1 /* 2 * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "ci/bcEscapeAnalyzer.hpp" 27 #include "compiler/compileLog.hpp" 28 #include "libadt/vectset.hpp" 29 #include "memory/allocation.hpp" 30 #include "opto/c2compiler.hpp" 31 #include "opto/callnode.hpp" 32 #include "opto/cfgnode.hpp" 33 #include "opto/compile.hpp" 34 #include "opto/escape.hpp" 35 #include "opto/phaseX.hpp" 36 #include "opto/rootnode.hpp" 37 38 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) : 39 _nodes(C->comp_arena(), C->unique(), C->unique(), NULL), 40 _in_worklist(C->comp_arena()), 41 _next_pidx(0), 42 _collecting(true), 43 _verify(false), 44 _compile(C), 45 _igvn(igvn), 46 _node_map(C->comp_arena()) { 47 // Add unknown java object. 48 add_java_object(C->top(), PointsToNode::GlobalEscape); 49 phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject(); 50 // Add ConP(#NULL) and ConN(#NULL) nodes. 51 Node* oop_null = igvn->zerocon(T_OBJECT); 52 assert(oop_null->_idx < nodes_size(), "should be created already"); 53 add_java_object(oop_null, PointsToNode::NoEscape); 54 null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject(); 55 if (UseCompressedOops) { 56 Node* noop_null = igvn->zerocon(T_NARROWOOP); 57 assert(noop_null->_idx < nodes_size(), "should be created already"); 58 map_ideal_node(noop_null, null_obj); 59 } 60 _pcmp_neq = NULL; // Should be initialized 61 _pcmp_eq = NULL; 62 } 63 64 bool ConnectionGraph::has_candidates(Compile *C) { 65 // EA brings benefits only when the code has allocations and/or locks which 66 // are represented by ideal Macro nodes. 67 int cnt = C->macro_count(); 68 for (int i = 0; i < cnt; i++) { 69 Node *n = C->macro_node(i); 70 if (n->is_Allocate()) 71 return true; 72 if (n->is_Lock()) { 73 Node* obj = n->as_Lock()->obj_node()->uncast(); 74 if (!(obj->is_Parm() || obj->is_Con())) 75 return true; 76 } 77 if (n->is_CallStaticJava() && 78 n->as_CallStaticJava()->is_boxing_method()) { 79 return true; 80 } 81 } 82 return false; 83 } 84 85 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) { 86 Compile::TracePhase t2("escapeAnalysis", &Phase::_t_escapeAnalysis, true); 87 ResourceMark rm; 88 89 // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction 90 // to create space for them in ConnectionGraph::_nodes[]. 91 Node* oop_null = igvn->zerocon(T_OBJECT); 92 Node* noop_null = igvn->zerocon(T_NARROWOOP); 93 ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn); 94 // Perform escape analysis 95 if (congraph->compute_escape()) { 96 // There are non escaping objects. 97 C->set_congraph(congraph); 98 } 99 // Cleanup. 100 if (oop_null->outcnt() == 0) 101 igvn->hash_delete(oop_null); 102 if (noop_null->outcnt() == 0) 103 igvn->hash_delete(noop_null); 104 } 105 106 bool ConnectionGraph::compute_escape() { 107 Compile* C = _compile; 108 PhaseGVN* igvn = _igvn; 109 110 // Worklists used by EA. 111 Unique_Node_List delayed_worklist; 112 GrowableArray<Node*> alloc_worklist; 113 GrowableArray<Node*> ptr_cmp_worklist; 114 GrowableArray<Node*> storestore_worklist; 115 GrowableArray<PointsToNode*> ptnodes_worklist; 116 GrowableArray<JavaObjectNode*> java_objects_worklist; 117 GrowableArray<JavaObjectNode*> non_escaped_worklist; 118 GrowableArray<FieldNode*> oop_fields_worklist; 119 DEBUG_ONLY( GrowableArray<Node*> addp_worklist; ) 120 121 { Compile::TracePhase t3("connectionGraph", &Phase::_t_connectionGraph, true); 122 123 // 1. Populate Connection Graph (CG) with PointsTo nodes. 124 ideal_nodes.map(C->live_nodes(), NULL); // preallocate space 125 // Initialize worklist 126 if (C->root() != NULL) { 127 ideal_nodes.push(C->root()); 128 } 129 // Processed ideal nodes are unique on ideal_nodes list 130 // but several ideal nodes are mapped to the phantom_obj. 131 // To avoid duplicated entries on the following worklists 132 // add the phantom_obj only once to them. 133 ptnodes_worklist.append(phantom_obj); 134 java_objects_worklist.append(phantom_obj); 135 for( uint next = 0; next < ideal_nodes.size(); ++next ) { 136 Node* n = ideal_nodes.at(next); 137 // Create PointsTo nodes and add them to Connection Graph. Called 138 // only once per ideal node since ideal_nodes is Unique_Node list. 139 add_node_to_connection_graph(n, &delayed_worklist); 140 PointsToNode* ptn = ptnode_adr(n->_idx); 141 if (ptn != NULL && ptn != phantom_obj) { 142 ptnodes_worklist.append(ptn); 143 if (ptn->is_JavaObject()) { 144 java_objects_worklist.append(ptn->as_JavaObject()); 145 if ((n->is_Allocate() || n->is_CallStaticJava()) && 146 (ptn->escape_state() < PointsToNode::GlobalEscape)) { 147 // Only allocations and java static calls results are interesting. 148 non_escaped_worklist.append(ptn->as_JavaObject()); 149 } 150 } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) { 151 oop_fields_worklist.append(ptn->as_Field()); 152 } 153 } 154 if (n->is_MergeMem()) { 155 // Collect all MergeMem nodes to add memory slices for 156 // scalar replaceable objects in split_unique_types(). 157 _mergemem_worklist.append(n->as_MergeMem()); 158 } else if (OptimizePtrCompare && n->is_Cmp() && 159 (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) { 160 // Collect compare pointers nodes. 161 ptr_cmp_worklist.append(n); 162 } else if (n->is_MemBarStoreStore()) { 163 // Collect all MemBarStoreStore nodes so that depending on the 164 // escape status of the associated Allocate node some of them 165 // may be eliminated. 166 storestore_worklist.append(n); 167 } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) && 168 (n->req() > MemBarNode::Precedent)) { 169 record_for_optimizer(n); 170 #ifdef ASSERT 171 } else if (n->is_AddP()) { 172 // Collect address nodes for graph verification. 173 addp_worklist.append(n); 174 #endif 175 } 176 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 177 Node* m = n->fast_out(i); // Get user 178 ideal_nodes.push(m); 179 } 180 } 181 if (non_escaped_worklist.length() == 0) { 182 _collecting = false; 183 return false; // Nothing to do. 184 } 185 // Add final simple edges to graph. 186 while(delayed_worklist.size() > 0) { 187 Node* n = delayed_worklist.pop(); 188 add_final_edges(n); 189 } 190 int ptnodes_length = ptnodes_worklist.length(); 191 192 #ifdef ASSERT 193 if (VerifyConnectionGraph) { 194 // Verify that no new simple edges could be created and all 195 // local vars has edges. 196 _verify = true; 197 for (int next = 0; next < ptnodes_length; ++next) { 198 PointsToNode* ptn = ptnodes_worklist.at(next); 199 add_final_edges(ptn->ideal_node()); 200 if (ptn->is_LocalVar() && ptn->edge_count() == 0) { 201 ptn->dump(); 202 assert(ptn->as_LocalVar()->edge_count() > 0, "sanity"); 203 } 204 } 205 _verify = false; 206 } 207 #endif 208 // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes 209 // processing, calls to CI to resolve symbols (types, fields, methods) 210 // referenced in bytecode. During symbol resolution VM may throw 211 // an exception which CI cleans and converts to compilation failure. 212 if (C->failing()) return false; 213 214 // 2. Finish Graph construction by propagating references to all 215 // java objects through graph. 216 if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist, 217 java_objects_worklist, oop_fields_worklist)) { 218 // All objects escaped or hit time or iterations limits. 219 _collecting = false; 220 return false; 221 } 222 223 // 3. Adjust scalar_replaceable state of nonescaping objects and push 224 // scalar replaceable allocations on alloc_worklist for processing 225 // in split_unique_types(). 226 int non_escaped_length = non_escaped_worklist.length(); 227 for (int next = 0; next < non_escaped_length; next++) { 228 JavaObjectNode* ptn = non_escaped_worklist.at(next); 229 bool noescape = (ptn->escape_state() == PointsToNode::NoEscape); 230 Node* n = ptn->ideal_node(); 231 if (n->is_Allocate()) { 232 n->as_Allocate()->_is_non_escaping = noescape; 233 } 234 if (n->is_CallStaticJava()) { 235 n->as_CallStaticJava()->_is_non_escaping = noescape; 236 } 237 if (noescape && ptn->scalar_replaceable()) { 238 adjust_scalar_replaceable_state(ptn); 239 if (ptn->scalar_replaceable()) { 240 alloc_worklist.append(ptn->ideal_node()); 241 } 242 } 243 } 244 245 #ifdef ASSERT 246 if (VerifyConnectionGraph) { 247 // Verify that graph is complete - no new edges could be added or needed. 248 verify_connection_graph(ptnodes_worklist, non_escaped_worklist, 249 java_objects_worklist, addp_worklist); 250 } 251 assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build"); 252 assert(null_obj->escape_state() == PointsToNode::NoEscape && 253 null_obj->edge_count() == 0 && 254 !null_obj->arraycopy_src() && 255 !null_obj->arraycopy_dst(), "sanity"); 256 #endif 257 258 _collecting = false; 259 260 } // TracePhase t3("connectionGraph") 261 262 // 4. Optimize ideal graph based on EA information. 263 bool has_non_escaping_obj = (non_escaped_worklist.length() > 0); 264 if (has_non_escaping_obj) { 265 optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist); 266 } 267 268 #ifndef PRODUCT 269 if (PrintEscapeAnalysis) { 270 dump(ptnodes_worklist); // Dump ConnectionGraph 271 } 272 #endif 273 274 bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0); 275 #ifdef ASSERT 276 if (VerifyConnectionGraph) { 277 int alloc_length = alloc_worklist.length(); 278 for (int next = 0; next < alloc_length; ++next) { 279 Node* n = alloc_worklist.at(next); 280 PointsToNode* ptn = ptnode_adr(n->_idx); 281 assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity"); 282 } 283 } 284 #endif 285 286 // 5. Separate memory graph for scalar replaceable allcations. 287 if (has_scalar_replaceable_candidates && 288 C->AliasLevel() >= 3 && EliminateAllocations) { 289 // Now use the escape information to create unique types for 290 // scalar replaceable objects. 291 split_unique_types(alloc_worklist); 292 if (C->failing()) return false; 293 C->print_method(PHASE_AFTER_EA, 2); 294 295 #ifdef ASSERT 296 } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) { 297 tty->print("=== No allocations eliminated for "); 298 C->method()->print_short_name(); 299 if(!EliminateAllocations) { 300 tty->print(" since EliminateAllocations is off ==="); 301 } else if(!has_scalar_replaceable_candidates) { 302 tty->print(" since there are no scalar replaceable candidates ==="); 303 } else if(C->AliasLevel() < 3) { 304 tty->print(" since AliasLevel < 3 ==="); 305 } 306 tty->cr(); 307 #endif 308 } 309 return has_non_escaping_obj; 310 } 311 312 // Utility function for nodes that load an object 313 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) { 314 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because 315 // ThreadLocal has RawPtr type. 316 const Type* t = _igvn->type(n); 317 if (t->make_ptr() != NULL) { 318 Node* adr = n->in(MemNode::Address); 319 #ifdef ASSERT 320 if (!adr->is_AddP()) { 321 assert(_igvn->type(adr)->isa_rawptr(), "sanity"); 322 } else { 323 assert((ptnode_adr(adr->_idx) == NULL || 324 ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity"); 325 } 326 #endif 327 add_local_var_and_edge(n, PointsToNode::NoEscape, 328 adr, delayed_worklist); 329 } 330 } 331 332 // Populate Connection Graph with PointsTo nodes and create simple 333 // connection graph edges. 334 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) { 335 assert(!_verify, "this method sould not be called for verification"); 336 PhaseGVN* igvn = _igvn; 337 uint n_idx = n->_idx; 338 PointsToNode* n_ptn = ptnode_adr(n_idx); 339 if (n_ptn != NULL) 340 return; // No need to redefine PointsTo node during first iteration. 341 342 if (n->is_Call()) { 343 // Arguments to allocation and locking don't escape. 344 if (n->is_AbstractLock()) { 345 // Put Lock and Unlock nodes on IGVN worklist to process them during 346 // first IGVN optimization when escape information is still available. 347 record_for_optimizer(n); 348 } else if (n->is_Allocate()) { 349 add_call_node(n->as_Call()); 350 record_for_optimizer(n); 351 } else { 352 if (n->is_CallStaticJava()) { 353 const char* name = n->as_CallStaticJava()->_name; 354 if (name != NULL && strcmp(name, "uncommon_trap") == 0) 355 return; // Skip uncommon traps 356 } 357 // Don't mark as processed since call's arguments have to be processed. 358 delayed_worklist->push(n); 359 // Check if a call returns an object. 360 if ((n->as_Call()->returns_pointer() && 361 n->as_Call()->proj_out(TypeFunc::Parms) != NULL) || 362 (n->is_CallStaticJava() && 363 n->as_CallStaticJava()->is_boxing_method())) { 364 add_call_node(n->as_Call()); 365 } 366 } 367 return; 368 } 369 // Put this check here to process call arguments since some call nodes 370 // point to phantom_obj. 371 if (n_ptn == phantom_obj || n_ptn == null_obj) 372 return; // Skip predefined nodes. 373 374 int opcode = n->Opcode(); 375 switch (opcode) { 376 case Op_AddP: { 377 Node* base = get_addp_base(n); 378 PointsToNode* ptn_base = ptnode_adr(base->_idx); 379 // Field nodes are created for all field types. They are used in 380 // adjust_scalar_replaceable_state() and split_unique_types(). 381 // Note, non-oop fields will have only base edges in Connection 382 // Graph because such fields are not used for oop loads and stores. 383 int offset = address_offset(n, igvn); 384 add_field(n, PointsToNode::NoEscape, offset); 385 if (ptn_base == NULL) { 386 delayed_worklist->push(n); // Process it later. 387 } else { 388 n_ptn = ptnode_adr(n_idx); 389 add_base(n_ptn->as_Field(), ptn_base); 390 } 391 break; 392 } 393 case Op_CastX2P: { 394 map_ideal_node(n, phantom_obj); 395 break; 396 } 397 case Op_CastPP: 398 case Op_CheckCastPP: 399 case Op_EncodeP: 400 case Op_DecodeN: 401 case Op_EncodePKlass: 402 case Op_DecodeNKlass: { 403 add_local_var_and_edge(n, PointsToNode::NoEscape, 404 n->in(1), delayed_worklist); 405 break; 406 } 407 case Op_CMoveP: { 408 add_local_var(n, PointsToNode::NoEscape); 409 // Do not add edges during first iteration because some could be 410 // not defined yet. 411 delayed_worklist->push(n); 412 break; 413 } 414 case Op_ConP: 415 case Op_ConN: 416 case Op_ConNKlass: { 417 // assume all oop constants globally escape except for null 418 PointsToNode::EscapeState es; 419 const Type* t = igvn->type(n); 420 if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) { 421 es = PointsToNode::NoEscape; 422 } else { 423 es = PointsToNode::GlobalEscape; 424 } 425 add_java_object(n, es); 426 break; 427 } 428 case Op_CreateEx: { 429 // assume that all exception objects globally escape 430 map_ideal_node(n, phantom_obj); 431 break; 432 } 433 case Op_LoadKlass: 434 case Op_LoadNKlass: { 435 // Unknown class is loaded 436 map_ideal_node(n, phantom_obj); 437 break; 438 } 439 case Op_LoadP: 440 case Op_LoadN: 441 case Op_LoadPLocked: { 442 add_objload_to_connection_graph(n, delayed_worklist); 443 break; 444 } 445 case Op_Parm: { 446 map_ideal_node(n, phantom_obj); 447 break; 448 } 449 case Op_PartialSubtypeCheck: { 450 // Produces Null or notNull and is used in only in CmpP so 451 // phantom_obj could be used. 452 map_ideal_node(n, phantom_obj); // Result is unknown 453 break; 454 } 455 case Op_Phi: { 456 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because 457 // ThreadLocal has RawPtr type. 458 const Type* t = n->as_Phi()->type(); 459 if (t->make_ptr() != NULL) { 460 add_local_var(n, PointsToNode::NoEscape); 461 // Do not add edges during first iteration because some could be 462 // not defined yet. 463 delayed_worklist->push(n); 464 } 465 break; 466 } 467 case Op_Proj: { 468 // we are only interested in the oop result projection from a call 469 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() && 470 n->in(0)->as_Call()->returns_pointer()) { 471 add_local_var_and_edge(n, PointsToNode::NoEscape, 472 n->in(0), delayed_worklist); 473 } 474 break; 475 } 476 case Op_Rethrow: // Exception object escapes 477 case Op_Return: { 478 if (n->req() > TypeFunc::Parms && 479 igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) { 480 // Treat Return value as LocalVar with GlobalEscape escape state. 481 add_local_var_and_edge(n, PointsToNode::GlobalEscape, 482 n->in(TypeFunc::Parms), delayed_worklist); 483 } 484 break; 485 } 486 case Op_GetAndSetP: 487 case Op_GetAndSetN: { 488 add_objload_to_connection_graph(n, delayed_worklist); 489 // fallthrough 490 } 491 case Op_StoreP: 492 case Op_StoreN: 493 case Op_StoreNKlass: 494 case Op_StorePConditional: 495 case Op_CompareAndSwapP: 496 case Op_CompareAndSwapN: { 497 Node* adr = n->in(MemNode::Address); 498 const Type *adr_type = igvn->type(adr); 499 adr_type = adr_type->make_ptr(); 500 if (adr_type == NULL) { 501 break; // skip dead nodes 502 } 503 if (adr_type->isa_oopptr() || 504 (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) && 505 (adr_type == TypeRawPtr::NOTNULL && 506 adr->in(AddPNode::Address)->is_Proj() && 507 adr->in(AddPNode::Address)->in(0)->is_Allocate())) { 508 delayed_worklist->push(n); // Process it later. 509 #ifdef ASSERT 510 assert(adr->is_AddP(), "expecting an AddP"); 511 if (adr_type == TypeRawPtr::NOTNULL) { 512 // Verify a raw address for a store captured by Initialize node. 513 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot); 514 assert(offs != Type::OffsetBot, "offset must be a constant"); 515 } 516 #endif 517 } else { 518 // Ignore copy the displaced header to the BoxNode (OSR compilation). 519 if (adr->is_BoxLock()) 520 break; 521 // Stored value escapes in unsafe access. 522 if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) { 523 // Pointer stores in G1 barriers looks like unsafe access. 524 // Ignore such stores to be able scalar replace non-escaping 525 // allocations. 526 if (UseG1GC && adr->is_AddP()) { 527 Node* base = get_addp_base(adr); 528 if (base->Opcode() == Op_LoadP && 529 base->in(MemNode::Address)->is_AddP()) { 530 adr = base->in(MemNode::Address); 531 Node* tls = get_addp_base(adr); 532 if (tls->Opcode() == Op_ThreadLocal) { 533 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot); 534 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() + 535 PtrQueue::byte_offset_of_buf())) { 536 break; // G1 pre barier previous oop value store. 537 } 538 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() + 539 PtrQueue::byte_offset_of_buf())) { 540 break; // G1 post barier card address store. 541 } 542 } 543 } 544 } 545 delayed_worklist->push(n); // Process unsafe access later. 546 break; 547 } 548 #ifdef ASSERT 549 n->dump(1); 550 assert(false, "not unsafe or G1 barrier raw StoreP"); 551 #endif 552 } 553 break; 554 } 555 case Op_AryEq: 556 case Op_StrComp: 557 case Op_StrEquals: 558 case Op_StrIndexOf: 559 case Op_EncodeISOArray: { 560 add_local_var(n, PointsToNode::ArgEscape); 561 delayed_worklist->push(n); // Process it later. 562 break; 563 } 564 case Op_ThreadLocal: { 565 add_java_object(n, PointsToNode::ArgEscape); 566 break; 567 } 568 default: 569 ; // Do nothing for nodes not related to EA. 570 } 571 return; 572 } 573 574 #ifdef ASSERT 575 #define ELSE_FAIL(name) \ 576 /* Should not be called for not pointer type. */ \ 577 n->dump(1); \ 578 assert(false, name); \ 579 break; 580 #else 581 #define ELSE_FAIL(name) \ 582 break; 583 #endif 584 585 // Add final simple edges to graph. 586 void ConnectionGraph::add_final_edges(Node *n) { 587 PointsToNode* n_ptn = ptnode_adr(n->_idx); 588 #ifdef ASSERT 589 if (_verify && n_ptn->is_JavaObject()) 590 return; // This method does not change graph for JavaObject. 591 #endif 592 593 if (n->is_Call()) { 594 process_call_arguments(n->as_Call()); 595 return; 596 } 597 assert(n->is_Store() || n->is_LoadStore() || 598 (n_ptn != NULL) && (n_ptn->ideal_node() != NULL), 599 "node should be registered already"); 600 int opcode = n->Opcode(); 601 switch (opcode) { 602 case Op_AddP: { 603 Node* base = get_addp_base(n); 604 PointsToNode* ptn_base = ptnode_adr(base->_idx); 605 assert(ptn_base != NULL, "field's base should be registered"); 606 add_base(n_ptn->as_Field(), ptn_base); 607 break; 608 } 609 case Op_CastPP: 610 case Op_CheckCastPP: 611 case Op_EncodeP: 612 case Op_DecodeN: 613 case Op_EncodePKlass: 614 case Op_DecodeNKlass: { 615 add_local_var_and_edge(n, PointsToNode::NoEscape, 616 n->in(1), NULL); 617 break; 618 } 619 case Op_CMoveP: { 620 for (uint i = CMoveNode::IfFalse; i < n->req(); i++) { 621 Node* in = n->in(i); 622 if (in == NULL) 623 continue; // ignore NULL 624 Node* uncast_in = in->uncast(); 625 if (uncast_in->is_top() || uncast_in == n) 626 continue; // ignore top or inputs which go back this node 627 PointsToNode* ptn = ptnode_adr(in->_idx); 628 assert(ptn != NULL, "node should be registered"); 629 add_edge(n_ptn, ptn); 630 } 631 break; 632 } 633 case Op_LoadP: 634 case Op_LoadN: 635 case Op_LoadPLocked: { 636 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because 637 // ThreadLocal has RawPtr type. 638 const Type* t = _igvn->type(n); 639 if (t->make_ptr() != NULL) { 640 Node* adr = n->in(MemNode::Address); 641 add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL); 642 break; 643 } 644 ELSE_FAIL("Op_LoadP"); 645 } 646 case Op_Phi: { 647 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because 648 // ThreadLocal has RawPtr type. 649 const Type* t = n->as_Phi()->type(); 650 if (t->make_ptr() != NULL) { 651 for (uint i = 1; i < n->req(); i++) { 652 Node* in = n->in(i); 653 if (in == NULL) 654 continue; // ignore NULL 655 Node* uncast_in = in->uncast(); 656 if (uncast_in->is_top() || uncast_in == n) 657 continue; // ignore top or inputs which go back this node 658 PointsToNode* ptn = ptnode_adr(in->_idx); 659 assert(ptn != NULL, "node should be registered"); 660 add_edge(n_ptn, ptn); 661 } 662 break; 663 } 664 ELSE_FAIL("Op_Phi"); 665 } 666 case Op_Proj: { 667 // we are only interested in the oop result projection from a call 668 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() && 669 n->in(0)->as_Call()->returns_pointer()) { 670 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL); 671 break; 672 } 673 ELSE_FAIL("Op_Proj"); 674 } 675 case Op_Rethrow: // Exception object escapes 676 case Op_Return: { 677 if (n->req() > TypeFunc::Parms && 678 _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) { 679 // Treat Return value as LocalVar with GlobalEscape escape state. 680 add_local_var_and_edge(n, PointsToNode::GlobalEscape, 681 n->in(TypeFunc::Parms), NULL); 682 break; 683 } 684 ELSE_FAIL("Op_Return"); 685 } 686 case Op_StoreP: 687 case Op_StoreN: 688 case Op_StoreNKlass: 689 case Op_StorePConditional: 690 case Op_CompareAndSwapP: 691 case Op_CompareAndSwapN: 692 case Op_GetAndSetP: 693 case Op_GetAndSetN: { 694 Node* adr = n->in(MemNode::Address); 695 const Type *adr_type = _igvn->type(adr); 696 adr_type = adr_type->make_ptr(); 697 #ifdef ASSERT 698 if (adr_type == NULL) { 699 n->dump(1); 700 assert(adr_type != NULL, "dead node should not be on list"); 701 break; 702 } 703 #endif 704 if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) { 705 add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL); 706 } 707 if (adr_type->isa_oopptr() || 708 (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) && 709 (adr_type == TypeRawPtr::NOTNULL && 710 adr->in(AddPNode::Address)->is_Proj() && 711 adr->in(AddPNode::Address)->in(0)->is_Allocate())) { 712 // Point Address to Value 713 PointsToNode* adr_ptn = ptnode_adr(adr->_idx); 714 assert(adr_ptn != NULL && 715 adr_ptn->as_Field()->is_oop(), "node should be registered"); 716 Node *val = n->in(MemNode::ValueIn); 717 PointsToNode* ptn = ptnode_adr(val->_idx); 718 assert(ptn != NULL, "node should be registered"); 719 add_edge(adr_ptn, ptn); 720 break; 721 } else if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) { 722 // Stored value escapes in unsafe access. 723 Node *val = n->in(MemNode::ValueIn); 724 PointsToNode* ptn = ptnode_adr(val->_idx); 725 assert(ptn != NULL, "node should be registered"); 726 set_escape_state(ptn, PointsToNode::GlobalEscape); 727 // Add edge to object for unsafe access with offset. 728 PointsToNode* adr_ptn = ptnode_adr(adr->_idx); 729 assert(adr_ptn != NULL, "node should be registered"); 730 if (adr_ptn->is_Field()) { 731 assert(adr_ptn->as_Field()->is_oop(), "should be oop field"); 732 add_edge(adr_ptn, ptn); 733 } 734 break; 735 } 736 ELSE_FAIL("Op_StoreP"); 737 } 738 case Op_AryEq: 739 case Op_StrComp: 740 case Op_StrEquals: 741 case Op_StrIndexOf: 742 case Op_EncodeISOArray: { 743 // char[] arrays passed to string intrinsic do not escape but 744 // they are not scalar replaceable. Adjust escape state for them. 745 // Start from in(2) edge since in(1) is memory edge. 746 for (uint i = 2; i < n->req(); i++) { 747 Node* adr = n->in(i); 748 const Type* at = _igvn->type(adr); 749 if (!adr->is_top() && at->isa_ptr()) { 750 assert(at == Type::TOP || at == TypePtr::NULL_PTR || 751 at->isa_ptr() != NULL, "expecting a pointer"); 752 if (adr->is_AddP()) { 753 adr = get_addp_base(adr); 754 } 755 PointsToNode* ptn = ptnode_adr(adr->_idx); 756 assert(ptn != NULL, "node should be registered"); 757 add_edge(n_ptn, ptn); 758 } 759 } 760 break; 761 } 762 default: { 763 // This method should be called only for EA specific nodes which may 764 // miss some edges when they were created. 765 #ifdef ASSERT 766 n->dump(1); 767 #endif 768 guarantee(false, "unknown node"); 769 } 770 } 771 return; 772 } 773 774 void ConnectionGraph::add_call_node(CallNode* call) { 775 assert(call->returns_pointer(), "only for call which returns pointer"); 776 uint call_idx = call->_idx; 777 if (call->is_Allocate()) { 778 Node* k = call->in(AllocateNode::KlassNode); 779 const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr(); 780 assert(kt != NULL, "TypeKlassPtr required."); 781 ciKlass* cik = kt->klass(); 782 PointsToNode::EscapeState es = PointsToNode::NoEscape; 783 bool scalar_replaceable = true; 784 if (call->is_AllocateArray()) { 785 if (!cik->is_array_klass()) { // StressReflectiveCode 786 es = PointsToNode::GlobalEscape; 787 } else { 788 int length = call->in(AllocateNode::ALength)->find_int_con(-1); 789 if (length < 0 || length > EliminateAllocationArraySizeLimit) { 790 // Not scalar replaceable if the length is not constant or too big. 791 scalar_replaceable = false; 792 } 793 } 794 } else { // Allocate instance 795 if (cik->is_subclass_of(_compile->env()->Thread_klass()) || 796 cik->is_subclass_of(_compile->env()->Reference_klass()) || 797 !cik->is_instance_klass() || // StressReflectiveCode 798 cik->as_instance_klass()->has_finalizer()) { 799 es = PointsToNode::GlobalEscape; 800 } 801 } 802 add_java_object(call, es); 803 PointsToNode* ptn = ptnode_adr(call_idx); 804 if (!scalar_replaceable && ptn->scalar_replaceable()) { 805 ptn->set_scalar_replaceable(false); 806 } 807 } else if (call->is_CallStaticJava()) { 808 // Call nodes could be different types: 809 // 810 // 1. CallDynamicJavaNode (what happened during call is unknown): 811 // 812 // - mapped to GlobalEscape JavaObject node if oop is returned; 813 // 814 // - all oop arguments are escaping globally; 815 // 816 // 2. CallStaticJavaNode (execute bytecode analysis if possible): 817 // 818 // - the same as CallDynamicJavaNode if can't do bytecode analysis; 819 // 820 // - mapped to GlobalEscape JavaObject node if unknown oop is returned; 821 // - mapped to NoEscape JavaObject node if non-escaping object allocated 822 // during call is returned; 823 // - mapped to ArgEscape LocalVar node pointed to object arguments 824 // which are returned and does not escape during call; 825 // 826 // - oop arguments escaping status is defined by bytecode analysis; 827 // 828 // For a static call, we know exactly what method is being called. 829 // Use bytecode estimator to record whether the call's return value escapes. 830 ciMethod* meth = call->as_CallJava()->method(); 831 if (meth == NULL) { 832 const char* name = call->as_CallStaticJava()->_name; 833 assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check"); 834 // Returns a newly allocated unescaped object. 835 add_java_object(call, PointsToNode::NoEscape); 836 ptnode_adr(call_idx)->set_scalar_replaceable(false); 837 } else if (meth->is_boxing_method()) { 838 // Returns boxing object 839 PointsToNode::EscapeState es; 840 vmIntrinsics::ID intr = meth->intrinsic_id(); 841 if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) { 842 // It does not escape if object is always allocated. 843 es = PointsToNode::NoEscape; 844 } else { 845 // It escapes globally if object could be loaded from cache. 846 es = PointsToNode::GlobalEscape; 847 } 848 add_java_object(call, es); 849 } else { 850 BCEscapeAnalyzer* call_analyzer = meth->get_bcea(); 851 call_analyzer->copy_dependencies(_compile->dependencies()); 852 if (call_analyzer->is_return_allocated()) { 853 // Returns a newly allocated unescaped object, simply 854 // update dependency information. 855 // Mark it as NoEscape so that objects referenced by 856 // it's fields will be marked as NoEscape at least. 857 add_java_object(call, PointsToNode::NoEscape); 858 ptnode_adr(call_idx)->set_scalar_replaceable(false); 859 } else { 860 // Determine whether any arguments are returned. 861 const TypeTuple* d = call->tf()->domain(); 862 bool ret_arg = false; 863 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 864 if (d->field_at(i)->isa_ptr() != NULL && 865 call_analyzer->is_arg_returned(i - TypeFunc::Parms)) { 866 ret_arg = true; 867 break; 868 } 869 } 870 if (ret_arg) { 871 add_local_var(call, PointsToNode::ArgEscape); 872 } else { 873 // Returns unknown object. 874 map_ideal_node(call, phantom_obj); 875 } 876 } 877 } 878 } else { 879 // An other type of call, assume the worst case: 880 // returned value is unknown and globally escapes. 881 assert(call->Opcode() == Op_CallDynamicJava, "add failed case check"); 882 map_ideal_node(call, phantom_obj); 883 } 884 } 885 886 void ConnectionGraph::process_call_arguments(CallNode *call) { 887 bool is_arraycopy = false; 888 switch (call->Opcode()) { 889 #ifdef ASSERT 890 case Op_Allocate: 891 case Op_AllocateArray: 892 case Op_Lock: 893 case Op_Unlock: 894 assert(false, "should be done already"); 895 break; 896 #endif 897 case Op_CallLeafNoFP: 898 is_arraycopy = (call->as_CallLeaf()->_name != NULL && 899 strstr(call->as_CallLeaf()->_name, "arraycopy") != 0); 900 // fall through 901 case Op_CallLeaf: { 902 // Stub calls, objects do not escape but they are not scale replaceable. 903 // Adjust escape state for outgoing arguments. 904 const TypeTuple * d = call->tf()->domain(); 905 bool src_has_oops = false; 906 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 907 const Type* at = d->field_at(i); 908 Node *arg = call->in(i); 909 const Type *aat = _igvn->type(arg); 910 if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr()) 911 continue; 912 if (arg->is_AddP()) { 913 // 914 // The inline_native_clone() case when the arraycopy stub is called 915 // after the allocation before Initialize and CheckCastPP nodes. 916 // Or normal arraycopy for object arrays case. 917 // 918 // Set AddP's base (Allocate) as not scalar replaceable since 919 // pointer to the base (with offset) is passed as argument. 920 // 921 arg = get_addp_base(arg); 922 } 923 PointsToNode* arg_ptn = ptnode_adr(arg->_idx); 924 assert(arg_ptn != NULL, "should be registered"); 925 PointsToNode::EscapeState arg_esc = arg_ptn->escape_state(); 926 if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) { 927 assert(aat == Type::TOP || aat == TypePtr::NULL_PTR || 928 aat->isa_ptr() != NULL, "expecting an Ptr"); 929 bool arg_has_oops = aat->isa_oopptr() && 930 (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() || 931 (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass())); 932 if (i == TypeFunc::Parms) { 933 src_has_oops = arg_has_oops; 934 } 935 // 936 // src or dst could be j.l.Object when other is basic type array: 937 // 938 // arraycopy(char[],0,Object*,0,size); 939 // arraycopy(Object*,0,char[],0,size); 940 // 941 // Don't add edges in such cases. 942 // 943 bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy && 944 arg_has_oops && (i > TypeFunc::Parms); 945 #ifdef ASSERT 946 if (!(is_arraycopy || 947 (call->as_CallLeaf()->_name != NULL && 948 (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre") == 0 || 949 strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 || 950 strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 || 951 strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 || 952 strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 || 953 strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 || 954 strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 || 955 strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 || 956 strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 || 957 strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 || 958 strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 || 959 strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 || 960 strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 || 961 strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 || 962 strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 || 963 strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 || 964 strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 || 965 strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 || 966 strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0) 967 ))) { 968 call->dump(); 969 fatal(err_msg_res("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name)); 970 } 971 #endif 972 // Always process arraycopy's destination object since 973 // we need to add all possible edges to references in 974 // source object. 975 if (arg_esc >= PointsToNode::ArgEscape && 976 !arg_is_arraycopy_dest) { 977 continue; 978 } 979 set_escape_state(arg_ptn, PointsToNode::ArgEscape); 980 if (arg_is_arraycopy_dest) { 981 Node* src = call->in(TypeFunc::Parms); 982 if (src->is_AddP()) { 983 src = get_addp_base(src); 984 } 985 PointsToNode* src_ptn = ptnode_adr(src->_idx); 986 assert(src_ptn != NULL, "should be registered"); 987 if (arg_ptn != src_ptn) { 988 // Special arraycopy edge: 989 // A destination object's field can't have the source object 990 // as base since objects escape states are not related. 991 // Only escape state of destination object's fields affects 992 // escape state of fields in source object. 993 add_arraycopy(call, PointsToNode::ArgEscape, src_ptn, arg_ptn); 994 } 995 } 996 } 997 } 998 break; 999 } 1000 case Op_CallStaticJava: { 1001 // For a static call, we know exactly what method is being called. 1002 // Use bytecode estimator to record the call's escape affects 1003 #ifdef ASSERT 1004 const char* name = call->as_CallStaticJava()->_name; 1005 assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only"); 1006 #endif 1007 ciMethod* meth = call->as_CallJava()->method(); 1008 if ((meth != NULL) && meth->is_boxing_method()) { 1009 break; // Boxing methods do not modify any oops. 1010 } 1011 BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL; 1012 // fall-through if not a Java method or no analyzer information 1013 if (call_analyzer != NULL) { 1014 PointsToNode* call_ptn = ptnode_adr(call->_idx); 1015 const TypeTuple* d = call->tf()->domain(); 1016 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 1017 const Type* at = d->field_at(i); 1018 int k = i - TypeFunc::Parms; 1019 Node* arg = call->in(i); 1020 PointsToNode* arg_ptn = ptnode_adr(arg->_idx); 1021 if (at->isa_ptr() != NULL && 1022 call_analyzer->is_arg_returned(k)) { 1023 // The call returns arguments. 1024 if (call_ptn != NULL) { // Is call's result used? 1025 assert(call_ptn->is_LocalVar(), "node should be registered"); 1026 assert(arg_ptn != NULL, "node should be registered"); 1027 add_edge(call_ptn, arg_ptn); 1028 } 1029 } 1030 if (at->isa_oopptr() != NULL && 1031 arg_ptn->escape_state() < PointsToNode::GlobalEscape) { 1032 if (!call_analyzer->is_arg_stack(k)) { 1033 // The argument global escapes 1034 set_escape_state(arg_ptn, PointsToNode::GlobalEscape); 1035 } else { 1036 set_escape_state(arg_ptn, PointsToNode::ArgEscape); 1037 if (!call_analyzer->is_arg_local(k)) { 1038 // The argument itself doesn't escape, but any fields might 1039 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape); 1040 } 1041 } 1042 } 1043 } 1044 if (call_ptn != NULL && call_ptn->is_LocalVar()) { 1045 // The call returns arguments. 1046 assert(call_ptn->edge_count() > 0, "sanity"); 1047 if (!call_analyzer->is_return_local()) { 1048 // Returns also unknown object. 1049 add_edge(call_ptn, phantom_obj); 1050 } 1051 } 1052 break; 1053 } 1054 } 1055 default: { 1056 // Fall-through here if not a Java method or no analyzer information 1057 // or some other type of call, assume the worst case: all arguments 1058 // globally escape. 1059 const TypeTuple* d = call->tf()->domain(); 1060 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 1061 const Type* at = d->field_at(i); 1062 if (at->isa_oopptr() != NULL) { 1063 Node* arg = call->in(i); 1064 if (arg->is_AddP()) { 1065 arg = get_addp_base(arg); 1066 } 1067 assert(ptnode_adr(arg->_idx) != NULL, "should be defined already"); 1068 set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape); 1069 } 1070 } 1071 } 1072 } 1073 } 1074 1075 1076 // Finish Graph construction. 1077 bool ConnectionGraph::complete_connection_graph( 1078 GrowableArray<PointsToNode*>& ptnodes_worklist, 1079 GrowableArray<JavaObjectNode*>& non_escaped_worklist, 1080 GrowableArray<JavaObjectNode*>& java_objects_worklist, 1081 GrowableArray<FieldNode*>& oop_fields_worklist) { 1082 // Normally only 1-3 passes needed to build Connection Graph depending 1083 // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler. 1084 // Set limit to 20 to catch situation when something did go wrong and 1085 // bailout Escape Analysis. 1086 // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag. 1087 #define CG_BUILD_ITER_LIMIT 20 1088 1089 // Propagate GlobalEscape and ArgEscape escape states and check that 1090 // we still have non-escaping objects. The method pushs on _worklist 1091 // Field nodes which reference phantom_object. 1092 if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) { 1093 return false; // Nothing to do. 1094 } 1095 // Now propagate references to all JavaObject nodes. 1096 int java_objects_length = java_objects_worklist.length(); 1097 elapsedTimer time; 1098 bool timeout = false; 1099 int new_edges = 1; 1100 int iterations = 0; 1101 do { 1102 while ((new_edges > 0) && 1103 (iterations++ < CG_BUILD_ITER_LIMIT)) { 1104 double start_time = time.seconds(); 1105 time.start(); 1106 new_edges = 0; 1107 // Propagate references to phantom_object for nodes pushed on _worklist 1108 // by find_non_escaped_objects() and find_field_value(). 1109 new_edges += add_java_object_edges(phantom_obj, false); 1110 for (int next = 0; next < java_objects_length; ++next) { 1111 JavaObjectNode* ptn = java_objects_worklist.at(next); 1112 new_edges += add_java_object_edges(ptn, true); 1113 1114 #define SAMPLE_SIZE 4 1115 if ((next % SAMPLE_SIZE) == 0) { 1116 // Each 4 iterations calculate how much time it will take 1117 // to complete graph construction. 1118 time.stop(); 1119 // Poll for requests from shutdown mechanism to quiesce compiler 1120 // because Connection graph construction may take long time. 1121 CompileBroker::maybe_block(); 1122 double stop_time = time.seconds(); 1123 double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE; 1124 double time_until_end = time_per_iter * (double)(java_objects_length - next); 1125 if ((start_time + time_until_end) >= EscapeAnalysisTimeout) { 1126 timeout = true; 1127 break; // Timeout 1128 } 1129 start_time = stop_time; 1130 time.start(); 1131 } 1132 #undef SAMPLE_SIZE 1133 1134 } 1135 if (timeout) break; 1136 if (new_edges > 0) { 1137 // Update escape states on each iteration if graph was updated. 1138 if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) { 1139 return false; // Nothing to do. 1140 } 1141 } 1142 time.stop(); 1143 if (time.seconds() >= EscapeAnalysisTimeout) { 1144 timeout = true; 1145 break; 1146 } 1147 } 1148 if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) { 1149 time.start(); 1150 // Find fields which have unknown value. 1151 int fields_length = oop_fields_worklist.length(); 1152 for (int next = 0; next < fields_length; next++) { 1153 FieldNode* field = oop_fields_worklist.at(next); 1154 if (field->edge_count() == 0) { 1155 new_edges += find_field_value(field); 1156 // This code may added new edges to phantom_object. 1157 // Need an other cycle to propagate references to phantom_object. 1158 } 1159 } 1160 time.stop(); 1161 if (time.seconds() >= EscapeAnalysisTimeout) { 1162 timeout = true; 1163 break; 1164 } 1165 } else { 1166 new_edges = 0; // Bailout 1167 } 1168 } while (new_edges > 0); 1169 1170 // Bailout if passed limits. 1171 if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) { 1172 Compile* C = _compile; 1173 if (C->log() != NULL) { 1174 C->log()->begin_elem("connectionGraph_bailout reason='reached "); 1175 C->log()->text("%s", timeout ? "time" : "iterations"); 1176 C->log()->end_elem(" limit'"); 1177 } 1178 assert(ExitEscapeAnalysisOnTimeout, err_msg_res("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d", 1179 time.seconds(), iterations, nodes_size(), ptnodes_worklist.length())); 1180 // Possible infinite build_connection_graph loop, 1181 // bailout (no changes to ideal graph were made). 1182 return false; 1183 } 1184 #ifdef ASSERT 1185 if (Verbose && PrintEscapeAnalysis) { 1186 tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d", 1187 iterations, nodes_size(), ptnodes_worklist.length()); 1188 } 1189 #endif 1190 1191 #undef CG_BUILD_ITER_LIMIT 1192 1193 // Find fields initialized by NULL for non-escaping Allocations. 1194 int non_escaped_length = non_escaped_worklist.length(); 1195 for (int next = 0; next < non_escaped_length; next++) { 1196 JavaObjectNode* ptn = non_escaped_worklist.at(next); 1197 PointsToNode::EscapeState es = ptn->escape_state(); 1198 assert(es <= PointsToNode::ArgEscape, "sanity"); 1199 if (es == PointsToNode::NoEscape) { 1200 if (find_init_values(ptn, null_obj, _igvn) > 0) { 1201 // Adding references to NULL object does not change escape states 1202 // since it does not escape. Also no fields are added to NULL object. 1203 add_java_object_edges(null_obj, false); 1204 } 1205 } 1206 Node* n = ptn->ideal_node(); 1207 if (n->is_Allocate()) { 1208 // The object allocated by this Allocate node will never be 1209 // seen by an other thread. Mark it so that when it is 1210 // expanded no MemBarStoreStore is added. 1211 InitializeNode* ini = n->as_Allocate()->initialization(); 1212 if (ini != NULL) 1213 ini->set_does_not_escape(); 1214 } 1215 } 1216 return true; // Finished graph construction. 1217 } 1218 1219 // Propagate GlobalEscape and ArgEscape escape states to all nodes 1220 // and check that we still have non-escaping java objects. 1221 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist, 1222 GrowableArray<JavaObjectNode*>& non_escaped_worklist) { 1223 GrowableArray<PointsToNode*> escape_worklist; 1224 // First, put all nodes with GlobalEscape and ArgEscape states on worklist. 1225 int ptnodes_length = ptnodes_worklist.length(); 1226 for (int next = 0; next < ptnodes_length; ++next) { 1227 PointsToNode* ptn = ptnodes_worklist.at(next); 1228 if (ptn->escape_state() >= PointsToNode::ArgEscape || 1229 ptn->fields_escape_state() >= PointsToNode::ArgEscape) { 1230 escape_worklist.push(ptn); 1231 } 1232 } 1233 // Set escape states to referenced nodes (edges list). 1234 while (escape_worklist.length() > 0) { 1235 PointsToNode* ptn = escape_worklist.pop(); 1236 PointsToNode::EscapeState es = ptn->escape_state(); 1237 PointsToNode::EscapeState field_es = ptn->fields_escape_state(); 1238 if (ptn->is_Field() && ptn->as_Field()->is_oop() && 1239 es >= PointsToNode::ArgEscape) { 1240 // GlobalEscape or ArgEscape state of field means it has unknown value. 1241 if (add_edge(ptn, phantom_obj)) { 1242 // New edge was added 1243 add_field_uses_to_worklist(ptn->as_Field()); 1244 } 1245 } 1246 for (EdgeIterator i(ptn); i.has_next(); i.next()) { 1247 PointsToNode* e = i.get(); 1248 if (e->is_Arraycopy()) { 1249 assert(ptn->arraycopy_dst(), "sanity"); 1250 // Propagate only fields escape state through arraycopy edge. 1251 if (e->fields_escape_state() < field_es) { 1252 set_fields_escape_state(e, field_es); 1253 escape_worklist.push(e); 1254 } 1255 } else if (es >= field_es) { 1256 // fields_escape_state is also set to 'es' if it is less than 'es'. 1257 if (e->escape_state() < es) { 1258 set_escape_state(e, es); 1259 escape_worklist.push(e); 1260 } 1261 } else { 1262 // Propagate field escape state. 1263 bool es_changed = false; 1264 if (e->fields_escape_state() < field_es) { 1265 set_fields_escape_state(e, field_es); 1266 es_changed = true; 1267 } 1268 if ((e->escape_state() < field_es) && 1269 e->is_Field() && ptn->is_JavaObject() && 1270 e->as_Field()->is_oop()) { 1271 // Change escape state of referenced fileds. 1272 set_escape_state(e, field_es); 1273 es_changed = true;; 1274 } else if (e->escape_state() < es) { 1275 set_escape_state(e, es); 1276 es_changed = true;; 1277 } 1278 if (es_changed) { 1279 escape_worklist.push(e); 1280 } 1281 } 1282 } 1283 } 1284 // Remove escaped objects from non_escaped list. 1285 for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) { 1286 JavaObjectNode* ptn = non_escaped_worklist.at(next); 1287 if (ptn->escape_state() >= PointsToNode::GlobalEscape) { 1288 non_escaped_worklist.delete_at(next); 1289 } 1290 if (ptn->escape_state() == PointsToNode::NoEscape) { 1291 // Find fields in non-escaped allocations which have unknown value. 1292 find_init_values(ptn, phantom_obj, NULL); 1293 } 1294 } 1295 return (non_escaped_worklist.length() > 0); 1296 } 1297 1298 // Add all references to JavaObject node by walking over all uses. 1299 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) { 1300 int new_edges = 0; 1301 if (populate_worklist) { 1302 // Populate _worklist by uses of jobj's uses. 1303 for (UseIterator i(jobj); i.has_next(); i.next()) { 1304 PointsToNode* use = i.get(); 1305 if (use->is_Arraycopy()) 1306 continue; 1307 add_uses_to_worklist(use); 1308 if (use->is_Field() && use->as_Field()->is_oop()) { 1309 // Put on worklist all field's uses (loads) and 1310 // related field nodes (same base and offset). 1311 add_field_uses_to_worklist(use->as_Field()); 1312 } 1313 } 1314 } 1315 for (int l = 0; l < _worklist.length(); l++) { 1316 PointsToNode* use = _worklist.at(l); 1317 if (PointsToNode::is_base_use(use)) { 1318 // Add reference from jobj to field and from field to jobj (field's base). 1319 use = PointsToNode::get_use_node(use)->as_Field(); 1320 if (add_base(use->as_Field(), jobj)) { 1321 new_edges++; 1322 } 1323 continue; 1324 } 1325 assert(!use->is_JavaObject(), "sanity"); 1326 if (use->is_Arraycopy()) { 1327 if (jobj == null_obj) // NULL object does not have field edges 1328 continue; 1329 // Added edge from Arraycopy node to arraycopy's source java object 1330 if (add_edge(use, jobj)) { 1331 jobj->set_arraycopy_src(); 1332 new_edges++; 1333 } 1334 // and stop here. 1335 continue; 1336 } 1337 if (!add_edge(use, jobj)) 1338 continue; // No new edge added, there was such edge already. 1339 new_edges++; 1340 if (use->is_LocalVar()) { 1341 add_uses_to_worklist(use); 1342 if (use->arraycopy_dst()) { 1343 for (EdgeIterator i(use); i.has_next(); i.next()) { 1344 PointsToNode* e = i.get(); 1345 if (e->is_Arraycopy()) { 1346 if (jobj == null_obj) // NULL object does not have field edges 1347 continue; 1348 // Add edge from arraycopy's destination java object to Arraycopy node. 1349 if (add_edge(jobj, e)) { 1350 new_edges++; 1351 jobj->set_arraycopy_dst(); 1352 } 1353 } 1354 } 1355 } 1356 } else { 1357 // Added new edge to stored in field values. 1358 // Put on worklist all field's uses (loads) and 1359 // related field nodes (same base and offset). 1360 add_field_uses_to_worklist(use->as_Field()); 1361 } 1362 } 1363 _worklist.clear(); 1364 _in_worklist.Reset(); 1365 return new_edges; 1366 } 1367 1368 // Put on worklist all related field nodes. 1369 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) { 1370 assert(field->is_oop(), "sanity"); 1371 int offset = field->offset(); 1372 add_uses_to_worklist(field); 1373 // Loop over all bases of this field and push on worklist Field nodes 1374 // with the same offset and base (since they may reference the same field). 1375 for (BaseIterator i(field); i.has_next(); i.next()) { 1376 PointsToNode* base = i.get(); 1377 add_fields_to_worklist(field, base); 1378 // Check if the base was source object of arraycopy and go over arraycopy's 1379 // destination objects since values stored to a field of source object are 1380 // accessable by uses (loads) of fields of destination objects. 1381 if (base->arraycopy_src()) { 1382 for (UseIterator j(base); j.has_next(); j.next()) { 1383 PointsToNode* arycp = j.get(); 1384 if (arycp->is_Arraycopy()) { 1385 for (UseIterator k(arycp); k.has_next(); k.next()) { 1386 PointsToNode* abase = k.get(); 1387 if (abase->arraycopy_dst() && abase != base) { 1388 // Look for the same arracopy reference. 1389 add_fields_to_worklist(field, abase); 1390 } 1391 } 1392 } 1393 } 1394 } 1395 } 1396 } 1397 1398 // Put on worklist all related field nodes. 1399 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) { 1400 int offset = field->offset(); 1401 if (base->is_LocalVar()) { 1402 for (UseIterator j(base); j.has_next(); j.next()) { 1403 PointsToNode* f = j.get(); 1404 if (PointsToNode::is_base_use(f)) { // Field 1405 f = PointsToNode::get_use_node(f); 1406 if (f == field || !f->as_Field()->is_oop()) 1407 continue; 1408 int offs = f->as_Field()->offset(); 1409 if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) { 1410 add_to_worklist(f); 1411 } 1412 } 1413 } 1414 } else { 1415 assert(base->is_JavaObject(), "sanity"); 1416 if (// Skip phantom_object since it is only used to indicate that 1417 // this field's content globally escapes. 1418 (base != phantom_obj) && 1419 // NULL object node does not have fields. 1420 (base != null_obj)) { 1421 for (EdgeIterator i(base); i.has_next(); i.next()) { 1422 PointsToNode* f = i.get(); 1423 // Skip arraycopy edge since store to destination object field 1424 // does not update value in source object field. 1425 if (f->is_Arraycopy()) { 1426 assert(base->arraycopy_dst(), "sanity"); 1427 continue; 1428 } 1429 if (f == field || !f->as_Field()->is_oop()) 1430 continue; 1431 int offs = f->as_Field()->offset(); 1432 if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) { 1433 add_to_worklist(f); 1434 } 1435 } 1436 } 1437 } 1438 } 1439 1440 // Find fields which have unknown value. 1441 int ConnectionGraph::find_field_value(FieldNode* field) { 1442 // Escaped fields should have init value already. 1443 assert(field->escape_state() == PointsToNode::NoEscape, "sanity"); 1444 int new_edges = 0; 1445 for (BaseIterator i(field); i.has_next(); i.next()) { 1446 PointsToNode* base = i.get(); 1447 if (base->is_JavaObject()) { 1448 // Skip Allocate's fields which will be processed later. 1449 if (base->ideal_node()->is_Allocate()) 1450 return 0; 1451 assert(base == null_obj, "only NULL ptr base expected here"); 1452 } 1453 } 1454 if (add_edge(field, phantom_obj)) { 1455 // New edge was added 1456 new_edges++; 1457 add_field_uses_to_worklist(field); 1458 } 1459 return new_edges; 1460 } 1461 1462 // Find fields initializing values for allocations. 1463 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) { 1464 assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only"); 1465 int new_edges = 0; 1466 Node* alloc = pta->ideal_node(); 1467 if (init_val == phantom_obj) { 1468 // Do nothing for Allocate nodes since its fields values are "known". 1469 if (alloc->is_Allocate()) 1470 return 0; 1471 assert(alloc->as_CallStaticJava(), "sanity"); 1472 #ifdef ASSERT 1473 if (alloc->as_CallStaticJava()->method() == NULL) { 1474 const char* name = alloc->as_CallStaticJava()->_name; 1475 assert(strncmp(name, "_multianewarray", 15) == 0, "sanity"); 1476 } 1477 #endif 1478 // Non-escaped allocation returned from Java or runtime call have 1479 // unknown values in fields. 1480 for (EdgeIterator i(pta); i.has_next(); i.next()) { 1481 PointsToNode* field = i.get(); 1482 if (field->is_Field() && field->as_Field()->is_oop()) { 1483 if (add_edge(field, phantom_obj)) { 1484 // New edge was added 1485 new_edges++; 1486 add_field_uses_to_worklist(field->as_Field()); 1487 } 1488 } 1489 } 1490 return new_edges; 1491 } 1492 assert(init_val == null_obj, "sanity"); 1493 // Do nothing for Call nodes since its fields values are unknown. 1494 if (!alloc->is_Allocate()) 1495 return 0; 1496 1497 InitializeNode* ini = alloc->as_Allocate()->initialization(); 1498 Compile* C = _compile; 1499 bool visited_bottom_offset = false; 1500 GrowableArray<int> offsets_worklist; 1501 1502 // Check if an oop field's initializing value is recorded and add 1503 // a corresponding NULL if field's value if it is not recorded. 1504 // Connection Graph does not record a default initialization by NULL 1505 // captured by Initialize node. 1506 // 1507 for (EdgeIterator i(pta); i.has_next(); i.next()) { 1508 PointsToNode* field = i.get(); // Field (AddP) 1509 if (!field->is_Field() || !field->as_Field()->is_oop()) 1510 continue; // Not oop field 1511 int offset = field->as_Field()->offset(); 1512 if (offset == Type::OffsetBot) { 1513 if (!visited_bottom_offset) { 1514 // OffsetBot is used to reference array's element, 1515 // always add reference to NULL to all Field nodes since we don't 1516 // known which element is referenced. 1517 if (add_edge(field, null_obj)) { 1518 // New edge was added 1519 new_edges++; 1520 add_field_uses_to_worklist(field->as_Field()); 1521 visited_bottom_offset = true; 1522 } 1523 } 1524 } else { 1525 // Check only oop fields. 1526 const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type(); 1527 if (adr_type->isa_rawptr()) { 1528 #ifdef ASSERT 1529 // Raw pointers are used for initializing stores so skip it 1530 // since it should be recorded already 1531 Node* base = get_addp_base(field->ideal_node()); 1532 assert(adr_type->isa_rawptr() && base->is_Proj() && 1533 (base->in(0) == alloc),"unexpected pointer type"); 1534 #endif 1535 continue; 1536 } 1537 if (!offsets_worklist.contains(offset)) { 1538 offsets_worklist.append(offset); 1539 Node* value = NULL; 1540 if (ini != NULL) { 1541 // StoreP::memory_type() == T_ADDRESS 1542 BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS; 1543 Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase); 1544 // Make sure initializing store has the same type as this AddP. 1545 // This AddP may reference non existing field because it is on a 1546 // dead branch of bimorphic call which is not eliminated yet. 1547 if (store != NULL && store->is_Store() && 1548 store->as_Store()->memory_type() == ft) { 1549 value = store->in(MemNode::ValueIn); 1550 #ifdef ASSERT 1551 if (VerifyConnectionGraph) { 1552 // Verify that AddP already points to all objects the value points to. 1553 PointsToNode* val = ptnode_adr(value->_idx); 1554 assert((val != NULL), "should be processed already"); 1555 PointsToNode* missed_obj = NULL; 1556 if (val->is_JavaObject()) { 1557 if (!field->points_to(val->as_JavaObject())) { 1558 missed_obj = val; 1559 } 1560 } else { 1561 if (!val->is_LocalVar() || (val->edge_count() == 0)) { 1562 tty->print_cr("----------init store has invalid value -----"); 1563 store->dump(); 1564 val->dump(); 1565 assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already"); 1566 } 1567 for (EdgeIterator j(val); j.has_next(); j.next()) { 1568 PointsToNode* obj = j.get(); 1569 if (obj->is_JavaObject()) { 1570 if (!field->points_to(obj->as_JavaObject())) { 1571 missed_obj = obj; 1572 break; 1573 } 1574 } 1575 } 1576 } 1577 if (missed_obj != NULL) { 1578 tty->print_cr("----------field---------------------------------"); 1579 field->dump(); 1580 tty->print_cr("----------missed referernce to object-----------"); 1581 missed_obj->dump(); 1582 tty->print_cr("----------object referernced by init store -----"); 1583 store->dump(); 1584 val->dump(); 1585 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference"); 1586 } 1587 } 1588 #endif 1589 } else { 1590 // There could be initializing stores which follow allocation. 1591 // For example, a volatile field store is not collected 1592 // by Initialize node. 1593 // 1594 // Need to check for dependent loads to separate such stores from 1595 // stores which follow loads. For now, add initial value NULL so 1596 // that compare pointers optimization works correctly. 1597 } 1598 } 1599 if (value == NULL) { 1600 // A field's initializing value was not recorded. Add NULL. 1601 if (add_edge(field, null_obj)) { 1602 // New edge was added 1603 new_edges++; 1604 add_field_uses_to_worklist(field->as_Field()); 1605 } 1606 } 1607 } 1608 } 1609 } 1610 return new_edges; 1611 } 1612 1613 // Adjust scalar_replaceable state after Connection Graph is built. 1614 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) { 1615 // Search for non-escaping objects which are not scalar replaceable 1616 // and mark them to propagate the state to referenced objects. 1617 1618 // 1. An object is not scalar replaceable if the field into which it is 1619 // stored has unknown offset (stored into unknown element of an array). 1620 // 1621 for (UseIterator i(jobj); i.has_next(); i.next()) { 1622 PointsToNode* use = i.get(); 1623 assert(!use->is_Arraycopy(), "sanity"); 1624 if (use->is_Field()) { 1625 FieldNode* field = use->as_Field(); 1626 assert(field->is_oop() && field->scalar_replaceable() && 1627 field->fields_escape_state() == PointsToNode::NoEscape, "sanity"); 1628 if (field->offset() == Type::OffsetBot) { 1629 jobj->set_scalar_replaceable(false); 1630 return; 1631 } 1632 // 2. An object is not scalar replaceable if the field into which it is 1633 // stored has multiple bases one of which is null. 1634 if (field->base_count() > 1) { 1635 for (BaseIterator i(field); i.has_next(); i.next()) { 1636 PointsToNode* base = i.get(); 1637 if (base == null_obj) { 1638 jobj->set_scalar_replaceable(false); 1639 return; 1640 } 1641 } 1642 } 1643 } 1644 assert(use->is_Field() || use->is_LocalVar(), "sanity"); 1645 // 3. An object is not scalar replaceable if it is merged with other objects. 1646 for (EdgeIterator j(use); j.has_next(); j.next()) { 1647 PointsToNode* ptn = j.get(); 1648 if (ptn->is_JavaObject() && ptn != jobj) { 1649 // Mark all objects. 1650 jobj->set_scalar_replaceable(false); 1651 ptn->set_scalar_replaceable(false); 1652 } 1653 } 1654 if (!jobj->scalar_replaceable()) { 1655 return; 1656 } 1657 } 1658 1659 for (EdgeIterator j(jobj); j.has_next(); j.next()) { 1660 // Non-escaping object node should point only to field nodes. 1661 FieldNode* field = j.get()->as_Field(); 1662 int offset = field->as_Field()->offset(); 1663 1664 // 4. An object is not scalar replaceable if it has a field with unknown 1665 // offset (array's element is accessed in loop). 1666 if (offset == Type::OffsetBot) { 1667 jobj->set_scalar_replaceable(false); 1668 return; 1669 } 1670 // 5. Currently an object is not scalar replaceable if a LoadStore node 1671 // access its field since the field value is unknown after it. 1672 // 1673 Node* n = field->ideal_node(); 1674 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1675 if (n->fast_out(i)->is_LoadStore()) { 1676 jobj->set_scalar_replaceable(false); 1677 return; 1678 } 1679 } 1680 1681 // 6. Or the address may point to more then one object. This may produce 1682 // the false positive result (set not scalar replaceable) 1683 // since the flow-insensitive escape analysis can't separate 1684 // the case when stores overwrite the field's value from the case 1685 // when stores happened on different control branches. 1686 // 1687 // Note: it will disable scalar replacement in some cases: 1688 // 1689 // Point p[] = new Point[1]; 1690 // p[0] = new Point(); // Will be not scalar replaced 1691 // 1692 // but it will save us from incorrect optimizations in next cases: 1693 // 1694 // Point p[] = new Point[1]; 1695 // if ( x ) p[0] = new Point(); // Will be not scalar replaced 1696 // 1697 if (field->base_count() > 1) { 1698 for (BaseIterator i(field); i.has_next(); i.next()) { 1699 PointsToNode* base = i.get(); 1700 // Don't take into account LocalVar nodes which 1701 // may point to only one object which should be also 1702 // this field's base by now. 1703 if (base->is_JavaObject() && base != jobj) { 1704 // Mark all bases. 1705 jobj->set_scalar_replaceable(false); 1706 base->set_scalar_replaceable(false); 1707 } 1708 } 1709 } 1710 } 1711 } 1712 1713 #ifdef ASSERT 1714 void ConnectionGraph::verify_connection_graph( 1715 GrowableArray<PointsToNode*>& ptnodes_worklist, 1716 GrowableArray<JavaObjectNode*>& non_escaped_worklist, 1717 GrowableArray<JavaObjectNode*>& java_objects_worklist, 1718 GrowableArray<Node*>& addp_worklist) { 1719 // Verify that graph is complete - no new edges could be added. 1720 int java_objects_length = java_objects_worklist.length(); 1721 int non_escaped_length = non_escaped_worklist.length(); 1722 int new_edges = 0; 1723 for (int next = 0; next < java_objects_length; ++next) { 1724 JavaObjectNode* ptn = java_objects_worklist.at(next); 1725 new_edges += add_java_object_edges(ptn, true); 1726 } 1727 assert(new_edges == 0, "graph was not complete"); 1728 // Verify that escape state is final. 1729 int length = non_escaped_worklist.length(); 1730 find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist); 1731 assert((non_escaped_length == non_escaped_worklist.length()) && 1732 (non_escaped_length == length) && 1733 (_worklist.length() == 0), "escape state was not final"); 1734 1735 // Verify fields information. 1736 int addp_length = addp_worklist.length(); 1737 for (int next = 0; next < addp_length; ++next ) { 1738 Node* n = addp_worklist.at(next); 1739 FieldNode* field = ptnode_adr(n->_idx)->as_Field(); 1740 if (field->is_oop()) { 1741 // Verify that field has all bases 1742 Node* base = get_addp_base(n); 1743 PointsToNode* ptn = ptnode_adr(base->_idx); 1744 if (ptn->is_JavaObject()) { 1745 assert(field->has_base(ptn->as_JavaObject()), "sanity"); 1746 } else { 1747 assert(ptn->is_LocalVar(), "sanity"); 1748 for (EdgeIterator i(ptn); i.has_next(); i.next()) { 1749 PointsToNode* e = i.get(); 1750 if (e->is_JavaObject()) { 1751 assert(field->has_base(e->as_JavaObject()), "sanity"); 1752 } 1753 } 1754 } 1755 // Verify that all fields have initializing values. 1756 if (field->edge_count() == 0) { 1757 tty->print_cr("----------field does not have references----------"); 1758 field->dump(); 1759 for (BaseIterator i(field); i.has_next(); i.next()) { 1760 PointsToNode* base = i.get(); 1761 tty->print_cr("----------field has next base---------------------"); 1762 base->dump(); 1763 if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) { 1764 tty->print_cr("----------base has fields-------------------------"); 1765 for (EdgeIterator j(base); j.has_next(); j.next()) { 1766 j.get()->dump(); 1767 } 1768 tty->print_cr("----------base has references---------------------"); 1769 for (UseIterator j(base); j.has_next(); j.next()) { 1770 j.get()->dump(); 1771 } 1772 } 1773 } 1774 for (UseIterator i(field); i.has_next(); i.next()) { 1775 i.get()->dump(); 1776 } 1777 assert(field->edge_count() > 0, "sanity"); 1778 } 1779 } 1780 } 1781 } 1782 #endif 1783 1784 // Optimize ideal graph. 1785 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist, 1786 GrowableArray<Node*>& storestore_worklist) { 1787 Compile* C = _compile; 1788 PhaseIterGVN* igvn = _igvn; 1789 if (EliminateLocks) { 1790 // Mark locks before changing ideal graph. 1791 int cnt = C->macro_count(); 1792 for( int i=0; i < cnt; i++ ) { 1793 Node *n = C->macro_node(i); 1794 if (n->is_AbstractLock()) { // Lock and Unlock nodes 1795 AbstractLockNode* alock = n->as_AbstractLock(); 1796 if (!alock->is_non_esc_obj()) { 1797 if (not_global_escape(alock->obj_node())) { 1798 assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity"); 1799 // The lock could be marked eliminated by lock coarsening 1800 // code during first IGVN before EA. Replace coarsened flag 1801 // to eliminate all associated locks/unlocks. 1802 #ifdef ASSERT 1803 alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3"); 1804 #endif 1805 alock->set_non_esc_obj(); 1806 } 1807 } 1808 } 1809 } 1810 } 1811 1812 if (OptimizePtrCompare) { 1813 // Add ConI(#CC_GT) and ConI(#CC_EQ). 1814 _pcmp_neq = igvn->makecon(TypeInt::CC_GT); 1815 _pcmp_eq = igvn->makecon(TypeInt::CC_EQ); 1816 // Optimize objects compare. 1817 while (ptr_cmp_worklist.length() != 0) { 1818 Node *n = ptr_cmp_worklist.pop(); 1819 Node *res = optimize_ptr_compare(n); 1820 if (res != NULL) { 1821 #ifndef PRODUCT 1822 if (PrintOptimizePtrCompare) { 1823 tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ")); 1824 if (Verbose) { 1825 n->dump(1); 1826 } 1827 } 1828 #endif 1829 igvn->replace_node(n, res); 1830 } 1831 } 1832 // cleanup 1833 if (_pcmp_neq->outcnt() == 0) 1834 igvn->hash_delete(_pcmp_neq); 1835 if (_pcmp_eq->outcnt() == 0) 1836 igvn->hash_delete(_pcmp_eq); 1837 } 1838 1839 // For MemBarStoreStore nodes added in library_call.cpp, check 1840 // escape status of associated AllocateNode and optimize out 1841 // MemBarStoreStore node if the allocated object never escapes. 1842 while (storestore_worklist.length() != 0) { 1843 Node *n = storestore_worklist.pop(); 1844 MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore(); 1845 Node *alloc = storestore->in(MemBarNode::Precedent)->in(0); 1846 assert (alloc->is_Allocate(), "storestore should point to AllocateNode"); 1847 if (not_global_escape(alloc)) { 1848 MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot); 1849 mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory)); 1850 mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control)); 1851 igvn->register_new_node_with_optimizer(mb); 1852 igvn->replace_node(storestore, mb); 1853 } 1854 } 1855 } 1856 1857 // Optimize objects compare. 1858 Node* ConnectionGraph::optimize_ptr_compare(Node* n) { 1859 assert(OptimizePtrCompare, "sanity"); 1860 PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx); 1861 PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx); 1862 JavaObjectNode* jobj1 = unique_java_object(n->in(1)); 1863 JavaObjectNode* jobj2 = unique_java_object(n->in(2)); 1864 assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity"); 1865 assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity"); 1866 1867 // Check simple cases first. 1868 if (jobj1 != NULL) { 1869 if (jobj1->escape_state() == PointsToNode::NoEscape) { 1870 if (jobj1 == jobj2) { 1871 // Comparing the same not escaping object. 1872 return _pcmp_eq; 1873 } 1874 Node* obj = jobj1->ideal_node(); 1875 // Comparing not escaping allocation. 1876 if ((obj->is_Allocate() || obj->is_CallStaticJava()) && 1877 !ptn2->points_to(jobj1)) { 1878 return _pcmp_neq; // This includes nullness check. 1879 } 1880 } 1881 } 1882 if (jobj2 != NULL) { 1883 if (jobj2->escape_state() == PointsToNode::NoEscape) { 1884 Node* obj = jobj2->ideal_node(); 1885 // Comparing not escaping allocation. 1886 if ((obj->is_Allocate() || obj->is_CallStaticJava()) && 1887 !ptn1->points_to(jobj2)) { 1888 return _pcmp_neq; // This includes nullness check. 1889 } 1890 } 1891 } 1892 if (jobj1 != NULL && jobj1 != phantom_obj && 1893 jobj2 != NULL && jobj2 != phantom_obj && 1894 jobj1->ideal_node()->is_Con() && 1895 jobj2->ideal_node()->is_Con()) { 1896 // Klass or String constants compare. Need to be careful with 1897 // compressed pointers - compare types of ConN and ConP instead of nodes. 1898 const Type* t1 = jobj1->ideal_node()->get_ptr_type(); 1899 const Type* t2 = jobj2->ideal_node()->get_ptr_type(); 1900 if (t1->make_ptr() == t2->make_ptr()) { 1901 return _pcmp_eq; 1902 } else { 1903 return _pcmp_neq; 1904 } 1905 } 1906 if (ptn1->meet(ptn2)) { 1907 return NULL; // Sets are not disjoint 1908 } 1909 1910 // Sets are disjoint. 1911 bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj); 1912 bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj); 1913 bool set1_has_null_ptr = ptn1->points_to(null_obj); 1914 bool set2_has_null_ptr = ptn2->points_to(null_obj); 1915 if (set1_has_unknown_ptr && set2_has_null_ptr || 1916 set2_has_unknown_ptr && set1_has_null_ptr) { 1917 // Check nullness of unknown object. 1918 return NULL; 1919 } 1920 1921 // Disjointness by itself is not sufficient since 1922 // alias analysis is not complete for escaped objects. 1923 // Disjoint sets are definitely unrelated only when 1924 // at least one set has only not escaping allocations. 1925 if (!set1_has_unknown_ptr && !set1_has_null_ptr) { 1926 if (ptn1->non_escaping_allocation()) { 1927 return _pcmp_neq; 1928 } 1929 } 1930 if (!set2_has_unknown_ptr && !set2_has_null_ptr) { 1931 if (ptn2->non_escaping_allocation()) { 1932 return _pcmp_neq; 1933 } 1934 } 1935 return NULL; 1936 } 1937 1938 // Connection Graph constuction functions. 1939 1940 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) { 1941 PointsToNode* ptadr = _nodes.at(n->_idx); 1942 if (ptadr != NULL) { 1943 assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity"); 1944 return; 1945 } 1946 Compile* C = _compile; 1947 ptadr = new (C->comp_arena()) LocalVarNode(this, n, es); 1948 _nodes.at_put(n->_idx, ptadr); 1949 } 1950 1951 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) { 1952 PointsToNode* ptadr = _nodes.at(n->_idx); 1953 if (ptadr != NULL) { 1954 assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity"); 1955 return; 1956 } 1957 Compile* C = _compile; 1958 ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es); 1959 _nodes.at_put(n->_idx, ptadr); 1960 } 1961 1962 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) { 1963 PointsToNode* ptadr = _nodes.at(n->_idx); 1964 if (ptadr != NULL) { 1965 assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity"); 1966 return; 1967 } 1968 bool unsafe = false; 1969 bool is_oop = is_oop_field(n, offset, &unsafe); 1970 if (unsafe) { 1971 es = PointsToNode::GlobalEscape; 1972 } 1973 Compile* C = _compile; 1974 FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop); 1975 _nodes.at_put(n->_idx, field); 1976 } 1977 1978 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es, 1979 PointsToNode* src, PointsToNode* dst) { 1980 assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar"); 1981 assert((src != null_obj) && (dst != null_obj), "not for ConP NULL"); 1982 PointsToNode* ptadr = _nodes.at(n->_idx); 1983 if (ptadr != NULL) { 1984 assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity"); 1985 return; 1986 } 1987 Compile* C = _compile; 1988 ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es); 1989 _nodes.at_put(n->_idx, ptadr); 1990 // Add edge from arraycopy node to source object. 1991 (void)add_edge(ptadr, src); 1992 src->set_arraycopy_src(); 1993 // Add edge from destination object to arraycopy node. 1994 (void)add_edge(dst, ptadr); 1995 dst->set_arraycopy_dst(); 1996 } 1997 1998 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) { 1999 const Type* adr_type = n->as_AddP()->bottom_type(); 2000 BasicType bt = T_INT; 2001 if (offset == Type::OffsetBot) { 2002 // Check only oop fields. 2003 if (!adr_type->isa_aryptr() || 2004 (adr_type->isa_aryptr()->klass() == NULL) || 2005 adr_type->isa_aryptr()->klass()->is_obj_array_klass()) { 2006 // OffsetBot is used to reference array's element. Ignore first AddP. 2007 if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) { 2008 bt = T_OBJECT; 2009 } 2010 } 2011 } else if (offset != oopDesc::klass_offset_in_bytes()) { 2012 if (adr_type->isa_instptr()) { 2013 ciField* field = _compile->alias_type(adr_type->isa_instptr())->field(); 2014 if (field != NULL) { 2015 bt = field->layout_type(); 2016 } else { 2017 // Check for unsafe oop field access 2018 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2019 int opcode = n->fast_out(i)->Opcode(); 2020 if (opcode == Op_StoreP || opcode == Op_StoreN || 2021 opcode == Op_LoadP || opcode == Op_LoadN || 2022 opcode == Op_GetAndSetP || opcode == Op_GetAndSetN || 2023 opcode == Op_CompareAndSwapP || opcode == Op_CompareAndSwapN) { 2024 bt = T_OBJECT; 2025 (*unsafe) = true; 2026 break; 2027 } 2028 } 2029 } 2030 } else if (adr_type->isa_aryptr()) { 2031 if (offset == arrayOopDesc::length_offset_in_bytes()) { 2032 // Ignore array length load. 2033 } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) { 2034 // Ignore first AddP. 2035 } else { 2036 const Type* elemtype = adr_type->isa_aryptr()->elem(); 2037 bt = elemtype->array_element_basic_type(); 2038 } 2039 } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) { 2040 // Allocation initialization, ThreadLocal field access, unsafe access 2041 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2042 int opcode = n->fast_out(i)->Opcode(); 2043 if (opcode == Op_StoreP || opcode == Op_StoreN || 2044 opcode == Op_LoadP || opcode == Op_LoadN || 2045 opcode == Op_GetAndSetP || opcode == Op_GetAndSetN || 2046 opcode == Op_CompareAndSwapP || opcode == Op_CompareAndSwapN) { 2047 bt = T_OBJECT; 2048 break; 2049 } 2050 } 2051 } 2052 } 2053 return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY); 2054 } 2055 2056 // Returns unique pointed java object or NULL. 2057 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) { 2058 assert(!_collecting, "should not call when contructed graph"); 2059 // If the node was created after the escape computation we can't answer. 2060 uint idx = n->_idx; 2061 if (idx >= nodes_size()) { 2062 return NULL; 2063 } 2064 PointsToNode* ptn = ptnode_adr(idx); 2065 if (ptn == NULL) { 2066 return NULL; 2067 } 2068 if (ptn->is_JavaObject()) { 2069 return ptn->as_JavaObject(); 2070 } 2071 assert(ptn->is_LocalVar(), "sanity"); 2072 // Check all java objects it points to. 2073 JavaObjectNode* jobj = NULL; 2074 for (EdgeIterator i(ptn); i.has_next(); i.next()) { 2075 PointsToNode* e = i.get(); 2076 if (e->is_JavaObject()) { 2077 if (jobj == NULL) { 2078 jobj = e->as_JavaObject(); 2079 } else if (jobj != e) { 2080 return NULL; 2081 } 2082 } 2083 } 2084 return jobj; 2085 } 2086 2087 // Return true if this node points only to non-escaping allocations. 2088 bool PointsToNode::non_escaping_allocation() { 2089 if (is_JavaObject()) { 2090 Node* n = ideal_node(); 2091 if (n->is_Allocate() || n->is_CallStaticJava()) { 2092 return (escape_state() == PointsToNode::NoEscape); 2093 } else { 2094 return false; 2095 } 2096 } 2097 assert(is_LocalVar(), "sanity"); 2098 // Check all java objects it points to. 2099 for (EdgeIterator i(this); i.has_next(); i.next()) { 2100 PointsToNode* e = i.get(); 2101 if (e->is_JavaObject()) { 2102 Node* n = e->ideal_node(); 2103 if ((e->escape_state() != PointsToNode::NoEscape) || 2104 !(n->is_Allocate() || n->is_CallStaticJava())) { 2105 return false; 2106 } 2107 } 2108 } 2109 return true; 2110 } 2111 2112 // Return true if we know the node does not escape globally. 2113 bool ConnectionGraph::not_global_escape(Node *n) { 2114 assert(!_collecting, "should not call during graph construction"); 2115 // If the node was created after the escape computation we can't answer. 2116 uint idx = n->_idx; 2117 if (idx >= nodes_size()) { 2118 return false; 2119 } 2120 PointsToNode* ptn = ptnode_adr(idx); 2121 if (ptn == NULL) { 2122 return false; // not in congraph (e.g. ConI) 2123 } 2124 PointsToNode::EscapeState es = ptn->escape_state(); 2125 // If we have already computed a value, return it. 2126 if (es >= PointsToNode::GlobalEscape) 2127 return false; 2128 if (ptn->is_JavaObject()) { 2129 return true; // (es < PointsToNode::GlobalEscape); 2130 } 2131 assert(ptn->is_LocalVar(), "sanity"); 2132 // Check all java objects it points to. 2133 for (EdgeIterator i(ptn); i.has_next(); i.next()) { 2134 if (i.get()->escape_state() >= PointsToNode::GlobalEscape) 2135 return false; 2136 } 2137 return true; 2138 } 2139 2140 2141 // Helper functions 2142 2143 // Return true if this node points to specified node or nodes it points to. 2144 bool PointsToNode::points_to(JavaObjectNode* ptn) const { 2145 if (is_JavaObject()) { 2146 return (this == ptn); 2147 } 2148 assert(is_LocalVar() || is_Field(), "sanity"); 2149 for (EdgeIterator i(this); i.has_next(); i.next()) { 2150 if (i.get() == ptn) 2151 return true; 2152 } 2153 return false; 2154 } 2155 2156 // Return true if one node points to an other. 2157 bool PointsToNode::meet(PointsToNode* ptn) { 2158 if (this == ptn) { 2159 return true; 2160 } else if (ptn->is_JavaObject()) { 2161 return this->points_to(ptn->as_JavaObject()); 2162 } else if (this->is_JavaObject()) { 2163 return ptn->points_to(this->as_JavaObject()); 2164 } 2165 assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity"); 2166 int ptn_count = ptn->edge_count(); 2167 for (EdgeIterator i(this); i.has_next(); i.next()) { 2168 PointsToNode* this_e = i.get(); 2169 for (int j = 0; j < ptn_count; j++) { 2170 if (this_e == ptn->edge(j)) 2171 return true; 2172 } 2173 } 2174 return false; 2175 } 2176 2177 #ifdef ASSERT 2178 // Return true if bases point to this java object. 2179 bool FieldNode::has_base(JavaObjectNode* jobj) const { 2180 for (BaseIterator i(this); i.has_next(); i.next()) { 2181 if (i.get() == jobj) 2182 return true; 2183 } 2184 return false; 2185 } 2186 #endif 2187 2188 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) { 2189 const Type *adr_type = phase->type(adr); 2190 if (adr->is_AddP() && adr_type->isa_oopptr() == NULL && 2191 adr->in(AddPNode::Address)->is_Proj() && 2192 adr->in(AddPNode::Address)->in(0)->is_Allocate()) { 2193 // We are computing a raw address for a store captured by an Initialize 2194 // compute an appropriate address type. AddP cases #3 and #5 (see below). 2195 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot); 2196 assert(offs != Type::OffsetBot || 2197 adr->in(AddPNode::Address)->in(0)->is_AllocateArray(), 2198 "offset must be a constant or it is initialization of array"); 2199 return offs; 2200 } 2201 const TypePtr *t_ptr = adr_type->isa_ptr(); 2202 assert(t_ptr != NULL, "must be a pointer type"); 2203 return t_ptr->offset(); 2204 } 2205 2206 Node* ConnectionGraph::get_addp_base(Node *addp) { 2207 assert(addp->is_AddP(), "must be AddP"); 2208 // 2209 // AddP cases for Base and Address inputs: 2210 // case #1. Direct object's field reference: 2211 // Allocate 2212 // | 2213 // Proj #5 ( oop result ) 2214 // | 2215 // CheckCastPP (cast to instance type) 2216 // | | 2217 // AddP ( base == address ) 2218 // 2219 // case #2. Indirect object's field reference: 2220 // Phi 2221 // | 2222 // CastPP (cast to instance type) 2223 // | | 2224 // AddP ( base == address ) 2225 // 2226 // case #3. Raw object's field reference for Initialize node: 2227 // Allocate 2228 // | 2229 // Proj #5 ( oop result ) 2230 // top | 2231 // \ | 2232 // AddP ( base == top ) 2233 // 2234 // case #4. Array's element reference: 2235 // {CheckCastPP | CastPP} 2236 // | | | 2237 // | AddP ( array's element offset ) 2238 // | | 2239 // AddP ( array's offset ) 2240 // 2241 // case #5. Raw object's field reference for arraycopy stub call: 2242 // The inline_native_clone() case when the arraycopy stub is called 2243 // after the allocation before Initialize and CheckCastPP nodes. 2244 // Allocate 2245 // | 2246 // Proj #5 ( oop result ) 2247 // | | 2248 // AddP ( base == address ) 2249 // 2250 // case #6. Constant Pool, ThreadLocal, CastX2P or 2251 // Raw object's field reference: 2252 // {ConP, ThreadLocal, CastX2P, raw Load} 2253 // top | 2254 // \ | 2255 // AddP ( base == top ) 2256 // 2257 // case #7. Klass's field reference. 2258 // LoadKlass 2259 // | | 2260 // AddP ( base == address ) 2261 // 2262 // case #8. narrow Klass's field reference. 2263 // LoadNKlass 2264 // | 2265 // DecodeN 2266 // | | 2267 // AddP ( base == address ) 2268 // 2269 Node *base = addp->in(AddPNode::Base); 2270 if (base->uncast()->is_top()) { // The AddP case #3 and #6. 2271 base = addp->in(AddPNode::Address); 2272 while (base->is_AddP()) { 2273 // Case #6 (unsafe access) may have several chained AddP nodes. 2274 assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only"); 2275 base = base->in(AddPNode::Address); 2276 } 2277 Node* uncast_base = base->uncast(); 2278 int opcode = uncast_base->Opcode(); 2279 assert(opcode == Op_ConP || opcode == Op_ThreadLocal || 2280 opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() || 2281 (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) || 2282 (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity"); 2283 } 2284 return base; 2285 } 2286 2287 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) { 2288 assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes"); 2289 Node* addp2 = addp->raw_out(0); 2290 if (addp->outcnt() == 1 && addp2->is_AddP() && 2291 addp2->in(AddPNode::Base) == n && 2292 addp2->in(AddPNode::Address) == addp) { 2293 assert(addp->in(AddPNode::Base) == n, "expecting the same base"); 2294 // 2295 // Find array's offset to push it on worklist first and 2296 // as result process an array's element offset first (pushed second) 2297 // to avoid CastPP for the array's offset. 2298 // Otherwise the inserted CastPP (LocalVar) will point to what 2299 // the AddP (Field) points to. Which would be wrong since 2300 // the algorithm expects the CastPP has the same point as 2301 // as AddP's base CheckCastPP (LocalVar). 2302 // 2303 // ArrayAllocation 2304 // | 2305 // CheckCastPP 2306 // | 2307 // memProj (from ArrayAllocation CheckCastPP) 2308 // | || 2309 // | || Int (element index) 2310 // | || | ConI (log(element size)) 2311 // | || | / 2312 // | || LShift 2313 // | || / 2314 // | AddP (array's element offset) 2315 // | | 2316 // | | ConI (array's offset: #12(32-bits) or #24(64-bits)) 2317 // | / / 2318 // AddP (array's offset) 2319 // | 2320 // Load/Store (memory operation on array's element) 2321 // 2322 return addp2; 2323 } 2324 return NULL; 2325 } 2326 2327 // 2328 // Adjust the type and inputs of an AddP which computes the 2329 // address of a field of an instance 2330 // 2331 bool ConnectionGraph::split_AddP(Node *addp, Node *base) { 2332 PhaseGVN* igvn = _igvn; 2333 const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr(); 2334 assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr"); 2335 const TypeOopPtr *t = igvn->type(addp)->isa_oopptr(); 2336 if (t == NULL) { 2337 // We are computing a raw address for a store captured by an Initialize 2338 // compute an appropriate address type (cases #3 and #5). 2339 assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer"); 2340 assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation"); 2341 intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot); 2342 assert(offs != Type::OffsetBot, "offset must be a constant"); 2343 t = base_t->add_offset(offs)->is_oopptr(); 2344 } 2345 int inst_id = base_t->instance_id(); 2346 assert(!t->is_known_instance() || t->instance_id() == inst_id, 2347 "old type must be non-instance or match new type"); 2348 2349 // The type 't' could be subclass of 'base_t'. 2350 // As result t->offset() could be large then base_t's size and it will 2351 // cause the failure in add_offset() with narrow oops since TypeOopPtr() 2352 // constructor verifies correctness of the offset. 2353 // 2354 // It could happened on subclass's branch (from the type profiling 2355 // inlining) which was not eliminated during parsing since the exactness 2356 // of the allocation type was not propagated to the subclass type check. 2357 // 2358 // Or the type 't' could be not related to 'base_t' at all. 2359 // It could happened when CHA type is different from MDO type on a dead path 2360 // (for example, from instanceof check) which is not collapsed during parsing. 2361 // 2362 // Do nothing for such AddP node and don't process its users since 2363 // this code branch will go away. 2364 // 2365 if (!t->is_known_instance() && 2366 !base_t->klass()->is_subtype_of(t->klass())) { 2367 return false; // bail out 2368 } 2369 const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr(); 2370 // Do NOT remove the next line: ensure a new alias index is allocated 2371 // for the instance type. Note: C++ will not remove it since the call 2372 // has side effect. 2373 int alias_idx = _compile->get_alias_index(tinst); 2374 igvn->set_type(addp, tinst); 2375 // record the allocation in the node map 2376 set_map(addp, get_map(base->_idx)); 2377 // Set addp's Base and Address to 'base'. 2378 Node *abase = addp->in(AddPNode::Base); 2379 Node *adr = addp->in(AddPNode::Address); 2380 if (adr->is_Proj() && adr->in(0)->is_Allocate() && 2381 adr->in(0)->_idx == (uint)inst_id) { 2382 // Skip AddP cases #3 and #5. 2383 } else { 2384 assert(!abase->is_top(), "sanity"); // AddP case #3 2385 if (abase != base) { 2386 igvn->hash_delete(addp); 2387 addp->set_req(AddPNode::Base, base); 2388 if (abase == adr) { 2389 addp->set_req(AddPNode::Address, base); 2390 } else { 2391 // AddP case #4 (adr is array's element offset AddP node) 2392 #ifdef ASSERT 2393 const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr(); 2394 assert(adr->is_AddP() && atype != NULL && 2395 atype->instance_id() == inst_id, "array's element offset should be processed first"); 2396 #endif 2397 } 2398 igvn->hash_insert(addp); 2399 } 2400 } 2401 // Put on IGVN worklist since at least addp's type was changed above. 2402 record_for_optimizer(addp); 2403 return true; 2404 } 2405 2406 // 2407 // Create a new version of orig_phi if necessary. Returns either the newly 2408 // created phi or an existing phi. Sets create_new to indicate whether a new 2409 // phi was created. Cache the last newly created phi in the node map. 2410 // 2411 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, bool &new_created) { 2412 Compile *C = _compile; 2413 PhaseGVN* igvn = _igvn; 2414 new_created = false; 2415 int phi_alias_idx = C->get_alias_index(orig_phi->adr_type()); 2416 // nothing to do if orig_phi is bottom memory or matches alias_idx 2417 if (phi_alias_idx == alias_idx) { 2418 return orig_phi; 2419 } 2420 // Have we recently created a Phi for this alias index? 2421 PhiNode *result = get_map_phi(orig_phi->_idx); 2422 if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) { 2423 return result; 2424 } 2425 // Previous check may fail when the same wide memory Phi was split into Phis 2426 // for different memory slices. Search all Phis for this region. 2427 if (result != NULL) { 2428 Node* region = orig_phi->in(0); 2429 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) { 2430 Node* phi = region->fast_out(i); 2431 if (phi->is_Phi() && 2432 C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) { 2433 assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice"); 2434 return phi->as_Phi(); 2435 } 2436 } 2437 } 2438 if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) { 2439 if (C->do_escape_analysis() == true && !C->failing()) { 2440 // Retry compilation without escape analysis. 2441 // If this is the first failure, the sentinel string will "stick" 2442 // to the Compile object, and the C2Compiler will see it and retry. 2443 C->record_failure(C2Compiler::retry_no_escape_analysis()); 2444 } 2445 return NULL; 2446 } 2447 orig_phi_worklist.append_if_missing(orig_phi); 2448 const TypePtr *atype = C->get_adr_type(alias_idx); 2449 result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype); 2450 C->copy_node_notes_to(result, orig_phi); 2451 igvn->set_type(result, result->bottom_type()); 2452 record_for_optimizer(result); 2453 set_map(orig_phi, result); 2454 new_created = true; 2455 return result; 2456 } 2457 2458 // 2459 // Return a new version of Memory Phi "orig_phi" with the inputs having the 2460 // specified alias index. 2461 // 2462 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist) { 2463 assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory"); 2464 Compile *C = _compile; 2465 PhaseGVN* igvn = _igvn; 2466 bool new_phi_created; 2467 PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created); 2468 if (!new_phi_created) { 2469 return result; 2470 } 2471 GrowableArray<PhiNode *> phi_list; 2472 GrowableArray<uint> cur_input; 2473 PhiNode *phi = orig_phi; 2474 uint idx = 1; 2475 bool finished = false; 2476 while(!finished) { 2477 while (idx < phi->req()) { 2478 Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist); 2479 if (mem != NULL && mem->is_Phi()) { 2480 PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created); 2481 if (new_phi_created) { 2482 // found an phi for which we created a new split, push current one on worklist and begin 2483 // processing new one 2484 phi_list.push(phi); 2485 cur_input.push(idx); 2486 phi = mem->as_Phi(); 2487 result = newphi; 2488 idx = 1; 2489 continue; 2490 } else { 2491 mem = newphi; 2492 } 2493 } 2494 if (C->failing()) { 2495 return NULL; 2496 } 2497 result->set_req(idx++, mem); 2498 } 2499 #ifdef ASSERT 2500 // verify that the new Phi has an input for each input of the original 2501 assert( phi->req() == result->req(), "must have same number of inputs."); 2502 assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match"); 2503 #endif 2504 // Check if all new phi's inputs have specified alias index. 2505 // Otherwise use old phi. 2506 for (uint i = 1; i < phi->req(); i++) { 2507 Node* in = result->in(i); 2508 assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond."); 2509 } 2510 // we have finished processing a Phi, see if there are any more to do 2511 finished = (phi_list.length() == 0 ); 2512 if (!finished) { 2513 phi = phi_list.pop(); 2514 idx = cur_input.pop(); 2515 PhiNode *prev_result = get_map_phi(phi->_idx); 2516 prev_result->set_req(idx++, result); 2517 result = prev_result; 2518 } 2519 } 2520 return result; 2521 } 2522 2523 // 2524 // The next methods are derived from methods in MemNode. 2525 // 2526 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) { 2527 Node *mem = mmem; 2528 // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally 2529 // means an array I have not precisely typed yet. Do not do any 2530 // alias stuff with it any time soon. 2531 if (toop->base() != Type::AnyPtr && 2532 !(toop->klass() != NULL && 2533 toop->klass()->is_java_lang_Object() && 2534 toop->offset() == Type::OffsetBot)) { 2535 mem = mmem->memory_at(alias_idx); 2536 // Update input if it is progress over what we have now 2537 } 2538 return mem; 2539 } 2540 2541 // 2542 // Move memory users to their memory slices. 2543 // 2544 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *> &orig_phis) { 2545 Compile* C = _compile; 2546 PhaseGVN* igvn = _igvn; 2547 const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr(); 2548 assert(tp != NULL, "ptr type"); 2549 int alias_idx = C->get_alias_index(tp); 2550 int general_idx = C->get_general_index(alias_idx); 2551 2552 // Move users first 2553 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2554 Node* use = n->fast_out(i); 2555 if (use->is_MergeMem()) { 2556 MergeMemNode* mmem = use->as_MergeMem(); 2557 assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice"); 2558 if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) { 2559 continue; // Nothing to do 2560 } 2561 // Replace previous general reference to mem node. 2562 uint orig_uniq = C->unique(); 2563 Node* m = find_inst_mem(n, general_idx, orig_phis); 2564 assert(orig_uniq == C->unique(), "no new nodes"); 2565 mmem->set_memory_at(general_idx, m); 2566 --imax; 2567 --i; 2568 } else if (use->is_MemBar()) { 2569 assert(!use->is_Initialize(), "initializing stores should not be moved"); 2570 if (use->req() > MemBarNode::Precedent && 2571 use->in(MemBarNode::Precedent) == n) { 2572 // Don't move related membars. 2573 record_for_optimizer(use); 2574 continue; 2575 } 2576 tp = use->as_MemBar()->adr_type()->isa_ptr(); 2577 if (tp != NULL && C->get_alias_index(tp) == alias_idx || 2578 alias_idx == general_idx) { 2579 continue; // Nothing to do 2580 } 2581 // Move to general memory slice. 2582 uint orig_uniq = C->unique(); 2583 Node* m = find_inst_mem(n, general_idx, orig_phis); 2584 assert(orig_uniq == C->unique(), "no new nodes"); 2585 igvn->hash_delete(use); 2586 imax -= use->replace_edge(n, m); 2587 igvn->hash_insert(use); 2588 record_for_optimizer(use); 2589 --i; 2590 #ifdef ASSERT 2591 } else if (use->is_Mem()) { 2592 if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) { 2593 // Don't move related cardmark. 2594 continue; 2595 } 2596 // Memory nodes should have new memory input. 2597 tp = igvn->type(use->in(MemNode::Address))->isa_ptr(); 2598 assert(tp != NULL, "ptr type"); 2599 int idx = C->get_alias_index(tp); 2600 assert(get_map(use->_idx) != NULL || idx == alias_idx, 2601 "Following memory nodes should have new memory input or be on the same memory slice"); 2602 } else if (use->is_Phi()) { 2603 // Phi nodes should be split and moved already. 2604 tp = use->as_Phi()->adr_type()->isa_ptr(); 2605 assert(tp != NULL, "ptr type"); 2606 int idx = C->get_alias_index(tp); 2607 assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice"); 2608 } else { 2609 use->dump(); 2610 assert(false, "should not be here"); 2611 #endif 2612 } 2613 } 2614 } 2615 2616 // 2617 // Search memory chain of "mem" to find a MemNode whose address 2618 // is the specified alias index. 2619 // 2620 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *> &orig_phis) { 2621 if (orig_mem == NULL) 2622 return orig_mem; 2623 Compile* C = _compile; 2624 PhaseGVN* igvn = _igvn; 2625 const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr(); 2626 bool is_instance = (toop != NULL) && toop->is_known_instance(); 2627 Node *start_mem = C->start()->proj_out(TypeFunc::Memory); 2628 Node *prev = NULL; 2629 Node *result = orig_mem; 2630 while (prev != result) { 2631 prev = result; 2632 if (result == start_mem) 2633 break; // hit one of our sentinels 2634 if (result->is_Mem()) { 2635 const Type *at = igvn->type(result->in(MemNode::Address)); 2636 if (at == Type::TOP) 2637 break; // Dead 2638 assert (at->isa_ptr() != NULL, "pointer type required."); 2639 int idx = C->get_alias_index(at->is_ptr()); 2640 if (idx == alias_idx) 2641 break; // Found 2642 if (!is_instance && (at->isa_oopptr() == NULL || 2643 !at->is_oopptr()->is_known_instance())) { 2644 break; // Do not skip store to general memory slice. 2645 } 2646 result = result->in(MemNode::Memory); 2647 } 2648 if (!is_instance) 2649 continue; // don't search further for non-instance types 2650 // skip over a call which does not affect this memory slice 2651 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) { 2652 Node *proj_in = result->in(0); 2653 if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) { 2654 break; // hit one of our sentinels 2655 } else if (proj_in->is_Call()) { 2656 CallNode *call = proj_in->as_Call(); 2657 if (!call->may_modify(toop, igvn)) { 2658 result = call->in(TypeFunc::Memory); 2659 } 2660 } else if (proj_in->is_Initialize()) { 2661 AllocateNode* alloc = proj_in->as_Initialize()->allocation(); 2662 // Stop if this is the initialization for the object instance which 2663 // which contains this memory slice, otherwise skip over it. 2664 if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) { 2665 result = proj_in->in(TypeFunc::Memory); 2666 } 2667 } else if (proj_in->is_MemBar()) { 2668 result = proj_in->in(TypeFunc::Memory); 2669 } 2670 } else if (result->is_MergeMem()) { 2671 MergeMemNode *mmem = result->as_MergeMem(); 2672 result = step_through_mergemem(mmem, alias_idx, toop); 2673 if (result == mmem->base_memory()) { 2674 // Didn't find instance memory, search through general slice recursively. 2675 result = mmem->memory_at(C->get_general_index(alias_idx)); 2676 result = find_inst_mem(result, alias_idx, orig_phis); 2677 if (C->failing()) { 2678 return NULL; 2679 } 2680 mmem->set_memory_at(alias_idx, result); 2681 } 2682 } else if (result->is_Phi() && 2683 C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) { 2684 Node *un = result->as_Phi()->unique_input(igvn); 2685 if (un != NULL) { 2686 orig_phis.append_if_missing(result->as_Phi()); 2687 result = un; 2688 } else { 2689 break; 2690 } 2691 } else if (result->is_ClearArray()) { 2692 if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) { 2693 // Can not bypass initialization of the instance 2694 // we are looking for. 2695 break; 2696 } 2697 // Otherwise skip it (the call updated 'result' value). 2698 } else if (result->Opcode() == Op_SCMemProj) { 2699 Node* mem = result->in(0); 2700 Node* adr = NULL; 2701 if (mem->is_LoadStore()) { 2702 adr = mem->in(MemNode::Address); 2703 } else { 2704 assert(mem->Opcode() == Op_EncodeISOArray, "sanity"); 2705 adr = mem->in(3); // Memory edge corresponds to destination array 2706 } 2707 const Type *at = igvn->type(adr); 2708 if (at != Type::TOP) { 2709 assert (at->isa_ptr() != NULL, "pointer type required."); 2710 int idx = C->get_alias_index(at->is_ptr()); 2711 assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field"); 2712 break; 2713 } 2714 result = mem->in(MemNode::Memory); 2715 } 2716 } 2717 if (result->is_Phi()) { 2718 PhiNode *mphi = result->as_Phi(); 2719 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required"); 2720 const TypePtr *t = mphi->adr_type(); 2721 if (!is_instance) { 2722 // Push all non-instance Phis on the orig_phis worklist to update inputs 2723 // during Phase 4 if needed. 2724 orig_phis.append_if_missing(mphi); 2725 } else if (C->get_alias_index(t) != alias_idx) { 2726 // Create a new Phi with the specified alias index type. 2727 result = split_memory_phi(mphi, alias_idx, orig_phis); 2728 } 2729 } 2730 // the result is either MemNode, PhiNode, InitializeNode. 2731 return result; 2732 } 2733 2734 // 2735 // Convert the types of unescaped object to instance types where possible, 2736 // propagate the new type information through the graph, and update memory 2737 // edges and MergeMem inputs to reflect the new type. 2738 // 2739 // We start with allocations (and calls which may be allocations) on alloc_worklist. 2740 // The processing is done in 4 phases: 2741 // 2742 // Phase 1: Process possible allocations from alloc_worklist. Create instance 2743 // types for the CheckCastPP for allocations where possible. 2744 // Propagate the the new types through users as follows: 2745 // casts and Phi: push users on alloc_worklist 2746 // AddP: cast Base and Address inputs to the instance type 2747 // push any AddP users on alloc_worklist and push any memnode 2748 // users onto memnode_worklist. 2749 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and 2750 // search the Memory chain for a store with the appropriate type 2751 // address type. If a Phi is found, create a new version with 2752 // the appropriate memory slices from each of the Phi inputs. 2753 // For stores, process the users as follows: 2754 // MemNode: push on memnode_worklist 2755 // MergeMem: push on mergemem_worklist 2756 // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice 2757 // moving the first node encountered of each instance type to the 2758 // the input corresponding to its alias index. 2759 // appropriate memory slice. 2760 // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes. 2761 // 2762 // In the following example, the CheckCastPP nodes are the cast of allocation 2763 // results and the allocation of node 29 is unescaped and eligible to be an 2764 // instance type. 2765 // 2766 // We start with: 2767 // 2768 // 7 Parm #memory 2769 // 10 ConI "12" 2770 // 19 CheckCastPP "Foo" 2771 // 20 AddP _ 19 19 10 Foo+12 alias_index=4 2772 // 29 CheckCastPP "Foo" 2773 // 30 AddP _ 29 29 10 Foo+12 alias_index=4 2774 // 2775 // 40 StoreP 25 7 20 ... alias_index=4 2776 // 50 StoreP 35 40 30 ... alias_index=4 2777 // 60 StoreP 45 50 20 ... alias_index=4 2778 // 70 LoadP _ 60 30 ... alias_index=4 2779 // 80 Phi 75 50 60 Memory alias_index=4 2780 // 90 LoadP _ 80 30 ... alias_index=4 2781 // 100 LoadP _ 80 20 ... alias_index=4 2782 // 2783 // 2784 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24 2785 // and creating a new alias index for node 30. This gives: 2786 // 2787 // 7 Parm #memory 2788 // 10 ConI "12" 2789 // 19 CheckCastPP "Foo" 2790 // 20 AddP _ 19 19 10 Foo+12 alias_index=4 2791 // 29 CheckCastPP "Foo" iid=24 2792 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24 2793 // 2794 // 40 StoreP 25 7 20 ... alias_index=4 2795 // 50 StoreP 35 40 30 ... alias_index=6 2796 // 60 StoreP 45 50 20 ... alias_index=4 2797 // 70 LoadP _ 60 30 ... alias_index=6 2798 // 80 Phi 75 50 60 Memory alias_index=4 2799 // 90 LoadP _ 80 30 ... alias_index=6 2800 // 100 LoadP _ 80 20 ... alias_index=4 2801 // 2802 // In phase 2, new memory inputs are computed for the loads and stores, 2803 // And a new version of the phi is created. In phase 4, the inputs to 2804 // node 80 are updated and then the memory nodes are updated with the 2805 // values computed in phase 2. This results in: 2806 // 2807 // 7 Parm #memory 2808 // 10 ConI "12" 2809 // 19 CheckCastPP "Foo" 2810 // 20 AddP _ 19 19 10 Foo+12 alias_index=4 2811 // 29 CheckCastPP "Foo" iid=24 2812 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24 2813 // 2814 // 40 StoreP 25 7 20 ... alias_index=4 2815 // 50 StoreP 35 7 30 ... alias_index=6 2816 // 60 StoreP 45 40 20 ... alias_index=4 2817 // 70 LoadP _ 50 30 ... alias_index=6 2818 // 80 Phi 75 40 60 Memory alias_index=4 2819 // 120 Phi 75 50 50 Memory alias_index=6 2820 // 90 LoadP _ 120 30 ... alias_index=6 2821 // 100 LoadP _ 80 20 ... alias_index=4 2822 // 2823 void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist) { 2824 GrowableArray<Node *> memnode_worklist; 2825 GrowableArray<PhiNode *> orig_phis; 2826 PhaseIterGVN *igvn = _igvn; 2827 uint new_index_start = (uint) _compile->num_alias_types(); 2828 Arena* arena = Thread::current()->resource_area(); 2829 VectorSet visited(arena); 2830 ideal_nodes.clear(); // Reset for use with set_map/get_map. 2831 uint unique_old = _compile->unique(); 2832 2833 // Phase 1: Process possible allocations from alloc_worklist. 2834 // Create instance types for the CheckCastPP for allocations where possible. 2835 // 2836 // (Note: don't forget to change the order of the second AddP node on 2837 // the alloc_worklist if the order of the worklist processing is changed, 2838 // see the comment in find_second_addp().) 2839 // 2840 while (alloc_worklist.length() != 0) { 2841 Node *n = alloc_worklist.pop(); 2842 uint ni = n->_idx; 2843 if (n->is_Call()) { 2844 CallNode *alloc = n->as_Call(); 2845 // copy escape information to call node 2846 PointsToNode* ptn = ptnode_adr(alloc->_idx); 2847 PointsToNode::EscapeState es = ptn->escape_state(); 2848 // We have an allocation or call which returns a Java object, 2849 // see if it is unescaped. 2850 if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable()) 2851 continue; 2852 // Find CheckCastPP for the allocate or for the return value of a call 2853 n = alloc->result_cast(); 2854 if (n == NULL) { // No uses except Initialize node 2855 if (alloc->is_Allocate()) { 2856 // Set the scalar_replaceable flag for allocation 2857 // so it could be eliminated if it has no uses. 2858 alloc->as_Allocate()->_is_scalar_replaceable = true; 2859 } 2860 if (alloc->is_CallStaticJava()) { 2861 // Set the scalar_replaceable flag for boxing method 2862 // so it could be eliminated if it has no uses. 2863 alloc->as_CallStaticJava()->_is_scalar_replaceable = true; 2864 } 2865 continue; 2866 } 2867 if (!n->is_CheckCastPP()) { // not unique CheckCastPP. 2868 assert(!alloc->is_Allocate(), "allocation should have unique type"); 2869 continue; 2870 } 2871 2872 // The inline code for Object.clone() casts the allocation result to 2873 // java.lang.Object and then to the actual type of the allocated 2874 // object. Detect this case and use the second cast. 2875 // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when 2876 // the allocation result is cast to java.lang.Object and then 2877 // to the actual Array type. 2878 if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL 2879 && (alloc->is_AllocateArray() || 2880 igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) { 2881 Node *cast2 = NULL; 2882 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2883 Node *use = n->fast_out(i); 2884 if (use->is_CheckCastPP()) { 2885 cast2 = use; 2886 break; 2887 } 2888 } 2889 if (cast2 != NULL) { 2890 n = cast2; 2891 } else { 2892 // Non-scalar replaceable if the allocation type is unknown statically 2893 // (reflection allocation), the object can't be restored during 2894 // deoptimization without precise type. 2895 continue; 2896 } 2897 } 2898 2899 const TypeOopPtr *t = igvn->type(n)->isa_oopptr(); 2900 if (t == NULL) 2901 continue; // not a TypeOopPtr 2902 if (!t->klass_is_exact()) 2903 continue; // not an unique type 2904 2905 if (alloc->is_Allocate()) { 2906 // Set the scalar_replaceable flag for allocation 2907 // so it could be eliminated. 2908 alloc->as_Allocate()->_is_scalar_replaceable = true; 2909 } 2910 if (alloc->is_CallStaticJava()) { 2911 // Set the scalar_replaceable flag for boxing method 2912 // so it could be eliminated. 2913 alloc->as_CallStaticJava()->_is_scalar_replaceable = true; 2914 } 2915 set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state 2916 // in order for an object to be scalar-replaceable, it must be: 2917 // - a direct allocation (not a call returning an object) 2918 // - non-escaping 2919 // - eligible to be a unique type 2920 // - not determined to be ineligible by escape analysis 2921 set_map(alloc, n); 2922 set_map(n, alloc); 2923 const TypeOopPtr* tinst = t->cast_to_instance_id(ni); 2924 igvn->hash_delete(n); 2925 igvn->set_type(n, tinst); 2926 n->raise_bottom_type(tinst); 2927 igvn->hash_insert(n); 2928 record_for_optimizer(n); 2929 if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) { 2930 2931 // First, put on the worklist all Field edges from Connection Graph 2932 // which is more accurate then putting immediate users from Ideal Graph. 2933 for (EdgeIterator e(ptn); e.has_next(); e.next()) { 2934 PointsToNode* tgt = e.get(); 2935 Node* use = tgt->ideal_node(); 2936 assert(tgt->is_Field() && use->is_AddP(), 2937 "only AddP nodes are Field edges in CG"); 2938 if (use->outcnt() > 0) { // Don't process dead nodes 2939 Node* addp2 = find_second_addp(use, use->in(AddPNode::Base)); 2940 if (addp2 != NULL) { 2941 assert(alloc->is_AllocateArray(),"array allocation was expected"); 2942 alloc_worklist.append_if_missing(addp2); 2943 } 2944 alloc_worklist.append_if_missing(use); 2945 } 2946 } 2947 2948 // An allocation may have an Initialize which has raw stores. Scan 2949 // the users of the raw allocation result and push AddP users 2950 // on alloc_worklist. 2951 Node *raw_result = alloc->proj_out(TypeFunc::Parms); 2952 assert (raw_result != NULL, "must have an allocation result"); 2953 for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) { 2954 Node *use = raw_result->fast_out(i); 2955 if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes 2956 Node* addp2 = find_second_addp(use, raw_result); 2957 if (addp2 != NULL) { 2958 assert(alloc->is_AllocateArray(),"array allocation was expected"); 2959 alloc_worklist.append_if_missing(addp2); 2960 } 2961 alloc_worklist.append_if_missing(use); 2962 } else if (use->is_MemBar()) { 2963 memnode_worklist.append_if_missing(use); 2964 } 2965 } 2966 } 2967 } else if (n->is_AddP()) { 2968 JavaObjectNode* jobj = unique_java_object(get_addp_base(n)); 2969 if (jobj == NULL || jobj == phantom_obj) { 2970 #ifdef ASSERT 2971 ptnode_adr(get_addp_base(n)->_idx)->dump(); 2972 ptnode_adr(n->_idx)->dump(); 2973 assert(jobj != NULL && jobj != phantom_obj, "escaped allocation"); 2974 #endif 2975 _compile->record_failure(C2Compiler::retry_no_escape_analysis()); 2976 return; 2977 } 2978 Node *base = get_map(jobj->idx()); // CheckCastPP node 2979 if (!split_AddP(n, base)) continue; // wrong type from dead path 2980 } else if (n->is_Phi() || 2981 n->is_CheckCastPP() || 2982 n->is_EncodeP() || 2983 n->is_DecodeN() || 2984 (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) { 2985 if (visited.test_set(n->_idx)) { 2986 assert(n->is_Phi(), "loops only through Phi's"); 2987 continue; // already processed 2988 } 2989 JavaObjectNode* jobj = unique_java_object(n); 2990 if (jobj == NULL || jobj == phantom_obj) { 2991 #ifdef ASSERT 2992 ptnode_adr(n->_idx)->dump(); 2993 assert(jobj != NULL && jobj != phantom_obj, "escaped allocation"); 2994 #endif 2995 _compile->record_failure(C2Compiler::retry_no_escape_analysis()); 2996 return; 2997 } else { 2998 Node *val = get_map(jobj->idx()); // CheckCastPP node 2999 TypeNode *tn = n->as_Type(); 3000 const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr(); 3001 assert(tinst != NULL && tinst->is_known_instance() && 3002 tinst->instance_id() == jobj->idx() , "instance type expected."); 3003 3004 const Type *tn_type = igvn->type(tn); 3005 const TypeOopPtr *tn_t; 3006 if (tn_type->isa_narrowoop()) { 3007 tn_t = tn_type->make_ptr()->isa_oopptr(); 3008 } else { 3009 tn_t = tn_type->isa_oopptr(); 3010 } 3011 if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) { 3012 if (tn_type->isa_narrowoop()) { 3013 tn_type = tinst->make_narrowoop(); 3014 } else { 3015 tn_type = tinst; 3016 } 3017 igvn->hash_delete(tn); 3018 igvn->set_type(tn, tn_type); 3019 tn->set_type(tn_type); 3020 igvn->hash_insert(tn); 3021 record_for_optimizer(n); 3022 } else { 3023 assert(tn_type == TypePtr::NULL_PTR || 3024 tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()), 3025 "unexpected type"); 3026 continue; // Skip dead path with different type 3027 } 3028 } 3029 } else { 3030 debug_only(n->dump();) 3031 assert(false, "EA: unexpected node"); 3032 continue; 3033 } 3034 // push allocation's users on appropriate worklist 3035 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3036 Node *use = n->fast_out(i); 3037 if(use->is_Mem() && use->in(MemNode::Address) == n) { 3038 // Load/store to instance's field 3039 memnode_worklist.append_if_missing(use); 3040 } else if (use->is_MemBar()) { 3041 if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge 3042 memnode_worklist.append_if_missing(use); 3043 } 3044 } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes 3045 Node* addp2 = find_second_addp(use, n); 3046 if (addp2 != NULL) { 3047 alloc_worklist.append_if_missing(addp2); 3048 } 3049 alloc_worklist.append_if_missing(use); 3050 } else if (use->is_Phi() || 3051 use->is_CheckCastPP() || 3052 use->is_EncodeNarrowPtr() || 3053 use->is_DecodeNarrowPtr() || 3054 (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) { 3055 alloc_worklist.append_if_missing(use); 3056 #ifdef ASSERT 3057 } else if (use->is_Mem()) { 3058 assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path"); 3059 } else if (use->is_MergeMem()) { 3060 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist"); 3061 } else if (use->is_SafePoint()) { 3062 // Look for MergeMem nodes for calls which reference unique allocation 3063 // (through CheckCastPP nodes) even for debug info. 3064 Node* m = use->in(TypeFunc::Memory); 3065 if (m->is_MergeMem()) { 3066 assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist"); 3067 } 3068 } else if (use->Opcode() == Op_EncodeISOArray) { 3069 if (use->in(MemNode::Memory) == n || use->in(3) == n) { 3070 // EncodeISOArray overwrites destination array 3071 memnode_worklist.append_if_missing(use); 3072 } 3073 } else { 3074 uint op = use->Opcode(); 3075 if (!(op == Op_CmpP || op == Op_Conv2B || 3076 op == Op_CastP2X || op == Op_StoreCM || 3077 op == Op_FastLock || op == Op_AryEq || op == Op_StrComp || 3078 op == Op_StrEquals || op == Op_StrIndexOf)) { 3079 n->dump(); 3080 use->dump(); 3081 assert(false, "EA: missing allocation reference path"); 3082 } 3083 #endif 3084 } 3085 } 3086 3087 } 3088 // New alias types were created in split_AddP(). 3089 uint new_index_end = (uint) _compile->num_alias_types(); 3090 assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1"); 3091 3092 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and 3093 // compute new values for Memory inputs (the Memory inputs are not 3094 // actually updated until phase 4.) 3095 if (memnode_worklist.length() == 0) 3096 return; // nothing to do 3097 while (memnode_worklist.length() != 0) { 3098 Node *n = memnode_worklist.pop(); 3099 if (visited.test_set(n->_idx)) 3100 continue; 3101 if (n->is_Phi() || n->is_ClearArray()) { 3102 // we don't need to do anything, but the users must be pushed 3103 } else if (n->is_MemBar()) { // Initialize, MemBar nodes 3104 // we don't need to do anything, but the users must be pushed 3105 n = n->as_MemBar()->proj_out(TypeFunc::Memory); 3106 if (n == NULL) 3107 continue; 3108 } else if (n->Opcode() == Op_EncodeISOArray) { 3109 // get the memory projection 3110 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3111 Node *use = n->fast_out(i); 3112 if (use->Opcode() == Op_SCMemProj) { 3113 n = use; 3114 break; 3115 } 3116 } 3117 assert(n->Opcode() == Op_SCMemProj, "memory projection required"); 3118 } else { 3119 assert(n->is_Mem(), "memory node required."); 3120 Node *addr = n->in(MemNode::Address); 3121 const Type *addr_t = igvn->type(addr); 3122 if (addr_t == Type::TOP) 3123 continue; 3124 assert (addr_t->isa_ptr() != NULL, "pointer type required."); 3125 int alias_idx = _compile->get_alias_index(addr_t->is_ptr()); 3126 assert ((uint)alias_idx < new_index_end, "wrong alias index"); 3127 Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis); 3128 if (_compile->failing()) { 3129 return; 3130 } 3131 if (mem != n->in(MemNode::Memory)) { 3132 // We delay the memory edge update since we need old one in 3133 // MergeMem code below when instances memory slices are separated. 3134 set_map(n, mem); 3135 } 3136 if (n->is_Load()) { 3137 continue; // don't push users 3138 } else if (n->is_LoadStore()) { 3139 // get the memory projection 3140 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3141 Node *use = n->fast_out(i); 3142 if (use->Opcode() == Op_SCMemProj) { 3143 n = use; 3144 break; 3145 } 3146 } 3147 assert(n->Opcode() == Op_SCMemProj, "memory projection required"); 3148 } 3149 } 3150 // push user on appropriate worklist 3151 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3152 Node *use = n->fast_out(i); 3153 if (use->is_Phi() || use->is_ClearArray()) { 3154 memnode_worklist.append_if_missing(use); 3155 } else if (use->is_Mem() && use->in(MemNode::Memory) == n) { 3156 if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores 3157 continue; 3158 memnode_worklist.append_if_missing(use); 3159 } else if (use->is_MemBar()) { 3160 if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge 3161 memnode_worklist.append_if_missing(use); 3162 } 3163 #ifdef ASSERT 3164 } else if(use->is_Mem()) { 3165 assert(use->in(MemNode::Memory) != n, "EA: missing memory path"); 3166 } else if (use->is_MergeMem()) { 3167 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist"); 3168 } else if (use->Opcode() == Op_EncodeISOArray) { 3169 if (use->in(MemNode::Memory) == n || use->in(3) == n) { 3170 // EncodeISOArray overwrites destination array 3171 memnode_worklist.append_if_missing(use); 3172 } 3173 } else { 3174 uint op = use->Opcode(); 3175 if (!(op == Op_StoreCM || 3176 (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL && 3177 strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) || 3178 op == Op_AryEq || op == Op_StrComp || 3179 op == Op_StrEquals || op == Op_StrIndexOf)) { 3180 n->dump(); 3181 use->dump(); 3182 assert(false, "EA: missing memory path"); 3183 } 3184 #endif 3185 } 3186 } 3187 } 3188 3189 // Phase 3: Process MergeMem nodes from mergemem_worklist. 3190 // Walk each memory slice moving the first node encountered of each 3191 // instance type to the the input corresponding to its alias index. 3192 uint length = _mergemem_worklist.length(); 3193 for( uint next = 0; next < length; ++next ) { 3194 MergeMemNode* nmm = _mergemem_worklist.at(next); 3195 assert(!visited.test_set(nmm->_idx), "should not be visited before"); 3196 // Note: we don't want to use MergeMemStream here because we only want to 3197 // scan inputs which exist at the start, not ones we add during processing. 3198 // Note 2: MergeMem may already contains instance memory slices added 3199 // during find_inst_mem() call when memory nodes were processed above. 3200 igvn->hash_delete(nmm); 3201 uint nslices = MIN2(nmm->req(), new_index_start); 3202 for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) { 3203 Node* mem = nmm->in(i); 3204 Node* cur = NULL; 3205 if (mem == NULL || mem->is_top()) 3206 continue; 3207 // First, update mergemem by moving memory nodes to corresponding slices 3208 // if their type became more precise since this mergemem was created. 3209 while (mem->is_Mem()) { 3210 const Type *at = igvn->type(mem->in(MemNode::Address)); 3211 if (at != Type::TOP) { 3212 assert (at->isa_ptr() != NULL, "pointer type required."); 3213 uint idx = (uint)_compile->get_alias_index(at->is_ptr()); 3214 if (idx == i) { 3215 if (cur == NULL) 3216 cur = mem; 3217 } else { 3218 if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) { 3219 nmm->set_memory_at(idx, mem); 3220 } 3221 } 3222 } 3223 mem = mem->in(MemNode::Memory); 3224 } 3225 nmm->set_memory_at(i, (cur != NULL) ? cur : mem); 3226 // Find any instance of the current type if we haven't encountered 3227 // already a memory slice of the instance along the memory chain. 3228 for (uint ni = new_index_start; ni < new_index_end; ni++) { 3229 if((uint)_compile->get_general_index(ni) == i) { 3230 Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni); 3231 if (nmm->is_empty_memory(m)) { 3232 Node* result = find_inst_mem(mem, ni, orig_phis); 3233 if (_compile->failing()) { 3234 return; 3235 } 3236 nmm->set_memory_at(ni, result); 3237 } 3238 } 3239 } 3240 } 3241 // Find the rest of instances values 3242 for (uint ni = new_index_start; ni < new_index_end; ni++) { 3243 const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr(); 3244 Node* result = step_through_mergemem(nmm, ni, tinst); 3245 if (result == nmm->base_memory()) { 3246 // Didn't find instance memory, search through general slice recursively. 3247 result = nmm->memory_at(_compile->get_general_index(ni)); 3248 result = find_inst_mem(result, ni, orig_phis); 3249 if (_compile->failing()) { 3250 return; 3251 } 3252 nmm->set_memory_at(ni, result); 3253 } 3254 } 3255 igvn->hash_insert(nmm); 3256 record_for_optimizer(nmm); 3257 } 3258 3259 // Phase 4: Update the inputs of non-instance memory Phis and 3260 // the Memory input of memnodes 3261 // First update the inputs of any non-instance Phi's from 3262 // which we split out an instance Phi. Note we don't have 3263 // to recursively process Phi's encounted on the input memory 3264 // chains as is done in split_memory_phi() since they will 3265 // also be processed here. 3266 for (int j = 0; j < orig_phis.length(); j++) { 3267 PhiNode *phi = orig_phis.at(j); 3268 int alias_idx = _compile->get_alias_index(phi->adr_type()); 3269 igvn->hash_delete(phi); 3270 for (uint i = 1; i < phi->req(); i++) { 3271 Node *mem = phi->in(i); 3272 Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis); 3273 if (_compile->failing()) { 3274 return; 3275 } 3276 if (mem != new_mem) { 3277 phi->set_req(i, new_mem); 3278 } 3279 } 3280 igvn->hash_insert(phi); 3281 record_for_optimizer(phi); 3282 } 3283 3284 // Update the memory inputs of MemNodes with the value we computed 3285 // in Phase 2 and move stores memory users to corresponding memory slices. 3286 // Disable memory split verification code until the fix for 6984348. 3287 // Currently it produces false negative results since it does not cover all cases. 3288 #if 0 // ifdef ASSERT 3289 visited.Reset(); 3290 Node_Stack old_mems(arena, _compile->unique() >> 2); 3291 #endif 3292 for (uint i = 0; i < ideal_nodes.size(); i++) { 3293 Node* n = ideal_nodes.at(i); 3294 Node* nmem = get_map(n->_idx); 3295 assert(nmem != NULL, "sanity"); 3296 if (n->is_Mem()) { 3297 #if 0 // ifdef ASSERT 3298 Node* old_mem = n->in(MemNode::Memory); 3299 if (!visited.test_set(old_mem->_idx)) { 3300 old_mems.push(old_mem, old_mem->outcnt()); 3301 } 3302 #endif 3303 assert(n->in(MemNode::Memory) != nmem, "sanity"); 3304 if (!n->is_Load()) { 3305 // Move memory users of a store first. 3306 move_inst_mem(n, orig_phis); 3307 } 3308 // Now update memory input 3309 igvn->hash_delete(n); 3310 n->set_req(MemNode::Memory, nmem); 3311 igvn->hash_insert(n); 3312 record_for_optimizer(n); 3313 } else { 3314 assert(n->is_Allocate() || n->is_CheckCastPP() || 3315 n->is_AddP() || n->is_Phi(), "unknown node used for set_map()"); 3316 } 3317 } 3318 #if 0 // ifdef ASSERT 3319 // Verify that memory was split correctly 3320 while (old_mems.is_nonempty()) { 3321 Node* old_mem = old_mems.node(); 3322 uint old_cnt = old_mems.index(); 3323 old_mems.pop(); 3324 assert(old_cnt == old_mem->outcnt(), "old mem could be lost"); 3325 } 3326 #endif 3327 } 3328 3329 #ifndef PRODUCT 3330 static const char *node_type_names[] = { 3331 "UnknownType", 3332 "JavaObject", 3333 "LocalVar", 3334 "Field", 3335 "Arraycopy" 3336 }; 3337 3338 static const char *esc_names[] = { 3339 "UnknownEscape", 3340 "NoEscape", 3341 "ArgEscape", 3342 "GlobalEscape" 3343 }; 3344 3345 void PointsToNode::dump(bool print_state) const { 3346 NodeType nt = node_type(); 3347 tty->print("%s ", node_type_names[(int) nt]); 3348 if (print_state) { 3349 EscapeState es = escape_state(); 3350 EscapeState fields_es = fields_escape_state(); 3351 tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]); 3352 if (nt == PointsToNode::JavaObject && !this->scalar_replaceable()) 3353 tty->print("NSR "); 3354 } 3355 if (is_Field()) { 3356 FieldNode* f = (FieldNode*)this; 3357 if (f->is_oop()) 3358 tty->print("oop "); 3359 if (f->offset() > 0) 3360 tty->print("+%d ", f->offset()); 3361 tty->print("("); 3362 for (BaseIterator i(f); i.has_next(); i.next()) { 3363 PointsToNode* b = i.get(); 3364 tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : "")); 3365 } 3366 tty->print(" )"); 3367 } 3368 tty->print("["); 3369 for (EdgeIterator i(this); i.has_next(); i.next()) { 3370 PointsToNode* e = i.get(); 3371 tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : ""); 3372 } 3373 tty->print(" ["); 3374 for (UseIterator i(this); i.has_next(); i.next()) { 3375 PointsToNode* u = i.get(); 3376 bool is_base = false; 3377 if (PointsToNode::is_base_use(u)) { 3378 is_base = true; 3379 u = PointsToNode::get_use_node(u)->as_Field(); 3380 } 3381 tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : ""); 3382 } 3383 tty->print(" ]] "); 3384 if (_node == NULL) 3385 tty->print_cr("<null>"); 3386 else 3387 _node->dump(); 3388 } 3389 3390 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) { 3391 bool first = true; 3392 int ptnodes_length = ptnodes_worklist.length(); 3393 for (int i = 0; i < ptnodes_length; i++) { 3394 PointsToNode *ptn = ptnodes_worklist.at(i); 3395 if (ptn == NULL || !ptn->is_JavaObject()) 3396 continue; 3397 PointsToNode::EscapeState es = ptn->escape_state(); 3398 if ((es != PointsToNode::NoEscape) && !Verbose) { 3399 continue; 3400 } 3401 Node* n = ptn->ideal_node(); 3402 if (n->is_Allocate() || (n->is_CallStaticJava() && 3403 n->as_CallStaticJava()->is_boxing_method())) { 3404 if (first) { 3405 tty->cr(); 3406 tty->print("======== Connection graph for "); 3407 _compile->method()->print_short_name(); 3408 tty->cr(); 3409 first = false; 3410 } 3411 ptn->dump(); 3412 // Print all locals and fields which reference this allocation 3413 for (UseIterator j(ptn); j.has_next(); j.next()) { 3414 PointsToNode* use = j.get(); 3415 if (use->is_LocalVar()) { 3416 use->dump(Verbose); 3417 } else if (Verbose) { 3418 use->dump(); 3419 } 3420 } 3421 tty->cr(); 3422 } 3423 } 3424 } 3425 #endif