1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef CPU_AARCH64_ASSEMBLER_AARCH64_HPP 27 #define CPU_AARCH64_ASSEMBLER_AARCH64_HPP 28 29 #include "asm/register.hpp" 30 #include "metaprogramming/enableIf.hpp" 31 #include "utilities/checkedCast.hpp" 32 #include "utilities/debug.hpp" 33 #include "utilities/globalDefinitions.hpp" 34 #include "utilities/macros.hpp" 35 #include <type_traits> 36 37 #ifdef __GNUC__ 38 39 // __nop needs volatile so that compiler doesn't optimize it away 40 #define NOP() asm volatile ("nop"); 41 42 #elif defined(_MSC_VER) 43 44 // Use MSVC intrinsic: https://docs.microsoft.com/en-us/cpp/intrinsics/arm64-intrinsics?view=vs-2019#I 45 #define NOP() __nop(); 46 47 #endif 48 49 50 // definitions of various symbolic names for machine registers 51 52 // First intercalls between C and Java which use 8 general registers 53 // and 8 floating registers 54 55 // we also have to copy between x86 and ARM registers but that's a 56 // secondary complication -- not all code employing C call convention 57 // executes as x86 code though -- we generate some of it 58 59 class Argument { 60 public: 61 enum { 62 n_int_register_parameters_c = 8, // r0, r1, ... r7 (c_rarg0, c_rarg1, ...) 63 n_float_register_parameters_c = 8, // v0, v1, ... v7 (c_farg0, c_farg1, ... ) 64 65 n_int_register_parameters_j = 8, // r1, ... r7, r0 (rj_rarg0, j_rarg1, ... 66 n_float_register_parameters_j = 8 // v0, v1, ... v7 (j_farg0, j_farg1, ... 67 }; 68 }; 69 70 constexpr Register c_rarg0 = r0; 71 constexpr Register c_rarg1 = r1; 72 constexpr Register c_rarg2 = r2; 73 constexpr Register c_rarg3 = r3; 74 constexpr Register c_rarg4 = r4; 75 constexpr Register c_rarg5 = r5; 76 constexpr Register c_rarg6 = r6; 77 constexpr Register c_rarg7 = r7; 78 79 constexpr FloatRegister c_farg0 = v0; 80 constexpr FloatRegister c_farg1 = v1; 81 constexpr FloatRegister c_farg2 = v2; 82 constexpr FloatRegister c_farg3 = v3; 83 constexpr FloatRegister c_farg4 = v4; 84 constexpr FloatRegister c_farg5 = v5; 85 constexpr FloatRegister c_farg6 = v6; 86 constexpr FloatRegister c_farg7 = v7; 87 88 // Symbolically name the register arguments used by the Java calling convention. 89 // We have control over the convention for java so we can do what we please. 90 // What pleases us is to offset the java calling convention so that when 91 // we call a suitable jni method the arguments are lined up and we don't 92 // have to do much shuffling. A suitable jni method is non-static and a 93 // small number of arguments 94 // 95 // |--------------------------------------------------------------------| 96 // | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 c_rarg6 c_rarg7 | 97 // |--------------------------------------------------------------------| 98 // | r0 r1 r2 r3 r4 r5 r6 r7 | 99 // |--------------------------------------------------------------------| 100 // | j_rarg7 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 j_rarg5 j_rarg6 | 101 // |--------------------------------------------------------------------| 102 103 104 constexpr Register j_rarg0 = c_rarg1; 105 constexpr Register j_rarg1 = c_rarg2; 106 constexpr Register j_rarg2 = c_rarg3; 107 constexpr Register j_rarg3 = c_rarg4; 108 constexpr Register j_rarg4 = c_rarg5; 109 constexpr Register j_rarg5 = c_rarg6; 110 constexpr Register j_rarg6 = c_rarg7; 111 constexpr Register j_rarg7 = c_rarg0; 112 113 // Java floating args are passed as per C 114 115 constexpr FloatRegister j_farg0 = v0; 116 constexpr FloatRegister j_farg1 = v1; 117 constexpr FloatRegister j_farg2 = v2; 118 constexpr FloatRegister j_farg3 = v3; 119 constexpr FloatRegister j_farg4 = v4; 120 constexpr FloatRegister j_farg5 = v5; 121 constexpr FloatRegister j_farg6 = v6; 122 constexpr FloatRegister j_farg7 = v7; 123 124 // registers used to hold VM data either temporarily within a method 125 // or across method calls 126 127 // volatile (caller-save) registers 128 129 // r8 is used for indirect result location return 130 // we use it and r9 as scratch registers 131 constexpr Register rscratch1 = r8; 132 constexpr Register rscratch2 = r9; 133 134 // current method -- must be in a call-clobbered register 135 constexpr Register rmethod = r12; 136 137 // non-volatile (callee-save) registers are r16-29 138 // of which the following are dedicated global state 139 140 constexpr Register lr = r30; // link register 141 constexpr Register rfp = r29; // frame pointer 142 constexpr Register rthread = r28; // current thread 143 constexpr Register rheapbase = r27; // base of heap 144 constexpr Register rcpool = r26; // constant pool cache 145 constexpr Register rlocals = r24; // locals on stack 146 constexpr Register rbcp = r22; // bytecode pointer 147 constexpr Register rdispatch = r21; // dispatch table base 148 constexpr Register esp = r20; // Java expression stack pointer 149 constexpr Register r19_sender_sp = r19; // sender's SP while in interpreter 150 151 // Preserved predicate register with all elements set TRUE. 152 constexpr PRegister ptrue = p7; 153 154 #define assert_cond(ARG1) assert(ARG1, #ARG1) 155 156 namespace asm_util { 157 uint32_t encode_logical_immediate(bool is32, uint64_t imm); 158 uint32_t encode_sve_logical_immediate(unsigned elembits, uint64_t imm); 159 bool operand_valid_for_immediate_bits(int64_t imm, unsigned nbits); 160 }; 161 162 using namespace asm_util; 163 164 165 class Assembler; 166 167 class Instruction_aarch64 { 168 unsigned insn; 169 #ifdef ASSERT 170 unsigned bits; 171 #endif 172 Assembler *assem; 173 174 public: 175 176 Instruction_aarch64(class Assembler *as) { 177 #ifdef ASSERT 178 bits = 0; 179 #endif 180 insn = 0; 181 assem = as; 182 } 183 184 inline ~Instruction_aarch64(); 185 186 unsigned &get_insn() { return insn; } 187 #ifdef ASSERT 188 unsigned &get_bits() { return bits; } 189 #endif 190 191 static inline int32_t extend(unsigned val, int hi = 31, int lo = 0) { 192 union { 193 unsigned u; 194 int n; 195 }; 196 197 u = val << (31 - hi); 198 n = n >> (31 - hi + lo); 199 return n; 200 } 201 202 static inline uint32_t extract(uint32_t val, int msb, int lsb) { 203 int nbits = msb - lsb + 1; 204 assert_cond(msb >= lsb); 205 uint32_t mask = checked_cast<uint32_t>(right_n_bits(nbits)); 206 uint32_t result = val >> lsb; 207 result &= mask; 208 return result; 209 } 210 211 static inline int32_t sextract(uint32_t val, int msb, int lsb) { 212 uint32_t uval = extract(val, msb, lsb); 213 return extend(uval, msb - lsb); 214 } 215 216 static ALWAYSINLINE void patch(address a, int msb, int lsb, uint64_t val) { 217 int nbits = msb - lsb + 1; 218 guarantee(val < (1ULL << nbits), "Field too big for insn"); 219 assert_cond(msb >= lsb); 220 unsigned mask = checked_cast<unsigned>(right_n_bits(nbits)); 221 val <<= lsb; 222 mask <<= lsb; 223 unsigned target = *(unsigned *)a; 224 target &= ~mask; 225 target |= (unsigned)val; 226 *(unsigned *)a = target; 227 } 228 229 static void spatch(address a, int msb, int lsb, int64_t val) { 230 int nbits = msb - lsb + 1; 231 int64_t chk = val >> (nbits - 1); 232 guarantee (chk == -1 || chk == 0, "Field too big for insn at " INTPTR_FORMAT, p2i(a)); 233 uint64_t uval = val; 234 unsigned mask = checked_cast<unsigned>(right_n_bits(nbits)); 235 uval &= mask; 236 uval <<= lsb; 237 mask <<= lsb; 238 unsigned target = *(unsigned *)a; 239 target &= ~mask; 240 target |= (unsigned)uval; 241 *(unsigned *)a = target; 242 } 243 244 void f(unsigned val, int msb, int lsb) { 245 int nbits = msb - lsb + 1; 246 guarantee(val < (1ULL << nbits), "Field too big for insn"); 247 assert_cond(msb >= lsb); 248 val <<= lsb; 249 insn |= val; 250 #ifdef ASSERT 251 unsigned mask = checked_cast<unsigned>(right_n_bits(nbits)); 252 mask <<= lsb; 253 assert_cond((bits & mask) == 0); 254 bits |= mask; 255 #endif 256 } 257 258 void f(unsigned val, int bit) { 259 f(val, bit, bit); 260 } 261 262 void sf(int64_t val, int msb, int lsb) { 263 int nbits = msb - lsb + 1; 264 int64_t chk = val >> (nbits - 1); 265 guarantee (chk == -1 || chk == 0, "Field too big for insn"); 266 uint64_t uval = val; 267 unsigned mask = checked_cast<unsigned>(right_n_bits(nbits)); 268 uval &= mask; 269 f((unsigned)uval, lsb + nbits - 1, lsb); 270 } 271 272 void rf(Register r, int lsb) { 273 f(r->raw_encoding(), lsb + 4, lsb); 274 } 275 276 // reg|ZR 277 void zrf(Register r, int lsb) { 278 f(r->raw_encoding() - (r == zr), lsb + 4, lsb); 279 } 280 281 // reg|SP 282 void srf(Register r, int lsb) { 283 f(r == sp ? 31 : r->raw_encoding(), lsb + 4, lsb); 284 } 285 286 void rf(FloatRegister r, int lsb) { 287 f(r->raw_encoding(), lsb + 4, lsb); 288 } 289 290 //<0-15>reg: As `rf(FloatRegister)`, but only the lower 16 FloatRegisters are allowed. 291 void lrf(FloatRegister r, int lsb) { 292 f(r->raw_encoding(), lsb + 3, lsb); 293 } 294 295 void prf(PRegister r, int lsb) { 296 f(r->raw_encoding(), lsb + 3, lsb); 297 } 298 299 void pgrf(PRegister r, int lsb) { 300 f(r->raw_encoding(), lsb + 2, lsb); 301 } 302 303 unsigned get(int msb = 31, int lsb = 0) { 304 int nbits = msb - lsb + 1; 305 unsigned mask = checked_cast<unsigned>(right_n_bits(nbits)) << lsb; 306 assert_cond((bits & mask) == mask); 307 return (insn & mask) >> lsb; 308 } 309 }; 310 311 #define starti Instruction_aarch64 current_insn(this); 312 313 class PrePost { 314 int _offset; 315 Register _r; 316 protected: 317 PrePost(Register reg, int o) : _offset(o), _r(reg) { } 318 ~PrePost() = default; 319 PrePost(const PrePost&) = default; 320 PrePost& operator=(const PrePost&) = default; 321 public: 322 int offset() const { return _offset; } 323 Register reg() const { return _r; } 324 }; 325 326 class Pre : public PrePost { 327 public: 328 Pre(Register reg, int o) : PrePost(reg, o) { } 329 }; 330 331 class Post : public PrePost { 332 Register _idx; 333 bool _is_postreg; 334 public: 335 Post(Register reg, int o) : PrePost(reg, o), _idx(noreg), _is_postreg(false) {} 336 Post(Register reg, Register idx) : PrePost(reg, 0), _idx(idx), _is_postreg(true) {} 337 Register idx_reg() const { return _idx; } 338 bool is_postreg() const { return _is_postreg; } 339 }; 340 341 namespace ext 342 { 343 enum operation { uxtb, uxth, uxtw, uxtx, sxtb, sxth, sxtw, sxtx }; 344 }; 345 346 // Addressing modes 347 class Address { 348 public: 349 350 enum mode { no_mode, base_plus_offset, pre, post, post_reg, 351 base_plus_offset_reg, literal }; 352 353 // Shift and extend for base reg + reg offset addressing 354 class extend { 355 int _option, _shift; 356 ext::operation _op; 357 public: 358 extend() { } 359 extend(int s, int o, ext::operation op) : _option(o), _shift(s), _op(op) { } 360 int option() const{ return _option; } 361 int shift() const { return _shift; } 362 ext::operation op() const { return _op; } 363 }; 364 365 static extend uxtw(int shift = -1) { return extend(shift, 0b010, ext::uxtw); } 366 static extend lsl(int shift = -1) { return extend(shift, 0b011, ext::uxtx); } 367 static extend sxtw(int shift = -1) { return extend(shift, 0b110, ext::sxtw); } 368 static extend sxtx(int shift = -1) { return extend(shift, 0b111, ext::sxtx); } 369 370 private: 371 struct Nonliteral { 372 Nonliteral(Register base, Register index, int64_t offset, extend ext = extend()) 373 : _base(base), _index(index), _offset(offset), _ext(ext) {} 374 Register _base; 375 Register _index; 376 int64_t _offset; 377 extend _ext; 378 }; 379 380 struct Literal { 381 Literal(address target, const RelocationHolder& rspec) 382 : _target(target), _rspec(rspec) {} 383 384 // If the target is far we'll need to load the ea of this to a 385 // register to reach it. Otherwise if near we can do PC-relative 386 // addressing. 387 address _target; 388 389 RelocationHolder _rspec; 390 }; 391 392 void assert_is_nonliteral() const NOT_DEBUG_RETURN; 393 void assert_is_literal() const NOT_DEBUG_RETURN; 394 395 // Discriminated union, based on _mode. 396 // - no_mode: uses dummy _nonliteral, for ease of copying. 397 // - literal: only _literal is used. 398 // - others: only _nonliteral is used. 399 enum mode _mode; 400 union { 401 Nonliteral _nonliteral; 402 Literal _literal; 403 }; 404 405 // Helper for copy constructor and assignment operator. 406 // Copy mode-relevant part of a into this. 407 void copy_data(const Address& a) { 408 assert(_mode == a._mode, "precondition"); 409 if (_mode == literal) { 410 new (&_literal) Literal(a._literal); 411 } else { 412 // non-literal mode or no_mode. 413 new (&_nonliteral) Nonliteral(a._nonliteral); 414 } 415 } 416 417 public: 418 // no_mode initializes _nonliteral for ease of copying. 419 Address() : 420 _mode(no_mode), 421 _nonliteral(noreg, noreg, 0) 422 {} 423 424 Address(Register r) : 425 _mode(base_plus_offset), 426 _nonliteral(r, noreg, 0) 427 {} 428 429 template<typename T, ENABLE_IF(std::is_integral<T>::value)> 430 Address(Register r, T o) : 431 _mode(base_plus_offset), 432 _nonliteral(r, noreg, o) 433 {} 434 435 Address(Register r, ByteSize disp) : Address(r, in_bytes(disp)) {} 436 437 Address(Register r, Register r1, extend ext = lsl()) : 438 _mode(base_plus_offset_reg), 439 _nonliteral(r, r1, 0, ext) 440 {} 441 442 Address(Pre p) : 443 _mode(pre), 444 _nonliteral(p.reg(), noreg, p.offset()) 445 {} 446 447 Address(Post p) : 448 _mode(p.is_postreg() ? post_reg : post), 449 _nonliteral(p.reg(), p.idx_reg(), p.offset()) 450 {} 451 452 Address(address target, const RelocationHolder& rspec) : 453 _mode(literal), 454 _literal(target, rspec) 455 {} 456 457 Address(address target, relocInfo::relocType rtype = relocInfo::external_word_type); 458 459 Address(Register base, RegisterOrConstant index, extend ext = lsl()) { 460 if (index.is_register()) { 461 _mode = base_plus_offset_reg; 462 new (&_nonliteral) Nonliteral(base, index.as_register(), 0, ext); 463 } else { 464 guarantee(ext.option() == ext::uxtx, "should be"); 465 assert(index.is_constant(), "should be"); 466 _mode = base_plus_offset; 467 new (&_nonliteral) Nonliteral(base, 468 noreg, 469 index.as_constant() << ext.shift()); 470 } 471 } 472 473 Address(const Address& a) : _mode(a._mode) { copy_data(a); } 474 475 // Verify the value is trivially destructible regardless of mode, so our 476 // destructor can also be trivial, and so our assignment operator doesn't 477 // need to destruct the old value before copying over it. 478 static_assert(std::is_trivially_destructible<Literal>::value, "must be"); 479 static_assert(std::is_trivially_destructible<Nonliteral>::value, "must be"); 480 481 Address& operator=(const Address& a) { 482 _mode = a._mode; 483 copy_data(a); 484 return *this; 485 } 486 487 ~Address() = default; 488 489 Register base() const { 490 assert_is_nonliteral(); 491 return _nonliteral._base; 492 } 493 494 int64_t offset() const { 495 assert_is_nonliteral(); 496 return _nonliteral._offset; 497 } 498 499 Register index() const { 500 assert_is_nonliteral(); 501 return _nonliteral._index; 502 } 503 504 extend ext() const { 505 assert_is_nonliteral(); 506 return _nonliteral._ext; 507 } 508 509 mode getMode() const { 510 return _mode; 511 } 512 513 bool uses(Register reg) const { 514 switch (_mode) { 515 case literal: 516 case no_mode: 517 return false; 518 case base_plus_offset: 519 case base_plus_offset_reg: 520 case pre: 521 case post: 522 case post_reg: 523 return base() == reg || index() == reg; 524 default: 525 ShouldNotReachHere(); 526 return false; 527 } 528 } 529 530 address target() const { 531 assert_is_literal(); 532 return _literal._target; 533 } 534 535 const RelocationHolder& rspec() const { 536 assert_is_literal(); 537 return _literal._rspec; 538 } 539 540 void encode(Instruction_aarch64 *i) const { 541 i->f(0b111, 29, 27); 542 i->srf(base(), 5); 543 544 switch(_mode) { 545 case base_plus_offset: 546 { 547 unsigned size = i->get(31, 30); 548 if (i->get(26, 26) && i->get(23, 23)) { 549 // SIMD Q Type - Size = 128 bits 550 assert(size == 0, "bad size"); 551 size = 0b100; 552 } 553 assert(offset_ok_for_immed(offset(), size), 554 "must be, was: " INT64_FORMAT ", %d", offset(), size); 555 unsigned mask = (1 << size) - 1; 556 if (offset() < 0 || offset() & mask) { 557 i->f(0b00, 25, 24); 558 i->f(0, 21), i->f(0b00, 11, 10); 559 i->sf(offset(), 20, 12); 560 } else { 561 i->f(0b01, 25, 24); 562 i->f(checked_cast<unsigned>(offset() >> size), 21, 10); 563 } 564 } 565 break; 566 567 case base_plus_offset_reg: 568 { 569 i->f(0b00, 25, 24); 570 i->f(1, 21); 571 i->rf(index(), 16); 572 i->f(ext().option(), 15, 13); 573 unsigned size = i->get(31, 30); 574 if (i->get(26, 26) && i->get(23, 23)) { 575 // SIMD Q Type - Size = 128 bits 576 assert(size == 0, "bad size"); 577 size = 0b100; 578 } 579 if (size == 0) // It's a byte 580 i->f(ext().shift() >= 0, 12); 581 else { 582 guarantee(ext().shift() <= 0 || ext().shift() == (int)size, "bad shift"); 583 i->f(ext().shift() > 0, 12); 584 } 585 i->f(0b10, 11, 10); 586 } 587 break; 588 589 case pre: 590 i->f(0b00, 25, 24); 591 i->f(0, 21), i->f(0b11, 11, 10); 592 i->sf(offset(), 20, 12); 593 break; 594 595 case post: 596 i->f(0b00, 25, 24); 597 i->f(0, 21), i->f(0b01, 11, 10); 598 i->sf(offset(), 20, 12); 599 break; 600 601 default: 602 ShouldNotReachHere(); 603 } 604 } 605 606 void encode_pair(Instruction_aarch64 *i) const { 607 switch(_mode) { 608 case base_plus_offset: 609 i->f(0b010, 25, 23); 610 break; 611 case pre: 612 i->f(0b011, 25, 23); 613 break; 614 case post: 615 i->f(0b001, 25, 23); 616 break; 617 default: 618 ShouldNotReachHere(); 619 } 620 621 unsigned size; // Operand shift in 32-bit words 622 623 if (i->get(26, 26)) { // float 624 switch(i->get(31, 30)) { 625 case 0b10: 626 size = 2; break; 627 case 0b01: 628 size = 1; break; 629 case 0b00: 630 size = 0; break; 631 default: 632 ShouldNotReachHere(); 633 size = 0; // unreachable 634 } 635 } else { 636 size = i->get(31, 31); 637 } 638 639 size = 4 << size; 640 guarantee(offset() % size == 0, "bad offset"); 641 i->sf(offset() / size, 21, 15); 642 i->srf(base(), 5); 643 } 644 645 void encode_nontemporal_pair(Instruction_aarch64 *i) const { 646 guarantee(_mode == base_plus_offset, "Bad addressing mode for nontemporal op"); 647 i->f(0b000, 25, 23); 648 unsigned size = i->get(31, 31); 649 size = 4 << size; 650 guarantee(offset() % size == 0, "bad offset"); 651 i->sf(offset() / size, 21, 15); 652 i->srf(base(), 5); 653 } 654 655 void lea(MacroAssembler *, Register) const; 656 657 static bool offset_ok_for_immed(int64_t offset, uint shift); 658 659 static bool offset_ok_for_sve_immed(int64_t offset, int shift, int vl /* sve vector length */) { 660 if (offset % vl == 0) { 661 // Convert address offset into sve imm offset (MUL VL). 662 int64_t sve_offset = offset / vl; 663 int32_t range = 1 << (shift - 1); 664 if ((-range <= sve_offset) && (sve_offset < range)) { 665 // sve_offset can be encoded 666 return true; 667 } 668 } 669 return false; 670 } 671 }; 672 673 // Convenience classes 674 class RuntimeAddress: public Address { 675 676 public: 677 678 RuntimeAddress(address target) : Address(target, relocInfo::runtime_call_type) {} 679 680 }; 681 682 class OopAddress: public Address { 683 684 public: 685 686 OopAddress(address target) : Address(target, relocInfo::oop_type){} 687 688 }; 689 690 class ExternalAddress: public Address { 691 private: 692 static relocInfo::relocType reloc_for_target(address target) { 693 // Sometimes ExternalAddress is used for values which aren't 694 // exactly addresses, like the card table base. 695 // external_word_type can't be used for values in the first page 696 // so just skip the reloc in that case. 697 return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none; 698 } 699 700 public: 701 702 ExternalAddress(address target) : Address(target, reloc_for_target(target)) {} 703 704 }; 705 706 class InternalAddress: public Address { 707 708 public: 709 710 InternalAddress(address target) : Address(target, relocInfo::internal_word_type) {} 711 }; 712 713 const int FPUStateSizeInWords = FloatRegister::number_of_registers * FloatRegister::save_slots_per_register; 714 715 typedef enum { 716 PLDL1KEEP = 0b00000, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM, 717 PSTL1KEEP = 0b10000, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM, 718 PLIL1KEEP = 0b01000, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM 719 } prfop; 720 721 class Assembler : public AbstractAssembler { 722 723 public: 724 725 #ifndef PRODUCT 726 static const uintptr_t asm_bp; 727 728 void emit_int32(jint x) { 729 if ((uintptr_t)pc() == asm_bp) 730 NOP(); 731 AbstractAssembler::emit_int32(x); 732 } 733 #else 734 void emit_int32(jint x) { 735 AbstractAssembler::emit_int32(x); 736 } 737 #endif 738 739 enum { instruction_size = 4 }; 740 741 //---< calculate length of instruction >--- 742 // We just use the values set above. 743 // instruction must start at passed address 744 static unsigned int instr_len(unsigned char *instr) { return instruction_size; } 745 746 //---< longest instructions >--- 747 static unsigned int instr_maxlen() { return instruction_size; } 748 749 Address adjust(Register base, int offset, bool preIncrement) { 750 if (preIncrement) 751 return Address(Pre(base, offset)); 752 else 753 return Address(Post(base, offset)); 754 } 755 756 Address pre(Register base, int offset) { 757 return adjust(base, offset, true); 758 } 759 760 Address post(Register base, int offset) { 761 return adjust(base, offset, false); 762 } 763 764 Address post(Register base, Register idx) { 765 return Address(Post(base, idx)); 766 } 767 768 static address locate_next_instruction(address inst); 769 770 #define f current_insn.f 771 #define sf current_insn.sf 772 #define rf current_insn.rf 773 #define lrf current_insn.lrf 774 #define srf current_insn.srf 775 #define zrf current_insn.zrf 776 #define prf current_insn.prf 777 #define pgrf current_insn.pgrf 778 779 typedef void (Assembler::* uncond_branch_insn)(address dest); 780 typedef void (Assembler::* compare_and_branch_insn)(Register Rt, address dest); 781 typedef void (Assembler::* test_and_branch_insn)(Register Rt, int bitpos, address dest); 782 typedef void (Assembler::* prefetch_insn)(address target, prfop); 783 784 void wrap_label(Label &L, uncond_branch_insn insn); 785 void wrap_label(Register r, Label &L, compare_and_branch_insn insn); 786 void wrap_label(Register r, int bitpos, Label &L, test_and_branch_insn insn); 787 void wrap_label(Label &L, prfop, prefetch_insn insn); 788 789 // PC-rel. addressing 790 791 void adr(Register Rd, address dest); 792 void _adrp(Register Rd, address dest); 793 794 void adr(Register Rd, const Address &dest); 795 void _adrp(Register Rd, const Address &dest); 796 797 void adr(Register Rd, Label &L) { 798 wrap_label(Rd, L, &Assembler::Assembler::adr); 799 } 800 void _adrp(Register Rd, Label &L) { 801 wrap_label(Rd, L, &Assembler::_adrp); 802 } 803 804 void adrp(Register Rd, const Address &dest, uint64_t &offset) = delete; 805 806 void prfm(const Address &adr, prfop pfop = PLDL1KEEP); 807 808 #undef INSN 809 810 void add_sub_immediate(Instruction_aarch64 ¤t_insn, Register Rd, Register Rn, 811 unsigned uimm, int op, int negated_op); 812 813 // Add/subtract (immediate) 814 #define INSN(NAME, decode, negated) \ 815 void NAME(Register Rd, Register Rn, unsigned imm, unsigned shift) { \ 816 starti; \ 817 f(decode, 31, 29), f(0b10001, 28, 24), f(shift, 23, 22), f(imm, 21, 10); \ 818 zrf(Rd, 0), srf(Rn, 5); \ 819 } \ 820 \ 821 void NAME(Register Rd, Register Rn, unsigned imm) { \ 822 starti; \ 823 add_sub_immediate(current_insn, Rd, Rn, imm, decode, negated); \ 824 } 825 826 INSN(addsw, 0b001, 0b011); 827 INSN(subsw, 0b011, 0b001); 828 INSN(adds, 0b101, 0b111); 829 INSN(subs, 0b111, 0b101); 830 831 #undef INSN 832 833 #define INSN(NAME, decode, negated) \ 834 void NAME(Register Rd, Register Rn, unsigned imm) { \ 835 starti; \ 836 add_sub_immediate(current_insn, Rd, Rn, imm, decode, negated); \ 837 } 838 839 INSN(addw, 0b000, 0b010); 840 INSN(subw, 0b010, 0b000); 841 INSN(add, 0b100, 0b110); 842 INSN(sub, 0b110, 0b100); 843 844 #undef INSN 845 846 // Logical (immediate) 847 #define INSN(NAME, decode, is32) \ 848 void NAME(Register Rd, Register Rn, uint64_t imm) { \ 849 starti; \ 850 uint32_t val = encode_logical_immediate(is32, imm); \ 851 f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10); \ 852 srf(Rd, 0), zrf(Rn, 5); \ 853 } 854 855 INSN(andw, 0b000, true); 856 INSN(orrw, 0b001, true); 857 INSN(eorw, 0b010, true); 858 INSN(andr, 0b100, false); 859 INSN(orr, 0b101, false); 860 INSN(eor, 0b110, false); 861 862 #undef INSN 863 864 #define INSN(NAME, decode, is32) \ 865 void NAME(Register Rd, Register Rn, uint64_t imm) { \ 866 starti; \ 867 uint32_t val = encode_logical_immediate(is32, imm); \ 868 f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10); \ 869 zrf(Rd, 0), zrf(Rn, 5); \ 870 } 871 872 INSN(ands, 0b111, false); 873 INSN(andsw, 0b011, true); 874 875 #undef INSN 876 877 // Move wide (immediate) 878 #define INSN(NAME, opcode) \ 879 void NAME(Register Rd, unsigned imm, unsigned shift = 0) { \ 880 assert_cond((shift/16)*16 == shift); \ 881 starti; \ 882 f(opcode, 31, 29), f(0b100101, 28, 23), f(shift/16, 22, 21), \ 883 f(imm, 20, 5); \ 884 zrf(Rd, 0); \ 885 } 886 887 INSN(movnw, 0b000); 888 INSN(movzw, 0b010); 889 INSN(movkw, 0b011); 890 INSN(movn, 0b100); 891 INSN(movz, 0b110); 892 INSN(movk, 0b111); 893 894 #undef INSN 895 896 // Bitfield 897 #define INSN(NAME, opcode, size) \ 898 void NAME(Register Rd, Register Rn, unsigned immr, unsigned imms) { \ 899 starti; \ 900 guarantee(size == 1 || (immr < 32 && imms < 32), "incorrect immr/imms");\ 901 f(opcode, 31, 22), f(immr, 21, 16), f(imms, 15, 10); \ 902 zrf(Rn, 5), rf(Rd, 0); \ 903 } 904 905 INSN(sbfmw, 0b0001001100, 0); 906 INSN(bfmw, 0b0011001100, 0); 907 INSN(ubfmw, 0b0101001100, 0); 908 INSN(sbfm, 0b1001001101, 1); 909 INSN(bfm, 0b1011001101, 1); 910 INSN(ubfm, 0b1101001101, 1); 911 912 #undef INSN 913 914 // Extract 915 #define INSN(NAME, opcode, size) \ 916 void NAME(Register Rd, Register Rn, Register Rm, unsigned imms) { \ 917 starti; \ 918 guarantee(size == 1 || imms < 32, "incorrect imms"); \ 919 f(opcode, 31, 21), f(imms, 15, 10); \ 920 zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0); \ 921 } 922 923 INSN(extrw, 0b00010011100, 0); 924 INSN(extr, 0b10010011110, 1); 925 926 #undef INSN 927 928 // The maximum range of a branch is fixed for the AArch64 929 // architecture. In debug mode we shrink it in order to test 930 // trampolines, but not so small that branches in the interpreter 931 // are out of range. 932 static const uint64_t branch_range = NOT_DEBUG(128 * M) DEBUG_ONLY(2 * M); 933 934 static bool reachable_from_branch_at(address branch, address target) { 935 return g_uabs(target - branch) < branch_range; 936 } 937 938 // Unconditional branch (immediate) 939 #define INSN(NAME, opcode) \ 940 void NAME(address dest) { \ 941 starti; \ 942 int64_t offset = (dest - pc()) >> 2; \ 943 DEBUG_ONLY(assert(reachable_from_branch_at(pc(), dest), "debug only")); \ 944 f(opcode, 31), f(0b00101, 30, 26), sf(offset, 25, 0); \ 945 } \ 946 void NAME(Label &L) { \ 947 wrap_label(L, &Assembler::NAME); \ 948 } \ 949 void NAME(const Address &dest); 950 951 INSN(b, 0); 952 INSN(bl, 1); 953 954 #undef INSN 955 956 // Compare & branch (immediate) 957 #define INSN(NAME, opcode) \ 958 void NAME(Register Rt, address dest) { \ 959 int64_t offset = (dest - pc()) >> 2; \ 960 starti; \ 961 f(opcode, 31, 24), sf(offset, 23, 5), rf(Rt, 0); \ 962 } \ 963 void NAME(Register Rt, Label &L) { \ 964 wrap_label(Rt, L, &Assembler::NAME); \ 965 } 966 967 INSN(cbzw, 0b00110100); 968 INSN(cbnzw, 0b00110101); 969 INSN(cbz, 0b10110100); 970 INSN(cbnz, 0b10110101); 971 972 #undef INSN 973 974 // Test & branch (immediate) 975 #define INSN(NAME, opcode) \ 976 void NAME(Register Rt, int bitpos, address dest) { \ 977 int64_t offset = (dest - pc()) >> 2; \ 978 int b5 = bitpos >> 5; \ 979 bitpos &= 0x1f; \ 980 starti; \ 981 f(b5, 31), f(opcode, 30, 24), f(bitpos, 23, 19), sf(offset, 18, 5); \ 982 rf(Rt, 0); \ 983 } \ 984 void NAME(Register Rt, int bitpos, Label &L) { \ 985 wrap_label(Rt, bitpos, L, &Assembler::NAME); \ 986 } 987 988 INSN(tbz, 0b0110110); 989 INSN(tbnz, 0b0110111); 990 991 #undef INSN 992 993 // Conditional branch (immediate) 994 enum Condition 995 {EQ, NE, HS, CS=HS, LO, CC=LO, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE, AL, NV}; 996 997 void br(Condition cond, address dest) { 998 int64_t offset = (dest - pc()) >> 2; 999 starti; 1000 f(0b0101010, 31, 25), f(0, 24), sf(offset, 23, 5), f(0, 4), f(cond, 3, 0); 1001 } 1002 1003 #define INSN(NAME, cond) \ 1004 void NAME(address dest) { \ 1005 br(cond, dest); \ 1006 } 1007 1008 INSN(beq, EQ); 1009 INSN(bne, NE); 1010 INSN(bhs, HS); 1011 INSN(bcs, CS); 1012 INSN(blo, LO); 1013 INSN(bcc, CC); 1014 INSN(bmi, MI); 1015 INSN(bpl, PL); 1016 INSN(bvs, VS); 1017 INSN(bvc, VC); 1018 INSN(bhi, HI); 1019 INSN(bls, LS); 1020 INSN(bge, GE); 1021 INSN(blt, LT); 1022 INSN(bgt, GT); 1023 INSN(ble, LE); 1024 INSN(bal, AL); 1025 INSN(bnv, NV); 1026 1027 void br(Condition cc, Label &L); 1028 1029 #undef INSN 1030 1031 // Exception generation 1032 void generate_exception(int opc, int op2, int LL, unsigned imm) { 1033 starti; 1034 f(0b11010100, 31, 24); 1035 f(opc, 23, 21), f(imm, 20, 5), f(op2, 4, 2), f(LL, 1, 0); 1036 } 1037 1038 #define INSN(NAME, opc, op2, LL) \ 1039 void NAME(unsigned imm) { \ 1040 generate_exception(opc, op2, LL, imm); \ 1041 } 1042 1043 INSN(svc, 0b000, 0, 0b01); 1044 INSN(hvc, 0b000, 0, 0b10); 1045 INSN(smc, 0b000, 0, 0b11); 1046 INSN(brk, 0b001, 0, 0b00); 1047 INSN(hlt, 0b010, 0, 0b00); 1048 INSN(dcps1, 0b101, 0, 0b01); 1049 INSN(dcps2, 0b101, 0, 0b10); 1050 INSN(dcps3, 0b101, 0, 0b11); 1051 1052 #undef INSN 1053 1054 // System 1055 void system(int op0, int op1, int CRn, int CRm, int op2, 1056 Register rt = dummy_reg) 1057 { 1058 starti; 1059 f(0b11010101000, 31, 21); 1060 f(op0, 20, 19); 1061 f(op1, 18, 16); 1062 f(CRn, 15, 12); 1063 f(CRm, 11, 8); 1064 f(op2, 7, 5); 1065 rf(rt, 0); 1066 } 1067 1068 // Hint instructions 1069 1070 #define INSN(NAME, crm, op2) \ 1071 void NAME() { \ 1072 system(0b00, 0b011, 0b0010, crm, op2); \ 1073 } 1074 1075 INSN(nop, 0b000, 0b0000); 1076 INSN(yield, 0b000, 0b0001); 1077 INSN(wfe, 0b000, 0b0010); 1078 INSN(wfi, 0b000, 0b0011); 1079 INSN(sev, 0b000, 0b0100); 1080 INSN(sevl, 0b000, 0b0101); 1081 1082 INSN(autia1716, 0b0001, 0b100); 1083 INSN(autiasp, 0b0011, 0b101); 1084 INSN(autiaz, 0b0011, 0b100); 1085 INSN(autib1716, 0b0001, 0b110); 1086 INSN(autibsp, 0b0011, 0b111); 1087 INSN(autibz, 0b0011, 0b110); 1088 INSN(pacia1716, 0b0001, 0b000); 1089 INSN(paciasp, 0b0011, 0b001); 1090 INSN(paciaz, 0b0011, 0b000); 1091 INSN(pacib1716, 0b0001, 0b010); 1092 INSN(pacibsp, 0b0011, 0b011); 1093 INSN(pacibz, 0b0011, 0b010); 1094 INSN(xpaclri, 0b0000, 0b111); 1095 1096 #undef INSN 1097 1098 // we only provide mrs and msr for the special purpose system 1099 // registers where op1 (instr[20:19]) == 11 1100 // n.b msr has L (instr[21]) == 0 mrs has L == 1 1101 1102 void msr(int op1, int CRn, int CRm, int op2, Register rt) { 1103 starti; 1104 f(0b1101010100011, 31, 19); 1105 f(op1, 18, 16); 1106 f(CRn, 15, 12); 1107 f(CRm, 11, 8); 1108 f(op2, 7, 5); 1109 // writing zr is ok 1110 zrf(rt, 0); 1111 } 1112 1113 void mrs(int op1, int CRn, int CRm, int op2, Register rt) { 1114 starti; 1115 f(0b1101010100111, 31, 19); 1116 f(op1, 18, 16); 1117 f(CRn, 15, 12); 1118 f(CRm, 11, 8); 1119 f(op2, 7, 5); 1120 // reading to zr is a mistake 1121 rf(rt, 0); 1122 } 1123 1124 enum barrier {OSHLD = 0b0001, OSHST, OSH, NSHLD=0b0101, NSHST, NSH, 1125 ISHLD = 0b1001, ISHST, ISH, LD=0b1101, ST, SY}; 1126 1127 void dsb(barrier imm) { 1128 system(0b00, 0b011, 0b00011, imm, 0b100); 1129 } 1130 1131 void dmb(barrier imm) { 1132 system(0b00, 0b011, 0b00011, imm, 0b101); 1133 } 1134 1135 void isb() { 1136 system(0b00, 0b011, 0b00011, SY, 0b110); 1137 } 1138 1139 void sb() { 1140 system(0b00, 0b011, 0b00011, 0b0000, 0b111); 1141 } 1142 1143 void sys(int op1, int CRn, int CRm, int op2, 1144 Register rt = as_Register(0b11111)) { 1145 system(0b01, op1, CRn, CRm, op2, rt); 1146 } 1147 1148 // Only implement operations accessible from EL0 or higher, i.e., 1149 // op1 CRn CRm op2 1150 // IC IVAU 3 7 5 1 1151 // DC CVAC 3 7 10 1 1152 // DC CVAP 3 7 12 1 1153 // DC CVAU 3 7 11 1 1154 // DC CIVAC 3 7 14 1 1155 // DC ZVA 3 7 4 1 1156 // So only deal with the CRm field. 1157 enum icache_maintenance {IVAU = 0b0101}; 1158 enum dcache_maintenance {CVAC = 0b1010, CVAP = 0b1100, CVAU = 0b1011, CIVAC = 0b1110, ZVA = 0b100}; 1159 1160 void dc(dcache_maintenance cm, Register Rt) { 1161 sys(0b011, 0b0111, cm, 0b001, Rt); 1162 } 1163 1164 void ic(icache_maintenance cm, Register Rt) { 1165 sys(0b011, 0b0111, cm, 0b001, Rt); 1166 } 1167 1168 // A more convenient access to dmb for our purposes 1169 enum Membar_mask_bits { 1170 // We can use ISH for a barrier because the Arm ARM says "This 1171 // architecture assumes that all Processing Elements that use the 1172 // same operating system or hypervisor are in the same Inner 1173 // Shareable shareability domain." 1174 StoreStore = ISHST, 1175 LoadStore = ISHLD, 1176 LoadLoad = ISHLD, 1177 StoreLoad = ISH, 1178 AnyAny = ISH 1179 }; 1180 1181 void membar(Membar_mask_bits order_constraint) { 1182 dmb(Assembler::barrier(order_constraint)); 1183 } 1184 1185 // Unconditional branch (register) 1186 1187 void branch_reg(int OP, int A, int M, Register RN, Register RM) { 1188 starti; 1189 f(0b1101011, 31, 25); 1190 f(OP, 24, 21); 1191 f(0b111110000, 20, 12); 1192 f(A, 11, 11); 1193 f(M, 10, 10); 1194 rf(RN, 5); 1195 rf(RM, 0); 1196 } 1197 1198 #define INSN(NAME, opc) \ 1199 void NAME(Register RN) { \ 1200 branch_reg(opc, 0, 0, RN, r0); \ 1201 } 1202 1203 INSN(br, 0b0000); 1204 INSN(blr, 0b0001); 1205 INSN(ret, 0b0010); 1206 1207 void ret(void *p); // This forces a compile-time error for ret(0) 1208 1209 #undef INSN 1210 1211 #define INSN(NAME, opc) \ 1212 void NAME() { \ 1213 branch_reg(opc, 0, 0, dummy_reg, r0); \ 1214 } 1215 1216 INSN(eret, 0b0100); 1217 INSN(drps, 0b0101); 1218 1219 #undef INSN 1220 1221 #define INSN(NAME, M) \ 1222 void NAME() { \ 1223 branch_reg(0b0010, 1, M, dummy_reg, dummy_reg); \ 1224 } 1225 1226 INSN(retaa, 0); 1227 INSN(retab, 1); 1228 1229 #undef INSN 1230 1231 #define INSN(NAME, OP, M) \ 1232 void NAME(Register rn) { \ 1233 branch_reg(OP, 1, M, rn, dummy_reg); \ 1234 } 1235 1236 INSN(braaz, 0b0000, 0); 1237 INSN(brabz, 0b0000, 1); 1238 INSN(blraaz, 0b0001, 0); 1239 INSN(blrabz, 0b0001, 1); 1240 1241 #undef INSN 1242 1243 #define INSN(NAME, OP, M) \ 1244 void NAME(Register rn, Register rm) { \ 1245 branch_reg(OP, 1, M, rn, rm); \ 1246 } 1247 1248 INSN(braa, 0b1000, 0); 1249 INSN(brab, 0b1000, 1); 1250 INSN(blraa, 0b1001, 0); 1251 INSN(blrab, 0b1001, 1); 1252 1253 #undef INSN 1254 1255 // Load/store exclusive 1256 enum operand_size { byte, halfword, word, xword }; 1257 1258 void load_store_exclusive(Register Rs, Register Rt1, Register Rt2, 1259 Register Rn, enum operand_size sz, int op, bool ordered) { 1260 starti; 1261 f(sz, 31, 30), f(0b001000, 29, 24), f(op, 23, 21); 1262 rf(Rs, 16), f(ordered, 15), zrf(Rt2, 10), srf(Rn, 5), zrf(Rt1, 0); 1263 } 1264 1265 void load_exclusive(Register dst, Register addr, 1266 enum operand_size sz, bool ordered) { 1267 load_store_exclusive(dummy_reg, dst, dummy_reg, addr, 1268 sz, 0b010, ordered); 1269 } 1270 1271 void store_exclusive(Register status, Register new_val, Register addr, 1272 enum operand_size sz, bool ordered) { 1273 load_store_exclusive(status, new_val, dummy_reg, addr, 1274 sz, 0b000, ordered); 1275 } 1276 1277 #define INSN4(NAME, sz, op, o0) /* Four registers */ \ 1278 void NAME(Register Rs, Register Rt1, Register Rt2, Register Rn) { \ 1279 guarantee(Rs != Rn && Rs != Rt1 && Rs != Rt2, "unpredictable instruction"); \ 1280 load_store_exclusive(Rs, Rt1, Rt2, Rn, sz, op, o0); \ 1281 } 1282 1283 #define INSN3(NAME, sz, op, o0) /* Three registers */ \ 1284 void NAME(Register Rs, Register Rt, Register Rn) { \ 1285 guarantee(Rs != Rn && Rs != Rt, "unpredictable instruction"); \ 1286 load_store_exclusive(Rs, Rt, dummy_reg, Rn, sz, op, o0); \ 1287 } 1288 1289 #define INSN2(NAME, sz, op, o0) /* Two registers */ \ 1290 void NAME(Register Rt, Register Rn) { \ 1291 load_store_exclusive(dummy_reg, Rt, dummy_reg, \ 1292 Rn, sz, op, o0); \ 1293 } 1294 1295 #define INSN_FOO(NAME, sz, op, o0) /* Three registers, encoded differently */ \ 1296 void NAME(Register Rt1, Register Rt2, Register Rn) { \ 1297 guarantee(Rt1 != Rt2, "unpredictable instruction"); \ 1298 load_store_exclusive(dummy_reg, Rt1, Rt2, Rn, sz, op, o0); \ 1299 } 1300 1301 // bytes 1302 INSN3(stxrb, byte, 0b000, 0); 1303 INSN3(stlxrb, byte, 0b000, 1); 1304 INSN2(ldxrb, byte, 0b010, 0); 1305 INSN2(ldaxrb, byte, 0b010, 1); 1306 INSN2(stlrb, byte, 0b100, 1); 1307 INSN2(ldarb, byte, 0b110, 1); 1308 1309 // halfwords 1310 INSN3(stxrh, halfword, 0b000, 0); 1311 INSN3(stlxrh, halfword, 0b000, 1); 1312 INSN2(ldxrh, halfword, 0b010, 0); 1313 INSN2(ldaxrh, halfword, 0b010, 1); 1314 INSN2(stlrh, halfword, 0b100, 1); 1315 INSN2(ldarh, halfword, 0b110, 1); 1316 1317 // words 1318 INSN3(stxrw, word, 0b000, 0); 1319 INSN3(stlxrw, word, 0b000, 1); 1320 INSN4(stxpw, word, 0b001, 0); 1321 INSN4(stlxpw, word, 0b001, 1); 1322 INSN2(ldxrw, word, 0b010, 0); 1323 INSN2(ldaxrw, word, 0b010, 1); 1324 INSN2(stlrw, word, 0b100, 1); 1325 INSN2(ldarw, word, 0b110, 1); 1326 // pairs of words 1327 INSN_FOO(ldxpw, word, 0b011, 0); 1328 INSN_FOO(ldaxpw, word, 0b011, 1); 1329 1330 // xwords 1331 INSN3(stxr, xword, 0b000, 0); 1332 INSN3(stlxr, xword, 0b000, 1); 1333 INSN4(stxp, xword, 0b001, 0); 1334 INSN4(stlxp, xword, 0b001, 1); 1335 INSN2(ldxr, xword, 0b010, 0); 1336 INSN2(ldaxr, xword, 0b010, 1); 1337 INSN2(stlr, xword, 0b100, 1); 1338 INSN2(ldar, xword, 0b110, 1); 1339 // pairs of xwords 1340 INSN_FOO(ldxp, xword, 0b011, 0); 1341 INSN_FOO(ldaxp, xword, 0b011, 1); 1342 1343 #undef INSN2 1344 #undef INSN3 1345 #undef INSN4 1346 #undef INSN_FOO 1347 1348 // 8.1 Compare and swap extensions 1349 void lse_cas(Register Rs, Register Rt, Register Rn, 1350 enum operand_size sz, bool a, bool r, bool not_pair) { 1351 starti; 1352 if (! not_pair) { // Pair 1353 assert(sz == word || sz == xword, "invalid size"); 1354 /* The size bit is in bit 30, not 31 */ 1355 sz = (operand_size)(sz == word ? 0b00:0b01); 1356 } 1357 f(sz, 31, 30), f(0b001000, 29, 24), f(not_pair ? 1 : 0, 23), f(a, 22), f(1, 21); 1358 zrf(Rs, 16), f(r, 15), f(0b11111, 14, 10), srf(Rn, 5), zrf(Rt, 0); 1359 } 1360 1361 // CAS 1362 #define INSN(NAME, a, r) \ 1363 void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) { \ 1364 assert(Rs != Rn && Rs != Rt, "unpredictable instruction"); \ 1365 lse_cas(Rs, Rt, Rn, sz, a, r, true); \ 1366 } 1367 INSN(cas, false, false) 1368 INSN(casa, true, false) 1369 INSN(casl, false, true) 1370 INSN(casal, true, true) 1371 #undef INSN 1372 1373 // CASP 1374 #define INSN(NAME, a, r) \ 1375 void NAME(operand_size sz, Register Rs, Register Rs1, \ 1376 Register Rt, Register Rt1, Register Rn) { \ 1377 assert((Rs->encoding() & 1) == 0 && (Rt->encoding() & 1) == 0 && \ 1378 Rs->successor() == Rs1 && Rt->successor() == Rt1 && \ 1379 Rs != Rn && Rs1 != Rn && Rs != Rt, "invalid registers"); \ 1380 lse_cas(Rs, Rt, Rn, sz, a, r, false); \ 1381 } 1382 INSN(casp, false, false) 1383 INSN(caspa, true, false) 1384 INSN(caspl, false, true) 1385 INSN(caspal, true, true) 1386 #undef INSN 1387 1388 // 8.1 Atomic operations 1389 void lse_atomic(Register Rs, Register Rt, Register Rn, 1390 enum operand_size sz, int op1, int op2, bool a, bool r) { 1391 starti; 1392 f(sz, 31, 30), f(0b111000, 29, 24), f(a, 23), f(r, 22), f(1, 21); 1393 zrf(Rs, 16), f(op1, 15), f(op2, 14, 12), f(0, 11, 10), srf(Rn, 5), zrf(Rt, 0); 1394 } 1395 1396 #define INSN(NAME, NAME_A, NAME_L, NAME_AL, op1, op2) \ 1397 void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) { \ 1398 lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, false); \ 1399 } \ 1400 void NAME_A(operand_size sz, Register Rs, Register Rt, Register Rn) { \ 1401 lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, false); \ 1402 } \ 1403 void NAME_L(operand_size sz, Register Rs, Register Rt, Register Rn) { \ 1404 lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, true); \ 1405 } \ 1406 void NAME_AL(operand_size sz, Register Rs, Register Rt, Register Rn) {\ 1407 lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, true); \ 1408 } 1409 INSN(ldadd, ldadda, ldaddl, ldaddal, 0, 0b000); 1410 INSN(ldbic, ldbica, ldbicl, ldbical, 0, 0b001); 1411 INSN(ldeor, ldeora, ldeorl, ldeoral, 0, 0b010); 1412 INSN(ldorr, ldorra, ldorrl, ldorral, 0, 0b011); 1413 INSN(ldsmax, ldsmaxa, ldsmaxl, ldsmaxal, 0, 0b100); 1414 INSN(ldsmin, ldsmina, ldsminl, ldsminal, 0, 0b101); 1415 INSN(ldumax, ldumaxa, ldumaxl, ldumaxal, 0, 0b110); 1416 INSN(ldumin, ldumina, lduminl, lduminal, 0, 0b111); 1417 INSN(swp, swpa, swpl, swpal, 1, 0b000); 1418 #undef INSN 1419 1420 // Load register (literal) 1421 #define INSN(NAME, opc, V) \ 1422 void NAME(Register Rt, address dest) { \ 1423 int64_t offset = (dest - pc()) >> 2; \ 1424 starti; \ 1425 f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24), \ 1426 sf(offset, 23, 5); \ 1427 rf(Rt, 0); \ 1428 } \ 1429 void NAME(Register Rt, address dest, relocInfo::relocType rtype) { \ 1430 InstructionMark im(this); \ 1431 guarantee(rtype == relocInfo::internal_word_type, \ 1432 "only internal_word_type relocs make sense here"); \ 1433 code_section()->relocate(inst_mark(), InternalAddress(dest).rspec()); \ 1434 NAME(Rt, dest); \ 1435 } \ 1436 void NAME(Register Rt, Label &L) { \ 1437 wrap_label(Rt, L, &Assembler::NAME); \ 1438 } 1439 1440 INSN(ldrw, 0b00, 0); 1441 INSN(ldr, 0b01, 0); 1442 INSN(ldrsw, 0b10, 0); 1443 1444 #undef INSN 1445 1446 #define INSN(NAME, opc, V) \ 1447 void NAME(FloatRegister Rt, address dest) { \ 1448 int64_t offset = (dest - pc()) >> 2; \ 1449 starti; \ 1450 f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24), \ 1451 sf(offset, 23, 5); \ 1452 rf(as_Register(Rt), 0); \ 1453 } 1454 1455 INSN(ldrs, 0b00, 1); 1456 INSN(ldrd, 0b01, 1); 1457 INSN(ldrq, 0b10, 1); 1458 1459 #undef INSN 1460 1461 #define INSN(NAME, size, opc) \ 1462 void NAME(FloatRegister Rt, Register Rn) { \ 1463 starti; \ 1464 f(size, 31, 30), f(0b111100, 29, 24), f(opc, 23, 22), f(0, 21); \ 1465 f(0, 20, 12), f(0b01, 11, 10); \ 1466 rf(Rn, 5), rf(as_Register(Rt), 0); \ 1467 } 1468 1469 INSN(ldrs, 0b10, 0b01); 1470 INSN(ldrd, 0b11, 0b01); 1471 INSN(ldrq, 0b00, 0b11); 1472 1473 #undef INSN 1474 1475 1476 #define INSN(NAME, opc, V) \ 1477 void NAME(address dest, prfop op = PLDL1KEEP) { \ 1478 int64_t offset = (dest - pc()) >> 2; \ 1479 starti; \ 1480 f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24), \ 1481 sf(offset, 23, 5); \ 1482 f(op, 4, 0); \ 1483 } \ 1484 void NAME(Label &L, prfop op = PLDL1KEEP) { \ 1485 wrap_label(L, op, &Assembler::NAME); \ 1486 } 1487 1488 INSN(prfm, 0b11, 0); 1489 1490 #undef INSN 1491 1492 // Load/store 1493 void ld_st1(int opc, int p1, int V, int L, 1494 Register Rt1, Register Rt2, Address adr, bool no_allocate) { 1495 starti; 1496 f(opc, 31, 30), f(p1, 29, 27), f(V, 26), f(L, 22); 1497 zrf(Rt2, 10), zrf(Rt1, 0); 1498 if (no_allocate) { 1499 adr.encode_nontemporal_pair(¤t_insn); 1500 } else { 1501 adr.encode_pair(¤t_insn); 1502 } 1503 } 1504 1505 // Load/store register pair (offset) 1506 #define INSN(NAME, size, p1, V, L, no_allocate) \ 1507 void NAME(Register Rt1, Register Rt2, Address adr) { \ 1508 ld_st1(size, p1, V, L, Rt1, Rt2, adr, no_allocate); \ 1509 } 1510 1511 INSN(stpw, 0b00, 0b101, 0, 0, false); 1512 INSN(ldpw, 0b00, 0b101, 0, 1, false); 1513 INSN(ldpsw, 0b01, 0b101, 0, 1, false); 1514 INSN(stp, 0b10, 0b101, 0, 0, false); 1515 INSN(ldp, 0b10, 0b101, 0, 1, false); 1516 1517 // Load/store no-allocate pair (offset) 1518 INSN(stnpw, 0b00, 0b101, 0, 0, true); 1519 INSN(ldnpw, 0b00, 0b101, 0, 1, true); 1520 INSN(stnp, 0b10, 0b101, 0, 0, true); 1521 INSN(ldnp, 0b10, 0b101, 0, 1, true); 1522 1523 #undef INSN 1524 1525 #define INSN(NAME, size, p1, V, L, no_allocate) \ 1526 void NAME(FloatRegister Rt1, FloatRegister Rt2, Address adr) { \ 1527 ld_st1(size, p1, V, L, \ 1528 as_Register(Rt1), as_Register(Rt2), adr, no_allocate); \ 1529 } 1530 1531 INSN(stps, 0b00, 0b101, 1, 0, false); 1532 INSN(ldps, 0b00, 0b101, 1, 1, false); 1533 INSN(stpd, 0b01, 0b101, 1, 0, false); 1534 INSN(ldpd, 0b01, 0b101, 1, 1, false); 1535 INSN(stpq, 0b10, 0b101, 1, 0, false); 1536 INSN(ldpq, 0b10, 0b101, 1, 1, false); 1537 1538 #undef INSN 1539 1540 // Load/store register (all modes) 1541 void ld_st2(Register Rt, const Address &adr, int size, int op, int V = 0) { 1542 starti; 1543 1544 f(V, 26); // general reg? 1545 zrf(Rt, 0); 1546 1547 // Encoding for literal loads is done here (rather than pushed 1548 // down into Address::encode) because the encoding of this 1549 // instruction is too different from all of the other forms to 1550 // make it worth sharing. 1551 if (adr.getMode() == Address::literal) { 1552 assert(size == 0b10 || size == 0b11, "bad operand size in ldr"); 1553 assert(op == 0b01, "literal form can only be used with loads"); 1554 f(size & 0b01, 31, 30), f(0b011, 29, 27), f(0b00, 25, 24); 1555 int64_t offset = (adr.target() - pc()) >> 2; 1556 sf(offset, 23, 5); 1557 code_section()->relocate(pc(), adr.rspec()); 1558 return; 1559 } 1560 1561 f(size, 31, 30); 1562 f(op, 23, 22); // str 1563 adr.encode(¤t_insn); 1564 } 1565 1566 #define INSN(NAME, size, op) \ 1567 void NAME(Register Rt, const Address &adr) { \ 1568 ld_st2(Rt, adr, size, op); \ 1569 } \ 1570 1571 INSN(str, 0b11, 0b00); 1572 INSN(strw, 0b10, 0b00); 1573 INSN(strb, 0b00, 0b00); 1574 INSN(strh, 0b01, 0b00); 1575 1576 INSN(ldr, 0b11, 0b01); 1577 INSN(ldrw, 0b10, 0b01); 1578 INSN(ldrb, 0b00, 0b01); 1579 INSN(ldrh, 0b01, 0b01); 1580 1581 INSN(ldrsb, 0b00, 0b10); 1582 INSN(ldrsbw, 0b00, 0b11); 1583 INSN(ldrsh, 0b01, 0b10); 1584 INSN(ldrshw, 0b01, 0b11); 1585 INSN(ldrsw, 0b10, 0b10); 1586 1587 #undef INSN 1588 1589 #define INSN(NAME, size, op) \ 1590 void NAME(FloatRegister Rt, const Address &adr) { \ 1591 ld_st2(as_Register(Rt), adr, size, op, 1); \ 1592 } 1593 1594 INSN(strd, 0b11, 0b00); 1595 INSN(strs, 0b10, 0b00); 1596 INSN(ldrd, 0b11, 0b01); 1597 INSN(ldrs, 0b10, 0b01); 1598 INSN(strq, 0b00, 0b10); 1599 INSN(ldrq, 0x00, 0b11); 1600 1601 #undef INSN 1602 1603 // Load/store a register, but with a BasicType parameter. Loaded signed integer values are 1604 // extended to 64 bits. 1605 void load(Register Rt, const Address &adr, BasicType bt) { 1606 int op = (is_signed_subword_type(bt) || bt == T_INT) ? 0b10 : 0b01; 1607 ld_st2(Rt, adr, exact_log2(type2aelembytes(bt)), op); 1608 } 1609 void store(Register Rt, const Address &adr, BasicType bt) { 1610 ld_st2(Rt, adr, exact_log2(type2aelembytes(bt)), 0b00); 1611 } 1612 1613 /* SIMD extensions 1614 * 1615 * We just use FloatRegister in the following. They are exactly the same 1616 * as SIMD registers. 1617 */ 1618 public: 1619 1620 enum SIMD_Arrangement { 1621 T8B, T16B, T4H, T8H, T2S, T4S, T1D, T2D, T1Q, INVALID_ARRANGEMENT 1622 }; 1623 1624 enum SIMD_RegVariant { 1625 B, H, S, D, Q, INVALID 1626 }; 1627 1628 private: 1629 1630 static SIMD_Arrangement _esize2arrangement_table[9][2]; 1631 static SIMD_RegVariant _esize2regvariant[9]; 1632 1633 public: 1634 1635 static SIMD_Arrangement esize2arrangement(unsigned esize, bool isQ); 1636 static SIMD_RegVariant elemType_to_regVariant(BasicType bt); 1637 static SIMD_RegVariant elemBytes_to_regVariant(unsigned esize); 1638 // Return the corresponding bits for different SIMD_RegVariant value. 1639 static unsigned regVariant_to_elemBits(SIMD_RegVariant T); 1640 1641 enum shift_kind { LSL, LSR, ASR, ROR }; 1642 1643 void op_shifted_reg(Instruction_aarch64 ¤t_insn, unsigned decode, 1644 enum shift_kind kind, unsigned shift, 1645 unsigned size, unsigned op) { 1646 f(size, 31); 1647 f(op, 30, 29); 1648 f(decode, 28, 24); 1649 f(shift, 15, 10); 1650 f(kind, 23, 22); 1651 } 1652 1653 // Logical (shifted register) 1654 #define INSN(NAME, size, op, N) \ 1655 void NAME(Register Rd, Register Rn, Register Rm, \ 1656 enum shift_kind kind = LSL, unsigned shift = 0) { \ 1657 starti; \ 1658 guarantee(size == 1 || shift < 32, "incorrect shift"); \ 1659 f(N, 21); \ 1660 zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0); \ 1661 op_shifted_reg(current_insn, 0b01010, kind, shift, size, op); \ 1662 } 1663 1664 INSN(andr, 1, 0b00, 0); 1665 INSN(orr, 1, 0b01, 0); 1666 INSN(eor, 1, 0b10, 0); 1667 INSN(ands, 1, 0b11, 0); 1668 INSN(andw, 0, 0b00, 0); 1669 INSN(orrw, 0, 0b01, 0); 1670 INSN(eorw, 0, 0b10, 0); 1671 INSN(andsw, 0, 0b11, 0); 1672 1673 #undef INSN 1674 1675 #define INSN(NAME, size, op, N) \ 1676 void NAME(Register Rd, Register Rn, Register Rm, \ 1677 enum shift_kind kind = LSL, unsigned shift = 0) { \ 1678 starti; \ 1679 f(N, 21); \ 1680 zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0); \ 1681 op_shifted_reg(current_insn, 0b01010, kind, shift, size, op); \ 1682 } \ 1683 \ 1684 /* These instructions have no immediate form. Provide an overload so \ 1685 that if anyone does try to use an immediate operand -- this has \ 1686 happened! -- we'll get a compile-time error. */ \ 1687 void NAME(Register Rd, Register Rn, unsigned imm, \ 1688 enum shift_kind kind = LSL, unsigned shift = 0) { \ 1689 assert(false, " can't be used with immediate operand"); \ 1690 } 1691 1692 INSN(bic, 1, 0b00, 1); 1693 INSN(orn, 1, 0b01, 1); 1694 INSN(eon, 1, 0b10, 1); 1695 INSN(bics, 1, 0b11, 1); 1696 INSN(bicw, 0, 0b00, 1); 1697 INSN(ornw, 0, 0b01, 1); 1698 INSN(eonw, 0, 0b10, 1); 1699 INSN(bicsw, 0, 0b11, 1); 1700 1701 #undef INSN 1702 1703 #ifdef _WIN64 1704 // In MSVC, `mvn` is defined as a macro and it affects compilation 1705 #undef mvn 1706 #endif 1707 1708 // Aliases for short forms of orn 1709 void mvn(Register Rd, Register Rm, 1710 enum shift_kind kind = LSL, unsigned shift = 0) { 1711 orn(Rd, zr, Rm, kind, shift); 1712 } 1713 1714 void mvnw(Register Rd, Register Rm, 1715 enum shift_kind kind = LSL, unsigned shift = 0) { 1716 ornw(Rd, zr, Rm, kind, shift); 1717 } 1718 1719 // Add/subtract (shifted register) 1720 #define INSN(NAME, size, op) \ 1721 void NAME(Register Rd, Register Rn, Register Rm, \ 1722 enum shift_kind kind, unsigned shift = 0) { \ 1723 starti; \ 1724 f(0, 21); \ 1725 assert_cond(kind != ROR); \ 1726 guarantee(size == 1 || shift < 32, "incorrect shift");\ 1727 zrf(Rd, 0), zrf(Rn, 5), zrf(Rm, 16); \ 1728 op_shifted_reg(current_insn, 0b01011, kind, shift, size, op); \ 1729 } 1730 1731 INSN(add, 1, 0b000); 1732 INSN(sub, 1, 0b10); 1733 INSN(addw, 0, 0b000); 1734 INSN(subw, 0, 0b10); 1735 1736 INSN(adds, 1, 0b001); 1737 INSN(subs, 1, 0b11); 1738 INSN(addsw, 0, 0b001); 1739 INSN(subsw, 0, 0b11); 1740 1741 #undef INSN 1742 1743 // Add/subtract (extended register) 1744 #define INSN(NAME, op) \ 1745 void NAME(Register Rd, Register Rn, Register Rm, \ 1746 ext::operation option, int amount = 0) { \ 1747 starti; \ 1748 zrf(Rm, 16), srf(Rn, 5), srf(Rd, 0); \ 1749 add_sub_extended_reg(current_insn, op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \ 1750 } 1751 1752 void add_sub_extended_reg(Instruction_aarch64 ¤t_insn, unsigned op, unsigned decode, 1753 Register Rd, Register Rn, Register Rm, 1754 unsigned opt, ext::operation option, unsigned imm) { 1755 guarantee(imm <= 4, "shift amount must be <= 4"); 1756 f(op, 31, 29), f(decode, 28, 24), f(opt, 23, 22), f(1, 21); 1757 f(option, 15, 13), f(imm, 12, 10); 1758 } 1759 1760 INSN(addw, 0b000); 1761 INSN(subw, 0b010); 1762 INSN(add, 0b100); 1763 INSN(sub, 0b110); 1764 1765 #undef INSN 1766 1767 #define INSN(NAME, op) \ 1768 void NAME(Register Rd, Register Rn, Register Rm, \ 1769 ext::operation option, int amount = 0) { \ 1770 starti; \ 1771 zrf(Rm, 16), srf(Rn, 5), zrf(Rd, 0); \ 1772 add_sub_extended_reg(current_insn, op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \ 1773 } 1774 1775 INSN(addsw, 0b001); 1776 INSN(subsw, 0b011); 1777 INSN(adds, 0b101); 1778 INSN(subs, 0b111); 1779 1780 #undef INSN 1781 1782 // Aliases for short forms of add and sub 1783 #define INSN(NAME) \ 1784 void NAME(Register Rd, Register Rn, Register Rm) { \ 1785 if (Rd == sp || Rn == sp) \ 1786 NAME(Rd, Rn, Rm, ext::uxtx); \ 1787 else \ 1788 NAME(Rd, Rn, Rm, LSL); \ 1789 } 1790 1791 INSN(addw); 1792 INSN(subw); 1793 INSN(add); 1794 INSN(sub); 1795 1796 INSN(addsw); 1797 INSN(subsw); 1798 INSN(adds); 1799 INSN(subs); 1800 1801 #undef INSN 1802 1803 // Add/subtract (with carry) 1804 void add_sub_carry(unsigned op, Register Rd, Register Rn, Register Rm) { 1805 starti; 1806 f(op, 31, 29); 1807 f(0b11010000, 28, 21); 1808 f(0b000000, 15, 10); 1809 zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0); 1810 } 1811 1812 #define INSN(NAME, op) \ 1813 void NAME(Register Rd, Register Rn, Register Rm) { \ 1814 add_sub_carry(op, Rd, Rn, Rm); \ 1815 } 1816 1817 INSN(adcw, 0b000); 1818 INSN(adcsw, 0b001); 1819 INSN(sbcw, 0b010); 1820 INSN(sbcsw, 0b011); 1821 INSN(adc, 0b100); 1822 INSN(adcs, 0b101); 1823 INSN(sbc, 0b110); 1824 INSN(sbcs, 0b111); 1825 1826 #undef INSN 1827 1828 // Conditional compare (both kinds) 1829 void conditional_compare(unsigned op, int o1, int o2, int o3, 1830 Register Rn, unsigned imm5, unsigned nzcv, 1831 unsigned cond) { 1832 starti; 1833 f(op, 31, 29); 1834 f(0b11010010, 28, 21); 1835 f(cond, 15, 12); 1836 f(o1, 11); 1837 f(o2, 10); 1838 f(o3, 4); 1839 f(nzcv, 3, 0); 1840 f(imm5, 20, 16), zrf(Rn, 5); 1841 } 1842 1843 #define INSN(NAME, op) \ 1844 void NAME(Register Rn, Register Rm, int imm, Condition cond) { \ 1845 int regNumber = (Rm == zr ? 31 : Rm->encoding()); \ 1846 conditional_compare(op, 0, 0, 0, Rn, regNumber, imm, cond); \ 1847 } \ 1848 \ 1849 void NAME(Register Rn, int imm5, int imm, Condition cond) { \ 1850 conditional_compare(op, 1, 0, 0, Rn, imm5, imm, cond); \ 1851 } 1852 1853 INSN(ccmnw, 0b001); 1854 INSN(ccmpw, 0b011); 1855 INSN(ccmn, 0b101); 1856 INSN(ccmp, 0b111); 1857 1858 #undef INSN 1859 1860 // Conditional select 1861 void conditional_select(unsigned op, unsigned op2, 1862 Register Rd, Register Rn, Register Rm, 1863 unsigned cond) { 1864 starti; 1865 f(op, 31, 29); 1866 f(0b11010100, 28, 21); 1867 f(cond, 15, 12); 1868 f(op2, 11, 10); 1869 zrf(Rm, 16), zrf(Rn, 5), rf(Rd, 0); 1870 } 1871 1872 #define INSN(NAME, op, op2) \ 1873 void NAME(Register Rd, Register Rn, Register Rm, Condition cond) { \ 1874 conditional_select(op, op2, Rd, Rn, Rm, cond); \ 1875 } 1876 1877 INSN(cselw, 0b000, 0b00); 1878 INSN(csincw, 0b000, 0b01); 1879 INSN(csinvw, 0b010, 0b00); 1880 INSN(csnegw, 0b010, 0b01); 1881 INSN(csel, 0b100, 0b00); 1882 INSN(csinc, 0b100, 0b01); 1883 INSN(csinv, 0b110, 0b00); 1884 INSN(csneg, 0b110, 0b01); 1885 1886 #undef INSN 1887 1888 // Data processing 1889 void data_processing(Instruction_aarch64 ¤t_insn, unsigned op29, unsigned opcode, 1890 Register Rd, Register Rn) { 1891 f(op29, 31, 29), f(0b11010110, 28, 21); 1892 f(opcode, 15, 10); 1893 rf(Rn, 5), rf(Rd, 0); 1894 } 1895 1896 // (1 source) 1897 #define INSN(NAME, op29, opcode2, opcode) \ 1898 void NAME(Register Rd, Register Rn) { \ 1899 starti; \ 1900 f(opcode2, 20, 16); \ 1901 data_processing(current_insn, op29, opcode, Rd, Rn); \ 1902 } 1903 1904 INSN(rbitw, 0b010, 0b00000, 0b00000); 1905 INSN(rev16w, 0b010, 0b00000, 0b00001); 1906 INSN(revw, 0b010, 0b00000, 0b00010); 1907 INSN(clzw, 0b010, 0b00000, 0b00100); 1908 INSN(clsw, 0b010, 0b00000, 0b00101); 1909 1910 INSN(rbit, 0b110, 0b00000, 0b00000); 1911 INSN(rev16, 0b110, 0b00000, 0b00001); 1912 INSN(rev32, 0b110, 0b00000, 0b00010); 1913 INSN(rev, 0b110, 0b00000, 0b00011); 1914 INSN(clz, 0b110, 0b00000, 0b00100); 1915 INSN(cls, 0b110, 0b00000, 0b00101); 1916 1917 // PAC instructions 1918 INSN(pacia, 0b110, 0b00001, 0b00000); 1919 INSN(pacib, 0b110, 0b00001, 0b00001); 1920 INSN(pacda, 0b110, 0b00001, 0b00010); 1921 INSN(pacdb, 0b110, 0b00001, 0b00011); 1922 INSN(autia, 0b110, 0b00001, 0b00100); 1923 INSN(autib, 0b110, 0b00001, 0b00101); 1924 INSN(autda, 0b110, 0b00001, 0b00110); 1925 INSN(autdb, 0b110, 0b00001, 0b00111); 1926 1927 #undef INSN 1928 1929 #define INSN(NAME, op29, opcode2, opcode) \ 1930 void NAME(Register Rd) { \ 1931 starti; \ 1932 f(opcode2, 20, 16); \ 1933 data_processing(current_insn, op29, opcode, Rd, dummy_reg); \ 1934 } 1935 1936 // PAC instructions (with zero modifier) 1937 INSN(paciza, 0b110, 0b00001, 0b01000); 1938 INSN(pacizb, 0b110, 0b00001, 0b01001); 1939 INSN(pacdza, 0b110, 0b00001, 0b01010); 1940 INSN(pacdzb, 0b110, 0b00001, 0b01011); 1941 INSN(autiza, 0b110, 0b00001, 0b01100); 1942 INSN(autizb, 0b110, 0b00001, 0b01101); 1943 INSN(autdza, 0b110, 0b00001, 0b01110); 1944 INSN(autdzb, 0b110, 0b00001, 0b01111); 1945 INSN(xpaci, 0b110, 0b00001, 0b10000); 1946 INSN(xpacd, 0b110, 0b00001, 0b10001); 1947 1948 #undef INSN 1949 1950 // Data-processing (2 source) 1951 #define INSN(NAME, op29, opcode) \ 1952 void NAME(Register Rd, Register Rn, Register Rm) { \ 1953 starti; \ 1954 rf(Rm, 16); \ 1955 data_processing(current_insn, op29, opcode, Rd, Rn); \ 1956 } 1957 1958 INSN(udivw, 0b000, 0b000010); 1959 INSN(sdivw, 0b000, 0b000011); 1960 INSN(lslvw, 0b000, 0b001000); 1961 INSN(lsrvw, 0b000, 0b001001); 1962 INSN(asrvw, 0b000, 0b001010); 1963 INSN(rorvw, 0b000, 0b001011); 1964 1965 INSN(udiv, 0b100, 0b000010); 1966 INSN(sdiv, 0b100, 0b000011); 1967 INSN(lslv, 0b100, 0b001000); 1968 INSN(lsrv, 0b100, 0b001001); 1969 INSN(asrv, 0b100, 0b001010); 1970 INSN(rorv, 0b100, 0b001011); 1971 1972 #undef INSN 1973 1974 // Data-processing (3 source) 1975 void data_processing(unsigned op54, unsigned op31, unsigned o0, 1976 Register Rd, Register Rn, Register Rm, 1977 Register Ra) { 1978 starti; 1979 f(op54, 31, 29), f(0b11011, 28, 24); 1980 f(op31, 23, 21), f(o0, 15); 1981 zrf(Rm, 16), zrf(Ra, 10), zrf(Rn, 5), zrf(Rd, 0); 1982 } 1983 1984 #define INSN(NAME, op54, op31, o0) \ 1985 void NAME(Register Rd, Register Rn, Register Rm, Register Ra) { \ 1986 data_processing(op54, op31, o0, Rd, Rn, Rm, Ra); \ 1987 } 1988 1989 INSN(maddw, 0b000, 0b000, 0); 1990 INSN(msubw, 0b000, 0b000, 1); 1991 INSN(madd, 0b100, 0b000, 0); 1992 INSN(msub, 0b100, 0b000, 1); 1993 INSN(smaddl, 0b100, 0b001, 0); 1994 INSN(smsubl, 0b100, 0b001, 1); 1995 INSN(umaddl, 0b100, 0b101, 0); 1996 INSN(umsubl, 0b100, 0b101, 1); 1997 1998 #undef INSN 1999 2000 #define INSN(NAME, op54, op31, o0) \ 2001 void NAME(Register Rd, Register Rn, Register Rm) { \ 2002 data_processing(op54, op31, o0, Rd, Rn, Rm, as_Register(31)); \ 2003 } 2004 2005 INSN(smulh, 0b100, 0b010, 0); 2006 INSN(umulh, 0b100, 0b110, 0); 2007 2008 #undef INSN 2009 2010 // Floating-point data-processing (1 source) 2011 void data_processing(unsigned type, unsigned opcode, 2012 FloatRegister Vd, FloatRegister Vn) { 2013 starti; 2014 f(0b000, 31, 29); 2015 f(0b11110, 28, 24); 2016 f(type, 23, 22), f(1, 21), f(opcode, 20, 15), f(0b10000, 14, 10); 2017 rf(Vn, 5), rf(Vd, 0); 2018 } 2019 2020 #define INSN(NAME, type, opcode) \ 2021 void NAME(FloatRegister Vd, FloatRegister Vn) { \ 2022 data_processing(type, opcode, Vd, Vn); \ 2023 } 2024 2025 INSN(fmovs, 0b00, 0b000000); 2026 INSN(fabss, 0b00, 0b000001); 2027 INSN(fnegs, 0b00, 0b000010); 2028 INSN(fsqrts, 0b00, 0b000011); 2029 INSN(fcvts, 0b00, 0b000101); // Single-precision to double-precision 2030 INSN(fcvths, 0b11, 0b000100); // Half-precision to single-precision 2031 INSN(fcvtsh, 0b00, 0b000111); // Single-precision to half-precision 2032 2033 INSN(fmovd, 0b01, 0b000000); 2034 INSN(fabsd, 0b01, 0b000001); 2035 INSN(fnegd, 0b01, 0b000010); 2036 INSN(fsqrtd, 0b01, 0b000011); 2037 INSN(fcvtd, 0b01, 0b000100); // Double-precision to single-precision 2038 2039 INSN(fsqrth, 0b11, 0b000011); // Half-precision sqrt 2040 2041 private: 2042 void _fcvt_narrow_extend(FloatRegister Vd, SIMD_Arrangement Ta, 2043 FloatRegister Vn, SIMD_Arrangement Tb, bool do_extend) { 2044 assert((do_extend && (Tb >> 1) + 1 == (Ta >> 1)) 2045 || (!do_extend && (Ta >> 1) + 1 == (Tb >> 1)), "Incompatible arrangement"); 2046 starti; 2047 int op30 = (do_extend ? Tb : Ta) & 1; 2048 int op22 = ((do_extend ? Ta : Tb) >> 1) & 1; 2049 f(0, 31), f(op30, 30), f(0b0011100, 29, 23), f(op22, 22); 2050 f(0b100001011, 21, 13), f(do_extend ? 1 : 0, 12), f(0b10, 11, 10); 2051 rf(Vn, 5), rf(Vd, 0); 2052 } 2053 2054 public: 2055 void fcvtl(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb) { 2056 assert(Tb == T4H || Tb == T8H|| Tb == T2S || Tb == T4S, "invalid arrangement"); 2057 _fcvt_narrow_extend(Vd, Ta, Vn, Tb, true); 2058 } 2059 2060 void fcvtn(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb) { 2061 assert(Ta == T4H || Ta == T8H|| Ta == T2S || Ta == T4S, "invalid arrangement"); 2062 _fcvt_narrow_extend(Vd, Ta, Vn, Tb, false); 2063 } 2064 2065 #undef INSN 2066 2067 // Floating-point data-processing (2 source) 2068 void data_processing(unsigned op31, unsigned type, unsigned opcode, unsigned op21, 2069 FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) { 2070 starti; 2071 f(op31, 31, 29); 2072 f(0b11110, 28, 24); 2073 f(type, 23, 22), f(op21, 21), f(opcode, 15, 10); 2074 rf(Vm, 16), rf(Vn, 5), rf(Vd, 0); 2075 } 2076 2077 #define INSN(NAME, op31, type, opcode, op21) \ 2078 void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) { \ 2079 data_processing(op31, type, opcode, op21, Vd, Vn, Vm); \ 2080 } 2081 2082 INSN(fmuls, 0b000, 0b00, 0b000010, 0b1); 2083 INSN(fdivs, 0b000, 0b00, 0b000110, 0b1); 2084 INSN(fadds, 0b000, 0b00, 0b001010, 0b1); 2085 INSN(fsubs, 0b000, 0b00, 0b001110, 0b1); 2086 INSN(fmaxs, 0b000, 0b00, 0b010010, 0b1); 2087 INSN(fmins, 0b000, 0b00, 0b010110, 0b1); 2088 INSN(fnmuls, 0b000, 0b00, 0b100010, 0b1); 2089 2090 INSN(fmuld, 0b000, 0b01, 0b000010, 0b1); 2091 INSN(fdivd, 0b000, 0b01, 0b000110, 0b1); 2092 INSN(faddd, 0b000, 0b01, 0b001010, 0b1); 2093 INSN(fsubd, 0b000, 0b01, 0b001110, 0b1); 2094 INSN(fmaxd, 0b000, 0b01, 0b010010, 0b1); 2095 INSN(fmind, 0b000, 0b01, 0b010110, 0b1); 2096 INSN(fnmuld, 0b000, 0b01, 0b100010, 0b1); 2097 2098 // Half-precision floating-point instructions 2099 INSN(fmulh, 0b000, 0b11, 0b000010, 0b1); 2100 INSN(fdivh, 0b000, 0b11, 0b000110, 0b1); 2101 INSN(faddh, 0b000, 0b11, 0b001010, 0b1); 2102 INSN(fsubh, 0b000, 0b11, 0b001110, 0b1); 2103 INSN(fmaxh, 0b000, 0b11, 0b010010, 0b1); 2104 INSN(fminh, 0b000, 0b11, 0b010110, 0b1); 2105 INSN(fnmulh, 0b000, 0b11, 0b100010, 0b1); 2106 #undef INSN 2107 2108 // Advanced SIMD scalar three same 2109 #define INSN(NAME, U, size, opcode) \ 2110 void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) { \ 2111 starti; \ 2112 f(0b01, 31, 30), f(U, 29), f(0b11110, 28, 24), f(size, 23, 22), f(1, 21); \ 2113 rf(Vm, 16), f(opcode, 15, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0); \ 2114 } 2115 2116 INSN(fabds, 0b1, 0b10, 0b11010); // Floating-point Absolute Difference (single-precision) 2117 INSN(fabdd, 0b1, 0b11, 0b11010); // Floating-point Absolute Difference (double-precision) 2118 2119 #undef INSN 2120 2121 // Advanced SIMD scalar three same FP16 2122 #define INSN(NAME, U, a, opcode) \ 2123 void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) { \ 2124 starti; \ 2125 f(0b01, 31, 30), f(U, 29), f(0b11110, 28, 24), f(a, 23), f(0b10, 22, 21); \ 2126 rf(Vm, 16), f(0b00, 15, 14), f(opcode, 13, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0); \ 2127 } 2128 2129 INSN(fabdh, 0b1, 0b1, 0b010); // Floating-point Absolute Difference (half-precision float) 2130 2131 #undef INSN 2132 2133 // Floating-point data-processing (3 source) 2134 void data_processing(unsigned op31, unsigned type, unsigned o1, unsigned o0, 2135 FloatRegister Vd, FloatRegister Vn, FloatRegister Vm, 2136 FloatRegister Va) { 2137 starti; 2138 f(op31, 31, 29); 2139 f(0b11111, 28, 24); 2140 f(type, 23, 22), f(o1, 21), f(o0, 15); 2141 rf(Vm, 16), rf(Va, 10), rf(Vn, 5), rf(Vd, 0); 2142 } 2143 2144 #define INSN(NAME, op31, type, o1, o0) \ 2145 void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm, \ 2146 FloatRegister Va) { \ 2147 data_processing(op31, type, o1, o0, Vd, Vn, Vm, Va); \ 2148 } 2149 2150 INSN(fmadds, 0b000, 0b00, 0, 0); 2151 INSN(fmsubs, 0b000, 0b00, 0, 1); 2152 INSN(fnmadds, 0b000, 0b00, 1, 0); 2153 INSN(fnmsubs, 0b000, 0b00, 1, 1); 2154 2155 INSN(fmaddd, 0b000, 0b01, 0, 0); 2156 INSN(fmsubd, 0b000, 0b01, 0, 1); 2157 INSN(fnmaddd, 0b000, 0b01, 1, 0); 2158 INSN(fnmsub, 0b000, 0b01, 1, 1); 2159 2160 INSN(fmaddh, 0b000, 0b11, 0, 0); // half-precision fused multiply-add (scalar) 2161 #undef INSN 2162 2163 // Floating-point conditional select 2164 void fp_conditional_select(unsigned op31, unsigned type, 2165 unsigned op1, unsigned op2, 2166 Condition cond, FloatRegister Vd, 2167 FloatRegister Vn, FloatRegister Vm) { 2168 starti; 2169 f(op31, 31, 29); 2170 f(0b11110, 28, 24); 2171 f(type, 23, 22); 2172 f(op1, 21, 21); 2173 f(op2, 11, 10); 2174 f(cond, 15, 12); 2175 rf(Vm, 16), rf(Vn, 5), rf(Vd, 0); 2176 } 2177 2178 #define INSN(NAME, op31, type, op1, op2) \ 2179 void NAME(FloatRegister Vd, FloatRegister Vn, \ 2180 FloatRegister Vm, Condition cond) { \ 2181 fp_conditional_select(op31, type, op1, op2, cond, Vd, Vn, Vm); \ 2182 } 2183 2184 INSN(fcsels, 0b000, 0b00, 0b1, 0b11); 2185 INSN(fcseld, 0b000, 0b01, 0b1, 0b11); 2186 2187 #undef INSN 2188 2189 // Conversion between floating-point and integer 2190 void float_int_convert(unsigned sflag, unsigned ftype, 2191 unsigned rmode, unsigned opcode, 2192 Register Rd, Register Rn) { 2193 starti; 2194 f(sflag, 31); 2195 f(0b00, 30, 29); 2196 f(0b11110, 28, 24); 2197 f(ftype, 23, 22), f(1, 21), f(rmode, 20, 19); 2198 f(opcode, 18, 16), f(0b000000, 15, 10); 2199 zrf(Rn, 5), zrf(Rd, 0); 2200 } 2201 2202 #define INSN(NAME, sflag, ftype, rmode, opcode) \ 2203 void NAME(Register Rd, FloatRegister Vn) { \ 2204 float_int_convert(sflag, ftype, rmode, opcode, Rd, as_Register(Vn)); \ 2205 } 2206 2207 INSN(fcvtzsw, 0b0, 0b00, 0b11, 0b000); 2208 INSN(fcvtzs, 0b1, 0b00, 0b11, 0b000); 2209 INSN(fcvtzdw, 0b0, 0b01, 0b11, 0b000); 2210 INSN(fcvtzd, 0b1, 0b01, 0b11, 0b000); 2211 2212 // RoundToNearestTiesAway 2213 INSN(fcvtassw, 0b0, 0b00, 0b00, 0b100); // float -> signed word 2214 INSN(fcvtasd, 0b1, 0b01, 0b00, 0b100); // double -> signed xword 2215 2216 // RoundTowardsNegative 2217 INSN(fcvtmssw, 0b0, 0b00, 0b10, 0b000); // float -> signed word 2218 INSN(fcvtmsd, 0b1, 0b01, 0b10, 0b000); // double -> signed xword 2219 2220 INSN(fmovs, 0b0, 0b00, 0b00, 0b110); 2221 INSN(fmovd, 0b1, 0b01, 0b00, 0b110); 2222 2223 INSN(fmovhid, 0b1, 0b10, 0b01, 0b110); 2224 2225 #undef INSN 2226 2227 #define INSN(NAME, sflag, type, rmode, opcode) \ 2228 void NAME(FloatRegister Vd, Register Rn) { \ 2229 float_int_convert(sflag, type, rmode, opcode, as_Register(Vd), Rn); \ 2230 } 2231 2232 INSN(fmovs, 0b0, 0b00, 0b00, 0b111); 2233 INSN(fmovd, 0b1, 0b01, 0b00, 0b111); 2234 2235 INSN(scvtfws, 0b0, 0b00, 0b00, 0b010); 2236 INSN(scvtfs, 0b1, 0b00, 0b00, 0b010); 2237 INSN(scvtfwd, 0b0, 0b01, 0b00, 0b010); 2238 INSN(scvtfd, 0b1, 0b01, 0b00, 0b010); 2239 2240 // INSN(fmovhid, 0b100, 0b10, 0b01, 0b111); 2241 2242 #undef INSN 2243 2244 private: 2245 void _xcvtf_vector_integer(bool is_unsigned, SIMD_Arrangement T, 2246 FloatRegister Rd, FloatRegister Rn) { 2247 assert(T == T2S || T == T4S || T == T2D, "invalid arrangement"); 2248 starti; 2249 f(0, 31), f(T & 1, 30), f(is_unsigned ? 1 : 0, 29); 2250 f(0b011100, 28, 23), f((T >> 1) & 1, 22), f(0b100001110110, 21, 10); 2251 rf(Rn, 5), rf(Rd, 0); 2252 } 2253 2254 public: 2255 2256 void scvtfv(SIMD_Arrangement T, FloatRegister Rd, FloatRegister Rn) { 2257 _xcvtf_vector_integer(/* is_unsigned */ false, T, Rd, Rn); 2258 } 2259 2260 // Floating-point compare 2261 void float_compare(unsigned op31, unsigned type, 2262 unsigned op, unsigned op2, 2263 FloatRegister Vn, FloatRegister Vm = as_FloatRegister(0)) { 2264 starti; 2265 f(op31, 31, 29); 2266 f(0b11110, 28, 24); 2267 f(type, 23, 22), f(1, 21); 2268 f(op, 15, 14), f(0b1000, 13, 10), f(op2, 4, 0); 2269 rf(Vn, 5), rf(Vm, 16); 2270 } 2271 2272 2273 #define INSN(NAME, op31, type, op, op2) \ 2274 void NAME(FloatRegister Vn, FloatRegister Vm) { \ 2275 float_compare(op31, type, op, op2, Vn, Vm); \ 2276 } 2277 2278 #define INSN1(NAME, op31, type, op, op2) \ 2279 void NAME(FloatRegister Vn, double d) { \ 2280 assert_cond(d == 0.0); \ 2281 float_compare(op31, type, op, op2, Vn); \ 2282 } 2283 2284 INSN(fcmps, 0b000, 0b00, 0b00, 0b00000); 2285 INSN1(fcmps, 0b000, 0b00, 0b00, 0b01000); 2286 // INSN(fcmpes, 0b000, 0b00, 0b00, 0b10000); 2287 // INSN1(fcmpes, 0b000, 0b00, 0b00, 0b11000); 2288 2289 INSN(fcmpd, 0b000, 0b01, 0b00, 0b00000); 2290 INSN1(fcmpd, 0b000, 0b01, 0b00, 0b01000); 2291 // INSN(fcmped, 0b000, 0b01, 0b00, 0b10000); 2292 // INSN1(fcmped, 0b000, 0b01, 0b00, 0b11000); 2293 2294 #undef INSN 2295 #undef INSN1 2296 2297 // Floating-point compare. 3-registers versions (scalar). 2298 #define INSN(NAME, sz, e) \ 2299 void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) { \ 2300 starti; \ 2301 f(0b01111110, 31, 24), f(e, 23), f(sz, 22), f(1, 21), rf(Vm, 16); \ 2302 f(0b111011, 15, 10), rf(Vn, 5), rf(Vd, 0); \ 2303 } \ 2304 2305 INSN(facged, 1, 0); // facge-double 2306 INSN(facges, 0, 0); // facge-single 2307 INSN(facgtd, 1, 1); // facgt-double 2308 INSN(facgts, 0, 1); // facgt-single 2309 2310 #undef INSN 2311 2312 // Floating-point Move (immediate) 2313 private: 2314 unsigned pack(double value); 2315 2316 void fmov_imm(FloatRegister Vn, double value, unsigned size) { 2317 starti; 2318 f(0b00011110, 31, 24), f(size, 23, 22), f(1, 21); 2319 f(pack(value), 20, 13), f(0b10000000, 12, 5); 2320 rf(Vn, 0); 2321 } 2322 2323 public: 2324 2325 void fmovs(FloatRegister Vn, double value) { 2326 if (value) 2327 fmov_imm(Vn, value, 0b00); 2328 else 2329 movi(Vn, T2S, 0); 2330 } 2331 void fmovd(FloatRegister Vn, double value) { 2332 if (value) 2333 fmov_imm(Vn, value, 0b01); 2334 else 2335 movi(Vn, T1D, 0); 2336 } 2337 2338 // Floating-point data-processing (1 source) 2339 2340 // Floating-point rounding 2341 // type: half-precision = 11 2342 // single = 00 2343 // double = 01 2344 // rmode: A = Away = 100 2345 // I = current = 111 2346 // M = MinusInf = 010 2347 // N = eveN = 000 2348 // P = PlusInf = 001 2349 // X = eXact = 110 2350 // Z = Zero = 011 2351 void float_round(unsigned type, unsigned rmode, FloatRegister Rd, FloatRegister Rn) { 2352 starti; 2353 f(0b00011110, 31, 24); 2354 f(type, 23, 22); 2355 f(0b1001, 21, 18); 2356 f(rmode, 17, 15); 2357 f(0b10000, 14, 10); 2358 rf(Rn, 5), rf(Rd, 0); 2359 } 2360 #define INSN(NAME, type, rmode) \ 2361 void NAME(FloatRegister Vd, FloatRegister Vn) { \ 2362 float_round(type, rmode, Vd, Vn); \ 2363 } 2364 2365 public: 2366 INSN(frintah, 0b11, 0b100); 2367 INSN(frintih, 0b11, 0b111); 2368 INSN(frintmh, 0b11, 0b010); 2369 INSN(frintnh, 0b11, 0b000); 2370 INSN(frintph, 0b11, 0b001); 2371 INSN(frintxh, 0b11, 0b110); 2372 INSN(frintzh, 0b11, 0b011); 2373 2374 INSN(frintas, 0b00, 0b100); 2375 INSN(frintis, 0b00, 0b111); 2376 INSN(frintms, 0b00, 0b010); 2377 INSN(frintns, 0b00, 0b000); 2378 INSN(frintps, 0b00, 0b001); 2379 INSN(frintxs, 0b00, 0b110); 2380 INSN(frintzs, 0b00, 0b011); 2381 2382 INSN(frintad, 0b01, 0b100); 2383 INSN(frintid, 0b01, 0b111); 2384 INSN(frintmd, 0b01, 0b010); 2385 INSN(frintnd, 0b01, 0b000); 2386 INSN(frintpd, 0b01, 0b001); 2387 INSN(frintxd, 0b01, 0b110); 2388 INSN(frintzd, 0b01, 0b011); 2389 #undef INSN 2390 2391 private: 2392 static short SIMD_Size_in_bytes[]; 2393 2394 public: 2395 #define INSN(NAME, op) \ 2396 void NAME(FloatRegister Rt, SIMD_RegVariant T, const Address &adr) { \ 2397 ld_st2(as_Register(Rt), adr, (int)T & 3, op + ((T==Q) ? 0b10:0b00), 1); \ 2398 } 2399 2400 INSN(ldr, 1); 2401 INSN(str, 0); 2402 2403 #undef INSN 2404 2405 private: 2406 2407 void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn, int op1, int op2) { 2408 starti; 2409 f(0,31), f((int)T & 1, 30); 2410 f(op1, 29, 21), f(0, 20, 16), f(op2, 15, 12); 2411 f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0); 2412 } 2413 void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn, 2414 int imm, int op1, int op2, int regs) { 2415 2416 bool replicate = op2 >> 2 == 3; 2417 // post-index value (imm) is formed differently for replicate/non-replicate ld* instructions 2418 int expectedImmediate = replicate ? regs * (1 << (T >> 1)) : SIMD_Size_in_bytes[T] * regs; 2419 guarantee(T < T1Q , "incorrect arrangement"); 2420 guarantee(imm == expectedImmediate, "bad offset"); 2421 starti; 2422 f(0,31), f((int)T & 1, 30); 2423 f(op1 | 0b100, 29, 21), f(0b11111, 20, 16), f(op2, 15, 12); 2424 f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0); 2425 } 2426 void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn, 2427 Register Xm, int op1, int op2) { 2428 starti; 2429 f(0,31), f((int)T & 1, 30); 2430 f(op1 | 0b100, 29, 21), rf(Xm, 16), f(op2, 15, 12); 2431 f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0); 2432 } 2433 2434 void ld_st(FloatRegister Vt, SIMD_Arrangement T, Address a, int op1, int op2, int regs) { 2435 switch (a.getMode()) { 2436 case Address::base_plus_offset: 2437 guarantee(a.offset() == 0, "no offset allowed here"); 2438 ld_st(Vt, T, a.base(), op1, op2); 2439 break; 2440 case Address::post: 2441 ld_st(Vt, T, a.base(), checked_cast<int>(a.offset()), op1, op2, regs); 2442 break; 2443 case Address::post_reg: 2444 ld_st(Vt, T, a.base(), a.index(), op1, op2); 2445 break; 2446 default: 2447 ShouldNotReachHere(); 2448 } 2449 } 2450 2451 // Single-structure load/store method (all addressing variants) 2452 void ld_st(FloatRegister Vt, SIMD_RegVariant T, int index, Address a, 2453 int op1, int op2, int regs) { 2454 int expectedImmediate = (regVariant_to_elemBits(T) >> 3) * regs; 2455 int sVal = (T < D) ? (index >> (2 - T)) & 0x01 : 0; 2456 int opcode = (T < D) ? (T << 2) : ((T & 0x02) << 2); 2457 int size = (T < D) ? (index & (0x3 << T)) : 1; // only care about low 2b 2458 Register Xn = a.base(); 2459 int Rm; 2460 2461 switch (a.getMode()) { 2462 case Address::base_plus_offset: 2463 guarantee(a.offset() == 0, "no offset allowed here"); 2464 Rm = 0; 2465 break; 2466 case Address::post: 2467 guarantee(a.offset() == expectedImmediate, "bad offset"); 2468 op1 |= 0b100; 2469 Rm = 0b11111; 2470 break; 2471 case Address::post_reg: 2472 op1 |= 0b100; 2473 Rm = a.index()->encoding(); 2474 break; 2475 default: 2476 ShouldNotReachHere(); 2477 Rm = 0; // unreachable 2478 } 2479 2480 starti; 2481 f(0,31), f((index >> (3 - T)), 30); 2482 f(op1, 29, 21), f(Rm, 20, 16), f(op2 | opcode | sVal, 15, 12); 2483 f(size, 11, 10), srf(Xn, 5), rf(Vt, 0); 2484 } 2485 2486 public: 2487 2488 #define INSN1(NAME, op1, op2) \ 2489 void NAME(FloatRegister Vt, SIMD_Arrangement T, const Address &a) { \ 2490 ld_st(Vt, T, a, op1, op2, 1); \ 2491 } 2492 2493 #define INSN2(NAME, op1, op2) \ 2494 void NAME(FloatRegister Vt, FloatRegister Vt2, SIMD_Arrangement T, const Address &a) { \ 2495 assert(Vt->successor() == Vt2, "Registers must be ordered"); \ 2496 ld_st(Vt, T, a, op1, op2, 2); \ 2497 } 2498 2499 #define INSN3(NAME, op1, op2) \ 2500 void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3, \ 2501 SIMD_Arrangement T, const Address &a) { \ 2502 assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3, \ 2503 "Registers must be ordered"); \ 2504 ld_st(Vt, T, a, op1, op2, 3); \ 2505 } 2506 2507 #define INSN4(NAME, op1, op2) \ 2508 void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3, \ 2509 FloatRegister Vt4, SIMD_Arrangement T, const Address &a) { \ 2510 assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 && \ 2511 Vt3->successor() == Vt4, "Registers must be ordered"); \ 2512 ld_st(Vt, T, a, op1, op2, 4); \ 2513 } 2514 2515 INSN1(ld1, 0b001100010, 0b0111); 2516 INSN2(ld1, 0b001100010, 0b1010); 2517 INSN3(ld1, 0b001100010, 0b0110); 2518 INSN4(ld1, 0b001100010, 0b0010); 2519 2520 INSN2(ld2, 0b001100010, 0b1000); 2521 INSN3(ld3, 0b001100010, 0b0100); 2522 INSN4(ld4, 0b001100010, 0b0000); 2523 2524 INSN1(st1, 0b001100000, 0b0111); 2525 INSN2(st1, 0b001100000, 0b1010); 2526 INSN3(st1, 0b001100000, 0b0110); 2527 INSN4(st1, 0b001100000, 0b0010); 2528 2529 INSN2(st2, 0b001100000, 0b1000); 2530 INSN3(st3, 0b001100000, 0b0100); 2531 INSN4(st4, 0b001100000, 0b0000); 2532 2533 INSN1(ld1r, 0b001101010, 0b1100); 2534 INSN2(ld2r, 0b001101011, 0b1100); 2535 INSN3(ld3r, 0b001101010, 0b1110); 2536 INSN4(ld4r, 0b001101011, 0b1110); 2537 2538 #undef INSN1 2539 #undef INSN2 2540 #undef INSN3 2541 #undef INSN4 2542 2543 // Handle common single-structure ld/st parameter sanity checks 2544 // for all variations (1 to 4) of SIMD reigster inputs. This 2545 // method will call the routine that generates the opcode. 2546 template<typename R, typename... Rx> 2547 void ldst_sstr(SIMD_RegVariant T, int index, const Address &a, 2548 int op1, int op2, R firstReg, Rx... otherRegs) { 2549 const FloatRegister vtSet[] = { firstReg, otherRegs... }; 2550 const int regCount = sizeof...(otherRegs) + 1; 2551 assert(index >= 0 && (T <= D) && ((T == B && index <= 15) || 2552 (T == H && index <= 7) || (T == S && index <= 3) || 2553 (T == D && index <= 1)), "invalid index"); 2554 assert(regCount >= 1 && regCount <= 4, "illegal register count"); 2555 2556 // Check to make sure when multiple SIMD registers are used 2557 // that they are in successive order. 2558 for (int i = 0; i < regCount - 1; i++) { 2559 assert(vtSet[i]->successor() == vtSet[i + 1], 2560 "Registers must be ordered"); 2561 } 2562 2563 ld_st(firstReg, T, index, a, op1, op2, regCount); 2564 } 2565 2566 // Define a set of INSN1/2/3/4 macros to handle single-structure 2567 // load/store instructions. 2568 #define INSN1(NAME, op1, op2) \ 2569 void NAME(FloatRegister Vt, SIMD_RegVariant T, int index, \ 2570 const Address &a) { \ 2571 ldst_sstr(T, index, a, op1, op2, Vt); \ 2572 } 2573 2574 #define INSN2(NAME, op1, op2) \ 2575 void NAME(FloatRegister Vt, FloatRegister Vt2, SIMD_RegVariant T, \ 2576 int index, const Address &a) { \ 2577 ldst_sstr(T, index, a, op1, op2, Vt, Vt2); \ 2578 } 2579 2580 #define INSN3(NAME, op1, op2) \ 2581 void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3, \ 2582 SIMD_RegVariant T, int index, const Address &a) { \ 2583 ldst_sstr(T, index, a, op1, op2, Vt, Vt2, Vt3); \ 2584 } 2585 2586 #define INSN4(NAME, op1, op2) \ 2587 void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3, \ 2588 FloatRegister Vt4, SIMD_RegVariant T, int index, \ 2589 const Address &a) { \ 2590 ldst_sstr(T, index, a, op1, op2, Vt, Vt2, Vt3, Vt4); \ 2591 } 2592 2593 INSN1(ld1, 0b001101010, 0b0000); 2594 INSN2(ld2, 0b001101011, 0b0000); 2595 INSN3(ld3, 0b001101010, 0b0010); 2596 INSN4(ld4, 0b001101011, 0b0010); 2597 2598 INSN1(st1, 0b001101000, 0b0000); 2599 INSN2(st2, 0b001101001, 0b0000); 2600 INSN3(st3, 0b001101000, 0b0010); 2601 INSN4(st4, 0b001101001, 0b0010); 2602 2603 #undef INSN1 2604 #undef INSN2 2605 #undef INSN3 2606 #undef INSN4 2607 2608 #define INSN(NAME, opc) \ 2609 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \ 2610 starti; \ 2611 assert(T == T8B || T == T16B, "must be T8B or T16B"); \ 2612 f(0, 31), f((int)T & 1, 30), f(opc, 29, 21); \ 2613 rf(Vm, 16), f(0b000111, 15, 10), rf(Vn, 5), rf(Vd, 0); \ 2614 } 2615 2616 INSN(eor, 0b101110001); 2617 INSN(orr, 0b001110101); 2618 INSN(andr, 0b001110001); 2619 INSN(bic, 0b001110011); 2620 INSN(bif, 0b101110111); 2621 INSN(bit, 0b101110101); 2622 INSN(bsl, 0b101110011); 2623 INSN(orn, 0b001110111); 2624 2625 #undef INSN 2626 2627 // Advanced SIMD three different 2628 #define INSN(NAME, opc, opc2, acceptT2D) \ 2629 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \ 2630 guarantee(T != T1Q && T != T1D, "incorrect arrangement"); \ 2631 if (!acceptT2D) guarantee(T != T2D, "incorrect arrangement"); \ 2632 if (opc2 == 0b101101) guarantee(T != T8B && T != T16B, "incorrect arrangement"); \ 2633 starti; \ 2634 f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24); \ 2635 f((int)T >> 1, 23, 22), f(1, 21), rf(Vm, 16), f(opc2, 15, 10); \ 2636 rf(Vn, 5), rf(Vd, 0); \ 2637 } 2638 2639 INSN(addv, 0, 0b100001, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D 2640 INSN(subv, 1, 0b100001, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D 2641 INSN(sqaddv, 0, 0b000011, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D 2642 INSN(sqsubv, 0, 0b001011, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D 2643 INSN(uqaddv, 1, 0b000011, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D 2644 INSN(uqsubv, 1, 0b001011, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D 2645 INSN(mulv, 0, 0b100111, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S 2646 INSN(mlav, 0, 0b100101, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S 2647 INSN(mlsv, 1, 0b100101, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S 2648 INSN(sshl, 0, 0b010001, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D 2649 INSN(ushl, 1, 0b010001, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D 2650 INSN(addpv, 0, 0b101111, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D 2651 INSN(smullv, 0, 0b110000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S 2652 INSN(umullv, 1, 0b110000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S 2653 INSN(smlalv, 0, 0b100000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S 2654 INSN(umlalv, 1, 0b100000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S 2655 INSN(maxv, 0, 0b011001, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S 2656 INSN(minv, 0, 0b011011, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S 2657 INSN(umaxv, 1, 0b011001, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S 2658 INSN(uminv, 1, 0b011011, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S 2659 INSN(smaxp, 0, 0b101001, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S 2660 INSN(sminp, 0, 0b101011, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S 2661 INSN(sqdmulh,0, 0b101101, false); // accepted arrangements: T4H, T8H, T2S, T4S 2662 INSN(shsubv, 0, 0b001001, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S 2663 2664 #undef INSN 2665 2666 // Advanced SIMD across lanes 2667 #define INSN(NAME, opc, opc2, accepted) \ 2668 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \ 2669 guarantee(T != T1Q && T != T1D, "incorrect arrangement"); \ 2670 if (accepted < 3) guarantee(T != T2D, "incorrect arrangement"); \ 2671 if (accepted < 2) guarantee(T != T2S, "incorrect arrangement"); \ 2672 if (accepted < 1) guarantee(T == T8B || T == T16B, "incorrect arrangement"); \ 2673 starti; \ 2674 f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24); \ 2675 f((int)T >> 1, 23, 22), f(opc2, 21, 10); \ 2676 rf(Vn, 5), rf(Vd, 0); \ 2677 } 2678 2679 INSN(absr, 0, 0b100000101110, 3); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D 2680 INSN(negr, 1, 0b100000101110, 3); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D 2681 INSN(notr, 1, 0b100000010110, 0); // accepted arrangements: T8B, T16B 2682 INSN(addv, 0, 0b110001101110, 1); // accepted arrangements: T8B, T16B, T4H, T8H, T4S 2683 INSN(smaxv, 0, 0b110000101010, 1); // accepted arrangements: T8B, T16B, T4H, T8H, T4S 2684 INSN(umaxv, 1, 0b110000101010, 1); // accepted arrangements: T8B, T16B, T4H, T8H, T4S 2685 INSN(sminv, 0, 0b110001101010, 1); // accepted arrangements: T8B, T16B, T4H, T8H, T4S 2686 INSN(uminv, 1, 0b110001101010, 1); // accepted arrangements: T8B, T16B, T4H, T8H, T4S 2687 INSN(cls, 0, 0b100000010010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S 2688 INSN(clz, 1, 0b100000010010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S 2689 INSN(cnt, 0, 0b100000010110, 0); // accepted arrangements: T8B, T16B 2690 INSN(uaddlp, 1, 0b100000001010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S 2691 INSN(uaddlv, 1, 0b110000001110, 1); // accepted arrangements: T8B, T16B, T4H, T8H, T4S 2692 2693 #undef INSN 2694 2695 #define INSN(NAME, opc) \ 2696 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \ 2697 starti; \ 2698 assert(T == T4S, "arrangement must be T4S"); \ 2699 f(0, 31), f((int)T & 1, 30), f(0b101110, 29, 24), f(opc, 23), \ 2700 f(T == T4S ? 0 : 1, 22), f(0b110000111110, 21, 10); rf(Vn, 5), rf(Vd, 0); \ 2701 } 2702 2703 INSN(fmaxv, 0); 2704 INSN(fminv, 1); 2705 2706 #undef INSN 2707 2708 // Advanced SIMD modified immediate 2709 #define INSN(NAME, op0, cmode0) \ 2710 void NAME(FloatRegister Vd, SIMD_Arrangement T, unsigned imm8, unsigned lsl = 0) { \ 2711 unsigned cmode = cmode0; \ 2712 unsigned op = op0; \ 2713 starti; \ 2714 assert(lsl == 0 || \ 2715 ((T == T4H || T == T8H) && lsl == 8) || \ 2716 ((T == T2S || T == T4S) && ((lsl >> 3) < 4) && ((lsl & 7) == 0)), "invalid shift");\ 2717 cmode |= lsl >> 2; \ 2718 if (T == T4H || T == T8H) cmode |= 0b1000; \ 2719 if (!(T == T4H || T == T8H || T == T2S || T == T4S)) { \ 2720 assert(op == 0 && cmode0 == 0, "must be MOVI"); \ 2721 cmode = 0b1110; \ 2722 if (T == T1D || T == T2D) op = 1; \ 2723 } \ 2724 f(0, 31), f((int)T & 1, 30), f(op, 29), f(0b0111100000, 28, 19); \ 2725 f(imm8 >> 5, 18, 16), f(cmode, 15, 12), f(0x01, 11, 10), f(imm8 & 0b11111, 9, 5); \ 2726 rf(Vd, 0); \ 2727 } 2728 2729 INSN(movi, 0, 0); 2730 INSN(orri, 0, 1); 2731 INSN(mvni, 1, 0); 2732 INSN(bici, 1, 1); 2733 2734 #undef INSN 2735 2736 #define INSN(NAME, op, cmode) \ 2737 void NAME(FloatRegister Vd, SIMD_Arrangement T, double imm) { \ 2738 unsigned imm8 = pack(imm); \ 2739 starti; \ 2740 f(0, 31), f((int)T & 1, 30), f(op, 29), f(0b0111100000, 28, 19); \ 2741 f(imm8 >> 5, 18, 16), f(cmode, 15, 12), f(0x01, 11, 10), f(imm8 & 0b11111, 9, 5); \ 2742 rf(Vd, 0); \ 2743 } 2744 2745 INSN(fmovs, 0, 0b1111); 2746 INSN(fmovd, 1, 0b1111); 2747 2748 #undef INSN 2749 2750 // Advanced SIMD three same 2751 void adv_simd_three_same(Instruction_aarch64 ¤t_insn, FloatRegister Vd, 2752 SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, 2753 int op1, int op2, int op3); 2754 #define INSN(NAME, op1, op2, op3) \ 2755 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \ 2756 starti; \ 2757 adv_simd_three_same(current_insn, Vd, T, Vn, Vm, op1, op2, op3); \ 2758 } 2759 INSN(fabd, 1, 1, 0b0101); 2760 INSN(fadd, 0, 0, 0b0101); 2761 INSN(fdiv, 1, 0, 0b1111); 2762 INSN(faddp, 1, 0, 0b0101); 2763 INSN(fmul, 1, 0, 0b0111); 2764 INSN(fsub, 0, 1, 0b0101); 2765 INSN(fmla, 0, 0, 0b0011); 2766 INSN(fmls, 0, 1, 0b0011); 2767 INSN(fmax, 0, 0, 0b1101); 2768 INSN(fmin, 0, 1, 0b1101); 2769 INSN(facgt, 1, 1, 0b1011); 2770 2771 #undef INSN 2772 2773 // AdvSIMD vector compare 2774 void cm(Condition cond, FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { 2775 starti; 2776 assert(T != T1Q && T != T1D, "incorrect arrangement"); 2777 int cond_op; 2778 switch (cond) { 2779 case EQ: cond_op = 0b110001; break; 2780 case GT: cond_op = 0b000110; break; 2781 case GE: cond_op = 0b000111; break; 2782 case HI: cond_op = 0b100110; break; 2783 case HS: cond_op = 0b100111; break; 2784 default: 2785 ShouldNotReachHere(); 2786 break; 2787 } 2788 2789 f(0, 31), f((int)T & 1, 30), f((cond_op >> 5) & 1, 29); 2790 f(0b01110, 28, 24), f((int)T >> 1, 23, 22), f(1, 21), rf(Vm, 16); 2791 f(cond_op & 0b11111, 15, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0); 2792 } 2793 2794 // AdvSIMD Floating-point vector compare 2795 void fcm(Condition cond, FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { 2796 starti; 2797 assert(T == T2S || T == T4S || T == T2D, "invalid arrangement"); 2798 int cond_op; 2799 switch (cond) { 2800 case EQ: cond_op = 0b00; break; 2801 case GT: cond_op = 0b11; break; 2802 case GE: cond_op = 0b10; break; 2803 default: 2804 ShouldNotReachHere(); 2805 break; 2806 } 2807 2808 f(0, 31), f((int)T & 1, 30), f((cond_op >> 1) & 1, 29); 2809 f(0b01110, 28, 24), f(cond_op & 1, 23), f(T == T2D ? 1 : 0, 22); 2810 f(1, 21), rf(Vm, 16), f(0b111001, 15, 10), rf(Vn, 5), rf(Vd, 0); 2811 } 2812 2813 #define INSN(NAME, opc) \ 2814 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \ 2815 starti; \ 2816 assert(T == T4S, "arrangement must be T4S"); \ 2817 f(0b01011110000, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0); \ 2818 } 2819 2820 INSN(sha1c, 0b000000); 2821 INSN(sha1m, 0b001000); 2822 INSN(sha1p, 0b000100); 2823 INSN(sha1su0, 0b001100); 2824 INSN(sha256h2, 0b010100); 2825 INSN(sha256h, 0b010000); 2826 INSN(sha256su1, 0b011000); 2827 2828 #undef INSN 2829 2830 #define INSN(NAME, opc) \ 2831 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \ 2832 starti; \ 2833 assert(T == T4S, "arrangement must be T4S"); \ 2834 f(0b0101111000101000, 31, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0); \ 2835 } 2836 2837 INSN(sha1h, 0b000010); 2838 INSN(sha1su1, 0b000110); 2839 INSN(sha256su0, 0b001010); 2840 2841 #undef INSN 2842 2843 #define INSN(NAME, opc) \ 2844 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \ 2845 starti; \ 2846 assert(T == T2D, "arrangement must be T2D"); \ 2847 f(0b11001110011, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0); \ 2848 } 2849 2850 INSN(sha512h, 0b100000); 2851 INSN(sha512h2, 0b100001); 2852 INSN(sha512su1, 0b100010); 2853 2854 #undef INSN 2855 2856 #define INSN(NAME, opc) \ 2857 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \ 2858 starti; \ 2859 assert(T == T2D, "arrangement must be T2D"); \ 2860 f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0); \ 2861 } 2862 2863 INSN(sha512su0, 0b1100111011000000100000); 2864 2865 #undef INSN 2866 2867 #define INSN(NAME, opc) \ 2868 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, FloatRegister Va) { \ 2869 starti; \ 2870 assert(T == T16B, "arrangement must be T16B"); \ 2871 f(0b11001110, 31, 24), f(opc, 23, 21), rf(Vm, 16), f(0b0, 15, 15), rf(Va, 10), rf(Vn, 5), rf(Vd, 0); \ 2872 } 2873 2874 INSN(eor3, 0b000); 2875 INSN(bcax, 0b001); 2876 2877 #undef INSN 2878 2879 #define INSN(NAME, opc) \ 2880 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, unsigned imm) { \ 2881 starti; \ 2882 assert(T == T2D, "arrangement must be T2D"); \ 2883 f(0b11001110, 31, 24), f(opc, 23, 21), rf(Vm, 16), f(imm, 15, 10), rf(Vn, 5), rf(Vd, 0); \ 2884 } 2885 2886 INSN(xar, 0b100); 2887 2888 #undef INSN 2889 2890 #define INSN(NAME, opc) \ 2891 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \ 2892 starti; \ 2893 assert(T == T2D, "arrangement must be T2D"); \ 2894 f(0b11001110, 31, 24), f(opc, 23, 21), rf(Vm, 16), f(0b100011, 15, 10), rf(Vn, 5), rf(Vd, 0); \ 2895 } 2896 2897 INSN(rax1, 0b011); 2898 2899 #undef INSN 2900 2901 #define INSN(NAME, opc) \ 2902 void NAME(FloatRegister Vd, FloatRegister Vn) { \ 2903 starti; \ 2904 f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0); \ 2905 } 2906 2907 INSN(aese, 0b0100111000101000010010); 2908 INSN(aesd, 0b0100111000101000010110); 2909 INSN(aesmc, 0b0100111000101000011010); 2910 INSN(aesimc, 0b0100111000101000011110); 2911 2912 #undef INSN 2913 2914 #define INSN(NAME, op1, op2) \ 2915 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index = 0) { \ 2916 starti; \ 2917 assert(T == T2S || T == T4S || T == T2D, "invalid arrangement"); \ 2918 assert(index >= 0 && ((T == T2D && index <= 1) || (T != T2D && index <= 3)), "invalid index"); \ 2919 f(0, 31), f((int)T & 1, 30), f(op1, 29); f(0b011111, 28, 23); \ 2920 f(T == T2D ? 1 : 0, 22), f(T == T2D ? 0 : index & 1, 21), rf(Vm, 16); \ 2921 f(op2, 15, 12), f(T == T2D ? index : (index >> 1), 11), f(0, 10); \ 2922 rf(Vn, 5), rf(Vd, 0); \ 2923 } 2924 2925 // FMLA/FMLS - Vector - Scalar 2926 INSN(fmlavs, 0, 0b0001); 2927 INSN(fmlsvs, 0, 0b0101); 2928 // FMULX - Vector - Scalar 2929 INSN(fmulxvs, 1, 0b1001); 2930 2931 #undef INSN 2932 2933 #define INSN(NAME, op1, op2) \ 2934 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index) { \ 2935 starti; \ 2936 assert(T == T4H || T == T8H || T == T2S || T == T4S, "invalid arrangement"); \ 2937 assert(index >= 0 && \ 2938 ((T == T2S && index <= 1) || (T != T2S && index <= 3) || (T == T8H && index <= 7)), \ 2939 "invalid index"); \ 2940 assert((T != T4H && T != T8H) || Vm->encoding() < 16, "invalid source SIMD&FP register"); \ 2941 f(0, 31), f((int)T & 1, 30), f(op1, 29), f(0b01111, 28, 24); \ 2942 if (T == T4H || T == T8H) { \ 2943 f(0b01, 23, 22), f(index & 0b11, 21, 20), lrf(Vm, 16), f(index >> 2 & 1, 11); \ 2944 } else { \ 2945 f(0b10, 23, 22), f(index & 1, 21), rf(Vm, 16), f(index >> 1, 11); \ 2946 } \ 2947 f(op2, 15, 12), f(0, 10), rf(Vn, 5), rf(Vd, 0); \ 2948 } 2949 2950 // MUL - Vector - Scalar 2951 INSN(mulvs, 0, 0b1000); 2952 2953 #undef INSN 2954 2955 // Floating-point Reciprocal Estimate 2956 void frecpe(FloatRegister Vd, FloatRegister Vn, SIMD_RegVariant type) { 2957 assert(type == D || type == S, "Wrong type for frecpe"); 2958 starti; 2959 f(0b010111101, 31, 23); 2960 f(type == D ? 1 : 0, 22); 2961 f(0b100001110110, 21, 10); 2962 rf(Vn, 5), rf(Vd, 0); 2963 } 2964 2965 // (long) {a, b} -> (a + b) 2966 void addpd(FloatRegister Vd, FloatRegister Vn) { 2967 starti; 2968 f(0b0101111011110001101110, 31, 10); 2969 rf(Vn, 5), rf(Vd, 0); 2970 } 2971 2972 // Floating-point AdvSIMD scalar pairwise 2973 #define INSN(NAME, op1, op2) \ 2974 void NAME(FloatRegister Vd, FloatRegister Vn, SIMD_RegVariant type) { \ 2975 starti; \ 2976 assert(type == D || type == S, "Wrong type for faddp/fmaxp/fminp"); \ 2977 f(0b0111111, 31, 25), f(op1, 24, 23), \ 2978 f(type == S ? 0 : 1, 22), f(0b11000, 21, 17), f(op2, 16, 10), rf(Vn, 5), rf(Vd, 0); \ 2979 } 2980 2981 INSN(faddp, 0b00, 0b0110110); 2982 INSN(fmaxp, 0b00, 0b0111110); 2983 INSN(fminp, 0b01, 0b0111110); 2984 2985 #undef INSN 2986 2987 void ins(FloatRegister Vd, SIMD_RegVariant T, FloatRegister Vn, int didx, int sidx) { 2988 starti; 2989 assert(T != Q, "invalid register variant"); 2990 f(0b01101110000, 31, 21), f(((didx<<1)|1)<<(int)T, 20, 16), f(0, 15); 2991 f(sidx<<(int)T, 14, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0); 2992 } 2993 2994 #define INSN(NAME, cond, op1, op2) \ 2995 void NAME(Register Rd, FloatRegister Vn, SIMD_RegVariant T, int idx) { \ 2996 starti; \ 2997 assert(cond, "invalid register variant"); \ 2998 f(0, 31), f(op1, 30), f(0b001110000, 29, 21); \ 2999 f(((idx << 1) | 1) << (int)T, 20, 16), f(op2, 15, 10); \ 3000 rf(Vn, 5), rf(Rd, 0); \ 3001 } 3002 3003 INSN(umov, (T != Q), (T == D ? 1 : 0), 0b001111); 3004 INSN(smov, (T < D), 1, 0b001011); 3005 3006 #undef INSN 3007 3008 #define INSN(NAME, opc, opc2, isSHR) \ 3009 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int shift){ \ 3010 starti; \ 3011 /* The encodings for the immh:immb fields (bits 22:16) in *SHR are \ 3012 * 0001 xxx 8B/16B, shift = 16 - UInt(immh:immb) \ 3013 * 001x xxx 4H/8H, shift = 32 - UInt(immh:immb) \ 3014 * 01xx xxx 2S/4S, shift = 64 - UInt(immh:immb) \ 3015 * 1xxx xxx 1D/2D, shift = 128 - UInt(immh:immb) \ 3016 * (1D is RESERVED) \ 3017 * for SHL shift is calculated as: \ 3018 * 0001 xxx 8B/16B, shift = UInt(immh:immb) - 8 \ 3019 * 001x xxx 4H/8H, shift = UInt(immh:immb) - 16 \ 3020 * 01xx xxx 2S/4S, shift = UInt(immh:immb) - 32 \ 3021 * 1xxx xxx 1D/2D, shift = UInt(immh:immb) - 64 \ 3022 * (1D is RESERVED) \ 3023 */ \ 3024 guarantee(!isSHR || (isSHR && (shift != 0)), "impossible encoding");\ 3025 assert((1 << ((T>>1)+3)) > shift, "Invalid Shift value"); \ 3026 int cVal = (1 << (((T >> 1) + 3) + (isSHR ? 1 : 0))); \ 3027 int encodedShift = isSHR ? cVal - shift : cVal + shift; \ 3028 f(0, 31), f(T & 1, 30), f(opc, 29), f(0b011110, 28, 23), \ 3029 f(encodedShift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0); \ 3030 } 3031 3032 INSN(shl, 0, 0b010101, /* isSHR = */ false); 3033 INSN(sshr, 0, 0b000001, /* isSHR = */ true); 3034 INSN(ushr, 1, 0b000001, /* isSHR = */ true); 3035 INSN(usra, 1, 0b000101, /* isSHR = */ true); 3036 INSN(ssra, 0, 0b000101, /* isSHR = */ true); 3037 INSN(sli, 1, 0b010101, /* isSHR = */ false); 3038 3039 #undef INSN 3040 3041 #define INSN(NAME, opc, opc2, isSHR) \ 3042 void NAME(FloatRegister Vd, FloatRegister Vn, int shift){ \ 3043 starti; \ 3044 int encodedShift = isSHR ? 128 - shift : 64 + shift; \ 3045 f(0b01, 31, 30), f(opc, 29), f(0b111110, 28, 23), \ 3046 f(encodedShift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0); \ 3047 } 3048 3049 INSN(shld, 0, 0b010101, /* isSHR = */ false); 3050 INSN(sshrd, 0, 0b000001, /* isSHR = */ true); 3051 INSN(ushrd, 1, 0b000001, /* isSHR = */ true); 3052 3053 #undef INSN 3054 3055 protected: 3056 void _xshll(bool is_unsigned, FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) { 3057 starti; 3058 /* The encodings for the immh:immb fields (bits 22:16) are 3059 * 0001 xxx 8H, 8B/16B shift = xxx 3060 * 001x xxx 4S, 4H/8H shift = xxxx 3061 * 01xx xxx 2D, 2S/4S shift = xxxxx 3062 * 1xxx xxx RESERVED 3063 */ 3064 assert((Tb >> 1) + 1 == (Ta >> 1), "Incompatible arrangement"); 3065 assert((1 << ((Tb>>1)+3)) > shift, "Invalid shift value"); 3066 f(0, 31), f(Tb & 1, 30), f(is_unsigned ? 1 : 0, 29), f(0b011110, 28, 23); 3067 f((1 << ((Tb>>1)+3))|shift, 22, 16); 3068 f(0b101001, 15, 10), rf(Vn, 5), rf(Vd, 0); 3069 } 3070 3071 public: 3072 void ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) { 3073 assert(Tb == T8B || Tb == T4H || Tb == T2S, "invalid arrangement"); 3074 _xshll(/* is_unsigned */ true, Vd, Ta, Vn, Tb, shift); 3075 } 3076 3077 void ushll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) { 3078 assert(Tb == T16B || Tb == T8H || Tb == T4S, "invalid arrangement"); 3079 _xshll(/* is_unsigned */ true, Vd, Ta, Vn, Tb, shift); 3080 } 3081 3082 void uxtl(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb) { 3083 ushll(Vd, Ta, Vn, Tb, 0); 3084 } 3085 3086 void sshll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) { 3087 assert(Tb == T8B || Tb == T4H || Tb == T2S, "invalid arrangement"); 3088 _xshll(/* is_unsigned */ false, Vd, Ta, Vn, Tb, shift); 3089 } 3090 3091 void sshll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) { 3092 assert(Tb == T16B || Tb == T8H || Tb == T4S, "invalid arrangement"); 3093 _xshll(/* is_unsigned */ false, Vd, Ta, Vn, Tb, shift); 3094 } 3095 3096 void sxtl(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb) { 3097 sshll(Vd, Ta, Vn, Tb, 0); 3098 } 3099 3100 // Move from general purpose register 3101 // mov Vd.T[index], Rn 3102 void mov(FloatRegister Vd, SIMD_RegVariant T, int index, Register Xn) { 3103 guarantee(T != Q, "invalid register variant"); 3104 starti; 3105 f(0b01001110000, 31, 21), f(((1 << T) | (index << (T + 1))), 20, 16); 3106 f(0b000111, 15, 10), zrf(Xn, 5), rf(Vd, 0); 3107 } 3108 3109 // Move to general purpose register 3110 // mov Rd, Vn.T[index] 3111 void mov(Register Xd, FloatRegister Vn, SIMD_RegVariant T, int index) { 3112 guarantee(T == S || T == D, "invalid register variant"); 3113 umov(Xd, Vn, T, index); 3114 } 3115 3116 protected: 3117 void _xaddwv(bool is_unsigned, FloatRegister Vd, FloatRegister Vn, SIMD_Arrangement Ta, 3118 FloatRegister Vm, SIMD_Arrangement Tb) { 3119 starti; 3120 assert((Tb >> 1) + 1 == (Ta >> 1), "Incompatible arrangement"); 3121 f(0, 31), f((int)Tb & 1, 30), f(is_unsigned ? 1 : 0, 29), f(0b01110, 28, 24); 3122 f((int)(Ta >> 1) - 1, 23, 22), f(1, 21), rf(Vm, 16), f(0b000100, 15, 10), rf(Vn, 5), rf(Vd, 0); 3123 } 3124 3125 public: 3126 #define INSN(NAME, assertion, is_unsigned) \ 3127 void NAME(FloatRegister Vd, FloatRegister Vn, SIMD_Arrangement Ta, FloatRegister Vm, \ 3128 SIMD_Arrangement Tb) { \ 3129 assert((assertion), "invalid arrangement"); \ 3130 _xaddwv(is_unsigned, Vd, Vn, Ta, Vm, Tb); \ 3131 } 3132 3133 public: 3134 3135 INSN(uaddwv, Tb == T8B || Tb == T4H || Tb == T2S, /*is_unsigned*/true) 3136 INSN(uaddwv2, Tb == T16B || Tb == T8H || Tb == T4S, /*is_unsigned*/true) 3137 INSN(saddwv, Tb == T8B || Tb == T4H || Tb == T2S, /*is_unsigned*/false) 3138 INSN(saddwv2, Tb == T16B || Tb == T8H || Tb == T4S, /*is_unsigned*/false) 3139 3140 #undef INSN 3141 3142 3143 private: 3144 void _pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) { 3145 starti; 3146 assert((Ta == T1Q && (Tb == T1D || Tb == T2D)) || 3147 (Ta == T8H && (Tb == T8B || Tb == T16B)), "Invalid Size specifier"); 3148 int size = (Ta == T1Q) ? 0b11 : 0b00; 3149 f(0, 31), f(Tb & 1, 30), f(0b001110, 29, 24), f(size, 23, 22); 3150 f(1, 21), rf(Vm, 16), f(0b111000, 15, 10), rf(Vn, 5), rf(Vd, 0); 3151 } 3152 3153 public: 3154 void pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) { 3155 assert(Tb == T1D || Tb == T8B, "pmull assumes T1D or T8B as the second size specifier"); 3156 _pmull(Vd, Ta, Vn, Vm, Tb); 3157 } 3158 3159 void pmull2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) { 3160 assert(Tb == T2D || Tb == T16B, "pmull2 assumes T2D or T16B as the second size specifier"); 3161 _pmull(Vd, Ta, Vn, Vm, Tb); 3162 } 3163 3164 void uqxtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) { 3165 starti; 3166 int size_b = (int)Tb >> 1; 3167 int size_a = (int)Ta >> 1; 3168 assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier"); 3169 f(0, 31), f(Tb & 1, 30), f(0b101110, 29, 24), f(size_b, 23, 22); 3170 f(0b100001010010, 21, 10), rf(Vn, 5), rf(Vd, 0); 3171 } 3172 3173 void xtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) { 3174 starti; 3175 int size_b = (int)Tb >> 1; 3176 int size_a = (int)Ta >> 1; 3177 assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier"); 3178 f(0, 31), f(Tb & 1, 30), f(0b001110, 29, 24), f(size_b, 23, 22); 3179 f(0b100001001010, 21, 10), rf(Vn, 5), rf(Vd, 0); 3180 } 3181 3182 void dup(FloatRegister Vd, SIMD_Arrangement T, Register Xs) 3183 { 3184 starti; 3185 assert(T != T1D, "reserved encoding"); 3186 f(0,31), f((int)T & 1, 30), f(0b001110000, 29, 21); 3187 f((1 << (T >> 1)), 20, 16), f(0b000011, 15, 10), zrf(Xs, 5), rf(Vd, 0); 3188 } 3189 3190 void dup(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int index = 0) 3191 { 3192 starti; 3193 assert(T != T1D, "reserved encoding"); 3194 f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21); 3195 f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16); 3196 f(0b000001, 15, 10), rf(Vn, 5), rf(Vd, 0); 3197 } 3198 3199 // Advanced SIMD scalar copy 3200 void dup(FloatRegister Vd, SIMD_RegVariant T, FloatRegister Vn, int index = 0) 3201 { 3202 starti; 3203 assert(T != Q, "invalid size"); 3204 f(0b01011110000, 31, 21); 3205 f((1 << T) | (index << (T + 1)), 20, 16); 3206 f(0b000001, 15, 10), rf(Vn, 5), rf(Vd, 0); 3207 } 3208 3209 // AdvSIMD ZIP/UZP/TRN 3210 #define INSN(NAME, opcode) \ 3211 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \ 3212 guarantee(T != T1D && T != T1Q, "invalid arrangement"); \ 3213 starti; \ 3214 f(0, 31), f(0b001110, 29, 24), f(0, 21), f(0, 15); \ 3215 f(opcode, 14, 12), f(0b10, 11, 10); \ 3216 rf(Vm, 16), rf(Vn, 5), rf(Vd, 0); \ 3217 f(T & 1, 30), f(T >> 1, 23, 22); \ 3218 } 3219 3220 INSN(uzp1, 0b001); 3221 INSN(trn1, 0b010); 3222 INSN(zip1, 0b011); 3223 INSN(uzp2, 0b101); 3224 INSN(trn2, 0b110); 3225 INSN(zip2, 0b111); 3226 3227 #undef INSN 3228 3229 // CRC32 instructions 3230 #define INSN(NAME, c, sf, sz) \ 3231 void NAME(Register Rd, Register Rn, Register Rm) { \ 3232 starti; \ 3233 f(sf, 31), f(0b0011010110, 30, 21), f(0b010, 15, 13), f(c, 12); \ 3234 f(sz, 11, 10), rf(Rm, 16), rf(Rn, 5), rf(Rd, 0); \ 3235 } 3236 3237 INSN(crc32b, 0, 0, 0b00); 3238 INSN(crc32h, 0, 0, 0b01); 3239 INSN(crc32w, 0, 0, 0b10); 3240 INSN(crc32x, 0, 1, 0b11); 3241 INSN(crc32cb, 1, 0, 0b00); 3242 INSN(crc32ch, 1, 0, 0b01); 3243 INSN(crc32cw, 1, 0, 0b10); 3244 INSN(crc32cx, 1, 1, 0b11); 3245 3246 #undef INSN 3247 3248 // Table vector lookup 3249 #define INSN(NAME, op) \ 3250 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, unsigned registers, FloatRegister Vm) { \ 3251 starti; \ 3252 assert(T == T8B || T == T16B, "invalid arrangement"); \ 3253 assert(0 < registers && registers <= 4, "invalid number of registers"); \ 3254 f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21), rf(Vm, 16), f(0, 15); \ 3255 f(registers - 1, 14, 13), f(op, 12),f(0b00, 11, 10), rf(Vn, 5), rf(Vd, 0); \ 3256 } 3257 3258 INSN(tbl, 0); 3259 INSN(tbx, 1); 3260 3261 #undef INSN 3262 3263 // AdvSIMD two-reg misc 3264 // In this instruction group, the 2 bits in the size field ([23:22]) may be 3265 // fixed or determined by the "SIMD_Arrangement T", or both. The additional 3266 // parameter "tmask" is a 2-bit mask used to indicate which bits in the size 3267 // field are determined by the SIMD_Arrangement. The bit of "tmask" should be 3268 // set to 1 if corresponding bit marked as "x" in the ArmARM. 3269 #define INSN(NAME, U, size, tmask, opcode) \ 3270 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \ 3271 starti; \ 3272 assert((ASSERTION), MSG); \ 3273 int op22 = (int)(T >> 1) & tmask; \ 3274 int op19 = 0b00; \ 3275 if (tmask == 0b01 && (T == T4H || T == T8H)) { \ 3276 op22 = 0b1; \ 3277 op19 = 0b11; \ 3278 } \ 3279 f(0, 31), f((int)T & 1, 30), f(U, 29), f(0b01110, 28, 24); \ 3280 f(size | op22, 23, 22), f(1, 21), f(op19, 20, 19), f(0b00, 18, 17); \ 3281 f(opcode, 16, 12), f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0); \ 3282 } 3283 3284 #define MSG "invalid arrangement" 3285 3286 #define ASSERTION (T == T4H || T == T8H || T == T2S || T == T4S || T == T2D) 3287 INSN(fsqrt, 1, 0b10, 0b01, 0b11111); 3288 INSN(fabs, 0, 0b10, 0b01, 0b01111); 3289 INSN(fneg, 1, 0b10, 0b01, 0b01111); 3290 INSN(frintn, 0, 0b00, 0b01, 0b11000); 3291 INSN(frintm, 0, 0b00, 0b01, 0b11001); 3292 INSN(frintp, 0, 0b10, 0b01, 0b11000); 3293 INSN(fcvtas, 0, 0b00, 0b01, 0b11100); 3294 INSN(fcvtzs, 0, 0b10, 0b01, 0b11011); 3295 INSN(fcvtms, 0, 0b00, 0b01, 0b11011); 3296 #undef ASSERTION 3297 3298 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H || T == T2S || T == T4S) 3299 INSN(rev64, 0, 0b00, 0b11, 0b00000); 3300 #undef ASSERTION 3301 3302 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H) 3303 INSN(rev32, 1, 0b00, 0b11, 0b00000); 3304 #undef ASSERTION 3305 3306 #define ASSERTION (T == T8B || T == T16B) 3307 INSN(rev16, 0, 0b00, 0b11, 0b00001); 3308 INSN(rbit, 1, 0b01, 0b00, 0b00101); 3309 #undef ASSERTION 3310 3311 #undef MSG 3312 3313 #undef INSN 3314 3315 // AdvSIMD compare with zero (vector) 3316 void cm(Condition cond, FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { 3317 starti; 3318 assert(T != T1Q && T != T1D, "invalid arrangement"); 3319 int cond_op; 3320 switch (cond) { 3321 case EQ: cond_op = 0b001; break; 3322 case GE: cond_op = 0b100; break; 3323 case GT: cond_op = 0b000; break; 3324 case LE: cond_op = 0b101; break; 3325 case LT: cond_op = 0b010; break; 3326 default: 3327 ShouldNotReachHere(); 3328 break; 3329 } 3330 3331 f(0, 31), f((int)T & 1, 30), f((cond_op >> 2) & 1, 29); 3332 f(0b01110, 28, 24), f((int)T >> 1, 23, 22), f(0b10000010, 21, 14); 3333 f(cond_op & 0b11, 13, 12), f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0); 3334 } 3335 3336 // AdvSIMD Floating-point compare with zero (vector) 3337 void fcm(Condition cond, FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { 3338 starti; 3339 assert(T == T2S || T == T4S || T == T2D, "invalid arrangement"); 3340 int cond_op; 3341 switch (cond) { 3342 case EQ: cond_op = 0b010; break; 3343 case GT: cond_op = 0b000; break; 3344 case GE: cond_op = 0b001; break; 3345 case LE: cond_op = 0b011; break; 3346 case LT: cond_op = 0b100; break; 3347 default: 3348 ShouldNotReachHere(); 3349 break; 3350 } 3351 3352 f(0, 31), f((int)T & 1, 30), f(cond_op & 1, 29), f(0b011101, 28, 23); 3353 f(((int)(T >> 1) & 1), 22), f(0b10000011, 21, 14); 3354 f((cond_op >> 1) & 0b11, 13, 12), f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0); 3355 } 3356 3357 void ext(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index) 3358 { 3359 starti; 3360 assert(T == T8B || T == T16B, "invalid arrangement"); 3361 assert((T == T8B && index <= 0b0111) || (T == T16B && index <= 0b1111), "Invalid index value"); 3362 f(0, 31), f((int)T & 1, 30), f(0b101110000, 29, 21); 3363 rf(Vm, 16), f(0, 15), f(index, 14, 11); 3364 f(0, 10), rf(Vn, 5), rf(Vd, 0); 3365 } 3366 3367 // SVE arithmetic - unpredicated 3368 #define INSN(NAME, opcode) \ 3369 void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, FloatRegister Zm) { \ 3370 starti; \ 3371 assert(T != Q, "invalid register variant"); \ 3372 f(0b00000100, 31, 24), f(T, 23, 22), f(1, 21), \ 3373 rf(Zm, 16), f(0, 15, 13), f(opcode, 12, 10), rf(Zn, 5), rf(Zd, 0); \ 3374 } 3375 INSN(sve_add, 0b000); 3376 INSN(sve_sub, 0b001); 3377 INSN(sve_sqadd, 0b100); 3378 INSN(sve_sqsub, 0b110); 3379 INSN(sve_uqadd, 0b101); 3380 INSN(sve_uqsub, 0b111); 3381 #undef INSN 3382 3383 // SVE integer add/subtract immediate (unpredicated) 3384 #define INSN(NAME, op) \ 3385 void NAME(FloatRegister Zd, SIMD_RegVariant T, unsigned imm8) { \ 3386 starti; \ 3387 /* The immediate is an unsigned value in the range 0 to 255, and \ 3388 * for element width of 16 bits or higher it may also be a \ 3389 * positive multiple of 256 in the range 256 to 65280. \ 3390 */ \ 3391 assert(T != Q, "invalid size"); \ 3392 int sh = 0; \ 3393 if (imm8 <= 0xff) { \ 3394 sh = 0; \ 3395 } else if (T != B && imm8 <= 0xff00 && (imm8 & 0xff) == 0) { \ 3396 sh = 1; \ 3397 imm8 = (imm8 >> 8); \ 3398 } else { \ 3399 guarantee(false, "invalid immediate"); \ 3400 } \ 3401 f(0b00100101, 31, 24), f(T, 23, 22), f(0b10000, 21, 17); \ 3402 f(op, 16, 14), f(sh, 13), f(imm8, 12, 5), rf(Zd, 0); \ 3403 } 3404 3405 INSN(sve_add, 0b011); 3406 INSN(sve_sub, 0b111); 3407 #undef INSN 3408 3409 // SVE floating-point arithmetic - unpredicated 3410 #define INSN(NAME, opcode) \ 3411 void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, FloatRegister Zm) { \ 3412 starti; \ 3413 assert(T == H || T == S || T == D, "invalid register variant"); \ 3414 f(0b01100101, 31, 24), f(T, 23, 22), f(0, 21), \ 3415 rf(Zm, 16), f(0, 15, 13), f(opcode, 12, 10), rf(Zn, 5), rf(Zd, 0); \ 3416 } 3417 3418 INSN(sve_fadd, 0b000); 3419 INSN(sve_fmul, 0b010); 3420 INSN(sve_fsub, 0b001); 3421 #undef INSN 3422 3423 private: 3424 void sve_predicate_reg_insn(unsigned op24, unsigned op13, 3425 FloatRegister Zd_or_Vd, SIMD_RegVariant T, 3426 PRegister Pg, FloatRegister Zn_or_Vn) { 3427 starti; 3428 f(op24, 31, 24), f(T, 23, 22), f(op13, 21, 13); 3429 pgrf(Pg, 10), rf(Zn_or_Vn, 5), rf(Zd_or_Vd, 0); 3430 } 3431 3432 void sve_shift_imm_encoding(SIMD_RegVariant T, int shift, bool isSHR, 3433 int& tszh, int& tszl_imm) { 3434 /* The encodings for the tszh:tszl:imm3 fields 3435 * for shift right is calculated as: 3436 * 0001 xxx B, shift = 16 - UInt(tszh:tszl:imm3) 3437 * 001x xxx H, shift = 32 - UInt(tszh:tszl:imm3) 3438 * 01xx xxx S, shift = 64 - UInt(tszh:tszl:imm3) 3439 * 1xxx xxx D, shift = 128 - UInt(tszh:tszl:imm3) 3440 * for shift left is calculated as: 3441 * 0001 xxx B, shift = UInt(tszh:tszl:imm3) - 8 3442 * 001x xxx H, shift = UInt(tszh:tszl:imm3) - 16 3443 * 01xx xxx S, shift = UInt(tszh:tszl:imm3) - 32 3444 * 1xxx xxx D, shift = UInt(tszh:tszl:imm3) - 64 3445 */ 3446 assert(T != Q, "Invalid register variant"); 3447 if (isSHR) { 3448 assert(((1 << (T + 3)) >= shift) && (shift > 0) , "Invalid shift value"); 3449 } else { 3450 assert(((1 << (T + 3)) > shift) && (shift >= 0) , "Invalid shift value"); 3451 } 3452 int cVal = (1 << ((T + 3) + (isSHR ? 1 : 0))); 3453 int encodedShift = isSHR ? cVal - shift : cVal + shift; 3454 tszh = encodedShift >> 5; 3455 tszl_imm = encodedShift & 0x1f; 3456 } 3457 3458 public: 3459 3460 // SVE integer arithmetic - predicate 3461 #define INSN(NAME, op1, op2) \ 3462 void NAME(FloatRegister Zdn_or_Zd_or_Vd, SIMD_RegVariant T, PRegister Pg, FloatRegister Znm_or_Vn) { \ 3463 assert(T != Q, "invalid register variant"); \ 3464 sve_predicate_reg_insn(op1, op2, Zdn_or_Zd_or_Vd, T, Pg, Znm_or_Vn); \ 3465 } 3466 3467 INSN(sve_abs, 0b00000100, 0b010110101); // vector abs, unary 3468 INSN(sve_add, 0b00000100, 0b000000000); // vector add 3469 INSN(sve_and, 0b00000100, 0b011010000); // vector and 3470 INSN(sve_andv, 0b00000100, 0b011010001); // bitwise and reduction to scalar 3471 INSN(sve_asr, 0b00000100, 0b010000100); // vector arithmetic shift right 3472 INSN(sve_bic, 0b00000100, 0b011011000); // vector bitwise clear 3473 INSN(sve_clz, 0b00000100, 0b011001101); // vector count leading zero bits 3474 INSN(sve_cnt, 0b00000100, 0b011010101); // count non-zero bits 3475 INSN(sve_cpy, 0b00000101, 0b100000100); // copy scalar to each active vector element 3476 INSN(sve_eor, 0b00000100, 0b011001000); // vector eor 3477 INSN(sve_eorv, 0b00000100, 0b011001001); // bitwise xor reduction to scalar 3478 INSN(sve_lsl, 0b00000100, 0b010011100); // vector logical shift left 3479 INSN(sve_lsr, 0b00000100, 0b010001100); // vector logical shift right 3480 INSN(sve_mul, 0b00000100, 0b010000000); // vector mul 3481 INSN(sve_neg, 0b00000100, 0b010111101); // vector neg, unary 3482 INSN(sve_not, 0b00000100, 0b011110101); // bitwise invert vector, unary 3483 INSN(sve_orr, 0b00000100, 0b011000000); // vector or 3484 INSN(sve_orv, 0b00000100, 0b011000001); // bitwise or reduction to scalar 3485 INSN(sve_smax, 0b00000100, 0b001000000); // signed maximum vectors 3486 INSN(sve_smaxv, 0b00000100, 0b001000001); // signed maximum reduction to scalar 3487 INSN(sve_smin, 0b00000100, 0b001010000); // signed minimum vectors 3488 INSN(sve_sminv, 0b00000100, 0b001010001); // signed minimum reduction to scalar 3489 INSN(sve_sub, 0b00000100, 0b000001000); // vector sub 3490 INSN(sve_uaddv, 0b00000100, 0b000001001); // unsigned add reduction to scalar 3491 INSN(sve_umax, 0b00000100, 0b001001000); // unsigned maximum vectors 3492 INSN(sve_umin, 0b00000100, 0b001011000); // unsigned minimum vectors 3493 #undef INSN 3494 3495 // SVE floating-point arithmetic - predicate 3496 #define INSN(NAME, op1, op2) \ 3497 void NAME(FloatRegister Zd_or_Zdn_or_Vd, SIMD_RegVariant T, PRegister Pg, FloatRegister Zn_or_Zm) { \ 3498 assert(T == H || T == S || T == D, "invalid register variant"); \ 3499 sve_predicate_reg_insn(op1, op2, Zd_or_Zdn_or_Vd, T, Pg, Zn_or_Zm); \ 3500 } 3501 3502 INSN(sve_fabd, 0b01100101, 0b001000100); // floating-point absolute difference 3503 INSN(sve_fabs, 0b00000100, 0b011100101); 3504 INSN(sve_fadd, 0b01100101, 0b000000100); 3505 INSN(sve_fadda, 0b01100101, 0b011000001); // add strictly-ordered reduction to scalar Vd 3506 INSN(sve_fdiv, 0b01100101, 0b001101100); 3507 INSN(sve_fmax, 0b01100101, 0b000110100); // floating-point maximum 3508 INSN(sve_fmaxv, 0b01100101, 0b000110001); // floating-point maximum recursive reduction to scalar 3509 INSN(sve_fmin, 0b01100101, 0b000111100); // floating-point minimum 3510 INSN(sve_fminv, 0b01100101, 0b000111001); // floating-point minimum recursive reduction to scalar 3511 INSN(sve_fmul, 0b01100101, 0b000010100); 3512 INSN(sve_fneg, 0b00000100, 0b011101101); 3513 INSN(sve_frintm, 0b01100101, 0b000010101); // floating-point round to integral value, toward minus infinity 3514 INSN(sve_frintn, 0b01100101, 0b000000101); // floating-point round to integral value, nearest with ties to even 3515 INSN(sve_frinta, 0b01100101, 0b000100101); // floating-point round to integral value, nearest with ties to away 3516 INSN(sve_frintp, 0b01100101, 0b000001101); // floating-point round to integral value, toward plus infinity 3517 INSN(sve_fsqrt, 0b01100101, 0b001101101); 3518 INSN(sve_fsub, 0b01100101, 0b000001100); 3519 #undef INSN 3520 3521 // SVE multiple-add/sub - predicated 3522 #define INSN(NAME, op0, op1, op2) \ 3523 void NAME(FloatRegister Zda, SIMD_RegVariant T, PRegister Pg, FloatRegister Zn, FloatRegister Zm) { \ 3524 starti; \ 3525 assert(T != Q, "invalid size"); \ 3526 f(op0, 31, 24), f(T, 23, 22), f(op1, 21), rf(Zm, 16); \ 3527 f(op2, 15, 13), pgrf(Pg, 10), rf(Zn, 5), rf(Zda, 0); \ 3528 } 3529 3530 INSN(sve_fmla, 0b01100101, 1, 0b000); // floating-point fused multiply-add, writing addend: Zda = Zda + Zn * Zm 3531 INSN(sve_fmls, 0b01100101, 1, 0b001); // floating-point fused multiply-subtract: Zda = Zda + -Zn * Zm 3532 INSN(sve_fnmla, 0b01100101, 1, 0b010); // floating-point negated fused multiply-add: Zda = -Zda + -Zn * Zm 3533 INSN(sve_fnmls, 0b01100101, 1, 0b011); // floating-point negated fused multiply-subtract: Zda = -Zda + Zn * Zm 3534 INSN(sve_fmad, 0b01100101, 1, 0b100); // floating-point fused multiply-add, writing multiplicand: Zda = Zm + Zda * Zn 3535 INSN(sve_fmsb, 0b01100101, 1, 0b101); // floating-point fused multiply-subtract, writing multiplicand: Zda = Zm + -Zda * Zn 3536 INSN(sve_fnmad, 0b01100101, 1, 0b110); // floating-point negated fused multiply-add, writing multiplicand: Zda = -Zm + -Zda * Zn 3537 INSN(sve_fnmsb, 0b01100101, 1, 0b111); // floating-point negated fused multiply-subtract, writing multiplicand: Zda = -Zm + Zda * Zn 3538 INSN(sve_mla, 0b00000100, 0, 0b010); // multiply-add, writing addend: Zda = Zda + Zn*Zm 3539 INSN(sve_mls, 0b00000100, 0, 0b011); // multiply-subtract, writing addend: Zda = Zda + -Zn*Zm 3540 #undef INSN 3541 3542 // SVE bitwise logical - unpredicated 3543 #define INSN(NAME, opc) \ 3544 void NAME(FloatRegister Zd, FloatRegister Zn, FloatRegister Zm) { \ 3545 starti; \ 3546 f(0b00000100, 31, 24), f(opc, 23, 22), f(1, 21), \ 3547 rf(Zm, 16), f(0b001100, 15, 10), rf(Zn, 5), rf(Zd, 0); \ 3548 } 3549 INSN(sve_and, 0b00); 3550 INSN(sve_eor, 0b10); 3551 INSN(sve_orr, 0b01); 3552 INSN(sve_bic, 0b11); 3553 #undef INSN 3554 3555 // SVE bitwise logical with immediate (unpredicated) 3556 #define INSN(NAME, opc) \ 3557 void NAME(FloatRegister Zd, SIMD_RegVariant T, uint64_t imm) { \ 3558 starti; \ 3559 unsigned elembits = regVariant_to_elemBits(T); \ 3560 uint32_t val = encode_sve_logical_immediate(elembits, imm); \ 3561 f(0b00000101, 31, 24), f(opc, 23, 22), f(0b0000, 21, 18); \ 3562 f(val, 17, 5), rf(Zd, 0); \ 3563 } 3564 INSN(sve_and, 0b10); 3565 INSN(sve_eor, 0b01); 3566 INSN(sve_orr, 0b00); 3567 #undef INSN 3568 3569 // SVE shift immediate - unpredicated 3570 #define INSN(NAME, opc, isSHR) \ 3571 void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, int shift) { \ 3572 starti; \ 3573 int tszh, tszl_imm; \ 3574 sve_shift_imm_encoding(T, shift, isSHR, tszh, tszl_imm); \ 3575 f(0b00000100, 31, 24); \ 3576 f(tszh, 23, 22), f(1,21), f(tszl_imm, 20, 16); \ 3577 f(0b100, 15, 13), f(opc, 12, 10), rf(Zn, 5), rf(Zd, 0); \ 3578 } 3579 3580 INSN(sve_asr, 0b100, /* isSHR = */ true); 3581 INSN(sve_lsl, 0b111, /* isSHR = */ false); 3582 INSN(sve_lsr, 0b101, /* isSHR = */ true); 3583 #undef INSN 3584 3585 // SVE bitwise shift by immediate (predicated) 3586 #define INSN(NAME, opc, isSHR) \ 3587 void NAME(FloatRegister Zdn, SIMD_RegVariant T, PRegister Pg, int shift) { \ 3588 starti; \ 3589 int tszh, tszl_imm; \ 3590 sve_shift_imm_encoding(T, shift, isSHR, tszh, tszl_imm); \ 3591 f(0b00000100, 31, 24), f(tszh, 23, 22), f(0b00, 21, 20), f(opc, 19, 16); \ 3592 f(0b100, 15, 13), pgrf(Pg, 10), f(tszl_imm, 9, 5), rf(Zdn, 0); \ 3593 } 3594 3595 INSN(sve_asr, 0b0000, /* isSHR = */ true); 3596 INSN(sve_lsl, 0b0011, /* isSHR = */ false); 3597 INSN(sve_lsr, 0b0001, /* isSHR = */ true); 3598 #undef INSN 3599 3600 private: 3601 3602 // Scalar base + immediate index 3603 void sve_ld_st1(FloatRegister Zt, Register Xn, int imm, PRegister Pg, 3604 SIMD_RegVariant T, int op1, int type, int op2) { 3605 starti; 3606 assert_cond(T >= type); 3607 f(op1, 31, 25), f(type, 24, 23), f(T, 22, 21); 3608 f(0, 20), sf(imm, 19, 16), f(op2, 15, 13); 3609 pgrf(Pg, 10), srf(Xn, 5), rf(Zt, 0); 3610 } 3611 3612 // Scalar base + scalar index 3613 void sve_ld_st1(FloatRegister Zt, Register Xn, Register Xm, PRegister Pg, 3614 SIMD_RegVariant T, int op1, int type, int op2) { 3615 starti; 3616 assert_cond(T >= type); 3617 f(op1, 31, 25), f(type, 24, 23), f(T, 22, 21); 3618 rf(Xm, 16), f(op2, 15, 13); 3619 pgrf(Pg, 10), srf(Xn, 5), rf(Zt, 0); 3620 } 3621 3622 void sve_ld_st1(FloatRegister Zt, PRegister Pg, 3623 SIMD_RegVariant T, const Address &a, 3624 int op1, int type, int imm_op2, int scalar_op2) { 3625 switch (a.getMode()) { 3626 case Address::base_plus_offset: 3627 sve_ld_st1(Zt, a.base(), checked_cast<int>(a.offset()), Pg, T, op1, type, imm_op2); 3628 break; 3629 case Address::base_plus_offset_reg: 3630 sve_ld_st1(Zt, a.base(), a.index(), Pg, T, op1, type, scalar_op2); 3631 break; 3632 default: 3633 ShouldNotReachHere(); 3634 } 3635 } 3636 3637 public: 3638 3639 // SVE contiguous load/store 3640 #define INSN(NAME, op1, type, imm_op2, scalar_op2) \ 3641 void NAME(FloatRegister Zt, SIMD_RegVariant T, PRegister Pg, const Address &a) { \ 3642 assert(T != Q, "invalid register variant"); \ 3643 sve_ld_st1(Zt, Pg, T, a, op1, type, imm_op2, scalar_op2); \ 3644 } 3645 3646 INSN(sve_ld1b, 0b1010010, 0b00, 0b101, 0b010); 3647 INSN(sve_st1b, 0b1110010, 0b00, 0b111, 0b010); 3648 INSN(sve_ld1h, 0b1010010, 0b01, 0b101, 0b010); 3649 INSN(sve_st1h, 0b1110010, 0b01, 0b111, 0b010); 3650 INSN(sve_ld1w, 0b1010010, 0b10, 0b101, 0b010); 3651 INSN(sve_st1w, 0b1110010, 0b10, 0b111, 0b010); 3652 INSN(sve_ld1d, 0b1010010, 0b11, 0b101, 0b010); 3653 INSN(sve_st1d, 0b1110010, 0b11, 0b111, 0b010); 3654 #undef INSN 3655 3656 // Gather/scatter load/store (SVE) - scalar plus vector 3657 #define INSN(NAME, op1, type, op2, op3) \ 3658 void NAME(FloatRegister Zt, PRegister Pg, Register Xn, FloatRegister Zm) { \ 3659 starti; \ 3660 f(op1, 31, 25), f(type, 24, 23), f(op2, 22, 21), rf(Zm, 16); \ 3661 f(op3, 15, 13), pgrf(Pg, 10), srf(Xn, 5), rf(Zt, 0); \ 3662 } 3663 // SVE 32-bit gather load words (scalar plus 32-bit scaled offsets) 3664 INSN(sve_ld1w_gather, 0b1000010, 0b10, 0b01, 0b010); 3665 // SVE 64-bit gather load (scalar plus 32-bit unpacked scaled offsets) 3666 INSN(sve_ld1d_gather, 0b1100010, 0b11, 0b01, 0b010); 3667 // SVE 32-bit scatter store (scalar plus 32-bit scaled offsets) 3668 INSN(sve_st1w_scatter, 0b1110010, 0b10, 0b11, 0b100); 3669 // SVE 64-bit scatter store (scalar plus unpacked 32-bit scaled offsets) 3670 INSN(sve_st1d_scatter, 0b1110010, 0b11, 0b01, 0b100); 3671 #undef INSN 3672 3673 // SVE load/store - unpredicated 3674 #define INSN(NAME, op1) \ 3675 void NAME(FloatRegister Zt, const Address &a) { \ 3676 starti; \ 3677 assert(a.index() == noreg, "invalid address variant"); \ 3678 f(op1, 31, 29), f(0b0010110, 28, 22), sf(a.offset() >> 3, 21, 16), \ 3679 f(0b010, 15, 13), f(a.offset() & 0x7, 12, 10), srf(a.base(), 5), rf(Zt, 0); \ 3680 } 3681 3682 INSN(sve_ldr, 0b100); // LDR (vector) 3683 INSN(sve_str, 0b111); // STR (vector) 3684 #undef INSN 3685 3686 // SVE stack frame adjustment 3687 #define INSN(NAME, op) \ 3688 void NAME(Register Xd, Register Xn, int imm6) { \ 3689 starti; \ 3690 f(0b000001000, 31, 23), f(op, 22, 21); \ 3691 srf(Xn, 16), f(0b01010, 15, 11), sf(imm6, 10, 5), srf(Xd, 0); \ 3692 } 3693 3694 INSN(sve_addvl, 0b01); // Add multiple of vector register size to scalar register 3695 INSN(sve_addpl, 0b11); // Add multiple of predicate register size to scalar register 3696 #undef INSN 3697 3698 // SVE inc/dec register by element count 3699 #define INSN(NAME, op) \ 3700 void NAME(Register Xdn, SIMD_RegVariant T, unsigned imm4 = 1, int pattern = 0b11111) { \ 3701 starti; \ 3702 assert(T != Q, "invalid size"); \ 3703 f(0b00000100,31, 24), f(T, 23, 22), f(0b11, 21, 20); \ 3704 f(imm4 - 1, 19, 16), f(0b11100, 15, 11), f(op, 10), f(pattern, 9, 5), rf(Xdn, 0); \ 3705 } 3706 3707 INSN(sve_inc, 0); 3708 INSN(sve_dec, 1); 3709 #undef INSN 3710 3711 // SVE predicate logical operations 3712 #define INSN(NAME, op1, op2, op3) \ 3713 void NAME(PRegister Pd, PRegister Pg, PRegister Pn, PRegister Pm) { \ 3714 starti; \ 3715 f(0b00100101, 31, 24), f(op1, 23, 22), f(0b00, 21, 20); \ 3716 prf(Pm, 16), f(0b01, 15, 14), prf(Pg, 10), f(op2, 9); \ 3717 prf(Pn, 5), f(op3, 4), prf(Pd, 0); \ 3718 } 3719 3720 INSN(sve_and, 0b00, 0b0, 0b0); 3721 INSN(sve_ands, 0b01, 0b0, 0b0); 3722 INSN(sve_eor, 0b00, 0b1, 0b0); 3723 INSN(sve_eors, 0b01, 0b1, 0b0); 3724 INSN(sve_orr, 0b10, 0b0, 0b0); 3725 INSN(sve_orrs, 0b11, 0b0, 0b0); 3726 INSN(sve_bic, 0b00, 0b0, 0b1); 3727 #undef INSN 3728 3729 // SVE increment register by predicate count 3730 void sve_incp(const Register rd, SIMD_RegVariant T, PRegister pg) { 3731 starti; 3732 assert(T != Q, "invalid size"); 3733 f(0b00100101, 31, 24), f(T, 23, 22), f(0b1011001000100, 21, 9), 3734 prf(pg, 5), rf(rd, 0); 3735 } 3736 3737 // SVE broadcast general-purpose register to vector elements (unpredicated) 3738 void sve_dup(FloatRegister Zd, SIMD_RegVariant T, Register Rn) { 3739 starti; 3740 assert(T != Q, "invalid size"); 3741 f(0b00000101, 31, 24), f(T, 23, 22), f(0b100000001110, 21, 10); 3742 srf(Rn, 5), rf(Zd, 0); 3743 } 3744 3745 // SVE broadcast signed immediate to vector elements (unpredicated) 3746 void sve_dup(FloatRegister Zd, SIMD_RegVariant T, int imm8) { 3747 starti; 3748 assert(T != Q, "invalid size"); 3749 int sh = 0; 3750 if (imm8 <= 127 && imm8 >= -128) { 3751 sh = 0; 3752 } else if (T != B && imm8 <= 32512 && imm8 >= -32768 && (imm8 & 0xff) == 0) { 3753 sh = 1; 3754 imm8 = (imm8 >> 8); 3755 } else { 3756 guarantee(false, "invalid immediate"); 3757 } 3758 f(0b00100101, 31, 24), f(T, 23, 22), f(0b11100011, 21, 14); 3759 f(sh, 13), sf(imm8, 12, 5), rf(Zd, 0); 3760 } 3761 3762 // SVE predicate test 3763 void sve_ptest(PRegister Pg, PRegister Pn) { 3764 starti; 3765 f(0b001001010101000011, 31, 14), prf(Pg, 10), f(0, 9), prf(Pn, 5), f(0, 4, 0); 3766 } 3767 3768 // SVE predicate initialize 3769 void sve_ptrue(PRegister pd, SIMD_RegVariant esize, int pattern = 0b11111) { 3770 starti; 3771 f(0b00100101, 31, 24), f(esize, 23, 22), f(0b011000111000, 21, 10); 3772 f(pattern, 9, 5), f(0b0, 4), prf(pd, 0); 3773 } 3774 3775 // SVE predicate zero 3776 void sve_pfalse(PRegister pd) { 3777 starti; 3778 f(0b00100101, 31, 24), f(0b00, 23, 22), f(0b011000111001, 21, 10); 3779 f(0b000000, 9, 4), prf(pd, 0); 3780 } 3781 3782 // SVE load/store predicate register 3783 #define INSN(NAME, op1) \ 3784 void NAME(PRegister Pt, const Address &a) { \ 3785 starti; \ 3786 assert(a.index() == noreg, "invalid address variant"); \ 3787 f(op1, 31, 29), f(0b0010110, 28, 22), sf(a.offset() >> 3, 21, 16), \ 3788 f(0b000, 15, 13), f(a.offset() & 0x7, 12, 10), srf(a.base(), 5), \ 3789 f(0, 4), prf(Pt, 0); \ 3790 } 3791 3792 INSN(sve_ldr, 0b100); // LDR (predicate) 3793 INSN(sve_str, 0b111); // STR (predicate) 3794 #undef INSN 3795 3796 // SVE move predicate register 3797 void sve_mov(PRegister Pd, PRegister Pn) { 3798 starti; 3799 f(0b001001011000, 31, 20), prf(Pn, 16), f(0b01, 15, 14), prf(Pn, 10); 3800 f(0, 9), prf(Pn, 5), f(0, 4), prf(Pd, 0); 3801 } 3802 3803 // SVE copy general-purpose register to vector elements (predicated) 3804 void sve_cpy(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg, Register Rn) { 3805 starti; 3806 assert(T != Q, "invalid size"); 3807 f(0b00000101, 31, 24), f(T, 23, 22), f(0b101000101, 21, 13); 3808 pgrf(Pg, 10), srf(Rn, 5), rf(Zd, 0); 3809 } 3810 3811 private: 3812 void sve_cpy(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg, int imm8, 3813 bool isMerge, bool isFloat) { 3814 starti; 3815 assert(T != Q, "invalid size"); 3816 int sh = 0; 3817 if (imm8 <= 127 && imm8 >= -128) { 3818 sh = 0; 3819 } else if (T != B && imm8 <= 32512 && imm8 >= -32768 && (imm8 & 0xff) == 0) { 3820 sh = 1; 3821 imm8 = (imm8 >> 8); 3822 } else { 3823 guarantee(false, "invalid immediate"); 3824 } 3825 int m = isMerge ? 1 : 0; 3826 f(0b00000101, 31, 24), f(T, 23, 22), f(0b01, 21, 20); 3827 prf(Pg, 16), f(isFloat ? 1 : 0, 15), f(m, 14), f(sh, 13), sf(imm8, 12, 5), rf(Zd, 0); 3828 } 3829 3830 public: 3831 // SVE copy signed integer immediate to vector elements (predicated) 3832 void sve_cpy(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg, int imm8, bool isMerge) { 3833 sve_cpy(Zd, T, Pg, imm8, isMerge, /*isFloat*/false); 3834 } 3835 // SVE copy floating-point immediate to vector elements (predicated) 3836 void sve_cpy(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg, double d) { 3837 sve_cpy(Zd, T, Pg, checked_cast<int8_t>(pack(d)), /*isMerge*/true, /*isFloat*/true); 3838 } 3839 3840 // SVE conditionally select elements from two vectors 3841 void sve_sel(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg, 3842 FloatRegister Zn, FloatRegister Zm) { 3843 starti; 3844 assert(T != Q, "invalid size"); 3845 f(0b00000101, 31, 24), f(T, 23, 22), f(0b1, 21), rf(Zm, 16); 3846 f(0b11, 15, 14), prf(Pg, 10), rf(Zn, 5), rf(Zd, 0); 3847 } 3848 3849 // SVE Permute Vector - Extract 3850 void sve_ext(FloatRegister Zdn, FloatRegister Zm, int imm8) { 3851 starti; 3852 f(0b00000101001, 31, 21), f(imm8 >> 3, 20, 16), f(0b000, 15, 13); 3853 f(imm8 & 0b111, 12, 10), rf(Zm, 5), rf(Zdn, 0); 3854 } 3855 3856 // SVE Integer/Floating-Point Compare - Vectors 3857 #define INSN(NAME, op1, op2, fp) \ 3858 void NAME(Condition cond, PRegister Pd, SIMD_RegVariant T, PRegister Pg, \ 3859 FloatRegister Zn, FloatRegister Zm) { \ 3860 starti; \ 3861 assert(T != Q, "invalid size"); \ 3862 bool is_absolute = op2 == 0b11; \ 3863 if (fp == 1) { \ 3864 assert(T != B, "invalid size"); \ 3865 if (is_absolute) { \ 3866 assert(cond == GT || cond == GE, "invalid condition for fac"); \ 3867 } else { \ 3868 assert(cond != HI && cond != HS, "invalid condition for fcm"); \ 3869 } \ 3870 } \ 3871 int cond_op; \ 3872 switch(cond) { \ 3873 case EQ: cond_op = (op2 << 2) | 0b10; break; \ 3874 case NE: cond_op = (op2 << 2) | 0b11; break; \ 3875 case GE: cond_op = (op2 << 2) | (is_absolute ? 0b01 : 0b00); break; \ 3876 case GT: cond_op = (op2 << 2) | (is_absolute ? 0b11 : 0b01); break; \ 3877 case HI: cond_op = 0b0001; break; \ 3878 case HS: cond_op = 0b0000; break; \ 3879 default: \ 3880 ShouldNotReachHere(); \ 3881 } \ 3882 f(op1, 31, 24), f(T, 23, 22), f(0, 21), rf(Zm, 16), f((cond_op >> 1) & 7, 15, 13); \ 3883 pgrf(Pg, 10), rf(Zn, 5), f(cond_op & 1, 4), prf(Pd, 0); \ 3884 } 3885 3886 INSN(sve_cmp, 0b00100100, 0b10, 0); // Integer compare vectors 3887 INSN(sve_fcm, 0b01100101, 0b01, 1); // Floating-point compare vectors 3888 INSN(sve_fac, 0b01100101, 0b11, 1); // Floating-point absolute compare vectors 3889 #undef INSN 3890 3891 private: 3892 // Convert Assembler::Condition to op encoding - used by sve integer compare encoding 3893 static int assembler_cond_to_sve_op(Condition cond, bool &is_unsigned) { 3894 if (cond == HI || cond == HS || cond == LO || cond == LS) { 3895 is_unsigned = true; 3896 } else { 3897 is_unsigned = false; 3898 } 3899 3900 switch (cond) { 3901 case HI: 3902 case GT: 3903 return 0b0001; 3904 case HS: 3905 case GE: 3906 return 0b0000; 3907 case LO: 3908 case LT: 3909 return 0b0010; 3910 case LS: 3911 case LE: 3912 return 0b0011; 3913 case EQ: 3914 return 0b1000; 3915 case NE: 3916 return 0b1001; 3917 default: 3918 ShouldNotReachHere(); 3919 return -1; 3920 } 3921 } 3922 3923 public: 3924 // SVE Integer Compare - 5 bits signed imm and 7 bits unsigned imm 3925 void sve_cmp(Condition cond, PRegister Pd, SIMD_RegVariant T, 3926 PRegister Pg, FloatRegister Zn, int imm) { 3927 starti; 3928 assert(T != Q, "invalid size"); 3929 bool is_unsigned = false; 3930 int cond_op = assembler_cond_to_sve_op(cond, is_unsigned); 3931 f(is_unsigned ? 0b00100100 : 0b00100101, 31, 24), f(T, 23, 22); 3932 f(is_unsigned ? 0b1 : 0b0, 21); 3933 if (is_unsigned) { 3934 f(imm, 20, 14), f((cond_op >> 1) & 0x1, 13); 3935 } else { 3936 sf(imm, 20, 16), f((cond_op >> 1) & 0x7, 15, 13); 3937 } 3938 pgrf(Pg, 10), rf(Zn, 5), f(cond_op & 0x1, 4), prf(Pd, 0); 3939 } 3940 3941 // SVE Floating-point compare vector with zero 3942 void sve_fcm(Condition cond, PRegister Pd, SIMD_RegVariant T, 3943 PRegister Pg, FloatRegister Zn, double d) { 3944 starti; 3945 assert(T != Q, "invalid size"); 3946 guarantee(d == 0.0, "invalid immediate"); 3947 int cond_op; 3948 switch(cond) { 3949 case EQ: cond_op = 0b100; break; 3950 case GT: cond_op = 0b001; break; 3951 case GE: cond_op = 0b000; break; 3952 case LT: cond_op = 0b010; break; 3953 case LE: cond_op = 0b011; break; 3954 case NE: cond_op = 0b110; break; 3955 default: 3956 ShouldNotReachHere(); 3957 } 3958 f(0b01100101, 31, 24), f(T, 23, 22), f(0b0100, 21, 18), 3959 f((cond_op >> 1) & 0x3, 17, 16), f(0b001, 15, 13), 3960 pgrf(Pg, 10), rf(Zn, 5); 3961 f(cond_op & 0x1, 4), prf(Pd, 0); 3962 } 3963 3964 // SVE unpack vector elements 3965 protected: 3966 void _sve_xunpk(bool is_unsigned, bool is_high, FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn) { 3967 starti; 3968 assert(T != B && T != Q, "invalid size"); 3969 f(0b00000101, 31, 24), f(T, 23, 22), f(0b1100, 21, 18); 3970 f(is_unsigned ? 1 : 0, 17), f(is_high ? 1 : 0, 16), 3971 f(0b001110, 15, 10), rf(Zn, 5), rf(Zd, 0); 3972 } 3973 3974 public: 3975 #define INSN(NAME, is_unsigned, is_high) \ 3976 void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn) { \ 3977 _sve_xunpk(is_unsigned, is_high, Zd, T, Zn); \ 3978 } 3979 3980 INSN(sve_uunpkhi, true, true ); // Unsigned unpack and extend half of vector - high half 3981 INSN(sve_uunpklo, true, false); // Unsigned unpack and extend half of vector - low half 3982 INSN(sve_sunpkhi, false, true ); // Signed unpack and extend half of vector - high half 3983 INSN(sve_sunpklo, false, false); // Signed unpack and extend half of vector - low half 3984 #undef INSN 3985 3986 // SVE unpack predicate elements 3987 #define INSN(NAME, op) \ 3988 void NAME(PRegister Pd, PRegister Pn) { \ 3989 starti; \ 3990 f(0b000001010011000, 31, 17), f(op, 16), f(0b0100000, 15, 9); \ 3991 prf(Pn, 5), f(0b0, 4), prf(Pd, 0); \ 3992 } 3993 3994 INSN(sve_punpkhi, 0b1); // Unpack and widen high half of predicate 3995 INSN(sve_punpklo, 0b0); // Unpack and widen low half of predicate 3996 #undef INSN 3997 3998 // SVE permute vector elements 3999 #define INSN(NAME, op) \ 4000 void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, FloatRegister Zm) { \ 4001 starti; \ 4002 assert(T != Q, "invalid size"); \ 4003 f(0b00000101, 31, 24), f(T, 23, 22), f(0b1, 21), rf(Zm, 16); \ 4004 f(0b01101, 15, 11), f(op, 10), rf(Zn, 5), rf(Zd, 0); \ 4005 } 4006 4007 INSN(sve_uzp1, 0b0); // Concatenate even elements from two vectors 4008 INSN(sve_uzp2, 0b1); // Concatenate odd elements from two vectors 4009 #undef INSN 4010 4011 // SVE permute predicate elements 4012 #define INSN(NAME, op) \ 4013 void NAME(PRegister Pd, SIMD_RegVariant T, PRegister Pn, PRegister Pm) { \ 4014 starti; \ 4015 assert(T != Q, "invalid size"); \ 4016 f(0b00000101, 31, 24), f(T, 23, 22), f(0b10, 21, 20), prf(Pm, 16); \ 4017 f(0b01001, 15, 11), f(op, 10), f(0b0, 9), prf(Pn, 5), f(0b0, 4), prf(Pd, 0); \ 4018 } 4019 4020 INSN(sve_uzp1, 0b0); // Concatenate even elements from two predicates 4021 INSN(sve_uzp2, 0b1); // Concatenate odd elements from two predicates 4022 #undef INSN 4023 4024 // SVE integer compare scalar count and limit 4025 #define INSN(NAME, sf, op) \ 4026 void NAME(PRegister Pd, SIMD_RegVariant T, Register Rn, Register Rm) { \ 4027 starti; \ 4028 assert(T != Q, "invalid register variant"); \ 4029 f(0b00100101, 31, 24), f(T, 23, 22), f(1, 21), \ 4030 zrf(Rm, 16), f(0, 15, 13), f(sf, 12), f(op >> 1, 11, 10), \ 4031 zrf(Rn, 5), f(op & 1, 4), prf(Pd, 0); \ 4032 } 4033 // While incrementing signed scalar less than scalar 4034 INSN(sve_whileltw, 0b0, 0b010); 4035 INSN(sve_whilelt, 0b1, 0b010); 4036 // While incrementing signed scalar less than or equal to scalar 4037 INSN(sve_whilelew, 0b0, 0b011); 4038 INSN(sve_whilele, 0b1, 0b011); 4039 // While incrementing unsigned scalar lower than scalar 4040 INSN(sve_whilelow, 0b0, 0b110); 4041 INSN(sve_whilelo, 0b1, 0b110); 4042 // While incrementing unsigned scalar lower than or the same as scalar 4043 INSN(sve_whilelsw, 0b0, 0b111); 4044 INSN(sve_whilels, 0b1, 0b111); 4045 #undef INSN 4046 4047 // SVE predicate reverse 4048 void sve_rev(PRegister Pd, SIMD_RegVariant T, PRegister Pn) { 4049 starti; 4050 assert(T != Q, "invalid size"); 4051 f(0b00000101, 31, 24), f(T, 23, 22), f(0b1101000100000, 21, 9); 4052 prf(Pn, 5), f(0, 4), prf(Pd, 0); 4053 } 4054 4055 // SVE partition break condition 4056 #define INSN(NAME, op) \ 4057 void NAME(PRegister Pd, PRegister Pg, PRegister Pn, bool isMerge) { \ 4058 starti; \ 4059 f(0b00100101, 31, 24), f(op, 23, 22), f(0b01000001, 21, 14); \ 4060 prf(Pg, 10), f(0b0, 9), prf(Pn, 5), f(isMerge ? 1 : 0, 4), prf(Pd, 0); \ 4061 } 4062 4063 INSN(sve_brka, 0b00); // Break after first true condition 4064 INSN(sve_brkb, 0b10); // Break before first true condition 4065 #undef INSN 4066 4067 // Element count and increment scalar (SVE) 4068 #define INSN(NAME, TYPE) \ 4069 void NAME(Register Xdn, unsigned imm4 = 1, int pattern = 0b11111) { \ 4070 starti; \ 4071 f(0b00000100, 31, 24), f(TYPE, 23, 22), f(0b10, 21, 20); \ 4072 f(imm4 - 1, 19, 16), f(0b11100, 15, 11), f(0, 10), f(pattern, 9, 5), rf(Xdn, 0); \ 4073 } 4074 4075 INSN(sve_cntb, B); // Set scalar to multiple of 8-bit predicate constraint element count 4076 INSN(sve_cnth, H); // Set scalar to multiple of 16-bit predicate constraint element count 4077 INSN(sve_cntw, S); // Set scalar to multiple of 32-bit predicate constraint element count 4078 INSN(sve_cntd, D); // Set scalar to multiple of 64-bit predicate constraint element count 4079 #undef INSN 4080 4081 // Set scalar to active predicate element count 4082 void sve_cntp(Register Xd, SIMD_RegVariant T, PRegister Pg, PRegister Pn) { 4083 starti; 4084 assert(T != Q, "invalid size"); 4085 f(0b00100101, 31, 24), f(T, 23, 22), f(0b10000010, 21, 14); 4086 prf(Pg, 10), f(0, 9), prf(Pn, 5), rf(Xd, 0); 4087 } 4088 4089 // SVE convert signed integer to floating-point (predicated) 4090 void sve_scvtf(FloatRegister Zd, SIMD_RegVariant T_dst, PRegister Pg, 4091 FloatRegister Zn, SIMD_RegVariant T_src) { 4092 starti; 4093 assert(T_src != B && T_dst != B && T_src != Q && T_dst != Q && 4094 (T_src != H || T_dst == T_src), "invalid register variant"); 4095 int opc = T_dst; 4096 int opc2 = T_src; 4097 // In most cases we can treat T_dst, T_src as opc, opc2, 4098 // except for the following two combinations. 4099 // +-----+------+---+------------------------------------+ 4100 // | opc | opc2 | U | Instruction Details | 4101 // +-----+------+---+------------------------------------+ 4102 // | 11 | 00 | 0 | SCVTF - 32-bit to double-precision | 4103 // | 11 | 10 | 0 | SCVTF - 64-bit to single-precision | 4104 // +-----+------+---+------------------------------------+ 4105 if (T_src == S && T_dst == D) { 4106 opc = 0b11; 4107 opc2 = 0b00; 4108 } else if (T_src == D && T_dst == S) { 4109 opc = 0b11; 4110 opc2 = 0b10; 4111 } 4112 f(0b01100101, 31, 24), f(opc, 23, 22), f(0b010, 21, 19); 4113 f(opc2, 18, 17), f(0b0101, 16, 13); 4114 pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0); 4115 } 4116 4117 // SVE floating-point convert to signed integer, rounding toward zero (predicated) 4118 void sve_fcvtzs(FloatRegister Zd, SIMD_RegVariant T_dst, PRegister Pg, 4119 FloatRegister Zn, SIMD_RegVariant T_src) { 4120 starti; 4121 assert(T_src != B && T_dst != B && T_src != Q && T_dst != Q && 4122 (T_dst != H || T_src == H), "invalid register variant"); 4123 int opc = T_src; 4124 int opc2 = T_dst; 4125 // In most cases we can treat T_src, T_dst as opc, opc2, 4126 // except for the following two combinations. 4127 // +-----+------+---+-------------------------------------+ 4128 // | opc | opc2 | U | Instruction Details | 4129 // +-----+------+---+-------------------------------------+ 4130 // | 11 | 10 | 0 | FCVTZS - single-precision to 64-bit | 4131 // | 11 | 00 | 0 | FCVTZS - double-precision to 32-bit | 4132 // +-----+------+---+-------------------------------------+ 4133 if (T_src == S && T_dst == D) { 4134 opc = 0b11; 4135 opc2 = 0b10; 4136 } else if (T_src == D && T_dst == S) { 4137 opc = 0b11; 4138 opc2 = 0b00; 4139 } 4140 f(0b01100101, 31, 24), f(opc, 23, 22), f(0b011, 21, 19); 4141 f(opc2, 18, 17), f(0b0101, 16, 13); 4142 pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0); 4143 } 4144 4145 // SVE floating-point convert precision (predicated) 4146 void sve_fcvt(FloatRegister Zd, SIMD_RegVariant T_dst, PRegister Pg, 4147 FloatRegister Zn, SIMD_RegVariant T_src) { 4148 starti; 4149 assert(T_src != B && T_dst != B && T_src != Q && T_dst != Q && 4150 T_src != T_dst, "invalid register variant"); 4151 // The encodings of fields op1 (bits 17-16) and op2 (bits 23-22) 4152 // depend on T_src and T_dst as given below - 4153 // +-----+------+---------------------------------------------+ 4154 // | op2 | op1 | Instruction Details | 4155 // +-----+------+---------------------------------------------+ 4156 // | 10 | 01 | FCVT - half-precision to single-precision | 4157 // | 11 | 01 | FCVT - half-precision to double-precision | 4158 // | 10 | 00 | FCVT - single-precision to half-precision | 4159 // | 11 | 11 | FCVT - single-precision to double-precision | 4160 // | 11 | 00 | FCVT - double-preciison to half-precision | 4161 // | 11 | 10 | FCVT - double-precision to single-precision | 4162 // +-----+------+---+-----------------------------------------+ 4163 int op1 = 0b00; 4164 int op2 = (T_src == D || T_dst == D) ? 0b11 : 0b10; 4165 if (T_src == H) { 4166 op1 = 0b01; 4167 } else if (T_dst == S) { 4168 op1 = 0b10; 4169 } else if (T_dst == D) { 4170 op1 = 0b11; 4171 } 4172 f(0b01100101, 31, 24), f(op2, 23, 22), f(0b0010, 21, 18); 4173 f(op1, 17, 16), f(0b101, 15, 13); 4174 pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0); 4175 } 4176 4177 // SVE extract element to general-purpose register 4178 #define INSN(NAME, before) \ 4179 void NAME(Register Rd, SIMD_RegVariant T, PRegister Pg, FloatRegister Zn) { \ 4180 starti; \ 4181 f(0b00000101, 31, 24), f(T, 23, 22), f(0b10000, 21, 17); \ 4182 f(before, 16), f(0b101, 15, 13); \ 4183 pgrf(Pg, 10), rf(Zn, 5), rf(Rd, 0); \ 4184 } 4185 4186 INSN(sve_lasta, 0b0); 4187 INSN(sve_lastb, 0b1); 4188 #undef INSN 4189 4190 // SVE extract element to SIMD&FP scalar register 4191 #define INSN(NAME, before) \ 4192 void NAME(FloatRegister Vd, SIMD_RegVariant T, PRegister Pg, FloatRegister Zn) { \ 4193 starti; \ 4194 f(0b00000101, 31, 24), f(T, 23, 22), f(0b10001, 21, 17); \ 4195 f(before, 16), f(0b100, 15, 13); \ 4196 pgrf(Pg, 10), rf(Zn, 5), rf(Vd, 0); \ 4197 } 4198 4199 INSN(sve_lasta, 0b0); 4200 INSN(sve_lastb, 0b1); 4201 #undef INSN 4202 4203 // SVE reverse within elements 4204 #define INSN(NAME, opc, cond) \ 4205 void NAME(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg, FloatRegister Zn) { \ 4206 starti; \ 4207 assert(cond, "invalid size"); \ 4208 f(0b00000101, 31, 24), f(T, 23, 22), f(0b1001, 21, 18), f(opc, 17, 16); \ 4209 f(0b100, 15, 13), pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0); \ 4210 } 4211 4212 INSN(sve_revb, 0b00, T == H || T == S || T == D); 4213 INSN(sve_rbit, 0b11, T != Q); 4214 #undef INSN 4215 4216 // SVE Create index starting from general-purpose register and incremented by immediate 4217 void sve_index(FloatRegister Zd, SIMD_RegVariant T, Register Rn, int imm) { 4218 starti; 4219 assert(T != Q, "invalid size"); 4220 f(0b00000100, 31, 24), f(T, 23, 22), f(0b1, 21); 4221 sf(imm, 20, 16), f(0b010001, 15, 10); 4222 rf(Rn, 5), rf(Zd, 0); 4223 } 4224 4225 // SVE create index starting from and incremented by immediate 4226 void sve_index(FloatRegister Zd, SIMD_RegVariant T, int imm1, int imm2) { 4227 starti; 4228 assert(T != Q, "invalid size"); 4229 f(0b00000100, 31, 24), f(T, 23, 22), f(0b1, 21); 4230 sf(imm2, 20, 16), f(0b010000, 15, 10); 4231 sf(imm1, 9, 5), rf(Zd, 0); 4232 } 4233 4234 private: 4235 void _sve_tbl(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, unsigned reg_count, FloatRegister Zm) { 4236 starti; 4237 assert(T != Q, "invalid size"); 4238 // Only supports one or two vector lookup. One vector lookup was introduced in SVE1 4239 // and two vector lookup in SVE2 4240 assert(0 < reg_count && reg_count <= 2, "invalid number of registers"); 4241 4242 int op11 = (reg_count == 1) ? 0b10 : 0b01; 4243 4244 f(0b00000101, 31, 24), f(T, 23, 22), f(0b1, 21), rf(Zm, 16); 4245 f(0b001, 15, 13), f(op11, 12, 11), f(0b0, 10), rf(Zn, 5), rf(Zd, 0); 4246 } 4247 4248 public: 4249 // SVE/SVE2 Programmable table lookup in one or two vector table (zeroing) 4250 void sve_tbl(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, FloatRegister Zm) { 4251 _sve_tbl(Zd, T, Zn, 1, Zm); 4252 } 4253 4254 void sve_tbl(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn1, FloatRegister Zn2, FloatRegister Zm) { 4255 assert(Zn1->successor() == Zn2, "invalid order of registers"); 4256 _sve_tbl(Zd, T, Zn1, 2, Zm); 4257 } 4258 4259 // Shuffle active elements of vector to the right and fill with zero 4260 void sve_compact(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, PRegister Pg) { 4261 starti; 4262 assert(T == S || T == D, "invalid size"); 4263 f(0b00000101, 31, 24), f(T, 23, 22), f(0b100001100, 21, 13); 4264 pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0); 4265 } 4266 4267 // SVE2 Count matching elements in vector 4268 void sve_histcnt(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg, 4269 FloatRegister Zn, FloatRegister Zm) { 4270 starti; 4271 assert(T == S || T == D, "invalid size"); 4272 f(0b01000101, 31, 24), f(T, 23, 22), f(0b1, 21), rf(Zm, 16); 4273 f(0b110, 15, 13), pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0); 4274 } 4275 4276 // SVE2 bitwise permute 4277 #define INSN(NAME, opc) \ 4278 void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, FloatRegister Zm) { \ 4279 starti; \ 4280 assert(T != Q, "invalid size"); \ 4281 f(0b01000101, 31, 24), f(T, 23, 22), f(0b0, 21); \ 4282 rf(Zm, 16), f(0b1011, 15, 12), f(opc, 11, 10); \ 4283 rf(Zn, 5), rf(Zd, 0); \ 4284 } 4285 4286 INSN(sve_bext, 0b00); 4287 INSN(sve_bdep, 0b01); 4288 #undef INSN 4289 4290 // SVE2 bitwise ternary operations 4291 #define INSN(NAME, opc) \ 4292 void NAME(FloatRegister Zdn, FloatRegister Zm, FloatRegister Zk) { \ 4293 starti; \ 4294 f(0b00000100, 31, 24), f(opc, 23, 21), rf(Zm, 16); \ 4295 f(0b001110, 15, 10), rf(Zk, 5), rf(Zdn, 0); \ 4296 } 4297 4298 INSN(sve_eor3, 0b001); // Bitwise exclusive OR of three vectors 4299 #undef INSN 4300 4301 // SVE2 saturating operations - predicate 4302 #define INSN(NAME, op1, op2) \ 4303 void NAME(FloatRegister Zdn, SIMD_RegVariant T, PRegister Pg, FloatRegister Znm) { \ 4304 assert(T != Q, "invalid register variant"); \ 4305 sve_predicate_reg_insn(op1, op2, Zdn, T, Pg, Znm); \ 4306 } 4307 4308 INSN(sve_sqadd, 0b01000100, 0b011000100); // signed saturating add 4309 INSN(sve_sqsub, 0b01000100, 0b011010100); // signed saturating sub 4310 INSN(sve_uqadd, 0b01000100, 0b011001100); // unsigned saturating add 4311 INSN(sve_uqsub, 0b01000100, 0b011011100); // unsigned saturating sub 4312 4313 #undef INSN 4314 4315 Assembler(CodeBuffer* code) : AbstractAssembler(code) { 4316 } 4317 4318 // Stack overflow checking 4319 virtual void bang_stack_with_offset(int offset); 4320 4321 static bool operand_valid_for_logical_immediate(bool is32, uint64_t imm); 4322 static bool operand_valid_for_sve_logical_immediate(unsigned elembits, uint64_t imm); 4323 static bool operand_valid_for_add_sub_immediate(int64_t imm); 4324 static bool operand_valid_for_sve_add_sub_immediate(int64_t imm); 4325 static bool operand_valid_for_float_immediate(double imm); 4326 static int operand_valid_for_movi_immediate(uint64_t imm64, SIMD_Arrangement T); 4327 static bool operand_valid_for_sve_dup_immediate(int64_t imm); 4328 4329 void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0); 4330 void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0); 4331 }; 4332 4333 inline Assembler::Membar_mask_bits operator|(Assembler::Membar_mask_bits a, 4334 Assembler::Membar_mask_bits b) { 4335 return Assembler::Membar_mask_bits(unsigned(a)|unsigned(b)); 4336 } 4337 4338 Instruction_aarch64::~Instruction_aarch64() { 4339 assem->emit_int32(insn); 4340 assert_cond(get_bits() == 0xffffffff); 4341 } 4342 4343 #undef f 4344 #undef sf 4345 #undef rf 4346 #undef srf 4347 #undef zrf 4348 #undef prf 4349 #undef pgrf 4350 #undef fixed 4351 4352 #undef starti 4353 4354 // Invert a condition 4355 inline Assembler::Condition operator~(const Assembler::Condition cond) { 4356 return Assembler::Condition(int(cond) ^ 1); 4357 } 4358 4359 extern "C" void das(uint64_t start, int len); 4360 4361 #endif // CPU_AARCH64_ASSEMBLER_AARCH64_HPP