1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_ASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_ASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/register.hpp"
  30 #include "metaprogramming/enableIf.hpp"
  31 #include "utilities/checkedCast.hpp"
  32 #include "utilities/debug.hpp"
  33 #include "utilities/globalDefinitions.hpp"
  34 #include "utilities/macros.hpp"
  35 #include <type_traits>
  36 
  37 #ifdef __GNUC__
  38 
  39 // __nop needs volatile so that compiler doesn't optimize it away
  40 #define NOP() asm volatile ("nop");
  41 
  42 #elif defined(_MSC_VER)
  43 
  44 // Use MSVC intrinsic: https://docs.microsoft.com/en-us/cpp/intrinsics/arm64-intrinsics?view=vs-2019#I
  45 #define NOP() __nop();
  46 
  47 #endif
  48 
  49 
  50 // definitions of various symbolic names for machine registers
  51 
  52 // First intercalls between C and Java which use 8 general registers
  53 // and 8 floating registers
  54 
  55 // we also have to copy between x86 and ARM registers but that's a
  56 // secondary complication -- not all code employing C call convention
  57 // executes as x86 code though -- we generate some of it
  58 
  59 class Argument {
  60  public:
  61   enum {
  62     n_int_register_parameters_c   = 8,  // r0, r1, ... r7 (c_rarg0, c_rarg1, ...)
  63     n_float_register_parameters_c = 8,  // v0, v1, ... v7 (c_farg0, c_farg1, ... )
  64 
  65     n_int_register_parameters_j   = 8, // r1, ... r7, r0 (rj_rarg0, j_rarg1, ...
  66     n_float_register_parameters_j = 8  // v0, v1, ... v7 (j_farg0, j_farg1, ...
  67   };
  68 };
  69 
  70 constexpr Register c_rarg0 = r0;
  71 constexpr Register c_rarg1 = r1;
  72 constexpr Register c_rarg2 = r2;
  73 constexpr Register c_rarg3 = r3;
  74 constexpr Register c_rarg4 = r4;
  75 constexpr Register c_rarg5 = r5;
  76 constexpr Register c_rarg6 = r6;
  77 constexpr Register c_rarg7 = r7;
  78 
  79 constexpr FloatRegister c_farg0 = v0;
  80 constexpr FloatRegister c_farg1 = v1;
  81 constexpr FloatRegister c_farg2 = v2;
  82 constexpr FloatRegister c_farg3 = v3;
  83 constexpr FloatRegister c_farg4 = v4;
  84 constexpr FloatRegister c_farg5 = v5;
  85 constexpr FloatRegister c_farg6 = v6;
  86 constexpr FloatRegister c_farg7 = v7;
  87 
  88 // Symbolically name the register arguments used by the Java calling convention.
  89 // We have control over the convention for java so we can do what we please.
  90 // What pleases us is to offset the java calling convention so that when
  91 // we call a suitable jni method the arguments are lined up and we don't
  92 // have to do much shuffling. A suitable jni method is non-static and a
  93 // small number of arguments
  94 //
  95 //  |--------------------------------------------------------------------|
  96 //  | c_rarg0  c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5 c_rarg6 c_rarg7  |
  97 //  |--------------------------------------------------------------------|
  98 //  | r0       r1       r2      r3      r4      r5      r6      r7       |
  99 //  |--------------------------------------------------------------------|
 100 //  | j_rarg7  j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4 j_rarg5 j_rarg6  |
 101 //  |--------------------------------------------------------------------|
 102 
 103 
 104 constexpr Register j_rarg0 = c_rarg1;
 105 constexpr Register j_rarg1 = c_rarg2;
 106 constexpr Register j_rarg2 = c_rarg3;
 107 constexpr Register j_rarg3 = c_rarg4;
 108 constexpr Register j_rarg4 = c_rarg5;
 109 constexpr Register j_rarg5 = c_rarg6;
 110 constexpr Register j_rarg6 = c_rarg7;
 111 constexpr Register j_rarg7 = c_rarg0;
 112 
 113 // Java floating args are passed as per C
 114 
 115 constexpr FloatRegister j_farg0 = v0;
 116 constexpr FloatRegister j_farg1 = v1;
 117 constexpr FloatRegister j_farg2 = v2;
 118 constexpr FloatRegister j_farg3 = v3;
 119 constexpr FloatRegister j_farg4 = v4;
 120 constexpr FloatRegister j_farg5 = v5;
 121 constexpr FloatRegister j_farg6 = v6;
 122 constexpr FloatRegister j_farg7 = v7;
 123 
 124 // registers used to hold VM data either temporarily within a method
 125 // or across method calls
 126 
 127 // volatile (caller-save) registers
 128 
 129 // r8 is used for indirect result location return
 130 // we use it and r9 as scratch registers
 131 constexpr Register rscratch1 = r8;
 132 constexpr Register rscratch2 = r9;
 133 
 134 // current method -- must be in a call-clobbered register
 135 constexpr Register rmethod = r12;
 136 
 137 // non-volatile (callee-save) registers are r16-29
 138 // of which the following are dedicated global state
 139 
 140 constexpr Register lr            = r30; // link register
 141 constexpr Register rfp           = r29; // frame pointer
 142 constexpr Register rthread       = r28; // current thread
 143 constexpr Register rheapbase     = r27; // base of heap
 144 constexpr Register rcpool        = r26; // constant pool cache
 145 constexpr Register rlocals       = r24; // locals on stack
 146 constexpr Register rbcp          = r22; // bytecode pointer
 147 constexpr Register rdispatch     = r21; // dispatch table base
 148 constexpr Register esp           = r20; // Java expression stack pointer
 149 constexpr Register r19_sender_sp = r19; // sender's SP while in interpreter
 150 
 151 // Preserved predicate register with all elements set TRUE.
 152 constexpr PRegister ptrue = p7;
 153 
 154 #define assert_cond(ARG1) assert(ARG1, #ARG1)
 155 
 156 namespace asm_util {
 157   uint32_t encode_logical_immediate(bool is32, uint64_t imm);
 158   uint32_t encode_sve_logical_immediate(unsigned elembits, uint64_t imm);
 159   bool operand_valid_for_immediate_bits(int64_t imm, unsigned nbits);
 160 };
 161 
 162 using namespace asm_util;
 163 
 164 
 165 class Assembler;
 166 
 167 class Instruction_aarch64 {
 168   unsigned insn;
 169 #ifdef ASSERT
 170   unsigned bits;
 171 #endif
 172   Assembler *assem;
 173 
 174 public:
 175 
 176   Instruction_aarch64(class Assembler *as) {
 177 #ifdef ASSERT
 178     bits = 0;
 179 #endif
 180     insn = 0;
 181     assem = as;
 182   }
 183 
 184   inline ~Instruction_aarch64();
 185 
 186   unsigned &get_insn() { return insn; }
 187 #ifdef ASSERT
 188   unsigned &get_bits() { return bits; }
 189 #endif
 190 
 191   static inline int32_t extend(unsigned val, int hi = 31, int lo = 0) {
 192     union {
 193       unsigned u;
 194       int n;
 195     };
 196 
 197     u = val << (31 - hi);
 198     n = n >> (31 - hi + lo);
 199     return n;
 200   }
 201 
 202   static inline uint32_t extract(uint32_t val, int msb, int lsb) {
 203     int nbits = msb - lsb + 1;
 204     assert_cond(msb >= lsb);
 205     uint32_t mask = checked_cast<uint32_t>(right_n_bits(nbits));
 206     uint32_t result = val >> lsb;
 207     result &= mask;
 208     return result;
 209   }
 210 
 211   static inline int32_t sextract(uint32_t val, int msb, int lsb) {
 212     uint32_t uval = extract(val, msb, lsb);
 213     return extend(uval, msb - lsb);
 214   }
 215 
 216   static ALWAYSINLINE void patch(address a, int msb, int lsb, uint64_t val) {
 217     int nbits = msb - lsb + 1;
 218     guarantee(val < (1ULL << nbits), "Field too big for insn");
 219     assert_cond(msb >= lsb);
 220     unsigned mask = checked_cast<unsigned>(right_n_bits(nbits));
 221     val <<= lsb;
 222     mask <<= lsb;
 223     unsigned target = *(unsigned *)a;
 224     target &= ~mask;
 225     target |= (unsigned)val;
 226     *(unsigned *)a = target;
 227   }
 228 
 229   static void spatch(address a, int msb, int lsb, int64_t val) {
 230     int nbits = msb - lsb + 1;
 231     int64_t chk = val >> (nbits - 1);
 232     guarantee (chk == -1 || chk == 0, "Field " INT64_FORMAT_X_0 " too big (nbits: %d) for insn at " INTPTR_FORMAT, val, nbits, p2i(a));
 233     uint64_t uval = val;
 234     unsigned mask = checked_cast<unsigned>(right_n_bits(nbits));
 235     uval &= mask;
 236     uval <<= lsb;
 237     mask <<= lsb;
 238     unsigned target = *(unsigned *)a;
 239     target &= ~mask;
 240     target |= (unsigned)uval;
 241     *(unsigned *)a = target;
 242   }
 243 
 244   void f(unsigned val, int msb, int lsb) {
 245     int nbits = msb - lsb + 1;
 246     guarantee(val < (1ULL << nbits), "Field too big for insn");
 247     assert_cond(msb >= lsb);
 248     val <<= lsb;
 249     insn |= val;
 250 #ifdef ASSERT
 251     unsigned mask = checked_cast<unsigned>(right_n_bits(nbits));
 252     mask <<= lsb;
 253     assert_cond((bits & mask) == 0);
 254     bits |= mask;
 255 #endif
 256   }
 257 
 258   void f(unsigned val, int bit) {
 259     f(val, bit, bit);
 260   }
 261 
 262   void sf(int64_t val, int msb, int lsb) {
 263     int nbits = msb - lsb + 1;
 264     int64_t chk = val >> (nbits - 1);
 265     guarantee (chk == -1 || chk == 0, "Field " INT64_FORMAT_X_0 " too big (nbits: %d) for insn", val, nbits);
 266     uint64_t uval = val;
 267     unsigned mask = checked_cast<unsigned>(right_n_bits(nbits));
 268     uval &= mask;
 269     f((unsigned)uval, lsb + nbits - 1, lsb);
 270   }
 271 
 272   void rf(Register r, int lsb) {
 273     f(r->raw_encoding(), lsb + 4, lsb);
 274   }
 275 
 276   // reg|ZR
 277   void zrf(Register r, int lsb) {
 278     f(r->raw_encoding() - (r == zr), lsb + 4, lsb);
 279   }
 280 
 281   // reg|SP
 282   void srf(Register r, int lsb) {
 283     f(r == sp ? 31 : r->raw_encoding(), lsb + 4, lsb);
 284   }
 285 
 286   void rf(FloatRegister r, int lsb) {
 287     f(r->raw_encoding(), lsb + 4, lsb);
 288   }
 289 
 290   //<0-15>reg: As `rf(FloatRegister)`, but only the lower  16 FloatRegisters are allowed.
 291   void lrf(FloatRegister r, int lsb) {
 292     f(r->raw_encoding(), lsb + 3, lsb);
 293   }
 294 
 295   void prf(PRegister r, int lsb) {
 296     f(r->raw_encoding(), lsb + 3, lsb);
 297   }
 298 
 299   void pgrf(PRegister r, int lsb) {
 300     f(r->raw_encoding(), lsb + 2, lsb);
 301   }
 302 
 303   unsigned get(int msb = 31, int lsb = 0) {
 304     int nbits = msb - lsb + 1;
 305     unsigned mask = checked_cast<unsigned>(right_n_bits(nbits)) << lsb;
 306     assert_cond((bits & mask) == mask);
 307     return (insn & mask) >> lsb;
 308   }
 309 };
 310 
 311 #define starti Instruction_aarch64 current_insn(this);
 312 
 313 class PrePost {
 314   int _offset;
 315   Register _r;
 316 protected:
 317   PrePost(Register reg, int o) : _offset(o), _r(reg) { }
 318   ~PrePost() = default;
 319   PrePost(const PrePost&) = default;
 320   PrePost& operator=(const PrePost&) = default;
 321 public:
 322   int offset() const { return _offset; }
 323   Register reg() const { return _r; }
 324 };
 325 
 326 class Pre : public PrePost {
 327 public:
 328   Pre(Register reg, int o) : PrePost(reg, o) { }
 329 };
 330 
 331 class Post : public PrePost {
 332   Register _idx;
 333   bool _is_postreg;
 334 public:
 335   Post(Register reg, int o) : PrePost(reg, o), _idx(noreg), _is_postreg(false) {}
 336   Post(Register reg, Register idx) : PrePost(reg, 0), _idx(idx), _is_postreg(true) {}
 337   Register idx_reg() const { return _idx; }
 338   bool is_postreg() const { return _is_postreg; }
 339 };
 340 
 341 namespace ext
 342 {
 343   enum operation { uxtb, uxth, uxtw, uxtx, sxtb, sxth, sxtw, sxtx };
 344 };
 345 
 346 // Addressing modes
 347 class Address {
 348  public:
 349 
 350   enum mode { no_mode, base_plus_offset, pre, post, post_reg,
 351               base_plus_offset_reg, literal };
 352 
 353   // Shift and extend for base reg + reg offset addressing
 354   class extend {
 355     int _option, _shift;
 356     ext::operation _op;
 357   public:
 358     extend() { }
 359     extend(int s, int o, ext::operation op) : _option(o), _shift(s), _op(op) { }
 360     int option() const{ return _option; }
 361     int shift() const { return _shift; }
 362     ext::operation op() const { return _op; }
 363   };
 364 
 365   static extend uxtw(int shift = -1) { return extend(shift, 0b010, ext::uxtw); }
 366   static extend lsl(int shift = -1)  { return extend(shift, 0b011, ext::uxtx); }
 367   static extend sxtw(int shift = -1) { return extend(shift, 0b110, ext::sxtw); }
 368   static extend sxtx(int shift = -1) { return extend(shift, 0b111, ext::sxtx); }
 369 
 370  private:
 371   struct Nonliteral {
 372     Nonliteral(Register base, Register index, int64_t offset, extend ext = extend())
 373       : _base(base), _index(index), _offset(offset), _ext(ext) {}
 374     Register _base;
 375     Register _index;
 376     int64_t _offset;
 377     extend _ext;
 378   };
 379 
 380   struct Literal {
 381     Literal(address target, const RelocationHolder& rspec)
 382       : _target(target), _rspec(rspec) {}
 383 
 384     // If the target is far we'll need to load the ea of this to a
 385     // register to reach it. Otherwise if near we can do PC-relative
 386     // addressing.
 387     address _target;
 388 
 389     RelocationHolder _rspec;
 390   };
 391 
 392   void assert_is_nonliteral() const NOT_DEBUG_RETURN;
 393   void assert_is_literal() const NOT_DEBUG_RETURN;
 394 
 395   // Discriminated union, based on _mode.
 396   // - no_mode: uses dummy _nonliteral, for ease of copying.
 397   // - literal: only _literal is used.
 398   // - others: only _nonliteral is used.
 399   enum mode _mode;
 400   union {
 401     Nonliteral _nonliteral;
 402     Literal _literal;
 403   };
 404 
 405   // Helper for copy constructor and assignment operator.
 406   // Copy mode-relevant part of a into this.
 407   void copy_data(const Address& a) {
 408     assert(_mode == a._mode, "precondition");
 409     if (_mode == literal) {
 410       new (&_literal) Literal(a._literal);
 411     } else {
 412       // non-literal mode or no_mode.
 413       new (&_nonliteral) Nonliteral(a._nonliteral);
 414     }
 415   }
 416 
 417  public:
 418   // no_mode initializes _nonliteral for ease of copying.
 419   Address() :
 420     _mode(no_mode),
 421     _nonliteral(noreg, noreg, 0)
 422   {}
 423 
 424   Address(Register r) :
 425     _mode(base_plus_offset),
 426     _nonliteral(r, noreg, 0)
 427   {}
 428 
 429   template<typename T, ENABLE_IF(std::is_integral<T>::value)>
 430   Address(Register r, T o) :
 431     _mode(base_plus_offset),
 432     _nonliteral(r, noreg, o)
 433   {}
 434 
 435   Address(Register r, ByteSize disp) : Address(r, in_bytes(disp)) {}
 436 
 437   Address(Register r, Register r1, extend ext = lsl()) :
 438     _mode(base_plus_offset_reg),
 439     _nonliteral(r, r1, 0, ext)
 440   {}
 441 
 442   Address(Pre p) :
 443     _mode(pre),
 444     _nonliteral(p.reg(), noreg, p.offset())
 445   {}
 446 
 447   Address(Post p) :
 448     _mode(p.is_postreg() ? post_reg : post),
 449     _nonliteral(p.reg(), p.idx_reg(), p.offset())
 450   {}
 451 
 452   Address(address target, const RelocationHolder& rspec) :
 453     _mode(literal),
 454     _literal(target, rspec)
 455   {}
 456 
 457   Address(address target, relocInfo::relocType rtype = relocInfo::external_word_type);
 458 
 459   Address(Register base, RegisterOrConstant index, extend ext = lsl()) {
 460     if (index.is_register()) {
 461       _mode = base_plus_offset_reg;
 462       new (&_nonliteral) Nonliteral(base, index.as_register(), 0, ext);
 463     } else {
 464       guarantee(ext.option() == ext::uxtx, "should be");
 465       assert(index.is_constant(), "should be");
 466       _mode = base_plus_offset;
 467       new (&_nonliteral) Nonliteral(base,
 468                                     noreg,
 469                                     index.as_constant() << ext.shift());
 470     }
 471   }
 472 
 473   Address(const Address& a) : _mode(a._mode) { copy_data(a); }
 474 
 475   // Verify the value is trivially destructible regardless of mode, so our
 476   // destructor can also be trivial, and so our assignment operator doesn't
 477   // need to destruct the old value before copying over it.
 478   static_assert(std::is_trivially_destructible<Literal>::value, "must be");
 479   static_assert(std::is_trivially_destructible<Nonliteral>::value, "must be");
 480 
 481   Address& operator=(const Address& a) {
 482     _mode = a._mode;
 483     copy_data(a);
 484     return *this;
 485   }
 486 
 487   ~Address() = default;
 488 
 489   Register base() const {
 490     assert_is_nonliteral();
 491     return _nonliteral._base;
 492   }
 493 
 494   int64_t offset() const {
 495     assert_is_nonliteral();
 496     return _nonliteral._offset;
 497   }
 498 
 499   Register index() const {
 500     assert_is_nonliteral();
 501     return _nonliteral._index;
 502   }
 503 
 504   extend ext() const {
 505     assert_is_nonliteral();
 506     return _nonliteral._ext;
 507   }
 508 
 509   mode getMode() const {
 510     return _mode;
 511   }
 512 
 513   bool uses(Register reg) const {
 514     switch (_mode) {
 515     case literal:
 516     case no_mode:
 517       return false;
 518     case base_plus_offset:
 519     case base_plus_offset_reg:
 520     case pre:
 521     case post:
 522     case post_reg:
 523       return base() == reg || index() == reg;
 524     default:
 525       ShouldNotReachHere();
 526       return false;
 527     }
 528   }
 529 
 530   address target() const {
 531     assert_is_literal();
 532     return _literal._target;
 533   }
 534 
 535   const RelocationHolder& rspec() const {
 536     assert_is_literal();
 537     return _literal._rspec;
 538   }
 539 
 540   void encode(Instruction_aarch64 *i) const {
 541     i->f(0b111, 29, 27);
 542     i->srf(base(), 5);
 543 
 544     switch(_mode) {
 545     case base_plus_offset:
 546       {
 547         unsigned size = i->get(31, 30);
 548         if (i->get(26, 26) && i->get(23, 23)) {
 549           // SIMD Q Type - Size = 128 bits
 550           assert(size == 0, "bad size");
 551           size = 0b100;
 552         }
 553         assert(offset_ok_for_immed(offset(), size),
 554                "must be, was: " INT64_FORMAT ", %d", offset(), size);
 555         unsigned mask = (1 << size) - 1;
 556         if (offset() < 0 || offset() & mask) {
 557           i->f(0b00, 25, 24);
 558           i->f(0, 21), i->f(0b00, 11, 10);
 559           i->sf(offset(), 20, 12);
 560         } else {
 561           i->f(0b01, 25, 24);
 562           i->f(checked_cast<unsigned>(offset() >> size), 21, 10);
 563         }
 564       }
 565       break;
 566 
 567     case base_plus_offset_reg:
 568       {
 569         i->f(0b00, 25, 24);
 570         i->f(1, 21);
 571         i->rf(index(), 16);
 572         i->f(ext().option(), 15, 13);
 573         unsigned size = i->get(31, 30);
 574         if (i->get(26, 26) && i->get(23, 23)) {
 575           // SIMD Q Type - Size = 128 bits
 576           assert(size == 0, "bad size");
 577           size = 0b100;
 578         }
 579         if (size == 0) // It's a byte
 580           i->f(ext().shift() >= 0, 12);
 581         else {
 582           guarantee(ext().shift() <= 0 || ext().shift() == (int)size, "bad shift");
 583           i->f(ext().shift() > 0, 12);
 584         }
 585         i->f(0b10, 11, 10);
 586       }
 587       break;
 588 
 589     case pre:
 590       i->f(0b00, 25, 24);
 591       i->f(0, 21), i->f(0b11, 11, 10);
 592       i->sf(offset(), 20, 12);
 593       break;
 594 
 595     case post:
 596       i->f(0b00, 25, 24);
 597       i->f(0, 21), i->f(0b01, 11, 10);
 598       i->sf(offset(), 20, 12);
 599       break;
 600 
 601     default:
 602       ShouldNotReachHere();
 603     }
 604   }
 605 
 606   void encode_pair(Instruction_aarch64 *i) const {
 607     switch(_mode) {
 608     case base_plus_offset:
 609       i->f(0b010, 25, 23);
 610       break;
 611     case pre:
 612       i->f(0b011, 25, 23);
 613       break;
 614     case post:
 615       i->f(0b001, 25, 23);
 616       break;
 617     default:
 618       ShouldNotReachHere();
 619     }
 620 
 621     unsigned size; // Operand shift in 32-bit words
 622 
 623     if (i->get(26, 26)) { // float
 624       switch(i->get(31, 30)) {
 625       case 0b10:
 626         size = 2; break;
 627       case 0b01:
 628         size = 1; break;
 629       case 0b00:
 630         size = 0; break;
 631       default:
 632         ShouldNotReachHere();
 633         size = 0;  // unreachable
 634       }
 635     } else {
 636       size = i->get(31, 31);
 637     }
 638 
 639     size = 4 << size;
 640     guarantee(offset() % size == 0, "bad offset");
 641     i->sf(offset() / size, 21, 15);
 642     i->srf(base(), 5);
 643   }
 644 
 645   void encode_nontemporal_pair(Instruction_aarch64 *i) const {
 646     guarantee(_mode == base_plus_offset, "Bad addressing mode for nontemporal op");
 647     i->f(0b000, 25, 23);
 648     unsigned size = i->get(31, 31);
 649     size = 4 << size;
 650     guarantee(offset() % size == 0, "bad offset");
 651     i->sf(offset() / size, 21, 15);
 652     i->srf(base(), 5);
 653   }
 654 
 655   void lea(MacroAssembler *, Register) const;
 656 
 657   static bool offset_ok_for_immed(int64_t offset, uint shift);
 658 
 659   static bool offset_ok_for_sve_immed(int64_t offset, int shift, int vl /* sve vector length */) {
 660     if (offset % vl == 0) {
 661       // Convert address offset into sve imm offset (MUL VL).
 662       int64_t sve_offset = offset / vl;
 663       int32_t range = 1 << (shift - 1);
 664       if ((-range <= sve_offset) && (sve_offset < range)) {
 665         // sve_offset can be encoded
 666         return true;
 667       }
 668     }
 669     return false;
 670   }
 671 };
 672 
 673 // Convenience classes
 674 class RuntimeAddress: public Address {
 675 
 676   public:
 677 
 678   RuntimeAddress(address target) : Address(target, relocInfo::runtime_call_type) {}
 679 
 680 };
 681 
 682 class OopAddress: public Address {
 683 
 684   public:
 685 
 686   OopAddress(address target) : Address(target, relocInfo::oop_type){}
 687 
 688 };
 689 
 690 class ExternalAddress: public Address {
 691  private:
 692   static relocInfo::relocType reloc_for_target(address target) {
 693     // Sometimes ExternalAddress is used for values which aren't
 694     // exactly addresses, like the card table base.
 695     // external_word_type can't be used for values in the first page
 696     // so just skip the reloc in that case.
 697     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
 698   }
 699 
 700  public:
 701 
 702   ExternalAddress(address target) : Address(target, reloc_for_target(target)) {}
 703 
 704 };
 705 
 706 class InternalAddress: public Address {
 707 
 708   public:
 709 
 710   InternalAddress(address target) : Address(target, relocInfo::internal_word_type) {}
 711 };
 712 
 713 const int FPUStateSizeInWords = FloatRegister::number_of_registers * FloatRegister::save_slots_per_register;
 714 
 715 typedef enum {
 716   PLDL1KEEP = 0b00000, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM,
 717   PSTL1KEEP = 0b10000, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM,
 718   PLIL1KEEP = 0b01000, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM
 719 } prfop;
 720 
 721 class Assembler : public AbstractAssembler {
 722 
 723 public:
 724 
 725 #ifndef PRODUCT
 726   static const uintptr_t asm_bp;
 727 
 728   void emit_int32(jint x) {
 729     if ((uintptr_t)pc() == asm_bp)
 730       NOP();
 731     AbstractAssembler::emit_int32(x);
 732   }
 733 #else
 734   void emit_int32(jint x) {
 735     AbstractAssembler::emit_int32(x);
 736   }
 737 #endif
 738 
 739   enum { instruction_size = 4 };
 740 
 741   //---<  calculate length of instruction  >---
 742   // We just use the values set above.
 743   // instruction must start at passed address
 744   static unsigned int instr_len(unsigned char *instr) { return instruction_size; }
 745 
 746   //---<  longest instructions  >---
 747   static unsigned int instr_maxlen() { return instruction_size; }
 748 
 749   Address adjust(Register base, int offset, bool preIncrement) {
 750     if (preIncrement)
 751       return Address(Pre(base, offset));
 752     else
 753       return Address(Post(base, offset));
 754   }
 755 
 756   Address pre(Register base, int offset) {
 757     return adjust(base, offset, true);
 758   }
 759 
 760   Address post(Register base, int offset) {
 761     return adjust(base, offset, false);
 762   }
 763 
 764   Address post(Register base, Register idx) {
 765     return Address(Post(base, idx));
 766   }
 767 
 768   static address locate_next_instruction(address inst);
 769 
 770 #define f current_insn.f
 771 #define sf current_insn.sf
 772 #define rf current_insn.rf
 773 #define lrf current_insn.lrf
 774 #define srf current_insn.srf
 775 #define zrf current_insn.zrf
 776 #define prf current_insn.prf
 777 #define pgrf current_insn.pgrf
 778 
 779   typedef void (Assembler::* uncond_branch_insn)(address dest);
 780   typedef void (Assembler::* compare_and_branch_insn)(Register Rt, address dest);
 781   typedef void (Assembler::* test_and_branch_insn)(Register Rt, int bitpos, address dest);
 782   typedef void (Assembler::* prefetch_insn)(address target, prfop);
 783 
 784   void wrap_label(Label &L, uncond_branch_insn insn);
 785   void wrap_label(Register r, Label &L, compare_and_branch_insn insn);
 786   void wrap_label(Register r, int bitpos, Label &L, test_and_branch_insn insn);
 787   void wrap_label(Label &L, prfop, prefetch_insn insn);
 788 
 789   // PC-rel. addressing
 790 
 791   void adr(Register Rd, address dest);
 792   void _adrp(Register Rd, address dest);
 793 
 794   void adr(Register Rd, const Address &dest);
 795   void _adrp(Register Rd, const Address &dest);
 796 
 797   void adr(Register Rd, Label &L) {
 798     wrap_label(Rd, L, &Assembler::Assembler::adr);
 799   }
 800   void _adrp(Register Rd, Label &L) {
 801     wrap_label(Rd, L, &Assembler::_adrp);
 802   }
 803 
 804   void adrp(Register Rd, const Address &dest, uint64_t &offset) = delete;
 805 
 806   void prfm(const Address &adr, prfop pfop = PLDL1KEEP);
 807 
 808 #undef INSN
 809 
 810   void add_sub_immediate(Instruction_aarch64 &current_insn, Register Rd, Register Rn,
 811                          unsigned uimm, int op, int negated_op);
 812 
 813   // Add/subtract (immediate)
 814 #define INSN(NAME, decode, negated)                                     \
 815   void NAME(Register Rd, Register Rn, unsigned imm, unsigned shift) {   \
 816     starti;                                                             \
 817     f(decode, 31, 29), f(0b10001, 28, 24), f(shift, 23, 22), f(imm, 21, 10); \
 818     zrf(Rd, 0), srf(Rn, 5);                                             \
 819   }                                                                     \
 820                                                                         \
 821   void NAME(Register Rd, Register Rn, unsigned imm) {                   \
 822     starti;                                                             \
 823     add_sub_immediate(current_insn, Rd, Rn, imm, decode, negated);      \
 824   }
 825 
 826   INSN(addsw, 0b001, 0b011);
 827   INSN(subsw, 0b011, 0b001);
 828   INSN(adds,  0b101, 0b111);
 829   INSN(subs,  0b111, 0b101);
 830 
 831 #undef INSN
 832 
 833 #define INSN(NAME, decode, negated)                     \
 834   void NAME(Register Rd, Register Rn, unsigned imm) {   \
 835     starti;                                             \
 836     add_sub_immediate(current_insn, Rd, Rn, imm, decode, negated);     \
 837   }
 838 
 839   INSN(addw, 0b000, 0b010);
 840   INSN(subw, 0b010, 0b000);
 841   INSN(add,  0b100, 0b110);
 842   INSN(sub,  0b110, 0b100);
 843 
 844 #undef INSN
 845 
 846  // Logical (immediate)
 847 #define INSN(NAME, decode, is32)                                \
 848   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 849     starti;                                                     \
 850     uint32_t val = encode_logical_immediate(is32, imm);         \
 851     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 852     srf(Rd, 0), zrf(Rn, 5);                                     \
 853   }
 854 
 855   INSN(andw, 0b000, true);
 856   INSN(orrw, 0b001, true);
 857   INSN(eorw, 0b010, true);
 858   INSN(andr, 0b100, false);
 859   INSN(orr,  0b101, false);
 860   INSN(eor,  0b110, false);
 861 
 862 #undef INSN
 863 
 864 #define INSN(NAME, decode, is32)                                \
 865   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 866     starti;                                                     \
 867     uint32_t val = encode_logical_immediate(is32, imm);         \
 868     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 869     zrf(Rd, 0), zrf(Rn, 5);                                     \
 870   }
 871 
 872   INSN(ands, 0b111, false);
 873   INSN(andsw, 0b011, true);
 874 
 875 #undef INSN
 876 
 877   // Move wide (immediate)
 878 #define INSN(NAME, opcode)                                              \
 879   void NAME(Register Rd, unsigned imm, unsigned shift = 0) {            \
 880     assert_cond((shift/16)*16 == shift);                                \
 881     starti;                                                             \
 882     f(opcode, 31, 29), f(0b100101, 28, 23), f(shift/16, 22, 21),        \
 883       f(imm, 20, 5);                                                    \
 884     zrf(Rd, 0);                                                         \
 885   }
 886 
 887   INSN(movnw, 0b000);
 888   INSN(movzw, 0b010);
 889   INSN(movkw, 0b011);
 890   INSN(movn,  0b100);
 891   INSN(movz,  0b110);
 892   INSN(movk,  0b111);
 893 
 894 #undef INSN
 895 
 896   // Bitfield
 897 #define INSN(NAME, opcode, size)                                        \
 898   void NAME(Register Rd, Register Rn, unsigned immr, unsigned imms) {   \
 899     starti;                                                             \
 900     guarantee(size == 1 || (immr < 32 && imms < 32), "incorrect immr/imms");\
 901     f(opcode, 31, 22), f(immr, 21, 16), f(imms, 15, 10);                \
 902     zrf(Rn, 5), rf(Rd, 0);                                              \
 903   }
 904 
 905   INSN(sbfmw, 0b0001001100, 0);
 906   INSN(bfmw,  0b0011001100, 0);
 907   INSN(ubfmw, 0b0101001100, 0);
 908   INSN(sbfm,  0b1001001101, 1);
 909   INSN(bfm,   0b1011001101, 1);
 910   INSN(ubfm,  0b1101001101, 1);
 911 
 912 #undef INSN
 913 
 914   // Extract
 915 #define INSN(NAME, opcode, size)                                        \
 916   void NAME(Register Rd, Register Rn, Register Rm, unsigned imms) {     \
 917     starti;                                                             \
 918     guarantee(size == 1 || imms < 32, "incorrect imms");                \
 919     f(opcode, 31, 21), f(imms, 15, 10);                                 \
 920     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                                \
 921   }
 922 
 923   INSN(extrw, 0b00010011100, 0);
 924   INSN(extr,  0b10010011110, 1);
 925 
 926 #undef INSN
 927 
 928   // The maximum range of a branch is fixed for the AArch64
 929   // architecture.  In debug mode we shrink it in order to test
 930   // trampolines, but not so small that branches in the interpreter
 931   // are out of range.
 932   static const uint64_t branch_range = NOT_DEBUG(128 * M) DEBUG_ONLY(2 * M);
 933 
 934   static bool reachable_from_branch_at(address branch, address target) {
 935     return uabs(target - branch) < branch_range;
 936   }
 937 
 938   // Unconditional branch (immediate)
 939 #define INSN(NAME, opcode)                                              \
 940   void NAME(address dest) {                                             \
 941     starti;                                                             \
 942     int64_t offset = (dest - pc()) >> 2;                                \
 943     DEBUG_ONLY(assert(reachable_from_branch_at(pc(), dest), "debug only")); \
 944     f(opcode, 31), f(0b00101, 30, 26), sf(offset, 25, 0);               \
 945   }                                                                     \
 946   void NAME(Label &L) {                                                 \
 947     wrap_label(L, &Assembler::NAME);                                    \
 948   }                                                                     \
 949   void NAME(const Address &dest);
 950 
 951   INSN(b, 0);
 952   INSN(bl, 1);
 953 
 954 #undef INSN
 955 
 956   // Compare & branch (immediate)
 957 #define INSN(NAME, opcode)                              \
 958   void NAME(Register Rt, address dest) {                \
 959     int64_t offset = (dest - pc()) >> 2;                \
 960     starti;                                             \
 961     f(opcode, 31, 24), sf(offset, 23, 5), rf(Rt, 0);    \
 962   }                                                     \
 963   void NAME(Register Rt, Label &L) {                    \
 964     wrap_label(Rt, L, &Assembler::NAME);                \
 965   }
 966 
 967   INSN(cbzw,  0b00110100);
 968   INSN(cbnzw, 0b00110101);
 969   INSN(cbz,   0b10110100);
 970   INSN(cbnz,  0b10110101);
 971 
 972 #undef INSN
 973 
 974   // Test & branch (immediate)
 975 #define INSN(NAME, opcode)                                              \
 976   void NAME(Register Rt, int bitpos, address dest) {                    \
 977     int64_t offset = (dest - pc()) >> 2;                                \
 978     int b5 = bitpos >> 5;                                               \
 979     bitpos &= 0x1f;                                                     \
 980     starti;                                                             \
 981     f(b5, 31), f(opcode, 30, 24), f(bitpos, 23, 19), sf(offset, 18, 5); \
 982     rf(Rt, 0);                                                          \
 983   }                                                                     \
 984   void NAME(Register Rt, int bitpos, Label &L) {                        \
 985     wrap_label(Rt, bitpos, L, &Assembler::NAME);                        \
 986   }
 987 
 988   INSN(tbz,  0b0110110);
 989   INSN(tbnz, 0b0110111);
 990 
 991 #undef INSN
 992 
 993   // Conditional branch (immediate)
 994   enum Condition
 995     {EQ, NE, HS, CS=HS, LO, CC=LO, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE, AL, NV};
 996 
 997   void br(Condition  cond, address dest) {
 998     int64_t offset = (dest - pc()) >> 2;
 999     starti;
1000     f(0b0101010, 31, 25), f(0, 24), sf(offset, 23, 5), f(0, 4), f(cond, 3, 0);
1001   }
1002 
1003 #define INSN(NAME, cond)                        \
1004   void NAME(address dest) {                     \
1005     br(cond, dest);                             \
1006   }
1007 
1008   INSN(beq, EQ);
1009   INSN(bne, NE);
1010   INSN(bhs, HS);
1011   INSN(bcs, CS);
1012   INSN(blo, LO);
1013   INSN(bcc, CC);
1014   INSN(bmi, MI);
1015   INSN(bpl, PL);
1016   INSN(bvs, VS);
1017   INSN(bvc, VC);
1018   INSN(bhi, HI);
1019   INSN(bls, LS);
1020   INSN(bge, GE);
1021   INSN(blt, LT);
1022   INSN(bgt, GT);
1023   INSN(ble, LE);
1024   INSN(bal, AL);
1025   INSN(bnv, NV);
1026 
1027   void br(Condition cc, Label &L);
1028 
1029 #undef INSN
1030 
1031   // Exception generation
1032   void generate_exception(int opc, int op2, int LL, unsigned imm) {
1033     starti;
1034     f(0b11010100, 31, 24);
1035     f(opc, 23, 21), f(imm, 20, 5), f(op2, 4, 2), f(LL, 1, 0);
1036   }
1037 
1038 #define INSN(NAME, opc, op2, LL)                \
1039   void NAME(unsigned imm) {                     \
1040     generate_exception(opc, op2, LL, imm);      \
1041   }
1042 
1043   INSN(svc, 0b000, 0, 0b01);
1044   INSN(hvc, 0b000, 0, 0b10);
1045   INSN(smc, 0b000, 0, 0b11);
1046   INSN(brk, 0b001, 0, 0b00);
1047   INSN(hlt, 0b010, 0, 0b00);
1048   INSN(dcps1, 0b101, 0, 0b01);
1049   INSN(dcps2, 0b101, 0, 0b10);
1050   INSN(dcps3, 0b101, 0, 0b11);
1051 
1052 #undef INSN
1053 
1054   // System
1055   void system(int op0, int op1, int CRn, int CRm, int op2,
1056               Register rt = dummy_reg)
1057   {
1058     starti;
1059     f(0b11010101000, 31, 21);
1060     f(op0, 20, 19);
1061     f(op1, 18, 16);
1062     f(CRn, 15, 12);
1063     f(CRm, 11, 8);
1064     f(op2, 7, 5);
1065     rf(rt, 0);
1066   }
1067 
1068   // Hint instructions
1069 
1070 #define INSN(NAME, crm, op2)               \
1071   void NAME() {                            \
1072     system(0b00, 0b011, 0b0010, crm, op2); \
1073   }
1074 
1075   INSN(nop,   0b000, 0b0000);
1076   INSN(yield, 0b000, 0b0001);
1077   INSN(wfe,   0b000, 0b0010);
1078   INSN(wfi,   0b000, 0b0011);
1079   INSN(sev,   0b000, 0b0100);
1080   INSN(sevl,  0b000, 0b0101);
1081 
1082   INSN(autia1716, 0b0001, 0b100);
1083   INSN(autiasp,   0b0011, 0b101);
1084   INSN(autiaz,    0b0011, 0b100);
1085   INSN(autib1716, 0b0001, 0b110);
1086   INSN(autibsp,   0b0011, 0b111);
1087   INSN(autibz,    0b0011, 0b110);
1088   INSN(pacia1716, 0b0001, 0b000);
1089   INSN(paciasp,   0b0011, 0b001);
1090   INSN(paciaz,    0b0011, 0b000);
1091   INSN(pacib1716, 0b0001, 0b010);
1092   INSN(pacibsp,   0b0011, 0b011);
1093   INSN(pacibz,    0b0011, 0b010);
1094   INSN(xpaclri,   0b0000, 0b111);
1095 
1096 #undef INSN
1097 
1098   // we only provide mrs and msr for the special purpose system
1099   // registers where op1 (instr[20:19]) == 11
1100   // n.b msr has L (instr[21]) == 0 mrs has L == 1
1101 
1102   void msr(int op1, int CRn, int CRm, int op2, Register rt) {
1103     starti;
1104     f(0b1101010100011, 31, 19);
1105     f(op1, 18, 16);
1106     f(CRn, 15, 12);
1107     f(CRm, 11, 8);
1108     f(op2, 7, 5);
1109     // writing zr is ok
1110     zrf(rt, 0);
1111   }
1112 
1113   void mrs(int op1, int CRn, int CRm, int op2, Register rt) {
1114     starti;
1115     f(0b1101010100111, 31, 19);
1116     f(op1, 18, 16);
1117     f(CRn, 15, 12);
1118     f(CRm, 11, 8);
1119     f(op2, 7, 5);
1120     // reading to zr is a mistake
1121     rf(rt, 0);
1122   }
1123 
1124   enum barrier {OSHLD = 0b0001, OSHST, OSH, NSHLD=0b0101, NSHST, NSH,
1125                 ISHLD = 0b1001, ISHST, ISH, LD=0b1101, ST, SY};
1126 
1127   void dsb(barrier imm) {
1128     system(0b00, 0b011, 0b00011, imm, 0b100);
1129   }
1130 
1131   void dmb(barrier imm) {
1132     system(0b00, 0b011, 0b00011, imm, 0b101);
1133   }
1134 
1135   void isb() {
1136     system(0b00, 0b011, 0b00011, SY, 0b110);
1137   }
1138 
1139   void sys(int op1, int CRn, int CRm, int op2,
1140            Register rt = as_Register(0b11111)) {
1141     system(0b01, op1, CRn, CRm, op2, rt);
1142   }
1143 
1144   // Only implement operations accessible from EL0 or higher, i.e.,
1145   //            op1    CRn    CRm    op2
1146   // IC IVAU     3      7      5      1
1147   // DC CVAC     3      7      10     1
1148   // DC CVAP     3      7      12     1
1149   // DC CVAU     3      7      11     1
1150   // DC CIVAC    3      7      14     1
1151   // DC ZVA      3      7      4      1
1152   // So only deal with the CRm field.
1153   enum icache_maintenance {IVAU = 0b0101};
1154   enum dcache_maintenance {CVAC = 0b1010, CVAP = 0b1100, CVAU = 0b1011, CIVAC = 0b1110, ZVA = 0b100};
1155 
1156   void dc(dcache_maintenance cm, Register Rt) {
1157     sys(0b011, 0b0111, cm, 0b001, Rt);
1158   }
1159 
1160   void ic(icache_maintenance cm, Register Rt) {
1161     sys(0b011, 0b0111, cm, 0b001, Rt);
1162   }
1163 
1164   // A more convenient access to dmb for our purposes
1165   enum Membar_mask_bits {
1166     // We can use ISH for a barrier because the Arm ARM says "This
1167     // architecture assumes that all Processing Elements that use the
1168     // same operating system or hypervisor are in the same Inner
1169     // Shareable shareability domain."
1170     StoreStore = ISHST,
1171     LoadStore  = ISHLD,
1172     LoadLoad   = ISHLD,
1173     StoreLoad  = ISH,
1174     AnyAny     = ISH
1175   };
1176 
1177   void membar(Membar_mask_bits order_constraint) {
1178     dmb(Assembler::barrier(order_constraint));
1179   }
1180 
1181   // Unconditional branch (register)
1182 
1183   void branch_reg(int OP, int A, int M, Register RN, Register RM) {
1184     starti;
1185     f(0b1101011, 31, 25);
1186     f(OP, 24, 21);
1187     f(0b111110000, 20, 12);
1188     f(A, 11, 11);
1189     f(M, 10, 10);
1190     rf(RN, 5);
1191     rf(RM, 0);
1192   }
1193 
1194 #define INSN(NAME, opc)                         \
1195   void NAME(Register RN) {                      \
1196     branch_reg(opc, 0, 0, RN, r0);              \
1197   }
1198 
1199   INSN(br,  0b0000);
1200   INSN(blr, 0b0001);
1201   INSN(ret, 0b0010);
1202 
1203   void ret(void *p); // This forces a compile-time error for ret(0)
1204 
1205 #undef INSN
1206 
1207 #define INSN(NAME, opc)                         \
1208   void NAME() {                                 \
1209     branch_reg(opc, 0, 0, dummy_reg, r0);       \
1210   }
1211 
1212   INSN(eret, 0b0100);
1213   INSN(drps, 0b0101);
1214 
1215 #undef INSN
1216 
1217 #define INSN(NAME, M)                                  \
1218   void NAME() {                                        \
1219     branch_reg(0b0010, 1, M, dummy_reg, dummy_reg);    \
1220   }
1221 
1222   INSN(retaa, 0);
1223   INSN(retab, 1);
1224 
1225 #undef INSN
1226 
1227 #define INSN(NAME, OP, M)                   \
1228   void NAME(Register rn) {                  \
1229     branch_reg(OP, 1, M, rn, dummy_reg);    \
1230   }
1231 
1232   INSN(braaz,  0b0000, 0);
1233   INSN(brabz,  0b0000, 1);
1234   INSN(blraaz, 0b0001, 0);
1235   INSN(blrabz, 0b0001, 1);
1236 
1237 #undef INSN
1238 
1239 #define INSN(NAME, OP, M)                  \
1240   void NAME(Register rn, Register rm) {    \
1241     branch_reg(OP, 1, M, rn, rm);          \
1242   }
1243 
1244   INSN(braa,  0b1000, 0);
1245   INSN(brab,  0b1000, 1);
1246   INSN(blraa, 0b1001, 0);
1247   INSN(blrab, 0b1001, 1);
1248 
1249 #undef INSN
1250 
1251   // Load/store exclusive
1252   enum operand_size { byte, halfword, word, xword };
1253 
1254   void load_store_exclusive(Register Rs, Register Rt1, Register Rt2,
1255     Register Rn, enum operand_size sz, int op, bool ordered) {
1256     starti;
1257     f(sz, 31, 30), f(0b001000, 29, 24), f(op, 23, 21);
1258     rf(Rs, 16), f(ordered, 15), zrf(Rt2, 10), srf(Rn, 5), zrf(Rt1, 0);
1259   }
1260 
1261   void load_exclusive(Register dst, Register addr,
1262                       enum operand_size sz, bool ordered) {
1263     load_store_exclusive(dummy_reg, dst, dummy_reg, addr,
1264                          sz, 0b010, ordered);
1265   }
1266 
1267   void store_exclusive(Register status, Register new_val, Register addr,
1268                        enum operand_size sz, bool ordered) {
1269     load_store_exclusive(status, new_val, dummy_reg, addr,
1270                          sz, 0b000, ordered);
1271   }
1272 
1273 #define INSN4(NAME, sz, op, o0) /* Four registers */                    \
1274   void NAME(Register Rs, Register Rt1, Register Rt2, Register Rn) {     \
1275     guarantee(Rs != Rn && Rs != Rt1 && Rs != Rt2, "unpredictable instruction"); \
1276     load_store_exclusive(Rs, Rt1, Rt2, Rn, sz, op, o0);                 \
1277   }
1278 
1279 #define INSN3(NAME, sz, op, o0) /* Three registers */                   \
1280   void NAME(Register Rs, Register Rt, Register Rn) {                    \
1281     guarantee(Rs != Rn && Rs != Rt, "unpredictable instruction");       \
1282     load_store_exclusive(Rs, Rt, dummy_reg, Rn, sz, op, o0); \
1283   }
1284 
1285 #define INSN2(NAME, sz, op, o0) /* Two registers */                     \
1286   void NAME(Register Rt, Register Rn) {                                 \
1287     load_store_exclusive(dummy_reg, Rt, dummy_reg, \
1288                          Rn, sz, op, o0);                               \
1289   }
1290 
1291 #define INSN_FOO(NAME, sz, op, o0) /* Three registers, encoded differently */ \
1292   void NAME(Register Rt1, Register Rt2, Register Rn) {                  \
1293     guarantee(Rt1 != Rt2, "unpredictable instruction");                 \
1294     load_store_exclusive(dummy_reg, Rt1, Rt2, Rn, sz, op, o0);          \
1295   }
1296 
1297   // bytes
1298   INSN3(stxrb,  byte, 0b000, 0);
1299   INSN3(stlxrb, byte, 0b000, 1);
1300   INSN2(ldxrb,  byte, 0b010, 0);
1301   INSN2(ldaxrb, byte, 0b010, 1);
1302   INSN2(stlrb,  byte, 0b100, 1);
1303   INSN2(ldarb,  byte, 0b110, 1);
1304 
1305   // halfwords
1306   INSN3(stxrh,  halfword, 0b000, 0);
1307   INSN3(stlxrh, halfword, 0b000, 1);
1308   INSN2(ldxrh,  halfword, 0b010, 0);
1309   INSN2(ldaxrh, halfword, 0b010, 1);
1310   INSN2(stlrh,  halfword, 0b100, 1);
1311   INSN2(ldarh,  halfword, 0b110, 1);
1312 
1313   // words
1314   INSN3(stxrw,  word, 0b000, 0);
1315   INSN3(stlxrw, word, 0b000, 1);
1316   INSN4(stxpw,  word, 0b001, 0);
1317   INSN4(stlxpw, word, 0b001, 1);
1318   INSN2(ldxrw,  word, 0b010, 0);
1319   INSN2(ldaxrw, word, 0b010, 1);
1320   INSN2(stlrw,  word, 0b100, 1);
1321   INSN2(ldarw,  word, 0b110, 1);
1322   // pairs of words
1323   INSN_FOO(ldxpw,  word, 0b011, 0);
1324   INSN_FOO(ldaxpw, word, 0b011, 1);
1325 
1326   // xwords
1327   INSN3(stxr,  xword, 0b000, 0);
1328   INSN3(stlxr, xword, 0b000, 1);
1329   INSN4(stxp,  xword, 0b001, 0);
1330   INSN4(stlxp, xword, 0b001, 1);
1331   INSN2(ldxr,  xword, 0b010, 0);
1332   INSN2(ldaxr, xword, 0b010, 1);
1333   INSN2(stlr,  xword, 0b100, 1);
1334   INSN2(ldar,  xword, 0b110, 1);
1335   // pairs of xwords
1336   INSN_FOO(ldxp,  xword, 0b011, 0);
1337   INSN_FOO(ldaxp, xword, 0b011, 1);
1338 
1339 #undef INSN2
1340 #undef INSN3
1341 #undef INSN4
1342 #undef INSN_FOO
1343 
1344   // 8.1 Compare and swap extensions
1345   void lse_cas(Register Rs, Register Rt, Register Rn,
1346                         enum operand_size sz, bool a, bool r, bool not_pair) {
1347     starti;
1348     if (! not_pair) { // Pair
1349       assert(sz == word || sz == xword, "invalid size");
1350       /* The size bit is in bit 30, not 31 */
1351       sz = (operand_size)(sz == word ? 0b00:0b01);
1352     }
1353     f(sz, 31, 30), f(0b001000, 29, 24), f(not_pair ? 1 : 0, 23), f(a, 22), f(1, 21);
1354     zrf(Rs, 16), f(r, 15), f(0b11111, 14, 10), srf(Rn, 5), zrf(Rt, 0);
1355   }
1356 
1357   // CAS
1358 #define INSN(NAME, a, r)                                                \
1359   void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) {   \
1360     assert(Rs != Rn && Rs != Rt, "unpredictable instruction");          \
1361     lse_cas(Rs, Rt, Rn, sz, a, r, true);                                \
1362   }
1363   INSN(cas,   false, false)
1364   INSN(casa,  true,  false)
1365   INSN(casl,  false, true)
1366   INSN(casal, true,  true)
1367 #undef INSN
1368 
1369   // CASP
1370 #define INSN(NAME, a, r)                                                \
1371   void NAME(operand_size sz, Register Rs, Register Rs1,                 \
1372             Register Rt, Register Rt1, Register Rn) {                   \
1373     assert((Rs->encoding() & 1) == 0 && (Rt->encoding() & 1) == 0 &&    \
1374            Rs->successor() == Rs1 && Rt->successor() == Rt1 &&          \
1375            Rs != Rn && Rs1 != Rn && Rs != Rt, "invalid registers");     \
1376     lse_cas(Rs, Rt, Rn, sz, a, r, false);                               \
1377   }
1378   INSN(casp,   false, false)
1379   INSN(caspa,  true,  false)
1380   INSN(caspl,  false, true)
1381   INSN(caspal, true,  true)
1382 #undef INSN
1383 
1384   // 8.1 Atomic operations
1385   void lse_atomic(Register Rs, Register Rt, Register Rn,
1386                   enum operand_size sz, int op1, int op2, bool a, bool r) {
1387     starti;
1388     f(sz, 31, 30), f(0b111000, 29, 24), f(a, 23), f(r, 22), f(1, 21);
1389     zrf(Rs, 16), f(op1, 15), f(op2, 14, 12), f(0, 11, 10), srf(Rn, 5), zrf(Rt, 0);
1390   }
1391 
1392 #define INSN(NAME, NAME_A, NAME_L, NAME_AL, op1, op2)                   \
1393   void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) {   \
1394     lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, false);                 \
1395   }                                                                     \
1396   void NAME_A(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1397     lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, false);                  \
1398   }                                                                     \
1399   void NAME_L(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1400     lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, true);                  \
1401   }                                                                     \
1402   void NAME_AL(operand_size sz, Register Rs, Register Rt, Register Rn) {\
1403     lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, true);                   \
1404   }
1405   INSN(ldadd,  ldadda,  ldaddl,  ldaddal,  0, 0b000);
1406   INSN(ldbic,  ldbica,  ldbicl,  ldbical,  0, 0b001);
1407   INSN(ldeor,  ldeora,  ldeorl,  ldeoral,  0, 0b010);
1408   INSN(ldorr,  ldorra,  ldorrl,  ldorral,  0, 0b011);
1409   INSN(ldsmax, ldsmaxa, ldsmaxl, ldsmaxal, 0, 0b100);
1410   INSN(ldsmin, ldsmina, ldsminl, ldsminal, 0, 0b101);
1411   INSN(ldumax, ldumaxa, ldumaxl, ldumaxal, 0, 0b110);
1412   INSN(ldumin, ldumina, lduminl, lduminal, 0, 0b111);
1413   INSN(swp,    swpa,    swpl,    swpal,    1, 0b000);
1414 #undef INSN
1415 
1416   // Load register (literal)
1417 #define INSN(NAME, opc, V)                                              \
1418   void NAME(Register Rt, address dest) {                                \
1419     int64_t offset = (dest - pc()) >> 2;                                \
1420     starti;                                                             \
1421     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1422       sf(offset, 23, 5);                                                \
1423     rf(Rt, 0);                                                          \
1424   }                                                                     \
1425   void NAME(Register Rt, address dest, relocInfo::relocType rtype) {    \
1426     InstructionMark im(this);                                           \
1427     guarantee(rtype == relocInfo::internal_word_type,                   \
1428               "only internal_word_type relocs make sense here");        \
1429     code_section()->relocate(inst_mark(), InternalAddress(dest).rspec()); \
1430     NAME(Rt, dest);                                                     \
1431   }                                                                     \
1432   void NAME(Register Rt, Label &L) {                                    \
1433     wrap_label(Rt, L, &Assembler::NAME);                                \
1434   }
1435 
1436   INSN(ldrw, 0b00, 0);
1437   INSN(ldr, 0b01, 0);
1438   INSN(ldrsw, 0b10, 0);
1439 
1440 #undef INSN
1441 
1442 #define INSN(NAME, opc, V)                                              \
1443   void NAME(FloatRegister Rt, address dest) {                           \
1444     int64_t offset = (dest - pc()) >> 2;                                \
1445     starti;                                                             \
1446     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1447       sf(offset, 23, 5);                                                \
1448     rf(as_Register(Rt), 0);                                             \
1449   }
1450 
1451   INSN(ldrs, 0b00, 1);
1452   INSN(ldrd, 0b01, 1);
1453   INSN(ldrq, 0b10, 1);
1454 
1455 #undef INSN
1456 
1457 #define INSN(NAME, size, opc)                                           \
1458   void NAME(FloatRegister Rt, Register Rn) {                            \
1459     starti;                                                             \
1460     f(size, 31, 30), f(0b111100, 29, 24), f(opc, 23, 22), f(0, 21);     \
1461     f(0, 20, 12), f(0b01, 11, 10);                                      \
1462     rf(Rn, 5), rf(as_Register(Rt), 0);                                  \
1463   }
1464 
1465   INSN(ldrs, 0b10, 0b01);
1466   INSN(ldrd, 0b11, 0b01);
1467   INSN(ldrq, 0b00, 0b11);
1468 
1469 #undef INSN
1470 
1471 
1472 #define INSN(NAME, opc, V)                                              \
1473   void NAME(address dest, prfop op = PLDL1KEEP) {                       \
1474     int64_t offset = (dest - pc()) >> 2;                                \
1475     starti;                                                             \
1476     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1477       sf(offset, 23, 5);                                                \
1478     f(op, 4, 0);                                                        \
1479   }                                                                     \
1480   void NAME(Label &L, prfop op = PLDL1KEEP) {                           \
1481     wrap_label(L, op, &Assembler::NAME);                                \
1482   }
1483 
1484   INSN(prfm, 0b11, 0);
1485 
1486 #undef INSN
1487 
1488   // Load/store
1489   void ld_st1(int opc, int p1, int V, int L,
1490               Register Rt1, Register Rt2, Address adr, bool no_allocate) {
1491     starti;
1492     f(opc, 31, 30), f(p1, 29, 27), f(V, 26), f(L, 22);
1493     zrf(Rt2, 10), zrf(Rt1, 0);
1494     if (no_allocate) {
1495       adr.encode_nontemporal_pair(&current_insn);
1496     } else {
1497       adr.encode_pair(&current_insn);
1498     }
1499   }
1500 
1501   // Load/store register pair (offset)
1502 #define INSN(NAME, size, p1, V, L, no_allocate)         \
1503   void NAME(Register Rt1, Register Rt2, Address adr) {  \
1504     ld_st1(size, p1, V, L, Rt1, Rt2, adr, no_allocate); \
1505    }
1506 
1507   INSN(stpw,  0b00, 0b101, 0, 0, false);
1508   INSN(ldpw,  0b00, 0b101, 0, 1, false);
1509   INSN(ldpsw, 0b01, 0b101, 0, 1, false);
1510   INSN(stp,   0b10, 0b101, 0, 0, false);
1511   INSN(ldp,   0b10, 0b101, 0, 1, false);
1512 
1513   // Load/store no-allocate pair (offset)
1514   INSN(stnpw, 0b00, 0b101, 0, 0, true);
1515   INSN(ldnpw, 0b00, 0b101, 0, 1, true);
1516   INSN(stnp,  0b10, 0b101, 0, 0, true);
1517   INSN(ldnp,  0b10, 0b101, 0, 1, true);
1518 
1519 #undef INSN
1520 
1521 #define INSN(NAME, size, p1, V, L, no_allocate)                         \
1522   void NAME(FloatRegister Rt1, FloatRegister Rt2, Address adr) {        \
1523     ld_st1(size, p1, V, L,                                              \
1524            as_Register(Rt1), as_Register(Rt2), adr, no_allocate);       \
1525    }
1526 
1527   INSN(stps, 0b00, 0b101, 1, 0, false);
1528   INSN(ldps, 0b00, 0b101, 1, 1, false);
1529   INSN(stpd, 0b01, 0b101, 1, 0, false);
1530   INSN(ldpd, 0b01, 0b101, 1, 1, false);
1531   INSN(stpq, 0b10, 0b101, 1, 0, false);
1532   INSN(ldpq, 0b10, 0b101, 1, 1, false);
1533 
1534 #undef INSN
1535 
1536   // Load/store register (all modes)
1537   void ld_st2(Register Rt, const Address &adr, int size, int op, int V = 0) {
1538     starti;
1539 
1540     f(V, 26); // general reg?
1541     zrf(Rt, 0);
1542 
1543     // Encoding for literal loads is done here (rather than pushed
1544     // down into Address::encode) because the encoding of this
1545     // instruction is too different from all of the other forms to
1546     // make it worth sharing.
1547     if (adr.getMode() == Address::literal) {
1548       assert(size == 0b10 || size == 0b11, "bad operand size in ldr");
1549       assert(op == 0b01, "literal form can only be used with loads");
1550       f(size & 0b01, 31, 30), f(0b011, 29, 27), f(0b00, 25, 24);
1551       int64_t offset = (adr.target() - pc()) >> 2;
1552       sf(offset, 23, 5);
1553       code_section()->relocate(pc(), adr.rspec());
1554       return;
1555     }
1556 
1557     f(size, 31, 30);
1558     f(op, 23, 22); // str
1559     adr.encode(&current_insn);
1560   }
1561 
1562 #define INSN(NAME, size, op)                            \
1563   void NAME(Register Rt, const Address &adr) {          \
1564     ld_st2(Rt, adr, size, op);                          \
1565   }                                                     \
1566 
1567   INSN(str,  0b11, 0b00);
1568   INSN(strw, 0b10, 0b00);
1569   INSN(strb, 0b00, 0b00);
1570   INSN(strh, 0b01, 0b00);
1571 
1572   INSN(ldr,  0b11, 0b01);
1573   INSN(ldrw, 0b10, 0b01);
1574   INSN(ldrb, 0b00, 0b01);
1575   INSN(ldrh, 0b01, 0b01);
1576 
1577   INSN(ldrsb,  0b00, 0b10);
1578   INSN(ldrsbw, 0b00, 0b11);
1579   INSN(ldrsh,  0b01, 0b10);
1580   INSN(ldrshw, 0b01, 0b11);
1581   INSN(ldrsw,  0b10, 0b10);
1582 
1583 #undef INSN
1584 
1585 #define INSN(NAME, size, op)                            \
1586   void NAME(FloatRegister Rt, const Address &adr) {     \
1587     ld_st2(as_Register(Rt), adr, size, op, 1);          \
1588   }
1589 
1590   INSN(strd, 0b11, 0b00);
1591   INSN(strs, 0b10, 0b00);
1592   INSN(ldrd, 0b11, 0b01);
1593   INSN(ldrs, 0b10, 0b01);
1594   INSN(strq, 0b00, 0b10);
1595   INSN(ldrq, 0x00, 0b11);
1596 
1597 #undef INSN
1598 
1599   // Load/store a register, but with a BasicType parameter. Loaded signed integer values are
1600   // extended to 64 bits.
1601   void load(Register Rt, const Address &adr, BasicType bt) {
1602     int op = (is_signed_subword_type(bt) || bt == T_INT) ? 0b10 : 0b01;
1603     ld_st2(Rt, adr, exact_log2(type2aelembytes(bt)), op);
1604   }
1605   void store(Register Rt, const Address &adr, BasicType bt) {
1606     ld_st2(Rt, adr, exact_log2(type2aelembytes(bt)), 0b00);
1607   }
1608 
1609 /* SIMD extensions
1610  *
1611  * We just use FloatRegister in the following. They are exactly the same
1612  * as SIMD registers.
1613  */
1614 public:
1615 
1616   enum SIMD_Arrangement {
1617     T8B, T16B, T4H, T8H, T2S, T4S, T1D, T2D, T1Q, INVALID_ARRANGEMENT
1618   };
1619 
1620   enum SIMD_RegVariant {
1621       B, H, S, D, Q, INVALID
1622   };
1623 
1624 private:
1625 
1626   static SIMD_Arrangement _esize2arrangement_table[9][2];
1627   static SIMD_RegVariant _esize2regvariant[9];
1628 
1629 public:
1630 
1631   static SIMD_Arrangement esize2arrangement(unsigned esize, bool isQ);
1632   static SIMD_RegVariant elemType_to_regVariant(BasicType bt);
1633   static SIMD_RegVariant elemBytes_to_regVariant(unsigned esize);
1634   // Return the corresponding bits for different SIMD_RegVariant value.
1635   static unsigned regVariant_to_elemBits(SIMD_RegVariant T);
1636 
1637   enum shift_kind { LSL, LSR, ASR, ROR };
1638 
1639   void op_shifted_reg(Instruction_aarch64 &current_insn, unsigned decode,
1640                       enum shift_kind kind, unsigned shift,
1641                       unsigned size, unsigned op) {
1642     f(size, 31);
1643     f(op, 30, 29);
1644     f(decode, 28, 24);
1645     f(shift, 15, 10);
1646     f(kind, 23, 22);
1647   }
1648 
1649   // Logical (shifted register)
1650 #define INSN(NAME, size, op, N)                                         \
1651   void NAME(Register Rd, Register Rn, Register Rm,                      \
1652             enum shift_kind kind = LSL, unsigned shift = 0) {           \
1653     starti;                                                             \
1654     guarantee(size == 1 || shift < 32, "incorrect shift");              \
1655     f(N, 21);                                                           \
1656     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                                \
1657     op_shifted_reg(current_insn, 0b01010, kind, shift, size, op);       \
1658   }
1659 
1660   INSN(andr,  1, 0b00, 0);
1661   INSN(orr,   1, 0b01, 0);
1662   INSN(eor,   1, 0b10, 0);
1663   INSN(ands,  1, 0b11, 0);
1664   INSN(andw,  0, 0b00, 0);
1665   INSN(orrw,  0, 0b01, 0);
1666   INSN(eorw,  0, 0b10, 0);
1667   INSN(andsw, 0, 0b11, 0);
1668 
1669 #undef INSN
1670 
1671 #define INSN(NAME, size, op, N)                                         \
1672   void NAME(Register Rd, Register Rn, Register Rm,                      \
1673             enum shift_kind kind = LSL, unsigned shift = 0) {           \
1674     starti;                                                             \
1675     f(N, 21);                                                           \
1676     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                                \
1677     op_shifted_reg(current_insn, 0b01010, kind, shift, size, op);       \
1678   }                                                                     \
1679                                                                         \
1680   /* These instructions have no immediate form. Provide an overload so  \
1681      that if anyone does try to use an immediate operand -- this has    \
1682      happened! -- we'll get a compile-time error. */                    \
1683   void NAME(Register Rd, Register Rn, unsigned imm,                     \
1684             enum shift_kind kind = LSL, unsigned shift = 0) {           \
1685     assert(false, " can't be used with immediate operand");             \
1686   }
1687 
1688   INSN(bic,   1, 0b00, 1);
1689   INSN(orn,   1, 0b01, 1);
1690   INSN(eon,   1, 0b10, 1);
1691   INSN(bics,  1, 0b11, 1);
1692   INSN(bicw,  0, 0b00, 1);
1693   INSN(ornw,  0, 0b01, 1);
1694   INSN(eonw,  0, 0b10, 1);
1695   INSN(bicsw, 0, 0b11, 1);
1696 
1697 #undef INSN
1698 
1699 #ifdef _WIN64
1700 // In MSVC, `mvn` is defined as a macro and it affects compilation
1701 #undef mvn
1702 #endif
1703 
1704   // Aliases for short forms of orn
1705 void mvn(Register Rd, Register Rm,
1706             enum shift_kind kind = LSL, unsigned shift = 0) {
1707   orn(Rd, zr, Rm, kind, shift);
1708 }
1709 
1710 void mvnw(Register Rd, Register Rm,
1711             enum shift_kind kind = LSL, unsigned shift = 0) {
1712   ornw(Rd, zr, Rm, kind, shift);
1713 }
1714 
1715   // Add/subtract (shifted register)
1716 #define INSN(NAME, size, op)                            \
1717   void NAME(Register Rd, Register Rn, Register Rm,      \
1718             enum shift_kind kind, unsigned shift = 0) { \
1719     starti;                                             \
1720     f(0, 21);                                           \
1721     assert_cond(kind != ROR);                           \
1722     guarantee(size == 1 || shift < 32, "incorrect shift");\
1723     zrf(Rd, 0), zrf(Rn, 5), zrf(Rm, 16);                \
1724     op_shifted_reg(current_insn, 0b01011, kind, shift, size, op);      \
1725   }
1726 
1727   INSN(add,  1, 0b000);
1728   INSN(sub,  1, 0b10);
1729   INSN(addw, 0, 0b000);
1730   INSN(subw, 0, 0b10);
1731 
1732   INSN(adds,  1, 0b001);
1733   INSN(subs,  1, 0b11);
1734   INSN(addsw, 0, 0b001);
1735   INSN(subsw, 0, 0b11);
1736 
1737 #undef INSN
1738 
1739   // Add/subtract (extended register)
1740 #define INSN(NAME, op)                                                  \
1741   void NAME(Register Rd, Register Rn, Register Rm,                      \
1742            ext::operation option, int amount = 0) {                     \
1743     starti;                                                             \
1744     zrf(Rm, 16), srf(Rn, 5), srf(Rd, 0);                                \
1745     add_sub_extended_reg(current_insn, op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1746   }
1747 
1748   void add_sub_extended_reg(Instruction_aarch64 &current_insn, unsigned op, unsigned decode,
1749     Register Rd, Register Rn, Register Rm,
1750     unsigned opt, ext::operation option, unsigned imm) {
1751     guarantee(imm <= 4, "shift amount must be <= 4");
1752     f(op, 31, 29), f(decode, 28, 24), f(opt, 23, 22), f(1, 21);
1753     f(option, 15, 13), f(imm, 12, 10);
1754   }
1755 
1756   INSN(addw, 0b000);
1757   INSN(subw, 0b010);
1758   INSN(add,  0b100);
1759   INSN(sub,  0b110);
1760 
1761 #undef INSN
1762 
1763 #define INSN(NAME, op)                                                  \
1764   void NAME(Register Rd, Register Rn, Register Rm,                      \
1765            ext::operation option, int amount = 0) {                     \
1766     starti;                                                             \
1767     zrf(Rm, 16), srf(Rn, 5), zrf(Rd, 0);                                \
1768     add_sub_extended_reg(current_insn, op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1769   }
1770 
1771   INSN(addsw, 0b001);
1772   INSN(subsw, 0b011);
1773   INSN(adds,  0b101);
1774   INSN(subs,  0b111);
1775 
1776 #undef INSN
1777 
1778   // Aliases for short forms of add and sub
1779 #define INSN(NAME)                                      \
1780   void NAME(Register Rd, Register Rn, Register Rm) {    \
1781     if (Rd == sp || Rn == sp)                           \
1782       NAME(Rd, Rn, Rm, ext::uxtx);                      \
1783     else                                                \
1784       NAME(Rd, Rn, Rm, LSL);                            \
1785   }
1786 
1787   INSN(addw);
1788   INSN(subw);
1789   INSN(add);
1790   INSN(sub);
1791 
1792   INSN(addsw);
1793   INSN(subsw);
1794   INSN(adds);
1795   INSN(subs);
1796 
1797 #undef INSN
1798 
1799   // Add/subtract (with carry)
1800   void add_sub_carry(unsigned op, Register Rd, Register Rn, Register Rm) {
1801     starti;
1802     f(op, 31, 29);
1803     f(0b11010000, 28, 21);
1804     f(0b000000, 15, 10);
1805     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);
1806   }
1807 
1808   #define INSN(NAME, op)                                \
1809     void NAME(Register Rd, Register Rn, Register Rm) {  \
1810       add_sub_carry(op, Rd, Rn, Rm);                    \
1811     }
1812 
1813   INSN(adcw,  0b000);
1814   INSN(adcsw, 0b001);
1815   INSN(sbcw,  0b010);
1816   INSN(sbcsw, 0b011);
1817   INSN(adc,   0b100);
1818   INSN(adcs,  0b101);
1819   INSN(sbc,   0b110);
1820   INSN(sbcs,  0b111);
1821 
1822 #undef INSN
1823 
1824   // Conditional compare (both kinds)
1825   void conditional_compare(unsigned op, int o1, int o2, int o3,
1826                            Register Rn, unsigned imm5, unsigned nzcv,
1827                            unsigned cond) {
1828     starti;
1829     f(op, 31, 29);
1830     f(0b11010010, 28, 21);
1831     f(cond, 15, 12);
1832     f(o1, 11);
1833     f(o2, 10);
1834     f(o3, 4);
1835     f(nzcv, 3, 0);
1836     f(imm5, 20, 16), zrf(Rn, 5);
1837   }
1838 
1839 #define INSN(NAME, op)                                                  \
1840   void NAME(Register Rn, Register Rm, int imm, Condition cond) {        \
1841     int regNumber = (Rm == zr ? 31 : Rm->encoding());                   \
1842     conditional_compare(op, 0, 0, 0, Rn, regNumber, imm, cond);         \
1843   }                                                                     \
1844                                                                         \
1845   void NAME(Register Rn, int imm5, int imm, Condition cond) {           \
1846     conditional_compare(op, 1, 0, 0, Rn, imm5, imm, cond);              \
1847   }
1848 
1849   INSN(ccmnw, 0b001);
1850   INSN(ccmpw, 0b011);
1851   INSN(ccmn, 0b101);
1852   INSN(ccmp, 0b111);
1853 
1854 #undef INSN
1855 
1856   // Conditional select
1857   void conditional_select(unsigned op, unsigned op2,
1858                           Register Rd, Register Rn, Register Rm,
1859                           unsigned cond) {
1860     starti;
1861     f(op, 31, 29);
1862     f(0b11010100, 28, 21);
1863     f(cond, 15, 12);
1864     f(op2, 11, 10);
1865     zrf(Rm, 16), zrf(Rn, 5), rf(Rd, 0);
1866   }
1867 
1868 #define INSN(NAME, op, op2)                                             \
1869   void NAME(Register Rd, Register Rn, Register Rm, Condition cond) {    \
1870     conditional_select(op, op2, Rd, Rn, Rm, cond);                      \
1871   }
1872 
1873   INSN(cselw,  0b000, 0b00);
1874   INSN(csincw, 0b000, 0b01);
1875   INSN(csinvw, 0b010, 0b00);
1876   INSN(csnegw, 0b010, 0b01);
1877   INSN(csel,   0b100, 0b00);
1878   INSN(csinc,  0b100, 0b01);
1879   INSN(csinv,  0b110, 0b00);
1880   INSN(csneg,  0b110, 0b01);
1881 
1882 #undef INSN
1883 
1884   // Data processing
1885   void data_processing(Instruction_aarch64 &current_insn, unsigned op29, unsigned opcode,
1886                        Register Rd, Register Rn) {
1887     f(op29, 31, 29), f(0b11010110, 28, 21);
1888     f(opcode, 15, 10);
1889     rf(Rn, 5), rf(Rd, 0);
1890   }
1891 
1892   // (1 source)
1893 #define INSN(NAME, op29, opcode2, opcode)                       \
1894   void NAME(Register Rd, Register Rn) {                         \
1895     starti;                                                     \
1896     f(opcode2, 20, 16);                                         \
1897     data_processing(current_insn, op29, opcode, Rd, Rn);        \
1898   }
1899 
1900   INSN(rbitw,  0b010, 0b00000, 0b00000);
1901   INSN(rev16w, 0b010, 0b00000, 0b00001);
1902   INSN(revw,   0b010, 0b00000, 0b00010);
1903   INSN(clzw,   0b010, 0b00000, 0b00100);
1904   INSN(clsw,   0b010, 0b00000, 0b00101);
1905 
1906   INSN(rbit,   0b110, 0b00000, 0b00000);
1907   INSN(rev16,  0b110, 0b00000, 0b00001);
1908   INSN(rev32,  0b110, 0b00000, 0b00010);
1909   INSN(rev,    0b110, 0b00000, 0b00011);
1910   INSN(clz,    0b110, 0b00000, 0b00100);
1911   INSN(cls,    0b110, 0b00000, 0b00101);
1912 
1913   // PAC instructions
1914   INSN(pacia,  0b110, 0b00001, 0b00000);
1915   INSN(pacib,  0b110, 0b00001, 0b00001);
1916   INSN(pacda,  0b110, 0b00001, 0b00010);
1917   INSN(pacdb,  0b110, 0b00001, 0b00011);
1918   INSN(autia,  0b110, 0b00001, 0b00100);
1919   INSN(autib,  0b110, 0b00001, 0b00101);
1920   INSN(autda,  0b110, 0b00001, 0b00110);
1921   INSN(autdb,  0b110, 0b00001, 0b00111);
1922 
1923 #undef INSN
1924 
1925 #define INSN(NAME, op29, opcode2, opcode)                       \
1926   void NAME(Register Rd) {                                      \
1927     starti;                                                     \
1928     f(opcode2, 20, 16);                                         \
1929     data_processing(current_insn, op29, opcode, Rd, dummy_reg); \
1930   }
1931 
1932   // PAC instructions (with zero modifier)
1933   INSN(paciza,  0b110, 0b00001, 0b01000);
1934   INSN(pacizb,  0b110, 0b00001, 0b01001);
1935   INSN(pacdza,  0b110, 0b00001, 0b01010);
1936   INSN(pacdzb,  0b110, 0b00001, 0b01011);
1937   INSN(autiza,  0b110, 0b00001, 0b01100);
1938   INSN(autizb,  0b110, 0b00001, 0b01101);
1939   INSN(autdza,  0b110, 0b00001, 0b01110);
1940   INSN(autdzb,  0b110, 0b00001, 0b01111);
1941   INSN(xpaci,   0b110, 0b00001, 0b10000);
1942   INSN(xpacd,   0b110, 0b00001, 0b10001);
1943 
1944 #undef INSN
1945 
1946   // Data-processing (2 source)
1947 #define INSN(NAME, op29, opcode)                                \
1948   void NAME(Register Rd, Register Rn, Register Rm) {            \
1949     starti;                                                     \
1950     rf(Rm, 16);                                                 \
1951     data_processing(current_insn, op29, opcode, Rd, Rn);        \
1952   }
1953 
1954   INSN(udivw, 0b000, 0b000010);
1955   INSN(sdivw, 0b000, 0b000011);
1956   INSN(lslvw, 0b000, 0b001000);
1957   INSN(lsrvw, 0b000, 0b001001);
1958   INSN(asrvw, 0b000, 0b001010);
1959   INSN(rorvw, 0b000, 0b001011);
1960 
1961   INSN(udiv, 0b100, 0b000010);
1962   INSN(sdiv, 0b100, 0b000011);
1963   INSN(lslv, 0b100, 0b001000);
1964   INSN(lsrv, 0b100, 0b001001);
1965   INSN(asrv, 0b100, 0b001010);
1966   INSN(rorv, 0b100, 0b001011);
1967 
1968 #undef INSN
1969 
1970   // Data-processing (3 source)
1971   void data_processing(unsigned op54, unsigned op31, unsigned o0,
1972                        Register Rd, Register Rn, Register Rm,
1973                        Register Ra) {
1974     starti;
1975     f(op54, 31, 29), f(0b11011, 28, 24);
1976     f(op31, 23, 21), f(o0, 15);
1977     zrf(Rm, 16), zrf(Ra, 10), zrf(Rn, 5), zrf(Rd, 0);
1978   }
1979 
1980 #define INSN(NAME, op54, op31, o0)                                      \
1981   void NAME(Register Rd, Register Rn, Register Rm, Register Ra) {       \
1982     data_processing(op54, op31, o0, Rd, Rn, Rm, Ra);                    \
1983   }
1984 
1985   INSN(maddw,  0b000, 0b000, 0);
1986   INSN(msubw,  0b000, 0b000, 1);
1987   INSN(madd,   0b100, 0b000, 0);
1988   INSN(msub,   0b100, 0b000, 1);
1989   INSN(smaddl, 0b100, 0b001, 0);
1990   INSN(smsubl, 0b100, 0b001, 1);
1991   INSN(umaddl, 0b100, 0b101, 0);
1992   INSN(umsubl, 0b100, 0b101, 1);
1993 
1994 #undef INSN
1995 
1996 #define INSN(NAME, op54, op31, o0)                                      \
1997   void NAME(Register Rd, Register Rn, Register Rm) {                    \
1998     data_processing(op54, op31, o0, Rd, Rn, Rm, as_Register(31));       \
1999   }
2000 
2001   INSN(smulh, 0b100, 0b010, 0);
2002   INSN(umulh, 0b100, 0b110, 0);
2003 
2004 #undef INSN
2005 
2006   // Floating-point data-processing (1 source)
2007   void data_processing(unsigned type, unsigned opcode,
2008                        FloatRegister Vd, FloatRegister Vn) {
2009     starti;
2010     f(0b000, 31, 29);
2011     f(0b11110, 28, 24);
2012     f(type, 23, 22), f(1, 21), f(opcode, 20, 15), f(0b10000, 14, 10);
2013     rf(Vn, 5), rf(Vd, 0);
2014   }
2015 
2016 #define INSN(NAME, type, opcode)                        \
2017   void NAME(FloatRegister Vd, FloatRegister Vn) {       \
2018     data_processing(type, opcode, Vd, Vn);              \
2019   }
2020 
2021   INSN(fmovs,  0b00, 0b000000);
2022   INSN(fabss,  0b00, 0b000001);
2023   INSN(fnegs,  0b00, 0b000010);
2024   INSN(fsqrts, 0b00, 0b000011);
2025   INSN(fcvts,  0b00, 0b000101);   // Single-precision to double-precision
2026   INSN(fcvths, 0b11, 0b000100);   // Half-precision to single-precision
2027   INSN(fcvtsh, 0b00, 0b000111);   // Single-precision to half-precision
2028 
2029   INSN(fmovd,  0b01, 0b000000);
2030   INSN(fabsd,  0b01, 0b000001);
2031   INSN(fnegd,  0b01, 0b000010);
2032   INSN(fsqrtd, 0b01, 0b000011);
2033   INSN(fcvtd,  0b01, 0b000100);   // Double-precision to single-precision
2034 
2035   INSN(fsqrth, 0b11, 0b000011);   // Half-precision sqrt
2036 
2037 private:
2038   void _fcvt_narrow_extend(FloatRegister Vd, SIMD_Arrangement Ta,
2039                            FloatRegister Vn, SIMD_Arrangement Tb, bool do_extend) {
2040     assert((do_extend && (Tb >> 1) + 1 == (Ta >> 1))
2041            || (!do_extend && (Ta >> 1) + 1 == (Tb >> 1)), "Incompatible arrangement");
2042     starti;
2043     int op30 = (do_extend ? Tb : Ta) & 1;
2044     int op22 = ((do_extend ? Ta : Tb) >> 1) & 1;
2045     f(0, 31), f(op30, 30), f(0b0011100, 29, 23), f(op22, 22);
2046     f(0b100001011, 21, 13), f(do_extend ? 1 : 0, 12), f(0b10, 11, 10);
2047     rf(Vn, 5), rf(Vd, 0);
2048   }
2049 
2050 public:
2051   void fcvtl(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb) {
2052     assert(Tb == T4H || Tb == T8H|| Tb == T2S || Tb == T4S, "invalid arrangement");
2053     _fcvt_narrow_extend(Vd, Ta, Vn, Tb, true);
2054   }
2055 
2056   void fcvtn(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb) {
2057     assert(Ta == T4H || Ta == T8H|| Ta == T2S || Ta == T4S, "invalid arrangement");
2058     _fcvt_narrow_extend(Vd, Ta, Vn, Tb, false);
2059   }
2060 
2061 #undef INSN
2062 
2063   // Floating-point data-processing (2 source)
2064   void data_processing(unsigned op31, unsigned type, unsigned opcode, unsigned op21,
2065                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {
2066     starti;
2067     f(op31, 31, 29);
2068     f(0b11110, 28, 24);
2069     f(type, 23, 22), f(op21, 21), f(opcode, 15, 10);
2070     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
2071   }
2072 
2073 #define INSN(NAME, op31, type, opcode, op21)                            \
2074   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {     \
2075     data_processing(op31, type, opcode, op21, Vd, Vn, Vm);              \
2076   }
2077 
2078   INSN(fmuls,  0b000, 0b00, 0b000010, 0b1);
2079   INSN(fdivs,  0b000, 0b00, 0b000110, 0b1);
2080   INSN(fadds,  0b000, 0b00, 0b001010, 0b1);
2081   INSN(fsubs,  0b000, 0b00, 0b001110, 0b1);
2082   INSN(fmaxs,  0b000, 0b00, 0b010010, 0b1);
2083   INSN(fmins,  0b000, 0b00, 0b010110, 0b1);
2084   INSN(fnmuls, 0b000, 0b00, 0b100010, 0b1);
2085 
2086   INSN(fmuld,  0b000, 0b01, 0b000010, 0b1);
2087   INSN(fdivd,  0b000, 0b01, 0b000110, 0b1);
2088   INSN(faddd,  0b000, 0b01, 0b001010, 0b1);
2089   INSN(fsubd,  0b000, 0b01, 0b001110, 0b1);
2090   INSN(fmaxd,  0b000, 0b01, 0b010010, 0b1);
2091   INSN(fmind,  0b000, 0b01, 0b010110, 0b1);
2092   INSN(fnmuld, 0b000, 0b01, 0b100010, 0b1);
2093 
2094   // Half-precision floating-point instructions
2095   INSN(fmulh,  0b000, 0b11, 0b000010, 0b1);
2096   INSN(fdivh,  0b000, 0b11, 0b000110, 0b1);
2097   INSN(faddh,  0b000, 0b11, 0b001010, 0b1);
2098   INSN(fsubh,  0b000, 0b11, 0b001110, 0b1);
2099   INSN(fmaxh,  0b000, 0b11, 0b010010, 0b1);
2100   INSN(fminh,  0b000, 0b11, 0b010110, 0b1);
2101   INSN(fnmulh, 0b000, 0b11, 0b100010, 0b1);
2102 #undef INSN
2103 
2104 // Advanced SIMD scalar three same
2105 #define INSN(NAME, U, size, opcode)                                                     \
2106   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {                     \
2107     starti;                                                                             \
2108     f(0b01, 31, 30), f(U, 29), f(0b11110, 28, 24), f(size, 23, 22), f(1, 21);           \
2109     rf(Vm, 16), f(opcode, 15, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0);                      \
2110   }
2111 
2112   INSN(fabds, 0b1, 0b10, 0b11010); // Floating-point Absolute Difference (single-precision)
2113   INSN(fabdd, 0b1, 0b11, 0b11010); // Floating-point Absolute Difference (double-precision)
2114 
2115 #undef INSN
2116 
2117 // Advanced SIMD scalar three same FP16
2118 #define INSN(NAME, U, a, opcode)                                                       \
2119   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {                    \
2120     starti;                                                                            \
2121     f(0b01, 31, 30), f(U, 29), f(0b11110, 28, 24), f(a, 23), f(0b10, 22, 21);          \
2122     rf(Vm, 16), f(0b00, 15, 14), f(opcode, 13, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0);    \
2123   }
2124 
2125   INSN(fabdh, 0b1, 0b1, 0b010); // Floating-point Absolute Difference (half-precision float)
2126 
2127 #undef INSN
2128 
2129    // Floating-point data-processing (3 source)
2130   void data_processing(unsigned op31, unsigned type, unsigned o1, unsigned o0,
2131                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,
2132                        FloatRegister Va) {
2133     starti;
2134     f(op31, 31, 29);
2135     f(0b11111, 28, 24);
2136     f(type, 23, 22), f(o1, 21), f(o0, 15);
2137     rf(Vm, 16), rf(Va, 10), rf(Vn, 5), rf(Vd, 0);
2138   }
2139 
2140 #define INSN(NAME, op31, type, o1, o0)                                  \
2141   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,       \
2142             FloatRegister Va) {                                         \
2143     data_processing(op31, type, o1, o0, Vd, Vn, Vm, Va);                \
2144   }
2145 
2146   INSN(fmadds,  0b000, 0b00, 0, 0);
2147   INSN(fmsubs,  0b000, 0b00, 0, 1);
2148   INSN(fnmadds, 0b000, 0b00, 1, 0);
2149   INSN(fnmsubs, 0b000, 0b00, 1, 1);
2150 
2151   INSN(fmaddd,  0b000, 0b01, 0, 0);
2152   INSN(fmsubd,  0b000, 0b01, 0, 1);
2153   INSN(fnmaddd, 0b000, 0b01, 1, 0);
2154   INSN(fnmsub,  0b000, 0b01, 1, 1);
2155 
2156   INSN(fmaddh,  0b000, 0b11, 0, 0);  // half-precision fused multiply-add (scalar)
2157 #undef INSN
2158 
2159    // Floating-point conditional select
2160   void fp_conditional_select(unsigned op31, unsigned type,
2161                              unsigned op1, unsigned op2,
2162                              Condition cond, FloatRegister Vd,
2163                              FloatRegister Vn, FloatRegister Vm) {
2164     starti;
2165     f(op31, 31, 29);
2166     f(0b11110, 28, 24);
2167     f(type, 23, 22);
2168     f(op1, 21, 21);
2169     f(op2, 11, 10);
2170     f(cond, 15, 12);
2171     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
2172   }
2173 
2174 #define INSN(NAME, op31, type, op1, op2)                                \
2175   void NAME(FloatRegister Vd, FloatRegister Vn,                         \
2176             FloatRegister Vm, Condition cond) {                         \
2177     fp_conditional_select(op31, type, op1, op2, cond, Vd, Vn, Vm);      \
2178   }
2179 
2180   INSN(fcsels, 0b000, 0b00, 0b1, 0b11);
2181   INSN(fcseld, 0b000, 0b01, 0b1, 0b11);
2182 
2183 #undef INSN
2184 
2185   // Conversion between floating-point and integer
2186   void float_int_convert(unsigned sflag, unsigned ftype,
2187                          unsigned rmode, unsigned opcode,
2188                          Register Rd, Register Rn) {
2189     starti;
2190     f(sflag, 31);
2191     f(0b00, 30, 29);
2192     f(0b11110, 28, 24);
2193     f(ftype, 23, 22), f(1, 21), f(rmode, 20, 19);
2194     f(opcode, 18, 16), f(0b000000, 15, 10);
2195     zrf(Rn, 5), zrf(Rd, 0);
2196   }
2197 
2198 #define INSN(NAME, sflag, ftype, rmode, opcode)                          \
2199   void NAME(Register Rd, FloatRegister Vn) {                             \
2200     float_int_convert(sflag, ftype, rmode, opcode, Rd, as_Register(Vn)); \
2201   }
2202 
2203   INSN(fcvtzsw, 0b0, 0b00, 0b11, 0b000);
2204   INSN(fcvtzs,  0b1, 0b00, 0b11, 0b000);
2205   INSN(fcvtzdw, 0b0, 0b01, 0b11, 0b000);
2206   INSN(fcvtzd,  0b1, 0b01, 0b11, 0b000);
2207 
2208   // RoundToNearestTiesAway
2209   INSN(fcvtassw, 0b0, 0b00, 0b00, 0b100);  // float -> signed word
2210   INSN(fcvtasd,  0b1, 0b01, 0b00, 0b100);  // double -> signed xword
2211 
2212   // RoundTowardsNegative
2213   INSN(fcvtmssw, 0b0, 0b00, 0b10, 0b000);  // float -> signed word
2214   INSN(fcvtmsd,  0b1, 0b01, 0b10, 0b000);  // double -> signed xword
2215 
2216   INSN(fmovs, 0b0, 0b00, 0b00, 0b110);
2217   INSN(fmovd, 0b1, 0b01, 0b00, 0b110);
2218 
2219   INSN(fmovhid, 0b1, 0b10, 0b01, 0b110);
2220 
2221 #undef INSN
2222 
2223 #define INSN(NAME, sflag, type, rmode, opcode)                          \
2224   void NAME(FloatRegister Vd, Register Rn) {                            \
2225     float_int_convert(sflag, type, rmode, opcode, as_Register(Vd), Rn); \
2226   }
2227 
2228   INSN(fmovs, 0b0, 0b00, 0b00, 0b111);
2229   INSN(fmovd, 0b1, 0b01, 0b00, 0b111);
2230 
2231   INSN(scvtfws, 0b0, 0b00, 0b00, 0b010);
2232   INSN(scvtfs,  0b1, 0b00, 0b00, 0b010);
2233   INSN(scvtfwd, 0b0, 0b01, 0b00, 0b010);
2234   INSN(scvtfd,  0b1, 0b01, 0b00, 0b010);
2235 
2236   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b111);
2237 
2238 #undef INSN
2239 
2240 private:
2241   void _xcvtf_vector_integer(bool is_unsigned, SIMD_Arrangement T,
2242                              FloatRegister Rd, FloatRegister Rn) {
2243     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");
2244     starti;
2245     f(0, 31), f(T & 1, 30), f(is_unsigned ? 1 : 0, 29);
2246     f(0b011100, 28, 23), f((T >> 1) & 1, 22), f(0b100001110110, 21, 10);
2247     rf(Rn, 5), rf(Rd, 0);
2248   }
2249 
2250 public:
2251 
2252   void scvtfv(SIMD_Arrangement T, FloatRegister Rd, FloatRegister Rn) {
2253     _xcvtf_vector_integer(/* is_unsigned */ false, T, Rd, Rn);
2254   }
2255 
2256   // Floating-point compare
2257   void float_compare(unsigned op31, unsigned type,
2258                      unsigned op, unsigned op2,
2259                      FloatRegister Vn, FloatRegister Vm = as_FloatRegister(0)) {
2260     starti;
2261     f(op31, 31, 29);
2262     f(0b11110, 28, 24);
2263     f(type, 23, 22), f(1, 21);
2264     f(op, 15, 14), f(0b1000, 13, 10), f(op2, 4, 0);
2265     rf(Vn, 5), rf(Vm, 16);
2266   }
2267 
2268 
2269 #define INSN(NAME, op31, type, op, op2)                 \
2270   void NAME(FloatRegister Vn, FloatRegister Vm) {       \
2271     float_compare(op31, type, op, op2, Vn, Vm);         \
2272   }
2273 
2274 #define INSN1(NAME, op31, type, op, op2)        \
2275   void NAME(FloatRegister Vn, double d) {       \
2276     assert_cond(d == 0.0);                      \
2277     float_compare(op31, type, op, op2, Vn);     \
2278   }
2279 
2280   INSN(fcmps, 0b000, 0b00, 0b00, 0b00000);
2281   INSN1(fcmps, 0b000, 0b00, 0b00, 0b01000);
2282   // INSN(fcmpes, 0b000, 0b00, 0b00, 0b10000);
2283   // INSN1(fcmpes, 0b000, 0b00, 0b00, 0b11000);
2284 
2285   INSN(fcmpd, 0b000,   0b01, 0b00, 0b00000);
2286   INSN1(fcmpd, 0b000,  0b01, 0b00, 0b01000);
2287   // INSN(fcmped, 0b000,  0b01, 0b00, 0b10000);
2288   // INSN1(fcmped, 0b000, 0b01, 0b00, 0b11000);
2289 
2290 #undef INSN
2291 #undef INSN1
2292 
2293 // Floating-point compare. 3-registers versions (scalar).
2294 #define INSN(NAME, sz, e)                                             \
2295   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {   \
2296     starti;                                                           \
2297     f(0b01111110, 31, 24), f(e, 23), f(sz, 22), f(1, 21), rf(Vm, 16); \
2298     f(0b111011, 15, 10), rf(Vn, 5), rf(Vd, 0);                        \
2299   }                                                                   \
2300 
2301   INSN(facged, 1, 0); // facge-double
2302   INSN(facges, 0, 0); // facge-single
2303   INSN(facgtd, 1, 1); // facgt-double
2304   INSN(facgts, 0, 1); // facgt-single
2305 
2306 #undef INSN
2307 
2308   // Floating-point Move (immediate)
2309 private:
2310   unsigned pack(double value);
2311 
2312   void fmov_imm(FloatRegister Vn, double value, unsigned size) {
2313     starti;
2314     f(0b00011110, 31, 24), f(size, 23, 22), f(1, 21);
2315     f(pack(value), 20, 13), f(0b10000000, 12, 5);
2316     rf(Vn, 0);
2317   }
2318 
2319 public:
2320 
2321   void fmovs(FloatRegister Vn, double value) {
2322     if (value)
2323       fmov_imm(Vn, value, 0b00);
2324     else
2325       movi(Vn, T2S, 0);
2326   }
2327   void fmovd(FloatRegister Vn, double value) {
2328     if (value)
2329       fmov_imm(Vn, value, 0b01);
2330     else
2331       movi(Vn, T1D, 0);
2332   }
2333 
2334   // Floating-point data-processing (1 source)
2335 
2336    // Floating-point rounding
2337    // type: half-precision = 11
2338    //       single         = 00
2339    //       double         = 01
2340    // rmode: A = Away     = 100
2341    //        I = current  = 111
2342    //        M = MinusInf = 010
2343    //        N = eveN     = 000
2344    //        P = PlusInf  = 001
2345    //        X = eXact    = 110
2346    //        Z = Zero     = 011
2347   void float_round(unsigned type, unsigned rmode, FloatRegister Rd, FloatRegister Rn) {
2348     starti;
2349     f(0b00011110, 31, 24);
2350     f(type, 23, 22);
2351     f(0b1001, 21, 18);
2352     f(rmode, 17, 15);
2353     f(0b10000, 14, 10);
2354     rf(Rn, 5), rf(Rd, 0);
2355   }
2356 #define INSN(NAME, type, rmode)                   \
2357   void NAME(FloatRegister Vd, FloatRegister Vn) { \
2358     float_round(type, rmode, Vd, Vn);             \
2359   }
2360 
2361 public:
2362   INSN(frintah, 0b11, 0b100);
2363   INSN(frintih, 0b11, 0b111);
2364   INSN(frintmh, 0b11, 0b010);
2365   INSN(frintnh, 0b11, 0b000);
2366   INSN(frintph, 0b11, 0b001);
2367   INSN(frintxh, 0b11, 0b110);
2368   INSN(frintzh, 0b11, 0b011);
2369 
2370   INSN(frintas, 0b00, 0b100);
2371   INSN(frintis, 0b00, 0b111);
2372   INSN(frintms, 0b00, 0b010);
2373   INSN(frintns, 0b00, 0b000);
2374   INSN(frintps, 0b00, 0b001);
2375   INSN(frintxs, 0b00, 0b110);
2376   INSN(frintzs, 0b00, 0b011);
2377 
2378   INSN(frintad, 0b01, 0b100);
2379   INSN(frintid, 0b01, 0b111);
2380   INSN(frintmd, 0b01, 0b010);
2381   INSN(frintnd, 0b01, 0b000);
2382   INSN(frintpd, 0b01, 0b001);
2383   INSN(frintxd, 0b01, 0b110);
2384   INSN(frintzd, 0b01, 0b011);
2385 #undef INSN
2386 
2387 private:
2388   static short SIMD_Size_in_bytes[];
2389 
2390 public:
2391 #define INSN(NAME, op)                                                  \
2392   void NAME(FloatRegister Rt, SIMD_RegVariant T, const Address &adr) {  \
2393     ld_st2(as_Register(Rt), adr, (int)T & 3, op + ((T==Q) ? 0b10:0b00), 1); \
2394   }
2395 
2396   INSN(ldr, 1);
2397   INSN(str, 0);
2398 
2399 #undef INSN
2400 
2401  private:
2402 
2403   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn, int op1, int op2) {
2404     starti;
2405     f(0,31), f((int)T & 1, 30);
2406     f(op1, 29, 21), f(0, 20, 16), f(op2, 15, 12);
2407     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2408   }
2409   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
2410              int imm, int op1, int op2, int regs) {
2411 
2412     bool replicate = op2 >> 2 == 3;
2413     // post-index value (imm) is formed differently for replicate/non-replicate ld* instructions
2414     int expectedImmediate = replicate ? regs * (1 << (T >> 1)) : SIMD_Size_in_bytes[T] * regs;
2415     guarantee(T < T1Q , "incorrect arrangement");
2416     guarantee(imm == expectedImmediate, "bad offset");
2417     starti;
2418     f(0,31), f((int)T & 1, 30);
2419     f(op1 | 0b100, 29, 21), f(0b11111, 20, 16), f(op2, 15, 12);
2420     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2421   }
2422   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
2423              Register Xm, int op1, int op2) {
2424     starti;
2425     f(0,31), f((int)T & 1, 30);
2426     f(op1 | 0b100, 29, 21), rf(Xm, 16), f(op2, 15, 12);
2427     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2428   }
2429 
2430   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Address a, int op1, int op2, int regs) {
2431     switch (a.getMode()) {
2432     case Address::base_plus_offset:
2433       guarantee(a.offset() == 0, "no offset allowed here");
2434       ld_st(Vt, T, a.base(), op1, op2);
2435       break;
2436     case Address::post:
2437       ld_st(Vt, T, a.base(), checked_cast<int>(a.offset()), op1, op2, regs);
2438       break;
2439     case Address::post_reg:
2440       ld_st(Vt, T, a.base(), a.index(), op1, op2);
2441       break;
2442     default:
2443       ShouldNotReachHere();
2444     }
2445   }
2446 
2447   // Single-structure load/store method (all addressing variants)
2448   void ld_st(FloatRegister Vt, SIMD_RegVariant T, int index, Address a,
2449              int op1, int op2, int regs) {
2450     int expectedImmediate = (regVariant_to_elemBits(T) >> 3) * regs;
2451     int sVal = (T < D) ? (index >> (2 - T)) & 0x01 : 0;
2452     int opcode = (T < D) ? (T << 2) : ((T & 0x02) << 2);
2453     int size = (T < D) ? (index & (0x3 << T)) : 1;  // only care about low 2b
2454     Register Xn = a.base();
2455     int Rm;
2456 
2457     switch (a.getMode()) {
2458     case Address::base_plus_offset:
2459       guarantee(a.offset() == 0, "no offset allowed here");
2460       Rm = 0;
2461       break;
2462     case Address::post:
2463       guarantee(a.offset() == expectedImmediate, "bad offset");
2464       op1 |= 0b100;
2465       Rm = 0b11111;
2466       break;
2467     case Address::post_reg:
2468       op1 |= 0b100;
2469       Rm = a.index()->encoding();
2470       break;
2471     default:
2472       ShouldNotReachHere();
2473       Rm = 0;  // unreachable
2474     }
2475 
2476     starti;
2477     f(0,31), f((index >> (3 - T)), 30);
2478     f(op1, 29, 21), f(Rm, 20, 16), f(op2 | opcode | sVal, 15, 12);
2479     f(size, 11, 10), srf(Xn, 5), rf(Vt, 0);
2480   }
2481 
2482  public:
2483 
2484 #define INSN1(NAME, op1, op2)                                           \
2485   void NAME(FloatRegister Vt, SIMD_Arrangement T, const Address &a) {   \
2486     ld_st(Vt, T, a, op1, op2, 1);                                       \
2487  }
2488 
2489 #define INSN2(NAME, op1, op2)                                           \
2490   void NAME(FloatRegister Vt, FloatRegister Vt2, SIMD_Arrangement T, const Address &a) { \
2491     assert(Vt->successor() == Vt2, "Registers must be ordered");        \
2492     ld_st(Vt, T, a, op1, op2, 2);                                       \
2493   }
2494 
2495 #define INSN3(NAME, op1, op2)                                           \
2496   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2497             SIMD_Arrangement T, const Address &a) {                     \
2498     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3,           \
2499            "Registers must be ordered");                                \
2500     ld_st(Vt, T, a, op1, op2, 3);                                       \
2501   }
2502 
2503 #define INSN4(NAME, op1, op2)                                           \
2504   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2505             FloatRegister Vt4, SIMD_Arrangement T, const Address &a) {  \
2506     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 &&         \
2507            Vt3->successor() == Vt4, "Registers must be ordered");       \
2508     ld_st(Vt, T, a, op1, op2, 4);                                       \
2509   }
2510 
2511   INSN1(ld1,  0b001100010, 0b0111);
2512   INSN2(ld1,  0b001100010, 0b1010);
2513   INSN3(ld1,  0b001100010, 0b0110);
2514   INSN4(ld1,  0b001100010, 0b0010);
2515 
2516   INSN2(ld2,  0b001100010, 0b1000);
2517   INSN3(ld3,  0b001100010, 0b0100);
2518   INSN4(ld4,  0b001100010, 0b0000);
2519 
2520   INSN1(st1,  0b001100000, 0b0111);
2521   INSN2(st1,  0b001100000, 0b1010);
2522   INSN3(st1,  0b001100000, 0b0110);
2523   INSN4(st1,  0b001100000, 0b0010);
2524 
2525   INSN2(st2,  0b001100000, 0b1000);
2526   INSN3(st3,  0b001100000, 0b0100);
2527   INSN4(st4,  0b001100000, 0b0000);
2528 
2529   INSN1(ld1r, 0b001101010, 0b1100);
2530   INSN2(ld2r, 0b001101011, 0b1100);
2531   INSN3(ld3r, 0b001101010, 0b1110);
2532   INSN4(ld4r, 0b001101011, 0b1110);
2533 
2534 #undef INSN1
2535 #undef INSN2
2536 #undef INSN3
2537 #undef INSN4
2538 
2539 // Handle common single-structure ld/st parameter sanity checks
2540 // for all variations (1 to 4) of SIMD reigster inputs.  This
2541 // method will call the routine that generates the opcode.
2542 template<typename R, typename... Rx>
2543   void ldst_sstr(SIMD_RegVariant T, int index, const Address &a,
2544             int op1, int op2, R firstReg, Rx... otherRegs) {
2545     const FloatRegister vtSet[] = { firstReg, otherRegs... };
2546     const int regCount = sizeof...(otherRegs) + 1;
2547     assert(index >= 0 && (T <= D) && ((T == B && index <= 15) ||
2548               (T == H && index <= 7) || (T == S && index <= 3) ||
2549               (T == D && index <= 1)), "invalid index");
2550     assert(regCount >= 1 && regCount <= 4, "illegal register count");
2551 
2552     // Check to make sure when multiple SIMD registers are used
2553     // that they are in successive order.
2554     for (int i = 0; i < regCount - 1; i++) {
2555       assert(vtSet[i]->successor() == vtSet[i + 1],
2556              "Registers must be ordered");
2557     }
2558 
2559     ld_st(firstReg, T, index, a, op1, op2, regCount);
2560   }
2561 
2562 // Define a set of INSN1/2/3/4 macros to handle single-structure
2563 // load/store instructions.
2564 #define INSN1(NAME, op1, op2)                                           \
2565   void NAME(FloatRegister Vt, SIMD_RegVariant T, int index,             \
2566             const Address &a) {                                         \
2567     ldst_sstr(T, index, a, op1, op2, Vt);                               \
2568  }
2569 
2570 #define INSN2(NAME, op1, op2)                                           \
2571   void NAME(FloatRegister Vt, FloatRegister Vt2, SIMD_RegVariant T,     \
2572             int index, const Address &a) {                              \
2573     ldst_sstr(T, index, a, op1, op2, Vt, Vt2);                          \
2574   }
2575 
2576 #define INSN3(NAME, op1, op2)                                           \
2577   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2578             SIMD_RegVariant T, int index, const Address &a) {           \
2579     ldst_sstr(T, index, a, op1, op2, Vt, Vt2, Vt3);                     \
2580   }
2581 
2582 #define INSN4(NAME, op1, op2)                                           \
2583   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2584             FloatRegister Vt4, SIMD_RegVariant T, int index,            \
2585             const Address &a) {                                         \
2586     ldst_sstr(T, index, a, op1, op2, Vt, Vt2, Vt3, Vt4);                \
2587   }
2588 
2589   INSN1(ld1, 0b001101010, 0b0000);
2590   INSN2(ld2, 0b001101011, 0b0000);
2591   INSN3(ld3, 0b001101010, 0b0010);
2592   INSN4(ld4, 0b001101011, 0b0010);
2593 
2594   INSN1(st1, 0b001101000, 0b0000);
2595   INSN2(st2, 0b001101001, 0b0000);
2596   INSN3(st3, 0b001101000, 0b0010);
2597   INSN4(st4, 0b001101001, 0b0010);
2598 
2599 #undef INSN1
2600 #undef INSN2
2601 #undef INSN3
2602 #undef INSN4
2603 
2604 #define INSN(NAME, opc)                                                                 \
2605   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2606     starti;                                                                             \
2607     assert(T == T8B || T == T16B, "must be T8B or T16B");                               \
2608     f(0, 31), f((int)T & 1, 30), f(opc, 29, 21);                                        \
2609     rf(Vm, 16), f(0b000111, 15, 10), rf(Vn, 5), rf(Vd, 0);                              \
2610   }
2611 
2612   INSN(eor,  0b101110001);
2613   INSN(orr,  0b001110101);
2614   INSN(andr, 0b001110001);
2615   INSN(bic,  0b001110011);
2616   INSN(bif,  0b101110111);
2617   INSN(bit,  0b101110101);
2618   INSN(bsl,  0b101110011);
2619   INSN(orn,  0b001110111);
2620 
2621 #undef INSN
2622 
2623   // Advanced SIMD three different
2624 #define INSN(NAME, opc, opc2, acceptT2D)                                                \
2625   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2626     guarantee(T != T1Q && T != T1D, "incorrect arrangement");                           \
2627     if (!acceptT2D) guarantee(T != T2D, "incorrect arrangement");                       \
2628     if (opc2 ==  0b101101) guarantee(T != T8B && T != T16B, "incorrect arrangement");   \
2629     starti;                                                                             \
2630     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2631     f((int)T >> 1, 23, 22), f(1, 21), rf(Vm, 16), f(opc2, 15, 10);                      \
2632     rf(Vn, 5), rf(Vd, 0);                                                               \
2633   }
2634 
2635   INSN(addv,   0, 0b100001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2636   INSN(subv,   1, 0b100001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2637   INSN(sqaddv, 0, 0b000011, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2638   INSN(sqsubv, 0, 0b001011, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2639   INSN(uqaddv, 1, 0b000011, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2640   INSN(uqsubv, 1, 0b001011, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2641   INSN(mulv,   0, 0b100111, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2642   INSN(mlav,   0, 0b100101, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2643   INSN(mlsv,   1, 0b100101, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2644   INSN(sshl,   0, 0b010001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2645   INSN(ushl,   1, 0b010001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2646   INSN(addpv,  0, 0b101111, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2647   INSN(smullv, 0, 0b110000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2648   INSN(umullv, 1, 0b110000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2649   INSN(smlalv, 0, 0b100000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2650   INSN(umlalv, 1, 0b100000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2651   INSN(maxv,   0, 0b011001, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2652   INSN(minv,   0, 0b011011, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2653   INSN(umaxv,  1, 0b011001, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2654   INSN(uminv,  1, 0b011011, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2655   INSN(smaxp,  0, 0b101001, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2656   INSN(sminp,  0, 0b101011, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2657   INSN(sqdmulh,0, 0b101101, false); // accepted arrangements: T4H, T8H, T2S, T4S
2658   INSN(shsubv, 0, 0b001001, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2659 
2660 #undef INSN
2661 
2662   // Advanced SIMD across lanes
2663 #define INSN(NAME, opc, opc2, accepted) \
2664   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2665     guarantee(T != T1Q && T != T1D, "incorrect arrangement");                           \
2666     if (accepted < 3) guarantee(T != T2D, "incorrect arrangement");                     \
2667     if (accepted < 2) guarantee(T != T2S, "incorrect arrangement");                     \
2668     if (accepted < 1) guarantee(T == T8B || T == T16B, "incorrect arrangement");        \
2669     starti;                                                                             \
2670     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2671     f((int)T >> 1, 23, 22), f(opc2, 21, 10);                                            \
2672     rf(Vn, 5), rf(Vd, 0);                                                               \
2673   }
2674 
2675   INSN(absr,   0, 0b100000101110, 3); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2676   INSN(negr,   1, 0b100000101110, 3); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2677   INSN(notr,   1, 0b100000010110, 0); // accepted arrangements: T8B, T16B
2678   INSN(addv,   0, 0b110001101110, 1); // accepted arrangements: T8B, T16B, T4H, T8H,      T4S
2679   INSN(smaxv,  0, 0b110000101010, 1); // accepted arrangements: T8B, T16B, T4H, T8H,      T4S
2680   INSN(umaxv,  1, 0b110000101010, 1); // accepted arrangements: T8B, T16B, T4H, T8H,      T4S
2681   INSN(sminv,  0, 0b110001101010, 1); // accepted arrangements: T8B, T16B, T4H, T8H,      T4S
2682   INSN(uminv,  1, 0b110001101010, 1); // accepted arrangements: T8B, T16B, T4H, T8H,      T4S
2683   INSN(cls,    0, 0b100000010010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2684   INSN(clz,    1, 0b100000010010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2685   INSN(cnt,    0, 0b100000010110, 0); // accepted arrangements: T8B, T16B
2686   INSN(uaddlp, 1, 0b100000001010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2687   INSN(uaddlv, 1, 0b110000001110, 1); // accepted arrangements: T8B, T16B, T4H, T8H,      T4S
2688 
2689 #undef INSN
2690 
2691 #define INSN(NAME, opc) \
2692   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                  \
2693     starti;                                                                            \
2694     assert(T == T4S, "arrangement must be T4S");                                       \
2695     f(0, 31), f((int)T & 1, 30), f(0b101110, 29, 24), f(opc, 23),                      \
2696     f(T == T4S ? 0 : 1, 22), f(0b110000111110, 21, 10); rf(Vn, 5), rf(Vd, 0);          \
2697   }
2698 
2699   INSN(fmaxv, 0);
2700   INSN(fminv, 1);
2701 
2702 #undef INSN
2703 
2704 // Advanced SIMD modified immediate
2705 #define INSN(NAME, op0, cmode0) \
2706   void NAME(FloatRegister Vd, SIMD_Arrangement T, unsigned imm8, unsigned lsl = 0) {   \
2707     unsigned cmode = cmode0;                                                           \
2708     unsigned op = op0;                                                                 \
2709     starti;                                                                            \
2710     assert(lsl == 0 ||                                                                 \
2711            ((T == T4H || T == T8H) && lsl == 8) ||                                     \
2712            ((T == T2S || T == T4S) && ((lsl >> 3) < 4) && ((lsl & 7) == 0)), "invalid shift");\
2713     cmode |= lsl >> 2;                                                                 \
2714     if (T == T4H || T == T8H) cmode |= 0b1000;                                         \
2715     if (!(T == T4H || T == T8H || T == T2S || T == T4S)) {                             \
2716       assert(op == 0 && cmode0 == 0, "must be MOVI");                                  \
2717       cmode = 0b1110;                                                                  \
2718       if (T == T1D || T == T2D) op = 1;                                                \
2719     }                                                                                  \
2720     f(0, 31), f((int)T & 1, 30), f(op, 29), f(0b0111100000, 28, 19);                   \
2721     f(imm8 >> 5, 18, 16), f(cmode, 15, 12), f(0x01, 11, 10), f(imm8 & 0b11111, 9, 5);  \
2722     rf(Vd, 0);                                                                         \
2723   }
2724 
2725   INSN(movi, 0, 0);
2726   INSN(orri, 0, 1);
2727   INSN(mvni, 1, 0);
2728   INSN(bici, 1, 1);
2729 
2730 #undef INSN
2731 
2732 #define INSN(NAME, op, cmode)                                           \
2733   void NAME(FloatRegister Vd, SIMD_Arrangement T, double imm) {         \
2734     unsigned imm8 = pack(imm);                                          \
2735     starti;                                                             \
2736     f(0, 31), f((int)T & 1, 30), f(op, 29), f(0b0111100000, 28, 19);    \
2737     f(imm8 >> 5, 18, 16), f(cmode, 15, 12), f(0x01, 11, 10), f(imm8 & 0b11111, 9, 5); \
2738     rf(Vd, 0);                                                          \
2739   }
2740 
2741   INSN(fmovs, 0, 0b1111);
2742   INSN(fmovd, 1, 0b1111);
2743 
2744 #undef INSN
2745 
2746 // Advanced SIMD three same
2747 #define INSN(NAME, op1, op2, op3)                                                       \
2748   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2749     starti;                                                                             \
2750     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");                    \
2751     f(0, 31), f((int)T & 1, 30), f(op1, 29), f(0b01110, 28, 24), f(op2, 23);            \
2752     f(T==T2D ? 1:0, 22); f(1, 21), rf(Vm, 16), f(op3, 15, 10), rf(Vn, 5), rf(Vd, 0);    \
2753   }
2754 
2755   INSN(fabd, 1, 1, 0b110101);
2756   INSN(fadd, 0, 0, 0b110101);
2757   INSN(fdiv, 1, 0, 0b111111);
2758   INSN(faddp, 1, 0, 0b110101);
2759   INSN(fmul, 1, 0, 0b110111);
2760   INSN(fsub, 0, 1, 0b110101);
2761   INSN(fmla, 0, 0, 0b110011);
2762   INSN(fmls, 0, 1, 0b110011);
2763   INSN(fmax, 0, 0, 0b111101);
2764   INSN(fmin, 0, 1, 0b111101);
2765   INSN(facgt, 1, 1, 0b111011);
2766 
2767 #undef INSN
2768 
2769   // AdvSIMD vector compare
2770   void cm(Condition cond, FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) {
2771     starti;
2772     assert(T != T1Q && T != T1D, "incorrect arrangement");
2773     int cond_op;
2774     switch (cond) {
2775       case EQ: cond_op = 0b110001; break;
2776       case GT: cond_op = 0b000110; break;
2777       case GE: cond_op = 0b000111; break;
2778       case HI: cond_op = 0b100110; break;
2779       case HS: cond_op = 0b100111; break;
2780       default:
2781         ShouldNotReachHere();
2782         break;
2783     }
2784 
2785     f(0, 31), f((int)T & 1, 30), f((cond_op >> 5) & 1, 29);
2786     f(0b01110, 28, 24), f((int)T >> 1, 23, 22), f(1, 21), rf(Vm, 16);
2787     f(cond_op & 0b11111, 15, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0);
2788   }
2789 
2790   // AdvSIMD Floating-point vector compare
2791   void fcm(Condition cond, FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) {
2792     starti;
2793     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");
2794     int cond_op;
2795     switch (cond) {
2796       case EQ: cond_op = 0b00; break;
2797       case GT: cond_op = 0b11; break;
2798       case GE: cond_op = 0b10; break;
2799       default:
2800         ShouldNotReachHere();
2801         break;
2802     }
2803 
2804     f(0, 31), f((int)T & 1, 30), f((cond_op >> 1) & 1, 29);
2805     f(0b01110, 28, 24), f(cond_op & 1, 23), f(T == T2D ? 1 : 0, 22);
2806     f(1, 21), rf(Vm, 16), f(0b111001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2807   }
2808 
2809 #define INSN(NAME, opc)                                                                 \
2810   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2811     starti;                                                                             \
2812     assert(T == T4S, "arrangement must be T4S");                                        \
2813     f(0b01011110000, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);         \
2814   }
2815 
2816   INSN(sha1c,     0b000000);
2817   INSN(sha1m,     0b001000);
2818   INSN(sha1p,     0b000100);
2819   INSN(sha1su0,   0b001100);
2820   INSN(sha256h2,  0b010100);
2821   INSN(sha256h,   0b010000);
2822   INSN(sha256su1, 0b011000);
2823 
2824 #undef INSN
2825 
2826 #define INSN(NAME, opc)                                                                 \
2827   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2828     starti;                                                                             \
2829     assert(T == T4S, "arrangement must be T4S");                                        \
2830     f(0b0101111000101000, 31, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);                \
2831   }
2832 
2833   INSN(sha1h,     0b000010);
2834   INSN(sha1su1,   0b000110);
2835   INSN(sha256su0, 0b001010);
2836 
2837 #undef INSN
2838 
2839 #define INSN(NAME, opc)                                                                 \
2840   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2841     starti;                                                                             \
2842     assert(T == T2D, "arrangement must be T2D");                                        \
2843     f(0b11001110011, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);         \
2844   }
2845 
2846   INSN(sha512h,   0b100000);
2847   INSN(sha512h2,  0b100001);
2848   INSN(sha512su1, 0b100010);
2849 
2850 #undef INSN
2851 
2852 #define INSN(NAME, opc)                                                                 \
2853   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2854     starti;                                                                             \
2855     assert(T == T2D, "arrangement must be T2D");                                        \
2856     f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0);                                               \
2857   }
2858 
2859   INSN(sha512su0, 0b1100111011000000100000);
2860 
2861 #undef INSN
2862 
2863 #define INSN(NAME, opc)                                                                                   \
2864   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, FloatRegister Va) { \
2865     starti;                                                                                               \
2866     assert(T == T16B, "arrangement must be T16B");                                                        \
2867     f(0b11001110, 31, 24), f(opc, 23, 21), rf(Vm, 16), f(0b0, 15, 15), rf(Va, 10), rf(Vn, 5), rf(Vd, 0);  \
2868   }
2869 
2870   INSN(eor3, 0b000);
2871   INSN(bcax, 0b001);
2872 
2873 #undef INSN
2874 
2875 #define INSN(NAME, opc)                                                                               \
2876   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, unsigned imm) { \
2877     starti;                                                                                           \
2878     assert(T == T2D, "arrangement must be T2D");                                                      \
2879     f(0b11001110, 31, 24), f(opc, 23, 21), rf(Vm, 16), f(imm, 15, 10), rf(Vn, 5), rf(Vd, 0);          \
2880   }
2881 
2882   INSN(xar, 0b100);
2883 
2884 #undef INSN
2885 
2886 #define INSN(NAME, opc)                                                                           \
2887   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) {           \
2888     starti;                                                                                       \
2889     assert(T == T2D, "arrangement must be T2D");                                                  \
2890     f(0b11001110, 31, 24), f(opc, 23, 21), rf(Vm, 16), f(0b100011, 15, 10), rf(Vn, 5), rf(Vd, 0); \
2891   }
2892 
2893   INSN(rax1, 0b011);
2894 
2895 #undef INSN
2896 
2897 #define INSN(NAME, opc)                           \
2898   void NAME(FloatRegister Vd, FloatRegister Vn) { \
2899     starti;                                       \
2900     f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0);         \
2901   }
2902 
2903   INSN(aese,   0b0100111000101000010010);
2904   INSN(aesd,   0b0100111000101000010110);
2905   INSN(aesmc,  0b0100111000101000011010);
2906   INSN(aesimc, 0b0100111000101000011110);
2907 
2908 #undef INSN
2909 
2910 #define INSN(NAME, op1, op2) \
2911   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index = 0) { \
2912     starti;                                                                                            \
2913     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");                                   \
2914     assert(index >= 0 && ((T == T2D && index <= 1) || (T != T2D && index <= 3)), "invalid index");     \
2915     f(0, 31), f((int)T & 1, 30), f(op1, 29); f(0b011111, 28, 23);                                      \
2916     f(T == T2D ? 1 : 0, 22), f(T == T2D ? 0 : index & 1, 21), rf(Vm, 16);                              \
2917     f(op2, 15, 12), f(T == T2D ? index : (index >> 1), 11), f(0, 10);                                  \
2918     rf(Vn, 5), rf(Vd, 0);                                                                              \
2919   }
2920 
2921   // FMLA/FMLS - Vector - Scalar
2922   INSN(fmlavs, 0, 0b0001);
2923   INSN(fmlsvs, 0, 0b0101);
2924   // FMULX - Vector - Scalar
2925   INSN(fmulxvs, 1, 0b1001);
2926 
2927 #undef INSN
2928 
2929 #define INSN(NAME, op1, op2)                                                                       \
2930   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index) { \
2931     starti;                                                                                        \
2932     assert(T == T4H || T == T8H || T == T2S || T == T4S, "invalid arrangement");                   \
2933     assert(index >= 0 &&                                                                           \
2934                ((T == T2S && index <= 1) || (T != T2S && index <= 3) || (T == T8H && index <= 7)), \
2935            "invalid index");                                                                       \
2936     assert((T != T4H && T != T8H) || Vm->encoding() < 16, "invalid source SIMD&FP register");      \
2937     f(0, 31), f((int)T & 1, 30), f(op1, 29), f(0b01111, 28, 24);                                   \
2938     if (T == T4H || T == T8H) {                                                                    \
2939       f(0b01, 23, 22), f(index & 0b11, 21, 20), lrf(Vm, 16), f(index >> 2 & 1, 11);                \
2940     } else {                                                                                       \
2941       f(0b10, 23, 22), f(index & 1, 21), rf(Vm, 16), f(index >> 1, 11);                            \
2942     }                                                                                              \
2943     f(op2, 15, 12), f(0, 10), rf(Vn, 5), rf(Vd, 0);                                                \
2944   }
2945 
2946   // MUL - Vector - Scalar
2947   INSN(mulvs, 0, 0b1000);
2948 
2949 #undef INSN
2950 
2951   // Floating-point Reciprocal Estimate
2952   void frecpe(FloatRegister Vd, FloatRegister Vn, SIMD_RegVariant type) {
2953     assert(type == D || type == S, "Wrong type for frecpe");
2954     starti;
2955     f(0b010111101, 31, 23);
2956     f(type == D ? 1 : 0, 22);
2957     f(0b100001110110, 21, 10);
2958     rf(Vn, 5), rf(Vd, 0);
2959   }
2960 
2961   // (long) {a, b} -> (a + b)
2962   void addpd(FloatRegister Vd, FloatRegister Vn) {
2963     starti;
2964     f(0b0101111011110001101110, 31, 10);
2965     rf(Vn, 5), rf(Vd, 0);
2966   }
2967 
2968   // Floating-point AdvSIMD scalar pairwise
2969 #define INSN(NAME, op1, op2) \
2970   void NAME(FloatRegister Vd, FloatRegister Vn, SIMD_RegVariant type) {                 \
2971     starti;                                                                             \
2972     assert(type == D || type == S, "Wrong type for faddp/fmaxp/fminp");                 \
2973     f(0b0111111, 31, 25), f(op1, 24, 23),                                               \
2974     f(type == S ? 0 : 1, 22), f(0b11000, 21, 17), f(op2, 16, 10), rf(Vn, 5), rf(Vd, 0); \
2975   }
2976 
2977   INSN(faddp, 0b00, 0b0110110);
2978   INSN(fmaxp, 0b00, 0b0111110);
2979   INSN(fminp, 0b01, 0b0111110);
2980 
2981 #undef INSN
2982 
2983   void ins(FloatRegister Vd, SIMD_RegVariant T, FloatRegister Vn, int didx, int sidx) {
2984     starti;
2985     assert(T != Q, "invalid register variant");
2986     f(0b01101110000, 31, 21), f(((didx<<1)|1)<<(int)T, 20, 16), f(0, 15);
2987     f(sidx<<(int)T, 14, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0);
2988   }
2989 
2990 #define INSN(NAME, cond, op1, op2)                                                      \
2991   void NAME(Register Rd, FloatRegister Vn, SIMD_RegVariant T, int idx) {                \
2992     starti;                                                                             \
2993     assert(cond, "invalid register variant");                                           \
2994     f(0, 31), f(op1, 30), f(0b001110000, 29, 21);                                       \
2995     f(((idx << 1) | 1) << (int)T, 20, 16), f(op2, 15, 10);                              \
2996     rf(Vn, 5), rf(Rd, 0);                                                               \
2997   }
2998 
2999   INSN(umov, (T != Q), (T == D ? 1 : 0), 0b001111);
3000   INSN(smov, (T < D),  1,                0b001011);
3001 
3002 #undef INSN
3003 
3004 #define INSN(NAME, opc, opc2, isSHR)                                    \
3005   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int shift){ \
3006     starti;                                                             \
3007     /* The encodings for the immh:immb fields (bits 22:16) in *SHR are  \
3008      *   0001 xxx       8B/16B, shift = 16  - UInt(immh:immb)           \
3009      *   001x xxx       4H/8H,  shift = 32  - UInt(immh:immb)           \
3010      *   01xx xxx       2S/4S,  shift = 64  - UInt(immh:immb)           \
3011      *   1xxx xxx       1D/2D,  shift = 128 - UInt(immh:immb)           \
3012      *   (1D is RESERVED)                                               \
3013      * for SHL shift is calculated as:                                  \
3014      *   0001 xxx       8B/16B, shift = UInt(immh:immb) - 8             \
3015      *   001x xxx       4H/8H,  shift = UInt(immh:immb) - 16            \
3016      *   01xx xxx       2S/4S,  shift = UInt(immh:immb) - 32            \
3017      *   1xxx xxx       1D/2D,  shift = UInt(immh:immb) - 64            \
3018      *   (1D is RESERVED)                                               \
3019      */                                                                 \
3020     guarantee(!isSHR || (isSHR && (shift != 0)), "impossible encoding");\
3021     assert((1 << ((T>>1)+3)) > shift, "Invalid Shift value");           \
3022     int cVal = (1 << (((T >> 1) + 3) + (isSHR ? 1 : 0)));               \
3023     int encodedShift = isSHR ? cVal - shift : cVal + shift;             \
3024     f(0, 31), f(T & 1, 30), f(opc, 29), f(0b011110, 28, 23),            \
3025     f(encodedShift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0);     \
3026   }
3027 
3028   INSN(shl,  0, 0b010101, /* isSHR = */ false);
3029   INSN(sshr, 0, 0b000001, /* isSHR = */ true);
3030   INSN(ushr, 1, 0b000001, /* isSHR = */ true);
3031   INSN(usra, 1, 0b000101, /* isSHR = */ true);
3032   INSN(ssra, 0, 0b000101, /* isSHR = */ true);
3033   INSN(sli,  1, 0b010101, /* isSHR = */ false);
3034 
3035 #undef INSN
3036 
3037 #define INSN(NAME, opc, opc2, isSHR)                                    \
3038   void NAME(FloatRegister Vd, FloatRegister Vn, int shift){             \
3039     starti;                                                             \
3040     int encodedShift = isSHR ? 128 - shift : 64 + shift;                \
3041     f(0b01, 31, 30), f(opc, 29), f(0b111110, 28, 23),                   \
3042     f(encodedShift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0);     \
3043   }
3044 
3045   INSN(shld,  0, 0b010101, /* isSHR = */ false);
3046   INSN(sshrd, 0, 0b000001, /* isSHR = */ true);
3047   INSN(ushrd, 1, 0b000001, /* isSHR = */ true);
3048 
3049 #undef INSN
3050 
3051 protected:
3052   void _xshll(bool is_unsigned, FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
3053     starti;
3054     /* The encodings for the immh:immb fields (bits 22:16) are
3055      *   0001 xxx       8H, 8B/16B shift = xxx
3056      *   001x xxx       4S, 4H/8H  shift = xxxx
3057      *   01xx xxx       2D, 2S/4S  shift = xxxxx
3058      *   1xxx xxx       RESERVED
3059      */
3060     assert((Tb >> 1) + 1 == (Ta >> 1), "Incompatible arrangement");
3061     assert((1 << ((Tb>>1)+3)) > shift, "Invalid shift value");
3062     f(0, 31), f(Tb & 1, 30), f(is_unsigned ? 1 : 0, 29), f(0b011110, 28, 23);
3063     f((1 << ((Tb>>1)+3))|shift, 22, 16);
3064     f(0b101001, 15, 10), rf(Vn, 5), rf(Vd, 0);
3065   }
3066 
3067 public:
3068   void ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
3069     assert(Tb == T8B || Tb == T4H || Tb == T2S, "invalid arrangement");
3070     _xshll(/* is_unsigned */ true, Vd, Ta, Vn, Tb, shift);
3071   }
3072 
3073   void ushll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
3074     assert(Tb == T16B || Tb == T8H || Tb == T4S, "invalid arrangement");
3075     _xshll(/* is_unsigned */ true, Vd, Ta, Vn, Tb, shift);
3076   }
3077 
3078   void uxtl(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb) {
3079     ushll(Vd, Ta, Vn, Tb, 0);
3080   }
3081 
3082   void sshll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
3083     assert(Tb == T8B || Tb == T4H || Tb == T2S, "invalid arrangement");
3084     _xshll(/* is_unsigned */ false, Vd, Ta, Vn, Tb, shift);
3085   }
3086 
3087   void sshll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
3088     assert(Tb == T16B || Tb == T8H || Tb == T4S, "invalid arrangement");
3089     _xshll(/* is_unsigned */ false, Vd, Ta, Vn, Tb, shift);
3090   }
3091 
3092   void sxtl(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb) {
3093     sshll(Vd, Ta, Vn, Tb, 0);
3094   }
3095 
3096   // Move from general purpose register
3097   //   mov  Vd.T[index], Rn
3098   void mov(FloatRegister Vd, SIMD_RegVariant T, int index, Register Xn) {
3099     guarantee(T != Q, "invalid register variant");
3100     starti;
3101     f(0b01001110000, 31, 21), f(((1 << T) | (index << (T + 1))), 20, 16);
3102     f(0b000111, 15, 10), zrf(Xn, 5), rf(Vd, 0);
3103   }
3104 
3105   // Move to general purpose register
3106   //   mov  Rd, Vn.T[index]
3107   void mov(Register Xd, FloatRegister Vn, SIMD_RegVariant T, int index) {
3108     guarantee(T == S || T == D, "invalid register variant");
3109     umov(Xd, Vn, T, index);
3110   }
3111 
3112  protected:
3113   void _xaddwv(bool is_unsigned, FloatRegister Vd, FloatRegister Vn, SIMD_Arrangement Ta,
3114                FloatRegister Vm, SIMD_Arrangement Tb) {
3115     starti;
3116     assert((Tb >> 1) + 1 == (Ta >> 1), "Incompatible arrangement");
3117     f(0, 31), f((int)Tb & 1, 30), f(is_unsigned ? 1 : 0, 29), f(0b01110, 28, 24);
3118     f((int)(Ta >> 1) - 1, 23, 22), f(1, 21), rf(Vm, 16), f(0b000100, 15, 10), rf(Vn, 5), rf(Vd, 0);
3119   }
3120 
3121  public:
3122 #define INSN(NAME, assertion, is_unsigned)                              \
3123   void NAME(FloatRegister Vd, FloatRegister Vn, SIMD_Arrangement Ta, FloatRegister Vm, \
3124               SIMD_Arrangement Tb) {                                    \
3125     assert((assertion), "invalid arrangement");                         \
3126     _xaddwv(is_unsigned, Vd, Vn, Ta, Vm, Tb);                           \
3127   }
3128 
3129 public:
3130 
3131   INSN(uaddwv,  Tb == T8B || Tb == T4H || Tb == T2S,  /*is_unsigned*/true)
3132   INSN(uaddwv2, Tb == T16B || Tb == T8H || Tb == T4S, /*is_unsigned*/true)
3133   INSN(saddwv,  Tb == T8B || Tb == T4H || Tb == T2S,  /*is_unsigned*/false)
3134   INSN(saddwv2, Tb == T16B || Tb == T8H || Tb == T4S, /*is_unsigned*/false)
3135 
3136 #undef INSN
3137 
3138 
3139 private:
3140   void _pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
3141     starti;
3142     assert((Ta == T1Q && (Tb == T1D || Tb == T2D)) ||
3143            (Ta == T8H && (Tb == T8B || Tb == T16B)), "Invalid Size specifier");
3144     int size = (Ta == T1Q) ? 0b11 : 0b00;
3145     f(0, 31), f(Tb & 1, 30), f(0b001110, 29, 24), f(size, 23, 22);
3146     f(1, 21), rf(Vm, 16), f(0b111000, 15, 10), rf(Vn, 5), rf(Vd, 0);
3147   }
3148 
3149 public:
3150   void pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
3151     assert(Tb == T1D || Tb == T8B, "pmull assumes T1D or T8B as the second size specifier");
3152     _pmull(Vd, Ta, Vn, Vm, Tb);
3153   }
3154 
3155   void pmull2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
3156     assert(Tb == T2D || Tb == T16B, "pmull2 assumes T2D or T16B as the second size specifier");
3157     _pmull(Vd, Ta, Vn, Vm, Tb);
3158   }
3159 
3160   void uqxtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) {
3161     starti;
3162     int size_b = (int)Tb >> 1;
3163     int size_a = (int)Ta >> 1;
3164     assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier");
3165     f(0, 31), f(Tb & 1, 30), f(0b101110, 29, 24), f(size_b, 23, 22);
3166     f(0b100001010010, 21, 10), rf(Vn, 5), rf(Vd, 0);
3167   }
3168 
3169   void xtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) {
3170     starti;
3171     int size_b = (int)Tb >> 1;
3172     int size_a = (int)Ta >> 1;
3173     assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier");
3174     f(0, 31), f(Tb & 1, 30), f(0b001110, 29, 24), f(size_b, 23, 22);
3175     f(0b100001001010, 21, 10), rf(Vn, 5), rf(Vd, 0);
3176   }
3177 
3178   void dup(FloatRegister Vd, SIMD_Arrangement T, Register Xs)
3179   {
3180     starti;
3181     assert(T != T1D, "reserved encoding");
3182     f(0,31), f((int)T & 1, 30), f(0b001110000, 29, 21);
3183     f((1 << (T >> 1)), 20, 16), f(0b000011, 15, 10), zrf(Xs, 5), rf(Vd, 0);
3184   }
3185 
3186   void dup(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int index = 0)
3187   {
3188     starti;
3189     assert(T != T1D, "reserved encoding");
3190     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21);
3191     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
3192     f(0b000001, 15, 10), rf(Vn, 5), rf(Vd, 0);
3193   }
3194 
3195   // Advanced SIMD scalar copy
3196   void dup(FloatRegister Vd, SIMD_RegVariant T, FloatRegister Vn, int index = 0)
3197   {
3198     starti;
3199     assert(T != Q, "invalid size");
3200     f(0b01011110000, 31, 21);
3201     f((1 << T) | (index << (T + 1)), 20, 16);
3202     f(0b000001, 15, 10), rf(Vn, 5), rf(Vd, 0);
3203   }
3204 
3205   // AdvSIMD ZIP/UZP/TRN
3206 #define INSN(NAME, opcode)                                              \
3207   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
3208     guarantee(T != T1D && T != T1Q, "invalid arrangement");             \
3209     starti;                                                             \
3210     f(0, 31), f(0b001110, 29, 24), f(0, 21), f(0, 15);                  \
3211     f(opcode, 14, 12), f(0b10, 11, 10);                                 \
3212     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);                                   \
3213     f(T & 1, 30), f(T >> 1, 23, 22);                                    \
3214   }
3215 
3216   INSN(uzp1, 0b001);
3217   INSN(trn1, 0b010);
3218   INSN(zip1, 0b011);
3219   INSN(uzp2, 0b101);
3220   INSN(trn2, 0b110);
3221   INSN(zip2, 0b111);
3222 
3223 #undef INSN
3224 
3225   // CRC32 instructions
3226 #define INSN(NAME, c, sf, sz)                                             \
3227   void NAME(Register Rd, Register Rn, Register Rm) {                      \
3228     starti;                                                               \
3229     f(sf, 31), f(0b0011010110, 30, 21), f(0b010, 15, 13), f(c, 12);       \
3230     f(sz, 11, 10), rf(Rm, 16), rf(Rn, 5), rf(Rd, 0);                      \
3231   }
3232 
3233   INSN(crc32b,  0, 0, 0b00);
3234   INSN(crc32h,  0, 0, 0b01);
3235   INSN(crc32w,  0, 0, 0b10);
3236   INSN(crc32x,  0, 1, 0b11);
3237   INSN(crc32cb, 1, 0, 0b00);
3238   INSN(crc32ch, 1, 0, 0b01);
3239   INSN(crc32cw, 1, 0, 0b10);
3240   INSN(crc32cx, 1, 1, 0b11);
3241 
3242 #undef INSN
3243 
3244   // Table vector lookup
3245 #define INSN(NAME, op)                                                  \
3246   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, unsigned registers, FloatRegister Vm) { \
3247     starti;                                                             \
3248     assert(T == T8B || T == T16B, "invalid arrangement");               \
3249     assert(0 < registers && registers <= 4, "invalid number of registers"); \
3250     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21), rf(Vm, 16), f(0, 15); \
3251     f(registers - 1, 14, 13), f(op, 12),f(0b00, 11, 10), rf(Vn, 5), rf(Vd, 0); \
3252   }
3253 
3254   INSN(tbl, 0);
3255   INSN(tbx, 1);
3256 
3257 #undef INSN
3258 
3259   // AdvSIMD two-reg misc
3260   // In this instruction group, the 2 bits in the size field ([23:22]) may be
3261   // fixed or determined by the "SIMD_Arrangement T", or both. The additional
3262   // parameter "tmask" is a 2-bit mask used to indicate which bits in the size
3263   // field are determined by the SIMD_Arrangement. The bit of "tmask" should be
3264   // set to 1 if corresponding bit marked as "x" in the ArmARM.
3265 #define INSN(NAME, U, size, tmask, opcode)                                          \
3266   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {               \
3267        starti;                                                                      \
3268        assert((ASSERTION), MSG);                                                    \
3269        f(0, 31), f((int)T & 1, 30), f(U, 29), f(0b01110, 28, 24);                   \
3270        f(size | ((int)(T >> 1) & tmask), 23, 22), f(0b10000, 21, 17);               \
3271        f(opcode, 16, 12), f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0);                    \
3272  }
3273 
3274 #define MSG "invalid arrangement"
3275 
3276 #define ASSERTION (T == T2S || T == T4S || T == T2D)
3277   INSN(fsqrt,  1, 0b10, 0b01, 0b11111);
3278   INSN(fabs,   0, 0b10, 0b01, 0b01111);
3279   INSN(fneg,   1, 0b10, 0b01, 0b01111);
3280   INSN(frintn, 0, 0b00, 0b01, 0b11000);
3281   INSN(frintm, 0, 0b00, 0b01, 0b11001);
3282   INSN(frintp, 0, 0b10, 0b01, 0b11000);
3283   INSN(fcvtas, 0, 0b00, 0b01, 0b11100);
3284   INSN(fcvtzs, 0, 0b10, 0b01, 0b11011);
3285   INSN(fcvtms, 0, 0b00, 0b01, 0b11011);
3286 #undef ASSERTION
3287 
3288 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H || T == T2S || T == T4S)
3289   INSN(rev64, 0, 0b00, 0b11, 0b00000);
3290 #undef ASSERTION
3291 
3292 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H)
3293   INSN(rev32, 1, 0b00, 0b11, 0b00000);
3294 #undef ASSERTION
3295 
3296 #define ASSERTION (T == T8B || T == T16B)
3297   INSN(rev16, 0, 0b00, 0b11, 0b00001);
3298   INSN(rbit,  1, 0b01, 0b00, 0b00101);
3299 #undef ASSERTION
3300 
3301 #undef MSG
3302 
3303 #undef INSN
3304 
3305   // AdvSIMD compare with zero (vector)
3306   void cm(Condition cond, FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
3307     starti;
3308     assert(T != T1Q && T != T1D, "invalid arrangement");
3309     int cond_op;
3310     switch (cond) {
3311       case EQ: cond_op = 0b001; break;
3312       case GE: cond_op = 0b100; break;
3313       case GT: cond_op = 0b000; break;
3314       case LE: cond_op = 0b101; break;
3315       case LT: cond_op = 0b010; break;
3316       default:
3317         ShouldNotReachHere();
3318         break;
3319     }
3320 
3321     f(0, 31), f((int)T & 1, 30), f((cond_op >> 2) & 1, 29);
3322     f(0b01110, 28, 24), f((int)T >> 1, 23, 22), f(0b10000010, 21, 14);
3323     f(cond_op & 0b11, 13, 12), f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0);
3324   }
3325 
3326   // AdvSIMD Floating-point compare with zero (vector)
3327   void fcm(Condition cond, FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
3328     starti;
3329     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");
3330     int cond_op;
3331     switch (cond) {
3332       case EQ: cond_op = 0b010; break;
3333       case GT: cond_op = 0b000; break;
3334       case GE: cond_op = 0b001; break;
3335       case LE: cond_op = 0b011; break;
3336       case LT: cond_op = 0b100; break;
3337       default:
3338         ShouldNotReachHere();
3339         break;
3340     }
3341 
3342     f(0, 31), f((int)T & 1, 30), f(cond_op & 1, 29), f(0b011101, 28, 23);
3343     f(((int)(T >> 1) & 1), 22), f(0b10000011, 21, 14);
3344     f((cond_op >> 1) & 0b11, 13, 12), f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0);
3345   }
3346 
3347   void ext(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index)
3348   {
3349     starti;
3350     assert(T == T8B || T == T16B, "invalid arrangement");
3351     assert((T == T8B && index <= 0b0111) || (T == T16B && index <= 0b1111), "Invalid index value");
3352     f(0, 31), f((int)T & 1, 30), f(0b101110000, 29, 21);
3353     rf(Vm, 16), f(0, 15), f(index, 14, 11);
3354     f(0, 10), rf(Vn, 5), rf(Vd, 0);
3355   }
3356 
3357 // SVE arithmetic - unpredicated
3358 #define INSN(NAME, opcode)                                                             \
3359   void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, FloatRegister Zm) { \
3360     starti;                                                                            \
3361     assert(T != Q, "invalid register variant");                                        \
3362     f(0b00000100, 31, 24), f(T, 23, 22), f(1, 21),                                     \
3363     rf(Zm, 16), f(0, 15, 13), f(opcode, 12, 10), rf(Zn, 5), rf(Zd, 0);                 \
3364   }
3365   INSN(sve_add,   0b000);
3366   INSN(sve_sub,   0b001);
3367   INSN(sve_sqadd, 0b100);
3368   INSN(sve_sqsub, 0b110);
3369   INSN(sve_uqadd, 0b101);
3370   INSN(sve_uqsub, 0b111);
3371 #undef INSN
3372 
3373 // SVE integer add/subtract immediate (unpredicated)
3374 #define INSN(NAME, op)                                                  \
3375   void NAME(FloatRegister Zd, SIMD_RegVariant T, unsigned imm8) {       \
3376     starti;                                                             \
3377     /* The immediate is an unsigned value in the range 0 to 255, and    \
3378      * for element width of 16 bits or higher it may also be a          \
3379      * positive multiple of 256 in the range 256 to 65280.              \
3380      */                                                                 \
3381     assert(T != Q, "invalid size");                                     \
3382     int sh = 0;                                                         \
3383     if (imm8 <= 0xff) {                                                 \
3384       sh = 0;                                                           \
3385     } else if (T != B && imm8 <= 0xff00 && (imm8 & 0xff) == 0) {        \
3386       sh = 1;                                                           \
3387       imm8 = (imm8 >> 8);                                               \
3388     } else {                                                            \
3389       guarantee(false, "invalid immediate");                            \
3390     }                                                                   \
3391     f(0b00100101, 31, 24), f(T, 23, 22), f(0b10000, 21, 17);            \
3392     f(op, 16, 14), f(sh, 13), f(imm8, 12, 5), rf(Zd, 0);                \
3393   }
3394 
3395   INSN(sve_add, 0b011);
3396   INSN(sve_sub, 0b111);
3397 #undef INSN
3398 
3399 // SVE floating-point arithmetic - unpredicated
3400 #define INSN(NAME, opcode)                                                             \
3401   void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, FloatRegister Zm) { \
3402     starti;                                                                            \
3403     assert(T == S || T == D, "invalid register variant");                              \
3404     f(0b01100101, 31, 24), f(T, 23, 22), f(0, 21),                                     \
3405     rf(Zm, 16), f(0, 15, 13), f(opcode, 12, 10), rf(Zn, 5), rf(Zd, 0);                 \
3406   }
3407 
3408   INSN(sve_fadd, 0b000);
3409   INSN(sve_fmul, 0b010);
3410   INSN(sve_fsub, 0b001);
3411 #undef INSN
3412 
3413 private:
3414   void sve_predicate_reg_insn(unsigned op24, unsigned op13,
3415                               FloatRegister Zd_or_Vd, SIMD_RegVariant T,
3416                               PRegister Pg, FloatRegister Zn_or_Vn) {
3417     starti;
3418     f(op24, 31, 24), f(T, 23, 22), f(op13, 21, 13);
3419     pgrf(Pg, 10), rf(Zn_or_Vn, 5), rf(Zd_or_Vd, 0);
3420   }
3421 
3422   void sve_shift_imm_encoding(SIMD_RegVariant T, int shift, bool isSHR,
3423                               int& tszh, int& tszl_imm) {
3424     /* The encodings for the tszh:tszl:imm3 fields
3425      * for shift right is calculated as:
3426      *   0001 xxx       B, shift = 16  - UInt(tszh:tszl:imm3)
3427      *   001x xxx       H, shift = 32  - UInt(tszh:tszl:imm3)
3428      *   01xx xxx       S, shift = 64  - UInt(tszh:tszl:imm3)
3429      *   1xxx xxx       D, shift = 128 - UInt(tszh:tszl:imm3)
3430      * for shift left is calculated as:
3431      *   0001 xxx       B, shift = UInt(tszh:tszl:imm3) - 8
3432      *   001x xxx       H, shift = UInt(tszh:tszl:imm3) - 16
3433      *   01xx xxx       S, shift = UInt(tszh:tszl:imm3) - 32
3434      *   1xxx xxx       D, shift = UInt(tszh:tszl:imm3) - 64
3435      */
3436     assert(T != Q, "Invalid register variant");
3437     if (isSHR) {
3438       assert(((1 << (T + 3)) >= shift) && (shift > 0) , "Invalid shift value");
3439     } else {
3440       assert(((1 << (T + 3)) > shift) && (shift >= 0) , "Invalid shift value");
3441     }
3442     int cVal = (1 << ((T + 3) + (isSHR ? 1 : 0)));
3443     int encodedShift = isSHR ? cVal - shift : cVal + shift;
3444     tszh = encodedShift >> 5;
3445     tszl_imm = encodedShift & 0x1f;
3446   }
3447 
3448 public:
3449 
3450 // SVE integer arithmetic - predicate
3451 #define INSN(NAME, op1, op2)                                                                            \
3452   void NAME(FloatRegister Zdn_or_Zd_or_Vd, SIMD_RegVariant T, PRegister Pg, FloatRegister Znm_or_Vn) {  \
3453     assert(T != Q, "invalid register variant");                                                         \
3454     sve_predicate_reg_insn(op1, op2, Zdn_or_Zd_or_Vd, T, Pg, Znm_or_Vn);                                \
3455   }
3456 
3457   INSN(sve_abs,   0b00000100, 0b010110101); // vector abs, unary
3458   INSN(sve_add,   0b00000100, 0b000000000); // vector add
3459   INSN(sve_and,   0b00000100, 0b011010000); // vector and
3460   INSN(sve_andv,  0b00000100, 0b011010001); // bitwise and reduction to scalar
3461   INSN(sve_asr,   0b00000100, 0b010000100); // vector arithmetic shift right
3462   INSN(sve_bic,   0b00000100, 0b011011000); // vector bitwise clear
3463   INSN(sve_clz,   0b00000100, 0b011001101); // vector count leading zero bits
3464   INSN(sve_cnt,   0b00000100, 0b011010101); // count non-zero bits
3465   INSN(sve_cpy,   0b00000101, 0b100000100); // copy scalar to each active vector element
3466   INSN(sve_eor,   0b00000100, 0b011001000); // vector eor
3467   INSN(sve_eorv,  0b00000100, 0b011001001); // bitwise xor reduction to scalar
3468   INSN(sve_lsl,   0b00000100, 0b010011100); // vector logical shift left
3469   INSN(sve_lsr,   0b00000100, 0b010001100); // vector logical shift right
3470   INSN(sve_mul,   0b00000100, 0b010000000); // vector mul
3471   INSN(sve_neg,   0b00000100, 0b010111101); // vector neg, unary
3472   INSN(sve_not,   0b00000100, 0b011110101); // bitwise invert vector, unary
3473   INSN(sve_orr,   0b00000100, 0b011000000); // vector or
3474   INSN(sve_orv,   0b00000100, 0b011000001); // bitwise or reduction to scalar
3475   INSN(sve_smax,  0b00000100, 0b001000000); // signed maximum vectors
3476   INSN(sve_smaxv, 0b00000100, 0b001000001); // signed maximum reduction to scalar
3477   INSN(sve_smin,  0b00000100, 0b001010000); // signed minimum vectors
3478   INSN(sve_sminv, 0b00000100, 0b001010001); // signed minimum reduction to scalar
3479   INSN(sve_sub,   0b00000100, 0b000001000); // vector sub
3480   INSN(sve_uaddv, 0b00000100, 0b000001001); // unsigned add reduction to scalar
3481   INSN(sve_umax,  0b00000100, 0b001001000); // unsigned maximum vectors
3482   INSN(sve_umin,  0b00000100, 0b001011000); // unsigned minimum vectors
3483 #undef INSN
3484 
3485 // SVE floating-point arithmetic - predicate
3486 #define INSN(NAME, op1, op2)                                                                          \
3487   void NAME(FloatRegister Zd_or_Zdn_or_Vd, SIMD_RegVariant T, PRegister Pg, FloatRegister Zn_or_Zm) { \
3488     assert(T == S || T == D, "invalid register variant");                                             \
3489     sve_predicate_reg_insn(op1, op2, Zd_or_Zdn_or_Vd, T, Pg, Zn_or_Zm);                               \
3490   }
3491 
3492   INSN(sve_fabd,   0b01100101, 0b001000100); // floating-point absolute difference
3493   INSN(sve_fabs,   0b00000100, 0b011100101);
3494   INSN(sve_fadd,   0b01100101, 0b000000100);
3495   INSN(sve_fadda,  0b01100101, 0b011000001); // add strictly-ordered reduction to scalar Vd
3496   INSN(sve_fdiv,   0b01100101, 0b001101100);
3497   INSN(sve_fmax,   0b01100101, 0b000110100); // floating-point maximum
3498   INSN(sve_fmaxv,  0b01100101, 0b000110001); // floating-point maximum recursive reduction to scalar
3499   INSN(sve_fmin,   0b01100101, 0b000111100); // floating-point minimum
3500   INSN(sve_fminv,  0b01100101, 0b000111001); // floating-point minimum recursive reduction to scalar
3501   INSN(sve_fmul,   0b01100101, 0b000010100);
3502   INSN(sve_fneg,   0b00000100, 0b011101101);
3503   INSN(sve_frintm, 0b01100101, 0b000010101); // floating-point round to integral value, toward minus infinity
3504   INSN(sve_frintn, 0b01100101, 0b000000101); // floating-point round to integral value, nearest with ties to even
3505   INSN(sve_frinta, 0b01100101, 0b000100101); // floating-point round to integral value, nearest with ties to away
3506   INSN(sve_frintp, 0b01100101, 0b000001101); // floating-point round to integral value, toward plus infinity
3507   INSN(sve_fsqrt,  0b01100101, 0b001101101);
3508   INSN(sve_fsub,   0b01100101, 0b000001100);
3509 #undef INSN
3510 
3511   // SVE multiple-add/sub - predicated
3512 #define INSN(NAME, op0, op1, op2)                                                                     \
3513   void NAME(FloatRegister Zda, SIMD_RegVariant T, PRegister Pg, FloatRegister Zn, FloatRegister Zm) { \
3514     starti;                                                                                           \
3515     assert(T != Q, "invalid size");                                                                   \
3516     f(op0, 31, 24), f(T, 23, 22), f(op1, 21), rf(Zm, 16);                                             \
3517     f(op2, 15, 13), pgrf(Pg, 10), rf(Zn, 5), rf(Zda, 0);                                              \
3518   }
3519 
3520   INSN(sve_fmla,  0b01100101, 1, 0b000); // floating-point fused multiply-add, writing addend: Zda = Zda + Zn * Zm
3521   INSN(sve_fmls,  0b01100101, 1, 0b001); // floating-point fused multiply-subtract: Zda = Zda + -Zn * Zm
3522   INSN(sve_fnmla, 0b01100101, 1, 0b010); // floating-point negated fused multiply-add: Zda = -Zda + -Zn * Zm
3523   INSN(sve_fnmls, 0b01100101, 1, 0b011); // floating-point negated fused multiply-subtract: Zda = -Zda + Zn * Zm
3524   INSN(sve_fmad,  0b01100101, 1, 0b100); // floating-point fused multiply-add, writing multiplicand: Zda = Zm + Zda * Zn
3525   INSN(sve_fmsb,  0b01100101, 1, 0b101); // floating-point fused multiply-subtract, writing multiplicand: Zda = Zm + -Zda * Zn
3526   INSN(sve_fnmad, 0b01100101, 1, 0b110); // floating-point negated fused multiply-add, writing multiplicand: Zda = -Zm + -Zda * Zn
3527   INSN(sve_fnmsb, 0b01100101, 1, 0b111); // floating-point negated fused multiply-subtract, writing multiplicand: Zda = -Zm + Zda * Zn
3528   INSN(sve_mla,   0b00000100, 0, 0b010); // multiply-add, writing addend: Zda = Zda + Zn*Zm
3529   INSN(sve_mls,   0b00000100, 0, 0b011); // multiply-subtract, writing addend: Zda = Zda + -Zn*Zm
3530 #undef INSN
3531 
3532 // SVE bitwise logical - unpredicated
3533 #define INSN(NAME, opc)                                              \
3534   void NAME(FloatRegister Zd, FloatRegister Zn, FloatRegister Zm) {  \
3535     starti;                                                          \
3536     f(0b00000100, 31, 24), f(opc, 23, 22), f(1, 21),                 \
3537     rf(Zm, 16), f(0b001100, 15, 10), rf(Zn, 5), rf(Zd, 0);           \
3538   }
3539   INSN(sve_and, 0b00);
3540   INSN(sve_eor, 0b10);
3541   INSN(sve_orr, 0b01);
3542   INSN(sve_bic, 0b11);
3543 #undef INSN
3544 
3545 // SVE bitwise logical with immediate (unpredicated)
3546 #define INSN(NAME, opc)                                                      \
3547   void NAME(FloatRegister Zd, SIMD_RegVariant T, uint64_t imm) {             \
3548     starti;                                                                  \
3549     unsigned elembits = regVariant_to_elemBits(T);                           \
3550     uint32_t val = encode_sve_logical_immediate(elembits, imm);              \
3551     f(0b00000101, 31, 24), f(opc, 23, 22), f(0b0000, 21, 18);                \
3552     f(val, 17, 5), rf(Zd, 0);                                                \
3553   }
3554   INSN(sve_and, 0b10);
3555   INSN(sve_eor, 0b01);
3556   INSN(sve_orr, 0b00);
3557 #undef INSN
3558 
3559 // SVE shift immediate - unpredicated
3560 #define INSN(NAME, opc, isSHR)                                                  \
3561   void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, int shift) { \
3562     starti;                                                                     \
3563     int tszh, tszl_imm;                                                         \
3564     sve_shift_imm_encoding(T, shift, isSHR, tszh, tszl_imm);                    \
3565     f(0b00000100, 31, 24);                                                      \
3566     f(tszh, 23, 22), f(1,21), f(tszl_imm, 20, 16);                              \
3567     f(0b100, 15, 13), f(opc, 12, 10), rf(Zn, 5), rf(Zd, 0);                     \
3568   }
3569 
3570   INSN(sve_asr, 0b100, /* isSHR = */ true);
3571   INSN(sve_lsl, 0b111, /* isSHR = */ false);
3572   INSN(sve_lsr, 0b101, /* isSHR = */ true);
3573 #undef INSN
3574 
3575 // SVE bitwise shift by immediate (predicated)
3576 #define INSN(NAME, opc, isSHR)                                                  \
3577   void NAME(FloatRegister Zdn, SIMD_RegVariant T, PRegister Pg, int shift) {    \
3578     starti;                                                                     \
3579     int tszh, tszl_imm;                                                         \
3580     sve_shift_imm_encoding(T, shift, isSHR, tszh, tszl_imm);                    \
3581     f(0b00000100, 31, 24), f(tszh, 23, 22), f(0b00, 21, 20), f(opc, 19, 16);    \
3582     f(0b100, 15, 13), pgrf(Pg, 10), f(tszl_imm, 9, 5), rf(Zdn, 0);              \
3583   }
3584 
3585   INSN(sve_asr, 0b0000, /* isSHR = */ true);
3586   INSN(sve_lsl, 0b0011, /* isSHR = */ false);
3587   INSN(sve_lsr, 0b0001, /* isSHR = */ true);
3588 #undef INSN
3589 
3590 private:
3591 
3592   // Scalar base + immediate index
3593   void sve_ld_st1(FloatRegister Zt, Register Xn, int imm, PRegister Pg,
3594               SIMD_RegVariant T, int op1, int type, int op2) {
3595     starti;
3596     assert_cond(T >= type);
3597     f(op1, 31, 25), f(type, 24, 23), f(T, 22, 21);
3598     f(0, 20), sf(imm, 19, 16), f(op2, 15, 13);
3599     pgrf(Pg, 10), srf(Xn, 5), rf(Zt, 0);
3600   }
3601 
3602   // Scalar base + scalar index
3603   void sve_ld_st1(FloatRegister Zt, Register Xn, Register Xm, PRegister Pg,
3604               SIMD_RegVariant T, int op1, int type, int op2) {
3605     starti;
3606     assert_cond(T >= type);
3607     f(op1, 31, 25), f(type, 24, 23), f(T, 22, 21);
3608     rf(Xm, 16), f(op2, 15, 13);
3609     pgrf(Pg, 10), srf(Xn, 5), rf(Zt, 0);
3610   }
3611 
3612   void sve_ld_st1(FloatRegister Zt, PRegister Pg,
3613               SIMD_RegVariant T, const Address &a,
3614               int op1, int type, int imm_op2, int scalar_op2) {
3615     switch (a.getMode()) {
3616     case Address::base_plus_offset:
3617       sve_ld_st1(Zt, a.base(), checked_cast<int>(a.offset()), Pg, T, op1, type, imm_op2);
3618       break;
3619     case Address::base_plus_offset_reg:
3620       sve_ld_st1(Zt, a.base(), a.index(), Pg, T, op1, type, scalar_op2);
3621       break;
3622     default:
3623       ShouldNotReachHere();
3624     }
3625   }
3626 
3627 public:
3628 
3629 // SVE contiguous load/store
3630 #define INSN(NAME, op1, type, imm_op2, scalar_op2)                                   \
3631   void NAME(FloatRegister Zt, SIMD_RegVariant T, PRegister Pg, const Address &a) {   \
3632     assert(T != Q, "invalid register variant");                                      \
3633     sve_ld_st1(Zt, Pg, T, a, op1, type, imm_op2, scalar_op2);                        \
3634   }
3635 
3636   INSN(sve_ld1b, 0b1010010, 0b00, 0b101, 0b010);
3637   INSN(sve_st1b, 0b1110010, 0b00, 0b111, 0b010);
3638   INSN(sve_ld1h, 0b1010010, 0b01, 0b101, 0b010);
3639   INSN(sve_st1h, 0b1110010, 0b01, 0b111, 0b010);
3640   INSN(sve_ld1w, 0b1010010, 0b10, 0b101, 0b010);
3641   INSN(sve_st1w, 0b1110010, 0b10, 0b111, 0b010);
3642   INSN(sve_ld1d, 0b1010010, 0b11, 0b101, 0b010);
3643   INSN(sve_st1d, 0b1110010, 0b11, 0b111, 0b010);
3644 #undef INSN
3645 
3646 // Gather/scatter load/store (SVE) - scalar plus vector
3647 #define INSN(NAME, op1, type, op2, op3)                                         \
3648   void NAME(FloatRegister Zt, PRegister Pg, Register Xn, FloatRegister Zm) {    \
3649     starti;                                                                     \
3650     f(op1, 31, 25), f(type, 24, 23), f(op2, 22, 21), rf(Zm, 16);                \
3651     f(op3, 15, 13), pgrf(Pg, 10), srf(Xn, 5), rf(Zt, 0);                        \
3652   }
3653   // SVE 32-bit gather load words (scalar plus 32-bit scaled offsets)
3654   INSN(sve_ld1w_gather,  0b1000010, 0b10, 0b01, 0b010);
3655   // SVE 64-bit gather load (scalar plus 32-bit unpacked scaled offsets)
3656   INSN(sve_ld1d_gather,  0b1100010, 0b11, 0b01, 0b010);
3657   // SVE 32-bit scatter store (scalar plus 32-bit scaled offsets)
3658   INSN(sve_st1w_scatter, 0b1110010, 0b10, 0b11, 0b100);
3659   // SVE 64-bit scatter store (scalar plus unpacked 32-bit scaled offsets)
3660   INSN(sve_st1d_scatter, 0b1110010, 0b11, 0b01, 0b100);
3661 #undef INSN
3662 
3663 // SVE load/store - unpredicated
3664 #define INSN(NAME, op1)                                                         \
3665   void NAME(FloatRegister Zt, const Address &a)  {                              \
3666     starti;                                                                     \
3667     assert(a.index() == noreg, "invalid address variant");                      \
3668     f(op1, 31, 29), f(0b0010110, 28, 22), sf(a.offset() >> 3, 21, 16),          \
3669     f(0b010, 15, 13), f(a.offset() & 0x7, 12, 10), srf(a.base(), 5), rf(Zt, 0); \
3670   }
3671 
3672   INSN(sve_ldr, 0b100); // LDR (vector)
3673   INSN(sve_str, 0b111); // STR (vector)
3674 #undef INSN
3675 
3676 // SVE stack frame adjustment
3677 #define INSN(NAME, op) \
3678   void NAME(Register Xd, Register Xn, int imm6) {                 \
3679     starti;                                                       \
3680     f(0b000001000, 31, 23), f(op, 22, 21);                        \
3681     srf(Xn, 16), f(0b01010, 15, 11), sf(imm6, 10, 5), srf(Xd, 0); \
3682   }
3683 
3684   INSN(sve_addvl, 0b01); // Add multiple of vector register size to scalar register
3685   INSN(sve_addpl, 0b11); // Add multiple of predicate register size to scalar register
3686 #undef INSN
3687 
3688 // SVE inc/dec register by element count
3689 #define INSN(NAME, op) \
3690   void NAME(Register Xdn, SIMD_RegVariant T, unsigned imm4 = 1, int pattern = 0b11111) { \
3691     starti;                                                                              \
3692     assert(T != Q, "invalid size");                                                      \
3693     f(0b00000100,31, 24), f(T, 23, 22), f(0b11, 21, 20);                                 \
3694     f(imm4 - 1, 19, 16), f(0b11100, 15, 11), f(op, 10), f(pattern, 9, 5), rf(Xdn, 0);    \
3695   }
3696 
3697   INSN(sve_inc, 0);
3698   INSN(sve_dec, 1);
3699 #undef INSN
3700 
3701 // SVE predicate logical operations
3702 #define INSN(NAME, op1, op2, op3) \
3703   void NAME(PRegister Pd, PRegister Pg, PRegister Pn, PRegister Pm) { \
3704     starti;                                                           \
3705     f(0b00100101, 31, 24), f(op1, 23, 22), f(0b00, 21, 20);           \
3706     prf(Pm, 16), f(0b01, 15, 14), prf(Pg, 10), f(op2, 9);             \
3707     prf(Pn, 5), f(op3, 4), prf(Pd, 0);                                \
3708   }
3709 
3710   INSN(sve_and,  0b00, 0b0, 0b0);
3711   INSN(sve_ands, 0b01, 0b0, 0b0);
3712   INSN(sve_eor,  0b00, 0b1, 0b0);
3713   INSN(sve_eors, 0b01, 0b1, 0b0);
3714   INSN(sve_orr,  0b10, 0b0, 0b0);
3715   INSN(sve_orrs, 0b11, 0b0, 0b0);
3716   INSN(sve_bic,  0b00, 0b0, 0b1);
3717 #undef INSN
3718 
3719   // SVE increment register by predicate count
3720   void sve_incp(const Register rd, SIMD_RegVariant T, PRegister pg) {
3721     starti;
3722     assert(T != Q, "invalid size");
3723     f(0b00100101, 31, 24), f(T, 23, 22), f(0b1011001000100, 21, 9),
3724     prf(pg, 5), rf(rd, 0);
3725   }
3726 
3727   // SVE broadcast general-purpose register to vector elements (unpredicated)
3728   void sve_dup(FloatRegister Zd, SIMD_RegVariant T, Register Rn) {
3729     starti;
3730     assert(T != Q, "invalid size");
3731     f(0b00000101, 31, 24), f(T, 23, 22), f(0b100000001110, 21, 10);
3732     srf(Rn, 5), rf(Zd, 0);
3733   }
3734 
3735   // SVE broadcast signed immediate to vector elements (unpredicated)
3736   void sve_dup(FloatRegister Zd, SIMD_RegVariant T, int imm8) {
3737     starti;
3738     assert(T != Q, "invalid size");
3739     int sh = 0;
3740     if (imm8 <= 127 && imm8 >= -128) {
3741       sh = 0;
3742     } else if (T != B && imm8 <= 32512 && imm8 >= -32768 && (imm8 & 0xff) == 0) {
3743       sh = 1;
3744       imm8 = (imm8 >> 8);
3745     } else {
3746       guarantee(false, "invalid immediate");
3747     }
3748     f(0b00100101, 31, 24), f(T, 23, 22), f(0b11100011, 21, 14);
3749     f(sh, 13), sf(imm8, 12, 5), rf(Zd, 0);
3750   }
3751 
3752   // SVE predicate test
3753   void sve_ptest(PRegister Pg, PRegister Pn) {
3754     starti;
3755     f(0b001001010101000011, 31, 14), prf(Pg, 10), f(0, 9), prf(Pn, 5), f(0, 4, 0);
3756   }
3757 
3758   // SVE predicate initialize
3759   void sve_ptrue(PRegister pd, SIMD_RegVariant esize, int pattern = 0b11111) {
3760     starti;
3761     f(0b00100101, 31, 24), f(esize, 23, 22), f(0b011000111000, 21, 10);
3762     f(pattern, 9, 5), f(0b0, 4), prf(pd, 0);
3763   }
3764 
3765   // SVE predicate zero
3766   void sve_pfalse(PRegister pd) {
3767     starti;
3768     f(0b00100101, 31, 24), f(0b00, 23, 22), f(0b011000111001, 21, 10);
3769     f(0b000000, 9, 4), prf(pd, 0);
3770   }
3771 
3772 // SVE load/store predicate register
3773 #define INSN(NAME, op1)                                                  \
3774   void NAME(PRegister Pt, const Address &a)  {                           \
3775     starti;                                                              \
3776     assert(a.index() == noreg, "invalid address variant");               \
3777     f(op1, 31, 29), f(0b0010110, 28, 22), sf(a.offset() >> 3, 21, 16),   \
3778     f(0b000, 15, 13), f(a.offset() & 0x7, 12, 10), srf(a.base(), 5),     \
3779     f(0, 4), prf(Pt, 0);                                                 \
3780   }
3781 
3782   INSN(sve_ldr, 0b100); // LDR (predicate)
3783   INSN(sve_str, 0b111); // STR (predicate)
3784 #undef INSN
3785 
3786   // SVE move predicate register
3787   void sve_mov(PRegister Pd, PRegister Pn) {
3788     starti;
3789     f(0b001001011000, 31, 20), prf(Pn, 16), f(0b01, 15, 14), prf(Pn, 10);
3790     f(0, 9), prf(Pn, 5), f(0, 4), prf(Pd, 0);
3791   }
3792 
3793   // SVE copy general-purpose register to vector elements (predicated)
3794   void sve_cpy(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg, Register Rn) {
3795     starti;
3796     assert(T != Q, "invalid size");
3797     f(0b00000101, 31, 24), f(T, 23, 22), f(0b101000101, 21, 13);
3798     pgrf(Pg, 10), srf(Rn, 5), rf(Zd, 0);
3799   }
3800 
3801 private:
3802   void sve_cpy(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg, int imm8,
3803                bool isMerge, bool isFloat) {
3804     starti;
3805     assert(T != Q, "invalid size");
3806     int sh = 0;
3807     if (imm8 <= 127 && imm8 >= -128) {
3808       sh = 0;
3809     } else if (T != B && imm8 <= 32512 && imm8 >= -32768 && (imm8 & 0xff) == 0) {
3810       sh = 1;
3811       imm8 = (imm8 >> 8);
3812     } else {
3813       guarantee(false, "invalid immediate");
3814     }
3815     int m = isMerge ? 1 : 0;
3816     f(0b00000101, 31, 24), f(T, 23, 22), f(0b01, 21, 20);
3817     prf(Pg, 16), f(isFloat ? 1 : 0, 15), f(m, 14), f(sh, 13), sf(imm8, 12, 5), rf(Zd, 0);
3818   }
3819 
3820 public:
3821   // SVE copy signed integer immediate to vector elements (predicated)
3822   void sve_cpy(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg, int imm8, bool isMerge) {
3823     sve_cpy(Zd, T, Pg, imm8, isMerge, /*isFloat*/false);
3824   }
3825   // SVE copy floating-point immediate to vector elements (predicated)
3826   void sve_cpy(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg, double d) {
3827     sve_cpy(Zd, T, Pg, checked_cast<int8_t>(pack(d)), /*isMerge*/true, /*isFloat*/true);
3828   }
3829 
3830   // SVE conditionally select elements from two vectors
3831   void sve_sel(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg,
3832                FloatRegister Zn, FloatRegister Zm) {
3833     starti;
3834     assert(T != Q, "invalid size");
3835     f(0b00000101, 31, 24), f(T, 23, 22), f(0b1, 21), rf(Zm, 16);
3836     f(0b11, 15, 14), prf(Pg, 10), rf(Zn, 5), rf(Zd, 0);
3837   }
3838 
3839   // SVE Permute Vector - Extract
3840   void sve_ext(FloatRegister Zdn, FloatRegister Zm, int imm8) {
3841     starti;
3842     f(0b00000101001, 31, 21), f(imm8 >> 3, 20, 16), f(0b000, 15, 13);
3843     f(imm8 & 0b111, 12, 10), rf(Zm, 5), rf(Zdn, 0);
3844   }
3845 
3846 // SVE Integer/Floating-Point Compare - Vectors
3847 #define INSN(NAME, op1, op2, fp)  \
3848   void NAME(Condition cond, PRegister Pd, SIMD_RegVariant T, PRegister Pg,             \
3849             FloatRegister Zn, FloatRegister Zm) {                                      \
3850     starti;                                                                            \
3851     assert(T != Q, "invalid size");                                                    \
3852     bool is_absolute = op2 == 0b11;                                                    \
3853     if (fp == 1) {                                                                     \
3854       assert(T != B, "invalid size");                                                  \
3855       if (is_absolute) {                                                               \
3856         assert(cond == GT || cond == GE, "invalid condition for fac");                 \
3857       } else {                                                                         \
3858         assert(cond != HI && cond != HS, "invalid condition for fcm");                 \
3859       }                                                                                \
3860     }                                                                                  \
3861     int cond_op;                                                                       \
3862     switch(cond) {                                                                     \
3863       case EQ: cond_op = (op2 << 2) | 0b10; break;                                     \
3864       case NE: cond_op = (op2 << 2) | 0b11; break;                                     \
3865       case GE: cond_op = (op2 << 2) | (is_absolute ? 0b01 : 0b00); break;              \
3866       case GT: cond_op = (op2 << 2) | (is_absolute ? 0b11 : 0b01); break;              \
3867       case HI: cond_op = 0b0001; break;                                                \
3868       case HS: cond_op = 0b0000; break;                                                \
3869       default:                                                                         \
3870         ShouldNotReachHere();                                                          \
3871     }                                                                                  \
3872     f(op1, 31, 24), f(T, 23, 22), f(0, 21), rf(Zm, 16), f((cond_op >> 1) & 7, 15, 13); \
3873     pgrf(Pg, 10), rf(Zn, 5), f(cond_op & 1, 4), prf(Pd, 0);                            \
3874   }
3875 
3876   INSN(sve_cmp, 0b00100100, 0b10, 0); // Integer compare vectors
3877   INSN(sve_fcm, 0b01100101, 0b01, 1); // Floating-point compare vectors
3878   INSN(sve_fac, 0b01100101, 0b11, 1); // Floating-point absolute compare vectors
3879 #undef INSN
3880 
3881 private:
3882   // Convert Assembler::Condition to op encoding - used by sve integer compare encoding
3883   static int assembler_cond_to_sve_op(Condition cond, bool &is_unsigned) {
3884     if (cond == HI || cond == HS || cond == LO || cond == LS) {
3885       is_unsigned = true;
3886     } else {
3887       is_unsigned = false;
3888     }
3889 
3890     switch (cond) {
3891       case HI:
3892       case GT:
3893         return 0b0001;
3894       case HS:
3895       case GE:
3896         return 0b0000;
3897       case LO:
3898       case LT:
3899         return 0b0010;
3900       case LS:
3901       case LE:
3902         return 0b0011;
3903       case EQ:
3904         return 0b1000;
3905       case NE:
3906         return 0b1001;
3907       default:
3908         ShouldNotReachHere();
3909         return -1;
3910     }
3911   }
3912 
3913 public:
3914   // SVE Integer Compare - 5 bits signed imm and 7 bits unsigned imm
3915   void sve_cmp(Condition cond, PRegister Pd, SIMD_RegVariant T,
3916                PRegister Pg, FloatRegister Zn, int imm) {
3917     starti;
3918     assert(T != Q, "invalid size");
3919     bool is_unsigned = false;
3920     int cond_op = assembler_cond_to_sve_op(cond, is_unsigned);
3921     f(is_unsigned ? 0b00100100 : 0b00100101, 31, 24), f(T, 23, 22);
3922     f(is_unsigned ? 0b1 : 0b0, 21);
3923     if (is_unsigned) {
3924       f(imm, 20, 14), f((cond_op >> 1) & 0x1, 13);
3925     } else {
3926       sf(imm, 20, 16), f((cond_op >> 1) & 0x7, 15, 13);
3927     }
3928     pgrf(Pg, 10), rf(Zn, 5), f(cond_op & 0x1, 4), prf(Pd, 0);
3929   }
3930 
3931   // SVE Floating-point compare vector with zero
3932   void sve_fcm(Condition cond, PRegister Pd, SIMD_RegVariant T,
3933                PRegister Pg, FloatRegister Zn, double d) {
3934     starti;
3935     assert(T != Q, "invalid size");
3936     guarantee(d == 0.0, "invalid immediate");
3937     int cond_op;
3938     switch(cond) {
3939       case EQ: cond_op = 0b100; break;
3940       case GT: cond_op = 0b001; break;
3941       case GE: cond_op = 0b000; break;
3942       case LT: cond_op = 0b010; break;
3943       case LE: cond_op = 0b011; break;
3944       case NE: cond_op = 0b110; break;
3945       default:
3946         ShouldNotReachHere();
3947     }
3948     f(0b01100101, 31, 24), f(T, 23, 22), f(0b0100, 21, 18),
3949     f((cond_op >> 1) & 0x3, 17, 16), f(0b001, 15, 13),
3950     pgrf(Pg, 10), rf(Zn, 5);
3951     f(cond_op & 0x1, 4), prf(Pd, 0);
3952   }
3953 
3954 // SVE unpack vector elements
3955 protected:
3956   void _sve_xunpk(bool is_unsigned, bool is_high, FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn) {
3957     starti;
3958     assert(T != B && T != Q, "invalid size");
3959     f(0b00000101, 31, 24), f(T, 23, 22), f(0b1100, 21, 18);
3960     f(is_unsigned ? 1 : 0, 17), f(is_high ? 1 : 0, 16),
3961     f(0b001110, 15, 10), rf(Zn, 5), rf(Zd, 0);
3962   }
3963 
3964 public:
3965 #define INSN(NAME, is_unsigned, is_high)                                  \
3966   void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn) {      \
3967     _sve_xunpk(is_unsigned, is_high, Zd, T, Zn);                          \
3968   }
3969 
3970   INSN(sve_uunpkhi, true,  true ); // Unsigned unpack and extend half of vector - high half
3971   INSN(sve_uunpklo, true,  false); // Unsigned unpack and extend half of vector - low half
3972   INSN(sve_sunpkhi, false, true ); // Signed unpack and extend half of vector - high half
3973   INSN(sve_sunpklo, false, false); // Signed unpack and extend half of vector - low half
3974 #undef INSN
3975 
3976 // SVE unpack predicate elements
3977 #define INSN(NAME, op) \
3978   void NAME(PRegister Pd, PRegister Pn) { \
3979     starti;                                                          \
3980     f(0b000001010011000, 31, 17), f(op, 16), f(0b0100000, 15, 9);    \
3981     prf(Pn, 5), f(0b0, 4), prf(Pd, 0);                               \
3982   }
3983 
3984   INSN(sve_punpkhi, 0b1); // Unpack and widen high half of predicate
3985   INSN(sve_punpklo, 0b0); // Unpack and widen low half of predicate
3986 #undef INSN
3987 
3988 // SVE permute vector elements
3989 #define INSN(NAME, op) \
3990   void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, FloatRegister Zm) { \
3991     starti;                                                                            \
3992     assert(T != Q, "invalid size");                                                    \
3993     f(0b00000101, 31, 24), f(T, 23, 22), f(0b1, 21), rf(Zm, 16);                       \
3994     f(0b01101, 15, 11), f(op, 10), rf(Zn, 5), rf(Zd, 0);                               \
3995   }
3996 
3997   INSN(sve_uzp1, 0b0); // Concatenate even elements from two vectors
3998   INSN(sve_uzp2, 0b1); // Concatenate odd elements from two vectors
3999 #undef INSN
4000 
4001 // SVE permute predicate elements
4002 #define INSN(NAME, op) \
4003   void NAME(PRegister Pd, SIMD_RegVariant T, PRegister Pn, PRegister Pm) {             \
4004     starti;                                                                            \
4005     assert(T != Q, "invalid size");                                                    \
4006     f(0b00000101, 31, 24), f(T, 23, 22), f(0b10, 21, 20), prf(Pm, 16);                 \
4007     f(0b01001, 15, 11), f(op, 10), f(0b0, 9), prf(Pn, 5), f(0b0, 4), prf(Pd, 0);       \
4008   }
4009 
4010   INSN(sve_uzp1, 0b0); // Concatenate even elements from two predicates
4011   INSN(sve_uzp2, 0b1); // Concatenate odd elements from two predicates
4012 #undef INSN
4013 
4014 // SVE integer compare scalar count and limit
4015 #define INSN(NAME, sf, op)                                                \
4016   void NAME(PRegister Pd, SIMD_RegVariant T, Register Rn, Register Rm) {  \
4017     starti;                                                               \
4018     assert(T != Q, "invalid register variant");                           \
4019     f(0b00100101, 31, 24), f(T, 23, 22), f(1, 21),                        \
4020     zrf(Rm, 16), f(0, 15, 13), f(sf, 12), f(op >> 1, 11, 10),             \
4021     zrf(Rn, 5), f(op & 1, 4), prf(Pd, 0);                                 \
4022   }
4023   // While incrementing signed scalar less than scalar
4024   INSN(sve_whileltw, 0b0, 0b010);
4025   INSN(sve_whilelt,  0b1, 0b010);
4026   // While incrementing signed scalar less than or equal to scalar
4027   INSN(sve_whilelew, 0b0, 0b011);
4028   INSN(sve_whilele,  0b1, 0b011);
4029   // While incrementing unsigned scalar lower than scalar
4030   INSN(sve_whilelow, 0b0, 0b110);
4031   INSN(sve_whilelo,  0b1, 0b110);
4032   // While incrementing unsigned scalar lower than or the same as scalar
4033   INSN(sve_whilelsw, 0b0, 0b111);
4034   INSN(sve_whilels,  0b1, 0b111);
4035 #undef INSN
4036 
4037   // SVE predicate reverse
4038   void sve_rev(PRegister Pd, SIMD_RegVariant T, PRegister Pn) {
4039     starti;
4040     assert(T != Q, "invalid size");
4041     f(0b00000101, 31, 24), f(T, 23, 22), f(0b1101000100000, 21, 9);
4042     prf(Pn, 5), f(0, 4), prf(Pd, 0);
4043   }
4044 
4045 // SVE partition break condition
4046 #define INSN(NAME, op) \
4047   void NAME(PRegister Pd, PRegister Pg, PRegister Pn, bool isMerge) {      \
4048     starti;                                                                \
4049     f(0b00100101, 31, 24), f(op, 23, 22), f(0b01000001, 21, 14);           \
4050     prf(Pg, 10), f(0b0, 9), prf(Pn, 5), f(isMerge ? 1 : 0, 4), prf(Pd, 0); \
4051   }
4052 
4053   INSN(sve_brka, 0b00); // Break after first true condition
4054   INSN(sve_brkb, 0b10); // Break before first true condition
4055 #undef INSN
4056 
4057 // Element count and increment scalar (SVE)
4058 #define INSN(NAME, TYPE)                                                             \
4059   void NAME(Register Xdn, unsigned imm4 = 1, int pattern = 0b11111) {                \
4060     starti;                                                                          \
4061     f(0b00000100, 31, 24), f(TYPE, 23, 22), f(0b10, 21, 20);                         \
4062     f(imm4 - 1, 19, 16), f(0b11100, 15, 11), f(0, 10), f(pattern, 9, 5), rf(Xdn, 0); \
4063   }
4064 
4065   INSN(sve_cntb, B);  // Set scalar to multiple of 8-bit predicate constraint element count
4066   INSN(sve_cnth, H);  // Set scalar to multiple of 16-bit predicate constraint element count
4067   INSN(sve_cntw, S);  // Set scalar to multiple of 32-bit predicate constraint element count
4068   INSN(sve_cntd, D);  // Set scalar to multiple of 64-bit predicate constraint element count
4069 #undef INSN
4070 
4071   // Set scalar to active predicate element count
4072   void sve_cntp(Register Xd, SIMD_RegVariant T, PRegister Pg, PRegister Pn) {
4073     starti;
4074     assert(T != Q, "invalid size");
4075     f(0b00100101, 31, 24), f(T, 23, 22), f(0b10000010, 21, 14);
4076     prf(Pg, 10), f(0, 9), prf(Pn, 5), rf(Xd, 0);
4077   }
4078 
4079   // SVE convert signed integer to floating-point (predicated)
4080   void sve_scvtf(FloatRegister Zd, SIMD_RegVariant T_dst, PRegister Pg,
4081                  FloatRegister Zn, SIMD_RegVariant T_src) {
4082     starti;
4083     assert(T_src != B && T_dst != B && T_src != Q && T_dst != Q &&
4084            (T_src != H || T_dst == T_src), "invalid register variant");
4085     int opc = T_dst;
4086     int opc2 = T_src;
4087     // In most cases we can treat T_dst, T_src as opc, opc2,
4088     // except for the following two combinations.
4089     // +-----+------+---+------------------------------------+
4090     // | opc | opc2 | U |        Instruction Details         |
4091     // +-----+------+---+------------------------------------+
4092     // |  11 |   00 | 0 | SCVTF - 32-bit to double-precision |
4093     // |  11 |   10 | 0 | SCVTF - 64-bit to single-precision |
4094     // +-----+------+---+------------------------------------+
4095     if (T_src == S && T_dst == D) {
4096       opc = 0b11;
4097       opc2 = 0b00;
4098     } else if (T_src == D && T_dst == S) {
4099       opc = 0b11;
4100       opc2 = 0b10;
4101     }
4102     f(0b01100101, 31, 24), f(opc, 23, 22), f(0b010, 21, 19);
4103     f(opc2, 18, 17), f(0b0101, 16, 13);
4104     pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0);
4105   }
4106 
4107   // SVE floating-point convert to signed integer, rounding toward zero (predicated)
4108   void sve_fcvtzs(FloatRegister Zd, SIMD_RegVariant T_dst, PRegister Pg,
4109                   FloatRegister Zn, SIMD_RegVariant T_src) {
4110     starti;
4111     assert(T_src != B && T_dst != B && T_src != Q && T_dst != Q &&
4112            (T_dst != H || T_src == H), "invalid register variant");
4113     int opc = T_src;
4114     int opc2 = T_dst;
4115     // In most cases we can treat T_src, T_dst as opc, opc2,
4116     // except for the following two combinations.
4117     // +-----+------+---+-------------------------------------+
4118     // | opc | opc2 | U |         Instruction Details         |
4119     // +-----+------+---+-------------------------------------+
4120     // |  11 |  10  | 0 | FCVTZS - single-precision to 64-bit |
4121     // |  11 |  00  | 0 | FCVTZS - double-precision to 32-bit |
4122     // +-----+------+---+-------------------------------------+
4123     if (T_src == S && T_dst == D) {
4124       opc = 0b11;
4125       opc2 = 0b10;
4126     } else if (T_src == D && T_dst == S) {
4127       opc = 0b11;
4128       opc2 = 0b00;
4129     }
4130     f(0b01100101, 31, 24), f(opc, 23, 22), f(0b011, 21, 19);
4131     f(opc2, 18, 17), f(0b0101, 16, 13);
4132     pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0);
4133   }
4134 
4135   // SVE floating-point convert precision (predicated)
4136   void sve_fcvt(FloatRegister Zd, SIMD_RegVariant T_dst, PRegister Pg,
4137                 FloatRegister Zn, SIMD_RegVariant T_src) {
4138     starti;
4139     assert(T_src != B && T_dst != B && T_src != Q && T_dst != Q &&
4140            T_src != T_dst, "invalid register variant");
4141     // The encodings of fields op1 (bits 17-16) and op2 (bits 23-22)
4142     // depend on T_src and T_dst as given below -
4143     // +-----+------+---------------------------------------------+
4144     // | op2 | op1  |             Instruction Details             |
4145     // +-----+------+---------------------------------------------+
4146     // |  10 |  01  | FCVT - half-precision to single-precision   |
4147     // |  11 |  01  | FCVT - half-precision to double-precision   |
4148     // |  10 |  00  | FCVT - single-precision to half-precision   |
4149     // |  11 |  11  | FCVT - single-precision to double-precision |
4150     // |  11 |  00  | FCVT - double-preciison to half-precision   |
4151     // |  11 |  10  | FCVT - double-precision to single-precision |
4152     // +-----+------+---+-----------------------------------------+
4153     int op1 = 0b00;
4154     int op2 = (T_src == D || T_dst == D) ? 0b11 : 0b10;
4155     if (T_src == H) {
4156       op1 = 0b01;
4157     } else if (T_dst == S) {
4158       op1 = 0b10;
4159     } else if (T_dst == D) {
4160       op1 = 0b11;
4161     }
4162     f(0b01100101, 31, 24), f(op2, 23, 22), f(0b0010, 21, 18);
4163     f(op1, 17, 16), f(0b101, 15, 13);
4164     pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0);
4165   }
4166 
4167 // SVE extract element to general-purpose register
4168 #define INSN(NAME, before)                                                      \
4169   void NAME(Register Rd, SIMD_RegVariant T, PRegister Pg,  FloatRegister Zn) {  \
4170     starti;                                                                     \
4171     f(0b00000101, 31, 24), f(T, 23, 22), f(0b10000, 21, 17);                    \
4172     f(before, 16), f(0b101, 15, 13);                                            \
4173     pgrf(Pg, 10), rf(Zn, 5), rf(Rd, 0);                                         \
4174   }
4175 
4176   INSN(sve_lasta, 0b0);
4177   INSN(sve_lastb, 0b1);
4178 #undef INSN
4179 
4180 // SVE extract element to SIMD&FP scalar register
4181 #define INSN(NAME, before)                                                           \
4182   void NAME(FloatRegister Vd, SIMD_RegVariant T, PRegister Pg,  FloatRegister Zn) {  \
4183     starti;                                                                          \
4184     f(0b00000101, 31, 24), f(T, 23, 22), f(0b10001, 21, 17);                         \
4185     f(before, 16), f(0b100, 15, 13);                                                 \
4186     pgrf(Pg, 10), rf(Zn, 5), rf(Vd, 0);                                              \
4187   }
4188 
4189   INSN(sve_lasta, 0b0);
4190   INSN(sve_lastb, 0b1);
4191 #undef INSN
4192 
4193 // SVE reverse within elements
4194 #define INSN(NAME, opc, cond)                                                        \
4195   void NAME(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg,  FloatRegister Zn) {  \
4196     starti;                                                                          \
4197     assert(cond, "invalid size");                                                    \
4198     f(0b00000101, 31, 24), f(T, 23, 22), f(0b1001, 21, 18), f(opc, 17, 16);          \
4199     f(0b100, 15, 13), pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0);                            \
4200   }
4201 
4202   INSN(sve_revb, 0b00, T == H || T == S || T == D);
4203   INSN(sve_rbit, 0b11, T != Q);
4204 #undef INSN
4205 
4206   // SVE Create index starting from general-purpose register and incremented by immediate
4207   void sve_index(FloatRegister Zd, SIMD_RegVariant T, Register Rn, int imm) {
4208     starti;
4209     assert(T != Q, "invalid size");
4210     f(0b00000100, 31, 24), f(T, 23, 22), f(0b1, 21);
4211     sf(imm, 20, 16), f(0b010001, 15, 10);
4212     rf(Rn, 5), rf(Zd, 0);
4213   }
4214 
4215   // SVE create index starting from and incremented by immediate
4216   void sve_index(FloatRegister Zd, SIMD_RegVariant T, int imm1, int imm2) {
4217     starti;
4218     assert(T != Q, "invalid size");
4219     f(0b00000100, 31, 24), f(T, 23, 22), f(0b1, 21);
4220     sf(imm2, 20, 16), f(0b010000, 15, 10);
4221     sf(imm1, 9, 5), rf(Zd, 0);
4222   }
4223 
4224   // SVE programmable table lookup/permute using vector of element indices
4225   void sve_tbl(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, FloatRegister Zm) {
4226     starti;
4227     assert(T != Q, "invalid size");
4228     f(0b00000101, 31, 24), f(T, 23, 22), f(0b1, 21), rf(Zm, 16);
4229     f(0b001100, 15, 10), rf(Zn, 5), rf(Zd, 0);
4230   }
4231 
4232   // Shuffle active elements of vector to the right and fill with zero
4233   void sve_compact(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, PRegister Pg) {
4234     starti;
4235     assert(T == S || T == D, "invalid size");
4236     f(0b00000101, 31, 24), f(T, 23, 22), f(0b100001100, 21, 13);
4237     pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0);
4238   }
4239 
4240   // SVE2 Count matching elements in vector
4241   void sve_histcnt(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg,
4242                    FloatRegister Zn, FloatRegister Zm) {
4243     starti;
4244     assert(T == S || T == D, "invalid size");
4245     f(0b01000101, 31, 24), f(T, 23, 22), f(0b1, 21), rf(Zm, 16);
4246     f(0b110, 15, 13), pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0);
4247   }
4248 
4249 // SVE2 bitwise permute
4250 #define INSN(NAME, opc)                                                                  \
4251   void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn,  FloatRegister Zm) {  \
4252     starti;                                                                              \
4253     assert(T != Q, "invalid size");                                                      \
4254     f(0b01000101, 31, 24), f(T, 23, 22), f(0b0, 21);                                     \
4255     rf(Zm, 16), f(0b1011, 15, 12), f(opc, 11, 10);                                       \
4256     rf(Zn, 5), rf(Zd, 0);                                                                \
4257   }
4258 
4259   INSN(sve_bext, 0b00);
4260   INSN(sve_bdep, 0b01);
4261 #undef INSN
4262 
4263 // SVE2 bitwise ternary operations
4264 #define INSN(NAME, opc)                                               \
4265   void NAME(FloatRegister Zdn, FloatRegister Zm, FloatRegister Zk) {  \
4266     starti;                                                           \
4267     f(0b00000100, 31, 24), f(opc, 23, 21), rf(Zm, 16);                \
4268     f(0b001110, 15, 10), rf(Zk, 5), rf(Zdn, 0);                       \
4269   }
4270 
4271   INSN(sve_eor3, 0b001); // Bitwise exclusive OR of three vectors
4272 #undef INSN
4273 
4274 // SVE2 saturating operations - predicate
4275 #define INSN(NAME, op1, op2)                                                          \
4276   void NAME(FloatRegister Zdn, SIMD_RegVariant T, PRegister Pg, FloatRegister Znm) {  \
4277     assert(T != Q, "invalid register variant");                                       \
4278     sve_predicate_reg_insn(op1, op2, Zdn, T, Pg, Znm);                                \
4279   }
4280 
4281   INSN(sve_sqadd, 0b01000100, 0b011000100); // signed saturating add
4282   INSN(sve_sqsub, 0b01000100, 0b011010100); // signed saturating sub
4283   INSN(sve_uqadd, 0b01000100, 0b011001100); // unsigned saturating add
4284   INSN(sve_uqsub, 0b01000100, 0b011011100); // unsigned saturating sub
4285 
4286 #undef INSN
4287 
4288   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
4289   }
4290 
4291   // Stack overflow checking
4292   virtual void bang_stack_with_offset(int offset);
4293 
4294   static bool operand_valid_for_logical_immediate(bool is32, uint64_t imm);
4295   static bool operand_valid_for_sve_logical_immediate(unsigned elembits, uint64_t imm);
4296   static bool operand_valid_for_add_sub_immediate(int64_t imm);
4297   static bool operand_valid_for_sve_add_sub_immediate(int64_t imm);
4298   static bool operand_valid_for_float_immediate(double imm);
4299   static int  operand_valid_for_movi_immediate(uint64_t imm64, SIMD_Arrangement T);
4300 
4301   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
4302   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
4303 };
4304 
4305 inline Assembler::Membar_mask_bits operator|(Assembler::Membar_mask_bits a,
4306                                              Assembler::Membar_mask_bits b) {
4307   return Assembler::Membar_mask_bits(unsigned(a)|unsigned(b));
4308 }
4309 
4310 Instruction_aarch64::~Instruction_aarch64() {
4311   assem->emit_int32(insn);
4312   assert_cond(get_bits() == 0xffffffff);
4313 }
4314 
4315 #undef f
4316 #undef sf
4317 #undef rf
4318 #undef srf
4319 #undef zrf
4320 #undef prf
4321 #undef pgrf
4322 #undef fixed
4323 
4324 #undef starti
4325 
4326 // Invert a condition
4327 inline Assembler::Condition operator~(const Assembler::Condition cond) {
4328   return Assembler::Condition(int(cond) ^ 1);
4329 }
4330 
4331 extern "C" void das(uint64_t start, int len);
4332 
4333 #endif // CPU_AARCH64_ASSEMBLER_AARCH64_HPP