1 //
    2 // Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
    3 // Copyright (c) 2014, 2024, Red Hat, Inc. All rights reserved.
    4 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
    5 //
    6 // This code is free software; you can redistribute it and/or modify it
    7 // under the terms of the GNU General Public License version 2 only, as
    8 // published by the Free Software Foundation.
    9 //
   10 // This code is distributed in the hope that it will be useful, but WITHOUT
   11 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   12 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
   13 // version 2 for more details (a copy is included in the LICENSE file that
   14 // accompanied this code).
   15 //
   16 // You should have received a copy of the GNU General Public License version
   17 // 2 along with this work; if not, write to the Free Software Foundation,
   18 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
   19 //
   20 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
   21 // or visit www.oracle.com if you need additional information or have any
   22 // questions.
   23 //
   24 //
   25 
   26 // AArch64 Architecture Description File
   27 
   28 //----------REGISTER DEFINITION BLOCK------------------------------------------
   29 // This information is used by the matcher and the register allocator to
   30 // describe individual registers and classes of registers within the target
   31 // architecture.
   32 
   33 register %{
   34 //----------Architecture Description Register Definitions----------------------
   35 // General Registers
   36 // "reg_def"  name ( register save type, C convention save type,
   37 //                   ideal register type, encoding );
   38 // Register Save Types:
   39 //
   40 // NS  = No-Save:       The register allocator assumes that these registers
   41 //                      can be used without saving upon entry to the method, &
   42 //                      that they do not need to be saved at call sites.
   43 //
   44 // SOC = Save-On-Call:  The register allocator assumes that these registers
   45 //                      can be used without saving upon entry to the method,
   46 //                      but that they must be saved at call sites.
   47 //
   48 // SOE = Save-On-Entry: The register allocator assumes that these registers
   49 //                      must be saved before using them upon entry to the
   50 //                      method, but they do not need to be saved at call
   51 //                      sites.
   52 //
   53 // AS  = Always-Save:   The register allocator assumes that these registers
   54 //                      must be saved before using them upon entry to the
   55 //                      method, & that they must be saved at call sites.
   56 //
   57 // Ideal Register Type is used to determine how to save & restore a
   58 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
   59 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
   60 //
   61 // The encoding number is the actual bit-pattern placed into the opcodes.
   62 
   63 // We must define the 64 bit int registers in two 32 bit halves, the
   64 // real lower register and a virtual upper half register. upper halves
   65 // are used by the register allocator but are not actually supplied as
   66 // operands to memory ops.
   67 //
   68 // follow the C1 compiler in making registers
   69 //
   70 //   r0-r7,r10-r26 volatile (caller save)
   71 //   r27-r32 system (no save, no allocate)
   72 //   r8-r9 non-allocatable (so we can use them as scratch regs)
   73 //
   74 // as regards Java usage. we don't use any callee save registers
   75 // because this makes it difficult to de-optimise a frame (see comment
   76 // in x86 implementation of Deoptimization::unwind_callee_save_values)
   77 //
   78 
   79 // General Registers
   80 
   81 reg_def R0      ( SOC, SOC, Op_RegI,  0, r0->as_VMReg()         );
   82 reg_def R0_H    ( SOC, SOC, Op_RegI,  0, r0->as_VMReg()->next() );
   83 reg_def R1      ( SOC, SOC, Op_RegI,  1, r1->as_VMReg()         );
   84 reg_def R1_H    ( SOC, SOC, Op_RegI,  1, r1->as_VMReg()->next() );
   85 reg_def R2      ( SOC, SOC, Op_RegI,  2, r2->as_VMReg()         );
   86 reg_def R2_H    ( SOC, SOC, Op_RegI,  2, r2->as_VMReg()->next() );
   87 reg_def R3      ( SOC, SOC, Op_RegI,  3, r3->as_VMReg()         );
   88 reg_def R3_H    ( SOC, SOC, Op_RegI,  3, r3->as_VMReg()->next() );
   89 reg_def R4      ( SOC, SOC, Op_RegI,  4, r4->as_VMReg()         );
   90 reg_def R4_H    ( SOC, SOC, Op_RegI,  4, r4->as_VMReg()->next() );
   91 reg_def R5      ( SOC, SOC, Op_RegI,  5, r5->as_VMReg()         );
   92 reg_def R5_H    ( SOC, SOC, Op_RegI,  5, r5->as_VMReg()->next() );
   93 reg_def R6      ( SOC, SOC, Op_RegI,  6, r6->as_VMReg()         );
   94 reg_def R6_H    ( SOC, SOC, Op_RegI,  6, r6->as_VMReg()->next() );
   95 reg_def R7      ( SOC, SOC, Op_RegI,  7, r7->as_VMReg()         );
   96 reg_def R7_H    ( SOC, SOC, Op_RegI,  7, r7->as_VMReg()->next() );
   97 reg_def R8      ( NS,  SOC, Op_RegI,  8, r8->as_VMReg()         ); // rscratch1, non-allocatable
   98 reg_def R8_H    ( NS,  SOC, Op_RegI,  8, r8->as_VMReg()->next() );
   99 reg_def R9      ( NS,  SOC, Op_RegI,  9, r9->as_VMReg()         ); // rscratch2, non-allocatable
  100 reg_def R9_H    ( NS,  SOC, Op_RegI,  9, r9->as_VMReg()->next() );
  101 reg_def R10     ( SOC, SOC, Op_RegI, 10, r10->as_VMReg()        );
  102 reg_def R10_H   ( SOC, SOC, Op_RegI, 10, r10->as_VMReg()->next());
  103 reg_def R11     ( SOC, SOC, Op_RegI, 11, r11->as_VMReg()        );
  104 reg_def R11_H   ( SOC, SOC, Op_RegI, 11, r11->as_VMReg()->next());
  105 reg_def R12     ( SOC, SOC, Op_RegI, 12, r12->as_VMReg()        );
  106 reg_def R12_H   ( SOC, SOC, Op_RegI, 12, r12->as_VMReg()->next());
  107 reg_def R13     ( SOC, SOC, Op_RegI, 13, r13->as_VMReg()        );
  108 reg_def R13_H   ( SOC, SOC, Op_RegI, 13, r13->as_VMReg()->next());
  109 reg_def R14     ( SOC, SOC, Op_RegI, 14, r14->as_VMReg()        );
  110 reg_def R14_H   ( SOC, SOC, Op_RegI, 14, r14->as_VMReg()->next());
  111 reg_def R15     ( SOC, SOC, Op_RegI, 15, r15->as_VMReg()        );
  112 reg_def R15_H   ( SOC, SOC, Op_RegI, 15, r15->as_VMReg()->next());
  113 reg_def R16     ( SOC, SOC, Op_RegI, 16, r16->as_VMReg()        );
  114 reg_def R16_H   ( SOC, SOC, Op_RegI, 16, r16->as_VMReg()->next());
  115 reg_def R17     ( SOC, SOC, Op_RegI, 17, r17->as_VMReg()        );
  116 reg_def R17_H   ( SOC, SOC, Op_RegI, 17, r17->as_VMReg()->next());
  117 reg_def R18     ( SOC, SOC, Op_RegI, 18, r18_tls->as_VMReg()        );
  118 reg_def R18_H   ( SOC, SOC, Op_RegI, 18, r18_tls->as_VMReg()->next());
  119 reg_def R19     ( SOC, SOE, Op_RegI, 19, r19->as_VMReg()        );
  120 reg_def R19_H   ( SOC, SOE, Op_RegI, 19, r19->as_VMReg()->next());
  121 reg_def R20     ( SOC, SOE, Op_RegI, 20, r20->as_VMReg()        ); // caller esp
  122 reg_def R20_H   ( SOC, SOE, Op_RegI, 20, r20->as_VMReg()->next());
  123 reg_def R21     ( SOC, SOE, Op_RegI, 21, r21->as_VMReg()        );
  124 reg_def R21_H   ( SOC, SOE, Op_RegI, 21, r21->as_VMReg()->next());
  125 reg_def R22     ( SOC, SOE, Op_RegI, 22, r22->as_VMReg()        );
  126 reg_def R22_H   ( SOC, SOE, Op_RegI, 22, r22->as_VMReg()->next());
  127 reg_def R23     ( SOC, SOE, Op_RegI, 23, r23->as_VMReg()        );
  128 reg_def R23_H   ( SOC, SOE, Op_RegI, 23, r23->as_VMReg()->next());
  129 reg_def R24     ( SOC, SOE, Op_RegI, 24, r24->as_VMReg()        );
  130 reg_def R24_H   ( SOC, SOE, Op_RegI, 24, r24->as_VMReg()->next());
  131 reg_def R25     ( SOC, SOE, Op_RegI, 25, r25->as_VMReg()        );
  132 reg_def R25_H   ( SOC, SOE, Op_RegI, 25, r25->as_VMReg()->next());
  133 reg_def R26     ( SOC, SOE, Op_RegI, 26, r26->as_VMReg()        );
  134 reg_def R26_H   ( SOC, SOE, Op_RegI, 26, r26->as_VMReg()->next());
  135 reg_def R27     ( SOC, SOE, Op_RegI, 27, r27->as_VMReg()        ); // heapbase
  136 reg_def R27_H   ( SOC, SOE, Op_RegI, 27, r27->as_VMReg()->next());
  137 reg_def R28     (  NS, SOE, Op_RegI, 28, r28->as_VMReg()        ); // thread
  138 reg_def R28_H   (  NS, SOE, Op_RegI, 28, r28->as_VMReg()->next());
  139 reg_def R29     (  NS,  NS, Op_RegI, 29, r29->as_VMReg()        ); // fp
  140 reg_def R29_H   (  NS,  NS, Op_RegI, 29, r29->as_VMReg()->next());
  141 reg_def R30     (  NS,  NS, Op_RegI, 30, r30->as_VMReg()        ); // lr
  142 reg_def R30_H   (  NS,  NS, Op_RegI, 30, r30->as_VMReg()->next());
  143 reg_def R31     (  NS,  NS, Op_RegI, 31, r31_sp->as_VMReg()     ); // sp
  144 reg_def R31_H   (  NS,  NS, Op_RegI, 31, r31_sp->as_VMReg()->next());
  145 
  146 // ----------------------------
  147 // Float/Double/Vector Registers
  148 // ----------------------------
  149 
  150 // Double Registers
  151 
  152 // The rules of ADL require that double registers be defined in pairs.
  153 // Each pair must be two 32-bit values, but not necessarily a pair of
  154 // single float registers. In each pair, ADLC-assigned register numbers
  155 // must be adjacent, with the lower number even. Finally, when the
  156 // CPU stores such a register pair to memory, the word associated with
  157 // the lower ADLC-assigned number must be stored to the lower address.
  158 
  159 // AArch64 has 32 floating-point registers. Each can store a vector of
  160 // single or double precision floating-point values up to 8 * 32
  161 // floats, 4 * 64 bit floats or 2 * 128 bit floats.  We currently only
  162 // use the first float or double element of the vector.
  163 
  164 // for Java use float registers v0-v15 are always save on call whereas
  165 // the platform ABI treats v8-v15 as callee save). float registers
  166 // v16-v31 are SOC as per the platform spec
  167 
  168 // For SVE vector registers, we simply extend vector register size to 8
  169 // 'logical' slots. This is nominally 256 bits but it actually covers
  170 // all possible 'physical' SVE vector register lengths from 128 ~ 2048
  171 // bits. The 'physical' SVE vector register length is detected during
  172 // startup, so the register allocator is able to identify the correct
  173 // number of bytes needed for an SVE spill/unspill.
  174 // Note that a vector register with 4 slots denotes a 128-bit NEON
  175 // register allowing it to be distinguished from the corresponding SVE
  176 // vector register when the SVE vector length is 128 bits.
  177 
  178   reg_def V0   ( SOC, SOC, Op_RegF, 0, v0->as_VMReg()          );
  179   reg_def V0_H ( SOC, SOC, Op_RegF, 0, v0->as_VMReg()->next()  );
  180   reg_def V0_J ( SOC, SOC, Op_RegF, 0, v0->as_VMReg()->next(2) );
  181   reg_def V0_K ( SOC, SOC, Op_RegF, 0, v0->as_VMReg()->next(3) );
  182 
  183   reg_def V1   ( SOC, SOC, Op_RegF, 1, v1->as_VMReg()          );
  184   reg_def V1_H ( SOC, SOC, Op_RegF, 1, v1->as_VMReg()->next()  );
  185   reg_def V1_J ( SOC, SOC, Op_RegF, 1, v1->as_VMReg()->next(2) );
  186   reg_def V1_K ( SOC, SOC, Op_RegF, 1, v1->as_VMReg()->next(3) );
  187 
  188   reg_def V2   ( SOC, SOC, Op_RegF, 2, v2->as_VMReg()          );
  189   reg_def V2_H ( SOC, SOC, Op_RegF, 2, v2->as_VMReg()->next()  );
  190   reg_def V2_J ( SOC, SOC, Op_RegF, 2, v2->as_VMReg()->next(2) );
  191   reg_def V2_K ( SOC, SOC, Op_RegF, 2, v2->as_VMReg()->next(3) );
  192 
  193   reg_def V3   ( SOC, SOC, Op_RegF, 3, v3->as_VMReg()          );
  194   reg_def V3_H ( SOC, SOC, Op_RegF, 3, v3->as_VMReg()->next()  );
  195   reg_def V3_J ( SOC, SOC, Op_RegF, 3, v3->as_VMReg()->next(2) );
  196   reg_def V3_K ( SOC, SOC, Op_RegF, 3, v3->as_VMReg()->next(3) );
  197 
  198   reg_def V4   ( SOC, SOC, Op_RegF, 4, v4->as_VMReg()          );
  199   reg_def V4_H ( SOC, SOC, Op_RegF, 4, v4->as_VMReg()->next()  );
  200   reg_def V4_J ( SOC, SOC, Op_RegF, 4, v4->as_VMReg()->next(2) );
  201   reg_def V4_K ( SOC, SOC, Op_RegF, 4, v4->as_VMReg()->next(3) );
  202 
  203   reg_def V5   ( SOC, SOC, Op_RegF, 5, v5->as_VMReg()          );
  204   reg_def V5_H ( SOC, SOC, Op_RegF, 5, v5->as_VMReg()->next()  );
  205   reg_def V5_J ( SOC, SOC, Op_RegF, 5, v5->as_VMReg()->next(2) );
  206   reg_def V5_K ( SOC, SOC, Op_RegF, 5, v5->as_VMReg()->next(3) );
  207 
  208   reg_def V6   ( SOC, SOC, Op_RegF, 6, v6->as_VMReg()          );
  209   reg_def V6_H ( SOC, SOC, Op_RegF, 6, v6->as_VMReg()->next()  );
  210   reg_def V6_J ( SOC, SOC, Op_RegF, 6, v6->as_VMReg()->next(2) );
  211   reg_def V6_K ( SOC, SOC, Op_RegF, 6, v6->as_VMReg()->next(3) );
  212 
  213   reg_def V7   ( SOC, SOC, Op_RegF, 7, v7->as_VMReg()          );
  214   reg_def V7_H ( SOC, SOC, Op_RegF, 7, v7->as_VMReg()->next()  );
  215   reg_def V7_J ( SOC, SOC, Op_RegF, 7, v7->as_VMReg()->next(2) );
  216   reg_def V7_K ( SOC, SOC, Op_RegF, 7, v7->as_VMReg()->next(3) );
  217 
  218   reg_def V8   ( SOC, SOE, Op_RegF, 8, v8->as_VMReg()          );
  219   reg_def V8_H ( SOC, SOE, Op_RegF, 8, v8->as_VMReg()->next()  );
  220   reg_def V8_J ( SOC, SOC, Op_RegF, 8, v8->as_VMReg()->next(2) );
  221   reg_def V8_K ( SOC, SOC, Op_RegF, 8, v8->as_VMReg()->next(3) );
  222 
  223   reg_def V9   ( SOC, SOE, Op_RegF, 9, v9->as_VMReg()          );
  224   reg_def V9_H ( SOC, SOE, Op_RegF, 9, v9->as_VMReg()->next()  );
  225   reg_def V9_J ( SOC, SOC, Op_RegF, 9, v9->as_VMReg()->next(2) );
  226   reg_def V9_K ( SOC, SOC, Op_RegF, 9, v9->as_VMReg()->next(3) );
  227 
  228   reg_def V10   ( SOC, SOE, Op_RegF, 10, v10->as_VMReg()          );
  229   reg_def V10_H ( SOC, SOE, Op_RegF, 10, v10->as_VMReg()->next()  );
  230   reg_def V10_J ( SOC, SOC, Op_RegF, 10, v10->as_VMReg()->next(2) );
  231   reg_def V10_K ( SOC, SOC, Op_RegF, 10, v10->as_VMReg()->next(3) );
  232 
  233   reg_def V11   ( SOC, SOE, Op_RegF, 11, v11->as_VMReg()          );
  234   reg_def V11_H ( SOC, SOE, Op_RegF, 11, v11->as_VMReg()->next()  );
  235   reg_def V11_J ( SOC, SOC, Op_RegF, 11, v11->as_VMReg()->next(2) );
  236   reg_def V11_K ( SOC, SOC, Op_RegF, 11, v11->as_VMReg()->next(3) );
  237 
  238   reg_def V12   ( SOC, SOE, Op_RegF, 12, v12->as_VMReg()          );
  239   reg_def V12_H ( SOC, SOE, Op_RegF, 12, v12->as_VMReg()->next()  );
  240   reg_def V12_J ( SOC, SOC, Op_RegF, 12, v12->as_VMReg()->next(2) );
  241   reg_def V12_K ( SOC, SOC, Op_RegF, 12, v12->as_VMReg()->next(3) );
  242 
  243   reg_def V13   ( SOC, SOE, Op_RegF, 13, v13->as_VMReg()          );
  244   reg_def V13_H ( SOC, SOE, Op_RegF, 13, v13->as_VMReg()->next()  );
  245   reg_def V13_J ( SOC, SOC, Op_RegF, 13, v13->as_VMReg()->next(2) );
  246   reg_def V13_K ( SOC, SOC, Op_RegF, 13, v13->as_VMReg()->next(3) );
  247 
  248   reg_def V14   ( SOC, SOE, Op_RegF, 14, v14->as_VMReg()          );
  249   reg_def V14_H ( SOC, SOE, Op_RegF, 14, v14->as_VMReg()->next()  );
  250   reg_def V14_J ( SOC, SOC, Op_RegF, 14, v14->as_VMReg()->next(2) );
  251   reg_def V14_K ( SOC, SOC, Op_RegF, 14, v14->as_VMReg()->next(3) );
  252 
  253   reg_def V15   ( SOC, SOE, Op_RegF, 15, v15->as_VMReg()          );
  254   reg_def V15_H ( SOC, SOE, Op_RegF, 15, v15->as_VMReg()->next()  );
  255   reg_def V15_J ( SOC, SOC, Op_RegF, 15, v15->as_VMReg()->next(2) );
  256   reg_def V15_K ( SOC, SOC, Op_RegF, 15, v15->as_VMReg()->next(3) );
  257 
  258   reg_def V16   ( SOC, SOC, Op_RegF, 16, v16->as_VMReg()          );
  259   reg_def V16_H ( SOC, SOC, Op_RegF, 16, v16->as_VMReg()->next()  );
  260   reg_def V16_J ( SOC, SOC, Op_RegF, 16, v16->as_VMReg()->next(2) );
  261   reg_def V16_K ( SOC, SOC, Op_RegF, 16, v16->as_VMReg()->next(3) );
  262 
  263   reg_def V17   ( SOC, SOC, Op_RegF, 17, v17->as_VMReg()          );
  264   reg_def V17_H ( SOC, SOC, Op_RegF, 17, v17->as_VMReg()->next()  );
  265   reg_def V17_J ( SOC, SOC, Op_RegF, 17, v17->as_VMReg()->next(2) );
  266   reg_def V17_K ( SOC, SOC, Op_RegF, 17, v17->as_VMReg()->next(3) );
  267 
  268   reg_def V18   ( SOC, SOC, Op_RegF, 18, v18->as_VMReg()          );
  269   reg_def V18_H ( SOC, SOC, Op_RegF, 18, v18->as_VMReg()->next()  );
  270   reg_def V18_J ( SOC, SOC, Op_RegF, 18, v18->as_VMReg()->next(2) );
  271   reg_def V18_K ( SOC, SOC, Op_RegF, 18, v18->as_VMReg()->next(3) );
  272 
  273   reg_def V19   ( SOC, SOC, Op_RegF, 19, v19->as_VMReg()          );
  274   reg_def V19_H ( SOC, SOC, Op_RegF, 19, v19->as_VMReg()->next()  );
  275   reg_def V19_J ( SOC, SOC, Op_RegF, 19, v19->as_VMReg()->next(2) );
  276   reg_def V19_K ( SOC, SOC, Op_RegF, 19, v19->as_VMReg()->next(3) );
  277 
  278   reg_def V20   ( SOC, SOC, Op_RegF, 20, v20->as_VMReg()          );
  279   reg_def V20_H ( SOC, SOC, Op_RegF, 20, v20->as_VMReg()->next()  );
  280   reg_def V20_J ( SOC, SOC, Op_RegF, 20, v20->as_VMReg()->next(2) );
  281   reg_def V20_K ( SOC, SOC, Op_RegF, 20, v20->as_VMReg()->next(3) );
  282 
  283   reg_def V21   ( SOC, SOC, Op_RegF, 21, v21->as_VMReg()          );
  284   reg_def V21_H ( SOC, SOC, Op_RegF, 21, v21->as_VMReg()->next()  );
  285   reg_def V21_J ( SOC, SOC, Op_RegF, 21, v21->as_VMReg()->next(2) );
  286   reg_def V21_K ( SOC, SOC, Op_RegF, 21, v21->as_VMReg()->next(3) );
  287 
  288   reg_def V22   ( SOC, SOC, Op_RegF, 22, v22->as_VMReg()          );
  289   reg_def V22_H ( SOC, SOC, Op_RegF, 22, v22->as_VMReg()->next()  );
  290   reg_def V22_J ( SOC, SOC, Op_RegF, 22, v22->as_VMReg()->next(2) );
  291   reg_def V22_K ( SOC, SOC, Op_RegF, 22, v22->as_VMReg()->next(3) );
  292 
  293   reg_def V23   ( SOC, SOC, Op_RegF, 23, v23->as_VMReg()          );
  294   reg_def V23_H ( SOC, SOC, Op_RegF, 23, v23->as_VMReg()->next()  );
  295   reg_def V23_J ( SOC, SOC, Op_RegF, 23, v23->as_VMReg()->next(2) );
  296   reg_def V23_K ( SOC, SOC, Op_RegF, 23, v23->as_VMReg()->next(3) );
  297 
  298   reg_def V24   ( SOC, SOC, Op_RegF, 24, v24->as_VMReg()          );
  299   reg_def V24_H ( SOC, SOC, Op_RegF, 24, v24->as_VMReg()->next()  );
  300   reg_def V24_J ( SOC, SOC, Op_RegF, 24, v24->as_VMReg()->next(2) );
  301   reg_def V24_K ( SOC, SOC, Op_RegF, 24, v24->as_VMReg()->next(3) );
  302 
  303   reg_def V25   ( SOC, SOC, Op_RegF, 25, v25->as_VMReg()          );
  304   reg_def V25_H ( SOC, SOC, Op_RegF, 25, v25->as_VMReg()->next()  );
  305   reg_def V25_J ( SOC, SOC, Op_RegF, 25, v25->as_VMReg()->next(2) );
  306   reg_def V25_K ( SOC, SOC, Op_RegF, 25, v25->as_VMReg()->next(3) );
  307 
  308   reg_def V26   ( SOC, SOC, Op_RegF, 26, v26->as_VMReg()          );
  309   reg_def V26_H ( SOC, SOC, Op_RegF, 26, v26->as_VMReg()->next()  );
  310   reg_def V26_J ( SOC, SOC, Op_RegF, 26, v26->as_VMReg()->next(2) );
  311   reg_def V26_K ( SOC, SOC, Op_RegF, 26, v26->as_VMReg()->next(3) );
  312 
  313   reg_def V27   ( SOC, SOC, Op_RegF, 27, v27->as_VMReg()          );
  314   reg_def V27_H ( SOC, SOC, Op_RegF, 27, v27->as_VMReg()->next()  );
  315   reg_def V27_J ( SOC, SOC, Op_RegF, 27, v27->as_VMReg()->next(2) );
  316   reg_def V27_K ( SOC, SOC, Op_RegF, 27, v27->as_VMReg()->next(3) );
  317 
  318   reg_def V28   ( SOC, SOC, Op_RegF, 28, v28->as_VMReg()          );
  319   reg_def V28_H ( SOC, SOC, Op_RegF, 28, v28->as_VMReg()->next()  );
  320   reg_def V28_J ( SOC, SOC, Op_RegF, 28, v28->as_VMReg()->next(2) );
  321   reg_def V28_K ( SOC, SOC, Op_RegF, 28, v28->as_VMReg()->next(3) );
  322 
  323   reg_def V29   ( SOC, SOC, Op_RegF, 29, v29->as_VMReg()          );
  324   reg_def V29_H ( SOC, SOC, Op_RegF, 29, v29->as_VMReg()->next()  );
  325   reg_def V29_J ( SOC, SOC, Op_RegF, 29, v29->as_VMReg()->next(2) );
  326   reg_def V29_K ( SOC, SOC, Op_RegF, 29, v29->as_VMReg()->next(3) );
  327 
  328   reg_def V30   ( SOC, SOC, Op_RegF, 30, v30->as_VMReg()          );
  329   reg_def V30_H ( SOC, SOC, Op_RegF, 30, v30->as_VMReg()->next()  );
  330   reg_def V30_J ( SOC, SOC, Op_RegF, 30, v30->as_VMReg()->next(2) );
  331   reg_def V30_K ( SOC, SOC, Op_RegF, 30, v30->as_VMReg()->next(3) );
  332 
  333   reg_def V31   ( SOC, SOC, Op_RegF, 31, v31->as_VMReg()          );
  334   reg_def V31_H ( SOC, SOC, Op_RegF, 31, v31->as_VMReg()->next()  );
  335   reg_def V31_J ( SOC, SOC, Op_RegF, 31, v31->as_VMReg()->next(2) );
  336   reg_def V31_K ( SOC, SOC, Op_RegF, 31, v31->as_VMReg()->next(3) );
  337 
  338 // ----------------------------
  339 // SVE Predicate Registers
  340 // ----------------------------
  341   reg_def P0 (SOC, SOC, Op_RegVectMask, 0, p0->as_VMReg());
  342   reg_def P1 (SOC, SOC, Op_RegVectMask, 1, p1->as_VMReg());
  343   reg_def P2 (SOC, SOC, Op_RegVectMask, 2, p2->as_VMReg());
  344   reg_def P3 (SOC, SOC, Op_RegVectMask, 3, p3->as_VMReg());
  345   reg_def P4 (SOC, SOC, Op_RegVectMask, 4, p4->as_VMReg());
  346   reg_def P5 (SOC, SOC, Op_RegVectMask, 5, p5->as_VMReg());
  347   reg_def P6 (SOC, SOC, Op_RegVectMask, 6, p6->as_VMReg());
  348   reg_def P7 (SOC, SOC, Op_RegVectMask, 7, p7->as_VMReg());
  349   reg_def P8 (SOC, SOC, Op_RegVectMask, 8, p8->as_VMReg());
  350   reg_def P9 (SOC, SOC, Op_RegVectMask, 9, p9->as_VMReg());
  351   reg_def P10 (SOC, SOC, Op_RegVectMask, 10, p10->as_VMReg());
  352   reg_def P11 (SOC, SOC, Op_RegVectMask, 11, p11->as_VMReg());
  353   reg_def P12 (SOC, SOC, Op_RegVectMask, 12, p12->as_VMReg());
  354   reg_def P13 (SOC, SOC, Op_RegVectMask, 13, p13->as_VMReg());
  355   reg_def P14 (SOC, SOC, Op_RegVectMask, 14, p14->as_VMReg());
  356   reg_def P15 (SOC, SOC, Op_RegVectMask, 15, p15->as_VMReg());
  357 
  358 // ----------------------------
  359 // Special Registers
  360 // ----------------------------
  361 
  362 // the AArch64 CSPR status flag register is not directly accessible as
  363 // instruction operand. the FPSR status flag register is a system
  364 // register which can be written/read using MSR/MRS but again does not
  365 // appear as an operand (a code identifying the FSPR occurs as an
  366 // immediate value in the instruction).
  367 
  368 reg_def RFLAGS(SOC, SOC, 0, 32, VMRegImpl::Bad());
  369 
  370 // Specify priority of register selection within phases of register
  371 // allocation.  Highest priority is first.  A useful heuristic is to
  372 // give registers a low priority when they are required by machine
  373 // instructions, like EAX and EDX on I486, and choose no-save registers
  374 // before save-on-call, & save-on-call before save-on-entry.  Registers
  375 // which participate in fixed calling sequences should come last.
  376 // Registers which are used as pairs must fall on an even boundary.
  377 
  378 alloc_class chunk0(
  379     // volatiles
  380     R10, R10_H,
  381     R11, R11_H,
  382     R12, R12_H,
  383     R13, R13_H,
  384     R14, R14_H,
  385     R15, R15_H,
  386     R16, R16_H,
  387     R17, R17_H,
  388     R18, R18_H,
  389 
  390     // arg registers
  391     R0, R0_H,
  392     R1, R1_H,
  393     R2, R2_H,
  394     R3, R3_H,
  395     R4, R4_H,
  396     R5, R5_H,
  397     R6, R6_H,
  398     R7, R7_H,
  399 
  400     // non-volatiles
  401     R19, R19_H,
  402     R20, R20_H,
  403     R21, R21_H,
  404     R22, R22_H,
  405     R23, R23_H,
  406     R24, R24_H,
  407     R25, R25_H,
  408     R26, R26_H,
  409 
  410     // non-allocatable registers
  411 
  412     R27, R27_H, // heapbase
  413     R28, R28_H, // thread
  414     R29, R29_H, // fp
  415     R30, R30_H, // lr
  416     R31, R31_H, // sp
  417     R8, R8_H,   // rscratch1
  418     R9, R9_H,   // rscratch2
  419 );
  420 
  421 alloc_class chunk1(
  422 
  423     // no save
  424     V16, V16_H, V16_J, V16_K,
  425     V17, V17_H, V17_J, V17_K,
  426     V18, V18_H, V18_J, V18_K,
  427     V19, V19_H, V19_J, V19_K,
  428     V20, V20_H, V20_J, V20_K,
  429     V21, V21_H, V21_J, V21_K,
  430     V22, V22_H, V22_J, V22_K,
  431     V23, V23_H, V23_J, V23_K,
  432     V24, V24_H, V24_J, V24_K,
  433     V25, V25_H, V25_J, V25_K,
  434     V26, V26_H, V26_J, V26_K,
  435     V27, V27_H, V27_J, V27_K,
  436     V28, V28_H, V28_J, V28_K,
  437     V29, V29_H, V29_J, V29_K,
  438     V30, V30_H, V30_J, V30_K,
  439     V31, V31_H, V31_J, V31_K,
  440 
  441     // arg registers
  442     V0, V0_H, V0_J, V0_K,
  443     V1, V1_H, V1_J, V1_K,
  444     V2, V2_H, V2_J, V2_K,
  445     V3, V3_H, V3_J, V3_K,
  446     V4, V4_H, V4_J, V4_K,
  447     V5, V5_H, V5_J, V5_K,
  448     V6, V6_H, V6_J, V6_K,
  449     V7, V7_H, V7_J, V7_K,
  450 
  451     // non-volatiles
  452     V8, V8_H, V8_J, V8_K,
  453     V9, V9_H, V9_J, V9_K,
  454     V10, V10_H, V10_J, V10_K,
  455     V11, V11_H, V11_J, V11_K,
  456     V12, V12_H, V12_J, V12_K,
  457     V13, V13_H, V13_J, V13_K,
  458     V14, V14_H, V14_J, V14_K,
  459     V15, V15_H, V15_J, V15_K,
  460 );
  461 
  462 alloc_class chunk2 (
  463     // Governing predicates for load/store and arithmetic
  464     P0,
  465     P1,
  466     P2,
  467     P3,
  468     P4,
  469     P5,
  470     P6,
  471 
  472     // Extra predicates
  473     P8,
  474     P9,
  475     P10,
  476     P11,
  477     P12,
  478     P13,
  479     P14,
  480     P15,
  481 
  482     // Preserved for all-true predicate
  483     P7,
  484 );
  485 
  486 alloc_class chunk3(RFLAGS);
  487 
  488 //----------Architecture Description Register Classes--------------------------
  489 // Several register classes are automatically defined based upon information in
  490 // this architecture description.
  491 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
  492 // 2) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
  493 //
  494 
  495 // Class for all 32 bit general purpose registers
  496 reg_class all_reg32(
  497     R0,
  498     R1,
  499     R2,
  500     R3,
  501     R4,
  502     R5,
  503     R6,
  504     R7,
  505     R10,
  506     R11,
  507     R12,
  508     R13,
  509     R14,
  510     R15,
  511     R16,
  512     R17,
  513     R18,
  514     R19,
  515     R20,
  516     R21,
  517     R22,
  518     R23,
  519     R24,
  520     R25,
  521     R26,
  522     R27,
  523     R28,
  524     R29,
  525     R30,
  526     R31
  527 );
  528 
  529 
  530 // Class for all 32 bit integer registers (excluding SP which
  531 // will never be used as an integer register)
  532 reg_class any_reg32 %{
  533   return _ANY_REG32_mask;
  534 %}
  535 
  536 // Singleton class for R0 int register
  537 reg_class int_r0_reg(R0);
  538 
  539 // Singleton class for R2 int register
  540 reg_class int_r2_reg(R2);
  541 
  542 // Singleton class for R3 int register
  543 reg_class int_r3_reg(R3);
  544 
  545 // Singleton class for R4 int register
  546 reg_class int_r4_reg(R4);
  547 
  548 // Singleton class for R31 int register
  549 reg_class int_r31_reg(R31);
  550 
  551 // Class for all 64 bit general purpose registers
  552 reg_class all_reg(
  553     R0, R0_H,
  554     R1, R1_H,
  555     R2, R2_H,
  556     R3, R3_H,
  557     R4, R4_H,
  558     R5, R5_H,
  559     R6, R6_H,
  560     R7, R7_H,
  561     R10, R10_H,
  562     R11, R11_H,
  563     R12, R12_H,
  564     R13, R13_H,
  565     R14, R14_H,
  566     R15, R15_H,
  567     R16, R16_H,
  568     R17, R17_H,
  569     R18, R18_H,
  570     R19, R19_H,
  571     R20, R20_H,
  572     R21, R21_H,
  573     R22, R22_H,
  574     R23, R23_H,
  575     R24, R24_H,
  576     R25, R25_H,
  577     R26, R26_H,
  578     R27, R27_H,
  579     R28, R28_H,
  580     R29, R29_H,
  581     R30, R30_H,
  582     R31, R31_H
  583 );
  584 
  585 // Class for all long integer registers (including SP)
  586 reg_class any_reg %{
  587   return _ANY_REG_mask;
  588 %}
  589 
  590 // Class for non-allocatable 32 bit registers
  591 reg_class non_allocatable_reg32(
  592 #ifdef R18_RESERVED
  593     // See comment in register_aarch64.hpp
  594     R18,                        // tls on Windows
  595 #endif
  596     R28,                        // thread
  597     R30,                        // lr
  598     R31                         // sp
  599 );
  600 
  601 // Class for non-allocatable 64 bit registers
  602 reg_class non_allocatable_reg(
  603 #ifdef R18_RESERVED
  604     // See comment in register_aarch64.hpp
  605     R18, R18_H,                 // tls on Windows, platform register on macOS
  606 #endif
  607     R28, R28_H,                 // thread
  608     R30, R30_H,                 // lr
  609     R31, R31_H                  // sp
  610 );
  611 
  612 // Class for all non-special integer registers
  613 reg_class no_special_reg32 %{
  614   return _NO_SPECIAL_REG32_mask;
  615 %}
  616 
  617 // Class for all non-special long integer registers
  618 reg_class no_special_reg %{
  619   return _NO_SPECIAL_REG_mask;
  620 %}
  621 
  622 // Class for 64 bit register r0
  623 reg_class r0_reg(
  624     R0, R0_H
  625 );
  626 
  627 // Class for 64 bit register r1
  628 reg_class r1_reg(
  629     R1, R1_H
  630 );
  631 
  632 // Class for 64 bit register r2
  633 reg_class r2_reg(
  634     R2, R2_H
  635 );
  636 
  637 // Class for 64 bit register r3
  638 reg_class r3_reg(
  639     R3, R3_H
  640 );
  641 
  642 // Class for 64 bit register r4
  643 reg_class r4_reg(
  644     R4, R4_H
  645 );
  646 
  647 // Class for 64 bit register r5
  648 reg_class r5_reg(
  649     R5, R5_H
  650 );
  651 
  652 // Class for 64 bit register r10
  653 reg_class r10_reg(
  654     R10, R10_H
  655 );
  656 
  657 // Class for 64 bit register r11
  658 reg_class r11_reg(
  659     R11, R11_H
  660 );
  661 
  662 // Class for method register
  663 reg_class method_reg(
  664     R12, R12_H
  665 );
  666 
  667 // Class for thread register
  668 reg_class thread_reg(
  669     R28, R28_H
  670 );
  671 
  672 // Class for frame pointer register
  673 reg_class fp_reg(
  674     R29, R29_H
  675 );
  676 
  677 // Class for link register
  678 reg_class lr_reg(
  679     R30, R30_H
  680 );
  681 
  682 // Class for long sp register
  683 reg_class sp_reg(
  684   R31, R31_H
  685 );
  686 
  687 // Class for all pointer registers
  688 reg_class ptr_reg %{
  689   return _PTR_REG_mask;
  690 %}
  691 
  692 // Class for all non_special pointer registers
  693 reg_class no_special_ptr_reg %{
  694   return _NO_SPECIAL_PTR_REG_mask;
  695 %}
  696 
  697 // Class for all non_special pointer registers (excluding rfp)
  698 reg_class no_special_no_rfp_ptr_reg %{
  699   return _NO_SPECIAL_NO_RFP_PTR_REG_mask;
  700 %}
  701 
  702 // Class for all float registers
  703 reg_class float_reg(
  704     V0,
  705     V1,
  706     V2,
  707     V3,
  708     V4,
  709     V5,
  710     V6,
  711     V7,
  712     V8,
  713     V9,
  714     V10,
  715     V11,
  716     V12,
  717     V13,
  718     V14,
  719     V15,
  720     V16,
  721     V17,
  722     V18,
  723     V19,
  724     V20,
  725     V21,
  726     V22,
  727     V23,
  728     V24,
  729     V25,
  730     V26,
  731     V27,
  732     V28,
  733     V29,
  734     V30,
  735     V31
  736 );
  737 
  738 // Double precision float registers have virtual `high halves' that
  739 // are needed by the allocator.
  740 // Class for all double registers
  741 reg_class double_reg(
  742     V0, V0_H,
  743     V1, V1_H,
  744     V2, V2_H,
  745     V3, V3_H,
  746     V4, V4_H,
  747     V5, V5_H,
  748     V6, V6_H,
  749     V7, V7_H,
  750     V8, V8_H,
  751     V9, V9_H,
  752     V10, V10_H,
  753     V11, V11_H,
  754     V12, V12_H,
  755     V13, V13_H,
  756     V14, V14_H,
  757     V15, V15_H,
  758     V16, V16_H,
  759     V17, V17_H,
  760     V18, V18_H,
  761     V19, V19_H,
  762     V20, V20_H,
  763     V21, V21_H,
  764     V22, V22_H,
  765     V23, V23_H,
  766     V24, V24_H,
  767     V25, V25_H,
  768     V26, V26_H,
  769     V27, V27_H,
  770     V28, V28_H,
  771     V29, V29_H,
  772     V30, V30_H,
  773     V31, V31_H
  774 );
  775 
  776 // Class for all SVE vector registers.
  777 reg_class vectora_reg (
  778     V0, V0_H, V0_J, V0_K,
  779     V1, V1_H, V1_J, V1_K,
  780     V2, V2_H, V2_J, V2_K,
  781     V3, V3_H, V3_J, V3_K,
  782     V4, V4_H, V4_J, V4_K,
  783     V5, V5_H, V5_J, V5_K,
  784     V6, V6_H, V6_J, V6_K,
  785     V7, V7_H, V7_J, V7_K,
  786     V8, V8_H, V8_J, V8_K,
  787     V9, V9_H, V9_J, V9_K,
  788     V10, V10_H, V10_J, V10_K,
  789     V11, V11_H, V11_J, V11_K,
  790     V12, V12_H, V12_J, V12_K,
  791     V13, V13_H, V13_J, V13_K,
  792     V14, V14_H, V14_J, V14_K,
  793     V15, V15_H, V15_J, V15_K,
  794     V16, V16_H, V16_J, V16_K,
  795     V17, V17_H, V17_J, V17_K,
  796     V18, V18_H, V18_J, V18_K,
  797     V19, V19_H, V19_J, V19_K,
  798     V20, V20_H, V20_J, V20_K,
  799     V21, V21_H, V21_J, V21_K,
  800     V22, V22_H, V22_J, V22_K,
  801     V23, V23_H, V23_J, V23_K,
  802     V24, V24_H, V24_J, V24_K,
  803     V25, V25_H, V25_J, V25_K,
  804     V26, V26_H, V26_J, V26_K,
  805     V27, V27_H, V27_J, V27_K,
  806     V28, V28_H, V28_J, V28_K,
  807     V29, V29_H, V29_J, V29_K,
  808     V30, V30_H, V30_J, V30_K,
  809     V31, V31_H, V31_J, V31_K,
  810 );
  811 
  812 // Class for all 64bit vector registers
  813 reg_class vectord_reg(
  814     V0, V0_H,
  815     V1, V1_H,
  816     V2, V2_H,
  817     V3, V3_H,
  818     V4, V4_H,
  819     V5, V5_H,
  820     V6, V6_H,
  821     V7, V7_H,
  822     V8, V8_H,
  823     V9, V9_H,
  824     V10, V10_H,
  825     V11, V11_H,
  826     V12, V12_H,
  827     V13, V13_H,
  828     V14, V14_H,
  829     V15, V15_H,
  830     V16, V16_H,
  831     V17, V17_H,
  832     V18, V18_H,
  833     V19, V19_H,
  834     V20, V20_H,
  835     V21, V21_H,
  836     V22, V22_H,
  837     V23, V23_H,
  838     V24, V24_H,
  839     V25, V25_H,
  840     V26, V26_H,
  841     V27, V27_H,
  842     V28, V28_H,
  843     V29, V29_H,
  844     V30, V30_H,
  845     V31, V31_H
  846 );
  847 
  848 // Class for all 128bit vector registers
  849 reg_class vectorx_reg(
  850     V0, V0_H, V0_J, V0_K,
  851     V1, V1_H, V1_J, V1_K,
  852     V2, V2_H, V2_J, V2_K,
  853     V3, V3_H, V3_J, V3_K,
  854     V4, V4_H, V4_J, V4_K,
  855     V5, V5_H, V5_J, V5_K,
  856     V6, V6_H, V6_J, V6_K,
  857     V7, V7_H, V7_J, V7_K,
  858     V8, V8_H, V8_J, V8_K,
  859     V9, V9_H, V9_J, V9_K,
  860     V10, V10_H, V10_J, V10_K,
  861     V11, V11_H, V11_J, V11_K,
  862     V12, V12_H, V12_J, V12_K,
  863     V13, V13_H, V13_J, V13_K,
  864     V14, V14_H, V14_J, V14_K,
  865     V15, V15_H, V15_J, V15_K,
  866     V16, V16_H, V16_J, V16_K,
  867     V17, V17_H, V17_J, V17_K,
  868     V18, V18_H, V18_J, V18_K,
  869     V19, V19_H, V19_J, V19_K,
  870     V20, V20_H, V20_J, V20_K,
  871     V21, V21_H, V21_J, V21_K,
  872     V22, V22_H, V22_J, V22_K,
  873     V23, V23_H, V23_J, V23_K,
  874     V24, V24_H, V24_J, V24_K,
  875     V25, V25_H, V25_J, V25_K,
  876     V26, V26_H, V26_J, V26_K,
  877     V27, V27_H, V27_J, V27_K,
  878     V28, V28_H, V28_J, V28_K,
  879     V29, V29_H, V29_J, V29_K,
  880     V30, V30_H, V30_J, V30_K,
  881     V31, V31_H, V31_J, V31_K
  882 );
  883 
  884 // Class for 128 bit register v0
  885 reg_class v0_reg(
  886     V0, V0_H
  887 );
  888 
  889 // Class for 128 bit register v1
  890 reg_class v1_reg(
  891     V1, V1_H
  892 );
  893 
  894 // Class for 128 bit register v2
  895 reg_class v2_reg(
  896     V2, V2_H
  897 );
  898 
  899 // Class for 128 bit register v3
  900 reg_class v3_reg(
  901     V3, V3_H
  902 );
  903 
  904 // Class for 128 bit register v4
  905 reg_class v4_reg(
  906     V4, V4_H
  907 );
  908 
  909 // Class for 128 bit register v5
  910 reg_class v5_reg(
  911     V5, V5_H
  912 );
  913 
  914 // Class for 128 bit register v6
  915 reg_class v6_reg(
  916     V6, V6_H
  917 );
  918 
  919 // Class for 128 bit register v7
  920 reg_class v7_reg(
  921     V7, V7_H
  922 );
  923 
  924 // Class for 128 bit register v8
  925 reg_class v8_reg(
  926     V8, V8_H
  927 );
  928 
  929 // Class for 128 bit register v9
  930 reg_class v9_reg(
  931     V9, V9_H
  932 );
  933 
  934 // Class for 128 bit register v10
  935 reg_class v10_reg(
  936     V10, V10_H
  937 );
  938 
  939 // Class for 128 bit register v11
  940 reg_class v11_reg(
  941     V11, V11_H
  942 );
  943 
  944 // Class for 128 bit register v12
  945 reg_class v12_reg(
  946     V12, V12_H
  947 );
  948 
  949 // Class for 128 bit register v13
  950 reg_class v13_reg(
  951     V13, V13_H
  952 );
  953 
  954 // Class for 128 bit register v14
  955 reg_class v14_reg(
  956     V14, V14_H
  957 );
  958 
  959 // Class for 128 bit register v15
  960 reg_class v15_reg(
  961     V15, V15_H
  962 );
  963 
  964 // Class for 128 bit register v16
  965 reg_class v16_reg(
  966     V16, V16_H
  967 );
  968 
  969 // Class for 128 bit register v17
  970 reg_class v17_reg(
  971     V17, V17_H
  972 );
  973 
  974 // Class for 128 bit register v18
  975 reg_class v18_reg(
  976     V18, V18_H
  977 );
  978 
  979 // Class for 128 bit register v19
  980 reg_class v19_reg(
  981     V19, V19_H
  982 );
  983 
  984 // Class for 128 bit register v20
  985 reg_class v20_reg(
  986     V20, V20_H
  987 );
  988 
  989 // Class for 128 bit register v21
  990 reg_class v21_reg(
  991     V21, V21_H
  992 );
  993 
  994 // Class for 128 bit register v22
  995 reg_class v22_reg(
  996     V22, V22_H
  997 );
  998 
  999 // Class for 128 bit register v23
 1000 reg_class v23_reg(
 1001     V23, V23_H
 1002 );
 1003 
 1004 // Class for 128 bit register v24
 1005 reg_class v24_reg(
 1006     V24, V24_H
 1007 );
 1008 
 1009 // Class for 128 bit register v25
 1010 reg_class v25_reg(
 1011     V25, V25_H
 1012 );
 1013 
 1014 // Class for 128 bit register v26
 1015 reg_class v26_reg(
 1016     V26, V26_H
 1017 );
 1018 
 1019 // Class for 128 bit register v27
 1020 reg_class v27_reg(
 1021     V27, V27_H
 1022 );
 1023 
 1024 // Class for 128 bit register v28
 1025 reg_class v28_reg(
 1026     V28, V28_H
 1027 );
 1028 
 1029 // Class for 128 bit register v29
 1030 reg_class v29_reg(
 1031     V29, V29_H
 1032 );
 1033 
 1034 // Class for 128 bit register v30
 1035 reg_class v30_reg(
 1036     V30, V30_H
 1037 );
 1038 
 1039 // Class for 128 bit register v31
 1040 reg_class v31_reg(
 1041     V31, V31_H
 1042 );
 1043 
 1044 // Class for all SVE predicate registers.
 1045 reg_class pr_reg (
 1046     P0,
 1047     P1,
 1048     P2,
 1049     P3,
 1050     P4,
 1051     P5,
 1052     P6,
 1053     // P7, non-allocatable, preserved with all elements preset to TRUE.
 1054     P8,
 1055     P9,
 1056     P10,
 1057     P11,
 1058     P12,
 1059     P13,
 1060     P14,
 1061     P15
 1062 );
 1063 
 1064 // Class for SVE governing predicate registers, which are used
 1065 // to determine the active elements of a predicated instruction.
 1066 reg_class gov_pr (
 1067     P0,
 1068     P1,
 1069     P2,
 1070     P3,
 1071     P4,
 1072     P5,
 1073     P6,
 1074     // P7, non-allocatable, preserved with all elements preset to TRUE.
 1075 );
 1076 
 1077 reg_class p0_reg(P0);
 1078 reg_class p1_reg(P1);
 1079 
 1080 // Singleton class for condition codes
 1081 reg_class int_flags(RFLAGS);
 1082 
 1083 %}
 1084 
 1085 //----------DEFINITION BLOCK---------------------------------------------------
 1086 // Define name --> value mappings to inform the ADLC of an integer valued name
 1087 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 1088 // Format:
 1089 //        int_def  <name>         ( <int_value>, <expression>);
 1090 // Generated Code in ad_<arch>.hpp
 1091 //        #define  <name>   (<expression>)
 1092 //        // value == <int_value>
 1093 // Generated code in ad_<arch>.cpp adlc_verification()
 1094 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 1095 //
 1096 
 1097 // we follow the ppc-aix port in using a simple cost model which ranks
 1098 // register operations as cheap, memory ops as more expensive and
 1099 // branches as most expensive. the first two have a low as well as a
 1100 // normal cost. huge cost appears to be a way of saying don't do
 1101 // something
 1102 
 1103 definitions %{
 1104   // The default cost (of a register move instruction).
 1105   int_def INSN_COST            (    100,     100);
 1106   int_def BRANCH_COST          (    200,     2 * INSN_COST);
 1107   int_def CALL_COST            (    200,     2 * INSN_COST);
 1108   int_def VOLATILE_REF_COST    (   1000,     10 * INSN_COST);
 1109 %}
 1110 
 1111 
 1112 //----------SOURCE BLOCK-------------------------------------------------------
 1113 // This is a block of C++ code which provides values, functions, and
 1114 // definitions necessary in the rest of the architecture description
 1115 
 1116 source_hpp %{
 1117 
 1118 #include "asm/macroAssembler.hpp"
 1119 #include "gc/shared/barrierSetAssembler.hpp"
 1120 #include "gc/shared/cardTable.hpp"
 1121 #include "gc/shared/cardTableBarrierSet.hpp"
 1122 #include "gc/shared/collectedHeap.hpp"
 1123 #include "opto/addnode.hpp"
 1124 #include "opto/convertnode.hpp"
 1125 #include "runtime/objectMonitor.hpp"
 1126 
 1127 extern RegMask _ANY_REG32_mask;
 1128 extern RegMask _ANY_REG_mask;
 1129 extern RegMask _PTR_REG_mask;
 1130 extern RegMask _NO_SPECIAL_REG32_mask;
 1131 extern RegMask _NO_SPECIAL_REG_mask;
 1132 extern RegMask _NO_SPECIAL_PTR_REG_mask;
 1133 extern RegMask _NO_SPECIAL_NO_RFP_PTR_REG_mask;
 1134 
 1135 class CallStubImpl {
 1136 
 1137   //--------------------------------------------------------------
 1138   //---<  Used for optimization in Compile::shorten_branches  >---
 1139   //--------------------------------------------------------------
 1140 
 1141  public:
 1142   // Size of call trampoline stub.
 1143   static uint size_call_trampoline() {
 1144     return MacroAssembler::max_trampoline_stub_size(); // no call trampolines on this platform
 1145   }
 1146 
 1147   // number of relocations needed by a call trampoline stub
 1148   static uint reloc_call_trampoline() {
 1149     return 0; // no call trampolines on this platform
 1150   }
 1151 };
 1152 
 1153 class HandlerImpl {
 1154 
 1155  public:
 1156 
 1157   static int emit_exception_handler(C2_MacroAssembler *masm);
 1158   static int emit_deopt_handler(C2_MacroAssembler* masm);
 1159 
 1160   static uint size_exception_handler() {
 1161     return MacroAssembler::far_codestub_branch_size();
 1162   }
 1163 
 1164   static uint size_deopt_handler() {
 1165     // count one adr and one far branch instruction
 1166     return NativeInstruction::instruction_size + MacroAssembler::far_codestub_branch_size();
 1167   }
 1168 };
 1169 
 1170 class Node::PD {
 1171 public:
 1172   enum NodeFlags {
 1173     _last_flag = Node::_last_flag
 1174   };
 1175 };
 1176 
 1177   bool is_CAS(int opcode, bool maybe_volatile);
 1178 
 1179   // predicates controlling emit of ldr<x>/ldar<x> and associated dmb
 1180 
 1181   bool unnecessary_acquire(const Node *barrier);
 1182   bool needs_acquiring_load(const Node *load);
 1183 
 1184   // predicates controlling emit of str<x>/stlr<x> and associated dmbs
 1185 
 1186   bool unnecessary_release(const Node *barrier);
 1187   bool unnecessary_volatile(const Node *barrier);
 1188   bool needs_releasing_store(const Node *store);
 1189 
 1190   // predicate controlling translation of CompareAndSwapX
 1191   bool needs_acquiring_load_exclusive(const Node *load);
 1192 
 1193   // predicate controlling addressing modes
 1194   bool size_fits_all_mem_uses(AddPNode* addp, int shift);
 1195 
 1196   // Convert BootTest condition to Assembler condition.
 1197   // Replicate the logic of cmpOpOper::ccode() and cmpOpUOper::ccode().
 1198   Assembler::Condition to_assembler_cond(BoolTest::mask cond);
 1199 %}
 1200 
 1201 source %{
 1202 
 1203   // Derived RegMask with conditionally allocatable registers
 1204 
 1205   void PhaseOutput::pd_perform_mach_node_analysis() {
 1206   }
 1207 
 1208   int MachNode::pd_alignment_required() const {
 1209     return 1;
 1210   }
 1211 
 1212   int MachNode::compute_padding(int current_offset) const {
 1213     return 0;
 1214   }
 1215 
 1216   RegMask _ANY_REG32_mask;
 1217   RegMask _ANY_REG_mask;
 1218   RegMask _PTR_REG_mask;
 1219   RegMask _NO_SPECIAL_REG32_mask;
 1220   RegMask _NO_SPECIAL_REG_mask;
 1221   RegMask _NO_SPECIAL_PTR_REG_mask;
 1222   RegMask _NO_SPECIAL_NO_RFP_PTR_REG_mask;
 1223 
 1224   void reg_mask_init() {
 1225     // We derive below RegMask(s) from the ones which are auto-generated from
 1226     // adlc register classes to make AArch64 rheapbase (r27) and rfp (r29)
 1227     // registers conditionally reserved.
 1228 
 1229     _ANY_REG32_mask = _ALL_REG32_mask;
 1230     _ANY_REG32_mask.Remove(OptoReg::as_OptoReg(r31_sp->as_VMReg()));
 1231 
 1232     _ANY_REG_mask = _ALL_REG_mask;
 1233 
 1234     _PTR_REG_mask = _ALL_REG_mask;
 1235 
 1236     _NO_SPECIAL_REG32_mask = _ALL_REG32_mask;
 1237     _NO_SPECIAL_REG32_mask.SUBTRACT(_NON_ALLOCATABLE_REG32_mask);
 1238 
 1239     _NO_SPECIAL_REG_mask = _ALL_REG_mask;
 1240     _NO_SPECIAL_REG_mask.SUBTRACT(_NON_ALLOCATABLE_REG_mask);
 1241 
 1242     _NO_SPECIAL_PTR_REG_mask = _ALL_REG_mask;
 1243     _NO_SPECIAL_PTR_REG_mask.SUBTRACT(_NON_ALLOCATABLE_REG_mask);
 1244 
 1245     // r27 is not allocatable when compressed oops is on and heapbase is not
 1246     // zero, compressed klass pointers doesn't use r27 after JDK-8234794
 1247     if (UseCompressedOops && (CompressedOops::base() != nullptr)) {
 1248       _NO_SPECIAL_REG32_mask.Remove(OptoReg::as_OptoReg(r27->as_VMReg()));
 1249       _NO_SPECIAL_REG_mask.Remove(OptoReg::as_OptoReg(r27->as_VMReg()));
 1250       _NO_SPECIAL_PTR_REG_mask.Remove(OptoReg::as_OptoReg(r27->as_VMReg()));
 1251     }
 1252 
 1253     // r29 is not allocatable when PreserveFramePointer is on
 1254     if (PreserveFramePointer) {
 1255       _NO_SPECIAL_REG32_mask.Remove(OptoReg::as_OptoReg(r29->as_VMReg()));
 1256       _NO_SPECIAL_REG_mask.Remove(OptoReg::as_OptoReg(r29->as_VMReg()));
 1257       _NO_SPECIAL_PTR_REG_mask.Remove(OptoReg::as_OptoReg(r29->as_VMReg()));
 1258     }
 1259 
 1260     _NO_SPECIAL_NO_RFP_PTR_REG_mask = _NO_SPECIAL_PTR_REG_mask;
 1261     _NO_SPECIAL_NO_RFP_PTR_REG_mask.Remove(OptoReg::as_OptoReg(r29->as_VMReg()));
 1262   }
 1263 
 1264   // Optimizaton of volatile gets and puts
 1265   // -------------------------------------
 1266   //
 1267   // AArch64 has ldar<x> and stlr<x> instructions which we can safely
 1268   // use to implement volatile reads and writes. For a volatile read
 1269   // we simply need
 1270   //
 1271   //   ldar<x>
 1272   //
 1273   // and for a volatile write we need
 1274   //
 1275   //   stlr<x>
 1276   //
 1277   // Alternatively, we can implement them by pairing a normal
 1278   // load/store with a memory barrier. For a volatile read we need
 1279   //
 1280   //   ldr<x>
 1281   //   dmb ishld
 1282   //
 1283   // for a volatile write
 1284   //
 1285   //   dmb ish
 1286   //   str<x>
 1287   //   dmb ish
 1288   //
 1289   // We can also use ldaxr and stlxr to implement compare and swap CAS
 1290   // sequences. These are normally translated to an instruction
 1291   // sequence like the following
 1292   //
 1293   //   dmb      ish
 1294   // retry:
 1295   //   ldxr<x>   rval raddr
 1296   //   cmp       rval rold
 1297   //   b.ne done
 1298   //   stlxr<x>  rval, rnew, rold
 1299   //   cbnz      rval retry
 1300   // done:
 1301   //   cset      r0, eq
 1302   //   dmb ishld
 1303   //
 1304   // Note that the exclusive store is already using an stlxr
 1305   // instruction. That is required to ensure visibility to other
 1306   // threads of the exclusive write (assuming it succeeds) before that
 1307   // of any subsequent writes.
 1308   //
 1309   // The following instruction sequence is an improvement on the above
 1310   //
 1311   // retry:
 1312   //   ldaxr<x>  rval raddr
 1313   //   cmp       rval rold
 1314   //   b.ne done
 1315   //   stlxr<x>  rval, rnew, rold
 1316   //   cbnz      rval retry
 1317   // done:
 1318   //   cset      r0, eq
 1319   //
 1320   // We don't need the leading dmb ish since the stlxr guarantees
 1321   // visibility of prior writes in the case that the swap is
 1322   // successful. Crucially we don't have to worry about the case where
 1323   // the swap is not successful since no valid program should be
 1324   // relying on visibility of prior changes by the attempting thread
 1325   // in the case where the CAS fails.
 1326   //
 1327   // Similarly, we don't need the trailing dmb ishld if we substitute
 1328   // an ldaxr instruction since that will provide all the guarantees we
 1329   // require regarding observation of changes made by other threads
 1330   // before any change to the CAS address observed by the load.
 1331   //
 1332   // In order to generate the desired instruction sequence we need to
 1333   // be able to identify specific 'signature' ideal graph node
 1334   // sequences which i) occur as a translation of a volatile reads or
 1335   // writes or CAS operations and ii) do not occur through any other
 1336   // translation or graph transformation. We can then provide
 1337   // alternative aldc matching rules which translate these node
 1338   // sequences to the desired machine code sequences. Selection of the
 1339   // alternative rules can be implemented by predicates which identify
 1340   // the relevant node sequences.
 1341   //
 1342   // The ideal graph generator translates a volatile read to the node
 1343   // sequence
 1344   //
 1345   //   LoadX[mo_acquire]
 1346   //   MemBarAcquire
 1347   //
 1348   // As a special case when using the compressed oops optimization we
 1349   // may also see this variant
 1350   //
 1351   //   LoadN[mo_acquire]
 1352   //   DecodeN
 1353   //   MemBarAcquire
 1354   //
 1355   // A volatile write is translated to the node sequence
 1356   //
 1357   //   MemBarRelease
 1358   //   StoreX[mo_release] {CardMark}-optional
 1359   //   MemBarVolatile
 1360   //
 1361   // n.b. the above node patterns are generated with a strict
 1362   // 'signature' configuration of input and output dependencies (see
 1363   // the predicates below for exact details). The card mark may be as
 1364   // simple as a few extra nodes or, in a few GC configurations, may
 1365   // include more complex control flow between the leading and
 1366   // trailing memory barriers. However, whatever the card mark
 1367   // configuration these signatures are unique to translated volatile
 1368   // reads/stores -- they will not appear as a result of any other
 1369   // bytecode translation or inlining nor as a consequence of
 1370   // optimizing transforms.
 1371   //
 1372   // We also want to catch inlined unsafe volatile gets and puts and
 1373   // be able to implement them using either ldar<x>/stlr<x> or some
 1374   // combination of ldr<x>/stlr<x> and dmb instructions.
 1375   //
 1376   // Inlined unsafe volatiles puts manifest as a minor variant of the
 1377   // normal volatile put node sequence containing an extra cpuorder
 1378   // membar
 1379   //
 1380   //   MemBarRelease
 1381   //   MemBarCPUOrder
 1382   //   StoreX[mo_release] {CardMark}-optional
 1383   //   MemBarCPUOrder
 1384   //   MemBarVolatile
 1385   //
 1386   // n.b. as an aside, a cpuorder membar is not itself subject to
 1387   // matching and translation by adlc rules.  However, the rule
 1388   // predicates need to detect its presence in order to correctly
 1389   // select the desired adlc rules.
 1390   //
 1391   // Inlined unsafe volatile gets manifest as a slightly different
 1392   // node sequence to a normal volatile get because of the
 1393   // introduction of some CPUOrder memory barriers to bracket the
 1394   // Load. However, but the same basic skeleton of a LoadX feeding a
 1395   // MemBarAcquire, possibly through an optional DecodeN, is still
 1396   // present
 1397   //
 1398   //   MemBarCPUOrder
 1399   //        ||       \\
 1400   //   MemBarCPUOrder LoadX[mo_acquire]
 1401   //        ||            |
 1402   //        ||       {DecodeN} optional
 1403   //        ||       /
 1404   //     MemBarAcquire
 1405   //
 1406   // In this case the acquire membar does not directly depend on the
 1407   // load. However, we can be sure that the load is generated from an
 1408   // inlined unsafe volatile get if we see it dependent on this unique
 1409   // sequence of membar nodes. Similarly, given an acquire membar we
 1410   // can know that it was added because of an inlined unsafe volatile
 1411   // get if it is fed and feeds a cpuorder membar and if its feed
 1412   // membar also feeds an acquiring load.
 1413   //
 1414   // Finally an inlined (Unsafe) CAS operation is translated to the
 1415   // following ideal graph
 1416   //
 1417   //   MemBarRelease
 1418   //   MemBarCPUOrder
 1419   //   CompareAndSwapX {CardMark}-optional
 1420   //   MemBarCPUOrder
 1421   //   MemBarAcquire
 1422   //
 1423   // So, where we can identify these volatile read and write
 1424   // signatures we can choose to plant either of the above two code
 1425   // sequences. For a volatile read we can simply plant a normal
 1426   // ldr<x> and translate the MemBarAcquire to a dmb. However, we can
 1427   // also choose to inhibit translation of the MemBarAcquire and
 1428   // inhibit planting of the ldr<x>, instead planting an ldar<x>.
 1429   //
 1430   // When we recognise a volatile store signature we can choose to
 1431   // plant at a dmb ish as a translation for the MemBarRelease, a
 1432   // normal str<x> and then a dmb ish for the MemBarVolatile.
 1433   // Alternatively, we can inhibit translation of the MemBarRelease
 1434   // and MemBarVolatile and instead plant a simple stlr<x>
 1435   // instruction.
 1436   //
 1437   // when we recognise a CAS signature we can choose to plant a dmb
 1438   // ish as a translation for the MemBarRelease, the conventional
 1439   // macro-instruction sequence for the CompareAndSwap node (which
 1440   // uses ldxr<x>) and then a dmb ishld for the MemBarAcquire.
 1441   // Alternatively, we can elide generation of the dmb instructions
 1442   // and plant the alternative CompareAndSwap macro-instruction
 1443   // sequence (which uses ldaxr<x>).
 1444   //
 1445   // Of course, the above only applies when we see these signature
 1446   // configurations. We still want to plant dmb instructions in any
 1447   // other cases where we may see a MemBarAcquire, MemBarRelease or
 1448   // MemBarVolatile. For example, at the end of a constructor which
 1449   // writes final/volatile fields we will see a MemBarRelease
 1450   // instruction and this needs a 'dmb ish' lest we risk the
 1451   // constructed object being visible without making the
 1452   // final/volatile field writes visible.
 1453   //
 1454   // n.b. the translation rules below which rely on detection of the
 1455   // volatile signatures and insert ldar<x> or stlr<x> are failsafe.
 1456   // If we see anything other than the signature configurations we
 1457   // always just translate the loads and stores to ldr<x> and str<x>
 1458   // and translate acquire, release and volatile membars to the
 1459   // relevant dmb instructions.
 1460   //
 1461 
 1462   // is_CAS(int opcode, bool maybe_volatile)
 1463   //
 1464   // return true if opcode is one of the possible CompareAndSwapX
 1465   // values otherwise false.
 1466 
 1467   bool is_CAS(int opcode, bool maybe_volatile)
 1468   {
 1469     switch(opcode) {
 1470       // We handle these
 1471     case Op_CompareAndSwapI:
 1472     case Op_CompareAndSwapL:
 1473     case Op_CompareAndSwapP:
 1474     case Op_CompareAndSwapN:
 1475     case Op_ShenandoahCompareAndSwapP:
 1476     case Op_ShenandoahCompareAndSwapN:
 1477     case Op_CompareAndSwapB:
 1478     case Op_CompareAndSwapS:
 1479     case Op_GetAndSetI:
 1480     case Op_GetAndSetL:
 1481     case Op_GetAndSetP:
 1482     case Op_GetAndSetN:
 1483     case Op_GetAndAddI:
 1484     case Op_GetAndAddL:
 1485       return true;
 1486     case Op_CompareAndExchangeI:
 1487     case Op_CompareAndExchangeN:
 1488     case Op_CompareAndExchangeB:
 1489     case Op_CompareAndExchangeS:
 1490     case Op_CompareAndExchangeL:
 1491     case Op_CompareAndExchangeP:
 1492     case Op_WeakCompareAndSwapB:
 1493     case Op_WeakCompareAndSwapS:
 1494     case Op_WeakCompareAndSwapI:
 1495     case Op_WeakCompareAndSwapL:
 1496     case Op_WeakCompareAndSwapP:
 1497     case Op_WeakCompareAndSwapN:
 1498     case Op_ShenandoahWeakCompareAndSwapP:
 1499     case Op_ShenandoahWeakCompareAndSwapN:
 1500     case Op_ShenandoahCompareAndExchangeP:
 1501     case Op_ShenandoahCompareAndExchangeN:
 1502       return maybe_volatile;
 1503     default:
 1504       return false;
 1505     }
 1506   }
 1507 
 1508   // helper to determine the maximum number of Phi nodes we may need to
 1509   // traverse when searching from a card mark membar for the merge mem
 1510   // feeding a trailing membar or vice versa
 1511 
 1512 // predicates controlling emit of ldr<x>/ldar<x>
 1513 
 1514 bool unnecessary_acquire(const Node *barrier)
 1515 {
 1516   assert(barrier->is_MemBar(), "expecting a membar");
 1517 
 1518   MemBarNode* mb = barrier->as_MemBar();
 1519 
 1520   if (mb->trailing_load()) {
 1521     return true;
 1522   }
 1523 
 1524   if (mb->trailing_load_store()) {
 1525     Node* load_store = mb->in(MemBarNode::Precedent);
 1526     assert(load_store->is_LoadStore(), "unexpected graph shape");
 1527     return is_CAS(load_store->Opcode(), true);
 1528   }
 1529 
 1530   return false;
 1531 }
 1532 
 1533 bool needs_acquiring_load(const Node *n)
 1534 {
 1535   assert(n->is_Load(), "expecting a load");
 1536   LoadNode *ld = n->as_Load();
 1537   return ld->is_acquire();
 1538 }
 1539 
 1540 bool unnecessary_release(const Node *n)
 1541 {
 1542   assert((n->is_MemBar() &&
 1543           n->Opcode() == Op_MemBarRelease),
 1544          "expecting a release membar");
 1545 
 1546   MemBarNode *barrier = n->as_MemBar();
 1547   if (!barrier->leading()) {
 1548     return false;
 1549   } else {
 1550     Node* trailing = barrier->trailing_membar();
 1551     MemBarNode* trailing_mb = trailing->as_MemBar();
 1552     assert(trailing_mb->trailing(), "Not a trailing membar?");
 1553     assert(trailing_mb->leading_membar() == n, "inconsistent leading/trailing membars");
 1554 
 1555     Node* mem = trailing_mb->in(MemBarNode::Precedent);
 1556     if (mem->is_Store()) {
 1557       assert(mem->as_Store()->is_release(), "");
 1558       assert(trailing_mb->Opcode() == Op_MemBarVolatile, "");
 1559       return true;
 1560     } else {
 1561       assert(mem->is_LoadStore(), "");
 1562       assert(trailing_mb->Opcode() == Op_MemBarAcquire, "");
 1563       return is_CAS(mem->Opcode(), true);
 1564     }
 1565   }
 1566   return false;
 1567 }
 1568 
 1569 bool unnecessary_volatile(const Node *n)
 1570 {
 1571   // assert n->is_MemBar();
 1572   MemBarNode *mbvol = n->as_MemBar();
 1573 
 1574   bool release = mbvol->trailing_store();
 1575   assert(!release || (mbvol->in(MemBarNode::Precedent)->is_Store() && mbvol->in(MemBarNode::Precedent)->as_Store()->is_release()), "");
 1576 #ifdef ASSERT
 1577   if (release) {
 1578     Node* leading = mbvol->leading_membar();
 1579     assert(leading->Opcode() == Op_MemBarRelease, "");
 1580     assert(leading->as_MemBar()->leading_store(), "");
 1581     assert(leading->as_MemBar()->trailing_membar() == mbvol, "");
 1582   }
 1583 #endif
 1584 
 1585   return release;
 1586 }
 1587 
 1588 // predicates controlling emit of str<x>/stlr<x>
 1589 
 1590 bool needs_releasing_store(const Node *n)
 1591 {
 1592   // assert n->is_Store();
 1593   StoreNode *st = n->as_Store();
 1594   return st->trailing_membar() != nullptr;
 1595 }
 1596 
 1597 // predicate controlling translation of CAS
 1598 //
 1599 // returns true if CAS needs to use an acquiring load otherwise false
 1600 
 1601 bool needs_acquiring_load_exclusive(const Node *n)
 1602 {
 1603   assert(is_CAS(n->Opcode(), true), "expecting a compare and swap");
 1604   LoadStoreNode* ldst = n->as_LoadStore();
 1605   if (is_CAS(n->Opcode(), false)) {
 1606     assert(ldst->trailing_membar() != nullptr, "expected trailing membar");
 1607   } else {
 1608     return ldst->trailing_membar() != nullptr;
 1609   }
 1610 
 1611   // so we can just return true here
 1612   return true;
 1613 }
 1614 
 1615 #define __ masm->
 1616 
 1617 // advance declarations for helper functions to convert register
 1618 // indices to register objects
 1619 
 1620 // the ad file has to provide implementations of certain methods
 1621 // expected by the generic code
 1622 //
 1623 // REQUIRED FUNCTIONALITY
 1624 
 1625 //=============================================================================
 1626 
 1627 // !!!!! Special hack to get all types of calls to specify the byte offset
 1628 //       from the start of the call to the point where the return address
 1629 //       will point.
 1630 
 1631 int MachCallStaticJavaNode::ret_addr_offset()
 1632 {
 1633   // call should be a simple bl
 1634   int off = 4;
 1635   return off;
 1636 }
 1637 
 1638 int MachCallDynamicJavaNode::ret_addr_offset()
 1639 {
 1640   return 16; // movz, movk, movk, bl
 1641 }
 1642 
 1643 int MachCallRuntimeNode::ret_addr_offset() {
 1644   // for generated stubs the call will be
 1645   //   bl(addr)
 1646   // or with far branches
 1647   //   bl(trampoline_stub)
 1648   // for real runtime callouts it will be six instructions
 1649   // see aarch64_enc_java_to_runtime
 1650   //   adr(rscratch2, retaddr)
 1651   //   str(rscratch2, Address(rthread, JavaThread::last_Java_pc_offset()));
 1652   //   lea(rscratch1, RuntimeAddress(addr)
 1653   //   blr(rscratch1)
 1654   CodeBlob *cb = CodeCache::find_blob(_entry_point);
 1655   if (cb) {
 1656     return 1 * NativeInstruction::instruction_size;
 1657   } else {
 1658     return 6 * NativeInstruction::instruction_size;
 1659   }
 1660 }
 1661 
 1662 //=============================================================================
 1663 
 1664 #ifndef PRODUCT
 1665 void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
 1666   st->print("BREAKPOINT");
 1667 }
 1668 #endif
 1669 
 1670 void MachBreakpointNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1671   __ brk(0);
 1672 }
 1673 
 1674 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 1675   return MachNode::size(ra_);
 1676 }
 1677 
 1678 //=============================================================================
 1679 
 1680 #ifndef PRODUCT
 1681   void MachNopNode::format(PhaseRegAlloc*, outputStream* st) const {
 1682     st->print("nop \t# %d bytes pad for loops and calls", _count);
 1683   }
 1684 #endif
 1685 
 1686   void MachNopNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc*) const {
 1687     for (int i = 0; i < _count; i++) {
 1688       __ nop();
 1689     }
 1690   }
 1691 
 1692   uint MachNopNode::size(PhaseRegAlloc*) const {
 1693     return _count * NativeInstruction::instruction_size;
 1694   }
 1695 
 1696 //=============================================================================
 1697 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
 1698 
 1699 int ConstantTable::calculate_table_base_offset() const {
 1700   return 0;  // absolute addressing, no offset
 1701 }
 1702 
 1703 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
 1704 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
 1705   ShouldNotReachHere();
 1706 }
 1707 
 1708 void MachConstantBaseNode::emit(C2_MacroAssembler* masm, PhaseRegAlloc* ra_) const {
 1709   // Empty encoding
 1710 }
 1711 
 1712 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
 1713   return 0;
 1714 }
 1715 
 1716 #ifndef PRODUCT
 1717 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 1718   st->print("-- \t// MachConstantBaseNode (empty encoding)");
 1719 }
 1720 #endif
 1721 
 1722 #ifndef PRODUCT
 1723 void MachPrologNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
 1724   Compile* C = ra_->C;
 1725 
 1726   int framesize = C->output()->frame_slots() << LogBytesPerInt;
 1727 
 1728   if (C->output()->need_stack_bang(framesize))
 1729     st->print("# stack bang size=%d\n\t", framesize);
 1730 
 1731   if (VM_Version::use_rop_protection()) {
 1732     st->print("ldr  zr, [lr]\n\t");
 1733     st->print("paciaz\n\t");
 1734   }
 1735   if (framesize < ((1 << 9) + 2 * wordSize)) {
 1736     st->print("sub  sp, sp, #%d\n\t", framesize);
 1737     st->print("stp  rfp, lr, [sp, #%d]", framesize - 2 * wordSize);
 1738     if (PreserveFramePointer) st->print("\n\tadd  rfp, sp, #%d", framesize - 2 * wordSize);
 1739   } else {
 1740     st->print("stp  lr, rfp, [sp, #%d]!\n\t", -(2 * wordSize));
 1741     if (PreserveFramePointer) st->print("mov  rfp, sp\n\t");
 1742     st->print("mov  rscratch1, #%d\n\t", framesize - 2 * wordSize);
 1743     st->print("sub  sp, sp, rscratch1");
 1744   }
 1745   if (C->stub_function() == nullptr) {
 1746     st->print("\n\t");
 1747     st->print("ldr  rscratch1, [guard]\n\t");
 1748     st->print("dmb ishld\n\t");
 1749     st->print("ldr  rscratch2, [rthread, #thread_disarmed_guard_value_offset]\n\t");
 1750     st->print("cmp  rscratch1, rscratch2\n\t");
 1751     st->print("b.eq skip");
 1752     st->print("\n\t");
 1753     st->print("blr #nmethod_entry_barrier_stub\n\t");
 1754     st->print("b skip\n\t");
 1755     st->print("guard: int\n\t");
 1756     st->print("\n\t");
 1757     st->print("skip:\n\t");
 1758   }
 1759 }
 1760 #endif
 1761 
 1762 void MachPrologNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1763   Compile* C = ra_->C;
 1764 
 1765   // n.b. frame size includes space for return pc and rfp
 1766   const int framesize = C->output()->frame_size_in_bytes();
 1767 
 1768   // insert a nop at the start of the prolog so we can patch in a
 1769   // branch if we need to invalidate the method later
 1770   __ nop();
 1771 
 1772   if (C->clinit_barrier_on_entry()) {
 1773     assert(!C->method()->holder()->is_not_initialized(), "initialization should have been started");
 1774 
 1775     Label L_skip_barrier;
 1776 
 1777     __ mov_metadata(rscratch2, C->method()->holder()->constant_encoding());
 1778     __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier);
 1779     __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
 1780     __ bind(L_skip_barrier);
 1781   }
 1782 
 1783   if (C->max_vector_size() > 0) {
 1784     __ reinitialize_ptrue();
 1785   }
 1786 
 1787   int bangsize = C->output()->bang_size_in_bytes();
 1788   if (C->output()->need_stack_bang(bangsize))
 1789     __ generate_stack_overflow_check(bangsize);
 1790 
 1791   __ build_frame(framesize);
 1792 
 1793   if (C->stub_function() == nullptr) {
 1794     BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 1795     // Dummy labels for just measuring the code size
 1796     Label dummy_slow_path;
 1797     Label dummy_continuation;
 1798     Label dummy_guard;
 1799     Label* slow_path = &dummy_slow_path;
 1800     Label* continuation = &dummy_continuation;
 1801     Label* guard = &dummy_guard;
 1802     if (!Compile::current()->output()->in_scratch_emit_size()) {
 1803       // Use real labels from actual stub when not emitting code for the purpose of measuring its size
 1804       C2EntryBarrierStub* stub = new (Compile::current()->comp_arena()) C2EntryBarrierStub();
 1805       Compile::current()->output()->add_stub(stub);
 1806       slow_path = &stub->entry();
 1807       continuation = &stub->continuation();
 1808       guard = &stub->guard();
 1809     }
 1810     // In the C2 code, we move the non-hot part of nmethod entry barriers out-of-line to a stub.
 1811     bs->nmethod_entry_barrier(masm, slow_path, continuation, guard);
 1812   }
 1813 
 1814   if (VerifyStackAtCalls) {
 1815     Unimplemented();
 1816   }
 1817 
 1818   C->output()->set_frame_complete(__ offset());
 1819 
 1820   if (C->has_mach_constant_base_node()) {
 1821     // NOTE: We set the table base offset here because users might be
 1822     // emitted before MachConstantBaseNode.
 1823     ConstantTable& constant_table = C->output()->constant_table();
 1824     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
 1825   }
 1826 }
 1827 
 1828 uint MachPrologNode::size(PhaseRegAlloc* ra_) const
 1829 {
 1830   return MachNode::size(ra_); // too many variables; just compute it
 1831                               // the hard way
 1832 }
 1833 
 1834 int MachPrologNode::reloc() const
 1835 {
 1836   return 0;
 1837 }
 1838 
 1839 //=============================================================================
 1840 
 1841 #ifndef PRODUCT
 1842 void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
 1843   Compile* C = ra_->C;
 1844   int framesize = C->output()->frame_slots() << LogBytesPerInt;
 1845 
 1846   st->print("# pop frame %d\n\t",framesize);
 1847 
 1848   if (framesize == 0) {
 1849     st->print("ldp  lr, rfp, [sp],#%d\n\t", (2 * wordSize));
 1850   } else if (framesize < ((1 << 9) + 2 * wordSize)) {
 1851     st->print("ldp  lr, rfp, [sp,#%d]\n\t", framesize - 2 * wordSize);
 1852     st->print("add  sp, sp, #%d\n\t", framesize);
 1853   } else {
 1854     st->print("mov  rscratch1, #%d\n\t", framesize - 2 * wordSize);
 1855     st->print("add  sp, sp, rscratch1\n\t");
 1856     st->print("ldp  lr, rfp, [sp],#%d\n\t", (2 * wordSize));
 1857   }
 1858   if (VM_Version::use_rop_protection()) {
 1859     st->print("autiaz\n\t");
 1860     st->print("ldr  zr, [lr]\n\t");
 1861   }
 1862 
 1863   if (do_polling() && C->is_method_compilation()) {
 1864     st->print("# test polling word\n\t");
 1865     st->print("ldr  rscratch1, [rthread],#%d\n\t", in_bytes(JavaThread::polling_word_offset()));
 1866     st->print("cmp  sp, rscratch1\n\t");
 1867     st->print("bhi #slow_path");
 1868   }
 1869 }
 1870 #endif
 1871 
 1872 void MachEpilogNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1873   Compile* C = ra_->C;
 1874   int framesize = C->output()->frame_slots() << LogBytesPerInt;
 1875 
 1876   __ remove_frame(framesize);
 1877 
 1878   if (StackReservedPages > 0 && C->has_reserved_stack_access()) {
 1879     __ reserved_stack_check();
 1880   }
 1881 
 1882   if (do_polling() && C->is_method_compilation()) {
 1883     Label dummy_label;
 1884     Label* code_stub = &dummy_label;
 1885     if (!C->output()->in_scratch_emit_size()) {
 1886       C2SafepointPollStub* stub = new (C->comp_arena()) C2SafepointPollStub(__ offset());
 1887       C->output()->add_stub(stub);
 1888       code_stub = &stub->entry();
 1889     }
 1890     __ relocate(relocInfo::poll_return_type);
 1891     __ safepoint_poll(*code_stub, true /* at_return */, false /* acquire */, true /* in_nmethod */);
 1892   }
 1893 }
 1894 
 1895 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
 1896   // Variable size. Determine dynamically.
 1897   return MachNode::size(ra_);
 1898 }
 1899 
 1900 int MachEpilogNode::reloc() const {
 1901   // Return number of relocatable values contained in this instruction.
 1902   return 1; // 1 for polling page.
 1903 }
 1904 
 1905 const Pipeline * MachEpilogNode::pipeline() const {
 1906   return MachNode::pipeline_class();
 1907 }
 1908 
 1909 //=============================================================================
 1910 
 1911 static enum RC rc_class(OptoReg::Name reg) {
 1912 
 1913   if (reg == OptoReg::Bad) {
 1914     return rc_bad;
 1915   }
 1916 
 1917   // we have 32 int registers * 2 halves
 1918   int slots_of_int_registers = Register::number_of_registers * Register::max_slots_per_register;
 1919 
 1920   if (reg < slots_of_int_registers) {
 1921     return rc_int;
 1922   }
 1923 
 1924   // we have 32 float register * 8 halves
 1925   int slots_of_float_registers = FloatRegister::number_of_registers * FloatRegister::max_slots_per_register;
 1926   if (reg < slots_of_int_registers + slots_of_float_registers) {
 1927     return rc_float;
 1928   }
 1929 
 1930   int slots_of_predicate_registers = PRegister::number_of_registers * PRegister::max_slots_per_register;
 1931   if (reg < slots_of_int_registers + slots_of_float_registers + slots_of_predicate_registers) {
 1932     return rc_predicate;
 1933   }
 1934 
 1935   // Between predicate regs & stack is the flags.
 1936   assert(OptoReg::is_stack(reg), "blow up if spilling flags");
 1937 
 1938   return rc_stack;
 1939 }
 1940 
 1941 uint MachSpillCopyNode::implementation(C2_MacroAssembler *masm, PhaseRegAlloc *ra_, bool do_size, outputStream *st) const {
 1942   Compile* C = ra_->C;
 1943 
 1944   // Get registers to move.
 1945   OptoReg::Name src_hi = ra_->get_reg_second(in(1));
 1946   OptoReg::Name src_lo = ra_->get_reg_first(in(1));
 1947   OptoReg::Name dst_hi = ra_->get_reg_second(this);
 1948   OptoReg::Name dst_lo = ra_->get_reg_first(this);
 1949 
 1950   enum RC src_hi_rc = rc_class(src_hi);
 1951   enum RC src_lo_rc = rc_class(src_lo);
 1952   enum RC dst_hi_rc = rc_class(dst_hi);
 1953   enum RC dst_lo_rc = rc_class(dst_lo);
 1954 
 1955   assert(src_lo != OptoReg::Bad && dst_lo != OptoReg::Bad, "must move at least 1 register");
 1956 
 1957   if (src_hi != OptoReg::Bad && !bottom_type()->isa_vectmask()) {
 1958     assert((src_lo&1)==0 && src_lo+1==src_hi &&
 1959            (dst_lo&1)==0 && dst_lo+1==dst_hi,
 1960            "expected aligned-adjacent pairs");
 1961   }
 1962 
 1963   if (src_lo == dst_lo && src_hi == dst_hi) {
 1964     return 0;            // Self copy, no move.
 1965   }
 1966 
 1967   bool is64 = (src_lo & 1) == 0 && src_lo + 1 == src_hi &&
 1968               (dst_lo & 1) == 0 && dst_lo + 1 == dst_hi;
 1969   int src_offset = ra_->reg2offset(src_lo);
 1970   int dst_offset = ra_->reg2offset(dst_lo);
 1971 
 1972   if (bottom_type()->isa_vect() && !bottom_type()->isa_vectmask()) {
 1973     uint ireg = ideal_reg();
 1974     if (ireg == Op_VecA && masm) {
 1975       int sve_vector_reg_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE);
 1976       if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
 1977         // stack->stack
 1978         __ spill_copy_sve_vector_stack_to_stack(src_offset, dst_offset,
 1979                                                 sve_vector_reg_size_in_bytes);
 1980       } else if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
 1981         __ spill_sve_vector(as_FloatRegister(Matcher::_regEncode[src_lo]), ra_->reg2offset(dst_lo),
 1982                             sve_vector_reg_size_in_bytes);
 1983       } else if (src_lo_rc == rc_stack && dst_lo_rc == rc_float) {
 1984         __ unspill_sve_vector(as_FloatRegister(Matcher::_regEncode[dst_lo]), ra_->reg2offset(src_lo),
 1985                               sve_vector_reg_size_in_bytes);
 1986       } else if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
 1987         __ sve_orr(as_FloatRegister(Matcher::_regEncode[dst_lo]),
 1988                    as_FloatRegister(Matcher::_regEncode[src_lo]),
 1989                    as_FloatRegister(Matcher::_regEncode[src_lo]));
 1990       } else {
 1991         ShouldNotReachHere();
 1992       }
 1993     } else if (masm) {
 1994       assert(ireg == Op_VecD || ireg == Op_VecX, "must be 64 bit or 128 bit vector");
 1995       assert((src_lo_rc != rc_int && dst_lo_rc != rc_int), "sanity");
 1996       if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
 1997         // stack->stack
 1998         assert((src_offset & 7) == 0 && (dst_offset & 7) == 0, "unaligned stack offset");
 1999         if (ireg == Op_VecD) {
 2000           __ unspill(rscratch1, true, src_offset);
 2001           __ spill(rscratch1, true, dst_offset);
 2002         } else {
 2003           __ spill_copy128(src_offset, dst_offset);
 2004         }
 2005       } else if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
 2006         __ mov(as_FloatRegister(Matcher::_regEncode[dst_lo]),
 2007                ireg == Op_VecD ? __ T8B : __ T16B,
 2008                as_FloatRegister(Matcher::_regEncode[src_lo]));
 2009       } else if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
 2010         __ spill(as_FloatRegister(Matcher::_regEncode[src_lo]),
 2011                  ireg == Op_VecD ? __ D : __ Q,
 2012                  ra_->reg2offset(dst_lo));
 2013       } else if (src_lo_rc == rc_stack && dst_lo_rc == rc_float) {
 2014         __ unspill(as_FloatRegister(Matcher::_regEncode[dst_lo]),
 2015                    ireg == Op_VecD ? __ D : __ Q,
 2016                    ra_->reg2offset(src_lo));
 2017       } else {
 2018         ShouldNotReachHere();
 2019       }
 2020     }
 2021   } else if (masm) {
 2022     switch (src_lo_rc) {
 2023     case rc_int:
 2024       if (dst_lo_rc == rc_int) {  // gpr --> gpr copy
 2025         if (is64) {
 2026             __ mov(as_Register(Matcher::_regEncode[dst_lo]),
 2027                    as_Register(Matcher::_regEncode[src_lo]));
 2028         } else {
 2029             __ movw(as_Register(Matcher::_regEncode[dst_lo]),
 2030                     as_Register(Matcher::_regEncode[src_lo]));
 2031         }
 2032       } else if (dst_lo_rc == rc_float) { // gpr --> fpr copy
 2033         if (is64) {
 2034             __ fmovd(as_FloatRegister(Matcher::_regEncode[dst_lo]),
 2035                      as_Register(Matcher::_regEncode[src_lo]));
 2036         } else {
 2037             __ fmovs(as_FloatRegister(Matcher::_regEncode[dst_lo]),
 2038                      as_Register(Matcher::_regEncode[src_lo]));
 2039         }
 2040       } else {                    // gpr --> stack spill
 2041         assert(dst_lo_rc == rc_stack, "spill to bad register class");
 2042         __ spill(as_Register(Matcher::_regEncode[src_lo]), is64, dst_offset);
 2043       }
 2044       break;
 2045     case rc_float:
 2046       if (dst_lo_rc == rc_int) {  // fpr --> gpr copy
 2047         if (is64) {
 2048             __ fmovd(as_Register(Matcher::_regEncode[dst_lo]),
 2049                      as_FloatRegister(Matcher::_regEncode[src_lo]));
 2050         } else {
 2051             __ fmovs(as_Register(Matcher::_regEncode[dst_lo]),
 2052                      as_FloatRegister(Matcher::_regEncode[src_lo]));
 2053         }
 2054       } else if (dst_lo_rc == rc_float) { // fpr --> fpr copy
 2055         if (is64) {
 2056             __ fmovd(as_FloatRegister(Matcher::_regEncode[dst_lo]),
 2057                      as_FloatRegister(Matcher::_regEncode[src_lo]));
 2058         } else {
 2059             __ fmovs(as_FloatRegister(Matcher::_regEncode[dst_lo]),
 2060                      as_FloatRegister(Matcher::_regEncode[src_lo]));
 2061         }
 2062       } else {                    // fpr --> stack spill
 2063         assert(dst_lo_rc == rc_stack, "spill to bad register class");
 2064         __ spill(as_FloatRegister(Matcher::_regEncode[src_lo]),
 2065                  is64 ? __ D : __ S, dst_offset);
 2066       }
 2067       break;
 2068     case rc_stack:
 2069       if (dst_lo_rc == rc_int) {  // stack --> gpr load
 2070         __ unspill(as_Register(Matcher::_regEncode[dst_lo]), is64, src_offset);
 2071       } else if (dst_lo_rc == rc_float) { // stack --> fpr load
 2072         __ unspill(as_FloatRegister(Matcher::_regEncode[dst_lo]),
 2073                    is64 ? __ D : __ S, src_offset);
 2074       } else if (dst_lo_rc == rc_predicate) {
 2075         __ unspill_sve_predicate(as_PRegister(Matcher::_regEncode[dst_lo]), ra_->reg2offset(src_lo),
 2076                                  Matcher::scalable_vector_reg_size(T_BYTE) >> 3);
 2077       } else {                    // stack --> stack copy
 2078         assert(dst_lo_rc == rc_stack, "spill to bad register class");
 2079         if (ideal_reg() == Op_RegVectMask) {
 2080           __ spill_copy_sve_predicate_stack_to_stack(src_offset, dst_offset,
 2081                                                      Matcher::scalable_vector_reg_size(T_BYTE) >> 3);
 2082         } else {
 2083           __ unspill(rscratch1, is64, src_offset);
 2084           __ spill(rscratch1, is64, dst_offset);
 2085         }
 2086       }
 2087       break;
 2088     case rc_predicate:
 2089       if (dst_lo_rc == rc_predicate) {
 2090         __ sve_mov(as_PRegister(Matcher::_regEncode[dst_lo]), as_PRegister(Matcher::_regEncode[src_lo]));
 2091       } else if (dst_lo_rc == rc_stack) {
 2092         __ spill_sve_predicate(as_PRegister(Matcher::_regEncode[src_lo]), ra_->reg2offset(dst_lo),
 2093                                Matcher::scalable_vector_reg_size(T_BYTE) >> 3);
 2094       } else {
 2095         assert(false, "bad src and dst rc_class combination.");
 2096         ShouldNotReachHere();
 2097       }
 2098       break;
 2099     default:
 2100       assert(false, "bad rc_class for spill");
 2101       ShouldNotReachHere();
 2102     }
 2103   }
 2104 
 2105   if (st) {
 2106     st->print("spill ");
 2107     if (src_lo_rc == rc_stack) {
 2108       st->print("[sp, #%d] -> ", ra_->reg2offset(src_lo));
 2109     } else {
 2110       st->print("%s -> ", Matcher::regName[src_lo]);
 2111     }
 2112     if (dst_lo_rc == rc_stack) {
 2113       st->print("[sp, #%d]", ra_->reg2offset(dst_lo));
 2114     } else {
 2115       st->print("%s", Matcher::regName[dst_lo]);
 2116     }
 2117     if (bottom_type()->isa_vect() && !bottom_type()->isa_vectmask()) {
 2118       int vsize = 0;
 2119       switch (ideal_reg()) {
 2120       case Op_VecD:
 2121         vsize = 64;
 2122         break;
 2123       case Op_VecX:
 2124         vsize = 128;
 2125         break;
 2126       case Op_VecA:
 2127         vsize = Matcher::scalable_vector_reg_size(T_BYTE) * 8;
 2128         break;
 2129       default:
 2130         assert(false, "bad register type for spill");
 2131         ShouldNotReachHere();
 2132       }
 2133       st->print("\t# vector spill size = %d", vsize);
 2134     } else if (ideal_reg() == Op_RegVectMask) {
 2135       assert(Matcher::supports_scalable_vector(), "bad register type for spill");
 2136       int vsize = Matcher::scalable_predicate_reg_slots() * 32;
 2137       st->print("\t# predicate spill size = %d", vsize);
 2138     } else {
 2139       st->print("\t# spill size = %d", is64 ? 64 : 32);
 2140     }
 2141   }
 2142 
 2143   return 0;
 2144 
 2145 }
 2146 
 2147 #ifndef PRODUCT
 2148 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
 2149   if (!ra_)
 2150     st->print("N%d = SpillCopy(N%d)", _idx, in(1)->_idx);
 2151   else
 2152     implementation(nullptr, ra_, false, st);
 2153 }
 2154 #endif
 2155 
 2156 void MachSpillCopyNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 2157   implementation(masm, ra_, false, nullptr);
 2158 }
 2159 
 2160 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
 2161   return MachNode::size(ra_);
 2162 }
 2163 
 2164 //=============================================================================
 2165 
 2166 #ifndef PRODUCT
 2167 void BoxLockNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
 2168   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
 2169   int reg = ra_->get_reg_first(this);
 2170   st->print("add %s, rsp, #%d]\t# box lock",
 2171             Matcher::regName[reg], offset);
 2172 }
 2173 #endif
 2174 
 2175 void BoxLockNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 2176   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
 2177   int reg    = ra_->get_encode(this);
 2178 
 2179   // This add will handle any 24-bit signed offset. 24 bits allows an
 2180   // 8 megabyte stack frame.
 2181   __ add(as_Register(reg), sp, offset);
 2182 }
 2183 
 2184 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
 2185   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_).
 2186   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
 2187 
 2188   if (Assembler::operand_valid_for_add_sub_immediate(offset)) {
 2189     return NativeInstruction::instruction_size;
 2190   } else {
 2191     return 2 * NativeInstruction::instruction_size;
 2192   }
 2193 }
 2194 
 2195 //=============================================================================
 2196 
 2197 #ifndef PRODUCT
 2198 void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
 2199 {
 2200   st->print_cr("# MachUEPNode");
 2201   if (UseCompressedClassPointers) {
 2202     st->print_cr("\tldrw rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
 2203     st->print_cr("\tldrw r10, [rscratch2 + CompiledICData::speculated_klass_offset()]\t# compressed klass");
 2204     st->print_cr("\tcmpw rscratch1, r10");
 2205   } else {
 2206     st->print_cr("\tldr rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
 2207     st->print_cr("\tldr r10, [rscratch2 + CompiledICData::speculated_klass_offset()]\t# compressed klass");
 2208     st->print_cr("\tcmp rscratch1, r10");
 2209   }
 2210   st->print_cr("\tbne, SharedRuntime::_ic_miss_stub");
 2211 }
 2212 #endif
 2213 
 2214 void MachUEPNode::emit(C2_MacroAssembler* masm, PhaseRegAlloc* ra_) const
 2215 {
 2216   __ ic_check(InteriorEntryAlignment);
 2217 }
 2218 
 2219 uint MachUEPNode::size(PhaseRegAlloc* ra_) const
 2220 {
 2221   return MachNode::size(ra_);
 2222 }
 2223 
 2224 // REQUIRED EMIT CODE
 2225 
 2226 //=============================================================================
 2227 
 2228 // Emit exception handler code.
 2229 int HandlerImpl::emit_exception_handler(C2_MacroAssembler* masm)
 2230 {
 2231   // mov rscratch1 #exception_blob_entry_point
 2232   // br rscratch1
 2233   // Note that the code buffer's insts_mark is always relative to insts.
 2234   // That's why we must use the macroassembler to generate a handler.
 2235   address base = __ start_a_stub(size_exception_handler());
 2236   if (base == nullptr) {
 2237     ciEnv::current()->record_failure("CodeCache is full");
 2238     return 0;  // CodeBuffer::expand failed
 2239   }
 2240   int offset = __ offset();
 2241   __ far_jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
 2242   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
 2243   __ end_a_stub();
 2244   return offset;
 2245 }
 2246 
 2247 // Emit deopt handler code.
 2248 int HandlerImpl::emit_deopt_handler(C2_MacroAssembler* masm)
 2249 {
 2250   // Note that the code buffer's insts_mark is always relative to insts.
 2251   // That's why we must use the macroassembler to generate a handler.
 2252   address base = __ start_a_stub(size_deopt_handler());
 2253   if (base == nullptr) {
 2254     ciEnv::current()->record_failure("CodeCache is full");
 2255     return 0;  // CodeBuffer::expand failed
 2256   }
 2257   int offset = __ offset();
 2258 
 2259   __ adr(lr, __ pc());
 2260   __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 2261 
 2262   assert(__ offset() - offset == (int) size_deopt_handler(), "overflow");
 2263   __ end_a_stub();
 2264   return offset;
 2265 }
 2266 
 2267 // REQUIRED MATCHER CODE
 2268 
 2269 //=============================================================================
 2270 
 2271 bool Matcher::match_rule_supported(int opcode) {
 2272   if (!has_match_rule(opcode))
 2273     return false;
 2274 
 2275   switch (opcode) {
 2276     case Op_OnSpinWait:
 2277       return VM_Version::supports_on_spin_wait();
 2278     case Op_CacheWB:
 2279     case Op_CacheWBPreSync:
 2280     case Op_CacheWBPostSync:
 2281       if (!VM_Version::supports_data_cache_line_flush()) {
 2282         return false;
 2283       }
 2284       break;
 2285     case Op_ExpandBits:
 2286     case Op_CompressBits:
 2287       if (!VM_Version::supports_svebitperm()) {
 2288         return false;
 2289       }
 2290       break;
 2291     case Op_FmaF:
 2292     case Op_FmaD:
 2293     case Op_FmaVF:
 2294     case Op_FmaVD:
 2295       if (!UseFMA) {
 2296         return false;
 2297       }
 2298       break;
 2299     case Op_FmaHF:
 2300       // UseFMA flag also needs to be checked along with FEAT_FP16
 2301       if (!UseFMA || !is_feat_fp16_supported()) {
 2302         return false;
 2303       }
 2304       break;
 2305     case Op_AddHF:
 2306     case Op_SubHF:
 2307     case Op_MulHF:
 2308     case Op_DivHF:
 2309     case Op_MinHF:
 2310     case Op_MaxHF:
 2311     case Op_SqrtHF:
 2312       // Half-precision floating point scalar operations require FEAT_FP16
 2313       // to be available. FEAT_FP16 is enabled if both "fphp" and "asimdhp"
 2314       // features are supported.
 2315       if (!is_feat_fp16_supported()) {
 2316         return false;
 2317       }
 2318       break;
 2319   }
 2320 
 2321   return true; // Per default match rules are supported.
 2322 }
 2323 
 2324 const RegMask* Matcher::predicate_reg_mask(void) {
 2325   return &_PR_REG_mask;
 2326 }
 2327 
 2328 bool Matcher::supports_vector_calling_convention(void) {
 2329   return EnableVectorSupport;
 2330 }
 2331 
 2332 OptoRegPair Matcher::vector_return_value(uint ideal_reg) {
 2333   assert(EnableVectorSupport, "sanity");
 2334   int lo = V0_num;
 2335   int hi = V0_H_num;
 2336   if (ideal_reg == Op_VecX || ideal_reg == Op_VecA) {
 2337     hi = V0_K_num;
 2338   }
 2339   return OptoRegPair(hi, lo);
 2340 }
 2341 
 2342 // Is this branch offset short enough that a short branch can be used?
 2343 //
 2344 // NOTE: If the platform does not provide any short branch variants, then
 2345 //       this method should return false for offset 0.
 2346 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
 2347   // The passed offset is relative to address of the branch.
 2348 
 2349   return (-32768 <= offset && offset < 32768);
 2350 }
 2351 
 2352 // Vector width in bytes.
 2353 int Matcher::vector_width_in_bytes(BasicType bt) {
 2354   // The MaxVectorSize should have been set by detecting SVE max vector register size.
 2355   int size = MIN2((UseSVE > 0) ? (int)FloatRegister::sve_vl_max : (int)FloatRegister::neon_vl, (int)MaxVectorSize);
 2356   // Minimum 2 values in vector
 2357   if (size < 2*type2aelembytes(bt)) size = 0;
 2358   // But never < 4
 2359   if (size < 4) size = 0;
 2360   return size;
 2361 }
 2362 
 2363 // Limits on vector size (number of elements) loaded into vector.
 2364 int Matcher::max_vector_size(const BasicType bt) {
 2365   return vector_width_in_bytes(bt)/type2aelembytes(bt);
 2366 }
 2367 
 2368 int Matcher::min_vector_size(const BasicType bt) {
 2369   int max_size = max_vector_size(bt);
 2370   // Limit the min vector size to 8 bytes.
 2371   int size = 8 / type2aelembytes(bt);
 2372   if (bt == T_BYTE) {
 2373     // To support vector api shuffle/rearrange.
 2374     size = 4;
 2375   } else if (bt == T_BOOLEAN) {
 2376     // To support vector api load/store mask.
 2377     size = 2;
 2378   }
 2379   if (size < 2) size = 2;
 2380   return MIN2(size, max_size);
 2381 }
 2382 
 2383 int Matcher::max_vector_size_auto_vectorization(const BasicType bt) {
 2384   return Matcher::max_vector_size(bt);
 2385 }
 2386 
 2387 // Actual max scalable vector register length.
 2388 int Matcher::scalable_vector_reg_size(const BasicType bt) {
 2389   return Matcher::max_vector_size(bt);
 2390 }
 2391 
 2392 // Vector ideal reg.
 2393 uint Matcher::vector_ideal_reg(int len) {
 2394   if (UseSVE > 0 && FloatRegister::neon_vl < len && len <= FloatRegister::sve_vl_max) {
 2395     return Op_VecA;
 2396   }
 2397   switch(len) {
 2398     // For 16-bit/32-bit mask vector, reuse VecD.
 2399     case  2:
 2400     case  4:
 2401     case  8: return Op_VecD;
 2402     case 16: return Op_VecX;
 2403   }
 2404   ShouldNotReachHere();
 2405   return 0;
 2406 }
 2407 
 2408 MachOper* Matcher::pd_specialize_generic_vector_operand(MachOper* generic_opnd, uint ideal_reg, bool is_temp) {
 2409   assert(Matcher::is_generic_vector(generic_opnd), "not generic");
 2410   switch (ideal_reg) {
 2411     case Op_VecA: return new vecAOper();
 2412     case Op_VecD: return new vecDOper();
 2413     case Op_VecX: return new vecXOper();
 2414   }
 2415   ShouldNotReachHere();
 2416   return nullptr;
 2417 }
 2418 
 2419 bool Matcher::is_reg2reg_move(MachNode* m) {
 2420   return false;
 2421 }
 2422 
 2423 bool Matcher::is_generic_vector(MachOper* opnd)  {
 2424   return opnd->opcode() == VREG;
 2425 }
 2426 
 2427 // Return whether or not this register is ever used as an argument.
 2428 // This function is used on startup to build the trampoline stubs in
 2429 // generateOptoStub.  Registers not mentioned will be killed by the VM
 2430 // call in the trampoline, and arguments in those registers not be
 2431 // available to the callee.
 2432 bool Matcher::can_be_java_arg(int reg)
 2433 {
 2434   return
 2435     reg ==  R0_num || reg == R0_H_num ||
 2436     reg ==  R1_num || reg == R1_H_num ||
 2437     reg ==  R2_num || reg == R2_H_num ||
 2438     reg ==  R3_num || reg == R3_H_num ||
 2439     reg ==  R4_num || reg == R4_H_num ||
 2440     reg ==  R5_num || reg == R5_H_num ||
 2441     reg ==  R6_num || reg == R6_H_num ||
 2442     reg ==  R7_num || reg == R7_H_num ||
 2443     reg ==  V0_num || reg == V0_H_num ||
 2444     reg ==  V1_num || reg == V1_H_num ||
 2445     reg ==  V2_num || reg == V2_H_num ||
 2446     reg ==  V3_num || reg == V3_H_num ||
 2447     reg ==  V4_num || reg == V4_H_num ||
 2448     reg ==  V5_num || reg == V5_H_num ||
 2449     reg ==  V6_num || reg == V6_H_num ||
 2450     reg ==  V7_num || reg == V7_H_num;
 2451 }
 2452 
 2453 bool Matcher::is_spillable_arg(int reg)
 2454 {
 2455   return can_be_java_arg(reg);
 2456 }
 2457 
 2458 uint Matcher::int_pressure_limit()
 2459 {
 2460   // JDK-8183543: When taking the number of available registers as int
 2461   // register pressure threshold, the jtreg test:
 2462   // test/hotspot/jtreg/compiler/regalloc/TestC2IntPressure.java
 2463   // failed due to C2 compilation failure with
 2464   // "COMPILE SKIPPED: failed spill-split-recycle sanity check".
 2465   //
 2466   // A derived pointer is live at CallNode and then is flagged by RA
 2467   // as a spilled LRG. Spilling heuristics(Spill-USE) explicitly skip
 2468   // derived pointers and lastly fail to spill after reaching maximum
 2469   // number of iterations. Lowering the default pressure threshold to
 2470   // (_NO_SPECIAL_REG32_mask.Size() minus 1) forces CallNode to become
 2471   // a high register pressure area of the code so that split_DEF can
 2472   // generate DefinitionSpillCopy for the derived pointer.
 2473   uint default_int_pressure_threshold = _NO_SPECIAL_REG32_mask.Size() - 1;
 2474   if (!PreserveFramePointer) {
 2475     // When PreserveFramePointer is off, frame pointer is allocatable,
 2476     // but different from other SOC registers, it is excluded from
 2477     // fatproj's mask because its save type is No-Save. Decrease 1 to
 2478     // ensure high pressure at fatproj when PreserveFramePointer is off.
 2479     // See check_pressure_at_fatproj().
 2480     default_int_pressure_threshold--;
 2481   }
 2482   return (INTPRESSURE == -1) ? default_int_pressure_threshold : INTPRESSURE;
 2483 }
 2484 
 2485 uint Matcher::float_pressure_limit()
 2486 {
 2487   // _FLOAT_REG_mask is generated by adlc from the float_reg register class.
 2488   return (FLOATPRESSURE == -1) ? _FLOAT_REG_mask.Size() : FLOATPRESSURE;
 2489 }
 2490 
 2491 bool Matcher::use_asm_for_ldiv_by_con(jlong divisor) {
 2492   return false;
 2493 }
 2494 
 2495 RegMask Matcher::divI_proj_mask() {
 2496   ShouldNotReachHere();
 2497   return RegMask();
 2498 }
 2499 
 2500 // Register for MODI projection of divmodI.
 2501 RegMask Matcher::modI_proj_mask() {
 2502   ShouldNotReachHere();
 2503   return RegMask();
 2504 }
 2505 
 2506 // Register for DIVL projection of divmodL.
 2507 RegMask Matcher::divL_proj_mask() {
 2508   ShouldNotReachHere();
 2509   return RegMask();
 2510 }
 2511 
 2512 // Register for MODL projection of divmodL.
 2513 RegMask Matcher::modL_proj_mask() {
 2514   ShouldNotReachHere();
 2515   return RegMask();
 2516 }
 2517 
 2518 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
 2519   return FP_REG_mask();
 2520 }
 2521 
 2522 bool size_fits_all_mem_uses(AddPNode* addp, int shift) {
 2523   for (DUIterator_Fast imax, i = addp->fast_outs(imax); i < imax; i++) {
 2524     Node* u = addp->fast_out(i);
 2525     if (u->is_LoadStore()) {
 2526       // On AArch64, LoadStoreNodes (i.e. compare and swap
 2527       // instructions) only take register indirect as an operand, so
 2528       // any attempt to use an AddPNode as an input to a LoadStoreNode
 2529       // must fail.
 2530       return false;
 2531     }
 2532     if (u->is_Mem()) {
 2533       int opsize = u->as_Mem()->memory_size();
 2534       assert(opsize > 0, "unexpected memory operand size");
 2535       if (u->as_Mem()->memory_size() != (1<<shift)) {
 2536         return false;
 2537       }
 2538     }
 2539   }
 2540   return true;
 2541 }
 2542 
 2543 // Convert BootTest condition to Assembler condition.
 2544 // Replicate the logic of cmpOpOper::ccode() and cmpOpUOper::ccode().
 2545 Assembler::Condition to_assembler_cond(BoolTest::mask cond) {
 2546   Assembler::Condition result;
 2547   switch(cond) {
 2548     case BoolTest::eq:
 2549       result = Assembler::EQ; break;
 2550     case BoolTest::ne:
 2551       result = Assembler::NE; break;
 2552     case BoolTest::le:
 2553       result = Assembler::LE; break;
 2554     case BoolTest::ge:
 2555       result = Assembler::GE; break;
 2556     case BoolTest::lt:
 2557       result = Assembler::LT; break;
 2558     case BoolTest::gt:
 2559       result = Assembler::GT; break;
 2560     case BoolTest::ule:
 2561       result = Assembler::LS; break;
 2562     case BoolTest::uge:
 2563       result = Assembler::HS; break;
 2564     case BoolTest::ult:
 2565       result = Assembler::LO; break;
 2566     case BoolTest::ugt:
 2567       result = Assembler::HI; break;
 2568     case BoolTest::overflow:
 2569       result = Assembler::VS; break;
 2570     case BoolTest::no_overflow:
 2571       result = Assembler::VC; break;
 2572     default:
 2573       ShouldNotReachHere();
 2574       return Assembler::Condition(-1);
 2575   }
 2576 
 2577   // Check conversion
 2578   if (cond & BoolTest::unsigned_compare) {
 2579     assert(cmpOpUOper((BoolTest::mask)((int)cond & ~(BoolTest::unsigned_compare))).ccode() == result, "Invalid conversion");
 2580   } else {
 2581     assert(cmpOpOper(cond).ccode() == result, "Invalid conversion");
 2582   }
 2583 
 2584   return result;
 2585 }
 2586 
 2587 // Binary src (Replicate con)
 2588 static bool is_valid_sve_arith_imm_pattern(Node* n, Node* m) {
 2589   if (n == nullptr || m == nullptr) {
 2590     return false;
 2591   }
 2592 
 2593   if (UseSVE == 0 || m->Opcode() != Op_Replicate) {
 2594     return false;
 2595   }
 2596 
 2597   Node* imm_node = m->in(1);
 2598   if (!imm_node->is_Con()) {
 2599     return false;
 2600   }
 2601 
 2602   const Type* t = imm_node->bottom_type();
 2603   if (!(t->isa_int() || t->isa_long())) {
 2604     return false;
 2605   }
 2606 
 2607   switch (n->Opcode()) {
 2608   case Op_AndV:
 2609   case Op_OrV:
 2610   case Op_XorV: {
 2611     Assembler::SIMD_RegVariant T = Assembler::elemType_to_regVariant(Matcher::vector_element_basic_type(n));
 2612     uint64_t value = t->isa_long() ? (uint64_t)imm_node->get_long() : (uint64_t)imm_node->get_int();
 2613     return Assembler::operand_valid_for_sve_logical_immediate(Assembler::regVariant_to_elemBits(T), value);
 2614   }
 2615   case Op_AddVB:
 2616     return (imm_node->get_int() <= 255 && imm_node->get_int() >= -255);
 2617   case Op_AddVS:
 2618   case Op_AddVI:
 2619     return Assembler::operand_valid_for_sve_add_sub_immediate((int64_t)imm_node->get_int());
 2620   case Op_AddVL:
 2621     return Assembler::operand_valid_for_sve_add_sub_immediate(imm_node->get_long());
 2622   default:
 2623     return false;
 2624   }
 2625 }
 2626 
 2627 // (XorV src (Replicate m1))
 2628 // (XorVMask src (MaskAll m1))
 2629 static bool is_vector_bitwise_not_pattern(Node* n, Node* m) {
 2630   if (n != nullptr && m != nullptr) {
 2631     return (n->Opcode() == Op_XorV || n->Opcode() == Op_XorVMask) &&
 2632            VectorNode::is_all_ones_vector(m);
 2633   }
 2634   return false;
 2635 }
 2636 
 2637 // Should the matcher clone input 'm' of node 'n'?
 2638 bool Matcher::pd_clone_node(Node* n, Node* m, Matcher::MStack& mstack) {
 2639   if (is_vshift_con_pattern(n, m) ||
 2640       is_vector_bitwise_not_pattern(n, m) ||
 2641       is_valid_sve_arith_imm_pattern(n, m) ||
 2642       is_encode_and_store_pattern(n, m)) {
 2643     mstack.push(m, Visit);
 2644     return true;
 2645   }
 2646   return false;
 2647 }
 2648 
 2649 // Should the Matcher clone shifts on addressing modes, expecting them
 2650 // to be subsumed into complex addressing expressions or compute them
 2651 // into registers?
 2652 bool Matcher::pd_clone_address_expressions(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) {
 2653 
 2654   // Loads and stores with indirect memory input (e.g., volatile loads and
 2655   // stores) do not subsume the input into complex addressing expressions. If
 2656   // the addressing expression is input to at least one such load or store, do
 2657   // not clone the addressing expression. Query needs_acquiring_load and
 2658   // needs_releasing_store as a proxy for indirect memory input, as it is not
 2659   // possible to directly query for indirect memory input at this stage.
 2660   for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
 2661     Node* n = m->fast_out(i);
 2662     if (n->is_Load() && needs_acquiring_load(n)) {
 2663       return false;
 2664     }
 2665     if (n->is_Store() && needs_releasing_store(n)) {
 2666       return false;
 2667     }
 2668   }
 2669 
 2670   if (clone_base_plus_offset_address(m, mstack, address_visited)) {
 2671     return true;
 2672   }
 2673 
 2674   Node *off = m->in(AddPNode::Offset);
 2675   if (off->Opcode() == Op_LShiftL && off->in(2)->is_Con() &&
 2676       size_fits_all_mem_uses(m, off->in(2)->get_int()) &&
 2677       // Are there other uses besides address expressions?
 2678       !is_visited(off)) {
 2679     address_visited.set(off->_idx); // Flag as address_visited
 2680     mstack.push(off->in(2), Visit);
 2681     Node *conv = off->in(1);
 2682     if (conv->Opcode() == Op_ConvI2L &&
 2683         // Are there other uses besides address expressions?
 2684         !is_visited(conv)) {
 2685       address_visited.set(conv->_idx); // Flag as address_visited
 2686       mstack.push(conv->in(1), Pre_Visit);
 2687     } else {
 2688       mstack.push(conv, Pre_Visit);
 2689     }
 2690     address_visited.test_set(m->_idx); // Flag as address_visited
 2691     mstack.push(m->in(AddPNode::Address), Pre_Visit);
 2692     mstack.push(m->in(AddPNode::Base), Pre_Visit);
 2693     return true;
 2694   } else if (off->Opcode() == Op_ConvI2L &&
 2695              // Are there other uses besides address expressions?
 2696              !is_visited(off)) {
 2697     address_visited.test_set(m->_idx); // Flag as address_visited
 2698     address_visited.set(off->_idx); // Flag as address_visited
 2699     mstack.push(off->in(1), Pre_Visit);
 2700     mstack.push(m->in(AddPNode::Address), Pre_Visit);
 2701     mstack.push(m->in(AddPNode::Base), Pre_Visit);
 2702     return true;
 2703   }
 2704   return false;
 2705 }
 2706 
 2707 #define MOV_VOLATILE(REG, BASE, INDEX, SCALE, DISP, SCRATCH, INSN)      \
 2708   {                                                                     \
 2709     guarantee(INDEX == -1, "mode not permitted for volatile");          \
 2710     guarantee(DISP == 0, "mode not permitted for volatile");            \
 2711     guarantee(SCALE == 0, "mode not permitted for volatile");           \
 2712     __ INSN(REG, as_Register(BASE));                                    \
 2713   }
 2714 
 2715 
 2716 static Address mem2address(int opcode, Register base, int index, int size, int disp)
 2717   {
 2718     Address::extend scale;
 2719 
 2720     // Hooboy, this is fugly.  We need a way to communicate to the
 2721     // encoder that the index needs to be sign extended, so we have to
 2722     // enumerate all the cases.
 2723     switch (opcode) {
 2724     case INDINDEXSCALEDI2L:
 2725     case INDINDEXSCALEDI2LN:
 2726     case INDINDEXI2L:
 2727     case INDINDEXI2LN:
 2728       scale = Address::sxtw(size);
 2729       break;
 2730     default:
 2731       scale = Address::lsl(size);
 2732     }
 2733 
 2734     if (index == -1) {
 2735       return Address(base, disp);
 2736     } else {
 2737       assert(disp == 0, "unsupported address mode: disp = %d", disp);
 2738       return Address(base, as_Register(index), scale);
 2739     }
 2740   }
 2741 
 2742 
 2743 typedef void (MacroAssembler::* mem_insn)(Register Rt, const Address &adr);
 2744 typedef void (MacroAssembler::* mem_insn2)(Register Rt, Register adr);
 2745 typedef void (MacroAssembler::* mem_float_insn)(FloatRegister Rt, const Address &adr);
 2746 typedef void (MacroAssembler::* mem_vector_insn)(FloatRegister Rt,
 2747                                   MacroAssembler::SIMD_RegVariant T, const Address &adr);
 2748 
 2749   // Used for all non-volatile memory accesses.  The use of
 2750   // $mem->opcode() to discover whether this pattern uses sign-extended
 2751   // offsets is something of a kludge.
 2752   static void loadStore(C2_MacroAssembler* masm, mem_insn insn,
 2753                         Register reg, int opcode,
 2754                         Register base, int index, int scale, int disp,
 2755                         int size_in_memory)
 2756   {
 2757     Address addr = mem2address(opcode, base, index, scale, disp);
 2758     if (addr.getMode() == Address::base_plus_offset) {
 2759       /* Fix up any out-of-range offsets. */
 2760       assert_different_registers(rscratch1, base);
 2761       assert_different_registers(rscratch1, reg);
 2762       addr = __ legitimize_address(addr, size_in_memory, rscratch1);
 2763     }
 2764     (masm->*insn)(reg, addr);
 2765   }
 2766 
 2767   static void loadStore(C2_MacroAssembler* masm, mem_float_insn insn,
 2768                         FloatRegister reg, int opcode,
 2769                         Register base, int index, int size, int disp,
 2770                         int size_in_memory)
 2771   {
 2772     Address::extend scale;
 2773 
 2774     switch (opcode) {
 2775     case INDINDEXSCALEDI2L:
 2776     case INDINDEXSCALEDI2LN:
 2777       scale = Address::sxtw(size);
 2778       break;
 2779     default:
 2780       scale = Address::lsl(size);
 2781     }
 2782 
 2783     if (index == -1) {
 2784       // Fix up any out-of-range offsets.
 2785       assert_different_registers(rscratch1, base);
 2786       Address addr = Address(base, disp);
 2787       addr = __ legitimize_address(addr, size_in_memory, rscratch1);
 2788       (masm->*insn)(reg, addr);
 2789     } else {
 2790       assert(disp == 0, "unsupported address mode: disp = %d", disp);
 2791       (masm->*insn)(reg, Address(base, as_Register(index), scale));
 2792     }
 2793   }
 2794 
 2795   static void loadStore(C2_MacroAssembler* masm, mem_vector_insn insn,
 2796                         FloatRegister reg, MacroAssembler::SIMD_RegVariant T,
 2797                         int opcode, Register base, int index, int size, int disp)
 2798   {
 2799     if (index == -1) {
 2800       (masm->*insn)(reg, T, Address(base, disp));
 2801     } else {
 2802       assert(disp == 0, "unsupported address mode");
 2803       (masm->*insn)(reg, T, Address(base, as_Register(index), Address::lsl(size)));
 2804     }
 2805   }
 2806 
 2807 %}
 2808 
 2809 
 2810 
 2811 //----------ENCODING BLOCK-----------------------------------------------------
 2812 // This block specifies the encoding classes used by the compiler to
 2813 // output byte streams.  Encoding classes are parameterized macros
 2814 // used by Machine Instruction Nodes in order to generate the bit
 2815 // encoding of the instruction.  Operands specify their base encoding
 2816 // interface with the interface keyword.  There are currently
 2817 // supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, &
 2818 // COND_INTER.  REG_INTER causes an operand to generate a function
 2819 // which returns its register number when queried.  CONST_INTER causes
 2820 // an operand to generate a function which returns the value of the
 2821 // constant when queried.  MEMORY_INTER causes an operand to generate
 2822 // four functions which return the Base Register, the Index Register,
 2823 // the Scale Value, and the Offset Value of the operand when queried.
 2824 // COND_INTER causes an operand to generate six functions which return
 2825 // the encoding code (ie - encoding bits for the instruction)
 2826 // associated with each basic boolean condition for a conditional
 2827 // instruction.
 2828 //
 2829 // Instructions specify two basic values for encoding.  Again, a
 2830 // function is available to check if the constant displacement is an
 2831 // oop. They use the ins_encode keyword to specify their encoding
 2832 // classes (which must be a sequence of enc_class names, and their
 2833 // parameters, specified in the encoding block), and they use the
 2834 // opcode keyword to specify, in order, their primary, secondary, and
 2835 // tertiary opcode.  Only the opcode sections which a particular
 2836 // instruction needs for encoding need to be specified.
 2837 encode %{
 2838   // Build emit functions for each basic byte or larger field in the
 2839   // intel encoding scheme (opcode, rm, sib, immediate), and call them
 2840   // from C++ code in the enc_class source block.  Emit functions will
 2841   // live in the main source block for now.  In future, we can
 2842   // generalize this by adding a syntax that specifies the sizes of
 2843   // fields in an order, so that the adlc can build the emit functions
 2844   // automagically
 2845 
 2846   // catch all for unimplemented encodings
 2847   enc_class enc_unimplemented %{
 2848     __ unimplemented("C2 catch all");
 2849   %}
 2850 
 2851   // BEGIN Non-volatile memory access
 2852 
 2853   // This encoding class is generated automatically from ad_encode.m4.
 2854   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2855   enc_class aarch64_enc_ldrsbw(iRegI dst, memory1 mem) %{
 2856     Register dst_reg = as_Register($dst$$reg);
 2857     loadStore(masm, &MacroAssembler::ldrsbw, dst_reg, $mem->opcode(),
 2858                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 1);
 2859   %}
 2860 
 2861   // This encoding class is generated automatically from ad_encode.m4.
 2862   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2863   enc_class aarch64_enc_ldrsb(iRegI dst, memory1 mem) %{
 2864     Register dst_reg = as_Register($dst$$reg);
 2865     loadStore(masm, &MacroAssembler::ldrsb, dst_reg, $mem->opcode(),
 2866                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 1);
 2867   %}
 2868 
 2869   // This encoding class is generated automatically from ad_encode.m4.
 2870   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2871   enc_class aarch64_enc_ldrb(iRegI dst, memory1 mem) %{
 2872     Register dst_reg = as_Register($dst$$reg);
 2873     loadStore(masm, &MacroAssembler::ldrb, dst_reg, $mem->opcode(),
 2874                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 1);
 2875   %}
 2876 
 2877   // This encoding class is generated automatically from ad_encode.m4.
 2878   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2879   enc_class aarch64_enc_ldrb(iRegL dst, memory1 mem) %{
 2880     Register dst_reg = as_Register($dst$$reg);
 2881     loadStore(masm, &MacroAssembler::ldrb, dst_reg, $mem->opcode(),
 2882                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 1);
 2883   %}
 2884 
 2885   // This encoding class is generated automatically from ad_encode.m4.
 2886   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2887   enc_class aarch64_enc_ldrshw(iRegI dst, memory2 mem) %{
 2888     Register dst_reg = as_Register($dst$$reg);
 2889     loadStore(masm, &MacroAssembler::ldrshw, dst_reg, $mem->opcode(),
 2890                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 2);
 2891   %}
 2892 
 2893   // This encoding class is generated automatically from ad_encode.m4.
 2894   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2895   enc_class aarch64_enc_ldrsh(iRegI dst, memory2 mem) %{
 2896     Register dst_reg = as_Register($dst$$reg);
 2897     loadStore(masm, &MacroAssembler::ldrsh, dst_reg, $mem->opcode(),
 2898                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 2);
 2899   %}
 2900 
 2901   // This encoding class is generated automatically from ad_encode.m4.
 2902   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2903   enc_class aarch64_enc_ldrh(iRegI dst, memory2 mem) %{
 2904     Register dst_reg = as_Register($dst$$reg);
 2905     loadStore(masm, &MacroAssembler::ldrh, dst_reg, $mem->opcode(),
 2906                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 2);
 2907   %}
 2908 
 2909   // This encoding class is generated automatically from ad_encode.m4.
 2910   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2911   enc_class aarch64_enc_ldrh(iRegL dst, memory2 mem) %{
 2912     Register dst_reg = as_Register($dst$$reg);
 2913     loadStore(masm, &MacroAssembler::ldrh, dst_reg, $mem->opcode(),
 2914                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 2);
 2915   %}
 2916 
 2917   // This encoding class is generated automatically from ad_encode.m4.
 2918   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2919   enc_class aarch64_enc_ldrw(iRegI dst, memory4 mem) %{
 2920     Register dst_reg = as_Register($dst$$reg);
 2921     loadStore(masm, &MacroAssembler::ldrw, dst_reg, $mem->opcode(),
 2922                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4);
 2923   %}
 2924 
 2925   // This encoding class is generated automatically from ad_encode.m4.
 2926   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2927   enc_class aarch64_enc_ldrw(iRegL dst, memory4 mem) %{
 2928     Register dst_reg = as_Register($dst$$reg);
 2929     loadStore(masm, &MacroAssembler::ldrw, dst_reg, $mem->opcode(),
 2930                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4);
 2931   %}
 2932 
 2933   // This encoding class is generated automatically from ad_encode.m4.
 2934   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2935   enc_class aarch64_enc_ldrsw(iRegL dst, memory4 mem) %{
 2936     Register dst_reg = as_Register($dst$$reg);
 2937     loadStore(masm, &MacroAssembler::ldrsw, dst_reg, $mem->opcode(),
 2938                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4);
 2939   %}
 2940 
 2941   // This encoding class is generated automatically from ad_encode.m4.
 2942   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2943   enc_class aarch64_enc_ldr(iRegL dst, memory8 mem) %{
 2944     Register dst_reg = as_Register($dst$$reg);
 2945     loadStore(masm, &MacroAssembler::ldr, dst_reg, $mem->opcode(),
 2946                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 8);
 2947   %}
 2948 
 2949   // This encoding class is generated automatically from ad_encode.m4.
 2950   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2951   enc_class aarch64_enc_ldrs(vRegF dst, memory4 mem) %{
 2952     FloatRegister dst_reg = as_FloatRegister($dst$$reg);
 2953     loadStore(masm, &MacroAssembler::ldrs, dst_reg, $mem->opcode(),
 2954                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4);
 2955   %}
 2956 
 2957   // This encoding class is generated automatically from ad_encode.m4.
 2958   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2959   enc_class aarch64_enc_ldrd(vRegD dst, memory8 mem) %{
 2960     FloatRegister dst_reg = as_FloatRegister($dst$$reg);
 2961     loadStore(masm, &MacroAssembler::ldrd, dst_reg, $mem->opcode(),
 2962                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 8);
 2963   %}
 2964 
 2965   // This encoding class is generated automatically from ad_encode.m4.
 2966   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2967   enc_class aarch64_enc_strb(iRegI src, memory1 mem) %{
 2968     Register src_reg = as_Register($src$$reg);
 2969     loadStore(masm, &MacroAssembler::strb, src_reg, $mem->opcode(),
 2970                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 1);
 2971   %}
 2972 
 2973   // This encoding class is generated automatically from ad_encode.m4.
 2974   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2975   enc_class aarch64_enc_strb0(memory1 mem) %{
 2976     loadStore(masm, &MacroAssembler::strb, zr, $mem->opcode(),
 2977                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 1);
 2978   %}
 2979 
 2980   // This encoding class is generated automatically from ad_encode.m4.
 2981   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2982   enc_class aarch64_enc_strh(iRegI src, memory2 mem) %{
 2983     Register src_reg = as_Register($src$$reg);
 2984     loadStore(masm, &MacroAssembler::strh, src_reg, $mem->opcode(),
 2985                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 2);
 2986   %}
 2987 
 2988   // This encoding class is generated automatically from ad_encode.m4.
 2989   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2990   enc_class aarch64_enc_strh0(memory2 mem) %{
 2991     loadStore(masm, &MacroAssembler::strh, zr, $mem->opcode(),
 2992                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 2);
 2993   %}
 2994 
 2995   // This encoding class is generated automatically from ad_encode.m4.
 2996   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 2997   enc_class aarch64_enc_strw(iRegI src, memory4 mem) %{
 2998     Register src_reg = as_Register($src$$reg);
 2999     loadStore(masm, &MacroAssembler::strw, src_reg, $mem->opcode(),
 3000                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4);
 3001   %}
 3002 
 3003   // This encoding class is generated automatically from ad_encode.m4.
 3004   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 3005   enc_class aarch64_enc_strw0(memory4 mem) %{
 3006     loadStore(masm, &MacroAssembler::strw, zr, $mem->opcode(),
 3007                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4);
 3008   %}
 3009 
 3010   // This encoding class is generated automatically from ad_encode.m4.
 3011   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 3012   enc_class aarch64_enc_str(iRegL src, memory8 mem) %{
 3013     Register src_reg = as_Register($src$$reg);
 3014     // we sometimes get asked to store the stack pointer into the
 3015     // current thread -- we cannot do that directly on AArch64
 3016     if (src_reg == r31_sp) {
 3017       assert(as_Register($mem$$base) == rthread, "unexpected store for sp");
 3018       __ mov(rscratch2, sp);
 3019       src_reg = rscratch2;
 3020     }
 3021     loadStore(masm, &MacroAssembler::str, src_reg, $mem->opcode(),
 3022                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 8);
 3023   %}
 3024 
 3025   // This encoding class is generated automatically from ad_encode.m4.
 3026   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 3027   enc_class aarch64_enc_str0(memory8 mem) %{
 3028     loadStore(masm, &MacroAssembler::str, zr, $mem->opcode(),
 3029                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 8);
 3030   %}
 3031 
 3032   // This encoding class is generated automatically from ad_encode.m4.
 3033   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 3034   enc_class aarch64_enc_strs(vRegF src, memory4 mem) %{
 3035     FloatRegister src_reg = as_FloatRegister($src$$reg);
 3036     loadStore(masm, &MacroAssembler::strs, src_reg, $mem->opcode(),
 3037                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4);
 3038   %}
 3039 
 3040   // This encoding class is generated automatically from ad_encode.m4.
 3041   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 3042   enc_class aarch64_enc_strd(vRegD src, memory8 mem) %{
 3043     FloatRegister src_reg = as_FloatRegister($src$$reg);
 3044     loadStore(masm, &MacroAssembler::strd, src_reg, $mem->opcode(),
 3045                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 8);
 3046   %}
 3047 
 3048   // This encoding class is generated automatically from ad_encode.m4.
 3049   // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 3050   enc_class aarch64_enc_strb0_ordered(memory4 mem) %{
 3051       __ membar(Assembler::StoreStore);
 3052       loadStore(masm, &MacroAssembler::strb, zr, $mem->opcode(),
 3053                as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 1);
 3054   %}
 3055 
 3056   // END Non-volatile memory access
 3057 
 3058   // Vector loads and stores
 3059   enc_class aarch64_enc_ldrvH(vReg dst, memory mem) %{
 3060     FloatRegister dst_reg = as_FloatRegister($dst$$reg);
 3061     loadStore(masm, &MacroAssembler::ldr, dst_reg, MacroAssembler::H,
 3062        $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
 3063   %}
 3064 
 3065   enc_class aarch64_enc_ldrvS(vReg dst, memory mem) %{
 3066     FloatRegister dst_reg = as_FloatRegister($dst$$reg);
 3067     loadStore(masm, &MacroAssembler::ldr, dst_reg, MacroAssembler::S,
 3068        $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
 3069   %}
 3070 
 3071   enc_class aarch64_enc_ldrvD(vReg dst, memory mem) %{
 3072     FloatRegister dst_reg = as_FloatRegister($dst$$reg);
 3073     loadStore(masm, &MacroAssembler::ldr, dst_reg, MacroAssembler::D,
 3074        $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
 3075   %}
 3076 
 3077   enc_class aarch64_enc_ldrvQ(vReg dst, memory mem) %{
 3078     FloatRegister dst_reg = as_FloatRegister($dst$$reg);
 3079     loadStore(masm, &MacroAssembler::ldr, dst_reg, MacroAssembler::Q,
 3080        $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
 3081   %}
 3082 
 3083   enc_class aarch64_enc_strvH(vReg src, memory mem) %{
 3084     FloatRegister src_reg = as_FloatRegister($src$$reg);
 3085     loadStore(masm, &MacroAssembler::str, src_reg, MacroAssembler::H,
 3086        $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
 3087   %}
 3088 
 3089   enc_class aarch64_enc_strvS(vReg src, memory mem) %{
 3090     FloatRegister src_reg = as_FloatRegister($src$$reg);
 3091     loadStore(masm, &MacroAssembler::str, src_reg, MacroAssembler::S,
 3092        $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
 3093   %}
 3094 
 3095   enc_class aarch64_enc_strvD(vReg src, memory mem) %{
 3096     FloatRegister src_reg = as_FloatRegister($src$$reg);
 3097     loadStore(masm, &MacroAssembler::str, src_reg, MacroAssembler::D,
 3098        $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
 3099   %}
 3100 
 3101   enc_class aarch64_enc_strvQ(vReg src, memory mem) %{
 3102     FloatRegister src_reg = as_FloatRegister($src$$reg);
 3103     loadStore(masm, &MacroAssembler::str, src_reg, MacroAssembler::Q,
 3104        $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp);
 3105   %}
 3106 
 3107   // volatile loads and stores
 3108 
 3109   enc_class aarch64_enc_stlrb(iRegI src, memory mem) %{
 3110     MOV_VOLATILE(as_Register($src$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3111                  rscratch1, stlrb);
 3112   %}
 3113 
 3114   enc_class aarch64_enc_stlrb0(memory mem) %{
 3115     MOV_VOLATILE(zr, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3116                  rscratch1, stlrb);
 3117   %}
 3118 
 3119   enc_class aarch64_enc_stlrh(iRegI src, memory mem) %{
 3120     MOV_VOLATILE(as_Register($src$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3121                  rscratch1, stlrh);
 3122   %}
 3123 
 3124   enc_class aarch64_enc_stlrh0(memory mem) %{
 3125     MOV_VOLATILE(zr, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3126                  rscratch1, stlrh);
 3127   %}
 3128 
 3129   enc_class aarch64_enc_stlrw(iRegI src, memory mem) %{
 3130     MOV_VOLATILE(as_Register($src$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3131                  rscratch1, stlrw);
 3132   %}
 3133 
 3134   enc_class aarch64_enc_stlrw0(memory mem) %{
 3135     MOV_VOLATILE(zr, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3136                  rscratch1, stlrw);
 3137   %}
 3138 
 3139   enc_class aarch64_enc_ldarsbw(iRegI dst, memory mem) %{
 3140     Register dst_reg = as_Register($dst$$reg);
 3141     MOV_VOLATILE(dst_reg, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3142              rscratch1, ldarb);
 3143     __ sxtbw(dst_reg, dst_reg);
 3144   %}
 3145 
 3146   enc_class aarch64_enc_ldarsb(iRegL dst, memory mem) %{
 3147     Register dst_reg = as_Register($dst$$reg);
 3148     MOV_VOLATILE(dst_reg, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3149              rscratch1, ldarb);
 3150     __ sxtb(dst_reg, dst_reg);
 3151   %}
 3152 
 3153   enc_class aarch64_enc_ldarbw(iRegI dst, memory mem) %{
 3154     MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3155              rscratch1, ldarb);
 3156   %}
 3157 
 3158   enc_class aarch64_enc_ldarb(iRegL dst, memory mem) %{
 3159     MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3160              rscratch1, ldarb);
 3161   %}
 3162 
 3163   enc_class aarch64_enc_ldarshw(iRegI dst, memory mem) %{
 3164     Register dst_reg = as_Register($dst$$reg);
 3165     MOV_VOLATILE(dst_reg, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3166              rscratch1, ldarh);
 3167     __ sxthw(dst_reg, dst_reg);
 3168   %}
 3169 
 3170   enc_class aarch64_enc_ldarsh(iRegL dst, memory mem) %{
 3171     Register dst_reg = as_Register($dst$$reg);
 3172     MOV_VOLATILE(dst_reg, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3173              rscratch1, ldarh);
 3174     __ sxth(dst_reg, dst_reg);
 3175   %}
 3176 
 3177   enc_class aarch64_enc_ldarhw(iRegI dst, memory mem) %{
 3178     MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3179              rscratch1, ldarh);
 3180   %}
 3181 
 3182   enc_class aarch64_enc_ldarh(iRegL dst, memory mem) %{
 3183     MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3184              rscratch1, ldarh);
 3185   %}
 3186 
 3187   enc_class aarch64_enc_ldarw(iRegI dst, memory mem) %{
 3188     MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3189              rscratch1, ldarw);
 3190   %}
 3191 
 3192   enc_class aarch64_enc_ldarw(iRegL dst, memory mem) %{
 3193     MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3194              rscratch1, ldarw);
 3195   %}
 3196 
 3197   enc_class aarch64_enc_ldar(iRegL dst, memory mem) %{
 3198     MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3199              rscratch1, ldar);
 3200   %}
 3201 
 3202   enc_class aarch64_enc_fldars(vRegF dst, memory mem) %{
 3203     MOV_VOLATILE(rscratch1, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3204              rscratch1, ldarw);
 3205     __ fmovs(as_FloatRegister($dst$$reg), rscratch1);
 3206   %}
 3207 
 3208   enc_class aarch64_enc_fldard(vRegD dst, memory mem) %{
 3209     MOV_VOLATILE(rscratch1, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3210              rscratch1, ldar);
 3211     __ fmovd(as_FloatRegister($dst$$reg), rscratch1);
 3212   %}
 3213 
 3214   enc_class aarch64_enc_stlr(iRegL src, memory mem) %{
 3215     Register src_reg = as_Register($src$$reg);
 3216     // we sometimes get asked to store the stack pointer into the
 3217     // current thread -- we cannot do that directly on AArch64
 3218     if (src_reg == r31_sp) {
 3219       assert(as_Register($mem$$base) == rthread, "unexpected store for sp");
 3220       __ mov(rscratch2, sp);
 3221       src_reg = rscratch2;
 3222     }
 3223     MOV_VOLATILE(src_reg, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3224                  rscratch1, stlr);
 3225   %}
 3226 
 3227   enc_class aarch64_enc_stlr0(memory mem) %{
 3228     MOV_VOLATILE(zr, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3229                  rscratch1, stlr);
 3230   %}
 3231 
 3232   enc_class aarch64_enc_fstlrs(vRegF src, memory mem) %{
 3233     {
 3234       FloatRegister src_reg = as_FloatRegister($src$$reg);
 3235       __ fmovs(rscratch2, src_reg);
 3236     }
 3237     MOV_VOLATILE(rscratch2, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3238                  rscratch1, stlrw);
 3239   %}
 3240 
 3241   enc_class aarch64_enc_fstlrd(vRegD src, memory mem) %{
 3242     {
 3243       FloatRegister src_reg = as_FloatRegister($src$$reg);
 3244       __ fmovd(rscratch2, src_reg);
 3245     }
 3246     MOV_VOLATILE(rscratch2, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp,
 3247                  rscratch1, stlr);
 3248   %}
 3249 
 3250   // synchronized read/update encodings
 3251 
 3252   enc_class aarch64_enc_ldaxr(iRegL dst, memory8 mem) %{
 3253     Register dst_reg = as_Register($dst$$reg);
 3254     Register base = as_Register($mem$$base);
 3255     int index = $mem$$index;
 3256     int scale = $mem$$scale;
 3257     int disp = $mem$$disp;
 3258     if (index == -1) {
 3259        if (disp != 0) {
 3260         __ lea(rscratch1, Address(base, disp));
 3261         __ ldaxr(dst_reg, rscratch1);
 3262       } else {
 3263         // TODO
 3264         // should we ever get anything other than this case?
 3265         __ ldaxr(dst_reg, base);
 3266       }
 3267     } else {
 3268       Register index_reg = as_Register(index);
 3269       if (disp == 0) {
 3270         __ lea(rscratch1, Address(base, index_reg, Address::lsl(scale)));
 3271         __ ldaxr(dst_reg, rscratch1);
 3272       } else {
 3273         __ lea(rscratch1, Address(base, disp));
 3274         __ lea(rscratch1, Address(rscratch1, index_reg, Address::lsl(scale)));
 3275         __ ldaxr(dst_reg, rscratch1);
 3276       }
 3277     }
 3278   %}
 3279 
 3280   enc_class aarch64_enc_stlxr(iRegLNoSp src, memory8 mem) %{
 3281     Register src_reg = as_Register($src$$reg);
 3282     Register base = as_Register($mem$$base);
 3283     int index = $mem$$index;
 3284     int scale = $mem$$scale;
 3285     int disp = $mem$$disp;
 3286     if (index == -1) {
 3287        if (disp != 0) {
 3288         __ lea(rscratch2, Address(base, disp));
 3289         __ stlxr(rscratch1, src_reg, rscratch2);
 3290       } else {
 3291         // TODO
 3292         // should we ever get anything other than this case?
 3293         __ stlxr(rscratch1, src_reg, base);
 3294       }
 3295     } else {
 3296       Register index_reg = as_Register(index);
 3297       if (disp == 0) {
 3298         __ lea(rscratch2, Address(base, index_reg, Address::lsl(scale)));
 3299         __ stlxr(rscratch1, src_reg, rscratch2);
 3300       } else {
 3301         __ lea(rscratch2, Address(base, disp));
 3302         __ lea(rscratch2, Address(rscratch2, index_reg, Address::lsl(scale)));
 3303         __ stlxr(rscratch1, src_reg, rscratch2);
 3304       }
 3305     }
 3306     __ cmpw(rscratch1, zr);
 3307   %}
 3308 
 3309   enc_class aarch64_enc_cmpxchg(memory mem, iRegLNoSp oldval, iRegLNoSp newval) %{
 3310     guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding");
 3311     __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register,
 3312                Assembler::xword, /*acquire*/ false, /*release*/ true,
 3313                /*weak*/ false, noreg);
 3314   %}
 3315 
 3316   enc_class aarch64_enc_cmpxchgw(memory mem, iRegINoSp oldval, iRegINoSp newval) %{
 3317     guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding");
 3318     __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register,
 3319                Assembler::word, /*acquire*/ false, /*release*/ true,
 3320                /*weak*/ false, noreg);
 3321   %}
 3322 
 3323   enc_class aarch64_enc_cmpxchgs(memory mem, iRegINoSp oldval, iRegINoSp newval) %{
 3324     guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding");
 3325     __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register,
 3326                Assembler::halfword, /*acquire*/ false, /*release*/ true,
 3327                /*weak*/ false, noreg);
 3328   %}
 3329 
 3330   enc_class aarch64_enc_cmpxchgb(memory mem, iRegINoSp oldval, iRegINoSp newval) %{
 3331     guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding");
 3332     __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register,
 3333                Assembler::byte, /*acquire*/ false, /*release*/ true,
 3334                /*weak*/ false, noreg);
 3335   %}
 3336 
 3337 
 3338   // The only difference between aarch64_enc_cmpxchg and
 3339   // aarch64_enc_cmpxchg_acq is that we use load-acquire in the
 3340   // CompareAndSwap sequence to serve as a barrier on acquiring a
 3341   // lock.
 3342   enc_class aarch64_enc_cmpxchg_acq(memory mem, iRegLNoSp oldval, iRegLNoSp newval) %{
 3343     guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding");
 3344     __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register,
 3345                Assembler::xword, /*acquire*/ true, /*release*/ true,
 3346                /*weak*/ false, noreg);
 3347   %}
 3348 
 3349   enc_class aarch64_enc_cmpxchgw_acq(memory mem, iRegINoSp oldval, iRegINoSp newval) %{
 3350     guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding");
 3351     __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register,
 3352                Assembler::word, /*acquire*/ true, /*release*/ true,
 3353                /*weak*/ false, noreg);
 3354   %}
 3355 
 3356   enc_class aarch64_enc_cmpxchgs_acq(memory mem, iRegINoSp oldval, iRegINoSp newval) %{
 3357     guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding");
 3358     __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register,
 3359                Assembler::halfword, /*acquire*/ true, /*release*/ true,
 3360                /*weak*/ false, noreg);
 3361   %}
 3362 
 3363   enc_class aarch64_enc_cmpxchgb_acq(memory mem, iRegINoSp oldval, iRegINoSp newval) %{
 3364     guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding");
 3365     __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register,
 3366                Assembler::byte, /*acquire*/ true, /*release*/ true,
 3367                /*weak*/ false, noreg);
 3368   %}
 3369 
 3370   // auxiliary used for CompareAndSwapX to set result register
 3371   enc_class aarch64_enc_cset_eq(iRegINoSp res) %{
 3372     Register res_reg = as_Register($res$$reg);
 3373     __ cset(res_reg, Assembler::EQ);
 3374   %}
 3375 
 3376   // prefetch encodings
 3377 
 3378   enc_class aarch64_enc_prefetchw(memory mem) %{
 3379     Register base = as_Register($mem$$base);
 3380     int index = $mem$$index;
 3381     int scale = $mem$$scale;
 3382     int disp = $mem$$disp;
 3383     if (index == -1) {
 3384       // Fix up any out-of-range offsets.
 3385       assert_different_registers(rscratch1, base);
 3386       Address addr = Address(base, disp);
 3387       addr = __ legitimize_address(addr, 8, rscratch1);
 3388       __ prfm(addr, PSTL1KEEP);
 3389     } else {
 3390       Register index_reg = as_Register(index);
 3391       if (disp == 0) {
 3392         __ prfm(Address(base, index_reg, Address::lsl(scale)), PSTL1KEEP);
 3393       } else {
 3394         __ lea(rscratch1, Address(base, disp));
 3395 	__ prfm(Address(rscratch1, index_reg, Address::lsl(scale)), PSTL1KEEP);
 3396       }
 3397     }
 3398   %}
 3399 
 3400   // mov encodings
 3401 
 3402   enc_class aarch64_enc_movw_imm(iRegI dst, immI src) %{
 3403     uint32_t con = (uint32_t)$src$$constant;
 3404     Register dst_reg = as_Register($dst$$reg);
 3405     if (con == 0) {
 3406       __ movw(dst_reg, zr);
 3407     } else {
 3408       __ movw(dst_reg, con);
 3409     }
 3410   %}
 3411 
 3412   enc_class aarch64_enc_mov_imm(iRegL dst, immL src) %{
 3413     Register dst_reg = as_Register($dst$$reg);
 3414     uint64_t con = (uint64_t)$src$$constant;
 3415     if (con == 0) {
 3416       __ mov(dst_reg, zr);
 3417     } else {
 3418       __ mov(dst_reg, con);
 3419     }
 3420   %}
 3421 
 3422   enc_class aarch64_enc_mov_p(iRegP dst, immP src) %{
 3423     Register dst_reg = as_Register($dst$$reg);
 3424     address con = (address)$src$$constant;
 3425     if (con == nullptr || con == (address)1) {
 3426       ShouldNotReachHere();
 3427     } else {
 3428       relocInfo::relocType rtype = $src->constant_reloc();
 3429       if (rtype == relocInfo::oop_type) {
 3430         __ movoop(dst_reg, (jobject)con);
 3431       } else if (rtype == relocInfo::metadata_type) {
 3432         __ mov_metadata(dst_reg, (Metadata*)con);
 3433       } else {
 3434         assert(rtype == relocInfo::none || rtype == relocInfo::external_word_type, "unexpected reloc type");
 3435         if (! __ is_valid_AArch64_address(con) ||
 3436             con < (address)(uintptr_t)os::vm_page_size()) {
 3437           __ mov(dst_reg, con);
 3438         } else {
 3439           uint64_t offset;
 3440           __ adrp(dst_reg, con, offset);
 3441           __ add(dst_reg, dst_reg, offset);
 3442         }
 3443       }
 3444     }
 3445   %}
 3446 
 3447   enc_class aarch64_enc_mov_p0(iRegP dst, immP0 src) %{
 3448     Register dst_reg = as_Register($dst$$reg);
 3449     __ mov(dst_reg, zr);
 3450   %}
 3451 
 3452   enc_class aarch64_enc_mov_p1(iRegP dst, immP_1 src) %{
 3453     Register dst_reg = as_Register($dst$$reg);
 3454     __ mov(dst_reg, (uint64_t)1);
 3455   %}
 3456 
 3457   enc_class aarch64_enc_mov_n(iRegN dst, immN src) %{
 3458     Register dst_reg = as_Register($dst$$reg);
 3459     address con = (address)$src$$constant;
 3460     if (con == nullptr) {
 3461       ShouldNotReachHere();
 3462     } else {
 3463       relocInfo::relocType rtype = $src->constant_reloc();
 3464       assert(rtype == relocInfo::oop_type, "unexpected reloc type");
 3465       __ set_narrow_oop(dst_reg, (jobject)con);
 3466     }
 3467   %}
 3468 
 3469   enc_class aarch64_enc_mov_n0(iRegN dst, immN0 src) %{
 3470     Register dst_reg = as_Register($dst$$reg);
 3471     __ mov(dst_reg, zr);
 3472   %}
 3473 
 3474   enc_class aarch64_enc_mov_nk(iRegN dst, immNKlass src) %{
 3475     Register dst_reg = as_Register($dst$$reg);
 3476     address con = (address)$src$$constant;
 3477     if (con == nullptr) {
 3478       ShouldNotReachHere();
 3479     } else {
 3480       relocInfo::relocType rtype = $src->constant_reloc();
 3481       assert(rtype == relocInfo::metadata_type, "unexpected reloc type");
 3482       __ set_narrow_klass(dst_reg, (Klass *)con);
 3483     }
 3484   %}
 3485 
 3486   // arithmetic encodings
 3487 
 3488   enc_class aarch64_enc_addsubw_imm(iRegI dst, iRegI src1, immIAddSub src2) %{
 3489     Register dst_reg = as_Register($dst$$reg);
 3490     Register src_reg = as_Register($src1$$reg);
 3491     int32_t con = (int32_t)$src2$$constant;
 3492     // add has primary == 0, subtract has primary == 1
 3493     if ($primary) { con = -con; }
 3494     if (con < 0) {
 3495       __ subw(dst_reg, src_reg, -con);
 3496     } else {
 3497       __ addw(dst_reg, src_reg, con);
 3498     }
 3499   %}
 3500 
 3501   enc_class aarch64_enc_addsub_imm(iRegL dst, iRegL src1, immLAddSub src2) %{
 3502     Register dst_reg = as_Register($dst$$reg);
 3503     Register src_reg = as_Register($src1$$reg);
 3504     int32_t con = (int32_t)$src2$$constant;
 3505     // add has primary == 0, subtract has primary == 1
 3506     if ($primary) { con = -con; }
 3507     if (con < 0) {
 3508       __ sub(dst_reg, src_reg, -con);
 3509     } else {
 3510       __ add(dst_reg, src_reg, con);
 3511     }
 3512   %}
 3513 
 3514   enc_class aarch64_enc_divw(iRegI dst, iRegI src1, iRegI src2) %{
 3515    Register dst_reg = as_Register($dst$$reg);
 3516    Register src1_reg = as_Register($src1$$reg);
 3517    Register src2_reg = as_Register($src2$$reg);
 3518     __ corrected_idivl(dst_reg, src1_reg, src2_reg, false, rscratch1);
 3519   %}
 3520 
 3521   enc_class aarch64_enc_div(iRegI dst, iRegI src1, iRegI src2) %{
 3522    Register dst_reg = as_Register($dst$$reg);
 3523    Register src1_reg = as_Register($src1$$reg);
 3524    Register src2_reg = as_Register($src2$$reg);
 3525     __ corrected_idivq(dst_reg, src1_reg, src2_reg, false, rscratch1);
 3526   %}
 3527 
 3528   enc_class aarch64_enc_modw(iRegI dst, iRegI src1, iRegI src2) %{
 3529    Register dst_reg = as_Register($dst$$reg);
 3530    Register src1_reg = as_Register($src1$$reg);
 3531    Register src2_reg = as_Register($src2$$reg);
 3532     __ corrected_idivl(dst_reg, src1_reg, src2_reg, true, rscratch1);
 3533   %}
 3534 
 3535   enc_class aarch64_enc_mod(iRegI dst, iRegI src1, iRegI src2) %{
 3536    Register dst_reg = as_Register($dst$$reg);
 3537    Register src1_reg = as_Register($src1$$reg);
 3538    Register src2_reg = as_Register($src2$$reg);
 3539     __ corrected_idivq(dst_reg, src1_reg, src2_reg, true, rscratch1);
 3540   %}
 3541 
 3542   // compare instruction encodings
 3543 
 3544   enc_class aarch64_enc_cmpw(iRegI src1, iRegI src2) %{
 3545     Register reg1 = as_Register($src1$$reg);
 3546     Register reg2 = as_Register($src2$$reg);
 3547     __ cmpw(reg1, reg2);
 3548   %}
 3549 
 3550   enc_class aarch64_enc_cmpw_imm_addsub(iRegI src1, immIAddSub src2) %{
 3551     Register reg = as_Register($src1$$reg);
 3552     int32_t val = $src2$$constant;
 3553     if (val >= 0) {
 3554       __ subsw(zr, reg, val);
 3555     } else {
 3556       __ addsw(zr, reg, -val);
 3557     }
 3558   %}
 3559 
 3560   enc_class aarch64_enc_cmpw_imm(iRegI src1, immI src2) %{
 3561     Register reg1 = as_Register($src1$$reg);
 3562     uint32_t val = (uint32_t)$src2$$constant;
 3563     __ movw(rscratch1, val);
 3564     __ cmpw(reg1, rscratch1);
 3565   %}
 3566 
 3567   enc_class aarch64_enc_cmp(iRegL src1, iRegL src2) %{
 3568     Register reg1 = as_Register($src1$$reg);
 3569     Register reg2 = as_Register($src2$$reg);
 3570     __ cmp(reg1, reg2);
 3571   %}
 3572 
 3573   enc_class aarch64_enc_cmp_imm_addsub(iRegL src1, immL12 src2) %{
 3574     Register reg = as_Register($src1$$reg);
 3575     int64_t val = $src2$$constant;
 3576     if (val >= 0) {
 3577       __ subs(zr, reg, val);
 3578     } else if (val != -val) {
 3579       __ adds(zr, reg, -val);
 3580     } else {
 3581     // aargh, Long.MIN_VALUE is a special case
 3582       __ orr(rscratch1, zr, (uint64_t)val);
 3583       __ subs(zr, reg, rscratch1);
 3584     }
 3585   %}
 3586 
 3587   enc_class aarch64_enc_cmp_imm(iRegL src1, immL src2) %{
 3588     Register reg1 = as_Register($src1$$reg);
 3589     uint64_t val = (uint64_t)$src2$$constant;
 3590     __ mov(rscratch1, val);
 3591     __ cmp(reg1, rscratch1);
 3592   %}
 3593 
 3594   enc_class aarch64_enc_cmpp(iRegP src1, iRegP src2) %{
 3595     Register reg1 = as_Register($src1$$reg);
 3596     Register reg2 = as_Register($src2$$reg);
 3597     __ cmp(reg1, reg2);
 3598   %}
 3599 
 3600   enc_class aarch64_enc_cmpn(iRegN src1, iRegN src2) %{
 3601     Register reg1 = as_Register($src1$$reg);
 3602     Register reg2 = as_Register($src2$$reg);
 3603     __ cmpw(reg1, reg2);
 3604   %}
 3605 
 3606   enc_class aarch64_enc_testp(iRegP src) %{
 3607     Register reg = as_Register($src$$reg);
 3608     __ cmp(reg, zr);
 3609   %}
 3610 
 3611   enc_class aarch64_enc_testn(iRegN src) %{
 3612     Register reg = as_Register($src$$reg);
 3613     __ cmpw(reg, zr);
 3614   %}
 3615 
 3616   enc_class aarch64_enc_b(label lbl) %{
 3617     Label *L = $lbl$$label;
 3618     __ b(*L);
 3619   %}
 3620 
 3621   enc_class aarch64_enc_br_con(cmpOp cmp, label lbl) %{
 3622     Label *L = $lbl$$label;
 3623     __ br ((Assembler::Condition)$cmp$$cmpcode, *L);
 3624   %}
 3625 
 3626   enc_class aarch64_enc_br_conU(cmpOpU cmp, label lbl) %{
 3627     Label *L = $lbl$$label;
 3628     __ br ((Assembler::Condition)$cmp$$cmpcode, *L);
 3629   %}
 3630 
 3631   enc_class aarch64_enc_partial_subtype_check(iRegP sub, iRegP super, iRegP temp, iRegP result)
 3632   %{
 3633      Register sub_reg = as_Register($sub$$reg);
 3634      Register super_reg = as_Register($super$$reg);
 3635      Register temp_reg = as_Register($temp$$reg);
 3636      Register result_reg = as_Register($result$$reg);
 3637 
 3638      Label miss;
 3639      __ check_klass_subtype_slow_path(sub_reg, super_reg, temp_reg, result_reg,
 3640                                      nullptr, &miss,
 3641                                      /*set_cond_codes:*/ true);
 3642      if ($primary) {
 3643        __ mov(result_reg, zr);
 3644      }
 3645      __ bind(miss);
 3646   %}
 3647 
 3648   enc_class aarch64_enc_java_static_call(method meth) %{
 3649     address addr = (address)$meth$$method;
 3650     address call;
 3651     if (!_method) {
 3652       // A call to a runtime wrapper, e.g. new, new_typeArray_Java, uncommon_trap.
 3653       call = __ trampoline_call(Address(addr, relocInfo::runtime_call_type));
 3654       if (call == nullptr) {
 3655         ciEnv::current()->record_failure("CodeCache is full");
 3656         return;
 3657       }
 3658     } else if (_method->intrinsic_id() == vmIntrinsicID::_ensureMaterializedForStackWalk) {
 3659       // The NOP here is purely to ensure that eliding a call to
 3660       // JVM_EnsureMaterializedForStackWalk doesn't change the code size.
 3661       __ nop();
 3662       __ block_comment("call JVM_EnsureMaterializedForStackWalk (elided)");
 3663     } else {
 3664       int method_index = resolved_method_index(masm);
 3665       RelocationHolder rspec = _optimized_virtual ? opt_virtual_call_Relocation::spec(method_index)
 3666                                                   : static_call_Relocation::spec(method_index);
 3667       call = __ trampoline_call(Address(addr, rspec));
 3668       if (call == nullptr) {
 3669         ciEnv::current()->record_failure("CodeCache is full");
 3670         return;
 3671       }
 3672       if (CodeBuffer::supports_shared_stubs() && _method->can_be_statically_bound()) {
 3673         // Calls of the same statically bound method can share
 3674         // a stub to the interpreter.
 3675         __ code()->shared_stub_to_interp_for(_method, call - __ begin());
 3676       } else {
 3677         // Emit stub for static call
 3678         address stub = CompiledDirectCall::emit_to_interp_stub(masm, call);
 3679         if (stub == nullptr) {
 3680           ciEnv::current()->record_failure("CodeCache is full");
 3681           return;
 3682         }
 3683       }
 3684     }
 3685 
 3686     __ post_call_nop();
 3687 
 3688     // Only non uncommon_trap calls need to reinitialize ptrue.
 3689     if (Compile::current()->max_vector_size() > 0 && uncommon_trap_request() == 0) {
 3690       __ reinitialize_ptrue();
 3691     }
 3692   %}
 3693 
 3694   enc_class aarch64_enc_java_dynamic_call(method meth) %{
 3695     int method_index = resolved_method_index(masm);
 3696     address call = __ ic_call((address)$meth$$method, method_index);
 3697     if (call == nullptr) {
 3698       ciEnv::current()->record_failure("CodeCache is full");
 3699       return;
 3700     }
 3701     __ post_call_nop();
 3702     if (Compile::current()->max_vector_size() > 0) {
 3703       __ reinitialize_ptrue();
 3704     }
 3705   %}
 3706 
 3707   enc_class aarch64_enc_call_epilog() %{
 3708     if (VerifyStackAtCalls) {
 3709       // Check that stack depth is unchanged: find majik cookie on stack
 3710       __ call_Unimplemented();
 3711     }
 3712   %}
 3713 
 3714   enc_class aarch64_enc_java_to_runtime(method meth) %{
 3715     // some calls to generated routines (arraycopy code) are scheduled
 3716     // by C2 as runtime calls. if so we can call them using a br (they
 3717     // will be in a reachable segment) otherwise we have to use a blr
 3718     // which loads the absolute address into a register.
 3719     address entry = (address)$meth$$method;
 3720     CodeBlob *cb = CodeCache::find_blob(entry);
 3721     if (cb) {
 3722       address call = __ trampoline_call(Address(entry, relocInfo::runtime_call_type));
 3723       if (call == nullptr) {
 3724         ciEnv::current()->record_failure("CodeCache is full");
 3725         return;
 3726       }
 3727       __ post_call_nop();
 3728     } else {
 3729       Label retaddr;
 3730       // Make the anchor frame walkable
 3731       __ adr(rscratch2, retaddr);
 3732       __ str(rscratch2, Address(rthread, JavaThread::last_Java_pc_offset()));
 3733       __ lea(rscratch1, RuntimeAddress(entry));
 3734       __ blr(rscratch1);
 3735       __ bind(retaddr);
 3736       __ post_call_nop();
 3737     }
 3738     if (Compile::current()->max_vector_size() > 0) {
 3739       __ reinitialize_ptrue();
 3740     }
 3741   %}
 3742 
 3743   enc_class aarch64_enc_rethrow() %{
 3744     __ far_jump(RuntimeAddress(OptoRuntime::rethrow_stub()));
 3745   %}
 3746 
 3747   enc_class aarch64_enc_ret() %{
 3748 #ifdef ASSERT
 3749     if (Compile::current()->max_vector_size() > 0) {
 3750       __ verify_ptrue();
 3751     }
 3752 #endif
 3753     __ ret(lr);
 3754   %}
 3755 
 3756   enc_class aarch64_enc_tail_call(iRegP jump_target) %{
 3757     Register target_reg = as_Register($jump_target$$reg);
 3758     __ br(target_reg);
 3759   %}
 3760 
 3761   enc_class aarch64_enc_tail_jmp(iRegP jump_target) %{
 3762     Register target_reg = as_Register($jump_target$$reg);
 3763     // exception oop should be in r0
 3764     // ret addr has been popped into lr
 3765     // callee expects it in r3
 3766     __ mov(r3, lr);
 3767     __ br(target_reg);
 3768   %}
 3769 
 3770 %}
 3771 
 3772 //----------FRAME--------------------------------------------------------------
 3773 // Definition of frame structure and management information.
 3774 //
 3775 //  S T A C K   L A Y O U T    Allocators stack-slot number
 3776 //                             |   (to get allocators register number
 3777 //  G  Owned by    |        |  v    add OptoReg::stack0())
 3778 //  r   CALLER     |        |
 3779 //  o     |        +--------+      pad to even-align allocators stack-slot
 3780 //  w     V        |  pad0  |        numbers; owned by CALLER
 3781 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
 3782 //  h     ^        |   in   |  5
 3783 //        |        |  args  |  4   Holes in incoming args owned by SELF
 3784 //  |     |        |        |  3
 3785 //  |     |        +--------+
 3786 //  V     |        | old out|      Empty on Intel, window on Sparc
 3787 //        |    old |preserve|      Must be even aligned.
 3788 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
 3789 //        |        |   in   |  3   area for Intel ret address
 3790 //     Owned by    |preserve|      Empty on Sparc.
 3791 //       SELF      +--------+
 3792 //        |        |  pad2  |  2   pad to align old SP
 3793 //        |        +--------+  1
 3794 //        |        | locks  |  0
 3795 //        |        +--------+----> OptoReg::stack0(), even aligned
 3796 //        |        |  pad1  | 11   pad to align new SP
 3797 //        |        +--------+
 3798 //        |        |        | 10
 3799 //        |        | spills |  9   spills
 3800 //        V        |        |  8   (pad0 slot for callee)
 3801 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
 3802 //        ^        |  out   |  7
 3803 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
 3804 //     Owned by    +--------+
 3805 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
 3806 //        |    new |preserve|      Must be even-aligned.
 3807 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
 3808 //        |        |        |
 3809 //
 3810 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
 3811 //         known from SELF's arguments and the Java calling convention.
 3812 //         Region 6-7 is determined per call site.
 3813 // Note 2: If the calling convention leaves holes in the incoming argument
 3814 //         area, those holes are owned by SELF.  Holes in the outgoing area
 3815 //         are owned by the CALLEE.  Holes should not be necessary in the
 3816 //         incoming area, as the Java calling convention is completely under
 3817 //         the control of the AD file.  Doubles can be sorted and packed to
 3818 //         avoid holes.  Holes in the outgoing arguments may be necessary for
 3819 //         varargs C calling conventions.
 3820 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
 3821 //         even aligned with pad0 as needed.
 3822 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
 3823 //           (the latter is true on Intel but is it false on AArch64?)
 3824 //         region 6-11 is even aligned; it may be padded out more so that
 3825 //         the region from SP to FP meets the minimum stack alignment.
 3826 // Note 4: For I2C adapters, the incoming FP may not meet the minimum stack
 3827 //         alignment.  Region 11, pad1, may be dynamically extended so that
 3828 //         SP meets the minimum alignment.
 3829 
 3830 frame %{
 3831   // These three registers define part of the calling convention
 3832   // between compiled code and the interpreter.
 3833 
 3834   // Inline Cache Register or Method for I2C.
 3835   inline_cache_reg(R12);
 3836 
 3837   // Number of stack slots consumed by locking an object
 3838   sync_stack_slots(2);
 3839 
 3840   // Compiled code's Frame Pointer
 3841   frame_pointer(R31);
 3842 
 3843   // Interpreter stores its frame pointer in a register which is
 3844   // stored to the stack by I2CAdaptors.
 3845   // I2CAdaptors convert from interpreted java to compiled java.
 3846   interpreter_frame_pointer(R29);
 3847 
 3848   // Stack alignment requirement
 3849   stack_alignment(StackAlignmentInBytes); // Alignment size in bytes (128-bit -> 16 bytes)
 3850 
 3851   // Number of outgoing stack slots killed above the out_preserve_stack_slots
 3852   // for calls to C.  Supports the var-args backing area for register parms.
 3853   varargs_C_out_slots_killed(frame::arg_reg_save_area_bytes/BytesPerInt);
 3854 
 3855   // The after-PROLOG location of the return address.  Location of
 3856   // return address specifies a type (REG or STACK) and a number
 3857   // representing the register number (i.e. - use a register name) or
 3858   // stack slot.
 3859   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
 3860   // Otherwise, it is above the locks and verification slot and alignment word
 3861   // TODO this may well be correct but need to check why that - 2 is there
 3862   // ppc port uses 0 but we definitely need to allow for fixed_slots
 3863   // which folds in the space used for monitors
 3864   return_addr(STACK - 2 +
 3865               align_up((Compile::current()->in_preserve_stack_slots() +
 3866                         Compile::current()->fixed_slots()),
 3867                        stack_alignment_in_slots()));
 3868 
 3869   // Location of compiled Java return values.  Same as C for now.
 3870   return_value
 3871   %{
 3872     // TODO do we allow ideal_reg == Op_RegN???
 3873     assert(ideal_reg >= Op_RegI && ideal_reg <= Op_RegL,
 3874            "only return normal values");
 3875 
 3876     static const int lo[Op_RegL + 1] = { // enum name
 3877       0,                                 // Op_Node
 3878       0,                                 // Op_Set
 3879       R0_num,                            // Op_RegN
 3880       R0_num,                            // Op_RegI
 3881       R0_num,                            // Op_RegP
 3882       V0_num,                            // Op_RegF
 3883       V0_num,                            // Op_RegD
 3884       R0_num                             // Op_RegL
 3885     };
 3886 
 3887     static const int hi[Op_RegL + 1] = { // enum name
 3888       0,                                 // Op_Node
 3889       0,                                 // Op_Set
 3890       OptoReg::Bad,                      // Op_RegN
 3891       OptoReg::Bad,                      // Op_RegI
 3892       R0_H_num,                          // Op_RegP
 3893       OptoReg::Bad,                      // Op_RegF
 3894       V0_H_num,                          // Op_RegD
 3895       R0_H_num                           // Op_RegL
 3896     };
 3897 
 3898     return OptoRegPair(hi[ideal_reg], lo[ideal_reg]);
 3899   %}
 3900 %}
 3901 
 3902 //----------ATTRIBUTES---------------------------------------------------------
 3903 //----------Operand Attributes-------------------------------------------------
 3904 op_attrib op_cost(1);        // Required cost attribute
 3905 
 3906 //----------Instruction Attributes---------------------------------------------
 3907 ins_attrib ins_cost(INSN_COST); // Required cost attribute
 3908 ins_attrib ins_size(32);        // Required size attribute (in bits)
 3909 ins_attrib ins_short_branch(0); // Required flag: is this instruction
 3910                                 // a non-matching short branch variant
 3911                                 // of some long branch?
 3912 ins_attrib ins_alignment(4);    // Required alignment attribute (must
 3913                                 // be a power of 2) specifies the
 3914                                 // alignment that some part of the
 3915                                 // instruction (not necessarily the
 3916                                 // start) requires.  If > 1, a
 3917                                 // compute_padding() function must be
 3918                                 // provided for the instruction
 3919 
 3920 //----------OPERANDS-----------------------------------------------------------
 3921 // Operand definitions must precede instruction definitions for correct parsing
 3922 // in the ADLC because operands constitute user defined types which are used in
 3923 // instruction definitions.
 3924 
 3925 //----------Simple Operands----------------------------------------------------
 3926 
 3927 // Integer operands 32 bit
 3928 // 32 bit immediate
 3929 operand immI()
 3930 %{
 3931   match(ConI);
 3932 
 3933   op_cost(0);
 3934   format %{ %}
 3935   interface(CONST_INTER);
 3936 %}
 3937 
 3938 // 32 bit zero
 3939 operand immI0()
 3940 %{
 3941   predicate(n->get_int() == 0);
 3942   match(ConI);
 3943 
 3944   op_cost(0);
 3945   format %{ %}
 3946   interface(CONST_INTER);
 3947 %}
 3948 
 3949 // 32 bit unit increment
 3950 operand immI_1()
 3951 %{
 3952   predicate(n->get_int() == 1);
 3953   match(ConI);
 3954 
 3955   op_cost(0);
 3956   format %{ %}
 3957   interface(CONST_INTER);
 3958 %}
 3959 
 3960 // 32 bit unit decrement
 3961 operand immI_M1()
 3962 %{
 3963   predicate(n->get_int() == -1);
 3964   match(ConI);
 3965 
 3966   op_cost(0);
 3967   format %{ %}
 3968   interface(CONST_INTER);
 3969 %}
 3970 
 3971 // Shift values for add/sub extension shift
 3972 operand immIExt()
 3973 %{
 3974   predicate(0 <= n->get_int() && (n->get_int() <= 4));
 3975   match(ConI);
 3976 
 3977   op_cost(0);
 3978   format %{ %}
 3979   interface(CONST_INTER);
 3980 %}
 3981 
 3982 operand immI_gt_1()
 3983 %{
 3984   predicate(n->get_int() > 1);
 3985   match(ConI);
 3986 
 3987   op_cost(0);
 3988   format %{ %}
 3989   interface(CONST_INTER);
 3990 %}
 3991 
 3992 operand immI_le_4()
 3993 %{
 3994   predicate(n->get_int() <= 4);
 3995   match(ConI);
 3996 
 3997   op_cost(0);
 3998   format %{ %}
 3999   interface(CONST_INTER);
 4000 %}
 4001 
 4002 operand immI_16()
 4003 %{
 4004   predicate(n->get_int() == 16);
 4005   match(ConI);
 4006 
 4007   op_cost(0);
 4008   format %{ %}
 4009   interface(CONST_INTER);
 4010 %}
 4011 
 4012 operand immI_24()
 4013 %{
 4014   predicate(n->get_int() == 24);
 4015   match(ConI);
 4016 
 4017   op_cost(0);
 4018   format %{ %}
 4019   interface(CONST_INTER);
 4020 %}
 4021 
 4022 operand immI_32()
 4023 %{
 4024   predicate(n->get_int() == 32);
 4025   match(ConI);
 4026 
 4027   op_cost(0);
 4028   format %{ %}
 4029   interface(CONST_INTER);
 4030 %}
 4031 
 4032 operand immI_48()
 4033 %{
 4034   predicate(n->get_int() == 48);
 4035   match(ConI);
 4036 
 4037   op_cost(0);
 4038   format %{ %}
 4039   interface(CONST_INTER);
 4040 %}
 4041 
 4042 operand immI_56()
 4043 %{
 4044   predicate(n->get_int() == 56);
 4045   match(ConI);
 4046 
 4047   op_cost(0);
 4048   format %{ %}
 4049   interface(CONST_INTER);
 4050 %}
 4051 
 4052 operand immI_255()
 4053 %{
 4054   predicate(n->get_int() == 255);
 4055   match(ConI);
 4056 
 4057   op_cost(0);
 4058   format %{ %}
 4059   interface(CONST_INTER);
 4060 %}
 4061 
 4062 operand immI_65535()
 4063 %{
 4064   predicate(n->get_int() == 65535);
 4065   match(ConI);
 4066 
 4067   op_cost(0);
 4068   format %{ %}
 4069   interface(CONST_INTER);
 4070 %}
 4071 
 4072 operand immI_positive()
 4073 %{
 4074   predicate(n->get_int() > 0);
 4075   match(ConI);
 4076 
 4077   op_cost(0);
 4078   format %{ %}
 4079   interface(CONST_INTER);
 4080 %}
 4081 
 4082 // BoolTest condition for signed compare
 4083 operand immI_cmp_cond()
 4084 %{
 4085   predicate(!Matcher::is_unsigned_booltest_pred(n->get_int()));
 4086   match(ConI);
 4087 
 4088   op_cost(0);
 4089   format %{ %}
 4090   interface(CONST_INTER);
 4091 %}
 4092 
 4093 // BoolTest condition for unsigned compare
 4094 operand immI_cmpU_cond()
 4095 %{
 4096   predicate(Matcher::is_unsigned_booltest_pred(n->get_int()));
 4097   match(ConI);
 4098 
 4099   op_cost(0);
 4100   format %{ %}
 4101   interface(CONST_INTER);
 4102 %}
 4103 
 4104 operand immL_255()
 4105 %{
 4106   predicate(n->get_long() == 255L);
 4107   match(ConL);
 4108 
 4109   op_cost(0);
 4110   format %{ %}
 4111   interface(CONST_INTER);
 4112 %}
 4113 
 4114 operand immL_65535()
 4115 %{
 4116   predicate(n->get_long() == 65535L);
 4117   match(ConL);
 4118 
 4119   op_cost(0);
 4120   format %{ %}
 4121   interface(CONST_INTER);
 4122 %}
 4123 
 4124 operand immL_4294967295()
 4125 %{
 4126   predicate(n->get_long() == 4294967295L);
 4127   match(ConL);
 4128 
 4129   op_cost(0);
 4130   format %{ %}
 4131   interface(CONST_INTER);
 4132 %}
 4133 
 4134 operand immL_bitmask()
 4135 %{
 4136   predicate((n->get_long() != 0)
 4137             && ((n->get_long() & 0xc000000000000000l) == 0)
 4138             && is_power_of_2(n->get_long() + 1));
 4139   match(ConL);
 4140 
 4141   op_cost(0);
 4142   format %{ %}
 4143   interface(CONST_INTER);
 4144 %}
 4145 
 4146 operand immI_bitmask()
 4147 %{
 4148   predicate((n->get_int() != 0)
 4149             && ((n->get_int() & 0xc0000000) == 0)
 4150             && is_power_of_2(n->get_int() + 1));
 4151   match(ConI);
 4152 
 4153   op_cost(0);
 4154   format %{ %}
 4155   interface(CONST_INTER);
 4156 %}
 4157 
 4158 operand immL_positive_bitmaskI()
 4159 %{
 4160   predicate((n->get_long() != 0)
 4161             && ((julong)n->get_long() < 0x80000000ULL)
 4162             && is_power_of_2(n->get_long() + 1));
 4163   match(ConL);
 4164 
 4165   op_cost(0);
 4166   format %{ %}
 4167   interface(CONST_INTER);
 4168 %}
 4169 
 4170 // Scale values for scaled offset addressing modes (up to long but not quad)
 4171 operand immIScale()
 4172 %{
 4173   predicate(0 <= n->get_int() && (n->get_int() <= 3));
 4174   match(ConI);
 4175 
 4176   op_cost(0);
 4177   format %{ %}
 4178   interface(CONST_INTER);
 4179 %}
 4180 
 4181 // 5 bit signed integer
 4182 operand immI5()
 4183 %{
 4184   predicate(Assembler::is_simm(n->get_int(), 5));
 4185   match(ConI);
 4186 
 4187   op_cost(0);
 4188   format %{ %}
 4189   interface(CONST_INTER);
 4190 %}
 4191 
 4192 // 7 bit unsigned integer
 4193 operand immIU7()
 4194 %{
 4195   predicate(Assembler::is_uimm(n->get_int(), 7));
 4196   match(ConI);
 4197 
 4198   op_cost(0);
 4199   format %{ %}
 4200   interface(CONST_INTER);
 4201 %}
 4202 
 4203 // Offset for scaled or unscaled immediate loads and stores
 4204 operand immIOffset()
 4205 %{
 4206   predicate(Address::offset_ok_for_immed(n->get_int(), 0));
 4207   match(ConI);
 4208 
 4209   op_cost(0);
 4210   format %{ %}
 4211   interface(CONST_INTER);
 4212 %}
 4213 
 4214 operand immIOffset1()
 4215 %{
 4216   predicate(Address::offset_ok_for_immed(n->get_int(), 0));
 4217   match(ConI);
 4218 
 4219   op_cost(0);
 4220   format %{ %}
 4221   interface(CONST_INTER);
 4222 %}
 4223 
 4224 operand immIOffset2()
 4225 %{
 4226   predicate(Address::offset_ok_for_immed(n->get_int(), 1));
 4227   match(ConI);
 4228 
 4229   op_cost(0);
 4230   format %{ %}
 4231   interface(CONST_INTER);
 4232 %}
 4233 
 4234 operand immIOffset4()
 4235 %{
 4236   predicate(Address::offset_ok_for_immed(n->get_int(), 2));
 4237   match(ConI);
 4238 
 4239   op_cost(0);
 4240   format %{ %}
 4241   interface(CONST_INTER);
 4242 %}
 4243 
 4244 operand immIOffset8()
 4245 %{
 4246   predicate(Address::offset_ok_for_immed(n->get_int(), 3));
 4247   match(ConI);
 4248 
 4249   op_cost(0);
 4250   format %{ %}
 4251   interface(CONST_INTER);
 4252 %}
 4253 
 4254 operand immIOffset16()
 4255 %{
 4256   predicate(Address::offset_ok_for_immed(n->get_int(), 4));
 4257   match(ConI);
 4258 
 4259   op_cost(0);
 4260   format %{ %}
 4261   interface(CONST_INTER);
 4262 %}
 4263 
 4264 operand immLOffset()
 4265 %{
 4266   predicate(n->get_long() >= -256 && n->get_long() <= 65520);
 4267   match(ConL);
 4268 
 4269   op_cost(0);
 4270   format %{ %}
 4271   interface(CONST_INTER);
 4272 %}
 4273 
 4274 operand immLoffset1()
 4275 %{
 4276   predicate(Address::offset_ok_for_immed(n->get_long(), 0));
 4277   match(ConL);
 4278 
 4279   op_cost(0);
 4280   format %{ %}
 4281   interface(CONST_INTER);
 4282 %}
 4283 
 4284 operand immLoffset2()
 4285 %{
 4286   predicate(Address::offset_ok_for_immed(n->get_long(), 1));
 4287   match(ConL);
 4288 
 4289   op_cost(0);
 4290   format %{ %}
 4291   interface(CONST_INTER);
 4292 %}
 4293 
 4294 operand immLoffset4()
 4295 %{
 4296   predicate(Address::offset_ok_for_immed(n->get_long(), 2));
 4297   match(ConL);
 4298 
 4299   op_cost(0);
 4300   format %{ %}
 4301   interface(CONST_INTER);
 4302 %}
 4303 
 4304 operand immLoffset8()
 4305 %{
 4306   predicate(Address::offset_ok_for_immed(n->get_long(), 3));
 4307   match(ConL);
 4308 
 4309   op_cost(0);
 4310   format %{ %}
 4311   interface(CONST_INTER);
 4312 %}
 4313 
 4314 operand immLoffset16()
 4315 %{
 4316   predicate(Address::offset_ok_for_immed(n->get_long(), 4));
 4317   match(ConL);
 4318 
 4319   op_cost(0);
 4320   format %{ %}
 4321   interface(CONST_INTER);
 4322 %}
 4323 
 4324 // 5 bit signed long integer
 4325 operand immL5()
 4326 %{
 4327   predicate(Assembler::is_simm(n->get_long(), 5));
 4328   match(ConL);
 4329 
 4330   op_cost(0);
 4331   format %{ %}
 4332   interface(CONST_INTER);
 4333 %}
 4334 
 4335 // 7 bit unsigned long integer
 4336 operand immLU7()
 4337 %{
 4338   predicate(Assembler::is_uimm(n->get_long(), 7));
 4339   match(ConL);
 4340 
 4341   op_cost(0);
 4342   format %{ %}
 4343   interface(CONST_INTER);
 4344 %}
 4345 
 4346 // 8 bit signed value.
 4347 operand immI8()
 4348 %{
 4349   predicate(n->get_int() <= 127 && n->get_int() >= -128);
 4350   match(ConI);
 4351 
 4352   op_cost(0);
 4353   format %{ %}
 4354   interface(CONST_INTER);
 4355 %}
 4356 
 4357 // 8 bit signed value (simm8), or #simm8 LSL 8.
 4358 operand immI8_shift8()
 4359 %{
 4360   predicate((n->get_int() <= 127 && n->get_int() >= -128) ||
 4361             (n->get_int() <= 32512 && n->get_int() >= -32768 && (n->get_int() & 0xff) == 0));
 4362   match(ConI);
 4363 
 4364   op_cost(0);
 4365   format %{ %}
 4366   interface(CONST_INTER);
 4367 %}
 4368 
 4369 // 8 bit signed value (simm8), or #simm8 LSL 8.
 4370 operand immL8_shift8()
 4371 %{
 4372   predicate((n->get_long() <= 127 && n->get_long() >= -128) ||
 4373             (n->get_long() <= 32512 && n->get_long() >= -32768 && (n->get_long() & 0xff) == 0));
 4374   match(ConL);
 4375 
 4376   op_cost(0);
 4377   format %{ %}
 4378   interface(CONST_INTER);
 4379 %}
 4380 
 4381 // 8 bit integer valid for vector add sub immediate
 4382 operand immBAddSubV()
 4383 %{
 4384   predicate(n->get_int() <= 255 && n->get_int() >= -255);
 4385   match(ConI);
 4386 
 4387   op_cost(0);
 4388   format %{ %}
 4389   interface(CONST_INTER);
 4390 %}
 4391 
 4392 // 32 bit integer valid for add sub immediate
 4393 operand immIAddSub()
 4394 %{
 4395   predicate(Assembler::operand_valid_for_add_sub_immediate((int64_t)n->get_int()));
 4396   match(ConI);
 4397   op_cost(0);
 4398   format %{ %}
 4399   interface(CONST_INTER);
 4400 %}
 4401 
 4402 // 32 bit integer valid for vector add sub immediate
 4403 operand immIAddSubV()
 4404 %{
 4405   predicate(Assembler::operand_valid_for_sve_add_sub_immediate((int64_t)n->get_int()));
 4406   match(ConI);
 4407 
 4408   op_cost(0);
 4409   format %{ %}
 4410   interface(CONST_INTER);
 4411 %}
 4412 
 4413 // 32 bit unsigned integer valid for logical immediate
 4414 
 4415 operand immBLog()
 4416 %{
 4417   predicate(Assembler::operand_valid_for_sve_logical_immediate(BitsPerByte, (uint64_t)n->get_int()));
 4418   match(ConI);
 4419 
 4420   op_cost(0);
 4421   format %{ %}
 4422   interface(CONST_INTER);
 4423 %}
 4424 
 4425 operand immSLog()
 4426 %{
 4427   predicate(Assembler::operand_valid_for_sve_logical_immediate(BitsPerShort, (uint64_t)n->get_int()));
 4428   match(ConI);
 4429 
 4430   op_cost(0);
 4431   format %{ %}
 4432   interface(CONST_INTER);
 4433 %}
 4434 
 4435 operand immILog()
 4436 %{
 4437   predicate(Assembler::operand_valid_for_logical_immediate(/*is32*/true, (uint64_t)n->get_int()));
 4438   match(ConI);
 4439 
 4440   op_cost(0);
 4441   format %{ %}
 4442   interface(CONST_INTER);
 4443 %}
 4444 
 4445 // Integer operands 64 bit
 4446 // 64 bit immediate
 4447 operand immL()
 4448 %{
 4449   match(ConL);
 4450 
 4451   op_cost(0);
 4452   format %{ %}
 4453   interface(CONST_INTER);
 4454 %}
 4455 
 4456 // 64 bit zero
 4457 operand immL0()
 4458 %{
 4459   predicate(n->get_long() == 0);
 4460   match(ConL);
 4461 
 4462   op_cost(0);
 4463   format %{ %}
 4464   interface(CONST_INTER);
 4465 %}
 4466 
 4467 // 64 bit unit decrement
 4468 operand immL_M1()
 4469 %{
 4470   predicate(n->get_long() == -1);
 4471   match(ConL);
 4472 
 4473   op_cost(0);
 4474   format %{ %}
 4475   interface(CONST_INTER);
 4476 %}
 4477 
 4478 // 64 bit integer valid for add sub immediate
 4479 operand immLAddSub()
 4480 %{
 4481   predicate(Assembler::operand_valid_for_add_sub_immediate(n->get_long()));
 4482   match(ConL);
 4483   op_cost(0);
 4484   format %{ %}
 4485   interface(CONST_INTER);
 4486 %}
 4487 
 4488 // 64 bit integer valid for addv subv immediate
 4489 operand immLAddSubV()
 4490 %{
 4491   predicate(Assembler::operand_valid_for_sve_add_sub_immediate(n->get_long()));
 4492   match(ConL);
 4493 
 4494   op_cost(0);
 4495   format %{ %}
 4496   interface(CONST_INTER);
 4497 %}
 4498 
 4499 // 64 bit integer valid for logical immediate
 4500 operand immLLog()
 4501 %{
 4502   predicate(Assembler::operand_valid_for_logical_immediate(/*is32*/false, (uint64_t)n->get_long()));
 4503   match(ConL);
 4504   op_cost(0);
 4505   format %{ %}
 4506   interface(CONST_INTER);
 4507 %}
 4508 
 4509 // Long Immediate: low 32-bit mask
 4510 operand immL_32bits()
 4511 %{
 4512   predicate(n->get_long() == 0xFFFFFFFFL);
 4513   match(ConL);
 4514   op_cost(0);
 4515   format %{ %}
 4516   interface(CONST_INTER);
 4517 %}
 4518 
 4519 // Pointer operands
 4520 // Pointer Immediate
 4521 operand immP()
 4522 %{
 4523   match(ConP);
 4524 
 4525   op_cost(0);
 4526   format %{ %}
 4527   interface(CONST_INTER);
 4528 %}
 4529 
 4530 // nullptr Pointer Immediate
 4531 operand immP0()
 4532 %{
 4533   predicate(n->get_ptr() == 0);
 4534   match(ConP);
 4535 
 4536   op_cost(0);
 4537   format %{ %}
 4538   interface(CONST_INTER);
 4539 %}
 4540 
 4541 // Pointer Immediate One
 4542 // this is used in object initialization (initial object header)
 4543 operand immP_1()
 4544 %{
 4545   predicate(n->get_ptr() == 1);
 4546   match(ConP);
 4547 
 4548   op_cost(0);
 4549   format %{ %}
 4550   interface(CONST_INTER);
 4551 %}
 4552 
 4553 // Card Table Byte Map Base
 4554 operand immByteMapBase()
 4555 %{
 4556   // Get base of card map
 4557   predicate(BarrierSet::barrier_set()->is_a(BarrierSet::CardTableBarrierSet) &&
 4558             is_card_table_address((address)(n->get_ptr())));
 4559   match(ConP);
 4560 
 4561   op_cost(0);
 4562   format %{ %}
 4563   interface(CONST_INTER);
 4564 %}
 4565 
 4566 // AOT Runtime Constants Address
 4567 operand immAOTRuntimeConstantsAddress()
 4568 %{
 4569   // Check if the address is in the range of AOT Runtime Constants
 4570   predicate(AOTRuntimeConstants::contains((address)(n->get_ptr())));
 4571   match(ConP);
 4572 
 4573   op_cost(0);
 4574   format %{ %}
 4575   interface(CONST_INTER);
 4576 %}
 4577 
 4578 // Float and Double operands
 4579 // Double Immediate
 4580 operand immD()
 4581 %{
 4582   match(ConD);
 4583   op_cost(0);
 4584   format %{ %}
 4585   interface(CONST_INTER);
 4586 %}
 4587 
 4588 // Double Immediate: +0.0d
 4589 operand immD0()
 4590 %{
 4591   predicate(jlong_cast(n->getd()) == 0);
 4592   match(ConD);
 4593 
 4594   op_cost(0);
 4595   format %{ %}
 4596   interface(CONST_INTER);
 4597 %}
 4598 
 4599 // constant 'double +0.0'.
 4600 operand immDPacked()
 4601 %{
 4602   predicate(Assembler::operand_valid_for_float_immediate(n->getd()));
 4603   match(ConD);
 4604   op_cost(0);
 4605   format %{ %}
 4606   interface(CONST_INTER);
 4607 %}
 4608 
 4609 // Float Immediate
 4610 operand immF()
 4611 %{
 4612   match(ConF);
 4613   op_cost(0);
 4614   format %{ %}
 4615   interface(CONST_INTER);
 4616 %}
 4617 
 4618 // Float Immediate: +0.0f.
 4619 operand immF0()
 4620 %{
 4621   predicate(jint_cast(n->getf()) == 0);
 4622   match(ConF);
 4623 
 4624   op_cost(0);
 4625   format %{ %}
 4626   interface(CONST_INTER);
 4627 %}
 4628 
 4629 // Half Float (FP16) Immediate
 4630 operand immH()
 4631 %{
 4632   match(ConH);
 4633   op_cost(0);
 4634   format %{ %}
 4635   interface(CONST_INTER);
 4636 %}
 4637 
 4638 //
 4639 operand immFPacked()
 4640 %{
 4641   predicate(Assembler::operand_valid_for_float_immediate((double)n->getf()));
 4642   match(ConF);
 4643   op_cost(0);
 4644   format %{ %}
 4645   interface(CONST_INTER);
 4646 %}
 4647 
 4648 // Narrow pointer operands
 4649 // Narrow Pointer Immediate
 4650 operand immN()
 4651 %{
 4652   match(ConN);
 4653 
 4654   op_cost(0);
 4655   format %{ %}
 4656   interface(CONST_INTER);
 4657 %}
 4658 
 4659 // Narrow nullptr Pointer Immediate
 4660 operand immN0()
 4661 %{
 4662   predicate(n->get_narrowcon() == 0);
 4663   match(ConN);
 4664 
 4665   op_cost(0);
 4666   format %{ %}
 4667   interface(CONST_INTER);
 4668 %}
 4669 
 4670 operand immNKlass()
 4671 %{
 4672   match(ConNKlass);
 4673 
 4674   op_cost(0);
 4675   format %{ %}
 4676   interface(CONST_INTER);
 4677 %}
 4678 
 4679 // Integer 32 bit Register Operands
 4680 // Integer 32 bitRegister (excludes SP)
 4681 operand iRegI()
 4682 %{
 4683   constraint(ALLOC_IN_RC(any_reg32));
 4684   match(RegI);
 4685   match(iRegINoSp);
 4686   op_cost(0);
 4687   format %{ %}
 4688   interface(REG_INTER);
 4689 %}
 4690 
 4691 // Integer 32 bit Register not Special
 4692 operand iRegINoSp()
 4693 %{
 4694   constraint(ALLOC_IN_RC(no_special_reg32));
 4695   match(RegI);
 4696   op_cost(0);
 4697   format %{ %}
 4698   interface(REG_INTER);
 4699 %}
 4700 
 4701 // Integer 64 bit Register Operands
 4702 // Integer 64 bit Register (includes SP)
 4703 operand iRegL()
 4704 %{
 4705   constraint(ALLOC_IN_RC(any_reg));
 4706   match(RegL);
 4707   match(iRegLNoSp);
 4708   op_cost(0);
 4709   format %{ %}
 4710   interface(REG_INTER);
 4711 %}
 4712 
 4713 // Integer 64 bit Register not Special
 4714 operand iRegLNoSp()
 4715 %{
 4716   constraint(ALLOC_IN_RC(no_special_reg));
 4717   match(RegL);
 4718   match(iRegL_R0);
 4719   format %{ %}
 4720   interface(REG_INTER);
 4721 %}
 4722 
 4723 // Pointer Register Operands
 4724 // Pointer Register
 4725 operand iRegP()
 4726 %{
 4727   constraint(ALLOC_IN_RC(ptr_reg));
 4728   match(RegP);
 4729   match(iRegPNoSp);
 4730   match(iRegP_R0);
 4731   //match(iRegP_R2);
 4732   //match(iRegP_R4);
 4733   match(iRegP_R5);
 4734   match(thread_RegP);
 4735   op_cost(0);
 4736   format %{ %}
 4737   interface(REG_INTER);
 4738 %}
 4739 
 4740 // Pointer 64 bit Register not Special
 4741 operand iRegPNoSp()
 4742 %{
 4743   constraint(ALLOC_IN_RC(no_special_ptr_reg));
 4744   match(RegP);
 4745   // match(iRegP);
 4746   // match(iRegP_R0);
 4747   // match(iRegP_R2);
 4748   // match(iRegP_R4);
 4749   // match(iRegP_R5);
 4750   // match(thread_RegP);
 4751   op_cost(0);
 4752   format %{ %}
 4753   interface(REG_INTER);
 4754 %}
 4755 
 4756 // This operand is not allowed to use rfp even if
 4757 // rfp is not used to hold the frame pointer.
 4758 operand iRegPNoSpNoRfp()
 4759 %{
 4760   constraint(ALLOC_IN_RC(no_special_no_rfp_ptr_reg));
 4761   match(RegP);
 4762   match(iRegPNoSp);
 4763   op_cost(0);
 4764   format %{ %}
 4765   interface(REG_INTER);
 4766 %}
 4767 
 4768 // Pointer 64 bit Register R0 only
 4769 operand iRegP_R0()
 4770 %{
 4771   constraint(ALLOC_IN_RC(r0_reg));
 4772   match(RegP);
 4773   // match(iRegP);
 4774   match(iRegPNoSp);
 4775   op_cost(0);
 4776   format %{ %}
 4777   interface(REG_INTER);
 4778 %}
 4779 
 4780 // Pointer 64 bit Register R1 only
 4781 operand iRegP_R1()
 4782 %{
 4783   constraint(ALLOC_IN_RC(r1_reg));
 4784   match(RegP);
 4785   // match(iRegP);
 4786   match(iRegPNoSp);
 4787   op_cost(0);
 4788   format %{ %}
 4789   interface(REG_INTER);
 4790 %}
 4791 
 4792 // Pointer 64 bit Register R2 only
 4793 operand iRegP_R2()
 4794 %{
 4795   constraint(ALLOC_IN_RC(r2_reg));
 4796   match(RegP);
 4797   // match(iRegP);
 4798   match(iRegPNoSp);
 4799   op_cost(0);
 4800   format %{ %}
 4801   interface(REG_INTER);
 4802 %}
 4803 
 4804 // Pointer 64 bit Register R3 only
 4805 operand iRegP_R3()
 4806 %{
 4807   constraint(ALLOC_IN_RC(r3_reg));
 4808   match(RegP);
 4809   // match(iRegP);
 4810   match(iRegPNoSp);
 4811   op_cost(0);
 4812   format %{ %}
 4813   interface(REG_INTER);
 4814 %}
 4815 
 4816 // Pointer 64 bit Register R4 only
 4817 operand iRegP_R4()
 4818 %{
 4819   constraint(ALLOC_IN_RC(r4_reg));
 4820   match(RegP);
 4821   // match(iRegP);
 4822   match(iRegPNoSp);
 4823   op_cost(0);
 4824   format %{ %}
 4825   interface(REG_INTER);
 4826 %}
 4827 
 4828 // Pointer 64 bit Register R5 only
 4829 operand iRegP_R5()
 4830 %{
 4831   constraint(ALLOC_IN_RC(r5_reg));
 4832   match(RegP);
 4833   // match(iRegP);
 4834   match(iRegPNoSp);
 4835   op_cost(0);
 4836   format %{ %}
 4837   interface(REG_INTER);
 4838 %}
 4839 
 4840 // Pointer 64 bit Register R10 only
 4841 operand iRegP_R10()
 4842 %{
 4843   constraint(ALLOC_IN_RC(r10_reg));
 4844   match(RegP);
 4845   // match(iRegP);
 4846   match(iRegPNoSp);
 4847   op_cost(0);
 4848   format %{ %}
 4849   interface(REG_INTER);
 4850 %}
 4851 
 4852 // Long 64 bit Register R0 only
 4853 operand iRegL_R0()
 4854 %{
 4855   constraint(ALLOC_IN_RC(r0_reg));
 4856   match(RegL);
 4857   match(iRegLNoSp);
 4858   op_cost(0);
 4859   format %{ %}
 4860   interface(REG_INTER);
 4861 %}
 4862 
 4863 // Long 64 bit Register R11 only
 4864 operand iRegL_R11()
 4865 %{
 4866   constraint(ALLOC_IN_RC(r11_reg));
 4867   match(RegL);
 4868   match(iRegLNoSp);
 4869   op_cost(0);
 4870   format %{ %}
 4871   interface(REG_INTER);
 4872 %}
 4873 
 4874 // Register R0 only
 4875 operand iRegI_R0()
 4876 %{
 4877   constraint(ALLOC_IN_RC(int_r0_reg));
 4878   match(RegI);
 4879   match(iRegINoSp);
 4880   op_cost(0);
 4881   format %{ %}
 4882   interface(REG_INTER);
 4883 %}
 4884 
 4885 // Register R2 only
 4886 operand iRegI_R2()
 4887 %{
 4888   constraint(ALLOC_IN_RC(int_r2_reg));
 4889   match(RegI);
 4890   match(iRegINoSp);
 4891   op_cost(0);
 4892   format %{ %}
 4893   interface(REG_INTER);
 4894 %}
 4895 
 4896 // Register R3 only
 4897 operand iRegI_R3()
 4898 %{
 4899   constraint(ALLOC_IN_RC(int_r3_reg));
 4900   match(RegI);
 4901   match(iRegINoSp);
 4902   op_cost(0);
 4903   format %{ %}
 4904   interface(REG_INTER);
 4905 %}
 4906 
 4907 
 4908 // Register R4 only
 4909 operand iRegI_R4()
 4910 %{
 4911   constraint(ALLOC_IN_RC(int_r4_reg));
 4912   match(RegI);
 4913   match(iRegINoSp);
 4914   op_cost(0);
 4915   format %{ %}
 4916   interface(REG_INTER);
 4917 %}
 4918 
 4919 
 4920 // Pointer Register Operands
 4921 // Narrow Pointer Register
 4922 operand iRegN()
 4923 %{
 4924   constraint(ALLOC_IN_RC(any_reg32));
 4925   match(RegN);
 4926   match(iRegNNoSp);
 4927   op_cost(0);
 4928   format %{ %}
 4929   interface(REG_INTER);
 4930 %}
 4931 
 4932 // Integer 64 bit Register not Special
 4933 operand iRegNNoSp()
 4934 %{
 4935   constraint(ALLOC_IN_RC(no_special_reg32));
 4936   match(RegN);
 4937   op_cost(0);
 4938   format %{ %}
 4939   interface(REG_INTER);
 4940 %}
 4941 
 4942 // Float Register
 4943 // Float register operands
 4944 operand vRegF()
 4945 %{
 4946   constraint(ALLOC_IN_RC(float_reg));
 4947   match(RegF);
 4948 
 4949   op_cost(0);
 4950   format %{ %}
 4951   interface(REG_INTER);
 4952 %}
 4953 
 4954 // Double Register
 4955 // Double register operands
 4956 operand vRegD()
 4957 %{
 4958   constraint(ALLOC_IN_RC(double_reg));
 4959   match(RegD);
 4960 
 4961   op_cost(0);
 4962   format %{ %}
 4963   interface(REG_INTER);
 4964 %}
 4965 
 4966 // Generic vector class. This will be used for
 4967 // all vector operands, including NEON and SVE.
 4968 operand vReg()
 4969 %{
 4970   constraint(ALLOC_IN_RC(dynamic));
 4971   match(VecA);
 4972   match(VecD);
 4973   match(VecX);
 4974 
 4975   op_cost(0);
 4976   format %{ %}
 4977   interface(REG_INTER);
 4978 %}
 4979 
 4980 operand vecA()
 4981 %{
 4982   constraint(ALLOC_IN_RC(vectora_reg));
 4983   match(VecA);
 4984 
 4985   op_cost(0);
 4986   format %{ %}
 4987   interface(REG_INTER);
 4988 %}
 4989 
 4990 operand vecD()
 4991 %{
 4992   constraint(ALLOC_IN_RC(vectord_reg));
 4993   match(VecD);
 4994 
 4995   op_cost(0);
 4996   format %{ %}
 4997   interface(REG_INTER);
 4998 %}
 4999 
 5000 operand vecX()
 5001 %{
 5002   constraint(ALLOC_IN_RC(vectorx_reg));
 5003   match(VecX);
 5004 
 5005   op_cost(0);
 5006   format %{ %}
 5007   interface(REG_INTER);
 5008 %}
 5009 
 5010 operand vRegD_V0()
 5011 %{
 5012   constraint(ALLOC_IN_RC(v0_reg));
 5013   match(RegD);
 5014   op_cost(0);
 5015   format %{ %}
 5016   interface(REG_INTER);
 5017 %}
 5018 
 5019 operand vRegD_V1()
 5020 %{
 5021   constraint(ALLOC_IN_RC(v1_reg));
 5022   match(RegD);
 5023   op_cost(0);
 5024   format %{ %}
 5025   interface(REG_INTER);
 5026 %}
 5027 
 5028 operand vRegD_V2()
 5029 %{
 5030   constraint(ALLOC_IN_RC(v2_reg));
 5031   match(RegD);
 5032   op_cost(0);
 5033   format %{ %}
 5034   interface(REG_INTER);
 5035 %}
 5036 
 5037 operand vRegD_V3()
 5038 %{
 5039   constraint(ALLOC_IN_RC(v3_reg));
 5040   match(RegD);
 5041   op_cost(0);
 5042   format %{ %}
 5043   interface(REG_INTER);
 5044 %}
 5045 
 5046 operand vRegD_V4()
 5047 %{
 5048   constraint(ALLOC_IN_RC(v4_reg));
 5049   match(RegD);
 5050   op_cost(0);
 5051   format %{ %}
 5052   interface(REG_INTER);
 5053 %}
 5054 
 5055 operand vRegD_V5()
 5056 %{
 5057   constraint(ALLOC_IN_RC(v5_reg));
 5058   match(RegD);
 5059   op_cost(0);
 5060   format %{ %}
 5061   interface(REG_INTER);
 5062 %}
 5063 
 5064 operand vRegD_V6()
 5065 %{
 5066   constraint(ALLOC_IN_RC(v6_reg));
 5067   match(RegD);
 5068   op_cost(0);
 5069   format %{ %}
 5070   interface(REG_INTER);
 5071 %}
 5072 
 5073 operand vRegD_V7()
 5074 %{
 5075   constraint(ALLOC_IN_RC(v7_reg));
 5076   match(RegD);
 5077   op_cost(0);
 5078   format %{ %}
 5079   interface(REG_INTER);
 5080 %}
 5081 
 5082 operand vRegD_V12()
 5083 %{
 5084   constraint(ALLOC_IN_RC(v12_reg));
 5085   match(RegD);
 5086   op_cost(0);
 5087   format %{ %}
 5088   interface(REG_INTER);
 5089 %}
 5090 
 5091 operand vRegD_V13()
 5092 %{
 5093   constraint(ALLOC_IN_RC(v13_reg));
 5094   match(RegD);
 5095   op_cost(0);
 5096   format %{ %}
 5097   interface(REG_INTER);
 5098 %}
 5099 
 5100 operand pReg()
 5101 %{
 5102   constraint(ALLOC_IN_RC(pr_reg));
 5103   match(RegVectMask);
 5104   match(pRegGov);
 5105   op_cost(0);
 5106   format %{ %}
 5107   interface(REG_INTER);
 5108 %}
 5109 
 5110 operand pRegGov()
 5111 %{
 5112   constraint(ALLOC_IN_RC(gov_pr));
 5113   match(RegVectMask);
 5114   match(pReg);
 5115   op_cost(0);
 5116   format %{ %}
 5117   interface(REG_INTER);
 5118 %}
 5119 
 5120 operand pRegGov_P0()
 5121 %{
 5122   constraint(ALLOC_IN_RC(p0_reg));
 5123   match(RegVectMask);
 5124   op_cost(0);
 5125   format %{ %}
 5126   interface(REG_INTER);
 5127 %}
 5128 
 5129 operand pRegGov_P1()
 5130 %{
 5131   constraint(ALLOC_IN_RC(p1_reg));
 5132   match(RegVectMask);
 5133   op_cost(0);
 5134   format %{ %}
 5135   interface(REG_INTER);
 5136 %}
 5137 
 5138 // Flags register, used as output of signed compare instructions
 5139 
 5140 // note that on AArch64 we also use this register as the output for
 5141 // for floating point compare instructions (CmpF CmpD). this ensures
 5142 // that ordered inequality tests use GT, GE, LT or LE none of which
 5143 // pass through cases where the result is unordered i.e. one or both
 5144 // inputs to the compare is a NaN. this means that the ideal code can
 5145 // replace e.g. a GT with an LE and not end up capturing the NaN case
 5146 // (where the comparison should always fail). EQ and NE tests are
 5147 // always generated in ideal code so that unordered folds into the NE
 5148 // case, matching the behaviour of AArch64 NE.
 5149 //
 5150 // This differs from x86 where the outputs of FP compares use a
 5151 // special FP flags registers and where compares based on this
 5152 // register are distinguished into ordered inequalities (cmpOpUCF) and
 5153 // EQ/NEQ tests (cmpOpUCF2). x86 has to special case the latter tests
 5154 // to explicitly handle the unordered case in branches. x86 also has
 5155 // to include extra CMoveX rules to accept a cmpOpUCF input.
 5156 
 5157 operand rFlagsReg()
 5158 %{
 5159   constraint(ALLOC_IN_RC(int_flags));
 5160   match(RegFlags);
 5161 
 5162   op_cost(0);
 5163   format %{ "RFLAGS" %}
 5164   interface(REG_INTER);
 5165 %}
 5166 
 5167 // Flags register, used as output of unsigned compare instructions
 5168 operand rFlagsRegU()
 5169 %{
 5170   constraint(ALLOC_IN_RC(int_flags));
 5171   match(RegFlags);
 5172 
 5173   op_cost(0);
 5174   format %{ "RFLAGSU" %}
 5175   interface(REG_INTER);
 5176 %}
 5177 
 5178 // Special Registers
 5179 
 5180 // Method Register
 5181 operand inline_cache_RegP(iRegP reg)
 5182 %{
 5183   constraint(ALLOC_IN_RC(method_reg)); // inline_cache_reg
 5184   match(reg);
 5185   match(iRegPNoSp);
 5186   op_cost(0);
 5187   format %{ %}
 5188   interface(REG_INTER);
 5189 %}
 5190 
 5191 // Thread Register
 5192 operand thread_RegP(iRegP reg)
 5193 %{
 5194   constraint(ALLOC_IN_RC(thread_reg)); // link_reg
 5195   match(reg);
 5196   op_cost(0);
 5197   format %{ %}
 5198   interface(REG_INTER);
 5199 %}
 5200 
 5201 //----------Memory Operands----------------------------------------------------
 5202 
 5203 operand indirect(iRegP reg)
 5204 %{
 5205   constraint(ALLOC_IN_RC(ptr_reg));
 5206   match(reg);
 5207   op_cost(0);
 5208   format %{ "[$reg]" %}
 5209   interface(MEMORY_INTER) %{
 5210     base($reg);
 5211     index(0xffffffff);
 5212     scale(0x0);
 5213     disp(0x0);
 5214   %}
 5215 %}
 5216 
 5217 operand indIndexScaledI2L(iRegP reg, iRegI ireg, immIScale scale)
 5218 %{
 5219   constraint(ALLOC_IN_RC(ptr_reg));
 5220   predicate(size_fits_all_mem_uses(n->as_AddP(), n->in(AddPNode::Offset)->in(2)->get_int()));
 5221   match(AddP reg (LShiftL (ConvI2L ireg) scale));
 5222   op_cost(0);
 5223   format %{ "$reg, $ireg sxtw($scale), 0, I2L" %}
 5224   interface(MEMORY_INTER) %{
 5225     base($reg);
 5226     index($ireg);
 5227     scale($scale);
 5228     disp(0x0);
 5229   %}
 5230 %}
 5231 
 5232 operand indIndexScaled(iRegP reg, iRegL lreg, immIScale scale)
 5233 %{
 5234   constraint(ALLOC_IN_RC(ptr_reg));
 5235   predicate(size_fits_all_mem_uses(n->as_AddP(), n->in(AddPNode::Offset)->in(2)->get_int()));
 5236   match(AddP reg (LShiftL lreg scale));
 5237   op_cost(0);
 5238   format %{ "$reg, $lreg lsl($scale)" %}
 5239   interface(MEMORY_INTER) %{
 5240     base($reg);
 5241     index($lreg);
 5242     scale($scale);
 5243     disp(0x0);
 5244   %}
 5245 %}
 5246 
 5247 operand indIndexI2L(iRegP reg, iRegI ireg)
 5248 %{
 5249   constraint(ALLOC_IN_RC(ptr_reg));
 5250   match(AddP reg (ConvI2L ireg));
 5251   op_cost(0);
 5252   format %{ "$reg, $ireg, 0, I2L" %}
 5253   interface(MEMORY_INTER) %{
 5254     base($reg);
 5255     index($ireg);
 5256     scale(0x0);
 5257     disp(0x0);
 5258   %}
 5259 %}
 5260 
 5261 operand indIndex(iRegP reg, iRegL lreg)
 5262 %{
 5263   constraint(ALLOC_IN_RC(ptr_reg));
 5264   match(AddP reg lreg);
 5265   op_cost(0);
 5266   format %{ "$reg, $lreg" %}
 5267   interface(MEMORY_INTER) %{
 5268     base($reg);
 5269     index($lreg);
 5270     scale(0x0);
 5271     disp(0x0);
 5272   %}
 5273 %}
 5274 
 5275 operand indOffI1(iRegP reg, immIOffset1 off)
 5276 %{
 5277   constraint(ALLOC_IN_RC(ptr_reg));
 5278   match(AddP reg off);
 5279   op_cost(0);
 5280   format %{ "[$reg, $off]" %}
 5281   interface(MEMORY_INTER) %{
 5282     base($reg);
 5283     index(0xffffffff);
 5284     scale(0x0);
 5285     disp($off);
 5286   %}
 5287 %}
 5288 
 5289 operand indOffI2(iRegP reg, immIOffset2 off)
 5290 %{
 5291   constraint(ALLOC_IN_RC(ptr_reg));
 5292   match(AddP reg off);
 5293   op_cost(0);
 5294   format %{ "[$reg, $off]" %}
 5295   interface(MEMORY_INTER) %{
 5296     base($reg);
 5297     index(0xffffffff);
 5298     scale(0x0);
 5299     disp($off);
 5300   %}
 5301 %}
 5302 
 5303 operand indOffI4(iRegP reg, immIOffset4 off)
 5304 %{
 5305   constraint(ALLOC_IN_RC(ptr_reg));
 5306   match(AddP reg off);
 5307   op_cost(0);
 5308   format %{ "[$reg, $off]" %}
 5309   interface(MEMORY_INTER) %{
 5310     base($reg);
 5311     index(0xffffffff);
 5312     scale(0x0);
 5313     disp($off);
 5314   %}
 5315 %}
 5316 
 5317 operand indOffI8(iRegP reg, immIOffset8 off)
 5318 %{
 5319   constraint(ALLOC_IN_RC(ptr_reg));
 5320   match(AddP reg off);
 5321   op_cost(0);
 5322   format %{ "[$reg, $off]" %}
 5323   interface(MEMORY_INTER) %{
 5324     base($reg);
 5325     index(0xffffffff);
 5326     scale(0x0);
 5327     disp($off);
 5328   %}
 5329 %}
 5330 
 5331 operand indOffI16(iRegP reg, immIOffset16 off)
 5332 %{
 5333   constraint(ALLOC_IN_RC(ptr_reg));
 5334   match(AddP reg off);
 5335   op_cost(0);
 5336   format %{ "[$reg, $off]" %}
 5337   interface(MEMORY_INTER) %{
 5338     base($reg);
 5339     index(0xffffffff);
 5340     scale(0x0);
 5341     disp($off);
 5342   %}
 5343 %}
 5344 
 5345 operand indOffL1(iRegP reg, immLoffset1 off)
 5346 %{
 5347   constraint(ALLOC_IN_RC(ptr_reg));
 5348   match(AddP reg off);
 5349   op_cost(0);
 5350   format %{ "[$reg, $off]" %}
 5351   interface(MEMORY_INTER) %{
 5352     base($reg);
 5353     index(0xffffffff);
 5354     scale(0x0);
 5355     disp($off);
 5356   %}
 5357 %}
 5358 
 5359 operand indOffL2(iRegP reg, immLoffset2 off)
 5360 %{
 5361   constraint(ALLOC_IN_RC(ptr_reg));
 5362   match(AddP reg off);
 5363   op_cost(0);
 5364   format %{ "[$reg, $off]" %}
 5365   interface(MEMORY_INTER) %{
 5366     base($reg);
 5367     index(0xffffffff);
 5368     scale(0x0);
 5369     disp($off);
 5370   %}
 5371 %}
 5372 
 5373 operand indOffL4(iRegP reg, immLoffset4 off)
 5374 %{
 5375   constraint(ALLOC_IN_RC(ptr_reg));
 5376   match(AddP reg off);
 5377   op_cost(0);
 5378   format %{ "[$reg, $off]" %}
 5379   interface(MEMORY_INTER) %{
 5380     base($reg);
 5381     index(0xffffffff);
 5382     scale(0x0);
 5383     disp($off);
 5384   %}
 5385 %}
 5386 
 5387 operand indOffL8(iRegP reg, immLoffset8 off)
 5388 %{
 5389   constraint(ALLOC_IN_RC(ptr_reg));
 5390   match(AddP reg off);
 5391   op_cost(0);
 5392   format %{ "[$reg, $off]" %}
 5393   interface(MEMORY_INTER) %{
 5394     base($reg);
 5395     index(0xffffffff);
 5396     scale(0x0);
 5397     disp($off);
 5398   %}
 5399 %}
 5400 
 5401 operand indOffL16(iRegP reg, immLoffset16 off)
 5402 %{
 5403   constraint(ALLOC_IN_RC(ptr_reg));
 5404   match(AddP reg off);
 5405   op_cost(0);
 5406   format %{ "[$reg, $off]" %}
 5407   interface(MEMORY_INTER) %{
 5408     base($reg);
 5409     index(0xffffffff);
 5410     scale(0x0);
 5411     disp($off);
 5412   %}
 5413 %}
 5414 
 5415 operand indirectX2P(iRegL reg)
 5416 %{
 5417   constraint(ALLOC_IN_RC(ptr_reg));
 5418   match(CastX2P reg);
 5419   op_cost(0);
 5420   format %{ "[$reg]\t# long -> ptr" %}
 5421   interface(MEMORY_INTER) %{
 5422     base($reg);
 5423     index(0xffffffff);
 5424     scale(0x0);
 5425     disp(0x0);
 5426   %}
 5427 %}
 5428 
 5429 operand indOffX2P(iRegL reg, immLOffset off)
 5430 %{
 5431   constraint(ALLOC_IN_RC(ptr_reg));
 5432   match(AddP (CastX2P reg) off);
 5433   op_cost(0);
 5434   format %{ "[$reg, $off]\t# long -> ptr" %}
 5435   interface(MEMORY_INTER) %{
 5436     base($reg);
 5437     index(0xffffffff);
 5438     scale(0x0);
 5439     disp($off);
 5440   %}
 5441 %}
 5442 
 5443 operand indirectN(iRegN reg)
 5444 %{
 5445   predicate(CompressedOops::shift() == 0);
 5446   constraint(ALLOC_IN_RC(ptr_reg));
 5447   match(DecodeN reg);
 5448   op_cost(0);
 5449   format %{ "[$reg]\t# narrow" %}
 5450   interface(MEMORY_INTER) %{
 5451     base($reg);
 5452     index(0xffffffff);
 5453     scale(0x0);
 5454     disp(0x0);
 5455   %}
 5456 %}
 5457 
 5458 operand indIndexScaledI2LN(iRegN reg, iRegI ireg, immIScale scale)
 5459 %{
 5460   predicate(CompressedOops::shift() == 0 && size_fits_all_mem_uses(n->as_AddP(), n->in(AddPNode::Offset)->in(2)->get_int()));
 5461   constraint(ALLOC_IN_RC(ptr_reg));
 5462   match(AddP (DecodeN reg) (LShiftL (ConvI2L ireg) scale));
 5463   op_cost(0);
 5464   format %{ "$reg, $ireg sxtw($scale), 0, I2L\t# narrow" %}
 5465   interface(MEMORY_INTER) %{
 5466     base($reg);
 5467     index($ireg);
 5468     scale($scale);
 5469     disp(0x0);
 5470   %}
 5471 %}
 5472 
 5473 operand indIndexScaledN(iRegN reg, iRegL lreg, immIScale scale)
 5474 %{
 5475   predicate(CompressedOops::shift() == 0 && size_fits_all_mem_uses(n->as_AddP(), n->in(AddPNode::Offset)->in(2)->get_int()));
 5476   constraint(ALLOC_IN_RC(ptr_reg));
 5477   match(AddP (DecodeN reg) (LShiftL lreg scale));
 5478   op_cost(0);
 5479   format %{ "$reg, $lreg lsl($scale)\t# narrow" %}
 5480   interface(MEMORY_INTER) %{
 5481     base($reg);
 5482     index($lreg);
 5483     scale($scale);
 5484     disp(0x0);
 5485   %}
 5486 %}
 5487 
 5488 operand indIndexI2LN(iRegN reg, iRegI ireg)
 5489 %{
 5490   predicate(CompressedOops::shift() == 0);
 5491   constraint(ALLOC_IN_RC(ptr_reg));
 5492   match(AddP (DecodeN reg) (ConvI2L ireg));
 5493   op_cost(0);
 5494   format %{ "$reg, $ireg, 0, I2L\t# narrow" %}
 5495   interface(MEMORY_INTER) %{
 5496     base($reg);
 5497     index($ireg);
 5498     scale(0x0);
 5499     disp(0x0);
 5500   %}
 5501 %}
 5502 
 5503 operand indIndexN(iRegN reg, iRegL lreg)
 5504 %{
 5505   predicate(CompressedOops::shift() == 0);
 5506   constraint(ALLOC_IN_RC(ptr_reg));
 5507   match(AddP (DecodeN reg) lreg);
 5508   op_cost(0);
 5509   format %{ "$reg, $lreg\t# narrow" %}
 5510   interface(MEMORY_INTER) %{
 5511     base($reg);
 5512     index($lreg);
 5513     scale(0x0);
 5514     disp(0x0);
 5515   %}
 5516 %}
 5517 
 5518 operand indOffIN(iRegN reg, immIOffset off)
 5519 %{
 5520   predicate(CompressedOops::shift() == 0);
 5521   constraint(ALLOC_IN_RC(ptr_reg));
 5522   match(AddP (DecodeN reg) off);
 5523   op_cost(0);
 5524   format %{ "[$reg, $off]\t# narrow" %}
 5525   interface(MEMORY_INTER) %{
 5526     base($reg);
 5527     index(0xffffffff);
 5528     scale(0x0);
 5529     disp($off);
 5530   %}
 5531 %}
 5532 
 5533 operand indOffLN(iRegN reg, immLOffset off)
 5534 %{
 5535   predicate(CompressedOops::shift() == 0);
 5536   constraint(ALLOC_IN_RC(ptr_reg));
 5537   match(AddP (DecodeN reg) off);
 5538   op_cost(0);
 5539   format %{ "[$reg, $off]\t# narrow" %}
 5540   interface(MEMORY_INTER) %{
 5541     base($reg);
 5542     index(0xffffffff);
 5543     scale(0x0);
 5544     disp($off);
 5545   %}
 5546 %}
 5547 
 5548 
 5549 //----------Special Memory Operands--------------------------------------------
 5550 // Stack Slot Operand - This operand is used for loading and storing temporary
 5551 //                      values on the stack where a match requires a value to
 5552 //                      flow through memory.
 5553 operand stackSlotP(sRegP reg)
 5554 %{
 5555   constraint(ALLOC_IN_RC(stack_slots));
 5556   op_cost(100);
 5557   // No match rule because this operand is only generated in matching
 5558   // match(RegP);
 5559   format %{ "[$reg]" %}
 5560   interface(MEMORY_INTER) %{
 5561     base(0x1e);  // RSP
 5562     index(0x0);  // No Index
 5563     scale(0x0);  // No Scale
 5564     disp($reg);  // Stack Offset
 5565   %}
 5566 %}
 5567 
 5568 operand stackSlotI(sRegI reg)
 5569 %{
 5570   constraint(ALLOC_IN_RC(stack_slots));
 5571   // No match rule because this operand is only generated in matching
 5572   // match(RegI);
 5573   format %{ "[$reg]" %}
 5574   interface(MEMORY_INTER) %{
 5575     base(0x1e);  // RSP
 5576     index(0x0);  // No Index
 5577     scale(0x0);  // No Scale
 5578     disp($reg);  // Stack Offset
 5579   %}
 5580 %}
 5581 
 5582 operand stackSlotF(sRegF reg)
 5583 %{
 5584   constraint(ALLOC_IN_RC(stack_slots));
 5585   // No match rule because this operand is only generated in matching
 5586   // match(RegF);
 5587   format %{ "[$reg]" %}
 5588   interface(MEMORY_INTER) %{
 5589     base(0x1e);  // RSP
 5590     index(0x0);  // No Index
 5591     scale(0x0);  // No Scale
 5592     disp($reg);  // Stack Offset
 5593   %}
 5594 %}
 5595 
 5596 operand stackSlotD(sRegD reg)
 5597 %{
 5598   constraint(ALLOC_IN_RC(stack_slots));
 5599   // No match rule because this operand is only generated in matching
 5600   // match(RegD);
 5601   format %{ "[$reg]" %}
 5602   interface(MEMORY_INTER) %{
 5603     base(0x1e);  // RSP
 5604     index(0x0);  // No Index
 5605     scale(0x0);  // No Scale
 5606     disp($reg);  // Stack Offset
 5607   %}
 5608 %}
 5609 
 5610 operand stackSlotL(sRegL reg)
 5611 %{
 5612   constraint(ALLOC_IN_RC(stack_slots));
 5613   // No match rule because this operand is only generated in matching
 5614   // match(RegL);
 5615   format %{ "[$reg]" %}
 5616   interface(MEMORY_INTER) %{
 5617     base(0x1e);  // RSP
 5618     index(0x0);  // No Index
 5619     scale(0x0);  // No Scale
 5620     disp($reg);  // Stack Offset
 5621   %}
 5622 %}
 5623 
 5624 // Operands for expressing Control Flow
 5625 // NOTE: Label is a predefined operand which should not be redefined in
 5626 //       the AD file. It is generically handled within the ADLC.
 5627 
 5628 //----------Conditional Branch Operands----------------------------------------
 5629 // Comparison Op  - This is the operation of the comparison, and is limited to
 5630 //                  the following set of codes:
 5631 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
 5632 //
 5633 // Other attributes of the comparison, such as unsignedness, are specified
 5634 // by the comparison instruction that sets a condition code flags register.
 5635 // That result is represented by a flags operand whose subtype is appropriate
 5636 // to the unsignedness (etc.) of the comparison.
 5637 //
 5638 // Later, the instruction which matches both the Comparison Op (a Bool) and
 5639 // the flags (produced by the Cmp) specifies the coding of the comparison op
 5640 // by matching a specific subtype of Bool operand below, such as cmpOpU.
 5641 
 5642 // used for signed integral comparisons and fp comparisons
 5643 
 5644 operand cmpOp()
 5645 %{
 5646   match(Bool);
 5647 
 5648   format %{ "" %}
 5649   interface(COND_INTER) %{
 5650     equal(0x0, "eq");
 5651     not_equal(0x1, "ne");
 5652     less(0xb, "lt");
 5653     greater_equal(0xa, "ge");
 5654     less_equal(0xd, "le");
 5655     greater(0xc, "gt");
 5656     overflow(0x6, "vs");
 5657     no_overflow(0x7, "vc");
 5658   %}
 5659 %}
 5660 
 5661 // used for unsigned integral comparisons
 5662 
 5663 operand cmpOpU()
 5664 %{
 5665   match(Bool);
 5666 
 5667   format %{ "" %}
 5668   interface(COND_INTER) %{
 5669     equal(0x0, "eq");
 5670     not_equal(0x1, "ne");
 5671     less(0x3, "lo");
 5672     greater_equal(0x2, "hs");
 5673     less_equal(0x9, "ls");
 5674     greater(0x8, "hi");
 5675     overflow(0x6, "vs");
 5676     no_overflow(0x7, "vc");
 5677   %}
 5678 %}
 5679 
 5680 // used for certain integral comparisons which can be
 5681 // converted to cbxx or tbxx instructions
 5682 
 5683 operand cmpOpEqNe()
 5684 %{
 5685   match(Bool);
 5686   op_cost(0);
 5687   predicate(n->as_Bool()->_test._test == BoolTest::ne
 5688             || n->as_Bool()->_test._test == BoolTest::eq);
 5689 
 5690   format %{ "" %}
 5691   interface(COND_INTER) %{
 5692     equal(0x0, "eq");
 5693     not_equal(0x1, "ne");
 5694     less(0xb, "lt");
 5695     greater_equal(0xa, "ge");
 5696     less_equal(0xd, "le");
 5697     greater(0xc, "gt");
 5698     overflow(0x6, "vs");
 5699     no_overflow(0x7, "vc");
 5700   %}
 5701 %}
 5702 
 5703 // used for certain integral comparisons which can be
 5704 // converted to cbxx or tbxx instructions
 5705 
 5706 operand cmpOpLtGe()
 5707 %{
 5708   match(Bool);
 5709   op_cost(0);
 5710 
 5711   predicate(n->as_Bool()->_test._test == BoolTest::lt
 5712             || n->as_Bool()->_test._test == BoolTest::ge);
 5713 
 5714   format %{ "" %}
 5715   interface(COND_INTER) %{
 5716     equal(0x0, "eq");
 5717     not_equal(0x1, "ne");
 5718     less(0xb, "lt");
 5719     greater_equal(0xa, "ge");
 5720     less_equal(0xd, "le");
 5721     greater(0xc, "gt");
 5722     overflow(0x6, "vs");
 5723     no_overflow(0x7, "vc");
 5724   %}
 5725 %}
 5726 
 5727 // used for certain unsigned integral comparisons which can be
 5728 // converted to cbxx or tbxx instructions
 5729 
 5730 operand cmpOpUEqNeLeGt()
 5731 %{
 5732   match(Bool);
 5733   op_cost(0);
 5734 
 5735   predicate(n->as_Bool()->_test._test == BoolTest::eq ||
 5736             n->as_Bool()->_test._test == BoolTest::ne ||
 5737             n->as_Bool()->_test._test == BoolTest::le ||
 5738             n->as_Bool()->_test._test == BoolTest::gt);
 5739 
 5740   format %{ "" %}
 5741   interface(COND_INTER) %{
 5742     equal(0x0, "eq");
 5743     not_equal(0x1, "ne");
 5744     less(0x3, "lo");
 5745     greater_equal(0x2, "hs");
 5746     less_equal(0x9, "ls");
 5747     greater(0x8, "hi");
 5748     overflow(0x6, "vs");
 5749     no_overflow(0x7, "vc");
 5750   %}
 5751 %}
 5752 
 5753 // Special operand allowing long args to int ops to be truncated for free
 5754 
 5755 operand iRegL2I(iRegL reg) %{
 5756 
 5757   op_cost(0);
 5758 
 5759   match(ConvL2I reg);
 5760 
 5761   format %{ "l2i($reg)" %}
 5762 
 5763   interface(REG_INTER)
 5764 %}
 5765 
 5766 operand iRegL2P(iRegL reg) %{
 5767 
 5768   op_cost(0);
 5769 
 5770   match(CastX2P reg);
 5771 
 5772   format %{ "l2p($reg)" %}
 5773 
 5774   interface(REG_INTER)
 5775 %}
 5776 
 5777 opclass vmem2(indirect, indIndex, indOffI2, indOffL2);
 5778 opclass vmem4(indirect, indIndex, indOffI4, indOffL4);
 5779 opclass vmem8(indirect, indIndex, indOffI8, indOffL8);
 5780 opclass vmem16(indirect, indIndex, indOffI16, indOffL16);
 5781 
 5782 //----------OPERAND CLASSES----------------------------------------------------
 5783 // Operand Classes are groups of operands that are used as to simplify
 5784 // instruction definitions by not requiring the AD writer to specify
 5785 // separate instructions for every form of operand when the
 5786 // instruction accepts multiple operand types with the same basic
 5787 // encoding and format. The classic case of this is memory operands.
 5788 
 5789 // memory is used to define read/write location for load/store
 5790 // instruction defs. we can turn a memory op into an Address
 5791 
 5792 opclass memory1(indirect, indIndexScaled, indIndexScaledI2L, indIndexI2L, indIndex, indOffI1, indOffL1,
 5793                 indirectN, indIndexScaledN, indIndexScaledI2LN, indIndexI2LN, indIndexN, indirectX2P, indOffX2P);
 5794 
 5795 opclass memory2(indirect, indIndexScaled, indIndexScaledI2L, indIndexI2L, indIndex, indOffI2, indOffL2,
 5796                 indirectN, indIndexScaledN, indIndexScaledI2LN, indIndexI2LN, indIndexN, indirectX2P, indOffX2P);
 5797 
 5798 opclass memory4(indirect, indIndexScaled, indIndexScaledI2L, indIndexI2L, indIndex, indOffI4, indOffL4,
 5799                 indirectN, indIndexScaledN, indIndexScaledI2LN, indIndexI2LN, indIndexN, indOffIN, indOffLN, indirectX2P, indOffX2P);
 5800 
 5801 opclass memory8(indirect, indIndexScaled, indIndexScaledI2L, indIndexI2L, indIndex, indOffI8, indOffL8,
 5802                 indirectN, indIndexScaledN, indIndexScaledI2LN, indIndexI2LN, indIndexN, indOffIN, indOffLN, indirectX2P, indOffX2P);
 5803 
 5804 // All of the memory operands. For the pipeline description.
 5805 opclass memory(indirect, indIndexScaled, indIndexScaledI2L, indIndexI2L, indIndex,
 5806                indOffI1, indOffL1, indOffI2, indOffL2, indOffI4, indOffL4, indOffI8, indOffL8,
 5807                indirectN, indIndexScaledN, indIndexScaledI2LN, indIndexI2LN, indIndexN, indOffIN, indOffLN, indirectX2P, indOffX2P);
 5808 
 5809 
 5810 // iRegIorL2I is used for src inputs in rules for 32 bit int (I)
 5811 // operations. it allows the src to be either an iRegI or a (ConvL2I
 5812 // iRegL). in the latter case the l2i normally planted for a ConvL2I
 5813 // can be elided because the 32-bit instruction will just employ the
 5814 // lower 32 bits anyway.
 5815 //
 5816 // n.b. this does not elide all L2I conversions. if the truncated
 5817 // value is consumed by more than one operation then the ConvL2I
 5818 // cannot be bundled into the consuming nodes so an l2i gets planted
 5819 // (actually a movw $dst $src) and the downstream instructions consume
 5820 // the result of the l2i as an iRegI input. That's a shame since the
 5821 // movw is actually redundant but its not too costly.
 5822 
 5823 opclass iRegIorL2I(iRegI, iRegL2I);
 5824 opclass iRegPorL2P(iRegP, iRegL2P);
 5825 
 5826 //----------PIPELINE-----------------------------------------------------------
 5827 // Rules which define the behavior of the target architectures pipeline.
 5828 
 5829 // For specific pipelines, eg A53, define the stages of that pipeline
 5830 //pipe_desc(ISS, EX1, EX2, WR);
 5831 #define ISS S0
 5832 #define EX1 S1
 5833 #define EX2 S2
 5834 #define WR  S3
 5835 
 5836 // Integer ALU reg operation
 5837 pipeline %{
 5838 
 5839 attributes %{
 5840   // ARM instructions are of fixed length
 5841   fixed_size_instructions;        // Fixed size instructions TODO does
 5842   max_instructions_per_bundle = 4;   // A53 = 2, A57 = 4
 5843   // ARM instructions come in 32-bit word units
 5844   instruction_unit_size = 4;         // An instruction is 4 bytes long
 5845   instruction_fetch_unit_size = 64;  // The processor fetches one line
 5846   instruction_fetch_units = 1;       // of 64 bytes
 5847 
 5848   // List of nop instructions
 5849   nops( MachNop );
 5850 %}
 5851 
 5852 // We don't use an actual pipeline model so don't care about resources
 5853 // or description. we do use pipeline classes to introduce fixed
 5854 // latencies
 5855 
 5856 //----------RESOURCES----------------------------------------------------------
 5857 // Resources are the functional units available to the machine
 5858 
 5859 resources( INS0, INS1, INS01 = INS0 | INS1,
 5860            ALU0, ALU1, ALU = ALU0 | ALU1,
 5861            MAC,
 5862            DIV,
 5863            BRANCH,
 5864            LDST,
 5865            NEON_FP);
 5866 
 5867 //----------PIPELINE DESCRIPTION-----------------------------------------------
 5868 // Pipeline Description specifies the stages in the machine's pipeline
 5869 
 5870 // Define the pipeline as a generic 6 stage pipeline
 5871 pipe_desc(S0, S1, S2, S3, S4, S5);
 5872 
 5873 //----------PIPELINE CLASSES---------------------------------------------------
 5874 // Pipeline Classes describe the stages in which input and output are
 5875 // referenced by the hardware pipeline.
 5876 
 5877 pipe_class fp_dop_reg_reg_s(vRegF dst, vRegF src1, vRegF src2)
 5878 %{
 5879   single_instruction;
 5880   src1   : S1(read);
 5881   src2   : S2(read);
 5882   dst    : S5(write);
 5883   INS01  : ISS;
 5884   NEON_FP : S5;
 5885 %}
 5886 
 5887 pipe_class fp_dop_reg_reg_d(vRegD dst, vRegD src1, vRegD src2)
 5888 %{
 5889   single_instruction;
 5890   src1   : S1(read);
 5891   src2   : S2(read);
 5892   dst    : S5(write);
 5893   INS01  : ISS;
 5894   NEON_FP : S5;
 5895 %}
 5896 
 5897 pipe_class fp_uop_s(vRegF dst, vRegF src)
 5898 %{
 5899   single_instruction;
 5900   src    : S1(read);
 5901   dst    : S5(write);
 5902   INS01  : ISS;
 5903   NEON_FP : S5;
 5904 %}
 5905 
 5906 pipe_class fp_uop_d(vRegD dst, vRegD src)
 5907 %{
 5908   single_instruction;
 5909   src    : S1(read);
 5910   dst    : S5(write);
 5911   INS01  : ISS;
 5912   NEON_FP : S5;
 5913 %}
 5914 
 5915 pipe_class fp_d2f(vRegF dst, vRegD src)
 5916 %{
 5917   single_instruction;
 5918   src    : S1(read);
 5919   dst    : S5(write);
 5920   INS01  : ISS;
 5921   NEON_FP : S5;
 5922 %}
 5923 
 5924 pipe_class fp_f2d(vRegD dst, vRegF src)
 5925 %{
 5926   single_instruction;
 5927   src    : S1(read);
 5928   dst    : S5(write);
 5929   INS01  : ISS;
 5930   NEON_FP : S5;
 5931 %}
 5932 
 5933 pipe_class fp_f2i(iRegINoSp dst, vRegF src)
 5934 %{
 5935   single_instruction;
 5936   src    : S1(read);
 5937   dst    : S5(write);
 5938   INS01  : ISS;
 5939   NEON_FP : S5;
 5940 %}
 5941 
 5942 pipe_class fp_f2l(iRegLNoSp dst, vRegF src)
 5943 %{
 5944   single_instruction;
 5945   src    : S1(read);
 5946   dst    : S5(write);
 5947   INS01  : ISS;
 5948   NEON_FP : S5;
 5949 %}
 5950 
 5951 pipe_class fp_i2f(vRegF dst, iRegIorL2I src)
 5952 %{
 5953   single_instruction;
 5954   src    : S1(read);
 5955   dst    : S5(write);
 5956   INS01  : ISS;
 5957   NEON_FP : S5;
 5958 %}
 5959 
 5960 pipe_class fp_l2f(vRegF dst, iRegL src)
 5961 %{
 5962   single_instruction;
 5963   src    : S1(read);
 5964   dst    : S5(write);
 5965   INS01  : ISS;
 5966   NEON_FP : S5;
 5967 %}
 5968 
 5969 pipe_class fp_d2i(iRegINoSp dst, vRegD src)
 5970 %{
 5971   single_instruction;
 5972   src    : S1(read);
 5973   dst    : S5(write);
 5974   INS01  : ISS;
 5975   NEON_FP : S5;
 5976 %}
 5977 
 5978 pipe_class fp_d2l(iRegLNoSp dst, vRegD src)
 5979 %{
 5980   single_instruction;
 5981   src    : S1(read);
 5982   dst    : S5(write);
 5983   INS01  : ISS;
 5984   NEON_FP : S5;
 5985 %}
 5986 
 5987 pipe_class fp_i2d(vRegD dst, iRegIorL2I src)
 5988 %{
 5989   single_instruction;
 5990   src    : S1(read);
 5991   dst    : S5(write);
 5992   INS01  : ISS;
 5993   NEON_FP : S5;
 5994 %}
 5995 
 5996 pipe_class fp_l2d(vRegD dst, iRegIorL2I src)
 5997 %{
 5998   single_instruction;
 5999   src    : S1(read);
 6000   dst    : S5(write);
 6001   INS01  : ISS;
 6002   NEON_FP : S5;
 6003 %}
 6004 
 6005 pipe_class fp_div_s(vRegF dst, vRegF src1, vRegF src2)
 6006 %{
 6007   single_instruction;
 6008   src1   : S1(read);
 6009   src2   : S2(read);
 6010   dst    : S5(write);
 6011   INS0   : ISS;
 6012   NEON_FP : S5;
 6013 %}
 6014 
 6015 pipe_class fp_div_d(vRegD dst, vRegD src1, vRegD src2)
 6016 %{
 6017   single_instruction;
 6018   src1   : S1(read);
 6019   src2   : S2(read);
 6020   dst    : S5(write);
 6021   INS0   : ISS;
 6022   NEON_FP : S5;
 6023 %}
 6024 
 6025 pipe_class fp_cond_reg_reg_s(vRegF dst, vRegF src1, vRegF src2, rFlagsReg cr)
 6026 %{
 6027   single_instruction;
 6028   cr     : S1(read);
 6029   src1   : S1(read);
 6030   src2   : S1(read);
 6031   dst    : S3(write);
 6032   INS01  : ISS;
 6033   NEON_FP : S3;
 6034 %}
 6035 
 6036 pipe_class fp_cond_reg_reg_d(vRegD dst, vRegD src1, vRegD src2, rFlagsReg cr)
 6037 %{
 6038   single_instruction;
 6039   cr     : S1(read);
 6040   src1   : S1(read);
 6041   src2   : S1(read);
 6042   dst    : S3(write);
 6043   INS01  : ISS;
 6044   NEON_FP : S3;
 6045 %}
 6046 
 6047 pipe_class fp_imm_s(vRegF dst)
 6048 %{
 6049   single_instruction;
 6050   dst    : S3(write);
 6051   INS01  : ISS;
 6052   NEON_FP : S3;
 6053 %}
 6054 
 6055 pipe_class fp_imm_d(vRegD dst)
 6056 %{
 6057   single_instruction;
 6058   dst    : S3(write);
 6059   INS01  : ISS;
 6060   NEON_FP : S3;
 6061 %}
 6062 
 6063 pipe_class fp_load_constant_s(vRegF dst)
 6064 %{
 6065   single_instruction;
 6066   dst    : S4(write);
 6067   INS01  : ISS;
 6068   NEON_FP : S4;
 6069 %}
 6070 
 6071 pipe_class fp_load_constant_d(vRegD dst)
 6072 %{
 6073   single_instruction;
 6074   dst    : S4(write);
 6075   INS01  : ISS;
 6076   NEON_FP : S4;
 6077 %}
 6078 
 6079 //------- Integer ALU operations --------------------------
 6080 
 6081 // Integer ALU reg-reg operation
 6082 // Operands needed in EX1, result generated in EX2
 6083 // Eg.  ADD     x0, x1, x2
 6084 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2)
 6085 %{
 6086   single_instruction;
 6087   dst    : EX2(write);
 6088   src1   : EX1(read);
 6089   src2   : EX1(read);
 6090   INS01  : ISS; // Dual issue as instruction 0 or 1
 6091   ALU    : EX2;
 6092 %}
 6093 
 6094 // Integer ALU reg-reg operation with constant shift
 6095 // Shifted register must be available in LATE_ISS instead of EX1
 6096 // Eg.  ADD     x0, x1, x2, LSL #2
 6097 pipe_class ialu_reg_reg_shift(iRegI dst, iRegI src1, iRegI src2, immI shift)
 6098 %{
 6099   single_instruction;
 6100   dst    : EX2(write);
 6101   src1   : EX1(read);
 6102   src2   : ISS(read);
 6103   INS01  : ISS;
 6104   ALU    : EX2;
 6105 %}
 6106 
 6107 // Integer ALU reg operation with constant shift
 6108 // Eg.  LSL     x0, x1, #shift
 6109 pipe_class ialu_reg_shift(iRegI dst, iRegI src1)
 6110 %{
 6111   single_instruction;
 6112   dst    : EX2(write);
 6113   src1   : ISS(read);
 6114   INS01  : ISS;
 6115   ALU    : EX2;
 6116 %}
 6117 
 6118 // Integer ALU reg-reg operation with variable shift
 6119 // Both operands must be available in LATE_ISS instead of EX1
 6120 // Result is available in EX1 instead of EX2
 6121 // Eg.  LSLV    x0, x1, x2
 6122 pipe_class ialu_reg_reg_vshift(iRegI dst, iRegI src1, iRegI src2)
 6123 %{
 6124   single_instruction;
 6125   dst    : EX1(write);
 6126   src1   : ISS(read);
 6127   src2   : ISS(read);
 6128   INS01  : ISS;
 6129   ALU    : EX1;
 6130 %}
 6131 
 6132 // Integer ALU reg-reg operation with extract
 6133 // As for _vshift above, but result generated in EX2
 6134 // Eg.  EXTR    x0, x1, x2, #N
 6135 pipe_class ialu_reg_reg_extr(iRegI dst, iRegI src1, iRegI src2)
 6136 %{
 6137   single_instruction;
 6138   dst    : EX2(write);
 6139   src1   : ISS(read);
 6140   src2   : ISS(read);
 6141   INS1   : ISS; // Can only dual issue as Instruction 1
 6142   ALU    : EX1;
 6143 %}
 6144 
 6145 // Integer ALU reg operation
 6146 // Eg.  NEG     x0, x1
 6147 pipe_class ialu_reg(iRegI dst, iRegI src)
 6148 %{
 6149   single_instruction;
 6150   dst    : EX2(write);
 6151   src    : EX1(read);
 6152   INS01  : ISS;
 6153   ALU    : EX2;
 6154 %}
 6155 
 6156 // Integer ALU reg mmediate operation
 6157 // Eg.  ADD     x0, x1, #N
 6158 pipe_class ialu_reg_imm(iRegI dst, iRegI src1)
 6159 %{
 6160   single_instruction;
 6161   dst    : EX2(write);
 6162   src1   : EX1(read);
 6163   INS01  : ISS;
 6164   ALU    : EX2;
 6165 %}
 6166 
 6167 // Integer ALU immediate operation (no source operands)
 6168 // Eg.  MOV     x0, #N
 6169 pipe_class ialu_imm(iRegI dst)
 6170 %{
 6171   single_instruction;
 6172   dst    : EX1(write);
 6173   INS01  : ISS;
 6174   ALU    : EX1;
 6175 %}
 6176 
 6177 //------- Compare operation -------------------------------
 6178 
 6179 // Compare reg-reg
 6180 // Eg.  CMP     x0, x1
 6181 pipe_class icmp_reg_reg(rFlagsReg cr, iRegI op1, iRegI op2)
 6182 %{
 6183   single_instruction;
 6184 //  fixed_latency(16);
 6185   cr     : EX2(write);
 6186   op1    : EX1(read);
 6187   op2    : EX1(read);
 6188   INS01  : ISS;
 6189   ALU    : EX2;
 6190 %}
 6191 
 6192 // Compare reg-reg
 6193 // Eg.  CMP     x0, #N
 6194 pipe_class icmp_reg_imm(rFlagsReg cr, iRegI op1)
 6195 %{
 6196   single_instruction;
 6197 //  fixed_latency(16);
 6198   cr     : EX2(write);
 6199   op1    : EX1(read);
 6200   INS01  : ISS;
 6201   ALU    : EX2;
 6202 %}
 6203 
 6204 //------- Conditional instructions ------------------------
 6205 
 6206 // Conditional no operands
 6207 // Eg.  CSINC   x0, zr, zr, <cond>
 6208 pipe_class icond_none(iRegI dst, rFlagsReg cr)
 6209 %{
 6210   single_instruction;
 6211   cr     : EX1(read);
 6212   dst    : EX2(write);
 6213   INS01  : ISS;
 6214   ALU    : EX2;
 6215 %}
 6216 
 6217 // Conditional 2 operand
 6218 // EG.  CSEL    X0, X1, X2, <cond>
 6219 pipe_class icond_reg_reg(iRegI dst, iRegI src1, iRegI src2, rFlagsReg cr)
 6220 %{
 6221   single_instruction;
 6222   cr     : EX1(read);
 6223   src1   : EX1(read);
 6224   src2   : EX1(read);
 6225   dst    : EX2(write);
 6226   INS01  : ISS;
 6227   ALU    : EX2;
 6228 %}
 6229 
 6230 // Conditional 2 operand
 6231 // EG.  CSEL    X0, X1, X2, <cond>
 6232 pipe_class icond_reg(iRegI dst, iRegI src, rFlagsReg cr)
 6233 %{
 6234   single_instruction;
 6235   cr     : EX1(read);
 6236   src    : EX1(read);
 6237   dst    : EX2(write);
 6238   INS01  : ISS;
 6239   ALU    : EX2;
 6240 %}
 6241 
 6242 //------- Multiply pipeline operations --------------------
 6243 
 6244 // Multiply reg-reg
 6245 // Eg.  MUL     w0, w1, w2
 6246 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2)
 6247 %{
 6248   single_instruction;
 6249   dst    : WR(write);
 6250   src1   : ISS(read);
 6251   src2   : ISS(read);
 6252   INS01  : ISS;
 6253   MAC    : WR;
 6254 %}
 6255 
 6256 // Multiply accumulate
 6257 // Eg.  MADD    w0, w1, w2, w3
 6258 pipe_class imac_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI src3)
 6259 %{
 6260   single_instruction;
 6261   dst    : WR(write);
 6262   src1   : ISS(read);
 6263   src2   : ISS(read);
 6264   src3   : ISS(read);
 6265   INS01  : ISS;
 6266   MAC    : WR;
 6267 %}
 6268 
 6269 // Eg.  MUL     w0, w1, w2
 6270 pipe_class lmul_reg_reg(iRegI dst, iRegI src1, iRegI src2)
 6271 %{
 6272   single_instruction;
 6273   fixed_latency(3); // Maximum latency for 64 bit mul
 6274   dst    : WR(write);
 6275   src1   : ISS(read);
 6276   src2   : ISS(read);
 6277   INS01  : ISS;
 6278   MAC    : WR;
 6279 %}
 6280 
 6281 // Multiply accumulate
 6282 // Eg.  MADD    w0, w1, w2, w3
 6283 pipe_class lmac_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI src3)
 6284 %{
 6285   single_instruction;
 6286   fixed_latency(3); // Maximum latency for 64 bit mul
 6287   dst    : WR(write);
 6288   src1   : ISS(read);
 6289   src2   : ISS(read);
 6290   src3   : ISS(read);
 6291   INS01  : ISS;
 6292   MAC    : WR;
 6293 %}
 6294 
 6295 //------- Divide pipeline operations --------------------
 6296 
 6297 // Eg.  SDIV    w0, w1, w2
 6298 pipe_class idiv_reg_reg(iRegI dst, iRegI src1, iRegI src2)
 6299 %{
 6300   single_instruction;
 6301   fixed_latency(8); // Maximum latency for 32 bit divide
 6302   dst    : WR(write);
 6303   src1   : ISS(read);
 6304   src2   : ISS(read);
 6305   INS0   : ISS; // Can only dual issue as instruction 0
 6306   DIV    : WR;
 6307 %}
 6308 
 6309 // Eg.  SDIV    x0, x1, x2
 6310 pipe_class ldiv_reg_reg(iRegI dst, iRegI src1, iRegI src2)
 6311 %{
 6312   single_instruction;
 6313   fixed_latency(16); // Maximum latency for 64 bit divide
 6314   dst    : WR(write);
 6315   src1   : ISS(read);
 6316   src2   : ISS(read);
 6317   INS0   : ISS; // Can only dual issue as instruction 0
 6318   DIV    : WR;
 6319 %}
 6320 
 6321 //------- Load pipeline operations ------------------------
 6322 
 6323 // Load - prefetch
 6324 // Eg.  PFRM    <mem>
 6325 pipe_class iload_prefetch(memory mem)
 6326 %{
 6327   single_instruction;
 6328   mem    : ISS(read);
 6329   INS01  : ISS;
 6330   LDST   : WR;
 6331 %}
 6332 
 6333 // Load - reg, mem
 6334 // Eg.  LDR     x0, <mem>
 6335 pipe_class iload_reg_mem(iRegI dst, memory mem)
 6336 %{
 6337   single_instruction;
 6338   dst    : WR(write);
 6339   mem    : ISS(read);
 6340   INS01  : ISS;
 6341   LDST   : WR;
 6342 %}
 6343 
 6344 // Load - reg, reg
 6345 // Eg.  LDR     x0, [sp, x1]
 6346 pipe_class iload_reg_reg(iRegI dst, iRegI src)
 6347 %{
 6348   single_instruction;
 6349   dst    : WR(write);
 6350   src    : ISS(read);
 6351   INS01  : ISS;
 6352   LDST   : WR;
 6353 %}
 6354 
 6355 //------- Store pipeline operations -----------------------
 6356 
 6357 // Store - zr, mem
 6358 // Eg.  STR     zr, <mem>
 6359 pipe_class istore_mem(memory mem)
 6360 %{
 6361   single_instruction;
 6362   mem    : ISS(read);
 6363   INS01  : ISS;
 6364   LDST   : WR;
 6365 %}
 6366 
 6367 // Store - reg, mem
 6368 // Eg.  STR     x0, <mem>
 6369 pipe_class istore_reg_mem(iRegI src, memory mem)
 6370 %{
 6371   single_instruction;
 6372   mem    : ISS(read);
 6373   src    : EX2(read);
 6374   INS01  : ISS;
 6375   LDST   : WR;
 6376 %}
 6377 
 6378 // Store - reg, reg
 6379 // Eg. STR      x0, [sp, x1]
 6380 pipe_class istore_reg_reg(iRegI dst, iRegI src)
 6381 %{
 6382   single_instruction;
 6383   dst    : ISS(read);
 6384   src    : EX2(read);
 6385   INS01  : ISS;
 6386   LDST   : WR;
 6387 %}
 6388 
 6389 //------- Store pipeline operations -----------------------
 6390 
 6391 // Branch
 6392 pipe_class pipe_branch()
 6393 %{
 6394   single_instruction;
 6395   INS01  : ISS;
 6396   BRANCH : EX1;
 6397 %}
 6398 
 6399 // Conditional branch
 6400 pipe_class pipe_branch_cond(rFlagsReg cr)
 6401 %{
 6402   single_instruction;
 6403   cr     : EX1(read);
 6404   INS01  : ISS;
 6405   BRANCH : EX1;
 6406 %}
 6407 
 6408 // Compare & Branch
 6409 // EG.  CBZ/CBNZ
 6410 pipe_class pipe_cmp_branch(iRegI op1)
 6411 %{
 6412   single_instruction;
 6413   op1    : EX1(read);
 6414   INS01  : ISS;
 6415   BRANCH : EX1;
 6416 %}
 6417 
 6418 //------- Synchronisation operations ----------------------
 6419 
 6420 // Any operation requiring serialization.
 6421 // EG.  DMB/Atomic Ops/Load Acquire/Str Release
 6422 pipe_class pipe_serial()
 6423 %{
 6424   single_instruction;
 6425   force_serialization;
 6426   fixed_latency(16);
 6427   INS01  : ISS(2); // Cannot dual issue with any other instruction
 6428   LDST   : WR;
 6429 %}
 6430 
 6431 // Generic big/slow expanded idiom - also serialized
 6432 pipe_class pipe_slow()
 6433 %{
 6434   instruction_count(10);
 6435   multiple_bundles;
 6436   force_serialization;
 6437   fixed_latency(16);
 6438   INS01  : ISS(2); // Cannot dual issue with any other instruction
 6439   LDST   : WR;
 6440 %}
 6441 
 6442 // Empty pipeline class
 6443 pipe_class pipe_class_empty()
 6444 %{
 6445   single_instruction;
 6446   fixed_latency(0);
 6447 %}
 6448 
 6449 // Default pipeline class.
 6450 pipe_class pipe_class_default()
 6451 %{
 6452   single_instruction;
 6453   fixed_latency(2);
 6454 %}
 6455 
 6456 // Pipeline class for compares.
 6457 pipe_class pipe_class_compare()
 6458 %{
 6459   single_instruction;
 6460   fixed_latency(16);
 6461 %}
 6462 
 6463 // Pipeline class for memory operations.
 6464 pipe_class pipe_class_memory()
 6465 %{
 6466   single_instruction;
 6467   fixed_latency(16);
 6468 %}
 6469 
 6470 // Pipeline class for call.
 6471 pipe_class pipe_class_call()
 6472 %{
 6473   single_instruction;
 6474   fixed_latency(100);
 6475 %}
 6476 
 6477 // Define the class for the Nop node.
 6478 define %{
 6479    MachNop = pipe_class_empty;
 6480 %}
 6481 
 6482 %}
 6483 //----------INSTRUCTIONS-------------------------------------------------------
 6484 //
 6485 // match      -- States which machine-independent subtree may be replaced
 6486 //               by this instruction.
 6487 // ins_cost   -- The estimated cost of this instruction is used by instruction
 6488 //               selection to identify a minimum cost tree of machine
 6489 //               instructions that matches a tree of machine-independent
 6490 //               instructions.
 6491 // format     -- A string providing the disassembly for this instruction.
 6492 //               The value of an instruction's operand may be inserted
 6493 //               by referring to it with a '$' prefix.
 6494 // opcode     -- Three instruction opcodes may be provided.  These are referred
 6495 //               to within an encode class as $primary, $secondary, and $tertiary
 6496 //               rrspectively.  The primary opcode is commonly used to
 6497 //               indicate the type of machine instruction, while secondary
 6498 //               and tertiary are often used for prefix options or addressing
 6499 //               modes.
 6500 // ins_encode -- A list of encode classes with parameters. The encode class
 6501 //               name must have been defined in an 'enc_class' specification
 6502 //               in the encode section of the architecture description.
 6503 
 6504 // ============================================================================
 6505 // Memory (Load/Store) Instructions
 6506 
 6507 // Load Instructions
 6508 
 6509 // Load Byte (8 bit signed)
 6510 instruct loadB(iRegINoSp dst, memory1 mem)
 6511 %{
 6512   match(Set dst (LoadB mem));
 6513   predicate(!needs_acquiring_load(n));
 6514 
 6515   ins_cost(4 * INSN_COST);
 6516   format %{ "ldrsbw  $dst, $mem\t# byte" %}
 6517 
 6518   ins_encode(aarch64_enc_ldrsbw(dst, mem));
 6519 
 6520   ins_pipe(iload_reg_mem);
 6521 %}
 6522 
 6523 // Load Byte (8 bit signed) into long
 6524 instruct loadB2L(iRegLNoSp dst, memory1 mem)
 6525 %{
 6526   match(Set dst (ConvI2L (LoadB mem)));
 6527   predicate(!needs_acquiring_load(n->in(1)));
 6528 
 6529   ins_cost(4 * INSN_COST);
 6530   format %{ "ldrsb  $dst, $mem\t# byte" %}
 6531 
 6532   ins_encode(aarch64_enc_ldrsb(dst, mem));
 6533 
 6534   ins_pipe(iload_reg_mem);
 6535 %}
 6536 
 6537 // Load Byte (8 bit unsigned)
 6538 instruct loadUB(iRegINoSp dst, memory1 mem)
 6539 %{
 6540   match(Set dst (LoadUB mem));
 6541   predicate(!needs_acquiring_load(n));
 6542 
 6543   ins_cost(4 * INSN_COST);
 6544   format %{ "ldrbw  $dst, $mem\t# byte" %}
 6545 
 6546   ins_encode(aarch64_enc_ldrb(dst, mem));
 6547 
 6548   ins_pipe(iload_reg_mem);
 6549 %}
 6550 
 6551 // Load Byte (8 bit unsigned) into long
 6552 instruct loadUB2L(iRegLNoSp dst, memory1 mem)
 6553 %{
 6554   match(Set dst (ConvI2L (LoadUB mem)));
 6555   predicate(!needs_acquiring_load(n->in(1)));
 6556 
 6557   ins_cost(4 * INSN_COST);
 6558   format %{ "ldrb  $dst, $mem\t# byte" %}
 6559 
 6560   ins_encode(aarch64_enc_ldrb(dst, mem));
 6561 
 6562   ins_pipe(iload_reg_mem);
 6563 %}
 6564 
 6565 // Load Short (16 bit signed)
 6566 instruct loadS(iRegINoSp dst, memory2 mem)
 6567 %{
 6568   match(Set dst (LoadS mem));
 6569   predicate(!needs_acquiring_load(n));
 6570 
 6571   ins_cost(4 * INSN_COST);
 6572   format %{ "ldrshw  $dst, $mem\t# short" %}
 6573 
 6574   ins_encode(aarch64_enc_ldrshw(dst, mem));
 6575 
 6576   ins_pipe(iload_reg_mem);
 6577 %}
 6578 
 6579 // Load Short (16 bit signed) into long
 6580 instruct loadS2L(iRegLNoSp dst, memory2 mem)
 6581 %{
 6582   match(Set dst (ConvI2L (LoadS mem)));
 6583   predicate(!needs_acquiring_load(n->in(1)));
 6584 
 6585   ins_cost(4 * INSN_COST);
 6586   format %{ "ldrsh  $dst, $mem\t# short" %}
 6587 
 6588   ins_encode(aarch64_enc_ldrsh(dst, mem));
 6589 
 6590   ins_pipe(iload_reg_mem);
 6591 %}
 6592 
 6593 // Load Char (16 bit unsigned)
 6594 instruct loadUS(iRegINoSp dst, memory2 mem)
 6595 %{
 6596   match(Set dst (LoadUS mem));
 6597   predicate(!needs_acquiring_load(n));
 6598 
 6599   ins_cost(4 * INSN_COST);
 6600   format %{ "ldrh  $dst, $mem\t# short" %}
 6601 
 6602   ins_encode(aarch64_enc_ldrh(dst, mem));
 6603 
 6604   ins_pipe(iload_reg_mem);
 6605 %}
 6606 
 6607 // Load Short/Char (16 bit unsigned) into long
 6608 instruct loadUS2L(iRegLNoSp dst, memory2 mem)
 6609 %{
 6610   match(Set dst (ConvI2L (LoadUS mem)));
 6611   predicate(!needs_acquiring_load(n->in(1)));
 6612 
 6613   ins_cost(4 * INSN_COST);
 6614   format %{ "ldrh  $dst, $mem\t# short" %}
 6615 
 6616   ins_encode(aarch64_enc_ldrh(dst, mem));
 6617 
 6618   ins_pipe(iload_reg_mem);
 6619 %}
 6620 
 6621 // Load Integer (32 bit signed)
 6622 instruct loadI(iRegINoSp dst, memory4 mem)
 6623 %{
 6624   match(Set dst (LoadI mem));
 6625   predicate(!needs_acquiring_load(n));
 6626 
 6627   ins_cost(4 * INSN_COST);
 6628   format %{ "ldrw  $dst, $mem\t# int" %}
 6629 
 6630   ins_encode(aarch64_enc_ldrw(dst, mem));
 6631 
 6632   ins_pipe(iload_reg_mem);
 6633 %}
 6634 
 6635 // Load Integer (32 bit signed) into long
 6636 instruct loadI2L(iRegLNoSp dst, memory4 mem)
 6637 %{
 6638   match(Set dst (ConvI2L (LoadI mem)));
 6639   predicate(!needs_acquiring_load(n->in(1)));
 6640 
 6641   ins_cost(4 * INSN_COST);
 6642   format %{ "ldrsw  $dst, $mem\t# int" %}
 6643 
 6644   ins_encode(aarch64_enc_ldrsw(dst, mem));
 6645 
 6646   ins_pipe(iload_reg_mem);
 6647 %}
 6648 
 6649 // Load Integer (32 bit unsigned) into long
 6650 instruct loadUI2L(iRegLNoSp dst, memory4 mem, immL_32bits mask)
 6651 %{
 6652   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
 6653   predicate(!needs_acquiring_load(n->in(1)->in(1)->as_Load()));
 6654 
 6655   ins_cost(4 * INSN_COST);
 6656   format %{ "ldrw  $dst, $mem\t# int" %}
 6657 
 6658   ins_encode(aarch64_enc_ldrw(dst, mem));
 6659 
 6660   ins_pipe(iload_reg_mem);
 6661 %}
 6662 
 6663 // Load Long (64 bit signed)
 6664 instruct loadL(iRegLNoSp dst, memory8 mem)
 6665 %{
 6666   match(Set dst (LoadL mem));
 6667   predicate(!needs_acquiring_load(n));
 6668 
 6669   ins_cost(4 * INSN_COST);
 6670   format %{ "ldr  $dst, $mem\t# int" %}
 6671 
 6672   ins_encode(aarch64_enc_ldr(dst, mem));
 6673 
 6674   ins_pipe(iload_reg_mem);
 6675 %}
 6676 
 6677 // Load Range
 6678 instruct loadRange(iRegINoSp dst, memory4 mem)
 6679 %{
 6680   match(Set dst (LoadRange mem));
 6681 
 6682   ins_cost(4 * INSN_COST);
 6683   format %{ "ldrw  $dst, $mem\t# range" %}
 6684 
 6685   ins_encode(aarch64_enc_ldrw(dst, mem));
 6686 
 6687   ins_pipe(iload_reg_mem);
 6688 %}
 6689 
 6690 // Load Pointer
 6691 instruct loadP(iRegPNoSp dst, memory8 mem)
 6692 %{
 6693   match(Set dst (LoadP mem));
 6694   predicate(!needs_acquiring_load(n) && (n->as_Load()->barrier_data() == 0));
 6695 
 6696   ins_cost(4 * INSN_COST);
 6697   format %{ "ldr  $dst, $mem\t# ptr" %}
 6698 
 6699   ins_encode(aarch64_enc_ldr(dst, mem));
 6700 
 6701   ins_pipe(iload_reg_mem);
 6702 %}
 6703 
 6704 // Load Compressed Pointer
 6705 instruct loadN(iRegNNoSp dst, memory4 mem)
 6706 %{
 6707   match(Set dst (LoadN mem));
 6708   predicate(!needs_acquiring_load(n) && n->as_Load()->barrier_data() == 0);
 6709 
 6710   ins_cost(4 * INSN_COST);
 6711   format %{ "ldrw  $dst, $mem\t# compressed ptr" %}
 6712 
 6713   ins_encode(aarch64_enc_ldrw(dst, mem));
 6714 
 6715   ins_pipe(iload_reg_mem);
 6716 %}
 6717 
 6718 // Load Klass Pointer
 6719 instruct loadKlass(iRegPNoSp dst, memory8 mem)
 6720 %{
 6721   match(Set dst (LoadKlass mem));
 6722   predicate(!needs_acquiring_load(n));
 6723 
 6724   ins_cost(4 * INSN_COST);
 6725   format %{ "ldr  $dst, $mem\t# class" %}
 6726 
 6727   ins_encode(aarch64_enc_ldr(dst, mem));
 6728 
 6729   ins_pipe(iload_reg_mem);
 6730 %}
 6731 
 6732 // Load Narrow Klass Pointer
 6733 instruct loadNKlass(iRegNNoSp dst, memory4 mem)
 6734 %{
 6735   match(Set dst (LoadNKlass mem));
 6736   predicate(!needs_acquiring_load(n) && !UseCompactObjectHeaders);
 6737 
 6738   ins_cost(4 * INSN_COST);
 6739   format %{ "ldrw  $dst, $mem\t# compressed class ptr" %}
 6740 
 6741   ins_encode(aarch64_enc_ldrw(dst, mem));
 6742 
 6743   ins_pipe(iload_reg_mem);
 6744 %}
 6745 
 6746 instruct loadNKlassCompactHeaders(iRegNNoSp dst, memory4 mem)
 6747 %{
 6748   match(Set dst (LoadNKlass mem));
 6749   predicate(!needs_acquiring_load(n) && UseCompactObjectHeaders);
 6750 
 6751   ins_cost(4 * INSN_COST);
 6752   format %{
 6753     "ldrw  $dst, $mem\t# compressed class ptr, shifted\n\t"
 6754     "lsrw  $dst, $dst, markWord::klass_shift_at_offset"
 6755   %}
 6756   ins_encode %{
 6757     // inlined aarch64_enc_ldrw
 6758     loadStore(masm, &MacroAssembler::ldrw, $dst$$Register, $mem->opcode(),
 6759               as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4);
 6760     __ lsrw($dst$$Register, $dst$$Register, markWord::klass_shift_at_offset);
 6761   %}
 6762   ins_pipe(iload_reg_mem);
 6763 %}
 6764 
 6765 // Load Float
 6766 instruct loadF(vRegF dst, memory4 mem)
 6767 %{
 6768   match(Set dst (LoadF mem));
 6769   predicate(!needs_acquiring_load(n));
 6770 
 6771   ins_cost(4 * INSN_COST);
 6772   format %{ "ldrs  $dst, $mem\t# float" %}
 6773 
 6774   ins_encode( aarch64_enc_ldrs(dst, mem) );
 6775 
 6776   ins_pipe(pipe_class_memory);
 6777 %}
 6778 
 6779 // Load Double
 6780 instruct loadD(vRegD dst, memory8 mem)
 6781 %{
 6782   match(Set dst (LoadD mem));
 6783   predicate(!needs_acquiring_load(n));
 6784 
 6785   ins_cost(4 * INSN_COST);
 6786   format %{ "ldrd  $dst, $mem\t# double" %}
 6787 
 6788   ins_encode( aarch64_enc_ldrd(dst, mem) );
 6789 
 6790   ins_pipe(pipe_class_memory);
 6791 %}
 6792 
 6793 
 6794 // Load Int Constant
 6795 instruct loadConI(iRegINoSp dst, immI src)
 6796 %{
 6797   match(Set dst src);
 6798 
 6799   ins_cost(INSN_COST);
 6800   format %{ "mov $dst, $src\t# int" %}
 6801 
 6802   ins_encode( aarch64_enc_movw_imm(dst, src) );
 6803 
 6804   ins_pipe(ialu_imm);
 6805 %}
 6806 
 6807 // Load Long Constant
 6808 instruct loadConL(iRegLNoSp dst, immL src)
 6809 %{
 6810   match(Set dst src);
 6811 
 6812   ins_cost(INSN_COST);
 6813   format %{ "mov $dst, $src\t# long" %}
 6814 
 6815   ins_encode( aarch64_enc_mov_imm(dst, src) );
 6816 
 6817   ins_pipe(ialu_imm);
 6818 %}
 6819 
 6820 // Load Pointer Constant
 6821 
 6822 instruct loadConP(iRegPNoSp dst, immP con)
 6823 %{
 6824   match(Set dst con);
 6825 
 6826   ins_cost(INSN_COST * 4);
 6827   format %{
 6828     "mov  $dst, $con\t# ptr\n\t"
 6829   %}
 6830 
 6831   ins_encode(aarch64_enc_mov_p(dst, con));
 6832 
 6833   ins_pipe(ialu_imm);
 6834 %}
 6835 
 6836 // Load Null Pointer Constant
 6837 
 6838 instruct loadConP0(iRegPNoSp dst, immP0 con)
 6839 %{
 6840   match(Set dst con);
 6841 
 6842   ins_cost(INSN_COST);
 6843   format %{ "mov  $dst, $con\t# nullptr ptr" %}
 6844 
 6845   ins_encode(aarch64_enc_mov_p0(dst, con));
 6846 
 6847   ins_pipe(ialu_imm);
 6848 %}
 6849 
 6850 // Load Pointer Constant One
 6851 
 6852 instruct loadConP1(iRegPNoSp dst, immP_1 con)
 6853 %{
 6854   match(Set dst con);
 6855 
 6856   ins_cost(INSN_COST);
 6857   format %{ "mov  $dst, $con\t# nullptr ptr" %}
 6858 
 6859   ins_encode(aarch64_enc_mov_p1(dst, con));
 6860 
 6861   ins_pipe(ialu_imm);
 6862 %}
 6863 
 6864 // Load Byte Map Base Constant
 6865 
 6866 instruct loadByteMapBase(iRegPNoSp dst, immByteMapBase con)
 6867 %{
 6868   match(Set dst con);
 6869 
 6870   ins_cost(INSN_COST);
 6871   format %{ "adr  $dst, $con\t# Byte Map Base" %}
 6872 
 6873   ins_encode %{
 6874     __ load_byte_map_base($dst$$Register);
 6875   %}
 6876 
 6877   ins_pipe(ialu_imm);
 6878 %}
 6879 
 6880 instruct loadAOTRCAddress(iRegPNoSp dst, immAOTRuntimeConstantsAddress con)
 6881 %{
 6882   match(Set dst con);
 6883 
 6884   ins_cost(INSN_COST);
 6885   format %{ "adr  $dst, $con\t# AOT Runtime Constants Address" %}
 6886 
 6887   ins_encode %{
 6888     __ load_aotrc_address($dst$$Register, (address)$con$$constant);
 6889   %}
 6890 
 6891   ins_pipe(ialu_imm);
 6892 %}
 6893 
 6894 // Load Narrow Pointer Constant
 6895 
 6896 instruct loadConN(iRegNNoSp dst, immN con)
 6897 %{
 6898   match(Set dst con);
 6899 
 6900   ins_cost(INSN_COST * 4);
 6901   format %{ "mov  $dst, $con\t# compressed ptr" %}
 6902 
 6903   ins_encode(aarch64_enc_mov_n(dst, con));
 6904 
 6905   ins_pipe(ialu_imm);
 6906 %}
 6907 
 6908 // Load Narrow Null Pointer Constant
 6909 
 6910 instruct loadConN0(iRegNNoSp dst, immN0 con)
 6911 %{
 6912   match(Set dst con);
 6913 
 6914   ins_cost(INSN_COST);
 6915   format %{ "mov  $dst, $con\t# compressed nullptr ptr" %}
 6916 
 6917   ins_encode(aarch64_enc_mov_n0(dst, con));
 6918 
 6919   ins_pipe(ialu_imm);
 6920 %}
 6921 
 6922 // Load Narrow Klass Constant
 6923 
 6924 instruct loadConNKlass(iRegNNoSp dst, immNKlass con)
 6925 %{
 6926   match(Set dst con);
 6927 
 6928   ins_cost(INSN_COST);
 6929   format %{ "mov  $dst, $con\t# compressed klass ptr" %}
 6930 
 6931   ins_encode(aarch64_enc_mov_nk(dst, con));
 6932 
 6933   ins_pipe(ialu_imm);
 6934 %}
 6935 
 6936 // Load Packed Float Constant
 6937 
 6938 instruct loadConF_packed(vRegF dst, immFPacked con) %{
 6939   match(Set dst con);
 6940   ins_cost(INSN_COST * 4);
 6941   format %{ "fmovs  $dst, $con"%}
 6942   ins_encode %{
 6943     __ fmovs(as_FloatRegister($dst$$reg), (double)$con$$constant);
 6944   %}
 6945 
 6946   ins_pipe(fp_imm_s);
 6947 %}
 6948 
 6949 // Load Float Constant
 6950 
 6951 instruct loadConF(vRegF dst, immF con) %{
 6952   match(Set dst con);
 6953 
 6954   ins_cost(INSN_COST * 4);
 6955 
 6956   format %{
 6957     "ldrs $dst, [$constantaddress]\t# load from constant table: float=$con\n\t"
 6958   %}
 6959 
 6960   ins_encode %{
 6961     __ ldrs(as_FloatRegister($dst$$reg), $constantaddress($con));
 6962   %}
 6963 
 6964   ins_pipe(fp_load_constant_s);
 6965 %}
 6966 
 6967 // Load Packed Double Constant
 6968 
 6969 instruct loadConD_packed(vRegD dst, immDPacked con) %{
 6970   match(Set dst con);
 6971   ins_cost(INSN_COST);
 6972   format %{ "fmovd  $dst, $con"%}
 6973   ins_encode %{
 6974     __ fmovd(as_FloatRegister($dst$$reg), $con$$constant);
 6975   %}
 6976 
 6977   ins_pipe(fp_imm_d);
 6978 %}
 6979 
 6980 // Load Double Constant
 6981 
 6982 instruct loadConD(vRegD dst, immD con) %{
 6983   match(Set dst con);
 6984 
 6985   ins_cost(INSN_COST * 5);
 6986   format %{
 6987     "ldrd $dst, [$constantaddress]\t# load from constant table: float=$con\n\t"
 6988   %}
 6989 
 6990   ins_encode %{
 6991     __ ldrd(as_FloatRegister($dst$$reg), $constantaddress($con));
 6992   %}
 6993 
 6994   ins_pipe(fp_load_constant_d);
 6995 %}
 6996 
 6997 // Load Half Float Constant
 6998 // The "ldr" instruction loads a 32-bit word from the constant pool into a
 6999 // 32-bit register but only the bottom half will be populated and the top
 7000 // 16 bits are zero.
 7001 instruct loadConH(vRegF dst, immH con) %{
 7002   match(Set dst con);
 7003   format %{
 7004     "ldrs $dst, [$constantaddress]\t# load from constant table: half float=$con\n\t"
 7005   %}
 7006   ins_encode %{
 7007     __ ldrs(as_FloatRegister($dst$$reg), $constantaddress($con));
 7008   %}
 7009   ins_pipe(fp_load_constant_s);
 7010 %}
 7011 
 7012 // Store Instructions
 7013 
 7014 // Store Byte
 7015 instruct storeB(iRegIorL2I src, memory1 mem)
 7016 %{
 7017   match(Set mem (StoreB mem src));
 7018   predicate(!needs_releasing_store(n));
 7019 
 7020   ins_cost(INSN_COST);
 7021   format %{ "strb  $src, $mem\t# byte" %}
 7022 
 7023   ins_encode(aarch64_enc_strb(src, mem));
 7024 
 7025   ins_pipe(istore_reg_mem);
 7026 %}
 7027 
 7028 
 7029 instruct storeimmB0(immI0 zero, memory1 mem)
 7030 %{
 7031   match(Set mem (StoreB mem zero));
 7032   predicate(!needs_releasing_store(n));
 7033 
 7034   ins_cost(INSN_COST);
 7035   format %{ "strb rscractch2, $mem\t# byte" %}
 7036 
 7037   ins_encode(aarch64_enc_strb0(mem));
 7038 
 7039   ins_pipe(istore_mem);
 7040 %}
 7041 
 7042 // Store Char/Short
 7043 instruct storeC(iRegIorL2I src, memory2 mem)
 7044 %{
 7045   match(Set mem (StoreC mem src));
 7046   predicate(!needs_releasing_store(n));
 7047 
 7048   ins_cost(INSN_COST);
 7049   format %{ "strh  $src, $mem\t# short" %}
 7050 
 7051   ins_encode(aarch64_enc_strh(src, mem));
 7052 
 7053   ins_pipe(istore_reg_mem);
 7054 %}
 7055 
 7056 instruct storeimmC0(immI0 zero, memory2 mem)
 7057 %{
 7058   match(Set mem (StoreC mem zero));
 7059   predicate(!needs_releasing_store(n));
 7060 
 7061   ins_cost(INSN_COST);
 7062   format %{ "strh  zr, $mem\t# short" %}
 7063 
 7064   ins_encode(aarch64_enc_strh0(mem));
 7065 
 7066   ins_pipe(istore_mem);
 7067 %}
 7068 
 7069 // Store Integer
 7070 
 7071 instruct storeI(iRegIorL2I src, memory4 mem)
 7072 %{
 7073   match(Set mem(StoreI mem src));
 7074   predicate(!needs_releasing_store(n));
 7075 
 7076   ins_cost(INSN_COST);
 7077   format %{ "strw  $src, $mem\t# int" %}
 7078 
 7079   ins_encode(aarch64_enc_strw(src, mem));
 7080 
 7081   ins_pipe(istore_reg_mem);
 7082 %}
 7083 
 7084 instruct storeimmI0(immI0 zero, memory4 mem)
 7085 %{
 7086   match(Set mem(StoreI mem zero));
 7087   predicate(!needs_releasing_store(n));
 7088 
 7089   ins_cost(INSN_COST);
 7090   format %{ "strw  zr, $mem\t# int" %}
 7091 
 7092   ins_encode(aarch64_enc_strw0(mem));
 7093 
 7094   ins_pipe(istore_mem);
 7095 %}
 7096 
 7097 // Store Long (64 bit signed)
 7098 instruct storeL(iRegL src, memory8 mem)
 7099 %{
 7100   match(Set mem (StoreL mem src));
 7101   predicate(!needs_releasing_store(n));
 7102 
 7103   ins_cost(INSN_COST);
 7104   format %{ "str  $src, $mem\t# int" %}
 7105 
 7106   ins_encode(aarch64_enc_str(src, mem));
 7107 
 7108   ins_pipe(istore_reg_mem);
 7109 %}
 7110 
 7111 // Store Long (64 bit signed)
 7112 instruct storeimmL0(immL0 zero, memory8 mem)
 7113 %{
 7114   match(Set mem (StoreL mem zero));
 7115   predicate(!needs_releasing_store(n));
 7116 
 7117   ins_cost(INSN_COST);
 7118   format %{ "str  zr, $mem\t# int" %}
 7119 
 7120   ins_encode(aarch64_enc_str0(mem));
 7121 
 7122   ins_pipe(istore_mem);
 7123 %}
 7124 
 7125 // Store Pointer
 7126 instruct storeP(iRegP src, memory8 mem)
 7127 %{
 7128   match(Set mem (StoreP mem src));
 7129   predicate(!needs_releasing_store(n) && n->as_Store()->barrier_data() == 0);
 7130 
 7131   ins_cost(INSN_COST);
 7132   format %{ "str  $src, $mem\t# ptr" %}
 7133 
 7134   ins_encode(aarch64_enc_str(src, mem));
 7135 
 7136   ins_pipe(istore_reg_mem);
 7137 %}
 7138 
 7139 // Store Pointer
 7140 instruct storeimmP0(immP0 zero, memory8 mem)
 7141 %{
 7142   match(Set mem (StoreP mem zero));
 7143   predicate(!needs_releasing_store(n) && n->as_Store()->barrier_data() == 0);
 7144 
 7145   ins_cost(INSN_COST);
 7146   format %{ "str zr, $mem\t# ptr" %}
 7147 
 7148   ins_encode(aarch64_enc_str0(mem));
 7149 
 7150   ins_pipe(istore_mem);
 7151 %}
 7152 
 7153 // Store Compressed Pointer
 7154 instruct storeN(iRegN src, memory4 mem)
 7155 %{
 7156   match(Set mem (StoreN mem src));
 7157   predicate(!needs_releasing_store(n) && n->as_Store()->barrier_data() == 0);
 7158 
 7159   ins_cost(INSN_COST);
 7160   format %{ "strw  $src, $mem\t# compressed ptr" %}
 7161 
 7162   ins_encode(aarch64_enc_strw(src, mem));
 7163 
 7164   ins_pipe(istore_reg_mem);
 7165 %}
 7166 
 7167 instruct storeImmN0(immN0 zero, memory4 mem)
 7168 %{
 7169   match(Set mem (StoreN mem zero));
 7170   predicate(!needs_releasing_store(n) && n->as_Store()->barrier_data() == 0);
 7171 
 7172   ins_cost(INSN_COST);
 7173   format %{ "strw  zr, $mem\t# compressed ptr" %}
 7174 
 7175   ins_encode(aarch64_enc_strw0(mem));
 7176 
 7177   ins_pipe(istore_mem);
 7178 %}
 7179 
 7180 // Store Float
 7181 instruct storeF(vRegF src, memory4 mem)
 7182 %{
 7183   match(Set mem (StoreF mem src));
 7184   predicate(!needs_releasing_store(n));
 7185 
 7186   ins_cost(INSN_COST);
 7187   format %{ "strs  $src, $mem\t# float" %}
 7188 
 7189   ins_encode( aarch64_enc_strs(src, mem) );
 7190 
 7191   ins_pipe(pipe_class_memory);
 7192 %}
 7193 
 7194 // TODO
 7195 // implement storeImmF0 and storeFImmPacked
 7196 
 7197 // Store Double
 7198 instruct storeD(vRegD src, memory8 mem)
 7199 %{
 7200   match(Set mem (StoreD mem src));
 7201   predicate(!needs_releasing_store(n));
 7202 
 7203   ins_cost(INSN_COST);
 7204   format %{ "strd  $src, $mem\t# double" %}
 7205 
 7206   ins_encode( aarch64_enc_strd(src, mem) );
 7207 
 7208   ins_pipe(pipe_class_memory);
 7209 %}
 7210 
 7211 // Store Compressed Klass Pointer
 7212 instruct storeNKlass(iRegN src, memory4 mem)
 7213 %{
 7214   predicate(!needs_releasing_store(n));
 7215   match(Set mem (StoreNKlass mem src));
 7216 
 7217   ins_cost(INSN_COST);
 7218   format %{ "strw  $src, $mem\t# compressed klass ptr" %}
 7219 
 7220   ins_encode(aarch64_enc_strw(src, mem));
 7221 
 7222   ins_pipe(istore_reg_mem);
 7223 %}
 7224 
 7225 // TODO
 7226 // implement storeImmD0 and storeDImmPacked
 7227 
 7228 // prefetch instructions
 7229 // Must be safe to execute with invalid address (cannot fault).
 7230 
 7231 instruct prefetchalloc( memory8 mem ) %{
 7232   match(PrefetchAllocation mem);
 7233 
 7234   ins_cost(INSN_COST);
 7235   format %{ "prfm $mem, PSTL1KEEP\t# Prefetch into level 1 cache write keep" %}
 7236 
 7237   ins_encode( aarch64_enc_prefetchw(mem) );
 7238 
 7239   ins_pipe(iload_prefetch);
 7240 %}
 7241 
 7242 //  ---------------- volatile loads and stores ----------------
 7243 
 7244 // Load Byte (8 bit signed)
 7245 instruct loadB_volatile(iRegINoSp dst, /* sync_memory*/indirect mem)
 7246 %{
 7247   match(Set dst (LoadB mem));
 7248 
 7249   ins_cost(VOLATILE_REF_COST);
 7250   format %{ "ldarsb  $dst, $mem\t# byte" %}
 7251 
 7252   ins_encode(aarch64_enc_ldarsb(dst, mem));
 7253 
 7254   ins_pipe(pipe_serial);
 7255 %}
 7256 
 7257 // Load Byte (8 bit signed) into long
 7258 instruct loadB2L_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem)
 7259 %{
 7260   match(Set dst (ConvI2L (LoadB mem)));
 7261 
 7262   ins_cost(VOLATILE_REF_COST);
 7263   format %{ "ldarsb  $dst, $mem\t# byte" %}
 7264 
 7265   ins_encode(aarch64_enc_ldarsb(dst, mem));
 7266 
 7267   ins_pipe(pipe_serial);
 7268 %}
 7269 
 7270 // Load Byte (8 bit unsigned)
 7271 instruct loadUB_volatile(iRegINoSp dst, /* sync_memory*/indirect mem)
 7272 %{
 7273   match(Set dst (LoadUB mem));
 7274 
 7275   ins_cost(VOLATILE_REF_COST);
 7276   format %{ "ldarb  $dst, $mem\t# byte" %}
 7277 
 7278   ins_encode(aarch64_enc_ldarb(dst, mem));
 7279 
 7280   ins_pipe(pipe_serial);
 7281 %}
 7282 
 7283 // Load Byte (8 bit unsigned) into long
 7284 instruct loadUB2L_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem)
 7285 %{
 7286   match(Set dst (ConvI2L (LoadUB mem)));
 7287 
 7288   ins_cost(VOLATILE_REF_COST);
 7289   format %{ "ldarb  $dst, $mem\t# byte" %}
 7290 
 7291   ins_encode(aarch64_enc_ldarb(dst, mem));
 7292 
 7293   ins_pipe(pipe_serial);
 7294 %}
 7295 
 7296 // Load Short (16 bit signed)
 7297 instruct loadS_volatile(iRegINoSp dst, /* sync_memory*/indirect mem)
 7298 %{
 7299   match(Set dst (LoadS mem));
 7300 
 7301   ins_cost(VOLATILE_REF_COST);
 7302   format %{ "ldarshw  $dst, $mem\t# short" %}
 7303 
 7304   ins_encode(aarch64_enc_ldarshw(dst, mem));
 7305 
 7306   ins_pipe(pipe_serial);
 7307 %}
 7308 
 7309 instruct loadUS_volatile(iRegINoSp dst, /* sync_memory*/indirect mem)
 7310 %{
 7311   match(Set dst (LoadUS mem));
 7312 
 7313   ins_cost(VOLATILE_REF_COST);
 7314   format %{ "ldarhw  $dst, $mem\t# short" %}
 7315 
 7316   ins_encode(aarch64_enc_ldarhw(dst, mem));
 7317 
 7318   ins_pipe(pipe_serial);
 7319 %}
 7320 
 7321 // Load Short/Char (16 bit unsigned) into long
 7322 instruct loadUS2L_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem)
 7323 %{
 7324   match(Set dst (ConvI2L (LoadUS mem)));
 7325 
 7326   ins_cost(VOLATILE_REF_COST);
 7327   format %{ "ldarh  $dst, $mem\t# short" %}
 7328 
 7329   ins_encode(aarch64_enc_ldarh(dst, mem));
 7330 
 7331   ins_pipe(pipe_serial);
 7332 %}
 7333 
 7334 // Load Short/Char (16 bit signed) into long
 7335 instruct loadS2L_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem)
 7336 %{
 7337   match(Set dst (ConvI2L (LoadS mem)));
 7338 
 7339   ins_cost(VOLATILE_REF_COST);
 7340   format %{ "ldarh  $dst, $mem\t# short" %}
 7341 
 7342   ins_encode(aarch64_enc_ldarsh(dst, mem));
 7343 
 7344   ins_pipe(pipe_serial);
 7345 %}
 7346 
 7347 // Load Integer (32 bit signed)
 7348 instruct loadI_volatile(iRegINoSp dst, /* sync_memory*/indirect mem)
 7349 %{
 7350   match(Set dst (LoadI mem));
 7351 
 7352   ins_cost(VOLATILE_REF_COST);
 7353   format %{ "ldarw  $dst, $mem\t# int" %}
 7354 
 7355   ins_encode(aarch64_enc_ldarw(dst, mem));
 7356 
 7357   ins_pipe(pipe_serial);
 7358 %}
 7359 
 7360 // Load Integer (32 bit unsigned) into long
 7361 instruct loadUI2L_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem, immL_32bits mask)
 7362 %{
 7363   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
 7364 
 7365   ins_cost(VOLATILE_REF_COST);
 7366   format %{ "ldarw  $dst, $mem\t# int" %}
 7367 
 7368   ins_encode(aarch64_enc_ldarw(dst, mem));
 7369 
 7370   ins_pipe(pipe_serial);
 7371 %}
 7372 
 7373 // Load Long (64 bit signed)
 7374 instruct loadL_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem)
 7375 %{
 7376   match(Set dst (LoadL mem));
 7377 
 7378   ins_cost(VOLATILE_REF_COST);
 7379   format %{ "ldar  $dst, $mem\t# int" %}
 7380 
 7381   ins_encode(aarch64_enc_ldar(dst, mem));
 7382 
 7383   ins_pipe(pipe_serial);
 7384 %}
 7385 
 7386 // Load Pointer
 7387 instruct loadP_volatile(iRegPNoSp dst, /* sync_memory*/indirect mem)
 7388 %{
 7389   match(Set dst (LoadP mem));
 7390   predicate(n->as_Load()->barrier_data() == 0);
 7391 
 7392   ins_cost(VOLATILE_REF_COST);
 7393   format %{ "ldar  $dst, $mem\t# ptr" %}
 7394 
 7395   ins_encode(aarch64_enc_ldar(dst, mem));
 7396 
 7397   ins_pipe(pipe_serial);
 7398 %}
 7399 
 7400 // Load Compressed Pointer
 7401 instruct loadN_volatile(iRegNNoSp dst, /* sync_memory*/indirect mem)
 7402 %{
 7403   match(Set dst (LoadN mem));
 7404   predicate(n->as_Load()->barrier_data() == 0);
 7405 
 7406   ins_cost(VOLATILE_REF_COST);
 7407   format %{ "ldarw  $dst, $mem\t# compressed ptr" %}
 7408 
 7409   ins_encode(aarch64_enc_ldarw(dst, mem));
 7410 
 7411   ins_pipe(pipe_serial);
 7412 %}
 7413 
 7414 // Load Float
 7415 instruct loadF_volatile(vRegF dst, /* sync_memory*/indirect mem)
 7416 %{
 7417   match(Set dst (LoadF mem));
 7418 
 7419   ins_cost(VOLATILE_REF_COST);
 7420   format %{ "ldars  $dst, $mem\t# float" %}
 7421 
 7422   ins_encode( aarch64_enc_fldars(dst, mem) );
 7423 
 7424   ins_pipe(pipe_serial);
 7425 %}
 7426 
 7427 // Load Double
 7428 instruct loadD_volatile(vRegD dst, /* sync_memory*/indirect mem)
 7429 %{
 7430   match(Set dst (LoadD mem));
 7431 
 7432   ins_cost(VOLATILE_REF_COST);
 7433   format %{ "ldard  $dst, $mem\t# double" %}
 7434 
 7435   ins_encode( aarch64_enc_fldard(dst, mem) );
 7436 
 7437   ins_pipe(pipe_serial);
 7438 %}
 7439 
 7440 // Store Byte
 7441 instruct storeB_volatile(iRegIorL2I src, /* sync_memory*/indirect mem)
 7442 %{
 7443   match(Set mem (StoreB mem src));
 7444 
 7445   ins_cost(VOLATILE_REF_COST);
 7446   format %{ "stlrb  $src, $mem\t# byte" %}
 7447 
 7448   ins_encode(aarch64_enc_stlrb(src, mem));
 7449 
 7450   ins_pipe(pipe_class_memory);
 7451 %}
 7452 
 7453 instruct storeimmB0_volatile(immI0 zero, /* sync_memory*/indirect mem)
 7454 %{
 7455   match(Set mem (StoreB mem zero));
 7456 
 7457   ins_cost(VOLATILE_REF_COST);
 7458   format %{ "stlrb  zr, $mem\t# byte" %}
 7459 
 7460   ins_encode(aarch64_enc_stlrb0(mem));
 7461 
 7462   ins_pipe(pipe_class_memory);
 7463 %}
 7464 
 7465 // Store Char/Short
 7466 instruct storeC_volatile(iRegIorL2I src, /* sync_memory*/indirect mem)
 7467 %{
 7468   match(Set mem (StoreC mem src));
 7469 
 7470   ins_cost(VOLATILE_REF_COST);
 7471   format %{ "stlrh  $src, $mem\t# short" %}
 7472 
 7473   ins_encode(aarch64_enc_stlrh(src, mem));
 7474 
 7475   ins_pipe(pipe_class_memory);
 7476 %}
 7477 
 7478 instruct storeimmC0_volatile(immI0 zero, /* sync_memory*/indirect mem)
 7479 %{
 7480   match(Set mem (StoreC mem zero));
 7481 
 7482   ins_cost(VOLATILE_REF_COST);
 7483   format %{ "stlrh  zr, $mem\t# short" %}
 7484 
 7485   ins_encode(aarch64_enc_stlrh0(mem));
 7486 
 7487   ins_pipe(pipe_class_memory);
 7488 %}
 7489 
 7490 // Store Integer
 7491 
 7492 instruct storeI_volatile(iRegIorL2I src, /* sync_memory*/indirect mem)
 7493 %{
 7494   match(Set mem(StoreI mem src));
 7495 
 7496   ins_cost(VOLATILE_REF_COST);
 7497   format %{ "stlrw  $src, $mem\t# int" %}
 7498 
 7499   ins_encode(aarch64_enc_stlrw(src, mem));
 7500 
 7501   ins_pipe(pipe_class_memory);
 7502 %}
 7503 
 7504 instruct storeimmI0_volatile(immI0 zero, /* sync_memory*/indirect mem)
 7505 %{
 7506   match(Set mem(StoreI mem zero));
 7507 
 7508   ins_cost(VOLATILE_REF_COST);
 7509   format %{ "stlrw  zr, $mem\t# int" %}
 7510 
 7511   ins_encode(aarch64_enc_stlrw0(mem));
 7512 
 7513   ins_pipe(pipe_class_memory);
 7514 %}
 7515 
 7516 // Store Long (64 bit signed)
 7517 instruct storeL_volatile(iRegL src, /* sync_memory*/indirect mem)
 7518 %{
 7519   match(Set mem (StoreL mem src));
 7520 
 7521   ins_cost(VOLATILE_REF_COST);
 7522   format %{ "stlr  $src, $mem\t# int" %}
 7523 
 7524   ins_encode(aarch64_enc_stlr(src, mem));
 7525 
 7526   ins_pipe(pipe_class_memory);
 7527 %}
 7528 
 7529 instruct storeimmL0_volatile(immL0 zero, /* sync_memory*/indirect mem)
 7530 %{
 7531   match(Set mem (StoreL mem zero));
 7532 
 7533   ins_cost(VOLATILE_REF_COST);
 7534   format %{ "stlr  zr, $mem\t# int" %}
 7535 
 7536   ins_encode(aarch64_enc_stlr0(mem));
 7537 
 7538   ins_pipe(pipe_class_memory);
 7539 %}
 7540 
 7541 // Store Pointer
 7542 instruct storeP_volatile(iRegP src, /* sync_memory*/indirect mem)
 7543 %{
 7544   match(Set mem (StoreP mem src));
 7545   predicate(n->as_Store()->barrier_data() == 0);
 7546 
 7547   ins_cost(VOLATILE_REF_COST);
 7548   format %{ "stlr  $src, $mem\t# ptr" %}
 7549 
 7550   ins_encode(aarch64_enc_stlr(src, mem));
 7551 
 7552   ins_pipe(pipe_class_memory);
 7553 %}
 7554 
 7555 instruct storeimmP0_volatile(immP0 zero, /* sync_memory*/indirect mem)
 7556 %{
 7557   match(Set mem (StoreP mem zero));
 7558   predicate(n->as_Store()->barrier_data() == 0);
 7559 
 7560   ins_cost(VOLATILE_REF_COST);
 7561   format %{ "stlr  zr, $mem\t# ptr" %}
 7562 
 7563   ins_encode(aarch64_enc_stlr0(mem));
 7564 
 7565   ins_pipe(pipe_class_memory);
 7566 %}
 7567 
 7568 // Store Compressed Pointer
 7569 instruct storeN_volatile(iRegN src, /* sync_memory*/indirect mem)
 7570 %{
 7571   match(Set mem (StoreN mem src));
 7572   predicate(n->as_Store()->barrier_data() == 0);
 7573 
 7574   ins_cost(VOLATILE_REF_COST);
 7575   format %{ "stlrw  $src, $mem\t# compressed ptr" %}
 7576 
 7577   ins_encode(aarch64_enc_stlrw(src, mem));
 7578 
 7579   ins_pipe(pipe_class_memory);
 7580 %}
 7581 
 7582 instruct storeimmN0_volatile(immN0 zero, /* sync_memory*/indirect mem)
 7583 %{
 7584   match(Set mem (StoreN mem zero));
 7585   predicate(n->as_Store()->barrier_data() == 0);
 7586 
 7587   ins_cost(VOLATILE_REF_COST);
 7588   format %{ "stlrw  zr, $mem\t# compressed ptr" %}
 7589 
 7590   ins_encode(aarch64_enc_stlrw0(mem));
 7591 
 7592   ins_pipe(pipe_class_memory);
 7593 %}
 7594 
 7595 // Store Float
 7596 instruct storeF_volatile(vRegF src, /* sync_memory*/indirect mem)
 7597 %{
 7598   match(Set mem (StoreF mem src));
 7599 
 7600   ins_cost(VOLATILE_REF_COST);
 7601   format %{ "stlrs  $src, $mem\t# float" %}
 7602 
 7603   ins_encode( aarch64_enc_fstlrs(src, mem) );
 7604 
 7605   ins_pipe(pipe_class_memory);
 7606 %}
 7607 
 7608 // TODO
 7609 // implement storeImmF0 and storeFImmPacked
 7610 
 7611 // Store Double
 7612 instruct storeD_volatile(vRegD src, /* sync_memory*/indirect mem)
 7613 %{
 7614   match(Set mem (StoreD mem src));
 7615 
 7616   ins_cost(VOLATILE_REF_COST);
 7617   format %{ "stlrd  $src, $mem\t# double" %}
 7618 
 7619   ins_encode( aarch64_enc_fstlrd(src, mem) );
 7620 
 7621   ins_pipe(pipe_class_memory);
 7622 %}
 7623 
 7624 //  ---------------- end of volatile loads and stores ----------------
 7625 
 7626 instruct cacheWB(indirect addr)
 7627 %{
 7628   predicate(VM_Version::supports_data_cache_line_flush());
 7629   match(CacheWB addr);
 7630 
 7631   ins_cost(100);
 7632   format %{"cache wb $addr" %}
 7633   ins_encode %{
 7634     assert($addr->index_position() < 0, "should be");
 7635     assert($addr$$disp == 0, "should be");
 7636     __ cache_wb(Address($addr$$base$$Register, 0));
 7637   %}
 7638   ins_pipe(pipe_slow); // XXX
 7639 %}
 7640 
 7641 instruct cacheWBPreSync()
 7642 %{
 7643   predicate(VM_Version::supports_data_cache_line_flush());
 7644   match(CacheWBPreSync);
 7645 
 7646   ins_cost(100);
 7647   format %{"cache wb presync" %}
 7648   ins_encode %{
 7649     __ cache_wbsync(true);
 7650   %}
 7651   ins_pipe(pipe_slow); // XXX
 7652 %}
 7653 
 7654 instruct cacheWBPostSync()
 7655 %{
 7656   predicate(VM_Version::supports_data_cache_line_flush());
 7657   match(CacheWBPostSync);
 7658 
 7659   ins_cost(100);
 7660   format %{"cache wb postsync" %}
 7661   ins_encode %{
 7662     __ cache_wbsync(false);
 7663   %}
 7664   ins_pipe(pipe_slow); // XXX
 7665 %}
 7666 
 7667 // ============================================================================
 7668 // BSWAP Instructions
 7669 
 7670 instruct bytes_reverse_int(iRegINoSp dst, iRegIorL2I src) %{
 7671   match(Set dst (ReverseBytesI src));
 7672 
 7673   ins_cost(INSN_COST);
 7674   format %{ "revw  $dst, $src" %}
 7675 
 7676   ins_encode %{
 7677     __ revw(as_Register($dst$$reg), as_Register($src$$reg));
 7678   %}
 7679 
 7680   ins_pipe(ialu_reg);
 7681 %}
 7682 
 7683 instruct bytes_reverse_long(iRegLNoSp dst, iRegL src) %{
 7684   match(Set dst (ReverseBytesL src));
 7685 
 7686   ins_cost(INSN_COST);
 7687   format %{ "rev  $dst, $src" %}
 7688 
 7689   ins_encode %{
 7690     __ rev(as_Register($dst$$reg), as_Register($src$$reg));
 7691   %}
 7692 
 7693   ins_pipe(ialu_reg);
 7694 %}
 7695 
 7696 instruct bytes_reverse_unsigned_short(iRegINoSp dst, iRegIorL2I src) %{
 7697   match(Set dst (ReverseBytesUS src));
 7698 
 7699   ins_cost(INSN_COST);
 7700   format %{ "rev16w  $dst, $src" %}
 7701 
 7702   ins_encode %{
 7703     __ rev16w(as_Register($dst$$reg), as_Register($src$$reg));
 7704   %}
 7705 
 7706   ins_pipe(ialu_reg);
 7707 %}
 7708 
 7709 instruct bytes_reverse_short(iRegINoSp dst, iRegIorL2I src) %{
 7710   match(Set dst (ReverseBytesS src));
 7711 
 7712   ins_cost(INSN_COST);
 7713   format %{ "rev16w  $dst, $src\n\t"
 7714             "sbfmw $dst, $dst, #0, #15" %}
 7715 
 7716   ins_encode %{
 7717     __ rev16w(as_Register($dst$$reg), as_Register($src$$reg));
 7718     __ sbfmw(as_Register($dst$$reg), as_Register($dst$$reg), 0U, 15U);
 7719   %}
 7720 
 7721   ins_pipe(ialu_reg);
 7722 %}
 7723 
 7724 // ============================================================================
 7725 // Zero Count Instructions
 7726 
 7727 instruct countLeadingZerosI(iRegINoSp dst, iRegIorL2I src) %{
 7728   match(Set dst (CountLeadingZerosI src));
 7729 
 7730   ins_cost(INSN_COST);
 7731   format %{ "clzw  $dst, $src" %}
 7732   ins_encode %{
 7733     __ clzw(as_Register($dst$$reg), as_Register($src$$reg));
 7734   %}
 7735 
 7736   ins_pipe(ialu_reg);
 7737 %}
 7738 
 7739 instruct countLeadingZerosL(iRegINoSp dst, iRegL src) %{
 7740   match(Set dst (CountLeadingZerosL src));
 7741 
 7742   ins_cost(INSN_COST);
 7743   format %{ "clz   $dst, $src" %}
 7744   ins_encode %{
 7745     __ clz(as_Register($dst$$reg), as_Register($src$$reg));
 7746   %}
 7747 
 7748   ins_pipe(ialu_reg);
 7749 %}
 7750 
 7751 instruct countTrailingZerosI(iRegINoSp dst, iRegIorL2I src) %{
 7752   match(Set dst (CountTrailingZerosI src));
 7753 
 7754   ins_cost(INSN_COST * 2);
 7755   format %{ "rbitw  $dst, $src\n\t"
 7756             "clzw   $dst, $dst" %}
 7757   ins_encode %{
 7758     __ rbitw(as_Register($dst$$reg), as_Register($src$$reg));
 7759     __ clzw(as_Register($dst$$reg), as_Register($dst$$reg));
 7760   %}
 7761 
 7762   ins_pipe(ialu_reg);
 7763 %}
 7764 
 7765 instruct countTrailingZerosL(iRegINoSp dst, iRegL src) %{
 7766   match(Set dst (CountTrailingZerosL src));
 7767 
 7768   ins_cost(INSN_COST * 2);
 7769   format %{ "rbit   $dst, $src\n\t"
 7770             "clz    $dst, $dst" %}
 7771   ins_encode %{
 7772     __ rbit(as_Register($dst$$reg), as_Register($src$$reg));
 7773     __ clz(as_Register($dst$$reg), as_Register($dst$$reg));
 7774   %}
 7775 
 7776   ins_pipe(ialu_reg);
 7777 %}
 7778 
 7779 //---------- Population Count Instructions -------------------------------------
 7780 //
 7781 
 7782 instruct popCountI(iRegINoSp dst, iRegIorL2I src, vRegF tmp) %{
 7783   match(Set dst (PopCountI src));
 7784   effect(TEMP tmp);
 7785   ins_cost(INSN_COST * 13);
 7786 
 7787   format %{ "movw   $src, $src\n\t"
 7788             "mov    $tmp, $src\t# vector (1D)\n\t"
 7789             "cnt    $tmp, $tmp\t# vector (8B)\n\t"
 7790             "addv   $tmp, $tmp\t# vector (8B)\n\t"
 7791             "mov    $dst, $tmp\t# vector (1D)" %}
 7792   ins_encode %{
 7793     __ movw($src$$Register, $src$$Register); // ensure top 32 bits 0
 7794     __ mov($tmp$$FloatRegister, __ D, 0, $src$$Register);
 7795     __ cnt($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister);
 7796     __ addv($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister);
 7797     __ mov($dst$$Register, $tmp$$FloatRegister, __ D, 0);
 7798   %}
 7799 
 7800   ins_pipe(pipe_class_default);
 7801 %}
 7802 
 7803 instruct popCountI_mem(iRegINoSp dst, memory4 mem, vRegF tmp) %{
 7804   match(Set dst (PopCountI (LoadI mem)));
 7805   effect(TEMP tmp);
 7806   ins_cost(INSN_COST * 13);
 7807 
 7808   format %{ "ldrs   $tmp, $mem\n\t"
 7809             "cnt    $tmp, $tmp\t# vector (8B)\n\t"
 7810             "addv   $tmp, $tmp\t# vector (8B)\n\t"
 7811             "mov    $dst, $tmp\t# vector (1D)" %}
 7812   ins_encode %{
 7813     FloatRegister tmp_reg = as_FloatRegister($tmp$$reg);
 7814     loadStore(masm, &MacroAssembler::ldrs, tmp_reg, $mem->opcode(),
 7815               as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4);
 7816     __ cnt($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister);
 7817     __ addv($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister);
 7818     __ mov($dst$$Register, $tmp$$FloatRegister, __ D, 0);
 7819   %}
 7820 
 7821   ins_pipe(pipe_class_default);
 7822 %}
 7823 
 7824 // Note: Long.bitCount(long) returns an int.
 7825 instruct popCountL(iRegINoSp dst, iRegL src, vRegD tmp) %{
 7826   match(Set dst (PopCountL src));
 7827   effect(TEMP tmp);
 7828   ins_cost(INSN_COST * 13);
 7829 
 7830   format %{ "mov    $tmp, $src\t# vector (1D)\n\t"
 7831             "cnt    $tmp, $tmp\t# vector (8B)\n\t"
 7832             "addv   $tmp, $tmp\t# vector (8B)\n\t"
 7833             "mov    $dst, $tmp\t# vector (1D)" %}
 7834   ins_encode %{
 7835     __ mov($tmp$$FloatRegister, __ D, 0, $src$$Register);
 7836     __ cnt($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister);
 7837     __ addv($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister);
 7838     __ mov($dst$$Register, $tmp$$FloatRegister, __ D, 0);
 7839   %}
 7840 
 7841   ins_pipe(pipe_class_default);
 7842 %}
 7843 
 7844 instruct popCountL_mem(iRegINoSp dst, memory8 mem, vRegD tmp) %{
 7845   match(Set dst (PopCountL (LoadL mem)));
 7846   effect(TEMP tmp);
 7847   ins_cost(INSN_COST * 13);
 7848 
 7849   format %{ "ldrd   $tmp, $mem\n\t"
 7850             "cnt    $tmp, $tmp\t# vector (8B)\n\t"
 7851             "addv   $tmp, $tmp\t# vector (8B)\n\t"
 7852             "mov    $dst, $tmp\t# vector (1D)" %}
 7853   ins_encode %{
 7854     FloatRegister tmp_reg = as_FloatRegister($tmp$$reg);
 7855     loadStore(masm, &MacroAssembler::ldrd, tmp_reg, $mem->opcode(),
 7856               as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 8);
 7857     __ cnt($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister);
 7858     __ addv($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister);
 7859     __ mov($dst$$Register, $tmp$$FloatRegister, __ D, 0);
 7860   %}
 7861 
 7862   ins_pipe(pipe_class_default);
 7863 %}
 7864 
 7865 // ============================================================================
 7866 // VerifyVectorAlignment Instruction
 7867 
 7868 instruct verify_vector_alignment(iRegP addr, immL_positive_bitmaskI mask, rFlagsReg cr) %{
 7869   match(Set addr (VerifyVectorAlignment addr mask));
 7870   effect(KILL cr);
 7871   format %{ "verify_vector_alignment $addr $mask \t! verify alignment" %}
 7872   ins_encode %{
 7873     Label Lskip;
 7874     // check if masked bits of addr are zero
 7875     __ tst($addr$$Register, $mask$$constant);
 7876     __ br(Assembler::EQ, Lskip);
 7877     __ stop("verify_vector_alignment found a misaligned vector memory access");
 7878     __ bind(Lskip);
 7879   %}
 7880   ins_pipe(pipe_slow);
 7881 %}
 7882 
 7883 // ============================================================================
 7884 // MemBar Instruction
 7885 
 7886 instruct load_fence() %{
 7887   match(LoadFence);
 7888   ins_cost(VOLATILE_REF_COST);
 7889 
 7890   format %{ "load_fence" %}
 7891 
 7892   ins_encode %{
 7893     __ membar(Assembler::LoadLoad|Assembler::LoadStore);
 7894   %}
 7895   ins_pipe(pipe_serial);
 7896 %}
 7897 
 7898 instruct unnecessary_membar_acquire() %{
 7899   predicate(unnecessary_acquire(n));
 7900   match(MemBarAcquire);
 7901   ins_cost(0);
 7902 
 7903   format %{ "membar_acquire (elided)" %}
 7904 
 7905   ins_encode %{
 7906     __ block_comment("membar_acquire (elided)");
 7907   %}
 7908 
 7909   ins_pipe(pipe_class_empty);
 7910 %}
 7911 
 7912 instruct membar_acquire() %{
 7913   match(MemBarAcquire);
 7914   ins_cost(VOLATILE_REF_COST);
 7915 
 7916   format %{ "membar_acquire\n\t"
 7917             "dmb ishld" %}
 7918 
 7919   ins_encode %{
 7920     __ block_comment("membar_acquire");
 7921     __ membar(Assembler::LoadLoad|Assembler::LoadStore);
 7922   %}
 7923 
 7924   ins_pipe(pipe_serial);
 7925 %}
 7926 
 7927 
 7928 instruct membar_acquire_lock() %{
 7929   match(MemBarAcquireLock);
 7930   ins_cost(VOLATILE_REF_COST);
 7931 
 7932   format %{ "membar_acquire_lock (elided)" %}
 7933 
 7934   ins_encode %{
 7935     __ block_comment("membar_acquire_lock (elided)");
 7936   %}
 7937 
 7938   ins_pipe(pipe_serial);
 7939 %}
 7940 
 7941 instruct store_fence() %{
 7942   match(StoreFence);
 7943   ins_cost(VOLATILE_REF_COST);
 7944 
 7945   format %{ "store_fence" %}
 7946 
 7947   ins_encode %{
 7948     __ membar(Assembler::LoadStore|Assembler::StoreStore);
 7949   %}
 7950   ins_pipe(pipe_serial);
 7951 %}
 7952 
 7953 instruct unnecessary_membar_release() %{
 7954   predicate(unnecessary_release(n));
 7955   match(MemBarRelease);
 7956   ins_cost(0);
 7957 
 7958   format %{ "membar_release (elided)" %}
 7959 
 7960   ins_encode %{
 7961     __ block_comment("membar_release (elided)");
 7962   %}
 7963   ins_pipe(pipe_serial);
 7964 %}
 7965 
 7966 instruct membar_release() %{
 7967   match(MemBarRelease);
 7968   ins_cost(VOLATILE_REF_COST);
 7969 
 7970   format %{ "membar_release\n\t"
 7971             "dmb ishst\n\tdmb ishld" %}
 7972 
 7973   ins_encode %{
 7974     __ block_comment("membar_release");
 7975     // These will be merged if AlwaysMergeDMB is enabled.
 7976     __ membar(Assembler::StoreStore);
 7977     __ membar(Assembler::LoadStore);
 7978   %}
 7979   ins_pipe(pipe_serial);
 7980 %}
 7981 
 7982 instruct membar_storestore() %{
 7983   match(MemBarStoreStore);
 7984   match(StoreStoreFence);
 7985   ins_cost(VOLATILE_REF_COST);
 7986 
 7987   format %{ "MEMBAR-store-store" %}
 7988 
 7989   ins_encode %{
 7990     __ membar(Assembler::StoreStore);
 7991   %}
 7992   ins_pipe(pipe_serial);
 7993 %}
 7994 
 7995 instruct membar_release_lock() %{
 7996   match(MemBarReleaseLock);
 7997   ins_cost(VOLATILE_REF_COST);
 7998 
 7999   format %{ "membar_release_lock (elided)" %}
 8000 
 8001   ins_encode %{
 8002     __ block_comment("membar_release_lock (elided)");
 8003   %}
 8004 
 8005   ins_pipe(pipe_serial);
 8006 %}
 8007 
 8008 instruct unnecessary_membar_volatile() %{
 8009   predicate(unnecessary_volatile(n));
 8010   match(MemBarVolatile);
 8011   ins_cost(0);
 8012 
 8013   format %{ "membar_volatile (elided)" %}
 8014 
 8015   ins_encode %{
 8016     __ block_comment("membar_volatile (elided)");
 8017   %}
 8018 
 8019   ins_pipe(pipe_serial);
 8020 %}
 8021 
 8022 instruct membar_volatile() %{
 8023   match(MemBarVolatile);
 8024   ins_cost(VOLATILE_REF_COST*100);
 8025 
 8026   format %{ "membar_volatile\n\t"
 8027              "dmb ish"%}
 8028 
 8029   ins_encode %{
 8030     __ block_comment("membar_volatile");
 8031     __ membar(Assembler::StoreLoad);
 8032   %}
 8033 
 8034   ins_pipe(pipe_serial);
 8035 %}
 8036 
 8037 // ============================================================================
 8038 // Cast/Convert Instructions
 8039 
 8040 instruct castX2P(iRegPNoSp dst, iRegL src) %{
 8041   match(Set dst (CastX2P src));
 8042 
 8043   ins_cost(INSN_COST);
 8044   format %{ "mov $dst, $src\t# long -> ptr" %}
 8045 
 8046   ins_encode %{
 8047     if ($dst$$reg != $src$$reg) {
 8048       __ mov(as_Register($dst$$reg), as_Register($src$$reg));
 8049     }
 8050   %}
 8051 
 8052   ins_pipe(ialu_reg);
 8053 %}
 8054 
 8055 instruct castP2X(iRegLNoSp dst, iRegP src) %{
 8056   match(Set dst (CastP2X src));
 8057 
 8058   ins_cost(INSN_COST);
 8059   format %{ "mov $dst, $src\t# ptr -> long" %}
 8060 
 8061   ins_encode %{
 8062     if ($dst$$reg != $src$$reg) {
 8063       __ mov(as_Register($dst$$reg), as_Register($src$$reg));
 8064     }
 8065   %}
 8066 
 8067   ins_pipe(ialu_reg);
 8068 %}
 8069 
 8070 // Convert oop into int for vectors alignment masking
 8071 instruct convP2I(iRegINoSp dst, iRegP src) %{
 8072   match(Set dst (ConvL2I (CastP2X src)));
 8073 
 8074   ins_cost(INSN_COST);
 8075   format %{ "movw $dst, $src\t# ptr -> int" %}
 8076   ins_encode %{
 8077     __ movw($dst$$Register, $src$$Register);
 8078   %}
 8079 
 8080   ins_pipe(ialu_reg);
 8081 %}
 8082 
 8083 // Convert compressed oop into int for vectors alignment masking
 8084 // in case of 32bit oops (heap < 4Gb).
 8085 instruct convN2I(iRegINoSp dst, iRegN src)
 8086 %{
 8087   predicate(CompressedOops::shift() == 0);
 8088   match(Set dst (ConvL2I (CastP2X (DecodeN src))));
 8089 
 8090   ins_cost(INSN_COST);
 8091   format %{ "mov dst, $src\t# compressed ptr -> int" %}
 8092   ins_encode %{
 8093     __ movw($dst$$Register, $src$$Register);
 8094   %}
 8095 
 8096   ins_pipe(ialu_reg);
 8097 %}
 8098 
 8099 
 8100 // Convert oop pointer into compressed form
 8101 instruct encodeHeapOop(iRegNNoSp dst, iRegP src, rFlagsReg cr) %{
 8102   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
 8103   match(Set dst (EncodeP src));
 8104   effect(KILL cr);
 8105   ins_cost(INSN_COST * 3);
 8106   format %{ "encode_heap_oop $dst, $src" %}
 8107   ins_encode %{
 8108     Register s = $src$$Register;
 8109     Register d = $dst$$Register;
 8110     __ encode_heap_oop(d, s);
 8111   %}
 8112   ins_pipe(ialu_reg);
 8113 %}
 8114 
 8115 instruct encodeHeapOop_not_null(iRegNNoSp dst, iRegP src, rFlagsReg cr) %{
 8116   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
 8117   match(Set dst (EncodeP src));
 8118   ins_cost(INSN_COST * 3);
 8119   format %{ "encode_heap_oop_not_null $dst, $src" %}
 8120   ins_encode %{
 8121     __ encode_heap_oop_not_null($dst$$Register, $src$$Register);
 8122   %}
 8123   ins_pipe(ialu_reg);
 8124 %}
 8125 
 8126 instruct decodeHeapOop(iRegPNoSp dst, iRegN src, rFlagsReg cr) %{
 8127   predicate(n->bottom_type()->is_ptr()->ptr() != TypePtr::NotNull &&
 8128             n->bottom_type()->is_ptr()->ptr() != TypePtr::Constant);
 8129   match(Set dst (DecodeN src));
 8130   ins_cost(INSN_COST * 3);
 8131   format %{ "decode_heap_oop $dst, $src" %}
 8132   ins_encode %{
 8133     Register s = $src$$Register;
 8134     Register d = $dst$$Register;
 8135     __ decode_heap_oop(d, s);
 8136   %}
 8137   ins_pipe(ialu_reg);
 8138 %}
 8139 
 8140 instruct decodeHeapOop_not_null(iRegPNoSp dst, iRegN src, rFlagsReg cr) %{
 8141   predicate(n->bottom_type()->is_ptr()->ptr() == TypePtr::NotNull ||
 8142             n->bottom_type()->is_ptr()->ptr() == TypePtr::Constant);
 8143   match(Set dst (DecodeN src));
 8144   ins_cost(INSN_COST * 3);
 8145   format %{ "decode_heap_oop_not_null $dst, $src" %}
 8146   ins_encode %{
 8147     Register s = $src$$Register;
 8148     Register d = $dst$$Register;
 8149     __ decode_heap_oop_not_null(d, s);
 8150   %}
 8151   ins_pipe(ialu_reg);
 8152 %}
 8153 
 8154 // n.b. AArch64 implementations of encode_klass_not_null and
 8155 // decode_klass_not_null do not modify the flags register so, unlike
 8156 // Intel, we don't kill CR as a side effect here
 8157 
 8158 instruct encodeKlass_not_null(iRegNNoSp dst, iRegP src) %{
 8159   match(Set dst (EncodePKlass src));
 8160 
 8161   ins_cost(INSN_COST * 3);
 8162   format %{ "encode_klass_not_null $dst,$src" %}
 8163 
 8164   ins_encode %{
 8165     Register src_reg = as_Register($src$$reg);
 8166     Register dst_reg = as_Register($dst$$reg);
 8167     __ encode_klass_not_null(dst_reg, src_reg);
 8168   %}
 8169 
 8170    ins_pipe(ialu_reg);
 8171 %}
 8172 
 8173 instruct decodeKlass_not_null(iRegPNoSp dst, iRegN src) %{
 8174   match(Set dst (DecodeNKlass src));
 8175 
 8176   ins_cost(INSN_COST * 3);
 8177   format %{ "decode_klass_not_null $dst,$src" %}
 8178 
 8179   ins_encode %{
 8180     Register src_reg = as_Register($src$$reg);
 8181     Register dst_reg = as_Register($dst$$reg);
 8182     if (dst_reg != src_reg) {
 8183       __ decode_klass_not_null(dst_reg, src_reg);
 8184     } else {
 8185       __ decode_klass_not_null(dst_reg);
 8186     }
 8187   %}
 8188 
 8189    ins_pipe(ialu_reg);
 8190 %}
 8191 
 8192 instruct checkCastPP(iRegPNoSp dst)
 8193 %{
 8194   match(Set dst (CheckCastPP dst));
 8195 
 8196   size(0);
 8197   format %{ "# checkcastPP of $dst" %}
 8198   ins_encode(/* empty encoding */);
 8199   ins_pipe(pipe_class_empty);
 8200 %}
 8201 
 8202 instruct castPP(iRegPNoSp dst)
 8203 %{
 8204   match(Set dst (CastPP dst));
 8205 
 8206   size(0);
 8207   format %{ "# castPP of $dst" %}
 8208   ins_encode(/* empty encoding */);
 8209   ins_pipe(pipe_class_empty);
 8210 %}
 8211 
 8212 instruct castII(iRegI dst)
 8213 %{
 8214   predicate(VerifyConstraintCasts == 0);
 8215   match(Set dst (CastII dst));
 8216 
 8217   size(0);
 8218   format %{ "# castII of $dst" %}
 8219   ins_encode(/* empty encoding */);
 8220   ins_cost(0);
 8221   ins_pipe(pipe_class_empty);
 8222 %}
 8223 
 8224 instruct castII_checked(iRegI dst, rFlagsReg cr)
 8225 %{
 8226   predicate(VerifyConstraintCasts > 0);
 8227   match(Set dst (CastII dst));
 8228   effect(KILL cr);
 8229 
 8230   format %{ "# castII_checked of $dst" %}
 8231   ins_encode %{
 8232     __ verify_int_in_range(_idx, bottom_type()->is_int(), $dst$$Register, rscratch1);
 8233   %}
 8234   ins_pipe(pipe_slow);
 8235 %}
 8236 
 8237 instruct castLL(iRegL dst)
 8238 %{
 8239   predicate(VerifyConstraintCasts == 0);
 8240   match(Set dst (CastLL dst));
 8241 
 8242   size(0);
 8243   format %{ "# castLL of $dst" %}
 8244   ins_encode(/* empty encoding */);
 8245   ins_cost(0);
 8246   ins_pipe(pipe_class_empty);
 8247 %}
 8248 
 8249 instruct castLL_checked(iRegL dst, rFlagsReg cr)
 8250 %{
 8251   predicate(VerifyConstraintCasts > 0);
 8252   match(Set dst (CastLL dst));
 8253   effect(KILL cr);
 8254 
 8255   format %{ "# castLL_checked of $dst" %}
 8256   ins_encode %{
 8257     __ verify_long_in_range(_idx, bottom_type()->is_long(), $dst$$Register, rscratch1);
 8258   %}
 8259   ins_pipe(pipe_slow);
 8260 %}
 8261 
 8262 instruct castFF(vRegF dst)
 8263 %{
 8264   match(Set dst (CastFF dst));
 8265 
 8266   size(0);
 8267   format %{ "# castFF of $dst" %}
 8268   ins_encode(/* empty encoding */);
 8269   ins_cost(0);
 8270   ins_pipe(pipe_class_empty);
 8271 %}
 8272 
 8273 instruct castDD(vRegD dst)
 8274 %{
 8275   match(Set dst (CastDD dst));
 8276 
 8277   size(0);
 8278   format %{ "# castDD of $dst" %}
 8279   ins_encode(/* empty encoding */);
 8280   ins_cost(0);
 8281   ins_pipe(pipe_class_empty);
 8282 %}
 8283 
 8284 instruct castVV(vReg dst)
 8285 %{
 8286   match(Set dst (CastVV dst));
 8287 
 8288   size(0);
 8289   format %{ "# castVV of $dst" %}
 8290   ins_encode(/* empty encoding */);
 8291   ins_cost(0);
 8292   ins_pipe(pipe_class_empty);
 8293 %}
 8294 
 8295 instruct castVVMask(pRegGov dst)
 8296 %{
 8297   match(Set dst (CastVV dst));
 8298 
 8299   size(0);
 8300   format %{ "# castVV of $dst" %}
 8301   ins_encode(/* empty encoding */);
 8302   ins_cost(0);
 8303   ins_pipe(pipe_class_empty);
 8304 %}
 8305 
 8306 // ============================================================================
 8307 // Atomic operation instructions
 8308 //
 8309 
 8310 // standard CompareAndSwapX when we are using barriers
 8311 // these have higher priority than the rules selected by a predicate
 8312 
 8313 // XXX No flag versions for CompareAndSwap{I,L,P,N} because matcher
 8314 // can't match them
 8315 
 8316 instruct compareAndSwapB(iRegINoSp res, indirect mem, iRegINoSp oldval, iRegINoSp newval, rFlagsReg cr) %{
 8317 
 8318   match(Set res (CompareAndSwapB mem (Binary oldval newval)));
 8319   ins_cost(2 * VOLATILE_REF_COST);
 8320 
 8321   effect(KILL cr);
 8322 
 8323   format %{
 8324     "cmpxchgb $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval"
 8325     "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8326   %}
 8327 
 8328   ins_encode(aarch64_enc_cmpxchgb(mem, oldval, newval),
 8329             aarch64_enc_cset_eq(res));
 8330 
 8331   ins_pipe(pipe_slow);
 8332 %}
 8333 
 8334 instruct compareAndSwapS(iRegINoSp res, indirect mem, iRegINoSp oldval, iRegINoSp newval, rFlagsReg cr) %{
 8335 
 8336   match(Set res (CompareAndSwapS mem (Binary oldval newval)));
 8337   ins_cost(2 * VOLATILE_REF_COST);
 8338 
 8339   effect(KILL cr);
 8340 
 8341   format %{
 8342     "cmpxchgs $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval"
 8343     "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8344   %}
 8345 
 8346   ins_encode(aarch64_enc_cmpxchgs(mem, oldval, newval),
 8347             aarch64_enc_cset_eq(res));
 8348 
 8349   ins_pipe(pipe_slow);
 8350 %}
 8351 
 8352 instruct compareAndSwapI(iRegINoSp res, indirect mem, iRegINoSp oldval, iRegINoSp newval, rFlagsReg cr) %{
 8353 
 8354   match(Set res (CompareAndSwapI mem (Binary oldval newval)));
 8355   ins_cost(2 * VOLATILE_REF_COST);
 8356 
 8357   effect(KILL cr);
 8358 
 8359  format %{
 8360     "cmpxchgw $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval"
 8361     "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8362  %}
 8363 
 8364  ins_encode(aarch64_enc_cmpxchgw(mem, oldval, newval),
 8365             aarch64_enc_cset_eq(res));
 8366 
 8367   ins_pipe(pipe_slow);
 8368 %}
 8369 
 8370 instruct compareAndSwapL(iRegINoSp res, indirect mem, iRegLNoSp oldval, iRegLNoSp newval, rFlagsReg cr) %{
 8371 
 8372   match(Set res (CompareAndSwapL mem (Binary oldval newval)));
 8373   ins_cost(2 * VOLATILE_REF_COST);
 8374 
 8375   effect(KILL cr);
 8376 
 8377  format %{
 8378     "cmpxchg $mem, $oldval, $newval\t# (long) if $mem == $oldval then $mem <-- $newval"
 8379     "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8380  %}
 8381 
 8382  ins_encode(aarch64_enc_cmpxchg(mem, oldval, newval),
 8383             aarch64_enc_cset_eq(res));
 8384 
 8385   ins_pipe(pipe_slow);
 8386 %}
 8387 
 8388 instruct compareAndSwapP(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{
 8389 
 8390   match(Set res (CompareAndSwapP mem (Binary oldval newval)));
 8391   predicate(n->as_LoadStore()->barrier_data() == 0);
 8392   ins_cost(2 * VOLATILE_REF_COST);
 8393 
 8394   effect(KILL cr);
 8395 
 8396  format %{
 8397     "cmpxchg $mem, $oldval, $newval\t# (ptr) if $mem == $oldval then $mem <-- $newval"
 8398     "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8399  %}
 8400 
 8401  ins_encode(aarch64_enc_cmpxchg(mem, oldval, newval),
 8402             aarch64_enc_cset_eq(res));
 8403 
 8404   ins_pipe(pipe_slow);
 8405 %}
 8406 
 8407 instruct compareAndSwapN(iRegINoSp res, indirect mem, iRegNNoSp oldval, iRegNNoSp newval, rFlagsReg cr) %{
 8408 
 8409   match(Set res (CompareAndSwapN mem (Binary oldval newval)));
 8410   predicate(n->as_LoadStore()->barrier_data() == 0);
 8411   ins_cost(2 * VOLATILE_REF_COST);
 8412 
 8413   effect(KILL cr);
 8414 
 8415  format %{
 8416     "cmpxchgw $mem, $oldval, $newval\t# (narrow oop) if $mem == $oldval then $mem <-- $newval"
 8417     "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8418  %}
 8419 
 8420  ins_encode(aarch64_enc_cmpxchgw(mem, oldval, newval),
 8421             aarch64_enc_cset_eq(res));
 8422 
 8423   ins_pipe(pipe_slow);
 8424 %}
 8425 
 8426 // alternative CompareAndSwapX when we are eliding barriers
 8427 
 8428 instruct compareAndSwapBAcq(iRegINoSp res, indirect mem, iRegINoSp oldval, iRegINoSp newval, rFlagsReg cr) %{
 8429 
 8430   predicate(needs_acquiring_load_exclusive(n));
 8431   match(Set res (CompareAndSwapB mem (Binary oldval newval)));
 8432   ins_cost(VOLATILE_REF_COST);
 8433 
 8434   effect(KILL cr);
 8435 
 8436   format %{
 8437     "cmpxchgb_acq $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval"
 8438     "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8439   %}
 8440 
 8441   ins_encode(aarch64_enc_cmpxchgb_acq(mem, oldval, newval),
 8442             aarch64_enc_cset_eq(res));
 8443 
 8444   ins_pipe(pipe_slow);
 8445 %}
 8446 
 8447 instruct compareAndSwapSAcq(iRegINoSp res, indirect mem, iRegINoSp oldval, iRegINoSp newval, rFlagsReg cr) %{
 8448 
 8449   predicate(needs_acquiring_load_exclusive(n));
 8450   match(Set res (CompareAndSwapS mem (Binary oldval newval)));
 8451   ins_cost(VOLATILE_REF_COST);
 8452 
 8453   effect(KILL cr);
 8454 
 8455   format %{
 8456     "cmpxchgs_acq $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval"
 8457     "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8458   %}
 8459 
 8460   ins_encode(aarch64_enc_cmpxchgs_acq(mem, oldval, newval),
 8461             aarch64_enc_cset_eq(res));
 8462 
 8463   ins_pipe(pipe_slow);
 8464 %}
 8465 
 8466 instruct compareAndSwapIAcq(iRegINoSp res, indirect mem, iRegINoSp oldval, iRegINoSp newval, rFlagsReg cr) %{
 8467 
 8468   predicate(needs_acquiring_load_exclusive(n));
 8469   match(Set res (CompareAndSwapI mem (Binary oldval newval)));
 8470   ins_cost(VOLATILE_REF_COST);
 8471 
 8472   effect(KILL cr);
 8473 
 8474  format %{
 8475     "cmpxchgw_acq $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval"
 8476     "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8477  %}
 8478 
 8479  ins_encode(aarch64_enc_cmpxchgw_acq(mem, oldval, newval),
 8480             aarch64_enc_cset_eq(res));
 8481 
 8482   ins_pipe(pipe_slow);
 8483 %}
 8484 
 8485 instruct compareAndSwapLAcq(iRegINoSp res, indirect mem, iRegLNoSp oldval, iRegLNoSp newval, rFlagsReg cr) %{
 8486 
 8487   predicate(needs_acquiring_load_exclusive(n));
 8488   match(Set res (CompareAndSwapL mem (Binary oldval newval)));
 8489   ins_cost(VOLATILE_REF_COST);
 8490 
 8491   effect(KILL cr);
 8492 
 8493  format %{
 8494     "cmpxchg_acq $mem, $oldval, $newval\t# (long) if $mem == $oldval then $mem <-- $newval"
 8495     "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8496  %}
 8497 
 8498  ins_encode(aarch64_enc_cmpxchg_acq(mem, oldval, newval),
 8499             aarch64_enc_cset_eq(res));
 8500 
 8501   ins_pipe(pipe_slow);
 8502 %}
 8503 
 8504 instruct compareAndSwapPAcq(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{
 8505 
 8506   predicate(needs_acquiring_load_exclusive(n) && (n->as_LoadStore()->barrier_data() == 0));
 8507   match(Set res (CompareAndSwapP mem (Binary oldval newval)));
 8508   ins_cost(VOLATILE_REF_COST);
 8509 
 8510   effect(KILL cr);
 8511 
 8512  format %{
 8513     "cmpxchg_acq $mem, $oldval, $newval\t# (ptr) if $mem == $oldval then $mem <-- $newval"
 8514     "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8515  %}
 8516 
 8517  ins_encode(aarch64_enc_cmpxchg_acq(mem, oldval, newval),
 8518             aarch64_enc_cset_eq(res));
 8519 
 8520   ins_pipe(pipe_slow);
 8521 %}
 8522 
 8523 instruct compareAndSwapNAcq(iRegINoSp res, indirect mem, iRegNNoSp oldval, iRegNNoSp newval, rFlagsReg cr) %{
 8524 
 8525   predicate(needs_acquiring_load_exclusive(n) && n->as_LoadStore()->barrier_data() == 0);
 8526   match(Set res (CompareAndSwapN mem (Binary oldval newval)));
 8527   ins_cost(VOLATILE_REF_COST);
 8528 
 8529   effect(KILL cr);
 8530 
 8531  format %{
 8532     "cmpxchgw_acq $mem, $oldval, $newval\t# (narrow oop) if $mem == $oldval then $mem <-- $newval"
 8533     "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8534  %}
 8535 
 8536  ins_encode(aarch64_enc_cmpxchgw_acq(mem, oldval, newval),
 8537             aarch64_enc_cset_eq(res));
 8538 
 8539   ins_pipe(pipe_slow);
 8540 %}
 8541 
 8542 
 8543 // ---------------------------------------------------------------------
 8544 
 8545 // BEGIN This section of the file is automatically generated. Do not edit --------------
 8546 
 8547 // Sundry CAS operations.  Note that release is always true,
 8548 // regardless of the memory ordering of the CAS.  This is because we
 8549 // need the volatile case to be sequentially consistent but there is
 8550 // no trailing StoreLoad barrier emitted by C2.  Unfortunately we
 8551 // can't check the type of memory ordering here, so we always emit a
 8552 // STLXR.
 8553 
 8554 // This section is generated from cas.m4
 8555 
 8556 
 8557 // This pattern is generated automatically from cas.m4.
 8558 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8559 instruct compareAndExchangeB(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
 8560   match(Set res (CompareAndExchangeB mem (Binary oldval newval)));
 8561   ins_cost(2 * VOLATILE_REF_COST);
 8562   effect(TEMP_DEF res, KILL cr);
 8563   format %{
 8564     "cmpxchgb $res = $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval"
 8565   %}
 8566   ins_encode %{
 8567     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8568                Assembler::byte, /*acquire*/ false, /*release*/ true,
 8569                /*weak*/ false, $res$$Register);
 8570     __ sxtbw($res$$Register, $res$$Register);
 8571   %}
 8572   ins_pipe(pipe_slow);
 8573 %}
 8574 
 8575 // This pattern is generated automatically from cas.m4.
 8576 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8577 instruct compareAndExchangeS(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
 8578   match(Set res (CompareAndExchangeS mem (Binary oldval newval)));
 8579   ins_cost(2 * VOLATILE_REF_COST);
 8580   effect(TEMP_DEF res, KILL cr);
 8581   format %{
 8582     "cmpxchgs $res = $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval"
 8583   %}
 8584   ins_encode %{
 8585     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8586                Assembler::halfword, /*acquire*/ false, /*release*/ true,
 8587                /*weak*/ false, $res$$Register);
 8588     __ sxthw($res$$Register, $res$$Register);
 8589   %}
 8590   ins_pipe(pipe_slow);
 8591 %}
 8592 
 8593 // This pattern is generated automatically from cas.m4.
 8594 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8595 instruct compareAndExchangeI(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
 8596   match(Set res (CompareAndExchangeI mem (Binary oldval newval)));
 8597   ins_cost(2 * VOLATILE_REF_COST);
 8598   effect(TEMP_DEF res, KILL cr);
 8599   format %{
 8600     "cmpxchgw $res = $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval"
 8601   %}
 8602   ins_encode %{
 8603     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8604                Assembler::word, /*acquire*/ false, /*release*/ true,
 8605                /*weak*/ false, $res$$Register);
 8606   %}
 8607   ins_pipe(pipe_slow);
 8608 %}
 8609 
 8610 // This pattern is generated automatically from cas.m4.
 8611 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8612 instruct compareAndExchangeL(iRegLNoSp res, indirect mem, iRegL oldval, iRegL newval, rFlagsReg cr) %{
 8613   match(Set res (CompareAndExchangeL mem (Binary oldval newval)));
 8614   ins_cost(2 * VOLATILE_REF_COST);
 8615   effect(TEMP_DEF res, KILL cr);
 8616   format %{
 8617     "cmpxchg $res = $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval"
 8618   %}
 8619   ins_encode %{
 8620     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8621                Assembler::xword, /*acquire*/ false, /*release*/ true,
 8622                /*weak*/ false, $res$$Register);
 8623   %}
 8624   ins_pipe(pipe_slow);
 8625 %}
 8626 
 8627 // This pattern is generated automatically from cas.m4.
 8628 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8629 instruct compareAndExchangeN(iRegNNoSp res, indirect mem, iRegN oldval, iRegN newval, rFlagsReg cr) %{
 8630   predicate(n->as_LoadStore()->barrier_data() == 0);
 8631   match(Set res (CompareAndExchangeN mem (Binary oldval newval)));
 8632   ins_cost(2 * VOLATILE_REF_COST);
 8633   effect(TEMP_DEF res, KILL cr);
 8634   format %{
 8635     "cmpxchgw $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval"
 8636   %}
 8637   ins_encode %{
 8638     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8639                Assembler::word, /*acquire*/ false, /*release*/ true,
 8640                /*weak*/ false, $res$$Register);
 8641   %}
 8642   ins_pipe(pipe_slow);
 8643 %}
 8644 
 8645 // This pattern is generated automatically from cas.m4.
 8646 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8647 instruct compareAndExchangeP(iRegPNoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{
 8648   predicate(n->as_LoadStore()->barrier_data() == 0);
 8649   match(Set res (CompareAndExchangeP mem (Binary oldval newval)));
 8650   ins_cost(2 * VOLATILE_REF_COST);
 8651   effect(TEMP_DEF res, KILL cr);
 8652   format %{
 8653     "cmpxchg $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval"
 8654   %}
 8655   ins_encode %{
 8656     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8657                Assembler::xword, /*acquire*/ false, /*release*/ true,
 8658                /*weak*/ false, $res$$Register);
 8659   %}
 8660   ins_pipe(pipe_slow);
 8661 %}
 8662 
 8663 // This pattern is generated automatically from cas.m4.
 8664 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8665 instruct compareAndExchangeBAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
 8666   predicate(needs_acquiring_load_exclusive(n));
 8667   match(Set res (CompareAndExchangeB mem (Binary oldval newval)));
 8668   ins_cost(VOLATILE_REF_COST);
 8669   effect(TEMP_DEF res, KILL cr);
 8670   format %{
 8671     "cmpxchgb_acq $res = $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval"
 8672   %}
 8673   ins_encode %{
 8674     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8675                Assembler::byte, /*acquire*/ true, /*release*/ true,
 8676                /*weak*/ false, $res$$Register);
 8677     __ sxtbw($res$$Register, $res$$Register);
 8678   %}
 8679   ins_pipe(pipe_slow);
 8680 %}
 8681 
 8682 // This pattern is generated automatically from cas.m4.
 8683 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8684 instruct compareAndExchangeSAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
 8685   predicate(needs_acquiring_load_exclusive(n));
 8686   match(Set res (CompareAndExchangeS mem (Binary oldval newval)));
 8687   ins_cost(VOLATILE_REF_COST);
 8688   effect(TEMP_DEF res, KILL cr);
 8689   format %{
 8690     "cmpxchgs_acq $res = $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval"
 8691   %}
 8692   ins_encode %{
 8693     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8694                Assembler::halfword, /*acquire*/ true, /*release*/ true,
 8695                /*weak*/ false, $res$$Register);
 8696     __ sxthw($res$$Register, $res$$Register);
 8697   %}
 8698   ins_pipe(pipe_slow);
 8699 %}
 8700 
 8701 // This pattern is generated automatically from cas.m4.
 8702 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8703 instruct compareAndExchangeIAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
 8704   predicate(needs_acquiring_load_exclusive(n));
 8705   match(Set res (CompareAndExchangeI mem (Binary oldval newval)));
 8706   ins_cost(VOLATILE_REF_COST);
 8707   effect(TEMP_DEF res, KILL cr);
 8708   format %{
 8709     "cmpxchgw_acq $res = $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval"
 8710   %}
 8711   ins_encode %{
 8712     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8713                Assembler::word, /*acquire*/ true, /*release*/ true,
 8714                /*weak*/ false, $res$$Register);
 8715   %}
 8716   ins_pipe(pipe_slow);
 8717 %}
 8718 
 8719 // This pattern is generated automatically from cas.m4.
 8720 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8721 instruct compareAndExchangeLAcq(iRegLNoSp res, indirect mem, iRegL oldval, iRegL newval, rFlagsReg cr) %{
 8722   predicate(needs_acquiring_load_exclusive(n));
 8723   match(Set res (CompareAndExchangeL mem (Binary oldval newval)));
 8724   ins_cost(VOLATILE_REF_COST);
 8725   effect(TEMP_DEF res, KILL cr);
 8726   format %{
 8727     "cmpxchg_acq $res = $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval"
 8728   %}
 8729   ins_encode %{
 8730     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8731                Assembler::xword, /*acquire*/ true, /*release*/ true,
 8732                /*weak*/ false, $res$$Register);
 8733   %}
 8734   ins_pipe(pipe_slow);
 8735 %}
 8736 
 8737 // This pattern is generated automatically from cas.m4.
 8738 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8739 instruct compareAndExchangeNAcq(iRegNNoSp res, indirect mem, iRegN oldval, iRegN newval, rFlagsReg cr) %{
 8740   predicate(needs_acquiring_load_exclusive(n) && n->as_LoadStore()->barrier_data() == 0);
 8741   match(Set res (CompareAndExchangeN mem (Binary oldval newval)));
 8742   ins_cost(VOLATILE_REF_COST);
 8743   effect(TEMP_DEF res, KILL cr);
 8744   format %{
 8745     "cmpxchgw_acq $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval"
 8746   %}
 8747   ins_encode %{
 8748     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8749                Assembler::word, /*acquire*/ true, /*release*/ true,
 8750                /*weak*/ false, $res$$Register);
 8751   %}
 8752   ins_pipe(pipe_slow);
 8753 %}
 8754 
 8755 // This pattern is generated automatically from cas.m4.
 8756 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8757 instruct compareAndExchangePAcq(iRegPNoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{
 8758   predicate(needs_acquiring_load_exclusive(n) && (n->as_LoadStore()->barrier_data() == 0));
 8759   match(Set res (CompareAndExchangeP mem (Binary oldval newval)));
 8760   ins_cost(VOLATILE_REF_COST);
 8761   effect(TEMP_DEF res, KILL cr);
 8762   format %{
 8763     "cmpxchg_acq $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval"
 8764   %}
 8765   ins_encode %{
 8766     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8767                Assembler::xword, /*acquire*/ true, /*release*/ true,
 8768                /*weak*/ false, $res$$Register);
 8769   %}
 8770   ins_pipe(pipe_slow);
 8771 %}
 8772 
 8773 // This pattern is generated automatically from cas.m4.
 8774 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8775 instruct weakCompareAndSwapB(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
 8776   match(Set res (WeakCompareAndSwapB mem (Binary oldval newval)));
 8777   ins_cost(2 * VOLATILE_REF_COST);
 8778   effect(KILL cr);
 8779   format %{
 8780     "cmpxchgb $res = $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval"
 8781     "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8782   %}
 8783   ins_encode %{
 8784     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8785                Assembler::byte, /*acquire*/ false, /*release*/ true,
 8786                /*weak*/ true, noreg);
 8787     __ csetw($res$$Register, Assembler::EQ);
 8788   %}
 8789   ins_pipe(pipe_slow);
 8790 %}
 8791 
 8792 // This pattern is generated automatically from cas.m4.
 8793 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8794 instruct weakCompareAndSwapS(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
 8795   match(Set res (WeakCompareAndSwapS mem (Binary oldval newval)));
 8796   ins_cost(2 * VOLATILE_REF_COST);
 8797   effect(KILL cr);
 8798   format %{
 8799     "cmpxchgs $res = $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval"
 8800     "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8801   %}
 8802   ins_encode %{
 8803     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8804                Assembler::halfword, /*acquire*/ false, /*release*/ true,
 8805                /*weak*/ true, noreg);
 8806     __ csetw($res$$Register, Assembler::EQ);
 8807   %}
 8808   ins_pipe(pipe_slow);
 8809 %}
 8810 
 8811 // This pattern is generated automatically from cas.m4.
 8812 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8813 instruct weakCompareAndSwapI(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
 8814   match(Set res (WeakCompareAndSwapI mem (Binary oldval newval)));
 8815   ins_cost(2 * VOLATILE_REF_COST);
 8816   effect(KILL cr);
 8817   format %{
 8818     "cmpxchgw $res = $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval"
 8819     "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8820   %}
 8821   ins_encode %{
 8822     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8823                Assembler::word, /*acquire*/ false, /*release*/ true,
 8824                /*weak*/ true, noreg);
 8825     __ csetw($res$$Register, Assembler::EQ);
 8826   %}
 8827   ins_pipe(pipe_slow);
 8828 %}
 8829 
 8830 // This pattern is generated automatically from cas.m4.
 8831 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8832 instruct weakCompareAndSwapL(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval, rFlagsReg cr) %{
 8833   match(Set res (WeakCompareAndSwapL mem (Binary oldval newval)));
 8834   ins_cost(2 * VOLATILE_REF_COST);
 8835   effect(KILL cr);
 8836   format %{
 8837     "cmpxchg $res = $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval"
 8838     "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8839   %}
 8840   ins_encode %{
 8841     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8842                Assembler::xword, /*acquire*/ false, /*release*/ true,
 8843                /*weak*/ true, noreg);
 8844     __ csetw($res$$Register, Assembler::EQ);
 8845   %}
 8846   ins_pipe(pipe_slow);
 8847 %}
 8848 
 8849 // This pattern is generated automatically from cas.m4.
 8850 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8851 instruct weakCompareAndSwapN(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval, rFlagsReg cr) %{
 8852   predicate(n->as_LoadStore()->barrier_data() == 0);
 8853   match(Set res (WeakCompareAndSwapN mem (Binary oldval newval)));
 8854   ins_cost(2 * VOLATILE_REF_COST);
 8855   effect(KILL cr);
 8856   format %{
 8857     "cmpxchgw $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval"
 8858     "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8859   %}
 8860   ins_encode %{
 8861     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8862                Assembler::word, /*acquire*/ false, /*release*/ true,
 8863                /*weak*/ true, noreg);
 8864     __ csetw($res$$Register, Assembler::EQ);
 8865   %}
 8866   ins_pipe(pipe_slow);
 8867 %}
 8868 
 8869 // This pattern is generated automatically from cas.m4.
 8870 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8871 instruct weakCompareAndSwapP(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{
 8872   predicate(n->as_LoadStore()->barrier_data() == 0);
 8873   match(Set res (WeakCompareAndSwapP mem (Binary oldval newval)));
 8874   ins_cost(2 * VOLATILE_REF_COST);
 8875   effect(KILL cr);
 8876   format %{
 8877     "cmpxchg $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval"
 8878     "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8879   %}
 8880   ins_encode %{
 8881     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8882                Assembler::xword, /*acquire*/ false, /*release*/ true,
 8883                /*weak*/ true, noreg);
 8884     __ csetw($res$$Register, Assembler::EQ);
 8885   %}
 8886   ins_pipe(pipe_slow);
 8887 %}
 8888 
 8889 // This pattern is generated automatically from cas.m4.
 8890 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8891 instruct weakCompareAndSwapBAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
 8892   predicate(needs_acquiring_load_exclusive(n));
 8893   match(Set res (WeakCompareAndSwapB mem (Binary oldval newval)));
 8894   ins_cost(VOLATILE_REF_COST);
 8895   effect(KILL cr);
 8896   format %{
 8897     "cmpxchgb_acq $res = $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval"
 8898     "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8899   %}
 8900   ins_encode %{
 8901     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8902                Assembler::byte, /*acquire*/ true, /*release*/ true,
 8903                /*weak*/ true, noreg);
 8904     __ csetw($res$$Register, Assembler::EQ);
 8905   %}
 8906   ins_pipe(pipe_slow);
 8907 %}
 8908 
 8909 // This pattern is generated automatically from cas.m4.
 8910 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8911 instruct weakCompareAndSwapSAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
 8912   predicate(needs_acquiring_load_exclusive(n));
 8913   match(Set res (WeakCompareAndSwapS mem (Binary oldval newval)));
 8914   ins_cost(VOLATILE_REF_COST);
 8915   effect(KILL cr);
 8916   format %{
 8917     "cmpxchgs_acq $res = $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval"
 8918     "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8919   %}
 8920   ins_encode %{
 8921     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8922                Assembler::halfword, /*acquire*/ true, /*release*/ true,
 8923                /*weak*/ true, noreg);
 8924     __ csetw($res$$Register, Assembler::EQ);
 8925   %}
 8926   ins_pipe(pipe_slow);
 8927 %}
 8928 
 8929 // This pattern is generated automatically from cas.m4.
 8930 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8931 instruct weakCompareAndSwapIAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{
 8932   predicate(needs_acquiring_load_exclusive(n));
 8933   match(Set res (WeakCompareAndSwapI mem (Binary oldval newval)));
 8934   ins_cost(VOLATILE_REF_COST);
 8935   effect(KILL cr);
 8936   format %{
 8937     "cmpxchgw_acq $res = $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval"
 8938     "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8939   %}
 8940   ins_encode %{
 8941     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8942                Assembler::word, /*acquire*/ true, /*release*/ true,
 8943                /*weak*/ true, noreg);
 8944     __ csetw($res$$Register, Assembler::EQ);
 8945   %}
 8946   ins_pipe(pipe_slow);
 8947 %}
 8948 
 8949 // This pattern is generated automatically from cas.m4.
 8950 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8951 instruct weakCompareAndSwapLAcq(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval, rFlagsReg cr) %{
 8952   predicate(needs_acquiring_load_exclusive(n));
 8953   match(Set res (WeakCompareAndSwapL mem (Binary oldval newval)));
 8954   ins_cost(VOLATILE_REF_COST);
 8955   effect(KILL cr);
 8956   format %{
 8957     "cmpxchg_acq $res = $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval"
 8958     "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8959   %}
 8960   ins_encode %{
 8961     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8962                Assembler::xword, /*acquire*/ true, /*release*/ true,
 8963                /*weak*/ true, noreg);
 8964     __ csetw($res$$Register, Assembler::EQ);
 8965   %}
 8966   ins_pipe(pipe_slow);
 8967 %}
 8968 
 8969 // This pattern is generated automatically from cas.m4.
 8970 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8971 instruct weakCompareAndSwapNAcq(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval, rFlagsReg cr) %{
 8972   predicate(needs_acquiring_load_exclusive(n) && n->as_LoadStore()->barrier_data() == 0);
 8973   match(Set res (WeakCompareAndSwapN mem (Binary oldval newval)));
 8974   ins_cost(VOLATILE_REF_COST);
 8975   effect(KILL cr);
 8976   format %{
 8977     "cmpxchgw_acq $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval"
 8978     "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8979   %}
 8980   ins_encode %{
 8981     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 8982                Assembler::word, /*acquire*/ true, /*release*/ true,
 8983                /*weak*/ true, noreg);
 8984     __ csetw($res$$Register, Assembler::EQ);
 8985   %}
 8986   ins_pipe(pipe_slow);
 8987 %}
 8988 
 8989 // This pattern is generated automatically from cas.m4.
 8990 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
 8991 instruct weakCompareAndSwapPAcq(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{
 8992   predicate(needs_acquiring_load_exclusive(n) && (n->as_LoadStore()->barrier_data() == 0));
 8993   match(Set res (WeakCompareAndSwapP mem (Binary oldval newval)));
 8994   ins_cost(VOLATILE_REF_COST);
 8995   effect(KILL cr);
 8996   format %{
 8997     "cmpxchg_acq $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval"
 8998     "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)"
 8999   %}
 9000   ins_encode %{
 9001     __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register,
 9002                Assembler::xword, /*acquire*/ true, /*release*/ true,
 9003                /*weak*/ true, noreg);
 9004     __ csetw($res$$Register, Assembler::EQ);
 9005   %}
 9006   ins_pipe(pipe_slow);
 9007 %}
 9008 
 9009 // END This section of the file is automatically generated. Do not edit --------------
 9010 // ---------------------------------------------------------------------
 9011 
 9012 instruct get_and_setI(indirect mem, iRegI newv, iRegINoSp prev) %{
 9013   match(Set prev (GetAndSetI mem newv));
 9014   ins_cost(2 * VOLATILE_REF_COST);
 9015   format %{ "atomic_xchgw  $prev, $newv, [$mem]" %}
 9016   ins_encode %{
 9017     __ atomic_xchgw($prev$$Register, $newv$$Register, as_Register($mem$$base));
 9018   %}
 9019   ins_pipe(pipe_serial);
 9020 %}
 9021 
 9022 instruct get_and_setL(indirect mem, iRegL newv, iRegLNoSp prev) %{
 9023   match(Set prev (GetAndSetL mem newv));
 9024   ins_cost(2 * VOLATILE_REF_COST);
 9025   format %{ "atomic_xchg  $prev, $newv, [$mem]" %}
 9026   ins_encode %{
 9027     __ atomic_xchg($prev$$Register, $newv$$Register, as_Register($mem$$base));
 9028   %}
 9029   ins_pipe(pipe_serial);
 9030 %}
 9031 
 9032 instruct get_and_setN(indirect mem, iRegN newv, iRegINoSp prev) %{
 9033   predicate(n->as_LoadStore()->barrier_data() == 0);
 9034   match(Set prev (GetAndSetN mem newv));
 9035   ins_cost(2 * VOLATILE_REF_COST);
 9036   format %{ "atomic_xchgw $prev, $newv, [$mem]" %}
 9037   ins_encode %{
 9038     __ atomic_xchgw($prev$$Register, $newv$$Register, as_Register($mem$$base));
 9039   %}
 9040   ins_pipe(pipe_serial);
 9041 %}
 9042 
 9043 instruct get_and_setP(indirect mem, iRegP newv, iRegPNoSp prev) %{
 9044   predicate(n->as_LoadStore()->barrier_data() == 0);
 9045   match(Set prev (GetAndSetP mem newv));
 9046   ins_cost(2 * VOLATILE_REF_COST);
 9047   format %{ "atomic_xchg  $prev, $newv, [$mem]" %}
 9048   ins_encode %{
 9049     __ atomic_xchg($prev$$Register, $newv$$Register, as_Register($mem$$base));
 9050   %}
 9051   ins_pipe(pipe_serial);
 9052 %}
 9053 
 9054 instruct get_and_setIAcq(indirect mem, iRegI newv, iRegINoSp prev) %{
 9055   predicate(needs_acquiring_load_exclusive(n));
 9056   match(Set prev (GetAndSetI mem newv));
 9057   ins_cost(VOLATILE_REF_COST);
 9058   format %{ "atomic_xchgw_acq  $prev, $newv, [$mem]" %}
 9059   ins_encode %{
 9060     __ atomic_xchgalw($prev$$Register, $newv$$Register, as_Register($mem$$base));
 9061   %}
 9062   ins_pipe(pipe_serial);
 9063 %}
 9064 
 9065 instruct get_and_setLAcq(indirect mem, iRegL newv, iRegLNoSp prev) %{
 9066   predicate(needs_acquiring_load_exclusive(n));
 9067   match(Set prev (GetAndSetL mem newv));
 9068   ins_cost(VOLATILE_REF_COST);
 9069   format %{ "atomic_xchg_acq  $prev, $newv, [$mem]" %}
 9070   ins_encode %{
 9071     __ atomic_xchgal($prev$$Register, $newv$$Register, as_Register($mem$$base));
 9072   %}
 9073   ins_pipe(pipe_serial);
 9074 %}
 9075 
 9076 instruct get_and_setNAcq(indirect mem, iRegN newv, iRegINoSp prev) %{
 9077   predicate(needs_acquiring_load_exclusive(n) && n->as_LoadStore()->barrier_data() == 0);
 9078   match(Set prev (GetAndSetN mem newv));
 9079   ins_cost(VOLATILE_REF_COST);
 9080   format %{ "atomic_xchgw_acq $prev, $newv, [$mem]" %}
 9081   ins_encode %{
 9082     __ atomic_xchgalw($prev$$Register, $newv$$Register, as_Register($mem$$base));
 9083   %}
 9084   ins_pipe(pipe_serial);
 9085 %}
 9086 
 9087 instruct get_and_setPAcq(indirect mem, iRegP newv, iRegPNoSp prev) %{
 9088   predicate(needs_acquiring_load_exclusive(n) && (n->as_LoadStore()->barrier_data() == 0));
 9089   match(Set prev (GetAndSetP mem newv));
 9090   ins_cost(VOLATILE_REF_COST);
 9091   format %{ "atomic_xchg_acq  $prev, $newv, [$mem]" %}
 9092   ins_encode %{
 9093     __ atomic_xchgal($prev$$Register, $newv$$Register, as_Register($mem$$base));
 9094   %}
 9095   ins_pipe(pipe_serial);
 9096 %}
 9097 
 9098 
 9099 instruct get_and_addL(indirect mem, iRegLNoSp newval, iRegL incr) %{
 9100   match(Set newval (GetAndAddL mem incr));
 9101   ins_cost(2 * VOLATILE_REF_COST + 1);
 9102   format %{ "get_and_addL $newval, [$mem], $incr" %}
 9103   ins_encode %{
 9104     __ atomic_add($newval$$Register, $incr$$Register, as_Register($mem$$base));
 9105   %}
 9106   ins_pipe(pipe_serial);
 9107 %}
 9108 
 9109 instruct get_and_addL_no_res(indirect mem, Universe dummy, iRegL incr) %{
 9110   predicate(n->as_LoadStore()->result_not_used());
 9111   match(Set dummy (GetAndAddL mem incr));
 9112   ins_cost(2 * VOLATILE_REF_COST);
 9113   format %{ "get_and_addL [$mem], $incr" %}
 9114   ins_encode %{
 9115     __ atomic_add(noreg, $incr$$Register, as_Register($mem$$base));
 9116   %}
 9117   ins_pipe(pipe_serial);
 9118 %}
 9119 
 9120 instruct get_and_addLi(indirect mem, iRegLNoSp newval, immLAddSub incr) %{
 9121   match(Set newval (GetAndAddL mem incr));
 9122   ins_cost(2 * VOLATILE_REF_COST + 1);
 9123   format %{ "get_and_addL $newval, [$mem], $incr" %}
 9124   ins_encode %{
 9125     __ atomic_add($newval$$Register, $incr$$constant, as_Register($mem$$base));
 9126   %}
 9127   ins_pipe(pipe_serial);
 9128 %}
 9129 
 9130 instruct get_and_addLi_no_res(indirect mem, Universe dummy, immLAddSub incr) %{
 9131   predicate(n->as_LoadStore()->result_not_used());
 9132   match(Set dummy (GetAndAddL mem incr));
 9133   ins_cost(2 * VOLATILE_REF_COST);
 9134   format %{ "get_and_addL [$mem], $incr" %}
 9135   ins_encode %{
 9136     __ atomic_add(noreg, $incr$$constant, as_Register($mem$$base));
 9137   %}
 9138   ins_pipe(pipe_serial);
 9139 %}
 9140 
 9141 instruct get_and_addI(indirect mem, iRegINoSp newval, iRegIorL2I incr) %{
 9142   match(Set newval (GetAndAddI mem incr));
 9143   ins_cost(2 * VOLATILE_REF_COST + 1);
 9144   format %{ "get_and_addI $newval, [$mem], $incr" %}
 9145   ins_encode %{
 9146     __ atomic_addw($newval$$Register, $incr$$Register, as_Register($mem$$base));
 9147   %}
 9148   ins_pipe(pipe_serial);
 9149 %}
 9150 
 9151 instruct get_and_addI_no_res(indirect mem, Universe dummy, iRegIorL2I incr) %{
 9152   predicate(n->as_LoadStore()->result_not_used());
 9153   match(Set dummy (GetAndAddI mem incr));
 9154   ins_cost(2 * VOLATILE_REF_COST);
 9155   format %{ "get_and_addI [$mem], $incr" %}
 9156   ins_encode %{
 9157     __ atomic_addw(noreg, $incr$$Register, as_Register($mem$$base));
 9158   %}
 9159   ins_pipe(pipe_serial);
 9160 %}
 9161 
 9162 instruct get_and_addIi(indirect mem, iRegINoSp newval, immIAddSub incr) %{
 9163   match(Set newval (GetAndAddI mem incr));
 9164   ins_cost(2 * VOLATILE_REF_COST + 1);
 9165   format %{ "get_and_addI $newval, [$mem], $incr" %}
 9166   ins_encode %{
 9167     __ atomic_addw($newval$$Register, $incr$$constant, as_Register($mem$$base));
 9168   %}
 9169   ins_pipe(pipe_serial);
 9170 %}
 9171 
 9172 instruct get_and_addIi_no_res(indirect mem, Universe dummy, immIAddSub incr) %{
 9173   predicate(n->as_LoadStore()->result_not_used());
 9174   match(Set dummy (GetAndAddI mem incr));
 9175   ins_cost(2 * VOLATILE_REF_COST);
 9176   format %{ "get_and_addI [$mem], $incr" %}
 9177   ins_encode %{
 9178     __ atomic_addw(noreg, $incr$$constant, as_Register($mem$$base));
 9179   %}
 9180   ins_pipe(pipe_serial);
 9181 %}
 9182 
 9183 instruct get_and_addLAcq(indirect mem, iRegLNoSp newval, iRegL incr) %{
 9184   predicate(needs_acquiring_load_exclusive(n));
 9185   match(Set newval (GetAndAddL mem incr));
 9186   ins_cost(VOLATILE_REF_COST + 1);
 9187   format %{ "get_and_addL_acq $newval, [$mem], $incr" %}
 9188   ins_encode %{
 9189     __ atomic_addal($newval$$Register, $incr$$Register, as_Register($mem$$base));
 9190   %}
 9191   ins_pipe(pipe_serial);
 9192 %}
 9193 
 9194 instruct get_and_addL_no_resAcq(indirect mem, Universe dummy, iRegL incr) %{
 9195   predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_exclusive(n));
 9196   match(Set dummy (GetAndAddL mem incr));
 9197   ins_cost(VOLATILE_REF_COST);
 9198   format %{ "get_and_addL_acq [$mem], $incr" %}
 9199   ins_encode %{
 9200     __ atomic_addal(noreg, $incr$$Register, as_Register($mem$$base));
 9201   %}
 9202   ins_pipe(pipe_serial);
 9203 %}
 9204 
 9205 instruct get_and_addLiAcq(indirect mem, iRegLNoSp newval, immLAddSub incr) %{
 9206   predicate(needs_acquiring_load_exclusive(n));
 9207   match(Set newval (GetAndAddL mem incr));
 9208   ins_cost(VOLATILE_REF_COST + 1);
 9209   format %{ "get_and_addL_acq $newval, [$mem], $incr" %}
 9210   ins_encode %{
 9211     __ atomic_addal($newval$$Register, $incr$$constant, as_Register($mem$$base));
 9212   %}
 9213   ins_pipe(pipe_serial);
 9214 %}
 9215 
 9216 instruct get_and_addLi_no_resAcq(indirect mem, Universe dummy, immLAddSub incr) %{
 9217   predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_exclusive(n));
 9218   match(Set dummy (GetAndAddL mem incr));
 9219   ins_cost(VOLATILE_REF_COST);
 9220   format %{ "get_and_addL_acq [$mem], $incr" %}
 9221   ins_encode %{
 9222     __ atomic_addal(noreg, $incr$$constant, as_Register($mem$$base));
 9223   %}
 9224   ins_pipe(pipe_serial);
 9225 %}
 9226 
 9227 instruct get_and_addIAcq(indirect mem, iRegINoSp newval, iRegIorL2I incr) %{
 9228   predicate(needs_acquiring_load_exclusive(n));
 9229   match(Set newval (GetAndAddI mem incr));
 9230   ins_cost(VOLATILE_REF_COST + 1);
 9231   format %{ "get_and_addI_acq $newval, [$mem], $incr" %}
 9232   ins_encode %{
 9233     __ atomic_addalw($newval$$Register, $incr$$Register, as_Register($mem$$base));
 9234   %}
 9235   ins_pipe(pipe_serial);
 9236 %}
 9237 
 9238 instruct get_and_addI_no_resAcq(indirect mem, Universe dummy, iRegIorL2I incr) %{
 9239   predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_exclusive(n));
 9240   match(Set dummy (GetAndAddI mem incr));
 9241   ins_cost(VOLATILE_REF_COST);
 9242   format %{ "get_and_addI_acq [$mem], $incr" %}
 9243   ins_encode %{
 9244     __ atomic_addalw(noreg, $incr$$Register, as_Register($mem$$base));
 9245   %}
 9246   ins_pipe(pipe_serial);
 9247 %}
 9248 
 9249 instruct get_and_addIiAcq(indirect mem, iRegINoSp newval, immIAddSub incr) %{
 9250   predicate(needs_acquiring_load_exclusive(n));
 9251   match(Set newval (GetAndAddI mem incr));
 9252   ins_cost(VOLATILE_REF_COST + 1);
 9253   format %{ "get_and_addI_acq $newval, [$mem], $incr" %}
 9254   ins_encode %{
 9255     __ atomic_addalw($newval$$Register, $incr$$constant, as_Register($mem$$base));
 9256   %}
 9257   ins_pipe(pipe_serial);
 9258 %}
 9259 
 9260 instruct get_and_addIi_no_resAcq(indirect mem, Universe dummy, immIAddSub incr) %{
 9261   predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_exclusive(n));
 9262   match(Set dummy (GetAndAddI mem incr));
 9263   ins_cost(VOLATILE_REF_COST);
 9264   format %{ "get_and_addI_acq [$mem], $incr" %}
 9265   ins_encode %{
 9266     __ atomic_addalw(noreg, $incr$$constant, as_Register($mem$$base));
 9267   %}
 9268   ins_pipe(pipe_serial);
 9269 %}
 9270 
 9271 // Manifest a CmpU result in an integer register.
 9272 // (src1 < src2) ? -1 : ((src1 > src2) ? 1 : 0)
 9273 instruct cmpU3_reg_reg(iRegINoSp dst, iRegI src1, iRegI src2, rFlagsReg flags)
 9274 %{
 9275   match(Set dst (CmpU3 src1 src2));
 9276   effect(KILL flags);
 9277 
 9278   ins_cost(INSN_COST * 3);
 9279   format %{
 9280       "cmpw $src1, $src2\n\t"
 9281       "csetw $dst, ne\n\t"
 9282       "cnegw $dst, lo\t# CmpU3(reg)"
 9283   %}
 9284   ins_encode %{
 9285     __ cmpw($src1$$Register, $src2$$Register);
 9286     __ csetw($dst$$Register, Assembler::NE);
 9287     __ cnegw($dst$$Register, $dst$$Register, Assembler::LO);
 9288   %}
 9289 
 9290   ins_pipe(pipe_class_default);
 9291 %}
 9292 
 9293 instruct cmpU3_reg_imm(iRegINoSp dst, iRegI src1, immIAddSub src2, rFlagsReg flags)
 9294 %{
 9295   match(Set dst (CmpU3 src1 src2));
 9296   effect(KILL flags);
 9297 
 9298   ins_cost(INSN_COST * 3);
 9299   format %{
 9300       "subsw zr, $src1, $src2\n\t"
 9301       "csetw $dst, ne\n\t"
 9302       "cnegw $dst, lo\t# CmpU3(imm)"
 9303   %}
 9304   ins_encode %{
 9305     __ subsw(zr, $src1$$Register, (int32_t)$src2$$constant);
 9306     __ csetw($dst$$Register, Assembler::NE);
 9307     __ cnegw($dst$$Register, $dst$$Register, Assembler::LO);
 9308   %}
 9309 
 9310   ins_pipe(pipe_class_default);
 9311 %}
 9312 
 9313 // Manifest a CmpUL result in an integer register.
 9314 // (src1 < src2) ? -1 : ((src1 > src2) ? 1 : 0)
 9315 instruct cmpUL3_reg_reg(iRegINoSp dst, iRegL src1, iRegL src2, rFlagsReg flags)
 9316 %{
 9317   match(Set dst (CmpUL3 src1 src2));
 9318   effect(KILL flags);
 9319 
 9320   ins_cost(INSN_COST * 3);
 9321   format %{
 9322       "cmp $src1, $src2\n\t"
 9323       "csetw $dst, ne\n\t"
 9324       "cnegw $dst, lo\t# CmpUL3(reg)"
 9325   %}
 9326   ins_encode %{
 9327     __ cmp($src1$$Register, $src2$$Register);
 9328     __ csetw($dst$$Register, Assembler::NE);
 9329     __ cnegw($dst$$Register, $dst$$Register, Assembler::LO);
 9330   %}
 9331 
 9332   ins_pipe(pipe_class_default);
 9333 %}
 9334 
 9335 instruct cmpUL3_reg_imm(iRegINoSp dst, iRegL src1, immLAddSub src2, rFlagsReg flags)
 9336 %{
 9337   match(Set dst (CmpUL3 src1 src2));
 9338   effect(KILL flags);
 9339 
 9340   ins_cost(INSN_COST * 3);
 9341   format %{
 9342       "subs zr, $src1, $src2\n\t"
 9343       "csetw $dst, ne\n\t"
 9344       "cnegw $dst, lo\t# CmpUL3(imm)"
 9345   %}
 9346   ins_encode %{
 9347     __ subs(zr, $src1$$Register, (int32_t)$src2$$constant);
 9348     __ csetw($dst$$Register, Assembler::NE);
 9349     __ cnegw($dst$$Register, $dst$$Register, Assembler::LO);
 9350   %}
 9351 
 9352   ins_pipe(pipe_class_default);
 9353 %}
 9354 
 9355 // Manifest a CmpL result in an integer register.
 9356 // (src1 < src2) ? -1 : ((src1 > src2) ? 1 : 0)
 9357 instruct cmpL3_reg_reg(iRegINoSp dst, iRegL src1, iRegL src2, rFlagsReg flags)
 9358 %{
 9359   match(Set dst (CmpL3 src1 src2));
 9360   effect(KILL flags);
 9361 
 9362   ins_cost(INSN_COST * 3);
 9363   format %{
 9364       "cmp $src1, $src2\n\t"
 9365       "csetw $dst, ne\n\t"
 9366       "cnegw $dst, lt\t# CmpL3(reg)"
 9367   %}
 9368   ins_encode %{
 9369     __ cmp($src1$$Register, $src2$$Register);
 9370     __ csetw($dst$$Register, Assembler::NE);
 9371     __ cnegw($dst$$Register, $dst$$Register, Assembler::LT);
 9372   %}
 9373 
 9374   ins_pipe(pipe_class_default);
 9375 %}
 9376 
 9377 instruct cmpL3_reg_imm(iRegINoSp dst, iRegL src1, immLAddSub src2, rFlagsReg flags)
 9378 %{
 9379   match(Set dst (CmpL3 src1 src2));
 9380   effect(KILL flags);
 9381 
 9382   ins_cost(INSN_COST * 3);
 9383   format %{
 9384       "subs zr, $src1, $src2\n\t"
 9385       "csetw $dst, ne\n\t"
 9386       "cnegw $dst, lt\t# CmpL3(imm)"
 9387   %}
 9388   ins_encode %{
 9389     __ subs(zr, $src1$$Register, (int32_t)$src2$$constant);
 9390     __ csetw($dst$$Register, Assembler::NE);
 9391     __ cnegw($dst$$Register, $dst$$Register, Assembler::LT);
 9392   %}
 9393 
 9394   ins_pipe(pipe_class_default);
 9395 %}
 9396 
 9397 // ============================================================================
 9398 // Conditional Move Instructions
 9399 
 9400 // n.b. we have identical rules for both a signed compare op (cmpOp)
 9401 // and an unsigned compare op (cmpOpU). it would be nice if we could
 9402 // define an op class which merged both inputs and use it to type the
 9403 // argument to a single rule. unfortunatelyt his fails because the
 9404 // opclass does not live up to the COND_INTER interface of its
 9405 // component operands. When the generic code tries to negate the
 9406 // operand it ends up running the generci Machoper::negate method
 9407 // which throws a ShouldNotHappen. So, we have to provide two flavours
 9408 // of each rule, one for a cmpOp and a second for a cmpOpU (sigh).
 9409 
 9410 instruct cmovI_reg_reg(cmpOp cmp, rFlagsReg cr, iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
 9411   match(Set dst (CMoveI (Binary cmp cr) (Binary src1 src2)));
 9412 
 9413   ins_cost(INSN_COST * 2);
 9414   format %{ "cselw $dst, $src2, $src1 $cmp\t# signed, int"  %}
 9415 
 9416   ins_encode %{
 9417     __ cselw(as_Register($dst$$reg),
 9418              as_Register($src2$$reg),
 9419              as_Register($src1$$reg),
 9420              (Assembler::Condition)$cmp$$cmpcode);
 9421   %}
 9422 
 9423   ins_pipe(icond_reg_reg);
 9424 %}
 9425 
 9426 instruct cmovUI_reg_reg(cmpOpU cmp, rFlagsRegU cr, iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
 9427   match(Set dst (CMoveI (Binary cmp cr) (Binary src1 src2)));
 9428 
 9429   ins_cost(INSN_COST * 2);
 9430   format %{ "cselw $dst, $src2, $src1 $cmp\t# unsigned, int"  %}
 9431 
 9432   ins_encode %{
 9433     __ cselw(as_Register($dst$$reg),
 9434              as_Register($src2$$reg),
 9435              as_Register($src1$$reg),
 9436              (Assembler::Condition)$cmp$$cmpcode);
 9437   %}
 9438 
 9439   ins_pipe(icond_reg_reg);
 9440 %}
 9441 
 9442 // special cases where one arg is zero
 9443 
 9444 // n.b. this is selected in preference to the rule above because it
 9445 // avoids loading constant 0 into a source register
 9446 
 9447 // TODO
 9448 // we ought only to be able to cull one of these variants as the ideal
 9449 // transforms ought always to order the zero consistently (to left/right?)
 9450 
 9451 instruct cmovI_zero_reg(cmpOp cmp, rFlagsReg cr, iRegINoSp dst, immI0 zero, iRegIorL2I src) %{
 9452   match(Set dst (CMoveI (Binary cmp cr) (Binary zero src)));
 9453 
 9454   ins_cost(INSN_COST * 2);
 9455   format %{ "cselw $dst, $src, zr $cmp\t# signed, int"  %}
 9456 
 9457   ins_encode %{
 9458     __ cselw(as_Register($dst$$reg),
 9459              as_Register($src$$reg),
 9460              zr,
 9461              (Assembler::Condition)$cmp$$cmpcode);
 9462   %}
 9463 
 9464   ins_pipe(icond_reg);
 9465 %}
 9466 
 9467 instruct cmovUI_zero_reg(cmpOpU cmp, rFlagsRegU cr, iRegINoSp dst, immI0 zero, iRegIorL2I src) %{
 9468   match(Set dst (CMoveI (Binary cmp cr) (Binary zero src)));
 9469 
 9470   ins_cost(INSN_COST * 2);
 9471   format %{ "cselw $dst, $src, zr $cmp\t# unsigned, int"  %}
 9472 
 9473   ins_encode %{
 9474     __ cselw(as_Register($dst$$reg),
 9475              as_Register($src$$reg),
 9476              zr,
 9477              (Assembler::Condition)$cmp$$cmpcode);
 9478   %}
 9479 
 9480   ins_pipe(icond_reg);
 9481 %}
 9482 
 9483 instruct cmovI_reg_zero(cmpOp cmp, rFlagsReg cr, iRegINoSp dst, iRegIorL2I src, immI0 zero) %{
 9484   match(Set dst (CMoveI (Binary cmp cr) (Binary src zero)));
 9485 
 9486   ins_cost(INSN_COST * 2);
 9487   format %{ "cselw $dst, zr, $src $cmp\t# signed, int"  %}
 9488 
 9489   ins_encode %{
 9490     __ cselw(as_Register($dst$$reg),
 9491              zr,
 9492              as_Register($src$$reg),
 9493              (Assembler::Condition)$cmp$$cmpcode);
 9494   %}
 9495 
 9496   ins_pipe(icond_reg);
 9497 %}
 9498 
 9499 instruct cmovUI_reg_zero(cmpOpU cmp, rFlagsRegU cr, iRegINoSp dst, iRegIorL2I src, immI0 zero) %{
 9500   match(Set dst (CMoveI (Binary cmp cr) (Binary src zero)));
 9501 
 9502   ins_cost(INSN_COST * 2);
 9503   format %{ "cselw $dst, zr, $src $cmp\t# unsigned, int"  %}
 9504 
 9505   ins_encode %{
 9506     __ cselw(as_Register($dst$$reg),
 9507              zr,
 9508              as_Register($src$$reg),
 9509              (Assembler::Condition)$cmp$$cmpcode);
 9510   %}
 9511 
 9512   ins_pipe(icond_reg);
 9513 %}
 9514 
 9515 // special case for creating a boolean 0 or 1
 9516 
 9517 // n.b. this is selected in preference to the rule above because it
 9518 // avoids loading constants 0 and 1 into a source register
 9519 
 9520 instruct cmovI_reg_zero_one(cmpOp cmp, rFlagsReg cr, iRegINoSp dst, immI0 zero, immI_1 one) %{
 9521   match(Set dst (CMoveI (Binary cmp cr) (Binary one zero)));
 9522 
 9523   ins_cost(INSN_COST * 2);
 9524   format %{ "csincw $dst, zr, zr $cmp\t# signed, int"  %}
 9525 
 9526   ins_encode %{
 9527     // equivalently
 9528     // cset(as_Register($dst$$reg),
 9529     //      negate_condition((Assembler::Condition)$cmp$$cmpcode));
 9530     __ csincw(as_Register($dst$$reg),
 9531              zr,
 9532              zr,
 9533              (Assembler::Condition)$cmp$$cmpcode);
 9534   %}
 9535 
 9536   ins_pipe(icond_none);
 9537 %}
 9538 
 9539 instruct cmovUI_reg_zero_one(cmpOpU cmp, rFlagsRegU cr, iRegINoSp dst, immI0 zero, immI_1 one) %{
 9540   match(Set dst (CMoveI (Binary cmp cr) (Binary one zero)));
 9541 
 9542   ins_cost(INSN_COST * 2);
 9543   format %{ "csincw $dst, zr, zr $cmp\t# unsigned, int"  %}
 9544 
 9545   ins_encode %{
 9546     // equivalently
 9547     // cset(as_Register($dst$$reg),
 9548     //      negate_condition((Assembler::Condition)$cmp$$cmpcode));
 9549     __ csincw(as_Register($dst$$reg),
 9550              zr,
 9551              zr,
 9552              (Assembler::Condition)$cmp$$cmpcode);
 9553   %}
 9554 
 9555   ins_pipe(icond_none);
 9556 %}
 9557 
 9558 instruct cmovL_reg_reg(cmpOp cmp, rFlagsReg cr, iRegLNoSp dst, iRegL src1, iRegL src2) %{
 9559   match(Set dst (CMoveL (Binary cmp cr) (Binary src1 src2)));
 9560 
 9561   ins_cost(INSN_COST * 2);
 9562   format %{ "csel $dst, $src2, $src1 $cmp\t# signed, long"  %}
 9563 
 9564   ins_encode %{
 9565     __ csel(as_Register($dst$$reg),
 9566             as_Register($src2$$reg),
 9567             as_Register($src1$$reg),
 9568             (Assembler::Condition)$cmp$$cmpcode);
 9569   %}
 9570 
 9571   ins_pipe(icond_reg_reg);
 9572 %}
 9573 
 9574 instruct cmovUL_reg_reg(cmpOpU cmp, rFlagsRegU cr, iRegLNoSp dst, iRegL src1, iRegL src2) %{
 9575   match(Set dst (CMoveL (Binary cmp cr) (Binary src1 src2)));
 9576 
 9577   ins_cost(INSN_COST * 2);
 9578   format %{ "csel $dst, $src2, $src1 $cmp\t# unsigned, long"  %}
 9579 
 9580   ins_encode %{
 9581     __ csel(as_Register($dst$$reg),
 9582             as_Register($src2$$reg),
 9583             as_Register($src1$$reg),
 9584             (Assembler::Condition)$cmp$$cmpcode);
 9585   %}
 9586 
 9587   ins_pipe(icond_reg_reg);
 9588 %}
 9589 
 9590 // special cases where one arg is zero
 9591 
 9592 instruct cmovL_reg_zero(cmpOp cmp, rFlagsReg cr, iRegLNoSp dst, iRegL src, immL0 zero) %{
 9593   match(Set dst (CMoveL (Binary cmp cr) (Binary src zero)));
 9594 
 9595   ins_cost(INSN_COST * 2);
 9596   format %{ "csel $dst, zr, $src $cmp\t# signed, long"  %}
 9597 
 9598   ins_encode %{
 9599     __ csel(as_Register($dst$$reg),
 9600             zr,
 9601             as_Register($src$$reg),
 9602             (Assembler::Condition)$cmp$$cmpcode);
 9603   %}
 9604 
 9605   ins_pipe(icond_reg);
 9606 %}
 9607 
 9608 instruct cmovUL_reg_zero(cmpOpU cmp, rFlagsRegU cr, iRegLNoSp dst, iRegL src, immL0 zero) %{
 9609   match(Set dst (CMoveL (Binary cmp cr) (Binary src zero)));
 9610 
 9611   ins_cost(INSN_COST * 2);
 9612   format %{ "csel $dst, zr, $src $cmp\t# unsigned, long"  %}
 9613 
 9614   ins_encode %{
 9615     __ csel(as_Register($dst$$reg),
 9616             zr,
 9617             as_Register($src$$reg),
 9618             (Assembler::Condition)$cmp$$cmpcode);
 9619   %}
 9620 
 9621   ins_pipe(icond_reg);
 9622 %}
 9623 
 9624 instruct cmovL_zero_reg(cmpOp cmp, rFlagsReg cr, iRegLNoSp dst, immL0 zero, iRegL src) %{
 9625   match(Set dst (CMoveL (Binary cmp cr) (Binary zero src)));
 9626 
 9627   ins_cost(INSN_COST * 2);
 9628   format %{ "csel $dst, $src, zr $cmp\t# signed, long"  %}
 9629 
 9630   ins_encode %{
 9631     __ csel(as_Register($dst$$reg),
 9632             as_Register($src$$reg),
 9633             zr,
 9634             (Assembler::Condition)$cmp$$cmpcode);
 9635   %}
 9636 
 9637   ins_pipe(icond_reg);
 9638 %}
 9639 
 9640 instruct cmovUL_zero_reg(cmpOpU cmp, rFlagsRegU cr, iRegLNoSp dst, immL0 zero, iRegL src) %{
 9641   match(Set dst (CMoveL (Binary cmp cr) (Binary zero src)));
 9642 
 9643   ins_cost(INSN_COST * 2);
 9644   format %{ "csel $dst, $src, zr $cmp\t# unsigned, long"  %}
 9645 
 9646   ins_encode %{
 9647     __ csel(as_Register($dst$$reg),
 9648             as_Register($src$$reg),
 9649             zr,
 9650             (Assembler::Condition)$cmp$$cmpcode);
 9651   %}
 9652 
 9653   ins_pipe(icond_reg);
 9654 %}
 9655 
 9656 instruct cmovP_reg_reg(cmpOp cmp, rFlagsReg cr, iRegPNoSp dst, iRegP src1, iRegP src2) %{
 9657   match(Set dst (CMoveP (Binary cmp cr) (Binary src1 src2)));
 9658 
 9659   ins_cost(INSN_COST * 2);
 9660   format %{ "csel $dst, $src2, $src1 $cmp\t# signed, ptr"  %}
 9661 
 9662   ins_encode %{
 9663     __ csel(as_Register($dst$$reg),
 9664             as_Register($src2$$reg),
 9665             as_Register($src1$$reg),
 9666             (Assembler::Condition)$cmp$$cmpcode);
 9667   %}
 9668 
 9669   ins_pipe(icond_reg_reg);
 9670 %}
 9671 
 9672 instruct cmovUP_reg_reg(cmpOpU cmp, rFlagsRegU cr, iRegPNoSp dst, iRegP src1, iRegP src2) %{
 9673   match(Set dst (CMoveP (Binary cmp cr) (Binary src1 src2)));
 9674 
 9675   ins_cost(INSN_COST * 2);
 9676   format %{ "csel $dst, $src2, $src1 $cmp\t# unsigned, ptr"  %}
 9677 
 9678   ins_encode %{
 9679     __ csel(as_Register($dst$$reg),
 9680             as_Register($src2$$reg),
 9681             as_Register($src1$$reg),
 9682             (Assembler::Condition)$cmp$$cmpcode);
 9683   %}
 9684 
 9685   ins_pipe(icond_reg_reg);
 9686 %}
 9687 
 9688 // special cases where one arg is zero
 9689 
 9690 instruct cmovP_reg_zero(cmpOp cmp, rFlagsReg cr, iRegPNoSp dst, iRegP src, immP0 zero) %{
 9691   match(Set dst (CMoveP (Binary cmp cr) (Binary src zero)));
 9692 
 9693   ins_cost(INSN_COST * 2);
 9694   format %{ "csel $dst, zr, $src $cmp\t# signed, ptr"  %}
 9695 
 9696   ins_encode %{
 9697     __ csel(as_Register($dst$$reg),
 9698             zr,
 9699             as_Register($src$$reg),
 9700             (Assembler::Condition)$cmp$$cmpcode);
 9701   %}
 9702 
 9703   ins_pipe(icond_reg);
 9704 %}
 9705 
 9706 instruct cmovUP_reg_zero(cmpOpU cmp, rFlagsRegU cr, iRegPNoSp dst, iRegP src, immP0 zero) %{
 9707   match(Set dst (CMoveP (Binary cmp cr) (Binary src zero)));
 9708 
 9709   ins_cost(INSN_COST * 2);
 9710   format %{ "csel $dst, zr, $src $cmp\t# unsigned, ptr"  %}
 9711 
 9712   ins_encode %{
 9713     __ csel(as_Register($dst$$reg),
 9714             zr,
 9715             as_Register($src$$reg),
 9716             (Assembler::Condition)$cmp$$cmpcode);
 9717   %}
 9718 
 9719   ins_pipe(icond_reg);
 9720 %}
 9721 
 9722 instruct cmovP_zero_reg(cmpOp cmp, rFlagsReg cr, iRegPNoSp dst, immP0 zero, iRegP src) %{
 9723   match(Set dst (CMoveP (Binary cmp cr) (Binary zero src)));
 9724 
 9725   ins_cost(INSN_COST * 2);
 9726   format %{ "csel $dst, $src, zr $cmp\t# signed, ptr"  %}
 9727 
 9728   ins_encode %{
 9729     __ csel(as_Register($dst$$reg),
 9730             as_Register($src$$reg),
 9731             zr,
 9732             (Assembler::Condition)$cmp$$cmpcode);
 9733   %}
 9734 
 9735   ins_pipe(icond_reg);
 9736 %}
 9737 
 9738 instruct cmovUP_zero_reg(cmpOpU cmp, rFlagsRegU cr, iRegPNoSp dst, immP0 zero, iRegP src) %{
 9739   match(Set dst (CMoveP (Binary cmp cr) (Binary zero src)));
 9740 
 9741   ins_cost(INSN_COST * 2);
 9742   format %{ "csel $dst, $src, zr $cmp\t# unsigned, ptr"  %}
 9743 
 9744   ins_encode %{
 9745     __ csel(as_Register($dst$$reg),
 9746             as_Register($src$$reg),
 9747             zr,
 9748             (Assembler::Condition)$cmp$$cmpcode);
 9749   %}
 9750 
 9751   ins_pipe(icond_reg);
 9752 %}
 9753 
 9754 instruct cmovN_reg_reg(cmpOp cmp, rFlagsReg cr, iRegNNoSp dst, iRegN src1, iRegN src2) %{
 9755   match(Set dst (CMoveN (Binary cmp cr) (Binary src1 src2)));
 9756 
 9757   ins_cost(INSN_COST * 2);
 9758   format %{ "cselw $dst, $src2, $src1 $cmp\t# signed, compressed ptr"  %}
 9759 
 9760   ins_encode %{
 9761     __ cselw(as_Register($dst$$reg),
 9762              as_Register($src2$$reg),
 9763              as_Register($src1$$reg),
 9764              (Assembler::Condition)$cmp$$cmpcode);
 9765   %}
 9766 
 9767   ins_pipe(icond_reg_reg);
 9768 %}
 9769 
 9770 instruct cmovUN_reg_reg(cmpOpU cmp, rFlagsRegU cr, iRegNNoSp dst, iRegN src1, iRegN src2) %{
 9771   match(Set dst (CMoveN (Binary cmp cr) (Binary src1 src2)));
 9772 
 9773   ins_cost(INSN_COST * 2);
 9774   format %{ "cselw $dst, $src2, $src1 $cmp\t# signed, compressed ptr"  %}
 9775 
 9776   ins_encode %{
 9777     __ cselw(as_Register($dst$$reg),
 9778              as_Register($src2$$reg),
 9779              as_Register($src1$$reg),
 9780              (Assembler::Condition)$cmp$$cmpcode);
 9781   %}
 9782 
 9783   ins_pipe(icond_reg_reg);
 9784 %}
 9785 
 9786 // special cases where one arg is zero
 9787 
 9788 instruct cmovN_reg_zero(cmpOp cmp, rFlagsReg cr, iRegNNoSp dst, iRegN src, immN0 zero) %{
 9789   match(Set dst (CMoveN (Binary cmp cr) (Binary src zero)));
 9790 
 9791   ins_cost(INSN_COST * 2);
 9792   format %{ "cselw $dst, zr, $src $cmp\t# signed, compressed ptr"  %}
 9793 
 9794   ins_encode %{
 9795     __ cselw(as_Register($dst$$reg),
 9796              zr,
 9797              as_Register($src$$reg),
 9798              (Assembler::Condition)$cmp$$cmpcode);
 9799   %}
 9800 
 9801   ins_pipe(icond_reg);
 9802 %}
 9803 
 9804 instruct cmovUN_reg_zero(cmpOpU cmp, rFlagsRegU cr, iRegNNoSp dst, iRegN src, immN0 zero) %{
 9805   match(Set dst (CMoveN (Binary cmp cr) (Binary src zero)));
 9806 
 9807   ins_cost(INSN_COST * 2);
 9808   format %{ "cselw $dst, zr, $src $cmp\t# unsigned, compressed ptr"  %}
 9809 
 9810   ins_encode %{
 9811     __ cselw(as_Register($dst$$reg),
 9812              zr,
 9813              as_Register($src$$reg),
 9814              (Assembler::Condition)$cmp$$cmpcode);
 9815   %}
 9816 
 9817   ins_pipe(icond_reg);
 9818 %}
 9819 
 9820 instruct cmovN_zero_reg(cmpOp cmp, rFlagsReg cr, iRegNNoSp dst, immN0 zero, iRegN src) %{
 9821   match(Set dst (CMoveN (Binary cmp cr) (Binary zero src)));
 9822 
 9823   ins_cost(INSN_COST * 2);
 9824   format %{ "cselw $dst, $src, zr $cmp\t# signed, compressed ptr"  %}
 9825 
 9826   ins_encode %{
 9827     __ cselw(as_Register($dst$$reg),
 9828              as_Register($src$$reg),
 9829              zr,
 9830              (Assembler::Condition)$cmp$$cmpcode);
 9831   %}
 9832 
 9833   ins_pipe(icond_reg);
 9834 %}
 9835 
 9836 instruct cmovUN_zero_reg(cmpOpU cmp, rFlagsRegU cr, iRegNNoSp dst, immN0 zero, iRegN src) %{
 9837   match(Set dst (CMoveN (Binary cmp cr) (Binary zero src)));
 9838 
 9839   ins_cost(INSN_COST * 2);
 9840   format %{ "cselw $dst, $src, zr $cmp\t# unsigned, compressed ptr"  %}
 9841 
 9842   ins_encode %{
 9843     __ cselw(as_Register($dst$$reg),
 9844              as_Register($src$$reg),
 9845              zr,
 9846              (Assembler::Condition)$cmp$$cmpcode);
 9847   %}
 9848 
 9849   ins_pipe(icond_reg);
 9850 %}
 9851 
 9852 instruct cmovF_reg(cmpOp cmp, rFlagsReg cr, vRegF dst, vRegF src1,  vRegF src2)
 9853 %{
 9854   match(Set dst (CMoveF (Binary cmp cr) (Binary src1 src2)));
 9855 
 9856   ins_cost(INSN_COST * 3);
 9857 
 9858   format %{ "fcsels $dst, $src1, $src2, $cmp\t# signed cmove float\n\t" %}
 9859   ins_encode %{
 9860     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
 9861     __ fcsels(as_FloatRegister($dst$$reg),
 9862               as_FloatRegister($src2$$reg),
 9863               as_FloatRegister($src1$$reg),
 9864               cond);
 9865   %}
 9866 
 9867   ins_pipe(fp_cond_reg_reg_s);
 9868 %}
 9869 
 9870 instruct cmovUF_reg(cmpOpU cmp, rFlagsRegU cr, vRegF dst, vRegF src1,  vRegF src2)
 9871 %{
 9872   match(Set dst (CMoveF (Binary cmp cr) (Binary src1 src2)));
 9873 
 9874   ins_cost(INSN_COST * 3);
 9875 
 9876   format %{ "fcsels $dst, $src1, $src2, $cmp\t# unsigned cmove float\n\t" %}
 9877   ins_encode %{
 9878     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
 9879     __ fcsels(as_FloatRegister($dst$$reg),
 9880               as_FloatRegister($src2$$reg),
 9881               as_FloatRegister($src1$$reg),
 9882               cond);
 9883   %}
 9884 
 9885   ins_pipe(fp_cond_reg_reg_s);
 9886 %}
 9887 
 9888 instruct cmovD_reg(cmpOp cmp, rFlagsReg cr, vRegD dst, vRegD src1,  vRegD src2)
 9889 %{
 9890   match(Set dst (CMoveD (Binary cmp cr) (Binary src1 src2)));
 9891 
 9892   ins_cost(INSN_COST * 3);
 9893 
 9894   format %{ "fcseld $dst, $src1, $src2, $cmp\t# signed cmove float\n\t" %}
 9895   ins_encode %{
 9896     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
 9897     __ fcseld(as_FloatRegister($dst$$reg),
 9898               as_FloatRegister($src2$$reg),
 9899               as_FloatRegister($src1$$reg),
 9900               cond);
 9901   %}
 9902 
 9903   ins_pipe(fp_cond_reg_reg_d);
 9904 %}
 9905 
 9906 instruct cmovUD_reg(cmpOpU cmp, rFlagsRegU cr, vRegD dst, vRegD src1,  vRegD src2)
 9907 %{
 9908   match(Set dst (CMoveD (Binary cmp cr) (Binary src1 src2)));
 9909 
 9910   ins_cost(INSN_COST * 3);
 9911 
 9912   format %{ "fcseld $dst, $src1, $src2, $cmp\t# unsigned cmove float\n\t" %}
 9913   ins_encode %{
 9914     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
 9915     __ fcseld(as_FloatRegister($dst$$reg),
 9916               as_FloatRegister($src2$$reg),
 9917               as_FloatRegister($src1$$reg),
 9918               cond);
 9919   %}
 9920 
 9921   ins_pipe(fp_cond_reg_reg_d);
 9922 %}
 9923 
 9924 // ============================================================================
 9925 // Arithmetic Instructions
 9926 //
 9927 
 9928 // Integer Addition
 9929 
 9930 // TODO
 9931 // these currently employ operations which do not set CR and hence are
 9932 // not flagged as killing CR but we would like to isolate the cases
 9933 // where we want to set flags from those where we don't. need to work
 9934 // out how to do that.
 9935 
 9936 instruct addI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
 9937   match(Set dst (AddI src1 src2));
 9938 
 9939   ins_cost(INSN_COST);
 9940   format %{ "addw  $dst, $src1, $src2" %}
 9941 
 9942   ins_encode %{
 9943     __ addw(as_Register($dst$$reg),
 9944             as_Register($src1$$reg),
 9945             as_Register($src2$$reg));
 9946   %}
 9947 
 9948   ins_pipe(ialu_reg_reg);
 9949 %}
 9950 
 9951 instruct addI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immIAddSub src2) %{
 9952   match(Set dst (AddI src1 src2));
 9953 
 9954   ins_cost(INSN_COST);
 9955   format %{ "addw $dst, $src1, $src2" %}
 9956 
 9957   // use opcode to indicate that this is an add not a sub
 9958   opcode(0x0);
 9959 
 9960   ins_encode(aarch64_enc_addsubw_imm(dst, src1, src2));
 9961 
 9962   ins_pipe(ialu_reg_imm);
 9963 %}
 9964 
 9965 instruct addI_reg_imm_i2l(iRegINoSp dst, iRegL src1, immIAddSub src2) %{
 9966   match(Set dst (AddI (ConvL2I src1) src2));
 9967 
 9968   ins_cost(INSN_COST);
 9969   format %{ "addw $dst, $src1, $src2" %}
 9970 
 9971   // use opcode to indicate that this is an add not a sub
 9972   opcode(0x0);
 9973 
 9974   ins_encode(aarch64_enc_addsubw_imm(dst, src1, src2));
 9975 
 9976   ins_pipe(ialu_reg_imm);
 9977 %}
 9978 
 9979 // Pointer Addition
 9980 instruct addP_reg_reg(iRegPNoSp dst, iRegPorL2P src1, iRegL src2) %{
 9981   match(Set dst (AddP src1 src2));
 9982 
 9983   ins_cost(INSN_COST);
 9984   format %{ "add $dst, $src1, $src2\t# ptr" %}
 9985 
 9986   ins_encode %{
 9987     __ add(as_Register($dst$$reg),
 9988            as_Register($src1$$reg),
 9989            as_Register($src2$$reg));
 9990   %}
 9991 
 9992   ins_pipe(ialu_reg_reg);
 9993 %}
 9994 
 9995 instruct addP_reg_reg_ext(iRegPNoSp dst, iRegPorL2P src1, iRegIorL2I src2) %{
 9996   match(Set dst (AddP src1 (ConvI2L src2)));
 9997 
 9998   ins_cost(1.9 * INSN_COST);
 9999   format %{ "add $dst, $src1, $src2, sxtw\t# ptr" %}
10000 
10001   ins_encode %{
10002     __ add(as_Register($dst$$reg),
10003            as_Register($src1$$reg),
10004            as_Register($src2$$reg), ext::sxtw);
10005   %}
10006 
10007   ins_pipe(ialu_reg_reg);
10008 %}
10009 
10010 instruct addP_reg_reg_lsl(iRegPNoSp dst, iRegPorL2P src1, iRegL src2, immIScale scale) %{
10011   match(Set dst (AddP src1 (LShiftL src2 scale)));
10012 
10013   ins_cost(1.9 * INSN_COST);
10014   format %{ "add $dst, $src1, $src2, LShiftL $scale\t# ptr" %}
10015 
10016   ins_encode %{
10017     __ lea(as_Register($dst$$reg),
10018            Address(as_Register($src1$$reg), as_Register($src2$$reg),
10019                    Address::lsl($scale$$constant)));
10020   %}
10021 
10022   ins_pipe(ialu_reg_reg_shift);
10023 %}
10024 
10025 instruct addP_reg_reg_ext_shift(iRegPNoSp dst, iRegPorL2P src1, iRegIorL2I src2, immIScale scale) %{
10026   match(Set dst (AddP src1 (LShiftL (ConvI2L src2) scale)));
10027 
10028   ins_cost(1.9 * INSN_COST);
10029   format %{ "add $dst, $src1, $src2, I2L $scale\t# ptr" %}
10030 
10031   ins_encode %{
10032     __ lea(as_Register($dst$$reg),
10033            Address(as_Register($src1$$reg), as_Register($src2$$reg),
10034                    Address::sxtw($scale$$constant)));
10035   %}
10036 
10037   ins_pipe(ialu_reg_reg_shift);
10038 %}
10039 
10040 instruct lshift_ext(iRegLNoSp dst, iRegIorL2I src, immI scale, rFlagsReg cr) %{
10041   match(Set dst (LShiftL (ConvI2L src) scale));
10042 
10043   ins_cost(INSN_COST);
10044   format %{ "sbfiz $dst, $src, $scale & 63, -$scale & 63\t" %}
10045 
10046   ins_encode %{
10047     __ sbfiz(as_Register($dst$$reg),
10048           as_Register($src$$reg),
10049           $scale$$constant & 63, MIN2(32, (int)((-$scale$$constant) & 63)));
10050   %}
10051 
10052   ins_pipe(ialu_reg_shift);
10053 %}
10054 
10055 // Pointer Immediate Addition
10056 // n.b. this needs to be more expensive than using an indirect memory
10057 // operand
10058 instruct addP_reg_imm(iRegPNoSp dst, iRegPorL2P src1, immLAddSub src2) %{
10059   match(Set dst (AddP src1 src2));
10060 
10061   ins_cost(INSN_COST);
10062   format %{ "add $dst, $src1, $src2\t# ptr" %}
10063 
10064   // use opcode to indicate that this is an add not a sub
10065   opcode(0x0);
10066 
10067   ins_encode( aarch64_enc_addsub_imm(dst, src1, src2) );
10068 
10069   ins_pipe(ialu_reg_imm);
10070 %}
10071 
10072 // Long Addition
10073 instruct addL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
10074 
10075   match(Set dst (AddL src1 src2));
10076 
10077   ins_cost(INSN_COST);
10078   format %{ "add  $dst, $src1, $src2" %}
10079 
10080   ins_encode %{
10081     __ add(as_Register($dst$$reg),
10082            as_Register($src1$$reg),
10083            as_Register($src2$$reg));
10084   %}
10085 
10086   ins_pipe(ialu_reg_reg);
10087 %}
10088 
10089 // No constant pool entries requiredLong Immediate Addition.
10090 instruct addL_reg_imm(iRegLNoSp dst, iRegL src1, immLAddSub src2) %{
10091   match(Set dst (AddL src1 src2));
10092 
10093   ins_cost(INSN_COST);
10094   format %{ "add $dst, $src1, $src2" %}
10095 
10096   // use opcode to indicate that this is an add not a sub
10097   opcode(0x0);
10098 
10099   ins_encode( aarch64_enc_addsub_imm(dst, src1, src2) );
10100 
10101   ins_pipe(ialu_reg_imm);
10102 %}
10103 
10104 // Integer Subtraction
10105 instruct subI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
10106   match(Set dst (SubI src1 src2));
10107 
10108   ins_cost(INSN_COST);
10109   format %{ "subw  $dst, $src1, $src2" %}
10110 
10111   ins_encode %{
10112     __ subw(as_Register($dst$$reg),
10113             as_Register($src1$$reg),
10114             as_Register($src2$$reg));
10115   %}
10116 
10117   ins_pipe(ialu_reg_reg);
10118 %}
10119 
10120 // Immediate Subtraction
10121 instruct subI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immIAddSub src2) %{
10122   match(Set dst (SubI src1 src2));
10123 
10124   ins_cost(INSN_COST);
10125   format %{ "subw $dst, $src1, $src2" %}
10126 
10127   // use opcode to indicate that this is a sub not an add
10128   opcode(0x1);
10129 
10130   ins_encode(aarch64_enc_addsubw_imm(dst, src1, src2));
10131 
10132   ins_pipe(ialu_reg_imm);
10133 %}
10134 
10135 // Long Subtraction
10136 instruct subL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
10137 
10138   match(Set dst (SubL src1 src2));
10139 
10140   ins_cost(INSN_COST);
10141   format %{ "sub  $dst, $src1, $src2" %}
10142 
10143   ins_encode %{
10144     __ sub(as_Register($dst$$reg),
10145            as_Register($src1$$reg),
10146            as_Register($src2$$reg));
10147   %}
10148 
10149   ins_pipe(ialu_reg_reg);
10150 %}
10151 
10152 // No constant pool entries requiredLong Immediate Subtraction.
10153 instruct subL_reg_imm(iRegLNoSp dst, iRegL src1, immLAddSub src2) %{
10154   match(Set dst (SubL src1 src2));
10155 
10156   ins_cost(INSN_COST);
10157   format %{ "sub$dst, $src1, $src2" %}
10158 
10159   // use opcode to indicate that this is a sub not an add
10160   opcode(0x1);
10161 
10162   ins_encode( aarch64_enc_addsub_imm(dst, src1, src2) );
10163 
10164   ins_pipe(ialu_reg_imm);
10165 %}
10166 
10167 // Integer Negation (special case for sub)
10168 
10169 instruct negI_reg(iRegINoSp dst, iRegIorL2I src, immI0 zero, rFlagsReg cr) %{
10170   match(Set dst (SubI zero src));
10171 
10172   ins_cost(INSN_COST);
10173   format %{ "negw $dst, $src\t# int" %}
10174 
10175   ins_encode %{
10176     __ negw(as_Register($dst$$reg),
10177             as_Register($src$$reg));
10178   %}
10179 
10180   ins_pipe(ialu_reg);
10181 %}
10182 
10183 // Long Negation
10184 
10185 instruct negL_reg(iRegLNoSp dst, iRegL src, immL0 zero, rFlagsReg cr) %{
10186   match(Set dst (SubL zero src));
10187 
10188   ins_cost(INSN_COST);
10189   format %{ "neg $dst, $src\t# long" %}
10190 
10191   ins_encode %{
10192     __ neg(as_Register($dst$$reg),
10193            as_Register($src$$reg));
10194   %}
10195 
10196   ins_pipe(ialu_reg);
10197 %}
10198 
10199 // Integer Multiply
10200 
10201 instruct mulI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
10202   match(Set dst (MulI src1 src2));
10203 
10204   ins_cost(INSN_COST * 3);
10205   format %{ "mulw  $dst, $src1, $src2" %}
10206 
10207   ins_encode %{
10208     __ mulw(as_Register($dst$$reg),
10209             as_Register($src1$$reg),
10210             as_Register($src2$$reg));
10211   %}
10212 
10213   ins_pipe(imul_reg_reg);
10214 %}
10215 
10216 instruct smulI(iRegLNoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
10217   match(Set dst (MulL (ConvI2L src1) (ConvI2L src2)));
10218 
10219   ins_cost(INSN_COST * 3);
10220   format %{ "smull  $dst, $src1, $src2" %}
10221 
10222   ins_encode %{
10223     __ smull(as_Register($dst$$reg),
10224              as_Register($src1$$reg),
10225              as_Register($src2$$reg));
10226   %}
10227 
10228   ins_pipe(imul_reg_reg);
10229 %}
10230 
10231 // Long Multiply
10232 
10233 instruct mulL(iRegLNoSp dst, iRegL src1, iRegL src2) %{
10234   match(Set dst (MulL src1 src2));
10235 
10236   ins_cost(INSN_COST * 5);
10237   format %{ "mul  $dst, $src1, $src2" %}
10238 
10239   ins_encode %{
10240     __ mul(as_Register($dst$$reg),
10241            as_Register($src1$$reg),
10242            as_Register($src2$$reg));
10243   %}
10244 
10245   ins_pipe(lmul_reg_reg);
10246 %}
10247 
10248 instruct mulHiL_rReg(iRegLNoSp dst, iRegL src1, iRegL src2, rFlagsReg cr)
10249 %{
10250   match(Set dst (MulHiL src1 src2));
10251 
10252   ins_cost(INSN_COST * 7);
10253   format %{ "smulh   $dst, $src1, $src2\t# mulhi" %}
10254 
10255   ins_encode %{
10256     __ smulh(as_Register($dst$$reg),
10257              as_Register($src1$$reg),
10258              as_Register($src2$$reg));
10259   %}
10260 
10261   ins_pipe(lmul_reg_reg);
10262 %}
10263 
10264 instruct umulHiL_rReg(iRegLNoSp dst, iRegL src1, iRegL src2, rFlagsReg cr)
10265 %{
10266   match(Set dst (UMulHiL src1 src2));
10267 
10268   ins_cost(INSN_COST * 7);
10269   format %{ "umulh   $dst, $src1, $src2\t# umulhi" %}
10270 
10271   ins_encode %{
10272     __ umulh(as_Register($dst$$reg),
10273              as_Register($src1$$reg),
10274              as_Register($src2$$reg));
10275   %}
10276 
10277   ins_pipe(lmul_reg_reg);
10278 %}
10279 
10280 // Combined Integer Multiply & Add/Sub
10281 
10282 instruct maddI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, iRegIorL2I src3) %{
10283   match(Set dst (AddI src3 (MulI src1 src2)));
10284 
10285   ins_cost(INSN_COST * 3);
10286   format %{ "madd  $dst, $src1, $src2, $src3" %}
10287 
10288   ins_encode %{
10289     __ maddw(as_Register($dst$$reg),
10290              as_Register($src1$$reg),
10291              as_Register($src2$$reg),
10292              as_Register($src3$$reg));
10293   %}
10294 
10295   ins_pipe(imac_reg_reg);
10296 %}
10297 
10298 instruct msubI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, iRegIorL2I src3) %{
10299   match(Set dst (SubI src3 (MulI src1 src2)));
10300 
10301   ins_cost(INSN_COST * 3);
10302   format %{ "msub  $dst, $src1, $src2, $src3" %}
10303 
10304   ins_encode %{
10305     __ msubw(as_Register($dst$$reg),
10306              as_Register($src1$$reg),
10307              as_Register($src2$$reg),
10308              as_Register($src3$$reg));
10309   %}
10310 
10311   ins_pipe(imac_reg_reg);
10312 %}
10313 
10314 // Combined Integer Multiply & Neg
10315 
10316 instruct mnegI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI0 zero) %{
10317   match(Set dst (MulI (SubI zero src1) src2));
10318 
10319   ins_cost(INSN_COST * 3);
10320   format %{ "mneg  $dst, $src1, $src2" %}
10321 
10322   ins_encode %{
10323     __ mnegw(as_Register($dst$$reg),
10324              as_Register($src1$$reg),
10325              as_Register($src2$$reg));
10326   %}
10327 
10328   ins_pipe(imac_reg_reg);
10329 %}
10330 
10331 // Combined Long Multiply & Add/Sub
10332 
10333 instruct maddL(iRegLNoSp dst, iRegL src1, iRegL src2, iRegL src3) %{
10334   match(Set dst (AddL src3 (MulL src1 src2)));
10335 
10336   ins_cost(INSN_COST * 5);
10337   format %{ "madd  $dst, $src1, $src2, $src3" %}
10338 
10339   ins_encode %{
10340     __ madd(as_Register($dst$$reg),
10341             as_Register($src1$$reg),
10342             as_Register($src2$$reg),
10343             as_Register($src3$$reg));
10344   %}
10345 
10346   ins_pipe(lmac_reg_reg);
10347 %}
10348 
10349 instruct msubL(iRegLNoSp dst, iRegL src1, iRegL src2, iRegL src3) %{
10350   match(Set dst (SubL src3 (MulL src1 src2)));
10351 
10352   ins_cost(INSN_COST * 5);
10353   format %{ "msub  $dst, $src1, $src2, $src3" %}
10354 
10355   ins_encode %{
10356     __ msub(as_Register($dst$$reg),
10357             as_Register($src1$$reg),
10358             as_Register($src2$$reg),
10359             as_Register($src3$$reg));
10360   %}
10361 
10362   ins_pipe(lmac_reg_reg);
10363 %}
10364 
10365 // Combined Long Multiply & Neg
10366 
10367 instruct mnegL(iRegLNoSp dst, iRegL src1, iRegL src2, immL0 zero) %{
10368   match(Set dst (MulL (SubL zero src1) src2));
10369 
10370   ins_cost(INSN_COST * 5);
10371   format %{ "mneg  $dst, $src1, $src2" %}
10372 
10373   ins_encode %{
10374     __ mneg(as_Register($dst$$reg),
10375             as_Register($src1$$reg),
10376             as_Register($src2$$reg));
10377   %}
10378 
10379   ins_pipe(lmac_reg_reg);
10380 %}
10381 
10382 // Combine Integer Signed Multiply & Add/Sub/Neg Long
10383 
10384 instruct smaddL(iRegLNoSp dst, iRegIorL2I src1, iRegIorL2I src2, iRegLNoSp src3) %{
10385   match(Set dst (AddL src3 (MulL (ConvI2L src1) (ConvI2L src2))));
10386 
10387   ins_cost(INSN_COST * 3);
10388   format %{ "smaddl  $dst, $src1, $src2, $src3" %}
10389 
10390   ins_encode %{
10391     __ smaddl(as_Register($dst$$reg),
10392               as_Register($src1$$reg),
10393               as_Register($src2$$reg),
10394               as_Register($src3$$reg));
10395   %}
10396 
10397   ins_pipe(imac_reg_reg);
10398 %}
10399 
10400 instruct smsubL(iRegLNoSp dst, iRegIorL2I src1, iRegIorL2I src2, iRegLNoSp src3) %{
10401   match(Set dst (SubL src3 (MulL (ConvI2L src1) (ConvI2L src2))));
10402 
10403   ins_cost(INSN_COST * 3);
10404   format %{ "smsubl  $dst, $src1, $src2, $src3" %}
10405 
10406   ins_encode %{
10407     __ smsubl(as_Register($dst$$reg),
10408               as_Register($src1$$reg),
10409               as_Register($src2$$reg),
10410               as_Register($src3$$reg));
10411   %}
10412 
10413   ins_pipe(imac_reg_reg);
10414 %}
10415 
10416 instruct smnegL(iRegLNoSp dst, iRegIorL2I src1, iRegIorL2I src2, immL0 zero) %{
10417   match(Set dst (MulL (SubL zero (ConvI2L src1)) (ConvI2L src2)));
10418 
10419   ins_cost(INSN_COST * 3);
10420   format %{ "smnegl  $dst, $src1, $src2" %}
10421 
10422   ins_encode %{
10423     __ smnegl(as_Register($dst$$reg),
10424               as_Register($src1$$reg),
10425               as_Register($src2$$reg));
10426   %}
10427 
10428   ins_pipe(imac_reg_reg);
10429 %}
10430 
10431 // Combined Multiply-Add Shorts into Integer (dst = src1 * src2 + src3 * src4)
10432 
10433 instruct muladdS2I(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, iRegIorL2I src3, iRegIorL2I src4) %{
10434   match(Set dst (MulAddS2I (Binary src1 src2) (Binary src3 src4)));
10435 
10436   ins_cost(INSN_COST * 5);
10437   format %{ "mulw  rscratch1, $src1, $src2\n\t"
10438             "maddw $dst, $src3, $src4, rscratch1" %}
10439 
10440   ins_encode %{
10441     __ mulw(rscratch1, as_Register($src1$$reg), as_Register($src2$$reg));
10442     __ maddw(as_Register($dst$$reg), as_Register($src3$$reg), as_Register($src4$$reg), rscratch1); %}
10443 
10444   ins_pipe(imac_reg_reg);
10445 %}
10446 
10447 // Integer Divide
10448 
10449 instruct divI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
10450   match(Set dst (DivI src1 src2));
10451 
10452   ins_cost(INSN_COST * 19);
10453   format %{ "sdivw  $dst, $src1, $src2" %}
10454 
10455   ins_encode(aarch64_enc_divw(dst, src1, src2));
10456   ins_pipe(idiv_reg_reg);
10457 %}
10458 
10459 // Long Divide
10460 
10461 instruct divL(iRegLNoSp dst, iRegL src1, iRegL src2) %{
10462   match(Set dst (DivL src1 src2));
10463 
10464   ins_cost(INSN_COST * 35);
10465   format %{ "sdiv   $dst, $src1, $src2" %}
10466 
10467   ins_encode(aarch64_enc_div(dst, src1, src2));
10468   ins_pipe(ldiv_reg_reg);
10469 %}
10470 
10471 // Integer Remainder
10472 
10473 instruct modI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
10474   match(Set dst (ModI src1 src2));
10475 
10476   ins_cost(INSN_COST * 22);
10477   format %{ "sdivw  rscratch1, $src1, $src2\n\t"
10478             "msubw  $dst, rscratch1, $src2, $src1" %}
10479 
10480   ins_encode(aarch64_enc_modw(dst, src1, src2));
10481   ins_pipe(idiv_reg_reg);
10482 %}
10483 
10484 // Long Remainder
10485 
10486 instruct modL(iRegLNoSp dst, iRegL src1, iRegL src2) %{
10487   match(Set dst (ModL src1 src2));
10488 
10489   ins_cost(INSN_COST * 38);
10490   format %{ "sdiv   rscratch1, $src1, $src2\n"
10491             "msub   $dst, rscratch1, $src2, $src1" %}
10492 
10493   ins_encode(aarch64_enc_mod(dst, src1, src2));
10494   ins_pipe(ldiv_reg_reg);
10495 %}
10496 
10497 // Unsigned Integer Divide
10498 
10499 instruct UdivI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
10500   match(Set dst (UDivI src1 src2));
10501 
10502   ins_cost(INSN_COST * 19);
10503   format %{ "udivw  $dst, $src1, $src2" %}
10504 
10505   ins_encode %{
10506     __ udivw($dst$$Register, $src1$$Register, $src2$$Register);
10507   %}
10508 
10509   ins_pipe(idiv_reg_reg);
10510 %}
10511 
10512 //  Unsigned Long Divide
10513 
10514 instruct UdivL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
10515   match(Set dst (UDivL src1 src2));
10516 
10517   ins_cost(INSN_COST * 35);
10518   format %{ "udiv   $dst, $src1, $src2" %}
10519 
10520   ins_encode %{
10521     __ udiv($dst$$Register, $src1$$Register, $src2$$Register);
10522   %}
10523 
10524   ins_pipe(ldiv_reg_reg);
10525 %}
10526 
10527 // Unsigned Integer Remainder
10528 
10529 instruct UmodI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
10530   match(Set dst (UModI src1 src2));
10531 
10532   ins_cost(INSN_COST * 22);
10533   format %{ "udivw  rscratch1, $src1, $src2\n\t"
10534             "msubw  $dst, rscratch1, $src2, $src1" %}
10535 
10536   ins_encode %{
10537     __ udivw(rscratch1, $src1$$Register, $src2$$Register);
10538     __ msubw($dst$$Register, rscratch1, $src2$$Register, $src1$$Register);
10539   %}
10540 
10541   ins_pipe(idiv_reg_reg);
10542 %}
10543 
10544 // Unsigned Long Remainder
10545 
10546 instruct UModL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
10547   match(Set dst (UModL src1 src2));
10548 
10549   ins_cost(INSN_COST * 38);
10550   format %{ "udiv   rscratch1, $src1, $src2\n"
10551             "msub   $dst, rscratch1, $src2, $src1" %}
10552 
10553   ins_encode %{
10554     __ udiv(rscratch1, $src1$$Register, $src2$$Register);
10555     __ msub($dst$$Register, rscratch1, $src2$$Register, $src1$$Register);
10556   %}
10557 
10558   ins_pipe(ldiv_reg_reg);
10559 %}
10560 
10561 // Integer Shifts
10562 
10563 // Shift Left Register
10564 instruct lShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
10565   match(Set dst (LShiftI src1 src2));
10566 
10567   ins_cost(INSN_COST * 2);
10568   format %{ "lslvw  $dst, $src1, $src2" %}
10569 
10570   ins_encode %{
10571     __ lslvw(as_Register($dst$$reg),
10572              as_Register($src1$$reg),
10573              as_Register($src2$$reg));
10574   %}
10575 
10576   ins_pipe(ialu_reg_reg_vshift);
10577 %}
10578 
10579 // Shift Left Immediate
10580 instruct lShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{
10581   match(Set dst (LShiftI src1 src2));
10582 
10583   ins_cost(INSN_COST);
10584   format %{ "lslw $dst, $src1, ($src2 & 0x1f)" %}
10585 
10586   ins_encode %{
10587     __ lslw(as_Register($dst$$reg),
10588             as_Register($src1$$reg),
10589             $src2$$constant & 0x1f);
10590   %}
10591 
10592   ins_pipe(ialu_reg_shift);
10593 %}
10594 
10595 // Shift Right Logical Register
10596 instruct urShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
10597   match(Set dst (URShiftI src1 src2));
10598 
10599   ins_cost(INSN_COST * 2);
10600   format %{ "lsrvw  $dst, $src1, $src2" %}
10601 
10602   ins_encode %{
10603     __ lsrvw(as_Register($dst$$reg),
10604              as_Register($src1$$reg),
10605              as_Register($src2$$reg));
10606   %}
10607 
10608   ins_pipe(ialu_reg_reg_vshift);
10609 %}
10610 
10611 // Shift Right Logical Immediate
10612 instruct urShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{
10613   match(Set dst (URShiftI src1 src2));
10614 
10615   ins_cost(INSN_COST);
10616   format %{ "lsrw $dst, $src1, ($src2 & 0x1f)" %}
10617 
10618   ins_encode %{
10619     __ lsrw(as_Register($dst$$reg),
10620             as_Register($src1$$reg),
10621             $src2$$constant & 0x1f);
10622   %}
10623 
10624   ins_pipe(ialu_reg_shift);
10625 %}
10626 
10627 // Shift Right Arithmetic Register
10628 instruct rShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
10629   match(Set dst (RShiftI src1 src2));
10630 
10631   ins_cost(INSN_COST * 2);
10632   format %{ "asrvw  $dst, $src1, $src2" %}
10633 
10634   ins_encode %{
10635     __ asrvw(as_Register($dst$$reg),
10636              as_Register($src1$$reg),
10637              as_Register($src2$$reg));
10638   %}
10639 
10640   ins_pipe(ialu_reg_reg_vshift);
10641 %}
10642 
10643 // Shift Right Arithmetic Immediate
10644 instruct rShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{
10645   match(Set dst (RShiftI src1 src2));
10646 
10647   ins_cost(INSN_COST);
10648   format %{ "asrw $dst, $src1, ($src2 & 0x1f)" %}
10649 
10650   ins_encode %{
10651     __ asrw(as_Register($dst$$reg),
10652             as_Register($src1$$reg),
10653             $src2$$constant & 0x1f);
10654   %}
10655 
10656   ins_pipe(ialu_reg_shift);
10657 %}
10658 
10659 // Combined Int Mask and Right Shift (using UBFM)
10660 // TODO
10661 
10662 // Long Shifts
10663 
10664 // Shift Left Register
10665 instruct lShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{
10666   match(Set dst (LShiftL src1 src2));
10667 
10668   ins_cost(INSN_COST * 2);
10669   format %{ "lslv  $dst, $src1, $src2" %}
10670 
10671   ins_encode %{
10672     __ lslv(as_Register($dst$$reg),
10673             as_Register($src1$$reg),
10674             as_Register($src2$$reg));
10675   %}
10676 
10677   ins_pipe(ialu_reg_reg_vshift);
10678 %}
10679 
10680 // Shift Left Immediate
10681 instruct lShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{
10682   match(Set dst (LShiftL src1 src2));
10683 
10684   ins_cost(INSN_COST);
10685   format %{ "lsl $dst, $src1, ($src2 & 0x3f)" %}
10686 
10687   ins_encode %{
10688     __ lsl(as_Register($dst$$reg),
10689             as_Register($src1$$reg),
10690             $src2$$constant & 0x3f);
10691   %}
10692 
10693   ins_pipe(ialu_reg_shift);
10694 %}
10695 
10696 // Shift Right Logical Register
10697 instruct urShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{
10698   match(Set dst (URShiftL src1 src2));
10699 
10700   ins_cost(INSN_COST * 2);
10701   format %{ "lsrv  $dst, $src1, $src2" %}
10702 
10703   ins_encode %{
10704     __ lsrv(as_Register($dst$$reg),
10705             as_Register($src1$$reg),
10706             as_Register($src2$$reg));
10707   %}
10708 
10709   ins_pipe(ialu_reg_reg_vshift);
10710 %}
10711 
10712 // Shift Right Logical Immediate
10713 instruct urShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{
10714   match(Set dst (URShiftL src1 src2));
10715 
10716   ins_cost(INSN_COST);
10717   format %{ "lsr $dst, $src1, ($src2 & 0x3f)" %}
10718 
10719   ins_encode %{
10720     __ lsr(as_Register($dst$$reg),
10721            as_Register($src1$$reg),
10722            $src2$$constant & 0x3f);
10723   %}
10724 
10725   ins_pipe(ialu_reg_shift);
10726 %}
10727 
10728 // A special-case pattern for card table stores.
10729 instruct urShiftP_reg_imm(iRegLNoSp dst, iRegP src1, immI src2) %{
10730   match(Set dst (URShiftL (CastP2X src1) src2));
10731 
10732   ins_cost(INSN_COST);
10733   format %{ "lsr $dst, p2x($src1), ($src2 & 0x3f)" %}
10734 
10735   ins_encode %{
10736     __ lsr(as_Register($dst$$reg),
10737            as_Register($src1$$reg),
10738            $src2$$constant & 0x3f);
10739   %}
10740 
10741   ins_pipe(ialu_reg_shift);
10742 %}
10743 
10744 // Shift Right Arithmetic Register
10745 instruct rShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{
10746   match(Set dst (RShiftL src1 src2));
10747 
10748   ins_cost(INSN_COST * 2);
10749   format %{ "asrv  $dst, $src1, $src2" %}
10750 
10751   ins_encode %{
10752     __ asrv(as_Register($dst$$reg),
10753             as_Register($src1$$reg),
10754             as_Register($src2$$reg));
10755   %}
10756 
10757   ins_pipe(ialu_reg_reg_vshift);
10758 %}
10759 
10760 // Shift Right Arithmetic Immediate
10761 instruct rShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{
10762   match(Set dst (RShiftL src1 src2));
10763 
10764   ins_cost(INSN_COST);
10765   format %{ "asr $dst, $src1, ($src2 & 0x3f)" %}
10766 
10767   ins_encode %{
10768     __ asr(as_Register($dst$$reg),
10769            as_Register($src1$$reg),
10770            $src2$$constant & 0x3f);
10771   %}
10772 
10773   ins_pipe(ialu_reg_shift);
10774 %}
10775 
10776 // BEGIN This section of the file is automatically generated. Do not edit --------------
10777 // This section is generated from aarch64_ad.m4
10778 
10779 // This pattern is automatically generated from aarch64_ad.m4
10780 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
10781 instruct regL_not_reg(iRegLNoSp dst,
10782                          iRegL src1, immL_M1 m1,
10783                          rFlagsReg cr) %{
10784   match(Set dst (XorL src1 m1));
10785   ins_cost(INSN_COST);
10786   format %{ "eon  $dst, $src1, zr" %}
10787 
10788   ins_encode %{
10789     __ eon(as_Register($dst$$reg),
10790               as_Register($src1$$reg),
10791               zr,
10792               Assembler::LSL, 0);
10793   %}
10794 
10795   ins_pipe(ialu_reg);
10796 %}
10797 
10798 // This pattern is automatically generated from aarch64_ad.m4
10799 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
10800 instruct regI_not_reg(iRegINoSp dst,
10801                          iRegIorL2I src1, immI_M1 m1,
10802                          rFlagsReg cr) %{
10803   match(Set dst (XorI src1 m1));
10804   ins_cost(INSN_COST);
10805   format %{ "eonw  $dst, $src1, zr" %}
10806 
10807   ins_encode %{
10808     __ eonw(as_Register($dst$$reg),
10809               as_Register($src1$$reg),
10810               zr,
10811               Assembler::LSL, 0);
10812   %}
10813 
10814   ins_pipe(ialu_reg);
10815 %}
10816 
10817 // This pattern is automatically generated from aarch64_ad.m4
10818 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
10819 instruct NegI_reg_URShift_reg(iRegINoSp dst,
10820                               immI0 zero, iRegIorL2I src1, immI src2) %{
10821   match(Set dst (SubI zero (URShiftI src1 src2)));
10822 
10823   ins_cost(1.9 * INSN_COST);
10824   format %{ "negw  $dst, $src1, LSR $src2" %}
10825 
10826   ins_encode %{
10827     __ negw(as_Register($dst$$reg), as_Register($src1$$reg),
10828             Assembler::LSR, $src2$$constant & 0x1f);
10829   %}
10830 
10831   ins_pipe(ialu_reg_shift);
10832 %}
10833 
10834 // This pattern is automatically generated from aarch64_ad.m4
10835 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
10836 instruct NegI_reg_RShift_reg(iRegINoSp dst,
10837                               immI0 zero, iRegIorL2I src1, immI src2) %{
10838   match(Set dst (SubI zero (RShiftI src1 src2)));
10839 
10840   ins_cost(1.9 * INSN_COST);
10841   format %{ "negw  $dst, $src1, ASR $src2" %}
10842 
10843   ins_encode %{
10844     __ negw(as_Register($dst$$reg), as_Register($src1$$reg),
10845             Assembler::ASR, $src2$$constant & 0x1f);
10846   %}
10847 
10848   ins_pipe(ialu_reg_shift);
10849 %}
10850 
10851 // This pattern is automatically generated from aarch64_ad.m4
10852 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
10853 instruct NegI_reg_LShift_reg(iRegINoSp dst,
10854                               immI0 zero, iRegIorL2I src1, immI src2) %{
10855   match(Set dst (SubI zero (LShiftI src1 src2)));
10856 
10857   ins_cost(1.9 * INSN_COST);
10858   format %{ "negw  $dst, $src1, LSL $src2" %}
10859 
10860   ins_encode %{
10861     __ negw(as_Register($dst$$reg), as_Register($src1$$reg),
10862             Assembler::LSL, $src2$$constant & 0x1f);
10863   %}
10864 
10865   ins_pipe(ialu_reg_shift);
10866 %}
10867 
10868 // This pattern is automatically generated from aarch64_ad.m4
10869 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
10870 instruct NegL_reg_URShift_reg(iRegLNoSp dst,
10871                               immL0 zero, iRegL src1, immI src2) %{
10872   match(Set dst (SubL zero (URShiftL src1 src2)));
10873 
10874   ins_cost(1.9 * INSN_COST);
10875   format %{ "neg  $dst, $src1, LSR $src2" %}
10876 
10877   ins_encode %{
10878     __ neg(as_Register($dst$$reg), as_Register($src1$$reg),
10879             Assembler::LSR, $src2$$constant & 0x3f);
10880   %}
10881 
10882   ins_pipe(ialu_reg_shift);
10883 %}
10884 
10885 // This pattern is automatically generated from aarch64_ad.m4
10886 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
10887 instruct NegL_reg_RShift_reg(iRegLNoSp dst,
10888                               immL0 zero, iRegL src1, immI src2) %{
10889   match(Set dst (SubL zero (RShiftL src1 src2)));
10890 
10891   ins_cost(1.9 * INSN_COST);
10892   format %{ "neg  $dst, $src1, ASR $src2" %}
10893 
10894   ins_encode %{
10895     __ neg(as_Register($dst$$reg), as_Register($src1$$reg),
10896             Assembler::ASR, $src2$$constant & 0x3f);
10897   %}
10898 
10899   ins_pipe(ialu_reg_shift);
10900 %}
10901 
10902 // This pattern is automatically generated from aarch64_ad.m4
10903 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
10904 instruct NegL_reg_LShift_reg(iRegLNoSp dst,
10905                               immL0 zero, iRegL src1, immI src2) %{
10906   match(Set dst (SubL zero (LShiftL src1 src2)));
10907 
10908   ins_cost(1.9 * INSN_COST);
10909   format %{ "neg  $dst, $src1, LSL $src2" %}
10910 
10911   ins_encode %{
10912     __ neg(as_Register($dst$$reg), as_Register($src1$$reg),
10913             Assembler::LSL, $src2$$constant & 0x3f);
10914   %}
10915 
10916   ins_pipe(ialu_reg_shift);
10917 %}
10918 
10919 // This pattern is automatically generated from aarch64_ad.m4
10920 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
10921 instruct AndI_reg_not_reg(iRegINoSp dst,
10922                          iRegIorL2I src1, iRegIorL2I src2, immI_M1 m1) %{
10923   match(Set dst (AndI src1 (XorI src2 m1)));
10924   ins_cost(INSN_COST);
10925   format %{ "bicw  $dst, $src1, $src2" %}
10926 
10927   ins_encode %{
10928     __ bicw(as_Register($dst$$reg),
10929               as_Register($src1$$reg),
10930               as_Register($src2$$reg),
10931               Assembler::LSL, 0);
10932   %}
10933 
10934   ins_pipe(ialu_reg_reg);
10935 %}
10936 
10937 // This pattern is automatically generated from aarch64_ad.m4
10938 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
10939 instruct AndL_reg_not_reg(iRegLNoSp dst,
10940                          iRegL src1, iRegL src2, immL_M1 m1) %{
10941   match(Set dst (AndL src1 (XorL src2 m1)));
10942   ins_cost(INSN_COST);
10943   format %{ "bic  $dst, $src1, $src2" %}
10944 
10945   ins_encode %{
10946     __ bic(as_Register($dst$$reg),
10947               as_Register($src1$$reg),
10948               as_Register($src2$$reg),
10949               Assembler::LSL, 0);
10950   %}
10951 
10952   ins_pipe(ialu_reg_reg);
10953 %}
10954 
10955 // This pattern is automatically generated from aarch64_ad.m4
10956 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
10957 instruct OrI_reg_not_reg(iRegINoSp dst,
10958                          iRegIorL2I src1, iRegIorL2I src2, immI_M1 m1) %{
10959   match(Set dst (OrI src1 (XorI src2 m1)));
10960   ins_cost(INSN_COST);
10961   format %{ "ornw  $dst, $src1, $src2" %}
10962 
10963   ins_encode %{
10964     __ ornw(as_Register($dst$$reg),
10965               as_Register($src1$$reg),
10966               as_Register($src2$$reg),
10967               Assembler::LSL, 0);
10968   %}
10969 
10970   ins_pipe(ialu_reg_reg);
10971 %}
10972 
10973 // This pattern is automatically generated from aarch64_ad.m4
10974 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
10975 instruct OrL_reg_not_reg(iRegLNoSp dst,
10976                          iRegL src1, iRegL src2, immL_M1 m1) %{
10977   match(Set dst (OrL src1 (XorL src2 m1)));
10978   ins_cost(INSN_COST);
10979   format %{ "orn  $dst, $src1, $src2" %}
10980 
10981   ins_encode %{
10982     __ orn(as_Register($dst$$reg),
10983               as_Register($src1$$reg),
10984               as_Register($src2$$reg),
10985               Assembler::LSL, 0);
10986   %}
10987 
10988   ins_pipe(ialu_reg_reg);
10989 %}
10990 
10991 // This pattern is automatically generated from aarch64_ad.m4
10992 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
10993 instruct XorI_reg_not_reg(iRegINoSp dst,
10994                          iRegIorL2I src1, iRegIorL2I src2, immI_M1 m1) %{
10995   match(Set dst (XorI m1 (XorI src2 src1)));
10996   ins_cost(INSN_COST);
10997   format %{ "eonw  $dst, $src1, $src2" %}
10998 
10999   ins_encode %{
11000     __ eonw(as_Register($dst$$reg),
11001               as_Register($src1$$reg),
11002               as_Register($src2$$reg),
11003               Assembler::LSL, 0);
11004   %}
11005 
11006   ins_pipe(ialu_reg_reg);
11007 %}
11008 
11009 // This pattern is automatically generated from aarch64_ad.m4
11010 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11011 instruct XorL_reg_not_reg(iRegLNoSp dst,
11012                          iRegL src1, iRegL src2, immL_M1 m1) %{
11013   match(Set dst (XorL m1 (XorL src2 src1)));
11014   ins_cost(INSN_COST);
11015   format %{ "eon  $dst, $src1, $src2" %}
11016 
11017   ins_encode %{
11018     __ eon(as_Register($dst$$reg),
11019               as_Register($src1$$reg),
11020               as_Register($src2$$reg),
11021               Assembler::LSL, 0);
11022   %}
11023 
11024   ins_pipe(ialu_reg_reg);
11025 %}
11026 
11027 // This pattern is automatically generated from aarch64_ad.m4
11028 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11029 // val & (-1 ^ (val >>> shift)) ==> bicw
11030 instruct AndI_reg_URShift_not_reg(iRegINoSp dst,
11031                          iRegIorL2I src1, iRegIorL2I src2,
11032                          immI src3, immI_M1 src4) %{
11033   match(Set dst (AndI src1 (XorI(URShiftI src2 src3) src4)));
11034   ins_cost(1.9 * INSN_COST);
11035   format %{ "bicw  $dst, $src1, $src2, LSR $src3" %}
11036 
11037   ins_encode %{
11038     __ bicw(as_Register($dst$$reg),
11039               as_Register($src1$$reg),
11040               as_Register($src2$$reg),
11041               Assembler::LSR,
11042               $src3$$constant & 0x1f);
11043   %}
11044 
11045   ins_pipe(ialu_reg_reg_shift);
11046 %}
11047 
11048 // This pattern is automatically generated from aarch64_ad.m4
11049 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11050 // val & (-1 ^ (val >>> shift)) ==> bic
11051 instruct AndL_reg_URShift_not_reg(iRegLNoSp dst,
11052                          iRegL src1, iRegL src2,
11053                          immI src3, immL_M1 src4) %{
11054   match(Set dst (AndL src1 (XorL(URShiftL src2 src3) src4)));
11055   ins_cost(1.9 * INSN_COST);
11056   format %{ "bic  $dst, $src1, $src2, LSR $src3" %}
11057 
11058   ins_encode %{
11059     __ bic(as_Register($dst$$reg),
11060               as_Register($src1$$reg),
11061               as_Register($src2$$reg),
11062               Assembler::LSR,
11063               $src3$$constant & 0x3f);
11064   %}
11065 
11066   ins_pipe(ialu_reg_reg_shift);
11067 %}
11068 
11069 // This pattern is automatically generated from aarch64_ad.m4
11070 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11071 // val & (-1 ^ (val >> shift)) ==> bicw
11072 instruct AndI_reg_RShift_not_reg(iRegINoSp dst,
11073                          iRegIorL2I src1, iRegIorL2I src2,
11074                          immI src3, immI_M1 src4) %{
11075   match(Set dst (AndI src1 (XorI(RShiftI src2 src3) src4)));
11076   ins_cost(1.9 * INSN_COST);
11077   format %{ "bicw  $dst, $src1, $src2, ASR $src3" %}
11078 
11079   ins_encode %{
11080     __ bicw(as_Register($dst$$reg),
11081               as_Register($src1$$reg),
11082               as_Register($src2$$reg),
11083               Assembler::ASR,
11084               $src3$$constant & 0x1f);
11085   %}
11086 
11087   ins_pipe(ialu_reg_reg_shift);
11088 %}
11089 
11090 // This pattern is automatically generated from aarch64_ad.m4
11091 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11092 // val & (-1 ^ (val >> shift)) ==> bic
11093 instruct AndL_reg_RShift_not_reg(iRegLNoSp dst,
11094                          iRegL src1, iRegL src2,
11095                          immI src3, immL_M1 src4) %{
11096   match(Set dst (AndL src1 (XorL(RShiftL src2 src3) src4)));
11097   ins_cost(1.9 * INSN_COST);
11098   format %{ "bic  $dst, $src1, $src2, ASR $src3" %}
11099 
11100   ins_encode %{
11101     __ bic(as_Register($dst$$reg),
11102               as_Register($src1$$reg),
11103               as_Register($src2$$reg),
11104               Assembler::ASR,
11105               $src3$$constant & 0x3f);
11106   %}
11107 
11108   ins_pipe(ialu_reg_reg_shift);
11109 %}
11110 
11111 // This pattern is automatically generated from aarch64_ad.m4
11112 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11113 // val & (-1 ^ (val ror shift)) ==> bicw
11114 instruct AndI_reg_RotateRight_not_reg(iRegINoSp dst,
11115                          iRegIorL2I src1, iRegIorL2I src2,
11116                          immI src3, immI_M1 src4) %{
11117   match(Set dst (AndI src1 (XorI(RotateRight src2 src3) src4)));
11118   ins_cost(1.9 * INSN_COST);
11119   format %{ "bicw  $dst, $src1, $src2, ROR $src3" %}
11120 
11121   ins_encode %{
11122     __ bicw(as_Register($dst$$reg),
11123               as_Register($src1$$reg),
11124               as_Register($src2$$reg),
11125               Assembler::ROR,
11126               $src3$$constant & 0x1f);
11127   %}
11128 
11129   ins_pipe(ialu_reg_reg_shift);
11130 %}
11131 
11132 // This pattern is automatically generated from aarch64_ad.m4
11133 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11134 // val & (-1 ^ (val ror shift)) ==> bic
11135 instruct AndL_reg_RotateRight_not_reg(iRegLNoSp dst,
11136                          iRegL src1, iRegL src2,
11137                          immI src3, immL_M1 src4) %{
11138   match(Set dst (AndL src1 (XorL(RotateRight src2 src3) src4)));
11139   ins_cost(1.9 * INSN_COST);
11140   format %{ "bic  $dst, $src1, $src2, ROR $src3" %}
11141 
11142   ins_encode %{
11143     __ bic(as_Register($dst$$reg),
11144               as_Register($src1$$reg),
11145               as_Register($src2$$reg),
11146               Assembler::ROR,
11147               $src3$$constant & 0x3f);
11148   %}
11149 
11150   ins_pipe(ialu_reg_reg_shift);
11151 %}
11152 
11153 // This pattern is automatically generated from aarch64_ad.m4
11154 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11155 // val & (-1 ^ (val << shift)) ==> bicw
11156 instruct AndI_reg_LShift_not_reg(iRegINoSp dst,
11157                          iRegIorL2I src1, iRegIorL2I src2,
11158                          immI src3, immI_M1 src4) %{
11159   match(Set dst (AndI src1 (XorI(LShiftI src2 src3) src4)));
11160   ins_cost(1.9 * INSN_COST);
11161   format %{ "bicw  $dst, $src1, $src2, LSL $src3" %}
11162 
11163   ins_encode %{
11164     __ bicw(as_Register($dst$$reg),
11165               as_Register($src1$$reg),
11166               as_Register($src2$$reg),
11167               Assembler::LSL,
11168               $src3$$constant & 0x1f);
11169   %}
11170 
11171   ins_pipe(ialu_reg_reg_shift);
11172 %}
11173 
11174 // This pattern is automatically generated from aarch64_ad.m4
11175 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11176 // val & (-1 ^ (val << shift)) ==> bic
11177 instruct AndL_reg_LShift_not_reg(iRegLNoSp dst,
11178                          iRegL src1, iRegL src2,
11179                          immI src3, immL_M1 src4) %{
11180   match(Set dst (AndL src1 (XorL(LShiftL src2 src3) src4)));
11181   ins_cost(1.9 * INSN_COST);
11182   format %{ "bic  $dst, $src1, $src2, LSL $src3" %}
11183 
11184   ins_encode %{
11185     __ bic(as_Register($dst$$reg),
11186               as_Register($src1$$reg),
11187               as_Register($src2$$reg),
11188               Assembler::LSL,
11189               $src3$$constant & 0x3f);
11190   %}
11191 
11192   ins_pipe(ialu_reg_reg_shift);
11193 %}
11194 
11195 // This pattern is automatically generated from aarch64_ad.m4
11196 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11197 // val ^ (-1 ^ (val >>> shift)) ==> eonw
11198 instruct XorI_reg_URShift_not_reg(iRegINoSp dst,
11199                          iRegIorL2I src1, iRegIorL2I src2,
11200                          immI src3, immI_M1 src4) %{
11201   match(Set dst (XorI src4 (XorI(URShiftI src2 src3) src1)));
11202   ins_cost(1.9 * INSN_COST);
11203   format %{ "eonw  $dst, $src1, $src2, LSR $src3" %}
11204 
11205   ins_encode %{
11206     __ eonw(as_Register($dst$$reg),
11207               as_Register($src1$$reg),
11208               as_Register($src2$$reg),
11209               Assembler::LSR,
11210               $src3$$constant & 0x1f);
11211   %}
11212 
11213   ins_pipe(ialu_reg_reg_shift);
11214 %}
11215 
11216 // This pattern is automatically generated from aarch64_ad.m4
11217 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11218 // val ^ (-1 ^ (val >>> shift)) ==> eon
11219 instruct XorL_reg_URShift_not_reg(iRegLNoSp dst,
11220                          iRegL src1, iRegL src2,
11221                          immI src3, immL_M1 src4) %{
11222   match(Set dst (XorL src4 (XorL(URShiftL src2 src3) src1)));
11223   ins_cost(1.9 * INSN_COST);
11224   format %{ "eon  $dst, $src1, $src2, LSR $src3" %}
11225 
11226   ins_encode %{
11227     __ eon(as_Register($dst$$reg),
11228               as_Register($src1$$reg),
11229               as_Register($src2$$reg),
11230               Assembler::LSR,
11231               $src3$$constant & 0x3f);
11232   %}
11233 
11234   ins_pipe(ialu_reg_reg_shift);
11235 %}
11236 
11237 // This pattern is automatically generated from aarch64_ad.m4
11238 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11239 // val ^ (-1 ^ (val >> shift)) ==> eonw
11240 instruct XorI_reg_RShift_not_reg(iRegINoSp dst,
11241                          iRegIorL2I src1, iRegIorL2I src2,
11242                          immI src3, immI_M1 src4) %{
11243   match(Set dst (XorI src4 (XorI(RShiftI src2 src3) src1)));
11244   ins_cost(1.9 * INSN_COST);
11245   format %{ "eonw  $dst, $src1, $src2, ASR $src3" %}
11246 
11247   ins_encode %{
11248     __ eonw(as_Register($dst$$reg),
11249               as_Register($src1$$reg),
11250               as_Register($src2$$reg),
11251               Assembler::ASR,
11252               $src3$$constant & 0x1f);
11253   %}
11254 
11255   ins_pipe(ialu_reg_reg_shift);
11256 %}
11257 
11258 // This pattern is automatically generated from aarch64_ad.m4
11259 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11260 // val ^ (-1 ^ (val >> shift)) ==> eon
11261 instruct XorL_reg_RShift_not_reg(iRegLNoSp dst,
11262                          iRegL src1, iRegL src2,
11263                          immI src3, immL_M1 src4) %{
11264   match(Set dst (XorL src4 (XorL(RShiftL src2 src3) src1)));
11265   ins_cost(1.9 * INSN_COST);
11266   format %{ "eon  $dst, $src1, $src2, ASR $src3" %}
11267 
11268   ins_encode %{
11269     __ eon(as_Register($dst$$reg),
11270               as_Register($src1$$reg),
11271               as_Register($src2$$reg),
11272               Assembler::ASR,
11273               $src3$$constant & 0x3f);
11274   %}
11275 
11276   ins_pipe(ialu_reg_reg_shift);
11277 %}
11278 
11279 // This pattern is automatically generated from aarch64_ad.m4
11280 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11281 // val ^ (-1 ^ (val ror shift)) ==> eonw
11282 instruct XorI_reg_RotateRight_not_reg(iRegINoSp dst,
11283                          iRegIorL2I src1, iRegIorL2I src2,
11284                          immI src3, immI_M1 src4) %{
11285   match(Set dst (XorI src4 (XorI(RotateRight src2 src3) src1)));
11286   ins_cost(1.9 * INSN_COST);
11287   format %{ "eonw  $dst, $src1, $src2, ROR $src3" %}
11288 
11289   ins_encode %{
11290     __ eonw(as_Register($dst$$reg),
11291               as_Register($src1$$reg),
11292               as_Register($src2$$reg),
11293               Assembler::ROR,
11294               $src3$$constant & 0x1f);
11295   %}
11296 
11297   ins_pipe(ialu_reg_reg_shift);
11298 %}
11299 
11300 // This pattern is automatically generated from aarch64_ad.m4
11301 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11302 // val ^ (-1 ^ (val ror shift)) ==> eon
11303 instruct XorL_reg_RotateRight_not_reg(iRegLNoSp dst,
11304                          iRegL src1, iRegL src2,
11305                          immI src3, immL_M1 src4) %{
11306   match(Set dst (XorL src4 (XorL(RotateRight src2 src3) src1)));
11307   ins_cost(1.9 * INSN_COST);
11308   format %{ "eon  $dst, $src1, $src2, ROR $src3" %}
11309 
11310   ins_encode %{
11311     __ eon(as_Register($dst$$reg),
11312               as_Register($src1$$reg),
11313               as_Register($src2$$reg),
11314               Assembler::ROR,
11315               $src3$$constant & 0x3f);
11316   %}
11317 
11318   ins_pipe(ialu_reg_reg_shift);
11319 %}
11320 
11321 // This pattern is automatically generated from aarch64_ad.m4
11322 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11323 // val ^ (-1 ^ (val << shift)) ==> eonw
11324 instruct XorI_reg_LShift_not_reg(iRegINoSp dst,
11325                          iRegIorL2I src1, iRegIorL2I src2,
11326                          immI src3, immI_M1 src4) %{
11327   match(Set dst (XorI src4 (XorI(LShiftI src2 src3) src1)));
11328   ins_cost(1.9 * INSN_COST);
11329   format %{ "eonw  $dst, $src1, $src2, LSL $src3" %}
11330 
11331   ins_encode %{
11332     __ eonw(as_Register($dst$$reg),
11333               as_Register($src1$$reg),
11334               as_Register($src2$$reg),
11335               Assembler::LSL,
11336               $src3$$constant & 0x1f);
11337   %}
11338 
11339   ins_pipe(ialu_reg_reg_shift);
11340 %}
11341 
11342 // This pattern is automatically generated from aarch64_ad.m4
11343 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11344 // val ^ (-1 ^ (val << shift)) ==> eon
11345 instruct XorL_reg_LShift_not_reg(iRegLNoSp dst,
11346                          iRegL src1, iRegL src2,
11347                          immI src3, immL_M1 src4) %{
11348   match(Set dst (XorL src4 (XorL(LShiftL src2 src3) src1)));
11349   ins_cost(1.9 * INSN_COST);
11350   format %{ "eon  $dst, $src1, $src2, LSL $src3" %}
11351 
11352   ins_encode %{
11353     __ eon(as_Register($dst$$reg),
11354               as_Register($src1$$reg),
11355               as_Register($src2$$reg),
11356               Assembler::LSL,
11357               $src3$$constant & 0x3f);
11358   %}
11359 
11360   ins_pipe(ialu_reg_reg_shift);
11361 %}
11362 
11363 // This pattern is automatically generated from aarch64_ad.m4
11364 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11365 // val | (-1 ^ (val >>> shift)) ==> ornw
11366 instruct OrI_reg_URShift_not_reg(iRegINoSp dst,
11367                          iRegIorL2I src1, iRegIorL2I src2,
11368                          immI src3, immI_M1 src4) %{
11369   match(Set dst (OrI src1 (XorI(URShiftI src2 src3) src4)));
11370   ins_cost(1.9 * INSN_COST);
11371   format %{ "ornw  $dst, $src1, $src2, LSR $src3" %}
11372 
11373   ins_encode %{
11374     __ ornw(as_Register($dst$$reg),
11375               as_Register($src1$$reg),
11376               as_Register($src2$$reg),
11377               Assembler::LSR,
11378               $src3$$constant & 0x1f);
11379   %}
11380 
11381   ins_pipe(ialu_reg_reg_shift);
11382 %}
11383 
11384 // This pattern is automatically generated from aarch64_ad.m4
11385 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11386 // val | (-1 ^ (val >>> shift)) ==> orn
11387 instruct OrL_reg_URShift_not_reg(iRegLNoSp dst,
11388                          iRegL src1, iRegL src2,
11389                          immI src3, immL_M1 src4) %{
11390   match(Set dst (OrL src1 (XorL(URShiftL src2 src3) src4)));
11391   ins_cost(1.9 * INSN_COST);
11392   format %{ "orn  $dst, $src1, $src2, LSR $src3" %}
11393 
11394   ins_encode %{
11395     __ orn(as_Register($dst$$reg),
11396               as_Register($src1$$reg),
11397               as_Register($src2$$reg),
11398               Assembler::LSR,
11399               $src3$$constant & 0x3f);
11400   %}
11401 
11402   ins_pipe(ialu_reg_reg_shift);
11403 %}
11404 
11405 // This pattern is automatically generated from aarch64_ad.m4
11406 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11407 // val | (-1 ^ (val >> shift)) ==> ornw
11408 instruct OrI_reg_RShift_not_reg(iRegINoSp dst,
11409                          iRegIorL2I src1, iRegIorL2I src2,
11410                          immI src3, immI_M1 src4) %{
11411   match(Set dst (OrI src1 (XorI(RShiftI src2 src3) src4)));
11412   ins_cost(1.9 * INSN_COST);
11413   format %{ "ornw  $dst, $src1, $src2, ASR $src3" %}
11414 
11415   ins_encode %{
11416     __ ornw(as_Register($dst$$reg),
11417               as_Register($src1$$reg),
11418               as_Register($src2$$reg),
11419               Assembler::ASR,
11420               $src3$$constant & 0x1f);
11421   %}
11422 
11423   ins_pipe(ialu_reg_reg_shift);
11424 %}
11425 
11426 // This pattern is automatically generated from aarch64_ad.m4
11427 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11428 // val | (-1 ^ (val >> shift)) ==> orn
11429 instruct OrL_reg_RShift_not_reg(iRegLNoSp dst,
11430                          iRegL src1, iRegL src2,
11431                          immI src3, immL_M1 src4) %{
11432   match(Set dst (OrL src1 (XorL(RShiftL src2 src3) src4)));
11433   ins_cost(1.9 * INSN_COST);
11434   format %{ "orn  $dst, $src1, $src2, ASR $src3" %}
11435 
11436   ins_encode %{
11437     __ orn(as_Register($dst$$reg),
11438               as_Register($src1$$reg),
11439               as_Register($src2$$reg),
11440               Assembler::ASR,
11441               $src3$$constant & 0x3f);
11442   %}
11443 
11444   ins_pipe(ialu_reg_reg_shift);
11445 %}
11446 
11447 // This pattern is automatically generated from aarch64_ad.m4
11448 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11449 // val | (-1 ^ (val ror shift)) ==> ornw
11450 instruct OrI_reg_RotateRight_not_reg(iRegINoSp dst,
11451                          iRegIorL2I src1, iRegIorL2I src2,
11452                          immI src3, immI_M1 src4) %{
11453   match(Set dst (OrI src1 (XorI(RotateRight src2 src3) src4)));
11454   ins_cost(1.9 * INSN_COST);
11455   format %{ "ornw  $dst, $src1, $src2, ROR $src3" %}
11456 
11457   ins_encode %{
11458     __ ornw(as_Register($dst$$reg),
11459               as_Register($src1$$reg),
11460               as_Register($src2$$reg),
11461               Assembler::ROR,
11462               $src3$$constant & 0x1f);
11463   %}
11464 
11465   ins_pipe(ialu_reg_reg_shift);
11466 %}
11467 
11468 // This pattern is automatically generated from aarch64_ad.m4
11469 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11470 // val | (-1 ^ (val ror shift)) ==> orn
11471 instruct OrL_reg_RotateRight_not_reg(iRegLNoSp dst,
11472                          iRegL src1, iRegL src2,
11473                          immI src3, immL_M1 src4) %{
11474   match(Set dst (OrL src1 (XorL(RotateRight src2 src3) src4)));
11475   ins_cost(1.9 * INSN_COST);
11476   format %{ "orn  $dst, $src1, $src2, ROR $src3" %}
11477 
11478   ins_encode %{
11479     __ orn(as_Register($dst$$reg),
11480               as_Register($src1$$reg),
11481               as_Register($src2$$reg),
11482               Assembler::ROR,
11483               $src3$$constant & 0x3f);
11484   %}
11485 
11486   ins_pipe(ialu_reg_reg_shift);
11487 %}
11488 
11489 // This pattern is automatically generated from aarch64_ad.m4
11490 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11491 // val | (-1 ^ (val << shift)) ==> ornw
11492 instruct OrI_reg_LShift_not_reg(iRegINoSp dst,
11493                          iRegIorL2I src1, iRegIorL2I src2,
11494                          immI src3, immI_M1 src4) %{
11495   match(Set dst (OrI src1 (XorI(LShiftI src2 src3) src4)));
11496   ins_cost(1.9 * INSN_COST);
11497   format %{ "ornw  $dst, $src1, $src2, LSL $src3" %}
11498 
11499   ins_encode %{
11500     __ ornw(as_Register($dst$$reg),
11501               as_Register($src1$$reg),
11502               as_Register($src2$$reg),
11503               Assembler::LSL,
11504               $src3$$constant & 0x1f);
11505   %}
11506 
11507   ins_pipe(ialu_reg_reg_shift);
11508 %}
11509 
11510 // This pattern is automatically generated from aarch64_ad.m4
11511 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11512 // val | (-1 ^ (val << shift)) ==> orn
11513 instruct OrL_reg_LShift_not_reg(iRegLNoSp dst,
11514                          iRegL src1, iRegL src2,
11515                          immI src3, immL_M1 src4) %{
11516   match(Set dst (OrL src1 (XorL(LShiftL src2 src3) src4)));
11517   ins_cost(1.9 * INSN_COST);
11518   format %{ "orn  $dst, $src1, $src2, LSL $src3" %}
11519 
11520   ins_encode %{
11521     __ orn(as_Register($dst$$reg),
11522               as_Register($src1$$reg),
11523               as_Register($src2$$reg),
11524               Assembler::LSL,
11525               $src3$$constant & 0x3f);
11526   %}
11527 
11528   ins_pipe(ialu_reg_reg_shift);
11529 %}
11530 
11531 // This pattern is automatically generated from aarch64_ad.m4
11532 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11533 instruct AndI_reg_URShift_reg(iRegINoSp dst,
11534                          iRegIorL2I src1, iRegIorL2I src2,
11535                          immI src3) %{
11536   match(Set dst (AndI src1 (URShiftI src2 src3)));
11537 
11538   ins_cost(1.9 * INSN_COST);
11539   format %{ "andw  $dst, $src1, $src2, LSR $src3" %}
11540 
11541   ins_encode %{
11542     __ andw(as_Register($dst$$reg),
11543               as_Register($src1$$reg),
11544               as_Register($src2$$reg),
11545               Assembler::LSR,
11546               $src3$$constant & 0x1f);
11547   %}
11548 
11549   ins_pipe(ialu_reg_reg_shift);
11550 %}
11551 
11552 // This pattern is automatically generated from aarch64_ad.m4
11553 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11554 instruct AndL_reg_URShift_reg(iRegLNoSp dst,
11555                          iRegL src1, iRegL src2,
11556                          immI src3) %{
11557   match(Set dst (AndL src1 (URShiftL src2 src3)));
11558 
11559   ins_cost(1.9 * INSN_COST);
11560   format %{ "andr  $dst, $src1, $src2, LSR $src3" %}
11561 
11562   ins_encode %{
11563     __ andr(as_Register($dst$$reg),
11564               as_Register($src1$$reg),
11565               as_Register($src2$$reg),
11566               Assembler::LSR,
11567               $src3$$constant & 0x3f);
11568   %}
11569 
11570   ins_pipe(ialu_reg_reg_shift);
11571 %}
11572 
11573 // This pattern is automatically generated from aarch64_ad.m4
11574 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11575 instruct AndI_reg_RShift_reg(iRegINoSp dst,
11576                          iRegIorL2I src1, iRegIorL2I src2,
11577                          immI src3) %{
11578   match(Set dst (AndI src1 (RShiftI src2 src3)));
11579 
11580   ins_cost(1.9 * INSN_COST);
11581   format %{ "andw  $dst, $src1, $src2, ASR $src3" %}
11582 
11583   ins_encode %{
11584     __ andw(as_Register($dst$$reg),
11585               as_Register($src1$$reg),
11586               as_Register($src2$$reg),
11587               Assembler::ASR,
11588               $src3$$constant & 0x1f);
11589   %}
11590 
11591   ins_pipe(ialu_reg_reg_shift);
11592 %}
11593 
11594 // This pattern is automatically generated from aarch64_ad.m4
11595 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11596 instruct AndL_reg_RShift_reg(iRegLNoSp dst,
11597                          iRegL src1, iRegL src2,
11598                          immI src3) %{
11599   match(Set dst (AndL src1 (RShiftL src2 src3)));
11600 
11601   ins_cost(1.9 * INSN_COST);
11602   format %{ "andr  $dst, $src1, $src2, ASR $src3" %}
11603 
11604   ins_encode %{
11605     __ andr(as_Register($dst$$reg),
11606               as_Register($src1$$reg),
11607               as_Register($src2$$reg),
11608               Assembler::ASR,
11609               $src3$$constant & 0x3f);
11610   %}
11611 
11612   ins_pipe(ialu_reg_reg_shift);
11613 %}
11614 
11615 // This pattern is automatically generated from aarch64_ad.m4
11616 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11617 instruct AndI_reg_LShift_reg(iRegINoSp dst,
11618                          iRegIorL2I src1, iRegIorL2I src2,
11619                          immI src3) %{
11620   match(Set dst (AndI src1 (LShiftI src2 src3)));
11621 
11622   ins_cost(1.9 * INSN_COST);
11623   format %{ "andw  $dst, $src1, $src2, LSL $src3" %}
11624 
11625   ins_encode %{
11626     __ andw(as_Register($dst$$reg),
11627               as_Register($src1$$reg),
11628               as_Register($src2$$reg),
11629               Assembler::LSL,
11630               $src3$$constant & 0x1f);
11631   %}
11632 
11633   ins_pipe(ialu_reg_reg_shift);
11634 %}
11635 
11636 // This pattern is automatically generated from aarch64_ad.m4
11637 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11638 instruct AndL_reg_LShift_reg(iRegLNoSp dst,
11639                          iRegL src1, iRegL src2,
11640                          immI src3) %{
11641   match(Set dst (AndL src1 (LShiftL src2 src3)));
11642 
11643   ins_cost(1.9 * INSN_COST);
11644   format %{ "andr  $dst, $src1, $src2, LSL $src3" %}
11645 
11646   ins_encode %{
11647     __ andr(as_Register($dst$$reg),
11648               as_Register($src1$$reg),
11649               as_Register($src2$$reg),
11650               Assembler::LSL,
11651               $src3$$constant & 0x3f);
11652   %}
11653 
11654   ins_pipe(ialu_reg_reg_shift);
11655 %}
11656 
11657 // This pattern is automatically generated from aarch64_ad.m4
11658 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11659 instruct AndI_reg_RotateRight_reg(iRegINoSp dst,
11660                          iRegIorL2I src1, iRegIorL2I src2,
11661                          immI src3) %{
11662   match(Set dst (AndI src1 (RotateRight src2 src3)));
11663 
11664   ins_cost(1.9 * INSN_COST);
11665   format %{ "andw  $dst, $src1, $src2, ROR $src3" %}
11666 
11667   ins_encode %{
11668     __ andw(as_Register($dst$$reg),
11669               as_Register($src1$$reg),
11670               as_Register($src2$$reg),
11671               Assembler::ROR,
11672               $src3$$constant & 0x1f);
11673   %}
11674 
11675   ins_pipe(ialu_reg_reg_shift);
11676 %}
11677 
11678 // This pattern is automatically generated from aarch64_ad.m4
11679 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11680 instruct AndL_reg_RotateRight_reg(iRegLNoSp dst,
11681                          iRegL src1, iRegL src2,
11682                          immI src3) %{
11683   match(Set dst (AndL src1 (RotateRight src2 src3)));
11684 
11685   ins_cost(1.9 * INSN_COST);
11686   format %{ "andr  $dst, $src1, $src2, ROR $src3" %}
11687 
11688   ins_encode %{
11689     __ andr(as_Register($dst$$reg),
11690               as_Register($src1$$reg),
11691               as_Register($src2$$reg),
11692               Assembler::ROR,
11693               $src3$$constant & 0x3f);
11694   %}
11695 
11696   ins_pipe(ialu_reg_reg_shift);
11697 %}
11698 
11699 // This pattern is automatically generated from aarch64_ad.m4
11700 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11701 instruct XorI_reg_URShift_reg(iRegINoSp dst,
11702                          iRegIorL2I src1, iRegIorL2I src2,
11703                          immI src3) %{
11704   match(Set dst (XorI src1 (URShiftI src2 src3)));
11705 
11706   ins_cost(1.9 * INSN_COST);
11707   format %{ "eorw  $dst, $src1, $src2, LSR $src3" %}
11708 
11709   ins_encode %{
11710     __ eorw(as_Register($dst$$reg),
11711               as_Register($src1$$reg),
11712               as_Register($src2$$reg),
11713               Assembler::LSR,
11714               $src3$$constant & 0x1f);
11715   %}
11716 
11717   ins_pipe(ialu_reg_reg_shift);
11718 %}
11719 
11720 // This pattern is automatically generated from aarch64_ad.m4
11721 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11722 instruct XorL_reg_URShift_reg(iRegLNoSp dst,
11723                          iRegL src1, iRegL src2,
11724                          immI src3) %{
11725   match(Set dst (XorL src1 (URShiftL src2 src3)));
11726 
11727   ins_cost(1.9 * INSN_COST);
11728   format %{ "eor  $dst, $src1, $src2, LSR $src3" %}
11729 
11730   ins_encode %{
11731     __ eor(as_Register($dst$$reg),
11732               as_Register($src1$$reg),
11733               as_Register($src2$$reg),
11734               Assembler::LSR,
11735               $src3$$constant & 0x3f);
11736   %}
11737 
11738   ins_pipe(ialu_reg_reg_shift);
11739 %}
11740 
11741 // This pattern is automatically generated from aarch64_ad.m4
11742 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11743 instruct XorI_reg_RShift_reg(iRegINoSp dst,
11744                          iRegIorL2I src1, iRegIorL2I src2,
11745                          immI src3) %{
11746   match(Set dst (XorI src1 (RShiftI src2 src3)));
11747 
11748   ins_cost(1.9 * INSN_COST);
11749   format %{ "eorw  $dst, $src1, $src2, ASR $src3" %}
11750 
11751   ins_encode %{
11752     __ eorw(as_Register($dst$$reg),
11753               as_Register($src1$$reg),
11754               as_Register($src2$$reg),
11755               Assembler::ASR,
11756               $src3$$constant & 0x1f);
11757   %}
11758 
11759   ins_pipe(ialu_reg_reg_shift);
11760 %}
11761 
11762 // This pattern is automatically generated from aarch64_ad.m4
11763 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11764 instruct XorL_reg_RShift_reg(iRegLNoSp dst,
11765                          iRegL src1, iRegL src2,
11766                          immI src3) %{
11767   match(Set dst (XorL src1 (RShiftL src2 src3)));
11768 
11769   ins_cost(1.9 * INSN_COST);
11770   format %{ "eor  $dst, $src1, $src2, ASR $src3" %}
11771 
11772   ins_encode %{
11773     __ eor(as_Register($dst$$reg),
11774               as_Register($src1$$reg),
11775               as_Register($src2$$reg),
11776               Assembler::ASR,
11777               $src3$$constant & 0x3f);
11778   %}
11779 
11780   ins_pipe(ialu_reg_reg_shift);
11781 %}
11782 
11783 // This pattern is automatically generated from aarch64_ad.m4
11784 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11785 instruct XorI_reg_LShift_reg(iRegINoSp dst,
11786                          iRegIorL2I src1, iRegIorL2I src2,
11787                          immI src3) %{
11788   match(Set dst (XorI src1 (LShiftI src2 src3)));
11789 
11790   ins_cost(1.9 * INSN_COST);
11791   format %{ "eorw  $dst, $src1, $src2, LSL $src3" %}
11792 
11793   ins_encode %{
11794     __ eorw(as_Register($dst$$reg),
11795               as_Register($src1$$reg),
11796               as_Register($src2$$reg),
11797               Assembler::LSL,
11798               $src3$$constant & 0x1f);
11799   %}
11800 
11801   ins_pipe(ialu_reg_reg_shift);
11802 %}
11803 
11804 // This pattern is automatically generated from aarch64_ad.m4
11805 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11806 instruct XorL_reg_LShift_reg(iRegLNoSp dst,
11807                          iRegL src1, iRegL src2,
11808                          immI src3) %{
11809   match(Set dst (XorL src1 (LShiftL src2 src3)));
11810 
11811   ins_cost(1.9 * INSN_COST);
11812   format %{ "eor  $dst, $src1, $src2, LSL $src3" %}
11813 
11814   ins_encode %{
11815     __ eor(as_Register($dst$$reg),
11816               as_Register($src1$$reg),
11817               as_Register($src2$$reg),
11818               Assembler::LSL,
11819               $src3$$constant & 0x3f);
11820   %}
11821 
11822   ins_pipe(ialu_reg_reg_shift);
11823 %}
11824 
11825 // This pattern is automatically generated from aarch64_ad.m4
11826 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11827 instruct XorI_reg_RotateRight_reg(iRegINoSp dst,
11828                          iRegIorL2I src1, iRegIorL2I src2,
11829                          immI src3) %{
11830   match(Set dst (XorI src1 (RotateRight src2 src3)));
11831 
11832   ins_cost(1.9 * INSN_COST);
11833   format %{ "eorw  $dst, $src1, $src2, ROR $src3" %}
11834 
11835   ins_encode %{
11836     __ eorw(as_Register($dst$$reg),
11837               as_Register($src1$$reg),
11838               as_Register($src2$$reg),
11839               Assembler::ROR,
11840               $src3$$constant & 0x1f);
11841   %}
11842 
11843   ins_pipe(ialu_reg_reg_shift);
11844 %}
11845 
11846 // This pattern is automatically generated from aarch64_ad.m4
11847 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11848 instruct XorL_reg_RotateRight_reg(iRegLNoSp dst,
11849                          iRegL src1, iRegL src2,
11850                          immI src3) %{
11851   match(Set dst (XorL src1 (RotateRight src2 src3)));
11852 
11853   ins_cost(1.9 * INSN_COST);
11854   format %{ "eor  $dst, $src1, $src2, ROR $src3" %}
11855 
11856   ins_encode %{
11857     __ eor(as_Register($dst$$reg),
11858               as_Register($src1$$reg),
11859               as_Register($src2$$reg),
11860               Assembler::ROR,
11861               $src3$$constant & 0x3f);
11862   %}
11863 
11864   ins_pipe(ialu_reg_reg_shift);
11865 %}
11866 
11867 // This pattern is automatically generated from aarch64_ad.m4
11868 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11869 instruct OrI_reg_URShift_reg(iRegINoSp dst,
11870                          iRegIorL2I src1, iRegIorL2I src2,
11871                          immI src3) %{
11872   match(Set dst (OrI src1 (URShiftI src2 src3)));
11873 
11874   ins_cost(1.9 * INSN_COST);
11875   format %{ "orrw  $dst, $src1, $src2, LSR $src3" %}
11876 
11877   ins_encode %{
11878     __ orrw(as_Register($dst$$reg),
11879               as_Register($src1$$reg),
11880               as_Register($src2$$reg),
11881               Assembler::LSR,
11882               $src3$$constant & 0x1f);
11883   %}
11884 
11885   ins_pipe(ialu_reg_reg_shift);
11886 %}
11887 
11888 // This pattern is automatically generated from aarch64_ad.m4
11889 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11890 instruct OrL_reg_URShift_reg(iRegLNoSp dst,
11891                          iRegL src1, iRegL src2,
11892                          immI src3) %{
11893   match(Set dst (OrL src1 (URShiftL src2 src3)));
11894 
11895   ins_cost(1.9 * INSN_COST);
11896   format %{ "orr  $dst, $src1, $src2, LSR $src3" %}
11897 
11898   ins_encode %{
11899     __ orr(as_Register($dst$$reg),
11900               as_Register($src1$$reg),
11901               as_Register($src2$$reg),
11902               Assembler::LSR,
11903               $src3$$constant & 0x3f);
11904   %}
11905 
11906   ins_pipe(ialu_reg_reg_shift);
11907 %}
11908 
11909 // This pattern is automatically generated from aarch64_ad.m4
11910 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11911 instruct OrI_reg_RShift_reg(iRegINoSp dst,
11912                          iRegIorL2I src1, iRegIorL2I src2,
11913                          immI src3) %{
11914   match(Set dst (OrI src1 (RShiftI src2 src3)));
11915 
11916   ins_cost(1.9 * INSN_COST);
11917   format %{ "orrw  $dst, $src1, $src2, ASR $src3" %}
11918 
11919   ins_encode %{
11920     __ orrw(as_Register($dst$$reg),
11921               as_Register($src1$$reg),
11922               as_Register($src2$$reg),
11923               Assembler::ASR,
11924               $src3$$constant & 0x1f);
11925   %}
11926 
11927   ins_pipe(ialu_reg_reg_shift);
11928 %}
11929 
11930 // This pattern is automatically generated from aarch64_ad.m4
11931 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11932 instruct OrL_reg_RShift_reg(iRegLNoSp dst,
11933                          iRegL src1, iRegL src2,
11934                          immI src3) %{
11935   match(Set dst (OrL src1 (RShiftL src2 src3)));
11936 
11937   ins_cost(1.9 * INSN_COST);
11938   format %{ "orr  $dst, $src1, $src2, ASR $src3" %}
11939 
11940   ins_encode %{
11941     __ orr(as_Register($dst$$reg),
11942               as_Register($src1$$reg),
11943               as_Register($src2$$reg),
11944               Assembler::ASR,
11945               $src3$$constant & 0x3f);
11946   %}
11947 
11948   ins_pipe(ialu_reg_reg_shift);
11949 %}
11950 
11951 // This pattern is automatically generated from aarch64_ad.m4
11952 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11953 instruct OrI_reg_LShift_reg(iRegINoSp dst,
11954                          iRegIorL2I src1, iRegIorL2I src2,
11955                          immI src3) %{
11956   match(Set dst (OrI src1 (LShiftI src2 src3)));
11957 
11958   ins_cost(1.9 * INSN_COST);
11959   format %{ "orrw  $dst, $src1, $src2, LSL $src3" %}
11960 
11961   ins_encode %{
11962     __ orrw(as_Register($dst$$reg),
11963               as_Register($src1$$reg),
11964               as_Register($src2$$reg),
11965               Assembler::LSL,
11966               $src3$$constant & 0x1f);
11967   %}
11968 
11969   ins_pipe(ialu_reg_reg_shift);
11970 %}
11971 
11972 // This pattern is automatically generated from aarch64_ad.m4
11973 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11974 instruct OrL_reg_LShift_reg(iRegLNoSp dst,
11975                          iRegL src1, iRegL src2,
11976                          immI src3) %{
11977   match(Set dst (OrL src1 (LShiftL src2 src3)));
11978 
11979   ins_cost(1.9 * INSN_COST);
11980   format %{ "orr  $dst, $src1, $src2, LSL $src3" %}
11981 
11982   ins_encode %{
11983     __ orr(as_Register($dst$$reg),
11984               as_Register($src1$$reg),
11985               as_Register($src2$$reg),
11986               Assembler::LSL,
11987               $src3$$constant & 0x3f);
11988   %}
11989 
11990   ins_pipe(ialu_reg_reg_shift);
11991 %}
11992 
11993 // This pattern is automatically generated from aarch64_ad.m4
11994 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
11995 instruct OrI_reg_RotateRight_reg(iRegINoSp dst,
11996                          iRegIorL2I src1, iRegIorL2I src2,
11997                          immI src3) %{
11998   match(Set dst (OrI src1 (RotateRight src2 src3)));
11999 
12000   ins_cost(1.9 * INSN_COST);
12001   format %{ "orrw  $dst, $src1, $src2, ROR $src3" %}
12002 
12003   ins_encode %{
12004     __ orrw(as_Register($dst$$reg),
12005               as_Register($src1$$reg),
12006               as_Register($src2$$reg),
12007               Assembler::ROR,
12008               $src3$$constant & 0x1f);
12009   %}
12010 
12011   ins_pipe(ialu_reg_reg_shift);
12012 %}
12013 
12014 // This pattern is automatically generated from aarch64_ad.m4
12015 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12016 instruct OrL_reg_RotateRight_reg(iRegLNoSp dst,
12017                          iRegL src1, iRegL src2,
12018                          immI src3) %{
12019   match(Set dst (OrL src1 (RotateRight src2 src3)));
12020 
12021   ins_cost(1.9 * INSN_COST);
12022   format %{ "orr  $dst, $src1, $src2, ROR $src3" %}
12023 
12024   ins_encode %{
12025     __ orr(as_Register($dst$$reg),
12026               as_Register($src1$$reg),
12027               as_Register($src2$$reg),
12028               Assembler::ROR,
12029               $src3$$constant & 0x3f);
12030   %}
12031 
12032   ins_pipe(ialu_reg_reg_shift);
12033 %}
12034 
12035 // This pattern is automatically generated from aarch64_ad.m4
12036 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12037 instruct AddI_reg_URShift_reg(iRegINoSp dst,
12038                          iRegIorL2I src1, iRegIorL2I src2,
12039                          immI src3) %{
12040   match(Set dst (AddI src1 (URShiftI src2 src3)));
12041 
12042   ins_cost(1.9 * INSN_COST);
12043   format %{ "addw  $dst, $src1, $src2, LSR $src3" %}
12044 
12045   ins_encode %{
12046     __ addw(as_Register($dst$$reg),
12047               as_Register($src1$$reg),
12048               as_Register($src2$$reg),
12049               Assembler::LSR,
12050               $src3$$constant & 0x1f);
12051   %}
12052 
12053   ins_pipe(ialu_reg_reg_shift);
12054 %}
12055 
12056 // This pattern is automatically generated from aarch64_ad.m4
12057 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12058 instruct AddL_reg_URShift_reg(iRegLNoSp dst,
12059                          iRegL src1, iRegL src2,
12060                          immI src3) %{
12061   match(Set dst (AddL src1 (URShiftL src2 src3)));
12062 
12063   ins_cost(1.9 * INSN_COST);
12064   format %{ "add  $dst, $src1, $src2, LSR $src3" %}
12065 
12066   ins_encode %{
12067     __ add(as_Register($dst$$reg),
12068               as_Register($src1$$reg),
12069               as_Register($src2$$reg),
12070               Assembler::LSR,
12071               $src3$$constant & 0x3f);
12072   %}
12073 
12074   ins_pipe(ialu_reg_reg_shift);
12075 %}
12076 
12077 // This pattern is automatically generated from aarch64_ad.m4
12078 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12079 instruct AddI_reg_RShift_reg(iRegINoSp dst,
12080                          iRegIorL2I src1, iRegIorL2I src2,
12081                          immI src3) %{
12082   match(Set dst (AddI src1 (RShiftI src2 src3)));
12083 
12084   ins_cost(1.9 * INSN_COST);
12085   format %{ "addw  $dst, $src1, $src2, ASR $src3" %}
12086 
12087   ins_encode %{
12088     __ addw(as_Register($dst$$reg),
12089               as_Register($src1$$reg),
12090               as_Register($src2$$reg),
12091               Assembler::ASR,
12092               $src3$$constant & 0x1f);
12093   %}
12094 
12095   ins_pipe(ialu_reg_reg_shift);
12096 %}
12097 
12098 // This pattern is automatically generated from aarch64_ad.m4
12099 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12100 instruct AddL_reg_RShift_reg(iRegLNoSp dst,
12101                          iRegL src1, iRegL src2,
12102                          immI src3) %{
12103   match(Set dst (AddL src1 (RShiftL src2 src3)));
12104 
12105   ins_cost(1.9 * INSN_COST);
12106   format %{ "add  $dst, $src1, $src2, ASR $src3" %}
12107 
12108   ins_encode %{
12109     __ add(as_Register($dst$$reg),
12110               as_Register($src1$$reg),
12111               as_Register($src2$$reg),
12112               Assembler::ASR,
12113               $src3$$constant & 0x3f);
12114   %}
12115 
12116   ins_pipe(ialu_reg_reg_shift);
12117 %}
12118 
12119 // This pattern is automatically generated from aarch64_ad.m4
12120 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12121 instruct AddI_reg_LShift_reg(iRegINoSp dst,
12122                          iRegIorL2I src1, iRegIorL2I src2,
12123                          immI src3) %{
12124   match(Set dst (AddI src1 (LShiftI src2 src3)));
12125 
12126   ins_cost(1.9 * INSN_COST);
12127   format %{ "addw  $dst, $src1, $src2, LSL $src3" %}
12128 
12129   ins_encode %{
12130     __ addw(as_Register($dst$$reg),
12131               as_Register($src1$$reg),
12132               as_Register($src2$$reg),
12133               Assembler::LSL,
12134               $src3$$constant & 0x1f);
12135   %}
12136 
12137   ins_pipe(ialu_reg_reg_shift);
12138 %}
12139 
12140 // This pattern is automatically generated from aarch64_ad.m4
12141 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12142 instruct AddL_reg_LShift_reg(iRegLNoSp dst,
12143                          iRegL src1, iRegL src2,
12144                          immI src3) %{
12145   match(Set dst (AddL src1 (LShiftL src2 src3)));
12146 
12147   ins_cost(1.9 * INSN_COST);
12148   format %{ "add  $dst, $src1, $src2, LSL $src3" %}
12149 
12150   ins_encode %{
12151     __ add(as_Register($dst$$reg),
12152               as_Register($src1$$reg),
12153               as_Register($src2$$reg),
12154               Assembler::LSL,
12155               $src3$$constant & 0x3f);
12156   %}
12157 
12158   ins_pipe(ialu_reg_reg_shift);
12159 %}
12160 
12161 // This pattern is automatically generated from aarch64_ad.m4
12162 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12163 instruct SubI_reg_URShift_reg(iRegINoSp dst,
12164                          iRegIorL2I src1, iRegIorL2I src2,
12165                          immI src3) %{
12166   match(Set dst (SubI src1 (URShiftI src2 src3)));
12167 
12168   ins_cost(1.9 * INSN_COST);
12169   format %{ "subw  $dst, $src1, $src2, LSR $src3" %}
12170 
12171   ins_encode %{
12172     __ subw(as_Register($dst$$reg),
12173               as_Register($src1$$reg),
12174               as_Register($src2$$reg),
12175               Assembler::LSR,
12176               $src3$$constant & 0x1f);
12177   %}
12178 
12179   ins_pipe(ialu_reg_reg_shift);
12180 %}
12181 
12182 // This pattern is automatically generated from aarch64_ad.m4
12183 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12184 instruct SubL_reg_URShift_reg(iRegLNoSp dst,
12185                          iRegL src1, iRegL src2,
12186                          immI src3) %{
12187   match(Set dst (SubL src1 (URShiftL src2 src3)));
12188 
12189   ins_cost(1.9 * INSN_COST);
12190   format %{ "sub  $dst, $src1, $src2, LSR $src3" %}
12191 
12192   ins_encode %{
12193     __ sub(as_Register($dst$$reg),
12194               as_Register($src1$$reg),
12195               as_Register($src2$$reg),
12196               Assembler::LSR,
12197               $src3$$constant & 0x3f);
12198   %}
12199 
12200   ins_pipe(ialu_reg_reg_shift);
12201 %}
12202 
12203 // This pattern is automatically generated from aarch64_ad.m4
12204 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12205 instruct SubI_reg_RShift_reg(iRegINoSp dst,
12206                          iRegIorL2I src1, iRegIorL2I src2,
12207                          immI src3) %{
12208   match(Set dst (SubI src1 (RShiftI src2 src3)));
12209 
12210   ins_cost(1.9 * INSN_COST);
12211   format %{ "subw  $dst, $src1, $src2, ASR $src3" %}
12212 
12213   ins_encode %{
12214     __ subw(as_Register($dst$$reg),
12215               as_Register($src1$$reg),
12216               as_Register($src2$$reg),
12217               Assembler::ASR,
12218               $src3$$constant & 0x1f);
12219   %}
12220 
12221   ins_pipe(ialu_reg_reg_shift);
12222 %}
12223 
12224 // This pattern is automatically generated from aarch64_ad.m4
12225 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12226 instruct SubL_reg_RShift_reg(iRegLNoSp dst,
12227                          iRegL src1, iRegL src2,
12228                          immI src3) %{
12229   match(Set dst (SubL src1 (RShiftL src2 src3)));
12230 
12231   ins_cost(1.9 * INSN_COST);
12232   format %{ "sub  $dst, $src1, $src2, ASR $src3" %}
12233 
12234   ins_encode %{
12235     __ sub(as_Register($dst$$reg),
12236               as_Register($src1$$reg),
12237               as_Register($src2$$reg),
12238               Assembler::ASR,
12239               $src3$$constant & 0x3f);
12240   %}
12241 
12242   ins_pipe(ialu_reg_reg_shift);
12243 %}
12244 
12245 // This pattern is automatically generated from aarch64_ad.m4
12246 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12247 instruct SubI_reg_LShift_reg(iRegINoSp dst,
12248                          iRegIorL2I src1, iRegIorL2I src2,
12249                          immI src3) %{
12250   match(Set dst (SubI src1 (LShiftI src2 src3)));
12251 
12252   ins_cost(1.9 * INSN_COST);
12253   format %{ "subw  $dst, $src1, $src2, LSL $src3" %}
12254 
12255   ins_encode %{
12256     __ subw(as_Register($dst$$reg),
12257               as_Register($src1$$reg),
12258               as_Register($src2$$reg),
12259               Assembler::LSL,
12260               $src3$$constant & 0x1f);
12261   %}
12262 
12263   ins_pipe(ialu_reg_reg_shift);
12264 %}
12265 
12266 // This pattern is automatically generated from aarch64_ad.m4
12267 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12268 instruct SubL_reg_LShift_reg(iRegLNoSp dst,
12269                          iRegL src1, iRegL src2,
12270                          immI src3) %{
12271   match(Set dst (SubL src1 (LShiftL src2 src3)));
12272 
12273   ins_cost(1.9 * INSN_COST);
12274   format %{ "sub  $dst, $src1, $src2, LSL $src3" %}
12275 
12276   ins_encode %{
12277     __ sub(as_Register($dst$$reg),
12278               as_Register($src1$$reg),
12279               as_Register($src2$$reg),
12280               Assembler::LSL,
12281               $src3$$constant & 0x3f);
12282   %}
12283 
12284   ins_pipe(ialu_reg_reg_shift);
12285 %}
12286 
12287 // This pattern is automatically generated from aarch64_ad.m4
12288 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12289 
12290 // Shift Left followed by Shift Right.
12291 // This idiom is used by the compiler for the i2b bytecode etc.
12292 instruct sbfmL(iRegLNoSp dst, iRegL src, immI lshift_count, immI rshift_count)
12293 %{
12294   match(Set dst (RShiftL (LShiftL src lshift_count) rshift_count));
12295   ins_cost(INSN_COST * 2);
12296   format %{ "sbfm  $dst, $src, $rshift_count - $lshift_count, #63 - $lshift_count" %}
12297   ins_encode %{
12298     int lshift = $lshift_count$$constant & 63;
12299     int rshift = $rshift_count$$constant & 63;
12300     int s = 63 - lshift;
12301     int r = (rshift - lshift) & 63;
12302     __ sbfm(as_Register($dst$$reg),
12303             as_Register($src$$reg),
12304             r, s);
12305   %}
12306 
12307   ins_pipe(ialu_reg_shift);
12308 %}
12309 
12310 // This pattern is automatically generated from aarch64_ad.m4
12311 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12312 
12313 // Shift Left followed by Shift Right.
12314 // This idiom is used by the compiler for the i2b bytecode etc.
12315 instruct sbfmwI(iRegINoSp dst, iRegIorL2I src, immI lshift_count, immI rshift_count)
12316 %{
12317   match(Set dst (RShiftI (LShiftI src lshift_count) rshift_count));
12318   ins_cost(INSN_COST * 2);
12319   format %{ "sbfmw  $dst, $src, $rshift_count - $lshift_count, #31 - $lshift_count" %}
12320   ins_encode %{
12321     int lshift = $lshift_count$$constant & 31;
12322     int rshift = $rshift_count$$constant & 31;
12323     int s = 31 - lshift;
12324     int r = (rshift - lshift) & 31;
12325     __ sbfmw(as_Register($dst$$reg),
12326             as_Register($src$$reg),
12327             r, s);
12328   %}
12329 
12330   ins_pipe(ialu_reg_shift);
12331 %}
12332 
12333 // This pattern is automatically generated from aarch64_ad.m4
12334 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12335 
12336 // Shift Left followed by Shift Right.
12337 // This idiom is used by the compiler for the i2b bytecode etc.
12338 instruct ubfmL(iRegLNoSp dst, iRegL src, immI lshift_count, immI rshift_count)
12339 %{
12340   match(Set dst (URShiftL (LShiftL src lshift_count) rshift_count));
12341   ins_cost(INSN_COST * 2);
12342   format %{ "ubfm  $dst, $src, $rshift_count - $lshift_count, #63 - $lshift_count" %}
12343   ins_encode %{
12344     int lshift = $lshift_count$$constant & 63;
12345     int rshift = $rshift_count$$constant & 63;
12346     int s = 63 - lshift;
12347     int r = (rshift - lshift) & 63;
12348     __ ubfm(as_Register($dst$$reg),
12349             as_Register($src$$reg),
12350             r, s);
12351   %}
12352 
12353   ins_pipe(ialu_reg_shift);
12354 %}
12355 
12356 // This pattern is automatically generated from aarch64_ad.m4
12357 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12358 
12359 // Shift Left followed by Shift Right.
12360 // This idiom is used by the compiler for the i2b bytecode etc.
12361 instruct ubfmwI(iRegINoSp dst, iRegIorL2I src, immI lshift_count, immI rshift_count)
12362 %{
12363   match(Set dst (URShiftI (LShiftI src lshift_count) rshift_count));
12364   ins_cost(INSN_COST * 2);
12365   format %{ "ubfmw  $dst, $src, $rshift_count - $lshift_count, #31 - $lshift_count" %}
12366   ins_encode %{
12367     int lshift = $lshift_count$$constant & 31;
12368     int rshift = $rshift_count$$constant & 31;
12369     int s = 31 - lshift;
12370     int r = (rshift - lshift) & 31;
12371     __ ubfmw(as_Register($dst$$reg),
12372             as_Register($src$$reg),
12373             r, s);
12374   %}
12375 
12376   ins_pipe(ialu_reg_shift);
12377 %}
12378 
12379 // Bitfield extract with shift & mask
12380 
12381 // This pattern is automatically generated from aarch64_ad.m4
12382 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12383 instruct ubfxwI(iRegINoSp dst, iRegIorL2I src, immI rshift, immI_bitmask mask)
12384 %{
12385   match(Set dst (AndI (URShiftI src rshift) mask));
12386   // Make sure we are not going to exceed what ubfxw can do.
12387   predicate((exact_log2(n->in(2)->get_int() + 1) + (n->in(1)->in(2)->get_int() & 31)) <= (31 + 1));
12388 
12389   ins_cost(INSN_COST);
12390   format %{ "ubfxw $dst, $src, $rshift, $mask" %}
12391   ins_encode %{
12392     int rshift = $rshift$$constant & 31;
12393     intptr_t mask = $mask$$constant;
12394     int width = exact_log2(mask+1);
12395     __ ubfxw(as_Register($dst$$reg),
12396             as_Register($src$$reg), rshift, width);
12397   %}
12398   ins_pipe(ialu_reg_shift);
12399 %}
12400 
12401 // This pattern is automatically generated from aarch64_ad.m4
12402 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12403 instruct ubfxL(iRegLNoSp dst, iRegL src, immI rshift, immL_bitmask mask)
12404 %{
12405   match(Set dst (AndL (URShiftL src rshift) mask));
12406   // Make sure we are not going to exceed what ubfx can do.
12407   predicate((exact_log2_long(n->in(2)->get_long() + 1) + (n->in(1)->in(2)->get_int() & 63)) <= (63 + 1));
12408 
12409   ins_cost(INSN_COST);
12410   format %{ "ubfx $dst, $src, $rshift, $mask" %}
12411   ins_encode %{
12412     int rshift = $rshift$$constant & 63;
12413     intptr_t mask = $mask$$constant;
12414     int width = exact_log2_long(mask+1);
12415     __ ubfx(as_Register($dst$$reg),
12416             as_Register($src$$reg), rshift, width);
12417   %}
12418   ins_pipe(ialu_reg_shift);
12419 %}
12420 
12421 
12422 // This pattern is automatically generated from aarch64_ad.m4
12423 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12424 
12425 // We can use ubfx when extending an And with a mask when we know mask
12426 // is positive.  We know that because immI_bitmask guarantees it.
12427 instruct ubfxIConvI2L(iRegLNoSp dst, iRegIorL2I src, immI rshift, immI_bitmask mask)
12428 %{
12429   match(Set dst (ConvI2L (AndI (URShiftI src rshift) mask)));
12430   // Make sure we are not going to exceed what ubfxw can do.
12431   predicate((exact_log2(n->in(1)->in(2)->get_int() + 1) + (n->in(1)->in(1)->in(2)->get_int() & 31)) <= (31 + 1));
12432 
12433   ins_cost(INSN_COST * 2);
12434   format %{ "ubfx $dst, $src, $rshift, $mask" %}
12435   ins_encode %{
12436     int rshift = $rshift$$constant & 31;
12437     intptr_t mask = $mask$$constant;
12438     int width = exact_log2(mask+1);
12439     __ ubfx(as_Register($dst$$reg),
12440             as_Register($src$$reg), rshift, width);
12441   %}
12442   ins_pipe(ialu_reg_shift);
12443 %}
12444 
12445 
12446 // This pattern is automatically generated from aarch64_ad.m4
12447 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12448 
12449 // We can use ubfiz when masking by a positive number and then left shifting the result.
12450 // We know that the mask is positive because immI_bitmask guarantees it.
12451 instruct ubfizwI(iRegINoSp dst, iRegIorL2I src, immI lshift, immI_bitmask mask)
12452 %{
12453   match(Set dst (LShiftI (AndI src mask) lshift));
12454   predicate((exact_log2(n->in(1)->in(2)->get_int() + 1) + (n->in(2)->get_int() & 31)) <= (31 + 1));
12455 
12456   ins_cost(INSN_COST);
12457   format %{ "ubfizw $dst, $src, $lshift, $mask" %}
12458   ins_encode %{
12459     int lshift = $lshift$$constant & 31;
12460     intptr_t mask = $mask$$constant;
12461     int width = exact_log2(mask+1);
12462     __ ubfizw(as_Register($dst$$reg),
12463           as_Register($src$$reg), lshift, width);
12464   %}
12465   ins_pipe(ialu_reg_shift);
12466 %}
12467 
12468 // This pattern is automatically generated from aarch64_ad.m4
12469 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12470 
12471 // We can use ubfiz when masking by a positive number and then left shifting the result.
12472 // We know that the mask is positive because immL_bitmask guarantees it.
12473 instruct ubfizL(iRegLNoSp dst, iRegL src, immI lshift, immL_bitmask mask)
12474 %{
12475   match(Set dst (LShiftL (AndL src mask) lshift));
12476   predicate((exact_log2_long(n->in(1)->in(2)->get_long() + 1) + (n->in(2)->get_int() & 63)) <= (63 + 1));
12477 
12478   ins_cost(INSN_COST);
12479   format %{ "ubfiz $dst, $src, $lshift, $mask" %}
12480   ins_encode %{
12481     int lshift = $lshift$$constant & 63;
12482     intptr_t mask = $mask$$constant;
12483     int width = exact_log2_long(mask+1);
12484     __ ubfiz(as_Register($dst$$reg),
12485           as_Register($src$$reg), lshift, width);
12486   %}
12487   ins_pipe(ialu_reg_shift);
12488 %}
12489 
12490 // This pattern is automatically generated from aarch64_ad.m4
12491 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12492 
12493 // We can use ubfiz when masking by a positive number and then left shifting the result.
12494 // We know that the mask is positive because immI_bitmask guarantees it.
12495 instruct ubfizwIConvI2L(iRegLNoSp dst, iRegIorL2I src, immI lshift, immI_bitmask mask)
12496 %{
12497   match(Set dst (ConvI2L (LShiftI (AndI src mask) lshift)));
12498   predicate((exact_log2(n->in(1)->in(1)->in(2)->get_int() + 1) + (n->in(1)->in(2)->get_int() & 31)) <= 31);
12499 
12500   ins_cost(INSN_COST);
12501   format %{ "ubfizw $dst, $src, $lshift, $mask" %}
12502   ins_encode %{
12503     int lshift = $lshift$$constant & 31;
12504     intptr_t mask = $mask$$constant;
12505     int width = exact_log2(mask+1);
12506     __ ubfizw(as_Register($dst$$reg),
12507           as_Register($src$$reg), lshift, width);
12508   %}
12509   ins_pipe(ialu_reg_shift);
12510 %}
12511 
12512 // This pattern is automatically generated from aarch64_ad.m4
12513 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12514 
12515 // We can use ubfiz when masking by a positive number and then left shifting the result.
12516 // We know that the mask is positive because immL_bitmask guarantees it.
12517 instruct ubfizLConvL2I(iRegINoSp dst, iRegL src, immI lshift, immL_positive_bitmaskI mask)
12518 %{
12519   match(Set dst (ConvL2I (LShiftL (AndL src mask) lshift)));
12520   predicate((exact_log2_long(n->in(1)->in(1)->in(2)->get_long() + 1) + (n->in(1)->in(2)->get_int() & 63)) <= 31);
12521 
12522   ins_cost(INSN_COST);
12523   format %{ "ubfiz $dst, $src, $lshift, $mask" %}
12524   ins_encode %{
12525     int lshift = $lshift$$constant & 63;
12526     intptr_t mask = $mask$$constant;
12527     int width = exact_log2_long(mask+1);
12528     __ ubfiz(as_Register($dst$$reg),
12529           as_Register($src$$reg), lshift, width);
12530   %}
12531   ins_pipe(ialu_reg_shift);
12532 %}
12533 
12534 
12535 // This pattern is automatically generated from aarch64_ad.m4
12536 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12537 
12538 // If there is a convert I to L block between and AndI and a LShiftL, we can also match ubfiz
12539 instruct ubfizIConvI2L(iRegLNoSp dst, iRegIorL2I src, immI lshift, immI_bitmask mask)
12540 %{
12541   match(Set dst (LShiftL (ConvI2L (AndI src mask)) lshift));
12542   predicate((exact_log2(n->in(1)->in(1)->in(2)->get_int() + 1) + (n->in(2)->get_int() & 63)) <= (63 + 1));
12543 
12544   ins_cost(INSN_COST);
12545   format %{ "ubfiz $dst, $src, $lshift, $mask" %}
12546   ins_encode %{
12547     int lshift = $lshift$$constant & 63;
12548     intptr_t mask = $mask$$constant;
12549     int width = exact_log2(mask+1);
12550     __ ubfiz(as_Register($dst$$reg),
12551              as_Register($src$$reg), lshift, width);
12552   %}
12553   ins_pipe(ialu_reg_shift);
12554 %}
12555 
12556 // This pattern is automatically generated from aarch64_ad.m4
12557 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12558 
12559 // If there is a convert L to I block between and AndL and a LShiftI, we can also match ubfiz
12560 instruct ubfizLConvL2Ix(iRegINoSp dst, iRegL src, immI lshift, immL_positive_bitmaskI mask)
12561 %{
12562   match(Set dst (LShiftI (ConvL2I (AndL src mask)) lshift));
12563   predicate((exact_log2_long(n->in(1)->in(1)->in(2)->get_long() + 1) + (n->in(2)->get_int() & 31)) <= 31);
12564 
12565   ins_cost(INSN_COST);
12566   format %{ "ubfiz $dst, $src, $lshift, $mask" %}
12567   ins_encode %{
12568     int lshift = $lshift$$constant & 31;
12569     intptr_t mask = $mask$$constant;
12570     int width = exact_log2(mask+1);
12571     __ ubfiz(as_Register($dst$$reg),
12572              as_Register($src$$reg), lshift, width);
12573   %}
12574   ins_pipe(ialu_reg_shift);
12575 %}
12576 
12577 // This pattern is automatically generated from aarch64_ad.m4
12578 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12579 
12580 // Can skip int2long conversions after AND with small bitmask
12581 instruct ubfizIConvI2LAndI(iRegLNoSp dst, iRegI src, immI_bitmask msk)
12582 %{
12583   match(Set dst (ConvI2L (AndI src msk)));
12584   ins_cost(INSN_COST);
12585   format %{ "ubfiz $dst, $src, 0, exact_log2($msk + 1) " %}
12586   ins_encode %{
12587     __ ubfiz(as_Register($dst$$reg), as_Register($src$$reg), 0, exact_log2($msk$$constant + 1));
12588   %}
12589   ins_pipe(ialu_reg_shift);
12590 %}
12591 
12592 
12593 // Rotations
12594 
12595 // This pattern is automatically generated from aarch64_ad.m4
12596 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12597 instruct extrOrL(iRegLNoSp dst, iRegL src1, iRegL src2, immI lshift, immI rshift, rFlagsReg cr)
12598 %{
12599   match(Set dst (OrL (LShiftL src1 lshift) (URShiftL src2 rshift)));
12600   predicate(0 == (((n->in(1)->in(2)->get_int() & 63) + (n->in(2)->in(2)->get_int() & 63)) & 63));
12601 
12602   ins_cost(INSN_COST);
12603   format %{ "extr $dst, $src1, $src2, #$rshift" %}
12604 
12605   ins_encode %{
12606     __ extr(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg),
12607             $rshift$$constant & 63);
12608   %}
12609   ins_pipe(ialu_reg_reg_extr);
12610 %}
12611 
12612 
12613 // This pattern is automatically generated from aarch64_ad.m4
12614 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12615 instruct extrOrI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI lshift, immI rshift, rFlagsReg cr)
12616 %{
12617   match(Set dst (OrI (LShiftI src1 lshift) (URShiftI src2 rshift)));
12618   predicate(0 == (((n->in(1)->in(2)->get_int() & 31) + (n->in(2)->in(2)->get_int() & 31)) & 31));
12619 
12620   ins_cost(INSN_COST);
12621   format %{ "extr $dst, $src1, $src2, #$rshift" %}
12622 
12623   ins_encode %{
12624     __ extrw(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg),
12625             $rshift$$constant & 31);
12626   %}
12627   ins_pipe(ialu_reg_reg_extr);
12628 %}
12629 
12630 
12631 // This pattern is automatically generated from aarch64_ad.m4
12632 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12633 instruct extrAddL(iRegLNoSp dst, iRegL src1, iRegL src2, immI lshift, immI rshift, rFlagsReg cr)
12634 %{
12635   match(Set dst (AddL (LShiftL src1 lshift) (URShiftL src2 rshift)));
12636   predicate(0 == (((n->in(1)->in(2)->get_int() & 63) + (n->in(2)->in(2)->get_int() & 63)) & 63));
12637 
12638   ins_cost(INSN_COST);
12639   format %{ "extr $dst, $src1, $src2, #$rshift" %}
12640 
12641   ins_encode %{
12642     __ extr(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg),
12643             $rshift$$constant & 63);
12644   %}
12645   ins_pipe(ialu_reg_reg_extr);
12646 %}
12647 
12648 
12649 // This pattern is automatically generated from aarch64_ad.m4
12650 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12651 instruct extrAddI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI lshift, immI rshift, rFlagsReg cr)
12652 %{
12653   match(Set dst (AddI (LShiftI src1 lshift) (URShiftI src2 rshift)));
12654   predicate(0 == (((n->in(1)->in(2)->get_int() & 31) + (n->in(2)->in(2)->get_int() & 31)) & 31));
12655 
12656   ins_cost(INSN_COST);
12657   format %{ "extr $dst, $src1, $src2, #$rshift" %}
12658 
12659   ins_encode %{
12660     __ extrw(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg),
12661             $rshift$$constant & 31);
12662   %}
12663   ins_pipe(ialu_reg_reg_extr);
12664 %}
12665 
12666 // This pattern is automatically generated from aarch64_ad.m4
12667 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12668 instruct rorI_imm(iRegINoSp dst, iRegI src, immI shift)
12669 %{
12670   match(Set dst (RotateRight src shift));
12671 
12672   ins_cost(INSN_COST);
12673   format %{ "ror    $dst, $src, $shift" %}
12674 
12675   ins_encode %{
12676      __ extrw(as_Register($dst$$reg), as_Register($src$$reg), as_Register($src$$reg),
12677                $shift$$constant & 0x1f);
12678   %}
12679   ins_pipe(ialu_reg_reg_vshift);
12680 %}
12681 
12682 // This pattern is automatically generated from aarch64_ad.m4
12683 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12684 instruct rorL_imm(iRegLNoSp dst, iRegL src, immI shift)
12685 %{
12686   match(Set dst (RotateRight src shift));
12687 
12688   ins_cost(INSN_COST);
12689   format %{ "ror    $dst, $src, $shift" %}
12690 
12691   ins_encode %{
12692      __ extr(as_Register($dst$$reg), as_Register($src$$reg), as_Register($src$$reg),
12693                $shift$$constant & 0x3f);
12694   %}
12695   ins_pipe(ialu_reg_reg_vshift);
12696 %}
12697 
12698 // This pattern is automatically generated from aarch64_ad.m4
12699 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12700 instruct rorI_reg(iRegINoSp dst, iRegI src, iRegI shift)
12701 %{
12702   match(Set dst (RotateRight src shift));
12703 
12704   ins_cost(INSN_COST);
12705   format %{ "ror    $dst, $src, $shift" %}
12706 
12707   ins_encode %{
12708      __ rorvw(as_Register($dst$$reg), as_Register($src$$reg), as_Register($shift$$reg));
12709   %}
12710   ins_pipe(ialu_reg_reg_vshift);
12711 %}
12712 
12713 // This pattern is automatically generated from aarch64_ad.m4
12714 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12715 instruct rorL_reg(iRegLNoSp dst, iRegL src, iRegI shift)
12716 %{
12717   match(Set dst (RotateRight src shift));
12718 
12719   ins_cost(INSN_COST);
12720   format %{ "ror    $dst, $src, $shift" %}
12721 
12722   ins_encode %{
12723      __ rorv(as_Register($dst$$reg), as_Register($src$$reg), as_Register($shift$$reg));
12724   %}
12725   ins_pipe(ialu_reg_reg_vshift);
12726 %}
12727 
12728 // This pattern is automatically generated from aarch64_ad.m4
12729 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12730 instruct rolI_reg(iRegINoSp dst, iRegI src, iRegI shift)
12731 %{
12732   match(Set dst (RotateLeft src shift));
12733 
12734   ins_cost(INSN_COST);
12735   format %{ "rol    $dst, $src, $shift" %}
12736 
12737   ins_encode %{
12738      __ subw(rscratch1, zr, as_Register($shift$$reg));
12739      __ rorvw(as_Register($dst$$reg), as_Register($src$$reg), rscratch1);
12740   %}
12741   ins_pipe(ialu_reg_reg_vshift);
12742 %}
12743 
12744 // This pattern is automatically generated from aarch64_ad.m4
12745 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12746 instruct rolL_reg(iRegLNoSp dst, iRegL src, iRegI shift)
12747 %{
12748   match(Set dst (RotateLeft src shift));
12749 
12750   ins_cost(INSN_COST);
12751   format %{ "rol    $dst, $src, $shift" %}
12752 
12753   ins_encode %{
12754      __ subw(rscratch1, zr, as_Register($shift$$reg));
12755      __ rorv(as_Register($dst$$reg), as_Register($src$$reg), rscratch1);
12756   %}
12757   ins_pipe(ialu_reg_reg_vshift);
12758 %}
12759 
12760 
12761 // Add/subtract (extended)
12762 
12763 // This pattern is automatically generated from aarch64_ad.m4
12764 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12765 instruct AddExtI(iRegLNoSp dst, iRegL src1, iRegIorL2I src2, rFlagsReg cr)
12766 %{
12767   match(Set dst (AddL src1 (ConvI2L src2)));
12768   ins_cost(INSN_COST);
12769   format %{ "add  $dst, $src1, $src2, sxtw" %}
12770 
12771    ins_encode %{
12772      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12773             as_Register($src2$$reg), ext::sxtw);
12774    %}
12775   ins_pipe(ialu_reg_reg);
12776 %}
12777 
12778 // This pattern is automatically generated from aarch64_ad.m4
12779 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12780 instruct SubExtI(iRegLNoSp dst, iRegL src1, iRegIorL2I src2, rFlagsReg cr)
12781 %{
12782   match(Set dst (SubL src1 (ConvI2L src2)));
12783   ins_cost(INSN_COST);
12784   format %{ "sub  $dst, $src1, $src2, sxtw" %}
12785 
12786    ins_encode %{
12787      __ sub(as_Register($dst$$reg), as_Register($src1$$reg),
12788             as_Register($src2$$reg), ext::sxtw);
12789    %}
12790   ins_pipe(ialu_reg_reg);
12791 %}
12792 
12793 // This pattern is automatically generated from aarch64_ad.m4
12794 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12795 instruct AddExtI_sxth(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_16 lshift, immI_16 rshift, rFlagsReg cr)
12796 %{
12797   match(Set dst (AddI src1 (RShiftI (LShiftI src2 lshift) rshift)));
12798   ins_cost(INSN_COST);
12799   format %{ "add  $dst, $src1, $src2, sxth" %}
12800 
12801    ins_encode %{
12802      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12803             as_Register($src2$$reg), ext::sxth);
12804    %}
12805   ins_pipe(ialu_reg_reg);
12806 %}
12807 
12808 // This pattern is automatically generated from aarch64_ad.m4
12809 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12810 instruct AddExtI_sxtb(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_24 lshift, immI_24 rshift, rFlagsReg cr)
12811 %{
12812   match(Set dst (AddI src1 (RShiftI (LShiftI src2 lshift) rshift)));
12813   ins_cost(INSN_COST);
12814   format %{ "add  $dst, $src1, $src2, sxtb" %}
12815 
12816    ins_encode %{
12817      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12818             as_Register($src2$$reg), ext::sxtb);
12819    %}
12820   ins_pipe(ialu_reg_reg);
12821 %}
12822 
12823 // This pattern is automatically generated from aarch64_ad.m4
12824 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12825 instruct AddExtI_uxtb(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_24 lshift, immI_24 rshift, rFlagsReg cr)
12826 %{
12827   match(Set dst (AddI src1 (URShiftI (LShiftI src2 lshift) rshift)));
12828   ins_cost(INSN_COST);
12829   format %{ "add  $dst, $src1, $src2, uxtb" %}
12830 
12831    ins_encode %{
12832      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12833             as_Register($src2$$reg), ext::uxtb);
12834    %}
12835   ins_pipe(ialu_reg_reg);
12836 %}
12837 
12838 // This pattern is automatically generated from aarch64_ad.m4
12839 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12840 instruct AddExtL_sxth(iRegLNoSp dst, iRegL src1, iRegL src2, immI_48 lshift, immI_48 rshift, rFlagsReg cr)
12841 %{
12842   match(Set dst (AddL src1 (RShiftL (LShiftL src2 lshift) rshift)));
12843   ins_cost(INSN_COST);
12844   format %{ "add  $dst, $src1, $src2, sxth" %}
12845 
12846    ins_encode %{
12847      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12848             as_Register($src2$$reg), ext::sxth);
12849    %}
12850   ins_pipe(ialu_reg_reg);
12851 %}
12852 
12853 // This pattern is automatically generated from aarch64_ad.m4
12854 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12855 instruct AddExtL_sxtw(iRegLNoSp dst, iRegL src1, iRegL src2, immI_32 lshift, immI_32 rshift, rFlagsReg cr)
12856 %{
12857   match(Set dst (AddL src1 (RShiftL (LShiftL src2 lshift) rshift)));
12858   ins_cost(INSN_COST);
12859   format %{ "add  $dst, $src1, $src2, sxtw" %}
12860 
12861    ins_encode %{
12862      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12863             as_Register($src2$$reg), ext::sxtw);
12864    %}
12865   ins_pipe(ialu_reg_reg);
12866 %}
12867 
12868 // This pattern is automatically generated from aarch64_ad.m4
12869 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12870 instruct AddExtL_sxtb(iRegLNoSp dst, iRegL src1, iRegL src2, immI_56 lshift, immI_56 rshift, rFlagsReg cr)
12871 %{
12872   match(Set dst (AddL src1 (RShiftL (LShiftL src2 lshift) rshift)));
12873   ins_cost(INSN_COST);
12874   format %{ "add  $dst, $src1, $src2, sxtb" %}
12875 
12876    ins_encode %{
12877      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12878             as_Register($src2$$reg), ext::sxtb);
12879    %}
12880   ins_pipe(ialu_reg_reg);
12881 %}
12882 
12883 // This pattern is automatically generated from aarch64_ad.m4
12884 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12885 instruct AddExtL_uxtb(iRegLNoSp dst, iRegL src1, iRegL src2, immI_56 lshift, immI_56 rshift, rFlagsReg cr)
12886 %{
12887   match(Set dst (AddL src1 (URShiftL (LShiftL src2 lshift) rshift)));
12888   ins_cost(INSN_COST);
12889   format %{ "add  $dst, $src1, $src2, uxtb" %}
12890 
12891    ins_encode %{
12892      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12893             as_Register($src2$$reg), ext::uxtb);
12894    %}
12895   ins_pipe(ialu_reg_reg);
12896 %}
12897 
12898 // This pattern is automatically generated from aarch64_ad.m4
12899 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12900 instruct AddExtI_uxtb_and(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_255 mask, rFlagsReg cr)
12901 %{
12902   match(Set dst (AddI src1 (AndI src2 mask)));
12903   ins_cost(INSN_COST);
12904   format %{ "addw  $dst, $src1, $src2, uxtb" %}
12905 
12906    ins_encode %{
12907      __ addw(as_Register($dst$$reg), as_Register($src1$$reg),
12908             as_Register($src2$$reg), ext::uxtb);
12909    %}
12910   ins_pipe(ialu_reg_reg);
12911 %}
12912 
12913 // This pattern is automatically generated from aarch64_ad.m4
12914 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12915 instruct AddExtI_uxth_and(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_65535 mask, rFlagsReg cr)
12916 %{
12917   match(Set dst (AddI src1 (AndI src2 mask)));
12918   ins_cost(INSN_COST);
12919   format %{ "addw  $dst, $src1, $src2, uxth" %}
12920 
12921    ins_encode %{
12922      __ addw(as_Register($dst$$reg), as_Register($src1$$reg),
12923             as_Register($src2$$reg), ext::uxth);
12924    %}
12925   ins_pipe(ialu_reg_reg);
12926 %}
12927 
12928 // This pattern is automatically generated from aarch64_ad.m4
12929 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12930 instruct AddExtL_uxtb_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_255 mask, rFlagsReg cr)
12931 %{
12932   match(Set dst (AddL src1 (AndL src2 mask)));
12933   ins_cost(INSN_COST);
12934   format %{ "add  $dst, $src1, $src2, uxtb" %}
12935 
12936    ins_encode %{
12937      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12938             as_Register($src2$$reg), ext::uxtb);
12939    %}
12940   ins_pipe(ialu_reg_reg);
12941 %}
12942 
12943 // This pattern is automatically generated from aarch64_ad.m4
12944 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12945 instruct AddExtL_uxth_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_65535 mask, rFlagsReg cr)
12946 %{
12947   match(Set dst (AddL src1 (AndL src2 mask)));
12948   ins_cost(INSN_COST);
12949   format %{ "add  $dst, $src1, $src2, uxth" %}
12950 
12951    ins_encode %{
12952      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12953             as_Register($src2$$reg), ext::uxth);
12954    %}
12955   ins_pipe(ialu_reg_reg);
12956 %}
12957 
12958 // This pattern is automatically generated from aarch64_ad.m4
12959 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12960 instruct AddExtL_uxtw_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_4294967295 mask, rFlagsReg cr)
12961 %{
12962   match(Set dst (AddL src1 (AndL src2 mask)));
12963   ins_cost(INSN_COST);
12964   format %{ "add  $dst, $src1, $src2, uxtw" %}
12965 
12966    ins_encode %{
12967      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
12968             as_Register($src2$$reg), ext::uxtw);
12969    %}
12970   ins_pipe(ialu_reg_reg);
12971 %}
12972 
12973 // This pattern is automatically generated from aarch64_ad.m4
12974 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12975 instruct SubExtI_uxtb_and(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_255 mask, rFlagsReg cr)
12976 %{
12977   match(Set dst (SubI src1 (AndI src2 mask)));
12978   ins_cost(INSN_COST);
12979   format %{ "subw  $dst, $src1, $src2, uxtb" %}
12980 
12981    ins_encode %{
12982      __ subw(as_Register($dst$$reg), as_Register($src1$$reg),
12983             as_Register($src2$$reg), ext::uxtb);
12984    %}
12985   ins_pipe(ialu_reg_reg);
12986 %}
12987 
12988 // This pattern is automatically generated from aarch64_ad.m4
12989 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
12990 instruct SubExtI_uxth_and(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_65535 mask, rFlagsReg cr)
12991 %{
12992   match(Set dst (SubI src1 (AndI src2 mask)));
12993   ins_cost(INSN_COST);
12994   format %{ "subw  $dst, $src1, $src2, uxth" %}
12995 
12996    ins_encode %{
12997      __ subw(as_Register($dst$$reg), as_Register($src1$$reg),
12998             as_Register($src2$$reg), ext::uxth);
12999    %}
13000   ins_pipe(ialu_reg_reg);
13001 %}
13002 
13003 // This pattern is automatically generated from aarch64_ad.m4
13004 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13005 instruct SubExtL_uxtb_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_255 mask, rFlagsReg cr)
13006 %{
13007   match(Set dst (SubL src1 (AndL src2 mask)));
13008   ins_cost(INSN_COST);
13009   format %{ "sub  $dst, $src1, $src2, uxtb" %}
13010 
13011    ins_encode %{
13012      __ sub(as_Register($dst$$reg), as_Register($src1$$reg),
13013             as_Register($src2$$reg), ext::uxtb);
13014    %}
13015   ins_pipe(ialu_reg_reg);
13016 %}
13017 
13018 // This pattern is automatically generated from aarch64_ad.m4
13019 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13020 instruct SubExtL_uxth_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_65535 mask, rFlagsReg cr)
13021 %{
13022   match(Set dst (SubL src1 (AndL src2 mask)));
13023   ins_cost(INSN_COST);
13024   format %{ "sub  $dst, $src1, $src2, uxth" %}
13025 
13026    ins_encode %{
13027      __ sub(as_Register($dst$$reg), as_Register($src1$$reg),
13028             as_Register($src2$$reg), ext::uxth);
13029    %}
13030   ins_pipe(ialu_reg_reg);
13031 %}
13032 
13033 // This pattern is automatically generated from aarch64_ad.m4
13034 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13035 instruct SubExtL_uxtw_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_4294967295 mask, rFlagsReg cr)
13036 %{
13037   match(Set dst (SubL src1 (AndL src2 mask)));
13038   ins_cost(INSN_COST);
13039   format %{ "sub  $dst, $src1, $src2, uxtw" %}
13040 
13041    ins_encode %{
13042      __ sub(as_Register($dst$$reg), as_Register($src1$$reg),
13043             as_Register($src2$$reg), ext::uxtw);
13044    %}
13045   ins_pipe(ialu_reg_reg);
13046 %}
13047 
13048 
13049 // This pattern is automatically generated from aarch64_ad.m4
13050 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13051 instruct AddExtL_sxtb_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immIExt lshift2, immI_56 lshift1, immI_56 rshift1, rFlagsReg cr)
13052 %{
13053   match(Set dst (AddL src1 (LShiftL (RShiftL (LShiftL src2 lshift1) rshift1) lshift2)));
13054   ins_cost(1.9 * INSN_COST);
13055   format %{ "add  $dst, $src1, $src2, sxtb #lshift2" %}
13056 
13057    ins_encode %{
13058      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
13059             as_Register($src2$$reg), ext::sxtb, ($lshift2$$constant));
13060    %}
13061   ins_pipe(ialu_reg_reg_shift);
13062 %}
13063 
13064 // This pattern is automatically generated from aarch64_ad.m4
13065 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13066 instruct AddExtL_sxth_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immIExt lshift2, immI_48 lshift1, immI_48 rshift1, rFlagsReg cr)
13067 %{
13068   match(Set dst (AddL src1 (LShiftL (RShiftL (LShiftL src2 lshift1) rshift1) lshift2)));
13069   ins_cost(1.9 * INSN_COST);
13070   format %{ "add  $dst, $src1, $src2, sxth #lshift2" %}
13071 
13072    ins_encode %{
13073      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
13074             as_Register($src2$$reg), ext::sxth, ($lshift2$$constant));
13075    %}
13076   ins_pipe(ialu_reg_reg_shift);
13077 %}
13078 
13079 // This pattern is automatically generated from aarch64_ad.m4
13080 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13081 instruct AddExtL_sxtw_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immIExt lshift2, immI_32 lshift1, immI_32 rshift1, rFlagsReg cr)
13082 %{
13083   match(Set dst (AddL src1 (LShiftL (RShiftL (LShiftL src2 lshift1) rshift1) lshift2)));
13084   ins_cost(1.9 * INSN_COST);
13085   format %{ "add  $dst, $src1, $src2, sxtw #lshift2" %}
13086 
13087    ins_encode %{
13088      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
13089             as_Register($src2$$reg), ext::sxtw, ($lshift2$$constant));
13090    %}
13091   ins_pipe(ialu_reg_reg_shift);
13092 %}
13093 
13094 // This pattern is automatically generated from aarch64_ad.m4
13095 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13096 instruct SubExtL_sxtb_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immIExt lshift2, immI_56 lshift1, immI_56 rshift1, rFlagsReg cr)
13097 %{
13098   match(Set dst (SubL src1 (LShiftL (RShiftL (LShiftL src2 lshift1) rshift1) lshift2)));
13099   ins_cost(1.9 * INSN_COST);
13100   format %{ "sub  $dst, $src1, $src2, sxtb #lshift2" %}
13101 
13102    ins_encode %{
13103      __ sub(as_Register($dst$$reg), as_Register($src1$$reg),
13104             as_Register($src2$$reg), ext::sxtb, ($lshift2$$constant));
13105    %}
13106   ins_pipe(ialu_reg_reg_shift);
13107 %}
13108 
13109 // This pattern is automatically generated from aarch64_ad.m4
13110 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13111 instruct SubExtL_sxth_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immIExt lshift2, immI_48 lshift1, immI_48 rshift1, rFlagsReg cr)
13112 %{
13113   match(Set dst (SubL src1 (LShiftL (RShiftL (LShiftL src2 lshift1) rshift1) lshift2)));
13114   ins_cost(1.9 * INSN_COST);
13115   format %{ "sub  $dst, $src1, $src2, sxth #lshift2" %}
13116 
13117    ins_encode %{
13118      __ sub(as_Register($dst$$reg), as_Register($src1$$reg),
13119             as_Register($src2$$reg), ext::sxth, ($lshift2$$constant));
13120    %}
13121   ins_pipe(ialu_reg_reg_shift);
13122 %}
13123 
13124 // This pattern is automatically generated from aarch64_ad.m4
13125 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13126 instruct SubExtL_sxtw_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immIExt lshift2, immI_32 lshift1, immI_32 rshift1, rFlagsReg cr)
13127 %{
13128   match(Set dst (SubL src1 (LShiftL (RShiftL (LShiftL src2 lshift1) rshift1) lshift2)));
13129   ins_cost(1.9 * INSN_COST);
13130   format %{ "sub  $dst, $src1, $src2, sxtw #lshift2" %}
13131 
13132    ins_encode %{
13133      __ sub(as_Register($dst$$reg), as_Register($src1$$reg),
13134             as_Register($src2$$reg), ext::sxtw, ($lshift2$$constant));
13135    %}
13136   ins_pipe(ialu_reg_reg_shift);
13137 %}
13138 
13139 // This pattern is automatically generated from aarch64_ad.m4
13140 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13141 instruct AddExtI_sxtb_shift(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immIExt lshift2, immI_24 lshift1, immI_24 rshift1, rFlagsReg cr)
13142 %{
13143   match(Set dst (AddI src1 (LShiftI (RShiftI (LShiftI src2 lshift1) rshift1) lshift2)));
13144   ins_cost(1.9 * INSN_COST);
13145   format %{ "addw  $dst, $src1, $src2, sxtb #lshift2" %}
13146 
13147    ins_encode %{
13148      __ addw(as_Register($dst$$reg), as_Register($src1$$reg),
13149             as_Register($src2$$reg), ext::sxtb, ($lshift2$$constant));
13150    %}
13151   ins_pipe(ialu_reg_reg_shift);
13152 %}
13153 
13154 // This pattern is automatically generated from aarch64_ad.m4
13155 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13156 instruct AddExtI_sxth_shift(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immIExt lshift2, immI_16 lshift1, immI_16 rshift1, rFlagsReg cr)
13157 %{
13158   match(Set dst (AddI src1 (LShiftI (RShiftI (LShiftI src2 lshift1) rshift1) lshift2)));
13159   ins_cost(1.9 * INSN_COST);
13160   format %{ "addw  $dst, $src1, $src2, sxth #lshift2" %}
13161 
13162    ins_encode %{
13163      __ addw(as_Register($dst$$reg), as_Register($src1$$reg),
13164             as_Register($src2$$reg), ext::sxth, ($lshift2$$constant));
13165    %}
13166   ins_pipe(ialu_reg_reg_shift);
13167 %}
13168 
13169 // This pattern is automatically generated from aarch64_ad.m4
13170 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13171 instruct SubExtI_sxtb_shift(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immIExt lshift2, immI_24 lshift1, immI_24 rshift1, rFlagsReg cr)
13172 %{
13173   match(Set dst (SubI src1 (LShiftI (RShiftI (LShiftI src2 lshift1) rshift1) lshift2)));
13174   ins_cost(1.9 * INSN_COST);
13175   format %{ "subw  $dst, $src1, $src2, sxtb #lshift2" %}
13176 
13177    ins_encode %{
13178      __ subw(as_Register($dst$$reg), as_Register($src1$$reg),
13179             as_Register($src2$$reg), ext::sxtb, ($lshift2$$constant));
13180    %}
13181   ins_pipe(ialu_reg_reg_shift);
13182 %}
13183 
13184 // This pattern is automatically generated from aarch64_ad.m4
13185 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13186 instruct SubExtI_sxth_shift(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immIExt lshift2, immI_16 lshift1, immI_16 rshift1, rFlagsReg cr)
13187 %{
13188   match(Set dst (SubI src1 (LShiftI (RShiftI (LShiftI src2 lshift1) rshift1) lshift2)));
13189   ins_cost(1.9 * INSN_COST);
13190   format %{ "subw  $dst, $src1, $src2, sxth #lshift2" %}
13191 
13192    ins_encode %{
13193      __ subw(as_Register($dst$$reg), as_Register($src1$$reg),
13194             as_Register($src2$$reg), ext::sxth, ($lshift2$$constant));
13195    %}
13196   ins_pipe(ialu_reg_reg_shift);
13197 %}
13198 
13199 // This pattern is automatically generated from aarch64_ad.m4
13200 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13201 instruct AddExtI_shift(iRegLNoSp dst, iRegL src1, iRegIorL2I src2, immIExt lshift, rFlagsReg cr)
13202 %{
13203   match(Set dst (AddL src1 (LShiftL (ConvI2L src2) lshift)));
13204   ins_cost(1.9 * INSN_COST);
13205   format %{ "add  $dst, $src1, $src2, sxtw #lshift" %}
13206 
13207    ins_encode %{
13208      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
13209             as_Register($src2$$reg), ext::sxtw, ($lshift$$constant));
13210    %}
13211   ins_pipe(ialu_reg_reg_shift);
13212 %}
13213 
13214 // This pattern is automatically generated from aarch64_ad.m4
13215 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13216 instruct SubExtI_shift(iRegLNoSp dst, iRegL src1, iRegIorL2I src2, immIExt lshift, rFlagsReg cr)
13217 %{
13218   match(Set dst (SubL src1 (LShiftL (ConvI2L src2) lshift)));
13219   ins_cost(1.9 * INSN_COST);
13220   format %{ "sub  $dst, $src1, $src2, sxtw #lshift" %}
13221 
13222    ins_encode %{
13223      __ sub(as_Register($dst$$reg), as_Register($src1$$reg),
13224             as_Register($src2$$reg), ext::sxtw, ($lshift$$constant));
13225    %}
13226   ins_pipe(ialu_reg_reg_shift);
13227 %}
13228 
13229 // This pattern is automatically generated from aarch64_ad.m4
13230 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13231 instruct AddExtL_uxtb_and_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immL_255 mask, immIExt lshift, rFlagsReg cr)
13232 %{
13233   match(Set dst (AddL src1 (LShiftL (AndL src2 mask) lshift)));
13234   ins_cost(1.9 * INSN_COST);
13235   format %{ "add  $dst, $src1, $src2, uxtb #lshift" %}
13236 
13237    ins_encode %{
13238      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
13239             as_Register($src2$$reg), ext::uxtb, ($lshift$$constant));
13240    %}
13241   ins_pipe(ialu_reg_reg_shift);
13242 %}
13243 
13244 // This pattern is automatically generated from aarch64_ad.m4
13245 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13246 instruct AddExtL_uxth_and_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immL_65535 mask, immIExt lshift, rFlagsReg cr)
13247 %{
13248   match(Set dst (AddL src1 (LShiftL (AndL src2 mask) lshift)));
13249   ins_cost(1.9 * INSN_COST);
13250   format %{ "add  $dst, $src1, $src2, uxth #lshift" %}
13251 
13252    ins_encode %{
13253      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
13254             as_Register($src2$$reg), ext::uxth, ($lshift$$constant));
13255    %}
13256   ins_pipe(ialu_reg_reg_shift);
13257 %}
13258 
13259 // This pattern is automatically generated from aarch64_ad.m4
13260 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13261 instruct AddExtL_uxtw_and_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immL_4294967295 mask, immIExt lshift, rFlagsReg cr)
13262 %{
13263   match(Set dst (AddL src1 (LShiftL (AndL src2 mask) lshift)));
13264   ins_cost(1.9 * INSN_COST);
13265   format %{ "add  $dst, $src1, $src2, uxtw #lshift" %}
13266 
13267    ins_encode %{
13268      __ add(as_Register($dst$$reg), as_Register($src1$$reg),
13269             as_Register($src2$$reg), ext::uxtw, ($lshift$$constant));
13270    %}
13271   ins_pipe(ialu_reg_reg_shift);
13272 %}
13273 
13274 // This pattern is automatically generated from aarch64_ad.m4
13275 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13276 instruct SubExtL_uxtb_and_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immL_255 mask, immIExt lshift, rFlagsReg cr)
13277 %{
13278   match(Set dst (SubL src1 (LShiftL (AndL src2 mask) lshift)));
13279   ins_cost(1.9 * INSN_COST);
13280   format %{ "sub  $dst, $src1, $src2, uxtb #lshift" %}
13281 
13282    ins_encode %{
13283      __ sub(as_Register($dst$$reg), as_Register($src1$$reg),
13284             as_Register($src2$$reg), ext::uxtb, ($lshift$$constant));
13285    %}
13286   ins_pipe(ialu_reg_reg_shift);
13287 %}
13288 
13289 // This pattern is automatically generated from aarch64_ad.m4
13290 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13291 instruct SubExtL_uxth_and_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immL_65535 mask, immIExt lshift, rFlagsReg cr)
13292 %{
13293   match(Set dst (SubL src1 (LShiftL (AndL src2 mask) lshift)));
13294   ins_cost(1.9 * INSN_COST);
13295   format %{ "sub  $dst, $src1, $src2, uxth #lshift" %}
13296 
13297    ins_encode %{
13298      __ sub(as_Register($dst$$reg), as_Register($src1$$reg),
13299             as_Register($src2$$reg), ext::uxth, ($lshift$$constant));
13300    %}
13301   ins_pipe(ialu_reg_reg_shift);
13302 %}
13303 
13304 // This pattern is automatically generated from aarch64_ad.m4
13305 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13306 instruct SubExtL_uxtw_and_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immL_4294967295 mask, immIExt lshift, rFlagsReg cr)
13307 %{
13308   match(Set dst (SubL src1 (LShiftL (AndL src2 mask) lshift)));
13309   ins_cost(1.9 * INSN_COST);
13310   format %{ "sub  $dst, $src1, $src2, uxtw #lshift" %}
13311 
13312    ins_encode %{
13313      __ sub(as_Register($dst$$reg), as_Register($src1$$reg),
13314             as_Register($src2$$reg), ext::uxtw, ($lshift$$constant));
13315    %}
13316   ins_pipe(ialu_reg_reg_shift);
13317 %}
13318 
13319 // This pattern is automatically generated from aarch64_ad.m4
13320 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13321 instruct AddExtI_uxtb_and_shift(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_255 mask, immIExt lshift, rFlagsReg cr)
13322 %{
13323   match(Set dst (AddI src1 (LShiftI (AndI src2 mask) lshift)));
13324   ins_cost(1.9 * INSN_COST);
13325   format %{ "addw  $dst, $src1, $src2, uxtb #lshift" %}
13326 
13327    ins_encode %{
13328      __ addw(as_Register($dst$$reg), as_Register($src1$$reg),
13329             as_Register($src2$$reg), ext::uxtb, ($lshift$$constant));
13330    %}
13331   ins_pipe(ialu_reg_reg_shift);
13332 %}
13333 
13334 // This pattern is automatically generated from aarch64_ad.m4
13335 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13336 instruct AddExtI_uxth_and_shift(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_65535 mask, immIExt lshift, rFlagsReg cr)
13337 %{
13338   match(Set dst (AddI src1 (LShiftI (AndI src2 mask) lshift)));
13339   ins_cost(1.9 * INSN_COST);
13340   format %{ "addw  $dst, $src1, $src2, uxth #lshift" %}
13341 
13342    ins_encode %{
13343      __ addw(as_Register($dst$$reg), as_Register($src1$$reg),
13344             as_Register($src2$$reg), ext::uxth, ($lshift$$constant));
13345    %}
13346   ins_pipe(ialu_reg_reg_shift);
13347 %}
13348 
13349 // This pattern is automatically generated from aarch64_ad.m4
13350 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13351 instruct SubExtI_uxtb_and_shift(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_255 mask, immIExt lshift, rFlagsReg cr)
13352 %{
13353   match(Set dst (SubI src1 (LShiftI (AndI src2 mask) lshift)));
13354   ins_cost(1.9 * INSN_COST);
13355   format %{ "subw  $dst, $src1, $src2, uxtb #lshift" %}
13356 
13357    ins_encode %{
13358      __ subw(as_Register($dst$$reg), as_Register($src1$$reg),
13359             as_Register($src2$$reg), ext::uxtb, ($lshift$$constant));
13360    %}
13361   ins_pipe(ialu_reg_reg_shift);
13362 %}
13363 
13364 // This pattern is automatically generated from aarch64_ad.m4
13365 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13366 instruct SubExtI_uxth_and_shift(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_65535 mask, immIExt lshift, rFlagsReg cr)
13367 %{
13368   match(Set dst (SubI src1 (LShiftI (AndI src2 mask) lshift)));
13369   ins_cost(1.9 * INSN_COST);
13370   format %{ "subw  $dst, $src1, $src2, uxth #lshift" %}
13371 
13372    ins_encode %{
13373      __ subw(as_Register($dst$$reg), as_Register($src1$$reg),
13374             as_Register($src2$$reg), ext::uxth, ($lshift$$constant));
13375    %}
13376   ins_pipe(ialu_reg_reg_shift);
13377 %}
13378 
13379 // This pattern is automatically generated from aarch64_ad.m4
13380 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13381 instruct cmovI_reg_reg_lt(iRegINoSp dst, iRegI src1, iRegI src2, rFlagsReg cr)
13382 %{
13383   effect(DEF dst, USE src1, USE src2, USE cr);
13384   ins_cost(INSN_COST * 2);
13385   format %{ "cselw $dst, $src1, $src2 lt\t"  %}
13386 
13387   ins_encode %{
13388     __ cselw($dst$$Register,
13389              $src1$$Register,
13390              $src2$$Register,
13391              Assembler::LT);
13392   %}
13393   ins_pipe(icond_reg_reg);
13394 %}
13395 
13396 // This pattern is automatically generated from aarch64_ad.m4
13397 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13398 instruct cmovI_reg_reg_gt(iRegINoSp dst, iRegI src1, iRegI src2, rFlagsReg cr)
13399 %{
13400   effect(DEF dst, USE src1, USE src2, USE cr);
13401   ins_cost(INSN_COST * 2);
13402   format %{ "cselw $dst, $src1, $src2 gt\t"  %}
13403 
13404   ins_encode %{
13405     __ cselw($dst$$Register,
13406              $src1$$Register,
13407              $src2$$Register,
13408              Assembler::GT);
13409   %}
13410   ins_pipe(icond_reg_reg);
13411 %}
13412 
13413 // This pattern is automatically generated from aarch64_ad.m4
13414 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13415 instruct cmovI_reg_imm0_lt(iRegINoSp dst, iRegI src1, rFlagsReg cr)
13416 %{
13417   effect(DEF dst, USE src1, USE cr);
13418   ins_cost(INSN_COST * 2);
13419   format %{ "cselw $dst, $src1, zr lt\t"  %}
13420 
13421   ins_encode %{
13422     __ cselw($dst$$Register,
13423              $src1$$Register,
13424              zr,
13425              Assembler::LT);
13426   %}
13427   ins_pipe(icond_reg);
13428 %}
13429 
13430 // This pattern is automatically generated from aarch64_ad.m4
13431 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13432 instruct cmovI_reg_imm0_gt(iRegINoSp dst, iRegI src1, rFlagsReg cr)
13433 %{
13434   effect(DEF dst, USE src1, USE cr);
13435   ins_cost(INSN_COST * 2);
13436   format %{ "cselw $dst, $src1, zr gt\t"  %}
13437 
13438   ins_encode %{
13439     __ cselw($dst$$Register,
13440              $src1$$Register,
13441              zr,
13442              Assembler::GT);
13443   %}
13444   ins_pipe(icond_reg);
13445 %}
13446 
13447 // This pattern is automatically generated from aarch64_ad.m4
13448 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13449 instruct cmovI_reg_imm1_le(iRegINoSp dst, iRegI src1, rFlagsReg cr)
13450 %{
13451   effect(DEF dst, USE src1, USE cr);
13452   ins_cost(INSN_COST * 2);
13453   format %{ "csincw $dst, $src1, zr le\t"  %}
13454 
13455   ins_encode %{
13456     __ csincw($dst$$Register,
13457              $src1$$Register,
13458              zr,
13459              Assembler::LE);
13460   %}
13461   ins_pipe(icond_reg);
13462 %}
13463 
13464 // This pattern is automatically generated from aarch64_ad.m4
13465 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13466 instruct cmovI_reg_imm1_gt(iRegINoSp dst, iRegI src1, rFlagsReg cr)
13467 %{
13468   effect(DEF dst, USE src1, USE cr);
13469   ins_cost(INSN_COST * 2);
13470   format %{ "csincw $dst, $src1, zr gt\t"  %}
13471 
13472   ins_encode %{
13473     __ csincw($dst$$Register,
13474              $src1$$Register,
13475              zr,
13476              Assembler::GT);
13477   %}
13478   ins_pipe(icond_reg);
13479 %}
13480 
13481 // This pattern is automatically generated from aarch64_ad.m4
13482 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13483 instruct cmovI_reg_immM1_lt(iRegINoSp dst, iRegI src1, rFlagsReg cr)
13484 %{
13485   effect(DEF dst, USE src1, USE cr);
13486   ins_cost(INSN_COST * 2);
13487   format %{ "csinvw $dst, $src1, zr lt\t"  %}
13488 
13489   ins_encode %{
13490     __ csinvw($dst$$Register,
13491              $src1$$Register,
13492              zr,
13493              Assembler::LT);
13494   %}
13495   ins_pipe(icond_reg);
13496 %}
13497 
13498 // This pattern is automatically generated from aarch64_ad.m4
13499 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13500 instruct cmovI_reg_immM1_ge(iRegINoSp dst, iRegI src1, rFlagsReg cr)
13501 %{
13502   effect(DEF dst, USE src1, USE cr);
13503   ins_cost(INSN_COST * 2);
13504   format %{ "csinvw $dst, $src1, zr ge\t"  %}
13505 
13506   ins_encode %{
13507     __ csinvw($dst$$Register,
13508              $src1$$Register,
13509              zr,
13510              Assembler::GE);
13511   %}
13512   ins_pipe(icond_reg);
13513 %}
13514 
13515 // This pattern is automatically generated from aarch64_ad.m4
13516 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13517 instruct minI_reg_imm0(iRegINoSp dst, iRegIorL2I src, immI0 imm)
13518 %{
13519   match(Set dst (MinI src imm));
13520   ins_cost(INSN_COST * 3);
13521   expand %{
13522     rFlagsReg cr;
13523     compI_reg_imm0(cr, src);
13524     cmovI_reg_imm0_lt(dst, src, cr);
13525   %}
13526 %}
13527 
13528 // This pattern is automatically generated from aarch64_ad.m4
13529 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13530 instruct minI_imm0_reg(iRegINoSp dst, immI0 imm, iRegIorL2I src)
13531 %{
13532   match(Set dst (MinI imm src));
13533   ins_cost(INSN_COST * 3);
13534   expand %{
13535     rFlagsReg cr;
13536     compI_reg_imm0(cr, src);
13537     cmovI_reg_imm0_lt(dst, src, cr);
13538   %}
13539 %}
13540 
13541 // This pattern is automatically generated from aarch64_ad.m4
13542 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13543 instruct minI_reg_imm1(iRegINoSp dst, iRegIorL2I src, immI_1 imm)
13544 %{
13545   match(Set dst (MinI src imm));
13546   ins_cost(INSN_COST * 3);
13547   expand %{
13548     rFlagsReg cr;
13549     compI_reg_imm0(cr, src);
13550     cmovI_reg_imm1_le(dst, src, cr);
13551   %}
13552 %}
13553 
13554 // This pattern is automatically generated from aarch64_ad.m4
13555 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13556 instruct minI_imm1_reg(iRegINoSp dst, immI_1 imm, iRegIorL2I src)
13557 %{
13558   match(Set dst (MinI imm src));
13559   ins_cost(INSN_COST * 3);
13560   expand %{
13561     rFlagsReg cr;
13562     compI_reg_imm0(cr, src);
13563     cmovI_reg_imm1_le(dst, src, cr);
13564   %}
13565 %}
13566 
13567 // This pattern is automatically generated from aarch64_ad.m4
13568 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13569 instruct minI_reg_immM1(iRegINoSp dst, iRegIorL2I src, immI_M1 imm)
13570 %{
13571   match(Set dst (MinI src imm));
13572   ins_cost(INSN_COST * 3);
13573   expand %{
13574     rFlagsReg cr;
13575     compI_reg_imm0(cr, src);
13576     cmovI_reg_immM1_lt(dst, src, cr);
13577   %}
13578 %}
13579 
13580 // This pattern is automatically generated from aarch64_ad.m4
13581 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13582 instruct minI_immM1_reg(iRegINoSp dst, immI_M1 imm, iRegIorL2I src)
13583 %{
13584   match(Set dst (MinI imm src));
13585   ins_cost(INSN_COST * 3);
13586   expand %{
13587     rFlagsReg cr;
13588     compI_reg_imm0(cr, src);
13589     cmovI_reg_immM1_lt(dst, src, cr);
13590   %}
13591 %}
13592 
13593 // This pattern is automatically generated from aarch64_ad.m4
13594 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13595 instruct maxI_reg_imm0(iRegINoSp dst, iRegIorL2I src, immI0 imm)
13596 %{
13597   match(Set dst (MaxI src imm));
13598   ins_cost(INSN_COST * 3);
13599   expand %{
13600     rFlagsReg cr;
13601     compI_reg_imm0(cr, src);
13602     cmovI_reg_imm0_gt(dst, src, cr);
13603   %}
13604 %}
13605 
13606 // This pattern is automatically generated from aarch64_ad.m4
13607 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13608 instruct maxI_imm0_reg(iRegINoSp dst, immI0 imm, iRegIorL2I src)
13609 %{
13610   match(Set dst (MaxI imm src));
13611   ins_cost(INSN_COST * 3);
13612   expand %{
13613     rFlagsReg cr;
13614     compI_reg_imm0(cr, src);
13615     cmovI_reg_imm0_gt(dst, src, cr);
13616   %}
13617 %}
13618 
13619 // This pattern is automatically generated from aarch64_ad.m4
13620 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13621 instruct maxI_reg_imm1(iRegINoSp dst, iRegIorL2I src, immI_1 imm)
13622 %{
13623   match(Set dst (MaxI src imm));
13624   ins_cost(INSN_COST * 3);
13625   expand %{
13626     rFlagsReg cr;
13627     compI_reg_imm0(cr, src);
13628     cmovI_reg_imm1_gt(dst, src, cr);
13629   %}
13630 %}
13631 
13632 // This pattern is automatically generated from aarch64_ad.m4
13633 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13634 instruct maxI_imm1_reg(iRegINoSp dst, immI_1 imm, iRegIorL2I src)
13635 %{
13636   match(Set dst (MaxI imm src));
13637   ins_cost(INSN_COST * 3);
13638   expand %{
13639     rFlagsReg cr;
13640     compI_reg_imm0(cr, src);
13641     cmovI_reg_imm1_gt(dst, src, cr);
13642   %}
13643 %}
13644 
13645 // This pattern is automatically generated from aarch64_ad.m4
13646 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13647 instruct maxI_reg_immM1(iRegINoSp dst, iRegIorL2I src, immI_M1 imm)
13648 %{
13649   match(Set dst (MaxI src imm));
13650   ins_cost(INSN_COST * 3);
13651   expand %{
13652     rFlagsReg cr;
13653     compI_reg_imm0(cr, src);
13654     cmovI_reg_immM1_ge(dst, src, cr);
13655   %}
13656 %}
13657 
13658 // This pattern is automatically generated from aarch64_ad.m4
13659 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13660 instruct maxI_immM1_reg(iRegINoSp dst, immI_M1 imm, iRegIorL2I src)
13661 %{
13662   match(Set dst (MaxI imm src));
13663   ins_cost(INSN_COST * 3);
13664   expand %{
13665     rFlagsReg cr;
13666     compI_reg_imm0(cr, src);
13667     cmovI_reg_immM1_ge(dst, src, cr);
13668   %}
13669 %}
13670 
13671 // This pattern is automatically generated from aarch64_ad.m4
13672 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13673 instruct bits_reverse_I(iRegINoSp dst, iRegIorL2I src)
13674 %{
13675   match(Set dst (ReverseI src));
13676   ins_cost(INSN_COST);
13677   format %{ "rbitw  $dst, $src" %}
13678   ins_encode %{
13679     __ rbitw($dst$$Register, $src$$Register);
13680   %}
13681   ins_pipe(ialu_reg);
13682 %}
13683 
13684 // This pattern is automatically generated from aarch64_ad.m4
13685 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE
13686 instruct bits_reverse_L(iRegLNoSp dst, iRegL src)
13687 %{
13688   match(Set dst (ReverseL src));
13689   ins_cost(INSN_COST);
13690   format %{ "rbit  $dst, $src" %}
13691   ins_encode %{
13692     __ rbit($dst$$Register, $src$$Register);
13693   %}
13694   ins_pipe(ialu_reg);
13695 %}
13696 
13697 
13698 // END This section of the file is automatically generated. Do not edit --------------
13699 
13700 
13701 // ============================================================================
13702 // Floating Point Arithmetic Instructions
13703 
13704 instruct addHF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{
13705   match(Set dst (AddHF src1 src2));
13706   format %{ "faddh $dst, $src1, $src2" %}
13707   ins_encode %{
13708     __ faddh($dst$$FloatRegister,
13709              $src1$$FloatRegister,
13710              $src2$$FloatRegister);
13711   %}
13712   ins_pipe(fp_dop_reg_reg_s);
13713 %}
13714 
13715 instruct addF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{
13716   match(Set dst (AddF src1 src2));
13717 
13718   ins_cost(INSN_COST * 5);
13719   format %{ "fadds   $dst, $src1, $src2" %}
13720 
13721   ins_encode %{
13722     __ fadds(as_FloatRegister($dst$$reg),
13723              as_FloatRegister($src1$$reg),
13724              as_FloatRegister($src2$$reg));
13725   %}
13726 
13727   ins_pipe(fp_dop_reg_reg_s);
13728 %}
13729 
13730 instruct addD_reg_reg(vRegD dst, vRegD src1, vRegD src2) %{
13731   match(Set dst (AddD src1 src2));
13732 
13733   ins_cost(INSN_COST * 5);
13734   format %{ "faddd   $dst, $src1, $src2" %}
13735 
13736   ins_encode %{
13737     __ faddd(as_FloatRegister($dst$$reg),
13738              as_FloatRegister($src1$$reg),
13739              as_FloatRegister($src2$$reg));
13740   %}
13741 
13742   ins_pipe(fp_dop_reg_reg_d);
13743 %}
13744 
13745 instruct subHF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{
13746   match(Set dst (SubHF src1 src2));
13747   format %{ "fsubh $dst, $src1, $src2" %}
13748   ins_encode %{
13749     __ fsubh($dst$$FloatRegister,
13750              $src1$$FloatRegister,
13751              $src2$$FloatRegister);
13752   %}
13753   ins_pipe(fp_dop_reg_reg_s);
13754 %}
13755 
13756 instruct subF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{
13757   match(Set dst (SubF src1 src2));
13758 
13759   ins_cost(INSN_COST * 5);
13760   format %{ "fsubs   $dst, $src1, $src2" %}
13761 
13762   ins_encode %{
13763     __ fsubs(as_FloatRegister($dst$$reg),
13764              as_FloatRegister($src1$$reg),
13765              as_FloatRegister($src2$$reg));
13766   %}
13767 
13768   ins_pipe(fp_dop_reg_reg_s);
13769 %}
13770 
13771 instruct subD_reg_reg(vRegD dst, vRegD src1, vRegD src2) %{
13772   match(Set dst (SubD src1 src2));
13773 
13774   ins_cost(INSN_COST * 5);
13775   format %{ "fsubd   $dst, $src1, $src2" %}
13776 
13777   ins_encode %{
13778     __ fsubd(as_FloatRegister($dst$$reg),
13779              as_FloatRegister($src1$$reg),
13780              as_FloatRegister($src2$$reg));
13781   %}
13782 
13783   ins_pipe(fp_dop_reg_reg_d);
13784 %}
13785 
13786 instruct mulHF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{
13787   match(Set dst (MulHF src1 src2));
13788   format %{ "fmulh $dst, $src1, $src2" %}
13789   ins_encode %{
13790     __ fmulh($dst$$FloatRegister,
13791              $src1$$FloatRegister,
13792              $src2$$FloatRegister);
13793   %}
13794   ins_pipe(fp_dop_reg_reg_s);
13795 %}
13796 
13797 instruct mulF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{
13798   match(Set dst (MulF src1 src2));
13799 
13800   ins_cost(INSN_COST * 6);
13801   format %{ "fmuls   $dst, $src1, $src2" %}
13802 
13803   ins_encode %{
13804     __ fmuls(as_FloatRegister($dst$$reg),
13805              as_FloatRegister($src1$$reg),
13806              as_FloatRegister($src2$$reg));
13807   %}
13808 
13809   ins_pipe(fp_dop_reg_reg_s);
13810 %}
13811 
13812 instruct mulD_reg_reg(vRegD dst, vRegD src1, vRegD src2) %{
13813   match(Set dst (MulD src1 src2));
13814 
13815   ins_cost(INSN_COST * 6);
13816   format %{ "fmuld   $dst, $src1, $src2" %}
13817 
13818   ins_encode %{
13819     __ fmuld(as_FloatRegister($dst$$reg),
13820              as_FloatRegister($src1$$reg),
13821              as_FloatRegister($src2$$reg));
13822   %}
13823 
13824   ins_pipe(fp_dop_reg_reg_d);
13825 %}
13826 
13827 // src1 * src2 + src3 (half-precision float)
13828 instruct maddHF_reg_reg(vRegF dst, vRegF src1, vRegF src2, vRegF src3) %{
13829   match(Set dst (FmaHF src3 (Binary src1 src2)));
13830   format %{ "fmaddh $dst, $src1, $src2, $src3" %}
13831   ins_encode %{
13832     assert(UseFMA, "Needs FMA instructions support.");
13833     __ fmaddh($dst$$FloatRegister,
13834               $src1$$FloatRegister,
13835               $src2$$FloatRegister,
13836               $src3$$FloatRegister);
13837   %}
13838   ins_pipe(pipe_class_default);
13839 %}
13840 
13841 // src1 * src2 + src3
13842 instruct maddF_reg_reg(vRegF dst, vRegF src1, vRegF src2, vRegF src3) %{
13843   match(Set dst (FmaF src3 (Binary src1 src2)));
13844 
13845   format %{ "fmadds   $dst, $src1, $src2, $src3" %}
13846 
13847   ins_encode %{
13848     assert(UseFMA, "Needs FMA instructions support.");
13849     __ fmadds(as_FloatRegister($dst$$reg),
13850              as_FloatRegister($src1$$reg),
13851              as_FloatRegister($src2$$reg),
13852              as_FloatRegister($src3$$reg));
13853   %}
13854 
13855   ins_pipe(pipe_class_default);
13856 %}
13857 
13858 // src1 * src2 + src3
13859 instruct maddD_reg_reg(vRegD dst, vRegD src1, vRegD src2, vRegD src3) %{
13860   match(Set dst (FmaD src3 (Binary src1 src2)));
13861 
13862   format %{ "fmaddd   $dst, $src1, $src2, $src3" %}
13863 
13864   ins_encode %{
13865     assert(UseFMA, "Needs FMA instructions support.");
13866     __ fmaddd(as_FloatRegister($dst$$reg),
13867              as_FloatRegister($src1$$reg),
13868              as_FloatRegister($src2$$reg),
13869              as_FloatRegister($src3$$reg));
13870   %}
13871 
13872   ins_pipe(pipe_class_default);
13873 %}
13874 
13875 // src1 * (-src2) + src3
13876 // "(-src1) * src2 + src3" has been idealized to "src2 * (-src1) + src3"
13877 instruct msubF_reg_reg(vRegF dst, vRegF src1, vRegF src2, vRegF src3) %{
13878   match(Set dst (FmaF src3 (Binary src1 (NegF src2))));
13879 
13880   format %{ "fmsubs   $dst, $src1, $src2, $src3" %}
13881 
13882   ins_encode %{
13883     assert(UseFMA, "Needs FMA instructions support.");
13884     __ fmsubs(as_FloatRegister($dst$$reg),
13885               as_FloatRegister($src1$$reg),
13886               as_FloatRegister($src2$$reg),
13887               as_FloatRegister($src3$$reg));
13888   %}
13889 
13890   ins_pipe(pipe_class_default);
13891 %}
13892 
13893 // src1 * (-src2) + src3
13894 // "(-src1) * src2 + src3" has been idealized to "src2 * (-src1) + src3"
13895 instruct msubD_reg_reg(vRegD dst, vRegD src1, vRegD src2, vRegD src3) %{
13896   match(Set dst (FmaD src3 (Binary src1 (NegD src2))));
13897 
13898   format %{ "fmsubd   $dst, $src1, $src2, $src3" %}
13899 
13900   ins_encode %{
13901     assert(UseFMA, "Needs FMA instructions support.");
13902     __ fmsubd(as_FloatRegister($dst$$reg),
13903               as_FloatRegister($src1$$reg),
13904               as_FloatRegister($src2$$reg),
13905               as_FloatRegister($src3$$reg));
13906   %}
13907 
13908   ins_pipe(pipe_class_default);
13909 %}
13910 
13911 // src1 * (-src2) - src3
13912 // "(-src1) * src2 - src3" has been idealized to "src2 * (-src1) - src3"
13913 instruct mnaddF_reg_reg(vRegF dst, vRegF src1, vRegF src2, vRegF src3) %{
13914   match(Set dst (FmaF (NegF src3) (Binary src1 (NegF src2))));
13915 
13916   format %{ "fnmadds  $dst, $src1, $src2, $src3" %}
13917 
13918   ins_encode %{
13919     assert(UseFMA, "Needs FMA instructions support.");
13920     __ fnmadds(as_FloatRegister($dst$$reg),
13921                as_FloatRegister($src1$$reg),
13922                as_FloatRegister($src2$$reg),
13923                as_FloatRegister($src3$$reg));
13924   %}
13925 
13926   ins_pipe(pipe_class_default);
13927 %}
13928 
13929 // src1 * (-src2) - src3
13930 // "(-src1) * src2 - src3" has been idealized to "src2 * (-src1) - src3"
13931 instruct mnaddD_reg_reg(vRegD dst, vRegD src1, vRegD src2, vRegD src3) %{
13932   match(Set dst (FmaD (NegD src3) (Binary src1 (NegD src2))));
13933 
13934   format %{ "fnmaddd   $dst, $src1, $src2, $src3" %}
13935 
13936   ins_encode %{
13937     assert(UseFMA, "Needs FMA instructions support.");
13938     __ fnmaddd(as_FloatRegister($dst$$reg),
13939                as_FloatRegister($src1$$reg),
13940                as_FloatRegister($src2$$reg),
13941                as_FloatRegister($src3$$reg));
13942   %}
13943 
13944   ins_pipe(pipe_class_default);
13945 %}
13946 
13947 // src1 * src2 - src3
13948 instruct mnsubF_reg_reg(vRegF dst, vRegF src1, vRegF src2, vRegF src3, immF0 zero) %{
13949   match(Set dst (FmaF (NegF src3) (Binary src1 src2)));
13950 
13951   format %{ "fnmsubs  $dst, $src1, $src2, $src3" %}
13952 
13953   ins_encode %{
13954     assert(UseFMA, "Needs FMA instructions support.");
13955     __ fnmsubs(as_FloatRegister($dst$$reg),
13956                as_FloatRegister($src1$$reg),
13957                as_FloatRegister($src2$$reg),
13958                as_FloatRegister($src3$$reg));
13959   %}
13960 
13961   ins_pipe(pipe_class_default);
13962 %}
13963 
13964 // src1 * src2 - src3
13965 instruct mnsubD_reg_reg(vRegD dst, vRegD src1, vRegD src2, vRegD src3, immD0 zero) %{
13966   match(Set dst (FmaD (NegD src3) (Binary src1 src2)));
13967 
13968   format %{ "fnmsubd   $dst, $src1, $src2, $src3" %}
13969 
13970   ins_encode %{
13971     assert(UseFMA, "Needs FMA instructions support.");
13972     // n.b. insn name should be fnmsubd
13973     __ fnmsub(as_FloatRegister($dst$$reg),
13974               as_FloatRegister($src1$$reg),
13975               as_FloatRegister($src2$$reg),
13976               as_FloatRegister($src3$$reg));
13977   %}
13978 
13979   ins_pipe(pipe_class_default);
13980 %}
13981 
13982 // Math.max(HH)H (half-precision float)
13983 instruct maxHF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{
13984   match(Set dst (MaxHF src1 src2));
13985   format %{ "fmaxh $dst, $src1, $src2" %}
13986   ins_encode %{
13987     __ fmaxh($dst$$FloatRegister,
13988              $src1$$FloatRegister,
13989              $src2$$FloatRegister);
13990   %}
13991   ins_pipe(fp_dop_reg_reg_s);
13992 %}
13993 
13994 // Math.min(HH)H (half-precision float)
13995 instruct minHF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{
13996   match(Set dst (MinHF src1 src2));
13997   format %{ "fminh $dst, $src1, $src2" %}
13998   ins_encode %{
13999     __ fminh($dst$$FloatRegister,
14000              $src1$$FloatRegister,
14001              $src2$$FloatRegister);
14002   %}
14003   ins_pipe(fp_dop_reg_reg_s);
14004 %}
14005 
14006 // Math.max(FF)F
14007 instruct maxF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{
14008   match(Set dst (MaxF src1 src2));
14009 
14010   format %{ "fmaxs   $dst, $src1, $src2" %}
14011   ins_encode %{
14012     __ fmaxs(as_FloatRegister($dst$$reg),
14013              as_FloatRegister($src1$$reg),
14014              as_FloatRegister($src2$$reg));
14015   %}
14016 
14017   ins_pipe(fp_dop_reg_reg_s);
14018 %}
14019 
14020 // Math.min(FF)F
14021 instruct minF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{
14022   match(Set dst (MinF src1 src2));
14023 
14024   format %{ "fmins   $dst, $src1, $src2" %}
14025   ins_encode %{
14026     __ fmins(as_FloatRegister($dst$$reg),
14027              as_FloatRegister($src1$$reg),
14028              as_FloatRegister($src2$$reg));
14029   %}
14030 
14031   ins_pipe(fp_dop_reg_reg_s);
14032 %}
14033 
14034 // Math.max(DD)D
14035 instruct maxD_reg_reg(vRegD dst, vRegD src1, vRegD src2) %{
14036   match(Set dst (MaxD src1 src2));
14037 
14038   format %{ "fmaxd   $dst, $src1, $src2" %}
14039   ins_encode %{
14040     __ fmaxd(as_FloatRegister($dst$$reg),
14041              as_FloatRegister($src1$$reg),
14042              as_FloatRegister($src2$$reg));
14043   %}
14044 
14045   ins_pipe(fp_dop_reg_reg_d);
14046 %}
14047 
14048 // Math.min(DD)D
14049 instruct minD_reg_reg(vRegD dst, vRegD src1, vRegD src2) %{
14050   match(Set dst (MinD src1 src2));
14051 
14052   format %{ "fmind   $dst, $src1, $src2" %}
14053   ins_encode %{
14054     __ fmind(as_FloatRegister($dst$$reg),
14055              as_FloatRegister($src1$$reg),
14056              as_FloatRegister($src2$$reg));
14057   %}
14058 
14059   ins_pipe(fp_dop_reg_reg_d);
14060 %}
14061 
14062 instruct divHF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{
14063   match(Set dst (DivHF src1  src2));
14064   format %{ "fdivh $dst, $src1, $src2" %}
14065   ins_encode %{
14066     __ fdivh($dst$$FloatRegister,
14067              $src1$$FloatRegister,
14068              $src2$$FloatRegister);
14069   %}
14070   ins_pipe(fp_div_s);
14071 %}
14072 
14073 instruct divF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{
14074   match(Set dst (DivF src1  src2));
14075 
14076   ins_cost(INSN_COST * 18);
14077   format %{ "fdivs   $dst, $src1, $src2" %}
14078 
14079   ins_encode %{
14080     __ fdivs(as_FloatRegister($dst$$reg),
14081              as_FloatRegister($src1$$reg),
14082              as_FloatRegister($src2$$reg));
14083   %}
14084 
14085   ins_pipe(fp_div_s);
14086 %}
14087 
14088 instruct divD_reg_reg(vRegD dst, vRegD src1, vRegD src2) %{
14089   match(Set dst (DivD src1  src2));
14090 
14091   ins_cost(INSN_COST * 32);
14092   format %{ "fdivd   $dst, $src1, $src2" %}
14093 
14094   ins_encode %{
14095     __ fdivd(as_FloatRegister($dst$$reg),
14096              as_FloatRegister($src1$$reg),
14097              as_FloatRegister($src2$$reg));
14098   %}
14099 
14100   ins_pipe(fp_div_d);
14101 %}
14102 
14103 instruct negF_reg_reg(vRegF dst, vRegF src) %{
14104   match(Set dst (NegF src));
14105 
14106   ins_cost(INSN_COST * 3);
14107   format %{ "fneg   $dst, $src" %}
14108 
14109   ins_encode %{
14110     __ fnegs(as_FloatRegister($dst$$reg),
14111              as_FloatRegister($src$$reg));
14112   %}
14113 
14114   ins_pipe(fp_uop_s);
14115 %}
14116 
14117 instruct negD_reg_reg(vRegD dst, vRegD src) %{
14118   match(Set dst (NegD src));
14119 
14120   ins_cost(INSN_COST * 3);
14121   format %{ "fnegd   $dst, $src" %}
14122 
14123   ins_encode %{
14124     __ fnegd(as_FloatRegister($dst$$reg),
14125              as_FloatRegister($src$$reg));
14126   %}
14127 
14128   ins_pipe(fp_uop_d);
14129 %}
14130 
14131 instruct absI_reg(iRegINoSp dst, iRegIorL2I src, rFlagsReg cr)
14132 %{
14133   match(Set dst (AbsI src));
14134 
14135   effect(KILL cr);
14136   ins_cost(INSN_COST * 2);
14137   format %{ "cmpw  $src, zr\n\t"
14138             "cnegw $dst, $src, Assembler::LT\t# int abs"
14139   %}
14140 
14141   ins_encode %{
14142     __ cmpw(as_Register($src$$reg), zr);
14143     __ cnegw(as_Register($dst$$reg), as_Register($src$$reg), Assembler::LT);
14144   %}
14145   ins_pipe(pipe_class_default);
14146 %}
14147 
14148 instruct absL_reg(iRegLNoSp dst, iRegL src, rFlagsReg cr)
14149 %{
14150   match(Set dst (AbsL src));
14151 
14152   effect(KILL cr);
14153   ins_cost(INSN_COST * 2);
14154   format %{ "cmp  $src, zr\n\t"
14155             "cneg $dst, $src, Assembler::LT\t# long abs"
14156   %}
14157 
14158   ins_encode %{
14159     __ cmp(as_Register($src$$reg), zr);
14160     __ cneg(as_Register($dst$$reg), as_Register($src$$reg), Assembler::LT);
14161   %}
14162   ins_pipe(pipe_class_default);
14163 %}
14164 
14165 instruct absF_reg(vRegF dst, vRegF src) %{
14166   match(Set dst (AbsF src));
14167 
14168   ins_cost(INSN_COST * 3);
14169   format %{ "fabss   $dst, $src" %}
14170   ins_encode %{
14171     __ fabss(as_FloatRegister($dst$$reg),
14172              as_FloatRegister($src$$reg));
14173   %}
14174 
14175   ins_pipe(fp_uop_s);
14176 %}
14177 
14178 instruct absD_reg(vRegD dst, vRegD src) %{
14179   match(Set dst (AbsD src));
14180 
14181   ins_cost(INSN_COST * 3);
14182   format %{ "fabsd   $dst, $src" %}
14183   ins_encode %{
14184     __ fabsd(as_FloatRegister($dst$$reg),
14185              as_FloatRegister($src$$reg));
14186   %}
14187 
14188   ins_pipe(fp_uop_d);
14189 %}
14190 
14191 instruct absdF_reg(vRegF dst, vRegF src1, vRegF src2) %{
14192   match(Set dst (AbsF (SubF src1 src2)));
14193 
14194   ins_cost(INSN_COST * 3);
14195   format %{ "fabds   $dst, $src1, $src2" %}
14196   ins_encode %{
14197     __ fabds(as_FloatRegister($dst$$reg),
14198              as_FloatRegister($src1$$reg),
14199              as_FloatRegister($src2$$reg));
14200   %}
14201 
14202   ins_pipe(fp_uop_s);
14203 %}
14204 
14205 instruct absdD_reg(vRegD dst, vRegD src1, vRegD src2) %{
14206   match(Set dst (AbsD (SubD src1 src2)));
14207 
14208   ins_cost(INSN_COST * 3);
14209   format %{ "fabdd   $dst, $src1, $src2" %}
14210   ins_encode %{
14211     __ fabdd(as_FloatRegister($dst$$reg),
14212              as_FloatRegister($src1$$reg),
14213              as_FloatRegister($src2$$reg));
14214   %}
14215 
14216   ins_pipe(fp_uop_d);
14217 %}
14218 
14219 instruct sqrtD_reg(vRegD dst, vRegD src) %{
14220   match(Set dst (SqrtD src));
14221 
14222   ins_cost(INSN_COST * 50);
14223   format %{ "fsqrtd  $dst, $src" %}
14224   ins_encode %{
14225     __ fsqrtd(as_FloatRegister($dst$$reg),
14226              as_FloatRegister($src$$reg));
14227   %}
14228 
14229   ins_pipe(fp_div_s);
14230 %}
14231 
14232 instruct sqrtF_reg(vRegF dst, vRegF src) %{
14233   match(Set dst (SqrtF src));
14234 
14235   ins_cost(INSN_COST * 50);
14236   format %{ "fsqrts  $dst, $src" %}
14237   ins_encode %{
14238     __ fsqrts(as_FloatRegister($dst$$reg),
14239              as_FloatRegister($src$$reg));
14240   %}
14241 
14242   ins_pipe(fp_div_d);
14243 %}
14244 
14245 instruct sqrtHF_reg(vRegF dst, vRegF src) %{
14246   match(Set dst (SqrtHF src));
14247   format %{ "fsqrth $dst, $src" %}
14248   ins_encode %{
14249     __ fsqrth($dst$$FloatRegister,
14250               $src$$FloatRegister);
14251   %}
14252   ins_pipe(fp_div_s);
14253 %}
14254 
14255 // Math.rint, floor, ceil
14256 instruct roundD_reg(vRegD dst, vRegD src, immI rmode) %{
14257   match(Set dst (RoundDoubleMode src rmode));
14258   format %{ "frint  $dst, $src, $rmode" %}
14259   ins_encode %{
14260     switch ($rmode$$constant) {
14261       case RoundDoubleModeNode::rmode_rint:
14262         __ frintnd(as_FloatRegister($dst$$reg),
14263                    as_FloatRegister($src$$reg));
14264         break;
14265       case RoundDoubleModeNode::rmode_floor:
14266         __ frintmd(as_FloatRegister($dst$$reg),
14267                    as_FloatRegister($src$$reg));
14268         break;
14269       case RoundDoubleModeNode::rmode_ceil:
14270         __ frintpd(as_FloatRegister($dst$$reg),
14271                    as_FloatRegister($src$$reg));
14272         break;
14273     }
14274   %}
14275   ins_pipe(fp_uop_d);
14276 %}
14277 
14278 instruct copySignD_reg(vRegD dst, vRegD src1, vRegD src2, vRegD zero) %{
14279   match(Set dst (CopySignD src1 (Binary src2 zero)));
14280   effect(TEMP_DEF dst, USE src1, USE src2, USE zero);
14281   format %{ "CopySignD  $dst $src1 $src2" %}
14282   ins_encode %{
14283     FloatRegister dst = as_FloatRegister($dst$$reg),
14284                   src1 = as_FloatRegister($src1$$reg),
14285                   src2 = as_FloatRegister($src2$$reg),
14286                   zero = as_FloatRegister($zero$$reg);
14287     __ fnegd(dst, zero);
14288     __ bsl(dst, __ T8B, src2, src1);
14289   %}
14290   ins_pipe(fp_uop_d);
14291 %}
14292 
14293 instruct copySignF_reg(vRegF dst, vRegF src1, vRegF src2) %{
14294   match(Set dst (CopySignF src1 src2));
14295   effect(TEMP_DEF dst, USE src1, USE src2);
14296   format %{ "CopySignF  $dst $src1 $src2" %}
14297   ins_encode %{
14298     FloatRegister dst = as_FloatRegister($dst$$reg),
14299                   src1 = as_FloatRegister($src1$$reg),
14300                   src2 = as_FloatRegister($src2$$reg);
14301     __ movi(dst, __ T2S, 0x80, 24);
14302     __ bsl(dst, __ T8B, src2, src1);
14303   %}
14304   ins_pipe(fp_uop_d);
14305 %}
14306 
14307 instruct signumD_reg(vRegD dst, vRegD src, vRegD zero, vRegD one) %{
14308   match(Set dst (SignumD src (Binary zero one)));
14309   effect(TEMP_DEF dst, USE src, USE zero, USE one);
14310   format %{ "signumD  $dst, $src" %}
14311   ins_encode %{
14312     FloatRegister src = as_FloatRegister($src$$reg),
14313                   dst = as_FloatRegister($dst$$reg),
14314                   zero = as_FloatRegister($zero$$reg),
14315                   one = as_FloatRegister($one$$reg);
14316     __ facgtd(dst, src, zero); // dst=0 for +-0.0 and NaN. 0xFFF..F otherwise
14317     __ ushrd(dst, dst, 1);     // dst=0 for +-0.0 and NaN. 0x7FF..F otherwise
14318     // Bit selection instruction gets bit from "one" for each enabled bit in
14319     // "dst", otherwise gets a bit from "src". For "src" that contains +-0.0 or
14320     // NaN the whole "src" will be copied because "dst" is zero. For all other
14321     // "src" values dst is 0x7FF..F, which means only the sign bit is copied
14322     // from "src", and all other bits are copied from 1.0.
14323     __ bsl(dst, __ T8B, one, src);
14324   %}
14325   ins_pipe(fp_uop_d);
14326 %}
14327 
14328 instruct signumF_reg(vRegF dst, vRegF src, vRegF zero, vRegF one) %{
14329   match(Set dst (SignumF src (Binary zero one)));
14330   effect(TEMP_DEF dst, USE src, USE zero, USE one);
14331   format %{ "signumF  $dst, $src" %}
14332   ins_encode %{
14333     FloatRegister src = as_FloatRegister($src$$reg),
14334                   dst = as_FloatRegister($dst$$reg),
14335                   zero = as_FloatRegister($zero$$reg),
14336                   one = as_FloatRegister($one$$reg);
14337     __ facgts(dst, src, zero);    // dst=0 for +-0.0 and NaN. 0xFFF..F otherwise
14338     __ ushr(dst, __ T2S, dst, 1); // dst=0 for +-0.0 and NaN. 0x7FF..F otherwise
14339     // Bit selection instruction gets bit from "one" for each enabled bit in
14340     // "dst", otherwise gets a bit from "src". For "src" that contains +-0.0 or
14341     // NaN the whole "src" will be copied because "dst" is zero. For all other
14342     // "src" values dst is 0x7FF..F, which means only the sign bit is copied
14343     // from "src", and all other bits are copied from 1.0.
14344     __ bsl(dst, __ T8B, one, src);
14345   %}
14346   ins_pipe(fp_uop_d);
14347 %}
14348 
14349 instruct onspinwait() %{
14350   match(OnSpinWait);
14351   ins_cost(INSN_COST);
14352 
14353   format %{ "onspinwait" %}
14354 
14355   ins_encode %{
14356     __ spin_wait();
14357   %}
14358   ins_pipe(pipe_class_empty);
14359 %}
14360 
14361 // ============================================================================
14362 // Logical Instructions
14363 
14364 // Integer Logical Instructions
14365 
14366 // And Instructions
14367 
14368 
14369 instruct andI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, rFlagsReg cr) %{
14370   match(Set dst (AndI src1 src2));
14371 
14372   format %{ "andw  $dst, $src1, $src2\t# int" %}
14373 
14374   ins_cost(INSN_COST);
14375   ins_encode %{
14376     __ andw(as_Register($dst$$reg),
14377             as_Register($src1$$reg),
14378             as_Register($src2$$reg));
14379   %}
14380 
14381   ins_pipe(ialu_reg_reg);
14382 %}
14383 
14384 instruct andI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immILog src2, rFlagsReg cr) %{
14385   match(Set dst (AndI src1 src2));
14386 
14387   format %{ "andsw  $dst, $src1, $src2\t# int" %}
14388 
14389   ins_cost(INSN_COST);
14390   ins_encode %{
14391     __ andw(as_Register($dst$$reg),
14392             as_Register($src1$$reg),
14393             (uint64_t)($src2$$constant));
14394   %}
14395 
14396   ins_pipe(ialu_reg_imm);
14397 %}
14398 
14399 // Or Instructions
14400 
14401 instruct orI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
14402   match(Set dst (OrI src1 src2));
14403 
14404   format %{ "orrw  $dst, $src1, $src2\t# int" %}
14405 
14406   ins_cost(INSN_COST);
14407   ins_encode %{
14408     __ orrw(as_Register($dst$$reg),
14409             as_Register($src1$$reg),
14410             as_Register($src2$$reg));
14411   %}
14412 
14413   ins_pipe(ialu_reg_reg);
14414 %}
14415 
14416 instruct orI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immILog src2) %{
14417   match(Set dst (OrI src1 src2));
14418 
14419   format %{ "orrw  $dst, $src1, $src2\t# int" %}
14420 
14421   ins_cost(INSN_COST);
14422   ins_encode %{
14423     __ orrw(as_Register($dst$$reg),
14424             as_Register($src1$$reg),
14425             (uint64_t)($src2$$constant));
14426   %}
14427 
14428   ins_pipe(ialu_reg_imm);
14429 %}
14430 
14431 // Xor Instructions
14432 
14433 instruct xorI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
14434   match(Set dst (XorI src1 src2));
14435 
14436   format %{ "eorw  $dst, $src1, $src2\t# int" %}
14437 
14438   ins_cost(INSN_COST);
14439   ins_encode %{
14440     __ eorw(as_Register($dst$$reg),
14441             as_Register($src1$$reg),
14442             as_Register($src2$$reg));
14443   %}
14444 
14445   ins_pipe(ialu_reg_reg);
14446 %}
14447 
14448 instruct xorI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immILog src2) %{
14449   match(Set dst (XorI src1 src2));
14450 
14451   format %{ "eorw  $dst, $src1, $src2\t# int" %}
14452 
14453   ins_cost(INSN_COST);
14454   ins_encode %{
14455     __ eorw(as_Register($dst$$reg),
14456             as_Register($src1$$reg),
14457             (uint64_t)($src2$$constant));
14458   %}
14459 
14460   ins_pipe(ialu_reg_imm);
14461 %}
14462 
14463 // Long Logical Instructions
14464 // TODO
14465 
14466 instruct andL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2, rFlagsReg cr) %{
14467   match(Set dst (AndL src1 src2));
14468 
14469   format %{ "and  $dst, $src1, $src2\t# int" %}
14470 
14471   ins_cost(INSN_COST);
14472   ins_encode %{
14473     __ andr(as_Register($dst$$reg),
14474             as_Register($src1$$reg),
14475             as_Register($src2$$reg));
14476   %}
14477 
14478   ins_pipe(ialu_reg_reg);
14479 %}
14480 
14481 instruct andL_reg_imm(iRegLNoSp dst, iRegL src1, immLLog src2, rFlagsReg cr) %{
14482   match(Set dst (AndL src1 src2));
14483 
14484   format %{ "and  $dst, $src1, $src2\t# int" %}
14485 
14486   ins_cost(INSN_COST);
14487   ins_encode %{
14488     __ andr(as_Register($dst$$reg),
14489             as_Register($src1$$reg),
14490             (uint64_t)($src2$$constant));
14491   %}
14492 
14493   ins_pipe(ialu_reg_imm);
14494 %}
14495 
14496 // Or Instructions
14497 
14498 instruct orL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
14499   match(Set dst (OrL src1 src2));
14500 
14501   format %{ "orr  $dst, $src1, $src2\t# int" %}
14502 
14503   ins_cost(INSN_COST);
14504   ins_encode %{
14505     __ orr(as_Register($dst$$reg),
14506            as_Register($src1$$reg),
14507            as_Register($src2$$reg));
14508   %}
14509 
14510   ins_pipe(ialu_reg_reg);
14511 %}
14512 
14513 instruct orL_reg_imm(iRegLNoSp dst, iRegL src1, immLLog src2) %{
14514   match(Set dst (OrL src1 src2));
14515 
14516   format %{ "orr  $dst, $src1, $src2\t# int" %}
14517 
14518   ins_cost(INSN_COST);
14519   ins_encode %{
14520     __ orr(as_Register($dst$$reg),
14521            as_Register($src1$$reg),
14522            (uint64_t)($src2$$constant));
14523   %}
14524 
14525   ins_pipe(ialu_reg_imm);
14526 %}
14527 
14528 // Xor Instructions
14529 
14530 instruct xorL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
14531   match(Set dst (XorL src1 src2));
14532 
14533   format %{ "eor  $dst, $src1, $src2\t# int" %}
14534 
14535   ins_cost(INSN_COST);
14536   ins_encode %{
14537     __ eor(as_Register($dst$$reg),
14538            as_Register($src1$$reg),
14539            as_Register($src2$$reg));
14540   %}
14541 
14542   ins_pipe(ialu_reg_reg);
14543 %}
14544 
14545 instruct xorL_reg_imm(iRegLNoSp dst, iRegL src1, immLLog src2) %{
14546   match(Set dst (XorL src1 src2));
14547 
14548   ins_cost(INSN_COST);
14549   format %{ "eor  $dst, $src1, $src2\t# int" %}
14550 
14551   ins_encode %{
14552     __ eor(as_Register($dst$$reg),
14553            as_Register($src1$$reg),
14554            (uint64_t)($src2$$constant));
14555   %}
14556 
14557   ins_pipe(ialu_reg_imm);
14558 %}
14559 
14560 instruct convI2L_reg_reg(iRegLNoSp dst, iRegIorL2I src)
14561 %{
14562   match(Set dst (ConvI2L src));
14563 
14564   ins_cost(INSN_COST);
14565   format %{ "sxtw  $dst, $src\t# i2l" %}
14566   ins_encode %{
14567     __ sbfm($dst$$Register, $src$$Register, 0, 31);
14568   %}
14569   ins_pipe(ialu_reg_shift);
14570 %}
14571 
14572 // this pattern occurs in bigmath arithmetic
14573 instruct convUI2L_reg_reg(iRegLNoSp dst, iRegIorL2I src, immL_32bits mask)
14574 %{
14575   match(Set dst (AndL (ConvI2L src) mask));
14576 
14577   ins_cost(INSN_COST);
14578   format %{ "ubfm  $dst, $src, 0, 31\t# ui2l" %}
14579   ins_encode %{
14580     __ ubfm($dst$$Register, $src$$Register, 0, 31);
14581   %}
14582 
14583   ins_pipe(ialu_reg_shift);
14584 %}
14585 
14586 instruct convL2I_reg(iRegINoSp dst, iRegL src) %{
14587   match(Set dst (ConvL2I src));
14588 
14589   ins_cost(INSN_COST);
14590   format %{ "movw  $dst, $src \t// l2i" %}
14591 
14592   ins_encode %{
14593     __ movw(as_Register($dst$$reg), as_Register($src$$reg));
14594   %}
14595 
14596   ins_pipe(ialu_reg);
14597 %}
14598 
14599 instruct convD2F_reg(vRegF dst, vRegD src) %{
14600   match(Set dst (ConvD2F src));
14601 
14602   ins_cost(INSN_COST * 5);
14603   format %{ "fcvtd  $dst, $src \t// d2f" %}
14604 
14605   ins_encode %{
14606     __ fcvtd(as_FloatRegister($dst$$reg), as_FloatRegister($src$$reg));
14607   %}
14608 
14609   ins_pipe(fp_d2f);
14610 %}
14611 
14612 instruct convF2D_reg(vRegD dst, vRegF src) %{
14613   match(Set dst (ConvF2D src));
14614 
14615   ins_cost(INSN_COST * 5);
14616   format %{ "fcvts  $dst, $src \t// f2d" %}
14617 
14618   ins_encode %{
14619     __ fcvts(as_FloatRegister($dst$$reg), as_FloatRegister($src$$reg));
14620   %}
14621 
14622   ins_pipe(fp_f2d);
14623 %}
14624 
14625 instruct convF2I_reg_reg(iRegINoSp dst, vRegF src) %{
14626   match(Set dst (ConvF2I src));
14627 
14628   ins_cost(INSN_COST * 5);
14629   format %{ "fcvtzsw  $dst, $src \t// f2i" %}
14630 
14631   ins_encode %{
14632     __ fcvtzsw(as_Register($dst$$reg), as_FloatRegister($src$$reg));
14633   %}
14634 
14635   ins_pipe(fp_f2i);
14636 %}
14637 
14638 instruct convF2L_reg_reg(iRegLNoSp dst, vRegF src) %{
14639   match(Set dst (ConvF2L src));
14640 
14641   ins_cost(INSN_COST * 5);
14642   format %{ "fcvtzs  $dst, $src \t// f2l" %}
14643 
14644   ins_encode %{
14645     __ fcvtzs(as_Register($dst$$reg), as_FloatRegister($src$$reg));
14646   %}
14647 
14648   ins_pipe(fp_f2l);
14649 %}
14650 
14651 instruct convF2HF_reg_reg(iRegINoSp dst, vRegF src, vRegF tmp) %{
14652   match(Set dst (ConvF2HF src));
14653   format %{ "fcvt $tmp, $src\t# convert single to half precision\n\t"
14654             "smov $dst, $tmp\t# move result from $tmp to $dst"
14655   %}
14656   effect(TEMP tmp);
14657   ins_encode %{
14658       __ flt_to_flt16($dst$$Register, $src$$FloatRegister, $tmp$$FloatRegister);
14659   %}
14660   ins_pipe(pipe_slow);
14661 %}
14662 
14663 instruct convHF2F_reg_reg(vRegF dst, iRegINoSp src, vRegF tmp) %{
14664   match(Set dst (ConvHF2F src));
14665   format %{ "mov $tmp, $src\t# move source from $src to $tmp\n\t"
14666             "fcvt $dst, $tmp\t# convert half to single precision"
14667   %}
14668   effect(TEMP tmp);
14669   ins_encode %{
14670       __ flt16_to_flt($dst$$FloatRegister, $src$$Register, $tmp$$FloatRegister);
14671   %}
14672   ins_pipe(pipe_slow);
14673 %}
14674 
14675 instruct convI2F_reg_reg(vRegF dst, iRegIorL2I src) %{
14676   match(Set dst (ConvI2F src));
14677 
14678   ins_cost(INSN_COST * 5);
14679   format %{ "scvtfws  $dst, $src \t// i2f" %}
14680 
14681   ins_encode %{
14682     __ scvtfws(as_FloatRegister($dst$$reg), as_Register($src$$reg));
14683   %}
14684 
14685   ins_pipe(fp_i2f);
14686 %}
14687 
14688 instruct convL2F_reg_reg(vRegF dst, iRegL src) %{
14689   match(Set dst (ConvL2F src));
14690 
14691   ins_cost(INSN_COST * 5);
14692   format %{ "scvtfs  $dst, $src \t// l2f" %}
14693 
14694   ins_encode %{
14695     __ scvtfs(as_FloatRegister($dst$$reg), as_Register($src$$reg));
14696   %}
14697 
14698   ins_pipe(fp_l2f);
14699 %}
14700 
14701 instruct convD2I_reg_reg(iRegINoSp dst, vRegD src) %{
14702   match(Set dst (ConvD2I src));
14703 
14704   ins_cost(INSN_COST * 5);
14705   format %{ "fcvtzdw  $dst, $src \t// d2i" %}
14706 
14707   ins_encode %{
14708     __ fcvtzdw(as_Register($dst$$reg), as_FloatRegister($src$$reg));
14709   %}
14710 
14711   ins_pipe(fp_d2i);
14712 %}
14713 
14714 instruct convD2L_reg_reg(iRegLNoSp dst, vRegD src) %{
14715   match(Set dst (ConvD2L src));
14716 
14717   ins_cost(INSN_COST * 5);
14718   format %{ "fcvtzd  $dst, $src \t// d2l" %}
14719 
14720   ins_encode %{
14721     __ fcvtzd(as_Register($dst$$reg), as_FloatRegister($src$$reg));
14722   %}
14723 
14724   ins_pipe(fp_d2l);
14725 %}
14726 
14727 instruct convI2D_reg_reg(vRegD dst, iRegIorL2I src) %{
14728   match(Set dst (ConvI2D src));
14729 
14730   ins_cost(INSN_COST * 5);
14731   format %{ "scvtfwd  $dst, $src \t// i2d" %}
14732 
14733   ins_encode %{
14734     __ scvtfwd(as_FloatRegister($dst$$reg), as_Register($src$$reg));
14735   %}
14736 
14737   ins_pipe(fp_i2d);
14738 %}
14739 
14740 instruct convL2D_reg_reg(vRegD dst, iRegL src) %{
14741   match(Set dst (ConvL2D src));
14742 
14743   ins_cost(INSN_COST * 5);
14744   format %{ "scvtfd  $dst, $src \t// l2d" %}
14745 
14746   ins_encode %{
14747     __ scvtfd(as_FloatRegister($dst$$reg), as_Register($src$$reg));
14748   %}
14749 
14750   ins_pipe(fp_l2d);
14751 %}
14752 
14753 instruct round_double_reg(iRegLNoSp dst, vRegD src, vRegD ftmp, rFlagsReg cr)
14754 %{
14755   match(Set dst (RoundD src));
14756   effect(TEMP_DEF dst, TEMP ftmp, KILL cr);
14757   format %{ "java_round_double $dst,$src"%}
14758   ins_encode %{
14759     __ java_round_double($dst$$Register, as_FloatRegister($src$$reg),
14760                          as_FloatRegister($ftmp$$reg));
14761   %}
14762   ins_pipe(pipe_slow);
14763 %}
14764 
14765 instruct round_float_reg(iRegINoSp dst, vRegF src, vRegF ftmp, rFlagsReg cr)
14766 %{
14767   match(Set dst (RoundF src));
14768   effect(TEMP_DEF dst, TEMP ftmp, KILL cr);
14769   format %{ "java_round_float $dst,$src"%}
14770   ins_encode %{
14771     __ java_round_float($dst$$Register, as_FloatRegister($src$$reg),
14772                         as_FloatRegister($ftmp$$reg));
14773   %}
14774   ins_pipe(pipe_slow);
14775 %}
14776 
14777 // stack <-> reg and reg <-> reg shuffles with no conversion
14778 
14779 instruct MoveF2I_stack_reg(iRegINoSp dst, stackSlotF src) %{
14780 
14781   match(Set dst (MoveF2I src));
14782 
14783   effect(DEF dst, USE src);
14784 
14785   ins_cost(4 * INSN_COST);
14786 
14787   format %{ "ldrw $dst, $src\t# MoveF2I_stack_reg" %}
14788 
14789   ins_encode %{
14790     __ ldrw($dst$$Register, Address(sp, $src$$disp));
14791   %}
14792 
14793   ins_pipe(iload_reg_reg);
14794 
14795 %}
14796 
14797 instruct MoveI2F_stack_reg(vRegF dst, stackSlotI src) %{
14798 
14799   match(Set dst (MoveI2F src));
14800 
14801   effect(DEF dst, USE src);
14802 
14803   ins_cost(4 * INSN_COST);
14804 
14805   format %{ "ldrs $dst, $src\t# MoveI2F_stack_reg" %}
14806 
14807   ins_encode %{
14808     __ ldrs(as_FloatRegister($dst$$reg), Address(sp, $src$$disp));
14809   %}
14810 
14811   ins_pipe(pipe_class_memory);
14812 
14813 %}
14814 
14815 instruct MoveD2L_stack_reg(iRegLNoSp dst, stackSlotD src) %{
14816 
14817   match(Set dst (MoveD2L src));
14818 
14819   effect(DEF dst, USE src);
14820 
14821   ins_cost(4 * INSN_COST);
14822 
14823   format %{ "ldr $dst, $src\t# MoveD2L_stack_reg" %}
14824 
14825   ins_encode %{
14826     __ ldr($dst$$Register, Address(sp, $src$$disp));
14827   %}
14828 
14829   ins_pipe(iload_reg_reg);
14830 
14831 %}
14832 
14833 instruct MoveL2D_stack_reg(vRegD dst, stackSlotL src) %{
14834 
14835   match(Set dst (MoveL2D src));
14836 
14837   effect(DEF dst, USE src);
14838 
14839   ins_cost(4 * INSN_COST);
14840 
14841   format %{ "ldrd $dst, $src\t# MoveL2D_stack_reg" %}
14842 
14843   ins_encode %{
14844     __ ldrd(as_FloatRegister($dst$$reg), Address(sp, $src$$disp));
14845   %}
14846 
14847   ins_pipe(pipe_class_memory);
14848 
14849 %}
14850 
14851 instruct MoveF2I_reg_stack(stackSlotI dst, vRegF src) %{
14852 
14853   match(Set dst (MoveF2I src));
14854 
14855   effect(DEF dst, USE src);
14856 
14857   ins_cost(INSN_COST);
14858 
14859   format %{ "strs $src, $dst\t# MoveF2I_reg_stack" %}
14860 
14861   ins_encode %{
14862     __ strs(as_FloatRegister($src$$reg), Address(sp, $dst$$disp));
14863   %}
14864 
14865   ins_pipe(pipe_class_memory);
14866 
14867 %}
14868 
14869 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
14870 
14871   match(Set dst (MoveI2F src));
14872 
14873   effect(DEF dst, USE src);
14874 
14875   ins_cost(INSN_COST);
14876 
14877   format %{ "strw $src, $dst\t# MoveI2F_reg_stack" %}
14878 
14879   ins_encode %{
14880     __ strw($src$$Register, Address(sp, $dst$$disp));
14881   %}
14882 
14883   ins_pipe(istore_reg_reg);
14884 
14885 %}
14886 
14887 instruct MoveD2L_reg_stack(stackSlotL dst, vRegD src) %{
14888 
14889   match(Set dst (MoveD2L src));
14890 
14891   effect(DEF dst, USE src);
14892 
14893   ins_cost(INSN_COST);
14894 
14895   format %{ "strd $dst, $src\t# MoveD2L_reg_stack" %}
14896 
14897   ins_encode %{
14898     __ strd(as_FloatRegister($src$$reg), Address(sp, $dst$$disp));
14899   %}
14900 
14901   ins_pipe(pipe_class_memory);
14902 
14903 %}
14904 
14905 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
14906 
14907   match(Set dst (MoveL2D src));
14908 
14909   effect(DEF dst, USE src);
14910 
14911   ins_cost(INSN_COST);
14912 
14913   format %{ "str $src, $dst\t# MoveL2D_reg_stack" %}
14914 
14915   ins_encode %{
14916     __ str($src$$Register, Address(sp, $dst$$disp));
14917   %}
14918 
14919   ins_pipe(istore_reg_reg);
14920 
14921 %}
14922 
14923 instruct MoveF2I_reg_reg(iRegINoSp dst, vRegF src) %{
14924 
14925   match(Set dst (MoveF2I src));
14926 
14927   effect(DEF dst, USE src);
14928 
14929   ins_cost(INSN_COST);
14930 
14931   format %{ "fmovs $dst, $src\t# MoveF2I_reg_reg" %}
14932 
14933   ins_encode %{
14934     __ fmovs($dst$$Register, as_FloatRegister($src$$reg));
14935   %}
14936 
14937   ins_pipe(fp_f2i);
14938 
14939 %}
14940 
14941 instruct MoveI2F_reg_reg(vRegF dst, iRegI src) %{
14942 
14943   match(Set dst (MoveI2F src));
14944 
14945   effect(DEF dst, USE src);
14946 
14947   ins_cost(INSN_COST);
14948 
14949   format %{ "fmovs $dst, $src\t# MoveI2F_reg_reg" %}
14950 
14951   ins_encode %{
14952     __ fmovs(as_FloatRegister($dst$$reg), $src$$Register);
14953   %}
14954 
14955   ins_pipe(fp_i2f);
14956 
14957 %}
14958 
14959 instruct MoveD2L_reg_reg(iRegLNoSp dst, vRegD src) %{
14960 
14961   match(Set dst (MoveD2L src));
14962 
14963   effect(DEF dst, USE src);
14964 
14965   ins_cost(INSN_COST);
14966 
14967   format %{ "fmovd $dst, $src\t# MoveD2L_reg_reg" %}
14968 
14969   ins_encode %{
14970     __ fmovd($dst$$Register, as_FloatRegister($src$$reg));
14971   %}
14972 
14973   ins_pipe(fp_d2l);
14974 
14975 %}
14976 
14977 instruct MoveL2D_reg_reg(vRegD dst, iRegL src) %{
14978 
14979   match(Set dst (MoveL2D src));
14980 
14981   effect(DEF dst, USE src);
14982 
14983   ins_cost(INSN_COST);
14984 
14985   format %{ "fmovd $dst, $src\t# MoveL2D_reg_reg" %}
14986 
14987   ins_encode %{
14988     __ fmovd(as_FloatRegister($dst$$reg), $src$$Register);
14989   %}
14990 
14991   ins_pipe(fp_l2d);
14992 
14993 %}
14994 
14995 // ============================================================================
14996 // clearing of an array
14997 
14998 instruct clearArray_reg_reg(iRegL_R11 cnt, iRegP_R10 base, Universe dummy, rFlagsReg cr)
14999 %{
15000   match(Set dummy (ClearArray cnt base));
15001   effect(USE_KILL cnt, USE_KILL base, KILL cr);
15002 
15003   ins_cost(4 * INSN_COST);
15004   format %{ "ClearArray $cnt, $base" %}
15005 
15006   ins_encode %{
15007     address tpc = __ zero_words($base$$Register, $cnt$$Register);
15008     if (tpc == nullptr) {
15009       ciEnv::current()->record_failure("CodeCache is full");
15010       return;
15011     }
15012   %}
15013 
15014   ins_pipe(pipe_class_memory);
15015 %}
15016 
15017 instruct clearArray_imm_reg(immL cnt, iRegP_R10 base, iRegL_R11 temp, Universe dummy, rFlagsReg cr)
15018 %{
15019   predicate((uint64_t)n->in(2)->get_long()
15020             < (uint64_t)(BlockZeroingLowLimit >> LogBytesPerWord));
15021   match(Set dummy (ClearArray cnt base));
15022   effect(TEMP temp, USE_KILL base, KILL cr);
15023 
15024   ins_cost(4 * INSN_COST);
15025   format %{ "ClearArray $cnt, $base" %}
15026 
15027   ins_encode %{
15028     address tpc = __ zero_words($base$$Register, (uint64_t)$cnt$$constant);
15029     if (tpc == nullptr) {
15030       ciEnv::current()->record_failure("CodeCache is full");
15031       return;
15032     }
15033   %}
15034 
15035   ins_pipe(pipe_class_memory);
15036 %}
15037 
15038 // ============================================================================
15039 // Overflow Math Instructions
15040 
15041 instruct overflowAddI_reg_reg(rFlagsReg cr, iRegIorL2I op1, iRegIorL2I op2)
15042 %{
15043   match(Set cr (OverflowAddI op1 op2));
15044 
15045   format %{ "cmnw  $op1, $op2\t# overflow check int" %}
15046   ins_cost(INSN_COST);
15047   ins_encode %{
15048     __ cmnw($op1$$Register, $op2$$Register);
15049   %}
15050 
15051   ins_pipe(icmp_reg_reg);
15052 %}
15053 
15054 instruct overflowAddI_reg_imm(rFlagsReg cr, iRegIorL2I op1, immIAddSub op2)
15055 %{
15056   match(Set cr (OverflowAddI op1 op2));
15057 
15058   format %{ "cmnw  $op1, $op2\t# overflow check int" %}
15059   ins_cost(INSN_COST);
15060   ins_encode %{
15061     __ cmnw($op1$$Register, $op2$$constant);
15062   %}
15063 
15064   ins_pipe(icmp_reg_imm);
15065 %}
15066 
15067 instruct overflowAddL_reg_reg(rFlagsReg cr, iRegL op1, iRegL op2)
15068 %{
15069   match(Set cr (OverflowAddL op1 op2));
15070 
15071   format %{ "cmn   $op1, $op2\t# overflow check long" %}
15072   ins_cost(INSN_COST);
15073   ins_encode %{
15074     __ cmn($op1$$Register, $op2$$Register);
15075   %}
15076 
15077   ins_pipe(icmp_reg_reg);
15078 %}
15079 
15080 instruct overflowAddL_reg_imm(rFlagsReg cr, iRegL op1, immLAddSub op2)
15081 %{
15082   match(Set cr (OverflowAddL op1 op2));
15083 
15084   format %{ "adds  zr, $op1, $op2\t# overflow check long" %}
15085   ins_cost(INSN_COST);
15086   ins_encode %{
15087     __ adds(zr, $op1$$Register, $op2$$constant);
15088   %}
15089 
15090   ins_pipe(icmp_reg_imm);
15091 %}
15092 
15093 instruct overflowSubI_reg_reg(rFlagsReg cr, iRegIorL2I op1, iRegIorL2I op2)
15094 %{
15095   match(Set cr (OverflowSubI op1 op2));
15096 
15097   format %{ "cmpw  $op1, $op2\t# overflow check int" %}
15098   ins_cost(INSN_COST);
15099   ins_encode %{
15100     __ cmpw($op1$$Register, $op2$$Register);
15101   %}
15102 
15103   ins_pipe(icmp_reg_reg);
15104 %}
15105 
15106 instruct overflowSubI_reg_imm(rFlagsReg cr, iRegIorL2I op1, immIAddSub op2)
15107 %{
15108   match(Set cr (OverflowSubI op1 op2));
15109 
15110   format %{ "cmpw  $op1, $op2\t# overflow check int" %}
15111   ins_cost(INSN_COST);
15112   ins_encode %{
15113     __ cmpw($op1$$Register, $op2$$constant);
15114   %}
15115 
15116   ins_pipe(icmp_reg_imm);
15117 %}
15118 
15119 instruct overflowSubL_reg_reg(rFlagsReg cr, iRegL op1, iRegL op2)
15120 %{
15121   match(Set cr (OverflowSubL op1 op2));
15122 
15123   format %{ "cmp   $op1, $op2\t# overflow check long" %}
15124   ins_cost(INSN_COST);
15125   ins_encode %{
15126     __ cmp($op1$$Register, $op2$$Register);
15127   %}
15128 
15129   ins_pipe(icmp_reg_reg);
15130 %}
15131 
15132 instruct overflowSubL_reg_imm(rFlagsReg cr, iRegL op1, immLAddSub op2)
15133 %{
15134   match(Set cr (OverflowSubL op1 op2));
15135 
15136   format %{ "cmp   $op1, $op2\t# overflow check long" %}
15137   ins_cost(INSN_COST);
15138   ins_encode %{
15139     __ subs(zr, $op1$$Register, $op2$$constant);
15140   %}
15141 
15142   ins_pipe(icmp_reg_imm);
15143 %}
15144 
15145 instruct overflowNegI_reg(rFlagsReg cr, immI0 zero, iRegIorL2I op1)
15146 %{
15147   match(Set cr (OverflowSubI zero op1));
15148 
15149   format %{ "cmpw  zr, $op1\t# overflow check int" %}
15150   ins_cost(INSN_COST);
15151   ins_encode %{
15152     __ cmpw(zr, $op1$$Register);
15153   %}
15154 
15155   ins_pipe(icmp_reg_imm);
15156 %}
15157 
15158 instruct overflowNegL_reg(rFlagsReg cr, immI0 zero, iRegL op1)
15159 %{
15160   match(Set cr (OverflowSubL zero op1));
15161 
15162   format %{ "cmp   zr, $op1\t# overflow check long" %}
15163   ins_cost(INSN_COST);
15164   ins_encode %{
15165     __ cmp(zr, $op1$$Register);
15166   %}
15167 
15168   ins_pipe(icmp_reg_imm);
15169 %}
15170 
15171 instruct overflowMulI_reg(rFlagsReg cr, iRegIorL2I op1, iRegIorL2I op2)
15172 %{
15173   match(Set cr (OverflowMulI op1 op2));
15174 
15175   format %{ "smull rscratch1, $op1, $op2\t# overflow check int\n\t"
15176             "cmp   rscratch1, rscratch1, sxtw\n\t"
15177             "movw  rscratch1, #0x80000000\n\t"
15178             "cselw rscratch1, rscratch1, zr, NE\n\t"
15179             "cmpw  rscratch1, #1" %}
15180   ins_cost(5 * INSN_COST);
15181   ins_encode %{
15182     __ smull(rscratch1, $op1$$Register, $op2$$Register);
15183     __ subs(zr, rscratch1, rscratch1, ext::sxtw);      // NE => overflow
15184     __ movw(rscratch1, 0x80000000);                    // Develop 0 (EQ),
15185     __ cselw(rscratch1, rscratch1, zr, Assembler::NE); // or 0x80000000 (NE)
15186     __ cmpw(rscratch1, 1);                             // 0x80000000 - 1 => VS
15187   %}
15188 
15189   ins_pipe(pipe_slow);
15190 %}
15191 
15192 instruct overflowMulI_reg_branch(cmpOp cmp, iRegIorL2I op1, iRegIorL2I op2, label labl, rFlagsReg cr)
15193 %{
15194   match(If cmp (OverflowMulI op1 op2));
15195   predicate(n->in(1)->as_Bool()->_test._test == BoolTest::overflow
15196             || n->in(1)->as_Bool()->_test._test == BoolTest::no_overflow);
15197   effect(USE labl, KILL cr);
15198 
15199   format %{ "smull rscratch1, $op1, $op2\t# overflow check int\n\t"
15200             "cmp   rscratch1, rscratch1, sxtw\n\t"
15201             "b$cmp   $labl" %}
15202   ins_cost(3 * INSN_COST); // Branch is rare so treat as INSN_COST
15203   ins_encode %{
15204     Label* L = $labl$$label;
15205     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
15206     __ smull(rscratch1, $op1$$Register, $op2$$Register);
15207     __ subs(zr, rscratch1, rscratch1, ext::sxtw);      // NE => overflow
15208     __ br(cond == Assembler::VS ? Assembler::NE : Assembler::EQ, *L);
15209   %}
15210 
15211   ins_pipe(pipe_serial);
15212 %}
15213 
15214 instruct overflowMulL_reg(rFlagsReg cr, iRegL op1, iRegL op2)
15215 %{
15216   match(Set cr (OverflowMulL op1 op2));
15217 
15218   format %{ "mul   rscratch1, $op1, $op2\t#overflow check long\n\t"
15219             "smulh rscratch2, $op1, $op2\n\t"
15220             "cmp   rscratch2, rscratch1, ASR #63\n\t"
15221             "movw  rscratch1, #0x80000000\n\t"
15222             "cselw rscratch1, rscratch1, zr, NE\n\t"
15223             "cmpw  rscratch1, #1" %}
15224   ins_cost(6 * INSN_COST);
15225   ins_encode %{
15226     __ mul(rscratch1, $op1$$Register, $op2$$Register);   // Result bits 0..63
15227     __ smulh(rscratch2, $op1$$Register, $op2$$Register); // Result bits 64..127
15228     __ cmp(rscratch2, rscratch1, Assembler::ASR, 63);    // Top is pure sign ext
15229     __ movw(rscratch1, 0x80000000);                    // Develop 0 (EQ),
15230     __ cselw(rscratch1, rscratch1, zr, Assembler::NE); // or 0x80000000 (NE)
15231     __ cmpw(rscratch1, 1);                             // 0x80000000 - 1 => VS
15232   %}
15233 
15234   ins_pipe(pipe_slow);
15235 %}
15236 
15237 instruct overflowMulL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, rFlagsReg cr)
15238 %{
15239   match(If cmp (OverflowMulL op1 op2));
15240   predicate(n->in(1)->as_Bool()->_test._test == BoolTest::overflow
15241             || n->in(1)->as_Bool()->_test._test == BoolTest::no_overflow);
15242   effect(USE labl, KILL cr);
15243 
15244   format %{ "mul   rscratch1, $op1, $op2\t#overflow check long\n\t"
15245             "smulh rscratch2, $op1, $op2\n\t"
15246             "cmp   rscratch2, rscratch1, ASR #63\n\t"
15247             "b$cmp $labl" %}
15248   ins_cost(4 * INSN_COST); // Branch is rare so treat as INSN_COST
15249   ins_encode %{
15250     Label* L = $labl$$label;
15251     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
15252     __ mul(rscratch1, $op1$$Register, $op2$$Register);   // Result bits 0..63
15253     __ smulh(rscratch2, $op1$$Register, $op2$$Register); // Result bits 64..127
15254     __ cmp(rscratch2, rscratch1, Assembler::ASR, 63);    // Top is pure sign ext
15255     __ br(cond == Assembler::VS ? Assembler::NE : Assembler::EQ, *L);
15256   %}
15257 
15258   ins_pipe(pipe_serial);
15259 %}
15260 
15261 // ============================================================================
15262 // Compare Instructions
15263 
15264 instruct compI_reg_reg(rFlagsReg cr, iRegI op1, iRegI op2)
15265 %{
15266   match(Set cr (CmpI op1 op2));
15267 
15268   effect(DEF cr, USE op1, USE op2);
15269 
15270   ins_cost(INSN_COST);
15271   format %{ "cmpw  $op1, $op2" %}
15272 
15273   ins_encode(aarch64_enc_cmpw(op1, op2));
15274 
15275   ins_pipe(icmp_reg_reg);
15276 %}
15277 
15278 instruct compI_reg_immI0(rFlagsReg cr, iRegI op1, immI0 zero)
15279 %{
15280   match(Set cr (CmpI op1 zero));
15281 
15282   effect(DEF cr, USE op1);
15283 
15284   ins_cost(INSN_COST);
15285   format %{ "cmpw $op1, 0" %}
15286 
15287   ins_encode(aarch64_enc_cmpw_imm_addsub(op1, zero));
15288 
15289   ins_pipe(icmp_reg_imm);
15290 %}
15291 
15292 instruct compI_reg_immIAddSub(rFlagsReg cr, iRegI op1, immIAddSub op2)
15293 %{
15294   match(Set cr (CmpI op1 op2));
15295 
15296   effect(DEF cr, USE op1);
15297 
15298   ins_cost(INSN_COST);
15299   format %{ "cmpw  $op1, $op2" %}
15300 
15301   ins_encode(aarch64_enc_cmpw_imm_addsub(op1, op2));
15302 
15303   ins_pipe(icmp_reg_imm);
15304 %}
15305 
15306 instruct compI_reg_immI(rFlagsReg cr, iRegI op1, immI op2)
15307 %{
15308   match(Set cr (CmpI op1 op2));
15309 
15310   effect(DEF cr, USE op1);
15311 
15312   ins_cost(INSN_COST * 2);
15313   format %{ "cmpw  $op1, $op2" %}
15314 
15315   ins_encode(aarch64_enc_cmpw_imm(op1, op2));
15316 
15317   ins_pipe(icmp_reg_imm);
15318 %}
15319 
15320 // Unsigned compare Instructions; really, same as signed compare
15321 // except it should only be used to feed an If or a CMovI which takes a
15322 // cmpOpU.
15323 
15324 instruct compU_reg_reg(rFlagsRegU cr, iRegI op1, iRegI op2)
15325 %{
15326   match(Set cr (CmpU op1 op2));
15327 
15328   effect(DEF cr, USE op1, USE op2);
15329 
15330   ins_cost(INSN_COST);
15331   format %{ "cmpw  $op1, $op2\t# unsigned" %}
15332 
15333   ins_encode(aarch64_enc_cmpw(op1, op2));
15334 
15335   ins_pipe(icmp_reg_reg);
15336 %}
15337 
15338 instruct compU_reg_immI0(rFlagsRegU cr, iRegI op1, immI0 zero)
15339 %{
15340   match(Set cr (CmpU op1 zero));
15341 
15342   effect(DEF cr, USE op1);
15343 
15344   ins_cost(INSN_COST);
15345   format %{ "cmpw $op1, #0\t# unsigned" %}
15346 
15347   ins_encode(aarch64_enc_cmpw_imm_addsub(op1, zero));
15348 
15349   ins_pipe(icmp_reg_imm);
15350 %}
15351 
15352 instruct compU_reg_immIAddSub(rFlagsRegU cr, iRegI op1, immIAddSub op2)
15353 %{
15354   match(Set cr (CmpU op1 op2));
15355 
15356   effect(DEF cr, USE op1);
15357 
15358   ins_cost(INSN_COST);
15359   format %{ "cmpw  $op1, $op2\t# unsigned" %}
15360 
15361   ins_encode(aarch64_enc_cmpw_imm_addsub(op1, op2));
15362 
15363   ins_pipe(icmp_reg_imm);
15364 %}
15365 
15366 instruct compU_reg_immI(rFlagsRegU cr, iRegI op1, immI op2)
15367 %{
15368   match(Set cr (CmpU op1 op2));
15369 
15370   effect(DEF cr, USE op1);
15371 
15372   ins_cost(INSN_COST * 2);
15373   format %{ "cmpw  $op1, $op2\t# unsigned" %}
15374 
15375   ins_encode(aarch64_enc_cmpw_imm(op1, op2));
15376 
15377   ins_pipe(icmp_reg_imm);
15378 %}
15379 
15380 instruct compL_reg_reg(rFlagsReg cr, iRegL op1, iRegL op2)
15381 %{
15382   match(Set cr (CmpL op1 op2));
15383 
15384   effect(DEF cr, USE op1, USE op2);
15385 
15386   ins_cost(INSN_COST);
15387   format %{ "cmp  $op1, $op2" %}
15388 
15389   ins_encode(aarch64_enc_cmp(op1, op2));
15390 
15391   ins_pipe(icmp_reg_reg);
15392 %}
15393 
15394 instruct compL_reg_immL0(rFlagsReg cr, iRegL op1, immL0 zero)
15395 %{
15396   match(Set cr (CmpL op1 zero));
15397 
15398   effect(DEF cr, USE op1);
15399 
15400   ins_cost(INSN_COST);
15401   format %{ "tst  $op1" %}
15402 
15403   ins_encode(aarch64_enc_cmp_imm_addsub(op1, zero));
15404 
15405   ins_pipe(icmp_reg_imm);
15406 %}
15407 
15408 instruct compL_reg_immLAddSub(rFlagsReg cr, iRegL op1, immLAddSub op2)
15409 %{
15410   match(Set cr (CmpL op1 op2));
15411 
15412   effect(DEF cr, USE op1);
15413 
15414   ins_cost(INSN_COST);
15415   format %{ "cmp  $op1, $op2" %}
15416 
15417   ins_encode(aarch64_enc_cmp_imm_addsub(op1, op2));
15418 
15419   ins_pipe(icmp_reg_imm);
15420 %}
15421 
15422 instruct compL_reg_immL(rFlagsReg cr, iRegL op1, immL op2)
15423 %{
15424   match(Set cr (CmpL op1 op2));
15425 
15426   effect(DEF cr, USE op1);
15427 
15428   ins_cost(INSN_COST * 2);
15429   format %{ "cmp  $op1, $op2" %}
15430 
15431   ins_encode(aarch64_enc_cmp_imm(op1, op2));
15432 
15433   ins_pipe(icmp_reg_imm);
15434 %}
15435 
15436 instruct compUL_reg_reg(rFlagsRegU cr, iRegL op1, iRegL op2)
15437 %{
15438   match(Set cr (CmpUL op1 op2));
15439 
15440   effect(DEF cr, USE op1, USE op2);
15441 
15442   ins_cost(INSN_COST);
15443   format %{ "cmp  $op1, $op2" %}
15444 
15445   ins_encode(aarch64_enc_cmp(op1, op2));
15446 
15447   ins_pipe(icmp_reg_reg);
15448 %}
15449 
15450 instruct compUL_reg_immL0(rFlagsRegU cr, iRegL op1, immL0 zero)
15451 %{
15452   match(Set cr (CmpUL op1 zero));
15453 
15454   effect(DEF cr, USE op1);
15455 
15456   ins_cost(INSN_COST);
15457   format %{ "tst  $op1" %}
15458 
15459   ins_encode(aarch64_enc_cmp_imm_addsub(op1, zero));
15460 
15461   ins_pipe(icmp_reg_imm);
15462 %}
15463 
15464 instruct compUL_reg_immLAddSub(rFlagsRegU cr, iRegL op1, immLAddSub op2)
15465 %{
15466   match(Set cr (CmpUL op1 op2));
15467 
15468   effect(DEF cr, USE op1);
15469 
15470   ins_cost(INSN_COST);
15471   format %{ "cmp  $op1, $op2" %}
15472 
15473   ins_encode(aarch64_enc_cmp_imm_addsub(op1, op2));
15474 
15475   ins_pipe(icmp_reg_imm);
15476 %}
15477 
15478 instruct compUL_reg_immL(rFlagsRegU cr, iRegL op1, immL op2)
15479 %{
15480   match(Set cr (CmpUL op1 op2));
15481 
15482   effect(DEF cr, USE op1);
15483 
15484   ins_cost(INSN_COST * 2);
15485   format %{ "cmp  $op1, $op2" %}
15486 
15487   ins_encode(aarch64_enc_cmp_imm(op1, op2));
15488 
15489   ins_pipe(icmp_reg_imm);
15490 %}
15491 
15492 instruct compP_reg_reg(rFlagsRegU cr, iRegP op1, iRegP op2)
15493 %{
15494   match(Set cr (CmpP op1 op2));
15495 
15496   effect(DEF cr, USE op1, USE op2);
15497 
15498   ins_cost(INSN_COST);
15499   format %{ "cmp  $op1, $op2\t // ptr" %}
15500 
15501   ins_encode(aarch64_enc_cmpp(op1, op2));
15502 
15503   ins_pipe(icmp_reg_reg);
15504 %}
15505 
15506 instruct compN_reg_reg(rFlagsRegU cr, iRegN op1, iRegN op2)
15507 %{
15508   match(Set cr (CmpN op1 op2));
15509 
15510   effect(DEF cr, USE op1, USE op2);
15511 
15512   ins_cost(INSN_COST);
15513   format %{ "cmp  $op1, $op2\t // compressed ptr" %}
15514 
15515   ins_encode(aarch64_enc_cmpn(op1, op2));
15516 
15517   ins_pipe(icmp_reg_reg);
15518 %}
15519 
15520 instruct testP_reg(rFlagsRegU cr, iRegP op1, immP0 zero)
15521 %{
15522   match(Set cr (CmpP op1 zero));
15523 
15524   effect(DEF cr, USE op1, USE zero);
15525 
15526   ins_cost(INSN_COST);
15527   format %{ "cmp  $op1, 0\t // ptr" %}
15528 
15529   ins_encode(aarch64_enc_testp(op1));
15530 
15531   ins_pipe(icmp_reg_imm);
15532 %}
15533 
15534 instruct testN_reg(rFlagsRegU cr, iRegN op1, immN0 zero)
15535 %{
15536   match(Set cr (CmpN op1 zero));
15537 
15538   effect(DEF cr, USE op1, USE zero);
15539 
15540   ins_cost(INSN_COST);
15541   format %{ "cmp  $op1, 0\t // compressed ptr" %}
15542 
15543   ins_encode(aarch64_enc_testn(op1));
15544 
15545   ins_pipe(icmp_reg_imm);
15546 %}
15547 
15548 // FP comparisons
15549 //
15550 // n.b. CmpF/CmpD set a normal flags reg which then gets compared
15551 // using normal cmpOp. See declaration of rFlagsReg for details.
15552 
15553 instruct compF_reg_reg(rFlagsReg cr, vRegF src1, vRegF src2)
15554 %{
15555   match(Set cr (CmpF src1 src2));
15556 
15557   ins_cost(3 * INSN_COST);
15558   format %{ "fcmps $src1, $src2" %}
15559 
15560   ins_encode %{
15561     __ fcmps(as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg));
15562   %}
15563 
15564   ins_pipe(pipe_class_compare);
15565 %}
15566 
15567 instruct compF_reg_zero(rFlagsReg cr, vRegF src1, immF0 src2)
15568 %{
15569   match(Set cr (CmpF src1 src2));
15570 
15571   ins_cost(3 * INSN_COST);
15572   format %{ "fcmps $src1, 0.0" %}
15573 
15574   ins_encode %{
15575     __ fcmps(as_FloatRegister($src1$$reg), 0.0);
15576   %}
15577 
15578   ins_pipe(pipe_class_compare);
15579 %}
15580 // FROM HERE
15581 
15582 instruct compD_reg_reg(rFlagsReg cr, vRegD src1, vRegD src2)
15583 %{
15584   match(Set cr (CmpD src1 src2));
15585 
15586   ins_cost(3 * INSN_COST);
15587   format %{ "fcmpd $src1, $src2" %}
15588 
15589   ins_encode %{
15590     __ fcmpd(as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg));
15591   %}
15592 
15593   ins_pipe(pipe_class_compare);
15594 %}
15595 
15596 instruct compD_reg_zero(rFlagsReg cr, vRegD src1, immD0 src2)
15597 %{
15598   match(Set cr (CmpD src1 src2));
15599 
15600   ins_cost(3 * INSN_COST);
15601   format %{ "fcmpd $src1, 0.0" %}
15602 
15603   ins_encode %{
15604     __ fcmpd(as_FloatRegister($src1$$reg), 0.0);
15605   %}
15606 
15607   ins_pipe(pipe_class_compare);
15608 %}
15609 
15610 instruct compF3_reg_reg(iRegINoSp dst, vRegF src1, vRegF src2, rFlagsReg cr)
15611 %{
15612   match(Set dst (CmpF3 src1 src2));
15613   effect(KILL cr);
15614 
15615   ins_cost(5 * INSN_COST);
15616   format %{ "fcmps $src1, $src2\n\t"
15617             "csinvw($dst, zr, zr, eq\n\t"
15618             "csnegw($dst, $dst, $dst, lt)"
15619   %}
15620 
15621   ins_encode %{
15622     Label done;
15623     FloatRegister s1 = as_FloatRegister($src1$$reg);
15624     FloatRegister s2 = as_FloatRegister($src2$$reg);
15625     Register d = as_Register($dst$$reg);
15626     __ fcmps(s1, s2);
15627     // installs 0 if EQ else -1
15628     __ csinvw(d, zr, zr, Assembler::EQ);
15629     // keeps -1 if less or unordered else installs 1
15630     __ csnegw(d, d, d, Assembler::LT);
15631     __ bind(done);
15632   %}
15633 
15634   ins_pipe(pipe_class_default);
15635 
15636 %}
15637 
15638 instruct compD3_reg_reg(iRegINoSp dst, vRegD src1, vRegD src2, rFlagsReg cr)
15639 %{
15640   match(Set dst (CmpD3 src1 src2));
15641   effect(KILL cr);
15642 
15643   ins_cost(5 * INSN_COST);
15644   format %{ "fcmpd $src1, $src2\n\t"
15645             "csinvw($dst, zr, zr, eq\n\t"
15646             "csnegw($dst, $dst, $dst, lt)"
15647   %}
15648 
15649   ins_encode %{
15650     Label done;
15651     FloatRegister s1 = as_FloatRegister($src1$$reg);
15652     FloatRegister s2 = as_FloatRegister($src2$$reg);
15653     Register d = as_Register($dst$$reg);
15654     __ fcmpd(s1, s2);
15655     // installs 0 if EQ else -1
15656     __ csinvw(d, zr, zr, Assembler::EQ);
15657     // keeps -1 if less or unordered else installs 1
15658     __ csnegw(d, d, d, Assembler::LT);
15659     __ bind(done);
15660   %}
15661   ins_pipe(pipe_class_default);
15662 
15663 %}
15664 
15665 instruct compF3_reg_immF0(iRegINoSp dst, vRegF src1, immF0 zero, rFlagsReg cr)
15666 %{
15667   match(Set dst (CmpF3 src1 zero));
15668   effect(KILL cr);
15669 
15670   ins_cost(5 * INSN_COST);
15671   format %{ "fcmps $src1, 0.0\n\t"
15672             "csinvw($dst, zr, zr, eq\n\t"
15673             "csnegw($dst, $dst, $dst, lt)"
15674   %}
15675 
15676   ins_encode %{
15677     Label done;
15678     FloatRegister s1 = as_FloatRegister($src1$$reg);
15679     Register d = as_Register($dst$$reg);
15680     __ fcmps(s1, 0.0);
15681     // installs 0 if EQ else -1
15682     __ csinvw(d, zr, zr, Assembler::EQ);
15683     // keeps -1 if less or unordered else installs 1
15684     __ csnegw(d, d, d, Assembler::LT);
15685     __ bind(done);
15686   %}
15687 
15688   ins_pipe(pipe_class_default);
15689 
15690 %}
15691 
15692 instruct compD3_reg_immD0(iRegINoSp dst, vRegD src1, immD0 zero, rFlagsReg cr)
15693 %{
15694   match(Set dst (CmpD3 src1 zero));
15695   effect(KILL cr);
15696 
15697   ins_cost(5 * INSN_COST);
15698   format %{ "fcmpd $src1, 0.0\n\t"
15699             "csinvw($dst, zr, zr, eq\n\t"
15700             "csnegw($dst, $dst, $dst, lt)"
15701   %}
15702 
15703   ins_encode %{
15704     Label done;
15705     FloatRegister s1 = as_FloatRegister($src1$$reg);
15706     Register d = as_Register($dst$$reg);
15707     __ fcmpd(s1, 0.0);
15708     // installs 0 if EQ else -1
15709     __ csinvw(d, zr, zr, Assembler::EQ);
15710     // keeps -1 if less or unordered else installs 1
15711     __ csnegw(d, d, d, Assembler::LT);
15712     __ bind(done);
15713   %}
15714   ins_pipe(pipe_class_default);
15715 
15716 %}
15717 
15718 instruct cmpLTMask_reg_reg(iRegINoSp dst, iRegIorL2I p, iRegIorL2I q, rFlagsReg cr)
15719 %{
15720   match(Set dst (CmpLTMask p q));
15721   effect(KILL cr);
15722 
15723   ins_cost(3 * INSN_COST);
15724 
15725   format %{ "cmpw $p, $q\t# cmpLTMask\n\t"
15726             "csetw $dst, lt\n\t"
15727             "subw $dst, zr, $dst"
15728   %}
15729 
15730   ins_encode %{
15731     __ cmpw(as_Register($p$$reg), as_Register($q$$reg));
15732     __ csetw(as_Register($dst$$reg), Assembler::LT);
15733     __ subw(as_Register($dst$$reg), zr, as_Register($dst$$reg));
15734   %}
15735 
15736   ins_pipe(ialu_reg_reg);
15737 %}
15738 
15739 instruct cmpLTMask_reg_zero(iRegINoSp dst, iRegIorL2I src, immI0 zero, rFlagsReg cr)
15740 %{
15741   match(Set dst (CmpLTMask src zero));
15742   effect(KILL cr);
15743 
15744   ins_cost(INSN_COST);
15745 
15746   format %{ "asrw $dst, $src, #31\t# cmpLTMask0" %}
15747 
15748   ins_encode %{
15749     __ asrw(as_Register($dst$$reg), as_Register($src$$reg), 31);
15750   %}
15751 
15752   ins_pipe(ialu_reg_shift);
15753 %}
15754 
15755 // ============================================================================
15756 // Max and Min
15757 
15758 // Like compI_reg_reg or compI_reg_immI0 but without match rule and second zero parameter.
15759 
15760 instruct compI_reg_imm0(rFlagsReg cr, iRegI src)
15761 %{
15762   effect(DEF cr, USE src);
15763   ins_cost(INSN_COST);
15764   format %{ "cmpw $src, 0" %}
15765 
15766   ins_encode %{
15767     __ cmpw($src$$Register, 0);
15768   %}
15769   ins_pipe(icmp_reg_imm);
15770 %}
15771 
15772 instruct minI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2)
15773 %{
15774   match(Set dst (MinI src1 src2));
15775   ins_cost(INSN_COST * 3);
15776 
15777   expand %{
15778     rFlagsReg cr;
15779     compI_reg_reg(cr, src1, src2);
15780     cmovI_reg_reg_lt(dst, src1, src2, cr);
15781   %}
15782 %}
15783 
15784 instruct maxI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2)
15785 %{
15786   match(Set dst (MaxI src1 src2));
15787   ins_cost(INSN_COST * 3);
15788 
15789   expand %{
15790     rFlagsReg cr;
15791     compI_reg_reg(cr, src1, src2);
15792     cmovI_reg_reg_gt(dst, src1, src2, cr);
15793   %}
15794 %}
15795 
15796 
15797 // ============================================================================
15798 // Branch Instructions
15799 
15800 // Direct Branch.
15801 instruct branch(label lbl)
15802 %{
15803   match(Goto);
15804 
15805   effect(USE lbl);
15806 
15807   ins_cost(BRANCH_COST);
15808   format %{ "b  $lbl" %}
15809 
15810   ins_encode(aarch64_enc_b(lbl));
15811 
15812   ins_pipe(pipe_branch);
15813 %}
15814 
15815 // Conditional Near Branch
15816 instruct branchCon(cmpOp cmp, rFlagsReg cr, label lbl)
15817 %{
15818   // Same match rule as `branchConFar'.
15819   match(If cmp cr);
15820 
15821   effect(USE lbl);
15822 
15823   ins_cost(BRANCH_COST);
15824   // If set to 1 this indicates that the current instruction is a
15825   // short variant of a long branch. This avoids using this
15826   // instruction in first-pass matching. It will then only be used in
15827   // the `Shorten_branches' pass.
15828   // ins_short_branch(1);
15829   format %{ "b$cmp  $lbl" %}
15830 
15831   ins_encode(aarch64_enc_br_con(cmp, lbl));
15832 
15833   ins_pipe(pipe_branch_cond);
15834 %}
15835 
15836 // Conditional Near Branch Unsigned
15837 instruct branchConU(cmpOpU cmp, rFlagsRegU cr, label lbl)
15838 %{
15839   // Same match rule as `branchConFar'.
15840   match(If cmp cr);
15841 
15842   effect(USE lbl);
15843 
15844   ins_cost(BRANCH_COST);
15845   // If set to 1 this indicates that the current instruction is a
15846   // short variant of a long branch. This avoids using this
15847   // instruction in first-pass matching. It will then only be used in
15848   // the `Shorten_branches' pass.
15849   // ins_short_branch(1);
15850   format %{ "b$cmp  $lbl\t# unsigned" %}
15851 
15852   ins_encode(aarch64_enc_br_conU(cmp, lbl));
15853 
15854   ins_pipe(pipe_branch_cond);
15855 %}
15856 
15857 // Make use of CBZ and CBNZ.  These instructions, as well as being
15858 // shorter than (cmp; branch), have the additional benefit of not
15859 // killing the flags.
15860 
15861 instruct cmpI_imm0_branch(cmpOpEqNe cmp, iRegIorL2I op1, immI0 op2, label labl, rFlagsReg cr) %{
15862   match(If cmp (CmpI op1 op2));
15863   effect(USE labl);
15864 
15865   ins_cost(BRANCH_COST);
15866   format %{ "cbw$cmp   $op1, $labl" %}
15867   ins_encode %{
15868     Label* L = $labl$$label;
15869     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
15870     if (cond == Assembler::EQ)
15871       __ cbzw($op1$$Register, *L);
15872     else
15873       __ cbnzw($op1$$Register, *L);
15874   %}
15875   ins_pipe(pipe_cmp_branch);
15876 %}
15877 
15878 instruct cmpL_imm0_branch(cmpOpEqNe cmp, iRegL op1, immL0 op2, label labl, rFlagsReg cr) %{
15879   match(If cmp (CmpL op1 op2));
15880   effect(USE labl);
15881 
15882   ins_cost(BRANCH_COST);
15883   format %{ "cb$cmp   $op1, $labl" %}
15884   ins_encode %{
15885     Label* L = $labl$$label;
15886     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
15887     if (cond == Assembler::EQ)
15888       __ cbz($op1$$Register, *L);
15889     else
15890       __ cbnz($op1$$Register, *L);
15891   %}
15892   ins_pipe(pipe_cmp_branch);
15893 %}
15894 
15895 instruct cmpP_imm0_branch(cmpOpEqNe cmp, iRegP op1, immP0 op2, label labl, rFlagsReg cr) %{
15896   match(If cmp (CmpP op1 op2));
15897   effect(USE labl);
15898 
15899   ins_cost(BRANCH_COST);
15900   format %{ "cb$cmp   $op1, $labl" %}
15901   ins_encode %{
15902     Label* L = $labl$$label;
15903     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
15904     if (cond == Assembler::EQ)
15905       __ cbz($op1$$Register, *L);
15906     else
15907       __ cbnz($op1$$Register, *L);
15908   %}
15909   ins_pipe(pipe_cmp_branch);
15910 %}
15911 
15912 instruct cmpN_imm0_branch(cmpOpEqNe cmp, iRegN op1, immN0 op2, label labl, rFlagsReg cr) %{
15913   match(If cmp (CmpN op1 op2));
15914   effect(USE labl);
15915 
15916   ins_cost(BRANCH_COST);
15917   format %{ "cbw$cmp   $op1, $labl" %}
15918   ins_encode %{
15919     Label* L = $labl$$label;
15920     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
15921     if (cond == Assembler::EQ)
15922       __ cbzw($op1$$Register, *L);
15923     else
15924       __ cbnzw($op1$$Register, *L);
15925   %}
15926   ins_pipe(pipe_cmp_branch);
15927 %}
15928 
15929 instruct cmpP_narrowOop_imm0_branch(cmpOpEqNe cmp, iRegN oop, immP0 zero, label labl, rFlagsReg cr) %{
15930   match(If cmp (CmpP (DecodeN oop) zero));
15931   effect(USE labl);
15932 
15933   ins_cost(BRANCH_COST);
15934   format %{ "cb$cmp   $oop, $labl" %}
15935   ins_encode %{
15936     Label* L = $labl$$label;
15937     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
15938     if (cond == Assembler::EQ)
15939       __ cbzw($oop$$Register, *L);
15940     else
15941       __ cbnzw($oop$$Register, *L);
15942   %}
15943   ins_pipe(pipe_cmp_branch);
15944 %}
15945 
15946 instruct cmpUI_imm0_branch(cmpOpUEqNeLeGt cmp, iRegIorL2I op1, immI0 op2, label labl) %{
15947   match(If cmp (CmpU op1 op2));
15948   effect(USE labl);
15949 
15950   ins_cost(BRANCH_COST);
15951   format %{ "cbw$cmp   $op1, $labl" %}
15952   ins_encode %{
15953     Label* L = $labl$$label;
15954     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
15955     if (cond == Assembler::EQ || cond == Assembler::LS) {
15956       __ cbzw($op1$$Register, *L);
15957     } else {
15958       assert(cond == Assembler::NE || cond == Assembler::HI, "unexpected condition");
15959       __ cbnzw($op1$$Register, *L);
15960     }
15961   %}
15962   ins_pipe(pipe_cmp_branch);
15963 %}
15964 
15965 instruct cmpUL_imm0_branch(cmpOpUEqNeLeGt cmp, iRegL op1, immL0 op2, label labl) %{
15966   match(If cmp (CmpUL op1 op2));
15967   effect(USE labl);
15968 
15969   ins_cost(BRANCH_COST);
15970   format %{ "cb$cmp   $op1, $labl" %}
15971   ins_encode %{
15972     Label* L = $labl$$label;
15973     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
15974     if (cond == Assembler::EQ || cond == Assembler::LS) {
15975       __ cbz($op1$$Register, *L);
15976     } else {
15977       assert(cond == Assembler::NE || cond == Assembler::HI, "unexpected condition");
15978       __ cbnz($op1$$Register, *L);
15979     }
15980   %}
15981   ins_pipe(pipe_cmp_branch);
15982 %}
15983 
15984 // Test bit and Branch
15985 
15986 // Patterns for short (< 32KiB) variants
15987 instruct cmpL_branch_sign(cmpOpLtGe cmp, iRegL op1, immL0 op2, label labl) %{
15988   match(If cmp (CmpL op1 op2));
15989   effect(USE labl);
15990 
15991   ins_cost(BRANCH_COST);
15992   format %{ "cb$cmp   $op1, $labl # long" %}
15993   ins_encode %{
15994     Label* L = $labl$$label;
15995     Assembler::Condition cond =
15996       ((Assembler::Condition)$cmp$$cmpcode == Assembler::LT) ? Assembler::NE : Assembler::EQ;
15997     __ tbr(cond, $op1$$Register, 63, *L);
15998   %}
15999   ins_pipe(pipe_cmp_branch);
16000   ins_short_branch(1);
16001 %}
16002 
16003 instruct cmpI_branch_sign(cmpOpLtGe cmp, iRegIorL2I op1, immI0 op2, label labl) %{
16004   match(If cmp (CmpI op1 op2));
16005   effect(USE labl);
16006 
16007   ins_cost(BRANCH_COST);
16008   format %{ "cb$cmp   $op1, $labl # int" %}
16009   ins_encode %{
16010     Label* L = $labl$$label;
16011     Assembler::Condition cond =
16012       ((Assembler::Condition)$cmp$$cmpcode == Assembler::LT) ? Assembler::NE : Assembler::EQ;
16013     __ tbr(cond, $op1$$Register, 31, *L);
16014   %}
16015   ins_pipe(pipe_cmp_branch);
16016   ins_short_branch(1);
16017 %}
16018 
16019 instruct cmpL_branch_bit(cmpOpEqNe cmp, iRegL op1, immL op2, immL0 op3, label labl) %{
16020   match(If cmp (CmpL (AndL op1 op2) op3));
16021   predicate(is_power_of_2((julong)n->in(2)->in(1)->in(2)->get_long()));
16022   effect(USE labl);
16023 
16024   ins_cost(BRANCH_COST);
16025   format %{ "tb$cmp   $op1, $op2, $labl" %}
16026   ins_encode %{
16027     Label* L = $labl$$label;
16028     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
16029     int bit = exact_log2_long($op2$$constant);
16030     __ tbr(cond, $op1$$Register, bit, *L);
16031   %}
16032   ins_pipe(pipe_cmp_branch);
16033   ins_short_branch(1);
16034 %}
16035 
16036 instruct cmpI_branch_bit(cmpOpEqNe cmp, iRegIorL2I op1, immI op2, immI0 op3, label labl) %{
16037   match(If cmp (CmpI (AndI op1 op2) op3));
16038   predicate(is_power_of_2((juint)n->in(2)->in(1)->in(2)->get_int()));
16039   effect(USE labl);
16040 
16041   ins_cost(BRANCH_COST);
16042   format %{ "tb$cmp   $op1, $op2, $labl" %}
16043   ins_encode %{
16044     Label* L = $labl$$label;
16045     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
16046     int bit = exact_log2((juint)$op2$$constant);
16047     __ tbr(cond, $op1$$Register, bit, *L);
16048   %}
16049   ins_pipe(pipe_cmp_branch);
16050   ins_short_branch(1);
16051 %}
16052 
16053 // And far variants
16054 instruct far_cmpL_branch_sign(cmpOpLtGe cmp, iRegL op1, immL0 op2, label labl) %{
16055   match(If cmp (CmpL op1 op2));
16056   effect(USE labl);
16057 
16058   ins_cost(BRANCH_COST);
16059   format %{ "cb$cmp   $op1, $labl # long" %}
16060   ins_encode %{
16061     Label* L = $labl$$label;
16062     Assembler::Condition cond =
16063       ((Assembler::Condition)$cmp$$cmpcode == Assembler::LT) ? Assembler::NE : Assembler::EQ;
16064     __ tbr(cond, $op1$$Register, 63, *L, /*far*/true);
16065   %}
16066   ins_pipe(pipe_cmp_branch);
16067 %}
16068 
16069 instruct far_cmpI_branch_sign(cmpOpLtGe cmp, iRegIorL2I op1, immI0 op2, label labl) %{
16070   match(If cmp (CmpI op1 op2));
16071   effect(USE labl);
16072 
16073   ins_cost(BRANCH_COST);
16074   format %{ "cb$cmp   $op1, $labl # int" %}
16075   ins_encode %{
16076     Label* L = $labl$$label;
16077     Assembler::Condition cond =
16078       ((Assembler::Condition)$cmp$$cmpcode == Assembler::LT) ? Assembler::NE : Assembler::EQ;
16079     __ tbr(cond, $op1$$Register, 31, *L, /*far*/true);
16080   %}
16081   ins_pipe(pipe_cmp_branch);
16082 %}
16083 
16084 instruct far_cmpL_branch_bit(cmpOpEqNe cmp, iRegL op1, immL op2, immL0 op3, label labl) %{
16085   match(If cmp (CmpL (AndL op1 op2) op3));
16086   predicate(is_power_of_2((julong)n->in(2)->in(1)->in(2)->get_long()));
16087   effect(USE labl);
16088 
16089   ins_cost(BRANCH_COST);
16090   format %{ "tb$cmp   $op1, $op2, $labl" %}
16091   ins_encode %{
16092     Label* L = $labl$$label;
16093     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
16094     int bit = exact_log2_long($op2$$constant);
16095     __ tbr(cond, $op1$$Register, bit, *L, /*far*/true);
16096   %}
16097   ins_pipe(pipe_cmp_branch);
16098 %}
16099 
16100 instruct far_cmpI_branch_bit(cmpOpEqNe cmp, iRegIorL2I op1, immI op2, immI0 op3, label labl) %{
16101   match(If cmp (CmpI (AndI op1 op2) op3));
16102   predicate(is_power_of_2((juint)n->in(2)->in(1)->in(2)->get_int()));
16103   effect(USE labl);
16104 
16105   ins_cost(BRANCH_COST);
16106   format %{ "tb$cmp   $op1, $op2, $labl" %}
16107   ins_encode %{
16108     Label* L = $labl$$label;
16109     Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
16110     int bit = exact_log2((juint)$op2$$constant);
16111     __ tbr(cond, $op1$$Register, bit, *L, /*far*/true);
16112   %}
16113   ins_pipe(pipe_cmp_branch);
16114 %}
16115 
16116 // Test bits
16117 
16118 instruct cmpL_and(cmpOp cmp, iRegL op1, immL op2, immL0 op3, rFlagsReg cr) %{
16119   match(Set cr (CmpL (AndL op1 op2) op3));
16120   predicate(Assembler::operand_valid_for_logical_immediate
16121             (/*is_32*/false, n->in(1)->in(2)->get_long()));
16122 
16123   ins_cost(INSN_COST);
16124   format %{ "tst $op1, $op2 # long" %}
16125   ins_encode %{
16126     __ tst($op1$$Register, $op2$$constant);
16127   %}
16128   ins_pipe(ialu_reg_reg);
16129 %}
16130 
16131 instruct cmpI_and(cmpOp cmp, iRegIorL2I op1, immI op2, immI0 op3, rFlagsReg cr) %{
16132   match(Set cr (CmpI (AndI op1 op2) op3));
16133   predicate(Assembler::operand_valid_for_logical_immediate
16134             (/*is_32*/true, n->in(1)->in(2)->get_int()));
16135 
16136   ins_cost(INSN_COST);
16137   format %{ "tst $op1, $op2 # int" %}
16138   ins_encode %{
16139     __ tstw($op1$$Register, $op2$$constant);
16140   %}
16141   ins_pipe(ialu_reg_reg);
16142 %}
16143 
16144 instruct cmpL_and_reg(cmpOp cmp, iRegL op1, iRegL op2, immL0 op3, rFlagsReg cr) %{
16145   match(Set cr (CmpL (AndL op1 op2) op3));
16146 
16147   ins_cost(INSN_COST);
16148   format %{ "tst $op1, $op2 # long" %}
16149   ins_encode %{
16150     __ tst($op1$$Register, $op2$$Register);
16151   %}
16152   ins_pipe(ialu_reg_reg);
16153 %}
16154 
16155 instruct cmpI_and_reg(cmpOp cmp, iRegIorL2I op1, iRegIorL2I op2, immI0 op3, rFlagsReg cr) %{
16156   match(Set cr (CmpI (AndI op1 op2) op3));
16157 
16158   ins_cost(INSN_COST);
16159   format %{ "tstw $op1, $op2 # int" %}
16160   ins_encode %{
16161     __ tstw($op1$$Register, $op2$$Register);
16162   %}
16163   ins_pipe(ialu_reg_reg);
16164 %}
16165 
16166 
16167 // Conditional Far Branch
16168 // Conditional Far Branch Unsigned
16169 // TODO: fixme
16170 
16171 // counted loop end branch near
16172 instruct branchLoopEnd(cmpOp cmp, rFlagsReg cr, label lbl)
16173 %{
16174   match(CountedLoopEnd cmp cr);
16175 
16176   effect(USE lbl);
16177 
16178   ins_cost(BRANCH_COST);
16179   // short variant.
16180   // ins_short_branch(1);
16181   format %{ "b$cmp $lbl \t// counted loop end" %}
16182 
16183   ins_encode(aarch64_enc_br_con(cmp, lbl));
16184 
16185   ins_pipe(pipe_branch);
16186 %}
16187 
16188 // counted loop end branch far
16189 // TODO: fixme
16190 
16191 // ============================================================================
16192 // inlined locking and unlocking
16193 
16194 instruct cmpFastLock(rFlagsReg cr, iRegP object, iRegP box, iRegPNoSp tmp, iRegPNoSp tmp2, iRegPNoSp tmp3)
16195 %{
16196   predicate(LockingMode != LM_LIGHTWEIGHT);
16197   match(Set cr (FastLock object box));
16198   effect(TEMP tmp, TEMP tmp2, TEMP tmp3);
16199 
16200   ins_cost(5 * INSN_COST);
16201   format %{ "fastlock $object,$box\t! kills $tmp,$tmp2,$tmp3" %}
16202 
16203   ins_encode %{
16204     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register, $tmp2$$Register, $tmp3$$Register);
16205   %}
16206 
16207   ins_pipe(pipe_serial);
16208 %}
16209 
16210 instruct cmpFastUnlock(rFlagsReg cr, iRegP object, iRegP box, iRegPNoSp tmp, iRegPNoSp tmp2)
16211 %{
16212   predicate(LockingMode != LM_LIGHTWEIGHT);
16213   match(Set cr (FastUnlock object box));
16214   effect(TEMP tmp, TEMP tmp2);
16215 
16216   ins_cost(5 * INSN_COST);
16217   format %{ "fastunlock $object,$box\t! kills $tmp, $tmp2" %}
16218 
16219   ins_encode %{
16220     __ fast_unlock($object$$Register, $box$$Register, $tmp$$Register, $tmp2$$Register);
16221   %}
16222 
16223   ins_pipe(pipe_serial);
16224 %}
16225 
16226 instruct cmpFastLockLightweight(rFlagsReg cr, iRegP object, iRegP box, iRegPNoSp tmp, iRegPNoSp tmp2, iRegPNoSp tmp3)
16227 %{
16228   predicate(LockingMode == LM_LIGHTWEIGHT);
16229   match(Set cr (FastLock object box));
16230   effect(TEMP tmp, TEMP tmp2, TEMP tmp3);
16231 
16232   ins_cost(5 * INSN_COST);
16233   format %{ "fastlock $object,$box\t! kills $tmp,$tmp2,$tmp3" %}
16234 
16235   ins_encode %{
16236     __ fast_lock_lightweight($object$$Register, $box$$Register, $tmp$$Register, $tmp2$$Register, $tmp3$$Register);
16237   %}
16238 
16239   ins_pipe(pipe_serial);
16240 %}
16241 
16242 instruct cmpFastUnlockLightweight(rFlagsReg cr, iRegP object, iRegP box, iRegPNoSp tmp, iRegPNoSp tmp2, iRegPNoSp tmp3)
16243 %{
16244   predicate(LockingMode == LM_LIGHTWEIGHT);
16245   match(Set cr (FastUnlock object box));
16246   effect(TEMP tmp, TEMP tmp2, TEMP tmp3);
16247 
16248   ins_cost(5 * INSN_COST);
16249   format %{ "fastunlock $object,$box\t! kills $tmp, $tmp2, $tmp3" %}
16250 
16251   ins_encode %{
16252     __ fast_unlock_lightweight($object$$Register, $box$$Register, $tmp$$Register, $tmp2$$Register, $tmp3$$Register);
16253   %}
16254 
16255   ins_pipe(pipe_serial);
16256 %}
16257 
16258 // ============================================================================
16259 // Safepoint Instructions
16260 
16261 // TODO
16262 // provide a near and far version of this code
16263 
16264 instruct safePoint(rFlagsReg cr, iRegP poll)
16265 %{
16266   match(SafePoint poll);
16267   effect(KILL cr);
16268 
16269   format %{
16270     "ldrw zr, [$poll]\t# Safepoint: poll for GC"
16271   %}
16272   ins_encode %{
16273     __ read_polling_page(as_Register($poll$$reg), relocInfo::poll_type);
16274   %}
16275   ins_pipe(pipe_serial); // ins_pipe(iload_reg_mem);
16276 %}
16277 
16278 
16279 // ============================================================================
16280 // Procedure Call/Return Instructions
16281 
16282 // Call Java Static Instruction
16283 
16284 instruct CallStaticJavaDirect(method meth)
16285 %{
16286   match(CallStaticJava);
16287 
16288   effect(USE meth);
16289 
16290   ins_cost(CALL_COST);
16291 
16292   format %{ "call,static $meth \t// ==> " %}
16293 
16294   ins_encode(aarch64_enc_java_static_call(meth),
16295              aarch64_enc_call_epilog);
16296 
16297   ins_pipe(pipe_class_call);
16298 %}
16299 
16300 // TO HERE
16301 
16302 // Call Java Dynamic Instruction
16303 instruct CallDynamicJavaDirect(method meth)
16304 %{
16305   match(CallDynamicJava);
16306 
16307   effect(USE meth);
16308 
16309   ins_cost(CALL_COST);
16310 
16311   format %{ "CALL,dynamic $meth \t// ==> " %}
16312 
16313   ins_encode(aarch64_enc_java_dynamic_call(meth),
16314              aarch64_enc_call_epilog);
16315 
16316   ins_pipe(pipe_class_call);
16317 %}
16318 
16319 // Call Runtime Instruction
16320 
16321 instruct CallRuntimeDirect(method meth)
16322 %{
16323   match(CallRuntime);
16324 
16325   effect(USE meth);
16326 
16327   ins_cost(CALL_COST);
16328 
16329   format %{ "CALL, runtime $meth" %}
16330 
16331   ins_encode( aarch64_enc_java_to_runtime(meth) );
16332 
16333   ins_pipe(pipe_class_call);
16334 %}
16335 
16336 // Call Runtime Instruction
16337 
16338 instruct CallLeafDirect(method meth)
16339 %{
16340   match(CallLeaf);
16341 
16342   effect(USE meth);
16343 
16344   ins_cost(CALL_COST);
16345 
16346   format %{ "CALL, runtime leaf $meth" %}
16347 
16348   ins_encode( aarch64_enc_java_to_runtime(meth) );
16349 
16350   ins_pipe(pipe_class_call);
16351 %}
16352 
16353 // Call Runtime Instruction without safepoint and with vector arguments
16354 instruct CallLeafDirectVector(method meth)
16355 %{
16356   match(CallLeafVector);
16357 
16358   effect(USE meth);
16359 
16360   ins_cost(CALL_COST);
16361 
16362   format %{ "CALL, runtime leaf vector $meth" %}
16363 
16364   ins_encode(aarch64_enc_java_to_runtime(meth));
16365 
16366   ins_pipe(pipe_class_call);
16367 %}
16368 
16369 // Call Runtime Instruction
16370 
16371 instruct CallLeafNoFPDirect(method meth)
16372 %{
16373   match(CallLeafNoFP);
16374 
16375   effect(USE meth);
16376 
16377   ins_cost(CALL_COST);
16378 
16379   format %{ "CALL, runtime leaf nofp $meth" %}
16380 
16381   ins_encode( aarch64_enc_java_to_runtime(meth) );
16382 
16383   ins_pipe(pipe_class_call);
16384 %}
16385 
16386 // Tail Call; Jump from runtime stub to Java code.
16387 // Also known as an 'interprocedural jump'.
16388 // Target of jump will eventually return to caller.
16389 // TailJump below removes the return address.
16390 // Don't use rfp for 'jump_target' because a MachEpilogNode has already been
16391 // emitted just above the TailCall which has reset rfp to the caller state.
16392 instruct TailCalljmpInd(iRegPNoSpNoRfp jump_target, inline_cache_RegP method_ptr)
16393 %{
16394   match(TailCall jump_target method_ptr);
16395 
16396   ins_cost(CALL_COST);
16397 
16398   format %{ "br $jump_target\t# $method_ptr holds method" %}
16399 
16400   ins_encode(aarch64_enc_tail_call(jump_target));
16401 
16402   ins_pipe(pipe_class_call);
16403 %}
16404 
16405 instruct TailjmpInd(iRegPNoSpNoRfp jump_target, iRegP_R0 ex_oop)
16406 %{
16407   match(TailJump jump_target ex_oop);
16408 
16409   ins_cost(CALL_COST);
16410 
16411   format %{ "br $jump_target\t# $ex_oop holds exception oop" %}
16412 
16413   ins_encode(aarch64_enc_tail_jmp(jump_target));
16414 
16415   ins_pipe(pipe_class_call);
16416 %}
16417 
16418 // Forward exception.
16419 instruct ForwardExceptionjmp()
16420 %{
16421   match(ForwardException);
16422   ins_cost(CALL_COST);
16423 
16424   format %{ "b forward_exception_stub" %}
16425   ins_encode %{
16426     __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
16427   %}
16428   ins_pipe(pipe_class_call);
16429 %}
16430 
16431 // Create exception oop: created by stack-crawling runtime code.
16432 // Created exception is now available to this handler, and is setup
16433 // just prior to jumping to this handler. No code emitted.
16434 // TODO check
16435 // should ex_oop be in r0? intel uses rax, ppc cannot use r0 so uses rarg1
16436 instruct CreateException(iRegP_R0 ex_oop)
16437 %{
16438   match(Set ex_oop (CreateEx));
16439 
16440   format %{ " -- \t// exception oop; no code emitted" %}
16441 
16442   size(0);
16443 
16444   ins_encode( /*empty*/ );
16445 
16446   ins_pipe(pipe_class_empty);
16447 %}
16448 
16449 // Rethrow exception: The exception oop will come in the first
16450 // argument position. Then JUMP (not call) to the rethrow stub code.
16451 instruct RethrowException() %{
16452   match(Rethrow);
16453   ins_cost(CALL_COST);
16454 
16455   format %{ "b rethrow_stub" %}
16456 
16457   ins_encode( aarch64_enc_rethrow() );
16458 
16459   ins_pipe(pipe_class_call);
16460 %}
16461 
16462 
16463 // Return Instruction
16464 // epilog node loads ret address into lr as part of frame pop
16465 instruct Ret()
16466 %{
16467   match(Return);
16468 
16469   format %{ "ret\t// return register" %}
16470 
16471   ins_encode( aarch64_enc_ret() );
16472 
16473   ins_pipe(pipe_branch);
16474 %}
16475 
16476 // Die now.
16477 instruct ShouldNotReachHere() %{
16478   match(Halt);
16479 
16480   ins_cost(CALL_COST);
16481   format %{ "ShouldNotReachHere" %}
16482 
16483   ins_encode %{
16484     if (is_reachable()) {
16485       const char* str = __ code_string(_halt_reason);
16486       __ stop(str);
16487     }
16488   %}
16489 
16490   ins_pipe(pipe_class_default);
16491 %}
16492 
16493 // ============================================================================
16494 // Partial Subtype Check
16495 //
16496 // superklass array for an instance of the superklass.  Set a hidden
16497 // internal cache on a hit (cache is checked with exposed code in
16498 // gen_subtype_check()).  Return NZ for a miss or zero for a hit.  The
16499 // encoding ALSO sets flags.
16500 
16501 instruct partialSubtypeCheck(iRegP_R4 sub, iRegP_R0 super, iRegP_R2 temp, iRegP_R5 result, rFlagsReg cr)
16502 %{
16503   match(Set result (PartialSubtypeCheck sub super));
16504   predicate(!UseSecondarySupersTable);
16505   effect(KILL cr, KILL temp);
16506 
16507   ins_cost(20 * INSN_COST);  // slightly larger than the next version
16508   format %{ "partialSubtypeCheck $result, $sub, $super" %}
16509 
16510   ins_encode(aarch64_enc_partial_subtype_check(sub, super, temp, result));
16511 
16512   opcode(0x1); // Force zero of result reg on hit
16513 
16514   ins_pipe(pipe_class_memory);
16515 %}
16516 
16517 // Two versions of partialSubtypeCheck, both used when we need to
16518 // search for a super class in the secondary supers array. The first
16519 // is used when we don't know _a priori_ the class being searched
16520 // for. The second, far more common, is used when we do know: this is
16521 // used for instanceof, checkcast, and any case where C2 can determine
16522 // it by constant propagation.
16523 
16524 instruct partialSubtypeCheckVarSuper(iRegP_R4 sub, iRegP_R0 super, vRegD_V0 vtemp, iRegP_R5 result,
16525                                      iRegP_R1 tempR1, iRegP_R2 tempR2, iRegP_R3 tempR3,
16526                                      rFlagsReg cr)
16527 %{
16528   match(Set result (PartialSubtypeCheck sub super));
16529   predicate(UseSecondarySupersTable);
16530   effect(KILL cr, TEMP tempR1, TEMP tempR2, TEMP tempR3, TEMP vtemp);
16531 
16532   ins_cost(10 * INSN_COST);  // slightly larger than the next version
16533   format %{ "partialSubtypeCheck $result, $sub, $super" %}
16534 
16535   ins_encode %{
16536     __ lookup_secondary_supers_table_var($sub$$Register, $super$$Register,
16537                                          $tempR1$$Register, $tempR2$$Register, $tempR3$$Register,
16538                                          $vtemp$$FloatRegister,
16539                                          $result$$Register, /*L_success*/nullptr);
16540   %}
16541 
16542   ins_pipe(pipe_class_memory);
16543 %}
16544 
16545 instruct partialSubtypeCheckConstSuper(iRegP_R4 sub, iRegP_R0 super_reg, immP super_con, vRegD_V0 vtemp, iRegP_R5 result,
16546                                        iRegP_R1 tempR1, iRegP_R2 tempR2, iRegP_R3 tempR3,
16547                                        rFlagsReg cr)
16548 %{
16549   match(Set result (PartialSubtypeCheck sub (Binary super_reg super_con)));
16550   predicate(UseSecondarySupersTable);
16551   effect(KILL cr, TEMP tempR1, TEMP tempR2, TEMP tempR3, TEMP vtemp);
16552 
16553   ins_cost(5 * INSN_COST);  // smaller than the next version
16554   format %{ "partialSubtypeCheck $result, $sub, $super_reg, $super_con" %}
16555 
16556   ins_encode %{
16557     bool success = false;
16558     u1 super_klass_slot = ((Klass*)$super_con$$constant)->hash_slot();
16559     if (InlineSecondarySupersTest) {
16560       success =
16561         __ lookup_secondary_supers_table_const($sub$$Register, $super_reg$$Register,
16562                                                $tempR1$$Register, $tempR2$$Register, $tempR3$$Register,
16563                                                $vtemp$$FloatRegister,
16564                                                $result$$Register,
16565                                                super_klass_slot);
16566     } else {
16567       address call = __ trampoline_call(RuntimeAddress(StubRoutines::lookup_secondary_supers_table_stub(super_klass_slot)));
16568       success = (call != nullptr);
16569     }
16570     if (!success) {
16571       ciEnv::current()->record_failure("CodeCache is full");
16572       return;
16573     }
16574   %}
16575 
16576   ins_pipe(pipe_class_memory);
16577 %}
16578 
16579 // Intrisics for String.compareTo()
16580 
16581 instruct string_compareU(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2,
16582                         iRegI_R0 result, iRegP_R10 tmp1, iRegL_R11 tmp2, rFlagsReg cr)
16583 %{
16584   predicate((UseSVE == 0) && (((StrCompNode*)n)->encoding() == StrIntrinsicNode::UU));
16585   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
16586   effect(KILL tmp1, KILL tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
16587 
16588   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   # KILL $tmp1" %}
16589   ins_encode %{
16590     // Count is in 8-bit bytes; non-Compact chars are 16 bits.
16591     __ string_compare($str1$$Register, $str2$$Register,
16592                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
16593                       $tmp1$$Register, $tmp2$$Register,
16594                       fnoreg, fnoreg, fnoreg, pnoreg, pnoreg, StrIntrinsicNode::UU);
16595   %}
16596   ins_pipe(pipe_class_memory);
16597 %}
16598 
16599 instruct string_compareL(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2,
16600                         iRegI_R0 result, iRegP_R10 tmp1, iRegL_R11 tmp2, rFlagsReg cr)
16601 %{
16602   predicate((UseSVE == 0) && (((StrCompNode*)n)->encoding() == StrIntrinsicNode::LL));
16603   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
16604   effect(KILL tmp1, KILL tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
16605 
16606   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   # KILL $tmp1" %}
16607   ins_encode %{
16608     __ string_compare($str1$$Register, $str2$$Register,
16609                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
16610                       $tmp1$$Register, $tmp2$$Register,
16611                       fnoreg, fnoreg, fnoreg, pnoreg, pnoreg, StrIntrinsicNode::LL);
16612   %}
16613   ins_pipe(pipe_class_memory);
16614 %}
16615 
16616 instruct string_compareUL(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2,
16617                         iRegI_R0 result, iRegP_R10 tmp1, iRegL_R11 tmp2,
16618                         vRegD_V0 vtmp1, vRegD_V1 vtmp2, vRegD_V2 vtmp3, rFlagsReg cr)
16619 %{
16620   predicate((UseSVE == 0) && (((StrCompNode*)n)->encoding() == StrIntrinsicNode::UL));
16621   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
16622   effect(KILL tmp1, KILL tmp2, KILL vtmp1, KILL vtmp2, KILL vtmp3,
16623          USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
16624 
16625   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   # KILL $tmp1, $tmp2, $vtmp1, $vtmp2, $vtmp3" %}
16626   ins_encode %{
16627     __ string_compare($str1$$Register, $str2$$Register,
16628                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
16629                       $tmp1$$Register, $tmp2$$Register,
16630                       $vtmp1$$FloatRegister, $vtmp2$$FloatRegister,
16631                       $vtmp3$$FloatRegister, pnoreg, pnoreg, StrIntrinsicNode::UL);
16632   %}
16633   ins_pipe(pipe_class_memory);
16634 %}
16635 
16636 instruct string_compareLU(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2,
16637                         iRegI_R0 result, iRegP_R10 tmp1, iRegL_R11 tmp2,
16638                         vRegD_V0 vtmp1, vRegD_V1 vtmp2, vRegD_V2 vtmp3, rFlagsReg cr)
16639 %{
16640   predicate((UseSVE == 0) && (((StrCompNode*)n)->encoding() == StrIntrinsicNode::LU));
16641   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
16642   effect(KILL tmp1, KILL tmp2, KILL vtmp1, KILL vtmp2, KILL vtmp3,
16643          USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
16644 
16645   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   # KILL $tmp1, $tmp2, $vtmp1, $vtmp2, $vtmp3" %}
16646   ins_encode %{
16647     __ string_compare($str1$$Register, $str2$$Register,
16648                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
16649                       $tmp1$$Register, $tmp2$$Register,
16650                       $vtmp1$$FloatRegister, $vtmp2$$FloatRegister,
16651                       $vtmp3$$FloatRegister, pnoreg, pnoreg, StrIntrinsicNode::LU);
16652   %}
16653   ins_pipe(pipe_class_memory);
16654 %}
16655 
16656 // Note that Z registers alias the corresponding NEON registers, we declare the vector operands of
16657 // these string_compare variants as NEON register type for convenience so that the prototype of
16658 // string_compare can be shared with all variants.
16659 
16660 instruct string_compareLL_sve(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2,
16661                               iRegI_R0 result, iRegP_R10 tmp1, iRegL_R11 tmp2,
16662                               vRegD_V0 vtmp1, vRegD_V1 vtmp2, pRegGov_P0 pgtmp1,
16663                               pRegGov_P1 pgtmp2, rFlagsReg cr)
16664 %{
16665   predicate((UseSVE > 0) && (((StrCompNode*)n)->encoding() == StrIntrinsicNode::LL));
16666   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
16667   effect(TEMP tmp1, TEMP tmp2, TEMP vtmp1, TEMP vtmp2, TEMP pgtmp1, TEMP pgtmp2,
16668          USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
16669 
16670   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   # USE sve" %}
16671   ins_encode %{
16672     // Count is in 8-bit bytes; non-Compact chars are 16 bits.
16673     __ string_compare($str1$$Register, $str2$$Register,
16674                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
16675                       $tmp1$$Register, $tmp2$$Register,
16676                       $vtmp1$$FloatRegister, $vtmp2$$FloatRegister, fnoreg,
16677                       as_PRegister($pgtmp1$$reg), as_PRegister($pgtmp2$$reg),
16678                       StrIntrinsicNode::LL);
16679   %}
16680   ins_pipe(pipe_class_memory);
16681 %}
16682 
16683 instruct string_compareLU_sve(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2,
16684                               iRegI_R0 result, iRegP_R10 tmp1, iRegL_R11 tmp2,
16685                               vRegD_V0 vtmp1, vRegD_V1 vtmp2, pRegGov_P0 pgtmp1,
16686                               pRegGov_P1 pgtmp2, rFlagsReg cr)
16687 %{
16688   predicate((UseSVE > 0) && (((StrCompNode*)n)->encoding() == StrIntrinsicNode::LU));
16689   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
16690   effect(TEMP tmp1, TEMP tmp2, TEMP vtmp1, TEMP vtmp2, TEMP pgtmp1, TEMP pgtmp2,
16691          USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
16692 
16693   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   # USE sve" %}
16694   ins_encode %{
16695     // Count is in 8-bit bytes; non-Compact chars are 16 bits.
16696     __ string_compare($str1$$Register, $str2$$Register,
16697                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
16698                       $tmp1$$Register, $tmp2$$Register,
16699                       $vtmp1$$FloatRegister, $vtmp2$$FloatRegister, fnoreg,
16700                       as_PRegister($pgtmp1$$reg), as_PRegister($pgtmp2$$reg),
16701                       StrIntrinsicNode::LU);
16702   %}
16703   ins_pipe(pipe_class_memory);
16704 %}
16705 
16706 instruct string_compareUL_sve(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2,
16707                               iRegI_R0 result, iRegP_R10 tmp1, iRegL_R11 tmp2,
16708                               vRegD_V0 vtmp1, vRegD_V1 vtmp2, pRegGov_P0 pgtmp1,
16709                               pRegGov_P1 pgtmp2, rFlagsReg cr)
16710 %{
16711   predicate((UseSVE > 0) && (((StrCompNode*)n)->encoding() == StrIntrinsicNode::UL));
16712   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
16713   effect(TEMP tmp1, TEMP tmp2, TEMP vtmp1, TEMP vtmp2, TEMP pgtmp1, TEMP pgtmp2,
16714          USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
16715 
16716   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   # USE sve" %}
16717   ins_encode %{
16718     // Count is in 8-bit bytes; non-Compact chars are 16 bits.
16719     __ string_compare($str1$$Register, $str2$$Register,
16720                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
16721                       $tmp1$$Register, $tmp2$$Register,
16722                       $vtmp1$$FloatRegister, $vtmp2$$FloatRegister, fnoreg,
16723                       as_PRegister($pgtmp1$$reg), as_PRegister($pgtmp2$$reg),
16724                       StrIntrinsicNode::UL);
16725   %}
16726   ins_pipe(pipe_class_memory);
16727 %}
16728 
16729 instruct string_compareUU_sve(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2,
16730                               iRegI_R0 result, iRegP_R10 tmp1, iRegL_R11 tmp2,
16731                               vRegD_V0 vtmp1, vRegD_V1 vtmp2, pRegGov_P0 pgtmp1,
16732                               pRegGov_P1 pgtmp2, rFlagsReg cr)
16733 %{
16734   predicate((UseSVE > 0) && (((StrCompNode*)n)->encoding() == StrIntrinsicNode::UU));
16735   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
16736   effect(TEMP tmp1, TEMP tmp2, TEMP vtmp1, TEMP vtmp2, TEMP pgtmp1, TEMP pgtmp2,
16737          USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
16738 
16739   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   # USE sve" %}
16740   ins_encode %{
16741     // Count is in 8-bit bytes; non-Compact chars are 16 bits.
16742     __ string_compare($str1$$Register, $str2$$Register,
16743                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
16744                       $tmp1$$Register, $tmp2$$Register,
16745                       $vtmp1$$FloatRegister, $vtmp2$$FloatRegister, fnoreg,
16746                       as_PRegister($pgtmp1$$reg), as_PRegister($pgtmp2$$reg),
16747                       StrIntrinsicNode::UU);
16748   %}
16749   ins_pipe(pipe_class_memory);
16750 %}
16751 
16752 instruct string_indexofUU(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2, iRegI_R2 cnt2,
16753                           iRegI_R0 result, iRegINoSp tmp1, iRegINoSp tmp2,
16754                           iRegINoSp tmp3, iRegINoSp tmp4, iRegINoSp tmp5, iRegINoSp tmp6,
16755                           vRegD_V0 vtmp0, vRegD_V1 vtmp1, rFlagsReg cr)
16756 %{
16757   predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU);
16758   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
16759   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2,
16760          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, TEMP tmp6,
16761          TEMP vtmp0, TEMP vtmp1, KILL cr);
16762   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (UU) "
16763             "# KILL $str1 $cnt1 $str2 $cnt2 $tmp1 $tmp2 $tmp3 $tmp4 $tmp5 $tmp6 V0-V1 cr" %}
16764 
16765   ins_encode %{
16766     __ string_indexof($str1$$Register, $str2$$Register,
16767                       $cnt1$$Register, $cnt2$$Register,
16768                       $tmp1$$Register, $tmp2$$Register,
16769                       $tmp3$$Register, $tmp4$$Register,
16770                       $tmp5$$Register, $tmp6$$Register,
16771                       -1, $result$$Register, StrIntrinsicNode::UU);
16772   %}
16773   ins_pipe(pipe_class_memory);
16774 %}
16775 
16776 instruct string_indexofLL(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2, iRegI_R2 cnt2,
16777                           iRegI_R0 result, iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3,
16778                           iRegINoSp tmp4, iRegINoSp tmp5, iRegINoSp tmp6,
16779                           vRegD_V0 vtmp0, vRegD_V1 vtmp1, rFlagsReg cr)
16780 %{
16781   predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL);
16782   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
16783   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2,
16784          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, TEMP tmp6,
16785          TEMP vtmp0, TEMP vtmp1, KILL cr);
16786   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (LL) "
16787             "# KILL $str1 $cnt1 $str2 $cnt2 $tmp1 $tmp2 $tmp3 $tmp4 $tmp5 $tmp6 V0-V1 cr" %}
16788 
16789   ins_encode %{
16790     __ string_indexof($str1$$Register, $str2$$Register,
16791                       $cnt1$$Register, $cnt2$$Register,
16792                       $tmp1$$Register, $tmp2$$Register,
16793                       $tmp3$$Register, $tmp4$$Register,
16794                       $tmp5$$Register, $tmp6$$Register,
16795                       -1, $result$$Register, StrIntrinsicNode::LL);
16796   %}
16797   ins_pipe(pipe_class_memory);
16798 %}
16799 
16800 instruct string_indexofUL(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2, iRegI_R2 cnt2,
16801                           iRegI_R0 result, iRegINoSp tmp1, iRegINoSp tmp2,iRegINoSp tmp3,
16802                           iRegINoSp tmp4, iRegINoSp tmp5, iRegINoSp tmp6,
16803                           vRegD_V0 vtmp0, vRegD_V1 vtmp1, rFlagsReg cr)
16804 %{
16805   predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL);
16806   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
16807   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2,
16808          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5,
16809          TEMP tmp6, TEMP vtmp0, TEMP vtmp1, KILL cr);
16810   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (UL) "
16811             "# KILL $str1 cnt1 $str2 $cnt2 $tmp1 $tmp2 $tmp3 $tmp4 $tmp5 $tmp6 V0-V1 cr" %}
16812 
16813   ins_encode %{
16814     __ string_indexof($str1$$Register, $str2$$Register,
16815                       $cnt1$$Register, $cnt2$$Register,
16816                       $tmp1$$Register, $tmp2$$Register,
16817                       $tmp3$$Register, $tmp4$$Register,
16818                       $tmp5$$Register, $tmp6$$Register,
16819                       -1, $result$$Register, StrIntrinsicNode::UL);
16820   %}
16821   ins_pipe(pipe_class_memory);
16822 %}
16823 
16824 instruct string_indexof_conUU(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2,
16825                               immI_le_4 int_cnt2, iRegI_R0 result, iRegINoSp tmp1,
16826                               iRegINoSp tmp2, iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr)
16827 %{
16828   predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU);
16829   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
16830   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1,
16831          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
16832   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (UU) "
16833             "# KILL $str1 $cnt1 $str2 $tmp1 $tmp2 $tmp3 $tmp4 cr" %}
16834 
16835   ins_encode %{
16836     int icnt2 = (int)$int_cnt2$$constant;
16837     __ string_indexof($str1$$Register, $str2$$Register,
16838                       $cnt1$$Register, zr,
16839                       $tmp1$$Register, $tmp2$$Register,
16840                       $tmp3$$Register, $tmp4$$Register, zr, zr,
16841                       icnt2, $result$$Register, StrIntrinsicNode::UU);
16842   %}
16843   ins_pipe(pipe_class_memory);
16844 %}
16845 
16846 instruct string_indexof_conLL(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2,
16847                               immI_le_4 int_cnt2, iRegI_R0 result, iRegINoSp tmp1,
16848                               iRegINoSp tmp2, iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr)
16849 %{
16850   predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL);
16851   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
16852   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1,
16853          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
16854   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (LL) "
16855             "# KILL $str1 $cnt1 $str2 $tmp1 $tmp2 $tmp3 $tmp4 cr" %}
16856 
16857   ins_encode %{
16858     int icnt2 = (int)$int_cnt2$$constant;
16859     __ string_indexof($str1$$Register, $str2$$Register,
16860                       $cnt1$$Register, zr,
16861                       $tmp1$$Register, $tmp2$$Register,
16862                       $tmp3$$Register, $tmp4$$Register, zr, zr,
16863                       icnt2, $result$$Register, StrIntrinsicNode::LL);
16864   %}
16865   ins_pipe(pipe_class_memory);
16866 %}
16867 
16868 instruct string_indexof_conUL(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2,
16869                               immI_1 int_cnt2, iRegI_R0 result, iRegINoSp tmp1,
16870                               iRegINoSp tmp2, iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr)
16871 %{
16872   predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL);
16873   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
16874   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1,
16875          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
16876   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (UL) "
16877             "# KILL $str1 $cnt1 $str2 $tmp1 $tmp2 $tmp3 $tmp4 cr" %}
16878 
16879   ins_encode %{
16880     int icnt2 = (int)$int_cnt2$$constant;
16881     __ string_indexof($str1$$Register, $str2$$Register,
16882                       $cnt1$$Register, zr,
16883                       $tmp1$$Register, $tmp2$$Register,
16884                       $tmp3$$Register, $tmp4$$Register, zr, zr,
16885                       icnt2, $result$$Register, StrIntrinsicNode::UL);
16886   %}
16887   ins_pipe(pipe_class_memory);
16888 %}
16889 
16890 instruct string_indexof_char(iRegP_R1 str1, iRegI_R2 cnt1, iRegI_R3 ch,
16891                              iRegI_R0 result, iRegINoSp tmp1, iRegINoSp tmp2,
16892                              iRegINoSp tmp3, rFlagsReg cr)
16893 %{
16894   match(Set result (StrIndexOfChar (Binary str1 cnt1) ch));
16895   predicate((UseSVE == 0) && (((StrIndexOfCharNode*)n)->encoding() == StrIntrinsicNode::U));
16896   effect(USE_KILL str1, USE_KILL cnt1, USE_KILL ch,
16897          TEMP tmp1, TEMP tmp2, TEMP tmp3, KILL cr);
16898 
16899   format %{ "StringUTF16 IndexOf char[] $str1,$cnt1,$ch -> $result" %}
16900 
16901   ins_encode %{
16902     __ string_indexof_char($str1$$Register, $cnt1$$Register, $ch$$Register,
16903                            $result$$Register, $tmp1$$Register, $tmp2$$Register,
16904                            $tmp3$$Register);
16905   %}
16906   ins_pipe(pipe_class_memory);
16907 %}
16908 
16909 instruct stringL_indexof_char(iRegP_R1 str1, iRegI_R2 cnt1, iRegI_R3 ch,
16910                               iRegI_R0 result, iRegINoSp tmp1, iRegINoSp tmp2,
16911                               iRegINoSp tmp3, rFlagsReg cr)
16912 %{
16913   match(Set result (StrIndexOfChar (Binary str1 cnt1) ch));
16914   predicate((UseSVE == 0) && (((StrIndexOfCharNode*)n)->encoding() == StrIntrinsicNode::L));
16915   effect(USE_KILL str1, USE_KILL cnt1, USE_KILL ch,
16916          TEMP tmp1, TEMP tmp2, TEMP tmp3, KILL cr);
16917 
16918   format %{ "StringLatin1 IndexOf char[] $str1,$cnt1,$ch -> $result" %}
16919 
16920   ins_encode %{
16921     __ stringL_indexof_char($str1$$Register, $cnt1$$Register, $ch$$Register,
16922                             $result$$Register, $tmp1$$Register, $tmp2$$Register,
16923                             $tmp3$$Register);
16924   %}
16925   ins_pipe(pipe_class_memory);
16926 %}
16927 
16928 instruct stringL_indexof_char_sve(iRegP_R1 str1, iRegI_R2 cnt1, iRegI_R3 ch,
16929                                   iRegI_R0 result, vecA ztmp1, vecA ztmp2,
16930                                   pRegGov pgtmp, pReg ptmp, rFlagsReg cr) %{
16931   predicate(UseSVE > 0 && ((StrIndexOfCharNode*)n)->encoding() == StrIntrinsicNode::L);
16932   match(Set result (StrIndexOfChar (Binary str1 cnt1) ch));
16933   effect(TEMP ztmp1, TEMP ztmp2, TEMP pgtmp, TEMP ptmp, KILL cr);
16934   format %{ "StringLatin1 IndexOf char[] $str1,$cnt1,$ch -> $result # use sve" %}
16935   ins_encode %{
16936     __ string_indexof_char_sve($str1$$Register, $cnt1$$Register, $ch$$Register,
16937                                $result$$Register, $ztmp1$$FloatRegister,
16938                                $ztmp2$$FloatRegister, $pgtmp$$PRegister,
16939                                $ptmp$$PRegister, true /* isL */);
16940   %}
16941   ins_pipe(pipe_class_memory);
16942 %}
16943 
16944 instruct stringU_indexof_char_sve(iRegP_R1 str1, iRegI_R2 cnt1, iRegI_R3 ch,
16945                                   iRegI_R0 result, vecA ztmp1, vecA ztmp2,
16946                                   pRegGov pgtmp, pReg ptmp, rFlagsReg cr) %{
16947   predicate(UseSVE > 0 && ((StrIndexOfCharNode*)n)->encoding() == StrIntrinsicNode::U);
16948   match(Set result (StrIndexOfChar (Binary str1 cnt1) ch));
16949   effect(TEMP ztmp1, TEMP ztmp2, TEMP pgtmp, TEMP ptmp, KILL cr);
16950   format %{ "StringUTF16 IndexOf char[] $str1,$cnt1,$ch -> $result # use sve" %}
16951   ins_encode %{
16952     __ string_indexof_char_sve($str1$$Register, $cnt1$$Register, $ch$$Register,
16953                                $result$$Register, $ztmp1$$FloatRegister,
16954                                $ztmp2$$FloatRegister, $pgtmp$$PRegister,
16955                                $ptmp$$PRegister, false /* isL */);
16956   %}
16957   ins_pipe(pipe_class_memory);
16958 %}
16959 
16960 instruct string_equalsL(iRegP_R1 str1, iRegP_R3 str2, iRegI_R4 cnt,
16961                         iRegI_R0 result, rFlagsReg cr)
16962 %{
16963   predicate(((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::LL);
16964   match(Set result (StrEquals (Binary str1 str2) cnt));
16965   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL cr);
16966 
16967   format %{ "String Equals $str1,$str2,$cnt -> $result" %}
16968   ins_encode %{
16969     // Count is in 8-bit bytes; non-Compact chars are 16 bits.
16970     __ string_equals($str1$$Register, $str2$$Register,
16971                      $result$$Register, $cnt$$Register);
16972   %}
16973   ins_pipe(pipe_class_memory);
16974 %}
16975 
16976 instruct array_equalsB(iRegP_R1 ary1, iRegP_R2 ary2, iRegI_R0 result,
16977                        iRegP_R3 tmp1, iRegP_R4 tmp2, iRegP_R5 tmp3,
16978                        vRegD_V0 vtmp0, vRegD_V1 vtmp1, vRegD_V2 vtmp2, vRegD_V3 vtmp3,
16979                        vRegD_V4 vtmp4, vRegD_V5 vtmp5, vRegD_V6 vtmp6, vRegD_V7 vtmp7,
16980                        iRegP_R10 tmp, rFlagsReg cr)
16981 %{
16982   predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::LL);
16983   match(Set result (AryEq ary1 ary2));
16984   effect(KILL tmp, USE_KILL ary1, USE_KILL ary2, TEMP tmp1, TEMP tmp2, TEMP tmp3,
16985          TEMP vtmp0, TEMP vtmp1, TEMP vtmp2, TEMP vtmp3, TEMP vtmp4, TEMP vtmp5,
16986          TEMP vtmp6, TEMP vtmp7, KILL cr);
16987 
16988   format %{ "Array Equals $ary1,ary2 -> $result # KILL $ary1 $ary2 $tmp $tmp1 $tmp2 $tmp3 V0-V7 cr" %}
16989   ins_encode %{
16990     address tpc = __ arrays_equals($ary1$$Register, $ary2$$Register,
16991                                    $tmp1$$Register, $tmp2$$Register, $tmp3$$Register,
16992                                    $result$$Register, $tmp$$Register, 1);
16993     if (tpc == nullptr) {
16994       ciEnv::current()->record_failure("CodeCache is full");
16995       return;
16996     }
16997   %}
16998   ins_pipe(pipe_class_memory);
16999 %}
17000 
17001 instruct array_equalsC(iRegP_R1 ary1, iRegP_R2 ary2, iRegI_R0 result,
17002                        iRegP_R3 tmp1, iRegP_R4 tmp2, iRegP_R5 tmp3,
17003                        vRegD_V0 vtmp0, vRegD_V1 vtmp1, vRegD_V2 vtmp2, vRegD_V3 vtmp3,
17004                        vRegD_V4 vtmp4, vRegD_V5 vtmp5, vRegD_V6 vtmp6, vRegD_V7 vtmp7,
17005                        iRegP_R10 tmp, rFlagsReg cr)
17006 %{
17007   predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::UU);
17008   match(Set result (AryEq ary1 ary2));
17009   effect(KILL tmp, USE_KILL ary1, USE_KILL ary2, TEMP tmp1, TEMP tmp2, TEMP tmp3,
17010          TEMP vtmp0, TEMP vtmp1, TEMP vtmp2, TEMP vtmp3, TEMP vtmp4, TEMP vtmp5,
17011          TEMP vtmp6, TEMP vtmp7, KILL cr);
17012 
17013   format %{ "Array Equals $ary1,ary2 -> $result # KILL $ary1 $ary2 $tmp $tmp1 $tmp2 $tmp3 V0-V7 cr" %}
17014   ins_encode %{
17015     address tpc = __ arrays_equals($ary1$$Register, $ary2$$Register,
17016                                    $tmp1$$Register, $tmp2$$Register, $tmp3$$Register,
17017                                    $result$$Register, $tmp$$Register, 2);
17018     if (tpc == nullptr) {
17019       ciEnv::current()->record_failure("CodeCache is full");
17020       return;
17021     }
17022   %}
17023   ins_pipe(pipe_class_memory);
17024 %}
17025 
17026 instruct arrays_hashcode(iRegP_R1 ary, iRegI_R2 cnt, iRegI_R0 result, immI basic_type,
17027                          vRegD_V0 vtmp0, vRegD_V1 vtmp1, vRegD_V2 vtmp2, vRegD_V3 vtmp3,
17028                          vRegD_V4 vtmp4, vRegD_V5 vtmp5, vRegD_V6 vtmp6, vRegD_V7 vtmp7,
17029                          vRegD_V12 vtmp8, vRegD_V13 vtmp9, rFlagsReg cr)
17030 %{
17031   match(Set result (VectorizedHashCode (Binary ary cnt) (Binary result basic_type)));
17032   effect(TEMP vtmp0, TEMP vtmp1, TEMP vtmp2, TEMP vtmp3, TEMP vtmp4, TEMP vtmp5, TEMP vtmp6,
17033          TEMP vtmp7, TEMP vtmp8, TEMP vtmp9, USE_KILL ary, USE_KILL cnt, USE basic_type, KILL cr);
17034 
17035   format %{ "Array HashCode array[] $ary,$cnt,$result,$basic_type -> $result   // KILL all" %}
17036   ins_encode %{
17037     address tpc = __ arrays_hashcode($ary$$Register, $cnt$$Register, $result$$Register,
17038                                      $vtmp3$$FloatRegister, $vtmp2$$FloatRegister,
17039                                      $vtmp1$$FloatRegister, $vtmp0$$FloatRegister,
17040                                      $vtmp4$$FloatRegister, $vtmp5$$FloatRegister,
17041                                      $vtmp6$$FloatRegister, $vtmp7$$FloatRegister,
17042                                      $vtmp8$$FloatRegister, $vtmp9$$FloatRegister,
17043                                      (BasicType)$basic_type$$constant);
17044     if (tpc == nullptr) {
17045       ciEnv::current()->record_failure("CodeCache is full");
17046       return;
17047     }
17048   %}
17049   ins_pipe(pipe_class_memory);
17050 %}
17051 
17052 instruct count_positives(iRegP_R1 ary1, iRegI_R2 len, iRegI_R0 result, rFlagsReg cr)
17053 %{
17054   match(Set result (CountPositives ary1 len));
17055   effect(USE_KILL ary1, USE_KILL len, KILL cr);
17056   format %{ "count positives byte[] $ary1,$len -> $result" %}
17057   ins_encode %{
17058     address tpc = __ count_positives($ary1$$Register, $len$$Register, $result$$Register);
17059     if (tpc == nullptr) {
17060       ciEnv::current()->record_failure("CodeCache is full");
17061       return;
17062     }
17063   %}
17064   ins_pipe( pipe_slow );
17065 %}
17066 
17067 // fast char[] to byte[] compression
17068 instruct string_compress(iRegP_R2 src, iRegP_R1 dst, iRegI_R3 len,
17069                          vRegD_V0 vtmp0, vRegD_V1 vtmp1, vRegD_V2 vtmp2,
17070                          vRegD_V3 vtmp3, vRegD_V4 vtmp4, vRegD_V5 vtmp5,
17071                          iRegI_R0 result, rFlagsReg cr)
17072 %{
17073   match(Set result (StrCompressedCopy src (Binary dst len)));
17074   effect(TEMP vtmp0, TEMP vtmp1, TEMP vtmp2, TEMP vtmp3, TEMP vtmp4, TEMP vtmp5,
17075          USE_KILL src, USE_KILL dst, USE len, KILL cr);
17076 
17077   format %{ "String Compress $src,$dst,$len -> $result # KILL $src $dst V0-V5 cr" %}
17078   ins_encode %{
17079     __ char_array_compress($src$$Register, $dst$$Register, $len$$Register,
17080                            $result$$Register, $vtmp0$$FloatRegister, $vtmp1$$FloatRegister,
17081                            $vtmp2$$FloatRegister, $vtmp3$$FloatRegister,
17082                            $vtmp4$$FloatRegister, $vtmp5$$FloatRegister);
17083   %}
17084   ins_pipe(pipe_slow);
17085 %}
17086 
17087 // fast byte[] to char[] inflation
17088 instruct string_inflate(Universe dummy, iRegP_R0 src, iRegP_R1 dst, iRegI_R2 len, iRegP_R3 tmp,
17089                         vRegD_V0 vtmp0, vRegD_V1 vtmp1, vRegD_V2 vtmp2, vRegD_V3 vtmp3,
17090                         vRegD_V4 vtmp4, vRegD_V5 vtmp5, vRegD_V6 vtmp6, rFlagsReg cr)
17091 %{
17092   match(Set dummy (StrInflatedCopy src (Binary dst len)));
17093   effect(TEMP vtmp0, TEMP vtmp1, TEMP vtmp2, TEMP vtmp3,
17094          TEMP vtmp4, TEMP vtmp5, TEMP vtmp6, TEMP tmp,
17095          USE_KILL src, USE_KILL dst, USE_KILL len, KILL cr);
17096 
17097   format %{ "String Inflate $src,$dst # KILL $tmp $src $dst $len V0-V6 cr" %}
17098   ins_encode %{
17099     address tpc = __ byte_array_inflate($src$$Register, $dst$$Register, $len$$Register,
17100                                         $vtmp0$$FloatRegister, $vtmp1$$FloatRegister,
17101                                         $vtmp2$$FloatRegister, $tmp$$Register);
17102     if (tpc == nullptr) {
17103       ciEnv::current()->record_failure("CodeCache is full");
17104       return;
17105     }
17106   %}
17107   ins_pipe(pipe_class_memory);
17108 %}
17109 
17110 // encode char[] to byte[] in ISO_8859_1
17111 instruct encode_iso_array(iRegP_R2 src, iRegP_R1 dst, iRegI_R3 len,
17112                           vRegD_V0 vtmp0, vRegD_V1 vtmp1, vRegD_V2 vtmp2,
17113                           vRegD_V3 vtmp3, vRegD_V4 vtmp4, vRegD_V5 vtmp5,
17114                           iRegI_R0 result, rFlagsReg cr)
17115 %{
17116   predicate(!((EncodeISOArrayNode*)n)->is_ascii());
17117   match(Set result (EncodeISOArray src (Binary dst len)));
17118   effect(USE_KILL src, USE_KILL dst, USE len, KILL vtmp0, KILL vtmp1,
17119          KILL vtmp2, KILL vtmp3, KILL vtmp4, KILL vtmp5, KILL cr);
17120 
17121   format %{ "Encode ISO array $src,$dst,$len -> $result # KILL $src $dst V0-V5 cr" %}
17122   ins_encode %{
17123     __ encode_iso_array($src$$Register, $dst$$Register, $len$$Register,
17124                         $result$$Register, false,
17125                         $vtmp0$$FloatRegister, $vtmp1$$FloatRegister,
17126                         $vtmp2$$FloatRegister, $vtmp3$$FloatRegister,
17127                         $vtmp4$$FloatRegister, $vtmp5$$FloatRegister);
17128   %}
17129   ins_pipe(pipe_class_memory);
17130 %}
17131 
17132 instruct encode_ascii_array(iRegP_R2 src, iRegP_R1 dst, iRegI_R3 len,
17133                             vRegD_V0 vtmp0, vRegD_V1 vtmp1, vRegD_V2 vtmp2,
17134                             vRegD_V3 vtmp3, vRegD_V4 vtmp4, vRegD_V5 vtmp5,
17135                             iRegI_R0 result, rFlagsReg cr)
17136 %{
17137   predicate(((EncodeISOArrayNode*)n)->is_ascii());
17138   match(Set result (EncodeISOArray src (Binary dst len)));
17139   effect(USE_KILL src, USE_KILL dst, USE len, KILL vtmp0, KILL vtmp1,
17140          KILL vtmp2, KILL vtmp3, KILL vtmp4, KILL vtmp5, KILL cr);
17141 
17142   format %{ "Encode ASCII array $src,$dst,$len -> $result # KILL $src $dst V0-V5 cr" %}
17143   ins_encode %{
17144     __ encode_iso_array($src$$Register, $dst$$Register, $len$$Register,
17145                         $result$$Register, true,
17146                         $vtmp0$$FloatRegister, $vtmp1$$FloatRegister,
17147                         $vtmp2$$FloatRegister, $vtmp3$$FloatRegister,
17148                         $vtmp4$$FloatRegister, $vtmp5$$FloatRegister);
17149   %}
17150   ins_pipe(pipe_class_memory);
17151 %}
17152 
17153 //----------------------------- CompressBits/ExpandBits ------------------------
17154 
17155 instruct compressBitsI_reg(iRegINoSp dst, iRegIorL2I src, iRegIorL2I mask,
17156                            vRegF tdst, vRegF tsrc, vRegF tmask) %{
17157   match(Set dst (CompressBits src mask));
17158   effect(TEMP tdst, TEMP tsrc, TEMP tmask);
17159   format %{ "mov    $tsrc, $src\n\t"
17160             "mov    $tmask, $mask\n\t"
17161             "bext   $tdst, $tsrc, $tmask\n\t"
17162             "mov    $dst, $tdst"
17163           %}
17164   ins_encode %{
17165     __ mov($tsrc$$FloatRegister, __ S, 0, $src$$Register);
17166     __ mov($tmask$$FloatRegister, __ S, 0, $mask$$Register);
17167     __ sve_bext($tdst$$FloatRegister, __ S, $tsrc$$FloatRegister, $tmask$$FloatRegister);
17168     __ mov($dst$$Register, $tdst$$FloatRegister, __ S, 0);
17169   %}
17170   ins_pipe(pipe_slow);
17171 %}
17172 
17173 instruct compressBitsI_memcon(iRegINoSp dst, memory4 mem, immI mask,
17174                            vRegF tdst, vRegF tsrc, vRegF tmask) %{
17175   match(Set dst (CompressBits (LoadI mem) mask));
17176   effect(TEMP tdst, TEMP tsrc, TEMP tmask);
17177   format %{ "ldrs   $tsrc, $mem\n\t"
17178             "ldrs   $tmask, $mask\n\t"
17179             "bext   $tdst, $tsrc, $tmask\n\t"
17180             "mov    $dst, $tdst"
17181           %}
17182   ins_encode %{
17183     loadStore(masm, &MacroAssembler::ldrs, $tsrc$$FloatRegister, $mem->opcode(),
17184               as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4);
17185     __ ldrs($tmask$$FloatRegister, $constantaddress($mask));
17186     __ sve_bext($tdst$$FloatRegister, __ S, $tsrc$$FloatRegister, $tmask$$FloatRegister);
17187     __ mov($dst$$Register, $tdst$$FloatRegister, __ S, 0);
17188   %}
17189   ins_pipe(pipe_slow);
17190 %}
17191 
17192 instruct compressBitsL_reg(iRegLNoSp dst, iRegL src, iRegL mask,
17193                            vRegD tdst, vRegD tsrc, vRegD tmask) %{
17194   match(Set dst (CompressBits src mask));
17195   effect(TEMP tdst, TEMP tsrc, TEMP tmask);
17196   format %{ "mov    $tsrc, $src\n\t"
17197             "mov    $tmask, $mask\n\t"
17198             "bext   $tdst, $tsrc, $tmask\n\t"
17199             "mov    $dst, $tdst"
17200           %}
17201   ins_encode %{
17202     __ mov($tsrc$$FloatRegister, __ D, 0, $src$$Register);
17203     __ mov($tmask$$FloatRegister, __ D, 0, $mask$$Register);
17204     __ sve_bext($tdst$$FloatRegister, __ D, $tsrc$$FloatRegister, $tmask$$FloatRegister);
17205     __ mov($dst$$Register, $tdst$$FloatRegister, __ D, 0);
17206   %}
17207   ins_pipe(pipe_slow);
17208 %}
17209 
17210 instruct compressBitsL_memcon(iRegLNoSp dst, memory8 mem, immL mask,
17211                            vRegF tdst, vRegF tsrc, vRegF tmask) %{
17212   match(Set dst (CompressBits (LoadL mem) mask));
17213   effect(TEMP tdst, TEMP tsrc, TEMP tmask);
17214   format %{ "ldrd   $tsrc, $mem\n\t"
17215             "ldrd   $tmask, $mask\n\t"
17216             "bext   $tdst, $tsrc, $tmask\n\t"
17217             "mov    $dst, $tdst"
17218           %}
17219   ins_encode %{
17220     loadStore(masm, &MacroAssembler::ldrd, $tsrc$$FloatRegister, $mem->opcode(),
17221               as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 8);
17222     __ ldrd($tmask$$FloatRegister, $constantaddress($mask));
17223     __ sve_bext($tdst$$FloatRegister, __ D, $tsrc$$FloatRegister, $tmask$$FloatRegister);
17224     __ mov($dst$$Register, $tdst$$FloatRegister, __ D, 0);
17225   %}
17226   ins_pipe(pipe_slow);
17227 %}
17228 
17229 instruct expandBitsI_reg(iRegINoSp dst, iRegIorL2I src, iRegIorL2I mask,
17230                          vRegF tdst, vRegF tsrc, vRegF tmask) %{
17231   match(Set dst (ExpandBits src mask));
17232   effect(TEMP tdst, TEMP tsrc, TEMP tmask);
17233   format %{ "mov    $tsrc, $src\n\t"
17234             "mov    $tmask, $mask\n\t"
17235             "bdep   $tdst, $tsrc, $tmask\n\t"
17236             "mov    $dst, $tdst"
17237           %}
17238   ins_encode %{
17239     __ mov($tsrc$$FloatRegister, __ S, 0, $src$$Register);
17240     __ mov($tmask$$FloatRegister, __ S, 0, $mask$$Register);
17241     __ sve_bdep($tdst$$FloatRegister, __ S, $tsrc$$FloatRegister, $tmask$$FloatRegister);
17242     __ mov($dst$$Register, $tdst$$FloatRegister, __ S, 0);
17243   %}
17244   ins_pipe(pipe_slow);
17245 %}
17246 
17247 instruct expandBitsI_memcon(iRegINoSp dst, memory4 mem, immI mask,
17248                          vRegF tdst, vRegF tsrc, vRegF tmask) %{
17249   match(Set dst (ExpandBits (LoadI mem) mask));
17250   effect(TEMP tdst, TEMP tsrc, TEMP tmask);
17251   format %{ "ldrs   $tsrc, $mem\n\t"
17252             "ldrs   $tmask, $mask\n\t"
17253             "bdep   $tdst, $tsrc, $tmask\n\t"
17254             "mov    $dst, $tdst"
17255           %}
17256   ins_encode %{
17257     loadStore(masm, &MacroAssembler::ldrs, $tsrc$$FloatRegister, $mem->opcode(),
17258               as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4);
17259     __ ldrs($tmask$$FloatRegister, $constantaddress($mask));
17260     __ sve_bdep($tdst$$FloatRegister, __ S, $tsrc$$FloatRegister, $tmask$$FloatRegister);
17261     __ mov($dst$$Register, $tdst$$FloatRegister, __ S, 0);
17262   %}
17263   ins_pipe(pipe_slow);
17264 %}
17265 
17266 instruct expandBitsL_reg(iRegLNoSp dst, iRegL src, iRegL mask,
17267                          vRegD tdst, vRegD tsrc, vRegD tmask) %{
17268   match(Set dst (ExpandBits src mask));
17269   effect(TEMP tdst, TEMP tsrc, TEMP tmask);
17270   format %{ "mov    $tsrc, $src\n\t"
17271             "mov    $tmask, $mask\n\t"
17272             "bdep   $tdst, $tsrc, $tmask\n\t"
17273             "mov    $dst, $tdst"
17274           %}
17275   ins_encode %{
17276     __ mov($tsrc$$FloatRegister, __ D, 0, $src$$Register);
17277     __ mov($tmask$$FloatRegister, __ D, 0, $mask$$Register);
17278     __ sve_bdep($tdst$$FloatRegister, __ D, $tsrc$$FloatRegister, $tmask$$FloatRegister);
17279     __ mov($dst$$Register, $tdst$$FloatRegister, __ D, 0);
17280   %}
17281   ins_pipe(pipe_slow);
17282 %}
17283 
17284 
17285 instruct expandBitsL_memcon(iRegINoSp dst, memory8 mem, immL mask,
17286                          vRegF tdst, vRegF tsrc, vRegF tmask) %{
17287   match(Set dst (ExpandBits (LoadL mem) mask));
17288   effect(TEMP tdst, TEMP tsrc, TEMP tmask);
17289   format %{ "ldrd   $tsrc, $mem\n\t"
17290             "ldrd   $tmask, $mask\n\t"
17291             "bdep   $tdst, $tsrc, $tmask\n\t"
17292             "mov    $dst, $tdst"
17293           %}
17294   ins_encode %{
17295     loadStore(masm, &MacroAssembler::ldrd, $tsrc$$FloatRegister, $mem->opcode(),
17296               as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 8);
17297     __ ldrd($tmask$$FloatRegister, $constantaddress($mask));
17298     __ sve_bdep($tdst$$FloatRegister, __ D, $tsrc$$FloatRegister, $tmask$$FloatRegister);
17299     __ mov($dst$$Register, $tdst$$FloatRegister, __ D, 0);
17300   %}
17301   ins_pipe(pipe_slow);
17302 %}
17303 
17304 //----------------------------- Reinterpret ----------------------------------
17305 // Reinterpret a half-precision float value in a floating point register to a general purpose register
17306 instruct reinterpretHF2S(iRegINoSp dst, vRegF src) %{
17307   match(Set dst (ReinterpretHF2S src));
17308   format %{ "reinterpretHF2S $dst, $src" %}
17309   ins_encode %{
17310     __ smov($dst$$Register, $src$$FloatRegister, __ H, 0);
17311   %}
17312   ins_pipe(pipe_slow);
17313 %}
17314 
17315 // Reinterpret a half-precision float value in a general purpose register to a floating point register
17316 instruct reinterpretS2HF(vRegF dst, iRegINoSp src) %{
17317   match(Set dst (ReinterpretS2HF src));
17318   format %{ "reinterpretS2HF $dst, $src" %}
17319   ins_encode %{
17320     __ mov($dst$$FloatRegister, __ H, 0, $src$$Register);
17321   %}
17322   ins_pipe(pipe_slow);
17323 %}
17324 
17325 // Without this optimization, ReinterpretS2HF (ConvF2HF src) would result in the following
17326 // instructions (the first two are for ConvF2HF and the last instruction is for ReinterpretS2HF) -
17327 // fcvt $tmp1_fpr, $src_fpr    // Convert float to half-precision float
17328 // mov  $tmp2_gpr, $tmp1_fpr   // Move half-precision float in FPR to a GPR
17329 // mov  $dst_fpr,  $tmp2_gpr   // Move the result from a GPR to an FPR
17330 // The move from FPR to GPR in ConvF2HF and the move from GPR to FPR in ReinterpretS2HF
17331 // can be omitted in this pattern, resulting in -
17332 // fcvt $dst, $src  // Convert float to half-precision float
17333 instruct convF2HFAndS2HF(vRegF dst, vRegF src)
17334 %{
17335   match(Set dst (ReinterpretS2HF (ConvF2HF src)));
17336   format %{ "convF2HFAndS2HF $dst, $src" %}
17337   ins_encode %{
17338     __ fcvtsh($dst$$FloatRegister, $src$$FloatRegister);
17339   %}
17340   ins_pipe(pipe_slow);
17341 %}
17342 
17343 // Without this optimization, ConvHF2F (ReinterpretHF2S src) would result in the following
17344 // instructions (the first one is for ReinterpretHF2S and the last two are for ConvHF2F) -
17345 // mov  $tmp1_gpr, $src_fpr  // Move the half-precision float from an FPR to a GPR
17346 // mov  $tmp2_fpr, $tmp1_gpr // Move the same value from GPR to an FPR
17347 // fcvt $dst_fpr,  $tmp2_fpr // Convert the half-precision float to 32-bit float
17348 // The move from FPR to GPR in ReinterpretHF2S and the move from GPR to FPR in ConvHF2F
17349 // can be omitted as the input (src) is already in an FPR required for the fcvths instruction
17350 // resulting in -
17351 // fcvt $dst, $src  // Convert half-precision float to a 32-bit float
17352 instruct convHF2SAndHF2F(vRegF dst, vRegF src)
17353 %{
17354   match(Set dst (ConvHF2F (ReinterpretHF2S src)));
17355   format %{ "convHF2SAndHF2F $dst, $src" %}
17356   ins_encode %{
17357     __ fcvths($dst$$FloatRegister, $src$$FloatRegister);
17358   %}
17359   ins_pipe(pipe_slow);
17360 %}
17361 
17362 // ============================================================================
17363 // This name is KNOWN by the ADLC and cannot be changed.
17364 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
17365 // for this guy.
17366 instruct tlsLoadP(thread_RegP dst)
17367 %{
17368   match(Set dst (ThreadLocal));
17369 
17370   ins_cost(0);
17371 
17372   format %{ " -- \t// $dst=Thread::current(), empty" %}
17373 
17374   size(0);
17375 
17376   ins_encode( /*empty*/ );
17377 
17378   ins_pipe(pipe_class_empty);
17379 %}
17380 
17381 //----------PEEPHOLE RULES-----------------------------------------------------
17382 // These must follow all instruction definitions as they use the names
17383 // defined in the instructions definitions.
17384 //
17385 // peepmatch ( root_instr_name [preceding_instruction]* );
17386 //
17387 // peepconstraint %{
17388 // (instruction_number.operand_name relational_op instruction_number.operand_name
17389 //  [, ...] );
17390 // // instruction numbers are zero-based using left to right order in peepmatch
17391 //
17392 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
17393 // // provide an instruction_number.operand_name for each operand that appears
17394 // // in the replacement instruction's match rule
17395 //
17396 // ---------VM FLAGS---------------------------------------------------------
17397 //
17398 // All peephole optimizations can be turned off using -XX:-OptoPeephole
17399 //
17400 // Each peephole rule is given an identifying number starting with zero and
17401 // increasing by one in the order seen by the parser.  An individual peephole
17402 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
17403 // on the command-line.
17404 //
17405 // ---------CURRENT LIMITATIONS----------------------------------------------
17406 //
17407 // Only match adjacent instructions in same basic block
17408 // Only equality constraints
17409 // Only constraints between operands, not (0.dest_reg == RAX_enc)
17410 // Only one replacement instruction
17411 //
17412 // ---------EXAMPLE----------------------------------------------------------
17413 //
17414 // // pertinent parts of existing instructions in architecture description
17415 // instruct movI(iRegINoSp dst, iRegI src)
17416 // %{
17417 //   match(Set dst (CopyI src));
17418 // %}
17419 //
17420 // instruct incI_iReg(iRegINoSp dst, immI1 src, rFlagsReg cr)
17421 // %{
17422 //   match(Set dst (AddI dst src));
17423 //   effect(KILL cr);
17424 // %}
17425 //
17426 // // Change (inc mov) to lea
17427 // peephole %{
17428 //   // increment preceded by register-register move
17429 //   peepmatch ( incI_iReg movI );
17430 //   // require that the destination register of the increment
17431 //   // match the destination register of the move
17432 //   peepconstraint ( 0.dst == 1.dst );
17433 //   // construct a replacement instruction that sets
17434 //   // the destination to ( move's source register + one )
17435 //   peepreplace ( leaI_iReg_immI( 0.dst 1.src 0.src ) );
17436 // %}
17437 //
17438 
17439 // Implementation no longer uses movX instructions since
17440 // machine-independent system no longer uses CopyX nodes.
17441 //
17442 // peephole
17443 // %{
17444 //   peepmatch (incI_iReg movI);
17445 //   peepconstraint (0.dst == 1.dst);
17446 //   peepreplace (leaI_iReg_immI(0.dst 1.src 0.src));
17447 // %}
17448 
17449 // peephole
17450 // %{
17451 //   peepmatch (decI_iReg movI);
17452 //   peepconstraint (0.dst == 1.dst);
17453 //   peepreplace (leaI_iReg_immI(0.dst 1.src 0.src));
17454 // %}
17455 
17456 // peephole
17457 // %{
17458 //   peepmatch (addI_iReg_imm movI);
17459 //   peepconstraint (0.dst == 1.dst);
17460 //   peepreplace (leaI_iReg_immI(0.dst 1.src 0.src));
17461 // %}
17462 
17463 // peephole
17464 // %{
17465 //   peepmatch (incL_iReg movL);
17466 //   peepconstraint (0.dst == 1.dst);
17467 //   peepreplace (leaL_iReg_immL(0.dst 1.src 0.src));
17468 // %}
17469 
17470 // peephole
17471 // %{
17472 //   peepmatch (decL_iReg movL);
17473 //   peepconstraint (0.dst == 1.dst);
17474 //   peepreplace (leaL_iReg_immL(0.dst 1.src 0.src));
17475 // %}
17476 
17477 // peephole
17478 // %{
17479 //   peepmatch (addL_iReg_imm movL);
17480 //   peepconstraint (0.dst == 1.dst);
17481 //   peepreplace (leaL_iReg_immL(0.dst 1.src 0.src));
17482 // %}
17483 
17484 // peephole
17485 // %{
17486 //   peepmatch (addP_iReg_imm movP);
17487 //   peepconstraint (0.dst == 1.dst);
17488 //   peepreplace (leaP_iReg_imm(0.dst 1.src 0.src));
17489 // %}
17490 
17491 // // Change load of spilled value to only a spill
17492 // instruct storeI(memory mem, iRegI src)
17493 // %{
17494 //   match(Set mem (StoreI mem src));
17495 // %}
17496 //
17497 // instruct loadI(iRegINoSp dst, memory mem)
17498 // %{
17499 //   match(Set dst (LoadI mem));
17500 // %}
17501 //
17502 
17503 //----------SMARTSPILL RULES---------------------------------------------------
17504 // These must follow all instruction definitions as they use the names
17505 // defined in the instructions definitions.
17506 
17507 // Local Variables:
17508 // mode: c++
17509 // End: