1 /*
   2  * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_ASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_ASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/register.hpp"
  30 #include "metaprogramming/enableIf.hpp"
  31 #include "utilities/checkedCast.hpp"
  32 #include "utilities/debug.hpp"
  33 #include "utilities/globalDefinitions.hpp"
  34 #include "utilities/macros.hpp"
  35 #include <type_traits>
  36 
  37 #ifdef __GNUC__
  38 
  39 // __nop needs volatile so that compiler doesn't optimize it away
  40 #define NOP() asm volatile ("nop");
  41 
  42 #elif defined(_MSC_VER)
  43 
  44 // Use MSVC intrinsic: https://docs.microsoft.com/en-us/cpp/intrinsics/arm64-intrinsics?view=vs-2019#I
  45 #define NOP() __nop();
  46 
  47 #endif
  48 
  49 
  50 // definitions of various symbolic names for machine registers
  51 
  52 // First intercalls between C and Java which use 8 general registers
  53 // and 8 floating registers
  54 
  55 // we also have to copy between x86 and ARM registers but that's a
  56 // secondary complication -- not all code employing C call convention
  57 // executes as x86 code though -- we generate some of it
  58 
  59 class Argument {
  60  public:
  61   enum {
  62     n_int_register_parameters_c   = 8,  // r0, r1, ... r7 (c_rarg0, c_rarg1, ...)
  63     n_float_register_parameters_c = 8,  // v0, v1, ... v7 (c_farg0, c_farg1, ... )
  64 
  65     n_int_register_parameters_j   = 8, // r1, ... r7, r0 (rj_rarg0, j_rarg1, ...
  66     n_float_register_parameters_j = 8  // v0, v1, ... v7 (j_farg0, j_farg1, ...
  67   };
  68 };
  69 
  70 constexpr Register c_rarg0 = r0;
  71 constexpr Register c_rarg1 = r1;
  72 constexpr Register c_rarg2 = r2;
  73 constexpr Register c_rarg3 = r3;
  74 constexpr Register c_rarg4 = r4;
  75 constexpr Register c_rarg5 = r5;
  76 constexpr Register c_rarg6 = r6;
  77 constexpr Register c_rarg7 = r7;
  78 
  79 constexpr FloatRegister c_farg0 = v0;
  80 constexpr FloatRegister c_farg1 = v1;
  81 constexpr FloatRegister c_farg2 = v2;
  82 constexpr FloatRegister c_farg3 = v3;
  83 constexpr FloatRegister c_farg4 = v4;
  84 constexpr FloatRegister c_farg5 = v5;
  85 constexpr FloatRegister c_farg6 = v6;
  86 constexpr FloatRegister c_farg7 = v7;
  87 
  88 // Symbolically name the register arguments used by the Java calling convention.
  89 // We have control over the convention for java so we can do what we please.
  90 // What pleases us is to offset the java calling convention so that when
  91 // we call a suitable jni method the arguments are lined up and we don't
  92 // have to do much shuffling. A suitable jni method is non-static and a
  93 // small number of arguments
  94 //
  95 //  |--------------------------------------------------------------------|
  96 //  | c_rarg0  c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5 c_rarg6 c_rarg7  |
  97 //  |--------------------------------------------------------------------|
  98 //  | r0       r1       r2      r3      r4      r5      r6      r7       |
  99 //  |--------------------------------------------------------------------|
 100 //  | j_rarg7  j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4 j_rarg5 j_rarg6  |
 101 //  |--------------------------------------------------------------------|
 102 
 103 
 104 constexpr Register j_rarg0 = c_rarg1;
 105 constexpr Register j_rarg1 = c_rarg2;
 106 constexpr Register j_rarg2 = c_rarg3;
 107 constexpr Register j_rarg3 = c_rarg4;
 108 constexpr Register j_rarg4 = c_rarg5;
 109 constexpr Register j_rarg5 = c_rarg6;
 110 constexpr Register j_rarg6 = c_rarg7;
 111 constexpr Register j_rarg7 = c_rarg0;
 112 
 113 // Java floating args are passed as per C
 114 
 115 constexpr FloatRegister j_farg0 = v0;
 116 constexpr FloatRegister j_farg1 = v1;
 117 constexpr FloatRegister j_farg2 = v2;
 118 constexpr FloatRegister j_farg3 = v3;
 119 constexpr FloatRegister j_farg4 = v4;
 120 constexpr FloatRegister j_farg5 = v5;
 121 constexpr FloatRegister j_farg6 = v6;
 122 constexpr FloatRegister j_farg7 = v7;
 123 
 124 // registers used to hold VM data either temporarily within a method
 125 // or across method calls
 126 
 127 // volatile (caller-save) registers
 128 
 129 // r8 is used for indirect result location return
 130 // we use it and r9 as scratch registers
 131 constexpr Register rscratch1 = r8;
 132 constexpr Register rscratch2 = r9;
 133 
 134 // current method -- must be in a call-clobbered register
 135 constexpr Register rmethod = r12;
 136 
 137 // non-volatile (callee-save) registers are r16-29
 138 // of which the following are dedicated global state
 139 
 140 constexpr Register lr            = r30; // link register
 141 constexpr Register rfp           = r29; // frame pointer
 142 constexpr Register rthread       = r28; // current thread
 143 constexpr Register rheapbase     = r27; // base of heap
 144 constexpr Register rcpool        = r26; // constant pool cache
 145 constexpr Register rlocals       = r24; // locals on stack
 146 constexpr Register rbcp          = r22; // bytecode pointer
 147 constexpr Register rdispatch     = r21; // dispatch table base
 148 constexpr Register esp           = r20; // Java expression stack pointer
 149 constexpr Register r19_sender_sp = r19; // sender's SP while in interpreter
 150 
 151 // Preserved predicate register with all elements set TRUE.
 152 constexpr PRegister ptrue = p7;
 153 
 154 #define assert_cond(ARG1) assert(ARG1, #ARG1)
 155 
 156 namespace asm_util {
 157   uint32_t encode_logical_immediate(bool is32, uint64_t imm);
 158   uint32_t encode_sve_logical_immediate(unsigned elembits, uint64_t imm);
 159   bool operand_valid_for_immediate_bits(int64_t imm, unsigned nbits);
 160 };
 161 
 162 using namespace asm_util;
 163 
 164 
 165 class Assembler;
 166 
 167 class Instruction_aarch64 {
 168   unsigned insn;
 169 #ifdef ASSERT
 170   unsigned bits;
 171 #endif
 172   Assembler *assem;
 173 
 174 public:
 175 
 176   Instruction_aarch64(class Assembler *as) {
 177 #ifdef ASSERT
 178     bits = 0;
 179 #endif
 180     insn = 0;
 181     assem = as;
 182   }
 183 
 184   inline ~Instruction_aarch64();
 185 
 186   unsigned &get_insn() { return insn; }
 187 #ifdef ASSERT
 188   unsigned &get_bits() { return bits; }
 189 #endif
 190 
 191   static inline int32_t extend(unsigned val, int hi = 31, int lo = 0) {
 192     union {
 193       unsigned u;
 194       int n;
 195     };
 196 
 197     u = val << (31 - hi);
 198     n = n >> (31 - hi + lo);
 199     return n;
 200   }
 201 
 202   static inline uint32_t extract(uint32_t val, int msb, int lsb) {
 203     int nbits = msb - lsb + 1;
 204     assert_cond(msb >= lsb);
 205     uint32_t mask = checked_cast<uint32_t>(right_n_bits(nbits));
 206     uint32_t result = val >> lsb;
 207     result &= mask;
 208     return result;
 209   }
 210 
 211   static inline int32_t sextract(uint32_t val, int msb, int lsb) {
 212     uint32_t uval = extract(val, msb, lsb);
 213     return extend(uval, msb - lsb);
 214   }
 215 
 216   static ALWAYSINLINE void patch(address a, int msb, int lsb, uint64_t val) {
 217     int nbits = msb - lsb + 1;
 218     guarantee(val < (1ULL << nbits), "Field too big for insn");
 219     assert_cond(msb >= lsb);
 220     unsigned mask = checked_cast<unsigned>(right_n_bits(nbits));
 221     val <<= lsb;
 222     mask <<= lsb;
 223     unsigned target = *(unsigned *)a;
 224     target &= ~mask;
 225     target |= (unsigned)val;
 226     *(unsigned *)a = target;
 227   }
 228 
 229   static void spatch(address a, int msb, int lsb, int64_t val) {
 230     int nbits = msb - lsb + 1;
 231     int64_t chk = val >> (nbits - 1);
 232     guarantee (chk == -1 || chk == 0, "Field too big for insn at " INTPTR_FORMAT, p2i(a));
 233     uint64_t uval = val;
 234     unsigned mask = checked_cast<unsigned>(right_n_bits(nbits));
 235     uval &= mask;
 236     uval <<= lsb;
 237     mask <<= lsb;
 238     unsigned target = *(unsigned *)a;
 239     target &= ~mask;
 240     target |= (unsigned)uval;
 241     *(unsigned *)a = target;
 242   }
 243 
 244   void f(unsigned val, int msb, int lsb) {
 245     int nbits = msb - lsb + 1;
 246     guarantee(val < (1ULL << nbits), "Field too big for insn");
 247     assert_cond(msb >= lsb);
 248     val <<= lsb;
 249     insn |= val;
 250 #ifdef ASSERT
 251     unsigned mask = checked_cast<unsigned>(right_n_bits(nbits));
 252     mask <<= lsb;
 253     assert_cond((bits & mask) == 0);
 254     bits |= mask;
 255 #endif
 256   }
 257 
 258   void f(unsigned val, int bit) {
 259     f(val, bit, bit);
 260   }
 261 
 262   void sf(int64_t val, int msb, int lsb) {
 263     int nbits = msb - lsb + 1;
 264     int64_t chk = val >> (nbits - 1);
 265     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 266     uint64_t uval = val;
 267     unsigned mask = checked_cast<unsigned>(right_n_bits(nbits));
 268     uval &= mask;
 269     f((unsigned)uval, lsb + nbits - 1, lsb);
 270   }
 271 
 272   void rf(Register r, int lsb) {
 273     f(r->raw_encoding(), lsb + 4, lsb);
 274   }
 275 
 276   // reg|ZR
 277   void zrf(Register r, int lsb) {
 278     f(r->raw_encoding() - (r == zr), lsb + 4, lsb);
 279   }
 280 
 281   // reg|SP
 282   void srf(Register r, int lsb) {
 283     f(r == sp ? 31 : r->raw_encoding(), lsb + 4, lsb);
 284   }
 285 
 286   void rf(FloatRegister r, int lsb) {
 287     f(r->raw_encoding(), lsb + 4, lsb);
 288   }
 289 
 290   void prf(PRegister r, int lsb) {
 291     f(r->raw_encoding(), lsb + 3, lsb);
 292   }
 293 
 294   void pgrf(PRegister r, int lsb) {
 295     f(r->raw_encoding(), lsb + 2, lsb);
 296   }
 297 
 298   unsigned get(int msb = 31, int lsb = 0) {
 299     int nbits = msb - lsb + 1;
 300     unsigned mask = checked_cast<unsigned>(right_n_bits(nbits)) << lsb;
 301     assert_cond((bits & mask) == mask);
 302     return (insn & mask) >> lsb;
 303   }
 304 };
 305 
 306 #define starti Instruction_aarch64 current_insn(this);
 307 
 308 class PrePost {
 309   int _offset;
 310   Register _r;
 311 protected:
 312   PrePost(Register reg, int o) : _offset(o), _r(reg) { }
 313   ~PrePost() = default;
 314   PrePost(const PrePost&) = default;
 315   PrePost& operator=(const PrePost&) = default;
 316 public:
 317   int offset() const { return _offset; }
 318   Register reg() const { return _r; }
 319 };
 320 
 321 class Pre : public PrePost {
 322 public:
 323   Pre(Register reg, int o) : PrePost(reg, o) { }
 324 };
 325 
 326 class Post : public PrePost {
 327   Register _idx;
 328   bool _is_postreg;
 329 public:
 330   Post(Register reg, int o) : PrePost(reg, o), _idx(noreg), _is_postreg(false) {}
 331   Post(Register reg, Register idx) : PrePost(reg, 0), _idx(idx), _is_postreg(true) {}
 332   Register idx_reg() const { return _idx; }
 333   bool is_postreg() const { return _is_postreg; }
 334 };
 335 
 336 namespace ext
 337 {
 338   enum operation { uxtb, uxth, uxtw, uxtx, sxtb, sxth, sxtw, sxtx };
 339 };
 340 
 341 // Addressing modes
 342 class Address {
 343  public:
 344 
 345   enum mode { no_mode, base_plus_offset, pre, post, post_reg,
 346               base_plus_offset_reg, literal };
 347 
 348   // Shift and extend for base reg + reg offset addressing
 349   class extend {
 350     int _option, _shift;
 351     ext::operation _op;
 352   public:
 353     extend() { }
 354     extend(int s, int o, ext::operation op) : _option(o), _shift(s), _op(op) { }
 355     int option() const{ return _option; }
 356     int shift() const { return _shift; }
 357     ext::operation op() const { return _op; }
 358   };
 359 
 360   static extend uxtw(int shift = -1) { return extend(shift, 0b010, ext::uxtw); }
 361   static extend lsl(int shift = -1)  { return extend(shift, 0b011, ext::uxtx); }
 362   static extend sxtw(int shift = -1) { return extend(shift, 0b110, ext::sxtw); }
 363   static extend sxtx(int shift = -1) { return extend(shift, 0b111, ext::sxtx); }
 364 
 365  private:
 366   struct Nonliteral {
 367     Nonliteral(Register base, Register index, int64_t offset, extend ext = extend())
 368       : _base(base), _index(index), _offset(offset), _ext(ext) {}
 369     Register _base;
 370     Register _index;
 371     int64_t _offset;
 372     extend _ext;
 373   };
 374 
 375   struct Literal {
 376     Literal(address target, const RelocationHolder& rspec)
 377       : _target(target), _rspec(rspec) {}
 378 
 379     // If the target is far we'll need to load the ea of this to a
 380     // register to reach it. Otherwise if near we can do PC-relative
 381     // addressing.
 382     address _target;
 383 
 384     RelocationHolder _rspec;
 385   };
 386 
 387   void assert_is_nonliteral() const NOT_DEBUG_RETURN;
 388   void assert_is_literal() const NOT_DEBUG_RETURN;
 389 
 390   // Discriminated union, based on _mode.
 391   // - no_mode: uses dummy _nonliteral, for ease of copying.
 392   // - literal: only _literal is used.
 393   // - others: only _nonliteral is used.
 394   enum mode _mode;
 395   union {
 396     Nonliteral _nonliteral;
 397     Literal _literal;
 398   };
 399 
 400   // Helper for copy constructor and assignment operator.
 401   // Copy mode-relevant part of a into this.
 402   void copy_data(const Address& a) {
 403     assert(_mode == a._mode, "precondition");
 404     if (_mode == literal) {
 405       new (&_literal) Literal(a._literal);
 406     } else {
 407       // non-literal mode or no_mode.
 408       new (&_nonliteral) Nonliteral(a._nonliteral);
 409     }
 410   }
 411 
 412  public:
 413   // no_mode initializes _nonliteral for ease of copying.
 414   Address() :
 415     _mode(no_mode),
 416     _nonliteral(noreg, noreg, 0)
 417   {}
 418 
 419   Address(Register r) :
 420     _mode(base_plus_offset),
 421     _nonliteral(r, noreg, 0)
 422   {}
 423 
 424   template<typename T, ENABLE_IF(std::is_integral<T>::value)>
 425   Address(Register r, T o) :
 426     _mode(base_plus_offset),
 427     _nonliteral(r, noreg, o)
 428   {}
 429 
 430   Address(Register r, ByteSize disp) : Address(r, in_bytes(disp)) {}
 431 
 432   Address(Register r, Register r1, extend ext = lsl()) :
 433     _mode(base_plus_offset_reg),
 434     _nonliteral(r, r1, 0, ext)
 435   {}
 436 
 437   Address(Pre p) :
 438     _mode(pre),
 439     _nonliteral(p.reg(), noreg, p.offset())
 440   {}
 441 
 442   Address(Post p) :
 443     _mode(p.is_postreg() ? post_reg : post),
 444     _nonliteral(p.reg(), p.idx_reg(), p.offset())
 445   {}
 446 
 447   Address(address target, const RelocationHolder& rspec) :
 448     _mode(literal),
 449     _literal(target, rspec)
 450   {}
 451 
 452   Address(address target, relocInfo::relocType rtype = relocInfo::external_word_type);
 453 
 454   Address(Register base, RegisterOrConstant index, extend ext = lsl()) {
 455     if (index.is_register()) {
 456       _mode = base_plus_offset_reg;
 457       new (&_nonliteral) Nonliteral(base, index.as_register(), 0, ext);
 458     } else {
 459       guarantee(ext.option() == ext::uxtx, "should be");
 460       assert(index.is_constant(), "should be");
 461       _mode = base_plus_offset;
 462       new (&_nonliteral) Nonliteral(base,
 463                                     noreg,
 464                                     index.as_constant() << ext.shift());
 465     }
 466   }
 467 
 468   Address(const Address& a) : _mode(a._mode) { copy_data(a); }
 469 
 470   // Verify the value is trivially destructible regardless of mode, so our
 471   // destructor can also be trivial, and so our assignment operator doesn't
 472   // need to destruct the old value before copying over it.
 473   static_assert(std::is_trivially_destructible<Literal>::value, "must be");
 474   static_assert(std::is_trivially_destructible<Nonliteral>::value, "must be");
 475 
 476   Address& operator=(const Address& a) {
 477     _mode = a._mode;
 478     copy_data(a);
 479     return *this;
 480   }
 481 
 482   ~Address() = default;
 483 
 484   Register base() const {
 485     assert_is_nonliteral();
 486     return _nonliteral._base;
 487   }
 488 
 489   int64_t offset() const {
 490     assert_is_nonliteral();
 491     return _nonliteral._offset;
 492   }
 493 
 494   Register index() const {
 495     assert_is_nonliteral();
 496     return _nonliteral._index;
 497   }
 498 
 499   extend ext() const {
 500     assert_is_nonliteral();
 501     return _nonliteral._ext;
 502   }
 503 
 504   mode getMode() const {
 505     return _mode;
 506   }
 507 
 508   bool uses(Register reg) const {
 509     switch (_mode) {
 510     case literal:
 511     case no_mode:
 512       return false;
 513     case base_plus_offset:
 514     case base_plus_offset_reg:
 515     case pre:
 516     case post:
 517     case post_reg:
 518       return base() == reg || index() == reg;
 519     default:
 520       ShouldNotReachHere();
 521       return false;
 522     }
 523   }
 524 
 525   address target() const {
 526     assert_is_literal();
 527     return _literal._target;
 528   }
 529 
 530   const RelocationHolder& rspec() const {
 531     assert_is_literal();
 532     return _literal._rspec;
 533   }
 534 
 535   void encode(Instruction_aarch64 *i) const {
 536     i->f(0b111, 29, 27);
 537     i->srf(base(), 5);
 538 
 539     switch(_mode) {
 540     case base_plus_offset:
 541       {
 542         unsigned size = i->get(31, 30);
 543         if (i->get(26, 26) && i->get(23, 23)) {
 544           // SIMD Q Type - Size = 128 bits
 545           assert(size == 0, "bad size");
 546           size = 0b100;
 547         }
 548         assert(offset_ok_for_immed(offset(), size),
 549                "must be, was: " INT64_FORMAT ", %d", offset(), size);
 550         unsigned mask = (1 << size) - 1;
 551         if (offset() < 0 || offset() & mask) {
 552           i->f(0b00, 25, 24);
 553           i->f(0, 21), i->f(0b00, 11, 10);
 554           i->sf(offset(), 20, 12);
 555         } else {
 556           i->f(0b01, 25, 24);
 557           i->f(checked_cast<unsigned>(offset() >> size), 21, 10);
 558         }
 559       }
 560       break;
 561 
 562     case base_plus_offset_reg:
 563       {
 564         i->f(0b00, 25, 24);
 565         i->f(1, 21);
 566         i->rf(index(), 16);
 567         i->f(ext().option(), 15, 13);
 568         unsigned size = i->get(31, 30);
 569         if (i->get(26, 26) && i->get(23, 23)) {
 570           // SIMD Q Type - Size = 128 bits
 571           assert(size == 0, "bad size");
 572           size = 0b100;
 573         }
 574         if (size == 0) // It's a byte
 575           i->f(ext().shift() >= 0, 12);
 576         else {
 577           guarantee(ext().shift() <= 0 || ext().shift() == (int)size, "bad shift");
 578           i->f(ext().shift() > 0, 12);
 579         }
 580         i->f(0b10, 11, 10);
 581       }
 582       break;
 583 
 584     case pre:
 585       i->f(0b00, 25, 24);
 586       i->f(0, 21), i->f(0b11, 11, 10);
 587       i->sf(offset(), 20, 12);
 588       break;
 589 
 590     case post:
 591       i->f(0b00, 25, 24);
 592       i->f(0, 21), i->f(0b01, 11, 10);
 593       i->sf(offset(), 20, 12);
 594       break;
 595 
 596     default:
 597       ShouldNotReachHere();
 598     }
 599   }
 600 
 601   void encode_pair(Instruction_aarch64 *i) const {
 602     switch(_mode) {
 603     case base_plus_offset:
 604       i->f(0b010, 25, 23);
 605       break;
 606     case pre:
 607       i->f(0b011, 25, 23);
 608       break;
 609     case post:
 610       i->f(0b001, 25, 23);
 611       break;
 612     default:
 613       ShouldNotReachHere();
 614     }
 615 
 616     unsigned size; // Operand shift in 32-bit words
 617 
 618     if (i->get(26, 26)) { // float
 619       switch(i->get(31, 30)) {
 620       case 0b10:
 621         size = 2; break;
 622       case 0b01:
 623         size = 1; break;
 624       case 0b00:
 625         size = 0; break;
 626       default:
 627         ShouldNotReachHere();
 628         size = 0;  // unreachable
 629       }
 630     } else {
 631       size = i->get(31, 31);
 632     }
 633 
 634     size = 4 << size;
 635     guarantee(offset() % size == 0, "bad offset");
 636     i->sf(offset() / size, 21, 15);
 637     i->srf(base(), 5);
 638   }
 639 
 640   void encode_nontemporal_pair(Instruction_aarch64 *i) const {
 641     guarantee(_mode == base_plus_offset, "Bad addressing mode for nontemporal op");
 642     i->f(0b000, 25, 23);
 643     unsigned size = i->get(31, 31);
 644     size = 4 << size;
 645     guarantee(offset() % size == 0, "bad offset");
 646     i->sf(offset() / size, 21, 15);
 647     i->srf(base(), 5);
 648   }
 649 
 650   void lea(MacroAssembler *, Register) const;
 651 
 652   static bool offset_ok_for_immed(int64_t offset, uint shift);
 653 
 654   static bool offset_ok_for_sve_immed(int64_t offset, int shift, int vl /* sve vector length */) {
 655     if (offset % vl == 0) {
 656       // Convert address offset into sve imm offset (MUL VL).
 657       int64_t sve_offset = offset / vl;
 658       int32_t range = 1 << (shift - 1);
 659       if ((-range <= sve_offset) && (sve_offset < range)) {
 660         // sve_offset can be encoded
 661         return true;
 662       }
 663     }
 664     return false;
 665   }
 666 };
 667 
 668 // Convenience classes
 669 class RuntimeAddress: public Address {
 670 
 671   public:
 672 
 673   RuntimeAddress(address target) : Address(target, relocInfo::runtime_call_type) {}
 674 
 675 };
 676 
 677 class OopAddress: public Address {
 678 
 679   public:
 680 
 681   OopAddress(address target) : Address(target, relocInfo::oop_type){}
 682 
 683 };
 684 
 685 class ExternalAddress: public Address {
 686  private:
 687   static relocInfo::relocType reloc_for_target(address target) {
 688     // Sometimes ExternalAddress is used for values which aren't
 689     // exactly addresses, like the card table base.
 690     // external_word_type can't be used for values in the first page
 691     // so just skip the reloc in that case.
 692     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
 693   }
 694 
 695  public:
 696 
 697   ExternalAddress(address target) : Address(target, reloc_for_target(target)) {}
 698 
 699 };
 700 
 701 class InternalAddress: public Address {
 702 
 703   public:
 704 
 705   InternalAddress(address target) : Address(target, relocInfo::internal_word_type) {}
 706 };
 707 
 708 const int FPUStateSizeInWords = FloatRegister::number_of_registers * FloatRegister::save_slots_per_register;
 709 
 710 typedef enum {
 711   PLDL1KEEP = 0b00000, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM,
 712   PSTL1KEEP = 0b10000, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM,
 713   PLIL1KEEP = 0b01000, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM
 714 } prfop;
 715 
 716 class Assembler : public AbstractAssembler {
 717 
 718 public:
 719 
 720 #ifndef PRODUCT
 721   static const uintptr_t asm_bp;
 722 
 723   void emit_int32(jint x) {
 724     if ((uintptr_t)pc() == asm_bp)
 725       NOP();
 726     AbstractAssembler::emit_int32(x);
 727   }
 728 #else
 729   void emit_int32(jint x) {
 730     AbstractAssembler::emit_int32(x);
 731   }
 732 #endif
 733 
 734   enum { instruction_size = 4 };
 735 
 736   //---<  calculate length of instruction  >---
 737   // We just use the values set above.
 738   // instruction must start at passed address
 739   static unsigned int instr_len(unsigned char *instr) { return instruction_size; }
 740 
 741   //---<  longest instructions  >---
 742   static unsigned int instr_maxlen() { return instruction_size; }
 743 
 744   Address adjust(Register base, int offset, bool preIncrement) {
 745     if (preIncrement)
 746       return Address(Pre(base, offset));
 747     else
 748       return Address(Post(base, offset));
 749   }
 750 
 751   Address pre(Register base, int offset) {
 752     return adjust(base, offset, true);
 753   }
 754 
 755   Address post(Register base, int offset) {
 756     return adjust(base, offset, false);
 757   }
 758 
 759   Address post(Register base, Register idx) {
 760     return Address(Post(base, idx));
 761   }
 762 
 763   static address locate_next_instruction(address inst);
 764 
 765 #define f current_insn.f
 766 #define sf current_insn.sf
 767 #define rf current_insn.rf
 768 #define srf current_insn.srf
 769 #define zrf current_insn.zrf
 770 #define prf current_insn.prf
 771 #define pgrf current_insn.pgrf
 772 
 773   typedef void (Assembler::* uncond_branch_insn)(address dest);
 774   typedef void (Assembler::* compare_and_branch_insn)(Register Rt, address dest);
 775   typedef void (Assembler::* test_and_branch_insn)(Register Rt, int bitpos, address dest);
 776   typedef void (Assembler::* prefetch_insn)(address target, prfop);
 777 
 778   void wrap_label(Label &L, uncond_branch_insn insn);
 779   void wrap_label(Register r, Label &L, compare_and_branch_insn insn);
 780   void wrap_label(Register r, int bitpos, Label &L, test_and_branch_insn insn);
 781   void wrap_label(Label &L, prfop, prefetch_insn insn);
 782 
 783   // PC-rel. addressing
 784 
 785   void adr(Register Rd, address dest);
 786   void _adrp(Register Rd, address dest);
 787 
 788   void adr(Register Rd, const Address &dest);
 789   void _adrp(Register Rd, const Address &dest);
 790 
 791   void adr(Register Rd, Label &L) {
 792     wrap_label(Rd, L, &Assembler::Assembler::adr);
 793   }
 794   void _adrp(Register Rd, Label &L) {
 795     wrap_label(Rd, L, &Assembler::_adrp);
 796   }
 797 
 798   void adrp(Register Rd, const Address &dest, uint64_t &offset) = delete;
 799 
 800   void prfm(const Address &adr, prfop pfop = PLDL1KEEP);
 801 
 802 #undef INSN
 803 
 804   void add_sub_immediate(Instruction_aarch64 &current_insn, Register Rd, Register Rn,
 805                          unsigned uimm, int op, int negated_op);
 806 
 807   // Add/subtract (immediate)
 808 #define INSN(NAME, decode, negated)                                     \
 809   void NAME(Register Rd, Register Rn, unsigned imm, unsigned shift) {   \
 810     starti;                                                             \
 811     f(decode, 31, 29), f(0b10001, 28, 24), f(shift, 23, 22), f(imm, 21, 10); \
 812     zrf(Rd, 0), srf(Rn, 5);                                             \
 813   }                                                                     \
 814                                                                         \
 815   void NAME(Register Rd, Register Rn, unsigned imm) {                   \
 816     starti;                                                             \
 817     add_sub_immediate(current_insn, Rd, Rn, imm, decode, negated);      \
 818   }
 819 
 820   INSN(addsw, 0b001, 0b011);
 821   INSN(subsw, 0b011, 0b001);
 822   INSN(adds,  0b101, 0b111);
 823   INSN(subs,  0b111, 0b101);
 824 
 825 #undef INSN
 826 
 827 #define INSN(NAME, decode, negated)                     \
 828   void NAME(Register Rd, Register Rn, unsigned imm) {   \
 829     starti;                                             \
 830     add_sub_immediate(current_insn, Rd, Rn, imm, decode, negated);     \
 831   }
 832 
 833   INSN(addw, 0b000, 0b010);
 834   INSN(subw, 0b010, 0b000);
 835   INSN(add,  0b100, 0b110);
 836   INSN(sub,  0b110, 0b100);
 837 
 838 #undef INSN
 839 
 840  // Logical (immediate)
 841 #define INSN(NAME, decode, is32)                                \
 842   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 843     starti;                                                     \
 844     uint32_t val = encode_logical_immediate(is32, imm);         \
 845     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 846     srf(Rd, 0), zrf(Rn, 5);                                     \
 847   }
 848 
 849   INSN(andw, 0b000, true);
 850   INSN(orrw, 0b001, true);
 851   INSN(eorw, 0b010, true);
 852   INSN(andr, 0b100, false);
 853   INSN(orr,  0b101, false);
 854   INSN(eor,  0b110, false);
 855 
 856 #undef INSN
 857 
 858 #define INSN(NAME, decode, is32)                                \
 859   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 860     starti;                                                     \
 861     uint32_t val = encode_logical_immediate(is32, imm);         \
 862     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 863     zrf(Rd, 0), zrf(Rn, 5);                                     \
 864   }
 865 
 866   INSN(ands, 0b111, false);
 867   INSN(andsw, 0b011, true);
 868 
 869 #undef INSN
 870 
 871   // Move wide (immediate)
 872 #define INSN(NAME, opcode)                                              \
 873   void NAME(Register Rd, unsigned imm, unsigned shift = 0) {            \
 874     assert_cond((shift/16)*16 == shift);                                \
 875     starti;                                                             \
 876     f(opcode, 31, 29), f(0b100101, 28, 23), f(shift/16, 22, 21),        \
 877       f(imm, 20, 5);                                                    \
 878     zrf(Rd, 0);                                                         \
 879   }
 880 
 881   INSN(movnw, 0b000);
 882   INSN(movzw, 0b010);
 883   INSN(movkw, 0b011);
 884   INSN(movn,  0b100);
 885   INSN(movz,  0b110);
 886   INSN(movk,  0b111);
 887 
 888 #undef INSN
 889 
 890   // Bitfield
 891 #define INSN(NAME, opcode, size)                                        \
 892   void NAME(Register Rd, Register Rn, unsigned immr, unsigned imms) {   \
 893     starti;                                                             \
 894     guarantee(size == 1 || (immr < 32 && imms < 32), "incorrect immr/imms");\
 895     f(opcode, 31, 22), f(immr, 21, 16), f(imms, 15, 10);                \
 896     zrf(Rn, 5), rf(Rd, 0);                                              \
 897   }
 898 
 899   INSN(sbfmw, 0b0001001100, 0);
 900   INSN(bfmw,  0b0011001100, 0);
 901   INSN(ubfmw, 0b0101001100, 0);
 902   INSN(sbfm,  0b1001001101, 1);
 903   INSN(bfm,   0b1011001101, 1);
 904   INSN(ubfm,  0b1101001101, 1);
 905 
 906 #undef INSN
 907 
 908   // Extract
 909 #define INSN(NAME, opcode, size)                                        \
 910   void NAME(Register Rd, Register Rn, Register Rm, unsigned imms) {     \
 911     starti;                                                             \
 912     guarantee(size == 1 || imms < 32, "incorrect imms");                \
 913     f(opcode, 31, 21), f(imms, 15, 10);                                 \
 914     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                                \
 915   }
 916 
 917   INSN(extrw, 0b00010011100, 0);
 918   INSN(extr,  0b10010011110, 1);
 919 
 920 #undef INSN
 921 
 922   // The maximum range of a branch is fixed for the AArch64
 923   // architecture.  In debug mode we shrink it in order to test
 924   // trampolines, but not so small that branches in the interpreter
 925   // are out of range.
 926   static const uint64_t branch_range = NOT_DEBUG(128 * M) DEBUG_ONLY(2 * M);
 927 
 928   static bool reachable_from_branch_at(address branch, address target) {
 929     return uabs(target - branch) < branch_range;
 930   }
 931 
 932   // Unconditional branch (immediate)
 933 #define INSN(NAME, opcode)                                              \
 934   void NAME(address dest) {                                             \
 935     starti;                                                             \
 936     int64_t offset = (dest - pc()) >> 2;                                \
 937     DEBUG_ONLY(assert(reachable_from_branch_at(pc(), dest), "debug only")); \
 938     f(opcode, 31), f(0b00101, 30, 26), sf(offset, 25, 0);               \
 939   }                                                                     \
 940   void NAME(Label &L) {                                                 \
 941     wrap_label(L, &Assembler::NAME);                                    \
 942   }                                                                     \
 943   void NAME(const Address &dest);
 944 
 945   INSN(b, 0);
 946   INSN(bl, 1);
 947 
 948 #undef INSN
 949 
 950   // Compare & branch (immediate)
 951 #define INSN(NAME, opcode)                              \
 952   void NAME(Register Rt, address dest) {                \
 953     int64_t offset = (dest - pc()) >> 2;                \
 954     starti;                                             \
 955     f(opcode, 31, 24), sf(offset, 23, 5), rf(Rt, 0);    \
 956   }                                                     \
 957   void NAME(Register Rt, Label &L) {                    \
 958     wrap_label(Rt, L, &Assembler::NAME);                \
 959   }
 960 
 961   INSN(cbzw,  0b00110100);
 962   INSN(cbnzw, 0b00110101);
 963   INSN(cbz,   0b10110100);
 964   INSN(cbnz,  0b10110101);
 965 
 966 #undef INSN
 967 
 968   // Test & branch (immediate)
 969 #define INSN(NAME, opcode)                                              \
 970   void NAME(Register Rt, int bitpos, address dest) {                    \
 971     int64_t offset = (dest - pc()) >> 2;                                \
 972     int b5 = bitpos >> 5;                                               \
 973     bitpos &= 0x1f;                                                     \
 974     starti;                                                             \
 975     f(b5, 31), f(opcode, 30, 24), f(bitpos, 23, 19), sf(offset, 18, 5); \
 976     rf(Rt, 0);                                                          \
 977   }                                                                     \
 978   void NAME(Register Rt, int bitpos, Label &L) {                        \
 979     wrap_label(Rt, bitpos, L, &Assembler::NAME);                        \
 980   }
 981 
 982   INSN(tbz,  0b0110110);
 983   INSN(tbnz, 0b0110111);
 984 
 985 #undef INSN
 986 
 987   // Conditional branch (immediate)
 988   enum Condition
 989     {EQ, NE, HS, CS=HS, LO, CC=LO, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE, AL, NV};
 990 
 991   void br(Condition  cond, address dest) {
 992     int64_t offset = (dest - pc()) >> 2;
 993     starti;
 994     f(0b0101010, 31, 25), f(0, 24), sf(offset, 23, 5), f(0, 4), f(cond, 3, 0);
 995   }
 996 
 997 #define INSN(NAME, cond)                        \
 998   void NAME(address dest) {                     \
 999     br(cond, dest);                             \
1000   }
1001 
1002   INSN(beq, EQ);
1003   INSN(bne, NE);
1004   INSN(bhs, HS);
1005   INSN(bcs, CS);
1006   INSN(blo, LO);
1007   INSN(bcc, CC);
1008   INSN(bmi, MI);
1009   INSN(bpl, PL);
1010   INSN(bvs, VS);
1011   INSN(bvc, VC);
1012   INSN(bhi, HI);
1013   INSN(bls, LS);
1014   INSN(bge, GE);
1015   INSN(blt, LT);
1016   INSN(bgt, GT);
1017   INSN(ble, LE);
1018   INSN(bal, AL);
1019   INSN(bnv, NV);
1020 
1021   void br(Condition cc, Label &L);
1022 
1023 #undef INSN
1024 
1025   // Exception generation
1026   void generate_exception(int opc, int op2, int LL, unsigned imm) {
1027     starti;
1028     f(0b11010100, 31, 24);
1029     f(opc, 23, 21), f(imm, 20, 5), f(op2, 4, 2), f(LL, 1, 0);
1030   }
1031 
1032 #define INSN(NAME, opc, op2, LL)                \
1033   void NAME(unsigned imm) {                     \
1034     generate_exception(opc, op2, LL, imm);      \
1035   }
1036 
1037   INSN(svc, 0b000, 0, 0b01);
1038   INSN(hvc, 0b000, 0, 0b10);
1039   INSN(smc, 0b000, 0, 0b11);
1040   INSN(brk, 0b001, 0, 0b00);
1041   INSN(hlt, 0b010, 0, 0b00);
1042   INSN(dcps1, 0b101, 0, 0b01);
1043   INSN(dcps2, 0b101, 0, 0b10);
1044   INSN(dcps3, 0b101, 0, 0b11);
1045 
1046 #undef INSN
1047 
1048   // System
1049   void system(int op0, int op1, int CRn, int CRm, int op2,
1050               Register rt = dummy_reg)
1051   {
1052     starti;
1053     f(0b11010101000, 31, 21);
1054     f(op0, 20, 19);
1055     f(op1, 18, 16);
1056     f(CRn, 15, 12);
1057     f(CRm, 11, 8);
1058     f(op2, 7, 5);
1059     rf(rt, 0);
1060   }
1061 
1062   // Hint instructions
1063 
1064 #define INSN(NAME, crm, op2)               \
1065   void NAME() {                            \
1066     system(0b00, 0b011, 0b0010, crm, op2); \
1067   }
1068 
1069   INSN(nop,   0b000, 0b0000);
1070   INSN(yield, 0b000, 0b0001);
1071   INSN(wfe,   0b000, 0b0010);
1072   INSN(wfi,   0b000, 0b0011);
1073   INSN(sev,   0b000, 0b0100);
1074   INSN(sevl,  0b000, 0b0101);
1075 
1076   INSN(autia1716, 0b0001, 0b100);
1077   INSN(autiasp,   0b0011, 0b101);
1078   INSN(autiaz,    0b0011, 0b100);
1079   INSN(autib1716, 0b0001, 0b110);
1080   INSN(autibsp,   0b0011, 0b111);
1081   INSN(autibz,    0b0011, 0b110);
1082   INSN(pacia1716, 0b0001, 0b000);
1083   INSN(paciasp,   0b0011, 0b001);
1084   INSN(paciaz,    0b0011, 0b000);
1085   INSN(pacib1716, 0b0001, 0b010);
1086   INSN(pacibsp,   0b0011, 0b011);
1087   INSN(pacibz,    0b0011, 0b010);
1088   INSN(xpaclri,   0b0000, 0b111);
1089 
1090 #undef INSN
1091 
1092   // we only provide mrs and msr for the special purpose system
1093   // registers where op1 (instr[20:19]) == 11
1094   // n.b msr has L (instr[21]) == 0 mrs has L == 1
1095 
1096   void msr(int op1, int CRn, int CRm, int op2, Register rt) {
1097     starti;
1098     f(0b1101010100011, 31, 19);
1099     f(op1, 18, 16);
1100     f(CRn, 15, 12);
1101     f(CRm, 11, 8);
1102     f(op2, 7, 5);
1103     // writing zr is ok
1104     zrf(rt, 0);
1105   }
1106 
1107   void mrs(int op1, int CRn, int CRm, int op2, Register rt) {
1108     starti;
1109     f(0b1101010100111, 31, 19);
1110     f(op1, 18, 16);
1111     f(CRn, 15, 12);
1112     f(CRm, 11, 8);
1113     f(op2, 7, 5);
1114     // reading to zr is a mistake
1115     rf(rt, 0);
1116   }
1117 
1118   enum barrier {OSHLD = 0b0001, OSHST, OSH, NSHLD=0b0101, NSHST, NSH,
1119                 ISHLD = 0b1001, ISHST, ISH, LD=0b1101, ST, SY};
1120 
1121   void dsb(barrier imm) {
1122     system(0b00, 0b011, 0b00011, imm, 0b100);
1123   }
1124 
1125   void dmb(barrier imm) {
1126     system(0b00, 0b011, 0b00011, imm, 0b101);
1127   }
1128 
1129   void isb() {
1130     system(0b00, 0b011, 0b00011, SY, 0b110);
1131   }
1132 
1133   void sys(int op1, int CRn, int CRm, int op2,
1134            Register rt = as_Register(0b11111)) {
1135     system(0b01, op1, CRn, CRm, op2, rt);
1136   }
1137 
1138   // Only implement operations accessible from EL0 or higher, i.e.,
1139   //            op1    CRn    CRm    op2
1140   // IC IVAU     3      7      5      1
1141   // DC CVAC     3      7      10     1
1142   // DC CVAP     3      7      12     1
1143   // DC CVAU     3      7      11     1
1144   // DC CIVAC    3      7      14     1
1145   // DC ZVA      3      7      4      1
1146   // So only deal with the CRm field.
1147   enum icache_maintenance {IVAU = 0b0101};
1148   enum dcache_maintenance {CVAC = 0b1010, CVAP = 0b1100, CVAU = 0b1011, CIVAC = 0b1110, ZVA = 0b100};
1149 
1150   void dc(dcache_maintenance cm, Register Rt) {
1151     sys(0b011, 0b0111, cm, 0b001, Rt);
1152   }
1153 
1154   void ic(icache_maintenance cm, Register Rt) {
1155     sys(0b011, 0b0111, cm, 0b001, Rt);
1156   }
1157 
1158   // A more convenient access to dmb for our purposes
1159   enum Membar_mask_bits {
1160     // We can use ISH for a barrier because the Arm ARM says "This
1161     // architecture assumes that all Processing Elements that use the
1162     // same operating system or hypervisor are in the same Inner
1163     // Shareable shareability domain."
1164     StoreStore = ISHST,
1165     LoadStore  = ISHLD,
1166     LoadLoad   = ISHLD,
1167     StoreLoad  = ISH,
1168     AnyAny     = ISH
1169   };
1170 
1171   void membar(Membar_mask_bits order_constraint) {
1172     dmb(Assembler::barrier(order_constraint));
1173   }
1174 
1175   // Unconditional branch (register)
1176 
1177   void branch_reg(int OP, int A, int M, Register RN, Register RM) {
1178     starti;
1179     f(0b1101011, 31, 25);
1180     f(OP, 24, 21);
1181     f(0b111110000, 20, 12);
1182     f(A, 11, 11);
1183     f(M, 10, 10);
1184     rf(RN, 5);
1185     rf(RM, 0);
1186   }
1187 
1188 #define INSN(NAME, opc)                         \
1189   void NAME(Register RN) {                      \
1190     branch_reg(opc, 0, 0, RN, r0);              \
1191   }
1192 
1193   INSN(br,  0b0000);
1194   INSN(blr, 0b0001);
1195   INSN(ret, 0b0010);
1196 
1197   void ret(void *p); // This forces a compile-time error for ret(0)
1198 
1199 #undef INSN
1200 
1201 #define INSN(NAME, opc)                         \
1202   void NAME() {                                 \
1203     branch_reg(opc, 0, 0, dummy_reg, r0);       \
1204   }
1205 
1206   INSN(eret, 0b0100);
1207   INSN(drps, 0b0101);
1208 
1209 #undef INSN
1210 
1211 #define INSN(NAME, M)                                  \
1212   void NAME() {                                        \
1213     branch_reg(0b0010, 1, M, dummy_reg, dummy_reg);    \
1214   }
1215 
1216   INSN(retaa, 0);
1217   INSN(retab, 1);
1218 
1219 #undef INSN
1220 
1221 #define INSN(NAME, OP, M)                   \
1222   void NAME(Register rn) {                  \
1223     branch_reg(OP, 1, M, rn, dummy_reg);    \
1224   }
1225 
1226   INSN(braaz,  0b0000, 0);
1227   INSN(brabz,  0b0000, 1);
1228   INSN(blraaz, 0b0001, 0);
1229   INSN(blrabz, 0b0001, 1);
1230 
1231 #undef INSN
1232 
1233 #define INSN(NAME, OP, M)                  \
1234   void NAME(Register rn, Register rm) {    \
1235     branch_reg(OP, 1, M, rn, rm);          \
1236   }
1237 
1238   INSN(braa,  0b1000, 0);
1239   INSN(brab,  0b1000, 1);
1240   INSN(blraa, 0b1001, 0);
1241   INSN(blrab, 0b1001, 1);
1242 
1243 #undef INSN
1244 
1245   // Load/store exclusive
1246   enum operand_size { byte, halfword, word, xword };
1247 
1248   void load_store_exclusive(Register Rs, Register Rt1, Register Rt2,
1249     Register Rn, enum operand_size sz, int op, bool ordered) {
1250     starti;
1251     f(sz, 31, 30), f(0b001000, 29, 24), f(op, 23, 21);
1252     rf(Rs, 16), f(ordered, 15), zrf(Rt2, 10), srf(Rn, 5), zrf(Rt1, 0);
1253   }
1254 
1255   void load_exclusive(Register dst, Register addr,
1256                       enum operand_size sz, bool ordered) {
1257     load_store_exclusive(dummy_reg, dst, dummy_reg, addr,
1258                          sz, 0b010, ordered);
1259   }
1260 
1261   void store_exclusive(Register status, Register new_val, Register addr,
1262                        enum operand_size sz, bool ordered) {
1263     load_store_exclusive(status, new_val, dummy_reg, addr,
1264                          sz, 0b000, ordered);
1265   }
1266 
1267 #define INSN4(NAME, sz, op, o0) /* Four registers */                    \
1268   void NAME(Register Rs, Register Rt1, Register Rt2, Register Rn) {     \
1269     guarantee(Rs != Rn && Rs != Rt1 && Rs != Rt2, "unpredictable instruction"); \
1270     load_store_exclusive(Rs, Rt1, Rt2, Rn, sz, op, o0);                 \
1271   }
1272 
1273 #define INSN3(NAME, sz, op, o0) /* Three registers */                   \
1274   void NAME(Register Rs, Register Rt, Register Rn) {                    \
1275     guarantee(Rs != Rn && Rs != Rt, "unpredictable instruction");       \
1276     load_store_exclusive(Rs, Rt, dummy_reg, Rn, sz, op, o0); \
1277   }
1278 
1279 #define INSN2(NAME, sz, op, o0) /* Two registers */                     \
1280   void NAME(Register Rt, Register Rn) {                                 \
1281     load_store_exclusive(dummy_reg, Rt, dummy_reg, \
1282                          Rn, sz, op, o0);                               \
1283   }
1284 
1285 #define INSN_FOO(NAME, sz, op, o0) /* Three registers, encoded differently */ \
1286   void NAME(Register Rt1, Register Rt2, Register Rn) {                  \
1287     guarantee(Rt1 != Rt2, "unpredictable instruction");                 \
1288     load_store_exclusive(dummy_reg, Rt1, Rt2, Rn, sz, op, o0);          \
1289   }
1290 
1291   // bytes
1292   INSN3(stxrb,  byte, 0b000, 0);
1293   INSN3(stlxrb, byte, 0b000, 1);
1294   INSN2(ldxrb,  byte, 0b010, 0);
1295   INSN2(ldaxrb, byte, 0b010, 1);
1296   INSN2(stlrb,  byte, 0b100, 1);
1297   INSN2(ldarb,  byte, 0b110, 1);
1298 
1299   // halfwords
1300   INSN3(stxrh,  halfword, 0b000, 0);
1301   INSN3(stlxrh, halfword, 0b000, 1);
1302   INSN2(ldxrh,  halfword, 0b010, 0);
1303   INSN2(ldaxrh, halfword, 0b010, 1);
1304   INSN2(stlrh,  halfword, 0b100, 1);
1305   INSN2(ldarh,  halfword, 0b110, 1);
1306 
1307   // words
1308   INSN3(stxrw,  word, 0b000, 0);
1309   INSN3(stlxrw, word, 0b000, 1);
1310   INSN4(stxpw,  word, 0b001, 0);
1311   INSN4(stlxpw, word, 0b001, 1);
1312   INSN2(ldxrw,  word, 0b010, 0);
1313   INSN2(ldaxrw, word, 0b010, 1);
1314   INSN2(stlrw,  word, 0b100, 1);
1315   INSN2(ldarw,  word, 0b110, 1);
1316   // pairs of words
1317   INSN_FOO(ldxpw,  word, 0b011, 0);
1318   INSN_FOO(ldaxpw, word, 0b011, 1);
1319 
1320   // xwords
1321   INSN3(stxr,  xword, 0b000, 0);
1322   INSN3(stlxr, xword, 0b000, 1);
1323   INSN4(stxp,  xword, 0b001, 0);
1324   INSN4(stlxp, xword, 0b001, 1);
1325   INSN2(ldxr,  xword, 0b010, 0);
1326   INSN2(ldaxr, xword, 0b010, 1);
1327   INSN2(stlr,  xword, 0b100, 1);
1328   INSN2(ldar,  xword, 0b110, 1);
1329   // pairs of xwords
1330   INSN_FOO(ldxp,  xword, 0b011, 0);
1331   INSN_FOO(ldaxp, xword, 0b011, 1);
1332 
1333 #undef INSN2
1334 #undef INSN3
1335 #undef INSN4
1336 #undef INSN_FOO
1337 
1338   // 8.1 Compare and swap extensions
1339   void lse_cas(Register Rs, Register Rt, Register Rn,
1340                         enum operand_size sz, bool a, bool r, bool not_pair) {
1341     starti;
1342     if (! not_pair) { // Pair
1343       assert(sz == word || sz == xword, "invalid size");
1344       /* The size bit is in bit 30, not 31 */
1345       sz = (operand_size)(sz == word ? 0b00:0b01);
1346     }
1347     f(sz, 31, 30), f(0b001000, 29, 24), f(not_pair ? 1 : 0, 23), f(a, 22), f(1, 21);
1348     zrf(Rs, 16), f(r, 15), f(0b11111, 14, 10), srf(Rn, 5), zrf(Rt, 0);
1349   }
1350 
1351   // CAS
1352 #define INSN(NAME, a, r)                                                \
1353   void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) {   \
1354     assert(Rs != Rn && Rs != Rt, "unpredictable instruction");          \
1355     lse_cas(Rs, Rt, Rn, sz, a, r, true);                                \
1356   }
1357   INSN(cas,   false, false)
1358   INSN(casa,  true,  false)
1359   INSN(casl,  false, true)
1360   INSN(casal, true,  true)
1361 #undef INSN
1362 
1363   // CASP
1364 #define INSN(NAME, a, r)                                                \
1365   void NAME(operand_size sz, Register Rs, Register Rs1,                 \
1366             Register Rt, Register Rt1, Register Rn) {                   \
1367     assert((Rs->encoding() & 1) == 0 && (Rt->encoding() & 1) == 0 &&    \
1368            Rs->successor() == Rs1 && Rt->successor() == Rt1 &&          \
1369            Rs != Rn && Rs1 != Rn && Rs != Rt, "invalid registers");     \
1370     lse_cas(Rs, Rt, Rn, sz, a, r, false);                               \
1371   }
1372   INSN(casp,   false, false)
1373   INSN(caspa,  true,  false)
1374   INSN(caspl,  false, true)
1375   INSN(caspal, true,  true)
1376 #undef INSN
1377 
1378   // 8.1 Atomic operations
1379   void lse_atomic(Register Rs, Register Rt, Register Rn,
1380                   enum operand_size sz, int op1, int op2, bool a, bool r) {
1381     starti;
1382     f(sz, 31, 30), f(0b111000, 29, 24), f(a, 23), f(r, 22), f(1, 21);
1383     zrf(Rs, 16), f(op1, 15), f(op2, 14, 12), f(0, 11, 10), srf(Rn, 5), zrf(Rt, 0);
1384   }
1385 
1386 #define INSN(NAME, NAME_A, NAME_L, NAME_AL, op1, op2)                   \
1387   void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) {   \
1388     lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, false);                 \
1389   }                                                                     \
1390   void NAME_A(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1391     lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, false);                  \
1392   }                                                                     \
1393   void NAME_L(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1394     lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, true);                  \
1395   }                                                                     \
1396   void NAME_AL(operand_size sz, Register Rs, Register Rt, Register Rn) {\
1397     lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, true);                   \
1398   }
1399   INSN(ldadd,  ldadda,  ldaddl,  ldaddal,  0, 0b000);
1400   INSN(ldbic,  ldbica,  ldbicl,  ldbical,  0, 0b001);
1401   INSN(ldeor,  ldeora,  ldeorl,  ldeoral,  0, 0b010);
1402   INSN(ldorr,  ldorra,  ldorrl,  ldorral,  0, 0b011);
1403   INSN(ldsmax, ldsmaxa, ldsmaxl, ldsmaxal, 0, 0b100);
1404   INSN(ldsmin, ldsmina, ldsminl, ldsminal, 0, 0b101);
1405   INSN(ldumax, ldumaxa, ldumaxl, ldumaxal, 0, 0b110);
1406   INSN(ldumin, ldumina, lduminl, lduminal, 0, 0b111);
1407   INSN(swp,    swpa,    swpl,    swpal,    1, 0b000);
1408 #undef INSN
1409 
1410   // Load register (literal)
1411 #define INSN(NAME, opc, V)                                              \
1412   void NAME(Register Rt, address dest) {                                \
1413     int64_t offset = (dest - pc()) >> 2;                                \
1414     starti;                                                             \
1415     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1416       sf(offset, 23, 5);                                                \
1417     rf(Rt, 0);                                                          \
1418   }                                                                     \
1419   void NAME(Register Rt, address dest, relocInfo::relocType rtype) {    \
1420     InstructionMark im(this);                                           \
1421     guarantee(rtype == relocInfo::internal_word_type,                   \
1422               "only internal_word_type relocs make sense here");        \
1423     code_section()->relocate(inst_mark(), InternalAddress(dest).rspec()); \
1424     NAME(Rt, dest);                                                     \
1425   }                                                                     \
1426   void NAME(Register Rt, Label &L) {                                    \
1427     wrap_label(Rt, L, &Assembler::NAME);                                \
1428   }
1429 
1430   INSN(ldrw, 0b00, 0);
1431   INSN(ldr, 0b01, 0);
1432   INSN(ldrsw, 0b10, 0);
1433 
1434 #undef INSN
1435 
1436 #define INSN(NAME, opc, V)                                              \
1437   void NAME(FloatRegister Rt, address dest) {                           \
1438     int64_t offset = (dest - pc()) >> 2;                                \
1439     starti;                                                             \
1440     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1441       sf(offset, 23, 5);                                                \
1442     rf(as_Register(Rt), 0);                                             \
1443   }
1444 
1445   INSN(ldrs, 0b00, 1);
1446   INSN(ldrd, 0b01, 1);
1447   INSN(ldrq, 0b10, 1);
1448 
1449 #undef INSN
1450 
1451 #define INSN(NAME, size, opc)                                           \
1452   void NAME(FloatRegister Rt, Register Rn) {                            \
1453     starti;                                                             \
1454     f(size, 31, 30), f(0b111100, 29, 24), f(opc, 23, 22), f(0, 21);     \
1455     f(0, 20, 12), f(0b01, 11, 10);                                      \
1456     rf(Rn, 5), rf(as_Register(Rt), 0);                                  \
1457   }
1458 
1459   INSN(ldrs, 0b10, 0b01);
1460   INSN(ldrd, 0b11, 0b01);
1461   INSN(ldrq, 0b00, 0b11);
1462 
1463 #undef INSN
1464 
1465 
1466 #define INSN(NAME, opc, V)                                              \
1467   void NAME(address dest, prfop op = PLDL1KEEP) {                       \
1468     int64_t offset = (dest - pc()) >> 2;                                \
1469     starti;                                                             \
1470     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1471       sf(offset, 23, 5);                                                \
1472     f(op, 4, 0);                                                        \
1473   }                                                                     \
1474   void NAME(Label &L, prfop op = PLDL1KEEP) {                           \
1475     wrap_label(L, op, &Assembler::NAME);                                \
1476   }
1477 
1478   INSN(prfm, 0b11, 0);
1479 
1480 #undef INSN
1481 
1482   // Load/store
1483   void ld_st1(int opc, int p1, int V, int L,
1484               Register Rt1, Register Rt2, Address adr, bool no_allocate) {
1485     starti;
1486     f(opc, 31, 30), f(p1, 29, 27), f(V, 26), f(L, 22);
1487     zrf(Rt2, 10), zrf(Rt1, 0);
1488     if (no_allocate) {
1489       adr.encode_nontemporal_pair(&current_insn);
1490     } else {
1491       adr.encode_pair(&current_insn);
1492     }
1493   }
1494 
1495   // Load/store register pair (offset)
1496 #define INSN(NAME, size, p1, V, L, no_allocate)         \
1497   void NAME(Register Rt1, Register Rt2, Address adr) {  \
1498     ld_st1(size, p1, V, L, Rt1, Rt2, adr, no_allocate); \
1499    }
1500 
1501   INSN(stpw,  0b00, 0b101, 0, 0, false);
1502   INSN(ldpw,  0b00, 0b101, 0, 1, false);
1503   INSN(ldpsw, 0b01, 0b101, 0, 1, false);
1504   INSN(stp,   0b10, 0b101, 0, 0, false);
1505   INSN(ldp,   0b10, 0b101, 0, 1, false);
1506 
1507   // Load/store no-allocate pair (offset)
1508   INSN(stnpw, 0b00, 0b101, 0, 0, true);
1509   INSN(ldnpw, 0b00, 0b101, 0, 1, true);
1510   INSN(stnp,  0b10, 0b101, 0, 0, true);
1511   INSN(ldnp,  0b10, 0b101, 0, 1, true);
1512 
1513 #undef INSN
1514 
1515 #define INSN(NAME, size, p1, V, L, no_allocate)                         \
1516   void NAME(FloatRegister Rt1, FloatRegister Rt2, Address adr) {        \
1517     ld_st1(size, p1, V, L,                                              \
1518            as_Register(Rt1), as_Register(Rt2), adr, no_allocate);       \
1519    }
1520 
1521   INSN(stps, 0b00, 0b101, 1, 0, false);
1522   INSN(ldps, 0b00, 0b101, 1, 1, false);
1523   INSN(stpd, 0b01, 0b101, 1, 0, false);
1524   INSN(ldpd, 0b01, 0b101, 1, 1, false);
1525   INSN(stpq, 0b10, 0b101, 1, 0, false);
1526   INSN(ldpq, 0b10, 0b101, 1, 1, false);
1527 
1528 #undef INSN
1529 
1530   // Load/store register (all modes)
1531   void ld_st2(Register Rt, const Address &adr, int size, int op, int V = 0) {
1532     starti;
1533 
1534     f(V, 26); // general reg?
1535     zrf(Rt, 0);
1536 
1537     // Encoding for literal loads is done here (rather than pushed
1538     // down into Address::encode) because the encoding of this
1539     // instruction is too different from all of the other forms to
1540     // make it worth sharing.
1541     if (adr.getMode() == Address::literal) {
1542       assert(size == 0b10 || size == 0b11, "bad operand size in ldr");
1543       assert(op == 0b01, "literal form can only be used with loads");
1544       f(size & 0b01, 31, 30), f(0b011, 29, 27), f(0b00, 25, 24);
1545       int64_t offset = (adr.target() - pc()) >> 2;
1546       sf(offset, 23, 5);
1547       code_section()->relocate(pc(), adr.rspec());
1548       return;
1549     }
1550 
1551     f(size, 31, 30);
1552     f(op, 23, 22); // str
1553     adr.encode(&current_insn);
1554   }
1555 
1556 #define INSN(NAME, size, op)                            \
1557   void NAME(Register Rt, const Address &adr) {          \
1558     ld_st2(Rt, adr, size, op);                          \
1559   }                                                     \
1560 
1561   INSN(str,  0b11, 0b00);
1562   INSN(strw, 0b10, 0b00);
1563   INSN(strb, 0b00, 0b00);
1564   INSN(strh, 0b01, 0b00);
1565 
1566   INSN(ldr,  0b11, 0b01);
1567   INSN(ldrw, 0b10, 0b01);
1568   INSN(ldrb, 0b00, 0b01);
1569   INSN(ldrh, 0b01, 0b01);
1570 
1571   INSN(ldrsb,  0b00, 0b10);
1572   INSN(ldrsbw, 0b00, 0b11);
1573   INSN(ldrsh,  0b01, 0b10);
1574   INSN(ldrshw, 0b01, 0b11);
1575   INSN(ldrsw,  0b10, 0b10);
1576 
1577 #undef INSN
1578 
1579 #define INSN(NAME, size, op)                            \
1580   void NAME(FloatRegister Rt, const Address &adr) {     \
1581     ld_st2(as_Register(Rt), adr, size, op, 1);          \
1582   }
1583 
1584   INSN(strd, 0b11, 0b00);
1585   INSN(strs, 0b10, 0b00);
1586   INSN(ldrd, 0b11, 0b01);
1587   INSN(ldrs, 0b10, 0b01);
1588   INSN(strq, 0b00, 0b10);
1589   INSN(ldrq, 0x00, 0b11);
1590 
1591 #undef INSN
1592 
1593 /* SIMD extensions
1594  *
1595  * We just use FloatRegister in the following. They are exactly the same
1596  * as SIMD registers.
1597  */
1598 public:
1599 
1600   enum SIMD_Arrangement {
1601     T8B, T16B, T4H, T8H, T2S, T4S, T1D, T2D, T1Q, INVALID_ARRANGEMENT
1602   };
1603 
1604   enum SIMD_RegVariant {
1605       B, H, S, D, Q, INVALID
1606   };
1607 
1608 private:
1609 
1610   static SIMD_Arrangement _esize2arrangement_table[9][2];
1611   static SIMD_RegVariant _esize2regvariant[9];
1612 
1613 public:
1614 
1615   static SIMD_Arrangement esize2arrangement(unsigned esize, bool isQ);
1616   static SIMD_RegVariant elemType_to_regVariant(BasicType bt);
1617   static SIMD_RegVariant elemBytes_to_regVariant(unsigned esize);
1618   // Return the corresponding bits for different SIMD_RegVariant value.
1619   static unsigned regVariant_to_elemBits(SIMD_RegVariant T);
1620 
1621   enum shift_kind { LSL, LSR, ASR, ROR };
1622 
1623   void op_shifted_reg(Instruction_aarch64 &current_insn, unsigned decode,
1624                       enum shift_kind kind, unsigned shift,
1625                       unsigned size, unsigned op) {
1626     f(size, 31);
1627     f(op, 30, 29);
1628     f(decode, 28, 24);
1629     f(shift, 15, 10);
1630     f(kind, 23, 22);
1631   }
1632 
1633   // Logical (shifted register)
1634 #define INSN(NAME, size, op, N)                                         \
1635   void NAME(Register Rd, Register Rn, Register Rm,                      \
1636             enum shift_kind kind = LSL, unsigned shift = 0) {           \
1637     starti;                                                             \
1638     guarantee(size == 1 || shift < 32, "incorrect shift");              \
1639     f(N, 21);                                                           \
1640     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                                \
1641     op_shifted_reg(current_insn, 0b01010, kind, shift, size, op);       \
1642   }
1643 
1644   INSN(andr,  1, 0b00, 0);
1645   INSN(orr,   1, 0b01, 0);
1646   INSN(eor,   1, 0b10, 0);
1647   INSN(ands,  1, 0b11, 0);
1648   INSN(andw,  0, 0b00, 0);
1649   INSN(orrw,  0, 0b01, 0);
1650   INSN(eorw,  0, 0b10, 0);
1651   INSN(andsw, 0, 0b11, 0);
1652 
1653 #undef INSN
1654 
1655 #define INSN(NAME, size, op, N)                                         \
1656   void NAME(Register Rd, Register Rn, Register Rm,                      \
1657             enum shift_kind kind = LSL, unsigned shift = 0) {           \
1658     starti;                                                             \
1659     f(N, 21);                                                           \
1660     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                                \
1661     op_shifted_reg(current_insn, 0b01010, kind, shift, size, op);       \
1662   }                                                                     \
1663                                                                         \
1664   /* These instructions have no immediate form. Provide an overload so  \
1665      that if anyone does try to use an immediate operand -- this has    \
1666      happened! -- we'll get a compile-time error. */                    \
1667   void NAME(Register Rd, Register Rn, unsigned imm,                     \
1668             enum shift_kind kind = LSL, unsigned shift = 0) {           \
1669     assert(false, " can't be used with immediate operand");             \
1670   }
1671 
1672   INSN(bic,   1, 0b00, 1);
1673   INSN(orn,   1, 0b01, 1);
1674   INSN(eon,   1, 0b10, 1);
1675   INSN(bics,  1, 0b11, 1);
1676   INSN(bicw,  0, 0b00, 1);
1677   INSN(ornw,  0, 0b01, 1);
1678   INSN(eonw,  0, 0b10, 1);
1679   INSN(bicsw, 0, 0b11, 1);
1680 
1681 #undef INSN
1682 
1683 #ifdef _WIN64
1684 // In MSVC, `mvn` is defined as a macro and it affects compilation
1685 #undef mvn
1686 #endif
1687 
1688   // Aliases for short forms of orn
1689 void mvn(Register Rd, Register Rm,
1690             enum shift_kind kind = LSL, unsigned shift = 0) {
1691   orn(Rd, zr, Rm, kind, shift);
1692 }
1693 
1694 void mvnw(Register Rd, Register Rm,
1695             enum shift_kind kind = LSL, unsigned shift = 0) {
1696   ornw(Rd, zr, Rm, kind, shift);
1697 }
1698 
1699   // Add/subtract (shifted register)
1700 #define INSN(NAME, size, op)                            \
1701   void NAME(Register Rd, Register Rn, Register Rm,      \
1702             enum shift_kind kind, unsigned shift = 0) { \
1703     starti;                                             \
1704     f(0, 21);                                           \
1705     assert_cond(kind != ROR);                           \
1706     guarantee(size == 1 || shift < 32, "incorrect shift");\
1707     zrf(Rd, 0), zrf(Rn, 5), zrf(Rm, 16);                \
1708     op_shifted_reg(current_insn, 0b01011, kind, shift, size, op);      \
1709   }
1710 
1711   INSN(add,  1, 0b000);
1712   INSN(sub,  1, 0b10);
1713   INSN(addw, 0, 0b000);
1714   INSN(subw, 0, 0b10);
1715 
1716   INSN(adds,  1, 0b001);
1717   INSN(subs,  1, 0b11);
1718   INSN(addsw, 0, 0b001);
1719   INSN(subsw, 0, 0b11);
1720 
1721 #undef INSN
1722 
1723   // Add/subtract (extended register)
1724 #define INSN(NAME, op)                                                  \
1725   void NAME(Register Rd, Register Rn, Register Rm,                      \
1726            ext::operation option, int amount = 0) {                     \
1727     starti;                                                             \
1728     zrf(Rm, 16), srf(Rn, 5), srf(Rd, 0);                                \
1729     add_sub_extended_reg(current_insn, op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1730   }
1731 
1732   void add_sub_extended_reg(Instruction_aarch64 &current_insn, unsigned op, unsigned decode,
1733     Register Rd, Register Rn, Register Rm,
1734     unsigned opt, ext::operation option, unsigned imm) {
1735     guarantee(imm <= 4, "shift amount must be <= 4");
1736     f(op, 31, 29), f(decode, 28, 24), f(opt, 23, 22), f(1, 21);
1737     f(option, 15, 13), f(imm, 12, 10);
1738   }
1739 
1740   INSN(addw, 0b000);
1741   INSN(subw, 0b010);
1742   INSN(add,  0b100);
1743   INSN(sub,  0b110);
1744 
1745 #undef INSN
1746 
1747 #define INSN(NAME, op)                                                  \
1748   void NAME(Register Rd, Register Rn, Register Rm,                      \
1749            ext::operation option, int amount = 0) {                     \
1750     starti;                                                             \
1751     zrf(Rm, 16), srf(Rn, 5), zrf(Rd, 0);                                \
1752     add_sub_extended_reg(current_insn, op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1753   }
1754 
1755   INSN(addsw, 0b001);
1756   INSN(subsw, 0b011);
1757   INSN(adds,  0b101);
1758   INSN(subs,  0b111);
1759 
1760 #undef INSN
1761 
1762   // Aliases for short forms of add and sub
1763 #define INSN(NAME)                                      \
1764   void NAME(Register Rd, Register Rn, Register Rm) {    \
1765     if (Rd == sp || Rn == sp)                           \
1766       NAME(Rd, Rn, Rm, ext::uxtx);                      \
1767     else                                                \
1768       NAME(Rd, Rn, Rm, LSL);                            \
1769   }
1770 
1771   INSN(addw);
1772   INSN(subw);
1773   INSN(add);
1774   INSN(sub);
1775 
1776   INSN(addsw);
1777   INSN(subsw);
1778   INSN(adds);
1779   INSN(subs);
1780 
1781 #undef INSN
1782 
1783   // Add/subtract (with carry)
1784   void add_sub_carry(unsigned op, Register Rd, Register Rn, Register Rm) {
1785     starti;
1786     f(op, 31, 29);
1787     f(0b11010000, 28, 21);
1788     f(0b000000, 15, 10);
1789     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);
1790   }
1791 
1792   #define INSN(NAME, op)                                \
1793     void NAME(Register Rd, Register Rn, Register Rm) {  \
1794       add_sub_carry(op, Rd, Rn, Rm);                    \
1795     }
1796 
1797   INSN(adcw,  0b000);
1798   INSN(adcsw, 0b001);
1799   INSN(sbcw,  0b010);
1800   INSN(sbcsw, 0b011);
1801   INSN(adc,   0b100);
1802   INSN(adcs,  0b101);
1803   INSN(sbc,   0b110);
1804   INSN(sbcs,  0b111);
1805 
1806 #undef INSN
1807 
1808   // Conditional compare (both kinds)
1809   void conditional_compare(unsigned op, int o1, int o2, int o3,
1810                            Register Rn, unsigned imm5, unsigned nzcv,
1811                            unsigned cond) {
1812     starti;
1813     f(op, 31, 29);
1814     f(0b11010010, 28, 21);
1815     f(cond, 15, 12);
1816     f(o1, 11);
1817     f(o2, 10);
1818     f(o3, 4);
1819     f(nzcv, 3, 0);
1820     f(imm5, 20, 16), zrf(Rn, 5);
1821   }
1822 
1823 #define INSN(NAME, op)                                                  \
1824   void NAME(Register Rn, Register Rm, int imm, Condition cond) {        \
1825     int regNumber = (Rm == zr ? 31 : Rm->encoding());                   \
1826     conditional_compare(op, 0, 0, 0, Rn, regNumber, imm, cond);         \
1827   }                                                                     \
1828                                                                         \
1829   void NAME(Register Rn, int imm5, int imm, Condition cond) {           \
1830     conditional_compare(op, 1, 0, 0, Rn, imm5, imm, cond);              \
1831   }
1832 
1833   INSN(ccmnw, 0b001);
1834   INSN(ccmpw, 0b011);
1835   INSN(ccmn, 0b101);
1836   INSN(ccmp, 0b111);
1837 
1838 #undef INSN
1839 
1840   // Conditional select
1841   void conditional_select(unsigned op, unsigned op2,
1842                           Register Rd, Register Rn, Register Rm,
1843                           unsigned cond) {
1844     starti;
1845     f(op, 31, 29);
1846     f(0b11010100, 28, 21);
1847     f(cond, 15, 12);
1848     f(op2, 11, 10);
1849     zrf(Rm, 16), zrf(Rn, 5), rf(Rd, 0);
1850   }
1851 
1852 #define INSN(NAME, op, op2)                                             \
1853   void NAME(Register Rd, Register Rn, Register Rm, Condition cond) {    \
1854     conditional_select(op, op2, Rd, Rn, Rm, cond);                      \
1855   }
1856 
1857   INSN(cselw,  0b000, 0b00);
1858   INSN(csincw, 0b000, 0b01);
1859   INSN(csinvw, 0b010, 0b00);
1860   INSN(csnegw, 0b010, 0b01);
1861   INSN(csel,   0b100, 0b00);
1862   INSN(csinc,  0b100, 0b01);
1863   INSN(csinv,  0b110, 0b00);
1864   INSN(csneg,  0b110, 0b01);
1865 
1866 #undef INSN
1867 
1868   // Data processing
1869   void data_processing(Instruction_aarch64 &current_insn, unsigned op29, unsigned opcode,
1870                        Register Rd, Register Rn) {
1871     f(op29, 31, 29), f(0b11010110, 28, 21);
1872     f(opcode, 15, 10);
1873     rf(Rn, 5), rf(Rd, 0);
1874   }
1875 
1876   // (1 source)
1877 #define INSN(NAME, op29, opcode2, opcode)                       \
1878   void NAME(Register Rd, Register Rn) {                         \
1879     starti;                                                     \
1880     f(opcode2, 20, 16);                                         \
1881     data_processing(current_insn, op29, opcode, Rd, Rn);        \
1882   }
1883 
1884   INSN(rbitw,  0b010, 0b00000, 0b00000);
1885   INSN(rev16w, 0b010, 0b00000, 0b00001);
1886   INSN(revw,   0b010, 0b00000, 0b00010);
1887   INSN(clzw,   0b010, 0b00000, 0b00100);
1888   INSN(clsw,   0b010, 0b00000, 0b00101);
1889 
1890   INSN(rbit,   0b110, 0b00000, 0b00000);
1891   INSN(rev16,  0b110, 0b00000, 0b00001);
1892   INSN(rev32,  0b110, 0b00000, 0b00010);
1893   INSN(rev,    0b110, 0b00000, 0b00011);
1894   INSN(clz,    0b110, 0b00000, 0b00100);
1895   INSN(cls,    0b110, 0b00000, 0b00101);
1896 
1897   // PAC instructions
1898   INSN(pacia,  0b110, 0b00001, 0b00000);
1899   INSN(pacib,  0b110, 0b00001, 0b00001);
1900   INSN(pacda,  0b110, 0b00001, 0b00010);
1901   INSN(pacdb,  0b110, 0b00001, 0b00011);
1902   INSN(autia,  0b110, 0b00001, 0b00100);
1903   INSN(autib,  0b110, 0b00001, 0b00101);
1904   INSN(autda,  0b110, 0b00001, 0b00110);
1905   INSN(autdb,  0b110, 0b00001, 0b00111);
1906 
1907 #undef INSN
1908 
1909 #define INSN(NAME, op29, opcode2, opcode)                       \
1910   void NAME(Register Rd) {                                      \
1911     starti;                                                     \
1912     f(opcode2, 20, 16);                                         \
1913     data_processing(current_insn, op29, opcode, Rd, dummy_reg); \
1914   }
1915 
1916   // PAC instructions (with zero modifier)
1917   INSN(paciza,  0b110, 0b00001, 0b01000);
1918   INSN(pacizb,  0b110, 0b00001, 0b01001);
1919   INSN(pacdza,  0b110, 0b00001, 0b01010);
1920   INSN(pacdzb,  0b110, 0b00001, 0b01011);
1921   INSN(autiza,  0b110, 0b00001, 0b01100);
1922   INSN(autizb,  0b110, 0b00001, 0b01101);
1923   INSN(autdza,  0b110, 0b00001, 0b01110);
1924   INSN(autdzb,  0b110, 0b00001, 0b01111);
1925   INSN(xpaci,   0b110, 0b00001, 0b10000);
1926   INSN(xpacd,   0b110, 0b00001, 0b10001);
1927 
1928 #undef INSN
1929 
1930   // Data-processing (2 source)
1931 #define INSN(NAME, op29, opcode)                                \
1932   void NAME(Register Rd, Register Rn, Register Rm) {            \
1933     starti;                                                     \
1934     rf(Rm, 16);                                                 \
1935     data_processing(current_insn, op29, opcode, Rd, Rn);        \
1936   }
1937 
1938   INSN(udivw, 0b000, 0b000010);
1939   INSN(sdivw, 0b000, 0b000011);
1940   INSN(lslvw, 0b000, 0b001000);
1941   INSN(lsrvw, 0b000, 0b001001);
1942   INSN(asrvw, 0b000, 0b001010);
1943   INSN(rorvw, 0b000, 0b001011);
1944 
1945   INSN(udiv, 0b100, 0b000010);
1946   INSN(sdiv, 0b100, 0b000011);
1947   INSN(lslv, 0b100, 0b001000);
1948   INSN(lsrv, 0b100, 0b001001);
1949   INSN(asrv, 0b100, 0b001010);
1950   INSN(rorv, 0b100, 0b001011);
1951 
1952 #undef INSN
1953 
1954   // Data-processing (3 source)
1955   void data_processing(unsigned op54, unsigned op31, unsigned o0,
1956                        Register Rd, Register Rn, Register Rm,
1957                        Register Ra) {
1958     starti;
1959     f(op54, 31, 29), f(0b11011, 28, 24);
1960     f(op31, 23, 21), f(o0, 15);
1961     zrf(Rm, 16), zrf(Ra, 10), zrf(Rn, 5), zrf(Rd, 0);
1962   }
1963 
1964 #define INSN(NAME, op54, op31, o0)                                      \
1965   void NAME(Register Rd, Register Rn, Register Rm, Register Ra) {       \
1966     data_processing(op54, op31, o0, Rd, Rn, Rm, Ra);                    \
1967   }
1968 
1969   INSN(maddw,  0b000, 0b000, 0);
1970   INSN(msubw,  0b000, 0b000, 1);
1971   INSN(madd,   0b100, 0b000, 0);
1972   INSN(msub,   0b100, 0b000, 1);
1973   INSN(smaddl, 0b100, 0b001, 0);
1974   INSN(smsubl, 0b100, 0b001, 1);
1975   INSN(umaddl, 0b100, 0b101, 0);
1976   INSN(umsubl, 0b100, 0b101, 1);
1977 
1978 #undef INSN
1979 
1980 #define INSN(NAME, op54, op31, o0)                                      \
1981   void NAME(Register Rd, Register Rn, Register Rm) {                    \
1982     data_processing(op54, op31, o0, Rd, Rn, Rm, as_Register(31));       \
1983   }
1984 
1985   INSN(smulh, 0b100, 0b010, 0);
1986   INSN(umulh, 0b100, 0b110, 0);
1987 
1988 #undef INSN
1989 
1990   // Floating-point data-processing (1 source)
1991   void data_processing(unsigned type, unsigned opcode,
1992                        FloatRegister Vd, FloatRegister Vn) {
1993     starti;
1994     f(0b000, 31, 29);
1995     f(0b11110, 28, 24);
1996     f(type, 23, 22), f(1, 21), f(opcode, 20, 15), f(0b10000, 14, 10);
1997     rf(Vn, 5), rf(Vd, 0);
1998   }
1999 
2000 #define INSN(NAME, type, opcode)                        \
2001   void NAME(FloatRegister Vd, FloatRegister Vn) {       \
2002     data_processing(type, opcode, Vd, Vn);              \
2003   }
2004 
2005   INSN(fmovs,  0b00, 0b000000);
2006   INSN(fabss,  0b00, 0b000001);
2007   INSN(fnegs,  0b00, 0b000010);
2008   INSN(fsqrts, 0b00, 0b000011);
2009   INSN(fcvts,  0b00, 0b000101);   // Single-precision to double-precision
2010   INSN(fcvths, 0b11, 0b000100);   // Half-precision to single-precision
2011   INSN(fcvtsh, 0b00, 0b000111);   // Single-precision to half-precision
2012 
2013   INSN(fmovd,  0b01, 0b000000);
2014   INSN(fabsd,  0b01, 0b000001);
2015   INSN(fnegd,  0b01, 0b000010);
2016   INSN(fsqrtd, 0b01, 0b000011);
2017   INSN(fcvtd,  0b01, 0b000100);   // Double-precision to single-precision
2018 
2019 private:
2020   void _fcvt_narrow_extend(FloatRegister Vd, SIMD_Arrangement Ta,
2021                            FloatRegister Vn, SIMD_Arrangement Tb, bool do_extend) {
2022     assert((do_extend && (Tb >> 1) + 1 == (Ta >> 1))
2023            || (!do_extend && (Ta >> 1) + 1 == (Tb >> 1)), "Incompatible arrangement");
2024     starti;
2025     int op30 = (do_extend ? Tb : Ta) & 1;
2026     int op22 = ((do_extend ? Ta : Tb) >> 1) & 1;
2027     f(0, 31), f(op30, 30), f(0b0011100, 29, 23), f(op22, 22);
2028     f(0b100001011, 21, 13), f(do_extend ? 1 : 0, 12), f(0b10, 11, 10);
2029     rf(Vn, 5), rf(Vd, 0);
2030   }
2031 
2032 public:
2033   void fcvtl(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb) {
2034     assert(Tb == T4H || Tb == T8H|| Tb == T2S || Tb == T4S, "invalid arrangement");
2035     _fcvt_narrow_extend(Vd, Ta, Vn, Tb, true);
2036   }
2037 
2038   void fcvtn(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb) {
2039     assert(Ta == T4H || Ta == T8H|| Ta == T2S || Ta == T4S, "invalid arrangement");
2040     _fcvt_narrow_extend(Vd, Ta, Vn, Tb, false);
2041   }
2042 
2043 #undef INSN
2044 
2045   // Floating-point data-processing (2 source)
2046   void data_processing(unsigned op31, unsigned type, unsigned opcode,
2047                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {
2048     starti;
2049     f(op31, 31, 29);
2050     f(0b11110, 28, 24);
2051     f(type, 23, 22), f(1, 21), f(opcode, 15, 10);
2052     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
2053   }
2054 
2055 #define INSN(NAME, op31, type, opcode)                  \
2056   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {     \
2057     data_processing(op31, type, opcode, Vd, Vn, Vm);    \
2058   }
2059 
2060   INSN(fabds,  0b011, 0b10, 0b110101);
2061   INSN(fmuls,  0b000, 0b00, 0b000010);
2062   INSN(fdivs,  0b000, 0b00, 0b000110);
2063   INSN(fadds,  0b000, 0b00, 0b001010);
2064   INSN(fsubs,  0b000, 0b00, 0b001110);
2065   INSN(fmaxs,  0b000, 0b00, 0b010010);
2066   INSN(fmins,  0b000, 0b00, 0b010110);
2067   INSN(fnmuls, 0b000, 0b00, 0b100010);
2068 
2069   INSN(fabdd,  0b011, 0b11, 0b110101);
2070   INSN(fmuld,  0b000, 0b01, 0b000010);
2071   INSN(fdivd,  0b000, 0b01, 0b000110);
2072   INSN(faddd,  0b000, 0b01, 0b001010);
2073   INSN(fsubd,  0b000, 0b01, 0b001110);
2074   INSN(fmaxd,  0b000, 0b01, 0b010010);
2075   INSN(fmind,  0b000, 0b01, 0b010110);
2076   INSN(fnmuld, 0b000, 0b01, 0b100010);
2077 
2078 #undef INSN
2079 
2080    // Floating-point data-processing (3 source)
2081   void data_processing(unsigned op31, unsigned type, unsigned o1, unsigned o0,
2082                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,
2083                        FloatRegister Va) {
2084     starti;
2085     f(op31, 31, 29);
2086     f(0b11111, 28, 24);
2087     f(type, 23, 22), f(o1, 21), f(o0, 15);
2088     rf(Vm, 16), rf(Va, 10), rf(Vn, 5), rf(Vd, 0);
2089   }
2090 
2091 #define INSN(NAME, op31, type, o1, o0)                                  \
2092   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,       \
2093             FloatRegister Va) {                                         \
2094     data_processing(op31, type, o1, o0, Vd, Vn, Vm, Va);                \
2095   }
2096 
2097   INSN(fmadds,  0b000, 0b00, 0, 0);
2098   INSN(fmsubs,  0b000, 0b00, 0, 1);
2099   INSN(fnmadds, 0b000, 0b00, 1, 0);
2100   INSN(fnmsubs, 0b000, 0b00, 1, 1);
2101 
2102   INSN(fmaddd,  0b000, 0b01, 0, 0);
2103   INSN(fmsubd,  0b000, 0b01, 0, 1);
2104   INSN(fnmaddd, 0b000, 0b01, 1, 0);
2105   INSN(fnmsub,  0b000, 0b01, 1, 1);
2106 
2107 #undef INSN
2108 
2109    // Floating-point conditional select
2110   void fp_conditional_select(unsigned op31, unsigned type,
2111                              unsigned op1, unsigned op2,
2112                              Condition cond, FloatRegister Vd,
2113                              FloatRegister Vn, FloatRegister Vm) {
2114     starti;
2115     f(op31, 31, 29);
2116     f(0b11110, 28, 24);
2117     f(type, 23, 22);
2118     f(op1, 21, 21);
2119     f(op2, 11, 10);
2120     f(cond, 15, 12);
2121     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
2122   }
2123 
2124 #define INSN(NAME, op31, type, op1, op2)                                \
2125   void NAME(FloatRegister Vd, FloatRegister Vn,                         \
2126             FloatRegister Vm, Condition cond) {                         \
2127     fp_conditional_select(op31, type, op1, op2, cond, Vd, Vn, Vm);      \
2128   }
2129 
2130   INSN(fcsels, 0b000, 0b00, 0b1, 0b11);
2131   INSN(fcseld, 0b000, 0b01, 0b1, 0b11);
2132 
2133 #undef INSN
2134 
2135   // Conversion between floating-point and integer
2136   void float_int_convert(unsigned sflag, unsigned ftype,
2137                          unsigned rmode, unsigned opcode,
2138                          Register Rd, Register Rn) {
2139     starti;
2140     f(sflag, 31);
2141     f(0b00, 30, 29);
2142     f(0b11110, 28, 24);
2143     f(ftype, 23, 22), f(1, 21), f(rmode, 20, 19);
2144     f(opcode, 18, 16), f(0b000000, 15, 10);
2145     zrf(Rn, 5), zrf(Rd, 0);
2146   }
2147 
2148 #define INSN(NAME, sflag, ftype, rmode, opcode)                          \
2149   void NAME(Register Rd, FloatRegister Vn) {                             \
2150     float_int_convert(sflag, ftype, rmode, opcode, Rd, as_Register(Vn)); \
2151   }
2152 
2153   INSN(fcvtzsw, 0b0, 0b00, 0b11, 0b000);
2154   INSN(fcvtzs,  0b1, 0b00, 0b11, 0b000);
2155   INSN(fcvtzdw, 0b0, 0b01, 0b11, 0b000);
2156   INSN(fcvtzd,  0b1, 0b01, 0b11, 0b000);
2157 
2158   // RoundToNearestTiesAway
2159   INSN(fcvtassw, 0b0, 0b00, 0b00, 0b100);  // float -> signed word
2160   INSN(fcvtasd,  0b1, 0b01, 0b00, 0b100);  // double -> signed xword
2161 
2162   // RoundTowardsNegative
2163   INSN(fcvtmssw, 0b0, 0b00, 0b10, 0b000);  // float -> signed word
2164   INSN(fcvtmsd,  0b1, 0b01, 0b10, 0b000);  // double -> signed xword
2165 
2166   INSN(fmovs, 0b0, 0b00, 0b00, 0b110);
2167   INSN(fmovd, 0b1, 0b01, 0b00, 0b110);
2168 
2169   INSN(fmovhid, 0b1, 0b10, 0b01, 0b110);
2170 
2171 #undef INSN
2172 
2173 #define INSN(NAME, sflag, type, rmode, opcode)                          \
2174   void NAME(FloatRegister Vd, Register Rn) {                            \
2175     float_int_convert(sflag, type, rmode, opcode, as_Register(Vd), Rn); \
2176   }
2177 
2178   INSN(fmovs, 0b0, 0b00, 0b00, 0b111);
2179   INSN(fmovd, 0b1, 0b01, 0b00, 0b111);
2180 
2181   INSN(scvtfws, 0b0, 0b00, 0b00, 0b010);
2182   INSN(scvtfs,  0b1, 0b00, 0b00, 0b010);
2183   INSN(scvtfwd, 0b0, 0b01, 0b00, 0b010);
2184   INSN(scvtfd,  0b1, 0b01, 0b00, 0b010);
2185 
2186   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b111);
2187 
2188 #undef INSN
2189 
2190 private:
2191   void _xcvtf_vector_integer(bool is_unsigned, SIMD_Arrangement T,
2192                              FloatRegister Rd, FloatRegister Rn) {
2193     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");
2194     starti;
2195     f(0, 31), f(T & 1, 30), f(is_unsigned ? 1 : 0, 29);
2196     f(0b011100, 28, 23), f((T >> 1) & 1, 22), f(0b100001110110, 21, 10);
2197     rf(Rn, 5), rf(Rd, 0);
2198   }
2199 
2200 public:
2201 
2202   void scvtfv(SIMD_Arrangement T, FloatRegister Rd, FloatRegister Rn) {
2203     _xcvtf_vector_integer(/* is_unsigned */ false, T, Rd, Rn);
2204   }
2205 
2206   // Floating-point compare
2207   void float_compare(unsigned op31, unsigned type,
2208                      unsigned op, unsigned op2,
2209                      FloatRegister Vn, FloatRegister Vm = as_FloatRegister(0)) {
2210     starti;
2211     f(op31, 31, 29);
2212     f(0b11110, 28, 24);
2213     f(type, 23, 22), f(1, 21);
2214     f(op, 15, 14), f(0b1000, 13, 10), f(op2, 4, 0);
2215     rf(Vn, 5), rf(Vm, 16);
2216   }
2217 
2218 
2219 #define INSN(NAME, op31, type, op, op2)                 \
2220   void NAME(FloatRegister Vn, FloatRegister Vm) {       \
2221     float_compare(op31, type, op, op2, Vn, Vm);         \
2222   }
2223 
2224 #define INSN1(NAME, op31, type, op, op2)        \
2225   void NAME(FloatRegister Vn, double d) {       \
2226     assert_cond(d == 0.0);                      \
2227     float_compare(op31, type, op, op2, Vn);     \
2228   }
2229 
2230   INSN(fcmps, 0b000, 0b00, 0b00, 0b00000);
2231   INSN1(fcmps, 0b000, 0b00, 0b00, 0b01000);
2232   // INSN(fcmpes, 0b000, 0b00, 0b00, 0b10000);
2233   // INSN1(fcmpes, 0b000, 0b00, 0b00, 0b11000);
2234 
2235   INSN(fcmpd, 0b000,   0b01, 0b00, 0b00000);
2236   INSN1(fcmpd, 0b000,  0b01, 0b00, 0b01000);
2237   // INSN(fcmped, 0b000,  0b01, 0b00, 0b10000);
2238   // INSN1(fcmped, 0b000, 0b01, 0b00, 0b11000);
2239 
2240 #undef INSN
2241 #undef INSN1
2242 
2243 // Floating-point compare. 3-registers versions (scalar).
2244 #define INSN(NAME, sz, e)                                             \
2245   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {   \
2246     starti;                                                           \
2247     f(0b01111110, 31, 24), f(e, 23), f(sz, 22), f(1, 21), rf(Vm, 16); \
2248     f(0b111011, 15, 10), rf(Vn, 5), rf(Vd, 0);                        \
2249   }                                                                   \
2250 
2251   INSN(facged, 1, 0); // facge-double
2252   INSN(facges, 0, 0); // facge-single
2253   INSN(facgtd, 1, 1); // facgt-double
2254   INSN(facgts, 0, 1); // facgt-single
2255 
2256 #undef INSN
2257 
2258   // Floating-point Move (immediate)
2259 private:
2260   unsigned pack(double value);
2261 
2262   void fmov_imm(FloatRegister Vn, double value, unsigned size) {
2263     starti;
2264     f(0b00011110, 31, 24), f(size, 23, 22), f(1, 21);
2265     f(pack(value), 20, 13), f(0b10000000, 12, 5);
2266     rf(Vn, 0);
2267   }
2268 
2269 public:
2270 
2271   void fmovs(FloatRegister Vn, double value) {
2272     if (value)
2273       fmov_imm(Vn, value, 0b00);
2274     else
2275       movi(Vn, T2S, 0);
2276   }
2277   void fmovd(FloatRegister Vn, double value) {
2278     if (value)
2279       fmov_imm(Vn, value, 0b01);
2280     else
2281       movi(Vn, T1D, 0);
2282   }
2283 
2284   // Floating-point data-processing (1 source)
2285 
2286    // Floating-point rounding
2287    // type: half-precision = 11
2288    //       single         = 00
2289    //       double         = 01
2290    // rmode: A = Away     = 100
2291    //        I = current  = 111
2292    //        M = MinusInf = 010
2293    //        N = eveN     = 000
2294    //        P = PlusInf  = 001
2295    //        X = eXact    = 110
2296    //        Z = Zero     = 011
2297   void float_round(unsigned type, unsigned rmode, FloatRegister Rd, FloatRegister Rn) {
2298     starti;
2299     f(0b00011110, 31, 24);
2300     f(type, 23, 22);
2301     f(0b1001, 21, 18);
2302     f(rmode, 17, 15);
2303     f(0b10000, 14, 10);
2304     rf(Rn, 5), rf(Rd, 0);
2305   }
2306 #define INSN(NAME, type, rmode)                   \
2307   void NAME(FloatRegister Vd, FloatRegister Vn) { \
2308     float_round(type, rmode, Vd, Vn);             \
2309   }
2310 
2311 public:
2312   INSN(frintah, 0b11, 0b100);
2313   INSN(frintih, 0b11, 0b111);
2314   INSN(frintmh, 0b11, 0b010);
2315   INSN(frintnh, 0b11, 0b000);
2316   INSN(frintph, 0b11, 0b001);
2317   INSN(frintxh, 0b11, 0b110);
2318   INSN(frintzh, 0b11, 0b011);
2319 
2320   INSN(frintas, 0b00, 0b100);
2321   INSN(frintis, 0b00, 0b111);
2322   INSN(frintms, 0b00, 0b010);
2323   INSN(frintns, 0b00, 0b000);
2324   INSN(frintps, 0b00, 0b001);
2325   INSN(frintxs, 0b00, 0b110);
2326   INSN(frintzs, 0b00, 0b011);
2327 
2328   INSN(frintad, 0b01, 0b100);
2329   INSN(frintid, 0b01, 0b111);
2330   INSN(frintmd, 0b01, 0b010);
2331   INSN(frintnd, 0b01, 0b000);
2332   INSN(frintpd, 0b01, 0b001);
2333   INSN(frintxd, 0b01, 0b110);
2334   INSN(frintzd, 0b01, 0b011);
2335 #undef INSN
2336 
2337 private:
2338   static short SIMD_Size_in_bytes[];
2339 
2340 public:
2341 #define INSN(NAME, op)                                                  \
2342   void NAME(FloatRegister Rt, SIMD_RegVariant T, const Address &adr) {  \
2343     ld_st2(as_Register(Rt), adr, (int)T & 3, op + ((T==Q) ? 0b10:0b00), 1); \
2344   }
2345 
2346   INSN(ldr, 1);
2347   INSN(str, 0);
2348 
2349 #undef INSN
2350 
2351  private:
2352 
2353   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn, int op1, int op2) {
2354     starti;
2355     f(0,31), f((int)T & 1, 30);
2356     f(op1, 29, 21), f(0, 20, 16), f(op2, 15, 12);
2357     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2358   }
2359   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
2360              int imm, int op1, int op2, int regs) {
2361 
2362     bool replicate = op2 >> 2 == 3;
2363     // post-index value (imm) is formed differently for replicate/non-replicate ld* instructions
2364     int expectedImmediate = replicate ? regs * (1 << (T >> 1)) : SIMD_Size_in_bytes[T] * regs;
2365     guarantee(T < T1Q , "incorrect arrangement");
2366     guarantee(imm == expectedImmediate, "bad offset");
2367     starti;
2368     f(0,31), f((int)T & 1, 30);
2369     f(op1 | 0b100, 29, 21), f(0b11111, 20, 16), f(op2, 15, 12);
2370     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2371   }
2372   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
2373              Register Xm, int op1, int op2) {
2374     starti;
2375     f(0,31), f((int)T & 1, 30);
2376     f(op1 | 0b100, 29, 21), rf(Xm, 16), f(op2, 15, 12);
2377     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2378   }
2379 
2380   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Address a, int op1, int op2, int regs) {
2381     switch (a.getMode()) {
2382     case Address::base_plus_offset:
2383       guarantee(a.offset() == 0, "no offset allowed here");
2384       ld_st(Vt, T, a.base(), op1, op2);
2385       break;
2386     case Address::post:
2387       ld_st(Vt, T, a.base(), checked_cast<int>(a.offset()), op1, op2, regs);
2388       break;
2389     case Address::post_reg:
2390       ld_st(Vt, T, a.base(), a.index(), op1, op2);
2391       break;
2392     default:
2393       ShouldNotReachHere();
2394     }
2395   }
2396 
2397   // Single-structure load/store method (all addressing variants)
2398   void ld_st(FloatRegister Vt, SIMD_RegVariant T, int index, Address a,
2399              int op1, int op2, int regs) {
2400     int expectedImmediate = (regVariant_to_elemBits(T) >> 3) * regs;
2401     int sVal = (T < D) ? (index >> (2 - T)) & 0x01 : 0;
2402     int opcode = (T < D) ? (T << 2) : ((T & 0x02) << 2);
2403     int size = (T < D) ? (index & (0x3 << T)) : 1;  // only care about low 2b
2404     Register Xn = a.base();
2405     int Rm;
2406 
2407     switch (a.getMode()) {
2408     case Address::base_plus_offset:
2409       guarantee(a.offset() == 0, "no offset allowed here");
2410       Rm = 0;
2411       break;
2412     case Address::post:
2413       guarantee(a.offset() == expectedImmediate, "bad offset");
2414       op1 |= 0b100;
2415       Rm = 0b11111;
2416       break;
2417     case Address::post_reg:
2418       op1 |= 0b100;
2419       Rm = a.index()->encoding();
2420       break;
2421     default:
2422       ShouldNotReachHere();
2423       Rm = 0;  // unreachable
2424     }
2425 
2426     starti;
2427     f(0,31), f((index >> (3 - T)), 30);
2428     f(op1, 29, 21), f(Rm, 20, 16), f(op2 | opcode | sVal, 15, 12);
2429     f(size, 11, 10), srf(Xn, 5), rf(Vt, 0);
2430   }
2431 
2432  public:
2433 
2434 #define INSN1(NAME, op1, op2)                                           \
2435   void NAME(FloatRegister Vt, SIMD_Arrangement T, const Address &a) {   \
2436     ld_st(Vt, T, a, op1, op2, 1);                                       \
2437  }
2438 
2439 #define INSN2(NAME, op1, op2)                                           \
2440   void NAME(FloatRegister Vt, FloatRegister Vt2, SIMD_Arrangement T, const Address &a) { \
2441     assert(Vt->successor() == Vt2, "Registers must be ordered");        \
2442     ld_st(Vt, T, a, op1, op2, 2);                                       \
2443   }
2444 
2445 #define INSN3(NAME, op1, op2)                                           \
2446   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2447             SIMD_Arrangement T, const Address &a) {                     \
2448     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3,           \
2449            "Registers must be ordered");                                \
2450     ld_st(Vt, T, a, op1, op2, 3);                                       \
2451   }
2452 
2453 #define INSN4(NAME, op1, op2)                                           \
2454   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2455             FloatRegister Vt4, SIMD_Arrangement T, const Address &a) {  \
2456     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 &&         \
2457            Vt3->successor() == Vt4, "Registers must be ordered");       \
2458     ld_st(Vt, T, a, op1, op2, 4);                                       \
2459   }
2460 
2461   INSN1(ld1,  0b001100010, 0b0111);
2462   INSN2(ld1,  0b001100010, 0b1010);
2463   INSN3(ld1,  0b001100010, 0b0110);
2464   INSN4(ld1,  0b001100010, 0b0010);
2465 
2466   INSN2(ld2,  0b001100010, 0b1000);
2467   INSN3(ld3,  0b001100010, 0b0100);
2468   INSN4(ld4,  0b001100010, 0b0000);
2469 
2470   INSN1(st1,  0b001100000, 0b0111);
2471   INSN2(st1,  0b001100000, 0b1010);
2472   INSN3(st1,  0b001100000, 0b0110);
2473   INSN4(st1,  0b001100000, 0b0010);
2474 
2475   INSN2(st2,  0b001100000, 0b1000);
2476   INSN3(st3,  0b001100000, 0b0100);
2477   INSN4(st4,  0b001100000, 0b0000);
2478 
2479   INSN1(ld1r, 0b001101010, 0b1100);
2480   INSN2(ld2r, 0b001101011, 0b1100);
2481   INSN3(ld3r, 0b001101010, 0b1110);
2482   INSN4(ld4r, 0b001101011, 0b1110);
2483 
2484 #undef INSN1
2485 #undef INSN2
2486 #undef INSN3
2487 #undef INSN4
2488 
2489 // Handle common single-structure ld/st parameter sanity checks
2490 // for all variations (1 to 4) of SIMD reigster inputs.  This
2491 // method will call the routine that generates the opcode.
2492 template<typename R, typename... Rx>
2493   void ldst_sstr(SIMD_RegVariant T, int index, const Address &a,
2494             int op1, int op2, R firstReg, Rx... otherRegs) {
2495     const FloatRegister vtSet[] = { firstReg, otherRegs... };
2496     const int regCount = sizeof...(otherRegs) + 1;
2497     assert(index >= 0 && (T <= D) && ((T == B && index <= 15) ||
2498               (T == H && index <= 7) || (T == S && index <= 3) ||
2499               (T == D && index <= 1)), "invalid index");
2500     assert(regCount >= 1 && regCount <= 4, "illegal register count");
2501 
2502     // Check to make sure when multiple SIMD registers are used
2503     // that they are in successive order.
2504     for (int i = 0; i < regCount - 1; i++) {
2505       assert(vtSet[i]->successor() == vtSet[i + 1],
2506              "Registers must be ordered");
2507     }
2508 
2509     ld_st(firstReg, T, index, a, op1, op2, regCount);
2510   }
2511 
2512 // Define a set of INSN1/2/3/4 macros to handle single-structure
2513 // load/store instructions.
2514 #define INSN1(NAME, op1, op2)                                           \
2515   void NAME(FloatRegister Vt, SIMD_RegVariant T, int index,             \
2516             const Address &a) {                                         \
2517     ldst_sstr(T, index, a, op1, op2, Vt);                               \
2518  }
2519 
2520 #define INSN2(NAME, op1, op2)                                           \
2521   void NAME(FloatRegister Vt, FloatRegister Vt2, SIMD_RegVariant T,     \
2522             int index, const Address &a) {                              \
2523     ldst_sstr(T, index, a, op1, op2, Vt, Vt2);                          \
2524   }
2525 
2526 #define INSN3(NAME, op1, op2)                                           \
2527   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2528             SIMD_RegVariant T, int index, const Address &a) {           \
2529     ldst_sstr(T, index, a, op1, op2, Vt, Vt2, Vt3);                     \
2530   }
2531 
2532 #define INSN4(NAME, op1, op2)                                           \
2533   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2534             FloatRegister Vt4, SIMD_RegVariant T, int index,            \
2535             const Address &a) {                                         \
2536     ldst_sstr(T, index, a, op1, op2, Vt, Vt2, Vt3, Vt4);                \
2537   }
2538 
2539   INSN1(st1, 0b001101000, 0b0000);
2540   INSN2(st2, 0b001101001, 0b0000);
2541   INSN3(st3, 0b001101000, 0b0010);
2542   INSN4(st4, 0b001101001, 0b0010);
2543 
2544 #undef INSN1
2545 #undef INSN2
2546 #undef INSN3
2547 #undef INSN4
2548 
2549 #define INSN(NAME, opc)                                                                 \
2550   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2551     starti;                                                                             \
2552     assert(T == T8B || T == T16B, "must be T8B or T16B");                               \
2553     f(0, 31), f((int)T & 1, 30), f(opc, 29, 21);                                        \
2554     rf(Vm, 16), f(0b000111, 15, 10), rf(Vn, 5), rf(Vd, 0);                              \
2555   }
2556 
2557   INSN(eor,  0b101110001);
2558   INSN(orr,  0b001110101);
2559   INSN(andr, 0b001110001);
2560   INSN(bic,  0b001110011);
2561   INSN(bif,  0b101110111);
2562   INSN(bit,  0b101110101);
2563   INSN(bsl,  0b101110011);
2564   INSN(orn,  0b001110111);
2565 
2566 #undef INSN
2567 
2568   // Advanced SIMD three different
2569 #define INSN(NAME, opc, opc2, acceptT2D)                                                \
2570   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2571     guarantee(T != T1Q && T != T1D, "incorrect arrangement");                           \
2572     if (!acceptT2D) guarantee(T != T2D, "incorrect arrangement");                       \
2573     starti;                                                                             \
2574     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2575     f((int)T >> 1, 23, 22), f(1, 21), rf(Vm, 16), f(opc2, 15, 10);                      \
2576     rf(Vn, 5), rf(Vd, 0);                                                               \
2577   }
2578 
2579   INSN(addv,   0, 0b100001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2580   INSN(subv,   1, 0b100001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2581   INSN(uqsubv, 1, 0b001011, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2582   INSN(mulv,   0, 0b100111, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2583   INSN(mlav,   0, 0b100101, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2584   INSN(mlsv,   1, 0b100101, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2585   INSN(sshl,   0, 0b010001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2586   INSN(ushl,   1, 0b010001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2587   INSN(addpv,  0, 0b101111, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2588   INSN(smullv, 0, 0b110000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2589   INSN(umullv, 1, 0b110000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2590   INSN(umlalv, 1, 0b100000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2591   INSN(maxv,   0, 0b011001, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2592   INSN(minv,   0, 0b011011, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2593   INSN(smaxp,  0, 0b101001, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2594   INSN(sminp,  0, 0b101011, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2595 
2596 #undef INSN
2597 
2598   // Advanced SIMD across lanes
2599 #define INSN(NAME, opc, opc2, accepted) \
2600   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2601     guarantee(T != T1Q && T != T1D, "incorrect arrangement");                           \
2602     if (accepted < 3) guarantee(T != T2D, "incorrect arrangement");                     \
2603     if (accepted < 2) guarantee(T != T2S, "incorrect arrangement");                     \
2604     if (accepted < 1) guarantee(T == T8B || T == T16B, "incorrect arrangement");        \
2605     starti;                                                                             \
2606     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2607     f((int)T >> 1, 23, 22), f(opc2, 21, 10);                                            \
2608     rf(Vn, 5), rf(Vd, 0);                                                               \
2609   }
2610 
2611   INSN(absr,   0, 0b100000101110, 3); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2612   INSN(negr,   1, 0b100000101110, 3); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2613   INSN(notr,   1, 0b100000010110, 0); // accepted arrangements: T8B, T16B
2614   INSN(addv,   0, 0b110001101110, 1); // accepted arrangements: T8B, T16B, T4H, T8H,      T4S
2615   INSN(smaxv,  0, 0b110000101010, 1); // accepted arrangements: T8B, T16B, T4H, T8H,      T4S
2616   INSN(umaxv,  1, 0b110000101010, 1); // accepted arrangements: T8B, T16B, T4H, T8H,      T4S
2617   INSN(sminv,  0, 0b110001101010, 1); // accepted arrangements: T8B, T16B, T4H, T8H,      T4S
2618   INSN(uminv,  1, 0b110001101010, 1); // accepted arrangements: T8B, T16B, T4H, T8H,      T4S
2619   INSN(cls,    0, 0b100000010010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2620   INSN(clz,    1, 0b100000010010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2621   INSN(cnt,    0, 0b100000010110, 0); // accepted arrangements: T8B, T16B
2622   INSN(uaddlp, 1, 0b100000001010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2623   INSN(uaddlv, 1, 0b110000001110, 1); // accepted arrangements: T8B, T16B, T4H, T8H,      T4S
2624 
2625 #undef INSN
2626 
2627 #define INSN(NAME, opc) \
2628   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                  \
2629     starti;                                                                            \
2630     assert(T == T4S, "arrangement must be T4S");                                       \
2631     f(0, 31), f((int)T & 1, 30), f(0b101110, 29, 24), f(opc, 23),                      \
2632     f(T == T4S ? 0 : 1, 22), f(0b110000111110, 21, 10); rf(Vn, 5), rf(Vd, 0);          \
2633   }
2634 
2635   INSN(fmaxv, 0);
2636   INSN(fminv, 1);
2637 
2638 #undef INSN
2639 
2640 // Advanced SIMD modified immediate
2641 #define INSN(NAME, op0, cmode0) \
2642   void NAME(FloatRegister Vd, SIMD_Arrangement T, unsigned imm8, unsigned lsl = 0) {   \
2643     unsigned cmode = cmode0;                                                           \
2644     unsigned op = op0;                                                                 \
2645     starti;                                                                            \
2646     assert(lsl == 0 ||                                                                 \
2647            ((T == T4H || T == T8H) && lsl == 8) ||                                     \
2648            ((T == T2S || T == T4S) && ((lsl >> 3) < 4) && ((lsl & 7) == 0)), "invalid shift");\
2649     cmode |= lsl >> 2;                                                                 \
2650     if (T == T4H || T == T8H) cmode |= 0b1000;                                         \
2651     if (!(T == T4H || T == T8H || T == T2S || T == T4S)) {                             \
2652       assert(op == 0 && cmode0 == 0, "must be MOVI");                                  \
2653       cmode = 0b1110;                                                                  \
2654       if (T == T1D || T == T2D) op = 1;                                                \
2655     }                                                                                  \
2656     f(0, 31), f((int)T & 1, 30), f(op, 29), f(0b0111100000, 28, 19);                   \
2657     f(imm8 >> 5, 18, 16), f(cmode, 15, 12), f(0x01, 11, 10), f(imm8 & 0b11111, 9, 5);  \
2658     rf(Vd, 0);                                                                         \
2659   }
2660 
2661   INSN(movi, 0, 0);
2662   INSN(orri, 0, 1);
2663   INSN(mvni, 1, 0);
2664   INSN(bici, 1, 1);
2665 
2666 #undef INSN
2667 
2668 #define INSN(NAME, op, cmode)                                           \
2669   void NAME(FloatRegister Vd, SIMD_Arrangement T, double imm) {         \
2670     unsigned imm8 = pack(imm);                                          \
2671     starti;                                                             \
2672     f(0, 31), f((int)T & 1, 30), f(op, 29), f(0b0111100000, 28, 19);    \
2673     f(imm8 >> 5, 18, 16), f(cmode, 15, 12), f(0x01, 11, 10), f(imm8 & 0b11111, 9, 5); \
2674     rf(Vd, 0);                                                          \
2675   }
2676 
2677   INSN(fmovs, 0, 0b1111);
2678   INSN(fmovd, 1, 0b1111);
2679 
2680 #undef INSN
2681 
2682 // Advanced SIMD three same
2683 #define INSN(NAME, op1, op2, op3)                                                       \
2684   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2685     starti;                                                                             \
2686     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");                    \
2687     f(0, 31), f((int)T & 1, 30), f(op1, 29), f(0b01110, 28, 24), f(op2, 23);            \
2688     f(T==T2D ? 1:0, 22); f(1, 21), rf(Vm, 16), f(op3, 15, 10), rf(Vn, 5), rf(Vd, 0);    \
2689   }
2690 
2691   INSN(fabd, 1, 1, 0b110101);
2692   INSN(fadd, 0, 0, 0b110101);
2693   INSN(fdiv, 1, 0, 0b111111);
2694   INSN(faddp, 1, 0, 0b110101);
2695   INSN(fmul, 1, 0, 0b110111);
2696   INSN(fsub, 0, 1, 0b110101);
2697   INSN(fmla, 0, 0, 0b110011);
2698   INSN(fmls, 0, 1, 0b110011);
2699   INSN(fmax, 0, 0, 0b111101);
2700   INSN(fmin, 0, 1, 0b111101);
2701   INSN(facgt, 1, 1, 0b111011);
2702 
2703 #undef INSN
2704 
2705   // AdvSIMD vector compare
2706   void cm(Condition cond, FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) {
2707     starti;
2708     assert(T != T1Q && T != T1D, "incorrect arrangement");
2709     int cond_op;
2710     switch (cond) {
2711       case EQ: cond_op = 0b110001; break;
2712       case GT: cond_op = 0b000110; break;
2713       case GE: cond_op = 0b000111; break;
2714       case HI: cond_op = 0b100110; break;
2715       case HS: cond_op = 0b100111; break;
2716       default:
2717         ShouldNotReachHere();
2718         break;
2719     }
2720 
2721     f(0, 31), f((int)T & 1, 30), f((cond_op >> 5) & 1, 29);
2722     f(0b01110, 28, 24), f((int)T >> 1, 23, 22), f(1, 21), rf(Vm, 16);
2723     f(cond_op & 0b11111, 15, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0);
2724   }
2725 
2726   // AdvSIMD Floating-point vector compare
2727   void fcm(Condition cond, FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) {
2728     starti;
2729     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");
2730     int cond_op;
2731     switch (cond) {
2732       case EQ: cond_op = 0b00; break;
2733       case GT: cond_op = 0b11; break;
2734       case GE: cond_op = 0b10; break;
2735       default:
2736         ShouldNotReachHere();
2737         break;
2738     }
2739 
2740     f(0, 31), f((int)T & 1, 30), f((cond_op >> 1) & 1, 29);
2741     f(0b01110, 28, 24), f(cond_op & 1, 23), f(T == T2D ? 1 : 0, 22);
2742     f(1, 21), rf(Vm, 16), f(0b111001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2743   }
2744 
2745 #define INSN(NAME, opc)                                                                 \
2746   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2747     starti;                                                                             \
2748     assert(T == T4S, "arrangement must be T4S");                                        \
2749     f(0b01011110000, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);         \
2750   }
2751 
2752   INSN(sha1c,     0b000000);
2753   INSN(sha1m,     0b001000);
2754   INSN(sha1p,     0b000100);
2755   INSN(sha1su0,   0b001100);
2756   INSN(sha256h2,  0b010100);
2757   INSN(sha256h,   0b010000);
2758   INSN(sha256su1, 0b011000);
2759 
2760 #undef INSN
2761 
2762 #define INSN(NAME, opc)                                                                 \
2763   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2764     starti;                                                                             \
2765     assert(T == T4S, "arrangement must be T4S");                                        \
2766     f(0b0101111000101000, 31, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);                \
2767   }
2768 
2769   INSN(sha1h,     0b000010);
2770   INSN(sha1su1,   0b000110);
2771   INSN(sha256su0, 0b001010);
2772 
2773 #undef INSN
2774 
2775 #define INSN(NAME, opc)                                                                 \
2776   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2777     starti;                                                                             \
2778     assert(T == T2D, "arrangement must be T2D");                                        \
2779     f(0b11001110011, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);         \
2780   }
2781 
2782   INSN(sha512h,   0b100000);
2783   INSN(sha512h2,  0b100001);
2784   INSN(sha512su1, 0b100010);
2785 
2786 #undef INSN
2787 
2788 #define INSN(NAME, opc)                                                                 \
2789   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2790     starti;                                                                             \
2791     assert(T == T2D, "arrangement must be T2D");                                        \
2792     f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0);                                               \
2793   }
2794 
2795   INSN(sha512su0, 0b1100111011000000100000);
2796 
2797 #undef INSN
2798 
2799 #define INSN(NAME, opc)                                                                                   \
2800   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, FloatRegister Va) { \
2801     starti;                                                                                               \
2802     assert(T == T16B, "arrangement must be T16B");                                                        \
2803     f(0b11001110, 31, 24), f(opc, 23, 21), rf(Vm, 16), f(0b0, 15, 15), rf(Va, 10), rf(Vn, 5), rf(Vd, 0);  \
2804   }
2805 
2806   INSN(eor3, 0b000);
2807   INSN(bcax, 0b001);
2808 
2809 #undef INSN
2810 
2811 #define INSN(NAME, opc)                                                                               \
2812   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, unsigned imm) { \
2813     starti;                                                                                           \
2814     assert(T == T2D, "arrangement must be T2D");                                                      \
2815     f(0b11001110, 31, 24), f(opc, 23, 21), rf(Vm, 16), f(imm, 15, 10), rf(Vn, 5), rf(Vd, 0);          \
2816   }
2817 
2818   INSN(xar, 0b100);
2819 
2820 #undef INSN
2821 
2822 #define INSN(NAME, opc)                                                                           \
2823   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) {           \
2824     starti;                                                                                       \
2825     assert(T == T2D, "arrangement must be T2D");                                                  \
2826     f(0b11001110, 31, 24), f(opc, 23, 21), rf(Vm, 16), f(0b100011, 15, 10), rf(Vn, 5), rf(Vd, 0); \
2827   }
2828 
2829   INSN(rax1, 0b011);
2830 
2831 #undef INSN
2832 
2833 #define INSN(NAME, opc)                           \
2834   void NAME(FloatRegister Vd, FloatRegister Vn) { \
2835     starti;                                       \
2836     f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0);         \
2837   }
2838 
2839   INSN(aese,   0b0100111000101000010010);
2840   INSN(aesd,   0b0100111000101000010110);
2841   INSN(aesmc,  0b0100111000101000011010);
2842   INSN(aesimc, 0b0100111000101000011110);
2843 
2844 #undef INSN
2845 
2846 #define INSN(NAME, op1, op2) \
2847   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index = 0) { \
2848     starti;                                                                                            \
2849     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");                                   \
2850     assert(index >= 0 && ((T == T2D && index <= 1) || (T != T2D && index <= 3)), "invalid index");     \
2851     f(0, 31), f((int)T & 1, 30), f(op1, 29); f(0b011111, 28, 23);                                      \
2852     f(T == T2D ? 1 : 0, 22), f(T == T2D ? 0 : index & 1, 21), rf(Vm, 16);                              \
2853     f(op2, 15, 12), f(T == T2D ? index : (index >> 1), 11), f(0, 10);                                  \
2854     rf(Vn, 5), rf(Vd, 0);                                                                              \
2855   }
2856 
2857   // FMLA/FMLS - Vector - Scalar
2858   INSN(fmlavs, 0, 0b0001);
2859   INSN(fmlsvs, 0, 0b0101);
2860   // FMULX - Vector - Scalar
2861   INSN(fmulxvs, 1, 0b1001);
2862 
2863 #undef INSN
2864 
2865   // Floating-point Reciprocal Estimate
2866   void frecpe(FloatRegister Vd, FloatRegister Vn, SIMD_RegVariant type) {
2867     assert(type == D || type == S, "Wrong type for frecpe");
2868     starti;
2869     f(0b010111101, 31, 23);
2870     f(type == D ? 1 : 0, 22);
2871     f(0b100001110110, 21, 10);
2872     rf(Vn, 5), rf(Vd, 0);
2873   }
2874 
2875   // (long) {a, b} -> (a + b)
2876   void addpd(FloatRegister Vd, FloatRegister Vn) {
2877     starti;
2878     f(0b0101111011110001101110, 31, 10);
2879     rf(Vn, 5), rf(Vd, 0);
2880   }
2881 
2882   // Floating-point AdvSIMD scalar pairwise
2883 #define INSN(NAME, op1, op2) \
2884   void NAME(FloatRegister Vd, FloatRegister Vn, SIMD_RegVariant type) {                 \
2885     starti;                                                                             \
2886     assert(type == D || type == S, "Wrong type for faddp/fmaxp/fminp");                 \
2887     f(0b0111111, 31, 25), f(op1, 24, 23),                                               \
2888     f(type == S ? 0 : 1, 22), f(0b11000, 21, 17), f(op2, 16, 10), rf(Vn, 5), rf(Vd, 0); \
2889   }
2890 
2891   INSN(faddp, 0b00, 0b0110110);
2892   INSN(fmaxp, 0b00, 0b0111110);
2893   INSN(fminp, 0b01, 0b0111110);
2894 
2895 #undef INSN
2896 
2897   void ins(FloatRegister Vd, SIMD_RegVariant T, FloatRegister Vn, int didx, int sidx) {
2898     starti;
2899     assert(T != Q, "invalid register variant");
2900     f(0b01101110000, 31, 21), f(((didx<<1)|1)<<(int)T, 20, 16), f(0, 15);
2901     f(sidx<<(int)T, 14, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0);
2902   }
2903 
2904 #define INSN(NAME, cond, op1, op2)                                                      \
2905   void NAME(Register Rd, FloatRegister Vn, SIMD_RegVariant T, int idx) {                \
2906     starti;                                                                             \
2907     assert(cond, "invalid register variant");                                           \
2908     f(0, 31), f(op1, 30), f(0b001110000, 29, 21);                                       \
2909     f(((idx << 1) | 1) << (int)T, 20, 16), f(op2, 15, 10);                              \
2910     rf(Vn, 5), rf(Rd, 0);                                                               \
2911   }
2912 
2913   INSN(umov, (T != Q), (T == D ? 1 : 0), 0b001111);
2914   INSN(smov, (T < D),  1,                0b001011);
2915 
2916 #undef INSN
2917 
2918 #define INSN(NAME, opc, opc2, isSHR)                                    \
2919   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int shift){ \
2920     starti;                                                             \
2921     /* The encodings for the immh:immb fields (bits 22:16) in *SHR are  \
2922      *   0001 xxx       8B/16B, shift = 16  - UInt(immh:immb)           \
2923      *   001x xxx       4H/8H,  shift = 32  - UInt(immh:immb)           \
2924      *   01xx xxx       2S/4S,  shift = 64  - UInt(immh:immb)           \
2925      *   1xxx xxx       1D/2D,  shift = 128 - UInt(immh:immb)           \
2926      *   (1D is RESERVED)                                               \
2927      * for SHL shift is calculated as:                                  \
2928      *   0001 xxx       8B/16B, shift = UInt(immh:immb) - 8             \
2929      *   001x xxx       4H/8H,  shift = UInt(immh:immb) - 16            \
2930      *   01xx xxx       2S/4S,  shift = UInt(immh:immb) - 32            \
2931      *   1xxx xxx       1D/2D,  shift = UInt(immh:immb) - 64            \
2932      *   (1D is RESERVED)                                               \
2933      */                                                                 \
2934     guarantee(!isSHR || (isSHR && (shift != 0)), "impossible encoding");\
2935     assert((1 << ((T>>1)+3)) > shift, "Invalid Shift value");           \
2936     int cVal = (1 << (((T >> 1) + 3) + (isSHR ? 1 : 0)));               \
2937     int encodedShift = isSHR ? cVal - shift : cVal + shift;             \
2938     f(0, 31), f(T & 1, 30), f(opc, 29), f(0b011110, 28, 23),            \
2939     f(encodedShift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0);     \
2940   }
2941 
2942   INSN(shl,  0, 0b010101, /* isSHR = */ false);
2943   INSN(sshr, 0, 0b000001, /* isSHR = */ true);
2944   INSN(ushr, 1, 0b000001, /* isSHR = */ true);
2945   INSN(usra, 1, 0b000101, /* isSHR = */ true);
2946   INSN(ssra, 0, 0b000101, /* isSHR = */ true);
2947   INSN(sli,  1, 0b010101, /* isSHR = */ false);
2948 
2949 #undef INSN
2950 
2951 #define INSN(NAME, opc, opc2, isSHR)                                    \
2952   void NAME(FloatRegister Vd, FloatRegister Vn, int shift){             \
2953     starti;                                                             \
2954     int encodedShift = isSHR ? 128 - shift : 64 + shift;                \
2955     f(0b01, 31, 30), f(opc, 29), f(0b111110, 28, 23),                   \
2956     f(encodedShift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0);     \
2957   }
2958 
2959   INSN(shld,  0, 0b010101, /* isSHR = */ false);
2960   INSN(sshrd, 0, 0b000001, /* isSHR = */ true);
2961   INSN(ushrd, 1, 0b000001, /* isSHR = */ true);
2962 
2963 #undef INSN
2964 
2965 protected:
2966   void _xshll(bool is_unsigned, FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
2967     starti;
2968     /* The encodings for the immh:immb fields (bits 22:16) are
2969      *   0001 xxx       8H, 8B/16B shift = xxx
2970      *   001x xxx       4S, 4H/8H  shift = xxxx
2971      *   01xx xxx       2D, 2S/4S  shift = xxxxx
2972      *   1xxx xxx       RESERVED
2973      */
2974     assert((Tb >> 1) + 1 == (Ta >> 1), "Incompatible arrangement");
2975     assert((1 << ((Tb>>1)+3)) > shift, "Invalid shift value");
2976     f(0, 31), f(Tb & 1, 30), f(is_unsigned ? 1 : 0, 29), f(0b011110, 28, 23);
2977     f((1 << ((Tb>>1)+3))|shift, 22, 16);
2978     f(0b101001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2979   }
2980 
2981 public:
2982   void ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
2983     assert(Tb == T8B || Tb == T4H || Tb == T2S, "invalid arrangement");
2984     _xshll(/* is_unsigned */ true, Vd, Ta, Vn, Tb, shift);
2985   }
2986 
2987   void ushll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
2988     assert(Tb == T16B || Tb == T8H || Tb == T4S, "invalid arrangement");
2989     _xshll(/* is_unsigned */ true, Vd, Ta, Vn, Tb, shift);
2990   }
2991 
2992   void uxtl(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb) {
2993     ushll(Vd, Ta, Vn, Tb, 0);
2994   }
2995 
2996   void sshll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
2997     assert(Tb == T8B || Tb == T4H || Tb == T2S, "invalid arrangement");
2998     _xshll(/* is_unsigned */ false, Vd, Ta, Vn, Tb, shift);
2999   }
3000 
3001   void sshll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
3002     assert(Tb == T16B || Tb == T8H || Tb == T4S, "invalid arrangement");
3003     _xshll(/* is_unsigned */ false, Vd, Ta, Vn, Tb, shift);
3004   }
3005 
3006   void sxtl(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb) {
3007     sshll(Vd, Ta, Vn, Tb, 0);
3008   }
3009 
3010   // Move from general purpose register
3011   //   mov  Vd.T[index], Rn
3012   void mov(FloatRegister Vd, SIMD_RegVariant T, int index, Register Xn) {
3013     guarantee(T != Q, "invalid register variant");
3014     starti;
3015     f(0b01001110000, 31, 21), f(((1 << T) | (index << (T + 1))), 20, 16);
3016     f(0b000111, 15, 10), zrf(Xn, 5), rf(Vd, 0);
3017   }
3018 
3019   // Move to general purpose register
3020   //   mov  Rd, Vn.T[index]
3021   void mov(Register Xd, FloatRegister Vn, SIMD_RegVariant T, int index) {
3022     guarantee(T == S || T == D, "invalid register variant");
3023     umov(Xd, Vn, T, index);
3024   }
3025 
3026 private:
3027   void _pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
3028     starti;
3029     assert((Ta == T1Q && (Tb == T1D || Tb == T2D)) ||
3030            (Ta == T8H && (Tb == T8B || Tb == T16B)), "Invalid Size specifier");
3031     int size = (Ta == T1Q) ? 0b11 : 0b00;
3032     f(0, 31), f(Tb & 1, 30), f(0b001110, 29, 24), f(size, 23, 22);
3033     f(1, 21), rf(Vm, 16), f(0b111000, 15, 10), rf(Vn, 5), rf(Vd, 0);
3034   }
3035 
3036 public:
3037   void pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
3038     assert(Tb == T1D || Tb == T8B, "pmull assumes T1D or T8B as the second size specifier");
3039     _pmull(Vd, Ta, Vn, Vm, Tb);
3040   }
3041 
3042   void pmull2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
3043     assert(Tb == T2D || Tb == T16B, "pmull2 assumes T2D or T16B as the second size specifier");
3044     _pmull(Vd, Ta, Vn, Vm, Tb);
3045   }
3046 
3047   void uqxtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) {
3048     starti;
3049     int size_b = (int)Tb >> 1;
3050     int size_a = (int)Ta >> 1;
3051     assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier");
3052     f(0, 31), f(Tb & 1, 30), f(0b101110, 29, 24), f(size_b, 23, 22);
3053     f(0b100001010010, 21, 10), rf(Vn, 5), rf(Vd, 0);
3054   }
3055 
3056   void xtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) {
3057     starti;
3058     int size_b = (int)Tb >> 1;
3059     int size_a = (int)Ta >> 1;
3060     assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier");
3061     f(0, 31), f(Tb & 1, 30), f(0b001110, 29, 24), f(size_b, 23, 22);
3062     f(0b100001001010, 21, 10), rf(Vn, 5), rf(Vd, 0);
3063   }
3064 
3065   void dup(FloatRegister Vd, SIMD_Arrangement T, Register Xs)
3066   {
3067     starti;
3068     assert(T != T1D, "reserved encoding");
3069     f(0,31), f((int)T & 1, 30), f(0b001110000, 29, 21);
3070     f((1 << (T >> 1)), 20, 16), f(0b000011, 15, 10), zrf(Xs, 5), rf(Vd, 0);
3071   }
3072 
3073   void dup(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int index = 0)
3074   {
3075     starti;
3076     assert(T != T1D, "reserved encoding");
3077     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21);
3078     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
3079     f(0b000001, 15, 10), rf(Vn, 5), rf(Vd, 0);
3080   }
3081 
3082   // Advanced SIMD scalar copy
3083   void dup(FloatRegister Vd, SIMD_RegVariant T, FloatRegister Vn, int index = 0)
3084   {
3085     starti;
3086     assert(T != Q, "invalid size");
3087     f(0b01011110000, 31, 21);
3088     f((1 << T) | (index << (T + 1)), 20, 16);
3089     f(0b000001, 15, 10), rf(Vn, 5), rf(Vd, 0);
3090   }
3091 
3092   // AdvSIMD ZIP/UZP/TRN
3093 #define INSN(NAME, opcode)                                              \
3094   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
3095     guarantee(T != T1D && T != T1Q, "invalid arrangement");             \
3096     starti;                                                             \
3097     f(0, 31), f(0b001110, 29, 24), f(0, 21), f(0, 15);                  \
3098     f(opcode, 14, 12), f(0b10, 11, 10);                                 \
3099     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);                                   \
3100     f(T & 1, 30), f(T >> 1, 23, 22);                                    \
3101   }
3102 
3103   INSN(uzp1, 0b001);
3104   INSN(trn1, 0b010);
3105   INSN(zip1, 0b011);
3106   INSN(uzp2, 0b101);
3107   INSN(trn2, 0b110);
3108   INSN(zip2, 0b111);
3109 
3110 #undef INSN
3111 
3112   // CRC32 instructions
3113 #define INSN(NAME, c, sf, sz)                                             \
3114   void NAME(Register Rd, Register Rn, Register Rm) {                      \
3115     starti;                                                               \
3116     f(sf, 31), f(0b0011010110, 30, 21), f(0b010, 15, 13), f(c, 12);       \
3117     f(sz, 11, 10), rf(Rm, 16), rf(Rn, 5), rf(Rd, 0);                      \
3118   }
3119 
3120   INSN(crc32b,  0, 0, 0b00);
3121   INSN(crc32h,  0, 0, 0b01);
3122   INSN(crc32w,  0, 0, 0b10);
3123   INSN(crc32x,  0, 1, 0b11);
3124   INSN(crc32cb, 1, 0, 0b00);
3125   INSN(crc32ch, 1, 0, 0b01);
3126   INSN(crc32cw, 1, 0, 0b10);
3127   INSN(crc32cx, 1, 1, 0b11);
3128 
3129 #undef INSN
3130 
3131   // Table vector lookup
3132 #define INSN(NAME, op)                                                  \
3133   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, unsigned registers, FloatRegister Vm) { \
3134     starti;                                                             \
3135     assert(T == T8B || T == T16B, "invalid arrangement");               \
3136     assert(0 < registers && registers <= 4, "invalid number of registers"); \
3137     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21), rf(Vm, 16), f(0, 15); \
3138     f(registers - 1, 14, 13), f(op, 12),f(0b00, 11, 10), rf(Vn, 5), rf(Vd, 0); \
3139   }
3140 
3141   INSN(tbl, 0);
3142   INSN(tbx, 1);
3143 
3144 #undef INSN
3145 
3146   // AdvSIMD two-reg misc
3147   // In this instruction group, the 2 bits in the size field ([23:22]) may be
3148   // fixed or determined by the "SIMD_Arrangement T", or both. The additional
3149   // parameter "tmask" is a 2-bit mask used to indicate which bits in the size
3150   // field are determined by the SIMD_Arrangement. The bit of "tmask" should be
3151   // set to 1 if corresponding bit marked as "x" in the ArmARM.
3152 #define INSN(NAME, U, size, tmask, opcode)                                          \
3153   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {               \
3154        starti;                                                                      \
3155        assert((ASSERTION), MSG);                                                    \
3156        f(0, 31), f((int)T & 1, 30), f(U, 29), f(0b01110, 28, 24);                   \
3157        f(size | ((int)(T >> 1) & tmask), 23, 22), f(0b10000, 21, 17);               \
3158        f(opcode, 16, 12), f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0);                    \
3159  }
3160 
3161 #define MSG "invalid arrangement"
3162 
3163 #define ASSERTION (T == T2S || T == T4S || T == T2D)
3164   INSN(fsqrt,  1, 0b10, 0b01, 0b11111);
3165   INSN(fabs,   0, 0b10, 0b01, 0b01111);
3166   INSN(fneg,   1, 0b10, 0b01, 0b01111);
3167   INSN(frintn, 0, 0b00, 0b01, 0b11000);
3168   INSN(frintm, 0, 0b00, 0b01, 0b11001);
3169   INSN(frintp, 0, 0b10, 0b01, 0b11000);
3170   INSN(fcvtas, 0, 0b00, 0b01, 0b11100);
3171   INSN(fcvtzs, 0, 0b10, 0b01, 0b11011);
3172   INSN(fcvtms, 0, 0b00, 0b01, 0b11011);
3173 #undef ASSERTION
3174 
3175 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H || T == T2S || T == T4S)
3176   INSN(rev64, 0, 0b00, 0b11, 0b00000);
3177 #undef ASSERTION
3178 
3179 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H)
3180   INSN(rev32, 1, 0b00, 0b11, 0b00000);
3181 #undef ASSERTION
3182 
3183 #define ASSERTION (T == T8B || T == T16B)
3184   INSN(rev16, 0, 0b00, 0b11, 0b00001);
3185   INSN(rbit,  1, 0b01, 0b00, 0b00101);
3186 #undef ASSERTION
3187 
3188 #undef MSG
3189 
3190 #undef INSN
3191 
3192   // AdvSIMD compare with zero (vector)
3193   void cm(Condition cond, FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
3194     starti;
3195     assert(T != T1Q && T != T1D, "invalid arrangement");
3196     int cond_op;
3197     switch (cond) {
3198       case EQ: cond_op = 0b001; break;
3199       case GE: cond_op = 0b100; break;
3200       case GT: cond_op = 0b000; break;
3201       case LE: cond_op = 0b101; break;
3202       case LT: cond_op = 0b010; break;
3203       default:
3204         ShouldNotReachHere();
3205         break;
3206     }
3207 
3208     f(0, 31), f((int)T & 1, 30), f((cond_op >> 2) & 1, 29);
3209     f(0b01110, 28, 24), f((int)T >> 1, 23, 22), f(0b10000010, 21, 14);
3210     f(cond_op & 0b11, 13, 12), f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0);
3211   }
3212 
3213   // AdvSIMD Floating-point compare with zero (vector)
3214   void fcm(Condition cond, FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
3215     starti;
3216     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");
3217     int cond_op;
3218     switch (cond) {
3219       case EQ: cond_op = 0b010; break;
3220       case GT: cond_op = 0b000; break;
3221       case GE: cond_op = 0b001; break;
3222       case LE: cond_op = 0b011; break;
3223       case LT: cond_op = 0b100; break;
3224       default:
3225         ShouldNotReachHere();
3226         break;
3227     }
3228 
3229     f(0, 31), f((int)T & 1, 30), f(cond_op & 1, 29), f(0b011101, 28, 23);
3230     f(((int)(T >> 1) & 1), 22), f(0b10000011, 21, 14);
3231     f((cond_op >> 1) & 0b11, 13, 12), f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0);
3232   }
3233 
3234   void ext(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index)
3235   {
3236     starti;
3237     assert(T == T8B || T == T16B, "invalid arrangement");
3238     assert((T == T8B && index <= 0b0111) || (T == T16B && index <= 0b1111), "Invalid index value");
3239     f(0, 31), f((int)T & 1, 30), f(0b101110000, 29, 21);
3240     rf(Vm, 16), f(0, 15), f(index, 14, 11);
3241     f(0, 10), rf(Vn, 5), rf(Vd, 0);
3242   }
3243 
3244 // SVE arithmetic - unpredicated
3245 #define INSN(NAME, opcode)                                                             \
3246   void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, FloatRegister Zm) { \
3247     starti;                                                                            \
3248     assert(T != Q, "invalid register variant");                                        \
3249     f(0b00000100, 31, 24), f(T, 23, 22), f(1, 21),                                     \
3250     rf(Zm, 16), f(0, 15, 13), f(opcode, 12, 10), rf(Zn, 5), rf(Zd, 0);                 \
3251   }
3252   INSN(sve_add, 0b000);
3253   INSN(sve_sub, 0b001);
3254 #undef INSN
3255 
3256 // SVE integer add/subtract immediate (unpredicated)
3257 #define INSN(NAME, op)                                                  \
3258   void NAME(FloatRegister Zd, SIMD_RegVariant T, unsigned imm8) {       \
3259     starti;                                                             \
3260     /* The immediate is an unsigned value in the range 0 to 255, and    \
3261      * for element width of 16 bits or higher it may also be a          \
3262      * positive multiple of 256 in the range 256 to 65280.              \
3263      */                                                                 \
3264     assert(T != Q, "invalid size");                                     \
3265     int sh = 0;                                                         \
3266     if (imm8 <= 0xff) {                                                 \
3267       sh = 0;                                                           \
3268     } else if (T != B && imm8 <= 0xff00 && (imm8 & 0xff) == 0) {        \
3269       sh = 1;                                                           \
3270       imm8 = (imm8 >> 8);                                               \
3271     } else {                                                            \
3272       guarantee(false, "invalid immediate");                            \
3273     }                                                                   \
3274     f(0b00100101, 31, 24), f(T, 23, 22), f(0b10000, 21, 17);            \
3275     f(op, 16, 14), f(sh, 13), f(imm8, 12, 5), rf(Zd, 0);                \
3276   }
3277 
3278   INSN(sve_add, 0b011);
3279   INSN(sve_sub, 0b111);
3280 #undef INSN
3281 
3282 // SVE floating-point arithmetic - unpredicated
3283 #define INSN(NAME, opcode)                                                             \
3284   void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, FloatRegister Zm) { \
3285     starti;                                                                            \
3286     assert(T == S || T == D, "invalid register variant");                              \
3287     f(0b01100101, 31, 24), f(T, 23, 22), f(0, 21),                                     \
3288     rf(Zm, 16), f(0, 15, 13), f(opcode, 12, 10), rf(Zn, 5), rf(Zd, 0);                 \
3289   }
3290 
3291   INSN(sve_fadd, 0b000);
3292   INSN(sve_fmul, 0b010);
3293   INSN(sve_fsub, 0b001);
3294 #undef INSN
3295 
3296 private:
3297   void sve_predicate_reg_insn(unsigned op24, unsigned op13,
3298                               FloatRegister Zd_or_Vd, SIMD_RegVariant T,
3299                               PRegister Pg, FloatRegister Zn_or_Vn) {
3300     starti;
3301     f(op24, 31, 24), f(T, 23, 22), f(op13, 21, 13);
3302     pgrf(Pg, 10), rf(Zn_or_Vn, 5), rf(Zd_or_Vd, 0);
3303   }
3304 
3305   void sve_shift_imm_encoding(SIMD_RegVariant T, int shift, bool isSHR,
3306                               int& tszh, int& tszl_imm) {
3307     /* The encodings for the tszh:tszl:imm3 fields
3308      * for shift right is calculated as:
3309      *   0001 xxx       B, shift = 16  - UInt(tszh:tszl:imm3)
3310      *   001x xxx       H, shift = 32  - UInt(tszh:tszl:imm3)
3311      *   01xx xxx       S, shift = 64  - UInt(tszh:tszl:imm3)
3312      *   1xxx xxx       D, shift = 128 - UInt(tszh:tszl:imm3)
3313      * for shift left is calculated as:
3314      *   0001 xxx       B, shift = UInt(tszh:tszl:imm3) - 8
3315      *   001x xxx       H, shift = UInt(tszh:tszl:imm3) - 16
3316      *   01xx xxx       S, shift = UInt(tszh:tszl:imm3) - 32
3317      *   1xxx xxx       D, shift = UInt(tszh:tszl:imm3) - 64
3318      */
3319     assert(T != Q, "Invalid register variant");
3320     if (isSHR) {
3321       assert(((1 << (T + 3)) >= shift) && (shift > 0) , "Invalid shift value");
3322     } else {
3323       assert(((1 << (T + 3)) > shift) && (shift >= 0) , "Invalid shift value");
3324     }
3325     int cVal = (1 << ((T + 3) + (isSHR ? 1 : 0)));
3326     int encodedShift = isSHR ? cVal - shift : cVal + shift;
3327     tszh = encodedShift >> 5;
3328     tszl_imm = encodedShift & 0x1f;
3329   }
3330 
3331 public:
3332 
3333 // SVE integer arithmetic - predicate
3334 #define INSN(NAME, op1, op2)                                                                            \
3335   void NAME(FloatRegister Zdn_or_Zd_or_Vd, SIMD_RegVariant T, PRegister Pg, FloatRegister Znm_or_Vn) {  \
3336     assert(T != Q, "invalid register variant");                                                         \
3337     sve_predicate_reg_insn(op1, op2, Zdn_or_Zd_or_Vd, T, Pg, Znm_or_Vn);                                \
3338   }
3339 
3340   INSN(sve_abs,   0b00000100, 0b010110101); // vector abs, unary
3341   INSN(sve_add,   0b00000100, 0b000000000); // vector add
3342   INSN(sve_and,   0b00000100, 0b011010000); // vector and
3343   INSN(sve_andv,  0b00000100, 0b011010001); // bitwise and reduction to scalar
3344   INSN(sve_asr,   0b00000100, 0b010000100); // vector arithmetic shift right
3345   INSN(sve_bic,   0b00000100, 0b011011000); // vector bitwise clear
3346   INSN(sve_clz,   0b00000100, 0b011001101); // vector count leading zero bits
3347   INSN(sve_cnt,   0b00000100, 0b011010101); // count non-zero bits
3348   INSN(sve_cpy,   0b00000101, 0b100000100); // copy scalar to each active vector element
3349   INSN(sve_eor,   0b00000100, 0b011001000); // vector eor
3350   INSN(sve_eorv,  0b00000100, 0b011001001); // bitwise xor reduction to scalar
3351   INSN(sve_lsl,   0b00000100, 0b010011100); // vector logical shift left
3352   INSN(sve_lsr,   0b00000100, 0b010001100); // vector logical shift right
3353   INSN(sve_mul,   0b00000100, 0b010000000); // vector mul
3354   INSN(sve_neg,   0b00000100, 0b010111101); // vector neg, unary
3355   INSN(sve_not,   0b00000100, 0b011110101); // bitwise invert vector, unary
3356   INSN(sve_orr,   0b00000100, 0b011000000); // vector or
3357   INSN(sve_orv,   0b00000100, 0b011000001); // bitwise or reduction to scalar
3358   INSN(sve_smax,  0b00000100, 0b001000000); // signed maximum vectors
3359   INSN(sve_smaxv, 0b00000100, 0b001000001); // signed maximum reduction to scalar
3360   INSN(sve_smin,  0b00000100, 0b001010000); // signed minimum vectors
3361   INSN(sve_sminv, 0b00000100, 0b001010001); // signed minimum reduction to scalar
3362   INSN(sve_sub,   0b00000100, 0b000001000); // vector sub
3363   INSN(sve_uaddv, 0b00000100, 0b000001001); // unsigned add reduction to scalar
3364 #undef INSN
3365 
3366 // SVE floating-point arithmetic - predicate
3367 #define INSN(NAME, op1, op2)                                                                          \
3368   void NAME(FloatRegister Zd_or_Zdn_or_Vd, SIMD_RegVariant T, PRegister Pg, FloatRegister Zn_or_Zm) { \
3369     assert(T == S || T == D, "invalid register variant");                                             \
3370     sve_predicate_reg_insn(op1, op2, Zd_or_Zdn_or_Vd, T, Pg, Zn_or_Zm);                               \
3371   }
3372 
3373   INSN(sve_fabd,   0b01100101, 0b001000100); // floating-point absolute difference
3374   INSN(sve_fabs,   0b00000100, 0b011100101);
3375   INSN(sve_fadd,   0b01100101, 0b000000100);
3376   INSN(sve_fadda,  0b01100101, 0b011000001); // add strictly-ordered reduction to scalar Vd
3377   INSN(sve_fdiv,   0b01100101, 0b001101100);
3378   INSN(sve_fmax,   0b01100101, 0b000110100); // floating-point maximum
3379   INSN(sve_fmaxv,  0b01100101, 0b000110001); // floating-point maximum recursive reduction to scalar
3380   INSN(sve_fmin,   0b01100101, 0b000111100); // floating-point minimum
3381   INSN(sve_fminv,  0b01100101, 0b000111001); // floating-point minimum recursive reduction to scalar
3382   INSN(sve_fmul,   0b01100101, 0b000010100);
3383   INSN(sve_fneg,   0b00000100, 0b011101101);
3384   INSN(sve_frintm, 0b01100101, 0b000010101); // floating-point round to integral value, toward minus infinity
3385   INSN(sve_frintn, 0b01100101, 0b000000101); // floating-point round to integral value, nearest with ties to even
3386   INSN(sve_frinta, 0b01100101, 0b000100101); // floating-point round to integral value, nearest with ties to away
3387   INSN(sve_frintp, 0b01100101, 0b000001101); // floating-point round to integral value, toward plus infinity
3388   INSN(sve_fsqrt,  0b01100101, 0b001101101);
3389   INSN(sve_fsub,   0b01100101, 0b000001100);
3390 #undef INSN
3391 
3392   // SVE multiple-add/sub - predicated
3393 #define INSN(NAME, op0, op1, op2)                                                                     \
3394   void NAME(FloatRegister Zda, SIMD_RegVariant T, PRegister Pg, FloatRegister Zn, FloatRegister Zm) { \
3395     starti;                                                                                           \
3396     assert(T != Q, "invalid size");                                                                   \
3397     f(op0, 31, 24), f(T, 23, 22), f(op1, 21), rf(Zm, 16);                                             \
3398     f(op2, 15, 13), pgrf(Pg, 10), rf(Zn, 5), rf(Zda, 0);                                              \
3399   }
3400 
3401   INSN(sve_fmla,  0b01100101, 1, 0b000); // floating-point fused multiply-add, writing addend: Zda = Zda + Zn * Zm
3402   INSN(sve_fmls,  0b01100101, 1, 0b001); // floating-point fused multiply-subtract: Zda = Zda + -Zn * Zm
3403   INSN(sve_fnmla, 0b01100101, 1, 0b010); // floating-point negated fused multiply-add: Zda = -Zda + -Zn * Zm
3404   INSN(sve_fnmls, 0b01100101, 1, 0b011); // floating-point negated fused multiply-subtract: Zda = -Zda + Zn * Zm
3405   INSN(sve_fmad,  0b01100101, 1, 0b100); // floating-point fused multiply-add, writing multiplicand: Zda = Zm + Zda * Zn
3406   INSN(sve_fmsb,  0b01100101, 1, 0b101); // floating-point fused multiply-subtract, writing multiplicand: Zda = Zm + -Zda * Zn
3407   INSN(sve_fnmad, 0b01100101, 1, 0b110); // floating-point negated fused multiply-add, writing multiplicand: Zda = -Zm + -Zda * Zn
3408   INSN(sve_fnmsb, 0b01100101, 1, 0b111); // floating-point negated fused multiply-subtract, writing multiplicand: Zda = -Zm + Zda * Zn
3409   INSN(sve_mla,   0b00000100, 0, 0b010); // multiply-add, writing addend: Zda = Zda + Zn*Zm
3410   INSN(sve_mls,   0b00000100, 0, 0b011); // multiply-subtract, writing addend: Zda = Zda + -Zn*Zm
3411 #undef INSN
3412 
3413 // SVE bitwise logical - unpredicated
3414 #define INSN(NAME, opc)                                              \
3415   void NAME(FloatRegister Zd, FloatRegister Zn, FloatRegister Zm) {  \
3416     starti;                                                          \
3417     f(0b00000100, 31, 24), f(opc, 23, 22), f(1, 21),                 \
3418     rf(Zm, 16), f(0b001100, 15, 10), rf(Zn, 5), rf(Zd, 0);           \
3419   }
3420   INSN(sve_and, 0b00);
3421   INSN(sve_eor, 0b10);
3422   INSN(sve_orr, 0b01);
3423   INSN(sve_bic, 0b11);
3424 #undef INSN
3425 
3426 // SVE bitwise logical with immediate (unpredicated)
3427 #define INSN(NAME, opc)                                                      \
3428   void NAME(FloatRegister Zd, SIMD_RegVariant T, uint64_t imm) {             \
3429     starti;                                                                  \
3430     unsigned elembits = regVariant_to_elemBits(T);                           \
3431     uint32_t val = encode_sve_logical_immediate(elembits, imm);              \
3432     f(0b00000101, 31, 24), f(opc, 23, 22), f(0b0000, 21, 18);                \
3433     f(val, 17, 5), rf(Zd, 0);                                                \
3434   }
3435   INSN(sve_and, 0b10);
3436   INSN(sve_eor, 0b01);
3437   INSN(sve_orr, 0b00);
3438 #undef INSN
3439 
3440 // SVE shift immediate - unpredicated
3441 #define INSN(NAME, opc, isSHR)                                                  \
3442   void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, int shift) { \
3443     starti;                                                                     \
3444     int tszh, tszl_imm;                                                         \
3445     sve_shift_imm_encoding(T, shift, isSHR, tszh, tszl_imm);                    \
3446     f(0b00000100, 31, 24);                                                      \
3447     f(tszh, 23, 22), f(1,21), f(tszl_imm, 20, 16);                              \
3448     f(0b100, 15, 13), f(opc, 12, 10), rf(Zn, 5), rf(Zd, 0);                     \
3449   }
3450 
3451   INSN(sve_asr, 0b100, /* isSHR = */ true);
3452   INSN(sve_lsl, 0b111, /* isSHR = */ false);
3453   INSN(sve_lsr, 0b101, /* isSHR = */ true);
3454 #undef INSN
3455 
3456 // SVE bitwise shift by immediate (predicated)
3457 #define INSN(NAME, opc, isSHR)                                                  \
3458   void NAME(FloatRegister Zdn, SIMD_RegVariant T, PRegister Pg, int shift) {    \
3459     starti;                                                                     \
3460     int tszh, tszl_imm;                                                         \
3461     sve_shift_imm_encoding(T, shift, isSHR, tszh, tszl_imm);                    \
3462     f(0b00000100, 31, 24), f(tszh, 23, 22), f(0b00, 21, 20), f(opc, 19, 16);    \
3463     f(0b100, 15, 13), pgrf(Pg, 10), f(tszl_imm, 9, 5), rf(Zdn, 0);              \
3464   }
3465 
3466   INSN(sve_asr, 0b0000, /* isSHR = */ true);
3467   INSN(sve_lsl, 0b0011, /* isSHR = */ false);
3468   INSN(sve_lsr, 0b0001, /* isSHR = */ true);
3469 #undef INSN
3470 
3471 private:
3472 
3473   // Scalar base + immediate index
3474   void sve_ld_st1(FloatRegister Zt, Register Xn, int imm, PRegister Pg,
3475               SIMD_RegVariant T, int op1, int type, int op2) {
3476     starti;
3477     assert_cond(T >= type);
3478     f(op1, 31, 25), f(type, 24, 23), f(T, 22, 21);
3479     f(0, 20), sf(imm, 19, 16), f(op2, 15, 13);
3480     pgrf(Pg, 10), srf(Xn, 5), rf(Zt, 0);
3481   }
3482 
3483   // Scalar base + scalar index
3484   void sve_ld_st1(FloatRegister Zt, Register Xn, Register Xm, PRegister Pg,
3485               SIMD_RegVariant T, int op1, int type, int op2) {
3486     starti;
3487     assert_cond(T >= type);
3488     f(op1, 31, 25), f(type, 24, 23), f(T, 22, 21);
3489     rf(Xm, 16), f(op2, 15, 13);
3490     pgrf(Pg, 10), srf(Xn, 5), rf(Zt, 0);
3491   }
3492 
3493   void sve_ld_st1(FloatRegister Zt, PRegister Pg,
3494               SIMD_RegVariant T, const Address &a,
3495               int op1, int type, int imm_op2, int scalar_op2) {
3496     switch (a.getMode()) {
3497     case Address::base_plus_offset:
3498       sve_ld_st1(Zt, a.base(), checked_cast<int>(a.offset()), Pg, T, op1, type, imm_op2);
3499       break;
3500     case Address::base_plus_offset_reg:
3501       sve_ld_st1(Zt, a.base(), a.index(), Pg, T, op1, type, scalar_op2);
3502       break;
3503     default:
3504       ShouldNotReachHere();
3505     }
3506   }
3507 
3508 public:
3509 
3510 // SVE contiguous load/store
3511 #define INSN(NAME, op1, type, imm_op2, scalar_op2)                                   \
3512   void NAME(FloatRegister Zt, SIMD_RegVariant T, PRegister Pg, const Address &a) {   \
3513     assert(T != Q, "invalid register variant");                                      \
3514     sve_ld_st1(Zt, Pg, T, a, op1, type, imm_op2, scalar_op2);                        \
3515   }
3516 
3517   INSN(sve_ld1b, 0b1010010, 0b00, 0b101, 0b010);
3518   INSN(sve_st1b, 0b1110010, 0b00, 0b111, 0b010);
3519   INSN(sve_ld1h, 0b1010010, 0b01, 0b101, 0b010);
3520   INSN(sve_st1h, 0b1110010, 0b01, 0b111, 0b010);
3521   INSN(sve_ld1w, 0b1010010, 0b10, 0b101, 0b010);
3522   INSN(sve_st1w, 0b1110010, 0b10, 0b111, 0b010);
3523   INSN(sve_ld1d, 0b1010010, 0b11, 0b101, 0b010);
3524   INSN(sve_st1d, 0b1110010, 0b11, 0b111, 0b010);
3525 #undef INSN
3526 
3527 // Gather/scatter load/store (SVE) - scalar plus vector
3528 #define INSN(NAME, op1, type, op2, op3)                                         \
3529   void NAME(FloatRegister Zt, PRegister Pg, Register Xn, FloatRegister Zm) {    \
3530     starti;                                                                     \
3531     f(op1, 31, 25), f(type, 24, 23), f(op2, 22, 21), rf(Zm, 16);                \
3532     f(op3, 15, 13), pgrf(Pg, 10), srf(Xn, 5), rf(Zt, 0);                        \
3533   }
3534   // SVE 32-bit gather load words (scalar plus 32-bit scaled offsets)
3535   INSN(sve_ld1w_gather,  0b1000010, 0b10, 0b01, 0b010);
3536   // SVE 64-bit gather load (scalar plus 32-bit unpacked scaled offsets)
3537   INSN(sve_ld1d_gather,  0b1100010, 0b11, 0b01, 0b010);
3538   // SVE 32-bit scatter store (scalar plus 32-bit scaled offsets)
3539   INSN(sve_st1w_scatter, 0b1110010, 0b10, 0b11, 0b100);
3540   // SVE 64-bit scatter store (scalar plus unpacked 32-bit scaled offsets)
3541   INSN(sve_st1d_scatter, 0b1110010, 0b11, 0b01, 0b100);
3542 #undef INSN
3543 
3544 // SVE load/store - unpredicated
3545 #define INSN(NAME, op1)                                                         \
3546   void NAME(FloatRegister Zt, const Address &a)  {                              \
3547     starti;                                                                     \
3548     assert(a.index() == noreg, "invalid address variant");                      \
3549     f(op1, 31, 29), f(0b0010110, 28, 22), sf(a.offset() >> 3, 21, 16),          \
3550     f(0b010, 15, 13), f(a.offset() & 0x7, 12, 10), srf(a.base(), 5), rf(Zt, 0); \
3551   }
3552 
3553   INSN(sve_ldr, 0b100); // LDR (vector)
3554   INSN(sve_str, 0b111); // STR (vector)
3555 #undef INSN
3556 
3557 // SVE stack frame adjustment
3558 #define INSN(NAME, op) \
3559   void NAME(Register Xd, Register Xn, int imm6) {                 \
3560     starti;                                                       \
3561     f(0b000001000, 31, 23), f(op, 22, 21);                        \
3562     srf(Xn, 16), f(0b01010, 15, 11), sf(imm6, 10, 5), srf(Xd, 0); \
3563   }
3564 
3565   INSN(sve_addvl, 0b01); // Add multiple of vector register size to scalar register
3566   INSN(sve_addpl, 0b11); // Add multiple of predicate register size to scalar register
3567 #undef INSN
3568 
3569 // SVE inc/dec register by element count
3570 #define INSN(NAME, op) \
3571   void NAME(Register Xdn, SIMD_RegVariant T, unsigned imm4 = 1, int pattern = 0b11111) { \
3572     starti;                                                                              \
3573     assert(T != Q, "invalid size");                                                      \
3574     f(0b00000100,31, 24), f(T, 23, 22), f(0b11, 21, 20);                                 \
3575     f(imm4 - 1, 19, 16), f(0b11100, 15, 11), f(op, 10), f(pattern, 9, 5), rf(Xdn, 0);    \
3576   }
3577 
3578   INSN(sve_inc, 0);
3579   INSN(sve_dec, 1);
3580 #undef INSN
3581 
3582 // SVE predicate logical operations
3583 #define INSN(NAME, op1, op2, op3) \
3584   void NAME(PRegister Pd, PRegister Pg, PRegister Pn, PRegister Pm) { \
3585     starti;                                                           \
3586     f(0b00100101, 31, 24), f(op1, 23, 22), f(0b00, 21, 20);           \
3587     prf(Pm, 16), f(0b01, 15, 14), prf(Pg, 10), f(op2, 9);             \
3588     prf(Pn, 5), f(op3, 4), prf(Pd, 0);                                \
3589   }
3590 
3591   INSN(sve_and,  0b00, 0b0, 0b0);
3592   INSN(sve_ands, 0b01, 0b0, 0b0);
3593   INSN(sve_eor,  0b00, 0b1, 0b0);
3594   INSN(sve_eors, 0b01, 0b1, 0b0);
3595   INSN(sve_orr,  0b10, 0b0, 0b0);
3596   INSN(sve_orrs, 0b11, 0b0, 0b0);
3597   INSN(sve_bic,  0b00, 0b0, 0b1);
3598 #undef INSN
3599 
3600   // SVE increment register by predicate count
3601   void sve_incp(const Register rd, SIMD_RegVariant T, PRegister pg) {
3602     starti;
3603     assert(T != Q, "invalid size");
3604     f(0b00100101, 31, 24), f(T, 23, 22), f(0b1011001000100, 21, 9),
3605     prf(pg, 5), rf(rd, 0);
3606   }
3607 
3608   // SVE broadcast general-purpose register to vector elements (unpredicated)
3609   void sve_dup(FloatRegister Zd, SIMD_RegVariant T, Register Rn) {
3610     starti;
3611     assert(T != Q, "invalid size");
3612     f(0b00000101, 31, 24), f(T, 23, 22), f(0b100000001110, 21, 10);
3613     srf(Rn, 5), rf(Zd, 0);
3614   }
3615 
3616   // SVE broadcast signed immediate to vector elements (unpredicated)
3617   void sve_dup(FloatRegister Zd, SIMD_RegVariant T, int imm8) {
3618     starti;
3619     assert(T != Q, "invalid size");
3620     int sh = 0;
3621     if (imm8 <= 127 && imm8 >= -128) {
3622       sh = 0;
3623     } else if (T != B && imm8 <= 32512 && imm8 >= -32768 && (imm8 & 0xff) == 0) {
3624       sh = 1;
3625       imm8 = (imm8 >> 8);
3626     } else {
3627       guarantee(false, "invalid immediate");
3628     }
3629     f(0b00100101, 31, 24), f(T, 23, 22), f(0b11100011, 21, 14);
3630     f(sh, 13), sf(imm8, 12, 5), rf(Zd, 0);
3631   }
3632 
3633   // SVE predicate test
3634   void sve_ptest(PRegister Pg, PRegister Pn) {
3635     starti;
3636     f(0b001001010101000011, 31, 14), prf(Pg, 10), f(0, 9), prf(Pn, 5), f(0, 4, 0);
3637   }
3638 
3639   // SVE predicate initialize
3640   void sve_ptrue(PRegister pd, SIMD_RegVariant esize, int pattern = 0b11111) {
3641     starti;
3642     f(0b00100101, 31, 24), f(esize, 23, 22), f(0b011000111000, 21, 10);
3643     f(pattern, 9, 5), f(0b0, 4), prf(pd, 0);
3644   }
3645 
3646   // SVE predicate zero
3647   void sve_pfalse(PRegister pd) {
3648     starti;
3649     f(0b00100101, 31, 24), f(0b00, 23, 22), f(0b011000111001, 21, 10);
3650     f(0b000000, 9, 4), prf(pd, 0);
3651   }
3652 
3653 // SVE load/store predicate register
3654 #define INSN(NAME, op1)                                                  \
3655   void NAME(PRegister Pt, const Address &a)  {                           \
3656     starti;                                                              \
3657     assert(a.index() == noreg, "invalid address variant");               \
3658     f(op1, 31, 29), f(0b0010110, 28, 22), sf(a.offset() >> 3, 21, 16),   \
3659     f(0b000, 15, 13), f(a.offset() & 0x7, 12, 10), srf(a.base(), 5),     \
3660     f(0, 4), prf(Pt, 0);                                                 \
3661   }
3662 
3663   INSN(sve_ldr, 0b100); // LDR (predicate)
3664   INSN(sve_str, 0b111); // STR (predicate)
3665 #undef INSN
3666 
3667   // SVE move predicate register
3668   void sve_mov(PRegister Pd, PRegister Pn) {
3669     starti;
3670     f(0b001001011000, 31, 20), prf(Pn, 16), f(0b01, 15, 14), prf(Pn, 10);
3671     f(0, 9), prf(Pn, 5), f(0, 4), prf(Pd, 0);
3672   }
3673 
3674   // SVE copy general-purpose register to vector elements (predicated)
3675   void sve_cpy(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg, Register Rn) {
3676     starti;
3677     assert(T != Q, "invalid size");
3678     f(0b00000101, 31, 24), f(T, 23, 22), f(0b101000101, 21, 13);
3679     pgrf(Pg, 10), srf(Rn, 5), rf(Zd, 0);
3680   }
3681 
3682 private:
3683   void sve_cpy(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg, int imm8,
3684                bool isMerge, bool isFloat) {
3685     starti;
3686     assert(T != Q, "invalid size");
3687     int sh = 0;
3688     if (imm8 <= 127 && imm8 >= -128) {
3689       sh = 0;
3690     } else if (T != B && imm8 <= 32512 && imm8 >= -32768 && (imm8 & 0xff) == 0) {
3691       sh = 1;
3692       imm8 = (imm8 >> 8);
3693     } else {
3694       guarantee(false, "invalid immediate");
3695     }
3696     int m = isMerge ? 1 : 0;
3697     f(0b00000101, 31, 24), f(T, 23, 22), f(0b01, 21, 20);
3698     prf(Pg, 16), f(isFloat ? 1 : 0, 15), f(m, 14), f(sh, 13), sf(imm8, 12, 5), rf(Zd, 0);
3699   }
3700 
3701 public:
3702   // SVE copy signed integer immediate to vector elements (predicated)
3703   void sve_cpy(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg, int imm8, bool isMerge) {
3704     sve_cpy(Zd, T, Pg, imm8, isMerge, /*isFloat*/false);
3705   }
3706   // SVE copy floating-point immediate to vector elements (predicated)
3707   void sve_cpy(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg, double d) {
3708     sve_cpy(Zd, T, Pg, checked_cast<int8_t>(pack(d)), /*isMerge*/true, /*isFloat*/true);
3709   }
3710 
3711   // SVE conditionally select elements from two vectors
3712   void sve_sel(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg,
3713                FloatRegister Zn, FloatRegister Zm) {
3714     starti;
3715     assert(T != Q, "invalid size");
3716     f(0b00000101, 31, 24), f(T, 23, 22), f(0b1, 21), rf(Zm, 16);
3717     f(0b11, 15, 14), prf(Pg, 10), rf(Zn, 5), rf(Zd, 0);
3718   }
3719 
3720   // SVE Permute Vector - Extract
3721   void sve_ext(FloatRegister Zdn, FloatRegister Zm, int imm8) {
3722     starti;
3723     f(0b00000101001, 31, 21), f(imm8 >> 3, 20, 16), f(0b000, 15, 13);
3724     f(imm8 & 0b111, 12, 10), rf(Zm, 5), rf(Zdn, 0);
3725   }
3726 
3727 // SVE Integer/Floating-Point Compare - Vectors
3728 #define INSN(NAME, op1, op2, fp)  \
3729   void NAME(Condition cond, PRegister Pd, SIMD_RegVariant T, PRegister Pg,             \
3730             FloatRegister Zn, FloatRegister Zm) {                                      \
3731     starti;                                                                            \
3732     assert(T != Q, "invalid size");                                                    \
3733     bool is_absolute = op2 == 0b11;                                                    \
3734     if (fp == 1) {                                                                     \
3735       assert(T != B, "invalid size");                                                  \
3736       if (is_absolute) {                                                               \
3737         assert(cond == GT || cond == GE, "invalid condition for fac");                 \
3738       } else {                                                                         \
3739         assert(cond != HI && cond != HS, "invalid condition for fcm");                 \
3740       }                                                                                \
3741     }                                                                                  \
3742     int cond_op;                                                                       \
3743     switch(cond) {                                                                     \
3744       case EQ: cond_op = (op2 << 2) | 0b10; break;                                     \
3745       case NE: cond_op = (op2 << 2) | 0b11; break;                                     \
3746       case GE: cond_op = (op2 << 2) | (is_absolute ? 0b01 : 0b00); break;              \
3747       case GT: cond_op = (op2 << 2) | (is_absolute ? 0b11 : 0b01); break;              \
3748       case HI: cond_op = 0b0001; break;                                                \
3749       case HS: cond_op = 0b0000; break;                                                \
3750       default:                                                                         \
3751         ShouldNotReachHere();                                                          \
3752     }                                                                                  \
3753     f(op1, 31, 24), f(T, 23, 22), f(0, 21), rf(Zm, 16), f((cond_op >> 1) & 7, 15, 13); \
3754     pgrf(Pg, 10), rf(Zn, 5), f(cond_op & 1, 4), prf(Pd, 0);                            \
3755   }
3756 
3757   INSN(sve_cmp, 0b00100100, 0b10, 0); // Integer compare vectors
3758   INSN(sve_fcm, 0b01100101, 0b01, 1); // Floating-point compare vectors
3759   INSN(sve_fac, 0b01100101, 0b11, 1); // Floating-point absolute compare vectors
3760 #undef INSN
3761 
3762 private:
3763   // Convert Assembler::Condition to op encoding - used by sve integer compare encoding
3764   static int assembler_cond_to_sve_op(Condition cond, bool &is_unsigned) {
3765     if (cond == HI || cond == HS || cond == LO || cond == LS) {
3766       is_unsigned = true;
3767     } else {
3768       is_unsigned = false;
3769     }
3770 
3771     switch (cond) {
3772       case HI:
3773       case GT:
3774         return 0b0001;
3775       case HS:
3776       case GE:
3777         return 0b0000;
3778       case LO:
3779       case LT:
3780         return 0b0010;
3781       case LS:
3782       case LE:
3783         return 0b0011;
3784       case EQ:
3785         return 0b1000;
3786       case NE:
3787         return 0b1001;
3788       default:
3789         ShouldNotReachHere();
3790         return -1;
3791     }
3792   }
3793 
3794 public:
3795   // SVE Integer Compare - 5 bits signed imm and 7 bits unsigned imm
3796   void sve_cmp(Condition cond, PRegister Pd, SIMD_RegVariant T,
3797                PRegister Pg, FloatRegister Zn, int imm) {
3798     starti;
3799     assert(T != Q, "invalid size");
3800     bool is_unsigned = false;
3801     int cond_op = assembler_cond_to_sve_op(cond, is_unsigned);
3802     f(is_unsigned ? 0b00100100 : 0b00100101, 31, 24), f(T, 23, 22);
3803     f(is_unsigned ? 0b1 : 0b0, 21);
3804     if (is_unsigned) {
3805       f(imm, 20, 14), f((cond_op >> 1) & 0x1, 13);
3806     } else {
3807       sf(imm, 20, 16), f((cond_op >> 1) & 0x7, 15, 13);
3808     }
3809     pgrf(Pg, 10), rf(Zn, 5), f(cond_op & 0x1, 4), prf(Pd, 0);
3810   }
3811 
3812   // SVE Floating-point compare vector with zero
3813   void sve_fcm(Condition cond, PRegister Pd, SIMD_RegVariant T,
3814                PRegister Pg, FloatRegister Zn, double d) {
3815     starti;
3816     assert(T != Q, "invalid size");
3817     guarantee(d == 0.0, "invalid immediate");
3818     int cond_op;
3819     switch(cond) {
3820       case EQ: cond_op = 0b100; break;
3821       case GT: cond_op = 0b001; break;
3822       case GE: cond_op = 0b000; break;
3823       case LT: cond_op = 0b010; break;
3824       case LE: cond_op = 0b011; break;
3825       case NE: cond_op = 0b110; break;
3826       default:
3827         ShouldNotReachHere();
3828     }
3829     f(0b01100101, 31, 24), f(T, 23, 22), f(0b0100, 21, 18),
3830     f((cond_op >> 1) & 0x3, 17, 16), f(0b001, 15, 13),
3831     pgrf(Pg, 10), rf(Zn, 5);
3832     f(cond_op & 0x1, 4), prf(Pd, 0);
3833   }
3834 
3835 // SVE unpack vector elements
3836 protected:
3837   void _sve_xunpk(bool is_unsigned, bool is_high, FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn) {
3838     starti;
3839     assert(T != B && T != Q, "invalid size");
3840     f(0b00000101, 31, 24), f(T, 23, 22), f(0b1100, 21, 18);
3841     f(is_unsigned ? 1 : 0, 17), f(is_high ? 1 : 0, 16),
3842     f(0b001110, 15, 10), rf(Zn, 5), rf(Zd, 0);
3843   }
3844 
3845 public:
3846 #define INSN(NAME, is_unsigned, is_high)                                  \
3847   void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn) {      \
3848     _sve_xunpk(is_unsigned, is_high, Zd, T, Zn);                          \
3849   }
3850 
3851   INSN(sve_uunpkhi, true,  true ); // Unsigned unpack and extend half of vector - high half
3852   INSN(sve_uunpklo, true,  false); // Unsigned unpack and extend half of vector - low half
3853   INSN(sve_sunpkhi, false, true ); // Signed unpack and extend half of vector - high half
3854   INSN(sve_sunpklo, false, false); // Signed unpack and extend half of vector - low half
3855 #undef INSN
3856 
3857 // SVE unpack predicate elements
3858 #define INSN(NAME, op) \
3859   void NAME(PRegister Pd, PRegister Pn) { \
3860     starti;                                                          \
3861     f(0b000001010011000, 31, 17), f(op, 16), f(0b0100000, 15, 9);    \
3862     prf(Pn, 5), f(0b0, 4), prf(Pd, 0);                               \
3863   }
3864 
3865   INSN(sve_punpkhi, 0b1); // Unpack and widen high half of predicate
3866   INSN(sve_punpklo, 0b0); // Unpack and widen low half of predicate
3867 #undef INSN
3868 
3869 // SVE permute vector elements
3870 #define INSN(NAME, op) \
3871   void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, FloatRegister Zm) { \
3872     starti;                                                                            \
3873     assert(T != Q, "invalid size");                                                    \
3874     f(0b00000101, 31, 24), f(T, 23, 22), f(0b1, 21), rf(Zm, 16);                       \
3875     f(0b01101, 15, 11), f(op, 10), rf(Zn, 5), rf(Zd, 0);                               \
3876   }
3877 
3878   INSN(sve_uzp1, 0b0); // Concatenate even elements from two vectors
3879   INSN(sve_uzp2, 0b1); // Concatenate odd elements from two vectors
3880 #undef INSN
3881 
3882 // SVE permute predicate elements
3883 #define INSN(NAME, op) \
3884   void NAME(PRegister Pd, SIMD_RegVariant T, PRegister Pn, PRegister Pm) {             \
3885     starti;                                                                            \
3886     assert(T != Q, "invalid size");                                                    \
3887     f(0b00000101, 31, 24), f(T, 23, 22), f(0b10, 21, 20), prf(Pm, 16);                 \
3888     f(0b01001, 15, 11), f(op, 10), f(0b0, 9), prf(Pn, 5), f(0b0, 4), prf(Pd, 0);       \
3889   }
3890 
3891   INSN(sve_uzp1, 0b0); // Concatenate even elements from two predicates
3892   INSN(sve_uzp2, 0b1); // Concatenate odd elements from two predicates
3893 #undef INSN
3894 
3895 // SVE integer compare scalar count and limit
3896 #define INSN(NAME, sf, op)                                                \
3897   void NAME(PRegister Pd, SIMD_RegVariant T, Register Rn, Register Rm) {  \
3898     starti;                                                               \
3899     assert(T != Q, "invalid register variant");                           \
3900     f(0b00100101, 31, 24), f(T, 23, 22), f(1, 21),                        \
3901     zrf(Rm, 16), f(0, 15, 13), f(sf, 12), f(op >> 1, 11, 10),             \
3902     zrf(Rn, 5), f(op & 1, 4), prf(Pd, 0);                                 \
3903   }
3904   // While incrementing signed scalar less than scalar
3905   INSN(sve_whileltw, 0b0, 0b010);
3906   INSN(sve_whilelt,  0b1, 0b010);
3907   // While incrementing signed scalar less than or equal to scalar
3908   INSN(sve_whilelew, 0b0, 0b011);
3909   INSN(sve_whilele,  0b1, 0b011);
3910   // While incrementing unsigned scalar lower than scalar
3911   INSN(sve_whilelow, 0b0, 0b110);
3912   INSN(sve_whilelo,  0b1, 0b110);
3913   // While incrementing unsigned scalar lower than or the same as scalar
3914   INSN(sve_whilelsw, 0b0, 0b111);
3915   INSN(sve_whilels,  0b1, 0b111);
3916 #undef INSN
3917 
3918   // SVE predicate reverse
3919   void sve_rev(PRegister Pd, SIMD_RegVariant T, PRegister Pn) {
3920     starti;
3921     assert(T != Q, "invalid size");
3922     f(0b00000101, 31, 24), f(T, 23, 22), f(0b1101000100000, 21, 9);
3923     prf(Pn, 5), f(0, 4), prf(Pd, 0);
3924   }
3925 
3926 // SVE partition break condition
3927 #define INSN(NAME, op) \
3928   void NAME(PRegister Pd, PRegister Pg, PRegister Pn, bool isMerge) {      \
3929     starti;                                                                \
3930     f(0b00100101, 31, 24), f(op, 23, 22), f(0b01000001, 21, 14);           \
3931     prf(Pg, 10), f(0b0, 9), prf(Pn, 5), f(isMerge ? 1 : 0, 4), prf(Pd, 0); \
3932   }
3933 
3934   INSN(sve_brka, 0b00); // Break after first true condition
3935   INSN(sve_brkb, 0b10); // Break before first true condition
3936 #undef INSN
3937 
3938 // Element count and increment scalar (SVE)
3939 #define INSN(NAME, TYPE)                                                             \
3940   void NAME(Register Xdn, unsigned imm4 = 1, int pattern = 0b11111) {                \
3941     starti;                                                                          \
3942     f(0b00000100, 31, 24), f(TYPE, 23, 22), f(0b10, 21, 20);                         \
3943     f(imm4 - 1, 19, 16), f(0b11100, 15, 11), f(0, 10), f(pattern, 9, 5), rf(Xdn, 0); \
3944   }
3945 
3946   INSN(sve_cntb, B);  // Set scalar to multiple of 8-bit predicate constraint element count
3947   INSN(sve_cnth, H);  // Set scalar to multiple of 16-bit predicate constraint element count
3948   INSN(sve_cntw, S);  // Set scalar to multiple of 32-bit predicate constraint element count
3949   INSN(sve_cntd, D);  // Set scalar to multiple of 64-bit predicate constraint element count
3950 #undef INSN
3951 
3952   // Set scalar to active predicate element count
3953   void sve_cntp(Register Xd, SIMD_RegVariant T, PRegister Pg, PRegister Pn) {
3954     starti;
3955     assert(T != Q, "invalid size");
3956     f(0b00100101, 31, 24), f(T, 23, 22), f(0b10000010, 21, 14);
3957     prf(Pg, 10), f(0, 9), prf(Pn, 5), rf(Xd, 0);
3958   }
3959 
3960   // SVE convert signed integer to floating-point (predicated)
3961   void sve_scvtf(FloatRegister Zd, SIMD_RegVariant T_dst, PRegister Pg,
3962                  FloatRegister Zn, SIMD_RegVariant T_src) {
3963     starti;
3964     assert(T_src != B && T_dst != B && T_src != Q && T_dst != Q &&
3965            (T_src != H || T_dst == T_src), "invalid register variant");
3966     int opc = T_dst;
3967     int opc2 = T_src;
3968     // In most cases we can treat T_dst, T_src as opc, opc2,
3969     // except for the following two combinations.
3970     // +-----+------+---+------------------------------------+
3971     // | opc | opc2 | U |        Instruction Details         |
3972     // +-----+------+---+------------------------------------+
3973     // |  11 |   00 | 0 | SCVTF - 32-bit to double-precision |
3974     // |  11 |   10 | 0 | SCVTF - 64-bit to single-precision |
3975     // +-----+------+---+------------------------------------+
3976     if (T_src == S && T_dst == D) {
3977       opc = 0b11;
3978       opc2 = 0b00;
3979     } else if (T_src == D && T_dst == S) {
3980       opc = 0b11;
3981       opc2 = 0b10;
3982     }
3983     f(0b01100101, 31, 24), f(opc, 23, 22), f(0b010, 21, 19);
3984     f(opc2, 18, 17), f(0b0101, 16, 13);
3985     pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0);
3986   }
3987 
3988   // SVE floating-point convert to signed integer, rounding toward zero (predicated)
3989   void sve_fcvtzs(FloatRegister Zd, SIMD_RegVariant T_dst, PRegister Pg,
3990                   FloatRegister Zn, SIMD_RegVariant T_src) {
3991     starti;
3992     assert(T_src != B && T_dst != B && T_src != Q && T_dst != Q &&
3993            (T_dst != H || T_src == H), "invalid register variant");
3994     int opc = T_src;
3995     int opc2 = T_dst;
3996     // In most cases we can treat T_src, T_dst as opc, opc2,
3997     // except for the following two combinations.
3998     // +-----+------+---+-------------------------------------+
3999     // | opc | opc2 | U |         Instruction Details         |
4000     // +-----+------+---+-------------------------------------+
4001     // |  11 |  10  | 0 | FCVTZS - single-precision to 64-bit |
4002     // |  11 |  00  | 0 | FCVTZS - double-precision to 32-bit |
4003     // +-----+------+---+-------------------------------------+
4004     if (T_src == S && T_dst == D) {
4005       opc = 0b11;
4006       opc2 = 0b10;
4007     } else if (T_src == D && T_dst == S) {
4008       opc = 0b11;
4009       opc2 = 0b00;
4010     }
4011     f(0b01100101, 31, 24), f(opc, 23, 22), f(0b011, 21, 19);
4012     f(opc2, 18, 17), f(0b0101, 16, 13);
4013     pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0);
4014   }
4015 
4016   // SVE floating-point convert precision (predicated)
4017   void sve_fcvt(FloatRegister Zd, SIMD_RegVariant T_dst, PRegister Pg,
4018                 FloatRegister Zn, SIMD_RegVariant T_src) {
4019     starti;
4020     assert(T_src != B && T_dst != B && T_src != Q && T_dst != Q &&
4021            T_src != T_dst, "invalid register variant");
4022     // The encodings of fields op1 (bits 17-16) and op2 (bits 23-22)
4023     // depend on T_src and T_dst as given below -
4024     // +-----+------+---------------------------------------------+
4025     // | op2 | op1  |             Instruction Details             |
4026     // +-----+------+---------------------------------------------+
4027     // |  10 |  01  | FCVT - half-precision to single-precision   |
4028     // |  11 |  01  | FCVT - half-precision to double-precision   |
4029     // |  10 |  00  | FCVT - single-precision to half-precision   |
4030     // |  11 |  11  | FCVT - single-precision to double-precision |
4031     // |  11 |  00  | FCVT - double-preciison to half-precision   |
4032     // |  11 |  10  | FCVT - double-precision to single-precision |
4033     // +-----+------+---+-----------------------------------------+
4034     int op1 = 0b00;
4035     int op2 = (T_src == D || T_dst == D) ? 0b11 : 0b10;
4036     if (T_src == H) {
4037       op1 = 0b01;
4038     } else if (T_dst == S) {
4039       op1 = 0b10;
4040     } else if (T_dst == D) {
4041       op1 = 0b11;
4042     }
4043     f(0b01100101, 31, 24), f(op2, 23, 22), f(0b0010, 21, 18);
4044     f(op1, 17, 16), f(0b101, 15, 13);
4045     pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0);
4046   }
4047 
4048 // SVE extract element to general-purpose register
4049 #define INSN(NAME, before)                                                      \
4050   void NAME(Register Rd, SIMD_RegVariant T, PRegister Pg,  FloatRegister Zn) {  \
4051     starti;                                                                     \
4052     f(0b00000101, 31, 24), f(T, 23, 22), f(0b10000, 21, 17);                    \
4053     f(before, 16), f(0b101, 15, 13);                                            \
4054     pgrf(Pg, 10), rf(Zn, 5), rf(Rd, 0);                                         \
4055   }
4056 
4057   INSN(sve_lasta, 0b0);
4058   INSN(sve_lastb, 0b1);
4059 #undef INSN
4060 
4061 // SVE extract element to SIMD&FP scalar register
4062 #define INSN(NAME, before)                                                           \
4063   void NAME(FloatRegister Vd, SIMD_RegVariant T, PRegister Pg,  FloatRegister Zn) {  \
4064     starti;                                                                          \
4065     f(0b00000101, 31, 24), f(T, 23, 22), f(0b10001, 21, 17);                         \
4066     f(before, 16), f(0b100, 15, 13);                                                 \
4067     pgrf(Pg, 10), rf(Zn, 5), rf(Vd, 0);                                              \
4068   }
4069 
4070   INSN(sve_lasta, 0b0);
4071   INSN(sve_lastb, 0b1);
4072 #undef INSN
4073 
4074 // SVE reverse within elements
4075 #define INSN(NAME, opc, cond)                                                        \
4076   void NAME(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg,  FloatRegister Zn) {  \
4077     starti;                                                                          \
4078     assert(cond, "invalid size");                                                    \
4079     f(0b00000101, 31, 24), f(T, 23, 22), f(0b1001, 21, 18), f(opc, 17, 16);          \
4080     f(0b100, 15, 13), pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0);                            \
4081   }
4082 
4083   INSN(sve_revb, 0b00, T == H || T == S || T == D);
4084   INSN(sve_rbit, 0b11, T != Q);
4085 #undef INSN
4086 
4087   // SVE Create index starting from general-purpose register and incremented by immediate
4088   void sve_index(FloatRegister Zd, SIMD_RegVariant T, Register Rn, int imm) {
4089     starti;
4090     assert(T != Q, "invalid size");
4091     f(0b00000100, 31, 24), f(T, 23, 22), f(0b1, 21);
4092     sf(imm, 20, 16), f(0b010001, 15, 10);
4093     rf(Rn, 5), rf(Zd, 0);
4094   }
4095 
4096   // SVE create index starting from and incremented by immediate
4097   void sve_index(FloatRegister Zd, SIMD_RegVariant T, int imm1, int imm2) {
4098     starti;
4099     assert(T != Q, "invalid size");
4100     f(0b00000100, 31, 24), f(T, 23, 22), f(0b1, 21);
4101     sf(imm2, 20, 16), f(0b010000, 15, 10);
4102     sf(imm1, 9, 5), rf(Zd, 0);
4103   }
4104 
4105   // SVE programmable table lookup/permute using vector of element indices
4106   void sve_tbl(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, FloatRegister Zm) {
4107     starti;
4108     assert(T != Q, "invalid size");
4109     f(0b00000101, 31, 24), f(T, 23, 22), f(0b1, 21), rf(Zm, 16);
4110     f(0b001100, 15, 10), rf(Zn, 5), rf(Zd, 0);
4111   }
4112 
4113   // Shuffle active elements of vector to the right and fill with zero
4114   void sve_compact(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, PRegister Pg) {
4115     starti;
4116     assert(T == S || T == D, "invalid size");
4117     f(0b00000101, 31, 24), f(T, 23, 22), f(0b100001100, 21, 13);
4118     pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0);
4119   }
4120 
4121   // SVE2 Count matching elements in vector
4122   void sve_histcnt(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg,
4123                    FloatRegister Zn, FloatRegister Zm) {
4124     starti;
4125     assert(T == S || T == D, "invalid size");
4126     f(0b01000101, 31, 24), f(T, 23, 22), f(0b1, 21), rf(Zm, 16);
4127     f(0b110, 15, 13), pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0);
4128   }
4129 
4130 // SVE2 bitwise permute
4131 #define INSN(NAME, opc)                                                                  \
4132   void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn,  FloatRegister Zm) {  \
4133     starti;                                                                              \
4134     assert(T != Q, "invalid size");                                                      \
4135     f(0b01000101, 31, 24), f(T, 23, 22), f(0b0, 21);                                     \
4136     rf(Zm, 16), f(0b1011, 15, 12), f(opc, 11, 10);                                       \
4137     rf(Zn, 5), rf(Zd, 0);                                                                \
4138   }
4139 
4140   INSN(sve_bext, 0b00);
4141   INSN(sve_bdep, 0b01);
4142 #undef INSN
4143 
4144 // SVE2 bitwise ternary operations
4145 #define INSN(NAME, opc)                                               \
4146   void NAME(FloatRegister Zdn, FloatRegister Zm, FloatRegister Zk) {  \
4147     starti;                                                           \
4148     f(0b00000100, 31, 24), f(opc, 23, 21), rf(Zm, 16);                \
4149     f(0b001110, 15, 10), rf(Zk, 5), rf(Zdn, 0);                       \
4150   }
4151 
4152   INSN(sve_eor3, 0b001); // Bitwise exclusive OR of three vectors
4153 #undef INSN
4154 
4155   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
4156   }
4157 
4158   // Stack overflow checking
4159   virtual void bang_stack_with_offset(int offset);
4160 
4161   static bool operand_valid_for_logical_immediate(bool is32, uint64_t imm);
4162   static bool operand_valid_for_sve_logical_immediate(unsigned elembits, uint64_t imm);
4163   static bool operand_valid_for_add_sub_immediate(int64_t imm);
4164   static bool operand_valid_for_sve_add_sub_immediate(int64_t imm);
4165   static bool operand_valid_for_float_immediate(double imm);
4166   static int  operand_valid_for_movi_immediate(uint64_t imm64, SIMD_Arrangement T);
4167 
4168   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
4169   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
4170 };
4171 
4172 inline Assembler::Membar_mask_bits operator|(Assembler::Membar_mask_bits a,
4173                                              Assembler::Membar_mask_bits b) {
4174   return Assembler::Membar_mask_bits(unsigned(a)|unsigned(b));
4175 }
4176 
4177 Instruction_aarch64::~Instruction_aarch64() {
4178   assem->emit_int32(insn);
4179   assert_cond(get_bits() == 0xffffffff);
4180 }
4181 
4182 #undef f
4183 #undef sf
4184 #undef rf
4185 #undef srf
4186 #undef zrf
4187 #undef prf
4188 #undef pgrf
4189 #undef fixed
4190 
4191 #undef starti
4192 
4193 // Invert a condition
4194 inline Assembler::Condition operator~(const Assembler::Condition cond) {
4195   return Assembler::Condition(int(cond) ^ 1);
4196 }
4197 
4198 extern "C" void das(uint64_t start, int len);
4199 
4200 #endif // CPU_AARCH64_ASSEMBLER_AARCH64_HPP