1 /*
   2  * Copyright (c) 2000, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "asm/assembler.hpp"
  29 #include "c1/c1_CodeStubs.hpp"
  30 #include "c1/c1_Compilation.hpp"
  31 #include "c1/c1_LIRAssembler.hpp"
  32 #include "c1/c1_MacroAssembler.hpp"
  33 #include "c1/c1_Runtime1.hpp"
  34 #include "c1/c1_ValueStack.hpp"
  35 #include "ci/ciArrayKlass.hpp"
  36 #include "ci/ciInstance.hpp"
  37 #include "ci/ciUtilities.hpp"
  38 #include "code/SCCache.hpp"
  39 #include "code/compiledIC.hpp"
  40 #include "gc/shared/collectedHeap.hpp"
  41 #include "gc/shared/gc_globals.hpp"
  42 #include "nativeInst_aarch64.hpp"
  43 #include "oops/objArrayKlass.hpp"
  44 #include "runtime/frame.inline.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "utilities/powerOfTwo.hpp"
  48 #include "vmreg_aarch64.inline.hpp"
  49 
  50 
  51 #ifndef PRODUCT
  52 #define COMMENT(x)   do { __ block_comment(x); } while (0)
  53 #else
  54 #define COMMENT(x)
  55 #endif
  56 
  57 NEEDS_CLEANUP // remove this definitions ?
  58 const Register SYNC_header = r0;   // synchronization header
  59 const Register SHIFT_count = r0;   // where count for shift operations must be
  60 
  61 #define __ _masm->
  62 
  63 
  64 static void select_different_registers(Register preserve,
  65                                        Register extra,
  66                                        Register &tmp1,
  67                                        Register &tmp2) {
  68   if (tmp1 == preserve) {
  69     assert_different_registers(tmp1, tmp2, extra);
  70     tmp1 = extra;
  71   } else if (tmp2 == preserve) {
  72     assert_different_registers(tmp1, tmp2, extra);
  73     tmp2 = extra;
  74   }
  75   assert_different_registers(preserve, tmp1, tmp2);
  76 }
  77 
  78 
  79 
  80 static void select_different_registers(Register preserve,
  81                                        Register extra,
  82                                        Register &tmp1,
  83                                        Register &tmp2,
  84                                        Register &tmp3) {
  85   if (tmp1 == preserve) {
  86     assert_different_registers(tmp1, tmp2, tmp3, extra);
  87     tmp1 = extra;
  88   } else if (tmp2 == preserve) {
  89     assert_different_registers(tmp1, tmp2, tmp3, extra);
  90     tmp2 = extra;
  91   } else if (tmp3 == preserve) {
  92     assert_different_registers(tmp1, tmp2, tmp3, extra);
  93     tmp3 = extra;
  94   }
  95   assert_different_registers(preserve, tmp1, tmp2, tmp3);
  96 }
  97 
  98 
  99 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { Unimplemented(); return false; }
 100 
 101 
 102 LIR_Opr LIR_Assembler::receiverOpr() {
 103   return FrameMap::receiver_opr;
 104 }
 105 
 106 LIR_Opr LIR_Assembler::osrBufferPointer() {
 107   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 108 }
 109 
 110 //--------------fpu register translations-----------------------
 111 
 112 
 113 address LIR_Assembler::float_constant(float f) {
 114   address const_addr = __ float_constant(f);
 115   if (const_addr == nullptr) {
 116     bailout("const section overflow");
 117     return __ code()->consts()->start();
 118   } else {
 119     return const_addr;
 120   }
 121 }
 122 
 123 
 124 address LIR_Assembler::double_constant(double d) {
 125   address const_addr = __ double_constant(d);
 126   if (const_addr == nullptr) {
 127     bailout("const section overflow");
 128     return __ code()->consts()->start();
 129   } else {
 130     return const_addr;
 131   }
 132 }
 133 
 134 address LIR_Assembler::int_constant(jlong n) {
 135   address const_addr = __ long_constant(n);
 136   if (const_addr == nullptr) {
 137     bailout("const section overflow");
 138     return __ code()->consts()->start();
 139   } else {
 140     return const_addr;
 141   }
 142 }
 143 
 144 void LIR_Assembler::breakpoint() { Unimplemented(); }
 145 
 146 void LIR_Assembler::push(LIR_Opr opr) { Unimplemented(); }
 147 
 148 void LIR_Assembler::pop(LIR_Opr opr) { Unimplemented(); }
 149 
 150 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { Unimplemented(); return false; }
 151 //-------------------------------------------
 152 
 153 static Register as_reg(LIR_Opr op) {
 154   return op->is_double_cpu() ? op->as_register_lo() : op->as_register();
 155 }
 156 
 157 static jlong as_long(LIR_Opr data) {
 158   jlong result;
 159   switch (data->type()) {
 160   case T_INT:
 161     result = (data->as_jint());
 162     break;
 163   case T_LONG:
 164     result = (data->as_jlong());
 165     break;
 166   default:
 167     ShouldNotReachHere();
 168     result = 0;  // unreachable
 169   }
 170   return result;
 171 }
 172 
 173 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 174   Register base = addr->base()->as_pointer_register();
 175   LIR_Opr opr = addr->index();
 176   if (opr->is_cpu_register()) {
 177     Register index;
 178     if (opr->is_single_cpu())
 179       index = opr->as_register();
 180     else
 181       index = opr->as_register_lo();
 182     assert(addr->disp() == 0, "must be");
 183     switch(opr->type()) {
 184       case T_INT:
 185         return Address(base, index, Address::sxtw(addr->scale()));
 186       case T_LONG:
 187         return Address(base, index, Address::lsl(addr->scale()));
 188       default:
 189         ShouldNotReachHere();
 190       }
 191   } else {
 192     assert(addr->scale() == 0,
 193            "expected for immediate operand, was: %d", addr->scale());
 194     ptrdiff_t offset = ptrdiff_t(addr->disp());
 195     // NOTE: Does not handle any 16 byte vector access.
 196     const uint type_size = type2aelembytes(addr->type(), true);
 197     return __ legitimize_address(Address(base, offset), type_size, tmp);
 198   }
 199   return Address();
 200 }
 201 
 202 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 203   ShouldNotReachHere();
 204   return Address();
 205 }
 206 
 207 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 208   return as_Address(addr, rscratch1);
 209 }
 210 
 211 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 212   return as_Address(addr, rscratch1);  // Ouch
 213   // FIXME: This needs to be much more clever.  See x86.
 214 }
 215 
 216 // Ensure a valid Address (base + offset) to a stack-slot. If stack access is
 217 // not encodable as a base + (immediate) offset, generate an explicit address
 218 // calculation to hold the address in a temporary register.
 219 Address LIR_Assembler::stack_slot_address(int index, uint size, Register tmp, int adjust) {
 220   precond(size == 4 || size == 8);
 221   Address addr = frame_map()->address_for_slot(index, adjust);
 222   precond(addr.getMode() == Address::base_plus_offset);
 223   precond(addr.base() == sp);
 224   precond(addr.offset() > 0);
 225   uint mask = size - 1;
 226   assert((addr.offset() & mask) == 0, "scaled offsets only");
 227   return __ legitimize_address(addr, size, tmp);
 228 }
 229 
 230 void LIR_Assembler::osr_entry() {
 231   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 232   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 233   ValueStack* entry_state = osr_entry->state();
 234   int number_of_locks = entry_state->locks_size();
 235 
 236   // we jump here if osr happens with the interpreter
 237   // state set up to continue at the beginning of the
 238   // loop that triggered osr - in particular, we have
 239   // the following registers setup:
 240   //
 241   // r2: osr buffer
 242   //
 243 
 244   // build frame
 245   ciMethod* m = compilation()->method();
 246   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 247 
 248   // OSR buffer is
 249   //
 250   // locals[nlocals-1..0]
 251   // monitors[0..number_of_locks]
 252   //
 253   // locals is a direct copy of the interpreter frame so in the osr buffer
 254   // so first slot in the local array is the last local from the interpreter
 255   // and last slot is local[0] (receiver) from the interpreter
 256   //
 257   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 258   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 259   // in the interpreter frame (the method lock if a sync method)
 260 
 261   // Initialize monitors in the compiled activation.
 262   //   r2: pointer to osr buffer
 263   //
 264   // All other registers are dead at this point and the locals will be
 265   // copied into place by code emitted in the IR.
 266 
 267   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 268   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 269     int monitor_offset = BytesPerWord * method()->max_locals() +
 270       (2 * BytesPerWord) * (number_of_locks - 1);
 271     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 272     // the OSR buffer using 2 word entries: first the lock and then
 273     // the oop.
 274     for (int i = 0; i < number_of_locks; i++) {
 275       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 276 #ifdef ASSERT
 277       // verify the interpreter's monitor has a non-null object
 278       {
 279         Label L;
 280         __ ldr(rscratch1, __ form_address(rscratch1, OSR_buf, slot_offset + 1*BytesPerWord, 0));
 281         __ cbnz(rscratch1, L);
 282         __ stop("locked object is null");
 283         __ bind(L);
 284       }
 285 #endif
 286       __ ldr(r19, __ form_address(rscratch1, OSR_buf, slot_offset, 0));
 287       __ ldr(r20, __ form_address(rscratch1, OSR_buf, slot_offset + BytesPerWord, 0));
 288       __ str(r19, frame_map()->address_for_monitor_lock(i));
 289       __ str(r20, frame_map()->address_for_monitor_object(i));
 290     }
 291   }
 292 }
 293 
 294 
 295 // inline cache check; done before the frame is built.
 296 int LIR_Assembler::check_icache() {
 297   return __ ic_check(CodeEntryAlignment);
 298 }
 299 
 300 void LIR_Assembler::clinit_barrier(ciMethod* method) {
 301   assert(VM_Version::supports_fast_class_init_checks(), "sanity");
 302   assert(!method->holder()->is_not_initialized(), "initialization should have been started");
 303 
 304   Label L_skip_barrier;
 305 
 306   __ mov_metadata(rscratch2, method->holder()->constant_encoding());
 307   __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier /*L_fast_path*/);
 308   __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
 309   __ bind(L_skip_barrier);
 310 }
 311 
 312 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
 313   if (o == nullptr) {
 314     __ mov(reg, zr);
 315   } else {
 316     __ movoop(reg, o);
 317   }
 318 }
 319 
 320 void LIR_Assembler::deoptimize_trap(CodeEmitInfo *info) {
 321   address target = nullptr;
 322   relocInfo::relocType reloc_type = relocInfo::none;
 323 
 324   switch (patching_id(info)) {
 325   case PatchingStub::access_field_id:
 326     target = Runtime1::entry_for(C1StubId::access_field_patching_id);
 327     reloc_type = relocInfo::section_word_type;
 328     break;
 329   case PatchingStub::load_klass_id:
 330     target = Runtime1::entry_for(C1StubId::load_klass_patching_id);
 331     reloc_type = relocInfo::metadata_type;
 332     break;
 333   case PatchingStub::load_mirror_id:
 334     target = Runtime1::entry_for(C1StubId::load_mirror_patching_id);
 335     reloc_type = relocInfo::oop_type;
 336     break;
 337   case PatchingStub::load_appendix_id:
 338     target = Runtime1::entry_for(C1StubId::load_appendix_patching_id);
 339     reloc_type = relocInfo::oop_type;
 340     break;
 341   default: ShouldNotReachHere();
 342   }
 343 
 344   __ far_call(RuntimeAddress(target));
 345   add_call_info_here(info);
 346 }
 347 
 348 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
 349   deoptimize_trap(info);
 350 }
 351 
 352 
 353 // This specifies the rsp decrement needed to build the frame
 354 int LIR_Assembler::initial_frame_size_in_bytes() const {
 355   // if rounding, must let FrameMap know!
 356 
 357   return in_bytes(frame_map()->framesize_in_bytes());
 358 }
 359 
 360 
 361 int LIR_Assembler::emit_exception_handler() {
 362   // generate code for exception handler
 363   address handler_base = __ start_a_stub(exception_handler_size());
 364   if (handler_base == nullptr) {
 365     // not enough space left for the handler
 366     bailout("exception handler overflow");
 367     return -1;
 368   }
 369 
 370   int offset = code_offset();
 371 
 372   // the exception oop and pc are in r0, and r3
 373   // no other registers need to be preserved, so invalidate them
 374   __ invalidate_registers(false, true, true, false, true, true);
 375 
 376   // check that there is really an exception
 377   __ verify_not_null_oop(r0);
 378 
 379   // search an exception handler (r0: exception oop, r3: throwing pc)
 380   __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::handle_exception_from_callee_id)));
 381   __ should_not_reach_here();
 382   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 383   __ end_a_stub();
 384 
 385   return offset;
 386 }
 387 
 388 
 389 // Emit the code to remove the frame from the stack in the exception
 390 // unwind path.
 391 int LIR_Assembler::emit_unwind_handler() {
 392 #ifndef PRODUCT
 393   if (CommentedAssembly) {
 394     _masm->block_comment("Unwind handler");
 395   }
 396 #endif
 397 
 398   int offset = code_offset();
 399 
 400   // Fetch the exception from TLS and clear out exception related thread state
 401   __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
 402   __ str(zr, Address(rthread, JavaThread::exception_oop_offset()));
 403   __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
 404 
 405   __ bind(_unwind_handler_entry);
 406   __ verify_not_null_oop(r0);
 407   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 408     __ mov(r19, r0);  // Preserve the exception
 409   }
 410 
 411   // Perform needed unlocking
 412   MonitorExitStub* stub = nullptr;
 413   if (method()->is_synchronized()) {
 414     monitor_address(0, FrameMap::r0_opr);
 415     stub = new MonitorExitStub(FrameMap::r0_opr, true, 0);
 416     if (LockingMode == LM_MONITOR) {
 417       __ b(*stub->entry());
 418     } else {
 419       __ unlock_object(r5, r4, r0, r6, *stub->entry());
 420     }
 421     __ bind(*stub->continuation());
 422   }
 423 
 424   if (compilation()->env()->dtrace_method_probes()) {
 425     __ mov(c_rarg0, rthread);
 426     __ mov_metadata(c_rarg1, method()->constant_encoding());
 427     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), c_rarg0, c_rarg1);
 428   }
 429 
 430   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 431     __ mov(r0, r19);  // Restore the exception
 432   }
 433 
 434   // remove the activation and dispatch to the unwind handler
 435   __ block_comment("remove_frame and dispatch to the unwind handler");
 436   __ remove_frame(initial_frame_size_in_bytes());
 437   __ far_jump(RuntimeAddress(Runtime1::entry_for(C1StubId::unwind_exception_id)));
 438 
 439   // Emit the slow path assembly
 440   if (stub != nullptr) {
 441     stub->emit_code(this);
 442   }
 443 
 444   return offset;
 445 }
 446 
 447 
 448 int LIR_Assembler::emit_deopt_handler() {
 449   // generate code for exception handler
 450   address handler_base = __ start_a_stub(deopt_handler_size());
 451   if (handler_base == nullptr) {
 452     // not enough space left for the handler
 453     bailout("deopt handler overflow");
 454     return -1;
 455   }
 456 
 457   int offset = code_offset();
 458 
 459   __ adr(lr, pc());
 460   __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 461   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 462   __ end_a_stub();
 463 
 464   return offset;
 465 }
 466 
 467 void LIR_Assembler::add_debug_info_for_branch(address adr, CodeEmitInfo* info) {
 468   _masm->code_section()->relocate(adr, relocInfo::poll_type);
 469   int pc_offset = code_offset();
 470   flush_debug_info(pc_offset);
 471   info->record_debug_info(compilation()->debug_info_recorder(), pc_offset);
 472   if (info->exception_handlers() != nullptr) {
 473     compilation()->add_exception_handlers_for_pco(pc_offset, info->exception_handlers());
 474   }
 475 }
 476 
 477 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) {
 478   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == r0, "word returns are in r0,");
 479 
 480   // Pop the stack before the safepoint code
 481   __ remove_frame(initial_frame_size_in_bytes());
 482 
 483   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
 484     __ reserved_stack_check();
 485   }
 486 
 487   code_stub->set_safepoint_offset(__ offset());
 488   __ relocate(relocInfo::poll_return_type);
 489   __ safepoint_poll(*code_stub->entry(), true /* at_return */, false /* acquire */, true /* in_nmethod */);
 490   __ ret(lr);
 491 }
 492 
 493 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 494   guarantee(info != nullptr, "Shouldn't be null");
 495   __ get_polling_page(rscratch1, relocInfo::poll_type);
 496   add_debug_info_for_branch(info);  // This isn't just debug info:
 497                                     // it's the oop map
 498   __ read_polling_page(rscratch1, relocInfo::poll_type);
 499   return __ offset();
 500 }
 501 
 502 
 503 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 504   if (from_reg == r31_sp)
 505     from_reg = sp;
 506   if (to_reg == r31_sp)
 507     to_reg = sp;
 508   __ mov(to_reg, from_reg);
 509 }
 510 
 511 void LIR_Assembler::swap_reg(Register a, Register b) { Unimplemented(); }
 512 
 513 
 514 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 515   assert(src->is_constant(), "should not call otherwise");
 516   assert(dest->is_register(), "should not call otherwise");
 517   LIR_Const* c = src->as_constant_ptr();
 518 
 519   switch (c->type()) {
 520     case T_INT: {
 521       assert(patch_code == lir_patch_none, "no patching handled here");
 522       __ movw(dest->as_register(), c->as_jint());
 523       break;
 524     }
 525 
 526     case T_ADDRESS: {
 527       assert(patch_code == lir_patch_none, "no patching handled here");
 528       __ mov(dest->as_register(), c->as_jint());
 529       break;
 530     }
 531 
 532     case T_LONG: {
 533       assert(patch_code == lir_patch_none, "no patching handled here");
 534       if (SCCache::is_on_for_write()) {
 535         // SCA needs relocation info for card table base
 536         address b = c->as_pointer();
 537         if (is_card_table_address(b)) {
 538           __ lea(dest->as_register_lo(), ExternalAddress(b));
 539           break;
 540         }
 541         if (AOTRuntimeConstants::contains(b)) {
 542           __ load_aotrc_address(dest->as_register_lo(), b);
 543           break;
 544         }
 545       }
 546       __ mov(dest->as_register_lo(), (intptr_t)c->as_jlong());
 547       break;
 548     }
 549 
 550     case T_OBJECT: {
 551         if (patch_code == lir_patch_none) {
 552           jobject2reg(c->as_jobject(), dest->as_register());
 553         } else {
 554           jobject2reg_with_patching(dest->as_register(), info);
 555         }
 556       break;
 557     }
 558 
 559     case T_METADATA: {
 560       if (patch_code != lir_patch_none) {
 561         klass2reg_with_patching(dest->as_register(), info);
 562       } else {
 563         __ mov_metadata(dest->as_register(), c->as_metadata());
 564       }
 565       break;
 566     }
 567 
 568     case T_FLOAT: {
 569       if (__ operand_valid_for_float_immediate(c->as_jfloat())) {
 570         __ fmovs(dest->as_float_reg(), (c->as_jfloat()));
 571       } else {
 572         __ adr(rscratch1, InternalAddress(float_constant(c->as_jfloat())));
 573         __ ldrs(dest->as_float_reg(), Address(rscratch1));
 574       }
 575       break;
 576     }
 577 
 578     case T_DOUBLE: {
 579       if (__ operand_valid_for_float_immediate(c->as_jdouble())) {
 580         __ fmovd(dest->as_double_reg(), (c->as_jdouble()));
 581       } else {
 582         __ adr(rscratch1, InternalAddress(double_constant(c->as_jdouble())));
 583         __ ldrd(dest->as_double_reg(), Address(rscratch1));
 584       }
 585       break;
 586     }
 587 
 588     default:
 589       ShouldNotReachHere();
 590   }
 591 }
 592 
 593 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 594   LIR_Const* c = src->as_constant_ptr();
 595   switch (c->type()) {
 596   case T_OBJECT:
 597     {
 598       if (! c->as_jobject())
 599         __ str(zr, frame_map()->address_for_slot(dest->single_stack_ix()));
 600       else {
 601         const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr);
 602         reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false);
 603       }
 604     }
 605     break;
 606   case T_ADDRESS:
 607     {
 608       const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr);
 609       reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false);
 610     }
 611   case T_INT:
 612   case T_FLOAT:
 613     {
 614       Register reg = zr;
 615       if (c->as_jint_bits() == 0)
 616         __ strw(zr, frame_map()->address_for_slot(dest->single_stack_ix()));
 617       else {
 618         __ movw(rscratch1, c->as_jint_bits());
 619         __ strw(rscratch1, frame_map()->address_for_slot(dest->single_stack_ix()));
 620       }
 621     }
 622     break;
 623   case T_LONG:
 624   case T_DOUBLE:
 625     {
 626       Register reg = zr;
 627       if (c->as_jlong_bits() == 0)
 628         __ str(zr, frame_map()->address_for_slot(dest->double_stack_ix(),
 629                                                  lo_word_offset_in_bytes));
 630       else {
 631         __ mov(rscratch1, (intptr_t)c->as_jlong_bits());
 632         __ str(rscratch1, frame_map()->address_for_slot(dest->double_stack_ix(),
 633                                                         lo_word_offset_in_bytes));
 634       }
 635     }
 636     break;
 637   default:
 638     ShouldNotReachHere();
 639   }
 640 }
 641 
 642 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 643   assert(src->is_constant(), "should not call otherwise");
 644   LIR_Const* c = src->as_constant_ptr();
 645   LIR_Address* to_addr = dest->as_address_ptr();
 646 
 647   void (Assembler::* insn)(Register Rt, const Address &adr);
 648 
 649   switch (type) {
 650   case T_ADDRESS:
 651     assert(c->as_jint() == 0, "should be");
 652     insn = &Assembler::str;
 653     break;
 654   case T_LONG:
 655     assert(c->as_jlong() == 0, "should be");
 656     insn = &Assembler::str;
 657     break;
 658   case T_INT:
 659     assert(c->as_jint() == 0, "should be");
 660     insn = &Assembler::strw;
 661     break;
 662   case T_OBJECT:
 663   case T_ARRAY:
 664     assert(c->as_jobject() == nullptr, "should be");
 665     if (UseCompressedOops && !wide) {
 666       insn = &Assembler::strw;
 667     } else {
 668       insn = &Assembler::str;
 669     }
 670     break;
 671   case T_CHAR:
 672   case T_SHORT:
 673     assert(c->as_jint() == 0, "should be");
 674     insn = &Assembler::strh;
 675     break;
 676   case T_BOOLEAN:
 677   case T_BYTE:
 678     assert(c->as_jint() == 0, "should be");
 679     insn = &Assembler::strb;
 680     break;
 681   default:
 682     ShouldNotReachHere();
 683     insn = &Assembler::str;  // unreachable
 684   }
 685 
 686   if (info) add_debug_info_for_null_check_here(info);
 687   (_masm->*insn)(zr, as_Address(to_addr, rscratch1));
 688 }
 689 
 690 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 691   assert(src->is_register(), "should not call otherwise");
 692   assert(dest->is_register(), "should not call otherwise");
 693 
 694   // move between cpu-registers
 695   if (dest->is_single_cpu()) {
 696     if (src->type() == T_LONG) {
 697       // Can do LONG -> OBJECT
 698       move_regs(src->as_register_lo(), dest->as_register());
 699       return;
 700     }
 701     assert(src->is_single_cpu(), "must match");
 702     if (src->type() == T_OBJECT) {
 703       __ verify_oop(src->as_register());
 704     }
 705     move_regs(src->as_register(), dest->as_register());
 706 
 707   } else if (dest->is_double_cpu()) {
 708     if (is_reference_type(src->type())) {
 709       // Surprising to me but we can see move of a long to t_object
 710       __ verify_oop(src->as_register());
 711       move_regs(src->as_register(), dest->as_register_lo());
 712       return;
 713     }
 714     assert(src->is_double_cpu(), "must match");
 715     Register f_lo = src->as_register_lo();
 716     Register f_hi = src->as_register_hi();
 717     Register t_lo = dest->as_register_lo();
 718     Register t_hi = dest->as_register_hi();
 719     assert(f_hi == f_lo, "must be same");
 720     assert(t_hi == t_lo, "must be same");
 721     move_regs(f_lo, t_lo);
 722 
 723   } else if (dest->is_single_fpu()) {
 724     __ fmovs(dest->as_float_reg(), src->as_float_reg());
 725 
 726   } else if (dest->is_double_fpu()) {
 727     __ fmovd(dest->as_double_reg(), src->as_double_reg());
 728 
 729   } else {
 730     ShouldNotReachHere();
 731   }
 732 }
 733 
 734 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 735   precond(src->is_register() && dest->is_stack());
 736 
 737   uint const c_sz32 = sizeof(uint32_t);
 738   uint const c_sz64 = sizeof(uint64_t);
 739 
 740   if (src->is_single_cpu()) {
 741     int index = dest->single_stack_ix();
 742     if (is_reference_type(type)) {
 743       __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1));
 744       __ verify_oop(src->as_register());
 745     } else if (type == T_METADATA || type == T_DOUBLE || type == T_ADDRESS) {
 746       __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1));
 747     } else {
 748       __ strw(src->as_register(), stack_slot_address(index, c_sz32, rscratch1));
 749     }
 750 
 751   } else if (src->is_double_cpu()) {
 752     int index = dest->double_stack_ix();
 753     Address dest_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes);
 754     __ str(src->as_register_lo(), dest_addr_LO);
 755 
 756   } else if (src->is_single_fpu()) {
 757     int index = dest->single_stack_ix();
 758     __ strs(src->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1));
 759 
 760   } else if (src->is_double_fpu()) {
 761     int index = dest->double_stack_ix();
 762     __ strd(src->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1));
 763 
 764   } else {
 765     ShouldNotReachHere();
 766   }
 767 }
 768 
 769 
 770 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide) {
 771   LIR_Address* to_addr = dest->as_address_ptr();
 772   PatchingStub* patch = nullptr;
 773   Register compressed_src = rscratch1;
 774 
 775   if (patch_code != lir_patch_none) {
 776     deoptimize_trap(info);
 777     return;
 778   }
 779 
 780   if (is_reference_type(type)) {
 781     __ verify_oop(src->as_register());
 782 
 783     if (UseCompressedOops && !wide) {
 784       __ encode_heap_oop(compressed_src, src->as_register());
 785     } else {
 786       compressed_src = src->as_register();
 787     }
 788   }
 789 
 790   int null_check_here = code_offset();
 791   switch (type) {
 792     case T_FLOAT: {
 793       __ strs(src->as_float_reg(), as_Address(to_addr));
 794       break;
 795     }
 796 
 797     case T_DOUBLE: {
 798       __ strd(src->as_double_reg(), as_Address(to_addr));
 799       break;
 800     }
 801 
 802     case T_ARRAY:   // fall through
 803     case T_OBJECT:  // fall through
 804       if (UseCompressedOops && !wide) {
 805         __ strw(compressed_src, as_Address(to_addr, rscratch2));
 806       } else {
 807          __ str(compressed_src, as_Address(to_addr));
 808       }
 809       break;
 810     case T_METADATA:
 811       // We get here to store a method pointer to the stack to pass to
 812       // a dtrace runtime call. This can't work on 64 bit with
 813       // compressed klass ptrs: T_METADATA can be a compressed klass
 814       // ptr or a 64 bit method pointer.
 815       ShouldNotReachHere();
 816       __ str(src->as_register(), as_Address(to_addr));
 817       break;
 818     case T_ADDRESS:
 819       __ str(src->as_register(), as_Address(to_addr));
 820       break;
 821     case T_INT:
 822       __ strw(src->as_register(), as_Address(to_addr));
 823       break;
 824 
 825     case T_LONG: {
 826       __ str(src->as_register_lo(), as_Address_lo(to_addr));
 827       break;
 828     }
 829 
 830     case T_BYTE:    // fall through
 831     case T_BOOLEAN: {
 832       __ strb(src->as_register(), as_Address(to_addr));
 833       break;
 834     }
 835 
 836     case T_CHAR:    // fall through
 837     case T_SHORT:
 838       __ strh(src->as_register(), as_Address(to_addr));
 839       break;
 840 
 841     default:
 842       ShouldNotReachHere();
 843   }
 844   if (info != nullptr) {
 845     add_debug_info_for_null_check(null_check_here, info);
 846   }
 847 }
 848 
 849 
 850 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
 851   precond(src->is_stack() && dest->is_register());
 852 
 853   uint const c_sz32 = sizeof(uint32_t);
 854   uint const c_sz64 = sizeof(uint64_t);
 855 
 856   if (dest->is_single_cpu()) {
 857     int index = src->single_stack_ix();
 858     if (is_reference_type(type)) {
 859       __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1));
 860       __ verify_oop(dest->as_register());
 861     } else if (type == T_METADATA || type == T_ADDRESS) {
 862       __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1));
 863     } else {
 864       __ ldrw(dest->as_register(), stack_slot_address(index, c_sz32, rscratch1));
 865     }
 866 
 867   } else if (dest->is_double_cpu()) {
 868     int index = src->double_stack_ix();
 869     Address src_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes);
 870     __ ldr(dest->as_register_lo(), src_addr_LO);
 871 
 872   } else if (dest->is_single_fpu()) {
 873     int index = src->single_stack_ix();
 874     __ ldrs(dest->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1));
 875 
 876   } else if (dest->is_double_fpu()) {
 877     int index = src->double_stack_ix();
 878     __ ldrd(dest->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1));
 879 
 880   } else {
 881     ShouldNotReachHere();
 882   }
 883 }
 884 
 885 
 886 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 887   address target = nullptr;
 888   relocInfo::relocType reloc_type = relocInfo::none;
 889 
 890   switch (patching_id(info)) {
 891   case PatchingStub::access_field_id:
 892     target = Runtime1::entry_for(C1StubId::access_field_patching_id);
 893     reloc_type = relocInfo::section_word_type;
 894     break;
 895   case PatchingStub::load_klass_id:
 896     target = Runtime1::entry_for(C1StubId::load_klass_patching_id);
 897     reloc_type = relocInfo::metadata_type;
 898     break;
 899   case PatchingStub::load_mirror_id:
 900     target = Runtime1::entry_for(C1StubId::load_mirror_patching_id);
 901     reloc_type = relocInfo::oop_type;
 902     break;
 903   case PatchingStub::load_appendix_id:
 904     target = Runtime1::entry_for(C1StubId::load_appendix_patching_id);
 905     reloc_type = relocInfo::oop_type;
 906     break;
 907   default: ShouldNotReachHere();
 908   }
 909 
 910   __ far_call(RuntimeAddress(target));
 911   add_call_info_here(info);
 912 }
 913 
 914 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
 915 
 916   LIR_Opr temp;
 917   if (type == T_LONG || type == T_DOUBLE)
 918     temp = FrameMap::rscratch1_long_opr;
 919   else
 920     temp = FrameMap::rscratch1_opr;
 921 
 922   stack2reg(src, temp, src->type());
 923   reg2stack(temp, dest, dest->type(), false);
 924 }
 925 
 926 
 927 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) {
 928   LIR_Address* addr = src->as_address_ptr();
 929   LIR_Address* from_addr = src->as_address_ptr();
 930 
 931   if (addr->base()->type() == T_OBJECT) {
 932     __ verify_oop(addr->base()->as_pointer_register());
 933   }
 934 
 935   if (patch_code != lir_patch_none) {
 936     deoptimize_trap(info);
 937     return;
 938   }
 939 
 940   if (info != nullptr) {
 941     add_debug_info_for_null_check_here(info);
 942   }
 943   int null_check_here = code_offset();
 944   switch (type) {
 945     case T_FLOAT: {
 946       __ ldrs(dest->as_float_reg(), as_Address(from_addr));
 947       break;
 948     }
 949 
 950     case T_DOUBLE: {
 951       __ ldrd(dest->as_double_reg(), as_Address(from_addr));
 952       break;
 953     }
 954 
 955     case T_ARRAY:   // fall through
 956     case T_OBJECT:  // fall through
 957       if (UseCompressedOops && !wide) {
 958         __ ldrw(dest->as_register(), as_Address(from_addr));
 959       } else {
 960         __ ldr(dest->as_register(), as_Address(from_addr));
 961       }
 962       break;
 963     case T_METADATA:
 964       // We get here to store a method pointer to the stack to pass to
 965       // a dtrace runtime call. This can't work on 64 bit with
 966       // compressed klass ptrs: T_METADATA can be a compressed klass
 967       // ptr or a 64 bit method pointer.
 968       ShouldNotReachHere();
 969       __ ldr(dest->as_register(), as_Address(from_addr));
 970       break;
 971     case T_ADDRESS:
 972       __ ldr(dest->as_register(), as_Address(from_addr));
 973       break;
 974     case T_INT:
 975       __ ldrw(dest->as_register(), as_Address(from_addr));
 976       break;
 977 
 978     case T_LONG: {
 979       __ ldr(dest->as_register_lo(), as_Address_lo(from_addr));
 980       break;
 981     }
 982 
 983     case T_BYTE:
 984       __ ldrsb(dest->as_register(), as_Address(from_addr));
 985       break;
 986     case T_BOOLEAN: {
 987       __ ldrb(dest->as_register(), as_Address(from_addr));
 988       break;
 989     }
 990 
 991     case T_CHAR:
 992       __ ldrh(dest->as_register(), as_Address(from_addr));
 993       break;
 994     case T_SHORT:
 995       __ ldrsh(dest->as_register(), as_Address(from_addr));
 996       break;
 997 
 998     default:
 999       ShouldNotReachHere();
1000   }
1001 
1002   if (is_reference_type(type)) {
1003     if (UseCompressedOops && !wide) {
1004       __ decode_heap_oop(dest->as_register());
1005     }
1006 
1007     __ verify_oop(dest->as_register());
1008   }
1009 }
1010 
1011 
1012 int LIR_Assembler::array_element_size(BasicType type) const {
1013   int elem_size = type2aelembytes(type);
1014   return exact_log2(elem_size);
1015 }
1016 
1017 
1018 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1019   switch (op->code()) {
1020   case lir_idiv:
1021   case lir_irem:
1022     arithmetic_idiv(op->code(),
1023                     op->in_opr1(),
1024                     op->in_opr2(),
1025                     op->in_opr3(),
1026                     op->result_opr(),
1027                     op->info());
1028     break;
1029   case lir_fmad:
1030     __ fmaddd(op->result_opr()->as_double_reg(),
1031               op->in_opr1()->as_double_reg(),
1032               op->in_opr2()->as_double_reg(),
1033               op->in_opr3()->as_double_reg());
1034     break;
1035   case lir_fmaf:
1036     __ fmadds(op->result_opr()->as_float_reg(),
1037               op->in_opr1()->as_float_reg(),
1038               op->in_opr2()->as_float_reg(),
1039               op->in_opr3()->as_float_reg());
1040     break;
1041   default:      ShouldNotReachHere(); break;
1042   }
1043 }
1044 
1045 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1046 #ifdef ASSERT
1047   assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label");
1048   if (op->block() != nullptr)  _branch_target_blocks.append(op->block());
1049   if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock());
1050 #endif
1051 
1052   if (op->cond() == lir_cond_always) {
1053     if (op->info() != nullptr) add_debug_info_for_branch(op->info());
1054     __ b(*(op->label()));
1055   } else {
1056     Assembler::Condition acond;
1057     if (op->code() == lir_cond_float_branch) {
1058       bool is_unordered = (op->ublock() == op->block());
1059       // Assembler::EQ does not permit unordered branches, so we add
1060       // another branch here.  Likewise, Assembler::NE does not permit
1061       // ordered branches.
1062       if ((is_unordered && op->cond() == lir_cond_equal)
1063           || (!is_unordered && op->cond() == lir_cond_notEqual))
1064         __ br(Assembler::VS, *(op->ublock()->label()));
1065       switch(op->cond()) {
1066       case lir_cond_equal:        acond = Assembler::EQ; break;
1067       case lir_cond_notEqual:     acond = Assembler::NE; break;
1068       case lir_cond_less:         acond = (is_unordered ? Assembler::LT : Assembler::LO); break;
1069       case lir_cond_lessEqual:    acond = (is_unordered ? Assembler::LE : Assembler::LS); break;
1070       case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::HS : Assembler::GE); break;
1071       case lir_cond_greater:      acond = (is_unordered ? Assembler::HI : Assembler::GT); break;
1072       default:                    ShouldNotReachHere();
1073         acond = Assembler::EQ;  // unreachable
1074       }
1075     } else {
1076       switch (op->cond()) {
1077         case lir_cond_equal:        acond = Assembler::EQ; break;
1078         case lir_cond_notEqual:     acond = Assembler::NE; break;
1079         case lir_cond_less:         acond = Assembler::LT; break;
1080         case lir_cond_lessEqual:    acond = Assembler::LE; break;
1081         case lir_cond_greaterEqual: acond = Assembler::GE; break;
1082         case lir_cond_greater:      acond = Assembler::GT; break;
1083         case lir_cond_belowEqual:   acond = Assembler::LS; break;
1084         case lir_cond_aboveEqual:   acond = Assembler::HS; break;
1085         default:                    ShouldNotReachHere();
1086           acond = Assembler::EQ;  // unreachable
1087       }
1088     }
1089     __ br(acond,*(op->label()));
1090   }
1091 }
1092 
1093 
1094 
1095 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1096   LIR_Opr src  = op->in_opr();
1097   LIR_Opr dest = op->result_opr();
1098 
1099   switch (op->bytecode()) {
1100     case Bytecodes::_i2f:
1101       {
1102         __ scvtfws(dest->as_float_reg(), src->as_register());
1103         break;
1104       }
1105     case Bytecodes::_i2d:
1106       {
1107         __ scvtfwd(dest->as_double_reg(), src->as_register());
1108         break;
1109       }
1110     case Bytecodes::_l2d:
1111       {
1112         __ scvtfd(dest->as_double_reg(), src->as_register_lo());
1113         break;
1114       }
1115     case Bytecodes::_l2f:
1116       {
1117         __ scvtfs(dest->as_float_reg(), src->as_register_lo());
1118         break;
1119       }
1120     case Bytecodes::_f2d:
1121       {
1122         __ fcvts(dest->as_double_reg(), src->as_float_reg());
1123         break;
1124       }
1125     case Bytecodes::_d2f:
1126       {
1127         __ fcvtd(dest->as_float_reg(), src->as_double_reg());
1128         break;
1129       }
1130     case Bytecodes::_i2c:
1131       {
1132         __ ubfx(dest->as_register(), src->as_register(), 0, 16);
1133         break;
1134       }
1135     case Bytecodes::_i2l:
1136       {
1137         __ sxtw(dest->as_register_lo(), src->as_register());
1138         break;
1139       }
1140     case Bytecodes::_i2s:
1141       {
1142         __ sxth(dest->as_register(), src->as_register());
1143         break;
1144       }
1145     case Bytecodes::_i2b:
1146       {
1147         __ sxtb(dest->as_register(), src->as_register());
1148         break;
1149       }
1150     case Bytecodes::_l2i:
1151       {
1152         _masm->block_comment("FIXME: This could be a no-op");
1153         __ uxtw(dest->as_register(), src->as_register_lo());
1154         break;
1155       }
1156     case Bytecodes::_d2l:
1157       {
1158         __ fcvtzd(dest->as_register_lo(), src->as_double_reg());
1159         break;
1160       }
1161     case Bytecodes::_f2i:
1162       {
1163         __ fcvtzsw(dest->as_register(), src->as_float_reg());
1164         break;
1165       }
1166     case Bytecodes::_f2l:
1167       {
1168         __ fcvtzs(dest->as_register_lo(), src->as_float_reg());
1169         break;
1170       }
1171     case Bytecodes::_d2i:
1172       {
1173         __ fcvtzdw(dest->as_register(), src->as_double_reg());
1174         break;
1175       }
1176     default: ShouldNotReachHere();
1177   }
1178 }
1179 
1180 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1181   if (op->init_check()) {
1182     __ lea(rscratch1, Address(op->klass()->as_register(), InstanceKlass::init_state_offset()));
1183     __ ldarb(rscratch1, rscratch1);
1184     __ cmpw(rscratch1, InstanceKlass::fully_initialized);
1185     add_debug_info_for_null_check_here(op->stub()->info());
1186     __ br(Assembler::NE, *op->stub()->entry());
1187   }
1188   __ allocate_object(op->obj()->as_register(),
1189                      op->tmp1()->as_register(),
1190                      op->tmp2()->as_register(),
1191                      op->header_size(),
1192                      op->object_size(),
1193                      op->klass()->as_register(),
1194                      *op->stub()->entry());
1195   __ bind(*op->stub()->continuation());
1196 }
1197 
1198 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1199   Register len =  op->len()->as_register();
1200   __ uxtw(len, len);
1201 
1202   if (UseSlowPath ||
1203       (!UseFastNewObjectArray && is_reference_type(op->type())) ||
1204       (!UseFastNewTypeArray   && !is_reference_type(op->type()))) {
1205     __ b(*op->stub()->entry());
1206   } else {
1207     Register tmp1 = op->tmp1()->as_register();
1208     Register tmp2 = op->tmp2()->as_register();
1209     Register tmp3 = op->tmp3()->as_register();
1210     if (len == tmp1) {
1211       tmp1 = tmp3;
1212     } else if (len == tmp2) {
1213       tmp2 = tmp3;
1214     } else if (len == tmp3) {
1215       // everything is ok
1216     } else {
1217       __ mov(tmp3, len);
1218     }
1219     __ allocate_array(op->obj()->as_register(),
1220                       len,
1221                       tmp1,
1222                       tmp2,
1223                       arrayOopDesc::base_offset_in_bytes(op->type()),
1224                       array_element_size(op->type()),
1225                       op->klass()->as_register(),
1226                       *op->stub()->entry(),
1227                       op->zero_array());
1228   }
1229   __ bind(*op->stub()->continuation());
1230 }
1231 
1232 void LIR_Assembler::type_profile_helper(Register mdo,
1233                                         ciMethodData *md, ciProfileData *data,
1234                                         Register recv, Label* update_done) {
1235   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1236     Label next_test;
1237     // See if the receiver is receiver[n].
1238     __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1239     __ ldr(rscratch1, Address(rscratch2));
1240     __ cmp(recv, rscratch1);
1241     __ br(Assembler::NE, next_test);
1242     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1243     __ addptr(data_addr, DataLayout::counter_increment);
1244     __ b(*update_done);
1245     __ bind(next_test);
1246   }
1247 
1248   // Didn't find receiver; find next empty slot and fill it in
1249   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1250     Label next_test;
1251     __ lea(rscratch2,
1252            Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1253     Address recv_addr(rscratch2);
1254     __ ldr(rscratch1, recv_addr);
1255     __ cbnz(rscratch1, next_test);
1256     __ str(recv, recv_addr);
1257     __ mov(rscratch1, DataLayout::counter_increment);
1258     __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))));
1259     __ str(rscratch1, Address(rscratch2));
1260     __ b(*update_done);
1261     __ bind(next_test);
1262   }
1263 }
1264 
1265 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1266   // we always need a stub for the failure case.
1267   CodeStub* stub = op->stub();
1268   Register obj = op->object()->as_register();
1269   Register k_RInfo = op->tmp1()->as_register();
1270   Register klass_RInfo = op->tmp2()->as_register();
1271   Register dst = op->result_opr()->as_register();
1272   ciKlass* k = op->klass();
1273   Register Rtmp1 = noreg;
1274 
1275   // check if it needs to be profiled
1276   ciMethodData* md;
1277   ciProfileData* data;
1278 
1279   const bool should_profile = op->should_profile();
1280 
1281   if (should_profile) {
1282     ciMethod* method = op->profiled_method();
1283     assert(method != nullptr, "Should have method");
1284     int bci = op->profiled_bci();
1285     md = method->method_data_or_null();
1286     assert(md != nullptr, "Sanity");
1287     data = md->bci_to_data(bci);
1288     assert(data != nullptr,                "need data for type check");
1289     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1290   }
1291   Label* success_target = success;
1292   Label* failure_target = failure;
1293 
1294   if (obj == k_RInfo) {
1295     k_RInfo = dst;
1296   } else if (obj == klass_RInfo) {
1297     klass_RInfo = dst;
1298   }
1299   if (k->is_loaded() && !UseCompressedClassPointers) {
1300     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1301   } else {
1302     Rtmp1 = op->tmp3()->as_register();
1303     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1304   }
1305 
1306   assert_different_registers(obj, k_RInfo, klass_RInfo);
1307 
1308   if (should_profile) {
1309     Register mdo  = klass_RInfo;
1310     __ mov_metadata(mdo, md->constant_encoding());
1311     Label not_null;
1312     __ cbnz(obj, not_null);
1313     // Object is null; update MDO and exit
1314     Address data_addr
1315       = __ form_address(rscratch2, mdo,
1316                         md->byte_offset_of_slot(data, DataLayout::flags_offset()),
1317                         0);
1318     __ ldrb(rscratch1, data_addr);
1319     __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant());
1320     __ strb(rscratch1, data_addr);
1321     __ b(*obj_is_null);
1322     __ bind(not_null);
1323 
1324     Label update_done;
1325     Register recv = k_RInfo;
1326     __ load_klass(recv, obj);
1327     type_profile_helper(mdo, md, data, recv, &update_done);
1328     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1329     __ addptr(counter_addr, DataLayout::counter_increment);
1330 
1331     __ bind(update_done);
1332   } else {
1333     __ cbz(obj, *obj_is_null);
1334   }
1335 
1336   if (!k->is_loaded()) {
1337     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1338   } else {
1339     __ mov_metadata(k_RInfo, k->constant_encoding());
1340   }
1341   __ verify_oop(obj);
1342 
1343   if (op->fast_check()) {
1344     // get object class
1345     // not a safepoint as obj null check happens earlier
1346     __ load_klass(rscratch1, obj);
1347     __ cmp( rscratch1, k_RInfo);
1348 
1349     __ br(Assembler::NE, *failure_target);
1350     // successful cast, fall through to profile or jump
1351   } else {
1352     // get object class
1353     // not a safepoint as obj null check happens earlier
1354     __ load_klass(klass_RInfo, obj);
1355     if (k->is_loaded()) {
1356       // See if we get an immediate positive hit
1357       __ ldr(rscratch1, Address(klass_RInfo, int64_t(k->super_check_offset())));
1358       __ cmp(k_RInfo, rscratch1);
1359       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1360         __ br(Assembler::NE, *failure_target);
1361         // successful cast, fall through to profile or jump
1362       } else {
1363         // See if we get an immediate positive hit
1364         __ br(Assembler::EQ, *success_target);
1365         // check for self
1366         __ cmp(klass_RInfo, k_RInfo);
1367         __ br(Assembler::EQ, *success_target);
1368 
1369         __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
1370         __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id)));
1371         __ ldr(klass_RInfo, Address(__ post(sp, 2 * wordSize)));
1372         // result is a boolean
1373         __ cbzw(klass_RInfo, *failure_target);
1374         // successful cast, fall through to profile or jump
1375       }
1376     } else {
1377       // perform the fast part of the checking logic
1378       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
1379       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1380       __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
1381       __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id)));
1382       __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize)));
1383       // result is a boolean
1384       __ cbz(k_RInfo, *failure_target);
1385       // successful cast, fall through to profile or jump
1386     }
1387   }
1388   __ b(*success);
1389 }
1390 
1391 
1392 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1393   const bool should_profile = op->should_profile();
1394 
1395   LIR_Code code = op->code();
1396   if (code == lir_store_check) {
1397     Register value = op->object()->as_register();
1398     Register array = op->array()->as_register();
1399     Register k_RInfo = op->tmp1()->as_register();
1400     Register klass_RInfo = op->tmp2()->as_register();
1401     Register Rtmp1 = op->tmp3()->as_register();
1402 
1403     CodeStub* stub = op->stub();
1404 
1405     // check if it needs to be profiled
1406     ciMethodData* md;
1407     ciProfileData* data;
1408 
1409     if (should_profile) {
1410       ciMethod* method = op->profiled_method();
1411       assert(method != nullptr, "Should have method");
1412       int bci = op->profiled_bci();
1413       md = method->method_data_or_null();
1414       assert(md != nullptr, "Sanity");
1415       data = md->bci_to_data(bci);
1416       assert(data != nullptr,                "need data for type check");
1417       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1418     }
1419     Label done;
1420     Label* success_target = &done;
1421     Label* failure_target = stub->entry();
1422 
1423     if (should_profile) {
1424       Label not_null;
1425       Register mdo  = klass_RInfo;
1426       __ mov_metadata(mdo, md->constant_encoding());
1427       __ cbnz(value, not_null);
1428       // Object is null; update MDO and exit
1429       Address data_addr
1430         = __ form_address(rscratch2, mdo,
1431                           md->byte_offset_of_slot(data, DataLayout::flags_offset()),
1432                           0);
1433       __ ldrb(rscratch1, data_addr);
1434       __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant());
1435       __ strb(rscratch1, data_addr);
1436       __ b(done);
1437       __ bind(not_null);
1438 
1439       Label update_done;
1440       Register recv = k_RInfo;
1441       __ load_klass(recv, value);
1442       type_profile_helper(mdo, md, data, recv, &update_done);
1443       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1444       __ addptr(counter_addr, DataLayout::counter_increment);
1445       __ bind(update_done);
1446     } else {
1447       __ cbz(value, done);
1448     }
1449 
1450     add_debug_info_for_null_check_here(op->info_for_exception());
1451     __ load_klass(k_RInfo, array);
1452     __ load_klass(klass_RInfo, value);
1453 
1454     // get instance klass (it's already uncompressed)
1455     __ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1456     // perform the fast part of the checking logic
1457     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
1458     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1459     __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
1460     __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id)));
1461     __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize)));
1462     // result is a boolean
1463     __ cbzw(k_RInfo, *failure_target);
1464     // fall through to the success case
1465 
1466     __ bind(done);
1467   } else if (code == lir_checkcast) {
1468     Register obj = op->object()->as_register();
1469     Register dst = op->result_opr()->as_register();
1470     Label success;
1471     emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1472     __ bind(success);
1473     if (dst != obj) {
1474       __ mov(dst, obj);
1475     }
1476   } else if (code == lir_instanceof) {
1477     Register obj = op->object()->as_register();
1478     Register dst = op->result_opr()->as_register();
1479     Label success, failure, done;
1480     emit_typecheck_helper(op, &success, &failure, &failure);
1481     __ bind(failure);
1482     __ mov(dst, zr);
1483     __ b(done);
1484     __ bind(success);
1485     __ mov(dst, 1);
1486     __ bind(done);
1487   } else {
1488     ShouldNotReachHere();
1489   }
1490 }
1491 
1492 void LIR_Assembler::casw(Register addr, Register newval, Register cmpval) {
1493   __ cmpxchg(addr, cmpval, newval, Assembler::word, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1);
1494   __ cset(rscratch1, Assembler::NE);
1495   __ membar(__ AnyAny);
1496 }
1497 
1498 void LIR_Assembler::casl(Register addr, Register newval, Register cmpval) {
1499   __ cmpxchg(addr, cmpval, newval, Assembler::xword, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1);
1500   __ cset(rscratch1, Assembler::NE);
1501   __ membar(__ AnyAny);
1502 }
1503 
1504 
1505 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1506   Register addr;
1507   if (op->addr()->is_register()) {
1508     addr = as_reg(op->addr());
1509   } else {
1510     assert(op->addr()->is_address(), "what else?");
1511     LIR_Address* addr_ptr = op->addr()->as_address_ptr();
1512     assert(addr_ptr->disp() == 0, "need 0 disp");
1513     assert(addr_ptr->index() == LIR_Opr::illegalOpr(), "need 0 index");
1514     addr = as_reg(addr_ptr->base());
1515   }
1516   Register newval = as_reg(op->new_value());
1517   Register cmpval = as_reg(op->cmp_value());
1518 
1519   if (op->code() == lir_cas_obj) {
1520     if (UseCompressedOops) {
1521       Register t1 = op->tmp1()->as_register();
1522       assert(op->tmp1()->is_valid(), "must be");
1523       __ encode_heap_oop(t1, cmpval);
1524       cmpval = t1;
1525       __ encode_heap_oop(rscratch2, newval);
1526       newval = rscratch2;
1527       casw(addr, newval, cmpval);
1528     } else {
1529       casl(addr, newval, cmpval);
1530     }
1531   } else if (op->code() == lir_cas_int) {
1532     casw(addr, newval, cmpval);
1533   } else {
1534     casl(addr, newval, cmpval);
1535   }
1536 }
1537 
1538 
1539 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type,
1540                           LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) {
1541   assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on aarch64");
1542 
1543   Assembler::Condition acond, ncond;
1544   switch (condition) {
1545   case lir_cond_equal:        acond = Assembler::EQ; ncond = Assembler::NE; break;
1546   case lir_cond_notEqual:     acond = Assembler::NE; ncond = Assembler::EQ; break;
1547   case lir_cond_less:         acond = Assembler::LT; ncond = Assembler::GE; break;
1548   case lir_cond_lessEqual:    acond = Assembler::LE; ncond = Assembler::GT; break;
1549   case lir_cond_greaterEqual: acond = Assembler::GE; ncond = Assembler::LT; break;
1550   case lir_cond_greater:      acond = Assembler::GT; ncond = Assembler::LE; break;
1551   case lir_cond_belowEqual:
1552   case lir_cond_aboveEqual:
1553   default:                    ShouldNotReachHere();
1554     acond = Assembler::EQ; ncond = Assembler::NE;  // unreachable
1555   }
1556 
1557   assert(result->is_single_cpu() || result->is_double_cpu(),
1558          "expect single register for result");
1559   if (opr1->is_constant() && opr2->is_constant()
1560       && opr1->type() == T_INT && opr2->type() == T_INT) {
1561     jint val1 = opr1->as_jint();
1562     jint val2 = opr2->as_jint();
1563     if (val1 == 0 && val2 == 1) {
1564       __ cset(result->as_register(), ncond);
1565       return;
1566     } else if (val1 == 1 && val2 == 0) {
1567       __ cset(result->as_register(), acond);
1568       return;
1569     }
1570   }
1571 
1572   if (opr1->is_constant() && opr2->is_constant()
1573       && opr1->type() == T_LONG && opr2->type() == T_LONG) {
1574     jlong val1 = opr1->as_jlong();
1575     jlong val2 = opr2->as_jlong();
1576     if (val1 == 0 && val2 == 1) {
1577       __ cset(result->as_register_lo(), ncond);
1578       return;
1579     } else if (val1 == 1 && val2 == 0) {
1580       __ cset(result->as_register_lo(), acond);
1581       return;
1582     }
1583   }
1584 
1585   if (opr1->is_stack()) {
1586     stack2reg(opr1, FrameMap::rscratch1_opr, result->type());
1587     opr1 = FrameMap::rscratch1_opr;
1588   } else if (opr1->is_constant()) {
1589     LIR_Opr tmp
1590       = opr1->type() == T_LONG ? FrameMap::rscratch1_long_opr : FrameMap::rscratch1_opr;
1591     const2reg(opr1, tmp, lir_patch_none, nullptr);
1592     opr1 = tmp;
1593   }
1594 
1595   if (opr2->is_stack()) {
1596     stack2reg(opr2, FrameMap::rscratch2_opr, result->type());
1597     opr2 = FrameMap::rscratch2_opr;
1598   } else if (opr2->is_constant()) {
1599     LIR_Opr tmp
1600       = opr2->type() == T_LONG ? FrameMap::rscratch2_long_opr : FrameMap::rscratch2_opr;
1601     const2reg(opr2, tmp, lir_patch_none, nullptr);
1602     opr2 = tmp;
1603   }
1604 
1605   if (result->type() == T_LONG)
1606     __ csel(result->as_register_lo(), opr1->as_register_lo(), opr2->as_register_lo(), acond);
1607   else
1608     __ csel(result->as_register(), opr1->as_register(), opr2->as_register(), acond);
1609 }
1610 
1611 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1612   assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
1613 
1614   if (left->is_single_cpu()) {
1615     Register lreg = left->as_register();
1616     Register dreg = as_reg(dest);
1617 
1618     if (right->is_single_cpu()) {
1619       // cpu register - cpu register
1620 
1621       assert(left->type() == T_INT && right->type() == T_INT && dest->type() == T_INT,
1622              "should be");
1623       Register rreg = right->as_register();
1624       switch (code) {
1625       case lir_add: __ addw (dest->as_register(), lreg, rreg); break;
1626       case lir_sub: __ subw (dest->as_register(), lreg, rreg); break;
1627       case lir_mul: __ mulw (dest->as_register(), lreg, rreg); break;
1628       default:      ShouldNotReachHere();
1629       }
1630 
1631     } else if (right->is_double_cpu()) {
1632       Register rreg = right->as_register_lo();
1633       // single_cpu + double_cpu: can happen with obj+long
1634       assert(code == lir_add || code == lir_sub, "mismatched arithmetic op");
1635       switch (code) {
1636       case lir_add: __ add(dreg, lreg, rreg); break;
1637       case lir_sub: __ sub(dreg, lreg, rreg); break;
1638       default: ShouldNotReachHere();
1639       }
1640     } else if (right->is_constant()) {
1641       // cpu register - constant
1642       jlong c;
1643 
1644       // FIXME.  This is fugly: we really need to factor all this logic.
1645       switch(right->type()) {
1646       case T_LONG:
1647         c = right->as_constant_ptr()->as_jlong();
1648         break;
1649       case T_INT:
1650       case T_ADDRESS:
1651         c = right->as_constant_ptr()->as_jint();
1652         break;
1653       default:
1654         ShouldNotReachHere();
1655         c = 0;  // unreachable
1656         break;
1657       }
1658 
1659       assert(code == lir_add || code == lir_sub, "mismatched arithmetic op");
1660       if (c == 0 && dreg == lreg) {
1661         COMMENT("effective nop elided");
1662         return;
1663       }
1664       switch(left->type()) {
1665       case T_INT:
1666         switch (code) {
1667         case lir_add: __ addw(dreg, lreg, c); break;
1668         case lir_sub: __ subw(dreg, lreg, c); break;
1669         default: ShouldNotReachHere();
1670         }
1671         break;
1672       case T_OBJECT:
1673       case T_ADDRESS:
1674         switch (code) {
1675         case lir_add: __ add(dreg, lreg, c); break;
1676         case lir_sub: __ sub(dreg, lreg, c); break;
1677         default: ShouldNotReachHere();
1678         }
1679         break;
1680       default:
1681         ShouldNotReachHere();
1682       }
1683     } else {
1684       ShouldNotReachHere();
1685     }
1686 
1687   } else if (left->is_double_cpu()) {
1688     Register lreg_lo = left->as_register_lo();
1689 
1690     if (right->is_double_cpu()) {
1691       // cpu register - cpu register
1692       Register rreg_lo = right->as_register_lo();
1693       switch (code) {
1694       case lir_add: __ add (dest->as_register_lo(), lreg_lo, rreg_lo); break;
1695       case lir_sub: __ sub (dest->as_register_lo(), lreg_lo, rreg_lo); break;
1696       case lir_mul: __ mul (dest->as_register_lo(), lreg_lo, rreg_lo); break;
1697       case lir_div: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, false, rscratch1); break;
1698       case lir_rem: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, true, rscratch1); break;
1699       default:
1700         ShouldNotReachHere();
1701       }
1702 
1703     } else if (right->is_constant()) {
1704       jlong c = right->as_constant_ptr()->as_jlong();
1705       Register dreg = as_reg(dest);
1706       switch (code) {
1707         case lir_add:
1708         case lir_sub:
1709           if (c == 0 && dreg == lreg_lo) {
1710             COMMENT("effective nop elided");
1711             return;
1712           }
1713           code == lir_add ? __ add(dreg, lreg_lo, c) : __ sub(dreg, lreg_lo, c);
1714           break;
1715         case lir_div:
1716           assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant");
1717           if (c == 1) {
1718             // move lreg_lo to dreg if divisor is 1
1719             __ mov(dreg, lreg_lo);
1720           } else {
1721             unsigned int shift = log2i_exact(c);
1722             // use rscratch1 as intermediate result register
1723             __ asr(rscratch1, lreg_lo, 63);
1724             __ add(rscratch1, lreg_lo, rscratch1, Assembler::LSR, 64 - shift);
1725             __ asr(dreg, rscratch1, shift);
1726           }
1727           break;
1728         case lir_rem:
1729           assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant");
1730           if (c == 1) {
1731             // move 0 to dreg if divisor is 1
1732             __ mov(dreg, zr);
1733           } else {
1734             // use rscratch1 as intermediate result register
1735             __ negs(rscratch1, lreg_lo);
1736             __ andr(dreg, lreg_lo, c - 1);
1737             __ andr(rscratch1, rscratch1, c - 1);
1738             __ csneg(dreg, dreg, rscratch1, Assembler::MI);
1739           }
1740           break;
1741         default:
1742           ShouldNotReachHere();
1743       }
1744     } else {
1745       ShouldNotReachHere();
1746     }
1747   } else if (left->is_single_fpu()) {
1748     assert(right->is_single_fpu(), "right hand side of float arithmetics needs to be float register");
1749     switch (code) {
1750     case lir_add: __ fadds (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1751     case lir_sub: __ fsubs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1752     case lir_mul: __ fmuls (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1753     case lir_div: __ fdivs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1754     default:
1755       ShouldNotReachHere();
1756     }
1757   } else if (left->is_double_fpu()) {
1758     if (right->is_double_fpu()) {
1759       // fpu register - fpu register
1760       switch (code) {
1761       case lir_add: __ faddd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1762       case lir_sub: __ fsubd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1763       case lir_mul: __ fmuld (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1764       case lir_div: __ fdivd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1765       default:
1766         ShouldNotReachHere();
1767       }
1768     } else {
1769       if (right->is_constant()) {
1770         ShouldNotReachHere();
1771       }
1772       ShouldNotReachHere();
1773     }
1774   } else if (left->is_single_stack() || left->is_address()) {
1775     assert(left == dest, "left and dest must be equal");
1776     ShouldNotReachHere();
1777   } else {
1778     ShouldNotReachHere();
1779   }
1780 }
1781 
1782 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) { Unimplemented(); }
1783 
1784 
1785 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) {
1786   switch(code) {
1787   case lir_abs : __ fabsd(dest->as_double_reg(), value->as_double_reg()); break;
1788   case lir_sqrt: __ fsqrtd(dest->as_double_reg(), value->as_double_reg()); break;
1789   case lir_f2hf: __ flt_to_flt16(dest->as_register(), value->as_float_reg(), tmp->as_float_reg()); break;
1790   case lir_hf2f: __ flt16_to_flt(dest->as_float_reg(), value->as_register(), tmp->as_float_reg()); break;
1791   default      : ShouldNotReachHere();
1792   }
1793 }
1794 
1795 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
1796 
1797   assert(left->is_single_cpu() || left->is_double_cpu(), "expect single or double register");
1798   Register Rleft = left->is_single_cpu() ? left->as_register() :
1799                                            left->as_register_lo();
1800    if (dst->is_single_cpu()) {
1801      Register Rdst = dst->as_register();
1802      if (right->is_constant()) {
1803        switch (code) {
1804          case lir_logic_and: __ andw (Rdst, Rleft, right->as_jint()); break;
1805          case lir_logic_or:  __ orrw (Rdst, Rleft, right->as_jint()); break;
1806          case lir_logic_xor: __ eorw (Rdst, Rleft, right->as_jint()); break;
1807          default: ShouldNotReachHere(); break;
1808        }
1809      } else {
1810        Register Rright = right->is_single_cpu() ? right->as_register() :
1811                                                   right->as_register_lo();
1812        switch (code) {
1813          case lir_logic_and: __ andw (Rdst, Rleft, Rright); break;
1814          case lir_logic_or:  __ orrw (Rdst, Rleft, Rright); break;
1815          case lir_logic_xor: __ eorw (Rdst, Rleft, Rright); break;
1816          default: ShouldNotReachHere(); break;
1817        }
1818      }
1819    } else {
1820      Register Rdst = dst->as_register_lo();
1821      if (right->is_constant()) {
1822        switch (code) {
1823          case lir_logic_and: __ andr (Rdst, Rleft, right->as_jlong()); break;
1824          case lir_logic_or:  __ orr (Rdst, Rleft, right->as_jlong()); break;
1825          case lir_logic_xor: __ eor (Rdst, Rleft, right->as_jlong()); break;
1826          default: ShouldNotReachHere(); break;
1827        }
1828      } else {
1829        Register Rright = right->is_single_cpu() ? right->as_register() :
1830                                                   right->as_register_lo();
1831        switch (code) {
1832          case lir_logic_and: __ andr (Rdst, Rleft, Rright); break;
1833          case lir_logic_or:  __ orr (Rdst, Rleft, Rright); break;
1834          case lir_logic_xor: __ eor (Rdst, Rleft, Rright); break;
1835          default: ShouldNotReachHere(); break;
1836        }
1837      }
1838    }
1839 }
1840 
1841 
1842 
1843 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr illegal, LIR_Opr result, CodeEmitInfo* info) {
1844 
1845   // opcode check
1846   assert((code == lir_idiv) || (code == lir_irem), "opcode must be idiv or irem");
1847   bool is_irem = (code == lir_irem);
1848 
1849   // operand check
1850   assert(left->is_single_cpu(),   "left must be register");
1851   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
1852   assert(result->is_single_cpu(), "result must be register");
1853   Register lreg = left->as_register();
1854   Register dreg = result->as_register();
1855 
1856   // power-of-2 constant check and codegen
1857   if (right->is_constant()) {
1858     int c = right->as_constant_ptr()->as_jint();
1859     assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant");
1860     if (is_irem) {
1861       if (c == 1) {
1862         // move 0 to dreg if divisor is 1
1863         __ movw(dreg, zr);
1864       } else {
1865         // use rscratch1 as intermediate result register
1866         __ negsw(rscratch1, lreg);
1867         __ andw(dreg, lreg, c - 1);
1868         __ andw(rscratch1, rscratch1, c - 1);
1869         __ csnegw(dreg, dreg, rscratch1, Assembler::MI);
1870       }
1871     } else {
1872       if (c == 1) {
1873         // move lreg to dreg if divisor is 1
1874         __ movw(dreg, lreg);
1875       } else {
1876         unsigned int shift = exact_log2(c);
1877         // use rscratch1 as intermediate result register
1878         __ asrw(rscratch1, lreg, 31);
1879         __ addw(rscratch1, lreg, rscratch1, Assembler::LSR, 32 - shift);
1880         __ asrw(dreg, rscratch1, shift);
1881       }
1882     }
1883   } else {
1884     Register rreg = right->as_register();
1885     __ corrected_idivl(dreg, lreg, rreg, is_irem, rscratch1);
1886   }
1887 }
1888 
1889 
1890 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1891   if (opr1->is_constant() && opr2->is_single_cpu()) {
1892     // tableswitch
1893     Register reg = as_reg(opr2);
1894     struct tableswitch &table = switches[opr1->as_constant_ptr()->as_jint()];
1895     __ tableswitch(reg, table._first_key, table._last_key, table._branches, table._after);
1896   } else if (opr1->is_single_cpu() || opr1->is_double_cpu()) {
1897     Register reg1 = as_reg(opr1);
1898     if (opr2->is_single_cpu()) {
1899       // cpu register - cpu register
1900       Register reg2 = opr2->as_register();
1901       if (is_reference_type(opr1->type())) {
1902         __ cmpoop(reg1, reg2);
1903       } else {
1904         assert(!is_reference_type(opr2->type()), "cmp int, oop?");
1905         __ cmpw(reg1, reg2);
1906       }
1907       return;
1908     }
1909     if (opr2->is_double_cpu()) {
1910       // cpu register - cpu register
1911       Register reg2 = opr2->as_register_lo();
1912       __ cmp(reg1, reg2);
1913       return;
1914     }
1915 
1916     if (opr2->is_constant()) {
1917       bool is_32bit = false; // width of register operand
1918       jlong imm;
1919 
1920       switch(opr2->type()) {
1921       case T_INT:
1922         imm = opr2->as_constant_ptr()->as_jint();
1923         is_32bit = true;
1924         break;
1925       case T_LONG:
1926         imm = opr2->as_constant_ptr()->as_jlong();
1927         break;
1928       case T_ADDRESS:
1929         imm = opr2->as_constant_ptr()->as_jint();
1930         break;
1931       case T_METADATA:
1932         imm = (intptr_t)(opr2->as_constant_ptr()->as_metadata());
1933         break;
1934       case T_OBJECT:
1935       case T_ARRAY:
1936         jobject2reg(opr2->as_constant_ptr()->as_jobject(), rscratch1);
1937         __ cmpoop(reg1, rscratch1);
1938         return;
1939       default:
1940         ShouldNotReachHere();
1941         imm = 0;  // unreachable
1942         break;
1943       }
1944 
1945       if (Assembler::operand_valid_for_add_sub_immediate(imm)) {
1946         if (is_32bit)
1947           __ cmpw(reg1, imm);
1948         else
1949           __ subs(zr, reg1, imm);
1950         return;
1951       } else {
1952         __ mov(rscratch1, imm);
1953         if (is_32bit)
1954           __ cmpw(reg1, rscratch1);
1955         else
1956           __ cmp(reg1, rscratch1);
1957         return;
1958       }
1959     } else
1960       ShouldNotReachHere();
1961   } else if (opr1->is_single_fpu()) {
1962     FloatRegister reg1 = opr1->as_float_reg();
1963     assert(opr2->is_single_fpu(), "expect single float register");
1964     FloatRegister reg2 = opr2->as_float_reg();
1965     __ fcmps(reg1, reg2);
1966   } else if (opr1->is_double_fpu()) {
1967     FloatRegister reg1 = opr1->as_double_reg();
1968     assert(opr2->is_double_fpu(), "expect double float register");
1969     FloatRegister reg2 = opr2->as_double_reg();
1970     __ fcmpd(reg1, reg2);
1971   } else {
1972     ShouldNotReachHere();
1973   }
1974 }
1975 
1976 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
1977   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1978     bool is_unordered_less = (code == lir_ucmp_fd2i);
1979     if (left->is_single_fpu()) {
1980       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
1981     } else if (left->is_double_fpu()) {
1982       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
1983     } else {
1984       ShouldNotReachHere();
1985     }
1986   } else if (code == lir_cmp_l2i) {
1987     Label done;
1988     __ cmp(left->as_register_lo(), right->as_register_lo());
1989     __ mov(dst->as_register(), (uint64_t)-1L);
1990     __ br(Assembler::LT, done);
1991     __ csinc(dst->as_register(), zr, zr, Assembler::EQ);
1992     __ bind(done);
1993   } else {
1994     ShouldNotReachHere();
1995   }
1996 }
1997 
1998 
1999 void LIR_Assembler::align_call(LIR_Code code) {  }
2000 
2001 
2002 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2003   address call = __ trampoline_call(Address(op->addr(), rtype));
2004   if (call == nullptr) {
2005     bailout("trampoline stub overflow");
2006     return;
2007   }
2008   add_call_info(code_offset(), op->info());
2009   __ post_call_nop();
2010 }
2011 
2012 
2013 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2014   address call = __ ic_call(op->addr());
2015   if (call == nullptr) {
2016     bailout("trampoline stub overflow");
2017     return;
2018   }
2019   add_call_info(code_offset(), op->info());
2020   __ post_call_nop();
2021 }
2022 
2023 void LIR_Assembler::emit_static_call_stub() {
2024   address call_pc = __ pc();
2025   address stub = __ start_a_stub(call_stub_size());
2026   if (stub == nullptr) {
2027     bailout("static call stub overflow");
2028     return;
2029   }
2030 
2031   int start = __ offset();
2032 
2033   __ relocate(static_stub_Relocation::spec(call_pc));
2034   __ emit_static_call_stub();
2035 
2036   assert(__ offset() - start + CompiledDirectCall::to_trampoline_stub_size()
2037         <= call_stub_size(), "stub too big");
2038   __ end_a_stub();
2039 }
2040 
2041 
2042 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2043   assert(exceptionOop->as_register() == r0, "must match");
2044   assert(exceptionPC->as_register() == r3, "must match");
2045 
2046   // exception object is not added to oop map by LinearScan
2047   // (LinearScan assumes that no oops are in fixed registers)
2048   info->add_register_oop(exceptionOop);
2049   C1StubId unwind_id;
2050 
2051   // get current pc information
2052   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2053   if (compilation()->debug_info_recorder()->last_pc_offset() == __ offset()) {
2054     // As no instructions have been generated yet for this LIR node it's
2055     // possible that an oop map already exists for the current offset.
2056     // In that case insert an dummy NOP here to ensure all oop map PCs
2057     // are unique. See JDK-8237483.
2058     __ nop();
2059   }
2060   int pc_for_athrow_offset = __ offset();
2061   InternalAddress pc_for_athrow(__ pc());
2062   __ adr(exceptionPC->as_register(), pc_for_athrow);
2063   add_call_info(pc_for_athrow_offset, info); // for exception handler
2064 
2065   __ verify_not_null_oop(r0);
2066   // search an exception handler (r0: exception oop, r3: throwing pc)
2067   if (compilation()->has_fpu_code()) {
2068     unwind_id = C1StubId::handle_exception_id;
2069   } else {
2070     unwind_id = C1StubId::handle_exception_nofpu_id;
2071   }
2072   __ far_call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2073 
2074   // FIXME: enough room for two byte trap   ????
2075   __ nop();
2076 }
2077 
2078 
2079 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2080   assert(exceptionOop->as_register() == r0, "must match");
2081 
2082   __ b(_unwind_handler_entry);
2083 }
2084 
2085 
2086 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2087   Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo();
2088   Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo();
2089 
2090   switch (left->type()) {
2091     case T_INT: {
2092       switch (code) {
2093       case lir_shl:  __ lslvw (dreg, lreg, count->as_register()); break;
2094       case lir_shr:  __ asrvw (dreg, lreg, count->as_register()); break;
2095       case lir_ushr: __ lsrvw (dreg, lreg, count->as_register()); break;
2096       default:
2097         ShouldNotReachHere();
2098         break;
2099       }
2100       break;
2101     case T_LONG:
2102     case T_ADDRESS:
2103     case T_OBJECT:
2104       switch (code) {
2105       case lir_shl:  __ lslv (dreg, lreg, count->as_register()); break;
2106       case lir_shr:  __ asrv (dreg, lreg, count->as_register()); break;
2107       case lir_ushr: __ lsrv (dreg, lreg, count->as_register()); break;
2108       default:
2109         ShouldNotReachHere();
2110         break;
2111       }
2112       break;
2113     default:
2114       ShouldNotReachHere();
2115       break;
2116     }
2117   }
2118 }
2119 
2120 
2121 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2122   Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo();
2123   Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo();
2124 
2125   switch (left->type()) {
2126     case T_INT: {
2127       switch (code) {
2128       case lir_shl:  __ lslw (dreg, lreg, count); break;
2129       case lir_shr:  __ asrw (dreg, lreg, count); break;
2130       case lir_ushr: __ lsrw (dreg, lreg, count); break;
2131       default:
2132         ShouldNotReachHere();
2133         break;
2134       }
2135       break;
2136     case T_LONG:
2137     case T_ADDRESS:
2138     case T_OBJECT:
2139       switch (code) {
2140       case lir_shl:  __ lsl (dreg, lreg, count); break;
2141       case lir_shr:  __ asr (dreg, lreg, count); break;
2142       case lir_ushr: __ lsr (dreg, lreg, count); break;
2143       default:
2144         ShouldNotReachHere();
2145         break;
2146       }
2147       break;
2148     default:
2149       ShouldNotReachHere();
2150       break;
2151     }
2152   }
2153 }
2154 
2155 
2156 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
2157   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2158   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2159   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2160   __ str (r, Address(sp, offset_from_rsp_in_bytes));
2161 }
2162 
2163 
2164 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
2165   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2166   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2167   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2168   __ mov (rscratch1, c);
2169   __ str (rscratch1, Address(sp, offset_from_rsp_in_bytes));
2170 }
2171 
2172 
2173 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
2174   ShouldNotReachHere();
2175   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2176   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2177   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2178   __ lea(rscratch1, __ constant_oop_address(o));
2179   __ str(rscratch1, Address(sp, offset_from_rsp_in_bytes));
2180 }
2181 
2182 
2183 // This code replaces a call to arraycopy; no exception may
2184 // be thrown in this code, they must be thrown in the System.arraycopy
2185 // activation frame; we could save some checks if this would not be the case
2186 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2187   ciArrayKlass* default_type = op->expected_type();
2188   Register src = op->src()->as_register();
2189   Register dst = op->dst()->as_register();
2190   Register src_pos = op->src_pos()->as_register();
2191   Register dst_pos = op->dst_pos()->as_register();
2192   Register length  = op->length()->as_register();
2193   Register tmp = op->tmp()->as_register();
2194 
2195   CodeStub* stub = op->stub();
2196   int flags = op->flags();
2197   BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL;
2198   if (is_reference_type(basic_type)) basic_type = T_OBJECT;
2199 
2200   // if we don't know anything, just go through the generic arraycopy
2201   if (default_type == nullptr // || basic_type == T_OBJECT
2202       ) {
2203     Label done;
2204     assert(src == r1 && src_pos == r2, "mismatch in calling convention");
2205 
2206     // Save the arguments in case the generic arraycopy fails and we
2207     // have to fall back to the JNI stub
2208     __ stp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2209     __ stp(length,  src_pos, Address(sp, 2*BytesPerWord));
2210     __ str(src,              Address(sp, 4*BytesPerWord));
2211 
2212     address copyfunc_addr = StubRoutines::generic_arraycopy();
2213     assert(copyfunc_addr != nullptr, "generic arraycopy stub required");
2214 
2215     // The arguments are in java calling convention so we shift them
2216     // to C convention
2217     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
2218     __ mov(c_rarg0, j_rarg0);
2219     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
2220     __ mov(c_rarg1, j_rarg1);
2221     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
2222     __ mov(c_rarg2, j_rarg2);
2223     assert_different_registers(c_rarg3, j_rarg4);
2224     __ mov(c_rarg3, j_rarg3);
2225     __ mov(c_rarg4, j_rarg4);
2226 #ifndef PRODUCT
2227     if (PrintC1Statistics) {
2228       __ incrementw(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
2229     }
2230 #endif
2231     __ far_call(RuntimeAddress(copyfunc_addr));
2232 
2233     __ cbz(r0, *stub->continuation());
2234 
2235     // Reload values from the stack so they are where the stub
2236     // expects them.
2237     __ ldp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2238     __ ldp(length,  src_pos, Address(sp, 2*BytesPerWord));
2239     __ ldr(src,              Address(sp, 4*BytesPerWord));
2240 
2241     // r0 is -1^K where K == partial copied count
2242     __ eonw(rscratch1, r0, zr);
2243     // adjust length down and src/end pos up by partial copied count
2244     __ subw(length, length, rscratch1);
2245     __ addw(src_pos, src_pos, rscratch1);
2246     __ addw(dst_pos, dst_pos, rscratch1);
2247     __ b(*stub->entry());
2248 
2249     __ bind(*stub->continuation());
2250     return;
2251   }
2252 
2253   assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
2254 
2255   int elem_size = type2aelembytes(basic_type);
2256   int scale = exact_log2(elem_size);
2257 
2258   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
2259   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
2260 
2261   // test for null
2262   if (flags & LIR_OpArrayCopy::src_null_check) {
2263     __ cbz(src, *stub->entry());
2264   }
2265   if (flags & LIR_OpArrayCopy::dst_null_check) {
2266     __ cbz(dst, *stub->entry());
2267   }
2268 
2269   // If the compiler was not able to prove that exact type of the source or the destination
2270   // of the arraycopy is an array type, check at runtime if the source or the destination is
2271   // an instance type.
2272   if (flags & LIR_OpArrayCopy::type_check) {
2273     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) {
2274       __ load_klass(tmp, dst);
2275       __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2276       __ cmpw(rscratch1, Klass::_lh_neutral_value);
2277       __ br(Assembler::GE, *stub->entry());
2278     }
2279 
2280     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) {
2281       __ load_klass(tmp, src);
2282       __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2283       __ cmpw(rscratch1, Klass::_lh_neutral_value);
2284       __ br(Assembler::GE, *stub->entry());
2285     }
2286   }
2287 
2288   // check if negative
2289   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
2290     __ cmpw(src_pos, 0);
2291     __ br(Assembler::LT, *stub->entry());
2292   }
2293   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
2294     __ cmpw(dst_pos, 0);
2295     __ br(Assembler::LT, *stub->entry());
2296   }
2297 
2298   if (flags & LIR_OpArrayCopy::length_positive_check) {
2299     __ cmpw(length, 0);
2300     __ br(Assembler::LT, *stub->entry());
2301   }
2302 
2303   if (flags & LIR_OpArrayCopy::src_range_check) {
2304     __ addw(tmp, src_pos, length);
2305     __ ldrw(rscratch1, src_length_addr);
2306     __ cmpw(tmp, rscratch1);
2307     __ br(Assembler::HI, *stub->entry());
2308   }
2309   if (flags & LIR_OpArrayCopy::dst_range_check) {
2310     __ addw(tmp, dst_pos, length);
2311     __ ldrw(rscratch1, dst_length_addr);
2312     __ cmpw(tmp, rscratch1);
2313     __ br(Assembler::HI, *stub->entry());
2314   }
2315 
2316   if (flags & LIR_OpArrayCopy::type_check) {
2317     // We don't know the array types are compatible
2318     if (basic_type != T_OBJECT) {
2319       // Simple test for basic type arrays
2320       __ cmp_klasses_from_objects(src, dst, tmp, rscratch1);
2321       __ br(Assembler::NE, *stub->entry());
2322     } else {
2323       // For object arrays, if src is a sub class of dst then we can
2324       // safely do the copy.
2325       Label cont, slow;
2326 
2327 #define PUSH(r1, r2)                                    \
2328       stp(r1, r2, __ pre(sp, -2 * wordSize));
2329 
2330 #define POP(r1, r2)                                     \
2331       ldp(r1, r2, __ post(sp, 2 * wordSize));
2332 
2333       __ PUSH(src, dst);
2334 
2335       __ load_klass(src, src);
2336       __ load_klass(dst, dst);
2337 
2338       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr);
2339 
2340       __ PUSH(src, dst);
2341       __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id)));
2342       __ POP(src, dst);
2343 
2344       __ cbnz(src, cont);
2345 
2346       __ bind(slow);
2347       __ POP(src, dst);
2348 
2349       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
2350       if (copyfunc_addr != nullptr) { // use stub if available
2351         // src is not a sub class of dst so we have to do a
2352         // per-element check.
2353 
2354         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2355         if ((flags & mask) != mask) {
2356           // Check that at least both of them object arrays.
2357           assert(flags & mask, "one of the two should be known to be an object array");
2358 
2359           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2360             __ load_klass(tmp, src);
2361           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2362             __ load_klass(tmp, dst);
2363           }
2364           int lh_offset = in_bytes(Klass::layout_helper_offset());
2365           Address klass_lh_addr(tmp, lh_offset);
2366           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2367           __ ldrw(rscratch1, klass_lh_addr);
2368           __ mov(rscratch2, objArray_lh);
2369           __ eorw(rscratch1, rscratch1, rscratch2);
2370           __ cbnzw(rscratch1, *stub->entry());
2371         }
2372 
2373        // Spill because stubs can use any register they like and it's
2374        // easier to restore just those that we care about.
2375         __ stp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2376         __ stp(length,  src_pos, Address(sp, 2*BytesPerWord));
2377         __ str(src,              Address(sp, 4*BytesPerWord));
2378 
2379         __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale)));
2380         __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type));
2381         assert_different_registers(c_rarg0, dst, dst_pos, length);
2382         __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale)));
2383         __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type));
2384         assert_different_registers(c_rarg1, dst, length);
2385         __ uxtw(c_rarg2, length);
2386         assert_different_registers(c_rarg2, dst);
2387 
2388         __ load_klass(c_rarg4, dst);
2389         __ ldr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
2390         __ ldrw(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
2391         __ far_call(RuntimeAddress(copyfunc_addr));
2392 
2393 #ifndef PRODUCT
2394         if (PrintC1Statistics) {
2395           Label failed;
2396           __ cbnz(r0, failed);
2397           __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
2398           __ bind(failed);
2399         }
2400 #endif
2401 
2402         __ cbz(r0, *stub->continuation());
2403 
2404 #ifndef PRODUCT
2405         if (PrintC1Statistics) {
2406           __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
2407         }
2408 #endif
2409         assert_different_registers(dst, dst_pos, length, src_pos, src, r0, rscratch1);
2410 
2411         // Restore previously spilled arguments
2412         __ ldp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2413         __ ldp(length,  src_pos, Address(sp, 2*BytesPerWord));
2414         __ ldr(src,              Address(sp, 4*BytesPerWord));
2415 
2416         // return value is -1^K where K is partial copied count
2417         __ eonw(rscratch1, r0, zr);
2418         // adjust length down and src/end pos up by partial copied count
2419         __ subw(length, length, rscratch1);
2420         __ addw(src_pos, src_pos, rscratch1);
2421         __ addw(dst_pos, dst_pos, rscratch1);
2422       }
2423 
2424       __ b(*stub->entry());
2425 
2426       __ bind(cont);
2427       __ POP(src, dst);
2428     }
2429   }
2430 
2431 #ifdef ASSERT
2432   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2433     // Sanity check the known type with the incoming class.  For the
2434     // primitive case the types must match exactly with src.klass and
2435     // dst.klass each exactly matching the default type.  For the
2436     // object array case, if no type check is needed then either the
2437     // dst type is exactly the expected type and the src type is a
2438     // subtype which we can't check or src is the same array as dst
2439     // but not necessarily exactly of type default_type.
2440     Label known_ok, halt;
2441     __ mov_metadata(tmp, default_type->constant_encoding());
2442 
2443     if (basic_type != T_OBJECT) {
2444       __ cmp_klass(dst, tmp, rscratch1);
2445       __ br(Assembler::NE, halt);
2446       __ cmp_klass(src, tmp, rscratch1);
2447       __ br(Assembler::EQ, known_ok);
2448     } else {
2449       __ cmp_klass(dst, tmp, rscratch1);
2450       __ br(Assembler::EQ, known_ok);
2451       __ cmp(src, dst);
2452       __ br(Assembler::EQ, known_ok);
2453     }
2454     __ bind(halt);
2455     __ stop("incorrect type information in arraycopy");
2456     __ bind(known_ok);
2457   }
2458 #endif
2459 
2460 #ifndef PRODUCT
2461   if (PrintC1Statistics) {
2462     __ incrementw(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
2463   }
2464 #endif
2465 
2466   __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale)));
2467   __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type));
2468   assert_different_registers(c_rarg0, dst, dst_pos, length);
2469   __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale)));
2470   __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type));
2471   assert_different_registers(c_rarg1, dst, length);
2472   __ uxtw(c_rarg2, length);
2473   assert_different_registers(c_rarg2, dst);
2474 
2475   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2476   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2477   const char *name;
2478   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2479 
2480  CodeBlob *cb = CodeCache::find_blob(entry);
2481  if (cb) {
2482    __ far_call(RuntimeAddress(entry));
2483  } else {
2484    __ call_VM_leaf(entry, 3);
2485  }
2486 
2487   if (stub != nullptr) {
2488     __ bind(*stub->continuation());
2489   }
2490 }
2491 
2492 
2493 
2494 
2495 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2496   Register obj = op->obj_opr()->as_register();  // may not be an oop
2497   Register hdr = op->hdr_opr()->as_register();
2498   Register lock = op->lock_opr()->as_register();
2499   Register temp = op->scratch_opr()->as_register();
2500   if (LockingMode == LM_MONITOR) {
2501     if (op->info() != nullptr) {
2502       add_debug_info_for_null_check_here(op->info());
2503       __ null_check(obj, -1);
2504     }
2505     __ b(*op->stub()->entry());
2506   } else if (op->code() == lir_lock) {
2507     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2508     // add debug info for NullPointerException only if one is possible
2509     int null_check_offset = __ lock_object(hdr, obj, lock, temp, *op->stub()->entry());
2510     if (op->info() != nullptr) {
2511       add_debug_info_for_null_check(null_check_offset, op->info());
2512     }
2513     // done
2514   } else if (op->code() == lir_unlock) {
2515     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2516     __ unlock_object(hdr, obj, lock, temp, *op->stub()->entry());
2517   } else {
2518     Unimplemented();
2519   }
2520   __ bind(*op->stub()->continuation());
2521 }
2522 
2523 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) {
2524   Register obj = op->obj()->as_pointer_register();
2525   Register result = op->result_opr()->as_pointer_register();
2526 
2527   CodeEmitInfo* info = op->info();
2528   if (info != nullptr) {
2529     add_debug_info_for_null_check_here(info);
2530   }
2531 
2532   __ load_klass(result, obj);
2533 }
2534 
2535 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2536   ciMethod* method = op->profiled_method();
2537   int bci          = op->profiled_bci();
2538   ciMethod* callee = op->profiled_callee();
2539 
2540   // Update counter for all call types
2541   ciMethodData* md = method->method_data_or_null();
2542   assert(md != nullptr, "Sanity");
2543   ciProfileData* data = md->bci_to_data(bci);
2544   assert(data != nullptr && data->is_CounterData(), "need CounterData for calls");
2545   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2546   Register mdo  = op->mdo()->as_register();
2547   __ mov_metadata(mdo, md->constant_encoding());
2548   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
2549   // Perform additional virtual call profiling for invokevirtual and
2550   // invokeinterface bytecodes
2551   if (op->should_profile_receiver_type()) {
2552     assert(op->recv()->is_single_cpu(), "recv must be allocated");
2553     Register recv = op->recv()->as_register();
2554     assert_different_registers(mdo, recv);
2555     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2556     ciKlass* known_klass = op->known_holder();
2557     if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) {
2558       // We know the type that will be seen at this call site; we can
2559       // statically update the MethodData* rather than needing to do
2560       // dynamic tests on the receiver type
2561 
2562       // NOTE: we should probably put a lock around this search to
2563       // avoid collisions by concurrent compilations
2564       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2565       uint i;
2566       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2567         ciKlass* receiver = vc_data->receiver(i);
2568         if (known_klass->equals(receiver)) {
2569           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2570           __ addptr(data_addr, DataLayout::counter_increment);
2571           return;
2572         }
2573       }
2574 
2575       // Receiver type not found in profile data; select an empty slot
2576 
2577       // Note that this is less efficient than it should be because it
2578       // always does a write to the receiver part of the
2579       // VirtualCallData rather than just the first time
2580       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2581         ciKlass* receiver = vc_data->receiver(i);
2582         if (receiver == nullptr) {
2583           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
2584           __ mov_metadata(rscratch1, known_klass->constant_encoding());
2585           __ lea(rscratch2, recv_addr);
2586           __ str(rscratch1, Address(rscratch2));
2587           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2588           __ addptr(data_addr, DataLayout::counter_increment);
2589           return;
2590         }
2591       }
2592     } else {
2593       __ load_klass(recv, recv);
2594       Label update_done;
2595       type_profile_helper(mdo, md, data, recv, &update_done);
2596       // Receiver did not match any saved receiver and there is no empty row for it.
2597       // Increment total counter to indicate polymorphic case.
2598       __ addptr(counter_addr, DataLayout::counter_increment);
2599 
2600       __ bind(update_done);
2601     }
2602   } else {
2603     // Static call
2604     __ addptr(counter_addr, DataLayout::counter_increment);
2605   }
2606 }
2607 
2608 
2609 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
2610   Unimplemented();
2611 }
2612 
2613 
2614 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
2615   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
2616 }
2617 
2618 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
2619   assert(op->crc()->is_single_cpu(),  "crc must be register");
2620   assert(op->val()->is_single_cpu(),  "byte value must be register");
2621   assert(op->result_opr()->is_single_cpu(), "result must be register");
2622   Register crc = op->crc()->as_register();
2623   Register val = op->val()->as_register();
2624   Register res = op->result_opr()->as_register();
2625 
2626   assert_different_registers(val, crc, res);
2627   uint64_t offset;
2628   __ adrp(res, ExternalAddress(StubRoutines::crc_table_addr()), offset);
2629   __ add(res, res, offset);
2630 
2631   __ mvnw(crc, crc); // ~crc
2632   __ update_byte_crc32(crc, val, res);
2633   __ mvnw(res, crc); // ~crc
2634 }
2635 
2636 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
2637   COMMENT("emit_profile_type {");
2638   Register obj = op->obj()->as_register();
2639   Register tmp = op->tmp()->as_pointer_register();
2640   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
2641   ciKlass* exact_klass = op->exact_klass();
2642   intptr_t current_klass = op->current_klass();
2643   bool not_null = op->not_null();
2644   bool no_conflict = op->no_conflict();
2645 
2646   Label update, next, none;
2647 
2648   bool do_null = !not_null;
2649   bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
2650   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
2651 
2652   assert(do_null || do_update, "why are we here?");
2653   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
2654   assert(mdo_addr.base() != rscratch1, "wrong register");
2655 
2656   __ verify_oop(obj);
2657 
2658   if (tmp != obj) {
2659     assert_different_registers(obj, tmp, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index());
2660     __ mov(tmp, obj);
2661   } else {
2662     assert_different_registers(obj, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index());
2663   }
2664   if (do_null) {
2665     __ cbnz(tmp, update);
2666     if (!TypeEntries::was_null_seen(current_klass)) {
2667       __ ldr(rscratch2, mdo_addr);
2668       __ orr(rscratch2, rscratch2, TypeEntries::null_seen);
2669       __ str(rscratch2, mdo_addr);
2670     }
2671     if (do_update) {
2672 #ifndef ASSERT
2673       __ b(next);
2674     }
2675 #else
2676       __ b(next);
2677     }
2678   } else {
2679     __ cbnz(tmp, update);
2680     __ stop("unexpected null obj");
2681 #endif
2682   }
2683 
2684   __ bind(update);
2685 
2686   if (do_update) {
2687 #ifdef ASSERT
2688     if (exact_klass != nullptr) {
2689       Label ok;
2690       __ load_klass(tmp, tmp);
2691       __ mov_metadata(rscratch1, exact_klass->constant_encoding());
2692       __ eor(rscratch1, tmp, rscratch1);
2693       __ cbz(rscratch1, ok);
2694       __ stop("exact klass and actual klass differ");
2695       __ bind(ok);
2696     }
2697 #endif
2698     if (!no_conflict) {
2699       if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) {
2700         if (exact_klass != nullptr) {
2701           __ mov_metadata(tmp, exact_klass->constant_encoding());
2702         } else {
2703           __ load_klass(tmp, tmp);
2704         }
2705 
2706         __ ldr(rscratch2, mdo_addr);
2707         __ eor(tmp, tmp, rscratch2);
2708         __ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
2709         // klass seen before, nothing to do. The unknown bit may have been
2710         // set already but no need to check.
2711         __ cbz(rscratch1, next);
2712 
2713         __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
2714 
2715         if (TypeEntries::is_type_none(current_klass)) {
2716           __ cbz(rscratch2, none);
2717           __ cmp(rscratch2, (u1)TypeEntries::null_seen);
2718           __ br(Assembler::EQ, none);
2719           // There is a chance that the checks above
2720           // fail if another thread has just set the
2721           // profiling to this obj's klass
2722           __ dmb(Assembler::ISHLD);
2723           __ eor(tmp, tmp, rscratch2); // get back original value before XOR
2724           __ ldr(rscratch2, mdo_addr);
2725           __ eor(tmp, tmp, rscratch2);
2726           __ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
2727           __ cbz(rscratch1, next);
2728         }
2729       } else {
2730         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
2731                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
2732 
2733         __ ldr(tmp, mdo_addr);
2734         __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
2735       }
2736 
2737       // different than before. Cannot keep accurate profile.
2738       __ ldr(rscratch2, mdo_addr);
2739       __ orr(rscratch2, rscratch2, TypeEntries::type_unknown);
2740       __ str(rscratch2, mdo_addr);
2741 
2742       if (TypeEntries::is_type_none(current_klass)) {
2743         __ b(next);
2744 
2745         __ bind(none);
2746         // first time here. Set profile type.
2747         __ str(tmp, mdo_addr);
2748 #ifdef ASSERT
2749         __ andr(tmp, tmp, TypeEntries::type_mask);
2750         __ verify_klass_ptr(tmp);
2751 #endif
2752       }
2753     } else {
2754       // There's a single possible klass at this profile point
2755       assert(exact_klass != nullptr, "should be");
2756       if (TypeEntries::is_type_none(current_klass)) {
2757         __ mov_metadata(tmp, exact_klass->constant_encoding());
2758         __ ldr(rscratch2, mdo_addr);
2759         __ eor(tmp, tmp, rscratch2);
2760         __ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
2761         __ cbz(rscratch1, next);
2762 #ifdef ASSERT
2763         {
2764           Label ok;
2765           __ ldr(rscratch1, mdo_addr);
2766           __ cbz(rscratch1, ok);
2767           __ cmp(rscratch1, (u1)TypeEntries::null_seen);
2768           __ br(Assembler::EQ, ok);
2769           // may have been set by another thread
2770           __ dmb(Assembler::ISHLD);
2771           __ mov_metadata(rscratch1, exact_klass->constant_encoding());
2772           __ ldr(rscratch2, mdo_addr);
2773           __ eor(rscratch2, rscratch1, rscratch2);
2774           __ andr(rscratch2, rscratch2, TypeEntries::type_mask);
2775           __ cbz(rscratch2, ok);
2776 
2777           __ stop("unexpected profiling mismatch");
2778           __ bind(ok);
2779         }
2780 #endif
2781         // first time here. Set profile type.
2782         __ str(tmp, mdo_addr);
2783 #ifdef ASSERT
2784         __ andr(tmp, tmp, TypeEntries::type_mask);
2785         __ verify_klass_ptr(tmp);
2786 #endif
2787       } else {
2788         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
2789                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
2790 
2791         __ ldr(tmp, mdo_addr);
2792         __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
2793 
2794         __ orr(tmp, tmp, TypeEntries::type_unknown);
2795         __ str(tmp, mdo_addr);
2796         // FIXME: Write barrier needed here?
2797       }
2798     }
2799 
2800     __ bind(next);
2801   }
2802   COMMENT("} emit_profile_type");
2803 }
2804 
2805 
2806 void LIR_Assembler::align_backward_branch_target() {
2807 }
2808 
2809 
2810 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
2811   // tmp must be unused
2812   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2813 
2814   if (left->is_single_cpu()) {
2815     assert(dest->is_single_cpu(), "expect single result reg");
2816     __ negw(dest->as_register(), left->as_register());
2817   } else if (left->is_double_cpu()) {
2818     assert(dest->is_double_cpu(), "expect double result reg");
2819     __ neg(dest->as_register_lo(), left->as_register_lo());
2820   } else if (left->is_single_fpu()) {
2821     assert(dest->is_single_fpu(), "expect single float result reg");
2822     __ fnegs(dest->as_float_reg(), left->as_float_reg());
2823   } else {
2824     assert(left->is_double_fpu(), "expect double float operand reg");
2825     assert(dest->is_double_fpu(), "expect double float result reg");
2826     __ fnegd(dest->as_double_reg(), left->as_double_reg());
2827   }
2828 }
2829 
2830 
2831 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
2832   if (patch_code != lir_patch_none) {
2833     deoptimize_trap(info);
2834     return;
2835   }
2836 
2837   __ lea(dest->as_register_lo(), as_Address(addr->as_address_ptr()));
2838 }
2839 
2840 
2841 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
2842   assert(!tmp->is_valid(), "don't need temporary");
2843 
2844   CodeBlob *cb = CodeCache::find_blob(dest);
2845   if (cb) {
2846     __ far_call(RuntimeAddress(dest));
2847   } else {
2848     __ mov(rscratch1, RuntimeAddress(dest));
2849     __ blr(rscratch1);
2850   }
2851 
2852   if (info != nullptr) {
2853     add_call_info_here(info);
2854   }
2855   __ post_call_nop();
2856 }
2857 
2858 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
2859   if (dest->is_address() || src->is_address()) {
2860     move_op(src, dest, type, lir_patch_none, info,
2861             /*pop_fpu_stack*/false, /*wide*/false);
2862   } else {
2863     ShouldNotReachHere();
2864   }
2865 }
2866 
2867 #ifdef ASSERT
2868 // emit run-time assertion
2869 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
2870   assert(op->code() == lir_assert, "must be");
2871 
2872   if (op->in_opr1()->is_valid()) {
2873     assert(op->in_opr2()->is_valid(), "both operands must be valid");
2874     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
2875   } else {
2876     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
2877     assert(op->condition() == lir_cond_always, "no other conditions allowed");
2878   }
2879 
2880   Label ok;
2881   if (op->condition() != lir_cond_always) {
2882     Assembler::Condition acond = Assembler::AL;
2883     switch (op->condition()) {
2884       case lir_cond_equal:        acond = Assembler::EQ;  break;
2885       case lir_cond_notEqual:     acond = Assembler::NE;  break;
2886       case lir_cond_less:         acond = Assembler::LT;  break;
2887       case lir_cond_lessEqual:    acond = Assembler::LE;  break;
2888       case lir_cond_greaterEqual: acond = Assembler::GE;  break;
2889       case lir_cond_greater:      acond = Assembler::GT;  break;
2890       case lir_cond_belowEqual:   acond = Assembler::LS;  break;
2891       case lir_cond_aboveEqual:   acond = Assembler::HS;  break;
2892       default:                    ShouldNotReachHere();
2893     }
2894     __ br(acond, ok);
2895   }
2896   if (op->halt()) {
2897     const char* str = __ code_string(op->msg());
2898     __ stop(str);
2899   } else {
2900     breakpoint();
2901   }
2902   __ bind(ok);
2903 }
2904 #endif
2905 
2906 #ifndef PRODUCT
2907 #define COMMENT(x)   do { __ block_comment(x); } while (0)
2908 #else
2909 #define COMMENT(x)
2910 #endif
2911 
2912 void LIR_Assembler::membar() {
2913   COMMENT("membar");
2914   __ membar(MacroAssembler::AnyAny);
2915 }
2916 
2917 void LIR_Assembler::membar_acquire() {
2918   __ membar(Assembler::LoadLoad|Assembler::LoadStore);
2919 }
2920 
2921 void LIR_Assembler::membar_release() {
2922   __ membar(Assembler::LoadStore|Assembler::StoreStore);
2923 }
2924 
2925 void LIR_Assembler::membar_loadload() {
2926   __ membar(Assembler::LoadLoad);
2927 }
2928 
2929 void LIR_Assembler::membar_storestore() {
2930   __ membar(MacroAssembler::StoreStore);
2931 }
2932 
2933 void LIR_Assembler::membar_loadstore() { __ membar(MacroAssembler::LoadStore); }
2934 
2935 void LIR_Assembler::membar_storeload() { __ membar(MacroAssembler::StoreLoad); }
2936 
2937 void LIR_Assembler::on_spin_wait() {
2938   __ spin_wait();
2939 }
2940 
2941 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
2942   __ mov(result_reg->as_register(), rthread);
2943 }
2944 
2945 
2946 void LIR_Assembler::peephole(LIR_List *lir) {
2947 #if 0
2948   if (tableswitch_count >= max_tableswitches)
2949     return;
2950 
2951   /*
2952     This finite-state automaton recognizes sequences of compare-and-
2953     branch instructions.  We will turn them into a tableswitch.  You
2954     could argue that C1 really shouldn't be doing this sort of
2955     optimization, but without it the code is really horrible.
2956   */
2957 
2958   enum { start_s, cmp1_s, beq_s, cmp_s } state;
2959   int first_key, last_key = -2147483648;
2960   int next_key = 0;
2961   int start_insn = -1;
2962   int last_insn = -1;
2963   Register reg = noreg;
2964   LIR_Opr reg_opr;
2965   state = start_s;
2966 
2967   LIR_OpList* inst = lir->instructions_list();
2968   for (int i = 0; i < inst->length(); i++) {
2969     LIR_Op* op = inst->at(i);
2970     switch (state) {
2971     case start_s:
2972       first_key = -1;
2973       start_insn = i;
2974       switch (op->code()) {
2975       case lir_cmp:
2976         LIR_Opr opr1 = op->as_Op2()->in_opr1();
2977         LIR_Opr opr2 = op->as_Op2()->in_opr2();
2978         if (opr1->is_cpu_register() && opr1->is_single_cpu()
2979             && opr2->is_constant()
2980             && opr2->type() == T_INT) {
2981           reg_opr = opr1;
2982           reg = opr1->as_register();
2983           first_key = opr2->as_constant_ptr()->as_jint();
2984           next_key = first_key + 1;
2985           state = cmp_s;
2986           goto next_state;
2987         }
2988         break;
2989       }
2990       break;
2991     case cmp_s:
2992       switch (op->code()) {
2993       case lir_branch:
2994         if (op->as_OpBranch()->cond() == lir_cond_equal) {
2995           state = beq_s;
2996           last_insn = i;
2997           goto next_state;
2998         }
2999       }
3000       state = start_s;
3001       break;
3002     case beq_s:
3003       switch (op->code()) {
3004       case lir_cmp: {
3005         LIR_Opr opr1 = op->as_Op2()->in_opr1();
3006         LIR_Opr opr2 = op->as_Op2()->in_opr2();
3007         if (opr1->is_cpu_register() && opr1->is_single_cpu()
3008             && opr1->as_register() == reg
3009             && opr2->is_constant()
3010             && opr2->type() == T_INT
3011             && opr2->as_constant_ptr()->as_jint() == next_key) {
3012           last_key = next_key;
3013           next_key++;
3014           state = cmp_s;
3015           goto next_state;
3016         }
3017       }
3018       }
3019       last_key = next_key;
3020       state = start_s;
3021       break;
3022     default:
3023       assert(false, "impossible state");
3024     }
3025     if (state == start_s) {
3026       if (first_key < last_key - 5L && reg != noreg) {
3027         {
3028           // printf("found run register %d starting at insn %d low value %d high value %d\n",
3029           //        reg->encoding(),
3030           //        start_insn, first_key, last_key);
3031           //   for (int i = 0; i < inst->length(); i++) {
3032           //     inst->at(i)->print();
3033           //     tty->print("\n");
3034           //   }
3035           //   tty->print("\n");
3036         }
3037 
3038         struct tableswitch *sw = &switches[tableswitch_count];
3039         sw->_insn_index = start_insn, sw->_first_key = first_key,
3040           sw->_last_key = last_key, sw->_reg = reg;
3041         inst->insert_before(last_insn + 1, new LIR_OpLabel(&sw->_after));
3042         {
3043           // Insert the new table of branches
3044           int offset = last_insn;
3045           for (int n = first_key; n < last_key; n++) {
3046             inst->insert_before
3047               (last_insn + 1,
3048                new LIR_OpBranch(lir_cond_always, T_ILLEGAL,
3049                                 inst->at(offset)->as_OpBranch()->label()));
3050             offset -= 2, i++;
3051           }
3052         }
3053         // Delete all the old compare-and-branch instructions
3054         for (int n = first_key; n < last_key; n++) {
3055           inst->remove_at(start_insn);
3056           inst->remove_at(start_insn);
3057         }
3058         // Insert the tableswitch instruction
3059         inst->insert_before(start_insn,
3060                             new LIR_Op2(lir_cmp, lir_cond_always,
3061                                         LIR_OprFact::intConst(tableswitch_count),
3062                                         reg_opr));
3063         inst->insert_before(start_insn + 1, new LIR_OpLabel(&sw->_branches));
3064         tableswitch_count++;
3065       }
3066       reg = noreg;
3067       last_key = -2147483648;
3068     }
3069   next_state:
3070     ;
3071   }
3072 #endif
3073 }
3074 
3075 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp_op) {
3076   Address addr = as_Address(src->as_address_ptr());
3077   BasicType type = src->type();
3078   bool is_oop = is_reference_type(type);
3079 
3080   void (MacroAssembler::* add)(Register prev, RegisterOrConstant incr, Register addr);
3081   void (MacroAssembler::* xchg)(Register prev, Register newv, Register addr);
3082 
3083   switch(type) {
3084   case T_INT:
3085     xchg = &MacroAssembler::atomic_xchgalw;
3086     add = &MacroAssembler::atomic_addalw;
3087     break;
3088   case T_LONG:
3089     xchg = &MacroAssembler::atomic_xchgal;
3090     add = &MacroAssembler::atomic_addal;
3091     break;
3092   case T_OBJECT:
3093   case T_ARRAY:
3094     if (UseCompressedOops) {
3095       xchg = &MacroAssembler::atomic_xchgalw;
3096       add = &MacroAssembler::atomic_addalw;
3097     } else {
3098       xchg = &MacroAssembler::atomic_xchgal;
3099       add = &MacroAssembler::atomic_addal;
3100     }
3101     break;
3102   default:
3103     ShouldNotReachHere();
3104     xchg = &MacroAssembler::atomic_xchgal;
3105     add = &MacroAssembler::atomic_addal; // unreachable
3106   }
3107 
3108   switch (code) {
3109   case lir_xadd:
3110     {
3111       RegisterOrConstant inc;
3112       Register tmp = as_reg(tmp_op);
3113       Register dst = as_reg(dest);
3114       if (data->is_constant()) {
3115         inc = RegisterOrConstant(as_long(data));
3116         assert_different_registers(dst, addr.base(), tmp,
3117                                    rscratch1, rscratch2);
3118       } else {
3119         inc = RegisterOrConstant(as_reg(data));
3120         assert_different_registers(inc.as_register(), dst, addr.base(), tmp,
3121                                    rscratch1, rscratch2);
3122       }
3123       __ lea(tmp, addr);
3124       (_masm->*add)(dst, inc, tmp);
3125       break;
3126     }
3127   case lir_xchg:
3128     {
3129       Register tmp = tmp_op->as_register();
3130       Register obj = as_reg(data);
3131       Register dst = as_reg(dest);
3132       if (is_oop && UseCompressedOops) {
3133         __ encode_heap_oop(rscratch2, obj);
3134         obj = rscratch2;
3135       }
3136       assert_different_registers(obj, addr.base(), tmp, rscratch1);
3137       assert_different_registers(dst, addr.base(), tmp, rscratch1);
3138       __ lea(tmp, addr);
3139       (_masm->*xchg)(dst, obj, tmp);
3140       if (is_oop && UseCompressedOops) {
3141         __ decode_heap_oop(dst);
3142       }
3143     }
3144     break;
3145   default:
3146     ShouldNotReachHere();
3147   }
3148   __ membar(__ AnyAny);
3149 }
3150 
3151 #undef __