1 /*
   2  * Copyright (c) 2000, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "asm/assembler.hpp"
  29 #include "c1/c1_CodeStubs.hpp"
  30 #include "c1/c1_Compilation.hpp"
  31 #include "c1/c1_LIRAssembler.hpp"
  32 #include "c1/c1_MacroAssembler.hpp"
  33 #include "c1/c1_Runtime1.hpp"
  34 #include "c1/c1_ValueStack.hpp"
  35 #include "ci/ciArrayKlass.hpp"
  36 #include "ci/ciInstance.hpp"
  37 #include "code/compiledIC.hpp"
  38 #include "gc/shared/collectedHeap.hpp"
  39 #include "gc/shared/gc_globals.hpp"
  40 #include "nativeInst_aarch64.hpp"
  41 #include "oops/objArrayKlass.hpp"
  42 #include "runtime/frame.inline.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "runtime/stubRoutines.hpp"
  45 #include "utilities/powerOfTwo.hpp"
  46 #include "vmreg_aarch64.inline.hpp"
  47 
  48 
  49 #ifndef PRODUCT
  50 #define COMMENT(x)   do { __ block_comment(x); } while (0)
  51 #else
  52 #define COMMENT(x)
  53 #endif
  54 
  55 NEEDS_CLEANUP // remove this definitions ?
  56 const Register SYNC_header = r0;   // synchronization header
  57 const Register SHIFT_count = r0;   // where count for shift operations must be
  58 
  59 #define __ _masm->
  60 
  61 
  62 static void select_different_registers(Register preserve,
  63                                        Register extra,
  64                                        Register &tmp1,
  65                                        Register &tmp2) {
  66   if (tmp1 == preserve) {
  67     assert_different_registers(tmp1, tmp2, extra);
  68     tmp1 = extra;
  69   } else if (tmp2 == preserve) {
  70     assert_different_registers(tmp1, tmp2, extra);
  71     tmp2 = extra;
  72   }
  73   assert_different_registers(preserve, tmp1, tmp2);
  74 }
  75 
  76 
  77 
  78 static void select_different_registers(Register preserve,
  79                                        Register extra,
  80                                        Register &tmp1,
  81                                        Register &tmp2,
  82                                        Register &tmp3) {
  83   if (tmp1 == preserve) {
  84     assert_different_registers(tmp1, tmp2, tmp3, extra);
  85     tmp1 = extra;
  86   } else if (tmp2 == preserve) {
  87     assert_different_registers(tmp1, tmp2, tmp3, extra);
  88     tmp2 = extra;
  89   } else if (tmp3 == preserve) {
  90     assert_different_registers(tmp1, tmp2, tmp3, extra);
  91     tmp3 = extra;
  92   }
  93   assert_different_registers(preserve, tmp1, tmp2, tmp3);
  94 }
  95 
  96 
  97 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { Unimplemented(); return false; }
  98 
  99 
 100 LIR_Opr LIR_Assembler::receiverOpr() {
 101   return FrameMap::receiver_opr;
 102 }
 103 
 104 LIR_Opr LIR_Assembler::osrBufferPointer() {
 105   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 106 }
 107 
 108 //--------------fpu register translations-----------------------
 109 
 110 
 111 address LIR_Assembler::float_constant(float f) {
 112   address const_addr = __ float_constant(f);
 113   if (const_addr == nullptr) {
 114     bailout("const section overflow");
 115     return __ code()->consts()->start();
 116   } else {
 117     return const_addr;
 118   }
 119 }
 120 
 121 
 122 address LIR_Assembler::double_constant(double d) {
 123   address const_addr = __ double_constant(d);
 124   if (const_addr == nullptr) {
 125     bailout("const section overflow");
 126     return __ code()->consts()->start();
 127   } else {
 128     return const_addr;
 129   }
 130 }
 131 
 132 address LIR_Assembler::int_constant(jlong n) {
 133   address const_addr = __ long_constant(n);
 134   if (const_addr == nullptr) {
 135     bailout("const section overflow");
 136     return __ code()->consts()->start();
 137   } else {
 138     return const_addr;
 139   }
 140 }
 141 
 142 void LIR_Assembler::breakpoint() { Unimplemented(); }
 143 
 144 void LIR_Assembler::push(LIR_Opr opr) { Unimplemented(); }
 145 
 146 void LIR_Assembler::pop(LIR_Opr opr) { Unimplemented(); }
 147 
 148 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { Unimplemented(); return false; }
 149 //-------------------------------------------
 150 
 151 static Register as_reg(LIR_Opr op) {
 152   return op->is_double_cpu() ? op->as_register_lo() : op->as_register();
 153 }
 154 
 155 static jlong as_long(LIR_Opr data) {
 156   jlong result;
 157   switch (data->type()) {
 158   case T_INT:
 159     result = (data->as_jint());
 160     break;
 161   case T_LONG:
 162     result = (data->as_jlong());
 163     break;
 164   default:
 165     ShouldNotReachHere();
 166     result = 0;  // unreachable
 167   }
 168   return result;
 169 }
 170 
 171 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 172   Register base = addr->base()->as_pointer_register();
 173   LIR_Opr opr = addr->index();
 174   if (opr->is_cpu_register()) {
 175     Register index;
 176     if (opr->is_single_cpu())
 177       index = opr->as_register();
 178     else
 179       index = opr->as_register_lo();
 180     assert(addr->disp() == 0, "must be");
 181     switch(opr->type()) {
 182       case T_INT:
 183         return Address(base, index, Address::sxtw(addr->scale()));
 184       case T_LONG:
 185         return Address(base, index, Address::lsl(addr->scale()));
 186       default:
 187         ShouldNotReachHere();
 188       }
 189   } else {
 190     assert(addr->scale() == 0,
 191            "expected for immediate operand, was: %d", addr->scale());
 192     ptrdiff_t offset = ptrdiff_t(addr->disp());
 193     // NOTE: Does not handle any 16 byte vector access.
 194     const uint type_size = type2aelembytes(addr->type(), true);
 195     return __ legitimize_address(Address(base, offset), type_size, tmp);
 196   }
 197   return Address();
 198 }
 199 
 200 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 201   ShouldNotReachHere();
 202   return Address();
 203 }
 204 
 205 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 206   return as_Address(addr, rscratch1);
 207 }
 208 
 209 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 210   return as_Address(addr, rscratch1);  // Ouch
 211   // FIXME: This needs to be much more clever.  See x86.
 212 }
 213 
 214 // Ensure a valid Address (base + offset) to a stack-slot. If stack access is
 215 // not encodable as a base + (immediate) offset, generate an explicit address
 216 // calculation to hold the address in a temporary register.
 217 Address LIR_Assembler::stack_slot_address(int index, uint size, Register tmp, int adjust) {
 218   precond(size == 4 || size == 8);
 219   Address addr = frame_map()->address_for_slot(index, adjust);
 220   precond(addr.getMode() == Address::base_plus_offset);
 221   precond(addr.base() == sp);
 222   precond(addr.offset() > 0);
 223   uint mask = size - 1;
 224   assert((addr.offset() & mask) == 0, "scaled offsets only");
 225   return __ legitimize_address(addr, size, tmp);
 226 }
 227 
 228 void LIR_Assembler::osr_entry() {
 229   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 230   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 231   ValueStack* entry_state = osr_entry->state();
 232   int number_of_locks = entry_state->locks_size();
 233 
 234   // we jump here if osr happens with the interpreter
 235   // state set up to continue at the beginning of the
 236   // loop that triggered osr - in particular, we have
 237   // the following registers setup:
 238   //
 239   // r2: osr buffer
 240   //
 241 
 242   // build frame
 243   ciMethod* m = compilation()->method();
 244   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 245 
 246   // OSR buffer is
 247   //
 248   // locals[nlocals-1..0]
 249   // monitors[0..number_of_locks]
 250   //
 251   // locals is a direct copy of the interpreter frame so in the osr buffer
 252   // so first slot in the local array is the last local from the interpreter
 253   // and last slot is local[0] (receiver) from the interpreter
 254   //
 255   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 256   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 257   // in the interpreter frame (the method lock if a sync method)
 258 
 259   // Initialize monitors in the compiled activation.
 260   //   r2: pointer to osr buffer
 261   //
 262   // All other registers are dead at this point and the locals will be
 263   // copied into place by code emitted in the IR.
 264 
 265   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 266   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 267     int monitor_offset = BytesPerWord * method()->max_locals() +
 268       (2 * BytesPerWord) * (number_of_locks - 1);
 269     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 270     // the OSR buffer using 2 word entries: first the lock and then
 271     // the oop.
 272     for (int i = 0; i < number_of_locks; i++) {
 273       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 274 #ifdef ASSERT
 275       // verify the interpreter's monitor has a non-null object
 276       {
 277         Label L;
 278         __ ldr(rscratch1, __ form_address(rscratch1, OSR_buf, slot_offset + 1*BytesPerWord, 0));
 279         __ cbnz(rscratch1, L);
 280         __ stop("locked object is null");
 281         __ bind(L);
 282       }
 283 #endif
 284       __ ldr(r19, __ form_address(rscratch1, OSR_buf, slot_offset, 0));
 285       __ ldr(r20, __ form_address(rscratch1, OSR_buf, slot_offset + BytesPerWord, 0));
 286       __ str(r19, frame_map()->address_for_monitor_lock(i));
 287       __ str(r20, frame_map()->address_for_monitor_object(i));
 288     }
 289   }
 290 }
 291 
 292 
 293 // inline cache check; done before the frame is built.
 294 int LIR_Assembler::check_icache() {
 295   return __ ic_check(CodeEntryAlignment);
 296 }
 297 
 298 void LIR_Assembler::clinit_barrier(ciMethod* method) {
 299   assert(VM_Version::supports_fast_class_init_checks(), "sanity");
 300   assert(!method->holder()->is_not_initialized(), "initialization should have been started");
 301 
 302   Label L_skip_barrier;
 303 
 304   __ mov_metadata(rscratch2, method->holder()->constant_encoding());
 305   __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier /*L_fast_path*/);
 306   __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
 307   __ bind(L_skip_barrier);
 308 }
 309 
 310 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
 311   if (o == nullptr) {
 312     __ mov(reg, zr);
 313   } else {
 314     __ movoop(reg, o);
 315   }
 316 }
 317 
 318 void LIR_Assembler::deoptimize_trap(CodeEmitInfo *info) {
 319   address target = nullptr;
 320   relocInfo::relocType reloc_type = relocInfo::none;
 321 
 322   switch (patching_id(info)) {
 323   case PatchingStub::access_field_id:
 324     target = Runtime1::entry_for(C1StubId::access_field_patching_id);
 325     reloc_type = relocInfo::section_word_type;
 326     break;
 327   case PatchingStub::load_klass_id:
 328     target = Runtime1::entry_for(C1StubId::load_klass_patching_id);
 329     reloc_type = relocInfo::metadata_type;
 330     break;
 331   case PatchingStub::load_mirror_id:
 332     target = Runtime1::entry_for(C1StubId::load_mirror_patching_id);
 333     reloc_type = relocInfo::oop_type;
 334     break;
 335   case PatchingStub::load_appendix_id:
 336     target = Runtime1::entry_for(C1StubId::load_appendix_patching_id);
 337     reloc_type = relocInfo::oop_type;
 338     break;
 339   default: ShouldNotReachHere();
 340   }
 341 
 342   __ far_call(RuntimeAddress(target));
 343   add_call_info_here(info);
 344 }
 345 
 346 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
 347   deoptimize_trap(info);
 348 }
 349 
 350 
 351 // This specifies the rsp decrement needed to build the frame
 352 int LIR_Assembler::initial_frame_size_in_bytes() const {
 353   // if rounding, must let FrameMap know!
 354 
 355   return in_bytes(frame_map()->framesize_in_bytes());
 356 }
 357 
 358 
 359 int LIR_Assembler::emit_exception_handler() {
 360   // generate code for exception handler
 361   address handler_base = __ start_a_stub(exception_handler_size());
 362   if (handler_base == nullptr) {
 363     // not enough space left for the handler
 364     bailout("exception handler overflow");
 365     return -1;
 366   }
 367 
 368   int offset = code_offset();
 369 
 370   // the exception oop and pc are in r0, and r3
 371   // no other registers need to be preserved, so invalidate them
 372   __ invalidate_registers(false, true, true, false, true, true);
 373 
 374   // check that there is really an exception
 375   __ verify_not_null_oop(r0);
 376 
 377   // search an exception handler (r0: exception oop, r3: throwing pc)
 378   __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::handle_exception_from_callee_id)));
 379   __ should_not_reach_here();
 380   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 381   __ end_a_stub();
 382 
 383   return offset;
 384 }
 385 
 386 
 387 // Emit the code to remove the frame from the stack in the exception
 388 // unwind path.
 389 int LIR_Assembler::emit_unwind_handler() {
 390 #ifndef PRODUCT
 391   if (CommentedAssembly) {
 392     _masm->block_comment("Unwind handler");
 393   }
 394 #endif
 395 
 396   int offset = code_offset();
 397 
 398   // Fetch the exception from TLS and clear out exception related thread state
 399   __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
 400   __ str(zr, Address(rthread, JavaThread::exception_oop_offset()));
 401   __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
 402 
 403   __ bind(_unwind_handler_entry);
 404   __ verify_not_null_oop(r0);
 405   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 406     __ mov(r19, r0);  // Preserve the exception
 407   }
 408 
 409   // Perform needed unlocking
 410   MonitorExitStub* stub = nullptr;
 411   if (method()->is_synchronized()) {
 412     monitor_address(0, FrameMap::r0_opr);
 413     stub = new MonitorExitStub(FrameMap::r0_opr, true, 0);
 414     if (LockingMode == LM_MONITOR) {
 415       __ b(*stub->entry());
 416     } else {
 417       __ unlock_object(r5, r4, r0, r6, *stub->entry());
 418     }
 419     __ bind(*stub->continuation());
 420   }
 421 
 422   if (compilation()->env()->dtrace_method_probes()) {
 423     __ mov(c_rarg0, rthread);
 424     __ mov_metadata(c_rarg1, method()->constant_encoding());
 425     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), c_rarg0, c_rarg1);
 426   }
 427 
 428   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 429     __ mov(r0, r19);  // Restore the exception
 430   }
 431 
 432   // remove the activation and dispatch to the unwind handler
 433   __ block_comment("remove_frame and dispatch to the unwind handler");
 434   __ remove_frame(initial_frame_size_in_bytes());
 435   __ far_jump(RuntimeAddress(Runtime1::entry_for(C1StubId::unwind_exception_id)));
 436 
 437   // Emit the slow path assembly
 438   if (stub != nullptr) {
 439     stub->emit_code(this);
 440   }
 441 
 442   return offset;
 443 }
 444 
 445 
 446 int LIR_Assembler::emit_deopt_handler() {
 447   // generate code for exception handler
 448   address handler_base = __ start_a_stub(deopt_handler_size());
 449   if (handler_base == nullptr) {
 450     // not enough space left for the handler
 451     bailout("deopt handler overflow");
 452     return -1;
 453   }
 454 
 455   int offset = code_offset();
 456 
 457   __ adr(lr, pc());
 458   __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 459   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 460   __ end_a_stub();
 461 
 462   return offset;
 463 }
 464 
 465 void LIR_Assembler::add_debug_info_for_branch(address adr, CodeEmitInfo* info) {
 466   _masm->code_section()->relocate(adr, relocInfo::poll_type);
 467   int pc_offset = code_offset();
 468   flush_debug_info(pc_offset);
 469   info->record_debug_info(compilation()->debug_info_recorder(), pc_offset);
 470   if (info->exception_handlers() != nullptr) {
 471     compilation()->add_exception_handlers_for_pco(pc_offset, info->exception_handlers());
 472   }
 473 }
 474 
 475 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) {
 476   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == r0, "word returns are in r0,");
 477 
 478   // Pop the stack before the safepoint code
 479   __ remove_frame(initial_frame_size_in_bytes());
 480 
 481   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
 482     __ reserved_stack_check();
 483   }
 484 
 485   code_stub->set_safepoint_offset(__ offset());
 486   __ relocate(relocInfo::poll_return_type);
 487   __ safepoint_poll(*code_stub->entry(), true /* at_return */, false /* acquire */, true /* in_nmethod */);
 488   __ ret(lr);
 489 }
 490 
 491 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 492   guarantee(info != nullptr, "Shouldn't be null");
 493   __ get_polling_page(rscratch1, relocInfo::poll_type);
 494   add_debug_info_for_branch(info);  // This isn't just debug info:
 495                                     // it's the oop map
 496   __ read_polling_page(rscratch1, relocInfo::poll_type);
 497   return __ offset();
 498 }
 499 
 500 
 501 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 502   if (from_reg == r31_sp)
 503     from_reg = sp;
 504   if (to_reg == r31_sp)
 505     to_reg = sp;
 506   __ mov(to_reg, from_reg);
 507 }
 508 
 509 void LIR_Assembler::swap_reg(Register a, Register b) { Unimplemented(); }
 510 
 511 
 512 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 513   assert(src->is_constant(), "should not call otherwise");
 514   assert(dest->is_register(), "should not call otherwise");
 515   LIR_Const* c = src->as_constant_ptr();
 516 
 517   switch (c->type()) {
 518     case T_INT: {
 519       assert(patch_code == lir_patch_none, "no patching handled here");
 520       __ movw(dest->as_register(), c->as_jint());
 521       break;
 522     }
 523 
 524     case T_ADDRESS: {
 525       assert(patch_code == lir_patch_none, "no patching handled here");
 526       __ mov(dest->as_register(), c->as_jint());
 527       break;
 528     }
 529 
 530     case T_LONG: {
 531       assert(patch_code == lir_patch_none, "no patching handled here");
 532       __ mov(dest->as_register_lo(), (intptr_t)c->as_jlong());
 533       break;
 534     }
 535 
 536     case T_OBJECT: {
 537         if (patch_code == lir_patch_none) {
 538           jobject2reg(c->as_jobject(), dest->as_register());
 539         } else {
 540           jobject2reg_with_patching(dest->as_register(), info);
 541         }
 542       break;
 543     }
 544 
 545     case T_METADATA: {
 546       if (patch_code != lir_patch_none) {
 547         klass2reg_with_patching(dest->as_register(), info);
 548       } else {
 549         __ mov_metadata(dest->as_register(), c->as_metadata());
 550       }
 551       break;
 552     }
 553 
 554     case T_FLOAT: {
 555       if (__ operand_valid_for_float_immediate(c->as_jfloat())) {
 556         __ fmovs(dest->as_float_reg(), (c->as_jfloat()));
 557       } else {
 558         __ adr(rscratch1, InternalAddress(float_constant(c->as_jfloat())));
 559         __ ldrs(dest->as_float_reg(), Address(rscratch1));
 560       }
 561       break;
 562     }
 563 
 564     case T_DOUBLE: {
 565       if (__ operand_valid_for_float_immediate(c->as_jdouble())) {
 566         __ fmovd(dest->as_double_reg(), (c->as_jdouble()));
 567       } else {
 568         __ adr(rscratch1, InternalAddress(double_constant(c->as_jdouble())));
 569         __ ldrd(dest->as_double_reg(), Address(rscratch1));
 570       }
 571       break;
 572     }
 573 
 574     default:
 575       ShouldNotReachHere();
 576   }
 577 }
 578 
 579 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 580   LIR_Const* c = src->as_constant_ptr();
 581   switch (c->type()) {
 582   case T_OBJECT:
 583     {
 584       if (! c->as_jobject())
 585         __ str(zr, frame_map()->address_for_slot(dest->single_stack_ix()));
 586       else {
 587         const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr);
 588         reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false);
 589       }
 590     }
 591     break;
 592   case T_ADDRESS:
 593     {
 594       const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr);
 595       reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false);
 596     }
 597   case T_INT:
 598   case T_FLOAT:
 599     {
 600       Register reg = zr;
 601       if (c->as_jint_bits() == 0)
 602         __ strw(zr, frame_map()->address_for_slot(dest->single_stack_ix()));
 603       else {
 604         __ movw(rscratch1, c->as_jint_bits());
 605         __ strw(rscratch1, frame_map()->address_for_slot(dest->single_stack_ix()));
 606       }
 607     }
 608     break;
 609   case T_LONG:
 610   case T_DOUBLE:
 611     {
 612       Register reg = zr;
 613       if (c->as_jlong_bits() == 0)
 614         __ str(zr, frame_map()->address_for_slot(dest->double_stack_ix(),
 615                                                  lo_word_offset_in_bytes));
 616       else {
 617         __ mov(rscratch1, (intptr_t)c->as_jlong_bits());
 618         __ str(rscratch1, frame_map()->address_for_slot(dest->double_stack_ix(),
 619                                                         lo_word_offset_in_bytes));
 620       }
 621     }
 622     break;
 623   default:
 624     ShouldNotReachHere();
 625   }
 626 }
 627 
 628 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 629   assert(src->is_constant(), "should not call otherwise");
 630   LIR_Const* c = src->as_constant_ptr();
 631   LIR_Address* to_addr = dest->as_address_ptr();
 632 
 633   void (Assembler::* insn)(Register Rt, const Address &adr);
 634 
 635   switch (type) {
 636   case T_ADDRESS:
 637     assert(c->as_jint() == 0, "should be");
 638     insn = &Assembler::str;
 639     break;
 640   case T_LONG:
 641     assert(c->as_jlong() == 0, "should be");
 642     insn = &Assembler::str;
 643     break;
 644   case T_INT:
 645     assert(c->as_jint() == 0, "should be");
 646     insn = &Assembler::strw;
 647     break;
 648   case T_OBJECT:
 649   case T_ARRAY:
 650     assert(c->as_jobject() == nullptr, "should be");
 651     if (UseCompressedOops && !wide) {
 652       insn = &Assembler::strw;
 653     } else {
 654       insn = &Assembler::str;
 655     }
 656     break;
 657   case T_CHAR:
 658   case T_SHORT:
 659     assert(c->as_jint() == 0, "should be");
 660     insn = &Assembler::strh;
 661     break;
 662   case T_BOOLEAN:
 663   case T_BYTE:
 664     assert(c->as_jint() == 0, "should be");
 665     insn = &Assembler::strb;
 666     break;
 667   default:
 668     ShouldNotReachHere();
 669     insn = &Assembler::str;  // unreachable
 670   }
 671 
 672   if (info) add_debug_info_for_null_check_here(info);
 673   (_masm->*insn)(zr, as_Address(to_addr, rscratch1));
 674 }
 675 
 676 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 677   assert(src->is_register(), "should not call otherwise");
 678   assert(dest->is_register(), "should not call otherwise");
 679 
 680   // move between cpu-registers
 681   if (dest->is_single_cpu()) {
 682     if (src->type() == T_LONG) {
 683       // Can do LONG -> OBJECT
 684       move_regs(src->as_register_lo(), dest->as_register());
 685       return;
 686     }
 687     assert(src->is_single_cpu(), "must match");
 688     if (src->type() == T_OBJECT) {
 689       __ verify_oop(src->as_register());
 690     }
 691     move_regs(src->as_register(), dest->as_register());
 692 
 693   } else if (dest->is_double_cpu()) {
 694     if (is_reference_type(src->type())) {
 695       // Surprising to me but we can see move of a long to t_object
 696       __ verify_oop(src->as_register());
 697       move_regs(src->as_register(), dest->as_register_lo());
 698       return;
 699     }
 700     assert(src->is_double_cpu(), "must match");
 701     Register f_lo = src->as_register_lo();
 702     Register f_hi = src->as_register_hi();
 703     Register t_lo = dest->as_register_lo();
 704     Register t_hi = dest->as_register_hi();
 705     assert(f_hi == f_lo, "must be same");
 706     assert(t_hi == t_lo, "must be same");
 707     move_regs(f_lo, t_lo);
 708 
 709   } else if (dest->is_single_fpu()) {
 710     __ fmovs(dest->as_float_reg(), src->as_float_reg());
 711 
 712   } else if (dest->is_double_fpu()) {
 713     __ fmovd(dest->as_double_reg(), src->as_double_reg());
 714 
 715   } else {
 716     ShouldNotReachHere();
 717   }
 718 }
 719 
 720 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 721   precond(src->is_register() && dest->is_stack());
 722 
 723   uint const c_sz32 = sizeof(uint32_t);
 724   uint const c_sz64 = sizeof(uint64_t);
 725 
 726   if (src->is_single_cpu()) {
 727     int index = dest->single_stack_ix();
 728     if (is_reference_type(type)) {
 729       __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1));
 730       __ verify_oop(src->as_register());
 731     } else if (type == T_METADATA || type == T_DOUBLE || type == T_ADDRESS) {
 732       __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1));
 733     } else {
 734       __ strw(src->as_register(), stack_slot_address(index, c_sz32, rscratch1));
 735     }
 736 
 737   } else if (src->is_double_cpu()) {
 738     int index = dest->double_stack_ix();
 739     Address dest_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes);
 740     __ str(src->as_register_lo(), dest_addr_LO);
 741 
 742   } else if (src->is_single_fpu()) {
 743     int index = dest->single_stack_ix();
 744     __ strs(src->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1));
 745 
 746   } else if (src->is_double_fpu()) {
 747     int index = dest->double_stack_ix();
 748     __ strd(src->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1));
 749 
 750   } else {
 751     ShouldNotReachHere();
 752   }
 753 }
 754 
 755 
 756 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide) {
 757   LIR_Address* to_addr = dest->as_address_ptr();
 758   PatchingStub* patch = nullptr;
 759   Register compressed_src = rscratch1;
 760 
 761   if (patch_code != lir_patch_none) {
 762     deoptimize_trap(info);
 763     return;
 764   }
 765 
 766   if (is_reference_type(type)) {
 767     __ verify_oop(src->as_register());
 768 
 769     if (UseCompressedOops && !wide) {
 770       __ encode_heap_oop(compressed_src, src->as_register());
 771     } else {
 772       compressed_src = src->as_register();
 773     }
 774   }
 775 
 776   int null_check_here = code_offset();
 777   switch (type) {
 778     case T_FLOAT: {
 779       __ strs(src->as_float_reg(), as_Address(to_addr));
 780       break;
 781     }
 782 
 783     case T_DOUBLE: {
 784       __ strd(src->as_double_reg(), as_Address(to_addr));
 785       break;
 786     }
 787 
 788     case T_ARRAY:   // fall through
 789     case T_OBJECT:  // fall through
 790       if (UseCompressedOops && !wide) {
 791         __ strw(compressed_src, as_Address(to_addr, rscratch2));
 792       } else {
 793          __ str(compressed_src, as_Address(to_addr));
 794       }
 795       break;
 796     case T_METADATA:
 797       // We get here to store a method pointer to the stack to pass to
 798       // a dtrace runtime call. This can't work on 64 bit with
 799       // compressed klass ptrs: T_METADATA can be a compressed klass
 800       // ptr or a 64 bit method pointer.
 801       ShouldNotReachHere();
 802       __ str(src->as_register(), as_Address(to_addr));
 803       break;
 804     case T_ADDRESS:
 805       __ str(src->as_register(), as_Address(to_addr));
 806       break;
 807     case T_INT:
 808       __ strw(src->as_register(), as_Address(to_addr));
 809       break;
 810 
 811     case T_LONG: {
 812       __ str(src->as_register_lo(), as_Address_lo(to_addr));
 813       break;
 814     }
 815 
 816     case T_BYTE:    // fall through
 817     case T_BOOLEAN: {
 818       __ strb(src->as_register(), as_Address(to_addr));
 819       break;
 820     }
 821 
 822     case T_CHAR:    // fall through
 823     case T_SHORT:
 824       __ strh(src->as_register(), as_Address(to_addr));
 825       break;
 826 
 827     default:
 828       ShouldNotReachHere();
 829   }
 830   if (info != nullptr) {
 831     add_debug_info_for_null_check(null_check_here, info);
 832   }
 833 }
 834 
 835 
 836 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
 837   precond(src->is_stack() && dest->is_register());
 838 
 839   uint const c_sz32 = sizeof(uint32_t);
 840   uint const c_sz64 = sizeof(uint64_t);
 841 
 842   if (dest->is_single_cpu()) {
 843     int index = src->single_stack_ix();
 844     if (is_reference_type(type)) {
 845       __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1));
 846       __ verify_oop(dest->as_register());
 847     } else if (type == T_METADATA || type == T_ADDRESS) {
 848       __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1));
 849     } else {
 850       __ ldrw(dest->as_register(), stack_slot_address(index, c_sz32, rscratch1));
 851     }
 852 
 853   } else if (dest->is_double_cpu()) {
 854     int index = src->double_stack_ix();
 855     Address src_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes);
 856     __ ldr(dest->as_register_lo(), src_addr_LO);
 857 
 858   } else if (dest->is_single_fpu()) {
 859     int index = src->single_stack_ix();
 860     __ ldrs(dest->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1));
 861 
 862   } else if (dest->is_double_fpu()) {
 863     int index = src->double_stack_ix();
 864     __ ldrd(dest->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1));
 865 
 866   } else {
 867     ShouldNotReachHere();
 868   }
 869 }
 870 
 871 
 872 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 873   address target = nullptr;
 874   relocInfo::relocType reloc_type = relocInfo::none;
 875 
 876   switch (patching_id(info)) {
 877   case PatchingStub::access_field_id:
 878     target = Runtime1::entry_for(C1StubId::access_field_patching_id);
 879     reloc_type = relocInfo::section_word_type;
 880     break;
 881   case PatchingStub::load_klass_id:
 882     target = Runtime1::entry_for(C1StubId::load_klass_patching_id);
 883     reloc_type = relocInfo::metadata_type;
 884     break;
 885   case PatchingStub::load_mirror_id:
 886     target = Runtime1::entry_for(C1StubId::load_mirror_patching_id);
 887     reloc_type = relocInfo::oop_type;
 888     break;
 889   case PatchingStub::load_appendix_id:
 890     target = Runtime1::entry_for(C1StubId::load_appendix_patching_id);
 891     reloc_type = relocInfo::oop_type;
 892     break;
 893   default: ShouldNotReachHere();
 894   }
 895 
 896   __ far_call(RuntimeAddress(target));
 897   add_call_info_here(info);
 898 }
 899 
 900 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
 901 
 902   LIR_Opr temp;
 903   if (type == T_LONG || type == T_DOUBLE)
 904     temp = FrameMap::rscratch1_long_opr;
 905   else
 906     temp = FrameMap::rscratch1_opr;
 907 
 908   stack2reg(src, temp, src->type());
 909   reg2stack(temp, dest, dest->type(), false);
 910 }
 911 
 912 
 913 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) {
 914   LIR_Address* addr = src->as_address_ptr();
 915   LIR_Address* from_addr = src->as_address_ptr();
 916 
 917   if (addr->base()->type() == T_OBJECT) {
 918     __ verify_oop(addr->base()->as_pointer_register());
 919   }
 920 
 921   if (patch_code != lir_patch_none) {
 922     deoptimize_trap(info);
 923     return;
 924   }
 925 
 926   if (info != nullptr) {
 927     add_debug_info_for_null_check_here(info);
 928   }
 929   int null_check_here = code_offset();
 930   switch (type) {
 931     case T_FLOAT: {
 932       __ ldrs(dest->as_float_reg(), as_Address(from_addr));
 933       break;
 934     }
 935 
 936     case T_DOUBLE: {
 937       __ ldrd(dest->as_double_reg(), as_Address(from_addr));
 938       break;
 939     }
 940 
 941     case T_ARRAY:   // fall through
 942     case T_OBJECT:  // fall through
 943       if (UseCompressedOops && !wide) {
 944         __ ldrw(dest->as_register(), as_Address(from_addr));
 945       } else {
 946         __ ldr(dest->as_register(), as_Address(from_addr));
 947       }
 948       break;
 949     case T_METADATA:
 950       // We get here to store a method pointer to the stack to pass to
 951       // a dtrace runtime call. This can't work on 64 bit with
 952       // compressed klass ptrs: T_METADATA can be a compressed klass
 953       // ptr or a 64 bit method pointer.
 954       ShouldNotReachHere();
 955       __ ldr(dest->as_register(), as_Address(from_addr));
 956       break;
 957     case T_ADDRESS:
 958       __ ldr(dest->as_register(), as_Address(from_addr));
 959       break;
 960     case T_INT:
 961       __ ldrw(dest->as_register(), as_Address(from_addr));
 962       break;
 963 
 964     case T_LONG: {
 965       __ ldr(dest->as_register_lo(), as_Address_lo(from_addr));
 966       break;
 967     }
 968 
 969     case T_BYTE:
 970       __ ldrsb(dest->as_register(), as_Address(from_addr));
 971       break;
 972     case T_BOOLEAN: {
 973       __ ldrb(dest->as_register(), as_Address(from_addr));
 974       break;
 975     }
 976 
 977     case T_CHAR:
 978       __ ldrh(dest->as_register(), as_Address(from_addr));
 979       break;
 980     case T_SHORT:
 981       __ ldrsh(dest->as_register(), as_Address(from_addr));
 982       break;
 983 
 984     default:
 985       ShouldNotReachHere();
 986   }
 987 
 988   if (is_reference_type(type)) {
 989     if (UseCompressedOops && !wide) {
 990       __ decode_heap_oop(dest->as_register());
 991     }
 992 
 993     __ verify_oop(dest->as_register());
 994   }
 995 }
 996 
 997 
 998 int LIR_Assembler::array_element_size(BasicType type) const {
 999   int elem_size = type2aelembytes(type);
1000   return exact_log2(elem_size);
1001 }
1002 
1003 
1004 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1005   switch (op->code()) {
1006   case lir_idiv:
1007   case lir_irem:
1008     arithmetic_idiv(op->code(),
1009                     op->in_opr1(),
1010                     op->in_opr2(),
1011                     op->in_opr3(),
1012                     op->result_opr(),
1013                     op->info());
1014     break;
1015   case lir_fmad:
1016     __ fmaddd(op->result_opr()->as_double_reg(),
1017               op->in_opr1()->as_double_reg(),
1018               op->in_opr2()->as_double_reg(),
1019               op->in_opr3()->as_double_reg());
1020     break;
1021   case lir_fmaf:
1022     __ fmadds(op->result_opr()->as_float_reg(),
1023               op->in_opr1()->as_float_reg(),
1024               op->in_opr2()->as_float_reg(),
1025               op->in_opr3()->as_float_reg());
1026     break;
1027   default:      ShouldNotReachHere(); break;
1028   }
1029 }
1030 
1031 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1032 #ifdef ASSERT
1033   assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label");
1034   if (op->block() != nullptr)  _branch_target_blocks.append(op->block());
1035   if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock());
1036 #endif
1037 
1038   if (op->cond() == lir_cond_always) {
1039     if (op->info() != nullptr) add_debug_info_for_branch(op->info());
1040     __ b(*(op->label()));
1041   } else {
1042     Assembler::Condition acond;
1043     if (op->code() == lir_cond_float_branch) {
1044       bool is_unordered = (op->ublock() == op->block());
1045       // Assembler::EQ does not permit unordered branches, so we add
1046       // another branch here.  Likewise, Assembler::NE does not permit
1047       // ordered branches.
1048       if ((is_unordered && op->cond() == lir_cond_equal)
1049           || (!is_unordered && op->cond() == lir_cond_notEqual))
1050         __ br(Assembler::VS, *(op->ublock()->label()));
1051       switch(op->cond()) {
1052       case lir_cond_equal:        acond = Assembler::EQ; break;
1053       case lir_cond_notEqual:     acond = Assembler::NE; break;
1054       case lir_cond_less:         acond = (is_unordered ? Assembler::LT : Assembler::LO); break;
1055       case lir_cond_lessEqual:    acond = (is_unordered ? Assembler::LE : Assembler::LS); break;
1056       case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::HS : Assembler::GE); break;
1057       case lir_cond_greater:      acond = (is_unordered ? Assembler::HI : Assembler::GT); break;
1058       default:                    ShouldNotReachHere();
1059         acond = Assembler::EQ;  // unreachable
1060       }
1061     } else {
1062       switch (op->cond()) {
1063         case lir_cond_equal:        acond = Assembler::EQ; break;
1064         case lir_cond_notEqual:     acond = Assembler::NE; break;
1065         case lir_cond_less:         acond = Assembler::LT; break;
1066         case lir_cond_lessEqual:    acond = Assembler::LE; break;
1067         case lir_cond_greaterEqual: acond = Assembler::GE; break;
1068         case lir_cond_greater:      acond = Assembler::GT; break;
1069         case lir_cond_belowEqual:   acond = Assembler::LS; break;
1070         case lir_cond_aboveEqual:   acond = Assembler::HS; break;
1071         default:                    ShouldNotReachHere();
1072           acond = Assembler::EQ;  // unreachable
1073       }
1074     }
1075     __ br(acond,*(op->label()));
1076   }
1077 }
1078 
1079 
1080 
1081 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1082   LIR_Opr src  = op->in_opr();
1083   LIR_Opr dest = op->result_opr();
1084 
1085   switch (op->bytecode()) {
1086     case Bytecodes::_i2f:
1087       {
1088         __ scvtfws(dest->as_float_reg(), src->as_register());
1089         break;
1090       }
1091     case Bytecodes::_i2d:
1092       {
1093         __ scvtfwd(dest->as_double_reg(), src->as_register());
1094         break;
1095       }
1096     case Bytecodes::_l2d:
1097       {
1098         __ scvtfd(dest->as_double_reg(), src->as_register_lo());
1099         break;
1100       }
1101     case Bytecodes::_l2f:
1102       {
1103         __ scvtfs(dest->as_float_reg(), src->as_register_lo());
1104         break;
1105       }
1106     case Bytecodes::_f2d:
1107       {
1108         __ fcvts(dest->as_double_reg(), src->as_float_reg());
1109         break;
1110       }
1111     case Bytecodes::_d2f:
1112       {
1113         __ fcvtd(dest->as_float_reg(), src->as_double_reg());
1114         break;
1115       }
1116     case Bytecodes::_i2c:
1117       {
1118         __ ubfx(dest->as_register(), src->as_register(), 0, 16);
1119         break;
1120       }
1121     case Bytecodes::_i2l:
1122       {
1123         __ sxtw(dest->as_register_lo(), src->as_register());
1124         break;
1125       }
1126     case Bytecodes::_i2s:
1127       {
1128         __ sxth(dest->as_register(), src->as_register());
1129         break;
1130       }
1131     case Bytecodes::_i2b:
1132       {
1133         __ sxtb(dest->as_register(), src->as_register());
1134         break;
1135       }
1136     case Bytecodes::_l2i:
1137       {
1138         _masm->block_comment("FIXME: This could be a no-op");
1139         __ uxtw(dest->as_register(), src->as_register_lo());
1140         break;
1141       }
1142     case Bytecodes::_d2l:
1143       {
1144         __ fcvtzd(dest->as_register_lo(), src->as_double_reg());
1145         break;
1146       }
1147     case Bytecodes::_f2i:
1148       {
1149         __ fcvtzsw(dest->as_register(), src->as_float_reg());
1150         break;
1151       }
1152     case Bytecodes::_f2l:
1153       {
1154         __ fcvtzs(dest->as_register_lo(), src->as_float_reg());
1155         break;
1156       }
1157     case Bytecodes::_d2i:
1158       {
1159         __ fcvtzdw(dest->as_register(), src->as_double_reg());
1160         break;
1161       }
1162     default: ShouldNotReachHere();
1163   }
1164 }
1165 
1166 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1167   if (op->init_check()) {
1168     __ lea(rscratch1, Address(op->klass()->as_register(), InstanceKlass::init_state_offset()));
1169     __ ldarb(rscratch1, rscratch1);
1170     __ cmpw(rscratch1, InstanceKlass::fully_initialized);
1171     add_debug_info_for_null_check_here(op->stub()->info());
1172     __ br(Assembler::NE, *op->stub()->entry());
1173   }
1174   __ allocate_object(op->obj()->as_register(),
1175                      op->tmp1()->as_register(),
1176                      op->tmp2()->as_register(),
1177                      op->header_size(),
1178                      op->object_size(),
1179                      op->klass()->as_register(),
1180                      *op->stub()->entry());
1181   __ bind(*op->stub()->continuation());
1182 }
1183 
1184 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1185   Register len =  op->len()->as_register();
1186   __ uxtw(len, len);
1187 
1188   if (UseSlowPath ||
1189       (!UseFastNewObjectArray && is_reference_type(op->type())) ||
1190       (!UseFastNewTypeArray   && !is_reference_type(op->type()))) {
1191     __ b(*op->stub()->entry());
1192   } else {
1193     Register tmp1 = op->tmp1()->as_register();
1194     Register tmp2 = op->tmp2()->as_register();
1195     Register tmp3 = op->tmp3()->as_register();
1196     if (len == tmp1) {
1197       tmp1 = tmp3;
1198     } else if (len == tmp2) {
1199       tmp2 = tmp3;
1200     } else if (len == tmp3) {
1201       // everything is ok
1202     } else {
1203       __ mov(tmp3, len);
1204     }
1205     __ allocate_array(op->obj()->as_register(),
1206                       len,
1207                       tmp1,
1208                       tmp2,
1209                       arrayOopDesc::base_offset_in_bytes(op->type()),
1210                       array_element_size(op->type()),
1211                       op->klass()->as_register(),
1212                       *op->stub()->entry(),
1213                       op->zero_array());
1214   }
1215   __ bind(*op->stub()->continuation());
1216 }
1217 
1218 void LIR_Assembler::type_profile_helper(Register mdo,
1219                                         ciMethodData *md, ciProfileData *data,
1220                                         Register recv, Label* update_done) {
1221   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1222     Label next_test;
1223     // See if the receiver is receiver[n].
1224     __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1225     __ ldr(rscratch1, Address(rscratch2));
1226     __ cmp(recv, rscratch1);
1227     __ br(Assembler::NE, next_test);
1228     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1229     __ addptr(data_addr, DataLayout::counter_increment);
1230     __ b(*update_done);
1231     __ bind(next_test);
1232   }
1233 
1234   // Didn't find receiver; find next empty slot and fill it in
1235   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1236     Label next_test;
1237     __ lea(rscratch2,
1238            Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1239     Address recv_addr(rscratch2);
1240     __ ldr(rscratch1, recv_addr);
1241     __ cbnz(rscratch1, next_test);
1242     __ str(recv, recv_addr);
1243     __ mov(rscratch1, DataLayout::counter_increment);
1244     __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))));
1245     __ str(rscratch1, Address(rscratch2));
1246     __ b(*update_done);
1247     __ bind(next_test);
1248   }
1249 }
1250 
1251 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1252   // we always need a stub for the failure case.
1253   CodeStub* stub = op->stub();
1254   Register obj = op->object()->as_register();
1255   Register k_RInfo = op->tmp1()->as_register();
1256   Register klass_RInfo = op->tmp2()->as_register();
1257   Register dst = op->result_opr()->as_register();
1258   ciKlass* k = op->klass();
1259   Register Rtmp1 = noreg;
1260 
1261   // check if it needs to be profiled
1262   ciMethodData* md;
1263   ciProfileData* data;
1264 
1265   const bool should_profile = op->should_profile();
1266 
1267   if (should_profile) {
1268     ciMethod* method = op->profiled_method();
1269     assert(method != nullptr, "Should have method");
1270     int bci = op->profiled_bci();
1271     md = method->method_data_or_null();
1272     assert(md != nullptr, "Sanity");
1273     data = md->bci_to_data(bci);
1274     assert(data != nullptr,                "need data for type check");
1275     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1276   }
1277   Label* success_target = success;
1278   Label* failure_target = failure;
1279 
1280   if (obj == k_RInfo) {
1281     k_RInfo = dst;
1282   } else if (obj == klass_RInfo) {
1283     klass_RInfo = dst;
1284   }
1285   if (k->is_loaded() && !UseCompressedClassPointers) {
1286     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1287   } else {
1288     Rtmp1 = op->tmp3()->as_register();
1289     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1290   }
1291 
1292   assert_different_registers(obj, k_RInfo, klass_RInfo);
1293 
1294   if (should_profile) {
1295     Register mdo  = klass_RInfo;
1296     __ mov_metadata(mdo, md->constant_encoding());
1297     Label not_null;
1298     __ cbnz(obj, not_null);
1299     // Object is null; update MDO and exit
1300     Address data_addr
1301       = __ form_address(rscratch2, mdo,
1302                         md->byte_offset_of_slot(data, DataLayout::flags_offset()),
1303                         0);
1304     __ ldrb(rscratch1, data_addr);
1305     __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant());
1306     __ strb(rscratch1, data_addr);
1307     __ b(*obj_is_null);
1308     __ bind(not_null);
1309 
1310     Label update_done;
1311     Register recv = k_RInfo;
1312     __ load_klass(recv, obj);
1313     type_profile_helper(mdo, md, data, recv, &update_done);
1314     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1315     __ addptr(counter_addr, DataLayout::counter_increment);
1316 
1317     __ bind(update_done);
1318   } else {
1319     __ cbz(obj, *obj_is_null);
1320   }
1321 
1322   if (!k->is_loaded()) {
1323     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1324   } else {
1325     __ mov_metadata(k_RInfo, k->constant_encoding());
1326   }
1327   __ verify_oop(obj);
1328 
1329   if (op->fast_check()) {
1330     // get object class
1331     // not a safepoint as obj null check happens earlier
1332     __ load_klass(rscratch1, obj);
1333     __ cmp( rscratch1, k_RInfo);
1334 
1335     __ br(Assembler::NE, *failure_target);
1336     // successful cast, fall through to profile or jump
1337   } else {
1338     // get object class
1339     // not a safepoint as obj null check happens earlier
1340     __ load_klass(klass_RInfo, obj);
1341     if (k->is_loaded()) {
1342       // See if we get an immediate positive hit
1343       __ ldr(rscratch1, Address(klass_RInfo, int64_t(k->super_check_offset())));
1344       __ cmp(k_RInfo, rscratch1);
1345       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1346         __ br(Assembler::NE, *failure_target);
1347         // successful cast, fall through to profile or jump
1348       } else {
1349         // See if we get an immediate positive hit
1350         __ br(Assembler::EQ, *success_target);
1351         // check for self
1352         __ cmp(klass_RInfo, k_RInfo);
1353         __ br(Assembler::EQ, *success_target);
1354 
1355         __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
1356         __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id)));
1357         __ ldr(klass_RInfo, Address(__ post(sp, 2 * wordSize)));
1358         // result is a boolean
1359         __ cbzw(klass_RInfo, *failure_target);
1360         // successful cast, fall through to profile or jump
1361       }
1362     } else {
1363       // perform the fast part of the checking logic
1364       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
1365       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1366       __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
1367       __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id)));
1368       __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize)));
1369       // result is a boolean
1370       __ cbz(k_RInfo, *failure_target);
1371       // successful cast, fall through to profile or jump
1372     }
1373   }
1374   __ b(*success);
1375 }
1376 
1377 
1378 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1379   const bool should_profile = op->should_profile();
1380 
1381   LIR_Code code = op->code();
1382   if (code == lir_store_check) {
1383     Register value = op->object()->as_register();
1384     Register array = op->array()->as_register();
1385     Register k_RInfo = op->tmp1()->as_register();
1386     Register klass_RInfo = op->tmp2()->as_register();
1387     Register Rtmp1 = op->tmp3()->as_register();
1388 
1389     CodeStub* stub = op->stub();
1390 
1391     // check if it needs to be profiled
1392     ciMethodData* md;
1393     ciProfileData* data;
1394 
1395     if (should_profile) {
1396       ciMethod* method = op->profiled_method();
1397       assert(method != nullptr, "Should have method");
1398       int bci = op->profiled_bci();
1399       md = method->method_data_or_null();
1400       assert(md != nullptr, "Sanity");
1401       data = md->bci_to_data(bci);
1402       assert(data != nullptr,                "need data for type check");
1403       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1404     }
1405     Label done;
1406     Label* success_target = &done;
1407     Label* failure_target = stub->entry();
1408 
1409     if (should_profile) {
1410       Label not_null;
1411       Register mdo  = klass_RInfo;
1412       __ mov_metadata(mdo, md->constant_encoding());
1413       __ cbnz(value, not_null);
1414       // Object is null; update MDO and exit
1415       Address data_addr
1416         = __ form_address(rscratch2, mdo,
1417                           md->byte_offset_of_slot(data, DataLayout::flags_offset()),
1418                           0);
1419       __ ldrb(rscratch1, data_addr);
1420       __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant());
1421       __ strb(rscratch1, data_addr);
1422       __ b(done);
1423       __ bind(not_null);
1424 
1425       Label update_done;
1426       Register recv = k_RInfo;
1427       __ load_klass(recv, value);
1428       type_profile_helper(mdo, md, data, recv, &update_done);
1429       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1430       __ addptr(counter_addr, DataLayout::counter_increment);
1431       __ bind(update_done);
1432     } else {
1433       __ cbz(value, done);
1434     }
1435 
1436     add_debug_info_for_null_check_here(op->info_for_exception());
1437     __ load_klass(k_RInfo, array);
1438     __ load_klass(klass_RInfo, value);
1439 
1440     // get instance klass (it's already uncompressed)
1441     __ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1442     // perform the fast part of the checking logic
1443     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
1444     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1445     __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
1446     __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id)));
1447     __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize)));
1448     // result is a boolean
1449     __ cbzw(k_RInfo, *failure_target);
1450     // fall through to the success case
1451 
1452     __ bind(done);
1453   } else if (code == lir_checkcast) {
1454     Register obj = op->object()->as_register();
1455     Register dst = op->result_opr()->as_register();
1456     Label success;
1457     emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1458     __ bind(success);
1459     if (dst != obj) {
1460       __ mov(dst, obj);
1461     }
1462   } else if (code == lir_instanceof) {
1463     Register obj = op->object()->as_register();
1464     Register dst = op->result_opr()->as_register();
1465     Label success, failure, done;
1466     emit_typecheck_helper(op, &success, &failure, &failure);
1467     __ bind(failure);
1468     __ mov(dst, zr);
1469     __ b(done);
1470     __ bind(success);
1471     __ mov(dst, 1);
1472     __ bind(done);
1473   } else {
1474     ShouldNotReachHere();
1475   }
1476 }
1477 
1478 void LIR_Assembler::casw(Register addr, Register newval, Register cmpval) {
1479   __ cmpxchg(addr, cmpval, newval, Assembler::word, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1);
1480   __ cset(rscratch1, Assembler::NE);
1481   __ membar(__ AnyAny);
1482 }
1483 
1484 void LIR_Assembler::casl(Register addr, Register newval, Register cmpval) {
1485   __ cmpxchg(addr, cmpval, newval, Assembler::xword, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1);
1486   __ cset(rscratch1, Assembler::NE);
1487   __ membar(__ AnyAny);
1488 }
1489 
1490 
1491 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1492   Register addr;
1493   if (op->addr()->is_register()) {
1494     addr = as_reg(op->addr());
1495   } else {
1496     assert(op->addr()->is_address(), "what else?");
1497     LIR_Address* addr_ptr = op->addr()->as_address_ptr();
1498     assert(addr_ptr->disp() == 0, "need 0 disp");
1499     assert(addr_ptr->index() == LIR_Opr::illegalOpr(), "need 0 index");
1500     addr = as_reg(addr_ptr->base());
1501   }
1502   Register newval = as_reg(op->new_value());
1503   Register cmpval = as_reg(op->cmp_value());
1504 
1505   if (op->code() == lir_cas_obj) {
1506     if (UseCompressedOops) {
1507       Register t1 = op->tmp1()->as_register();
1508       assert(op->tmp1()->is_valid(), "must be");
1509       __ encode_heap_oop(t1, cmpval);
1510       cmpval = t1;
1511       __ encode_heap_oop(rscratch2, newval);
1512       newval = rscratch2;
1513       casw(addr, newval, cmpval);
1514     } else {
1515       casl(addr, newval, cmpval);
1516     }
1517   } else if (op->code() == lir_cas_int) {
1518     casw(addr, newval, cmpval);
1519   } else {
1520     casl(addr, newval, cmpval);
1521   }
1522 }
1523 
1524 
1525 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type,
1526                           LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) {
1527   assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on aarch64");
1528 
1529   Assembler::Condition acond, ncond;
1530   switch (condition) {
1531   case lir_cond_equal:        acond = Assembler::EQ; ncond = Assembler::NE; break;
1532   case lir_cond_notEqual:     acond = Assembler::NE; ncond = Assembler::EQ; break;
1533   case lir_cond_less:         acond = Assembler::LT; ncond = Assembler::GE; break;
1534   case lir_cond_lessEqual:    acond = Assembler::LE; ncond = Assembler::GT; break;
1535   case lir_cond_greaterEqual: acond = Assembler::GE; ncond = Assembler::LT; break;
1536   case lir_cond_greater:      acond = Assembler::GT; ncond = Assembler::LE; break;
1537   case lir_cond_belowEqual:
1538   case lir_cond_aboveEqual:
1539   default:                    ShouldNotReachHere();
1540     acond = Assembler::EQ; ncond = Assembler::NE;  // unreachable
1541   }
1542 
1543   assert(result->is_single_cpu() || result->is_double_cpu(),
1544          "expect single register for result");
1545   if (opr1->is_constant() && opr2->is_constant()
1546       && opr1->type() == T_INT && opr2->type() == T_INT) {
1547     jint val1 = opr1->as_jint();
1548     jint val2 = opr2->as_jint();
1549     if (val1 == 0 && val2 == 1) {
1550       __ cset(result->as_register(), ncond);
1551       return;
1552     } else if (val1 == 1 && val2 == 0) {
1553       __ cset(result->as_register(), acond);
1554       return;
1555     }
1556   }
1557 
1558   if (opr1->is_constant() && opr2->is_constant()
1559       && opr1->type() == T_LONG && opr2->type() == T_LONG) {
1560     jlong val1 = opr1->as_jlong();
1561     jlong val2 = opr2->as_jlong();
1562     if (val1 == 0 && val2 == 1) {
1563       __ cset(result->as_register_lo(), ncond);
1564       return;
1565     } else if (val1 == 1 && val2 == 0) {
1566       __ cset(result->as_register_lo(), acond);
1567       return;
1568     }
1569   }
1570 
1571   if (opr1->is_stack()) {
1572     stack2reg(opr1, FrameMap::rscratch1_opr, result->type());
1573     opr1 = FrameMap::rscratch1_opr;
1574   } else if (opr1->is_constant()) {
1575     LIR_Opr tmp
1576       = opr1->type() == T_LONG ? FrameMap::rscratch1_long_opr : FrameMap::rscratch1_opr;
1577     const2reg(opr1, tmp, lir_patch_none, nullptr);
1578     opr1 = tmp;
1579   }
1580 
1581   if (opr2->is_stack()) {
1582     stack2reg(opr2, FrameMap::rscratch2_opr, result->type());
1583     opr2 = FrameMap::rscratch2_opr;
1584   } else if (opr2->is_constant()) {
1585     LIR_Opr tmp
1586       = opr2->type() == T_LONG ? FrameMap::rscratch2_long_opr : FrameMap::rscratch2_opr;
1587     const2reg(opr2, tmp, lir_patch_none, nullptr);
1588     opr2 = tmp;
1589   }
1590 
1591   if (result->type() == T_LONG)
1592     __ csel(result->as_register_lo(), opr1->as_register_lo(), opr2->as_register_lo(), acond);
1593   else
1594     __ csel(result->as_register(), opr1->as_register(), opr2->as_register(), acond);
1595 }
1596 
1597 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1598   assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
1599 
1600   if (left->is_single_cpu()) {
1601     Register lreg = left->as_register();
1602     Register dreg = as_reg(dest);
1603 
1604     if (right->is_single_cpu()) {
1605       // cpu register - cpu register
1606 
1607       assert(left->type() == T_INT && right->type() == T_INT && dest->type() == T_INT,
1608              "should be");
1609       Register rreg = right->as_register();
1610       switch (code) {
1611       case lir_add: __ addw (dest->as_register(), lreg, rreg); break;
1612       case lir_sub: __ subw (dest->as_register(), lreg, rreg); break;
1613       case lir_mul: __ mulw (dest->as_register(), lreg, rreg); break;
1614       default:      ShouldNotReachHere();
1615       }
1616 
1617     } else if (right->is_double_cpu()) {
1618       Register rreg = right->as_register_lo();
1619       // single_cpu + double_cpu: can happen with obj+long
1620       assert(code == lir_add || code == lir_sub, "mismatched arithmetic op");
1621       switch (code) {
1622       case lir_add: __ add(dreg, lreg, rreg); break;
1623       case lir_sub: __ sub(dreg, lreg, rreg); break;
1624       default: ShouldNotReachHere();
1625       }
1626     } else if (right->is_constant()) {
1627       // cpu register - constant
1628       jlong c;
1629 
1630       // FIXME.  This is fugly: we really need to factor all this logic.
1631       switch(right->type()) {
1632       case T_LONG:
1633         c = right->as_constant_ptr()->as_jlong();
1634         break;
1635       case T_INT:
1636       case T_ADDRESS:
1637         c = right->as_constant_ptr()->as_jint();
1638         break;
1639       default:
1640         ShouldNotReachHere();
1641         c = 0;  // unreachable
1642         break;
1643       }
1644 
1645       assert(code == lir_add || code == lir_sub, "mismatched arithmetic op");
1646       if (c == 0 && dreg == lreg) {
1647         COMMENT("effective nop elided");
1648         return;
1649       }
1650       switch(left->type()) {
1651       case T_INT:
1652         switch (code) {
1653         case lir_add: __ addw(dreg, lreg, c); break;
1654         case lir_sub: __ subw(dreg, lreg, c); break;
1655         default: ShouldNotReachHere();
1656         }
1657         break;
1658       case T_OBJECT:
1659       case T_ADDRESS:
1660         switch (code) {
1661         case lir_add: __ add(dreg, lreg, c); break;
1662         case lir_sub: __ sub(dreg, lreg, c); break;
1663         default: ShouldNotReachHere();
1664         }
1665         break;
1666       default:
1667         ShouldNotReachHere();
1668       }
1669     } else {
1670       ShouldNotReachHere();
1671     }
1672 
1673   } else if (left->is_double_cpu()) {
1674     Register lreg_lo = left->as_register_lo();
1675 
1676     if (right->is_double_cpu()) {
1677       // cpu register - cpu register
1678       Register rreg_lo = right->as_register_lo();
1679       switch (code) {
1680       case lir_add: __ add (dest->as_register_lo(), lreg_lo, rreg_lo); break;
1681       case lir_sub: __ sub (dest->as_register_lo(), lreg_lo, rreg_lo); break;
1682       case lir_mul: __ mul (dest->as_register_lo(), lreg_lo, rreg_lo); break;
1683       case lir_div: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, false, rscratch1); break;
1684       case lir_rem: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, true, rscratch1); break;
1685       default:
1686         ShouldNotReachHere();
1687       }
1688 
1689     } else if (right->is_constant()) {
1690       jlong c = right->as_constant_ptr()->as_jlong();
1691       Register dreg = as_reg(dest);
1692       switch (code) {
1693         case lir_add:
1694         case lir_sub:
1695           if (c == 0 && dreg == lreg_lo) {
1696             COMMENT("effective nop elided");
1697             return;
1698           }
1699           code == lir_add ? __ add(dreg, lreg_lo, c) : __ sub(dreg, lreg_lo, c);
1700           break;
1701         case lir_div:
1702           assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant");
1703           if (c == 1) {
1704             // move lreg_lo to dreg if divisor is 1
1705             __ mov(dreg, lreg_lo);
1706           } else {
1707             unsigned int shift = log2i_exact(c);
1708             // use rscratch1 as intermediate result register
1709             __ asr(rscratch1, lreg_lo, 63);
1710             __ add(rscratch1, lreg_lo, rscratch1, Assembler::LSR, 64 - shift);
1711             __ asr(dreg, rscratch1, shift);
1712           }
1713           break;
1714         case lir_rem:
1715           assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant");
1716           if (c == 1) {
1717             // move 0 to dreg if divisor is 1
1718             __ mov(dreg, zr);
1719           } else {
1720             // use rscratch1 as intermediate result register
1721             __ negs(rscratch1, lreg_lo);
1722             __ andr(dreg, lreg_lo, c - 1);
1723             __ andr(rscratch1, rscratch1, c - 1);
1724             __ csneg(dreg, dreg, rscratch1, Assembler::MI);
1725           }
1726           break;
1727         default:
1728           ShouldNotReachHere();
1729       }
1730     } else {
1731       ShouldNotReachHere();
1732     }
1733   } else if (left->is_single_fpu()) {
1734     assert(right->is_single_fpu(), "right hand side of float arithmetics needs to be float register");
1735     switch (code) {
1736     case lir_add: __ fadds (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1737     case lir_sub: __ fsubs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1738     case lir_mul: __ fmuls (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1739     case lir_div: __ fdivs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1740     default:
1741       ShouldNotReachHere();
1742     }
1743   } else if (left->is_double_fpu()) {
1744     if (right->is_double_fpu()) {
1745       // fpu register - fpu register
1746       switch (code) {
1747       case lir_add: __ faddd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1748       case lir_sub: __ fsubd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1749       case lir_mul: __ fmuld (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1750       case lir_div: __ fdivd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1751       default:
1752         ShouldNotReachHere();
1753       }
1754     } else {
1755       if (right->is_constant()) {
1756         ShouldNotReachHere();
1757       }
1758       ShouldNotReachHere();
1759     }
1760   } else if (left->is_single_stack() || left->is_address()) {
1761     assert(left == dest, "left and dest must be equal");
1762     ShouldNotReachHere();
1763   } else {
1764     ShouldNotReachHere();
1765   }
1766 }
1767 
1768 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) { Unimplemented(); }
1769 
1770 
1771 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) {
1772   switch(code) {
1773   case lir_abs : __ fabsd(dest->as_double_reg(), value->as_double_reg()); break;
1774   case lir_sqrt: __ fsqrtd(dest->as_double_reg(), value->as_double_reg()); break;
1775   case lir_f2hf: __ flt_to_flt16(dest->as_register(), value->as_float_reg(), tmp->as_float_reg()); break;
1776   case lir_hf2f: __ flt16_to_flt(dest->as_float_reg(), value->as_register(), tmp->as_float_reg()); break;
1777   default      : ShouldNotReachHere();
1778   }
1779 }
1780 
1781 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
1782 
1783   assert(left->is_single_cpu() || left->is_double_cpu(), "expect single or double register");
1784   Register Rleft = left->is_single_cpu() ? left->as_register() :
1785                                            left->as_register_lo();
1786    if (dst->is_single_cpu()) {
1787      Register Rdst = dst->as_register();
1788      if (right->is_constant()) {
1789        switch (code) {
1790          case lir_logic_and: __ andw (Rdst, Rleft, right->as_jint()); break;
1791          case lir_logic_or:  __ orrw (Rdst, Rleft, right->as_jint()); break;
1792          case lir_logic_xor: __ eorw (Rdst, Rleft, right->as_jint()); break;
1793          default: ShouldNotReachHere(); break;
1794        }
1795      } else {
1796        Register Rright = right->is_single_cpu() ? right->as_register() :
1797                                                   right->as_register_lo();
1798        switch (code) {
1799          case lir_logic_and: __ andw (Rdst, Rleft, Rright); break;
1800          case lir_logic_or:  __ orrw (Rdst, Rleft, Rright); break;
1801          case lir_logic_xor: __ eorw (Rdst, Rleft, Rright); break;
1802          default: ShouldNotReachHere(); break;
1803        }
1804      }
1805    } else {
1806      Register Rdst = dst->as_register_lo();
1807      if (right->is_constant()) {
1808        switch (code) {
1809          case lir_logic_and: __ andr (Rdst, Rleft, right->as_jlong()); break;
1810          case lir_logic_or:  __ orr (Rdst, Rleft, right->as_jlong()); break;
1811          case lir_logic_xor: __ eor (Rdst, Rleft, right->as_jlong()); break;
1812          default: ShouldNotReachHere(); break;
1813        }
1814      } else {
1815        Register Rright = right->is_single_cpu() ? right->as_register() :
1816                                                   right->as_register_lo();
1817        switch (code) {
1818          case lir_logic_and: __ andr (Rdst, Rleft, Rright); break;
1819          case lir_logic_or:  __ orr (Rdst, Rleft, Rright); break;
1820          case lir_logic_xor: __ eor (Rdst, Rleft, Rright); break;
1821          default: ShouldNotReachHere(); break;
1822        }
1823      }
1824    }
1825 }
1826 
1827 
1828 
1829 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr illegal, LIR_Opr result, CodeEmitInfo* info) {
1830 
1831   // opcode check
1832   assert((code == lir_idiv) || (code == lir_irem), "opcode must be idiv or irem");
1833   bool is_irem = (code == lir_irem);
1834 
1835   // operand check
1836   assert(left->is_single_cpu(),   "left must be register");
1837   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
1838   assert(result->is_single_cpu(), "result must be register");
1839   Register lreg = left->as_register();
1840   Register dreg = result->as_register();
1841 
1842   // power-of-2 constant check and codegen
1843   if (right->is_constant()) {
1844     int c = right->as_constant_ptr()->as_jint();
1845     assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant");
1846     if (is_irem) {
1847       if (c == 1) {
1848         // move 0 to dreg if divisor is 1
1849         __ movw(dreg, zr);
1850       } else {
1851         // use rscratch1 as intermediate result register
1852         __ negsw(rscratch1, lreg);
1853         __ andw(dreg, lreg, c - 1);
1854         __ andw(rscratch1, rscratch1, c - 1);
1855         __ csnegw(dreg, dreg, rscratch1, Assembler::MI);
1856       }
1857     } else {
1858       if (c == 1) {
1859         // move lreg to dreg if divisor is 1
1860         __ movw(dreg, lreg);
1861       } else {
1862         unsigned int shift = exact_log2(c);
1863         // use rscratch1 as intermediate result register
1864         __ asrw(rscratch1, lreg, 31);
1865         __ addw(rscratch1, lreg, rscratch1, Assembler::LSR, 32 - shift);
1866         __ asrw(dreg, rscratch1, shift);
1867       }
1868     }
1869   } else {
1870     Register rreg = right->as_register();
1871     __ corrected_idivl(dreg, lreg, rreg, is_irem, rscratch1);
1872   }
1873 }
1874 
1875 
1876 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1877   if (opr1->is_constant() && opr2->is_single_cpu()) {
1878     // tableswitch
1879     Register reg = as_reg(opr2);
1880     struct tableswitch &table = switches[opr1->as_constant_ptr()->as_jint()];
1881     __ tableswitch(reg, table._first_key, table._last_key, table._branches, table._after);
1882   } else if (opr1->is_single_cpu() || opr1->is_double_cpu()) {
1883     Register reg1 = as_reg(opr1);
1884     if (opr2->is_single_cpu()) {
1885       // cpu register - cpu register
1886       Register reg2 = opr2->as_register();
1887       if (is_reference_type(opr1->type())) {
1888         __ cmpoop(reg1, reg2);
1889       } else {
1890         assert(!is_reference_type(opr2->type()), "cmp int, oop?");
1891         __ cmpw(reg1, reg2);
1892       }
1893       return;
1894     }
1895     if (opr2->is_double_cpu()) {
1896       // cpu register - cpu register
1897       Register reg2 = opr2->as_register_lo();
1898       __ cmp(reg1, reg2);
1899       return;
1900     }
1901 
1902     if (opr2->is_constant()) {
1903       bool is_32bit = false; // width of register operand
1904       jlong imm;
1905 
1906       switch(opr2->type()) {
1907       case T_INT:
1908         imm = opr2->as_constant_ptr()->as_jint();
1909         is_32bit = true;
1910         break;
1911       case T_LONG:
1912         imm = opr2->as_constant_ptr()->as_jlong();
1913         break;
1914       case T_ADDRESS:
1915         imm = opr2->as_constant_ptr()->as_jint();
1916         break;
1917       case T_METADATA:
1918         imm = (intptr_t)(opr2->as_constant_ptr()->as_metadata());
1919         break;
1920       case T_OBJECT:
1921       case T_ARRAY:
1922         jobject2reg(opr2->as_constant_ptr()->as_jobject(), rscratch1);
1923         __ cmpoop(reg1, rscratch1);
1924         return;
1925       default:
1926         ShouldNotReachHere();
1927         imm = 0;  // unreachable
1928         break;
1929       }
1930 
1931       if (Assembler::operand_valid_for_add_sub_immediate(imm)) {
1932         if (is_32bit)
1933           __ cmpw(reg1, imm);
1934         else
1935           __ subs(zr, reg1, imm);
1936         return;
1937       } else {
1938         __ mov(rscratch1, imm);
1939         if (is_32bit)
1940           __ cmpw(reg1, rscratch1);
1941         else
1942           __ cmp(reg1, rscratch1);
1943         return;
1944       }
1945     } else
1946       ShouldNotReachHere();
1947   } else if (opr1->is_single_fpu()) {
1948     FloatRegister reg1 = opr1->as_float_reg();
1949     assert(opr2->is_single_fpu(), "expect single float register");
1950     FloatRegister reg2 = opr2->as_float_reg();
1951     __ fcmps(reg1, reg2);
1952   } else if (opr1->is_double_fpu()) {
1953     FloatRegister reg1 = opr1->as_double_reg();
1954     assert(opr2->is_double_fpu(), "expect double float register");
1955     FloatRegister reg2 = opr2->as_double_reg();
1956     __ fcmpd(reg1, reg2);
1957   } else {
1958     ShouldNotReachHere();
1959   }
1960 }
1961 
1962 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
1963   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1964     bool is_unordered_less = (code == lir_ucmp_fd2i);
1965     if (left->is_single_fpu()) {
1966       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
1967     } else if (left->is_double_fpu()) {
1968       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
1969     } else {
1970       ShouldNotReachHere();
1971     }
1972   } else if (code == lir_cmp_l2i) {
1973     Label done;
1974     __ cmp(left->as_register_lo(), right->as_register_lo());
1975     __ mov(dst->as_register(), (uint64_t)-1L);
1976     __ br(Assembler::LT, done);
1977     __ csinc(dst->as_register(), zr, zr, Assembler::EQ);
1978     __ bind(done);
1979   } else {
1980     ShouldNotReachHere();
1981   }
1982 }
1983 
1984 
1985 void LIR_Assembler::align_call(LIR_Code code) {  }
1986 
1987 
1988 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
1989   address call = __ trampoline_call(Address(op->addr(), rtype));
1990   if (call == nullptr) {
1991     bailout("trampoline stub overflow");
1992     return;
1993   }
1994   add_call_info(code_offset(), op->info());
1995   __ post_call_nop();
1996 }
1997 
1998 
1999 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2000   address call = __ ic_call(op->addr());
2001   if (call == nullptr) {
2002     bailout("trampoline stub overflow");
2003     return;
2004   }
2005   add_call_info(code_offset(), op->info());
2006   __ post_call_nop();
2007 }
2008 
2009 void LIR_Assembler::emit_static_call_stub() {
2010   address call_pc = __ pc();
2011   address stub = __ start_a_stub(call_stub_size());
2012   if (stub == nullptr) {
2013     bailout("static call stub overflow");
2014     return;
2015   }
2016 
2017   int start = __ offset();
2018 
2019   __ relocate(static_stub_Relocation::spec(call_pc));
2020   __ emit_static_call_stub();
2021 
2022   assert(__ offset() - start + CompiledDirectCall::to_trampoline_stub_size()
2023         <= call_stub_size(), "stub too big");
2024   __ end_a_stub();
2025 }
2026 
2027 
2028 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2029   assert(exceptionOop->as_register() == r0, "must match");
2030   assert(exceptionPC->as_register() == r3, "must match");
2031 
2032   // exception object is not added to oop map by LinearScan
2033   // (LinearScan assumes that no oops are in fixed registers)
2034   info->add_register_oop(exceptionOop);
2035   C1StubId unwind_id;
2036 
2037   // get current pc information
2038   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2039   if (compilation()->debug_info_recorder()->last_pc_offset() == __ offset()) {
2040     // As no instructions have been generated yet for this LIR node it's
2041     // possible that an oop map already exists for the current offset.
2042     // In that case insert an dummy NOP here to ensure all oop map PCs
2043     // are unique. See JDK-8237483.
2044     __ nop();
2045   }
2046   int pc_for_athrow_offset = __ offset();
2047   InternalAddress pc_for_athrow(__ pc());
2048   __ adr(exceptionPC->as_register(), pc_for_athrow);
2049   add_call_info(pc_for_athrow_offset, info); // for exception handler
2050 
2051   __ verify_not_null_oop(r0);
2052   // search an exception handler (r0: exception oop, r3: throwing pc)
2053   if (compilation()->has_fpu_code()) {
2054     unwind_id = C1StubId::handle_exception_id;
2055   } else {
2056     unwind_id = C1StubId::handle_exception_nofpu_id;
2057   }
2058   __ far_call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2059 
2060   // FIXME: enough room for two byte trap   ????
2061   __ nop();
2062 }
2063 
2064 
2065 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2066   assert(exceptionOop->as_register() == r0, "must match");
2067 
2068   __ b(_unwind_handler_entry);
2069 }
2070 
2071 
2072 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2073   Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo();
2074   Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo();
2075 
2076   switch (left->type()) {
2077     case T_INT: {
2078       switch (code) {
2079       case lir_shl:  __ lslvw (dreg, lreg, count->as_register()); break;
2080       case lir_shr:  __ asrvw (dreg, lreg, count->as_register()); break;
2081       case lir_ushr: __ lsrvw (dreg, lreg, count->as_register()); break;
2082       default:
2083         ShouldNotReachHere();
2084         break;
2085       }
2086       break;
2087     case T_LONG:
2088     case T_ADDRESS:
2089     case T_OBJECT:
2090       switch (code) {
2091       case lir_shl:  __ lslv (dreg, lreg, count->as_register()); break;
2092       case lir_shr:  __ asrv (dreg, lreg, count->as_register()); break;
2093       case lir_ushr: __ lsrv (dreg, lreg, count->as_register()); break;
2094       default:
2095         ShouldNotReachHere();
2096         break;
2097       }
2098       break;
2099     default:
2100       ShouldNotReachHere();
2101       break;
2102     }
2103   }
2104 }
2105 
2106 
2107 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2108   Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo();
2109   Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo();
2110 
2111   switch (left->type()) {
2112     case T_INT: {
2113       switch (code) {
2114       case lir_shl:  __ lslw (dreg, lreg, count); break;
2115       case lir_shr:  __ asrw (dreg, lreg, count); break;
2116       case lir_ushr: __ lsrw (dreg, lreg, count); break;
2117       default:
2118         ShouldNotReachHere();
2119         break;
2120       }
2121       break;
2122     case T_LONG:
2123     case T_ADDRESS:
2124     case T_OBJECT:
2125       switch (code) {
2126       case lir_shl:  __ lsl (dreg, lreg, count); break;
2127       case lir_shr:  __ asr (dreg, lreg, count); break;
2128       case lir_ushr: __ lsr (dreg, lreg, count); break;
2129       default:
2130         ShouldNotReachHere();
2131         break;
2132       }
2133       break;
2134     default:
2135       ShouldNotReachHere();
2136       break;
2137     }
2138   }
2139 }
2140 
2141 
2142 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
2143   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2144   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2145   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2146   __ str (r, Address(sp, offset_from_rsp_in_bytes));
2147 }
2148 
2149 
2150 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
2151   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2152   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2153   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2154   __ mov (rscratch1, c);
2155   __ str (rscratch1, Address(sp, offset_from_rsp_in_bytes));
2156 }
2157 
2158 
2159 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
2160   ShouldNotReachHere();
2161   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2162   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2163   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2164   __ lea(rscratch1, __ constant_oop_address(o));
2165   __ str(rscratch1, Address(sp, offset_from_rsp_in_bytes));
2166 }
2167 
2168 
2169 // This code replaces a call to arraycopy; no exception may
2170 // be thrown in this code, they must be thrown in the System.arraycopy
2171 // activation frame; we could save some checks if this would not be the case
2172 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2173   ciArrayKlass* default_type = op->expected_type();
2174   Register src = op->src()->as_register();
2175   Register dst = op->dst()->as_register();
2176   Register src_pos = op->src_pos()->as_register();
2177   Register dst_pos = op->dst_pos()->as_register();
2178   Register length  = op->length()->as_register();
2179   Register tmp = op->tmp()->as_register();
2180 
2181   CodeStub* stub = op->stub();
2182   int flags = op->flags();
2183   BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL;
2184   if (is_reference_type(basic_type)) basic_type = T_OBJECT;
2185 
2186   // if we don't know anything, just go through the generic arraycopy
2187   if (default_type == nullptr // || basic_type == T_OBJECT
2188       ) {
2189     Label done;
2190     assert(src == r1 && src_pos == r2, "mismatch in calling convention");
2191 
2192     // Save the arguments in case the generic arraycopy fails and we
2193     // have to fall back to the JNI stub
2194     __ stp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2195     __ stp(length,  src_pos, Address(sp, 2*BytesPerWord));
2196     __ str(src,              Address(sp, 4*BytesPerWord));
2197 
2198     address copyfunc_addr = StubRoutines::generic_arraycopy();
2199     assert(copyfunc_addr != nullptr, "generic arraycopy stub required");
2200 
2201     // The arguments are in java calling convention so we shift them
2202     // to C convention
2203     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
2204     __ mov(c_rarg0, j_rarg0);
2205     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
2206     __ mov(c_rarg1, j_rarg1);
2207     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
2208     __ mov(c_rarg2, j_rarg2);
2209     assert_different_registers(c_rarg3, j_rarg4);
2210     __ mov(c_rarg3, j_rarg3);
2211     __ mov(c_rarg4, j_rarg4);
2212 #ifndef PRODUCT
2213     if (PrintC1Statistics) {
2214       __ incrementw(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
2215     }
2216 #endif
2217     __ far_call(RuntimeAddress(copyfunc_addr));
2218 
2219     __ cbz(r0, *stub->continuation());
2220 
2221     // Reload values from the stack so they are where the stub
2222     // expects them.
2223     __ ldp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2224     __ ldp(length,  src_pos, Address(sp, 2*BytesPerWord));
2225     __ ldr(src,              Address(sp, 4*BytesPerWord));
2226 
2227     // r0 is -1^K where K == partial copied count
2228     __ eonw(rscratch1, r0, zr);
2229     // adjust length down and src/end pos up by partial copied count
2230     __ subw(length, length, rscratch1);
2231     __ addw(src_pos, src_pos, rscratch1);
2232     __ addw(dst_pos, dst_pos, rscratch1);
2233     __ b(*stub->entry());
2234 
2235     __ bind(*stub->continuation());
2236     return;
2237   }
2238 
2239   assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
2240 
2241   int elem_size = type2aelembytes(basic_type);
2242   int scale = exact_log2(elem_size);
2243 
2244   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
2245   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
2246 
2247   // test for null
2248   if (flags & LIR_OpArrayCopy::src_null_check) {
2249     __ cbz(src, *stub->entry());
2250   }
2251   if (flags & LIR_OpArrayCopy::dst_null_check) {
2252     __ cbz(dst, *stub->entry());
2253   }
2254 
2255   // If the compiler was not able to prove that exact type of the source or the destination
2256   // of the arraycopy is an array type, check at runtime if the source or the destination is
2257   // an instance type.
2258   if (flags & LIR_OpArrayCopy::type_check) {
2259     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) {
2260       __ load_klass(tmp, dst);
2261       __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2262       __ cmpw(rscratch1, Klass::_lh_neutral_value);
2263       __ br(Assembler::GE, *stub->entry());
2264     }
2265 
2266     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) {
2267       __ load_klass(tmp, src);
2268       __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2269       __ cmpw(rscratch1, Klass::_lh_neutral_value);
2270       __ br(Assembler::GE, *stub->entry());
2271     }
2272   }
2273 
2274   // check if negative
2275   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
2276     __ cmpw(src_pos, 0);
2277     __ br(Assembler::LT, *stub->entry());
2278   }
2279   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
2280     __ cmpw(dst_pos, 0);
2281     __ br(Assembler::LT, *stub->entry());
2282   }
2283 
2284   if (flags & LIR_OpArrayCopy::length_positive_check) {
2285     __ cmpw(length, 0);
2286     __ br(Assembler::LT, *stub->entry());
2287   }
2288 
2289   if (flags & LIR_OpArrayCopy::src_range_check) {
2290     __ addw(tmp, src_pos, length);
2291     __ ldrw(rscratch1, src_length_addr);
2292     __ cmpw(tmp, rscratch1);
2293     __ br(Assembler::HI, *stub->entry());
2294   }
2295   if (flags & LIR_OpArrayCopy::dst_range_check) {
2296     __ addw(tmp, dst_pos, length);
2297     __ ldrw(rscratch1, dst_length_addr);
2298     __ cmpw(tmp, rscratch1);
2299     __ br(Assembler::HI, *stub->entry());
2300   }
2301 
2302   if (flags & LIR_OpArrayCopy::type_check) {
2303     // We don't know the array types are compatible
2304     if (basic_type != T_OBJECT) {
2305       // Simple test for basic type arrays
2306       __ cmp_klasses_from_objects(src, dst, tmp, rscratch1);
2307       __ br(Assembler::NE, *stub->entry());
2308     } else {
2309       // For object arrays, if src is a sub class of dst then we can
2310       // safely do the copy.
2311       Label cont, slow;
2312 
2313 #define PUSH(r1, r2)                                    \
2314       stp(r1, r2, __ pre(sp, -2 * wordSize));
2315 
2316 #define POP(r1, r2)                                     \
2317       ldp(r1, r2, __ post(sp, 2 * wordSize));
2318 
2319       __ PUSH(src, dst);
2320 
2321       __ load_klass(src, src);
2322       __ load_klass(dst, dst);
2323 
2324       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr);
2325 
2326       __ PUSH(src, dst);
2327       __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id)));
2328       __ POP(src, dst);
2329 
2330       __ cbnz(src, cont);
2331 
2332       __ bind(slow);
2333       __ POP(src, dst);
2334 
2335       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
2336       if (copyfunc_addr != nullptr) { // use stub if available
2337         // src is not a sub class of dst so we have to do a
2338         // per-element check.
2339 
2340         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2341         if ((flags & mask) != mask) {
2342           // Check that at least both of them object arrays.
2343           assert(flags & mask, "one of the two should be known to be an object array");
2344 
2345           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2346             __ load_klass(tmp, src);
2347           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2348             __ load_klass(tmp, dst);
2349           }
2350           int lh_offset = in_bytes(Klass::layout_helper_offset());
2351           Address klass_lh_addr(tmp, lh_offset);
2352           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2353           __ ldrw(rscratch1, klass_lh_addr);
2354           __ mov(rscratch2, objArray_lh);
2355           __ eorw(rscratch1, rscratch1, rscratch2);
2356           __ cbnzw(rscratch1, *stub->entry());
2357         }
2358 
2359        // Spill because stubs can use any register they like and it's
2360        // easier to restore just those that we care about.
2361         __ stp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2362         __ stp(length,  src_pos, Address(sp, 2*BytesPerWord));
2363         __ str(src,              Address(sp, 4*BytesPerWord));
2364 
2365         __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale)));
2366         __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type));
2367         assert_different_registers(c_rarg0, dst, dst_pos, length);
2368         __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale)));
2369         __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type));
2370         assert_different_registers(c_rarg1, dst, length);
2371         __ uxtw(c_rarg2, length);
2372         assert_different_registers(c_rarg2, dst);
2373 
2374         __ load_klass(c_rarg4, dst);
2375         __ ldr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
2376         __ ldrw(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
2377         __ far_call(RuntimeAddress(copyfunc_addr));
2378 
2379 #ifndef PRODUCT
2380         if (PrintC1Statistics) {
2381           Label failed;
2382           __ cbnz(r0, failed);
2383           __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
2384           __ bind(failed);
2385         }
2386 #endif
2387 
2388         __ cbz(r0, *stub->continuation());
2389 
2390 #ifndef PRODUCT
2391         if (PrintC1Statistics) {
2392           __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
2393         }
2394 #endif
2395         assert_different_registers(dst, dst_pos, length, src_pos, src, r0, rscratch1);
2396 
2397         // Restore previously spilled arguments
2398         __ ldp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2399         __ ldp(length,  src_pos, Address(sp, 2*BytesPerWord));
2400         __ ldr(src,              Address(sp, 4*BytesPerWord));
2401 
2402         // return value is -1^K where K is partial copied count
2403         __ eonw(rscratch1, r0, zr);
2404         // adjust length down and src/end pos up by partial copied count
2405         __ subw(length, length, rscratch1);
2406         __ addw(src_pos, src_pos, rscratch1);
2407         __ addw(dst_pos, dst_pos, rscratch1);
2408       }
2409 
2410       __ b(*stub->entry());
2411 
2412       __ bind(cont);
2413       __ POP(src, dst);
2414     }
2415   }
2416 
2417 #ifdef ASSERT
2418   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2419     // Sanity check the known type with the incoming class.  For the
2420     // primitive case the types must match exactly with src.klass and
2421     // dst.klass each exactly matching the default type.  For the
2422     // object array case, if no type check is needed then either the
2423     // dst type is exactly the expected type and the src type is a
2424     // subtype which we can't check or src is the same array as dst
2425     // but not necessarily exactly of type default_type.
2426     Label known_ok, halt;
2427     __ mov_metadata(tmp, default_type->constant_encoding());
2428 
2429     if (basic_type != T_OBJECT) {
2430       __ cmp_klass(dst, tmp, rscratch1);
2431       __ br(Assembler::NE, halt);
2432       __ cmp_klass(src, tmp, rscratch1);
2433       __ br(Assembler::EQ, known_ok);
2434     } else {
2435       __ cmp_klass(dst, tmp, rscratch1);
2436       __ br(Assembler::EQ, known_ok);
2437       __ cmp(src, dst);
2438       __ br(Assembler::EQ, known_ok);
2439     }
2440     __ bind(halt);
2441     __ stop("incorrect type information in arraycopy");
2442     __ bind(known_ok);
2443   }
2444 #endif
2445 
2446 #ifndef PRODUCT
2447   if (PrintC1Statistics) {
2448     __ incrementw(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
2449   }
2450 #endif
2451 
2452   __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale)));
2453   __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type));
2454   assert_different_registers(c_rarg0, dst, dst_pos, length);
2455   __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale)));
2456   __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type));
2457   assert_different_registers(c_rarg1, dst, length);
2458   __ uxtw(c_rarg2, length);
2459   assert_different_registers(c_rarg2, dst);
2460 
2461   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2462   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2463   const char *name;
2464   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2465 
2466  CodeBlob *cb = CodeCache::find_blob(entry);
2467  if (cb) {
2468    __ far_call(RuntimeAddress(entry));
2469  } else {
2470    __ call_VM_leaf(entry, 3);
2471  }
2472 
2473   if (stub != nullptr) {
2474     __ bind(*stub->continuation());
2475   }
2476 }
2477 
2478 
2479 
2480 
2481 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2482   Register obj = op->obj_opr()->as_register();  // may not be an oop
2483   Register hdr = op->hdr_opr()->as_register();
2484   Register lock = op->lock_opr()->as_register();
2485   Register temp = op->scratch_opr()->as_register();
2486   if (LockingMode == LM_MONITOR) {
2487     if (op->info() != nullptr) {
2488       add_debug_info_for_null_check_here(op->info());
2489       __ null_check(obj, -1);
2490     }
2491     __ b(*op->stub()->entry());
2492   } else if (op->code() == lir_lock) {
2493     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2494     // add debug info for NullPointerException only if one is possible
2495     int null_check_offset = __ lock_object(hdr, obj, lock, temp, *op->stub()->entry());
2496     if (op->info() != nullptr) {
2497       add_debug_info_for_null_check(null_check_offset, op->info());
2498     }
2499     // done
2500   } else if (op->code() == lir_unlock) {
2501     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2502     __ unlock_object(hdr, obj, lock, temp, *op->stub()->entry());
2503   } else {
2504     Unimplemented();
2505   }
2506   __ bind(*op->stub()->continuation());
2507 }
2508 
2509 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) {
2510   Register obj = op->obj()->as_pointer_register();
2511   Register result = op->result_opr()->as_pointer_register();
2512 
2513   CodeEmitInfo* info = op->info();
2514   if (info != nullptr) {
2515     add_debug_info_for_null_check_here(info);
2516   }
2517 
2518   __ load_klass(result, obj);
2519 }
2520 
2521 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2522   ciMethod* method = op->profiled_method();
2523   int bci          = op->profiled_bci();
2524   ciMethod* callee = op->profiled_callee();
2525 
2526   // Update counter for all call types
2527   ciMethodData* md = method->method_data_or_null();
2528   assert(md != nullptr, "Sanity");
2529   ciProfileData* data = md->bci_to_data(bci);
2530   assert(data != nullptr && data->is_CounterData(), "need CounterData for calls");
2531   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2532   Register mdo  = op->mdo()->as_register();
2533   __ mov_metadata(mdo, md->constant_encoding());
2534   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
2535   // Perform additional virtual call profiling for invokevirtual and
2536   // invokeinterface bytecodes
2537   if (op->should_profile_receiver_type()) {
2538     assert(op->recv()->is_single_cpu(), "recv must be allocated");
2539     Register recv = op->recv()->as_register();
2540     assert_different_registers(mdo, recv);
2541     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2542     ciKlass* known_klass = op->known_holder();
2543     if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) {
2544       // We know the type that will be seen at this call site; we can
2545       // statically update the MethodData* rather than needing to do
2546       // dynamic tests on the receiver type
2547 
2548       // NOTE: we should probably put a lock around this search to
2549       // avoid collisions by concurrent compilations
2550       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2551       uint i;
2552       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2553         ciKlass* receiver = vc_data->receiver(i);
2554         if (known_klass->equals(receiver)) {
2555           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2556           __ addptr(data_addr, DataLayout::counter_increment);
2557           return;
2558         }
2559       }
2560 
2561       // Receiver type not found in profile data; select an empty slot
2562 
2563       // Note that this is less efficient than it should be because it
2564       // always does a write to the receiver part of the
2565       // VirtualCallData rather than just the first time
2566       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2567         ciKlass* receiver = vc_data->receiver(i);
2568         if (receiver == nullptr) {
2569           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
2570           __ mov_metadata(rscratch1, known_klass->constant_encoding());
2571           __ lea(rscratch2, recv_addr);
2572           __ str(rscratch1, Address(rscratch2));
2573           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2574           __ addptr(data_addr, DataLayout::counter_increment);
2575           return;
2576         }
2577       }
2578     } else {
2579       __ load_klass(recv, recv);
2580       Label update_done;
2581       type_profile_helper(mdo, md, data, recv, &update_done);
2582       // Receiver did not match any saved receiver and there is no empty row for it.
2583       // Increment total counter to indicate polymorphic case.
2584       __ addptr(counter_addr, DataLayout::counter_increment);
2585 
2586       __ bind(update_done);
2587     }
2588   } else {
2589     // Static call
2590     __ addptr(counter_addr, DataLayout::counter_increment);
2591   }
2592 }
2593 
2594 
2595 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
2596   Unimplemented();
2597 }
2598 
2599 
2600 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
2601   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
2602 }
2603 
2604 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
2605   assert(op->crc()->is_single_cpu(),  "crc must be register");
2606   assert(op->val()->is_single_cpu(),  "byte value must be register");
2607   assert(op->result_opr()->is_single_cpu(), "result must be register");
2608   Register crc = op->crc()->as_register();
2609   Register val = op->val()->as_register();
2610   Register res = op->result_opr()->as_register();
2611 
2612   assert_different_registers(val, crc, res);
2613   uint64_t offset;
2614   __ adrp(res, ExternalAddress(StubRoutines::crc_table_addr()), offset);
2615   __ add(res, res, offset);
2616 
2617   __ mvnw(crc, crc); // ~crc
2618   __ update_byte_crc32(crc, val, res);
2619   __ mvnw(res, crc); // ~crc
2620 }
2621 
2622 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
2623   COMMENT("emit_profile_type {");
2624   Register obj = op->obj()->as_register();
2625   Register tmp = op->tmp()->as_pointer_register();
2626   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
2627   ciKlass* exact_klass = op->exact_klass();
2628   intptr_t current_klass = op->current_klass();
2629   bool not_null = op->not_null();
2630   bool no_conflict = op->no_conflict();
2631 
2632   Label update, next, none;
2633 
2634   bool do_null = !not_null;
2635   bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
2636   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
2637 
2638   assert(do_null || do_update, "why are we here?");
2639   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
2640   assert(mdo_addr.base() != rscratch1, "wrong register");
2641 
2642   __ verify_oop(obj);
2643 
2644   if (tmp != obj) {
2645     assert_different_registers(obj, tmp, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index());
2646     __ mov(tmp, obj);
2647   } else {
2648     assert_different_registers(obj, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index());
2649   }
2650   if (do_null) {
2651     __ cbnz(tmp, update);
2652     if (!TypeEntries::was_null_seen(current_klass)) {
2653       __ ldr(rscratch2, mdo_addr);
2654       __ orr(rscratch2, rscratch2, TypeEntries::null_seen);
2655       __ str(rscratch2, mdo_addr);
2656     }
2657     if (do_update) {
2658 #ifndef ASSERT
2659       __ b(next);
2660     }
2661 #else
2662       __ b(next);
2663     }
2664   } else {
2665     __ cbnz(tmp, update);
2666     __ stop("unexpected null obj");
2667 #endif
2668   }
2669 
2670   __ bind(update);
2671 
2672   if (do_update) {
2673 #ifdef ASSERT
2674     if (exact_klass != nullptr) {
2675       Label ok;
2676       __ load_klass(tmp, tmp);
2677       __ mov_metadata(rscratch1, exact_klass->constant_encoding());
2678       __ eor(rscratch1, tmp, rscratch1);
2679       __ cbz(rscratch1, ok);
2680       __ stop("exact klass and actual klass differ");
2681       __ bind(ok);
2682     }
2683 #endif
2684     if (!no_conflict) {
2685       if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) {
2686         if (exact_klass != nullptr) {
2687           __ mov_metadata(tmp, exact_klass->constant_encoding());
2688         } else {
2689           __ load_klass(tmp, tmp);
2690         }
2691 
2692         __ ldr(rscratch2, mdo_addr);
2693         __ eor(tmp, tmp, rscratch2);
2694         __ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
2695         // klass seen before, nothing to do. The unknown bit may have been
2696         // set already but no need to check.
2697         __ cbz(rscratch1, next);
2698 
2699         __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
2700 
2701         if (TypeEntries::is_type_none(current_klass)) {
2702           __ cbz(rscratch2, none);
2703           __ cmp(rscratch2, (u1)TypeEntries::null_seen);
2704           __ br(Assembler::EQ, none);
2705           // There is a chance that the checks above
2706           // fail if another thread has just set the
2707           // profiling to this obj's klass
2708           __ dmb(Assembler::ISHLD);
2709           __ eor(tmp, tmp, rscratch2); // get back original value before XOR
2710           __ ldr(rscratch2, mdo_addr);
2711           __ eor(tmp, tmp, rscratch2);
2712           __ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
2713           __ cbz(rscratch1, next);
2714         }
2715       } else {
2716         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
2717                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
2718 
2719         __ ldr(tmp, mdo_addr);
2720         __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
2721       }
2722 
2723       // different than before. Cannot keep accurate profile.
2724       __ ldr(rscratch2, mdo_addr);
2725       __ orr(rscratch2, rscratch2, TypeEntries::type_unknown);
2726       __ str(rscratch2, mdo_addr);
2727 
2728       if (TypeEntries::is_type_none(current_klass)) {
2729         __ b(next);
2730 
2731         __ bind(none);
2732         // first time here. Set profile type.
2733         __ str(tmp, mdo_addr);
2734 #ifdef ASSERT
2735         __ andr(tmp, tmp, TypeEntries::type_mask);
2736         __ verify_klass_ptr(tmp);
2737 #endif
2738       }
2739     } else {
2740       // There's a single possible klass at this profile point
2741       assert(exact_klass != nullptr, "should be");
2742       if (TypeEntries::is_type_none(current_klass)) {
2743         __ mov_metadata(tmp, exact_klass->constant_encoding());
2744         __ ldr(rscratch2, mdo_addr);
2745         __ eor(tmp, tmp, rscratch2);
2746         __ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
2747         __ cbz(rscratch1, next);
2748 #ifdef ASSERT
2749         {
2750           Label ok;
2751           __ ldr(rscratch1, mdo_addr);
2752           __ cbz(rscratch1, ok);
2753           __ cmp(rscratch1, (u1)TypeEntries::null_seen);
2754           __ br(Assembler::EQ, ok);
2755           // may have been set by another thread
2756           __ dmb(Assembler::ISHLD);
2757           __ mov_metadata(rscratch1, exact_klass->constant_encoding());
2758           __ ldr(rscratch2, mdo_addr);
2759           __ eor(rscratch2, rscratch1, rscratch2);
2760           __ andr(rscratch2, rscratch2, TypeEntries::type_mask);
2761           __ cbz(rscratch2, ok);
2762 
2763           __ stop("unexpected profiling mismatch");
2764           __ bind(ok);
2765         }
2766 #endif
2767         // first time here. Set profile type.
2768         __ str(tmp, mdo_addr);
2769 #ifdef ASSERT
2770         __ andr(tmp, tmp, TypeEntries::type_mask);
2771         __ verify_klass_ptr(tmp);
2772 #endif
2773       } else {
2774         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
2775                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
2776 
2777         __ ldr(tmp, mdo_addr);
2778         __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
2779 
2780         __ orr(tmp, tmp, TypeEntries::type_unknown);
2781         __ str(tmp, mdo_addr);
2782         // FIXME: Write barrier needed here?
2783       }
2784     }
2785 
2786     __ bind(next);
2787   }
2788   COMMENT("} emit_profile_type");
2789 }
2790 
2791 
2792 void LIR_Assembler::align_backward_branch_target() {
2793 }
2794 
2795 
2796 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
2797   // tmp must be unused
2798   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2799 
2800   if (left->is_single_cpu()) {
2801     assert(dest->is_single_cpu(), "expect single result reg");
2802     __ negw(dest->as_register(), left->as_register());
2803   } else if (left->is_double_cpu()) {
2804     assert(dest->is_double_cpu(), "expect double result reg");
2805     __ neg(dest->as_register_lo(), left->as_register_lo());
2806   } else if (left->is_single_fpu()) {
2807     assert(dest->is_single_fpu(), "expect single float result reg");
2808     __ fnegs(dest->as_float_reg(), left->as_float_reg());
2809   } else {
2810     assert(left->is_double_fpu(), "expect double float operand reg");
2811     assert(dest->is_double_fpu(), "expect double float result reg");
2812     __ fnegd(dest->as_double_reg(), left->as_double_reg());
2813   }
2814 }
2815 
2816 
2817 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
2818   if (patch_code != lir_patch_none) {
2819     deoptimize_trap(info);
2820     return;
2821   }
2822 
2823   __ lea(dest->as_register_lo(), as_Address(addr->as_address_ptr()));
2824 }
2825 
2826 
2827 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
2828   assert(!tmp->is_valid(), "don't need temporary");
2829 
2830   CodeBlob *cb = CodeCache::find_blob(dest);
2831   if (cb) {
2832     __ far_call(RuntimeAddress(dest));
2833   } else {
2834     __ mov(rscratch1, RuntimeAddress(dest));
2835     __ blr(rscratch1);
2836   }
2837 
2838   if (info != nullptr) {
2839     add_call_info_here(info);
2840   }
2841   __ post_call_nop();
2842 }
2843 
2844 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
2845   if (dest->is_address() || src->is_address()) {
2846     move_op(src, dest, type, lir_patch_none, info,
2847             /*pop_fpu_stack*/false, /*wide*/false);
2848   } else {
2849     ShouldNotReachHere();
2850   }
2851 }
2852 
2853 #ifdef ASSERT
2854 // emit run-time assertion
2855 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
2856   assert(op->code() == lir_assert, "must be");
2857 
2858   if (op->in_opr1()->is_valid()) {
2859     assert(op->in_opr2()->is_valid(), "both operands must be valid");
2860     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
2861   } else {
2862     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
2863     assert(op->condition() == lir_cond_always, "no other conditions allowed");
2864   }
2865 
2866   Label ok;
2867   if (op->condition() != lir_cond_always) {
2868     Assembler::Condition acond = Assembler::AL;
2869     switch (op->condition()) {
2870       case lir_cond_equal:        acond = Assembler::EQ;  break;
2871       case lir_cond_notEqual:     acond = Assembler::NE;  break;
2872       case lir_cond_less:         acond = Assembler::LT;  break;
2873       case lir_cond_lessEqual:    acond = Assembler::LE;  break;
2874       case lir_cond_greaterEqual: acond = Assembler::GE;  break;
2875       case lir_cond_greater:      acond = Assembler::GT;  break;
2876       case lir_cond_belowEqual:   acond = Assembler::LS;  break;
2877       case lir_cond_aboveEqual:   acond = Assembler::HS;  break;
2878       default:                    ShouldNotReachHere();
2879     }
2880     __ br(acond, ok);
2881   }
2882   if (op->halt()) {
2883     const char* str = __ code_string(op->msg());
2884     __ stop(str);
2885   } else {
2886     breakpoint();
2887   }
2888   __ bind(ok);
2889 }
2890 #endif
2891 
2892 #ifndef PRODUCT
2893 #define COMMENT(x)   do { __ block_comment(x); } while (0)
2894 #else
2895 #define COMMENT(x)
2896 #endif
2897 
2898 void LIR_Assembler::membar() {
2899   COMMENT("membar");
2900   __ membar(MacroAssembler::AnyAny);
2901 }
2902 
2903 void LIR_Assembler::membar_acquire() {
2904   __ membar(Assembler::LoadLoad|Assembler::LoadStore);
2905 }
2906 
2907 void LIR_Assembler::membar_release() {
2908   __ membar(Assembler::LoadStore|Assembler::StoreStore);
2909 }
2910 
2911 void LIR_Assembler::membar_loadload() {
2912   __ membar(Assembler::LoadLoad);
2913 }
2914 
2915 void LIR_Assembler::membar_storestore() {
2916   __ membar(MacroAssembler::StoreStore);
2917 }
2918 
2919 void LIR_Assembler::membar_loadstore() { __ membar(MacroAssembler::LoadStore); }
2920 
2921 void LIR_Assembler::membar_storeload() { __ membar(MacroAssembler::StoreLoad); }
2922 
2923 void LIR_Assembler::on_spin_wait() {
2924   __ spin_wait();
2925 }
2926 
2927 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
2928   __ mov(result_reg->as_register(), rthread);
2929 }
2930 
2931 
2932 void LIR_Assembler::peephole(LIR_List *lir) {
2933 #if 0
2934   if (tableswitch_count >= max_tableswitches)
2935     return;
2936 
2937   /*
2938     This finite-state automaton recognizes sequences of compare-and-
2939     branch instructions.  We will turn them into a tableswitch.  You
2940     could argue that C1 really shouldn't be doing this sort of
2941     optimization, but without it the code is really horrible.
2942   */
2943 
2944   enum { start_s, cmp1_s, beq_s, cmp_s } state;
2945   int first_key, last_key = -2147483648;
2946   int next_key = 0;
2947   int start_insn = -1;
2948   int last_insn = -1;
2949   Register reg = noreg;
2950   LIR_Opr reg_opr;
2951   state = start_s;
2952 
2953   LIR_OpList* inst = lir->instructions_list();
2954   for (int i = 0; i < inst->length(); i++) {
2955     LIR_Op* op = inst->at(i);
2956     switch (state) {
2957     case start_s:
2958       first_key = -1;
2959       start_insn = i;
2960       switch (op->code()) {
2961       case lir_cmp:
2962         LIR_Opr opr1 = op->as_Op2()->in_opr1();
2963         LIR_Opr opr2 = op->as_Op2()->in_opr2();
2964         if (opr1->is_cpu_register() && opr1->is_single_cpu()
2965             && opr2->is_constant()
2966             && opr2->type() == T_INT) {
2967           reg_opr = opr1;
2968           reg = opr1->as_register();
2969           first_key = opr2->as_constant_ptr()->as_jint();
2970           next_key = first_key + 1;
2971           state = cmp_s;
2972           goto next_state;
2973         }
2974         break;
2975       }
2976       break;
2977     case cmp_s:
2978       switch (op->code()) {
2979       case lir_branch:
2980         if (op->as_OpBranch()->cond() == lir_cond_equal) {
2981           state = beq_s;
2982           last_insn = i;
2983           goto next_state;
2984         }
2985       }
2986       state = start_s;
2987       break;
2988     case beq_s:
2989       switch (op->code()) {
2990       case lir_cmp: {
2991         LIR_Opr opr1 = op->as_Op2()->in_opr1();
2992         LIR_Opr opr2 = op->as_Op2()->in_opr2();
2993         if (opr1->is_cpu_register() && opr1->is_single_cpu()
2994             && opr1->as_register() == reg
2995             && opr2->is_constant()
2996             && opr2->type() == T_INT
2997             && opr2->as_constant_ptr()->as_jint() == next_key) {
2998           last_key = next_key;
2999           next_key++;
3000           state = cmp_s;
3001           goto next_state;
3002         }
3003       }
3004       }
3005       last_key = next_key;
3006       state = start_s;
3007       break;
3008     default:
3009       assert(false, "impossible state");
3010     }
3011     if (state == start_s) {
3012       if (first_key < last_key - 5L && reg != noreg) {
3013         {
3014           // printf("found run register %d starting at insn %d low value %d high value %d\n",
3015           //        reg->encoding(),
3016           //        start_insn, first_key, last_key);
3017           //   for (int i = 0; i < inst->length(); i++) {
3018           //     inst->at(i)->print();
3019           //     tty->print("\n");
3020           //   }
3021           //   tty->print("\n");
3022         }
3023 
3024         struct tableswitch *sw = &switches[tableswitch_count];
3025         sw->_insn_index = start_insn, sw->_first_key = first_key,
3026           sw->_last_key = last_key, sw->_reg = reg;
3027         inst->insert_before(last_insn + 1, new LIR_OpLabel(&sw->_after));
3028         {
3029           // Insert the new table of branches
3030           int offset = last_insn;
3031           for (int n = first_key; n < last_key; n++) {
3032             inst->insert_before
3033               (last_insn + 1,
3034                new LIR_OpBranch(lir_cond_always, T_ILLEGAL,
3035                                 inst->at(offset)->as_OpBranch()->label()));
3036             offset -= 2, i++;
3037           }
3038         }
3039         // Delete all the old compare-and-branch instructions
3040         for (int n = first_key; n < last_key; n++) {
3041           inst->remove_at(start_insn);
3042           inst->remove_at(start_insn);
3043         }
3044         // Insert the tableswitch instruction
3045         inst->insert_before(start_insn,
3046                             new LIR_Op2(lir_cmp, lir_cond_always,
3047                                         LIR_OprFact::intConst(tableswitch_count),
3048                                         reg_opr));
3049         inst->insert_before(start_insn + 1, new LIR_OpLabel(&sw->_branches));
3050         tableswitch_count++;
3051       }
3052       reg = noreg;
3053       last_key = -2147483648;
3054     }
3055   next_state:
3056     ;
3057   }
3058 #endif
3059 }
3060 
3061 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp_op) {
3062   Address addr = as_Address(src->as_address_ptr());
3063   BasicType type = src->type();
3064   bool is_oop = is_reference_type(type);
3065 
3066   void (MacroAssembler::* add)(Register prev, RegisterOrConstant incr, Register addr);
3067   void (MacroAssembler::* xchg)(Register prev, Register newv, Register addr);
3068 
3069   switch(type) {
3070   case T_INT:
3071     xchg = &MacroAssembler::atomic_xchgalw;
3072     add = &MacroAssembler::atomic_addalw;
3073     break;
3074   case T_LONG:
3075     xchg = &MacroAssembler::atomic_xchgal;
3076     add = &MacroAssembler::atomic_addal;
3077     break;
3078   case T_OBJECT:
3079   case T_ARRAY:
3080     if (UseCompressedOops) {
3081       xchg = &MacroAssembler::atomic_xchgalw;
3082       add = &MacroAssembler::atomic_addalw;
3083     } else {
3084       xchg = &MacroAssembler::atomic_xchgal;
3085       add = &MacroAssembler::atomic_addal;
3086     }
3087     break;
3088   default:
3089     ShouldNotReachHere();
3090     xchg = &MacroAssembler::atomic_xchgal;
3091     add = &MacroAssembler::atomic_addal; // unreachable
3092   }
3093 
3094   switch (code) {
3095   case lir_xadd:
3096     {
3097       RegisterOrConstant inc;
3098       Register tmp = as_reg(tmp_op);
3099       Register dst = as_reg(dest);
3100       if (data->is_constant()) {
3101         inc = RegisterOrConstant(as_long(data));
3102         assert_different_registers(dst, addr.base(), tmp,
3103                                    rscratch1, rscratch2);
3104       } else {
3105         inc = RegisterOrConstant(as_reg(data));
3106         assert_different_registers(inc.as_register(), dst, addr.base(), tmp,
3107                                    rscratch1, rscratch2);
3108       }
3109       __ lea(tmp, addr);
3110       (_masm->*add)(dst, inc, tmp);
3111       break;
3112     }
3113   case lir_xchg:
3114     {
3115       Register tmp = tmp_op->as_register();
3116       Register obj = as_reg(data);
3117       Register dst = as_reg(dest);
3118       if (is_oop && UseCompressedOops) {
3119         __ encode_heap_oop(rscratch2, obj);
3120         obj = rscratch2;
3121       }
3122       assert_different_registers(obj, addr.base(), tmp, rscratch1);
3123       assert_different_registers(dst, addr.base(), tmp, rscratch1);
3124       __ lea(tmp, addr);
3125       (_masm->*xchg)(dst, obj, tmp);
3126       if (is_oop && UseCompressedOops) {
3127         __ decode_heap_oop(dst);
3128       }
3129     }
3130     break;
3131   default:
3132     ShouldNotReachHere();
3133   }
3134   __ membar(__ AnyAny);
3135 }
3136 
3137 #undef __