1 /* 2 * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/macroAssembler.inline.hpp" 27 #include "asm/assembler.hpp" 28 #include "c1/c1_CodeStubs.hpp" 29 #include "c1/c1_Compilation.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_MacroAssembler.hpp" 32 #include "c1/c1_Runtime1.hpp" 33 #include "c1/c1_ValueStack.hpp" 34 #include "ci/ciArrayKlass.hpp" 35 #include "ci/ciInstance.hpp" 36 #include "ci/ciUtilities.hpp" 37 #include "code/aotCodeCache.hpp" 38 #include "code/compiledIC.hpp" 39 #include "gc/shared/collectedHeap.hpp" 40 #include "gc/shared/gc_globals.hpp" 41 #include "nativeInst_aarch64.hpp" 42 #include "oops/objArrayKlass.hpp" 43 #include "runtime/frame.inline.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/stubRoutines.hpp" 46 #include "runtime/threadIdentifier.hpp" 47 #include "utilities/powerOfTwo.hpp" 48 #include "vmreg_aarch64.inline.hpp" 49 50 51 #ifndef PRODUCT 52 #define COMMENT(x) do { __ block_comment(x); } while (0) 53 #else 54 #define COMMENT(x) 55 #endif 56 57 NEEDS_CLEANUP // remove this definitions ? 58 const Register SYNC_header = r0; // synchronization header 59 const Register SHIFT_count = r0; // where count for shift operations must be 60 61 #define __ _masm-> 62 63 64 static void select_different_registers(Register preserve, 65 Register extra, 66 Register &tmp1, 67 Register &tmp2) { 68 if (tmp1 == preserve) { 69 assert_different_registers(tmp1, tmp2, extra); 70 tmp1 = extra; 71 } else if (tmp2 == preserve) { 72 assert_different_registers(tmp1, tmp2, extra); 73 tmp2 = extra; 74 } 75 assert_different_registers(preserve, tmp1, tmp2); 76 } 77 78 79 80 static void select_different_registers(Register preserve, 81 Register extra, 82 Register &tmp1, 83 Register &tmp2, 84 Register &tmp3) { 85 if (tmp1 == preserve) { 86 assert_different_registers(tmp1, tmp2, tmp3, extra); 87 tmp1 = extra; 88 } else if (tmp2 == preserve) { 89 assert_different_registers(tmp1, tmp2, tmp3, extra); 90 tmp2 = extra; 91 } else if (tmp3 == preserve) { 92 assert_different_registers(tmp1, tmp2, tmp3, extra); 93 tmp3 = extra; 94 } 95 assert_different_registers(preserve, tmp1, tmp2, tmp3); 96 } 97 98 99 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { Unimplemented(); return false; } 100 101 102 LIR_Opr LIR_Assembler::receiverOpr() { 103 return FrameMap::receiver_opr; 104 } 105 106 LIR_Opr LIR_Assembler::osrBufferPointer() { 107 return FrameMap::as_pointer_opr(receiverOpr()->as_register()); 108 } 109 110 //--------------fpu register translations----------------------- 111 112 113 address LIR_Assembler::float_constant(float f) { 114 address const_addr = __ float_constant(f); 115 if (const_addr == nullptr) { 116 bailout("const section overflow"); 117 return __ code()->consts()->start(); 118 } else { 119 return const_addr; 120 } 121 } 122 123 124 address LIR_Assembler::double_constant(double d) { 125 address const_addr = __ double_constant(d); 126 if (const_addr == nullptr) { 127 bailout("const section overflow"); 128 return __ code()->consts()->start(); 129 } else { 130 return const_addr; 131 } 132 } 133 134 address LIR_Assembler::int_constant(jlong n) { 135 address const_addr = __ long_constant(n); 136 if (const_addr == nullptr) { 137 bailout("const section overflow"); 138 return __ code()->consts()->start(); 139 } else { 140 return const_addr; 141 } 142 } 143 144 void LIR_Assembler::breakpoint() { Unimplemented(); } 145 146 void LIR_Assembler::push(LIR_Opr opr) { Unimplemented(); } 147 148 void LIR_Assembler::pop(LIR_Opr opr) { Unimplemented(); } 149 150 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { Unimplemented(); return false; } 151 //------------------------------------------- 152 153 static Register as_reg(LIR_Opr op) { 154 return op->is_double_cpu() ? op->as_register_lo() : op->as_register(); 155 } 156 157 static jlong as_long(LIR_Opr data) { 158 jlong result; 159 switch (data->type()) { 160 case T_INT: 161 result = (data->as_jint()); 162 break; 163 case T_LONG: 164 result = (data->as_jlong()); 165 break; 166 default: 167 ShouldNotReachHere(); 168 result = 0; // unreachable 169 } 170 return result; 171 } 172 173 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) { 174 Register base = addr->base()->as_pointer_register(); 175 LIR_Opr opr = addr->index(); 176 if (opr->is_cpu_register()) { 177 Register index; 178 if (opr->is_single_cpu()) 179 index = opr->as_register(); 180 else 181 index = opr->as_register_lo(); 182 assert(addr->disp() == 0, "must be"); 183 switch(opr->type()) { 184 case T_INT: 185 return Address(base, index, Address::sxtw(addr->scale())); 186 case T_LONG: 187 return Address(base, index, Address::lsl(addr->scale())); 188 default: 189 ShouldNotReachHere(); 190 } 191 } else { 192 assert(addr->scale() == 0, 193 "expected for immediate operand, was: %d", addr->scale()); 194 ptrdiff_t offset = ptrdiff_t(addr->disp()); 195 // NOTE: Does not handle any 16 byte vector access. 196 const uint type_size = type2aelembytes(addr->type(), true); 197 return __ legitimize_address(Address(base, offset), type_size, tmp); 198 } 199 return Address(); 200 } 201 202 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 203 ShouldNotReachHere(); 204 return Address(); 205 } 206 207 Address LIR_Assembler::as_Address(LIR_Address* addr) { 208 return as_Address(addr, rscratch1); 209 } 210 211 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 212 return as_Address(addr, rscratch1); // Ouch 213 // FIXME: This needs to be much more clever. See x86. 214 } 215 216 // Ensure a valid Address (base + offset) to a stack-slot. If stack access is 217 // not encodable as a base + (immediate) offset, generate an explicit address 218 // calculation to hold the address in a temporary register. 219 Address LIR_Assembler::stack_slot_address(int index, uint size, Register tmp, int adjust) { 220 precond(size == 4 || size == 8); 221 Address addr = frame_map()->address_for_slot(index, adjust); 222 precond(addr.getMode() == Address::base_plus_offset); 223 precond(addr.base() == sp); 224 precond(addr.offset() > 0); 225 uint mask = size - 1; 226 assert((addr.offset() & mask) == 0, "scaled offsets only"); 227 return __ legitimize_address(addr, size, tmp); 228 } 229 230 void LIR_Assembler::osr_entry() { 231 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 232 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 233 ValueStack* entry_state = osr_entry->state(); 234 int number_of_locks = entry_state->locks_size(); 235 236 // we jump here if osr happens with the interpreter 237 // state set up to continue at the beginning of the 238 // loop that triggered osr - in particular, we have 239 // the following registers setup: 240 // 241 // r2: osr buffer 242 // 243 244 // build frame 245 ciMethod* m = compilation()->method(); 246 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 247 248 // OSR buffer is 249 // 250 // locals[nlocals-1..0] 251 // monitors[0..number_of_locks] 252 // 253 // locals is a direct copy of the interpreter frame so in the osr buffer 254 // so first slot in the local array is the last local from the interpreter 255 // and last slot is local[0] (receiver) from the interpreter 256 // 257 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 258 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 259 // in the interpreter frame (the method lock if a sync method) 260 261 // Initialize monitors in the compiled activation. 262 // r2: pointer to osr buffer 263 // 264 // All other registers are dead at this point and the locals will be 265 // copied into place by code emitted in the IR. 266 267 Register OSR_buf = osrBufferPointer()->as_pointer_register(); 268 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 269 int monitor_offset = BytesPerWord * method()->max_locals() + 270 (2 * BytesPerWord) * (number_of_locks - 1); 271 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 272 // the OSR buffer using 2 word entries: first the lock and then 273 // the oop. 274 for (int i = 0; i < number_of_locks; i++) { 275 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 276 #ifdef ASSERT 277 // verify the interpreter's monitor has a non-null object 278 { 279 Label L; 280 __ ldr(rscratch1, __ form_address(rscratch1, OSR_buf, slot_offset + 1*BytesPerWord, 0)); 281 __ cbnz(rscratch1, L); 282 __ stop("locked object is null"); 283 __ bind(L); 284 } 285 #endif 286 __ ldr(r19, __ form_address(rscratch1, OSR_buf, slot_offset, 0)); 287 __ ldr(r20, __ form_address(rscratch1, OSR_buf, slot_offset + BytesPerWord, 0)); 288 __ str(r19, frame_map()->address_for_monitor_lock(i)); 289 __ str(r20, frame_map()->address_for_monitor_object(i)); 290 } 291 } 292 } 293 294 295 // inline cache check; done before the frame is built. 296 int LIR_Assembler::check_icache() { 297 return __ ic_check(CodeEntryAlignment); 298 } 299 300 void LIR_Assembler::clinit_barrier(ciMethod* method) { 301 assert(VM_Version::supports_fast_class_init_checks(), "sanity"); 302 assert(!method->holder()->is_not_initialized(), "initialization should have been started"); 303 304 Label L_skip_barrier; 305 306 __ mov_metadata(rscratch2, method->holder()->constant_encoding()); 307 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier /*L_fast_path*/); 308 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 309 __ bind(L_skip_barrier); 310 } 311 312 void LIR_Assembler::jobject2reg(jobject o, Register reg) { 313 if (o == nullptr) { 314 __ mov(reg, zr); 315 } else { 316 __ movoop(reg, o); 317 } 318 } 319 320 void LIR_Assembler::deoptimize_trap(CodeEmitInfo *info) { 321 address target = nullptr; 322 relocInfo::relocType reloc_type = relocInfo::none; 323 324 switch (patching_id(info)) { 325 case PatchingStub::access_field_id: 326 target = Runtime1::entry_for(StubId::c1_access_field_patching_id); 327 reloc_type = relocInfo::section_word_type; 328 break; 329 case PatchingStub::load_klass_id: 330 target = Runtime1::entry_for(StubId::c1_load_klass_patching_id); 331 reloc_type = relocInfo::metadata_type; 332 break; 333 case PatchingStub::load_mirror_id: 334 target = Runtime1::entry_for(StubId::c1_load_mirror_patching_id); 335 reloc_type = relocInfo::oop_type; 336 break; 337 case PatchingStub::load_appendix_id: 338 target = Runtime1::entry_for(StubId::c1_load_appendix_patching_id); 339 reloc_type = relocInfo::oop_type; 340 break; 341 default: ShouldNotReachHere(); 342 } 343 344 __ far_call(RuntimeAddress(target)); 345 add_call_info_here(info); 346 } 347 348 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) { 349 deoptimize_trap(info); 350 } 351 352 353 // This specifies the rsp decrement needed to build the frame 354 int LIR_Assembler::initial_frame_size_in_bytes() const { 355 // if rounding, must let FrameMap know! 356 357 return in_bytes(frame_map()->framesize_in_bytes()); 358 } 359 360 361 int LIR_Assembler::emit_exception_handler() { 362 // generate code for exception handler 363 address handler_base = __ start_a_stub(exception_handler_size()); 364 if (handler_base == nullptr) { 365 // not enough space left for the handler 366 bailout("exception handler overflow"); 367 return -1; 368 } 369 370 int offset = code_offset(); 371 372 // the exception oop and pc are in r0, and r3 373 // no other registers need to be preserved, so invalidate them 374 __ invalidate_registers(false, true, true, false, true, true); 375 376 // check that there is really an exception 377 __ verify_not_null_oop(r0); 378 379 // search an exception handler (r0: exception oop, r3: throwing pc) 380 __ far_call(RuntimeAddress(Runtime1::entry_for(StubId::c1_handle_exception_from_callee_id))); 381 __ should_not_reach_here(); 382 guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); 383 __ end_a_stub(); 384 385 return offset; 386 } 387 388 389 // Emit the code to remove the frame from the stack in the exception 390 // unwind path. 391 int LIR_Assembler::emit_unwind_handler() { 392 #ifndef PRODUCT 393 if (CommentedAssembly) { 394 _masm->block_comment("Unwind handler"); 395 } 396 #endif 397 398 int offset = code_offset(); 399 400 // Fetch the exception from TLS and clear out exception related thread state 401 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 402 __ str(zr, Address(rthread, JavaThread::exception_oop_offset())); 403 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 404 405 __ bind(_unwind_handler_entry); 406 __ verify_not_null_oop(r0); 407 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 408 __ mov(r19, r0); // Preserve the exception 409 } 410 411 // Perform needed unlocking 412 MonitorExitStub* stub = nullptr; 413 if (method()->is_synchronized()) { 414 monitor_address(0, FrameMap::r0_opr); 415 stub = new MonitorExitStub(FrameMap::r0_opr, true, 0); 416 __ unlock_object(r5, r4, r0, r6, *stub->entry()); 417 __ bind(*stub->continuation()); 418 } 419 420 if (compilation()->env()->dtrace_method_probes()) { 421 __ mov(c_rarg0, rthread); 422 __ mov_metadata(c_rarg1, method()->constant_encoding()); 423 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), c_rarg0, c_rarg1); 424 } 425 426 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 427 __ mov(r0, r19); // Restore the exception 428 } 429 430 // remove the activation and dispatch to the unwind handler 431 __ block_comment("remove_frame and dispatch to the unwind handler"); 432 __ remove_frame(initial_frame_size_in_bytes()); 433 __ far_jump(RuntimeAddress(Runtime1::entry_for(StubId::c1_unwind_exception_id))); 434 435 // Emit the slow path assembly 436 if (stub != nullptr) { 437 stub->emit_code(this); 438 } 439 440 return offset; 441 } 442 443 444 int LIR_Assembler::emit_deopt_handler() { 445 // generate code for exception handler 446 address handler_base = __ start_a_stub(deopt_handler_size()); 447 if (handler_base == nullptr) { 448 // not enough space left for the handler 449 bailout("deopt handler overflow"); 450 return -1; 451 } 452 453 int offset = code_offset(); 454 455 __ adr(lr, pc()); 456 __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); 457 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); 458 __ end_a_stub(); 459 460 return offset; 461 } 462 463 void LIR_Assembler::add_debug_info_for_branch(address adr, CodeEmitInfo* info) { 464 _masm->code_section()->relocate(adr, relocInfo::poll_type); 465 int pc_offset = code_offset(); 466 flush_debug_info(pc_offset); 467 info->record_debug_info(compilation()->debug_info_recorder(), pc_offset); 468 if (info->exception_handlers() != nullptr) { 469 compilation()->add_exception_handlers_for_pco(pc_offset, info->exception_handlers()); 470 } 471 } 472 473 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 474 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == r0, "word returns are in r0,"); 475 476 // Pop the stack before the safepoint code 477 __ remove_frame(initial_frame_size_in_bytes()); 478 479 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { 480 __ reserved_stack_check(); 481 } 482 483 code_stub->set_safepoint_offset(__ offset()); 484 __ relocate(relocInfo::poll_return_type); 485 __ safepoint_poll(*code_stub->entry(), true /* at_return */, true /* in_nmethod */); 486 __ ret(lr); 487 } 488 489 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 490 guarantee(info != nullptr, "Shouldn't be null"); 491 __ get_polling_page(rscratch1, relocInfo::poll_type); 492 add_debug_info_for_branch(info); // This isn't just debug info: 493 // it's the oop map 494 __ read_polling_page(rscratch1, relocInfo::poll_type); 495 return __ offset(); 496 } 497 498 499 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { 500 if (from_reg == r31_sp) 501 from_reg = sp; 502 if (to_reg == r31_sp) 503 to_reg = sp; 504 __ mov(to_reg, from_reg); 505 } 506 507 void LIR_Assembler::swap_reg(Register a, Register b) { Unimplemented(); } 508 509 510 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 511 assert(src->is_constant(), "should not call otherwise"); 512 assert(dest->is_register(), "should not call otherwise"); 513 LIR_Const* c = src->as_constant_ptr(); 514 515 switch (c->type()) { 516 case T_INT: { 517 assert(patch_code == lir_patch_none, "no patching handled here"); 518 __ movw(dest->as_register(), c->as_jint()); 519 break; 520 } 521 522 case T_ADDRESS: { 523 assert(patch_code == lir_patch_none, "no patching handled here"); 524 __ mov(dest->as_register(), c->as_jint()); 525 break; 526 } 527 528 case T_LONG: { 529 assert(patch_code == lir_patch_none, "no patching handled here"); 530 #if INCLUDE_CDS 531 if (AOTCodeCache::is_on_for_dump()) { 532 address b = c->as_pointer(); 533 if (b == (address)ThreadIdentifier::unsafe_offset()) { 534 __ lea(dest->as_register_lo(), ExternalAddress(b)); 535 break; 536 } 537 if (AOTRuntimeConstants::contains(b)) { 538 __ load_aotrc_address(dest->as_register_lo(), b); 539 break; 540 } 541 } 542 #endif 543 __ mov(dest->as_register_lo(), (intptr_t)c->as_jlong()); 544 break; 545 } 546 547 case T_OBJECT: { 548 if (patch_code == lir_patch_none) { 549 jobject2reg(c->as_jobject(), dest->as_register()); 550 } else { 551 jobject2reg_with_patching(dest->as_register(), info); 552 } 553 break; 554 } 555 556 case T_METADATA: { 557 if (patch_code != lir_patch_none) { 558 klass2reg_with_patching(dest->as_register(), info); 559 } else { 560 __ mov_metadata(dest->as_register(), c->as_metadata()); 561 } 562 break; 563 } 564 565 case T_FLOAT: { 566 if (__ operand_valid_for_float_immediate(c->as_jfloat())) { 567 __ fmovs(dest->as_float_reg(), (c->as_jfloat())); 568 } else { 569 __ adr(rscratch1, InternalAddress(float_constant(c->as_jfloat()))); 570 __ ldrs(dest->as_float_reg(), Address(rscratch1)); 571 } 572 break; 573 } 574 575 case T_DOUBLE: { 576 if (__ operand_valid_for_float_immediate(c->as_jdouble())) { 577 __ fmovd(dest->as_double_reg(), (c->as_jdouble())); 578 } else { 579 __ adr(rscratch1, InternalAddress(double_constant(c->as_jdouble()))); 580 __ ldrd(dest->as_double_reg(), Address(rscratch1)); 581 } 582 break; 583 } 584 585 default: 586 ShouldNotReachHere(); 587 } 588 } 589 590 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 591 LIR_Const* c = src->as_constant_ptr(); 592 switch (c->type()) { 593 case T_OBJECT: 594 { 595 if (! c->as_jobject()) 596 __ str(zr, frame_map()->address_for_slot(dest->single_stack_ix())); 597 else { 598 const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr); 599 reg2stack(FrameMap::rscratch1_opr, dest, c->type()); 600 } 601 } 602 break; 603 case T_ADDRESS: 604 { 605 const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr); 606 reg2stack(FrameMap::rscratch1_opr, dest, c->type()); 607 } 608 case T_INT: 609 case T_FLOAT: 610 { 611 Register reg = zr; 612 if (c->as_jint_bits() == 0) 613 __ strw(zr, frame_map()->address_for_slot(dest->single_stack_ix())); 614 else { 615 __ movw(rscratch1, c->as_jint_bits()); 616 __ strw(rscratch1, frame_map()->address_for_slot(dest->single_stack_ix())); 617 } 618 } 619 break; 620 case T_LONG: 621 case T_DOUBLE: 622 { 623 Register reg = zr; 624 if (c->as_jlong_bits() == 0) 625 __ str(zr, frame_map()->address_for_slot(dest->double_stack_ix(), 626 lo_word_offset_in_bytes)); 627 else { 628 __ mov(rscratch1, (intptr_t)c->as_jlong_bits()); 629 __ str(rscratch1, frame_map()->address_for_slot(dest->double_stack_ix(), 630 lo_word_offset_in_bytes)); 631 } 632 } 633 break; 634 default: 635 ShouldNotReachHere(); 636 } 637 } 638 639 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 640 assert(src->is_constant(), "should not call otherwise"); 641 LIR_Const* c = src->as_constant_ptr(); 642 LIR_Address* to_addr = dest->as_address_ptr(); 643 644 void (Assembler::* insn)(Register Rt, const Address &adr); 645 646 switch (type) { 647 case T_ADDRESS: 648 assert(c->as_jint() == 0, "should be"); 649 insn = &Assembler::str; 650 break; 651 case T_LONG: 652 assert(c->as_jlong() == 0, "should be"); 653 insn = &Assembler::str; 654 break; 655 case T_INT: 656 assert(c->as_jint() == 0, "should be"); 657 insn = &Assembler::strw; 658 break; 659 case T_OBJECT: 660 case T_ARRAY: 661 assert(c->as_jobject() == nullptr, "should be"); 662 if (UseCompressedOops && !wide) { 663 insn = &Assembler::strw; 664 } else { 665 insn = &Assembler::str; 666 } 667 break; 668 case T_CHAR: 669 case T_SHORT: 670 assert(c->as_jint() == 0, "should be"); 671 insn = &Assembler::strh; 672 break; 673 case T_BOOLEAN: 674 case T_BYTE: 675 assert(c->as_jint() == 0, "should be"); 676 insn = &Assembler::strb; 677 break; 678 default: 679 ShouldNotReachHere(); 680 insn = &Assembler::str; // unreachable 681 } 682 683 if (info) add_debug_info_for_null_check_here(info); 684 (_masm->*insn)(zr, as_Address(to_addr, rscratch1)); 685 } 686 687 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) { 688 assert(src->is_register(), "should not call otherwise"); 689 assert(dest->is_register(), "should not call otherwise"); 690 691 // move between cpu-registers 692 if (dest->is_single_cpu()) { 693 if (src->type() == T_LONG) { 694 // Can do LONG -> OBJECT 695 move_regs(src->as_register_lo(), dest->as_register()); 696 return; 697 } 698 assert(src->is_single_cpu(), "must match"); 699 if (src->type() == T_OBJECT) { 700 __ verify_oop(src->as_register()); 701 } 702 move_regs(src->as_register(), dest->as_register()); 703 704 } else if (dest->is_double_cpu()) { 705 if (is_reference_type(src->type())) { 706 // Surprising to me but we can see move of a long to t_object 707 __ verify_oop(src->as_register()); 708 move_regs(src->as_register(), dest->as_register_lo()); 709 return; 710 } 711 assert(src->is_double_cpu(), "must match"); 712 Register f_lo = src->as_register_lo(); 713 Register f_hi = src->as_register_hi(); 714 Register t_lo = dest->as_register_lo(); 715 Register t_hi = dest->as_register_hi(); 716 assert(f_hi == f_lo, "must be same"); 717 assert(t_hi == t_lo, "must be same"); 718 move_regs(f_lo, t_lo); 719 720 } else if (dest->is_single_fpu()) { 721 __ fmovs(dest->as_float_reg(), src->as_float_reg()); 722 723 } else if (dest->is_double_fpu()) { 724 __ fmovd(dest->as_double_reg(), src->as_double_reg()); 725 726 } else { 727 ShouldNotReachHere(); 728 } 729 } 730 731 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 732 precond(src->is_register() && dest->is_stack()); 733 734 uint const c_sz32 = sizeof(uint32_t); 735 uint const c_sz64 = sizeof(uint64_t); 736 737 if (src->is_single_cpu()) { 738 int index = dest->single_stack_ix(); 739 if (is_reference_type(type)) { 740 __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 741 __ verify_oop(src->as_register()); 742 } else if (type == T_METADATA || type == T_DOUBLE || type == T_ADDRESS) { 743 __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 744 } else { 745 __ strw(src->as_register(), stack_slot_address(index, c_sz32, rscratch1)); 746 } 747 748 } else if (src->is_double_cpu()) { 749 int index = dest->double_stack_ix(); 750 Address dest_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes); 751 __ str(src->as_register_lo(), dest_addr_LO); 752 753 } else if (src->is_single_fpu()) { 754 int index = dest->single_stack_ix(); 755 __ strs(src->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1)); 756 757 } else if (src->is_double_fpu()) { 758 int index = dest->double_stack_ix(); 759 __ strd(src->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1)); 760 761 } else { 762 ShouldNotReachHere(); 763 } 764 } 765 766 767 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 768 LIR_Address* to_addr = dest->as_address_ptr(); 769 PatchingStub* patch = nullptr; 770 Register compressed_src = rscratch1; 771 772 if (patch_code != lir_patch_none) { 773 deoptimize_trap(info); 774 return; 775 } 776 777 if (is_reference_type(type)) { 778 __ verify_oop(src->as_register()); 779 780 if (UseCompressedOops && !wide) { 781 __ encode_heap_oop(compressed_src, src->as_register()); 782 } else { 783 compressed_src = src->as_register(); 784 } 785 } 786 787 int null_check_here = code_offset(); 788 switch (type) { 789 case T_FLOAT: { 790 __ strs(src->as_float_reg(), as_Address(to_addr)); 791 break; 792 } 793 794 case T_DOUBLE: { 795 __ strd(src->as_double_reg(), as_Address(to_addr)); 796 break; 797 } 798 799 case T_ARRAY: // fall through 800 case T_OBJECT: // fall through 801 if (UseCompressedOops && !wide) { 802 __ strw(compressed_src, as_Address(to_addr, rscratch2)); 803 } else { 804 __ str(compressed_src, as_Address(to_addr)); 805 } 806 break; 807 case T_METADATA: 808 // We get here to store a method pointer to the stack to pass to 809 // a dtrace runtime call. This can't work on 64 bit with 810 // compressed klass ptrs: T_METADATA can be a compressed klass 811 // ptr or a 64 bit method pointer. 812 ShouldNotReachHere(); 813 __ str(src->as_register(), as_Address(to_addr)); 814 break; 815 case T_ADDRESS: 816 __ str(src->as_register(), as_Address(to_addr)); 817 break; 818 case T_INT: 819 __ strw(src->as_register(), as_Address(to_addr)); 820 break; 821 822 case T_LONG: { 823 __ str(src->as_register_lo(), as_Address_lo(to_addr)); 824 break; 825 } 826 827 case T_BYTE: // fall through 828 case T_BOOLEAN: { 829 __ strb(src->as_register(), as_Address(to_addr)); 830 break; 831 } 832 833 case T_CHAR: // fall through 834 case T_SHORT: 835 __ strh(src->as_register(), as_Address(to_addr)); 836 break; 837 838 default: 839 ShouldNotReachHere(); 840 } 841 if (info != nullptr) { 842 add_debug_info_for_null_check(null_check_here, info); 843 } 844 } 845 846 847 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 848 precond(src->is_stack() && dest->is_register()); 849 850 uint const c_sz32 = sizeof(uint32_t); 851 uint const c_sz64 = sizeof(uint64_t); 852 853 if (dest->is_single_cpu()) { 854 int index = src->single_stack_ix(); 855 if (is_reference_type(type)) { 856 __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 857 __ verify_oop(dest->as_register()); 858 } else if (type == T_METADATA || type == T_ADDRESS) { 859 __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 860 } else { 861 __ ldrw(dest->as_register(), stack_slot_address(index, c_sz32, rscratch1)); 862 } 863 864 } else if (dest->is_double_cpu()) { 865 int index = src->double_stack_ix(); 866 Address src_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes); 867 __ ldr(dest->as_register_lo(), src_addr_LO); 868 869 } else if (dest->is_single_fpu()) { 870 int index = src->single_stack_ix(); 871 __ ldrs(dest->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1)); 872 873 } else if (dest->is_double_fpu()) { 874 int index = src->double_stack_ix(); 875 __ ldrd(dest->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1)); 876 877 } else { 878 ShouldNotReachHere(); 879 } 880 } 881 882 883 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) { 884 address target = nullptr; 885 relocInfo::relocType reloc_type = relocInfo::none; 886 887 switch (patching_id(info)) { 888 case PatchingStub::access_field_id: 889 target = Runtime1::entry_for(StubId::c1_access_field_patching_id); 890 reloc_type = relocInfo::section_word_type; 891 break; 892 case PatchingStub::load_klass_id: 893 target = Runtime1::entry_for(StubId::c1_load_klass_patching_id); 894 reloc_type = relocInfo::metadata_type; 895 break; 896 case PatchingStub::load_mirror_id: 897 target = Runtime1::entry_for(StubId::c1_load_mirror_patching_id); 898 reloc_type = relocInfo::oop_type; 899 break; 900 case PatchingStub::load_appendix_id: 901 target = Runtime1::entry_for(StubId::c1_load_appendix_patching_id); 902 reloc_type = relocInfo::oop_type; 903 break; 904 default: ShouldNotReachHere(); 905 } 906 907 __ far_call(RuntimeAddress(target)); 908 add_call_info_here(info); 909 } 910 911 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 912 913 LIR_Opr temp; 914 if (type == T_LONG || type == T_DOUBLE) 915 temp = FrameMap::rscratch1_long_opr; 916 else 917 temp = FrameMap::rscratch1_opr; 918 919 stack2reg(src, temp, src->type()); 920 reg2stack(temp, dest, dest->type()); 921 } 922 923 924 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 925 LIR_Address* addr = src->as_address_ptr(); 926 LIR_Address* from_addr = src->as_address_ptr(); 927 928 if (addr->base()->type() == T_OBJECT) { 929 __ verify_oop(addr->base()->as_pointer_register()); 930 } 931 932 if (patch_code != lir_patch_none) { 933 deoptimize_trap(info); 934 return; 935 } 936 937 if (info != nullptr) { 938 add_debug_info_for_null_check_here(info); 939 } 940 int null_check_here = code_offset(); 941 switch (type) { 942 case T_FLOAT: { 943 __ ldrs(dest->as_float_reg(), as_Address(from_addr)); 944 break; 945 } 946 947 case T_DOUBLE: { 948 __ ldrd(dest->as_double_reg(), as_Address(from_addr)); 949 break; 950 } 951 952 case T_ARRAY: // fall through 953 case T_OBJECT: // fall through 954 if (UseCompressedOops && !wide) { 955 __ ldrw(dest->as_register(), as_Address(from_addr)); 956 } else { 957 __ ldr(dest->as_register(), as_Address(from_addr)); 958 } 959 break; 960 case T_METADATA: 961 // We get here to store a method pointer to the stack to pass to 962 // a dtrace runtime call. This can't work on 64 bit with 963 // compressed klass ptrs: T_METADATA can be a compressed klass 964 // ptr or a 64 bit method pointer. 965 ShouldNotReachHere(); 966 __ ldr(dest->as_register(), as_Address(from_addr)); 967 break; 968 case T_ADDRESS: 969 __ ldr(dest->as_register(), as_Address(from_addr)); 970 break; 971 case T_INT: 972 __ ldrw(dest->as_register(), as_Address(from_addr)); 973 break; 974 975 case T_LONG: { 976 __ ldr(dest->as_register_lo(), as_Address_lo(from_addr)); 977 break; 978 } 979 980 case T_BYTE: 981 __ ldrsb(dest->as_register(), as_Address(from_addr)); 982 break; 983 case T_BOOLEAN: { 984 __ ldrb(dest->as_register(), as_Address(from_addr)); 985 break; 986 } 987 988 case T_CHAR: 989 __ ldrh(dest->as_register(), as_Address(from_addr)); 990 break; 991 case T_SHORT: 992 __ ldrsh(dest->as_register(), as_Address(from_addr)); 993 break; 994 995 default: 996 ShouldNotReachHere(); 997 } 998 999 if (is_reference_type(type)) { 1000 if (UseCompressedOops && !wide) { 1001 __ decode_heap_oop(dest->as_register()); 1002 } 1003 1004 __ verify_oop(dest->as_register()); 1005 } 1006 } 1007 1008 1009 int LIR_Assembler::array_element_size(BasicType type) const { 1010 int elem_size = type2aelembytes(type); 1011 return exact_log2(elem_size); 1012 } 1013 1014 1015 void LIR_Assembler::emit_op3(LIR_Op3* op) { 1016 switch (op->code()) { 1017 case lir_idiv: 1018 case lir_irem: 1019 arithmetic_idiv(op->code(), 1020 op->in_opr1(), 1021 op->in_opr2(), 1022 op->in_opr3(), 1023 op->result_opr(), 1024 op->info()); 1025 break; 1026 case lir_fmad: 1027 __ fmaddd(op->result_opr()->as_double_reg(), 1028 op->in_opr1()->as_double_reg(), 1029 op->in_opr2()->as_double_reg(), 1030 op->in_opr3()->as_double_reg()); 1031 break; 1032 case lir_fmaf: 1033 __ fmadds(op->result_opr()->as_float_reg(), 1034 op->in_opr1()->as_float_reg(), 1035 op->in_opr2()->as_float_reg(), 1036 op->in_opr3()->as_float_reg()); 1037 break; 1038 default: ShouldNotReachHere(); break; 1039 } 1040 } 1041 1042 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 1043 #ifdef ASSERT 1044 assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label"); 1045 if (op->block() != nullptr) _branch_target_blocks.append(op->block()); 1046 if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock()); 1047 #endif 1048 1049 if (op->cond() == lir_cond_always) { 1050 if (op->info() != nullptr) add_debug_info_for_branch(op->info()); 1051 __ b(*(op->label())); 1052 } else { 1053 Assembler::Condition acond; 1054 if (op->code() == lir_cond_float_branch) { 1055 bool is_unordered = (op->ublock() == op->block()); 1056 // Assembler::EQ does not permit unordered branches, so we add 1057 // another branch here. Likewise, Assembler::NE does not permit 1058 // ordered branches. 1059 if ((is_unordered && op->cond() == lir_cond_equal) 1060 || (!is_unordered && op->cond() == lir_cond_notEqual)) 1061 __ br(Assembler::VS, *(op->ublock()->label())); 1062 switch(op->cond()) { 1063 case lir_cond_equal: acond = Assembler::EQ; break; 1064 case lir_cond_notEqual: acond = Assembler::NE; break; 1065 case lir_cond_less: acond = (is_unordered ? Assembler::LT : Assembler::LO); break; 1066 case lir_cond_lessEqual: acond = (is_unordered ? Assembler::LE : Assembler::LS); break; 1067 case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::HS : Assembler::GE); break; 1068 case lir_cond_greater: acond = (is_unordered ? Assembler::HI : Assembler::GT); break; 1069 default: ShouldNotReachHere(); 1070 acond = Assembler::EQ; // unreachable 1071 } 1072 } else { 1073 switch (op->cond()) { 1074 case lir_cond_equal: acond = Assembler::EQ; break; 1075 case lir_cond_notEqual: acond = Assembler::NE; break; 1076 case lir_cond_less: acond = Assembler::LT; break; 1077 case lir_cond_lessEqual: acond = Assembler::LE; break; 1078 case lir_cond_greaterEqual: acond = Assembler::GE; break; 1079 case lir_cond_greater: acond = Assembler::GT; break; 1080 case lir_cond_belowEqual: acond = Assembler::LS; break; 1081 case lir_cond_aboveEqual: acond = Assembler::HS; break; 1082 default: ShouldNotReachHere(); 1083 acond = Assembler::EQ; // unreachable 1084 } 1085 } 1086 __ br(acond,*(op->label())); 1087 } 1088 } 1089 1090 1091 1092 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 1093 LIR_Opr src = op->in_opr(); 1094 LIR_Opr dest = op->result_opr(); 1095 1096 switch (op->bytecode()) { 1097 case Bytecodes::_i2f: 1098 { 1099 __ scvtfws(dest->as_float_reg(), src->as_register()); 1100 break; 1101 } 1102 case Bytecodes::_i2d: 1103 { 1104 __ scvtfwd(dest->as_double_reg(), src->as_register()); 1105 break; 1106 } 1107 case Bytecodes::_l2d: 1108 { 1109 __ scvtfd(dest->as_double_reg(), src->as_register_lo()); 1110 break; 1111 } 1112 case Bytecodes::_l2f: 1113 { 1114 __ scvtfs(dest->as_float_reg(), src->as_register_lo()); 1115 break; 1116 } 1117 case Bytecodes::_f2d: 1118 { 1119 __ fcvts(dest->as_double_reg(), src->as_float_reg()); 1120 break; 1121 } 1122 case Bytecodes::_d2f: 1123 { 1124 __ fcvtd(dest->as_float_reg(), src->as_double_reg()); 1125 break; 1126 } 1127 case Bytecodes::_i2c: 1128 { 1129 __ ubfx(dest->as_register(), src->as_register(), 0, 16); 1130 break; 1131 } 1132 case Bytecodes::_i2l: 1133 { 1134 __ sxtw(dest->as_register_lo(), src->as_register()); 1135 break; 1136 } 1137 case Bytecodes::_i2s: 1138 { 1139 __ sxth(dest->as_register(), src->as_register()); 1140 break; 1141 } 1142 case Bytecodes::_i2b: 1143 { 1144 __ sxtb(dest->as_register(), src->as_register()); 1145 break; 1146 } 1147 case Bytecodes::_l2i: 1148 { 1149 _masm->block_comment("FIXME: This could be a no-op"); 1150 __ uxtw(dest->as_register(), src->as_register_lo()); 1151 break; 1152 } 1153 case Bytecodes::_d2l: 1154 { 1155 __ fcvtzd(dest->as_register_lo(), src->as_double_reg()); 1156 break; 1157 } 1158 case Bytecodes::_f2i: 1159 { 1160 __ fcvtzsw(dest->as_register(), src->as_float_reg()); 1161 break; 1162 } 1163 case Bytecodes::_f2l: 1164 { 1165 __ fcvtzs(dest->as_register_lo(), src->as_float_reg()); 1166 break; 1167 } 1168 case Bytecodes::_d2i: 1169 { 1170 __ fcvtzdw(dest->as_register(), src->as_double_reg()); 1171 break; 1172 } 1173 default: ShouldNotReachHere(); 1174 } 1175 } 1176 1177 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 1178 if (op->init_check()) { 1179 __ lea(rscratch1, Address(op->klass()->as_register(), InstanceKlass::init_state_offset())); 1180 __ ldarb(rscratch1, rscratch1); 1181 __ cmpw(rscratch1, InstanceKlass::fully_initialized); 1182 add_debug_info_for_null_check_here(op->stub()->info()); 1183 __ br(Assembler::NE, *op->stub()->entry()); 1184 } 1185 __ allocate_object(op->obj()->as_register(), 1186 op->tmp1()->as_register(), 1187 op->tmp2()->as_register(), 1188 op->header_size(), 1189 op->object_size(), 1190 op->klass()->as_register(), 1191 *op->stub()->entry()); 1192 __ bind(*op->stub()->continuation()); 1193 } 1194 1195 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 1196 Register len = op->len()->as_register(); 1197 __ uxtw(len, len); 1198 1199 if (UseSlowPath || 1200 (!UseFastNewObjectArray && is_reference_type(op->type())) || 1201 (!UseFastNewTypeArray && !is_reference_type(op->type()))) { 1202 __ b(*op->stub()->entry()); 1203 } else { 1204 Register tmp1 = op->tmp1()->as_register(); 1205 Register tmp2 = op->tmp2()->as_register(); 1206 Register tmp3 = op->tmp3()->as_register(); 1207 if (len == tmp1) { 1208 tmp1 = tmp3; 1209 } else if (len == tmp2) { 1210 tmp2 = tmp3; 1211 } else if (len == tmp3) { 1212 // everything is ok 1213 } else { 1214 __ mov(tmp3, len); 1215 } 1216 __ allocate_array(op->obj()->as_register(), 1217 len, 1218 tmp1, 1219 tmp2, 1220 arrayOopDesc::base_offset_in_bytes(op->type()), 1221 array_element_size(op->type()), 1222 op->klass()->as_register(), 1223 *op->stub()->entry(), 1224 op->zero_array()); 1225 } 1226 __ bind(*op->stub()->continuation()); 1227 } 1228 1229 void LIR_Assembler::type_profile_helper(Register mdo, 1230 ciMethodData *md, ciProfileData *data, 1231 Register recv, Label* update_done) { 1232 1233 // Given a profile data offset, generate an Address which points to 1234 // the corresponding slot in mdo->data(). 1235 // Clobbers rscratch2. 1236 auto slot_at = [=](ByteSize offset) -> Address { 1237 return __ form_address(rscratch2, mdo, 1238 md->byte_offset_of_slot(data, offset), 1239 LogBytesPerWord); 1240 }; 1241 1242 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1243 Label next_test; 1244 // See if the receiver is receiver[n]. 1245 __ ldr(rscratch1, slot_at(ReceiverTypeData::receiver_offset(i))); 1246 __ cmp(recv, rscratch1); 1247 __ br(Assembler::NE, next_test); 1248 __ addptr(slot_at(ReceiverTypeData::receiver_count_offset(i)), 1249 DataLayout::counter_increment); 1250 __ b(*update_done); 1251 __ bind(next_test); 1252 } 1253 1254 // Didn't find receiver; find next empty slot and fill it in 1255 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1256 Label next_test; 1257 Address recv_addr(slot_at(ReceiverTypeData::receiver_offset(i))); 1258 __ ldr(rscratch1, recv_addr); 1259 __ cbnz(rscratch1, next_test); 1260 __ str(recv, recv_addr); 1261 __ mov(rscratch1, DataLayout::counter_increment); 1262 __ str(rscratch1, slot_at(ReceiverTypeData::receiver_count_offset(i))); 1263 __ b(*update_done); 1264 __ bind(next_test); 1265 } 1266 } 1267 1268 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 1269 // we always need a stub for the failure case. 1270 CodeStub* stub = op->stub(); 1271 Register obj = op->object()->as_register(); 1272 Register k_RInfo = op->tmp1()->as_register(); 1273 Register klass_RInfo = op->tmp2()->as_register(); 1274 Register dst = op->result_opr()->as_register(); 1275 ciKlass* k = op->klass(); 1276 Register Rtmp1 = noreg; 1277 1278 // check if it needs to be profiled 1279 ciMethodData* md; 1280 ciProfileData* data; 1281 1282 const bool should_profile = op->should_profile(); 1283 1284 if (should_profile) { 1285 ciMethod* method = op->profiled_method(); 1286 assert(method != nullptr, "Should have method"); 1287 int bci = op->profiled_bci(); 1288 md = method->method_data_or_null(); 1289 assert(md != nullptr, "Sanity"); 1290 data = md->bci_to_data(bci); 1291 assert(data != nullptr, "need data for type check"); 1292 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1293 } 1294 Label* success_target = success; 1295 Label* failure_target = failure; 1296 1297 if (obj == k_RInfo) { 1298 k_RInfo = dst; 1299 } else if (obj == klass_RInfo) { 1300 klass_RInfo = dst; 1301 } 1302 if (k->is_loaded() && !UseCompressedClassPointers) { 1303 select_different_registers(obj, dst, k_RInfo, klass_RInfo); 1304 } else { 1305 Rtmp1 = op->tmp3()->as_register(); 1306 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1); 1307 } 1308 1309 assert_different_registers(obj, k_RInfo, klass_RInfo); 1310 1311 if (should_profile) { 1312 Register mdo = klass_RInfo; 1313 __ mov_metadata(mdo, md->constant_encoding()); 1314 Label not_null; 1315 __ cbnz(obj, not_null); 1316 // Object is null; update MDO and exit 1317 Address data_addr 1318 = __ form_address(rscratch2, mdo, 1319 md->byte_offset_of_slot(data, DataLayout::flags_offset()), 1320 0); 1321 __ ldrb(rscratch1, data_addr); 1322 __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant()); 1323 __ strb(rscratch1, data_addr); 1324 __ b(*obj_is_null); 1325 __ bind(not_null); 1326 1327 Label update_done; 1328 Register recv = k_RInfo; 1329 __ load_klass(recv, obj); 1330 type_profile_helper(mdo, md, data, recv, &update_done); 1331 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1332 __ addptr(counter_addr, DataLayout::counter_increment); 1333 1334 __ bind(update_done); 1335 } else { 1336 __ cbz(obj, *obj_is_null); 1337 } 1338 1339 if (!k->is_loaded()) { 1340 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 1341 } else { 1342 __ mov_metadata(k_RInfo, k->constant_encoding()); 1343 } 1344 __ verify_oop(obj); 1345 1346 if (op->fast_check()) { 1347 // get object class 1348 // not a safepoint as obj null check happens earlier 1349 __ load_klass(rscratch1, obj); 1350 __ cmp( rscratch1, k_RInfo); 1351 1352 __ br(Assembler::NE, *failure_target); 1353 // successful cast, fall through to profile or jump 1354 } else { 1355 // get object class 1356 // not a safepoint as obj null check happens earlier 1357 __ load_klass(klass_RInfo, obj); 1358 if (k->is_loaded()) { 1359 // See if we get an immediate positive hit 1360 __ ldr(rscratch1, Address(klass_RInfo, int64_t(k->super_check_offset()))); 1361 __ cmp(k_RInfo, rscratch1); 1362 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) { 1363 __ br(Assembler::NE, *failure_target); 1364 // successful cast, fall through to profile or jump 1365 } else { 1366 // See if we get an immediate positive hit 1367 __ br(Assembler::EQ, *success_target); 1368 // check for self 1369 __ cmp(klass_RInfo, k_RInfo); 1370 __ br(Assembler::EQ, *success_target); 1371 1372 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1373 __ far_call(RuntimeAddress(Runtime1::entry_for(StubId::c1_slow_subtype_check_id))); 1374 __ ldr(klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1375 // result is a boolean 1376 __ cbzw(klass_RInfo, *failure_target); 1377 // successful cast, fall through to profile or jump 1378 } 1379 } else { 1380 // perform the fast part of the checking logic 1381 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1382 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1383 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1384 __ far_call(RuntimeAddress(Runtime1::entry_for(StubId::c1_slow_subtype_check_id))); 1385 __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1386 // result is a boolean 1387 __ cbz(k_RInfo, *failure_target); 1388 // successful cast, fall through to profile or jump 1389 } 1390 } 1391 __ b(*success); 1392 } 1393 1394 1395 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 1396 const bool should_profile = op->should_profile(); 1397 1398 LIR_Code code = op->code(); 1399 if (code == lir_store_check) { 1400 Register value = op->object()->as_register(); 1401 Register array = op->array()->as_register(); 1402 Register k_RInfo = op->tmp1()->as_register(); 1403 Register klass_RInfo = op->tmp2()->as_register(); 1404 Register Rtmp1 = op->tmp3()->as_register(); 1405 1406 CodeStub* stub = op->stub(); 1407 1408 // check if it needs to be profiled 1409 ciMethodData* md; 1410 ciProfileData* data; 1411 1412 if (should_profile) { 1413 ciMethod* method = op->profiled_method(); 1414 assert(method != nullptr, "Should have method"); 1415 int bci = op->profiled_bci(); 1416 md = method->method_data_or_null(); 1417 assert(md != nullptr, "Sanity"); 1418 data = md->bci_to_data(bci); 1419 assert(data != nullptr, "need data for type check"); 1420 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1421 } 1422 Label done; 1423 Label* success_target = &done; 1424 Label* failure_target = stub->entry(); 1425 1426 if (should_profile) { 1427 Label not_null; 1428 Register mdo = klass_RInfo; 1429 __ mov_metadata(mdo, md->constant_encoding()); 1430 __ cbnz(value, not_null); 1431 // Object is null; update MDO and exit 1432 Address data_addr 1433 = __ form_address(rscratch2, mdo, 1434 md->byte_offset_of_slot(data, DataLayout::flags_offset()), 0); 1435 __ ldrb(rscratch1, data_addr); 1436 __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant()); 1437 __ strb(rscratch1, data_addr); 1438 __ b(done); 1439 __ bind(not_null); 1440 1441 Label update_done; 1442 Register recv = k_RInfo; 1443 __ load_klass(recv, value); 1444 type_profile_helper(mdo, md, data, recv, &update_done); 1445 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1446 __ addptr(counter_addr, DataLayout::counter_increment); 1447 __ bind(update_done); 1448 } else { 1449 __ cbz(value, done); 1450 } 1451 1452 add_debug_info_for_null_check_here(op->info_for_exception()); 1453 __ load_klass(k_RInfo, array); 1454 __ load_klass(klass_RInfo, value); 1455 1456 // get instance klass (it's already uncompressed) 1457 __ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset())); 1458 // perform the fast part of the checking logic 1459 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1460 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1461 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1462 __ far_call(RuntimeAddress(Runtime1::entry_for(StubId::c1_slow_subtype_check_id))); 1463 __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1464 // result is a boolean 1465 __ cbzw(k_RInfo, *failure_target); 1466 // fall through to the success case 1467 1468 __ bind(done); 1469 } else if (code == lir_checkcast) { 1470 Register obj = op->object()->as_register(); 1471 Register dst = op->result_opr()->as_register(); 1472 Label success; 1473 emit_typecheck_helper(op, &success, op->stub()->entry(), &success); 1474 __ bind(success); 1475 if (dst != obj) { 1476 __ mov(dst, obj); 1477 } 1478 } else if (code == lir_instanceof) { 1479 Register obj = op->object()->as_register(); 1480 Register dst = op->result_opr()->as_register(); 1481 Label success, failure, done; 1482 emit_typecheck_helper(op, &success, &failure, &failure); 1483 __ bind(failure); 1484 __ mov(dst, zr); 1485 __ b(done); 1486 __ bind(success); 1487 __ mov(dst, 1); 1488 __ bind(done); 1489 } else { 1490 ShouldNotReachHere(); 1491 } 1492 } 1493 1494 void LIR_Assembler::casw(Register addr, Register newval, Register cmpval) { 1495 __ cmpxchg(addr, cmpval, newval, Assembler::word, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1); 1496 __ cset(rscratch1, Assembler::NE); 1497 __ membar(__ AnyAny); 1498 } 1499 1500 void LIR_Assembler::casl(Register addr, Register newval, Register cmpval) { 1501 __ cmpxchg(addr, cmpval, newval, Assembler::xword, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1); 1502 __ cset(rscratch1, Assembler::NE); 1503 __ membar(__ AnyAny); 1504 } 1505 1506 1507 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 1508 Register addr; 1509 if (op->addr()->is_register()) { 1510 addr = as_reg(op->addr()); 1511 } else { 1512 assert(op->addr()->is_address(), "what else?"); 1513 LIR_Address* addr_ptr = op->addr()->as_address_ptr(); 1514 assert(addr_ptr->disp() == 0, "need 0 disp"); 1515 assert(addr_ptr->index() == LIR_Opr::illegalOpr(), "need 0 index"); 1516 addr = as_reg(addr_ptr->base()); 1517 } 1518 Register newval = as_reg(op->new_value()); 1519 Register cmpval = as_reg(op->cmp_value()); 1520 1521 if (op->code() == lir_cas_obj) { 1522 if (UseCompressedOops) { 1523 Register t1 = op->tmp1()->as_register(); 1524 assert(op->tmp1()->is_valid(), "must be"); 1525 __ encode_heap_oop(t1, cmpval); 1526 cmpval = t1; 1527 __ encode_heap_oop(rscratch2, newval); 1528 newval = rscratch2; 1529 casw(addr, newval, cmpval); 1530 } else { 1531 casl(addr, newval, cmpval); 1532 } 1533 } else if (op->code() == lir_cas_int) { 1534 casw(addr, newval, cmpval); 1535 } else { 1536 casl(addr, newval, cmpval); 1537 } 1538 } 1539 1540 1541 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type, 1542 LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) { 1543 assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on aarch64"); 1544 1545 Assembler::Condition acond, ncond; 1546 switch (condition) { 1547 case lir_cond_equal: acond = Assembler::EQ; ncond = Assembler::NE; break; 1548 case lir_cond_notEqual: acond = Assembler::NE; ncond = Assembler::EQ; break; 1549 case lir_cond_less: acond = Assembler::LT; ncond = Assembler::GE; break; 1550 case lir_cond_lessEqual: acond = Assembler::LE; ncond = Assembler::GT; break; 1551 case lir_cond_greaterEqual: acond = Assembler::GE; ncond = Assembler::LT; break; 1552 case lir_cond_greater: acond = Assembler::GT; ncond = Assembler::LE; break; 1553 case lir_cond_belowEqual: 1554 case lir_cond_aboveEqual: 1555 default: ShouldNotReachHere(); 1556 acond = Assembler::EQ; ncond = Assembler::NE; // unreachable 1557 } 1558 1559 assert(result->is_single_cpu() || result->is_double_cpu(), 1560 "expect single register for result"); 1561 if (opr1->is_constant() && opr2->is_constant() 1562 && opr1->type() == T_INT && opr2->type() == T_INT) { 1563 jint val1 = opr1->as_jint(); 1564 jint val2 = opr2->as_jint(); 1565 if (val1 == 0 && val2 == 1) { 1566 __ cset(result->as_register(), ncond); 1567 return; 1568 } else if (val1 == 1 && val2 == 0) { 1569 __ cset(result->as_register(), acond); 1570 return; 1571 } 1572 } 1573 1574 if (opr1->is_constant() && opr2->is_constant() 1575 && opr1->type() == T_LONG && opr2->type() == T_LONG) { 1576 jlong val1 = opr1->as_jlong(); 1577 jlong val2 = opr2->as_jlong(); 1578 if (val1 == 0 && val2 == 1) { 1579 __ cset(result->as_register_lo(), ncond); 1580 return; 1581 } else if (val1 == 1 && val2 == 0) { 1582 __ cset(result->as_register_lo(), acond); 1583 return; 1584 } 1585 } 1586 1587 if (opr1->is_stack()) { 1588 stack2reg(opr1, FrameMap::rscratch1_opr, result->type()); 1589 opr1 = FrameMap::rscratch1_opr; 1590 } else if (opr1->is_constant()) { 1591 LIR_Opr tmp 1592 = opr1->type() == T_LONG ? FrameMap::rscratch1_long_opr : FrameMap::rscratch1_opr; 1593 const2reg(opr1, tmp, lir_patch_none, nullptr); 1594 opr1 = tmp; 1595 } 1596 1597 if (opr2->is_stack()) { 1598 stack2reg(opr2, FrameMap::rscratch2_opr, result->type()); 1599 opr2 = FrameMap::rscratch2_opr; 1600 } else if (opr2->is_constant()) { 1601 LIR_Opr tmp 1602 = opr2->type() == T_LONG ? FrameMap::rscratch2_long_opr : FrameMap::rscratch2_opr; 1603 const2reg(opr2, tmp, lir_patch_none, nullptr); 1604 opr2 = tmp; 1605 } 1606 1607 if (result->type() == T_LONG) 1608 __ csel(result->as_register_lo(), opr1->as_register_lo(), opr2->as_register_lo(), acond); 1609 else 1610 __ csel(result->as_register(), opr1->as_register(), opr2->as_register(), acond); 1611 } 1612 1613 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info) { 1614 assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method"); 1615 1616 if (left->is_single_cpu()) { 1617 Register lreg = left->as_register(); 1618 Register dreg = as_reg(dest); 1619 1620 if (right->is_single_cpu()) { 1621 // cpu register - cpu register 1622 1623 assert(left->type() == T_INT && right->type() == T_INT && dest->type() == T_INT, 1624 "should be"); 1625 Register rreg = right->as_register(); 1626 switch (code) { 1627 case lir_add: __ addw (dest->as_register(), lreg, rreg); break; 1628 case lir_sub: __ subw (dest->as_register(), lreg, rreg); break; 1629 case lir_mul: __ mulw (dest->as_register(), lreg, rreg); break; 1630 default: ShouldNotReachHere(); 1631 } 1632 1633 } else if (right->is_double_cpu()) { 1634 Register rreg = right->as_register_lo(); 1635 // single_cpu + double_cpu: can happen with obj+long 1636 assert(code == lir_add || code == lir_sub, "mismatched arithmetic op"); 1637 switch (code) { 1638 case lir_add: __ add(dreg, lreg, rreg); break; 1639 case lir_sub: __ sub(dreg, lreg, rreg); break; 1640 default: ShouldNotReachHere(); 1641 } 1642 } else if (right->is_constant()) { 1643 // cpu register - constant 1644 jlong c; 1645 1646 // FIXME. This is fugly: we really need to factor all this logic. 1647 switch(right->type()) { 1648 case T_LONG: 1649 c = right->as_constant_ptr()->as_jlong(); 1650 break; 1651 case T_INT: 1652 case T_ADDRESS: 1653 c = right->as_constant_ptr()->as_jint(); 1654 break; 1655 default: 1656 ShouldNotReachHere(); 1657 c = 0; // unreachable 1658 break; 1659 } 1660 1661 assert(code == lir_add || code == lir_sub, "mismatched arithmetic op"); 1662 if (c == 0 && dreg == lreg) { 1663 COMMENT("effective nop elided"); 1664 return; 1665 } 1666 switch(left->type()) { 1667 case T_INT: 1668 switch (code) { 1669 case lir_add: __ addw(dreg, lreg, c); break; 1670 case lir_sub: __ subw(dreg, lreg, c); break; 1671 default: ShouldNotReachHere(); 1672 } 1673 break; 1674 case T_OBJECT: 1675 case T_ADDRESS: 1676 switch (code) { 1677 case lir_add: __ add(dreg, lreg, c); break; 1678 case lir_sub: __ sub(dreg, lreg, c); break; 1679 default: ShouldNotReachHere(); 1680 } 1681 break; 1682 default: 1683 ShouldNotReachHere(); 1684 } 1685 } else { 1686 ShouldNotReachHere(); 1687 } 1688 1689 } else if (left->is_double_cpu()) { 1690 Register lreg_lo = left->as_register_lo(); 1691 1692 if (right->is_double_cpu()) { 1693 // cpu register - cpu register 1694 Register rreg_lo = right->as_register_lo(); 1695 switch (code) { 1696 case lir_add: __ add (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1697 case lir_sub: __ sub (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1698 case lir_mul: __ mul (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1699 case lir_div: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, false, rscratch1); break; 1700 case lir_rem: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, true, rscratch1); break; 1701 default: 1702 ShouldNotReachHere(); 1703 } 1704 1705 } else if (right->is_constant()) { 1706 jlong c = right->as_constant_ptr()->as_jlong(); 1707 Register dreg = as_reg(dest); 1708 switch (code) { 1709 case lir_add: 1710 case lir_sub: 1711 if (c == 0 && dreg == lreg_lo) { 1712 COMMENT("effective nop elided"); 1713 return; 1714 } 1715 code == lir_add ? __ add(dreg, lreg_lo, c) : __ sub(dreg, lreg_lo, c); 1716 break; 1717 case lir_div: 1718 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1719 if (c == 1) { 1720 // move lreg_lo to dreg if divisor is 1 1721 __ mov(dreg, lreg_lo); 1722 } else { 1723 unsigned int shift = log2i_exact(c); 1724 // use rscratch1 as intermediate result register 1725 __ asr(rscratch1, lreg_lo, 63); 1726 __ add(rscratch1, lreg_lo, rscratch1, Assembler::LSR, 64 - shift); 1727 __ asr(dreg, rscratch1, shift); 1728 } 1729 break; 1730 case lir_rem: 1731 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1732 if (c == 1) { 1733 // move 0 to dreg if divisor is 1 1734 __ mov(dreg, zr); 1735 } else { 1736 // use rscratch1 as intermediate result register 1737 __ negs(rscratch1, lreg_lo); 1738 __ andr(dreg, lreg_lo, c - 1); 1739 __ andr(rscratch1, rscratch1, c - 1); 1740 __ csneg(dreg, dreg, rscratch1, Assembler::MI); 1741 } 1742 break; 1743 default: 1744 ShouldNotReachHere(); 1745 } 1746 } else { 1747 ShouldNotReachHere(); 1748 } 1749 } else if (left->is_single_fpu()) { 1750 assert(right->is_single_fpu(), "right hand side of float arithmetics needs to be float register"); 1751 switch (code) { 1752 case lir_add: __ fadds (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1753 case lir_sub: __ fsubs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1754 case lir_mul: __ fmuls (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1755 case lir_div: __ fdivs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1756 default: 1757 ShouldNotReachHere(); 1758 } 1759 } else if (left->is_double_fpu()) { 1760 if (right->is_double_fpu()) { 1761 // fpu register - fpu register 1762 switch (code) { 1763 case lir_add: __ faddd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1764 case lir_sub: __ fsubd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1765 case lir_mul: __ fmuld (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1766 case lir_div: __ fdivd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1767 default: 1768 ShouldNotReachHere(); 1769 } 1770 } else { 1771 if (right->is_constant()) { 1772 ShouldNotReachHere(); 1773 } 1774 ShouldNotReachHere(); 1775 } 1776 } else if (left->is_single_stack() || left->is_address()) { 1777 assert(left == dest, "left and dest must be equal"); 1778 ShouldNotReachHere(); 1779 } else { 1780 ShouldNotReachHere(); 1781 } 1782 } 1783 1784 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) { 1785 switch(code) { 1786 case lir_abs : __ fabsd(dest->as_double_reg(), value->as_double_reg()); break; 1787 case lir_sqrt: __ fsqrtd(dest->as_double_reg(), value->as_double_reg()); break; 1788 case lir_f2hf: __ flt_to_flt16(dest->as_register(), value->as_float_reg(), tmp->as_float_reg()); break; 1789 case lir_hf2f: __ flt16_to_flt(dest->as_float_reg(), value->as_register(), tmp->as_float_reg()); break; 1790 default : ShouldNotReachHere(); 1791 } 1792 } 1793 1794 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) { 1795 1796 assert(left->is_single_cpu() || left->is_double_cpu(), "expect single or double register"); 1797 Register Rleft = left->is_single_cpu() ? left->as_register() : 1798 left->as_register_lo(); 1799 if (dst->is_single_cpu()) { 1800 Register Rdst = dst->as_register(); 1801 if (right->is_constant()) { 1802 switch (code) { 1803 case lir_logic_and: __ andw (Rdst, Rleft, right->as_jint()); break; 1804 case lir_logic_or: __ orrw (Rdst, Rleft, right->as_jint()); break; 1805 case lir_logic_xor: __ eorw (Rdst, Rleft, right->as_jint()); break; 1806 default: ShouldNotReachHere(); break; 1807 } 1808 } else { 1809 Register Rright = right->is_single_cpu() ? right->as_register() : 1810 right->as_register_lo(); 1811 switch (code) { 1812 case lir_logic_and: __ andw (Rdst, Rleft, Rright); break; 1813 case lir_logic_or: __ orrw (Rdst, Rleft, Rright); break; 1814 case lir_logic_xor: __ eorw (Rdst, Rleft, Rright); break; 1815 default: ShouldNotReachHere(); break; 1816 } 1817 } 1818 } else { 1819 Register Rdst = dst->as_register_lo(); 1820 if (right->is_constant()) { 1821 switch (code) { 1822 case lir_logic_and: __ andr (Rdst, Rleft, right->as_jlong()); break; 1823 case lir_logic_or: __ orr (Rdst, Rleft, right->as_jlong()); break; 1824 case lir_logic_xor: __ eor (Rdst, Rleft, right->as_jlong()); break; 1825 default: ShouldNotReachHere(); break; 1826 } 1827 } else { 1828 Register Rright = right->is_single_cpu() ? right->as_register() : 1829 right->as_register_lo(); 1830 switch (code) { 1831 case lir_logic_and: __ andr (Rdst, Rleft, Rright); break; 1832 case lir_logic_or: __ orr (Rdst, Rleft, Rright); break; 1833 case lir_logic_xor: __ eor (Rdst, Rleft, Rright); break; 1834 default: ShouldNotReachHere(); break; 1835 } 1836 } 1837 } 1838 } 1839 1840 1841 1842 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr illegal, LIR_Opr result, CodeEmitInfo* info) { 1843 1844 // opcode check 1845 assert((code == lir_idiv) || (code == lir_irem), "opcode must be idiv or irem"); 1846 bool is_irem = (code == lir_irem); 1847 1848 // operand check 1849 assert(left->is_single_cpu(), "left must be register"); 1850 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant"); 1851 assert(result->is_single_cpu(), "result must be register"); 1852 Register lreg = left->as_register(); 1853 Register dreg = result->as_register(); 1854 1855 // power-of-2 constant check and codegen 1856 if (right->is_constant()) { 1857 int c = right->as_constant_ptr()->as_jint(); 1858 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1859 if (is_irem) { 1860 if (c == 1) { 1861 // move 0 to dreg if divisor is 1 1862 __ movw(dreg, zr); 1863 } else { 1864 // use rscratch1 as intermediate result register 1865 __ negsw(rscratch1, lreg); 1866 __ andw(dreg, lreg, c - 1); 1867 __ andw(rscratch1, rscratch1, c - 1); 1868 __ csnegw(dreg, dreg, rscratch1, Assembler::MI); 1869 } 1870 } else { 1871 if (c == 1) { 1872 // move lreg to dreg if divisor is 1 1873 __ movw(dreg, lreg); 1874 } else { 1875 unsigned int shift = exact_log2(c); 1876 // use rscratch1 as intermediate result register 1877 __ asrw(rscratch1, lreg, 31); 1878 __ addw(rscratch1, lreg, rscratch1, Assembler::LSR, 32 - shift); 1879 __ asrw(dreg, rscratch1, shift); 1880 } 1881 } 1882 } else { 1883 Register rreg = right->as_register(); 1884 __ corrected_idivl(dreg, lreg, rreg, is_irem, rscratch1); 1885 } 1886 } 1887 1888 1889 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 1890 if (opr1->is_constant() && opr2->is_single_cpu()) { 1891 // tableswitch 1892 Register reg = as_reg(opr2); 1893 struct tableswitch &table = switches[opr1->as_constant_ptr()->as_jint()]; 1894 __ tableswitch(reg, table._first_key, table._last_key, table._branches, table._after); 1895 } else if (opr1->is_single_cpu() || opr1->is_double_cpu()) { 1896 Register reg1 = as_reg(opr1); 1897 if (opr2->is_single_cpu()) { 1898 // cpu register - cpu register 1899 Register reg2 = opr2->as_register(); 1900 if (is_reference_type(opr1->type())) { 1901 __ cmpoop(reg1, reg2); 1902 } else { 1903 assert(!is_reference_type(opr2->type()), "cmp int, oop?"); 1904 __ cmpw(reg1, reg2); 1905 } 1906 return; 1907 } 1908 if (opr2->is_double_cpu()) { 1909 // cpu register - cpu register 1910 Register reg2 = opr2->as_register_lo(); 1911 __ cmp(reg1, reg2); 1912 return; 1913 } 1914 1915 if (opr2->is_constant()) { 1916 bool is_32bit = false; // width of register operand 1917 jlong imm; 1918 1919 switch(opr2->type()) { 1920 case T_INT: 1921 imm = opr2->as_constant_ptr()->as_jint(); 1922 is_32bit = true; 1923 break; 1924 case T_LONG: 1925 imm = opr2->as_constant_ptr()->as_jlong(); 1926 break; 1927 case T_ADDRESS: 1928 imm = opr2->as_constant_ptr()->as_jint(); 1929 break; 1930 case T_METADATA: 1931 imm = (intptr_t)(opr2->as_constant_ptr()->as_metadata()); 1932 break; 1933 case T_OBJECT: 1934 case T_ARRAY: 1935 jobject2reg(opr2->as_constant_ptr()->as_jobject(), rscratch1); 1936 __ cmpoop(reg1, rscratch1); 1937 return; 1938 default: 1939 ShouldNotReachHere(); 1940 imm = 0; // unreachable 1941 break; 1942 } 1943 1944 if (Assembler::operand_valid_for_add_sub_immediate(imm)) { 1945 if (is_32bit) 1946 __ cmpw(reg1, imm); 1947 else 1948 __ subs(zr, reg1, imm); 1949 return; 1950 } else { 1951 __ mov(rscratch1, imm); 1952 if (is_32bit) 1953 __ cmpw(reg1, rscratch1); 1954 else 1955 __ cmp(reg1, rscratch1); 1956 return; 1957 } 1958 } else 1959 ShouldNotReachHere(); 1960 } else if (opr1->is_single_fpu()) { 1961 FloatRegister reg1 = opr1->as_float_reg(); 1962 assert(opr2->is_single_fpu(), "expect single float register"); 1963 FloatRegister reg2 = opr2->as_float_reg(); 1964 __ fcmps(reg1, reg2); 1965 } else if (opr1->is_double_fpu()) { 1966 FloatRegister reg1 = opr1->as_double_reg(); 1967 assert(opr2->is_double_fpu(), "expect double float register"); 1968 FloatRegister reg2 = opr2->as_double_reg(); 1969 __ fcmpd(reg1, reg2); 1970 } else { 1971 ShouldNotReachHere(); 1972 } 1973 } 1974 1975 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){ 1976 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 1977 bool is_unordered_less = (code == lir_ucmp_fd2i); 1978 if (left->is_single_fpu()) { 1979 __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register()); 1980 } else if (left->is_double_fpu()) { 1981 __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register()); 1982 } else { 1983 ShouldNotReachHere(); 1984 } 1985 } else if (code == lir_cmp_l2i) { 1986 Label done; 1987 __ cmp(left->as_register_lo(), right->as_register_lo()); 1988 __ mov(dst->as_register(), (uint64_t)-1L); 1989 __ br(Assembler::LT, done); 1990 __ csinc(dst->as_register(), zr, zr, Assembler::EQ); 1991 __ bind(done); 1992 } else { 1993 ShouldNotReachHere(); 1994 } 1995 } 1996 1997 1998 void LIR_Assembler::align_call(LIR_Code code) { } 1999 2000 2001 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 2002 address call = __ trampoline_call(Address(op->addr(), rtype)); 2003 if (call == nullptr) { 2004 bailout("trampoline stub overflow"); 2005 return; 2006 } 2007 add_call_info(code_offset(), op->info()); 2008 __ post_call_nop(); 2009 } 2010 2011 2012 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 2013 address call = __ ic_call(op->addr()); 2014 if (call == nullptr) { 2015 bailout("trampoline stub overflow"); 2016 return; 2017 } 2018 add_call_info(code_offset(), op->info()); 2019 __ post_call_nop(); 2020 } 2021 2022 void LIR_Assembler::emit_static_call_stub() { 2023 address call_pc = __ pc(); 2024 address stub = __ start_a_stub(call_stub_size()); 2025 if (stub == nullptr) { 2026 bailout("static call stub overflow"); 2027 return; 2028 } 2029 2030 int start = __ offset(); 2031 2032 __ relocate(static_stub_Relocation::spec(call_pc)); 2033 __ emit_static_call_stub(); 2034 2035 assert(__ offset() - start + CompiledDirectCall::to_trampoline_stub_size() 2036 <= call_stub_size(), "stub too big"); 2037 __ end_a_stub(); 2038 } 2039 2040 2041 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2042 assert(exceptionOop->as_register() == r0, "must match"); 2043 assert(exceptionPC->as_register() == r3, "must match"); 2044 2045 // exception object is not added to oop map by LinearScan 2046 // (LinearScan assumes that no oops are in fixed registers) 2047 info->add_register_oop(exceptionOop); 2048 StubId unwind_id; 2049 2050 // get current pc information 2051 // pc is only needed if the method has an exception handler, the unwind code does not need it. 2052 if (compilation()->debug_info_recorder()->last_pc_offset() == __ offset()) { 2053 // As no instructions have been generated yet for this LIR node it's 2054 // possible that an oop map already exists for the current offset. 2055 // In that case insert an dummy NOP here to ensure all oop map PCs 2056 // are unique. See JDK-8237483. 2057 __ nop(); 2058 } 2059 int pc_for_athrow_offset = __ offset(); 2060 InternalAddress pc_for_athrow(__ pc()); 2061 __ adr(exceptionPC->as_register(), pc_for_athrow); 2062 add_call_info(pc_for_athrow_offset, info); // for exception handler 2063 2064 __ verify_not_null_oop(r0); 2065 // search an exception handler (r0: exception oop, r3: throwing pc) 2066 if (compilation()->has_fpu_code()) { 2067 unwind_id = StubId::c1_handle_exception_id; 2068 } else { 2069 unwind_id = StubId::c1_handle_exception_nofpu_id; 2070 } 2071 __ far_call(RuntimeAddress(Runtime1::entry_for(unwind_id))); 2072 2073 // FIXME: enough room for two byte trap ???? 2074 __ nop(); 2075 } 2076 2077 2078 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 2079 assert(exceptionOop->as_register() == r0, "must match"); 2080 2081 __ b(_unwind_handler_entry); 2082 } 2083 2084 2085 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 2086 Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo(); 2087 Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo(); 2088 2089 switch (left->type()) { 2090 case T_INT: { 2091 switch (code) { 2092 case lir_shl: __ lslvw (dreg, lreg, count->as_register()); break; 2093 case lir_shr: __ asrvw (dreg, lreg, count->as_register()); break; 2094 case lir_ushr: __ lsrvw (dreg, lreg, count->as_register()); break; 2095 default: 2096 ShouldNotReachHere(); 2097 break; 2098 } 2099 break; 2100 case T_LONG: 2101 case T_ADDRESS: 2102 case T_OBJECT: 2103 switch (code) { 2104 case lir_shl: __ lslv (dreg, lreg, count->as_register()); break; 2105 case lir_shr: __ asrv (dreg, lreg, count->as_register()); break; 2106 case lir_ushr: __ lsrv (dreg, lreg, count->as_register()); break; 2107 default: 2108 ShouldNotReachHere(); 2109 break; 2110 } 2111 break; 2112 default: 2113 ShouldNotReachHere(); 2114 break; 2115 } 2116 } 2117 } 2118 2119 2120 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 2121 Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo(); 2122 Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo(); 2123 2124 switch (left->type()) { 2125 case T_INT: { 2126 switch (code) { 2127 case lir_shl: __ lslw (dreg, lreg, count); break; 2128 case lir_shr: __ asrw (dreg, lreg, count); break; 2129 case lir_ushr: __ lsrw (dreg, lreg, count); break; 2130 default: 2131 ShouldNotReachHere(); 2132 break; 2133 } 2134 break; 2135 case T_LONG: 2136 case T_ADDRESS: 2137 case T_OBJECT: 2138 switch (code) { 2139 case lir_shl: __ lsl (dreg, lreg, count); break; 2140 case lir_shr: __ asr (dreg, lreg, count); break; 2141 case lir_ushr: __ lsr (dreg, lreg, count); break; 2142 default: 2143 ShouldNotReachHere(); 2144 break; 2145 } 2146 break; 2147 default: 2148 ShouldNotReachHere(); 2149 break; 2150 } 2151 } 2152 } 2153 2154 2155 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) { 2156 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2157 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2158 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2159 __ str (r, Address(sp, offset_from_rsp_in_bytes)); 2160 } 2161 2162 2163 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) { 2164 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2165 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2166 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2167 __ mov (rscratch1, c); 2168 __ str (rscratch1, Address(sp, offset_from_rsp_in_bytes)); 2169 } 2170 2171 2172 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) { 2173 ShouldNotReachHere(); 2174 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2175 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2176 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2177 __ lea(rscratch1, __ constant_oop_address(o)); 2178 __ str(rscratch1, Address(sp, offset_from_rsp_in_bytes)); 2179 } 2180 2181 2182 // This code replaces a call to arraycopy; no exception may 2183 // be thrown in this code, they must be thrown in the System.arraycopy 2184 // activation frame; we could save some checks if this would not be the case 2185 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 2186 ciArrayKlass* default_type = op->expected_type(); 2187 Register src = op->src()->as_register(); 2188 Register dst = op->dst()->as_register(); 2189 Register src_pos = op->src_pos()->as_register(); 2190 Register dst_pos = op->dst_pos()->as_register(); 2191 Register length = op->length()->as_register(); 2192 Register tmp = op->tmp()->as_register(); 2193 2194 CodeStub* stub = op->stub(); 2195 int flags = op->flags(); 2196 BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL; 2197 if (is_reference_type(basic_type)) basic_type = T_OBJECT; 2198 2199 // if we don't know anything, just go through the generic arraycopy 2200 if (default_type == nullptr // || basic_type == T_OBJECT 2201 ) { 2202 Label done; 2203 assert(src == r1 && src_pos == r2, "mismatch in calling convention"); 2204 2205 // Save the arguments in case the generic arraycopy fails and we 2206 // have to fall back to the JNI stub 2207 __ stp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2208 __ stp(length, src_pos, Address(sp, 2*BytesPerWord)); 2209 __ str(src, Address(sp, 4*BytesPerWord)); 2210 2211 address copyfunc_addr = StubRoutines::generic_arraycopy(); 2212 assert(copyfunc_addr != nullptr, "generic arraycopy stub required"); 2213 2214 // The arguments are in java calling convention so we shift them 2215 // to C convention 2216 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4); 2217 __ mov(c_rarg0, j_rarg0); 2218 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4); 2219 __ mov(c_rarg1, j_rarg1); 2220 assert_different_registers(c_rarg2, j_rarg3, j_rarg4); 2221 __ mov(c_rarg2, j_rarg2); 2222 assert_different_registers(c_rarg3, j_rarg4); 2223 __ mov(c_rarg3, j_rarg3); 2224 __ mov(c_rarg4, j_rarg4); 2225 #ifndef PRODUCT 2226 if (PrintC1Statistics) { 2227 __ incrementw(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt)); 2228 } 2229 #endif 2230 __ far_call(RuntimeAddress(copyfunc_addr)); 2231 2232 __ cbz(r0, *stub->continuation()); 2233 2234 // Reload values from the stack so they are where the stub 2235 // expects them. 2236 __ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2237 __ ldp(length, src_pos, Address(sp, 2*BytesPerWord)); 2238 __ ldr(src, Address(sp, 4*BytesPerWord)); 2239 2240 // r0 is -1^K where K == partial copied count 2241 __ eonw(rscratch1, r0, zr); 2242 // adjust length down and src/end pos up by partial copied count 2243 __ subw(length, length, rscratch1); 2244 __ addw(src_pos, src_pos, rscratch1); 2245 __ addw(dst_pos, dst_pos, rscratch1); 2246 __ b(*stub->entry()); 2247 2248 __ bind(*stub->continuation()); 2249 return; 2250 } 2251 2252 assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); 2253 2254 int elem_size = type2aelembytes(basic_type); 2255 int scale = exact_log2(elem_size); 2256 2257 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes()); 2258 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes()); 2259 2260 // test for null 2261 if (flags & LIR_OpArrayCopy::src_null_check) { 2262 __ cbz(src, *stub->entry()); 2263 } 2264 if (flags & LIR_OpArrayCopy::dst_null_check) { 2265 __ cbz(dst, *stub->entry()); 2266 } 2267 2268 // If the compiler was not able to prove that exact type of the source or the destination 2269 // of the arraycopy is an array type, check at runtime if the source or the destination is 2270 // an instance type. 2271 if (flags & LIR_OpArrayCopy::type_check) { 2272 if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) { 2273 __ load_klass(tmp, dst); 2274 __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2275 __ cmpw(rscratch1, Klass::_lh_neutral_value); 2276 __ br(Assembler::GE, *stub->entry()); 2277 } 2278 2279 if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) { 2280 __ load_klass(tmp, src); 2281 __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2282 __ cmpw(rscratch1, Klass::_lh_neutral_value); 2283 __ br(Assembler::GE, *stub->entry()); 2284 } 2285 } 2286 2287 // check if negative 2288 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 2289 __ cmpw(src_pos, 0); 2290 __ br(Assembler::LT, *stub->entry()); 2291 } 2292 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 2293 __ cmpw(dst_pos, 0); 2294 __ br(Assembler::LT, *stub->entry()); 2295 } 2296 2297 if (flags & LIR_OpArrayCopy::length_positive_check) { 2298 __ cmpw(length, 0); 2299 __ br(Assembler::LT, *stub->entry()); 2300 } 2301 2302 if (flags & LIR_OpArrayCopy::src_range_check) { 2303 __ addw(tmp, src_pos, length); 2304 __ ldrw(rscratch1, src_length_addr); 2305 __ cmpw(tmp, rscratch1); 2306 __ br(Assembler::HI, *stub->entry()); 2307 } 2308 if (flags & LIR_OpArrayCopy::dst_range_check) { 2309 __ addw(tmp, dst_pos, length); 2310 __ ldrw(rscratch1, dst_length_addr); 2311 __ cmpw(tmp, rscratch1); 2312 __ br(Assembler::HI, *stub->entry()); 2313 } 2314 2315 if (flags & LIR_OpArrayCopy::type_check) { 2316 // We don't know the array types are compatible 2317 if (basic_type != T_OBJECT) { 2318 // Simple test for basic type arrays 2319 __ cmp_klasses_from_objects(src, dst, tmp, rscratch1); 2320 __ br(Assembler::NE, *stub->entry()); 2321 } else { 2322 // For object arrays, if src is a sub class of dst then we can 2323 // safely do the copy. 2324 Label cont, slow; 2325 2326 #define PUSH(r1, r2) \ 2327 stp(r1, r2, __ pre(sp, -2 * wordSize)); 2328 2329 #define POP(r1, r2) \ 2330 ldp(r1, r2, __ post(sp, 2 * wordSize)); 2331 2332 __ PUSH(src, dst); 2333 2334 __ load_klass(src, src); 2335 __ load_klass(dst, dst); 2336 2337 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr); 2338 2339 __ PUSH(src, dst); 2340 __ far_call(RuntimeAddress(Runtime1::entry_for(StubId::c1_slow_subtype_check_id))); 2341 __ POP(src, dst); 2342 2343 __ cbnz(src, cont); 2344 2345 __ bind(slow); 2346 __ POP(src, dst); 2347 2348 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 2349 if (copyfunc_addr != nullptr) { // use stub if available 2350 // src is not a sub class of dst so we have to do a 2351 // per-element check. 2352 2353 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 2354 if ((flags & mask) != mask) { 2355 // Check that at least both of them object arrays. 2356 assert(flags & mask, "one of the two should be known to be an object array"); 2357 2358 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2359 __ load_klass(tmp, src); 2360 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2361 __ load_klass(tmp, dst); 2362 } 2363 int lh_offset = in_bytes(Klass::layout_helper_offset()); 2364 Address klass_lh_addr(tmp, lh_offset); 2365 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 2366 __ ldrw(rscratch1, klass_lh_addr); 2367 __ mov(rscratch2, objArray_lh); 2368 __ eorw(rscratch1, rscratch1, rscratch2); 2369 __ cbnzw(rscratch1, *stub->entry()); 2370 } 2371 2372 // Spill because stubs can use any register they like and it's 2373 // easier to restore just those that we care about. 2374 __ stp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2375 __ stp(length, src_pos, Address(sp, 2*BytesPerWord)); 2376 __ str(src, Address(sp, 4*BytesPerWord)); 2377 2378 __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale))); 2379 __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type)); 2380 assert_different_registers(c_rarg0, dst, dst_pos, length); 2381 __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale))); 2382 __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type)); 2383 assert_different_registers(c_rarg1, dst, length); 2384 __ uxtw(c_rarg2, length); 2385 assert_different_registers(c_rarg2, dst); 2386 2387 __ load_klass(c_rarg4, dst); 2388 __ ldr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset())); 2389 __ ldrw(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset())); 2390 __ far_call(RuntimeAddress(copyfunc_addr)); 2391 2392 #ifndef PRODUCT 2393 if (PrintC1Statistics) { 2394 Label failed; 2395 __ cbnz(r0, failed); 2396 __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt)); 2397 __ bind(failed); 2398 } 2399 #endif 2400 2401 __ cbz(r0, *stub->continuation()); 2402 2403 #ifndef PRODUCT 2404 if (PrintC1Statistics) { 2405 __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt)); 2406 } 2407 #endif 2408 assert_different_registers(dst, dst_pos, length, src_pos, src, r0, rscratch1); 2409 2410 // Restore previously spilled arguments 2411 __ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2412 __ ldp(length, src_pos, Address(sp, 2*BytesPerWord)); 2413 __ ldr(src, Address(sp, 4*BytesPerWord)); 2414 2415 // return value is -1^K where K is partial copied count 2416 __ eonw(rscratch1, r0, zr); 2417 // adjust length down and src/end pos up by partial copied count 2418 __ subw(length, length, rscratch1); 2419 __ addw(src_pos, src_pos, rscratch1); 2420 __ addw(dst_pos, dst_pos, rscratch1); 2421 } 2422 2423 __ b(*stub->entry()); 2424 2425 __ bind(cont); 2426 __ POP(src, dst); 2427 } 2428 } 2429 2430 #ifdef ASSERT 2431 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 2432 // Sanity check the known type with the incoming class. For the 2433 // primitive case the types must match exactly with src.klass and 2434 // dst.klass each exactly matching the default type. For the 2435 // object array case, if no type check is needed then either the 2436 // dst type is exactly the expected type and the src type is a 2437 // subtype which we can't check or src is the same array as dst 2438 // but not necessarily exactly of type default_type. 2439 Label known_ok, halt; 2440 __ mov_metadata(tmp, default_type->constant_encoding()); 2441 2442 if (basic_type != T_OBJECT) { 2443 __ cmp_klass(dst, tmp, rscratch1); 2444 __ br(Assembler::NE, halt); 2445 __ cmp_klass(src, tmp, rscratch1); 2446 __ br(Assembler::EQ, known_ok); 2447 } else { 2448 __ cmp_klass(dst, tmp, rscratch1); 2449 __ br(Assembler::EQ, known_ok); 2450 __ cmp(src, dst); 2451 __ br(Assembler::EQ, known_ok); 2452 } 2453 __ bind(halt); 2454 __ stop("incorrect type information in arraycopy"); 2455 __ bind(known_ok); 2456 } 2457 #endif 2458 2459 #ifndef PRODUCT 2460 if (PrintC1Statistics) { 2461 __ incrementw(ExternalAddress(Runtime1::arraycopy_count_address(basic_type))); 2462 } 2463 #endif 2464 2465 __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale))); 2466 __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type)); 2467 assert_different_registers(c_rarg0, dst, dst_pos, length); 2468 __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale))); 2469 __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type)); 2470 assert_different_registers(c_rarg1, dst, length); 2471 __ uxtw(c_rarg2, length); 2472 assert_different_registers(c_rarg2, dst); 2473 2474 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 2475 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 2476 const char *name; 2477 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 2478 2479 CodeBlob *cb = CodeCache::find_blob(entry); 2480 if (cb) { 2481 __ far_call(RuntimeAddress(entry)); 2482 } else { 2483 __ call_VM_leaf(entry, 3); 2484 } 2485 2486 if (stub != nullptr) { 2487 __ bind(*stub->continuation()); 2488 } 2489 } 2490 2491 2492 2493 2494 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 2495 Register obj = op->obj_opr()->as_register(); // may not be an oop 2496 Register hdr = op->hdr_opr()->as_register(); 2497 Register lock = op->lock_opr()->as_register(); 2498 Register temp = op->scratch_opr()->as_register(); 2499 if (op->code() == lir_lock) { 2500 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2501 // add debug info for NullPointerException only if one is possible 2502 int null_check_offset = __ lock_object(hdr, obj, lock, temp, *op->stub()->entry()); 2503 if (op->info() != nullptr) { 2504 add_debug_info_for_null_check(null_check_offset, op->info()); 2505 } 2506 // done 2507 } else if (op->code() == lir_unlock) { 2508 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2509 __ unlock_object(hdr, obj, lock, temp, *op->stub()->entry()); 2510 } else { 2511 Unimplemented(); 2512 } 2513 __ bind(*op->stub()->continuation()); 2514 } 2515 2516 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) { 2517 Register obj = op->obj()->as_pointer_register(); 2518 Register result = op->result_opr()->as_pointer_register(); 2519 2520 CodeEmitInfo* info = op->info(); 2521 if (info != nullptr) { 2522 add_debug_info_for_null_check_here(info); 2523 } 2524 2525 __ load_klass(result, obj); 2526 } 2527 2528 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 2529 ciMethod* method = op->profiled_method(); 2530 int bci = op->profiled_bci(); 2531 ciMethod* callee = op->profiled_callee(); 2532 2533 // Update counter for all call types 2534 ciMethodData* md = method->method_data_or_null(); 2535 assert(md != nullptr, "Sanity"); 2536 ciProfileData* data = md->bci_to_data(bci); 2537 assert(data != nullptr && data->is_CounterData(), "need CounterData for calls"); 2538 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 2539 Register mdo = op->mdo()->as_register(); 2540 __ mov_metadata(mdo, md->constant_encoding()); 2541 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 2542 // Perform additional virtual call profiling for invokevirtual and 2543 // invokeinterface bytecodes 2544 if (op->should_profile_receiver_type()) { 2545 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 2546 Register recv = op->recv()->as_register(); 2547 assert_different_registers(mdo, recv); 2548 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 2549 ciKlass* known_klass = op->known_holder(); 2550 if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) { 2551 // We know the type that will be seen at this call site; we can 2552 // statically update the MethodData* rather than needing to do 2553 // dynamic tests on the receiver type 2554 2555 // NOTE: we should probably put a lock around this search to 2556 // avoid collisions by concurrent compilations 2557 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 2558 uint i; 2559 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2560 ciKlass* receiver = vc_data->receiver(i); 2561 if (known_klass->equals(receiver)) { 2562 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2563 __ addptr(data_addr, DataLayout::counter_increment); 2564 return; 2565 } 2566 } 2567 2568 // Receiver type not found in profile data; select an empty slot 2569 2570 // Note that this is less efficient than it should be because it 2571 // always does a write to the receiver part of the 2572 // VirtualCallData rather than just the first time 2573 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2574 ciKlass* receiver = vc_data->receiver(i); 2575 if (receiver == nullptr) { 2576 __ mov_metadata(rscratch1, known_klass->constant_encoding()); 2577 Address recv_addr = 2578 __ form_address(rscratch2, mdo, 2579 md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)), 2580 LogBytesPerWord); 2581 __ str(rscratch1, recv_addr); 2582 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2583 __ addptr(data_addr, DataLayout::counter_increment); 2584 return; 2585 } 2586 } 2587 } else { 2588 __ load_klass(recv, recv); 2589 Label update_done; 2590 type_profile_helper(mdo, md, data, recv, &update_done); 2591 // Receiver did not match any saved receiver and there is no empty row for it. 2592 // Increment total counter to indicate polymorphic case. 2593 __ addptr(counter_addr, DataLayout::counter_increment); 2594 2595 __ bind(update_done); 2596 } 2597 } else { 2598 // Static call 2599 __ addptr(counter_addr, DataLayout::counter_increment); 2600 } 2601 } 2602 2603 2604 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) { 2605 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no)); 2606 } 2607 2608 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 2609 assert(op->crc()->is_single_cpu(), "crc must be register"); 2610 assert(op->val()->is_single_cpu(), "byte value must be register"); 2611 assert(op->result_opr()->is_single_cpu(), "result must be register"); 2612 Register crc = op->crc()->as_register(); 2613 Register val = op->val()->as_register(); 2614 Register res = op->result_opr()->as_register(); 2615 2616 assert_different_registers(val, crc, res); 2617 uint64_t offset; 2618 __ adrp(res, ExternalAddress(StubRoutines::crc_table_addr()), offset); 2619 __ add(res, res, offset); 2620 2621 __ mvnw(crc, crc); // ~crc 2622 __ update_byte_crc32(crc, val, res); 2623 __ mvnw(res, crc); // ~crc 2624 } 2625 2626 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 2627 COMMENT("emit_profile_type {"); 2628 Register obj = op->obj()->as_register(); 2629 Register tmp = op->tmp()->as_pointer_register(); 2630 Address mdo_addr = as_Address(op->mdp()->as_address_ptr()); 2631 ciKlass* exact_klass = op->exact_klass(); 2632 intptr_t current_klass = op->current_klass(); 2633 bool not_null = op->not_null(); 2634 bool no_conflict = op->no_conflict(); 2635 2636 Label update, next, none; 2637 2638 bool do_null = !not_null; 2639 bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 2640 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 2641 2642 assert(do_null || do_update, "why are we here?"); 2643 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 2644 assert(mdo_addr.base() != rscratch1, "wrong register"); 2645 2646 __ verify_oop(obj); 2647 2648 if (tmp != obj) { 2649 assert_different_registers(obj, tmp, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index()); 2650 __ mov(tmp, obj); 2651 } else { 2652 assert_different_registers(obj, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index()); 2653 } 2654 if (do_null) { 2655 __ cbnz(tmp, update); 2656 if (!TypeEntries::was_null_seen(current_klass)) { 2657 __ ldr(rscratch2, mdo_addr); 2658 __ orr(rscratch2, rscratch2, TypeEntries::null_seen); 2659 __ str(rscratch2, mdo_addr); 2660 } 2661 if (do_update) { 2662 #ifndef ASSERT 2663 __ b(next); 2664 } 2665 #else 2666 __ b(next); 2667 } 2668 } else { 2669 __ cbnz(tmp, update); 2670 __ stop("unexpected null obj"); 2671 #endif 2672 } 2673 2674 __ bind(update); 2675 2676 if (do_update) { 2677 #ifdef ASSERT 2678 if (exact_klass != nullptr) { 2679 Label ok; 2680 __ load_klass(tmp, tmp); 2681 __ mov_metadata(rscratch1, exact_klass->constant_encoding()); 2682 __ eor(rscratch1, tmp, rscratch1); 2683 __ cbz(rscratch1, ok); 2684 __ stop("exact klass and actual klass differ"); 2685 __ bind(ok); 2686 } 2687 #endif 2688 if (!no_conflict) { 2689 if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) { 2690 if (exact_klass != nullptr) { 2691 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2692 } else { 2693 __ load_klass(tmp, tmp); 2694 } 2695 2696 __ ldr(rscratch2, mdo_addr); 2697 __ eor(tmp, tmp, rscratch2); 2698 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2699 // klass seen before, nothing to do. The unknown bit may have been 2700 // set already but no need to check. 2701 __ cbz(rscratch1, next); 2702 2703 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2704 2705 if (TypeEntries::is_type_none(current_klass)) { 2706 __ cbz(rscratch2, none); 2707 __ cmp(rscratch2, (u1)TypeEntries::null_seen); 2708 __ br(Assembler::EQ, none); 2709 // There is a chance that the checks above 2710 // fail if another thread has just set the 2711 // profiling to this obj's klass 2712 __ dmb(Assembler::ISHLD); 2713 __ eor(tmp, tmp, rscratch2); // get back original value before XOR 2714 __ ldr(rscratch2, mdo_addr); 2715 __ eor(tmp, tmp, rscratch2); 2716 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2717 __ cbz(rscratch1, next); 2718 } 2719 } else { 2720 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 2721 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 2722 2723 __ ldr(tmp, mdo_addr); 2724 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2725 } 2726 2727 // different than before. Cannot keep accurate profile. 2728 __ ldr(rscratch2, mdo_addr); 2729 __ orr(rscratch2, rscratch2, TypeEntries::type_unknown); 2730 __ str(rscratch2, mdo_addr); 2731 2732 if (TypeEntries::is_type_none(current_klass)) { 2733 __ b(next); 2734 2735 __ bind(none); 2736 // first time here. Set profile type. 2737 __ str(tmp, mdo_addr); 2738 #ifdef ASSERT 2739 __ andr(tmp, tmp, TypeEntries::type_mask); 2740 __ verify_klass_ptr(tmp); 2741 #endif 2742 } 2743 } else { 2744 // There's a single possible klass at this profile point 2745 assert(exact_klass != nullptr, "should be"); 2746 if (TypeEntries::is_type_none(current_klass)) { 2747 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2748 __ ldr(rscratch2, mdo_addr); 2749 __ eor(tmp, tmp, rscratch2); 2750 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2751 __ cbz(rscratch1, next); 2752 #ifdef ASSERT 2753 { 2754 Label ok; 2755 __ ldr(rscratch1, mdo_addr); 2756 __ cbz(rscratch1, ok); 2757 __ cmp(rscratch1, (u1)TypeEntries::null_seen); 2758 __ br(Assembler::EQ, ok); 2759 // may have been set by another thread 2760 __ dmb(Assembler::ISHLD); 2761 __ mov_metadata(rscratch1, exact_klass->constant_encoding()); 2762 __ ldr(rscratch2, mdo_addr); 2763 __ eor(rscratch2, rscratch1, rscratch2); 2764 __ andr(rscratch2, rscratch2, TypeEntries::type_mask); 2765 __ cbz(rscratch2, ok); 2766 2767 __ stop("unexpected profiling mismatch"); 2768 __ bind(ok); 2769 } 2770 #endif 2771 // first time here. Set profile type. 2772 __ str(tmp, mdo_addr); 2773 #ifdef ASSERT 2774 __ andr(tmp, tmp, TypeEntries::type_mask); 2775 __ verify_klass_ptr(tmp); 2776 #endif 2777 } else { 2778 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 2779 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 2780 2781 __ ldr(tmp, mdo_addr); 2782 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2783 2784 __ orr(tmp, tmp, TypeEntries::type_unknown); 2785 __ str(tmp, mdo_addr); 2786 // FIXME: Write barrier needed here? 2787 } 2788 } 2789 2790 __ bind(next); 2791 } 2792 COMMENT("} emit_profile_type"); 2793 } 2794 2795 2796 void LIR_Assembler::align_backward_branch_target() { 2797 } 2798 2799 2800 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 2801 // tmp must be unused 2802 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 2803 2804 if (left->is_single_cpu()) { 2805 assert(dest->is_single_cpu(), "expect single result reg"); 2806 __ negw(dest->as_register(), left->as_register()); 2807 } else if (left->is_double_cpu()) { 2808 assert(dest->is_double_cpu(), "expect double result reg"); 2809 __ neg(dest->as_register_lo(), left->as_register_lo()); 2810 } else if (left->is_single_fpu()) { 2811 assert(dest->is_single_fpu(), "expect single float result reg"); 2812 __ fnegs(dest->as_float_reg(), left->as_float_reg()); 2813 } else { 2814 assert(left->is_double_fpu(), "expect double float operand reg"); 2815 assert(dest->is_double_fpu(), "expect double float result reg"); 2816 __ fnegd(dest->as_double_reg(), left->as_double_reg()); 2817 } 2818 } 2819 2820 2821 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 2822 if (patch_code != lir_patch_none) { 2823 deoptimize_trap(info); 2824 return; 2825 } 2826 2827 __ lea(dest->as_pointer_register(), as_Address(addr->as_address_ptr())); 2828 } 2829 2830 2831 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 2832 assert(!tmp->is_valid(), "don't need temporary"); 2833 2834 CodeBlob *cb = CodeCache::find_blob(dest); 2835 if (cb) { 2836 __ far_call(RuntimeAddress(dest)); 2837 } else { 2838 __ mov(rscratch1, RuntimeAddress(dest)); 2839 __ blr(rscratch1); 2840 } 2841 2842 if (info != nullptr) { 2843 add_call_info_here(info); 2844 } 2845 __ post_call_nop(); 2846 } 2847 2848 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 2849 if (dest->is_address() || src->is_address()) { 2850 move_op(src, dest, type, lir_patch_none, info, /*wide*/false); 2851 } else { 2852 ShouldNotReachHere(); 2853 } 2854 } 2855 2856 #ifdef ASSERT 2857 // emit run-time assertion 2858 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 2859 assert(op->code() == lir_assert, "must be"); 2860 2861 if (op->in_opr1()->is_valid()) { 2862 assert(op->in_opr2()->is_valid(), "both operands must be valid"); 2863 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op); 2864 } else { 2865 assert(op->in_opr2()->is_illegal(), "both operands must be illegal"); 2866 assert(op->condition() == lir_cond_always, "no other conditions allowed"); 2867 } 2868 2869 Label ok; 2870 if (op->condition() != lir_cond_always) { 2871 Assembler::Condition acond = Assembler::AL; 2872 switch (op->condition()) { 2873 case lir_cond_equal: acond = Assembler::EQ; break; 2874 case lir_cond_notEqual: acond = Assembler::NE; break; 2875 case lir_cond_less: acond = Assembler::LT; break; 2876 case lir_cond_lessEqual: acond = Assembler::LE; break; 2877 case lir_cond_greaterEqual: acond = Assembler::GE; break; 2878 case lir_cond_greater: acond = Assembler::GT; break; 2879 case lir_cond_belowEqual: acond = Assembler::LS; break; 2880 case lir_cond_aboveEqual: acond = Assembler::HS; break; 2881 default: ShouldNotReachHere(); 2882 } 2883 __ br(acond, ok); 2884 } 2885 if (op->halt()) { 2886 const char* str = __ code_string(op->msg()); 2887 __ stop(str); 2888 } else { 2889 breakpoint(); 2890 } 2891 __ bind(ok); 2892 } 2893 #endif 2894 2895 #ifndef PRODUCT 2896 #define COMMENT(x) do { __ block_comment(x); } while (0) 2897 #else 2898 #define COMMENT(x) 2899 #endif 2900 2901 void LIR_Assembler::membar() { 2902 COMMENT("membar"); 2903 __ membar(MacroAssembler::AnyAny); 2904 } 2905 2906 void LIR_Assembler::membar_acquire() { 2907 __ membar(Assembler::LoadLoad|Assembler::LoadStore); 2908 } 2909 2910 void LIR_Assembler::membar_release() { 2911 __ membar(Assembler::LoadStore|Assembler::StoreStore); 2912 } 2913 2914 void LIR_Assembler::membar_loadload() { 2915 __ membar(Assembler::LoadLoad); 2916 } 2917 2918 void LIR_Assembler::membar_storestore() { 2919 __ membar(MacroAssembler::StoreStore); 2920 } 2921 2922 void LIR_Assembler::membar_loadstore() { __ membar(MacroAssembler::LoadStore); } 2923 2924 void LIR_Assembler::membar_storeload() { __ membar(MacroAssembler::StoreLoad); } 2925 2926 void LIR_Assembler::on_spin_wait() { 2927 __ spin_wait(); 2928 } 2929 2930 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 2931 __ mov(result_reg->as_register(), rthread); 2932 } 2933 2934 2935 void LIR_Assembler::peephole(LIR_List *lir) { 2936 #if 0 2937 if (tableswitch_count >= max_tableswitches) 2938 return; 2939 2940 /* 2941 This finite-state automaton recognizes sequences of compare-and- 2942 branch instructions. We will turn them into a tableswitch. You 2943 could argue that C1 really shouldn't be doing this sort of 2944 optimization, but without it the code is really horrible. 2945 */ 2946 2947 enum { start_s, cmp1_s, beq_s, cmp_s } state; 2948 int first_key, last_key = -2147483648; 2949 int next_key = 0; 2950 int start_insn = -1; 2951 int last_insn = -1; 2952 Register reg = noreg; 2953 LIR_Opr reg_opr; 2954 state = start_s; 2955 2956 LIR_OpList* inst = lir->instructions_list(); 2957 for (int i = 0; i < inst->length(); i++) { 2958 LIR_Op* op = inst->at(i); 2959 switch (state) { 2960 case start_s: 2961 first_key = -1; 2962 start_insn = i; 2963 switch (op->code()) { 2964 case lir_cmp: 2965 LIR_Opr opr1 = op->as_Op2()->in_opr1(); 2966 LIR_Opr opr2 = op->as_Op2()->in_opr2(); 2967 if (opr1->is_cpu_register() && opr1->is_single_cpu() 2968 && opr2->is_constant() 2969 && opr2->type() == T_INT) { 2970 reg_opr = opr1; 2971 reg = opr1->as_register(); 2972 first_key = opr2->as_constant_ptr()->as_jint(); 2973 next_key = first_key + 1; 2974 state = cmp_s; 2975 goto next_state; 2976 } 2977 break; 2978 } 2979 break; 2980 case cmp_s: 2981 switch (op->code()) { 2982 case lir_branch: 2983 if (op->as_OpBranch()->cond() == lir_cond_equal) { 2984 state = beq_s; 2985 last_insn = i; 2986 goto next_state; 2987 } 2988 } 2989 state = start_s; 2990 break; 2991 case beq_s: 2992 switch (op->code()) { 2993 case lir_cmp: { 2994 LIR_Opr opr1 = op->as_Op2()->in_opr1(); 2995 LIR_Opr opr2 = op->as_Op2()->in_opr2(); 2996 if (opr1->is_cpu_register() && opr1->is_single_cpu() 2997 && opr1->as_register() == reg 2998 && opr2->is_constant() 2999 && opr2->type() == T_INT 3000 && opr2->as_constant_ptr()->as_jint() == next_key) { 3001 last_key = next_key; 3002 next_key++; 3003 state = cmp_s; 3004 goto next_state; 3005 } 3006 } 3007 } 3008 last_key = next_key; 3009 state = start_s; 3010 break; 3011 default: 3012 assert(false, "impossible state"); 3013 } 3014 if (state == start_s) { 3015 if (first_key < last_key - 5L && reg != noreg) { 3016 { 3017 // printf("found run register %d starting at insn %d low value %d high value %d\n", 3018 // reg->encoding(), 3019 // start_insn, first_key, last_key); 3020 // for (int i = 0; i < inst->length(); i++) { 3021 // inst->at(i)->print(); 3022 // tty->print("\n"); 3023 // } 3024 // tty->print("\n"); 3025 } 3026 3027 struct tableswitch *sw = &switches[tableswitch_count]; 3028 sw->_insn_index = start_insn, sw->_first_key = first_key, 3029 sw->_last_key = last_key, sw->_reg = reg; 3030 inst->insert_before(last_insn + 1, new LIR_OpLabel(&sw->_after)); 3031 { 3032 // Insert the new table of branches 3033 int offset = last_insn; 3034 for (int n = first_key; n < last_key; n++) { 3035 inst->insert_before 3036 (last_insn + 1, 3037 new LIR_OpBranch(lir_cond_always, T_ILLEGAL, 3038 inst->at(offset)->as_OpBranch()->label())); 3039 offset -= 2, i++; 3040 } 3041 } 3042 // Delete all the old compare-and-branch instructions 3043 for (int n = first_key; n < last_key; n++) { 3044 inst->remove_at(start_insn); 3045 inst->remove_at(start_insn); 3046 } 3047 // Insert the tableswitch instruction 3048 inst->insert_before(start_insn, 3049 new LIR_Op2(lir_cmp, lir_cond_always, 3050 LIR_OprFact::intConst(tableswitch_count), 3051 reg_opr)); 3052 inst->insert_before(start_insn + 1, new LIR_OpLabel(&sw->_branches)); 3053 tableswitch_count++; 3054 } 3055 reg = noreg; 3056 last_key = -2147483648; 3057 } 3058 next_state: 3059 ; 3060 } 3061 #endif 3062 } 3063 3064 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp_op) { 3065 Address addr = as_Address(src->as_address_ptr()); 3066 BasicType type = src->type(); 3067 bool is_oop = is_reference_type(type); 3068 3069 void (MacroAssembler::* add)(Register prev, RegisterOrConstant incr, Register addr); 3070 void (MacroAssembler::* xchg)(Register prev, Register newv, Register addr); 3071 3072 switch(type) { 3073 case T_INT: 3074 xchg = &MacroAssembler::atomic_xchgalw; 3075 add = &MacroAssembler::atomic_addalw; 3076 break; 3077 case T_LONG: 3078 xchg = &MacroAssembler::atomic_xchgal; 3079 add = &MacroAssembler::atomic_addal; 3080 break; 3081 case T_OBJECT: 3082 case T_ARRAY: 3083 if (UseCompressedOops) { 3084 xchg = &MacroAssembler::atomic_xchgalw; 3085 add = &MacroAssembler::atomic_addalw; 3086 } else { 3087 xchg = &MacroAssembler::atomic_xchgal; 3088 add = &MacroAssembler::atomic_addal; 3089 } 3090 break; 3091 default: 3092 ShouldNotReachHere(); 3093 xchg = &MacroAssembler::atomic_xchgal; 3094 add = &MacroAssembler::atomic_addal; // unreachable 3095 } 3096 3097 switch (code) { 3098 case lir_xadd: 3099 { 3100 RegisterOrConstant inc; 3101 Register tmp = as_reg(tmp_op); 3102 Register dst = as_reg(dest); 3103 if (data->is_constant()) { 3104 inc = RegisterOrConstant(as_long(data)); 3105 assert_different_registers(dst, addr.base(), tmp, 3106 rscratch1, rscratch2); 3107 } else { 3108 inc = RegisterOrConstant(as_reg(data)); 3109 assert_different_registers(inc.as_register(), dst, addr.base(), tmp, 3110 rscratch1, rscratch2); 3111 } 3112 __ lea(tmp, addr); 3113 (_masm->*add)(dst, inc, tmp); 3114 break; 3115 } 3116 case lir_xchg: 3117 { 3118 Register tmp = tmp_op->as_register(); 3119 Register obj = as_reg(data); 3120 Register dst = as_reg(dest); 3121 if (is_oop && UseCompressedOops) { 3122 __ encode_heap_oop(rscratch2, obj); 3123 obj = rscratch2; 3124 } 3125 assert_different_registers(obj, addr.base(), tmp, rscratch1); 3126 assert_different_registers(dst, addr.base(), tmp, rscratch1); 3127 __ lea(tmp, addr); 3128 (_masm->*xchg)(dst, obj, tmp); 3129 if (is_oop && UseCompressedOops) { 3130 __ decode_heap_oop(dst); 3131 } 3132 } 3133 break; 3134 default: 3135 ShouldNotReachHere(); 3136 } 3137 if(!UseLSE) { 3138 __ membar(__ AnyAny); 3139 } 3140 } 3141 3142 #undef __