1 /*
   2  * Copyright (c) 2000, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "asm/assembler.hpp"
  29 #include "c1/c1_CodeStubs.hpp"
  30 #include "c1/c1_Compilation.hpp"
  31 #include "c1/c1_LIRAssembler.hpp"
  32 #include "c1/c1_MacroAssembler.hpp"
  33 #include "c1/c1_Runtime1.hpp"
  34 #include "c1/c1_ValueStack.hpp"
  35 #include "ci/ciArrayKlass.hpp"
  36 #include "ci/ciInstance.hpp"
  37 #include "code/compiledIC.hpp"
  38 #include "gc/shared/collectedHeap.hpp"
  39 #include "gc/shared/gc_globals.hpp"
  40 #include "nativeInst_aarch64.hpp"
  41 #include "oops/objArrayKlass.hpp"
  42 #include "runtime/frame.inline.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "runtime/stubRoutines.hpp"
  45 #include "utilities/powerOfTwo.hpp"
  46 #include "vmreg_aarch64.inline.hpp"
  47 
  48 
  49 #ifndef PRODUCT
  50 #define COMMENT(x)   do { __ block_comment(x); } while (0)
  51 #else
  52 #define COMMENT(x)
  53 #endif
  54 
  55 NEEDS_CLEANUP // remove this definitions ?
  56 const Register SYNC_header = r0;   // synchronization header
  57 const Register SHIFT_count = r0;   // where count for shift operations must be
  58 
  59 #define __ _masm->
  60 
  61 
  62 static void select_different_registers(Register preserve,
  63                                        Register extra,
  64                                        Register &tmp1,
  65                                        Register &tmp2) {
  66   if (tmp1 == preserve) {
  67     assert_different_registers(tmp1, tmp2, extra);
  68     tmp1 = extra;
  69   } else if (tmp2 == preserve) {
  70     assert_different_registers(tmp1, tmp2, extra);
  71     tmp2 = extra;
  72   }
  73   assert_different_registers(preserve, tmp1, tmp2);
  74 }
  75 
  76 
  77 
  78 static void select_different_registers(Register preserve,
  79                                        Register extra,
  80                                        Register &tmp1,
  81                                        Register &tmp2,
  82                                        Register &tmp3) {
  83   if (tmp1 == preserve) {
  84     assert_different_registers(tmp1, tmp2, tmp3, extra);
  85     tmp1 = extra;
  86   } else if (tmp2 == preserve) {
  87     assert_different_registers(tmp1, tmp2, tmp3, extra);
  88     tmp2 = extra;
  89   } else if (tmp3 == preserve) {
  90     assert_different_registers(tmp1, tmp2, tmp3, extra);
  91     tmp3 = extra;
  92   }
  93   assert_different_registers(preserve, tmp1, tmp2, tmp3);
  94 }
  95 
  96 
  97 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { Unimplemented(); return false; }
  98 
  99 
 100 LIR_Opr LIR_Assembler::receiverOpr() {
 101   return FrameMap::receiver_opr;
 102 }
 103 
 104 LIR_Opr LIR_Assembler::osrBufferPointer() {
 105   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 106 }
 107 
 108 //--------------fpu register translations-----------------------
 109 
 110 
 111 address LIR_Assembler::float_constant(float f) {
 112   address const_addr = __ float_constant(f);
 113   if (const_addr == nullptr) {
 114     bailout("const section overflow");
 115     return __ code()->consts()->start();
 116   } else {
 117     return const_addr;
 118   }
 119 }
 120 
 121 
 122 address LIR_Assembler::double_constant(double d) {
 123   address const_addr = __ double_constant(d);
 124   if (const_addr == nullptr) {
 125     bailout("const section overflow");
 126     return __ code()->consts()->start();
 127   } else {
 128     return const_addr;
 129   }
 130 }
 131 
 132 address LIR_Assembler::int_constant(jlong n) {
 133   address const_addr = __ long_constant(n);
 134   if (const_addr == nullptr) {
 135     bailout("const section overflow");
 136     return __ code()->consts()->start();
 137   } else {
 138     return const_addr;
 139   }
 140 }
 141 
 142 void LIR_Assembler::breakpoint() { Unimplemented(); }
 143 
 144 void LIR_Assembler::push(LIR_Opr opr) { Unimplemented(); }
 145 
 146 void LIR_Assembler::pop(LIR_Opr opr) { Unimplemented(); }
 147 
 148 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { Unimplemented(); return false; }
 149 //-------------------------------------------
 150 
 151 static Register as_reg(LIR_Opr op) {
 152   return op->is_double_cpu() ? op->as_register_lo() : op->as_register();
 153 }
 154 
 155 static jlong as_long(LIR_Opr data) {
 156   jlong result;
 157   switch (data->type()) {
 158   case T_INT:
 159     result = (data->as_jint());
 160     break;
 161   case T_LONG:
 162     result = (data->as_jlong());
 163     break;
 164   default:
 165     ShouldNotReachHere();
 166     result = 0;  // unreachable
 167   }
 168   return result;
 169 }
 170 
 171 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 172   Register base = addr->base()->as_pointer_register();
 173   LIR_Opr opr = addr->index();
 174   if (opr->is_cpu_register()) {
 175     Register index;
 176     if (opr->is_single_cpu())
 177       index = opr->as_register();
 178     else
 179       index = opr->as_register_lo();
 180     assert(addr->disp() == 0, "must be");
 181     switch(opr->type()) {
 182       case T_INT:
 183         return Address(base, index, Address::sxtw(addr->scale()));
 184       case T_LONG:
 185         return Address(base, index, Address::lsl(addr->scale()));
 186       default:
 187         ShouldNotReachHere();
 188       }
 189   } else {
 190     assert(addr->scale() == 0,
 191            "expected for immediate operand, was: %d", addr->scale());
 192     ptrdiff_t offset = ptrdiff_t(addr->disp());
 193     // NOTE: Does not handle any 16 byte vector access.
 194     const uint type_size = type2aelembytes(addr->type(), true);
 195     return __ legitimize_address(Address(base, offset), type_size, tmp);
 196   }
 197   return Address();
 198 }
 199 
 200 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 201   ShouldNotReachHere();
 202   return Address();
 203 }
 204 
 205 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 206   return as_Address(addr, rscratch1);
 207 }
 208 
 209 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 210   return as_Address(addr, rscratch1);  // Ouch
 211   // FIXME: This needs to be much more clever.  See x86.
 212 }
 213 
 214 // Ensure a valid Address (base + offset) to a stack-slot. If stack access is
 215 // not encodable as a base + (immediate) offset, generate an explicit address
 216 // calculation to hold the address in a temporary register.
 217 Address LIR_Assembler::stack_slot_address(int index, uint size, Register tmp, int adjust) {
 218   precond(size == 4 || size == 8);
 219   Address addr = frame_map()->address_for_slot(index, adjust);
 220   precond(addr.getMode() == Address::base_plus_offset);
 221   precond(addr.base() == sp);
 222   precond(addr.offset() > 0);
 223   uint mask = size - 1;
 224   assert((addr.offset() & mask) == 0, "scaled offsets only");
 225   return __ legitimize_address(addr, size, tmp);
 226 }
 227 
 228 void LIR_Assembler::osr_entry() {
 229   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 230   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 231   ValueStack* entry_state = osr_entry->state();
 232   int number_of_locks = entry_state->locks_size();
 233 
 234   // we jump here if osr happens with the interpreter
 235   // state set up to continue at the beginning of the
 236   // loop that triggered osr - in particular, we have
 237   // the following registers setup:
 238   //
 239   // r2: osr buffer
 240   //
 241 
 242   // build frame
 243   ciMethod* m = compilation()->method();
 244   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 245 
 246   // OSR buffer is
 247   //
 248   // locals[nlocals-1..0]
 249   // monitors[0..number_of_locks]
 250   //
 251   // locals is a direct copy of the interpreter frame so in the osr buffer
 252   // so first slot in the local array is the last local from the interpreter
 253   // and last slot is local[0] (receiver) from the interpreter
 254   //
 255   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 256   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 257   // in the interpreter frame (the method lock if a sync method)
 258 
 259   // Initialize monitors in the compiled activation.
 260   //   r2: pointer to osr buffer
 261   //
 262   // All other registers are dead at this point and the locals will be
 263   // copied into place by code emitted in the IR.
 264 
 265   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 266   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 267     int monitor_offset = BytesPerWord * method()->max_locals() +
 268       (2 * BytesPerWord) * (number_of_locks - 1);
 269     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 270     // the OSR buffer using 2 word entries: first the lock and then
 271     // the oop.
 272     for (int i = 0; i < number_of_locks; i++) {
 273       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 274 #ifdef ASSERT
 275       // verify the interpreter's monitor has a non-null object
 276       {
 277         Label L;
 278         __ ldr(rscratch1, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 279         __ cbnz(rscratch1, L);
 280         __ stop("locked object is null");
 281         __ bind(L);
 282       }
 283 #endif
 284       __ ldr(r19, Address(OSR_buf, slot_offset));
 285       __ ldr(r20, Address(OSR_buf, slot_offset + BytesPerWord));
 286       __ str(r19, frame_map()->address_for_monitor_lock(i));
 287       __ str(r20, frame_map()->address_for_monitor_object(i));
 288     }
 289   }
 290 }
 291 
 292 
 293 // inline cache check; done before the frame is built.
 294 int LIR_Assembler::check_icache() {
 295   return __ ic_check(CodeEntryAlignment);
 296 }
 297 
 298 void LIR_Assembler::clinit_barrier(ciMethod* method) {
 299   assert(VM_Version::supports_fast_class_init_checks(), "sanity");
 300   assert(!method->holder()->is_not_initialized(), "initialization should have been started");
 301 
 302   Label L_skip_barrier;
 303 
 304   __ mov_metadata(rscratch2, method->holder()->constant_encoding());
 305   __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier /*L_fast_path*/);
 306   __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
 307   __ bind(L_skip_barrier);
 308 }
 309 
 310 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
 311   if (o == nullptr) {
 312     __ mov(reg, zr);
 313   } else {
 314     __ movoop(reg, o);
 315   }
 316 }
 317 
 318 void LIR_Assembler::deoptimize_trap(CodeEmitInfo *info) {
 319   address target = nullptr;
 320   relocInfo::relocType reloc_type = relocInfo::none;
 321 
 322   switch (patching_id(info)) {
 323   case PatchingStub::access_field_id:
 324     target = Runtime1::entry_for(Runtime1::access_field_patching_id);
 325     reloc_type = relocInfo::section_word_type;
 326     break;
 327   case PatchingStub::load_klass_id:
 328     target = Runtime1::entry_for(Runtime1::load_klass_patching_id);
 329     reloc_type = relocInfo::metadata_type;
 330     break;
 331   case PatchingStub::load_mirror_id:
 332     target = Runtime1::entry_for(Runtime1::load_mirror_patching_id);
 333     reloc_type = relocInfo::oop_type;
 334     break;
 335   case PatchingStub::load_appendix_id:
 336     target = Runtime1::entry_for(Runtime1::load_appendix_patching_id);
 337     reloc_type = relocInfo::oop_type;
 338     break;
 339   default: ShouldNotReachHere();
 340   }
 341 
 342   __ far_call(RuntimeAddress(target));
 343   add_call_info_here(info);
 344 }
 345 
 346 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
 347   deoptimize_trap(info);
 348 }
 349 
 350 
 351 // This specifies the rsp decrement needed to build the frame
 352 int LIR_Assembler::initial_frame_size_in_bytes() const {
 353   // if rounding, must let FrameMap know!
 354 
 355   return in_bytes(frame_map()->framesize_in_bytes());
 356 }
 357 
 358 
 359 int LIR_Assembler::emit_exception_handler() {
 360   // generate code for exception handler
 361   address handler_base = __ start_a_stub(exception_handler_size());
 362   if (handler_base == nullptr) {
 363     // not enough space left for the handler
 364     bailout("exception handler overflow");
 365     return -1;
 366   }
 367 
 368   int offset = code_offset();
 369 
 370   // the exception oop and pc are in r0, and r3
 371   // no other registers need to be preserved, so invalidate them
 372   __ invalidate_registers(false, true, true, false, true, true);
 373 
 374   // check that there is really an exception
 375   __ verify_not_null_oop(r0);
 376 
 377   // search an exception handler (r0: exception oop, r3: throwing pc)
 378   __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
 379   __ should_not_reach_here();
 380   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 381   __ end_a_stub();
 382 
 383   return offset;
 384 }
 385 
 386 
 387 // Emit the code to remove the frame from the stack in the exception
 388 // unwind path.
 389 int LIR_Assembler::emit_unwind_handler() {
 390 #ifndef PRODUCT
 391   if (CommentedAssembly) {
 392     _masm->block_comment("Unwind handler");
 393   }
 394 #endif
 395 
 396   int offset = code_offset();
 397 
 398   // Fetch the exception from TLS and clear out exception related thread state
 399   __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
 400   __ str(zr, Address(rthread, JavaThread::exception_oop_offset()));
 401   __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
 402 
 403   __ bind(_unwind_handler_entry);
 404   __ verify_not_null_oop(r0);
 405   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 406     __ mov(r19, r0);  // Preserve the exception
 407   }
 408 
 409   // Perform needed unlocking
 410   MonitorExitStub* stub = nullptr;
 411   if (method()->is_synchronized()) {
 412     monitor_address(0, FrameMap::r0_opr);
 413     stub = new MonitorExitStub(FrameMap::r0_opr, true, 0);
 414     if (LockingMode == LM_MONITOR) {
 415       __ b(*stub->entry());
 416     } else {
 417       __ unlock_object(r5, r4, r0, r6, *stub->entry());
 418     }
 419     __ bind(*stub->continuation());
 420   }
 421 
 422   if (compilation()->env()->dtrace_method_probes()) {
 423     __ mov(c_rarg0, rthread);
 424     __ mov_metadata(c_rarg1, method()->constant_encoding());
 425     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), c_rarg0, c_rarg1);
 426   }
 427 
 428   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 429     __ mov(r0, r19);  // Restore the exception
 430   }
 431 
 432   // remove the activation and dispatch to the unwind handler
 433   __ block_comment("remove_frame and dispatch to the unwind handler");
 434   __ remove_frame(initial_frame_size_in_bytes());
 435   __ far_jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 436 
 437   // Emit the slow path assembly
 438   if (stub != nullptr) {
 439     stub->emit_code(this);
 440   }
 441 
 442   return offset;
 443 }
 444 
 445 
 446 int LIR_Assembler::emit_deopt_handler() {
 447   // generate code for exception handler
 448   address handler_base = __ start_a_stub(deopt_handler_size());
 449   if (handler_base == nullptr) {
 450     // not enough space left for the handler
 451     bailout("deopt handler overflow");
 452     return -1;
 453   }
 454 
 455   int offset = code_offset();
 456 
 457   __ adr(lr, pc());
 458   __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 459   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 460   __ end_a_stub();
 461 
 462   return offset;
 463 }
 464 
 465 void LIR_Assembler::add_debug_info_for_branch(address adr, CodeEmitInfo* info) {
 466   _masm->code_section()->relocate(adr, relocInfo::poll_type);
 467   int pc_offset = code_offset();
 468   flush_debug_info(pc_offset);
 469   info->record_debug_info(compilation()->debug_info_recorder(), pc_offset);
 470   if (info->exception_handlers() != nullptr) {
 471     compilation()->add_exception_handlers_for_pco(pc_offset, info->exception_handlers());
 472   }
 473 }
 474 
 475 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) {
 476   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == r0, "word returns are in r0,");
 477 
 478   // Pop the stack before the safepoint code
 479   __ remove_frame(initial_frame_size_in_bytes());
 480 
 481   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
 482     __ reserved_stack_check();
 483   }
 484 
 485   code_stub->set_safepoint_offset(__ offset());
 486   __ relocate(relocInfo::poll_return_type);
 487   __ safepoint_poll(*code_stub->entry(), true /* at_return */, false /* acquire */, true /* in_nmethod */);
 488   __ ret(lr);
 489 }
 490 
 491 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 492   guarantee(info != nullptr, "Shouldn't be null");
 493   __ get_polling_page(rscratch1, relocInfo::poll_type);
 494   add_debug_info_for_branch(info);  // This isn't just debug info:
 495                                     // it's the oop map
 496   __ read_polling_page(rscratch1, relocInfo::poll_type);
 497   return __ offset();
 498 }
 499 
 500 
 501 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 502   if (from_reg == r31_sp)
 503     from_reg = sp;
 504   if (to_reg == r31_sp)
 505     to_reg = sp;
 506   __ mov(to_reg, from_reg);
 507 }
 508 
 509 void LIR_Assembler::swap_reg(Register a, Register b) { Unimplemented(); }
 510 
 511 
 512 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 513   assert(src->is_constant(), "should not call otherwise");
 514   assert(dest->is_register(), "should not call otherwise");
 515   LIR_Const* c = src->as_constant_ptr();
 516 
 517   switch (c->type()) {
 518     case T_INT: {
 519       assert(patch_code == lir_patch_none, "no patching handled here");
 520       __ movw(dest->as_register(), c->as_jint());
 521       break;
 522     }
 523 
 524     case T_ADDRESS: {
 525       assert(patch_code == lir_patch_none, "no patching handled here");
 526       __ mov(dest->as_register(), c->as_jint());
 527       break;
 528     }
 529 
 530     case T_LONG: {
 531       assert(patch_code == lir_patch_none, "no patching handled here");
 532       __ mov(dest->as_register_lo(), (intptr_t)c->as_jlong());
 533       break;
 534     }
 535 
 536     case T_OBJECT: {
 537         if (patch_code == lir_patch_none) {
 538           jobject2reg(c->as_jobject(), dest->as_register());
 539         } else {
 540           jobject2reg_with_patching(dest->as_register(), info);
 541         }
 542       break;
 543     }
 544 
 545     case T_METADATA: {
 546       if (patch_code != lir_patch_none) {
 547         klass2reg_with_patching(dest->as_register(), info);
 548       } else {
 549         __ mov_metadata(dest->as_register(), c->as_metadata());
 550       }
 551       break;
 552     }
 553 
 554     case T_FLOAT: {
 555       if (__ operand_valid_for_float_immediate(c->as_jfloat())) {
 556         __ fmovs(dest->as_float_reg(), (c->as_jfloat()));
 557       } else {
 558         __ adr(rscratch1, InternalAddress(float_constant(c->as_jfloat())));
 559         __ ldrs(dest->as_float_reg(), Address(rscratch1));
 560       }
 561       break;
 562     }
 563 
 564     case T_DOUBLE: {
 565       if (__ operand_valid_for_float_immediate(c->as_jdouble())) {
 566         __ fmovd(dest->as_double_reg(), (c->as_jdouble()));
 567       } else {
 568         __ adr(rscratch1, InternalAddress(double_constant(c->as_jdouble())));
 569         __ ldrd(dest->as_double_reg(), Address(rscratch1));
 570       }
 571       break;
 572     }
 573 
 574     default:
 575       ShouldNotReachHere();
 576   }
 577 }
 578 
 579 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 580   LIR_Const* c = src->as_constant_ptr();
 581   switch (c->type()) {
 582   case T_OBJECT:
 583     {
 584       if (! c->as_jobject())
 585         __ str(zr, frame_map()->address_for_slot(dest->single_stack_ix()));
 586       else {
 587         const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr);
 588         reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false);
 589       }
 590     }
 591     break;
 592   case T_ADDRESS:
 593     {
 594       const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr);
 595       reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false);
 596     }
 597   case T_INT:
 598   case T_FLOAT:
 599     {
 600       Register reg = zr;
 601       if (c->as_jint_bits() == 0)
 602         __ strw(zr, frame_map()->address_for_slot(dest->single_stack_ix()));
 603       else {
 604         __ movw(rscratch1, c->as_jint_bits());
 605         __ strw(rscratch1, frame_map()->address_for_slot(dest->single_stack_ix()));
 606       }
 607     }
 608     break;
 609   case T_LONG:
 610   case T_DOUBLE:
 611     {
 612       Register reg = zr;
 613       if (c->as_jlong_bits() == 0)
 614         __ str(zr, frame_map()->address_for_slot(dest->double_stack_ix(),
 615                                                  lo_word_offset_in_bytes));
 616       else {
 617         __ mov(rscratch1, (intptr_t)c->as_jlong_bits());
 618         __ str(rscratch1, frame_map()->address_for_slot(dest->double_stack_ix(),
 619                                                         lo_word_offset_in_bytes));
 620       }
 621     }
 622     break;
 623   default:
 624     ShouldNotReachHere();
 625   }
 626 }
 627 
 628 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 629   assert(src->is_constant(), "should not call otherwise");
 630   LIR_Const* c = src->as_constant_ptr();
 631   LIR_Address* to_addr = dest->as_address_ptr();
 632 
 633   void (Assembler::* insn)(Register Rt, const Address &adr);
 634 
 635   switch (type) {
 636   case T_ADDRESS:
 637     assert(c->as_jint() == 0, "should be");
 638     insn = &Assembler::str;
 639     break;
 640   case T_LONG:
 641     assert(c->as_jlong() == 0, "should be");
 642     insn = &Assembler::str;
 643     break;
 644   case T_INT:
 645     assert(c->as_jint() == 0, "should be");
 646     insn = &Assembler::strw;
 647     break;
 648   case T_OBJECT:
 649   case T_ARRAY:
 650     assert(c->as_jobject() == 0, "should be");
 651     if (UseCompressedOops && !wide) {
 652       insn = &Assembler::strw;
 653     } else {
 654       insn = &Assembler::str;
 655     }
 656     break;
 657   case T_CHAR:
 658   case T_SHORT:
 659     assert(c->as_jint() == 0, "should be");
 660     insn = &Assembler::strh;
 661     break;
 662   case T_BOOLEAN:
 663   case T_BYTE:
 664     assert(c->as_jint() == 0, "should be");
 665     insn = &Assembler::strb;
 666     break;
 667   default:
 668     ShouldNotReachHere();
 669     insn = &Assembler::str;  // unreachable
 670   }
 671 
 672   if (info) add_debug_info_for_null_check_here(info);
 673   (_masm->*insn)(zr, as_Address(to_addr, rscratch1));
 674 }
 675 
 676 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 677   assert(src->is_register(), "should not call otherwise");
 678   assert(dest->is_register(), "should not call otherwise");
 679 
 680   // move between cpu-registers
 681   if (dest->is_single_cpu()) {
 682     if (src->type() == T_LONG) {
 683       // Can do LONG -> OBJECT
 684       move_regs(src->as_register_lo(), dest->as_register());
 685       return;
 686     }
 687     assert(src->is_single_cpu(), "must match");
 688     if (src->type() == T_OBJECT) {
 689       __ verify_oop(src->as_register());
 690     }
 691     move_regs(src->as_register(), dest->as_register());
 692 
 693   } else if (dest->is_double_cpu()) {
 694     if (is_reference_type(src->type())) {
 695       // Surprising to me but we can see move of a long to t_object
 696       __ verify_oop(src->as_register());
 697       move_regs(src->as_register(), dest->as_register_lo());
 698       return;
 699     }
 700     assert(src->is_double_cpu(), "must match");
 701     Register f_lo = src->as_register_lo();
 702     Register f_hi = src->as_register_hi();
 703     Register t_lo = dest->as_register_lo();
 704     Register t_hi = dest->as_register_hi();
 705     assert(f_hi == f_lo, "must be same");
 706     assert(t_hi == t_lo, "must be same");
 707     move_regs(f_lo, t_lo);
 708 
 709   } else if (dest->is_single_fpu()) {
 710     __ fmovs(dest->as_float_reg(), src->as_float_reg());
 711 
 712   } else if (dest->is_double_fpu()) {
 713     __ fmovd(dest->as_double_reg(), src->as_double_reg());
 714 
 715   } else {
 716     ShouldNotReachHere();
 717   }
 718 }
 719 
 720 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 721   precond(src->is_register() && dest->is_stack());
 722 
 723   uint const c_sz32 = sizeof(uint32_t);
 724   uint const c_sz64 = sizeof(uint64_t);
 725 
 726   if (src->is_single_cpu()) {
 727     int index = dest->single_stack_ix();
 728     if (is_reference_type(type)) {
 729       __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1));
 730       __ verify_oop(src->as_register());
 731     } else if (type == T_METADATA || type == T_DOUBLE || type == T_ADDRESS) {
 732       __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1));
 733     } else {
 734       __ strw(src->as_register(), stack_slot_address(index, c_sz32, rscratch1));
 735     }
 736 
 737   } else if (src->is_double_cpu()) {
 738     int index = dest->double_stack_ix();
 739     Address dest_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes);
 740     __ str(src->as_register_lo(), dest_addr_LO);
 741 
 742   } else if (src->is_single_fpu()) {
 743     int index = dest->single_stack_ix();
 744     __ strs(src->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1));
 745 
 746   } else if (src->is_double_fpu()) {
 747     int index = dest->double_stack_ix();
 748     __ strd(src->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1));
 749 
 750   } else {
 751     ShouldNotReachHere();
 752   }
 753 }
 754 
 755 
 756 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide) {
 757   LIR_Address* to_addr = dest->as_address_ptr();
 758   PatchingStub* patch = nullptr;
 759   Register compressed_src = rscratch1;
 760 
 761   if (patch_code != lir_patch_none) {
 762     deoptimize_trap(info);
 763     return;
 764   }
 765 
 766   if (is_reference_type(type)) {
 767     __ verify_oop(src->as_register());
 768 
 769     if (UseCompressedOops && !wide) {
 770       __ encode_heap_oop(compressed_src, src->as_register());
 771     } else {
 772       compressed_src = src->as_register();
 773     }
 774   }
 775 
 776   int null_check_here = code_offset();
 777   switch (type) {
 778     case T_FLOAT: {
 779       __ strs(src->as_float_reg(), as_Address(to_addr));
 780       break;
 781     }
 782 
 783     case T_DOUBLE: {
 784       __ strd(src->as_double_reg(), as_Address(to_addr));
 785       break;
 786     }
 787 
 788     case T_ARRAY:   // fall through
 789     case T_OBJECT:  // fall through
 790       if (UseCompressedOops && !wide) {
 791         __ strw(compressed_src, as_Address(to_addr, rscratch2));
 792       } else {
 793          __ str(compressed_src, as_Address(to_addr));
 794       }
 795       break;
 796     case T_METADATA:
 797       // We get here to store a method pointer to the stack to pass to
 798       // a dtrace runtime call. This can't work on 64 bit with
 799       // compressed klass ptrs: T_METADATA can be a compressed klass
 800       // ptr or a 64 bit method pointer.
 801       ShouldNotReachHere();
 802       __ str(src->as_register(), as_Address(to_addr));
 803       break;
 804     case T_ADDRESS:
 805       __ str(src->as_register(), as_Address(to_addr));
 806       break;
 807     case T_INT:
 808       __ strw(src->as_register(), as_Address(to_addr));
 809       break;
 810 
 811     case T_LONG: {
 812       __ str(src->as_register_lo(), as_Address_lo(to_addr));
 813       break;
 814     }
 815 
 816     case T_BYTE:    // fall through
 817     case T_BOOLEAN: {
 818       __ strb(src->as_register(), as_Address(to_addr));
 819       break;
 820     }
 821 
 822     case T_CHAR:    // fall through
 823     case T_SHORT:
 824       __ strh(src->as_register(), as_Address(to_addr));
 825       break;
 826 
 827     default:
 828       ShouldNotReachHere();
 829   }
 830   if (info != nullptr) {
 831     add_debug_info_for_null_check(null_check_here, info);
 832   }
 833 }
 834 
 835 
 836 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
 837   precond(src->is_stack() && dest->is_register());
 838 
 839   uint const c_sz32 = sizeof(uint32_t);
 840   uint const c_sz64 = sizeof(uint64_t);
 841 
 842   if (dest->is_single_cpu()) {
 843     int index = src->single_stack_ix();
 844     if (is_reference_type(type)) {
 845       __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1));
 846       __ verify_oop(dest->as_register());
 847     } else if (type == T_METADATA || type == T_ADDRESS) {
 848       __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1));
 849     } else {
 850       __ ldrw(dest->as_register(), stack_slot_address(index, c_sz32, rscratch1));
 851     }
 852 
 853   } else if (dest->is_double_cpu()) {
 854     int index = src->double_stack_ix();
 855     Address src_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes);
 856     __ ldr(dest->as_register_lo(), src_addr_LO);
 857 
 858   } else if (dest->is_single_fpu()) {
 859     int index = src->single_stack_ix();
 860     __ ldrs(dest->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1));
 861 
 862   } else if (dest->is_double_fpu()) {
 863     int index = src->double_stack_ix();
 864     __ ldrd(dest->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1));
 865 
 866   } else {
 867     ShouldNotReachHere();
 868   }
 869 }
 870 
 871 
 872 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 873   address target = nullptr;
 874   relocInfo::relocType reloc_type = relocInfo::none;
 875 
 876   switch (patching_id(info)) {
 877   case PatchingStub::access_field_id:
 878     target = Runtime1::entry_for(Runtime1::access_field_patching_id);
 879     reloc_type = relocInfo::section_word_type;
 880     break;
 881   case PatchingStub::load_klass_id:
 882     target = Runtime1::entry_for(Runtime1::load_klass_patching_id);
 883     reloc_type = relocInfo::metadata_type;
 884     break;
 885   case PatchingStub::load_mirror_id:
 886     target = Runtime1::entry_for(Runtime1::load_mirror_patching_id);
 887     reloc_type = relocInfo::oop_type;
 888     break;
 889   case PatchingStub::load_appendix_id:
 890     target = Runtime1::entry_for(Runtime1::load_appendix_patching_id);
 891     reloc_type = relocInfo::oop_type;
 892     break;
 893   default: ShouldNotReachHere();
 894   }
 895 
 896   __ far_call(RuntimeAddress(target));
 897   add_call_info_here(info);
 898 }
 899 
 900 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
 901 
 902   LIR_Opr temp;
 903   if (type == T_LONG || type == T_DOUBLE)
 904     temp = FrameMap::rscratch1_long_opr;
 905   else
 906     temp = FrameMap::rscratch1_opr;
 907 
 908   stack2reg(src, temp, src->type());
 909   reg2stack(temp, dest, dest->type(), false);
 910 }
 911 
 912 
 913 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) {
 914   LIR_Address* addr = src->as_address_ptr();
 915   LIR_Address* from_addr = src->as_address_ptr();
 916 
 917   if (addr->base()->type() == T_OBJECT) {
 918     __ verify_oop(addr->base()->as_pointer_register());
 919   }
 920 
 921   if (patch_code != lir_patch_none) {
 922     deoptimize_trap(info);
 923     return;
 924   }
 925 
 926   if (info != nullptr) {
 927     add_debug_info_for_null_check_here(info);
 928   }
 929   int null_check_here = code_offset();
 930   switch (type) {
 931     case T_FLOAT: {
 932       __ ldrs(dest->as_float_reg(), as_Address(from_addr));
 933       break;
 934     }
 935 
 936     case T_DOUBLE: {
 937       __ ldrd(dest->as_double_reg(), as_Address(from_addr));
 938       break;
 939     }
 940 
 941     case T_ARRAY:   // fall through
 942     case T_OBJECT:  // fall through
 943       if (UseCompressedOops && !wide) {
 944         __ ldrw(dest->as_register(), as_Address(from_addr));
 945       } else {
 946         __ ldr(dest->as_register(), as_Address(from_addr));
 947       }
 948       break;
 949     case T_METADATA:
 950       // We get here to store a method pointer to the stack to pass to
 951       // a dtrace runtime call. This can't work on 64 bit with
 952       // compressed klass ptrs: T_METADATA can be a compressed klass
 953       // ptr or a 64 bit method pointer.
 954       ShouldNotReachHere();
 955       __ ldr(dest->as_register(), as_Address(from_addr));
 956       break;
 957     case T_ADDRESS:
 958       __ ldr(dest->as_register(), as_Address(from_addr));
 959       break;
 960     case T_INT:
 961       __ ldrw(dest->as_register(), as_Address(from_addr));
 962       break;
 963 
 964     case T_LONG: {
 965       __ ldr(dest->as_register_lo(), as_Address_lo(from_addr));
 966       break;
 967     }
 968 
 969     case T_BYTE:
 970       __ ldrsb(dest->as_register(), as_Address(from_addr));
 971       break;
 972     case T_BOOLEAN: {
 973       __ ldrb(dest->as_register(), as_Address(from_addr));
 974       break;
 975     }
 976 
 977     case T_CHAR:
 978       __ ldrh(dest->as_register(), as_Address(from_addr));
 979       break;
 980     case T_SHORT:
 981       __ ldrsh(dest->as_register(), as_Address(from_addr));
 982       break;
 983 
 984     default:
 985       ShouldNotReachHere();
 986   }
 987 
 988   if (is_reference_type(type)) {
 989     if (UseCompressedOops && !wide) {
 990       __ decode_heap_oop(dest->as_register());
 991     }
 992 
 993     if (!(UseZGC && !ZGenerational)) {
 994       // Load barrier has not yet been applied, so ZGC can't verify the oop here
 995       __ verify_oop(dest->as_register());
 996     }
 997   }
 998 }
 999 
1000 
1001 int LIR_Assembler::array_element_size(BasicType type) const {
1002   int elem_size = type2aelembytes(type);
1003   return exact_log2(elem_size);
1004 }
1005 
1006 
1007 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1008   switch (op->code()) {
1009   case lir_idiv:
1010   case lir_irem:
1011     arithmetic_idiv(op->code(),
1012                     op->in_opr1(),
1013                     op->in_opr2(),
1014                     op->in_opr3(),
1015                     op->result_opr(),
1016                     op->info());
1017     break;
1018   case lir_fmad:
1019     __ fmaddd(op->result_opr()->as_double_reg(),
1020               op->in_opr1()->as_double_reg(),
1021               op->in_opr2()->as_double_reg(),
1022               op->in_opr3()->as_double_reg());
1023     break;
1024   case lir_fmaf:
1025     __ fmadds(op->result_opr()->as_float_reg(),
1026               op->in_opr1()->as_float_reg(),
1027               op->in_opr2()->as_float_reg(),
1028               op->in_opr3()->as_float_reg());
1029     break;
1030   default:      ShouldNotReachHere(); break;
1031   }
1032 }
1033 
1034 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1035 #ifdef ASSERT
1036   assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label");
1037   if (op->block() != nullptr)  _branch_target_blocks.append(op->block());
1038   if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock());
1039 #endif
1040 
1041   if (op->cond() == lir_cond_always) {
1042     if (op->info() != nullptr) add_debug_info_for_branch(op->info());
1043     __ b(*(op->label()));
1044   } else {
1045     Assembler::Condition acond;
1046     if (op->code() == lir_cond_float_branch) {
1047       bool is_unordered = (op->ublock() == op->block());
1048       // Assembler::EQ does not permit unordered branches, so we add
1049       // another branch here.  Likewise, Assembler::NE does not permit
1050       // ordered branches.
1051       if ((is_unordered && op->cond() == lir_cond_equal)
1052           || (!is_unordered && op->cond() == lir_cond_notEqual))
1053         __ br(Assembler::VS, *(op->ublock()->label()));
1054       switch(op->cond()) {
1055       case lir_cond_equal:        acond = Assembler::EQ; break;
1056       case lir_cond_notEqual:     acond = Assembler::NE; break;
1057       case lir_cond_less:         acond = (is_unordered ? Assembler::LT : Assembler::LO); break;
1058       case lir_cond_lessEqual:    acond = (is_unordered ? Assembler::LE : Assembler::LS); break;
1059       case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::HS : Assembler::GE); break;
1060       case lir_cond_greater:      acond = (is_unordered ? Assembler::HI : Assembler::GT); break;
1061       default:                    ShouldNotReachHere();
1062         acond = Assembler::EQ;  // unreachable
1063       }
1064     } else {
1065       switch (op->cond()) {
1066         case lir_cond_equal:        acond = Assembler::EQ; break;
1067         case lir_cond_notEqual:     acond = Assembler::NE; break;
1068         case lir_cond_less:         acond = Assembler::LT; break;
1069         case lir_cond_lessEqual:    acond = Assembler::LE; break;
1070         case lir_cond_greaterEqual: acond = Assembler::GE; break;
1071         case lir_cond_greater:      acond = Assembler::GT; break;
1072         case lir_cond_belowEqual:   acond = Assembler::LS; break;
1073         case lir_cond_aboveEqual:   acond = Assembler::HS; break;
1074         default:                    ShouldNotReachHere();
1075           acond = Assembler::EQ;  // unreachable
1076       }
1077     }
1078     __ br(acond,*(op->label()));
1079   }
1080 }
1081 
1082 
1083 
1084 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1085   LIR_Opr src  = op->in_opr();
1086   LIR_Opr dest = op->result_opr();
1087 
1088   switch (op->bytecode()) {
1089     case Bytecodes::_i2f:
1090       {
1091         __ scvtfws(dest->as_float_reg(), src->as_register());
1092         break;
1093       }
1094     case Bytecodes::_i2d:
1095       {
1096         __ scvtfwd(dest->as_double_reg(), src->as_register());
1097         break;
1098       }
1099     case Bytecodes::_l2d:
1100       {
1101         __ scvtfd(dest->as_double_reg(), src->as_register_lo());
1102         break;
1103       }
1104     case Bytecodes::_l2f:
1105       {
1106         __ scvtfs(dest->as_float_reg(), src->as_register_lo());
1107         break;
1108       }
1109     case Bytecodes::_f2d:
1110       {
1111         __ fcvts(dest->as_double_reg(), src->as_float_reg());
1112         break;
1113       }
1114     case Bytecodes::_d2f:
1115       {
1116         __ fcvtd(dest->as_float_reg(), src->as_double_reg());
1117         break;
1118       }
1119     case Bytecodes::_i2c:
1120       {
1121         __ ubfx(dest->as_register(), src->as_register(), 0, 16);
1122         break;
1123       }
1124     case Bytecodes::_i2l:
1125       {
1126         __ sxtw(dest->as_register_lo(), src->as_register());
1127         break;
1128       }
1129     case Bytecodes::_i2s:
1130       {
1131         __ sxth(dest->as_register(), src->as_register());
1132         break;
1133       }
1134     case Bytecodes::_i2b:
1135       {
1136         __ sxtb(dest->as_register(), src->as_register());
1137         break;
1138       }
1139     case Bytecodes::_l2i:
1140       {
1141         _masm->block_comment("FIXME: This could be a no-op");
1142         __ uxtw(dest->as_register(), src->as_register_lo());
1143         break;
1144       }
1145     case Bytecodes::_d2l:
1146       {
1147         __ fcvtzd(dest->as_register_lo(), src->as_double_reg());
1148         break;
1149       }
1150     case Bytecodes::_f2i:
1151       {
1152         __ fcvtzsw(dest->as_register(), src->as_float_reg());
1153         break;
1154       }
1155     case Bytecodes::_f2l:
1156       {
1157         __ fcvtzs(dest->as_register_lo(), src->as_float_reg());
1158         break;
1159       }
1160     case Bytecodes::_d2i:
1161       {
1162         __ fcvtzdw(dest->as_register(), src->as_double_reg());
1163         break;
1164       }
1165     default: ShouldNotReachHere();
1166   }
1167 }
1168 
1169 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1170   if (op->init_check()) {
1171     __ ldrb(rscratch1, Address(op->klass()->as_register(),
1172                                InstanceKlass::init_state_offset()));
1173     __ cmpw(rscratch1, InstanceKlass::fully_initialized);
1174     add_debug_info_for_null_check_here(op->stub()->info());
1175     __ br(Assembler::NE, *op->stub()->entry());
1176   }
1177   __ allocate_object(op->obj()->as_register(),
1178                      op->tmp1()->as_register(),
1179                      op->tmp2()->as_register(),
1180                      op->header_size(),
1181                      op->object_size(),
1182                      op->klass()->as_register(),
1183                      *op->stub()->entry());
1184   __ bind(*op->stub()->continuation());
1185 }
1186 
1187 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1188   Register len =  op->len()->as_register();
1189   __ uxtw(len, len);
1190 
1191   if (UseSlowPath ||
1192       (!UseFastNewObjectArray && is_reference_type(op->type())) ||
1193       (!UseFastNewTypeArray   && !is_reference_type(op->type()))) {
1194     __ b(*op->stub()->entry());
1195   } else {
1196     Register tmp1 = op->tmp1()->as_register();
1197     Register tmp2 = op->tmp2()->as_register();
1198     Register tmp3 = op->tmp3()->as_register();
1199     if (len == tmp1) {
1200       tmp1 = tmp3;
1201     } else if (len == tmp2) {
1202       tmp2 = tmp3;
1203     } else if (len == tmp3) {
1204       // everything is ok
1205     } else {
1206       __ mov(tmp3, len);
1207     }
1208     __ allocate_array(op->obj()->as_register(),
1209                       len,
1210                       tmp1,
1211                       tmp2,
1212                       arrayOopDesc::base_offset_in_bytes(op->type()),
1213                       array_element_size(op->type()),
1214                       op->klass()->as_register(),
1215                       *op->stub()->entry(),
1216                       op->zero_array());
1217   }
1218   __ bind(*op->stub()->continuation());
1219 }
1220 
1221 void LIR_Assembler::type_profile_helper(Register mdo,
1222                                         ciMethodData *md, ciProfileData *data,
1223                                         Register recv, Label* update_done) {
1224   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1225     Label next_test;
1226     // See if the receiver is receiver[n].
1227     __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1228     __ ldr(rscratch1, Address(rscratch2));
1229     __ cmp(recv, rscratch1);
1230     __ br(Assembler::NE, next_test);
1231     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1232     __ addptr(data_addr, DataLayout::counter_increment);
1233     __ b(*update_done);
1234     __ bind(next_test);
1235   }
1236 
1237   // Didn't find receiver; find next empty slot and fill it in
1238   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1239     Label next_test;
1240     __ lea(rscratch2,
1241            Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1242     Address recv_addr(rscratch2);
1243     __ ldr(rscratch1, recv_addr);
1244     __ cbnz(rscratch1, next_test);
1245     __ str(recv, recv_addr);
1246     __ mov(rscratch1, DataLayout::counter_increment);
1247     __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))));
1248     __ str(rscratch1, Address(rscratch2));
1249     __ b(*update_done);
1250     __ bind(next_test);
1251   }
1252 }
1253 
1254 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1255   // we always need a stub for the failure case.
1256   CodeStub* stub = op->stub();
1257   Register obj = op->object()->as_register();
1258   Register k_RInfo = op->tmp1()->as_register();
1259   Register klass_RInfo = op->tmp2()->as_register();
1260   Register dst = op->result_opr()->as_register();
1261   ciKlass* k = op->klass();
1262   Register Rtmp1 = noreg;
1263 
1264   // check if it needs to be profiled
1265   ciMethodData* md;
1266   ciProfileData* data;
1267 
1268   const bool should_profile = op->should_profile();
1269 
1270   if (should_profile) {
1271     ciMethod* method = op->profiled_method();
1272     assert(method != nullptr, "Should have method");
1273     int bci = op->profiled_bci();
1274     md = method->method_data_or_null();
1275     assert(md != nullptr, "Sanity");
1276     data = md->bci_to_data(bci);
1277     assert(data != nullptr,                "need data for type check");
1278     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1279   }
1280   Label* success_target = success;
1281   Label* failure_target = failure;
1282 
1283   if (obj == k_RInfo) {
1284     k_RInfo = dst;
1285   } else if (obj == klass_RInfo) {
1286     klass_RInfo = dst;
1287   }
1288   if (k->is_loaded() && !UseCompressedClassPointers) {
1289     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1290   } else {
1291     Rtmp1 = op->tmp3()->as_register();
1292     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1293   }
1294 
1295   assert_different_registers(obj, k_RInfo, klass_RInfo);
1296 
1297   if (should_profile) {
1298     Register mdo  = klass_RInfo;
1299     __ mov_metadata(mdo, md->constant_encoding());
1300     Label not_null;
1301     __ cbnz(obj, not_null);
1302     // Object is null; update MDO and exit
1303     Address data_addr
1304       = __ form_address(rscratch2, mdo,
1305                         md->byte_offset_of_slot(data, DataLayout::flags_offset()),
1306                         0);
1307     __ ldrb(rscratch1, data_addr);
1308     __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant());
1309     __ strb(rscratch1, data_addr);
1310     __ b(*obj_is_null);
1311     __ bind(not_null);
1312 
1313     Label update_done;
1314     Register recv = k_RInfo;
1315     __ load_klass(recv, obj);
1316     type_profile_helper(mdo, md, data, recv, &update_done);
1317     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1318     __ addptr(counter_addr, DataLayout::counter_increment);
1319 
1320     __ bind(update_done);
1321   } else {
1322     __ cbz(obj, *obj_is_null);
1323   }
1324 
1325   if (!k->is_loaded()) {
1326     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1327   } else {
1328     __ mov_metadata(k_RInfo, k->constant_encoding());
1329   }
1330   __ verify_oop(obj);
1331 
1332   if (op->fast_check()) {
1333     // get object class
1334     // not a safepoint as obj null check happens earlier
1335     __ load_klass(rscratch1, obj);
1336     __ cmp( rscratch1, k_RInfo);
1337 
1338     __ br(Assembler::NE, *failure_target);
1339     // successful cast, fall through to profile or jump
1340   } else {
1341     // get object class
1342     // not a safepoint as obj null check happens earlier
1343     __ load_klass(klass_RInfo, obj);
1344     if (k->is_loaded()) {
1345       // See if we get an immediate positive hit
1346       __ ldr(rscratch1, Address(klass_RInfo, int64_t(k->super_check_offset())));
1347       __ cmp(k_RInfo, rscratch1);
1348       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1349         __ br(Assembler::NE, *failure_target);
1350         // successful cast, fall through to profile or jump
1351       } else {
1352         // See if we get an immediate positive hit
1353         __ br(Assembler::EQ, *success_target);
1354         // check for self
1355         __ cmp(klass_RInfo, k_RInfo);
1356         __ br(Assembler::EQ, *success_target);
1357 
1358         __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
1359         __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1360         __ ldr(klass_RInfo, Address(__ post(sp, 2 * wordSize)));
1361         // result is a boolean
1362         __ cbzw(klass_RInfo, *failure_target);
1363         // successful cast, fall through to profile or jump
1364       }
1365     } else {
1366       // perform the fast part of the checking logic
1367       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
1368       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1369       __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
1370       __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1371       __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize)));
1372       // result is a boolean
1373       __ cbz(k_RInfo, *failure_target);
1374       // successful cast, fall through to profile or jump
1375     }
1376   }
1377   __ b(*success);
1378 }
1379 
1380 
1381 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1382   const bool should_profile = op->should_profile();
1383 
1384   LIR_Code code = op->code();
1385   if (code == lir_store_check) {
1386     Register value = op->object()->as_register();
1387     Register array = op->array()->as_register();
1388     Register k_RInfo = op->tmp1()->as_register();
1389     Register klass_RInfo = op->tmp2()->as_register();
1390     Register Rtmp1 = op->tmp3()->as_register();
1391 
1392     CodeStub* stub = op->stub();
1393 
1394     // check if it needs to be profiled
1395     ciMethodData* md;
1396     ciProfileData* data;
1397 
1398     if (should_profile) {
1399       ciMethod* method = op->profiled_method();
1400       assert(method != nullptr, "Should have method");
1401       int bci = op->profiled_bci();
1402       md = method->method_data_or_null();
1403       assert(md != nullptr, "Sanity");
1404       data = md->bci_to_data(bci);
1405       assert(data != nullptr,                "need data for type check");
1406       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1407     }
1408     Label done;
1409     Label* success_target = &done;
1410     Label* failure_target = stub->entry();
1411 
1412     if (should_profile) {
1413       Label not_null;
1414       Register mdo  = klass_RInfo;
1415       __ mov_metadata(mdo, md->constant_encoding());
1416       __ cbnz(value, not_null);
1417       // Object is null; update MDO and exit
1418       Address data_addr
1419         = __ form_address(rscratch2, mdo,
1420                           md->byte_offset_of_slot(data, DataLayout::flags_offset()),
1421                           0);
1422       __ ldrb(rscratch1, data_addr);
1423       __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant());
1424       __ strb(rscratch1, data_addr);
1425       __ b(done);
1426       __ bind(not_null);
1427 
1428       Label update_done;
1429       Register recv = k_RInfo;
1430       __ load_klass(recv, value);
1431       type_profile_helper(mdo, md, data, recv, &update_done);
1432       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1433       __ addptr(counter_addr, DataLayout::counter_increment);
1434       __ bind(update_done);
1435     } else {
1436       __ cbz(value, done);
1437     }
1438 
1439     add_debug_info_for_null_check_here(op->info_for_exception());
1440     __ load_klass(k_RInfo, array);
1441     __ load_klass(klass_RInfo, value);
1442 
1443     // get instance klass (it's already uncompressed)
1444     __ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1445     // perform the fast part of the checking logic
1446     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
1447     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1448     __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
1449     __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1450     __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize)));
1451     // result is a boolean
1452     __ cbzw(k_RInfo, *failure_target);
1453     // fall through to the success case
1454 
1455     __ bind(done);
1456   } else if (code == lir_checkcast) {
1457     Register obj = op->object()->as_register();
1458     Register dst = op->result_opr()->as_register();
1459     Label success;
1460     emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1461     __ bind(success);
1462     if (dst != obj) {
1463       __ mov(dst, obj);
1464     }
1465   } else if (code == lir_instanceof) {
1466     Register obj = op->object()->as_register();
1467     Register dst = op->result_opr()->as_register();
1468     Label success, failure, done;
1469     emit_typecheck_helper(op, &success, &failure, &failure);
1470     __ bind(failure);
1471     __ mov(dst, zr);
1472     __ b(done);
1473     __ bind(success);
1474     __ mov(dst, 1);
1475     __ bind(done);
1476   } else {
1477     ShouldNotReachHere();
1478   }
1479 }
1480 
1481 void LIR_Assembler::casw(Register addr, Register newval, Register cmpval) {
1482   __ cmpxchg(addr, cmpval, newval, Assembler::word, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1);
1483   __ cset(rscratch1, Assembler::NE);
1484   __ membar(__ AnyAny);
1485 }
1486 
1487 void LIR_Assembler::casl(Register addr, Register newval, Register cmpval) {
1488   __ cmpxchg(addr, cmpval, newval, Assembler::xword, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1);
1489   __ cset(rscratch1, Assembler::NE);
1490   __ membar(__ AnyAny);
1491 }
1492 
1493 
1494 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1495   Register addr;
1496   if (op->addr()->is_register()) {
1497     addr = as_reg(op->addr());
1498   } else {
1499     assert(op->addr()->is_address(), "what else?");
1500     LIR_Address* addr_ptr = op->addr()->as_address_ptr();
1501     assert(addr_ptr->disp() == 0, "need 0 disp");
1502     assert(addr_ptr->index() == LIR_Opr::illegalOpr(), "need 0 index");
1503     addr = as_reg(addr_ptr->base());
1504   }
1505   Register newval = as_reg(op->new_value());
1506   Register cmpval = as_reg(op->cmp_value());
1507 
1508   if (op->code() == lir_cas_obj) {
1509     if (UseCompressedOops) {
1510       Register t1 = op->tmp1()->as_register();
1511       assert(op->tmp1()->is_valid(), "must be");
1512       __ encode_heap_oop(t1, cmpval);
1513       cmpval = t1;
1514       __ encode_heap_oop(rscratch2, newval);
1515       newval = rscratch2;
1516       casw(addr, newval, cmpval);
1517     } else {
1518       casl(addr, newval, cmpval);
1519     }
1520   } else if (op->code() == lir_cas_int) {
1521     casw(addr, newval, cmpval);
1522   } else {
1523     casl(addr, newval, cmpval);
1524   }
1525 }
1526 
1527 
1528 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type,
1529                           LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) {
1530   assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on aarch64");
1531 
1532   Assembler::Condition acond, ncond;
1533   switch (condition) {
1534   case lir_cond_equal:        acond = Assembler::EQ; ncond = Assembler::NE; break;
1535   case lir_cond_notEqual:     acond = Assembler::NE; ncond = Assembler::EQ; break;
1536   case lir_cond_less:         acond = Assembler::LT; ncond = Assembler::GE; break;
1537   case lir_cond_lessEqual:    acond = Assembler::LE; ncond = Assembler::GT; break;
1538   case lir_cond_greaterEqual: acond = Assembler::GE; ncond = Assembler::LT; break;
1539   case lir_cond_greater:      acond = Assembler::GT; ncond = Assembler::LE; break;
1540   case lir_cond_belowEqual:
1541   case lir_cond_aboveEqual:
1542   default:                    ShouldNotReachHere();
1543     acond = Assembler::EQ; ncond = Assembler::NE;  // unreachable
1544   }
1545 
1546   assert(result->is_single_cpu() || result->is_double_cpu(),
1547          "expect single register for result");
1548   if (opr1->is_constant() && opr2->is_constant()
1549       && opr1->type() == T_INT && opr2->type() == T_INT) {
1550     jint val1 = opr1->as_jint();
1551     jint val2 = opr2->as_jint();
1552     if (val1 == 0 && val2 == 1) {
1553       __ cset(result->as_register(), ncond);
1554       return;
1555     } else if (val1 == 1 && val2 == 0) {
1556       __ cset(result->as_register(), acond);
1557       return;
1558     }
1559   }
1560 
1561   if (opr1->is_constant() && opr2->is_constant()
1562       && opr1->type() == T_LONG && opr2->type() == T_LONG) {
1563     jlong val1 = opr1->as_jlong();
1564     jlong val2 = opr2->as_jlong();
1565     if (val1 == 0 && val2 == 1) {
1566       __ cset(result->as_register_lo(), ncond);
1567       return;
1568     } else if (val1 == 1 && val2 == 0) {
1569       __ cset(result->as_register_lo(), acond);
1570       return;
1571     }
1572   }
1573 
1574   if (opr1->is_stack()) {
1575     stack2reg(opr1, FrameMap::rscratch1_opr, result->type());
1576     opr1 = FrameMap::rscratch1_opr;
1577   } else if (opr1->is_constant()) {
1578     LIR_Opr tmp
1579       = opr1->type() == T_LONG ? FrameMap::rscratch1_long_opr : FrameMap::rscratch1_opr;
1580     const2reg(opr1, tmp, lir_patch_none, nullptr);
1581     opr1 = tmp;
1582   }
1583 
1584   if (opr2->is_stack()) {
1585     stack2reg(opr2, FrameMap::rscratch2_opr, result->type());
1586     opr2 = FrameMap::rscratch2_opr;
1587   } else if (opr2->is_constant()) {
1588     LIR_Opr tmp
1589       = opr2->type() == T_LONG ? FrameMap::rscratch2_long_opr : FrameMap::rscratch2_opr;
1590     const2reg(opr2, tmp, lir_patch_none, nullptr);
1591     opr2 = tmp;
1592   }
1593 
1594   if (result->type() == T_LONG)
1595     __ csel(result->as_register_lo(), opr1->as_register_lo(), opr2->as_register_lo(), acond);
1596   else
1597     __ csel(result->as_register(), opr1->as_register(), opr2->as_register(), acond);
1598 }
1599 
1600 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1601   assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
1602 
1603   if (left->is_single_cpu()) {
1604     Register lreg = left->as_register();
1605     Register dreg = as_reg(dest);
1606 
1607     if (right->is_single_cpu()) {
1608       // cpu register - cpu register
1609 
1610       assert(left->type() == T_INT && right->type() == T_INT && dest->type() == T_INT,
1611              "should be");
1612       Register rreg = right->as_register();
1613       switch (code) {
1614       case lir_add: __ addw (dest->as_register(), lreg, rreg); break;
1615       case lir_sub: __ subw (dest->as_register(), lreg, rreg); break;
1616       case lir_mul: __ mulw (dest->as_register(), lreg, rreg); break;
1617       default:      ShouldNotReachHere();
1618       }
1619 
1620     } else if (right->is_double_cpu()) {
1621       Register rreg = right->as_register_lo();
1622       // single_cpu + double_cpu: can happen with obj+long
1623       assert(code == lir_add || code == lir_sub, "mismatched arithmetic op");
1624       switch (code) {
1625       case lir_add: __ add(dreg, lreg, rreg); break;
1626       case lir_sub: __ sub(dreg, lreg, rreg); break;
1627       default: ShouldNotReachHere();
1628       }
1629     } else if (right->is_constant()) {
1630       // cpu register - constant
1631       jlong c;
1632 
1633       // FIXME.  This is fugly: we really need to factor all this logic.
1634       switch(right->type()) {
1635       case T_LONG:
1636         c = right->as_constant_ptr()->as_jlong();
1637         break;
1638       case T_INT:
1639       case T_ADDRESS:
1640         c = right->as_constant_ptr()->as_jint();
1641         break;
1642       default:
1643         ShouldNotReachHere();
1644         c = 0;  // unreachable
1645         break;
1646       }
1647 
1648       assert(code == lir_add || code == lir_sub, "mismatched arithmetic op");
1649       if (c == 0 && dreg == lreg) {
1650         COMMENT("effective nop elided");
1651         return;
1652       }
1653       switch(left->type()) {
1654       case T_INT:
1655         switch (code) {
1656         case lir_add: __ addw(dreg, lreg, c); break;
1657         case lir_sub: __ subw(dreg, lreg, c); break;
1658         default: ShouldNotReachHere();
1659         }
1660         break;
1661       case T_OBJECT:
1662       case T_ADDRESS:
1663         switch (code) {
1664         case lir_add: __ add(dreg, lreg, c); break;
1665         case lir_sub: __ sub(dreg, lreg, c); break;
1666         default: ShouldNotReachHere();
1667         }
1668         break;
1669       default:
1670         ShouldNotReachHere();
1671       }
1672     } else {
1673       ShouldNotReachHere();
1674     }
1675 
1676   } else if (left->is_double_cpu()) {
1677     Register lreg_lo = left->as_register_lo();
1678 
1679     if (right->is_double_cpu()) {
1680       // cpu register - cpu register
1681       Register rreg_lo = right->as_register_lo();
1682       switch (code) {
1683       case lir_add: __ add (dest->as_register_lo(), lreg_lo, rreg_lo); break;
1684       case lir_sub: __ sub (dest->as_register_lo(), lreg_lo, rreg_lo); break;
1685       case lir_mul: __ mul (dest->as_register_lo(), lreg_lo, rreg_lo); break;
1686       case lir_div: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, false, rscratch1); break;
1687       case lir_rem: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, true, rscratch1); break;
1688       default:
1689         ShouldNotReachHere();
1690       }
1691 
1692     } else if (right->is_constant()) {
1693       jlong c = right->as_constant_ptr()->as_jlong();
1694       Register dreg = as_reg(dest);
1695       switch (code) {
1696         case lir_add:
1697         case lir_sub:
1698           if (c == 0 && dreg == lreg_lo) {
1699             COMMENT("effective nop elided");
1700             return;
1701           }
1702           code == lir_add ? __ add(dreg, lreg_lo, c) : __ sub(dreg, lreg_lo, c);
1703           break;
1704         case lir_div:
1705           assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant");
1706           if (c == 1) {
1707             // move lreg_lo to dreg if divisor is 1
1708             __ mov(dreg, lreg_lo);
1709           } else {
1710             unsigned int shift = log2i_exact(c);
1711             // use rscratch1 as intermediate result register
1712             __ asr(rscratch1, lreg_lo, 63);
1713             __ add(rscratch1, lreg_lo, rscratch1, Assembler::LSR, 64 - shift);
1714             __ asr(dreg, rscratch1, shift);
1715           }
1716           break;
1717         case lir_rem:
1718           assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant");
1719           if (c == 1) {
1720             // move 0 to dreg if divisor is 1
1721             __ mov(dreg, zr);
1722           } else {
1723             // use rscratch1 as intermediate result register
1724             __ negs(rscratch1, lreg_lo);
1725             __ andr(dreg, lreg_lo, c - 1);
1726             __ andr(rscratch1, rscratch1, c - 1);
1727             __ csneg(dreg, dreg, rscratch1, Assembler::MI);
1728           }
1729           break;
1730         default:
1731           ShouldNotReachHere();
1732       }
1733     } else {
1734       ShouldNotReachHere();
1735     }
1736   } else if (left->is_single_fpu()) {
1737     assert(right->is_single_fpu(), "right hand side of float arithmetics needs to be float register");
1738     switch (code) {
1739     case lir_add: __ fadds (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1740     case lir_sub: __ fsubs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1741     case lir_mul: __ fmuls (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1742     case lir_div: __ fdivs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1743     default:
1744       ShouldNotReachHere();
1745     }
1746   } else if (left->is_double_fpu()) {
1747     if (right->is_double_fpu()) {
1748       // fpu register - fpu register
1749       switch (code) {
1750       case lir_add: __ faddd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1751       case lir_sub: __ fsubd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1752       case lir_mul: __ fmuld (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1753       case lir_div: __ fdivd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1754       default:
1755         ShouldNotReachHere();
1756       }
1757     } else {
1758       if (right->is_constant()) {
1759         ShouldNotReachHere();
1760       }
1761       ShouldNotReachHere();
1762     }
1763   } else if (left->is_single_stack() || left->is_address()) {
1764     assert(left == dest, "left and dest must be equal");
1765     ShouldNotReachHere();
1766   } else {
1767     ShouldNotReachHere();
1768   }
1769 }
1770 
1771 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) { Unimplemented(); }
1772 
1773 
1774 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) {
1775   switch(code) {
1776   case lir_abs : __ fabsd(dest->as_double_reg(), value->as_double_reg()); break;
1777   case lir_sqrt: __ fsqrtd(dest->as_double_reg(), value->as_double_reg()); break;
1778   case lir_f2hf: __ flt_to_flt16(dest->as_register(), value->as_float_reg(), tmp->as_float_reg()); break;
1779   case lir_hf2f: __ flt16_to_flt(dest->as_float_reg(), value->as_register(), tmp->as_float_reg()); break;
1780   default      : ShouldNotReachHere();
1781   }
1782 }
1783 
1784 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
1785 
1786   assert(left->is_single_cpu() || left->is_double_cpu(), "expect single or double register");
1787   Register Rleft = left->is_single_cpu() ? left->as_register() :
1788                                            left->as_register_lo();
1789    if (dst->is_single_cpu()) {
1790      Register Rdst = dst->as_register();
1791      if (right->is_constant()) {
1792        switch (code) {
1793          case lir_logic_and: __ andw (Rdst, Rleft, right->as_jint()); break;
1794          case lir_logic_or:  __ orrw (Rdst, Rleft, right->as_jint()); break;
1795          case lir_logic_xor: __ eorw (Rdst, Rleft, right->as_jint()); break;
1796          default: ShouldNotReachHere(); break;
1797        }
1798      } else {
1799        Register Rright = right->is_single_cpu() ? right->as_register() :
1800                                                   right->as_register_lo();
1801        switch (code) {
1802          case lir_logic_and: __ andw (Rdst, Rleft, Rright); break;
1803          case lir_logic_or:  __ orrw (Rdst, Rleft, Rright); break;
1804          case lir_logic_xor: __ eorw (Rdst, Rleft, Rright); break;
1805          default: ShouldNotReachHere(); break;
1806        }
1807      }
1808    } else {
1809      Register Rdst = dst->as_register_lo();
1810      if (right->is_constant()) {
1811        switch (code) {
1812          case lir_logic_and: __ andr (Rdst, Rleft, right->as_jlong()); break;
1813          case lir_logic_or:  __ orr (Rdst, Rleft, right->as_jlong()); break;
1814          case lir_logic_xor: __ eor (Rdst, Rleft, right->as_jlong()); break;
1815          default: ShouldNotReachHere(); break;
1816        }
1817      } else {
1818        Register Rright = right->is_single_cpu() ? right->as_register() :
1819                                                   right->as_register_lo();
1820        switch (code) {
1821          case lir_logic_and: __ andr (Rdst, Rleft, Rright); break;
1822          case lir_logic_or:  __ orr (Rdst, Rleft, Rright); break;
1823          case lir_logic_xor: __ eor (Rdst, Rleft, Rright); break;
1824          default: ShouldNotReachHere(); break;
1825        }
1826      }
1827    }
1828 }
1829 
1830 
1831 
1832 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr illegal, LIR_Opr result, CodeEmitInfo* info) {
1833 
1834   // opcode check
1835   assert((code == lir_idiv) || (code == lir_irem), "opcode must be idiv or irem");
1836   bool is_irem = (code == lir_irem);
1837 
1838   // operand check
1839   assert(left->is_single_cpu(),   "left must be register");
1840   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
1841   assert(result->is_single_cpu(), "result must be register");
1842   Register lreg = left->as_register();
1843   Register dreg = result->as_register();
1844 
1845   // power-of-2 constant check and codegen
1846   if (right->is_constant()) {
1847     int c = right->as_constant_ptr()->as_jint();
1848     assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant");
1849     if (is_irem) {
1850       if (c == 1) {
1851         // move 0 to dreg if divisor is 1
1852         __ movw(dreg, zr);
1853       } else {
1854         // use rscratch1 as intermediate result register
1855         __ negsw(rscratch1, lreg);
1856         __ andw(dreg, lreg, c - 1);
1857         __ andw(rscratch1, rscratch1, c - 1);
1858         __ csnegw(dreg, dreg, rscratch1, Assembler::MI);
1859       }
1860     } else {
1861       if (c == 1) {
1862         // move lreg to dreg if divisor is 1
1863         __ movw(dreg, lreg);
1864       } else {
1865         unsigned int shift = exact_log2(c);
1866         // use rscratch1 as intermediate result register
1867         __ asrw(rscratch1, lreg, 31);
1868         __ addw(rscratch1, lreg, rscratch1, Assembler::LSR, 32 - shift);
1869         __ asrw(dreg, rscratch1, shift);
1870       }
1871     }
1872   } else {
1873     Register rreg = right->as_register();
1874     __ corrected_idivl(dreg, lreg, rreg, is_irem, rscratch1);
1875   }
1876 }
1877 
1878 
1879 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1880   if (opr1->is_constant() && opr2->is_single_cpu()) {
1881     // tableswitch
1882     Register reg = as_reg(opr2);
1883     struct tableswitch &table = switches[opr1->as_constant_ptr()->as_jint()];
1884     __ tableswitch(reg, table._first_key, table._last_key, table._branches, table._after);
1885   } else if (opr1->is_single_cpu() || opr1->is_double_cpu()) {
1886     Register reg1 = as_reg(opr1);
1887     if (opr2->is_single_cpu()) {
1888       // cpu register - cpu register
1889       Register reg2 = opr2->as_register();
1890       if (is_reference_type(opr1->type())) {
1891         __ cmpoop(reg1, reg2);
1892       } else {
1893         assert(!is_reference_type(opr2->type()), "cmp int, oop?");
1894         __ cmpw(reg1, reg2);
1895       }
1896       return;
1897     }
1898     if (opr2->is_double_cpu()) {
1899       // cpu register - cpu register
1900       Register reg2 = opr2->as_register_lo();
1901       __ cmp(reg1, reg2);
1902       return;
1903     }
1904 
1905     if (opr2->is_constant()) {
1906       bool is_32bit = false; // width of register operand
1907       jlong imm;
1908 
1909       switch(opr2->type()) {
1910       case T_INT:
1911         imm = opr2->as_constant_ptr()->as_jint();
1912         is_32bit = true;
1913         break;
1914       case T_LONG:
1915         imm = opr2->as_constant_ptr()->as_jlong();
1916         break;
1917       case T_ADDRESS:
1918         imm = opr2->as_constant_ptr()->as_jint();
1919         break;
1920       case T_METADATA:
1921         imm = (intptr_t)(opr2->as_constant_ptr()->as_metadata());
1922         break;
1923       case T_OBJECT:
1924       case T_ARRAY:
1925         jobject2reg(opr2->as_constant_ptr()->as_jobject(), rscratch1);
1926         __ cmpoop(reg1, rscratch1);
1927         return;
1928       default:
1929         ShouldNotReachHere();
1930         imm = 0;  // unreachable
1931         break;
1932       }
1933 
1934       if (Assembler::operand_valid_for_add_sub_immediate(imm)) {
1935         if (is_32bit)
1936           __ cmpw(reg1, imm);
1937         else
1938           __ subs(zr, reg1, imm);
1939         return;
1940       } else {
1941         __ mov(rscratch1, imm);
1942         if (is_32bit)
1943           __ cmpw(reg1, rscratch1);
1944         else
1945           __ cmp(reg1, rscratch1);
1946         return;
1947       }
1948     } else
1949       ShouldNotReachHere();
1950   } else if (opr1->is_single_fpu()) {
1951     FloatRegister reg1 = opr1->as_float_reg();
1952     assert(opr2->is_single_fpu(), "expect single float register");
1953     FloatRegister reg2 = opr2->as_float_reg();
1954     __ fcmps(reg1, reg2);
1955   } else if (opr1->is_double_fpu()) {
1956     FloatRegister reg1 = opr1->as_double_reg();
1957     assert(opr2->is_double_fpu(), "expect double float register");
1958     FloatRegister reg2 = opr2->as_double_reg();
1959     __ fcmpd(reg1, reg2);
1960   } else {
1961     ShouldNotReachHere();
1962   }
1963 }
1964 
1965 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
1966   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1967     bool is_unordered_less = (code == lir_ucmp_fd2i);
1968     if (left->is_single_fpu()) {
1969       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
1970     } else if (left->is_double_fpu()) {
1971       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
1972     } else {
1973       ShouldNotReachHere();
1974     }
1975   } else if (code == lir_cmp_l2i) {
1976     Label done;
1977     __ cmp(left->as_register_lo(), right->as_register_lo());
1978     __ mov(dst->as_register(), (uint64_t)-1L);
1979     __ br(Assembler::LT, done);
1980     __ csinc(dst->as_register(), zr, zr, Assembler::EQ);
1981     __ bind(done);
1982   } else {
1983     ShouldNotReachHere();
1984   }
1985 }
1986 
1987 
1988 void LIR_Assembler::align_call(LIR_Code code) {  }
1989 
1990 
1991 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
1992   address call = __ trampoline_call(Address(op->addr(), rtype));
1993   if (call == nullptr) {
1994     bailout("trampoline stub overflow");
1995     return;
1996   }
1997   add_call_info(code_offset(), op->info());
1998   __ post_call_nop();
1999 }
2000 
2001 
2002 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2003   address call = __ ic_call(op->addr());
2004   if (call == nullptr) {
2005     bailout("trampoline stub overflow");
2006     return;
2007   }
2008   add_call_info(code_offset(), op->info());
2009   __ post_call_nop();
2010 }
2011 
2012 void LIR_Assembler::emit_static_call_stub() {
2013   address call_pc = __ pc();
2014   address stub = __ start_a_stub(call_stub_size());
2015   if (stub == nullptr) {
2016     bailout("static call stub overflow");
2017     return;
2018   }
2019 
2020   int start = __ offset();
2021 
2022   __ relocate(static_stub_Relocation::spec(call_pc));
2023   __ emit_static_call_stub();
2024 
2025   assert(__ offset() - start + CompiledDirectCall::to_trampoline_stub_size()
2026         <= call_stub_size(), "stub too big");
2027   __ end_a_stub();
2028 }
2029 
2030 
2031 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2032   assert(exceptionOop->as_register() == r0, "must match");
2033   assert(exceptionPC->as_register() == r3, "must match");
2034 
2035   // exception object is not added to oop map by LinearScan
2036   // (LinearScan assumes that no oops are in fixed registers)
2037   info->add_register_oop(exceptionOop);
2038   Runtime1::StubID unwind_id;
2039 
2040   // get current pc information
2041   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2042   if (compilation()->debug_info_recorder()->last_pc_offset() == __ offset()) {
2043     // As no instructions have been generated yet for this LIR node it's
2044     // possible that an oop map already exists for the current offset.
2045     // In that case insert an dummy NOP here to ensure all oop map PCs
2046     // are unique. See JDK-8237483.
2047     __ nop();
2048   }
2049   int pc_for_athrow_offset = __ offset();
2050   InternalAddress pc_for_athrow(__ pc());
2051   __ adr(exceptionPC->as_register(), pc_for_athrow);
2052   add_call_info(pc_for_athrow_offset, info); // for exception handler
2053 
2054   __ verify_not_null_oop(r0);
2055   // search an exception handler (r0: exception oop, r3: throwing pc)
2056   if (compilation()->has_fpu_code()) {
2057     unwind_id = Runtime1::handle_exception_id;
2058   } else {
2059     unwind_id = Runtime1::handle_exception_nofpu_id;
2060   }
2061   __ far_call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2062 
2063   // FIXME: enough room for two byte trap   ????
2064   __ nop();
2065 }
2066 
2067 
2068 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2069   assert(exceptionOop->as_register() == r0, "must match");
2070 
2071   __ b(_unwind_handler_entry);
2072 }
2073 
2074 
2075 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2076   Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo();
2077   Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo();
2078 
2079   switch (left->type()) {
2080     case T_INT: {
2081       switch (code) {
2082       case lir_shl:  __ lslvw (dreg, lreg, count->as_register()); break;
2083       case lir_shr:  __ asrvw (dreg, lreg, count->as_register()); break;
2084       case lir_ushr: __ lsrvw (dreg, lreg, count->as_register()); break;
2085       default:
2086         ShouldNotReachHere();
2087         break;
2088       }
2089       break;
2090     case T_LONG:
2091     case T_ADDRESS:
2092     case T_OBJECT:
2093       switch (code) {
2094       case lir_shl:  __ lslv (dreg, lreg, count->as_register()); break;
2095       case lir_shr:  __ asrv (dreg, lreg, count->as_register()); break;
2096       case lir_ushr: __ lsrv (dreg, lreg, count->as_register()); break;
2097       default:
2098         ShouldNotReachHere();
2099         break;
2100       }
2101       break;
2102     default:
2103       ShouldNotReachHere();
2104       break;
2105     }
2106   }
2107 }
2108 
2109 
2110 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2111   Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo();
2112   Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo();
2113 
2114   switch (left->type()) {
2115     case T_INT: {
2116       switch (code) {
2117       case lir_shl:  __ lslw (dreg, lreg, count); break;
2118       case lir_shr:  __ asrw (dreg, lreg, count); break;
2119       case lir_ushr: __ lsrw (dreg, lreg, count); break;
2120       default:
2121         ShouldNotReachHere();
2122         break;
2123       }
2124       break;
2125     case T_LONG:
2126     case T_ADDRESS:
2127     case T_OBJECT:
2128       switch (code) {
2129       case lir_shl:  __ lsl (dreg, lreg, count); break;
2130       case lir_shr:  __ asr (dreg, lreg, count); break;
2131       case lir_ushr: __ lsr (dreg, lreg, count); break;
2132       default:
2133         ShouldNotReachHere();
2134         break;
2135       }
2136       break;
2137     default:
2138       ShouldNotReachHere();
2139       break;
2140     }
2141   }
2142 }
2143 
2144 
2145 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
2146   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2147   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2148   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2149   __ str (r, Address(sp, offset_from_rsp_in_bytes));
2150 }
2151 
2152 
2153 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
2154   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2155   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2156   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2157   __ mov (rscratch1, c);
2158   __ str (rscratch1, Address(sp, offset_from_rsp_in_bytes));
2159 }
2160 
2161 
2162 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
2163   ShouldNotReachHere();
2164   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2165   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2166   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2167   __ lea(rscratch1, __ constant_oop_address(o));
2168   __ str(rscratch1, Address(sp, offset_from_rsp_in_bytes));
2169 }
2170 
2171 
2172 // This code replaces a call to arraycopy; no exception may
2173 // be thrown in this code, they must be thrown in the System.arraycopy
2174 // activation frame; we could save some checks if this would not be the case
2175 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2176   ciArrayKlass* default_type = op->expected_type();
2177   Register src = op->src()->as_register();
2178   Register dst = op->dst()->as_register();
2179   Register src_pos = op->src_pos()->as_register();
2180   Register dst_pos = op->dst_pos()->as_register();
2181   Register length  = op->length()->as_register();
2182   Register tmp = op->tmp()->as_register();
2183 
2184   CodeStub* stub = op->stub();
2185   int flags = op->flags();
2186   BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL;
2187   if (is_reference_type(basic_type)) basic_type = T_OBJECT;
2188 
2189   // if we don't know anything, just go through the generic arraycopy
2190   if (default_type == nullptr // || basic_type == T_OBJECT
2191       ) {
2192     Label done;
2193     assert(src == r1 && src_pos == r2, "mismatch in calling convention");
2194 
2195     // Save the arguments in case the generic arraycopy fails and we
2196     // have to fall back to the JNI stub
2197     __ stp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2198     __ stp(length,  src_pos, Address(sp, 2*BytesPerWord));
2199     __ str(src,              Address(sp, 4*BytesPerWord));
2200 
2201     address copyfunc_addr = StubRoutines::generic_arraycopy();
2202     assert(copyfunc_addr != nullptr, "generic arraycopy stub required");
2203 
2204     // The arguments are in java calling convention so we shift them
2205     // to C convention
2206     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
2207     __ mov(c_rarg0, j_rarg0);
2208     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
2209     __ mov(c_rarg1, j_rarg1);
2210     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
2211     __ mov(c_rarg2, j_rarg2);
2212     assert_different_registers(c_rarg3, j_rarg4);
2213     __ mov(c_rarg3, j_rarg3);
2214     __ mov(c_rarg4, j_rarg4);
2215 #ifndef PRODUCT
2216     if (PrintC1Statistics) {
2217       __ incrementw(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
2218     }
2219 #endif
2220     __ far_call(RuntimeAddress(copyfunc_addr));
2221 
2222     __ cbz(r0, *stub->continuation());
2223 
2224     // Reload values from the stack so they are where the stub
2225     // expects them.
2226     __ ldp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2227     __ ldp(length,  src_pos, Address(sp, 2*BytesPerWord));
2228     __ ldr(src,              Address(sp, 4*BytesPerWord));
2229 
2230     // r0 is -1^K where K == partial copied count
2231     __ eonw(rscratch1, r0, zr);
2232     // adjust length down and src/end pos up by partial copied count
2233     __ subw(length, length, rscratch1);
2234     __ addw(src_pos, src_pos, rscratch1);
2235     __ addw(dst_pos, dst_pos, rscratch1);
2236     __ b(*stub->entry());
2237 
2238     __ bind(*stub->continuation());
2239     return;
2240   }
2241 
2242   assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
2243 
2244   int elem_size = type2aelembytes(basic_type);
2245   int scale = exact_log2(elem_size);
2246 
2247   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
2248   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
2249   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
2250   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
2251 
2252   // test for null
2253   if (flags & LIR_OpArrayCopy::src_null_check) {
2254     __ cbz(src, *stub->entry());
2255   }
2256   if (flags & LIR_OpArrayCopy::dst_null_check) {
2257     __ cbz(dst, *stub->entry());
2258   }
2259 
2260   // If the compiler was not able to prove that exact type of the source or the destination
2261   // of the arraycopy is an array type, check at runtime if the source or the destination is
2262   // an instance type.
2263   if (flags & LIR_OpArrayCopy::type_check) {
2264     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) {
2265       __ load_klass(tmp, dst);
2266       __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2267       __ cmpw(rscratch1, Klass::_lh_neutral_value);
2268       __ br(Assembler::GE, *stub->entry());
2269     }
2270 
2271     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) {
2272       __ load_klass(tmp, src);
2273       __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2274       __ cmpw(rscratch1, Klass::_lh_neutral_value);
2275       __ br(Assembler::GE, *stub->entry());
2276     }
2277   }
2278 
2279   // check if negative
2280   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
2281     __ cmpw(src_pos, 0);
2282     __ br(Assembler::LT, *stub->entry());
2283   }
2284   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
2285     __ cmpw(dst_pos, 0);
2286     __ br(Assembler::LT, *stub->entry());
2287   }
2288 
2289   if (flags & LIR_OpArrayCopy::length_positive_check) {
2290     __ cmpw(length, 0);
2291     __ br(Assembler::LT, *stub->entry());
2292   }
2293 
2294   if (flags & LIR_OpArrayCopy::src_range_check) {
2295     __ addw(tmp, src_pos, length);
2296     __ ldrw(rscratch1, src_length_addr);
2297     __ cmpw(tmp, rscratch1);
2298     __ br(Assembler::HI, *stub->entry());
2299   }
2300   if (flags & LIR_OpArrayCopy::dst_range_check) {
2301     __ addw(tmp, dst_pos, length);
2302     __ ldrw(rscratch1, dst_length_addr);
2303     __ cmpw(tmp, rscratch1);
2304     __ br(Assembler::HI, *stub->entry());
2305   }
2306 
2307   if (flags & LIR_OpArrayCopy::type_check) {
2308     // We don't know the array types are compatible
2309     if (basic_type != T_OBJECT) {
2310       // Simple test for basic type arrays
2311       if (UseCompressedClassPointers) {
2312         __ ldrw(tmp, src_klass_addr);
2313         __ ldrw(rscratch1, dst_klass_addr);
2314         __ cmpw(tmp, rscratch1);
2315       } else {
2316         __ ldr(tmp, src_klass_addr);
2317         __ ldr(rscratch1, dst_klass_addr);
2318         __ cmp(tmp, rscratch1);
2319       }
2320       __ br(Assembler::NE, *stub->entry());
2321     } else {
2322       // For object arrays, if src is a sub class of dst then we can
2323       // safely do the copy.
2324       Label cont, slow;
2325 
2326 #define PUSH(r1, r2)                                    \
2327       stp(r1, r2, __ pre(sp, -2 * wordSize));
2328 
2329 #define POP(r1, r2)                                     \
2330       ldp(r1, r2, __ post(sp, 2 * wordSize));
2331 
2332       __ PUSH(src, dst);
2333 
2334       __ load_klass(src, src);
2335       __ load_klass(dst, dst);
2336 
2337       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr);
2338 
2339       __ PUSH(src, dst);
2340       __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
2341       __ POP(src, dst);
2342 
2343       __ cbnz(src, cont);
2344 
2345       __ bind(slow);
2346       __ POP(src, dst);
2347 
2348       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
2349       if (copyfunc_addr != nullptr) { // use stub if available
2350         // src is not a sub class of dst so we have to do a
2351         // per-element check.
2352 
2353         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2354         if ((flags & mask) != mask) {
2355           // Check that at least both of them object arrays.
2356           assert(flags & mask, "one of the two should be known to be an object array");
2357 
2358           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2359             __ load_klass(tmp, src);
2360           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2361             __ load_klass(tmp, dst);
2362           }
2363           int lh_offset = in_bytes(Klass::layout_helper_offset());
2364           Address klass_lh_addr(tmp, lh_offset);
2365           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2366           __ ldrw(rscratch1, klass_lh_addr);
2367           __ mov(rscratch2, objArray_lh);
2368           __ eorw(rscratch1, rscratch1, rscratch2);
2369           __ cbnzw(rscratch1, *stub->entry());
2370         }
2371 
2372        // Spill because stubs can use any register they like and it's
2373        // easier to restore just those that we care about.
2374         __ stp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2375         __ stp(length,  src_pos, Address(sp, 2*BytesPerWord));
2376         __ str(src,              Address(sp, 4*BytesPerWord));
2377 
2378         __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale)));
2379         __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type));
2380         assert_different_registers(c_rarg0, dst, dst_pos, length);
2381         __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale)));
2382         __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type));
2383         assert_different_registers(c_rarg1, dst, length);
2384         __ uxtw(c_rarg2, length);
2385         assert_different_registers(c_rarg2, dst);
2386 
2387         __ load_klass(c_rarg4, dst);
2388         __ ldr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
2389         __ ldrw(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
2390         __ far_call(RuntimeAddress(copyfunc_addr));
2391 
2392 #ifndef PRODUCT
2393         if (PrintC1Statistics) {
2394           Label failed;
2395           __ cbnz(r0, failed);
2396           __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
2397           __ bind(failed);
2398         }
2399 #endif
2400 
2401         __ cbz(r0, *stub->continuation());
2402 
2403 #ifndef PRODUCT
2404         if (PrintC1Statistics) {
2405           __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
2406         }
2407 #endif
2408         assert_different_registers(dst, dst_pos, length, src_pos, src, r0, rscratch1);
2409 
2410         // Restore previously spilled arguments
2411         __ ldp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2412         __ ldp(length,  src_pos, Address(sp, 2*BytesPerWord));
2413         __ ldr(src,              Address(sp, 4*BytesPerWord));
2414 
2415         // return value is -1^K where K is partial copied count
2416         __ eonw(rscratch1, r0, zr);
2417         // adjust length down and src/end pos up by partial copied count
2418         __ subw(length, length, rscratch1);
2419         __ addw(src_pos, src_pos, rscratch1);
2420         __ addw(dst_pos, dst_pos, rscratch1);
2421       }
2422 
2423       __ b(*stub->entry());
2424 
2425       __ bind(cont);
2426       __ POP(src, dst);
2427     }
2428   }
2429 
2430 #ifdef ASSERT
2431   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2432     // Sanity check the known type with the incoming class.  For the
2433     // primitive case the types must match exactly with src.klass and
2434     // dst.klass each exactly matching the default type.  For the
2435     // object array case, if no type check is needed then either the
2436     // dst type is exactly the expected type and the src type is a
2437     // subtype which we can't check or src is the same array as dst
2438     // but not necessarily exactly of type default_type.
2439     Label known_ok, halt;
2440     __ mov_metadata(tmp, default_type->constant_encoding());
2441     if (UseCompressedClassPointers) {
2442       __ encode_klass_not_null(tmp);
2443     }
2444 
2445     if (basic_type != T_OBJECT) {
2446 
2447       if (UseCompressedClassPointers) {
2448         __ ldrw(rscratch1, dst_klass_addr);
2449         __ cmpw(tmp, rscratch1);
2450       } else {
2451         __ ldr(rscratch1, dst_klass_addr);
2452         __ cmp(tmp, rscratch1);
2453       }
2454       __ br(Assembler::NE, halt);
2455       if (UseCompressedClassPointers) {
2456         __ ldrw(rscratch1, src_klass_addr);
2457         __ cmpw(tmp, rscratch1);
2458       } else {
2459         __ ldr(rscratch1, src_klass_addr);
2460         __ cmp(tmp, rscratch1);
2461       }
2462       __ br(Assembler::EQ, known_ok);
2463     } else {
2464       if (UseCompressedClassPointers) {
2465         __ ldrw(rscratch1, dst_klass_addr);
2466         __ cmpw(tmp, rscratch1);
2467       } else {
2468         __ ldr(rscratch1, dst_klass_addr);
2469         __ cmp(tmp, rscratch1);
2470       }
2471       __ br(Assembler::EQ, known_ok);
2472       __ cmp(src, dst);
2473       __ br(Assembler::EQ, known_ok);
2474     }
2475     __ bind(halt);
2476     __ stop("incorrect type information in arraycopy");
2477     __ bind(known_ok);
2478   }
2479 #endif
2480 
2481 #ifndef PRODUCT
2482   if (PrintC1Statistics) {
2483     __ incrementw(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
2484   }
2485 #endif
2486 
2487   __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale)));
2488   __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type));
2489   assert_different_registers(c_rarg0, dst, dst_pos, length);
2490   __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale)));
2491   __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type));
2492   assert_different_registers(c_rarg1, dst, length);
2493   __ uxtw(c_rarg2, length);
2494   assert_different_registers(c_rarg2, dst);
2495 
2496   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2497   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2498   const char *name;
2499   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2500 
2501  CodeBlob *cb = CodeCache::find_blob(entry);
2502  if (cb) {
2503    __ far_call(RuntimeAddress(entry));
2504  } else {
2505    __ call_VM_leaf(entry, 3);
2506  }
2507 
2508   if (stub != nullptr) {
2509     __ bind(*stub->continuation());
2510   }
2511 }
2512 
2513 
2514 
2515 
2516 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2517   Register obj = op->obj_opr()->as_register();  // may not be an oop
2518   Register hdr = op->hdr_opr()->as_register();
2519   Register lock = op->lock_opr()->as_register();
2520   Register temp = op->scratch_opr()->as_register();
2521   if (LockingMode == LM_MONITOR) {
2522     if (op->info() != nullptr) {
2523       add_debug_info_for_null_check_here(op->info());
2524       __ null_check(obj, -1);
2525     }
2526     __ b(*op->stub()->entry());
2527   } else if (op->code() == lir_lock) {
2528     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2529     // add debug info for NullPointerException only if one is possible
2530     int null_check_offset = __ lock_object(hdr, obj, lock, temp, *op->stub()->entry());
2531     if (op->info() != nullptr) {
2532       add_debug_info_for_null_check(null_check_offset, op->info());
2533     }
2534     // done
2535   } else if (op->code() == lir_unlock) {
2536     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2537     __ unlock_object(hdr, obj, lock, temp, *op->stub()->entry());
2538   } else {
2539     Unimplemented();
2540   }
2541   __ bind(*op->stub()->continuation());
2542 }
2543 
2544 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) {
2545   Register obj = op->obj()->as_pointer_register();
2546   Register result = op->result_opr()->as_pointer_register();
2547 
2548   CodeEmitInfo* info = op->info();
2549   if (info != nullptr) {
2550     add_debug_info_for_null_check_here(info);
2551   }
2552 
2553   if (UseCompressedClassPointers) {
2554     __ ldrw(result, Address (obj, oopDesc::klass_offset_in_bytes()));
2555     __ decode_klass_not_null(result);
2556   } else {
2557     __ ldr(result, Address (obj, oopDesc::klass_offset_in_bytes()));
2558   }
2559 }
2560 
2561 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2562   ciMethod* method = op->profiled_method();
2563   int bci          = op->profiled_bci();
2564   ciMethod* callee = op->profiled_callee();
2565 
2566   // Update counter for all call types
2567   ciMethodData* md = method->method_data_or_null();
2568   assert(md != nullptr, "Sanity");
2569   ciProfileData* data = md->bci_to_data(bci);
2570   assert(data != nullptr && data->is_CounterData(), "need CounterData for calls");
2571   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2572   Register mdo  = op->mdo()->as_register();
2573   __ mov_metadata(mdo, md->constant_encoding());
2574   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
2575   // Perform additional virtual call profiling for invokevirtual and
2576   // invokeinterface bytecodes
2577   if (op->should_profile_receiver_type()) {
2578     assert(op->recv()->is_single_cpu(), "recv must be allocated");
2579     Register recv = op->recv()->as_register();
2580     assert_different_registers(mdo, recv);
2581     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2582     ciKlass* known_klass = op->known_holder();
2583     if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) {
2584       // We know the type that will be seen at this call site; we can
2585       // statically update the MethodData* rather than needing to do
2586       // dynamic tests on the receiver type
2587 
2588       // NOTE: we should probably put a lock around this search to
2589       // avoid collisions by concurrent compilations
2590       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2591       uint i;
2592       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2593         ciKlass* receiver = vc_data->receiver(i);
2594         if (known_klass->equals(receiver)) {
2595           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2596           __ addptr(data_addr, DataLayout::counter_increment);
2597           return;
2598         }
2599       }
2600 
2601       // Receiver type not found in profile data; select an empty slot
2602 
2603       // Note that this is less efficient than it should be because it
2604       // always does a write to the receiver part of the
2605       // VirtualCallData rather than just the first time
2606       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2607         ciKlass* receiver = vc_data->receiver(i);
2608         if (receiver == nullptr) {
2609           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
2610           __ mov_metadata(rscratch1, known_klass->constant_encoding());
2611           __ lea(rscratch2, recv_addr);
2612           __ str(rscratch1, Address(rscratch2));
2613           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2614           __ addptr(data_addr, DataLayout::counter_increment);
2615           return;
2616         }
2617       }
2618     } else {
2619       __ load_klass(recv, recv);
2620       Label update_done;
2621       type_profile_helper(mdo, md, data, recv, &update_done);
2622       // Receiver did not match any saved receiver and there is no empty row for it.
2623       // Increment total counter to indicate polymorphic case.
2624       __ addptr(counter_addr, DataLayout::counter_increment);
2625 
2626       __ bind(update_done);
2627     }
2628   } else {
2629     // Static call
2630     __ addptr(counter_addr, DataLayout::counter_increment);
2631   }
2632 }
2633 
2634 
2635 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
2636   Unimplemented();
2637 }
2638 
2639 
2640 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
2641   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
2642 }
2643 
2644 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
2645   assert(op->crc()->is_single_cpu(),  "crc must be register");
2646   assert(op->val()->is_single_cpu(),  "byte value must be register");
2647   assert(op->result_opr()->is_single_cpu(), "result must be register");
2648   Register crc = op->crc()->as_register();
2649   Register val = op->val()->as_register();
2650   Register res = op->result_opr()->as_register();
2651 
2652   assert_different_registers(val, crc, res);
2653   uint64_t offset;
2654   __ adrp(res, ExternalAddress(StubRoutines::crc_table_addr()), offset);
2655   __ add(res, res, offset);
2656 
2657   __ mvnw(crc, crc); // ~crc
2658   __ update_byte_crc32(crc, val, res);
2659   __ mvnw(res, crc); // ~crc
2660 }
2661 
2662 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
2663   COMMENT("emit_profile_type {");
2664   Register obj = op->obj()->as_register();
2665   Register tmp = op->tmp()->as_pointer_register();
2666   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
2667   ciKlass* exact_klass = op->exact_klass();
2668   intptr_t current_klass = op->current_klass();
2669   bool not_null = op->not_null();
2670   bool no_conflict = op->no_conflict();
2671 
2672   Label update, next, none;
2673 
2674   bool do_null = !not_null;
2675   bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
2676   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
2677 
2678   assert(do_null || do_update, "why are we here?");
2679   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
2680   assert(mdo_addr.base() != rscratch1, "wrong register");
2681 
2682   __ verify_oop(obj);
2683 
2684   if (tmp != obj) {
2685     assert_different_registers(obj, tmp, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index());
2686     __ mov(tmp, obj);
2687   } else {
2688     assert_different_registers(obj, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index());
2689   }
2690   if (do_null) {
2691     __ cbnz(tmp, update);
2692     if (!TypeEntries::was_null_seen(current_klass)) {
2693       __ ldr(rscratch2, mdo_addr);
2694       __ orr(rscratch2, rscratch2, TypeEntries::null_seen);
2695       __ str(rscratch2, mdo_addr);
2696     }
2697     if (do_update) {
2698 #ifndef ASSERT
2699       __ b(next);
2700     }
2701 #else
2702       __ b(next);
2703     }
2704   } else {
2705     __ cbnz(tmp, update);
2706     __ stop("unexpected null obj");
2707 #endif
2708   }
2709 
2710   __ bind(update);
2711 
2712   if (do_update) {
2713 #ifdef ASSERT
2714     if (exact_klass != nullptr) {
2715       Label ok;
2716       __ load_klass(tmp, tmp);
2717       __ mov_metadata(rscratch1, exact_klass->constant_encoding());
2718       __ eor(rscratch1, tmp, rscratch1);
2719       __ cbz(rscratch1, ok);
2720       __ stop("exact klass and actual klass differ");
2721       __ bind(ok);
2722     }
2723 #endif
2724     if (!no_conflict) {
2725       if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) {
2726         if (exact_klass != nullptr) {
2727           __ mov_metadata(tmp, exact_klass->constant_encoding());
2728         } else {
2729           __ load_klass(tmp, tmp);
2730         }
2731 
2732         __ ldr(rscratch2, mdo_addr);
2733         __ eor(tmp, tmp, rscratch2);
2734         __ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
2735         // klass seen before, nothing to do. The unknown bit may have been
2736         // set already but no need to check.
2737         __ cbz(rscratch1, next);
2738 
2739         __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
2740 
2741         if (TypeEntries::is_type_none(current_klass)) {
2742           __ cbz(rscratch2, none);
2743           __ cmp(rscratch2, (u1)TypeEntries::null_seen);
2744           __ br(Assembler::EQ, none);
2745           // There is a chance that the checks above
2746           // fail if another thread has just set the
2747           // profiling to this obj's klass
2748           __ dmb(Assembler::ISHLD);
2749           __ eor(tmp, tmp, rscratch2); // get back original value before XOR
2750           __ ldr(rscratch2, mdo_addr);
2751           __ eor(tmp, tmp, rscratch2);
2752           __ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
2753           __ cbz(rscratch1, next);
2754         }
2755       } else {
2756         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
2757                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
2758 
2759         __ ldr(tmp, mdo_addr);
2760         __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
2761       }
2762 
2763       // different than before. Cannot keep accurate profile.
2764       __ ldr(rscratch2, mdo_addr);
2765       __ orr(rscratch2, rscratch2, TypeEntries::type_unknown);
2766       __ str(rscratch2, mdo_addr);
2767 
2768       if (TypeEntries::is_type_none(current_klass)) {
2769         __ b(next);
2770 
2771         __ bind(none);
2772         // first time here. Set profile type.
2773         __ str(tmp, mdo_addr);
2774 #ifdef ASSERT
2775         __ andr(tmp, tmp, TypeEntries::type_mask);
2776         __ verify_klass_ptr(tmp);
2777 #endif
2778       }
2779     } else {
2780       // There's a single possible klass at this profile point
2781       assert(exact_klass != nullptr, "should be");
2782       if (TypeEntries::is_type_none(current_klass)) {
2783         __ mov_metadata(tmp, exact_klass->constant_encoding());
2784         __ ldr(rscratch2, mdo_addr);
2785         __ eor(tmp, tmp, rscratch2);
2786         __ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
2787         __ cbz(rscratch1, next);
2788 #ifdef ASSERT
2789         {
2790           Label ok;
2791           __ ldr(rscratch1, mdo_addr);
2792           __ cbz(rscratch1, ok);
2793           __ cmp(rscratch1, (u1)TypeEntries::null_seen);
2794           __ br(Assembler::EQ, ok);
2795           // may have been set by another thread
2796           __ dmb(Assembler::ISHLD);
2797           __ mov_metadata(rscratch1, exact_klass->constant_encoding());
2798           __ ldr(rscratch2, mdo_addr);
2799           __ eor(rscratch2, rscratch1, rscratch2);
2800           __ andr(rscratch2, rscratch2, TypeEntries::type_mask);
2801           __ cbz(rscratch2, ok);
2802 
2803           __ stop("unexpected profiling mismatch");
2804           __ bind(ok);
2805         }
2806 #endif
2807         // first time here. Set profile type.
2808         __ str(tmp, mdo_addr);
2809 #ifdef ASSERT
2810         __ andr(tmp, tmp, TypeEntries::type_mask);
2811         __ verify_klass_ptr(tmp);
2812 #endif
2813       } else {
2814         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
2815                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
2816 
2817         __ ldr(tmp, mdo_addr);
2818         __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
2819 
2820         __ orr(tmp, tmp, TypeEntries::type_unknown);
2821         __ str(tmp, mdo_addr);
2822         // FIXME: Write barrier needed here?
2823       }
2824     }
2825 
2826     __ bind(next);
2827   }
2828   COMMENT("} emit_profile_type");
2829 }
2830 
2831 
2832 void LIR_Assembler::align_backward_branch_target() {
2833 }
2834 
2835 
2836 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
2837   // tmp must be unused
2838   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2839 
2840   if (left->is_single_cpu()) {
2841     assert(dest->is_single_cpu(), "expect single result reg");
2842     __ negw(dest->as_register(), left->as_register());
2843   } else if (left->is_double_cpu()) {
2844     assert(dest->is_double_cpu(), "expect double result reg");
2845     __ neg(dest->as_register_lo(), left->as_register_lo());
2846   } else if (left->is_single_fpu()) {
2847     assert(dest->is_single_fpu(), "expect single float result reg");
2848     __ fnegs(dest->as_float_reg(), left->as_float_reg());
2849   } else {
2850     assert(left->is_double_fpu(), "expect double float operand reg");
2851     assert(dest->is_double_fpu(), "expect double float result reg");
2852     __ fnegd(dest->as_double_reg(), left->as_double_reg());
2853   }
2854 }
2855 
2856 
2857 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
2858   if (patch_code != lir_patch_none) {
2859     deoptimize_trap(info);
2860     return;
2861   }
2862 
2863   __ lea(dest->as_register_lo(), as_Address(addr->as_address_ptr()));
2864 }
2865 
2866 
2867 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
2868   assert(!tmp->is_valid(), "don't need temporary");
2869 
2870   CodeBlob *cb = CodeCache::find_blob(dest);
2871   if (cb) {
2872     __ far_call(RuntimeAddress(dest));
2873   } else {
2874     __ mov(rscratch1, RuntimeAddress(dest));
2875     __ blr(rscratch1);
2876   }
2877 
2878   if (info != nullptr) {
2879     add_call_info_here(info);
2880   }
2881   __ post_call_nop();
2882 }
2883 
2884 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
2885   if (dest->is_address() || src->is_address()) {
2886     move_op(src, dest, type, lir_patch_none, info,
2887             /*pop_fpu_stack*/false, /*wide*/false);
2888   } else {
2889     ShouldNotReachHere();
2890   }
2891 }
2892 
2893 #ifdef ASSERT
2894 // emit run-time assertion
2895 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
2896   assert(op->code() == lir_assert, "must be");
2897 
2898   if (op->in_opr1()->is_valid()) {
2899     assert(op->in_opr2()->is_valid(), "both operands must be valid");
2900     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
2901   } else {
2902     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
2903     assert(op->condition() == lir_cond_always, "no other conditions allowed");
2904   }
2905 
2906   Label ok;
2907   if (op->condition() != lir_cond_always) {
2908     Assembler::Condition acond = Assembler::AL;
2909     switch (op->condition()) {
2910       case lir_cond_equal:        acond = Assembler::EQ;  break;
2911       case lir_cond_notEqual:     acond = Assembler::NE;  break;
2912       case lir_cond_less:         acond = Assembler::LT;  break;
2913       case lir_cond_lessEqual:    acond = Assembler::LE;  break;
2914       case lir_cond_greaterEqual: acond = Assembler::GE;  break;
2915       case lir_cond_greater:      acond = Assembler::GT;  break;
2916       case lir_cond_belowEqual:   acond = Assembler::LS;  break;
2917       case lir_cond_aboveEqual:   acond = Assembler::HS;  break;
2918       default:                    ShouldNotReachHere();
2919     }
2920     __ br(acond, ok);
2921   }
2922   if (op->halt()) {
2923     const char* str = __ code_string(op->msg());
2924     __ stop(str);
2925   } else {
2926     breakpoint();
2927   }
2928   __ bind(ok);
2929 }
2930 #endif
2931 
2932 #ifndef PRODUCT
2933 #define COMMENT(x)   do { __ block_comment(x); } while (0)
2934 #else
2935 #define COMMENT(x)
2936 #endif
2937 
2938 void LIR_Assembler::membar() {
2939   COMMENT("membar");
2940   __ membar(MacroAssembler::AnyAny);
2941 }
2942 
2943 void LIR_Assembler::membar_acquire() {
2944   __ membar(Assembler::LoadLoad|Assembler::LoadStore);
2945 }
2946 
2947 void LIR_Assembler::membar_release() {
2948   __ membar(Assembler::LoadStore|Assembler::StoreStore);
2949 }
2950 
2951 void LIR_Assembler::membar_loadload() {
2952   __ membar(Assembler::LoadLoad);
2953 }
2954 
2955 void LIR_Assembler::membar_storestore() {
2956   __ membar(MacroAssembler::StoreStore);
2957 }
2958 
2959 void LIR_Assembler::membar_loadstore() { __ membar(MacroAssembler::LoadStore); }
2960 
2961 void LIR_Assembler::membar_storeload() { __ membar(MacroAssembler::StoreLoad); }
2962 
2963 void LIR_Assembler::on_spin_wait() {
2964   __ spin_wait();
2965 }
2966 
2967 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
2968   __ mov(result_reg->as_register(), rthread);
2969 }
2970 
2971 
2972 void LIR_Assembler::peephole(LIR_List *lir) {
2973 #if 0
2974   if (tableswitch_count >= max_tableswitches)
2975     return;
2976 
2977   /*
2978     This finite-state automaton recognizes sequences of compare-and-
2979     branch instructions.  We will turn them into a tableswitch.  You
2980     could argue that C1 really shouldn't be doing this sort of
2981     optimization, but without it the code is really horrible.
2982   */
2983 
2984   enum { start_s, cmp1_s, beq_s, cmp_s } state;
2985   int first_key, last_key = -2147483648;
2986   int next_key = 0;
2987   int start_insn = -1;
2988   int last_insn = -1;
2989   Register reg = noreg;
2990   LIR_Opr reg_opr;
2991   state = start_s;
2992 
2993   LIR_OpList* inst = lir->instructions_list();
2994   for (int i = 0; i < inst->length(); i++) {
2995     LIR_Op* op = inst->at(i);
2996     switch (state) {
2997     case start_s:
2998       first_key = -1;
2999       start_insn = i;
3000       switch (op->code()) {
3001       case lir_cmp:
3002         LIR_Opr opr1 = op->as_Op2()->in_opr1();
3003         LIR_Opr opr2 = op->as_Op2()->in_opr2();
3004         if (opr1->is_cpu_register() && opr1->is_single_cpu()
3005             && opr2->is_constant()
3006             && opr2->type() == T_INT) {
3007           reg_opr = opr1;
3008           reg = opr1->as_register();
3009           first_key = opr2->as_constant_ptr()->as_jint();
3010           next_key = first_key + 1;
3011           state = cmp_s;
3012           goto next_state;
3013         }
3014         break;
3015       }
3016       break;
3017     case cmp_s:
3018       switch (op->code()) {
3019       case lir_branch:
3020         if (op->as_OpBranch()->cond() == lir_cond_equal) {
3021           state = beq_s;
3022           last_insn = i;
3023           goto next_state;
3024         }
3025       }
3026       state = start_s;
3027       break;
3028     case beq_s:
3029       switch (op->code()) {
3030       case lir_cmp: {
3031         LIR_Opr opr1 = op->as_Op2()->in_opr1();
3032         LIR_Opr opr2 = op->as_Op2()->in_opr2();
3033         if (opr1->is_cpu_register() && opr1->is_single_cpu()
3034             && opr1->as_register() == reg
3035             && opr2->is_constant()
3036             && opr2->type() == T_INT
3037             && opr2->as_constant_ptr()->as_jint() == next_key) {
3038           last_key = next_key;
3039           next_key++;
3040           state = cmp_s;
3041           goto next_state;
3042         }
3043       }
3044       }
3045       last_key = next_key;
3046       state = start_s;
3047       break;
3048     default:
3049       assert(false, "impossible state");
3050     }
3051     if (state == start_s) {
3052       if (first_key < last_key - 5L && reg != noreg) {
3053         {
3054           // printf("found run register %d starting at insn %d low value %d high value %d\n",
3055           //        reg->encoding(),
3056           //        start_insn, first_key, last_key);
3057           //   for (int i = 0; i < inst->length(); i++) {
3058           //     inst->at(i)->print();
3059           //     tty->print("\n");
3060           //   }
3061           //   tty->print("\n");
3062         }
3063 
3064         struct tableswitch *sw = &switches[tableswitch_count];
3065         sw->_insn_index = start_insn, sw->_first_key = first_key,
3066           sw->_last_key = last_key, sw->_reg = reg;
3067         inst->insert_before(last_insn + 1, new LIR_OpLabel(&sw->_after));
3068         {
3069           // Insert the new table of branches
3070           int offset = last_insn;
3071           for (int n = first_key; n < last_key; n++) {
3072             inst->insert_before
3073               (last_insn + 1,
3074                new LIR_OpBranch(lir_cond_always, T_ILLEGAL,
3075                                 inst->at(offset)->as_OpBranch()->label()));
3076             offset -= 2, i++;
3077           }
3078         }
3079         // Delete all the old compare-and-branch instructions
3080         for (int n = first_key; n < last_key; n++) {
3081           inst->remove_at(start_insn);
3082           inst->remove_at(start_insn);
3083         }
3084         // Insert the tableswitch instruction
3085         inst->insert_before(start_insn,
3086                             new LIR_Op2(lir_cmp, lir_cond_always,
3087                                         LIR_OprFact::intConst(tableswitch_count),
3088                                         reg_opr));
3089         inst->insert_before(start_insn + 1, new LIR_OpLabel(&sw->_branches));
3090         tableswitch_count++;
3091       }
3092       reg = noreg;
3093       last_key = -2147483648;
3094     }
3095   next_state:
3096     ;
3097   }
3098 #endif
3099 }
3100 
3101 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp_op) {
3102   Address addr = as_Address(src->as_address_ptr());
3103   BasicType type = src->type();
3104   bool is_oop = is_reference_type(type);
3105 
3106   void (MacroAssembler::* add)(Register prev, RegisterOrConstant incr, Register addr);
3107   void (MacroAssembler::* xchg)(Register prev, Register newv, Register addr);
3108 
3109   switch(type) {
3110   case T_INT:
3111     xchg = &MacroAssembler::atomic_xchgalw;
3112     add = &MacroAssembler::atomic_addalw;
3113     break;
3114   case T_LONG:
3115     xchg = &MacroAssembler::atomic_xchgal;
3116     add = &MacroAssembler::atomic_addal;
3117     break;
3118   case T_OBJECT:
3119   case T_ARRAY:
3120     if (UseCompressedOops) {
3121       xchg = &MacroAssembler::atomic_xchgalw;
3122       add = &MacroAssembler::atomic_addalw;
3123     } else {
3124       xchg = &MacroAssembler::atomic_xchgal;
3125       add = &MacroAssembler::atomic_addal;
3126     }
3127     break;
3128   default:
3129     ShouldNotReachHere();
3130     xchg = &MacroAssembler::atomic_xchgal;
3131     add = &MacroAssembler::atomic_addal; // unreachable
3132   }
3133 
3134   switch (code) {
3135   case lir_xadd:
3136     {
3137       RegisterOrConstant inc;
3138       Register tmp = as_reg(tmp_op);
3139       Register dst = as_reg(dest);
3140       if (data->is_constant()) {
3141         inc = RegisterOrConstant(as_long(data));
3142         assert_different_registers(dst, addr.base(), tmp,
3143                                    rscratch1, rscratch2);
3144       } else {
3145         inc = RegisterOrConstant(as_reg(data));
3146         assert_different_registers(inc.as_register(), dst, addr.base(), tmp,
3147                                    rscratch1, rscratch2);
3148       }
3149       __ lea(tmp, addr);
3150       (_masm->*add)(dst, inc, tmp);
3151       break;
3152     }
3153   case lir_xchg:
3154     {
3155       Register tmp = tmp_op->as_register();
3156       Register obj = as_reg(data);
3157       Register dst = as_reg(dest);
3158       if (is_oop && UseCompressedOops) {
3159         __ encode_heap_oop(rscratch2, obj);
3160         obj = rscratch2;
3161       }
3162       assert_different_registers(obj, addr.base(), tmp, rscratch1);
3163       assert_different_registers(dst, addr.base(), tmp, rscratch1);
3164       __ lea(tmp, addr);
3165       (_masm->*xchg)(dst, obj, tmp);
3166       if (is_oop && UseCompressedOops) {
3167         __ decode_heap_oop(dst);
3168       }
3169     }
3170     break;
3171   default:
3172     ShouldNotReachHere();
3173   }
3174   __ membar(__ AnyAny);
3175 }
3176 
3177 #undef __