1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #ifndef __STDC_FORMAT_MACROS
  29 #define __STDC_FORMAT_MACROS
  30 #endif
  31 
  32 #ifdef TARGET_COMPILER_gcc
  33 # include "utilities/globalDefinitions_gcc.hpp"
  34 #endif
  35 #ifdef TARGET_COMPILER_visCPP
  36 # include "utilities/globalDefinitions_visCPP.hpp"
  37 #endif
  38 #ifdef TARGET_COMPILER_sparcWorks
  39 # include "utilities/globalDefinitions_sparcWorks.hpp"
  40 #endif
  41 #ifdef TARGET_COMPILER_xlc
  42 # include "utilities/globalDefinitions_xlc.hpp"
  43 #endif
  44 
  45 // Defaults for macros that might be defined per compiler.
  46 #ifndef NOINLINE
  47 #define NOINLINE
  48 #endif
  49 #ifndef ALWAYSINLINE
  50 #define ALWAYSINLINE inline
  51 #endif
  52 
  53 #ifndef PRAGMA_DIAG_PUSH
  54 #define PRAGMA_DIAG_PUSH
  55 #endif
  56 #ifndef PRAGMA_DIAG_POP
  57 #define PRAGMA_DIAG_POP
  58 #endif
  59 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED
  60 #define PRAGMA_FORMAT_NONLITERAL_IGNORED
  61 #endif
  62 #ifndef PRAGMA_FORMAT_IGNORED
  63 #define PRAGMA_FORMAT_IGNORED
  64 #endif
  65 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
  66 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
  67 #endif
  68 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
  69 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
  70 #endif
  71 #ifndef PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  72 #define PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  73 #endif
  74 #ifndef ATTRIBUTE_PRINTF
  75 #define ATTRIBUTE_PRINTF(fmt, vargs)
  76 #endif
  77 
  78 
  79 #include "utilities/macros.hpp"
  80 
  81 // This file holds all globally used constants & types, class (forward)
  82 // declarations and a few frequently used utility functions.
  83 
  84 //----------------------------------------------------------------------------------------------------
  85 // Constants
  86 
  87 const int LogBytesPerShort   = 1;
  88 const int LogBytesPerInt     = 2;
  89 #ifdef _LP64
  90 const int LogBytesPerWord    = 3;
  91 #else
  92 const int LogBytesPerWord    = 2;
  93 #endif
  94 const int LogBytesPerLong    = 3;
  95 
  96 const int BytesPerShort      = 1 << LogBytesPerShort;
  97 const int BytesPerInt        = 1 << LogBytesPerInt;
  98 const int BytesPerWord       = 1 << LogBytesPerWord;
  99 const int BytesPerLong       = 1 << LogBytesPerLong;
 100 
 101 const int LogBitsPerByte     = 3;
 102 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
 103 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
 104 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
 105 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
 106 
 107 const int BitsPerByte        = 1 << LogBitsPerByte;
 108 const int BitsPerShort       = 1 << LogBitsPerShort;
 109 const int BitsPerInt         = 1 << LogBitsPerInt;
 110 const int BitsPerWord        = 1 << LogBitsPerWord;
 111 const int BitsPerLong        = 1 << LogBitsPerLong;
 112 
 113 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 114 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 115 
 116 const int WordsPerLong       = 2;       // Number of stack entries for longs
 117 
 118 const int oopSize            = sizeof(char*); // Full-width oop
 119 extern int heapOopSize;                       // Oop within a java object
 120 const int wordSize           = sizeof(char*);
 121 const int longSize           = sizeof(jlong);
 122 const int jintSize           = sizeof(jint);
 123 const int size_tSize         = sizeof(size_t);
 124 
 125 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 126 
 127 extern int LogBytesPerHeapOop;                // Oop within a java object
 128 extern int LogBitsPerHeapOop;
 129 extern int BytesPerHeapOop;
 130 extern int BitsPerHeapOop;
 131 
 132 // Oop encoding heap max
 133 extern uint64_t OopEncodingHeapMax;
 134 
 135 const int BitsPerJavaInteger = 32;
 136 const int BitsPerJavaLong    = 64;
 137 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 138 
 139 // Size of a char[] needed to represent a jint as a string in decimal.
 140 const int jintAsStringSize = 12;
 141 
 142 // In fact this should be
 143 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
 144 // see os::set_memory_serialize_page()
 145 #ifdef _LP64
 146 const int SerializePageShiftCount = 4;
 147 #else
 148 #if INCLUDE_JFR && INCLUDE_ALL_GCS
 149 // JavaThread already has quite a few Shenandoah fields. Adding many JFR fields
 150 // trips sizeof(JavaThread) > 1024. Need to adjust it here.
 151 const int SerializePageShiftCount = 4;
 152 #else
 153 const int SerializePageShiftCount = 3;
 154 #endif
 155 #endif
 156 
 157 // An opaque struct of heap-word width, so that HeapWord* can be a generic
 158 // pointer into the heap.  We require that object sizes be measured in
 159 // units of heap words, so that that
 160 //   HeapWord* hw;
 161 //   hw += oop(hw)->foo();
 162 // works, where foo is a method (like size or scavenge) that returns the
 163 // object size.
 164 class HeapWord {
 165   friend class VMStructs;
 166  private:
 167   char* i;
 168 #ifndef PRODUCT
 169  public:
 170   char* value() { return i; }
 171 #endif
 172 };
 173 
 174 // Analogous opaque struct for metadata allocated from
 175 // metaspaces.
 176 class MetaWord {
 177   friend class VMStructs;
 178  private:
 179   char* i;
 180 };
 181 
 182 // HeapWordSize must be 2^LogHeapWordSize.
 183 const int HeapWordSize        = sizeof(HeapWord);
 184 #ifdef _LP64
 185 const int LogHeapWordSize     = 3;
 186 #else
 187 const int LogHeapWordSize     = 2;
 188 #endif
 189 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 190 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 191 
 192 // The larger HeapWordSize for 64bit requires larger heaps
 193 // for the same application running in 64bit.  See bug 4967770.
 194 // The minimum alignment to a heap word size is done.  Other
 195 // parts of the memory system may required additional alignment
 196 // and are responsible for those alignments.
 197 #ifdef _LP64
 198 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
 199 #else
 200 #define ScaleForWordSize(x) (x)
 201 #endif
 202 
 203 // The minimum number of native machine words necessary to contain "byte_size"
 204 // bytes.
 205 inline size_t heap_word_size(size_t byte_size) {
 206   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 207 }
 208 
 209 
 210 const size_t K                  = 1024;
 211 const size_t M                  = K*K;
 212 const size_t G                  = M*K;
 213 const size_t HWperKB            = K / sizeof(HeapWord);
 214 
 215 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 216 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 217 
 218 // Constants for converting from a base unit to milli-base units.  For
 219 // example from seconds to milliseconds and microseconds
 220 
 221 const int MILLIUNITS    = 1000;         // milli units per base unit
 222 const int MICROUNITS    = 1000000;      // micro units per base unit
 223 const int NANOUNITS     = 1000000000;   // nano units per base unit
 224 
 225 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 226 const jint  NANOSECS_PER_MILLISEC = 1000000;
 227 
 228 // Proper units routines try to maintain at least three significant digits.
 229 // In worst case, it would print five significant digits with lower prefix.
 230 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow,
 231 // and therefore we need to be careful.
 232 
 233 inline const char* proper_unit_for_byte_size(size_t s) {
 234 #ifdef _LP64
 235   if (s >= 100*G) {
 236     return "G";
 237   }
 238 #endif
 239   if (s >= 100*M) {
 240     return "M";
 241   } else if (s >= 100*K) {
 242     return "K";
 243   } else {
 244     return "B";
 245   }
 246 }
 247 
 248 template <class T>
 249 inline T byte_size_in_proper_unit(T s) {
 250 #ifdef _LP64
 251   if (s >= 100*G) {
 252     return (T)(s/G);
 253   }
 254 #endif
 255   if (s >= 100*M) {
 256     return (T)(s/M);
 257   } else if (s >= 100*K) {
 258     return (T)(s/K);
 259   } else {
 260     return s;
 261   }
 262 }
 263 
 264 //----------------------------------------------------------------------------------------------------
 265 // VM type definitions
 266 
 267 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 268 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 269 
 270 typedef intptr_t  intx;
 271 typedef uintptr_t uintx;
 272 
 273 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 274 const intx  max_intx  = (uintx)min_intx - 1;
 275 const uintx max_uintx = (uintx)-1;
 276 
 277 // Table of values:
 278 //      sizeof intx         4               8
 279 // min_intx             0x80000000      0x8000000000000000
 280 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 281 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 282 
 283 typedef unsigned int uint;   NEEDS_CLEANUP
 284 
 285 
 286 //----------------------------------------------------------------------------------------------------
 287 // Java type definitions
 288 
 289 // All kinds of 'plain' byte addresses
 290 typedef   signed char s_char;
 291 typedef unsigned char u_char;
 292 typedef u_char*       address;
 293 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 294                                     // except for some implementations of a C++
 295                                     // linkage pointer to function. Should never
 296                                     // need one of those to be placed in this
 297                                     // type anyway.
 298 
 299 //  Utility functions to "portably" (?) bit twiddle pointers
 300 //  Where portable means keep ANSI C++ compilers quiet
 301 
 302 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 303 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 304 
 305 //  Utility functions to "portably" make cast to/from function pointers.
 306 
 307 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 308 inline address_word  castable_address(address x)              { return address_word(x) ; }
 309 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 310 
 311 // Pointer subtraction.
 312 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 313 // the range we might need to find differences from one end of the heap
 314 // to the other.
 315 // A typical use might be:
 316 //     if (pointer_delta(end(), top()) >= size) {
 317 //       // enough room for an object of size
 318 //       ...
 319 // and then additions like
 320 //       ... top() + size ...
 321 // are safe because we know that top() is at least size below end().
 322 inline size_t pointer_delta(const void* left,
 323                             const void* right,
 324                             size_t element_size) {
 325   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 326 }
 327 // A version specialized for HeapWord*'s.
 328 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 329   return pointer_delta(left, right, sizeof(HeapWord));
 330 }
 331 // A version specialized for MetaWord*'s.
 332 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 333   return pointer_delta(left, right, sizeof(MetaWord));
 334 }
 335 
 336 //
 337 // ANSI C++ does not allow casting from one pointer type to a function pointer
 338 // directly without at best a warning. This macro accomplishes it silently
 339 // In every case that is present at this point the value be cast is a pointer
 340 // to a C linkage function. In somecase the type used for the cast reflects
 341 // that linkage and a picky compiler would not complain. In other cases because
 342 // there is no convenient place to place a typedef with extern C linkage (i.e
 343 // a platform dependent header file) it doesn't. At this point no compiler seems
 344 // picky enough to catch these instances (which are few). It is possible that
 345 // using templates could fix these for all cases. This use of templates is likely
 346 // so far from the middle of the road that it is likely to be problematic in
 347 // many C++ compilers.
 348 //
 349 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
 350 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 351 
 352 // Unsigned byte types for os and stream.hpp
 353 
 354 // Unsigned one, two, four and eigth byte quantities used for describing
 355 // the .class file format. See JVM book chapter 4.
 356 
 357 typedef jubyte  u1;
 358 typedef jushort u2;
 359 typedef juint   u4;
 360 typedef julong  u8;
 361 
 362 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 363 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 364 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 365 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 366 
 367 typedef jbyte  s1;
 368 typedef jshort s2;
 369 typedef jint   s4;
 370 typedef jlong  s8;
 371 
 372 //----------------------------------------------------------------------------------------------------
 373 // JVM spec restrictions
 374 
 375 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 376 
 377 // Default ProtectionDomainCacheSize values
 378 
 379 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
 380 
 381 //----------------------------------------------------------------------------------------------------
 382 // Default and minimum StringTableSize values
 383 
 384 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
 385 const int minimumStringTableSize = 1009;
 386 
 387 const int defaultSymbolTableSize = 20011;
 388 const int minimumSymbolTableSize = 1009;
 389 
 390 
 391 //----------------------------------------------------------------------------------------------------
 392 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 393 //
 394 // Determines whether on-the-fly class replacement and frame popping are enabled.
 395 
 396 #define HOTSWAP
 397 
 398 //----------------------------------------------------------------------------------------------------
 399 // Object alignment, in units of HeapWords.
 400 //
 401 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 402 // reference fields can be naturally aligned.
 403 
 404 extern int MinObjAlignment;
 405 extern int MinObjAlignmentInBytes;
 406 extern int MinObjAlignmentInBytesMask;
 407 
 408 extern int LogMinObjAlignment;
 409 extern int LogMinObjAlignmentInBytes;
 410 
 411 const int LogKlassAlignmentInBytes = 3;
 412 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 413 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 414 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 415 
 416 // Klass encoding metaspace max size
 417 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 418 
 419 // Machine dependent stuff
 420 
 421 #if defined(X86) && defined(COMPILER2) && !defined(JAVASE_EMBEDDED)
 422 // Include Restricted Transactional Memory lock eliding optimization
 423 #define INCLUDE_RTM_OPT 1
 424 #define RTM_OPT_ONLY(code) code
 425 #else
 426 #define INCLUDE_RTM_OPT 0
 427 #define RTM_OPT_ONLY(code)
 428 #endif
 429 // States of Restricted Transactional Memory usage.
 430 enum RTMState {
 431   NoRTM      = 0x2, // Don't use RTM
 432   UseRTM     = 0x1, // Use RTM
 433   ProfileRTM = 0x0  // Use RTM with abort ratio calculation
 434 };
 435 
 436 // The maximum size of the code cache.  Can be overridden by targets.
 437 #define CODE_CACHE_SIZE_LIMIT (2*G)
 438 // Allow targets to reduce the default size of the code cache.
 439 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
 440 
 441 #ifdef TARGET_ARCH_x86
 442 # include "globalDefinitions_x86.hpp"
 443 #endif
 444 #ifdef TARGET_ARCH_aarch64
 445 # include "globalDefinitions_aarch64.hpp"
 446 #endif
 447 #ifdef TARGET_ARCH_sparc
 448 # include "globalDefinitions_sparc.hpp"
 449 #endif
 450 #ifdef TARGET_ARCH_zero
 451 # include "globalDefinitions_zero.hpp"
 452 #endif
 453 #ifdef TARGET_ARCH_arm
 454 # include "globalDefinitions_arm.hpp"
 455 #endif
 456 #ifdef TARGET_ARCH_ppc
 457 # include "globalDefinitions_ppc.hpp"
 458 #endif
 459 
 460 /*
 461  * If a platform does not support native stack walking
 462  * the platform specific globalDefinitions (above)
 463  * can set PLATFORM_NATIVE_STACK_WALKING_SUPPORTED to 0
 464  */
 465 #ifndef PLATFORM_NATIVE_STACK_WALKING_SUPPORTED
 466 #define PLATFORM_NATIVE_STACK_WALKING_SUPPORTED 1
 467 #endif
 468 
 469 // To assure the IRIW property on processors that are not multiple copy
 470 // atomic, sync instructions must be issued between volatile reads to
 471 // assure their ordering, instead of after volatile stores.
 472 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 473 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 474 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
 475 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
 476 #else
 477 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 478 #endif
 479 
 480 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
 481 // Note: this value must be a power of 2
 482 
 483 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
 484 
 485 // Signed variants of alignment helpers.  There are two versions of each, a macro
 486 // for use in places like enum definitions that require compile-time constant
 487 // expressions and a function for all other places so as to get type checking.
 488 
 489 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
 490 
 491 inline bool is_size_aligned(size_t size, size_t alignment) {
 492   return align_size_up_(size, alignment) == size;
 493 }
 494 
 495 inline bool is_ptr_aligned(void* ptr, size_t alignment) {
 496   return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
 497 }
 498 
 499 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
 500   return align_size_up_(size, alignment);
 501 }
 502 
 503 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
 504 
 505 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
 506   return align_size_down_(size, alignment);
 507 }
 508 
 509 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
 510 
 511 inline void* align_ptr_up(void* ptr, size_t alignment) {
 512   return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
 513 }
 514 
 515 inline void* align_ptr_down(void* ptr, size_t alignment) {
 516   return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
 517 }
 518 
 519 // Align objects by rounding up their size, in HeapWord units.
 520 
 521 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
 522 
 523 inline intptr_t align_object_size(intptr_t size) {
 524   return align_size_up(size, MinObjAlignment);
 525 }
 526 
 527 inline bool is_object_aligned(intptr_t addr) {
 528   return addr == align_object_size(addr);
 529 }
 530 
 531 // Pad out certain offsets to jlong alignment, in HeapWord units.
 532 
 533 inline intptr_t align_object_offset(intptr_t offset) {
 534   return align_size_up(offset, HeapWordsPerLong);
 535 }
 536 
 537 inline void* align_pointer_up(const void* addr, size_t size) {
 538   return (void*) align_size_up_((uintptr_t)addr, size);
 539 }
 540 
 541 // Align down with a lower bound. If the aligning results in 0, return 'alignment'.
 542 
 543 inline size_t align_size_down_bounded(size_t size, size_t alignment) {
 544   size_t aligned_size = align_size_down_(size, alignment);
 545   return aligned_size > 0 ? aligned_size : alignment;
 546 }
 547 
 548 // Clamp an address to be within a specific page
 549 // 1. If addr is on the page it is returned as is
 550 // 2. If addr is above the page_address the start of the *next* page will be returned
 551 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
 552 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
 553   if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
 554     // address is in the specified page, just return it as is
 555     return addr;
 556   } else if (addr > page_address) {
 557     // address is above specified page, return start of next page
 558     return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
 559   } else {
 560     // address is below specified page, return start of page
 561     return (address)align_size_down(intptr_t(page_address), page_size);
 562   }
 563 }
 564 
 565 
 566 // The expected size in bytes of a cache line, used to pad data structures.
 567 #define DEFAULT_CACHE_LINE_SIZE 64
 568 
 569 
 570 //----------------------------------------------------------------------------------------------------
 571 // Utility macros for compilers
 572 // used to silence compiler warnings
 573 
 574 #define Unused_Variable(var) var
 575 
 576 
 577 //----------------------------------------------------------------------------------------------------
 578 // Miscellaneous
 579 
 580 // 6302670 Eliminate Hotspot __fabsf dependency
 581 // All fabs() callers should call this function instead, which will implicitly
 582 // convert the operand to double, avoiding a dependency on __fabsf which
 583 // doesn't exist in early versions of Solaris 8.
 584 inline double fabsd(double value) {
 585   return fabs(value);
 586 }
 587 
 588 //----------------------------------------------------------------------------------------------------
 589 // Special casts
 590 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 591 typedef union {
 592   jfloat f;
 593   jint i;
 594 } FloatIntConv;
 595 
 596 typedef union {
 597   jdouble d;
 598   jlong l;
 599   julong ul;
 600 } DoubleLongConv;
 601 
 602 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 603 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 604 
 605 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 606 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 607 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 608 
 609 inline jint low (jlong value)                    { return jint(value); }
 610 inline jint high(jlong value)                    { return jint(value >> 32); }
 611 
 612 // the fancy casts are a hopefully portable way
 613 // to do unsigned 32 to 64 bit type conversion
 614 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 615                                                    *value |= (jlong)(julong)(juint)low; }
 616 
 617 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 618                                                    *value |= (jlong)high       << 32; }
 619 
 620 inline jlong jlong_from(jint h, jint l) {
 621   jlong result = 0; // initialization to avoid warning
 622   set_high(&result, h);
 623   set_low(&result,  l);
 624   return result;
 625 }
 626 
 627 union jlong_accessor {
 628   jint  words[2];
 629   jlong long_value;
 630 };
 631 
 632 void basic_types_init(); // cannot define here; uses assert
 633 
 634 
 635 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 636 enum BasicType {
 637   T_BOOLEAN     =  4,
 638   T_CHAR        =  5,
 639   T_FLOAT       =  6,
 640   T_DOUBLE      =  7,
 641   T_BYTE        =  8,
 642   T_SHORT       =  9,
 643   T_INT         = 10,
 644   T_LONG        = 11,
 645   T_OBJECT      = 12,
 646   T_ARRAY       = 13,
 647   T_VOID        = 14,
 648   T_ADDRESS     = 15,
 649   T_NARROWOOP   = 16,
 650   T_METADATA    = 17,
 651   T_NARROWKLASS = 18,
 652   T_CONFLICT    = 19, // for stack value type with conflicting contents
 653   T_ILLEGAL     = 99
 654 };
 655 
 656 inline bool is_java_primitive(BasicType t) {
 657   return T_BOOLEAN <= t && t <= T_LONG;
 658 }
 659 
 660 inline bool is_subword_type(BasicType t) {
 661   // these guys are processed exactly like T_INT in calling sequences:
 662   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 663 }
 664 
 665 inline bool is_signed_subword_type(BasicType t) {
 666   return (t == T_BYTE || t == T_SHORT);
 667 }
 668 
 669 inline bool is_reference_type(BasicType t) {
 670   return (t == T_OBJECT || t == T_ARRAY);
 671 }
 672 
 673 // Convert a char from a classfile signature to a BasicType
 674 inline BasicType char2type(char c) {
 675   switch( c ) {
 676   case 'B': return T_BYTE;
 677   case 'C': return T_CHAR;
 678   case 'D': return T_DOUBLE;
 679   case 'F': return T_FLOAT;
 680   case 'I': return T_INT;
 681   case 'J': return T_LONG;
 682   case 'S': return T_SHORT;
 683   case 'Z': return T_BOOLEAN;
 684   case 'V': return T_VOID;
 685   case 'L': return T_OBJECT;
 686   case '[': return T_ARRAY;
 687   }
 688   return T_ILLEGAL;
 689 }
 690 
 691 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 692 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 693 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 694 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 695 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 696 extern BasicType name2type(const char* name);
 697 
 698 // Auxilary math routines
 699 // least common multiple
 700 extern size_t lcm(size_t a, size_t b);
 701 
 702 
 703 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 704 enum BasicTypeSize {
 705   T_BOOLEAN_size     = 1,
 706   T_CHAR_size        = 1,
 707   T_FLOAT_size       = 1,
 708   T_DOUBLE_size      = 2,
 709   T_BYTE_size        = 1,
 710   T_SHORT_size       = 1,
 711   T_INT_size         = 1,
 712   T_LONG_size        = 2,
 713   T_OBJECT_size      = 1,
 714   T_ARRAY_size       = 1,
 715   T_NARROWOOP_size   = 1,
 716   T_NARROWKLASS_size = 1,
 717   T_VOID_size        = 0
 718 };
 719 
 720 
 721 // maps a BasicType to its instance field storage type:
 722 // all sub-word integral types are widened to T_INT
 723 extern BasicType type2field[T_CONFLICT+1];
 724 extern BasicType type2wfield[T_CONFLICT+1];
 725 
 726 
 727 // size in bytes
 728 enum ArrayElementSize {
 729   T_BOOLEAN_aelem_bytes     = 1,
 730   T_CHAR_aelem_bytes        = 2,
 731   T_FLOAT_aelem_bytes       = 4,
 732   T_DOUBLE_aelem_bytes      = 8,
 733   T_BYTE_aelem_bytes        = 1,
 734   T_SHORT_aelem_bytes       = 2,
 735   T_INT_aelem_bytes         = 4,
 736   T_LONG_aelem_bytes        = 8,
 737 #ifdef _LP64
 738   T_OBJECT_aelem_bytes      = 8,
 739   T_ARRAY_aelem_bytes       = 8,
 740 #else
 741   T_OBJECT_aelem_bytes      = 4,
 742   T_ARRAY_aelem_bytes       = 4,
 743 #endif
 744   T_NARROWOOP_aelem_bytes   = 4,
 745   T_NARROWKLASS_aelem_bytes = 4,
 746   T_VOID_aelem_bytes        = 0
 747 };
 748 
 749 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 750 #ifdef ASSERT
 751 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 752 #else
 753 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 754 #endif
 755 
 756 
 757 // JavaValue serves as a container for arbitrary Java values.
 758 
 759 class JavaValue {
 760 
 761  public:
 762   typedef union JavaCallValue {
 763     jfloat   f;
 764     jdouble  d;
 765     jint     i;
 766     jlong    l;
 767     jobject  h;
 768   } JavaCallValue;
 769 
 770  private:
 771   BasicType _type;
 772   JavaCallValue _value;
 773 
 774  public:
 775   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 776 
 777   JavaValue(jfloat value) {
 778     _type    = T_FLOAT;
 779     _value.f = value;
 780   }
 781 
 782   JavaValue(jdouble value) {
 783     _type    = T_DOUBLE;
 784     _value.d = value;
 785   }
 786 
 787  jfloat get_jfloat() const { return _value.f; }
 788  jdouble get_jdouble() const { return _value.d; }
 789  jint get_jint() const { return _value.i; }
 790  jlong get_jlong() const { return _value.l; }
 791  jobject get_jobject() const { return _value.h; }
 792  JavaCallValue* get_value_addr() { return &_value; }
 793  BasicType get_type() const { return _type; }
 794 
 795  void set_jfloat(jfloat f) { _value.f = f;}
 796  void set_jdouble(jdouble d) { _value.d = d;}
 797  void set_jint(jint i) { _value.i = i;}
 798  void set_jlong(jlong l) { _value.l = l;}
 799  void set_jobject(jobject h) { _value.h = h;}
 800  void set_type(BasicType t) { _type = t; }
 801 
 802  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 803  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 804  jchar get_jchar() const { return (jchar) (_value.i);}
 805  jshort get_jshort() const { return (jshort) (_value.i);}
 806 
 807 };
 808 
 809 
 810 #define STACK_BIAS      0
 811 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 812 // in order to extend the reach of the stack pointer.
 813 #if defined(SPARC) && defined(_LP64)
 814 #undef STACK_BIAS
 815 #define STACK_BIAS      0x7ff
 816 #endif
 817 
 818 
 819 // TosState describes the top-of-stack state before and after the execution of
 820 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 821 // registers. The TosState corresponds to the 'machine represention' of this cached
 822 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 823 // as well as a 5th state in case the top-of-stack value is actually on the top
 824 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 825 // state when it comes to machine representation but is used separately for (oop)
 826 // type specific operations (e.g. verification code).
 827 
 828 enum TosState {         // describes the tos cache contents
 829   btos = 0,             // byte, bool tos cached
 830   ztos = 1,             // byte, bool tos cached
 831   ctos = 2,             // char tos cached
 832   stos = 3,             // short tos cached
 833   itos = 4,             // int tos cached
 834   ltos = 5,             // long tos cached
 835   ftos = 6,             // float tos cached
 836   dtos = 7,             // double tos cached
 837   atos = 8,             // object cached
 838   vtos = 9,             // tos not cached
 839   number_of_states,
 840   ilgl                  // illegal state: should not occur
 841 };
 842 
 843 
 844 inline TosState as_TosState(BasicType type) {
 845   switch (type) {
 846     case T_BYTE   : return btos;
 847     case T_BOOLEAN: return ztos;
 848     case T_CHAR   : return ctos;
 849     case T_SHORT  : return stos;
 850     case T_INT    : return itos;
 851     case T_LONG   : return ltos;
 852     case T_FLOAT  : return ftos;
 853     case T_DOUBLE : return dtos;
 854     case T_VOID   : return vtos;
 855     case T_ARRAY  : // fall through
 856     case T_OBJECT : return atos;
 857   }
 858   return ilgl;
 859 }
 860 
 861 inline BasicType as_BasicType(TosState state) {
 862   switch (state) {
 863     case btos : return T_BYTE;
 864     case ztos : return T_BOOLEAN;
 865     case ctos : return T_CHAR;
 866     case stos : return T_SHORT;
 867     case itos : return T_INT;
 868     case ltos : return T_LONG;
 869     case ftos : return T_FLOAT;
 870     case dtos : return T_DOUBLE;
 871     case atos : return T_OBJECT;
 872     case vtos : return T_VOID;
 873   }
 874   return T_ILLEGAL;
 875 }
 876 
 877 
 878 // Helper function to convert BasicType info into TosState
 879 // Note: Cannot define here as it uses global constant at the time being.
 880 TosState as_TosState(BasicType type);
 881 
 882 
 883 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 884 // information is needed by the safepoint code.
 885 //
 886 // There are 4 essential states:
 887 //
 888 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 889 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 890 //  _thread_in_vm       : Executing in the vm
 891 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 892 //
 893 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 894 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 895 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 896 //
 897 // Given a state, the xxx_trans state can always be found by adding 1.
 898 //
 899 enum JavaThreadState {
 900   _thread_uninitialized     =  0, // should never happen (missing initialization)
 901   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 902   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 903   _thread_in_native         =  4, // running in native code
 904   _thread_in_native_trans   =  5, // corresponding transition state
 905   _thread_in_vm             =  6, // running in VM
 906   _thread_in_vm_trans       =  7, // corresponding transition state
 907   _thread_in_Java           =  8, // running in Java or in stub code
 908   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 909   _thread_blocked           = 10, // blocked in vm
 910   _thread_blocked_trans     = 11, // corresponding transition state
 911   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 912 };
 913 
 914 
 915 // Handy constants for deciding which compiler mode to use.
 916 enum MethodCompilation {
 917   InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
 918   InvalidOSREntryBci = -2
 919 };
 920 
 921 // Enumeration to distinguish tiers of compilation
 922 enum CompLevel {
 923   CompLevel_any               = -1,
 924   CompLevel_all               = -1,
 925   CompLevel_none              = 0,         // Interpreter
 926   CompLevel_simple            = 1,         // C1
 927   CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
 928   CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
 929   CompLevel_full_optimization = 4,         // C2 or Shark
 930 
 931 #if defined(COMPILER2) || defined(SHARK)
 932   CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered
 933 #elif defined(COMPILER1)
 934   CompLevel_highest_tier      = CompLevel_simple,             // pure C1
 935 #else
 936   CompLevel_highest_tier      = CompLevel_none,
 937 #endif
 938 
 939 #if defined(TIERED)
 940   CompLevel_initial_compile   = CompLevel_full_profile        // tiered
 941 #elif defined(COMPILER1)
 942   CompLevel_initial_compile   = CompLevel_simple              // pure C1
 943 #elif defined(COMPILER2) || defined(SHARK)
 944   CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
 945 #else
 946   CompLevel_initial_compile   = CompLevel_none
 947 #endif
 948 };
 949 
 950 inline bool is_c1_compile(int comp_level) {
 951   return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
 952 }
 953 
 954 inline bool is_c2_compile(int comp_level) {
 955   return comp_level == CompLevel_full_optimization;
 956 }
 957 
 958 inline bool is_highest_tier_compile(int comp_level) {
 959   return comp_level == CompLevel_highest_tier;
 960 }
 961 
 962 inline bool is_compile(int comp_level) {
 963   return is_c1_compile(comp_level) || is_c2_compile(comp_level);
 964 }
 965 
 966 //----------------------------------------------------------------------------------------------------
 967 // 'Forward' declarations of frequently used classes
 968 // (in order to reduce interface dependencies & reduce
 969 // number of unnecessary compilations after changes)
 970 
 971 class symbolTable;
 972 class ClassFileStream;
 973 
 974 class Event;
 975 
 976 class Thread;
 977 class  VMThread;
 978 class  JavaThread;
 979 class Threads;
 980 
 981 class VM_Operation;
 982 class VMOperationQueue;
 983 
 984 class CodeBlob;
 985 class  nmethod;
 986 class  OSRAdapter;
 987 class  I2CAdapter;
 988 class  C2IAdapter;
 989 class CompiledIC;
 990 class relocInfo;
 991 class ScopeDesc;
 992 class PcDesc;
 993 
 994 class Recompiler;
 995 class Recompilee;
 996 class RecompilationPolicy;
 997 class RFrame;
 998 class  CompiledRFrame;
 999 class  InterpretedRFrame;
1000 
1001 class frame;
1002 
1003 class vframe;
1004 class   javaVFrame;
1005 class     interpretedVFrame;
1006 class     compiledVFrame;
1007 class     deoptimizedVFrame;
1008 class   externalVFrame;
1009 class     entryVFrame;
1010 
1011 class RegisterMap;
1012 
1013 class Mutex;
1014 class Monitor;
1015 class BasicLock;
1016 class BasicObjectLock;
1017 
1018 class PeriodicTask;
1019 
1020 class JavaCallWrapper;
1021 
1022 class   oopDesc;
1023 class   metaDataOopDesc;
1024 
1025 class NativeCall;
1026 
1027 class zone;
1028 
1029 class StubQueue;
1030 
1031 class outputStream;
1032 
1033 class ResourceArea;
1034 
1035 class DebugInformationRecorder;
1036 class ScopeValue;
1037 class CompressedStream;
1038 class   DebugInfoReadStream;
1039 class   DebugInfoWriteStream;
1040 class LocationValue;
1041 class ConstantValue;
1042 class IllegalValue;
1043 
1044 class PrivilegedElement;
1045 class MonitorArray;
1046 
1047 class MonitorInfo;
1048 
1049 class OffsetClosure;
1050 class OopMapCache;
1051 class InterpreterOopMap;
1052 class OopMapCacheEntry;
1053 class OSThread;
1054 
1055 typedef int (*OSThreadStartFunc)(void*);
1056 
1057 class Space;
1058 
1059 class JavaValue;
1060 class methodHandle;
1061 class JavaCallArguments;
1062 
1063 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
1064 
1065 extern void basic_fatal(const char* msg);
1066 
1067 
1068 //----------------------------------------------------------------------------------------------------
1069 // Special constants for debugging
1070 
1071 const jint     badInt           = -3;                       // generic "bad int" value
1072 const intptr_t badAddressVal    = -2;                       // generic "bad address" value
1073 const intptr_t badOopVal        = -1;                       // generic "bad oop" value
1074 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
1075 const int      badStackSegVal   = 0xCA;                     // value used to zap stack segments
1076 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
1077 const int      badResourceValue = 0xAB;                     // value used to zap resource area
1078 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
1079 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
1080 const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
1081 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
1082 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
1083 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
1084 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
1085 
1086 
1087 // (These must be implemented as #defines because C++ compilers are
1088 // not obligated to inline non-integral constants!)
1089 #define       badAddress        ((address)::badAddressVal)
1090 #define       badOop            (cast_to_oop(::badOopVal))
1091 #define       badHeapWord       (::badHeapWordVal)
1092 #define       badJNIHandle      (cast_to_oop(::badJNIHandleVal))
1093 
1094 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
1095 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
1096 
1097 //----------------------------------------------------------------------------------------------------
1098 // Utility functions for bitfield manipulations
1099 
1100 const intptr_t AllBits    = ~0; // all bits set in a word
1101 const intptr_t NoBits     =  0; // no bits set in a word
1102 const jlong    NoLongBits =  0; // no bits set in a long
1103 const intptr_t OneBit     =  1; // only right_most bit set in a word
1104 
1105 // get a word with the n.th or the right-most or left-most n bits set
1106 // (note: #define used only so that they can be used in enum constant definitions)
1107 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
1108 #define right_n_bits(n)   (nth_bit(n) - 1)
1109 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
1110 
1111 // bit-operations using a mask m
1112 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
1113 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
1114 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
1115 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
1116 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1117 
1118 // bit-operations using the n.th bit
1119 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1120 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1121 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1122 
1123 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1124 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1125   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1126 }
1127 
1128 
1129 //----------------------------------------------------------------------------------------------------
1130 // Utility functions for integers
1131 
1132 // Avoid use of global min/max macros which may cause unwanted double
1133 // evaluation of arguments.
1134 #ifdef max
1135 #undef max
1136 #endif
1137 
1138 #ifdef min
1139 #undef min
1140 #endif
1141 
1142 #define max(a,b) Do_not_use_max_use_MAX2_instead
1143 #define min(a,b) Do_not_use_min_use_MIN2_instead
1144 
1145 // It is necessary to use templates here. Having normal overloaded
1146 // functions does not work because it is necessary to provide both 32-
1147 // and 64-bit overloaded functions, which does not work, and having
1148 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1149 // will be even more error-prone than macros.
1150 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1151 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1152 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1153 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1154 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1155 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1156 
1157 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1158 
1159 // true if x is a power of 2, false otherwise
1160 inline bool is_power_of_2(intptr_t x) {
1161   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1162 }
1163 
1164 // long version of is_power_of_2
1165 inline bool is_power_of_2_long(jlong x) {
1166   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1167 }
1168 
1169 //* largest i such that 2^i <= x
1170 //  A negative value of 'x' will return '31'
1171 inline int log2_intptr(uintptr_t x) {
1172   int i = -1;
1173   uintptr_t p =  1;
1174   while (p != 0 && p <= x) {
1175     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1176     i++; p *= 2;
1177   }
1178   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1179   // (if p = 0 then overflow occurred and i = 31)
1180   return i;
1181 }
1182 
1183 //* largest i such that 2^i <= x
1184 inline int log2_long(julong x) {
1185   int i = -1;
1186   julong p =  1;
1187   while (p != 0 && p <= x) {
1188     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1189     i++; p *= 2;
1190   }
1191   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1192   // (if p = 0 then overflow occurred and i = 63)
1193   return i;
1194 }
1195 
1196 inline int log2_intptr(intptr_t x) {
1197   return log2_intptr((uintptr_t)x);
1198 }
1199 
1200 inline int log2_int(int x) {
1201   return log2_intptr((uintptr_t)x);
1202 }
1203 
1204 inline int log2_jint(jint x) {
1205   return log2_intptr((uintptr_t)x);
1206 }
1207 
1208 inline int log2_uint(uint x) {
1209   return log2_intptr((uintptr_t)x);
1210 }
1211 
1212 //  A negative value of 'x' will return '63'
1213 inline int log2_jlong(jlong x) {
1214   return log2_long((julong)x);
1215 }
1216 
1217 //* the argument must be exactly a power of 2
1218 inline int exact_log2(intptr_t x) {
1219   #ifdef ASSERT
1220     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
1221   #endif
1222   return log2_intptr(x);
1223 }
1224 
1225 //* the argument must be exactly a power of 2
1226 inline int exact_log2_long(jlong x) {
1227   #ifdef ASSERT
1228     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
1229   #endif
1230   return log2_long(x);
1231 }
1232 
1233 
1234 // returns integer round-up to the nearest multiple of s (s must be a power of two)
1235 inline intptr_t round_to(intptr_t x, uintx s) {
1236   #ifdef ASSERT
1237     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1238   #endif
1239   const uintx m = s - 1;
1240   return mask_bits(x + m, ~m);
1241 }
1242 
1243 // returns integer round-down to the nearest multiple of s (s must be a power of two)
1244 inline intptr_t round_down(intptr_t x, uintx s) {
1245   #ifdef ASSERT
1246     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1247   #endif
1248   const uintx m = s - 1;
1249   return mask_bits(x, ~m);
1250 }
1251 
1252 
1253 inline bool is_odd (intx x) { return x & 1;      }
1254 inline bool is_even(intx x) { return !is_odd(x); }
1255 
1256 // abs methods which cannot overflow and so are well-defined across
1257 // the entire domain of integer types.
1258 static inline unsigned int uabs(unsigned int n) {
1259   union {
1260     unsigned int result;
1261     int value;
1262   };
1263   result = n;
1264   if (value < 0) result = 0-result;
1265   return result;
1266 }
1267 static inline julong uabs(julong n) {
1268   union {
1269     julong result;
1270     jlong value;
1271   };
1272   result = n;
1273   if (value < 0) result = 0-result;
1274   return result;
1275 }
1276 static inline julong uabs(jlong n) { return uabs((julong)n); }
1277 static inline unsigned int uabs(int n) { return uabs((unsigned int)n); }
1278 
1279 // "to" should be greater than "from."
1280 inline intx byte_size(void* from, void* to) {
1281   return (address)to - (address)from;
1282 }
1283 
1284 //----------------------------------------------------------------------------------------------------
1285 // Avoid non-portable casts with these routines (DEPRECATED)
1286 
1287 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1288 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1289 
1290 // Given sequence of four bytes, build into a 32-bit word
1291 // following the conventions used in class files.
1292 // On the 386, this could be realized with a simple address cast.
1293 //
1294 
1295 // This routine takes eight bytes:
1296 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1297   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1298        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1299        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1300        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1301        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1302        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1303        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1304        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1305 }
1306 
1307 // This routine takes four bytes:
1308 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1309   return  (( u4(c1) << 24 )  &  0xff000000)
1310        |  (( u4(c2) << 16 )  &  0x00ff0000)
1311        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1312        |  (( u4(c4) <<  0 )  &  0x000000ff);
1313 }
1314 
1315 // And this one works if the four bytes are contiguous in memory:
1316 inline u4 build_u4_from( u1* p ) {
1317   return  build_u4_from( p[0], p[1], p[2], p[3] );
1318 }
1319 
1320 // Ditto for two-byte ints:
1321 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1322   return  u2((( u2(c1) <<  8 )  &  0xff00)
1323           |  (( u2(c2) <<  0 )  &  0x00ff));
1324 }
1325 
1326 // And this one works if the two bytes are contiguous in memory:
1327 inline u2 build_u2_from( u1* p ) {
1328   return  build_u2_from( p[0], p[1] );
1329 }
1330 
1331 // Ditto for floats:
1332 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1333   u4 u = build_u4_from( c1, c2, c3, c4 );
1334   return  *(jfloat*)&u;
1335 }
1336 
1337 inline jfloat build_float_from( u1* p ) {
1338   u4 u = build_u4_from( p );
1339   return  *(jfloat*)&u;
1340 }
1341 
1342 
1343 // now (64-bit) longs
1344 
1345 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1346   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1347        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1348        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1349        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1350        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1351        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1352        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1353        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1354 }
1355 
1356 inline jlong build_long_from( u1* p ) {
1357   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1358 }
1359 
1360 
1361 // Doubles, too!
1362 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1363   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1364   return  *(jdouble*)&u;
1365 }
1366 
1367 inline jdouble build_double_from( u1* p ) {
1368   jlong u = build_long_from( p );
1369   return  *(jdouble*)&u;
1370 }
1371 
1372 
1373 // Portable routines to go the other way:
1374 
1375 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1376   c1 = u1(x >> 8);
1377   c2 = u1(x);
1378 }
1379 
1380 inline void explode_short_to( u2 x, u1* p ) {
1381   explode_short_to( x, p[0], p[1]);
1382 }
1383 
1384 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1385   c1 = u1(x >> 24);
1386   c2 = u1(x >> 16);
1387   c3 = u1(x >>  8);
1388   c4 = u1(x);
1389 }
1390 
1391 inline void explode_int_to( u4 x, u1* p ) {
1392   explode_int_to( x, p[0], p[1], p[2], p[3]);
1393 }
1394 
1395 
1396 // Pack and extract shorts to/from ints:
1397 
1398 inline int extract_low_short_from_int(jint x) {
1399   return x & 0xffff;
1400 }
1401 
1402 inline int extract_high_short_from_int(jint x) {
1403   return (x >> 16) & 0xffff;
1404 }
1405 
1406 inline int build_int_from_shorts( jushort low, jushort high ) {
1407   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1408 }
1409 
1410 // Convert pointer to intptr_t, for use in printing pointers.
1411 inline intptr_t p2i(const void * p) {
1412   return (intptr_t) p;
1413 }
1414 
1415 // Printf-style formatters for fixed- and variable-width types as pointers and
1416 // integers.  These are derived from the definitions in inttypes.h.  If the platform
1417 // doesn't provide appropriate definitions, they should be provided in
1418 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1419 
1420 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
1421 
1422 // Format 32-bit quantities.
1423 #define INT32_FORMAT           "%" PRId32
1424 #define UINT32_FORMAT          "%" PRIu32
1425 #define INT32_FORMAT_W(width)  "%" #width PRId32
1426 #define UINT32_FORMAT_W(width) "%" #width PRIu32
1427 
1428 #define PTR32_FORMAT           "0x%08" PRIx32
1429 
1430 // Format 64-bit quantities.
1431 #define INT64_FORMAT           "%" PRId64
1432 #define UINT64_FORMAT          "%" PRIu64
1433 #define UINT64_FORMAT_X        "%" PRIx64
1434 #define INT64_FORMAT_W(width)  "%" #width PRId64
1435 #define UINT64_FORMAT_W(width) "%" #width PRIu64
1436 #define UINT64_FORMAT_X_W(width) "%" #width PRIx64
1437 
1438 #define PTR64_FORMAT           "0x%016" PRIx64
1439 
1440 // Format jlong, if necessary
1441 #ifndef JLONG_FORMAT
1442 #define JLONG_FORMAT           INT64_FORMAT
1443 #endif
1444 #ifndef JULONG_FORMAT
1445 #define JULONG_FORMAT          UINT64_FORMAT
1446 #endif
1447 
1448 // Format pointers which change size between 32- and 64-bit.
1449 #ifdef  _LP64
1450 #define INTPTR_FORMAT "0x%016" PRIxPTR
1451 #define PTR_FORMAT    "0x%016" PRIxPTR
1452 #else   // !_LP64
1453 #define INTPTR_FORMAT "0x%08"  PRIxPTR
1454 #define PTR_FORMAT    "0x%08"  PRIxPTR
1455 #endif  // _LP64
1456 
1457 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
1458 
1459 #define SSIZE_FORMAT          "%"   PRIdPTR
1460 #define SIZE_FORMAT           "%"   PRIuPTR
1461 #define SIZE_FORMAT_HEX       "0x%" PRIxPTR
1462 #define SSIZE_FORMAT_W(width) "%"   #width PRIdPTR
1463 #define SIZE_FORMAT_W(width)  "%"   #width PRIuPTR
1464 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
1465 
1466 #define INTX_FORMAT           "%" PRIdPTR
1467 #define UINTX_FORMAT          "%" PRIuPTR
1468 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
1469 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
1470 
1471 
1472 // Enable zap-a-lot if in debug version.
1473 
1474 # ifdef ASSERT
1475 # ifdef COMPILER2
1476 #   define ENABLE_ZAP_DEAD_LOCALS
1477 #endif /* COMPILER2 */
1478 # endif /* ASSERT */
1479 
1480 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1481 
1482 //----------------------------------------------------------------------------------------------------
1483 // Sum and product which can never overflow: they wrap, just like the
1484 // Java operations.  Note that we don't intend these to be used for
1485 // general-purpose arithmetic: their purpose is to emulate Java
1486 // operations.
1487 
1488 // The goal of this code to avoid undefined or implementation-defined
1489 // behaviour.  The use of an lvalue to reference cast is explicitly
1490 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1491 // 15 in C++03]
1492 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1493 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1494   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1495   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1496   return reinterpret_cast<TYPE&>(ures);                 \
1497 }
1498 
1499 JAVA_INTEGER_OP(+, java_add, jint, juint)
1500 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1501 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1502 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1503 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1504 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1505 
1506 #undef JAVA_INTEGER_OP
1507 
1508 // Dereference vptr
1509 // All C++ compilers that we know of have the vtbl pointer in the first
1510 // word.  If there are exceptions, this function needs to be made compiler
1511 // specific.
1512 static inline void* dereference_vptr(const void* addr) {
1513   return *(void**)addr;
1514 }
1515 
1516 #ifndef PRODUCT
1517 
1518 // For unit testing only
1519 class GlobalDefinitions {
1520 public:
1521   static void test_globals();
1522   static void test_proper_unit();
1523 };
1524 
1525 #endif // PRODUCT
1526 
1527 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP