1 /* 2 * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/macroAssembler.inline.hpp" 27 #include "asm/assembler.hpp" 28 #include "c1/c1_CodeStubs.hpp" 29 #include "c1/c1_Compilation.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_MacroAssembler.hpp" 32 #include "c1/c1_Runtime1.hpp" 33 #include "c1/c1_ValueStack.hpp" 34 #include "ci/ciArrayKlass.hpp" 35 #include "ci/ciInstance.hpp" 36 #include "code/compiledIC.hpp" 37 #include "gc/shared/collectedHeap.hpp" 38 #include "gc/shared/gc_globals.hpp" 39 #include "nativeInst_aarch64.hpp" 40 #include "oops/objArrayKlass.hpp" 41 #include "runtime/frame.inline.hpp" 42 #include "runtime/sharedRuntime.hpp" 43 #include "runtime/stubRoutines.hpp" 44 #include "utilities/powerOfTwo.hpp" 45 #include "vmreg_aarch64.inline.hpp" 46 47 48 #ifndef PRODUCT 49 #define COMMENT(x) do { __ block_comment(x); } while (0) 50 #else 51 #define COMMENT(x) 52 #endif 53 54 NEEDS_CLEANUP // remove this definitions ? 55 const Register SYNC_header = r0; // synchronization header 56 const Register SHIFT_count = r0; // where count for shift operations must be 57 58 #define __ _masm-> 59 60 61 static void select_different_registers(Register preserve, 62 Register extra, 63 Register &tmp1, 64 Register &tmp2) { 65 if (tmp1 == preserve) { 66 assert_different_registers(tmp1, tmp2, extra); 67 tmp1 = extra; 68 } else if (tmp2 == preserve) { 69 assert_different_registers(tmp1, tmp2, extra); 70 tmp2 = extra; 71 } 72 assert_different_registers(preserve, tmp1, tmp2); 73 } 74 75 76 77 static void select_different_registers(Register preserve, 78 Register extra, 79 Register &tmp1, 80 Register &tmp2, 81 Register &tmp3) { 82 if (tmp1 == preserve) { 83 assert_different_registers(tmp1, tmp2, tmp3, extra); 84 tmp1 = extra; 85 } else if (tmp2 == preserve) { 86 assert_different_registers(tmp1, tmp2, tmp3, extra); 87 tmp2 = extra; 88 } else if (tmp3 == preserve) { 89 assert_different_registers(tmp1, tmp2, tmp3, extra); 90 tmp3 = extra; 91 } 92 assert_different_registers(preserve, tmp1, tmp2, tmp3); 93 } 94 95 96 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { Unimplemented(); return false; } 97 98 99 LIR_Opr LIR_Assembler::receiverOpr() { 100 return FrameMap::receiver_opr; 101 } 102 103 LIR_Opr LIR_Assembler::osrBufferPointer() { 104 return FrameMap::as_pointer_opr(receiverOpr()->as_register()); 105 } 106 107 //--------------fpu register translations----------------------- 108 109 110 address LIR_Assembler::float_constant(float f) { 111 address const_addr = __ float_constant(f); 112 if (const_addr == nullptr) { 113 bailout("const section overflow"); 114 return __ code()->consts()->start(); 115 } else { 116 return const_addr; 117 } 118 } 119 120 121 address LIR_Assembler::double_constant(double d) { 122 address const_addr = __ double_constant(d); 123 if (const_addr == nullptr) { 124 bailout("const section overflow"); 125 return __ code()->consts()->start(); 126 } else { 127 return const_addr; 128 } 129 } 130 131 address LIR_Assembler::int_constant(jlong n) { 132 address const_addr = __ long_constant(n); 133 if (const_addr == nullptr) { 134 bailout("const section overflow"); 135 return __ code()->consts()->start(); 136 } else { 137 return const_addr; 138 } 139 } 140 141 void LIR_Assembler::breakpoint() { Unimplemented(); } 142 143 void LIR_Assembler::push(LIR_Opr opr) { Unimplemented(); } 144 145 void LIR_Assembler::pop(LIR_Opr opr) { Unimplemented(); } 146 147 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { Unimplemented(); return false; } 148 //------------------------------------------- 149 150 static Register as_reg(LIR_Opr op) { 151 return op->is_double_cpu() ? op->as_register_lo() : op->as_register(); 152 } 153 154 static jlong as_long(LIR_Opr data) { 155 jlong result; 156 switch (data->type()) { 157 case T_INT: 158 result = (data->as_jint()); 159 break; 160 case T_LONG: 161 result = (data->as_jlong()); 162 break; 163 default: 164 ShouldNotReachHere(); 165 result = 0; // unreachable 166 } 167 return result; 168 } 169 170 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) { 171 Register base = addr->base()->as_pointer_register(); 172 LIR_Opr opr = addr->index(); 173 if (opr->is_cpu_register()) { 174 Register index; 175 if (opr->is_single_cpu()) 176 index = opr->as_register(); 177 else 178 index = opr->as_register_lo(); 179 assert(addr->disp() == 0, "must be"); 180 switch(opr->type()) { 181 case T_INT: 182 return Address(base, index, Address::sxtw(addr->scale())); 183 case T_LONG: 184 return Address(base, index, Address::lsl(addr->scale())); 185 default: 186 ShouldNotReachHere(); 187 } 188 } else { 189 assert(addr->scale() == 0, 190 "expected for immediate operand, was: %d", addr->scale()); 191 ptrdiff_t offset = ptrdiff_t(addr->disp()); 192 // NOTE: Does not handle any 16 byte vector access. 193 const uint type_size = type2aelembytes(addr->type(), true); 194 return __ legitimize_address(Address(base, offset), type_size, tmp); 195 } 196 return Address(); 197 } 198 199 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 200 ShouldNotReachHere(); 201 return Address(); 202 } 203 204 Address LIR_Assembler::as_Address(LIR_Address* addr) { 205 return as_Address(addr, rscratch1); 206 } 207 208 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 209 return as_Address(addr, rscratch1); // Ouch 210 // FIXME: This needs to be much more clever. See x86. 211 } 212 213 // Ensure a valid Address (base + offset) to a stack-slot. If stack access is 214 // not encodable as a base + (immediate) offset, generate an explicit address 215 // calculation to hold the address in a temporary register. 216 Address LIR_Assembler::stack_slot_address(int index, uint size, Register tmp, int adjust) { 217 precond(size == 4 || size == 8); 218 Address addr = frame_map()->address_for_slot(index, adjust); 219 precond(addr.getMode() == Address::base_plus_offset); 220 precond(addr.base() == sp); 221 precond(addr.offset() > 0); 222 uint mask = size - 1; 223 assert((addr.offset() & mask) == 0, "scaled offsets only"); 224 return __ legitimize_address(addr, size, tmp); 225 } 226 227 void LIR_Assembler::osr_entry() { 228 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 229 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 230 ValueStack* entry_state = osr_entry->state(); 231 int number_of_locks = entry_state->locks_size(); 232 233 // we jump here if osr happens with the interpreter 234 // state set up to continue at the beginning of the 235 // loop that triggered osr - in particular, we have 236 // the following registers setup: 237 // 238 // r2: osr buffer 239 // 240 241 // build frame 242 ciMethod* m = compilation()->method(); 243 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 244 245 // OSR buffer is 246 // 247 // locals[nlocals-1..0] 248 // monitors[0..number_of_locks] 249 // 250 // locals is a direct copy of the interpreter frame so in the osr buffer 251 // so first slot in the local array is the last local from the interpreter 252 // and last slot is local[0] (receiver) from the interpreter 253 // 254 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 255 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 256 // in the interpreter frame (the method lock if a sync method) 257 258 // Initialize monitors in the compiled activation. 259 // r2: pointer to osr buffer 260 // 261 // All other registers are dead at this point and the locals will be 262 // copied into place by code emitted in the IR. 263 264 Register OSR_buf = osrBufferPointer()->as_pointer_register(); 265 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 266 int monitor_offset = BytesPerWord * method()->max_locals() + 267 (2 * BytesPerWord) * (number_of_locks - 1); 268 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 269 // the OSR buffer using 2 word entries: first the lock and then 270 // the oop. 271 for (int i = 0; i < number_of_locks; i++) { 272 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 273 #ifdef ASSERT 274 // verify the interpreter's monitor has a non-null object 275 { 276 Label L; 277 __ ldr(rscratch1, __ form_address(rscratch1, OSR_buf, slot_offset + 1*BytesPerWord, 0)); 278 __ cbnz(rscratch1, L); 279 __ stop("locked object is null"); 280 __ bind(L); 281 } 282 #endif 283 __ ldr(r19, __ form_address(rscratch1, OSR_buf, slot_offset, 0)); 284 __ ldr(r20, __ form_address(rscratch1, OSR_buf, slot_offset + BytesPerWord, 0)); 285 __ str(r19, frame_map()->address_for_monitor_lock(i)); 286 __ str(r20, frame_map()->address_for_monitor_object(i)); 287 } 288 } 289 } 290 291 292 // inline cache check; done before the frame is built. 293 int LIR_Assembler::check_icache() { 294 return __ ic_check(CodeEntryAlignment); 295 } 296 297 void LIR_Assembler::clinit_barrier(ciMethod* method) { 298 assert(VM_Version::supports_fast_class_init_checks(), "sanity"); 299 assert(!method->holder()->is_not_initialized(), "initialization should have been started"); 300 301 Label L_skip_barrier; 302 303 __ mov_metadata(rscratch2, method->holder()->constant_encoding()); 304 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier /*L_fast_path*/); 305 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 306 __ bind(L_skip_barrier); 307 } 308 309 void LIR_Assembler::jobject2reg(jobject o, Register reg) { 310 if (o == nullptr) { 311 __ mov(reg, zr); 312 } else { 313 __ movoop(reg, o); 314 } 315 } 316 317 void LIR_Assembler::deoptimize_trap(CodeEmitInfo *info) { 318 address target = nullptr; 319 relocInfo::relocType reloc_type = relocInfo::none; 320 321 switch (patching_id(info)) { 322 case PatchingStub::access_field_id: 323 target = Runtime1::entry_for(C1StubId::access_field_patching_id); 324 reloc_type = relocInfo::section_word_type; 325 break; 326 case PatchingStub::load_klass_id: 327 target = Runtime1::entry_for(C1StubId::load_klass_patching_id); 328 reloc_type = relocInfo::metadata_type; 329 break; 330 case PatchingStub::load_mirror_id: 331 target = Runtime1::entry_for(C1StubId::load_mirror_patching_id); 332 reloc_type = relocInfo::oop_type; 333 break; 334 case PatchingStub::load_appendix_id: 335 target = Runtime1::entry_for(C1StubId::load_appendix_patching_id); 336 reloc_type = relocInfo::oop_type; 337 break; 338 default: ShouldNotReachHere(); 339 } 340 341 __ far_call(RuntimeAddress(target)); 342 add_call_info_here(info); 343 } 344 345 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) { 346 deoptimize_trap(info); 347 } 348 349 350 // This specifies the rsp decrement needed to build the frame 351 int LIR_Assembler::initial_frame_size_in_bytes() const { 352 // if rounding, must let FrameMap know! 353 354 return in_bytes(frame_map()->framesize_in_bytes()); 355 } 356 357 358 int LIR_Assembler::emit_exception_handler() { 359 // generate code for exception handler 360 address handler_base = __ start_a_stub(exception_handler_size()); 361 if (handler_base == nullptr) { 362 // not enough space left for the handler 363 bailout("exception handler overflow"); 364 return -1; 365 } 366 367 int offset = code_offset(); 368 369 // the exception oop and pc are in r0, and r3 370 // no other registers need to be preserved, so invalidate them 371 __ invalidate_registers(false, true, true, false, true, true); 372 373 // check that there is really an exception 374 __ verify_not_null_oop(r0); 375 376 // search an exception handler (r0: exception oop, r3: throwing pc) 377 __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::handle_exception_from_callee_id))); 378 __ should_not_reach_here(); 379 guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); 380 __ end_a_stub(); 381 382 return offset; 383 } 384 385 386 // Emit the code to remove the frame from the stack in the exception 387 // unwind path. 388 int LIR_Assembler::emit_unwind_handler() { 389 #ifndef PRODUCT 390 if (CommentedAssembly) { 391 _masm->block_comment("Unwind handler"); 392 } 393 #endif 394 395 int offset = code_offset(); 396 397 // Fetch the exception from TLS and clear out exception related thread state 398 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 399 __ str(zr, Address(rthread, JavaThread::exception_oop_offset())); 400 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 401 402 __ bind(_unwind_handler_entry); 403 __ verify_not_null_oop(r0); 404 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 405 __ mov(r19, r0); // Preserve the exception 406 } 407 408 // Perform needed unlocking 409 MonitorExitStub* stub = nullptr; 410 if (method()->is_synchronized()) { 411 monitor_address(0, FrameMap::r0_opr); 412 stub = new MonitorExitStub(FrameMap::r0_opr, true, 0); 413 if (LockingMode == LM_MONITOR) { 414 __ b(*stub->entry()); 415 } else { 416 __ unlock_object(r5, r4, r0, r6, *stub->entry()); 417 } 418 __ bind(*stub->continuation()); 419 } 420 421 if (compilation()->env()->dtrace_method_probes()) { 422 __ mov(c_rarg0, rthread); 423 __ mov_metadata(c_rarg1, method()->constant_encoding()); 424 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), c_rarg0, c_rarg1); 425 } 426 427 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 428 __ mov(r0, r19); // Restore the exception 429 } 430 431 // remove the activation and dispatch to the unwind handler 432 __ block_comment("remove_frame and dispatch to the unwind handler"); 433 __ remove_frame(initial_frame_size_in_bytes()); 434 __ far_jump(RuntimeAddress(Runtime1::entry_for(C1StubId::unwind_exception_id))); 435 436 // Emit the slow path assembly 437 if (stub != nullptr) { 438 stub->emit_code(this); 439 } 440 441 return offset; 442 } 443 444 445 int LIR_Assembler::emit_deopt_handler() { 446 // generate code for exception handler 447 address handler_base = __ start_a_stub(deopt_handler_size()); 448 if (handler_base == nullptr) { 449 // not enough space left for the handler 450 bailout("deopt handler overflow"); 451 return -1; 452 } 453 454 int offset = code_offset(); 455 456 __ adr(lr, pc()); 457 __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); 458 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); 459 __ end_a_stub(); 460 461 return offset; 462 } 463 464 void LIR_Assembler::add_debug_info_for_branch(address adr, CodeEmitInfo* info) { 465 _masm->code_section()->relocate(adr, relocInfo::poll_type); 466 int pc_offset = code_offset(); 467 flush_debug_info(pc_offset); 468 info->record_debug_info(compilation()->debug_info_recorder(), pc_offset); 469 if (info->exception_handlers() != nullptr) { 470 compilation()->add_exception_handlers_for_pco(pc_offset, info->exception_handlers()); 471 } 472 } 473 474 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 475 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == r0, "word returns are in r0,"); 476 477 // Pop the stack before the safepoint code 478 __ remove_frame(initial_frame_size_in_bytes()); 479 480 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { 481 __ reserved_stack_check(); 482 } 483 484 code_stub->set_safepoint_offset(__ offset()); 485 __ relocate(relocInfo::poll_return_type); 486 __ safepoint_poll(*code_stub->entry(), true /* at_return */, false /* acquire */, true /* in_nmethod */); 487 __ ret(lr); 488 } 489 490 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 491 guarantee(info != nullptr, "Shouldn't be null"); 492 __ get_polling_page(rscratch1, relocInfo::poll_type); 493 add_debug_info_for_branch(info); // This isn't just debug info: 494 // it's the oop map 495 __ read_polling_page(rscratch1, relocInfo::poll_type); 496 return __ offset(); 497 } 498 499 500 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { 501 if (from_reg == r31_sp) 502 from_reg = sp; 503 if (to_reg == r31_sp) 504 to_reg = sp; 505 __ mov(to_reg, from_reg); 506 } 507 508 void LIR_Assembler::swap_reg(Register a, Register b) { Unimplemented(); } 509 510 511 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 512 assert(src->is_constant(), "should not call otherwise"); 513 assert(dest->is_register(), "should not call otherwise"); 514 LIR_Const* c = src->as_constant_ptr(); 515 516 switch (c->type()) { 517 case T_INT: { 518 assert(patch_code == lir_patch_none, "no patching handled here"); 519 __ movw(dest->as_register(), c->as_jint()); 520 break; 521 } 522 523 case T_ADDRESS: { 524 assert(patch_code == lir_patch_none, "no patching handled here"); 525 __ mov(dest->as_register(), c->as_jint()); 526 break; 527 } 528 529 case T_LONG: { 530 assert(patch_code == lir_patch_none, "no patching handled here"); 531 __ mov(dest->as_register_lo(), (intptr_t)c->as_jlong()); 532 break; 533 } 534 535 case T_OBJECT: { 536 if (patch_code == lir_patch_none) { 537 jobject2reg(c->as_jobject(), dest->as_register()); 538 } else { 539 jobject2reg_with_patching(dest->as_register(), info); 540 } 541 break; 542 } 543 544 case T_METADATA: { 545 if (patch_code != lir_patch_none) { 546 klass2reg_with_patching(dest->as_register(), info); 547 } else { 548 __ mov_metadata(dest->as_register(), c->as_metadata()); 549 } 550 break; 551 } 552 553 case T_FLOAT: { 554 if (__ operand_valid_for_float_immediate(c->as_jfloat())) { 555 __ fmovs(dest->as_float_reg(), (c->as_jfloat())); 556 } else { 557 __ adr(rscratch1, InternalAddress(float_constant(c->as_jfloat()))); 558 __ ldrs(dest->as_float_reg(), Address(rscratch1)); 559 } 560 break; 561 } 562 563 case T_DOUBLE: { 564 if (__ operand_valid_for_float_immediate(c->as_jdouble())) { 565 __ fmovd(dest->as_double_reg(), (c->as_jdouble())); 566 } else { 567 __ adr(rscratch1, InternalAddress(double_constant(c->as_jdouble()))); 568 __ ldrd(dest->as_double_reg(), Address(rscratch1)); 569 } 570 break; 571 } 572 573 default: 574 ShouldNotReachHere(); 575 } 576 } 577 578 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 579 LIR_Const* c = src->as_constant_ptr(); 580 switch (c->type()) { 581 case T_OBJECT: 582 { 583 if (! c->as_jobject()) 584 __ str(zr, frame_map()->address_for_slot(dest->single_stack_ix())); 585 else { 586 const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr); 587 reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false); 588 } 589 } 590 break; 591 case T_ADDRESS: 592 { 593 const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr); 594 reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false); 595 } 596 case T_INT: 597 case T_FLOAT: 598 { 599 Register reg = zr; 600 if (c->as_jint_bits() == 0) 601 __ strw(zr, frame_map()->address_for_slot(dest->single_stack_ix())); 602 else { 603 __ movw(rscratch1, c->as_jint_bits()); 604 __ strw(rscratch1, frame_map()->address_for_slot(dest->single_stack_ix())); 605 } 606 } 607 break; 608 case T_LONG: 609 case T_DOUBLE: 610 { 611 Register reg = zr; 612 if (c->as_jlong_bits() == 0) 613 __ str(zr, frame_map()->address_for_slot(dest->double_stack_ix(), 614 lo_word_offset_in_bytes)); 615 else { 616 __ mov(rscratch1, (intptr_t)c->as_jlong_bits()); 617 __ str(rscratch1, frame_map()->address_for_slot(dest->double_stack_ix(), 618 lo_word_offset_in_bytes)); 619 } 620 } 621 break; 622 default: 623 ShouldNotReachHere(); 624 } 625 } 626 627 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 628 assert(src->is_constant(), "should not call otherwise"); 629 LIR_Const* c = src->as_constant_ptr(); 630 LIR_Address* to_addr = dest->as_address_ptr(); 631 632 void (Assembler::* insn)(Register Rt, const Address &adr); 633 634 switch (type) { 635 case T_ADDRESS: 636 assert(c->as_jint() == 0, "should be"); 637 insn = &Assembler::str; 638 break; 639 case T_LONG: 640 assert(c->as_jlong() == 0, "should be"); 641 insn = &Assembler::str; 642 break; 643 case T_INT: 644 assert(c->as_jint() == 0, "should be"); 645 insn = &Assembler::strw; 646 break; 647 case T_OBJECT: 648 case T_ARRAY: 649 assert(c->as_jobject() == nullptr, "should be"); 650 if (UseCompressedOops && !wide) { 651 insn = &Assembler::strw; 652 } else { 653 insn = &Assembler::str; 654 } 655 break; 656 case T_CHAR: 657 case T_SHORT: 658 assert(c->as_jint() == 0, "should be"); 659 insn = &Assembler::strh; 660 break; 661 case T_BOOLEAN: 662 case T_BYTE: 663 assert(c->as_jint() == 0, "should be"); 664 insn = &Assembler::strb; 665 break; 666 default: 667 ShouldNotReachHere(); 668 insn = &Assembler::str; // unreachable 669 } 670 671 if (info) add_debug_info_for_null_check_here(info); 672 (_masm->*insn)(zr, as_Address(to_addr, rscratch1)); 673 } 674 675 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) { 676 assert(src->is_register(), "should not call otherwise"); 677 assert(dest->is_register(), "should not call otherwise"); 678 679 // move between cpu-registers 680 if (dest->is_single_cpu()) { 681 if (src->type() == T_LONG) { 682 // Can do LONG -> OBJECT 683 move_regs(src->as_register_lo(), dest->as_register()); 684 return; 685 } 686 assert(src->is_single_cpu(), "must match"); 687 if (src->type() == T_OBJECT) { 688 __ verify_oop(src->as_register()); 689 } 690 move_regs(src->as_register(), dest->as_register()); 691 692 } else if (dest->is_double_cpu()) { 693 if (is_reference_type(src->type())) { 694 // Surprising to me but we can see move of a long to t_object 695 __ verify_oop(src->as_register()); 696 move_regs(src->as_register(), dest->as_register_lo()); 697 return; 698 } 699 assert(src->is_double_cpu(), "must match"); 700 Register f_lo = src->as_register_lo(); 701 Register f_hi = src->as_register_hi(); 702 Register t_lo = dest->as_register_lo(); 703 Register t_hi = dest->as_register_hi(); 704 assert(f_hi == f_lo, "must be same"); 705 assert(t_hi == t_lo, "must be same"); 706 move_regs(f_lo, t_lo); 707 708 } else if (dest->is_single_fpu()) { 709 __ fmovs(dest->as_float_reg(), src->as_float_reg()); 710 711 } else if (dest->is_double_fpu()) { 712 __ fmovd(dest->as_double_reg(), src->as_double_reg()); 713 714 } else { 715 ShouldNotReachHere(); 716 } 717 } 718 719 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) { 720 precond(src->is_register() && dest->is_stack()); 721 722 uint const c_sz32 = sizeof(uint32_t); 723 uint const c_sz64 = sizeof(uint64_t); 724 725 if (src->is_single_cpu()) { 726 int index = dest->single_stack_ix(); 727 if (is_reference_type(type)) { 728 __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 729 __ verify_oop(src->as_register()); 730 } else if (type == T_METADATA || type == T_DOUBLE || type == T_ADDRESS) { 731 __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 732 } else { 733 __ strw(src->as_register(), stack_slot_address(index, c_sz32, rscratch1)); 734 } 735 736 } else if (src->is_double_cpu()) { 737 int index = dest->double_stack_ix(); 738 Address dest_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes); 739 __ str(src->as_register_lo(), dest_addr_LO); 740 741 } else if (src->is_single_fpu()) { 742 int index = dest->single_stack_ix(); 743 __ strs(src->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1)); 744 745 } else if (src->is_double_fpu()) { 746 int index = dest->double_stack_ix(); 747 __ strd(src->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1)); 748 749 } else { 750 ShouldNotReachHere(); 751 } 752 } 753 754 755 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide) { 756 LIR_Address* to_addr = dest->as_address_ptr(); 757 PatchingStub* patch = nullptr; 758 Register compressed_src = rscratch1; 759 760 if (patch_code != lir_patch_none) { 761 deoptimize_trap(info); 762 return; 763 } 764 765 if (is_reference_type(type)) { 766 __ verify_oop(src->as_register()); 767 768 if (UseCompressedOops && !wide) { 769 __ encode_heap_oop(compressed_src, src->as_register()); 770 } else { 771 compressed_src = src->as_register(); 772 } 773 } 774 775 int null_check_here = code_offset(); 776 switch (type) { 777 case T_FLOAT: { 778 __ strs(src->as_float_reg(), as_Address(to_addr)); 779 break; 780 } 781 782 case T_DOUBLE: { 783 __ strd(src->as_double_reg(), as_Address(to_addr)); 784 break; 785 } 786 787 case T_ARRAY: // fall through 788 case T_OBJECT: // fall through 789 if (UseCompressedOops && !wide) { 790 __ strw(compressed_src, as_Address(to_addr, rscratch2)); 791 } else { 792 __ str(compressed_src, as_Address(to_addr)); 793 } 794 break; 795 case T_METADATA: 796 // We get here to store a method pointer to the stack to pass to 797 // a dtrace runtime call. This can't work on 64 bit with 798 // compressed klass ptrs: T_METADATA can be a compressed klass 799 // ptr or a 64 bit method pointer. 800 ShouldNotReachHere(); 801 __ str(src->as_register(), as_Address(to_addr)); 802 break; 803 case T_ADDRESS: 804 __ str(src->as_register(), as_Address(to_addr)); 805 break; 806 case T_INT: 807 __ strw(src->as_register(), as_Address(to_addr)); 808 break; 809 810 case T_LONG: { 811 __ str(src->as_register_lo(), as_Address_lo(to_addr)); 812 break; 813 } 814 815 case T_BYTE: // fall through 816 case T_BOOLEAN: { 817 __ strb(src->as_register(), as_Address(to_addr)); 818 break; 819 } 820 821 case T_CHAR: // fall through 822 case T_SHORT: 823 __ strh(src->as_register(), as_Address(to_addr)); 824 break; 825 826 default: 827 ShouldNotReachHere(); 828 } 829 if (info != nullptr) { 830 add_debug_info_for_null_check(null_check_here, info); 831 } 832 } 833 834 835 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 836 precond(src->is_stack() && dest->is_register()); 837 838 uint const c_sz32 = sizeof(uint32_t); 839 uint const c_sz64 = sizeof(uint64_t); 840 841 if (dest->is_single_cpu()) { 842 int index = src->single_stack_ix(); 843 if (is_reference_type(type)) { 844 __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 845 __ verify_oop(dest->as_register()); 846 } else if (type == T_METADATA || type == T_ADDRESS) { 847 __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 848 } else { 849 __ ldrw(dest->as_register(), stack_slot_address(index, c_sz32, rscratch1)); 850 } 851 852 } else if (dest->is_double_cpu()) { 853 int index = src->double_stack_ix(); 854 Address src_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes); 855 __ ldr(dest->as_register_lo(), src_addr_LO); 856 857 } else if (dest->is_single_fpu()) { 858 int index = src->single_stack_ix(); 859 __ ldrs(dest->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1)); 860 861 } else if (dest->is_double_fpu()) { 862 int index = src->double_stack_ix(); 863 __ ldrd(dest->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1)); 864 865 } else { 866 ShouldNotReachHere(); 867 } 868 } 869 870 871 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) { 872 address target = nullptr; 873 relocInfo::relocType reloc_type = relocInfo::none; 874 875 switch (patching_id(info)) { 876 case PatchingStub::access_field_id: 877 target = Runtime1::entry_for(C1StubId::access_field_patching_id); 878 reloc_type = relocInfo::section_word_type; 879 break; 880 case PatchingStub::load_klass_id: 881 target = Runtime1::entry_for(C1StubId::load_klass_patching_id); 882 reloc_type = relocInfo::metadata_type; 883 break; 884 case PatchingStub::load_mirror_id: 885 target = Runtime1::entry_for(C1StubId::load_mirror_patching_id); 886 reloc_type = relocInfo::oop_type; 887 break; 888 case PatchingStub::load_appendix_id: 889 target = Runtime1::entry_for(C1StubId::load_appendix_patching_id); 890 reloc_type = relocInfo::oop_type; 891 break; 892 default: ShouldNotReachHere(); 893 } 894 895 __ far_call(RuntimeAddress(target)); 896 add_call_info_here(info); 897 } 898 899 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 900 901 LIR_Opr temp; 902 if (type == T_LONG || type == T_DOUBLE) 903 temp = FrameMap::rscratch1_long_opr; 904 else 905 temp = FrameMap::rscratch1_opr; 906 907 stack2reg(src, temp, src->type()); 908 reg2stack(temp, dest, dest->type(), false); 909 } 910 911 912 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 913 LIR_Address* addr = src->as_address_ptr(); 914 LIR_Address* from_addr = src->as_address_ptr(); 915 916 if (addr->base()->type() == T_OBJECT) { 917 __ verify_oop(addr->base()->as_pointer_register()); 918 } 919 920 if (patch_code != lir_patch_none) { 921 deoptimize_trap(info); 922 return; 923 } 924 925 if (info != nullptr) { 926 add_debug_info_for_null_check_here(info); 927 } 928 int null_check_here = code_offset(); 929 switch (type) { 930 case T_FLOAT: { 931 __ ldrs(dest->as_float_reg(), as_Address(from_addr)); 932 break; 933 } 934 935 case T_DOUBLE: { 936 __ ldrd(dest->as_double_reg(), as_Address(from_addr)); 937 break; 938 } 939 940 case T_ARRAY: // fall through 941 case T_OBJECT: // fall through 942 if (UseCompressedOops && !wide) { 943 __ ldrw(dest->as_register(), as_Address(from_addr)); 944 } else { 945 __ ldr(dest->as_register(), as_Address(from_addr)); 946 } 947 break; 948 case T_METADATA: 949 // We get here to store a method pointer to the stack to pass to 950 // a dtrace runtime call. This can't work on 64 bit with 951 // compressed klass ptrs: T_METADATA can be a compressed klass 952 // ptr or a 64 bit method pointer. 953 ShouldNotReachHere(); 954 __ ldr(dest->as_register(), as_Address(from_addr)); 955 break; 956 case T_ADDRESS: 957 __ ldr(dest->as_register(), as_Address(from_addr)); 958 break; 959 case T_INT: 960 __ ldrw(dest->as_register(), as_Address(from_addr)); 961 break; 962 963 case T_LONG: { 964 __ ldr(dest->as_register_lo(), as_Address_lo(from_addr)); 965 break; 966 } 967 968 case T_BYTE: 969 __ ldrsb(dest->as_register(), as_Address(from_addr)); 970 break; 971 case T_BOOLEAN: { 972 __ ldrb(dest->as_register(), as_Address(from_addr)); 973 break; 974 } 975 976 case T_CHAR: 977 __ ldrh(dest->as_register(), as_Address(from_addr)); 978 break; 979 case T_SHORT: 980 __ ldrsh(dest->as_register(), as_Address(from_addr)); 981 break; 982 983 default: 984 ShouldNotReachHere(); 985 } 986 987 if (is_reference_type(type)) { 988 if (UseCompressedOops && !wide) { 989 __ decode_heap_oop(dest->as_register()); 990 } 991 992 __ verify_oop(dest->as_register()); 993 } 994 } 995 996 997 int LIR_Assembler::array_element_size(BasicType type) const { 998 int elem_size = type2aelembytes(type); 999 return exact_log2(elem_size); 1000 } 1001 1002 1003 void LIR_Assembler::emit_op3(LIR_Op3* op) { 1004 switch (op->code()) { 1005 case lir_idiv: 1006 case lir_irem: 1007 arithmetic_idiv(op->code(), 1008 op->in_opr1(), 1009 op->in_opr2(), 1010 op->in_opr3(), 1011 op->result_opr(), 1012 op->info()); 1013 break; 1014 case lir_fmad: 1015 __ fmaddd(op->result_opr()->as_double_reg(), 1016 op->in_opr1()->as_double_reg(), 1017 op->in_opr2()->as_double_reg(), 1018 op->in_opr3()->as_double_reg()); 1019 break; 1020 case lir_fmaf: 1021 __ fmadds(op->result_opr()->as_float_reg(), 1022 op->in_opr1()->as_float_reg(), 1023 op->in_opr2()->as_float_reg(), 1024 op->in_opr3()->as_float_reg()); 1025 break; 1026 default: ShouldNotReachHere(); break; 1027 } 1028 } 1029 1030 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 1031 #ifdef ASSERT 1032 assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label"); 1033 if (op->block() != nullptr) _branch_target_blocks.append(op->block()); 1034 if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock()); 1035 #endif 1036 1037 if (op->cond() == lir_cond_always) { 1038 if (op->info() != nullptr) add_debug_info_for_branch(op->info()); 1039 __ b(*(op->label())); 1040 } else { 1041 Assembler::Condition acond; 1042 if (op->code() == lir_cond_float_branch) { 1043 bool is_unordered = (op->ublock() == op->block()); 1044 // Assembler::EQ does not permit unordered branches, so we add 1045 // another branch here. Likewise, Assembler::NE does not permit 1046 // ordered branches. 1047 if ((is_unordered && op->cond() == lir_cond_equal) 1048 || (!is_unordered && op->cond() == lir_cond_notEqual)) 1049 __ br(Assembler::VS, *(op->ublock()->label())); 1050 switch(op->cond()) { 1051 case lir_cond_equal: acond = Assembler::EQ; break; 1052 case lir_cond_notEqual: acond = Assembler::NE; break; 1053 case lir_cond_less: acond = (is_unordered ? Assembler::LT : Assembler::LO); break; 1054 case lir_cond_lessEqual: acond = (is_unordered ? Assembler::LE : Assembler::LS); break; 1055 case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::HS : Assembler::GE); break; 1056 case lir_cond_greater: acond = (is_unordered ? Assembler::HI : Assembler::GT); break; 1057 default: ShouldNotReachHere(); 1058 acond = Assembler::EQ; // unreachable 1059 } 1060 } else { 1061 switch (op->cond()) { 1062 case lir_cond_equal: acond = Assembler::EQ; break; 1063 case lir_cond_notEqual: acond = Assembler::NE; break; 1064 case lir_cond_less: acond = Assembler::LT; break; 1065 case lir_cond_lessEqual: acond = Assembler::LE; break; 1066 case lir_cond_greaterEqual: acond = Assembler::GE; break; 1067 case lir_cond_greater: acond = Assembler::GT; break; 1068 case lir_cond_belowEqual: acond = Assembler::LS; break; 1069 case lir_cond_aboveEqual: acond = Assembler::HS; break; 1070 default: ShouldNotReachHere(); 1071 acond = Assembler::EQ; // unreachable 1072 } 1073 } 1074 __ br(acond,*(op->label())); 1075 } 1076 } 1077 1078 1079 1080 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 1081 LIR_Opr src = op->in_opr(); 1082 LIR_Opr dest = op->result_opr(); 1083 1084 switch (op->bytecode()) { 1085 case Bytecodes::_i2f: 1086 { 1087 __ scvtfws(dest->as_float_reg(), src->as_register()); 1088 break; 1089 } 1090 case Bytecodes::_i2d: 1091 { 1092 __ scvtfwd(dest->as_double_reg(), src->as_register()); 1093 break; 1094 } 1095 case Bytecodes::_l2d: 1096 { 1097 __ scvtfd(dest->as_double_reg(), src->as_register_lo()); 1098 break; 1099 } 1100 case Bytecodes::_l2f: 1101 { 1102 __ scvtfs(dest->as_float_reg(), src->as_register_lo()); 1103 break; 1104 } 1105 case Bytecodes::_f2d: 1106 { 1107 __ fcvts(dest->as_double_reg(), src->as_float_reg()); 1108 break; 1109 } 1110 case Bytecodes::_d2f: 1111 { 1112 __ fcvtd(dest->as_float_reg(), src->as_double_reg()); 1113 break; 1114 } 1115 case Bytecodes::_i2c: 1116 { 1117 __ ubfx(dest->as_register(), src->as_register(), 0, 16); 1118 break; 1119 } 1120 case Bytecodes::_i2l: 1121 { 1122 __ sxtw(dest->as_register_lo(), src->as_register()); 1123 break; 1124 } 1125 case Bytecodes::_i2s: 1126 { 1127 __ sxth(dest->as_register(), src->as_register()); 1128 break; 1129 } 1130 case Bytecodes::_i2b: 1131 { 1132 __ sxtb(dest->as_register(), src->as_register()); 1133 break; 1134 } 1135 case Bytecodes::_l2i: 1136 { 1137 _masm->block_comment("FIXME: This could be a no-op"); 1138 __ uxtw(dest->as_register(), src->as_register_lo()); 1139 break; 1140 } 1141 case Bytecodes::_d2l: 1142 { 1143 __ fcvtzd(dest->as_register_lo(), src->as_double_reg()); 1144 break; 1145 } 1146 case Bytecodes::_f2i: 1147 { 1148 __ fcvtzsw(dest->as_register(), src->as_float_reg()); 1149 break; 1150 } 1151 case Bytecodes::_f2l: 1152 { 1153 __ fcvtzs(dest->as_register_lo(), src->as_float_reg()); 1154 break; 1155 } 1156 case Bytecodes::_d2i: 1157 { 1158 __ fcvtzdw(dest->as_register(), src->as_double_reg()); 1159 break; 1160 } 1161 default: ShouldNotReachHere(); 1162 } 1163 } 1164 1165 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 1166 if (op->init_check()) { 1167 __ lea(rscratch1, Address(op->klass()->as_register(), InstanceKlass::init_state_offset())); 1168 __ ldarb(rscratch1, rscratch1); 1169 __ cmpw(rscratch1, InstanceKlass::fully_initialized); 1170 add_debug_info_for_null_check_here(op->stub()->info()); 1171 __ br(Assembler::NE, *op->stub()->entry()); 1172 } 1173 __ allocate_object(op->obj()->as_register(), 1174 op->tmp1()->as_register(), 1175 op->tmp2()->as_register(), 1176 op->header_size(), 1177 op->object_size(), 1178 op->klass()->as_register(), 1179 *op->stub()->entry()); 1180 __ bind(*op->stub()->continuation()); 1181 } 1182 1183 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 1184 Register len = op->len()->as_register(); 1185 __ uxtw(len, len); 1186 1187 if (UseSlowPath || 1188 (!UseFastNewObjectArray && is_reference_type(op->type())) || 1189 (!UseFastNewTypeArray && !is_reference_type(op->type()))) { 1190 __ b(*op->stub()->entry()); 1191 } else { 1192 Register tmp1 = op->tmp1()->as_register(); 1193 Register tmp2 = op->tmp2()->as_register(); 1194 Register tmp3 = op->tmp3()->as_register(); 1195 if (len == tmp1) { 1196 tmp1 = tmp3; 1197 } else if (len == tmp2) { 1198 tmp2 = tmp3; 1199 } else if (len == tmp3) { 1200 // everything is ok 1201 } else { 1202 __ mov(tmp3, len); 1203 } 1204 __ allocate_array(op->obj()->as_register(), 1205 len, 1206 tmp1, 1207 tmp2, 1208 arrayOopDesc::base_offset_in_bytes(op->type()), 1209 array_element_size(op->type()), 1210 op->klass()->as_register(), 1211 *op->stub()->entry(), 1212 op->zero_array()); 1213 } 1214 __ bind(*op->stub()->continuation()); 1215 } 1216 1217 void LIR_Assembler::type_profile_helper(Register mdo, 1218 ciMethodData *md, ciProfileData *data, 1219 Register recv, Label* update_done) { 1220 1221 // Given a profile data offset, generate an Address which points to 1222 // the corresponding slot in mdo->data(). 1223 // Clobbers rscratch2. 1224 auto slot_at = [=](ByteSize offset) -> Address { 1225 return __ form_address(rscratch2, mdo, 1226 md->byte_offset_of_slot(data, offset), 1227 LogBytesPerWord); 1228 }; 1229 1230 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1231 Label next_test; 1232 // See if the receiver is receiver[n]. 1233 __ ldr(rscratch1, slot_at(ReceiverTypeData::receiver_offset(i))); 1234 __ cmp(recv, rscratch1); 1235 __ br(Assembler::NE, next_test); 1236 __ addptr(slot_at(ReceiverTypeData::receiver_count_offset(i)), 1237 DataLayout::counter_increment); 1238 __ b(*update_done); 1239 __ bind(next_test); 1240 } 1241 1242 // Didn't find receiver; find next empty slot and fill it in 1243 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1244 Label next_test; 1245 Address recv_addr(slot_at(ReceiverTypeData::receiver_offset(i))); 1246 __ ldr(rscratch1, recv_addr); 1247 __ cbnz(rscratch1, next_test); 1248 __ str(recv, recv_addr); 1249 __ mov(rscratch1, DataLayout::counter_increment); 1250 __ str(rscratch1, slot_at(ReceiverTypeData::receiver_count_offset(i))); 1251 __ b(*update_done); 1252 __ bind(next_test); 1253 } 1254 } 1255 1256 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 1257 // we always need a stub for the failure case. 1258 CodeStub* stub = op->stub(); 1259 Register obj = op->object()->as_register(); 1260 Register k_RInfo = op->tmp1()->as_register(); 1261 Register klass_RInfo = op->tmp2()->as_register(); 1262 Register dst = op->result_opr()->as_register(); 1263 ciKlass* k = op->klass(); 1264 Register Rtmp1 = noreg; 1265 1266 // check if it needs to be profiled 1267 ciMethodData* md; 1268 ciProfileData* data; 1269 1270 const bool should_profile = op->should_profile(); 1271 1272 if (should_profile) { 1273 ciMethod* method = op->profiled_method(); 1274 assert(method != nullptr, "Should have method"); 1275 int bci = op->profiled_bci(); 1276 md = method->method_data_or_null(); 1277 assert(md != nullptr, "Sanity"); 1278 data = md->bci_to_data(bci); 1279 assert(data != nullptr, "need data for type check"); 1280 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1281 } 1282 Label* success_target = success; 1283 Label* failure_target = failure; 1284 1285 if (obj == k_RInfo) { 1286 k_RInfo = dst; 1287 } else if (obj == klass_RInfo) { 1288 klass_RInfo = dst; 1289 } 1290 if (k->is_loaded() && !UseCompressedClassPointers) { 1291 select_different_registers(obj, dst, k_RInfo, klass_RInfo); 1292 } else { 1293 Rtmp1 = op->tmp3()->as_register(); 1294 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1); 1295 } 1296 1297 assert_different_registers(obj, k_RInfo, klass_RInfo); 1298 1299 if (should_profile) { 1300 Register mdo = klass_RInfo; 1301 __ mov_metadata(mdo, md->constant_encoding()); 1302 Label not_null; 1303 __ cbnz(obj, not_null); 1304 // Object is null; update MDO and exit 1305 Address data_addr 1306 = __ form_address(rscratch2, mdo, 1307 md->byte_offset_of_slot(data, DataLayout::flags_offset()), 1308 0); 1309 __ ldrb(rscratch1, data_addr); 1310 __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant()); 1311 __ strb(rscratch1, data_addr); 1312 __ b(*obj_is_null); 1313 __ bind(not_null); 1314 1315 Label update_done; 1316 Register recv = k_RInfo; 1317 __ load_klass(recv, obj); 1318 type_profile_helper(mdo, md, data, recv, &update_done); 1319 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1320 __ addptr(counter_addr, DataLayout::counter_increment); 1321 1322 __ bind(update_done); 1323 } else { 1324 __ cbz(obj, *obj_is_null); 1325 } 1326 1327 if (!k->is_loaded()) { 1328 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 1329 } else { 1330 __ mov_metadata(k_RInfo, k->constant_encoding()); 1331 } 1332 __ verify_oop(obj); 1333 1334 if (op->fast_check()) { 1335 // get object class 1336 // not a safepoint as obj null check happens earlier 1337 __ load_klass(rscratch1, obj); 1338 __ cmp( rscratch1, k_RInfo); 1339 1340 __ br(Assembler::NE, *failure_target); 1341 // successful cast, fall through to profile or jump 1342 } else { 1343 // get object class 1344 // not a safepoint as obj null check happens earlier 1345 __ load_klass(klass_RInfo, obj); 1346 if (k->is_loaded()) { 1347 // See if we get an immediate positive hit 1348 __ ldr(rscratch1, Address(klass_RInfo, int64_t(k->super_check_offset()))); 1349 __ cmp(k_RInfo, rscratch1); 1350 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) { 1351 __ br(Assembler::NE, *failure_target); 1352 // successful cast, fall through to profile or jump 1353 } else { 1354 // See if we get an immediate positive hit 1355 __ br(Assembler::EQ, *success_target); 1356 // check for self 1357 __ cmp(klass_RInfo, k_RInfo); 1358 __ br(Assembler::EQ, *success_target); 1359 1360 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1361 __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1362 __ ldr(klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1363 // result is a boolean 1364 __ cbzw(klass_RInfo, *failure_target); 1365 // successful cast, fall through to profile or jump 1366 } 1367 } else { 1368 // perform the fast part of the checking logic 1369 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1370 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1371 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1372 __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1373 __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1374 // result is a boolean 1375 __ cbz(k_RInfo, *failure_target); 1376 // successful cast, fall through to profile or jump 1377 } 1378 } 1379 __ b(*success); 1380 } 1381 1382 1383 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 1384 const bool should_profile = op->should_profile(); 1385 1386 LIR_Code code = op->code(); 1387 if (code == lir_store_check) { 1388 Register value = op->object()->as_register(); 1389 Register array = op->array()->as_register(); 1390 Register k_RInfo = op->tmp1()->as_register(); 1391 Register klass_RInfo = op->tmp2()->as_register(); 1392 Register Rtmp1 = op->tmp3()->as_register(); 1393 1394 CodeStub* stub = op->stub(); 1395 1396 // check if it needs to be profiled 1397 ciMethodData* md; 1398 ciProfileData* data; 1399 1400 if (should_profile) { 1401 ciMethod* method = op->profiled_method(); 1402 assert(method != nullptr, "Should have method"); 1403 int bci = op->profiled_bci(); 1404 md = method->method_data_or_null(); 1405 assert(md != nullptr, "Sanity"); 1406 data = md->bci_to_data(bci); 1407 assert(data != nullptr, "need data for type check"); 1408 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1409 } 1410 Label done; 1411 Label* success_target = &done; 1412 Label* failure_target = stub->entry(); 1413 1414 if (should_profile) { 1415 Label not_null; 1416 Register mdo = klass_RInfo; 1417 __ mov_metadata(mdo, md->constant_encoding()); 1418 __ cbnz(value, not_null); 1419 // Object is null; update MDO and exit 1420 Address data_addr 1421 = __ form_address(rscratch2, mdo, 1422 md->byte_offset_of_slot(data, DataLayout::flags_offset()), 0); 1423 __ ldrb(rscratch1, data_addr); 1424 __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant()); 1425 __ strb(rscratch1, data_addr); 1426 __ b(done); 1427 __ bind(not_null); 1428 1429 Label update_done; 1430 Register recv = k_RInfo; 1431 __ load_klass(recv, value); 1432 type_profile_helper(mdo, md, data, recv, &update_done); 1433 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1434 __ addptr(counter_addr, DataLayout::counter_increment); 1435 __ bind(update_done); 1436 } else { 1437 __ cbz(value, done); 1438 } 1439 1440 add_debug_info_for_null_check_here(op->info_for_exception()); 1441 __ load_klass(k_RInfo, array); 1442 __ load_klass(klass_RInfo, value); 1443 1444 // get instance klass (it's already uncompressed) 1445 __ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset())); 1446 // perform the fast part of the checking logic 1447 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1448 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1449 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1450 __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1451 __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1452 // result is a boolean 1453 __ cbzw(k_RInfo, *failure_target); 1454 // fall through to the success case 1455 1456 __ bind(done); 1457 } else if (code == lir_checkcast) { 1458 Register obj = op->object()->as_register(); 1459 Register dst = op->result_opr()->as_register(); 1460 Label success; 1461 emit_typecheck_helper(op, &success, op->stub()->entry(), &success); 1462 __ bind(success); 1463 if (dst != obj) { 1464 __ mov(dst, obj); 1465 } 1466 } else if (code == lir_instanceof) { 1467 Register obj = op->object()->as_register(); 1468 Register dst = op->result_opr()->as_register(); 1469 Label success, failure, done; 1470 emit_typecheck_helper(op, &success, &failure, &failure); 1471 __ bind(failure); 1472 __ mov(dst, zr); 1473 __ b(done); 1474 __ bind(success); 1475 __ mov(dst, 1); 1476 __ bind(done); 1477 } else { 1478 ShouldNotReachHere(); 1479 } 1480 } 1481 1482 void LIR_Assembler::casw(Register addr, Register newval, Register cmpval) { 1483 __ cmpxchg(addr, cmpval, newval, Assembler::word, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1); 1484 __ cset(rscratch1, Assembler::NE); 1485 __ membar(__ AnyAny); 1486 } 1487 1488 void LIR_Assembler::casl(Register addr, Register newval, Register cmpval) { 1489 __ cmpxchg(addr, cmpval, newval, Assembler::xword, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1); 1490 __ cset(rscratch1, Assembler::NE); 1491 __ membar(__ AnyAny); 1492 } 1493 1494 1495 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 1496 Register addr; 1497 if (op->addr()->is_register()) { 1498 addr = as_reg(op->addr()); 1499 } else { 1500 assert(op->addr()->is_address(), "what else?"); 1501 LIR_Address* addr_ptr = op->addr()->as_address_ptr(); 1502 assert(addr_ptr->disp() == 0, "need 0 disp"); 1503 assert(addr_ptr->index() == LIR_Opr::illegalOpr(), "need 0 index"); 1504 addr = as_reg(addr_ptr->base()); 1505 } 1506 Register newval = as_reg(op->new_value()); 1507 Register cmpval = as_reg(op->cmp_value()); 1508 1509 if (op->code() == lir_cas_obj) { 1510 if (UseCompressedOops) { 1511 Register t1 = op->tmp1()->as_register(); 1512 assert(op->tmp1()->is_valid(), "must be"); 1513 __ encode_heap_oop(t1, cmpval); 1514 cmpval = t1; 1515 __ encode_heap_oop(rscratch2, newval); 1516 newval = rscratch2; 1517 casw(addr, newval, cmpval); 1518 } else { 1519 casl(addr, newval, cmpval); 1520 } 1521 } else if (op->code() == lir_cas_int) { 1522 casw(addr, newval, cmpval); 1523 } else { 1524 casl(addr, newval, cmpval); 1525 } 1526 } 1527 1528 1529 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type, 1530 LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) { 1531 assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on aarch64"); 1532 1533 Assembler::Condition acond, ncond; 1534 switch (condition) { 1535 case lir_cond_equal: acond = Assembler::EQ; ncond = Assembler::NE; break; 1536 case lir_cond_notEqual: acond = Assembler::NE; ncond = Assembler::EQ; break; 1537 case lir_cond_less: acond = Assembler::LT; ncond = Assembler::GE; break; 1538 case lir_cond_lessEqual: acond = Assembler::LE; ncond = Assembler::GT; break; 1539 case lir_cond_greaterEqual: acond = Assembler::GE; ncond = Assembler::LT; break; 1540 case lir_cond_greater: acond = Assembler::GT; ncond = Assembler::LE; break; 1541 case lir_cond_belowEqual: 1542 case lir_cond_aboveEqual: 1543 default: ShouldNotReachHere(); 1544 acond = Assembler::EQ; ncond = Assembler::NE; // unreachable 1545 } 1546 1547 assert(result->is_single_cpu() || result->is_double_cpu(), 1548 "expect single register for result"); 1549 if (opr1->is_constant() && opr2->is_constant() 1550 && opr1->type() == T_INT && opr2->type() == T_INT) { 1551 jint val1 = opr1->as_jint(); 1552 jint val2 = opr2->as_jint(); 1553 if (val1 == 0 && val2 == 1) { 1554 __ cset(result->as_register(), ncond); 1555 return; 1556 } else if (val1 == 1 && val2 == 0) { 1557 __ cset(result->as_register(), acond); 1558 return; 1559 } 1560 } 1561 1562 if (opr1->is_constant() && opr2->is_constant() 1563 && opr1->type() == T_LONG && opr2->type() == T_LONG) { 1564 jlong val1 = opr1->as_jlong(); 1565 jlong val2 = opr2->as_jlong(); 1566 if (val1 == 0 && val2 == 1) { 1567 __ cset(result->as_register_lo(), ncond); 1568 return; 1569 } else if (val1 == 1 && val2 == 0) { 1570 __ cset(result->as_register_lo(), acond); 1571 return; 1572 } 1573 } 1574 1575 if (opr1->is_stack()) { 1576 stack2reg(opr1, FrameMap::rscratch1_opr, result->type()); 1577 opr1 = FrameMap::rscratch1_opr; 1578 } else if (opr1->is_constant()) { 1579 LIR_Opr tmp 1580 = opr1->type() == T_LONG ? FrameMap::rscratch1_long_opr : FrameMap::rscratch1_opr; 1581 const2reg(opr1, tmp, lir_patch_none, nullptr); 1582 opr1 = tmp; 1583 } 1584 1585 if (opr2->is_stack()) { 1586 stack2reg(opr2, FrameMap::rscratch2_opr, result->type()); 1587 opr2 = FrameMap::rscratch2_opr; 1588 } else if (opr2->is_constant()) { 1589 LIR_Opr tmp 1590 = opr2->type() == T_LONG ? FrameMap::rscratch2_long_opr : FrameMap::rscratch2_opr; 1591 const2reg(opr2, tmp, lir_patch_none, nullptr); 1592 opr2 = tmp; 1593 } 1594 1595 if (result->type() == T_LONG) 1596 __ csel(result->as_register_lo(), opr1->as_register_lo(), opr2->as_register_lo(), acond); 1597 else 1598 __ csel(result->as_register(), opr1->as_register(), opr2->as_register(), acond); 1599 } 1600 1601 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) { 1602 assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method"); 1603 1604 if (left->is_single_cpu()) { 1605 Register lreg = left->as_register(); 1606 Register dreg = as_reg(dest); 1607 1608 if (right->is_single_cpu()) { 1609 // cpu register - cpu register 1610 1611 assert(left->type() == T_INT && right->type() == T_INT && dest->type() == T_INT, 1612 "should be"); 1613 Register rreg = right->as_register(); 1614 switch (code) { 1615 case lir_add: __ addw (dest->as_register(), lreg, rreg); break; 1616 case lir_sub: __ subw (dest->as_register(), lreg, rreg); break; 1617 case lir_mul: __ mulw (dest->as_register(), lreg, rreg); break; 1618 default: ShouldNotReachHere(); 1619 } 1620 1621 } else if (right->is_double_cpu()) { 1622 Register rreg = right->as_register_lo(); 1623 // single_cpu + double_cpu: can happen with obj+long 1624 assert(code == lir_add || code == lir_sub, "mismatched arithmetic op"); 1625 switch (code) { 1626 case lir_add: __ add(dreg, lreg, rreg); break; 1627 case lir_sub: __ sub(dreg, lreg, rreg); break; 1628 default: ShouldNotReachHere(); 1629 } 1630 } else if (right->is_constant()) { 1631 // cpu register - constant 1632 jlong c; 1633 1634 // FIXME. This is fugly: we really need to factor all this logic. 1635 switch(right->type()) { 1636 case T_LONG: 1637 c = right->as_constant_ptr()->as_jlong(); 1638 break; 1639 case T_INT: 1640 case T_ADDRESS: 1641 c = right->as_constant_ptr()->as_jint(); 1642 break; 1643 default: 1644 ShouldNotReachHere(); 1645 c = 0; // unreachable 1646 break; 1647 } 1648 1649 assert(code == lir_add || code == lir_sub, "mismatched arithmetic op"); 1650 if (c == 0 && dreg == lreg) { 1651 COMMENT("effective nop elided"); 1652 return; 1653 } 1654 switch(left->type()) { 1655 case T_INT: 1656 switch (code) { 1657 case lir_add: __ addw(dreg, lreg, c); break; 1658 case lir_sub: __ subw(dreg, lreg, c); break; 1659 default: ShouldNotReachHere(); 1660 } 1661 break; 1662 case T_OBJECT: 1663 case T_ADDRESS: 1664 switch (code) { 1665 case lir_add: __ add(dreg, lreg, c); break; 1666 case lir_sub: __ sub(dreg, lreg, c); break; 1667 default: ShouldNotReachHere(); 1668 } 1669 break; 1670 default: 1671 ShouldNotReachHere(); 1672 } 1673 } else { 1674 ShouldNotReachHere(); 1675 } 1676 1677 } else if (left->is_double_cpu()) { 1678 Register lreg_lo = left->as_register_lo(); 1679 1680 if (right->is_double_cpu()) { 1681 // cpu register - cpu register 1682 Register rreg_lo = right->as_register_lo(); 1683 switch (code) { 1684 case lir_add: __ add (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1685 case lir_sub: __ sub (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1686 case lir_mul: __ mul (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1687 case lir_div: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, false, rscratch1); break; 1688 case lir_rem: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, true, rscratch1); break; 1689 default: 1690 ShouldNotReachHere(); 1691 } 1692 1693 } else if (right->is_constant()) { 1694 jlong c = right->as_constant_ptr()->as_jlong(); 1695 Register dreg = as_reg(dest); 1696 switch (code) { 1697 case lir_add: 1698 case lir_sub: 1699 if (c == 0 && dreg == lreg_lo) { 1700 COMMENT("effective nop elided"); 1701 return; 1702 } 1703 code == lir_add ? __ add(dreg, lreg_lo, c) : __ sub(dreg, lreg_lo, c); 1704 break; 1705 case lir_div: 1706 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1707 if (c == 1) { 1708 // move lreg_lo to dreg if divisor is 1 1709 __ mov(dreg, lreg_lo); 1710 } else { 1711 unsigned int shift = log2i_exact(c); 1712 // use rscratch1 as intermediate result register 1713 __ asr(rscratch1, lreg_lo, 63); 1714 __ add(rscratch1, lreg_lo, rscratch1, Assembler::LSR, 64 - shift); 1715 __ asr(dreg, rscratch1, shift); 1716 } 1717 break; 1718 case lir_rem: 1719 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1720 if (c == 1) { 1721 // move 0 to dreg if divisor is 1 1722 __ mov(dreg, zr); 1723 } else { 1724 // use rscratch1 as intermediate result register 1725 __ negs(rscratch1, lreg_lo); 1726 __ andr(dreg, lreg_lo, c - 1); 1727 __ andr(rscratch1, rscratch1, c - 1); 1728 __ csneg(dreg, dreg, rscratch1, Assembler::MI); 1729 } 1730 break; 1731 default: 1732 ShouldNotReachHere(); 1733 } 1734 } else { 1735 ShouldNotReachHere(); 1736 } 1737 } else if (left->is_single_fpu()) { 1738 assert(right->is_single_fpu(), "right hand side of float arithmetics needs to be float register"); 1739 switch (code) { 1740 case lir_add: __ fadds (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1741 case lir_sub: __ fsubs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1742 case lir_mul: __ fmuls (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1743 case lir_div: __ fdivs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1744 default: 1745 ShouldNotReachHere(); 1746 } 1747 } else if (left->is_double_fpu()) { 1748 if (right->is_double_fpu()) { 1749 // fpu register - fpu register 1750 switch (code) { 1751 case lir_add: __ faddd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1752 case lir_sub: __ fsubd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1753 case lir_mul: __ fmuld (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1754 case lir_div: __ fdivd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1755 default: 1756 ShouldNotReachHere(); 1757 } 1758 } else { 1759 if (right->is_constant()) { 1760 ShouldNotReachHere(); 1761 } 1762 ShouldNotReachHere(); 1763 } 1764 } else if (left->is_single_stack() || left->is_address()) { 1765 assert(left == dest, "left and dest must be equal"); 1766 ShouldNotReachHere(); 1767 } else { 1768 ShouldNotReachHere(); 1769 } 1770 } 1771 1772 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) { Unimplemented(); } 1773 1774 1775 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) { 1776 switch(code) { 1777 case lir_abs : __ fabsd(dest->as_double_reg(), value->as_double_reg()); break; 1778 case lir_sqrt: __ fsqrtd(dest->as_double_reg(), value->as_double_reg()); break; 1779 case lir_f2hf: __ flt_to_flt16(dest->as_register(), value->as_float_reg(), tmp->as_float_reg()); break; 1780 case lir_hf2f: __ flt16_to_flt(dest->as_float_reg(), value->as_register(), tmp->as_float_reg()); break; 1781 default : ShouldNotReachHere(); 1782 } 1783 } 1784 1785 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) { 1786 1787 assert(left->is_single_cpu() || left->is_double_cpu(), "expect single or double register"); 1788 Register Rleft = left->is_single_cpu() ? left->as_register() : 1789 left->as_register_lo(); 1790 if (dst->is_single_cpu()) { 1791 Register Rdst = dst->as_register(); 1792 if (right->is_constant()) { 1793 switch (code) { 1794 case lir_logic_and: __ andw (Rdst, Rleft, right->as_jint()); break; 1795 case lir_logic_or: __ orrw (Rdst, Rleft, right->as_jint()); break; 1796 case lir_logic_xor: __ eorw (Rdst, Rleft, right->as_jint()); break; 1797 default: ShouldNotReachHere(); break; 1798 } 1799 } else { 1800 Register Rright = right->is_single_cpu() ? right->as_register() : 1801 right->as_register_lo(); 1802 switch (code) { 1803 case lir_logic_and: __ andw (Rdst, Rleft, Rright); break; 1804 case lir_logic_or: __ orrw (Rdst, Rleft, Rright); break; 1805 case lir_logic_xor: __ eorw (Rdst, Rleft, Rright); break; 1806 default: ShouldNotReachHere(); break; 1807 } 1808 } 1809 } else { 1810 Register Rdst = dst->as_register_lo(); 1811 if (right->is_constant()) { 1812 switch (code) { 1813 case lir_logic_and: __ andr (Rdst, Rleft, right->as_jlong()); break; 1814 case lir_logic_or: __ orr (Rdst, Rleft, right->as_jlong()); break; 1815 case lir_logic_xor: __ eor (Rdst, Rleft, right->as_jlong()); break; 1816 default: ShouldNotReachHere(); break; 1817 } 1818 } else { 1819 Register Rright = right->is_single_cpu() ? right->as_register() : 1820 right->as_register_lo(); 1821 switch (code) { 1822 case lir_logic_and: __ andr (Rdst, Rleft, Rright); break; 1823 case lir_logic_or: __ orr (Rdst, Rleft, Rright); break; 1824 case lir_logic_xor: __ eor (Rdst, Rleft, Rright); break; 1825 default: ShouldNotReachHere(); break; 1826 } 1827 } 1828 } 1829 } 1830 1831 1832 1833 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr illegal, LIR_Opr result, CodeEmitInfo* info) { 1834 1835 // opcode check 1836 assert((code == lir_idiv) || (code == lir_irem), "opcode must be idiv or irem"); 1837 bool is_irem = (code == lir_irem); 1838 1839 // operand check 1840 assert(left->is_single_cpu(), "left must be register"); 1841 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant"); 1842 assert(result->is_single_cpu(), "result must be register"); 1843 Register lreg = left->as_register(); 1844 Register dreg = result->as_register(); 1845 1846 // power-of-2 constant check and codegen 1847 if (right->is_constant()) { 1848 int c = right->as_constant_ptr()->as_jint(); 1849 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1850 if (is_irem) { 1851 if (c == 1) { 1852 // move 0 to dreg if divisor is 1 1853 __ movw(dreg, zr); 1854 } else { 1855 // use rscratch1 as intermediate result register 1856 __ negsw(rscratch1, lreg); 1857 __ andw(dreg, lreg, c - 1); 1858 __ andw(rscratch1, rscratch1, c - 1); 1859 __ csnegw(dreg, dreg, rscratch1, Assembler::MI); 1860 } 1861 } else { 1862 if (c == 1) { 1863 // move lreg to dreg if divisor is 1 1864 __ movw(dreg, lreg); 1865 } else { 1866 unsigned int shift = exact_log2(c); 1867 // use rscratch1 as intermediate result register 1868 __ asrw(rscratch1, lreg, 31); 1869 __ addw(rscratch1, lreg, rscratch1, Assembler::LSR, 32 - shift); 1870 __ asrw(dreg, rscratch1, shift); 1871 } 1872 } 1873 } else { 1874 Register rreg = right->as_register(); 1875 __ corrected_idivl(dreg, lreg, rreg, is_irem, rscratch1); 1876 } 1877 } 1878 1879 1880 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 1881 if (opr1->is_constant() && opr2->is_single_cpu()) { 1882 // tableswitch 1883 Register reg = as_reg(opr2); 1884 struct tableswitch &table = switches[opr1->as_constant_ptr()->as_jint()]; 1885 __ tableswitch(reg, table._first_key, table._last_key, table._branches, table._after); 1886 } else if (opr1->is_single_cpu() || opr1->is_double_cpu()) { 1887 Register reg1 = as_reg(opr1); 1888 if (opr2->is_single_cpu()) { 1889 // cpu register - cpu register 1890 Register reg2 = opr2->as_register(); 1891 if (is_reference_type(opr1->type())) { 1892 __ cmpoop(reg1, reg2); 1893 } else { 1894 assert(!is_reference_type(opr2->type()), "cmp int, oop?"); 1895 __ cmpw(reg1, reg2); 1896 } 1897 return; 1898 } 1899 if (opr2->is_double_cpu()) { 1900 // cpu register - cpu register 1901 Register reg2 = opr2->as_register_lo(); 1902 __ cmp(reg1, reg2); 1903 return; 1904 } 1905 1906 if (opr2->is_constant()) { 1907 bool is_32bit = false; // width of register operand 1908 jlong imm; 1909 1910 switch(opr2->type()) { 1911 case T_INT: 1912 imm = opr2->as_constant_ptr()->as_jint(); 1913 is_32bit = true; 1914 break; 1915 case T_LONG: 1916 imm = opr2->as_constant_ptr()->as_jlong(); 1917 break; 1918 case T_ADDRESS: 1919 imm = opr2->as_constant_ptr()->as_jint(); 1920 break; 1921 case T_METADATA: 1922 imm = (intptr_t)(opr2->as_constant_ptr()->as_metadata()); 1923 break; 1924 case T_OBJECT: 1925 case T_ARRAY: 1926 jobject2reg(opr2->as_constant_ptr()->as_jobject(), rscratch1); 1927 __ cmpoop(reg1, rscratch1); 1928 return; 1929 default: 1930 ShouldNotReachHere(); 1931 imm = 0; // unreachable 1932 break; 1933 } 1934 1935 if (Assembler::operand_valid_for_add_sub_immediate(imm)) { 1936 if (is_32bit) 1937 __ cmpw(reg1, imm); 1938 else 1939 __ subs(zr, reg1, imm); 1940 return; 1941 } else { 1942 __ mov(rscratch1, imm); 1943 if (is_32bit) 1944 __ cmpw(reg1, rscratch1); 1945 else 1946 __ cmp(reg1, rscratch1); 1947 return; 1948 } 1949 } else 1950 ShouldNotReachHere(); 1951 } else if (opr1->is_single_fpu()) { 1952 FloatRegister reg1 = opr1->as_float_reg(); 1953 assert(opr2->is_single_fpu(), "expect single float register"); 1954 FloatRegister reg2 = opr2->as_float_reg(); 1955 __ fcmps(reg1, reg2); 1956 } else if (opr1->is_double_fpu()) { 1957 FloatRegister reg1 = opr1->as_double_reg(); 1958 assert(opr2->is_double_fpu(), "expect double float register"); 1959 FloatRegister reg2 = opr2->as_double_reg(); 1960 __ fcmpd(reg1, reg2); 1961 } else { 1962 ShouldNotReachHere(); 1963 } 1964 } 1965 1966 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){ 1967 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 1968 bool is_unordered_less = (code == lir_ucmp_fd2i); 1969 if (left->is_single_fpu()) { 1970 __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register()); 1971 } else if (left->is_double_fpu()) { 1972 __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register()); 1973 } else { 1974 ShouldNotReachHere(); 1975 } 1976 } else if (code == lir_cmp_l2i) { 1977 Label done; 1978 __ cmp(left->as_register_lo(), right->as_register_lo()); 1979 __ mov(dst->as_register(), (uint64_t)-1L); 1980 __ br(Assembler::LT, done); 1981 __ csinc(dst->as_register(), zr, zr, Assembler::EQ); 1982 __ bind(done); 1983 } else { 1984 ShouldNotReachHere(); 1985 } 1986 } 1987 1988 1989 void LIR_Assembler::align_call(LIR_Code code) { } 1990 1991 1992 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 1993 address call = __ trampoline_call(Address(op->addr(), rtype)); 1994 if (call == nullptr) { 1995 bailout("trampoline stub overflow"); 1996 return; 1997 } 1998 add_call_info(code_offset(), op->info()); 1999 __ post_call_nop(); 2000 } 2001 2002 2003 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 2004 address call = __ ic_call(op->addr()); 2005 if (call == nullptr) { 2006 bailout("trampoline stub overflow"); 2007 return; 2008 } 2009 add_call_info(code_offset(), op->info()); 2010 __ post_call_nop(); 2011 } 2012 2013 void LIR_Assembler::emit_static_call_stub() { 2014 address call_pc = __ pc(); 2015 address stub = __ start_a_stub(call_stub_size()); 2016 if (stub == nullptr) { 2017 bailout("static call stub overflow"); 2018 return; 2019 } 2020 2021 int start = __ offset(); 2022 2023 __ relocate(static_stub_Relocation::spec(call_pc)); 2024 __ emit_static_call_stub(); 2025 2026 assert(__ offset() - start + CompiledDirectCall::to_trampoline_stub_size() 2027 <= call_stub_size(), "stub too big"); 2028 __ end_a_stub(); 2029 } 2030 2031 2032 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2033 assert(exceptionOop->as_register() == r0, "must match"); 2034 assert(exceptionPC->as_register() == r3, "must match"); 2035 2036 // exception object is not added to oop map by LinearScan 2037 // (LinearScan assumes that no oops are in fixed registers) 2038 info->add_register_oop(exceptionOop); 2039 C1StubId unwind_id; 2040 2041 // get current pc information 2042 // pc is only needed if the method has an exception handler, the unwind code does not need it. 2043 if (compilation()->debug_info_recorder()->last_pc_offset() == __ offset()) { 2044 // As no instructions have been generated yet for this LIR node it's 2045 // possible that an oop map already exists for the current offset. 2046 // In that case insert an dummy NOP here to ensure all oop map PCs 2047 // are unique. See JDK-8237483. 2048 __ nop(); 2049 } 2050 int pc_for_athrow_offset = __ offset(); 2051 InternalAddress pc_for_athrow(__ pc()); 2052 __ adr(exceptionPC->as_register(), pc_for_athrow); 2053 add_call_info(pc_for_athrow_offset, info); // for exception handler 2054 2055 __ verify_not_null_oop(r0); 2056 // search an exception handler (r0: exception oop, r3: throwing pc) 2057 if (compilation()->has_fpu_code()) { 2058 unwind_id = C1StubId::handle_exception_id; 2059 } else { 2060 unwind_id = C1StubId::handle_exception_nofpu_id; 2061 } 2062 __ far_call(RuntimeAddress(Runtime1::entry_for(unwind_id))); 2063 2064 // FIXME: enough room for two byte trap ???? 2065 __ nop(); 2066 } 2067 2068 2069 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 2070 assert(exceptionOop->as_register() == r0, "must match"); 2071 2072 __ b(_unwind_handler_entry); 2073 } 2074 2075 2076 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 2077 Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo(); 2078 Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo(); 2079 2080 switch (left->type()) { 2081 case T_INT: { 2082 switch (code) { 2083 case lir_shl: __ lslvw (dreg, lreg, count->as_register()); break; 2084 case lir_shr: __ asrvw (dreg, lreg, count->as_register()); break; 2085 case lir_ushr: __ lsrvw (dreg, lreg, count->as_register()); break; 2086 default: 2087 ShouldNotReachHere(); 2088 break; 2089 } 2090 break; 2091 case T_LONG: 2092 case T_ADDRESS: 2093 case T_OBJECT: 2094 switch (code) { 2095 case lir_shl: __ lslv (dreg, lreg, count->as_register()); break; 2096 case lir_shr: __ asrv (dreg, lreg, count->as_register()); break; 2097 case lir_ushr: __ lsrv (dreg, lreg, count->as_register()); break; 2098 default: 2099 ShouldNotReachHere(); 2100 break; 2101 } 2102 break; 2103 default: 2104 ShouldNotReachHere(); 2105 break; 2106 } 2107 } 2108 } 2109 2110 2111 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 2112 Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo(); 2113 Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo(); 2114 2115 switch (left->type()) { 2116 case T_INT: { 2117 switch (code) { 2118 case lir_shl: __ lslw (dreg, lreg, count); break; 2119 case lir_shr: __ asrw (dreg, lreg, count); break; 2120 case lir_ushr: __ lsrw (dreg, lreg, count); break; 2121 default: 2122 ShouldNotReachHere(); 2123 break; 2124 } 2125 break; 2126 case T_LONG: 2127 case T_ADDRESS: 2128 case T_OBJECT: 2129 switch (code) { 2130 case lir_shl: __ lsl (dreg, lreg, count); break; 2131 case lir_shr: __ asr (dreg, lreg, count); break; 2132 case lir_ushr: __ lsr (dreg, lreg, count); break; 2133 default: 2134 ShouldNotReachHere(); 2135 break; 2136 } 2137 break; 2138 default: 2139 ShouldNotReachHere(); 2140 break; 2141 } 2142 } 2143 } 2144 2145 2146 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) { 2147 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2148 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2149 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2150 __ str (r, Address(sp, offset_from_rsp_in_bytes)); 2151 } 2152 2153 2154 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) { 2155 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2156 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2157 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2158 __ mov (rscratch1, c); 2159 __ str (rscratch1, Address(sp, offset_from_rsp_in_bytes)); 2160 } 2161 2162 2163 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) { 2164 ShouldNotReachHere(); 2165 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2166 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2167 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2168 __ lea(rscratch1, __ constant_oop_address(o)); 2169 __ str(rscratch1, Address(sp, offset_from_rsp_in_bytes)); 2170 } 2171 2172 2173 // This code replaces a call to arraycopy; no exception may 2174 // be thrown in this code, they must be thrown in the System.arraycopy 2175 // activation frame; we could save some checks if this would not be the case 2176 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 2177 ciArrayKlass* default_type = op->expected_type(); 2178 Register src = op->src()->as_register(); 2179 Register dst = op->dst()->as_register(); 2180 Register src_pos = op->src_pos()->as_register(); 2181 Register dst_pos = op->dst_pos()->as_register(); 2182 Register length = op->length()->as_register(); 2183 Register tmp = op->tmp()->as_register(); 2184 2185 CodeStub* stub = op->stub(); 2186 int flags = op->flags(); 2187 BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL; 2188 if (is_reference_type(basic_type)) basic_type = T_OBJECT; 2189 2190 // if we don't know anything, just go through the generic arraycopy 2191 if (default_type == nullptr // || basic_type == T_OBJECT 2192 ) { 2193 Label done; 2194 assert(src == r1 && src_pos == r2, "mismatch in calling convention"); 2195 2196 // Save the arguments in case the generic arraycopy fails and we 2197 // have to fall back to the JNI stub 2198 __ stp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2199 __ stp(length, src_pos, Address(sp, 2*BytesPerWord)); 2200 __ str(src, Address(sp, 4*BytesPerWord)); 2201 2202 address copyfunc_addr = StubRoutines::generic_arraycopy(); 2203 assert(copyfunc_addr != nullptr, "generic arraycopy stub required"); 2204 2205 // The arguments are in java calling convention so we shift them 2206 // to C convention 2207 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4); 2208 __ mov(c_rarg0, j_rarg0); 2209 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4); 2210 __ mov(c_rarg1, j_rarg1); 2211 assert_different_registers(c_rarg2, j_rarg3, j_rarg4); 2212 __ mov(c_rarg2, j_rarg2); 2213 assert_different_registers(c_rarg3, j_rarg4); 2214 __ mov(c_rarg3, j_rarg3); 2215 __ mov(c_rarg4, j_rarg4); 2216 #ifndef PRODUCT 2217 if (PrintC1Statistics) { 2218 __ incrementw(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt)); 2219 } 2220 #endif 2221 __ far_call(RuntimeAddress(copyfunc_addr)); 2222 2223 __ cbz(r0, *stub->continuation()); 2224 2225 // Reload values from the stack so they are where the stub 2226 // expects them. 2227 __ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2228 __ ldp(length, src_pos, Address(sp, 2*BytesPerWord)); 2229 __ ldr(src, Address(sp, 4*BytesPerWord)); 2230 2231 // r0 is -1^K where K == partial copied count 2232 __ eonw(rscratch1, r0, zr); 2233 // adjust length down and src/end pos up by partial copied count 2234 __ subw(length, length, rscratch1); 2235 __ addw(src_pos, src_pos, rscratch1); 2236 __ addw(dst_pos, dst_pos, rscratch1); 2237 __ b(*stub->entry()); 2238 2239 __ bind(*stub->continuation()); 2240 return; 2241 } 2242 2243 assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); 2244 2245 int elem_size = type2aelembytes(basic_type); 2246 int scale = exact_log2(elem_size); 2247 2248 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes()); 2249 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes()); 2250 2251 // test for null 2252 if (flags & LIR_OpArrayCopy::src_null_check) { 2253 __ cbz(src, *stub->entry()); 2254 } 2255 if (flags & LIR_OpArrayCopy::dst_null_check) { 2256 __ cbz(dst, *stub->entry()); 2257 } 2258 2259 // If the compiler was not able to prove that exact type of the source or the destination 2260 // of the arraycopy is an array type, check at runtime if the source or the destination is 2261 // an instance type. 2262 if (flags & LIR_OpArrayCopy::type_check) { 2263 if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) { 2264 __ load_klass(tmp, dst); 2265 __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2266 __ cmpw(rscratch1, Klass::_lh_neutral_value); 2267 __ br(Assembler::GE, *stub->entry()); 2268 } 2269 2270 if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) { 2271 __ load_klass(tmp, src); 2272 __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2273 __ cmpw(rscratch1, Klass::_lh_neutral_value); 2274 __ br(Assembler::GE, *stub->entry()); 2275 } 2276 } 2277 2278 // check if negative 2279 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 2280 __ cmpw(src_pos, 0); 2281 __ br(Assembler::LT, *stub->entry()); 2282 } 2283 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 2284 __ cmpw(dst_pos, 0); 2285 __ br(Assembler::LT, *stub->entry()); 2286 } 2287 2288 if (flags & LIR_OpArrayCopy::length_positive_check) { 2289 __ cmpw(length, 0); 2290 __ br(Assembler::LT, *stub->entry()); 2291 } 2292 2293 if (flags & LIR_OpArrayCopy::src_range_check) { 2294 __ addw(tmp, src_pos, length); 2295 __ ldrw(rscratch1, src_length_addr); 2296 __ cmpw(tmp, rscratch1); 2297 __ br(Assembler::HI, *stub->entry()); 2298 } 2299 if (flags & LIR_OpArrayCopy::dst_range_check) { 2300 __ addw(tmp, dst_pos, length); 2301 __ ldrw(rscratch1, dst_length_addr); 2302 __ cmpw(tmp, rscratch1); 2303 __ br(Assembler::HI, *stub->entry()); 2304 } 2305 2306 if (flags & LIR_OpArrayCopy::type_check) { 2307 // We don't know the array types are compatible 2308 if (basic_type != T_OBJECT) { 2309 // Simple test for basic type arrays 2310 __ cmp_klasses_from_objects(src, dst, tmp, rscratch1); 2311 __ br(Assembler::NE, *stub->entry()); 2312 } else { 2313 // For object arrays, if src is a sub class of dst then we can 2314 // safely do the copy. 2315 Label cont, slow; 2316 2317 #define PUSH(r1, r2) \ 2318 stp(r1, r2, __ pre(sp, -2 * wordSize)); 2319 2320 #define POP(r1, r2) \ 2321 ldp(r1, r2, __ post(sp, 2 * wordSize)); 2322 2323 __ PUSH(src, dst); 2324 2325 __ load_klass(src, src); 2326 __ load_klass(dst, dst); 2327 2328 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr); 2329 2330 __ PUSH(src, dst); 2331 __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 2332 __ POP(src, dst); 2333 2334 __ cbnz(src, cont); 2335 2336 __ bind(slow); 2337 __ POP(src, dst); 2338 2339 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 2340 if (copyfunc_addr != nullptr) { // use stub if available 2341 // src is not a sub class of dst so we have to do a 2342 // per-element check. 2343 2344 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 2345 if ((flags & mask) != mask) { 2346 // Check that at least both of them object arrays. 2347 assert(flags & mask, "one of the two should be known to be an object array"); 2348 2349 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2350 __ load_klass(tmp, src); 2351 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2352 __ load_klass(tmp, dst); 2353 } 2354 int lh_offset = in_bytes(Klass::layout_helper_offset()); 2355 Address klass_lh_addr(tmp, lh_offset); 2356 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 2357 __ ldrw(rscratch1, klass_lh_addr); 2358 __ mov(rscratch2, objArray_lh); 2359 __ eorw(rscratch1, rscratch1, rscratch2); 2360 __ cbnzw(rscratch1, *stub->entry()); 2361 } 2362 2363 // Spill because stubs can use any register they like and it's 2364 // easier to restore just those that we care about. 2365 __ stp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2366 __ stp(length, src_pos, Address(sp, 2*BytesPerWord)); 2367 __ str(src, Address(sp, 4*BytesPerWord)); 2368 2369 __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale))); 2370 __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type)); 2371 assert_different_registers(c_rarg0, dst, dst_pos, length); 2372 __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale))); 2373 __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type)); 2374 assert_different_registers(c_rarg1, dst, length); 2375 __ uxtw(c_rarg2, length); 2376 assert_different_registers(c_rarg2, dst); 2377 2378 __ load_klass(c_rarg4, dst); 2379 __ ldr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset())); 2380 __ ldrw(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset())); 2381 __ far_call(RuntimeAddress(copyfunc_addr)); 2382 2383 #ifndef PRODUCT 2384 if (PrintC1Statistics) { 2385 Label failed; 2386 __ cbnz(r0, failed); 2387 __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt)); 2388 __ bind(failed); 2389 } 2390 #endif 2391 2392 __ cbz(r0, *stub->continuation()); 2393 2394 #ifndef PRODUCT 2395 if (PrintC1Statistics) { 2396 __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt)); 2397 } 2398 #endif 2399 assert_different_registers(dst, dst_pos, length, src_pos, src, r0, rscratch1); 2400 2401 // Restore previously spilled arguments 2402 __ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2403 __ ldp(length, src_pos, Address(sp, 2*BytesPerWord)); 2404 __ ldr(src, Address(sp, 4*BytesPerWord)); 2405 2406 // return value is -1^K where K is partial copied count 2407 __ eonw(rscratch1, r0, zr); 2408 // adjust length down and src/end pos up by partial copied count 2409 __ subw(length, length, rscratch1); 2410 __ addw(src_pos, src_pos, rscratch1); 2411 __ addw(dst_pos, dst_pos, rscratch1); 2412 } 2413 2414 __ b(*stub->entry()); 2415 2416 __ bind(cont); 2417 __ POP(src, dst); 2418 } 2419 } 2420 2421 #ifdef ASSERT 2422 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 2423 // Sanity check the known type with the incoming class. For the 2424 // primitive case the types must match exactly with src.klass and 2425 // dst.klass each exactly matching the default type. For the 2426 // object array case, if no type check is needed then either the 2427 // dst type is exactly the expected type and the src type is a 2428 // subtype which we can't check or src is the same array as dst 2429 // but not necessarily exactly of type default_type. 2430 Label known_ok, halt; 2431 __ mov_metadata(tmp, default_type->constant_encoding()); 2432 2433 if (basic_type != T_OBJECT) { 2434 __ cmp_klass(dst, tmp, rscratch1); 2435 __ br(Assembler::NE, halt); 2436 __ cmp_klass(src, tmp, rscratch1); 2437 __ br(Assembler::EQ, known_ok); 2438 } else { 2439 __ cmp_klass(dst, tmp, rscratch1); 2440 __ br(Assembler::EQ, known_ok); 2441 __ cmp(src, dst); 2442 __ br(Assembler::EQ, known_ok); 2443 } 2444 __ bind(halt); 2445 __ stop("incorrect type information in arraycopy"); 2446 __ bind(known_ok); 2447 } 2448 #endif 2449 2450 #ifndef PRODUCT 2451 if (PrintC1Statistics) { 2452 __ incrementw(ExternalAddress(Runtime1::arraycopy_count_address(basic_type))); 2453 } 2454 #endif 2455 2456 __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale))); 2457 __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type)); 2458 assert_different_registers(c_rarg0, dst, dst_pos, length); 2459 __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale))); 2460 __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type)); 2461 assert_different_registers(c_rarg1, dst, length); 2462 __ uxtw(c_rarg2, length); 2463 assert_different_registers(c_rarg2, dst); 2464 2465 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 2466 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 2467 const char *name; 2468 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 2469 2470 CodeBlob *cb = CodeCache::find_blob(entry); 2471 if (cb) { 2472 __ far_call(RuntimeAddress(entry)); 2473 } else { 2474 __ call_VM_leaf(entry, 3); 2475 } 2476 2477 if (stub != nullptr) { 2478 __ bind(*stub->continuation()); 2479 } 2480 } 2481 2482 2483 2484 2485 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 2486 Register obj = op->obj_opr()->as_register(); // may not be an oop 2487 Register hdr = op->hdr_opr()->as_register(); 2488 Register lock = op->lock_opr()->as_register(); 2489 Register temp = op->scratch_opr()->as_register(); 2490 if (LockingMode == LM_MONITOR) { 2491 if (op->info() != nullptr) { 2492 add_debug_info_for_null_check_here(op->info()); 2493 __ null_check(obj, -1); 2494 } 2495 __ b(*op->stub()->entry()); 2496 } else if (op->code() == lir_lock) { 2497 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2498 // add debug info for NullPointerException only if one is possible 2499 int null_check_offset = __ lock_object(hdr, obj, lock, temp, *op->stub()->entry()); 2500 if (op->info() != nullptr) { 2501 add_debug_info_for_null_check(null_check_offset, op->info()); 2502 } 2503 // done 2504 } else if (op->code() == lir_unlock) { 2505 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2506 __ unlock_object(hdr, obj, lock, temp, *op->stub()->entry()); 2507 } else { 2508 Unimplemented(); 2509 } 2510 __ bind(*op->stub()->continuation()); 2511 } 2512 2513 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) { 2514 Register obj = op->obj()->as_pointer_register(); 2515 Register result = op->result_opr()->as_pointer_register(); 2516 2517 CodeEmitInfo* info = op->info(); 2518 if (info != nullptr) { 2519 add_debug_info_for_null_check_here(info); 2520 } 2521 2522 __ load_klass(result, obj); 2523 } 2524 2525 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 2526 ciMethod* method = op->profiled_method(); 2527 int bci = op->profiled_bci(); 2528 ciMethod* callee = op->profiled_callee(); 2529 2530 // Update counter for all call types 2531 ciMethodData* md = method->method_data_or_null(); 2532 assert(md != nullptr, "Sanity"); 2533 ciProfileData* data = md->bci_to_data(bci); 2534 assert(data != nullptr && data->is_CounterData(), "need CounterData for calls"); 2535 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 2536 Register mdo = op->mdo()->as_register(); 2537 __ mov_metadata(mdo, md->constant_encoding()); 2538 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 2539 // Perform additional virtual call profiling for invokevirtual and 2540 // invokeinterface bytecodes 2541 if (op->should_profile_receiver_type()) { 2542 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 2543 Register recv = op->recv()->as_register(); 2544 assert_different_registers(mdo, recv); 2545 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 2546 ciKlass* known_klass = op->known_holder(); 2547 if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) { 2548 // We know the type that will be seen at this call site; we can 2549 // statically update the MethodData* rather than needing to do 2550 // dynamic tests on the receiver type 2551 2552 // NOTE: we should probably put a lock around this search to 2553 // avoid collisions by concurrent compilations 2554 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 2555 uint i; 2556 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2557 ciKlass* receiver = vc_data->receiver(i); 2558 if (known_klass->equals(receiver)) { 2559 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2560 __ addptr(data_addr, DataLayout::counter_increment); 2561 return; 2562 } 2563 } 2564 2565 // Receiver type not found in profile data; select an empty slot 2566 2567 // Note that this is less efficient than it should be because it 2568 // always does a write to the receiver part of the 2569 // VirtualCallData rather than just the first time 2570 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2571 ciKlass* receiver = vc_data->receiver(i); 2572 if (receiver == nullptr) { 2573 __ mov_metadata(rscratch1, known_klass->constant_encoding()); 2574 Address recv_addr = 2575 __ form_address(rscratch2, mdo, 2576 md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)), 2577 LogBytesPerWord); 2578 __ str(rscratch1, recv_addr); 2579 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2580 __ addptr(data_addr, DataLayout::counter_increment); 2581 return; 2582 } 2583 } 2584 } else { 2585 __ load_klass(recv, recv); 2586 Label update_done; 2587 type_profile_helper(mdo, md, data, recv, &update_done); 2588 // Receiver did not match any saved receiver and there is no empty row for it. 2589 // Increment total counter to indicate polymorphic case. 2590 __ addptr(counter_addr, DataLayout::counter_increment); 2591 2592 __ bind(update_done); 2593 } 2594 } else { 2595 // Static call 2596 __ addptr(counter_addr, DataLayout::counter_increment); 2597 } 2598 } 2599 2600 2601 void LIR_Assembler::emit_delay(LIR_OpDelay*) { 2602 Unimplemented(); 2603 } 2604 2605 2606 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) { 2607 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no)); 2608 } 2609 2610 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 2611 assert(op->crc()->is_single_cpu(), "crc must be register"); 2612 assert(op->val()->is_single_cpu(), "byte value must be register"); 2613 assert(op->result_opr()->is_single_cpu(), "result must be register"); 2614 Register crc = op->crc()->as_register(); 2615 Register val = op->val()->as_register(); 2616 Register res = op->result_opr()->as_register(); 2617 2618 assert_different_registers(val, crc, res); 2619 uint64_t offset; 2620 __ adrp(res, ExternalAddress(StubRoutines::crc_table_addr()), offset); 2621 __ add(res, res, offset); 2622 2623 __ mvnw(crc, crc); // ~crc 2624 __ update_byte_crc32(crc, val, res); 2625 __ mvnw(res, crc); // ~crc 2626 } 2627 2628 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 2629 COMMENT("emit_profile_type {"); 2630 Register obj = op->obj()->as_register(); 2631 Register tmp = op->tmp()->as_pointer_register(); 2632 Address mdo_addr = as_Address(op->mdp()->as_address_ptr()); 2633 ciKlass* exact_klass = op->exact_klass(); 2634 intptr_t current_klass = op->current_klass(); 2635 bool not_null = op->not_null(); 2636 bool no_conflict = op->no_conflict(); 2637 2638 Label update, next, none; 2639 2640 bool do_null = !not_null; 2641 bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 2642 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 2643 2644 assert(do_null || do_update, "why are we here?"); 2645 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 2646 assert(mdo_addr.base() != rscratch1, "wrong register"); 2647 2648 __ verify_oop(obj); 2649 2650 if (tmp != obj) { 2651 assert_different_registers(obj, tmp, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index()); 2652 __ mov(tmp, obj); 2653 } else { 2654 assert_different_registers(obj, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index()); 2655 } 2656 if (do_null) { 2657 __ cbnz(tmp, update); 2658 if (!TypeEntries::was_null_seen(current_klass)) { 2659 __ ldr(rscratch2, mdo_addr); 2660 __ orr(rscratch2, rscratch2, TypeEntries::null_seen); 2661 __ str(rscratch2, mdo_addr); 2662 } 2663 if (do_update) { 2664 #ifndef ASSERT 2665 __ b(next); 2666 } 2667 #else 2668 __ b(next); 2669 } 2670 } else { 2671 __ cbnz(tmp, update); 2672 __ stop("unexpected null obj"); 2673 #endif 2674 } 2675 2676 __ bind(update); 2677 2678 if (do_update) { 2679 #ifdef ASSERT 2680 if (exact_klass != nullptr) { 2681 Label ok; 2682 __ load_klass(tmp, tmp); 2683 __ mov_metadata(rscratch1, exact_klass->constant_encoding()); 2684 __ eor(rscratch1, tmp, rscratch1); 2685 __ cbz(rscratch1, ok); 2686 __ stop("exact klass and actual klass differ"); 2687 __ bind(ok); 2688 } 2689 #endif 2690 if (!no_conflict) { 2691 if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) { 2692 if (exact_klass != nullptr) { 2693 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2694 } else { 2695 __ load_klass(tmp, tmp); 2696 } 2697 2698 __ ldr(rscratch2, mdo_addr); 2699 __ eor(tmp, tmp, rscratch2); 2700 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2701 // klass seen before, nothing to do. The unknown bit may have been 2702 // set already but no need to check. 2703 __ cbz(rscratch1, next); 2704 2705 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2706 2707 if (TypeEntries::is_type_none(current_klass)) { 2708 __ cbz(rscratch2, none); 2709 __ cmp(rscratch2, (u1)TypeEntries::null_seen); 2710 __ br(Assembler::EQ, none); 2711 // There is a chance that the checks above 2712 // fail if another thread has just set the 2713 // profiling to this obj's klass 2714 __ dmb(Assembler::ISHLD); 2715 __ eor(tmp, tmp, rscratch2); // get back original value before XOR 2716 __ ldr(rscratch2, mdo_addr); 2717 __ eor(tmp, tmp, rscratch2); 2718 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2719 __ cbz(rscratch1, next); 2720 } 2721 } else { 2722 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 2723 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 2724 2725 __ ldr(tmp, mdo_addr); 2726 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2727 } 2728 2729 // different than before. Cannot keep accurate profile. 2730 __ ldr(rscratch2, mdo_addr); 2731 __ orr(rscratch2, rscratch2, TypeEntries::type_unknown); 2732 __ str(rscratch2, mdo_addr); 2733 2734 if (TypeEntries::is_type_none(current_klass)) { 2735 __ b(next); 2736 2737 __ bind(none); 2738 // first time here. Set profile type. 2739 __ str(tmp, mdo_addr); 2740 #ifdef ASSERT 2741 __ andr(tmp, tmp, TypeEntries::type_mask); 2742 __ verify_klass_ptr(tmp); 2743 #endif 2744 } 2745 } else { 2746 // There's a single possible klass at this profile point 2747 assert(exact_klass != nullptr, "should be"); 2748 if (TypeEntries::is_type_none(current_klass)) { 2749 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2750 __ ldr(rscratch2, mdo_addr); 2751 __ eor(tmp, tmp, rscratch2); 2752 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2753 __ cbz(rscratch1, next); 2754 #ifdef ASSERT 2755 { 2756 Label ok; 2757 __ ldr(rscratch1, mdo_addr); 2758 __ cbz(rscratch1, ok); 2759 __ cmp(rscratch1, (u1)TypeEntries::null_seen); 2760 __ br(Assembler::EQ, ok); 2761 // may have been set by another thread 2762 __ dmb(Assembler::ISHLD); 2763 __ mov_metadata(rscratch1, exact_klass->constant_encoding()); 2764 __ ldr(rscratch2, mdo_addr); 2765 __ eor(rscratch2, rscratch1, rscratch2); 2766 __ andr(rscratch2, rscratch2, TypeEntries::type_mask); 2767 __ cbz(rscratch2, ok); 2768 2769 __ stop("unexpected profiling mismatch"); 2770 __ bind(ok); 2771 } 2772 #endif 2773 // first time here. Set profile type. 2774 __ str(tmp, mdo_addr); 2775 #ifdef ASSERT 2776 __ andr(tmp, tmp, TypeEntries::type_mask); 2777 __ verify_klass_ptr(tmp); 2778 #endif 2779 } else { 2780 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 2781 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 2782 2783 __ ldr(tmp, mdo_addr); 2784 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2785 2786 __ orr(tmp, tmp, TypeEntries::type_unknown); 2787 __ str(tmp, mdo_addr); 2788 // FIXME: Write barrier needed here? 2789 } 2790 } 2791 2792 __ bind(next); 2793 } 2794 COMMENT("} emit_profile_type"); 2795 } 2796 2797 2798 void LIR_Assembler::align_backward_branch_target() { 2799 } 2800 2801 2802 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 2803 // tmp must be unused 2804 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 2805 2806 if (left->is_single_cpu()) { 2807 assert(dest->is_single_cpu(), "expect single result reg"); 2808 __ negw(dest->as_register(), left->as_register()); 2809 } else if (left->is_double_cpu()) { 2810 assert(dest->is_double_cpu(), "expect double result reg"); 2811 __ neg(dest->as_register_lo(), left->as_register_lo()); 2812 } else if (left->is_single_fpu()) { 2813 assert(dest->is_single_fpu(), "expect single float result reg"); 2814 __ fnegs(dest->as_float_reg(), left->as_float_reg()); 2815 } else { 2816 assert(left->is_double_fpu(), "expect double float operand reg"); 2817 assert(dest->is_double_fpu(), "expect double float result reg"); 2818 __ fnegd(dest->as_double_reg(), left->as_double_reg()); 2819 } 2820 } 2821 2822 2823 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 2824 if (patch_code != lir_patch_none) { 2825 deoptimize_trap(info); 2826 return; 2827 } 2828 2829 __ lea(dest->as_register_lo(), as_Address(addr->as_address_ptr())); 2830 } 2831 2832 2833 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 2834 assert(!tmp->is_valid(), "don't need temporary"); 2835 2836 CodeBlob *cb = CodeCache::find_blob(dest); 2837 if (cb) { 2838 __ far_call(RuntimeAddress(dest)); 2839 } else { 2840 __ mov(rscratch1, RuntimeAddress(dest)); 2841 __ blr(rscratch1); 2842 } 2843 2844 if (info != nullptr) { 2845 add_call_info_here(info); 2846 } 2847 __ post_call_nop(); 2848 } 2849 2850 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 2851 if (dest->is_address() || src->is_address()) { 2852 move_op(src, dest, type, lir_patch_none, info, 2853 /*pop_fpu_stack*/false, /*wide*/false); 2854 } else { 2855 ShouldNotReachHere(); 2856 } 2857 } 2858 2859 #ifdef ASSERT 2860 // emit run-time assertion 2861 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 2862 assert(op->code() == lir_assert, "must be"); 2863 2864 if (op->in_opr1()->is_valid()) { 2865 assert(op->in_opr2()->is_valid(), "both operands must be valid"); 2866 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op); 2867 } else { 2868 assert(op->in_opr2()->is_illegal(), "both operands must be illegal"); 2869 assert(op->condition() == lir_cond_always, "no other conditions allowed"); 2870 } 2871 2872 Label ok; 2873 if (op->condition() != lir_cond_always) { 2874 Assembler::Condition acond = Assembler::AL; 2875 switch (op->condition()) { 2876 case lir_cond_equal: acond = Assembler::EQ; break; 2877 case lir_cond_notEqual: acond = Assembler::NE; break; 2878 case lir_cond_less: acond = Assembler::LT; break; 2879 case lir_cond_lessEqual: acond = Assembler::LE; break; 2880 case lir_cond_greaterEqual: acond = Assembler::GE; break; 2881 case lir_cond_greater: acond = Assembler::GT; break; 2882 case lir_cond_belowEqual: acond = Assembler::LS; break; 2883 case lir_cond_aboveEqual: acond = Assembler::HS; break; 2884 default: ShouldNotReachHere(); 2885 } 2886 __ br(acond, ok); 2887 } 2888 if (op->halt()) { 2889 const char* str = __ code_string(op->msg()); 2890 __ stop(str); 2891 } else { 2892 breakpoint(); 2893 } 2894 __ bind(ok); 2895 } 2896 #endif 2897 2898 #ifndef PRODUCT 2899 #define COMMENT(x) do { __ block_comment(x); } while (0) 2900 #else 2901 #define COMMENT(x) 2902 #endif 2903 2904 void LIR_Assembler::membar() { 2905 COMMENT("membar"); 2906 __ membar(MacroAssembler::AnyAny); 2907 } 2908 2909 void LIR_Assembler::membar_acquire() { 2910 __ membar(Assembler::LoadLoad|Assembler::LoadStore); 2911 } 2912 2913 void LIR_Assembler::membar_release() { 2914 __ membar(Assembler::LoadStore|Assembler::StoreStore); 2915 } 2916 2917 void LIR_Assembler::membar_loadload() { 2918 __ membar(Assembler::LoadLoad); 2919 } 2920 2921 void LIR_Assembler::membar_storestore() { 2922 __ membar(MacroAssembler::StoreStore); 2923 } 2924 2925 void LIR_Assembler::membar_loadstore() { __ membar(MacroAssembler::LoadStore); } 2926 2927 void LIR_Assembler::membar_storeload() { __ membar(MacroAssembler::StoreLoad); } 2928 2929 void LIR_Assembler::on_spin_wait() { 2930 __ spin_wait(); 2931 } 2932 2933 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 2934 __ mov(result_reg->as_register(), rthread); 2935 } 2936 2937 2938 void LIR_Assembler::peephole(LIR_List *lir) { 2939 #if 0 2940 if (tableswitch_count >= max_tableswitches) 2941 return; 2942 2943 /* 2944 This finite-state automaton recognizes sequences of compare-and- 2945 branch instructions. We will turn them into a tableswitch. You 2946 could argue that C1 really shouldn't be doing this sort of 2947 optimization, but without it the code is really horrible. 2948 */ 2949 2950 enum { start_s, cmp1_s, beq_s, cmp_s } state; 2951 int first_key, last_key = -2147483648; 2952 int next_key = 0; 2953 int start_insn = -1; 2954 int last_insn = -1; 2955 Register reg = noreg; 2956 LIR_Opr reg_opr; 2957 state = start_s; 2958 2959 LIR_OpList* inst = lir->instructions_list(); 2960 for (int i = 0; i < inst->length(); i++) { 2961 LIR_Op* op = inst->at(i); 2962 switch (state) { 2963 case start_s: 2964 first_key = -1; 2965 start_insn = i; 2966 switch (op->code()) { 2967 case lir_cmp: 2968 LIR_Opr opr1 = op->as_Op2()->in_opr1(); 2969 LIR_Opr opr2 = op->as_Op2()->in_opr2(); 2970 if (opr1->is_cpu_register() && opr1->is_single_cpu() 2971 && opr2->is_constant() 2972 && opr2->type() == T_INT) { 2973 reg_opr = opr1; 2974 reg = opr1->as_register(); 2975 first_key = opr2->as_constant_ptr()->as_jint(); 2976 next_key = first_key + 1; 2977 state = cmp_s; 2978 goto next_state; 2979 } 2980 break; 2981 } 2982 break; 2983 case cmp_s: 2984 switch (op->code()) { 2985 case lir_branch: 2986 if (op->as_OpBranch()->cond() == lir_cond_equal) { 2987 state = beq_s; 2988 last_insn = i; 2989 goto next_state; 2990 } 2991 } 2992 state = start_s; 2993 break; 2994 case beq_s: 2995 switch (op->code()) { 2996 case lir_cmp: { 2997 LIR_Opr opr1 = op->as_Op2()->in_opr1(); 2998 LIR_Opr opr2 = op->as_Op2()->in_opr2(); 2999 if (opr1->is_cpu_register() && opr1->is_single_cpu() 3000 && opr1->as_register() == reg 3001 && opr2->is_constant() 3002 && opr2->type() == T_INT 3003 && opr2->as_constant_ptr()->as_jint() == next_key) { 3004 last_key = next_key; 3005 next_key++; 3006 state = cmp_s; 3007 goto next_state; 3008 } 3009 } 3010 } 3011 last_key = next_key; 3012 state = start_s; 3013 break; 3014 default: 3015 assert(false, "impossible state"); 3016 } 3017 if (state == start_s) { 3018 if (first_key < last_key - 5L && reg != noreg) { 3019 { 3020 // printf("found run register %d starting at insn %d low value %d high value %d\n", 3021 // reg->encoding(), 3022 // start_insn, first_key, last_key); 3023 // for (int i = 0; i < inst->length(); i++) { 3024 // inst->at(i)->print(); 3025 // tty->print("\n"); 3026 // } 3027 // tty->print("\n"); 3028 } 3029 3030 struct tableswitch *sw = &switches[tableswitch_count]; 3031 sw->_insn_index = start_insn, sw->_first_key = first_key, 3032 sw->_last_key = last_key, sw->_reg = reg; 3033 inst->insert_before(last_insn + 1, new LIR_OpLabel(&sw->_after)); 3034 { 3035 // Insert the new table of branches 3036 int offset = last_insn; 3037 for (int n = first_key; n < last_key; n++) { 3038 inst->insert_before 3039 (last_insn + 1, 3040 new LIR_OpBranch(lir_cond_always, T_ILLEGAL, 3041 inst->at(offset)->as_OpBranch()->label())); 3042 offset -= 2, i++; 3043 } 3044 } 3045 // Delete all the old compare-and-branch instructions 3046 for (int n = first_key; n < last_key; n++) { 3047 inst->remove_at(start_insn); 3048 inst->remove_at(start_insn); 3049 } 3050 // Insert the tableswitch instruction 3051 inst->insert_before(start_insn, 3052 new LIR_Op2(lir_cmp, lir_cond_always, 3053 LIR_OprFact::intConst(tableswitch_count), 3054 reg_opr)); 3055 inst->insert_before(start_insn + 1, new LIR_OpLabel(&sw->_branches)); 3056 tableswitch_count++; 3057 } 3058 reg = noreg; 3059 last_key = -2147483648; 3060 } 3061 next_state: 3062 ; 3063 } 3064 #endif 3065 } 3066 3067 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp_op) { 3068 Address addr = as_Address(src->as_address_ptr()); 3069 BasicType type = src->type(); 3070 bool is_oop = is_reference_type(type); 3071 3072 void (MacroAssembler::* add)(Register prev, RegisterOrConstant incr, Register addr); 3073 void (MacroAssembler::* xchg)(Register prev, Register newv, Register addr); 3074 3075 switch(type) { 3076 case T_INT: 3077 xchg = &MacroAssembler::atomic_xchgalw; 3078 add = &MacroAssembler::atomic_addalw; 3079 break; 3080 case T_LONG: 3081 xchg = &MacroAssembler::atomic_xchgal; 3082 add = &MacroAssembler::atomic_addal; 3083 break; 3084 case T_OBJECT: 3085 case T_ARRAY: 3086 if (UseCompressedOops) { 3087 xchg = &MacroAssembler::atomic_xchgalw; 3088 add = &MacroAssembler::atomic_addalw; 3089 } else { 3090 xchg = &MacroAssembler::atomic_xchgal; 3091 add = &MacroAssembler::atomic_addal; 3092 } 3093 break; 3094 default: 3095 ShouldNotReachHere(); 3096 xchg = &MacroAssembler::atomic_xchgal; 3097 add = &MacroAssembler::atomic_addal; // unreachable 3098 } 3099 3100 switch (code) { 3101 case lir_xadd: 3102 { 3103 RegisterOrConstant inc; 3104 Register tmp = as_reg(tmp_op); 3105 Register dst = as_reg(dest); 3106 if (data->is_constant()) { 3107 inc = RegisterOrConstant(as_long(data)); 3108 assert_different_registers(dst, addr.base(), tmp, 3109 rscratch1, rscratch2); 3110 } else { 3111 inc = RegisterOrConstant(as_reg(data)); 3112 assert_different_registers(inc.as_register(), dst, addr.base(), tmp, 3113 rscratch1, rscratch2); 3114 } 3115 __ lea(tmp, addr); 3116 (_masm->*add)(dst, inc, tmp); 3117 break; 3118 } 3119 case lir_xchg: 3120 { 3121 Register tmp = tmp_op->as_register(); 3122 Register obj = as_reg(data); 3123 Register dst = as_reg(dest); 3124 if (is_oop && UseCompressedOops) { 3125 __ encode_heap_oop(rscratch2, obj); 3126 obj = rscratch2; 3127 } 3128 assert_different_registers(obj, addr.base(), tmp, rscratch1); 3129 assert_different_registers(dst, addr.base(), tmp, rscratch1); 3130 __ lea(tmp, addr); 3131 (_masm->*xchg)(dst, obj, tmp); 3132 if (is_oop && UseCompressedOops) { 3133 __ decode_heap_oop(dst); 3134 } 3135 } 3136 break; 3137 default: 3138 ShouldNotReachHere(); 3139 } 3140 __ membar(__ AnyAny); 3141 } 3142 3143 #undef __