1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/codeBlob.hpp"
  36 #include "code/compiledIC.hpp"
  37 #include "code/pcDesc.hpp"
  38 #include "code/scopeDesc.hpp"
  39 #include "code/vtableStubs.hpp"
  40 #include "compiler/disassembler.hpp"
  41 #include "gc_interface/collectedHeap.hpp"
  42 #include "interpreter/bytecode.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "memory/allocation.inline.hpp"
  45 #include "memory/barrierSet.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "oops/objArrayKlass.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "runtime/biasedLocking.hpp"
  51 #include "runtime/compilationPolicy.hpp"
  52 #include "runtime/interfaceSupport.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "runtime/threadCritical.hpp"
  56 #include "runtime/vframe.hpp"
  57 #include "runtime/vframeArray.hpp"
  58 #include "utilities/copy.hpp"
  59 #include "utilities/events.hpp"
  60 
  61 
  62 // Implementation of StubAssembler
  63 
  64 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  65   _name = name;
  66   _must_gc_arguments = false;
  67   _frame_size = no_frame_size;
  68   _num_rt_args = 0;
  69   _stub_id = stub_id;
  70 }
  71 
  72 
  73 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  74   _name = name;
  75   _must_gc_arguments = must_gc_arguments;
  76 }
  77 
  78 
  79 void StubAssembler::set_frame_size(int size) {
  80   if (_frame_size == no_frame_size) {
  81     _frame_size = size;
  82   }
  83   assert(_frame_size == size, "can't change the frame size");
  84 }
  85 
  86 
  87 void StubAssembler::set_num_rt_args(int args) {
  88   if (_num_rt_args == 0) {
  89     _num_rt_args = args;
  90   }
  91   assert(_num_rt_args == args, "can't change the number of args");
  92 }
  93 
  94 // Implementation of Runtime1
  95 
  96 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
  97 const char *Runtime1::_blob_names[] = {
  98   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
  99 };
 100 
 101 #ifndef PRODUCT
 102 // statistics
 103 int Runtime1::_generic_arraycopy_cnt = 0;
 104 int Runtime1::_primitive_arraycopy_cnt = 0;
 105 int Runtime1::_oop_arraycopy_cnt = 0;
 106 int Runtime1::_generic_arraycopystub_cnt = 0;
 107 int Runtime1::_arraycopy_slowcase_cnt = 0;
 108 int Runtime1::_arraycopy_checkcast_cnt = 0;
 109 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 110 int Runtime1::_new_type_array_slowcase_cnt = 0;
 111 int Runtime1::_new_object_array_slowcase_cnt = 0;
 112 int Runtime1::_new_instance_slowcase_cnt = 0;
 113 int Runtime1::_new_multi_array_slowcase_cnt = 0;
 114 int Runtime1::_monitorenter_slowcase_cnt = 0;
 115 int Runtime1::_monitorexit_slowcase_cnt = 0;
 116 int Runtime1::_patch_code_slowcase_cnt = 0;
 117 int Runtime1::_throw_range_check_exception_count = 0;
 118 int Runtime1::_throw_index_exception_count = 0;
 119 int Runtime1::_throw_div0_exception_count = 0;
 120 int Runtime1::_throw_null_pointer_exception_count = 0;
 121 int Runtime1::_throw_class_cast_exception_count = 0;
 122 int Runtime1::_throw_incompatible_class_change_error_count = 0;
 123 int Runtime1::_throw_array_store_exception_count = 0;
 124 int Runtime1::_throw_count = 0;
 125 
 126 static int _byte_arraycopy_cnt = 0;
 127 static int _short_arraycopy_cnt = 0;
 128 static int _int_arraycopy_cnt = 0;
 129 static int _long_arraycopy_cnt = 0;
 130 static int _oop_arraycopy_cnt = 0;
 131 
 132 address Runtime1::arraycopy_count_address(BasicType type) {
 133   switch (type) {
 134   case T_BOOLEAN:
 135   case T_BYTE:   return (address)&_byte_arraycopy_cnt;
 136   case T_CHAR:
 137   case T_SHORT:  return (address)&_short_arraycopy_cnt;
 138   case T_FLOAT:
 139   case T_INT:    return (address)&_int_arraycopy_cnt;
 140   case T_DOUBLE:
 141   case T_LONG:   return (address)&_long_arraycopy_cnt;
 142   case T_ARRAY:
 143   case T_OBJECT: return (address)&_oop_arraycopy_cnt;
 144   default:
 145     ShouldNotReachHere();
 146     return NULL;
 147   }
 148 }
 149 
 150 
 151 #endif
 152 
 153 // Simple helper to see if the caller of a runtime stub which
 154 // entered the VM has been deoptimized
 155 
 156 static bool caller_is_deopted() {
 157   JavaThread* thread = JavaThread::current();
 158   RegisterMap reg_map(thread, false);
 159   frame runtime_frame = thread->last_frame();
 160   frame caller_frame = runtime_frame.sender(&reg_map);
 161   assert(caller_frame.is_compiled_frame(), "must be compiled");
 162   return caller_frame.is_deoptimized_frame();
 163 }
 164 
 165 // Stress deoptimization
 166 static void deopt_caller() {
 167   if ( !caller_is_deopted()) {
 168     JavaThread* thread = JavaThread::current();
 169     RegisterMap reg_map(thread, false);
 170     frame runtime_frame = thread->last_frame();
 171     frame caller_frame = runtime_frame.sender(&reg_map);
 172     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 173     assert(caller_is_deopted(), "Must be deoptimized");
 174   }
 175 }
 176 
 177 
 178 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
 179   assert(0 <= id && id < number_of_ids, "illegal stub id");
 180   ResourceMark rm;
 181   // create code buffer for code storage
 182   CodeBuffer code(buffer_blob);
 183 
 184   Compilation::setup_code_buffer(&code, 0);
 185 
 186   // create assembler for code generation
 187   StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
 188   // generate code for runtime stub
 189   OopMapSet* oop_maps;
 190   oop_maps = generate_code_for(id, sasm);
 191   assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
 192          "if stub has an oop map it must have a valid frame size");
 193 
 194 #ifdef ASSERT
 195   // Make sure that stubs that need oopmaps have them
 196   switch (id) {
 197     // These stubs don't need to have an oopmap
 198     case dtrace_object_alloc_id:
 199     case g1_pre_barrier_slow_id:
 200     case g1_post_barrier_slow_id:
 201     case slow_subtype_check_id:
 202     case fpu2long_stub_id:
 203     case unwind_exception_id:
 204     case counter_overflow_id:
 205 #if defined(SPARC) || defined(PPC)
 206     case handle_exception_nofpu_id:  // Unused on sparc
 207 #endif
 208       break;
 209 
 210     // All other stubs should have oopmaps
 211     default:
 212       assert(oop_maps != NULL, "must have an oopmap");
 213       break;
 214   }
 215 #endif
 216 
 217   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 218   sasm->align(BytesPerWord);
 219   // make sure all code is in code buffer
 220   sasm->flush();
 221 
 222   // create blob - distinguish a few special cases
 223   CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
 224                                                  &code,
 225                                                  CodeOffsets::frame_never_safe,
 226                                                  sasm->frame_size(),
 227                                                  oop_maps,
 228                                                  sasm->must_gc_arguments());
 229   // install blob
 230   assert(blob != NULL, "blob must exist");
 231   _blobs[id] = blob;
 232 }
 233 
 234 
 235 void Runtime1::initialize(BufferBlob* blob) {
 236   // platform-dependent initialization
 237   initialize_pd();
 238   // generate stubs
 239   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
 240   // printing
 241 #ifndef PRODUCT
 242   if (PrintSimpleStubs) {
 243     ResourceMark rm;
 244     for (int id = 0; id < number_of_ids; id++) {
 245       _blobs[id]->print();
 246       if (_blobs[id]->oop_maps() != NULL) {
 247         _blobs[id]->oop_maps()->print();
 248       }
 249     }
 250   }
 251 #endif
 252 }
 253 
 254 
 255 CodeBlob* Runtime1::blob_for(StubID id) {
 256   assert(0 <= id && id < number_of_ids, "illegal stub id");
 257   return _blobs[id];
 258 }
 259 
 260 
 261 const char* Runtime1::name_for(StubID id) {
 262   assert(0 <= id && id < number_of_ids, "illegal stub id");
 263   return _blob_names[id];
 264 }
 265 
 266 const char* Runtime1::name_for_address(address entry) {
 267   for (int id = 0; id < number_of_ids; id++) {
 268     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
 269   }
 270 
 271 #define FUNCTION_CASE(a, f) \
 272   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 273 
 274   FUNCTION_CASE(entry, os::javaTimeMillis);
 275   FUNCTION_CASE(entry, os::javaTimeNanos);
 276   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 277   FUNCTION_CASE(entry, SharedRuntime::d2f);
 278   FUNCTION_CASE(entry, SharedRuntime::d2i);
 279   FUNCTION_CASE(entry, SharedRuntime::d2l);
 280   FUNCTION_CASE(entry, SharedRuntime::dcos);
 281   FUNCTION_CASE(entry, SharedRuntime::dexp);
 282   FUNCTION_CASE(entry, SharedRuntime::dlog);
 283   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 284   FUNCTION_CASE(entry, SharedRuntime::dpow);
 285   FUNCTION_CASE(entry, SharedRuntime::drem);
 286   FUNCTION_CASE(entry, SharedRuntime::dsin);
 287   FUNCTION_CASE(entry, SharedRuntime::dtan);
 288   FUNCTION_CASE(entry, SharedRuntime::f2i);
 289   FUNCTION_CASE(entry, SharedRuntime::f2l);
 290   FUNCTION_CASE(entry, SharedRuntime::frem);
 291   FUNCTION_CASE(entry, SharedRuntime::l2d);
 292   FUNCTION_CASE(entry, SharedRuntime::l2f);
 293   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 294   FUNCTION_CASE(entry, SharedRuntime::lmul);
 295   FUNCTION_CASE(entry, SharedRuntime::lrem);
 296   FUNCTION_CASE(entry, SharedRuntime::lrem);
 297   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 298   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 299   FUNCTION_CASE(entry, is_instance_of);
 300   FUNCTION_CASE(entry, trace_block_entry);
 301 #ifdef TRACE_HAVE_INTRINSICS
 302   FUNCTION_CASE(entry, TRACE_TIME_METHOD);
 303 #endif
 304   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 305 
 306 #undef FUNCTION_CASE
 307 
 308   // Soft float adds more runtime names.
 309   return pd_name_for_address(entry);
 310 }
 311 
 312 
 313 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, Klass* klass))
 314   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
 315 
 316   assert(klass->is_klass(), "not a class");
 317   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 318   instanceKlassHandle h(thread, klass);
 319   h->check_valid_for_instantiation(true, CHECK);
 320   // make sure klass is initialized
 321   h->initialize(CHECK);
 322   // allocate instance and return via TLS
 323   oop obj = h->allocate_instance(CHECK);
 324   thread->set_vm_result(obj);
 325 JRT_END
 326 
 327 
 328 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, Klass* klass, jint length))
 329   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
 330   // Note: no handle for klass needed since they are not used
 331   //       anymore after new_typeArray() and no GC can happen before.
 332   //       (This may have to change if this code changes!)
 333   assert(klass->is_klass(), "not a class");
 334   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 335   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 336   thread->set_vm_result(obj);
 337   // This is pretty rare but this runtime patch is stressful to deoptimization
 338   // if we deoptimize here so force a deopt to stress the path.
 339   if (DeoptimizeALot) {
 340     deopt_caller();
 341   }
 342 
 343 JRT_END
 344 
 345 
 346 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, Klass* array_klass, jint length))
 347   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
 348 
 349   // Note: no handle for klass needed since they are not used
 350   //       anymore after new_objArray() and no GC can happen before.
 351   //       (This may have to change if this code changes!)
 352   assert(array_klass->is_klass(), "not a class");
 353   Handle holder(THREAD, array_klass->klass_holder()); // keep the klass alive
 354   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
 355   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 356   thread->set_vm_result(obj);
 357   // This is pretty rare but this runtime patch is stressful to deoptimization
 358   // if we deoptimize here so force a deopt to stress the path.
 359   if (DeoptimizeALot) {
 360     deopt_caller();
 361   }
 362 JRT_END
 363 
 364 
 365 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims))
 366   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
 367 
 368   assert(klass->is_klass(), "not a class");
 369   assert(rank >= 1, "rank must be nonzero");
 370   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 371   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 372   thread->set_vm_result(obj);
 373 JRT_END
 374 
 375 
 376 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
 377   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
 378 JRT_END
 379 
 380 
 381 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
 382   ResourceMark rm(thread);
 383   const char* klass_name = obj->klass()->external_name();
 384   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 385 JRT_END
 386 
 387 
 388 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 389 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 390 // method) method oop is passed as an argument. In order to do that it is embedded in the code as
 391 // a constant.
 392 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, Method* m) {
 393   nmethod* osr_nm = NULL;
 394   methodHandle method(THREAD, m);
 395 
 396   RegisterMap map(THREAD, false);
 397   frame fr =  THREAD->last_frame().sender(&map);
 398   nmethod* nm = (nmethod*) fr.cb();
 399   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
 400   methodHandle enclosing_method(THREAD, nm->method());
 401 
 402   CompLevel level = (CompLevel)nm->comp_level();
 403   int bci = InvocationEntryBci;
 404   if (branch_bci != InvocationEntryBci) {
 405     // Compute desination bci
 406     address pc = method()->code_base() + branch_bci;
 407     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 408     int offset = 0;
 409     switch (branch) {
 410       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 411       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 412       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 413       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 414       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 415       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 416       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 417         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 418         break;
 419       case Bytecodes::_goto_w:
 420         offset = Bytes::get_Java_u4(pc + 1);
 421         break;
 422       default: ;
 423     }
 424     bci = branch_bci + offset;
 425   }
 426   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
 427   osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD);
 428   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
 429   return osr_nm;
 430 }
 431 
 432 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, Method* method))
 433   nmethod* osr_nm;
 434   JRT_BLOCK
 435     osr_nm = counter_overflow_helper(thread, bci, method);
 436     if (osr_nm != NULL) {
 437       RegisterMap map(thread, false);
 438       frame fr =  thread->last_frame().sender(&map);
 439       Deoptimization::deoptimize_frame(thread, fr.id());
 440     }
 441   JRT_BLOCK_END
 442   return NULL;
 443 JRT_END
 444 
 445 extern void vm_exit(int code);
 446 
 447 // Enter this method from compiled code handler below. This is where we transition
 448 // to VM mode. This is done as a helper routine so that the method called directly
 449 // from compiled code does not have to transition to VM. This allows the entry
 450 // method to see if the nmethod that we have just looked up a handler for has
 451 // been deoptimized while we were in the vm. This simplifies the assembly code
 452 // cpu directories.
 453 //
 454 // We are entering here from exception stub (via the entry method below)
 455 // If there is a compiled exception handler in this method, we will continue there;
 456 // otherwise we will unwind the stack and continue at the caller of top frame method
 457 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 458 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 459 // check to see if the handler we are going to return is now in a nmethod that has
 460 // been deoptimized. If that is the case we return the deopt blob
 461 // unpack_with_exception entry instead. This makes life for the exception blob easier
 462 // because making that same check and diverting is painful from assembly language.
 463 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
 464   // Reset method handle flag.
 465   thread->set_is_method_handle_return(false);
 466 
 467   Handle exception(thread, ex);
 468   nm = CodeCache::find_nmethod(pc);
 469   assert(nm != NULL, "this is not an nmethod");
 470   // Adjust the pc as needed/
 471   if (nm->is_deopt_pc(pc)) {
 472     RegisterMap map(thread, false);
 473     frame exception_frame = thread->last_frame().sender(&map);
 474     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 475     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 476     pc = exception_frame.pc();
 477   }
 478 #ifdef ASSERT
 479   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
 480   assert(exception->is_oop(), "just checking");
 481   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 482   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
 483     if (ExitVMOnVerifyError) vm_exit(-1);
 484     ShouldNotReachHere();
 485   }
 486 #endif
 487 
 488   // Check the stack guard pages and reenable them if necessary and there is
 489   // enough space on the stack to do so.  Use fast exceptions only if the guard
 490   // pages are enabled.
 491   bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
 492   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 493 
 494   if (JvmtiExport::can_post_on_exceptions()) {
 495     // To ensure correct notification of exception catches and throws
 496     // we have to deoptimize here.  If we attempted to notify the
 497     // catches and throws during this exception lookup it's possible
 498     // we could deoptimize on the way out of the VM and end back in
 499     // the interpreter at the throw site.  This would result in double
 500     // notifications since the interpreter would also notify about
 501     // these same catches and throws as it unwound the frame.
 502 
 503     RegisterMap reg_map(thread);
 504     frame stub_frame = thread->last_frame();
 505     frame caller_frame = stub_frame.sender(&reg_map);
 506 
 507     // We don't really want to deoptimize the nmethod itself since we
 508     // can actually continue in the exception handler ourselves but I
 509     // don't see an easy way to have the desired effect.
 510     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 511     assert(caller_is_deopted(), "Must be deoptimized");
 512 
 513     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 514   }
 515 
 516   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 517   if (guard_pages_enabled) {
 518     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 519     if (fast_continuation != NULL) {
 520       // Set flag if return address is a method handle call site.
 521       thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 522       return fast_continuation;
 523     }
 524   }
 525 
 526   // If the stack guard pages are enabled, check whether there is a handler in
 527   // the current method.  Otherwise (guard pages disabled), force an unwind and
 528   // skip the exception cache update (i.e., just leave continuation==NULL).
 529   address continuation = NULL;
 530   if (guard_pages_enabled) {
 531 
 532     // New exception handling mechanism can support inlined methods
 533     // with exception handlers since the mappings are from PC to PC
 534 
 535     // debugging support
 536     // tracing
 537     if (TraceExceptions) {
 538       ttyLocker ttyl;
 539       ResourceMark rm;
 540       tty->print_cr("Exception <%s> (" INTPTR_FORMAT ") thrown in compiled method <%s> at PC " INTPTR_FORMAT " for thread " INTPTR_FORMAT "",
 541                     exception->print_value_string(), p2i((address)exception()), nm->method()->print_value_string(), p2i(pc), p2i(thread));
 542     }
 543     // for AbortVMOnException flag
 544     NOT_PRODUCT(Exceptions::debug_check_abort(exception));
 545 
 546     // Clear out the exception oop and pc since looking up an
 547     // exception handler can cause class loading, which might throw an
 548     // exception and those fields are expected to be clear during
 549     // normal bytecode execution.
 550     thread->clear_exception_oop_and_pc();
 551 
 552     bool recursive_exception = false;
 553     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
 554     // If an exception was thrown during exception dispatch, the exception oop may have changed
 555     thread->set_exception_oop(exception());
 556     thread->set_exception_pc(pc);
 557 
 558     // the exception cache is used only by non-implicit exceptions
 559     // Update the exception cache only when there didn't happen
 560     // another exception during the computation of the compiled
 561     // exception handler. Checking for exception oop equality is not
 562     // sufficient because some exceptions are pre-allocated and reused.
 563     if (continuation != NULL && !recursive_exception) {
 564       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 565     }
 566   }
 567 
 568   thread->set_vm_result(exception());
 569   // Set flag if return address is a method handle call site.
 570   thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 571 
 572   if (TraceExceptions) {
 573     ttyLocker ttyl;
 574     ResourceMark rm;
 575     tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT,
 576                   p2i(thread), p2i(continuation), p2i(pc));
 577   }
 578 
 579   return continuation;
 580 JRT_END
 581 
 582 // Enter this method from compiled code only if there is a Java exception handler
 583 // in the method handling the exception.
 584 // We are entering here from exception stub. We don't do a normal VM transition here.
 585 // We do it in a helper. This is so we can check to see if the nmethod we have just
 586 // searched for an exception handler has been deoptimized in the meantime.
 587 address Runtime1::exception_handler_for_pc(JavaThread* thread) {
 588   oop exception = thread->exception_oop();
 589   address pc = thread->exception_pc();
 590   // Still in Java mode
 591   DEBUG_ONLY(ResetNoHandleMark rnhm);
 592   nmethod* nm = NULL;
 593   address continuation = NULL;
 594   {
 595     // Enter VM mode by calling the helper
 596     ResetNoHandleMark rnhm;
 597     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
 598   }
 599   // Back in JAVA, use no oops DON'T safepoint
 600 
 601   // Now check to see if the nmethod we were called from is now deoptimized.
 602   // If so we must return to the deopt blob and deoptimize the nmethod
 603   if (nm != NULL && caller_is_deopted()) {
 604     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 605   }
 606 
 607   assert(continuation != NULL, "no handler found");
 608   return continuation;
 609 }
 610 
 611 
 612 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
 613   NOT_PRODUCT(_throw_range_check_exception_count++;)
 614   char message[jintAsStringSize];
 615   sprintf(message, "%d", index);
 616   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 617 JRT_END
 618 
 619 
 620 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
 621   NOT_PRODUCT(_throw_index_exception_count++;)
 622   char message[16];
 623   sprintf(message, "%d", index);
 624   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 625 JRT_END
 626 
 627 
 628 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
 629   NOT_PRODUCT(_throw_div0_exception_count++;)
 630   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 631 JRT_END
 632 
 633 
 634 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
 635   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
 636   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 637 JRT_END
 638 
 639 
 640 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
 641   NOT_PRODUCT(_throw_class_cast_exception_count++;)
 642   ResourceMark rm(thread);
 643   char* message = SharedRuntime::generate_class_cast_message(
 644     thread, object->klass()->external_name());
 645   SharedRuntime::throw_and_post_jvmti_exception(
 646     thread, vmSymbols::java_lang_ClassCastException(), message);
 647 JRT_END
 648 
 649 
 650 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
 651   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
 652   ResourceMark rm(thread);
 653   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
 654 JRT_END
 655 
 656 
 657 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
 658   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
 659   if (PrintBiasedLockingStatistics) {
 660     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 661   }
 662   Handle h_obj(thread, obj);
 663   assert(h_obj()->is_oop(), "must be NULL or an object");
 664   if (UseBiasedLocking) {
 665     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 666     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
 667   } else {
 668     if (UseFastLocking) {
 669       // When using fast locking, the compiled code has already tried the fast case
 670       assert(obj == lock->obj(), "must match");
 671       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
 672     } else {
 673       lock->set_obj(obj);
 674       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
 675     }
 676   }
 677 JRT_END
 678 
 679 
 680 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
 681   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
 682   assert(thread == JavaThread::current(), "threads must correspond");
 683   assert(thread->last_Java_sp(), "last_Java_sp must be set");
 684   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
 685   EXCEPTION_MARK;
 686 
 687   oop obj = lock->obj();
 688   assert(obj->is_oop(), "must be NULL or an object");
 689   if (UseFastLocking) {
 690     // When using fast locking, the compiled code has already tried the fast case
 691     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
 692   } else {
 693     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
 694   }
 695 JRT_END
 696 
 697 // Cf. OptoRuntime::deoptimize_caller_frame
 698 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread))
 699   // Called from within the owner thread, so no need for safepoint
 700   RegisterMap reg_map(thread, false);
 701   frame stub_frame = thread->last_frame();
 702   assert(stub_frame.is_runtime_frame(), "sanity check");
 703   frame caller_frame = stub_frame.sender(&reg_map);
 704 
 705   // We are coming from a compiled method; check this is true.
 706   assert(CodeCache::find_nmethod(caller_frame.pc()) != NULL, "sanity");
 707 
 708   // Deoptimize the caller frame.
 709   Deoptimization::deoptimize_frame(thread, caller_frame.id());
 710 
 711   // Return to the now deoptimized frame.
 712 JRT_END
 713 
 714 
 715 static Klass* resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
 716   Bytecode_field field_access(caller, bci);
 717   // This can be static or non-static field access
 718   Bytecodes::Code code       = field_access.code();
 719 
 720   // We must load class, initialize class and resolvethe field
 721   fieldDescriptor result; // initialize class if needed
 722   constantPoolHandle constants(THREAD, caller->constants());
 723   LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK_NULL);
 724   return result.field_holder();
 725 }
 726 
 727 
 728 //
 729 // This routine patches sites where a class wasn't loaded or
 730 // initialized at the time the code was generated.  It handles
 731 // references to classes, fields and forcing of initialization.  Most
 732 // of the cases are straightforward and involving simply forcing
 733 // resolution of a class, rewriting the instruction stream with the
 734 // needed constant and replacing the call in this function with the
 735 // patched code.  The case for static field is more complicated since
 736 // the thread which is in the process of initializing a class can
 737 // access it's static fields but other threads can't so the code
 738 // either has to deoptimize when this case is detected or execute a
 739 // check that the current thread is the initializing thread.  The
 740 // current
 741 //
 742 // Patches basically look like this:
 743 //
 744 //
 745 // patch_site: jmp patch stub     ;; will be patched
 746 // continue:   ...
 747 //             ...
 748 //             ...
 749 //             ...
 750 //
 751 // They have a stub which looks like this:
 752 //
 753 //             ;; patch body
 754 //             movl <const>, reg           (for class constants)
 755 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 756 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 757 //             <being_init offset> <bytes to copy> <bytes to skip>
 758 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 759 //             jmp patch_site
 760 //
 761 //
 762 // A normal patch is done by rewriting the patch body, usually a move,
 763 // and then copying it into place over top of the jmp instruction
 764 // being careful to flush caches and doing it in an MP-safe way.  The
 765 // constants following the patch body are used to find various pieces
 766 // of the patch relative to the call site for Runtime1::patch_code.
 767 // The case for getstatic and putstatic is more complicated because
 768 // getstatic and putstatic have special semantics when executing while
 769 // the class is being initialized.  getstatic/putstatic on a class
 770 // which is being_initialized may be executed by the initializing
 771 // thread but other threads have to block when they execute it.  This
 772 // is accomplished in compiled code by executing a test of the current
 773 // thread against the initializing thread of the class.  It's emitted
 774 // as boilerplate in their stub which allows the patched code to be
 775 // executed before it's copied back into the main body of the nmethod.
 776 //
 777 // being_init: get_thread(<tmp reg>
 778 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 779 //             jne patch_stub
 780 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 781 //             movl reg, [reg1 + <const>]  (for field offsets)
 782 //             jmp continue
 783 //             <being_init offset> <bytes to copy> <bytes to skip>
 784 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
 785 //             jmp patch_site
 786 //
 787 // If the class is being initialized the patch body is rewritten and
 788 // the patch site is rewritten to jump to being_init, instead of
 789 // patch_stub.  Whenever this code is executed it checks the current
 790 // thread against the intializing thread so other threads will enter
 791 // the runtime and end up blocked waiting the class to finish
 792 // initializing inside the calls to resolve_field below.  The
 793 // initializing class will continue on it's way.  Once the class is
 794 // fully_initialized, the intializing_thread of the class becomes
 795 // NULL, so the next thread to execute this code will fail the test,
 796 // call into patch_code and complete the patching process by copying
 797 // the patch body back into the main part of the nmethod and resume
 798 // executing.
 799 //
 800 //
 801 
 802 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
 803   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
 804 
 805 #ifdef AARCH64
 806   // AArch64 does not patch C1-generated code.
 807   ShouldNotReachHere();
 808 #endif
 809 
 810   ResourceMark rm(thread);
 811   RegisterMap reg_map(thread, false);
 812   frame runtime_frame = thread->last_frame();
 813   frame caller_frame = runtime_frame.sender(&reg_map);
 814 
 815   // last java frame on stack
 816   vframeStream vfst(thread, true);
 817   assert(!vfst.at_end(), "Java frame must exist");
 818 
 819   methodHandle caller_method(THREAD, vfst.method());
 820   // Note that caller_method->code() may not be same as caller_code because of OSR's
 821   // Note also that in the presence of inlining it is not guaranteed
 822   // that caller_method() == caller_code->method()
 823 
 824   int bci = vfst.bci();
 825   Bytecodes::Code code = caller_method()->java_code_at(bci);
 826 
 827 #ifndef PRODUCT
 828   // this is used by assertions in the access_field_patching_id
 829   BasicType patch_field_type = T_ILLEGAL;
 830 #endif // PRODUCT
 831   bool deoptimize_for_volatile = false;
 832   int patch_field_offset = -1;
 833   KlassHandle init_klass(THREAD, NULL); // klass needed by load_klass_patching code
 834   KlassHandle load_klass(THREAD, NULL); // klass needed by load_klass_patching code
 835   Handle mirror(THREAD, NULL);                    // oop needed by load_mirror_patching code
 836   Handle appendix(THREAD, NULL);                  // oop needed by appendix_patching code
 837   bool load_klass_or_mirror_patch_id =
 838     (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
 839 
 840   if (stub_id == Runtime1::access_field_patching_id) {
 841 
 842     Bytecode_field field_access(caller_method, bci);
 843     fieldDescriptor result; // initialize class if needed
 844     Bytecodes::Code code = field_access.code();
 845     constantPoolHandle constants(THREAD, caller_method->constants());
 846     LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK);
 847     patch_field_offset = result.offset();
 848 
 849     // If we're patching a field which is volatile then at compile it
 850     // must not have been know to be volatile, so the generated code
 851     // isn't correct for a volatile reference.  The nmethod has to be
 852     // deoptimized so that the code can be regenerated correctly.
 853     // This check is only needed for access_field_patching since this
 854     // is the path for patching field offsets.  load_klass is only
 855     // used for patching references to oops which don't need special
 856     // handling in the volatile case.
 857     deoptimize_for_volatile = result.access_flags().is_volatile();
 858 
 859 #ifndef PRODUCT
 860     patch_field_type = result.field_type();
 861 #endif
 862   } else if (load_klass_or_mirror_patch_id) {
 863     Klass* k = NULL;
 864     switch (code) {
 865       case Bytecodes::_putstatic:
 866       case Bytecodes::_getstatic:
 867         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
 868           init_klass = KlassHandle(THREAD, klass);
 869           mirror = Handle(THREAD, klass->java_mirror());
 870         }
 871         break;
 872       case Bytecodes::_new:
 873         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
 874           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
 875         }
 876         break;
 877       case Bytecodes::_multianewarray:
 878         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
 879           k = caller_method->constants()->klass_at(mna.index(), CHECK);
 880         }
 881         break;
 882       case Bytecodes::_instanceof:
 883         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
 884           k = caller_method->constants()->klass_at(io.index(), CHECK);
 885         }
 886         break;
 887       case Bytecodes::_checkcast:
 888         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
 889           k = caller_method->constants()->klass_at(cc.index(), CHECK);
 890         }
 891         break;
 892       case Bytecodes::_anewarray:
 893         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
 894           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
 895           k = ek->array_klass(CHECK);
 896         }
 897         break;
 898       case Bytecodes::_ldc:
 899       case Bytecodes::_ldc_w:
 900         {
 901           Bytecode_loadconstant cc(caller_method, bci);
 902           oop m = cc.resolve_constant(CHECK);
 903           mirror = Handle(THREAD, m);
 904         }
 905         break;
 906       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
 907     }
 908     // convert to handle
 909     load_klass = KlassHandle(THREAD, k);
 910   } else if (stub_id == load_appendix_patching_id) {
 911     Bytecode_invoke bytecode(caller_method, bci);
 912     Bytecodes::Code bc = bytecode.invoke_code();
 913 
 914     CallInfo info;
 915     constantPoolHandle pool(thread, caller_method->constants());
 916     int index = bytecode.index();
 917     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
 918     appendix = info.resolved_appendix();
 919     switch (bc) {
 920       case Bytecodes::_invokehandle: {
 921         int cache_index = ConstantPool::decode_cpcache_index(index, true);
 922         assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index");
 923         pool->cache()->entry_at(cache_index)->set_method_handle(pool, info);
 924         break;
 925       }
 926       case Bytecodes::_invokedynamic: {
 927         pool->invokedynamic_cp_cache_entry_at(index)->set_dynamic_call(pool, info);
 928         break;
 929       }
 930       default: fatal("unexpected bytecode for load_appendix_patching_id");
 931     }
 932   } else {
 933     ShouldNotReachHere();
 934   }
 935 
 936   if (deoptimize_for_volatile) {
 937     // At compile time we assumed the field wasn't volatile but after
 938     // loading it turns out it was volatile so we have to throw the
 939     // compiled code out and let it be regenerated.
 940     if (TracePatching) {
 941       tty->print_cr("Deoptimizing for patching volatile field reference");
 942     }
 943     // It's possible the nmethod was invalidated in the last
 944     // safepoint, but if it's still alive then make it not_entrant.
 945     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
 946     if (nm != NULL) {
 947       nm->make_not_entrant();
 948     }
 949 
 950     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 951 
 952     // Return to the now deoptimized frame.
 953   }
 954 
 955   // Now copy code back
 956   {
 957     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
 958     //
 959     // Deoptimization may have happened while we waited for the lock.
 960     // In that case we don't bother to do any patching we just return
 961     // and let the deopt happen
 962     if (!caller_is_deopted()) {
 963       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
 964       address instr_pc = jump->jump_destination();
 965       NativeInstruction* ni = nativeInstruction_at(instr_pc);
 966       if (ni->is_jump() ) {
 967         // the jump has not been patched yet
 968         // The jump destination is slow case and therefore not part of the stubs
 969         // (stubs are only for StaticCalls)
 970 
 971         // format of buffer
 972         //    ....
 973         //    instr byte 0     <-- copy_buff
 974         //    instr byte 1
 975         //    ..
 976         //    instr byte n-1
 977         //      n
 978         //    ....             <-- call destination
 979 
 980         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
 981         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
 982         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
 983         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
 984         address copy_buff = stub_location - *byte_skip - *byte_count;
 985         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
 986         if (TracePatching) {
 987           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
 988                         p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
 989           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
 990           assert(caller_code != NULL, "nmethod not found");
 991 
 992           // NOTE we use pc() not original_pc() because we already know they are
 993           // identical otherwise we'd have never entered this block of code
 994 
 995           OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
 996           assert(map != NULL, "null check");
 997           map->print();
 998           tty->cr();
 999 
1000           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1001         }
1002         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1003         bool do_patch = true;
1004         if (stub_id == Runtime1::access_field_patching_id) {
1005           // The offset may not be correct if the class was not loaded at code generation time.
1006           // Set it now.
1007           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1008           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1009           assert(patch_field_offset >= 0, "illegal offset");
1010           n_move->add_offset_in_bytes(patch_field_offset);
1011         } else if (load_klass_or_mirror_patch_id) {
1012           // If a getstatic or putstatic is referencing a klass which
1013           // isn't fully initialized, the patch body isn't copied into
1014           // place until initialization is complete.  In this case the
1015           // patch site is setup so that any threads besides the
1016           // initializing thread are forced to come into the VM and
1017           // block.
1018           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1019                      InstanceKlass::cast(init_klass())->is_initialized();
1020           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1021           if (jump->jump_destination() == being_initialized_entry) {
1022             assert(do_patch == true, "initialization must be complete at this point");
1023           } else {
1024             // patch the instruction <move reg, klass>
1025             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1026 
1027             assert(n_copy->data() == 0 ||
1028                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1029                    "illegal init value");
1030             if (stub_id == Runtime1::load_klass_patching_id) {
1031               assert(load_klass() != NULL, "klass not set");
1032               n_copy->set_data((intx) (load_klass()));
1033             } else {
1034               assert(mirror() != NULL, "klass not set");
1035               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1036               n_copy->set_data(cast_from_oop<intx>(mirror()));
1037             }
1038 
1039             if (TracePatching) {
1040               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1041             }
1042           }
1043         } else if (stub_id == Runtime1::load_appendix_patching_id) {
1044           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1045           assert(n_copy->data() == 0 ||
1046                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1047                  "illegal init value");
1048           n_copy->set_data(cast_from_oop<intx>(appendix()));
1049 
1050           if (TracePatching) {
1051             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1052           }
1053         } else {
1054           ShouldNotReachHere();
1055         }
1056 
1057 #if defined(SPARC) || defined(PPC)
1058         if (load_klass_or_mirror_patch_id ||
1059             stub_id == Runtime1::load_appendix_patching_id) {
1060           // Update the location in the nmethod with the proper
1061           // metadata.  When the code was generated, a NULL was stuffed
1062           // in the metadata table and that table needs to be update to
1063           // have the right value.  On intel the value is kept
1064           // directly in the instruction instead of in the metadata
1065           // table, so set_data above effectively updated the value.
1066           nmethod* nm = CodeCache::find_nmethod(instr_pc);
1067           assert(nm != NULL, "invalid nmethod_pc");
1068           RelocIterator mds(nm, copy_buff, copy_buff + 1);
1069           bool found = false;
1070           while (mds.next() && !found) {
1071             if (mds.type() == relocInfo::oop_type) {
1072               assert(stub_id == Runtime1::load_mirror_patching_id ||
1073                      stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1074               oop_Relocation* r = mds.oop_reloc();
1075               oop* oop_adr = r->oop_addr();
1076               *oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix();
1077               r->fix_oop_relocation();
1078               found = true;
1079             } else if (mds.type() == relocInfo::metadata_type) {
1080               assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1081               metadata_Relocation* r = mds.metadata_reloc();
1082               Metadata** metadata_adr = r->metadata_addr();
1083               *metadata_adr = load_klass();
1084               r->fix_metadata_relocation();
1085               found = true;
1086             }
1087           }
1088           assert(found, "the metadata must exist!");
1089         }
1090 #endif
1091         if (do_patch) {
1092           // replace instructions
1093           // first replace the tail, then the call
1094 #ifdef ARM
1095           if((load_klass_or_mirror_patch_id ||
1096               stub_id == Runtime1::load_appendix_patching_id) &&
1097               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1098             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1099             address addr = NULL;
1100             assert(nm != NULL, "invalid nmethod_pc");
1101             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1102             while (mds.next()) {
1103               if (mds.type() == relocInfo::oop_type) {
1104                 assert(stub_id == Runtime1::load_mirror_patching_id ||
1105                        stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1106                 oop_Relocation* r = mds.oop_reloc();
1107                 addr = (address)r->oop_addr();
1108                 break;
1109               } else if (mds.type() == relocInfo::metadata_type) {
1110                 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1111                 metadata_Relocation* r = mds.metadata_reloc();
1112                 addr = (address)r->metadata_addr();
1113                 break;
1114               }
1115             }
1116             assert(addr != NULL, "metadata relocation must exist");
1117             copy_buff -= *byte_count;
1118             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1119             n_copy2->set_pc_relative_offset(addr, instr_pc);
1120           }
1121 #endif
1122 
1123           for (int i = NativeCall::instruction_size; i < *byte_count; i++) {
1124             address ptr = copy_buff + i;
1125             int a_byte = (*ptr) & 0xFF;
1126             address dst = instr_pc + i;
1127             *(unsigned char*)dst = (unsigned char) a_byte;
1128           }
1129           ICache::invalidate_range(instr_pc, *byte_count);
1130           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1131 
1132           if (load_klass_or_mirror_patch_id ||
1133               stub_id == Runtime1::load_appendix_patching_id) {
1134             relocInfo::relocType rtype =
1135               (stub_id == Runtime1::load_klass_patching_id) ?
1136                                    relocInfo::metadata_type :
1137                                    relocInfo::oop_type;
1138 
1139             // update relocInfo to metadata
1140             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1141             assert(nm != NULL, "invalid nmethod_pc");
1142 
1143             // The old patch site is now a move instruction so update
1144             // the reloc info so that it will get updated during
1145             // future GCs.
1146             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1147             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1148                                                      relocInfo::none, rtype);
1149 #ifdef SPARC
1150             // Sparc takes two relocations for an metadata so update the second one.
1151             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
1152             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1153             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1154                                                      relocInfo::none, rtype);
1155 #endif
1156 #ifdef PPC
1157           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
1158             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1159             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1160                                                      relocInfo::none, rtype);
1161           }
1162 #endif
1163           }
1164 
1165         } else {
1166           ICache::invalidate_range(copy_buff, *byte_count);
1167           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1168         }
1169       }
1170     }
1171   }
1172 
1173   // If we are patching in a non-perm oop, make sure the nmethod
1174   // is on the right list.
1175   if (ScavengeRootsInCode && ((mirror.not_null() && mirror()->is_scavengable()) ||
1176                               (appendix.not_null() && appendix->is_scavengable()))) {
1177     MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
1178     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1179     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
1180     if (!nm->on_scavenge_root_list()) {
1181       CodeCache::add_scavenge_root_nmethod(nm);
1182     }
1183 
1184     // Since we've patched some oops in the nmethod,
1185     // (re)register it with the heap.
1186     Universe::heap()->register_nmethod(nm);
1187   }
1188 JRT_END
1189 
1190 //
1191 // Entry point for compiled code. We want to patch a nmethod.
1192 // We don't do a normal VM transition here because we want to
1193 // know after the patching is complete and any safepoint(s) are taken
1194 // if the calling nmethod was deoptimized. We do this by calling a
1195 // helper method which does the normal VM transition and when it
1196 // completes we can check for deoptimization. This simplifies the
1197 // assembly code in the cpu directories.
1198 //
1199 #ifndef TARGET_ARCH_aarch64
1200 int Runtime1::move_klass_patching(JavaThread* thread) {
1201 //
1202 // NOTE: we are still in Java
1203 //
1204   Thread* THREAD = thread;
1205   debug_only(NoHandleMark nhm;)
1206   {
1207     // Enter VM mode
1208 
1209     ResetNoHandleMark rnhm;
1210     patch_code(thread, load_klass_patching_id);
1211   }
1212   // Back in JAVA, use no oops DON'T safepoint
1213 
1214   // Return true if calling code is deoptimized
1215 
1216   return caller_is_deopted();
1217 }
1218 
1219 int Runtime1::move_mirror_patching(JavaThread* thread) {
1220 //
1221 // NOTE: we are still in Java
1222 //
1223   Thread* THREAD = thread;
1224   debug_only(NoHandleMark nhm;)
1225   {
1226     // Enter VM mode
1227 
1228     ResetNoHandleMark rnhm;
1229     patch_code(thread, load_mirror_patching_id);
1230   }
1231   // Back in JAVA, use no oops DON'T safepoint
1232 
1233   // Return true if calling code is deoptimized
1234 
1235   return caller_is_deopted();
1236 }
1237 
1238 int Runtime1::move_appendix_patching(JavaThread* thread) {
1239 //
1240 // NOTE: we are still in Java
1241 //
1242   Thread* THREAD = thread;
1243   debug_only(NoHandleMark nhm;)
1244   {
1245     // Enter VM mode
1246 
1247     ResetNoHandleMark rnhm;
1248     patch_code(thread, load_appendix_patching_id);
1249   }
1250   // Back in JAVA, use no oops DON'T safepoint
1251 
1252   // Return true if calling code is deoptimized
1253 
1254   return caller_is_deopted();
1255 }
1256 //
1257 // Entry point for compiled code. We want to patch a nmethod.
1258 // We don't do a normal VM transition here because we want to
1259 // know after the patching is complete and any safepoint(s) are taken
1260 // if the calling nmethod was deoptimized. We do this by calling a
1261 // helper method which does the normal VM transition and when it
1262 // completes we can check for deoptimization. This simplifies the
1263 // assembly code in the cpu directories.
1264 //
1265 
1266 int Runtime1::access_field_patching(JavaThread* thread) {
1267 //
1268 // NOTE: we are still in Java
1269 //
1270   Thread* THREAD = thread;
1271   debug_only(NoHandleMark nhm;)
1272   {
1273     // Enter VM mode
1274 
1275     ResetNoHandleMark rnhm;
1276     patch_code(thread, access_field_patching_id);
1277   }
1278   // Back in JAVA, use no oops DON'T safepoint
1279 
1280   // Return true if calling code is deoptimized
1281 
1282   return caller_is_deopted();
1283 JRT_END
1284 #endif
1285 
1286 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1287   // for now we just print out the block id
1288   tty->print("%d ", block_id);
1289 JRT_END
1290 
1291 
1292 // Array copy return codes.
1293 enum {
1294   ac_failed = -1, // arraycopy failed
1295   ac_ok = 0       // arraycopy succeeded
1296 };
1297 
1298 
1299 // Below length is the # elements copied.
1300 template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
1301                                           oopDesc* dst, T* dst_addr,
1302                                           int length) {
1303 
1304   // For performance reasons, we assume we are using a card marking write
1305   // barrier. The assert will fail if this is not the case.
1306   // Note that we use the non-virtual inlineable variant of write_ref_array.
1307   BarrierSet* bs = Universe::heap()->barrier_set();
1308   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1309   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1310   if (src == dst) {
1311     // same object, no check
1312     bs->write_ref_array_pre(dst_addr, length);
1313     Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1314     bs->write_ref_array((HeapWord*)dst_addr, length);
1315     return ac_ok;
1316   } else {
1317     Klass* bound = ObjArrayKlass::cast(dst->klass())->element_klass();
1318     Klass* stype = ObjArrayKlass::cast(src->klass())->element_klass();
1319     if (stype == bound || stype->is_subtype_of(bound)) {
1320       // Elements are guaranteed to be subtypes, so no check necessary
1321       bs->write_ref_array_pre(dst_addr, length);
1322       Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1323       bs->write_ref_array((HeapWord*)dst_addr, length);
1324       return ac_ok;
1325     }
1326   }
1327   return ac_failed;
1328 }
1329 
1330 // fast and direct copy of arrays; returning -1, means that an exception may be thrown
1331 // and we did not copy anything
1332 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
1333 #ifndef PRODUCT
1334   _generic_arraycopy_cnt++;        // Slow-path oop array copy
1335 #endif
1336 
1337   if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
1338   if (!dst->is_array() || !src->is_array()) return ac_failed;
1339   if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
1340   if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
1341 
1342   if (length == 0) return ac_ok;
1343   if (src->is_typeArray()) {
1344     Klass* klass_oop = src->klass();
1345     if (klass_oop != dst->klass()) return ac_failed;
1346     TypeArrayKlass* klass = TypeArrayKlass::cast(klass_oop);
1347     const int l2es = klass->log2_element_size();
1348     const int ihs = klass->array_header_in_bytes() / wordSize;
1349     char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
1350     char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
1351     // Potential problem: memmove is not guaranteed to be word atomic
1352     // Revisit in Merlin
1353     memmove(dst_addr, src_addr, length << l2es);
1354     return ac_ok;
1355   } else if (src->is_objArray() && dst->is_objArray()) {
1356     if (UseCompressedOops) {
1357       narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
1358       narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
1359       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1360     } else {
1361       oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
1362       oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
1363       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1364     }
1365   }
1366   return ac_failed;
1367 JRT_END
1368 
1369 
1370 JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
1371 #ifndef PRODUCT
1372   _primitive_arraycopy_cnt++;
1373 #endif
1374 
1375   if (length == 0) return;
1376   // Not guaranteed to be word atomic, but that doesn't matter
1377   // for anything but an oop array, which is covered by oop_arraycopy.
1378   Copy::conjoint_jbytes(src, dst, length);
1379 JRT_END
1380 
1381 JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
1382 #ifndef PRODUCT
1383   _oop_arraycopy_cnt++;
1384 #endif
1385 
1386   if (num == 0) return;
1387   BarrierSet* bs = Universe::heap()->barrier_set();
1388   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1389   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1390   if (UseCompressedOops) {
1391     bs->write_ref_array_pre((narrowOop*)dst, num);
1392     Copy::conjoint_oops_atomic((narrowOop*) src, (narrowOop*) dst, num);
1393   } else {
1394     bs->write_ref_array_pre((oop*)dst, num);
1395     Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
1396   }
1397   bs->write_ref_array(dst, num);
1398 JRT_END
1399 
1400 
1401 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1402   // had to return int instead of bool, otherwise there may be a mismatch
1403   // between the C calling convention and the Java one.
1404   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1405   // JVM takes the whole %eax as the return value, which may misinterpret
1406   // the return value as a boolean true.
1407 
1408   assert(mirror != NULL, "should null-check on mirror before calling");
1409   Klass* k = java_lang_Class::as_Klass(mirror);
1410   return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
1411 JRT_END
1412 
1413 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* thread))
1414   ResourceMark rm;
1415 
1416   assert(!TieredCompilation, "incompatible with tiered compilation");
1417 
1418   RegisterMap reg_map(thread, false);
1419   frame runtime_frame = thread->last_frame();
1420   frame caller_frame = runtime_frame.sender(&reg_map);
1421 
1422   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1423   assert (nm != NULL, "no more nmethod?");
1424   nm->make_not_entrant();
1425 
1426   methodHandle m(nm->method());
1427   MethodData* mdo = m->method_data();
1428 
1429   if (mdo == NULL && !HAS_PENDING_EXCEPTION) {
1430     // Build an MDO.  Ignore errors like OutOfMemory;
1431     // that simply means we won't have an MDO to update.
1432     Method::build_interpreter_method_data(m, THREAD);
1433     if (HAS_PENDING_EXCEPTION) {
1434       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1435       CLEAR_PENDING_EXCEPTION;
1436     }
1437     mdo = m->method_data();
1438   }
1439 
1440   if (mdo != NULL) {
1441     mdo->inc_trap_count(Deoptimization::Reason_none);
1442   }
1443 
1444   if (TracePredicateFailedTraps) {
1445     stringStream ss1, ss2;
1446     vframeStream vfst(thread);
1447     methodHandle inlinee = methodHandle(vfst.method());
1448     inlinee->print_short_name(&ss1);
1449     m->print_short_name(&ss2);
1450     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc()));
1451   }
1452 
1453 
1454   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1455 
1456 JRT_END
1457 
1458 #ifndef PRODUCT
1459 void Runtime1::print_statistics() {
1460   tty->print_cr("C1 Runtime statistics:");
1461   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1462   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1463   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1464   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1465   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1466   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
1467   tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
1468   tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_cnt);
1469   tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_cnt);
1470   tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_cnt);
1471   tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_cnt);
1472   tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
1473   tty->print_cr(" _oop_arraycopy_cnt (C):          %d", Runtime1::_oop_arraycopy_cnt);
1474   tty->print_cr(" _oop_arraycopy_cnt (stub):       %d", _oop_arraycopy_cnt);
1475   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1476   tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
1477   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
1478 
1479   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1480   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1481   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1482   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1483   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1484   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1485   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1486 
1487   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1488   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1489   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1490   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1491   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1492   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1493   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
1494   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1495 
1496   SharedRuntime::print_ic_miss_histogram();
1497   tty->cr();
1498 }
1499 #endif // PRODUCT