1 /*
   2  * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "asm/assembler.hpp"
  28 #include "c1/c1_CodeStubs.hpp"
  29 #include "c1/c1_Compilation.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "c1/c1_ValueStack.hpp"
  34 #include "ci/ciArrayKlass.hpp"
  35 #include "ci/ciInstance.hpp"
  36 #include "ci/ciUtilities.hpp"
  37 #include "code/SCCache.hpp"
  38 #include "code/compiledIC.hpp"
  39 #include "gc/shared/collectedHeap.hpp"
  40 #include "gc/shared/gc_globals.hpp"
  41 #include "nativeInst_aarch64.hpp"
  42 #include "oops/objArrayKlass.hpp"
  43 #include "runtime/frame.inline.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/stubRoutines.hpp"
  46 #include "utilities/powerOfTwo.hpp"
  47 #include "vmreg_aarch64.inline.hpp"
  48 
  49 
  50 #ifndef PRODUCT
  51 #define COMMENT(x)   do { __ block_comment(x); } while (0)
  52 #else
  53 #define COMMENT(x)
  54 #endif
  55 
  56 NEEDS_CLEANUP // remove this definitions ?
  57 const Register SYNC_header = r0;   // synchronization header
  58 const Register SHIFT_count = r0;   // where count for shift operations must be
  59 
  60 #define __ _masm->
  61 
  62 
  63 static void select_different_registers(Register preserve,
  64                                        Register extra,
  65                                        Register &tmp1,
  66                                        Register &tmp2) {
  67   if (tmp1 == preserve) {
  68     assert_different_registers(tmp1, tmp2, extra);
  69     tmp1 = extra;
  70   } else if (tmp2 == preserve) {
  71     assert_different_registers(tmp1, tmp2, extra);
  72     tmp2 = extra;
  73   }
  74   assert_different_registers(preserve, tmp1, tmp2);
  75 }
  76 
  77 
  78 
  79 static void select_different_registers(Register preserve,
  80                                        Register extra,
  81                                        Register &tmp1,
  82                                        Register &tmp2,
  83                                        Register &tmp3) {
  84   if (tmp1 == preserve) {
  85     assert_different_registers(tmp1, tmp2, tmp3, extra);
  86     tmp1 = extra;
  87   } else if (tmp2 == preserve) {
  88     assert_different_registers(tmp1, tmp2, tmp3, extra);
  89     tmp2 = extra;
  90   } else if (tmp3 == preserve) {
  91     assert_different_registers(tmp1, tmp2, tmp3, extra);
  92     tmp3 = extra;
  93   }
  94   assert_different_registers(preserve, tmp1, tmp2, tmp3);
  95 }
  96 
  97 
  98 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { Unimplemented(); return false; }
  99 
 100 
 101 LIR_Opr LIR_Assembler::receiverOpr() {
 102   return FrameMap::receiver_opr;
 103 }
 104 
 105 LIR_Opr LIR_Assembler::osrBufferPointer() {
 106   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 107 }
 108 
 109 //--------------fpu register translations-----------------------
 110 
 111 
 112 address LIR_Assembler::float_constant(float f) {
 113   address const_addr = __ float_constant(f);
 114   if (const_addr == nullptr) {
 115     bailout("const section overflow");
 116     return __ code()->consts()->start();
 117   } else {
 118     return const_addr;
 119   }
 120 }
 121 
 122 
 123 address LIR_Assembler::double_constant(double d) {
 124   address const_addr = __ double_constant(d);
 125   if (const_addr == nullptr) {
 126     bailout("const section overflow");
 127     return __ code()->consts()->start();
 128   } else {
 129     return const_addr;
 130   }
 131 }
 132 
 133 address LIR_Assembler::int_constant(jlong n) {
 134   address const_addr = __ long_constant(n);
 135   if (const_addr == nullptr) {
 136     bailout("const section overflow");
 137     return __ code()->consts()->start();
 138   } else {
 139     return const_addr;
 140   }
 141 }
 142 
 143 void LIR_Assembler::breakpoint() { Unimplemented(); }
 144 
 145 void LIR_Assembler::push(LIR_Opr opr) { Unimplemented(); }
 146 
 147 void LIR_Assembler::pop(LIR_Opr opr) { Unimplemented(); }
 148 
 149 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { Unimplemented(); return false; }
 150 //-------------------------------------------
 151 
 152 static Register as_reg(LIR_Opr op) {
 153   return op->is_double_cpu() ? op->as_register_lo() : op->as_register();
 154 }
 155 
 156 static jlong as_long(LIR_Opr data) {
 157   jlong result;
 158   switch (data->type()) {
 159   case T_INT:
 160     result = (data->as_jint());
 161     break;
 162   case T_LONG:
 163     result = (data->as_jlong());
 164     break;
 165   default:
 166     ShouldNotReachHere();
 167     result = 0;  // unreachable
 168   }
 169   return result;
 170 }
 171 
 172 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 173   Register base = addr->base()->as_pointer_register();
 174   LIR_Opr opr = addr->index();
 175   if (opr->is_cpu_register()) {
 176     Register index;
 177     if (opr->is_single_cpu())
 178       index = opr->as_register();
 179     else
 180       index = opr->as_register_lo();
 181     assert(addr->disp() == 0, "must be");
 182     switch(opr->type()) {
 183       case T_INT:
 184         return Address(base, index, Address::sxtw(addr->scale()));
 185       case T_LONG:
 186         return Address(base, index, Address::lsl(addr->scale()));
 187       default:
 188         ShouldNotReachHere();
 189       }
 190   } else {
 191     assert(addr->scale() == 0,
 192            "expected for immediate operand, was: %d", addr->scale());
 193     ptrdiff_t offset = ptrdiff_t(addr->disp());
 194     // NOTE: Does not handle any 16 byte vector access.
 195     const uint type_size = type2aelembytes(addr->type(), true);
 196     return __ legitimize_address(Address(base, offset), type_size, tmp);
 197   }
 198   return Address();
 199 }
 200 
 201 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 202   ShouldNotReachHere();
 203   return Address();
 204 }
 205 
 206 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 207   return as_Address(addr, rscratch1);
 208 }
 209 
 210 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 211   return as_Address(addr, rscratch1);  // Ouch
 212   // FIXME: This needs to be much more clever.  See x86.
 213 }
 214 
 215 // Ensure a valid Address (base + offset) to a stack-slot. If stack access is
 216 // not encodable as a base + (immediate) offset, generate an explicit address
 217 // calculation to hold the address in a temporary register.
 218 Address LIR_Assembler::stack_slot_address(int index, uint size, Register tmp, int adjust) {
 219   precond(size == 4 || size == 8);
 220   Address addr = frame_map()->address_for_slot(index, adjust);
 221   precond(addr.getMode() == Address::base_plus_offset);
 222   precond(addr.base() == sp);
 223   precond(addr.offset() > 0);
 224   uint mask = size - 1;
 225   assert((addr.offset() & mask) == 0, "scaled offsets only");
 226   return __ legitimize_address(addr, size, tmp);
 227 }
 228 
 229 void LIR_Assembler::osr_entry() {
 230   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 231   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 232   ValueStack* entry_state = osr_entry->state();
 233   int number_of_locks = entry_state->locks_size();
 234 
 235   // we jump here if osr happens with the interpreter
 236   // state set up to continue at the beginning of the
 237   // loop that triggered osr - in particular, we have
 238   // the following registers setup:
 239   //
 240   // r2: osr buffer
 241   //
 242 
 243   // build frame
 244   ciMethod* m = compilation()->method();
 245   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 246 
 247   // OSR buffer is
 248   //
 249   // locals[nlocals-1..0]
 250   // monitors[0..number_of_locks]
 251   //
 252   // locals is a direct copy of the interpreter frame so in the osr buffer
 253   // so first slot in the local array is the last local from the interpreter
 254   // and last slot is local[0] (receiver) from the interpreter
 255   //
 256   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 257   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 258   // in the interpreter frame (the method lock if a sync method)
 259 
 260   // Initialize monitors in the compiled activation.
 261   //   r2: pointer to osr buffer
 262   //
 263   // All other registers are dead at this point and the locals will be
 264   // copied into place by code emitted in the IR.
 265 
 266   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 267   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 268     int monitor_offset = BytesPerWord * method()->max_locals() +
 269       (2 * BytesPerWord) * (number_of_locks - 1);
 270     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 271     // the OSR buffer using 2 word entries: first the lock and then
 272     // the oop.
 273     for (int i = 0; i < number_of_locks; i++) {
 274       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 275 #ifdef ASSERT
 276       // verify the interpreter's monitor has a non-null object
 277       {
 278         Label L;
 279         __ ldr(rscratch1, __ form_address(rscratch1, OSR_buf, slot_offset + 1*BytesPerWord, 0));
 280         __ cbnz(rscratch1, L);
 281         __ stop("locked object is null");
 282         __ bind(L);
 283       }
 284 #endif
 285       __ ldr(r19, __ form_address(rscratch1, OSR_buf, slot_offset, 0));
 286       __ ldr(r20, __ form_address(rscratch1, OSR_buf, slot_offset + BytesPerWord, 0));
 287       __ str(r19, frame_map()->address_for_monitor_lock(i));
 288       __ str(r20, frame_map()->address_for_monitor_object(i));
 289     }
 290   }
 291 }
 292 
 293 
 294 // inline cache check; done before the frame is built.
 295 int LIR_Assembler::check_icache() {
 296   return __ ic_check(CodeEntryAlignment);
 297 }
 298 
 299 void LIR_Assembler::clinit_barrier(ciMethod* method) {
 300   assert(VM_Version::supports_fast_class_init_checks(), "sanity");
 301   assert(!method->holder()->is_not_initialized(), "initialization should have been started");
 302 
 303   Label L_skip_barrier;
 304 
 305   __ mov_metadata(rscratch2, method->holder()->constant_encoding());
 306   __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier /*L_fast_path*/);
 307   __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
 308   __ bind(L_skip_barrier);
 309 }
 310 
 311 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
 312   if (o == nullptr) {
 313     __ mov(reg, zr);
 314   } else {
 315     __ movoop(reg, o);
 316   }
 317 }
 318 
 319 void LIR_Assembler::deoptimize_trap(CodeEmitInfo *info) {
 320   address target = nullptr;
 321   relocInfo::relocType reloc_type = relocInfo::none;
 322 
 323   switch (patching_id(info)) {
 324   case PatchingStub::access_field_id:
 325     target = Runtime1::entry_for(C1StubId::access_field_patching_id);
 326     reloc_type = relocInfo::section_word_type;
 327     break;
 328   case PatchingStub::load_klass_id:
 329     target = Runtime1::entry_for(C1StubId::load_klass_patching_id);
 330     reloc_type = relocInfo::metadata_type;
 331     break;
 332   case PatchingStub::load_mirror_id:
 333     target = Runtime1::entry_for(C1StubId::load_mirror_patching_id);
 334     reloc_type = relocInfo::oop_type;
 335     break;
 336   case PatchingStub::load_appendix_id:
 337     target = Runtime1::entry_for(C1StubId::load_appendix_patching_id);
 338     reloc_type = relocInfo::oop_type;
 339     break;
 340   default: ShouldNotReachHere();
 341   }
 342 
 343   __ far_call(RuntimeAddress(target));
 344   add_call_info_here(info);
 345 }
 346 
 347 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
 348   deoptimize_trap(info);
 349 }
 350 
 351 
 352 // This specifies the rsp decrement needed to build the frame
 353 int LIR_Assembler::initial_frame_size_in_bytes() const {
 354   // if rounding, must let FrameMap know!
 355 
 356   return in_bytes(frame_map()->framesize_in_bytes());
 357 }
 358 
 359 
 360 int LIR_Assembler::emit_exception_handler() {
 361   // generate code for exception handler
 362   address handler_base = __ start_a_stub(exception_handler_size());
 363   if (handler_base == nullptr) {
 364     // not enough space left for the handler
 365     bailout("exception handler overflow");
 366     return -1;
 367   }
 368 
 369   int offset = code_offset();
 370 
 371   // the exception oop and pc are in r0, and r3
 372   // no other registers need to be preserved, so invalidate them
 373   __ invalidate_registers(false, true, true, false, true, true);
 374 
 375   // check that there is really an exception
 376   __ verify_not_null_oop(r0);
 377 
 378   // search an exception handler (r0: exception oop, r3: throwing pc)
 379   __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::handle_exception_from_callee_id)));
 380   __ should_not_reach_here();
 381   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 382   __ end_a_stub();
 383 
 384   return offset;
 385 }
 386 
 387 
 388 // Emit the code to remove the frame from the stack in the exception
 389 // unwind path.
 390 int LIR_Assembler::emit_unwind_handler() {
 391 #ifndef PRODUCT
 392   if (CommentedAssembly) {
 393     _masm->block_comment("Unwind handler");
 394   }
 395 #endif
 396 
 397   int offset = code_offset();
 398 
 399   // Fetch the exception from TLS and clear out exception related thread state
 400   __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
 401   __ str(zr, Address(rthread, JavaThread::exception_oop_offset()));
 402   __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
 403 
 404   __ bind(_unwind_handler_entry);
 405   __ verify_not_null_oop(r0);
 406   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 407     __ mov(r19, r0);  // Preserve the exception
 408   }
 409 
 410   // Perform needed unlocking
 411   MonitorExitStub* stub = nullptr;
 412   if (method()->is_synchronized()) {
 413     monitor_address(0, FrameMap::r0_opr);
 414     stub = new MonitorExitStub(FrameMap::r0_opr, true, 0);
 415     if (LockingMode == LM_MONITOR) {
 416       __ b(*stub->entry());
 417     } else {
 418       __ unlock_object(r5, r4, r0, r6, *stub->entry());
 419     }
 420     __ bind(*stub->continuation());
 421   }
 422 
 423   if (compilation()->env()->dtrace_method_probes()) {
 424     __ mov(c_rarg0, rthread);
 425     __ mov_metadata(c_rarg1, method()->constant_encoding());
 426     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), c_rarg0, c_rarg1);
 427   }
 428 
 429   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 430     __ mov(r0, r19);  // Restore the exception
 431   }
 432 
 433   // remove the activation and dispatch to the unwind handler
 434   __ block_comment("remove_frame and dispatch to the unwind handler");
 435   __ remove_frame(initial_frame_size_in_bytes());
 436   __ far_jump(RuntimeAddress(Runtime1::entry_for(C1StubId::unwind_exception_id)));
 437 
 438   // Emit the slow path assembly
 439   if (stub != nullptr) {
 440     stub->emit_code(this);
 441   }
 442 
 443   return offset;
 444 }
 445 
 446 
 447 int LIR_Assembler::emit_deopt_handler() {
 448   // generate code for exception handler
 449   address handler_base = __ start_a_stub(deopt_handler_size());
 450   if (handler_base == nullptr) {
 451     // not enough space left for the handler
 452     bailout("deopt handler overflow");
 453     return -1;
 454   }
 455 
 456   int offset = code_offset();
 457 
 458   __ adr(lr, pc());
 459   __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 460   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 461   __ end_a_stub();
 462 
 463   return offset;
 464 }
 465 
 466 void LIR_Assembler::add_debug_info_for_branch(address adr, CodeEmitInfo* info) {
 467   _masm->code_section()->relocate(adr, relocInfo::poll_type);
 468   int pc_offset = code_offset();
 469   flush_debug_info(pc_offset);
 470   info->record_debug_info(compilation()->debug_info_recorder(), pc_offset);
 471   if (info->exception_handlers() != nullptr) {
 472     compilation()->add_exception_handlers_for_pco(pc_offset, info->exception_handlers());
 473   }
 474 }
 475 
 476 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) {
 477   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == r0, "word returns are in r0,");
 478 
 479   // Pop the stack before the safepoint code
 480   __ remove_frame(initial_frame_size_in_bytes());
 481 
 482   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
 483     __ reserved_stack_check();
 484   }
 485 
 486   code_stub->set_safepoint_offset(__ offset());
 487   __ relocate(relocInfo::poll_return_type);
 488   __ safepoint_poll(*code_stub->entry(), true /* at_return */, false /* acquire */, true /* in_nmethod */);
 489   __ ret(lr);
 490 }
 491 
 492 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 493   guarantee(info != nullptr, "Shouldn't be null");
 494   __ get_polling_page(rscratch1, relocInfo::poll_type);
 495   add_debug_info_for_branch(info);  // This isn't just debug info:
 496                                     // it's the oop map
 497   __ read_polling_page(rscratch1, relocInfo::poll_type);
 498   return __ offset();
 499 }
 500 
 501 
 502 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 503   if (from_reg == r31_sp)
 504     from_reg = sp;
 505   if (to_reg == r31_sp)
 506     to_reg = sp;
 507   __ mov(to_reg, from_reg);
 508 }
 509 
 510 void LIR_Assembler::swap_reg(Register a, Register b) { Unimplemented(); }
 511 
 512 
 513 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 514   assert(src->is_constant(), "should not call otherwise");
 515   assert(dest->is_register(), "should not call otherwise");
 516   LIR_Const* c = src->as_constant_ptr();
 517 
 518   switch (c->type()) {
 519     case T_INT: {
 520       assert(patch_code == lir_patch_none, "no patching handled here");
 521       __ movw(dest->as_register(), c->as_jint());
 522       break;
 523     }
 524 
 525     case T_ADDRESS: {
 526       assert(patch_code == lir_patch_none, "no patching handled here");
 527       __ mov(dest->as_register(), c->as_jint());
 528       break;
 529     }
 530 
 531     case T_LONG: {
 532       assert(patch_code == lir_patch_none, "no patching handled here");
 533       if (SCCache::is_on_for_write()) {
 534         // SCA needs relocation info for card table base
 535         address b = c->as_pointer();
 536         if (is_card_table_address(b)) {
 537           __ lea(dest->as_register_lo(), ExternalAddress(b));
 538           break;
 539         }
 540         if (AOTRuntimeConstants::contains(b)) {
 541           __ load_aotrc_address(dest->as_register_lo(), b);
 542           break;
 543         }
 544       }
 545       __ mov(dest->as_register_lo(), (intptr_t)c->as_jlong());
 546       break;
 547     }
 548 
 549     case T_OBJECT: {
 550         if (patch_code == lir_patch_none) {
 551           jobject2reg(c->as_jobject(), dest->as_register());
 552         } else {
 553           jobject2reg_with_patching(dest->as_register(), info);
 554         }
 555       break;
 556     }
 557 
 558     case T_METADATA: {
 559       if (patch_code != lir_patch_none) {
 560         klass2reg_with_patching(dest->as_register(), info);
 561       } else {
 562         __ mov_metadata(dest->as_register(), c->as_metadata());
 563       }
 564       break;
 565     }
 566 
 567     case T_FLOAT: {
 568       if (__ operand_valid_for_float_immediate(c->as_jfloat())) {
 569         __ fmovs(dest->as_float_reg(), (c->as_jfloat()));
 570       } else {
 571         __ adr(rscratch1, InternalAddress(float_constant(c->as_jfloat())));
 572         __ ldrs(dest->as_float_reg(), Address(rscratch1));
 573       }
 574       break;
 575     }
 576 
 577     case T_DOUBLE: {
 578       if (__ operand_valid_for_float_immediate(c->as_jdouble())) {
 579         __ fmovd(dest->as_double_reg(), (c->as_jdouble()));
 580       } else {
 581         __ adr(rscratch1, InternalAddress(double_constant(c->as_jdouble())));
 582         __ ldrd(dest->as_double_reg(), Address(rscratch1));
 583       }
 584       break;
 585     }
 586 
 587     default:
 588       ShouldNotReachHere();
 589   }
 590 }
 591 
 592 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 593   LIR_Const* c = src->as_constant_ptr();
 594   switch (c->type()) {
 595   case T_OBJECT:
 596     {
 597       if (! c->as_jobject())
 598         __ str(zr, frame_map()->address_for_slot(dest->single_stack_ix()));
 599       else {
 600         const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr);
 601         reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false);
 602       }
 603     }
 604     break;
 605   case T_ADDRESS:
 606     {
 607       const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr);
 608       reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false);
 609     }
 610   case T_INT:
 611   case T_FLOAT:
 612     {
 613       Register reg = zr;
 614       if (c->as_jint_bits() == 0)
 615         __ strw(zr, frame_map()->address_for_slot(dest->single_stack_ix()));
 616       else {
 617         __ movw(rscratch1, c->as_jint_bits());
 618         __ strw(rscratch1, frame_map()->address_for_slot(dest->single_stack_ix()));
 619       }
 620     }
 621     break;
 622   case T_LONG:
 623   case T_DOUBLE:
 624     {
 625       Register reg = zr;
 626       if (c->as_jlong_bits() == 0)
 627         __ str(zr, frame_map()->address_for_slot(dest->double_stack_ix(),
 628                                                  lo_word_offset_in_bytes));
 629       else {
 630         __ mov(rscratch1, (intptr_t)c->as_jlong_bits());
 631         __ str(rscratch1, frame_map()->address_for_slot(dest->double_stack_ix(),
 632                                                         lo_word_offset_in_bytes));
 633       }
 634     }
 635     break;
 636   default:
 637     ShouldNotReachHere();
 638   }
 639 }
 640 
 641 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 642   assert(src->is_constant(), "should not call otherwise");
 643   LIR_Const* c = src->as_constant_ptr();
 644   LIR_Address* to_addr = dest->as_address_ptr();
 645 
 646   void (Assembler::* insn)(Register Rt, const Address &adr);
 647 
 648   switch (type) {
 649   case T_ADDRESS:
 650     assert(c->as_jint() == 0, "should be");
 651     insn = &Assembler::str;
 652     break;
 653   case T_LONG:
 654     assert(c->as_jlong() == 0, "should be");
 655     insn = &Assembler::str;
 656     break;
 657   case T_INT:
 658     assert(c->as_jint() == 0, "should be");
 659     insn = &Assembler::strw;
 660     break;
 661   case T_OBJECT:
 662   case T_ARRAY:
 663     assert(c->as_jobject() == nullptr, "should be");
 664     if (UseCompressedOops && !wide) {
 665       insn = &Assembler::strw;
 666     } else {
 667       insn = &Assembler::str;
 668     }
 669     break;
 670   case T_CHAR:
 671   case T_SHORT:
 672     assert(c->as_jint() == 0, "should be");
 673     insn = &Assembler::strh;
 674     break;
 675   case T_BOOLEAN:
 676   case T_BYTE:
 677     assert(c->as_jint() == 0, "should be");
 678     insn = &Assembler::strb;
 679     break;
 680   default:
 681     ShouldNotReachHere();
 682     insn = &Assembler::str;  // unreachable
 683   }
 684 
 685   if (info) add_debug_info_for_null_check_here(info);
 686   (_masm->*insn)(zr, as_Address(to_addr, rscratch1));
 687 }
 688 
 689 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 690   assert(src->is_register(), "should not call otherwise");
 691   assert(dest->is_register(), "should not call otherwise");
 692 
 693   // move between cpu-registers
 694   if (dest->is_single_cpu()) {
 695     if (src->type() == T_LONG) {
 696       // Can do LONG -> OBJECT
 697       move_regs(src->as_register_lo(), dest->as_register());
 698       return;
 699     }
 700     assert(src->is_single_cpu(), "must match");
 701     if (src->type() == T_OBJECT) {
 702       __ verify_oop(src->as_register());
 703     }
 704     move_regs(src->as_register(), dest->as_register());
 705 
 706   } else if (dest->is_double_cpu()) {
 707     if (is_reference_type(src->type())) {
 708       // Surprising to me but we can see move of a long to t_object
 709       __ verify_oop(src->as_register());
 710       move_regs(src->as_register(), dest->as_register_lo());
 711       return;
 712     }
 713     assert(src->is_double_cpu(), "must match");
 714     Register f_lo = src->as_register_lo();
 715     Register f_hi = src->as_register_hi();
 716     Register t_lo = dest->as_register_lo();
 717     Register t_hi = dest->as_register_hi();
 718     assert(f_hi == f_lo, "must be same");
 719     assert(t_hi == t_lo, "must be same");
 720     move_regs(f_lo, t_lo);
 721 
 722   } else if (dest->is_single_fpu()) {
 723     __ fmovs(dest->as_float_reg(), src->as_float_reg());
 724 
 725   } else if (dest->is_double_fpu()) {
 726     __ fmovd(dest->as_double_reg(), src->as_double_reg());
 727 
 728   } else {
 729     ShouldNotReachHere();
 730   }
 731 }
 732 
 733 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 734   precond(src->is_register() && dest->is_stack());
 735 
 736   uint const c_sz32 = sizeof(uint32_t);
 737   uint const c_sz64 = sizeof(uint64_t);
 738 
 739   if (src->is_single_cpu()) {
 740     int index = dest->single_stack_ix();
 741     if (is_reference_type(type)) {
 742       __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1));
 743       __ verify_oop(src->as_register());
 744     } else if (type == T_METADATA || type == T_DOUBLE || type == T_ADDRESS) {
 745       __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1));
 746     } else {
 747       __ strw(src->as_register(), stack_slot_address(index, c_sz32, rscratch1));
 748     }
 749 
 750   } else if (src->is_double_cpu()) {
 751     int index = dest->double_stack_ix();
 752     Address dest_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes);
 753     __ str(src->as_register_lo(), dest_addr_LO);
 754 
 755   } else if (src->is_single_fpu()) {
 756     int index = dest->single_stack_ix();
 757     __ strs(src->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1));
 758 
 759   } else if (src->is_double_fpu()) {
 760     int index = dest->double_stack_ix();
 761     __ strd(src->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1));
 762 
 763   } else {
 764     ShouldNotReachHere();
 765   }
 766 }
 767 
 768 
 769 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide) {
 770   LIR_Address* to_addr = dest->as_address_ptr();
 771   PatchingStub* patch = nullptr;
 772   Register compressed_src = rscratch1;
 773 
 774   if (patch_code != lir_patch_none) {
 775     deoptimize_trap(info);
 776     return;
 777   }
 778 
 779   if (is_reference_type(type)) {
 780     __ verify_oop(src->as_register());
 781 
 782     if (UseCompressedOops && !wide) {
 783       __ encode_heap_oop(compressed_src, src->as_register());
 784     } else {
 785       compressed_src = src->as_register();
 786     }
 787   }
 788 
 789   int null_check_here = code_offset();
 790   switch (type) {
 791     case T_FLOAT: {
 792       __ strs(src->as_float_reg(), as_Address(to_addr));
 793       break;
 794     }
 795 
 796     case T_DOUBLE: {
 797       __ strd(src->as_double_reg(), as_Address(to_addr));
 798       break;
 799     }
 800 
 801     case T_ARRAY:   // fall through
 802     case T_OBJECT:  // fall through
 803       if (UseCompressedOops && !wide) {
 804         __ strw(compressed_src, as_Address(to_addr, rscratch2));
 805       } else {
 806          __ str(compressed_src, as_Address(to_addr));
 807       }
 808       break;
 809     case T_METADATA:
 810       // We get here to store a method pointer to the stack to pass to
 811       // a dtrace runtime call. This can't work on 64 bit with
 812       // compressed klass ptrs: T_METADATA can be a compressed klass
 813       // ptr or a 64 bit method pointer.
 814       ShouldNotReachHere();
 815       __ str(src->as_register(), as_Address(to_addr));
 816       break;
 817     case T_ADDRESS:
 818       __ str(src->as_register(), as_Address(to_addr));
 819       break;
 820     case T_INT:
 821       __ strw(src->as_register(), as_Address(to_addr));
 822       break;
 823 
 824     case T_LONG: {
 825       __ str(src->as_register_lo(), as_Address_lo(to_addr));
 826       break;
 827     }
 828 
 829     case T_BYTE:    // fall through
 830     case T_BOOLEAN: {
 831       __ strb(src->as_register(), as_Address(to_addr));
 832       break;
 833     }
 834 
 835     case T_CHAR:    // fall through
 836     case T_SHORT:
 837       __ strh(src->as_register(), as_Address(to_addr));
 838       break;
 839 
 840     default:
 841       ShouldNotReachHere();
 842   }
 843   if (info != nullptr) {
 844     add_debug_info_for_null_check(null_check_here, info);
 845   }
 846 }
 847 
 848 
 849 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
 850   precond(src->is_stack() && dest->is_register());
 851 
 852   uint const c_sz32 = sizeof(uint32_t);
 853   uint const c_sz64 = sizeof(uint64_t);
 854 
 855   if (dest->is_single_cpu()) {
 856     int index = src->single_stack_ix();
 857     if (is_reference_type(type)) {
 858       __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1));
 859       __ verify_oop(dest->as_register());
 860     } else if (type == T_METADATA || type == T_ADDRESS) {
 861       __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1));
 862     } else {
 863       __ ldrw(dest->as_register(), stack_slot_address(index, c_sz32, rscratch1));
 864     }
 865 
 866   } else if (dest->is_double_cpu()) {
 867     int index = src->double_stack_ix();
 868     Address src_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes);
 869     __ ldr(dest->as_register_lo(), src_addr_LO);
 870 
 871   } else if (dest->is_single_fpu()) {
 872     int index = src->single_stack_ix();
 873     __ ldrs(dest->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1));
 874 
 875   } else if (dest->is_double_fpu()) {
 876     int index = src->double_stack_ix();
 877     __ ldrd(dest->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1));
 878 
 879   } else {
 880     ShouldNotReachHere();
 881   }
 882 }
 883 
 884 
 885 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 886   address target = nullptr;
 887   relocInfo::relocType reloc_type = relocInfo::none;
 888 
 889   switch (patching_id(info)) {
 890   case PatchingStub::access_field_id:
 891     target = Runtime1::entry_for(C1StubId::access_field_patching_id);
 892     reloc_type = relocInfo::section_word_type;
 893     break;
 894   case PatchingStub::load_klass_id:
 895     target = Runtime1::entry_for(C1StubId::load_klass_patching_id);
 896     reloc_type = relocInfo::metadata_type;
 897     break;
 898   case PatchingStub::load_mirror_id:
 899     target = Runtime1::entry_for(C1StubId::load_mirror_patching_id);
 900     reloc_type = relocInfo::oop_type;
 901     break;
 902   case PatchingStub::load_appendix_id:
 903     target = Runtime1::entry_for(C1StubId::load_appendix_patching_id);
 904     reloc_type = relocInfo::oop_type;
 905     break;
 906   default: ShouldNotReachHere();
 907   }
 908 
 909   __ far_call(RuntimeAddress(target));
 910   add_call_info_here(info);
 911 }
 912 
 913 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
 914 
 915   LIR_Opr temp;
 916   if (type == T_LONG || type == T_DOUBLE)
 917     temp = FrameMap::rscratch1_long_opr;
 918   else
 919     temp = FrameMap::rscratch1_opr;
 920 
 921   stack2reg(src, temp, src->type());
 922   reg2stack(temp, dest, dest->type(), false);
 923 }
 924 
 925 
 926 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) {
 927   LIR_Address* addr = src->as_address_ptr();
 928   LIR_Address* from_addr = src->as_address_ptr();
 929 
 930   if (addr->base()->type() == T_OBJECT) {
 931     __ verify_oop(addr->base()->as_pointer_register());
 932   }
 933 
 934   if (patch_code != lir_patch_none) {
 935     deoptimize_trap(info);
 936     return;
 937   }
 938 
 939   if (info != nullptr) {
 940     add_debug_info_for_null_check_here(info);
 941   }
 942   int null_check_here = code_offset();
 943   switch (type) {
 944     case T_FLOAT: {
 945       __ ldrs(dest->as_float_reg(), as_Address(from_addr));
 946       break;
 947     }
 948 
 949     case T_DOUBLE: {
 950       __ ldrd(dest->as_double_reg(), as_Address(from_addr));
 951       break;
 952     }
 953 
 954     case T_ARRAY:   // fall through
 955     case T_OBJECT:  // fall through
 956       if (UseCompressedOops && !wide) {
 957         __ ldrw(dest->as_register(), as_Address(from_addr));
 958       } else {
 959         __ ldr(dest->as_register(), as_Address(from_addr));
 960       }
 961       break;
 962     case T_METADATA:
 963       // We get here to store a method pointer to the stack to pass to
 964       // a dtrace runtime call. This can't work on 64 bit with
 965       // compressed klass ptrs: T_METADATA can be a compressed klass
 966       // ptr or a 64 bit method pointer.
 967       ShouldNotReachHere();
 968       __ ldr(dest->as_register(), as_Address(from_addr));
 969       break;
 970     case T_ADDRESS:
 971       __ ldr(dest->as_register(), as_Address(from_addr));
 972       break;
 973     case T_INT:
 974       __ ldrw(dest->as_register(), as_Address(from_addr));
 975       break;
 976 
 977     case T_LONG: {
 978       __ ldr(dest->as_register_lo(), as_Address_lo(from_addr));
 979       break;
 980     }
 981 
 982     case T_BYTE:
 983       __ ldrsb(dest->as_register(), as_Address(from_addr));
 984       break;
 985     case T_BOOLEAN: {
 986       __ ldrb(dest->as_register(), as_Address(from_addr));
 987       break;
 988     }
 989 
 990     case T_CHAR:
 991       __ ldrh(dest->as_register(), as_Address(from_addr));
 992       break;
 993     case T_SHORT:
 994       __ ldrsh(dest->as_register(), as_Address(from_addr));
 995       break;
 996 
 997     default:
 998       ShouldNotReachHere();
 999   }
1000 
1001   if (is_reference_type(type)) {
1002     if (UseCompressedOops && !wide) {
1003       __ decode_heap_oop(dest->as_register());
1004     }
1005 
1006     __ verify_oop(dest->as_register());
1007   }
1008 }
1009 
1010 
1011 int LIR_Assembler::array_element_size(BasicType type) const {
1012   int elem_size = type2aelembytes(type);
1013   return exact_log2(elem_size);
1014 }
1015 
1016 
1017 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1018   switch (op->code()) {
1019   case lir_idiv:
1020   case lir_irem:
1021     arithmetic_idiv(op->code(),
1022                     op->in_opr1(),
1023                     op->in_opr2(),
1024                     op->in_opr3(),
1025                     op->result_opr(),
1026                     op->info());
1027     break;
1028   case lir_fmad:
1029     __ fmaddd(op->result_opr()->as_double_reg(),
1030               op->in_opr1()->as_double_reg(),
1031               op->in_opr2()->as_double_reg(),
1032               op->in_opr3()->as_double_reg());
1033     break;
1034   case lir_fmaf:
1035     __ fmadds(op->result_opr()->as_float_reg(),
1036               op->in_opr1()->as_float_reg(),
1037               op->in_opr2()->as_float_reg(),
1038               op->in_opr3()->as_float_reg());
1039     break;
1040   default:      ShouldNotReachHere(); break;
1041   }
1042 }
1043 
1044 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1045 #ifdef ASSERT
1046   assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label");
1047   if (op->block() != nullptr)  _branch_target_blocks.append(op->block());
1048   if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock());
1049 #endif
1050 
1051   if (op->cond() == lir_cond_always) {
1052     if (op->info() != nullptr) add_debug_info_for_branch(op->info());
1053     __ b(*(op->label()));
1054   } else {
1055     Assembler::Condition acond;
1056     if (op->code() == lir_cond_float_branch) {
1057       bool is_unordered = (op->ublock() == op->block());
1058       // Assembler::EQ does not permit unordered branches, so we add
1059       // another branch here.  Likewise, Assembler::NE does not permit
1060       // ordered branches.
1061       if ((is_unordered && op->cond() == lir_cond_equal)
1062           || (!is_unordered && op->cond() == lir_cond_notEqual))
1063         __ br(Assembler::VS, *(op->ublock()->label()));
1064       switch(op->cond()) {
1065       case lir_cond_equal:        acond = Assembler::EQ; break;
1066       case lir_cond_notEqual:     acond = Assembler::NE; break;
1067       case lir_cond_less:         acond = (is_unordered ? Assembler::LT : Assembler::LO); break;
1068       case lir_cond_lessEqual:    acond = (is_unordered ? Assembler::LE : Assembler::LS); break;
1069       case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::HS : Assembler::GE); break;
1070       case lir_cond_greater:      acond = (is_unordered ? Assembler::HI : Assembler::GT); break;
1071       default:                    ShouldNotReachHere();
1072         acond = Assembler::EQ;  // unreachable
1073       }
1074     } else {
1075       switch (op->cond()) {
1076         case lir_cond_equal:        acond = Assembler::EQ; break;
1077         case lir_cond_notEqual:     acond = Assembler::NE; break;
1078         case lir_cond_less:         acond = Assembler::LT; break;
1079         case lir_cond_lessEqual:    acond = Assembler::LE; break;
1080         case lir_cond_greaterEqual: acond = Assembler::GE; break;
1081         case lir_cond_greater:      acond = Assembler::GT; break;
1082         case lir_cond_belowEqual:   acond = Assembler::LS; break;
1083         case lir_cond_aboveEqual:   acond = Assembler::HS; break;
1084         default:                    ShouldNotReachHere();
1085           acond = Assembler::EQ;  // unreachable
1086       }
1087     }
1088     __ br(acond,*(op->label()));
1089   }
1090 }
1091 
1092 
1093 
1094 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1095   LIR_Opr src  = op->in_opr();
1096   LIR_Opr dest = op->result_opr();
1097 
1098   switch (op->bytecode()) {
1099     case Bytecodes::_i2f:
1100       {
1101         __ scvtfws(dest->as_float_reg(), src->as_register());
1102         break;
1103       }
1104     case Bytecodes::_i2d:
1105       {
1106         __ scvtfwd(dest->as_double_reg(), src->as_register());
1107         break;
1108       }
1109     case Bytecodes::_l2d:
1110       {
1111         __ scvtfd(dest->as_double_reg(), src->as_register_lo());
1112         break;
1113       }
1114     case Bytecodes::_l2f:
1115       {
1116         __ scvtfs(dest->as_float_reg(), src->as_register_lo());
1117         break;
1118       }
1119     case Bytecodes::_f2d:
1120       {
1121         __ fcvts(dest->as_double_reg(), src->as_float_reg());
1122         break;
1123       }
1124     case Bytecodes::_d2f:
1125       {
1126         __ fcvtd(dest->as_float_reg(), src->as_double_reg());
1127         break;
1128       }
1129     case Bytecodes::_i2c:
1130       {
1131         __ ubfx(dest->as_register(), src->as_register(), 0, 16);
1132         break;
1133       }
1134     case Bytecodes::_i2l:
1135       {
1136         __ sxtw(dest->as_register_lo(), src->as_register());
1137         break;
1138       }
1139     case Bytecodes::_i2s:
1140       {
1141         __ sxth(dest->as_register(), src->as_register());
1142         break;
1143       }
1144     case Bytecodes::_i2b:
1145       {
1146         __ sxtb(dest->as_register(), src->as_register());
1147         break;
1148       }
1149     case Bytecodes::_l2i:
1150       {
1151         _masm->block_comment("FIXME: This could be a no-op");
1152         __ uxtw(dest->as_register(), src->as_register_lo());
1153         break;
1154       }
1155     case Bytecodes::_d2l:
1156       {
1157         __ fcvtzd(dest->as_register_lo(), src->as_double_reg());
1158         break;
1159       }
1160     case Bytecodes::_f2i:
1161       {
1162         __ fcvtzsw(dest->as_register(), src->as_float_reg());
1163         break;
1164       }
1165     case Bytecodes::_f2l:
1166       {
1167         __ fcvtzs(dest->as_register_lo(), src->as_float_reg());
1168         break;
1169       }
1170     case Bytecodes::_d2i:
1171       {
1172         __ fcvtzdw(dest->as_register(), src->as_double_reg());
1173         break;
1174       }
1175     default: ShouldNotReachHere();
1176   }
1177 }
1178 
1179 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1180   if (op->init_check()) {
1181     __ lea(rscratch1, Address(op->klass()->as_register(), InstanceKlass::init_state_offset()));
1182     __ ldarb(rscratch1, rscratch1);
1183     __ cmpw(rscratch1, InstanceKlass::fully_initialized);
1184     add_debug_info_for_null_check_here(op->stub()->info());
1185     __ br(Assembler::NE, *op->stub()->entry());
1186   }
1187   __ allocate_object(op->obj()->as_register(),
1188                      op->tmp1()->as_register(),
1189                      op->tmp2()->as_register(),
1190                      op->header_size(),
1191                      op->object_size(),
1192                      op->klass()->as_register(),
1193                      *op->stub()->entry());
1194   __ bind(*op->stub()->continuation());
1195 }
1196 
1197 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1198   Register len =  op->len()->as_register();
1199   __ uxtw(len, len);
1200 
1201   if (UseSlowPath ||
1202       (!UseFastNewObjectArray && is_reference_type(op->type())) ||
1203       (!UseFastNewTypeArray   && !is_reference_type(op->type()))) {
1204     __ b(*op->stub()->entry());
1205   } else {
1206     Register tmp1 = op->tmp1()->as_register();
1207     Register tmp2 = op->tmp2()->as_register();
1208     Register tmp3 = op->tmp3()->as_register();
1209     if (len == tmp1) {
1210       tmp1 = tmp3;
1211     } else if (len == tmp2) {
1212       tmp2 = tmp3;
1213     } else if (len == tmp3) {
1214       // everything is ok
1215     } else {
1216       __ mov(tmp3, len);
1217     }
1218     __ allocate_array(op->obj()->as_register(),
1219                       len,
1220                       tmp1,
1221                       tmp2,
1222                       arrayOopDesc::base_offset_in_bytes(op->type()),
1223                       array_element_size(op->type()),
1224                       op->klass()->as_register(),
1225                       *op->stub()->entry(),
1226                       op->zero_array());
1227   }
1228   __ bind(*op->stub()->continuation());
1229 }
1230 
1231 void LIR_Assembler::type_profile_helper(Register mdo,
1232                                         ciMethodData *md, ciProfileData *data,
1233                                         Register recv, Label* update_done) {
1234 
1235   // Given a profile data offset, generate an Address which points to
1236   // the corresponding slot in mdo->data().
1237   // Clobbers rscratch2.
1238   auto slot_at = [=](ByteSize offset) -> Address {
1239     return __ form_address(rscratch2, mdo,
1240                            md->byte_offset_of_slot(data, offset),
1241                            LogBytesPerWord);
1242   };
1243 
1244   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1245     Label next_test;
1246     // See if the receiver is receiver[n].
1247     __ ldr(rscratch1, slot_at(ReceiverTypeData::receiver_offset(i)));
1248     __ cmp(recv, rscratch1);
1249     __ br(Assembler::NE, next_test);
1250     __ addptr(slot_at(ReceiverTypeData::receiver_count_offset(i)),
1251               DataLayout::counter_increment);
1252     __ b(*update_done);
1253     __ bind(next_test);
1254   }
1255 
1256   // Didn't find receiver; find next empty slot and fill it in
1257   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1258     Label next_test;
1259     Address recv_addr(slot_at(ReceiverTypeData::receiver_offset(i)));
1260     __ ldr(rscratch1, recv_addr);
1261     __ cbnz(rscratch1, next_test);
1262     __ str(recv, recv_addr);
1263     __ mov(rscratch1, DataLayout::counter_increment);
1264     __ str(rscratch1, slot_at(ReceiverTypeData::receiver_count_offset(i)));
1265     __ b(*update_done);
1266     __ bind(next_test);
1267   }
1268 }
1269 
1270 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1271   // we always need a stub for the failure case.
1272   CodeStub* stub = op->stub();
1273   Register obj = op->object()->as_register();
1274   Register k_RInfo = op->tmp1()->as_register();
1275   Register klass_RInfo = op->tmp2()->as_register();
1276   Register dst = op->result_opr()->as_register();
1277   ciKlass* k = op->klass();
1278   Register Rtmp1 = noreg;
1279 
1280   // check if it needs to be profiled
1281   ciMethodData* md;
1282   ciProfileData* data;
1283 
1284   const bool should_profile = op->should_profile();
1285 
1286   if (should_profile) {
1287     ciMethod* method = op->profiled_method();
1288     assert(method != nullptr, "Should have method");
1289     int bci = op->profiled_bci();
1290     md = method->method_data_or_null();
1291     assert(md != nullptr, "Sanity");
1292     data = md->bci_to_data(bci);
1293     assert(data != nullptr,                "need data for type check");
1294     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1295   }
1296   Label* success_target = success;
1297   Label* failure_target = failure;
1298 
1299   if (obj == k_RInfo) {
1300     k_RInfo = dst;
1301   } else if (obj == klass_RInfo) {
1302     klass_RInfo = dst;
1303   }
1304   if (k->is_loaded() && !UseCompressedClassPointers) {
1305     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1306   } else {
1307     Rtmp1 = op->tmp3()->as_register();
1308     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1309   }
1310 
1311   assert_different_registers(obj, k_RInfo, klass_RInfo);
1312 
1313   if (should_profile) {
1314     Register mdo  = klass_RInfo;
1315     __ mov_metadata(mdo, md->constant_encoding());
1316     Label not_null;
1317     __ cbnz(obj, not_null);
1318     // Object is null; update MDO and exit
1319     Address data_addr
1320       = __ form_address(rscratch2, mdo,
1321                         md->byte_offset_of_slot(data, DataLayout::flags_offset()),
1322                         0);
1323     __ ldrb(rscratch1, data_addr);
1324     __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant());
1325     __ strb(rscratch1, data_addr);
1326     __ b(*obj_is_null);
1327     __ bind(not_null);
1328 
1329     Label update_done;
1330     Register recv = k_RInfo;
1331     __ load_klass(recv, obj);
1332     type_profile_helper(mdo, md, data, recv, &update_done);
1333     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1334     __ addptr(counter_addr, DataLayout::counter_increment);
1335 
1336     __ bind(update_done);
1337   } else {
1338     __ cbz(obj, *obj_is_null);
1339   }
1340 
1341   if (!k->is_loaded()) {
1342     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1343   } else {
1344     __ mov_metadata(k_RInfo, k->constant_encoding());
1345   }
1346   __ verify_oop(obj);
1347 
1348   if (op->fast_check()) {
1349     // get object class
1350     // not a safepoint as obj null check happens earlier
1351     __ load_klass(rscratch1, obj);
1352     __ cmp( rscratch1, k_RInfo);
1353 
1354     __ br(Assembler::NE, *failure_target);
1355     // successful cast, fall through to profile or jump
1356   } else {
1357     // get object class
1358     // not a safepoint as obj null check happens earlier
1359     __ load_klass(klass_RInfo, obj);
1360     if (k->is_loaded()) {
1361       // See if we get an immediate positive hit
1362       __ ldr(rscratch1, Address(klass_RInfo, int64_t(k->super_check_offset())));
1363       __ cmp(k_RInfo, rscratch1);
1364       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1365         __ br(Assembler::NE, *failure_target);
1366         // successful cast, fall through to profile or jump
1367       } else {
1368         // See if we get an immediate positive hit
1369         __ br(Assembler::EQ, *success_target);
1370         // check for self
1371         __ cmp(klass_RInfo, k_RInfo);
1372         __ br(Assembler::EQ, *success_target);
1373 
1374         __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
1375         __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id)));
1376         __ ldr(klass_RInfo, Address(__ post(sp, 2 * wordSize)));
1377         // result is a boolean
1378         __ cbzw(klass_RInfo, *failure_target);
1379         // successful cast, fall through to profile or jump
1380       }
1381     } else {
1382       // perform the fast part of the checking logic
1383       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
1384       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1385       __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
1386       __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id)));
1387       __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize)));
1388       // result is a boolean
1389       __ cbz(k_RInfo, *failure_target);
1390       // successful cast, fall through to profile or jump
1391     }
1392   }
1393   __ b(*success);
1394 }
1395 
1396 
1397 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1398   const bool should_profile = op->should_profile();
1399 
1400   LIR_Code code = op->code();
1401   if (code == lir_store_check) {
1402     Register value = op->object()->as_register();
1403     Register array = op->array()->as_register();
1404     Register k_RInfo = op->tmp1()->as_register();
1405     Register klass_RInfo = op->tmp2()->as_register();
1406     Register Rtmp1 = op->tmp3()->as_register();
1407 
1408     CodeStub* stub = op->stub();
1409 
1410     // check if it needs to be profiled
1411     ciMethodData* md;
1412     ciProfileData* data;
1413 
1414     if (should_profile) {
1415       ciMethod* method = op->profiled_method();
1416       assert(method != nullptr, "Should have method");
1417       int bci = op->profiled_bci();
1418       md = method->method_data_or_null();
1419       assert(md != nullptr, "Sanity");
1420       data = md->bci_to_data(bci);
1421       assert(data != nullptr,                "need data for type check");
1422       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1423     }
1424     Label done;
1425     Label* success_target = &done;
1426     Label* failure_target = stub->entry();
1427 
1428     if (should_profile) {
1429       Label not_null;
1430       Register mdo  = klass_RInfo;
1431       __ mov_metadata(mdo, md->constant_encoding());
1432       __ cbnz(value, not_null);
1433       // Object is null; update MDO and exit
1434       Address data_addr
1435         = __ form_address(rscratch2, mdo,
1436                           md->byte_offset_of_slot(data, DataLayout::flags_offset()), 0);
1437       __ ldrb(rscratch1, data_addr);
1438       __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant());
1439       __ strb(rscratch1, data_addr);
1440       __ b(done);
1441       __ bind(not_null);
1442 
1443       Label update_done;
1444       Register recv = k_RInfo;
1445       __ load_klass(recv, value);
1446       type_profile_helper(mdo, md, data, recv, &update_done);
1447       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1448       __ addptr(counter_addr, DataLayout::counter_increment);
1449       __ bind(update_done);
1450     } else {
1451       __ cbz(value, done);
1452     }
1453 
1454     add_debug_info_for_null_check_here(op->info_for_exception());
1455     __ load_klass(k_RInfo, array);
1456     __ load_klass(klass_RInfo, value);
1457 
1458     // get instance klass (it's already uncompressed)
1459     __ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1460     // perform the fast part of the checking logic
1461     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
1462     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1463     __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
1464     __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id)));
1465     __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize)));
1466     // result is a boolean
1467     __ cbzw(k_RInfo, *failure_target);
1468     // fall through to the success case
1469 
1470     __ bind(done);
1471   } else if (code == lir_checkcast) {
1472     Register obj = op->object()->as_register();
1473     Register dst = op->result_opr()->as_register();
1474     Label success;
1475     emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1476     __ bind(success);
1477     if (dst != obj) {
1478       __ mov(dst, obj);
1479     }
1480   } else if (code == lir_instanceof) {
1481     Register obj = op->object()->as_register();
1482     Register dst = op->result_opr()->as_register();
1483     Label success, failure, done;
1484     emit_typecheck_helper(op, &success, &failure, &failure);
1485     __ bind(failure);
1486     __ mov(dst, zr);
1487     __ b(done);
1488     __ bind(success);
1489     __ mov(dst, 1);
1490     __ bind(done);
1491   } else {
1492     ShouldNotReachHere();
1493   }
1494 }
1495 
1496 void LIR_Assembler::casw(Register addr, Register newval, Register cmpval) {
1497   __ cmpxchg(addr, cmpval, newval, Assembler::word, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1);
1498   __ cset(rscratch1, Assembler::NE);
1499   __ membar(__ AnyAny);
1500 }
1501 
1502 void LIR_Assembler::casl(Register addr, Register newval, Register cmpval) {
1503   __ cmpxchg(addr, cmpval, newval, Assembler::xword, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1);
1504   __ cset(rscratch1, Assembler::NE);
1505   __ membar(__ AnyAny);
1506 }
1507 
1508 
1509 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1510   Register addr;
1511   if (op->addr()->is_register()) {
1512     addr = as_reg(op->addr());
1513   } else {
1514     assert(op->addr()->is_address(), "what else?");
1515     LIR_Address* addr_ptr = op->addr()->as_address_ptr();
1516     assert(addr_ptr->disp() == 0, "need 0 disp");
1517     assert(addr_ptr->index() == LIR_Opr::illegalOpr(), "need 0 index");
1518     addr = as_reg(addr_ptr->base());
1519   }
1520   Register newval = as_reg(op->new_value());
1521   Register cmpval = as_reg(op->cmp_value());
1522 
1523   if (op->code() == lir_cas_obj) {
1524     if (UseCompressedOops) {
1525       Register t1 = op->tmp1()->as_register();
1526       assert(op->tmp1()->is_valid(), "must be");
1527       __ encode_heap_oop(t1, cmpval);
1528       cmpval = t1;
1529       __ encode_heap_oop(rscratch2, newval);
1530       newval = rscratch2;
1531       casw(addr, newval, cmpval);
1532     } else {
1533       casl(addr, newval, cmpval);
1534     }
1535   } else if (op->code() == lir_cas_int) {
1536     casw(addr, newval, cmpval);
1537   } else {
1538     casl(addr, newval, cmpval);
1539   }
1540 }
1541 
1542 
1543 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type,
1544                           LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) {
1545   assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on aarch64");
1546 
1547   Assembler::Condition acond, ncond;
1548   switch (condition) {
1549   case lir_cond_equal:        acond = Assembler::EQ; ncond = Assembler::NE; break;
1550   case lir_cond_notEqual:     acond = Assembler::NE; ncond = Assembler::EQ; break;
1551   case lir_cond_less:         acond = Assembler::LT; ncond = Assembler::GE; break;
1552   case lir_cond_lessEqual:    acond = Assembler::LE; ncond = Assembler::GT; break;
1553   case lir_cond_greaterEqual: acond = Assembler::GE; ncond = Assembler::LT; break;
1554   case lir_cond_greater:      acond = Assembler::GT; ncond = Assembler::LE; break;
1555   case lir_cond_belowEqual:
1556   case lir_cond_aboveEqual:
1557   default:                    ShouldNotReachHere();
1558     acond = Assembler::EQ; ncond = Assembler::NE;  // unreachable
1559   }
1560 
1561   assert(result->is_single_cpu() || result->is_double_cpu(),
1562          "expect single register for result");
1563   if (opr1->is_constant() && opr2->is_constant()
1564       && opr1->type() == T_INT && opr2->type() == T_INT) {
1565     jint val1 = opr1->as_jint();
1566     jint val2 = opr2->as_jint();
1567     if (val1 == 0 && val2 == 1) {
1568       __ cset(result->as_register(), ncond);
1569       return;
1570     } else if (val1 == 1 && val2 == 0) {
1571       __ cset(result->as_register(), acond);
1572       return;
1573     }
1574   }
1575 
1576   if (opr1->is_constant() && opr2->is_constant()
1577       && opr1->type() == T_LONG && opr2->type() == T_LONG) {
1578     jlong val1 = opr1->as_jlong();
1579     jlong val2 = opr2->as_jlong();
1580     if (val1 == 0 && val2 == 1) {
1581       __ cset(result->as_register_lo(), ncond);
1582       return;
1583     } else if (val1 == 1 && val2 == 0) {
1584       __ cset(result->as_register_lo(), acond);
1585       return;
1586     }
1587   }
1588 
1589   if (opr1->is_stack()) {
1590     stack2reg(opr1, FrameMap::rscratch1_opr, result->type());
1591     opr1 = FrameMap::rscratch1_opr;
1592   } else if (opr1->is_constant()) {
1593     LIR_Opr tmp
1594       = opr1->type() == T_LONG ? FrameMap::rscratch1_long_opr : FrameMap::rscratch1_opr;
1595     const2reg(opr1, tmp, lir_patch_none, nullptr);
1596     opr1 = tmp;
1597   }
1598 
1599   if (opr2->is_stack()) {
1600     stack2reg(opr2, FrameMap::rscratch2_opr, result->type());
1601     opr2 = FrameMap::rscratch2_opr;
1602   } else if (opr2->is_constant()) {
1603     LIR_Opr tmp
1604       = opr2->type() == T_LONG ? FrameMap::rscratch2_long_opr : FrameMap::rscratch2_opr;
1605     const2reg(opr2, tmp, lir_patch_none, nullptr);
1606     opr2 = tmp;
1607   }
1608 
1609   if (result->type() == T_LONG)
1610     __ csel(result->as_register_lo(), opr1->as_register_lo(), opr2->as_register_lo(), acond);
1611   else
1612     __ csel(result->as_register(), opr1->as_register(), opr2->as_register(), acond);
1613 }
1614 
1615 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1616   assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
1617 
1618   if (left->is_single_cpu()) {
1619     Register lreg = left->as_register();
1620     Register dreg = as_reg(dest);
1621 
1622     if (right->is_single_cpu()) {
1623       // cpu register - cpu register
1624 
1625       assert(left->type() == T_INT && right->type() == T_INT && dest->type() == T_INT,
1626              "should be");
1627       Register rreg = right->as_register();
1628       switch (code) {
1629       case lir_add: __ addw (dest->as_register(), lreg, rreg); break;
1630       case lir_sub: __ subw (dest->as_register(), lreg, rreg); break;
1631       case lir_mul: __ mulw (dest->as_register(), lreg, rreg); break;
1632       default:      ShouldNotReachHere();
1633       }
1634 
1635     } else if (right->is_double_cpu()) {
1636       Register rreg = right->as_register_lo();
1637       // single_cpu + double_cpu: can happen with obj+long
1638       assert(code == lir_add || code == lir_sub, "mismatched arithmetic op");
1639       switch (code) {
1640       case lir_add: __ add(dreg, lreg, rreg); break;
1641       case lir_sub: __ sub(dreg, lreg, rreg); break;
1642       default: ShouldNotReachHere();
1643       }
1644     } else if (right->is_constant()) {
1645       // cpu register - constant
1646       jlong c;
1647 
1648       // FIXME.  This is fugly: we really need to factor all this logic.
1649       switch(right->type()) {
1650       case T_LONG:
1651         c = right->as_constant_ptr()->as_jlong();
1652         break;
1653       case T_INT:
1654       case T_ADDRESS:
1655         c = right->as_constant_ptr()->as_jint();
1656         break;
1657       default:
1658         ShouldNotReachHere();
1659         c = 0;  // unreachable
1660         break;
1661       }
1662 
1663       assert(code == lir_add || code == lir_sub, "mismatched arithmetic op");
1664       if (c == 0 && dreg == lreg) {
1665         COMMENT("effective nop elided");
1666         return;
1667       }
1668       switch(left->type()) {
1669       case T_INT:
1670         switch (code) {
1671         case lir_add: __ addw(dreg, lreg, c); break;
1672         case lir_sub: __ subw(dreg, lreg, c); break;
1673         default: ShouldNotReachHere();
1674         }
1675         break;
1676       case T_OBJECT:
1677       case T_ADDRESS:
1678         switch (code) {
1679         case lir_add: __ add(dreg, lreg, c); break;
1680         case lir_sub: __ sub(dreg, lreg, c); break;
1681         default: ShouldNotReachHere();
1682         }
1683         break;
1684       default:
1685         ShouldNotReachHere();
1686       }
1687     } else {
1688       ShouldNotReachHere();
1689     }
1690 
1691   } else if (left->is_double_cpu()) {
1692     Register lreg_lo = left->as_register_lo();
1693 
1694     if (right->is_double_cpu()) {
1695       // cpu register - cpu register
1696       Register rreg_lo = right->as_register_lo();
1697       switch (code) {
1698       case lir_add: __ add (dest->as_register_lo(), lreg_lo, rreg_lo); break;
1699       case lir_sub: __ sub (dest->as_register_lo(), lreg_lo, rreg_lo); break;
1700       case lir_mul: __ mul (dest->as_register_lo(), lreg_lo, rreg_lo); break;
1701       case lir_div: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, false, rscratch1); break;
1702       case lir_rem: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, true, rscratch1); break;
1703       default:
1704         ShouldNotReachHere();
1705       }
1706 
1707     } else if (right->is_constant()) {
1708       jlong c = right->as_constant_ptr()->as_jlong();
1709       Register dreg = as_reg(dest);
1710       switch (code) {
1711         case lir_add:
1712         case lir_sub:
1713           if (c == 0 && dreg == lreg_lo) {
1714             COMMENT("effective nop elided");
1715             return;
1716           }
1717           code == lir_add ? __ add(dreg, lreg_lo, c) : __ sub(dreg, lreg_lo, c);
1718           break;
1719         case lir_div:
1720           assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant");
1721           if (c == 1) {
1722             // move lreg_lo to dreg if divisor is 1
1723             __ mov(dreg, lreg_lo);
1724           } else {
1725             unsigned int shift = log2i_exact(c);
1726             // use rscratch1 as intermediate result register
1727             __ asr(rscratch1, lreg_lo, 63);
1728             __ add(rscratch1, lreg_lo, rscratch1, Assembler::LSR, 64 - shift);
1729             __ asr(dreg, rscratch1, shift);
1730           }
1731           break;
1732         case lir_rem:
1733           assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant");
1734           if (c == 1) {
1735             // move 0 to dreg if divisor is 1
1736             __ mov(dreg, zr);
1737           } else {
1738             // use rscratch1 as intermediate result register
1739             __ negs(rscratch1, lreg_lo);
1740             __ andr(dreg, lreg_lo, c - 1);
1741             __ andr(rscratch1, rscratch1, c - 1);
1742             __ csneg(dreg, dreg, rscratch1, Assembler::MI);
1743           }
1744           break;
1745         default:
1746           ShouldNotReachHere();
1747       }
1748     } else {
1749       ShouldNotReachHere();
1750     }
1751   } else if (left->is_single_fpu()) {
1752     assert(right->is_single_fpu(), "right hand side of float arithmetics needs to be float register");
1753     switch (code) {
1754     case lir_add: __ fadds (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1755     case lir_sub: __ fsubs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1756     case lir_mul: __ fmuls (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1757     case lir_div: __ fdivs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1758     default:
1759       ShouldNotReachHere();
1760     }
1761   } else if (left->is_double_fpu()) {
1762     if (right->is_double_fpu()) {
1763       // fpu register - fpu register
1764       switch (code) {
1765       case lir_add: __ faddd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1766       case lir_sub: __ fsubd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1767       case lir_mul: __ fmuld (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1768       case lir_div: __ fdivd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1769       default:
1770         ShouldNotReachHere();
1771       }
1772     } else {
1773       if (right->is_constant()) {
1774         ShouldNotReachHere();
1775       }
1776       ShouldNotReachHere();
1777     }
1778   } else if (left->is_single_stack() || left->is_address()) {
1779     assert(left == dest, "left and dest must be equal");
1780     ShouldNotReachHere();
1781   } else {
1782     ShouldNotReachHere();
1783   }
1784 }
1785 
1786 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) { Unimplemented(); }
1787 
1788 
1789 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) {
1790   switch(code) {
1791   case lir_abs : __ fabsd(dest->as_double_reg(), value->as_double_reg()); break;
1792   case lir_sqrt: __ fsqrtd(dest->as_double_reg(), value->as_double_reg()); break;
1793   case lir_f2hf: __ flt_to_flt16(dest->as_register(), value->as_float_reg(), tmp->as_float_reg()); break;
1794   case lir_hf2f: __ flt16_to_flt(dest->as_float_reg(), value->as_register(), tmp->as_float_reg()); break;
1795   default      : ShouldNotReachHere();
1796   }
1797 }
1798 
1799 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
1800 
1801   assert(left->is_single_cpu() || left->is_double_cpu(), "expect single or double register");
1802   Register Rleft = left->is_single_cpu() ? left->as_register() :
1803                                            left->as_register_lo();
1804    if (dst->is_single_cpu()) {
1805      Register Rdst = dst->as_register();
1806      if (right->is_constant()) {
1807        switch (code) {
1808          case lir_logic_and: __ andw (Rdst, Rleft, right->as_jint()); break;
1809          case lir_logic_or:  __ orrw (Rdst, Rleft, right->as_jint()); break;
1810          case lir_logic_xor: __ eorw (Rdst, Rleft, right->as_jint()); break;
1811          default: ShouldNotReachHere(); break;
1812        }
1813      } else {
1814        Register Rright = right->is_single_cpu() ? right->as_register() :
1815                                                   right->as_register_lo();
1816        switch (code) {
1817          case lir_logic_and: __ andw (Rdst, Rleft, Rright); break;
1818          case lir_logic_or:  __ orrw (Rdst, Rleft, Rright); break;
1819          case lir_logic_xor: __ eorw (Rdst, Rleft, Rright); break;
1820          default: ShouldNotReachHere(); break;
1821        }
1822      }
1823    } else {
1824      Register Rdst = dst->as_register_lo();
1825      if (right->is_constant()) {
1826        switch (code) {
1827          case lir_logic_and: __ andr (Rdst, Rleft, right->as_jlong()); break;
1828          case lir_logic_or:  __ orr (Rdst, Rleft, right->as_jlong()); break;
1829          case lir_logic_xor: __ eor (Rdst, Rleft, right->as_jlong()); break;
1830          default: ShouldNotReachHere(); break;
1831        }
1832      } else {
1833        Register Rright = right->is_single_cpu() ? right->as_register() :
1834                                                   right->as_register_lo();
1835        switch (code) {
1836          case lir_logic_and: __ andr (Rdst, Rleft, Rright); break;
1837          case lir_logic_or:  __ orr (Rdst, Rleft, Rright); break;
1838          case lir_logic_xor: __ eor (Rdst, Rleft, Rright); break;
1839          default: ShouldNotReachHere(); break;
1840        }
1841      }
1842    }
1843 }
1844 
1845 
1846 
1847 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr illegal, LIR_Opr result, CodeEmitInfo* info) {
1848 
1849   // opcode check
1850   assert((code == lir_idiv) || (code == lir_irem), "opcode must be idiv or irem");
1851   bool is_irem = (code == lir_irem);
1852 
1853   // operand check
1854   assert(left->is_single_cpu(),   "left must be register");
1855   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
1856   assert(result->is_single_cpu(), "result must be register");
1857   Register lreg = left->as_register();
1858   Register dreg = result->as_register();
1859 
1860   // power-of-2 constant check and codegen
1861   if (right->is_constant()) {
1862     int c = right->as_constant_ptr()->as_jint();
1863     assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant");
1864     if (is_irem) {
1865       if (c == 1) {
1866         // move 0 to dreg if divisor is 1
1867         __ movw(dreg, zr);
1868       } else {
1869         // use rscratch1 as intermediate result register
1870         __ negsw(rscratch1, lreg);
1871         __ andw(dreg, lreg, c - 1);
1872         __ andw(rscratch1, rscratch1, c - 1);
1873         __ csnegw(dreg, dreg, rscratch1, Assembler::MI);
1874       }
1875     } else {
1876       if (c == 1) {
1877         // move lreg to dreg if divisor is 1
1878         __ movw(dreg, lreg);
1879       } else {
1880         unsigned int shift = exact_log2(c);
1881         // use rscratch1 as intermediate result register
1882         __ asrw(rscratch1, lreg, 31);
1883         __ addw(rscratch1, lreg, rscratch1, Assembler::LSR, 32 - shift);
1884         __ asrw(dreg, rscratch1, shift);
1885       }
1886     }
1887   } else {
1888     Register rreg = right->as_register();
1889     __ corrected_idivl(dreg, lreg, rreg, is_irem, rscratch1);
1890   }
1891 }
1892 
1893 
1894 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1895   if (opr1->is_constant() && opr2->is_single_cpu()) {
1896     // tableswitch
1897     Register reg = as_reg(opr2);
1898     struct tableswitch &table = switches[opr1->as_constant_ptr()->as_jint()];
1899     __ tableswitch(reg, table._first_key, table._last_key, table._branches, table._after);
1900   } else if (opr1->is_single_cpu() || opr1->is_double_cpu()) {
1901     Register reg1 = as_reg(opr1);
1902     if (opr2->is_single_cpu()) {
1903       // cpu register - cpu register
1904       Register reg2 = opr2->as_register();
1905       if (is_reference_type(opr1->type())) {
1906         __ cmpoop(reg1, reg2);
1907       } else {
1908         assert(!is_reference_type(opr2->type()), "cmp int, oop?");
1909         __ cmpw(reg1, reg2);
1910       }
1911       return;
1912     }
1913     if (opr2->is_double_cpu()) {
1914       // cpu register - cpu register
1915       Register reg2 = opr2->as_register_lo();
1916       __ cmp(reg1, reg2);
1917       return;
1918     }
1919 
1920     if (opr2->is_constant()) {
1921       bool is_32bit = false; // width of register operand
1922       jlong imm;
1923 
1924       switch(opr2->type()) {
1925       case T_INT:
1926         imm = opr2->as_constant_ptr()->as_jint();
1927         is_32bit = true;
1928         break;
1929       case T_LONG:
1930         imm = opr2->as_constant_ptr()->as_jlong();
1931         break;
1932       case T_ADDRESS:
1933         imm = opr2->as_constant_ptr()->as_jint();
1934         break;
1935       case T_METADATA:
1936         imm = (intptr_t)(opr2->as_constant_ptr()->as_metadata());
1937         break;
1938       case T_OBJECT:
1939       case T_ARRAY:
1940         jobject2reg(opr2->as_constant_ptr()->as_jobject(), rscratch1);
1941         __ cmpoop(reg1, rscratch1);
1942         return;
1943       default:
1944         ShouldNotReachHere();
1945         imm = 0;  // unreachable
1946         break;
1947       }
1948 
1949       if (Assembler::operand_valid_for_add_sub_immediate(imm)) {
1950         if (is_32bit)
1951           __ cmpw(reg1, imm);
1952         else
1953           __ subs(zr, reg1, imm);
1954         return;
1955       } else {
1956         __ mov(rscratch1, imm);
1957         if (is_32bit)
1958           __ cmpw(reg1, rscratch1);
1959         else
1960           __ cmp(reg1, rscratch1);
1961         return;
1962       }
1963     } else
1964       ShouldNotReachHere();
1965   } else if (opr1->is_single_fpu()) {
1966     FloatRegister reg1 = opr1->as_float_reg();
1967     assert(opr2->is_single_fpu(), "expect single float register");
1968     FloatRegister reg2 = opr2->as_float_reg();
1969     __ fcmps(reg1, reg2);
1970   } else if (opr1->is_double_fpu()) {
1971     FloatRegister reg1 = opr1->as_double_reg();
1972     assert(opr2->is_double_fpu(), "expect double float register");
1973     FloatRegister reg2 = opr2->as_double_reg();
1974     __ fcmpd(reg1, reg2);
1975   } else {
1976     ShouldNotReachHere();
1977   }
1978 }
1979 
1980 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
1981   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1982     bool is_unordered_less = (code == lir_ucmp_fd2i);
1983     if (left->is_single_fpu()) {
1984       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
1985     } else if (left->is_double_fpu()) {
1986       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
1987     } else {
1988       ShouldNotReachHere();
1989     }
1990   } else if (code == lir_cmp_l2i) {
1991     Label done;
1992     __ cmp(left->as_register_lo(), right->as_register_lo());
1993     __ mov(dst->as_register(), (uint64_t)-1L);
1994     __ br(Assembler::LT, done);
1995     __ csinc(dst->as_register(), zr, zr, Assembler::EQ);
1996     __ bind(done);
1997   } else {
1998     ShouldNotReachHere();
1999   }
2000 }
2001 
2002 
2003 void LIR_Assembler::align_call(LIR_Code code) {  }
2004 
2005 
2006 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2007   address call = __ trampoline_call(Address(op->addr(), rtype));
2008   if (call == nullptr) {
2009     bailout("trampoline stub overflow");
2010     return;
2011   }
2012   add_call_info(code_offset(), op->info());
2013   __ post_call_nop();
2014 }
2015 
2016 
2017 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2018   address call = __ ic_call(op->addr());
2019   if (call == nullptr) {
2020     bailout("trampoline stub overflow");
2021     return;
2022   }
2023   add_call_info(code_offset(), op->info());
2024   __ post_call_nop();
2025 }
2026 
2027 void LIR_Assembler::emit_static_call_stub() {
2028   address call_pc = __ pc();
2029   address stub = __ start_a_stub(call_stub_size());
2030   if (stub == nullptr) {
2031     bailout("static call stub overflow");
2032     return;
2033   }
2034 
2035   int start = __ offset();
2036 
2037   __ relocate(static_stub_Relocation::spec(call_pc));
2038   __ emit_static_call_stub();
2039 
2040   assert(__ offset() - start + CompiledDirectCall::to_trampoline_stub_size()
2041         <= call_stub_size(), "stub too big");
2042   __ end_a_stub();
2043 }
2044 
2045 
2046 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2047   assert(exceptionOop->as_register() == r0, "must match");
2048   assert(exceptionPC->as_register() == r3, "must match");
2049 
2050   // exception object is not added to oop map by LinearScan
2051   // (LinearScan assumes that no oops are in fixed registers)
2052   info->add_register_oop(exceptionOop);
2053   C1StubId unwind_id;
2054 
2055   // get current pc information
2056   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2057   if (compilation()->debug_info_recorder()->last_pc_offset() == __ offset()) {
2058     // As no instructions have been generated yet for this LIR node it's
2059     // possible that an oop map already exists for the current offset.
2060     // In that case insert an dummy NOP here to ensure all oop map PCs
2061     // are unique. See JDK-8237483.
2062     __ nop();
2063   }
2064   int pc_for_athrow_offset = __ offset();
2065   InternalAddress pc_for_athrow(__ pc());
2066   __ adr(exceptionPC->as_register(), pc_for_athrow);
2067   add_call_info(pc_for_athrow_offset, info); // for exception handler
2068 
2069   __ verify_not_null_oop(r0);
2070   // search an exception handler (r0: exception oop, r3: throwing pc)
2071   if (compilation()->has_fpu_code()) {
2072     unwind_id = C1StubId::handle_exception_id;
2073   } else {
2074     unwind_id = C1StubId::handle_exception_nofpu_id;
2075   }
2076   __ far_call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2077 
2078   // FIXME: enough room for two byte trap   ????
2079   __ nop();
2080 }
2081 
2082 
2083 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2084   assert(exceptionOop->as_register() == r0, "must match");
2085 
2086   __ b(_unwind_handler_entry);
2087 }
2088 
2089 
2090 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2091   Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo();
2092   Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo();
2093 
2094   switch (left->type()) {
2095     case T_INT: {
2096       switch (code) {
2097       case lir_shl:  __ lslvw (dreg, lreg, count->as_register()); break;
2098       case lir_shr:  __ asrvw (dreg, lreg, count->as_register()); break;
2099       case lir_ushr: __ lsrvw (dreg, lreg, count->as_register()); break;
2100       default:
2101         ShouldNotReachHere();
2102         break;
2103       }
2104       break;
2105     case T_LONG:
2106     case T_ADDRESS:
2107     case T_OBJECT:
2108       switch (code) {
2109       case lir_shl:  __ lslv (dreg, lreg, count->as_register()); break;
2110       case lir_shr:  __ asrv (dreg, lreg, count->as_register()); break;
2111       case lir_ushr: __ lsrv (dreg, lreg, count->as_register()); break;
2112       default:
2113         ShouldNotReachHere();
2114         break;
2115       }
2116       break;
2117     default:
2118       ShouldNotReachHere();
2119       break;
2120     }
2121   }
2122 }
2123 
2124 
2125 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2126   Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo();
2127   Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo();
2128 
2129   switch (left->type()) {
2130     case T_INT: {
2131       switch (code) {
2132       case lir_shl:  __ lslw (dreg, lreg, count); break;
2133       case lir_shr:  __ asrw (dreg, lreg, count); break;
2134       case lir_ushr: __ lsrw (dreg, lreg, count); break;
2135       default:
2136         ShouldNotReachHere();
2137         break;
2138       }
2139       break;
2140     case T_LONG:
2141     case T_ADDRESS:
2142     case T_OBJECT:
2143       switch (code) {
2144       case lir_shl:  __ lsl (dreg, lreg, count); break;
2145       case lir_shr:  __ asr (dreg, lreg, count); break;
2146       case lir_ushr: __ lsr (dreg, lreg, count); break;
2147       default:
2148         ShouldNotReachHere();
2149         break;
2150       }
2151       break;
2152     default:
2153       ShouldNotReachHere();
2154       break;
2155     }
2156   }
2157 }
2158 
2159 
2160 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
2161   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2162   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2163   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2164   __ str (r, Address(sp, offset_from_rsp_in_bytes));
2165 }
2166 
2167 
2168 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
2169   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2170   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2171   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2172   __ mov (rscratch1, c);
2173   __ str (rscratch1, Address(sp, offset_from_rsp_in_bytes));
2174 }
2175 
2176 
2177 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
2178   ShouldNotReachHere();
2179   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2180   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2181   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2182   __ lea(rscratch1, __ constant_oop_address(o));
2183   __ str(rscratch1, Address(sp, offset_from_rsp_in_bytes));
2184 }
2185 
2186 
2187 // This code replaces a call to arraycopy; no exception may
2188 // be thrown in this code, they must be thrown in the System.arraycopy
2189 // activation frame; we could save some checks if this would not be the case
2190 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2191   ciArrayKlass* default_type = op->expected_type();
2192   Register src = op->src()->as_register();
2193   Register dst = op->dst()->as_register();
2194   Register src_pos = op->src_pos()->as_register();
2195   Register dst_pos = op->dst_pos()->as_register();
2196   Register length  = op->length()->as_register();
2197   Register tmp = op->tmp()->as_register();
2198 
2199   CodeStub* stub = op->stub();
2200   int flags = op->flags();
2201   BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL;
2202   if (is_reference_type(basic_type)) basic_type = T_OBJECT;
2203 
2204   // if we don't know anything, just go through the generic arraycopy
2205   if (default_type == nullptr // || basic_type == T_OBJECT
2206       ) {
2207     Label done;
2208     assert(src == r1 && src_pos == r2, "mismatch in calling convention");
2209 
2210     // Save the arguments in case the generic arraycopy fails and we
2211     // have to fall back to the JNI stub
2212     __ stp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2213     __ stp(length,  src_pos, Address(sp, 2*BytesPerWord));
2214     __ str(src,              Address(sp, 4*BytesPerWord));
2215 
2216     address copyfunc_addr = StubRoutines::generic_arraycopy();
2217     assert(copyfunc_addr != nullptr, "generic arraycopy stub required");
2218 
2219     // The arguments are in java calling convention so we shift them
2220     // to C convention
2221     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
2222     __ mov(c_rarg0, j_rarg0);
2223     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
2224     __ mov(c_rarg1, j_rarg1);
2225     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
2226     __ mov(c_rarg2, j_rarg2);
2227     assert_different_registers(c_rarg3, j_rarg4);
2228     __ mov(c_rarg3, j_rarg3);
2229     __ mov(c_rarg4, j_rarg4);
2230 #ifndef PRODUCT
2231     if (PrintC1Statistics) {
2232       __ incrementw(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
2233     }
2234 #endif
2235     __ far_call(RuntimeAddress(copyfunc_addr));
2236 
2237     __ cbz(r0, *stub->continuation());
2238 
2239     // Reload values from the stack so they are where the stub
2240     // expects them.
2241     __ ldp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2242     __ ldp(length,  src_pos, Address(sp, 2*BytesPerWord));
2243     __ ldr(src,              Address(sp, 4*BytesPerWord));
2244 
2245     // r0 is -1^K where K == partial copied count
2246     __ eonw(rscratch1, r0, zr);
2247     // adjust length down and src/end pos up by partial copied count
2248     __ subw(length, length, rscratch1);
2249     __ addw(src_pos, src_pos, rscratch1);
2250     __ addw(dst_pos, dst_pos, rscratch1);
2251     __ b(*stub->entry());
2252 
2253     __ bind(*stub->continuation());
2254     return;
2255   }
2256 
2257   assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
2258 
2259   int elem_size = type2aelembytes(basic_type);
2260   int scale = exact_log2(elem_size);
2261 
2262   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
2263   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
2264 
2265   // test for null
2266   if (flags & LIR_OpArrayCopy::src_null_check) {
2267     __ cbz(src, *stub->entry());
2268   }
2269   if (flags & LIR_OpArrayCopy::dst_null_check) {
2270     __ cbz(dst, *stub->entry());
2271   }
2272 
2273   // If the compiler was not able to prove that exact type of the source or the destination
2274   // of the arraycopy is an array type, check at runtime if the source or the destination is
2275   // an instance type.
2276   if (flags & LIR_OpArrayCopy::type_check) {
2277     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) {
2278       __ load_klass(tmp, dst);
2279       __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2280       __ cmpw(rscratch1, Klass::_lh_neutral_value);
2281       __ br(Assembler::GE, *stub->entry());
2282     }
2283 
2284     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) {
2285       __ load_klass(tmp, src);
2286       __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2287       __ cmpw(rscratch1, Klass::_lh_neutral_value);
2288       __ br(Assembler::GE, *stub->entry());
2289     }
2290   }
2291 
2292   // check if negative
2293   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
2294     __ cmpw(src_pos, 0);
2295     __ br(Assembler::LT, *stub->entry());
2296   }
2297   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
2298     __ cmpw(dst_pos, 0);
2299     __ br(Assembler::LT, *stub->entry());
2300   }
2301 
2302   if (flags & LIR_OpArrayCopy::length_positive_check) {
2303     __ cmpw(length, 0);
2304     __ br(Assembler::LT, *stub->entry());
2305   }
2306 
2307   if (flags & LIR_OpArrayCopy::src_range_check) {
2308     __ addw(tmp, src_pos, length);
2309     __ ldrw(rscratch1, src_length_addr);
2310     __ cmpw(tmp, rscratch1);
2311     __ br(Assembler::HI, *stub->entry());
2312   }
2313   if (flags & LIR_OpArrayCopy::dst_range_check) {
2314     __ addw(tmp, dst_pos, length);
2315     __ ldrw(rscratch1, dst_length_addr);
2316     __ cmpw(tmp, rscratch1);
2317     __ br(Assembler::HI, *stub->entry());
2318   }
2319 
2320   if (flags & LIR_OpArrayCopy::type_check) {
2321     // We don't know the array types are compatible
2322     if (basic_type != T_OBJECT) {
2323       // Simple test for basic type arrays
2324       __ cmp_klasses_from_objects(src, dst, tmp, rscratch1);
2325       __ br(Assembler::NE, *stub->entry());
2326     } else {
2327       // For object arrays, if src is a sub class of dst then we can
2328       // safely do the copy.
2329       Label cont, slow;
2330 
2331 #define PUSH(r1, r2)                                    \
2332       stp(r1, r2, __ pre(sp, -2 * wordSize));
2333 
2334 #define POP(r1, r2)                                     \
2335       ldp(r1, r2, __ post(sp, 2 * wordSize));
2336 
2337       __ PUSH(src, dst);
2338 
2339       __ load_klass(src, src);
2340       __ load_klass(dst, dst);
2341 
2342       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr);
2343 
2344       __ PUSH(src, dst);
2345       __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id)));
2346       __ POP(src, dst);
2347 
2348       __ cbnz(src, cont);
2349 
2350       __ bind(slow);
2351       __ POP(src, dst);
2352 
2353       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
2354       if (copyfunc_addr != nullptr) { // use stub if available
2355         // src is not a sub class of dst so we have to do a
2356         // per-element check.
2357 
2358         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2359         if ((flags & mask) != mask) {
2360           // Check that at least both of them object arrays.
2361           assert(flags & mask, "one of the two should be known to be an object array");
2362 
2363           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2364             __ load_klass(tmp, src);
2365           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2366             __ load_klass(tmp, dst);
2367           }
2368           int lh_offset = in_bytes(Klass::layout_helper_offset());
2369           Address klass_lh_addr(tmp, lh_offset);
2370           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2371           __ ldrw(rscratch1, klass_lh_addr);
2372           __ mov(rscratch2, objArray_lh);
2373           __ eorw(rscratch1, rscratch1, rscratch2);
2374           __ cbnzw(rscratch1, *stub->entry());
2375         }
2376 
2377        // Spill because stubs can use any register they like and it's
2378        // easier to restore just those that we care about.
2379         __ stp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2380         __ stp(length,  src_pos, Address(sp, 2*BytesPerWord));
2381         __ str(src,              Address(sp, 4*BytesPerWord));
2382 
2383         __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale)));
2384         __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type));
2385         assert_different_registers(c_rarg0, dst, dst_pos, length);
2386         __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale)));
2387         __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type));
2388         assert_different_registers(c_rarg1, dst, length);
2389         __ uxtw(c_rarg2, length);
2390         assert_different_registers(c_rarg2, dst);
2391 
2392         __ load_klass(c_rarg4, dst);
2393         __ ldr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
2394         __ ldrw(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
2395         __ far_call(RuntimeAddress(copyfunc_addr));
2396 
2397 #ifndef PRODUCT
2398         if (PrintC1Statistics) {
2399           Label failed;
2400           __ cbnz(r0, failed);
2401           __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
2402           __ bind(failed);
2403         }
2404 #endif
2405 
2406         __ cbz(r0, *stub->continuation());
2407 
2408 #ifndef PRODUCT
2409         if (PrintC1Statistics) {
2410           __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
2411         }
2412 #endif
2413         assert_different_registers(dst, dst_pos, length, src_pos, src, r0, rscratch1);
2414 
2415         // Restore previously spilled arguments
2416         __ ldp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2417         __ ldp(length,  src_pos, Address(sp, 2*BytesPerWord));
2418         __ ldr(src,              Address(sp, 4*BytesPerWord));
2419 
2420         // return value is -1^K where K is partial copied count
2421         __ eonw(rscratch1, r0, zr);
2422         // adjust length down and src/end pos up by partial copied count
2423         __ subw(length, length, rscratch1);
2424         __ addw(src_pos, src_pos, rscratch1);
2425         __ addw(dst_pos, dst_pos, rscratch1);
2426       }
2427 
2428       __ b(*stub->entry());
2429 
2430       __ bind(cont);
2431       __ POP(src, dst);
2432     }
2433   }
2434 
2435 #ifdef ASSERT
2436   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2437     // Sanity check the known type with the incoming class.  For the
2438     // primitive case the types must match exactly with src.klass and
2439     // dst.klass each exactly matching the default type.  For the
2440     // object array case, if no type check is needed then either the
2441     // dst type is exactly the expected type and the src type is a
2442     // subtype which we can't check or src is the same array as dst
2443     // but not necessarily exactly of type default_type.
2444     Label known_ok, halt;
2445     __ mov_metadata(tmp, default_type->constant_encoding());
2446 
2447     if (basic_type != T_OBJECT) {
2448       __ cmp_klass(dst, tmp, rscratch1);
2449       __ br(Assembler::NE, halt);
2450       __ cmp_klass(src, tmp, rscratch1);
2451       __ br(Assembler::EQ, known_ok);
2452     } else {
2453       __ cmp_klass(dst, tmp, rscratch1);
2454       __ br(Assembler::EQ, known_ok);
2455       __ cmp(src, dst);
2456       __ br(Assembler::EQ, known_ok);
2457     }
2458     __ bind(halt);
2459     __ stop("incorrect type information in arraycopy");
2460     __ bind(known_ok);
2461   }
2462 #endif
2463 
2464 #ifndef PRODUCT
2465   if (PrintC1Statistics) {
2466     __ incrementw(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
2467   }
2468 #endif
2469 
2470   __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale)));
2471   __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type));
2472   assert_different_registers(c_rarg0, dst, dst_pos, length);
2473   __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale)));
2474   __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type));
2475   assert_different_registers(c_rarg1, dst, length);
2476   __ uxtw(c_rarg2, length);
2477   assert_different_registers(c_rarg2, dst);
2478 
2479   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2480   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2481   const char *name;
2482   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2483 
2484  CodeBlob *cb = CodeCache::find_blob(entry);
2485  if (cb) {
2486    __ far_call(RuntimeAddress(entry));
2487  } else {
2488    __ call_VM_leaf(entry, 3);
2489  }
2490 
2491   if (stub != nullptr) {
2492     __ bind(*stub->continuation());
2493   }
2494 }
2495 
2496 
2497 
2498 
2499 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2500   Register obj = op->obj_opr()->as_register();  // may not be an oop
2501   Register hdr = op->hdr_opr()->as_register();
2502   Register lock = op->lock_opr()->as_register();
2503   Register temp = op->scratch_opr()->as_register();
2504   if (LockingMode == LM_MONITOR) {
2505     if (op->info() != nullptr) {
2506       add_debug_info_for_null_check_here(op->info());
2507       __ null_check(obj, -1);
2508     }
2509     __ b(*op->stub()->entry());
2510   } else if (op->code() == lir_lock) {
2511     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2512     // add debug info for NullPointerException only if one is possible
2513     int null_check_offset = __ lock_object(hdr, obj, lock, temp, *op->stub()->entry());
2514     if (op->info() != nullptr) {
2515       add_debug_info_for_null_check(null_check_offset, op->info());
2516     }
2517     // done
2518   } else if (op->code() == lir_unlock) {
2519     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2520     __ unlock_object(hdr, obj, lock, temp, *op->stub()->entry());
2521   } else {
2522     Unimplemented();
2523   }
2524   __ bind(*op->stub()->continuation());
2525 }
2526 
2527 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) {
2528   Register obj = op->obj()->as_pointer_register();
2529   Register result = op->result_opr()->as_pointer_register();
2530 
2531   CodeEmitInfo* info = op->info();
2532   if (info != nullptr) {
2533     add_debug_info_for_null_check_here(info);
2534   }
2535 
2536   __ load_klass(result, obj);
2537 }
2538 
2539 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2540   ciMethod* method = op->profiled_method();
2541   int bci          = op->profiled_bci();
2542   ciMethod* callee = op->profiled_callee();
2543 
2544   // Update counter for all call types
2545   ciMethodData* md = method->method_data_or_null();
2546   assert(md != nullptr, "Sanity");
2547   ciProfileData* data = md->bci_to_data(bci);
2548   assert(data != nullptr && data->is_CounterData(), "need CounterData for calls");
2549   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2550   Register mdo  = op->mdo()->as_register();
2551   __ mov_metadata(mdo, md->constant_encoding());
2552   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
2553   // Perform additional virtual call profiling for invokevirtual and
2554   // invokeinterface bytecodes
2555   if (op->should_profile_receiver_type()) {
2556     assert(op->recv()->is_single_cpu(), "recv must be allocated");
2557     Register recv = op->recv()->as_register();
2558     assert_different_registers(mdo, recv);
2559     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2560     ciKlass* known_klass = op->known_holder();
2561     if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) {
2562       // We know the type that will be seen at this call site; we can
2563       // statically update the MethodData* rather than needing to do
2564       // dynamic tests on the receiver type
2565 
2566       // NOTE: we should probably put a lock around this search to
2567       // avoid collisions by concurrent compilations
2568       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2569       uint i;
2570       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2571         ciKlass* receiver = vc_data->receiver(i);
2572         if (known_klass->equals(receiver)) {
2573           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2574           __ addptr(data_addr, DataLayout::counter_increment);
2575           return;
2576         }
2577       }
2578 
2579       // Receiver type not found in profile data; select an empty slot
2580 
2581       // Note that this is less efficient than it should be because it
2582       // always does a write to the receiver part of the
2583       // VirtualCallData rather than just the first time
2584       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2585         ciKlass* receiver = vc_data->receiver(i);
2586         if (receiver == nullptr) {
2587           __ mov_metadata(rscratch1, known_klass->constant_encoding());
2588           Address recv_addr =
2589             __ form_address(rscratch2, mdo,
2590                             md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)),
2591                             LogBytesPerWord);
2592           __ str(rscratch1, recv_addr);
2593           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2594           __ addptr(data_addr, DataLayout::counter_increment);
2595           return;
2596         }
2597       }
2598     } else {
2599       __ load_klass(recv, recv);
2600       Label update_done;
2601       type_profile_helper(mdo, md, data, recv, &update_done);
2602       // Receiver did not match any saved receiver and there is no empty row for it.
2603       // Increment total counter to indicate polymorphic case.
2604       __ addptr(counter_addr, DataLayout::counter_increment);
2605 
2606       __ bind(update_done);
2607     }
2608   } else {
2609     // Static call
2610     __ addptr(counter_addr, DataLayout::counter_increment);
2611   }
2612 }
2613 
2614 
2615 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
2616   Unimplemented();
2617 }
2618 
2619 
2620 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
2621   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
2622 }
2623 
2624 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
2625   assert(op->crc()->is_single_cpu(),  "crc must be register");
2626   assert(op->val()->is_single_cpu(),  "byte value must be register");
2627   assert(op->result_opr()->is_single_cpu(), "result must be register");
2628   Register crc = op->crc()->as_register();
2629   Register val = op->val()->as_register();
2630   Register res = op->result_opr()->as_register();
2631 
2632   assert_different_registers(val, crc, res);
2633   uint64_t offset;
2634   __ adrp(res, ExternalAddress(StubRoutines::crc_table_addr()), offset);
2635   __ add(res, res, offset);
2636 
2637   __ mvnw(crc, crc); // ~crc
2638   __ update_byte_crc32(crc, val, res);
2639   __ mvnw(res, crc); // ~crc
2640 }
2641 
2642 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
2643   COMMENT("emit_profile_type {");
2644   Register obj = op->obj()->as_register();
2645   Register tmp = op->tmp()->as_pointer_register();
2646   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
2647   ciKlass* exact_klass = op->exact_klass();
2648   intptr_t current_klass = op->current_klass();
2649   bool not_null = op->not_null();
2650   bool no_conflict = op->no_conflict();
2651 
2652   Label update, next, none;
2653 
2654   bool do_null = !not_null;
2655   bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
2656   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
2657 
2658   assert(do_null || do_update, "why are we here?");
2659   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
2660   assert(mdo_addr.base() != rscratch1, "wrong register");
2661 
2662   __ verify_oop(obj);
2663 
2664   if (tmp != obj) {
2665     assert_different_registers(obj, tmp, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index());
2666     __ mov(tmp, obj);
2667   } else {
2668     assert_different_registers(obj, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index());
2669   }
2670   if (do_null) {
2671     __ cbnz(tmp, update);
2672     if (!TypeEntries::was_null_seen(current_klass)) {
2673       __ ldr(rscratch2, mdo_addr);
2674       __ orr(rscratch2, rscratch2, TypeEntries::null_seen);
2675       __ str(rscratch2, mdo_addr);
2676     }
2677     if (do_update) {
2678 #ifndef ASSERT
2679       __ b(next);
2680     }
2681 #else
2682       __ b(next);
2683     }
2684   } else {
2685     __ cbnz(tmp, update);
2686     __ stop("unexpected null obj");
2687 #endif
2688   }
2689 
2690   __ bind(update);
2691 
2692   if (do_update) {
2693 #ifdef ASSERT
2694     if (exact_klass != nullptr) {
2695       Label ok;
2696       __ load_klass(tmp, tmp);
2697       __ mov_metadata(rscratch1, exact_klass->constant_encoding());
2698       __ eor(rscratch1, tmp, rscratch1);
2699       __ cbz(rscratch1, ok);
2700       __ stop("exact klass and actual klass differ");
2701       __ bind(ok);
2702     }
2703 #endif
2704     if (!no_conflict) {
2705       if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) {
2706         if (exact_klass != nullptr) {
2707           __ mov_metadata(tmp, exact_klass->constant_encoding());
2708         } else {
2709           __ load_klass(tmp, tmp);
2710         }
2711 
2712         __ ldr(rscratch2, mdo_addr);
2713         __ eor(tmp, tmp, rscratch2);
2714         __ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
2715         // klass seen before, nothing to do. The unknown bit may have been
2716         // set already but no need to check.
2717         __ cbz(rscratch1, next);
2718 
2719         __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
2720 
2721         if (TypeEntries::is_type_none(current_klass)) {
2722           __ cbz(rscratch2, none);
2723           __ cmp(rscratch2, (u1)TypeEntries::null_seen);
2724           __ br(Assembler::EQ, none);
2725           // There is a chance that the checks above
2726           // fail if another thread has just set the
2727           // profiling to this obj's klass
2728           __ dmb(Assembler::ISHLD);
2729           __ eor(tmp, tmp, rscratch2); // get back original value before XOR
2730           __ ldr(rscratch2, mdo_addr);
2731           __ eor(tmp, tmp, rscratch2);
2732           __ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
2733           __ cbz(rscratch1, next);
2734         }
2735       } else {
2736         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
2737                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
2738 
2739         __ ldr(tmp, mdo_addr);
2740         __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
2741       }
2742 
2743       // different than before. Cannot keep accurate profile.
2744       __ ldr(rscratch2, mdo_addr);
2745       __ orr(rscratch2, rscratch2, TypeEntries::type_unknown);
2746       __ str(rscratch2, mdo_addr);
2747 
2748       if (TypeEntries::is_type_none(current_klass)) {
2749         __ b(next);
2750 
2751         __ bind(none);
2752         // first time here. Set profile type.
2753         __ str(tmp, mdo_addr);
2754 #ifdef ASSERT
2755         __ andr(tmp, tmp, TypeEntries::type_mask);
2756         __ verify_klass_ptr(tmp);
2757 #endif
2758       }
2759     } else {
2760       // There's a single possible klass at this profile point
2761       assert(exact_klass != nullptr, "should be");
2762       if (TypeEntries::is_type_none(current_klass)) {
2763         __ mov_metadata(tmp, exact_klass->constant_encoding());
2764         __ ldr(rscratch2, mdo_addr);
2765         __ eor(tmp, tmp, rscratch2);
2766         __ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
2767         __ cbz(rscratch1, next);
2768 #ifdef ASSERT
2769         {
2770           Label ok;
2771           __ ldr(rscratch1, mdo_addr);
2772           __ cbz(rscratch1, ok);
2773           __ cmp(rscratch1, (u1)TypeEntries::null_seen);
2774           __ br(Assembler::EQ, ok);
2775           // may have been set by another thread
2776           __ dmb(Assembler::ISHLD);
2777           __ mov_metadata(rscratch1, exact_klass->constant_encoding());
2778           __ ldr(rscratch2, mdo_addr);
2779           __ eor(rscratch2, rscratch1, rscratch2);
2780           __ andr(rscratch2, rscratch2, TypeEntries::type_mask);
2781           __ cbz(rscratch2, ok);
2782 
2783           __ stop("unexpected profiling mismatch");
2784           __ bind(ok);
2785         }
2786 #endif
2787         // first time here. Set profile type.
2788         __ str(tmp, mdo_addr);
2789 #ifdef ASSERT
2790         __ andr(tmp, tmp, TypeEntries::type_mask);
2791         __ verify_klass_ptr(tmp);
2792 #endif
2793       } else {
2794         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
2795                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
2796 
2797         __ ldr(tmp, mdo_addr);
2798         __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
2799 
2800         __ orr(tmp, tmp, TypeEntries::type_unknown);
2801         __ str(tmp, mdo_addr);
2802         // FIXME: Write barrier needed here?
2803       }
2804     }
2805 
2806     __ bind(next);
2807   }
2808   COMMENT("} emit_profile_type");
2809 }
2810 
2811 
2812 void LIR_Assembler::align_backward_branch_target() {
2813 }
2814 
2815 
2816 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
2817   // tmp must be unused
2818   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2819 
2820   if (left->is_single_cpu()) {
2821     assert(dest->is_single_cpu(), "expect single result reg");
2822     __ negw(dest->as_register(), left->as_register());
2823   } else if (left->is_double_cpu()) {
2824     assert(dest->is_double_cpu(), "expect double result reg");
2825     __ neg(dest->as_register_lo(), left->as_register_lo());
2826   } else if (left->is_single_fpu()) {
2827     assert(dest->is_single_fpu(), "expect single float result reg");
2828     __ fnegs(dest->as_float_reg(), left->as_float_reg());
2829   } else {
2830     assert(left->is_double_fpu(), "expect double float operand reg");
2831     assert(dest->is_double_fpu(), "expect double float result reg");
2832     __ fnegd(dest->as_double_reg(), left->as_double_reg());
2833   }
2834 }
2835 
2836 
2837 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
2838   if (patch_code != lir_patch_none) {
2839     deoptimize_trap(info);
2840     return;
2841   }
2842 
2843   __ lea(dest->as_register_lo(), as_Address(addr->as_address_ptr()));
2844 }
2845 
2846 
2847 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
2848   assert(!tmp->is_valid(), "don't need temporary");
2849 
2850   CodeBlob *cb = CodeCache::find_blob(dest);
2851   if (cb) {
2852     __ far_call(RuntimeAddress(dest));
2853   } else {
2854     __ mov(rscratch1, RuntimeAddress(dest));
2855     __ blr(rscratch1);
2856   }
2857 
2858   if (info != nullptr) {
2859     add_call_info_here(info);
2860   }
2861   __ post_call_nop();
2862 }
2863 
2864 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
2865   if (dest->is_address() || src->is_address()) {
2866     move_op(src, dest, type, lir_patch_none, info,
2867             /*pop_fpu_stack*/false, /*wide*/false);
2868   } else {
2869     ShouldNotReachHere();
2870   }
2871 }
2872 
2873 #ifdef ASSERT
2874 // emit run-time assertion
2875 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
2876   assert(op->code() == lir_assert, "must be");
2877 
2878   if (op->in_opr1()->is_valid()) {
2879     assert(op->in_opr2()->is_valid(), "both operands must be valid");
2880     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
2881   } else {
2882     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
2883     assert(op->condition() == lir_cond_always, "no other conditions allowed");
2884   }
2885 
2886   Label ok;
2887   if (op->condition() != lir_cond_always) {
2888     Assembler::Condition acond = Assembler::AL;
2889     switch (op->condition()) {
2890       case lir_cond_equal:        acond = Assembler::EQ;  break;
2891       case lir_cond_notEqual:     acond = Assembler::NE;  break;
2892       case lir_cond_less:         acond = Assembler::LT;  break;
2893       case lir_cond_lessEqual:    acond = Assembler::LE;  break;
2894       case lir_cond_greaterEqual: acond = Assembler::GE;  break;
2895       case lir_cond_greater:      acond = Assembler::GT;  break;
2896       case lir_cond_belowEqual:   acond = Assembler::LS;  break;
2897       case lir_cond_aboveEqual:   acond = Assembler::HS;  break;
2898       default:                    ShouldNotReachHere();
2899     }
2900     __ br(acond, ok);
2901   }
2902   if (op->halt()) {
2903     const char* str = __ code_string(op->msg());
2904     __ stop(str);
2905   } else {
2906     breakpoint();
2907   }
2908   __ bind(ok);
2909 }
2910 #endif
2911 
2912 #ifndef PRODUCT
2913 #define COMMENT(x)   do { __ block_comment(x); } while (0)
2914 #else
2915 #define COMMENT(x)
2916 #endif
2917 
2918 void LIR_Assembler::membar() {
2919   COMMENT("membar");
2920   __ membar(MacroAssembler::AnyAny);
2921 }
2922 
2923 void LIR_Assembler::membar_acquire() {
2924   __ membar(Assembler::LoadLoad|Assembler::LoadStore);
2925 }
2926 
2927 void LIR_Assembler::membar_release() {
2928   __ membar(Assembler::LoadStore|Assembler::StoreStore);
2929 }
2930 
2931 void LIR_Assembler::membar_loadload() {
2932   __ membar(Assembler::LoadLoad);
2933 }
2934 
2935 void LIR_Assembler::membar_storestore() {
2936   __ membar(MacroAssembler::StoreStore);
2937 }
2938 
2939 void LIR_Assembler::membar_loadstore() { __ membar(MacroAssembler::LoadStore); }
2940 
2941 void LIR_Assembler::membar_storeload() { __ membar(MacroAssembler::StoreLoad); }
2942 
2943 void LIR_Assembler::on_spin_wait() {
2944   __ spin_wait();
2945 }
2946 
2947 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
2948   __ mov(result_reg->as_register(), rthread);
2949 }
2950 
2951 
2952 void LIR_Assembler::peephole(LIR_List *lir) {
2953 #if 0
2954   if (tableswitch_count >= max_tableswitches)
2955     return;
2956 
2957   /*
2958     This finite-state automaton recognizes sequences of compare-and-
2959     branch instructions.  We will turn them into a tableswitch.  You
2960     could argue that C1 really shouldn't be doing this sort of
2961     optimization, but without it the code is really horrible.
2962   */
2963 
2964   enum { start_s, cmp1_s, beq_s, cmp_s } state;
2965   int first_key, last_key = -2147483648;
2966   int next_key = 0;
2967   int start_insn = -1;
2968   int last_insn = -1;
2969   Register reg = noreg;
2970   LIR_Opr reg_opr;
2971   state = start_s;
2972 
2973   LIR_OpList* inst = lir->instructions_list();
2974   for (int i = 0; i < inst->length(); i++) {
2975     LIR_Op* op = inst->at(i);
2976     switch (state) {
2977     case start_s:
2978       first_key = -1;
2979       start_insn = i;
2980       switch (op->code()) {
2981       case lir_cmp:
2982         LIR_Opr opr1 = op->as_Op2()->in_opr1();
2983         LIR_Opr opr2 = op->as_Op2()->in_opr2();
2984         if (opr1->is_cpu_register() && opr1->is_single_cpu()
2985             && opr2->is_constant()
2986             && opr2->type() == T_INT) {
2987           reg_opr = opr1;
2988           reg = opr1->as_register();
2989           first_key = opr2->as_constant_ptr()->as_jint();
2990           next_key = first_key + 1;
2991           state = cmp_s;
2992           goto next_state;
2993         }
2994         break;
2995       }
2996       break;
2997     case cmp_s:
2998       switch (op->code()) {
2999       case lir_branch:
3000         if (op->as_OpBranch()->cond() == lir_cond_equal) {
3001           state = beq_s;
3002           last_insn = i;
3003           goto next_state;
3004         }
3005       }
3006       state = start_s;
3007       break;
3008     case beq_s:
3009       switch (op->code()) {
3010       case lir_cmp: {
3011         LIR_Opr opr1 = op->as_Op2()->in_opr1();
3012         LIR_Opr opr2 = op->as_Op2()->in_opr2();
3013         if (opr1->is_cpu_register() && opr1->is_single_cpu()
3014             && opr1->as_register() == reg
3015             && opr2->is_constant()
3016             && opr2->type() == T_INT
3017             && opr2->as_constant_ptr()->as_jint() == next_key) {
3018           last_key = next_key;
3019           next_key++;
3020           state = cmp_s;
3021           goto next_state;
3022         }
3023       }
3024       }
3025       last_key = next_key;
3026       state = start_s;
3027       break;
3028     default:
3029       assert(false, "impossible state");
3030     }
3031     if (state == start_s) {
3032       if (first_key < last_key - 5L && reg != noreg) {
3033         {
3034           // printf("found run register %d starting at insn %d low value %d high value %d\n",
3035           //        reg->encoding(),
3036           //        start_insn, first_key, last_key);
3037           //   for (int i = 0; i < inst->length(); i++) {
3038           //     inst->at(i)->print();
3039           //     tty->print("\n");
3040           //   }
3041           //   tty->print("\n");
3042         }
3043 
3044         struct tableswitch *sw = &switches[tableswitch_count];
3045         sw->_insn_index = start_insn, sw->_first_key = first_key,
3046           sw->_last_key = last_key, sw->_reg = reg;
3047         inst->insert_before(last_insn + 1, new LIR_OpLabel(&sw->_after));
3048         {
3049           // Insert the new table of branches
3050           int offset = last_insn;
3051           for (int n = first_key; n < last_key; n++) {
3052             inst->insert_before
3053               (last_insn + 1,
3054                new LIR_OpBranch(lir_cond_always, T_ILLEGAL,
3055                                 inst->at(offset)->as_OpBranch()->label()));
3056             offset -= 2, i++;
3057           }
3058         }
3059         // Delete all the old compare-and-branch instructions
3060         for (int n = first_key; n < last_key; n++) {
3061           inst->remove_at(start_insn);
3062           inst->remove_at(start_insn);
3063         }
3064         // Insert the tableswitch instruction
3065         inst->insert_before(start_insn,
3066                             new LIR_Op2(lir_cmp, lir_cond_always,
3067                                         LIR_OprFact::intConst(tableswitch_count),
3068                                         reg_opr));
3069         inst->insert_before(start_insn + 1, new LIR_OpLabel(&sw->_branches));
3070         tableswitch_count++;
3071       }
3072       reg = noreg;
3073       last_key = -2147483648;
3074     }
3075   next_state:
3076     ;
3077   }
3078 #endif
3079 }
3080 
3081 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp_op) {
3082   Address addr = as_Address(src->as_address_ptr());
3083   BasicType type = src->type();
3084   bool is_oop = is_reference_type(type);
3085 
3086   void (MacroAssembler::* add)(Register prev, RegisterOrConstant incr, Register addr);
3087   void (MacroAssembler::* xchg)(Register prev, Register newv, Register addr);
3088 
3089   switch(type) {
3090   case T_INT:
3091     xchg = &MacroAssembler::atomic_xchgalw;
3092     add = &MacroAssembler::atomic_addalw;
3093     break;
3094   case T_LONG:
3095     xchg = &MacroAssembler::atomic_xchgal;
3096     add = &MacroAssembler::atomic_addal;
3097     break;
3098   case T_OBJECT:
3099   case T_ARRAY:
3100     if (UseCompressedOops) {
3101       xchg = &MacroAssembler::atomic_xchgalw;
3102       add = &MacroAssembler::atomic_addalw;
3103     } else {
3104       xchg = &MacroAssembler::atomic_xchgal;
3105       add = &MacroAssembler::atomic_addal;
3106     }
3107     break;
3108   default:
3109     ShouldNotReachHere();
3110     xchg = &MacroAssembler::atomic_xchgal;
3111     add = &MacroAssembler::atomic_addal; // unreachable
3112   }
3113 
3114   switch (code) {
3115   case lir_xadd:
3116     {
3117       RegisterOrConstant inc;
3118       Register tmp = as_reg(tmp_op);
3119       Register dst = as_reg(dest);
3120       if (data->is_constant()) {
3121         inc = RegisterOrConstant(as_long(data));
3122         assert_different_registers(dst, addr.base(), tmp,
3123                                    rscratch1, rscratch2);
3124       } else {
3125         inc = RegisterOrConstant(as_reg(data));
3126         assert_different_registers(inc.as_register(), dst, addr.base(), tmp,
3127                                    rscratch1, rscratch2);
3128       }
3129       __ lea(tmp, addr);
3130       (_masm->*add)(dst, inc, tmp);
3131       break;
3132     }
3133   case lir_xchg:
3134     {
3135       Register tmp = tmp_op->as_register();
3136       Register obj = as_reg(data);
3137       Register dst = as_reg(dest);
3138       if (is_oop && UseCompressedOops) {
3139         __ encode_heap_oop(rscratch2, obj);
3140         obj = rscratch2;
3141       }
3142       assert_different_registers(obj, addr.base(), tmp, rscratch1);
3143       assert_different_registers(dst, addr.base(), tmp, rscratch1);
3144       __ lea(tmp, addr);
3145       (_masm->*xchg)(dst, obj, tmp);
3146       if (is_oop && UseCompressedOops) {
3147         __ decode_heap_oop(dst);
3148       }
3149     }
3150     break;
3151   default:
3152     ShouldNotReachHere();
3153   }
3154   __ membar(__ AnyAny);
3155 }
3156 
3157 #undef __