1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // output_c.cpp - Class CPP file output routines for architecture definition
  26 
  27 #include "adlc.hpp"
  28 
  29 // Utilities to characterize effect statements
  30 static bool is_def(int usedef) {
  31   switch(usedef) {
  32   case Component::DEF:
  33   case Component::USE_DEF: return true; break;
  34   }
  35   return false;
  36 }
  37 
  38 // Define  an array containing the machine register names, strings.
  39 static void defineRegNames(FILE *fp, RegisterForm *registers) {
  40   if (registers) {
  41     fprintf(fp,"\n");
  42     fprintf(fp,"// An array of character pointers to machine register names.\n");
  43     fprintf(fp,"const char *Matcher::regName[REG_COUNT] = {\n");
  44 
  45     // Output the register name for each register in the allocation classes
  46     RegDef *reg_def = NULL;
  47     RegDef *next = NULL;
  48     registers->reset_RegDefs();
  49     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
  50       next = registers->iter_RegDefs();
  51       const char *comma = (next != NULL) ? "," : " // no trailing comma";
  52       fprintf(fp,"  \"%s\"%s\n", reg_def->_regname, comma);
  53     }
  54 
  55     // Finish defining enumeration
  56     fprintf(fp,"};\n");
  57 
  58     fprintf(fp,"\n");
  59     fprintf(fp,"// An array of character pointers to machine register names.\n");
  60     fprintf(fp,"const VMReg OptoReg::opto2vm[REG_COUNT] = {\n");
  61     reg_def = NULL;
  62     next = NULL;
  63     registers->reset_RegDefs();
  64     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
  65       next = registers->iter_RegDefs();
  66       const char *comma = (next != NULL) ? "," : " // no trailing comma";
  67       fprintf(fp,"\t%s%s\n", reg_def->_concrete, comma);
  68     }
  69     // Finish defining array
  70     fprintf(fp,"\t};\n");
  71     fprintf(fp,"\n");
  72 
  73     fprintf(fp," OptoReg::Name OptoReg::vm2opto[ConcreteRegisterImpl::number_of_registers];\n");
  74 
  75   }
  76 }
  77 
  78 // Define an array containing the machine register encoding values
  79 static void defineRegEncodes(FILE *fp, RegisterForm *registers) {
  80   if (registers) {
  81     fprintf(fp,"\n");
  82     fprintf(fp,"// An array of the machine register encode values\n");
  83     fprintf(fp,"const unsigned char Matcher::_regEncode[REG_COUNT] = {\n");
  84 
  85     // Output the register encoding for each register in the allocation classes
  86     RegDef *reg_def = NULL;
  87     RegDef *next    = NULL;
  88     registers->reset_RegDefs();
  89     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
  90       next = registers->iter_RegDefs();
  91       const char* register_encode = reg_def->register_encode();
  92       const char *comma = (next != NULL) ? "," : " // no trailing comma";
  93       int encval;
  94       if (!ADLParser::is_int_token(register_encode, encval)) {
  95         fprintf(fp,"  %s%s  // %s\n", register_encode, comma, reg_def->_regname);
  96       } else {
  97         // Output known constants in hex char format (backward compatibility).
  98         assert(encval < 256, "Exceeded supported width for register encoding");
  99         fprintf(fp,"  (unsigned char)'\\x%X'%s  // %s\n", encval, comma, reg_def->_regname);
 100       }
 101     }
 102     // Finish defining enumeration
 103     fprintf(fp,"};\n");
 104 
 105   } // Done defining array
 106 }
 107 
 108 // Output an enumeration of register class names
 109 static void defineRegClassEnum(FILE *fp, RegisterForm *registers) {
 110   if (registers) {
 111     // Output an enumeration of register class names
 112     fprintf(fp,"\n");
 113     fprintf(fp,"// Enumeration of register class names\n");
 114     fprintf(fp, "enum machRegisterClass {\n");
 115     registers->_rclasses.reset();
 116     for (const char *class_name = NULL; (class_name = registers->_rclasses.iter()) != NULL;) {
 117       const char * class_name_to_upper = toUpper(class_name);
 118       fprintf(fp,"  %s,\n", class_name_to_upper);
 119       delete[] class_name_to_upper;
 120     }
 121     // Finish defining enumeration
 122     fprintf(fp, "  _last_Mach_Reg_Class\n");
 123     fprintf(fp, "};\n");
 124   }
 125 }
 126 
 127 // Declare an enumeration of user-defined register classes
 128 // and a list of register masks, one for each class.
 129 void ArchDesc::declare_register_masks(FILE *fp_hpp) {
 130   const char  *rc_name;
 131 
 132   if (_register) {
 133     // Build enumeration of user-defined register classes.
 134     defineRegClassEnum(fp_hpp, _register);
 135 
 136     // Generate a list of register masks, one for each class.
 137     fprintf(fp_hpp,"\n");
 138     fprintf(fp_hpp,"// Register masks, one for each register class.\n");
 139     _register->_rclasses.reset();
 140     for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
 141       RegClass *reg_class = _register->getRegClass(rc_name);
 142       assert(reg_class, "Using an undefined register class");
 143       reg_class->declare_register_masks(fp_hpp);
 144     }
 145   }
 146 }
 147 
 148 // Generate an enumeration of user-defined register classes
 149 // and a list of register masks, one for each class.
 150 void ArchDesc::build_register_masks(FILE *fp_cpp) {
 151   const char  *rc_name;
 152 
 153   if (_register) {
 154     // Generate a list of register masks, one for each class.
 155     fprintf(fp_cpp,"\n");
 156     fprintf(fp_cpp,"// Register masks, one for each register class.\n");
 157     _register->_rclasses.reset();
 158     for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
 159       RegClass *reg_class = _register->getRegClass(rc_name);
 160       assert(reg_class, "Using an undefined register class");
 161       reg_class->build_register_masks(fp_cpp);
 162     }
 163   }
 164 }
 165 
 166 // Compute an index for an array in the pipeline_reads_NNN arrays
 167 static int pipeline_reads_initializer(FILE *fp_cpp, NameList &pipeline_reads, PipeClassForm *pipeclass)
 168 {
 169   int templen = 1;
 170   int paramcount = 0;
 171   const char *paramname;
 172 
 173   if (pipeclass->_parameters.count() == 0)
 174     return -1;
 175 
 176   pipeclass->_parameters.reset();
 177   paramname = pipeclass->_parameters.iter();
 178   const PipeClassOperandForm *pipeopnd =
 179     (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 180   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
 181     pipeclass->_parameters.reset();
 182 
 183   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
 184     const PipeClassOperandForm *tmppipeopnd =
 185         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 186 
 187     if (tmppipeopnd)
 188       templen += 10 + (int)strlen(tmppipeopnd->_stage);
 189     else
 190       templen += 19;
 191 
 192     paramcount++;
 193   }
 194 
 195   // See if the count is zero
 196   if (paramcount == 0) {
 197     return -1;
 198   }
 199 
 200   char *operand_stages = new char [templen];
 201   operand_stages[0] = 0;
 202   int i = 0;
 203   templen = 0;
 204 
 205   pipeclass->_parameters.reset();
 206   paramname = pipeclass->_parameters.iter();
 207   pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 208   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
 209     pipeclass->_parameters.reset();
 210 
 211   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
 212     const PipeClassOperandForm *tmppipeopnd =
 213         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 214     templen += sprintf(&operand_stages[templen], "  stage_%s%c\n",
 215       tmppipeopnd ? tmppipeopnd->_stage : "undefined",
 216       (++i < paramcount ? ',' : ' ') );
 217   }
 218 
 219   // See if the same string is in the table
 220   int ndx = pipeline_reads.index(operand_stages);
 221 
 222   // No, add it to the table
 223   if (ndx < 0) {
 224     pipeline_reads.addName(operand_stages);
 225     ndx = pipeline_reads.index(operand_stages);
 226 
 227     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_reads_%03d[%d] = {\n%s};\n\n",
 228       ndx+1, paramcount, operand_stages);
 229   }
 230   else
 231     delete [] operand_stages;
 232 
 233   return (ndx);
 234 }
 235 
 236 // Compute an index for an array in the pipeline_res_stages_NNN arrays
 237 static int pipeline_res_stages_initializer(
 238   FILE *fp_cpp,
 239   PipelineForm *pipeline,
 240   NameList &pipeline_res_stages,
 241   PipeClassForm *pipeclass)
 242 {
 243   const PipeClassResourceForm *piperesource;
 244   int * res_stages = new int [pipeline->_rescount];
 245   int i;
 246 
 247   for (i = 0; i < pipeline->_rescount; i++)
 248      res_stages[i] = 0;
 249 
 250   for (pipeclass->_resUsage.reset();
 251        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 252     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 253     for (i = 0; i < pipeline->_rescount; i++)
 254       if ((1 << i) & used_mask) {
 255         int stage = pipeline->_stages.index(piperesource->_stage);
 256         if (res_stages[i] < stage+1)
 257           res_stages[i] = stage+1;
 258       }
 259   }
 260 
 261   // Compute the length needed for the resource list
 262   int commentlen = 0;
 263   int max_stage = 0;
 264   for (i = 0; i < pipeline->_rescount; i++) {
 265     if (res_stages[i] == 0) {
 266       if (max_stage < 9)
 267         max_stage = 9;
 268     }
 269     else {
 270       int stagelen = (int)strlen(pipeline->_stages.name(res_stages[i]-1));
 271       if (max_stage < stagelen)
 272         max_stage = stagelen;
 273     }
 274 
 275     commentlen += (int)strlen(pipeline->_reslist.name(i));
 276   }
 277 
 278   int templen = 1 + commentlen + pipeline->_rescount * (max_stage + 14);
 279 
 280   // Allocate space for the resource list
 281   char * resource_stages = new char [templen];
 282 
 283   templen = 0;
 284   for (i = 0; i < pipeline->_rescount; i++) {
 285     const char * const resname =
 286       res_stages[i] == 0 ? "undefined" : pipeline->_stages.name(res_stages[i]-1);
 287 
 288     templen += sprintf(&resource_stages[templen], "  stage_%s%-*s // %s\n",
 289       resname, max_stage - (int)strlen(resname) + 1,
 290       (i < pipeline->_rescount-1) ? "," : "",
 291       pipeline->_reslist.name(i));
 292   }
 293 
 294   // See if the same string is in the table
 295   int ndx = pipeline_res_stages.index(resource_stages);
 296 
 297   // No, add it to the table
 298   if (ndx < 0) {
 299     pipeline_res_stages.addName(resource_stages);
 300     ndx = pipeline_res_stages.index(resource_stages);
 301 
 302     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_res_stages_%03d[%d] = {\n%s};\n\n",
 303       ndx+1, pipeline->_rescount, resource_stages);
 304   }
 305   else
 306     delete [] resource_stages;
 307 
 308   delete [] res_stages;
 309 
 310   return (ndx);
 311 }
 312 
 313 // Compute an index for an array in the pipeline_res_cycles_NNN arrays
 314 static int pipeline_res_cycles_initializer(
 315   FILE *fp_cpp,
 316   PipelineForm *pipeline,
 317   NameList &pipeline_res_cycles,
 318   PipeClassForm *pipeclass)
 319 {
 320   const PipeClassResourceForm *piperesource;
 321   int * res_cycles = new int [pipeline->_rescount];
 322   int i;
 323 
 324   for (i = 0; i < pipeline->_rescount; i++)
 325      res_cycles[i] = 0;
 326 
 327   for (pipeclass->_resUsage.reset();
 328        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 329     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 330     for (i = 0; i < pipeline->_rescount; i++)
 331       if ((1 << i) & used_mask) {
 332         int cycles = piperesource->_cycles;
 333         if (res_cycles[i] < cycles)
 334           res_cycles[i] = cycles;
 335       }
 336   }
 337 
 338   // Pre-compute the string length
 339   int templen;
 340   int cyclelen = 0, commentlen = 0;
 341   int max_cycles = 0;
 342   char temp[32];
 343 
 344   for (i = 0; i < pipeline->_rescount; i++) {
 345     if (max_cycles < res_cycles[i])
 346       max_cycles = res_cycles[i];
 347     templen = sprintf(temp, "%d", res_cycles[i]);
 348     if (cyclelen < templen)
 349       cyclelen = templen;
 350     commentlen += (int)strlen(pipeline->_reslist.name(i));
 351   }
 352 
 353   templen = 1 + commentlen + (cyclelen + 8) * pipeline->_rescount;
 354 
 355   // Allocate space for the resource list
 356   char * resource_cycles = new char [templen];
 357 
 358   templen = 0;
 359 
 360   for (i = 0; i < pipeline->_rescount; i++) {
 361     templen += sprintf(&resource_cycles[templen], "  %*d%c // %s\n",
 362       cyclelen, res_cycles[i], (i < pipeline->_rescount-1) ? ',' : ' ', pipeline->_reslist.name(i));
 363   }
 364 
 365   // See if the same string is in the table
 366   int ndx = pipeline_res_cycles.index(resource_cycles);
 367 
 368   // No, add it to the table
 369   if (ndx < 0) {
 370     pipeline_res_cycles.addName(resource_cycles);
 371     ndx = pipeline_res_cycles.index(resource_cycles);
 372 
 373     fprintf(fp_cpp, "static const uint pipeline_res_cycles_%03d[%d] = {\n%s};\n\n",
 374       ndx+1, pipeline->_rescount, resource_cycles);
 375   }
 376   else
 377     delete [] resource_cycles;
 378 
 379   delete [] res_cycles;
 380 
 381   return (ndx);
 382 }
 383 
 384 //typedef unsigned long long uint64_t;
 385 
 386 // Compute an index for an array in the pipeline_res_mask_NNN arrays
 387 static int pipeline_res_mask_initializer(
 388   FILE *fp_cpp,
 389   PipelineForm *pipeline,
 390   NameList &pipeline_res_mask,
 391   NameList &pipeline_res_args,
 392   PipeClassForm *pipeclass)
 393 {
 394   const PipeClassResourceForm *piperesource;
 395   const uint rescount      = pipeline->_rescount;
 396   const uint maxcycleused  = pipeline->_maxcycleused;
 397   const uint cyclemasksize = (maxcycleused + 31) >> 5;
 398 
 399   int i, j;
 400   int element_count = 0;
 401   uint *res_mask = new uint [cyclemasksize];
 402   uint resources_used             = 0;
 403   uint resources_used_exclusively = 0;
 404 
 405   for (pipeclass->_resUsage.reset();
 406        (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
 407     element_count++;
 408   }
 409 
 410   // Pre-compute the string length
 411   int templen;
 412   int commentlen = 0;
 413   int max_cycles = 0;
 414 
 415   int cyclelen = ((maxcycleused + 3) >> 2);
 416   int masklen = (rescount + 3) >> 2;
 417 
 418   int cycledigit = 0;
 419   for (i = maxcycleused; i > 0; i /= 10)
 420     cycledigit++;
 421 
 422   int maskdigit = 0;
 423   for (i = rescount; i > 0; i /= 10)
 424     maskdigit++;
 425 
 426   static const char* pipeline_use_cycle_mask = "Pipeline_Use_Cycle_Mask";
 427   static const char* pipeline_use_element    = "Pipeline_Use_Element";
 428 
 429   templen = 1 +
 430     (int)(strlen(pipeline_use_cycle_mask) + (int)strlen(pipeline_use_element) +
 431      (cyclemasksize * 12) + masklen + (cycledigit * 2) + 30) * element_count;
 432 
 433   // Allocate space for the resource list
 434   char * resource_mask = new char [templen];
 435   char * last_comma = NULL;
 436 
 437   templen = 0;
 438 
 439   for (pipeclass->_resUsage.reset();
 440        (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
 441     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 442 
 443     if (!used_mask) {
 444       fprintf(stderr, "*** used_mask is 0 ***\n");
 445     }
 446 
 447     resources_used |= used_mask;
 448 
 449     uint lb, ub;
 450 
 451     for (lb =  0; (used_mask & (1 << lb)) == 0; lb++);
 452     for (ub = 31; (used_mask & (1 << ub)) == 0; ub--);
 453 
 454     if (lb == ub) {
 455       resources_used_exclusively |= used_mask;
 456     }
 457 
 458     int formatlen =
 459       sprintf(&resource_mask[templen], "  %s(0x%0*x, %*d, %*d, %s %s(",
 460         pipeline_use_element,
 461         masklen, used_mask,
 462         cycledigit, lb, cycledigit, ub,
 463         ((used_mask & (used_mask-1)) != 0) ? "true, " : "false,",
 464         pipeline_use_cycle_mask);
 465 
 466     templen += formatlen;
 467 
 468     memset(res_mask, 0, cyclemasksize * sizeof(uint));
 469 
 470     int cycles = piperesource->_cycles;
 471     uint stage          = pipeline->_stages.index(piperesource->_stage);
 472     if ((uint)NameList::Not_in_list == stage) {
 473       fprintf(stderr,
 474               "pipeline_res_mask_initializer: "
 475               "semantic error: "
 476               "pipeline stage undeclared: %s\n",
 477               piperesource->_stage);
 478       exit(1);
 479     }
 480     uint upper_limit    = stage + cycles - 1;
 481     uint lower_limit    = stage - 1;
 482     uint upper_idx      = upper_limit >> 5;
 483     uint lower_idx      = lower_limit >> 5;
 484     uint upper_position = upper_limit & 0x1f;
 485     uint lower_position = lower_limit & 0x1f;
 486 
 487     uint mask = (((uint)1) << upper_position) - 1;
 488 
 489     while (upper_idx > lower_idx) {
 490       res_mask[upper_idx--] |= mask;
 491       mask = (uint)-1;
 492     }
 493 
 494     mask -= (((uint)1) << lower_position) - 1;
 495     res_mask[upper_idx] |= mask;
 496 
 497     for (j = cyclemasksize-1; j >= 0; j--) {
 498       formatlen =
 499         sprintf(&resource_mask[templen], "0x%08x%s", res_mask[j], j > 0 ? ", " : "");
 500       templen += formatlen;
 501     }
 502 
 503     resource_mask[templen++] = ')';
 504     resource_mask[templen++] = ')';
 505     last_comma = &resource_mask[templen];
 506     resource_mask[templen++] = ',';
 507     resource_mask[templen++] = '\n';
 508   }
 509 
 510   resource_mask[templen] = 0;
 511   if (last_comma) {
 512     last_comma[0] = ' ';
 513   }
 514 
 515   // See if the same string is in the table
 516   int ndx = pipeline_res_mask.index(resource_mask);
 517 
 518   // No, add it to the table
 519   if (ndx < 0) {
 520     pipeline_res_mask.addName(resource_mask);
 521     ndx = pipeline_res_mask.index(resource_mask);
 522 
 523     if (strlen(resource_mask) > 0)
 524       fprintf(fp_cpp, "static const Pipeline_Use_Element pipeline_res_mask_%03d[%d] = {\n%s};\n\n",
 525         ndx+1, element_count, resource_mask);
 526 
 527     char* args = new char [9 + 2*masklen + maskdigit];
 528 
 529     sprintf(args, "0x%0*x, 0x%0*x, %*d",
 530       masklen, resources_used,
 531       masklen, resources_used_exclusively,
 532       maskdigit, element_count);
 533 
 534     pipeline_res_args.addName(args);
 535   }
 536   else {
 537     delete [] resource_mask;
 538   }
 539 
 540   delete [] res_mask;
 541 //delete [] res_masks;
 542 
 543   return (ndx);
 544 }
 545 
 546 void ArchDesc::build_pipe_classes(FILE *fp_cpp) {
 547   const char *classname;
 548   const char *resourcename;
 549   int resourcenamelen = 0;
 550   NameList pipeline_reads;
 551   NameList pipeline_res_stages;
 552   NameList pipeline_res_cycles;
 553   NameList pipeline_res_masks;
 554   NameList pipeline_res_args;
 555   const int default_latency = 1;
 556   const int non_operand_latency = 0;
 557   const int node_latency = 0;
 558 
 559   if (!_pipeline) {
 560     fprintf(fp_cpp, "uint Node::latency(uint i) const {\n");
 561     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
 562     fprintf(fp_cpp, "  return %d;\n", non_operand_latency);
 563     fprintf(fp_cpp, "}\n");
 564     return;
 565   }
 566 
 567   fprintf(fp_cpp, "\n");
 568   fprintf(fp_cpp, "//------------------Pipeline Methods-----------------------------------------\n");
 569   fprintf(fp_cpp, "#ifndef PRODUCT\n");
 570   fprintf(fp_cpp, "const char * Pipeline::stageName(uint s) {\n");
 571   fprintf(fp_cpp, "  static const char * const _stage_names[] = {\n");
 572   fprintf(fp_cpp, "    \"undefined\"");
 573 
 574   for (int s = 0; s < _pipeline->_stagecnt; s++)
 575     fprintf(fp_cpp, ", \"%s\"", _pipeline->_stages.name(s));
 576 
 577   fprintf(fp_cpp, "\n  };\n\n");
 578   fprintf(fp_cpp, "  return (s <= %d ? _stage_names[s] : \"???\");\n",
 579     _pipeline->_stagecnt);
 580   fprintf(fp_cpp, "}\n");
 581   fprintf(fp_cpp, "#endif\n\n");
 582 
 583   fprintf(fp_cpp, "uint Pipeline::functional_unit_latency(uint start, const Pipeline *pred) const {\n");
 584   fprintf(fp_cpp, "  // See if the functional units overlap\n");
 585 #if 0
 586   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 587   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 588   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: start == %%d, this->exclusively == 0x%%03x, pred->exclusively == 0x%%03x\\n\", start, resourcesUsedExclusively(), pred->resourcesUsedExclusively());\n");
 589   fprintf(fp_cpp, "  }\n");
 590   fprintf(fp_cpp, "#endif\n\n");
 591 #endif
 592   fprintf(fp_cpp, "  uint mask = resourcesUsedExclusively() & pred->resourcesUsedExclusively();\n");
 593   fprintf(fp_cpp, "  if (mask == 0)\n    return (start);\n\n");
 594 #if 0
 595   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 596   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 597   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: mask == 0x%%x\\n\", mask);\n");
 598   fprintf(fp_cpp, "  }\n");
 599   fprintf(fp_cpp, "#endif\n\n");
 600 #endif
 601   fprintf(fp_cpp, "  for (uint i = 0; i < pred->resourceUseCount(); i++) {\n");
 602   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred->resourceUseElement(i);\n");
 603   fprintf(fp_cpp, "    if (predUse->multiple())\n");
 604   fprintf(fp_cpp, "      continue;\n\n");
 605   fprintf(fp_cpp, "    for (uint j = 0; j < resourceUseCount(); j++) {\n");
 606   fprintf(fp_cpp, "      const Pipeline_Use_Element *currUse = resourceUseElement(j);\n");
 607   fprintf(fp_cpp, "      if (currUse->multiple())\n");
 608   fprintf(fp_cpp, "        continue;\n\n");
 609   fprintf(fp_cpp, "      if (predUse->used() & currUse->used()) {\n");
 610   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask x = predUse->mask();\n");
 611   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask y = currUse->mask();\n\n");
 612   fprintf(fp_cpp, "        for ( y <<= start; x.overlaps(y); start++ )\n");
 613   fprintf(fp_cpp, "          y <<= 1;\n");
 614   fprintf(fp_cpp, "      }\n");
 615   fprintf(fp_cpp, "    }\n");
 616   fprintf(fp_cpp, "  }\n\n");
 617   fprintf(fp_cpp, "  // There is the potential for overlap\n");
 618   fprintf(fp_cpp, "  return (start);\n");
 619   fprintf(fp_cpp, "}\n\n");
 620   fprintf(fp_cpp, "// The following two routines assume that the root Pipeline_Use entity\n");
 621   fprintf(fp_cpp, "// consists of exactly 1 element for each functional unit\n");
 622   fprintf(fp_cpp, "// start is relative to the current cycle; used for latency-based info\n");
 623   fprintf(fp_cpp, "uint Pipeline_Use::full_latency(uint delay, const Pipeline_Use &pred) const {\n");
 624   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
 625   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
 626   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
 627   fprintf(fp_cpp, "      uint min_delay = %d;\n",
 628     _pipeline->_maxcycleused+1);
 629   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
 630   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 631   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
 632   fprintf(fp_cpp, "        uint curr_delay = delay;\n");
 633   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
 634   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
 635   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
 636   fprintf(fp_cpp, "          for ( y <<= curr_delay; x.overlaps(y); curr_delay++ )\n");
 637   fprintf(fp_cpp, "            y <<= 1;\n");
 638   fprintf(fp_cpp, "        }\n");
 639   fprintf(fp_cpp, "        if (min_delay > curr_delay)\n          min_delay = curr_delay;\n");
 640   fprintf(fp_cpp, "      }\n");
 641   fprintf(fp_cpp, "      if (delay < min_delay)\n      delay = min_delay;\n");
 642   fprintf(fp_cpp, "    }\n");
 643   fprintf(fp_cpp, "    else {\n");
 644   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 645   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
 646   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
 647   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
 648   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
 649   fprintf(fp_cpp, "          for ( y <<= delay; x.overlaps(y); delay++ )\n");
 650   fprintf(fp_cpp, "            y <<= 1;\n");
 651   fprintf(fp_cpp, "        }\n");
 652   fprintf(fp_cpp, "      }\n");
 653   fprintf(fp_cpp, "    }\n");
 654   fprintf(fp_cpp, "  }\n\n");
 655   fprintf(fp_cpp, "  return (delay);\n");
 656   fprintf(fp_cpp, "}\n\n");
 657   fprintf(fp_cpp, "void Pipeline_Use::add_usage(const Pipeline_Use &pred) {\n");
 658   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
 659   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
 660   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
 661   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
 662   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 663   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
 664   fprintf(fp_cpp, "        if ( !predUse->_mask.overlaps(currUse->_mask) ) {\n");
 665   fprintf(fp_cpp, "          currUse->_used |= (1 << j);\n");
 666   fprintf(fp_cpp, "          _resources_used |= (1 << j);\n");
 667   fprintf(fp_cpp, "          currUse->_mask.Or(predUse->_mask);\n");
 668   fprintf(fp_cpp, "          break;\n");
 669   fprintf(fp_cpp, "        }\n");
 670   fprintf(fp_cpp, "      }\n");
 671   fprintf(fp_cpp, "    }\n");
 672   fprintf(fp_cpp, "    else {\n");
 673   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 674   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
 675   fprintf(fp_cpp, "        currUse->_used |= (1 << j);\n");
 676   fprintf(fp_cpp, "        _resources_used |= (1 << j);\n");
 677   fprintf(fp_cpp, "        currUse->_mask.Or(predUse->_mask);\n");
 678   fprintf(fp_cpp, "      }\n");
 679   fprintf(fp_cpp, "    }\n");
 680   fprintf(fp_cpp, "  }\n");
 681   fprintf(fp_cpp, "}\n\n");
 682 
 683   fprintf(fp_cpp, "uint Pipeline::operand_latency(uint opnd, const Pipeline *pred) const {\n");
 684   fprintf(fp_cpp, "  int const default_latency = 1;\n");
 685   fprintf(fp_cpp, "\n");
 686 #if 0
 687   fprintf(fp_cpp, "#ifndef PRODUCT\n");
 688   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 689   fprintf(fp_cpp, "    tty->print(\"#   operand_latency(%%d), _read_stage_count = %%d\\n\", opnd, _read_stage_count);\n");
 690   fprintf(fp_cpp, "  }\n");
 691   fprintf(fp_cpp, "#endif\n\n");
 692 #endif
 693   fprintf(fp_cpp, "  assert(this, \"NULL pipeline info\");\n");
 694   fprintf(fp_cpp, "  assert(pred, \"NULL predecessor pipline info\");\n\n");
 695   fprintf(fp_cpp, "  if (pred->hasFixedLatency())\n    return (pred->fixedLatency());\n\n");
 696   fprintf(fp_cpp, "  // If this is not an operand, then assume a dependence with 0 latency\n");
 697   fprintf(fp_cpp, "  if (opnd > _read_stage_count)\n    return (0);\n\n");
 698   fprintf(fp_cpp, "  uint writeStage = pred->_write_stage;\n");
 699   fprintf(fp_cpp, "  uint readStage  = _read_stages[opnd-1];\n");
 700 #if 0
 701   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 702   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 703   fprintf(fp_cpp, "    tty->print(\"#   operand_latency: writeStage=%%s readStage=%%s, opnd=%%d\\n\", stageName(writeStage), stageName(readStage), opnd);\n");
 704   fprintf(fp_cpp, "  }\n");
 705   fprintf(fp_cpp, "#endif\n\n");
 706 #endif
 707   fprintf(fp_cpp, "\n");
 708   fprintf(fp_cpp, "  if (writeStage == stage_undefined || readStage == stage_undefined)\n");
 709   fprintf(fp_cpp, "    return (default_latency);\n");
 710   fprintf(fp_cpp, "\n");
 711   fprintf(fp_cpp, "  int delta = writeStage - readStage;\n");
 712   fprintf(fp_cpp, "  if (delta < 0) delta = 0;\n\n");
 713 #if 0
 714   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 715   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 716   fprintf(fp_cpp, "    tty->print(\"# operand_latency: delta=%%d\\n\", delta);\n");
 717   fprintf(fp_cpp, "  }\n");
 718   fprintf(fp_cpp, "#endif\n\n");
 719 #endif
 720   fprintf(fp_cpp, "  return (delta);\n");
 721   fprintf(fp_cpp, "}\n\n");
 722 
 723   if (!_pipeline)
 724     /* Do Nothing */;
 725 
 726   else if (_pipeline->_maxcycleused <=
 727 #ifdef SPARC
 728     64
 729 #else
 730     32
 731 #endif
 732       ) {
 733     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 734     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask & in2._mask);\n");
 735     fprintf(fp_cpp, "}\n\n");
 736     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 737     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask | in2._mask);\n");
 738     fprintf(fp_cpp, "}\n\n");
 739   }
 740   else {
 741     uint l;
 742     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
 743     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 744     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
 745     for (l = 1; l <= masklen; l++)
 746       fprintf(fp_cpp, "in1._mask%d & in2._mask%d%s\n", l, l, l < masklen ? ", " : "");
 747     fprintf(fp_cpp, ");\n");
 748     fprintf(fp_cpp, "}\n\n");
 749     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 750     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
 751     for (l = 1; l <= masklen; l++)
 752       fprintf(fp_cpp, "in1._mask%d | in2._mask%d%s", l, l, l < masklen ? ", " : "");
 753     fprintf(fp_cpp, ");\n");
 754     fprintf(fp_cpp, "}\n\n");
 755     fprintf(fp_cpp, "void Pipeline_Use_Cycle_Mask::Or(const Pipeline_Use_Cycle_Mask &in2) {\n ");
 756     for (l = 1; l <= masklen; l++)
 757       fprintf(fp_cpp, " _mask%d |= in2._mask%d;", l, l);
 758     fprintf(fp_cpp, "\n}\n\n");
 759   }
 760 
 761   /* Get the length of all the resource names */
 762   for (_pipeline->_reslist.reset(), resourcenamelen = 0;
 763        (resourcename = _pipeline->_reslist.iter()) != NULL;
 764        resourcenamelen += (int)strlen(resourcename));
 765 
 766   // Create the pipeline class description
 767 
 768   fprintf(fp_cpp, "static const Pipeline pipeline_class_Zero_Instructions(0, 0, true, 0, 0, false, false, false, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
 769   fprintf(fp_cpp, "static const Pipeline pipeline_class_Unknown_Instructions(0, 0, true, 0, 0, false, true, true, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
 770 
 771   fprintf(fp_cpp, "const Pipeline_Use_Element Pipeline_Use::elaborated_elements[%d] = {\n", _pipeline->_rescount);
 772   for (int i1 = 0; i1 < _pipeline->_rescount; i1++) {
 773     fprintf(fp_cpp, "  Pipeline_Use_Element(0, %d, %d, false, Pipeline_Use_Cycle_Mask(", i1, i1);
 774     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
 775     for (int i2 = masklen-1; i2 >= 0; i2--)
 776       fprintf(fp_cpp, "0%s", i2 > 0 ? ", " : "");
 777     fprintf(fp_cpp, "))%s\n", i1 < (_pipeline->_rescount-1) ? "," : "");
 778   }
 779   fprintf(fp_cpp, "};\n\n");
 780 
 781   fprintf(fp_cpp, "const Pipeline_Use Pipeline_Use::elaborated_use(0, 0, %d, (Pipeline_Use_Element *)&elaborated_elements[0]);\n\n",
 782     _pipeline->_rescount);
 783 
 784   for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
 785     fprintf(fp_cpp, "\n");
 786     fprintf(fp_cpp, "// Pipeline Class \"%s\"\n", classname);
 787     PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
 788     int maxWriteStage = -1;
 789     int maxMoreInstrs = 0;
 790     int paramcount = 0;
 791     int i = 0;
 792     const char *paramname;
 793     int resource_count = (_pipeline->_rescount + 3) >> 2;
 794 
 795     // Scan the operands, looking for last output stage and number of inputs
 796     for (pipeclass->_parameters.reset(); (paramname = pipeclass->_parameters.iter()) != NULL; ) {
 797       const PipeClassOperandForm *pipeopnd =
 798           (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 799       if (pipeopnd) {
 800         if (pipeopnd->_iswrite) {
 801            int stagenum  = _pipeline->_stages.index(pipeopnd->_stage);
 802            int moreinsts = pipeopnd->_more_instrs;
 803           if ((maxWriteStage+maxMoreInstrs) < (stagenum+moreinsts)) {
 804             maxWriteStage = stagenum;
 805             maxMoreInstrs = moreinsts;
 806           }
 807         }
 808       }
 809 
 810       if (i++ > 0 || (pipeopnd && !pipeopnd->isWrite()))
 811         paramcount++;
 812     }
 813 
 814     // Create the list of stages for the operands that are read
 815     // Note that we will build a NameList to reduce the number of copies
 816 
 817     int pipeline_reads_index = pipeline_reads_initializer(fp_cpp, pipeline_reads, pipeclass);
 818 
 819     int pipeline_res_stages_index = pipeline_res_stages_initializer(
 820       fp_cpp, _pipeline, pipeline_res_stages, pipeclass);
 821 
 822     int pipeline_res_cycles_index = pipeline_res_cycles_initializer(
 823       fp_cpp, _pipeline, pipeline_res_cycles, pipeclass);
 824 
 825     int pipeline_res_mask_index = pipeline_res_mask_initializer(
 826       fp_cpp, _pipeline, pipeline_res_masks, pipeline_res_args, pipeclass);
 827 
 828 #if 0
 829     // Process the Resources
 830     const PipeClassResourceForm *piperesource;
 831 
 832     unsigned resources_used = 0;
 833     unsigned exclusive_resources_used = 0;
 834     unsigned resource_groups = 0;
 835     for (pipeclass->_resUsage.reset();
 836          (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 837       int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 838       if (used_mask)
 839         resource_groups++;
 840       resources_used |= used_mask;
 841       if ((used_mask & (used_mask-1)) == 0)
 842         exclusive_resources_used |= used_mask;
 843     }
 844 
 845     if (resource_groups > 0) {
 846       fprintf(fp_cpp, "static const uint pipeline_res_or_masks_%03d[%d] = {",
 847         pipeclass->_num, resource_groups);
 848       for (pipeclass->_resUsage.reset(), i = 1;
 849            (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL;
 850            i++ ) {
 851         int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 852         if (used_mask) {
 853           fprintf(fp_cpp, " 0x%0*x%c", resource_count, used_mask, i < (int)resource_groups ? ',' : ' ');
 854         }
 855       }
 856       fprintf(fp_cpp, "};\n\n");
 857     }
 858 #endif
 859 
 860     // Create the pipeline class description
 861     fprintf(fp_cpp, "static const Pipeline pipeline_class_%03d(",
 862       pipeclass->_num);
 863     if (maxWriteStage < 0)
 864       fprintf(fp_cpp, "(uint)stage_undefined");
 865     else if (maxMoreInstrs == 0)
 866       fprintf(fp_cpp, "(uint)stage_%s", _pipeline->_stages.name(maxWriteStage));
 867     else
 868       fprintf(fp_cpp, "((uint)stage_%s)+%d", _pipeline->_stages.name(maxWriteStage), maxMoreInstrs);
 869     fprintf(fp_cpp, ", %d, %s, %d, %d, %s, %s, %s, %s,\n",
 870       paramcount,
 871       pipeclass->hasFixedLatency() ? "true" : "false",
 872       pipeclass->fixedLatency(),
 873       pipeclass->InstructionCount(),
 874       pipeclass->hasBranchDelay() ? "true" : "false",
 875       pipeclass->hasMultipleBundles() ? "true" : "false",
 876       pipeclass->forceSerialization() ? "true" : "false",
 877       pipeclass->mayHaveNoCode() ? "true" : "false" );
 878     if (paramcount > 0) {
 879       fprintf(fp_cpp, "\n  (enum machPipelineStages * const) pipeline_reads_%03d,\n ",
 880         pipeline_reads_index+1);
 881     }
 882     else
 883       fprintf(fp_cpp, " NULL,");
 884     fprintf(fp_cpp, "  (enum machPipelineStages * const) pipeline_res_stages_%03d,\n",
 885       pipeline_res_stages_index+1);
 886     fprintf(fp_cpp, "  (uint * const) pipeline_res_cycles_%03d,\n",
 887       pipeline_res_cycles_index+1);
 888     fprintf(fp_cpp, "  Pipeline_Use(%s, (Pipeline_Use_Element *)",
 889       pipeline_res_args.name(pipeline_res_mask_index));
 890     if (strlen(pipeline_res_masks.name(pipeline_res_mask_index)) > 0)
 891       fprintf(fp_cpp, "&pipeline_res_mask_%03d[0]",
 892         pipeline_res_mask_index+1);
 893     else
 894       fprintf(fp_cpp, "NULL");
 895     fprintf(fp_cpp, "));\n");
 896   }
 897 
 898   // Generate the Node::latency method if _pipeline defined
 899   fprintf(fp_cpp, "\n");
 900   fprintf(fp_cpp, "//------------------Inter-Instruction Latency--------------------------------\n");
 901   fprintf(fp_cpp, "uint Node::latency(uint i) {\n");
 902   if (_pipeline) {
 903 #if 0
 904     fprintf(fp_cpp, "#ifndef PRODUCT\n");
 905     fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
 906     fprintf(fp_cpp, "    tty->print(\"# %%4d->latency(%%d)\\n\", _idx, i);\n");
 907     fprintf(fp_cpp, " }\n");
 908     fprintf(fp_cpp, "#endif\n");
 909 #endif
 910     fprintf(fp_cpp, "  uint j;\n");
 911     fprintf(fp_cpp, "  // verify in legal range for inputs\n");
 912     fprintf(fp_cpp, "  assert(i < len(), \"index not in range\");\n\n");
 913     fprintf(fp_cpp, "  // verify input is not null\n");
 914     fprintf(fp_cpp, "  Node *pred = in(i);\n");
 915     fprintf(fp_cpp, "  if (!pred)\n    return %d;\n\n",
 916       non_operand_latency);
 917     fprintf(fp_cpp, "  if (pred->is_Proj())\n    pred = pred->in(0);\n\n");
 918     fprintf(fp_cpp, "  // if either node does not have pipeline info, use default\n");
 919     fprintf(fp_cpp, "  const Pipeline *predpipe = pred->pipeline();\n");
 920     fprintf(fp_cpp, "  assert(predpipe, \"no predecessor pipeline info\");\n\n");
 921     fprintf(fp_cpp, "  if (predpipe->hasFixedLatency())\n    return predpipe->fixedLatency();\n\n");
 922     fprintf(fp_cpp, "  const Pipeline *currpipe = pipeline();\n");
 923     fprintf(fp_cpp, "  assert(currpipe, \"no pipeline info\");\n\n");
 924     fprintf(fp_cpp, "  if (!is_Mach())\n    return %d;\n\n",
 925       node_latency);
 926     fprintf(fp_cpp, "  const MachNode *m = as_Mach();\n");
 927     fprintf(fp_cpp, "  j = m->oper_input_base();\n");
 928     fprintf(fp_cpp, "  if (i < j)\n    return currpipe->functional_unit_latency(%d, predpipe);\n\n",
 929       non_operand_latency);
 930     fprintf(fp_cpp, "  // determine which operand this is in\n");
 931     fprintf(fp_cpp, "  uint n = m->num_opnds();\n");
 932     fprintf(fp_cpp, "  int delta = %d;\n\n",
 933       non_operand_latency);
 934     fprintf(fp_cpp, "  uint k;\n");
 935     fprintf(fp_cpp, "  for (k = 1; k < n; k++) {\n");
 936     fprintf(fp_cpp, "    j += m->_opnds[k]->num_edges();\n");
 937     fprintf(fp_cpp, "    if (i < j)\n");
 938     fprintf(fp_cpp, "      break;\n");
 939     fprintf(fp_cpp, "  }\n");
 940     fprintf(fp_cpp, "  if (k < n)\n");
 941     fprintf(fp_cpp, "    delta = currpipe->operand_latency(k,predpipe);\n\n");
 942     fprintf(fp_cpp, "  return currpipe->functional_unit_latency(delta, predpipe);\n");
 943   }
 944   else {
 945     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
 946     fprintf(fp_cpp, "  return %d;\n",
 947       non_operand_latency);
 948   }
 949   fprintf(fp_cpp, "}\n\n");
 950 
 951   // Output the list of nop nodes
 952   fprintf(fp_cpp, "// Descriptions for emitting different functional unit nops\n");
 953   const char *nop;
 954   int nopcnt = 0;
 955   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; nopcnt++ );
 956 
 957   fprintf(fp_cpp, "void Bundle::initialize_nops(MachNode * nop_list[%d], Compile *C) {\n", nopcnt);
 958   int i = 0;
 959   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; i++ ) {
 960     fprintf(fp_cpp, "  nop_list[%d] = (MachNode *) new (C) %sNode();\n", i, nop);
 961   }
 962   fprintf(fp_cpp, "};\n\n");
 963   fprintf(fp_cpp, "#ifndef PRODUCT\n");
 964   fprintf(fp_cpp, "void Bundle::dump(outputStream *st) const {\n");
 965   fprintf(fp_cpp, "  static const char * bundle_flags[] = {\n");
 966   fprintf(fp_cpp, "    \"\",\n");
 967   fprintf(fp_cpp, "    \"use nop delay\",\n");
 968   fprintf(fp_cpp, "    \"use unconditional delay\",\n");
 969   fprintf(fp_cpp, "    \"use conditional delay\",\n");
 970   fprintf(fp_cpp, "    \"used in conditional delay\",\n");
 971   fprintf(fp_cpp, "    \"used in unconditional delay\",\n");
 972   fprintf(fp_cpp, "    \"used in all conditional delays\",\n");
 973   fprintf(fp_cpp, "  };\n\n");
 974 
 975   fprintf(fp_cpp, "  static const char *resource_names[%d] = {", _pipeline->_rescount);
 976   for (i = 0; i < _pipeline->_rescount; i++)
 977     fprintf(fp_cpp, " \"%s\"%c", _pipeline->_reslist.name(i), i < _pipeline->_rescount-1 ? ',' : ' ');
 978   fprintf(fp_cpp, "};\n\n");
 979 
 980   // See if the same string is in the table
 981   fprintf(fp_cpp, "  bool needs_comma = false;\n\n");
 982   fprintf(fp_cpp, "  if (_flags) {\n");
 983   fprintf(fp_cpp, "    st->print(\"%%s\", bundle_flags[_flags]);\n");
 984   fprintf(fp_cpp, "    needs_comma = true;\n");
 985   fprintf(fp_cpp, "  };\n");
 986   fprintf(fp_cpp, "  if (instr_count()) {\n");
 987   fprintf(fp_cpp, "    st->print(\"%%s%%d instr%%s\", needs_comma ? \", \" : \"\", instr_count(), instr_count() != 1 ? \"s\" : \"\");\n");
 988   fprintf(fp_cpp, "    needs_comma = true;\n");
 989   fprintf(fp_cpp, "  };\n");
 990   fprintf(fp_cpp, "  uint r = resources_used();\n");
 991   fprintf(fp_cpp, "  if (r) {\n");
 992   fprintf(fp_cpp, "    st->print(\"%%sresource%%s:\", needs_comma ? \", \" : \"\", (r & (r-1)) != 0 ? \"s\" : \"\");\n");
 993   fprintf(fp_cpp, "    for (uint i = 0; i < %d; i++)\n", _pipeline->_rescount);
 994   fprintf(fp_cpp, "      if ((r & (1 << i)) != 0)\n");
 995   fprintf(fp_cpp, "        st->print(\" %%s\", resource_names[i]);\n");
 996   fprintf(fp_cpp, "    needs_comma = true;\n");
 997   fprintf(fp_cpp, "  };\n");
 998   fprintf(fp_cpp, "  st->print(\"\\n\");\n");
 999   fprintf(fp_cpp, "}\n");
1000   fprintf(fp_cpp, "#endif\n");
1001 }
1002 
1003 // ---------------------------------------------------------------------------
1004 //------------------------------Utilities to build Instruction Classes--------
1005 // ---------------------------------------------------------------------------
1006 
1007 static void defineOut_RegMask(FILE *fp, const char *node, const char *regMask) {
1008   fprintf(fp,"const RegMask &%sNode::out_RegMask() const { return (%s); }\n",
1009           node, regMask);
1010 }
1011 
1012 static void print_block_index(FILE *fp, int inst_position) {
1013   assert( inst_position >= 0, "Instruction number less than zero");
1014   fprintf(fp, "block_index");
1015   if( inst_position != 0 ) {
1016     fprintf(fp, " - %d", inst_position);
1017   }
1018 }
1019 
1020 // Scan the peepmatch and output a test for each instruction
1021 static void check_peepmatch_instruction_sequence(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1022   int         parent        = -1;
1023   int         inst_position = 0;
1024   const char* inst_name     = NULL;
1025   int         input         = 0;
1026   fprintf(fp, "  // Check instruction sub-tree\n");
1027   pmatch->reset();
1028   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1029        inst_name != NULL;
1030        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1031     // If this is not a placeholder
1032     if( ! pmatch->is_placeholder() ) {
1033       // Define temporaries 'inst#', based on parent and parent's input index
1034       if( parent != -1 ) {                // root was initialized
1035         fprintf(fp, "  // Identify previous instruction if inside this block\n");
1036         fprintf(fp, "  if( ");
1037         print_block_index(fp, inst_position);
1038         fprintf(fp, " > 0 ) {\n    Node *n = block->get_node(");
1039         print_block_index(fp, inst_position);
1040         fprintf(fp, ");\n    inst%d = (n->is_Mach()) ? ", inst_position);
1041         fprintf(fp, "n->as_Mach() : NULL;\n  }\n");
1042       }
1043 
1044       // When not the root
1045       // Test we have the correct instruction by comparing the rule.
1046       if( parent != -1 ) {
1047         fprintf(fp, "  matches = matches && (inst%d != NULL) && (inst%d->rule() == %s_rule);\n",
1048                 inst_position, inst_position, inst_name);
1049       }
1050     } else {
1051       // Check that user did not try to constrain a placeholder
1052       assert( ! pconstraint->constrains_instruction(inst_position),
1053               "fatal(): Can not constrain a placeholder instruction");
1054     }
1055   }
1056 }
1057 
1058 // Build mapping for register indices, num_edges to input
1059 static void build_instruction_index_mapping( FILE *fp, FormDict &globals, PeepMatch *pmatch ) {
1060   int         parent        = -1;
1061   int         inst_position = 0;
1062   const char* inst_name     = NULL;
1063   int         input         = 0;
1064   fprintf(fp, "      // Build map to register info\n");
1065   pmatch->reset();
1066   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1067        inst_name != NULL;
1068        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1069     // If this is not a placeholder
1070     if( ! pmatch->is_placeholder() ) {
1071       // Define temporaries 'inst#', based on self's inst_position
1072       InstructForm *inst = globals[inst_name]->is_instruction();
1073       if( inst != NULL ) {
1074         char inst_prefix[]  = "instXXXX_";
1075         sprintf(inst_prefix, "inst%d_",   inst_position);
1076         char receiver[]     = "instXXXX->";
1077         sprintf(receiver,    "inst%d->", inst_position);
1078         inst->index_temps( fp, globals, inst_prefix, receiver );
1079       }
1080     }
1081   }
1082 }
1083 
1084 // Generate tests for the constraints
1085 static void check_peepconstraints(FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1086   fprintf(fp, "\n");
1087   fprintf(fp, "      // Check constraints on sub-tree-leaves\n");
1088 
1089   // Build mapping from num_edges to local variables
1090   build_instruction_index_mapping( fp, globals, pmatch );
1091 
1092   // Build constraint tests
1093   if( pconstraint != NULL ) {
1094     fprintf(fp, "      matches = matches &&");
1095     bool   first_constraint = true;
1096     while( pconstraint != NULL ) {
1097       // indentation and connecting '&&'
1098       const char *indentation = "      ";
1099       fprintf(fp, "\n%s%s", indentation, (!first_constraint ? "&& " : "  "));
1100 
1101       // Only have '==' relation implemented
1102       if( strcmp(pconstraint->_relation,"==") != 0 ) {
1103         assert( false, "Unimplemented()" );
1104       }
1105 
1106       // LEFT
1107       int left_index       = pconstraint->_left_inst;
1108       const char *left_op  = pconstraint->_left_op;
1109       // Access info on the instructions whose operands are compared
1110       InstructForm *inst_left = globals[pmatch->instruction_name(left_index)]->is_instruction();
1111       assert( inst_left, "Parser should guaranty this is an instruction");
1112       int left_op_base  = inst_left->oper_input_base(globals);
1113       // Access info on the operands being compared
1114       int left_op_index  = inst_left->operand_position(left_op, Component::USE);
1115       if( left_op_index == -1 ) {
1116         left_op_index = inst_left->operand_position(left_op, Component::DEF);
1117         if( left_op_index == -1 ) {
1118           left_op_index = inst_left->operand_position(left_op, Component::USE_DEF);
1119         }
1120       }
1121       assert( left_op_index  != NameList::Not_in_list, "Did not find operand in instruction");
1122       ComponentList components_left = inst_left->_components;
1123       const char *left_comp_type = components_left.at(left_op_index)->_type;
1124       OpClassForm *left_opclass = globals[left_comp_type]->is_opclass();
1125       Form::InterfaceType left_interface_type = left_opclass->interface_type(globals);
1126 
1127 
1128       // RIGHT
1129       int right_op_index = -1;
1130       int right_index      = pconstraint->_right_inst;
1131       const char *right_op = pconstraint->_right_op;
1132       if( right_index != -1 ) { // Match operand
1133         // Access info on the instructions whose operands are compared
1134         InstructForm *inst_right = globals[pmatch->instruction_name(right_index)]->is_instruction();
1135         assert( inst_right, "Parser should guaranty this is an instruction");
1136         int right_op_base = inst_right->oper_input_base(globals);
1137         // Access info on the operands being compared
1138         right_op_index = inst_right->operand_position(right_op, Component::USE);
1139         if( right_op_index == -1 ) {
1140           right_op_index = inst_right->operand_position(right_op, Component::DEF);
1141           if( right_op_index == -1 ) {
1142             right_op_index = inst_right->operand_position(right_op, Component::USE_DEF);
1143           }
1144         }
1145         assert( right_op_index != NameList::Not_in_list, "Did not find operand in instruction");
1146         ComponentList components_right = inst_right->_components;
1147         const char *right_comp_type = components_right.at(right_op_index)->_type;
1148         OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1149         Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
1150         assert( right_interface_type == left_interface_type, "Both must be same interface");
1151 
1152       } else {                  // Else match register
1153         // assert( false, "should be a register" );
1154       }
1155 
1156       //
1157       // Check for equivalence
1158       //
1159       // fprintf(fp, "phase->eqv( ");
1160       // fprintf(fp, "inst%d->in(%d+%d) /* %s */, inst%d->in(%d+%d) /* %s */",
1161       //         left_index,  left_op_base,  left_op_index,  left_op,
1162       //         right_index, right_op_base, right_op_index, right_op );
1163       // fprintf(fp, ")");
1164       //
1165       switch( left_interface_type ) {
1166       case Form::register_interface: {
1167         // Check that they are allocated to the same register
1168         // Need parameter for index position if not result operand
1169         char left_reg_index[] = ",instXXXX_idxXXXX";
1170         if( left_op_index != 0 ) {
1171           assert( (left_index <= 9999) && (left_op_index <= 9999), "exceed string size");
1172           // Must have index into operands
1173           sprintf(left_reg_index,",inst%d_idx%d", (int)left_index, left_op_index);
1174         } else {
1175           strcpy(left_reg_index, "");
1176         }
1177         fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s)  /* %d.%s */",
1178                 left_index,  left_op_index, left_index, left_reg_index, left_index, left_op );
1179         fprintf(fp, " == ");
1180 
1181         if( right_index != -1 ) {
1182           char right_reg_index[18] = ",instXXXX_idxXXXX";
1183           if( right_op_index != 0 ) {
1184             assert( (right_index <= 9999) && (right_op_index <= 9999), "exceed string size");
1185             // Must have index into operands
1186             sprintf(right_reg_index,",inst%d_idx%d", (int)right_index, right_op_index);
1187           } else {
1188             strcpy(right_reg_index, "");
1189           }
1190           fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
1191                   right_index, right_op, right_index, right_op_index, right_index, right_reg_index );
1192         } else {
1193           fprintf(fp, "%s_enc", right_op );
1194         }
1195         fprintf(fp,")");
1196         break;
1197       }
1198       case Form::constant_interface: {
1199         // Compare the '->constant()' values
1200         fprintf(fp, "(inst%d->_opnds[%d]->constant()  /* %d.%s */",
1201                 left_index,  left_op_index,  left_index, left_op );
1202         fprintf(fp, " == ");
1203         fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->constant())",
1204                 right_index, right_op, right_index, right_op_index );
1205         break;
1206       }
1207       case Form::memory_interface: {
1208         // Compare 'base', 'index', 'scale', and 'disp'
1209         // base
1210         fprintf(fp, "( \n");
1211         fprintf(fp, "  (inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$base */",
1212           left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1213         fprintf(fp, " == ");
1214         fprintf(fp, "/* %d.%s$$base */ inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)) &&\n",
1215                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1216         // index
1217         fprintf(fp, "  (inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$index */",
1218                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1219         fprintf(fp, " == ");
1220         fprintf(fp, "/* %d.%s$$index */ inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)) &&\n",
1221                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1222         // scale
1223         fprintf(fp, "  (inst%d->_opnds[%d]->scale()  /* %d.%s$$scale */",
1224                 left_index,  left_op_index,  left_index, left_op );
1225         fprintf(fp, " == ");
1226         fprintf(fp, "/* %d.%s$$scale */ inst%d->_opnds[%d]->scale()) &&\n",
1227                 right_index, right_op, right_index, right_op_index );
1228         // disp
1229         fprintf(fp, "  (inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$disp */",
1230                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1231         fprintf(fp, " == ");
1232         fprintf(fp, "/* %d.%s$$disp */ inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d))\n",
1233                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1234         fprintf(fp, ") \n");
1235         break;
1236       }
1237       case Form::conditional_interface: {
1238         // Compare the condition code being tested
1239         assert( false, "Unimplemented()" );
1240         break;
1241       }
1242       default: {
1243         assert( false, "ShouldNotReachHere()" );
1244         break;
1245       }
1246       }
1247 
1248       // Advance to next constraint
1249       pconstraint = pconstraint->next();
1250       first_constraint = false;
1251     }
1252 
1253     fprintf(fp, ";\n");
1254   }
1255 }
1256 
1257 // // EXPERIMENTAL -- TEMPORARY code
1258 // static Form::DataType get_operand_type(FormDict &globals, InstructForm *instr, const char *op_name ) {
1259 //   int op_index = instr->operand_position(op_name, Component::USE);
1260 //   if( op_index == -1 ) {
1261 //     op_index = instr->operand_position(op_name, Component::DEF);
1262 //     if( op_index == -1 ) {
1263 //       op_index = instr->operand_position(op_name, Component::USE_DEF);
1264 //     }
1265 //   }
1266 //   assert( op_index != NameList::Not_in_list, "Did not find operand in instruction");
1267 //
1268 //   ComponentList components_right = instr->_components;
1269 //   char *right_comp_type = components_right.at(op_index)->_type;
1270 //   OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1271 //   Form::InterfaceType  right_interface_type = right_opclass->interface_type(globals);
1272 //
1273 //   return;
1274 // }
1275 
1276 // Construct the new sub-tree
1277 static void generate_peepreplace( FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint, PeepReplace *preplace, int max_position ) {
1278   fprintf(fp, "      // IF instructions and constraints matched\n");
1279   fprintf(fp, "      if( matches ) {\n");
1280   fprintf(fp, "        // generate the new sub-tree\n");
1281   fprintf(fp, "        assert( true, \"Debug stopping point\");\n");
1282   if( preplace != NULL ) {
1283     // Get the root of the new sub-tree
1284     const char *root_inst = NULL;
1285     preplace->next_instruction(root_inst);
1286     InstructForm *root_form = globals[root_inst]->is_instruction();
1287     assert( root_form != NULL, "Replacement instruction was not previously defined");
1288     fprintf(fp, "        %sNode *root = new (C) %sNode();\n", root_inst, root_inst);
1289 
1290     int         inst_num;
1291     const char *op_name;
1292     int         opnds_index = 0;            // define result operand
1293     // Then install the use-operands for the new sub-tree
1294     // preplace->reset();             // reset breaks iteration
1295     for( preplace->next_operand( inst_num, op_name );
1296          op_name != NULL;
1297          preplace->next_operand( inst_num, op_name ) ) {
1298       InstructForm *inst_form;
1299       inst_form  = globals[pmatch->instruction_name(inst_num)]->is_instruction();
1300       assert( inst_form, "Parser should guaranty this is an instruction");
1301       int inst_op_num = inst_form->operand_position(op_name, Component::USE);
1302       if( inst_op_num == NameList::Not_in_list )
1303         inst_op_num = inst_form->operand_position(op_name, Component::USE_DEF);
1304       assert( inst_op_num != NameList::Not_in_list, "Did not find operand as USE");
1305       // find the name of the OperandForm from the local name
1306       const Form *form   = inst_form->_localNames[op_name];
1307       OperandForm  *op_form = form->is_operand();
1308       if( opnds_index == 0 ) {
1309         // Initial setup of new instruction
1310         fprintf(fp, "        // ----- Initial setup -----\n");
1311         //
1312         // Add control edge for this node
1313         fprintf(fp, "        root->add_req(_in[0]);                // control edge\n");
1314         // Add unmatched edges from root of match tree
1315         int op_base = root_form->oper_input_base(globals);
1316         for( int unmatched_edge = 1; unmatched_edge < op_base; ++unmatched_edge ) {
1317           fprintf(fp, "        root->add_req(inst%d->in(%d));        // unmatched ideal edge\n",
1318                                           inst_num, unmatched_edge);
1319         }
1320         // If new instruction captures bottom type
1321         if( root_form->captures_bottom_type(globals) ) {
1322           // Get bottom type from instruction whose result we are replacing
1323           fprintf(fp, "        root->_bottom_type = inst%d->bottom_type();\n", inst_num);
1324         }
1325         // Define result register and result operand
1326         fprintf(fp, "        ra_->add_reference(root, inst%d);\n", inst_num);
1327         fprintf(fp, "        ra_->set_oop (root, ra_->is_oop(inst%d));\n", inst_num);
1328         fprintf(fp, "        ra_->set_pair(root->_idx, ra_->get_reg_second(inst%d), ra_->get_reg_first(inst%d));\n", inst_num, inst_num);
1329         fprintf(fp, "        root->_opnds[0] = inst%d->_opnds[0]->clone(C); // result\n", inst_num);
1330         fprintf(fp, "        // ----- Done with initial setup -----\n");
1331       } else {
1332         if( (op_form == NULL) || (op_form->is_base_constant(globals) == Form::none) ) {
1333           // Do not have ideal edges for constants after matching
1334           fprintf(fp, "        for( unsigned x%d = inst%d_idx%d; x%d < inst%d_idx%d; x%d++ )\n",
1335                   inst_op_num, inst_num, inst_op_num,
1336                   inst_op_num, inst_num, inst_op_num+1, inst_op_num );
1337           fprintf(fp, "          root->add_req( inst%d->in(x%d) );\n",
1338                   inst_num, inst_op_num );
1339         } else {
1340           fprintf(fp, "        // no ideal edge for constants after matching\n");
1341         }
1342         fprintf(fp, "        root->_opnds[%d] = inst%d->_opnds[%d]->clone(C);\n",
1343                 opnds_index, inst_num, inst_op_num );
1344       }
1345       ++opnds_index;
1346     }
1347   }else {
1348     // Replacing subtree with empty-tree
1349     assert( false, "ShouldNotReachHere();");
1350   }
1351 
1352   // Return the new sub-tree
1353   fprintf(fp, "        deleted = %d;\n", max_position+1 /*zero to one based*/);
1354   fprintf(fp, "        return root;  // return new root;\n");
1355   fprintf(fp, "      }\n");
1356 }
1357 
1358 
1359 // Define the Peephole method for an instruction node
1360 void ArchDesc::definePeephole(FILE *fp, InstructForm *node) {
1361   // Generate Peephole function header
1362   fprintf(fp, "MachNode *%sNode::peephole( Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile* C ) {\n", node->_ident);
1363   fprintf(fp, "  bool  matches = true;\n");
1364 
1365   // Identify the maximum instruction position,
1366   // generate temporaries that hold current instruction
1367   //
1368   //   MachNode  *inst0 = NULL;
1369   //   ...
1370   //   MachNode  *instMAX = NULL;
1371   //
1372   int max_position = 0;
1373   Peephole *peep;
1374   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1375     PeepMatch *pmatch = peep->match();
1376     assert( pmatch != NULL, "fatal(), missing peepmatch rule");
1377     if( max_position < pmatch->max_position() )  max_position = pmatch->max_position();
1378   }
1379   for( int i = 0; i <= max_position; ++i ) {
1380     if( i == 0 ) {
1381       fprintf(fp, "  MachNode *inst0 = this;\n");
1382     } else {
1383       fprintf(fp, "  MachNode *inst%d = NULL;\n", i);
1384     }
1385   }
1386 
1387   // For each peephole rule in architecture description
1388   //   Construct a test for the desired instruction sub-tree
1389   //   then check the constraints
1390   //   If these match, Generate the new subtree
1391   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1392     int         peephole_number = peep->peephole_number();
1393     PeepMatch      *pmatch      = peep->match();
1394     PeepConstraint *pconstraint = peep->constraints();
1395     PeepReplace    *preplace    = peep->replacement();
1396 
1397     // Root of this peephole is the current MachNode
1398     assert( true, // %%name?%% strcmp( node->_ident, pmatch->name(0) ) == 0,
1399             "root of PeepMatch does not match instruction");
1400 
1401     // Make each peephole rule individually selectable
1402     fprintf(fp, "  if( (OptoPeepholeAt == -1) || (OptoPeepholeAt==%d) ) {\n", peephole_number);
1403     fprintf(fp, "    matches = true;\n");
1404     // Scan the peepmatch and output a test for each instruction
1405     check_peepmatch_instruction_sequence( fp, pmatch, pconstraint );
1406 
1407     // Check constraints and build replacement inside scope
1408     fprintf(fp, "    // If instruction subtree matches\n");
1409     fprintf(fp, "    if( matches ) {\n");
1410 
1411     // Generate tests for the constraints
1412     check_peepconstraints( fp, _globalNames, pmatch, pconstraint );
1413 
1414     // Construct the new sub-tree
1415     generate_peepreplace( fp, _globalNames, pmatch, pconstraint, preplace, max_position );
1416 
1417     // End of scope for this peephole's constraints
1418     fprintf(fp, "    }\n");
1419     // Closing brace '}' to make each peephole rule individually selectable
1420     fprintf(fp, "  } // end of peephole rule #%d\n", peephole_number);
1421     fprintf(fp, "\n");
1422   }
1423 
1424   fprintf(fp, "  return NULL;  // No peephole rules matched\n");
1425   fprintf(fp, "}\n");
1426   fprintf(fp, "\n");
1427 }
1428 
1429 // Define the Expand method for an instruction node
1430 void ArchDesc::defineExpand(FILE *fp, InstructForm *node) {
1431   unsigned      cnt  = 0;          // Count nodes we have expand into
1432   unsigned      i;
1433 
1434   // Generate Expand function header
1435   fprintf(fp, "MachNode* %sNode::Expand(State* state, Node_List& proj_list, Node* mem) {\n", node->_ident);
1436   fprintf(fp, "  Compile* C = Compile::current();\n");
1437   // Generate expand code
1438   if( node->expands() ) {
1439     const char   *opid;
1440     int           new_pos, exp_pos;
1441     const char   *new_id   = NULL;
1442     const Form   *frm      = NULL;
1443     InstructForm *new_inst = NULL;
1444     OperandForm  *new_oper = NULL;
1445     unsigned      numo     = node->num_opnds() +
1446                                 node->_exprule->_newopers.count();
1447 
1448     // If necessary, generate any operands created in expand rule
1449     if (node->_exprule->_newopers.count()) {
1450       for(node->_exprule->_newopers.reset();
1451           (new_id = node->_exprule->_newopers.iter()) != NULL; cnt++) {
1452         frm = node->_localNames[new_id];
1453         assert(frm, "Invalid entry in new operands list of expand rule");
1454         new_oper = frm->is_operand();
1455         char *tmp = (char *)node->_exprule->_newopconst[new_id];
1456         if (tmp == NULL) {
1457           fprintf(fp,"  MachOper *op%d = new (C) %sOper();\n",
1458                   cnt, new_oper->_ident);
1459         }
1460         else {
1461           fprintf(fp,"  MachOper *op%d = new (C) %sOper(%s);\n",
1462                   cnt, new_oper->_ident, tmp);
1463         }
1464       }
1465     }
1466     cnt = 0;
1467     // Generate the temps to use for DAG building
1468     for(i = 0; i < numo; i++) {
1469       if (i < node->num_opnds()) {
1470         fprintf(fp,"  MachNode *tmp%d = this;\n", i);
1471       }
1472       else {
1473         fprintf(fp,"  MachNode *tmp%d = NULL;\n", i);
1474       }
1475     }
1476     // Build mapping from num_edges to local variables
1477     fprintf(fp,"  unsigned num0 = 0;\n");
1478     for( i = 1; i < node->num_opnds(); i++ ) {
1479       fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
1480     }
1481 
1482     // Build a mapping from operand index to input edges
1483     fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
1484 
1485     // The order in which the memory input is added to a node is very
1486     // strange.  Store nodes get a memory input before Expand is
1487     // called and other nodes get it afterwards or before depending on
1488     // match order so oper_input_base is wrong during expansion.  This
1489     // code adjusts it so that expansion will work correctly.
1490     int has_memory_edge = node->_matrule->needs_ideal_memory_edge(_globalNames);
1491     if (has_memory_edge) {
1492       fprintf(fp,"  if (mem == (Node*)1) {\n");
1493       fprintf(fp,"    idx0--; // Adjust base because memory edge hasn't been inserted yet\n");
1494       fprintf(fp,"  }\n");
1495     }
1496 
1497     for( i = 0; i < node->num_opnds(); i++ ) {
1498       fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
1499               i+1,i,i);
1500     }
1501 
1502     // Declare variable to hold root of expansion
1503     fprintf(fp,"  MachNode *result = NULL;\n");
1504 
1505     // Iterate over the instructions 'node' expands into
1506     ExpandRule  *expand       = node->_exprule;
1507     NameAndList *expand_instr = NULL;
1508     for(expand->reset_instructions();
1509         (expand_instr = expand->iter_instructions()) != NULL; cnt++) {
1510       new_id = expand_instr->name();
1511 
1512       InstructForm* expand_instruction = (InstructForm*)globalAD->globalNames()[new_id];
1513 
1514       if (!expand_instruction) {
1515         globalAD->syntax_err(node->_linenum, "In %s: instruction %s used in expand not declared\n",
1516                              node->_ident, new_id);
1517         continue;
1518       }
1519 
1520       if (expand_instruction->has_temps()) {
1521         globalAD->syntax_err(node->_linenum, "In %s: expand rules using instructs with TEMPs aren't supported: %s",
1522                              node->_ident, new_id);
1523       }
1524 
1525       // Build the node for the instruction
1526       fprintf(fp,"\n  %sNode *n%d = new (C) %sNode();\n", new_id, cnt, new_id);
1527       // Add control edge for this node
1528       fprintf(fp,"  n%d->add_req(_in[0]);\n", cnt);
1529       // Build the operand for the value this node defines.
1530       Form *form = (Form*)_globalNames[new_id];
1531       assert( form, "'new_id' must be a defined form name");
1532       // Grab the InstructForm for the new instruction
1533       new_inst = form->is_instruction();
1534       assert( new_inst, "'new_id' must be an instruction name");
1535       if( node->is_ideal_if() && new_inst->is_ideal_if() ) {
1536         fprintf(fp, "  ((MachIfNode*)n%d)->_prob = _prob;\n",cnt);
1537         fprintf(fp, "  ((MachIfNode*)n%d)->_fcnt = _fcnt;\n",cnt);
1538       }
1539 
1540       if( node->is_ideal_fastlock() && new_inst->is_ideal_fastlock() ) {
1541         fprintf(fp, "  ((MachFastLockNode*)n%d)->_counters = _counters;\n",cnt);
1542         fprintf(fp, "  ((MachFastLockNode*)n%d)->_rtm_counters = _rtm_counters;\n",cnt);
1543         fprintf(fp, "  ((MachFastLockNode*)n%d)->_stack_rtm_counters = _stack_rtm_counters;\n",cnt);
1544       }
1545 
1546       // Fill in the bottom_type where requested
1547       if (node->captures_bottom_type(_globalNames) &&
1548           new_inst->captures_bottom_type(_globalNames)) {
1549         fprintf(fp, "  ((MachTypeNode*)n%d)->_bottom_type = bottom_type();\n", cnt);
1550       }
1551 
1552       const char *resultOper = new_inst->reduce_result();
1553       fprintf(fp,"  n%d->set_opnd_array(0, state->MachOperGenerator( %s, C ));\n",
1554               cnt, machOperEnum(resultOper));
1555 
1556       // get the formal operand NameList
1557       NameList *formal_lst = &new_inst->_parameters;
1558       formal_lst->reset();
1559 
1560       // Handle any memory operand
1561       int memory_operand = new_inst->memory_operand(_globalNames);
1562       if( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
1563         int node_mem_op = node->memory_operand(_globalNames);
1564         assert( node_mem_op != InstructForm::NO_MEMORY_OPERAND,
1565                 "expand rule member needs memory but top-level inst doesn't have any" );
1566         if (has_memory_edge) {
1567           // Copy memory edge
1568           fprintf(fp,"  if (mem != (Node*)1) {\n");
1569           fprintf(fp,"    n%d->add_req(_in[1]);\t// Add memory edge\n", cnt);
1570           fprintf(fp,"  }\n");
1571         }
1572       }
1573 
1574       // Iterate over the new instruction's operands
1575       int prev_pos = -1;
1576       for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
1577         // Use 'parameter' at current position in list of new instruction's formals
1578         // instead of 'opid' when looking up info internal to new_inst
1579         const char *parameter = formal_lst->iter();
1580         if (!parameter) {
1581           globalAD->syntax_err(node->_linenum, "Operand %s of expand instruction %s has"
1582                                " no equivalent in new instruction %s.",
1583                                opid, node->_ident, new_inst->_ident);
1584           assert(0, "Wrong expand");
1585         }
1586 
1587         // Check for an operand which is created in the expand rule
1588         if ((exp_pos = node->_exprule->_newopers.index(opid)) != -1) {
1589           new_pos = new_inst->operand_position(parameter,Component::USE);
1590           exp_pos += node->num_opnds();
1591           // If there is no use of the created operand, just skip it
1592           if (new_pos != NameList::Not_in_list) {
1593             //Copy the operand from the original made above
1594             fprintf(fp,"  n%d->set_opnd_array(%d, op%d->clone(C)); // %s\n",
1595                     cnt, new_pos, exp_pos-node->num_opnds(), opid);
1596             // Check for who defines this operand & add edge if needed
1597             fprintf(fp,"  if(tmp%d != NULL)\n", exp_pos);
1598             fprintf(fp,"    n%d->add_req(tmp%d);\n", cnt, exp_pos);
1599           }
1600         }
1601         else {
1602           // Use operand name to get an index into instruction component list
1603           // ins = (InstructForm *) _globalNames[new_id];
1604           exp_pos = node->operand_position_format(opid);
1605           assert(exp_pos != -1, "Bad expand rule");
1606           if (prev_pos > exp_pos && expand_instruction->_matrule != NULL) {
1607             // For the add_req calls below to work correctly they need
1608             // to added in the same order that a match would add them.
1609             // This means that they would need to be in the order of
1610             // the components list instead of the formal parameters.
1611             // This is a sort of hidden invariant that previously
1612             // wasn't checked and could lead to incorrectly
1613             // constructed nodes.
1614             syntax_err(node->_linenum, "For expand in %s to work, parameter declaration order in %s must follow matchrule\n",
1615                        node->_ident, new_inst->_ident);
1616           }
1617           prev_pos = exp_pos;
1618 
1619           new_pos = new_inst->operand_position(parameter,Component::USE);
1620           if (new_pos != -1) {
1621             // Copy the operand from the ExpandNode to the new node
1622             fprintf(fp,"  n%d->set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
1623                     cnt, new_pos, exp_pos, opid);
1624             // For each operand add appropriate input edges by looking at tmp's
1625             fprintf(fp,"  if(tmp%d == this) {\n", exp_pos);
1626             // Grab corresponding edges from ExpandNode and insert them here
1627             fprintf(fp,"    for(unsigned i = 0; i < num%d; i++) {\n", exp_pos);
1628             fprintf(fp,"      n%d->add_req(_in[i + idx%d]);\n", cnt, exp_pos);
1629             fprintf(fp,"    }\n");
1630             fprintf(fp,"  }\n");
1631             // This value is generated by one of the new instructions
1632             fprintf(fp,"  else n%d->add_req(tmp%d);\n", cnt, exp_pos);
1633           }
1634         }
1635 
1636         // Update the DAG tmp's for values defined by this instruction
1637         int new_def_pos = new_inst->operand_position(parameter,Component::DEF);
1638         Effect *eform = (Effect *)new_inst->_effects[parameter];
1639         // If this operand is a definition in either an effects rule
1640         // or a match rule
1641         if((eform) && (is_def(eform->_use_def))) {
1642           // Update the temp associated with this operand
1643           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
1644         }
1645         else if( new_def_pos != -1 ) {
1646           // Instruction defines a value but user did not declare it
1647           // in the 'effect' clause
1648           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
1649         }
1650       } // done iterating over a new instruction's operands
1651 
1652       // Invoke Expand() for the newly created instruction.
1653       fprintf(fp,"  result = n%d->Expand( state, proj_list, mem );\n", cnt);
1654       assert( !new_inst->expands(), "Do not have complete support for recursive expansion");
1655     } // done iterating over new instructions
1656     fprintf(fp,"\n");
1657   } // done generating expand rule
1658 
1659   // Generate projections for instruction's additional DEFs and KILLs
1660   if( ! node->expands() && (node->needs_projections() || node->has_temps())) {
1661     // Get string representing the MachNode that projections point at
1662     const char *machNode = "this";
1663     // Generate the projections
1664     fprintf(fp,"  // Add projection edges for additional defs or kills\n");
1665 
1666     // Examine each component to see if it is a DEF or KILL
1667     node->_components.reset();
1668     // Skip the first component, if already handled as (SET dst (...))
1669     Component *comp = NULL;
1670     // For kills, the choice of projection numbers is arbitrary
1671     int proj_no = 1;
1672     bool declared_def  = false;
1673     bool declared_kill = false;
1674 
1675     while( (comp = node->_components.iter()) != NULL ) {
1676       // Lookup register class associated with operand type
1677       Form        *form = (Form*)_globalNames[comp->_type];
1678       assert( form, "component type must be a defined form");
1679       OperandForm *op   = form->is_operand();
1680 
1681       if (comp->is(Component::TEMP)) {
1682         fprintf(fp, "  // TEMP %s\n", comp->_name);
1683         if (!declared_def) {
1684           // Define the variable "def" to hold new MachProjNodes
1685           fprintf(fp, "  MachTempNode *def;\n");
1686           declared_def = true;
1687         }
1688         if (op && op->_interface && op->_interface->is_RegInterface()) {
1689           fprintf(fp,"  def = new (C) MachTempNode(state->MachOperGenerator( %s, C ));\n",
1690                   machOperEnum(op->_ident));
1691           fprintf(fp,"  add_req(def);\n");
1692           // The operand for TEMP is already constructed during
1693           // this mach node construction, see buildMachNode().
1694           //
1695           // int idx  = node->operand_position_format(comp->_name);
1696           // fprintf(fp,"  set_opnd_array(%d, state->MachOperGenerator( %s, C ));\n",
1697           //         idx, machOperEnum(op->_ident));
1698         } else {
1699           assert(false, "can't have temps which aren't registers");
1700         }
1701       } else if (comp->isa(Component::KILL)) {
1702         fprintf(fp, "  // DEF/KILL %s\n", comp->_name);
1703 
1704         if (!declared_kill) {
1705           // Define the variable "kill" to hold new MachProjNodes
1706           fprintf(fp, "  MachProjNode *kill;\n");
1707           declared_kill = true;
1708         }
1709 
1710         assert( op, "Support additional KILLS for base operands");
1711         const char *regmask    = reg_mask(*op);
1712         const char *ideal_type = op->ideal_type(_globalNames, _register);
1713 
1714         if (!op->is_bound_register()) {
1715           syntax_err(node->_linenum, "In %s only bound registers can be killed: %s %s\n",
1716                      node->_ident, comp->_type, comp->_name);
1717         }
1718 
1719         fprintf(fp,"  kill = ");
1720         fprintf(fp,"new (C) MachProjNode( %s, %d, (%s), Op_%s );\n",
1721                 machNode, proj_no++, regmask, ideal_type);
1722         fprintf(fp,"  proj_list.push(kill);\n");
1723       }
1724     }
1725   }
1726 
1727   if( !node->expands() && node->_matrule != NULL ) {
1728     // Remove duplicated operands and inputs which use the same name.
1729     // Seach through match operands for the same name usage.
1730     uint cur_num_opnds = node->num_opnds();
1731     if( cur_num_opnds > 1 && cur_num_opnds != node->num_unique_opnds() ) {
1732       Component *comp = NULL;
1733       // Build mapping from num_edges to local variables
1734       fprintf(fp,"  unsigned num0 = 0;\n");
1735       for( i = 1; i < cur_num_opnds; i++ ) {
1736         fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();",i,i);
1737         fprintf(fp, " \t// %s\n", node->opnd_ident(i));
1738       }
1739       // Build a mapping from operand index to input edges
1740       fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
1741       for( i = 0; i < cur_num_opnds; i++ ) {
1742         fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
1743                 i+1,i,i);
1744       }
1745 
1746       uint new_num_opnds = 1;
1747       node->_components.reset();
1748       // Skip first unique operands.
1749       for( i = 1; i < cur_num_opnds; i++ ) {
1750         comp = node->_components.iter();
1751         if (i != node->unique_opnds_idx(i)) {
1752           break;
1753         }
1754         new_num_opnds++;
1755       }
1756       // Replace not unique operands with next unique operands.
1757       for( ; i < cur_num_opnds; i++ ) {
1758         comp = node->_components.iter();
1759         uint j = node->unique_opnds_idx(i);
1760         // unique_opnds_idx(i) is unique if unique_opnds_idx(j) is not unique.
1761         if( j != node->unique_opnds_idx(j) ) {
1762           fprintf(fp,"  set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
1763                   new_num_opnds, i, comp->_name);
1764           // delete not unique edges here
1765           fprintf(fp,"  for(unsigned i = 0; i < num%d; i++) {\n", i);
1766           fprintf(fp,"    set_req(i + idx%d, _in[i + idx%d]);\n", new_num_opnds, i);
1767           fprintf(fp,"  }\n");
1768           fprintf(fp,"  num%d = num%d;\n", new_num_opnds, i);
1769           fprintf(fp,"  idx%d = idx%d + num%d;\n", new_num_opnds+1, new_num_opnds, new_num_opnds);
1770           new_num_opnds++;
1771         }
1772       }
1773       // delete the rest of edges
1774       fprintf(fp,"  for(int i = idx%d - 1; i >= (int)idx%d; i--) {\n", cur_num_opnds, new_num_opnds);
1775       fprintf(fp,"    del_req(i);\n");
1776       fprintf(fp,"  }\n");
1777       fprintf(fp,"  _num_opnds = %d;\n", new_num_opnds);
1778       assert(new_num_opnds == node->num_unique_opnds(), "what?");
1779     }
1780   }
1781 
1782   // If the node is a MachConstantNode, insert the MachConstantBaseNode edge.
1783   // NOTE: this edge must be the last input (see MachConstantNode::mach_constant_base_node_input).
1784   // There are nodes that don't use $constantablebase, but still require that it
1785   // is an input to the node. Example: divF_reg_immN, Repl32B_imm on x86_64.
1786   if (node->is_mach_constant() || node->needs_constant_base()) {
1787     if (node->is_ideal_call() != Form::invalid_type &&
1788         node->is_ideal_call() != Form::JAVA_LEAF) {
1789       fprintf(fp, "  // MachConstantBaseNode added in matcher.\n");
1790       _needs_clone_jvms = true;
1791     } else {
1792       fprintf(fp, "  add_req(C->mach_constant_base_node());\n");
1793     }
1794   }
1795 
1796   fprintf(fp, "\n");
1797   if (node->expands()) {
1798     fprintf(fp, "  return result;\n");
1799   } else {
1800     fprintf(fp, "  return this;\n");
1801   }
1802   fprintf(fp, "}\n");
1803   fprintf(fp, "\n");
1804 }
1805 
1806 
1807 //------------------------------Emit Routines----------------------------------
1808 // Special classes and routines for defining node emit routines which output
1809 // target specific instruction object encodings.
1810 // Define the ___Node::emit() routine
1811 //
1812 // (1) void  ___Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1813 // (2)   // ...  encoding defined by user
1814 // (3)
1815 // (4) }
1816 //
1817 
1818 class DefineEmitState {
1819 private:
1820   enum reloc_format { RELOC_NONE        = -1,
1821                       RELOC_IMMEDIATE   =  0,
1822                       RELOC_DISP        =  1,
1823                       RELOC_CALL_DISP   =  2 };
1824   enum literal_status{ LITERAL_NOT_SEEN  = 0,
1825                        LITERAL_SEEN      = 1,
1826                        LITERAL_ACCESSED  = 2,
1827                        LITERAL_OUTPUT    = 3 };
1828   // Temporaries that describe current operand
1829   bool          _cleared;
1830   OpClassForm  *_opclass;
1831   OperandForm  *_operand;
1832   int           _operand_idx;
1833   const char   *_local_name;
1834   const char   *_operand_name;
1835   bool          _doing_disp;
1836   bool          _doing_constant;
1837   Form::DataType _constant_type;
1838   DefineEmitState::literal_status _constant_status;
1839   DefineEmitState::literal_status _reg_status;
1840   bool          _doing_emit8;
1841   bool          _doing_emit_d32;
1842   bool          _doing_emit_d16;
1843   bool          _doing_emit_hi;
1844   bool          _doing_emit_lo;
1845   bool          _may_reloc;
1846   reloc_format  _reloc_form;
1847   const char *  _reloc_type;
1848   bool          _processing_noninput;
1849 
1850   NameList      _strings_to_emit;
1851 
1852   // Stable state, set by constructor
1853   ArchDesc     &_AD;
1854   FILE         *_fp;
1855   EncClass     &_encoding;
1856   InsEncode    &_ins_encode;
1857   InstructForm &_inst;
1858 
1859 public:
1860   DefineEmitState(FILE *fp, ArchDesc &AD, EncClass &encoding,
1861                   InsEncode &ins_encode, InstructForm &inst)
1862     : _AD(AD), _fp(fp), _encoding(encoding), _ins_encode(ins_encode), _inst(inst) {
1863       clear();
1864   }
1865 
1866   void clear() {
1867     _cleared       = true;
1868     _opclass       = NULL;
1869     _operand       = NULL;
1870     _operand_idx   = 0;
1871     _local_name    = "";
1872     _operand_name  = "";
1873     _doing_disp    = false;
1874     _doing_constant= false;
1875     _constant_type = Form::none;
1876     _constant_status = LITERAL_NOT_SEEN;
1877     _reg_status      = LITERAL_NOT_SEEN;
1878     _doing_emit8   = false;
1879     _doing_emit_d32= false;
1880     _doing_emit_d16= false;
1881     _doing_emit_hi = false;
1882     _doing_emit_lo = false;
1883     _may_reloc     = false;
1884     _reloc_form    = RELOC_NONE;
1885     _reloc_type    = AdlcVMDeps::none_reloc_type();
1886     _strings_to_emit.clear();
1887   }
1888 
1889   // Track necessary state when identifying a replacement variable
1890   // @arg rep_var: The formal parameter of the encoding.
1891   void update_state(const char *rep_var) {
1892     // A replacement variable or one of its subfields
1893     // Obtain replacement variable from list
1894     if ( (*rep_var) != '$' ) {
1895       // A replacement variable, '$' prefix
1896       // check_rep_var( rep_var );
1897       if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
1898         // No state needed.
1899         assert( _opclass == NULL,
1900                 "'primary', 'secondary' and 'tertiary' don't follow operand.");
1901       }
1902       else if ((strcmp(rep_var, "constanttablebase") == 0) ||
1903                (strcmp(rep_var, "constantoffset")    == 0) ||
1904                (strcmp(rep_var, "constantaddress")   == 0)) {
1905         if (!(_inst.is_mach_constant() || _inst.needs_constant_base())) {
1906           _AD.syntax_err(_encoding._linenum,
1907                          "Replacement variable %s not allowed in instruct %s (only in MachConstantNode or MachCall).\n",
1908                          rep_var, _encoding._name);
1909         }
1910       }
1911       else {
1912         // Lookup its position in (formal) parameter list of encoding
1913         int   param_no  = _encoding.rep_var_index(rep_var);
1914         if ( param_no == -1 ) {
1915           _AD.syntax_err( _encoding._linenum,
1916                           "Replacement variable %s not found in enc_class %s.\n",
1917                           rep_var, _encoding._name);
1918         }
1919 
1920         // Lookup the corresponding ins_encode parameter
1921         // This is the argument (actual parameter) to the encoding.
1922         const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
1923         if (inst_rep_var == NULL) {
1924           _AD.syntax_err( _ins_encode._linenum,
1925                           "Parameter %s not passed to enc_class %s from instruct %s.\n",
1926                           rep_var, _encoding._name, _inst._ident);
1927         }
1928 
1929         // Check if instruction's actual parameter is a local name in the instruction
1930         const Form  *local     = _inst._localNames[inst_rep_var];
1931         OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
1932         // Note: assert removed to allow constant and symbolic parameters
1933         // assert( opc, "replacement variable was not found in local names");
1934         // Lookup the index position iff the replacement variable is a localName
1935         int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
1936 
1937         if ( idx != -1 ) {
1938           // This is a local in the instruction
1939           // Update local state info.
1940           _opclass        = opc;
1941           _operand_idx    = idx;
1942           _local_name     = rep_var;
1943           _operand_name   = inst_rep_var;
1944 
1945           // !!!!!
1946           // Do not support consecutive operands.
1947           assert( _operand == NULL, "Unimplemented()");
1948           _operand = opc->is_operand();
1949         }
1950         else if( ADLParser::is_literal_constant(inst_rep_var) ) {
1951           // Instruction provided a constant expression
1952           // Check later that encoding specifies $$$constant to resolve as constant
1953           _constant_status   = LITERAL_SEEN;
1954         }
1955         else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
1956           // Instruction provided an opcode: "primary", "secondary", "tertiary"
1957           // Check later that encoding specifies $$$constant to resolve as constant
1958           _constant_status   = LITERAL_SEEN;
1959         }
1960         else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
1961           // Instruction provided a literal register name for this parameter
1962           // Check that encoding specifies $$$reg to resolve.as register.
1963           _reg_status        = LITERAL_SEEN;
1964         }
1965         else {
1966           // Check for unimplemented functionality before hard failure
1967           assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
1968           assert( false, "ShouldNotReachHere()");
1969         }
1970       } // done checking which operand this is.
1971     } else {
1972       //
1973       // A subfield variable, '$$' prefix
1974       // Check for fields that may require relocation information.
1975       // Then check that literal register parameters are accessed with 'reg' or 'constant'
1976       //
1977       if ( strcmp(rep_var,"$disp") == 0 ) {
1978         _doing_disp = true;
1979         assert( _opclass, "Must use operand or operand class before '$disp'");
1980         if( _operand == NULL ) {
1981           // Only have an operand class, generate run-time check for relocation
1982           _may_reloc    = true;
1983           _reloc_form   = RELOC_DISP;
1984           _reloc_type   = AdlcVMDeps::oop_reloc_type();
1985         } else {
1986           // Do precise check on operand: is it a ConP or not
1987           //
1988           // Check interface for value of displacement
1989           assert( ( _operand->_interface != NULL ),
1990                   "$disp can only follow memory interface operand");
1991           MemInterface *mem_interface= _operand->_interface->is_MemInterface();
1992           assert( mem_interface != NULL,
1993                   "$disp can only follow memory interface operand");
1994           const char *disp = mem_interface->_disp;
1995 
1996           if( disp != NULL && (*disp == '$') ) {
1997             // MemInterface::disp contains a replacement variable,
1998             // Check if this matches a ConP
1999             //
2000             // Lookup replacement variable, in operand's component list
2001             const char *rep_var_name = disp + 1; // Skip '$'
2002             const Component *comp = _operand->_components.search(rep_var_name);
2003             assert( comp != NULL,"Replacement variable not found in components");
2004             const char      *type = comp->_type;
2005             // Lookup operand form for replacement variable's type
2006             const Form *form = _AD.globalNames()[type];
2007             assert( form != NULL, "Replacement variable's type not found");
2008             OperandForm *op = form->is_operand();
2009             assert( op, "Attempting to emit a non-register or non-constant");
2010             // Check if this is a constant
2011             if (op->_matrule && op->_matrule->is_base_constant(_AD.globalNames())) {
2012               // Check which constant this name maps to: _c0, _c1, ..., _cn
2013               // const int idx = _operand.constant_position(_AD.globalNames(), comp);
2014               // assert( idx != -1, "Constant component not found in operand");
2015               Form::DataType dtype = op->is_base_constant(_AD.globalNames());
2016               if ( dtype == Form::idealP ) {
2017                 _may_reloc    = true;
2018                 // No longer true that idealP is always an oop
2019                 _reloc_form   = RELOC_DISP;
2020                 _reloc_type   = AdlcVMDeps::oop_reloc_type();
2021               }
2022             }
2023 
2024             else if( _operand->is_user_name_for_sReg() != Form::none ) {
2025               // The only non-constant allowed access to disp is an operand sRegX in a stackSlotX
2026               assert( op->ideal_to_sReg_type(type) != Form::none, "StackSlots access displacements using 'sRegs'");
2027               _may_reloc   = false;
2028             } else {
2029               assert( false, "fatal(); Only stackSlots can access a non-constant using 'disp'");
2030             }
2031           }
2032         } // finished with precise check of operand for relocation.
2033       } // finished with subfield variable
2034       else if ( strcmp(rep_var,"$constant") == 0 ) {
2035         _doing_constant = true;
2036         if ( _constant_status == LITERAL_NOT_SEEN ) {
2037           // Check operand for type of constant
2038           assert( _operand, "Must use operand before '$$constant'");
2039           Form::DataType dtype = _operand->is_base_constant(_AD.globalNames());
2040           _constant_type = dtype;
2041           if ( dtype == Form::idealP ) {
2042             _may_reloc    = true;
2043             // No longer true that idealP is always an oop
2044             // // _must_reloc   = true;
2045             _reloc_form   = RELOC_IMMEDIATE;
2046             _reloc_type   = AdlcVMDeps::oop_reloc_type();
2047           } else {
2048             // No relocation information needed
2049           }
2050         } else {
2051           // User-provided literals may not require relocation information !!!!!
2052           assert( _constant_status == LITERAL_SEEN, "Must know we are processing a user-provided literal");
2053         }
2054       }
2055       else if ( strcmp(rep_var,"$label") == 0 ) {
2056         // Calls containing labels require relocation
2057         if ( _inst.is_ideal_call() )  {
2058           _may_reloc    = true;
2059           // !!!!! !!!!!
2060           _reloc_type   = AdlcVMDeps::none_reloc_type();
2061         }
2062       }
2063 
2064       // literal register parameter must be accessed as a 'reg' field.
2065       if ( _reg_status != LITERAL_NOT_SEEN ) {
2066         assert( _reg_status == LITERAL_SEEN, "Must have seen register literal before now");
2067         if (strcmp(rep_var,"$reg") == 0 || reg_conversion(rep_var) != NULL) {
2068           _reg_status  = LITERAL_ACCESSED;
2069         } else {
2070           _AD.syntax_err(_encoding._linenum,
2071                          "Invalid access to literal register parameter '%s' in %s.\n",
2072                          rep_var, _encoding._name);
2073           assert( false, "invalid access to literal register parameter");
2074         }
2075       }
2076       // literal constant parameters must be accessed as a 'constant' field
2077       if (_constant_status != LITERAL_NOT_SEEN) {
2078         assert(_constant_status == LITERAL_SEEN, "Must have seen constant literal before now");
2079         if (strcmp(rep_var,"$constant") == 0) {
2080           _constant_status = LITERAL_ACCESSED;
2081         } else {
2082           _AD.syntax_err(_encoding._linenum,
2083                          "Invalid access to literal constant parameter '%s' in %s.\n",
2084                          rep_var, _encoding._name);
2085         }
2086       }
2087     } // end replacement and/or subfield
2088 
2089   }
2090 
2091   void add_rep_var(const char *rep_var) {
2092     // Handle subfield and replacement variables.
2093     if ( ( *rep_var == '$' ) && ( *(rep_var+1) == '$' ) ) {
2094       // Check for emit prefix, '$$emit32'
2095       assert( _cleared, "Can not nest $$$emit32");
2096       if ( strcmp(rep_var,"$$emit32") == 0 ) {
2097         _doing_emit_d32 = true;
2098       }
2099       else if ( strcmp(rep_var,"$$emit16") == 0 ) {
2100         _doing_emit_d16 = true;
2101       }
2102       else if ( strcmp(rep_var,"$$emit_hi") == 0 ) {
2103         _doing_emit_hi  = true;
2104       }
2105       else if ( strcmp(rep_var,"$$emit_lo") == 0 ) {
2106         _doing_emit_lo  = true;
2107       }
2108       else if ( strcmp(rep_var,"$$emit8") == 0 ) {
2109         _doing_emit8    = true;
2110       }
2111       else {
2112         _AD.syntax_err(_encoding._linenum, "Unsupported $$operation '%s'\n",rep_var);
2113         assert( false, "fatal();");
2114       }
2115     }
2116     else {
2117       // Update state for replacement variables
2118       update_state( rep_var );
2119       _strings_to_emit.addName(rep_var);
2120     }
2121     _cleared  = false;
2122   }
2123 
2124   void emit_replacement() {
2125     // A replacement variable or one of its subfields
2126     // Obtain replacement variable from list
2127     // const char *ec_rep_var = encoding->_rep_vars.iter();
2128     const char *rep_var;
2129     _strings_to_emit.reset();
2130     while ( (rep_var = _strings_to_emit.iter()) != NULL ) {
2131 
2132       if ( (*rep_var) == '$' ) {
2133         // A subfield variable, '$$' prefix
2134         emit_field( rep_var );
2135       } else {
2136         if (_strings_to_emit.peek() != NULL &&
2137             strcmp(_strings_to_emit.peek(), "$Address") == 0) {
2138           fprintf(_fp, "Address::make_raw(");
2139 
2140           emit_rep_var( rep_var );
2141           fprintf(_fp,"->base(ra_,this,idx%d), ", _operand_idx);
2142 
2143           _reg_status = LITERAL_ACCESSED;
2144           emit_rep_var( rep_var );
2145           fprintf(_fp,"->index(ra_,this,idx%d), ", _operand_idx);
2146 
2147           _reg_status = LITERAL_ACCESSED;
2148           emit_rep_var( rep_var );
2149           fprintf(_fp,"->scale(), ");
2150 
2151           _reg_status = LITERAL_ACCESSED;
2152           emit_rep_var( rep_var );
2153           Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2154           if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
2155             fprintf(_fp,"->disp(ra_,this,0), ");
2156           } else {
2157             fprintf(_fp,"->disp(ra_,this,idx%d), ", _operand_idx);
2158           }
2159 
2160           _reg_status = LITERAL_ACCESSED;
2161           emit_rep_var( rep_var );
2162           fprintf(_fp,"->disp_reloc())");
2163 
2164           // skip trailing $Address
2165           _strings_to_emit.iter();
2166         } else {
2167           // A replacement variable, '$' prefix
2168           const char* next = _strings_to_emit.peek();
2169           const char* next2 = _strings_to_emit.peek(2);
2170           if (next != NULL && next2 != NULL && strcmp(next2, "$Register") == 0 &&
2171               (strcmp(next, "$base") == 0 || strcmp(next, "$index") == 0)) {
2172             // handle $rev_var$$base$$Register and $rev_var$$index$$Register by
2173             // producing as_Register(opnd_array(#)->base(ra_,this,idx1)).
2174             fprintf(_fp, "as_Register(");
2175             // emit the operand reference
2176             emit_rep_var( rep_var );
2177             rep_var = _strings_to_emit.iter();
2178             assert(strcmp(rep_var, "$base") == 0 || strcmp(rep_var, "$index") == 0, "bad pattern");
2179             // handle base or index
2180             emit_field(rep_var);
2181             rep_var = _strings_to_emit.iter();
2182             assert(strcmp(rep_var, "$Register") == 0, "bad pattern");
2183             // close up the parens
2184             fprintf(_fp, ")");
2185           } else {
2186             emit_rep_var( rep_var );
2187           }
2188         }
2189       } // end replacement and/or subfield
2190     }
2191   }
2192 
2193   void emit_reloc_type(const char* type) {
2194     fprintf(_fp, "%s", type)
2195       ;
2196   }
2197 
2198 
2199   void emit() {
2200     //
2201     //   "emit_d32_reloc(" or "emit_hi_reloc" or "emit_lo_reloc"
2202     //
2203     // Emit the function name when generating an emit function
2204     if ( _doing_emit_d32 || _doing_emit_hi || _doing_emit_lo ) {
2205       const char *d32_hi_lo = _doing_emit_d32 ? "d32" : (_doing_emit_hi ? "hi" : "lo");
2206       // In general, relocatable isn't known at compiler compile time.
2207       // Check results of prior scan
2208       if ( ! _may_reloc ) {
2209         // Definitely don't need relocation information
2210         fprintf( _fp, "emit_%s(cbuf, ", d32_hi_lo );
2211         emit_replacement(); fprintf(_fp, ")");
2212       }
2213       else {
2214         // Emit RUNTIME CHECK to see if value needs relocation info
2215         // If emitting a relocatable address, use 'emit_d32_reloc'
2216         const char *disp_constant = _doing_disp ? "disp" : _doing_constant ? "constant" : "INVALID";
2217         assert( (_doing_disp || _doing_constant)
2218                 && !(_doing_disp && _doing_constant),
2219                 "Must be emitting either a displacement or a constant");
2220         fprintf(_fp,"\n");
2221         fprintf(_fp,"if ( opnd_array(%d)->%s_reloc() != relocInfo::none ) {\n",
2222                 _operand_idx, disp_constant);
2223         fprintf(_fp,"  ");
2224         fprintf(_fp,"emit_%s_reloc(cbuf, ", d32_hi_lo );
2225         emit_replacement();             fprintf(_fp,", ");
2226         fprintf(_fp,"opnd_array(%d)->%s_reloc(), ",
2227                 _operand_idx, disp_constant);
2228         fprintf(_fp, "%d", _reloc_form);fprintf(_fp, ");");
2229         fprintf(_fp,"\n");
2230         fprintf(_fp,"} else {\n");
2231         fprintf(_fp,"  emit_%s(cbuf, ", d32_hi_lo);
2232         emit_replacement(); fprintf(_fp, ");\n"); fprintf(_fp,"}");
2233       }
2234     }
2235     else if ( _doing_emit_d16 ) {
2236       // Relocation of 16-bit values is not supported
2237       fprintf(_fp,"emit_d16(cbuf, ");
2238       emit_replacement(); fprintf(_fp, ")");
2239       // No relocation done for 16-bit values
2240     }
2241     else if ( _doing_emit8 ) {
2242       // Relocation of 8-bit values is not supported
2243       fprintf(_fp,"emit_d8(cbuf, ");
2244       emit_replacement(); fprintf(_fp, ")");
2245       // No relocation done for 8-bit values
2246     }
2247     else {
2248       // Not an emit# command, just output the replacement string.
2249       emit_replacement();
2250     }
2251 
2252     // Get ready for next state collection.
2253     clear();
2254   }
2255 
2256 private:
2257 
2258   // recognizes names which represent MacroAssembler register types
2259   // and return the conversion function to build them from OptoReg
2260   const char* reg_conversion(const char* rep_var) {
2261     if (strcmp(rep_var,"$Register") == 0)      return "as_Register";
2262     if (strcmp(rep_var,"$FloatRegister") == 0) return "as_FloatRegister";
2263 #if defined(IA32) || defined(AMD64)
2264     if (strcmp(rep_var,"$XMMRegister") == 0)   return "as_XMMRegister";
2265 #endif
2266     if (strcmp(rep_var,"$CondRegister") == 0)  return "as_ConditionRegister";
2267     return NULL;
2268   }
2269 
2270   void emit_field(const char *rep_var) {
2271     const char* reg_convert = reg_conversion(rep_var);
2272 
2273     // A subfield variable, '$$subfield'
2274     if ( strcmp(rep_var, "$reg") == 0 || reg_convert != NULL) {
2275       // $reg form or the $Register MacroAssembler type conversions
2276       assert( _operand_idx != -1,
2277               "Must use this subfield after operand");
2278       if( _reg_status == LITERAL_NOT_SEEN ) {
2279         if (_processing_noninput) {
2280           const Form  *local     = _inst._localNames[_operand_name];
2281           OperandForm *oper      = local->is_operand();
2282           const RegDef* first = oper->get_RegClass()->find_first_elem();
2283           if (reg_convert != NULL) {
2284             fprintf(_fp, "%s(%s_enc)", reg_convert, first->_regname);
2285           } else {
2286             fprintf(_fp, "%s_enc", first->_regname);
2287           }
2288         } else {
2289           fprintf(_fp,"->%s(ra_,this", reg_convert != NULL ? reg_convert : "reg");
2290           // Add parameter for index position, if not result operand
2291           if( _operand_idx != 0 ) fprintf(_fp,",idx%d", _operand_idx);
2292           fprintf(_fp,")");
2293           fprintf(_fp, "/* %s */", _operand_name);
2294         }
2295       } else {
2296         assert( _reg_status == LITERAL_OUTPUT, "should have output register literal in emit_rep_var");
2297         // Register literal has already been sent to output file, nothing more needed
2298       }
2299     }
2300     else if ( strcmp(rep_var,"$base") == 0 ) {
2301       assert( _operand_idx != -1,
2302               "Must use this subfield after operand");
2303       assert( ! _may_reloc, "UnImplemented()");
2304       fprintf(_fp,"->base(ra_,this,idx%d)", _operand_idx);
2305     }
2306     else if ( strcmp(rep_var,"$index") == 0 ) {
2307       assert( _operand_idx != -1,
2308               "Must use this subfield after operand");
2309       assert( ! _may_reloc, "UnImplemented()");
2310       fprintf(_fp,"->index(ra_,this,idx%d)", _operand_idx);
2311     }
2312     else if ( strcmp(rep_var,"$scale") == 0 ) {
2313       assert( ! _may_reloc, "UnImplemented()");
2314       fprintf(_fp,"->scale()");
2315     }
2316     else if ( strcmp(rep_var,"$cmpcode") == 0 ) {
2317       assert( ! _may_reloc, "UnImplemented()");
2318       fprintf(_fp,"->ccode()");
2319     }
2320     else if ( strcmp(rep_var,"$constant") == 0 ) {
2321       if( _constant_status == LITERAL_NOT_SEEN ) {
2322         if ( _constant_type == Form::idealD ) {
2323           fprintf(_fp,"->constantD()");
2324         } else if ( _constant_type == Form::idealF ) {
2325           fprintf(_fp,"->constantF()");
2326         } else if ( _constant_type == Form::idealL ) {
2327           fprintf(_fp,"->constantL()");
2328         } else {
2329           fprintf(_fp,"->constant()");
2330         }
2331       } else {
2332         assert( _constant_status == LITERAL_OUTPUT, "should have output constant literal in emit_rep_var");
2333         // Constant literal has already been sent to output file, nothing more needed
2334       }
2335     }
2336     else if ( strcmp(rep_var,"$disp") == 0 ) {
2337       Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2338       if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
2339         fprintf(_fp,"->disp(ra_,this,0)");
2340       } else {
2341         fprintf(_fp,"->disp(ra_,this,idx%d)", _operand_idx);
2342       }
2343     }
2344     else if ( strcmp(rep_var,"$label") == 0 ) {
2345       fprintf(_fp,"->label()");
2346     }
2347     else if ( strcmp(rep_var,"$method") == 0 ) {
2348       fprintf(_fp,"->method()");
2349     }
2350     else {
2351       printf("emit_field: %s\n",rep_var);
2352       globalAD->syntax_err(_inst._linenum, "Unknown replacement variable %s in format statement of %s.",
2353                            rep_var, _inst._ident);
2354       assert( false, "UnImplemented()");
2355     }
2356   }
2357 
2358 
2359   void emit_rep_var(const char *rep_var) {
2360     _processing_noninput = false;
2361     // A replacement variable, originally '$'
2362     if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
2363       if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(rep_var) )) {
2364         // Missing opcode
2365         _AD.syntax_err( _inst._linenum,
2366                         "Missing $%s opcode definition in %s, used by encoding %s\n",
2367                         rep_var, _inst._ident, _encoding._name);
2368       }
2369     }
2370     else if (strcmp(rep_var, "constanttablebase") == 0) {
2371       fprintf(_fp, "as_Register(ra_->get_encode(in(mach_constant_base_node_input())))");
2372     }
2373     else if (strcmp(rep_var, "constantoffset") == 0) {
2374       fprintf(_fp, "constant_offset()");
2375     }
2376     else if (strcmp(rep_var, "constantaddress") == 0) {
2377       fprintf(_fp, "InternalAddress(__ code()->consts()->start() + constant_offset())");
2378     }
2379     else {
2380       // Lookup its position in parameter list
2381       int   param_no  = _encoding.rep_var_index(rep_var);
2382       if ( param_no == -1 ) {
2383         _AD.syntax_err( _encoding._linenum,
2384                         "Replacement variable %s not found in enc_class %s.\n",
2385                         rep_var, _encoding._name);
2386       }
2387       // Lookup the corresponding ins_encode parameter
2388       const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
2389 
2390       // Check if instruction's actual parameter is a local name in the instruction
2391       const Form  *local     = _inst._localNames[inst_rep_var];
2392       OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
2393       // Note: assert removed to allow constant and symbolic parameters
2394       // assert( opc, "replacement variable was not found in local names");
2395       // Lookup the index position iff the replacement variable is a localName
2396       int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
2397       if( idx != -1 ) {
2398         if (_inst.is_noninput_operand(idx)) {
2399           // This operand isn't a normal input so printing it is done
2400           // specially.
2401           _processing_noninput = true;
2402         } else {
2403           // Output the emit code for this operand
2404           fprintf(_fp,"opnd_array(%d)",idx);
2405         }
2406         assert( _operand == opc->is_operand(),
2407                 "Previous emit $operand does not match current");
2408       }
2409       else if( ADLParser::is_literal_constant(inst_rep_var) ) {
2410         // else check if it is a constant expression
2411         // Removed following assert to allow primitive C types as arguments to encodings
2412         // assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2413         fprintf(_fp,"(%s)", inst_rep_var);
2414         _constant_status = LITERAL_OUTPUT;
2415       }
2416       else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
2417         // else check if "primary", "secondary", "tertiary"
2418         assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2419         if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(inst_rep_var) )) {
2420           // Missing opcode
2421           _AD.syntax_err( _inst._linenum,
2422                           "Missing $%s opcode definition in %s\n",
2423                           rep_var, _inst._ident);
2424 
2425         }
2426         _constant_status = LITERAL_OUTPUT;
2427       }
2428       else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
2429         // Instruction provided a literal register name for this parameter
2430         // Check that encoding specifies $$$reg to resolve.as register.
2431         assert( _reg_status == LITERAL_ACCESSED, "Must be processing a literal register parameter");
2432         fprintf(_fp,"(%s_enc)", inst_rep_var);
2433         _reg_status = LITERAL_OUTPUT;
2434       }
2435       else {
2436         // Check for unimplemented functionality before hard failure
2437         assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
2438         assert( false, "ShouldNotReachHere()");
2439       }
2440       // all done
2441     }
2442   }
2443 
2444 };  // end class DefineEmitState
2445 
2446 
2447 void ArchDesc::defineSize(FILE *fp, InstructForm &inst) {
2448 
2449   //(1)
2450   // Output instruction's emit prototype
2451   fprintf(fp,"uint %sNode::size(PhaseRegAlloc *ra_) const {\n",
2452           inst._ident);
2453 
2454   fprintf(fp, "  assert(VerifyOops || MachNode::size(ra_) <= %s, \"bad fixed size\");\n", inst._size);
2455 
2456   //(2)
2457   // Print the size
2458   fprintf(fp, "  return (VerifyOops ? MachNode::size(ra_) : %s);\n", inst._size);
2459 
2460   // (3) and (4)
2461   fprintf(fp,"}\n\n");
2462 }
2463 
2464 // Emit postalloc expand function.
2465 void ArchDesc::define_postalloc_expand(FILE *fp, InstructForm &inst) {
2466   InsEncode *ins_encode = inst._insencode;
2467 
2468   // Output instruction's postalloc_expand prototype.
2469   fprintf(fp, "void  %sNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {\n",
2470           inst._ident);
2471 
2472   assert((_encode != NULL) && (ins_encode != NULL), "You must define an encode section.");
2473 
2474   // Output each operand's offset into the array of registers.
2475   inst.index_temps(fp, _globalNames);
2476 
2477   // Output variables "unsigned idx_<par_name>", Node *n_<par_name> and "MachOpnd *op_<par_name>"
2478   // for each parameter <par_name> specified in the encoding.
2479   ins_encode->reset();
2480   const char *ec_name = ins_encode->encode_class_iter();
2481   assert(ec_name != NULL, "Postalloc expand must specify an encoding.");
2482 
2483   EncClass *encoding = _encode->encClass(ec_name);
2484   if (encoding == NULL) {
2485     fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2486     abort();
2487   }
2488   if (ins_encode->current_encoding_num_args() != encoding->num_args()) {
2489     globalAD->syntax_err(ins_encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2490                          inst._ident, ins_encode->current_encoding_num_args(),
2491                          ec_name, encoding->num_args());
2492   }
2493 
2494   fprintf(fp, "  // Access to ins and operands for postalloc expand.\n");
2495   const int buflen = 2000;
2496   char idxbuf[buflen]; char *ib = idxbuf; idxbuf[0] = '\0';
2497   char nbuf  [buflen]; char *nb = nbuf;   nbuf[0]   = '\0';
2498   char opbuf [buflen]; char *ob = opbuf;  opbuf[0]  = '\0';
2499 
2500   encoding->_parameter_type.reset();
2501   encoding->_parameter_name.reset();
2502   const char *type = encoding->_parameter_type.iter();
2503   const char *name = encoding->_parameter_name.iter();
2504   int param_no = 0;
2505   for (; (type != NULL) && (name != NULL);
2506        (type = encoding->_parameter_type.iter()), (name = encoding->_parameter_name.iter())) {
2507     const char* arg_name = ins_encode->rep_var_name(inst, param_no);
2508     int idx = inst.operand_position_format(arg_name);
2509     if (strcmp(arg_name, "constanttablebase") == 0) {
2510       ib += sprintf(ib, "  unsigned idx_%-5s = mach_constant_base_node_input(); \t// %s, \t%s\n",
2511                     name, type, arg_name);
2512       nb += sprintf(nb, "  Node    *n_%-7s = lookup(idx_%s);\n", name, name);
2513       // There is no operand for the constanttablebase.
2514     } else if (inst.is_noninput_operand(idx)) {
2515       globalAD->syntax_err(inst._linenum,
2516                            "In %s: you can not pass the non-input %s to a postalloc expand encoding.\n",
2517                            inst._ident, arg_name);
2518     } else {
2519       ib += sprintf(ib, "  unsigned idx_%-5s = idx%d; \t// %s, \t%s\n",
2520                     name, idx, type, arg_name);
2521       nb += sprintf(nb, "  Node    *n_%-7s = lookup(idx_%s);\n", name, name);
2522       ob += sprintf(ob, "  %sOper *op_%s = (%sOper *)opnd_array(%d);\n", type, name, type, idx);
2523     }
2524     param_no++;
2525   }
2526   assert(ib < &idxbuf[buflen-1] && nb < &nbuf[buflen-1] && ob < &opbuf[buflen-1], "buffer overflow");
2527 
2528   fprintf(fp, "%s", idxbuf);
2529   fprintf(fp, "  Node    *n_region  = lookup(0);\n");
2530   fprintf(fp, "%s%s", nbuf, opbuf);
2531   fprintf(fp, "  Compile *C = ra_->C;\n");
2532 
2533   // Output this instruction's encodings.
2534   fprintf(fp, "  {");
2535   const char *ec_code    = NULL;
2536   const char *ec_rep_var = NULL;
2537   assert(encoding == _encode->encClass(ec_name), "");
2538 
2539   DefineEmitState pending(fp, *this, *encoding, *ins_encode, inst);
2540   encoding->_code.reset();
2541   encoding->_rep_vars.reset();
2542   // Process list of user-defined strings,
2543   // and occurrences of replacement variables.
2544   // Replacement Vars are pushed into a list and then output.
2545   while ((ec_code = encoding->_code.iter()) != NULL) {
2546     if (! encoding->_code.is_signal(ec_code)) {
2547       // Emit pending code.
2548       pending.emit();
2549       pending.clear();
2550       // Emit this code section.
2551       fprintf(fp, "%s", ec_code);
2552     } else {
2553       // A replacement variable or one of its subfields.
2554       // Obtain replacement variable from list.
2555       ec_rep_var = encoding->_rep_vars.iter();
2556       pending.add_rep_var(ec_rep_var);
2557     }
2558   }
2559   // Emit pending code.
2560   pending.emit();
2561   pending.clear();
2562   fprintf(fp, "  }\n");
2563 
2564   fprintf(fp, "}\n\n");
2565 
2566   ec_name = ins_encode->encode_class_iter();
2567   assert(ec_name == NULL, "Postalloc expand may only have one encoding.");
2568 }
2569 
2570 // defineEmit -----------------------------------------------------------------
2571 void ArchDesc::defineEmit(FILE* fp, InstructForm& inst) {
2572   InsEncode* encode = inst._insencode;
2573 
2574   // (1)
2575   // Output instruction's emit prototype
2576   fprintf(fp, "void %sNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {\n", inst._ident);
2577 
2578   // If user did not define an encode section,
2579   // provide stub that does not generate any machine code.
2580   if( (_encode == NULL) || (encode == NULL) ) {
2581     fprintf(fp, "  // User did not define an encode section.\n");
2582     fprintf(fp, "}\n");
2583     return;
2584   }
2585 
2586   // Save current instruction's starting address (helps with relocation).
2587   fprintf(fp, "  cbuf.set_insts_mark();\n");
2588 
2589   // For MachConstantNodes which are ideal jump nodes, fill the jump table.
2590   if (inst.is_mach_constant() && inst.is_ideal_jump()) {
2591     fprintf(fp, "  ra_->C->constant_table().fill_jump_table(cbuf, (MachConstantNode*) this, _index2label);\n");
2592   }
2593 
2594   // Output each operand's offset into the array of registers.
2595   inst.index_temps(fp, _globalNames);
2596 
2597   // Output this instruction's encodings
2598   const char *ec_name;
2599   bool        user_defined = false;
2600   encode->reset();
2601   while ((ec_name = encode->encode_class_iter()) != NULL) {
2602     fprintf(fp, "  {\n");
2603     // Output user-defined encoding
2604     user_defined           = true;
2605 
2606     const char *ec_code    = NULL;
2607     const char *ec_rep_var = NULL;
2608     EncClass   *encoding   = _encode->encClass(ec_name);
2609     if (encoding == NULL) {
2610       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2611       abort();
2612     }
2613 
2614     if (encode->current_encoding_num_args() != encoding->num_args()) {
2615       globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2616                            inst._ident, encode->current_encoding_num_args(),
2617                            ec_name, encoding->num_args());
2618     }
2619 
2620     DefineEmitState pending(fp, *this, *encoding, *encode, inst);
2621     encoding->_code.reset();
2622     encoding->_rep_vars.reset();
2623     // Process list of user-defined strings,
2624     // and occurrences of replacement variables.
2625     // Replacement Vars are pushed into a list and then output
2626     while ((ec_code = encoding->_code.iter()) != NULL) {
2627       if (!encoding->_code.is_signal(ec_code)) {
2628         // Emit pending code
2629         pending.emit();
2630         pending.clear();
2631         // Emit this code section
2632         fprintf(fp, "%s", ec_code);
2633       } else {
2634         // A replacement variable or one of its subfields
2635         // Obtain replacement variable from list
2636         ec_rep_var  = encoding->_rep_vars.iter();
2637         pending.add_rep_var(ec_rep_var);
2638       }
2639     }
2640     // Emit pending code
2641     pending.emit();
2642     pending.clear();
2643     fprintf(fp, "  }\n");
2644   } // end while instruction's encodings
2645 
2646   // Check if user stated which encoding to user
2647   if ( user_defined == false ) {
2648     fprintf(fp, "  // User did not define which encode class to use.\n");
2649   }
2650 
2651   // (3) and (4)
2652   fprintf(fp, "}\n\n");
2653 }
2654 
2655 // defineEvalConstant ---------------------------------------------------------
2656 void ArchDesc::defineEvalConstant(FILE* fp, InstructForm& inst) {
2657   InsEncode* encode = inst._constant;
2658 
2659   // (1)
2660   // Output instruction's emit prototype
2661   fprintf(fp, "void %sNode::eval_constant(Compile* C) {\n", inst._ident);
2662 
2663   // For ideal jump nodes, add a jump-table entry.
2664   if (inst.is_ideal_jump()) {
2665     fprintf(fp, "  _constant = C->constant_table().add_jump_table(this);\n");
2666   }
2667 
2668   // If user did not define an encode section,
2669   // provide stub that does not generate any machine code.
2670   if ((_encode == NULL) || (encode == NULL)) {
2671     fprintf(fp, "  // User did not define an encode section.\n");
2672     fprintf(fp, "}\n");
2673     return;
2674   }
2675 
2676   // Output this instruction's encodings
2677   const char *ec_name;
2678   bool        user_defined = false;
2679   encode->reset();
2680   while ((ec_name = encode->encode_class_iter()) != NULL) {
2681     fprintf(fp, "  {\n");
2682     // Output user-defined encoding
2683     user_defined           = true;
2684 
2685     const char *ec_code    = NULL;
2686     const char *ec_rep_var = NULL;
2687     EncClass   *encoding   = _encode->encClass(ec_name);
2688     if (encoding == NULL) {
2689       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2690       abort();
2691     }
2692 
2693     if (encode->current_encoding_num_args() != encoding->num_args()) {
2694       globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2695                            inst._ident, encode->current_encoding_num_args(),
2696                            ec_name, encoding->num_args());
2697     }
2698 
2699     DefineEmitState pending(fp, *this, *encoding, *encode, inst);
2700     encoding->_code.reset();
2701     encoding->_rep_vars.reset();
2702     // Process list of user-defined strings,
2703     // and occurrences of replacement variables.
2704     // Replacement Vars are pushed into a list and then output
2705     while ((ec_code = encoding->_code.iter()) != NULL) {
2706       if (!encoding->_code.is_signal(ec_code)) {
2707         // Emit pending code
2708         pending.emit();
2709         pending.clear();
2710         // Emit this code section
2711         fprintf(fp, "%s", ec_code);
2712       } else {
2713         // A replacement variable or one of its subfields
2714         // Obtain replacement variable from list
2715         ec_rep_var  = encoding->_rep_vars.iter();
2716         pending.add_rep_var(ec_rep_var);
2717       }
2718     }
2719     // Emit pending code
2720     pending.emit();
2721     pending.clear();
2722     fprintf(fp, "  }\n");
2723   } // end while instruction's encodings
2724 
2725   // Check if user stated which encoding to user
2726   if (user_defined == false) {
2727     fprintf(fp, "  // User did not define which encode class to use.\n");
2728   }
2729 
2730   // (3) and (4)
2731   fprintf(fp, "}\n");
2732 }
2733 
2734 // ---------------------------------------------------------------------------
2735 //--------Utilities to build MachOper and MachNode derived Classes------------
2736 // ---------------------------------------------------------------------------
2737 
2738 //------------------------------Utilities to build Operand Classes------------
2739 static void defineIn_RegMask(FILE *fp, FormDict &globals, OperandForm &oper) {
2740   uint num_edges = oper.num_edges(globals);
2741   if( num_edges != 0 ) {
2742     // Method header
2743     fprintf(fp, "const RegMask *%sOper::in_RegMask(int index) const {\n",
2744             oper._ident);
2745 
2746     // Assert that the index is in range.
2747     fprintf(fp, "  assert(0 <= index && index < %d, \"index out of range\");\n",
2748             num_edges);
2749 
2750     // Figure out if all RegMasks are the same.
2751     const char* first_reg_class = oper.in_reg_class(0, globals);
2752     bool all_same = true;
2753     assert(first_reg_class != NULL, "did not find register mask");
2754 
2755     for (uint index = 1; all_same && index < num_edges; index++) {
2756       const char* some_reg_class = oper.in_reg_class(index, globals);
2757       assert(some_reg_class != NULL, "did not find register mask");
2758       if (strcmp(first_reg_class, some_reg_class) != 0) {
2759         all_same = false;
2760       }
2761     }
2762 
2763     if (all_same) {
2764       // Return the sole RegMask.
2765       if (strcmp(first_reg_class, "stack_slots") == 0) {
2766         fprintf(fp,"  return &(Compile::current()->FIRST_STACK_mask());\n");
2767       } else {
2768         const char* first_reg_class_to_upper = toUpper(first_reg_class);
2769         fprintf(fp,"  return &%s_mask();\n", first_reg_class_to_upper);
2770         delete[] first_reg_class_to_upper;
2771       }
2772     } else {
2773       // Build a switch statement to return the desired mask.
2774       fprintf(fp,"  switch (index) {\n");
2775 
2776       for (uint index = 0; index < num_edges; index++) {
2777         const char *reg_class = oper.in_reg_class(index, globals);
2778         assert(reg_class != NULL, "did not find register mask");
2779         if( !strcmp(reg_class, "stack_slots") ) {
2780           fprintf(fp, "  case %d: return &(Compile::current()->FIRST_STACK_mask());\n", index);
2781         } else {
2782           const char* reg_class_to_upper = toUpper(reg_class);
2783           fprintf(fp, "  case %d: return &%s_mask();\n", index, reg_class_to_upper);
2784           delete[] reg_class_to_upper;
2785         }
2786       }
2787       fprintf(fp,"  }\n");
2788       fprintf(fp,"  ShouldNotReachHere();\n");
2789       fprintf(fp,"  return NULL;\n");
2790     }
2791 
2792     // Method close
2793     fprintf(fp, "}\n\n");
2794   }
2795 }
2796 
2797 // generate code to create a clone for a class derived from MachOper
2798 //
2799 // (0)  MachOper  *MachOperXOper::clone(Compile* C) const {
2800 // (1)    return new (C) MachXOper( _ccode, _c0, _c1, ..., _cn);
2801 // (2)  }
2802 //
2803 static void defineClone(FILE *fp, FormDict &globalNames, OperandForm &oper) {
2804   fprintf(fp,"MachOper *%sOper::clone(Compile* C) const {\n", oper._ident);
2805   // Check for constants that need to be copied over
2806   const int  num_consts    = oper.num_consts(globalNames);
2807   const bool is_ideal_bool = oper.is_ideal_bool();
2808   if( (num_consts > 0) ) {
2809     fprintf(fp,"  return new (C) %sOper(", oper._ident);
2810     // generate parameters for constants
2811     int i = 0;
2812     fprintf(fp,"_c%d", i);
2813     for( i = 1; i < num_consts; ++i) {
2814       fprintf(fp,", _c%d", i);
2815     }
2816     // finish line (1)
2817     fprintf(fp,");\n");
2818   }
2819   else {
2820     assert( num_consts == 0, "Currently support zero or one constant per operand clone function");
2821     fprintf(fp,"  return new (C) %sOper();\n", oper._ident);
2822   }
2823   // finish method
2824   fprintf(fp,"}\n");
2825 }
2826 
2827 // Helper functions for bug 4796752, abstracted with minimal modification
2828 // from define_oper_interface()
2829 OperandForm *rep_var_to_operand(const char *encoding, OperandForm &oper, FormDict &globals) {
2830   OperandForm *op = NULL;
2831   // Check for replacement variable
2832   if( *encoding == '$' ) {
2833     // Replacement variable
2834     const char *rep_var = encoding + 1;
2835     // Lookup replacement variable, rep_var, in operand's component list
2836     const Component *comp = oper._components.search(rep_var);
2837     assert( comp != NULL, "Replacement variable not found in components");
2838     // Lookup operand form for replacement variable's type
2839     const char      *type = comp->_type;
2840     Form            *form = (Form*)globals[type];
2841     assert( form != NULL, "Replacement variable's type not found");
2842     op = form->is_operand();
2843     assert( op, "Attempting to emit a non-register or non-constant");
2844   }
2845 
2846   return op;
2847 }
2848 
2849 int rep_var_to_constant_index(const char *encoding, OperandForm &oper, FormDict &globals) {
2850   int idx = -1;
2851   // Check for replacement variable
2852   if( *encoding == '$' ) {
2853     // Replacement variable
2854     const char *rep_var = encoding + 1;
2855     // Lookup replacement variable, rep_var, in operand's component list
2856     const Component *comp = oper._components.search(rep_var);
2857     assert( comp != NULL, "Replacement variable not found in components");
2858     // Lookup operand form for replacement variable's type
2859     const char      *type = comp->_type;
2860     Form            *form = (Form*)globals[type];
2861     assert( form != NULL, "Replacement variable's type not found");
2862     OperandForm *op = form->is_operand();
2863     assert( op, "Attempting to emit a non-register or non-constant");
2864     // Check that this is a constant and find constant's index:
2865     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2866       idx  = oper.constant_position(globals, comp);
2867     }
2868   }
2869 
2870   return idx;
2871 }
2872 
2873 bool is_regI(const char *encoding, OperandForm &oper, FormDict &globals ) {
2874   bool is_regI = false;
2875 
2876   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2877   if( op != NULL ) {
2878     // Check that this is a register
2879     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2880       // Register
2881       const char* ideal  = op->ideal_type(globals);
2882       is_regI = (ideal && (op->ideal_to_Reg_type(ideal) == Form::idealI));
2883     }
2884   }
2885 
2886   return is_regI;
2887 }
2888 
2889 bool is_conP(const char *encoding, OperandForm &oper, FormDict &globals ) {
2890   bool is_conP = false;
2891 
2892   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2893   if( op != NULL ) {
2894     // Check that this is a constant pointer
2895     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2896       // Constant
2897       Form::DataType dtype = op->is_base_constant(globals);
2898       is_conP = (dtype == Form::idealP);
2899     }
2900   }
2901 
2902   return is_conP;
2903 }
2904 
2905 
2906 // Define a MachOper interface methods
2907 void ArchDesc::define_oper_interface(FILE *fp, OperandForm &oper, FormDict &globals,
2908                                      const char *name, const char *encoding) {
2909   bool emit_position = false;
2910   int position = -1;
2911 
2912   fprintf(fp,"  virtual int            %s", name);
2913   // Generate access method for base, index, scale, disp, ...
2914   if( (strcmp(name,"base") == 0) || (strcmp(name,"index") == 0) ) {
2915     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2916     emit_position = true;
2917   } else if ( (strcmp(name,"disp") == 0) ) {
2918     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2919   } else {
2920     fprintf(fp, "() const {\n");
2921   }
2922 
2923   // Check for hexadecimal value OR replacement variable
2924   if( *encoding == '$' ) {
2925     // Replacement variable
2926     const char *rep_var = encoding + 1;
2927     fprintf(fp,"    // Replacement variable: %s\n", encoding+1);
2928     // Lookup replacement variable, rep_var, in operand's component list
2929     const Component *comp = oper._components.search(rep_var);
2930     assert( comp != NULL, "Replacement variable not found in components");
2931     // Lookup operand form for replacement variable's type
2932     const char      *type = comp->_type;
2933     Form            *form = (Form*)globals[type];
2934     assert( form != NULL, "Replacement variable's type not found");
2935     OperandForm *op = form->is_operand();
2936     assert( op, "Attempting to emit a non-register or non-constant");
2937     // Check that this is a register or a constant and generate code:
2938     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2939       // Register
2940       int idx_offset = oper.register_position( globals, rep_var);
2941       position = idx_offset;
2942       fprintf(fp,"    return (int)ra_->get_encode(node->in(idx");
2943       if ( idx_offset > 0 ) fprintf(fp,                      "+%d",idx_offset);
2944       fprintf(fp,"));\n");
2945     } else if ( op->ideal_to_sReg_type(op->_ident) != Form::none ) {
2946       // StackSlot for an sReg comes either from input node or from self, when idx==0
2947       fprintf(fp,"    if( idx != 0 ) {\n");
2948       fprintf(fp,"      // Access stack offset (register number) for input operand\n");
2949       fprintf(fp,"      return ra_->reg2offset(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
2950       fprintf(fp,"    }\n");
2951       fprintf(fp,"    // Access stack offset (register number) from myself\n");
2952       fprintf(fp,"    return ra_->reg2offset(ra_->get_reg_first(node));/* sReg */\n");
2953     } else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2954       // Constant
2955       // Check which constant this name maps to: _c0, _c1, ..., _cn
2956       const int idx = oper.constant_position(globals, comp);
2957       assert( idx != -1, "Constant component not found in operand");
2958       // Output code for this constant, type dependent.
2959       fprintf(fp,"    return (int)" );
2960       oper.access_constant(fp, globals, (uint)idx /* , const_type */);
2961       fprintf(fp,";\n");
2962     } else {
2963       assert( false, "Attempting to emit a non-register or non-constant");
2964     }
2965   }
2966   else if( *encoding == '0' && *(encoding+1) == 'x' ) {
2967     // Hex value
2968     fprintf(fp,"    return %s;\n", encoding);
2969   } else {
2970     globalAD->syntax_err(oper._linenum, "In operand %s: Do not support this encode constant: '%s' for %s.",
2971                          oper._ident, encoding, name);
2972     assert( false, "Do not support octal or decimal encode constants");
2973   }
2974   fprintf(fp,"  }\n");
2975 
2976   if( emit_position && (position != -1) && (oper.num_edges(globals) > 0) ) {
2977     fprintf(fp,"  virtual int            %s_position() const { return %d; }\n", name, position);
2978     MemInterface *mem_interface = oper._interface->is_MemInterface();
2979     const char *base = mem_interface->_base;
2980     const char *disp = mem_interface->_disp;
2981     if( emit_position && (strcmp(name,"base") == 0)
2982         && base != NULL && is_regI(base, oper, globals)
2983         && disp != NULL && is_conP(disp, oper, globals) ) {
2984       // Found a memory access using a constant pointer for a displacement
2985       // and a base register containing an integer offset.
2986       // In this case the base and disp are reversed with respect to what
2987       // is expected by MachNode::get_base_and_disp() and MachNode::adr_type().
2988       // Provide a non-NULL return for disp_as_type() that will allow adr_type()
2989       // to correctly compute the access type for alias analysis.
2990       //
2991       // See BugId 4796752, operand indOffset32X in i486.ad
2992       int idx = rep_var_to_constant_index(disp, oper, globals);
2993       fprintf(fp,"  virtual const TypePtr *disp_as_type() const { return _c%d; }\n", idx);
2994     }
2995   }
2996 }
2997 
2998 //
2999 // Construct the method to copy _idx, inputs and operands to new node.
3000 static void define_fill_new_machnode(bool used, FILE *fp_cpp) {
3001   fprintf(fp_cpp, "\n");
3002   fprintf(fp_cpp, "// Copy _idx, inputs and operands to new node\n");
3003   fprintf(fp_cpp, "void MachNode::fill_new_machnode( MachNode* node, Compile* C) const {\n");
3004   if( !used ) {
3005     fprintf(fp_cpp, "  // This architecture does not have cisc or short branch instructions\n");
3006     fprintf(fp_cpp, "  ShouldNotCallThis();\n");
3007     fprintf(fp_cpp, "}\n");
3008   } else {
3009     // New node must use same node index for access through allocator's tables
3010     fprintf(fp_cpp, "  // New node must use same node index\n");
3011     fprintf(fp_cpp, "  node->set_idx( _idx );\n");
3012     // Copy machine-independent inputs
3013     fprintf(fp_cpp, "  // Copy machine-independent inputs\n");
3014     fprintf(fp_cpp, "  for( uint j = 0; j < req(); j++ ) {\n");
3015     fprintf(fp_cpp, "    node->add_req(in(j));\n");
3016     fprintf(fp_cpp, "  }\n");
3017     // Copy machine operands to new MachNode
3018     fprintf(fp_cpp, "  // Copy my operands, except for cisc position\n");
3019     fprintf(fp_cpp, "  int nopnds = num_opnds();\n");
3020     fprintf(fp_cpp, "  assert( node->num_opnds() == (uint)nopnds, \"Must have same number of operands\");\n");
3021     fprintf(fp_cpp, "  MachOper **to = node->_opnds;\n");
3022     fprintf(fp_cpp, "  for( int i = 0; i < nopnds; i++ ) {\n");
3023     fprintf(fp_cpp, "    if( i != cisc_operand() ) \n");
3024     fprintf(fp_cpp, "      to[i] = _opnds[i]->clone(C);\n");
3025     fprintf(fp_cpp, "  }\n");
3026     fprintf(fp_cpp, "}\n");
3027   }
3028   fprintf(fp_cpp, "\n");
3029 }
3030 
3031 //------------------------------defineClasses----------------------------------
3032 // Define members of MachNode and MachOper classes based on
3033 // operand and instruction lists
3034 void ArchDesc::defineClasses(FILE *fp) {
3035 
3036   // Define the contents of an array containing the machine register names
3037   defineRegNames(fp, _register);
3038   // Define an array containing the machine register encoding values
3039   defineRegEncodes(fp, _register);
3040   // Generate an enumeration of user-defined register classes
3041   // and a list of register masks, one for each class.
3042   // Only define the RegMask value objects in the expand file.
3043   // Declare each as an extern const RegMask ...; in ad_<arch>.hpp
3044   declare_register_masks(_HPP_file._fp);
3045   // build_register_masks(fp);
3046   build_register_masks(_CPP_EXPAND_file._fp);
3047   // Define the pipe_classes
3048   build_pipe_classes(_CPP_PIPELINE_file._fp);
3049 
3050   // Generate Machine Classes for each operand defined in AD file
3051   fprintf(fp,"\n");
3052   fprintf(fp,"\n");
3053   fprintf(fp,"//------------------Define classes derived from MachOper---------------------\n");
3054   // Iterate through all operands
3055   _operands.reset();
3056   OperandForm *oper;
3057   for( ; (oper = (OperandForm*)_operands.iter()) != NULL; ) {
3058     // Ensure this is a machine-world instruction
3059     if ( oper->ideal_only() ) continue;
3060     // !!!!!
3061     // The declaration of labelOper is in machine-independent file: machnode
3062     if ( strcmp(oper->_ident,"label") == 0 ) {
3063       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
3064 
3065       fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper->_ident);
3066       fprintf(fp,"  return  new (C) %sOper(_label, _block_num);\n", oper->_ident);
3067       fprintf(fp,"}\n");
3068 
3069       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
3070               oper->_ident, machOperEnum(oper->_ident));
3071       // // Currently all XXXOper::Hash() methods are identical (990820)
3072       // define_hash(fp, oper->_ident);
3073       // // Currently all XXXOper::Cmp() methods are identical (990820)
3074       // define_cmp(fp, oper->_ident);
3075       fprintf(fp,"\n");
3076 
3077       continue;
3078     }
3079 
3080     // The declaration of methodOper is in machine-independent file: machnode
3081     if ( strcmp(oper->_ident,"method") == 0 ) {
3082       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
3083 
3084       fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper->_ident);
3085       fprintf(fp,"  return  new (C) %sOper(_method);\n", oper->_ident);
3086       fprintf(fp,"}\n");
3087 
3088       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
3089               oper->_ident, machOperEnum(oper->_ident));
3090       // // Currently all XXXOper::Hash() methods are identical (990820)
3091       // define_hash(fp, oper->_ident);
3092       // // Currently all XXXOper::Cmp() methods are identical (990820)
3093       // define_cmp(fp, oper->_ident);
3094       fprintf(fp,"\n");
3095 
3096       continue;
3097     }
3098 
3099     defineIn_RegMask(fp, _globalNames, *oper);
3100     defineClone(_CPP_CLONE_file._fp, _globalNames, *oper);
3101     // // Currently all XXXOper::Hash() methods are identical (990820)
3102     // define_hash(fp, oper->_ident);
3103     // // Currently all XXXOper::Cmp() methods are identical (990820)
3104     // define_cmp(fp, oper->_ident);
3105 
3106     // side-call to generate output that used to be in the header file:
3107     extern void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file);
3108     gen_oper_format(_CPP_FORMAT_file._fp, _globalNames, *oper, true);
3109 
3110   }
3111 
3112 
3113   // Generate Machine Classes for each instruction defined in AD file
3114   fprintf(fp,"//------------------Define members for classes derived from MachNode----------\n");
3115   // Output the definitions for out_RegMask() // & kill_RegMask()
3116   _instructions.reset();
3117   InstructForm *instr;
3118   MachNodeForm *machnode;
3119   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3120     // Ensure this is a machine-world instruction
3121     if ( instr->ideal_only() ) continue;
3122 
3123     defineOut_RegMask(_CPP_MISC_file._fp, instr->_ident, reg_mask(*instr));
3124   }
3125 
3126   bool used = false;
3127   // Output the definitions for expand rules & peephole rules
3128   _instructions.reset();
3129   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3130     // Ensure this is a machine-world instruction
3131     if ( instr->ideal_only() ) continue;
3132     // If there are multiple defs/kills, or an explicit expand rule, build rule
3133     if( instr->expands() || instr->needs_projections() ||
3134         instr->has_temps() ||
3135         instr->is_mach_constant() ||
3136         instr->needs_constant_base() ||
3137         instr->_matrule != NULL &&
3138         instr->num_opnds() != instr->num_unique_opnds() )
3139       defineExpand(_CPP_EXPAND_file._fp, instr);
3140     // If there is an explicit peephole rule, build it
3141     if ( instr->peepholes() )
3142       definePeephole(_CPP_PEEPHOLE_file._fp, instr);
3143 
3144     // Output code to convert to the cisc version, if applicable
3145     used |= instr->define_cisc_version(*this, fp);
3146 
3147     // Output code to convert to the short branch version, if applicable
3148     used |= instr->define_short_branch_methods(*this, fp);
3149   }
3150 
3151   // Construct the method called by cisc_version() to copy inputs and operands.
3152   define_fill_new_machnode(used, fp);
3153 
3154   // Output the definitions for labels
3155   _instructions.reset();
3156   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3157     // Ensure this is a machine-world instruction
3158     if ( instr->ideal_only() ) continue;
3159 
3160     // Access the fields for operand Label
3161     int label_position = instr->label_position();
3162     if( label_position != -1 ) {
3163       // Set the label
3164       fprintf(fp,"void %sNode::label_set( Label* label, uint block_num ) {\n", instr->_ident);
3165       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
3166               label_position );
3167       fprintf(fp,"  oper->_label     = label;\n");
3168       fprintf(fp,"  oper->_block_num = block_num;\n");
3169       fprintf(fp,"}\n");
3170       // Save the label
3171       fprintf(fp,"void %sNode::save_label( Label** label, uint* block_num ) {\n", instr->_ident);
3172       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
3173               label_position );
3174       fprintf(fp,"  *label = oper->_label;\n");
3175       fprintf(fp,"  *block_num = oper->_block_num;\n");
3176       fprintf(fp,"}\n");
3177     }
3178   }
3179 
3180   // Output the definitions for methods
3181   _instructions.reset();
3182   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3183     // Ensure this is a machine-world instruction
3184     if ( instr->ideal_only() ) continue;
3185 
3186     // Access the fields for operand Label
3187     int method_position = instr->method_position();
3188     if( method_position != -1 ) {
3189       // Access the method's address
3190       fprintf(fp,"void %sNode::method_set( intptr_t method ) {\n", instr->_ident);
3191       fprintf(fp,"  ((methodOper*)opnd_array(%d))->_method = method;\n",
3192               method_position );
3193       fprintf(fp,"}\n");
3194       fprintf(fp,"\n");
3195     }
3196   }
3197 
3198   // Define this instruction's number of relocation entries, base is '0'
3199   _instructions.reset();
3200   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3201     // Output the definition for number of relocation entries
3202     uint reloc_size = instr->reloc(_globalNames);
3203     if ( reloc_size != 0 ) {
3204       fprintf(fp,"int %sNode::reloc() const {\n", instr->_ident);
3205       fprintf(fp,"  return %d;\n", reloc_size);
3206       fprintf(fp,"}\n");
3207       fprintf(fp,"\n");
3208     }
3209   }
3210   fprintf(fp,"\n");
3211 
3212   // Output the definitions for code generation
3213   //
3214   // address  ___Node::emit(address ptr, PhaseRegAlloc *ra_) const {
3215   //   // ...  encoding defined by user
3216   //   return ptr;
3217   // }
3218   //
3219   _instructions.reset();
3220   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3221     // Ensure this is a machine-world instruction
3222     if ( instr->ideal_only() ) continue;
3223 
3224     if (instr->_insencode) {
3225       if (instr->postalloc_expands()) {
3226         // Don't write this to _CPP_EXPAND_file, as the code generated calls C-code
3227         // from code sections in ad file that is dumped to fp.
3228         define_postalloc_expand(fp, *instr);
3229       } else {
3230         defineEmit(fp, *instr);
3231       }
3232     }
3233     if (instr->is_mach_constant()) defineEvalConstant(fp, *instr);
3234     if (instr->_size)              defineSize        (fp, *instr);
3235 
3236     // side-call to generate output that used to be in the header file:
3237     extern void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &oper, bool for_c_file);
3238     gen_inst_format(_CPP_FORMAT_file._fp, _globalNames, *instr, true);
3239   }
3240 
3241   // Output the definitions for alias analysis
3242   _instructions.reset();
3243   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3244     // Ensure this is a machine-world instruction
3245     if ( instr->ideal_only() ) continue;
3246 
3247     // Analyze machine instructions that either USE or DEF memory.
3248     int memory_operand = instr->memory_operand(_globalNames);
3249     // Some guys kill all of memory
3250     if ( instr->is_wide_memory_kill(_globalNames) ) {
3251       memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
3252     }
3253 
3254     if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
3255       if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
3256         fprintf(fp,"const TypePtr *%sNode::adr_type() const { return TypePtr::BOTTOM; }\n", instr->_ident);
3257         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return (MachOper*)-1; }\n", instr->_ident);
3258       } else {
3259         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return _opnds[%d]; }\n", instr->_ident, memory_operand);
3260   }
3261     }
3262   }
3263 
3264   // Get the length of the longest identifier
3265   int max_ident_len = 0;
3266   _instructions.reset();
3267 
3268   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3269     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3270       int ident_len = (int)strlen(instr->_ident);
3271       if( max_ident_len < ident_len )
3272         max_ident_len = ident_len;
3273     }
3274   }
3275 
3276   // Emit specifically for Node(s)
3277   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
3278     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
3279   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return %s; }\n",
3280     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
3281   fprintf(_CPP_PIPELINE_file._fp, "\n");
3282 
3283   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
3284     max_ident_len, "MachNode", _pipeline ? "(&pipeline_class_Unknown_Instructions)" : "NULL");
3285   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return pipeline_class(); }\n",
3286     max_ident_len, "MachNode");
3287   fprintf(_CPP_PIPELINE_file._fp, "\n");
3288 
3289   // Output the definitions for machine node specific pipeline data
3290   _machnodes.reset();
3291 
3292   for ( ; (machnode = (MachNodeForm*)_machnodes.iter()) != NULL; ) {
3293     fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3294       machnode->_ident, ((class PipeClassForm *)_pipeline->_classdict[machnode->_machnode_pipe])->_num);
3295   }
3296 
3297   fprintf(_CPP_PIPELINE_file._fp, "\n");
3298 
3299   // Output the definitions for instruction pipeline static data references
3300   _instructions.reset();
3301 
3302   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3303     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3304       fprintf(_CPP_PIPELINE_file._fp, "\n");
3305       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline_class() { return (&pipeline_class_%03d); }\n",
3306         max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3307       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3308         max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3309     }
3310   }
3311 }
3312 
3313 
3314 // -------------------------------- maps ------------------------------------
3315 
3316 // Information needed to generate the ReduceOp mapping for the DFA
3317 class OutputReduceOp : public OutputMap {
3318 public:
3319   OutputReduceOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3320     : OutputMap(hpp, cpp, globals, AD, "reduceOp") {};
3321 
3322   void declaration() { fprintf(_hpp, "extern const int   reduceOp[];\n"); }
3323   void definition()  { fprintf(_cpp, "const        int   reduceOp[] = {\n"); }
3324   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3325                        OutputMap::closing();
3326   }
3327   void map(OpClassForm &opc)  {
3328     const char *reduce = opc._ident;
3329     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3330     else          fprintf(_cpp, "  0");
3331   }
3332   void map(OperandForm &oper) {
3333     // Most operands without match rules, e.g.  eFlagsReg, do not have a result operand
3334     const char *reduce = (oper._matrule ? oper.reduce_result() : NULL);
3335     // operand stackSlot does not have a match rule, but produces a stackSlot
3336     if( oper.is_user_name_for_sReg() != Form::none ) reduce = oper.reduce_result();
3337     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3338     else          fprintf(_cpp, "  0");
3339   }
3340   void map(InstructForm &inst) {
3341     const char *reduce = (inst._matrule ? inst.reduce_result() : NULL);
3342     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3343     else          fprintf(_cpp, "  0");
3344   }
3345   void map(char         *reduce) {
3346     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3347     else          fprintf(_cpp, "  0");
3348   }
3349 };
3350 
3351 // Information needed to generate the LeftOp mapping for the DFA
3352 class OutputLeftOp : public OutputMap {
3353 public:
3354   OutputLeftOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3355     : OutputMap(hpp, cpp, globals, AD, "leftOp") {};
3356 
3357   void declaration() { fprintf(_hpp, "extern const int   leftOp[];\n"); }
3358   void definition()  { fprintf(_cpp, "const        int   leftOp[] = {\n"); }
3359   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3360                        OutputMap::closing();
3361   }
3362   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
3363   void map(OperandForm &oper) {
3364     const char *reduce = oper.reduce_left(_globals);
3365     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3366     else          fprintf(_cpp, "  0");
3367   }
3368   void map(char        *name) {
3369     const char *reduce = _AD.reduceLeft(name);
3370     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3371     else          fprintf(_cpp, "  0");
3372   }
3373   void map(InstructForm &inst) {
3374     const char *reduce = inst.reduce_left(_globals);
3375     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3376     else          fprintf(_cpp, "  0");
3377   }
3378 };
3379 
3380 
3381 // Information needed to generate the RightOp mapping for the DFA
3382 class OutputRightOp : public OutputMap {
3383 public:
3384   OutputRightOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3385     : OutputMap(hpp, cpp, globals, AD, "rightOp") {};
3386 
3387   void declaration() { fprintf(_hpp, "extern const int   rightOp[];\n"); }
3388   void definition()  { fprintf(_cpp, "const        int   rightOp[] = {\n"); }
3389   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3390                        OutputMap::closing();
3391   }
3392   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
3393   void map(OperandForm &oper) {
3394     const char *reduce = oper.reduce_right(_globals);
3395     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3396     else          fprintf(_cpp, "  0");
3397   }
3398   void map(char        *name) {
3399     const char *reduce = _AD.reduceRight(name);
3400     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3401     else          fprintf(_cpp, "  0");
3402   }
3403   void map(InstructForm &inst) {
3404     const char *reduce = inst.reduce_right(_globals);
3405     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3406     else          fprintf(_cpp, "  0");
3407   }
3408 };
3409 
3410 
3411 // Information needed to generate the Rule names for the DFA
3412 class OutputRuleName : public OutputMap {
3413 public:
3414   OutputRuleName(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3415     : OutputMap(hpp, cpp, globals, AD, "ruleName") {};
3416 
3417   void declaration() { fprintf(_hpp, "extern const char *ruleName[];\n"); }
3418   void definition()  { fprintf(_cpp, "const char        *ruleName[] = {\n"); }
3419   void closing()     { fprintf(_cpp, "  \"invalid rule name\" // no trailing comma\n");
3420                        OutputMap::closing();
3421   }
3422   void map(OpClassForm &opc)  { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(opc._ident) ); }
3423   void map(OperandForm &oper) { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(oper._ident) ); }
3424   void map(char        *name) { fprintf(_cpp, "  \"%s\"", name ? name : "0"); }
3425   void map(InstructForm &inst){ fprintf(_cpp, "  \"%s\"", inst._ident ? inst._ident : "0"); }
3426 };
3427 
3428 
3429 // Information needed to generate the swallowed mapping for the DFA
3430 class OutputSwallowed : public OutputMap {
3431 public:
3432   OutputSwallowed(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3433     : OutputMap(hpp, cpp, globals, AD, "swallowed") {};
3434 
3435   void declaration() { fprintf(_hpp, "extern const bool  swallowed[];\n"); }
3436   void definition()  { fprintf(_cpp, "const        bool  swallowed[] = {\n"); }
3437   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
3438                        OutputMap::closing();
3439   }
3440   void map(OperandForm &oper) { // Generate the entry for this opcode
3441     const char *swallowed = oper.swallowed(_globals) ? "true" : "false";
3442     fprintf(_cpp, "  %s", swallowed);
3443   }
3444   void map(OpClassForm &opc)  { fprintf(_cpp, "  false"); }
3445   void map(char        *name) { fprintf(_cpp, "  false"); }
3446   void map(InstructForm &inst){ fprintf(_cpp, "  false"); }
3447 };
3448 
3449 
3450 // Information needed to generate the decision array for instruction chain rule
3451 class OutputInstChainRule : public OutputMap {
3452 public:
3453   OutputInstChainRule(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3454     : OutputMap(hpp, cpp, globals, AD, "instruction_chain_rule") {};
3455 
3456   void declaration() { fprintf(_hpp, "extern const bool  instruction_chain_rule[];\n"); }
3457   void definition()  { fprintf(_cpp, "const        bool  instruction_chain_rule[] = {\n"); }
3458   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
3459                        OutputMap::closing();
3460   }
3461   void map(OpClassForm &opc)   { fprintf(_cpp, "  false"); }
3462   void map(OperandForm &oper)  { fprintf(_cpp, "  false"); }
3463   void map(char        *name)  { fprintf(_cpp, "  false"); }
3464   void map(InstructForm &inst) { // Check for simple chain rule
3465     const char *chain = inst.is_simple_chain_rule(_globals) ? "true" : "false";
3466     fprintf(_cpp, "  %s", chain);
3467   }
3468 };
3469 
3470 
3471 //---------------------------build_map------------------------------------
3472 // Build  mapping from enumeration for densely packed operands
3473 // TO result and child types.
3474 void ArchDesc::build_map(OutputMap &map) {
3475   FILE         *fp_hpp = map.decl_file();
3476   FILE         *fp_cpp = map.def_file();
3477   int           idx    = 0;
3478   OperandForm  *op;
3479   OpClassForm  *opc;
3480   InstructForm *inst;
3481 
3482   // Construct this mapping
3483   map.declaration();
3484   fprintf(fp_cpp,"\n");
3485   map.definition();
3486 
3487   // Output the mapping for operands
3488   map.record_position(OutputMap::BEGIN_OPERANDS, idx );
3489   _operands.reset();
3490   for(; (op = (OperandForm*)_operands.iter()) != NULL; ) {
3491     // Ensure this is a machine-world instruction
3492     if ( op->ideal_only() )  continue;
3493 
3494     // Generate the entry for this opcode
3495     fprintf(fp_cpp, "  /* %4d */", idx); map.map(*op); fprintf(fp_cpp, ",\n");
3496     ++idx;
3497   };
3498   fprintf(fp_cpp, "  // last operand\n");
3499 
3500   // Place all user-defined operand classes into the mapping
3501   map.record_position(OutputMap::BEGIN_OPCLASSES, idx );
3502   _opclass.reset();
3503   for(; (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
3504     fprintf(fp_cpp, "  /* %4d */", idx); map.map(*opc); fprintf(fp_cpp, ",\n");
3505     ++idx;
3506   };
3507   fprintf(fp_cpp, "  // last operand class\n");
3508 
3509   // Place all internally defined operands into the mapping
3510   map.record_position(OutputMap::BEGIN_INTERNALS, idx );
3511   _internalOpNames.reset();
3512   char *name = NULL;
3513   for(; (name = (char *)_internalOpNames.iter()) != NULL; ) {
3514     fprintf(fp_cpp, "  /* %4d */", idx); map.map(name); fprintf(fp_cpp, ",\n");
3515     ++idx;
3516   };
3517   fprintf(fp_cpp, "  // last internally defined operand\n");
3518 
3519   // Place all user-defined instructions into the mapping
3520   if( map.do_instructions() ) {
3521     map.record_position(OutputMap::BEGIN_INSTRUCTIONS, idx );
3522     // Output all simple instruction chain rules first
3523     map.record_position(OutputMap::BEGIN_INST_CHAIN_RULES, idx );
3524     {
3525       _instructions.reset();
3526       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3527         // Ensure this is a machine-world instruction
3528         if ( inst->ideal_only() )  continue;
3529         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3530         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3531 
3532         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3533         ++idx;
3534       };
3535       map.record_position(OutputMap::BEGIN_REMATERIALIZE, idx );
3536       _instructions.reset();
3537       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3538         // Ensure this is a machine-world instruction
3539         if ( inst->ideal_only() )  continue;
3540         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3541         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3542 
3543         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3544         ++idx;
3545       };
3546       map.record_position(OutputMap::END_INST_CHAIN_RULES, idx );
3547     }
3548     // Output all instructions that are NOT simple chain rules
3549     {
3550       _instructions.reset();
3551       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3552         // Ensure this is a machine-world instruction
3553         if ( inst->ideal_only() )  continue;
3554         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3555         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3556 
3557         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3558         ++idx;
3559       };
3560       map.record_position(OutputMap::END_REMATERIALIZE, idx );
3561       _instructions.reset();
3562       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3563         // Ensure this is a machine-world instruction
3564         if ( inst->ideal_only() )  continue;
3565         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3566         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3567 
3568         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3569         ++idx;
3570       };
3571     }
3572     fprintf(fp_cpp, "  // last instruction\n");
3573     map.record_position(OutputMap::END_INSTRUCTIONS, idx );
3574   }
3575   // Finish defining table
3576   map.closing();
3577 };
3578 
3579 
3580 // Helper function for buildReduceMaps
3581 char reg_save_policy(const char *calling_convention) {
3582   char callconv;
3583 
3584   if      (!strcmp(calling_convention, "NS"))  callconv = 'N';
3585   else if (!strcmp(calling_convention, "SOE")) callconv = 'E';
3586   else if (!strcmp(calling_convention, "SOC")) callconv = 'C';
3587   else if (!strcmp(calling_convention, "AS"))  callconv = 'A';
3588   else                                         callconv = 'Z';
3589 
3590   return callconv;
3591 }
3592 
3593 void ArchDesc::generate_needs_clone_jvms(FILE *fp_cpp) {
3594   fprintf(fp_cpp, "bool Compile::needs_clone_jvms() { return %s; }\n\n",
3595           _needs_clone_jvms ? "true" : "false");
3596 }
3597 
3598 //---------------------------generate_assertion_checks-------------------
3599 void ArchDesc::generate_adlc_verification(FILE *fp_cpp) {
3600   fprintf(fp_cpp, "\n");
3601 
3602   fprintf(fp_cpp, "#ifndef PRODUCT\n");
3603   fprintf(fp_cpp, "void Compile::adlc_verification() {\n");
3604   globalDefs().print_asserts(fp_cpp);
3605   fprintf(fp_cpp, "}\n");
3606   fprintf(fp_cpp, "#endif\n");
3607   fprintf(fp_cpp, "\n");
3608 }
3609 
3610 //---------------------------addSourceBlocks-----------------------------
3611 void ArchDesc::addSourceBlocks(FILE *fp_cpp) {
3612   if (_source.count() > 0)
3613     _source.output(fp_cpp);
3614 
3615   generate_adlc_verification(fp_cpp);
3616 }
3617 //---------------------------addHeaderBlocks-----------------------------
3618 void ArchDesc::addHeaderBlocks(FILE *fp_hpp) {
3619   if (_header.count() > 0)
3620     _header.output(fp_hpp);
3621 }
3622 //-------------------------addPreHeaderBlocks----------------------------
3623 void ArchDesc::addPreHeaderBlocks(FILE *fp_hpp) {
3624   // Output #defines from definition block
3625   globalDefs().print_defines(fp_hpp);
3626 
3627   if (_pre_header.count() > 0)
3628     _pre_header.output(fp_hpp);
3629 }
3630 
3631 //---------------------------buildReduceMaps-----------------------------
3632 // Build  mapping from enumeration for densely packed operands
3633 // TO result and child types.
3634 void ArchDesc::buildReduceMaps(FILE *fp_hpp, FILE *fp_cpp) {
3635   RegDef       *rdef;
3636   RegDef       *next;
3637 
3638   // The emit bodies currently require functions defined in the source block.
3639 
3640   // Build external declarations for mappings
3641   fprintf(fp_hpp, "\n");
3642   fprintf(fp_hpp, "extern const char  register_save_policy[];\n");
3643   fprintf(fp_hpp, "extern const char  c_reg_save_policy[];\n");
3644   fprintf(fp_hpp, "extern const int   register_save_type[];\n");
3645   fprintf(fp_hpp, "\n");
3646 
3647   // Construct Save-Policy array
3648   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_policy\n");
3649   fprintf(fp_cpp, "const        char register_save_policy[] = {\n");
3650   _register->reset_RegDefs();
3651   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3652     next              = _register->iter_RegDefs();
3653     char policy       = reg_save_policy(rdef->_callconv);
3654     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3655     fprintf(fp_cpp, "  '%c'%s // %s\n", policy, comma, rdef->_regname);
3656   }
3657   fprintf(fp_cpp, "};\n\n");
3658 
3659   // Construct Native Save-Policy array
3660   fprintf(fp_cpp, "// Map from machine-independent register number to c_reg_save_policy\n");
3661   fprintf(fp_cpp, "const        char c_reg_save_policy[] = {\n");
3662   _register->reset_RegDefs();
3663   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3664     next        = _register->iter_RegDefs();
3665     char policy = reg_save_policy(rdef->_c_conv);
3666     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3667     fprintf(fp_cpp, "  '%c'%s // %s\n", policy, comma, rdef->_regname);
3668   }
3669   fprintf(fp_cpp, "};\n\n");
3670 
3671   // Construct Register Save Type array
3672   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_type\n");
3673   fprintf(fp_cpp, "const        int register_save_type[] = {\n");
3674   _register->reset_RegDefs();
3675   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3676     next = _register->iter_RegDefs();
3677     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3678     fprintf(fp_cpp, "  %s%s\n", rdef->_idealtype, comma);
3679   }
3680   fprintf(fp_cpp, "};\n\n");
3681 
3682   // Construct the table for reduceOp
3683   OutputReduceOp output_reduce_op(fp_hpp, fp_cpp, _globalNames, *this);
3684   build_map(output_reduce_op);
3685   // Construct the table for leftOp
3686   OutputLeftOp output_left_op(fp_hpp, fp_cpp, _globalNames, *this);
3687   build_map(output_left_op);
3688   // Construct the table for rightOp
3689   OutputRightOp output_right_op(fp_hpp, fp_cpp, _globalNames, *this);
3690   build_map(output_right_op);
3691   // Construct the table of rule names
3692   OutputRuleName output_rule_name(fp_hpp, fp_cpp, _globalNames, *this);
3693   build_map(output_rule_name);
3694   // Construct the boolean table for subsumed operands
3695   OutputSwallowed output_swallowed(fp_hpp, fp_cpp, _globalNames, *this);
3696   build_map(output_swallowed);
3697   // // // Preserve in case we decide to use this table instead of another
3698   //// Construct the boolean table for instruction chain rules
3699   //OutputInstChainRule output_inst_chain(fp_hpp, fp_cpp, _globalNames, *this);
3700   //build_map(output_inst_chain);
3701 
3702 }
3703 
3704 
3705 //---------------------------buildMachOperGenerator---------------------------
3706 
3707 // Recurse through match tree, building path through corresponding state tree,
3708 // Until we reach the constant we are looking for.
3709 static void path_to_constant(FILE *fp, FormDict &globals,
3710                              MatchNode *mnode, uint idx) {
3711   if ( ! mnode) return;
3712 
3713   unsigned    position = 0;
3714   const char *result   = NULL;
3715   const char *name     = NULL;
3716   const char *optype   = NULL;
3717 
3718   // Base Case: access constant in ideal node linked to current state node
3719   // Each type of constant has its own access function
3720   if ( (mnode->_lChild == NULL) && (mnode->_rChild == NULL)
3721        && mnode->base_operand(position, globals, result, name, optype) ) {
3722     if (         strcmp(optype,"ConI") == 0 ) {
3723       fprintf(fp, "_leaf->get_int()");
3724     } else if ( (strcmp(optype,"ConP") == 0) ) {
3725       fprintf(fp, "_leaf->bottom_type()->is_ptr()");
3726     } else if ( (strcmp(optype,"ConN") == 0) ) {
3727       fprintf(fp, "_leaf->bottom_type()->is_narrowoop()");
3728     } else if ( (strcmp(optype,"ConNKlass") == 0) ) {
3729       fprintf(fp, "_leaf->bottom_type()->is_narrowklass()");
3730     } else if ( (strcmp(optype,"ConF") == 0) ) {
3731       fprintf(fp, "_leaf->getf()");
3732     } else if ( (strcmp(optype,"ConD") == 0) ) {
3733       fprintf(fp, "_leaf->getd()");
3734     } else if ( (strcmp(optype,"ConL") == 0) ) {
3735       fprintf(fp, "_leaf->get_long()");
3736     } else if ( (strcmp(optype,"Con")==0) ) {
3737       // !!!!! - Update if adding a machine-independent constant type
3738       fprintf(fp, "_leaf->get_int()");
3739       assert( false, "Unsupported constant type, pointer or indefinite");
3740     } else if ( (strcmp(optype,"Bool") == 0) ) {
3741       fprintf(fp, "_leaf->as_Bool()->_test._test");
3742     } else {
3743       assert( false, "Unsupported constant type");
3744     }
3745     return;
3746   }
3747 
3748   // If constant is in left child, build path and recurse
3749   uint lConsts = (mnode->_lChild) ? (mnode->_lChild->num_consts(globals) ) : 0;
3750   uint rConsts = (mnode->_rChild) ? (mnode->_rChild->num_consts(globals) ) : 0;
3751   if ( (mnode->_lChild) && (lConsts > idx) ) {
3752     fprintf(fp, "_kids[0]->");
3753     path_to_constant(fp, globals, mnode->_lChild, idx);
3754     return;
3755   }
3756   // If constant is in right child, build path and recurse
3757   if ( (mnode->_rChild) && (rConsts > (idx - lConsts) ) ) {
3758     idx = idx - lConsts;
3759     fprintf(fp, "_kids[1]->");
3760     path_to_constant(fp, globals, mnode->_rChild, idx);
3761     return;
3762   }
3763   assert( false, "ShouldNotReachHere()");
3764 }
3765 
3766 // Generate code that is executed when generating a specific Machine Operand
3767 static void genMachOperCase(FILE *fp, FormDict &globalNames, ArchDesc &AD,
3768                             OperandForm &op) {
3769   const char *opName         = op._ident;
3770   const char *opEnumName     = AD.machOperEnum(opName);
3771   uint        num_consts     = op.num_consts(globalNames);
3772 
3773   // Generate the case statement for this opcode
3774   fprintf(fp, "  case %s:", opEnumName);
3775   fprintf(fp, "\n    return new (C) %sOper(", opName);
3776   // Access parameters for constructor from the stat object
3777   //
3778   // Build access to condition code value
3779   if ( (num_consts > 0) ) {
3780     uint i = 0;
3781     path_to_constant(fp, globalNames, op._matrule, i);
3782     for ( i = 1; i < num_consts; ++i ) {
3783       fprintf(fp, ", ");
3784       path_to_constant(fp, globalNames, op._matrule, i);
3785     }
3786   }
3787   fprintf(fp, " );\n");
3788 }
3789 
3790 
3791 // Build switch to invoke "new" MachNode or MachOper
3792 void ArchDesc::buildMachOperGenerator(FILE *fp_cpp) {
3793   int idx = 0;
3794 
3795   // Build switch to invoke 'new' for a specific MachOper
3796   fprintf(fp_cpp, "\n");
3797   fprintf(fp_cpp, "\n");
3798   fprintf(fp_cpp,
3799           "//------------------------- MachOper Generator ---------------\n");
3800   fprintf(fp_cpp,
3801           "// A switch statement on the dense-packed user-defined type system\n"
3802           "// that invokes 'new' on the corresponding class constructor.\n");
3803   fprintf(fp_cpp, "\n");
3804   fprintf(fp_cpp, "MachOper *State::MachOperGenerator");
3805   fprintf(fp_cpp, "(int opcode, Compile* C)");
3806   fprintf(fp_cpp, "{\n");
3807   fprintf(fp_cpp, "\n");
3808   fprintf(fp_cpp, "  switch(opcode) {\n");
3809 
3810   // Place all user-defined operands into the mapping
3811   _operands.reset();
3812   int  opIndex = 0;
3813   OperandForm *op;
3814   for( ; (op =  (OperandForm*)_operands.iter()) != NULL; ) {
3815     // Ensure this is a machine-world instruction
3816     if ( op->ideal_only() )  continue;
3817 
3818     genMachOperCase(fp_cpp, _globalNames, *this, *op);
3819   };
3820 
3821   // Do not iterate over operand classes for the  operand generator!!!
3822 
3823   // Place all internal operands into the mapping
3824   _internalOpNames.reset();
3825   const char *iopn;
3826   for( ; (iopn =  _internalOpNames.iter()) != NULL; ) {
3827     const char *opEnumName = machOperEnum(iopn);
3828     // Generate the case statement for this opcode
3829     fprintf(fp_cpp, "  case %s:", opEnumName);
3830     fprintf(fp_cpp, "    return NULL;\n");
3831   };
3832 
3833   // Generate the default case for switch(opcode)
3834   fprintf(fp_cpp, "  \n");
3835   fprintf(fp_cpp, "  default:\n");
3836   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachOper Generator invoked for: \\n\");\n");
3837   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
3838   fprintf(fp_cpp, "    break;\n");
3839   fprintf(fp_cpp, "  }\n");
3840 
3841   // Generate the closing for method Matcher::MachOperGenerator
3842   fprintf(fp_cpp, "  return NULL;\n");
3843   fprintf(fp_cpp, "};\n");
3844 }
3845 
3846 
3847 //---------------------------buildMachNode-------------------------------------
3848 // Build a new MachNode, for MachNodeGenerator or cisc-spilling
3849 void ArchDesc::buildMachNode(FILE *fp_cpp, InstructForm *inst, const char *indent) {
3850   const char *opType  = NULL;
3851   const char *opClass = inst->_ident;
3852 
3853   // Create the MachNode object
3854   fprintf(fp_cpp, "%s %sNode *node = new (C) %sNode();\n",indent, opClass,opClass);
3855 
3856   if ( (inst->num_post_match_opnds() != 0) ) {
3857     // Instruction that contains operands which are not in match rule.
3858     //
3859     // Check if the first post-match component may be an interesting def
3860     bool           dont_care = false;
3861     ComponentList &comp_list = inst->_components;
3862     Component     *comp      = NULL;
3863     comp_list.reset();
3864     if ( comp_list.match_iter() != NULL )    dont_care = true;
3865 
3866     // Insert operands that are not in match-rule.
3867     // Only insert a DEF if the do_care flag is set
3868     comp_list.reset();
3869     while ( comp = comp_list.post_match_iter() ) {
3870       // Check if we don't care about DEFs or KILLs that are not USEs
3871       if ( dont_care && (! comp->isa(Component::USE)) ) {
3872         continue;
3873       }
3874       dont_care = true;
3875       // For each operand not in the match rule, call MachOperGenerator
3876       // with the enum for the opcode that needs to be built.
3877       ComponentList clist = inst->_components;
3878       int         index  = clist.operand_position(comp->_name, comp->_usedef, inst);
3879       const char *opcode = machOperEnum(comp->_type);
3880       fprintf(fp_cpp, "%s node->set_opnd_array(%d, ", indent, index);
3881       fprintf(fp_cpp, "MachOperGenerator(%s, C));\n", opcode);
3882       }
3883   }
3884   else if ( inst->is_chain_of_constant(_globalNames, opType) ) {
3885     // An instruction that chains from a constant!
3886     // In this case, we need to subsume the constant into the node
3887     // at operand position, oper_input_base().
3888     //
3889     // Fill in the constant
3890     fprintf(fp_cpp, "%s node->_opnd_array[%d] = ", indent,
3891             inst->oper_input_base(_globalNames));
3892     // #####
3893     // Check for multiple constants and then fill them in.
3894     // Just like MachOperGenerator
3895     const char *opName = inst->_matrule->_rChild->_opType;
3896     fprintf(fp_cpp, "new (C) %sOper(", opName);
3897     // Grab operand form
3898     OperandForm *op = (_globalNames[opName])->is_operand();
3899     // Look up the number of constants
3900     uint num_consts = op->num_consts(_globalNames);
3901     if ( (num_consts > 0) ) {
3902       uint i = 0;
3903       path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3904       for ( i = 1; i < num_consts; ++i ) {
3905         fprintf(fp_cpp, ", ");
3906         path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3907       }
3908     }
3909     fprintf(fp_cpp, " );\n");
3910     // #####
3911   }
3912 
3913   // Fill in the bottom_type where requested
3914   if (inst->captures_bottom_type(_globalNames)) {
3915     if (strncmp("MachCall", inst->mach_base_class(_globalNames), strlen("MachCall"))) {
3916       fprintf(fp_cpp, "%s node->_bottom_type = _leaf->bottom_type();\n", indent);
3917     }
3918   }
3919   if( inst->is_ideal_if() ) {
3920     fprintf(fp_cpp, "%s node->_prob = _leaf->as_If()->_prob;\n", indent);
3921     fprintf(fp_cpp, "%s node->_fcnt = _leaf->as_If()->_fcnt;\n", indent);
3922   }
3923   if( inst->is_ideal_fastlock() ) {
3924     fprintf(fp_cpp, "%s node->_counters = _leaf->as_FastLock()->counters();\n", indent);
3925     fprintf(fp_cpp, "%s node->_rtm_counters = _leaf->as_FastLock()->rtm_counters();\n", indent);
3926     fprintf(fp_cpp, "%s node->_stack_rtm_counters = _leaf->as_FastLock()->stack_rtm_counters();\n", indent);
3927   }
3928 
3929 }
3930 
3931 //---------------------------declare_cisc_version------------------------------
3932 // Build CISC version of this instruction
3933 void InstructForm::declare_cisc_version(ArchDesc &AD, FILE *fp_hpp) {
3934   if( AD.can_cisc_spill() ) {
3935     InstructForm *inst_cisc = cisc_spill_alternate();
3936     if (inst_cisc != NULL) {
3937       fprintf(fp_hpp, "  virtual int            cisc_operand() const { return %d; }\n", cisc_spill_operand());
3938       fprintf(fp_hpp, "  virtual MachNode      *cisc_version(int offset, Compile* C);\n");
3939       fprintf(fp_hpp, "  virtual void           use_cisc_RegMask();\n");
3940       fprintf(fp_hpp, "  virtual const RegMask *cisc_RegMask() const { return _cisc_RegMask; }\n");
3941     }
3942   }
3943 }
3944 
3945 //---------------------------define_cisc_version-------------------------------
3946 // Build CISC version of this instruction
3947 bool InstructForm::define_cisc_version(ArchDesc &AD, FILE *fp_cpp) {
3948   InstructForm *inst_cisc = this->cisc_spill_alternate();
3949   if( AD.can_cisc_spill() && (inst_cisc != NULL) ) {
3950     const char   *name      = inst_cisc->_ident;
3951     assert( inst_cisc->num_opnds() == this->num_opnds(), "Must have same number of operands");
3952     OperandForm *cisc_oper = AD.cisc_spill_operand();
3953     assert( cisc_oper != NULL, "insanity check");
3954     const char *cisc_oper_name  = cisc_oper->_ident;
3955     assert( cisc_oper_name != NULL, "insanity check");
3956     //
3957     // Set the correct reg_mask_or_stack for the cisc operand
3958     fprintf(fp_cpp, "\n");
3959     fprintf(fp_cpp, "void %sNode::use_cisc_RegMask() {\n", this->_ident);
3960     // Lookup the correct reg_mask_or_stack
3961     const char *reg_mask_name = cisc_reg_mask_name();
3962     fprintf(fp_cpp, "  _cisc_RegMask = &STACK_OR_%s;\n", reg_mask_name);
3963     fprintf(fp_cpp, "}\n");
3964     //
3965     // Construct CISC version of this instruction
3966     fprintf(fp_cpp, "\n");
3967     fprintf(fp_cpp, "// Build CISC version of this instruction\n");
3968     fprintf(fp_cpp, "MachNode *%sNode::cisc_version( int offset, Compile* C ) {\n", this->_ident);
3969     // Create the MachNode object
3970     fprintf(fp_cpp, "  %sNode *node = new (C) %sNode();\n", name, name);
3971     // Fill in the bottom_type where requested
3972     if ( this->captures_bottom_type(AD.globalNames()) ) {
3973       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
3974     }
3975 
3976     uint cur_num_opnds = num_opnds();
3977     if (cur_num_opnds > 1 && cur_num_opnds != num_unique_opnds()) {
3978       fprintf(fp_cpp,"  node->_num_opnds = %d;\n", num_unique_opnds());
3979     }
3980 
3981     fprintf(fp_cpp, "\n");
3982     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
3983     fprintf(fp_cpp, "  fill_new_machnode(node, C);\n");
3984     // Construct operand to access [stack_pointer + offset]
3985     fprintf(fp_cpp, "  // Construct operand to access [stack_pointer + offset]\n");
3986     fprintf(fp_cpp, "  node->set_opnd_array(cisc_operand(), new (C) %sOper(offset));\n", cisc_oper_name);
3987     fprintf(fp_cpp, "\n");
3988 
3989     // Return result and exit scope
3990     fprintf(fp_cpp, "  return node;\n");
3991     fprintf(fp_cpp, "}\n");
3992     fprintf(fp_cpp, "\n");
3993     return true;
3994   }
3995   return false;
3996 }
3997 
3998 //---------------------------declare_short_branch_methods----------------------
3999 // Build prototypes for short branch methods
4000 void InstructForm::declare_short_branch_methods(FILE *fp_hpp) {
4001   if (has_short_branch_form()) {
4002     fprintf(fp_hpp, "  virtual MachNode      *short_branch_version(Compile* C);\n");
4003   }
4004 }
4005 
4006 //---------------------------define_short_branch_methods-----------------------
4007 // Build definitions for short branch methods
4008 bool InstructForm::define_short_branch_methods(ArchDesc &AD, FILE *fp_cpp) {
4009   if (has_short_branch_form()) {
4010     InstructForm *short_branch = short_branch_form();
4011     const char   *name         = short_branch->_ident;
4012 
4013     // Construct short_branch_version() method.
4014     fprintf(fp_cpp, "// Build short branch version of this instruction\n");
4015     fprintf(fp_cpp, "MachNode *%sNode::short_branch_version(Compile* C) {\n", this->_ident);
4016     // Create the MachNode object
4017     fprintf(fp_cpp, "  %sNode *node = new (C) %sNode();\n", name, name);
4018     if( is_ideal_if() ) {
4019       fprintf(fp_cpp, "  node->_prob = _prob;\n");
4020       fprintf(fp_cpp, "  node->_fcnt = _fcnt;\n");
4021     }
4022     // Fill in the bottom_type where requested
4023     if ( this->captures_bottom_type(AD.globalNames()) ) {
4024       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
4025     }
4026 
4027     fprintf(fp_cpp, "\n");
4028     // Short branch version must use same node index for access
4029     // through allocator's tables
4030     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
4031     fprintf(fp_cpp, "  fill_new_machnode(node, C);\n");
4032 
4033     // Return result and exit scope
4034     fprintf(fp_cpp, "  return node;\n");
4035     fprintf(fp_cpp, "}\n");
4036     fprintf(fp_cpp,"\n");
4037     return true;
4038   }
4039   return false;
4040 }
4041 
4042 
4043 //---------------------------buildMachNodeGenerator----------------------------
4044 // Build switch to invoke appropriate "new" MachNode for an opcode
4045 void ArchDesc::buildMachNodeGenerator(FILE *fp_cpp) {
4046 
4047   // Build switch to invoke 'new' for a specific MachNode
4048   fprintf(fp_cpp, "\n");
4049   fprintf(fp_cpp, "\n");
4050   fprintf(fp_cpp,
4051           "//------------------------- MachNode Generator ---------------\n");
4052   fprintf(fp_cpp,
4053           "// A switch statement on the dense-packed user-defined type system\n"
4054           "// that invokes 'new' on the corresponding class constructor.\n");
4055   fprintf(fp_cpp, "\n");
4056   fprintf(fp_cpp, "MachNode *State::MachNodeGenerator");
4057   fprintf(fp_cpp, "(int opcode, Compile* C)");
4058   fprintf(fp_cpp, "{\n");
4059   fprintf(fp_cpp, "  switch(opcode) {\n");
4060 
4061   // Provide constructor for all user-defined instructions
4062   _instructions.reset();
4063   int  opIndex = operandFormCount();
4064   InstructForm *inst;
4065   for( ; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
4066     // Ensure that matrule is defined.
4067     if ( inst->_matrule == NULL ) continue;
4068 
4069     int         opcode  = opIndex++;
4070     const char *opClass = inst->_ident;
4071     char       *opType  = NULL;
4072 
4073     // Generate the case statement for this instruction
4074     fprintf(fp_cpp, "  case %s_rule:", opClass);
4075 
4076     // Start local scope
4077     fprintf(fp_cpp, " {\n");
4078     // Generate code to construct the new MachNode
4079     buildMachNode(fp_cpp, inst, "     ");
4080     // Return result and exit scope
4081     fprintf(fp_cpp, "      return node;\n");
4082     fprintf(fp_cpp, "    }\n");
4083   }
4084 
4085   // Generate the default case for switch(opcode)
4086   fprintf(fp_cpp, "  \n");
4087   fprintf(fp_cpp, "  default:\n");
4088   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachNode Generator invoked for: \\n\");\n");
4089   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
4090   fprintf(fp_cpp, "    break;\n");
4091   fprintf(fp_cpp, "  };\n");
4092 
4093   // Generate the closing for method Matcher::MachNodeGenerator
4094   fprintf(fp_cpp, "  return NULL;\n");
4095   fprintf(fp_cpp, "}\n");
4096 }
4097 
4098 
4099 //---------------------------buildInstructMatchCheck--------------------------
4100 // Output the method to Matcher which checks whether or not a specific
4101 // instruction has a matching rule for the host architecture.
4102 void ArchDesc::buildInstructMatchCheck(FILE *fp_cpp) const {
4103   fprintf(fp_cpp, "\n\n");
4104   fprintf(fp_cpp, "const bool Matcher::has_match_rule(int opcode) {\n");
4105   fprintf(fp_cpp, "  assert(_last_machine_leaf < opcode && opcode < _last_opcode, \"opcode in range\");\n");
4106   fprintf(fp_cpp, "  return _hasMatchRule[opcode];\n");
4107   fprintf(fp_cpp, "}\n\n");
4108 
4109   fprintf(fp_cpp, "const bool Matcher::_hasMatchRule[_last_opcode] = {\n");
4110   int i;
4111   for (i = 0; i < _last_opcode - 1; i++) {
4112     fprintf(fp_cpp, "    %-5s,  // %s\n",
4113             _has_match_rule[i] ? "true" : "false",
4114             NodeClassNames[i]);
4115   }
4116   fprintf(fp_cpp, "    %-5s   // %s\n",
4117           _has_match_rule[i] ? "true" : "false",
4118           NodeClassNames[i]);
4119   fprintf(fp_cpp, "};\n");
4120 }
4121 
4122 //---------------------------buildFrameMethods---------------------------------
4123 // Output the methods to Matcher which specify frame behavior
4124 void ArchDesc::buildFrameMethods(FILE *fp_cpp) {
4125   fprintf(fp_cpp,"\n\n");
4126   // Stack Direction
4127   fprintf(fp_cpp,"bool Matcher::stack_direction() const { return %s; }\n\n",
4128           _frame->_direction ? "true" : "false");
4129   // Sync Stack Slots
4130   fprintf(fp_cpp,"int Compile::sync_stack_slots() const { return %s; }\n\n",
4131           _frame->_sync_stack_slots);
4132   // Java Stack Alignment
4133   fprintf(fp_cpp,"uint Matcher::stack_alignment_in_bytes() { return %s; }\n\n",
4134           _frame->_alignment);
4135   // Java Return Address Location
4136   fprintf(fp_cpp,"OptoReg::Name Matcher::return_addr() const {");
4137   if (_frame->_return_addr_loc) {
4138     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4139             _frame->_return_addr);
4140   }
4141   else {
4142     fprintf(fp_cpp," return OptoReg::stack2reg(%s); }\n\n",
4143             _frame->_return_addr);
4144   }
4145   // Java Stack Slot Preservation
4146   fprintf(fp_cpp,"uint Compile::in_preserve_stack_slots() ");
4147   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_in_preserve_slots);
4148   // Top Of Stack Slot Preservation, for both Java and C
4149   fprintf(fp_cpp,"uint Compile::out_preserve_stack_slots() ");
4150   fprintf(fp_cpp,"{ return SharedRuntime::out_preserve_stack_slots(); }\n\n");
4151   // varargs C out slots killed
4152   fprintf(fp_cpp,"uint Compile::varargs_C_out_slots_killed() const ");
4153   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_varargs_C_out_slots_killed);
4154   // Java Argument Position
4155   fprintf(fp_cpp,"void Matcher::calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length, bool is_outgoing) {\n");
4156   fprintf(fp_cpp,"%s\n", _frame->_calling_convention);
4157   fprintf(fp_cpp,"}\n\n");
4158   // Native Argument Position
4159   fprintf(fp_cpp,"void Matcher::c_calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length) {\n");
4160   fprintf(fp_cpp,"%s\n", _frame->_c_calling_convention);
4161   fprintf(fp_cpp,"}\n\n");
4162   // Java Return Value Location
4163   fprintf(fp_cpp,"OptoRegPair Matcher::return_value(uint ideal_reg, bool is_outgoing) {\n");
4164   fprintf(fp_cpp,"%s\n", _frame->_return_value);
4165   fprintf(fp_cpp,"}\n\n");
4166   // Native Return Value Location
4167   fprintf(fp_cpp,"OptoRegPair Matcher::c_return_value(uint ideal_reg, bool is_outgoing) {\n");
4168   fprintf(fp_cpp,"%s\n", _frame->_c_return_value);
4169   fprintf(fp_cpp,"}\n\n");
4170 
4171   // Inline Cache Register, mask definition, and encoding
4172   fprintf(fp_cpp,"OptoReg::Name Matcher::inline_cache_reg() {");
4173   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4174           _frame->_inline_cache_reg);
4175   fprintf(fp_cpp,"int Matcher::inline_cache_reg_encode() {");
4176   fprintf(fp_cpp," return _regEncode[inline_cache_reg()]; }\n\n");
4177 
4178   // Interpreter's Method Oop Register, mask definition, and encoding
4179   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_method_oop_reg() {");
4180   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4181           _frame->_interpreter_method_oop_reg);
4182   fprintf(fp_cpp,"int Matcher::interpreter_method_oop_reg_encode() {");
4183   fprintf(fp_cpp," return _regEncode[interpreter_method_oop_reg()]; }\n\n");
4184 
4185   // Interpreter's Frame Pointer Register, mask definition, and encoding
4186   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_frame_pointer_reg() {");
4187   if (_frame->_interpreter_frame_pointer_reg == NULL)
4188     fprintf(fp_cpp," return OptoReg::Bad; }\n\n");
4189   else
4190     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4191             _frame->_interpreter_frame_pointer_reg);
4192 
4193   // Frame Pointer definition
4194   /* CNC - I can not contemplate having a different frame pointer between
4195      Java and native code; makes my head hurt to think about it.
4196   fprintf(fp_cpp,"OptoReg::Name Matcher::frame_pointer() const {");
4197   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4198           _frame->_frame_pointer);
4199   */
4200   // (Native) Frame Pointer definition
4201   fprintf(fp_cpp,"OptoReg::Name Matcher::c_frame_pointer() const {");
4202   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4203           _frame->_frame_pointer);
4204 
4205   // Number of callee-save + always-save registers for calling convention
4206   fprintf(fp_cpp, "// Number of callee-save + always-save registers\n");
4207   fprintf(fp_cpp, "int  Matcher::number_of_saved_registers() {\n");
4208   RegDef *rdef;
4209   int nof_saved_registers = 0;
4210   _register->reset_RegDefs();
4211   while( (rdef = _register->iter_RegDefs()) != NULL ) {
4212     if( !strcmp(rdef->_callconv, "SOE") ||  !strcmp(rdef->_callconv, "AS") )
4213       ++nof_saved_registers;
4214   }
4215   fprintf(fp_cpp, "  return %d;\n", nof_saved_registers);
4216   fprintf(fp_cpp, "};\n\n");
4217 }
4218 
4219 
4220 
4221 
4222 static int PrintAdlcCisc = 0;
4223 //---------------------------identify_cisc_spilling----------------------------
4224 // Get info for the CISC_oracle and MachNode::cisc_version()
4225 void ArchDesc::identify_cisc_spill_instructions() {
4226 
4227   if (_frame == NULL)
4228     return;
4229 
4230   // Find the user-defined operand for cisc-spilling
4231   if( _frame->_cisc_spilling_operand_name != NULL ) {
4232     const Form *form = _globalNames[_frame->_cisc_spilling_operand_name];
4233     OperandForm *oper = form ? form->is_operand() : NULL;
4234     // Verify the user's suggestion
4235     if( oper != NULL ) {
4236       // Ensure that match field is defined.
4237       if ( oper->_matrule != NULL )  {
4238         MatchRule &mrule = *oper->_matrule;
4239         if( strcmp(mrule._opType,"AddP") == 0 ) {
4240           MatchNode *left = mrule._lChild;
4241           MatchNode *right= mrule._rChild;
4242           if( left != NULL && right != NULL ) {
4243             const Form *left_op  = _globalNames[left->_opType]->is_operand();
4244             const Form *right_op = _globalNames[right->_opType]->is_operand();
4245             if(  (left_op != NULL && right_op != NULL)
4246               && (left_op->interface_type(_globalNames) == Form::register_interface)
4247               && (right_op->interface_type(_globalNames) == Form::constant_interface) ) {
4248               // Successfully verified operand
4249               set_cisc_spill_operand( oper );
4250               if( _cisc_spill_debug ) {
4251                 fprintf(stderr, "\n\nVerified CISC-spill operand %s\n\n", oper->_ident);
4252              }
4253             }
4254           }
4255         }
4256       }
4257     }
4258   }
4259 
4260   if( cisc_spill_operand() != NULL ) {
4261     // N^2 comparison of instructions looking for a cisc-spilling version
4262     _instructions.reset();
4263     InstructForm *instr;
4264     for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
4265       // Ensure that match field is defined.
4266       if ( instr->_matrule == NULL )  continue;
4267 
4268       MatchRule &mrule = *instr->_matrule;
4269       Predicate *pred  =  instr->build_predicate();
4270 
4271       // Grab the machine type of the operand
4272       const char *rootOp = instr->_ident;
4273       mrule._machType    = rootOp;
4274 
4275       // Find result type for match
4276       const char *result = instr->reduce_result();
4277 
4278       if( PrintAdlcCisc ) fprintf(stderr, "  new instruction %s \n", instr->_ident ? instr->_ident : " ");
4279       bool  found_cisc_alternate = false;
4280       _instructions.reset2();
4281       InstructForm *instr2;
4282       for( ; !found_cisc_alternate && (instr2 = (InstructForm*)_instructions.iter2()) != NULL; ) {
4283         // Ensure that match field is defined.
4284         if( PrintAdlcCisc ) fprintf(stderr, "  instr2 == %s \n", instr2->_ident ? instr2->_ident : " ");
4285         if ( instr2->_matrule != NULL
4286             && (instr != instr2 )                // Skip self
4287             && (instr2->reduce_result() != NULL) // want same result
4288             && (strcmp(result, instr2->reduce_result()) == 0)) {
4289           MatchRule &mrule2 = *instr2->_matrule;
4290           Predicate *pred2  =  instr2->build_predicate();
4291           found_cisc_alternate = instr->cisc_spills_to(*this, instr2);
4292         }
4293       }
4294     }
4295   }
4296 }
4297 
4298 //---------------------------build_cisc_spilling-------------------------------
4299 // Get info for the CISC_oracle and MachNode::cisc_version()
4300 void ArchDesc::build_cisc_spill_instructions(FILE *fp_hpp, FILE *fp_cpp) {
4301   // Output the table for cisc spilling
4302   fprintf(fp_cpp, "//  The following instructions can cisc-spill\n");
4303   _instructions.reset();
4304   InstructForm *inst = NULL;
4305   for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
4306     // Ensure this is a machine-world instruction
4307     if ( inst->ideal_only() )  continue;
4308     const char *inst_name = inst->_ident;
4309     int   operand   = inst->cisc_spill_operand();
4310     if( operand != AdlcVMDeps::Not_cisc_spillable ) {
4311       InstructForm *inst2 = inst->cisc_spill_alternate();
4312       fprintf(fp_cpp, "//  %s can cisc-spill operand %d to %s\n", inst->_ident, operand, inst2->_ident);
4313     }
4314   }
4315   fprintf(fp_cpp, "\n\n");
4316 }
4317 
4318 //---------------------------identify_short_branches----------------------------
4319 // Get info for our short branch replacement oracle.
4320 void ArchDesc::identify_short_branches() {
4321   // Walk over all instructions, checking to see if they match a short
4322   // branching alternate.
4323   _instructions.reset();
4324   InstructForm *instr;
4325   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4326     // The instruction must have a match rule.
4327     if (instr->_matrule != NULL &&
4328         instr->is_short_branch()) {
4329 
4330       _instructions.reset2();
4331       InstructForm *instr2;
4332       while( (instr2 = (InstructForm*)_instructions.iter2()) != NULL ) {
4333         instr2->check_branch_variant(*this, instr);
4334       }
4335     }
4336   }
4337 }
4338 
4339 
4340 //---------------------------identify_unique_operands---------------------------
4341 // Identify unique operands.
4342 void ArchDesc::identify_unique_operands() {
4343   // Walk over all instructions.
4344   _instructions.reset();
4345   InstructForm *instr;
4346   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4347     // Ensure this is a machine-world instruction
4348     if (!instr->ideal_only()) {
4349       instr->set_unique_opnds();
4350     }
4351   }
4352 }
--- EOF ---