1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/scopeDesc.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/abstractCompiler.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compilerOracle.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "interpreter/interpreterRuntime.hpp"
  37 #include "memory/gcLocker.inline.hpp"
  38 #include "memory/universe.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "prims/forte.hpp"
  41 #include "prims/jvmtiExport.hpp"
  42 #include "prims/jvmtiRedefineClassesTrace.hpp"
  43 #include "prims/methodHandles.hpp"
  44 #include "prims/nativeLookup.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/biasedLocking.hpp"
  47 #include "runtime/handles.inline.hpp"
  48 #include "runtime/init.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 #include "runtime/stubRoutines.hpp"
  53 #include "runtime/vframe.hpp"
  54 #include "runtime/vframeArray.hpp"
  55 #include "utilities/copy.hpp"
  56 #include "utilities/dtrace.hpp"
  57 #include "utilities/events.hpp"
  58 #include "utilities/hashtable.inline.hpp"
  59 #include "utilities/macros.hpp"
  60 #include "utilities/xmlstream.hpp"
  61 #ifdef TARGET_ARCH_x86
  62 # include "nativeInst_x86.hpp"
  63 # include "vmreg_x86.inline.hpp"
  64 #endif
  65 #ifdef TARGET_ARCH_aarch64
  66 # include "nativeInst_aarch64.hpp"
  67 # include "vmreg_aarch64.inline.hpp"
  68 #endif
  69 #ifdef TARGET_ARCH_sparc
  70 # include "nativeInst_sparc.hpp"
  71 # include "vmreg_sparc.inline.hpp"
  72 #endif
  73 #ifdef TARGET_ARCH_zero
  74 # include "nativeInst_zero.hpp"
  75 # include "vmreg_zero.inline.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_arm
  78 # include "nativeInst_arm.hpp"
  79 # include "vmreg_arm.inline.hpp"
  80 #endif
  81 #ifdef TARGET_ARCH_ppc
  82 # include "nativeInst_ppc.hpp"
  83 # include "vmreg_ppc.inline.hpp"
  84 #endif
  85 #ifdef COMPILER1
  86 #include "c1/c1_Runtime1.hpp"
  87 #endif
  88 
  89 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  90 
  91 // Shared stub locations
  92 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  93 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  94 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  95 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  96 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  97 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  98 
  99 DeoptimizationBlob* SharedRuntime::_deopt_blob;
 100 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
 101 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
 102 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
 103 
 104 #ifdef COMPILER2
 105 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
 106 #endif // COMPILER2
 107 
 108 
 109 //----------------------------generate_stubs-----------------------------------
 110 void SharedRuntime::generate_stubs() {
 111   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 112   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 113   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 114   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 115   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 116   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 117 
 118 #ifdef COMPILER2
 119   // Vectors are generated only by C2.
 120   if (is_wide_vector(MaxVectorSize)) {
 121     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 122   }
 123 #endif // COMPILER2
 124   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 125   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 126 
 127   generate_deopt_blob();
 128 
 129 #ifdef COMPILER2
 130   generate_uncommon_trap_blob();
 131 #endif // COMPILER2
 132 }
 133 
 134 #include <math.h>
 135 
 136 #ifndef USDT2
 137 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
 138 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
 139                       char*, int, char*, int, char*, int);
 140 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
 141                       char*, int, char*, int, char*, int);
 142 #endif /* !USDT2 */
 143 
 144 // Implementation of SharedRuntime
 145 
 146 #ifndef PRODUCT
 147 // For statistics
 148 int SharedRuntime::_ic_miss_ctr = 0;
 149 int SharedRuntime::_wrong_method_ctr = 0;
 150 int SharedRuntime::_resolve_static_ctr = 0;
 151 int SharedRuntime::_resolve_virtual_ctr = 0;
 152 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 153 int SharedRuntime::_implicit_null_throws = 0;
 154 int SharedRuntime::_implicit_div0_throws = 0;
 155 int SharedRuntime::_throw_null_ctr = 0;
 156 
 157 int SharedRuntime::_nof_normal_calls = 0;
 158 int SharedRuntime::_nof_optimized_calls = 0;
 159 int SharedRuntime::_nof_inlined_calls = 0;
 160 int SharedRuntime::_nof_megamorphic_calls = 0;
 161 int SharedRuntime::_nof_static_calls = 0;
 162 int SharedRuntime::_nof_inlined_static_calls = 0;
 163 int SharedRuntime::_nof_interface_calls = 0;
 164 int SharedRuntime::_nof_optimized_interface_calls = 0;
 165 int SharedRuntime::_nof_inlined_interface_calls = 0;
 166 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 167 int SharedRuntime::_nof_removable_exceptions = 0;
 168 
 169 int SharedRuntime::_new_instance_ctr=0;
 170 int SharedRuntime::_new_array_ctr=0;
 171 int SharedRuntime::_multi1_ctr=0;
 172 int SharedRuntime::_multi2_ctr=0;
 173 int SharedRuntime::_multi3_ctr=0;
 174 int SharedRuntime::_multi4_ctr=0;
 175 int SharedRuntime::_multi5_ctr=0;
 176 int SharedRuntime::_mon_enter_stub_ctr=0;
 177 int SharedRuntime::_mon_exit_stub_ctr=0;
 178 int SharedRuntime::_mon_enter_ctr=0;
 179 int SharedRuntime::_mon_exit_ctr=0;
 180 int SharedRuntime::_partial_subtype_ctr=0;
 181 int SharedRuntime::_jbyte_array_copy_ctr=0;
 182 int SharedRuntime::_jshort_array_copy_ctr=0;
 183 int SharedRuntime::_jint_array_copy_ctr=0;
 184 int SharedRuntime::_jlong_array_copy_ctr=0;
 185 int SharedRuntime::_oop_array_copy_ctr=0;
 186 int SharedRuntime::_checkcast_array_copy_ctr=0;
 187 int SharedRuntime::_unsafe_array_copy_ctr=0;
 188 int SharedRuntime::_generic_array_copy_ctr=0;
 189 int SharedRuntime::_slow_array_copy_ctr=0;
 190 int SharedRuntime::_find_handler_ctr=0;
 191 int SharedRuntime::_rethrow_ctr=0;
 192 
 193 int     SharedRuntime::_ICmiss_index                    = 0;
 194 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 195 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 196 
 197 
 198 void SharedRuntime::trace_ic_miss(address at) {
 199   for (int i = 0; i < _ICmiss_index; i++) {
 200     if (_ICmiss_at[i] == at) {
 201       _ICmiss_count[i]++;
 202       return;
 203     }
 204   }
 205   int index = _ICmiss_index++;
 206   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 207   _ICmiss_at[index] = at;
 208   _ICmiss_count[index] = 1;
 209 }
 210 
 211 void SharedRuntime::print_ic_miss_histogram() {
 212   if (ICMissHistogram) {
 213     tty->print_cr ("IC Miss Histogram:");
 214     int tot_misses = 0;
 215     for (int i = 0; i < _ICmiss_index; i++) {
 216       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 217       tot_misses += _ICmiss_count[i];
 218     }
 219     tty->print_cr ("Total IC misses: %7d", tot_misses);
 220   }
 221 }
 222 #endif // PRODUCT
 223 
 224 #if INCLUDE_ALL_GCS
 225 
 226 // G1 write-barrier pre: executed before a pointer store.
 227 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 228   if (orig == NULL) {
 229     assert(false, "should be optimized out");
 230     return;
 231   }
 232   assert(orig->is_oop(true /* ignore mark word */), "Error");
 233   // store the original value that was in the field reference
 234   thread->satb_mark_queue().enqueue(orig);
 235 JRT_END
 236 
 237 // G1 write-barrier post: executed after a pointer store.
 238 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 239   thread->dirty_card_queue().enqueue(card_addr);
 240 JRT_END
 241 
 242 // Shenandoah clone barrier: makes sure that references point to to-space
 243 // in cloned objects.
 244 JRT_LEAF(void, SharedRuntime::shenandoah_clone_barrier(oopDesc* obj))
 245   oopDesc::bs()->write_region(MemRegion((HeapWord*) obj, obj->size()));
 246 JRT_END
 247 
 248 #endif // INCLUDE_ALL_GCS
 249 
 250 
 251 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 252   return x * y;
 253 JRT_END
 254 
 255 
 256 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 257   if (x == min_jlong && y == CONST64(-1)) {
 258     return x;
 259   } else {
 260     return x / y;
 261   }
 262 JRT_END
 263 
 264 
 265 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 266   if (x == min_jlong && y == CONST64(-1)) {
 267     return 0;
 268   } else {
 269     return x % y;
 270   }
 271 JRT_END
 272 
 273 
 274 const juint  float_sign_mask  = 0x7FFFFFFF;
 275 const juint  float_infinity   = 0x7F800000;
 276 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 277 const julong double_infinity  = CONST64(0x7FF0000000000000);
 278 
 279 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 280 #ifdef _WIN64
 281   // 64-bit Windows on amd64 returns the wrong values for
 282   // infinity operands.
 283   union { jfloat f; juint i; } xbits, ybits;
 284   xbits.f = x;
 285   ybits.f = y;
 286   // x Mod Infinity == x unless x is infinity
 287   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
 288        ((ybits.i & float_sign_mask) == float_infinity) ) {
 289     return x;
 290   }
 291 #endif
 292   return ((jfloat)fmod((double)x,(double)y));
 293 JRT_END
 294 
 295 
 296 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 297 #ifdef _WIN64
 298   union { jdouble d; julong l; } xbits, ybits;
 299   xbits.d = x;
 300   ybits.d = y;
 301   // x Mod Infinity == x unless x is infinity
 302   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
 303        ((ybits.l & double_sign_mask) == double_infinity) ) {
 304     return x;
 305   }
 306 #endif
 307   return ((jdouble)fmod((double)x,(double)y));
 308 JRT_END
 309 
 310 #ifdef __SOFTFP__
 311 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 312   return x + y;
 313 JRT_END
 314 
 315 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 316   return x - y;
 317 JRT_END
 318 
 319 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 320   return x * y;
 321 JRT_END
 322 
 323 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 324   return x / y;
 325 JRT_END
 326 
 327 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 328   return x + y;
 329 JRT_END
 330 
 331 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 332   return x - y;
 333 JRT_END
 334 
 335 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 336   return x * y;
 337 JRT_END
 338 
 339 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 340   return x / y;
 341 JRT_END
 342 
 343 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 344   return (jfloat)x;
 345 JRT_END
 346 
 347 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 348   return (jdouble)x;
 349 JRT_END
 350 
 351 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 352   return (jdouble)x;
 353 JRT_END
 354 
 355 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 356   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 357 JRT_END
 358 
 359 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 360   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 361 JRT_END
 362 
 363 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 364   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 365 JRT_END
 366 
 367 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 368   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 369 JRT_END
 370 
 371 // Functions to return the opposite of the aeabi functions for nan.
 372 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 373   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 374 JRT_END
 375 
 376 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 377   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 378 JRT_END
 379 
 380 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 381   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 382 JRT_END
 383 
 384 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 385   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 386 JRT_END
 387 
 388 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 389   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 390 JRT_END
 391 
 392 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 393   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 394 JRT_END
 395 
 396 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 397   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 398 JRT_END
 399 
 400 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 401   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 402 JRT_END
 403 
 404 // Intrinsics make gcc generate code for these.
 405 float  SharedRuntime::fneg(float f)   {
 406   return -f;
 407 }
 408 
 409 double SharedRuntime::dneg(double f)  {
 410   return -f;
 411 }
 412 
 413 #endif // __SOFTFP__
 414 
 415 #if defined(__SOFTFP__) || defined(E500V2)
 416 // Intrinsics make gcc generate code for these.
 417 double SharedRuntime::dabs(double f)  {
 418   return (f <= (double)0.0) ? (double)0.0 - f : f;
 419 }
 420 
 421 #endif
 422 
 423 #if defined(__SOFTFP__) || defined(PPC32)
 424 double SharedRuntime::dsqrt(double f) {
 425   return sqrt(f);
 426 }
 427 #endif
 428 
 429 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 430   if (g_isnan(x))
 431     return 0;
 432   if (x >= (jfloat) max_jint)
 433     return max_jint;
 434   if (x <= (jfloat) min_jint)
 435     return min_jint;
 436   return (jint) x;
 437 JRT_END
 438 
 439 
 440 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 441   if (g_isnan(x))
 442     return 0;
 443   if (x >= (jfloat) max_jlong)
 444     return max_jlong;
 445   if (x <= (jfloat) min_jlong)
 446     return min_jlong;
 447   return (jlong) x;
 448 JRT_END
 449 
 450 
 451 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 452   if (g_isnan(x))
 453     return 0;
 454   if (x >= (jdouble) max_jint)
 455     return max_jint;
 456   if (x <= (jdouble) min_jint)
 457     return min_jint;
 458   return (jint) x;
 459 JRT_END
 460 
 461 
 462 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 463   if (g_isnan(x))
 464     return 0;
 465   if (x >= (jdouble) max_jlong)
 466     return max_jlong;
 467   if (x <= (jdouble) min_jlong)
 468     return min_jlong;
 469   return (jlong) x;
 470 JRT_END
 471 
 472 
 473 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 474   return (jfloat)x;
 475 JRT_END
 476 
 477 
 478 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 479   return (jfloat)x;
 480 JRT_END
 481 
 482 
 483 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 484   return (jdouble)x;
 485 JRT_END
 486 
 487 // Exception handling accross interpreter/compiler boundaries
 488 //
 489 // exception_handler_for_return_address(...) returns the continuation address.
 490 // The continuation address is the entry point of the exception handler of the
 491 // previous frame depending on the return address.
 492 
 493 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 494   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
 495   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 496 
 497   // Reset method handle flag.
 498   thread->set_is_method_handle_return(false);
 499 
 500   // The fastest case first
 501   CodeBlob* blob = CodeCache::find_blob(return_address);
 502   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 503   if (nm != NULL) {
 504     // Set flag if return address is a method handle call site.
 505     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 506     // native nmethods don't have exception handlers
 507     assert(!nm->is_native_method(), "no exception handler");
 508     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 509     if (nm->is_deopt_pc(return_address)) {
 510       // If we come here because of a stack overflow, the stack may be
 511       // unguarded. Reguard the stack otherwise if we return to the
 512       // deopt blob and the stack bang causes a stack overflow we
 513       // crash.
 514       bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
 515       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 516       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 517       return SharedRuntime::deopt_blob()->unpack_with_exception();
 518     } else {
 519       return nm->exception_begin();
 520     }
 521   }
 522 
 523   // Entry code
 524   if (StubRoutines::returns_to_call_stub(return_address)) {
 525     return StubRoutines::catch_exception_entry();
 526   }
 527   // Interpreted code
 528   if (Interpreter::contains(return_address)) {
 529     return Interpreter::rethrow_exception_entry();
 530   }
 531 
 532   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 533   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 534 
 535 #ifndef PRODUCT
 536   { ResourceMark rm;
 537     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 538     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 539     tty->print_cr("b) other problem");
 540   }
 541 #endif // PRODUCT
 542 
 543   ShouldNotReachHere();
 544   return NULL;
 545 }
 546 
 547 
 548 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 549   return raw_exception_handler_for_return_address(thread, return_address);
 550 JRT_END
 551 
 552 
 553 address SharedRuntime::get_poll_stub(address pc) {
 554   address stub;
 555   // Look up the code blob
 556   CodeBlob *cb = CodeCache::find_blob(pc);
 557 
 558   // Should be an nmethod
 559   guarantee(cb != NULL && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
 560 
 561   // Look up the relocation information
 562   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 563     "safepoint polling: type must be poll" );
 564 
 565   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
 566     "Only polling locations are used for safepoint");
 567 
 568   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 569   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
 570   if (at_poll_return) {
 571     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 572            "polling page return stub not created yet");
 573     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 574   } else if (has_wide_vectors) {
 575     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 576            "polling page vectors safepoint stub not created yet");
 577     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 578   } else {
 579     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 580            "polling page safepoint stub not created yet");
 581     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 582   }
 583 #ifndef PRODUCT
 584   if( TraceSafepoint ) {
 585     char buf[256];
 586     jio_snprintf(buf, sizeof(buf),
 587                  "... found polling page %s exception at pc = "
 588                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 589                  at_poll_return ? "return" : "loop",
 590                  (intptr_t)pc, (intptr_t)stub);
 591     tty->print_raw_cr(buf);
 592   }
 593 #endif // PRODUCT
 594   return stub;
 595 }
 596 
 597 
 598 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 599   assert(caller.is_interpreted_frame(), "");
 600   int args_size = ArgumentSizeComputer(sig).size() + 1;
 601   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 602   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 603   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 604   return result;
 605 }
 606 
 607 
 608 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 609   if (JvmtiExport::can_post_on_exceptions()) {
 610     vframeStream vfst(thread, true);
 611     methodHandle method = methodHandle(thread, vfst.method());
 612     address bcp = method()->bcp_from(vfst.bci());
 613     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 614   }
 615   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 616 }
 617 
 618 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 619   Handle h_exception = Exceptions::new_exception(thread, name, message);
 620   throw_and_post_jvmti_exception(thread, h_exception);
 621 }
 622 
 623 // The interpreter code to call this tracing function is only
 624 // called/generated when TraceRedefineClasses has the right bits
 625 // set. Since obsolete methods are never compiled, we don't have
 626 // to modify the compilers to generate calls to this function.
 627 //
 628 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 629     JavaThread* thread, Method* method))
 630   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 631 
 632   if (method->is_obsolete()) {
 633     // We are calling an obsolete method, but this is not necessarily
 634     // an error. Our method could have been redefined just after we
 635     // fetched the Method* from the constant pool.
 636 
 637     // RC_TRACE macro has an embedded ResourceMark
 638     RC_TRACE_WITH_THREAD(0x00001000, thread,
 639                          ("calling obsolete method '%s'",
 640                           method->name_and_sig_as_C_string()));
 641     if (RC_TRACE_ENABLED(0x00002000)) {
 642       // this option is provided to debug calls to obsolete methods
 643       guarantee(false, "faulting at call to an obsolete method.");
 644     }
 645   }
 646   return 0;
 647 JRT_END
 648 
 649 // ret_pc points into caller; we are returning caller's exception handler
 650 // for given exception
 651 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 652                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 653   assert(nm != NULL, "must exist");
 654   ResourceMark rm;
 655 
 656   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 657   // determine handler bci, if any
 658   EXCEPTION_MARK;
 659 
 660   int handler_bci = -1;
 661   int scope_depth = 0;
 662   if (!force_unwind) {
 663     int bci = sd->bci();
 664     bool recursive_exception = false;
 665     do {
 666       bool skip_scope_increment = false;
 667       // exception handler lookup
 668       KlassHandle ek (THREAD, exception->klass());
 669       methodHandle mh(THREAD, sd->method());
 670       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 671       if (HAS_PENDING_EXCEPTION) {
 672         recursive_exception = true;
 673         // We threw an exception while trying to find the exception handler.
 674         // Transfer the new exception to the exception handle which will
 675         // be set into thread local storage, and do another lookup for an
 676         // exception handler for this exception, this time starting at the
 677         // BCI of the exception handler which caused the exception to be
 678         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 679         // argument to ensure that the correct exception is thrown (4870175).
 680         recursive_exception_occurred = true;
 681         exception = Handle(THREAD, PENDING_EXCEPTION);
 682         CLEAR_PENDING_EXCEPTION;
 683         if (handler_bci >= 0) {
 684           bci = handler_bci;
 685           handler_bci = -1;
 686           skip_scope_increment = true;
 687         }
 688       }
 689       else {
 690         recursive_exception = false;
 691       }
 692       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 693         sd = sd->sender();
 694         if (sd != NULL) {
 695           bci = sd->bci();
 696         }
 697         ++scope_depth;
 698       }
 699     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 700   }
 701 
 702   // found handling method => lookup exception handler
 703   int catch_pco = ret_pc - nm->code_begin();
 704 
 705   ExceptionHandlerTable table(nm);
 706   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 707   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 708     // Allow abbreviated catch tables.  The idea is to allow a method
 709     // to materialize its exceptions without committing to the exact
 710     // routing of exceptions.  In particular this is needed for adding
 711     // a synthethic handler to unlock monitors when inlining
 712     // synchonized methods since the unlock path isn't represented in
 713     // the bytecodes.
 714     t = table.entry_for(catch_pco, -1, 0);
 715   }
 716 
 717 #ifdef COMPILER1
 718   if (t == NULL && nm->is_compiled_by_c1()) {
 719     assert(nm->unwind_handler_begin() != NULL, "");
 720     return nm->unwind_handler_begin();
 721   }
 722 #endif
 723 
 724   if (t == NULL) {
 725     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 726     tty->print_cr("   Exception:");
 727     exception->print();
 728     tty->cr();
 729     tty->print_cr(" Compiled exception table :");
 730     table.print();
 731     nm->print_code();
 732     guarantee(false, "missing exception handler");
 733     return NULL;
 734   }
 735 
 736   return nm->code_begin() + t->pco();
 737 }
 738 
 739 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 740   // These errors occur only at call sites
 741   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 742 JRT_END
 743 
 744 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 745   // These errors occur only at call sites
 746   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 747 JRT_END
 748 
 749 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 750   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 751 JRT_END
 752 
 753 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 754   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 755 JRT_END
 756 
 757 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 758   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 759   // cache sites (when the callee activation is not yet set up) so we are at a call site
 760   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 761 JRT_END
 762 
 763 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 764   // We avoid using the normal exception construction in this case because
 765   // it performs an upcall to Java, and we're already out of stack space.
 766   Klass* k = SystemDictionary::StackOverflowError_klass();
 767   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 768   Handle exception (thread, exception_oop);
 769   if (StackTraceInThrowable) {
 770     java_lang_Throwable::fill_in_stack_trace(exception);
 771   }
 772   // Increment counter for hs_err file reporting
 773   Atomic::inc(&Exceptions::_stack_overflow_errors);
 774   throw_and_post_jvmti_exception(thread, exception);
 775 JRT_END
 776 
 777 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 778                                                            address pc,
 779                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 780 {
 781   address target_pc = NULL;
 782 
 783   if (Interpreter::contains(pc)) {
 784 #ifdef CC_INTERP
 785     // C++ interpreter doesn't throw implicit exceptions
 786     ShouldNotReachHere();
 787 #else
 788     switch (exception_kind) {
 789       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 790       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 791       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 792       default:                      ShouldNotReachHere();
 793     }
 794 #endif // !CC_INTERP
 795   } else {
 796     switch (exception_kind) {
 797       case STACK_OVERFLOW: {
 798         // Stack overflow only occurs upon frame setup; the callee is
 799         // going to be unwound. Dispatch to a shared runtime stub
 800         // which will cause the StackOverflowError to be fabricated
 801         // and processed.
 802         // Stack overflow should never occur during deoptimization:
 803         // the compiled method bangs the stack by as much as the
 804         // interpreter would need in case of a deoptimization. The
 805         // deoptimization blob and uncommon trap blob bang the stack
 806         // in a debug VM to verify the correctness of the compiled
 807         // method stack banging.
 808         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 809         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
 810         return StubRoutines::throw_StackOverflowError_entry();
 811       }
 812 
 813       case IMPLICIT_NULL: {
 814         if (VtableStubs::contains(pc)) {
 815           // We haven't yet entered the callee frame. Fabricate an
 816           // exception and begin dispatching it in the caller. Since
 817           // the caller was at a call site, it's safe to destroy all
 818           // caller-saved registers, as these entry points do.
 819           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 820 
 821           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 822           if (vt_stub == NULL) return NULL;
 823 
 824           if (vt_stub->is_abstract_method_error(pc)) {
 825             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 826             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
 827             return StubRoutines::throw_AbstractMethodError_entry();
 828           } else {
 829             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
 830             return StubRoutines::throw_NullPointerException_at_call_entry();
 831           }
 832         } else {
 833           CodeBlob* cb = CodeCache::find_blob(pc);
 834 
 835           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 836           if (cb == NULL) return NULL;
 837 
 838           // Exception happened in CodeCache. Must be either:
 839           // 1. Inline-cache check in C2I handler blob,
 840           // 2. Inline-cache check in nmethod, or
 841           // 3. Implict null exception in nmethod
 842 
 843           if (!cb->is_nmethod()) {
 844             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 845             if (!is_in_blob) {
 846               cb->print();
 847               fatal(err_msg("exception happened outside interpreter, nmethods and vtable stubs at pc " INTPTR_FORMAT, pc));
 848             }
 849             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
 850             // There is no handler here, so we will simply unwind.
 851             return StubRoutines::throw_NullPointerException_at_call_entry();
 852           }
 853 
 854           // Otherwise, it's an nmethod.  Consult its exception handlers.
 855           nmethod* nm = (nmethod*)cb;
 856           if (nm->inlinecache_check_contains(pc)) {
 857             // exception happened inside inline-cache check code
 858             // => the nmethod is not yet active (i.e., the frame
 859             // is not set up yet) => use return address pushed by
 860             // caller => don't push another return address
 861             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
 862             return StubRoutines::throw_NullPointerException_at_call_entry();
 863           }
 864 
 865           if (nm->method()->is_method_handle_intrinsic()) {
 866             // exception happened inside MH dispatch code, similar to a vtable stub
 867             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
 868             return StubRoutines::throw_NullPointerException_at_call_entry();
 869           }
 870 
 871 #ifndef PRODUCT
 872           _implicit_null_throws++;
 873 #endif
 874           target_pc = nm->continuation_for_implicit_exception(pc);
 875           // If there's an unexpected fault, target_pc might be NULL,
 876           // in which case we want to fall through into the normal
 877           // error handling code.
 878         }
 879 
 880         break; // fall through
 881       }
 882 
 883 
 884       case IMPLICIT_DIVIDE_BY_ZERO: {
 885         nmethod* nm = CodeCache::find_nmethod(pc);
 886         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 887 #ifndef PRODUCT
 888         _implicit_div0_throws++;
 889 #endif
 890         target_pc = nm->continuation_for_implicit_exception(pc);
 891         // If there's an unexpected fault, target_pc might be NULL,
 892         // in which case we want to fall through into the normal
 893         // error handling code.
 894         break; // fall through
 895       }
 896 
 897       default: ShouldNotReachHere();
 898     }
 899 
 900     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 901 
 902     // for AbortVMOnException flag
 903     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 904     if (exception_kind == IMPLICIT_NULL) {
 905       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 906     } else {
 907       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 908     }
 909     return target_pc;
 910   }
 911 
 912   ShouldNotReachHere();
 913   return NULL;
 914 }
 915 
 916 
 917 /**
 918  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 919  * installed in the native function entry of all native Java methods before
 920  * they get linked to their actual native methods.
 921  *
 922  * \note
 923  * This method actually never gets called!  The reason is because
 924  * the interpreter's native entries call NativeLookup::lookup() which
 925  * throws the exception when the lookup fails.  The exception is then
 926  * caught and forwarded on the return from NativeLookup::lookup() call
 927  * before the call to the native function.  This might change in the future.
 928  */
 929 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 930 {
 931   // We return a bad value here to make sure that the exception is
 932   // forwarded before we look at the return value.
 933   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 934 }
 935 JNI_END
 936 
 937 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 938   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 939 }
 940 
 941 
 942 #ifndef PRODUCT
 943 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 944   const frame f = thread->last_frame();
 945   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 946 #ifndef PRODUCT
 947   methodHandle mh(THREAD, f.interpreter_frame_method());
 948   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 949 #endif // !PRODUCT
 950   return preserve_this_value;
 951 JRT_END
 952 #endif // !PRODUCT
 953 
 954 
 955 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
 956   os::yield_all(attempts);
 957 JRT_END
 958 
 959 
 960 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 961   assert(obj->is_oop(), "must be a valid oop");
 962   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 963   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 964 JRT_END
 965 
 966 
 967 jlong SharedRuntime::get_java_tid(Thread* thread) {
 968   if (thread != NULL) {
 969     if (thread->is_Java_thread()) {
 970       oop obj = ((JavaThread*)thread)->threadObj();
 971       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 972     }
 973   }
 974   return 0;
 975 }
 976 
 977 /**
 978  * This function ought to be a void function, but cannot be because
 979  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 980  * 6254741.  Once that is fixed we can remove the dummy return value.
 981  */
 982 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
 983   return dtrace_object_alloc_base(Thread::current(), o, size);
 984 }
 985 
 986 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
 987   assert(DTraceAllocProbes, "wrong call");
 988   Klass* klass = o->klass();
 989   Symbol* name = klass->name();
 990 #ifndef USDT2
 991   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
 992                    name->bytes(), name->utf8_length(), size * HeapWordSize);
 993 #else /* USDT2 */
 994   HOTSPOT_OBJECT_ALLOC(
 995                    get_java_tid(thread),
 996                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 997 #endif /* USDT2 */
 998   return 0;
 999 }
1000 
1001 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1002     JavaThread* thread, Method* method))
1003   assert(DTraceMethodProbes, "wrong call");
1004   Symbol* kname = method->klass_name();
1005   Symbol* name = method->name();
1006   Symbol* sig = method->signature();
1007 #ifndef USDT2
1008   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
1009       kname->bytes(), kname->utf8_length(),
1010       name->bytes(), name->utf8_length(),
1011       sig->bytes(), sig->utf8_length());
1012 #else /* USDT2 */
1013   HOTSPOT_METHOD_ENTRY(
1014       get_java_tid(thread),
1015       (char *) kname->bytes(), kname->utf8_length(),
1016       (char *) name->bytes(), name->utf8_length(),
1017       (char *) sig->bytes(), sig->utf8_length());
1018 #endif /* USDT2 */
1019   return 0;
1020 JRT_END
1021 
1022 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1023     JavaThread* thread, Method* method))
1024   assert(DTraceMethodProbes, "wrong call");
1025   Symbol* kname = method->klass_name();
1026   Symbol* name = method->name();
1027   Symbol* sig = method->signature();
1028 #ifndef USDT2
1029   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
1030       kname->bytes(), kname->utf8_length(),
1031       name->bytes(), name->utf8_length(),
1032       sig->bytes(), sig->utf8_length());
1033 #else /* USDT2 */
1034   HOTSPOT_METHOD_RETURN(
1035       get_java_tid(thread),
1036       (char *) kname->bytes(), kname->utf8_length(),
1037       (char *) name->bytes(), name->utf8_length(),
1038       (char *) sig->bytes(), sig->utf8_length());
1039 #endif /* USDT2 */
1040   return 0;
1041 JRT_END
1042 
1043 
1044 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1045 // for a call current in progress, i.e., arguments has been pushed on stack
1046 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1047 // vtable updates, etc.  Caller frame must be compiled.
1048 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1049   ResourceMark rm(THREAD);
1050 
1051   // last java frame on stack (which includes native call frames)
1052   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1053 
1054   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
1055 }
1056 
1057 
1058 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1059 // for a call current in progress, i.e., arguments has been pushed on stack
1060 // but callee has not been invoked yet.  Caller frame must be compiled.
1061 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1062                                               vframeStream& vfst,
1063                                               Bytecodes::Code& bc,
1064                                               CallInfo& callinfo, TRAPS) {
1065   Handle receiver;
1066   Handle nullHandle;  //create a handy null handle for exception returns
1067 
1068   assert(!vfst.at_end(), "Java frame must exist");
1069 
1070   // Find caller and bci from vframe
1071   methodHandle caller(THREAD, vfst.method());
1072   int          bci   = vfst.bci();
1073 
1074   // Find bytecode
1075   Bytecode_invoke bytecode(caller, bci);
1076   bc = bytecode.invoke_code();
1077   int bytecode_index = bytecode.index();
1078 
1079   // Find receiver for non-static call
1080   if (bc != Bytecodes::_invokestatic &&
1081       bc != Bytecodes::_invokedynamic &&
1082       bc != Bytecodes::_invokehandle) {
1083     // This register map must be update since we need to find the receiver for
1084     // compiled frames. The receiver might be in a register.
1085     RegisterMap reg_map2(thread);
1086     frame stubFrame   = thread->last_frame();
1087     // Caller-frame is a compiled frame
1088     frame callerFrame = stubFrame.sender(&reg_map2);
1089 
1090     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1091     if (callee.is_null()) {
1092       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1093     }
1094     // Retrieve from a compiled argument list
1095     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1096 
1097     if (receiver.is_null()) {
1098       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1099     }
1100   }
1101 
1102   // Resolve method. This is parameterized by bytecode.
1103   constantPoolHandle constants(THREAD, caller->constants());
1104   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1105   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1106 
1107 #ifdef ASSERT
1108   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1109   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
1110     assert(receiver.not_null(), "should have thrown exception");
1111     KlassHandle receiver_klass(THREAD, receiver->klass());
1112     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1113                             // klass is already loaded
1114     KlassHandle static_receiver_klass(THREAD, rk);
1115     // Method handle invokes might have been optimized to a direct call
1116     // so don't check for the receiver class.
1117     // FIXME this weakens the assert too much
1118     methodHandle callee = callinfo.selected_method();
1119     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
1120            callee->is_method_handle_intrinsic() ||
1121            callee->is_compiled_lambda_form(),
1122            "actual receiver must be subclass of static receiver klass");
1123     if (receiver_klass->oop_is_instance()) {
1124       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1125         tty->print_cr("ERROR: Klass not yet initialized!!");
1126         receiver_klass()->print();
1127       }
1128       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1129     }
1130   }
1131 #endif
1132 
1133   return receiver;
1134 }
1135 
1136 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1137   ResourceMark rm(THREAD);
1138   // We need first to check if any Java activations (compiled, interpreted)
1139   // exist on the stack since last JavaCall.  If not, we need
1140   // to get the target method from the JavaCall wrapper.
1141   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1142   methodHandle callee_method;
1143   if (vfst.at_end()) {
1144     // No Java frames were found on stack since we did the JavaCall.
1145     // Hence the stack can only contain an entry_frame.  We need to
1146     // find the target method from the stub frame.
1147     RegisterMap reg_map(thread, false);
1148     frame fr = thread->last_frame();
1149     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1150     fr = fr.sender(&reg_map);
1151     assert(fr.is_entry_frame(), "must be");
1152     // fr is now pointing to the entry frame.
1153     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1154     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1155   } else {
1156     Bytecodes::Code bc;
1157     CallInfo callinfo;
1158     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1159     callee_method = callinfo.selected_method();
1160   }
1161   assert(callee_method()->is_method(), "must be");
1162   return callee_method;
1163 }
1164 
1165 // Resolves a call.
1166 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1167                                            bool is_virtual,
1168                                            bool is_optimized, TRAPS) {
1169   methodHandle callee_method;
1170   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1171   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1172     int retry_count = 0;
1173     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1174            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1175       // If has a pending exception then there is no need to re-try to
1176       // resolve this method.
1177       // If the method has been redefined, we need to try again.
1178       // Hack: we have no way to update the vtables of arrays, so don't
1179       // require that java.lang.Object has been updated.
1180 
1181       // It is very unlikely that method is redefined more than 100 times
1182       // in the middle of resolve. If it is looping here more than 100 times
1183       // means then there could be a bug here.
1184       guarantee((retry_count++ < 100),
1185                 "Could not resolve to latest version of redefined method");
1186       // method is redefined in the middle of resolve so re-try.
1187       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1188     }
1189   }
1190   return callee_method;
1191 }
1192 
1193 // Resolves a call.  The compilers generate code for calls that go here
1194 // and are patched with the real destination of the call.
1195 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1196                                            bool is_virtual,
1197                                            bool is_optimized, TRAPS) {
1198 
1199   ResourceMark rm(thread);
1200   RegisterMap cbl_map(thread, false);
1201   frame caller_frame = thread->last_frame().sender(&cbl_map);
1202 
1203   CodeBlob* caller_cb = caller_frame.cb();
1204   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1205   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1206 
1207   // make sure caller is not getting deoptimized
1208   // and removed before we are done with it.
1209   // CLEANUP - with lazy deopt shouldn't need this lock
1210   nmethodLocker caller_lock(caller_nm);
1211 
1212   // determine call info & receiver
1213   // note: a) receiver is NULL for static calls
1214   //       b) an exception is thrown if receiver is NULL for non-static calls
1215   CallInfo call_info;
1216   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1217   Handle receiver = find_callee_info(thread, invoke_code,
1218                                      call_info, CHECK_(methodHandle()));
1219   methodHandle callee_method = call_info.selected_method();
1220 
1221   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1222          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1223          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1224          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1225 
1226   assert(caller_nm->is_alive(), "It should be alive");
1227 
1228 #ifndef PRODUCT
1229   // tracing/debugging/statistics
1230   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1231                 (is_virtual) ? (&_resolve_virtual_ctr) :
1232                                (&_resolve_static_ctr);
1233   Atomic::inc(addr);
1234 
1235   if (TraceCallFixup) {
1236     ResourceMark rm(thread);
1237     tty->print("resolving %s%s (%s) call to",
1238       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1239       Bytecodes::name(invoke_code));
1240     callee_method->print_short_name(tty);
1241     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
1242   }
1243 #endif
1244 
1245   // Do not patch call site for static call when the class is not
1246   // fully initialized.
1247   if (invoke_code == Bytecodes::_invokestatic &&
1248       !callee_method->method_holder()->is_initialized()) {
1249     assert(callee_method->method_holder()->is_linked(), "must be");
1250     return callee_method;
1251   }
1252 
1253   // JSR 292 key invariant:
1254   // If the resolved method is a MethodHandle invoke target, the call
1255   // site must be a MethodHandle call site, because the lambda form might tail-call
1256   // leaving the stack in a state unknown to either caller or callee
1257   // TODO detune for now but we might need it again
1258 //  assert(!callee_method->is_compiled_lambda_form() ||
1259 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1260 
1261   // Compute entry points. This might require generation of C2I converter
1262   // frames, so we cannot be holding any locks here. Furthermore, the
1263   // computation of the entry points is independent of patching the call.  We
1264   // always return the entry-point, but we only patch the stub if the call has
1265   // not been deoptimized.  Return values: For a virtual call this is an
1266   // (cached_oop, destination address) pair. For a static call/optimized
1267   // virtual this is just a destination address.
1268 
1269   StaticCallInfo static_call_info;
1270   CompiledICInfo virtual_call_info;
1271 
1272   // Make sure the callee nmethod does not get deoptimized and removed before
1273   // we are done patching the code.
1274   nmethod* callee_nm = callee_method->code();
1275   if (callee_nm != NULL && !callee_nm->is_in_use()) {
1276     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1277     callee_nm = NULL;
1278   }
1279   nmethodLocker nl_callee(callee_nm);
1280 #ifdef ASSERT
1281   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1282 #endif
1283 
1284   if (is_virtual) {
1285     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1286     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1287     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1288     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1289                      is_optimized, static_bound, virtual_call_info,
1290                      CHECK_(methodHandle()));
1291   } else {
1292     // static call
1293     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1294   }
1295 
1296   // grab lock, check for deoptimization and potentially patch caller
1297   {
1298     MutexLocker ml_patch(CompiledIC_lock);
1299 
1300     // Lock blocks for safepoint during which both nmethods can change state.
1301 
1302     // Now that we are ready to patch if the Method* was redefined then
1303     // don't update call site and let the caller retry.
1304     // Don't update call site if callee nmethod was unloaded or deoptimized.
1305     // Don't update call site if callee nmethod was replaced by an other nmethod
1306     // which may happen when multiply alive nmethod (tiered compilation)
1307     // will be supported.
1308     if (!callee_method->is_old() &&
1309         (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
1310 #ifdef ASSERT
1311       // We must not try to patch to jump to an already unloaded method.
1312       if (dest_entry_point != 0) {
1313         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1314         assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
1315                "should not call unloaded nmethod");
1316       }
1317 #endif
1318       if (is_virtual) {
1319         nmethod* nm = callee_nm;
1320         if (nm == NULL) CodeCache::find_blob(caller_frame.pc());
1321         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1322         if (inline_cache->is_clean()) {
1323           inline_cache->set_to_monomorphic(virtual_call_info);
1324         }
1325       } else {
1326         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1327         if (ssc->is_clean()) ssc->set(static_call_info);
1328       }
1329     }
1330 
1331   } // unlock CompiledIC_lock
1332 
1333   return callee_method;
1334 }
1335 
1336 
1337 // Inline caches exist only in compiled code
1338 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1339 #ifdef ASSERT
1340   RegisterMap reg_map(thread, false);
1341   frame stub_frame = thread->last_frame();
1342   assert(stub_frame.is_runtime_frame(), "sanity check");
1343   frame caller_frame = stub_frame.sender(&reg_map);
1344   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1345 #endif /* ASSERT */
1346 
1347   methodHandle callee_method;
1348   JRT_BLOCK
1349     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1350     // Return Method* through TLS
1351     thread->set_vm_result_2(callee_method());
1352   JRT_BLOCK_END
1353   // return compiled code entry point after potential safepoints
1354   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1355   return callee_method->verified_code_entry();
1356 JRT_END
1357 
1358 
1359 // Handle call site that has been made non-entrant
1360 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1361   // 6243940 We might end up in here if the callee is deoptimized
1362   // as we race to call it.  We don't want to take a safepoint if
1363   // the caller was interpreted because the caller frame will look
1364   // interpreted to the stack walkers and arguments are now
1365   // "compiled" so it is much better to make this transition
1366   // invisible to the stack walking code. The i2c path will
1367   // place the callee method in the callee_target. It is stashed
1368   // there because if we try and find the callee by normal means a
1369   // safepoint is possible and have trouble gc'ing the compiled args.
1370   RegisterMap reg_map(thread, false);
1371   frame stub_frame = thread->last_frame();
1372   assert(stub_frame.is_runtime_frame(), "sanity check");
1373   frame caller_frame = stub_frame.sender(&reg_map);
1374 
1375   if (caller_frame.is_interpreted_frame() ||
1376       caller_frame.is_entry_frame()) {
1377     Method* callee = thread->callee_target();
1378     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1379     thread->set_vm_result_2(callee);
1380     thread->set_callee_target(NULL);
1381     return callee->get_c2i_entry();
1382   }
1383 
1384   // Must be compiled to compiled path which is safe to stackwalk
1385   methodHandle callee_method;
1386   JRT_BLOCK
1387     // Force resolving of caller (if we called from compiled frame)
1388     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1389     thread->set_vm_result_2(callee_method());
1390   JRT_BLOCK_END
1391   // return compiled code entry point after potential safepoints
1392   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1393   return callee_method->verified_code_entry();
1394 JRT_END
1395 
1396 // Handle abstract method call
1397 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1398   return StubRoutines::throw_AbstractMethodError_entry();
1399 JRT_END
1400 
1401 
1402 // resolve a static call and patch code
1403 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1404   methodHandle callee_method;
1405   JRT_BLOCK
1406     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1407     thread->set_vm_result_2(callee_method());
1408   JRT_BLOCK_END
1409   // return compiled code entry point after potential safepoints
1410   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1411   return callee_method->verified_code_entry();
1412 JRT_END
1413 
1414 
1415 // resolve virtual call and update inline cache to monomorphic
1416 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1417   methodHandle callee_method;
1418   JRT_BLOCK
1419     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1420     thread->set_vm_result_2(callee_method());
1421   JRT_BLOCK_END
1422   // return compiled code entry point after potential safepoints
1423   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1424   return callee_method->verified_code_entry();
1425 JRT_END
1426 
1427 
1428 // Resolve a virtual call that can be statically bound (e.g., always
1429 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1430 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1431   methodHandle callee_method;
1432   JRT_BLOCK
1433     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1434     thread->set_vm_result_2(callee_method());
1435   JRT_BLOCK_END
1436   // return compiled code entry point after potential safepoints
1437   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1438   return callee_method->verified_code_entry();
1439 JRT_END
1440 
1441 
1442 
1443 
1444 
1445 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1446   ResourceMark rm(thread);
1447   CallInfo call_info;
1448   Bytecodes::Code bc;
1449 
1450   // receiver is NULL for static calls. An exception is thrown for NULL
1451   // receivers for non-static calls
1452   Handle receiver = find_callee_info(thread, bc, call_info,
1453                                      CHECK_(methodHandle()));
1454   // Compiler1 can produce virtual call sites that can actually be statically bound
1455   // If we fell thru to below we would think that the site was going megamorphic
1456   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1457   // we'd try and do a vtable dispatch however methods that can be statically bound
1458   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1459   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1460   // plain ic_miss) and the site will be converted to an optimized virtual call site
1461   // never to miss again. I don't believe C2 will produce code like this but if it
1462   // did this would still be the correct thing to do for it too, hence no ifdef.
1463   //
1464   if (call_info.resolved_method()->can_be_statically_bound()) {
1465     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1466     if (TraceCallFixup) {
1467       RegisterMap reg_map(thread, false);
1468       frame caller_frame = thread->last_frame().sender(&reg_map);
1469       ResourceMark rm(thread);
1470       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1471       callee_method->print_short_name(tty);
1472       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1473       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1474     }
1475     return callee_method;
1476   }
1477 
1478   methodHandle callee_method = call_info.selected_method();
1479 
1480   bool should_be_mono = false;
1481 
1482 #ifndef PRODUCT
1483   Atomic::inc(&_ic_miss_ctr);
1484 
1485   // Statistics & Tracing
1486   if (TraceCallFixup) {
1487     ResourceMark rm(thread);
1488     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1489     callee_method->print_short_name(tty);
1490     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1491   }
1492 
1493   if (ICMissHistogram) {
1494     MutexLocker m(VMStatistic_lock);
1495     RegisterMap reg_map(thread, false);
1496     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1497     // produce statistics under the lock
1498     trace_ic_miss(f.pc());
1499   }
1500 #endif
1501 
1502   // install an event collector so that when a vtable stub is created the
1503   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1504   // event can't be posted when the stub is created as locks are held
1505   // - instead the event will be deferred until the event collector goes
1506   // out of scope.
1507   JvmtiDynamicCodeEventCollector event_collector;
1508 
1509   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1510   { MutexLocker ml_patch (CompiledIC_lock);
1511     RegisterMap reg_map(thread, false);
1512     frame caller_frame = thread->last_frame().sender(&reg_map);
1513     CodeBlob* cb = caller_frame.cb();
1514     if (cb->is_nmethod()) {
1515       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1516       bool should_be_mono = false;
1517       if (inline_cache->is_optimized()) {
1518         if (TraceCallFixup) {
1519           ResourceMark rm(thread);
1520           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1521           callee_method->print_short_name(tty);
1522           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1523         }
1524         should_be_mono = true;
1525       } else if (inline_cache->is_icholder_call()) {
1526         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1527         if ( ic_oop != NULL) {
1528 
1529           if (receiver()->klass() == ic_oop->holder_klass()) {
1530             // This isn't a real miss. We must have seen that compiled code
1531             // is now available and we want the call site converted to a
1532             // monomorphic compiled call site.
1533             // We can't assert for callee_method->code() != NULL because it
1534             // could have been deoptimized in the meantime
1535             if (TraceCallFixup) {
1536               ResourceMark rm(thread);
1537               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1538               callee_method->print_short_name(tty);
1539               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1540             }
1541             should_be_mono = true;
1542           }
1543         }
1544       }
1545 
1546       if (should_be_mono) {
1547 
1548         // We have a path that was monomorphic but was going interpreted
1549         // and now we have (or had) a compiled entry. We correct the IC
1550         // by using a new icBuffer.
1551         CompiledICInfo info;
1552         KlassHandle receiver_klass(THREAD, receiver()->klass());
1553         inline_cache->compute_monomorphic_entry(callee_method,
1554                                                 receiver_klass,
1555                                                 inline_cache->is_optimized(),
1556                                                 false,
1557                                                 info, CHECK_(methodHandle()));
1558         inline_cache->set_to_monomorphic(info);
1559       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1560         // Potential change to megamorphic
1561         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1562         if (!successful) {
1563           inline_cache->set_to_clean();
1564         }
1565       } else {
1566         // Either clean or megamorphic
1567       }
1568     }
1569   } // Release CompiledIC_lock
1570 
1571   return callee_method;
1572 }
1573 
1574 //
1575 // Resets a call-site in compiled code so it will get resolved again.
1576 // This routines handles both virtual call sites, optimized virtual call
1577 // sites, and static call sites. Typically used to change a call sites
1578 // destination from compiled to interpreted.
1579 //
1580 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1581   ResourceMark rm(thread);
1582   RegisterMap reg_map(thread, false);
1583   frame stub_frame = thread->last_frame();
1584   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1585   frame caller = stub_frame.sender(&reg_map);
1586 
1587   // Do nothing if the frame isn't a live compiled frame.
1588   // nmethod could be deoptimized by the time we get here
1589   // so no update to the caller is needed.
1590 
1591   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1592 
1593     address pc = caller.pc();
1594 
1595     // Default call_addr is the location of the "basic" call.
1596     // Determine the address of the call we a reresolving. With
1597     // Inline Caches we will always find a recognizable call.
1598     // With Inline Caches disabled we may or may not find a
1599     // recognizable call. We will always find a call for static
1600     // calls and for optimized virtual calls. For vanilla virtual
1601     // calls it depends on the state of the UseInlineCaches switch.
1602     //
1603     // With Inline Caches disabled we can get here for a virtual call
1604     // for two reasons:
1605     //   1 - calling an abstract method. The vtable for abstract methods
1606     //       will run us thru handle_wrong_method and we will eventually
1607     //       end up in the interpreter to throw the ame.
1608     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1609     //       call and between the time we fetch the entry address and
1610     //       we jump to it the target gets deoptimized. Similar to 1
1611     //       we will wind up in the interprter (thru a c2i with c2).
1612     //
1613     address call_addr = NULL;
1614     {
1615       // Get call instruction under lock because another thread may be
1616       // busy patching it.
1617       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1618       // Location of call instruction
1619       if (NativeCall::is_call_before(pc)) {
1620         NativeCall *ncall = nativeCall_before(pc);
1621         call_addr = ncall->instruction_address();
1622       }
1623     }
1624 
1625     // Check for static or virtual call
1626     bool is_static_call = false;
1627     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1628     // Make sure nmethod doesn't get deoptimized and removed until
1629     // this is done with it.
1630     // CLEANUP - with lazy deopt shouldn't need this lock
1631     nmethodLocker nmlock(caller_nm);
1632 
1633     if (call_addr != NULL) {
1634       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1635       int ret = iter.next(); // Get item
1636       if (ret) {
1637         assert(iter.addr() == call_addr, "must find call");
1638         if (iter.type() == relocInfo::static_call_type) {
1639           is_static_call = true;
1640         } else {
1641           assert(iter.type() == relocInfo::virtual_call_type ||
1642                  iter.type() == relocInfo::opt_virtual_call_type
1643                 , "unexpected relocInfo. type");
1644         }
1645       } else {
1646         assert(!UseInlineCaches, "relocation info. must exist for this address");
1647       }
1648 
1649       // Cleaning the inline cache will force a new resolve. This is more robust
1650       // than directly setting it to the new destination, since resolving of calls
1651       // is always done through the same code path. (experience shows that it
1652       // leads to very hard to track down bugs, if an inline cache gets updated
1653       // to a wrong method). It should not be performance critical, since the
1654       // resolve is only done once.
1655 
1656       MutexLocker ml(CompiledIC_lock);
1657       if (is_static_call) {
1658         CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1659         ssc->set_to_clean();
1660       } else {
1661         // compiled, dispatched call (which used to call an interpreted method)
1662         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1663         inline_cache->set_to_clean();
1664       }
1665     }
1666 
1667   }
1668 
1669   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1670 
1671 
1672 #ifndef PRODUCT
1673   Atomic::inc(&_wrong_method_ctr);
1674 
1675   if (TraceCallFixup) {
1676     ResourceMark rm(thread);
1677     tty->print("handle_wrong_method reresolving call to");
1678     callee_method->print_short_name(tty);
1679     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1680   }
1681 #endif
1682 
1683   return callee_method;
1684 }
1685 
1686 #ifdef ASSERT
1687 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
1688                                                                 const BasicType* sig_bt,
1689                                                                 const VMRegPair* regs) {
1690   ResourceMark rm;
1691   const int total_args_passed = method->size_of_parameters();
1692   const VMRegPair*    regs_with_member_name = regs;
1693         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1694 
1695   const int member_arg_pos = total_args_passed - 1;
1696   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1697   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1698 
1699   const bool is_outgoing = method->is_method_handle_intrinsic();
1700   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1701 
1702   for (int i = 0; i < member_arg_pos; i++) {
1703     VMReg a =    regs_with_member_name[i].first();
1704     VMReg b = regs_without_member_name[i].first();
1705     assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
1706   }
1707   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1708 }
1709 #endif
1710 
1711 // ---------------------------------------------------------------------------
1712 // We are calling the interpreter via a c2i. Normally this would mean that
1713 // we were called by a compiled method. However we could have lost a race
1714 // where we went int -> i2c -> c2i and so the caller could in fact be
1715 // interpreted. If the caller is compiled we attempt to patch the caller
1716 // so he no longer calls into the interpreter.
1717 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1718   Method* moop(method);
1719 
1720   address entry_point = moop->from_compiled_entry();
1721 
1722   // It's possible that deoptimization can occur at a call site which hasn't
1723   // been resolved yet, in which case this function will be called from
1724   // an nmethod that has been patched for deopt and we can ignore the
1725   // request for a fixup.
1726   // Also it is possible that we lost a race in that from_compiled_entry
1727   // is now back to the i2c in that case we don't need to patch and if
1728   // we did we'd leap into space because the callsite needs to use
1729   // "to interpreter" stub in order to load up the Method*. Don't
1730   // ask me how I know this...
1731 
1732   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1733   if (cb == NULL || !cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1734     return;
1735   }
1736 
1737   // The check above makes sure this is a nmethod.
1738   nmethod* nm = cb->as_nmethod_or_null();
1739   assert(nm, "must be");
1740 
1741   // Get the return PC for the passed caller PC.
1742   address return_pc = caller_pc + frame::pc_return_offset;
1743 
1744   // There is a benign race here. We could be attempting to patch to a compiled
1745   // entry point at the same time the callee is being deoptimized. If that is
1746   // the case then entry_point may in fact point to a c2i and we'd patch the
1747   // call site with the same old data. clear_code will set code() to NULL
1748   // at the end of it. If we happen to see that NULL then we can skip trying
1749   // to patch. If we hit the window where the callee has a c2i in the
1750   // from_compiled_entry and the NULL isn't present yet then we lose the race
1751   // and patch the code with the same old data. Asi es la vida.
1752 
1753   if (moop->code() == NULL) return;
1754 
1755   if (nm->is_in_use()) {
1756 
1757     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1758     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1759     if (NativeCall::is_call_before(return_pc)) {
1760       NativeCall *call = nativeCall_before(return_pc);
1761       //
1762       // bug 6281185. We might get here after resolving a call site to a vanilla
1763       // virtual call. Because the resolvee uses the verified entry it may then
1764       // see compiled code and attempt to patch the site by calling us. This would
1765       // then incorrectly convert the call site to optimized and its downhill from
1766       // there. If you're lucky you'll get the assert in the bugid, if not you've
1767       // just made a call site that could be megamorphic into a monomorphic site
1768       // for the rest of its life! Just another racing bug in the life of
1769       // fixup_callers_callsite ...
1770       //
1771       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1772       iter.next();
1773       assert(iter.has_current(), "must have a reloc at java call site");
1774       relocInfo::relocType typ = iter.reloc()->type();
1775       if ( typ != relocInfo::static_call_type &&
1776            typ != relocInfo::opt_virtual_call_type &&
1777            typ != relocInfo::static_stub_type) {
1778         return;
1779       }
1780       address destination = call->destination();
1781       if (destination != entry_point) {
1782         CodeBlob* callee = CodeCache::find_blob(destination);
1783         // callee == cb seems weird. It means calling interpreter thru stub.
1784         if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1785           // static call or optimized virtual
1786           if (TraceCallFixup) {
1787             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1788             moop->print_short_name(tty);
1789             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1790           }
1791           call->set_destination_mt_safe(entry_point);
1792         } else {
1793           if (TraceCallFixup) {
1794             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1795             moop->print_short_name(tty);
1796             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1797           }
1798           // assert is too strong could also be resolve destinations.
1799           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1800         }
1801       } else {
1802           if (TraceCallFixup) {
1803             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1804             moop->print_short_name(tty);
1805             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1806           }
1807       }
1808     }
1809   }
1810 IRT_END
1811 
1812 
1813 // same as JVM_Arraycopy, but called directly from compiled code
1814 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1815                                                 oopDesc* dest, jint dest_pos,
1816                                                 jint length,
1817                                                 JavaThread* thread)) {
1818 #ifndef PRODUCT
1819   _slow_array_copy_ctr++;
1820 #endif
1821   // Check if we have null pointers
1822   if (src == NULL || dest == NULL) {
1823     THROW(vmSymbols::java_lang_NullPointerException());
1824   }
1825   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1826   // even though the copy_array API also performs dynamic checks to ensure
1827   // that src and dest are truly arrays (and are conformable).
1828   // The copy_array mechanism is awkward and could be removed, but
1829   // the compilers don't call this function except as a last resort,
1830   // so it probably doesn't matter.
1831   src->klass()->copy_array((arrayOopDesc*)src,  src_pos,
1832                                         (arrayOopDesc*)dest, dest_pos,
1833                                         length, thread);
1834 }
1835 JRT_END
1836 
1837 char* SharedRuntime::generate_class_cast_message(
1838     JavaThread* thread, const char* objName) {
1839 
1840   // Get target class name from the checkcast instruction
1841   vframeStream vfst(thread, true);
1842   assert(!vfst.at_end(), "Java frame must exist");
1843   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1844   Klass* targetKlass = vfst.method()->constants()->klass_at(
1845     cc.index(), thread);
1846   return generate_class_cast_message(objName, targetKlass->external_name());
1847 }
1848 
1849 char* SharedRuntime::generate_class_cast_message(
1850     const char* objName, const char* targetKlassName, const char* desc) {
1851   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1852 
1853   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1854   if (NULL == message) {
1855     // Shouldn't happen, but don't cause even more problems if it does
1856     message = const_cast<char*>(objName);
1857   } else {
1858     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1859   }
1860   return message;
1861 }
1862 
1863 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1864   (void) JavaThread::current()->reguard_stack();
1865 JRT_END
1866 
1867 
1868 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1869 #ifndef PRODUCT
1870 int SharedRuntime::_monitor_enter_ctr=0;
1871 #endif
1872 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1873   oop obj(_obj);
1874 #ifndef PRODUCT
1875   _monitor_enter_ctr++;             // monitor enter slow
1876 #endif
1877   if (PrintBiasedLockingStatistics) {
1878     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1879   }
1880   Handle h_obj(THREAD, obj);
1881   if (UseBiasedLocking) {
1882     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1883     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1884   } else {
1885     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1886   }
1887   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1888 JRT_END
1889 
1890 #ifndef PRODUCT
1891 int SharedRuntime::_monitor_exit_ctr=0;
1892 #endif
1893 // Handles the uncommon cases of monitor unlocking in compiled code
1894 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1895   oop obj(_obj);
1896 #ifndef PRODUCT
1897   _monitor_exit_ctr++;              // monitor exit slow
1898 #endif
1899   Thread* THREAD = JavaThread::current();
1900   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1901   // testing was unable to ever fire the assert that guarded it so I have removed it.
1902   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1903 #undef MIGHT_HAVE_PENDING
1904 #ifdef MIGHT_HAVE_PENDING
1905   // Save and restore any pending_exception around the exception mark.
1906   // While the slow_exit must not throw an exception, we could come into
1907   // this routine with one set.
1908   oop pending_excep = NULL;
1909   const char* pending_file;
1910   int pending_line;
1911   if (HAS_PENDING_EXCEPTION) {
1912     pending_excep = PENDING_EXCEPTION;
1913     pending_file  = THREAD->exception_file();
1914     pending_line  = THREAD->exception_line();
1915     CLEAR_PENDING_EXCEPTION;
1916   }
1917 #endif /* MIGHT_HAVE_PENDING */
1918 
1919   {
1920     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1921     EXCEPTION_MARK;
1922     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1923   }
1924 
1925 #ifdef MIGHT_HAVE_PENDING
1926   if (pending_excep != NULL) {
1927     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1928   }
1929 #endif /* MIGHT_HAVE_PENDING */
1930 JRT_END
1931 
1932 #ifndef PRODUCT
1933 
1934 void SharedRuntime::print_statistics() {
1935   ttyLocker ttyl;
1936   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1937 
1938   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1939   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1940   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1941 
1942   SharedRuntime::print_ic_miss_histogram();
1943 
1944   if (CountRemovableExceptions) {
1945     if (_nof_removable_exceptions > 0) {
1946       Unimplemented(); // this counter is not yet incremented
1947       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1948     }
1949   }
1950 
1951   // Dump the JRT_ENTRY counters
1952   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1953   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1954   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1955   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1956   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1957   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1958   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1959 
1960   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1961   tty->print_cr("%5d wrong method", _wrong_method_ctr );
1962   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1963   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1964   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1965 
1966   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1967   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1968   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1969   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1970   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1971   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1972   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1973   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1974   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1975   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1976   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1977   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1978   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1979   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1980   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1981   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1982 
1983   AdapterHandlerLibrary::print_statistics();
1984 
1985   if (xtty != NULL)  xtty->tail("statistics");
1986 }
1987 
1988 inline double percent(int x, int y) {
1989   return 100.0 * x / MAX2(y, 1);
1990 }
1991 
1992 class MethodArityHistogram {
1993  public:
1994   enum { MAX_ARITY = 256 };
1995  private:
1996   static int _arity_histogram[MAX_ARITY];     // histogram of #args
1997   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1998   static int _max_arity;                      // max. arity seen
1999   static int _max_size;                       // max. arg size seen
2000 
2001   static void add_method_to_histogram(nmethod* nm) {
2002     Method* m = nm->method();
2003     ArgumentCount args(m->signature());
2004     int arity   = args.size() + (m->is_static() ? 0 : 1);
2005     int argsize = m->size_of_parameters();
2006     arity   = MIN2(arity, MAX_ARITY-1);
2007     argsize = MIN2(argsize, MAX_ARITY-1);
2008     int count = nm->method()->compiled_invocation_count();
2009     _arity_histogram[arity]  += count;
2010     _size_histogram[argsize] += count;
2011     _max_arity = MAX2(_max_arity, arity);
2012     _max_size  = MAX2(_max_size, argsize);
2013   }
2014 
2015   void print_histogram_helper(int n, int* histo, const char* name) {
2016     const int N = MIN2(5, n);
2017     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2018     double sum = 0;
2019     double weighted_sum = 0;
2020     int i;
2021     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2022     double rest = sum;
2023     double percent = sum / 100;
2024     for (i = 0; i <= N; i++) {
2025       rest -= histo[i];
2026       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2027     }
2028     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2029     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2030   }
2031 
2032   void print_histogram() {
2033     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2034     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2035     tty->print_cr("\nSame for parameter size (in words):");
2036     print_histogram_helper(_max_size, _size_histogram, "size");
2037     tty->cr();
2038   }
2039 
2040  public:
2041   MethodArityHistogram() {
2042     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2043     _max_arity = _max_size = 0;
2044     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
2045     CodeCache::nmethods_do(add_method_to_histogram);
2046     print_histogram();
2047   }
2048 };
2049 
2050 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2051 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2052 int MethodArityHistogram::_max_arity;
2053 int MethodArityHistogram::_max_size;
2054 
2055 void SharedRuntime::print_call_statistics(int comp_total) {
2056   tty->print_cr("Calls from compiled code:");
2057   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2058   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2059   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2060   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2061   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2062   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2063   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2064   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2065   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2066   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2067   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2068   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2069   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2070   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2071   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2072   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2073   tty->cr();
2074   tty->print_cr("Note 1: counter updates are not MT-safe.");
2075   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2076   tty->print_cr("        %% in nested categories are relative to their category");
2077   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2078   tty->cr();
2079 
2080   MethodArityHistogram h;
2081 }
2082 #endif
2083 
2084 
2085 // A simple wrapper class around the calling convention information
2086 // that allows sharing of adapters for the same calling convention.
2087 class AdapterFingerPrint : public CHeapObj<mtCode> {
2088  private:
2089   enum {
2090     _basic_type_bits = 4,
2091     _basic_type_mask = right_n_bits(_basic_type_bits),
2092     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2093     _compact_int_count = 3
2094   };
2095   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2096   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2097 
2098   union {
2099     int  _compact[_compact_int_count];
2100     int* _fingerprint;
2101   } _value;
2102   int _length; // A negative length indicates the fingerprint is in the compact form,
2103                // Otherwise _value._fingerprint is the array.
2104 
2105   // Remap BasicTypes that are handled equivalently by the adapters.
2106   // These are correct for the current system but someday it might be
2107   // necessary to make this mapping platform dependent.
2108   static int adapter_encoding(BasicType in) {
2109     switch(in) {
2110       case T_BOOLEAN:
2111       case T_BYTE:
2112       case T_SHORT:
2113       case T_CHAR:
2114         // There are all promoted to T_INT in the calling convention
2115         return T_INT;
2116 
2117       case T_OBJECT:
2118       case T_ARRAY:
2119         // In other words, we assume that any register good enough for
2120         // an int or long is good enough for a managed pointer.
2121 #ifdef _LP64
2122         return T_LONG;
2123 #else
2124         return T_INT;
2125 #endif
2126 
2127       case T_INT:
2128       case T_LONG:
2129       case T_FLOAT:
2130       case T_DOUBLE:
2131       case T_VOID:
2132         return in;
2133 
2134       default:
2135         ShouldNotReachHere();
2136         return T_CONFLICT;
2137     }
2138   }
2139 
2140  public:
2141   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2142     // The fingerprint is based on the BasicType signature encoded
2143     // into an array of ints with eight entries per int.
2144     int* ptr;
2145     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2146     if (len <= _compact_int_count) {
2147       assert(_compact_int_count == 3, "else change next line");
2148       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2149       // Storing the signature encoded as signed chars hits about 98%
2150       // of the time.
2151       _length = -len;
2152       ptr = _value._compact;
2153     } else {
2154       _length = len;
2155       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2156       ptr = _value._fingerprint;
2157     }
2158 
2159     // Now pack the BasicTypes with 8 per int
2160     int sig_index = 0;
2161     for (int index = 0; index < len; index++) {
2162       int value = 0;
2163       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2164         int bt = ((sig_index < total_args_passed)
2165                   ? adapter_encoding(sig_bt[sig_index++])
2166                   : 0);
2167         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2168         value = (value << _basic_type_bits) | bt;
2169       }
2170       ptr[index] = value;
2171     }
2172   }
2173 
2174   ~AdapterFingerPrint() {
2175     if (_length > 0) {
2176       FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
2177     }
2178   }
2179 
2180   int value(int index) {
2181     if (_length < 0) {
2182       return _value._compact[index];
2183     }
2184     return _value._fingerprint[index];
2185   }
2186   int length() {
2187     if (_length < 0) return -_length;
2188     return _length;
2189   }
2190 
2191   bool is_compact() {
2192     return _length <= 0;
2193   }
2194 
2195   unsigned int compute_hash() {
2196     int hash = 0;
2197     for (int i = 0; i < length(); i++) {
2198       int v = value(i);
2199       hash = (hash << 8) ^ v ^ (hash >> 5);
2200     }
2201     return (unsigned int)hash;
2202   }
2203 
2204   const char* as_string() {
2205     stringStream st;
2206     st.print("0x");
2207     for (int i = 0; i < length(); i++) {
2208       st.print("%08x", value(i));
2209     }
2210     return st.as_string();
2211   }
2212 
2213   bool equals(AdapterFingerPrint* other) {
2214     if (other->_length != _length) {
2215       return false;
2216     }
2217     if (_length < 0) {
2218       assert(_compact_int_count == 3, "else change next line");
2219       return _value._compact[0] == other->_value._compact[0] &&
2220              _value._compact[1] == other->_value._compact[1] &&
2221              _value._compact[2] == other->_value._compact[2];
2222     } else {
2223       for (int i = 0; i < _length; i++) {
2224         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2225           return false;
2226         }
2227       }
2228     }
2229     return true;
2230   }
2231 };
2232 
2233 
2234 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2235 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2236   friend class AdapterHandlerTableIterator;
2237 
2238  private:
2239 
2240 #ifndef PRODUCT
2241   static int _lookups; // number of calls to lookup
2242   static int _buckets; // number of buckets checked
2243   static int _equals;  // number of buckets checked with matching hash
2244   static int _hits;    // number of successful lookups
2245   static int _compact; // number of equals calls with compact signature
2246 #endif
2247 
2248   AdapterHandlerEntry* bucket(int i) {
2249     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2250   }
2251 
2252  public:
2253   AdapterHandlerTable()
2254     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2255 
2256   // Create a new entry suitable for insertion in the table
2257   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2258     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2259     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2260     return entry;
2261   }
2262 
2263   // Insert an entry into the table
2264   void add(AdapterHandlerEntry* entry) {
2265     int index = hash_to_index(entry->hash());
2266     add_entry(index, entry);
2267   }
2268 
2269   void free_entry(AdapterHandlerEntry* entry) {
2270     entry->deallocate();
2271     BasicHashtable<mtCode>::free_entry(entry);
2272   }
2273 
2274   // Find a entry with the same fingerprint if it exists
2275   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2276     NOT_PRODUCT(_lookups++);
2277     AdapterFingerPrint fp(total_args_passed, sig_bt);
2278     unsigned int hash = fp.compute_hash();
2279     int index = hash_to_index(hash);
2280     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2281       NOT_PRODUCT(_buckets++);
2282       if (e->hash() == hash) {
2283         NOT_PRODUCT(_equals++);
2284         if (fp.equals(e->fingerprint())) {
2285 #ifndef PRODUCT
2286           if (fp.is_compact()) _compact++;
2287           _hits++;
2288 #endif
2289           return e;
2290         }
2291       }
2292     }
2293     return NULL;
2294   }
2295 
2296 #ifndef PRODUCT
2297   void print_statistics() {
2298     ResourceMark rm;
2299     int longest = 0;
2300     int empty = 0;
2301     int total = 0;
2302     int nonempty = 0;
2303     for (int index = 0; index < table_size(); index++) {
2304       int count = 0;
2305       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2306         count++;
2307       }
2308       if (count != 0) nonempty++;
2309       if (count == 0) empty++;
2310       if (count > longest) longest = count;
2311       total += count;
2312     }
2313     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2314                   empty, longest, total, total / (double)nonempty);
2315     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2316                   _lookups, _buckets, _equals, _hits, _compact);
2317   }
2318 #endif
2319 };
2320 
2321 
2322 #ifndef PRODUCT
2323 
2324 int AdapterHandlerTable::_lookups;
2325 int AdapterHandlerTable::_buckets;
2326 int AdapterHandlerTable::_equals;
2327 int AdapterHandlerTable::_hits;
2328 int AdapterHandlerTable::_compact;
2329 
2330 #endif
2331 
2332 class AdapterHandlerTableIterator : public StackObj {
2333  private:
2334   AdapterHandlerTable* _table;
2335   int _index;
2336   AdapterHandlerEntry* _current;
2337 
2338   void scan() {
2339     while (_index < _table->table_size()) {
2340       AdapterHandlerEntry* a = _table->bucket(_index);
2341       _index++;
2342       if (a != NULL) {
2343         _current = a;
2344         return;
2345       }
2346     }
2347   }
2348 
2349  public:
2350   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2351     scan();
2352   }
2353   bool has_next() {
2354     return _current != NULL;
2355   }
2356   AdapterHandlerEntry* next() {
2357     if (_current != NULL) {
2358       AdapterHandlerEntry* result = _current;
2359       _current = _current->next();
2360       if (_current == NULL) scan();
2361       return result;
2362     } else {
2363       return NULL;
2364     }
2365   }
2366 };
2367 
2368 
2369 // ---------------------------------------------------------------------------
2370 // Implementation of AdapterHandlerLibrary
2371 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2372 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2373 const int AdapterHandlerLibrary_size = 16*K;
2374 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2375 
2376 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2377   // Should be called only when AdapterHandlerLibrary_lock is active.
2378   if (_buffer == NULL) // Initialize lazily
2379       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2380   return _buffer;
2381 }
2382 
2383 void AdapterHandlerLibrary::initialize() {
2384   if (_adapters != NULL) return;
2385   _adapters = new AdapterHandlerTable();
2386 
2387   // Create a special handler for abstract methods.  Abstract methods
2388   // are never compiled so an i2c entry is somewhat meaningless, but
2389   // throw AbstractMethodError just in case.
2390   // Pass wrong_method_abstract for the c2i transitions to return
2391   // AbstractMethodError for invalid invocations.
2392   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2393   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2394                                                               StubRoutines::throw_AbstractMethodError_entry(),
2395                                                               wrong_method_abstract, wrong_method_abstract);
2396 }
2397 
2398 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2399                                                       address i2c_entry,
2400                                                       address c2i_entry,
2401                                                       address c2i_unverified_entry) {
2402   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2403 }
2404 
2405 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2406   // Use customized signature handler.  Need to lock around updates to
2407   // the AdapterHandlerTable (it is not safe for concurrent readers
2408   // and a single writer: this could be fixed if it becomes a
2409   // problem).
2410 
2411   // Get the address of the ic_miss handlers before we grab the
2412   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2413   // was caused by the initialization of the stubs happening
2414   // while we held the lock and then notifying jvmti while
2415   // holding it. This just forces the initialization to be a little
2416   // earlier.
2417   address ic_miss = SharedRuntime::get_ic_miss_stub();
2418   assert(ic_miss != NULL, "must have handler");
2419 
2420   ResourceMark rm;
2421 
2422   NOT_PRODUCT(int insts_size);
2423   AdapterBlob* new_adapter = NULL;
2424   AdapterHandlerEntry* entry = NULL;
2425   AdapterFingerPrint* fingerprint = NULL;
2426   {
2427     MutexLocker mu(AdapterHandlerLibrary_lock);
2428     // make sure data structure is initialized
2429     initialize();
2430 
2431     if (method->is_abstract()) {
2432       return _abstract_method_handler;
2433     }
2434 
2435     // Fill in the signature array, for the calling-convention call.
2436     int total_args_passed = method->size_of_parameters(); // All args on stack
2437 
2438     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2439     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2440     int i = 0;
2441     if (!method->is_static())  // Pass in receiver first
2442       sig_bt[i++] = T_OBJECT;
2443     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2444       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2445       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2446         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2447     }
2448     assert(i == total_args_passed, "");
2449 
2450     // Lookup method signature's fingerprint
2451     entry = _adapters->lookup(total_args_passed, sig_bt);
2452 
2453 #ifdef ASSERT
2454     AdapterHandlerEntry* shared_entry = NULL;
2455     // Start adapter sharing verification only after the VM is booted.
2456     if (VerifyAdapterSharing && (entry != NULL)) {
2457       shared_entry = entry;
2458       entry = NULL;
2459     }
2460 #endif
2461 
2462     if (entry != NULL) {
2463       return entry;
2464     }
2465 
2466     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2467     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2468 
2469     // Make a C heap allocated version of the fingerprint to store in the adapter
2470     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2471 
2472     // StubRoutines::code2() is initialized after this function can be called. As a result,
2473     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2474     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2475     // stub that ensure that an I2C stub is called from an interpreter frame.
2476     bool contains_all_checks = StubRoutines::code2() != NULL;
2477 
2478     // Create I2C & C2I handlers
2479     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2480     if (buf != NULL) {
2481       CodeBuffer buffer(buf);
2482       short buffer_locs[20];
2483       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2484                                              sizeof(buffer_locs)/sizeof(relocInfo));
2485 
2486       MacroAssembler _masm(&buffer);
2487       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2488                                                      total_args_passed,
2489                                                      comp_args_on_stack,
2490                                                      sig_bt,
2491                                                      regs,
2492                                                      fingerprint);
2493 #ifdef ASSERT
2494       if (VerifyAdapterSharing) {
2495         if (shared_entry != NULL) {
2496           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2497           // Release the one just created and return the original
2498           _adapters->free_entry(entry);
2499           return shared_entry;
2500         } else  {
2501           entry->save_code(buf->code_begin(), buffer.insts_size());
2502         }
2503       }
2504 #endif
2505 
2506       new_adapter = AdapterBlob::create(&buffer);
2507       NOT_PRODUCT(insts_size = buffer.insts_size());
2508     }
2509     if (new_adapter == NULL) {
2510       // CodeCache is full, disable compilation
2511       // Ought to log this but compile log is only per compile thread
2512       // and we're some non descript Java thread.
2513       MutexUnlocker mu(AdapterHandlerLibrary_lock);
2514       CompileBroker::handle_full_code_cache();
2515       return NULL; // Out of CodeCache space
2516     }
2517     entry->relocate(new_adapter->content_begin());
2518 #ifndef PRODUCT
2519     // debugging suppport
2520     if (PrintAdapterHandlers || PrintStubCode) {
2521       ttyLocker ttyl;
2522       entry->print_adapter_on(tty);
2523       tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
2524                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2525                     method->signature()->as_C_string(), insts_size);
2526       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2527       if (Verbose || PrintStubCode) {
2528         address first_pc = entry->base_address();
2529         if (first_pc != NULL) {
2530           Disassembler::decode(first_pc, first_pc + insts_size);
2531           tty->cr();
2532         }
2533       }
2534     }
2535 #endif
2536     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2537     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2538     if (contains_all_checks || !VerifyAdapterCalls) {
2539       _adapters->add(entry);
2540     }
2541   }
2542   // Outside of the lock
2543   if (new_adapter != NULL) {
2544     char blob_id[256];
2545     jio_snprintf(blob_id,
2546                  sizeof(blob_id),
2547                  "%s(%s)@" PTR_FORMAT,
2548                  new_adapter->name(),
2549                  fingerprint->as_string(),
2550                  new_adapter->content_begin());
2551     Forte::register_stub(blob_id, new_adapter->content_begin(),new_adapter->content_end());
2552 
2553     if (JvmtiExport::should_post_dynamic_code_generated()) {
2554       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2555     }
2556   }
2557   return entry;
2558 }
2559 
2560 address AdapterHandlerEntry::base_address() {
2561   address base = _i2c_entry;
2562   if (base == NULL)  base = _c2i_entry;
2563   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2564   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2565   return base;
2566 }
2567 
2568 void AdapterHandlerEntry::relocate(address new_base) {
2569   address old_base = base_address();
2570   assert(old_base != NULL, "");
2571   ptrdiff_t delta = new_base - old_base;
2572   if (_i2c_entry != NULL)
2573     _i2c_entry += delta;
2574   if (_c2i_entry != NULL)
2575     _c2i_entry += delta;
2576   if (_c2i_unverified_entry != NULL)
2577     _c2i_unverified_entry += delta;
2578   assert(base_address() == new_base, "");
2579 }
2580 
2581 
2582 void AdapterHandlerEntry::deallocate() {
2583   delete _fingerprint;
2584 #ifdef ASSERT
2585   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
2586 #endif
2587 }
2588 
2589 
2590 #ifdef ASSERT
2591 // Capture the code before relocation so that it can be compared
2592 // against other versions.  If the code is captured after relocation
2593 // then relative instructions won't be equivalent.
2594 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2595   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2596   _saved_code_length = length;
2597   memcpy(_saved_code, buffer, length);
2598 }
2599 
2600 
2601 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2602   if (length != _saved_code_length) {
2603     return false;
2604   }
2605 
2606   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2607 }
2608 #endif
2609 
2610 
2611 /**
2612  * Create a native wrapper for this native method.  The wrapper converts the
2613  * Java-compiled calling convention to the native convention, handles
2614  * arguments, and transitions to native.  On return from the native we transition
2615  * back to java blocking if a safepoint is in progress.
2616  */
2617 void AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
2618   ResourceMark rm;
2619   nmethod* nm = NULL;
2620 
2621   assert(method->is_native(), "must be native");
2622   assert(method->is_method_handle_intrinsic() ||
2623          method->has_native_function(), "must have something valid to call!");
2624 
2625   {
2626     // Perform the work while holding the lock, but perform any printing outside the lock
2627     MutexLocker mu(AdapterHandlerLibrary_lock);
2628     // See if somebody beat us to it
2629     nm = method->code();
2630     if (nm != NULL) {
2631       return;
2632     }
2633 
2634     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2635     assert(compile_id > 0, "Must generate native wrapper");
2636 
2637 
2638     ResourceMark rm;
2639     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2640     if (buf != NULL) {
2641       CodeBuffer buffer(buf);
2642       double locs_buf[20];
2643       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2644       MacroAssembler _masm(&buffer);
2645 
2646       // Fill in the signature array, for the calling-convention call.
2647       const int total_args_passed = method->size_of_parameters();
2648 
2649       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2650       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2651       int i=0;
2652       if( !method->is_static() )  // Pass in receiver first
2653         sig_bt[i++] = T_OBJECT;
2654       SignatureStream ss(method->signature());
2655       for( ; !ss.at_return_type(); ss.next()) {
2656         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2657         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2658           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2659       }
2660       assert(i == total_args_passed, "");
2661       BasicType ret_type = ss.type();
2662 
2663       // Now get the compiled-Java layout as input (or output) arguments.
2664       // NOTE: Stubs for compiled entry points of method handle intrinsics
2665       // are just trampolines so the argument registers must be outgoing ones.
2666       const bool is_outgoing = method->is_method_handle_intrinsic();
2667       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2668 
2669       // Generate the compiled-to-native wrapper code
2670       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2671 
2672       if (nm != NULL) {
2673         method->set_code(method, nm);
2674       }
2675     }
2676   } // Unlock AdapterHandlerLibrary_lock
2677 
2678 
2679   // Install the generated code.
2680   if (nm != NULL) {
2681     if (PrintCompilation) {
2682       ttyLocker ttyl;
2683       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
2684     }
2685     nm->post_compiled_method_load_event();
2686   } else {
2687     // CodeCache is full, disable compilation
2688     CompileBroker::handle_full_code_cache();
2689   }
2690 }
2691 
2692 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2693   assert(thread == JavaThread::current(), "must be");
2694   // The code is about to enter a JNI lazy critical native method and
2695   // _needs_gc is true, so if this thread is already in a critical
2696   // section then just return, otherwise this thread should block
2697   // until needs_gc has been cleared.
2698   if (thread->in_critical()) {
2699     return;
2700   }
2701   // Lock and unlock a critical section to give the system a chance to block
2702   GC_locker::lock_critical(thread);
2703   GC_locker::unlock_critical(thread);
2704 JRT_END
2705 
2706 #ifdef HAVE_DTRACE_H
2707 /**
2708  * Create a dtrace nmethod for this method.  The wrapper converts the
2709  * Java-compiled calling convention to the native convention, makes a dummy call
2710  * (actually nops for the size of the call instruction, which become a trap if
2711  * probe is enabled), and finally returns to the caller. Since this all looks like a
2712  * leaf, no thread transition is needed.
2713  */
2714 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2715   ResourceMark rm;
2716   nmethod* nm = NULL;
2717 
2718   if (PrintCompilation) {
2719     ttyLocker ttyl;
2720     tty->print("---   n  ");
2721     method->print_short_name(tty);
2722     if (method->is_static()) {
2723       tty->print(" (static)");
2724     }
2725     tty->cr();
2726   }
2727 
2728   {
2729     // perform the work while holding the lock, but perform any printing
2730     // outside the lock
2731     MutexLocker mu(AdapterHandlerLibrary_lock);
2732     // See if somebody beat us to it
2733     nm = method->code();
2734     if (nm) {
2735       return nm;
2736     }
2737 
2738     ResourceMark rm;
2739 
2740     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2741     if (buf != NULL) {
2742       CodeBuffer buffer(buf);
2743       // Need a few relocation entries
2744       double locs_buf[20];
2745       buffer.insts()->initialize_shared_locs(
2746         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2747       MacroAssembler _masm(&buffer);
2748 
2749       // Generate the compiled-to-native wrapper code
2750       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2751     }
2752   }
2753   return nm;
2754 }
2755 
2756 // the dtrace method needs to convert java lang string to utf8 string.
2757 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2758   typeArrayOop jlsValue  = java_lang_String::value(src);
2759   int          jlsOffset = java_lang_String::offset(src);
2760   int          jlsLen    = java_lang_String::length(src);
2761   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2762                                            jlsValue->char_at_addr(jlsOffset);
2763   assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
2764   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2765 }
2766 #endif // ndef HAVE_DTRACE_H
2767 
2768 int SharedRuntime::convert_ints_to_longints_argcnt(int in_args_count, BasicType* in_sig_bt) {
2769   int argcnt = in_args_count;
2770   if (CCallingConventionRequiresIntsAsLongs) {
2771     for (int in = 0; in < in_args_count; in++) {
2772       BasicType bt = in_sig_bt[in];
2773       switch (bt) {
2774         case T_BOOLEAN:
2775         case T_CHAR:
2776         case T_BYTE:
2777         case T_SHORT:
2778         case T_INT:
2779           argcnt++;
2780           break;
2781         default:
2782           break;
2783       }
2784     }
2785   } else {
2786     assert(0, "This should not be needed on this platform");
2787   }
2788 
2789   return argcnt;
2790 }
2791 
2792 void SharedRuntime::convert_ints_to_longints(int i2l_argcnt, int& in_args_count,
2793                                              BasicType*& in_sig_bt, VMRegPair*& in_regs) {
2794   if (CCallingConventionRequiresIntsAsLongs) {
2795     VMRegPair *new_in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, i2l_argcnt);
2796     BasicType *new_in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, i2l_argcnt);
2797 
2798     int argcnt = 0;
2799     for (int in = 0; in < in_args_count; in++, argcnt++) {
2800       BasicType bt  = in_sig_bt[in];
2801       VMRegPair reg = in_regs[in];
2802       switch (bt) {
2803         case T_BOOLEAN:
2804         case T_CHAR:
2805         case T_BYTE:
2806         case T_SHORT:
2807         case T_INT:
2808           // Convert (bt) to (T_LONG,bt).
2809           new_in_sig_bt[argcnt  ] = T_LONG;
2810           new_in_sig_bt[argcnt+1] = bt;
2811           assert(reg.first()->is_valid() && !reg.second()->is_valid(), "");
2812           new_in_regs[argcnt  ].set2(reg.first());
2813           new_in_regs[argcnt+1].set_bad();
2814           argcnt++;
2815           break;
2816         default:
2817           // No conversion needed.
2818           new_in_sig_bt[argcnt] = bt;
2819           new_in_regs[argcnt]   = reg;
2820           break;
2821       }
2822     }
2823     assert(argcnt == i2l_argcnt, "must match");
2824 
2825     in_regs = new_in_regs;
2826     in_sig_bt = new_in_sig_bt;
2827     in_args_count = i2l_argcnt;
2828   } else {
2829     assert(0, "This should not be needed on this platform");
2830   }
2831 }
2832 
2833 JRT_LEAF(oopDesc*, SharedRuntime::pin_object(JavaThread* thread, oopDesc* obj))
2834   assert(Universe::heap()->supports_object_pinning(), "Why we here?");
2835   assert(obj != NULL, "Should not be null");
2836   oop o(obj);
2837   o = Universe::heap()->pin_object(thread, o);
2838   assert(o != NULL, "Should not be null");
2839   return o;
2840 JRT_END
2841 
2842 JRT_LEAF(void, SharedRuntime::unpin_object(JavaThread* thread, oopDesc* obj))
2843   assert(Universe::heap()->supports_object_pinning(), "Why we here?");
2844   assert(obj != NULL, "Should not be null");
2845   oop o(obj);
2846   Universe::heap()->unpin_object(thread, o);
2847 JRT_END
2848 
2849 // -------------------------------------------------------------------------
2850 // Java-Java calling convention
2851 // (what you use when Java calls Java)
2852 
2853 //------------------------------name_for_receiver----------------------------------
2854 // For a given signature, return the VMReg for parameter 0.
2855 VMReg SharedRuntime::name_for_receiver() {
2856   VMRegPair regs;
2857   BasicType sig_bt = T_OBJECT;
2858   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2859   // Return argument 0 register.  In the LP64 build pointers
2860   // take 2 registers, but the VM wants only the 'main' name.
2861   return regs.first();
2862 }
2863 
2864 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2865   // This method is returning a data structure allocating as a
2866   // ResourceObject, so do not put any ResourceMarks in here.
2867   char *s = sig->as_C_string();
2868   int len = (int)strlen(s);
2869   s++; len--;                   // Skip opening paren
2870 
2871   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2872   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2873   int cnt = 0;
2874   if (has_receiver) {
2875     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2876   }
2877 
2878   while( *s != ')' ) {          // Find closing right paren
2879     switch( *s++ ) {            // Switch on signature character
2880     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2881     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2882     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2883     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2884     case 'I': sig_bt[cnt++] = T_INT;     break;
2885     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2886     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2887     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2888     case 'V': sig_bt[cnt++] = T_VOID;    break;
2889     case 'L':                   // Oop
2890       while( *s++ != ';'  ) ;   // Skip signature
2891       sig_bt[cnt++] = T_OBJECT;
2892       break;
2893     case '[': {                 // Array
2894       do {                      // Skip optional size
2895         while( *s >= '0' && *s <= '9' ) s++;
2896       } while( *s++ == '[' );   // Nested arrays?
2897       // Skip element type
2898       if( s[-1] == 'L' )
2899         while( *s++ != ';'  ) ; // Skip signature
2900       sig_bt[cnt++] = T_ARRAY;
2901       break;
2902     }
2903     default : ShouldNotReachHere();
2904     }
2905   }
2906 
2907   if (has_appendix) {
2908     sig_bt[cnt++] = T_OBJECT;
2909   }
2910 
2911   assert( cnt < 256, "grow table size" );
2912 
2913   int comp_args_on_stack;
2914   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2915 
2916   // the calling convention doesn't count out_preserve_stack_slots so
2917   // we must add that in to get "true" stack offsets.
2918 
2919   if (comp_args_on_stack) {
2920     for (int i = 0; i < cnt; i++) {
2921       VMReg reg1 = regs[i].first();
2922       if( reg1->is_stack()) {
2923         // Yuck
2924         reg1 = reg1->bias(out_preserve_stack_slots());
2925       }
2926       VMReg reg2 = regs[i].second();
2927       if( reg2->is_stack()) {
2928         // Yuck
2929         reg2 = reg2->bias(out_preserve_stack_slots());
2930       }
2931       regs[i].set_pair(reg2, reg1);
2932     }
2933   }
2934 
2935   // results
2936   *arg_size = cnt;
2937   return regs;
2938 }
2939 
2940 // OSR Migration Code
2941 //
2942 // This code is used convert interpreter frames into compiled frames.  It is
2943 // called from very start of a compiled OSR nmethod.  A temp array is
2944 // allocated to hold the interesting bits of the interpreter frame.  All
2945 // active locks are inflated to allow them to move.  The displaced headers and
2946 // active interpeter locals are copied into the temp buffer.  Then we return
2947 // back to the compiled code.  The compiled code then pops the current
2948 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2949 // copies the interpreter locals and displaced headers where it wants.
2950 // Finally it calls back to free the temp buffer.
2951 //
2952 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2953 
2954 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2955 
2956   //
2957   // This code is dependent on the memory layout of the interpreter local
2958   // array and the monitors. On all of our platforms the layout is identical
2959   // so this code is shared. If some platform lays the their arrays out
2960   // differently then this code could move to platform specific code or
2961   // the code here could be modified to copy items one at a time using
2962   // frame accessor methods and be platform independent.
2963 
2964   frame fr = thread->last_frame();
2965   assert( fr.is_interpreted_frame(), "" );
2966   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2967 
2968   // Figure out how many monitors are active.
2969   int active_monitor_count = 0;
2970   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2971        kptr < fr.interpreter_frame_monitor_begin();
2972        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2973     if( kptr->obj() != NULL ) active_monitor_count++;
2974   }
2975 
2976   // QQQ we could place number of active monitors in the array so that compiled code
2977   // could double check it.
2978 
2979   Method* moop = fr.interpreter_frame_method();
2980   int max_locals = moop->max_locals();
2981   // Allocate temp buffer, 1 word per local & 2 per active monitor
2982   int buf_size_words = max_locals + active_monitor_count*2;
2983   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2984 
2985   // Copy the locals.  Order is preserved so that loading of longs works.
2986   // Since there's no GC I can copy the oops blindly.
2987   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2988   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2989                        (HeapWord*)&buf[0],
2990                        max_locals);
2991 
2992   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2993   int i = max_locals;
2994   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2995        kptr2 < fr.interpreter_frame_monitor_begin();
2996        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2997     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2998       BasicLock *lock = kptr2->lock();
2999       // Inflate so the displaced header becomes position-independent
3000       if (lock->displaced_header()->is_unlocked())
3001         ObjectSynchronizer::inflate_helper(kptr2->obj());
3002       // Now the displaced header is free to move
3003       buf[i++] = (intptr_t)lock->displaced_header();
3004       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3005     }
3006   }
3007   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
3008 
3009   return buf;
3010 JRT_END
3011 
3012 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3013   FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode);
3014 JRT_END
3015 
3016 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
3017   AdapterHandlerTableIterator iter(_adapters);
3018   while (iter.has_next()) {
3019     AdapterHandlerEntry* a = iter.next();
3020     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
3021   }
3022   return false;
3023 }
3024 
3025 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
3026   AdapterHandlerTableIterator iter(_adapters);
3027   while (iter.has_next()) {
3028     AdapterHandlerEntry* a = iter.next();
3029     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3030       st->print("Adapter for signature: ");
3031       a->print_adapter_on(tty);
3032       return;
3033     }
3034   }
3035   assert(false, "Should have found handler");
3036 }
3037 
3038 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3039   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3040                (intptr_t) this, fingerprint()->as_string(),
3041                get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
3042 
3043 }
3044 
3045 #ifndef PRODUCT
3046 
3047 void AdapterHandlerLibrary::print_statistics() {
3048   _adapters->print_statistics();
3049 }
3050 
3051 #endif /* PRODUCT */