa(); // XXX only restore smashed registers 1232 __ bind(no_reguard); 1233 } 1234 1235 // The method register is junk from after the thread_in_native transition 1236 // until here. Also can't call_VM until the bcp has been 1237 // restored. Need bcp for throwing exception below so get it now. 1238 __ get_method(rmethod); 1239 1240 // restore bcp to have legal interpreter frame, i.e., bci == 0 <=> 1241 // rbcp == code_base() 1242 __ ldr(rbcp, Address(rmethod, Method::const_offset())); // get ConstMethod* 1243 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); // get codebase 1244 // handle exceptions (exception handling will handle unlocking!) 1245 { 1246 Label L; 1247 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 1248 __ cbz(rscratch1, L); 1249 // Note: At some point we may want to unify this with the code 1250 // used in call_VM_base(); i.e., we should use the 1251 // StubRoutines::forward_exception code. For now this doesn't work 1252 // here because the rsp is not correctly set at this point. 1253 __ MacroAssembler::call_VM(noreg, 1254 CAST_FROM_FN_PTR(address, 1255 InterpreterRuntime::throw_pending_exception)); 1256 __ should_not_reach_here(); 1257 __ bind(L); 1258 } 1259 1260 // do unlocking if necessary 1261 { 1262 Label L; 1263 __ ldrw(t, Address(rmethod, Method::access_flags_offset())); 1264 __ tst(t, JVM_ACC_SYNCHRONIZED); 1265 __ br(Assembler::EQ, L); 1266 // the code below should be shared with interpreter macro 1267 // assembler implementation 1268 { 1269 Label unlock; 1270 // BasicObjectLock will be first in list, since this is a 1271 // synchronized method. However, need to check that the object 1272 // has not been unlocked by an explicit monitorexit bytecode. 1273 1274 // monitor expect in c_rarg1 for slow unlock path 1275 __ lea (c_rarg1, Address(rfp, // address of first monitor 1276 (intptr_t)(frame::interpreter_frame_initial_sp_offset * 1277 wordSize - sizeof(BasicObjectLock)))); 1278 1279 __ ldr(t, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); 1280 __ cbnz(t, unlock); 1281 1282 // Entry already unlocked, need to throw exception 1283 __ MacroAssembler::call_VM(noreg, 1284 CAST_FROM_FN_PTR(address, 1285 InterpreterRuntime::throw_illegal_monitor_state_exception)); 1286 __ should_not_reach_here(); 1287 1288 __ bind(unlock); 1289 __ unlock_object(c_rarg1); 1290 } 1291 __ bind(L); 1292 } 1293 1294 // jvmti support 1295 // Note: This must happen _after_ handling/throwing any exceptions since 1296 // the exception handler code notifies the runtime of method exits 1297 // too. If this happens before, method entry/exit notifications are 1298 // not properly paired (was bug - gri 11/22/99). 1299 __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI); 1300 1301 // restore potential result in r0:d0, call result handler to 1302 // restore potential result in ST0 & handle result 1303 1304 __ pop(ltos); 1305 __ pop(dtos); 1306 1307 __ blr(result_handler); 1308 1309 // remove activation 1310 __ ldr(esp, Address(rfp, 1311 frame::interpreter_frame_sender_sp_offset * 1312 wordSize)); // get sender sp 1313 // remove frame anchor 1314 __ leave(); 1315 1316 // resture sender sp 1317 __ mov(sp, esp); 1318 1319 __ ret(lr); 1320 1321 if (inc_counter) { 1322 // Handle overflow of counter and compile method 1323 __ bind(invocation_counter_overflow); 1324 generate_counter_overflow(&continue_after_compile); 1325 } 1326 1327 return entry_point; 1328 } 1329 1330 // 1331 // Generic interpreted method entry to (asm) interpreter 1332 // 1333 address InterpreterGenerator::generate_normal_entry(bool synchronized) { 1334 // determine code generation flags 1335 bool inc_counter = UseCompiler || CountCompiledCalls; 1336 1337 // rscratch1: sender sp 1338 address entry_point = __ pc(); 1339 1340 const Address constMethod(rmethod, Method::const_offset()); 1341 const Address access_flags(rmethod, Method::access_flags_offset()); 1342 const Address size_of_parameters(r3, 1343 ConstMethod::size_of_parameters_offset()); 1344 const Address size_of_locals(r3, ConstMethod::size_of_locals_offset()); 1345 1346 // get parameter size (always needed) 1347 // need to load the const method first 1348 __ ldr(r3, constMethod); 1349 __ load_unsigned_short(r2, size_of_parameters); 1350 1351 // r2: size of parameters 1352 1353 __ load_unsigned_short(r3, size_of_locals); // get size of locals in words 1354 __ sub(r3, r3, r2); // r3 = no. of additional locals 1355 1356 // see if we've got enough room on the stack for locals plus overhead. 1357 generate_stack_overflow_check(); 1358 1359 // compute beginning of parameters (rlocals) 1360 __ add(rlocals, esp, r2, ext::uxtx, 3); 1361 __ sub(rlocals, rlocals, wordSize); 1362 1363 // Make room for locals 1364 __ sub(rscratch1, esp, r3, ext::uxtx, 3); 1365 __ andr(sp, rscratch1, -16); 1366 1367 // r3 - # of additional locals 1368 // allocate space for locals 1369 // explicitly initialize locals 1370 { 1371 Label exit, loop; 1372 __ ands(zr, r3, r3); 1373 __ br(Assembler::LE, exit); // do nothing if r3 <= 0 1374 __ bind(loop); 1375 __ str(zr, Address(__ post(rscratch1, wordSize))); 1376 __ sub(r3, r3, 1); // until everything initialized 1377 __ cbnz(r3, loop); 1378 __ bind(exit); 1379 } 1380 1381 // And the base dispatch table 1382 __ get_dispatch(); 1383 1384 // initialize fixed part of activation frame 1385 generate_fixed_frame(false); 1386 1387 // make sure method is not native & not abstract 1388 #ifdef ASSERT 1389 __ ldrw(r0, access_flags); 1390 { 1391 Label L; 1392 __ tst(r0, JVM_ACC_NATIVE); 1393 __ br(Assembler::EQ, L); 1394 __ stop("tried to execute native method as non-native"); 1395 __ bind(L); 1396 } 1397 { 1398 Label L; 1399 __ tst(r0, JVM_ACC_ABSTRACT); 1400 __ br(Assembler::EQ, L); 1401 __ stop("tried to execute abstract method in interpreter"); 1402 __ bind(L); 1403 } 1404 #endif 1405 1406 // Since at this point in the method invocation the exception 1407 // handler would try to exit the monitor of synchronized methods 1408 // which hasn't been entered yet, we set the thread local variable 1409 // _do_not_unlock_if_synchronized to true. The remove_activation 1410 // will check this flag. 1411 1412 const Address do_not_unlock_if_synchronized(rthread, 1413 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 1414 __ mov(rscratch2, true); 1415 __ strb(rscratch2, do_not_unlock_if_synchronized); 1416 1417 // increment invocation count & check for overflow 1418 Label invocation_counter_overflow; 1419 Label profile_method; 1420 Label profile_method_continue; 1421 if (inc_counter) { 1422 generate_counter_incr(&invocation_counter_overflow, 1423 &profile_method, 1424 &profile_method_continue); 1425 if (ProfileInterpreter) { 1426 __ bind(profile_method_continue); 1427 } 1428 } 1429 1430 Label continue_after_compile; 1431 __ bind(continue_after_compile); 1432 1433 bang_stack_shadow_pages(false); 1434 1435 // reset the _do_not_unlock_if_synchronized flag 1436 __ strb(zr, do_not_unlock_if_synchronized); 1437 1438 // check for synchronized methods 1439 // Must happen AFTER invocation_counter check and stack overflow check, 1440 // so method is not locked if overflows. 1441 if (synchronized) { 1442 // Allocate monitor and lock method 1443 lock_method(); 1444 } else { 1445 // no synchronization necessary 1446 #ifdef ASSERT 1447 { 1448 Label L; 1449 __ ldrw(r0, access_flags); 1450 __ tst(r0, JVM_ACC_SYNCHRONIZED); 1451 __ br(Assembler::EQ, L); 1452 __ stop("method needs synchronization"); 1453 __ bind(L); 1454 } 1455 #endif 1456 } 1457 1458 // start execution 1459 #ifdef ASSERT 1460 { 1461 Label L; 1462 const Address monitor_block_top (rfp, 1463 frame::interpreter_frame_monitor_block_top_offset * wordSize); 1464 __ ldr(rscratch1, monitor_block_top); 1465 __ cmp(esp, rscratch1); 1466 __ br(Assembler::EQ, L); 1467 __ stop("broken stack frame setup in interpreter"); 1468 __ bind(L); 1469 } 1470 #endif 1471 1472 // jvmti support 1473 __ notify_method_entry(); 1474 1475 __ dispatch_next(vtos); 1476 1477 // invocation counter overflow 1478 if (inc_counter) { 1479 if (ProfileInterpreter) { 1480 // We have decided to profile this method in the interpreter 1481 __ bind(profile_method); 1482 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method)); 1483 __ set_method_data_pointer_for_bcp(); 1484 // don't think we need this 1485 __ get_method(r1); 1486 __ b(profile_method_continue); 1487 } 1488 // Handle overflow of counter and compile method 1489 __ bind(invocation_counter_overflow); 1490 generate_counter_overflow(&continue_after_compile); 1491 } 1492 1493 return entry_point; 1494 } 1495 1496 // Entry points 1497 // 1498 // Here we generate the various kind of entries into the interpreter. 1499 // The two main entry type are generic bytecode methods and native 1500 // call method. These both come in synchronized and non-synchronized 1501 // versions but the frame layout they create is very similar. The 1502 // other method entry types are really just special purpose entries 1503 // that are really entry and interpretation all in one. These are for 1504 // trivial methods like accessor, empty, or special math methods. 1505 // 1506 // When control flow reaches any of the entry types for the interpreter 1507 // the following holds -> 1508 // 1509 // Arguments: 1510 // 1511 // rmethod: Method* 1512 // 1513 // Stack layout immediately at entry 1514 // 1515 // [ return address ] <--- rsp 1516 // [ parameter n ] 1517 // ... 1518 // [ parameter 1 ] 1519 // [ expression stack ] (caller's java expression stack) 1520 1521 // Assuming that we don't go to one of the trivial specialized entries 1522 // the stack will look like below when we are ready to execute the 1523 // first bytecode (or call the native routine). The register usage 1524 // will be as the template based interpreter expects (see 1525 // interpreter_aarch64.hpp). 1526 // 1527 // local variables follow incoming parameters immediately; i.e. 1528 // the return address is moved to the end of the locals). 1529 // 1530 // [ monitor entry ] <--- esp 1531 // ... 1532 // [ monitor entry ] 1533 // [ expr. stack bottom ] 1534 // [ saved rbcp ] 1535 // [ current rlocals ] 1536 // [ Method* ] 1537 // [ saved rfp ] <--- rfp 1538 // [ return address ] 1539 // [ local variable m ] 1540 // ... 1541 // [ local variable 1 ] 1542 // [ parameter n ] 1543 // ... 1544 // [ parameter 1 ] <--- rlocals 1545 1546 address AbstractInterpreterGenerator::generate_method_entry( 1547 AbstractInterpreter::MethodKind kind) { 1548 // determine code generation flags 1549 bool synchronized = false; 1550 address entry_point = NULL; 1551 1552 switch (kind) { 1553 case Interpreter::zerolocals : break; 1554 case Interpreter::zerolocals_synchronized: synchronized = true; break; 1555 case Interpreter::native : entry_point = ((InterpreterGenerator*) this)->generate_native_entry(false); break; 1556 case Interpreter::native_synchronized : entry_point = ((InterpreterGenerator*) this)->generate_native_entry(true); break; 1557 case Interpreter::empty : entry_point = ((InterpreterGenerator*) this)->generate_empty_entry(); break; 1558 case Interpreter::accessor : entry_point = ((InterpreterGenerator*) this)->generate_accessor_entry(); break; 1559 case Interpreter::abstract : entry_point = ((InterpreterGenerator*) this)->generate_abstract_entry(); break; 1560 1561 case Interpreter::java_lang_math_sin : // fall thru 1562 case Interpreter::java_lang_math_cos : // fall thru 1563 case Interpreter::java_lang_math_tan : // fall thru 1564 case Interpreter::java_lang_math_abs : // fall thru 1565 case Interpreter::java_lang_math_log : // fall thru 1566 case Interpreter::java_lang_math_log10 : // fall thru 1567 case Interpreter::java_lang_math_sqrt : // fall thru 1568 case Interpreter::java_lang_math_pow : // fall thru 1569 case Interpreter::java_lang_math_exp : entry_point = ((InterpreterGenerator*) this)->generate_math_entry(kind); break; 1570 case Interpreter::java_lang_ref_reference_get 1571 : entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break; 1572 case Interpreter::java_util_zip_CRC32_update 1573 : entry_point = ((InterpreterGenerator*)this)->generate_CRC32_update_entry(); break; 1574 case Interpreter::java_util_zip_CRC32_updateBytes 1575 : // fall thru 1576 case Interpreter::java_util_zip_CRC32_updateByteBuffer 1577 : entry_point = ((InterpreterGenerator*)this)->generate_CRC32_updateBytes_entry(kind); break; 1578 default : ShouldNotReachHere(); break; 1579 } 1580 1581 if (entry_point) { 1582 return entry_point; 1583 } 1584 1585 return ((InterpreterGenerator*) this)-> 1586 generate_normal_entry(synchronized); 1587 } 1588 1589 1590 // These should never be compiled since the interpreter will prefer 1591 // the compiled version to the intrinsic version. 1592 bool AbstractInterpreter::can_be_compiled(methodHandle m) { 1593 switch (method_kind(m)) { 1594 case Interpreter::java_lang_math_sin : // fall thru 1595 case Interpreter::java_lang_math_cos : // fall thru 1596 case Interpreter::java_lang_math_tan : // fall thru 1597 case Interpreter::java_lang_math_abs : // fall thru 1598 case Interpreter::java_lang_math_log : // fall thru 1599 case Interpreter::java_lang_math_log10 : // fall thru 1600 case Interpreter::java_lang_math_sqrt : // fall thru 1601 case Interpreter::java_lang_math_pow : // fall thru 1602 case Interpreter::java_lang_math_exp : 1603 return false; 1604 default: 1605 return true; 1606 } 1607 } 1608 1609 // How much stack a method activation needs in words. 1610 int AbstractInterpreter::size_top_interpreter_activation(Method* method) { 1611 const int entry_size = frame::interpreter_frame_monitor_size(); 1612 1613 // total overhead size: entry_size + (saved rfp thru expr stack 1614 // bottom). be sure to change this if you add/subtract anything 1615 // to/from the overhead area 1616 const int overhead_size = 1617 -(frame::interpreter_frame_initial_sp_offset) + entry_size; 1618 1619 const int stub_code = frame::entry_frame_after_call_words; 1620 const int method_stack = (method->max_locals() + method->max_stack()) * 1621 Interpreter::stackElementWords; 1622 return (overhead_size + method_stack + stub_code); 1623 } 1624 1625 // asm based interpreter deoptimization helpers 1626 int AbstractInterpreter::size_activation(int max_stack, 1627 int temps, 1628 int extra_args, 1629 int monitors, 1630 int callee_params, 1631 int callee_locals, 1632 bool is_top_frame) { 1633 // Note: This calculation must exactly parallel the frame setup 1634 // in AbstractInterpreterGenerator::generate_method_entry. 1635 1636 // fixed size of an interpreter frame: 1637 int overhead = frame::sender_sp_offset - 1638 frame::interpreter_frame_initial_sp_offset; 1639 // Our locals were accounted for by the caller (or last_frame_adjust 1640 // on the transistion) Since the callee parameters already account 1641 // for the callee's params we only need to account for the extra 1642 // locals. 1643 int size = overhead + 1644 (callee_locals - callee_params) + 1645 monitors * frame::interpreter_frame_monitor_size() + 1646 // On the top frame, at all times SP <= ESP, and SP is 1647 // 16-aligned. We ensure this by adjusting SP on method 1648 // entry and re-entry to allow room for the maximum size of 1649 // the expression stack. When we call another method we bump 1650 // SP so that no stack space is wasted. So, only on the top 1651 // frame do we need to allow max_stack words. 1652 (is_top_frame ? max_stack : temps + extra_args); 1653 1654 // On AArch64 we always keep the stack pointer 16-aligned, so we 1655 // must round up here. 1656 size = round_to(size, 2); 1657 1658 return size; 1659 } 1660 1661 void AbstractInterpreter::layout_activation(Method* method, 1662 int tempcount, 1663 int popframe_extra_args, 1664 int moncount, 1665 int caller_actual_parameters, 1666 int callee_param_count, 1667 int callee_locals, 1668 frame* caller, 1669 frame* interpreter_frame, 1670 bool is_top_frame, 1671 bool is_bottom_frame) { 1672 // The frame interpreter_frame is guaranteed to be the right size, 1673 // as determined by a previous call to the size_activation() method. 1674 // It is also guaranteed to be walkable even though it is in a 1675 // skeletal state 1676 1677 int max_locals = method->max_locals() * Interpreter::stackElementWords; 1678 int extra_locals = (method->max_locals() - method->size_of_parameters()) * 1679 Interpreter::stackElementWords; 1680 1681 #ifdef ASSERT 1682 assert(caller->sp() == interpreter_frame->sender_sp(), "Frame not properly walkable"); 1683 #endif 1684 1685 interpreter_frame->interpreter_frame_set_method(method); 1686 // NOTE the difference in using sender_sp and 1687 // interpreter_frame_sender_sp interpreter_frame_sender_sp is 1688 // the original sp of the caller (the unextended_sp) and 1689 // sender_sp is fp+8/16 (32bit/64bit) XXX 1690 intptr_t* locals = interpreter_frame->sender_sp() + max_locals - 1; 1691 1692 #ifdef ASSERT 1693 if (caller->is_interpreted_frame()) { 1694 assert(locals < caller->fp() + frame::interpreter_frame_initial_sp_offset, "bad placement"); 1695 } 1696 #endif 1697 1698 interpreter_frame->interpreter_frame_set_locals(locals); 1699 BasicObjectLock* montop = interpreter_frame->interpreter_frame_monitor_begin(); 1700 BasicObjectLock* monbot = montop - moncount; 1701 interpreter_frame->interpreter_frame_set_monitor_end(monbot); 1702 1703 // Set last_sp 1704 intptr_t* esp = (intptr_t*) monbot - 1705 tempcount*Interpreter::stackElementWords - 1706 popframe_extra_args; 1707 interpreter_frame->interpreter_frame_set_last_sp(esp); 1708 1709 // All frames but the initial (oldest) interpreter frame we fill in have 1710 // a value for sender_sp that allows walking the stack but isn't 1711 // truly correct. Correct the value here. 1712 if (extra_locals != 0 && 1713 interpreter_frame->sender_sp() == 1714 interpreter_frame->interpreter_frame_sender_sp()) { 1715 interpreter_frame->set_interpreter_frame_sender_sp(caller->sp() + 1716 extra_locals); 1717 } 1718 *interpreter_frame->interpreter_frame_cache_addr() = 1719 method->constants()->cache(); 1720 } 1721 1722 1723 //----------------------------------------------------------------------------- 1724 // Exceptions 1725 1726 void TemplateInterpreterGenerator::generate_throw_exception() { 1727 // Entry point in previous activation (i.e., if the caller was 1728 // interpreted) 1729 Interpreter::_rethrow_exception_entry = __ pc(); 1730 // Restore sp to interpreter_frame_last_sp even though we are going 1731 // to empty the expression stack for the exception processing. 1732 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1733 // r0: exception 1734 // r3: return address/pc that threw exception 1735 __ restore_bcp(); // rbcp points to call/send 1736 __ restore_locals(); 1737 __ restore_constant_pool_cache(); 1738 __ reinit_heapbase(); // restore rheapbase as heapbase. 1739 __ get_dispatch(); 1740 1741 // Entry point for exceptions thrown within interpreter code 1742 Interpreter::_throw_exception_entry = __ pc(); 1743 // If we came here via a NullPointerException on the receiver of a 1744 // method, rmethod may be corrupt. 1745 __ get_method(rmethod); 1746 // expression stack is undefined here 1747 // r0: exception 1748 // rbcp: exception bcp 1749 __ verify_oop(r0); 1750 __ mov(c_rarg1, r0); 1751 1752 // expression stack must be empty before entering the VM in case of 1753 // an exception 1754 __ empty_expression_stack(); 1755 // find exception handler address and preserve exception oop 1756 __ call_VM(r3, 1757 CAST_FROM_FN_PTR(address, 1758 InterpreterRuntime::exception_handler_for_exception), 1759 c_rarg1); 1760 1761 // Calculate stack limit 1762 __ ldr(rscratch1, Address(rmethod, Method::const_offset())); 1763 __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset())); 1764 __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() 1765 + (EnableInvokeDynamic ? 2 : 0) + 2); 1766 __ ldr(rscratch2, 1767 Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize)); 1768 __ sub(rscratch1, rscratch2, rscratch1, ext::uxtx, 3); 1769 __ andr(sp, rscratch1, -16); 1770 1771 // r0: exception handler entry point 1772 // r3: preserved exception oop 1773 // rbcp: bcp for exception handler 1774 __ push_ptr(r3); // push exception which is now the only value on the stack 1775 __ br(r0); // jump to exception handler (may be _remove_activation_entry!) 1776 1777 // If the exception is not handled in the current frame the frame is 1778 // removed and the exception is rethrown (i.e. exception 1779 // continuation is _rethrow_exception). 1780 // 1781 // Note: At this point the bci is still the bxi for the instruction 1782 // which caused the exception and the expression stack is 1783 // empty. Thus, for any VM calls at this point, GC will find a legal 1784 // oop map (with empty expression stack). 1785 1786 // 1787 // JVMTI PopFrame support 1788 // 1789 1790 Interpreter::_remove_activation_preserving_args_entry = __ pc(); 1791 __ empty_expression_stack(); 1792 // Set the popframe_processing bit in pending_popframe_condition 1793 // indicating that we are currently handling popframe, so that 1794 // call_VMs that may happen later do not trigger new popframe 1795 // handling cycles. 1796 __ ldrw(r3, Address(rthread, JavaThread::popframe_condition_offset())); 1797 __ orr(r3, r3, JavaThread::popframe_processing_bit); 1798 __ strw(r3, Address(rthread, JavaThread::popframe_condition_offset())); 1799 1800 { 1801 // Check to see whether we are returning to a deoptimized frame. 1802 // (The PopFrame call ensures that the caller of the popped frame is 1803 // either interpreted or compiled and deoptimizes it if compiled.) 1804 // In this case, we can't call dispatch_next() after the frame is 1805 // popped, but instead must save the incoming arguments and restore 1806 // them after deoptimization has occurred. 1807 // 1808 // Note that we don't compare the return PC against the 1809 // deoptimization blob's unpack entry because of the presence of 1810 // adapter frames in C2. 1811 Label caller_not_deoptimized; 1812 __ ldr(c_rarg1, Address(rfp, frame::return_addr_offset * wordSize)); 1813 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 1814 InterpreterRuntime::interpreter_contains), c_rarg1); 1815 __ cbnz(r0, caller_not_deoptimized); 1816 1817 // Compute size of arguments for saving when returning to 1818 // deoptimized caller 1819 __ get_method(r0); 1820 __ ldr(r0, Address(r0, Method::const_offset())); 1821 __ load_unsigned_short(r0, Address(r0, in_bytes(ConstMethod:: 1822 size_of_parameters_offset()))); 1823 __ lsl(r0, r0, Interpreter::logStackElementSize); 1824 __ restore_locals(); // XXX do we need this? 1825 __ sub(rlocals, rlocals, r0); 1826 __ add(rlocals, rlocals, wordSize); 1827 // Save these arguments 1828 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 1829 Deoptimization:: 1830 popframe_preserve_args), 1831 rthread, r0, rlocals); 1832 1833 __ remove_activation(vtos, 1834 /* throw_monitor_exception */ false, 1835 /* install_monitor_exception */ false, 1836 /* notify_jvmdi */ false); 1837 1838 // Inform deoptimization that it is responsible for restoring 1839 // these arguments 1840 __ mov(rscratch1, JavaThread::popframe_force_deopt_reexecution_bit); 1841 __ strw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset())); 1842 1843 // Continue in deoptimization handler 1844 __ ret(lr); 1845 1846 __ bind(caller_not_deoptimized); 1847 } 1848 1849 __ remove_activation(vtos, 1850 /* throw_monitor_exception */ false, 1851 /* install_monitor_exception */ false, 1852 /* notify_jvmdi */ false); 1853 1854 // Restore the last_sp and null it out 1855 __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1856 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1857 1858 __ restore_bcp(); 1859 __ restore_locals(); 1860 __ restore_constant_pool_cache(); 1861 __ get_method(rmethod); 1862 __ get_dispatch(); 1863 1864 // The method data pointer was incremented already during 1865 // call profiling. We have to restore the mdp for the current bcp. 1866 if (ProfileInterpreter) { 1867 __ set_method_data_pointer_for_bcp(); 1868 } 1869 1870 // Clear the popframe condition flag 1871 __ strw(zr, Address(rthread, JavaThread::popframe_condition_offset())); 1872 assert(JavaThread::popframe_inactive == 0, "fix popframe_inactive"); 1873 1874 #if INCLUDE_JVMTI 1875 if (EnableInvokeDynamic) { 1876 Label L_done; 1877 1878 __ ldrb(rscratch1, Address(rbcp, 0)); 1879 __ cmpw(rscratch1, Bytecodes::_invokestatic); 1880 __ br(Assembler::NE, L_done); 1881 1882 // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call. 1883 // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL. 1884 1885 __ ldr(c_rarg0, Address(rlocals, 0)); 1886 __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), c_rarg0, rmethod, rbcp); 1887 1888 __ cbz(r0, L_done); 1889 1890 __ str(r0, Address(esp, 0)); 1891 __ bind(L_done); 1892 } 1893 #endif // INCLUDE_JVMTI 1894 1895 // Restore machine SP 1896 __ ldr(rscratch1, Address(rmethod, Method::const_offset())); 1897 __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset())); 1898 __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() 1899 + (EnableInvokeDynamic ? 2 : 0)); 1900 __ ldr(rscratch2, 1901 Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize)); 1902 __ sub(rscratch1, rscratch2, rscratch1, ext::uxtw, 3); 1903 __ andr(sp, rscratch1, -16); 1904 1905 __ dispatch_next(vtos); 1906 // end of PopFrame support 1907 1908 Interpreter::_remove_activation_entry = __ pc(); 1909 1910 // preserve exception over this code sequence 1911 __ pop_ptr(r0); 1912 __ str(r0, Address(rthread, JavaThread::vm_result_offset())); 1913 // remove the activation (without doing throws on illegalMonitorExceptions) 1914 __ remove_activation(vtos, false, true, false); 1915 // restore exception 1916 __ get_vm_result(r0, rthread); 1917 1918 // In between activations - previous activation type unknown yet 1919 // compute continuation point - the continuation point expects the 1920 // following registers set up: 1921 // 1922 // r0: exception 1923 // lr: return address/pc that threw exception 1924 // esp: expression stack of caller 1925 // rfp: fp of caller 1926 __ stp(r0, lr, Address(__ pre(sp, -2 * wordSize))); // save exception & return address 1927 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 1928 SharedRuntime::exception_handler_for_return_address), 1929 rthread, lr); 1930 __ mov(r1, r0); // save exception handler 1931 __ ldp(r0, lr, Address(__ post(sp, 2 * wordSize))); // restore exception & return address 1932 // We might be returning to a deopt handler that expects r3 to 1933 // contain the exception pc 1934 __ mov(r3, lr); 1935 // Note that an "issuing PC" is actually the next PC after the call 1936 __ br(r1); // jump to exception 1937 // handler of caller 1938 } 1939 1940 1941 // 1942 // JVMTI ForceEarlyReturn support 1943 // 1944 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) { 1945 address entry = __ pc(); 1946 1947 __ restore_bcp(); 1948 __ restore_locals(); 1949 __ empty_expression_stack(); 1950 __ load_earlyret_value(state); 1951 1952 __ ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 1953 Address cond_addr(rscratch1, JvmtiThreadState::earlyret_state_offset()); 1954 1955 // Clear the earlyret state 1956 assert(JvmtiThreadState::earlyret_inactive == 0, "should be"); 1957 __ str(zr, cond_addr); 1958 1959 __ remove_activation(state, 1960 false, /* throw_monitor_exception */ 1961 false, /* install_monitor_exception */ 1962 true); /* notify_jvmdi */ 1963 __ ret(lr); 1964 1965 return entry; 1966 } // end of ForceEarlyReturn support 1967 1968 1969 1970 //----------------------------------------------------------------------------- 1971 // Helper for vtos entry point generation 1972 1973 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, 1974 address& bep, 1975 address& cep, 1976 address& sep, 1977 address& aep, 1978 address& iep, 1979 address& lep, 1980 address& fep, 1981 address& dep, 1982 address& vep) { 1983 assert(t->is_valid() && t->tos_in() == vtos, "illegal template"); 1984 Label L; 1985 aep = __ pc(); __ push_ptr(); __ b(L); 1986 fep = __ pc(); __ push_f(); __ b(L); 1987 dep = __ pc(); __ push_d(); __ b(L); 1988 lep = __ pc(); __ push_l(); __ b(L); 1989 bep = cep = sep = 1990 iep = __ pc(); __ push_i(); 1991 vep = __ pc(); 1992 __ bind(L); 1993 generate_and_dispatch(t); 1994 } 1995 1996 //----------------------------------------------------------------------------- 1997 // Generation of individual instructions 1998 1999 // helpers for generate_and_dispatch 2000 2001 2002 InterpreterGenerator::InterpreterGenerator(StubQueue* code) 2003 : TemplateInterpreterGenerator(code) { 2004 generate_all(); // down here so it can be "virtual" 2005 } 2006 2007 //----------------------------------------------------------------------------- 2008 2009 // Non-product code 2010 #ifndef PRODUCT 2011 address TemplateInterpreterGenerator::generate_trace_code(TosState state) { 2012 address entry = __ pc(); 2013 2014 __ push(lr); 2015 __ push(state); 2016 __ push(RegSet::range(r0, r15), sp); 2017 __ mov(c_rarg2, r0); // Pass itos 2018 __ call_VM(noreg, 2019 CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), 2020 c_rarg1, c_rarg2, c_rarg3); 2021 __ pop(RegSet::range(r0, r15), sp); 2022 __ pop(state); 2023 __ pop(lr); 2024 __ ret(lr); // return from result handler 2025 2026 return entry; 2027 } 2028 2029 void TemplateInterpreterGenerator::count_bytecode() { 2030 Register rscratch3 = r0; 2031 __ push(rscratch1); 2032 __ push(rscratch2); 2033 __ push(rscratch3); 2034 __ mov(rscratch3, (address) &BytecodeCounter::_counter_value); 2035 __ atomic_add(noreg, 1, rscratch3); 2036 __ pop(rscratch3); 2037 __ pop(rscratch2); 2038 __ pop(rscratch1); 2039 } 2040 2041 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) { ; } 2042 2043 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) { ; } 2044 2045 2046 void TemplateInterpreterGenerator::trace_bytecode(Template* t) { 2047 // Call a little run-time stub to avoid blow-up for each bytecode. 2048 // The run-time runtime saves the right registers, depending on 2049 // the tosca in-state for the given template. 2050 2051 assert(Interpreter::trace_code(t->tos_in()) != NULL, 2052 "entry must have been generated"); 2053 __ bl(Interpreter::trace_code(t->tos_in())); 2054 __ reinit_heapbase(); 2055 } 2056 2057 2058 void TemplateInterpreterGenerator::stop_interpreter_at() { 2059 Label L; 2060 __ push(rscratch1); 2061 __ mov(rscratch1, (address) &BytecodeCounter::_counter_value); 2062 __ ldr(rscratch1, Address(rscratch1)); 2063 __ mov(rscratch2, StopInterpreterAt); 2064 __ cmpw(rscratch1, rscratch2); 2065 __ br(Assembler::NE, L); 2066 __ brk(0); 2067 __ bind(L); 2068 __ pop(rscratch1); 2069 } 2070 2071 #endif // !PRODUCT 2072 #endif // ! CC_INTERP