1 /* 2 * Copyright (c) 1998, 2016, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "ci/ciMethodData.hpp" 27 #include "classfile/systemDictionary.hpp" 28 #include "classfile/vmSymbols.hpp" 29 #include "compiler/compileLog.hpp" 30 #include "interpreter/linkResolver.hpp" 31 #include "memory/universe.inline.hpp" 32 #include "opto/addnode.hpp" 33 #include "opto/divnode.hpp" 34 #include "opto/idealGraphPrinter.hpp" 35 #include "opto/matcher.hpp" 36 #include "opto/memnode.hpp" 37 #include "opto/mulnode.hpp" 38 #include "opto/parse.hpp" 39 #include "opto/runtime.hpp" 40 #include "runtime/deoptimization.hpp" 41 #include "runtime/sharedRuntime.hpp" 42 43 extern int explicit_null_checks_inserted, 44 explicit_null_checks_elided; 45 46 //---------------------------------array_load---------------------------------- 47 void Parse::array_load(BasicType elem_type) { 48 const Type* elem = Type::TOP; 49 Node* adr = array_addressing(elem_type, 0, &elem); 50 if (stopped()) return; // guaranteed null or range check 51 dec_sp(2); // Pop array and index 52 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type); 53 Node* ld = make_load(control(), adr, elem, elem_type, adr_type, MemNode::unordered); 54 push(ld); 55 } 56 57 58 //--------------------------------array_store---------------------------------- 59 void Parse::array_store(BasicType elem_type) { 60 const Type* elem = Type::TOP; 61 Node* adr = array_addressing(elem_type, 1, &elem); 62 if (stopped()) return; // guaranteed null or range check 63 Node* val = pop(); 64 dec_sp(2); // Pop array and index 65 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type); 66 if (elem == TypeInt::BOOL) { 67 elem_type = T_BOOLEAN; 68 } 69 store_to_memory(control(), adr, val, elem_type, adr_type, StoreNode::release_if_reference(elem_type)); 70 } 71 72 73 //------------------------------array_addressing------------------------------- 74 // Pull array and index from the stack. Compute pointer-to-element. 75 Node* Parse::array_addressing(BasicType type, int vals, const Type* *result2) { 76 Node *idx = peek(0+vals); // Get from stack without popping 77 Node *ary = peek(1+vals); // in case of exception 78 79 // Null check the array base, with correct stack contents 80 ary = null_check(ary, T_ARRAY); 81 // Compile-time detect of null-exception? 82 if (stopped()) return top(); 83 84 const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr(); 85 const TypeInt* sizetype = arytype->size(); 86 const Type* elemtype = arytype->elem(); 87 88 if (UseUniqueSubclasses && result2 != NULL) { 89 const Type* el = elemtype->make_ptr(); 90 if (el && el->isa_instptr()) { 91 const TypeInstPtr* toop = el->is_instptr(); 92 if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) { 93 // If we load from "AbstractClass[]" we must see "ConcreteSubClass". 94 const Type* subklass = Type::get_const_type(toop->klass()); 95 elemtype = subklass->join_speculative(el); 96 } 97 } 98 } 99 100 // Check for big class initializers with all constant offsets 101 // feeding into a known-size array. 102 const TypeInt* idxtype = _gvn.type(idx)->is_int(); 103 // See if the highest idx value is less than the lowest array bound, 104 // and if the idx value cannot be negative: 105 bool need_range_check = true; 106 if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) { 107 need_range_check = false; 108 if (C->log() != NULL) C->log()->elem("observe that='!need_range_check'"); 109 } 110 111 ciKlass * arytype_klass = arytype->klass(); 112 if ((arytype_klass != NULL) && (!arytype_klass->is_loaded())) { 113 // Only fails for some -Xcomp runs 114 // The class is unloaded. We have to run this bytecode in the interpreter. 115 uncommon_trap(Deoptimization::Reason_unloaded, 116 Deoptimization::Action_reinterpret, 117 arytype->klass(), "!loaded array"); 118 return top(); 119 } 120 121 // Do the range check 122 if (GenerateRangeChecks && need_range_check) { 123 Node* tst; 124 if (sizetype->_hi <= 0) { 125 // The greatest array bound is negative, so we can conclude that we're 126 // compiling unreachable code, but the unsigned compare trick used below 127 // only works with non-negative lengths. Instead, hack "tst" to be zero so 128 // the uncommon_trap path will always be taken. 129 tst = _gvn.intcon(0); 130 } else { 131 // Range is constant in array-oop, so we can use the original state of mem 132 Node* len = load_array_length(ary); 133 134 // Test length vs index (standard trick using unsigned compare) 135 Node* chk = _gvn.transform( new (C) CmpUNode(idx, len) ); 136 BoolTest::mask btest = BoolTest::lt; 137 tst = _gvn.transform( new (C) BoolNode(chk, btest) ); 138 } 139 // Branch to failure if out of bounds 140 { BuildCutout unless(this, tst, PROB_MAX); 141 if (C->allow_range_check_smearing()) { 142 // Do not use builtin_throw, since range checks are sometimes 143 // made more stringent by an optimistic transformation. 144 // This creates "tentative" range checks at this point, 145 // which are not guaranteed to throw exceptions. 146 // See IfNode::Ideal, is_range_check, adjust_check. 147 uncommon_trap(Deoptimization::Reason_range_check, 148 Deoptimization::Action_make_not_entrant, 149 NULL, "range_check"); 150 } else { 151 // If we have already recompiled with the range-check-widening 152 // heroic optimization turned off, then we must really be throwing 153 // range check exceptions. 154 builtin_throw(Deoptimization::Reason_range_check, idx); 155 } 156 } 157 } 158 // Check for always knowing you are throwing a range-check exception 159 if (stopped()) return top(); 160 161 // Make array address computation control dependent to prevent it 162 // from floating above the range check during loop optimizations. 163 Node* ptr = array_element_address(ary, idx, type, sizetype, control()); 164 165 if (result2 != NULL) *result2 = elemtype; 166 167 assert(ptr != top(), "top should go hand-in-hand with stopped"); 168 169 return ptr; 170 } 171 172 173 // returns IfNode 174 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask) { 175 Node *cmp = _gvn.transform( new (C) CmpINode( a, b)); // two cases: shiftcount > 32 and shiftcount <= 32 176 Node *tst = _gvn.transform( new (C) BoolNode( cmp, mask)); 177 IfNode *iff = create_and_map_if( control(), tst, ((mask == BoolTest::eq) ? PROB_STATIC_INFREQUENT : PROB_FAIR), COUNT_UNKNOWN ); 178 return iff; 179 } 180 181 // return Region node 182 Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) { 183 Node *region = new (C) RegionNode(3); // 2 results 184 record_for_igvn(region); 185 region->init_req(1, iffalse); 186 region->init_req(2, iftrue ); 187 _gvn.set_type(region, Type::CONTROL); 188 region = _gvn.transform(region); 189 set_control (region); 190 return region; 191 } 192 193 194 //------------------------------helper for tableswitch------------------------- 195 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) { 196 // True branch, use existing map info 197 { PreserveJVMState pjvms(this); 198 Node *iftrue = _gvn.transform( new (C) IfTrueNode (iff) ); 199 set_control( iftrue ); 200 profile_switch_case(prof_table_index); 201 merge_new_path(dest_bci_if_true); 202 } 203 204 // False branch 205 Node *iffalse = _gvn.transform( new (C) IfFalseNode(iff) ); 206 set_control( iffalse ); 207 } 208 209 void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) { 210 // True branch, use existing map info 211 { PreserveJVMState pjvms(this); 212 Node *iffalse = _gvn.transform( new (C) IfFalseNode (iff) ); 213 set_control( iffalse ); 214 profile_switch_case(prof_table_index); 215 merge_new_path(dest_bci_if_true); 216 } 217 218 // False branch 219 Node *iftrue = _gvn.transform( new (C) IfTrueNode(iff) ); 220 set_control( iftrue ); 221 } 222 223 void Parse::jump_if_always_fork(int dest_bci, int prof_table_index) { 224 // False branch, use existing map and control() 225 profile_switch_case(prof_table_index); 226 merge_new_path(dest_bci); 227 } 228 229 230 extern "C" { 231 static int jint_cmp(const void *i, const void *j) { 232 int a = *(jint *)i; 233 int b = *(jint *)j; 234 return a > b ? 1 : a < b ? -1 : 0; 235 } 236 } 237 238 239 // Default value for methodData switch indexing. Must be a negative value to avoid 240 // conflict with any legal switch index. 241 #define NullTableIndex -1 242 243 class SwitchRange : public StackObj { 244 // a range of integers coupled with a bci destination 245 jint _lo; // inclusive lower limit 246 jint _hi; // inclusive upper limit 247 int _dest; 248 int _table_index; // index into method data table 249 250 public: 251 jint lo() const { return _lo; } 252 jint hi() const { return _hi; } 253 int dest() const { return _dest; } 254 int table_index() const { return _table_index; } 255 bool is_singleton() const { return _lo == _hi; } 256 257 void setRange(jint lo, jint hi, int dest, int table_index) { 258 assert(lo <= hi, "must be a non-empty range"); 259 _lo = lo, _hi = hi; _dest = dest; _table_index = table_index; 260 } 261 bool adjoinRange(jint lo, jint hi, int dest, int table_index) { 262 assert(lo <= hi, "must be a non-empty range"); 263 if (lo == _hi+1 && dest == _dest && table_index == _table_index) { 264 _hi = hi; 265 return true; 266 } 267 return false; 268 } 269 270 void set (jint value, int dest, int table_index) { 271 setRange(value, value, dest, table_index); 272 } 273 bool adjoin(jint value, int dest, int table_index) { 274 return adjoinRange(value, value, dest, table_index); 275 } 276 277 void print() { 278 if (is_singleton()) 279 tty->print(" {%d}=>%d", lo(), dest()); 280 else if (lo() == min_jint) 281 tty->print(" {..%d}=>%d", hi(), dest()); 282 else if (hi() == max_jint) 283 tty->print(" {%d..}=>%d", lo(), dest()); 284 else 285 tty->print(" {%d..%d}=>%d", lo(), hi(), dest()); 286 } 287 }; 288 289 290 //-------------------------------do_tableswitch-------------------------------- 291 void Parse::do_tableswitch() { 292 Node* lookup = pop(); 293 294 // Get information about tableswitch 295 int default_dest = iter().get_dest_table(0); 296 int lo_index = iter().get_int_table(1); 297 int hi_index = iter().get_int_table(2); 298 int len = hi_index - lo_index + 1; 299 300 if (len < 1) { 301 // If this is a backward branch, add safepoint 302 maybe_add_safepoint(default_dest); 303 merge(default_dest); 304 return; 305 } 306 307 // generate decision tree, using trichotomy when possible 308 int rnum = len+2; 309 bool makes_backward_branch = false; 310 SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum); 311 int rp = -1; 312 if (lo_index != min_jint) { 313 ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex); 314 } 315 for (int j = 0; j < len; j++) { 316 jint match_int = lo_index+j; 317 int dest = iter().get_dest_table(j+3); 318 makes_backward_branch |= (dest <= bci()); 319 int table_index = method_data_update() ? j : NullTableIndex; 320 if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index)) { 321 ranges[++rp].set(match_int, dest, table_index); 322 } 323 } 324 jint highest = lo_index+(len-1); 325 assert(ranges[rp].hi() == highest, ""); 326 if (highest != max_jint 327 && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex)) { 328 ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex); 329 } 330 assert(rp < len+2, "not too many ranges"); 331 332 // Safepoint in case if backward branch observed 333 if( makes_backward_branch && UseLoopSafepoints ) 334 add_safepoint(); 335 336 jump_switch_ranges(lookup, &ranges[0], &ranges[rp]); 337 } 338 339 340 //------------------------------do_lookupswitch-------------------------------- 341 void Parse::do_lookupswitch() { 342 Node *lookup = pop(); // lookup value 343 // Get information about lookupswitch 344 int default_dest = iter().get_dest_table(0); 345 int len = iter().get_int_table(1); 346 347 if (len < 1) { // If this is a backward branch, add safepoint 348 maybe_add_safepoint(default_dest); 349 merge(default_dest); 350 return; 351 } 352 353 // generate decision tree, using trichotomy when possible 354 jint* table = NEW_RESOURCE_ARRAY(jint, len*2); 355 { 356 for( int j = 0; j < len; j++ ) { 357 table[j+j+0] = iter().get_int_table(2+j+j); 358 table[j+j+1] = iter().get_dest_table(2+j+j+1); 359 } 360 qsort( table, len, 2*sizeof(table[0]), jint_cmp ); 361 } 362 363 int rnum = len*2+1; 364 bool makes_backward_branch = false; 365 SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum); 366 int rp = -1; 367 for( int j = 0; j < len; j++ ) { 368 jint match_int = table[j+j+0]; 369 int dest = table[j+j+1]; 370 int next_lo = rp < 0 ? min_jint : ranges[rp].hi()+1; 371 int table_index = method_data_update() ? j : NullTableIndex; 372 makes_backward_branch |= (dest <= bci()); 373 if( match_int != next_lo ) { 374 ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex); 375 } 376 if( rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index) ) { 377 ranges[++rp].set(match_int, dest, table_index); 378 } 379 } 380 jint highest = table[2*(len-1)]; 381 assert(ranges[rp].hi() == highest, ""); 382 if( highest != max_jint 383 && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex) ) { 384 ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex); 385 } 386 assert(rp < rnum, "not too many ranges"); 387 388 // Safepoint in case backward branch observed 389 if( makes_backward_branch && UseLoopSafepoints ) 390 add_safepoint(); 391 392 jump_switch_ranges(lookup, &ranges[0], &ranges[rp]); 393 } 394 395 //----------------------------create_jump_tables------------------------------- 396 bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) { 397 // Are jumptables enabled 398 if (!UseJumpTables) return false; 399 400 // Are jumptables supported 401 if (!Matcher::has_match_rule(Op_Jump)) return false; 402 403 // Don't make jump table if profiling 404 if (method_data_update()) return false; 405 406 // Decide if a guard is needed to lop off big ranges at either (or 407 // both) end(s) of the input set. We'll call this the default target 408 // even though we can't be sure that it is the true "default". 409 410 bool needs_guard = false; 411 int default_dest; 412 int64 total_outlier_size = 0; 413 int64 hi_size = ((int64)hi->hi()) - ((int64)hi->lo()) + 1; 414 int64 lo_size = ((int64)lo->hi()) - ((int64)lo->lo()) + 1; 415 416 if (lo->dest() == hi->dest()) { 417 total_outlier_size = hi_size + lo_size; 418 default_dest = lo->dest(); 419 } else if (lo_size > hi_size) { 420 total_outlier_size = lo_size; 421 default_dest = lo->dest(); 422 } else { 423 total_outlier_size = hi_size; 424 default_dest = hi->dest(); 425 } 426 427 // If a guard test will eliminate very sparse end ranges, then 428 // it is worth the cost of an extra jump. 429 if (total_outlier_size > (MaxJumpTableSparseness * 4)) { 430 needs_guard = true; 431 if (default_dest == lo->dest()) lo++; 432 if (default_dest == hi->dest()) hi--; 433 } 434 435 // Find the total number of cases and ranges 436 int64 num_cases = ((int64)hi->hi()) - ((int64)lo->lo()) + 1; 437 int num_range = hi - lo + 1; 438 439 // Don't create table if: too large, too small, or too sparse. 440 if (num_cases < MinJumpTableSize || num_cases > MaxJumpTableSize) 441 return false; 442 if (num_cases > (MaxJumpTableSparseness * num_range)) 443 return false; 444 445 // Normalize table lookups to zero 446 int lowval = lo->lo(); 447 key_val = _gvn.transform( new (C) SubINode(key_val, _gvn.intcon(lowval)) ); 448 449 // Generate a guard to protect against input keyvals that aren't 450 // in the switch domain. 451 if (needs_guard) { 452 Node* size = _gvn.intcon(num_cases); 453 Node* cmp = _gvn.transform( new (C) CmpUNode(key_val, size) ); 454 Node* tst = _gvn.transform( new (C) BoolNode(cmp, BoolTest::ge) ); 455 IfNode* iff = create_and_map_if( control(), tst, PROB_FAIR, COUNT_UNKNOWN); 456 jump_if_true_fork(iff, default_dest, NullTableIndex); 457 } 458 459 // Create an ideal node JumpTable that has projections 460 // of all possible ranges for a switch statement 461 // The key_val input must be converted to a pointer offset and scaled. 462 // Compare Parse::array_addressing above. 463 #ifdef _LP64 464 // Clean the 32-bit int into a real 64-bit offset. 465 // Otherwise, the jint value 0 might turn into an offset of 0x0800000000. 466 const TypeInt* ikeytype = TypeInt::make(0, num_cases-1, Type::WidenMin); 467 // Make I2L conversion control dependent to prevent it from 468 // floating above the range check during loop optimizations. 469 key_val = C->constrained_convI2L(&_gvn, key_val, ikeytype, control()); 470 #endif 471 472 // Shift the value by wordsize so we have an index into the table, rather 473 // than a switch value 474 Node *shiftWord = _gvn.MakeConX(wordSize); 475 key_val = _gvn.transform( new (C) MulXNode( key_val, shiftWord)); 476 477 // Create the JumpNode 478 Node* jtn = _gvn.transform( new (C) JumpNode(control(), key_val, num_cases) ); 479 480 // These are the switch destinations hanging off the jumpnode 481 int i = 0; 482 for (SwitchRange* r = lo; r <= hi; r++) { 483 for (int64 j = r->lo(); j <= r->hi(); j++, i++) { 484 Node* input = _gvn.transform(new (C) JumpProjNode(jtn, i, r->dest(), (int)(j - lowval))); 485 { 486 PreserveJVMState pjvms(this); 487 set_control(input); 488 jump_if_always_fork(r->dest(), r->table_index()); 489 } 490 } 491 } 492 assert(i == num_cases, "miscount of cases"); 493 stop_and_kill_map(); // no more uses for this JVMS 494 return true; 495 } 496 497 //----------------------------jump_switch_ranges------------------------------- 498 void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) { 499 Block* switch_block = block(); 500 501 if (switch_depth == 0) { 502 // Do special processing for the top-level call. 503 assert(lo->lo() == min_jint, "initial range must exhaust Type::INT"); 504 assert(hi->hi() == max_jint, "initial range must exhaust Type::INT"); 505 506 // Decrement pred-numbers for the unique set of nodes. 507 #ifdef ASSERT 508 // Ensure that the block's successors are a (duplicate-free) set. 509 int successors_counted = 0; // block occurrences in [hi..lo] 510 int unique_successors = switch_block->num_successors(); 511 for (int i = 0; i < unique_successors; i++) { 512 Block* target = switch_block->successor_at(i); 513 514 // Check that the set of successors is the same in both places. 515 int successors_found = 0; 516 for (SwitchRange* p = lo; p <= hi; p++) { 517 if (p->dest() == target->start()) successors_found++; 518 } 519 assert(successors_found > 0, "successor must be known"); 520 successors_counted += successors_found; 521 } 522 assert(successors_counted == (hi-lo)+1, "no unexpected successors"); 523 #endif 524 525 // Maybe prune the inputs, based on the type of key_val. 526 jint min_val = min_jint; 527 jint max_val = max_jint; 528 const TypeInt* ti = key_val->bottom_type()->isa_int(); 529 if (ti != NULL) { 530 min_val = ti->_lo; 531 max_val = ti->_hi; 532 assert(min_val <= max_val, "invalid int type"); 533 } 534 while (lo->hi() < min_val) lo++; 535 if (lo->lo() < min_val) lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index()); 536 while (hi->lo() > max_val) hi--; 537 if (hi->hi() > max_val) hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index()); 538 } 539 540 #ifndef PRODUCT 541 if (switch_depth == 0) { 542 _max_switch_depth = 0; 543 _est_switch_depth = log2_intptr((hi-lo+1)-1)+1; 544 } 545 #endif 546 547 assert(lo <= hi, "must be a non-empty set of ranges"); 548 if (lo == hi) { 549 jump_if_always_fork(lo->dest(), lo->table_index()); 550 } else { 551 assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges"); 552 assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges"); 553 554 if (create_jump_tables(key_val, lo, hi)) return; 555 556 int nr = hi - lo + 1; 557 558 SwitchRange* mid = lo + nr/2; 559 // if there is an easy choice, pivot at a singleton: 560 if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton()) mid--; 561 562 assert(lo < mid && mid <= hi, "good pivot choice"); 563 assert(nr != 2 || mid == hi, "should pick higher of 2"); 564 assert(nr != 3 || mid == hi-1, "should pick middle of 3"); 565 566 Node *test_val = _gvn.intcon(mid->lo()); 567 568 if (mid->is_singleton()) { 569 IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne); 570 jump_if_false_fork(iff_ne, mid->dest(), mid->table_index()); 571 572 // Special Case: If there are exactly three ranges, and the high 573 // and low range each go to the same place, omit the "gt" test, 574 // since it will not discriminate anything. 575 bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest()); 576 if (eq_test_only) { 577 assert(mid == hi-1, ""); 578 } 579 580 // if there is a higher range, test for it and process it: 581 if (mid < hi && !eq_test_only) { 582 // two comparisons of same values--should enable 1 test for 2 branches 583 // Use BoolTest::le instead of BoolTest::gt 584 IfNode *iff_le = jump_if_fork_int(key_val, test_val, BoolTest::le); 585 Node *iftrue = _gvn.transform( new (C) IfTrueNode(iff_le) ); 586 Node *iffalse = _gvn.transform( new (C) IfFalseNode(iff_le) ); 587 { PreserveJVMState pjvms(this); 588 set_control(iffalse); 589 jump_switch_ranges(key_val, mid+1, hi, switch_depth+1); 590 } 591 set_control(iftrue); 592 } 593 594 } else { 595 // mid is a range, not a singleton, so treat mid..hi as a unit 596 IfNode *iff_ge = jump_if_fork_int(key_val, test_val, BoolTest::ge); 597 598 // if there is a higher range, test for it and process it: 599 if (mid == hi) { 600 jump_if_true_fork(iff_ge, mid->dest(), mid->table_index()); 601 } else { 602 Node *iftrue = _gvn.transform( new (C) IfTrueNode(iff_ge) ); 603 Node *iffalse = _gvn.transform( new (C) IfFalseNode(iff_ge) ); 604 { PreserveJVMState pjvms(this); 605 set_control(iftrue); 606 jump_switch_ranges(key_val, mid, hi, switch_depth+1); 607 } 608 set_control(iffalse); 609 } 610 } 611 612 // in any case, process the lower range 613 jump_switch_ranges(key_val, lo, mid-1, switch_depth+1); 614 } 615 616 // Decrease pred_count for each successor after all is done. 617 if (switch_depth == 0) { 618 int unique_successors = switch_block->num_successors(); 619 for (int i = 0; i < unique_successors; i++) { 620 Block* target = switch_block->successor_at(i); 621 // Throw away the pre-allocated path for each unique successor. 622 target->next_path_num(); 623 } 624 } 625 626 #ifndef PRODUCT 627 _max_switch_depth = MAX2(switch_depth, _max_switch_depth); 628 if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) { 629 SwitchRange* r; 630 int nsing = 0; 631 for( r = lo; r <= hi; r++ ) { 632 if( r->is_singleton() ) nsing++; 633 } 634 tty->print(">>> "); 635 _method->print_short_name(); 636 tty->print_cr(" switch decision tree"); 637 tty->print_cr(" %d ranges (%d singletons), max_depth=%d, est_depth=%d", 638 (int) (hi-lo+1), nsing, _max_switch_depth, _est_switch_depth); 639 if (_max_switch_depth > _est_switch_depth) { 640 tty->print_cr("******** BAD SWITCH DEPTH ********"); 641 } 642 tty->print(" "); 643 for( r = lo; r <= hi; r++ ) { 644 r->print(); 645 } 646 tty->cr(); 647 } 648 #endif 649 } 650 651 void Parse::modf() { 652 Node *f2 = pop(); 653 Node *f1 = pop(); 654 Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(), 655 CAST_FROM_FN_PTR(address, SharedRuntime::frem), 656 "frem", NULL, //no memory effects 657 f1, f2); 658 Node* res = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms + 0)); 659 660 push(res); 661 } 662 663 void Parse::modd() { 664 Node *d2 = pop_pair(); 665 Node *d1 = pop_pair(); 666 Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), 667 CAST_FROM_FN_PTR(address, SharedRuntime::drem), 668 "drem", NULL, //no memory effects 669 d1, top(), d2, top()); 670 Node* res_d = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms + 0)); 671 672 #ifdef ASSERT 673 Node* res_top = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms + 1)); 674 assert(res_top == top(), "second value must be top"); 675 #endif 676 677 push_pair(res_d); 678 } 679 680 void Parse::l2f() { 681 Node* f2 = pop(); 682 Node* f1 = pop(); 683 Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(), 684 CAST_FROM_FN_PTR(address, SharedRuntime::l2f), 685 "l2f", NULL, //no memory effects 686 f1, f2); 687 Node* res = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms + 0)); 688 689 push(res); 690 } 691 692 void Parse::do_irem() { 693 // Must keep both values on the expression-stack during null-check 694 zero_check_int(peek()); 695 // Compile-time detect of null-exception? 696 if (stopped()) return; 697 698 Node* b = pop(); 699 Node* a = pop(); 700 701 const Type *t = _gvn.type(b); 702 if (t != Type::TOP) { 703 const TypeInt *ti = t->is_int(); 704 if (ti->is_con()) { 705 int divisor = ti->get_con(); 706 // check for positive power of 2 707 if (divisor > 0 && 708 (divisor & ~(divisor-1)) == divisor) { 709 // yes ! 710 Node *mask = _gvn.intcon((divisor - 1)); 711 // Sigh, must handle negative dividends 712 Node *zero = _gvn.intcon(0); 713 IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt); 714 Node *iff = _gvn.transform( new (C) IfFalseNode(ifff) ); 715 Node *ift = _gvn.transform( new (C) IfTrueNode (ifff) ); 716 Node *reg = jump_if_join(ift, iff); 717 Node *phi = PhiNode::make(reg, NULL, TypeInt::INT); 718 // Negative path; negate/and/negate 719 Node *neg = _gvn.transform( new (C) SubINode(zero, a) ); 720 Node *andn= _gvn.transform( new (C) AndINode(neg, mask) ); 721 Node *negn= _gvn.transform( new (C) SubINode(zero, andn) ); 722 phi->init_req(1, negn); 723 // Fast positive case 724 Node *andx = _gvn.transform( new (C) AndINode(a, mask) ); 725 phi->init_req(2, andx); 726 // Push the merge 727 push( _gvn.transform(phi) ); 728 return; 729 } 730 } 731 } 732 // Default case 733 push( _gvn.transform( new (C) ModINode(control(),a,b) ) ); 734 } 735 736 // Handle jsr and jsr_w bytecode 737 void Parse::do_jsr() { 738 assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode"); 739 740 // Store information about current state, tagged with new _jsr_bci 741 int return_bci = iter().next_bci(); 742 int jsr_bci = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest(); 743 744 // Update method data 745 profile_taken_branch(jsr_bci); 746 747 // The way we do things now, there is only one successor block 748 // for the jsr, because the target code is cloned by ciTypeFlow. 749 Block* target = successor_for_bci(jsr_bci); 750 751 // What got pushed? 752 const Type* ret_addr = target->peek(); 753 assert(ret_addr->singleton(), "must be a constant (cloned jsr body)"); 754 755 // Effect on jsr on stack 756 push(_gvn.makecon(ret_addr)); 757 758 // Flow to the jsr. 759 merge(jsr_bci); 760 } 761 762 // Handle ret bytecode 763 void Parse::do_ret() { 764 // Find to whom we return. 765 assert(block()->num_successors() == 1, "a ret can only go one place now"); 766 Block* target = block()->successor_at(0); 767 assert(!target->is_ready(), "our arrival must be expected"); 768 profile_ret(target->flow()->start()); 769 int pnum = target->next_path_num(); 770 merge_common(target, pnum); 771 } 772 773 static bool has_injected_profile(BoolTest::mask btest, Node* test, int& taken, int& not_taken) { 774 if (btest != BoolTest::eq && btest != BoolTest::ne) { 775 // Only ::eq and ::ne are supported for profile injection. 776 return false; 777 } 778 if (test->is_Cmp() && 779 test->in(1)->Opcode() == Op_ProfileBoolean) { 780 ProfileBooleanNode* profile = (ProfileBooleanNode*)test->in(1); 781 int false_cnt = profile->false_count(); 782 int true_cnt = profile->true_count(); 783 784 // Counts matching depends on the actual test operation (::eq or ::ne). 785 // No need to scale the counts because profile injection was designed 786 // to feed exact counts into VM. 787 taken = (btest == BoolTest::eq) ? false_cnt : true_cnt; 788 not_taken = (btest == BoolTest::eq) ? true_cnt : false_cnt; 789 790 profile->consume(); 791 return true; 792 } 793 return false; 794 } 795 //--------------------------dynamic_branch_prediction-------------------------- 796 // Try to gather dynamic branch prediction behavior. Return a probability 797 // of the branch being taken and set the "cnt" field. Returns a -1.0 798 // if we need to use static prediction for some reason. 799 float Parse::dynamic_branch_prediction(float &cnt, BoolTest::mask btest, Node* test) { 800 ResourceMark rm; 801 802 cnt = COUNT_UNKNOWN; 803 804 int taken = 0; 805 int not_taken = 0; 806 807 bool use_mdo = !has_injected_profile(btest, test, taken, not_taken); 808 809 if (use_mdo) { 810 // Use MethodData information if it is available 811 // FIXME: free the ProfileData structure 812 ciMethodData* methodData = method()->method_data(); 813 if (!methodData->is_mature()) return PROB_UNKNOWN; 814 ciProfileData* data = methodData->bci_to_data(bci()); 815 if (data == NULL) { 816 return PROB_UNKNOWN; 817 } 818 if (!data->is_JumpData()) return PROB_UNKNOWN; 819 820 // get taken and not taken values 821 taken = data->as_JumpData()->taken(); 822 not_taken = 0; 823 if (data->is_BranchData()) { 824 not_taken = data->as_BranchData()->not_taken(); 825 } 826 827 // scale the counts to be commensurate with invocation counts: 828 taken = method()->scale_count(taken); 829 not_taken = method()->scale_count(not_taken); 830 } 831 832 // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful. 833 // We also check that individual counters are positive first, otherwise the sum can become positive. 834 if (taken < 0 || not_taken < 0 || taken + not_taken < 40) { 835 if (C->log() != NULL) { 836 C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken); 837 } 838 return PROB_UNKNOWN; 839 } 840 841 // Compute frequency that we arrive here 842 float sum = taken + not_taken; 843 // Adjust, if this block is a cloned private block but the 844 // Jump counts are shared. Taken the private counts for 845 // just this path instead of the shared counts. 846 if( block()->count() > 0 ) 847 sum = block()->count(); 848 cnt = sum / FreqCountInvocations; 849 850 // Pin probability to sane limits 851 float prob; 852 if( !taken ) 853 prob = (0+PROB_MIN) / 2; 854 else if( !not_taken ) 855 prob = (1+PROB_MAX) / 2; 856 else { // Compute probability of true path 857 prob = (float)taken / (float)(taken + not_taken); 858 if (prob > PROB_MAX) prob = PROB_MAX; 859 if (prob < PROB_MIN) prob = PROB_MIN; 860 } 861 862 assert((cnt > 0.0f) && (prob > 0.0f), 863 "Bad frequency assignment in if"); 864 865 if (C->log() != NULL) { 866 const char* prob_str = NULL; 867 if (prob >= PROB_MAX) prob_str = (prob == PROB_MAX) ? "max" : "always"; 868 if (prob <= PROB_MIN) prob_str = (prob == PROB_MIN) ? "min" : "never"; 869 char prob_str_buf[30]; 870 if (prob_str == NULL) { 871 sprintf(prob_str_buf, "%g", prob); 872 prob_str = prob_str_buf; 873 } 874 C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%g' prob='%s'", 875 iter().get_dest(), taken, not_taken, cnt, prob_str); 876 } 877 return prob; 878 } 879 880 //-----------------------------branch_prediction------------------------------- 881 float Parse::branch_prediction(float& cnt, 882 BoolTest::mask btest, 883 int target_bci, 884 Node* test) { 885 float prob = dynamic_branch_prediction(cnt, btest, test); 886 // If prob is unknown, switch to static prediction 887 if (prob != PROB_UNKNOWN) return prob; 888 889 prob = PROB_FAIR; // Set default value 890 if (btest == BoolTest::eq) // Exactly equal test? 891 prob = PROB_STATIC_INFREQUENT; // Assume its relatively infrequent 892 else if (btest == BoolTest::ne) 893 prob = PROB_STATIC_FREQUENT; // Assume its relatively frequent 894 895 // If this is a conditional test guarding a backwards branch, 896 // assume its a loop-back edge. Make it a likely taken branch. 897 if (target_bci < bci()) { 898 if (is_osr_parse()) { // Could be a hot OSR'd loop; force deopt 899 // Since it's an OSR, we probably have profile data, but since 900 // branch_prediction returned PROB_UNKNOWN, the counts are too small. 901 // Let's make a special check here for completely zero counts. 902 ciMethodData* methodData = method()->method_data(); 903 if (!methodData->is_empty()) { 904 ciProfileData* data = methodData->bci_to_data(bci()); 905 // Only stop for truly zero counts, which mean an unknown part 906 // of the OSR-ed method, and we want to deopt to gather more stats. 907 // If you have ANY counts, then this loop is simply 'cold' relative 908 // to the OSR loop. 909 if (data == NULL || 910 (data->as_BranchData()->taken() + data->as_BranchData()->not_taken() == 0)) { 911 // This is the only way to return PROB_UNKNOWN: 912 return PROB_UNKNOWN; 913 } 914 } 915 } 916 prob = PROB_STATIC_FREQUENT; // Likely to take backwards branch 917 } 918 919 assert(prob != PROB_UNKNOWN, "must have some guess at this point"); 920 return prob; 921 } 922 923 // The magic constants are chosen so as to match the output of 924 // branch_prediction() when the profile reports a zero taken count. 925 // It is important to distinguish zero counts unambiguously, because 926 // some branches (e.g., _213_javac.Assembler.eliminate) validly produce 927 // very small but nonzero probabilities, which if confused with zero 928 // counts would keep the program recompiling indefinitely. 929 bool Parse::seems_never_taken(float prob) const { 930 return prob < PROB_MIN; 931 } 932 933 // True if the comparison seems to be the kind that will not change its 934 // statistics from true to false. See comments in adjust_map_after_if. 935 // This question is only asked along paths which are already 936 // classifed as untaken (by seems_never_taken), so really, 937 // if a path is never taken, its controlling comparison is 938 // already acting in a stable fashion. If the comparison 939 // seems stable, we will put an expensive uncommon trap 940 // on the untaken path. 941 bool Parse::seems_stable_comparison() const { 942 if (C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if)) { 943 return false; 944 } 945 return true; 946 } 947 948 //-------------------------------repush_if_args-------------------------------- 949 // Push arguments of an "if" bytecode back onto the stack by adjusting _sp. 950 inline int Parse::repush_if_args() { 951 #ifndef PRODUCT 952 if (PrintOpto && WizardMode) { 953 tty->print("defending against excessive implicit null exceptions on %s @%d in ", 954 Bytecodes::name(iter().cur_bc()), iter().cur_bci()); 955 method()->print_name(); tty->cr(); 956 } 957 #endif 958 int bc_depth = - Bytecodes::depth(iter().cur_bc()); 959 assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches"); 960 DEBUG_ONLY(sync_jvms()); // argument(n) requires a synced jvms 961 assert(argument(0) != NULL, "must exist"); 962 assert(bc_depth == 1 || argument(1) != NULL, "two must exist"); 963 inc_sp(bc_depth); 964 return bc_depth; 965 } 966 967 //----------------------------------do_ifnull---------------------------------- 968 void Parse::do_ifnull(BoolTest::mask btest, Node *c) { 969 int target_bci = iter().get_dest(); 970 971 Block* branch_block = successor_for_bci(target_bci); 972 Block* next_block = successor_for_bci(iter().next_bci()); 973 974 float cnt; 975 float prob = branch_prediction(cnt, btest, target_bci, c); 976 if (prob == PROB_UNKNOWN) { 977 // (An earlier version of do_ifnull omitted this trap for OSR methods.) 978 #ifndef PRODUCT 979 if (PrintOpto && Verbose) 980 tty->print_cr("Never-taken edge stops compilation at bci %d",bci()); 981 #endif 982 repush_if_args(); // to gather stats on loop 983 // We need to mark this branch as taken so that if we recompile we will 984 // see that it is possible. In the tiered system the interpreter doesn't 985 // do profiling and by the time we get to the lower tier from the interpreter 986 // the path may be cold again. Make sure it doesn't look untaken 987 profile_taken_branch(target_bci, !ProfileInterpreter); 988 uncommon_trap(Deoptimization::Reason_unreached, 989 Deoptimization::Action_reinterpret, 990 NULL, "cold"); 991 if (C->eliminate_boxing()) { 992 // Mark the successor blocks as parsed 993 branch_block->next_path_num(); 994 next_block->next_path_num(); 995 } 996 return; 997 } 998 999 explicit_null_checks_inserted++; 1000 1001 // Generate real control flow 1002 Node *tst = _gvn.transform( new (C) BoolNode( c, btest ) ); 1003 1004 // Sanity check the probability value 1005 assert(prob > 0.0f,"Bad probability in Parser"); 1006 // Need xform to put node in hash table 1007 IfNode *iff = create_and_xform_if( control(), tst, prob, cnt ); 1008 assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser"); 1009 // True branch 1010 { PreserveJVMState pjvms(this); 1011 Node* iftrue = _gvn.transform( new (C) IfTrueNode (iff) ); 1012 set_control(iftrue); 1013 1014 if (stopped()) { // Path is dead? 1015 explicit_null_checks_elided++; 1016 if (C->eliminate_boxing()) { 1017 // Mark the successor block as parsed 1018 branch_block->next_path_num(); 1019 } 1020 } else { // Path is live. 1021 // Update method data 1022 profile_taken_branch(target_bci); 1023 adjust_map_after_if(btest, c, prob, branch_block, next_block); 1024 if (!stopped()) { 1025 merge(target_bci); 1026 } 1027 } 1028 } 1029 1030 // False branch 1031 Node* iffalse = _gvn.transform( new (C) IfFalseNode(iff) ); 1032 set_control(iffalse); 1033 1034 if (stopped()) { // Path is dead? 1035 explicit_null_checks_elided++; 1036 if (C->eliminate_boxing()) { 1037 // Mark the successor block as parsed 1038 next_block->next_path_num(); 1039 } 1040 } else { // Path is live. 1041 // Update method data 1042 profile_not_taken_branch(); 1043 adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob, 1044 next_block, branch_block); 1045 } 1046 } 1047 1048 //------------------------------------do_if------------------------------------ 1049 void Parse::do_if(BoolTest::mask btest, Node* c) { 1050 int target_bci = iter().get_dest(); 1051 1052 Block* branch_block = successor_for_bci(target_bci); 1053 Block* next_block = successor_for_bci(iter().next_bci()); 1054 1055 float cnt; 1056 float prob = branch_prediction(cnt, btest, target_bci, c); 1057 float untaken_prob = 1.0 - prob; 1058 1059 if (prob == PROB_UNKNOWN) { 1060 #ifndef PRODUCT 1061 if (PrintOpto && Verbose) 1062 tty->print_cr("Never-taken edge stops compilation at bci %d",bci()); 1063 #endif 1064 repush_if_args(); // to gather stats on loop 1065 // We need to mark this branch as taken so that if we recompile we will 1066 // see that it is possible. In the tiered system the interpreter doesn't 1067 // do profiling and by the time we get to the lower tier from the interpreter 1068 // the path may be cold again. Make sure it doesn't look untaken 1069 profile_taken_branch(target_bci, !ProfileInterpreter); 1070 uncommon_trap(Deoptimization::Reason_unreached, 1071 Deoptimization::Action_reinterpret, 1072 NULL, "cold"); 1073 if (C->eliminate_boxing()) { 1074 // Mark the successor blocks as parsed 1075 branch_block->next_path_num(); 1076 next_block->next_path_num(); 1077 } 1078 return; 1079 } 1080 1081 // Sanity check the probability value 1082 assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser"); 1083 1084 bool taken_if_true = true; 1085 // Convert BoolTest to canonical form: 1086 if (!BoolTest(btest).is_canonical()) { 1087 btest = BoolTest(btest).negate(); 1088 taken_if_true = false; 1089 // prob is NOT updated here; it remains the probability of the taken 1090 // path (as opposed to the prob of the path guarded by an 'IfTrueNode'). 1091 } 1092 assert(btest != BoolTest::eq, "!= is the only canonical exact test"); 1093 1094 Node* tst0 = new (C) BoolNode(c, btest); 1095 Node* tst = _gvn.transform(tst0); 1096 BoolTest::mask taken_btest = BoolTest::illegal; 1097 BoolTest::mask untaken_btest = BoolTest::illegal; 1098 1099 if (tst->is_Bool()) { 1100 // Refresh c from the transformed bool node, since it may be 1101 // simpler than the original c. Also re-canonicalize btest. 1102 // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p NULL)). 1103 // That can arise from statements like: if (x instanceof C) ... 1104 if (tst != tst0) { 1105 // Canonicalize one more time since transform can change it. 1106 btest = tst->as_Bool()->_test._test; 1107 if (!BoolTest(btest).is_canonical()) { 1108 // Reverse edges one more time... 1109 tst = _gvn.transform( tst->as_Bool()->negate(&_gvn) ); 1110 btest = tst->as_Bool()->_test._test; 1111 assert(BoolTest(btest).is_canonical(), "sanity"); 1112 taken_if_true = !taken_if_true; 1113 } 1114 c = tst->in(1); 1115 } 1116 BoolTest::mask neg_btest = BoolTest(btest).negate(); 1117 taken_btest = taken_if_true ? btest : neg_btest; 1118 untaken_btest = taken_if_true ? neg_btest : btest; 1119 } 1120 1121 // Generate real control flow 1122 float true_prob = (taken_if_true ? prob : untaken_prob); 1123 IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt); 1124 assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser"); 1125 Node* taken_branch = new (C) IfTrueNode(iff); 1126 Node* untaken_branch = new (C) IfFalseNode(iff); 1127 if (!taken_if_true) { // Finish conversion to canonical form 1128 Node* tmp = taken_branch; 1129 taken_branch = untaken_branch; 1130 untaken_branch = tmp; 1131 } 1132 1133 // Branch is taken: 1134 { PreserveJVMState pjvms(this); 1135 taken_branch = _gvn.transform(taken_branch); 1136 set_control(taken_branch); 1137 1138 if (stopped()) { 1139 if (C->eliminate_boxing()) { 1140 // Mark the successor block as parsed 1141 branch_block->next_path_num(); 1142 } 1143 } else { 1144 // Update method data 1145 profile_taken_branch(target_bci); 1146 adjust_map_after_if(taken_btest, c, prob, branch_block, next_block); 1147 if (!stopped()) { 1148 merge(target_bci); 1149 } 1150 } 1151 } 1152 1153 untaken_branch = _gvn.transform(untaken_branch); 1154 set_control(untaken_branch); 1155 1156 // Branch not taken. 1157 if (stopped()) { 1158 if (C->eliminate_boxing()) { 1159 // Mark the successor block as parsed 1160 next_block->next_path_num(); 1161 } 1162 } else { 1163 // Update method data 1164 profile_not_taken_branch(); 1165 adjust_map_after_if(untaken_btest, c, untaken_prob, 1166 next_block, branch_block); 1167 } 1168 } 1169 1170 bool Parse::path_is_suitable_for_uncommon_trap(float prob) const { 1171 // Don't want to speculate on uncommon traps when running with -Xcomp 1172 if (!UseInterpreter) { 1173 return false; 1174 } 1175 return (seems_never_taken(prob) && seems_stable_comparison()); 1176 } 1177 1178 //----------------------------adjust_map_after_if------------------------------ 1179 // Adjust the JVM state to reflect the result of taking this path. 1180 // Basically, it means inspecting the CmpNode controlling this 1181 // branch, seeing how it constrains a tested value, and then 1182 // deciding if it's worth our while to encode this constraint 1183 // as graph nodes in the current abstract interpretation map. 1184 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob, 1185 Block* path, Block* other_path) { 1186 if (stopped() || !c->is_Cmp() || btest == BoolTest::illegal) 1187 return; // nothing to do 1188 1189 bool is_fallthrough = (path == successor_for_bci(iter().next_bci())); 1190 1191 if (path_is_suitable_for_uncommon_trap(prob)) { 1192 repush_if_args(); 1193 uncommon_trap(Deoptimization::Reason_unstable_if, 1194 Deoptimization::Action_reinterpret, 1195 NULL, 1196 (is_fallthrough ? "taken always" : "taken never")); 1197 return; 1198 } 1199 1200 Node* val = c->in(1); 1201 Node* con = c->in(2); 1202 const Type* tcon = _gvn.type(con); 1203 const Type* tval = _gvn.type(val); 1204 bool have_con = tcon->singleton(); 1205 if (tval->singleton()) { 1206 if (!have_con) { 1207 // Swap, so constant is in con. 1208 con = val; 1209 tcon = tval; 1210 val = c->in(2); 1211 tval = _gvn.type(val); 1212 btest = BoolTest(btest).commute(); 1213 have_con = true; 1214 } else { 1215 // Do we have two constants? Then leave well enough alone. 1216 have_con = false; 1217 } 1218 } 1219 if (!have_con) // remaining adjustments need a con 1220 return; 1221 1222 sharpen_type_after_if(btest, con, tcon, val, tval); 1223 } 1224 1225 1226 static Node* extract_obj_from_klass_load(PhaseGVN* gvn, Node* n) { 1227 Node* ldk; 1228 if (n->is_DecodeNKlass()) { 1229 if (n->in(1)->Opcode() != Op_LoadNKlass) { 1230 return NULL; 1231 } else { 1232 ldk = n->in(1); 1233 } 1234 } else if (n->Opcode() != Op_LoadKlass) { 1235 return NULL; 1236 } else { 1237 ldk = n; 1238 } 1239 assert(ldk != NULL && ldk->is_Load(), "should have found a LoadKlass or LoadNKlass node"); 1240 1241 Node* adr = ldk->in(MemNode::Address); 1242 intptr_t off = 0; 1243 Node* obj = AddPNode::Ideal_base_and_offset(adr, gvn, off); 1244 if (obj == NULL || off != oopDesc::klass_offset_in_bytes()) // loading oopDesc::_klass? 1245 return NULL; 1246 const TypePtr* tp = gvn->type(obj)->is_ptr(); 1247 if (tp == NULL || !(tp->isa_instptr() || tp->isa_aryptr())) // is obj a Java object ptr? 1248 return NULL; 1249 1250 return obj; 1251 } 1252 1253 void Parse::sharpen_type_after_if(BoolTest::mask btest, 1254 Node* con, const Type* tcon, 1255 Node* val, const Type* tval) { 1256 // Look for opportunities to sharpen the type of a node 1257 // whose klass is compared with a constant klass. 1258 if (btest == BoolTest::eq && tcon->isa_klassptr()) { 1259 Node* obj = extract_obj_from_klass_load(&_gvn, val); 1260 const TypeOopPtr* con_type = tcon->isa_klassptr()->as_instance_type(); 1261 if (obj != NULL && (con_type->isa_instptr() || con_type->isa_aryptr())) { 1262 // Found: 1263 // Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq]) 1264 // or the narrowOop equivalent. 1265 const Type* obj_type = _gvn.type(obj); 1266 const TypeOopPtr* tboth = obj_type->join_speculative(con_type)->isa_oopptr(); 1267 if (tboth != NULL && tboth->klass_is_exact() && tboth != obj_type && 1268 tboth->higher_equal(obj_type)) { 1269 // obj has to be of the exact type Foo if the CmpP succeeds. 1270 int obj_in_map = map()->find_edge(obj); 1271 JVMState* jvms = this->jvms(); 1272 if (obj_in_map >= 0 && 1273 (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) { 1274 TypeNode* ccast = new (C) CheckCastPPNode(control(), obj, tboth); 1275 const Type* tcc = ccast->as_Type()->type(); 1276 assert(tcc != obj_type && tcc->higher_equal_speculative(obj_type), "must improve"); 1277 // Delay transform() call to allow recovery of pre-cast value 1278 // at the control merge. 1279 _gvn.set_type_bottom(ccast); 1280 record_for_igvn(ccast); 1281 // Here's the payoff. 1282 replace_in_map(obj, ccast); 1283 } 1284 } 1285 } 1286 } 1287 1288 int val_in_map = map()->find_edge(val); 1289 if (val_in_map < 0) return; // replace_in_map would be useless 1290 { 1291 JVMState* jvms = this->jvms(); 1292 if (!(jvms->is_loc(val_in_map) || 1293 jvms->is_stk(val_in_map))) 1294 return; // again, it would be useless 1295 } 1296 1297 // Check for a comparison to a constant, and "know" that the compared 1298 // value is constrained on this path. 1299 assert(tcon->singleton(), ""); 1300 ConstraintCastNode* ccast = NULL; 1301 Node* cast = NULL; 1302 1303 switch (btest) { 1304 case BoolTest::eq: // Constant test? 1305 { 1306 const Type* tboth = tcon->join_speculative(tval); 1307 if (tboth == tval) break; // Nothing to gain. 1308 if (tcon->isa_int()) { 1309 ccast = new (C) CastIINode(val, tboth); 1310 } else if (tcon == TypePtr::NULL_PTR) { 1311 // Cast to null, but keep the pointer identity temporarily live. 1312 ccast = new (C) CastPPNode(val, tboth); 1313 } else { 1314 const TypeF* tf = tcon->isa_float_constant(); 1315 const TypeD* td = tcon->isa_double_constant(); 1316 // Exclude tests vs float/double 0 as these could be 1317 // either +0 or -0. Just because you are equal to +0 1318 // doesn't mean you ARE +0! 1319 // Note, following code also replaces Long and Oop values. 1320 if ((!tf || tf->_f != 0.0) && 1321 (!td || td->_d != 0.0)) 1322 cast = con; // Replace non-constant val by con. 1323 } 1324 } 1325 break; 1326 1327 case BoolTest::ne: 1328 if (tcon == TypePtr::NULL_PTR) { 1329 cast = cast_not_null(val, false); 1330 } 1331 break; 1332 1333 default: 1334 // (At this point we could record int range types with CastII.) 1335 break; 1336 } 1337 1338 if (ccast != NULL) { 1339 const Type* tcc = ccast->as_Type()->type(); 1340 assert(tcc != tval && tcc->higher_equal_speculative(tval), "must improve"); 1341 // Delay transform() call to allow recovery of pre-cast value 1342 // at the control merge. 1343 ccast->set_req(0, control()); 1344 _gvn.set_type_bottom(ccast); 1345 record_for_igvn(ccast); 1346 cast = ccast; 1347 } 1348 1349 if (cast != NULL) { // Here's the payoff. 1350 replace_in_map(val, cast); 1351 } 1352 } 1353 1354 /** 1355 * Use speculative type to optimize CmpP node: if comparison is 1356 * against the low level class, cast the object to the speculative 1357 * type if any. CmpP should then go away. 1358 * 1359 * @param c expected CmpP node 1360 * @return result of CmpP on object casted to speculative type 1361 * 1362 */ 1363 Node* Parse::optimize_cmp_with_klass(Node* c) { 1364 // If this is transformed by the _gvn to a comparison with the low 1365 // level klass then we may be able to use speculation 1366 if (c->Opcode() == Op_CmpP && 1367 (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) && 1368 c->in(2)->is_Con()) { 1369 Node* load_klass = NULL; 1370 Node* decode = NULL; 1371 if (c->in(1)->Opcode() == Op_DecodeNKlass) { 1372 decode = c->in(1); 1373 load_klass = c->in(1)->in(1); 1374 } else { 1375 load_klass = c->in(1); 1376 } 1377 if (load_klass->in(2)->is_AddP()) { 1378 Node* addp = load_klass->in(2); 1379 Node* obj = addp->in(AddPNode::Address); 1380 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 1381 if (obj_type->speculative_type() != NULL) { 1382 ciKlass* k = obj_type->speculative_type(); 1383 inc_sp(2); 1384 obj = maybe_cast_profiled_obj(obj, k); 1385 dec_sp(2); 1386 // Make the CmpP use the casted obj 1387 addp = basic_plus_adr(obj, addp->in(AddPNode::Offset)); 1388 load_klass = load_klass->clone(); 1389 load_klass->set_req(2, addp); 1390 load_klass = _gvn.transform(load_klass); 1391 if (decode != NULL) { 1392 decode = decode->clone(); 1393 decode->set_req(1, load_klass); 1394 load_klass = _gvn.transform(decode); 1395 } 1396 c = c->clone(); 1397 c->set_req(1, load_klass); 1398 c = _gvn.transform(c); 1399 } 1400 } 1401 } 1402 return c; 1403 } 1404 1405 //------------------------------do_one_bytecode-------------------------------- 1406 // Parse this bytecode, and alter the Parsers JVM->Node mapping 1407 void Parse::do_one_bytecode() { 1408 Node *a, *b, *c, *d; // Handy temps 1409 BoolTest::mask btest; 1410 int i; 1411 1412 assert(!has_exceptions(), "bytecode entry state must be clear of throws"); 1413 1414 if (C->check_node_count(NodeLimitFudgeFactor * 5, 1415 "out of nodes parsing method")) { 1416 return; 1417 } 1418 1419 #ifdef ASSERT 1420 // for setting breakpoints 1421 if (TraceOptoParse) { 1422 tty->print(" @"); 1423 dump_bci(bci()); 1424 tty->cr(); 1425 } 1426 #endif 1427 1428 switch (bc()) { 1429 case Bytecodes::_nop: 1430 // do nothing 1431 break; 1432 case Bytecodes::_lconst_0: 1433 push_pair(longcon(0)); 1434 break; 1435 1436 case Bytecodes::_lconst_1: 1437 push_pair(longcon(1)); 1438 break; 1439 1440 case Bytecodes::_fconst_0: 1441 push(zerocon(T_FLOAT)); 1442 break; 1443 1444 case Bytecodes::_fconst_1: 1445 push(makecon(TypeF::ONE)); 1446 break; 1447 1448 case Bytecodes::_fconst_2: 1449 push(makecon(TypeF::make(2.0f))); 1450 break; 1451 1452 case Bytecodes::_dconst_0: 1453 push_pair(zerocon(T_DOUBLE)); 1454 break; 1455 1456 case Bytecodes::_dconst_1: 1457 push_pair(makecon(TypeD::ONE)); 1458 break; 1459 1460 case Bytecodes::_iconst_m1:push(intcon(-1)); break; 1461 case Bytecodes::_iconst_0: push(intcon( 0)); break; 1462 case Bytecodes::_iconst_1: push(intcon( 1)); break; 1463 case Bytecodes::_iconst_2: push(intcon( 2)); break; 1464 case Bytecodes::_iconst_3: push(intcon( 3)); break; 1465 case Bytecodes::_iconst_4: push(intcon( 4)); break; 1466 case Bytecodes::_iconst_5: push(intcon( 5)); break; 1467 case Bytecodes::_bipush: push(intcon(iter().get_constant_u1())); break; 1468 case Bytecodes::_sipush: push(intcon(iter().get_constant_u2())); break; 1469 case Bytecodes::_aconst_null: push(null()); break; 1470 case Bytecodes::_ldc: 1471 case Bytecodes::_ldc_w: 1472 case Bytecodes::_ldc2_w: 1473 // If the constant is unresolved, run this BC once in the interpreter. 1474 { 1475 ciConstant constant = iter().get_constant(); 1476 if (constant.basic_type() == T_OBJECT && 1477 !constant.as_object()->is_loaded()) { 1478 int index = iter().get_constant_pool_index(); 1479 constantTag tag = iter().get_constant_pool_tag(index); 1480 uncommon_trap(Deoptimization::make_trap_request 1481 (Deoptimization::Reason_unloaded, 1482 Deoptimization::Action_reinterpret, 1483 index), 1484 NULL, tag.internal_name()); 1485 break; 1486 } 1487 assert(constant.basic_type() != T_OBJECT || constant.as_object()->is_instance(), 1488 "must be java_mirror of klass"); 1489 bool pushed = push_constant(constant, true); 1490 guarantee(pushed, "must be possible to push this constant"); 1491 } 1492 1493 break; 1494 1495 case Bytecodes::_aload_0: 1496 push( local(0) ); 1497 break; 1498 case Bytecodes::_aload_1: 1499 push( local(1) ); 1500 break; 1501 case Bytecodes::_aload_2: 1502 push( local(2) ); 1503 break; 1504 case Bytecodes::_aload_3: 1505 push( local(3) ); 1506 break; 1507 case Bytecodes::_aload: 1508 push( local(iter().get_index()) ); 1509 break; 1510 1511 case Bytecodes::_fload_0: 1512 case Bytecodes::_iload_0: 1513 push( local(0) ); 1514 break; 1515 case Bytecodes::_fload_1: 1516 case Bytecodes::_iload_1: 1517 push( local(1) ); 1518 break; 1519 case Bytecodes::_fload_2: 1520 case Bytecodes::_iload_2: 1521 push( local(2) ); 1522 break; 1523 case Bytecodes::_fload_3: 1524 case Bytecodes::_iload_3: 1525 push( local(3) ); 1526 break; 1527 case Bytecodes::_fload: 1528 case Bytecodes::_iload: 1529 push( local(iter().get_index()) ); 1530 break; 1531 case Bytecodes::_lload_0: 1532 push_pair_local( 0 ); 1533 break; 1534 case Bytecodes::_lload_1: 1535 push_pair_local( 1 ); 1536 break; 1537 case Bytecodes::_lload_2: 1538 push_pair_local( 2 ); 1539 break; 1540 case Bytecodes::_lload_3: 1541 push_pair_local( 3 ); 1542 break; 1543 case Bytecodes::_lload: 1544 push_pair_local( iter().get_index() ); 1545 break; 1546 1547 case Bytecodes::_dload_0: 1548 push_pair_local(0); 1549 break; 1550 case Bytecodes::_dload_1: 1551 push_pair_local(1); 1552 break; 1553 case Bytecodes::_dload_2: 1554 push_pair_local(2); 1555 break; 1556 case Bytecodes::_dload_3: 1557 push_pair_local(3); 1558 break; 1559 case Bytecodes::_dload: 1560 push_pair_local(iter().get_index()); 1561 break; 1562 case Bytecodes::_fstore_0: 1563 case Bytecodes::_istore_0: 1564 case Bytecodes::_astore_0: 1565 set_local( 0, pop() ); 1566 break; 1567 case Bytecodes::_fstore_1: 1568 case Bytecodes::_istore_1: 1569 case Bytecodes::_astore_1: 1570 set_local( 1, pop() ); 1571 break; 1572 case Bytecodes::_fstore_2: 1573 case Bytecodes::_istore_2: 1574 case Bytecodes::_astore_2: 1575 set_local( 2, pop() ); 1576 break; 1577 case Bytecodes::_fstore_3: 1578 case Bytecodes::_istore_3: 1579 case Bytecodes::_astore_3: 1580 set_local( 3, pop() ); 1581 break; 1582 case Bytecodes::_fstore: 1583 case Bytecodes::_istore: 1584 case Bytecodes::_astore: 1585 set_local( iter().get_index(), pop() ); 1586 break; 1587 // long stores 1588 case Bytecodes::_lstore_0: 1589 set_pair_local( 0, pop_pair() ); 1590 break; 1591 case Bytecodes::_lstore_1: 1592 set_pair_local( 1, pop_pair() ); 1593 break; 1594 case Bytecodes::_lstore_2: 1595 set_pair_local( 2, pop_pair() ); 1596 break; 1597 case Bytecodes::_lstore_3: 1598 set_pair_local( 3, pop_pair() ); 1599 break; 1600 case Bytecodes::_lstore: 1601 set_pair_local( iter().get_index(), pop_pair() ); 1602 break; 1603 1604 // double stores 1605 case Bytecodes::_dstore_0: 1606 set_pair_local( 0, dstore_rounding(pop_pair()) ); 1607 break; 1608 case Bytecodes::_dstore_1: 1609 set_pair_local( 1, dstore_rounding(pop_pair()) ); 1610 break; 1611 case Bytecodes::_dstore_2: 1612 set_pair_local( 2, dstore_rounding(pop_pair()) ); 1613 break; 1614 case Bytecodes::_dstore_3: 1615 set_pair_local( 3, dstore_rounding(pop_pair()) ); 1616 break; 1617 case Bytecodes::_dstore: 1618 set_pair_local( iter().get_index(), dstore_rounding(pop_pair()) ); 1619 break; 1620 1621 case Bytecodes::_pop: dec_sp(1); break; 1622 case Bytecodes::_pop2: dec_sp(2); break; 1623 case Bytecodes::_swap: 1624 a = pop(); 1625 b = pop(); 1626 push(a); 1627 push(b); 1628 break; 1629 case Bytecodes::_dup: 1630 a = pop(); 1631 push(a); 1632 push(a); 1633 break; 1634 case Bytecodes::_dup_x1: 1635 a = pop(); 1636 b = pop(); 1637 push( a ); 1638 push( b ); 1639 push( a ); 1640 break; 1641 case Bytecodes::_dup_x2: 1642 a = pop(); 1643 b = pop(); 1644 c = pop(); 1645 push( a ); 1646 push( c ); 1647 push( b ); 1648 push( a ); 1649 break; 1650 case Bytecodes::_dup2: 1651 a = pop(); 1652 b = pop(); 1653 push( b ); 1654 push( a ); 1655 push( b ); 1656 push( a ); 1657 break; 1658 1659 case Bytecodes::_dup2_x1: 1660 // before: .. c, b, a 1661 // after: .. b, a, c, b, a 1662 // not tested 1663 a = pop(); 1664 b = pop(); 1665 c = pop(); 1666 push( b ); 1667 push( a ); 1668 push( c ); 1669 push( b ); 1670 push( a ); 1671 break; 1672 case Bytecodes::_dup2_x2: 1673 // before: .. d, c, b, a 1674 // after: .. b, a, d, c, b, a 1675 // not tested 1676 a = pop(); 1677 b = pop(); 1678 c = pop(); 1679 d = pop(); 1680 push( b ); 1681 push( a ); 1682 push( d ); 1683 push( c ); 1684 push( b ); 1685 push( a ); 1686 break; 1687 1688 case Bytecodes::_arraylength: { 1689 // Must do null-check with value on expression stack 1690 Node *ary = null_check(peek(), T_ARRAY); 1691 // Compile-time detect of null-exception? 1692 if (stopped()) return; 1693 a = pop(); 1694 push(load_array_length(a)); 1695 break; 1696 } 1697 1698 case Bytecodes::_baload: array_load(T_BYTE); break; 1699 case Bytecodes::_caload: array_load(T_CHAR); break; 1700 case Bytecodes::_iaload: array_load(T_INT); break; 1701 case Bytecodes::_saload: array_load(T_SHORT); break; 1702 case Bytecodes::_faload: array_load(T_FLOAT); break; 1703 case Bytecodes::_aaload: array_load(T_OBJECT); break; 1704 case Bytecodes::_laload: { 1705 a = array_addressing(T_LONG, 0); 1706 if (stopped()) return; // guaranteed null or range check 1707 dec_sp(2); // Pop array and index 1708 push_pair(make_load(control(), a, TypeLong::LONG, T_LONG, TypeAryPtr::LONGS, MemNode::unordered)); 1709 break; 1710 } 1711 case Bytecodes::_daload: { 1712 a = array_addressing(T_DOUBLE, 0); 1713 if (stopped()) return; // guaranteed null or range check 1714 dec_sp(2); // Pop array and index 1715 push_pair(make_load(control(), a, Type::DOUBLE, T_DOUBLE, TypeAryPtr::DOUBLES, MemNode::unordered)); 1716 break; 1717 } 1718 case Bytecodes::_bastore: array_store(T_BYTE); break; 1719 case Bytecodes::_castore: array_store(T_CHAR); break; 1720 case Bytecodes::_iastore: array_store(T_INT); break; 1721 case Bytecodes::_sastore: array_store(T_SHORT); break; 1722 case Bytecodes::_fastore: array_store(T_FLOAT); break; 1723 case Bytecodes::_aastore: { 1724 d = array_addressing(T_OBJECT, 1); 1725 if (stopped()) return; // guaranteed null or range check 1726 array_store_check(); 1727 c = pop(); // Oop to store 1728 b = pop(); // index (already used) 1729 a = pop(); // the array itself 1730 const TypeOopPtr* elemtype = _gvn.type(a)->is_aryptr()->elem()->make_oopptr(); 1731 const TypeAryPtr* adr_type = TypeAryPtr::OOPS; 1732 Node* store = store_oop_to_array(control(), a, d, adr_type, c, elemtype, T_OBJECT, MemNode::release); 1733 break; 1734 } 1735 case Bytecodes::_lastore: { 1736 a = array_addressing(T_LONG, 2); 1737 if (stopped()) return; // guaranteed null or range check 1738 c = pop_pair(); 1739 dec_sp(2); // Pop array and index 1740 store_to_memory(control(), a, c, T_LONG, TypeAryPtr::LONGS, MemNode::unordered); 1741 break; 1742 } 1743 case Bytecodes::_dastore: { 1744 a = array_addressing(T_DOUBLE, 2); 1745 if (stopped()) return; // guaranteed null or range check 1746 c = pop_pair(); 1747 dec_sp(2); // Pop array and index 1748 c = dstore_rounding(c); 1749 store_to_memory(control(), a, c, T_DOUBLE, TypeAryPtr::DOUBLES, MemNode::unordered); 1750 break; 1751 } 1752 case Bytecodes::_getfield: 1753 do_getfield(); 1754 break; 1755 1756 case Bytecodes::_getstatic: 1757 do_getstatic(); 1758 break; 1759 1760 case Bytecodes::_putfield: 1761 do_putfield(); 1762 break; 1763 1764 case Bytecodes::_putstatic: 1765 do_putstatic(); 1766 break; 1767 1768 case Bytecodes::_irem: 1769 do_irem(); 1770 break; 1771 case Bytecodes::_idiv: 1772 // Must keep both values on the expression-stack during null-check 1773 zero_check_int(peek()); 1774 // Compile-time detect of null-exception? 1775 if (stopped()) return; 1776 b = pop(); 1777 a = pop(); 1778 push( _gvn.transform( new (C) DivINode(control(),a,b) ) ); 1779 break; 1780 case Bytecodes::_imul: 1781 b = pop(); a = pop(); 1782 push( _gvn.transform( new (C) MulINode(a,b) ) ); 1783 break; 1784 case Bytecodes::_iadd: 1785 b = pop(); a = pop(); 1786 push( _gvn.transform( new (C) AddINode(a,b) ) ); 1787 break; 1788 case Bytecodes::_ineg: 1789 a = pop(); 1790 push( _gvn.transform( new (C) SubINode(_gvn.intcon(0),a)) ); 1791 break; 1792 case Bytecodes::_isub: 1793 b = pop(); a = pop(); 1794 push( _gvn.transform( new (C) SubINode(a,b) ) ); 1795 break; 1796 case Bytecodes::_iand: 1797 b = pop(); a = pop(); 1798 push( _gvn.transform( new (C) AndINode(a,b) ) ); 1799 break; 1800 case Bytecodes::_ior: 1801 b = pop(); a = pop(); 1802 push( _gvn.transform( new (C) OrINode(a,b) ) ); 1803 break; 1804 case Bytecodes::_ixor: 1805 b = pop(); a = pop(); 1806 push( _gvn.transform( new (C) XorINode(a,b) ) ); 1807 break; 1808 case Bytecodes::_ishl: 1809 b = pop(); a = pop(); 1810 push( _gvn.transform( new (C) LShiftINode(a,b) ) ); 1811 break; 1812 case Bytecodes::_ishr: 1813 b = pop(); a = pop(); 1814 push( _gvn.transform( new (C) RShiftINode(a,b) ) ); 1815 break; 1816 case Bytecodes::_iushr: 1817 b = pop(); a = pop(); 1818 push( _gvn.transform( new (C) URShiftINode(a,b) ) ); 1819 break; 1820 1821 case Bytecodes::_fneg: 1822 a = pop(); 1823 b = _gvn.transform(new (C) NegFNode (a)); 1824 push(b); 1825 break; 1826 1827 case Bytecodes::_fsub: 1828 b = pop(); 1829 a = pop(); 1830 c = _gvn.transform( new (C) SubFNode(a,b) ); 1831 d = precision_rounding(c); 1832 push( d ); 1833 break; 1834 1835 case Bytecodes::_fadd: 1836 b = pop(); 1837 a = pop(); 1838 c = _gvn.transform( new (C) AddFNode(a,b) ); 1839 d = precision_rounding(c); 1840 push( d ); 1841 break; 1842 1843 case Bytecodes::_fmul: 1844 b = pop(); 1845 a = pop(); 1846 c = _gvn.transform( new (C) MulFNode(a,b) ); 1847 d = precision_rounding(c); 1848 push( d ); 1849 break; 1850 1851 case Bytecodes::_fdiv: 1852 b = pop(); 1853 a = pop(); 1854 c = _gvn.transform( new (C) DivFNode(0,a,b) ); 1855 d = precision_rounding(c); 1856 push( d ); 1857 break; 1858 1859 case Bytecodes::_frem: 1860 if (Matcher::has_match_rule(Op_ModF)) { 1861 // Generate a ModF node. 1862 b = pop(); 1863 a = pop(); 1864 c = _gvn.transform( new (C) ModFNode(0,a,b) ); 1865 d = precision_rounding(c); 1866 push( d ); 1867 } 1868 else { 1869 // Generate a call. 1870 modf(); 1871 } 1872 break; 1873 1874 case Bytecodes::_fcmpl: 1875 b = pop(); 1876 a = pop(); 1877 c = _gvn.transform( new (C) CmpF3Node( a, b)); 1878 push(c); 1879 break; 1880 case Bytecodes::_fcmpg: 1881 b = pop(); 1882 a = pop(); 1883 1884 // Same as fcmpl but need to flip the unordered case. Swap the inputs, 1885 // which negates the result sign except for unordered. Flip the unordered 1886 // as well by using CmpF3 which implements unordered-lesser instead of 1887 // unordered-greater semantics. Finally, commute the result bits. Result 1888 // is same as using a CmpF3Greater except we did it with CmpF3 alone. 1889 c = _gvn.transform( new (C) CmpF3Node( b, a)); 1890 c = _gvn.transform( new (C) SubINode(_gvn.intcon(0),c) ); 1891 push(c); 1892 break; 1893 1894 case Bytecodes::_f2i: 1895 a = pop(); 1896 push(_gvn.transform(new (C) ConvF2INode(a))); 1897 break; 1898 1899 case Bytecodes::_d2i: 1900 a = pop_pair(); 1901 b = _gvn.transform(new (C) ConvD2INode(a)); 1902 push( b ); 1903 break; 1904 1905 case Bytecodes::_f2d: 1906 a = pop(); 1907 b = _gvn.transform( new (C) ConvF2DNode(a)); 1908 push_pair( b ); 1909 break; 1910 1911 case Bytecodes::_d2f: 1912 a = pop_pair(); 1913 b = _gvn.transform( new (C) ConvD2FNode(a)); 1914 // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed) 1915 //b = _gvn.transform(new (C) RoundFloatNode(0, b) ); 1916 push( b ); 1917 break; 1918 1919 case Bytecodes::_l2f: 1920 if (Matcher::convL2FSupported()) { 1921 a = pop_pair(); 1922 b = _gvn.transform( new (C) ConvL2FNode(a)); 1923 // For i486.ad, FILD doesn't restrict precision to 24 or 53 bits. 1924 // Rather than storing the result into an FP register then pushing 1925 // out to memory to round, the machine instruction that implements 1926 // ConvL2D is responsible for rounding. 1927 // c = precision_rounding(b); 1928 c = _gvn.transform(b); 1929 push(c); 1930 } else { 1931 l2f(); 1932 } 1933 break; 1934 1935 case Bytecodes::_l2d: 1936 a = pop_pair(); 1937 b = _gvn.transform( new (C) ConvL2DNode(a)); 1938 // For i486.ad, rounding is always necessary (see _l2f above). 1939 // c = dprecision_rounding(b); 1940 c = _gvn.transform(b); 1941 push_pair(c); 1942 break; 1943 1944 case Bytecodes::_f2l: 1945 a = pop(); 1946 b = _gvn.transform( new (C) ConvF2LNode(a)); 1947 push_pair(b); 1948 break; 1949 1950 case Bytecodes::_d2l: 1951 a = pop_pair(); 1952 b = _gvn.transform( new (C) ConvD2LNode(a)); 1953 push_pair(b); 1954 break; 1955 1956 case Bytecodes::_dsub: 1957 b = pop_pair(); 1958 a = pop_pair(); 1959 c = _gvn.transform( new (C) SubDNode(a,b) ); 1960 d = dprecision_rounding(c); 1961 push_pair( d ); 1962 break; 1963 1964 case Bytecodes::_dadd: 1965 b = pop_pair(); 1966 a = pop_pair(); 1967 c = _gvn.transform( new (C) AddDNode(a,b) ); 1968 d = dprecision_rounding(c); 1969 push_pair( d ); 1970 break; 1971 1972 case Bytecodes::_dmul: 1973 b = pop_pair(); 1974 a = pop_pair(); 1975 c = _gvn.transform( new (C) MulDNode(a,b) ); 1976 d = dprecision_rounding(c); 1977 push_pair( d ); 1978 break; 1979 1980 case Bytecodes::_ddiv: 1981 b = pop_pair(); 1982 a = pop_pair(); 1983 c = _gvn.transform( new (C) DivDNode(0,a,b) ); 1984 d = dprecision_rounding(c); 1985 push_pair( d ); 1986 break; 1987 1988 case Bytecodes::_dneg: 1989 a = pop_pair(); 1990 b = _gvn.transform(new (C) NegDNode (a)); 1991 push_pair(b); 1992 break; 1993 1994 case Bytecodes::_drem: 1995 if (Matcher::has_match_rule(Op_ModD)) { 1996 // Generate a ModD node. 1997 b = pop_pair(); 1998 a = pop_pair(); 1999 // a % b 2000 2001 c = _gvn.transform( new (C) ModDNode(0,a,b) ); 2002 d = dprecision_rounding(c); 2003 push_pair( d ); 2004 } 2005 else { 2006 // Generate a call. 2007 modd(); 2008 } 2009 break; 2010 2011 case Bytecodes::_dcmpl: 2012 b = pop_pair(); 2013 a = pop_pair(); 2014 c = _gvn.transform( new (C) CmpD3Node( a, b)); 2015 push(c); 2016 break; 2017 2018 case Bytecodes::_dcmpg: 2019 b = pop_pair(); 2020 a = pop_pair(); 2021 // Same as dcmpl but need to flip the unordered case. 2022 // Commute the inputs, which negates the result sign except for unordered. 2023 // Flip the unordered as well by using CmpD3 which implements 2024 // unordered-lesser instead of unordered-greater semantics. 2025 // Finally, negate the result bits. Result is same as using a 2026 // CmpD3Greater except we did it with CmpD3 alone. 2027 c = _gvn.transform( new (C) CmpD3Node( b, a)); 2028 c = _gvn.transform( new (C) SubINode(_gvn.intcon(0),c) ); 2029 push(c); 2030 break; 2031 2032 2033 // Note for longs -> lo word is on TOS, hi word is on TOS - 1 2034 case Bytecodes::_land: 2035 b = pop_pair(); 2036 a = pop_pair(); 2037 c = _gvn.transform( new (C) AndLNode(a,b) ); 2038 push_pair(c); 2039 break; 2040 case Bytecodes::_lor: 2041 b = pop_pair(); 2042 a = pop_pair(); 2043 c = _gvn.transform( new (C) OrLNode(a,b) ); 2044 push_pair(c); 2045 break; 2046 case Bytecodes::_lxor: 2047 b = pop_pair(); 2048 a = pop_pair(); 2049 c = _gvn.transform( new (C) XorLNode(a,b) ); 2050 push_pair(c); 2051 break; 2052 2053 case Bytecodes::_lshl: 2054 b = pop(); // the shift count 2055 a = pop_pair(); // value to be shifted 2056 c = _gvn.transform( new (C) LShiftLNode(a,b) ); 2057 push_pair(c); 2058 break; 2059 case Bytecodes::_lshr: 2060 b = pop(); // the shift count 2061 a = pop_pair(); // value to be shifted 2062 c = _gvn.transform( new (C) RShiftLNode(a,b) ); 2063 push_pair(c); 2064 break; 2065 case Bytecodes::_lushr: 2066 b = pop(); // the shift count 2067 a = pop_pair(); // value to be shifted 2068 c = _gvn.transform( new (C) URShiftLNode(a,b) ); 2069 push_pair(c); 2070 break; 2071 case Bytecodes::_lmul: 2072 b = pop_pair(); 2073 a = pop_pair(); 2074 c = _gvn.transform( new (C) MulLNode(a,b) ); 2075 push_pair(c); 2076 break; 2077 2078 case Bytecodes::_lrem: 2079 // Must keep both values on the expression-stack during null-check 2080 assert(peek(0) == top(), "long word order"); 2081 zero_check_long(peek(1)); 2082 // Compile-time detect of null-exception? 2083 if (stopped()) return; 2084 b = pop_pair(); 2085 a = pop_pair(); 2086 c = _gvn.transform( new (C) ModLNode(control(),a,b) ); 2087 push_pair(c); 2088 break; 2089 2090 case Bytecodes::_ldiv: 2091 // Must keep both values on the expression-stack during null-check 2092 assert(peek(0) == top(), "long word order"); 2093 zero_check_long(peek(1)); 2094 // Compile-time detect of null-exception? 2095 if (stopped()) return; 2096 b = pop_pair(); 2097 a = pop_pair(); 2098 c = _gvn.transform( new (C) DivLNode(control(),a,b) ); 2099 push_pair(c); 2100 break; 2101 2102 case Bytecodes::_ladd: 2103 b = pop_pair(); 2104 a = pop_pair(); 2105 c = _gvn.transform( new (C) AddLNode(a,b) ); 2106 push_pair(c); 2107 break; 2108 case Bytecodes::_lsub: 2109 b = pop_pair(); 2110 a = pop_pair(); 2111 c = _gvn.transform( new (C) SubLNode(a,b) ); 2112 push_pair(c); 2113 break; 2114 case Bytecodes::_lcmp: 2115 // Safepoints are now inserted _before_ branches. The long-compare 2116 // bytecode painfully produces a 3-way value (-1,0,+1) which requires a 2117 // slew of control flow. These are usually followed by a CmpI vs zero and 2118 // a branch; this pattern then optimizes to the obvious long-compare and 2119 // branch. However, if the branch is backwards there's a Safepoint 2120 // inserted. The inserted Safepoint captures the JVM state at the 2121 // pre-branch point, i.e. it captures the 3-way value. Thus if a 2122 // long-compare is used to control a loop the debug info will force 2123 // computation of the 3-way value, even though the generated code uses a 2124 // long-compare and branch. We try to rectify the situation by inserting 2125 // a SafePoint here and have it dominate and kill the safepoint added at a 2126 // following backwards branch. At this point the JVM state merely holds 2 2127 // longs but not the 3-way value. 2128 if( UseLoopSafepoints ) { 2129 switch( iter().next_bc() ) { 2130 case Bytecodes::_ifgt: 2131 case Bytecodes::_iflt: 2132 case Bytecodes::_ifge: 2133 case Bytecodes::_ifle: 2134 case Bytecodes::_ifne: 2135 case Bytecodes::_ifeq: 2136 // If this is a backwards branch in the bytecodes, add Safepoint 2137 maybe_add_safepoint(iter().next_get_dest()); 2138 } 2139 } 2140 b = pop_pair(); 2141 a = pop_pair(); 2142 c = _gvn.transform( new (C) CmpL3Node( a, b )); 2143 push(c); 2144 break; 2145 2146 case Bytecodes::_lneg: 2147 a = pop_pair(); 2148 b = _gvn.transform( new (C) SubLNode(longcon(0),a)); 2149 push_pair(b); 2150 break; 2151 case Bytecodes::_l2i: 2152 a = pop_pair(); 2153 push( _gvn.transform( new (C) ConvL2INode(a))); 2154 break; 2155 case Bytecodes::_i2l: 2156 a = pop(); 2157 b = _gvn.transform( new (C) ConvI2LNode(a)); 2158 push_pair(b); 2159 break; 2160 case Bytecodes::_i2b: 2161 // Sign extend 2162 a = pop(); 2163 a = _gvn.transform( new (C) LShiftINode(a,_gvn.intcon(24)) ); 2164 a = _gvn.transform( new (C) RShiftINode(a,_gvn.intcon(24)) ); 2165 push( a ); 2166 break; 2167 case Bytecodes::_i2s: 2168 a = pop(); 2169 a = _gvn.transform( new (C) LShiftINode(a,_gvn.intcon(16)) ); 2170 a = _gvn.transform( new (C) RShiftINode(a,_gvn.intcon(16)) ); 2171 push( a ); 2172 break; 2173 case Bytecodes::_i2c: 2174 a = pop(); 2175 push( _gvn.transform( new (C) AndINode(a,_gvn.intcon(0xFFFF)) ) ); 2176 break; 2177 2178 case Bytecodes::_i2f: 2179 a = pop(); 2180 b = _gvn.transform( new (C) ConvI2FNode(a) ) ; 2181 c = precision_rounding(b); 2182 push (b); 2183 break; 2184 2185 case Bytecodes::_i2d: 2186 a = pop(); 2187 b = _gvn.transform( new (C) ConvI2DNode(a)); 2188 push_pair(b); 2189 break; 2190 2191 case Bytecodes::_iinc: // Increment local 2192 i = iter().get_index(); // Get local index 2193 set_local( i, _gvn.transform( new (C) AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) ); 2194 break; 2195 2196 // Exit points of synchronized methods must have an unlock node 2197 case Bytecodes::_return: 2198 return_current(NULL); 2199 break; 2200 2201 case Bytecodes::_ireturn: 2202 case Bytecodes::_areturn: 2203 case Bytecodes::_freturn: 2204 return_current(pop()); 2205 break; 2206 case Bytecodes::_lreturn: 2207 return_current(pop_pair()); 2208 break; 2209 case Bytecodes::_dreturn: 2210 return_current(pop_pair()); 2211 break; 2212 2213 case Bytecodes::_athrow: 2214 // null exception oop throws NULL pointer exception 2215 null_check(peek()); 2216 if (stopped()) return; 2217 // Hook the thrown exception directly to subsequent handlers. 2218 if (BailoutToInterpreterForThrows) { 2219 // Keep method interpreted from now on. 2220 uncommon_trap(Deoptimization::Reason_unhandled, 2221 Deoptimization::Action_make_not_compilable); 2222 return; 2223 } 2224 if (env()->jvmti_can_post_on_exceptions()) { 2225 // check if we must post exception events, take uncommon trap if so (with must_throw = false) 2226 uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false); 2227 } 2228 // Here if either can_post_on_exceptions or should_post_on_exceptions is false 2229 add_exception_state(make_exception_state(peek())); 2230 break; 2231 2232 case Bytecodes::_goto: // fall through 2233 case Bytecodes::_goto_w: { 2234 int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest(); 2235 2236 // If this is a backwards branch in the bytecodes, add Safepoint 2237 maybe_add_safepoint(target_bci); 2238 2239 // Update method data 2240 profile_taken_branch(target_bci); 2241 2242 // Merge the current control into the target basic block 2243 merge(target_bci); 2244 2245 // See if we can get some profile data and hand it off to the next block 2246 Block *target_block = block()->successor_for_bci(target_bci); 2247 if (target_block->pred_count() != 1) break; 2248 ciMethodData* methodData = method()->method_data(); 2249 if (!methodData->is_mature()) break; 2250 ciProfileData* data = methodData->bci_to_data(bci()); 2251 assert( data->is_JumpData(), "" ); 2252 int taken = ((ciJumpData*)data)->taken(); 2253 taken = method()->scale_count(taken); 2254 target_block->set_count(taken); 2255 break; 2256 } 2257 2258 case Bytecodes::_ifnull: btest = BoolTest::eq; goto handle_if_null; 2259 case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null; 2260 handle_if_null: 2261 // If this is a backwards branch in the bytecodes, add Safepoint 2262 maybe_add_safepoint(iter().get_dest()); 2263 a = null(); 2264 b = pop(); 2265 c = _gvn.transform( new (C) CmpPNode(b, a) ); 2266 do_ifnull(btest, c); 2267 break; 2268 2269 case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp; 2270 case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp; 2271 handle_if_acmp: 2272 // If this is a backwards branch in the bytecodes, add Safepoint 2273 maybe_add_safepoint(iter().get_dest()); 2274 a = pop(); 2275 b = pop(); 2276 c = _gvn.transform( new (C) CmpPNode(b, a) ); 2277 c = optimize_cmp_with_klass(c); 2278 do_if(btest, c); 2279 break; 2280 2281 case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx; 2282 case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx; 2283 case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx; 2284 case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx; 2285 case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx; 2286 case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx; 2287 handle_ifxx: 2288 // If this is a backwards branch in the bytecodes, add Safepoint 2289 maybe_add_safepoint(iter().get_dest()); 2290 a = _gvn.intcon(0); 2291 b = pop(); 2292 c = _gvn.transform( new (C) CmpINode(b, a) ); 2293 do_if(btest, c); 2294 break; 2295 2296 case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp; 2297 case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp; 2298 case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp; 2299 case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp; 2300 case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp; 2301 case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp; 2302 handle_if_icmp: 2303 // If this is a backwards branch in the bytecodes, add Safepoint 2304 maybe_add_safepoint(iter().get_dest()); 2305 a = pop(); 2306 b = pop(); 2307 c = _gvn.transform( new (C) CmpINode( b, a ) ); 2308 do_if(btest, c); 2309 break; 2310 2311 case Bytecodes::_tableswitch: 2312 do_tableswitch(); 2313 break; 2314 2315 case Bytecodes::_lookupswitch: 2316 do_lookupswitch(); 2317 break; 2318 2319 case Bytecodes::_invokestatic: 2320 case Bytecodes::_invokedynamic: 2321 case Bytecodes::_invokespecial: 2322 case Bytecodes::_invokevirtual: 2323 case Bytecodes::_invokeinterface: 2324 do_call(); 2325 break; 2326 case Bytecodes::_checkcast: 2327 do_checkcast(); 2328 break; 2329 case Bytecodes::_instanceof: 2330 do_instanceof(); 2331 break; 2332 case Bytecodes::_anewarray: 2333 do_anewarray(); 2334 break; 2335 case Bytecodes::_newarray: 2336 do_newarray((BasicType)iter().get_index()); 2337 break; 2338 case Bytecodes::_multianewarray: 2339 do_multianewarray(); 2340 break; 2341 case Bytecodes::_new: 2342 do_new(); 2343 break; 2344 2345 case Bytecodes::_jsr: 2346 case Bytecodes::_jsr_w: 2347 do_jsr(); 2348 break; 2349 2350 case Bytecodes::_ret: 2351 do_ret(); 2352 break; 2353 2354 2355 case Bytecodes::_monitorenter: 2356 do_monitor_enter(); 2357 break; 2358 2359 case Bytecodes::_monitorexit: 2360 do_monitor_exit(); 2361 break; 2362 2363 case Bytecodes::_breakpoint: 2364 // Breakpoint set concurrently to compile 2365 // %%% use an uncommon trap? 2366 C->record_failure("breakpoint in method"); 2367 return; 2368 2369 default: 2370 #ifndef PRODUCT 2371 map()->dump(99); 2372 #endif 2373 tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) ); 2374 ShouldNotReachHere(); 2375 } 2376 2377 #ifndef PRODUCT 2378 IdealGraphPrinter *printer = IdealGraphPrinter::printer(); 2379 if(printer) { 2380 char buffer[256]; 2381 sprintf(buffer, "Bytecode %d: %s", bci(), Bytecodes::name(bc())); 2382 bool old = printer->traverse_outs(); 2383 printer->set_traverse_outs(true); 2384 printer->print_method(C, buffer, 4); 2385 printer->set_traverse_outs(old); 2386 } 2387 #endif 2388 }