1 /* 2 * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/macroAssembler.inline.hpp" 27 #include "asm/assembler.hpp" 28 #include "c1/c1_CodeStubs.hpp" 29 #include "c1/c1_Compilation.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_MacroAssembler.hpp" 32 #include "c1/c1_Runtime1.hpp" 33 #include "c1/c1_ValueStack.hpp" 34 #include "ci/ciArrayKlass.hpp" 35 #include "ci/ciInstance.hpp" 36 #include "ci/ciUtilities.hpp" 37 #include "code/aotCodeCache.hpp" 38 #include "code/compiledIC.hpp" 39 #include "gc/shared/collectedHeap.hpp" 40 #include "gc/shared/gc_globals.hpp" 41 #include "nativeInst_aarch64.hpp" 42 #include "oops/objArrayKlass.hpp" 43 #include "runtime/frame.inline.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/stubRoutines.hpp" 46 #include "runtime/threadIdentifier.hpp" 47 #include "utilities/powerOfTwo.hpp" 48 #include "vmreg_aarch64.inline.hpp" 49 50 51 #ifndef PRODUCT 52 #define COMMENT(x) do { __ block_comment(x); } while (0) 53 #else 54 #define COMMENT(x) 55 #endif 56 57 NEEDS_CLEANUP // remove this definitions ? 58 const Register SYNC_header = r0; // synchronization header 59 const Register SHIFT_count = r0; // where count for shift operations must be 60 61 #define __ _masm-> 62 63 64 static void select_different_registers(Register preserve, 65 Register extra, 66 Register &tmp1, 67 Register &tmp2) { 68 if (tmp1 == preserve) { 69 assert_different_registers(tmp1, tmp2, extra); 70 tmp1 = extra; 71 } else if (tmp2 == preserve) { 72 assert_different_registers(tmp1, tmp2, extra); 73 tmp2 = extra; 74 } 75 assert_different_registers(preserve, tmp1, tmp2); 76 } 77 78 79 80 static void select_different_registers(Register preserve, 81 Register extra, 82 Register &tmp1, 83 Register &tmp2, 84 Register &tmp3) { 85 if (tmp1 == preserve) { 86 assert_different_registers(tmp1, tmp2, tmp3, extra); 87 tmp1 = extra; 88 } else if (tmp2 == preserve) { 89 assert_different_registers(tmp1, tmp2, tmp3, extra); 90 tmp2 = extra; 91 } else if (tmp3 == preserve) { 92 assert_different_registers(tmp1, tmp2, tmp3, extra); 93 tmp3 = extra; 94 } 95 assert_different_registers(preserve, tmp1, tmp2, tmp3); 96 } 97 98 99 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { Unimplemented(); return false; } 100 101 102 LIR_Opr LIR_Assembler::receiverOpr() { 103 return FrameMap::receiver_opr; 104 } 105 106 LIR_Opr LIR_Assembler::osrBufferPointer() { 107 return FrameMap::as_pointer_opr(receiverOpr()->as_register()); 108 } 109 110 //--------------fpu register translations----------------------- 111 112 113 address LIR_Assembler::float_constant(float f) { 114 address const_addr = __ float_constant(f); 115 if (const_addr == nullptr) { 116 bailout("const section overflow"); 117 return __ code()->consts()->start(); 118 } else { 119 return const_addr; 120 } 121 } 122 123 124 address LIR_Assembler::double_constant(double d) { 125 address const_addr = __ double_constant(d); 126 if (const_addr == nullptr) { 127 bailout("const section overflow"); 128 return __ code()->consts()->start(); 129 } else { 130 return const_addr; 131 } 132 } 133 134 address LIR_Assembler::int_constant(jlong n) { 135 address const_addr = __ long_constant(n); 136 if (const_addr == nullptr) { 137 bailout("const section overflow"); 138 return __ code()->consts()->start(); 139 } else { 140 return const_addr; 141 } 142 } 143 144 void LIR_Assembler::breakpoint() { Unimplemented(); } 145 146 void LIR_Assembler::push(LIR_Opr opr) { Unimplemented(); } 147 148 void LIR_Assembler::pop(LIR_Opr opr) { Unimplemented(); } 149 150 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { Unimplemented(); return false; } 151 //------------------------------------------- 152 153 static Register as_reg(LIR_Opr op) { 154 return op->is_double_cpu() ? op->as_register_lo() : op->as_register(); 155 } 156 157 static jlong as_long(LIR_Opr data) { 158 jlong result; 159 switch (data->type()) { 160 case T_INT: 161 result = (data->as_jint()); 162 break; 163 case T_LONG: 164 result = (data->as_jlong()); 165 break; 166 default: 167 ShouldNotReachHere(); 168 result = 0; // unreachable 169 } 170 return result; 171 } 172 173 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) { 174 Register base = addr->base()->as_pointer_register(); 175 LIR_Opr opr = addr->index(); 176 if (opr->is_cpu_register()) { 177 Register index; 178 if (opr->is_single_cpu()) 179 index = opr->as_register(); 180 else 181 index = opr->as_register_lo(); 182 assert(addr->disp() == 0, "must be"); 183 switch(opr->type()) { 184 case T_INT: 185 return Address(base, index, Address::sxtw(addr->scale())); 186 case T_LONG: 187 return Address(base, index, Address::lsl(addr->scale())); 188 default: 189 ShouldNotReachHere(); 190 } 191 } else { 192 assert(addr->scale() == 0, 193 "expected for immediate operand, was: %d", addr->scale()); 194 ptrdiff_t offset = ptrdiff_t(addr->disp()); 195 // NOTE: Does not handle any 16 byte vector access. 196 const uint type_size = type2aelembytes(addr->type(), true); 197 return __ legitimize_address(Address(base, offset), type_size, tmp); 198 } 199 return Address(); 200 } 201 202 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 203 ShouldNotReachHere(); 204 return Address(); 205 } 206 207 Address LIR_Assembler::as_Address(LIR_Address* addr) { 208 return as_Address(addr, rscratch1); 209 } 210 211 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 212 return as_Address(addr, rscratch1); // Ouch 213 // FIXME: This needs to be much more clever. See x86. 214 } 215 216 // Ensure a valid Address (base + offset) to a stack-slot. If stack access is 217 // not encodable as a base + (immediate) offset, generate an explicit address 218 // calculation to hold the address in a temporary register. 219 Address LIR_Assembler::stack_slot_address(int index, uint size, Register tmp, int adjust) { 220 precond(size == 4 || size == 8); 221 Address addr = frame_map()->address_for_slot(index, adjust); 222 precond(addr.getMode() == Address::base_plus_offset); 223 precond(addr.base() == sp); 224 precond(addr.offset() > 0); 225 uint mask = size - 1; 226 assert((addr.offset() & mask) == 0, "scaled offsets only"); 227 return __ legitimize_address(addr, size, tmp); 228 } 229 230 void LIR_Assembler::osr_entry() { 231 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 232 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 233 ValueStack* entry_state = osr_entry->state(); 234 int number_of_locks = entry_state->locks_size(); 235 236 // we jump here if osr happens with the interpreter 237 // state set up to continue at the beginning of the 238 // loop that triggered osr - in particular, we have 239 // the following registers setup: 240 // 241 // r2: osr buffer 242 // 243 244 // build frame 245 ciMethod* m = compilation()->method(); 246 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 247 248 // OSR buffer is 249 // 250 // locals[nlocals-1..0] 251 // monitors[0..number_of_locks] 252 // 253 // locals is a direct copy of the interpreter frame so in the osr buffer 254 // so first slot in the local array is the last local from the interpreter 255 // and last slot is local[0] (receiver) from the interpreter 256 // 257 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 258 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 259 // in the interpreter frame (the method lock if a sync method) 260 261 // Initialize monitors in the compiled activation. 262 // r2: pointer to osr buffer 263 // 264 // All other registers are dead at this point and the locals will be 265 // copied into place by code emitted in the IR. 266 267 Register OSR_buf = osrBufferPointer()->as_pointer_register(); 268 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 269 int monitor_offset = BytesPerWord * method()->max_locals() + 270 (2 * BytesPerWord) * (number_of_locks - 1); 271 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 272 // the OSR buffer using 2 word entries: first the lock and then 273 // the oop. 274 for (int i = 0; i < number_of_locks; i++) { 275 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 276 #ifdef ASSERT 277 // verify the interpreter's monitor has a non-null object 278 { 279 Label L; 280 __ ldr(rscratch1, __ form_address(rscratch1, OSR_buf, slot_offset + 1*BytesPerWord, 0)); 281 __ cbnz(rscratch1, L); 282 __ stop("locked object is null"); 283 __ bind(L); 284 } 285 #endif 286 __ ldr(r19, __ form_address(rscratch1, OSR_buf, slot_offset, 0)); 287 __ ldr(r20, __ form_address(rscratch1, OSR_buf, slot_offset + BytesPerWord, 0)); 288 __ str(r19, frame_map()->address_for_monitor_lock(i)); 289 __ str(r20, frame_map()->address_for_monitor_object(i)); 290 } 291 } 292 } 293 294 295 // inline cache check; done before the frame is built. 296 int LIR_Assembler::check_icache() { 297 return __ ic_check(CodeEntryAlignment); 298 } 299 300 void LIR_Assembler::clinit_barrier(ciMethod* method) { 301 assert(VM_Version::supports_fast_class_init_checks(), "sanity"); 302 assert(!method->holder()->is_not_initialized(), "initialization should have been started"); 303 304 Label L_skip_barrier; 305 306 __ mov_metadata(rscratch2, method->holder()->constant_encoding()); 307 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier /*L_fast_path*/); 308 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 309 __ bind(L_skip_barrier); 310 } 311 312 void LIR_Assembler::jobject2reg(jobject o, Register reg) { 313 if (o == nullptr) { 314 __ mov(reg, zr); 315 } else { 316 __ movoop(reg, o); 317 } 318 } 319 320 void LIR_Assembler::deoptimize_trap(CodeEmitInfo *info) { 321 address target = nullptr; 322 relocInfo::relocType reloc_type = relocInfo::none; 323 324 switch (patching_id(info)) { 325 case PatchingStub::access_field_id: 326 target = Runtime1::entry_for(StubId::c1_access_field_patching_id); 327 reloc_type = relocInfo::section_word_type; 328 break; 329 case PatchingStub::load_klass_id: 330 target = Runtime1::entry_for(StubId::c1_load_klass_patching_id); 331 reloc_type = relocInfo::metadata_type; 332 break; 333 case PatchingStub::load_mirror_id: 334 target = Runtime1::entry_for(StubId::c1_load_mirror_patching_id); 335 reloc_type = relocInfo::oop_type; 336 break; 337 case PatchingStub::load_appendix_id: 338 target = Runtime1::entry_for(StubId::c1_load_appendix_patching_id); 339 reloc_type = relocInfo::oop_type; 340 break; 341 default: ShouldNotReachHere(); 342 } 343 344 __ far_call(RuntimeAddress(target)); 345 add_call_info_here(info); 346 } 347 348 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) { 349 deoptimize_trap(info); 350 } 351 352 353 // This specifies the rsp decrement needed to build the frame 354 int LIR_Assembler::initial_frame_size_in_bytes() const { 355 // if rounding, must let FrameMap know! 356 357 return in_bytes(frame_map()->framesize_in_bytes()); 358 } 359 360 361 int LIR_Assembler::emit_exception_handler() { 362 // generate code for exception handler 363 address handler_base = __ start_a_stub(exception_handler_size()); 364 if (handler_base == nullptr) { 365 // not enough space left for the handler 366 bailout("exception handler overflow"); 367 return -1; 368 } 369 370 int offset = code_offset(); 371 372 // the exception oop and pc are in r0, and r3 373 // no other registers need to be preserved, so invalidate them 374 __ invalidate_registers(false, true, true, false, true, true); 375 376 // check that there is really an exception 377 __ verify_not_null_oop(r0); 378 379 // search an exception handler (r0: exception oop, r3: throwing pc) 380 __ far_call(RuntimeAddress(Runtime1::entry_for(StubId::c1_handle_exception_from_callee_id))); 381 __ should_not_reach_here(); 382 guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); 383 __ end_a_stub(); 384 385 return offset; 386 } 387 388 389 // Emit the code to remove the frame from the stack in the exception 390 // unwind path. 391 int LIR_Assembler::emit_unwind_handler() { 392 #ifndef PRODUCT 393 if (CommentedAssembly) { 394 _masm->block_comment("Unwind handler"); 395 } 396 #endif 397 398 int offset = code_offset(); 399 400 // Fetch the exception from TLS and clear out exception related thread state 401 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 402 __ str(zr, Address(rthread, JavaThread::exception_oop_offset())); 403 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 404 405 __ bind(_unwind_handler_entry); 406 __ verify_not_null_oop(r0); 407 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 408 __ mov(r19, r0); // Preserve the exception 409 } 410 411 // Perform needed unlocking 412 MonitorExitStub* stub = nullptr; 413 if (method()->is_synchronized()) { 414 monitor_address(0, FrameMap::r0_opr); 415 stub = new MonitorExitStub(FrameMap::r0_opr, true, 0); 416 __ unlock_object(r5, r4, r0, r6, *stub->entry()); 417 __ bind(*stub->continuation()); 418 } 419 420 if (compilation()->env()->dtrace_method_probes()) { 421 __ mov(c_rarg0, rthread); 422 __ mov_metadata(c_rarg1, method()->constant_encoding()); 423 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), c_rarg0, c_rarg1); 424 } 425 426 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 427 __ mov(r0, r19); // Restore the exception 428 } 429 430 // remove the activation and dispatch to the unwind handler 431 __ block_comment("remove_frame and dispatch to the unwind handler"); 432 __ remove_frame(initial_frame_size_in_bytes()); 433 __ far_jump(RuntimeAddress(Runtime1::entry_for(StubId::c1_unwind_exception_id))); 434 435 // Emit the slow path assembly 436 if (stub != nullptr) { 437 stub->emit_code(this); 438 } 439 440 return offset; 441 } 442 443 444 int LIR_Assembler::emit_deopt_handler() { 445 // generate code for exception handler 446 address handler_base = __ start_a_stub(deopt_handler_size()); 447 if (handler_base == nullptr) { 448 // not enough space left for the handler 449 bailout("deopt handler overflow"); 450 return -1; 451 } 452 453 int offset = code_offset(); 454 455 __ adr(lr, pc()); 456 __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); 457 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); 458 __ end_a_stub(); 459 460 return offset; 461 } 462 463 void LIR_Assembler::add_debug_info_for_branch(address adr, CodeEmitInfo* info) { 464 _masm->code_section()->relocate(adr, relocInfo::poll_type); 465 int pc_offset = code_offset(); 466 flush_debug_info(pc_offset); 467 info->record_debug_info(compilation()->debug_info_recorder(), pc_offset); 468 if (info->exception_handlers() != nullptr) { 469 compilation()->add_exception_handlers_for_pco(pc_offset, info->exception_handlers()); 470 } 471 } 472 473 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 474 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == r0, "word returns are in r0,"); 475 476 // Pop the stack before the safepoint code 477 __ remove_frame(initial_frame_size_in_bytes()); 478 479 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { 480 __ reserved_stack_check(); 481 } 482 483 code_stub->set_safepoint_offset(__ offset()); 484 __ relocate(relocInfo::poll_return_type); 485 __ safepoint_poll(*code_stub->entry(), true /* at_return */, true /* in_nmethod */); 486 __ ret(lr); 487 } 488 489 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 490 guarantee(info != nullptr, "Shouldn't be null"); 491 __ get_polling_page(rscratch1, relocInfo::poll_type); 492 add_debug_info_for_branch(info); // This isn't just debug info: 493 // it's the oop map 494 __ read_polling_page(rscratch1, relocInfo::poll_type); 495 return __ offset(); 496 } 497 498 499 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { 500 if (from_reg == r31_sp) 501 from_reg = sp; 502 if (to_reg == r31_sp) 503 to_reg = sp; 504 __ mov(to_reg, from_reg); 505 } 506 507 void LIR_Assembler::swap_reg(Register a, Register b) { Unimplemented(); } 508 509 510 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 511 assert(src->is_constant(), "should not call otherwise"); 512 assert(dest->is_register(), "should not call otherwise"); 513 LIR_Const* c = src->as_constant_ptr(); 514 515 switch (c->type()) { 516 case T_INT: { 517 assert(patch_code == lir_patch_none, "no patching handled here"); 518 __ movw(dest->as_register(), c->as_jint()); 519 break; 520 } 521 522 case T_ADDRESS: { 523 assert(patch_code == lir_patch_none, "no patching handled here"); 524 __ mov(dest->as_register(), c->as_jint()); 525 break; 526 } 527 528 case T_LONG: { 529 assert(patch_code == lir_patch_none, "no patching handled here"); 530 if (AOTCodeCache::is_on_for_dump()) { 531 // AOT code needs relocation info for card table base 532 address b = c->as_pointer(); 533 if (is_card_table_address(b)) { 534 __ lea(dest->as_register_lo(), ExternalAddress(b)); 535 break; 536 } 537 if (b == (address)ThreadIdentifier::unsafe_offset()) { 538 __ lea(dest->as_register_lo(), ExternalAddress(b)); 539 break; 540 } 541 #if INCLUDE_CDS 542 if (AOTRuntimeConstants::contains(b)) { 543 __ load_aotrc_address(dest->as_register_lo(), b); 544 break; 545 } 546 #endif 547 } 548 __ mov(dest->as_register_lo(), (intptr_t)c->as_jlong()); 549 break; 550 } 551 552 case T_OBJECT: { 553 if (patch_code == lir_patch_none) { 554 jobject2reg(c->as_jobject(), dest->as_register()); 555 } else { 556 jobject2reg_with_patching(dest->as_register(), info); 557 } 558 break; 559 } 560 561 case T_METADATA: { 562 if (patch_code != lir_patch_none) { 563 klass2reg_with_patching(dest->as_register(), info); 564 } else { 565 __ mov_metadata(dest->as_register(), c->as_metadata()); 566 } 567 break; 568 } 569 570 case T_FLOAT: { 571 if (__ operand_valid_for_float_immediate(c->as_jfloat())) { 572 __ fmovs(dest->as_float_reg(), (c->as_jfloat())); 573 } else { 574 __ adr(rscratch1, InternalAddress(float_constant(c->as_jfloat()))); 575 __ ldrs(dest->as_float_reg(), Address(rscratch1)); 576 } 577 break; 578 } 579 580 case T_DOUBLE: { 581 if (__ operand_valid_for_float_immediate(c->as_jdouble())) { 582 __ fmovd(dest->as_double_reg(), (c->as_jdouble())); 583 } else { 584 __ adr(rscratch1, InternalAddress(double_constant(c->as_jdouble()))); 585 __ ldrd(dest->as_double_reg(), Address(rscratch1)); 586 } 587 break; 588 } 589 590 default: 591 ShouldNotReachHere(); 592 } 593 } 594 595 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 596 LIR_Const* c = src->as_constant_ptr(); 597 switch (c->type()) { 598 case T_OBJECT: 599 { 600 if (! c->as_jobject()) 601 __ str(zr, frame_map()->address_for_slot(dest->single_stack_ix())); 602 else { 603 const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr); 604 reg2stack(FrameMap::rscratch1_opr, dest, c->type()); 605 } 606 } 607 break; 608 case T_ADDRESS: 609 { 610 const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr); 611 reg2stack(FrameMap::rscratch1_opr, dest, c->type()); 612 } 613 case T_INT: 614 case T_FLOAT: 615 { 616 Register reg = zr; 617 if (c->as_jint_bits() == 0) 618 __ strw(zr, frame_map()->address_for_slot(dest->single_stack_ix())); 619 else { 620 __ movw(rscratch1, c->as_jint_bits()); 621 __ strw(rscratch1, frame_map()->address_for_slot(dest->single_stack_ix())); 622 } 623 } 624 break; 625 case T_LONG: 626 case T_DOUBLE: 627 { 628 Register reg = zr; 629 if (c->as_jlong_bits() == 0) 630 __ str(zr, frame_map()->address_for_slot(dest->double_stack_ix(), 631 lo_word_offset_in_bytes)); 632 else { 633 __ mov(rscratch1, (intptr_t)c->as_jlong_bits()); 634 __ str(rscratch1, frame_map()->address_for_slot(dest->double_stack_ix(), 635 lo_word_offset_in_bytes)); 636 } 637 } 638 break; 639 default: 640 ShouldNotReachHere(); 641 } 642 } 643 644 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 645 assert(src->is_constant(), "should not call otherwise"); 646 LIR_Const* c = src->as_constant_ptr(); 647 LIR_Address* to_addr = dest->as_address_ptr(); 648 649 void (Assembler::* insn)(Register Rt, const Address &adr); 650 651 switch (type) { 652 case T_ADDRESS: 653 assert(c->as_jint() == 0, "should be"); 654 insn = &Assembler::str; 655 break; 656 case T_LONG: 657 assert(c->as_jlong() == 0, "should be"); 658 insn = &Assembler::str; 659 break; 660 case T_INT: 661 assert(c->as_jint() == 0, "should be"); 662 insn = &Assembler::strw; 663 break; 664 case T_OBJECT: 665 case T_ARRAY: 666 assert(c->as_jobject() == nullptr, "should be"); 667 if (UseCompressedOops && !wide) { 668 insn = &Assembler::strw; 669 } else { 670 insn = &Assembler::str; 671 } 672 break; 673 case T_CHAR: 674 case T_SHORT: 675 assert(c->as_jint() == 0, "should be"); 676 insn = &Assembler::strh; 677 break; 678 case T_BOOLEAN: 679 case T_BYTE: 680 assert(c->as_jint() == 0, "should be"); 681 insn = &Assembler::strb; 682 break; 683 default: 684 ShouldNotReachHere(); 685 insn = &Assembler::str; // unreachable 686 } 687 688 if (info) add_debug_info_for_null_check_here(info); 689 (_masm->*insn)(zr, as_Address(to_addr, rscratch1)); 690 } 691 692 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) { 693 assert(src->is_register(), "should not call otherwise"); 694 assert(dest->is_register(), "should not call otherwise"); 695 696 // move between cpu-registers 697 if (dest->is_single_cpu()) { 698 if (src->type() == T_LONG) { 699 // Can do LONG -> OBJECT 700 move_regs(src->as_register_lo(), dest->as_register()); 701 return; 702 } 703 assert(src->is_single_cpu(), "must match"); 704 if (src->type() == T_OBJECT) { 705 __ verify_oop(src->as_register()); 706 } 707 move_regs(src->as_register(), dest->as_register()); 708 709 } else if (dest->is_double_cpu()) { 710 if (is_reference_type(src->type())) { 711 // Surprising to me but we can see move of a long to t_object 712 __ verify_oop(src->as_register()); 713 move_regs(src->as_register(), dest->as_register_lo()); 714 return; 715 } 716 assert(src->is_double_cpu(), "must match"); 717 Register f_lo = src->as_register_lo(); 718 Register f_hi = src->as_register_hi(); 719 Register t_lo = dest->as_register_lo(); 720 Register t_hi = dest->as_register_hi(); 721 assert(f_hi == f_lo, "must be same"); 722 assert(t_hi == t_lo, "must be same"); 723 move_regs(f_lo, t_lo); 724 725 } else if (dest->is_single_fpu()) { 726 __ fmovs(dest->as_float_reg(), src->as_float_reg()); 727 728 } else if (dest->is_double_fpu()) { 729 __ fmovd(dest->as_double_reg(), src->as_double_reg()); 730 731 } else { 732 ShouldNotReachHere(); 733 } 734 } 735 736 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 737 precond(src->is_register() && dest->is_stack()); 738 739 uint const c_sz32 = sizeof(uint32_t); 740 uint const c_sz64 = sizeof(uint64_t); 741 742 if (src->is_single_cpu()) { 743 int index = dest->single_stack_ix(); 744 if (is_reference_type(type)) { 745 __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 746 __ verify_oop(src->as_register()); 747 } else if (type == T_METADATA || type == T_DOUBLE || type == T_ADDRESS) { 748 __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 749 } else { 750 __ strw(src->as_register(), stack_slot_address(index, c_sz32, rscratch1)); 751 } 752 753 } else if (src->is_double_cpu()) { 754 int index = dest->double_stack_ix(); 755 Address dest_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes); 756 __ str(src->as_register_lo(), dest_addr_LO); 757 758 } else if (src->is_single_fpu()) { 759 int index = dest->single_stack_ix(); 760 __ strs(src->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1)); 761 762 } else if (src->is_double_fpu()) { 763 int index = dest->double_stack_ix(); 764 __ strd(src->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1)); 765 766 } else { 767 ShouldNotReachHere(); 768 } 769 } 770 771 772 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 773 LIR_Address* to_addr = dest->as_address_ptr(); 774 PatchingStub* patch = nullptr; 775 Register compressed_src = rscratch1; 776 777 if (patch_code != lir_patch_none) { 778 deoptimize_trap(info); 779 return; 780 } 781 782 if (is_reference_type(type)) { 783 __ verify_oop(src->as_register()); 784 785 if (UseCompressedOops && !wide) { 786 __ encode_heap_oop(compressed_src, src->as_register()); 787 } else { 788 compressed_src = src->as_register(); 789 } 790 } 791 792 int null_check_here = code_offset(); 793 switch (type) { 794 case T_FLOAT: { 795 __ strs(src->as_float_reg(), as_Address(to_addr)); 796 break; 797 } 798 799 case T_DOUBLE: { 800 __ strd(src->as_double_reg(), as_Address(to_addr)); 801 break; 802 } 803 804 case T_ARRAY: // fall through 805 case T_OBJECT: // fall through 806 if (UseCompressedOops && !wide) { 807 __ strw(compressed_src, as_Address(to_addr, rscratch2)); 808 } else { 809 __ str(compressed_src, as_Address(to_addr)); 810 } 811 break; 812 case T_METADATA: 813 // We get here to store a method pointer to the stack to pass to 814 // a dtrace runtime call. This can't work on 64 bit with 815 // compressed klass ptrs: T_METADATA can be a compressed klass 816 // ptr or a 64 bit method pointer. 817 ShouldNotReachHere(); 818 __ str(src->as_register(), as_Address(to_addr)); 819 break; 820 case T_ADDRESS: 821 __ str(src->as_register(), as_Address(to_addr)); 822 break; 823 case T_INT: 824 __ strw(src->as_register(), as_Address(to_addr)); 825 break; 826 827 case T_LONG: { 828 __ str(src->as_register_lo(), as_Address_lo(to_addr)); 829 break; 830 } 831 832 case T_BYTE: // fall through 833 case T_BOOLEAN: { 834 __ strb(src->as_register(), as_Address(to_addr)); 835 break; 836 } 837 838 case T_CHAR: // fall through 839 case T_SHORT: 840 __ strh(src->as_register(), as_Address(to_addr)); 841 break; 842 843 default: 844 ShouldNotReachHere(); 845 } 846 if (info != nullptr) { 847 add_debug_info_for_null_check(null_check_here, info); 848 } 849 } 850 851 852 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 853 precond(src->is_stack() && dest->is_register()); 854 855 uint const c_sz32 = sizeof(uint32_t); 856 uint const c_sz64 = sizeof(uint64_t); 857 858 if (dest->is_single_cpu()) { 859 int index = src->single_stack_ix(); 860 if (is_reference_type(type)) { 861 __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 862 __ verify_oop(dest->as_register()); 863 } else if (type == T_METADATA || type == T_ADDRESS) { 864 __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 865 } else { 866 __ ldrw(dest->as_register(), stack_slot_address(index, c_sz32, rscratch1)); 867 } 868 869 } else if (dest->is_double_cpu()) { 870 int index = src->double_stack_ix(); 871 Address src_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes); 872 __ ldr(dest->as_register_lo(), src_addr_LO); 873 874 } else if (dest->is_single_fpu()) { 875 int index = src->single_stack_ix(); 876 __ ldrs(dest->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1)); 877 878 } else if (dest->is_double_fpu()) { 879 int index = src->double_stack_ix(); 880 __ ldrd(dest->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1)); 881 882 } else { 883 ShouldNotReachHere(); 884 } 885 } 886 887 888 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) { 889 address target = nullptr; 890 relocInfo::relocType reloc_type = relocInfo::none; 891 892 switch (patching_id(info)) { 893 case PatchingStub::access_field_id: 894 target = Runtime1::entry_for(StubId::c1_access_field_patching_id); 895 reloc_type = relocInfo::section_word_type; 896 break; 897 case PatchingStub::load_klass_id: 898 target = Runtime1::entry_for(StubId::c1_load_klass_patching_id); 899 reloc_type = relocInfo::metadata_type; 900 break; 901 case PatchingStub::load_mirror_id: 902 target = Runtime1::entry_for(StubId::c1_load_mirror_patching_id); 903 reloc_type = relocInfo::oop_type; 904 break; 905 case PatchingStub::load_appendix_id: 906 target = Runtime1::entry_for(StubId::c1_load_appendix_patching_id); 907 reloc_type = relocInfo::oop_type; 908 break; 909 default: ShouldNotReachHere(); 910 } 911 912 __ far_call(RuntimeAddress(target)); 913 add_call_info_here(info); 914 } 915 916 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 917 918 LIR_Opr temp; 919 if (type == T_LONG || type == T_DOUBLE) 920 temp = FrameMap::rscratch1_long_opr; 921 else 922 temp = FrameMap::rscratch1_opr; 923 924 stack2reg(src, temp, src->type()); 925 reg2stack(temp, dest, dest->type()); 926 } 927 928 929 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 930 LIR_Address* addr = src->as_address_ptr(); 931 LIR_Address* from_addr = src->as_address_ptr(); 932 933 if (addr->base()->type() == T_OBJECT) { 934 __ verify_oop(addr->base()->as_pointer_register()); 935 } 936 937 if (patch_code != lir_patch_none) { 938 deoptimize_trap(info); 939 return; 940 } 941 942 if (info != nullptr) { 943 add_debug_info_for_null_check_here(info); 944 } 945 int null_check_here = code_offset(); 946 switch (type) { 947 case T_FLOAT: { 948 __ ldrs(dest->as_float_reg(), as_Address(from_addr)); 949 break; 950 } 951 952 case T_DOUBLE: { 953 __ ldrd(dest->as_double_reg(), as_Address(from_addr)); 954 break; 955 } 956 957 case T_ARRAY: // fall through 958 case T_OBJECT: // fall through 959 if (UseCompressedOops && !wide) { 960 __ ldrw(dest->as_register(), as_Address(from_addr)); 961 } else { 962 __ ldr(dest->as_register(), as_Address(from_addr)); 963 } 964 break; 965 case T_METADATA: 966 // We get here to store a method pointer to the stack to pass to 967 // a dtrace runtime call. This can't work on 64 bit with 968 // compressed klass ptrs: T_METADATA can be a compressed klass 969 // ptr or a 64 bit method pointer. 970 ShouldNotReachHere(); 971 __ ldr(dest->as_register(), as_Address(from_addr)); 972 break; 973 case T_ADDRESS: 974 __ ldr(dest->as_register(), as_Address(from_addr)); 975 break; 976 case T_INT: 977 __ ldrw(dest->as_register(), as_Address(from_addr)); 978 break; 979 980 case T_LONG: { 981 __ ldr(dest->as_register_lo(), as_Address_lo(from_addr)); 982 break; 983 } 984 985 case T_BYTE: 986 __ ldrsb(dest->as_register(), as_Address(from_addr)); 987 break; 988 case T_BOOLEAN: { 989 __ ldrb(dest->as_register(), as_Address(from_addr)); 990 break; 991 } 992 993 case T_CHAR: 994 __ ldrh(dest->as_register(), as_Address(from_addr)); 995 break; 996 case T_SHORT: 997 __ ldrsh(dest->as_register(), as_Address(from_addr)); 998 break; 999 1000 default: 1001 ShouldNotReachHere(); 1002 } 1003 1004 if (is_reference_type(type)) { 1005 if (UseCompressedOops && !wide) { 1006 __ decode_heap_oop(dest->as_register()); 1007 } 1008 1009 __ verify_oop(dest->as_register()); 1010 } 1011 } 1012 1013 1014 int LIR_Assembler::array_element_size(BasicType type) const { 1015 int elem_size = type2aelembytes(type); 1016 return exact_log2(elem_size); 1017 } 1018 1019 1020 void LIR_Assembler::emit_op3(LIR_Op3* op) { 1021 switch (op->code()) { 1022 case lir_idiv: 1023 case lir_irem: 1024 arithmetic_idiv(op->code(), 1025 op->in_opr1(), 1026 op->in_opr2(), 1027 op->in_opr3(), 1028 op->result_opr(), 1029 op->info()); 1030 break; 1031 case lir_fmad: 1032 __ fmaddd(op->result_opr()->as_double_reg(), 1033 op->in_opr1()->as_double_reg(), 1034 op->in_opr2()->as_double_reg(), 1035 op->in_opr3()->as_double_reg()); 1036 break; 1037 case lir_fmaf: 1038 __ fmadds(op->result_opr()->as_float_reg(), 1039 op->in_opr1()->as_float_reg(), 1040 op->in_opr2()->as_float_reg(), 1041 op->in_opr3()->as_float_reg()); 1042 break; 1043 default: ShouldNotReachHere(); break; 1044 } 1045 } 1046 1047 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 1048 #ifdef ASSERT 1049 assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label"); 1050 if (op->block() != nullptr) _branch_target_blocks.append(op->block()); 1051 if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock()); 1052 #endif 1053 1054 if (op->cond() == lir_cond_always) { 1055 if (op->info() != nullptr) add_debug_info_for_branch(op->info()); 1056 __ b(*(op->label())); 1057 } else { 1058 Assembler::Condition acond; 1059 if (op->code() == lir_cond_float_branch) { 1060 bool is_unordered = (op->ublock() == op->block()); 1061 // Assembler::EQ does not permit unordered branches, so we add 1062 // another branch here. Likewise, Assembler::NE does not permit 1063 // ordered branches. 1064 if ((is_unordered && op->cond() == lir_cond_equal) 1065 || (!is_unordered && op->cond() == lir_cond_notEqual)) 1066 __ br(Assembler::VS, *(op->ublock()->label())); 1067 switch(op->cond()) { 1068 case lir_cond_equal: acond = Assembler::EQ; break; 1069 case lir_cond_notEqual: acond = Assembler::NE; break; 1070 case lir_cond_less: acond = (is_unordered ? Assembler::LT : Assembler::LO); break; 1071 case lir_cond_lessEqual: acond = (is_unordered ? Assembler::LE : Assembler::LS); break; 1072 case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::HS : Assembler::GE); break; 1073 case lir_cond_greater: acond = (is_unordered ? Assembler::HI : Assembler::GT); break; 1074 default: ShouldNotReachHere(); 1075 acond = Assembler::EQ; // unreachable 1076 } 1077 } else { 1078 switch (op->cond()) { 1079 case lir_cond_equal: acond = Assembler::EQ; break; 1080 case lir_cond_notEqual: acond = Assembler::NE; break; 1081 case lir_cond_less: acond = Assembler::LT; break; 1082 case lir_cond_lessEqual: acond = Assembler::LE; break; 1083 case lir_cond_greaterEqual: acond = Assembler::GE; break; 1084 case lir_cond_greater: acond = Assembler::GT; break; 1085 case lir_cond_belowEqual: acond = Assembler::LS; break; 1086 case lir_cond_aboveEqual: acond = Assembler::HS; break; 1087 default: ShouldNotReachHere(); 1088 acond = Assembler::EQ; // unreachable 1089 } 1090 } 1091 __ br(acond,*(op->label())); 1092 } 1093 } 1094 1095 1096 1097 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 1098 LIR_Opr src = op->in_opr(); 1099 LIR_Opr dest = op->result_opr(); 1100 1101 switch (op->bytecode()) { 1102 case Bytecodes::_i2f: 1103 { 1104 __ scvtfws(dest->as_float_reg(), src->as_register()); 1105 break; 1106 } 1107 case Bytecodes::_i2d: 1108 { 1109 __ scvtfwd(dest->as_double_reg(), src->as_register()); 1110 break; 1111 } 1112 case Bytecodes::_l2d: 1113 { 1114 __ scvtfd(dest->as_double_reg(), src->as_register_lo()); 1115 break; 1116 } 1117 case Bytecodes::_l2f: 1118 { 1119 __ scvtfs(dest->as_float_reg(), src->as_register_lo()); 1120 break; 1121 } 1122 case Bytecodes::_f2d: 1123 { 1124 __ fcvts(dest->as_double_reg(), src->as_float_reg()); 1125 break; 1126 } 1127 case Bytecodes::_d2f: 1128 { 1129 __ fcvtd(dest->as_float_reg(), src->as_double_reg()); 1130 break; 1131 } 1132 case Bytecodes::_i2c: 1133 { 1134 __ ubfx(dest->as_register(), src->as_register(), 0, 16); 1135 break; 1136 } 1137 case Bytecodes::_i2l: 1138 { 1139 __ sxtw(dest->as_register_lo(), src->as_register()); 1140 break; 1141 } 1142 case Bytecodes::_i2s: 1143 { 1144 __ sxth(dest->as_register(), src->as_register()); 1145 break; 1146 } 1147 case Bytecodes::_i2b: 1148 { 1149 __ sxtb(dest->as_register(), src->as_register()); 1150 break; 1151 } 1152 case Bytecodes::_l2i: 1153 { 1154 _masm->block_comment("FIXME: This could be a no-op"); 1155 __ uxtw(dest->as_register(), src->as_register_lo()); 1156 break; 1157 } 1158 case Bytecodes::_d2l: 1159 { 1160 __ fcvtzd(dest->as_register_lo(), src->as_double_reg()); 1161 break; 1162 } 1163 case Bytecodes::_f2i: 1164 { 1165 __ fcvtzsw(dest->as_register(), src->as_float_reg()); 1166 break; 1167 } 1168 case Bytecodes::_f2l: 1169 { 1170 __ fcvtzs(dest->as_register_lo(), src->as_float_reg()); 1171 break; 1172 } 1173 case Bytecodes::_d2i: 1174 { 1175 __ fcvtzdw(dest->as_register(), src->as_double_reg()); 1176 break; 1177 } 1178 default: ShouldNotReachHere(); 1179 } 1180 } 1181 1182 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 1183 if (op->init_check()) { 1184 __ lea(rscratch1, Address(op->klass()->as_register(), InstanceKlass::init_state_offset())); 1185 __ ldarb(rscratch1, rscratch1); 1186 __ cmpw(rscratch1, InstanceKlass::fully_initialized); 1187 add_debug_info_for_null_check_here(op->stub()->info()); 1188 __ br(Assembler::NE, *op->stub()->entry()); 1189 } 1190 __ allocate_object(op->obj()->as_register(), 1191 op->tmp1()->as_register(), 1192 op->tmp2()->as_register(), 1193 op->header_size(), 1194 op->object_size(), 1195 op->klass()->as_register(), 1196 *op->stub()->entry()); 1197 __ bind(*op->stub()->continuation()); 1198 } 1199 1200 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 1201 Register len = op->len()->as_register(); 1202 __ uxtw(len, len); 1203 1204 if (UseSlowPath || 1205 (!UseFastNewObjectArray && is_reference_type(op->type())) || 1206 (!UseFastNewTypeArray && !is_reference_type(op->type()))) { 1207 __ b(*op->stub()->entry()); 1208 } else { 1209 Register tmp1 = op->tmp1()->as_register(); 1210 Register tmp2 = op->tmp2()->as_register(); 1211 Register tmp3 = op->tmp3()->as_register(); 1212 if (len == tmp1) { 1213 tmp1 = tmp3; 1214 } else if (len == tmp2) { 1215 tmp2 = tmp3; 1216 } else if (len == tmp3) { 1217 // everything is ok 1218 } else { 1219 __ mov(tmp3, len); 1220 } 1221 __ allocate_array(op->obj()->as_register(), 1222 len, 1223 tmp1, 1224 tmp2, 1225 arrayOopDesc::base_offset_in_bytes(op->type()), 1226 array_element_size(op->type()), 1227 op->klass()->as_register(), 1228 *op->stub()->entry(), 1229 op->zero_array()); 1230 } 1231 __ bind(*op->stub()->continuation()); 1232 } 1233 1234 void LIR_Assembler::type_profile_helper(Register mdo, 1235 ciMethodData *md, ciProfileData *data, 1236 Register recv, Label* update_done) { 1237 1238 // Given a profile data offset, generate an Address which points to 1239 // the corresponding slot in mdo->data(). 1240 // Clobbers rscratch2. 1241 auto slot_at = [=](ByteSize offset) -> Address { 1242 return __ form_address(rscratch2, mdo, 1243 md->byte_offset_of_slot(data, offset), 1244 LogBytesPerWord); 1245 }; 1246 1247 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1248 Label next_test; 1249 // See if the receiver is receiver[n]. 1250 __ ldr(rscratch1, slot_at(ReceiverTypeData::receiver_offset(i))); 1251 __ cmp(recv, rscratch1); 1252 __ br(Assembler::NE, next_test); 1253 __ addptr(slot_at(ReceiverTypeData::receiver_count_offset(i)), 1254 DataLayout::counter_increment); 1255 __ b(*update_done); 1256 __ bind(next_test); 1257 } 1258 1259 // Didn't find receiver; find next empty slot and fill it in 1260 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1261 Label next_test; 1262 Address recv_addr(slot_at(ReceiverTypeData::receiver_offset(i))); 1263 __ ldr(rscratch1, recv_addr); 1264 __ cbnz(rscratch1, next_test); 1265 __ str(recv, recv_addr); 1266 __ mov(rscratch1, DataLayout::counter_increment); 1267 __ str(rscratch1, slot_at(ReceiverTypeData::receiver_count_offset(i))); 1268 __ b(*update_done); 1269 __ bind(next_test); 1270 } 1271 } 1272 1273 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 1274 // we always need a stub for the failure case. 1275 CodeStub* stub = op->stub(); 1276 Register obj = op->object()->as_register(); 1277 Register k_RInfo = op->tmp1()->as_register(); 1278 Register klass_RInfo = op->tmp2()->as_register(); 1279 Register dst = op->result_opr()->as_register(); 1280 ciKlass* k = op->klass(); 1281 Register Rtmp1 = noreg; 1282 1283 // check if it needs to be profiled 1284 ciMethodData* md; 1285 ciProfileData* data; 1286 1287 const bool should_profile = op->should_profile(); 1288 1289 if (should_profile) { 1290 ciMethod* method = op->profiled_method(); 1291 assert(method != nullptr, "Should have method"); 1292 int bci = op->profiled_bci(); 1293 md = method->method_data_or_null(); 1294 assert(md != nullptr, "Sanity"); 1295 data = md->bci_to_data(bci); 1296 assert(data != nullptr, "need data for type check"); 1297 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1298 } 1299 Label* success_target = success; 1300 Label* failure_target = failure; 1301 1302 if (obj == k_RInfo) { 1303 k_RInfo = dst; 1304 } else if (obj == klass_RInfo) { 1305 klass_RInfo = dst; 1306 } 1307 if (k->is_loaded() && !UseCompressedClassPointers) { 1308 select_different_registers(obj, dst, k_RInfo, klass_RInfo); 1309 } else { 1310 Rtmp1 = op->tmp3()->as_register(); 1311 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1); 1312 } 1313 1314 assert_different_registers(obj, k_RInfo, klass_RInfo); 1315 1316 if (should_profile) { 1317 Register mdo = klass_RInfo; 1318 __ mov_metadata(mdo, md->constant_encoding()); 1319 Label not_null; 1320 __ cbnz(obj, not_null); 1321 // Object is null; update MDO and exit 1322 Address data_addr 1323 = __ form_address(rscratch2, mdo, 1324 md->byte_offset_of_slot(data, DataLayout::flags_offset()), 1325 0); 1326 __ ldrb(rscratch1, data_addr); 1327 __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant()); 1328 __ strb(rscratch1, data_addr); 1329 __ b(*obj_is_null); 1330 __ bind(not_null); 1331 1332 Label update_done; 1333 Register recv = k_RInfo; 1334 __ load_klass(recv, obj); 1335 type_profile_helper(mdo, md, data, recv, &update_done); 1336 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1337 __ addptr(counter_addr, DataLayout::counter_increment); 1338 1339 __ bind(update_done); 1340 } else { 1341 __ cbz(obj, *obj_is_null); 1342 } 1343 1344 if (!k->is_loaded()) { 1345 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 1346 } else { 1347 __ mov_metadata(k_RInfo, k->constant_encoding()); 1348 } 1349 __ verify_oop(obj); 1350 1351 if (op->fast_check()) { 1352 // get object class 1353 // not a safepoint as obj null check happens earlier 1354 __ load_klass(rscratch1, obj); 1355 __ cmp( rscratch1, k_RInfo); 1356 1357 __ br(Assembler::NE, *failure_target); 1358 // successful cast, fall through to profile or jump 1359 } else { 1360 // get object class 1361 // not a safepoint as obj null check happens earlier 1362 __ load_klass(klass_RInfo, obj); 1363 if (k->is_loaded()) { 1364 // See if we get an immediate positive hit 1365 __ ldr(rscratch1, Address(klass_RInfo, int64_t(k->super_check_offset()))); 1366 __ cmp(k_RInfo, rscratch1); 1367 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) { 1368 __ br(Assembler::NE, *failure_target); 1369 // successful cast, fall through to profile or jump 1370 } else { 1371 // See if we get an immediate positive hit 1372 __ br(Assembler::EQ, *success_target); 1373 // check for self 1374 __ cmp(klass_RInfo, k_RInfo); 1375 __ br(Assembler::EQ, *success_target); 1376 1377 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1378 __ far_call(RuntimeAddress(Runtime1::entry_for(StubId::c1_slow_subtype_check_id))); 1379 __ ldr(klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1380 // result is a boolean 1381 __ cbzw(klass_RInfo, *failure_target); 1382 // successful cast, fall through to profile or jump 1383 } 1384 } else { 1385 // perform the fast part of the checking logic 1386 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1387 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1388 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1389 __ far_call(RuntimeAddress(Runtime1::entry_for(StubId::c1_slow_subtype_check_id))); 1390 __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1391 // result is a boolean 1392 __ cbz(k_RInfo, *failure_target); 1393 // successful cast, fall through to profile or jump 1394 } 1395 } 1396 __ b(*success); 1397 } 1398 1399 1400 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 1401 const bool should_profile = op->should_profile(); 1402 1403 LIR_Code code = op->code(); 1404 if (code == lir_store_check) { 1405 Register value = op->object()->as_register(); 1406 Register array = op->array()->as_register(); 1407 Register k_RInfo = op->tmp1()->as_register(); 1408 Register klass_RInfo = op->tmp2()->as_register(); 1409 Register Rtmp1 = op->tmp3()->as_register(); 1410 1411 CodeStub* stub = op->stub(); 1412 1413 // check if it needs to be profiled 1414 ciMethodData* md; 1415 ciProfileData* data; 1416 1417 if (should_profile) { 1418 ciMethod* method = op->profiled_method(); 1419 assert(method != nullptr, "Should have method"); 1420 int bci = op->profiled_bci(); 1421 md = method->method_data_or_null(); 1422 assert(md != nullptr, "Sanity"); 1423 data = md->bci_to_data(bci); 1424 assert(data != nullptr, "need data for type check"); 1425 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1426 } 1427 Label done; 1428 Label* success_target = &done; 1429 Label* failure_target = stub->entry(); 1430 1431 if (should_profile) { 1432 Label not_null; 1433 Register mdo = klass_RInfo; 1434 __ mov_metadata(mdo, md->constant_encoding()); 1435 __ cbnz(value, not_null); 1436 // Object is null; update MDO and exit 1437 Address data_addr 1438 = __ form_address(rscratch2, mdo, 1439 md->byte_offset_of_slot(data, DataLayout::flags_offset()), 0); 1440 __ ldrb(rscratch1, data_addr); 1441 __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant()); 1442 __ strb(rscratch1, data_addr); 1443 __ b(done); 1444 __ bind(not_null); 1445 1446 Label update_done; 1447 Register recv = k_RInfo; 1448 __ load_klass(recv, value); 1449 type_profile_helper(mdo, md, data, recv, &update_done); 1450 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1451 __ addptr(counter_addr, DataLayout::counter_increment); 1452 __ bind(update_done); 1453 } else { 1454 __ cbz(value, done); 1455 } 1456 1457 add_debug_info_for_null_check_here(op->info_for_exception()); 1458 __ load_klass(k_RInfo, array); 1459 __ load_klass(klass_RInfo, value); 1460 1461 // get instance klass (it's already uncompressed) 1462 __ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset())); 1463 // perform the fast part of the checking logic 1464 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1465 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1466 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1467 __ far_call(RuntimeAddress(Runtime1::entry_for(StubId::c1_slow_subtype_check_id))); 1468 __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1469 // result is a boolean 1470 __ cbzw(k_RInfo, *failure_target); 1471 // fall through to the success case 1472 1473 __ bind(done); 1474 } else if (code == lir_checkcast) { 1475 Register obj = op->object()->as_register(); 1476 Register dst = op->result_opr()->as_register(); 1477 Label success; 1478 emit_typecheck_helper(op, &success, op->stub()->entry(), &success); 1479 __ bind(success); 1480 if (dst != obj) { 1481 __ mov(dst, obj); 1482 } 1483 } else if (code == lir_instanceof) { 1484 Register obj = op->object()->as_register(); 1485 Register dst = op->result_opr()->as_register(); 1486 Label success, failure, done; 1487 emit_typecheck_helper(op, &success, &failure, &failure); 1488 __ bind(failure); 1489 __ mov(dst, zr); 1490 __ b(done); 1491 __ bind(success); 1492 __ mov(dst, 1); 1493 __ bind(done); 1494 } else { 1495 ShouldNotReachHere(); 1496 } 1497 } 1498 1499 void LIR_Assembler::casw(Register addr, Register newval, Register cmpval) { 1500 __ cmpxchg(addr, cmpval, newval, Assembler::word, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1); 1501 __ cset(rscratch1, Assembler::NE); 1502 __ membar(__ AnyAny); 1503 } 1504 1505 void LIR_Assembler::casl(Register addr, Register newval, Register cmpval) { 1506 __ cmpxchg(addr, cmpval, newval, Assembler::xword, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1); 1507 __ cset(rscratch1, Assembler::NE); 1508 __ membar(__ AnyAny); 1509 } 1510 1511 1512 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 1513 Register addr; 1514 if (op->addr()->is_register()) { 1515 addr = as_reg(op->addr()); 1516 } else { 1517 assert(op->addr()->is_address(), "what else?"); 1518 LIR_Address* addr_ptr = op->addr()->as_address_ptr(); 1519 assert(addr_ptr->disp() == 0, "need 0 disp"); 1520 assert(addr_ptr->index() == LIR_Opr::illegalOpr(), "need 0 index"); 1521 addr = as_reg(addr_ptr->base()); 1522 } 1523 Register newval = as_reg(op->new_value()); 1524 Register cmpval = as_reg(op->cmp_value()); 1525 1526 if (op->code() == lir_cas_obj) { 1527 if (UseCompressedOops) { 1528 Register t1 = op->tmp1()->as_register(); 1529 assert(op->tmp1()->is_valid(), "must be"); 1530 __ encode_heap_oop(t1, cmpval); 1531 cmpval = t1; 1532 __ encode_heap_oop(rscratch2, newval); 1533 newval = rscratch2; 1534 casw(addr, newval, cmpval); 1535 } else { 1536 casl(addr, newval, cmpval); 1537 } 1538 } else if (op->code() == lir_cas_int) { 1539 casw(addr, newval, cmpval); 1540 } else { 1541 casl(addr, newval, cmpval); 1542 } 1543 } 1544 1545 1546 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type, 1547 LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) { 1548 assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on aarch64"); 1549 1550 Assembler::Condition acond, ncond; 1551 switch (condition) { 1552 case lir_cond_equal: acond = Assembler::EQ; ncond = Assembler::NE; break; 1553 case lir_cond_notEqual: acond = Assembler::NE; ncond = Assembler::EQ; break; 1554 case lir_cond_less: acond = Assembler::LT; ncond = Assembler::GE; break; 1555 case lir_cond_lessEqual: acond = Assembler::LE; ncond = Assembler::GT; break; 1556 case lir_cond_greaterEqual: acond = Assembler::GE; ncond = Assembler::LT; break; 1557 case lir_cond_greater: acond = Assembler::GT; ncond = Assembler::LE; break; 1558 case lir_cond_belowEqual: 1559 case lir_cond_aboveEqual: 1560 default: ShouldNotReachHere(); 1561 acond = Assembler::EQ; ncond = Assembler::NE; // unreachable 1562 } 1563 1564 assert(result->is_single_cpu() || result->is_double_cpu(), 1565 "expect single register for result"); 1566 if (opr1->is_constant() && opr2->is_constant() 1567 && opr1->type() == T_INT && opr2->type() == T_INT) { 1568 jint val1 = opr1->as_jint(); 1569 jint val2 = opr2->as_jint(); 1570 if (val1 == 0 && val2 == 1) { 1571 __ cset(result->as_register(), ncond); 1572 return; 1573 } else if (val1 == 1 && val2 == 0) { 1574 __ cset(result->as_register(), acond); 1575 return; 1576 } 1577 } 1578 1579 if (opr1->is_constant() && opr2->is_constant() 1580 && opr1->type() == T_LONG && opr2->type() == T_LONG) { 1581 jlong val1 = opr1->as_jlong(); 1582 jlong val2 = opr2->as_jlong(); 1583 if (val1 == 0 && val2 == 1) { 1584 __ cset(result->as_register_lo(), ncond); 1585 return; 1586 } else if (val1 == 1 && val2 == 0) { 1587 __ cset(result->as_register_lo(), acond); 1588 return; 1589 } 1590 } 1591 1592 if (opr1->is_stack()) { 1593 stack2reg(opr1, FrameMap::rscratch1_opr, result->type()); 1594 opr1 = FrameMap::rscratch1_opr; 1595 } else if (opr1->is_constant()) { 1596 LIR_Opr tmp 1597 = opr1->type() == T_LONG ? FrameMap::rscratch1_long_opr : FrameMap::rscratch1_opr; 1598 const2reg(opr1, tmp, lir_patch_none, nullptr); 1599 opr1 = tmp; 1600 } 1601 1602 if (opr2->is_stack()) { 1603 stack2reg(opr2, FrameMap::rscratch2_opr, result->type()); 1604 opr2 = FrameMap::rscratch2_opr; 1605 } else if (opr2->is_constant()) { 1606 LIR_Opr tmp 1607 = opr2->type() == T_LONG ? FrameMap::rscratch2_long_opr : FrameMap::rscratch2_opr; 1608 const2reg(opr2, tmp, lir_patch_none, nullptr); 1609 opr2 = tmp; 1610 } 1611 1612 if (result->type() == T_LONG) 1613 __ csel(result->as_register_lo(), opr1->as_register_lo(), opr2->as_register_lo(), acond); 1614 else 1615 __ csel(result->as_register(), opr1->as_register(), opr2->as_register(), acond); 1616 } 1617 1618 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info) { 1619 assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method"); 1620 1621 if (left->is_single_cpu()) { 1622 Register lreg = left->as_register(); 1623 Register dreg = as_reg(dest); 1624 1625 if (right->is_single_cpu()) { 1626 // cpu register - cpu register 1627 1628 assert(left->type() == T_INT && right->type() == T_INT && dest->type() == T_INT, 1629 "should be"); 1630 Register rreg = right->as_register(); 1631 switch (code) { 1632 case lir_add: __ addw (dest->as_register(), lreg, rreg); break; 1633 case lir_sub: __ subw (dest->as_register(), lreg, rreg); break; 1634 case lir_mul: __ mulw (dest->as_register(), lreg, rreg); break; 1635 default: ShouldNotReachHere(); 1636 } 1637 1638 } else if (right->is_double_cpu()) { 1639 Register rreg = right->as_register_lo(); 1640 // single_cpu + double_cpu: can happen with obj+long 1641 assert(code == lir_add || code == lir_sub, "mismatched arithmetic op"); 1642 switch (code) { 1643 case lir_add: __ add(dreg, lreg, rreg); break; 1644 case lir_sub: __ sub(dreg, lreg, rreg); break; 1645 default: ShouldNotReachHere(); 1646 } 1647 } else if (right->is_constant()) { 1648 // cpu register - constant 1649 jlong c; 1650 1651 // FIXME. This is fugly: we really need to factor all this logic. 1652 switch(right->type()) { 1653 case T_LONG: 1654 c = right->as_constant_ptr()->as_jlong(); 1655 break; 1656 case T_INT: 1657 case T_ADDRESS: 1658 c = right->as_constant_ptr()->as_jint(); 1659 break; 1660 default: 1661 ShouldNotReachHere(); 1662 c = 0; // unreachable 1663 break; 1664 } 1665 1666 assert(code == lir_add || code == lir_sub, "mismatched arithmetic op"); 1667 if (c == 0 && dreg == lreg) { 1668 COMMENT("effective nop elided"); 1669 return; 1670 } 1671 switch(left->type()) { 1672 case T_INT: 1673 switch (code) { 1674 case lir_add: __ addw(dreg, lreg, c); break; 1675 case lir_sub: __ subw(dreg, lreg, c); break; 1676 default: ShouldNotReachHere(); 1677 } 1678 break; 1679 case T_OBJECT: 1680 case T_ADDRESS: 1681 switch (code) { 1682 case lir_add: __ add(dreg, lreg, c); break; 1683 case lir_sub: __ sub(dreg, lreg, c); break; 1684 default: ShouldNotReachHere(); 1685 } 1686 break; 1687 default: 1688 ShouldNotReachHere(); 1689 } 1690 } else { 1691 ShouldNotReachHere(); 1692 } 1693 1694 } else if (left->is_double_cpu()) { 1695 Register lreg_lo = left->as_register_lo(); 1696 1697 if (right->is_double_cpu()) { 1698 // cpu register - cpu register 1699 Register rreg_lo = right->as_register_lo(); 1700 switch (code) { 1701 case lir_add: __ add (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1702 case lir_sub: __ sub (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1703 case lir_mul: __ mul (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1704 case lir_div: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, false, rscratch1); break; 1705 case lir_rem: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, true, rscratch1); break; 1706 default: 1707 ShouldNotReachHere(); 1708 } 1709 1710 } else if (right->is_constant()) { 1711 jlong c = right->as_constant_ptr()->as_jlong(); 1712 Register dreg = as_reg(dest); 1713 switch (code) { 1714 case lir_add: 1715 case lir_sub: 1716 if (c == 0 && dreg == lreg_lo) { 1717 COMMENT("effective nop elided"); 1718 return; 1719 } 1720 code == lir_add ? __ add(dreg, lreg_lo, c) : __ sub(dreg, lreg_lo, c); 1721 break; 1722 case lir_div: 1723 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1724 if (c == 1) { 1725 // move lreg_lo to dreg if divisor is 1 1726 __ mov(dreg, lreg_lo); 1727 } else { 1728 unsigned int shift = log2i_exact(c); 1729 // use rscratch1 as intermediate result register 1730 __ asr(rscratch1, lreg_lo, 63); 1731 __ add(rscratch1, lreg_lo, rscratch1, Assembler::LSR, 64 - shift); 1732 __ asr(dreg, rscratch1, shift); 1733 } 1734 break; 1735 case lir_rem: 1736 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1737 if (c == 1) { 1738 // move 0 to dreg if divisor is 1 1739 __ mov(dreg, zr); 1740 } else { 1741 // use rscratch1 as intermediate result register 1742 __ negs(rscratch1, lreg_lo); 1743 __ andr(dreg, lreg_lo, c - 1); 1744 __ andr(rscratch1, rscratch1, c - 1); 1745 __ csneg(dreg, dreg, rscratch1, Assembler::MI); 1746 } 1747 break; 1748 default: 1749 ShouldNotReachHere(); 1750 } 1751 } else { 1752 ShouldNotReachHere(); 1753 } 1754 } else if (left->is_single_fpu()) { 1755 assert(right->is_single_fpu(), "right hand side of float arithmetics needs to be float register"); 1756 switch (code) { 1757 case lir_add: __ fadds (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1758 case lir_sub: __ fsubs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1759 case lir_mul: __ fmuls (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1760 case lir_div: __ fdivs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1761 default: 1762 ShouldNotReachHere(); 1763 } 1764 } else if (left->is_double_fpu()) { 1765 if (right->is_double_fpu()) { 1766 // fpu register - fpu register 1767 switch (code) { 1768 case lir_add: __ faddd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1769 case lir_sub: __ fsubd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1770 case lir_mul: __ fmuld (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1771 case lir_div: __ fdivd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1772 default: 1773 ShouldNotReachHere(); 1774 } 1775 } else { 1776 if (right->is_constant()) { 1777 ShouldNotReachHere(); 1778 } 1779 ShouldNotReachHere(); 1780 } 1781 } else if (left->is_single_stack() || left->is_address()) { 1782 assert(left == dest, "left and dest must be equal"); 1783 ShouldNotReachHere(); 1784 } else { 1785 ShouldNotReachHere(); 1786 } 1787 } 1788 1789 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) { 1790 switch(code) { 1791 case lir_abs : __ fabsd(dest->as_double_reg(), value->as_double_reg()); break; 1792 case lir_sqrt: __ fsqrtd(dest->as_double_reg(), value->as_double_reg()); break; 1793 case lir_f2hf: __ flt_to_flt16(dest->as_register(), value->as_float_reg(), tmp->as_float_reg()); break; 1794 case lir_hf2f: __ flt16_to_flt(dest->as_float_reg(), value->as_register(), tmp->as_float_reg()); break; 1795 default : ShouldNotReachHere(); 1796 } 1797 } 1798 1799 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) { 1800 1801 assert(left->is_single_cpu() || left->is_double_cpu(), "expect single or double register"); 1802 Register Rleft = left->is_single_cpu() ? left->as_register() : 1803 left->as_register_lo(); 1804 if (dst->is_single_cpu()) { 1805 Register Rdst = dst->as_register(); 1806 if (right->is_constant()) { 1807 switch (code) { 1808 case lir_logic_and: __ andw (Rdst, Rleft, right->as_jint()); break; 1809 case lir_logic_or: __ orrw (Rdst, Rleft, right->as_jint()); break; 1810 case lir_logic_xor: __ eorw (Rdst, Rleft, right->as_jint()); break; 1811 default: ShouldNotReachHere(); break; 1812 } 1813 } else { 1814 Register Rright = right->is_single_cpu() ? right->as_register() : 1815 right->as_register_lo(); 1816 switch (code) { 1817 case lir_logic_and: __ andw (Rdst, Rleft, Rright); break; 1818 case lir_logic_or: __ orrw (Rdst, Rleft, Rright); break; 1819 case lir_logic_xor: __ eorw (Rdst, Rleft, Rright); break; 1820 default: ShouldNotReachHere(); break; 1821 } 1822 } 1823 } else { 1824 Register Rdst = dst->as_register_lo(); 1825 if (right->is_constant()) { 1826 switch (code) { 1827 case lir_logic_and: __ andr (Rdst, Rleft, right->as_jlong()); break; 1828 case lir_logic_or: __ orr (Rdst, Rleft, right->as_jlong()); break; 1829 case lir_logic_xor: __ eor (Rdst, Rleft, right->as_jlong()); break; 1830 default: ShouldNotReachHere(); break; 1831 } 1832 } else { 1833 Register Rright = right->is_single_cpu() ? right->as_register() : 1834 right->as_register_lo(); 1835 switch (code) { 1836 case lir_logic_and: __ andr (Rdst, Rleft, Rright); break; 1837 case lir_logic_or: __ orr (Rdst, Rleft, Rright); break; 1838 case lir_logic_xor: __ eor (Rdst, Rleft, Rright); break; 1839 default: ShouldNotReachHere(); break; 1840 } 1841 } 1842 } 1843 } 1844 1845 1846 1847 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr illegal, LIR_Opr result, CodeEmitInfo* info) { 1848 1849 // opcode check 1850 assert((code == lir_idiv) || (code == lir_irem), "opcode must be idiv or irem"); 1851 bool is_irem = (code == lir_irem); 1852 1853 // operand check 1854 assert(left->is_single_cpu(), "left must be register"); 1855 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant"); 1856 assert(result->is_single_cpu(), "result must be register"); 1857 Register lreg = left->as_register(); 1858 Register dreg = result->as_register(); 1859 1860 // power-of-2 constant check and codegen 1861 if (right->is_constant()) { 1862 int c = right->as_constant_ptr()->as_jint(); 1863 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1864 if (is_irem) { 1865 if (c == 1) { 1866 // move 0 to dreg if divisor is 1 1867 __ movw(dreg, zr); 1868 } else { 1869 // use rscratch1 as intermediate result register 1870 __ negsw(rscratch1, lreg); 1871 __ andw(dreg, lreg, c - 1); 1872 __ andw(rscratch1, rscratch1, c - 1); 1873 __ csnegw(dreg, dreg, rscratch1, Assembler::MI); 1874 } 1875 } else { 1876 if (c == 1) { 1877 // move lreg to dreg if divisor is 1 1878 __ movw(dreg, lreg); 1879 } else { 1880 unsigned int shift = exact_log2(c); 1881 // use rscratch1 as intermediate result register 1882 __ asrw(rscratch1, lreg, 31); 1883 __ addw(rscratch1, lreg, rscratch1, Assembler::LSR, 32 - shift); 1884 __ asrw(dreg, rscratch1, shift); 1885 } 1886 } 1887 } else { 1888 Register rreg = right->as_register(); 1889 __ corrected_idivl(dreg, lreg, rreg, is_irem, rscratch1); 1890 } 1891 } 1892 1893 1894 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 1895 if (opr1->is_constant() && opr2->is_single_cpu()) { 1896 // tableswitch 1897 Register reg = as_reg(opr2); 1898 struct tableswitch &table = switches[opr1->as_constant_ptr()->as_jint()]; 1899 __ tableswitch(reg, table._first_key, table._last_key, table._branches, table._after); 1900 } else if (opr1->is_single_cpu() || opr1->is_double_cpu()) { 1901 Register reg1 = as_reg(opr1); 1902 if (opr2->is_single_cpu()) { 1903 // cpu register - cpu register 1904 Register reg2 = opr2->as_register(); 1905 if (is_reference_type(opr1->type())) { 1906 __ cmpoop(reg1, reg2); 1907 } else { 1908 assert(!is_reference_type(opr2->type()), "cmp int, oop?"); 1909 __ cmpw(reg1, reg2); 1910 } 1911 return; 1912 } 1913 if (opr2->is_double_cpu()) { 1914 // cpu register - cpu register 1915 Register reg2 = opr2->as_register_lo(); 1916 __ cmp(reg1, reg2); 1917 return; 1918 } 1919 1920 if (opr2->is_constant()) { 1921 bool is_32bit = false; // width of register operand 1922 jlong imm; 1923 1924 switch(opr2->type()) { 1925 case T_INT: 1926 imm = opr2->as_constant_ptr()->as_jint(); 1927 is_32bit = true; 1928 break; 1929 case T_LONG: 1930 imm = opr2->as_constant_ptr()->as_jlong(); 1931 break; 1932 case T_ADDRESS: 1933 imm = opr2->as_constant_ptr()->as_jint(); 1934 break; 1935 case T_METADATA: 1936 imm = (intptr_t)(opr2->as_constant_ptr()->as_metadata()); 1937 break; 1938 case T_OBJECT: 1939 case T_ARRAY: 1940 jobject2reg(opr2->as_constant_ptr()->as_jobject(), rscratch1); 1941 __ cmpoop(reg1, rscratch1); 1942 return; 1943 default: 1944 ShouldNotReachHere(); 1945 imm = 0; // unreachable 1946 break; 1947 } 1948 1949 if (Assembler::operand_valid_for_add_sub_immediate(imm)) { 1950 if (is_32bit) 1951 __ cmpw(reg1, imm); 1952 else 1953 __ subs(zr, reg1, imm); 1954 return; 1955 } else { 1956 __ mov(rscratch1, imm); 1957 if (is_32bit) 1958 __ cmpw(reg1, rscratch1); 1959 else 1960 __ cmp(reg1, rscratch1); 1961 return; 1962 } 1963 } else 1964 ShouldNotReachHere(); 1965 } else if (opr1->is_single_fpu()) { 1966 FloatRegister reg1 = opr1->as_float_reg(); 1967 assert(opr2->is_single_fpu(), "expect single float register"); 1968 FloatRegister reg2 = opr2->as_float_reg(); 1969 __ fcmps(reg1, reg2); 1970 } else if (opr1->is_double_fpu()) { 1971 FloatRegister reg1 = opr1->as_double_reg(); 1972 assert(opr2->is_double_fpu(), "expect double float register"); 1973 FloatRegister reg2 = opr2->as_double_reg(); 1974 __ fcmpd(reg1, reg2); 1975 } else { 1976 ShouldNotReachHere(); 1977 } 1978 } 1979 1980 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){ 1981 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 1982 bool is_unordered_less = (code == lir_ucmp_fd2i); 1983 if (left->is_single_fpu()) { 1984 __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register()); 1985 } else if (left->is_double_fpu()) { 1986 __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register()); 1987 } else { 1988 ShouldNotReachHere(); 1989 } 1990 } else if (code == lir_cmp_l2i) { 1991 Label done; 1992 __ cmp(left->as_register_lo(), right->as_register_lo()); 1993 __ mov(dst->as_register(), (uint64_t)-1L); 1994 __ br(Assembler::LT, done); 1995 __ csinc(dst->as_register(), zr, zr, Assembler::EQ); 1996 __ bind(done); 1997 } else { 1998 ShouldNotReachHere(); 1999 } 2000 } 2001 2002 2003 void LIR_Assembler::align_call(LIR_Code code) { } 2004 2005 2006 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 2007 address call = __ trampoline_call(Address(op->addr(), rtype)); 2008 if (call == nullptr) { 2009 bailout("trampoline stub overflow"); 2010 return; 2011 } 2012 add_call_info(code_offset(), op->info()); 2013 __ post_call_nop(); 2014 } 2015 2016 2017 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 2018 address call = __ ic_call(op->addr()); 2019 if (call == nullptr) { 2020 bailout("trampoline stub overflow"); 2021 return; 2022 } 2023 add_call_info(code_offset(), op->info()); 2024 __ post_call_nop(); 2025 } 2026 2027 void LIR_Assembler::emit_static_call_stub() { 2028 address call_pc = __ pc(); 2029 address stub = __ start_a_stub(call_stub_size()); 2030 if (stub == nullptr) { 2031 bailout("static call stub overflow"); 2032 return; 2033 } 2034 2035 int start = __ offset(); 2036 2037 __ relocate(static_stub_Relocation::spec(call_pc)); 2038 __ emit_static_call_stub(); 2039 2040 assert(__ offset() - start + CompiledDirectCall::to_trampoline_stub_size() 2041 <= call_stub_size(), "stub too big"); 2042 __ end_a_stub(); 2043 } 2044 2045 2046 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2047 assert(exceptionOop->as_register() == r0, "must match"); 2048 assert(exceptionPC->as_register() == r3, "must match"); 2049 2050 // exception object is not added to oop map by LinearScan 2051 // (LinearScan assumes that no oops are in fixed registers) 2052 info->add_register_oop(exceptionOop); 2053 StubId unwind_id; 2054 2055 // get current pc information 2056 // pc is only needed if the method has an exception handler, the unwind code does not need it. 2057 if (compilation()->debug_info_recorder()->last_pc_offset() == __ offset()) { 2058 // As no instructions have been generated yet for this LIR node it's 2059 // possible that an oop map already exists for the current offset. 2060 // In that case insert an dummy NOP here to ensure all oop map PCs 2061 // are unique. See JDK-8237483. 2062 __ nop(); 2063 } 2064 int pc_for_athrow_offset = __ offset(); 2065 InternalAddress pc_for_athrow(__ pc()); 2066 __ adr(exceptionPC->as_register(), pc_for_athrow); 2067 add_call_info(pc_for_athrow_offset, info); // for exception handler 2068 2069 __ verify_not_null_oop(r0); 2070 // search an exception handler (r0: exception oop, r3: throwing pc) 2071 if (compilation()->has_fpu_code()) { 2072 unwind_id = StubId::c1_handle_exception_id; 2073 } else { 2074 unwind_id = StubId::c1_handle_exception_nofpu_id; 2075 } 2076 __ far_call(RuntimeAddress(Runtime1::entry_for(unwind_id))); 2077 2078 // FIXME: enough room for two byte trap ???? 2079 __ nop(); 2080 } 2081 2082 2083 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 2084 assert(exceptionOop->as_register() == r0, "must match"); 2085 2086 __ b(_unwind_handler_entry); 2087 } 2088 2089 2090 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 2091 Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo(); 2092 Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo(); 2093 2094 switch (left->type()) { 2095 case T_INT: { 2096 switch (code) { 2097 case lir_shl: __ lslvw (dreg, lreg, count->as_register()); break; 2098 case lir_shr: __ asrvw (dreg, lreg, count->as_register()); break; 2099 case lir_ushr: __ lsrvw (dreg, lreg, count->as_register()); break; 2100 default: 2101 ShouldNotReachHere(); 2102 break; 2103 } 2104 break; 2105 case T_LONG: 2106 case T_ADDRESS: 2107 case T_OBJECT: 2108 switch (code) { 2109 case lir_shl: __ lslv (dreg, lreg, count->as_register()); break; 2110 case lir_shr: __ asrv (dreg, lreg, count->as_register()); break; 2111 case lir_ushr: __ lsrv (dreg, lreg, count->as_register()); break; 2112 default: 2113 ShouldNotReachHere(); 2114 break; 2115 } 2116 break; 2117 default: 2118 ShouldNotReachHere(); 2119 break; 2120 } 2121 } 2122 } 2123 2124 2125 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 2126 Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo(); 2127 Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo(); 2128 2129 switch (left->type()) { 2130 case T_INT: { 2131 switch (code) { 2132 case lir_shl: __ lslw (dreg, lreg, count); break; 2133 case lir_shr: __ asrw (dreg, lreg, count); break; 2134 case lir_ushr: __ lsrw (dreg, lreg, count); break; 2135 default: 2136 ShouldNotReachHere(); 2137 break; 2138 } 2139 break; 2140 case T_LONG: 2141 case T_ADDRESS: 2142 case T_OBJECT: 2143 switch (code) { 2144 case lir_shl: __ lsl (dreg, lreg, count); break; 2145 case lir_shr: __ asr (dreg, lreg, count); break; 2146 case lir_ushr: __ lsr (dreg, lreg, count); break; 2147 default: 2148 ShouldNotReachHere(); 2149 break; 2150 } 2151 break; 2152 default: 2153 ShouldNotReachHere(); 2154 break; 2155 } 2156 } 2157 } 2158 2159 2160 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) { 2161 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2162 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2163 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2164 __ str (r, Address(sp, offset_from_rsp_in_bytes)); 2165 } 2166 2167 2168 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) { 2169 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2170 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2171 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2172 __ mov (rscratch1, c); 2173 __ str (rscratch1, Address(sp, offset_from_rsp_in_bytes)); 2174 } 2175 2176 2177 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) { 2178 ShouldNotReachHere(); 2179 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2180 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2181 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2182 __ lea(rscratch1, __ constant_oop_address(o)); 2183 __ str(rscratch1, Address(sp, offset_from_rsp_in_bytes)); 2184 } 2185 2186 2187 // This code replaces a call to arraycopy; no exception may 2188 // be thrown in this code, they must be thrown in the System.arraycopy 2189 // activation frame; we could save some checks if this would not be the case 2190 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 2191 ciArrayKlass* default_type = op->expected_type(); 2192 Register src = op->src()->as_register(); 2193 Register dst = op->dst()->as_register(); 2194 Register src_pos = op->src_pos()->as_register(); 2195 Register dst_pos = op->dst_pos()->as_register(); 2196 Register length = op->length()->as_register(); 2197 Register tmp = op->tmp()->as_register(); 2198 2199 CodeStub* stub = op->stub(); 2200 int flags = op->flags(); 2201 BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL; 2202 if (is_reference_type(basic_type)) basic_type = T_OBJECT; 2203 2204 // if we don't know anything, just go through the generic arraycopy 2205 if (default_type == nullptr // || basic_type == T_OBJECT 2206 ) { 2207 Label done; 2208 assert(src == r1 && src_pos == r2, "mismatch in calling convention"); 2209 2210 // Save the arguments in case the generic arraycopy fails and we 2211 // have to fall back to the JNI stub 2212 __ stp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2213 __ stp(length, src_pos, Address(sp, 2*BytesPerWord)); 2214 __ str(src, Address(sp, 4*BytesPerWord)); 2215 2216 address copyfunc_addr = StubRoutines::generic_arraycopy(); 2217 assert(copyfunc_addr != nullptr, "generic arraycopy stub required"); 2218 2219 // The arguments are in java calling convention so we shift them 2220 // to C convention 2221 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4); 2222 __ mov(c_rarg0, j_rarg0); 2223 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4); 2224 __ mov(c_rarg1, j_rarg1); 2225 assert_different_registers(c_rarg2, j_rarg3, j_rarg4); 2226 __ mov(c_rarg2, j_rarg2); 2227 assert_different_registers(c_rarg3, j_rarg4); 2228 __ mov(c_rarg3, j_rarg3); 2229 __ mov(c_rarg4, j_rarg4); 2230 #ifndef PRODUCT 2231 if (PrintC1Statistics) { 2232 __ incrementw(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt)); 2233 } 2234 #endif 2235 __ far_call(RuntimeAddress(copyfunc_addr)); 2236 2237 __ cbz(r0, *stub->continuation()); 2238 2239 // Reload values from the stack so they are where the stub 2240 // expects them. 2241 __ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2242 __ ldp(length, src_pos, Address(sp, 2*BytesPerWord)); 2243 __ ldr(src, Address(sp, 4*BytesPerWord)); 2244 2245 // r0 is -1^K where K == partial copied count 2246 __ eonw(rscratch1, r0, zr); 2247 // adjust length down and src/end pos up by partial copied count 2248 __ subw(length, length, rscratch1); 2249 __ addw(src_pos, src_pos, rscratch1); 2250 __ addw(dst_pos, dst_pos, rscratch1); 2251 __ b(*stub->entry()); 2252 2253 __ bind(*stub->continuation()); 2254 return; 2255 } 2256 2257 assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); 2258 2259 int elem_size = type2aelembytes(basic_type); 2260 int scale = exact_log2(elem_size); 2261 2262 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes()); 2263 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes()); 2264 2265 // test for null 2266 if (flags & LIR_OpArrayCopy::src_null_check) { 2267 __ cbz(src, *stub->entry()); 2268 } 2269 if (flags & LIR_OpArrayCopy::dst_null_check) { 2270 __ cbz(dst, *stub->entry()); 2271 } 2272 2273 // If the compiler was not able to prove that exact type of the source or the destination 2274 // of the arraycopy is an array type, check at runtime if the source or the destination is 2275 // an instance type. 2276 if (flags & LIR_OpArrayCopy::type_check) { 2277 if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) { 2278 __ load_klass(tmp, dst); 2279 __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2280 __ cmpw(rscratch1, Klass::_lh_neutral_value); 2281 __ br(Assembler::GE, *stub->entry()); 2282 } 2283 2284 if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) { 2285 __ load_klass(tmp, src); 2286 __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2287 __ cmpw(rscratch1, Klass::_lh_neutral_value); 2288 __ br(Assembler::GE, *stub->entry()); 2289 } 2290 } 2291 2292 // check if negative 2293 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 2294 __ cmpw(src_pos, 0); 2295 __ br(Assembler::LT, *stub->entry()); 2296 } 2297 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 2298 __ cmpw(dst_pos, 0); 2299 __ br(Assembler::LT, *stub->entry()); 2300 } 2301 2302 if (flags & LIR_OpArrayCopy::length_positive_check) { 2303 __ cmpw(length, 0); 2304 __ br(Assembler::LT, *stub->entry()); 2305 } 2306 2307 if (flags & LIR_OpArrayCopy::src_range_check) { 2308 __ addw(tmp, src_pos, length); 2309 __ ldrw(rscratch1, src_length_addr); 2310 __ cmpw(tmp, rscratch1); 2311 __ br(Assembler::HI, *stub->entry()); 2312 } 2313 if (flags & LIR_OpArrayCopy::dst_range_check) { 2314 __ addw(tmp, dst_pos, length); 2315 __ ldrw(rscratch1, dst_length_addr); 2316 __ cmpw(tmp, rscratch1); 2317 __ br(Assembler::HI, *stub->entry()); 2318 } 2319 2320 if (flags & LIR_OpArrayCopy::type_check) { 2321 // We don't know the array types are compatible 2322 if (basic_type != T_OBJECT) { 2323 // Simple test for basic type arrays 2324 __ cmp_klasses_from_objects(src, dst, tmp, rscratch1); 2325 __ br(Assembler::NE, *stub->entry()); 2326 } else { 2327 // For object arrays, if src is a sub class of dst then we can 2328 // safely do the copy. 2329 Label cont, slow; 2330 2331 #define PUSH(r1, r2) \ 2332 stp(r1, r2, __ pre(sp, -2 * wordSize)); 2333 2334 #define POP(r1, r2) \ 2335 ldp(r1, r2, __ post(sp, 2 * wordSize)); 2336 2337 __ PUSH(src, dst); 2338 2339 __ load_klass(src, src); 2340 __ load_klass(dst, dst); 2341 2342 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr); 2343 2344 __ PUSH(src, dst); 2345 __ far_call(RuntimeAddress(Runtime1::entry_for(StubId::c1_slow_subtype_check_id))); 2346 __ POP(src, dst); 2347 2348 __ cbnz(src, cont); 2349 2350 __ bind(slow); 2351 __ POP(src, dst); 2352 2353 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 2354 if (copyfunc_addr != nullptr) { // use stub if available 2355 // src is not a sub class of dst so we have to do a 2356 // per-element check. 2357 2358 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 2359 if ((flags & mask) != mask) { 2360 // Check that at least both of them object arrays. 2361 assert(flags & mask, "one of the two should be known to be an object array"); 2362 2363 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2364 __ load_klass(tmp, src); 2365 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2366 __ load_klass(tmp, dst); 2367 } 2368 int lh_offset = in_bytes(Klass::layout_helper_offset()); 2369 Address klass_lh_addr(tmp, lh_offset); 2370 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 2371 __ ldrw(rscratch1, klass_lh_addr); 2372 __ mov(rscratch2, objArray_lh); 2373 __ eorw(rscratch1, rscratch1, rscratch2); 2374 __ cbnzw(rscratch1, *stub->entry()); 2375 } 2376 2377 // Spill because stubs can use any register they like and it's 2378 // easier to restore just those that we care about. 2379 __ stp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2380 __ stp(length, src_pos, Address(sp, 2*BytesPerWord)); 2381 __ str(src, Address(sp, 4*BytesPerWord)); 2382 2383 __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale))); 2384 __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type)); 2385 assert_different_registers(c_rarg0, dst, dst_pos, length); 2386 __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale))); 2387 __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type)); 2388 assert_different_registers(c_rarg1, dst, length); 2389 __ uxtw(c_rarg2, length); 2390 assert_different_registers(c_rarg2, dst); 2391 2392 __ load_klass(c_rarg4, dst); 2393 __ ldr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset())); 2394 __ ldrw(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset())); 2395 __ far_call(RuntimeAddress(copyfunc_addr)); 2396 2397 #ifndef PRODUCT 2398 if (PrintC1Statistics) { 2399 Label failed; 2400 __ cbnz(r0, failed); 2401 __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt)); 2402 __ bind(failed); 2403 } 2404 #endif 2405 2406 __ cbz(r0, *stub->continuation()); 2407 2408 #ifndef PRODUCT 2409 if (PrintC1Statistics) { 2410 __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt)); 2411 } 2412 #endif 2413 assert_different_registers(dst, dst_pos, length, src_pos, src, r0, rscratch1); 2414 2415 // Restore previously spilled arguments 2416 __ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2417 __ ldp(length, src_pos, Address(sp, 2*BytesPerWord)); 2418 __ ldr(src, Address(sp, 4*BytesPerWord)); 2419 2420 // return value is -1^K where K is partial copied count 2421 __ eonw(rscratch1, r0, zr); 2422 // adjust length down and src/end pos up by partial copied count 2423 __ subw(length, length, rscratch1); 2424 __ addw(src_pos, src_pos, rscratch1); 2425 __ addw(dst_pos, dst_pos, rscratch1); 2426 } 2427 2428 __ b(*stub->entry()); 2429 2430 __ bind(cont); 2431 __ POP(src, dst); 2432 } 2433 } 2434 2435 #ifdef ASSERT 2436 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 2437 // Sanity check the known type with the incoming class. For the 2438 // primitive case the types must match exactly with src.klass and 2439 // dst.klass each exactly matching the default type. For the 2440 // object array case, if no type check is needed then either the 2441 // dst type is exactly the expected type and the src type is a 2442 // subtype which we can't check or src is the same array as dst 2443 // but not necessarily exactly of type default_type. 2444 Label known_ok, halt; 2445 __ mov_metadata(tmp, default_type->constant_encoding()); 2446 2447 if (basic_type != T_OBJECT) { 2448 __ cmp_klass(dst, tmp, rscratch1); 2449 __ br(Assembler::NE, halt); 2450 __ cmp_klass(src, tmp, rscratch1); 2451 __ br(Assembler::EQ, known_ok); 2452 } else { 2453 __ cmp_klass(dst, tmp, rscratch1); 2454 __ br(Assembler::EQ, known_ok); 2455 __ cmp(src, dst); 2456 __ br(Assembler::EQ, known_ok); 2457 } 2458 __ bind(halt); 2459 __ stop("incorrect type information in arraycopy"); 2460 __ bind(known_ok); 2461 } 2462 #endif 2463 2464 #ifndef PRODUCT 2465 if (PrintC1Statistics) { 2466 __ incrementw(ExternalAddress(Runtime1::arraycopy_count_address(basic_type))); 2467 } 2468 #endif 2469 2470 __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale))); 2471 __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type)); 2472 assert_different_registers(c_rarg0, dst, dst_pos, length); 2473 __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale))); 2474 __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type)); 2475 assert_different_registers(c_rarg1, dst, length); 2476 __ uxtw(c_rarg2, length); 2477 assert_different_registers(c_rarg2, dst); 2478 2479 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 2480 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 2481 const char *name; 2482 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 2483 2484 CodeBlob *cb = CodeCache::find_blob(entry); 2485 if (cb) { 2486 __ far_call(RuntimeAddress(entry)); 2487 } else { 2488 __ call_VM_leaf(entry, 3); 2489 } 2490 2491 if (stub != nullptr) { 2492 __ bind(*stub->continuation()); 2493 } 2494 } 2495 2496 2497 2498 2499 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 2500 Register obj = op->obj_opr()->as_register(); // may not be an oop 2501 Register hdr = op->hdr_opr()->as_register(); 2502 Register lock = op->lock_opr()->as_register(); 2503 Register temp = op->scratch_opr()->as_register(); 2504 if (op->code() == lir_lock) { 2505 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2506 // add debug info for NullPointerException only if one is possible 2507 int null_check_offset = __ lock_object(hdr, obj, lock, temp, *op->stub()->entry()); 2508 if (op->info() != nullptr) { 2509 add_debug_info_for_null_check(null_check_offset, op->info()); 2510 } 2511 // done 2512 } else if (op->code() == lir_unlock) { 2513 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2514 __ unlock_object(hdr, obj, lock, temp, *op->stub()->entry()); 2515 } else { 2516 Unimplemented(); 2517 } 2518 __ bind(*op->stub()->continuation()); 2519 } 2520 2521 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) { 2522 Register obj = op->obj()->as_pointer_register(); 2523 Register result = op->result_opr()->as_pointer_register(); 2524 2525 CodeEmitInfo* info = op->info(); 2526 if (info != nullptr) { 2527 add_debug_info_for_null_check_here(info); 2528 } 2529 2530 __ load_klass(result, obj); 2531 } 2532 2533 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 2534 ciMethod* method = op->profiled_method(); 2535 int bci = op->profiled_bci(); 2536 ciMethod* callee = op->profiled_callee(); 2537 2538 // Update counter for all call types 2539 ciMethodData* md = method->method_data_or_null(); 2540 assert(md != nullptr, "Sanity"); 2541 ciProfileData* data = md->bci_to_data(bci); 2542 assert(data != nullptr && data->is_CounterData(), "need CounterData for calls"); 2543 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 2544 Register mdo = op->mdo()->as_register(); 2545 __ mov_metadata(mdo, md->constant_encoding()); 2546 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 2547 // Perform additional virtual call profiling for invokevirtual and 2548 // invokeinterface bytecodes 2549 if (op->should_profile_receiver_type()) { 2550 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 2551 Register recv = op->recv()->as_register(); 2552 assert_different_registers(mdo, recv); 2553 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 2554 ciKlass* known_klass = op->known_holder(); 2555 if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) { 2556 // We know the type that will be seen at this call site; we can 2557 // statically update the MethodData* rather than needing to do 2558 // dynamic tests on the receiver type 2559 2560 // NOTE: we should probably put a lock around this search to 2561 // avoid collisions by concurrent compilations 2562 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 2563 uint i; 2564 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2565 ciKlass* receiver = vc_data->receiver(i); 2566 if (known_klass->equals(receiver)) { 2567 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2568 __ addptr(data_addr, DataLayout::counter_increment); 2569 return; 2570 } 2571 } 2572 2573 // Receiver type not found in profile data; select an empty slot 2574 2575 // Note that this is less efficient than it should be because it 2576 // always does a write to the receiver part of the 2577 // VirtualCallData rather than just the first time 2578 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2579 ciKlass* receiver = vc_data->receiver(i); 2580 if (receiver == nullptr) { 2581 __ mov_metadata(rscratch1, known_klass->constant_encoding()); 2582 Address recv_addr = 2583 __ form_address(rscratch2, mdo, 2584 md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)), 2585 LogBytesPerWord); 2586 __ str(rscratch1, recv_addr); 2587 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2588 __ addptr(data_addr, DataLayout::counter_increment); 2589 return; 2590 } 2591 } 2592 } else { 2593 __ load_klass(recv, recv); 2594 Label update_done; 2595 type_profile_helper(mdo, md, data, recv, &update_done); 2596 // Receiver did not match any saved receiver and there is no empty row for it. 2597 // Increment total counter to indicate polymorphic case. 2598 __ addptr(counter_addr, DataLayout::counter_increment); 2599 2600 __ bind(update_done); 2601 } 2602 } else { 2603 // Static call 2604 __ addptr(counter_addr, DataLayout::counter_increment); 2605 } 2606 } 2607 2608 2609 void LIR_Assembler::emit_delay(LIR_OpDelay*) { 2610 Unimplemented(); 2611 } 2612 2613 2614 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) { 2615 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no)); 2616 } 2617 2618 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 2619 assert(op->crc()->is_single_cpu(), "crc must be register"); 2620 assert(op->val()->is_single_cpu(), "byte value must be register"); 2621 assert(op->result_opr()->is_single_cpu(), "result must be register"); 2622 Register crc = op->crc()->as_register(); 2623 Register val = op->val()->as_register(); 2624 Register res = op->result_opr()->as_register(); 2625 2626 assert_different_registers(val, crc, res); 2627 uint64_t offset; 2628 __ adrp(res, ExternalAddress(StubRoutines::crc_table_addr()), offset); 2629 __ add(res, res, offset); 2630 2631 __ mvnw(crc, crc); // ~crc 2632 __ update_byte_crc32(crc, val, res); 2633 __ mvnw(res, crc); // ~crc 2634 } 2635 2636 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 2637 COMMENT("emit_profile_type {"); 2638 Register obj = op->obj()->as_register(); 2639 Register tmp = op->tmp()->as_pointer_register(); 2640 Address mdo_addr = as_Address(op->mdp()->as_address_ptr()); 2641 ciKlass* exact_klass = op->exact_klass(); 2642 intptr_t current_klass = op->current_klass(); 2643 bool not_null = op->not_null(); 2644 bool no_conflict = op->no_conflict(); 2645 2646 Label update, next, none; 2647 2648 bool do_null = !not_null; 2649 bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 2650 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 2651 2652 assert(do_null || do_update, "why are we here?"); 2653 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 2654 assert(mdo_addr.base() != rscratch1, "wrong register"); 2655 2656 __ verify_oop(obj); 2657 2658 if (tmp != obj) { 2659 assert_different_registers(obj, tmp, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index()); 2660 __ mov(tmp, obj); 2661 } else { 2662 assert_different_registers(obj, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index()); 2663 } 2664 if (do_null) { 2665 __ cbnz(tmp, update); 2666 if (!TypeEntries::was_null_seen(current_klass)) { 2667 __ ldr(rscratch2, mdo_addr); 2668 __ orr(rscratch2, rscratch2, TypeEntries::null_seen); 2669 __ str(rscratch2, mdo_addr); 2670 } 2671 if (do_update) { 2672 #ifndef ASSERT 2673 __ b(next); 2674 } 2675 #else 2676 __ b(next); 2677 } 2678 } else { 2679 __ cbnz(tmp, update); 2680 __ stop("unexpected null obj"); 2681 #endif 2682 } 2683 2684 __ bind(update); 2685 2686 if (do_update) { 2687 #ifdef ASSERT 2688 if (exact_klass != nullptr) { 2689 Label ok; 2690 __ load_klass(tmp, tmp); 2691 __ mov_metadata(rscratch1, exact_klass->constant_encoding()); 2692 __ eor(rscratch1, tmp, rscratch1); 2693 __ cbz(rscratch1, ok); 2694 __ stop("exact klass and actual klass differ"); 2695 __ bind(ok); 2696 } 2697 #endif 2698 if (!no_conflict) { 2699 if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) { 2700 if (exact_klass != nullptr) { 2701 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2702 } else { 2703 __ load_klass(tmp, tmp); 2704 } 2705 2706 __ ldr(rscratch2, mdo_addr); 2707 __ eor(tmp, tmp, rscratch2); 2708 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2709 // klass seen before, nothing to do. The unknown bit may have been 2710 // set already but no need to check. 2711 __ cbz(rscratch1, next); 2712 2713 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2714 2715 if (TypeEntries::is_type_none(current_klass)) { 2716 __ cbz(rscratch2, none); 2717 __ cmp(rscratch2, (u1)TypeEntries::null_seen); 2718 __ br(Assembler::EQ, none); 2719 // There is a chance that the checks above 2720 // fail if another thread has just set the 2721 // profiling to this obj's klass 2722 __ dmb(Assembler::ISHLD); 2723 __ eor(tmp, tmp, rscratch2); // get back original value before XOR 2724 __ ldr(rscratch2, mdo_addr); 2725 __ eor(tmp, tmp, rscratch2); 2726 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2727 __ cbz(rscratch1, next); 2728 } 2729 } else { 2730 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 2731 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 2732 2733 __ ldr(tmp, mdo_addr); 2734 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2735 } 2736 2737 // different than before. Cannot keep accurate profile. 2738 __ ldr(rscratch2, mdo_addr); 2739 __ orr(rscratch2, rscratch2, TypeEntries::type_unknown); 2740 __ str(rscratch2, mdo_addr); 2741 2742 if (TypeEntries::is_type_none(current_klass)) { 2743 __ b(next); 2744 2745 __ bind(none); 2746 // first time here. Set profile type. 2747 __ str(tmp, mdo_addr); 2748 #ifdef ASSERT 2749 __ andr(tmp, tmp, TypeEntries::type_mask); 2750 __ verify_klass_ptr(tmp); 2751 #endif 2752 } 2753 } else { 2754 // There's a single possible klass at this profile point 2755 assert(exact_klass != nullptr, "should be"); 2756 if (TypeEntries::is_type_none(current_klass)) { 2757 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2758 __ ldr(rscratch2, mdo_addr); 2759 __ eor(tmp, tmp, rscratch2); 2760 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2761 __ cbz(rscratch1, next); 2762 #ifdef ASSERT 2763 { 2764 Label ok; 2765 __ ldr(rscratch1, mdo_addr); 2766 __ cbz(rscratch1, ok); 2767 __ cmp(rscratch1, (u1)TypeEntries::null_seen); 2768 __ br(Assembler::EQ, ok); 2769 // may have been set by another thread 2770 __ dmb(Assembler::ISHLD); 2771 __ mov_metadata(rscratch1, exact_klass->constant_encoding()); 2772 __ ldr(rscratch2, mdo_addr); 2773 __ eor(rscratch2, rscratch1, rscratch2); 2774 __ andr(rscratch2, rscratch2, TypeEntries::type_mask); 2775 __ cbz(rscratch2, ok); 2776 2777 __ stop("unexpected profiling mismatch"); 2778 __ bind(ok); 2779 } 2780 #endif 2781 // first time here. Set profile type. 2782 __ str(tmp, mdo_addr); 2783 #ifdef ASSERT 2784 __ andr(tmp, tmp, TypeEntries::type_mask); 2785 __ verify_klass_ptr(tmp); 2786 #endif 2787 } else { 2788 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 2789 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 2790 2791 __ ldr(tmp, mdo_addr); 2792 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2793 2794 __ orr(tmp, tmp, TypeEntries::type_unknown); 2795 __ str(tmp, mdo_addr); 2796 // FIXME: Write barrier needed here? 2797 } 2798 } 2799 2800 __ bind(next); 2801 } 2802 COMMENT("} emit_profile_type"); 2803 } 2804 2805 2806 void LIR_Assembler::align_backward_branch_target() { 2807 } 2808 2809 2810 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 2811 // tmp must be unused 2812 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 2813 2814 if (left->is_single_cpu()) { 2815 assert(dest->is_single_cpu(), "expect single result reg"); 2816 __ negw(dest->as_register(), left->as_register()); 2817 } else if (left->is_double_cpu()) { 2818 assert(dest->is_double_cpu(), "expect double result reg"); 2819 __ neg(dest->as_register_lo(), left->as_register_lo()); 2820 } else if (left->is_single_fpu()) { 2821 assert(dest->is_single_fpu(), "expect single float result reg"); 2822 __ fnegs(dest->as_float_reg(), left->as_float_reg()); 2823 } else { 2824 assert(left->is_double_fpu(), "expect double float operand reg"); 2825 assert(dest->is_double_fpu(), "expect double float result reg"); 2826 __ fnegd(dest->as_double_reg(), left->as_double_reg()); 2827 } 2828 } 2829 2830 2831 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 2832 if (patch_code != lir_patch_none) { 2833 deoptimize_trap(info); 2834 return; 2835 } 2836 2837 __ lea(dest->as_pointer_register(), as_Address(addr->as_address_ptr())); 2838 } 2839 2840 2841 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 2842 assert(!tmp->is_valid(), "don't need temporary"); 2843 2844 CodeBlob *cb = CodeCache::find_blob(dest); 2845 if (cb) { 2846 __ far_call(RuntimeAddress(dest)); 2847 } else { 2848 __ mov(rscratch1, RuntimeAddress(dest)); 2849 __ blr(rscratch1); 2850 } 2851 2852 if (info != nullptr) { 2853 add_call_info_here(info); 2854 } 2855 __ post_call_nop(); 2856 } 2857 2858 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 2859 if (dest->is_address() || src->is_address()) { 2860 move_op(src, dest, type, lir_patch_none, info, /*wide*/false); 2861 } else { 2862 ShouldNotReachHere(); 2863 } 2864 } 2865 2866 #ifdef ASSERT 2867 // emit run-time assertion 2868 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 2869 assert(op->code() == lir_assert, "must be"); 2870 2871 if (op->in_opr1()->is_valid()) { 2872 assert(op->in_opr2()->is_valid(), "both operands must be valid"); 2873 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op); 2874 } else { 2875 assert(op->in_opr2()->is_illegal(), "both operands must be illegal"); 2876 assert(op->condition() == lir_cond_always, "no other conditions allowed"); 2877 } 2878 2879 Label ok; 2880 if (op->condition() != lir_cond_always) { 2881 Assembler::Condition acond = Assembler::AL; 2882 switch (op->condition()) { 2883 case lir_cond_equal: acond = Assembler::EQ; break; 2884 case lir_cond_notEqual: acond = Assembler::NE; break; 2885 case lir_cond_less: acond = Assembler::LT; break; 2886 case lir_cond_lessEqual: acond = Assembler::LE; break; 2887 case lir_cond_greaterEqual: acond = Assembler::GE; break; 2888 case lir_cond_greater: acond = Assembler::GT; break; 2889 case lir_cond_belowEqual: acond = Assembler::LS; break; 2890 case lir_cond_aboveEqual: acond = Assembler::HS; break; 2891 default: ShouldNotReachHere(); 2892 } 2893 __ br(acond, ok); 2894 } 2895 if (op->halt()) { 2896 const char* str = __ code_string(op->msg()); 2897 __ stop(str); 2898 } else { 2899 breakpoint(); 2900 } 2901 __ bind(ok); 2902 } 2903 #endif 2904 2905 #ifndef PRODUCT 2906 #define COMMENT(x) do { __ block_comment(x); } while (0) 2907 #else 2908 #define COMMENT(x) 2909 #endif 2910 2911 void LIR_Assembler::membar() { 2912 COMMENT("membar"); 2913 __ membar(MacroAssembler::AnyAny); 2914 } 2915 2916 void LIR_Assembler::membar_acquire() { 2917 __ membar(Assembler::LoadLoad|Assembler::LoadStore); 2918 } 2919 2920 void LIR_Assembler::membar_release() { 2921 __ membar(Assembler::LoadStore|Assembler::StoreStore); 2922 } 2923 2924 void LIR_Assembler::membar_loadload() { 2925 __ membar(Assembler::LoadLoad); 2926 } 2927 2928 void LIR_Assembler::membar_storestore() { 2929 __ membar(MacroAssembler::StoreStore); 2930 } 2931 2932 void LIR_Assembler::membar_loadstore() { __ membar(MacroAssembler::LoadStore); } 2933 2934 void LIR_Assembler::membar_storeload() { __ membar(MacroAssembler::StoreLoad); } 2935 2936 void LIR_Assembler::on_spin_wait() { 2937 __ spin_wait(); 2938 } 2939 2940 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 2941 __ mov(result_reg->as_register(), rthread); 2942 } 2943 2944 2945 void LIR_Assembler::peephole(LIR_List *lir) { 2946 #if 0 2947 if (tableswitch_count >= max_tableswitches) 2948 return; 2949 2950 /* 2951 This finite-state automaton recognizes sequences of compare-and- 2952 branch instructions. We will turn them into a tableswitch. You 2953 could argue that C1 really shouldn't be doing this sort of 2954 optimization, but without it the code is really horrible. 2955 */ 2956 2957 enum { start_s, cmp1_s, beq_s, cmp_s } state; 2958 int first_key, last_key = -2147483648; 2959 int next_key = 0; 2960 int start_insn = -1; 2961 int last_insn = -1; 2962 Register reg = noreg; 2963 LIR_Opr reg_opr; 2964 state = start_s; 2965 2966 LIR_OpList* inst = lir->instructions_list(); 2967 for (int i = 0; i < inst->length(); i++) { 2968 LIR_Op* op = inst->at(i); 2969 switch (state) { 2970 case start_s: 2971 first_key = -1; 2972 start_insn = i; 2973 switch (op->code()) { 2974 case lir_cmp: 2975 LIR_Opr opr1 = op->as_Op2()->in_opr1(); 2976 LIR_Opr opr2 = op->as_Op2()->in_opr2(); 2977 if (opr1->is_cpu_register() && opr1->is_single_cpu() 2978 && opr2->is_constant() 2979 && opr2->type() == T_INT) { 2980 reg_opr = opr1; 2981 reg = opr1->as_register(); 2982 first_key = opr2->as_constant_ptr()->as_jint(); 2983 next_key = first_key + 1; 2984 state = cmp_s; 2985 goto next_state; 2986 } 2987 break; 2988 } 2989 break; 2990 case cmp_s: 2991 switch (op->code()) { 2992 case lir_branch: 2993 if (op->as_OpBranch()->cond() == lir_cond_equal) { 2994 state = beq_s; 2995 last_insn = i; 2996 goto next_state; 2997 } 2998 } 2999 state = start_s; 3000 break; 3001 case beq_s: 3002 switch (op->code()) { 3003 case lir_cmp: { 3004 LIR_Opr opr1 = op->as_Op2()->in_opr1(); 3005 LIR_Opr opr2 = op->as_Op2()->in_opr2(); 3006 if (opr1->is_cpu_register() && opr1->is_single_cpu() 3007 && opr1->as_register() == reg 3008 && opr2->is_constant() 3009 && opr2->type() == T_INT 3010 && opr2->as_constant_ptr()->as_jint() == next_key) { 3011 last_key = next_key; 3012 next_key++; 3013 state = cmp_s; 3014 goto next_state; 3015 } 3016 } 3017 } 3018 last_key = next_key; 3019 state = start_s; 3020 break; 3021 default: 3022 assert(false, "impossible state"); 3023 } 3024 if (state == start_s) { 3025 if (first_key < last_key - 5L && reg != noreg) { 3026 { 3027 // printf("found run register %d starting at insn %d low value %d high value %d\n", 3028 // reg->encoding(), 3029 // start_insn, first_key, last_key); 3030 // for (int i = 0; i < inst->length(); i++) { 3031 // inst->at(i)->print(); 3032 // tty->print("\n"); 3033 // } 3034 // tty->print("\n"); 3035 } 3036 3037 struct tableswitch *sw = &switches[tableswitch_count]; 3038 sw->_insn_index = start_insn, sw->_first_key = first_key, 3039 sw->_last_key = last_key, sw->_reg = reg; 3040 inst->insert_before(last_insn + 1, new LIR_OpLabel(&sw->_after)); 3041 { 3042 // Insert the new table of branches 3043 int offset = last_insn; 3044 for (int n = first_key; n < last_key; n++) { 3045 inst->insert_before 3046 (last_insn + 1, 3047 new LIR_OpBranch(lir_cond_always, T_ILLEGAL, 3048 inst->at(offset)->as_OpBranch()->label())); 3049 offset -= 2, i++; 3050 } 3051 } 3052 // Delete all the old compare-and-branch instructions 3053 for (int n = first_key; n < last_key; n++) { 3054 inst->remove_at(start_insn); 3055 inst->remove_at(start_insn); 3056 } 3057 // Insert the tableswitch instruction 3058 inst->insert_before(start_insn, 3059 new LIR_Op2(lir_cmp, lir_cond_always, 3060 LIR_OprFact::intConst(tableswitch_count), 3061 reg_opr)); 3062 inst->insert_before(start_insn + 1, new LIR_OpLabel(&sw->_branches)); 3063 tableswitch_count++; 3064 } 3065 reg = noreg; 3066 last_key = -2147483648; 3067 } 3068 next_state: 3069 ; 3070 } 3071 #endif 3072 } 3073 3074 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp_op) { 3075 Address addr = as_Address(src->as_address_ptr()); 3076 BasicType type = src->type(); 3077 bool is_oop = is_reference_type(type); 3078 3079 void (MacroAssembler::* add)(Register prev, RegisterOrConstant incr, Register addr); 3080 void (MacroAssembler::* xchg)(Register prev, Register newv, Register addr); 3081 3082 switch(type) { 3083 case T_INT: 3084 xchg = &MacroAssembler::atomic_xchgalw; 3085 add = &MacroAssembler::atomic_addalw; 3086 break; 3087 case T_LONG: 3088 xchg = &MacroAssembler::atomic_xchgal; 3089 add = &MacroAssembler::atomic_addal; 3090 break; 3091 case T_OBJECT: 3092 case T_ARRAY: 3093 if (UseCompressedOops) { 3094 xchg = &MacroAssembler::atomic_xchgalw; 3095 add = &MacroAssembler::atomic_addalw; 3096 } else { 3097 xchg = &MacroAssembler::atomic_xchgal; 3098 add = &MacroAssembler::atomic_addal; 3099 } 3100 break; 3101 default: 3102 ShouldNotReachHere(); 3103 xchg = &MacroAssembler::atomic_xchgal; 3104 add = &MacroAssembler::atomic_addal; // unreachable 3105 } 3106 3107 switch (code) { 3108 case lir_xadd: 3109 { 3110 RegisterOrConstant inc; 3111 Register tmp = as_reg(tmp_op); 3112 Register dst = as_reg(dest); 3113 if (data->is_constant()) { 3114 inc = RegisterOrConstant(as_long(data)); 3115 assert_different_registers(dst, addr.base(), tmp, 3116 rscratch1, rscratch2); 3117 } else { 3118 inc = RegisterOrConstant(as_reg(data)); 3119 assert_different_registers(inc.as_register(), dst, addr.base(), tmp, 3120 rscratch1, rscratch2); 3121 } 3122 __ lea(tmp, addr); 3123 (_masm->*add)(dst, inc, tmp); 3124 break; 3125 } 3126 case lir_xchg: 3127 { 3128 Register tmp = tmp_op->as_register(); 3129 Register obj = as_reg(data); 3130 Register dst = as_reg(dest); 3131 if (is_oop && UseCompressedOops) { 3132 __ encode_heap_oop(rscratch2, obj); 3133 obj = rscratch2; 3134 } 3135 assert_different_registers(obj, addr.base(), tmp, rscratch1); 3136 assert_different_registers(dst, addr.base(), tmp, rscratch1); 3137 __ lea(tmp, addr); 3138 (_masm->*xchg)(dst, obj, tmp); 3139 if (is_oop && UseCompressedOops) { 3140 __ decode_heap_oop(dst); 3141 } 3142 } 3143 break; 3144 default: 3145 ShouldNotReachHere(); 3146 } 3147 if(!UseLSE) { 3148 __ membar(__ AnyAny); 3149 } 3150 } 3151 3152 #undef __