1 /* 2 * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/codeBuffer.hpp" 27 #include "c1/c1_CodeStubs.hpp" 28 #include "c1/c1_Defs.hpp" 29 #include "c1/c1_FrameMap.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_MacroAssembler.hpp" 32 #include "c1/c1_Runtime1.hpp" 33 #include "classfile/systemDictionary.hpp" 34 #include "classfile/vmSymbols.hpp" 35 #include "code/codeBlob.hpp" 36 #include "code/compiledIC.hpp" 37 #include "code/pcDesc.hpp" 38 #include "code/scopeDesc.hpp" 39 #include "code/vtableStubs.hpp" 40 #include "compiler/disassembler.hpp" 41 #include "gc_interface/collectedHeap.hpp" 42 #include "interpreter/bytecode.hpp" 43 #include "interpreter/interpreter.hpp" 44 #include "jfr/support/jfrIntrinsics.hpp" 45 #include "memory/allocation.inline.hpp" 46 #include "memory/barrierSet.hpp" 47 #include "memory/oopFactory.hpp" 48 #include "memory/resourceArea.hpp" 49 #include "oops/objArrayKlass.hpp" 50 #include "oops/oop.inline.hpp" 51 #include "runtime/biasedLocking.hpp" 52 #include "runtime/compilationPolicy.hpp" 53 #include "runtime/interfaceSupport.hpp" 54 #include "runtime/javaCalls.hpp" 55 #include "runtime/sharedRuntime.hpp" 56 #include "runtime/threadCritical.hpp" 57 #include "runtime/vframe.hpp" 58 #include "runtime/vframeArray.hpp" 59 #include "utilities/copy.hpp" 60 #include "utilities/events.hpp" 61 #include "utilities/macros.hpp" 62 #if INCLUDE_ALL_GCS 63 #include "gc_implementation/shenandoah/shenandoahBarrierSet.inline.hpp" 64 #endif 65 66 // Implementation of StubAssembler 67 68 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) { 69 _name = name; 70 _must_gc_arguments = false; 71 _frame_size = no_frame_size; 72 _num_rt_args = 0; 73 _stub_id = stub_id; 74 } 75 76 77 void StubAssembler::set_info(const char* name, bool must_gc_arguments) { 78 _name = name; 79 _must_gc_arguments = must_gc_arguments; 80 } 81 82 83 void StubAssembler::set_frame_size(int size) { 84 if (_frame_size == no_frame_size) { 85 _frame_size = size; 86 } 87 assert(_frame_size == size, "can't change the frame size"); 88 } 89 90 91 void StubAssembler::set_num_rt_args(int args) { 92 if (_num_rt_args == 0) { 93 _num_rt_args = args; 94 } 95 assert(_num_rt_args == args, "can't change the number of args"); 96 } 97 98 // Implementation of Runtime1 99 100 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids]; 101 const char *Runtime1::_blob_names[] = { 102 RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME) 103 }; 104 105 #ifndef PRODUCT 106 // statistics 107 int Runtime1::_generic_arraycopy_cnt = 0; 108 int Runtime1::_primitive_arraycopy_cnt = 0; 109 int Runtime1::_oop_arraycopy_cnt = 0; 110 int Runtime1::_generic_arraycopystub_cnt = 0; 111 int Runtime1::_arraycopy_slowcase_cnt = 0; 112 int Runtime1::_arraycopy_checkcast_cnt = 0; 113 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0; 114 int Runtime1::_new_type_array_slowcase_cnt = 0; 115 int Runtime1::_new_object_array_slowcase_cnt = 0; 116 int Runtime1::_new_instance_slowcase_cnt = 0; 117 int Runtime1::_new_multi_array_slowcase_cnt = 0; 118 int Runtime1::_monitorenter_slowcase_cnt = 0; 119 int Runtime1::_monitorexit_slowcase_cnt = 0; 120 int Runtime1::_patch_code_slowcase_cnt = 0; 121 int Runtime1::_throw_range_check_exception_count = 0; 122 int Runtime1::_throw_index_exception_count = 0; 123 int Runtime1::_throw_div0_exception_count = 0; 124 int Runtime1::_throw_null_pointer_exception_count = 0; 125 int Runtime1::_throw_class_cast_exception_count = 0; 126 int Runtime1::_throw_incompatible_class_change_error_count = 0; 127 int Runtime1::_throw_array_store_exception_count = 0; 128 int Runtime1::_throw_count = 0; 129 130 static int _byte_arraycopy_cnt = 0; 131 static int _short_arraycopy_cnt = 0; 132 static int _int_arraycopy_cnt = 0; 133 static int _long_arraycopy_cnt = 0; 134 static int _oop_arraycopy_cnt = 0; 135 136 address Runtime1::arraycopy_count_address(BasicType type) { 137 switch (type) { 138 case T_BOOLEAN: 139 case T_BYTE: return (address)&_byte_arraycopy_cnt; 140 case T_CHAR: 141 case T_SHORT: return (address)&_short_arraycopy_cnt; 142 case T_FLOAT: 143 case T_INT: return (address)&_int_arraycopy_cnt; 144 case T_DOUBLE: 145 case T_LONG: return (address)&_long_arraycopy_cnt; 146 case T_ARRAY: 147 case T_OBJECT: return (address)&_oop_arraycopy_cnt; 148 default: 149 ShouldNotReachHere(); 150 return NULL; 151 } 152 } 153 154 155 #endif 156 157 // Simple helper to see if the caller of a runtime stub which 158 // entered the VM has been deoptimized 159 160 static bool caller_is_deopted() { 161 JavaThread* thread = JavaThread::current(); 162 RegisterMap reg_map(thread, false); 163 frame runtime_frame = thread->last_frame(); 164 frame caller_frame = runtime_frame.sender(®_map); 165 assert(caller_frame.is_compiled_frame(), "must be compiled"); 166 return caller_frame.is_deoptimized_frame(); 167 } 168 169 // Stress deoptimization 170 static void deopt_caller() { 171 if ( !caller_is_deopted()) { 172 JavaThread* thread = JavaThread::current(); 173 RegisterMap reg_map(thread, false); 174 frame runtime_frame = thread->last_frame(); 175 frame caller_frame = runtime_frame.sender(®_map); 176 Deoptimization::deoptimize_frame(thread, caller_frame.id()); 177 assert(caller_is_deopted(), "Must be deoptimized"); 178 } 179 } 180 181 182 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) { 183 assert(0 <= id && id < number_of_ids, "illegal stub id"); 184 ResourceMark rm; 185 // create code buffer for code storage 186 CodeBuffer code(buffer_blob); 187 188 Compilation::setup_code_buffer(&code, 0); 189 190 // create assembler for code generation 191 StubAssembler* sasm = new StubAssembler(&code, name_for(id), id); 192 // generate code for runtime stub 193 OopMapSet* oop_maps; 194 oop_maps = generate_code_for(id, sasm); 195 assert(oop_maps == NULL || sasm->frame_size() != no_frame_size, 196 "if stub has an oop map it must have a valid frame size"); 197 198 #ifdef ASSERT 199 // Make sure that stubs that need oopmaps have them 200 switch (id) { 201 // These stubs don't need to have an oopmap 202 case dtrace_object_alloc_id: 203 case g1_pre_barrier_slow_id: 204 case g1_post_barrier_slow_id: 205 case shenandoah_lrb_slow_id: 206 case slow_subtype_check_id: 207 case fpu2long_stub_id: 208 case unwind_exception_id: 209 case counter_overflow_id: 210 #if defined(SPARC) || defined(PPC) 211 case handle_exception_nofpu_id: // Unused on sparc 212 #endif 213 break; 214 215 // All other stubs should have oopmaps 216 default: 217 assert(oop_maps != NULL, "must have an oopmap"); 218 } 219 #endif 220 221 // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned) 222 sasm->align(BytesPerWord); 223 // make sure all code is in code buffer 224 sasm->flush(); 225 // create blob - distinguish a few special cases 226 CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id), 227 &code, 228 CodeOffsets::frame_never_safe, 229 sasm->frame_size(), 230 oop_maps, 231 sasm->must_gc_arguments()); 232 // install blob 233 assert(blob != NULL, "blob must exist"); 234 _blobs[id] = blob; 235 } 236 237 238 void Runtime1::initialize(BufferBlob* blob) { 239 // platform-dependent initialization 240 initialize_pd(); 241 // generate stubs 242 for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id); 243 // printing 244 #ifndef PRODUCT 245 if (PrintSimpleStubs) { 246 ResourceMark rm; 247 for (int id = 0; id < number_of_ids; id++) { 248 _blobs[id]->print(); 249 if (_blobs[id]->oop_maps() != NULL) { 250 _blobs[id]->oop_maps()->print(); 251 } 252 } 253 } 254 #endif 255 } 256 257 258 CodeBlob* Runtime1::blob_for(StubID id) { 259 assert(0 <= id && id < number_of_ids, "illegal stub id"); 260 return _blobs[id]; 261 } 262 263 264 const char* Runtime1::name_for(StubID id) { 265 assert(0 <= id && id < number_of_ids, "illegal stub id"); 266 return _blob_names[id]; 267 } 268 269 const char* Runtime1::name_for_address(address entry) { 270 for (int id = 0; id < number_of_ids; id++) { 271 if (entry == entry_for((StubID)id)) return name_for((StubID)id); 272 } 273 274 #define FUNCTION_CASE(a, f) \ 275 if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f)) return #f 276 277 FUNCTION_CASE(entry, os::javaTimeMillis); 278 FUNCTION_CASE(entry, os::javaTimeNanos); 279 FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end); 280 FUNCTION_CASE(entry, SharedRuntime::d2f); 281 FUNCTION_CASE(entry, SharedRuntime::d2i); 282 FUNCTION_CASE(entry, SharedRuntime::d2l); 283 FUNCTION_CASE(entry, SharedRuntime::dcos); 284 FUNCTION_CASE(entry, SharedRuntime::dexp); 285 FUNCTION_CASE(entry, SharedRuntime::dlog); 286 FUNCTION_CASE(entry, SharedRuntime::dlog10); 287 FUNCTION_CASE(entry, SharedRuntime::dpow); 288 FUNCTION_CASE(entry, SharedRuntime::drem); 289 FUNCTION_CASE(entry, SharedRuntime::dsin); 290 FUNCTION_CASE(entry, SharedRuntime::dtan); 291 FUNCTION_CASE(entry, SharedRuntime::f2i); 292 FUNCTION_CASE(entry, SharedRuntime::f2l); 293 FUNCTION_CASE(entry, SharedRuntime::frem); 294 FUNCTION_CASE(entry, SharedRuntime::l2d); 295 FUNCTION_CASE(entry, SharedRuntime::l2f); 296 FUNCTION_CASE(entry, SharedRuntime::ldiv); 297 FUNCTION_CASE(entry, SharedRuntime::lmul); 298 FUNCTION_CASE(entry, SharedRuntime::lrem); 299 FUNCTION_CASE(entry, SharedRuntime::lrem); 300 FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry); 301 FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit); 302 FUNCTION_CASE(entry, is_instance_of); 303 FUNCTION_CASE(entry, trace_block_entry); 304 #ifdef JFR_HAVE_INTRINSICS 305 FUNCTION_CASE(entry, JFR_TIME_FUNCTION); 306 #endif 307 FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32()); 308 309 #undef FUNCTION_CASE 310 311 // Soft float adds more runtime names. 312 return pd_name_for_address(entry); 313 } 314 315 316 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, Klass* klass)) 317 NOT_PRODUCT(_new_instance_slowcase_cnt++;) 318 319 assert(klass->is_klass(), "not a class"); 320 Handle holder(THREAD, klass->klass_holder()); // keep the klass alive 321 instanceKlassHandle h(thread, klass); 322 h->check_valid_for_instantiation(true, CHECK); 323 // make sure klass is initialized 324 h->initialize(CHECK); 325 // allocate instance and return via TLS 326 oop obj = h->allocate_instance(CHECK); 327 thread->set_vm_result(obj); 328 JRT_END 329 330 331 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, Klass* klass, jint length)) 332 NOT_PRODUCT(_new_type_array_slowcase_cnt++;) 333 // Note: no handle for klass needed since they are not used 334 // anymore after new_typeArray() and no GC can happen before. 335 // (This may have to change if this code changes!) 336 assert(klass->is_klass(), "not a class"); 337 BasicType elt_type = TypeArrayKlass::cast(klass)->element_type(); 338 oop obj = oopFactory::new_typeArray(elt_type, length, CHECK); 339 thread->set_vm_result(obj); 340 // This is pretty rare but this runtime patch is stressful to deoptimization 341 // if we deoptimize here so force a deopt to stress the path. 342 if (DeoptimizeALot) { 343 deopt_caller(); 344 } 345 346 JRT_END 347 348 349 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, Klass* array_klass, jint length)) 350 NOT_PRODUCT(_new_object_array_slowcase_cnt++;) 351 352 // Note: no handle for klass needed since they are not used 353 // anymore after new_objArray() and no GC can happen before. 354 // (This may have to change if this code changes!) 355 assert(array_klass->is_klass(), "not a class"); 356 Handle holder(THREAD, array_klass->klass_holder()); // keep the klass alive 357 Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass(); 358 objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK); 359 thread->set_vm_result(obj); 360 // This is pretty rare but this runtime patch is stressful to deoptimization 361 // if we deoptimize here so force a deopt to stress the path. 362 if (DeoptimizeALot) { 363 deopt_caller(); 364 } 365 JRT_END 366 367 368 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims)) 369 NOT_PRODUCT(_new_multi_array_slowcase_cnt++;) 370 371 assert(klass->is_klass(), "not a class"); 372 assert(rank >= 1, "rank must be nonzero"); 373 Handle holder(THREAD, klass->klass_holder()); // keep the klass alive 374 oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK); 375 thread->set_vm_result(obj); 376 JRT_END 377 378 379 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id)) 380 tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id); 381 JRT_END 382 383 384 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj)) 385 ResourceMark rm(thread); 386 const char* klass_name = obj->klass()->external_name(); 387 SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name); 388 JRT_END 389 390 391 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method 392 // associated with the top activation record. The inlinee (that is possibly included in the enclosing 393 // method) method oop is passed as an argument. In order to do that it is embedded in the code as 394 // a constant. 395 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, Method* m) { 396 nmethod* osr_nm = NULL; 397 methodHandle method(THREAD, m); 398 399 RegisterMap map(THREAD, false); 400 frame fr = THREAD->last_frame().sender(&map); 401 nmethod* nm = (nmethod*) fr.cb(); 402 assert(nm!= NULL && nm->is_nmethod(), "Sanity check"); 403 methodHandle enclosing_method(THREAD, nm->method()); 404 405 CompLevel level = (CompLevel)nm->comp_level(); 406 int bci = InvocationEntryBci; 407 if (branch_bci != InvocationEntryBci) { 408 // Compute desination bci 409 address pc = method()->code_base() + branch_bci; 410 Bytecodes::Code branch = Bytecodes::code_at(method(), pc); 411 int offset = 0; 412 switch (branch) { 413 case Bytecodes::_if_icmplt: case Bytecodes::_iflt: 414 case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt: 415 case Bytecodes::_if_icmple: case Bytecodes::_ifle: 416 case Bytecodes::_if_icmpge: case Bytecodes::_ifge: 417 case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq: 418 case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne: 419 case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto: 420 offset = (int16_t)Bytes::get_Java_u2(pc + 1); 421 break; 422 case Bytecodes::_goto_w: 423 offset = Bytes::get_Java_u4(pc + 1); 424 break; 425 default: ; 426 } 427 bci = branch_bci + offset; 428 } 429 assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending"); 430 osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD); 431 assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions"); 432 return osr_nm; 433 } 434 435 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, Method* method)) 436 nmethod* osr_nm; 437 JRT_BLOCK 438 osr_nm = counter_overflow_helper(thread, bci, method); 439 if (osr_nm != NULL) { 440 RegisterMap map(thread, false); 441 frame fr = thread->last_frame().sender(&map); 442 Deoptimization::deoptimize_frame(thread, fr.id()); 443 } 444 JRT_BLOCK_END 445 return NULL; 446 JRT_END 447 448 extern void vm_exit(int code); 449 450 // Enter this method from compiled code handler below. This is where we transition 451 // to VM mode. This is done as a helper routine so that the method called directly 452 // from compiled code does not have to transition to VM. This allows the entry 453 // method to see if the nmethod that we have just looked up a handler for has 454 // been deoptimized while we were in the vm. This simplifies the assembly code 455 // cpu directories. 456 // 457 // We are entering here from exception stub (via the entry method below) 458 // If there is a compiled exception handler in this method, we will continue there; 459 // otherwise we will unwind the stack and continue at the caller of top frame method 460 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to 461 // control the area where we can allow a safepoint. After we exit the safepoint area we can 462 // check to see if the handler we are going to return is now in a nmethod that has 463 // been deoptimized. If that is the case we return the deopt blob 464 // unpack_with_exception entry instead. This makes life for the exception blob easier 465 // because making that same check and diverting is painful from assembly language. 466 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm)) 467 // Reset method handle flag. 468 thread->set_is_method_handle_return(false); 469 470 Handle exception(thread, ex); 471 nm = CodeCache::find_nmethod(pc); 472 assert(nm != NULL, "this is not an nmethod"); 473 // Adjust the pc as needed/ 474 if (nm->is_deopt_pc(pc)) { 475 RegisterMap map(thread, false); 476 frame exception_frame = thread->last_frame().sender(&map); 477 // if the frame isn't deopted then pc must not correspond to the caller of last_frame 478 assert(exception_frame.is_deoptimized_frame(), "must be deopted"); 479 pc = exception_frame.pc(); 480 } 481 #ifdef ASSERT 482 assert(exception.not_null(), "NULL exceptions should be handled by throw_exception"); 483 assert(exception->is_oop(), "just checking"); 484 // Check that exception is a subclass of Throwable, otherwise we have a VerifyError 485 if (!(exception->is_a(SystemDictionary::Throwable_klass()))) { 486 if (ExitVMOnVerifyError) vm_exit(-1); 487 ShouldNotReachHere(); 488 } 489 #endif 490 491 // Check the stack guard pages and reenable them if necessary and there is 492 // enough space on the stack to do so. Use fast exceptions only if the guard 493 // pages are enabled. 494 bool guard_pages_enabled = thread->stack_yellow_zone_enabled(); 495 if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack(); 496 497 if (JvmtiExport::can_post_on_exceptions()) { 498 // To ensure correct notification of exception catches and throws 499 // we have to deoptimize here. If we attempted to notify the 500 // catches and throws during this exception lookup it's possible 501 // we could deoptimize on the way out of the VM and end back in 502 // the interpreter at the throw site. This would result in double 503 // notifications since the interpreter would also notify about 504 // these same catches and throws as it unwound the frame. 505 506 RegisterMap reg_map(thread); 507 frame stub_frame = thread->last_frame(); 508 frame caller_frame = stub_frame.sender(®_map); 509 510 // We don't really want to deoptimize the nmethod itself since we 511 // can actually continue in the exception handler ourselves but I 512 // don't see an easy way to have the desired effect. 513 Deoptimization::deoptimize_frame(thread, caller_frame.id()); 514 assert(caller_is_deopted(), "Must be deoptimized"); 515 516 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 517 } 518 519 // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions 520 if (guard_pages_enabled) { 521 address fast_continuation = nm->handler_for_exception_and_pc(exception, pc); 522 if (fast_continuation != NULL) { 523 // Set flag if return address is a method handle call site. 524 thread->set_is_method_handle_return(nm->is_method_handle_return(pc)); 525 return fast_continuation; 526 } 527 } 528 529 // If the stack guard pages are enabled, check whether there is a handler in 530 // the current method. Otherwise (guard pages disabled), force an unwind and 531 // skip the exception cache update (i.e., just leave continuation==NULL). 532 address continuation = NULL; 533 if (guard_pages_enabled) { 534 535 // New exception handling mechanism can support inlined methods 536 // with exception handlers since the mappings are from PC to PC 537 538 // debugging support 539 // tracing 540 if (TraceExceptions) { 541 ttyLocker ttyl; 542 ResourceMark rm; 543 tty->print_cr("Exception <%s> (" INTPTR_FORMAT ") thrown in compiled method <%s> at PC " INTPTR_FORMAT " for thread " INTPTR_FORMAT "", 544 exception->print_value_string(), p2i((address)exception()), nm->method()->print_value_string(), p2i(pc), p2i(thread)); 545 } 546 // for AbortVMOnException flag 547 NOT_PRODUCT(Exceptions::debug_check_abort(exception)); 548 549 // Clear out the exception oop and pc since looking up an 550 // exception handler can cause class loading, which might throw an 551 // exception and those fields are expected to be clear during 552 // normal bytecode execution. 553 thread->clear_exception_oop_and_pc(); 554 555 bool recursive_exception = false; 556 continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception); 557 // If an exception was thrown during exception dispatch, the exception oop may have changed 558 thread->set_exception_oop(exception()); 559 thread->set_exception_pc(pc); 560 561 // the exception cache is used only by non-implicit exceptions 562 // Update the exception cache only when there didn't happen 563 // another exception during the computation of the compiled 564 // exception handler. Checking for exception oop equality is not 565 // sufficient because some exceptions are pre-allocated and reused. 566 if (continuation != NULL && !recursive_exception) { 567 nm->add_handler_for_exception_and_pc(exception, pc, continuation); 568 } 569 } 570 571 thread->set_vm_result(exception()); 572 // Set flag if return address is a method handle call site. 573 thread->set_is_method_handle_return(nm->is_method_handle_return(pc)); 574 575 if (TraceExceptions) { 576 ttyLocker ttyl; 577 ResourceMark rm; 578 tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT, 579 p2i(thread), p2i(continuation), p2i(pc)); 580 } 581 582 return continuation; 583 JRT_END 584 585 // Enter this method from compiled code only if there is a Java exception handler 586 // in the method handling the exception. 587 // We are entering here from exception stub. We don't do a normal VM transition here. 588 // We do it in a helper. This is so we can check to see if the nmethod we have just 589 // searched for an exception handler has been deoptimized in the meantime. 590 address Runtime1::exception_handler_for_pc(JavaThread* thread) { 591 oop exception = thread->exception_oop(); 592 address pc = thread->exception_pc(); 593 // Still in Java mode 594 DEBUG_ONLY(ResetNoHandleMark rnhm); 595 nmethod* nm = NULL; 596 address continuation = NULL; 597 { 598 // Enter VM mode by calling the helper 599 ResetNoHandleMark rnhm; 600 continuation = exception_handler_for_pc_helper(thread, exception, pc, nm); 601 } 602 // Back in JAVA, use no oops DON'T safepoint 603 604 // Now check to see if the nmethod we were called from is now deoptimized. 605 // If so we must return to the deopt blob and deoptimize the nmethod 606 if (nm != NULL && caller_is_deopted()) { 607 continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 608 } 609 610 assert(continuation != NULL, "no handler found"); 611 return continuation; 612 } 613 614 615 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index)) 616 NOT_PRODUCT(_throw_range_check_exception_count++;) 617 char message[jintAsStringSize]; 618 sprintf(message, "%d", index); 619 SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message); 620 JRT_END 621 622 623 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index)) 624 NOT_PRODUCT(_throw_index_exception_count++;) 625 char message[16]; 626 sprintf(message, "%d", index); 627 SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message); 628 JRT_END 629 630 631 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread)) 632 NOT_PRODUCT(_throw_div0_exception_count++;) 633 SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 634 JRT_END 635 636 637 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread)) 638 NOT_PRODUCT(_throw_null_pointer_exception_count++;) 639 SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException()); 640 JRT_END 641 642 643 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object)) 644 NOT_PRODUCT(_throw_class_cast_exception_count++;) 645 ResourceMark rm(thread); 646 char* message = SharedRuntime::generate_class_cast_message( 647 thread, object->klass()->external_name()); 648 SharedRuntime::throw_and_post_jvmti_exception( 649 thread, vmSymbols::java_lang_ClassCastException(), message); 650 JRT_END 651 652 653 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread)) 654 NOT_PRODUCT(_throw_incompatible_class_change_error_count++;) 655 ResourceMark rm(thread); 656 SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError()); 657 JRT_END 658 659 660 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock)) 661 NOT_PRODUCT(_monitorenter_slowcase_cnt++;) 662 if (PrintBiasedLockingStatistics) { 663 Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); 664 } 665 Handle h_obj(thread, obj); 666 assert(h_obj()->is_oop(), "must be NULL or an object"); 667 if (UseBiasedLocking) { 668 // Retry fast entry if bias is revoked to avoid unnecessary inflation 669 ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK); 670 } else { 671 if (UseFastLocking) { 672 // When using fast locking, the compiled code has already tried the fast case 673 assert(obj == lock->obj(), "must match"); 674 ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD); 675 } else { 676 lock->set_obj(obj); 677 ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD); 678 } 679 } 680 JRT_END 681 682 683 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock)) 684 NOT_PRODUCT(_monitorexit_slowcase_cnt++;) 685 assert(thread == JavaThread::current(), "threads must correspond"); 686 assert(thread->last_Java_sp(), "last_Java_sp must be set"); 687 // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown 688 EXCEPTION_MARK; 689 690 oop obj = lock->obj(); 691 assert(obj->is_oop(), "must be NULL or an object"); 692 if (UseFastLocking) { 693 // When using fast locking, the compiled code has already tried the fast case 694 ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD); 695 } else { 696 ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD); 697 } 698 JRT_END 699 700 // Cf. OptoRuntime::deoptimize_caller_frame 701 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread)) 702 // Called from within the owner thread, so no need for safepoint 703 RegisterMap reg_map(thread, false); 704 frame stub_frame = thread->last_frame(); 705 assert(stub_frame.is_runtime_frame(), "sanity check"); 706 frame caller_frame = stub_frame.sender(®_map); 707 708 // We are coming from a compiled method; check this is true. 709 assert(CodeCache::find_nmethod(caller_frame.pc()) != NULL, "sanity"); 710 711 // Deoptimize the caller frame. 712 Deoptimization::deoptimize_frame(thread, caller_frame.id()); 713 714 // Return to the now deoptimized frame. 715 JRT_END 716 717 718 static Klass* resolve_field_return_klass(methodHandle caller, int bci, TRAPS) { 719 Bytecode_field field_access(caller, bci); 720 // This can be static or non-static field access 721 Bytecodes::Code code = field_access.code(); 722 723 // We must load class, initialize class and resolvethe field 724 fieldDescriptor result; // initialize class if needed 725 constantPoolHandle constants(THREAD, caller->constants()); 726 LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK_NULL); 727 return result.field_holder(); 728 } 729 730 731 // 732 // This routine patches sites where a class wasn't loaded or 733 // initialized at the time the code was generated. It handles 734 // references to classes, fields and forcing of initialization. Most 735 // of the cases are straightforward and involving simply forcing 736 // resolution of a class, rewriting the instruction stream with the 737 // needed constant and replacing the call in this function with the 738 // patched code. The case for static field is more complicated since 739 // the thread which is in the process of initializing a class can 740 // access it's static fields but other threads can't so the code 741 // either has to deoptimize when this case is detected or execute a 742 // check that the current thread is the initializing thread. The 743 // current 744 // 745 // Patches basically look like this: 746 // 747 // 748 // patch_site: jmp patch stub ;; will be patched 749 // continue: ... 750 // ... 751 // ... 752 // ... 753 // 754 // They have a stub which looks like this: 755 // 756 // ;; patch body 757 // movl <const>, reg (for class constants) 758 // <or> movl [reg1 + <const>], reg (for field offsets) 759 // <or> movl reg, [reg1 + <const>] (for field offsets) 760 // <being_init offset> <bytes to copy> <bytes to skip> 761 // patch_stub: call Runtime1::patch_code (through a runtime stub) 762 // jmp patch_site 763 // 764 // 765 // A normal patch is done by rewriting the patch body, usually a move, 766 // and then copying it into place over top of the jmp instruction 767 // being careful to flush caches and doing it in an MP-safe way. The 768 // constants following the patch body are used to find various pieces 769 // of the patch relative to the call site for Runtime1::patch_code. 770 // The case for getstatic and putstatic is more complicated because 771 // getstatic and putstatic have special semantics when executing while 772 // the class is being initialized. getstatic/putstatic on a class 773 // which is being_initialized may be executed by the initializing 774 // thread but other threads have to block when they execute it. This 775 // is accomplished in compiled code by executing a test of the current 776 // thread against the initializing thread of the class. It's emitted 777 // as boilerplate in their stub which allows the patched code to be 778 // executed before it's copied back into the main body of the nmethod. 779 // 780 // being_init: get_thread(<tmp reg> 781 // cmpl [reg1 + <init_thread_offset>], <tmp reg> 782 // jne patch_stub 783 // movl [reg1 + <const>], reg (for field offsets) <or> 784 // movl reg, [reg1 + <const>] (for field offsets) 785 // jmp continue 786 // <being_init offset> <bytes to copy> <bytes to skip> 787 // patch_stub: jmp Runtim1::patch_code (through a runtime stub) 788 // jmp patch_site 789 // 790 // If the class is being initialized the patch body is rewritten and 791 // the patch site is rewritten to jump to being_init, instead of 792 // patch_stub. Whenever this code is executed it checks the current 793 // thread against the intializing thread so other threads will enter 794 // the runtime and end up blocked waiting the class to finish 795 // initializing inside the calls to resolve_field below. The 796 // initializing class will continue on it's way. Once the class is 797 // fully_initialized, the intializing_thread of the class becomes 798 // NULL, so the next thread to execute this code will fail the test, 799 // call into patch_code and complete the patching process by copying 800 // the patch body back into the main part of the nmethod and resume 801 // executing. 802 // 803 // 804 805 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id )) 806 NOT_PRODUCT(_patch_code_slowcase_cnt++;) 807 808 #ifdef AARCH64 809 // AArch64 does not patch C1-generated code. 810 ShouldNotReachHere(); 811 #endif 812 813 ResourceMark rm(thread); 814 RegisterMap reg_map(thread, false); 815 frame runtime_frame = thread->last_frame(); 816 frame caller_frame = runtime_frame.sender(®_map); 817 818 // last java frame on stack 819 vframeStream vfst(thread, true); 820 assert(!vfst.at_end(), "Java frame must exist"); 821 822 methodHandle caller_method(THREAD, vfst.method()); 823 // Note that caller_method->code() may not be same as caller_code because of OSR's 824 // Note also that in the presence of inlining it is not guaranteed 825 // that caller_method() == caller_code->method() 826 827 int bci = vfst.bci(); 828 Bytecodes::Code code = caller_method()->java_code_at(bci); 829 830 #ifndef PRODUCT 831 // this is used by assertions in the access_field_patching_id 832 BasicType patch_field_type = T_ILLEGAL; 833 #endif // PRODUCT 834 bool deoptimize_for_volatile = false; 835 int patch_field_offset = -1; 836 KlassHandle init_klass(THREAD, NULL); // klass needed by load_klass_patching code 837 KlassHandle load_klass(THREAD, NULL); // klass needed by load_klass_patching code 838 Handle mirror(THREAD, NULL); // oop needed by load_mirror_patching code 839 Handle appendix(THREAD, NULL); // oop needed by appendix_patching code 840 bool load_klass_or_mirror_patch_id = 841 (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id); 842 843 if (stub_id == Runtime1::access_field_patching_id) { 844 845 Bytecode_field field_access(caller_method, bci); 846 fieldDescriptor result; // initialize class if needed 847 Bytecodes::Code code = field_access.code(); 848 constantPoolHandle constants(THREAD, caller_method->constants()); 849 LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK); 850 patch_field_offset = result.offset(); 851 852 // If we're patching a field which is volatile then at compile it 853 // must not have been know to be volatile, so the generated code 854 // isn't correct for a volatile reference. The nmethod has to be 855 // deoptimized so that the code can be regenerated correctly. 856 // This check is only needed for access_field_patching since this 857 // is the path for patching field offsets. load_klass is only 858 // used for patching references to oops which don't need special 859 // handling in the volatile case. 860 deoptimize_for_volatile = result.access_flags().is_volatile(); 861 862 #ifndef PRODUCT 863 patch_field_type = result.field_type(); 864 #endif 865 } else if (load_klass_or_mirror_patch_id) { 866 Klass* k = NULL; 867 switch (code) { 868 case Bytecodes::_putstatic: 869 case Bytecodes::_getstatic: 870 { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK); 871 init_klass = KlassHandle(THREAD, klass); 872 mirror = Handle(THREAD, klass->java_mirror()); 873 } 874 break; 875 case Bytecodes::_new: 876 { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci)); 877 k = caller_method->constants()->klass_at(bnew.index(), CHECK); 878 } 879 break; 880 case Bytecodes::_multianewarray: 881 { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci)); 882 k = caller_method->constants()->klass_at(mna.index(), CHECK); 883 } 884 break; 885 case Bytecodes::_instanceof: 886 { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci)); 887 k = caller_method->constants()->klass_at(io.index(), CHECK); 888 } 889 break; 890 case Bytecodes::_checkcast: 891 { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci)); 892 k = caller_method->constants()->klass_at(cc.index(), CHECK); 893 } 894 break; 895 case Bytecodes::_anewarray: 896 { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci)); 897 Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK); 898 k = ek->array_klass(CHECK); 899 } 900 break; 901 case Bytecodes::_ldc: 902 case Bytecodes::_ldc_w: 903 { 904 Bytecode_loadconstant cc(caller_method, bci); 905 oop m = cc.resolve_constant(CHECK); 906 mirror = Handle(THREAD, m); 907 } 908 break; 909 default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id"); 910 } 911 // convert to handle 912 load_klass = KlassHandle(THREAD, k); 913 } else if (stub_id == load_appendix_patching_id) { 914 Bytecode_invoke bytecode(caller_method, bci); 915 Bytecodes::Code bc = bytecode.invoke_code(); 916 917 CallInfo info; 918 constantPoolHandle pool(thread, caller_method->constants()); 919 int index = bytecode.index(); 920 LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK); 921 appendix = info.resolved_appendix(); 922 switch (bc) { 923 case Bytecodes::_invokehandle: { 924 int cache_index = ConstantPool::decode_cpcache_index(index, true); 925 assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index"); 926 pool->cache()->entry_at(cache_index)->set_method_handle(pool, info); 927 break; 928 } 929 case Bytecodes::_invokedynamic: { 930 pool->invokedynamic_cp_cache_entry_at(index)->set_dynamic_call(pool, info); 931 break; 932 } 933 default: fatal("unexpected bytecode for load_appendix_patching_id"); 934 } 935 } else { 936 ShouldNotReachHere(); 937 } 938 939 if (deoptimize_for_volatile) { 940 // At compile time we assumed the field wasn't volatile but after 941 // loading it turns out it was volatile so we have to throw the 942 // compiled code out and let it be regenerated. 943 if (TracePatching) { 944 tty->print_cr("Deoptimizing for patching volatile field reference"); 945 } 946 // It's possible the nmethod was invalidated in the last 947 // safepoint, but if it's still alive then make it not_entrant. 948 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 949 if (nm != NULL) { 950 nm->make_not_entrant(); 951 } 952 953 Deoptimization::deoptimize_frame(thread, caller_frame.id()); 954 955 // Return to the now deoptimized frame. 956 } 957 958 // Now copy code back 959 { 960 MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag); 961 // 962 // Deoptimization may have happened while we waited for the lock. 963 // In that case we don't bother to do any patching we just return 964 // and let the deopt happen 965 if (!caller_is_deopted()) { 966 NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc()); 967 address instr_pc = jump->jump_destination(); 968 NativeInstruction* ni = nativeInstruction_at(instr_pc); 969 if (ni->is_jump() ) { 970 // the jump has not been patched yet 971 // The jump destination is slow case and therefore not part of the stubs 972 // (stubs are only for StaticCalls) 973 974 // format of buffer 975 // .... 976 // instr byte 0 <-- copy_buff 977 // instr byte 1 978 // .. 979 // instr byte n-1 980 // n 981 // .... <-- call destination 982 983 address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset(); 984 unsigned char* byte_count = (unsigned char*) (stub_location - 1); 985 unsigned char* byte_skip = (unsigned char*) (stub_location - 2); 986 unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3); 987 address copy_buff = stub_location - *byte_skip - *byte_count; 988 address being_initialized_entry = stub_location - *being_initialized_entry_offset; 989 if (TracePatching) { 990 ttyLocker ttyl; 991 tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT " (%s)", Bytecodes::name(code), bci, 992 p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass"); 993 nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc()); 994 assert(caller_code != NULL, "nmethod not found"); 995 996 // NOTE we use pc() not original_pc() because we already know they are 997 // identical otherwise we'd have never entered this block of code 998 999 OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc()); 1000 assert(map != NULL, "null check"); 1001 map->print(); 1002 tty->cr(); 1003 1004 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1005 } 1006 // depending on the code below, do_patch says whether to copy the patch body back into the nmethod 1007 bool do_patch = true; 1008 if (stub_id == Runtime1::access_field_patching_id) { 1009 // The offset may not be correct if the class was not loaded at code generation time. 1010 // Set it now. 1011 NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff); 1012 assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type"); 1013 assert(patch_field_offset >= 0, "illegal offset"); 1014 n_move->add_offset_in_bytes(patch_field_offset); 1015 } else if (load_klass_or_mirror_patch_id) { 1016 // If a getstatic or putstatic is referencing a klass which 1017 // isn't fully initialized, the patch body isn't copied into 1018 // place until initialization is complete. In this case the 1019 // patch site is setup so that any threads besides the 1020 // initializing thread are forced to come into the VM and 1021 // block. 1022 do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) || 1023 InstanceKlass::cast(init_klass())->is_initialized(); 1024 NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc); 1025 if (jump->jump_destination() == being_initialized_entry) { 1026 assert(do_patch == true, "initialization must be complete at this point"); 1027 } else { 1028 // patch the instruction <move reg, klass> 1029 NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff); 1030 1031 assert(n_copy->data() == 0 || 1032 n_copy->data() == (intptr_t)Universe::non_oop_word(), 1033 "illegal init value"); 1034 if (stub_id == Runtime1::load_klass_patching_id) { 1035 assert(load_klass() != NULL, "klass not set"); 1036 n_copy->set_data((intx) (load_klass())); 1037 } else { 1038 assert(mirror() != NULL, "klass not set"); 1039 // Don't need a G1 pre-barrier here since we assert above that data isn't an oop. 1040 n_copy->set_data(cast_from_oop<intx>(mirror())); 1041 } 1042 1043 if (TracePatching) { 1044 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1045 } 1046 } 1047 } else if (stub_id == Runtime1::load_appendix_patching_id) { 1048 NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff); 1049 assert(n_copy->data() == 0 || 1050 n_copy->data() == (intptr_t)Universe::non_oop_word(), 1051 "illegal init value"); 1052 n_copy->set_data(cast_from_oop<intx>(appendix())); 1053 1054 if (TracePatching) { 1055 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1056 } 1057 } else { 1058 ShouldNotReachHere(); 1059 } 1060 1061 #if defined(SPARC) || defined(PPC) 1062 if (load_klass_or_mirror_patch_id || 1063 stub_id == Runtime1::load_appendix_patching_id) { 1064 // Update the location in the nmethod with the proper 1065 // metadata. When the code was generated, a NULL was stuffed 1066 // in the metadata table and that table needs to be update to 1067 // have the right value. On intel the value is kept 1068 // directly in the instruction instead of in the metadata 1069 // table, so set_data above effectively updated the value. 1070 nmethod* nm = CodeCache::find_nmethod(instr_pc); 1071 assert(nm != NULL, "invalid nmethod_pc"); 1072 RelocIterator mds(nm, copy_buff, copy_buff + 1); 1073 bool found = false; 1074 while (mds.next() && !found) { 1075 if (mds.type() == relocInfo::oop_type) { 1076 assert(stub_id == Runtime1::load_mirror_patching_id || 1077 stub_id == Runtime1::load_appendix_patching_id, "wrong stub id"); 1078 oop_Relocation* r = mds.oop_reloc(); 1079 oop* oop_adr = r->oop_addr(); 1080 *oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix(); 1081 r->fix_oop_relocation(); 1082 found = true; 1083 } else if (mds.type() == relocInfo::metadata_type) { 1084 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id"); 1085 metadata_Relocation* r = mds.metadata_reloc(); 1086 Metadata** metadata_adr = r->metadata_addr(); 1087 *metadata_adr = load_klass(); 1088 r->fix_metadata_relocation(); 1089 found = true; 1090 } 1091 } 1092 assert(found, "the metadata must exist!"); 1093 } 1094 #endif 1095 if (do_patch) { 1096 // replace instructions 1097 // first replace the tail, then the call 1098 #ifdef ARM 1099 if((load_klass_or_mirror_patch_id || 1100 stub_id == Runtime1::load_appendix_patching_id) && 1101 nativeMovConstReg_at(copy_buff)->is_pc_relative()) { 1102 nmethod* nm = CodeCache::find_nmethod(instr_pc); 1103 address addr = NULL; 1104 assert(nm != NULL, "invalid nmethod_pc"); 1105 RelocIterator mds(nm, copy_buff, copy_buff + 1); 1106 while (mds.next()) { 1107 if (mds.type() == relocInfo::oop_type) { 1108 assert(stub_id == Runtime1::load_mirror_patching_id || 1109 stub_id == Runtime1::load_appendix_patching_id, "wrong stub id"); 1110 oop_Relocation* r = mds.oop_reloc(); 1111 addr = (address)r->oop_addr(); 1112 break; 1113 } else if (mds.type() == relocInfo::metadata_type) { 1114 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id"); 1115 metadata_Relocation* r = mds.metadata_reloc(); 1116 addr = (address)r->metadata_addr(); 1117 break; 1118 } 1119 } 1120 assert(addr != NULL, "metadata relocation must exist"); 1121 copy_buff -= *byte_count; 1122 NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff); 1123 n_copy2->set_pc_relative_offset(addr, instr_pc); 1124 } 1125 #endif 1126 1127 for (int i = NativeCall::instruction_size; i < *byte_count; i++) { 1128 address ptr = copy_buff + i; 1129 int a_byte = (*ptr) & 0xFF; 1130 address dst = instr_pc + i; 1131 *(unsigned char*)dst = (unsigned char) a_byte; 1132 } 1133 ICache::invalidate_range(instr_pc, *byte_count); 1134 NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff); 1135 1136 if (load_klass_or_mirror_patch_id || 1137 stub_id == Runtime1::load_appendix_patching_id) { 1138 relocInfo::relocType rtype = 1139 (stub_id == Runtime1::load_klass_patching_id) ? 1140 relocInfo::metadata_type : 1141 relocInfo::oop_type; 1142 // update relocInfo to metadata 1143 nmethod* nm = CodeCache::find_nmethod(instr_pc); 1144 assert(nm != NULL, "invalid nmethod_pc"); 1145 1146 // The old patch site is now a move instruction so update 1147 // the reloc info so that it will get updated during 1148 // future GCs. 1149 RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1)); 1150 relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc, 1151 relocInfo::none, rtype); 1152 #ifdef SPARC 1153 // Sparc takes two relocations for an metadata so update the second one. 1154 address instr_pc2 = instr_pc + NativeMovConstReg::add_offset; 1155 RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1); 1156 relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2, 1157 relocInfo::none, rtype); 1158 #endif 1159 #ifdef PPC 1160 { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset; 1161 RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1); 1162 relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2, 1163 relocInfo::none, rtype); 1164 } 1165 #endif 1166 } 1167 1168 } else { 1169 ICache::invalidate_range(copy_buff, *byte_count); 1170 NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry); 1171 } 1172 } 1173 } 1174 } 1175 1176 // If we are patching in a non-perm oop, make sure the nmethod 1177 // is on the right list. 1178 if (ScavengeRootsInCode && ((mirror.not_null() && mirror()->is_scavengable()) || 1179 (appendix.not_null() && appendix->is_scavengable()))) { 1180 MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag); 1181 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1182 guarantee(nm != NULL, "only nmethods can contain non-perm oops"); 1183 if (!nm->on_scavenge_root_list()) { 1184 CodeCache::add_scavenge_root_nmethod(nm); 1185 } 1186 1187 // Since we've patched some oops in the nmethod, 1188 // (re)register it with the heap. 1189 Universe::heap()->register_nmethod(nm); 1190 } 1191 JRT_END 1192 1193 // 1194 // Entry point for compiled code. We want to patch a nmethod. 1195 // We don't do a normal VM transition here because we want to 1196 // know after the patching is complete and any safepoint(s) are taken 1197 // if the calling nmethod was deoptimized. We do this by calling a 1198 // helper method which does the normal VM transition and when it 1199 // completes we can check for deoptimization. This simplifies the 1200 // assembly code in the cpu directories. 1201 // 1202 #ifndef TARGET_ARCH_aarch64 1203 int Runtime1::move_klass_patching(JavaThread* thread) { 1204 // 1205 // NOTE: we are still in Java 1206 // 1207 Thread* THREAD = thread; 1208 debug_only(NoHandleMark nhm;) 1209 { 1210 // Enter VM mode 1211 1212 ResetNoHandleMark rnhm; 1213 patch_code(thread, load_klass_patching_id); 1214 } 1215 // Back in JAVA, use no oops DON'T safepoint 1216 1217 // Return true if calling code is deoptimized 1218 1219 return caller_is_deopted(); 1220 } 1221 1222 int Runtime1::move_mirror_patching(JavaThread* thread) { 1223 // 1224 // NOTE: we are still in Java 1225 // 1226 Thread* THREAD = thread; 1227 debug_only(NoHandleMark nhm;) 1228 { 1229 // Enter VM mode 1230 1231 ResetNoHandleMark rnhm; 1232 patch_code(thread, load_mirror_patching_id); 1233 } 1234 // Back in JAVA, use no oops DON'T safepoint 1235 1236 // Return true if calling code is deoptimized 1237 1238 return caller_is_deopted(); 1239 } 1240 1241 int Runtime1::move_appendix_patching(JavaThread* thread) { 1242 // 1243 // NOTE: we are still in Java 1244 // 1245 Thread* THREAD = thread; 1246 debug_only(NoHandleMark nhm;) 1247 { 1248 // Enter VM mode 1249 1250 ResetNoHandleMark rnhm; 1251 patch_code(thread, load_appendix_patching_id); 1252 } 1253 // Back in JAVA, use no oops DON'T safepoint 1254 1255 // Return true if calling code is deoptimized 1256 1257 return caller_is_deopted(); 1258 } 1259 // 1260 // Entry point for compiled code. We want to patch a nmethod. 1261 // We don't do a normal VM transition here because we want to 1262 // know after the patching is complete and any safepoint(s) are taken 1263 // if the calling nmethod was deoptimized. We do this by calling a 1264 // helper method which does the normal VM transition and when it 1265 // completes we can check for deoptimization. This simplifies the 1266 // assembly code in the cpu directories. 1267 // 1268 1269 int Runtime1::access_field_patching(JavaThread* thread) { 1270 // 1271 // NOTE: we are still in Java 1272 // 1273 Thread* THREAD = thread; 1274 debug_only(NoHandleMark nhm;) 1275 { 1276 // Enter VM mode 1277 1278 ResetNoHandleMark rnhm; 1279 patch_code(thread, access_field_patching_id); 1280 } 1281 // Back in JAVA, use no oops DON'T safepoint 1282 1283 // Return true if calling code is deoptimized 1284 1285 return caller_is_deopted(); 1286 JRT_END 1287 #endif 1288 1289 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id)) 1290 // for now we just print out the block id 1291 tty->print("%d ", block_id); 1292 JRT_END 1293 1294 1295 // Array copy return codes. 1296 enum { 1297 ac_failed = -1, // arraycopy failed 1298 ac_ok = 0 // arraycopy succeeded 1299 }; 1300 1301 1302 // Below length is the # elements copied. 1303 template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr, 1304 oopDesc* dst, T* dst_addr, 1305 int length) { 1306 1307 // For performance reasons, we assume we are using a card marking write 1308 // barrier. The assert will fail if this is not the case. 1309 // Note that we use the non-virtual inlineable variant of write_ref_array. 1310 BarrierSet* bs = Universe::heap()->barrier_set(); 1311 assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt"); 1312 assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well."); 1313 1314 #if INCLUDE_ALL_GCS 1315 if (UseShenandoahGC) { 1316 ShenandoahBarrierSet::barrier_set()->arraycopy_barrier(src_addr, dst_addr, length); 1317 } 1318 #endif 1319 1320 if (src == dst) { 1321 // same object, no check 1322 bs->write_ref_array_pre(dst_addr, length); 1323 Copy::conjoint_oops_atomic(src_addr, dst_addr, length); 1324 bs->write_ref_array((HeapWord*)dst_addr, length); 1325 return ac_ok; 1326 } else { 1327 Klass* bound = ObjArrayKlass::cast(dst->klass())->element_klass(); 1328 Klass* stype = ObjArrayKlass::cast(src->klass())->element_klass(); 1329 if (stype == bound || stype->is_subtype_of(bound)) { 1330 // Elements are guaranteed to be subtypes, so no check necessary 1331 bs->write_ref_array_pre(dst_addr, length); 1332 Copy::conjoint_oops_atomic(src_addr, dst_addr, length); 1333 bs->write_ref_array((HeapWord*)dst_addr, length); 1334 return ac_ok; 1335 } 1336 } 1337 return ac_failed; 1338 } 1339 1340 // fast and direct copy of arrays; returning -1, means that an exception may be thrown 1341 // and we did not copy anything 1342 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length)) 1343 #ifndef PRODUCT 1344 _generic_arraycopy_cnt++; // Slow-path oop array copy 1345 #endif 1346 1347 if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed; 1348 if (!dst->is_array() || !src->is_array()) return ac_failed; 1349 if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed; 1350 if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed; 1351 1352 if (length == 0) return ac_ok; 1353 if (src->is_typeArray()) { 1354 Klass* klass_oop = src->klass(); 1355 if (klass_oop != dst->klass()) return ac_failed; 1356 TypeArrayKlass* klass = TypeArrayKlass::cast(klass_oop); 1357 const int l2es = klass->log2_element_size(); 1358 const int ihs = klass->array_header_in_bytes() / wordSize; 1359 char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es); 1360 char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es); 1361 // Potential problem: memmove is not guaranteed to be word atomic 1362 // Revisit in Merlin 1363 memmove(dst_addr, src_addr, length << l2es); 1364 return ac_ok; 1365 } else if (src->is_objArray() && dst->is_objArray()) { 1366 if (UseCompressedOops) { 1367 narrowOop *src_addr = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos); 1368 narrowOop *dst_addr = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos); 1369 return obj_arraycopy_work(src, src_addr, dst, dst_addr, length); 1370 } else { 1371 oop *src_addr = objArrayOop(src)->obj_at_addr<oop>(src_pos); 1372 oop *dst_addr = objArrayOop(dst)->obj_at_addr<oop>(dst_pos); 1373 return obj_arraycopy_work(src, src_addr, dst, dst_addr, length); 1374 } 1375 } 1376 return ac_failed; 1377 JRT_END 1378 1379 1380 JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length)) 1381 #ifndef PRODUCT 1382 _primitive_arraycopy_cnt++; 1383 #endif 1384 1385 if (length == 0) return; 1386 // Not guaranteed to be word atomic, but that doesn't matter 1387 // for anything but an oop array, which is covered by oop_arraycopy. 1388 Copy::conjoint_jbytes(src, dst, length); 1389 JRT_END 1390 1391 JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num)) 1392 #ifndef PRODUCT 1393 _oop_arraycopy_cnt++; 1394 #endif 1395 1396 if (num == 0) return; 1397 BarrierSet* bs = Universe::heap()->barrier_set(); 1398 assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt"); 1399 assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well."); 1400 if (UseCompressedOops) { 1401 bs->write_ref_array_pre((narrowOop*)dst, num); 1402 Copy::conjoint_oops_atomic((narrowOop*) src, (narrowOop*) dst, num); 1403 } else { 1404 bs->write_ref_array_pre((oop*)dst, num); 1405 Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num); 1406 } 1407 bs->write_ref_array(dst, num); 1408 JRT_END 1409 1410 1411 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj)) 1412 // had to return int instead of bool, otherwise there may be a mismatch 1413 // between the C calling convention and the Java one. 1414 // e.g., on x86, GCC may clear only %al when returning a bool false, but 1415 // JVM takes the whole %eax as the return value, which may misinterpret 1416 // the return value as a boolean true. 1417 1418 assert(mirror != NULL, "should null-check on mirror before calling"); 1419 Klass* k = java_lang_Class::as_Klass(mirror); 1420 return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0; 1421 JRT_END 1422 1423 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* thread)) 1424 ResourceMark rm; 1425 1426 assert(!TieredCompilation, "incompatible with tiered compilation"); 1427 1428 RegisterMap reg_map(thread, false); 1429 frame runtime_frame = thread->last_frame(); 1430 frame caller_frame = runtime_frame.sender(®_map); 1431 1432 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1433 assert (nm != NULL, "no more nmethod?"); 1434 nm->make_not_entrant(); 1435 1436 methodHandle m(nm->method()); 1437 MethodData* mdo = m->method_data(); 1438 1439 if (mdo == NULL && !HAS_PENDING_EXCEPTION) { 1440 // Build an MDO. Ignore errors like OutOfMemory; 1441 // that simply means we won't have an MDO to update. 1442 Method::build_interpreter_method_data(m, THREAD); 1443 if (HAS_PENDING_EXCEPTION) { 1444 assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here"); 1445 CLEAR_PENDING_EXCEPTION; 1446 } 1447 mdo = m->method_data(); 1448 } 1449 1450 if (mdo != NULL) { 1451 mdo->inc_trap_count(Deoptimization::Reason_none); 1452 } 1453 1454 if (TracePredicateFailedTraps) { 1455 stringStream ss1, ss2; 1456 vframeStream vfst(thread); 1457 methodHandle inlinee = methodHandle(vfst.method()); 1458 inlinee->print_short_name(&ss1); 1459 m->print_short_name(&ss2); 1460 tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc())); 1461 } 1462 1463 1464 Deoptimization::deoptimize_frame(thread, caller_frame.id()); 1465 1466 JRT_END 1467 1468 #ifndef PRODUCT 1469 void Runtime1::print_statistics() { 1470 tty->print_cr("C1 Runtime statistics:"); 1471 tty->print_cr(" _resolve_invoke_virtual_cnt: %d", SharedRuntime::_resolve_virtual_ctr); 1472 tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr); 1473 tty->print_cr(" _resolve_invoke_static_cnt: %d", SharedRuntime::_resolve_static_ctr); 1474 tty->print_cr(" _handle_wrong_method_cnt: %d", SharedRuntime::_wrong_method_ctr); 1475 tty->print_cr(" _ic_miss_cnt: %d", SharedRuntime::_ic_miss_ctr); 1476 tty->print_cr(" _generic_arraycopy_cnt: %d", _generic_arraycopy_cnt); 1477 tty->print_cr(" _generic_arraycopystub_cnt: %d", _generic_arraycopystub_cnt); 1478 tty->print_cr(" _byte_arraycopy_cnt: %d", _byte_arraycopy_cnt); 1479 tty->print_cr(" _short_arraycopy_cnt: %d", _short_arraycopy_cnt); 1480 tty->print_cr(" _int_arraycopy_cnt: %d", _int_arraycopy_cnt); 1481 tty->print_cr(" _long_arraycopy_cnt: %d", _long_arraycopy_cnt); 1482 tty->print_cr(" _primitive_arraycopy_cnt: %d", _primitive_arraycopy_cnt); 1483 tty->print_cr(" _oop_arraycopy_cnt (C): %d", Runtime1::_oop_arraycopy_cnt); 1484 tty->print_cr(" _oop_arraycopy_cnt (stub): %d", _oop_arraycopy_cnt); 1485 tty->print_cr(" _arraycopy_slowcase_cnt: %d", _arraycopy_slowcase_cnt); 1486 tty->print_cr(" _arraycopy_checkcast_cnt: %d", _arraycopy_checkcast_cnt); 1487 tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt); 1488 1489 tty->print_cr(" _new_type_array_slowcase_cnt: %d", _new_type_array_slowcase_cnt); 1490 tty->print_cr(" _new_object_array_slowcase_cnt: %d", _new_object_array_slowcase_cnt); 1491 tty->print_cr(" _new_instance_slowcase_cnt: %d", _new_instance_slowcase_cnt); 1492 tty->print_cr(" _new_multi_array_slowcase_cnt: %d", _new_multi_array_slowcase_cnt); 1493 tty->print_cr(" _monitorenter_slowcase_cnt: %d", _monitorenter_slowcase_cnt); 1494 tty->print_cr(" _monitorexit_slowcase_cnt: %d", _monitorexit_slowcase_cnt); 1495 tty->print_cr(" _patch_code_slowcase_cnt: %d", _patch_code_slowcase_cnt); 1496 1497 tty->print_cr(" _throw_range_check_exception_count: %d:", _throw_range_check_exception_count); 1498 tty->print_cr(" _throw_index_exception_count: %d:", _throw_index_exception_count); 1499 tty->print_cr(" _throw_div0_exception_count: %d:", _throw_div0_exception_count); 1500 tty->print_cr(" _throw_null_pointer_exception_count: %d:", _throw_null_pointer_exception_count); 1501 tty->print_cr(" _throw_class_cast_exception_count: %d:", _throw_class_cast_exception_count); 1502 tty->print_cr(" _throw_incompatible_class_change_error_count: %d:", _throw_incompatible_class_change_error_count); 1503 tty->print_cr(" _throw_array_store_exception_count: %d:", _throw_array_store_exception_count); 1504 tty->print_cr(" _throw_count: %d:", _throw_count); 1505 1506 SharedRuntime::print_ic_miss_histogram(); 1507 tty->cr(); 1508 } 1509 #endif // PRODUCT