1 /* 2 * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/macroAssembler.inline.hpp" 27 #include "asm/assembler.hpp" 28 #include "c1/c1_CodeStubs.hpp" 29 #include "c1/c1_Compilation.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_MacroAssembler.hpp" 32 #include "c1/c1_Runtime1.hpp" 33 #include "c1/c1_ValueStack.hpp" 34 #include "ci/ciArrayKlass.hpp" 35 #include "ci/ciInstance.hpp" 36 #include "code/compiledIC.hpp" 37 #include "gc/shared/collectedHeap.hpp" 38 #include "gc/shared/gc_globals.hpp" 39 #include "nativeInst_aarch64.hpp" 40 #include "oops/objArrayKlass.hpp" 41 #include "runtime/frame.inline.hpp" 42 #include "runtime/sharedRuntime.hpp" 43 #include "runtime/stubRoutines.hpp" 44 #include "utilities/powerOfTwo.hpp" 45 #include "vmreg_aarch64.inline.hpp" 46 47 48 #ifndef PRODUCT 49 #define COMMENT(x) do { __ block_comment(x); } while (0) 50 #else 51 #define COMMENT(x) 52 #endif 53 54 NEEDS_CLEANUP // remove this definitions ? 55 const Register SYNC_header = r0; // synchronization header 56 const Register SHIFT_count = r0; // where count for shift operations must be 57 58 #define __ _masm-> 59 60 61 static void select_different_registers(Register preserve, 62 Register extra, 63 Register &tmp1, 64 Register &tmp2) { 65 if (tmp1 == preserve) { 66 assert_different_registers(tmp1, tmp2, extra); 67 tmp1 = extra; 68 } else if (tmp2 == preserve) { 69 assert_different_registers(tmp1, tmp2, extra); 70 tmp2 = extra; 71 } 72 assert_different_registers(preserve, tmp1, tmp2); 73 } 74 75 76 77 static void select_different_registers(Register preserve, 78 Register extra, 79 Register &tmp1, 80 Register &tmp2, 81 Register &tmp3) { 82 if (tmp1 == preserve) { 83 assert_different_registers(tmp1, tmp2, tmp3, extra); 84 tmp1 = extra; 85 } else if (tmp2 == preserve) { 86 assert_different_registers(tmp1, tmp2, tmp3, extra); 87 tmp2 = extra; 88 } else if (tmp3 == preserve) { 89 assert_different_registers(tmp1, tmp2, tmp3, extra); 90 tmp3 = extra; 91 } 92 assert_different_registers(preserve, tmp1, tmp2, tmp3); 93 } 94 95 96 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { Unimplemented(); return false; } 97 98 99 LIR_Opr LIR_Assembler::receiverOpr() { 100 return FrameMap::receiver_opr; 101 } 102 103 LIR_Opr LIR_Assembler::osrBufferPointer() { 104 return FrameMap::as_pointer_opr(receiverOpr()->as_register()); 105 } 106 107 //--------------fpu register translations----------------------- 108 109 110 address LIR_Assembler::float_constant(float f) { 111 address const_addr = __ float_constant(f); 112 if (const_addr == nullptr) { 113 bailout("const section overflow"); 114 return __ code()->consts()->start(); 115 } else { 116 return const_addr; 117 } 118 } 119 120 121 address LIR_Assembler::double_constant(double d) { 122 address const_addr = __ double_constant(d); 123 if (const_addr == nullptr) { 124 bailout("const section overflow"); 125 return __ code()->consts()->start(); 126 } else { 127 return const_addr; 128 } 129 } 130 131 address LIR_Assembler::int_constant(jlong n) { 132 address const_addr = __ long_constant(n); 133 if (const_addr == nullptr) { 134 bailout("const section overflow"); 135 return __ code()->consts()->start(); 136 } else { 137 return const_addr; 138 } 139 } 140 141 void LIR_Assembler::breakpoint() { Unimplemented(); } 142 143 void LIR_Assembler::push(LIR_Opr opr) { Unimplemented(); } 144 145 void LIR_Assembler::pop(LIR_Opr opr) { Unimplemented(); } 146 147 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { Unimplemented(); return false; } 148 //------------------------------------------- 149 150 static Register as_reg(LIR_Opr op) { 151 return op->is_double_cpu() ? op->as_register_lo() : op->as_register(); 152 } 153 154 static jlong as_long(LIR_Opr data) { 155 jlong result; 156 switch (data->type()) { 157 case T_INT: 158 result = (data->as_jint()); 159 break; 160 case T_LONG: 161 result = (data->as_jlong()); 162 break; 163 default: 164 ShouldNotReachHere(); 165 result = 0; // unreachable 166 } 167 return result; 168 } 169 170 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) { 171 Register base = addr->base()->as_pointer_register(); 172 LIR_Opr opr = addr->index(); 173 if (opr->is_cpu_register()) { 174 Register index; 175 if (opr->is_single_cpu()) 176 index = opr->as_register(); 177 else 178 index = opr->as_register_lo(); 179 assert(addr->disp() == 0, "must be"); 180 switch(opr->type()) { 181 case T_INT: 182 return Address(base, index, Address::sxtw(addr->scale())); 183 case T_LONG: 184 return Address(base, index, Address::lsl(addr->scale())); 185 default: 186 ShouldNotReachHere(); 187 } 188 } else { 189 assert(addr->scale() == 0, 190 "expected for immediate operand, was: %d", addr->scale()); 191 ptrdiff_t offset = ptrdiff_t(addr->disp()); 192 // NOTE: Does not handle any 16 byte vector access. 193 const uint type_size = type2aelembytes(addr->type(), true); 194 return __ legitimize_address(Address(base, offset), type_size, tmp); 195 } 196 return Address(); 197 } 198 199 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 200 ShouldNotReachHere(); 201 return Address(); 202 } 203 204 Address LIR_Assembler::as_Address(LIR_Address* addr) { 205 return as_Address(addr, rscratch1); 206 } 207 208 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 209 return as_Address(addr, rscratch1); // Ouch 210 // FIXME: This needs to be much more clever. See x86. 211 } 212 213 // Ensure a valid Address (base + offset) to a stack-slot. If stack access is 214 // not encodable as a base + (immediate) offset, generate an explicit address 215 // calculation to hold the address in a temporary register. 216 Address LIR_Assembler::stack_slot_address(int index, uint size, Register tmp, int adjust) { 217 precond(size == 4 || size == 8); 218 Address addr = frame_map()->address_for_slot(index, adjust); 219 precond(addr.getMode() == Address::base_plus_offset); 220 precond(addr.base() == sp); 221 precond(addr.offset() > 0); 222 uint mask = size - 1; 223 assert((addr.offset() & mask) == 0, "scaled offsets only"); 224 return __ legitimize_address(addr, size, tmp); 225 } 226 227 void LIR_Assembler::osr_entry() { 228 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 229 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 230 ValueStack* entry_state = osr_entry->state(); 231 int number_of_locks = entry_state->locks_size(); 232 233 // we jump here if osr happens with the interpreter 234 // state set up to continue at the beginning of the 235 // loop that triggered osr - in particular, we have 236 // the following registers setup: 237 // 238 // r2: osr buffer 239 // 240 241 // build frame 242 ciMethod* m = compilation()->method(); 243 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 244 245 // OSR buffer is 246 // 247 // locals[nlocals-1..0] 248 // monitors[0..number_of_locks] 249 // 250 // locals is a direct copy of the interpreter frame so in the osr buffer 251 // so first slot in the local array is the last local from the interpreter 252 // and last slot is local[0] (receiver) from the interpreter 253 // 254 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 255 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 256 // in the interpreter frame (the method lock if a sync method) 257 258 // Initialize monitors in the compiled activation. 259 // r2: pointer to osr buffer 260 // 261 // All other registers are dead at this point and the locals will be 262 // copied into place by code emitted in the IR. 263 264 Register OSR_buf = osrBufferPointer()->as_pointer_register(); 265 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 266 int monitor_offset = BytesPerWord * method()->max_locals() + 267 (2 * BytesPerWord) * (number_of_locks - 1); 268 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 269 // the OSR buffer using 2 word entries: first the lock and then 270 // the oop. 271 for (int i = 0; i < number_of_locks; i++) { 272 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 273 #ifdef ASSERT 274 // verify the interpreter's monitor has a non-null object 275 { 276 Label L; 277 __ ldr(rscratch1, __ form_address(rscratch1, OSR_buf, slot_offset + 1*BytesPerWord, 0)); 278 __ cbnz(rscratch1, L); 279 __ stop("locked object is null"); 280 __ bind(L); 281 } 282 #endif 283 __ ldr(r19, __ form_address(rscratch1, OSR_buf, slot_offset, 0)); 284 __ ldr(r20, __ form_address(rscratch1, OSR_buf, slot_offset + BytesPerWord, 0)); 285 __ str(r19, frame_map()->address_for_monitor_lock(i)); 286 __ str(r20, frame_map()->address_for_monitor_object(i)); 287 } 288 } 289 } 290 291 292 // inline cache check; done before the frame is built. 293 int LIR_Assembler::check_icache() { 294 return __ ic_check(CodeEntryAlignment); 295 } 296 297 void LIR_Assembler::clinit_barrier(ciMethod* method) { 298 assert(VM_Version::supports_fast_class_init_checks(), "sanity"); 299 assert(!method->holder()->is_not_initialized(), "initialization should have been started"); 300 301 Label L_skip_barrier; 302 303 __ mov_metadata(rscratch2, method->holder()->constant_encoding()); 304 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier /*L_fast_path*/); 305 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 306 __ bind(L_skip_barrier); 307 } 308 309 void LIR_Assembler::jobject2reg(jobject o, Register reg) { 310 if (o == nullptr) { 311 __ mov(reg, zr); 312 } else { 313 __ movoop(reg, o); 314 } 315 } 316 317 void LIR_Assembler::deoptimize_trap(CodeEmitInfo *info) { 318 address target = nullptr; 319 relocInfo::relocType reloc_type = relocInfo::none; 320 321 switch (patching_id(info)) { 322 case PatchingStub::access_field_id: 323 target = Runtime1::entry_for(StubId::c1_access_field_patching_id); 324 reloc_type = relocInfo::section_word_type; 325 break; 326 case PatchingStub::load_klass_id: 327 target = Runtime1::entry_for(StubId::c1_load_klass_patching_id); 328 reloc_type = relocInfo::metadata_type; 329 break; 330 case PatchingStub::load_mirror_id: 331 target = Runtime1::entry_for(StubId::c1_load_mirror_patching_id); 332 reloc_type = relocInfo::oop_type; 333 break; 334 case PatchingStub::load_appendix_id: 335 target = Runtime1::entry_for(StubId::c1_load_appendix_patching_id); 336 reloc_type = relocInfo::oop_type; 337 break; 338 default: ShouldNotReachHere(); 339 } 340 341 __ far_call(RuntimeAddress(target)); 342 add_call_info_here(info); 343 } 344 345 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) { 346 deoptimize_trap(info); 347 } 348 349 350 // This specifies the rsp decrement needed to build the frame 351 int LIR_Assembler::initial_frame_size_in_bytes() const { 352 // if rounding, must let FrameMap know! 353 354 return in_bytes(frame_map()->framesize_in_bytes()); 355 } 356 357 358 int LIR_Assembler::emit_exception_handler() { 359 // generate code for exception handler 360 address handler_base = __ start_a_stub(exception_handler_size()); 361 if (handler_base == nullptr) { 362 // not enough space left for the handler 363 bailout("exception handler overflow"); 364 return -1; 365 } 366 367 int offset = code_offset(); 368 369 // the exception oop and pc are in r0, and r3 370 // no other registers need to be preserved, so invalidate them 371 __ invalidate_registers(false, true, true, false, true, true); 372 373 // check that there is really an exception 374 __ verify_not_null_oop(r0); 375 376 // search an exception handler (r0: exception oop, r3: throwing pc) 377 __ far_call(RuntimeAddress(Runtime1::entry_for(StubId::c1_handle_exception_from_callee_id))); 378 __ should_not_reach_here(); 379 guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); 380 __ end_a_stub(); 381 382 return offset; 383 } 384 385 386 // Emit the code to remove the frame from the stack in the exception 387 // unwind path. 388 int LIR_Assembler::emit_unwind_handler() { 389 #ifndef PRODUCT 390 if (CommentedAssembly) { 391 _masm->block_comment("Unwind handler"); 392 } 393 #endif 394 395 int offset = code_offset(); 396 397 // Fetch the exception from TLS and clear out exception related thread state 398 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 399 __ str(zr, Address(rthread, JavaThread::exception_oop_offset())); 400 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 401 402 __ bind(_unwind_handler_entry); 403 __ verify_not_null_oop(r0); 404 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 405 __ mov(r19, r0); // Preserve the exception 406 } 407 408 // Perform needed unlocking 409 MonitorExitStub* stub = nullptr; 410 if (method()->is_synchronized()) { 411 monitor_address(0, FrameMap::r0_opr); 412 stub = new MonitorExitStub(FrameMap::r0_opr, true, 0); 413 __ unlock_object(r5, r4, r0, r6, *stub->entry()); 414 __ bind(*stub->continuation()); 415 } 416 417 if (compilation()->env()->dtrace_method_probes()) { 418 __ mov(c_rarg0, rthread); 419 __ mov_metadata(c_rarg1, method()->constant_encoding()); 420 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), c_rarg0, c_rarg1); 421 } 422 423 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 424 __ mov(r0, r19); // Restore the exception 425 } 426 427 // remove the activation and dispatch to the unwind handler 428 __ block_comment("remove_frame and dispatch to the unwind handler"); 429 __ remove_frame(initial_frame_size_in_bytes()); 430 __ far_jump(RuntimeAddress(Runtime1::entry_for(StubId::c1_unwind_exception_id))); 431 432 // Emit the slow path assembly 433 if (stub != nullptr) { 434 stub->emit_code(this); 435 } 436 437 return offset; 438 } 439 440 441 int LIR_Assembler::emit_deopt_handler() { 442 // generate code for exception handler 443 address handler_base = __ start_a_stub(deopt_handler_size()); 444 if (handler_base == nullptr) { 445 // not enough space left for the handler 446 bailout("deopt handler overflow"); 447 return -1; 448 } 449 450 int offset = code_offset(); 451 452 __ adr(lr, pc()); 453 __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); 454 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); 455 __ end_a_stub(); 456 457 return offset; 458 } 459 460 void LIR_Assembler::add_debug_info_for_branch(address adr, CodeEmitInfo* info) { 461 _masm->code_section()->relocate(adr, relocInfo::poll_type); 462 int pc_offset = code_offset(); 463 flush_debug_info(pc_offset); 464 info->record_debug_info(compilation()->debug_info_recorder(), pc_offset); 465 if (info->exception_handlers() != nullptr) { 466 compilation()->add_exception_handlers_for_pco(pc_offset, info->exception_handlers()); 467 } 468 } 469 470 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 471 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == r0, "word returns are in r0,"); 472 473 // Pop the stack before the safepoint code 474 __ remove_frame(initial_frame_size_in_bytes()); 475 476 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { 477 __ reserved_stack_check(); 478 } 479 480 code_stub->set_safepoint_offset(__ offset()); 481 __ relocate(relocInfo::poll_return_type); 482 __ safepoint_poll(*code_stub->entry(), true /* at_return */, true /* in_nmethod */); 483 __ ret(lr); 484 } 485 486 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 487 guarantee(info != nullptr, "Shouldn't be null"); 488 __ get_polling_page(rscratch1, relocInfo::poll_type); 489 add_debug_info_for_branch(info); // This isn't just debug info: 490 // it's the oop map 491 __ read_polling_page(rscratch1, relocInfo::poll_type); 492 return __ offset(); 493 } 494 495 496 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { 497 if (from_reg == r31_sp) 498 from_reg = sp; 499 if (to_reg == r31_sp) 500 to_reg = sp; 501 __ mov(to_reg, from_reg); 502 } 503 504 void LIR_Assembler::swap_reg(Register a, Register b) { Unimplemented(); } 505 506 507 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 508 assert(src->is_constant(), "should not call otherwise"); 509 assert(dest->is_register(), "should not call otherwise"); 510 LIR_Const* c = src->as_constant_ptr(); 511 512 switch (c->type()) { 513 case T_INT: { 514 assert(patch_code == lir_patch_none, "no patching handled here"); 515 __ movw(dest->as_register(), c->as_jint()); 516 break; 517 } 518 519 case T_ADDRESS: { 520 assert(patch_code == lir_patch_none, "no patching handled here"); 521 __ mov(dest->as_register(), c->as_jint()); 522 break; 523 } 524 525 case T_LONG: { 526 assert(patch_code == lir_patch_none, "no patching handled here"); 527 __ mov(dest->as_register_lo(), (intptr_t)c->as_jlong()); 528 break; 529 } 530 531 case T_OBJECT: { 532 if (patch_code == lir_patch_none) { 533 jobject2reg(c->as_jobject(), dest->as_register()); 534 } else { 535 jobject2reg_with_patching(dest->as_register(), info); 536 } 537 break; 538 } 539 540 case T_METADATA: { 541 if (patch_code != lir_patch_none) { 542 klass2reg_with_patching(dest->as_register(), info); 543 } else { 544 __ mov_metadata(dest->as_register(), c->as_metadata()); 545 } 546 break; 547 } 548 549 case T_FLOAT: { 550 if (__ operand_valid_for_float_immediate(c->as_jfloat())) { 551 __ fmovs(dest->as_float_reg(), (c->as_jfloat())); 552 } else { 553 __ adr(rscratch1, InternalAddress(float_constant(c->as_jfloat()))); 554 __ ldrs(dest->as_float_reg(), Address(rscratch1)); 555 } 556 break; 557 } 558 559 case T_DOUBLE: { 560 if (__ operand_valid_for_float_immediate(c->as_jdouble())) { 561 __ fmovd(dest->as_double_reg(), (c->as_jdouble())); 562 } else { 563 __ adr(rscratch1, InternalAddress(double_constant(c->as_jdouble()))); 564 __ ldrd(dest->as_double_reg(), Address(rscratch1)); 565 } 566 break; 567 } 568 569 default: 570 ShouldNotReachHere(); 571 } 572 } 573 574 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 575 LIR_Const* c = src->as_constant_ptr(); 576 switch (c->type()) { 577 case T_OBJECT: 578 { 579 if (! c->as_jobject()) 580 __ str(zr, frame_map()->address_for_slot(dest->single_stack_ix())); 581 else { 582 const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr); 583 reg2stack(FrameMap::rscratch1_opr, dest, c->type()); 584 } 585 } 586 break; 587 case T_ADDRESS: 588 { 589 const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr); 590 reg2stack(FrameMap::rscratch1_opr, dest, c->type()); 591 } 592 case T_INT: 593 case T_FLOAT: 594 { 595 Register reg = zr; 596 if (c->as_jint_bits() == 0) 597 __ strw(zr, frame_map()->address_for_slot(dest->single_stack_ix())); 598 else { 599 __ movw(rscratch1, c->as_jint_bits()); 600 __ strw(rscratch1, frame_map()->address_for_slot(dest->single_stack_ix())); 601 } 602 } 603 break; 604 case T_LONG: 605 case T_DOUBLE: 606 { 607 Register reg = zr; 608 if (c->as_jlong_bits() == 0) 609 __ str(zr, frame_map()->address_for_slot(dest->double_stack_ix(), 610 lo_word_offset_in_bytes)); 611 else { 612 __ mov(rscratch1, (intptr_t)c->as_jlong_bits()); 613 __ str(rscratch1, frame_map()->address_for_slot(dest->double_stack_ix(), 614 lo_word_offset_in_bytes)); 615 } 616 } 617 break; 618 default: 619 ShouldNotReachHere(); 620 } 621 } 622 623 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 624 assert(src->is_constant(), "should not call otherwise"); 625 LIR_Const* c = src->as_constant_ptr(); 626 LIR_Address* to_addr = dest->as_address_ptr(); 627 628 void (Assembler::* insn)(Register Rt, const Address &adr); 629 630 switch (type) { 631 case T_ADDRESS: 632 assert(c->as_jint() == 0, "should be"); 633 insn = &Assembler::str; 634 break; 635 case T_LONG: 636 assert(c->as_jlong() == 0, "should be"); 637 insn = &Assembler::str; 638 break; 639 case T_INT: 640 assert(c->as_jint() == 0, "should be"); 641 insn = &Assembler::strw; 642 break; 643 case T_OBJECT: 644 case T_ARRAY: 645 assert(c->as_jobject() == nullptr, "should be"); 646 if (UseCompressedOops && !wide) { 647 insn = &Assembler::strw; 648 } else { 649 insn = &Assembler::str; 650 } 651 break; 652 case T_CHAR: 653 case T_SHORT: 654 assert(c->as_jint() == 0, "should be"); 655 insn = &Assembler::strh; 656 break; 657 case T_BOOLEAN: 658 case T_BYTE: 659 assert(c->as_jint() == 0, "should be"); 660 insn = &Assembler::strb; 661 break; 662 default: 663 ShouldNotReachHere(); 664 insn = &Assembler::str; // unreachable 665 } 666 667 if (info) add_debug_info_for_null_check_here(info); 668 (_masm->*insn)(zr, as_Address(to_addr, rscratch1)); 669 } 670 671 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) { 672 assert(src->is_register(), "should not call otherwise"); 673 assert(dest->is_register(), "should not call otherwise"); 674 675 // move between cpu-registers 676 if (dest->is_single_cpu()) { 677 if (src->type() == T_LONG) { 678 // Can do LONG -> OBJECT 679 move_regs(src->as_register_lo(), dest->as_register()); 680 return; 681 } 682 assert(src->is_single_cpu(), "must match"); 683 if (src->type() == T_OBJECT) { 684 __ verify_oop(src->as_register()); 685 } 686 move_regs(src->as_register(), dest->as_register()); 687 688 } else if (dest->is_double_cpu()) { 689 if (is_reference_type(src->type())) { 690 // Surprising to me but we can see move of a long to t_object 691 __ verify_oop(src->as_register()); 692 move_regs(src->as_register(), dest->as_register_lo()); 693 return; 694 } 695 assert(src->is_double_cpu(), "must match"); 696 Register f_lo = src->as_register_lo(); 697 Register f_hi = src->as_register_hi(); 698 Register t_lo = dest->as_register_lo(); 699 Register t_hi = dest->as_register_hi(); 700 assert(f_hi == f_lo, "must be same"); 701 assert(t_hi == t_lo, "must be same"); 702 move_regs(f_lo, t_lo); 703 704 } else if (dest->is_single_fpu()) { 705 __ fmovs(dest->as_float_reg(), src->as_float_reg()); 706 707 } else if (dest->is_double_fpu()) { 708 __ fmovd(dest->as_double_reg(), src->as_double_reg()); 709 710 } else { 711 ShouldNotReachHere(); 712 } 713 } 714 715 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 716 precond(src->is_register() && dest->is_stack()); 717 718 uint const c_sz32 = sizeof(uint32_t); 719 uint const c_sz64 = sizeof(uint64_t); 720 721 if (src->is_single_cpu()) { 722 int index = dest->single_stack_ix(); 723 if (is_reference_type(type)) { 724 __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 725 __ verify_oop(src->as_register()); 726 } else if (type == T_METADATA || type == T_DOUBLE || type == T_ADDRESS) { 727 __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 728 } else { 729 __ strw(src->as_register(), stack_slot_address(index, c_sz32, rscratch1)); 730 } 731 732 } else if (src->is_double_cpu()) { 733 int index = dest->double_stack_ix(); 734 Address dest_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes); 735 __ str(src->as_register_lo(), dest_addr_LO); 736 737 } else if (src->is_single_fpu()) { 738 int index = dest->single_stack_ix(); 739 __ strs(src->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1)); 740 741 } else if (src->is_double_fpu()) { 742 int index = dest->double_stack_ix(); 743 __ strd(src->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1)); 744 745 } else { 746 ShouldNotReachHere(); 747 } 748 } 749 750 751 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 752 LIR_Address* to_addr = dest->as_address_ptr(); 753 PatchingStub* patch = nullptr; 754 Register compressed_src = rscratch1; 755 756 if (patch_code != lir_patch_none) { 757 deoptimize_trap(info); 758 return; 759 } 760 761 if (is_reference_type(type)) { 762 __ verify_oop(src->as_register()); 763 764 if (UseCompressedOops && !wide) { 765 __ encode_heap_oop(compressed_src, src->as_register()); 766 } else { 767 compressed_src = src->as_register(); 768 } 769 } 770 771 int null_check_here = code_offset(); 772 switch (type) { 773 case T_FLOAT: { 774 __ strs(src->as_float_reg(), as_Address(to_addr)); 775 break; 776 } 777 778 case T_DOUBLE: { 779 __ strd(src->as_double_reg(), as_Address(to_addr)); 780 break; 781 } 782 783 case T_ARRAY: // fall through 784 case T_OBJECT: // fall through 785 if (UseCompressedOops && !wide) { 786 __ strw(compressed_src, as_Address(to_addr, rscratch2)); 787 } else { 788 __ str(compressed_src, as_Address(to_addr)); 789 } 790 break; 791 case T_METADATA: 792 // We get here to store a method pointer to the stack to pass to 793 // a dtrace runtime call. This can't work on 64 bit with 794 // compressed klass ptrs: T_METADATA can be a compressed klass 795 // ptr or a 64 bit method pointer. 796 ShouldNotReachHere(); 797 __ str(src->as_register(), as_Address(to_addr)); 798 break; 799 case T_ADDRESS: 800 __ str(src->as_register(), as_Address(to_addr)); 801 break; 802 case T_INT: 803 __ strw(src->as_register(), as_Address(to_addr)); 804 break; 805 806 case T_LONG: { 807 __ str(src->as_register_lo(), as_Address_lo(to_addr)); 808 break; 809 } 810 811 case T_BYTE: // fall through 812 case T_BOOLEAN: { 813 __ strb(src->as_register(), as_Address(to_addr)); 814 break; 815 } 816 817 case T_CHAR: // fall through 818 case T_SHORT: 819 __ strh(src->as_register(), as_Address(to_addr)); 820 break; 821 822 default: 823 ShouldNotReachHere(); 824 } 825 if (info != nullptr) { 826 add_debug_info_for_null_check(null_check_here, info); 827 } 828 } 829 830 831 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 832 precond(src->is_stack() && dest->is_register()); 833 834 uint const c_sz32 = sizeof(uint32_t); 835 uint const c_sz64 = sizeof(uint64_t); 836 837 if (dest->is_single_cpu()) { 838 int index = src->single_stack_ix(); 839 if (is_reference_type(type)) { 840 __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 841 __ verify_oop(dest->as_register()); 842 } else if (type == T_METADATA || type == T_ADDRESS) { 843 __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 844 } else { 845 __ ldrw(dest->as_register(), stack_slot_address(index, c_sz32, rscratch1)); 846 } 847 848 } else if (dest->is_double_cpu()) { 849 int index = src->double_stack_ix(); 850 Address src_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes); 851 __ ldr(dest->as_register_lo(), src_addr_LO); 852 853 } else if (dest->is_single_fpu()) { 854 int index = src->single_stack_ix(); 855 __ ldrs(dest->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1)); 856 857 } else if (dest->is_double_fpu()) { 858 int index = src->double_stack_ix(); 859 __ ldrd(dest->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1)); 860 861 } else { 862 ShouldNotReachHere(); 863 } 864 } 865 866 867 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) { 868 address target = nullptr; 869 relocInfo::relocType reloc_type = relocInfo::none; 870 871 switch (patching_id(info)) { 872 case PatchingStub::access_field_id: 873 target = Runtime1::entry_for(StubId::c1_access_field_patching_id); 874 reloc_type = relocInfo::section_word_type; 875 break; 876 case PatchingStub::load_klass_id: 877 target = Runtime1::entry_for(StubId::c1_load_klass_patching_id); 878 reloc_type = relocInfo::metadata_type; 879 break; 880 case PatchingStub::load_mirror_id: 881 target = Runtime1::entry_for(StubId::c1_load_mirror_patching_id); 882 reloc_type = relocInfo::oop_type; 883 break; 884 case PatchingStub::load_appendix_id: 885 target = Runtime1::entry_for(StubId::c1_load_appendix_patching_id); 886 reloc_type = relocInfo::oop_type; 887 break; 888 default: ShouldNotReachHere(); 889 } 890 891 __ far_call(RuntimeAddress(target)); 892 add_call_info_here(info); 893 } 894 895 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 896 897 LIR_Opr temp; 898 if (type == T_LONG || type == T_DOUBLE) 899 temp = FrameMap::rscratch1_long_opr; 900 else 901 temp = FrameMap::rscratch1_opr; 902 903 stack2reg(src, temp, src->type()); 904 reg2stack(temp, dest, dest->type()); 905 } 906 907 908 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 909 LIR_Address* addr = src->as_address_ptr(); 910 LIR_Address* from_addr = src->as_address_ptr(); 911 912 if (addr->base()->type() == T_OBJECT) { 913 __ verify_oop(addr->base()->as_pointer_register()); 914 } 915 916 if (patch_code != lir_patch_none) { 917 deoptimize_trap(info); 918 return; 919 } 920 921 if (info != nullptr) { 922 add_debug_info_for_null_check_here(info); 923 } 924 int null_check_here = code_offset(); 925 switch (type) { 926 case T_FLOAT: { 927 __ ldrs(dest->as_float_reg(), as_Address(from_addr)); 928 break; 929 } 930 931 case T_DOUBLE: { 932 __ ldrd(dest->as_double_reg(), as_Address(from_addr)); 933 break; 934 } 935 936 case T_ARRAY: // fall through 937 case T_OBJECT: // fall through 938 if (UseCompressedOops && !wide) { 939 __ ldrw(dest->as_register(), as_Address(from_addr)); 940 } else { 941 __ ldr(dest->as_register(), as_Address(from_addr)); 942 } 943 break; 944 case T_METADATA: 945 // We get here to store a method pointer to the stack to pass to 946 // a dtrace runtime call. This can't work on 64 bit with 947 // compressed klass ptrs: T_METADATA can be a compressed klass 948 // ptr or a 64 bit method pointer. 949 ShouldNotReachHere(); 950 __ ldr(dest->as_register(), as_Address(from_addr)); 951 break; 952 case T_ADDRESS: 953 __ ldr(dest->as_register(), as_Address(from_addr)); 954 break; 955 case T_INT: 956 __ ldrw(dest->as_register(), as_Address(from_addr)); 957 break; 958 959 case T_LONG: { 960 __ ldr(dest->as_register_lo(), as_Address_lo(from_addr)); 961 break; 962 } 963 964 case T_BYTE: 965 __ ldrsb(dest->as_register(), as_Address(from_addr)); 966 break; 967 case T_BOOLEAN: { 968 __ ldrb(dest->as_register(), as_Address(from_addr)); 969 break; 970 } 971 972 case T_CHAR: 973 __ ldrh(dest->as_register(), as_Address(from_addr)); 974 break; 975 case T_SHORT: 976 __ ldrsh(dest->as_register(), as_Address(from_addr)); 977 break; 978 979 default: 980 ShouldNotReachHere(); 981 } 982 983 if (is_reference_type(type)) { 984 if (UseCompressedOops && !wide) { 985 __ decode_heap_oop(dest->as_register()); 986 } 987 988 __ verify_oop(dest->as_register()); 989 } 990 } 991 992 993 int LIR_Assembler::array_element_size(BasicType type) const { 994 int elem_size = type2aelembytes(type); 995 return exact_log2(elem_size); 996 } 997 998 999 void LIR_Assembler::emit_op3(LIR_Op3* op) { 1000 switch (op->code()) { 1001 case lir_idiv: 1002 case lir_irem: 1003 arithmetic_idiv(op->code(), 1004 op->in_opr1(), 1005 op->in_opr2(), 1006 op->in_opr3(), 1007 op->result_opr(), 1008 op->info()); 1009 break; 1010 case lir_fmad: 1011 __ fmaddd(op->result_opr()->as_double_reg(), 1012 op->in_opr1()->as_double_reg(), 1013 op->in_opr2()->as_double_reg(), 1014 op->in_opr3()->as_double_reg()); 1015 break; 1016 case lir_fmaf: 1017 __ fmadds(op->result_opr()->as_float_reg(), 1018 op->in_opr1()->as_float_reg(), 1019 op->in_opr2()->as_float_reg(), 1020 op->in_opr3()->as_float_reg()); 1021 break; 1022 default: ShouldNotReachHere(); break; 1023 } 1024 } 1025 1026 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 1027 #ifdef ASSERT 1028 assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label"); 1029 if (op->block() != nullptr) _branch_target_blocks.append(op->block()); 1030 if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock()); 1031 #endif 1032 1033 if (op->cond() == lir_cond_always) { 1034 if (op->info() != nullptr) add_debug_info_for_branch(op->info()); 1035 __ b(*(op->label())); 1036 } else { 1037 Assembler::Condition acond; 1038 if (op->code() == lir_cond_float_branch) { 1039 bool is_unordered = (op->ublock() == op->block()); 1040 // Assembler::EQ does not permit unordered branches, so we add 1041 // another branch here. Likewise, Assembler::NE does not permit 1042 // ordered branches. 1043 if ((is_unordered && op->cond() == lir_cond_equal) 1044 || (!is_unordered && op->cond() == lir_cond_notEqual)) 1045 __ br(Assembler::VS, *(op->ublock()->label())); 1046 switch(op->cond()) { 1047 case lir_cond_equal: acond = Assembler::EQ; break; 1048 case lir_cond_notEqual: acond = Assembler::NE; break; 1049 case lir_cond_less: acond = (is_unordered ? Assembler::LT : Assembler::LO); break; 1050 case lir_cond_lessEqual: acond = (is_unordered ? Assembler::LE : Assembler::LS); break; 1051 case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::HS : Assembler::GE); break; 1052 case lir_cond_greater: acond = (is_unordered ? Assembler::HI : Assembler::GT); break; 1053 default: ShouldNotReachHere(); 1054 acond = Assembler::EQ; // unreachable 1055 } 1056 } else { 1057 switch (op->cond()) { 1058 case lir_cond_equal: acond = Assembler::EQ; break; 1059 case lir_cond_notEqual: acond = Assembler::NE; break; 1060 case lir_cond_less: acond = Assembler::LT; break; 1061 case lir_cond_lessEqual: acond = Assembler::LE; break; 1062 case lir_cond_greaterEqual: acond = Assembler::GE; break; 1063 case lir_cond_greater: acond = Assembler::GT; break; 1064 case lir_cond_belowEqual: acond = Assembler::LS; break; 1065 case lir_cond_aboveEqual: acond = Assembler::HS; break; 1066 default: ShouldNotReachHere(); 1067 acond = Assembler::EQ; // unreachable 1068 } 1069 } 1070 __ br(acond,*(op->label())); 1071 } 1072 } 1073 1074 1075 1076 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 1077 LIR_Opr src = op->in_opr(); 1078 LIR_Opr dest = op->result_opr(); 1079 1080 switch (op->bytecode()) { 1081 case Bytecodes::_i2f: 1082 { 1083 __ scvtfws(dest->as_float_reg(), src->as_register()); 1084 break; 1085 } 1086 case Bytecodes::_i2d: 1087 { 1088 __ scvtfwd(dest->as_double_reg(), src->as_register()); 1089 break; 1090 } 1091 case Bytecodes::_l2d: 1092 { 1093 __ scvtfd(dest->as_double_reg(), src->as_register_lo()); 1094 break; 1095 } 1096 case Bytecodes::_l2f: 1097 { 1098 __ scvtfs(dest->as_float_reg(), src->as_register_lo()); 1099 break; 1100 } 1101 case Bytecodes::_f2d: 1102 { 1103 __ fcvts(dest->as_double_reg(), src->as_float_reg()); 1104 break; 1105 } 1106 case Bytecodes::_d2f: 1107 { 1108 __ fcvtd(dest->as_float_reg(), src->as_double_reg()); 1109 break; 1110 } 1111 case Bytecodes::_i2c: 1112 { 1113 __ ubfx(dest->as_register(), src->as_register(), 0, 16); 1114 break; 1115 } 1116 case Bytecodes::_i2l: 1117 { 1118 __ sxtw(dest->as_register_lo(), src->as_register()); 1119 break; 1120 } 1121 case Bytecodes::_i2s: 1122 { 1123 __ sxth(dest->as_register(), src->as_register()); 1124 break; 1125 } 1126 case Bytecodes::_i2b: 1127 { 1128 __ sxtb(dest->as_register(), src->as_register()); 1129 break; 1130 } 1131 case Bytecodes::_l2i: 1132 { 1133 _masm->block_comment("FIXME: This could be a no-op"); 1134 __ uxtw(dest->as_register(), src->as_register_lo()); 1135 break; 1136 } 1137 case Bytecodes::_d2l: 1138 { 1139 __ fcvtzd(dest->as_register_lo(), src->as_double_reg()); 1140 break; 1141 } 1142 case Bytecodes::_f2i: 1143 { 1144 __ fcvtzsw(dest->as_register(), src->as_float_reg()); 1145 break; 1146 } 1147 case Bytecodes::_f2l: 1148 { 1149 __ fcvtzs(dest->as_register_lo(), src->as_float_reg()); 1150 break; 1151 } 1152 case Bytecodes::_d2i: 1153 { 1154 __ fcvtzdw(dest->as_register(), src->as_double_reg()); 1155 break; 1156 } 1157 default: ShouldNotReachHere(); 1158 } 1159 } 1160 1161 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 1162 if (op->init_check()) { 1163 __ lea(rscratch1, Address(op->klass()->as_register(), InstanceKlass::init_state_offset())); 1164 __ ldarb(rscratch1, rscratch1); 1165 __ cmpw(rscratch1, InstanceKlass::fully_initialized); 1166 add_debug_info_for_null_check_here(op->stub()->info()); 1167 __ br(Assembler::NE, *op->stub()->entry()); 1168 } 1169 __ allocate_object(op->obj()->as_register(), 1170 op->tmp1()->as_register(), 1171 op->tmp2()->as_register(), 1172 op->header_size(), 1173 op->object_size(), 1174 op->klass()->as_register(), 1175 *op->stub()->entry()); 1176 __ bind(*op->stub()->continuation()); 1177 } 1178 1179 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 1180 Register len = op->len()->as_register(); 1181 __ uxtw(len, len); 1182 1183 if (UseSlowPath || 1184 (!UseFastNewObjectArray && is_reference_type(op->type())) || 1185 (!UseFastNewTypeArray && !is_reference_type(op->type()))) { 1186 __ b(*op->stub()->entry()); 1187 } else { 1188 Register tmp1 = op->tmp1()->as_register(); 1189 Register tmp2 = op->tmp2()->as_register(); 1190 Register tmp3 = op->tmp3()->as_register(); 1191 if (len == tmp1) { 1192 tmp1 = tmp3; 1193 } else if (len == tmp2) { 1194 tmp2 = tmp3; 1195 } else if (len == tmp3) { 1196 // everything is ok 1197 } else { 1198 __ mov(tmp3, len); 1199 } 1200 __ allocate_array(op->obj()->as_register(), 1201 len, 1202 tmp1, 1203 tmp2, 1204 arrayOopDesc::base_offset_in_bytes(op->type()), 1205 array_element_size(op->type()), 1206 op->klass()->as_register(), 1207 *op->stub()->entry(), 1208 op->zero_array()); 1209 } 1210 __ bind(*op->stub()->continuation()); 1211 } 1212 1213 void LIR_Assembler::type_profile_helper(Register mdo, 1214 ciMethodData *md, ciProfileData *data, 1215 Register recv, Label* update_done) { 1216 1217 // Given a profile data offset, generate an Address which points to 1218 // the corresponding slot in mdo->data(). 1219 // Clobbers rscratch2. 1220 auto slot_at = [=](ByteSize offset) -> Address { 1221 return __ form_address(rscratch2, mdo, 1222 md->byte_offset_of_slot(data, offset), 1223 LogBytesPerWord); 1224 }; 1225 1226 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1227 Label next_test; 1228 // See if the receiver is receiver[n]. 1229 __ ldr(rscratch1, slot_at(ReceiverTypeData::receiver_offset(i))); 1230 __ cmp(recv, rscratch1); 1231 __ br(Assembler::NE, next_test); 1232 __ addptr(slot_at(ReceiverTypeData::receiver_count_offset(i)), 1233 DataLayout::counter_increment); 1234 __ b(*update_done); 1235 __ bind(next_test); 1236 } 1237 1238 // Didn't find receiver; find next empty slot and fill it in 1239 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1240 Label next_test; 1241 Address recv_addr(slot_at(ReceiverTypeData::receiver_offset(i))); 1242 __ ldr(rscratch1, recv_addr); 1243 __ cbnz(rscratch1, next_test); 1244 __ str(recv, recv_addr); 1245 __ mov(rscratch1, DataLayout::counter_increment); 1246 __ str(rscratch1, slot_at(ReceiverTypeData::receiver_count_offset(i))); 1247 __ b(*update_done); 1248 __ bind(next_test); 1249 } 1250 } 1251 1252 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 1253 // we always need a stub for the failure case. 1254 CodeStub* stub = op->stub(); 1255 Register obj = op->object()->as_register(); 1256 Register k_RInfo = op->tmp1()->as_register(); 1257 Register klass_RInfo = op->tmp2()->as_register(); 1258 Register dst = op->result_opr()->as_register(); 1259 ciKlass* k = op->klass(); 1260 Register Rtmp1 = noreg; 1261 1262 // check if it needs to be profiled 1263 ciMethodData* md; 1264 ciProfileData* data; 1265 1266 const bool should_profile = op->should_profile(); 1267 1268 if (should_profile) { 1269 ciMethod* method = op->profiled_method(); 1270 assert(method != nullptr, "Should have method"); 1271 int bci = op->profiled_bci(); 1272 md = method->method_data_or_null(); 1273 assert(md != nullptr, "Sanity"); 1274 data = md->bci_to_data(bci); 1275 assert(data != nullptr, "need data for type check"); 1276 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1277 } 1278 Label* success_target = success; 1279 Label* failure_target = failure; 1280 1281 if (obj == k_RInfo) { 1282 k_RInfo = dst; 1283 } else if (obj == klass_RInfo) { 1284 klass_RInfo = dst; 1285 } 1286 if (k->is_loaded() && !UseCompressedClassPointers) { 1287 select_different_registers(obj, dst, k_RInfo, klass_RInfo); 1288 } else { 1289 Rtmp1 = op->tmp3()->as_register(); 1290 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1); 1291 } 1292 1293 assert_different_registers(obj, k_RInfo, klass_RInfo); 1294 1295 if (should_profile) { 1296 Register mdo = klass_RInfo; 1297 __ mov_metadata(mdo, md->constant_encoding()); 1298 Label not_null; 1299 __ cbnz(obj, not_null); 1300 // Object is null; update MDO and exit 1301 Address data_addr 1302 = __ form_address(rscratch2, mdo, 1303 md->byte_offset_of_slot(data, DataLayout::flags_offset()), 1304 0); 1305 __ ldrb(rscratch1, data_addr); 1306 __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant()); 1307 __ strb(rscratch1, data_addr); 1308 __ b(*obj_is_null); 1309 __ bind(not_null); 1310 1311 Label update_done; 1312 Register recv = k_RInfo; 1313 __ load_klass(recv, obj); 1314 type_profile_helper(mdo, md, data, recv, &update_done); 1315 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1316 __ addptr(counter_addr, DataLayout::counter_increment); 1317 1318 __ bind(update_done); 1319 } else { 1320 __ cbz(obj, *obj_is_null); 1321 } 1322 1323 if (!k->is_loaded()) { 1324 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 1325 } else { 1326 __ mov_metadata(k_RInfo, k->constant_encoding()); 1327 } 1328 __ verify_oop(obj); 1329 1330 if (op->fast_check()) { 1331 // get object class 1332 // not a safepoint as obj null check happens earlier 1333 __ load_klass(rscratch1, obj); 1334 __ cmp( rscratch1, k_RInfo); 1335 1336 __ br(Assembler::NE, *failure_target); 1337 // successful cast, fall through to profile or jump 1338 } else { 1339 // get object class 1340 // not a safepoint as obj null check happens earlier 1341 __ load_klass(klass_RInfo, obj); 1342 if (k->is_loaded()) { 1343 // See if we get an immediate positive hit 1344 __ ldr(rscratch1, Address(klass_RInfo, int64_t(k->super_check_offset()))); 1345 __ cmp(k_RInfo, rscratch1); 1346 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) { 1347 __ br(Assembler::NE, *failure_target); 1348 // successful cast, fall through to profile or jump 1349 } else { 1350 // See if we get an immediate positive hit 1351 __ br(Assembler::EQ, *success_target); 1352 // check for self 1353 __ cmp(klass_RInfo, k_RInfo); 1354 __ br(Assembler::EQ, *success_target); 1355 1356 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1357 __ far_call(RuntimeAddress(Runtime1::entry_for(StubId::c1_slow_subtype_check_id))); 1358 __ ldr(klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1359 // result is a boolean 1360 __ cbzw(klass_RInfo, *failure_target); 1361 // successful cast, fall through to profile or jump 1362 } 1363 } else { 1364 // perform the fast part of the checking logic 1365 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1366 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1367 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1368 __ far_call(RuntimeAddress(Runtime1::entry_for(StubId::c1_slow_subtype_check_id))); 1369 __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1370 // result is a boolean 1371 __ cbz(k_RInfo, *failure_target); 1372 // successful cast, fall through to profile or jump 1373 } 1374 } 1375 __ b(*success); 1376 } 1377 1378 1379 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 1380 const bool should_profile = op->should_profile(); 1381 1382 LIR_Code code = op->code(); 1383 if (code == lir_store_check) { 1384 Register value = op->object()->as_register(); 1385 Register array = op->array()->as_register(); 1386 Register k_RInfo = op->tmp1()->as_register(); 1387 Register klass_RInfo = op->tmp2()->as_register(); 1388 Register Rtmp1 = op->tmp3()->as_register(); 1389 1390 CodeStub* stub = op->stub(); 1391 1392 // check if it needs to be profiled 1393 ciMethodData* md; 1394 ciProfileData* data; 1395 1396 if (should_profile) { 1397 ciMethod* method = op->profiled_method(); 1398 assert(method != nullptr, "Should have method"); 1399 int bci = op->profiled_bci(); 1400 md = method->method_data_or_null(); 1401 assert(md != nullptr, "Sanity"); 1402 data = md->bci_to_data(bci); 1403 assert(data != nullptr, "need data for type check"); 1404 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1405 } 1406 Label done; 1407 Label* success_target = &done; 1408 Label* failure_target = stub->entry(); 1409 1410 if (should_profile) { 1411 Label not_null; 1412 Register mdo = klass_RInfo; 1413 __ mov_metadata(mdo, md->constant_encoding()); 1414 __ cbnz(value, not_null); 1415 // Object is null; update MDO and exit 1416 Address data_addr 1417 = __ form_address(rscratch2, mdo, 1418 md->byte_offset_of_slot(data, DataLayout::flags_offset()), 0); 1419 __ ldrb(rscratch1, data_addr); 1420 __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant()); 1421 __ strb(rscratch1, data_addr); 1422 __ b(done); 1423 __ bind(not_null); 1424 1425 Label update_done; 1426 Register recv = k_RInfo; 1427 __ load_klass(recv, value); 1428 type_profile_helper(mdo, md, data, recv, &update_done); 1429 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1430 __ addptr(counter_addr, DataLayout::counter_increment); 1431 __ bind(update_done); 1432 } else { 1433 __ cbz(value, done); 1434 } 1435 1436 add_debug_info_for_null_check_here(op->info_for_exception()); 1437 __ load_klass(k_RInfo, array); 1438 __ load_klass(klass_RInfo, value); 1439 1440 // get instance klass (it's already uncompressed) 1441 __ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset())); 1442 // perform the fast part of the checking logic 1443 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1444 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1445 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1446 __ far_call(RuntimeAddress(Runtime1::entry_for(StubId::c1_slow_subtype_check_id))); 1447 __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1448 // result is a boolean 1449 __ cbzw(k_RInfo, *failure_target); 1450 // fall through to the success case 1451 1452 __ bind(done); 1453 } else if (code == lir_checkcast) { 1454 Register obj = op->object()->as_register(); 1455 Register dst = op->result_opr()->as_register(); 1456 Label success; 1457 emit_typecheck_helper(op, &success, op->stub()->entry(), &success); 1458 __ bind(success); 1459 if (dst != obj) { 1460 __ mov(dst, obj); 1461 } 1462 } else if (code == lir_instanceof) { 1463 Register obj = op->object()->as_register(); 1464 Register dst = op->result_opr()->as_register(); 1465 Label success, failure, done; 1466 emit_typecheck_helper(op, &success, &failure, &failure); 1467 __ bind(failure); 1468 __ mov(dst, zr); 1469 __ b(done); 1470 __ bind(success); 1471 __ mov(dst, 1); 1472 __ bind(done); 1473 } else { 1474 ShouldNotReachHere(); 1475 } 1476 } 1477 1478 void LIR_Assembler::casw(Register addr, Register newval, Register cmpval) { 1479 __ cmpxchg(addr, cmpval, newval, Assembler::word, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1); 1480 __ cset(rscratch1, Assembler::NE); 1481 __ membar(__ AnyAny); 1482 } 1483 1484 void LIR_Assembler::casl(Register addr, Register newval, Register cmpval) { 1485 __ cmpxchg(addr, cmpval, newval, Assembler::xword, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1); 1486 __ cset(rscratch1, Assembler::NE); 1487 __ membar(__ AnyAny); 1488 } 1489 1490 1491 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 1492 Register addr; 1493 if (op->addr()->is_register()) { 1494 addr = as_reg(op->addr()); 1495 } else { 1496 assert(op->addr()->is_address(), "what else?"); 1497 LIR_Address* addr_ptr = op->addr()->as_address_ptr(); 1498 assert(addr_ptr->disp() == 0, "need 0 disp"); 1499 assert(addr_ptr->index() == LIR_Opr::illegalOpr(), "need 0 index"); 1500 addr = as_reg(addr_ptr->base()); 1501 } 1502 Register newval = as_reg(op->new_value()); 1503 Register cmpval = as_reg(op->cmp_value()); 1504 1505 if (op->code() == lir_cas_obj) { 1506 if (UseCompressedOops) { 1507 Register t1 = op->tmp1()->as_register(); 1508 assert(op->tmp1()->is_valid(), "must be"); 1509 __ encode_heap_oop(t1, cmpval); 1510 cmpval = t1; 1511 __ encode_heap_oop(rscratch2, newval); 1512 newval = rscratch2; 1513 casw(addr, newval, cmpval); 1514 } else { 1515 casl(addr, newval, cmpval); 1516 } 1517 } else if (op->code() == lir_cas_int) { 1518 casw(addr, newval, cmpval); 1519 } else { 1520 casl(addr, newval, cmpval); 1521 } 1522 } 1523 1524 1525 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type, 1526 LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) { 1527 assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on aarch64"); 1528 1529 Assembler::Condition acond, ncond; 1530 switch (condition) { 1531 case lir_cond_equal: acond = Assembler::EQ; ncond = Assembler::NE; break; 1532 case lir_cond_notEqual: acond = Assembler::NE; ncond = Assembler::EQ; break; 1533 case lir_cond_less: acond = Assembler::LT; ncond = Assembler::GE; break; 1534 case lir_cond_lessEqual: acond = Assembler::LE; ncond = Assembler::GT; break; 1535 case lir_cond_greaterEqual: acond = Assembler::GE; ncond = Assembler::LT; break; 1536 case lir_cond_greater: acond = Assembler::GT; ncond = Assembler::LE; break; 1537 case lir_cond_belowEqual: 1538 case lir_cond_aboveEqual: 1539 default: ShouldNotReachHere(); 1540 acond = Assembler::EQ; ncond = Assembler::NE; // unreachable 1541 } 1542 1543 assert(result->is_single_cpu() || result->is_double_cpu(), 1544 "expect single register for result"); 1545 if (opr1->is_constant() && opr2->is_constant() 1546 && opr1->type() == T_INT && opr2->type() == T_INT) { 1547 jint val1 = opr1->as_jint(); 1548 jint val2 = opr2->as_jint(); 1549 if (val1 == 0 && val2 == 1) { 1550 __ cset(result->as_register(), ncond); 1551 return; 1552 } else if (val1 == 1 && val2 == 0) { 1553 __ cset(result->as_register(), acond); 1554 return; 1555 } 1556 } 1557 1558 if (opr1->is_constant() && opr2->is_constant() 1559 && opr1->type() == T_LONG && opr2->type() == T_LONG) { 1560 jlong val1 = opr1->as_jlong(); 1561 jlong val2 = opr2->as_jlong(); 1562 if (val1 == 0 && val2 == 1) { 1563 __ cset(result->as_register_lo(), ncond); 1564 return; 1565 } else if (val1 == 1 && val2 == 0) { 1566 __ cset(result->as_register_lo(), acond); 1567 return; 1568 } 1569 } 1570 1571 if (opr1->is_stack()) { 1572 stack2reg(opr1, FrameMap::rscratch1_opr, result->type()); 1573 opr1 = FrameMap::rscratch1_opr; 1574 } else if (opr1->is_constant()) { 1575 LIR_Opr tmp 1576 = opr1->type() == T_LONG ? FrameMap::rscratch1_long_opr : FrameMap::rscratch1_opr; 1577 const2reg(opr1, tmp, lir_patch_none, nullptr); 1578 opr1 = tmp; 1579 } 1580 1581 if (opr2->is_stack()) { 1582 stack2reg(opr2, FrameMap::rscratch2_opr, result->type()); 1583 opr2 = FrameMap::rscratch2_opr; 1584 } else if (opr2->is_constant()) { 1585 LIR_Opr tmp 1586 = opr2->type() == T_LONG ? FrameMap::rscratch2_long_opr : FrameMap::rscratch2_opr; 1587 const2reg(opr2, tmp, lir_patch_none, nullptr); 1588 opr2 = tmp; 1589 } 1590 1591 if (result->type() == T_LONG) 1592 __ csel(result->as_register_lo(), opr1->as_register_lo(), opr2->as_register_lo(), acond); 1593 else 1594 __ csel(result->as_register(), opr1->as_register(), opr2->as_register(), acond); 1595 } 1596 1597 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info) { 1598 assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method"); 1599 1600 if (left->is_single_cpu()) { 1601 Register lreg = left->as_register(); 1602 Register dreg = as_reg(dest); 1603 1604 if (right->is_single_cpu()) { 1605 // cpu register - cpu register 1606 1607 assert(left->type() == T_INT && right->type() == T_INT && dest->type() == T_INT, 1608 "should be"); 1609 Register rreg = right->as_register(); 1610 switch (code) { 1611 case lir_add: __ addw (dest->as_register(), lreg, rreg); break; 1612 case lir_sub: __ subw (dest->as_register(), lreg, rreg); break; 1613 case lir_mul: __ mulw (dest->as_register(), lreg, rreg); break; 1614 default: ShouldNotReachHere(); 1615 } 1616 1617 } else if (right->is_double_cpu()) { 1618 Register rreg = right->as_register_lo(); 1619 // single_cpu + double_cpu: can happen with obj+long 1620 assert(code == lir_add || code == lir_sub, "mismatched arithmetic op"); 1621 switch (code) { 1622 case lir_add: __ add(dreg, lreg, rreg); break; 1623 case lir_sub: __ sub(dreg, lreg, rreg); break; 1624 default: ShouldNotReachHere(); 1625 } 1626 } else if (right->is_constant()) { 1627 // cpu register - constant 1628 jlong c; 1629 1630 // FIXME. This is fugly: we really need to factor all this logic. 1631 switch(right->type()) { 1632 case T_LONG: 1633 c = right->as_constant_ptr()->as_jlong(); 1634 break; 1635 case T_INT: 1636 case T_ADDRESS: 1637 c = right->as_constant_ptr()->as_jint(); 1638 break; 1639 default: 1640 ShouldNotReachHere(); 1641 c = 0; // unreachable 1642 break; 1643 } 1644 1645 assert(code == lir_add || code == lir_sub, "mismatched arithmetic op"); 1646 if (c == 0 && dreg == lreg) { 1647 COMMENT("effective nop elided"); 1648 return; 1649 } 1650 switch(left->type()) { 1651 case T_INT: 1652 switch (code) { 1653 case lir_add: __ addw(dreg, lreg, c); break; 1654 case lir_sub: __ subw(dreg, lreg, c); break; 1655 default: ShouldNotReachHere(); 1656 } 1657 break; 1658 case T_OBJECT: 1659 case T_ADDRESS: 1660 switch (code) { 1661 case lir_add: __ add(dreg, lreg, c); break; 1662 case lir_sub: __ sub(dreg, lreg, c); break; 1663 default: ShouldNotReachHere(); 1664 } 1665 break; 1666 default: 1667 ShouldNotReachHere(); 1668 } 1669 } else { 1670 ShouldNotReachHere(); 1671 } 1672 1673 } else if (left->is_double_cpu()) { 1674 Register lreg_lo = left->as_register_lo(); 1675 1676 if (right->is_double_cpu()) { 1677 // cpu register - cpu register 1678 Register rreg_lo = right->as_register_lo(); 1679 switch (code) { 1680 case lir_add: __ add (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1681 case lir_sub: __ sub (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1682 case lir_mul: __ mul (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1683 case lir_div: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, false, rscratch1); break; 1684 case lir_rem: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, true, rscratch1); break; 1685 default: 1686 ShouldNotReachHere(); 1687 } 1688 1689 } else if (right->is_constant()) { 1690 jlong c = right->as_constant_ptr()->as_jlong(); 1691 Register dreg = as_reg(dest); 1692 switch (code) { 1693 case lir_add: 1694 case lir_sub: 1695 if (c == 0 && dreg == lreg_lo) { 1696 COMMENT("effective nop elided"); 1697 return; 1698 } 1699 code == lir_add ? __ add(dreg, lreg_lo, c) : __ sub(dreg, lreg_lo, c); 1700 break; 1701 case lir_div: 1702 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1703 if (c == 1) { 1704 // move lreg_lo to dreg if divisor is 1 1705 __ mov(dreg, lreg_lo); 1706 } else { 1707 unsigned int shift = log2i_exact(c); 1708 // use rscratch1 as intermediate result register 1709 __ asr(rscratch1, lreg_lo, 63); 1710 __ add(rscratch1, lreg_lo, rscratch1, Assembler::LSR, 64 - shift); 1711 __ asr(dreg, rscratch1, shift); 1712 } 1713 break; 1714 case lir_rem: 1715 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1716 if (c == 1) { 1717 // move 0 to dreg if divisor is 1 1718 __ mov(dreg, zr); 1719 } else { 1720 // use rscratch1 as intermediate result register 1721 __ negs(rscratch1, lreg_lo); 1722 __ andr(dreg, lreg_lo, c - 1); 1723 __ andr(rscratch1, rscratch1, c - 1); 1724 __ csneg(dreg, dreg, rscratch1, Assembler::MI); 1725 } 1726 break; 1727 default: 1728 ShouldNotReachHere(); 1729 } 1730 } else { 1731 ShouldNotReachHere(); 1732 } 1733 } else if (left->is_single_fpu()) { 1734 assert(right->is_single_fpu(), "right hand side of float arithmetics needs to be float register"); 1735 switch (code) { 1736 case lir_add: __ fadds (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1737 case lir_sub: __ fsubs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1738 case lir_mul: __ fmuls (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1739 case lir_div: __ fdivs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1740 default: 1741 ShouldNotReachHere(); 1742 } 1743 } else if (left->is_double_fpu()) { 1744 if (right->is_double_fpu()) { 1745 // fpu register - fpu register 1746 switch (code) { 1747 case lir_add: __ faddd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1748 case lir_sub: __ fsubd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1749 case lir_mul: __ fmuld (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1750 case lir_div: __ fdivd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1751 default: 1752 ShouldNotReachHere(); 1753 } 1754 } else { 1755 if (right->is_constant()) { 1756 ShouldNotReachHere(); 1757 } 1758 ShouldNotReachHere(); 1759 } 1760 } else if (left->is_single_stack() || left->is_address()) { 1761 assert(left == dest, "left and dest must be equal"); 1762 ShouldNotReachHere(); 1763 } else { 1764 ShouldNotReachHere(); 1765 } 1766 } 1767 1768 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) { 1769 switch(code) { 1770 case lir_abs : __ fabsd(dest->as_double_reg(), value->as_double_reg()); break; 1771 case lir_sqrt: __ fsqrtd(dest->as_double_reg(), value->as_double_reg()); break; 1772 case lir_f2hf: __ flt_to_flt16(dest->as_register(), value->as_float_reg(), tmp->as_float_reg()); break; 1773 case lir_hf2f: __ flt16_to_flt(dest->as_float_reg(), value->as_register(), tmp->as_float_reg()); break; 1774 default : ShouldNotReachHere(); 1775 } 1776 } 1777 1778 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) { 1779 1780 assert(left->is_single_cpu() || left->is_double_cpu(), "expect single or double register"); 1781 Register Rleft = left->is_single_cpu() ? left->as_register() : 1782 left->as_register_lo(); 1783 if (dst->is_single_cpu()) { 1784 Register Rdst = dst->as_register(); 1785 if (right->is_constant()) { 1786 switch (code) { 1787 case lir_logic_and: __ andw (Rdst, Rleft, right->as_jint()); break; 1788 case lir_logic_or: __ orrw (Rdst, Rleft, right->as_jint()); break; 1789 case lir_logic_xor: __ eorw (Rdst, Rleft, right->as_jint()); break; 1790 default: ShouldNotReachHere(); break; 1791 } 1792 } else { 1793 Register Rright = right->is_single_cpu() ? right->as_register() : 1794 right->as_register_lo(); 1795 switch (code) { 1796 case lir_logic_and: __ andw (Rdst, Rleft, Rright); break; 1797 case lir_logic_or: __ orrw (Rdst, Rleft, Rright); break; 1798 case lir_logic_xor: __ eorw (Rdst, Rleft, Rright); break; 1799 default: ShouldNotReachHere(); break; 1800 } 1801 } 1802 } else { 1803 Register Rdst = dst->as_register_lo(); 1804 if (right->is_constant()) { 1805 switch (code) { 1806 case lir_logic_and: __ andr (Rdst, Rleft, right->as_jlong()); break; 1807 case lir_logic_or: __ orr (Rdst, Rleft, right->as_jlong()); break; 1808 case lir_logic_xor: __ eor (Rdst, Rleft, right->as_jlong()); break; 1809 default: ShouldNotReachHere(); break; 1810 } 1811 } else { 1812 Register Rright = right->is_single_cpu() ? right->as_register() : 1813 right->as_register_lo(); 1814 switch (code) { 1815 case lir_logic_and: __ andr (Rdst, Rleft, Rright); break; 1816 case lir_logic_or: __ orr (Rdst, Rleft, Rright); break; 1817 case lir_logic_xor: __ eor (Rdst, Rleft, Rright); break; 1818 default: ShouldNotReachHere(); break; 1819 } 1820 } 1821 } 1822 } 1823 1824 1825 1826 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr illegal, LIR_Opr result, CodeEmitInfo* info) { 1827 1828 // opcode check 1829 assert((code == lir_idiv) || (code == lir_irem), "opcode must be idiv or irem"); 1830 bool is_irem = (code == lir_irem); 1831 1832 // operand check 1833 assert(left->is_single_cpu(), "left must be register"); 1834 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant"); 1835 assert(result->is_single_cpu(), "result must be register"); 1836 Register lreg = left->as_register(); 1837 Register dreg = result->as_register(); 1838 1839 // power-of-2 constant check and codegen 1840 if (right->is_constant()) { 1841 int c = right->as_constant_ptr()->as_jint(); 1842 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1843 if (is_irem) { 1844 if (c == 1) { 1845 // move 0 to dreg if divisor is 1 1846 __ movw(dreg, zr); 1847 } else { 1848 // use rscratch1 as intermediate result register 1849 __ negsw(rscratch1, lreg); 1850 __ andw(dreg, lreg, c - 1); 1851 __ andw(rscratch1, rscratch1, c - 1); 1852 __ csnegw(dreg, dreg, rscratch1, Assembler::MI); 1853 } 1854 } else { 1855 if (c == 1) { 1856 // move lreg to dreg if divisor is 1 1857 __ movw(dreg, lreg); 1858 } else { 1859 unsigned int shift = exact_log2(c); 1860 // use rscratch1 as intermediate result register 1861 __ asrw(rscratch1, lreg, 31); 1862 __ addw(rscratch1, lreg, rscratch1, Assembler::LSR, 32 - shift); 1863 __ asrw(dreg, rscratch1, shift); 1864 } 1865 } 1866 } else { 1867 Register rreg = right->as_register(); 1868 __ corrected_idivl(dreg, lreg, rreg, is_irem, rscratch1); 1869 } 1870 } 1871 1872 1873 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 1874 if (opr1->is_constant() && opr2->is_single_cpu()) { 1875 // tableswitch 1876 Register reg = as_reg(opr2); 1877 struct tableswitch &table = switches[opr1->as_constant_ptr()->as_jint()]; 1878 __ tableswitch(reg, table._first_key, table._last_key, table._branches, table._after); 1879 } else if (opr1->is_single_cpu() || opr1->is_double_cpu()) { 1880 Register reg1 = as_reg(opr1); 1881 if (opr2->is_single_cpu()) { 1882 // cpu register - cpu register 1883 Register reg2 = opr2->as_register(); 1884 if (is_reference_type(opr1->type())) { 1885 __ cmpoop(reg1, reg2); 1886 } else { 1887 assert(!is_reference_type(opr2->type()), "cmp int, oop?"); 1888 __ cmpw(reg1, reg2); 1889 } 1890 return; 1891 } 1892 if (opr2->is_double_cpu()) { 1893 // cpu register - cpu register 1894 Register reg2 = opr2->as_register_lo(); 1895 __ cmp(reg1, reg2); 1896 return; 1897 } 1898 1899 if (opr2->is_constant()) { 1900 bool is_32bit = false; // width of register operand 1901 jlong imm; 1902 1903 switch(opr2->type()) { 1904 case T_INT: 1905 imm = opr2->as_constant_ptr()->as_jint(); 1906 is_32bit = true; 1907 break; 1908 case T_LONG: 1909 imm = opr2->as_constant_ptr()->as_jlong(); 1910 break; 1911 case T_ADDRESS: 1912 imm = opr2->as_constant_ptr()->as_jint(); 1913 break; 1914 case T_METADATA: 1915 imm = (intptr_t)(opr2->as_constant_ptr()->as_metadata()); 1916 break; 1917 case T_OBJECT: 1918 case T_ARRAY: 1919 jobject2reg(opr2->as_constant_ptr()->as_jobject(), rscratch1); 1920 __ cmpoop(reg1, rscratch1); 1921 return; 1922 default: 1923 ShouldNotReachHere(); 1924 imm = 0; // unreachable 1925 break; 1926 } 1927 1928 if (Assembler::operand_valid_for_add_sub_immediate(imm)) { 1929 if (is_32bit) 1930 __ cmpw(reg1, imm); 1931 else 1932 __ subs(zr, reg1, imm); 1933 return; 1934 } else { 1935 __ mov(rscratch1, imm); 1936 if (is_32bit) 1937 __ cmpw(reg1, rscratch1); 1938 else 1939 __ cmp(reg1, rscratch1); 1940 return; 1941 } 1942 } else 1943 ShouldNotReachHere(); 1944 } else if (opr1->is_single_fpu()) { 1945 FloatRegister reg1 = opr1->as_float_reg(); 1946 assert(opr2->is_single_fpu(), "expect single float register"); 1947 FloatRegister reg2 = opr2->as_float_reg(); 1948 __ fcmps(reg1, reg2); 1949 } else if (opr1->is_double_fpu()) { 1950 FloatRegister reg1 = opr1->as_double_reg(); 1951 assert(opr2->is_double_fpu(), "expect double float register"); 1952 FloatRegister reg2 = opr2->as_double_reg(); 1953 __ fcmpd(reg1, reg2); 1954 } else { 1955 ShouldNotReachHere(); 1956 } 1957 } 1958 1959 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){ 1960 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 1961 bool is_unordered_less = (code == lir_ucmp_fd2i); 1962 if (left->is_single_fpu()) { 1963 __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register()); 1964 } else if (left->is_double_fpu()) { 1965 __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register()); 1966 } else { 1967 ShouldNotReachHere(); 1968 } 1969 } else if (code == lir_cmp_l2i) { 1970 Label done; 1971 __ cmp(left->as_register_lo(), right->as_register_lo()); 1972 __ mov(dst->as_register(), (uint64_t)-1L); 1973 __ br(Assembler::LT, done); 1974 __ csinc(dst->as_register(), zr, zr, Assembler::EQ); 1975 __ bind(done); 1976 } else { 1977 ShouldNotReachHere(); 1978 } 1979 } 1980 1981 1982 void LIR_Assembler::align_call(LIR_Code code) { } 1983 1984 1985 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 1986 address call = __ trampoline_call(Address(op->addr(), rtype)); 1987 if (call == nullptr) { 1988 bailout("trampoline stub overflow"); 1989 return; 1990 } 1991 add_call_info(code_offset(), op->info()); 1992 __ post_call_nop(); 1993 } 1994 1995 1996 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 1997 address call = __ ic_call(op->addr()); 1998 if (call == nullptr) { 1999 bailout("trampoline stub overflow"); 2000 return; 2001 } 2002 add_call_info(code_offset(), op->info()); 2003 __ post_call_nop(); 2004 } 2005 2006 void LIR_Assembler::emit_static_call_stub() { 2007 address call_pc = __ pc(); 2008 address stub = __ start_a_stub(call_stub_size()); 2009 if (stub == nullptr) { 2010 bailout("static call stub overflow"); 2011 return; 2012 } 2013 2014 int start = __ offset(); 2015 2016 __ relocate(static_stub_Relocation::spec(call_pc)); 2017 __ emit_static_call_stub(); 2018 2019 assert(__ offset() - start + CompiledDirectCall::to_trampoline_stub_size() 2020 <= call_stub_size(), "stub too big"); 2021 __ end_a_stub(); 2022 } 2023 2024 2025 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2026 assert(exceptionOop->as_register() == r0, "must match"); 2027 assert(exceptionPC->as_register() == r3, "must match"); 2028 2029 // exception object is not added to oop map by LinearScan 2030 // (LinearScan assumes that no oops are in fixed registers) 2031 info->add_register_oop(exceptionOop); 2032 StubId unwind_id; 2033 2034 // get current pc information 2035 // pc is only needed if the method has an exception handler, the unwind code does not need it. 2036 if (compilation()->debug_info_recorder()->last_pc_offset() == __ offset()) { 2037 // As no instructions have been generated yet for this LIR node it's 2038 // possible that an oop map already exists for the current offset. 2039 // In that case insert an dummy NOP here to ensure all oop map PCs 2040 // are unique. See JDK-8237483. 2041 __ nop(); 2042 } 2043 int pc_for_athrow_offset = __ offset(); 2044 InternalAddress pc_for_athrow(__ pc()); 2045 __ adr(exceptionPC->as_register(), pc_for_athrow); 2046 add_call_info(pc_for_athrow_offset, info); // for exception handler 2047 2048 __ verify_not_null_oop(r0); 2049 // search an exception handler (r0: exception oop, r3: throwing pc) 2050 if (compilation()->has_fpu_code()) { 2051 unwind_id = StubId::c1_handle_exception_id; 2052 } else { 2053 unwind_id = StubId::c1_handle_exception_nofpu_id; 2054 } 2055 __ far_call(RuntimeAddress(Runtime1::entry_for(unwind_id))); 2056 2057 // FIXME: enough room for two byte trap ???? 2058 __ nop(); 2059 } 2060 2061 2062 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 2063 assert(exceptionOop->as_register() == r0, "must match"); 2064 2065 __ b(_unwind_handler_entry); 2066 } 2067 2068 2069 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 2070 Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo(); 2071 Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo(); 2072 2073 switch (left->type()) { 2074 case T_INT: { 2075 switch (code) { 2076 case lir_shl: __ lslvw (dreg, lreg, count->as_register()); break; 2077 case lir_shr: __ asrvw (dreg, lreg, count->as_register()); break; 2078 case lir_ushr: __ lsrvw (dreg, lreg, count->as_register()); break; 2079 default: 2080 ShouldNotReachHere(); 2081 break; 2082 } 2083 break; 2084 case T_LONG: 2085 case T_ADDRESS: 2086 case T_OBJECT: 2087 switch (code) { 2088 case lir_shl: __ lslv (dreg, lreg, count->as_register()); break; 2089 case lir_shr: __ asrv (dreg, lreg, count->as_register()); break; 2090 case lir_ushr: __ lsrv (dreg, lreg, count->as_register()); break; 2091 default: 2092 ShouldNotReachHere(); 2093 break; 2094 } 2095 break; 2096 default: 2097 ShouldNotReachHere(); 2098 break; 2099 } 2100 } 2101 } 2102 2103 2104 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 2105 Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo(); 2106 Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo(); 2107 2108 switch (left->type()) { 2109 case T_INT: { 2110 switch (code) { 2111 case lir_shl: __ lslw (dreg, lreg, count); break; 2112 case lir_shr: __ asrw (dreg, lreg, count); break; 2113 case lir_ushr: __ lsrw (dreg, lreg, count); break; 2114 default: 2115 ShouldNotReachHere(); 2116 break; 2117 } 2118 break; 2119 case T_LONG: 2120 case T_ADDRESS: 2121 case T_OBJECT: 2122 switch (code) { 2123 case lir_shl: __ lsl (dreg, lreg, count); break; 2124 case lir_shr: __ asr (dreg, lreg, count); break; 2125 case lir_ushr: __ lsr (dreg, lreg, count); break; 2126 default: 2127 ShouldNotReachHere(); 2128 break; 2129 } 2130 break; 2131 default: 2132 ShouldNotReachHere(); 2133 break; 2134 } 2135 } 2136 } 2137 2138 2139 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) { 2140 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2141 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2142 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2143 __ str (r, Address(sp, offset_from_rsp_in_bytes)); 2144 } 2145 2146 2147 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) { 2148 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2149 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2150 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2151 __ mov (rscratch1, c); 2152 __ str (rscratch1, Address(sp, offset_from_rsp_in_bytes)); 2153 } 2154 2155 2156 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) { 2157 ShouldNotReachHere(); 2158 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2159 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2160 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2161 __ lea(rscratch1, __ constant_oop_address(o)); 2162 __ str(rscratch1, Address(sp, offset_from_rsp_in_bytes)); 2163 } 2164 2165 2166 // This code replaces a call to arraycopy; no exception may 2167 // be thrown in this code, they must be thrown in the System.arraycopy 2168 // activation frame; we could save some checks if this would not be the case 2169 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 2170 ciArrayKlass* default_type = op->expected_type(); 2171 Register src = op->src()->as_register(); 2172 Register dst = op->dst()->as_register(); 2173 Register src_pos = op->src_pos()->as_register(); 2174 Register dst_pos = op->dst_pos()->as_register(); 2175 Register length = op->length()->as_register(); 2176 Register tmp = op->tmp()->as_register(); 2177 2178 CodeStub* stub = op->stub(); 2179 int flags = op->flags(); 2180 BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL; 2181 if (is_reference_type(basic_type)) basic_type = T_OBJECT; 2182 2183 // if we don't know anything, just go through the generic arraycopy 2184 if (default_type == nullptr // || basic_type == T_OBJECT 2185 ) { 2186 Label done; 2187 assert(src == r1 && src_pos == r2, "mismatch in calling convention"); 2188 2189 // Save the arguments in case the generic arraycopy fails and we 2190 // have to fall back to the JNI stub 2191 __ stp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2192 __ stp(length, src_pos, Address(sp, 2*BytesPerWord)); 2193 __ str(src, Address(sp, 4*BytesPerWord)); 2194 2195 address copyfunc_addr = StubRoutines::generic_arraycopy(); 2196 assert(copyfunc_addr != nullptr, "generic arraycopy stub required"); 2197 2198 // The arguments are in java calling convention so we shift them 2199 // to C convention 2200 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4); 2201 __ mov(c_rarg0, j_rarg0); 2202 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4); 2203 __ mov(c_rarg1, j_rarg1); 2204 assert_different_registers(c_rarg2, j_rarg3, j_rarg4); 2205 __ mov(c_rarg2, j_rarg2); 2206 assert_different_registers(c_rarg3, j_rarg4); 2207 __ mov(c_rarg3, j_rarg3); 2208 __ mov(c_rarg4, j_rarg4); 2209 #ifndef PRODUCT 2210 if (PrintC1Statistics) { 2211 __ incrementw(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt)); 2212 } 2213 #endif 2214 __ far_call(RuntimeAddress(copyfunc_addr)); 2215 2216 __ cbz(r0, *stub->continuation()); 2217 2218 // Reload values from the stack so they are where the stub 2219 // expects them. 2220 __ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2221 __ ldp(length, src_pos, Address(sp, 2*BytesPerWord)); 2222 __ ldr(src, Address(sp, 4*BytesPerWord)); 2223 2224 // r0 is -1^K where K == partial copied count 2225 __ eonw(rscratch1, r0, zr); 2226 // adjust length down and src/end pos up by partial copied count 2227 __ subw(length, length, rscratch1); 2228 __ addw(src_pos, src_pos, rscratch1); 2229 __ addw(dst_pos, dst_pos, rscratch1); 2230 __ b(*stub->entry()); 2231 2232 __ bind(*stub->continuation()); 2233 return; 2234 } 2235 2236 assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); 2237 2238 int elem_size = type2aelembytes(basic_type); 2239 int scale = exact_log2(elem_size); 2240 2241 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes()); 2242 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes()); 2243 2244 // test for null 2245 if (flags & LIR_OpArrayCopy::src_null_check) { 2246 __ cbz(src, *stub->entry()); 2247 } 2248 if (flags & LIR_OpArrayCopy::dst_null_check) { 2249 __ cbz(dst, *stub->entry()); 2250 } 2251 2252 // If the compiler was not able to prove that exact type of the source or the destination 2253 // of the arraycopy is an array type, check at runtime if the source or the destination is 2254 // an instance type. 2255 if (flags & LIR_OpArrayCopy::type_check) { 2256 if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) { 2257 __ load_klass(tmp, dst); 2258 __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2259 __ cmpw(rscratch1, Klass::_lh_neutral_value); 2260 __ br(Assembler::GE, *stub->entry()); 2261 } 2262 2263 if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) { 2264 __ load_klass(tmp, src); 2265 __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2266 __ cmpw(rscratch1, Klass::_lh_neutral_value); 2267 __ br(Assembler::GE, *stub->entry()); 2268 } 2269 } 2270 2271 // check if negative 2272 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 2273 __ cmpw(src_pos, 0); 2274 __ br(Assembler::LT, *stub->entry()); 2275 } 2276 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 2277 __ cmpw(dst_pos, 0); 2278 __ br(Assembler::LT, *stub->entry()); 2279 } 2280 2281 if (flags & LIR_OpArrayCopy::length_positive_check) { 2282 __ cmpw(length, 0); 2283 __ br(Assembler::LT, *stub->entry()); 2284 } 2285 2286 if (flags & LIR_OpArrayCopy::src_range_check) { 2287 __ addw(tmp, src_pos, length); 2288 __ ldrw(rscratch1, src_length_addr); 2289 __ cmpw(tmp, rscratch1); 2290 __ br(Assembler::HI, *stub->entry()); 2291 } 2292 if (flags & LIR_OpArrayCopy::dst_range_check) { 2293 __ addw(tmp, dst_pos, length); 2294 __ ldrw(rscratch1, dst_length_addr); 2295 __ cmpw(tmp, rscratch1); 2296 __ br(Assembler::HI, *stub->entry()); 2297 } 2298 2299 if (flags & LIR_OpArrayCopy::type_check) { 2300 // We don't know the array types are compatible 2301 if (basic_type != T_OBJECT) { 2302 // Simple test for basic type arrays 2303 __ cmp_klasses_from_objects(src, dst, tmp, rscratch1); 2304 __ br(Assembler::NE, *stub->entry()); 2305 } else { 2306 // For object arrays, if src is a sub class of dst then we can 2307 // safely do the copy. 2308 Label cont, slow; 2309 2310 #define PUSH(r1, r2) \ 2311 stp(r1, r2, __ pre(sp, -2 * wordSize)); 2312 2313 #define POP(r1, r2) \ 2314 ldp(r1, r2, __ post(sp, 2 * wordSize)); 2315 2316 __ PUSH(src, dst); 2317 2318 __ load_klass(src, src); 2319 __ load_klass(dst, dst); 2320 2321 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr); 2322 2323 __ PUSH(src, dst); 2324 __ far_call(RuntimeAddress(Runtime1::entry_for(StubId::c1_slow_subtype_check_id))); 2325 __ POP(src, dst); 2326 2327 __ cbnz(src, cont); 2328 2329 __ bind(slow); 2330 __ POP(src, dst); 2331 2332 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 2333 if (copyfunc_addr != nullptr) { // use stub if available 2334 // src is not a sub class of dst so we have to do a 2335 // per-element check. 2336 2337 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 2338 if ((flags & mask) != mask) { 2339 // Check that at least both of them object arrays. 2340 assert(flags & mask, "one of the two should be known to be an object array"); 2341 2342 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2343 __ load_klass(tmp, src); 2344 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2345 __ load_klass(tmp, dst); 2346 } 2347 int lh_offset = in_bytes(Klass::layout_helper_offset()); 2348 Address klass_lh_addr(tmp, lh_offset); 2349 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 2350 __ ldrw(rscratch1, klass_lh_addr); 2351 __ mov(rscratch2, objArray_lh); 2352 __ eorw(rscratch1, rscratch1, rscratch2); 2353 __ cbnzw(rscratch1, *stub->entry()); 2354 } 2355 2356 // Spill because stubs can use any register they like and it's 2357 // easier to restore just those that we care about. 2358 __ stp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2359 __ stp(length, src_pos, Address(sp, 2*BytesPerWord)); 2360 __ str(src, Address(sp, 4*BytesPerWord)); 2361 2362 __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale))); 2363 __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type)); 2364 assert_different_registers(c_rarg0, dst, dst_pos, length); 2365 __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale))); 2366 __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type)); 2367 assert_different_registers(c_rarg1, dst, length); 2368 __ uxtw(c_rarg2, length); 2369 assert_different_registers(c_rarg2, dst); 2370 2371 __ load_klass(c_rarg4, dst); 2372 __ ldr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset())); 2373 __ ldrw(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset())); 2374 __ far_call(RuntimeAddress(copyfunc_addr)); 2375 2376 #ifndef PRODUCT 2377 if (PrintC1Statistics) { 2378 Label failed; 2379 __ cbnz(r0, failed); 2380 __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt)); 2381 __ bind(failed); 2382 } 2383 #endif 2384 2385 __ cbz(r0, *stub->continuation()); 2386 2387 #ifndef PRODUCT 2388 if (PrintC1Statistics) { 2389 __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt)); 2390 } 2391 #endif 2392 assert_different_registers(dst, dst_pos, length, src_pos, src, r0, rscratch1); 2393 2394 // Restore previously spilled arguments 2395 __ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2396 __ ldp(length, src_pos, Address(sp, 2*BytesPerWord)); 2397 __ ldr(src, Address(sp, 4*BytesPerWord)); 2398 2399 // return value is -1^K where K is partial copied count 2400 __ eonw(rscratch1, r0, zr); 2401 // adjust length down and src/end pos up by partial copied count 2402 __ subw(length, length, rscratch1); 2403 __ addw(src_pos, src_pos, rscratch1); 2404 __ addw(dst_pos, dst_pos, rscratch1); 2405 } 2406 2407 __ b(*stub->entry()); 2408 2409 __ bind(cont); 2410 __ POP(src, dst); 2411 } 2412 } 2413 2414 #ifdef ASSERT 2415 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 2416 // Sanity check the known type with the incoming class. For the 2417 // primitive case the types must match exactly with src.klass and 2418 // dst.klass each exactly matching the default type. For the 2419 // object array case, if no type check is needed then either the 2420 // dst type is exactly the expected type and the src type is a 2421 // subtype which we can't check or src is the same array as dst 2422 // but not necessarily exactly of type default_type. 2423 Label known_ok, halt; 2424 __ mov_metadata(tmp, default_type->constant_encoding()); 2425 2426 if (basic_type != T_OBJECT) { 2427 __ cmp_klass(dst, tmp, rscratch1); 2428 __ br(Assembler::NE, halt); 2429 __ cmp_klass(src, tmp, rscratch1); 2430 __ br(Assembler::EQ, known_ok); 2431 } else { 2432 __ cmp_klass(dst, tmp, rscratch1); 2433 __ br(Assembler::EQ, known_ok); 2434 __ cmp(src, dst); 2435 __ br(Assembler::EQ, known_ok); 2436 } 2437 __ bind(halt); 2438 __ stop("incorrect type information in arraycopy"); 2439 __ bind(known_ok); 2440 } 2441 #endif 2442 2443 #ifndef PRODUCT 2444 if (PrintC1Statistics) { 2445 __ incrementw(ExternalAddress(Runtime1::arraycopy_count_address(basic_type))); 2446 } 2447 #endif 2448 2449 __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale))); 2450 __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type)); 2451 assert_different_registers(c_rarg0, dst, dst_pos, length); 2452 __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale))); 2453 __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type)); 2454 assert_different_registers(c_rarg1, dst, length); 2455 __ uxtw(c_rarg2, length); 2456 assert_different_registers(c_rarg2, dst); 2457 2458 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 2459 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 2460 const char *name; 2461 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 2462 2463 CodeBlob *cb = CodeCache::find_blob(entry); 2464 if (cb) { 2465 __ far_call(RuntimeAddress(entry)); 2466 } else { 2467 __ call_VM_leaf(entry, 3); 2468 } 2469 2470 if (stub != nullptr) { 2471 __ bind(*stub->continuation()); 2472 } 2473 } 2474 2475 2476 2477 2478 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 2479 Register obj = op->obj_opr()->as_register(); // may not be an oop 2480 Register hdr = op->hdr_opr()->as_register(); 2481 Register lock = op->lock_opr()->as_register(); 2482 Register temp = op->scratch_opr()->as_register(); 2483 if (op->code() == lir_lock) { 2484 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2485 // add debug info for NullPointerException only if one is possible 2486 int null_check_offset = __ lock_object(hdr, obj, lock, temp, *op->stub()->entry()); 2487 if (op->info() != nullptr) { 2488 add_debug_info_for_null_check(null_check_offset, op->info()); 2489 } 2490 // done 2491 } else if (op->code() == lir_unlock) { 2492 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2493 __ unlock_object(hdr, obj, lock, temp, *op->stub()->entry()); 2494 } else { 2495 Unimplemented(); 2496 } 2497 __ bind(*op->stub()->continuation()); 2498 } 2499 2500 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) { 2501 Register obj = op->obj()->as_pointer_register(); 2502 Register result = op->result_opr()->as_pointer_register(); 2503 2504 CodeEmitInfo* info = op->info(); 2505 if (info != nullptr) { 2506 add_debug_info_for_null_check_here(info); 2507 } 2508 2509 __ load_klass(result, obj); 2510 } 2511 2512 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 2513 ciMethod* method = op->profiled_method(); 2514 int bci = op->profiled_bci(); 2515 ciMethod* callee = op->profiled_callee(); 2516 2517 // Update counter for all call types 2518 ciMethodData* md = method->method_data_or_null(); 2519 assert(md != nullptr, "Sanity"); 2520 ciProfileData* data = md->bci_to_data(bci); 2521 assert(data != nullptr && data->is_CounterData(), "need CounterData for calls"); 2522 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 2523 Register mdo = op->mdo()->as_register(); 2524 __ mov_metadata(mdo, md->constant_encoding()); 2525 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 2526 // Perform additional virtual call profiling for invokevirtual and 2527 // invokeinterface bytecodes 2528 if (op->should_profile_receiver_type()) { 2529 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 2530 Register recv = op->recv()->as_register(); 2531 assert_different_registers(mdo, recv); 2532 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 2533 ciKlass* known_klass = op->known_holder(); 2534 if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) { 2535 // We know the type that will be seen at this call site; we can 2536 // statically update the MethodData* rather than needing to do 2537 // dynamic tests on the receiver type 2538 2539 // NOTE: we should probably put a lock around this search to 2540 // avoid collisions by concurrent compilations 2541 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 2542 uint i; 2543 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2544 ciKlass* receiver = vc_data->receiver(i); 2545 if (known_klass->equals(receiver)) { 2546 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2547 __ addptr(data_addr, DataLayout::counter_increment); 2548 return; 2549 } 2550 } 2551 2552 // Receiver type not found in profile data; select an empty slot 2553 2554 // Note that this is less efficient than it should be because it 2555 // always does a write to the receiver part of the 2556 // VirtualCallData rather than just the first time 2557 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2558 ciKlass* receiver = vc_data->receiver(i); 2559 if (receiver == nullptr) { 2560 __ mov_metadata(rscratch1, known_klass->constant_encoding()); 2561 Address recv_addr = 2562 __ form_address(rscratch2, mdo, 2563 md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)), 2564 LogBytesPerWord); 2565 __ str(rscratch1, recv_addr); 2566 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2567 __ addptr(data_addr, DataLayout::counter_increment); 2568 return; 2569 } 2570 } 2571 } else { 2572 __ load_klass(recv, recv); 2573 Label update_done; 2574 type_profile_helper(mdo, md, data, recv, &update_done); 2575 // Receiver did not match any saved receiver and there is no empty row for it. 2576 // Increment total counter to indicate polymorphic case. 2577 __ addptr(counter_addr, DataLayout::counter_increment); 2578 2579 __ bind(update_done); 2580 } 2581 } else { 2582 // Static call 2583 __ addptr(counter_addr, DataLayout::counter_increment); 2584 } 2585 } 2586 2587 2588 void LIR_Assembler::emit_delay(LIR_OpDelay*) { 2589 Unimplemented(); 2590 } 2591 2592 2593 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) { 2594 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no)); 2595 } 2596 2597 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 2598 assert(op->crc()->is_single_cpu(), "crc must be register"); 2599 assert(op->val()->is_single_cpu(), "byte value must be register"); 2600 assert(op->result_opr()->is_single_cpu(), "result must be register"); 2601 Register crc = op->crc()->as_register(); 2602 Register val = op->val()->as_register(); 2603 Register res = op->result_opr()->as_register(); 2604 2605 assert_different_registers(val, crc, res); 2606 uint64_t offset; 2607 __ adrp(res, ExternalAddress(StubRoutines::crc_table_addr()), offset); 2608 __ add(res, res, offset); 2609 2610 __ mvnw(crc, crc); // ~crc 2611 __ update_byte_crc32(crc, val, res); 2612 __ mvnw(res, crc); // ~crc 2613 } 2614 2615 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 2616 COMMENT("emit_profile_type {"); 2617 Register obj = op->obj()->as_register(); 2618 Register tmp = op->tmp()->as_pointer_register(); 2619 Address mdo_addr = as_Address(op->mdp()->as_address_ptr()); 2620 ciKlass* exact_klass = op->exact_klass(); 2621 intptr_t current_klass = op->current_klass(); 2622 bool not_null = op->not_null(); 2623 bool no_conflict = op->no_conflict(); 2624 2625 Label update, next, none; 2626 2627 bool do_null = !not_null; 2628 bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 2629 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 2630 2631 assert(do_null || do_update, "why are we here?"); 2632 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 2633 assert(mdo_addr.base() != rscratch1, "wrong register"); 2634 2635 __ verify_oop(obj); 2636 2637 if (tmp != obj) { 2638 assert_different_registers(obj, tmp, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index()); 2639 __ mov(tmp, obj); 2640 } else { 2641 assert_different_registers(obj, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index()); 2642 } 2643 if (do_null) { 2644 __ cbnz(tmp, update); 2645 if (!TypeEntries::was_null_seen(current_klass)) { 2646 __ ldr(rscratch2, mdo_addr); 2647 __ orr(rscratch2, rscratch2, TypeEntries::null_seen); 2648 __ str(rscratch2, mdo_addr); 2649 } 2650 if (do_update) { 2651 #ifndef ASSERT 2652 __ b(next); 2653 } 2654 #else 2655 __ b(next); 2656 } 2657 } else { 2658 __ cbnz(tmp, update); 2659 __ stop("unexpected null obj"); 2660 #endif 2661 } 2662 2663 __ bind(update); 2664 2665 if (do_update) { 2666 #ifdef ASSERT 2667 if (exact_klass != nullptr) { 2668 Label ok; 2669 __ load_klass(tmp, tmp); 2670 __ mov_metadata(rscratch1, exact_klass->constant_encoding()); 2671 __ eor(rscratch1, tmp, rscratch1); 2672 __ cbz(rscratch1, ok); 2673 __ stop("exact klass and actual klass differ"); 2674 __ bind(ok); 2675 } 2676 #endif 2677 if (!no_conflict) { 2678 if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) { 2679 if (exact_klass != nullptr) { 2680 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2681 } else { 2682 __ load_klass(tmp, tmp); 2683 } 2684 2685 __ ldr(rscratch2, mdo_addr); 2686 __ eor(tmp, tmp, rscratch2); 2687 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2688 // klass seen before, nothing to do. The unknown bit may have been 2689 // set already but no need to check. 2690 __ cbz(rscratch1, next); 2691 2692 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2693 2694 if (TypeEntries::is_type_none(current_klass)) { 2695 __ cbz(rscratch2, none); 2696 __ cmp(rscratch2, (u1)TypeEntries::null_seen); 2697 __ br(Assembler::EQ, none); 2698 // There is a chance that the checks above 2699 // fail if another thread has just set the 2700 // profiling to this obj's klass 2701 __ dmb(Assembler::ISHLD); 2702 __ eor(tmp, tmp, rscratch2); // get back original value before XOR 2703 __ ldr(rscratch2, mdo_addr); 2704 __ eor(tmp, tmp, rscratch2); 2705 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2706 __ cbz(rscratch1, next); 2707 } 2708 } else { 2709 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 2710 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 2711 2712 __ ldr(tmp, mdo_addr); 2713 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2714 } 2715 2716 // different than before. Cannot keep accurate profile. 2717 __ ldr(rscratch2, mdo_addr); 2718 __ orr(rscratch2, rscratch2, TypeEntries::type_unknown); 2719 __ str(rscratch2, mdo_addr); 2720 2721 if (TypeEntries::is_type_none(current_klass)) { 2722 __ b(next); 2723 2724 __ bind(none); 2725 // first time here. Set profile type. 2726 __ str(tmp, mdo_addr); 2727 #ifdef ASSERT 2728 __ andr(tmp, tmp, TypeEntries::type_mask); 2729 __ verify_klass_ptr(tmp); 2730 #endif 2731 } 2732 } else { 2733 // There's a single possible klass at this profile point 2734 assert(exact_klass != nullptr, "should be"); 2735 if (TypeEntries::is_type_none(current_klass)) { 2736 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2737 __ ldr(rscratch2, mdo_addr); 2738 __ eor(tmp, tmp, rscratch2); 2739 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2740 __ cbz(rscratch1, next); 2741 #ifdef ASSERT 2742 { 2743 Label ok; 2744 __ ldr(rscratch1, mdo_addr); 2745 __ cbz(rscratch1, ok); 2746 __ cmp(rscratch1, (u1)TypeEntries::null_seen); 2747 __ br(Assembler::EQ, ok); 2748 // may have been set by another thread 2749 __ dmb(Assembler::ISHLD); 2750 __ mov_metadata(rscratch1, exact_klass->constant_encoding()); 2751 __ ldr(rscratch2, mdo_addr); 2752 __ eor(rscratch2, rscratch1, rscratch2); 2753 __ andr(rscratch2, rscratch2, TypeEntries::type_mask); 2754 __ cbz(rscratch2, ok); 2755 2756 __ stop("unexpected profiling mismatch"); 2757 __ bind(ok); 2758 } 2759 #endif 2760 // first time here. Set profile type. 2761 __ str(tmp, mdo_addr); 2762 #ifdef ASSERT 2763 __ andr(tmp, tmp, TypeEntries::type_mask); 2764 __ verify_klass_ptr(tmp); 2765 #endif 2766 } else { 2767 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 2768 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 2769 2770 __ ldr(tmp, mdo_addr); 2771 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2772 2773 __ orr(tmp, tmp, TypeEntries::type_unknown); 2774 __ str(tmp, mdo_addr); 2775 // FIXME: Write barrier needed here? 2776 } 2777 } 2778 2779 __ bind(next); 2780 } 2781 COMMENT("} emit_profile_type"); 2782 } 2783 2784 2785 void LIR_Assembler::align_backward_branch_target() { 2786 } 2787 2788 2789 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 2790 // tmp must be unused 2791 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 2792 2793 if (left->is_single_cpu()) { 2794 assert(dest->is_single_cpu(), "expect single result reg"); 2795 __ negw(dest->as_register(), left->as_register()); 2796 } else if (left->is_double_cpu()) { 2797 assert(dest->is_double_cpu(), "expect double result reg"); 2798 __ neg(dest->as_register_lo(), left->as_register_lo()); 2799 } else if (left->is_single_fpu()) { 2800 assert(dest->is_single_fpu(), "expect single float result reg"); 2801 __ fnegs(dest->as_float_reg(), left->as_float_reg()); 2802 } else { 2803 assert(left->is_double_fpu(), "expect double float operand reg"); 2804 assert(dest->is_double_fpu(), "expect double float result reg"); 2805 __ fnegd(dest->as_double_reg(), left->as_double_reg()); 2806 } 2807 } 2808 2809 2810 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 2811 if (patch_code != lir_patch_none) { 2812 deoptimize_trap(info); 2813 return; 2814 } 2815 2816 __ lea(dest->as_pointer_register(), as_Address(addr->as_address_ptr())); 2817 } 2818 2819 2820 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 2821 assert(!tmp->is_valid(), "don't need temporary"); 2822 2823 CodeBlob *cb = CodeCache::find_blob(dest); 2824 if (cb) { 2825 __ far_call(RuntimeAddress(dest)); 2826 } else { 2827 __ mov(rscratch1, RuntimeAddress(dest)); 2828 __ blr(rscratch1); 2829 } 2830 2831 if (info != nullptr) { 2832 add_call_info_here(info); 2833 } 2834 __ post_call_nop(); 2835 } 2836 2837 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 2838 if (dest->is_address() || src->is_address()) { 2839 move_op(src, dest, type, lir_patch_none, info, /*wide*/false); 2840 } else { 2841 ShouldNotReachHere(); 2842 } 2843 } 2844 2845 #ifdef ASSERT 2846 // emit run-time assertion 2847 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 2848 assert(op->code() == lir_assert, "must be"); 2849 2850 if (op->in_opr1()->is_valid()) { 2851 assert(op->in_opr2()->is_valid(), "both operands must be valid"); 2852 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op); 2853 } else { 2854 assert(op->in_opr2()->is_illegal(), "both operands must be illegal"); 2855 assert(op->condition() == lir_cond_always, "no other conditions allowed"); 2856 } 2857 2858 Label ok; 2859 if (op->condition() != lir_cond_always) { 2860 Assembler::Condition acond = Assembler::AL; 2861 switch (op->condition()) { 2862 case lir_cond_equal: acond = Assembler::EQ; break; 2863 case lir_cond_notEqual: acond = Assembler::NE; break; 2864 case lir_cond_less: acond = Assembler::LT; break; 2865 case lir_cond_lessEqual: acond = Assembler::LE; break; 2866 case lir_cond_greaterEqual: acond = Assembler::GE; break; 2867 case lir_cond_greater: acond = Assembler::GT; break; 2868 case lir_cond_belowEqual: acond = Assembler::LS; break; 2869 case lir_cond_aboveEqual: acond = Assembler::HS; break; 2870 default: ShouldNotReachHere(); 2871 } 2872 __ br(acond, ok); 2873 } 2874 if (op->halt()) { 2875 const char* str = __ code_string(op->msg()); 2876 __ stop(str); 2877 } else { 2878 breakpoint(); 2879 } 2880 __ bind(ok); 2881 } 2882 #endif 2883 2884 #ifndef PRODUCT 2885 #define COMMENT(x) do { __ block_comment(x); } while (0) 2886 #else 2887 #define COMMENT(x) 2888 #endif 2889 2890 void LIR_Assembler::membar() { 2891 COMMENT("membar"); 2892 __ membar(MacroAssembler::AnyAny); 2893 } 2894 2895 void LIR_Assembler::membar_acquire() { 2896 __ membar(Assembler::LoadLoad|Assembler::LoadStore); 2897 } 2898 2899 void LIR_Assembler::membar_release() { 2900 __ membar(Assembler::LoadStore|Assembler::StoreStore); 2901 } 2902 2903 void LIR_Assembler::membar_loadload() { 2904 __ membar(Assembler::LoadLoad); 2905 } 2906 2907 void LIR_Assembler::membar_storestore() { 2908 __ membar(MacroAssembler::StoreStore); 2909 } 2910 2911 void LIR_Assembler::membar_loadstore() { __ membar(MacroAssembler::LoadStore); } 2912 2913 void LIR_Assembler::membar_storeload() { __ membar(MacroAssembler::StoreLoad); } 2914 2915 void LIR_Assembler::on_spin_wait() { 2916 __ spin_wait(); 2917 } 2918 2919 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 2920 __ mov(result_reg->as_register(), rthread); 2921 } 2922 2923 2924 void LIR_Assembler::peephole(LIR_List *lir) { 2925 #if 0 2926 if (tableswitch_count >= max_tableswitches) 2927 return; 2928 2929 /* 2930 This finite-state automaton recognizes sequences of compare-and- 2931 branch instructions. We will turn them into a tableswitch. You 2932 could argue that C1 really shouldn't be doing this sort of 2933 optimization, but without it the code is really horrible. 2934 */ 2935 2936 enum { start_s, cmp1_s, beq_s, cmp_s } state; 2937 int first_key, last_key = -2147483648; 2938 int next_key = 0; 2939 int start_insn = -1; 2940 int last_insn = -1; 2941 Register reg = noreg; 2942 LIR_Opr reg_opr; 2943 state = start_s; 2944 2945 LIR_OpList* inst = lir->instructions_list(); 2946 for (int i = 0; i < inst->length(); i++) { 2947 LIR_Op* op = inst->at(i); 2948 switch (state) { 2949 case start_s: 2950 first_key = -1; 2951 start_insn = i; 2952 switch (op->code()) { 2953 case lir_cmp: 2954 LIR_Opr opr1 = op->as_Op2()->in_opr1(); 2955 LIR_Opr opr2 = op->as_Op2()->in_opr2(); 2956 if (opr1->is_cpu_register() && opr1->is_single_cpu() 2957 && opr2->is_constant() 2958 && opr2->type() == T_INT) { 2959 reg_opr = opr1; 2960 reg = opr1->as_register(); 2961 first_key = opr2->as_constant_ptr()->as_jint(); 2962 next_key = first_key + 1; 2963 state = cmp_s; 2964 goto next_state; 2965 } 2966 break; 2967 } 2968 break; 2969 case cmp_s: 2970 switch (op->code()) { 2971 case lir_branch: 2972 if (op->as_OpBranch()->cond() == lir_cond_equal) { 2973 state = beq_s; 2974 last_insn = i; 2975 goto next_state; 2976 } 2977 } 2978 state = start_s; 2979 break; 2980 case beq_s: 2981 switch (op->code()) { 2982 case lir_cmp: { 2983 LIR_Opr opr1 = op->as_Op2()->in_opr1(); 2984 LIR_Opr opr2 = op->as_Op2()->in_opr2(); 2985 if (opr1->is_cpu_register() && opr1->is_single_cpu() 2986 && opr1->as_register() == reg 2987 && opr2->is_constant() 2988 && opr2->type() == T_INT 2989 && opr2->as_constant_ptr()->as_jint() == next_key) { 2990 last_key = next_key; 2991 next_key++; 2992 state = cmp_s; 2993 goto next_state; 2994 } 2995 } 2996 } 2997 last_key = next_key; 2998 state = start_s; 2999 break; 3000 default: 3001 assert(false, "impossible state"); 3002 } 3003 if (state == start_s) { 3004 if (first_key < last_key - 5L && reg != noreg) { 3005 { 3006 // printf("found run register %d starting at insn %d low value %d high value %d\n", 3007 // reg->encoding(), 3008 // start_insn, first_key, last_key); 3009 // for (int i = 0; i < inst->length(); i++) { 3010 // inst->at(i)->print(); 3011 // tty->print("\n"); 3012 // } 3013 // tty->print("\n"); 3014 } 3015 3016 struct tableswitch *sw = &switches[tableswitch_count]; 3017 sw->_insn_index = start_insn, sw->_first_key = first_key, 3018 sw->_last_key = last_key, sw->_reg = reg; 3019 inst->insert_before(last_insn + 1, new LIR_OpLabel(&sw->_after)); 3020 { 3021 // Insert the new table of branches 3022 int offset = last_insn; 3023 for (int n = first_key; n < last_key; n++) { 3024 inst->insert_before 3025 (last_insn + 1, 3026 new LIR_OpBranch(lir_cond_always, T_ILLEGAL, 3027 inst->at(offset)->as_OpBranch()->label())); 3028 offset -= 2, i++; 3029 } 3030 } 3031 // Delete all the old compare-and-branch instructions 3032 for (int n = first_key; n < last_key; n++) { 3033 inst->remove_at(start_insn); 3034 inst->remove_at(start_insn); 3035 } 3036 // Insert the tableswitch instruction 3037 inst->insert_before(start_insn, 3038 new LIR_Op2(lir_cmp, lir_cond_always, 3039 LIR_OprFact::intConst(tableswitch_count), 3040 reg_opr)); 3041 inst->insert_before(start_insn + 1, new LIR_OpLabel(&sw->_branches)); 3042 tableswitch_count++; 3043 } 3044 reg = noreg; 3045 last_key = -2147483648; 3046 } 3047 next_state: 3048 ; 3049 } 3050 #endif 3051 } 3052 3053 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp_op) { 3054 Address addr = as_Address(src->as_address_ptr()); 3055 BasicType type = src->type(); 3056 bool is_oop = is_reference_type(type); 3057 3058 void (MacroAssembler::* add)(Register prev, RegisterOrConstant incr, Register addr); 3059 void (MacroAssembler::* xchg)(Register prev, Register newv, Register addr); 3060 3061 switch(type) { 3062 case T_INT: 3063 xchg = &MacroAssembler::atomic_xchgalw; 3064 add = &MacroAssembler::atomic_addalw; 3065 break; 3066 case T_LONG: 3067 xchg = &MacroAssembler::atomic_xchgal; 3068 add = &MacroAssembler::atomic_addal; 3069 break; 3070 case T_OBJECT: 3071 case T_ARRAY: 3072 if (UseCompressedOops) { 3073 xchg = &MacroAssembler::atomic_xchgalw; 3074 add = &MacroAssembler::atomic_addalw; 3075 } else { 3076 xchg = &MacroAssembler::atomic_xchgal; 3077 add = &MacroAssembler::atomic_addal; 3078 } 3079 break; 3080 default: 3081 ShouldNotReachHere(); 3082 xchg = &MacroAssembler::atomic_xchgal; 3083 add = &MacroAssembler::atomic_addal; // unreachable 3084 } 3085 3086 switch (code) { 3087 case lir_xadd: 3088 { 3089 RegisterOrConstant inc; 3090 Register tmp = as_reg(tmp_op); 3091 Register dst = as_reg(dest); 3092 if (data->is_constant()) { 3093 inc = RegisterOrConstant(as_long(data)); 3094 assert_different_registers(dst, addr.base(), tmp, 3095 rscratch1, rscratch2); 3096 } else { 3097 inc = RegisterOrConstant(as_reg(data)); 3098 assert_different_registers(inc.as_register(), dst, addr.base(), tmp, 3099 rscratch1, rscratch2); 3100 } 3101 __ lea(tmp, addr); 3102 (_masm->*add)(dst, inc, tmp); 3103 break; 3104 } 3105 case lir_xchg: 3106 { 3107 Register tmp = tmp_op->as_register(); 3108 Register obj = as_reg(data); 3109 Register dst = as_reg(dest); 3110 if (is_oop && UseCompressedOops) { 3111 __ encode_heap_oop(rscratch2, obj); 3112 obj = rscratch2; 3113 } 3114 assert_different_registers(obj, addr.base(), tmp, rscratch1); 3115 assert_different_registers(dst, addr.base(), tmp, rscratch1); 3116 __ lea(tmp, addr); 3117 (_masm->*xchg)(dst, obj, tmp); 3118 if (is_oop && UseCompressedOops) { 3119 __ decode_heap_oop(dst); 3120 } 3121 } 3122 break; 3123 default: 3124 ShouldNotReachHere(); 3125 } 3126 if(!UseLSE) { 3127 __ membar(__ AnyAny); 3128 } 3129 } 3130 3131 #undef __