1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_C1_C1_LIR_HPP
  26 #define SHARE_VM_C1_C1_LIR_HPP
  27 
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_ValueType.hpp"
  30 #include "oops/method.hpp"
  31 
  32 class BlockBegin;
  33 class BlockList;
  34 class LIR_Assembler;
  35 class CodeEmitInfo;
  36 class CodeStub;
  37 class CodeStubList;
  38 class ArrayCopyStub;
  39 class LIR_Op;
  40 class ciType;
  41 class ValueType;
  42 class LIR_OpVisitState;
  43 class FpuStackSim;
  44 
  45 //---------------------------------------------------------------------
  46 //                 LIR Operands
  47 //  LIR_OprDesc
  48 //    LIR_OprPtr
  49 //      LIR_Const
  50 //      LIR_Address
  51 //---------------------------------------------------------------------
  52 class LIR_OprDesc;
  53 class LIR_OprPtr;
  54 class LIR_Const;
  55 class LIR_Address;
  56 class LIR_OprVisitor;
  57 
  58 
  59 typedef LIR_OprDesc* LIR_Opr;
  60 typedef int          RegNr;
  61 
  62 define_array(LIR_OprArray, LIR_Opr)
  63 define_stack(LIR_OprList, LIR_OprArray)
  64 
  65 define_array(LIR_OprRefArray, LIR_Opr*)
  66 define_stack(LIR_OprRefList, LIR_OprRefArray)
  67 
  68 define_array(CodeEmitInfoArray, CodeEmitInfo*)
  69 define_stack(CodeEmitInfoList, CodeEmitInfoArray)
  70 
  71 define_array(LIR_OpArray, LIR_Op*)
  72 define_stack(LIR_OpList, LIR_OpArray)
  73 
  74 // define LIR_OprPtr early so LIR_OprDesc can refer to it
  75 class LIR_OprPtr: public CompilationResourceObj {
  76  public:
  77   bool is_oop_pointer() const                    { return (type() == T_OBJECT); }
  78   bool is_float_kind() const                     { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); }
  79 
  80   virtual LIR_Const*  as_constant()              { return NULL; }
  81   virtual LIR_Address* as_address()              { return NULL; }
  82   virtual BasicType type() const                 = 0;
  83   virtual void print_value_on(outputStream* out) const = 0;
  84 };
  85 
  86 
  87 
  88 // LIR constants
  89 class LIR_Const: public LIR_OprPtr {
  90  private:
  91   JavaValue _value;
  92 
  93   void type_check(BasicType t) const   { assert(type() == t, "type check"); }
  94   void type_check(BasicType t1, BasicType t2) const   { assert(type() == t1 || type() == t2, "type check"); }
  95   void type_check(BasicType t1, BasicType t2, BasicType t3) const   { assert(type() == t1 || type() == t2 || type() == t3, "type check"); }
  96 
  97  public:
  98   LIR_Const(jint i, bool is_address=false)       { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); }
  99   LIR_Const(jlong l)                             { _value.set_type(T_LONG);    _value.set_jlong(l); }
 100   LIR_Const(jfloat f)                            { _value.set_type(T_FLOAT);   _value.set_jfloat(f); }
 101   LIR_Const(jdouble d)                           { _value.set_type(T_DOUBLE);  _value.set_jdouble(d); }
 102   LIR_Const(jobject o)                           { _value.set_type(T_OBJECT);  _value.set_jobject(o); }
 103   LIR_Const(void* p) {
 104 #ifdef _LP64
 105     assert(sizeof(jlong) >= sizeof(p), "too small");;
 106     _value.set_type(T_LONG);    _value.set_jlong((jlong)p);
 107 #else
 108     assert(sizeof(jint) >= sizeof(p), "too small");;
 109     _value.set_type(T_INT);     _value.set_jint((jint)p);
 110 #endif
 111   }
 112   LIR_Const(Metadata* m) {
 113     _value.set_type(T_METADATA);
 114 #ifdef _LP64
 115     _value.set_jlong((jlong)m);
 116 #else
 117     _value.set_jint((jint)m);
 118 #endif // _LP64
 119   }
 120 
 121   virtual BasicType type()       const { return _value.get_type(); }
 122   virtual LIR_Const* as_constant()     { return this; }
 123 
 124   jint      as_jint()    const         { type_check(T_INT, T_ADDRESS); return _value.get_jint(); }
 125   jlong     as_jlong()   const         { type_check(T_LONG  ); return _value.get_jlong(); }
 126   jfloat    as_jfloat()  const         { type_check(T_FLOAT ); return _value.get_jfloat(); }
 127   jdouble   as_jdouble() const         { type_check(T_DOUBLE); return _value.get_jdouble(); }
 128   jobject   as_jobject() const         { type_check(T_OBJECT); return _value.get_jobject(); }
 129   jint      as_jint_lo() const         { type_check(T_LONG  ); return low(_value.get_jlong()); }
 130   jint      as_jint_hi() const         { type_check(T_LONG  ); return high(_value.get_jlong()); }
 131 
 132 #ifdef _LP64
 133   address   as_pointer() const         { type_check(T_LONG  ); return (address)_value.get_jlong(); }
 134   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jlong(); }
 135 #else
 136   address   as_pointer() const         { type_check(T_INT   ); return (address)_value.get_jint(); }
 137   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jint(); }
 138 #endif
 139 
 140 
 141   jint      as_jint_bits() const       { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); }
 142   jint      as_jint_lo_bits() const    {
 143     if (type() == T_DOUBLE) {
 144       return low(jlong_cast(_value.get_jdouble()));
 145     } else {
 146       return as_jint_lo();
 147     }
 148   }
 149   jint      as_jint_hi_bits() const    {
 150     if (type() == T_DOUBLE) {
 151       return high(jlong_cast(_value.get_jdouble()));
 152     } else {
 153       return as_jint_hi();
 154     }
 155   }
 156   jlong      as_jlong_bits() const    {
 157     if (type() == T_DOUBLE) {
 158       return jlong_cast(_value.get_jdouble());
 159     } else {
 160       return as_jlong();
 161     }
 162   }
 163 
 164   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 165 
 166 
 167   bool is_zero_float() {
 168     jfloat f = as_jfloat();
 169     jfloat ok = 0.0f;
 170     return jint_cast(f) == jint_cast(ok);
 171   }
 172 
 173   bool is_one_float() {
 174     jfloat f = as_jfloat();
 175     return !g_isnan(f) && g_isfinite(f) && f == 1.0;
 176   }
 177 
 178   bool is_zero_double() {
 179     jdouble d = as_jdouble();
 180     jdouble ok = 0.0;
 181     return jlong_cast(d) == jlong_cast(ok);
 182   }
 183 
 184   bool is_one_double() {
 185     jdouble d = as_jdouble();
 186     return !g_isnan(d) && g_isfinite(d) && d == 1.0;
 187   }
 188 };
 189 
 190 
 191 //---------------------LIR Operand descriptor------------------------------------
 192 //
 193 // The class LIR_OprDesc represents a LIR instruction operand;
 194 // it can be a register (ALU/FPU), stack location or a constant;
 195 // Constants and addresses are represented as resource area allocated
 196 // structures (see above).
 197 // Registers and stack locations are inlined into the this pointer
 198 // (see value function).
 199 
 200 class LIR_OprDesc: public CompilationResourceObj {
 201  public:
 202   // value structure:
 203   //     data       opr-type opr-kind
 204   // +--------------+-------+-------+
 205   // [max...........|7 6 5 4|3 2 1 0]
 206   //                             ^
 207   //                    is_pointer bit
 208   //
 209   // lowest bit cleared, means it is a structure pointer
 210   // we need  4 bits to represent types
 211 
 212  private:
 213   friend class LIR_OprFact;
 214 
 215   // Conversion
 216   intptr_t value() const                         { return (intptr_t) this; }
 217 
 218   bool check_value_mask(intptr_t mask, intptr_t masked_value) const {
 219     return (value() & mask) == masked_value;
 220   }
 221 
 222   enum OprKind {
 223       pointer_value      = 0
 224     , stack_value        = 1
 225     , cpu_register       = 3
 226     , fpu_register       = 5
 227     , illegal_value      = 7
 228   };
 229 
 230   enum OprBits {
 231       pointer_bits   = 1
 232     , kind_bits      = 3
 233     , type_bits      = 4
 234     , size_bits      = 2
 235     , destroys_bits  = 1
 236     , virtual_bits   = 1
 237     , is_xmm_bits    = 1
 238     , last_use_bits  = 1
 239     , is_fpu_stack_offset_bits = 1        // used in assertion checking on x86 for FPU stack slot allocation
 240     , non_data_bits  = kind_bits + type_bits + size_bits + destroys_bits + last_use_bits +
 241                        is_fpu_stack_offset_bits + virtual_bits + is_xmm_bits
 242     , data_bits      = BitsPerInt - non_data_bits
 243     , reg_bits       = data_bits / 2      // for two registers in one value encoding
 244   };
 245 
 246   enum OprShift {
 247       kind_shift     = 0
 248     , type_shift     = kind_shift     + kind_bits
 249     , size_shift     = type_shift     + type_bits
 250     , destroys_shift = size_shift     + size_bits
 251     , last_use_shift = destroys_shift + destroys_bits
 252     , is_fpu_stack_offset_shift = last_use_shift + last_use_bits
 253     , virtual_shift  = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits
 254     , is_xmm_shift   = virtual_shift + virtual_bits
 255     , data_shift     = is_xmm_shift + is_xmm_bits
 256     , reg1_shift = data_shift
 257     , reg2_shift = data_shift + reg_bits
 258 
 259   };
 260 
 261   enum OprSize {
 262       single_size = 0 << size_shift
 263     , double_size = 1 << size_shift
 264   };
 265 
 266   enum OprMask {
 267       kind_mask      = right_n_bits(kind_bits)
 268     , type_mask      = right_n_bits(type_bits) << type_shift
 269     , size_mask      = right_n_bits(size_bits) << size_shift
 270     , last_use_mask  = right_n_bits(last_use_bits) << last_use_shift
 271     , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift
 272     , virtual_mask   = right_n_bits(virtual_bits) << virtual_shift
 273     , is_xmm_mask    = right_n_bits(is_xmm_bits) << is_xmm_shift
 274     , pointer_mask   = right_n_bits(pointer_bits)
 275     , lower_reg_mask = right_n_bits(reg_bits)
 276     , no_type_mask   = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask))
 277   };
 278 
 279   uintptr_t data() const                         { return value() >> data_shift; }
 280   int lo_reg_half() const                        { return data() & lower_reg_mask; }
 281   int hi_reg_half() const                        { return (data() >> reg_bits) & lower_reg_mask; }
 282   OprKind kind_field() const                     { return (OprKind)(value() & kind_mask); }
 283   OprSize size_field() const                     { return (OprSize)(value() & size_mask); }
 284 
 285   static char type_char(BasicType t);
 286 
 287  public:
 288   enum {
 289     vreg_base = ConcreteRegisterImpl::number_of_registers,
 290     vreg_max = (1 << data_bits) - 1
 291   };
 292 
 293   static inline LIR_Opr illegalOpr();
 294 
 295   enum OprType {
 296       unknown_type  = 0 << type_shift    // means: not set (catch uninitialized types)
 297     , int_type      = 1 << type_shift
 298     , long_type     = 2 << type_shift
 299     , object_type   = 3 << type_shift
 300     , address_type  = 4 << type_shift
 301     , float_type    = 5 << type_shift
 302     , double_type   = 6 << type_shift
 303     , metadata_type = 7 << type_shift
 304   };
 305   friend OprType as_OprType(BasicType t);
 306   friend BasicType as_BasicType(OprType t);
 307 
 308   OprType type_field_valid() const               { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); }
 309   OprType type_field() const                     { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); }
 310 
 311   static OprSize size_for(BasicType t) {
 312     switch (t) {
 313       case T_LONG:
 314       case T_DOUBLE:
 315         return double_size;
 316         break;
 317 
 318       case T_FLOAT:
 319       case T_BOOLEAN:
 320       case T_CHAR:
 321       case T_BYTE:
 322       case T_SHORT:
 323       case T_INT:
 324       case T_ADDRESS:
 325       case T_OBJECT:
 326       case T_ARRAY:
 327       case T_METADATA:
 328         return single_size;
 329         break;
 330 
 331       default:
 332         ShouldNotReachHere();
 333         return single_size;
 334       }
 335   }
 336 
 337 
 338   void validate_type() const PRODUCT_RETURN;
 339 
 340   BasicType type() const {
 341     if (is_pointer()) {
 342       return pointer()->type();
 343     }
 344     return as_BasicType(type_field());
 345   }
 346 
 347 
 348   ValueType* value_type() const                  { return as_ValueType(type()); }
 349 
 350   char type_char() const                         { return type_char((is_pointer()) ? pointer()->type() : type()); }
 351 
 352   bool is_equal(LIR_Opr opr) const         { return this == opr; }
 353   // checks whether types are same
 354   bool is_same_type(LIR_Opr opr) const     {
 355     assert(type_field() != unknown_type &&
 356            opr->type_field() != unknown_type, "shouldn't see unknown_type");
 357     return type_field() == opr->type_field();
 358   }
 359   bool is_same_register(LIR_Opr opr) {
 360     return (is_register() && opr->is_register() &&
 361             kind_field() == opr->kind_field() &&
 362             (value() & no_type_mask) == (opr->value() & no_type_mask));
 363   }
 364 
 365   bool is_pointer() const      { return check_value_mask(pointer_mask, pointer_value); }
 366   bool is_illegal() const      { return kind_field() == illegal_value; }
 367   bool is_valid() const        { return kind_field() != illegal_value; }
 368 
 369   bool is_register() const     { return is_cpu_register() || is_fpu_register(); }
 370   bool is_virtual() const      { return is_virtual_cpu()  || is_virtual_fpu();  }
 371 
 372   bool is_constant() const     { return is_pointer() && pointer()->as_constant() != NULL; }
 373   bool is_address() const      { return is_pointer() && pointer()->as_address() != NULL; }
 374 
 375   bool is_float_kind() const   { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); }
 376   bool is_oop() const;
 377 
 378   // semantic for fpu- and xmm-registers:
 379   // * is_float and is_double return true for xmm_registers
 380   //   (so is_single_fpu and is_single_xmm are true)
 381   // * So you must always check for is_???_xmm prior to is_???_fpu to
 382   //   distinguish between fpu- and xmm-registers
 383 
 384   bool is_stack() const        { validate_type(); return check_value_mask(kind_mask,                stack_value);                 }
 385   bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | single_size);  }
 386   bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | double_size);  }
 387 
 388   bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask,                cpu_register);                }
 389   bool is_virtual_cpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); }
 390   bool is_fixed_cpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register);                }
 391   bool is_single_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | single_size);  }
 392   bool is_double_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | double_size);  }
 393 
 394   bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask,                fpu_register);                }
 395   bool is_virtual_fpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); }
 396   bool is_fixed_fpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register);                }
 397   bool is_single_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | single_size);  }
 398   bool is_double_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | double_size);  }
 399 
 400   bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask,             fpu_register | is_xmm_mask); }
 401   bool is_single_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); }
 402   bool is_double_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); }
 403 
 404   // fast accessor functions for special bits that do not work for pointers
 405   // (in this functions, the check for is_pointer() is omitted)
 406   bool is_single_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); }
 407   bool is_double_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); }
 408   bool is_virtual_register() const { assert(is_register(),               "type check"); return check_value_mask(virtual_mask, virtual_mask); }
 409   bool is_oop_register() const     { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; }
 410   BasicType type_register() const  { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid());  }
 411 
 412   bool is_last_use() const         { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; }
 413   bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; }
 414   LIR_Opr make_last_use()          { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); }
 415   LIR_Opr make_fpu_stack_offset()  { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); }
 416 
 417 
 418   int single_stack_ix() const  { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); }
 419   int double_stack_ix() const  { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); }
 420   RegNr cpu_regnr() const      { assert(is_single_cpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 421   RegNr cpu_regnrLo() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 422   RegNr cpu_regnrHi() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 423   RegNr fpu_regnr() const      { assert(is_single_fpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 424   RegNr fpu_regnrLo() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 425   RegNr fpu_regnrHi() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 426   RegNr xmm_regnr() const      { assert(is_single_xmm()   && !is_virtual(), "type check"); return (RegNr)data(); }
 427   RegNr xmm_regnrLo() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 428   RegNr xmm_regnrHi() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 429   int   vreg_number() const    { assert(is_virtual(),                       "type check"); return (RegNr)data(); }
 430 
 431   LIR_OprPtr* pointer()  const                   { assert(is_pointer(), "type check");      return (LIR_OprPtr*)this; }
 432   LIR_Const* as_constant_ptr() const             { return pointer()->as_constant(); }
 433   LIR_Address* as_address_ptr() const            { return pointer()->as_address(); }
 434 
 435   Register as_register()    const;
 436   Register as_register_lo() const;
 437   Register as_register_hi() const;
 438 
 439   Register as_pointer_register() {
 440 #ifdef _LP64
 441     if (is_double_cpu()) {
 442       assert(as_register_lo() == as_register_hi(), "should be a single register");
 443       return as_register_lo();
 444     }
 445 #endif
 446     return as_register();
 447   }
 448 
 449 #ifdef X86
 450   XMMRegister as_xmm_float_reg() const;
 451   XMMRegister as_xmm_double_reg() const;
 452   // for compatibility with RInfo
 453   int fpu () const                                  { return lo_reg_half(); }
 454 #endif // X86
 455 #if defined(SPARC) || defined(ARM) || defined(PPC)
 456   FloatRegister as_float_reg   () const;
 457   FloatRegister as_double_reg  () const;
 458 #endif
 459 
 460   jint      as_jint()    const { return as_constant_ptr()->as_jint(); }
 461   jlong     as_jlong()   const { return as_constant_ptr()->as_jlong(); }
 462   jfloat    as_jfloat()  const { return as_constant_ptr()->as_jfloat(); }
 463   jdouble   as_jdouble() const { return as_constant_ptr()->as_jdouble(); }
 464   jobject   as_jobject() const { return as_constant_ptr()->as_jobject(); }
 465 
 466   void print() const PRODUCT_RETURN;
 467   void print(outputStream* out) const PRODUCT_RETURN;
 468 };
 469 
 470 
 471 inline LIR_OprDesc::OprType as_OprType(BasicType type) {
 472   switch (type) {
 473   case T_INT:      return LIR_OprDesc::int_type;
 474   case T_LONG:     return LIR_OprDesc::long_type;
 475   case T_FLOAT:    return LIR_OprDesc::float_type;
 476   case T_DOUBLE:   return LIR_OprDesc::double_type;
 477   case T_OBJECT:
 478   case T_ARRAY:    return LIR_OprDesc::object_type;
 479   case T_ADDRESS:  return LIR_OprDesc::address_type;
 480   case T_METADATA: return LIR_OprDesc::metadata_type;
 481   case T_ILLEGAL:  // fall through
 482   default: ShouldNotReachHere(); return LIR_OprDesc::unknown_type;
 483   }
 484 }
 485 
 486 inline BasicType as_BasicType(LIR_OprDesc::OprType t) {
 487   switch (t) {
 488   case LIR_OprDesc::int_type:     return T_INT;
 489   case LIR_OprDesc::long_type:    return T_LONG;
 490   case LIR_OprDesc::float_type:   return T_FLOAT;
 491   case LIR_OprDesc::double_type:  return T_DOUBLE;
 492   case LIR_OprDesc::object_type:  return T_OBJECT;
 493   case LIR_OprDesc::address_type: return T_ADDRESS;
 494   case LIR_OprDesc::metadata_type:return T_METADATA;
 495   case LIR_OprDesc::unknown_type: // fall through
 496   default: ShouldNotReachHere();  return T_ILLEGAL;
 497   }
 498 }
 499 
 500 
 501 // LIR_Address
 502 class LIR_Address: public LIR_OprPtr {
 503  friend class LIR_OpVisitState;
 504 
 505  public:
 506   // NOTE: currently these must be the log2 of the scale factor (and
 507   // must also be equivalent to the ScaleFactor enum in
 508   // assembler_i486.hpp)
 509   enum Scale {
 510     times_1  =  0,
 511     times_2  =  1,
 512     times_4  =  2,
 513     times_8  =  3
 514   };
 515 
 516  private:
 517   LIR_Opr   _base;
 518   LIR_Opr   _index;
 519   Scale     _scale;
 520   intx      _disp;
 521   BasicType _type;
 522 
 523  public:
 524   LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type):
 525        _base(base)
 526      , _index(index)
 527      , _scale(times_1)
 528      , _type(type)
 529      , _disp(0) { verify(); }
 530 
 531   LIR_Address(LIR_Opr base, intx disp, BasicType type):
 532        _base(base)
 533      , _index(LIR_OprDesc::illegalOpr())
 534      , _scale(times_1)
 535      , _type(type)
 536      , _disp(disp) { verify(); }
 537 
 538   LIR_Address(LIR_Opr base, BasicType type):
 539        _base(base)
 540      , _index(LIR_OprDesc::illegalOpr())
 541      , _scale(times_1)
 542      , _type(type)
 543      , _disp(0) { verify(); }
 544 
 545 #if defined(X86) || defined(ARM)
 546   LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type):
 547        _base(base)
 548      , _index(index)
 549      , _scale(scale)
 550      , _type(type)
 551      , _disp(disp) { verify(); }
 552 #endif // X86 || ARM
 553 
 554   LIR_Opr base()  const                          { return _base;  }
 555   LIR_Opr index() const                          { return _index; }
 556   Scale   scale() const                          { return _scale; }
 557   intx    disp()  const                          { return _disp;  }
 558 
 559   bool equals(LIR_Address* other) const          { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); }
 560 
 561   virtual LIR_Address* as_address()              { return this;   }
 562   virtual BasicType type() const                 { return _type; }
 563   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 564 
 565   void verify0() const PRODUCT_RETURN;
 566 #if defined(LIR_ADDRESS_PD_VERIFY) && !defined(PRODUCT)
 567   void pd_verify() const;
 568   void verify() const { pd_verify(); }
 569 #else
 570   void verify() const { verify0(); }
 571 #endif
 572 
 573   static Scale scale(BasicType type);
 574 };
 575 
 576 
 577 // operand factory
 578 class LIR_OprFact: public AllStatic {
 579  public:
 580 
 581   static LIR_Opr illegalOpr;
 582 
 583   static LIR_Opr single_cpu(int reg) {
 584     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 585                                LIR_OprDesc::int_type             |
 586                                LIR_OprDesc::cpu_register         |
 587                                LIR_OprDesc::single_size);
 588   }
 589   static LIR_Opr single_cpu_oop(int reg) {
 590     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 591                                LIR_OprDesc::object_type          |
 592                                LIR_OprDesc::cpu_register         |
 593                                LIR_OprDesc::single_size);
 594   }
 595   static LIR_Opr single_cpu_address(int reg) {
 596     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 597                                LIR_OprDesc::address_type         |
 598                                LIR_OprDesc::cpu_register         |
 599                                LIR_OprDesc::single_size);
 600   }
 601   static LIR_Opr single_cpu_metadata(int reg) {
 602     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 603                                LIR_OprDesc::metadata_type        |
 604                                LIR_OprDesc::cpu_register         |
 605                                LIR_OprDesc::single_size);
 606   }
 607   static LIR_Opr double_cpu(int reg1, int reg2) {
 608     LP64_ONLY(assert(reg1 == reg2, "must be identical"));
 609     return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 610                                (reg2 << LIR_OprDesc::reg2_shift) |
 611                                LIR_OprDesc::long_type            |
 612                                LIR_OprDesc::cpu_register         |
 613                                LIR_OprDesc::double_size);
 614   }
 615 
 616   static LIR_Opr single_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 617                                                                              LIR_OprDesc::float_type           |
 618                                                                              LIR_OprDesc::fpu_register         |
 619                                                                              LIR_OprDesc::single_size); }
 620 #if defined(C1_LIR_MD_HPP)
 621 # include C1_LIR_MD_HPP
 622 #elif defined(SPARC)
 623   static LIR_Opr double_fpu(int reg1, int reg2) { return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 624                                                                              (reg2 << LIR_OprDesc::reg2_shift) |
 625                                                                              LIR_OprDesc::double_type          |
 626                                                                              LIR_OprDesc::fpu_register         |
 627                                                                              LIR_OprDesc::double_size); }
 628 #elif defined(X86)
 629   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 630                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 631                                                                              LIR_OprDesc::double_type          |
 632                                                                              LIR_OprDesc::fpu_register         |
 633                                                                              LIR_OprDesc::double_size); }
 634 
 635   static LIR_Opr single_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 636                                                                              LIR_OprDesc::float_type           |
 637                                                                              LIR_OprDesc::fpu_register         |
 638                                                                              LIR_OprDesc::single_size          |
 639                                                                              LIR_OprDesc::is_xmm_mask); }
 640   static LIR_Opr double_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 641                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 642                                                                              LIR_OprDesc::double_type          |
 643                                                                              LIR_OprDesc::fpu_register         |
 644                                                                              LIR_OprDesc::double_size          |
 645                                                                              LIR_OprDesc::is_xmm_mask); }
 646 #elif defined(PPC)
 647   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 648                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 649                                                                              LIR_OprDesc::double_type          |
 650                                                                              LIR_OprDesc::fpu_register         |
 651                                                                              LIR_OprDesc::double_size); }
 652   static LIR_Opr single_softfp(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift)        |
 653                                                                              LIR_OprDesc::float_type           |
 654                                                                              LIR_OprDesc::cpu_register         |
 655                                                                              LIR_OprDesc::single_size); }
 656   static LIR_Opr double_softfp(int reg1, int reg2) { return (LIR_Opr)((reg2 << LIR_OprDesc::reg1_shift)        |
 657                                                                              (reg1 << LIR_OprDesc::reg2_shift) |
 658                                                                              LIR_OprDesc::double_type          |
 659                                                                              LIR_OprDesc::cpu_register         |
 660                                                                              LIR_OprDesc::double_size); }
 661 #endif // PPC
 662 
 663   static LIR_Opr virtual_register(int index, BasicType type) {
 664     LIR_Opr res;
 665     switch (type) {
 666       case T_OBJECT: // fall through
 667       case T_ARRAY:
 668         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
 669                                             LIR_OprDesc::object_type  |
 670                                             LIR_OprDesc::cpu_register |
 671                                             LIR_OprDesc::single_size  |
 672                                             LIR_OprDesc::virtual_mask);
 673         break;
 674 
 675       case T_METADATA:
 676         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
 677                                             LIR_OprDesc::metadata_type|
 678                                             LIR_OprDesc::cpu_register |
 679                                             LIR_OprDesc::single_size  |
 680                                             LIR_OprDesc::virtual_mask);
 681         break;
 682 
 683       case T_INT:
 684         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 685                                   LIR_OprDesc::int_type              |
 686                                   LIR_OprDesc::cpu_register          |
 687                                   LIR_OprDesc::single_size           |
 688                                   LIR_OprDesc::virtual_mask);
 689         break;
 690 
 691       case T_ADDRESS:
 692         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 693                                   LIR_OprDesc::address_type          |
 694                                   LIR_OprDesc::cpu_register          |
 695                                   LIR_OprDesc::single_size           |
 696                                   LIR_OprDesc::virtual_mask);
 697         break;
 698 
 699       case T_LONG:
 700         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 701                                   LIR_OprDesc::long_type             |
 702                                   LIR_OprDesc::cpu_register          |
 703                                   LIR_OprDesc::double_size           |
 704                                   LIR_OprDesc::virtual_mask);
 705         break;
 706 
 707 #ifdef __SOFTFP__
 708       case T_FLOAT:
 709         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 710                                   LIR_OprDesc::float_type  |
 711                                   LIR_OprDesc::cpu_register |
 712                                   LIR_OprDesc::single_size |
 713                                   LIR_OprDesc::virtual_mask);
 714         break;
 715       case T_DOUBLE:
 716         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 717                                   LIR_OprDesc::double_type |
 718                                   LIR_OprDesc::cpu_register |
 719                                   LIR_OprDesc::double_size |
 720                                   LIR_OprDesc::virtual_mask);
 721         break;
 722 #else // __SOFTFP__
 723       case T_FLOAT:
 724         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 725                                   LIR_OprDesc::float_type           |
 726                                   LIR_OprDesc::fpu_register         |
 727                                   LIR_OprDesc::single_size          |
 728                                   LIR_OprDesc::virtual_mask);
 729         break;
 730 
 731       case
 732         T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 733                                             LIR_OprDesc::double_type           |
 734                                             LIR_OprDesc::fpu_register          |
 735                                             LIR_OprDesc::double_size           |
 736                                             LIR_OprDesc::virtual_mask);
 737         break;
 738 #endif // __SOFTFP__
 739       default:       ShouldNotReachHere(); res = illegalOpr;
 740     }
 741 
 742 #ifdef ASSERT
 743     res->validate_type();
 744     assert(res->vreg_number() == index, "conversion check");
 745     assert(index >= LIR_OprDesc::vreg_base, "must start at vreg_base");
 746     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 747 
 748     // old-style calculation; check if old and new method are equal
 749     LIR_OprDesc::OprType t = as_OprType(type);
 750 #ifdef __SOFTFP__
 751     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 752                                t |
 753                                LIR_OprDesc::cpu_register |
 754                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
 755 #else // __SOFTFP__
 756     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | t |
 757                                           ((type == T_FLOAT || type == T_DOUBLE) ?  LIR_OprDesc::fpu_register : LIR_OprDesc::cpu_register) |
 758                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
 759     assert(res == old_res, "old and new method not equal");
 760 #endif // __SOFTFP__
 761 #endif // ASSERT
 762 
 763     return res;
 764   }
 765 
 766   // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as
 767   // the index is platform independent; a double stack useing indeces 2 and 3 has always
 768   // index 2.
 769   static LIR_Opr stack(int index, BasicType type) {
 770     LIR_Opr res;
 771     switch (type) {
 772       case T_OBJECT: // fall through
 773       case T_ARRAY:
 774         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 775                                   LIR_OprDesc::object_type           |
 776                                   LIR_OprDesc::stack_value           |
 777                                   LIR_OprDesc::single_size);
 778         break;
 779 
 780       case T_METADATA:
 781         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 782                                   LIR_OprDesc::metadata_type         |
 783                                   LIR_OprDesc::stack_value           |
 784                                   LIR_OprDesc::single_size);
 785         break;
 786       case T_INT:
 787         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 788                                   LIR_OprDesc::int_type              |
 789                                   LIR_OprDesc::stack_value           |
 790                                   LIR_OprDesc::single_size);
 791         break;
 792 
 793       case T_ADDRESS:
 794         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 795                                   LIR_OprDesc::address_type          |
 796                                   LIR_OprDesc::stack_value           |
 797                                   LIR_OprDesc::single_size);
 798         break;
 799 
 800       case T_LONG:
 801         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 802                                   LIR_OprDesc::long_type             |
 803                                   LIR_OprDesc::stack_value           |
 804                                   LIR_OprDesc::double_size);
 805         break;
 806 
 807       case T_FLOAT:
 808         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 809                                   LIR_OprDesc::float_type            |
 810                                   LIR_OprDesc::stack_value           |
 811                                   LIR_OprDesc::single_size);
 812         break;
 813       case T_DOUBLE:
 814         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 815                                   LIR_OprDesc::double_type           |
 816                                   LIR_OprDesc::stack_value           |
 817                                   LIR_OprDesc::double_size);
 818         break;
 819 
 820       default:       ShouldNotReachHere(); res = illegalOpr;
 821     }
 822 
 823 #ifdef ASSERT
 824     assert(index >= 0, "index must be positive");
 825     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 826 
 827     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 828                                           LIR_OprDesc::stack_value           |
 829                                           as_OprType(type)                   |
 830                                           LIR_OprDesc::size_for(type));
 831     assert(res == old_res, "old and new method not equal");
 832 #endif
 833 
 834     return res;
 835   }
 836 
 837   static LIR_Opr intConst(jint i)                { return (LIR_Opr)(new LIR_Const(i)); }
 838   static LIR_Opr longConst(jlong l)              { return (LIR_Opr)(new LIR_Const(l)); }
 839   static LIR_Opr floatConst(jfloat f)            { return (LIR_Opr)(new LIR_Const(f)); }
 840   static LIR_Opr doubleConst(jdouble d)          { return (LIR_Opr)(new LIR_Const(d)); }
 841   static LIR_Opr oopConst(jobject o)             { return (LIR_Opr)(new LIR_Const(o)); }
 842   static LIR_Opr address(LIR_Address* a)         { return (LIR_Opr)a; }
 843   static LIR_Opr intptrConst(void* p)            { return (LIR_Opr)(new LIR_Const(p)); }
 844   static LIR_Opr intptrConst(intptr_t v)         { return (LIR_Opr)(new LIR_Const((void*)v)); }
 845   static LIR_Opr illegal()                       { return (LIR_Opr)-1; }
 846   static LIR_Opr addressConst(jint i)            { return (LIR_Opr)(new LIR_Const(i, true)); }
 847   static LIR_Opr metadataConst(Metadata* m)      { return (LIR_Opr)(new LIR_Const(m)); }
 848 
 849   static LIR_Opr value_type(ValueType* type);
 850   static LIR_Opr dummy_value_type(ValueType* type);
 851 };
 852 
 853 
 854 //-------------------------------------------------------------------------------
 855 //                   LIR Instructions
 856 //-------------------------------------------------------------------------------
 857 //
 858 // Note:
 859 //  - every instruction has a result operand
 860 //  - every instruction has an CodeEmitInfo operand (can be revisited later)
 861 //  - every instruction has a LIR_OpCode operand
 862 //  - LIR_OpN, means an instruction that has N input operands
 863 //
 864 // class hierarchy:
 865 //
 866 class  LIR_Op;
 867 class    LIR_Op0;
 868 class      LIR_OpLabel;
 869 class    LIR_Op1;
 870 class      LIR_OpBranch;
 871 class      LIR_OpConvert;
 872 class      LIR_OpAllocObj;
 873 class      LIR_OpRoundFP;
 874 class    LIR_Op2;
 875 class    LIR_OpDelay;
 876 class    LIR_Op3;
 877 class      LIR_OpAllocArray;
 878 class    LIR_OpCall;
 879 class      LIR_OpJavaCall;
 880 class      LIR_OpRTCall;
 881 class    LIR_OpArrayCopy;
 882 class    LIR_OpUpdateCRC32;
 883 class    LIR_OpLock;
 884 class    LIR_OpTypeCheck;
 885 class    LIR_OpCompareAndSwap;
 886 class    LIR_OpProfileCall;
 887 class    LIR_OpProfileType;
 888 #ifdef ASSERT
 889 class    LIR_OpAssert;
 890 #endif
 891 
 892 // LIR operation codes
 893 enum LIR_Code {
 894     lir_none
 895   , begin_op0
 896       , lir_word_align
 897       , lir_label
 898       , lir_nop
 899       , lir_backwardbranch_target
 900       , lir_std_entry
 901       , lir_osr_entry
 902       , lir_build_frame
 903       , lir_fpop_raw
 904       , lir_24bit_FPU
 905       , lir_reset_FPU
 906       , lir_breakpoint
 907       , lir_rtcall
 908       , lir_membar
 909       , lir_membar_acquire
 910       , lir_membar_release
 911       , lir_membar_loadload
 912       , lir_membar_storestore
 913       , lir_membar_loadstore
 914       , lir_membar_storeload
 915       , lir_get_thread
 916   , end_op0
 917   , begin_op1
 918       , lir_fxch
 919       , lir_fld
 920       , lir_ffree
 921       , lir_push
 922       , lir_pop
 923       , lir_null_check
 924       , lir_return
 925       , lir_leal
 926       , lir_neg
 927       , lir_branch
 928       , lir_cond_float_branch
 929       , lir_move
 930       , lir_prefetchr
 931       , lir_prefetchw
 932       , lir_convert
 933       , lir_alloc_object
 934       , lir_monaddr
 935       , lir_roundfp
 936       , lir_safepoint
 937       , lir_pack64
 938       , lir_unpack64
 939       , lir_unwind
 940   , end_op1
 941   , begin_op2
 942       , lir_cmp
 943       , lir_cmp_l2i
 944       , lir_ucmp_fd2i
 945       , lir_cmp_fd2i
 946       , lir_cmove
 947       , lir_add
 948       , lir_sub
 949       , lir_mul
 950       , lir_mul_strictfp
 951       , lir_div
 952       , lir_div_strictfp
 953       , lir_rem
 954       , lir_sqrt
 955       , lir_abs
 956       , lir_sin
 957       , lir_cos
 958       , lir_tan
 959       , lir_log
 960       , lir_log10
 961       , lir_exp
 962       , lir_pow
 963       , lir_logic_and
 964       , lir_logic_or
 965       , lir_logic_xor
 966       , lir_shl
 967       , lir_shr
 968       , lir_ushr
 969       , lir_alloc_array
 970       , lir_throw
 971       , lir_compare_to
 972       , lir_xadd
 973       , lir_xchg
 974   , end_op2
 975   , begin_op3
 976       , lir_idiv
 977       , lir_irem
 978   , end_op3
 979   , begin_opJavaCall
 980       , lir_static_call
 981       , lir_optvirtual_call
 982       , lir_icvirtual_call
 983       , lir_virtual_call
 984       , lir_dynamic_call
 985   , end_opJavaCall
 986   , begin_opArrayCopy
 987       , lir_arraycopy
 988   , end_opArrayCopy
 989   , begin_opUpdateCRC32
 990       , lir_updatecrc32
 991   , end_opUpdateCRC32
 992   , begin_opLock
 993     , lir_lock
 994     , lir_unlock
 995   , end_opLock
 996   , begin_delay_slot
 997     , lir_delay_slot
 998   , end_delay_slot
 999   , begin_opTypeCheck
1000     , lir_instanceof
1001     , lir_checkcast
1002     , lir_store_check
1003   , end_opTypeCheck
1004   , begin_opCompareAndSwap
1005     , lir_cas_long
1006     , lir_cas_obj
1007     , lir_cas_int
1008   , end_opCompareAndSwap
1009   , begin_opMDOProfile
1010     , lir_profile_call
1011     , lir_profile_type
1012   , end_opMDOProfile
1013   , begin_opAssert
1014     , lir_assert
1015   , end_opAssert
1016 };
1017 
1018 
1019 enum LIR_Condition {
1020     lir_cond_equal
1021   , lir_cond_notEqual
1022   , lir_cond_less
1023   , lir_cond_lessEqual
1024   , lir_cond_greaterEqual
1025   , lir_cond_greater
1026   , lir_cond_belowEqual
1027   , lir_cond_aboveEqual
1028   , lir_cond_always
1029   , lir_cond_unknown = -1
1030 };
1031 
1032 
1033 enum LIR_PatchCode {
1034   lir_patch_none,
1035   lir_patch_low,
1036   lir_patch_high,
1037   lir_patch_normal
1038 };
1039 
1040 
1041 enum LIR_MoveKind {
1042   lir_move_normal,
1043   lir_move_volatile,
1044   lir_move_unaligned,
1045   lir_move_wide,
1046   lir_move_max_flag
1047 };
1048 
1049 
1050 // --------------------------------------------------
1051 // LIR_Op
1052 // --------------------------------------------------
1053 class LIR_Op: public CompilationResourceObj {
1054  friend class LIR_OpVisitState;
1055 
1056 #ifdef ASSERT
1057  private:
1058   const char *  _file;
1059   int           _line;
1060 #endif
1061 
1062  protected:
1063   LIR_Opr       _result;
1064   unsigned short _code;
1065   unsigned short _flags;
1066   CodeEmitInfo* _info;
1067   int           _id;     // value id for register allocation
1068   int           _fpu_pop_count;
1069   Instruction*  _source; // for debugging
1070 
1071   static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN;
1072 
1073  protected:
1074   static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end)  { return start < test && test < end; }
1075 
1076  public:
1077   LIR_Op()
1078     : _result(LIR_OprFact::illegalOpr)
1079     , _code(lir_none)
1080     , _flags(0)
1081     , _info(NULL)
1082 #ifdef ASSERT
1083     , _file(NULL)
1084     , _line(0)
1085 #endif
1086     , _fpu_pop_count(0)
1087     , _source(NULL)
1088     , _id(-1)                             {}
1089 
1090   LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info)
1091     : _result(result)
1092     , _code(code)
1093     , _flags(0)
1094     , _info(info)
1095 #ifdef ASSERT
1096     , _file(NULL)
1097     , _line(0)
1098 #endif
1099     , _fpu_pop_count(0)
1100     , _source(NULL)
1101     , _id(-1)                             {}
1102 
1103   CodeEmitInfo* info() const                  { return _info;   }
1104   LIR_Code code()      const                  { return (LIR_Code)_code;   }
1105   LIR_Opr result_opr() const                  { return _result; }
1106   void    set_result_opr(LIR_Opr opr)         { _result = opr;  }
1107 
1108 #ifdef ASSERT
1109   void set_file_and_line(const char * file, int line) {
1110     _file = file;
1111     _line = line;
1112   }
1113 #endif
1114 
1115   virtual const char * name() const PRODUCT_RETURN0;
1116 
1117   int id()             const                  { return _id;     }
1118   void set_id(int id)                         { _id = id; }
1119 
1120   // FPU stack simulation helpers -- only used on Intel
1121   void set_fpu_pop_count(int count)           { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; }
1122   int  fpu_pop_count() const                  { return _fpu_pop_count; }
1123   bool pop_fpu_stack()                        { return _fpu_pop_count > 0; }
1124 
1125   Instruction* source() const                 { return _source; }
1126   void set_source(Instruction* ins)           { _source = ins; }
1127 
1128   virtual void emit_code(LIR_Assembler* masm) = 0;
1129   virtual void print_instr(outputStream* out) const   = 0;
1130   virtual void print_on(outputStream* st) const PRODUCT_RETURN;
1131 
1132   virtual bool is_patching() { return false; }
1133   virtual LIR_OpCall* as_OpCall() { return NULL; }
1134   virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; }
1135   virtual LIR_OpLabel* as_OpLabel() { return NULL; }
1136   virtual LIR_OpDelay* as_OpDelay() { return NULL; }
1137   virtual LIR_OpLock* as_OpLock() { return NULL; }
1138   virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; }
1139   virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; }
1140   virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; }
1141   virtual LIR_OpBranch* as_OpBranch() { return NULL; }
1142   virtual LIR_OpRTCall* as_OpRTCall() { return NULL; }
1143   virtual LIR_OpConvert* as_OpConvert() { return NULL; }
1144   virtual LIR_Op0* as_Op0() { return NULL; }
1145   virtual LIR_Op1* as_Op1() { return NULL; }
1146   virtual LIR_Op2* as_Op2() { return NULL; }
1147   virtual LIR_Op3* as_Op3() { return NULL; }
1148   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; }
1149   virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return NULL; }
1150   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; }
1151   virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; }
1152   virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; }
1153   virtual LIR_OpProfileType* as_OpProfileType() { return NULL; }
1154 #ifdef ASSERT
1155   virtual LIR_OpAssert* as_OpAssert() { return NULL; }
1156 #endif
1157 
1158   virtual void verify() const {}
1159 };
1160 
1161 // for calls
1162 class LIR_OpCall: public LIR_Op {
1163  friend class LIR_OpVisitState;
1164 
1165  protected:
1166   address      _addr;
1167   LIR_OprList* _arguments;
1168  protected:
1169   LIR_OpCall(LIR_Code code, address addr, LIR_Opr result,
1170              LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1171     : LIR_Op(code, result, info)
1172     , _arguments(arguments)
1173     , _addr(addr) {}
1174 
1175  public:
1176   address addr() const                           { return _addr; }
1177   const LIR_OprList* arguments() const           { return _arguments; }
1178   virtual LIR_OpCall* as_OpCall()                { return this; }
1179 };
1180 
1181 
1182 // --------------------------------------------------
1183 // LIR_OpJavaCall
1184 // --------------------------------------------------
1185 class LIR_OpJavaCall: public LIR_OpCall {
1186  friend class LIR_OpVisitState;
1187 
1188  private:
1189   ciMethod* _method;
1190   LIR_Opr   _receiver;
1191   LIR_Opr   _method_handle_invoke_SP_save_opr;  // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr.
1192 
1193  public:
1194   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1195                  LIR_Opr receiver, LIR_Opr result,
1196                  address addr, LIR_OprList* arguments,
1197                  CodeEmitInfo* info)
1198   : LIR_OpCall(code, addr, result, arguments, info)
1199   , _receiver(receiver)
1200   , _method(method)
1201   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1202   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1203 
1204   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1205                  LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset,
1206                  LIR_OprList* arguments, CodeEmitInfo* info)
1207   : LIR_OpCall(code, (address)vtable_offset, result, arguments, info)
1208   , _receiver(receiver)
1209   , _method(method)
1210   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1211   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1212 
1213   LIR_Opr receiver() const                       { return _receiver; }
1214   ciMethod* method() const                       { return _method;   }
1215 
1216   // JSR 292 support.
1217   bool is_invokedynamic() const                  { return code() == lir_dynamic_call; }
1218   bool is_method_handle_invoke() const {
1219     return method()->is_compiled_lambda_form() ||   // Java-generated lambda form
1220            method()->is_method_handle_intrinsic();  // JVM-generated MH intrinsic
1221   }
1222 
1223   intptr_t vtable_offset() const {
1224     assert(_code == lir_virtual_call, "only have vtable for real vcall");
1225     return (intptr_t) addr();
1226   }
1227 
1228   virtual void emit_code(LIR_Assembler* masm);
1229   virtual LIR_OpJavaCall* as_OpJavaCall() { return this; }
1230   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1231 };
1232 
1233 // --------------------------------------------------
1234 // LIR_OpLabel
1235 // --------------------------------------------------
1236 // Location where a branch can continue
1237 class LIR_OpLabel: public LIR_Op {
1238  friend class LIR_OpVisitState;
1239 
1240  private:
1241   Label* _label;
1242  public:
1243   LIR_OpLabel(Label* lbl)
1244    : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL)
1245    , _label(lbl)                                 {}
1246   Label* label() const                           { return _label; }
1247 
1248   virtual void emit_code(LIR_Assembler* masm);
1249   virtual LIR_OpLabel* as_OpLabel() { return this; }
1250   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1251 };
1252 
1253 // LIR_OpArrayCopy
1254 class LIR_OpArrayCopy: public LIR_Op {
1255  friend class LIR_OpVisitState;
1256 
1257  private:
1258   ArrayCopyStub*  _stub;
1259   LIR_Opr   _src;
1260   LIR_Opr   _src_pos;
1261   LIR_Opr   _dst;
1262   LIR_Opr   _dst_pos;
1263   LIR_Opr   _length;
1264   LIR_Opr   _tmp;
1265   ciArrayKlass* _expected_type;
1266   int       _flags;
1267 
1268 public:
1269   enum Flags {
1270     src_null_check         = 1 << 0,
1271     dst_null_check         = 1 << 1,
1272     src_pos_positive_check = 1 << 2,
1273     dst_pos_positive_check = 1 << 3,
1274     length_positive_check  = 1 << 4,
1275     src_range_check        = 1 << 5,
1276     dst_range_check        = 1 << 6,
1277     type_check             = 1 << 7,
1278     overlapping            = 1 << 8,
1279     unaligned              = 1 << 9,
1280     src_objarray           = 1 << 10,
1281     dst_objarray           = 1 << 11,
1282     all_flags              = (1 << 12) - 1
1283   };
1284 
1285   LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp,
1286                   ciArrayKlass* expected_type, int flags, CodeEmitInfo* info);
1287 
1288   LIR_Opr src() const                            { return _src; }
1289   LIR_Opr src_pos() const                        { return _src_pos; }
1290   LIR_Opr dst() const                            { return _dst; }
1291   LIR_Opr dst_pos() const                        { return _dst_pos; }
1292   LIR_Opr length() const                         { return _length; }
1293   LIR_Opr tmp() const                            { return _tmp; }
1294   int flags() const                              { return _flags; }
1295   ciArrayKlass* expected_type() const            { return _expected_type; }
1296   ArrayCopyStub* stub() const                    { return _stub; }
1297 
1298   virtual void emit_code(LIR_Assembler* masm);
1299   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; }
1300   void print_instr(outputStream* out) const PRODUCT_RETURN;
1301 };
1302 
1303 // LIR_OpUpdateCRC32
1304 class LIR_OpUpdateCRC32: public LIR_Op {
1305   friend class LIR_OpVisitState;
1306 
1307 private:
1308   LIR_Opr   _crc;
1309   LIR_Opr   _val;
1310 
1311 public:
1312 
1313   LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res);
1314 
1315   LIR_Opr crc() const                            { return _crc; }
1316   LIR_Opr val() const                            { return _val; }
1317 
1318   virtual void emit_code(LIR_Assembler* masm);
1319   virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32()  { return this; }
1320   void print_instr(outputStream* out) const PRODUCT_RETURN;
1321 };
1322 
1323 // --------------------------------------------------
1324 // LIR_Op0
1325 // --------------------------------------------------
1326 class LIR_Op0: public LIR_Op {
1327  friend class LIR_OpVisitState;
1328 
1329  public:
1330   LIR_Op0(LIR_Code code)
1331    : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1332   LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL)
1333    : LIR_Op(code, result, info)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1334 
1335   virtual void emit_code(LIR_Assembler* masm);
1336   virtual LIR_Op0* as_Op0() { return this; }
1337   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1338 };
1339 
1340 
1341 // --------------------------------------------------
1342 // LIR_Op1
1343 // --------------------------------------------------
1344 
1345 class LIR_Op1: public LIR_Op {
1346  friend class LIR_OpVisitState;
1347 
1348  protected:
1349   LIR_Opr         _opr;   // input operand
1350   BasicType       _type;  // Operand types
1351   LIR_PatchCode   _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?)
1352 
1353   static void print_patch_code(outputStream* out, LIR_PatchCode code);
1354 
1355   void set_kind(LIR_MoveKind kind) {
1356     assert(code() == lir_move, "must be");
1357     _flags = kind;
1358   }
1359 
1360  public:
1361   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL)
1362     : LIR_Op(code, result, info)
1363     , _opr(opr)
1364     , _patch(patch)
1365     , _type(type)                      { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1366 
1367   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind)
1368     : LIR_Op(code, result, info)
1369     , _opr(opr)
1370     , _patch(patch)
1371     , _type(type)                      {
1372     assert(code == lir_move, "must be");
1373     set_kind(kind);
1374   }
1375 
1376   LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info)
1377     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1378     , _opr(opr)
1379     , _patch(lir_patch_none)
1380     , _type(T_ILLEGAL)                 { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1381 
1382   LIR_Opr in_opr()           const               { return _opr;   }
1383   LIR_PatchCode patch_code() const               { return _patch; }
1384   BasicType type()           const               { return _type;  }
1385 
1386   LIR_MoveKind move_kind() const {
1387     assert(code() == lir_move, "must be");
1388     return (LIR_MoveKind)_flags;
1389   }
1390 
1391   virtual bool is_patching() { return _patch != lir_patch_none; }
1392   virtual void emit_code(LIR_Assembler* masm);
1393   virtual LIR_Op1* as_Op1() { return this; }
1394   virtual const char * name() const PRODUCT_RETURN0;
1395 
1396   void set_in_opr(LIR_Opr opr) { _opr = opr; }
1397 
1398   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1399   virtual void verify() const;
1400 };
1401 
1402 
1403 // for runtime calls
1404 class LIR_OpRTCall: public LIR_OpCall {
1405  friend class LIR_OpVisitState;
1406 
1407  private:
1408   LIR_Opr _tmp;
1409  public:
1410   LIR_OpRTCall(address addr, LIR_Opr tmp,
1411                LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1412     : LIR_OpCall(lir_rtcall, addr, result, arguments, info)
1413     , _tmp(tmp) {}
1414 
1415   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1416   virtual void emit_code(LIR_Assembler* masm);
1417   virtual LIR_OpRTCall* as_OpRTCall() { return this; }
1418 
1419   LIR_Opr tmp() const                            { return _tmp; }
1420 
1421   virtual void verify() const;
1422 };
1423 
1424 
1425 class LIR_OpBranch: public LIR_Op {
1426  friend class LIR_OpVisitState;
1427 
1428  private:
1429   LIR_Condition _cond;
1430   BasicType     _type;
1431   Label*        _label;
1432   BlockBegin*   _block;  // if this is a branch to a block, this is the block
1433   BlockBegin*   _ublock; // if this is a float-branch, this is the unorderd block
1434   CodeStub*     _stub;   // if this is a branch to a stub, this is the stub
1435 
1436  public:
1437   LIR_OpBranch(LIR_Condition cond, BasicType type, Label* lbl)
1438     : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
1439     , _cond(cond)
1440     , _type(type)
1441     , _label(lbl)
1442     , _block(NULL)
1443     , _ublock(NULL)
1444     , _stub(NULL) { }
1445 
1446   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block);
1447   LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub);
1448 
1449   // for unordered comparisons
1450   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock);
1451 
1452   LIR_Condition cond()        const              { return _cond;        }
1453   BasicType     type()        const              { return _type;        }
1454   Label*        label()       const              { return _label;       }
1455   BlockBegin*   block()       const              { return _block;       }
1456   BlockBegin*   ublock()      const              { return _ublock;      }
1457   CodeStub*     stub()        const              { return _stub;       }
1458 
1459   void          change_block(BlockBegin* b);
1460   void          change_ublock(BlockBegin* b);
1461   void          negate_cond();
1462 
1463   virtual void emit_code(LIR_Assembler* masm);
1464   virtual LIR_OpBranch* as_OpBranch() { return this; }
1465   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1466 };
1467 
1468 
1469 class ConversionStub;
1470 
1471 class LIR_OpConvert: public LIR_Op1 {
1472  friend class LIR_OpVisitState;
1473 
1474  private:
1475    Bytecodes::Code _bytecode;
1476    ConversionStub* _stub;
1477 #ifdef PPC
1478   LIR_Opr _tmp1;
1479   LIR_Opr _tmp2;
1480 #endif
1481 
1482  public:
1483    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub)
1484      : LIR_Op1(lir_convert, opr, result)
1485      , _stub(stub)
1486 #ifdef PPC
1487      , _tmp1(LIR_OprDesc::illegalOpr())
1488      , _tmp2(LIR_OprDesc::illegalOpr())
1489 #endif
1490      , _bytecode(code)                           {}
1491 
1492 #ifdef PPC
1493    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub
1494                  ,LIR_Opr tmp1, LIR_Opr tmp2)
1495      : LIR_Op1(lir_convert, opr, result)
1496      , _stub(stub)
1497      , _tmp1(tmp1)
1498      , _tmp2(tmp2)
1499      , _bytecode(code)                           {}
1500 #endif
1501 
1502   Bytecodes::Code bytecode() const               { return _bytecode; }
1503   ConversionStub* stub() const                   { return _stub; }
1504 #ifdef PPC
1505   LIR_Opr tmp1() const                           { return _tmp1; }
1506   LIR_Opr tmp2() const                           { return _tmp2; }
1507 #endif
1508 
1509   virtual void emit_code(LIR_Assembler* masm);
1510   virtual LIR_OpConvert* as_OpConvert() { return this; }
1511   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1512 
1513   static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN;
1514 };
1515 
1516 
1517 // LIR_OpAllocObj
1518 class LIR_OpAllocObj : public LIR_Op1 {
1519  friend class LIR_OpVisitState;
1520 
1521  private:
1522   LIR_Opr _tmp1;
1523   LIR_Opr _tmp2;
1524   LIR_Opr _tmp3;
1525   LIR_Opr _tmp4;
1526   int     _hdr_size;
1527   int     _obj_size;
1528   CodeStub* _stub;
1529   bool    _init_check;
1530 
1531  public:
1532   LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result,
1533                  LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1534                  int hdr_size, int obj_size, bool init_check, CodeStub* stub)
1535     : LIR_Op1(lir_alloc_object, klass, result)
1536     , _tmp1(t1)
1537     , _tmp2(t2)
1538     , _tmp3(t3)
1539     , _tmp4(t4)
1540     , _hdr_size(hdr_size)
1541     , _obj_size(obj_size)
1542     , _init_check(init_check)
1543     , _stub(stub)                                { }
1544 
1545   LIR_Opr klass()        const                   { return in_opr();     }
1546   LIR_Opr obj()          const                   { return result_opr(); }
1547   LIR_Opr tmp1()         const                   { return _tmp1;        }
1548   LIR_Opr tmp2()         const                   { return _tmp2;        }
1549   LIR_Opr tmp3()         const                   { return _tmp3;        }
1550   LIR_Opr tmp4()         const                   { return _tmp4;        }
1551   int     header_size()  const                   { return _hdr_size;    }
1552   int     object_size()  const                   { return _obj_size;    }
1553   bool    init_check()   const                   { return _init_check;  }
1554   CodeStub* stub()       const                   { return _stub;        }
1555 
1556   virtual void emit_code(LIR_Assembler* masm);
1557   virtual LIR_OpAllocObj * as_OpAllocObj () { return this; }
1558   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1559 };
1560 
1561 
1562 // LIR_OpRoundFP
1563 class LIR_OpRoundFP : public LIR_Op1 {
1564  friend class LIR_OpVisitState;
1565 
1566  private:
1567   LIR_Opr _tmp;
1568 
1569  public:
1570   LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result)
1571     : LIR_Op1(lir_roundfp, reg, result)
1572     , _tmp(stack_loc_temp) {}
1573 
1574   LIR_Opr tmp() const                            { return _tmp; }
1575   virtual LIR_OpRoundFP* as_OpRoundFP()          { return this; }
1576   void print_instr(outputStream* out) const PRODUCT_RETURN;
1577 };
1578 
1579 // LIR_OpTypeCheck
1580 class LIR_OpTypeCheck: public LIR_Op {
1581  friend class LIR_OpVisitState;
1582 
1583  private:
1584   LIR_Opr       _object;
1585   LIR_Opr       _array;
1586   ciKlass*      _klass;
1587   LIR_Opr       _tmp1;
1588   LIR_Opr       _tmp2;
1589   LIR_Opr       _tmp3;
1590   bool          _fast_check;
1591   CodeEmitInfo* _info_for_patch;
1592   CodeEmitInfo* _info_for_exception;
1593   CodeStub*     _stub;
1594   ciMethod*     _profiled_method;
1595   int           _profiled_bci;
1596   bool          _should_profile;
1597 
1598 public:
1599   LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
1600                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1601                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub);
1602   LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array,
1603                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
1604 
1605   LIR_Opr object() const                         { return _object;         }
1606   LIR_Opr array() const                          { assert(code() == lir_store_check, "not valid"); return _array;         }
1607   LIR_Opr tmp1() const                           { return _tmp1;           }
1608   LIR_Opr tmp2() const                           { return _tmp2;           }
1609   LIR_Opr tmp3() const                           { return _tmp3;           }
1610   ciKlass* klass() const                         { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass;          }
1611   bool fast_check() const                        { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check;     }
1612   CodeEmitInfo* info_for_patch() const           { return _info_for_patch;  }
1613   CodeEmitInfo* info_for_exception() const       { return _info_for_exception; }
1614   CodeStub* stub() const                         { return _stub;           }
1615 
1616   // MethodData* profiling
1617   void set_profiled_method(ciMethod *method)     { _profiled_method = method; }
1618   void set_profiled_bci(int bci)                 { _profiled_bci = bci;       }
1619   void set_should_profile(bool b)                { _should_profile = b;       }
1620   ciMethod* profiled_method() const              { return _profiled_method;   }
1621   int       profiled_bci() const                 { return _profiled_bci;      }
1622   bool      should_profile() const               { return _should_profile;    }
1623 
1624   virtual bool is_patching() { return _info_for_patch != NULL; }
1625   virtual void emit_code(LIR_Assembler* masm);
1626   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; }
1627   void print_instr(outputStream* out) const PRODUCT_RETURN;
1628 };
1629 
1630 // LIR_Op2
1631 class LIR_Op2: public LIR_Op {
1632  friend class LIR_OpVisitState;
1633 
1634   int  _fpu_stack_size; // for sin/cos implementation on Intel
1635 
1636  protected:
1637   LIR_Opr   _opr1;
1638   LIR_Opr   _opr2;
1639   BasicType _type;
1640   LIR_Opr   _tmp1;
1641   LIR_Opr   _tmp2;
1642   LIR_Opr   _tmp3;
1643   LIR_Opr   _tmp4;
1644   LIR_Opr   _tmp5;
1645   LIR_Condition _condition;
1646 
1647   void verify() const;
1648 
1649  public:
1650   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL)
1651     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1652     , _opr1(opr1)
1653     , _opr2(opr2)
1654     , _type(T_ILLEGAL)
1655     , _condition(condition)
1656     , _fpu_stack_size(0)
1657     , _tmp1(LIR_OprFact::illegalOpr)
1658     , _tmp2(LIR_OprFact::illegalOpr)
1659     , _tmp3(LIR_OprFact::illegalOpr)
1660     , _tmp4(LIR_OprFact::illegalOpr)
1661     , _tmp5(LIR_OprFact::illegalOpr) {
1662     assert(code == lir_cmp || code == lir_assert, "code check");
1663   }
1664 
1665   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type)
1666     : LIR_Op(code, result, NULL)
1667     , _opr1(opr1)
1668     , _opr2(opr2)
1669     , _type(type)
1670     , _condition(condition)
1671     , _fpu_stack_size(0)
1672     , _tmp1(LIR_OprFact::illegalOpr)
1673     , _tmp2(LIR_OprFact::illegalOpr)
1674     , _tmp3(LIR_OprFact::illegalOpr)
1675     , _tmp4(LIR_OprFact::illegalOpr)
1676     , _tmp5(LIR_OprFact::illegalOpr) {
1677     assert(code == lir_cmove, "code check");
1678     assert(type != T_ILLEGAL, "cmove should have type");
1679   }
1680 
1681   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr,
1682           CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
1683     : LIR_Op(code, result, info)
1684     , _opr1(opr1)
1685     , _opr2(opr2)
1686     , _type(type)
1687     , _condition(lir_cond_unknown)
1688     , _fpu_stack_size(0)
1689     , _tmp1(LIR_OprFact::illegalOpr)
1690     , _tmp2(LIR_OprFact::illegalOpr)
1691     , _tmp3(LIR_OprFact::illegalOpr)
1692     , _tmp4(LIR_OprFact::illegalOpr)
1693     , _tmp5(LIR_OprFact::illegalOpr) {
1694     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1695   }
1696 
1697   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr,
1698           LIR_Opr tmp3 = LIR_OprFact::illegalOpr, LIR_Opr tmp4 = LIR_OprFact::illegalOpr, LIR_Opr tmp5 = LIR_OprFact::illegalOpr)
1699     : LIR_Op(code, result, NULL)
1700     , _opr1(opr1)
1701     , _opr2(opr2)
1702     , _type(T_ILLEGAL)
1703     , _condition(lir_cond_unknown)
1704     , _fpu_stack_size(0)
1705     , _tmp1(tmp1)
1706     , _tmp2(tmp2)
1707     , _tmp3(tmp3)
1708     , _tmp4(tmp4)
1709     , _tmp5(tmp5) {
1710     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1711   }
1712 
1713   LIR_Opr in_opr1() const                        { return _opr1; }
1714   LIR_Opr in_opr2() const                        { return _opr2; }
1715   BasicType type()  const                        { return _type; }
1716   LIR_Opr tmp1_opr() const                       { return _tmp1; }
1717   LIR_Opr tmp2_opr() const                       { return _tmp2; }
1718   LIR_Opr tmp3_opr() const                       { return _tmp3; }
1719   LIR_Opr tmp4_opr() const                       { return _tmp4; }
1720   LIR_Opr tmp5_opr() const                       { return _tmp5; }
1721   LIR_Condition condition() const  {
1722     assert(code() == lir_cmp || code() == lir_cmove || code() == lir_assert, "only valid for cmp and cmove and assert"); return _condition;
1723   }
1724   void set_condition(LIR_Condition condition) {
1725     assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove");  _condition = condition;
1726   }
1727 
1728   void set_fpu_stack_size(int size)              { _fpu_stack_size = size; }
1729   int  fpu_stack_size() const                    { return _fpu_stack_size; }
1730 
1731   void set_in_opr1(LIR_Opr opr)                  { _opr1 = opr; }
1732   void set_in_opr2(LIR_Opr opr)                  { _opr2 = opr; }
1733 
1734   virtual void emit_code(LIR_Assembler* masm);
1735   virtual LIR_Op2* as_Op2() { return this; }
1736   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1737 };
1738 
1739 class LIR_OpAllocArray : public LIR_Op {
1740  friend class LIR_OpVisitState;
1741 
1742  private:
1743   LIR_Opr   _klass;
1744   LIR_Opr   _len;
1745   LIR_Opr   _tmp1;
1746   LIR_Opr   _tmp2;
1747   LIR_Opr   _tmp3;
1748   LIR_Opr   _tmp4;
1749   BasicType _type;
1750   CodeStub* _stub;
1751 
1752  public:
1753   LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub)
1754     : LIR_Op(lir_alloc_array, result, NULL)
1755     , _klass(klass)
1756     , _len(len)
1757     , _tmp1(t1)
1758     , _tmp2(t2)
1759     , _tmp3(t3)
1760     , _tmp4(t4)
1761     , _type(type)
1762     , _stub(stub) {}
1763 
1764   LIR_Opr   klass()   const                      { return _klass;       }
1765   LIR_Opr   len()     const                      { return _len;         }
1766   LIR_Opr   obj()     const                      { return result_opr(); }
1767   LIR_Opr   tmp1()    const                      { return _tmp1;        }
1768   LIR_Opr   tmp2()    const                      { return _tmp2;        }
1769   LIR_Opr   tmp3()    const                      { return _tmp3;        }
1770   LIR_Opr   tmp4()    const                      { return _tmp4;        }
1771   BasicType type()    const                      { return _type;        }
1772   CodeStub* stub()    const                      { return _stub;        }
1773 
1774   virtual void emit_code(LIR_Assembler* masm);
1775   virtual LIR_OpAllocArray * as_OpAllocArray () { return this; }
1776   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1777 };
1778 
1779 
1780 class LIR_Op3: public LIR_Op {
1781  friend class LIR_OpVisitState;
1782 
1783  private:
1784   LIR_Opr _opr1;
1785   LIR_Opr _opr2;
1786   LIR_Opr _opr3;
1787  public:
1788   LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL)
1789     : LIR_Op(code, result, info)
1790     , _opr1(opr1)
1791     , _opr2(opr2)
1792     , _opr3(opr3)                                { assert(is_in_range(code, begin_op3, end_op3), "code check"); }
1793   LIR_Opr in_opr1() const                        { return _opr1; }
1794   LIR_Opr in_opr2() const                        { return _opr2; }
1795   LIR_Opr in_opr3() const                        { return _opr3; }
1796 
1797   virtual void emit_code(LIR_Assembler* masm);
1798   virtual LIR_Op3* as_Op3() { return this; }
1799   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1800 };
1801 
1802 
1803 //--------------------------------
1804 class LabelObj: public CompilationResourceObj {
1805  private:
1806   Label _label;
1807  public:
1808   LabelObj()                                     {}
1809   Label* label()                                 { return &_label; }
1810 };
1811 
1812 
1813 class LIR_OpLock: public LIR_Op {
1814  friend class LIR_OpVisitState;
1815 
1816  private:
1817   LIR_Opr _hdr;
1818   LIR_Opr _obj;
1819   LIR_Opr _lock;
1820   LIR_Opr _scratch;
1821   CodeStub* _stub;
1822  public:
1823   LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info)
1824     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1825     , _hdr(hdr)
1826     , _obj(obj)
1827     , _lock(lock)
1828     , _scratch(scratch)
1829     , _stub(stub)                      {}
1830 
1831   LIR_Opr hdr_opr() const                        { return _hdr; }
1832   LIR_Opr obj_opr() const                        { return _obj; }
1833   LIR_Opr lock_opr() const                       { return _lock; }
1834   LIR_Opr scratch_opr() const                    { return _scratch; }
1835   CodeStub* stub() const                         { return _stub; }
1836 
1837   virtual void emit_code(LIR_Assembler* masm);
1838   virtual LIR_OpLock* as_OpLock() { return this; }
1839   void print_instr(outputStream* out) const PRODUCT_RETURN;
1840 };
1841 
1842 
1843 class LIR_OpDelay: public LIR_Op {
1844  friend class LIR_OpVisitState;
1845 
1846  private:
1847   LIR_Op* _op;
1848 
1849  public:
1850   LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info):
1851     LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info),
1852     _op(op) {
1853     assert(op->code() == lir_nop || LIRFillDelaySlots, "should be filling with nops");
1854   }
1855   virtual void emit_code(LIR_Assembler* masm);
1856   virtual LIR_OpDelay* as_OpDelay() { return this; }
1857   void print_instr(outputStream* out) const PRODUCT_RETURN;
1858   LIR_Op* delay_op() const { return _op; }
1859   CodeEmitInfo* call_info() const { return info(); }
1860 };
1861 
1862 #ifdef ASSERT
1863 // LIR_OpAssert
1864 class LIR_OpAssert : public LIR_Op2 {
1865  friend class LIR_OpVisitState;
1866 
1867  private:
1868   const char* _msg;
1869   bool        _halt;
1870 
1871  public:
1872   LIR_OpAssert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt)
1873     : LIR_Op2(lir_assert, condition, opr1, opr2)
1874     , _halt(halt)
1875     , _msg(msg) {
1876   }
1877 
1878   const char* msg() const                        { return _msg; }
1879   bool        halt() const                       { return _halt; }
1880 
1881   virtual void emit_code(LIR_Assembler* masm);
1882   virtual LIR_OpAssert* as_OpAssert()            { return this; }
1883   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1884 };
1885 #endif
1886 
1887 // LIR_OpCompareAndSwap
1888 class LIR_OpCompareAndSwap : public LIR_Op {
1889  friend class LIR_OpVisitState;
1890 
1891  private:
1892   LIR_Opr _addr;
1893   LIR_Opr _cmp_value;
1894   LIR_Opr _new_value;
1895   LIR_Opr _tmp1;
1896   LIR_Opr _tmp2;
1897 
1898  public:
1899   LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1900                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result)
1901     : LIR_Op(code, result, NULL)  // no result, no info
1902     , _addr(addr)
1903     , _cmp_value(cmp_value)
1904     , _new_value(new_value)
1905     , _tmp1(t1)
1906     , _tmp2(t2)                                  { }
1907 
1908   LIR_Opr addr()        const                    { return _addr;  }
1909   LIR_Opr cmp_value()   const                    { return _cmp_value; }
1910   LIR_Opr new_value()   const                    { return _new_value; }
1911   LIR_Opr tmp1()        const                    { return _tmp1;      }
1912   LIR_Opr tmp2()        const                    { return _tmp2;      }
1913 
1914   virtual void emit_code(LIR_Assembler* masm);
1915   virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; }
1916   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1917 };
1918 
1919 // LIR_OpProfileCall
1920 class LIR_OpProfileCall : public LIR_Op {
1921  friend class LIR_OpVisitState;
1922 
1923  private:
1924   ciMethod* _profiled_method;
1925   int       _profiled_bci;
1926   ciMethod* _profiled_callee;
1927   LIR_Opr   _mdo;
1928   LIR_Opr   _recv;
1929   LIR_Opr   _tmp1;
1930   ciKlass*  _known_holder;
1931 
1932  public:
1933   // Destroys recv
1934   LIR_OpProfileCall(ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
1935     : LIR_Op(lir_profile_call, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1936     , _profiled_method(profiled_method)
1937     , _profiled_bci(profiled_bci)
1938     , _profiled_callee(profiled_callee)
1939     , _mdo(mdo)
1940     , _recv(recv)
1941     , _tmp1(t1)
1942     , _known_holder(known_holder)                { }
1943 
1944   ciMethod* profiled_method() const              { return _profiled_method;  }
1945   int       profiled_bci()    const              { return _profiled_bci;     }
1946   ciMethod* profiled_callee() const              { return _profiled_callee;  }
1947   LIR_Opr   mdo()             const              { return _mdo;              }
1948   LIR_Opr   recv()            const              { return _recv;             }
1949   LIR_Opr   tmp1()            const              { return _tmp1;             }
1950   ciKlass*  known_holder()    const              { return _known_holder;     }
1951 
1952   virtual void emit_code(LIR_Assembler* masm);
1953   virtual LIR_OpProfileCall* as_OpProfileCall() { return this; }
1954   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1955 };
1956 
1957 // LIR_OpProfileType
1958 class LIR_OpProfileType : public LIR_Op {
1959  friend class LIR_OpVisitState;
1960 
1961  private:
1962   LIR_Opr      _mdp;
1963   LIR_Opr      _obj;
1964   LIR_Opr      _tmp;
1965   ciKlass*     _exact_klass;   // non NULL if we know the klass statically (no need to load it from _obj)
1966   intptr_t     _current_klass; // what the profiling currently reports
1967   bool         _not_null;      // true if we know statically that _obj cannot be null
1968   bool         _no_conflict;   // true if we're profling parameters, _exact_klass is not NULL and we know
1969                                // _exact_klass it the only possible type for this parameter in any context.
1970 
1971  public:
1972   // Destroys recv
1973   LIR_OpProfileType(LIR_Opr mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict)
1974     : LIR_Op(lir_profile_type, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1975     , _mdp(mdp)
1976     , _obj(obj)
1977     , _exact_klass(exact_klass)
1978     , _current_klass(current_klass)
1979     , _tmp(tmp)
1980     , _not_null(not_null)
1981     , _no_conflict(no_conflict) { }
1982 
1983   LIR_Opr      mdp()              const             { return _mdp;              }
1984   LIR_Opr      obj()              const             { return _obj;              }
1985   LIR_Opr      tmp()              const             { return _tmp;              }
1986   ciKlass*     exact_klass()      const             { return _exact_klass;      }
1987   intptr_t     current_klass()    const             { return _current_klass;    }
1988   bool         not_null()         const             { return _not_null;         }
1989   bool         no_conflict()      const             { return _no_conflict;      }
1990 
1991   virtual void emit_code(LIR_Assembler* masm);
1992   virtual LIR_OpProfileType* as_OpProfileType() { return this; }
1993   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1994 };
1995 
1996 class LIR_InsertionBuffer;
1997 
1998 //--------------------------------LIR_List---------------------------------------------------
1999 // Maintains a list of LIR instructions (one instance of LIR_List per basic block)
2000 // The LIR instructions are appended by the LIR_List class itself;
2001 //
2002 // Notes:
2003 // - all offsets are(should be) in bytes
2004 // - local positions are specified with an offset, with offset 0 being local 0
2005 
2006 class LIR_List: public CompilationResourceObj {
2007  private:
2008   LIR_OpList  _operations;
2009 
2010   Compilation*  _compilation;
2011 #ifndef PRODUCT
2012   BlockBegin*   _block;
2013 #endif
2014 #ifdef ASSERT
2015   const char *  _file;
2016   int           _line;
2017 #endif
2018 
2019   void append(LIR_Op* op) {
2020     if (op->source() == NULL)
2021       op->set_source(_compilation->current_instruction());
2022 #ifndef PRODUCT
2023     if (PrintIRWithLIR) {
2024       _compilation->maybe_print_current_instruction();
2025       op->print(); tty->cr();
2026     }
2027 #endif // PRODUCT
2028 
2029     _operations.append(op);
2030 
2031 #ifdef ASSERT
2032     op->verify();
2033     op->set_file_and_line(_file, _line);
2034     _file = NULL;
2035     _line = 0;
2036 #endif
2037   }
2038 
2039  public:
2040   LIR_List(Compilation* compilation, BlockBegin* block = NULL);
2041 
2042 #ifdef ASSERT
2043   void set_file_and_line(const char * file, int line);
2044 #endif
2045 
2046   //---------- accessors ---------------
2047   LIR_OpList* instructions_list()                { return &_operations; }
2048   int         length() const                     { return _operations.length(); }
2049   LIR_Op*     at(int i) const                    { return _operations.at(i); }
2050 
2051   NOT_PRODUCT(BlockBegin* block() const          { return _block; });
2052 
2053   // insert LIR_Ops in buffer to right places in LIR_List
2054   void append(LIR_InsertionBuffer* buffer);
2055 
2056   //---------- mutators ---------------
2057   void insert_before(int i, LIR_List* op_list)   { _operations.insert_before(i, op_list->instructions_list()); }
2058   void insert_before(int i, LIR_Op* op)          { _operations.insert_before(i, op); }
2059   void remove_at(int i)                          { _operations.remove_at(i); }
2060 
2061   //---------- printing -------------
2062   void print_instructions() PRODUCT_RETURN;
2063 
2064 
2065   //---------- instructions -------------
2066   void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2067                         address dest, LIR_OprList* arguments,
2068                         CodeEmitInfo* info) {
2069     append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info));
2070   }
2071   void call_static(ciMethod* method, LIR_Opr result,
2072                    address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2073     append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info));
2074   }
2075   void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2076                       address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2077     append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info));
2078   }
2079   void call_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2080                     intptr_t vtable_offset, LIR_OprList* arguments, CodeEmitInfo* info) {
2081     append(new LIR_OpJavaCall(lir_virtual_call, method, receiver, result, vtable_offset, arguments, info));
2082   }
2083   void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2084                     address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2085     append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info));
2086   }
2087 
2088   void get_thread(LIR_Opr result)                { append(new LIR_Op0(lir_get_thread, result)); }
2089   void word_align()                              { append(new LIR_Op0(lir_word_align)); }
2090   void membar()                                  { append(new LIR_Op0(lir_membar)); }
2091   void membar_acquire()                          { append(new LIR_Op0(lir_membar_acquire)); }
2092   void membar_release()                          { append(new LIR_Op0(lir_membar_release)); }
2093   void membar_loadload()                         { append(new LIR_Op0(lir_membar_loadload)); }
2094   void membar_storestore()                       { append(new LIR_Op0(lir_membar_storestore)); }
2095   void membar_loadstore()                        { append(new LIR_Op0(lir_membar_loadstore)); }
2096   void membar_storeload()                        { append(new LIR_Op0(lir_membar_storeload)); }
2097 
2098   void nop()                                     { append(new LIR_Op0(lir_nop)); }
2099   void build_frame()                             { append(new LIR_Op0(lir_build_frame)); }
2100 
2101   void std_entry(LIR_Opr receiver)               { append(new LIR_Op0(lir_std_entry, receiver)); }
2102   void osr_entry(LIR_Opr osrPointer)             { append(new LIR_Op0(lir_osr_entry, osrPointer)); }
2103 
2104   void branch_destination(Label* lbl)            { append(new LIR_OpLabel(lbl)); }
2105 
2106   void negate(LIR_Opr from, LIR_Opr to)          { append(new LIR_Op1(lir_neg, from, to)); }
2107   void leal(LIR_Opr from, LIR_Opr result_reg)    { append(new LIR_Op1(lir_leal, from, result_reg)); }
2108 
2109   // result is a stack location for old backend and vreg for UseLinearScan
2110   // stack_loc_temp is an illegal register for old backend
2111   void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); }
2112   void unaligned_move(LIR_Address* src, LIR_Opr dst) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2113   void unaligned_move(LIR_Opr src, LIR_Address* dst) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), src->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2114   void unaligned_move(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2115   void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2116   void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); }
2117   void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); }
2118   void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) {
2119     if (UseCompressedOops) {
2120       append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide));
2121     } else {
2122       move(src, dst, info);
2123     }
2124   }
2125   void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) {
2126     if (UseCompressedOops) {
2127       append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide));
2128     } else {
2129       move(src, dst, info);
2130     }
2131   }
2132   void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); }
2133 
2134   void oop2reg  (jobject o, LIR_Opr reg)         { assert(reg->type() == T_OBJECT, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),    reg));   }
2135   void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info);
2136 
2137   void metadata2reg  (Metadata* o, LIR_Opr reg)  { assert(reg->type() == T_METADATA, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg));   }
2138   void klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info);
2139 
2140   void return_op(LIR_Opr result)                 { append(new LIR_Op1(lir_return, result)); }
2141 
2142   void safepoint(LIR_Opr tmp, CodeEmitInfo* info)  { append(new LIR_Op1(lir_safepoint, tmp, info)); }
2143 
2144 #ifdef PPC
2145   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_OpConvert(code, left, dst, NULL, tmp1, tmp2)); }
2146 #endif






2147   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); }

2148 
2149   void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and,  left, right, dst)); }
2150   void logical_or  (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or,   left, right, dst)); }
2151   void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor,  left, right, dst)); }
2152 
2153   void   pack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_pack64,   src, dst, T_LONG, lir_patch_none, NULL)); }
2154   void unpack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_unpack64, src, dst, T_LONG, lir_patch_none, NULL)); }
2155 
2156   void null_check(LIR_Opr opr, CodeEmitInfo* info, bool deoptimize_on_null = false);
2157   void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2158     append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info));
2159   }
2160   void unwind_exception(LIR_Opr exceptionOop) {
2161     append(new LIR_Op1(lir_unwind, exceptionOop));
2162   }
2163 
2164   void compare_to (LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2165     append(new LIR_Op2(lir_compare_to,  left, right, dst));
2166   }
2167 
2168   void push(LIR_Opr opr)                                   { append(new LIR_Op1(lir_push, opr)); }
2169   void pop(LIR_Opr reg)                                    { append(new LIR_Op1(lir_pop,  reg)); }
2170 
2171   void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) {
2172     append(new LIR_Op2(lir_cmp, condition, left, right, info));
2173   }
2174   void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) {
2175     cmp(condition, left, LIR_OprFact::intConst(right), info);
2176   }
2177 
2178   void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
2179   void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
2180 
2181   void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type) {
2182     append(new LIR_Op2(lir_cmove, condition, src1, src2, dst, type));
2183   }
2184 
2185   void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2186                 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2187   void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2188                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2189   void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2190                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2191 
2192   void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_abs , from, tmp, to)); }
2193   void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_sqrt, from, tmp, to)); }
2194   void log (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_log,  from, LIR_OprFact::illegalOpr, to, tmp)); }
2195   void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)              { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); }
2196   void sin (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_sin , from, tmp1, to, tmp2)); }
2197   void cos (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_cos , from, tmp1, to, tmp2)); }
2198   void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); }
2199   void exp (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, LIR_Opr tmp4, LIR_Opr tmp5)                { append(new LIR_Op2(lir_exp , from, tmp1, to, tmp2, tmp3, tmp4, tmp5)); }
2200   void pow (LIR_Opr arg1, LIR_Opr arg2, LIR_Opr res, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, LIR_Opr tmp4, LIR_Opr tmp5) { append(new LIR_Op2(lir_pow, arg1, arg2, res, tmp1, tmp2, tmp3, tmp4, tmp5)); }
2201 
2202   void add (LIR_Opr left, LIR_Opr right, LIR_Opr res)      { append(new LIR_Op2(lir_add, left, right, res)); }
2203   void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); }
2204   void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); }
2205   void mul_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul_strictfp, left, right, res, tmp)); }
2206   void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_div, left, right, res, info)); }
2207   void div_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div_strictfp, left, right, res, tmp)); }
2208   void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_rem, left, right, res, info)); }
2209 
2210   void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2211   void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2212 
2213   void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2214 
2215   void prefetch(LIR_Address* addr, bool is_store);
2216 
2217   void store_mem_int(jint v,    LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2218   void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2219   void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2220   void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2221   void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2222 
2223   void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2224   void idiv(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2225   void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2226   void irem(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2227 
2228   void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub);
2229   void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub);
2230 
2231   // jump is an unconditional branch
2232   void jump(BlockBegin* block) {
2233     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, block));
2234   }
2235   void jump(CodeStub* stub) {
2236     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, stub));
2237   }
2238   void branch(LIR_Condition cond, BasicType type, Label* lbl)        { append(new LIR_OpBranch(cond, type, lbl)); }
2239   void branch(LIR_Condition cond, BasicType type, BlockBegin* block) {
2240     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
2241     append(new LIR_OpBranch(cond, type, block));
2242   }
2243   void branch(LIR_Condition cond, BasicType type, CodeStub* stub)    {
2244     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
2245     append(new LIR_OpBranch(cond, type, stub));
2246   }
2247   void branch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* unordered) {
2248     assert(type == T_FLOAT || type == T_DOUBLE, "fp comparisons only");
2249     append(new LIR_OpBranch(cond, type, block, unordered));
2250   }
2251 
2252   void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2253   void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2254   void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2255 
2256   void shift_left(LIR_Opr value, int count, LIR_Opr dst)       { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2257   void shift_right(LIR_Opr value, int count, LIR_Opr dst)      { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2258   void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2259 
2260   void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst)        { append(new LIR_Op2(lir_cmp_l2i,  left, right, dst)); }
2261   void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less);
2262 
2263   void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) {
2264     append(new LIR_OpRTCall(routine, tmp, result, arguments));
2265   }
2266 
2267   void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result,
2268                     LIR_OprList* arguments, CodeEmitInfo* info) {
2269     append(new LIR_OpRTCall(routine, tmp, result, arguments, info));
2270   }
2271 
2272   void load_stack_address_monitor(int monitor_ix, LIR_Opr dst)  { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); }
2273   void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub);
2274   void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info);
2275 
2276   void set_24bit_fpu()                                               { append(new LIR_Op0(lir_24bit_FPU )); }
2277   void restore_fpu()                                                 { append(new LIR_Op0(lir_reset_FPU )); }
2278   void breakpoint()                                                  { append(new LIR_Op0(lir_breakpoint)); }
2279 
2280   void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); }
2281 
2282   void update_crc32(LIR_Opr crc, LIR_Opr val, LIR_Opr res)  { append(new LIR_OpUpdateCRC32(crc, val, res)); }
2283 
2284   void fpop_raw()                                { append(new LIR_Op0(lir_fpop_raw)); }
2285 
2286   void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci);
2287   void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci);
2288 
2289   void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
2290                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
2291                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
2292                   ciMethod* profiled_method, int profiled_bci);
2293   // MethodData* profiling
2294   void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) {
2295     append(new LIR_OpProfileCall(method, bci, callee, mdo, recv, t1, cha_klass));
2296   }
2297   void profile_type(LIR_Address* mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) {
2298     append(new LIR_OpProfileType(LIR_OprFact::address(mdp), obj, exact_klass, current_klass, tmp, not_null, no_conflict));
2299   }
2300 
2301   void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); }
2302   void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); }
2303 #ifdef ASSERT
2304   void lir_assert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) { append(new LIR_OpAssert(condition, opr1, opr2, msg, halt)); }
2305 #endif
2306 };
2307 
2308 void print_LIR(BlockList* blocks);
2309 
2310 class LIR_InsertionBuffer : public CompilationResourceObj {
2311  private:
2312   LIR_List*   _lir;   // the lir list where ops of this buffer should be inserted later (NULL when uninitialized)
2313 
2314   // list of insertion points. index and count are stored alternately:
2315   // _index_and_count[i * 2]:     the index into lir list where "count" ops should be inserted
2316   // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index
2317   intStack    _index_and_count;
2318 
2319   // the LIR_Ops to be inserted
2320   LIR_OpList  _ops;
2321 
2322   void append_new(int index, int count)  { _index_and_count.append(index); _index_and_count.append(count); }
2323   void set_index_at(int i, int value)    { _index_and_count.at_put((i << 1),     value); }
2324   void set_count_at(int i, int value)    { _index_and_count.at_put((i << 1) + 1, value); }
2325 
2326 #ifdef ASSERT
2327   void verify();
2328 #endif
2329  public:
2330   LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { }
2331 
2332   // must be called before using the insertion buffer
2333   void init(LIR_List* lir)  { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); }
2334   bool initialized() const  { return _lir != NULL; }
2335   // called automatically when the buffer is appended to the LIR_List
2336   void finish()             { _lir = NULL; }
2337 
2338   // accessors
2339   LIR_List*  lir_list() const             { return _lir; }
2340   int number_of_insertion_points() const  { return _index_and_count.length() >> 1; }
2341   int index_at(int i) const               { return _index_and_count.at((i << 1));     }
2342   int count_at(int i) const               { return _index_and_count.at((i << 1) + 1); }
2343 
2344   int number_of_ops() const               { return _ops.length(); }
2345   LIR_Op* op_at(int i) const              { return _ops.at(i); }
2346 
2347   // append an instruction to the buffer
2348   void append(int index, LIR_Op* op);
2349 
2350   // instruction
2351   void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2352 };
2353 
2354 
2355 //
2356 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way.
2357 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes
2358 // information about the input, output and temporaries used by the
2359 // op to be recorded.  It also records whether the op has call semantics
2360 // and also records all the CodeEmitInfos used by this op.
2361 //
2362 
2363 
2364 class LIR_OpVisitState: public StackObj {
2365  public:
2366   typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode;
2367 
2368   enum {
2369     maxNumberOfOperands = 20,
2370     maxNumberOfInfos = 4
2371   };
2372 
2373  private:
2374   LIR_Op*          _op;
2375 
2376   // optimization: the operands and infos are not stored in a variable-length
2377   //               list, but in a fixed-size array to save time of size checks and resizing
2378   int              _oprs_len[numModes];
2379   LIR_Opr*         _oprs_new[numModes][maxNumberOfOperands];
2380   int _info_len;
2381   CodeEmitInfo*    _info_new[maxNumberOfInfos];
2382 
2383   bool             _has_call;
2384   bool             _has_slow_case;
2385 
2386 
2387   // only include register operands
2388   // addresses are decomposed to the base and index registers
2389   // constants and stack operands are ignored
2390   void append(LIR_Opr& opr, OprMode mode) {
2391     assert(opr->is_valid(), "should not call this otherwise");
2392     assert(mode >= 0 && mode < numModes, "bad mode");
2393 
2394     if (opr->is_register()) {
2395        assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2396       _oprs_new[mode][_oprs_len[mode]++] = &opr;
2397 
2398     } else if (opr->is_pointer()) {
2399       LIR_Address* address = opr->as_address_ptr();
2400       if (address != NULL) {
2401         // special handling for addresses: add base and index register of the address
2402         // both are always input operands or temp if we want to extend
2403         // their liveness!
2404         if (mode == outputMode) {
2405           mode = inputMode;
2406         }
2407         assert (mode == inputMode || mode == tempMode, "input or temp only for addresses");
2408         if (address->_base->is_valid()) {
2409           assert(address->_base->is_register(), "must be");
2410           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2411           _oprs_new[mode][_oprs_len[mode]++] = &address->_base;
2412         }
2413         if (address->_index->is_valid()) {
2414           assert(address->_index->is_register(), "must be");
2415           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2416           _oprs_new[mode][_oprs_len[mode]++] = &address->_index;
2417         }
2418 
2419       } else {
2420         assert(opr->is_constant(), "constant operands are not processed");
2421       }
2422     } else {
2423       assert(opr->is_stack(), "stack operands are not processed");
2424     }
2425   }
2426 
2427   void append(CodeEmitInfo* info) {
2428     assert(info != NULL, "should not call this otherwise");
2429     assert(_info_len < maxNumberOfInfos, "array overflow");
2430     _info_new[_info_len++] = info;
2431   }
2432 
2433  public:
2434   LIR_OpVisitState()         { reset(); }
2435 
2436   LIR_Op* op() const         { return _op; }
2437   void set_op(LIR_Op* op)    { reset(); _op = op; }
2438 
2439   bool has_call() const      { return _has_call; }
2440   bool has_slow_case() const { return _has_slow_case; }
2441 
2442   void reset() {
2443     _op = NULL;
2444     _has_call = false;
2445     _has_slow_case = false;
2446 
2447     _oprs_len[inputMode] = 0;
2448     _oprs_len[tempMode] = 0;
2449     _oprs_len[outputMode] = 0;
2450     _info_len = 0;
2451   }
2452 
2453 
2454   int opr_count(OprMode mode) const {
2455     assert(mode >= 0 && mode < numModes, "bad mode");
2456     return _oprs_len[mode];
2457   }
2458 
2459   LIR_Opr opr_at(OprMode mode, int index) const {
2460     assert(mode >= 0 && mode < numModes, "bad mode");
2461     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2462     return *_oprs_new[mode][index];
2463   }
2464 
2465   void set_opr_at(OprMode mode, int index, LIR_Opr opr) const {
2466     assert(mode >= 0 && mode < numModes, "bad mode");
2467     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2468     *_oprs_new[mode][index] = opr;
2469   }
2470 
2471   int info_count() const {
2472     return _info_len;
2473   }
2474 
2475   CodeEmitInfo* info_at(int index) const {
2476     assert(index < _info_len, "index out of bounds");
2477     return _info_new[index];
2478   }
2479 
2480   XHandlers* all_xhandler();
2481 
2482   // collects all register operands of the instruction
2483   void visit(LIR_Op* op);
2484 
2485 #ifdef ASSERT
2486   // check that an operation has no operands
2487   bool no_operands(LIR_Op* op);
2488 #endif
2489 
2490   // LIR_Op visitor functions use these to fill in the state
2491   void do_input(LIR_Opr& opr)             { append(opr, LIR_OpVisitState::inputMode); }
2492   void do_output(LIR_Opr& opr)            { append(opr, LIR_OpVisitState::outputMode); }
2493   void do_temp(LIR_Opr& opr)              { append(opr, LIR_OpVisitState::tempMode); }
2494   void do_info(CodeEmitInfo* info)        { append(info); }
2495 
2496   void do_stub(CodeStub* stub);
2497   void do_call()                          { _has_call = true; }
2498   void do_slow_case()                     { _has_slow_case = true; }
2499   void do_slow_case(CodeEmitInfo* info) {
2500     _has_slow_case = true;
2501     append(info);
2502   }
2503 };
2504 
2505 
2506 inline LIR_Opr LIR_OprDesc::illegalOpr()   { return LIR_OprFact::illegalOpr; };
2507 
2508 #endif // SHARE_VM_C1_C1_LIR_HPP
--- EOF ---