1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_ASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_ASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/register.hpp"
  30 #include "metaprogramming/enableIf.hpp"
  31 #include "utilities/checkedCast.hpp"
  32 #include "utilities/debug.hpp"
  33 #include "utilities/globalDefinitions.hpp"
  34 #include "utilities/macros.hpp"
  35 #include <type_traits>
  36 
  37 #ifdef __GNUC__
  38 
  39 // __nop needs volatile so that compiler doesn't optimize it away
  40 #define NOP() asm volatile ("nop");
  41 
  42 #elif defined(_MSC_VER)
  43 
  44 // Use MSVC intrinsic: https://docs.microsoft.com/en-us/cpp/intrinsics/arm64-intrinsics?view=vs-2019#I
  45 #define NOP() __nop();
  46 
  47 #endif
  48 
  49 
  50 // definitions of various symbolic names for machine registers
  51 
  52 // First intercalls between C and Java which use 8 general registers
  53 // and 8 floating registers
  54 
  55 // we also have to copy between x86 and ARM registers but that's a
  56 // secondary complication -- not all code employing C call convention
  57 // executes as x86 code though -- we generate some of it
  58 
  59 class Argument {
  60  public:
  61   enum {
  62     n_int_register_parameters_c   = 8,  // r0, r1, ... r7 (c_rarg0, c_rarg1, ...)
  63     n_float_register_parameters_c = 8,  // v0, v1, ... v7 (c_farg0, c_farg1, ... )
  64 
  65     n_int_register_parameters_j   = 8, // r1, ... r7, r0 (rj_rarg0, j_rarg1, ...
  66     n_float_register_parameters_j = 8  // v0, v1, ... v7 (j_farg0, j_farg1, ...
  67   };
  68 };
  69 
  70 constexpr Register c_rarg0 = r0;
  71 constexpr Register c_rarg1 = r1;
  72 constexpr Register c_rarg2 = r2;
  73 constexpr Register c_rarg3 = r3;
  74 constexpr Register c_rarg4 = r4;
  75 constexpr Register c_rarg5 = r5;
  76 constexpr Register c_rarg6 = r6;
  77 constexpr Register c_rarg7 = r7;
  78 
  79 constexpr FloatRegister c_farg0 = v0;
  80 constexpr FloatRegister c_farg1 = v1;
  81 constexpr FloatRegister c_farg2 = v2;
  82 constexpr FloatRegister c_farg3 = v3;
  83 constexpr FloatRegister c_farg4 = v4;
  84 constexpr FloatRegister c_farg5 = v5;
  85 constexpr FloatRegister c_farg6 = v6;
  86 constexpr FloatRegister c_farg7 = v7;
  87 
  88 // Symbolically name the register arguments used by the Java calling convention.
  89 // We have control over the convention for java so we can do what we please.
  90 // What pleases us is to offset the java calling convention so that when
  91 // we call a suitable jni method the arguments are lined up and we don't
  92 // have to do much shuffling. A suitable jni method is non-static and a
  93 // small number of arguments
  94 //
  95 //  |--------------------------------------------------------------------|
  96 //  | c_rarg0  c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5 c_rarg6 c_rarg7  |
  97 //  |--------------------------------------------------------------------|
  98 //  | r0       r1       r2      r3      r4      r5      r6      r7       |
  99 //  |--------------------------------------------------------------------|
 100 //  | j_rarg7  j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4 j_rarg5 j_rarg6  |
 101 //  |--------------------------------------------------------------------|
 102 
 103 
 104 constexpr Register j_rarg0 = c_rarg1;
 105 constexpr Register j_rarg1 = c_rarg2;
 106 constexpr Register j_rarg2 = c_rarg3;
 107 constexpr Register j_rarg3 = c_rarg4;
 108 constexpr Register j_rarg4 = c_rarg5;
 109 constexpr Register j_rarg5 = c_rarg6;
 110 constexpr Register j_rarg6 = c_rarg7;
 111 constexpr Register j_rarg7 = c_rarg0;
 112 
 113 // Java floating args are passed as per C
 114 
 115 constexpr FloatRegister j_farg0 = v0;
 116 constexpr FloatRegister j_farg1 = v1;
 117 constexpr FloatRegister j_farg2 = v2;
 118 constexpr FloatRegister j_farg3 = v3;
 119 constexpr FloatRegister j_farg4 = v4;
 120 constexpr FloatRegister j_farg5 = v5;
 121 constexpr FloatRegister j_farg6 = v6;
 122 constexpr FloatRegister j_farg7 = v7;
 123 
 124 // registers used to hold VM data either temporarily within a method
 125 // or across method calls
 126 
 127 // volatile (caller-save) registers
 128 
 129 // r8 is used for indirect result location return
 130 // we use it and r9 as scratch registers
 131 constexpr Register rscratch1 = r8;
 132 constexpr Register rscratch2 = r9;
 133 
 134 // current method -- must be in a call-clobbered register
 135 constexpr Register rmethod = r12;
 136 
 137 // non-volatile (callee-save) registers are r16-29
 138 // of which the following are dedicated global state
 139 
 140 constexpr Register lr            = r30; // link register
 141 constexpr Register rfp           = r29; // frame pointer
 142 constexpr Register rthread       = r28; // current thread
 143 constexpr Register rheapbase     = r27; // base of heap
 144 constexpr Register rcpool        = r26; // constant pool cache
 145 constexpr Register rlocals       = r24; // locals on stack
 146 constexpr Register rbcp          = r22; // bytecode pointer
 147 constexpr Register rdispatch     = r21; // dispatch table base
 148 constexpr Register esp           = r20; // Java expression stack pointer
 149 constexpr Register r19_sender_sp = r19; // sender's SP while in interpreter
 150 
 151 // Preserved predicate register with all elements set TRUE.
 152 constexpr PRegister ptrue = p7;
 153 
 154 #define assert_cond(ARG1) assert(ARG1, #ARG1)
 155 
 156 namespace asm_util {
 157   uint32_t encode_logical_immediate(bool is32, uint64_t imm);
 158   uint32_t encode_sve_logical_immediate(unsigned elembits, uint64_t imm);
 159   bool operand_valid_for_immediate_bits(int64_t imm, unsigned nbits);
 160 };
 161 
 162 using namespace asm_util;
 163 
 164 
 165 class Assembler;
 166 
 167 class Instruction_aarch64 {
 168   unsigned insn;
 169 #ifdef ASSERT
 170   unsigned bits;
 171 #endif
 172   Assembler *assem;
 173 
 174 public:
 175 
 176   Instruction_aarch64(class Assembler *as) {
 177 #ifdef ASSERT
 178     bits = 0;
 179 #endif
 180     insn = 0;
 181     assem = as;
 182   }
 183 
 184   inline ~Instruction_aarch64();
 185 
 186   unsigned &get_insn() { return insn; }
 187 #ifdef ASSERT
 188   unsigned &get_bits() { return bits; }
 189 #endif
 190 
 191   static inline int32_t extend(unsigned val, int hi = 31, int lo = 0) {
 192     union {
 193       unsigned u;
 194       int n;
 195     };
 196 
 197     u = val << (31 - hi);
 198     n = n >> (31 - hi + lo);
 199     return n;
 200   }
 201 
 202   static inline uint32_t extract(uint32_t val, int msb, int lsb) {
 203     int nbits = msb - lsb + 1;
 204     assert_cond(msb >= lsb);
 205     uint32_t mask = checked_cast<uint32_t>(right_n_bits(nbits));
 206     uint32_t result = val >> lsb;
 207     result &= mask;
 208     return result;
 209   }
 210 
 211   static inline int32_t sextract(uint32_t val, int msb, int lsb) {
 212     uint32_t uval = extract(val, msb, lsb);
 213     return extend(uval, msb - lsb);
 214   }
 215 
 216   static ALWAYSINLINE void patch(address a, int msb, int lsb, uint64_t val) {
 217     int nbits = msb - lsb + 1;
 218     guarantee(val < (1ULL << nbits), "Field too big for insn");
 219     assert_cond(msb >= lsb);
 220     unsigned mask = checked_cast<unsigned>(right_n_bits(nbits));
 221     val <<= lsb;
 222     mask <<= lsb;
 223     unsigned target = *(unsigned *)a;
 224     target &= ~mask;
 225     target |= (unsigned)val;
 226     *(unsigned *)a = target;
 227   }
 228 
 229   static void spatch(address a, int msb, int lsb, int64_t val) {
 230     int nbits = msb - lsb + 1;
 231     int64_t chk = val >> (nbits - 1);
 232     guarantee (chk == -1 || chk == 0, "Field too big for insn at " INTPTR_FORMAT, p2i(a));
 233     uint64_t uval = val;
 234     unsigned mask = checked_cast<unsigned>(right_n_bits(nbits));
 235     uval &= mask;
 236     uval <<= lsb;
 237     mask <<= lsb;
 238     unsigned target = *(unsigned *)a;
 239     target &= ~mask;
 240     target |= (unsigned)uval;
 241     *(unsigned *)a = target;
 242   }
 243 
 244   void f(unsigned val, int msb, int lsb) {
 245     int nbits = msb - lsb + 1;
 246     guarantee(val < (1ULL << nbits), "Field too big for insn");
 247     assert_cond(msb >= lsb);
 248     val <<= lsb;
 249     insn |= val;
 250 #ifdef ASSERT
 251     unsigned mask = checked_cast<unsigned>(right_n_bits(nbits));
 252     mask <<= lsb;
 253     assert_cond((bits & mask) == 0);
 254     bits |= mask;
 255 #endif
 256   }
 257 
 258   void f(unsigned val, int bit) {
 259     f(val, bit, bit);
 260   }
 261 
 262   void sf(int64_t val, int msb, int lsb) {
 263     int nbits = msb - lsb + 1;
 264     int64_t chk = val >> (nbits - 1);
 265     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 266     uint64_t uval = val;
 267     unsigned mask = checked_cast<unsigned>(right_n_bits(nbits));
 268     uval &= mask;
 269     f((unsigned)uval, lsb + nbits - 1, lsb);
 270   }
 271 
 272   void rf(Register r, int lsb) {
 273     f(r->raw_encoding(), lsb + 4, lsb);
 274   }
 275 
 276   // reg|ZR
 277   void zrf(Register r, int lsb) {
 278     f(r->raw_encoding() - (r == zr), lsb + 4, lsb);
 279   }
 280 
 281   // reg|SP
 282   void srf(Register r, int lsb) {
 283     f(r == sp ? 31 : r->raw_encoding(), lsb + 4, lsb);
 284   }
 285 
 286   void rf(FloatRegister r, int lsb) {
 287     f(r->raw_encoding(), lsb + 4, lsb);
 288   }
 289 
 290   //<0-15>reg: As `rf(FloatRegister)`, but only the lower  16 FloatRegisters are allowed.
 291   void lrf(FloatRegister r, int lsb) {
 292     f(r->raw_encoding(), lsb + 3, lsb);
 293   }
 294 
 295   void prf(PRegister r, int lsb) {
 296     f(r->raw_encoding(), lsb + 3, lsb);
 297   }
 298 
 299   void pgrf(PRegister r, int lsb) {
 300     f(r->raw_encoding(), lsb + 2, lsb);
 301   }
 302 
 303   unsigned get(int msb = 31, int lsb = 0) {
 304     int nbits = msb - lsb + 1;
 305     unsigned mask = checked_cast<unsigned>(right_n_bits(nbits)) << lsb;
 306     assert_cond((bits & mask) == mask);
 307     return (insn & mask) >> lsb;
 308   }
 309 };
 310 
 311 #define starti Instruction_aarch64 current_insn(this);
 312 
 313 class PrePost {
 314   int _offset;
 315   Register _r;
 316 protected:
 317   PrePost(Register reg, int o) : _offset(o), _r(reg) { }
 318   ~PrePost() = default;
 319   PrePost(const PrePost&) = default;
 320   PrePost& operator=(const PrePost&) = default;
 321 public:
 322   int offset() const { return _offset; }
 323   Register reg() const { return _r; }
 324 };
 325 
 326 class Pre : public PrePost {
 327 public:
 328   Pre(Register reg, int o) : PrePost(reg, o) { }
 329 };
 330 
 331 class Post : public PrePost {
 332   Register _idx;
 333   bool _is_postreg;
 334 public:
 335   Post(Register reg, int o) : PrePost(reg, o), _idx(noreg), _is_postreg(false) {}
 336   Post(Register reg, Register idx) : PrePost(reg, 0), _idx(idx), _is_postreg(true) {}
 337   Register idx_reg() const { return _idx; }
 338   bool is_postreg() const { return _is_postreg; }
 339 };
 340 
 341 namespace ext
 342 {
 343   enum operation { uxtb, uxth, uxtw, uxtx, sxtb, sxth, sxtw, sxtx };
 344 };
 345 
 346 // Addressing modes
 347 class Address {
 348  public:
 349 
 350   enum mode { no_mode, base_plus_offset, pre, post, post_reg,
 351               base_plus_offset_reg, literal };
 352 
 353   // Shift and extend for base reg + reg offset addressing
 354   class extend {
 355     int _option, _shift;
 356     ext::operation _op;
 357   public:
 358     extend() { }
 359     extend(int s, int o, ext::operation op) : _option(o), _shift(s), _op(op) { }
 360     int option() const{ return _option; }
 361     int shift() const { return _shift; }
 362     ext::operation op() const { return _op; }
 363   };
 364 
 365   static extend uxtw(int shift = -1) { return extend(shift, 0b010, ext::uxtw); }
 366   static extend lsl(int shift = -1)  { return extend(shift, 0b011, ext::uxtx); }
 367   static extend sxtw(int shift = -1) { return extend(shift, 0b110, ext::sxtw); }
 368   static extend sxtx(int shift = -1) { return extend(shift, 0b111, ext::sxtx); }
 369 
 370  private:
 371   struct Nonliteral {
 372     Nonliteral(Register base, Register index, int64_t offset, extend ext = extend())
 373       : _base(base), _index(index), _offset(offset), _ext(ext) {}
 374     Register _base;
 375     Register _index;
 376     int64_t _offset;
 377     extend _ext;
 378   };
 379 
 380   struct Literal {
 381     Literal(address target, const RelocationHolder& rspec)
 382       : _target(target), _rspec(rspec) {}
 383 
 384     // If the target is far we'll need to load the ea of this to a
 385     // register to reach it. Otherwise if near we can do PC-relative
 386     // addressing.
 387     address _target;
 388 
 389     RelocationHolder _rspec;
 390   };
 391 
 392   void assert_is_nonliteral() const NOT_DEBUG_RETURN;
 393   void assert_is_literal() const NOT_DEBUG_RETURN;
 394 
 395   // Discriminated union, based on _mode.
 396   // - no_mode: uses dummy _nonliteral, for ease of copying.
 397   // - literal: only _literal is used.
 398   // - others: only _nonliteral is used.
 399   enum mode _mode;
 400   union {
 401     Nonliteral _nonliteral;
 402     Literal _literal;
 403   };
 404 
 405   // Helper for copy constructor and assignment operator.
 406   // Copy mode-relevant part of a into this.
 407   void copy_data(const Address& a) {
 408     assert(_mode == a._mode, "precondition");
 409     if (_mode == literal) {
 410       new (&_literal) Literal(a._literal);
 411     } else {
 412       // non-literal mode or no_mode.
 413       new (&_nonliteral) Nonliteral(a._nonliteral);
 414     }
 415   }
 416 
 417  public:
 418   // no_mode initializes _nonliteral for ease of copying.
 419   Address() :
 420     _mode(no_mode),
 421     _nonliteral(noreg, noreg, 0)
 422   {}
 423 
 424   Address(Register r) :
 425     _mode(base_plus_offset),
 426     _nonliteral(r, noreg, 0)
 427   {}
 428 
 429   template<typename T, ENABLE_IF(std::is_integral<T>::value)>
 430   Address(Register r, T o) :
 431     _mode(base_plus_offset),
 432     _nonliteral(r, noreg, o)
 433   {}
 434 
 435   Address(Register r, ByteSize disp) : Address(r, in_bytes(disp)) {}
 436 
 437   Address(Register r, Register r1, extend ext = lsl()) :
 438     _mode(base_plus_offset_reg),
 439     _nonliteral(r, r1, 0, ext)
 440   {}
 441 
 442   Address(Pre p) :
 443     _mode(pre),
 444     _nonliteral(p.reg(), noreg, p.offset())
 445   {}
 446 
 447   Address(Post p) :
 448     _mode(p.is_postreg() ? post_reg : post),
 449     _nonliteral(p.reg(), p.idx_reg(), p.offset())
 450   {}
 451 
 452   Address(address target, const RelocationHolder& rspec) :
 453     _mode(literal),
 454     _literal(target, rspec)
 455   {}
 456 
 457   Address(address target, relocInfo::relocType rtype = relocInfo::external_word_type);
 458 
 459   Address(Register base, RegisterOrConstant index, extend ext = lsl()) {
 460     if (index.is_register()) {
 461       _mode = base_plus_offset_reg;
 462       new (&_nonliteral) Nonliteral(base, index.as_register(), 0, ext);
 463     } else {
 464       guarantee(ext.option() == ext::uxtx, "should be");
 465       assert(index.is_constant(), "should be");
 466       _mode = base_plus_offset;
 467       new (&_nonliteral) Nonliteral(base,
 468                                     noreg,
 469                                     index.as_constant() << ext.shift());
 470     }
 471   }
 472 
 473   Address(const Address& a) : _mode(a._mode) { copy_data(a); }
 474 
 475   // Verify the value is trivially destructible regardless of mode, so our
 476   // destructor can also be trivial, and so our assignment operator doesn't
 477   // need to destruct the old value before copying over it.
 478   static_assert(std::is_trivially_destructible<Literal>::value, "must be");
 479   static_assert(std::is_trivially_destructible<Nonliteral>::value, "must be");
 480 
 481   Address& operator=(const Address& a) {
 482     _mode = a._mode;
 483     copy_data(a);
 484     return *this;
 485   }
 486 
 487   ~Address() = default;
 488 
 489   Register base() const {
 490     assert_is_nonliteral();
 491     return _nonliteral._base;
 492   }
 493 
 494   int64_t offset() const {
 495     assert_is_nonliteral();
 496     return _nonliteral._offset;
 497   }
 498 
 499   Register index() const {
 500     assert_is_nonliteral();
 501     return _nonliteral._index;
 502   }
 503 
 504   extend ext() const {
 505     assert_is_nonliteral();
 506     return _nonliteral._ext;
 507   }
 508 
 509   mode getMode() const {
 510     return _mode;
 511   }
 512 
 513   bool uses(Register reg) const {
 514     switch (_mode) {
 515     case literal:
 516     case no_mode:
 517       return false;
 518     case base_plus_offset:
 519     case base_plus_offset_reg:
 520     case pre:
 521     case post:
 522     case post_reg:
 523       return base() == reg || index() == reg;
 524     default:
 525       ShouldNotReachHere();
 526       return false;
 527     }
 528   }
 529 
 530   address target() const {
 531     assert_is_literal();
 532     return _literal._target;
 533   }
 534 
 535   const RelocationHolder& rspec() const {
 536     assert_is_literal();
 537     return _literal._rspec;
 538   }
 539 
 540   void encode(Instruction_aarch64 *i) const {
 541     i->f(0b111, 29, 27);
 542     i->srf(base(), 5);
 543 
 544     switch(_mode) {
 545     case base_plus_offset:
 546       {
 547         unsigned size = i->get(31, 30);
 548         if (i->get(26, 26) && i->get(23, 23)) {
 549           // SIMD Q Type - Size = 128 bits
 550           assert(size == 0, "bad size");
 551           size = 0b100;
 552         }
 553         assert(offset_ok_for_immed(offset(), size),
 554                "must be, was: " INT64_FORMAT ", %d", offset(), size);
 555         unsigned mask = (1 << size) - 1;
 556         if (offset() < 0 || offset() & mask) {
 557           i->f(0b00, 25, 24);
 558           i->f(0, 21), i->f(0b00, 11, 10);
 559           i->sf(offset(), 20, 12);
 560         } else {
 561           i->f(0b01, 25, 24);
 562           i->f(checked_cast<unsigned>(offset() >> size), 21, 10);
 563         }
 564       }
 565       break;
 566 
 567     case base_plus_offset_reg:
 568       {
 569         i->f(0b00, 25, 24);
 570         i->f(1, 21);
 571         i->rf(index(), 16);
 572         i->f(ext().option(), 15, 13);
 573         unsigned size = i->get(31, 30);
 574         if (i->get(26, 26) && i->get(23, 23)) {
 575           // SIMD Q Type - Size = 128 bits
 576           assert(size == 0, "bad size");
 577           size = 0b100;
 578         }
 579         if (size == 0) // It's a byte
 580           i->f(ext().shift() >= 0, 12);
 581         else {
 582           guarantee(ext().shift() <= 0 || ext().shift() == (int)size, "bad shift");
 583           i->f(ext().shift() > 0, 12);
 584         }
 585         i->f(0b10, 11, 10);
 586       }
 587       break;
 588 
 589     case pre:
 590       i->f(0b00, 25, 24);
 591       i->f(0, 21), i->f(0b11, 11, 10);
 592       i->sf(offset(), 20, 12);
 593       break;
 594 
 595     case post:
 596       i->f(0b00, 25, 24);
 597       i->f(0, 21), i->f(0b01, 11, 10);
 598       i->sf(offset(), 20, 12);
 599       break;
 600 
 601     default:
 602       ShouldNotReachHere();
 603     }
 604   }
 605 
 606   void encode_pair(Instruction_aarch64 *i) const {
 607     switch(_mode) {
 608     case base_plus_offset:
 609       i->f(0b010, 25, 23);
 610       break;
 611     case pre:
 612       i->f(0b011, 25, 23);
 613       break;
 614     case post:
 615       i->f(0b001, 25, 23);
 616       break;
 617     default:
 618       ShouldNotReachHere();
 619     }
 620 
 621     unsigned size; // Operand shift in 32-bit words
 622 
 623     if (i->get(26, 26)) { // float
 624       switch(i->get(31, 30)) {
 625       case 0b10:
 626         size = 2; break;
 627       case 0b01:
 628         size = 1; break;
 629       case 0b00:
 630         size = 0; break;
 631       default:
 632         ShouldNotReachHere();
 633         size = 0;  // unreachable
 634       }
 635     } else {
 636       size = i->get(31, 31);
 637     }
 638 
 639     size = 4 << size;
 640     guarantee(offset() % size == 0, "bad offset");
 641     i->sf(offset() / size, 21, 15);
 642     i->srf(base(), 5);
 643   }
 644 
 645   void encode_nontemporal_pair(Instruction_aarch64 *i) const {
 646     guarantee(_mode == base_plus_offset, "Bad addressing mode for nontemporal op");
 647     i->f(0b000, 25, 23);
 648     unsigned size = i->get(31, 31);
 649     size = 4 << size;
 650     guarantee(offset() % size == 0, "bad offset");
 651     i->sf(offset() / size, 21, 15);
 652     i->srf(base(), 5);
 653   }
 654 
 655   void lea(MacroAssembler *, Register) const;
 656 
 657   static bool offset_ok_for_immed(int64_t offset, uint shift);
 658 
 659   static bool offset_ok_for_sve_immed(int64_t offset, int shift, int vl /* sve vector length */) {
 660     if (offset % vl == 0) {
 661       // Convert address offset into sve imm offset (MUL VL).
 662       int64_t sve_offset = offset / vl;
 663       int32_t range = 1 << (shift - 1);
 664       if ((-range <= sve_offset) && (sve_offset < range)) {
 665         // sve_offset can be encoded
 666         return true;
 667       }
 668     }
 669     return false;
 670   }
 671 };
 672 
 673 // Convenience classes
 674 class RuntimeAddress: public Address {
 675 
 676   public:
 677 
 678   RuntimeAddress(address target) : Address(target, relocInfo::runtime_call_type) {}
 679 
 680 };
 681 
 682 class OopAddress: public Address {
 683 
 684   public:
 685 
 686   OopAddress(address target) : Address(target, relocInfo::oop_type){}
 687 
 688 };
 689 
 690 class ExternalAddress: public Address {
 691  private:
 692   static relocInfo::relocType reloc_for_target(address target) {
 693     // Sometimes ExternalAddress is used for values which aren't
 694     // exactly addresses, like the card table base.
 695     // external_word_type can't be used for values in the first page
 696     // so just skip the reloc in that case.
 697     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
 698   }
 699 
 700  public:
 701 
 702   ExternalAddress(address target) : Address(target, reloc_for_target(target)) {}
 703 
 704 };
 705 
 706 class InternalAddress: public Address {
 707 
 708   public:
 709 
 710   InternalAddress(address target) : Address(target, relocInfo::internal_word_type) {}
 711 };
 712 
 713 const int FPUStateSizeInWords = FloatRegister::number_of_registers * FloatRegister::save_slots_per_register;
 714 
 715 typedef enum {
 716   PLDL1KEEP = 0b00000, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM,
 717   PSTL1KEEP = 0b10000, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM,
 718   PLIL1KEEP = 0b01000, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM
 719 } prfop;
 720 
 721 class Assembler : public AbstractAssembler {
 722 
 723 public:
 724 
 725 #ifndef PRODUCT
 726   static const uintptr_t asm_bp;
 727 
 728   void emit_int32(jint x) {
 729     if ((uintptr_t)pc() == asm_bp)
 730       NOP();
 731     AbstractAssembler::emit_int32(x);
 732   }
 733 #else
 734   void emit_int32(jint x) {
 735     AbstractAssembler::emit_int32(x);
 736   }
 737 #endif
 738 
 739   enum { instruction_size = 4 };
 740 
 741   //---<  calculate length of instruction  >---
 742   // We just use the values set above.
 743   // instruction must start at passed address
 744   static unsigned int instr_len(unsigned char *instr) { return instruction_size; }
 745 
 746   //---<  longest instructions  >---
 747   static unsigned int instr_maxlen() { return instruction_size; }
 748 
 749   Address adjust(Register base, int offset, bool preIncrement) {
 750     if (preIncrement)
 751       return Address(Pre(base, offset));
 752     else
 753       return Address(Post(base, offset));
 754   }
 755 
 756   Address pre(Register base, int offset) {
 757     return adjust(base, offset, true);
 758   }
 759 
 760   Address post(Register base, int offset) {
 761     return adjust(base, offset, false);
 762   }
 763 
 764   Address post(Register base, Register idx) {
 765     return Address(Post(base, idx));
 766   }
 767 
 768   static address locate_next_instruction(address inst);
 769 
 770 #define f current_insn.f
 771 #define sf current_insn.sf
 772 #define rf current_insn.rf
 773 #define lrf current_insn.lrf
 774 #define srf current_insn.srf
 775 #define zrf current_insn.zrf
 776 #define prf current_insn.prf
 777 #define pgrf current_insn.pgrf
 778 
 779   typedef void (Assembler::* uncond_branch_insn)(address dest);
 780   typedef void (Assembler::* compare_and_branch_insn)(Register Rt, address dest);
 781   typedef void (Assembler::* test_and_branch_insn)(Register Rt, int bitpos, address dest);
 782   typedef void (Assembler::* prefetch_insn)(address target, prfop);
 783 
 784   void wrap_label(Label &L, uncond_branch_insn insn);
 785   void wrap_label(Register r, Label &L, compare_and_branch_insn insn);
 786   void wrap_label(Register r, int bitpos, Label &L, test_and_branch_insn insn);
 787   void wrap_label(Label &L, prfop, prefetch_insn insn);
 788 
 789   // PC-rel. addressing
 790 
 791   void adr(Register Rd, address dest);
 792   void _adrp(Register Rd, address dest);
 793 
 794   void adr(Register Rd, const Address &dest);
 795   void _adrp(Register Rd, const Address &dest);
 796 
 797   void adr(Register Rd, Label &L) {
 798     wrap_label(Rd, L, &Assembler::Assembler::adr);
 799   }
 800   void _adrp(Register Rd, Label &L) {
 801     wrap_label(Rd, L, &Assembler::_adrp);
 802   }
 803 
 804   void adrp(Register Rd, const Address &dest, uint64_t &offset) = delete;
 805 
 806   void prfm(const Address &adr, prfop pfop = PLDL1KEEP);
 807 
 808 #undef INSN
 809 
 810   void add_sub_immediate(Instruction_aarch64 &current_insn, Register Rd, Register Rn,
 811                          unsigned uimm, int op, int negated_op);
 812 
 813   // Add/subtract (immediate)
 814 #define INSN(NAME, decode, negated)                                     \
 815   void NAME(Register Rd, Register Rn, unsigned imm, unsigned shift) {   \
 816     starti;                                                             \
 817     f(decode, 31, 29), f(0b10001, 28, 24), f(shift, 23, 22), f(imm, 21, 10); \
 818     zrf(Rd, 0), srf(Rn, 5);                                             \
 819   }                                                                     \
 820                                                                         \
 821   void NAME(Register Rd, Register Rn, unsigned imm) {                   \
 822     starti;                                                             \
 823     add_sub_immediate(current_insn, Rd, Rn, imm, decode, negated);      \
 824   }
 825 
 826   INSN(addsw, 0b001, 0b011);
 827   INSN(subsw, 0b011, 0b001);
 828   INSN(adds,  0b101, 0b111);
 829   INSN(subs,  0b111, 0b101);
 830 
 831 #undef INSN
 832 
 833 #define INSN(NAME, decode, negated)                     \
 834   void NAME(Register Rd, Register Rn, unsigned imm) {   \
 835     starti;                                             \
 836     add_sub_immediate(current_insn, Rd, Rn, imm, decode, negated);     \
 837   }
 838 
 839   INSN(addw, 0b000, 0b010);
 840   INSN(subw, 0b010, 0b000);
 841   INSN(add,  0b100, 0b110);
 842   INSN(sub,  0b110, 0b100);
 843 
 844 #undef INSN
 845 
 846  // Logical (immediate)
 847 #define INSN(NAME, decode, is32)                                \
 848   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 849     starti;                                                     \
 850     uint32_t val = encode_logical_immediate(is32, imm);         \
 851     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 852     srf(Rd, 0), zrf(Rn, 5);                                     \
 853   }
 854 
 855   INSN(andw, 0b000, true);
 856   INSN(orrw, 0b001, true);
 857   INSN(eorw, 0b010, true);
 858   INSN(andr, 0b100, false);
 859   INSN(orr,  0b101, false);
 860   INSN(eor,  0b110, false);
 861 
 862 #undef INSN
 863 
 864 #define INSN(NAME, decode, is32)                                \
 865   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 866     starti;                                                     \
 867     uint32_t val = encode_logical_immediate(is32, imm);         \
 868     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 869     zrf(Rd, 0), zrf(Rn, 5);                                     \
 870   }
 871 
 872   INSN(ands, 0b111, false);
 873   INSN(andsw, 0b011, true);
 874 
 875 #undef INSN
 876 
 877   // Move wide (immediate)
 878 #define INSN(NAME, opcode)                                              \
 879   void NAME(Register Rd, unsigned imm, unsigned shift = 0) {            \
 880     assert_cond((shift/16)*16 == shift);                                \
 881     starti;                                                             \
 882     f(opcode, 31, 29), f(0b100101, 28, 23), f(shift/16, 22, 21),        \
 883       f(imm, 20, 5);                                                    \
 884     zrf(Rd, 0);                                                         \
 885   }
 886 
 887   INSN(movnw, 0b000);
 888   INSN(movzw, 0b010);
 889   INSN(movkw, 0b011);
 890   INSN(movn,  0b100);
 891   INSN(movz,  0b110);
 892   INSN(movk,  0b111);
 893 
 894 #undef INSN
 895 
 896   // Bitfield
 897 #define INSN(NAME, opcode, size)                                        \
 898   void NAME(Register Rd, Register Rn, unsigned immr, unsigned imms) {   \
 899     starti;                                                             \
 900     guarantee(size == 1 || (immr < 32 && imms < 32), "incorrect immr/imms");\
 901     f(opcode, 31, 22), f(immr, 21, 16), f(imms, 15, 10);                \
 902     zrf(Rn, 5), rf(Rd, 0);                                              \
 903   }
 904 
 905   INSN(sbfmw, 0b0001001100, 0);
 906   INSN(bfmw,  0b0011001100, 0);
 907   INSN(ubfmw, 0b0101001100, 0);
 908   INSN(sbfm,  0b1001001101, 1);
 909   INSN(bfm,   0b1011001101, 1);
 910   INSN(ubfm,  0b1101001101, 1);
 911 
 912 #undef INSN
 913 
 914   // Extract
 915 #define INSN(NAME, opcode, size)                                        \
 916   void NAME(Register Rd, Register Rn, Register Rm, unsigned imms) {     \
 917     starti;                                                             \
 918     guarantee(size == 1 || imms < 32, "incorrect imms");                \
 919     f(opcode, 31, 21), f(imms, 15, 10);                                 \
 920     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                                \
 921   }
 922 
 923   INSN(extrw, 0b00010011100, 0);
 924   INSN(extr,  0b10010011110, 1);
 925 
 926 #undef INSN
 927 
 928   // The maximum range of a branch is fixed for the AArch64
 929   // architecture.  In debug mode we shrink it in order to test
 930   // trampolines, but not so small that branches in the interpreter
 931   // are out of range.
 932   static const uint64_t branch_range = NOT_DEBUG(128 * M) DEBUG_ONLY(2 * M);
 933 
 934   static bool reachable_from_branch_at(address branch, address target) {
 935     return g_uabs(target - branch) < branch_range;
 936   }
 937 
 938   // Unconditional branch (immediate)
 939 #define INSN(NAME, opcode)                                              \
 940   void NAME(address dest) {                                             \
 941     starti;                                                             \
 942     int64_t offset = (dest - pc()) >> 2;                                \
 943     DEBUG_ONLY(assert(reachable_from_branch_at(pc(), dest), "debug only")); \
 944     f(opcode, 31), f(0b00101, 30, 26), sf(offset, 25, 0);               \
 945   }                                                                     \
 946   void NAME(Label &L) {                                                 \
 947     wrap_label(L, &Assembler::NAME);                                    \
 948   }                                                                     \
 949   void NAME(const Address &dest);
 950 
 951   INSN(b, 0);
 952   INSN(bl, 1);
 953 
 954 #undef INSN
 955 
 956   // Compare & branch (immediate)
 957 #define INSN(NAME, opcode)                              \
 958   void NAME(Register Rt, address dest) {                \
 959     int64_t offset = (dest - pc()) >> 2;                \
 960     starti;                                             \
 961     f(opcode, 31, 24), sf(offset, 23, 5), rf(Rt, 0);    \
 962   }                                                     \
 963   void NAME(Register Rt, Label &L) {                    \
 964     wrap_label(Rt, L, &Assembler::NAME);                \
 965   }
 966 
 967   INSN(cbzw,  0b00110100);
 968   INSN(cbnzw, 0b00110101);
 969   INSN(cbz,   0b10110100);
 970   INSN(cbnz,  0b10110101);
 971 
 972 #undef INSN
 973 
 974   // Test & branch (immediate)
 975 #define INSN(NAME, opcode)                                              \
 976   void NAME(Register Rt, int bitpos, address dest) {                    \
 977     int64_t offset = (dest - pc()) >> 2;                                \
 978     int b5 = bitpos >> 5;                                               \
 979     bitpos &= 0x1f;                                                     \
 980     starti;                                                             \
 981     f(b5, 31), f(opcode, 30, 24), f(bitpos, 23, 19), sf(offset, 18, 5); \
 982     rf(Rt, 0);                                                          \
 983   }                                                                     \
 984   void NAME(Register Rt, int bitpos, Label &L) {                        \
 985     wrap_label(Rt, bitpos, L, &Assembler::NAME);                        \
 986   }
 987 
 988   INSN(tbz,  0b0110110);
 989   INSN(tbnz, 0b0110111);
 990 
 991 #undef INSN
 992 
 993   // Conditional branch (immediate)
 994   enum Condition
 995     {EQ, NE, HS, CS=HS, LO, CC=LO, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE, AL, NV};
 996 
 997   void br(Condition  cond, address dest) {
 998     int64_t offset = (dest - pc()) >> 2;
 999     starti;
1000     f(0b0101010, 31, 25), f(0, 24), sf(offset, 23, 5), f(0, 4), f(cond, 3, 0);
1001   }
1002 
1003 #define INSN(NAME, cond)                        \
1004   void NAME(address dest) {                     \
1005     br(cond, dest);                             \
1006   }
1007 
1008   INSN(beq, EQ);
1009   INSN(bne, NE);
1010   INSN(bhs, HS);
1011   INSN(bcs, CS);
1012   INSN(blo, LO);
1013   INSN(bcc, CC);
1014   INSN(bmi, MI);
1015   INSN(bpl, PL);
1016   INSN(bvs, VS);
1017   INSN(bvc, VC);
1018   INSN(bhi, HI);
1019   INSN(bls, LS);
1020   INSN(bge, GE);
1021   INSN(blt, LT);
1022   INSN(bgt, GT);
1023   INSN(ble, LE);
1024   INSN(bal, AL);
1025   INSN(bnv, NV);
1026 
1027   void br(Condition cc, Label &L);
1028 
1029 #undef INSN
1030 
1031   // Exception generation
1032   void generate_exception(int opc, int op2, int LL, unsigned imm) {
1033     starti;
1034     f(0b11010100, 31, 24);
1035     f(opc, 23, 21), f(imm, 20, 5), f(op2, 4, 2), f(LL, 1, 0);
1036   }
1037 
1038 #define INSN(NAME, opc, op2, LL)                \
1039   void NAME(unsigned imm) {                     \
1040     generate_exception(opc, op2, LL, imm);      \
1041   }
1042 
1043   INSN(svc, 0b000, 0, 0b01);
1044   INSN(hvc, 0b000, 0, 0b10);
1045   INSN(smc, 0b000, 0, 0b11);
1046   INSN(brk, 0b001, 0, 0b00);
1047   INSN(hlt, 0b010, 0, 0b00);
1048   INSN(dcps1, 0b101, 0, 0b01);
1049   INSN(dcps2, 0b101, 0, 0b10);
1050   INSN(dcps3, 0b101, 0, 0b11);
1051 
1052 #undef INSN
1053 
1054   // System
1055   void system(int op0, int op1, int CRn, int CRm, int op2,
1056               Register rt = dummy_reg)
1057   {
1058     starti;
1059     f(0b11010101000, 31, 21);
1060     f(op0, 20, 19);
1061     f(op1, 18, 16);
1062     f(CRn, 15, 12);
1063     f(CRm, 11, 8);
1064     f(op2, 7, 5);
1065     rf(rt, 0);
1066   }
1067 
1068   // Hint instructions
1069 
1070 #define INSN(NAME, crm, op2)               \
1071   void NAME() {                            \
1072     system(0b00, 0b011, 0b0010, crm, op2); \
1073   }
1074 
1075   INSN(nop,   0b000, 0b0000);
1076   INSN(yield, 0b000, 0b0001);
1077   INSN(wfe,   0b000, 0b0010);
1078   INSN(wfi,   0b000, 0b0011);
1079   INSN(sev,   0b000, 0b0100);
1080   INSN(sevl,  0b000, 0b0101);
1081 
1082   INSN(autia1716, 0b0001, 0b100);
1083   INSN(autiasp,   0b0011, 0b101);
1084   INSN(autiaz,    0b0011, 0b100);
1085   INSN(autib1716, 0b0001, 0b110);
1086   INSN(autibsp,   0b0011, 0b111);
1087   INSN(autibz,    0b0011, 0b110);
1088   INSN(pacia1716, 0b0001, 0b000);
1089   INSN(paciasp,   0b0011, 0b001);
1090   INSN(paciaz,    0b0011, 0b000);
1091   INSN(pacib1716, 0b0001, 0b010);
1092   INSN(pacibsp,   0b0011, 0b011);
1093   INSN(pacibz,    0b0011, 0b010);
1094   INSN(xpaclri,   0b0000, 0b111);
1095 
1096 #undef INSN
1097 
1098   // we only provide mrs and msr for the special purpose system
1099   // registers where op1 (instr[20:19]) == 11
1100   // n.b msr has L (instr[21]) == 0 mrs has L == 1
1101 
1102   void msr(int op1, int CRn, int CRm, int op2, Register rt) {
1103     starti;
1104     f(0b1101010100011, 31, 19);
1105     f(op1, 18, 16);
1106     f(CRn, 15, 12);
1107     f(CRm, 11, 8);
1108     f(op2, 7, 5);
1109     // writing zr is ok
1110     zrf(rt, 0);
1111   }
1112 
1113   void mrs(int op1, int CRn, int CRm, int op2, Register rt) {
1114     starti;
1115     f(0b1101010100111, 31, 19);
1116     f(op1, 18, 16);
1117     f(CRn, 15, 12);
1118     f(CRm, 11, 8);
1119     f(op2, 7, 5);
1120     // reading to zr is a mistake
1121     rf(rt, 0);
1122   }
1123 
1124   enum barrier {OSHLD = 0b0001, OSHST, OSH, NSHLD=0b0101, NSHST, NSH,
1125                 ISHLD = 0b1001, ISHST, ISH, LD=0b1101, ST, SY};
1126 
1127   void dsb(barrier imm) {
1128     system(0b00, 0b011, 0b00011, imm, 0b100);
1129   }
1130 
1131   void dmb(barrier imm) {
1132     system(0b00, 0b011, 0b00011, imm, 0b101);
1133   }
1134 
1135   void isb() {
1136     system(0b00, 0b011, 0b00011, SY, 0b110);
1137   }
1138 
1139   void sb() {
1140     system(0b00, 0b011, 0b00011, 0b0000, 0b111);
1141   }
1142 
1143   void sys(int op1, int CRn, int CRm, int op2,
1144            Register rt = as_Register(0b11111)) {
1145     system(0b01, op1, CRn, CRm, op2, rt);
1146   }
1147 
1148   // Only implement operations accessible from EL0 or higher, i.e.,
1149   //            op1    CRn    CRm    op2
1150   // IC IVAU     3      7      5      1
1151   // DC CVAC     3      7      10     1
1152   // DC CVAP     3      7      12     1
1153   // DC CVAU     3      7      11     1
1154   // DC CIVAC    3      7      14     1
1155   // DC ZVA      3      7      4      1
1156   // So only deal with the CRm field.
1157   enum icache_maintenance {IVAU = 0b0101};
1158   enum dcache_maintenance {CVAC = 0b1010, CVAP = 0b1100, CVAU = 0b1011, CIVAC = 0b1110, ZVA = 0b100};
1159 
1160   void dc(dcache_maintenance cm, Register Rt) {
1161     sys(0b011, 0b0111, cm, 0b001, Rt);
1162   }
1163 
1164   void ic(icache_maintenance cm, Register Rt) {
1165     sys(0b011, 0b0111, cm, 0b001, Rt);
1166   }
1167 
1168   // A more convenient access to dmb for our purposes
1169   enum Membar_mask_bits {
1170     // We can use ISH for a barrier because the Arm ARM says "This
1171     // architecture assumes that all Processing Elements that use the
1172     // same operating system or hypervisor are in the same Inner
1173     // Shareable shareability domain."
1174     StoreStore = ISHST,
1175     LoadStore  = ISHLD,
1176     LoadLoad   = ISHLD,
1177     StoreLoad  = ISH,
1178     AnyAny     = ISH
1179   };
1180 
1181   void membar(Membar_mask_bits order_constraint) {
1182     dmb(Assembler::barrier(order_constraint));
1183   }
1184 
1185   // Unconditional branch (register)
1186 
1187   void branch_reg(int OP, int A, int M, Register RN, Register RM) {
1188     starti;
1189     f(0b1101011, 31, 25);
1190     f(OP, 24, 21);
1191     f(0b111110000, 20, 12);
1192     f(A, 11, 11);
1193     f(M, 10, 10);
1194     rf(RN, 5);
1195     rf(RM, 0);
1196   }
1197 
1198 #define INSN(NAME, opc)                         \
1199   void NAME(Register RN) {                      \
1200     branch_reg(opc, 0, 0, RN, r0);              \
1201   }
1202 
1203   INSN(br,  0b0000);
1204   INSN(blr, 0b0001);
1205   INSN(ret, 0b0010);
1206 
1207   void ret(void *p); // This forces a compile-time error for ret(0)
1208 
1209 #undef INSN
1210 
1211 #define INSN(NAME, opc)                         \
1212   void NAME() {                                 \
1213     branch_reg(opc, 0, 0, dummy_reg, r0);       \
1214   }
1215 
1216   INSN(eret, 0b0100);
1217   INSN(drps, 0b0101);
1218 
1219 #undef INSN
1220 
1221 #define INSN(NAME, M)                                  \
1222   void NAME() {                                        \
1223     branch_reg(0b0010, 1, M, dummy_reg, dummy_reg);    \
1224   }
1225 
1226   INSN(retaa, 0);
1227   INSN(retab, 1);
1228 
1229 #undef INSN
1230 
1231 #define INSN(NAME, OP, M)                   \
1232   void NAME(Register rn) {                  \
1233     branch_reg(OP, 1, M, rn, dummy_reg);    \
1234   }
1235 
1236   INSN(braaz,  0b0000, 0);
1237   INSN(brabz,  0b0000, 1);
1238   INSN(blraaz, 0b0001, 0);
1239   INSN(blrabz, 0b0001, 1);
1240 
1241 #undef INSN
1242 
1243 #define INSN(NAME, OP, M)                  \
1244   void NAME(Register rn, Register rm) {    \
1245     branch_reg(OP, 1, M, rn, rm);          \
1246   }
1247 
1248   INSN(braa,  0b1000, 0);
1249   INSN(brab,  0b1000, 1);
1250   INSN(blraa, 0b1001, 0);
1251   INSN(blrab, 0b1001, 1);
1252 
1253 #undef INSN
1254 
1255   // Load/store exclusive
1256   enum operand_size { byte, halfword, word, xword };
1257 
1258   void load_store_exclusive(Register Rs, Register Rt1, Register Rt2,
1259     Register Rn, enum operand_size sz, int op, bool ordered) {
1260     starti;
1261     f(sz, 31, 30), f(0b001000, 29, 24), f(op, 23, 21);
1262     rf(Rs, 16), f(ordered, 15), zrf(Rt2, 10), srf(Rn, 5), zrf(Rt1, 0);
1263   }
1264 
1265   void load_exclusive(Register dst, Register addr,
1266                       enum operand_size sz, bool ordered) {
1267     load_store_exclusive(dummy_reg, dst, dummy_reg, addr,
1268                          sz, 0b010, ordered);
1269   }
1270 
1271   void store_exclusive(Register status, Register new_val, Register addr,
1272                        enum operand_size sz, bool ordered) {
1273     load_store_exclusive(status, new_val, dummy_reg, addr,
1274                          sz, 0b000, ordered);
1275   }
1276 
1277 #define INSN4(NAME, sz, op, o0) /* Four registers */                    \
1278   void NAME(Register Rs, Register Rt1, Register Rt2, Register Rn) {     \
1279     guarantee(Rs != Rn && Rs != Rt1 && Rs != Rt2, "unpredictable instruction"); \
1280     load_store_exclusive(Rs, Rt1, Rt2, Rn, sz, op, o0);                 \
1281   }
1282 
1283 #define INSN3(NAME, sz, op, o0) /* Three registers */                   \
1284   void NAME(Register Rs, Register Rt, Register Rn) {                    \
1285     guarantee(Rs != Rn && Rs != Rt, "unpredictable instruction");       \
1286     load_store_exclusive(Rs, Rt, dummy_reg, Rn, sz, op, o0); \
1287   }
1288 
1289 #define INSN2(NAME, sz, op, o0) /* Two registers */                     \
1290   void NAME(Register Rt, Register Rn) {                                 \
1291     load_store_exclusive(dummy_reg, Rt, dummy_reg, \
1292                          Rn, sz, op, o0);                               \
1293   }
1294 
1295 #define INSN_FOO(NAME, sz, op, o0) /* Three registers, encoded differently */ \
1296   void NAME(Register Rt1, Register Rt2, Register Rn) {                  \
1297     guarantee(Rt1 != Rt2, "unpredictable instruction");                 \
1298     load_store_exclusive(dummy_reg, Rt1, Rt2, Rn, sz, op, o0);          \
1299   }
1300 
1301   // bytes
1302   INSN3(stxrb,  byte, 0b000, 0);
1303   INSN3(stlxrb, byte, 0b000, 1);
1304   INSN2(ldxrb,  byte, 0b010, 0);
1305   INSN2(ldaxrb, byte, 0b010, 1);
1306   INSN2(stlrb,  byte, 0b100, 1);
1307   INSN2(ldarb,  byte, 0b110, 1);
1308 
1309   // halfwords
1310   INSN3(stxrh,  halfword, 0b000, 0);
1311   INSN3(stlxrh, halfword, 0b000, 1);
1312   INSN2(ldxrh,  halfword, 0b010, 0);
1313   INSN2(ldaxrh, halfword, 0b010, 1);
1314   INSN2(stlrh,  halfword, 0b100, 1);
1315   INSN2(ldarh,  halfword, 0b110, 1);
1316 
1317   // words
1318   INSN3(stxrw,  word, 0b000, 0);
1319   INSN3(stlxrw, word, 0b000, 1);
1320   INSN4(stxpw,  word, 0b001, 0);
1321   INSN4(stlxpw, word, 0b001, 1);
1322   INSN2(ldxrw,  word, 0b010, 0);
1323   INSN2(ldaxrw, word, 0b010, 1);
1324   INSN2(stlrw,  word, 0b100, 1);
1325   INSN2(ldarw,  word, 0b110, 1);
1326   // pairs of words
1327   INSN_FOO(ldxpw,  word, 0b011, 0);
1328   INSN_FOO(ldaxpw, word, 0b011, 1);
1329 
1330   // xwords
1331   INSN3(stxr,  xword, 0b000, 0);
1332   INSN3(stlxr, xword, 0b000, 1);
1333   INSN4(stxp,  xword, 0b001, 0);
1334   INSN4(stlxp, xword, 0b001, 1);
1335   INSN2(ldxr,  xword, 0b010, 0);
1336   INSN2(ldaxr, xword, 0b010, 1);
1337   INSN2(stlr,  xword, 0b100, 1);
1338   INSN2(ldar,  xword, 0b110, 1);
1339   // pairs of xwords
1340   INSN_FOO(ldxp,  xword, 0b011, 0);
1341   INSN_FOO(ldaxp, xword, 0b011, 1);
1342 
1343 #undef INSN2
1344 #undef INSN3
1345 #undef INSN4
1346 #undef INSN_FOO
1347 
1348   // 8.1 Compare and swap extensions
1349   void lse_cas(Register Rs, Register Rt, Register Rn,
1350                         enum operand_size sz, bool a, bool r, bool not_pair) {
1351     starti;
1352     if (! not_pair) { // Pair
1353       assert(sz == word || sz == xword, "invalid size");
1354       /* The size bit is in bit 30, not 31 */
1355       sz = (operand_size)(sz == word ? 0b00:0b01);
1356     }
1357     f(sz, 31, 30), f(0b001000, 29, 24), f(not_pair ? 1 : 0, 23), f(a, 22), f(1, 21);
1358     zrf(Rs, 16), f(r, 15), f(0b11111, 14, 10), srf(Rn, 5), zrf(Rt, 0);
1359   }
1360 
1361   // CAS
1362 #define INSN(NAME, a, r)                                                \
1363   void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) {   \
1364     assert(Rs != Rn && Rs != Rt, "unpredictable instruction");          \
1365     lse_cas(Rs, Rt, Rn, sz, a, r, true);                                \
1366   }
1367   INSN(cas,   false, false)
1368   INSN(casa,  true,  false)
1369   INSN(casl,  false, true)
1370   INSN(casal, true,  true)
1371 #undef INSN
1372 
1373   // CASP
1374 #define INSN(NAME, a, r)                                                \
1375   void NAME(operand_size sz, Register Rs, Register Rs1,                 \
1376             Register Rt, Register Rt1, Register Rn) {                   \
1377     assert((Rs->encoding() & 1) == 0 && (Rt->encoding() & 1) == 0 &&    \
1378            Rs->successor() == Rs1 && Rt->successor() == Rt1 &&          \
1379            Rs != Rn && Rs1 != Rn && Rs != Rt, "invalid registers");     \
1380     lse_cas(Rs, Rt, Rn, sz, a, r, false);                               \
1381   }
1382   INSN(casp,   false, false)
1383   INSN(caspa,  true,  false)
1384   INSN(caspl,  false, true)
1385   INSN(caspal, true,  true)
1386 #undef INSN
1387 
1388   // 8.1 Atomic operations
1389   void lse_atomic(Register Rs, Register Rt, Register Rn,
1390                   enum operand_size sz, int op1, int op2, bool a, bool r) {
1391     starti;
1392     f(sz, 31, 30), f(0b111000, 29, 24), f(a, 23), f(r, 22), f(1, 21);
1393     zrf(Rs, 16), f(op1, 15), f(op2, 14, 12), f(0, 11, 10), srf(Rn, 5), zrf(Rt, 0);
1394   }
1395 
1396 #define INSN(NAME, NAME_A, NAME_L, NAME_AL, op1, op2)                   \
1397   void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) {   \
1398     lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, false);                 \
1399   }                                                                     \
1400   void NAME_A(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1401     lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, false);                  \
1402   }                                                                     \
1403   void NAME_L(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1404     lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, true);                  \
1405   }                                                                     \
1406   void NAME_AL(operand_size sz, Register Rs, Register Rt, Register Rn) {\
1407     lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, true);                   \
1408   }
1409   INSN(ldadd,  ldadda,  ldaddl,  ldaddal,  0, 0b000);
1410   INSN(ldbic,  ldbica,  ldbicl,  ldbical,  0, 0b001);
1411   INSN(ldeor,  ldeora,  ldeorl,  ldeoral,  0, 0b010);
1412   INSN(ldorr,  ldorra,  ldorrl,  ldorral,  0, 0b011);
1413   INSN(ldsmax, ldsmaxa, ldsmaxl, ldsmaxal, 0, 0b100);
1414   INSN(ldsmin, ldsmina, ldsminl, ldsminal, 0, 0b101);
1415   INSN(ldumax, ldumaxa, ldumaxl, ldumaxal, 0, 0b110);
1416   INSN(ldumin, ldumina, lduminl, lduminal, 0, 0b111);
1417   INSN(swp,    swpa,    swpl,    swpal,    1, 0b000);
1418 #undef INSN
1419 
1420   // Load register (literal)
1421 #define INSN(NAME, opc, V)                                              \
1422   void NAME(Register Rt, address dest) {                                \
1423     int64_t offset = (dest - pc()) >> 2;                                \
1424     starti;                                                             \
1425     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1426       sf(offset, 23, 5);                                                \
1427     rf(Rt, 0);                                                          \
1428   }                                                                     \
1429   void NAME(Register Rt, address dest, relocInfo::relocType rtype) {    \
1430     InstructionMark im(this);                                           \
1431     guarantee(rtype == relocInfo::internal_word_type,                   \
1432               "only internal_word_type relocs make sense here");        \
1433     code_section()->relocate(inst_mark(), InternalAddress(dest).rspec()); \
1434     NAME(Rt, dest);                                                     \
1435   }                                                                     \
1436   void NAME(Register Rt, Label &L) {                                    \
1437     wrap_label(Rt, L, &Assembler::NAME);                                \
1438   }
1439 
1440   INSN(ldrw, 0b00, 0);
1441   INSN(ldr, 0b01, 0);
1442   INSN(ldrsw, 0b10, 0);
1443 
1444 #undef INSN
1445 
1446 #define INSN(NAME, opc, V)                                              \
1447   void NAME(FloatRegister Rt, address dest) {                           \
1448     int64_t offset = (dest - pc()) >> 2;                                \
1449     starti;                                                             \
1450     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1451       sf(offset, 23, 5);                                                \
1452     rf(as_Register(Rt), 0);                                             \
1453   }
1454 
1455   INSN(ldrs, 0b00, 1);
1456   INSN(ldrd, 0b01, 1);
1457   INSN(ldrq, 0b10, 1);
1458 
1459 #undef INSN
1460 
1461 #define INSN(NAME, size, opc)                                           \
1462   void NAME(FloatRegister Rt, Register Rn) {                            \
1463     starti;                                                             \
1464     f(size, 31, 30), f(0b111100, 29, 24), f(opc, 23, 22), f(0, 21);     \
1465     f(0, 20, 12), f(0b01, 11, 10);                                      \
1466     rf(Rn, 5), rf(as_Register(Rt), 0);                                  \
1467   }
1468 
1469   INSN(ldrs, 0b10, 0b01);
1470   INSN(ldrd, 0b11, 0b01);
1471   INSN(ldrq, 0b00, 0b11);
1472 
1473 #undef INSN
1474 
1475 
1476 #define INSN(NAME, opc, V)                                              \
1477   void NAME(address dest, prfop op = PLDL1KEEP) {                       \
1478     int64_t offset = (dest - pc()) >> 2;                                \
1479     starti;                                                             \
1480     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1481       sf(offset, 23, 5);                                                \
1482     f(op, 4, 0);                                                        \
1483   }                                                                     \
1484   void NAME(Label &L, prfop op = PLDL1KEEP) {                           \
1485     wrap_label(L, op, &Assembler::NAME);                                \
1486   }
1487 
1488   INSN(prfm, 0b11, 0);
1489 
1490 #undef INSN
1491 
1492   // Load/store
1493   void ld_st1(int opc, int p1, int V, int L,
1494               Register Rt1, Register Rt2, Address adr, bool no_allocate) {
1495     starti;
1496     f(opc, 31, 30), f(p1, 29, 27), f(V, 26), f(L, 22);
1497     zrf(Rt2, 10), zrf(Rt1, 0);
1498     if (no_allocate) {
1499       adr.encode_nontemporal_pair(&current_insn);
1500     } else {
1501       adr.encode_pair(&current_insn);
1502     }
1503   }
1504 
1505   // Load/store register pair (offset)
1506 #define INSN(NAME, size, p1, V, L, no_allocate)         \
1507   void NAME(Register Rt1, Register Rt2, Address adr) {  \
1508     ld_st1(size, p1, V, L, Rt1, Rt2, adr, no_allocate); \
1509    }
1510 
1511   INSN(stpw,  0b00, 0b101, 0, 0, false);
1512   INSN(ldpw,  0b00, 0b101, 0, 1, false);
1513   INSN(ldpsw, 0b01, 0b101, 0, 1, false);
1514   INSN(stp,   0b10, 0b101, 0, 0, false);
1515   INSN(ldp,   0b10, 0b101, 0, 1, false);
1516 
1517   // Load/store no-allocate pair (offset)
1518   INSN(stnpw, 0b00, 0b101, 0, 0, true);
1519   INSN(ldnpw, 0b00, 0b101, 0, 1, true);
1520   INSN(stnp,  0b10, 0b101, 0, 0, true);
1521   INSN(ldnp,  0b10, 0b101, 0, 1, true);
1522 
1523 #undef INSN
1524 
1525 #define INSN(NAME, size, p1, V, L, no_allocate)                         \
1526   void NAME(FloatRegister Rt1, FloatRegister Rt2, Address adr) {        \
1527     ld_st1(size, p1, V, L,                                              \
1528            as_Register(Rt1), as_Register(Rt2), adr, no_allocate);       \
1529    }
1530 
1531   INSN(stps, 0b00, 0b101, 1, 0, false);
1532   INSN(ldps, 0b00, 0b101, 1, 1, false);
1533   INSN(stpd, 0b01, 0b101, 1, 0, false);
1534   INSN(ldpd, 0b01, 0b101, 1, 1, false);
1535   INSN(stpq, 0b10, 0b101, 1, 0, false);
1536   INSN(ldpq, 0b10, 0b101, 1, 1, false);
1537 
1538 #undef INSN
1539 
1540   // Load/store register (all modes)
1541   void ld_st2(Register Rt, const Address &adr, int size, int op, int V = 0) {
1542     starti;
1543 
1544     f(V, 26); // general reg?
1545     zrf(Rt, 0);
1546 
1547     // Encoding for literal loads is done here (rather than pushed
1548     // down into Address::encode) because the encoding of this
1549     // instruction is too different from all of the other forms to
1550     // make it worth sharing.
1551     if (adr.getMode() == Address::literal) {
1552       assert(size == 0b10 || size == 0b11, "bad operand size in ldr");
1553       assert(op == 0b01, "literal form can only be used with loads");
1554       f(size & 0b01, 31, 30), f(0b011, 29, 27), f(0b00, 25, 24);
1555       int64_t offset = (adr.target() - pc()) >> 2;
1556       sf(offset, 23, 5);
1557       code_section()->relocate(pc(), adr.rspec());
1558       return;
1559     }
1560 
1561     f(size, 31, 30);
1562     f(op, 23, 22); // str
1563     adr.encode(&current_insn);
1564   }
1565 
1566 #define INSN(NAME, size, op)                            \
1567   void NAME(Register Rt, const Address &adr) {          \
1568     ld_st2(Rt, adr, size, op);                          \
1569   }                                                     \
1570 
1571   INSN(str,  0b11, 0b00);
1572   INSN(strw, 0b10, 0b00);
1573   INSN(strb, 0b00, 0b00);
1574   INSN(strh, 0b01, 0b00);
1575 
1576   INSN(ldr,  0b11, 0b01);
1577   INSN(ldrw, 0b10, 0b01);
1578   INSN(ldrb, 0b00, 0b01);
1579   INSN(ldrh, 0b01, 0b01);
1580 
1581   INSN(ldrsb,  0b00, 0b10);
1582   INSN(ldrsbw, 0b00, 0b11);
1583   INSN(ldrsh,  0b01, 0b10);
1584   INSN(ldrshw, 0b01, 0b11);
1585   INSN(ldrsw,  0b10, 0b10);
1586 
1587 #undef INSN
1588 
1589 #define INSN(NAME, size, op)                            \
1590   void NAME(FloatRegister Rt, const Address &adr) {     \
1591     ld_st2(as_Register(Rt), adr, size, op, 1);          \
1592   }
1593 
1594   INSN(strd, 0b11, 0b00);
1595   INSN(strs, 0b10, 0b00);
1596   INSN(ldrd, 0b11, 0b01);
1597   INSN(ldrs, 0b10, 0b01);
1598   INSN(strq, 0b00, 0b10);
1599   INSN(ldrq, 0x00, 0b11);
1600 
1601 #undef INSN
1602 
1603   // Load/store a register, but with a BasicType parameter. Loaded signed integer values are
1604   // extended to 64 bits.
1605   void load(Register Rt, const Address &adr, BasicType bt) {
1606     int op = (is_signed_subword_type(bt) || bt == T_INT) ? 0b10 : 0b01;
1607     ld_st2(Rt, adr, exact_log2(type2aelembytes(bt)), op);
1608   }
1609   void store(Register Rt, const Address &adr, BasicType bt) {
1610     ld_st2(Rt, adr, exact_log2(type2aelembytes(bt)), 0b00);
1611   }
1612 
1613 /* SIMD extensions
1614  *
1615  * We just use FloatRegister in the following. They are exactly the same
1616  * as SIMD registers.
1617  */
1618 public:
1619 
1620   enum SIMD_Arrangement {
1621     T8B, T16B, T4H, T8H, T2S, T4S, T1D, T2D, T1Q, INVALID_ARRANGEMENT
1622   };
1623 
1624   enum SIMD_RegVariant {
1625       B, H, S, D, Q, INVALID
1626   };
1627 
1628 private:
1629 
1630   static SIMD_Arrangement _esize2arrangement_table[9][2];
1631   static SIMD_RegVariant _esize2regvariant[9];
1632 
1633 public:
1634 
1635   static SIMD_Arrangement esize2arrangement(unsigned esize, bool isQ);
1636   static SIMD_RegVariant elemType_to_regVariant(BasicType bt);
1637   static SIMD_RegVariant elemBytes_to_regVariant(unsigned esize);
1638   // Return the corresponding bits for different SIMD_RegVariant value.
1639   static unsigned regVariant_to_elemBits(SIMD_RegVariant T);
1640 
1641   enum shift_kind { LSL, LSR, ASR, ROR };
1642 
1643   void op_shifted_reg(Instruction_aarch64 &current_insn, unsigned decode,
1644                       enum shift_kind kind, unsigned shift,
1645                       unsigned size, unsigned op) {
1646     f(size, 31);
1647     f(op, 30, 29);
1648     f(decode, 28, 24);
1649     f(shift, 15, 10);
1650     f(kind, 23, 22);
1651   }
1652 
1653   // Logical (shifted register)
1654 #define INSN(NAME, size, op, N)                                         \
1655   void NAME(Register Rd, Register Rn, Register Rm,                      \
1656             enum shift_kind kind = LSL, unsigned shift = 0) {           \
1657     starti;                                                             \
1658     guarantee(size == 1 || shift < 32, "incorrect shift");              \
1659     f(N, 21);                                                           \
1660     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                                \
1661     op_shifted_reg(current_insn, 0b01010, kind, shift, size, op);       \
1662   }
1663 
1664   INSN(andr,  1, 0b00, 0);
1665   INSN(orr,   1, 0b01, 0);
1666   INSN(eor,   1, 0b10, 0);
1667   INSN(ands,  1, 0b11, 0);
1668   INSN(andw,  0, 0b00, 0);
1669   INSN(orrw,  0, 0b01, 0);
1670   INSN(eorw,  0, 0b10, 0);
1671   INSN(andsw, 0, 0b11, 0);
1672 
1673 #undef INSN
1674 
1675 #define INSN(NAME, size, op, N)                                         \
1676   void NAME(Register Rd, Register Rn, Register Rm,                      \
1677             enum shift_kind kind = LSL, unsigned shift = 0) {           \
1678     starti;                                                             \
1679     f(N, 21);                                                           \
1680     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                                \
1681     op_shifted_reg(current_insn, 0b01010, kind, shift, size, op);       \
1682   }                                                                     \
1683                                                                         \
1684   /* These instructions have no immediate form. Provide an overload so  \
1685      that if anyone does try to use an immediate operand -- this has    \
1686      happened! -- we'll get a compile-time error. */                    \
1687   void NAME(Register Rd, Register Rn, unsigned imm,                     \
1688             enum shift_kind kind = LSL, unsigned shift = 0) {           \
1689     assert(false, " can't be used with immediate operand");             \
1690   }
1691 
1692   INSN(bic,   1, 0b00, 1);
1693   INSN(orn,   1, 0b01, 1);
1694   INSN(eon,   1, 0b10, 1);
1695   INSN(bics,  1, 0b11, 1);
1696   INSN(bicw,  0, 0b00, 1);
1697   INSN(ornw,  0, 0b01, 1);
1698   INSN(eonw,  0, 0b10, 1);
1699   INSN(bicsw, 0, 0b11, 1);
1700 
1701 #undef INSN
1702 
1703 #ifdef _WIN64
1704 // In MSVC, `mvn` is defined as a macro and it affects compilation
1705 #undef mvn
1706 #endif
1707 
1708   // Aliases for short forms of orn
1709 void mvn(Register Rd, Register Rm,
1710             enum shift_kind kind = LSL, unsigned shift = 0) {
1711   orn(Rd, zr, Rm, kind, shift);
1712 }
1713 
1714 void mvnw(Register Rd, Register Rm,
1715             enum shift_kind kind = LSL, unsigned shift = 0) {
1716   ornw(Rd, zr, Rm, kind, shift);
1717 }
1718 
1719   // Add/subtract (shifted register)
1720 #define INSN(NAME, size, op)                            \
1721   void NAME(Register Rd, Register Rn, Register Rm,      \
1722             enum shift_kind kind, unsigned shift = 0) { \
1723     starti;                                             \
1724     f(0, 21);                                           \
1725     assert_cond(kind != ROR);                           \
1726     guarantee(size == 1 || shift < 32, "incorrect shift");\
1727     zrf(Rd, 0), zrf(Rn, 5), zrf(Rm, 16);                \
1728     op_shifted_reg(current_insn, 0b01011, kind, shift, size, op);      \
1729   }
1730 
1731   INSN(add,  1, 0b000);
1732   INSN(sub,  1, 0b10);
1733   INSN(addw, 0, 0b000);
1734   INSN(subw, 0, 0b10);
1735 
1736   INSN(adds,  1, 0b001);
1737   INSN(subs,  1, 0b11);
1738   INSN(addsw, 0, 0b001);
1739   INSN(subsw, 0, 0b11);
1740 
1741 #undef INSN
1742 
1743   // Add/subtract (extended register)
1744 #define INSN(NAME, op)                                                  \
1745   void NAME(Register Rd, Register Rn, Register Rm,                      \
1746            ext::operation option, int amount = 0) {                     \
1747     starti;                                                             \
1748     zrf(Rm, 16), srf(Rn, 5), srf(Rd, 0);                                \
1749     add_sub_extended_reg(current_insn, op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1750   }
1751 
1752   void add_sub_extended_reg(Instruction_aarch64 &current_insn, unsigned op, unsigned decode,
1753     Register Rd, Register Rn, Register Rm,
1754     unsigned opt, ext::operation option, unsigned imm) {
1755     guarantee(imm <= 4, "shift amount must be <= 4");
1756     f(op, 31, 29), f(decode, 28, 24), f(opt, 23, 22), f(1, 21);
1757     f(option, 15, 13), f(imm, 12, 10);
1758   }
1759 
1760   INSN(addw, 0b000);
1761   INSN(subw, 0b010);
1762   INSN(add,  0b100);
1763   INSN(sub,  0b110);
1764 
1765 #undef INSN
1766 
1767 #define INSN(NAME, op)                                                  \
1768   void NAME(Register Rd, Register Rn, Register Rm,                      \
1769            ext::operation option, int amount = 0) {                     \
1770     starti;                                                             \
1771     zrf(Rm, 16), srf(Rn, 5), zrf(Rd, 0);                                \
1772     add_sub_extended_reg(current_insn, op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1773   }
1774 
1775   INSN(addsw, 0b001);
1776   INSN(subsw, 0b011);
1777   INSN(adds,  0b101);
1778   INSN(subs,  0b111);
1779 
1780 #undef INSN
1781 
1782   // Aliases for short forms of add and sub
1783 #define INSN(NAME)                                      \
1784   void NAME(Register Rd, Register Rn, Register Rm) {    \
1785     if (Rd == sp || Rn == sp)                           \
1786       NAME(Rd, Rn, Rm, ext::uxtx);                      \
1787     else                                                \
1788       NAME(Rd, Rn, Rm, LSL);                            \
1789   }
1790 
1791   INSN(addw);
1792   INSN(subw);
1793   INSN(add);
1794   INSN(sub);
1795 
1796   INSN(addsw);
1797   INSN(subsw);
1798   INSN(adds);
1799   INSN(subs);
1800 
1801 #undef INSN
1802 
1803   // Add/subtract (with carry)
1804   void add_sub_carry(unsigned op, Register Rd, Register Rn, Register Rm) {
1805     starti;
1806     f(op, 31, 29);
1807     f(0b11010000, 28, 21);
1808     f(0b000000, 15, 10);
1809     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);
1810   }
1811 
1812   #define INSN(NAME, op)                                \
1813     void NAME(Register Rd, Register Rn, Register Rm) {  \
1814       add_sub_carry(op, Rd, Rn, Rm);                    \
1815     }
1816 
1817   INSN(adcw,  0b000);
1818   INSN(adcsw, 0b001);
1819   INSN(sbcw,  0b010);
1820   INSN(sbcsw, 0b011);
1821   INSN(adc,   0b100);
1822   INSN(adcs,  0b101);
1823   INSN(sbc,   0b110);
1824   INSN(sbcs,  0b111);
1825 
1826 #undef INSN
1827 
1828   // Conditional compare (both kinds)
1829   void conditional_compare(unsigned op, int o1, int o2, int o3,
1830                            Register Rn, unsigned imm5, unsigned nzcv,
1831                            unsigned cond) {
1832     starti;
1833     f(op, 31, 29);
1834     f(0b11010010, 28, 21);
1835     f(cond, 15, 12);
1836     f(o1, 11);
1837     f(o2, 10);
1838     f(o3, 4);
1839     f(nzcv, 3, 0);
1840     f(imm5, 20, 16), zrf(Rn, 5);
1841   }
1842 
1843 #define INSN(NAME, op)                                                  \
1844   void NAME(Register Rn, Register Rm, int imm, Condition cond) {        \
1845     int regNumber = (Rm == zr ? 31 : Rm->encoding());                   \
1846     conditional_compare(op, 0, 0, 0, Rn, regNumber, imm, cond);         \
1847   }                                                                     \
1848                                                                         \
1849   void NAME(Register Rn, int imm5, int imm, Condition cond) {           \
1850     conditional_compare(op, 1, 0, 0, Rn, imm5, imm, cond);              \
1851   }
1852 
1853   INSN(ccmnw, 0b001);
1854   INSN(ccmpw, 0b011);
1855   INSN(ccmn, 0b101);
1856   INSN(ccmp, 0b111);
1857 
1858 #undef INSN
1859 
1860   // Conditional select
1861   void conditional_select(unsigned op, unsigned op2,
1862                           Register Rd, Register Rn, Register Rm,
1863                           unsigned cond) {
1864     starti;
1865     f(op, 31, 29);
1866     f(0b11010100, 28, 21);
1867     f(cond, 15, 12);
1868     f(op2, 11, 10);
1869     zrf(Rm, 16), zrf(Rn, 5), rf(Rd, 0);
1870   }
1871 
1872 #define INSN(NAME, op, op2)                                             \
1873   void NAME(Register Rd, Register Rn, Register Rm, Condition cond) {    \
1874     conditional_select(op, op2, Rd, Rn, Rm, cond);                      \
1875   }
1876 
1877   INSN(cselw,  0b000, 0b00);
1878   INSN(csincw, 0b000, 0b01);
1879   INSN(csinvw, 0b010, 0b00);
1880   INSN(csnegw, 0b010, 0b01);
1881   INSN(csel,   0b100, 0b00);
1882   INSN(csinc,  0b100, 0b01);
1883   INSN(csinv,  0b110, 0b00);
1884   INSN(csneg,  0b110, 0b01);
1885 
1886 #undef INSN
1887 
1888   // Data processing
1889   void data_processing(Instruction_aarch64 &current_insn, unsigned op29, unsigned opcode,
1890                        Register Rd, Register Rn) {
1891     f(op29, 31, 29), f(0b11010110, 28, 21);
1892     f(opcode, 15, 10);
1893     rf(Rn, 5), rf(Rd, 0);
1894   }
1895 
1896   // (1 source)
1897 #define INSN(NAME, op29, opcode2, opcode)                       \
1898   void NAME(Register Rd, Register Rn) {                         \
1899     starti;                                                     \
1900     f(opcode2, 20, 16);                                         \
1901     data_processing(current_insn, op29, opcode, Rd, Rn);        \
1902   }
1903 
1904   INSN(rbitw,  0b010, 0b00000, 0b00000);
1905   INSN(rev16w, 0b010, 0b00000, 0b00001);
1906   INSN(revw,   0b010, 0b00000, 0b00010);
1907   INSN(clzw,   0b010, 0b00000, 0b00100);
1908   INSN(clsw,   0b010, 0b00000, 0b00101);
1909 
1910   INSN(rbit,   0b110, 0b00000, 0b00000);
1911   INSN(rev16,  0b110, 0b00000, 0b00001);
1912   INSN(rev32,  0b110, 0b00000, 0b00010);
1913   INSN(rev,    0b110, 0b00000, 0b00011);
1914   INSN(clz,    0b110, 0b00000, 0b00100);
1915   INSN(cls,    0b110, 0b00000, 0b00101);
1916 
1917   // PAC instructions
1918   INSN(pacia,  0b110, 0b00001, 0b00000);
1919   INSN(pacib,  0b110, 0b00001, 0b00001);
1920   INSN(pacda,  0b110, 0b00001, 0b00010);
1921   INSN(pacdb,  0b110, 0b00001, 0b00011);
1922   INSN(autia,  0b110, 0b00001, 0b00100);
1923   INSN(autib,  0b110, 0b00001, 0b00101);
1924   INSN(autda,  0b110, 0b00001, 0b00110);
1925   INSN(autdb,  0b110, 0b00001, 0b00111);
1926 
1927 #undef INSN
1928 
1929 #define INSN(NAME, op29, opcode2, opcode)                       \
1930   void NAME(Register Rd) {                                      \
1931     starti;                                                     \
1932     f(opcode2, 20, 16);                                         \
1933     data_processing(current_insn, op29, opcode, Rd, dummy_reg); \
1934   }
1935 
1936   // PAC instructions (with zero modifier)
1937   INSN(paciza,  0b110, 0b00001, 0b01000);
1938   INSN(pacizb,  0b110, 0b00001, 0b01001);
1939   INSN(pacdza,  0b110, 0b00001, 0b01010);
1940   INSN(pacdzb,  0b110, 0b00001, 0b01011);
1941   INSN(autiza,  0b110, 0b00001, 0b01100);
1942   INSN(autizb,  0b110, 0b00001, 0b01101);
1943   INSN(autdza,  0b110, 0b00001, 0b01110);
1944   INSN(autdzb,  0b110, 0b00001, 0b01111);
1945   INSN(xpaci,   0b110, 0b00001, 0b10000);
1946   INSN(xpacd,   0b110, 0b00001, 0b10001);
1947 
1948 #undef INSN
1949 
1950   // Data-processing (2 source)
1951 #define INSN(NAME, op29, opcode)                                \
1952   void NAME(Register Rd, Register Rn, Register Rm) {            \
1953     starti;                                                     \
1954     rf(Rm, 16);                                                 \
1955     data_processing(current_insn, op29, opcode, Rd, Rn);        \
1956   }
1957 
1958   INSN(udivw, 0b000, 0b000010);
1959   INSN(sdivw, 0b000, 0b000011);
1960   INSN(lslvw, 0b000, 0b001000);
1961   INSN(lsrvw, 0b000, 0b001001);
1962   INSN(asrvw, 0b000, 0b001010);
1963   INSN(rorvw, 0b000, 0b001011);
1964 
1965   INSN(udiv, 0b100, 0b000010);
1966   INSN(sdiv, 0b100, 0b000011);
1967   INSN(lslv, 0b100, 0b001000);
1968   INSN(lsrv, 0b100, 0b001001);
1969   INSN(asrv, 0b100, 0b001010);
1970   INSN(rorv, 0b100, 0b001011);
1971 
1972 #undef INSN
1973 
1974   // Data-processing (3 source)
1975   void data_processing(unsigned op54, unsigned op31, unsigned o0,
1976                        Register Rd, Register Rn, Register Rm,
1977                        Register Ra) {
1978     starti;
1979     f(op54, 31, 29), f(0b11011, 28, 24);
1980     f(op31, 23, 21), f(o0, 15);
1981     zrf(Rm, 16), zrf(Ra, 10), zrf(Rn, 5), zrf(Rd, 0);
1982   }
1983 
1984 #define INSN(NAME, op54, op31, o0)                                      \
1985   void NAME(Register Rd, Register Rn, Register Rm, Register Ra) {       \
1986     data_processing(op54, op31, o0, Rd, Rn, Rm, Ra);                    \
1987   }
1988 
1989   INSN(maddw,  0b000, 0b000, 0);
1990   INSN(msubw,  0b000, 0b000, 1);
1991   INSN(madd,   0b100, 0b000, 0);
1992   INSN(msub,   0b100, 0b000, 1);
1993   INSN(smaddl, 0b100, 0b001, 0);
1994   INSN(smsubl, 0b100, 0b001, 1);
1995   INSN(umaddl, 0b100, 0b101, 0);
1996   INSN(umsubl, 0b100, 0b101, 1);
1997 
1998 #undef INSN
1999 
2000 #define INSN(NAME, op54, op31, o0)                                      \
2001   void NAME(Register Rd, Register Rn, Register Rm) {                    \
2002     data_processing(op54, op31, o0, Rd, Rn, Rm, as_Register(31));       \
2003   }
2004 
2005   INSN(smulh, 0b100, 0b010, 0);
2006   INSN(umulh, 0b100, 0b110, 0);
2007 
2008 #undef INSN
2009 
2010   // Floating-point data-processing (1 source)
2011   void data_processing(unsigned type, unsigned opcode,
2012                        FloatRegister Vd, FloatRegister Vn) {
2013     starti;
2014     f(0b000, 31, 29);
2015     f(0b11110, 28, 24);
2016     f(type, 23, 22), f(1, 21), f(opcode, 20, 15), f(0b10000, 14, 10);
2017     rf(Vn, 5), rf(Vd, 0);
2018   }
2019 
2020 #define INSN(NAME, type, opcode)                        \
2021   void NAME(FloatRegister Vd, FloatRegister Vn) {       \
2022     data_processing(type, opcode, Vd, Vn);              \
2023   }
2024 
2025   INSN(fmovs,  0b00, 0b000000);
2026   INSN(fabss,  0b00, 0b000001);
2027   INSN(fnegs,  0b00, 0b000010);
2028   INSN(fsqrts, 0b00, 0b000011);
2029   INSN(fcvts,  0b00, 0b000101);   // Single-precision to double-precision
2030   INSN(fcvths, 0b11, 0b000100);   // Half-precision to single-precision
2031   INSN(fcvtsh, 0b00, 0b000111);   // Single-precision to half-precision
2032 
2033   INSN(fmovd,  0b01, 0b000000);
2034   INSN(fabsd,  0b01, 0b000001);
2035   INSN(fnegd,  0b01, 0b000010);
2036   INSN(fsqrtd, 0b01, 0b000011);
2037   INSN(fcvtd,  0b01, 0b000100);   // Double-precision to single-precision
2038 
2039   INSN(fsqrth, 0b11, 0b000011);   // Half-precision sqrt
2040 
2041 private:
2042   void _fcvt_narrow_extend(FloatRegister Vd, SIMD_Arrangement Ta,
2043                            FloatRegister Vn, SIMD_Arrangement Tb, bool do_extend) {
2044     assert((do_extend && (Tb >> 1) + 1 == (Ta >> 1))
2045            || (!do_extend && (Ta >> 1) + 1 == (Tb >> 1)), "Incompatible arrangement");
2046     starti;
2047     int op30 = (do_extend ? Tb : Ta) & 1;
2048     int op22 = ((do_extend ? Ta : Tb) >> 1) & 1;
2049     f(0, 31), f(op30, 30), f(0b0011100, 29, 23), f(op22, 22);
2050     f(0b100001011, 21, 13), f(do_extend ? 1 : 0, 12), f(0b10, 11, 10);
2051     rf(Vn, 5), rf(Vd, 0);
2052   }
2053 
2054 public:
2055   void fcvtl(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb) {
2056     assert(Tb == T4H || Tb == T8H|| Tb == T2S || Tb == T4S, "invalid arrangement");
2057     _fcvt_narrow_extend(Vd, Ta, Vn, Tb, true);
2058   }
2059 
2060   void fcvtn(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb) {
2061     assert(Ta == T4H || Ta == T8H|| Ta == T2S || Ta == T4S, "invalid arrangement");
2062     _fcvt_narrow_extend(Vd, Ta, Vn, Tb, false);
2063   }
2064 
2065 #undef INSN
2066 
2067   // Floating-point data-processing (2 source)
2068   void data_processing(unsigned op31, unsigned type, unsigned opcode, unsigned op21,
2069                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {
2070     starti;
2071     f(op31, 31, 29);
2072     f(0b11110, 28, 24);
2073     f(type, 23, 22), f(op21, 21), f(opcode, 15, 10);
2074     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
2075   }
2076 
2077 #define INSN(NAME, op31, type, opcode, op21)                            \
2078   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {     \
2079     data_processing(op31, type, opcode, op21, Vd, Vn, Vm);              \
2080   }
2081 
2082   INSN(fmuls,  0b000, 0b00, 0b000010, 0b1);
2083   INSN(fdivs,  0b000, 0b00, 0b000110, 0b1);
2084   INSN(fadds,  0b000, 0b00, 0b001010, 0b1);
2085   INSN(fsubs,  0b000, 0b00, 0b001110, 0b1);
2086   INSN(fmaxs,  0b000, 0b00, 0b010010, 0b1);
2087   INSN(fmins,  0b000, 0b00, 0b010110, 0b1);
2088   INSN(fnmuls, 0b000, 0b00, 0b100010, 0b1);
2089 
2090   INSN(fmuld,  0b000, 0b01, 0b000010, 0b1);
2091   INSN(fdivd,  0b000, 0b01, 0b000110, 0b1);
2092   INSN(faddd,  0b000, 0b01, 0b001010, 0b1);
2093   INSN(fsubd,  0b000, 0b01, 0b001110, 0b1);
2094   INSN(fmaxd,  0b000, 0b01, 0b010010, 0b1);
2095   INSN(fmind,  0b000, 0b01, 0b010110, 0b1);
2096   INSN(fnmuld, 0b000, 0b01, 0b100010, 0b1);
2097 
2098   // Half-precision floating-point instructions
2099   INSN(fmulh,  0b000, 0b11, 0b000010, 0b1);
2100   INSN(fdivh,  0b000, 0b11, 0b000110, 0b1);
2101   INSN(faddh,  0b000, 0b11, 0b001010, 0b1);
2102   INSN(fsubh,  0b000, 0b11, 0b001110, 0b1);
2103   INSN(fmaxh,  0b000, 0b11, 0b010010, 0b1);
2104   INSN(fminh,  0b000, 0b11, 0b010110, 0b1);
2105   INSN(fnmulh, 0b000, 0b11, 0b100010, 0b1);
2106 #undef INSN
2107 
2108 // Advanced SIMD scalar three same
2109 #define INSN(NAME, U, size, opcode)                                                     \
2110   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {                     \
2111     starti;                                                                             \
2112     f(0b01, 31, 30), f(U, 29), f(0b11110, 28, 24), f(size, 23, 22), f(1, 21);           \
2113     rf(Vm, 16), f(opcode, 15, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0);                      \
2114   }
2115 
2116   INSN(fabds, 0b1, 0b10, 0b11010); // Floating-point Absolute Difference (single-precision)
2117   INSN(fabdd, 0b1, 0b11, 0b11010); // Floating-point Absolute Difference (double-precision)
2118 
2119 #undef INSN
2120 
2121 // Advanced SIMD scalar three same FP16
2122 #define INSN(NAME, U, a, opcode)                                                       \
2123   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {                    \
2124     starti;                                                                            \
2125     f(0b01, 31, 30), f(U, 29), f(0b11110, 28, 24), f(a, 23), f(0b10, 22, 21);          \
2126     rf(Vm, 16), f(0b00, 15, 14), f(opcode, 13, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0);    \
2127   }
2128 
2129   INSN(fabdh, 0b1, 0b1, 0b010); // Floating-point Absolute Difference (half-precision float)
2130 
2131 #undef INSN
2132 
2133    // Floating-point data-processing (3 source)
2134   void data_processing(unsigned op31, unsigned type, unsigned o1, unsigned o0,
2135                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,
2136                        FloatRegister Va) {
2137     starti;
2138     f(op31, 31, 29);
2139     f(0b11111, 28, 24);
2140     f(type, 23, 22), f(o1, 21), f(o0, 15);
2141     rf(Vm, 16), rf(Va, 10), rf(Vn, 5), rf(Vd, 0);
2142   }
2143 
2144 #define INSN(NAME, op31, type, o1, o0)                                  \
2145   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,       \
2146             FloatRegister Va) {                                         \
2147     data_processing(op31, type, o1, o0, Vd, Vn, Vm, Va);                \
2148   }
2149 
2150   INSN(fmadds,  0b000, 0b00, 0, 0);
2151   INSN(fmsubs,  0b000, 0b00, 0, 1);
2152   INSN(fnmadds, 0b000, 0b00, 1, 0);
2153   INSN(fnmsubs, 0b000, 0b00, 1, 1);
2154 
2155   INSN(fmaddd,  0b000, 0b01, 0, 0);
2156   INSN(fmsubd,  0b000, 0b01, 0, 1);
2157   INSN(fnmaddd, 0b000, 0b01, 1, 0);
2158   INSN(fnmsub,  0b000, 0b01, 1, 1);
2159 
2160   INSN(fmaddh,  0b000, 0b11, 0, 0);  // half-precision fused multiply-add (scalar)
2161 #undef INSN
2162 
2163    // Floating-point conditional select
2164   void fp_conditional_select(unsigned op31, unsigned type,
2165                              unsigned op1, unsigned op2,
2166                              Condition cond, FloatRegister Vd,
2167                              FloatRegister Vn, FloatRegister Vm) {
2168     starti;
2169     f(op31, 31, 29);
2170     f(0b11110, 28, 24);
2171     f(type, 23, 22);
2172     f(op1, 21, 21);
2173     f(op2, 11, 10);
2174     f(cond, 15, 12);
2175     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
2176   }
2177 
2178 #define INSN(NAME, op31, type, op1, op2)                                \
2179   void NAME(FloatRegister Vd, FloatRegister Vn,                         \
2180             FloatRegister Vm, Condition cond) {                         \
2181     fp_conditional_select(op31, type, op1, op2, cond, Vd, Vn, Vm);      \
2182   }
2183 
2184   INSN(fcsels, 0b000, 0b00, 0b1, 0b11);
2185   INSN(fcseld, 0b000, 0b01, 0b1, 0b11);
2186 
2187 #undef INSN
2188 
2189   // Conversion between floating-point and integer
2190   void float_int_convert(unsigned sflag, unsigned ftype,
2191                          unsigned rmode, unsigned opcode,
2192                          Register Rd, Register Rn) {
2193     starti;
2194     f(sflag, 31);
2195     f(0b00, 30, 29);
2196     f(0b11110, 28, 24);
2197     f(ftype, 23, 22), f(1, 21), f(rmode, 20, 19);
2198     f(opcode, 18, 16), f(0b000000, 15, 10);
2199     zrf(Rn, 5), zrf(Rd, 0);
2200   }
2201 
2202 #define INSN(NAME, sflag, ftype, rmode, opcode)                          \
2203   void NAME(Register Rd, FloatRegister Vn) {                             \
2204     float_int_convert(sflag, ftype, rmode, opcode, Rd, as_Register(Vn)); \
2205   }
2206 
2207   INSN(fcvtzsw, 0b0, 0b00, 0b11, 0b000);
2208   INSN(fcvtzs,  0b1, 0b00, 0b11, 0b000);
2209   INSN(fcvtzdw, 0b0, 0b01, 0b11, 0b000);
2210   INSN(fcvtzd,  0b1, 0b01, 0b11, 0b000);
2211 
2212   // RoundToNearestTiesAway
2213   INSN(fcvtassw, 0b0, 0b00, 0b00, 0b100);  // float -> signed word
2214   INSN(fcvtasd,  0b1, 0b01, 0b00, 0b100);  // double -> signed xword
2215 
2216   // RoundTowardsNegative
2217   INSN(fcvtmssw, 0b0, 0b00, 0b10, 0b000);  // float -> signed word
2218   INSN(fcvtmsd,  0b1, 0b01, 0b10, 0b000);  // double -> signed xword
2219 
2220   INSN(fmovs, 0b0, 0b00, 0b00, 0b110);
2221   INSN(fmovd, 0b1, 0b01, 0b00, 0b110);
2222 
2223   INSN(fmovhid, 0b1, 0b10, 0b01, 0b110);
2224 
2225 #undef INSN
2226 
2227 #define INSN(NAME, sflag, type, rmode, opcode)                          \
2228   void NAME(FloatRegister Vd, Register Rn) {                            \
2229     float_int_convert(sflag, type, rmode, opcode, as_Register(Vd), Rn); \
2230   }
2231 
2232   INSN(fmovs, 0b0, 0b00, 0b00, 0b111);
2233   INSN(fmovd, 0b1, 0b01, 0b00, 0b111);
2234 
2235   INSN(scvtfws, 0b0, 0b00, 0b00, 0b010);
2236   INSN(scvtfs,  0b1, 0b00, 0b00, 0b010);
2237   INSN(scvtfwd, 0b0, 0b01, 0b00, 0b010);
2238   INSN(scvtfd,  0b1, 0b01, 0b00, 0b010);
2239 
2240   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b111);
2241 
2242 #undef INSN
2243 
2244 private:
2245   void _xcvtf_vector_integer(bool is_unsigned, SIMD_Arrangement T,
2246                              FloatRegister Rd, FloatRegister Rn) {
2247     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");
2248     starti;
2249     f(0, 31), f(T & 1, 30), f(is_unsigned ? 1 : 0, 29);
2250     f(0b011100, 28, 23), f((T >> 1) & 1, 22), f(0b100001110110, 21, 10);
2251     rf(Rn, 5), rf(Rd, 0);
2252   }
2253 
2254 public:
2255 
2256   void scvtfv(SIMD_Arrangement T, FloatRegister Rd, FloatRegister Rn) {
2257     _xcvtf_vector_integer(/* is_unsigned */ false, T, Rd, Rn);
2258   }
2259 
2260   // Floating-point compare
2261   void float_compare(unsigned op31, unsigned type,
2262                      unsigned op, unsigned op2,
2263                      FloatRegister Vn, FloatRegister Vm = as_FloatRegister(0)) {
2264     starti;
2265     f(op31, 31, 29);
2266     f(0b11110, 28, 24);
2267     f(type, 23, 22), f(1, 21);
2268     f(op, 15, 14), f(0b1000, 13, 10), f(op2, 4, 0);
2269     rf(Vn, 5), rf(Vm, 16);
2270   }
2271 
2272 
2273 #define INSN(NAME, op31, type, op, op2)                 \
2274   void NAME(FloatRegister Vn, FloatRegister Vm) {       \
2275     float_compare(op31, type, op, op2, Vn, Vm);         \
2276   }
2277 
2278 #define INSN1(NAME, op31, type, op, op2)        \
2279   void NAME(FloatRegister Vn, double d) {       \
2280     assert_cond(d == 0.0);                      \
2281     float_compare(op31, type, op, op2, Vn);     \
2282   }
2283 
2284   INSN(fcmps, 0b000, 0b00, 0b00, 0b00000);
2285   INSN1(fcmps, 0b000, 0b00, 0b00, 0b01000);
2286   // INSN(fcmpes, 0b000, 0b00, 0b00, 0b10000);
2287   // INSN1(fcmpes, 0b000, 0b00, 0b00, 0b11000);
2288 
2289   INSN(fcmpd, 0b000,   0b01, 0b00, 0b00000);
2290   INSN1(fcmpd, 0b000,  0b01, 0b00, 0b01000);
2291   // INSN(fcmped, 0b000,  0b01, 0b00, 0b10000);
2292   // INSN1(fcmped, 0b000, 0b01, 0b00, 0b11000);
2293 
2294 #undef INSN
2295 #undef INSN1
2296 
2297 // Floating-point compare. 3-registers versions (scalar).
2298 #define INSN(NAME, sz, e)                                             \
2299   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {   \
2300     starti;                                                           \
2301     f(0b01111110, 31, 24), f(e, 23), f(sz, 22), f(1, 21), rf(Vm, 16); \
2302     f(0b111011, 15, 10), rf(Vn, 5), rf(Vd, 0);                        \
2303   }                                                                   \
2304 
2305   INSN(facged, 1, 0); // facge-double
2306   INSN(facges, 0, 0); // facge-single
2307   INSN(facgtd, 1, 1); // facgt-double
2308   INSN(facgts, 0, 1); // facgt-single
2309 
2310 #undef INSN
2311 
2312   // Floating-point Move (immediate)
2313 private:
2314   unsigned pack(double value);
2315 
2316   void fmov_imm(FloatRegister Vn, double value, unsigned size) {
2317     starti;
2318     f(0b00011110, 31, 24), f(size, 23, 22), f(1, 21);
2319     f(pack(value), 20, 13), f(0b10000000, 12, 5);
2320     rf(Vn, 0);
2321   }
2322 
2323 public:
2324 
2325   void fmovs(FloatRegister Vn, double value) {
2326     if (value)
2327       fmov_imm(Vn, value, 0b00);
2328     else
2329       movi(Vn, T2S, 0);
2330   }
2331   void fmovd(FloatRegister Vn, double value) {
2332     if (value)
2333       fmov_imm(Vn, value, 0b01);
2334     else
2335       movi(Vn, T1D, 0);
2336   }
2337 
2338   // Floating-point data-processing (1 source)
2339 
2340    // Floating-point rounding
2341    // type: half-precision = 11
2342    //       single         = 00
2343    //       double         = 01
2344    // rmode: A = Away     = 100
2345    //        I = current  = 111
2346    //        M = MinusInf = 010
2347    //        N = eveN     = 000
2348    //        P = PlusInf  = 001
2349    //        X = eXact    = 110
2350    //        Z = Zero     = 011
2351   void float_round(unsigned type, unsigned rmode, FloatRegister Rd, FloatRegister Rn) {
2352     starti;
2353     f(0b00011110, 31, 24);
2354     f(type, 23, 22);
2355     f(0b1001, 21, 18);
2356     f(rmode, 17, 15);
2357     f(0b10000, 14, 10);
2358     rf(Rn, 5), rf(Rd, 0);
2359   }
2360 #define INSN(NAME, type, rmode)                   \
2361   void NAME(FloatRegister Vd, FloatRegister Vn) { \
2362     float_round(type, rmode, Vd, Vn);             \
2363   }
2364 
2365 public:
2366   INSN(frintah, 0b11, 0b100);
2367   INSN(frintih, 0b11, 0b111);
2368   INSN(frintmh, 0b11, 0b010);
2369   INSN(frintnh, 0b11, 0b000);
2370   INSN(frintph, 0b11, 0b001);
2371   INSN(frintxh, 0b11, 0b110);
2372   INSN(frintzh, 0b11, 0b011);
2373 
2374   INSN(frintas, 0b00, 0b100);
2375   INSN(frintis, 0b00, 0b111);
2376   INSN(frintms, 0b00, 0b010);
2377   INSN(frintns, 0b00, 0b000);
2378   INSN(frintps, 0b00, 0b001);
2379   INSN(frintxs, 0b00, 0b110);
2380   INSN(frintzs, 0b00, 0b011);
2381 
2382   INSN(frintad, 0b01, 0b100);
2383   INSN(frintid, 0b01, 0b111);
2384   INSN(frintmd, 0b01, 0b010);
2385   INSN(frintnd, 0b01, 0b000);
2386   INSN(frintpd, 0b01, 0b001);
2387   INSN(frintxd, 0b01, 0b110);
2388   INSN(frintzd, 0b01, 0b011);
2389 #undef INSN
2390 
2391 private:
2392   static short SIMD_Size_in_bytes[];
2393 
2394 public:
2395 #define INSN(NAME, op)                                                  \
2396   void NAME(FloatRegister Rt, SIMD_RegVariant T, const Address &adr) {  \
2397     ld_st2(as_Register(Rt), adr, (int)T & 3, op + ((T==Q) ? 0b10:0b00), 1); \
2398   }
2399 
2400   INSN(ldr, 1);
2401   INSN(str, 0);
2402 
2403 #undef INSN
2404 
2405  private:
2406 
2407   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn, int op1, int op2) {
2408     starti;
2409     f(0,31), f((int)T & 1, 30);
2410     f(op1, 29, 21), f(0, 20, 16), f(op2, 15, 12);
2411     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2412   }
2413   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
2414              int imm, int op1, int op2, int regs) {
2415 
2416     bool replicate = op2 >> 2 == 3;
2417     // post-index value (imm) is formed differently for replicate/non-replicate ld* instructions
2418     int expectedImmediate = replicate ? regs * (1 << (T >> 1)) : SIMD_Size_in_bytes[T] * regs;
2419     guarantee(T < T1Q , "incorrect arrangement");
2420     guarantee(imm == expectedImmediate, "bad offset");
2421     starti;
2422     f(0,31), f((int)T & 1, 30);
2423     f(op1 | 0b100, 29, 21), f(0b11111, 20, 16), f(op2, 15, 12);
2424     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2425   }
2426   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
2427              Register Xm, int op1, int op2) {
2428     starti;
2429     f(0,31), f((int)T & 1, 30);
2430     f(op1 | 0b100, 29, 21), rf(Xm, 16), f(op2, 15, 12);
2431     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2432   }
2433 
2434   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Address a, int op1, int op2, int regs) {
2435     switch (a.getMode()) {
2436     case Address::base_plus_offset:
2437       guarantee(a.offset() == 0, "no offset allowed here");
2438       ld_st(Vt, T, a.base(), op1, op2);
2439       break;
2440     case Address::post:
2441       ld_st(Vt, T, a.base(), checked_cast<int>(a.offset()), op1, op2, regs);
2442       break;
2443     case Address::post_reg:
2444       ld_st(Vt, T, a.base(), a.index(), op1, op2);
2445       break;
2446     default:
2447       ShouldNotReachHere();
2448     }
2449   }
2450 
2451   // Single-structure load/store method (all addressing variants)
2452   void ld_st(FloatRegister Vt, SIMD_RegVariant T, int index, Address a,
2453              int op1, int op2, int regs) {
2454     int expectedImmediate = (regVariant_to_elemBits(T) >> 3) * regs;
2455     int sVal = (T < D) ? (index >> (2 - T)) & 0x01 : 0;
2456     int opcode = (T < D) ? (T << 2) : ((T & 0x02) << 2);
2457     int size = (T < D) ? (index & (0x3 << T)) : 1;  // only care about low 2b
2458     Register Xn = a.base();
2459     int Rm;
2460 
2461     switch (a.getMode()) {
2462     case Address::base_plus_offset:
2463       guarantee(a.offset() == 0, "no offset allowed here");
2464       Rm = 0;
2465       break;
2466     case Address::post:
2467       guarantee(a.offset() == expectedImmediate, "bad offset");
2468       op1 |= 0b100;
2469       Rm = 0b11111;
2470       break;
2471     case Address::post_reg:
2472       op1 |= 0b100;
2473       Rm = a.index()->encoding();
2474       break;
2475     default:
2476       ShouldNotReachHere();
2477       Rm = 0;  // unreachable
2478     }
2479 
2480     starti;
2481     f(0,31), f((index >> (3 - T)), 30);
2482     f(op1, 29, 21), f(Rm, 20, 16), f(op2 | opcode | sVal, 15, 12);
2483     f(size, 11, 10), srf(Xn, 5), rf(Vt, 0);
2484   }
2485 
2486  public:
2487 
2488 #define INSN1(NAME, op1, op2)                                           \
2489   void NAME(FloatRegister Vt, SIMD_Arrangement T, const Address &a) {   \
2490     ld_st(Vt, T, a, op1, op2, 1);                                       \
2491  }
2492 
2493 #define INSN2(NAME, op1, op2)                                           \
2494   void NAME(FloatRegister Vt, FloatRegister Vt2, SIMD_Arrangement T, const Address &a) { \
2495     assert(Vt->successor() == Vt2, "Registers must be ordered");        \
2496     ld_st(Vt, T, a, op1, op2, 2);                                       \
2497   }
2498 
2499 #define INSN3(NAME, op1, op2)                                           \
2500   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2501             SIMD_Arrangement T, const Address &a) {                     \
2502     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3,           \
2503            "Registers must be ordered");                                \
2504     ld_st(Vt, T, a, op1, op2, 3);                                       \
2505   }
2506 
2507 #define INSN4(NAME, op1, op2)                                           \
2508   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2509             FloatRegister Vt4, SIMD_Arrangement T, const Address &a) {  \
2510     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 &&         \
2511            Vt3->successor() == Vt4, "Registers must be ordered");       \
2512     ld_st(Vt, T, a, op1, op2, 4);                                       \
2513   }
2514 
2515   INSN1(ld1,  0b001100010, 0b0111);
2516   INSN2(ld1,  0b001100010, 0b1010);
2517   INSN3(ld1,  0b001100010, 0b0110);
2518   INSN4(ld1,  0b001100010, 0b0010);
2519 
2520   INSN2(ld2,  0b001100010, 0b1000);
2521   INSN3(ld3,  0b001100010, 0b0100);
2522   INSN4(ld4,  0b001100010, 0b0000);
2523 
2524   INSN1(st1,  0b001100000, 0b0111);
2525   INSN2(st1,  0b001100000, 0b1010);
2526   INSN3(st1,  0b001100000, 0b0110);
2527   INSN4(st1,  0b001100000, 0b0010);
2528 
2529   INSN2(st2,  0b001100000, 0b1000);
2530   INSN3(st3,  0b001100000, 0b0100);
2531   INSN4(st4,  0b001100000, 0b0000);
2532 
2533   INSN1(ld1r, 0b001101010, 0b1100);
2534   INSN2(ld2r, 0b001101011, 0b1100);
2535   INSN3(ld3r, 0b001101010, 0b1110);
2536   INSN4(ld4r, 0b001101011, 0b1110);
2537 
2538 #undef INSN1
2539 #undef INSN2
2540 #undef INSN3
2541 #undef INSN4
2542 
2543 // Handle common single-structure ld/st parameter sanity checks
2544 // for all variations (1 to 4) of SIMD reigster inputs.  This
2545 // method will call the routine that generates the opcode.
2546 template<typename R, typename... Rx>
2547   void ldst_sstr(SIMD_RegVariant T, int index, const Address &a,
2548             int op1, int op2, R firstReg, Rx... otherRegs) {
2549     const FloatRegister vtSet[] = { firstReg, otherRegs... };
2550     const int regCount = sizeof...(otherRegs) + 1;
2551     assert(index >= 0 && (T <= D) && ((T == B && index <= 15) ||
2552               (T == H && index <= 7) || (T == S && index <= 3) ||
2553               (T == D && index <= 1)), "invalid index");
2554     assert(regCount >= 1 && regCount <= 4, "illegal register count");
2555 
2556     // Check to make sure when multiple SIMD registers are used
2557     // that they are in successive order.
2558     for (int i = 0; i < regCount - 1; i++) {
2559       assert(vtSet[i]->successor() == vtSet[i + 1],
2560              "Registers must be ordered");
2561     }
2562 
2563     ld_st(firstReg, T, index, a, op1, op2, regCount);
2564   }
2565 
2566 // Define a set of INSN1/2/3/4 macros to handle single-structure
2567 // load/store instructions.
2568 #define INSN1(NAME, op1, op2)                                           \
2569   void NAME(FloatRegister Vt, SIMD_RegVariant T, int index,             \
2570             const Address &a) {                                         \
2571     ldst_sstr(T, index, a, op1, op2, Vt);                               \
2572  }
2573 
2574 #define INSN2(NAME, op1, op2)                                           \
2575   void NAME(FloatRegister Vt, FloatRegister Vt2, SIMD_RegVariant T,     \
2576             int index, const Address &a) {                              \
2577     ldst_sstr(T, index, a, op1, op2, Vt, Vt2);                          \
2578   }
2579 
2580 #define INSN3(NAME, op1, op2)                                           \
2581   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2582             SIMD_RegVariant T, int index, const Address &a) {           \
2583     ldst_sstr(T, index, a, op1, op2, Vt, Vt2, Vt3);                     \
2584   }
2585 
2586 #define INSN4(NAME, op1, op2)                                           \
2587   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2588             FloatRegister Vt4, SIMD_RegVariant T, int index,            \
2589             const Address &a) {                                         \
2590     ldst_sstr(T, index, a, op1, op2, Vt, Vt2, Vt3, Vt4);                \
2591   }
2592 
2593   INSN1(ld1, 0b001101010, 0b0000);
2594   INSN2(ld2, 0b001101011, 0b0000);
2595   INSN3(ld3, 0b001101010, 0b0010);
2596   INSN4(ld4, 0b001101011, 0b0010);
2597 
2598   INSN1(st1, 0b001101000, 0b0000);
2599   INSN2(st2, 0b001101001, 0b0000);
2600   INSN3(st3, 0b001101000, 0b0010);
2601   INSN4(st4, 0b001101001, 0b0010);
2602 
2603 #undef INSN1
2604 #undef INSN2
2605 #undef INSN3
2606 #undef INSN4
2607 
2608 #define INSN(NAME, opc)                                                                 \
2609   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2610     starti;                                                                             \
2611     assert(T == T8B || T == T16B, "must be T8B or T16B");                               \
2612     f(0, 31), f((int)T & 1, 30), f(opc, 29, 21);                                        \
2613     rf(Vm, 16), f(0b000111, 15, 10), rf(Vn, 5), rf(Vd, 0);                              \
2614   }
2615 
2616   INSN(eor,  0b101110001);
2617   INSN(orr,  0b001110101);
2618   INSN(andr, 0b001110001);
2619   INSN(bic,  0b001110011);
2620   INSN(bif,  0b101110111);
2621   INSN(bit,  0b101110101);
2622   INSN(bsl,  0b101110011);
2623   INSN(orn,  0b001110111);
2624 
2625 #undef INSN
2626 
2627   // Advanced SIMD three different
2628 #define INSN(NAME, opc, opc2, acceptT2D)                                                \
2629   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2630     guarantee(T != T1Q && T != T1D, "incorrect arrangement");                           \
2631     if (!acceptT2D) guarantee(T != T2D, "incorrect arrangement");                       \
2632     if (opc2 ==  0b101101) guarantee(T != T8B && T != T16B, "incorrect arrangement");   \
2633     starti;                                                                             \
2634     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2635     f((int)T >> 1, 23, 22), f(1, 21), rf(Vm, 16), f(opc2, 15, 10);                      \
2636     rf(Vn, 5), rf(Vd, 0);                                                               \
2637   }
2638 
2639   INSN(addv,   0, 0b100001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2640   INSN(subv,   1, 0b100001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2641   INSN(sqaddv, 0, 0b000011, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2642   INSN(sqsubv, 0, 0b001011, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2643   INSN(uqaddv, 1, 0b000011, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2644   INSN(uqsubv, 1, 0b001011, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2645   INSN(mulv,   0, 0b100111, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2646   INSN(mlav,   0, 0b100101, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2647   INSN(mlsv,   1, 0b100101, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2648   INSN(sshl,   0, 0b010001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2649   INSN(ushl,   1, 0b010001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2650   INSN(addpv,  0, 0b101111, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2651   INSN(smullv, 0, 0b110000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2652   INSN(umullv, 1, 0b110000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2653   INSN(smlalv, 0, 0b100000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2654   INSN(umlalv, 1, 0b100000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2655   INSN(maxv,   0, 0b011001, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2656   INSN(minv,   0, 0b011011, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2657   INSN(umaxv,  1, 0b011001, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2658   INSN(uminv,  1, 0b011011, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2659   INSN(smaxp,  0, 0b101001, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2660   INSN(sminp,  0, 0b101011, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2661   INSN(sqdmulh,0, 0b101101, false); // accepted arrangements: T4H, T8H, T2S, T4S
2662   INSN(shsubv, 0, 0b001001, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2663 
2664 #undef INSN
2665 
2666   // Advanced SIMD across lanes
2667 #define INSN(NAME, opc, opc2, accepted) \
2668   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2669     guarantee(T != T1Q && T != T1D, "incorrect arrangement");                           \
2670     if (accepted < 3) guarantee(T != T2D, "incorrect arrangement");                     \
2671     if (accepted < 2) guarantee(T != T2S, "incorrect arrangement");                     \
2672     if (accepted < 1) guarantee(T == T8B || T == T16B, "incorrect arrangement");        \
2673     starti;                                                                             \
2674     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2675     f((int)T >> 1, 23, 22), f(opc2, 21, 10);                                            \
2676     rf(Vn, 5), rf(Vd, 0);                                                               \
2677   }
2678 
2679   INSN(absr,   0, 0b100000101110, 3); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2680   INSN(negr,   1, 0b100000101110, 3); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2681   INSN(notr,   1, 0b100000010110, 0); // accepted arrangements: T8B, T16B
2682   INSN(addv,   0, 0b110001101110, 1); // accepted arrangements: T8B, T16B, T4H, T8H,      T4S
2683   INSN(smaxv,  0, 0b110000101010, 1); // accepted arrangements: T8B, T16B, T4H, T8H,      T4S
2684   INSN(umaxv,  1, 0b110000101010, 1); // accepted arrangements: T8B, T16B, T4H, T8H,      T4S
2685   INSN(sminv,  0, 0b110001101010, 1); // accepted arrangements: T8B, T16B, T4H, T8H,      T4S
2686   INSN(uminv,  1, 0b110001101010, 1); // accepted arrangements: T8B, T16B, T4H, T8H,      T4S
2687   INSN(cls,    0, 0b100000010010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2688   INSN(clz,    1, 0b100000010010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2689   INSN(cnt,    0, 0b100000010110, 0); // accepted arrangements: T8B, T16B
2690   INSN(uaddlp, 1, 0b100000001010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2691   INSN(uaddlv, 1, 0b110000001110, 1); // accepted arrangements: T8B, T16B, T4H, T8H,      T4S
2692 
2693 #undef INSN
2694 
2695 #define INSN(NAME, opc) \
2696   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                  \
2697     starti;                                                                            \
2698     assert(T == T4S, "arrangement must be T4S");                                       \
2699     f(0, 31), f((int)T & 1, 30), f(0b101110, 29, 24), f(opc, 23),                      \
2700     f(T == T4S ? 0 : 1, 22), f(0b110000111110, 21, 10); rf(Vn, 5), rf(Vd, 0);          \
2701   }
2702 
2703   INSN(fmaxv, 0);
2704   INSN(fminv, 1);
2705 
2706 #undef INSN
2707 
2708 // Advanced SIMD modified immediate
2709 #define INSN(NAME, op0, cmode0) \
2710   void NAME(FloatRegister Vd, SIMD_Arrangement T, unsigned imm8, unsigned lsl = 0) {   \
2711     unsigned cmode = cmode0;                                                           \
2712     unsigned op = op0;                                                                 \
2713     starti;                                                                            \
2714     assert(lsl == 0 ||                                                                 \
2715            ((T == T4H || T == T8H) && lsl == 8) ||                                     \
2716            ((T == T2S || T == T4S) && ((lsl >> 3) < 4) && ((lsl & 7) == 0)), "invalid shift");\
2717     cmode |= lsl >> 2;                                                                 \
2718     if (T == T4H || T == T8H) cmode |= 0b1000;                                         \
2719     if (!(T == T4H || T == T8H || T == T2S || T == T4S)) {                             \
2720       assert(op == 0 && cmode0 == 0, "must be MOVI");                                  \
2721       cmode = 0b1110;                                                                  \
2722       if (T == T1D || T == T2D) op = 1;                                                \
2723     }                                                                                  \
2724     f(0, 31), f((int)T & 1, 30), f(op, 29), f(0b0111100000, 28, 19);                   \
2725     f(imm8 >> 5, 18, 16), f(cmode, 15, 12), f(0x01, 11, 10), f(imm8 & 0b11111, 9, 5);  \
2726     rf(Vd, 0);                                                                         \
2727   }
2728 
2729   INSN(movi, 0, 0);
2730   INSN(orri, 0, 1);
2731   INSN(mvni, 1, 0);
2732   INSN(bici, 1, 1);
2733 
2734 #undef INSN
2735 
2736 #define INSN(NAME, op, cmode)                                           \
2737   void NAME(FloatRegister Vd, SIMD_Arrangement T, double imm) {         \
2738     unsigned imm8 = pack(imm);                                          \
2739     starti;                                                             \
2740     f(0, 31), f((int)T & 1, 30), f(op, 29), f(0b0111100000, 28, 19);    \
2741     f(imm8 >> 5, 18, 16), f(cmode, 15, 12), f(0x01, 11, 10), f(imm8 & 0b11111, 9, 5); \
2742     rf(Vd, 0);                                                          \
2743   }
2744 
2745   INSN(fmovs, 0, 0b1111);
2746   INSN(fmovd, 1, 0b1111);
2747 
2748 #undef INSN
2749 
2750   // Advanced SIMD three same
2751   void adv_simd_three_same(Instruction_aarch64 &current_insn, FloatRegister Vd,
2752                            SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm,
2753                            int op1, int op2, int op3);
2754 #define INSN(NAME, op1, op2, op3)                                                             \
2755   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) {       \
2756     starti;                                                                                   \
2757     adv_simd_three_same(current_insn, Vd, T, Vn, Vm, op1, op2, op3);                          \
2758   }
2759   INSN(fabd,  1, 1, 0b0101);
2760   INSN(fadd,  0, 0, 0b0101);
2761   INSN(fdiv,  1, 0, 0b1111);
2762   INSN(faddp, 1, 0, 0b0101);
2763   INSN(fmul,  1, 0, 0b0111);
2764   INSN(fsub,  0, 1, 0b0101);
2765   INSN(fmla,  0, 0, 0b0011);
2766   INSN(fmls,  0, 1, 0b0011);
2767   INSN(fmax,  0, 0, 0b1101);
2768   INSN(fmin,  0, 1, 0b1101);
2769   INSN(facgt, 1, 1, 0b1011);
2770 
2771 #undef INSN
2772 
2773   // AdvSIMD vector compare
2774   void cm(Condition cond, FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) {
2775     starti;
2776     assert(T != T1Q && T != T1D, "incorrect arrangement");
2777     int cond_op;
2778     switch (cond) {
2779       case EQ: cond_op = 0b110001; break;
2780       case GT: cond_op = 0b000110; break;
2781       case GE: cond_op = 0b000111; break;
2782       case HI: cond_op = 0b100110; break;
2783       case HS: cond_op = 0b100111; break;
2784       default:
2785         ShouldNotReachHere();
2786         break;
2787     }
2788 
2789     f(0, 31), f((int)T & 1, 30), f((cond_op >> 5) & 1, 29);
2790     f(0b01110, 28, 24), f((int)T >> 1, 23, 22), f(1, 21), rf(Vm, 16);
2791     f(cond_op & 0b11111, 15, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0);
2792   }
2793 
2794   // AdvSIMD Floating-point vector compare
2795   void fcm(Condition cond, FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) {
2796     starti;
2797     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");
2798     int cond_op;
2799     switch (cond) {
2800       case EQ: cond_op = 0b00; break;
2801       case GT: cond_op = 0b11; break;
2802       case GE: cond_op = 0b10; break;
2803       default:
2804         ShouldNotReachHere();
2805         break;
2806     }
2807 
2808     f(0, 31), f((int)T & 1, 30), f((cond_op >> 1) & 1, 29);
2809     f(0b01110, 28, 24), f(cond_op & 1, 23), f(T == T2D ? 1 : 0, 22);
2810     f(1, 21), rf(Vm, 16), f(0b111001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2811   }
2812 
2813 #define INSN(NAME, opc)                                                                 \
2814   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2815     starti;                                                                             \
2816     assert(T == T4S, "arrangement must be T4S");                                        \
2817     f(0b01011110000, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);         \
2818   }
2819 
2820   INSN(sha1c,     0b000000);
2821   INSN(sha1m,     0b001000);
2822   INSN(sha1p,     0b000100);
2823   INSN(sha1su0,   0b001100);
2824   INSN(sha256h2,  0b010100);
2825   INSN(sha256h,   0b010000);
2826   INSN(sha256su1, 0b011000);
2827 
2828 #undef INSN
2829 
2830 #define INSN(NAME, opc)                                                                 \
2831   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2832     starti;                                                                             \
2833     assert(T == T4S, "arrangement must be T4S");                                        \
2834     f(0b0101111000101000, 31, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);                \
2835   }
2836 
2837   INSN(sha1h,     0b000010);
2838   INSN(sha1su1,   0b000110);
2839   INSN(sha256su0, 0b001010);
2840 
2841 #undef INSN
2842 
2843 #define INSN(NAME, opc)                                                                 \
2844   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2845     starti;                                                                             \
2846     assert(T == T2D, "arrangement must be T2D");                                        \
2847     f(0b11001110011, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);         \
2848   }
2849 
2850   INSN(sha512h,   0b100000);
2851   INSN(sha512h2,  0b100001);
2852   INSN(sha512su1, 0b100010);
2853 
2854 #undef INSN
2855 
2856 #define INSN(NAME, opc)                                                                 \
2857   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2858     starti;                                                                             \
2859     assert(T == T2D, "arrangement must be T2D");                                        \
2860     f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0);                                               \
2861   }
2862 
2863   INSN(sha512su0, 0b1100111011000000100000);
2864 
2865 #undef INSN
2866 
2867 #define INSN(NAME, opc)                                                                                   \
2868   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, FloatRegister Va) { \
2869     starti;                                                                                               \
2870     assert(T == T16B, "arrangement must be T16B");                                                        \
2871     f(0b11001110, 31, 24), f(opc, 23, 21), rf(Vm, 16), f(0b0, 15, 15), rf(Va, 10), rf(Vn, 5), rf(Vd, 0);  \
2872   }
2873 
2874   INSN(eor3, 0b000);
2875   INSN(bcax, 0b001);
2876 
2877 #undef INSN
2878 
2879 #define INSN(NAME, opc)                                                                               \
2880   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, unsigned imm) { \
2881     starti;                                                                                           \
2882     assert(T == T2D, "arrangement must be T2D");                                                      \
2883     f(0b11001110, 31, 24), f(opc, 23, 21), rf(Vm, 16), f(imm, 15, 10), rf(Vn, 5), rf(Vd, 0);          \
2884   }
2885 
2886   INSN(xar, 0b100);
2887 
2888 #undef INSN
2889 
2890 #define INSN(NAME, opc)                                                                           \
2891   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) {           \
2892     starti;                                                                                       \
2893     assert(T == T2D, "arrangement must be T2D");                                                  \
2894     f(0b11001110, 31, 24), f(opc, 23, 21), rf(Vm, 16), f(0b100011, 15, 10), rf(Vn, 5), rf(Vd, 0); \
2895   }
2896 
2897   INSN(rax1, 0b011);
2898 
2899 #undef INSN
2900 
2901 #define INSN(NAME, opc)                           \
2902   void NAME(FloatRegister Vd, FloatRegister Vn) { \
2903     starti;                                       \
2904     f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0);         \
2905   }
2906 
2907   INSN(aese,   0b0100111000101000010010);
2908   INSN(aesd,   0b0100111000101000010110);
2909   INSN(aesmc,  0b0100111000101000011010);
2910   INSN(aesimc, 0b0100111000101000011110);
2911 
2912 #undef INSN
2913 
2914 #define INSN(NAME, op1, op2) \
2915   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index = 0) { \
2916     starti;                                                                                            \
2917     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");                                   \
2918     assert(index >= 0 && ((T == T2D && index <= 1) || (T != T2D && index <= 3)), "invalid index");     \
2919     f(0, 31), f((int)T & 1, 30), f(op1, 29); f(0b011111, 28, 23);                                      \
2920     f(T == T2D ? 1 : 0, 22), f(T == T2D ? 0 : index & 1, 21), rf(Vm, 16);                              \
2921     f(op2, 15, 12), f(T == T2D ? index : (index >> 1), 11), f(0, 10);                                  \
2922     rf(Vn, 5), rf(Vd, 0);                                                                              \
2923   }
2924 
2925   // FMLA/FMLS - Vector - Scalar
2926   INSN(fmlavs, 0, 0b0001);
2927   INSN(fmlsvs, 0, 0b0101);
2928   // FMULX - Vector - Scalar
2929   INSN(fmulxvs, 1, 0b1001);
2930 
2931 #undef INSN
2932 
2933 #define INSN(NAME, op1, op2)                                                                       \
2934   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index) { \
2935     starti;                                                                                        \
2936     assert(T == T4H || T == T8H || T == T2S || T == T4S, "invalid arrangement");                   \
2937     assert(index >= 0 &&                                                                           \
2938                ((T == T2S && index <= 1) || (T != T2S && index <= 3) || (T == T8H && index <= 7)), \
2939            "invalid index");                                                                       \
2940     assert((T != T4H && T != T8H) || Vm->encoding() < 16, "invalid source SIMD&FP register");      \
2941     f(0, 31), f((int)T & 1, 30), f(op1, 29), f(0b01111, 28, 24);                                   \
2942     if (T == T4H || T == T8H) {                                                                    \
2943       f(0b01, 23, 22), f(index & 0b11, 21, 20), lrf(Vm, 16), f(index >> 2 & 1, 11);                \
2944     } else {                                                                                       \
2945       f(0b10, 23, 22), f(index & 1, 21), rf(Vm, 16), f(index >> 1, 11);                            \
2946     }                                                                                              \
2947     f(op2, 15, 12), f(0, 10), rf(Vn, 5), rf(Vd, 0);                                                \
2948   }
2949 
2950   // MUL - Vector - Scalar
2951   INSN(mulvs, 0, 0b1000);
2952 
2953 #undef INSN
2954 
2955   // Floating-point Reciprocal Estimate
2956   void frecpe(FloatRegister Vd, FloatRegister Vn, SIMD_RegVariant type) {
2957     assert(type == D || type == S, "Wrong type for frecpe");
2958     starti;
2959     f(0b010111101, 31, 23);
2960     f(type == D ? 1 : 0, 22);
2961     f(0b100001110110, 21, 10);
2962     rf(Vn, 5), rf(Vd, 0);
2963   }
2964 
2965   // (long) {a, b} -> (a + b)
2966   void addpd(FloatRegister Vd, FloatRegister Vn) {
2967     starti;
2968     f(0b0101111011110001101110, 31, 10);
2969     rf(Vn, 5), rf(Vd, 0);
2970   }
2971 
2972   // Floating-point AdvSIMD scalar pairwise
2973 #define INSN(NAME, op1, op2) \
2974   void NAME(FloatRegister Vd, FloatRegister Vn, SIMD_RegVariant type) {                 \
2975     starti;                                                                             \
2976     assert(type == D || type == S, "Wrong type for faddp/fmaxp/fminp");                 \
2977     f(0b0111111, 31, 25), f(op1, 24, 23),                                               \
2978     f(type == S ? 0 : 1, 22), f(0b11000, 21, 17), f(op2, 16, 10), rf(Vn, 5), rf(Vd, 0); \
2979   }
2980 
2981   INSN(faddp, 0b00, 0b0110110);
2982   INSN(fmaxp, 0b00, 0b0111110);
2983   INSN(fminp, 0b01, 0b0111110);
2984 
2985 #undef INSN
2986 
2987   void ins(FloatRegister Vd, SIMD_RegVariant T, FloatRegister Vn, int didx, int sidx) {
2988     starti;
2989     assert(T != Q, "invalid register variant");
2990     f(0b01101110000, 31, 21), f(((didx<<1)|1)<<(int)T, 20, 16), f(0, 15);
2991     f(sidx<<(int)T, 14, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0);
2992   }
2993 
2994 #define INSN(NAME, cond, op1, op2)                                                      \
2995   void NAME(Register Rd, FloatRegister Vn, SIMD_RegVariant T, int idx) {                \
2996     starti;                                                                             \
2997     assert(cond, "invalid register variant");                                           \
2998     f(0, 31), f(op1, 30), f(0b001110000, 29, 21);                                       \
2999     f(((idx << 1) | 1) << (int)T, 20, 16), f(op2, 15, 10);                              \
3000     rf(Vn, 5), rf(Rd, 0);                                                               \
3001   }
3002 
3003   INSN(umov, (T != Q), (T == D ? 1 : 0), 0b001111);
3004   INSN(smov, (T < D),  1,                0b001011);
3005 
3006 #undef INSN
3007 
3008 #define INSN(NAME, opc, opc2, isSHR)                                    \
3009   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int shift){ \
3010     starti;                                                             \
3011     /* The encodings for the immh:immb fields (bits 22:16) in *SHR are  \
3012      *   0001 xxx       8B/16B, shift = 16  - UInt(immh:immb)           \
3013      *   001x xxx       4H/8H,  shift = 32  - UInt(immh:immb)           \
3014      *   01xx xxx       2S/4S,  shift = 64  - UInt(immh:immb)           \
3015      *   1xxx xxx       1D/2D,  shift = 128 - UInt(immh:immb)           \
3016      *   (1D is RESERVED)                                               \
3017      * for SHL shift is calculated as:                                  \
3018      *   0001 xxx       8B/16B, shift = UInt(immh:immb) - 8             \
3019      *   001x xxx       4H/8H,  shift = UInt(immh:immb) - 16            \
3020      *   01xx xxx       2S/4S,  shift = UInt(immh:immb) - 32            \
3021      *   1xxx xxx       1D/2D,  shift = UInt(immh:immb) - 64            \
3022      *   (1D is RESERVED)                                               \
3023      */                                                                 \
3024     guarantee(!isSHR || (isSHR && (shift != 0)), "impossible encoding");\
3025     assert((1 << ((T>>1)+3)) > shift, "Invalid Shift value");           \
3026     int cVal = (1 << (((T >> 1) + 3) + (isSHR ? 1 : 0)));               \
3027     int encodedShift = isSHR ? cVal - shift : cVal + shift;             \
3028     f(0, 31), f(T & 1, 30), f(opc, 29), f(0b011110, 28, 23),            \
3029     f(encodedShift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0);     \
3030   }
3031 
3032   INSN(shl,  0, 0b010101, /* isSHR = */ false);
3033   INSN(sshr, 0, 0b000001, /* isSHR = */ true);
3034   INSN(ushr, 1, 0b000001, /* isSHR = */ true);
3035   INSN(usra, 1, 0b000101, /* isSHR = */ true);
3036   INSN(ssra, 0, 0b000101, /* isSHR = */ true);
3037   INSN(sli,  1, 0b010101, /* isSHR = */ false);
3038 
3039 #undef INSN
3040 
3041 #define INSN(NAME, opc, opc2, isSHR)                                    \
3042   void NAME(FloatRegister Vd, FloatRegister Vn, int shift){             \
3043     starti;                                                             \
3044     int encodedShift = isSHR ? 128 - shift : 64 + shift;                \
3045     f(0b01, 31, 30), f(opc, 29), f(0b111110, 28, 23),                   \
3046     f(encodedShift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0);     \
3047   }
3048 
3049   INSN(shld,  0, 0b010101, /* isSHR = */ false);
3050   INSN(sshrd, 0, 0b000001, /* isSHR = */ true);
3051   INSN(ushrd, 1, 0b000001, /* isSHR = */ true);
3052 
3053 #undef INSN
3054 
3055 protected:
3056   void _xshll(bool is_unsigned, FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
3057     starti;
3058     /* The encodings for the immh:immb fields (bits 22:16) are
3059      *   0001 xxx       8H, 8B/16B shift = xxx
3060      *   001x xxx       4S, 4H/8H  shift = xxxx
3061      *   01xx xxx       2D, 2S/4S  shift = xxxxx
3062      *   1xxx xxx       RESERVED
3063      */
3064     assert((Tb >> 1) + 1 == (Ta >> 1), "Incompatible arrangement");
3065     assert((1 << ((Tb>>1)+3)) > shift, "Invalid shift value");
3066     f(0, 31), f(Tb & 1, 30), f(is_unsigned ? 1 : 0, 29), f(0b011110, 28, 23);
3067     f((1 << ((Tb>>1)+3))|shift, 22, 16);
3068     f(0b101001, 15, 10), rf(Vn, 5), rf(Vd, 0);
3069   }
3070 
3071 public:
3072   void ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
3073     assert(Tb == T8B || Tb == T4H || Tb == T2S, "invalid arrangement");
3074     _xshll(/* is_unsigned */ true, Vd, Ta, Vn, Tb, shift);
3075   }
3076 
3077   void ushll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
3078     assert(Tb == T16B || Tb == T8H || Tb == T4S, "invalid arrangement");
3079     _xshll(/* is_unsigned */ true, Vd, Ta, Vn, Tb, shift);
3080   }
3081 
3082   void uxtl(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb) {
3083     ushll(Vd, Ta, Vn, Tb, 0);
3084   }
3085 
3086   void sshll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
3087     assert(Tb == T8B || Tb == T4H || Tb == T2S, "invalid arrangement");
3088     _xshll(/* is_unsigned */ false, Vd, Ta, Vn, Tb, shift);
3089   }
3090 
3091   void sshll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
3092     assert(Tb == T16B || Tb == T8H || Tb == T4S, "invalid arrangement");
3093     _xshll(/* is_unsigned */ false, Vd, Ta, Vn, Tb, shift);
3094   }
3095 
3096   void sxtl(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb) {
3097     sshll(Vd, Ta, Vn, Tb, 0);
3098   }
3099 
3100   // Move from general purpose register
3101   //   mov  Vd.T[index], Rn
3102   void mov(FloatRegister Vd, SIMD_RegVariant T, int index, Register Xn) {
3103     guarantee(T != Q, "invalid register variant");
3104     starti;
3105     f(0b01001110000, 31, 21), f(((1 << T) | (index << (T + 1))), 20, 16);
3106     f(0b000111, 15, 10), zrf(Xn, 5), rf(Vd, 0);
3107   }
3108 
3109   // Move to general purpose register
3110   //   mov  Rd, Vn.T[index]
3111   void mov(Register Xd, FloatRegister Vn, SIMD_RegVariant T, int index) {
3112     guarantee(T == S || T == D, "invalid register variant");
3113     umov(Xd, Vn, T, index);
3114   }
3115 
3116  protected:
3117   void _xaddwv(bool is_unsigned, FloatRegister Vd, FloatRegister Vn, SIMD_Arrangement Ta,
3118                FloatRegister Vm, SIMD_Arrangement Tb) {
3119     starti;
3120     assert((Tb >> 1) + 1 == (Ta >> 1), "Incompatible arrangement");
3121     f(0, 31), f((int)Tb & 1, 30), f(is_unsigned ? 1 : 0, 29), f(0b01110, 28, 24);
3122     f((int)(Ta >> 1) - 1, 23, 22), f(1, 21), rf(Vm, 16), f(0b000100, 15, 10), rf(Vn, 5), rf(Vd, 0);
3123   }
3124 
3125  public:
3126 #define INSN(NAME, assertion, is_unsigned)                              \
3127   void NAME(FloatRegister Vd, FloatRegister Vn, SIMD_Arrangement Ta, FloatRegister Vm, \
3128               SIMD_Arrangement Tb) {                                    \
3129     assert((assertion), "invalid arrangement");                         \
3130     _xaddwv(is_unsigned, Vd, Vn, Ta, Vm, Tb);                           \
3131   }
3132 
3133 public:
3134 
3135   INSN(uaddwv,  Tb == T8B || Tb == T4H || Tb == T2S,  /*is_unsigned*/true)
3136   INSN(uaddwv2, Tb == T16B || Tb == T8H || Tb == T4S, /*is_unsigned*/true)
3137   INSN(saddwv,  Tb == T8B || Tb == T4H || Tb == T2S,  /*is_unsigned*/false)
3138   INSN(saddwv2, Tb == T16B || Tb == T8H || Tb == T4S, /*is_unsigned*/false)
3139 
3140 #undef INSN
3141 
3142 
3143 private:
3144   void _pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
3145     starti;
3146     assert((Ta == T1Q && (Tb == T1D || Tb == T2D)) ||
3147            (Ta == T8H && (Tb == T8B || Tb == T16B)), "Invalid Size specifier");
3148     int size = (Ta == T1Q) ? 0b11 : 0b00;
3149     f(0, 31), f(Tb & 1, 30), f(0b001110, 29, 24), f(size, 23, 22);
3150     f(1, 21), rf(Vm, 16), f(0b111000, 15, 10), rf(Vn, 5), rf(Vd, 0);
3151   }
3152 
3153 public:
3154   void pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
3155     assert(Tb == T1D || Tb == T8B, "pmull assumes T1D or T8B as the second size specifier");
3156     _pmull(Vd, Ta, Vn, Vm, Tb);
3157   }
3158 
3159   void pmull2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
3160     assert(Tb == T2D || Tb == T16B, "pmull2 assumes T2D or T16B as the second size specifier");
3161     _pmull(Vd, Ta, Vn, Vm, Tb);
3162   }
3163 
3164   void uqxtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) {
3165     starti;
3166     int size_b = (int)Tb >> 1;
3167     int size_a = (int)Ta >> 1;
3168     assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier");
3169     f(0, 31), f(Tb & 1, 30), f(0b101110, 29, 24), f(size_b, 23, 22);
3170     f(0b100001010010, 21, 10), rf(Vn, 5), rf(Vd, 0);
3171   }
3172 
3173   void xtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) {
3174     starti;
3175     int size_b = (int)Tb >> 1;
3176     int size_a = (int)Ta >> 1;
3177     assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier");
3178     f(0, 31), f(Tb & 1, 30), f(0b001110, 29, 24), f(size_b, 23, 22);
3179     f(0b100001001010, 21, 10), rf(Vn, 5), rf(Vd, 0);
3180   }
3181 
3182   void dup(FloatRegister Vd, SIMD_Arrangement T, Register Xs)
3183   {
3184     starti;
3185     assert(T != T1D, "reserved encoding");
3186     f(0,31), f((int)T & 1, 30), f(0b001110000, 29, 21);
3187     f((1 << (T >> 1)), 20, 16), f(0b000011, 15, 10), zrf(Xs, 5), rf(Vd, 0);
3188   }
3189 
3190   void dup(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int index = 0)
3191   {
3192     starti;
3193     assert(T != T1D, "reserved encoding");
3194     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21);
3195     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
3196     f(0b000001, 15, 10), rf(Vn, 5), rf(Vd, 0);
3197   }
3198 
3199   // Advanced SIMD scalar copy
3200   void dup(FloatRegister Vd, SIMD_RegVariant T, FloatRegister Vn, int index = 0)
3201   {
3202     starti;
3203     assert(T != Q, "invalid size");
3204     f(0b01011110000, 31, 21);
3205     f((1 << T) | (index << (T + 1)), 20, 16);
3206     f(0b000001, 15, 10), rf(Vn, 5), rf(Vd, 0);
3207   }
3208 
3209   // AdvSIMD ZIP/UZP/TRN
3210 #define INSN(NAME, opcode)                                              \
3211   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
3212     guarantee(T != T1D && T != T1Q, "invalid arrangement");             \
3213     starti;                                                             \
3214     f(0, 31), f(0b001110, 29, 24), f(0, 21), f(0, 15);                  \
3215     f(opcode, 14, 12), f(0b10, 11, 10);                                 \
3216     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);                                   \
3217     f(T & 1, 30), f(T >> 1, 23, 22);                                    \
3218   }
3219 
3220   INSN(uzp1, 0b001);
3221   INSN(trn1, 0b010);
3222   INSN(zip1, 0b011);
3223   INSN(uzp2, 0b101);
3224   INSN(trn2, 0b110);
3225   INSN(zip2, 0b111);
3226 
3227 #undef INSN
3228 
3229   // CRC32 instructions
3230 #define INSN(NAME, c, sf, sz)                                             \
3231   void NAME(Register Rd, Register Rn, Register Rm) {                      \
3232     starti;                                                               \
3233     f(sf, 31), f(0b0011010110, 30, 21), f(0b010, 15, 13), f(c, 12);       \
3234     f(sz, 11, 10), rf(Rm, 16), rf(Rn, 5), rf(Rd, 0);                      \
3235   }
3236 
3237   INSN(crc32b,  0, 0, 0b00);
3238   INSN(crc32h,  0, 0, 0b01);
3239   INSN(crc32w,  0, 0, 0b10);
3240   INSN(crc32x,  0, 1, 0b11);
3241   INSN(crc32cb, 1, 0, 0b00);
3242   INSN(crc32ch, 1, 0, 0b01);
3243   INSN(crc32cw, 1, 0, 0b10);
3244   INSN(crc32cx, 1, 1, 0b11);
3245 
3246 #undef INSN
3247 
3248   // Table vector lookup
3249 #define INSN(NAME, op)                                                  \
3250   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, unsigned registers, FloatRegister Vm) { \
3251     starti;                                                             \
3252     assert(T == T8B || T == T16B, "invalid arrangement");               \
3253     assert(0 < registers && registers <= 4, "invalid number of registers"); \
3254     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21), rf(Vm, 16), f(0, 15); \
3255     f(registers - 1, 14, 13), f(op, 12),f(0b00, 11, 10), rf(Vn, 5), rf(Vd, 0); \
3256   }
3257 
3258   INSN(tbl, 0);
3259   INSN(tbx, 1);
3260 
3261 #undef INSN
3262 
3263   // AdvSIMD two-reg misc
3264   // In this instruction group, the 2 bits in the size field ([23:22]) may be
3265   // fixed or determined by the "SIMD_Arrangement T", or both. The additional
3266   // parameter "tmask" is a 2-bit mask used to indicate which bits in the size
3267   // field are determined by the SIMD_Arrangement. The bit of "tmask" should be
3268   // set to 1 if corresponding bit marked as "x" in the ArmARM.
3269 #define INSN(NAME, U, size, tmask, opcode)                                      \
3270   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {           \
3271     starti;                                                                     \
3272     assert((ASSERTION), MSG);                                                   \
3273     int op22 = (int)(T >> 1) & tmask;                                           \
3274     int op19 = 0b00;                                                            \
3275     if (tmask == 0b01 && (T == T4H || T == T8H)) {                              \
3276       op22 = 0b1;                                                               \
3277       op19 = 0b11;                                                              \
3278     }                                                                           \
3279     f(0, 31), f((int)T & 1, 30), f(U, 29), f(0b01110, 28, 24);                  \
3280     f(size | op22, 23, 22), f(1, 21), f(op19, 20, 19), f(0b00, 18, 17);         \
3281     f(opcode, 16, 12), f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0);                   \
3282  }
3283 
3284 #define MSG "invalid arrangement"
3285 
3286 #define ASSERTION (T == T4H || T == T8H || T == T2S || T == T4S || T == T2D)
3287   INSN(fsqrt,  1, 0b10, 0b01, 0b11111);
3288   INSN(fabs,   0, 0b10, 0b01, 0b01111);
3289   INSN(fneg,   1, 0b10, 0b01, 0b01111);
3290   INSN(frintn, 0, 0b00, 0b01, 0b11000);
3291   INSN(frintm, 0, 0b00, 0b01, 0b11001);
3292   INSN(frintp, 0, 0b10, 0b01, 0b11000);
3293   INSN(fcvtas, 0, 0b00, 0b01, 0b11100);
3294   INSN(fcvtzs, 0, 0b10, 0b01, 0b11011);
3295   INSN(fcvtms, 0, 0b00, 0b01, 0b11011);
3296 #undef ASSERTION
3297 
3298 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H || T == T2S || T == T4S)
3299   INSN(rev64, 0, 0b00, 0b11, 0b00000);
3300 #undef ASSERTION
3301 
3302 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H)
3303   INSN(rev32, 1, 0b00, 0b11, 0b00000);
3304 #undef ASSERTION
3305 
3306 #define ASSERTION (T == T8B || T == T16B)
3307   INSN(rev16, 0, 0b00, 0b11, 0b00001);
3308   INSN(rbit,  1, 0b01, 0b00, 0b00101);
3309 #undef ASSERTION
3310 
3311 #undef MSG
3312 
3313 #undef INSN
3314 
3315   // AdvSIMD compare with zero (vector)
3316   void cm(Condition cond, FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
3317     starti;
3318     assert(T != T1Q && T != T1D, "invalid arrangement");
3319     int cond_op;
3320     switch (cond) {
3321       case EQ: cond_op = 0b001; break;
3322       case GE: cond_op = 0b100; break;
3323       case GT: cond_op = 0b000; break;
3324       case LE: cond_op = 0b101; break;
3325       case LT: cond_op = 0b010; break;
3326       default:
3327         ShouldNotReachHere();
3328         break;
3329     }
3330 
3331     f(0, 31), f((int)T & 1, 30), f((cond_op >> 2) & 1, 29);
3332     f(0b01110, 28, 24), f((int)T >> 1, 23, 22), f(0b10000010, 21, 14);
3333     f(cond_op & 0b11, 13, 12), f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0);
3334   }
3335 
3336   // AdvSIMD Floating-point compare with zero (vector)
3337   void fcm(Condition cond, FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
3338     starti;
3339     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");
3340     int cond_op;
3341     switch (cond) {
3342       case EQ: cond_op = 0b010; break;
3343       case GT: cond_op = 0b000; break;
3344       case GE: cond_op = 0b001; break;
3345       case LE: cond_op = 0b011; break;
3346       case LT: cond_op = 0b100; break;
3347       default:
3348         ShouldNotReachHere();
3349         break;
3350     }
3351 
3352     f(0, 31), f((int)T & 1, 30), f(cond_op & 1, 29), f(0b011101, 28, 23);
3353     f(((int)(T >> 1) & 1), 22), f(0b10000011, 21, 14);
3354     f((cond_op >> 1) & 0b11, 13, 12), f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0);
3355   }
3356 
3357   void ext(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index)
3358   {
3359     starti;
3360     assert(T == T8B || T == T16B, "invalid arrangement");
3361     assert((T == T8B && index <= 0b0111) || (T == T16B && index <= 0b1111), "Invalid index value");
3362     f(0, 31), f((int)T & 1, 30), f(0b101110000, 29, 21);
3363     rf(Vm, 16), f(0, 15), f(index, 14, 11);
3364     f(0, 10), rf(Vn, 5), rf(Vd, 0);
3365   }
3366 
3367 // SVE arithmetic - unpredicated
3368 #define INSN(NAME, opcode)                                                             \
3369   void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, FloatRegister Zm) { \
3370     starti;                                                                            \
3371     assert(T != Q, "invalid register variant");                                        \
3372     f(0b00000100, 31, 24), f(T, 23, 22), f(1, 21),                                     \
3373     rf(Zm, 16), f(0, 15, 13), f(opcode, 12, 10), rf(Zn, 5), rf(Zd, 0);                 \
3374   }
3375   INSN(sve_add,   0b000);
3376   INSN(sve_sub,   0b001);
3377   INSN(sve_sqadd, 0b100);
3378   INSN(sve_sqsub, 0b110);
3379   INSN(sve_uqadd, 0b101);
3380   INSN(sve_uqsub, 0b111);
3381 #undef INSN
3382 
3383 // SVE integer add/subtract immediate (unpredicated)
3384 #define INSN(NAME, op)                                                  \
3385   void NAME(FloatRegister Zd, SIMD_RegVariant T, unsigned imm8) {       \
3386     starti;                                                             \
3387     /* The immediate is an unsigned value in the range 0 to 255, and    \
3388      * for element width of 16 bits or higher it may also be a          \
3389      * positive multiple of 256 in the range 256 to 65280.              \
3390      */                                                                 \
3391     assert(T != Q, "invalid size");                                     \
3392     int sh = 0;                                                         \
3393     if (imm8 <= 0xff) {                                                 \
3394       sh = 0;                                                           \
3395     } else if (T != B && imm8 <= 0xff00 && (imm8 & 0xff) == 0) {        \
3396       sh = 1;                                                           \
3397       imm8 = (imm8 >> 8);                                               \
3398     } else {                                                            \
3399       guarantee(false, "invalid immediate");                            \
3400     }                                                                   \
3401     f(0b00100101, 31, 24), f(T, 23, 22), f(0b10000, 21, 17);            \
3402     f(op, 16, 14), f(sh, 13), f(imm8, 12, 5), rf(Zd, 0);                \
3403   }
3404 
3405   INSN(sve_add, 0b011);
3406   INSN(sve_sub, 0b111);
3407 #undef INSN
3408 
3409 // SVE floating-point arithmetic - unpredicated
3410 #define INSN(NAME, opcode)                                                             \
3411   void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, FloatRegister Zm) { \
3412     starti;                                                                            \
3413     assert(T == H || T == S || T == D, "invalid register variant");                    \
3414     f(0b01100101, 31, 24), f(T, 23, 22), f(0, 21),                                     \
3415     rf(Zm, 16), f(0, 15, 13), f(opcode, 12, 10), rf(Zn, 5), rf(Zd, 0);                 \
3416   }
3417 
3418   INSN(sve_fadd, 0b000);
3419   INSN(sve_fmul, 0b010);
3420   INSN(sve_fsub, 0b001);
3421 #undef INSN
3422 
3423 private:
3424   void sve_predicate_reg_insn(unsigned op24, unsigned op13,
3425                               FloatRegister Zd_or_Vd, SIMD_RegVariant T,
3426                               PRegister Pg, FloatRegister Zn_or_Vn) {
3427     starti;
3428     f(op24, 31, 24), f(T, 23, 22), f(op13, 21, 13);
3429     pgrf(Pg, 10), rf(Zn_or_Vn, 5), rf(Zd_or_Vd, 0);
3430   }
3431 
3432   void sve_shift_imm_encoding(SIMD_RegVariant T, int shift, bool isSHR,
3433                               int& tszh, int& tszl_imm) {
3434     /* The encodings for the tszh:tszl:imm3 fields
3435      * for shift right is calculated as:
3436      *   0001 xxx       B, shift = 16  - UInt(tszh:tszl:imm3)
3437      *   001x xxx       H, shift = 32  - UInt(tszh:tszl:imm3)
3438      *   01xx xxx       S, shift = 64  - UInt(tszh:tszl:imm3)
3439      *   1xxx xxx       D, shift = 128 - UInt(tszh:tszl:imm3)
3440      * for shift left is calculated as:
3441      *   0001 xxx       B, shift = UInt(tszh:tszl:imm3) - 8
3442      *   001x xxx       H, shift = UInt(tszh:tszl:imm3) - 16
3443      *   01xx xxx       S, shift = UInt(tszh:tszl:imm3) - 32
3444      *   1xxx xxx       D, shift = UInt(tszh:tszl:imm3) - 64
3445      */
3446     assert(T != Q, "Invalid register variant");
3447     if (isSHR) {
3448       assert(((1 << (T + 3)) >= shift) && (shift > 0) , "Invalid shift value");
3449     } else {
3450       assert(((1 << (T + 3)) > shift) && (shift >= 0) , "Invalid shift value");
3451     }
3452     int cVal = (1 << ((T + 3) + (isSHR ? 1 : 0)));
3453     int encodedShift = isSHR ? cVal - shift : cVal + shift;
3454     tszh = encodedShift >> 5;
3455     tszl_imm = encodedShift & 0x1f;
3456   }
3457 
3458 public:
3459 
3460 // SVE integer arithmetic - predicate
3461 #define INSN(NAME, op1, op2)                                                                            \
3462   void NAME(FloatRegister Zdn_or_Zd_or_Vd, SIMD_RegVariant T, PRegister Pg, FloatRegister Znm_or_Vn) {  \
3463     assert(T != Q, "invalid register variant");                                                         \
3464     sve_predicate_reg_insn(op1, op2, Zdn_or_Zd_or_Vd, T, Pg, Znm_or_Vn);                                \
3465   }
3466 
3467   INSN(sve_abs,   0b00000100, 0b010110101); // vector abs, unary
3468   INSN(sve_add,   0b00000100, 0b000000000); // vector add
3469   INSN(sve_and,   0b00000100, 0b011010000); // vector and
3470   INSN(sve_andv,  0b00000100, 0b011010001); // bitwise and reduction to scalar
3471   INSN(sve_asr,   0b00000100, 0b010000100); // vector arithmetic shift right
3472   INSN(sve_bic,   0b00000100, 0b011011000); // vector bitwise clear
3473   INSN(sve_clz,   0b00000100, 0b011001101); // vector count leading zero bits
3474   INSN(sve_cnt,   0b00000100, 0b011010101); // count non-zero bits
3475   INSN(sve_cpy,   0b00000101, 0b100000100); // copy scalar to each active vector element
3476   INSN(sve_eor,   0b00000100, 0b011001000); // vector eor
3477   INSN(sve_eorv,  0b00000100, 0b011001001); // bitwise xor reduction to scalar
3478   INSN(sve_lsl,   0b00000100, 0b010011100); // vector logical shift left
3479   INSN(sve_lsr,   0b00000100, 0b010001100); // vector logical shift right
3480   INSN(sve_mul,   0b00000100, 0b010000000); // vector mul
3481   INSN(sve_neg,   0b00000100, 0b010111101); // vector neg, unary
3482   INSN(sve_not,   0b00000100, 0b011110101); // bitwise invert vector, unary
3483   INSN(sve_orr,   0b00000100, 0b011000000); // vector or
3484   INSN(sve_orv,   0b00000100, 0b011000001); // bitwise or reduction to scalar
3485   INSN(sve_smax,  0b00000100, 0b001000000); // signed maximum vectors
3486   INSN(sve_smaxv, 0b00000100, 0b001000001); // signed maximum reduction to scalar
3487   INSN(sve_smin,  0b00000100, 0b001010000); // signed minimum vectors
3488   INSN(sve_sminv, 0b00000100, 0b001010001); // signed minimum reduction to scalar
3489   INSN(sve_sub,   0b00000100, 0b000001000); // vector sub
3490   INSN(sve_uaddv, 0b00000100, 0b000001001); // unsigned add reduction to scalar
3491   INSN(sve_umax,  0b00000100, 0b001001000); // unsigned maximum vectors
3492   INSN(sve_umin,  0b00000100, 0b001011000); // unsigned minimum vectors
3493 #undef INSN
3494 
3495 // SVE floating-point arithmetic - predicate
3496 #define INSN(NAME, op1, op2)                                                                          \
3497   void NAME(FloatRegister Zd_or_Zdn_or_Vd, SIMD_RegVariant T, PRegister Pg, FloatRegister Zn_or_Zm) { \
3498     assert(T == H || T == S || T == D, "invalid register variant");                                   \
3499     sve_predicate_reg_insn(op1, op2, Zd_or_Zdn_or_Vd, T, Pg, Zn_or_Zm);                               \
3500   }
3501 
3502   INSN(sve_fabd,   0b01100101, 0b001000100); // floating-point absolute difference
3503   INSN(sve_fabs,   0b00000100, 0b011100101);
3504   INSN(sve_fadd,   0b01100101, 0b000000100);
3505   INSN(sve_fadda,  0b01100101, 0b011000001); // add strictly-ordered reduction to scalar Vd
3506   INSN(sve_fdiv,   0b01100101, 0b001101100);
3507   INSN(sve_fmax,   0b01100101, 0b000110100); // floating-point maximum
3508   INSN(sve_fmaxv,  0b01100101, 0b000110001); // floating-point maximum recursive reduction to scalar
3509   INSN(sve_fmin,   0b01100101, 0b000111100); // floating-point minimum
3510   INSN(sve_fminv,  0b01100101, 0b000111001); // floating-point minimum recursive reduction to scalar
3511   INSN(sve_fmul,   0b01100101, 0b000010100);
3512   INSN(sve_fneg,   0b00000100, 0b011101101);
3513   INSN(sve_frintm, 0b01100101, 0b000010101); // floating-point round to integral value, toward minus infinity
3514   INSN(sve_frintn, 0b01100101, 0b000000101); // floating-point round to integral value, nearest with ties to even
3515   INSN(sve_frinta, 0b01100101, 0b000100101); // floating-point round to integral value, nearest with ties to away
3516   INSN(sve_frintp, 0b01100101, 0b000001101); // floating-point round to integral value, toward plus infinity
3517   INSN(sve_fsqrt,  0b01100101, 0b001101101);
3518   INSN(sve_fsub,   0b01100101, 0b000001100);
3519 #undef INSN
3520 
3521   // SVE multiple-add/sub - predicated
3522 #define INSN(NAME, op0, op1, op2)                                                                     \
3523   void NAME(FloatRegister Zda, SIMD_RegVariant T, PRegister Pg, FloatRegister Zn, FloatRegister Zm) { \
3524     starti;                                                                                           \
3525     assert(T != Q, "invalid size");                                                                   \
3526     f(op0, 31, 24), f(T, 23, 22), f(op1, 21), rf(Zm, 16);                                             \
3527     f(op2, 15, 13), pgrf(Pg, 10), rf(Zn, 5), rf(Zda, 0);                                              \
3528   }
3529 
3530   INSN(sve_fmla,  0b01100101, 1, 0b000); // floating-point fused multiply-add, writing addend: Zda = Zda + Zn * Zm
3531   INSN(sve_fmls,  0b01100101, 1, 0b001); // floating-point fused multiply-subtract: Zda = Zda + -Zn * Zm
3532   INSN(sve_fnmla, 0b01100101, 1, 0b010); // floating-point negated fused multiply-add: Zda = -Zda + -Zn * Zm
3533   INSN(sve_fnmls, 0b01100101, 1, 0b011); // floating-point negated fused multiply-subtract: Zda = -Zda + Zn * Zm
3534   INSN(sve_fmad,  0b01100101, 1, 0b100); // floating-point fused multiply-add, writing multiplicand: Zda = Zm + Zda * Zn
3535   INSN(sve_fmsb,  0b01100101, 1, 0b101); // floating-point fused multiply-subtract, writing multiplicand: Zda = Zm + -Zda * Zn
3536   INSN(sve_fnmad, 0b01100101, 1, 0b110); // floating-point negated fused multiply-add, writing multiplicand: Zda = -Zm + -Zda * Zn
3537   INSN(sve_fnmsb, 0b01100101, 1, 0b111); // floating-point negated fused multiply-subtract, writing multiplicand: Zda = -Zm + Zda * Zn
3538   INSN(sve_mla,   0b00000100, 0, 0b010); // multiply-add, writing addend: Zda = Zda + Zn*Zm
3539   INSN(sve_mls,   0b00000100, 0, 0b011); // multiply-subtract, writing addend: Zda = Zda + -Zn*Zm
3540 #undef INSN
3541 
3542 // SVE bitwise logical - unpredicated
3543 #define INSN(NAME, opc)                                              \
3544   void NAME(FloatRegister Zd, FloatRegister Zn, FloatRegister Zm) {  \
3545     starti;                                                          \
3546     f(0b00000100, 31, 24), f(opc, 23, 22), f(1, 21),                 \
3547     rf(Zm, 16), f(0b001100, 15, 10), rf(Zn, 5), rf(Zd, 0);           \
3548   }
3549   INSN(sve_and, 0b00);
3550   INSN(sve_eor, 0b10);
3551   INSN(sve_orr, 0b01);
3552   INSN(sve_bic, 0b11);
3553 #undef INSN
3554 
3555 // SVE bitwise logical with immediate (unpredicated)
3556 #define INSN(NAME, opc)                                                      \
3557   void NAME(FloatRegister Zd, SIMD_RegVariant T, uint64_t imm) {             \
3558     starti;                                                                  \
3559     unsigned elembits = regVariant_to_elemBits(T);                           \
3560     uint32_t val = encode_sve_logical_immediate(elembits, imm);              \
3561     f(0b00000101, 31, 24), f(opc, 23, 22), f(0b0000, 21, 18);                \
3562     f(val, 17, 5), rf(Zd, 0);                                                \
3563   }
3564   INSN(sve_and, 0b10);
3565   INSN(sve_eor, 0b01);
3566   INSN(sve_orr, 0b00);
3567 #undef INSN
3568 
3569 // SVE shift immediate - unpredicated
3570 #define INSN(NAME, opc, isSHR)                                                  \
3571   void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, int shift) { \
3572     starti;                                                                     \
3573     int tszh, tszl_imm;                                                         \
3574     sve_shift_imm_encoding(T, shift, isSHR, tszh, tszl_imm);                    \
3575     f(0b00000100, 31, 24);                                                      \
3576     f(tszh, 23, 22), f(1,21), f(tszl_imm, 20, 16);                              \
3577     f(0b100, 15, 13), f(opc, 12, 10), rf(Zn, 5), rf(Zd, 0);                     \
3578   }
3579 
3580   INSN(sve_asr, 0b100, /* isSHR = */ true);
3581   INSN(sve_lsl, 0b111, /* isSHR = */ false);
3582   INSN(sve_lsr, 0b101, /* isSHR = */ true);
3583 #undef INSN
3584 
3585 // SVE bitwise shift by immediate (predicated)
3586 #define INSN(NAME, opc, isSHR)                                                  \
3587   void NAME(FloatRegister Zdn, SIMD_RegVariant T, PRegister Pg, int shift) {    \
3588     starti;                                                                     \
3589     int tszh, tszl_imm;                                                         \
3590     sve_shift_imm_encoding(T, shift, isSHR, tszh, tszl_imm);                    \
3591     f(0b00000100, 31, 24), f(tszh, 23, 22), f(0b00, 21, 20), f(opc, 19, 16);    \
3592     f(0b100, 15, 13), pgrf(Pg, 10), f(tszl_imm, 9, 5), rf(Zdn, 0);              \
3593   }
3594 
3595   INSN(sve_asr, 0b0000, /* isSHR = */ true);
3596   INSN(sve_lsl, 0b0011, /* isSHR = */ false);
3597   INSN(sve_lsr, 0b0001, /* isSHR = */ true);
3598 #undef INSN
3599 
3600 private:
3601 
3602   // Scalar base + immediate index
3603   void sve_ld_st1(FloatRegister Zt, Register Xn, int imm, PRegister Pg,
3604               SIMD_RegVariant T, int op1, int type, int op2) {
3605     starti;
3606     assert_cond(T >= type);
3607     f(op1, 31, 25), f(type, 24, 23), f(T, 22, 21);
3608     f(0, 20), sf(imm, 19, 16), f(op2, 15, 13);
3609     pgrf(Pg, 10), srf(Xn, 5), rf(Zt, 0);
3610   }
3611 
3612   // Scalar base + scalar index
3613   void sve_ld_st1(FloatRegister Zt, Register Xn, Register Xm, PRegister Pg,
3614               SIMD_RegVariant T, int op1, int type, int op2) {
3615     starti;
3616     assert_cond(T >= type);
3617     f(op1, 31, 25), f(type, 24, 23), f(T, 22, 21);
3618     rf(Xm, 16), f(op2, 15, 13);
3619     pgrf(Pg, 10), srf(Xn, 5), rf(Zt, 0);
3620   }
3621 
3622   void sve_ld_st1(FloatRegister Zt, PRegister Pg,
3623               SIMD_RegVariant T, const Address &a,
3624               int op1, int type, int imm_op2, int scalar_op2) {
3625     switch (a.getMode()) {
3626     case Address::base_plus_offset:
3627       sve_ld_st1(Zt, a.base(), checked_cast<int>(a.offset()), Pg, T, op1, type, imm_op2);
3628       break;
3629     case Address::base_plus_offset_reg:
3630       sve_ld_st1(Zt, a.base(), a.index(), Pg, T, op1, type, scalar_op2);
3631       break;
3632     default:
3633       ShouldNotReachHere();
3634     }
3635   }
3636 
3637 public:
3638 
3639 // SVE contiguous load/store
3640 #define INSN(NAME, op1, type, imm_op2, scalar_op2)                                   \
3641   void NAME(FloatRegister Zt, SIMD_RegVariant T, PRegister Pg, const Address &a) {   \
3642     assert(T != Q, "invalid register variant");                                      \
3643     sve_ld_st1(Zt, Pg, T, a, op1, type, imm_op2, scalar_op2);                        \
3644   }
3645 
3646   INSN(sve_ld1b, 0b1010010, 0b00, 0b101, 0b010);
3647   INSN(sve_st1b, 0b1110010, 0b00, 0b111, 0b010);
3648   INSN(sve_ld1h, 0b1010010, 0b01, 0b101, 0b010);
3649   INSN(sve_st1h, 0b1110010, 0b01, 0b111, 0b010);
3650   INSN(sve_ld1w, 0b1010010, 0b10, 0b101, 0b010);
3651   INSN(sve_st1w, 0b1110010, 0b10, 0b111, 0b010);
3652   INSN(sve_ld1d, 0b1010010, 0b11, 0b101, 0b010);
3653   INSN(sve_st1d, 0b1110010, 0b11, 0b111, 0b010);
3654 #undef INSN
3655 
3656 // Gather/scatter load/store (SVE) - scalar plus vector
3657 #define INSN(NAME, op1, type, op2, op3)                                         \
3658   void NAME(FloatRegister Zt, PRegister Pg, Register Xn, FloatRegister Zm) {    \
3659     starti;                                                                     \
3660     f(op1, 31, 25), f(type, 24, 23), f(op2, 22, 21), rf(Zm, 16);                \
3661     f(op3, 15, 13), pgrf(Pg, 10), srf(Xn, 5), rf(Zt, 0);                        \
3662   }
3663   // SVE 32-bit gather load words (scalar plus 32-bit scaled offsets)
3664   INSN(sve_ld1w_gather,  0b1000010, 0b10, 0b01, 0b010);
3665   // SVE 64-bit gather load (scalar plus 32-bit unpacked scaled offsets)
3666   INSN(sve_ld1d_gather,  0b1100010, 0b11, 0b01, 0b010);
3667   // SVE 32-bit scatter store (scalar plus 32-bit scaled offsets)
3668   INSN(sve_st1w_scatter, 0b1110010, 0b10, 0b11, 0b100);
3669   // SVE 64-bit scatter store (scalar plus unpacked 32-bit scaled offsets)
3670   INSN(sve_st1d_scatter, 0b1110010, 0b11, 0b01, 0b100);
3671 #undef INSN
3672 
3673 // SVE load/store - unpredicated
3674 #define INSN(NAME, op1)                                                         \
3675   void NAME(FloatRegister Zt, const Address &a)  {                              \
3676     starti;                                                                     \
3677     assert(a.index() == noreg, "invalid address variant");                      \
3678     f(op1, 31, 29), f(0b0010110, 28, 22), sf(a.offset() >> 3, 21, 16),          \
3679     f(0b010, 15, 13), f(a.offset() & 0x7, 12, 10), srf(a.base(), 5), rf(Zt, 0); \
3680   }
3681 
3682   INSN(sve_ldr, 0b100); // LDR (vector)
3683   INSN(sve_str, 0b111); // STR (vector)
3684 #undef INSN
3685 
3686 // SVE stack frame adjustment
3687 #define INSN(NAME, op) \
3688   void NAME(Register Xd, Register Xn, int imm6) {                 \
3689     starti;                                                       \
3690     f(0b000001000, 31, 23), f(op, 22, 21);                        \
3691     srf(Xn, 16), f(0b01010, 15, 11), sf(imm6, 10, 5), srf(Xd, 0); \
3692   }
3693 
3694   INSN(sve_addvl, 0b01); // Add multiple of vector register size to scalar register
3695   INSN(sve_addpl, 0b11); // Add multiple of predicate register size to scalar register
3696 #undef INSN
3697 
3698 // SVE inc/dec register by element count
3699 #define INSN(NAME, op) \
3700   void NAME(Register Xdn, SIMD_RegVariant T, unsigned imm4 = 1, int pattern = 0b11111) { \
3701     starti;                                                                              \
3702     assert(T != Q, "invalid size");                                                      \
3703     f(0b00000100,31, 24), f(T, 23, 22), f(0b11, 21, 20);                                 \
3704     f(imm4 - 1, 19, 16), f(0b11100, 15, 11), f(op, 10), f(pattern, 9, 5), rf(Xdn, 0);    \
3705   }
3706 
3707   INSN(sve_inc, 0);
3708   INSN(sve_dec, 1);
3709 #undef INSN
3710 
3711 // SVE predicate logical operations
3712 #define INSN(NAME, op1, op2, op3) \
3713   void NAME(PRegister Pd, PRegister Pg, PRegister Pn, PRegister Pm) { \
3714     starti;                                                           \
3715     f(0b00100101, 31, 24), f(op1, 23, 22), f(0b00, 21, 20);           \
3716     prf(Pm, 16), f(0b01, 15, 14), prf(Pg, 10), f(op2, 9);             \
3717     prf(Pn, 5), f(op3, 4), prf(Pd, 0);                                \
3718   }
3719 
3720   INSN(sve_and,  0b00, 0b0, 0b0);
3721   INSN(sve_ands, 0b01, 0b0, 0b0);
3722   INSN(sve_eor,  0b00, 0b1, 0b0);
3723   INSN(sve_eors, 0b01, 0b1, 0b0);
3724   INSN(sve_orr,  0b10, 0b0, 0b0);
3725   INSN(sve_orrs, 0b11, 0b0, 0b0);
3726   INSN(sve_bic,  0b00, 0b0, 0b1);
3727 #undef INSN
3728 
3729   // SVE increment register by predicate count
3730   void sve_incp(const Register rd, SIMD_RegVariant T, PRegister pg) {
3731     starti;
3732     assert(T != Q, "invalid size");
3733     f(0b00100101, 31, 24), f(T, 23, 22), f(0b1011001000100, 21, 9),
3734     prf(pg, 5), rf(rd, 0);
3735   }
3736 
3737   // SVE broadcast general-purpose register to vector elements (unpredicated)
3738   void sve_dup(FloatRegister Zd, SIMD_RegVariant T, Register Rn) {
3739     starti;
3740     assert(T != Q, "invalid size");
3741     f(0b00000101, 31, 24), f(T, 23, 22), f(0b100000001110, 21, 10);
3742     srf(Rn, 5), rf(Zd, 0);
3743   }
3744 
3745   // SVE broadcast signed immediate to vector elements (unpredicated)
3746   void sve_dup(FloatRegister Zd, SIMD_RegVariant T, int imm8) {
3747     starti;
3748     assert(T != Q, "invalid size");
3749     int sh = 0;
3750     if (imm8 <= 127 && imm8 >= -128) {
3751       sh = 0;
3752     } else if (T != B && imm8 <= 32512 && imm8 >= -32768 && (imm8 & 0xff) == 0) {
3753       sh = 1;
3754       imm8 = (imm8 >> 8);
3755     } else {
3756       guarantee(false, "invalid immediate");
3757     }
3758     f(0b00100101, 31, 24), f(T, 23, 22), f(0b11100011, 21, 14);
3759     f(sh, 13), sf(imm8, 12, 5), rf(Zd, 0);
3760   }
3761 
3762   // SVE predicate test
3763   void sve_ptest(PRegister Pg, PRegister Pn) {
3764     starti;
3765     f(0b001001010101000011, 31, 14), prf(Pg, 10), f(0, 9), prf(Pn, 5), f(0, 4, 0);
3766   }
3767 
3768   // SVE predicate initialize
3769   void sve_ptrue(PRegister pd, SIMD_RegVariant esize, int pattern = 0b11111) {
3770     starti;
3771     f(0b00100101, 31, 24), f(esize, 23, 22), f(0b011000111000, 21, 10);
3772     f(pattern, 9, 5), f(0b0, 4), prf(pd, 0);
3773   }
3774 
3775   // SVE predicate zero
3776   void sve_pfalse(PRegister pd) {
3777     starti;
3778     f(0b00100101, 31, 24), f(0b00, 23, 22), f(0b011000111001, 21, 10);
3779     f(0b000000, 9, 4), prf(pd, 0);
3780   }
3781 
3782 // SVE load/store predicate register
3783 #define INSN(NAME, op1)                                                  \
3784   void NAME(PRegister Pt, const Address &a)  {                           \
3785     starti;                                                              \
3786     assert(a.index() == noreg, "invalid address variant");               \
3787     f(op1, 31, 29), f(0b0010110, 28, 22), sf(a.offset() >> 3, 21, 16),   \
3788     f(0b000, 15, 13), f(a.offset() & 0x7, 12, 10), srf(a.base(), 5),     \
3789     f(0, 4), prf(Pt, 0);                                                 \
3790   }
3791 
3792   INSN(sve_ldr, 0b100); // LDR (predicate)
3793   INSN(sve_str, 0b111); // STR (predicate)
3794 #undef INSN
3795 
3796   // SVE move predicate register
3797   void sve_mov(PRegister Pd, PRegister Pn) {
3798     starti;
3799     f(0b001001011000, 31, 20), prf(Pn, 16), f(0b01, 15, 14), prf(Pn, 10);
3800     f(0, 9), prf(Pn, 5), f(0, 4), prf(Pd, 0);
3801   }
3802 
3803   // SVE copy general-purpose register to vector elements (predicated)
3804   void sve_cpy(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg, Register Rn) {
3805     starti;
3806     assert(T != Q, "invalid size");
3807     f(0b00000101, 31, 24), f(T, 23, 22), f(0b101000101, 21, 13);
3808     pgrf(Pg, 10), srf(Rn, 5), rf(Zd, 0);
3809   }
3810 
3811 private:
3812   void sve_cpy(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg, int imm8,
3813                bool isMerge, bool isFloat) {
3814     starti;
3815     assert(T != Q, "invalid size");
3816     int sh = 0;
3817     if (imm8 <= 127 && imm8 >= -128) {
3818       sh = 0;
3819     } else if (T != B && imm8 <= 32512 && imm8 >= -32768 && (imm8 & 0xff) == 0) {
3820       sh = 1;
3821       imm8 = (imm8 >> 8);
3822     } else {
3823       guarantee(false, "invalid immediate");
3824     }
3825     int m = isMerge ? 1 : 0;
3826     f(0b00000101, 31, 24), f(T, 23, 22), f(0b01, 21, 20);
3827     prf(Pg, 16), f(isFloat ? 1 : 0, 15), f(m, 14), f(sh, 13), sf(imm8, 12, 5), rf(Zd, 0);
3828   }
3829 
3830 public:
3831   // SVE copy signed integer immediate to vector elements (predicated)
3832   void sve_cpy(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg, int imm8, bool isMerge) {
3833     sve_cpy(Zd, T, Pg, imm8, isMerge, /*isFloat*/false);
3834   }
3835   // SVE copy floating-point immediate to vector elements (predicated)
3836   void sve_cpy(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg, double d) {
3837     sve_cpy(Zd, T, Pg, checked_cast<int8_t>(pack(d)), /*isMerge*/true, /*isFloat*/true);
3838   }
3839 
3840   // SVE conditionally select elements from two vectors
3841   void sve_sel(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg,
3842                FloatRegister Zn, FloatRegister Zm) {
3843     starti;
3844     assert(T != Q, "invalid size");
3845     f(0b00000101, 31, 24), f(T, 23, 22), f(0b1, 21), rf(Zm, 16);
3846     f(0b11, 15, 14), prf(Pg, 10), rf(Zn, 5), rf(Zd, 0);
3847   }
3848 
3849   // SVE Permute Vector - Extract
3850   void sve_ext(FloatRegister Zdn, FloatRegister Zm, int imm8) {
3851     starti;
3852     f(0b00000101001, 31, 21), f(imm8 >> 3, 20, 16), f(0b000, 15, 13);
3853     f(imm8 & 0b111, 12, 10), rf(Zm, 5), rf(Zdn, 0);
3854   }
3855 
3856 // SVE Integer/Floating-Point Compare - Vectors
3857 #define INSN(NAME, op1, op2, fp)  \
3858   void NAME(Condition cond, PRegister Pd, SIMD_RegVariant T, PRegister Pg,             \
3859             FloatRegister Zn, FloatRegister Zm) {                                      \
3860     starti;                                                                            \
3861     assert(T != Q, "invalid size");                                                    \
3862     bool is_absolute = op2 == 0b11;                                                    \
3863     if (fp == 1) {                                                                     \
3864       assert(T != B, "invalid size");                                                  \
3865       if (is_absolute) {                                                               \
3866         assert(cond == GT || cond == GE, "invalid condition for fac");                 \
3867       } else {                                                                         \
3868         assert(cond != HI && cond != HS, "invalid condition for fcm");                 \
3869       }                                                                                \
3870     }                                                                                  \
3871     int cond_op;                                                                       \
3872     switch(cond) {                                                                     \
3873       case EQ: cond_op = (op2 << 2) | 0b10; break;                                     \
3874       case NE: cond_op = (op2 << 2) | 0b11; break;                                     \
3875       case GE: cond_op = (op2 << 2) | (is_absolute ? 0b01 : 0b00); break;              \
3876       case GT: cond_op = (op2 << 2) | (is_absolute ? 0b11 : 0b01); break;              \
3877       case HI: cond_op = 0b0001; break;                                                \
3878       case HS: cond_op = 0b0000; break;                                                \
3879       default:                                                                         \
3880         ShouldNotReachHere();                                                          \
3881     }                                                                                  \
3882     f(op1, 31, 24), f(T, 23, 22), f(0, 21), rf(Zm, 16), f((cond_op >> 1) & 7, 15, 13); \
3883     pgrf(Pg, 10), rf(Zn, 5), f(cond_op & 1, 4), prf(Pd, 0);                            \
3884   }
3885 
3886   INSN(sve_cmp, 0b00100100, 0b10, 0); // Integer compare vectors
3887   INSN(sve_fcm, 0b01100101, 0b01, 1); // Floating-point compare vectors
3888   INSN(sve_fac, 0b01100101, 0b11, 1); // Floating-point absolute compare vectors
3889 #undef INSN
3890 
3891 private:
3892   // Convert Assembler::Condition to op encoding - used by sve integer compare encoding
3893   static int assembler_cond_to_sve_op(Condition cond, bool &is_unsigned) {
3894     if (cond == HI || cond == HS || cond == LO || cond == LS) {
3895       is_unsigned = true;
3896     } else {
3897       is_unsigned = false;
3898     }
3899 
3900     switch (cond) {
3901       case HI:
3902       case GT:
3903         return 0b0001;
3904       case HS:
3905       case GE:
3906         return 0b0000;
3907       case LO:
3908       case LT:
3909         return 0b0010;
3910       case LS:
3911       case LE:
3912         return 0b0011;
3913       case EQ:
3914         return 0b1000;
3915       case NE:
3916         return 0b1001;
3917       default:
3918         ShouldNotReachHere();
3919         return -1;
3920     }
3921   }
3922 
3923 public:
3924   // SVE Integer Compare - 5 bits signed imm and 7 bits unsigned imm
3925   void sve_cmp(Condition cond, PRegister Pd, SIMD_RegVariant T,
3926                PRegister Pg, FloatRegister Zn, int imm) {
3927     starti;
3928     assert(T != Q, "invalid size");
3929     bool is_unsigned = false;
3930     int cond_op = assembler_cond_to_sve_op(cond, is_unsigned);
3931     f(is_unsigned ? 0b00100100 : 0b00100101, 31, 24), f(T, 23, 22);
3932     f(is_unsigned ? 0b1 : 0b0, 21);
3933     if (is_unsigned) {
3934       f(imm, 20, 14), f((cond_op >> 1) & 0x1, 13);
3935     } else {
3936       sf(imm, 20, 16), f((cond_op >> 1) & 0x7, 15, 13);
3937     }
3938     pgrf(Pg, 10), rf(Zn, 5), f(cond_op & 0x1, 4), prf(Pd, 0);
3939   }
3940 
3941   // SVE Floating-point compare vector with zero
3942   void sve_fcm(Condition cond, PRegister Pd, SIMD_RegVariant T,
3943                PRegister Pg, FloatRegister Zn, double d) {
3944     starti;
3945     assert(T != Q, "invalid size");
3946     guarantee(d == 0.0, "invalid immediate");
3947     int cond_op;
3948     switch(cond) {
3949       case EQ: cond_op = 0b100; break;
3950       case GT: cond_op = 0b001; break;
3951       case GE: cond_op = 0b000; break;
3952       case LT: cond_op = 0b010; break;
3953       case LE: cond_op = 0b011; break;
3954       case NE: cond_op = 0b110; break;
3955       default:
3956         ShouldNotReachHere();
3957     }
3958     f(0b01100101, 31, 24), f(T, 23, 22), f(0b0100, 21, 18),
3959     f((cond_op >> 1) & 0x3, 17, 16), f(0b001, 15, 13),
3960     pgrf(Pg, 10), rf(Zn, 5);
3961     f(cond_op & 0x1, 4), prf(Pd, 0);
3962   }
3963 
3964 // SVE unpack vector elements
3965 protected:
3966   void _sve_xunpk(bool is_unsigned, bool is_high, FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn) {
3967     starti;
3968     assert(T != B && T != Q, "invalid size");
3969     f(0b00000101, 31, 24), f(T, 23, 22), f(0b1100, 21, 18);
3970     f(is_unsigned ? 1 : 0, 17), f(is_high ? 1 : 0, 16),
3971     f(0b001110, 15, 10), rf(Zn, 5), rf(Zd, 0);
3972   }
3973 
3974 public:
3975 #define INSN(NAME, is_unsigned, is_high)                                  \
3976   void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn) {      \
3977     _sve_xunpk(is_unsigned, is_high, Zd, T, Zn);                          \
3978   }
3979 
3980   INSN(sve_uunpkhi, true,  true ); // Unsigned unpack and extend half of vector - high half
3981   INSN(sve_uunpklo, true,  false); // Unsigned unpack and extend half of vector - low half
3982   INSN(sve_sunpkhi, false, true ); // Signed unpack and extend half of vector - high half
3983   INSN(sve_sunpklo, false, false); // Signed unpack and extend half of vector - low half
3984 #undef INSN
3985 
3986 // SVE unpack predicate elements
3987 #define INSN(NAME, op) \
3988   void NAME(PRegister Pd, PRegister Pn) { \
3989     starti;                                                          \
3990     f(0b000001010011000, 31, 17), f(op, 16), f(0b0100000, 15, 9);    \
3991     prf(Pn, 5), f(0b0, 4), prf(Pd, 0);                               \
3992   }
3993 
3994   INSN(sve_punpkhi, 0b1); // Unpack and widen high half of predicate
3995   INSN(sve_punpklo, 0b0); // Unpack and widen low half of predicate
3996 #undef INSN
3997 
3998 // SVE permute vector elements
3999 #define INSN(NAME, op) \
4000   void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, FloatRegister Zm) { \
4001     starti;                                                                            \
4002     assert(T != Q, "invalid size");                                                    \
4003     f(0b00000101, 31, 24), f(T, 23, 22), f(0b1, 21), rf(Zm, 16);                       \
4004     f(0b01101, 15, 11), f(op, 10), rf(Zn, 5), rf(Zd, 0);                               \
4005   }
4006 
4007   INSN(sve_uzp1, 0b0); // Concatenate even elements from two vectors
4008   INSN(sve_uzp2, 0b1); // Concatenate odd elements from two vectors
4009 #undef INSN
4010 
4011 // SVE permute predicate elements
4012 #define INSN(NAME, op) \
4013   void NAME(PRegister Pd, SIMD_RegVariant T, PRegister Pn, PRegister Pm) {             \
4014     starti;                                                                            \
4015     assert(T != Q, "invalid size");                                                    \
4016     f(0b00000101, 31, 24), f(T, 23, 22), f(0b10, 21, 20), prf(Pm, 16);                 \
4017     f(0b01001, 15, 11), f(op, 10), f(0b0, 9), prf(Pn, 5), f(0b0, 4), prf(Pd, 0);       \
4018   }
4019 
4020   INSN(sve_uzp1, 0b0); // Concatenate even elements from two predicates
4021   INSN(sve_uzp2, 0b1); // Concatenate odd elements from two predicates
4022 #undef INSN
4023 
4024 // SVE integer compare scalar count and limit
4025 #define INSN(NAME, sf, op)                                                \
4026   void NAME(PRegister Pd, SIMD_RegVariant T, Register Rn, Register Rm) {  \
4027     starti;                                                               \
4028     assert(T != Q, "invalid register variant");                           \
4029     f(0b00100101, 31, 24), f(T, 23, 22), f(1, 21),                        \
4030     zrf(Rm, 16), f(0, 15, 13), f(sf, 12), f(op >> 1, 11, 10),             \
4031     zrf(Rn, 5), f(op & 1, 4), prf(Pd, 0);                                 \
4032   }
4033   // While incrementing signed scalar less than scalar
4034   INSN(sve_whileltw, 0b0, 0b010);
4035   INSN(sve_whilelt,  0b1, 0b010);
4036   // While incrementing signed scalar less than or equal to scalar
4037   INSN(sve_whilelew, 0b0, 0b011);
4038   INSN(sve_whilele,  0b1, 0b011);
4039   // While incrementing unsigned scalar lower than scalar
4040   INSN(sve_whilelow, 0b0, 0b110);
4041   INSN(sve_whilelo,  0b1, 0b110);
4042   // While incrementing unsigned scalar lower than or the same as scalar
4043   INSN(sve_whilelsw, 0b0, 0b111);
4044   INSN(sve_whilels,  0b1, 0b111);
4045 #undef INSN
4046 
4047   // SVE predicate reverse
4048   void sve_rev(PRegister Pd, SIMD_RegVariant T, PRegister Pn) {
4049     starti;
4050     assert(T != Q, "invalid size");
4051     f(0b00000101, 31, 24), f(T, 23, 22), f(0b1101000100000, 21, 9);
4052     prf(Pn, 5), f(0, 4), prf(Pd, 0);
4053   }
4054 
4055 // SVE partition break condition
4056 #define INSN(NAME, op) \
4057   void NAME(PRegister Pd, PRegister Pg, PRegister Pn, bool isMerge) {      \
4058     starti;                                                                \
4059     f(0b00100101, 31, 24), f(op, 23, 22), f(0b01000001, 21, 14);           \
4060     prf(Pg, 10), f(0b0, 9), prf(Pn, 5), f(isMerge ? 1 : 0, 4), prf(Pd, 0); \
4061   }
4062 
4063   INSN(sve_brka, 0b00); // Break after first true condition
4064   INSN(sve_brkb, 0b10); // Break before first true condition
4065 #undef INSN
4066 
4067 // Element count and increment scalar (SVE)
4068 #define INSN(NAME, TYPE)                                                             \
4069   void NAME(Register Xdn, unsigned imm4 = 1, int pattern = 0b11111) {                \
4070     starti;                                                                          \
4071     f(0b00000100, 31, 24), f(TYPE, 23, 22), f(0b10, 21, 20);                         \
4072     f(imm4 - 1, 19, 16), f(0b11100, 15, 11), f(0, 10), f(pattern, 9, 5), rf(Xdn, 0); \
4073   }
4074 
4075   INSN(sve_cntb, B);  // Set scalar to multiple of 8-bit predicate constraint element count
4076   INSN(sve_cnth, H);  // Set scalar to multiple of 16-bit predicate constraint element count
4077   INSN(sve_cntw, S);  // Set scalar to multiple of 32-bit predicate constraint element count
4078   INSN(sve_cntd, D);  // Set scalar to multiple of 64-bit predicate constraint element count
4079 #undef INSN
4080 
4081   // Set scalar to active predicate element count
4082   void sve_cntp(Register Xd, SIMD_RegVariant T, PRegister Pg, PRegister Pn) {
4083     starti;
4084     assert(T != Q, "invalid size");
4085     f(0b00100101, 31, 24), f(T, 23, 22), f(0b10000010, 21, 14);
4086     prf(Pg, 10), f(0, 9), prf(Pn, 5), rf(Xd, 0);
4087   }
4088 
4089   // SVE convert signed integer to floating-point (predicated)
4090   void sve_scvtf(FloatRegister Zd, SIMD_RegVariant T_dst, PRegister Pg,
4091                  FloatRegister Zn, SIMD_RegVariant T_src) {
4092     starti;
4093     assert(T_src != B && T_dst != B && T_src != Q && T_dst != Q &&
4094            (T_src != H || T_dst == T_src), "invalid register variant");
4095     int opc = T_dst;
4096     int opc2 = T_src;
4097     // In most cases we can treat T_dst, T_src as opc, opc2,
4098     // except for the following two combinations.
4099     // +-----+------+---+------------------------------------+
4100     // | opc | opc2 | U |        Instruction Details         |
4101     // +-----+------+---+------------------------------------+
4102     // |  11 |   00 | 0 | SCVTF - 32-bit to double-precision |
4103     // |  11 |   10 | 0 | SCVTF - 64-bit to single-precision |
4104     // +-----+------+---+------------------------------------+
4105     if (T_src == S && T_dst == D) {
4106       opc = 0b11;
4107       opc2 = 0b00;
4108     } else if (T_src == D && T_dst == S) {
4109       opc = 0b11;
4110       opc2 = 0b10;
4111     }
4112     f(0b01100101, 31, 24), f(opc, 23, 22), f(0b010, 21, 19);
4113     f(opc2, 18, 17), f(0b0101, 16, 13);
4114     pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0);
4115   }
4116 
4117   // SVE floating-point convert to signed integer, rounding toward zero (predicated)
4118   void sve_fcvtzs(FloatRegister Zd, SIMD_RegVariant T_dst, PRegister Pg,
4119                   FloatRegister Zn, SIMD_RegVariant T_src) {
4120     starti;
4121     assert(T_src != B && T_dst != B && T_src != Q && T_dst != Q &&
4122            (T_dst != H || T_src == H), "invalid register variant");
4123     int opc = T_src;
4124     int opc2 = T_dst;
4125     // In most cases we can treat T_src, T_dst as opc, opc2,
4126     // except for the following two combinations.
4127     // +-----+------+---+-------------------------------------+
4128     // | opc | opc2 | U |         Instruction Details         |
4129     // +-----+------+---+-------------------------------------+
4130     // |  11 |  10  | 0 | FCVTZS - single-precision to 64-bit |
4131     // |  11 |  00  | 0 | FCVTZS - double-precision to 32-bit |
4132     // +-----+------+---+-------------------------------------+
4133     if (T_src == S && T_dst == D) {
4134       opc = 0b11;
4135       opc2 = 0b10;
4136     } else if (T_src == D && T_dst == S) {
4137       opc = 0b11;
4138       opc2 = 0b00;
4139     }
4140     f(0b01100101, 31, 24), f(opc, 23, 22), f(0b011, 21, 19);
4141     f(opc2, 18, 17), f(0b0101, 16, 13);
4142     pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0);
4143   }
4144 
4145   // SVE floating-point convert precision (predicated)
4146   void sve_fcvt(FloatRegister Zd, SIMD_RegVariant T_dst, PRegister Pg,
4147                 FloatRegister Zn, SIMD_RegVariant T_src) {
4148     starti;
4149     assert(T_src != B && T_dst != B && T_src != Q && T_dst != Q &&
4150            T_src != T_dst, "invalid register variant");
4151     // The encodings of fields op1 (bits 17-16) and op2 (bits 23-22)
4152     // depend on T_src and T_dst as given below -
4153     // +-----+------+---------------------------------------------+
4154     // | op2 | op1  |             Instruction Details             |
4155     // +-----+------+---------------------------------------------+
4156     // |  10 |  01  | FCVT - half-precision to single-precision   |
4157     // |  11 |  01  | FCVT - half-precision to double-precision   |
4158     // |  10 |  00  | FCVT - single-precision to half-precision   |
4159     // |  11 |  11  | FCVT - single-precision to double-precision |
4160     // |  11 |  00  | FCVT - double-preciison to half-precision   |
4161     // |  11 |  10  | FCVT - double-precision to single-precision |
4162     // +-----+------+---+-----------------------------------------+
4163     int op1 = 0b00;
4164     int op2 = (T_src == D || T_dst == D) ? 0b11 : 0b10;
4165     if (T_src == H) {
4166       op1 = 0b01;
4167     } else if (T_dst == S) {
4168       op1 = 0b10;
4169     } else if (T_dst == D) {
4170       op1 = 0b11;
4171     }
4172     f(0b01100101, 31, 24), f(op2, 23, 22), f(0b0010, 21, 18);
4173     f(op1, 17, 16), f(0b101, 15, 13);
4174     pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0);
4175   }
4176 
4177 // SVE extract element to general-purpose register
4178 #define INSN(NAME, before)                                                      \
4179   void NAME(Register Rd, SIMD_RegVariant T, PRegister Pg,  FloatRegister Zn) {  \
4180     starti;                                                                     \
4181     f(0b00000101, 31, 24), f(T, 23, 22), f(0b10000, 21, 17);                    \
4182     f(before, 16), f(0b101, 15, 13);                                            \
4183     pgrf(Pg, 10), rf(Zn, 5), rf(Rd, 0);                                         \
4184   }
4185 
4186   INSN(sve_lasta, 0b0);
4187   INSN(sve_lastb, 0b1);
4188 #undef INSN
4189 
4190 // SVE extract element to SIMD&FP scalar register
4191 #define INSN(NAME, before)                                                           \
4192   void NAME(FloatRegister Vd, SIMD_RegVariant T, PRegister Pg,  FloatRegister Zn) {  \
4193     starti;                                                                          \
4194     f(0b00000101, 31, 24), f(T, 23, 22), f(0b10001, 21, 17);                         \
4195     f(before, 16), f(0b100, 15, 13);                                                 \
4196     pgrf(Pg, 10), rf(Zn, 5), rf(Vd, 0);                                              \
4197   }
4198 
4199   INSN(sve_lasta, 0b0);
4200   INSN(sve_lastb, 0b1);
4201 #undef INSN
4202 
4203 // SVE reverse within elements
4204 #define INSN(NAME, opc, cond)                                                        \
4205   void NAME(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg,  FloatRegister Zn) {  \
4206     starti;                                                                          \
4207     assert(cond, "invalid size");                                                    \
4208     f(0b00000101, 31, 24), f(T, 23, 22), f(0b1001, 21, 18), f(opc, 17, 16);          \
4209     f(0b100, 15, 13), pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0);                            \
4210   }
4211 
4212   INSN(sve_revb, 0b00, T == H || T == S || T == D);
4213   INSN(sve_rbit, 0b11, T != Q);
4214 #undef INSN
4215 
4216   // SVE Create index starting from general-purpose register and incremented by immediate
4217   void sve_index(FloatRegister Zd, SIMD_RegVariant T, Register Rn, int imm) {
4218     starti;
4219     assert(T != Q, "invalid size");
4220     f(0b00000100, 31, 24), f(T, 23, 22), f(0b1, 21);
4221     sf(imm, 20, 16), f(0b010001, 15, 10);
4222     rf(Rn, 5), rf(Zd, 0);
4223   }
4224 
4225   // SVE create index starting from and incremented by immediate
4226   void sve_index(FloatRegister Zd, SIMD_RegVariant T, int imm1, int imm2) {
4227     starti;
4228     assert(T != Q, "invalid size");
4229     f(0b00000100, 31, 24), f(T, 23, 22), f(0b1, 21);
4230     sf(imm2, 20, 16), f(0b010000, 15, 10);
4231     sf(imm1, 9, 5), rf(Zd, 0);
4232   }
4233 
4234 private:
4235   void _sve_tbl(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, unsigned reg_count, FloatRegister Zm) {
4236     starti;
4237     assert(T != Q, "invalid size");
4238     // Only supports one or two vector lookup. One vector lookup was introduced in SVE1
4239     // and two vector lookup in SVE2
4240     assert(0 < reg_count && reg_count <= 2, "invalid number of registers");
4241 
4242     int op11 = (reg_count == 1) ? 0b10 : 0b01;
4243 
4244     f(0b00000101, 31, 24), f(T, 23, 22), f(0b1, 21), rf(Zm, 16);
4245     f(0b001, 15, 13), f(op11, 12, 11), f(0b0, 10), rf(Zn, 5), rf(Zd, 0);
4246   }
4247 
4248 public:
4249   // SVE/SVE2 Programmable table lookup in one or two vector table (zeroing)
4250   void sve_tbl(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, FloatRegister Zm) {
4251     _sve_tbl(Zd, T, Zn, 1, Zm);
4252   }
4253 
4254   void sve_tbl(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn1, FloatRegister Zn2, FloatRegister Zm) {
4255     assert(Zn1->successor() == Zn2, "invalid order of registers");
4256     _sve_tbl(Zd, T, Zn1, 2, Zm);
4257   }
4258 
4259   // Shuffle active elements of vector to the right and fill with zero
4260   void sve_compact(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, PRegister Pg) {
4261     starti;
4262     assert(T == S || T == D, "invalid size");
4263     f(0b00000101, 31, 24), f(T, 23, 22), f(0b100001100, 21, 13);
4264     pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0);
4265   }
4266 
4267   // SVE2 Count matching elements in vector
4268   void sve_histcnt(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg,
4269                    FloatRegister Zn, FloatRegister Zm) {
4270     starti;
4271     assert(T == S || T == D, "invalid size");
4272     f(0b01000101, 31, 24), f(T, 23, 22), f(0b1, 21), rf(Zm, 16);
4273     f(0b110, 15, 13), pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0);
4274   }
4275 
4276 // SVE2 bitwise permute
4277 #define INSN(NAME, opc)                                                                  \
4278   void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn,  FloatRegister Zm) {  \
4279     starti;                                                                              \
4280     assert(T != Q, "invalid size");                                                      \
4281     f(0b01000101, 31, 24), f(T, 23, 22), f(0b0, 21);                                     \
4282     rf(Zm, 16), f(0b1011, 15, 12), f(opc, 11, 10);                                       \
4283     rf(Zn, 5), rf(Zd, 0);                                                                \
4284   }
4285 
4286   INSN(sve_bext, 0b00);
4287   INSN(sve_bdep, 0b01);
4288 #undef INSN
4289 
4290 // SVE2 bitwise ternary operations
4291 #define INSN(NAME, opc)                                               \
4292   void NAME(FloatRegister Zdn, FloatRegister Zm, FloatRegister Zk) {  \
4293     starti;                                                           \
4294     f(0b00000100, 31, 24), f(opc, 23, 21), rf(Zm, 16);                \
4295     f(0b001110, 15, 10), rf(Zk, 5), rf(Zdn, 0);                       \
4296   }
4297 
4298   INSN(sve_eor3, 0b001); // Bitwise exclusive OR of three vectors
4299 #undef INSN
4300 
4301 // SVE2 saturating operations - predicate
4302 #define INSN(NAME, op1, op2)                                                          \
4303   void NAME(FloatRegister Zdn, SIMD_RegVariant T, PRegister Pg, FloatRegister Znm) {  \
4304     assert(T != Q, "invalid register variant");                                       \
4305     sve_predicate_reg_insn(op1, op2, Zdn, T, Pg, Znm);                                \
4306   }
4307 
4308   INSN(sve_sqadd, 0b01000100, 0b011000100); // signed saturating add
4309   INSN(sve_sqsub, 0b01000100, 0b011010100); // signed saturating sub
4310   INSN(sve_uqadd, 0b01000100, 0b011001100); // unsigned saturating add
4311   INSN(sve_uqsub, 0b01000100, 0b011011100); // unsigned saturating sub
4312 
4313 #undef INSN
4314 
4315   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
4316   }
4317 
4318   // Stack overflow checking
4319   virtual void bang_stack_with_offset(int offset);
4320 
4321   static bool operand_valid_for_logical_immediate(bool is32, uint64_t imm);
4322   static bool operand_valid_for_sve_logical_immediate(unsigned elembits, uint64_t imm);
4323   static bool operand_valid_for_add_sub_immediate(int64_t imm);
4324   static bool operand_valid_for_sve_add_sub_immediate(int64_t imm);
4325   static bool operand_valid_for_float_immediate(double imm);
4326   static int  operand_valid_for_movi_immediate(uint64_t imm64, SIMD_Arrangement T);
4327   static bool operand_valid_for_sve_dup_immediate(int64_t imm);
4328 
4329   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
4330   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
4331 };
4332 
4333 inline Assembler::Membar_mask_bits operator|(Assembler::Membar_mask_bits a,
4334                                              Assembler::Membar_mask_bits b) {
4335   return Assembler::Membar_mask_bits(unsigned(a)|unsigned(b));
4336 }
4337 
4338 Instruction_aarch64::~Instruction_aarch64() {
4339   assem->emit_int32(insn);
4340   assert_cond(get_bits() == 0xffffffff);
4341 }
4342 
4343 #undef f
4344 #undef sf
4345 #undef rf
4346 #undef srf
4347 #undef zrf
4348 #undef prf
4349 #undef pgrf
4350 #undef fixed
4351 
4352 #undef starti
4353 
4354 // Invert a condition
4355 inline Assembler::Condition operator~(const Assembler::Condition cond) {
4356   return Assembler::Condition(int(cond) ^ 1);
4357 }
4358 
4359 extern "C" void das(uint64_t start, int len);
4360 
4361 #endif // CPU_AARCH64_ASSEMBLER_AARCH64_HPP