1 /* 2 * Copyright (c) 2000, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "asm/assembler.hpp" 29 #include "c1/c1_CodeStubs.hpp" 30 #include "c1/c1_Compilation.hpp" 31 #include "c1/c1_LIRAssembler.hpp" 32 #include "c1/c1_MacroAssembler.hpp" 33 #include "c1/c1_Runtime1.hpp" 34 #include "c1/c1_ValueStack.hpp" 35 #include "ci/ciArrayKlass.hpp" 36 #include "ci/ciInstance.hpp" 37 #include "ci/ciUtilities.hpp" 38 #include "code/SCCache.hpp" 39 #include "code/compiledIC.hpp" 40 #include "gc/shared/collectedHeap.hpp" 41 #include "gc/shared/gc_globals.hpp" 42 #include "nativeInst_aarch64.hpp" 43 #include "oops/objArrayKlass.hpp" 44 #include "runtime/frame.inline.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "runtime/stubRoutines.hpp" 47 #include "utilities/powerOfTwo.hpp" 48 #include "vmreg_aarch64.inline.hpp" 49 50 51 #ifndef PRODUCT 52 #define COMMENT(x) do { __ block_comment(x); } while (0) 53 #else 54 #define COMMENT(x) 55 #endif 56 57 NEEDS_CLEANUP // remove this definitions ? 58 const Register SYNC_header = r0; // synchronization header 59 const Register SHIFT_count = r0; // where count for shift operations must be 60 61 #define __ _masm-> 62 63 64 static void select_different_registers(Register preserve, 65 Register extra, 66 Register &tmp1, 67 Register &tmp2) { 68 if (tmp1 == preserve) { 69 assert_different_registers(tmp1, tmp2, extra); 70 tmp1 = extra; 71 } else if (tmp2 == preserve) { 72 assert_different_registers(tmp1, tmp2, extra); 73 tmp2 = extra; 74 } 75 assert_different_registers(preserve, tmp1, tmp2); 76 } 77 78 79 80 static void select_different_registers(Register preserve, 81 Register extra, 82 Register &tmp1, 83 Register &tmp2, 84 Register &tmp3) { 85 if (tmp1 == preserve) { 86 assert_different_registers(tmp1, tmp2, tmp3, extra); 87 tmp1 = extra; 88 } else if (tmp2 == preserve) { 89 assert_different_registers(tmp1, tmp2, tmp3, extra); 90 tmp2 = extra; 91 } else if (tmp3 == preserve) { 92 assert_different_registers(tmp1, tmp2, tmp3, extra); 93 tmp3 = extra; 94 } 95 assert_different_registers(preserve, tmp1, tmp2, tmp3); 96 } 97 98 99 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { Unimplemented(); return false; } 100 101 102 LIR_Opr LIR_Assembler::receiverOpr() { 103 return FrameMap::receiver_opr; 104 } 105 106 LIR_Opr LIR_Assembler::osrBufferPointer() { 107 return FrameMap::as_pointer_opr(receiverOpr()->as_register()); 108 } 109 110 //--------------fpu register translations----------------------- 111 112 113 address LIR_Assembler::float_constant(float f) { 114 address const_addr = __ float_constant(f); 115 if (const_addr == nullptr) { 116 bailout("const section overflow"); 117 return __ code()->consts()->start(); 118 } else { 119 return const_addr; 120 } 121 } 122 123 124 address LIR_Assembler::double_constant(double d) { 125 address const_addr = __ double_constant(d); 126 if (const_addr == nullptr) { 127 bailout("const section overflow"); 128 return __ code()->consts()->start(); 129 } else { 130 return const_addr; 131 } 132 } 133 134 address LIR_Assembler::int_constant(jlong n) { 135 address const_addr = __ long_constant(n); 136 if (const_addr == nullptr) { 137 bailout("const section overflow"); 138 return __ code()->consts()->start(); 139 } else { 140 return const_addr; 141 } 142 } 143 144 void LIR_Assembler::breakpoint() { Unimplemented(); } 145 146 void LIR_Assembler::push(LIR_Opr opr) { Unimplemented(); } 147 148 void LIR_Assembler::pop(LIR_Opr opr) { Unimplemented(); } 149 150 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { Unimplemented(); return false; } 151 //------------------------------------------- 152 153 static Register as_reg(LIR_Opr op) { 154 return op->is_double_cpu() ? op->as_register_lo() : op->as_register(); 155 } 156 157 static jlong as_long(LIR_Opr data) { 158 jlong result; 159 switch (data->type()) { 160 case T_INT: 161 result = (data->as_jint()); 162 break; 163 case T_LONG: 164 result = (data->as_jlong()); 165 break; 166 default: 167 ShouldNotReachHere(); 168 result = 0; // unreachable 169 } 170 return result; 171 } 172 173 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) { 174 Register base = addr->base()->as_pointer_register(); 175 LIR_Opr opr = addr->index(); 176 if (opr->is_cpu_register()) { 177 Register index; 178 if (opr->is_single_cpu()) 179 index = opr->as_register(); 180 else 181 index = opr->as_register_lo(); 182 assert(addr->disp() == 0, "must be"); 183 switch(opr->type()) { 184 case T_INT: 185 return Address(base, index, Address::sxtw(addr->scale())); 186 case T_LONG: 187 return Address(base, index, Address::lsl(addr->scale())); 188 default: 189 ShouldNotReachHere(); 190 } 191 } else { 192 assert(addr->scale() == 0, 193 "expected for immediate operand, was: %d", addr->scale()); 194 ptrdiff_t offset = ptrdiff_t(addr->disp()); 195 // NOTE: Does not handle any 16 byte vector access. 196 const uint type_size = type2aelembytes(addr->type(), true); 197 return __ legitimize_address(Address(base, offset), type_size, tmp); 198 } 199 return Address(); 200 } 201 202 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 203 ShouldNotReachHere(); 204 return Address(); 205 } 206 207 Address LIR_Assembler::as_Address(LIR_Address* addr) { 208 return as_Address(addr, rscratch1); 209 } 210 211 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 212 return as_Address(addr, rscratch1); // Ouch 213 // FIXME: This needs to be much more clever. See x86. 214 } 215 216 // Ensure a valid Address (base + offset) to a stack-slot. If stack access is 217 // not encodable as a base + (immediate) offset, generate an explicit address 218 // calculation to hold the address in a temporary register. 219 Address LIR_Assembler::stack_slot_address(int index, uint size, Register tmp, int adjust) { 220 precond(size == 4 || size == 8); 221 Address addr = frame_map()->address_for_slot(index, adjust); 222 precond(addr.getMode() == Address::base_plus_offset); 223 precond(addr.base() == sp); 224 precond(addr.offset() > 0); 225 uint mask = size - 1; 226 assert((addr.offset() & mask) == 0, "scaled offsets only"); 227 return __ legitimize_address(addr, size, tmp); 228 } 229 230 void LIR_Assembler::osr_entry() { 231 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 232 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 233 ValueStack* entry_state = osr_entry->state(); 234 int number_of_locks = entry_state->locks_size(); 235 236 // we jump here if osr happens with the interpreter 237 // state set up to continue at the beginning of the 238 // loop that triggered osr - in particular, we have 239 // the following registers setup: 240 // 241 // r2: osr buffer 242 // 243 244 // build frame 245 ciMethod* m = compilation()->method(); 246 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 247 248 // OSR buffer is 249 // 250 // locals[nlocals-1..0] 251 // monitors[0..number_of_locks] 252 // 253 // locals is a direct copy of the interpreter frame so in the osr buffer 254 // so first slot in the local array is the last local from the interpreter 255 // and last slot is local[0] (receiver) from the interpreter 256 // 257 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 258 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 259 // in the interpreter frame (the method lock if a sync method) 260 261 // Initialize monitors in the compiled activation. 262 // r2: pointer to osr buffer 263 // 264 // All other registers are dead at this point and the locals will be 265 // copied into place by code emitted in the IR. 266 267 Register OSR_buf = osrBufferPointer()->as_pointer_register(); 268 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 269 int monitor_offset = BytesPerWord * method()->max_locals() + 270 (2 * BytesPerWord) * (number_of_locks - 1); 271 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 272 // the OSR buffer using 2 word entries: first the lock and then 273 // the oop. 274 for (int i = 0; i < number_of_locks; i++) { 275 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 276 #ifdef ASSERT 277 // verify the interpreter's monitor has a non-null object 278 { 279 Label L; 280 __ ldr(rscratch1, Address(OSR_buf, slot_offset + 1*BytesPerWord)); 281 __ cbnz(rscratch1, L); 282 __ stop("locked object is null"); 283 __ bind(L); 284 } 285 #endif 286 __ ldr(r19, Address(OSR_buf, slot_offset)); 287 __ ldr(r20, Address(OSR_buf, slot_offset + BytesPerWord)); 288 __ str(r19, frame_map()->address_for_monitor_lock(i)); 289 __ str(r20, frame_map()->address_for_monitor_object(i)); 290 } 291 } 292 } 293 294 295 // inline cache check; done before the frame is built. 296 int LIR_Assembler::check_icache() { 297 return __ ic_check(CodeEntryAlignment); 298 } 299 300 void LIR_Assembler::clinit_barrier(ciMethod* method) { 301 assert(VM_Version::supports_fast_class_init_checks(), "sanity"); 302 assert(!method->holder()->is_not_initialized(), "initialization should have been started"); 303 304 Label L_skip_barrier; 305 306 __ mov_metadata(rscratch2, method->holder()->constant_encoding()); 307 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier /*L_fast_path*/); 308 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 309 __ bind(L_skip_barrier); 310 } 311 312 void LIR_Assembler::jobject2reg(jobject o, Register reg) { 313 if (o == nullptr) { 314 __ mov(reg, zr); 315 } else { 316 __ movoop(reg, o); 317 } 318 } 319 320 void LIR_Assembler::deoptimize_trap(CodeEmitInfo *info) { 321 address target = nullptr; 322 relocInfo::relocType reloc_type = relocInfo::none; 323 324 switch (patching_id(info)) { 325 case PatchingStub::access_field_id: 326 target = Runtime1::entry_for(C1StubId::access_field_patching_id); 327 reloc_type = relocInfo::section_word_type; 328 break; 329 case PatchingStub::load_klass_id: 330 target = Runtime1::entry_for(C1StubId::load_klass_patching_id); 331 reloc_type = relocInfo::metadata_type; 332 break; 333 case PatchingStub::load_mirror_id: 334 target = Runtime1::entry_for(C1StubId::load_mirror_patching_id); 335 reloc_type = relocInfo::oop_type; 336 break; 337 case PatchingStub::load_appendix_id: 338 target = Runtime1::entry_for(C1StubId::load_appendix_patching_id); 339 reloc_type = relocInfo::oop_type; 340 break; 341 default: ShouldNotReachHere(); 342 } 343 344 __ far_call(RuntimeAddress(target)); 345 add_call_info_here(info); 346 } 347 348 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) { 349 deoptimize_trap(info); 350 } 351 352 353 // This specifies the rsp decrement needed to build the frame 354 int LIR_Assembler::initial_frame_size_in_bytes() const { 355 // if rounding, must let FrameMap know! 356 357 return in_bytes(frame_map()->framesize_in_bytes()); 358 } 359 360 361 int LIR_Assembler::emit_exception_handler() { 362 // generate code for exception handler 363 address handler_base = __ start_a_stub(exception_handler_size()); 364 if (handler_base == nullptr) { 365 // not enough space left for the handler 366 bailout("exception handler overflow"); 367 return -1; 368 } 369 370 int offset = code_offset(); 371 372 // the exception oop and pc are in r0, and r3 373 // no other registers need to be preserved, so invalidate them 374 __ invalidate_registers(false, true, true, false, true, true); 375 376 // check that there is really an exception 377 __ verify_not_null_oop(r0); 378 379 // search an exception handler (r0: exception oop, r3: throwing pc) 380 __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::handle_exception_from_callee_id))); 381 __ should_not_reach_here(); 382 guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); 383 __ end_a_stub(); 384 385 return offset; 386 } 387 388 389 // Emit the code to remove the frame from the stack in the exception 390 // unwind path. 391 int LIR_Assembler::emit_unwind_handler() { 392 #ifndef PRODUCT 393 if (CommentedAssembly) { 394 _masm->block_comment("Unwind handler"); 395 } 396 #endif 397 398 int offset = code_offset(); 399 400 // Fetch the exception from TLS and clear out exception related thread state 401 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 402 __ str(zr, Address(rthread, JavaThread::exception_oop_offset())); 403 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 404 405 __ bind(_unwind_handler_entry); 406 __ verify_not_null_oop(r0); 407 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 408 __ mov(r19, r0); // Preserve the exception 409 } 410 411 // Perform needed unlocking 412 MonitorExitStub* stub = nullptr; 413 if (method()->is_synchronized()) { 414 monitor_address(0, FrameMap::r0_opr); 415 stub = new MonitorExitStub(FrameMap::r0_opr, true, 0); 416 if (LockingMode == LM_MONITOR) { 417 __ b(*stub->entry()); 418 } else { 419 __ unlock_object(r5, r4, r0, r6, *stub->entry()); 420 } 421 __ bind(*stub->continuation()); 422 } 423 424 if (compilation()->env()->dtrace_method_probes()) { 425 __ mov(c_rarg0, rthread); 426 __ mov_metadata(c_rarg1, method()->constant_encoding()); 427 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), c_rarg0, c_rarg1); 428 } 429 430 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 431 __ mov(r0, r19); // Restore the exception 432 } 433 434 // remove the activation and dispatch to the unwind handler 435 __ block_comment("remove_frame and dispatch to the unwind handler"); 436 __ remove_frame(initial_frame_size_in_bytes()); 437 __ far_jump(RuntimeAddress(Runtime1::entry_for(C1StubId::unwind_exception_id))); 438 439 // Emit the slow path assembly 440 if (stub != nullptr) { 441 stub->emit_code(this); 442 } 443 444 return offset; 445 } 446 447 448 int LIR_Assembler::emit_deopt_handler() { 449 // generate code for exception handler 450 address handler_base = __ start_a_stub(deopt_handler_size()); 451 if (handler_base == nullptr) { 452 // not enough space left for the handler 453 bailout("deopt handler overflow"); 454 return -1; 455 } 456 457 int offset = code_offset(); 458 459 __ adr(lr, pc()); 460 __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); 461 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); 462 __ end_a_stub(); 463 464 return offset; 465 } 466 467 void LIR_Assembler::add_debug_info_for_branch(address adr, CodeEmitInfo* info) { 468 _masm->code_section()->relocate(adr, relocInfo::poll_type); 469 int pc_offset = code_offset(); 470 flush_debug_info(pc_offset); 471 info->record_debug_info(compilation()->debug_info_recorder(), pc_offset); 472 if (info->exception_handlers() != nullptr) { 473 compilation()->add_exception_handlers_for_pco(pc_offset, info->exception_handlers()); 474 } 475 } 476 477 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 478 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == r0, "word returns are in r0,"); 479 480 // Pop the stack before the safepoint code 481 __ remove_frame(initial_frame_size_in_bytes()); 482 483 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { 484 __ reserved_stack_check(); 485 } 486 487 code_stub->set_safepoint_offset(__ offset()); 488 __ relocate(relocInfo::poll_return_type); 489 __ safepoint_poll(*code_stub->entry(), true /* at_return */, false /* acquire */, true /* in_nmethod */); 490 __ ret(lr); 491 } 492 493 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 494 guarantee(info != nullptr, "Shouldn't be null"); 495 __ get_polling_page(rscratch1, relocInfo::poll_type); 496 add_debug_info_for_branch(info); // This isn't just debug info: 497 // it's the oop map 498 __ read_polling_page(rscratch1, relocInfo::poll_type); 499 return __ offset(); 500 } 501 502 503 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { 504 if (from_reg == r31_sp) 505 from_reg = sp; 506 if (to_reg == r31_sp) 507 to_reg = sp; 508 __ mov(to_reg, from_reg); 509 } 510 511 void LIR_Assembler::swap_reg(Register a, Register b) { Unimplemented(); } 512 513 514 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 515 assert(src->is_constant(), "should not call otherwise"); 516 assert(dest->is_register(), "should not call otherwise"); 517 LIR_Const* c = src->as_constant_ptr(); 518 519 switch (c->type()) { 520 case T_INT: { 521 assert(patch_code == lir_patch_none, "no patching handled here"); 522 __ movw(dest->as_register(), c->as_jint()); 523 break; 524 } 525 526 case T_ADDRESS: { 527 assert(patch_code == lir_patch_none, "no patching handled here"); 528 __ mov(dest->as_register(), c->as_jint()); 529 break; 530 } 531 532 case T_LONG: { 533 assert(patch_code == lir_patch_none, "no patching handled here"); 534 if (SCCache::is_on_for_write()) { 535 // SCA needs relocation info for card table base 536 address b = c->as_pointer(); 537 if (is_card_table_address(b)) { 538 __ lea(dest->as_register_lo(), ExternalAddress(b)); 539 break; 540 } 541 if (AOTRuntimeConstants::contains(b)) { 542 __ load_aotrc_address(dest->as_register_lo(), b); 543 break; 544 } 545 } 546 __ mov(dest->as_register_lo(), (intptr_t)c->as_jlong()); 547 break; 548 } 549 550 case T_OBJECT: { 551 if (patch_code == lir_patch_none) { 552 jobject2reg(c->as_jobject(), dest->as_register()); 553 } else { 554 jobject2reg_with_patching(dest->as_register(), info); 555 } 556 break; 557 } 558 559 case T_METADATA: { 560 if (patch_code != lir_patch_none) { 561 klass2reg_with_patching(dest->as_register(), info); 562 } else { 563 __ mov_metadata(dest->as_register(), c->as_metadata()); 564 } 565 break; 566 } 567 568 case T_FLOAT: { 569 if (__ operand_valid_for_float_immediate(c->as_jfloat())) { 570 __ fmovs(dest->as_float_reg(), (c->as_jfloat())); 571 } else { 572 __ adr(rscratch1, InternalAddress(float_constant(c->as_jfloat()))); 573 __ ldrs(dest->as_float_reg(), Address(rscratch1)); 574 } 575 break; 576 } 577 578 case T_DOUBLE: { 579 if (__ operand_valid_for_float_immediate(c->as_jdouble())) { 580 __ fmovd(dest->as_double_reg(), (c->as_jdouble())); 581 } else { 582 __ adr(rscratch1, InternalAddress(double_constant(c->as_jdouble()))); 583 __ ldrd(dest->as_double_reg(), Address(rscratch1)); 584 } 585 break; 586 } 587 588 default: 589 ShouldNotReachHere(); 590 } 591 } 592 593 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 594 LIR_Const* c = src->as_constant_ptr(); 595 switch (c->type()) { 596 case T_OBJECT: 597 { 598 if (! c->as_jobject()) 599 __ str(zr, frame_map()->address_for_slot(dest->single_stack_ix())); 600 else { 601 const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr); 602 reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false); 603 } 604 } 605 break; 606 case T_ADDRESS: 607 { 608 const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr); 609 reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false); 610 } 611 case T_INT: 612 case T_FLOAT: 613 { 614 Register reg = zr; 615 if (c->as_jint_bits() == 0) 616 __ strw(zr, frame_map()->address_for_slot(dest->single_stack_ix())); 617 else { 618 __ movw(rscratch1, c->as_jint_bits()); 619 __ strw(rscratch1, frame_map()->address_for_slot(dest->single_stack_ix())); 620 } 621 } 622 break; 623 case T_LONG: 624 case T_DOUBLE: 625 { 626 Register reg = zr; 627 if (c->as_jlong_bits() == 0) 628 __ str(zr, frame_map()->address_for_slot(dest->double_stack_ix(), 629 lo_word_offset_in_bytes)); 630 else { 631 __ mov(rscratch1, (intptr_t)c->as_jlong_bits()); 632 __ str(rscratch1, frame_map()->address_for_slot(dest->double_stack_ix(), 633 lo_word_offset_in_bytes)); 634 } 635 } 636 break; 637 default: 638 ShouldNotReachHere(); 639 } 640 } 641 642 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 643 assert(src->is_constant(), "should not call otherwise"); 644 LIR_Const* c = src->as_constant_ptr(); 645 LIR_Address* to_addr = dest->as_address_ptr(); 646 647 void (Assembler::* insn)(Register Rt, const Address &adr); 648 649 switch (type) { 650 case T_ADDRESS: 651 assert(c->as_jint() == 0, "should be"); 652 insn = &Assembler::str; 653 break; 654 case T_LONG: 655 assert(c->as_jlong() == 0, "should be"); 656 insn = &Assembler::str; 657 break; 658 case T_INT: 659 assert(c->as_jint() == 0, "should be"); 660 insn = &Assembler::strw; 661 break; 662 case T_OBJECT: 663 case T_ARRAY: 664 assert(c->as_jobject() == nullptr, "should be"); 665 if (UseCompressedOops && !wide) { 666 insn = &Assembler::strw; 667 } else { 668 insn = &Assembler::str; 669 } 670 break; 671 case T_CHAR: 672 case T_SHORT: 673 assert(c->as_jint() == 0, "should be"); 674 insn = &Assembler::strh; 675 break; 676 case T_BOOLEAN: 677 case T_BYTE: 678 assert(c->as_jint() == 0, "should be"); 679 insn = &Assembler::strb; 680 break; 681 default: 682 ShouldNotReachHere(); 683 insn = &Assembler::str; // unreachable 684 } 685 686 if (info) add_debug_info_for_null_check_here(info); 687 (_masm->*insn)(zr, as_Address(to_addr, rscratch1)); 688 } 689 690 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) { 691 assert(src->is_register(), "should not call otherwise"); 692 assert(dest->is_register(), "should not call otherwise"); 693 694 // move between cpu-registers 695 if (dest->is_single_cpu()) { 696 if (src->type() == T_LONG) { 697 // Can do LONG -> OBJECT 698 move_regs(src->as_register_lo(), dest->as_register()); 699 return; 700 } 701 assert(src->is_single_cpu(), "must match"); 702 if (src->type() == T_OBJECT) { 703 __ verify_oop(src->as_register()); 704 } 705 move_regs(src->as_register(), dest->as_register()); 706 707 } else if (dest->is_double_cpu()) { 708 if (is_reference_type(src->type())) { 709 // Surprising to me but we can see move of a long to t_object 710 __ verify_oop(src->as_register()); 711 move_regs(src->as_register(), dest->as_register_lo()); 712 return; 713 } 714 assert(src->is_double_cpu(), "must match"); 715 Register f_lo = src->as_register_lo(); 716 Register f_hi = src->as_register_hi(); 717 Register t_lo = dest->as_register_lo(); 718 Register t_hi = dest->as_register_hi(); 719 assert(f_hi == f_lo, "must be same"); 720 assert(t_hi == t_lo, "must be same"); 721 move_regs(f_lo, t_lo); 722 723 } else if (dest->is_single_fpu()) { 724 __ fmovs(dest->as_float_reg(), src->as_float_reg()); 725 726 } else if (dest->is_double_fpu()) { 727 __ fmovd(dest->as_double_reg(), src->as_double_reg()); 728 729 } else { 730 ShouldNotReachHere(); 731 } 732 } 733 734 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) { 735 precond(src->is_register() && dest->is_stack()); 736 737 uint const c_sz32 = sizeof(uint32_t); 738 uint const c_sz64 = sizeof(uint64_t); 739 740 if (src->is_single_cpu()) { 741 int index = dest->single_stack_ix(); 742 if (is_reference_type(type)) { 743 __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 744 __ verify_oop(src->as_register()); 745 } else if (type == T_METADATA || type == T_DOUBLE || type == T_ADDRESS) { 746 __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 747 } else { 748 __ strw(src->as_register(), stack_slot_address(index, c_sz32, rscratch1)); 749 } 750 751 } else if (src->is_double_cpu()) { 752 int index = dest->double_stack_ix(); 753 Address dest_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes); 754 __ str(src->as_register_lo(), dest_addr_LO); 755 756 } else if (src->is_single_fpu()) { 757 int index = dest->single_stack_ix(); 758 __ strs(src->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1)); 759 760 } else if (src->is_double_fpu()) { 761 int index = dest->double_stack_ix(); 762 __ strd(src->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1)); 763 764 } else { 765 ShouldNotReachHere(); 766 } 767 } 768 769 770 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide) { 771 LIR_Address* to_addr = dest->as_address_ptr(); 772 PatchingStub* patch = nullptr; 773 Register compressed_src = rscratch1; 774 775 if (patch_code != lir_patch_none) { 776 deoptimize_trap(info); 777 return; 778 } 779 780 if (is_reference_type(type)) { 781 __ verify_oop(src->as_register()); 782 783 if (UseCompressedOops && !wide) { 784 __ encode_heap_oop(compressed_src, src->as_register()); 785 } else { 786 compressed_src = src->as_register(); 787 } 788 } 789 790 int null_check_here = code_offset(); 791 switch (type) { 792 case T_FLOAT: { 793 __ strs(src->as_float_reg(), as_Address(to_addr)); 794 break; 795 } 796 797 case T_DOUBLE: { 798 __ strd(src->as_double_reg(), as_Address(to_addr)); 799 break; 800 } 801 802 case T_ARRAY: // fall through 803 case T_OBJECT: // fall through 804 if (UseCompressedOops && !wide) { 805 __ strw(compressed_src, as_Address(to_addr, rscratch2)); 806 } else { 807 __ str(compressed_src, as_Address(to_addr)); 808 } 809 break; 810 case T_METADATA: 811 // We get here to store a method pointer to the stack to pass to 812 // a dtrace runtime call. This can't work on 64 bit with 813 // compressed klass ptrs: T_METADATA can be a compressed klass 814 // ptr or a 64 bit method pointer. 815 ShouldNotReachHere(); 816 __ str(src->as_register(), as_Address(to_addr)); 817 break; 818 case T_ADDRESS: 819 __ str(src->as_register(), as_Address(to_addr)); 820 break; 821 case T_INT: 822 __ strw(src->as_register(), as_Address(to_addr)); 823 break; 824 825 case T_LONG: { 826 __ str(src->as_register_lo(), as_Address_lo(to_addr)); 827 break; 828 } 829 830 case T_BYTE: // fall through 831 case T_BOOLEAN: { 832 __ strb(src->as_register(), as_Address(to_addr)); 833 break; 834 } 835 836 case T_CHAR: // fall through 837 case T_SHORT: 838 __ strh(src->as_register(), as_Address(to_addr)); 839 break; 840 841 default: 842 ShouldNotReachHere(); 843 } 844 if (info != nullptr) { 845 add_debug_info_for_null_check(null_check_here, info); 846 } 847 } 848 849 850 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 851 precond(src->is_stack() && dest->is_register()); 852 853 uint const c_sz32 = sizeof(uint32_t); 854 uint const c_sz64 = sizeof(uint64_t); 855 856 if (dest->is_single_cpu()) { 857 int index = src->single_stack_ix(); 858 if (is_reference_type(type)) { 859 __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 860 __ verify_oop(dest->as_register()); 861 } else if (type == T_METADATA || type == T_ADDRESS) { 862 __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 863 } else { 864 __ ldrw(dest->as_register(), stack_slot_address(index, c_sz32, rscratch1)); 865 } 866 867 } else if (dest->is_double_cpu()) { 868 int index = src->double_stack_ix(); 869 Address src_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes); 870 __ ldr(dest->as_register_lo(), src_addr_LO); 871 872 } else if (dest->is_single_fpu()) { 873 int index = src->single_stack_ix(); 874 __ ldrs(dest->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1)); 875 876 } else if (dest->is_double_fpu()) { 877 int index = src->double_stack_ix(); 878 __ ldrd(dest->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1)); 879 880 } else { 881 ShouldNotReachHere(); 882 } 883 } 884 885 886 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) { 887 address target = nullptr; 888 relocInfo::relocType reloc_type = relocInfo::none; 889 890 switch (patching_id(info)) { 891 case PatchingStub::access_field_id: 892 target = Runtime1::entry_for(C1StubId::access_field_patching_id); 893 reloc_type = relocInfo::section_word_type; 894 break; 895 case PatchingStub::load_klass_id: 896 target = Runtime1::entry_for(C1StubId::load_klass_patching_id); 897 reloc_type = relocInfo::metadata_type; 898 break; 899 case PatchingStub::load_mirror_id: 900 target = Runtime1::entry_for(C1StubId::load_mirror_patching_id); 901 reloc_type = relocInfo::oop_type; 902 break; 903 case PatchingStub::load_appendix_id: 904 target = Runtime1::entry_for(C1StubId::load_appendix_patching_id); 905 reloc_type = relocInfo::oop_type; 906 break; 907 default: ShouldNotReachHere(); 908 } 909 910 __ far_call(RuntimeAddress(target)); 911 add_call_info_here(info); 912 } 913 914 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 915 916 LIR_Opr temp; 917 if (type == T_LONG || type == T_DOUBLE) 918 temp = FrameMap::rscratch1_long_opr; 919 else 920 temp = FrameMap::rscratch1_opr; 921 922 stack2reg(src, temp, src->type()); 923 reg2stack(temp, dest, dest->type(), false); 924 } 925 926 927 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 928 LIR_Address* addr = src->as_address_ptr(); 929 LIR_Address* from_addr = src->as_address_ptr(); 930 931 if (addr->base()->type() == T_OBJECT) { 932 __ verify_oop(addr->base()->as_pointer_register()); 933 } 934 935 if (patch_code != lir_patch_none) { 936 deoptimize_trap(info); 937 return; 938 } 939 940 if (info != nullptr) { 941 add_debug_info_for_null_check_here(info); 942 } 943 int null_check_here = code_offset(); 944 switch (type) { 945 case T_FLOAT: { 946 __ ldrs(dest->as_float_reg(), as_Address(from_addr)); 947 break; 948 } 949 950 case T_DOUBLE: { 951 __ ldrd(dest->as_double_reg(), as_Address(from_addr)); 952 break; 953 } 954 955 case T_ARRAY: // fall through 956 case T_OBJECT: // fall through 957 if (UseCompressedOops && !wide) { 958 __ ldrw(dest->as_register(), as_Address(from_addr)); 959 } else { 960 __ ldr(dest->as_register(), as_Address(from_addr)); 961 } 962 break; 963 case T_METADATA: 964 // We get here to store a method pointer to the stack to pass to 965 // a dtrace runtime call. This can't work on 64 bit with 966 // compressed klass ptrs: T_METADATA can be a compressed klass 967 // ptr or a 64 bit method pointer. 968 ShouldNotReachHere(); 969 __ ldr(dest->as_register(), as_Address(from_addr)); 970 break; 971 case T_ADDRESS: 972 __ ldr(dest->as_register(), as_Address(from_addr)); 973 break; 974 case T_INT: 975 __ ldrw(dest->as_register(), as_Address(from_addr)); 976 break; 977 978 case T_LONG: { 979 __ ldr(dest->as_register_lo(), as_Address_lo(from_addr)); 980 break; 981 } 982 983 case T_BYTE: 984 __ ldrsb(dest->as_register(), as_Address(from_addr)); 985 break; 986 case T_BOOLEAN: { 987 __ ldrb(dest->as_register(), as_Address(from_addr)); 988 break; 989 } 990 991 case T_CHAR: 992 __ ldrh(dest->as_register(), as_Address(from_addr)); 993 break; 994 case T_SHORT: 995 __ ldrsh(dest->as_register(), as_Address(from_addr)); 996 break; 997 998 default: 999 ShouldNotReachHere(); 1000 } 1001 1002 if (is_reference_type(type)) { 1003 if (UseCompressedOops && !wide) { 1004 __ decode_heap_oop(dest->as_register()); 1005 } 1006 1007 if (!(UseZGC && !ZGenerational)) { 1008 // Load barrier has not yet been applied, so ZGC can't verify the oop here 1009 __ verify_oop(dest->as_register()); 1010 } 1011 } 1012 } 1013 1014 1015 int LIR_Assembler::array_element_size(BasicType type) const { 1016 int elem_size = type2aelembytes(type); 1017 return exact_log2(elem_size); 1018 } 1019 1020 1021 void LIR_Assembler::emit_op3(LIR_Op3* op) { 1022 switch (op->code()) { 1023 case lir_idiv: 1024 case lir_irem: 1025 arithmetic_idiv(op->code(), 1026 op->in_opr1(), 1027 op->in_opr2(), 1028 op->in_opr3(), 1029 op->result_opr(), 1030 op->info()); 1031 break; 1032 case lir_fmad: 1033 __ fmaddd(op->result_opr()->as_double_reg(), 1034 op->in_opr1()->as_double_reg(), 1035 op->in_opr2()->as_double_reg(), 1036 op->in_opr3()->as_double_reg()); 1037 break; 1038 case lir_fmaf: 1039 __ fmadds(op->result_opr()->as_float_reg(), 1040 op->in_opr1()->as_float_reg(), 1041 op->in_opr2()->as_float_reg(), 1042 op->in_opr3()->as_float_reg()); 1043 break; 1044 default: ShouldNotReachHere(); break; 1045 } 1046 } 1047 1048 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 1049 #ifdef ASSERT 1050 assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label"); 1051 if (op->block() != nullptr) _branch_target_blocks.append(op->block()); 1052 if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock()); 1053 #endif 1054 1055 if (op->cond() == lir_cond_always) { 1056 if (op->info() != nullptr) add_debug_info_for_branch(op->info()); 1057 __ b(*(op->label())); 1058 } else { 1059 Assembler::Condition acond; 1060 if (op->code() == lir_cond_float_branch) { 1061 bool is_unordered = (op->ublock() == op->block()); 1062 // Assembler::EQ does not permit unordered branches, so we add 1063 // another branch here. Likewise, Assembler::NE does not permit 1064 // ordered branches. 1065 if ((is_unordered && op->cond() == lir_cond_equal) 1066 || (!is_unordered && op->cond() == lir_cond_notEqual)) 1067 __ br(Assembler::VS, *(op->ublock()->label())); 1068 switch(op->cond()) { 1069 case lir_cond_equal: acond = Assembler::EQ; break; 1070 case lir_cond_notEqual: acond = Assembler::NE; break; 1071 case lir_cond_less: acond = (is_unordered ? Assembler::LT : Assembler::LO); break; 1072 case lir_cond_lessEqual: acond = (is_unordered ? Assembler::LE : Assembler::LS); break; 1073 case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::HS : Assembler::GE); break; 1074 case lir_cond_greater: acond = (is_unordered ? Assembler::HI : Assembler::GT); break; 1075 default: ShouldNotReachHere(); 1076 acond = Assembler::EQ; // unreachable 1077 } 1078 } else { 1079 switch (op->cond()) { 1080 case lir_cond_equal: acond = Assembler::EQ; break; 1081 case lir_cond_notEqual: acond = Assembler::NE; break; 1082 case lir_cond_less: acond = Assembler::LT; break; 1083 case lir_cond_lessEqual: acond = Assembler::LE; break; 1084 case lir_cond_greaterEqual: acond = Assembler::GE; break; 1085 case lir_cond_greater: acond = Assembler::GT; break; 1086 case lir_cond_belowEqual: acond = Assembler::LS; break; 1087 case lir_cond_aboveEqual: acond = Assembler::HS; break; 1088 default: ShouldNotReachHere(); 1089 acond = Assembler::EQ; // unreachable 1090 } 1091 } 1092 __ br(acond,*(op->label())); 1093 } 1094 } 1095 1096 1097 1098 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 1099 LIR_Opr src = op->in_opr(); 1100 LIR_Opr dest = op->result_opr(); 1101 1102 switch (op->bytecode()) { 1103 case Bytecodes::_i2f: 1104 { 1105 __ scvtfws(dest->as_float_reg(), src->as_register()); 1106 break; 1107 } 1108 case Bytecodes::_i2d: 1109 { 1110 __ scvtfwd(dest->as_double_reg(), src->as_register()); 1111 break; 1112 } 1113 case Bytecodes::_l2d: 1114 { 1115 __ scvtfd(dest->as_double_reg(), src->as_register_lo()); 1116 break; 1117 } 1118 case Bytecodes::_l2f: 1119 { 1120 __ scvtfs(dest->as_float_reg(), src->as_register_lo()); 1121 break; 1122 } 1123 case Bytecodes::_f2d: 1124 { 1125 __ fcvts(dest->as_double_reg(), src->as_float_reg()); 1126 break; 1127 } 1128 case Bytecodes::_d2f: 1129 { 1130 __ fcvtd(dest->as_float_reg(), src->as_double_reg()); 1131 break; 1132 } 1133 case Bytecodes::_i2c: 1134 { 1135 __ ubfx(dest->as_register(), src->as_register(), 0, 16); 1136 break; 1137 } 1138 case Bytecodes::_i2l: 1139 { 1140 __ sxtw(dest->as_register_lo(), src->as_register()); 1141 break; 1142 } 1143 case Bytecodes::_i2s: 1144 { 1145 __ sxth(dest->as_register(), src->as_register()); 1146 break; 1147 } 1148 case Bytecodes::_i2b: 1149 { 1150 __ sxtb(dest->as_register(), src->as_register()); 1151 break; 1152 } 1153 case Bytecodes::_l2i: 1154 { 1155 _masm->block_comment("FIXME: This could be a no-op"); 1156 __ uxtw(dest->as_register(), src->as_register_lo()); 1157 break; 1158 } 1159 case Bytecodes::_d2l: 1160 { 1161 __ fcvtzd(dest->as_register_lo(), src->as_double_reg()); 1162 break; 1163 } 1164 case Bytecodes::_f2i: 1165 { 1166 __ fcvtzsw(dest->as_register(), src->as_float_reg()); 1167 break; 1168 } 1169 case Bytecodes::_f2l: 1170 { 1171 __ fcvtzs(dest->as_register_lo(), src->as_float_reg()); 1172 break; 1173 } 1174 case Bytecodes::_d2i: 1175 { 1176 __ fcvtzdw(dest->as_register(), src->as_double_reg()); 1177 break; 1178 } 1179 default: ShouldNotReachHere(); 1180 } 1181 } 1182 1183 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 1184 if (op->init_check()) { 1185 __ lea(rscratch1, Address(op->klass()->as_register(), InstanceKlass::init_state_offset())); 1186 __ ldarb(rscratch1, rscratch1); 1187 __ cmpw(rscratch1, InstanceKlass::fully_initialized); 1188 add_debug_info_for_null_check_here(op->stub()->info()); 1189 __ br(Assembler::NE, *op->stub()->entry()); 1190 } 1191 __ allocate_object(op->obj()->as_register(), 1192 op->tmp1()->as_register(), 1193 op->tmp2()->as_register(), 1194 op->header_size(), 1195 op->object_size(), 1196 op->klass()->as_register(), 1197 *op->stub()->entry()); 1198 __ bind(*op->stub()->continuation()); 1199 } 1200 1201 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 1202 Register len = op->len()->as_register(); 1203 __ uxtw(len, len); 1204 1205 if (UseSlowPath || 1206 (!UseFastNewObjectArray && is_reference_type(op->type())) || 1207 (!UseFastNewTypeArray && !is_reference_type(op->type()))) { 1208 __ b(*op->stub()->entry()); 1209 } else { 1210 Register tmp1 = op->tmp1()->as_register(); 1211 Register tmp2 = op->tmp2()->as_register(); 1212 Register tmp3 = op->tmp3()->as_register(); 1213 if (len == tmp1) { 1214 tmp1 = tmp3; 1215 } else if (len == tmp2) { 1216 tmp2 = tmp3; 1217 } else if (len == tmp3) { 1218 // everything is ok 1219 } else { 1220 __ mov(tmp3, len); 1221 } 1222 __ allocate_array(op->obj()->as_register(), 1223 len, 1224 tmp1, 1225 tmp2, 1226 arrayOopDesc::base_offset_in_bytes(op->type()), 1227 array_element_size(op->type()), 1228 op->klass()->as_register(), 1229 *op->stub()->entry(), 1230 op->zero_array()); 1231 } 1232 __ bind(*op->stub()->continuation()); 1233 } 1234 1235 void LIR_Assembler::type_profile_helper(Register mdo, 1236 ciMethodData *md, ciProfileData *data, 1237 Register recv, Label* update_done) { 1238 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1239 Label next_test; 1240 // See if the receiver is receiver[n]. 1241 __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)))); 1242 __ ldr(rscratch1, Address(rscratch2)); 1243 __ cmp(recv, rscratch1); 1244 __ br(Assembler::NE, next_test); 1245 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))); 1246 __ addptr(data_addr, DataLayout::counter_increment); 1247 __ b(*update_done); 1248 __ bind(next_test); 1249 } 1250 1251 // Didn't find receiver; find next empty slot and fill it in 1252 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1253 Label next_test; 1254 __ lea(rscratch2, 1255 Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)))); 1256 Address recv_addr(rscratch2); 1257 __ ldr(rscratch1, recv_addr); 1258 __ cbnz(rscratch1, next_test); 1259 __ str(recv, recv_addr); 1260 __ mov(rscratch1, DataLayout::counter_increment); 1261 __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)))); 1262 __ str(rscratch1, Address(rscratch2)); 1263 __ b(*update_done); 1264 __ bind(next_test); 1265 } 1266 } 1267 1268 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 1269 // we always need a stub for the failure case. 1270 CodeStub* stub = op->stub(); 1271 Register obj = op->object()->as_register(); 1272 Register k_RInfo = op->tmp1()->as_register(); 1273 Register klass_RInfo = op->tmp2()->as_register(); 1274 Register dst = op->result_opr()->as_register(); 1275 ciKlass* k = op->klass(); 1276 Register Rtmp1 = noreg; 1277 1278 // check if it needs to be profiled 1279 ciMethodData* md; 1280 ciProfileData* data; 1281 1282 const bool should_profile = op->should_profile(); 1283 1284 if (should_profile) { 1285 ciMethod* method = op->profiled_method(); 1286 assert(method != nullptr, "Should have method"); 1287 int bci = op->profiled_bci(); 1288 md = method->method_data_or_null(); 1289 assert(md != nullptr, "Sanity"); 1290 data = md->bci_to_data(bci); 1291 assert(data != nullptr, "need data for type check"); 1292 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1293 } 1294 Label* success_target = success; 1295 Label* failure_target = failure; 1296 1297 if (obj == k_RInfo) { 1298 k_RInfo = dst; 1299 } else if (obj == klass_RInfo) { 1300 klass_RInfo = dst; 1301 } 1302 if (k->is_loaded() && !UseCompressedClassPointers) { 1303 select_different_registers(obj, dst, k_RInfo, klass_RInfo); 1304 } else { 1305 Rtmp1 = op->tmp3()->as_register(); 1306 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1); 1307 } 1308 1309 assert_different_registers(obj, k_RInfo, klass_RInfo); 1310 1311 if (should_profile) { 1312 Register mdo = klass_RInfo; 1313 __ mov_metadata(mdo, md->constant_encoding()); 1314 Label not_null; 1315 __ cbnz(obj, not_null); 1316 // Object is null; update MDO and exit 1317 Address data_addr 1318 = __ form_address(rscratch2, mdo, 1319 md->byte_offset_of_slot(data, DataLayout::flags_offset()), 1320 0); 1321 __ ldrb(rscratch1, data_addr); 1322 __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant()); 1323 __ strb(rscratch1, data_addr); 1324 __ b(*obj_is_null); 1325 __ bind(not_null); 1326 1327 Label update_done; 1328 Register recv = k_RInfo; 1329 __ load_klass(recv, obj); 1330 type_profile_helper(mdo, md, data, recv, &update_done); 1331 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1332 __ addptr(counter_addr, DataLayout::counter_increment); 1333 1334 __ bind(update_done); 1335 } else { 1336 __ cbz(obj, *obj_is_null); 1337 } 1338 1339 if (!k->is_loaded()) { 1340 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 1341 } else { 1342 __ mov_metadata(k_RInfo, k->constant_encoding()); 1343 } 1344 __ verify_oop(obj); 1345 1346 if (op->fast_check()) { 1347 // get object class 1348 // not a safepoint as obj null check happens earlier 1349 __ load_klass(rscratch1, obj); 1350 __ cmp( rscratch1, k_RInfo); 1351 1352 __ br(Assembler::NE, *failure_target); 1353 // successful cast, fall through to profile or jump 1354 } else { 1355 // get object class 1356 // not a safepoint as obj null check happens earlier 1357 __ load_klass(klass_RInfo, obj); 1358 if (k->is_loaded()) { 1359 // See if we get an immediate positive hit 1360 __ ldr(rscratch1, Address(klass_RInfo, int64_t(k->super_check_offset()))); 1361 __ cmp(k_RInfo, rscratch1); 1362 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) { 1363 __ br(Assembler::NE, *failure_target); 1364 // successful cast, fall through to profile or jump 1365 } else { 1366 // See if we get an immediate positive hit 1367 __ br(Assembler::EQ, *success_target); 1368 // check for self 1369 __ cmp(klass_RInfo, k_RInfo); 1370 __ br(Assembler::EQ, *success_target); 1371 1372 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1373 __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1374 __ ldr(klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1375 // result is a boolean 1376 __ cbzw(klass_RInfo, *failure_target); 1377 // successful cast, fall through to profile or jump 1378 } 1379 } else { 1380 // perform the fast part of the checking logic 1381 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1382 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1383 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1384 __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1385 __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1386 // result is a boolean 1387 __ cbz(k_RInfo, *failure_target); 1388 // successful cast, fall through to profile or jump 1389 } 1390 } 1391 __ b(*success); 1392 } 1393 1394 1395 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 1396 const bool should_profile = op->should_profile(); 1397 1398 LIR_Code code = op->code(); 1399 if (code == lir_store_check) { 1400 Register value = op->object()->as_register(); 1401 Register array = op->array()->as_register(); 1402 Register k_RInfo = op->tmp1()->as_register(); 1403 Register klass_RInfo = op->tmp2()->as_register(); 1404 Register Rtmp1 = op->tmp3()->as_register(); 1405 1406 CodeStub* stub = op->stub(); 1407 1408 // check if it needs to be profiled 1409 ciMethodData* md; 1410 ciProfileData* data; 1411 1412 if (should_profile) { 1413 ciMethod* method = op->profiled_method(); 1414 assert(method != nullptr, "Should have method"); 1415 int bci = op->profiled_bci(); 1416 md = method->method_data_or_null(); 1417 assert(md != nullptr, "Sanity"); 1418 data = md->bci_to_data(bci); 1419 assert(data != nullptr, "need data for type check"); 1420 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1421 } 1422 Label done; 1423 Label* success_target = &done; 1424 Label* failure_target = stub->entry(); 1425 1426 if (should_profile) { 1427 Label not_null; 1428 Register mdo = klass_RInfo; 1429 __ mov_metadata(mdo, md->constant_encoding()); 1430 __ cbnz(value, not_null); 1431 // Object is null; update MDO and exit 1432 Address data_addr 1433 = __ form_address(rscratch2, mdo, 1434 md->byte_offset_of_slot(data, DataLayout::flags_offset()), 1435 0); 1436 __ ldrb(rscratch1, data_addr); 1437 __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant()); 1438 __ strb(rscratch1, data_addr); 1439 __ b(done); 1440 __ bind(not_null); 1441 1442 Label update_done; 1443 Register recv = k_RInfo; 1444 __ load_klass(recv, value); 1445 type_profile_helper(mdo, md, data, recv, &update_done); 1446 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1447 __ addptr(counter_addr, DataLayout::counter_increment); 1448 __ bind(update_done); 1449 } else { 1450 __ cbz(value, done); 1451 } 1452 1453 add_debug_info_for_null_check_here(op->info_for_exception()); 1454 __ load_klass(k_RInfo, array); 1455 __ load_klass(klass_RInfo, value); 1456 1457 // get instance klass (it's already uncompressed) 1458 __ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset())); 1459 // perform the fast part of the checking logic 1460 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1461 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1462 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1463 __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1464 __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1465 // result is a boolean 1466 __ cbzw(k_RInfo, *failure_target); 1467 // fall through to the success case 1468 1469 __ bind(done); 1470 } else if (code == lir_checkcast) { 1471 Register obj = op->object()->as_register(); 1472 Register dst = op->result_opr()->as_register(); 1473 Label success; 1474 emit_typecheck_helper(op, &success, op->stub()->entry(), &success); 1475 __ bind(success); 1476 if (dst != obj) { 1477 __ mov(dst, obj); 1478 } 1479 } else if (code == lir_instanceof) { 1480 Register obj = op->object()->as_register(); 1481 Register dst = op->result_opr()->as_register(); 1482 Label success, failure, done; 1483 emit_typecheck_helper(op, &success, &failure, &failure); 1484 __ bind(failure); 1485 __ mov(dst, zr); 1486 __ b(done); 1487 __ bind(success); 1488 __ mov(dst, 1); 1489 __ bind(done); 1490 } else { 1491 ShouldNotReachHere(); 1492 } 1493 } 1494 1495 void LIR_Assembler::casw(Register addr, Register newval, Register cmpval) { 1496 __ cmpxchg(addr, cmpval, newval, Assembler::word, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1); 1497 __ cset(rscratch1, Assembler::NE); 1498 __ membar(__ AnyAny); 1499 } 1500 1501 void LIR_Assembler::casl(Register addr, Register newval, Register cmpval) { 1502 __ cmpxchg(addr, cmpval, newval, Assembler::xword, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1); 1503 __ cset(rscratch1, Assembler::NE); 1504 __ membar(__ AnyAny); 1505 } 1506 1507 1508 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 1509 Register addr; 1510 if (op->addr()->is_register()) { 1511 addr = as_reg(op->addr()); 1512 } else { 1513 assert(op->addr()->is_address(), "what else?"); 1514 LIR_Address* addr_ptr = op->addr()->as_address_ptr(); 1515 assert(addr_ptr->disp() == 0, "need 0 disp"); 1516 assert(addr_ptr->index() == LIR_Opr::illegalOpr(), "need 0 index"); 1517 addr = as_reg(addr_ptr->base()); 1518 } 1519 Register newval = as_reg(op->new_value()); 1520 Register cmpval = as_reg(op->cmp_value()); 1521 1522 if (op->code() == lir_cas_obj) { 1523 if (UseCompressedOops) { 1524 Register t1 = op->tmp1()->as_register(); 1525 assert(op->tmp1()->is_valid(), "must be"); 1526 __ encode_heap_oop(t1, cmpval); 1527 cmpval = t1; 1528 __ encode_heap_oop(rscratch2, newval); 1529 newval = rscratch2; 1530 casw(addr, newval, cmpval); 1531 } else { 1532 casl(addr, newval, cmpval); 1533 } 1534 } else if (op->code() == lir_cas_int) { 1535 casw(addr, newval, cmpval); 1536 } else { 1537 casl(addr, newval, cmpval); 1538 } 1539 } 1540 1541 1542 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type, 1543 LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) { 1544 assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on aarch64"); 1545 1546 Assembler::Condition acond, ncond; 1547 switch (condition) { 1548 case lir_cond_equal: acond = Assembler::EQ; ncond = Assembler::NE; break; 1549 case lir_cond_notEqual: acond = Assembler::NE; ncond = Assembler::EQ; break; 1550 case lir_cond_less: acond = Assembler::LT; ncond = Assembler::GE; break; 1551 case lir_cond_lessEqual: acond = Assembler::LE; ncond = Assembler::GT; break; 1552 case lir_cond_greaterEqual: acond = Assembler::GE; ncond = Assembler::LT; break; 1553 case lir_cond_greater: acond = Assembler::GT; ncond = Assembler::LE; break; 1554 case lir_cond_belowEqual: 1555 case lir_cond_aboveEqual: 1556 default: ShouldNotReachHere(); 1557 acond = Assembler::EQ; ncond = Assembler::NE; // unreachable 1558 } 1559 1560 assert(result->is_single_cpu() || result->is_double_cpu(), 1561 "expect single register for result"); 1562 if (opr1->is_constant() && opr2->is_constant() 1563 && opr1->type() == T_INT && opr2->type() == T_INT) { 1564 jint val1 = opr1->as_jint(); 1565 jint val2 = opr2->as_jint(); 1566 if (val1 == 0 && val2 == 1) { 1567 __ cset(result->as_register(), ncond); 1568 return; 1569 } else if (val1 == 1 && val2 == 0) { 1570 __ cset(result->as_register(), acond); 1571 return; 1572 } 1573 } 1574 1575 if (opr1->is_constant() && opr2->is_constant() 1576 && opr1->type() == T_LONG && opr2->type() == T_LONG) { 1577 jlong val1 = opr1->as_jlong(); 1578 jlong val2 = opr2->as_jlong(); 1579 if (val1 == 0 && val2 == 1) { 1580 __ cset(result->as_register_lo(), ncond); 1581 return; 1582 } else if (val1 == 1 && val2 == 0) { 1583 __ cset(result->as_register_lo(), acond); 1584 return; 1585 } 1586 } 1587 1588 if (opr1->is_stack()) { 1589 stack2reg(opr1, FrameMap::rscratch1_opr, result->type()); 1590 opr1 = FrameMap::rscratch1_opr; 1591 } else if (opr1->is_constant()) { 1592 LIR_Opr tmp 1593 = opr1->type() == T_LONG ? FrameMap::rscratch1_long_opr : FrameMap::rscratch1_opr; 1594 const2reg(opr1, tmp, lir_patch_none, nullptr); 1595 opr1 = tmp; 1596 } 1597 1598 if (opr2->is_stack()) { 1599 stack2reg(opr2, FrameMap::rscratch2_opr, result->type()); 1600 opr2 = FrameMap::rscratch2_opr; 1601 } else if (opr2->is_constant()) { 1602 LIR_Opr tmp 1603 = opr2->type() == T_LONG ? FrameMap::rscratch2_long_opr : FrameMap::rscratch2_opr; 1604 const2reg(opr2, tmp, lir_patch_none, nullptr); 1605 opr2 = tmp; 1606 } 1607 1608 if (result->type() == T_LONG) 1609 __ csel(result->as_register_lo(), opr1->as_register_lo(), opr2->as_register_lo(), acond); 1610 else 1611 __ csel(result->as_register(), opr1->as_register(), opr2->as_register(), acond); 1612 } 1613 1614 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) { 1615 assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method"); 1616 1617 if (left->is_single_cpu()) { 1618 Register lreg = left->as_register(); 1619 Register dreg = as_reg(dest); 1620 1621 if (right->is_single_cpu()) { 1622 // cpu register - cpu register 1623 1624 assert(left->type() == T_INT && right->type() == T_INT && dest->type() == T_INT, 1625 "should be"); 1626 Register rreg = right->as_register(); 1627 switch (code) { 1628 case lir_add: __ addw (dest->as_register(), lreg, rreg); break; 1629 case lir_sub: __ subw (dest->as_register(), lreg, rreg); break; 1630 case lir_mul: __ mulw (dest->as_register(), lreg, rreg); break; 1631 default: ShouldNotReachHere(); 1632 } 1633 1634 } else if (right->is_double_cpu()) { 1635 Register rreg = right->as_register_lo(); 1636 // single_cpu + double_cpu: can happen with obj+long 1637 assert(code == lir_add || code == lir_sub, "mismatched arithmetic op"); 1638 switch (code) { 1639 case lir_add: __ add(dreg, lreg, rreg); break; 1640 case lir_sub: __ sub(dreg, lreg, rreg); break; 1641 default: ShouldNotReachHere(); 1642 } 1643 } else if (right->is_constant()) { 1644 // cpu register - constant 1645 jlong c; 1646 1647 // FIXME. This is fugly: we really need to factor all this logic. 1648 switch(right->type()) { 1649 case T_LONG: 1650 c = right->as_constant_ptr()->as_jlong(); 1651 break; 1652 case T_INT: 1653 case T_ADDRESS: 1654 c = right->as_constant_ptr()->as_jint(); 1655 break; 1656 default: 1657 ShouldNotReachHere(); 1658 c = 0; // unreachable 1659 break; 1660 } 1661 1662 assert(code == lir_add || code == lir_sub, "mismatched arithmetic op"); 1663 if (c == 0 && dreg == lreg) { 1664 COMMENT("effective nop elided"); 1665 return; 1666 } 1667 switch(left->type()) { 1668 case T_INT: 1669 switch (code) { 1670 case lir_add: __ addw(dreg, lreg, c); break; 1671 case lir_sub: __ subw(dreg, lreg, c); break; 1672 default: ShouldNotReachHere(); 1673 } 1674 break; 1675 case T_OBJECT: 1676 case T_ADDRESS: 1677 switch (code) { 1678 case lir_add: __ add(dreg, lreg, c); break; 1679 case lir_sub: __ sub(dreg, lreg, c); break; 1680 default: ShouldNotReachHere(); 1681 } 1682 break; 1683 default: 1684 ShouldNotReachHere(); 1685 } 1686 } else { 1687 ShouldNotReachHere(); 1688 } 1689 1690 } else if (left->is_double_cpu()) { 1691 Register lreg_lo = left->as_register_lo(); 1692 1693 if (right->is_double_cpu()) { 1694 // cpu register - cpu register 1695 Register rreg_lo = right->as_register_lo(); 1696 switch (code) { 1697 case lir_add: __ add (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1698 case lir_sub: __ sub (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1699 case lir_mul: __ mul (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1700 case lir_div: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, false, rscratch1); break; 1701 case lir_rem: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, true, rscratch1); break; 1702 default: 1703 ShouldNotReachHere(); 1704 } 1705 1706 } else if (right->is_constant()) { 1707 jlong c = right->as_constant_ptr()->as_jlong(); 1708 Register dreg = as_reg(dest); 1709 switch (code) { 1710 case lir_add: 1711 case lir_sub: 1712 if (c == 0 && dreg == lreg_lo) { 1713 COMMENT("effective nop elided"); 1714 return; 1715 } 1716 code == lir_add ? __ add(dreg, lreg_lo, c) : __ sub(dreg, lreg_lo, c); 1717 break; 1718 case lir_div: 1719 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1720 if (c == 1) { 1721 // move lreg_lo to dreg if divisor is 1 1722 __ mov(dreg, lreg_lo); 1723 } else { 1724 unsigned int shift = log2i_exact(c); 1725 // use rscratch1 as intermediate result register 1726 __ asr(rscratch1, lreg_lo, 63); 1727 __ add(rscratch1, lreg_lo, rscratch1, Assembler::LSR, 64 - shift); 1728 __ asr(dreg, rscratch1, shift); 1729 } 1730 break; 1731 case lir_rem: 1732 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1733 if (c == 1) { 1734 // move 0 to dreg if divisor is 1 1735 __ mov(dreg, zr); 1736 } else { 1737 // use rscratch1 as intermediate result register 1738 __ negs(rscratch1, lreg_lo); 1739 __ andr(dreg, lreg_lo, c - 1); 1740 __ andr(rscratch1, rscratch1, c - 1); 1741 __ csneg(dreg, dreg, rscratch1, Assembler::MI); 1742 } 1743 break; 1744 default: 1745 ShouldNotReachHere(); 1746 } 1747 } else { 1748 ShouldNotReachHere(); 1749 } 1750 } else if (left->is_single_fpu()) { 1751 assert(right->is_single_fpu(), "right hand side of float arithmetics needs to be float register"); 1752 switch (code) { 1753 case lir_add: __ fadds (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1754 case lir_sub: __ fsubs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1755 case lir_mul: __ fmuls (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1756 case lir_div: __ fdivs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1757 default: 1758 ShouldNotReachHere(); 1759 } 1760 } else if (left->is_double_fpu()) { 1761 if (right->is_double_fpu()) { 1762 // fpu register - fpu register 1763 switch (code) { 1764 case lir_add: __ faddd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1765 case lir_sub: __ fsubd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1766 case lir_mul: __ fmuld (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1767 case lir_div: __ fdivd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1768 default: 1769 ShouldNotReachHere(); 1770 } 1771 } else { 1772 if (right->is_constant()) { 1773 ShouldNotReachHere(); 1774 } 1775 ShouldNotReachHere(); 1776 } 1777 } else if (left->is_single_stack() || left->is_address()) { 1778 assert(left == dest, "left and dest must be equal"); 1779 ShouldNotReachHere(); 1780 } else { 1781 ShouldNotReachHere(); 1782 } 1783 } 1784 1785 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) { Unimplemented(); } 1786 1787 1788 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) { 1789 switch(code) { 1790 case lir_abs : __ fabsd(dest->as_double_reg(), value->as_double_reg()); break; 1791 case lir_sqrt: __ fsqrtd(dest->as_double_reg(), value->as_double_reg()); break; 1792 case lir_f2hf: __ flt_to_flt16(dest->as_register(), value->as_float_reg(), tmp->as_float_reg()); break; 1793 case lir_hf2f: __ flt16_to_flt(dest->as_float_reg(), value->as_register(), tmp->as_float_reg()); break; 1794 default : ShouldNotReachHere(); 1795 } 1796 } 1797 1798 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) { 1799 1800 assert(left->is_single_cpu() || left->is_double_cpu(), "expect single or double register"); 1801 Register Rleft = left->is_single_cpu() ? left->as_register() : 1802 left->as_register_lo(); 1803 if (dst->is_single_cpu()) { 1804 Register Rdst = dst->as_register(); 1805 if (right->is_constant()) { 1806 switch (code) { 1807 case lir_logic_and: __ andw (Rdst, Rleft, right->as_jint()); break; 1808 case lir_logic_or: __ orrw (Rdst, Rleft, right->as_jint()); break; 1809 case lir_logic_xor: __ eorw (Rdst, Rleft, right->as_jint()); break; 1810 default: ShouldNotReachHere(); break; 1811 } 1812 } else { 1813 Register Rright = right->is_single_cpu() ? right->as_register() : 1814 right->as_register_lo(); 1815 switch (code) { 1816 case lir_logic_and: __ andw (Rdst, Rleft, Rright); break; 1817 case lir_logic_or: __ orrw (Rdst, Rleft, Rright); break; 1818 case lir_logic_xor: __ eorw (Rdst, Rleft, Rright); break; 1819 default: ShouldNotReachHere(); break; 1820 } 1821 } 1822 } else { 1823 Register Rdst = dst->as_register_lo(); 1824 if (right->is_constant()) { 1825 switch (code) { 1826 case lir_logic_and: __ andr (Rdst, Rleft, right->as_jlong()); break; 1827 case lir_logic_or: __ orr (Rdst, Rleft, right->as_jlong()); break; 1828 case lir_logic_xor: __ eor (Rdst, Rleft, right->as_jlong()); break; 1829 default: ShouldNotReachHere(); break; 1830 } 1831 } else { 1832 Register Rright = right->is_single_cpu() ? right->as_register() : 1833 right->as_register_lo(); 1834 switch (code) { 1835 case lir_logic_and: __ andr (Rdst, Rleft, Rright); break; 1836 case lir_logic_or: __ orr (Rdst, Rleft, Rright); break; 1837 case lir_logic_xor: __ eor (Rdst, Rleft, Rright); break; 1838 default: ShouldNotReachHere(); break; 1839 } 1840 } 1841 } 1842 } 1843 1844 1845 1846 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr illegal, LIR_Opr result, CodeEmitInfo* info) { 1847 1848 // opcode check 1849 assert((code == lir_idiv) || (code == lir_irem), "opcode must be idiv or irem"); 1850 bool is_irem = (code == lir_irem); 1851 1852 // operand check 1853 assert(left->is_single_cpu(), "left must be register"); 1854 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant"); 1855 assert(result->is_single_cpu(), "result must be register"); 1856 Register lreg = left->as_register(); 1857 Register dreg = result->as_register(); 1858 1859 // power-of-2 constant check and codegen 1860 if (right->is_constant()) { 1861 int c = right->as_constant_ptr()->as_jint(); 1862 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1863 if (is_irem) { 1864 if (c == 1) { 1865 // move 0 to dreg if divisor is 1 1866 __ movw(dreg, zr); 1867 } else { 1868 // use rscratch1 as intermediate result register 1869 __ negsw(rscratch1, lreg); 1870 __ andw(dreg, lreg, c - 1); 1871 __ andw(rscratch1, rscratch1, c - 1); 1872 __ csnegw(dreg, dreg, rscratch1, Assembler::MI); 1873 } 1874 } else { 1875 if (c == 1) { 1876 // move lreg to dreg if divisor is 1 1877 __ movw(dreg, lreg); 1878 } else { 1879 unsigned int shift = exact_log2(c); 1880 // use rscratch1 as intermediate result register 1881 __ asrw(rscratch1, lreg, 31); 1882 __ addw(rscratch1, lreg, rscratch1, Assembler::LSR, 32 - shift); 1883 __ asrw(dreg, rscratch1, shift); 1884 } 1885 } 1886 } else { 1887 Register rreg = right->as_register(); 1888 __ corrected_idivl(dreg, lreg, rreg, is_irem, rscratch1); 1889 } 1890 } 1891 1892 1893 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 1894 if (opr1->is_constant() && opr2->is_single_cpu()) { 1895 // tableswitch 1896 Register reg = as_reg(opr2); 1897 struct tableswitch &table = switches[opr1->as_constant_ptr()->as_jint()]; 1898 __ tableswitch(reg, table._first_key, table._last_key, table._branches, table._after); 1899 } else if (opr1->is_single_cpu() || opr1->is_double_cpu()) { 1900 Register reg1 = as_reg(opr1); 1901 if (opr2->is_single_cpu()) { 1902 // cpu register - cpu register 1903 Register reg2 = opr2->as_register(); 1904 if (is_reference_type(opr1->type())) { 1905 __ cmpoop(reg1, reg2); 1906 } else { 1907 assert(!is_reference_type(opr2->type()), "cmp int, oop?"); 1908 __ cmpw(reg1, reg2); 1909 } 1910 return; 1911 } 1912 if (opr2->is_double_cpu()) { 1913 // cpu register - cpu register 1914 Register reg2 = opr2->as_register_lo(); 1915 __ cmp(reg1, reg2); 1916 return; 1917 } 1918 1919 if (opr2->is_constant()) { 1920 bool is_32bit = false; // width of register operand 1921 jlong imm; 1922 1923 switch(opr2->type()) { 1924 case T_INT: 1925 imm = opr2->as_constant_ptr()->as_jint(); 1926 is_32bit = true; 1927 break; 1928 case T_LONG: 1929 imm = opr2->as_constant_ptr()->as_jlong(); 1930 break; 1931 case T_ADDRESS: 1932 imm = opr2->as_constant_ptr()->as_jint(); 1933 break; 1934 case T_METADATA: 1935 imm = (intptr_t)(opr2->as_constant_ptr()->as_metadata()); 1936 break; 1937 case T_OBJECT: 1938 case T_ARRAY: 1939 jobject2reg(opr2->as_constant_ptr()->as_jobject(), rscratch1); 1940 __ cmpoop(reg1, rscratch1); 1941 return; 1942 default: 1943 ShouldNotReachHere(); 1944 imm = 0; // unreachable 1945 break; 1946 } 1947 1948 if (Assembler::operand_valid_for_add_sub_immediate(imm)) { 1949 if (is_32bit) 1950 __ cmpw(reg1, imm); 1951 else 1952 __ subs(zr, reg1, imm); 1953 return; 1954 } else { 1955 __ mov(rscratch1, imm); 1956 if (is_32bit) 1957 __ cmpw(reg1, rscratch1); 1958 else 1959 __ cmp(reg1, rscratch1); 1960 return; 1961 } 1962 } else 1963 ShouldNotReachHere(); 1964 } else if (opr1->is_single_fpu()) { 1965 FloatRegister reg1 = opr1->as_float_reg(); 1966 assert(opr2->is_single_fpu(), "expect single float register"); 1967 FloatRegister reg2 = opr2->as_float_reg(); 1968 __ fcmps(reg1, reg2); 1969 } else if (opr1->is_double_fpu()) { 1970 FloatRegister reg1 = opr1->as_double_reg(); 1971 assert(opr2->is_double_fpu(), "expect double float register"); 1972 FloatRegister reg2 = opr2->as_double_reg(); 1973 __ fcmpd(reg1, reg2); 1974 } else { 1975 ShouldNotReachHere(); 1976 } 1977 } 1978 1979 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){ 1980 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 1981 bool is_unordered_less = (code == lir_ucmp_fd2i); 1982 if (left->is_single_fpu()) { 1983 __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register()); 1984 } else if (left->is_double_fpu()) { 1985 __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register()); 1986 } else { 1987 ShouldNotReachHere(); 1988 } 1989 } else if (code == lir_cmp_l2i) { 1990 Label done; 1991 __ cmp(left->as_register_lo(), right->as_register_lo()); 1992 __ mov(dst->as_register(), (uint64_t)-1L); 1993 __ br(Assembler::LT, done); 1994 __ csinc(dst->as_register(), zr, zr, Assembler::EQ); 1995 __ bind(done); 1996 } else { 1997 ShouldNotReachHere(); 1998 } 1999 } 2000 2001 2002 void LIR_Assembler::align_call(LIR_Code code) { } 2003 2004 2005 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 2006 address call = __ trampoline_call(Address(op->addr(), rtype)); 2007 if (call == nullptr) { 2008 bailout("trampoline stub overflow"); 2009 return; 2010 } 2011 add_call_info(code_offset(), op->info()); 2012 __ post_call_nop(); 2013 } 2014 2015 2016 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 2017 address call = __ ic_call(op->addr()); 2018 if (call == nullptr) { 2019 bailout("trampoline stub overflow"); 2020 return; 2021 } 2022 add_call_info(code_offset(), op->info()); 2023 __ post_call_nop(); 2024 } 2025 2026 void LIR_Assembler::emit_static_call_stub() { 2027 address call_pc = __ pc(); 2028 address stub = __ start_a_stub(call_stub_size()); 2029 if (stub == nullptr) { 2030 bailout("static call stub overflow"); 2031 return; 2032 } 2033 2034 int start = __ offset(); 2035 2036 __ relocate(static_stub_Relocation::spec(call_pc)); 2037 __ emit_static_call_stub(); 2038 2039 assert(__ offset() - start + CompiledDirectCall::to_trampoline_stub_size() 2040 <= call_stub_size(), "stub too big"); 2041 __ end_a_stub(); 2042 } 2043 2044 2045 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2046 assert(exceptionOop->as_register() == r0, "must match"); 2047 assert(exceptionPC->as_register() == r3, "must match"); 2048 2049 // exception object is not added to oop map by LinearScan 2050 // (LinearScan assumes that no oops are in fixed registers) 2051 info->add_register_oop(exceptionOop); 2052 C1StubId unwind_id; 2053 2054 // get current pc information 2055 // pc is only needed if the method has an exception handler, the unwind code does not need it. 2056 if (compilation()->debug_info_recorder()->last_pc_offset() == __ offset()) { 2057 // As no instructions have been generated yet for this LIR node it's 2058 // possible that an oop map already exists for the current offset. 2059 // In that case insert an dummy NOP here to ensure all oop map PCs 2060 // are unique. See JDK-8237483. 2061 __ nop(); 2062 } 2063 int pc_for_athrow_offset = __ offset(); 2064 InternalAddress pc_for_athrow(__ pc()); 2065 __ adr(exceptionPC->as_register(), pc_for_athrow); 2066 add_call_info(pc_for_athrow_offset, info); // for exception handler 2067 2068 __ verify_not_null_oop(r0); 2069 // search an exception handler (r0: exception oop, r3: throwing pc) 2070 if (compilation()->has_fpu_code()) { 2071 unwind_id = C1StubId::handle_exception_id; 2072 } else { 2073 unwind_id = C1StubId::handle_exception_nofpu_id; 2074 } 2075 __ far_call(RuntimeAddress(Runtime1::entry_for(unwind_id))); 2076 2077 // FIXME: enough room for two byte trap ???? 2078 __ nop(); 2079 } 2080 2081 2082 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 2083 assert(exceptionOop->as_register() == r0, "must match"); 2084 2085 __ b(_unwind_handler_entry); 2086 } 2087 2088 2089 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 2090 Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo(); 2091 Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo(); 2092 2093 switch (left->type()) { 2094 case T_INT: { 2095 switch (code) { 2096 case lir_shl: __ lslvw (dreg, lreg, count->as_register()); break; 2097 case lir_shr: __ asrvw (dreg, lreg, count->as_register()); break; 2098 case lir_ushr: __ lsrvw (dreg, lreg, count->as_register()); break; 2099 default: 2100 ShouldNotReachHere(); 2101 break; 2102 } 2103 break; 2104 case T_LONG: 2105 case T_ADDRESS: 2106 case T_OBJECT: 2107 switch (code) { 2108 case lir_shl: __ lslv (dreg, lreg, count->as_register()); break; 2109 case lir_shr: __ asrv (dreg, lreg, count->as_register()); break; 2110 case lir_ushr: __ lsrv (dreg, lreg, count->as_register()); break; 2111 default: 2112 ShouldNotReachHere(); 2113 break; 2114 } 2115 break; 2116 default: 2117 ShouldNotReachHere(); 2118 break; 2119 } 2120 } 2121 } 2122 2123 2124 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 2125 Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo(); 2126 Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo(); 2127 2128 switch (left->type()) { 2129 case T_INT: { 2130 switch (code) { 2131 case lir_shl: __ lslw (dreg, lreg, count); break; 2132 case lir_shr: __ asrw (dreg, lreg, count); break; 2133 case lir_ushr: __ lsrw (dreg, lreg, count); break; 2134 default: 2135 ShouldNotReachHere(); 2136 break; 2137 } 2138 break; 2139 case T_LONG: 2140 case T_ADDRESS: 2141 case T_OBJECT: 2142 switch (code) { 2143 case lir_shl: __ lsl (dreg, lreg, count); break; 2144 case lir_shr: __ asr (dreg, lreg, count); break; 2145 case lir_ushr: __ lsr (dreg, lreg, count); break; 2146 default: 2147 ShouldNotReachHere(); 2148 break; 2149 } 2150 break; 2151 default: 2152 ShouldNotReachHere(); 2153 break; 2154 } 2155 } 2156 } 2157 2158 2159 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) { 2160 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2161 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2162 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2163 __ str (r, Address(sp, offset_from_rsp_in_bytes)); 2164 } 2165 2166 2167 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) { 2168 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2169 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2170 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2171 __ mov (rscratch1, c); 2172 __ str (rscratch1, Address(sp, offset_from_rsp_in_bytes)); 2173 } 2174 2175 2176 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) { 2177 ShouldNotReachHere(); 2178 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2179 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2180 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2181 __ lea(rscratch1, __ constant_oop_address(o)); 2182 __ str(rscratch1, Address(sp, offset_from_rsp_in_bytes)); 2183 } 2184 2185 2186 // This code replaces a call to arraycopy; no exception may 2187 // be thrown in this code, they must be thrown in the System.arraycopy 2188 // activation frame; we could save some checks if this would not be the case 2189 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 2190 ciArrayKlass* default_type = op->expected_type(); 2191 Register src = op->src()->as_register(); 2192 Register dst = op->dst()->as_register(); 2193 Register src_pos = op->src_pos()->as_register(); 2194 Register dst_pos = op->dst_pos()->as_register(); 2195 Register length = op->length()->as_register(); 2196 Register tmp = op->tmp()->as_register(); 2197 2198 CodeStub* stub = op->stub(); 2199 int flags = op->flags(); 2200 BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL; 2201 if (is_reference_type(basic_type)) basic_type = T_OBJECT; 2202 2203 // if we don't know anything, just go through the generic arraycopy 2204 if (default_type == nullptr // || basic_type == T_OBJECT 2205 ) { 2206 Label done; 2207 assert(src == r1 && src_pos == r2, "mismatch in calling convention"); 2208 2209 // Save the arguments in case the generic arraycopy fails and we 2210 // have to fall back to the JNI stub 2211 __ stp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2212 __ stp(length, src_pos, Address(sp, 2*BytesPerWord)); 2213 __ str(src, Address(sp, 4*BytesPerWord)); 2214 2215 address copyfunc_addr = StubRoutines::generic_arraycopy(); 2216 assert(copyfunc_addr != nullptr, "generic arraycopy stub required"); 2217 2218 // The arguments are in java calling convention so we shift them 2219 // to C convention 2220 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4); 2221 __ mov(c_rarg0, j_rarg0); 2222 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4); 2223 __ mov(c_rarg1, j_rarg1); 2224 assert_different_registers(c_rarg2, j_rarg3, j_rarg4); 2225 __ mov(c_rarg2, j_rarg2); 2226 assert_different_registers(c_rarg3, j_rarg4); 2227 __ mov(c_rarg3, j_rarg3); 2228 __ mov(c_rarg4, j_rarg4); 2229 #ifndef PRODUCT 2230 if (PrintC1Statistics) { 2231 __ incrementw(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt)); 2232 } 2233 #endif 2234 __ far_call(RuntimeAddress(copyfunc_addr)); 2235 2236 __ cbz(r0, *stub->continuation()); 2237 2238 // Reload values from the stack so they are where the stub 2239 // expects them. 2240 __ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2241 __ ldp(length, src_pos, Address(sp, 2*BytesPerWord)); 2242 __ ldr(src, Address(sp, 4*BytesPerWord)); 2243 2244 // r0 is -1^K where K == partial copied count 2245 __ eonw(rscratch1, r0, zr); 2246 // adjust length down and src/end pos up by partial copied count 2247 __ subw(length, length, rscratch1); 2248 __ addw(src_pos, src_pos, rscratch1); 2249 __ addw(dst_pos, dst_pos, rscratch1); 2250 __ b(*stub->entry()); 2251 2252 __ bind(*stub->continuation()); 2253 return; 2254 } 2255 2256 assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); 2257 2258 int elem_size = type2aelembytes(basic_type); 2259 int scale = exact_log2(elem_size); 2260 2261 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes()); 2262 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes()); 2263 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes()); 2264 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes()); 2265 2266 // test for null 2267 if (flags & LIR_OpArrayCopy::src_null_check) { 2268 __ cbz(src, *stub->entry()); 2269 } 2270 if (flags & LIR_OpArrayCopy::dst_null_check) { 2271 __ cbz(dst, *stub->entry()); 2272 } 2273 2274 // If the compiler was not able to prove that exact type of the source or the destination 2275 // of the arraycopy is an array type, check at runtime if the source or the destination is 2276 // an instance type. 2277 if (flags & LIR_OpArrayCopy::type_check) { 2278 if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) { 2279 __ load_klass(tmp, dst); 2280 __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2281 __ cmpw(rscratch1, Klass::_lh_neutral_value); 2282 __ br(Assembler::GE, *stub->entry()); 2283 } 2284 2285 if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) { 2286 __ load_klass(tmp, src); 2287 __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2288 __ cmpw(rscratch1, Klass::_lh_neutral_value); 2289 __ br(Assembler::GE, *stub->entry()); 2290 } 2291 } 2292 2293 // check if negative 2294 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 2295 __ cmpw(src_pos, 0); 2296 __ br(Assembler::LT, *stub->entry()); 2297 } 2298 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 2299 __ cmpw(dst_pos, 0); 2300 __ br(Assembler::LT, *stub->entry()); 2301 } 2302 2303 if (flags & LIR_OpArrayCopy::length_positive_check) { 2304 __ cmpw(length, 0); 2305 __ br(Assembler::LT, *stub->entry()); 2306 } 2307 2308 if (flags & LIR_OpArrayCopy::src_range_check) { 2309 __ addw(tmp, src_pos, length); 2310 __ ldrw(rscratch1, src_length_addr); 2311 __ cmpw(tmp, rscratch1); 2312 __ br(Assembler::HI, *stub->entry()); 2313 } 2314 if (flags & LIR_OpArrayCopy::dst_range_check) { 2315 __ addw(tmp, dst_pos, length); 2316 __ ldrw(rscratch1, dst_length_addr); 2317 __ cmpw(tmp, rscratch1); 2318 __ br(Assembler::HI, *stub->entry()); 2319 } 2320 2321 if (flags & LIR_OpArrayCopy::type_check) { 2322 // We don't know the array types are compatible 2323 if (basic_type != T_OBJECT) { 2324 // Simple test for basic type arrays 2325 if (UseCompressedClassPointers) { 2326 __ ldrw(tmp, src_klass_addr); 2327 __ ldrw(rscratch1, dst_klass_addr); 2328 __ cmpw(tmp, rscratch1); 2329 } else { 2330 __ ldr(tmp, src_klass_addr); 2331 __ ldr(rscratch1, dst_klass_addr); 2332 __ cmp(tmp, rscratch1); 2333 } 2334 __ br(Assembler::NE, *stub->entry()); 2335 } else { 2336 // For object arrays, if src is a sub class of dst then we can 2337 // safely do the copy. 2338 Label cont, slow; 2339 2340 #define PUSH(r1, r2) \ 2341 stp(r1, r2, __ pre(sp, -2 * wordSize)); 2342 2343 #define POP(r1, r2) \ 2344 ldp(r1, r2, __ post(sp, 2 * wordSize)); 2345 2346 __ PUSH(src, dst); 2347 2348 __ load_klass(src, src); 2349 __ load_klass(dst, dst); 2350 2351 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr); 2352 2353 __ PUSH(src, dst); 2354 __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 2355 __ POP(src, dst); 2356 2357 __ cbnz(src, cont); 2358 2359 __ bind(slow); 2360 __ POP(src, dst); 2361 2362 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 2363 if (copyfunc_addr != nullptr) { // use stub if available 2364 // src is not a sub class of dst so we have to do a 2365 // per-element check. 2366 2367 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 2368 if ((flags & mask) != mask) { 2369 // Check that at least both of them object arrays. 2370 assert(flags & mask, "one of the two should be known to be an object array"); 2371 2372 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2373 __ load_klass(tmp, src); 2374 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2375 __ load_klass(tmp, dst); 2376 } 2377 int lh_offset = in_bytes(Klass::layout_helper_offset()); 2378 Address klass_lh_addr(tmp, lh_offset); 2379 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 2380 __ ldrw(rscratch1, klass_lh_addr); 2381 __ mov(rscratch2, objArray_lh); 2382 __ eorw(rscratch1, rscratch1, rscratch2); 2383 __ cbnzw(rscratch1, *stub->entry()); 2384 } 2385 2386 // Spill because stubs can use any register they like and it's 2387 // easier to restore just those that we care about. 2388 __ stp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2389 __ stp(length, src_pos, Address(sp, 2*BytesPerWord)); 2390 __ str(src, Address(sp, 4*BytesPerWord)); 2391 2392 __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale))); 2393 __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type)); 2394 assert_different_registers(c_rarg0, dst, dst_pos, length); 2395 __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale))); 2396 __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type)); 2397 assert_different_registers(c_rarg1, dst, length); 2398 __ uxtw(c_rarg2, length); 2399 assert_different_registers(c_rarg2, dst); 2400 2401 __ load_klass(c_rarg4, dst); 2402 __ ldr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset())); 2403 __ ldrw(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset())); 2404 __ far_call(RuntimeAddress(copyfunc_addr)); 2405 2406 #ifndef PRODUCT 2407 if (PrintC1Statistics) { 2408 Label failed; 2409 __ cbnz(r0, failed); 2410 __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt)); 2411 __ bind(failed); 2412 } 2413 #endif 2414 2415 __ cbz(r0, *stub->continuation()); 2416 2417 #ifndef PRODUCT 2418 if (PrintC1Statistics) { 2419 __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt)); 2420 } 2421 #endif 2422 assert_different_registers(dst, dst_pos, length, src_pos, src, r0, rscratch1); 2423 2424 // Restore previously spilled arguments 2425 __ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2426 __ ldp(length, src_pos, Address(sp, 2*BytesPerWord)); 2427 __ ldr(src, Address(sp, 4*BytesPerWord)); 2428 2429 // return value is -1^K where K is partial copied count 2430 __ eonw(rscratch1, r0, zr); 2431 // adjust length down and src/end pos up by partial copied count 2432 __ subw(length, length, rscratch1); 2433 __ addw(src_pos, src_pos, rscratch1); 2434 __ addw(dst_pos, dst_pos, rscratch1); 2435 } 2436 2437 __ b(*stub->entry()); 2438 2439 __ bind(cont); 2440 __ POP(src, dst); 2441 } 2442 } 2443 2444 #ifdef ASSERT 2445 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 2446 // Sanity check the known type with the incoming class. For the 2447 // primitive case the types must match exactly with src.klass and 2448 // dst.klass each exactly matching the default type. For the 2449 // object array case, if no type check is needed then either the 2450 // dst type is exactly the expected type and the src type is a 2451 // subtype which we can't check or src is the same array as dst 2452 // but not necessarily exactly of type default_type. 2453 Label known_ok, halt; 2454 __ mov_metadata(tmp, default_type->constant_encoding()); 2455 if (UseCompressedClassPointers) { 2456 __ encode_klass_not_null(tmp); 2457 } 2458 2459 if (basic_type != T_OBJECT) { 2460 2461 if (UseCompressedClassPointers) { 2462 __ ldrw(rscratch1, dst_klass_addr); 2463 __ cmpw(tmp, rscratch1); 2464 } else { 2465 __ ldr(rscratch1, dst_klass_addr); 2466 __ cmp(tmp, rscratch1); 2467 } 2468 __ br(Assembler::NE, halt); 2469 if (UseCompressedClassPointers) { 2470 __ ldrw(rscratch1, src_klass_addr); 2471 __ cmpw(tmp, rscratch1); 2472 } else { 2473 __ ldr(rscratch1, src_klass_addr); 2474 __ cmp(tmp, rscratch1); 2475 } 2476 __ br(Assembler::EQ, known_ok); 2477 } else { 2478 if (UseCompressedClassPointers) { 2479 __ ldrw(rscratch1, dst_klass_addr); 2480 __ cmpw(tmp, rscratch1); 2481 } else { 2482 __ ldr(rscratch1, dst_klass_addr); 2483 __ cmp(tmp, rscratch1); 2484 } 2485 __ br(Assembler::EQ, known_ok); 2486 __ cmp(src, dst); 2487 __ br(Assembler::EQ, known_ok); 2488 } 2489 __ bind(halt); 2490 __ stop("incorrect type information in arraycopy"); 2491 __ bind(known_ok); 2492 } 2493 #endif 2494 2495 #ifndef PRODUCT 2496 if (PrintC1Statistics) { 2497 __ incrementw(ExternalAddress(Runtime1::arraycopy_count_address(basic_type))); 2498 } 2499 #endif 2500 2501 __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale))); 2502 __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type)); 2503 assert_different_registers(c_rarg0, dst, dst_pos, length); 2504 __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale))); 2505 __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type)); 2506 assert_different_registers(c_rarg1, dst, length); 2507 __ uxtw(c_rarg2, length); 2508 assert_different_registers(c_rarg2, dst); 2509 2510 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 2511 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 2512 const char *name; 2513 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 2514 2515 CodeBlob *cb = CodeCache::find_blob(entry); 2516 if (cb) { 2517 __ far_call(RuntimeAddress(entry)); 2518 } else { 2519 __ call_VM_leaf(entry, 3); 2520 } 2521 2522 if (stub != nullptr) { 2523 __ bind(*stub->continuation()); 2524 } 2525 } 2526 2527 2528 2529 2530 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 2531 Register obj = op->obj_opr()->as_register(); // may not be an oop 2532 Register hdr = op->hdr_opr()->as_register(); 2533 Register lock = op->lock_opr()->as_register(); 2534 Register temp = op->scratch_opr()->as_register(); 2535 if (LockingMode == LM_MONITOR) { 2536 if (op->info() != nullptr) { 2537 add_debug_info_for_null_check_here(op->info()); 2538 __ null_check(obj, -1); 2539 } 2540 __ b(*op->stub()->entry()); 2541 } else if (op->code() == lir_lock) { 2542 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2543 // add debug info for NullPointerException only if one is possible 2544 int null_check_offset = __ lock_object(hdr, obj, lock, temp, *op->stub()->entry()); 2545 if (op->info() != nullptr) { 2546 add_debug_info_for_null_check(null_check_offset, op->info()); 2547 } 2548 // done 2549 } else if (op->code() == lir_unlock) { 2550 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2551 __ unlock_object(hdr, obj, lock, temp, *op->stub()->entry()); 2552 } else { 2553 Unimplemented(); 2554 } 2555 __ bind(*op->stub()->continuation()); 2556 } 2557 2558 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) { 2559 Register obj = op->obj()->as_pointer_register(); 2560 Register result = op->result_opr()->as_pointer_register(); 2561 2562 CodeEmitInfo* info = op->info(); 2563 if (info != nullptr) { 2564 add_debug_info_for_null_check_here(info); 2565 } 2566 2567 if (UseCompressedClassPointers) { 2568 __ ldrw(result, Address (obj, oopDesc::klass_offset_in_bytes())); 2569 __ decode_klass_not_null(result); 2570 } else { 2571 __ ldr(result, Address (obj, oopDesc::klass_offset_in_bytes())); 2572 } 2573 } 2574 2575 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 2576 ciMethod* method = op->profiled_method(); 2577 int bci = op->profiled_bci(); 2578 ciMethod* callee = op->profiled_callee(); 2579 2580 // Update counter for all call types 2581 ciMethodData* md = method->method_data_or_null(); 2582 assert(md != nullptr, "Sanity"); 2583 ciProfileData* data = md->bci_to_data(bci); 2584 assert(data != nullptr && data->is_CounterData(), "need CounterData for calls"); 2585 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 2586 Register mdo = op->mdo()->as_register(); 2587 __ mov_metadata(mdo, md->constant_encoding()); 2588 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 2589 // Perform additional virtual call profiling for invokevirtual and 2590 // invokeinterface bytecodes 2591 if (op->should_profile_receiver_type()) { 2592 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 2593 Register recv = op->recv()->as_register(); 2594 assert_different_registers(mdo, recv); 2595 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 2596 ciKlass* known_klass = op->known_holder(); 2597 if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) { 2598 // We know the type that will be seen at this call site; we can 2599 // statically update the MethodData* rather than needing to do 2600 // dynamic tests on the receiver type 2601 2602 // NOTE: we should probably put a lock around this search to 2603 // avoid collisions by concurrent compilations 2604 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 2605 uint i; 2606 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2607 ciKlass* receiver = vc_data->receiver(i); 2608 if (known_klass->equals(receiver)) { 2609 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2610 __ addptr(data_addr, DataLayout::counter_increment); 2611 return; 2612 } 2613 } 2614 2615 // Receiver type not found in profile data; select an empty slot 2616 2617 // Note that this is less efficient than it should be because it 2618 // always does a write to the receiver part of the 2619 // VirtualCallData rather than just the first time 2620 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2621 ciKlass* receiver = vc_data->receiver(i); 2622 if (receiver == nullptr) { 2623 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))); 2624 __ mov_metadata(rscratch1, known_klass->constant_encoding()); 2625 __ lea(rscratch2, recv_addr); 2626 __ str(rscratch1, Address(rscratch2)); 2627 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2628 __ addptr(data_addr, DataLayout::counter_increment); 2629 return; 2630 } 2631 } 2632 } else { 2633 __ load_klass(recv, recv); 2634 Label update_done; 2635 type_profile_helper(mdo, md, data, recv, &update_done); 2636 // Receiver did not match any saved receiver and there is no empty row for it. 2637 // Increment total counter to indicate polymorphic case. 2638 __ addptr(counter_addr, DataLayout::counter_increment); 2639 2640 __ bind(update_done); 2641 } 2642 } else { 2643 // Static call 2644 __ addptr(counter_addr, DataLayout::counter_increment); 2645 } 2646 } 2647 2648 2649 void LIR_Assembler::emit_delay(LIR_OpDelay*) { 2650 Unimplemented(); 2651 } 2652 2653 2654 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) { 2655 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no)); 2656 } 2657 2658 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 2659 assert(op->crc()->is_single_cpu(), "crc must be register"); 2660 assert(op->val()->is_single_cpu(), "byte value must be register"); 2661 assert(op->result_opr()->is_single_cpu(), "result must be register"); 2662 Register crc = op->crc()->as_register(); 2663 Register val = op->val()->as_register(); 2664 Register res = op->result_opr()->as_register(); 2665 2666 assert_different_registers(val, crc, res); 2667 uint64_t offset; 2668 __ adrp(res, ExternalAddress(StubRoutines::crc_table_addr()), offset); 2669 __ add(res, res, offset); 2670 2671 __ mvnw(crc, crc); // ~crc 2672 __ update_byte_crc32(crc, val, res); 2673 __ mvnw(res, crc); // ~crc 2674 } 2675 2676 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 2677 COMMENT("emit_profile_type {"); 2678 Register obj = op->obj()->as_register(); 2679 Register tmp = op->tmp()->as_pointer_register(); 2680 Address mdo_addr = as_Address(op->mdp()->as_address_ptr()); 2681 ciKlass* exact_klass = op->exact_klass(); 2682 intptr_t current_klass = op->current_klass(); 2683 bool not_null = op->not_null(); 2684 bool no_conflict = op->no_conflict(); 2685 2686 Label update, next, none; 2687 2688 bool do_null = !not_null; 2689 bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 2690 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 2691 2692 assert(do_null || do_update, "why are we here?"); 2693 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 2694 assert(mdo_addr.base() != rscratch1, "wrong register"); 2695 2696 __ verify_oop(obj); 2697 2698 if (tmp != obj) { 2699 assert_different_registers(obj, tmp, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index()); 2700 __ mov(tmp, obj); 2701 } else { 2702 assert_different_registers(obj, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index()); 2703 } 2704 if (do_null) { 2705 __ cbnz(tmp, update); 2706 if (!TypeEntries::was_null_seen(current_klass)) { 2707 __ ldr(rscratch2, mdo_addr); 2708 __ orr(rscratch2, rscratch2, TypeEntries::null_seen); 2709 __ str(rscratch2, mdo_addr); 2710 } 2711 if (do_update) { 2712 #ifndef ASSERT 2713 __ b(next); 2714 } 2715 #else 2716 __ b(next); 2717 } 2718 } else { 2719 __ cbnz(tmp, update); 2720 __ stop("unexpected null obj"); 2721 #endif 2722 } 2723 2724 __ bind(update); 2725 2726 if (do_update) { 2727 #ifdef ASSERT 2728 if (exact_klass != nullptr) { 2729 Label ok; 2730 __ load_klass(tmp, tmp); 2731 __ mov_metadata(rscratch1, exact_klass->constant_encoding()); 2732 __ eor(rscratch1, tmp, rscratch1); 2733 __ cbz(rscratch1, ok); 2734 __ stop("exact klass and actual klass differ"); 2735 __ bind(ok); 2736 } 2737 #endif 2738 if (!no_conflict) { 2739 if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) { 2740 if (exact_klass != nullptr) { 2741 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2742 } else { 2743 __ load_klass(tmp, tmp); 2744 } 2745 2746 __ ldr(rscratch2, mdo_addr); 2747 __ eor(tmp, tmp, rscratch2); 2748 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2749 // klass seen before, nothing to do. The unknown bit may have been 2750 // set already but no need to check. 2751 __ cbz(rscratch1, next); 2752 2753 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2754 2755 if (TypeEntries::is_type_none(current_klass)) { 2756 __ cbz(rscratch2, none); 2757 __ cmp(rscratch2, (u1)TypeEntries::null_seen); 2758 __ br(Assembler::EQ, none); 2759 // There is a chance that the checks above 2760 // fail if another thread has just set the 2761 // profiling to this obj's klass 2762 __ dmb(Assembler::ISHLD); 2763 __ eor(tmp, tmp, rscratch2); // get back original value before XOR 2764 __ ldr(rscratch2, mdo_addr); 2765 __ eor(tmp, tmp, rscratch2); 2766 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2767 __ cbz(rscratch1, next); 2768 } 2769 } else { 2770 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 2771 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 2772 2773 __ ldr(tmp, mdo_addr); 2774 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2775 } 2776 2777 // different than before. Cannot keep accurate profile. 2778 __ ldr(rscratch2, mdo_addr); 2779 __ orr(rscratch2, rscratch2, TypeEntries::type_unknown); 2780 __ str(rscratch2, mdo_addr); 2781 2782 if (TypeEntries::is_type_none(current_klass)) { 2783 __ b(next); 2784 2785 __ bind(none); 2786 // first time here. Set profile type. 2787 __ str(tmp, mdo_addr); 2788 #ifdef ASSERT 2789 __ andr(tmp, tmp, TypeEntries::type_mask); 2790 __ verify_klass_ptr(tmp); 2791 #endif 2792 } 2793 } else { 2794 // There's a single possible klass at this profile point 2795 assert(exact_klass != nullptr, "should be"); 2796 if (TypeEntries::is_type_none(current_klass)) { 2797 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2798 __ ldr(rscratch2, mdo_addr); 2799 __ eor(tmp, tmp, rscratch2); 2800 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2801 __ cbz(rscratch1, next); 2802 #ifdef ASSERT 2803 { 2804 Label ok; 2805 __ ldr(rscratch1, mdo_addr); 2806 __ cbz(rscratch1, ok); 2807 __ cmp(rscratch1, (u1)TypeEntries::null_seen); 2808 __ br(Assembler::EQ, ok); 2809 // may have been set by another thread 2810 __ dmb(Assembler::ISHLD); 2811 __ mov_metadata(rscratch1, exact_klass->constant_encoding()); 2812 __ ldr(rscratch2, mdo_addr); 2813 __ eor(rscratch2, rscratch1, rscratch2); 2814 __ andr(rscratch2, rscratch2, TypeEntries::type_mask); 2815 __ cbz(rscratch2, ok); 2816 2817 __ stop("unexpected profiling mismatch"); 2818 __ bind(ok); 2819 } 2820 #endif 2821 // first time here. Set profile type. 2822 __ str(tmp, mdo_addr); 2823 #ifdef ASSERT 2824 __ andr(tmp, tmp, TypeEntries::type_mask); 2825 __ verify_klass_ptr(tmp); 2826 #endif 2827 } else { 2828 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 2829 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 2830 2831 __ ldr(tmp, mdo_addr); 2832 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2833 2834 __ orr(tmp, tmp, TypeEntries::type_unknown); 2835 __ str(tmp, mdo_addr); 2836 // FIXME: Write barrier needed here? 2837 } 2838 } 2839 2840 __ bind(next); 2841 } 2842 COMMENT("} emit_profile_type"); 2843 } 2844 2845 2846 void LIR_Assembler::align_backward_branch_target() { 2847 } 2848 2849 2850 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 2851 // tmp must be unused 2852 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 2853 2854 if (left->is_single_cpu()) { 2855 assert(dest->is_single_cpu(), "expect single result reg"); 2856 __ negw(dest->as_register(), left->as_register()); 2857 } else if (left->is_double_cpu()) { 2858 assert(dest->is_double_cpu(), "expect double result reg"); 2859 __ neg(dest->as_register_lo(), left->as_register_lo()); 2860 } else if (left->is_single_fpu()) { 2861 assert(dest->is_single_fpu(), "expect single float result reg"); 2862 __ fnegs(dest->as_float_reg(), left->as_float_reg()); 2863 } else { 2864 assert(left->is_double_fpu(), "expect double float operand reg"); 2865 assert(dest->is_double_fpu(), "expect double float result reg"); 2866 __ fnegd(dest->as_double_reg(), left->as_double_reg()); 2867 } 2868 } 2869 2870 2871 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 2872 if (patch_code != lir_patch_none) { 2873 deoptimize_trap(info); 2874 return; 2875 } 2876 2877 __ lea(dest->as_register_lo(), as_Address(addr->as_address_ptr())); 2878 } 2879 2880 2881 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 2882 assert(!tmp->is_valid(), "don't need temporary"); 2883 2884 CodeBlob *cb = CodeCache::find_blob(dest); 2885 if (cb) { 2886 __ far_call(RuntimeAddress(dest)); 2887 } else { 2888 __ mov(rscratch1, RuntimeAddress(dest)); 2889 __ blr(rscratch1); 2890 } 2891 2892 if (info != nullptr) { 2893 add_call_info_here(info); 2894 } 2895 __ post_call_nop(); 2896 } 2897 2898 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 2899 if (dest->is_address() || src->is_address()) { 2900 move_op(src, dest, type, lir_patch_none, info, 2901 /*pop_fpu_stack*/false, /*wide*/false); 2902 } else { 2903 ShouldNotReachHere(); 2904 } 2905 } 2906 2907 #ifdef ASSERT 2908 // emit run-time assertion 2909 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 2910 assert(op->code() == lir_assert, "must be"); 2911 2912 if (op->in_opr1()->is_valid()) { 2913 assert(op->in_opr2()->is_valid(), "both operands must be valid"); 2914 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op); 2915 } else { 2916 assert(op->in_opr2()->is_illegal(), "both operands must be illegal"); 2917 assert(op->condition() == lir_cond_always, "no other conditions allowed"); 2918 } 2919 2920 Label ok; 2921 if (op->condition() != lir_cond_always) { 2922 Assembler::Condition acond = Assembler::AL; 2923 switch (op->condition()) { 2924 case lir_cond_equal: acond = Assembler::EQ; break; 2925 case lir_cond_notEqual: acond = Assembler::NE; break; 2926 case lir_cond_less: acond = Assembler::LT; break; 2927 case lir_cond_lessEqual: acond = Assembler::LE; break; 2928 case lir_cond_greaterEqual: acond = Assembler::GE; break; 2929 case lir_cond_greater: acond = Assembler::GT; break; 2930 case lir_cond_belowEqual: acond = Assembler::LS; break; 2931 case lir_cond_aboveEqual: acond = Assembler::HS; break; 2932 default: ShouldNotReachHere(); 2933 } 2934 __ br(acond, ok); 2935 } 2936 if (op->halt()) { 2937 const char* str = __ code_string(op->msg()); 2938 __ stop(str); 2939 } else { 2940 breakpoint(); 2941 } 2942 __ bind(ok); 2943 } 2944 #endif 2945 2946 #ifndef PRODUCT 2947 #define COMMENT(x) do { __ block_comment(x); } while (0) 2948 #else 2949 #define COMMENT(x) 2950 #endif 2951 2952 void LIR_Assembler::membar() { 2953 COMMENT("membar"); 2954 __ membar(MacroAssembler::AnyAny); 2955 } 2956 2957 void LIR_Assembler::membar_acquire() { 2958 __ membar(Assembler::LoadLoad|Assembler::LoadStore); 2959 } 2960 2961 void LIR_Assembler::membar_release() { 2962 __ membar(Assembler::LoadStore|Assembler::StoreStore); 2963 } 2964 2965 void LIR_Assembler::membar_loadload() { 2966 __ membar(Assembler::LoadLoad); 2967 } 2968 2969 void LIR_Assembler::membar_storestore() { 2970 __ membar(MacroAssembler::StoreStore); 2971 } 2972 2973 void LIR_Assembler::membar_loadstore() { __ membar(MacroAssembler::LoadStore); } 2974 2975 void LIR_Assembler::membar_storeload() { __ membar(MacroAssembler::StoreLoad); } 2976 2977 void LIR_Assembler::on_spin_wait() { 2978 __ spin_wait(); 2979 } 2980 2981 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 2982 __ mov(result_reg->as_register(), rthread); 2983 } 2984 2985 2986 void LIR_Assembler::peephole(LIR_List *lir) { 2987 #if 0 2988 if (tableswitch_count >= max_tableswitches) 2989 return; 2990 2991 /* 2992 This finite-state automaton recognizes sequences of compare-and- 2993 branch instructions. We will turn them into a tableswitch. You 2994 could argue that C1 really shouldn't be doing this sort of 2995 optimization, but without it the code is really horrible. 2996 */ 2997 2998 enum { start_s, cmp1_s, beq_s, cmp_s } state; 2999 int first_key, last_key = -2147483648; 3000 int next_key = 0; 3001 int start_insn = -1; 3002 int last_insn = -1; 3003 Register reg = noreg; 3004 LIR_Opr reg_opr; 3005 state = start_s; 3006 3007 LIR_OpList* inst = lir->instructions_list(); 3008 for (int i = 0; i < inst->length(); i++) { 3009 LIR_Op* op = inst->at(i); 3010 switch (state) { 3011 case start_s: 3012 first_key = -1; 3013 start_insn = i; 3014 switch (op->code()) { 3015 case lir_cmp: 3016 LIR_Opr opr1 = op->as_Op2()->in_opr1(); 3017 LIR_Opr opr2 = op->as_Op2()->in_opr2(); 3018 if (opr1->is_cpu_register() && opr1->is_single_cpu() 3019 && opr2->is_constant() 3020 && opr2->type() == T_INT) { 3021 reg_opr = opr1; 3022 reg = opr1->as_register(); 3023 first_key = opr2->as_constant_ptr()->as_jint(); 3024 next_key = first_key + 1; 3025 state = cmp_s; 3026 goto next_state; 3027 } 3028 break; 3029 } 3030 break; 3031 case cmp_s: 3032 switch (op->code()) { 3033 case lir_branch: 3034 if (op->as_OpBranch()->cond() == lir_cond_equal) { 3035 state = beq_s; 3036 last_insn = i; 3037 goto next_state; 3038 } 3039 } 3040 state = start_s; 3041 break; 3042 case beq_s: 3043 switch (op->code()) { 3044 case lir_cmp: { 3045 LIR_Opr opr1 = op->as_Op2()->in_opr1(); 3046 LIR_Opr opr2 = op->as_Op2()->in_opr2(); 3047 if (opr1->is_cpu_register() && opr1->is_single_cpu() 3048 && opr1->as_register() == reg 3049 && opr2->is_constant() 3050 && opr2->type() == T_INT 3051 && opr2->as_constant_ptr()->as_jint() == next_key) { 3052 last_key = next_key; 3053 next_key++; 3054 state = cmp_s; 3055 goto next_state; 3056 } 3057 } 3058 } 3059 last_key = next_key; 3060 state = start_s; 3061 break; 3062 default: 3063 assert(false, "impossible state"); 3064 } 3065 if (state == start_s) { 3066 if (first_key < last_key - 5L && reg != noreg) { 3067 { 3068 // printf("found run register %d starting at insn %d low value %d high value %d\n", 3069 // reg->encoding(), 3070 // start_insn, first_key, last_key); 3071 // for (int i = 0; i < inst->length(); i++) { 3072 // inst->at(i)->print(); 3073 // tty->print("\n"); 3074 // } 3075 // tty->print("\n"); 3076 } 3077 3078 struct tableswitch *sw = &switches[tableswitch_count]; 3079 sw->_insn_index = start_insn, sw->_first_key = first_key, 3080 sw->_last_key = last_key, sw->_reg = reg; 3081 inst->insert_before(last_insn + 1, new LIR_OpLabel(&sw->_after)); 3082 { 3083 // Insert the new table of branches 3084 int offset = last_insn; 3085 for (int n = first_key; n < last_key; n++) { 3086 inst->insert_before 3087 (last_insn + 1, 3088 new LIR_OpBranch(lir_cond_always, T_ILLEGAL, 3089 inst->at(offset)->as_OpBranch()->label())); 3090 offset -= 2, i++; 3091 } 3092 } 3093 // Delete all the old compare-and-branch instructions 3094 for (int n = first_key; n < last_key; n++) { 3095 inst->remove_at(start_insn); 3096 inst->remove_at(start_insn); 3097 } 3098 // Insert the tableswitch instruction 3099 inst->insert_before(start_insn, 3100 new LIR_Op2(lir_cmp, lir_cond_always, 3101 LIR_OprFact::intConst(tableswitch_count), 3102 reg_opr)); 3103 inst->insert_before(start_insn + 1, new LIR_OpLabel(&sw->_branches)); 3104 tableswitch_count++; 3105 } 3106 reg = noreg; 3107 last_key = -2147483648; 3108 } 3109 next_state: 3110 ; 3111 } 3112 #endif 3113 } 3114 3115 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp_op) { 3116 Address addr = as_Address(src->as_address_ptr()); 3117 BasicType type = src->type(); 3118 bool is_oop = is_reference_type(type); 3119 3120 void (MacroAssembler::* add)(Register prev, RegisterOrConstant incr, Register addr); 3121 void (MacroAssembler::* xchg)(Register prev, Register newv, Register addr); 3122 3123 switch(type) { 3124 case T_INT: 3125 xchg = &MacroAssembler::atomic_xchgalw; 3126 add = &MacroAssembler::atomic_addalw; 3127 break; 3128 case T_LONG: 3129 xchg = &MacroAssembler::atomic_xchgal; 3130 add = &MacroAssembler::atomic_addal; 3131 break; 3132 case T_OBJECT: 3133 case T_ARRAY: 3134 if (UseCompressedOops) { 3135 xchg = &MacroAssembler::atomic_xchgalw; 3136 add = &MacroAssembler::atomic_addalw; 3137 } else { 3138 xchg = &MacroAssembler::atomic_xchgal; 3139 add = &MacroAssembler::atomic_addal; 3140 } 3141 break; 3142 default: 3143 ShouldNotReachHere(); 3144 xchg = &MacroAssembler::atomic_xchgal; 3145 add = &MacroAssembler::atomic_addal; // unreachable 3146 } 3147 3148 switch (code) { 3149 case lir_xadd: 3150 { 3151 RegisterOrConstant inc; 3152 Register tmp = as_reg(tmp_op); 3153 Register dst = as_reg(dest); 3154 if (data->is_constant()) { 3155 inc = RegisterOrConstant(as_long(data)); 3156 assert_different_registers(dst, addr.base(), tmp, 3157 rscratch1, rscratch2); 3158 } else { 3159 inc = RegisterOrConstant(as_reg(data)); 3160 assert_different_registers(inc.as_register(), dst, addr.base(), tmp, 3161 rscratch1, rscratch2); 3162 } 3163 __ lea(tmp, addr); 3164 (_masm->*add)(dst, inc, tmp); 3165 break; 3166 } 3167 case lir_xchg: 3168 { 3169 Register tmp = tmp_op->as_register(); 3170 Register obj = as_reg(data); 3171 Register dst = as_reg(dest); 3172 if (is_oop && UseCompressedOops) { 3173 __ encode_heap_oop(rscratch2, obj); 3174 obj = rscratch2; 3175 } 3176 assert_different_registers(obj, addr.base(), tmp, rscratch1); 3177 assert_different_registers(dst, addr.base(), tmp, rscratch1); 3178 __ lea(tmp, addr); 3179 (_masm->*xchg)(dst, obj, tmp); 3180 if (is_oop && UseCompressedOops) { 3181 __ decode_heap_oop(dst); 3182 } 3183 } 3184 break; 3185 default: 3186 ShouldNotReachHere(); 3187 } 3188 __ membar(__ AnyAny); 3189 } 3190 3191 #undef __