1 /* 2 * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "compiler/compiler_globals.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interp_masm_aarch64.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "logging/log.hpp" 35 #include "oops/arrayOop.hpp" 36 #include "oops/markWord.hpp" 37 #include "oops/method.hpp" 38 #include "oops/methodData.hpp" 39 #include "oops/resolvedFieldEntry.hpp" 40 #include "oops/resolvedIndyEntry.hpp" 41 #include "oops/resolvedMethodEntry.hpp" 42 #include "prims/jvmtiExport.hpp" 43 #include "prims/jvmtiThreadState.hpp" 44 #include "runtime/basicLock.hpp" 45 #include "runtime/frame.inline.hpp" 46 #include "runtime/javaThread.hpp" 47 #include "runtime/safepointMechanism.hpp" 48 #include "runtime/sharedRuntime.hpp" 49 #include "utilities/powerOfTwo.hpp" 50 51 void InterpreterMacroAssembler::narrow(Register result) { 52 53 // Get method->_constMethod->_result_type 54 ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 55 ldr(rscratch1, Address(rscratch1, Method::const_offset())); 56 ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset())); 57 58 Label done, notBool, notByte, notChar; 59 60 // common case first 61 cmpw(rscratch1, T_INT); 62 br(Assembler::EQ, done); 63 64 // mask integer result to narrower return type. 65 cmpw(rscratch1, T_BOOLEAN); 66 br(Assembler::NE, notBool); 67 andw(result, result, 0x1); 68 b(done); 69 70 bind(notBool); 71 cmpw(rscratch1, T_BYTE); 72 br(Assembler::NE, notByte); 73 sbfx(result, result, 0, 8); 74 b(done); 75 76 bind(notByte); 77 cmpw(rscratch1, T_CHAR); 78 br(Assembler::NE, notChar); 79 ubfx(result, result, 0, 16); // truncate upper 16 bits 80 b(done); 81 82 bind(notChar); 83 sbfx(result, result, 0, 16); // sign-extend short 84 85 // Nothing to do for T_INT 86 bind(done); 87 } 88 89 void InterpreterMacroAssembler::jump_to_entry(address entry) { 90 assert(entry, "Entry must have been generated by now"); 91 b(entry); 92 } 93 94 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 95 if (JvmtiExport::can_pop_frame()) { 96 Label L; 97 // Initiate popframe handling only if it is not already being 98 // processed. If the flag has the popframe_processing bit set, it 99 // means that this code is called *during* popframe handling - we 100 // don't want to reenter. 101 // This method is only called just after the call into the vm in 102 // call_VM_base, so the arg registers are available. 103 ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset())); 104 tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L); 105 tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L); 106 // Call Interpreter::remove_activation_preserving_args_entry() to get the 107 // address of the same-named entrypoint in the generated interpreter code. 108 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 109 br(r0); 110 bind(L); 111 } 112 } 113 114 115 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 116 ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset())); 117 const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset()); 118 const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset()); 119 const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset()); 120 switch (state) { 121 case atos: ldr(r0, oop_addr); 122 str(zr, oop_addr); 123 interp_verify_oop(r0, state); break; 124 case ltos: ldr(r0, val_addr); break; 125 case btos: // fall through 126 case ztos: // fall through 127 case ctos: // fall through 128 case stos: // fall through 129 case itos: ldrw(r0, val_addr); break; 130 case ftos: ldrs(v0, val_addr); break; 131 case dtos: ldrd(v0, val_addr); break; 132 case vtos: /* nothing to do */ break; 133 default : ShouldNotReachHere(); 134 } 135 // Clean up tos value in the thread object 136 movw(rscratch1, (int) ilgl); 137 strw(rscratch1, tos_addr); 138 strw(zr, val_addr); 139 } 140 141 142 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 143 if (JvmtiExport::can_force_early_return()) { 144 Label L; 145 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 146 cbz(rscratch1, L); // if (thread->jvmti_thread_state() == nullptr) exit; 147 148 // Initiate earlyret handling only if it is not already being processed. 149 // If the flag has the earlyret_processing bit set, it means that this code 150 // is called *during* earlyret handling - we don't want to reenter. 151 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset())); 152 cmpw(rscratch1, JvmtiThreadState::earlyret_pending); 153 br(Assembler::NE, L); 154 155 // Call Interpreter::remove_activation_early_entry() to get the address of the 156 // same-named entrypoint in the generated interpreter code. 157 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 158 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset())); 159 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1); 160 br(r0); 161 bind(L); 162 } 163 } 164 165 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp( 166 Register reg, 167 int bcp_offset) { 168 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 169 ldrh(reg, Address(rbcp, bcp_offset)); 170 rev16(reg, reg); 171 } 172 173 void InterpreterMacroAssembler::get_dispatch() { 174 uint64_t offset; 175 adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset); 176 // Use add() here after ARDP, rather than lea(). 177 // lea() does not generate anything if its offset is zero. 178 // However, relocs expect to find either an ADD or a load/store 179 // insn after an ADRP. add() always generates an ADD insn, even 180 // for add(Rn, Rn, 0). 181 add(rdispatch, rdispatch, offset); 182 } 183 184 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 185 int bcp_offset, 186 size_t index_size) { 187 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 188 if (index_size == sizeof(u2)) { 189 load_unsigned_short(index, Address(rbcp, bcp_offset)); 190 } else if (index_size == sizeof(u4)) { 191 // assert(EnableInvokeDynamic, "giant index used only for JSR 292"); 192 ldrw(index, Address(rbcp, bcp_offset)); 193 } else if (index_size == sizeof(u1)) { 194 load_unsigned_byte(index, Address(rbcp, bcp_offset)); 195 } else { 196 ShouldNotReachHere(); 197 } 198 } 199 200 void InterpreterMacroAssembler::get_method_counters(Register method, 201 Register mcs, Label& skip) { 202 Label has_counters; 203 ldr(mcs, Address(method, Method::method_counters_offset())); 204 cbnz(mcs, has_counters); 205 call_VM(noreg, CAST_FROM_FN_PTR(address, 206 InterpreterRuntime::build_method_counters), method); 207 ldr(mcs, Address(method, Method::method_counters_offset())); 208 cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory 209 bind(has_counters); 210 } 211 212 // Load object from cpool->resolved_references(index) 213 void InterpreterMacroAssembler::load_resolved_reference_at_index( 214 Register result, Register index, Register tmp) { 215 assert_different_registers(result, index); 216 217 get_constant_pool(result); 218 // load pointer for resolved_references[] objArray 219 ldr(result, Address(result, ConstantPool::cache_offset())); 220 ldr(result, Address(result, ConstantPoolCache::resolved_references_offset())); 221 resolve_oop_handle(result, tmp, rscratch2); 222 // Add in the index 223 add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 224 load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop)), tmp, rscratch2); 225 } 226 227 void InterpreterMacroAssembler::load_resolved_klass_at_offset( 228 Register cpool, Register index, Register klass, Register temp) { 229 add(temp, cpool, index, LSL, LogBytesPerWord); 230 ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index 231 ldr(klass, Address(cpool, ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses 232 add(klass, klass, temp, LSL, LogBytesPerWord); 233 ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes())); 234 } 235 236 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 237 // subtype of super_klass. 238 // 239 // Args: 240 // r0: superklass 241 // Rsub_klass: subklass 242 // 243 // Kills: 244 // r2, r5 245 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 246 Label& ok_is_subtype) { 247 assert(Rsub_klass != r0, "r0 holds superklass"); 248 assert(Rsub_klass != r2, "r2 holds 2ndary super array length"); 249 assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr"); 250 251 // Profile the not-null value's klass. 252 profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5 253 254 // Do the check. 255 check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2 256 } 257 258 // Java Expression Stack 259 260 void InterpreterMacroAssembler::pop_ptr(Register r) { 261 ldr(r, post(esp, wordSize)); 262 } 263 264 void InterpreterMacroAssembler::pop_i(Register r) { 265 ldrw(r, post(esp, wordSize)); 266 } 267 268 void InterpreterMacroAssembler::pop_l(Register r) { 269 ldr(r, post(esp, 2 * Interpreter::stackElementSize)); 270 } 271 272 void InterpreterMacroAssembler::push_ptr(Register r) { 273 str(r, pre(esp, -wordSize)); 274 } 275 276 void InterpreterMacroAssembler::push_i(Register r) { 277 str(r, pre(esp, -wordSize)); 278 } 279 280 void InterpreterMacroAssembler::push_l(Register r) { 281 str(zr, pre(esp, -wordSize)); 282 str(r, pre(esp, - wordSize)); 283 } 284 285 void InterpreterMacroAssembler::pop_f(FloatRegister r) { 286 ldrs(r, post(esp, wordSize)); 287 } 288 289 void InterpreterMacroAssembler::pop_d(FloatRegister r) { 290 ldrd(r, post(esp, 2 * Interpreter::stackElementSize)); 291 } 292 293 void InterpreterMacroAssembler::push_f(FloatRegister r) { 294 strs(r, pre(esp, -wordSize)); 295 } 296 297 void InterpreterMacroAssembler::push_d(FloatRegister r) { 298 strd(r, pre(esp, 2* -wordSize)); 299 } 300 301 void InterpreterMacroAssembler::pop(TosState state) { 302 switch (state) { 303 case atos: pop_ptr(); break; 304 case btos: 305 case ztos: 306 case ctos: 307 case stos: 308 case itos: pop_i(); break; 309 case ltos: pop_l(); break; 310 case ftos: pop_f(); break; 311 case dtos: pop_d(); break; 312 case vtos: /* nothing to do */ break; 313 default: ShouldNotReachHere(); 314 } 315 interp_verify_oop(r0, state); 316 } 317 318 void InterpreterMacroAssembler::push(TosState state) { 319 interp_verify_oop(r0, state); 320 switch (state) { 321 case atos: push_ptr(); break; 322 case btos: 323 case ztos: 324 case ctos: 325 case stos: 326 case itos: push_i(); break; 327 case ltos: push_l(); break; 328 case ftos: push_f(); break; 329 case dtos: push_d(); break; 330 case vtos: /* nothing to do */ break; 331 default : ShouldNotReachHere(); 332 } 333 } 334 335 // Helpers for swap and dup 336 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 337 ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 338 } 339 340 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 341 str(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 342 } 343 344 void InterpreterMacroAssembler::load_float(Address src) { 345 ldrs(v0, src); 346 } 347 348 void InterpreterMacroAssembler::load_double(Address src) { 349 ldrd(v0, src); 350 } 351 352 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 353 // set sender sp 354 mov(r19_sender_sp, sp); 355 // record last_sp 356 sub(rscratch1, esp, rfp); 357 asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 358 str(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 359 } 360 361 // Jump to from_interpreted entry of a call unless single stepping is possible 362 // in this thread in which case we must call the i2i entry 363 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 364 prepare_to_jump_from_interpreted(); 365 366 if (JvmtiExport::can_post_interpreter_events()) { 367 Label run_compiled_code; 368 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 369 // compiled code in threads for which the event is enabled. Check here for 370 // interp_only_mode if these events CAN be enabled. 371 ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset())); 372 cbzw(rscratch1, run_compiled_code); 373 ldr(rscratch1, Address(method, Method::interpreter_entry_offset())); 374 br(rscratch1); 375 bind(run_compiled_code); 376 } 377 378 ldr(rscratch1, Address(method, Method::from_interpreted_offset())); 379 br(rscratch1); 380 } 381 382 // The following two routines provide a hook so that an implementation 383 // can schedule the dispatch in two parts. amd64 does not do this. 384 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 385 } 386 387 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 388 dispatch_next(state, step); 389 } 390 391 void InterpreterMacroAssembler::dispatch_base(TosState state, 392 address* table, 393 bool verifyoop, 394 bool generate_poll) { 395 if (VerifyActivationFrameSize) { 396 Unimplemented(); 397 } 398 if (verifyoop) { 399 interp_verify_oop(r0, state); 400 } 401 402 Label safepoint; 403 address* const safepoint_table = Interpreter::safept_table(state); 404 bool needs_thread_local_poll = generate_poll && table != safepoint_table; 405 406 if (needs_thread_local_poll) { 407 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 408 ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset())); 409 tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint); 410 } 411 412 if (table == Interpreter::dispatch_table(state)) { 413 addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state)); 414 ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3))); 415 } else { 416 mov(rscratch2, (address)table); 417 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 418 } 419 br(rscratch2); 420 421 if (needs_thread_local_poll) { 422 bind(safepoint); 423 lea(rscratch2, ExternalAddress((address)safepoint_table)); 424 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 425 br(rscratch2); 426 } 427 } 428 429 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 430 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 431 } 432 433 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 434 dispatch_base(state, Interpreter::normal_table(state)); 435 } 436 437 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 438 dispatch_base(state, Interpreter::normal_table(state), false); 439 } 440 441 442 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 443 // load next bytecode 444 ldrb(rscratch1, Address(pre(rbcp, step))); 445 dispatch_base(state, Interpreter::dispatch_table(state), /*verifyoop*/true, generate_poll); 446 } 447 448 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 449 // load current bytecode 450 ldrb(rscratch1, Address(rbcp, 0)); 451 dispatch_base(state, table); 452 } 453 454 // remove activation 455 // 456 // Apply stack watermark barrier. 457 // Unlock the receiver if this is a synchronized method. 458 // Unlock any Java monitors from synchronized blocks. 459 // Remove the activation from the stack. 460 // 461 // If there are locked Java monitors 462 // If throw_monitor_exception 463 // throws IllegalMonitorStateException 464 // Else if install_monitor_exception 465 // installs IllegalMonitorStateException 466 // Else 467 // no error processing 468 void InterpreterMacroAssembler::remove_activation( 469 TosState state, 470 bool throw_monitor_exception, 471 bool install_monitor_exception, 472 bool notify_jvmdi) { 473 // Note: Registers r3 xmm0 may be in use for the 474 // result check if synchronized method 475 Label unlocked, unlock, no_unlock; 476 477 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 478 // that would normally not be safe to use. Such bad returns into unsafe territory of 479 // the stack, will call InterpreterRuntime::at_unwind. 480 Label slow_path; 481 Label fast_path; 482 safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */); 483 br(Assembler::AL, fast_path); 484 bind(slow_path); 485 push(state); 486 set_last_Java_frame(esp, rfp, (address)pc(), rscratch1); 487 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread); 488 reset_last_Java_frame(true); 489 pop(state); 490 bind(fast_path); 491 492 // get the value of _do_not_unlock_if_synchronized into r3 493 const Address do_not_unlock_if_synchronized(rthread, 494 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 495 ldrb(r3, do_not_unlock_if_synchronized); 496 strb(zr, do_not_unlock_if_synchronized); // reset the flag 497 498 // get method access flags 499 ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 500 ldr(r2, Address(r1, Method::access_flags_offset())); 501 tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked); 502 503 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 504 // is set. 505 cbnz(r3, no_unlock); 506 507 // unlock monitor 508 push(state); // save result 509 510 // BasicObjectLock will be first in list, since this is a 511 // synchronized method. However, need to check that the object has 512 // not been unlocked by an explicit monitorexit bytecode. 513 const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset * 514 wordSize - (int) sizeof(BasicObjectLock)); 515 // We use c_rarg1 so that if we go slow path it will be the correct 516 // register for unlock_object to pass to VM directly 517 lea(c_rarg1, monitor); // address of first monitor 518 519 ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset())); 520 cbnz(r0, unlock); 521 522 pop(state); 523 if (throw_monitor_exception) { 524 // Entry already unlocked, need to throw exception 525 call_VM(noreg, CAST_FROM_FN_PTR(address, 526 InterpreterRuntime::throw_illegal_monitor_state_exception)); 527 should_not_reach_here(); 528 } else { 529 // Monitor already unlocked during a stack unroll. If requested, 530 // install an illegal_monitor_state_exception. Continue with 531 // stack unrolling. 532 if (install_monitor_exception) { 533 call_VM(noreg, CAST_FROM_FN_PTR(address, 534 InterpreterRuntime::new_illegal_monitor_state_exception)); 535 } 536 b(unlocked); 537 } 538 539 bind(unlock); 540 unlock_object(c_rarg1); 541 pop(state); 542 543 // Check that for block-structured locking (i.e., that all locked 544 // objects has been unlocked) 545 bind(unlocked); 546 547 // r0: Might contain return value 548 549 // Check that all monitors are unlocked 550 { 551 Label loop, exception, entry, restart; 552 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 553 const Address monitor_block_top( 554 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 555 const Address monitor_block_bot( 556 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 557 558 bind(restart); 559 // We use c_rarg1 so that if we go slow path it will be the correct 560 // register for unlock_object to pass to VM directly 561 ldr(c_rarg1, monitor_block_top); // derelativize pointer 562 lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize))); 563 // c_rarg1 points to current entry, starting with top-most entry 564 565 lea(r19, monitor_block_bot); // points to word before bottom of 566 // monitor block 567 b(entry); 568 569 // Entry already locked, need to throw exception 570 bind(exception); 571 572 if (throw_monitor_exception) { 573 // Throw exception 574 MacroAssembler::call_VM(noreg, 575 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 576 throw_illegal_monitor_state_exception)); 577 should_not_reach_here(); 578 } else { 579 // Stack unrolling. Unlock object and install illegal_monitor_exception. 580 // Unlock does not block, so don't have to worry about the frame. 581 // We don't have to preserve c_rarg1 since we are going to throw an exception. 582 583 push(state); 584 unlock_object(c_rarg1); 585 pop(state); 586 587 if (install_monitor_exception) { 588 call_VM(noreg, CAST_FROM_FN_PTR(address, 589 InterpreterRuntime:: 590 new_illegal_monitor_state_exception)); 591 } 592 593 b(restart); 594 } 595 596 bind(loop); 597 // check if current entry is used 598 ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset())); 599 cbnz(rscratch1, exception); 600 601 add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry 602 bind(entry); 603 cmp(c_rarg1, r19); // check if bottom reached 604 br(Assembler::NE, loop); // if not at bottom then check this entry 605 } 606 607 bind(no_unlock); 608 609 // jvmti support 610 if (notify_jvmdi) { 611 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 612 } else { 613 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 614 } 615 616 // remove activation 617 // get sender esp 618 ldr(rscratch2, 619 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 620 if (StackReservedPages > 0) { 621 // testing if reserved zone needs to be re-enabled 622 Label no_reserved_zone_enabling; 623 624 // check if already enabled - if so no re-enabling needed 625 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 626 ldrw(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset())); 627 cmpw(rscratch1, (u1)StackOverflow::stack_guard_enabled); 628 br(Assembler::EQ, no_reserved_zone_enabling); 629 630 // look for an overflow into the stack reserved zone, i.e. 631 // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation 632 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 633 cmp(rscratch2, rscratch1); 634 br(Assembler::LS, no_reserved_zone_enabling); 635 636 call_VM_leaf( 637 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 638 call_VM(noreg, CAST_FROM_FN_PTR(address, 639 InterpreterRuntime::throw_delayed_StackOverflowError)); 640 should_not_reach_here(); 641 642 bind(no_reserved_zone_enabling); 643 } 644 645 // restore sender esp 646 mov(esp, rscratch2); 647 // remove frame anchor 648 leave(); 649 // If we're returning to interpreted code we will shortly be 650 // adjusting SP to allow some space for ESP. If we're returning to 651 // compiled code the saved sender SP was saved in sender_sp, so this 652 // restores it. 653 andr(sp, esp, -16); 654 } 655 656 // Lock object 657 // 658 // Args: 659 // c_rarg1: BasicObjectLock to be used for locking 660 // 661 // Kills: 662 // r0 663 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, .. (param regs) 664 // rscratch1, rscratch2 (scratch regs) 665 void InterpreterMacroAssembler::lock_object(Register lock_reg) 666 { 667 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 668 if (LockingMode == LM_MONITOR) { 669 call_VM_preemptable(noreg, 670 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 671 lock_reg); 672 } else { 673 Label count, done; 674 675 const Register swap_reg = r0; 676 const Register tmp = c_rarg2; 677 const Register obj_reg = c_rarg3; // Will contain the oop 678 const Register tmp2 = c_rarg4; 679 const Register tmp3 = c_rarg5; 680 681 const int obj_offset = in_bytes(BasicObjectLock::obj_offset()); 682 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 683 const int mark_offset = lock_offset + 684 BasicLock::displaced_header_offset_in_bytes(); 685 686 Label slow_case; 687 688 // Load object pointer into obj_reg %c_rarg3 689 ldr(obj_reg, Address(lock_reg, obj_offset)); 690 691 if (DiagnoseSyncOnValueBasedClasses != 0) { 692 load_klass(tmp, obj_reg); 693 ldrb(tmp, Address(tmp, Klass::misc_flags_offset())); 694 tst(tmp, KlassFlags::_misc_is_value_based_class); 695 br(Assembler::NE, slow_case); 696 } 697 698 if (LockingMode == LM_LIGHTWEIGHT) { 699 lightweight_lock(lock_reg, obj_reg, tmp, tmp2, tmp3, slow_case); 700 b(done); 701 } else if (LockingMode == LM_LEGACY) { 702 // Load (object->mark() | 1) into swap_reg 703 ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 704 orr(swap_reg, rscratch1, 1); 705 706 // Save (object->mark() | 1) into BasicLock's displaced header 707 str(swap_reg, Address(lock_reg, mark_offset)); 708 709 assert(lock_offset == 0, 710 "displached header must be first word in BasicObjectLock"); 711 712 Label fail; 713 cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr); 714 715 // Fast check for recursive lock. 716 // 717 // Can apply the optimization only if this is a stack lock 718 // allocated in this thread. For efficiency, we can focus on 719 // recently allocated stack locks (instead of reading the stack 720 // base and checking whether 'mark' points inside the current 721 // thread stack): 722 // 1) (mark & 7) == 0, and 723 // 2) sp <= mark < mark + os::pagesize() 724 // 725 // Warning: sp + os::pagesize can overflow the stack base. We must 726 // neither apply the optimization for an inflated lock allocated 727 // just above the thread stack (this is why condition 1 matters) 728 // nor apply the optimization if the stack lock is inside the stack 729 // of another thread. The latter is avoided even in case of overflow 730 // because we have guard pages at the end of all stacks. Hence, if 731 // we go over the stack base and hit the stack of another thread, 732 // this should not be in a writeable area that could contain a 733 // stack lock allocated by that thread. As a consequence, a stack 734 // lock less than page size away from sp is guaranteed to be 735 // owned by the current thread. 736 // 737 // These 3 tests can be done by evaluating the following 738 // expression: ((mark - sp) & (7 - os::vm_page_size())), 739 // assuming both stack pointer and pagesize have their 740 // least significant 3 bits clear. 741 // NOTE: the mark is in swap_reg %r0 as the result of cmpxchg 742 // NOTE2: aarch64 does not like to subtract sp from rn so take a 743 // copy 744 mov(rscratch1, sp); 745 sub(swap_reg, swap_reg, rscratch1); 746 ands(swap_reg, swap_reg, (uint64_t)(7 - (int)os::vm_page_size())); 747 748 // Save the test result, for recursive case, the result is zero 749 str(swap_reg, Address(lock_reg, mark_offset)); 750 br(Assembler::NE, slow_case); 751 752 bind(count); 753 inc_held_monitor_count(rscratch1); 754 b(done); 755 } 756 bind(slow_case); 757 758 // Call the runtime routine for slow case 759 call_VM_preemptable(noreg, 760 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 761 lock_reg); 762 763 bind(done); 764 } 765 } 766 767 768 // Unlocks an object. Used in monitorexit bytecode and 769 // remove_activation. Throws an IllegalMonitorException if object is 770 // not locked by current thread. 771 // 772 // Args: 773 // c_rarg1: BasicObjectLock for lock 774 // 775 // Kills: 776 // r0 777 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 778 // rscratch1, rscratch2 (scratch regs) 779 void InterpreterMacroAssembler::unlock_object(Register lock_reg) 780 { 781 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1"); 782 783 if (LockingMode == LM_MONITOR) { 784 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 785 } else { 786 Label count, done; 787 788 const Register swap_reg = r0; 789 const Register header_reg = c_rarg2; // Will contain the old oopMark 790 const Register obj_reg = c_rarg3; // Will contain the oop 791 const Register tmp_reg = c_rarg4; // Temporary used by lightweight_unlock 792 793 save_bcp(); // Save in case of exception 794 795 if (LockingMode != LM_LIGHTWEIGHT) { 796 // Convert from BasicObjectLock structure to object and BasicLock 797 // structure Store the BasicLock address into %r0 798 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset())); 799 } 800 801 // Load oop into obj_reg(%c_rarg3) 802 ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 803 804 // Free entry 805 str(zr, Address(lock_reg, BasicObjectLock::obj_offset())); 806 807 Label slow_case; 808 if (LockingMode == LM_LIGHTWEIGHT) { 809 lightweight_unlock(obj_reg, header_reg, swap_reg, tmp_reg, slow_case); 810 b(done); 811 } else if (LockingMode == LM_LEGACY) { 812 // Load the old header from BasicLock structure 813 ldr(header_reg, Address(swap_reg, 814 BasicLock::displaced_header_offset_in_bytes())); 815 816 // Test for recursion 817 cbz(header_reg, count); 818 819 // Atomic swap back the old header 820 cmpxchg_obj_header(swap_reg, header_reg, obj_reg, rscratch1, count, &slow_case); 821 822 bind(count); 823 dec_held_monitor_count(rscratch1); 824 b(done); 825 } 826 827 bind(slow_case); 828 // Call the runtime routine for slow case. 829 str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj 830 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 831 bind(done); 832 restore_bcp(); 833 } 834 } 835 836 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 837 Label& zero_continue) { 838 assert(ProfileInterpreter, "must be profiling interpreter"); 839 ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 840 cbz(mdp, zero_continue); 841 } 842 843 // Set the method data pointer for the current bcp. 844 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 845 assert(ProfileInterpreter, "must be profiling interpreter"); 846 Label set_mdp; 847 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 848 849 // Test MDO to avoid the call if it is null. 850 ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset()))); 851 cbz(r0, set_mdp); 852 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp); 853 // r0: mdi 854 // mdo is guaranteed to be non-zero here, we checked for it before the call. 855 ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset()))); 856 lea(r1, Address(r1, in_bytes(MethodData::data_offset()))); 857 add(r0, r1, r0); 858 str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 859 bind(set_mdp); 860 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 861 } 862 863 void InterpreterMacroAssembler::verify_method_data_pointer() { 864 assert(ProfileInterpreter, "must be profiling interpreter"); 865 #ifdef ASSERT 866 Label verify_continue; 867 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 868 stp(r2, r3, Address(pre(sp, -2 * wordSize))); 869 test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue 870 get_method(r1); 871 872 // If the mdp is valid, it will point to a DataLayout header which is 873 // consistent with the bcp. The converse is highly probable also. 874 ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset()))); 875 ldr(rscratch1, Address(r1, Method::const_offset())); 876 add(r2, r2, rscratch1, Assembler::LSL); 877 lea(r2, Address(r2, ConstMethod::codes_offset())); 878 cmp(r2, rbcp); 879 br(Assembler::EQ, verify_continue); 880 // r1: method 881 // rbcp: bcp // rbcp == 22 882 // r3: mdp 883 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 884 r1, rbcp, r3); 885 bind(verify_continue); 886 ldp(r2, r3, Address(post(sp, 2 * wordSize))); 887 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 888 #endif // ASSERT 889 } 890 891 892 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 893 int constant, 894 Register value) { 895 assert(ProfileInterpreter, "must be profiling interpreter"); 896 Address data(mdp_in, constant); 897 str(value, data); 898 } 899 900 901 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 902 int constant, 903 bool decrement) { 904 increment_mdp_data_at(mdp_in, noreg, constant, decrement); 905 } 906 907 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 908 Register reg, 909 int constant, 910 bool decrement) { 911 assert(ProfileInterpreter, "must be profiling interpreter"); 912 // %%% this does 64bit counters at best it is wasting space 913 // at worst it is a rare bug when counters overflow 914 915 assert_different_registers(rscratch2, rscratch1, mdp_in, reg); 916 917 Address addr1(mdp_in, constant); 918 Address addr2(rscratch2, reg, Address::lsl(0)); 919 Address &addr = addr1; 920 if (reg != noreg) { 921 lea(rscratch2, addr1); 922 addr = addr2; 923 } 924 925 if (decrement) { 926 // Decrement the register. Set condition codes. 927 // Intel does this 928 // addptr(data, (int32_t) -DataLayout::counter_increment); 929 // If the decrement causes the counter to overflow, stay negative 930 // Label L; 931 // jcc(Assembler::negative, L); 932 // addptr(data, (int32_t) DataLayout::counter_increment); 933 // so we do this 934 ldr(rscratch1, addr); 935 subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment); 936 Label L; 937 br(Assembler::LO, L); // skip store if counter underflow 938 str(rscratch1, addr); 939 bind(L); 940 } else { 941 assert(DataLayout::counter_increment == 1, 942 "flow-free idiom only works with 1"); 943 // Intel does this 944 // Increment the register. Set carry flag. 945 // addptr(data, DataLayout::counter_increment); 946 // If the increment causes the counter to overflow, pull back by 1. 947 // sbbptr(data, (int32_t)0); 948 // so we do this 949 ldr(rscratch1, addr); 950 adds(rscratch1, rscratch1, DataLayout::counter_increment); 951 Label L; 952 br(Assembler::CS, L); // skip store if counter overflow 953 str(rscratch1, addr); 954 bind(L); 955 } 956 } 957 958 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 959 int flag_byte_constant) { 960 assert(ProfileInterpreter, "must be profiling interpreter"); 961 int flags_offset = in_bytes(DataLayout::flags_offset()); 962 // Set the flag 963 ldrb(rscratch1, Address(mdp_in, flags_offset)); 964 orr(rscratch1, rscratch1, flag_byte_constant); 965 strb(rscratch1, Address(mdp_in, flags_offset)); 966 } 967 968 969 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 970 int offset, 971 Register value, 972 Register test_value_out, 973 Label& not_equal_continue) { 974 assert(ProfileInterpreter, "must be profiling interpreter"); 975 if (test_value_out == noreg) { 976 ldr(rscratch1, Address(mdp_in, offset)); 977 cmp(value, rscratch1); 978 } else { 979 // Put the test value into a register, so caller can use it: 980 ldr(test_value_out, Address(mdp_in, offset)); 981 cmp(value, test_value_out); 982 } 983 br(Assembler::NE, not_equal_continue); 984 } 985 986 987 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 988 int offset_of_disp) { 989 assert(ProfileInterpreter, "must be profiling interpreter"); 990 ldr(rscratch1, Address(mdp_in, offset_of_disp)); 991 add(mdp_in, mdp_in, rscratch1, LSL); 992 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 993 } 994 995 996 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 997 Register reg, 998 int offset_of_disp) { 999 assert(ProfileInterpreter, "must be profiling interpreter"); 1000 lea(rscratch1, Address(mdp_in, offset_of_disp)); 1001 ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0))); 1002 add(mdp_in, mdp_in, rscratch1, LSL); 1003 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1004 } 1005 1006 1007 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1008 int constant) { 1009 assert(ProfileInterpreter, "must be profiling interpreter"); 1010 add(mdp_in, mdp_in, (unsigned)constant); 1011 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1012 } 1013 1014 1015 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1016 assert(ProfileInterpreter, "must be profiling interpreter"); 1017 // save/restore across call_VM 1018 stp(zr, return_bci, Address(pre(sp, -2 * wordSize))); 1019 call_VM(noreg, 1020 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1021 return_bci); 1022 ldp(zr, return_bci, Address(post(sp, 2 * wordSize))); 1023 } 1024 1025 1026 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1027 Register bumped_count) { 1028 if (ProfileInterpreter) { 1029 Label profile_continue; 1030 1031 // If no method data exists, go to profile_continue. 1032 // Otherwise, assign to mdp 1033 test_method_data_pointer(mdp, profile_continue); 1034 1035 // We are taking a branch. Increment the taken count. 1036 // We inline increment_mdp_data_at to return bumped_count in a register 1037 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1038 Address data(mdp, in_bytes(JumpData::taken_offset())); 1039 ldr(bumped_count, data); 1040 assert(DataLayout::counter_increment == 1, 1041 "flow-free idiom only works with 1"); 1042 // Intel does this to catch overflow 1043 // addptr(bumped_count, DataLayout::counter_increment); 1044 // sbbptr(bumped_count, 0); 1045 // so we do this 1046 adds(bumped_count, bumped_count, DataLayout::counter_increment); 1047 Label L; 1048 br(Assembler::CS, L); // skip store if counter overflow 1049 str(bumped_count, data); 1050 bind(L); 1051 // The method data pointer needs to be updated to reflect the new target. 1052 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1053 bind(profile_continue); 1054 } 1055 } 1056 1057 1058 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1059 if (ProfileInterpreter) { 1060 Label profile_continue; 1061 1062 // If no method data exists, go to profile_continue. 1063 test_method_data_pointer(mdp, profile_continue); 1064 1065 // We are taking a branch. Increment the not taken count. 1066 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1067 1068 // The method data pointer needs to be updated to correspond to 1069 // the next bytecode 1070 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1071 bind(profile_continue); 1072 } 1073 } 1074 1075 1076 void InterpreterMacroAssembler::profile_call(Register mdp) { 1077 if (ProfileInterpreter) { 1078 Label profile_continue; 1079 1080 // If no method data exists, go to profile_continue. 1081 test_method_data_pointer(mdp, profile_continue); 1082 1083 // We are making a call. Increment the count. 1084 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1085 1086 // The method data pointer needs to be updated to reflect the new target. 1087 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1088 bind(profile_continue); 1089 } 1090 } 1091 1092 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1093 if (ProfileInterpreter) { 1094 Label profile_continue; 1095 1096 // If no method data exists, go to profile_continue. 1097 test_method_data_pointer(mdp, profile_continue); 1098 1099 // We are making a call. Increment the count. 1100 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1101 1102 // The method data pointer needs to be updated to reflect the new target. 1103 update_mdp_by_constant(mdp, 1104 in_bytes(VirtualCallData:: 1105 virtual_call_data_size())); 1106 bind(profile_continue); 1107 } 1108 } 1109 1110 1111 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1112 Register mdp, 1113 Register reg2, 1114 bool receiver_can_be_null) { 1115 if (ProfileInterpreter) { 1116 Label profile_continue; 1117 1118 // If no method data exists, go to profile_continue. 1119 test_method_data_pointer(mdp, profile_continue); 1120 1121 Label skip_receiver_profile; 1122 if (receiver_can_be_null) { 1123 Label not_null; 1124 // We are making a call. Increment the count for null receiver. 1125 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1126 b(skip_receiver_profile); 1127 bind(not_null); 1128 } 1129 1130 // Record the receiver type. 1131 record_klass_in_profile(receiver, mdp, reg2); 1132 bind(skip_receiver_profile); 1133 1134 // The method data pointer needs to be updated to reflect the new target. 1135 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1136 bind(profile_continue); 1137 } 1138 } 1139 1140 // This routine creates a state machine for updating the multi-row 1141 // type profile at a virtual call site (or other type-sensitive bytecode). 1142 // The machine visits each row (of receiver/count) until the receiver type 1143 // is found, or until it runs out of rows. At the same time, it remembers 1144 // the location of the first empty row. (An empty row records null for its 1145 // receiver, and can be allocated for a newly-observed receiver type.) 1146 // Because there are two degrees of freedom in the state, a simple linear 1147 // search will not work; it must be a decision tree. Hence this helper 1148 // function is recursive, to generate the required tree structured code. 1149 // It's the interpreter, so we are trading off code space for speed. 1150 // See below for example code. 1151 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1152 Register receiver, Register mdp, 1153 Register reg2, int start_row, 1154 Label& done) { 1155 if (TypeProfileWidth == 0) { 1156 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1157 } else { 1158 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1159 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset); 1160 } 1161 } 1162 1163 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, 1164 Register reg2, int start_row, Label& done, int total_rows, 1165 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn) { 1166 int last_row = total_rows - 1; 1167 assert(start_row <= last_row, "must be work left to do"); 1168 // Test this row for both the item and for null. 1169 // Take any of three different outcomes: 1170 // 1. found item => increment count and goto done 1171 // 2. found null => keep looking for case 1, maybe allocate this cell 1172 // 3. found something else => keep looking for cases 1 and 2 1173 // Case 3 is handled by a recursive call. 1174 for (int row = start_row; row <= last_row; row++) { 1175 Label next_test; 1176 bool test_for_null_also = (row == start_row); 1177 1178 // See if the item is item[n]. 1179 int item_offset = in_bytes(item_offset_fn(row)); 1180 test_mdp_data_at(mdp, item_offset, item, 1181 (test_for_null_also ? reg2 : noreg), 1182 next_test); 1183 // (Reg2 now contains the item from the CallData.) 1184 1185 // The item is item[n]. Increment count[n]. 1186 int count_offset = in_bytes(item_count_offset_fn(row)); 1187 increment_mdp_data_at(mdp, count_offset); 1188 b(done); 1189 bind(next_test); 1190 1191 if (test_for_null_also) { 1192 Label found_null; 1193 // Failed the equality check on item[n]... Test for null. 1194 if (start_row == last_row) { 1195 // The only thing left to do is handle the null case. 1196 cbz(reg2, found_null); 1197 // Item did not match any saved item and there is no empty row for it. 1198 // Increment total counter to indicate polymorphic case. 1199 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1200 b(done); 1201 bind(found_null); 1202 break; 1203 } 1204 // Since null is rare, make it be the branch-taken case. 1205 cbz(reg2, found_null); 1206 1207 // Put all the "Case 3" tests here. 1208 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1209 item_offset_fn, item_count_offset_fn); 1210 1211 // Found a null. Keep searching for a matching item, 1212 // but remember that this is an empty (unused) slot. 1213 bind(found_null); 1214 } 1215 } 1216 1217 // In the fall-through case, we found no matching item, but we 1218 // observed the item[start_row] is null. 1219 1220 // Fill in the item field and increment the count. 1221 int item_offset = in_bytes(item_offset_fn(start_row)); 1222 set_mdp_data_at(mdp, item_offset, item); 1223 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1224 mov(reg2, DataLayout::counter_increment); 1225 set_mdp_data_at(mdp, count_offset, reg2); 1226 if (start_row > 0) { 1227 b(done); 1228 } 1229 } 1230 1231 // Example state machine code for three profile rows: 1232 // // main copy of decision tree, rooted at row[1] 1233 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1234 // if (row[0].rec != nullptr) { 1235 // // inner copy of decision tree, rooted at row[1] 1236 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1237 // if (row[1].rec != nullptr) { 1238 // // degenerate decision tree, rooted at row[2] 1239 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1240 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow 1241 // row[2].init(rec); goto done; 1242 // } else { 1243 // // remember row[1] is empty 1244 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1245 // row[1].init(rec); goto done; 1246 // } 1247 // } else { 1248 // // remember row[0] is empty 1249 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1250 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1251 // row[0].init(rec); goto done; 1252 // } 1253 // done: 1254 1255 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1256 Register mdp, Register reg2) { 1257 assert(ProfileInterpreter, "must be profiling"); 1258 Label done; 1259 1260 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done); 1261 1262 bind (done); 1263 } 1264 1265 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1266 Register mdp) { 1267 if (ProfileInterpreter) { 1268 Label profile_continue; 1269 uint row; 1270 1271 // If no method data exists, go to profile_continue. 1272 test_method_data_pointer(mdp, profile_continue); 1273 1274 // Update the total ret count. 1275 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1276 1277 for (row = 0; row < RetData::row_limit(); row++) { 1278 Label next_test; 1279 1280 // See if return_bci is equal to bci[n]: 1281 test_mdp_data_at(mdp, 1282 in_bytes(RetData::bci_offset(row)), 1283 return_bci, noreg, 1284 next_test); 1285 1286 // return_bci is equal to bci[n]. Increment the count. 1287 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1288 1289 // The method data pointer needs to be updated to reflect the new target. 1290 update_mdp_by_offset(mdp, 1291 in_bytes(RetData::bci_displacement_offset(row))); 1292 b(profile_continue); 1293 bind(next_test); 1294 } 1295 1296 update_mdp_for_ret(return_bci); 1297 1298 bind(profile_continue); 1299 } 1300 } 1301 1302 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1303 if (ProfileInterpreter) { 1304 Label profile_continue; 1305 1306 // If no method data exists, go to profile_continue. 1307 test_method_data_pointer(mdp, profile_continue); 1308 1309 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1310 1311 // The method data pointer needs to be updated. 1312 int mdp_delta = in_bytes(BitData::bit_data_size()); 1313 if (TypeProfileCasts) { 1314 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1315 } 1316 update_mdp_by_constant(mdp, mdp_delta); 1317 1318 bind(profile_continue); 1319 } 1320 } 1321 1322 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1323 if (ProfileInterpreter) { 1324 Label profile_continue; 1325 1326 // If no method data exists, go to profile_continue. 1327 test_method_data_pointer(mdp, profile_continue); 1328 1329 // The method data pointer needs to be updated. 1330 int mdp_delta = in_bytes(BitData::bit_data_size()); 1331 if (TypeProfileCasts) { 1332 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1333 1334 // Record the object type. 1335 record_klass_in_profile(klass, mdp, reg2); 1336 } 1337 update_mdp_by_constant(mdp, mdp_delta); 1338 1339 bind(profile_continue); 1340 } 1341 } 1342 1343 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1344 if (ProfileInterpreter) { 1345 Label profile_continue; 1346 1347 // If no method data exists, go to profile_continue. 1348 test_method_data_pointer(mdp, profile_continue); 1349 1350 // Update the default case count 1351 increment_mdp_data_at(mdp, 1352 in_bytes(MultiBranchData::default_count_offset())); 1353 1354 // The method data pointer needs to be updated. 1355 update_mdp_by_offset(mdp, 1356 in_bytes(MultiBranchData:: 1357 default_displacement_offset())); 1358 1359 bind(profile_continue); 1360 } 1361 } 1362 1363 void InterpreterMacroAssembler::profile_switch_case(Register index, 1364 Register mdp, 1365 Register reg2) { 1366 if (ProfileInterpreter) { 1367 Label profile_continue; 1368 1369 // If no method data exists, go to profile_continue. 1370 test_method_data_pointer(mdp, profile_continue); 1371 1372 // Build the base (index * per_case_size_in_bytes()) + 1373 // case_array_offset_in_bytes() 1374 movw(reg2, in_bytes(MultiBranchData::per_case_size())); 1375 movw(rscratch1, in_bytes(MultiBranchData::case_array_offset())); 1376 Assembler::maddw(index, index, reg2, rscratch1); 1377 1378 // Update the case count 1379 increment_mdp_data_at(mdp, 1380 index, 1381 in_bytes(MultiBranchData::relative_count_offset())); 1382 1383 // The method data pointer needs to be updated. 1384 update_mdp_by_offset(mdp, 1385 index, 1386 in_bytes(MultiBranchData:: 1387 relative_displacement_offset())); 1388 1389 bind(profile_continue); 1390 } 1391 } 1392 1393 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 1394 if (state == atos) { 1395 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 1396 } 1397 } 1398 1399 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; } 1400 1401 1402 void InterpreterMacroAssembler::notify_method_entry() { 1403 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1404 // track stack depth. If it is possible to enter interp_only_mode we add 1405 // the code to check if the event should be sent. 1406 if (JvmtiExport::can_post_interpreter_events()) { 1407 Label L; 1408 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1409 cbzw(r3, L); 1410 call_VM(noreg, CAST_FROM_FN_PTR(address, 1411 InterpreterRuntime::post_method_entry)); 1412 bind(L); 1413 } 1414 1415 if (DTraceMethodProbes) { 1416 get_method(c_rarg1); 1417 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1418 rthread, c_rarg1); 1419 } 1420 1421 // RedefineClasses() tracing support for obsolete method entry 1422 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1423 get_method(c_rarg1); 1424 call_VM_leaf( 1425 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1426 rthread, c_rarg1); 1427 } 1428 1429 } 1430 1431 1432 void InterpreterMacroAssembler::notify_method_exit( 1433 TosState state, NotifyMethodExitMode mode) { 1434 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1435 // track stack depth. If it is possible to enter interp_only_mode we add 1436 // the code to check if the event should be sent. 1437 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 1438 Label L; 1439 // Note: frame::interpreter_frame_result has a dependency on how the 1440 // method result is saved across the call to post_method_exit. If this 1441 // is changed then the interpreter_frame_result implementation will 1442 // need to be updated too. 1443 1444 // template interpreter will leave the result on the top of the stack. 1445 push(state); 1446 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1447 cbz(r3, L); 1448 call_VM(noreg, 1449 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 1450 bind(L); 1451 pop(state); 1452 } 1453 1454 if (DTraceMethodProbes) { 1455 push(state); 1456 get_method(c_rarg1); 1457 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1458 rthread, c_rarg1); 1459 pop(state); 1460 } 1461 } 1462 1463 1464 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. 1465 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, 1466 int increment, Address mask, 1467 Register scratch, Register scratch2, 1468 bool preloaded, Condition cond, 1469 Label* where) { 1470 if (!preloaded) { 1471 ldrw(scratch, counter_addr); 1472 } 1473 add(scratch, scratch, increment); 1474 strw(scratch, counter_addr); 1475 ldrw(scratch2, mask); 1476 ands(scratch, scratch, scratch2); 1477 br(cond, *where); 1478 } 1479 1480 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 1481 int number_of_arguments) { 1482 // interpreter specific 1483 // 1484 // Note: No need to save/restore rbcp & rlocals pointer since these 1485 // are callee saved registers and no blocking/ GC can happen 1486 // in leaf calls. 1487 #ifdef ASSERT 1488 { 1489 Label L; 1490 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1491 cbz(rscratch1, L); 1492 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 1493 " last_sp != nullptr"); 1494 bind(L); 1495 } 1496 #endif /* ASSERT */ 1497 // super call 1498 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1499 } 1500 1501 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 1502 Register java_thread, 1503 Register last_java_sp, 1504 address entry_point, 1505 int number_of_arguments, 1506 bool check_exceptions) { 1507 // interpreter specific 1508 // 1509 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 1510 // really make a difference for these runtime calls, since they are 1511 // slow anyway. Btw., bcp must be saved/restored since it may change 1512 // due to GC. 1513 // assert(java_thread == noreg , "not expecting a precomputed java thread"); 1514 save_bcp(); 1515 #ifdef ASSERT 1516 { 1517 Label L; 1518 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1519 cbz(rscratch1, L); 1520 stop("InterpreterMacroAssembler::call_VM_base:" 1521 " last_sp != nullptr"); 1522 bind(L); 1523 } 1524 #endif /* ASSERT */ 1525 // super call 1526 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 1527 entry_point, number_of_arguments, 1528 check_exceptions); 1529 // interpreter specific 1530 restore_bcp(); 1531 restore_locals(); 1532 } 1533 1534 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result, 1535 address entry_point, 1536 Register arg_1) { 1537 assert(arg_1 == c_rarg1, ""); 1538 Label resume_pc, not_preempted; 1539 1540 #ifdef ASSERT 1541 { 1542 Label L; 1543 ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1544 cbz(rscratch1, L); 1545 stop("Should not have alternate return address set"); 1546 bind(L); 1547 } 1548 #endif /* ASSERT */ 1549 1550 // Force freeze slow path. 1551 push_cont_fastpath(); 1552 1553 // Make VM call. In case of preemption set last_pc to the one we want to resume to. 1554 adr(rscratch1, resume_pc); 1555 str(rscratch1, Address(rthread, JavaThread::last_Java_pc_offset())); 1556 call_VM_base(oop_result, noreg, noreg, entry_point, 1, false /*check_exceptions*/); 1557 1558 pop_cont_fastpath(); 1559 1560 // Check if preempted. 1561 ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1562 cbz(rscratch1, not_preempted); 1563 str(zr, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1564 br(rscratch1); 1565 1566 // In case of preemption, this is where we will resume once we finally acquire the monitor. 1567 bind(resume_pc); 1568 restore_after_resume(false /* is_native */); 1569 1570 bind(not_preempted); 1571 } 1572 1573 void InterpreterMacroAssembler::restore_after_resume(bool is_native) { 1574 lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter())); 1575 blr(rscratch1); 1576 if (is_native) { 1577 // On resume we need to set up stack as expected 1578 push(dtos); 1579 push(ltos); 1580 } 1581 } 1582 1583 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 1584 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 1585 Label update, next, none; 1586 1587 verify_oop(obj); 1588 1589 cbnz(obj, update); 1590 orptr(mdo_addr, TypeEntries::null_seen); 1591 b(next); 1592 1593 bind(update); 1594 load_klass(obj, obj); 1595 1596 ldr(rscratch1, mdo_addr); 1597 eor(obj, obj, rscratch1); 1598 tst(obj, TypeEntries::type_klass_mask); 1599 br(Assembler::EQ, next); // klass seen before, nothing to 1600 // do. The unknown bit may have been 1601 // set already but no need to check. 1602 1603 tbnz(obj, exact_log2(TypeEntries::type_unknown), next); 1604 // already unknown. Nothing to do anymore. 1605 1606 cbz(rscratch1, none); 1607 cmp(rscratch1, (u1)TypeEntries::null_seen); 1608 br(Assembler::EQ, none); 1609 // There is a chance that the checks above 1610 // fail if another thread has just set the 1611 // profiling to this obj's klass 1612 eor(obj, obj, rscratch1); // get back original value before XOR 1613 ldr(rscratch1, mdo_addr); 1614 eor(obj, obj, rscratch1); 1615 tst(obj, TypeEntries::type_klass_mask); 1616 br(Assembler::EQ, next); 1617 1618 // different than before. Cannot keep accurate profile. 1619 orptr(mdo_addr, TypeEntries::type_unknown); 1620 b(next); 1621 1622 bind(none); 1623 // first time here. Set profile type. 1624 str(obj, mdo_addr); 1625 #ifdef ASSERT 1626 andr(obj, obj, TypeEntries::type_mask); 1627 verify_klass_ptr(obj); 1628 #endif 1629 1630 bind(next); 1631 } 1632 1633 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 1634 if (!ProfileInterpreter) { 1635 return; 1636 } 1637 1638 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1639 Label profile_continue; 1640 1641 test_method_data_pointer(mdp, profile_continue); 1642 1643 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1644 1645 ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start)); 1646 cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag)); 1647 br(Assembler::NE, profile_continue); 1648 1649 if (MethodData::profile_arguments()) { 1650 Label done; 1651 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 1652 1653 for (int i = 0; i < TypeProfileArgsLimit; i++) { 1654 if (i > 0 || MethodData::profile_return()) { 1655 // If return value type is profiled we may have no argument to profile 1656 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1657 sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count()); 1658 cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count()); 1659 add(rscratch1, mdp, off_to_args); 1660 br(Assembler::LT, done); 1661 } 1662 ldr(tmp, Address(callee, Method::const_offset())); 1663 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 1664 // stack offset o (zero based) from the start of the argument 1665 // list, for n arguments translates into offset n - o - 1 from 1666 // the end of the argument list 1667 ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i)))); 1668 sub(tmp, tmp, rscratch1); 1669 sub(tmp, tmp, 1); 1670 Address arg_addr = argument_address(tmp); 1671 ldr(tmp, arg_addr); 1672 1673 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))); 1674 profile_obj_type(tmp, mdo_arg_addr); 1675 1676 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1677 off_to_args += to_add; 1678 } 1679 1680 if (MethodData::profile_return()) { 1681 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1682 sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1683 } 1684 1685 add(rscratch1, mdp, off_to_args); 1686 bind(done); 1687 mov(mdp, rscratch1); 1688 1689 if (MethodData::profile_return()) { 1690 // We're right after the type profile for the last 1691 // argument. tmp is the number of cells left in the 1692 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1693 // if there's a return to profile. 1694 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 1695 add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size)); 1696 } 1697 str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1698 } else { 1699 assert(MethodData::profile_return(), "either profile call args or call ret"); 1700 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 1701 } 1702 1703 // mdp points right after the end of the 1704 // CallTypeData/VirtualCallTypeData, right after the cells for the 1705 // return value type if there's one 1706 1707 bind(profile_continue); 1708 } 1709 } 1710 1711 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 1712 assert_different_registers(mdp, ret, tmp, rbcp); 1713 if (ProfileInterpreter && MethodData::profile_return()) { 1714 Label profile_continue, done; 1715 1716 test_method_data_pointer(mdp, profile_continue); 1717 1718 if (MethodData::profile_return_jsr292_only()) { 1719 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 1720 1721 // If we don't profile all invoke bytecodes we must make sure 1722 // it's a bytecode we indeed profile. We can't go back to the 1723 // beginning of the ProfileData we intend to update to check its 1724 // type because we're right after it and we don't known its 1725 // length 1726 Label do_profile; 1727 ldrb(rscratch1, Address(rbcp, 0)); 1728 cmp(rscratch1, (u1)Bytecodes::_invokedynamic); 1729 br(Assembler::EQ, do_profile); 1730 cmp(rscratch1, (u1)Bytecodes::_invokehandle); 1731 br(Assembler::EQ, do_profile); 1732 get_method(tmp); 1733 ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset())); 1734 subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1735 br(Assembler::NE, profile_continue); 1736 1737 bind(do_profile); 1738 } 1739 1740 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); 1741 mov(tmp, ret); 1742 profile_obj_type(tmp, mdo_ret_addr); 1743 1744 bind(profile_continue); 1745 } 1746 } 1747 1748 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 1749 assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2); 1750 if (ProfileInterpreter && MethodData::profile_parameters()) { 1751 Label profile_continue, done; 1752 1753 test_method_data_pointer(mdp, profile_continue); 1754 1755 // Load the offset of the area within the MDO used for 1756 // parameters. If it's negative we're not profiling any parameters 1757 ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 1758 tbnz(tmp1, 31, profile_continue); // i.e. sign bit set 1759 1760 // Compute a pointer to the area for parameters from the offset 1761 // and move the pointer to the slot for the last 1762 // parameters. Collect profiling from last parameter down. 1763 // mdo start + parameters offset + array length - 1 1764 add(mdp, mdp, tmp1); 1765 ldr(tmp1, Address(mdp, ArrayData::array_len_offset())); 1766 sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 1767 1768 Label loop; 1769 bind(loop); 1770 1771 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 1772 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 1773 int per_arg_scale = exact_log2(DataLayout::cell_size); 1774 add(rscratch1, mdp, off_base); 1775 add(rscratch2, mdp, type_base); 1776 1777 Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale)); 1778 Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale)); 1779 1780 // load offset on the stack from the slot for this parameter 1781 ldr(tmp2, arg_off); 1782 neg(tmp2, tmp2); 1783 // read the parameter from the local area 1784 ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize))); 1785 1786 // profile the parameter 1787 profile_obj_type(tmp2, arg_type); 1788 1789 // go to next parameter 1790 subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 1791 br(Assembler::GE, loop); 1792 1793 bind(profile_continue); 1794 } 1795 } 1796 1797 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 1798 // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp 1799 get_cache_index_at_bcp(index, 1, sizeof(u4)); 1800 // Get address of invokedynamic array 1801 ldr(cache, Address(rcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 1802 // Scale the index to be the entry index * sizeof(ResolvedIndyEntry) 1803 lsl(index, index, log2i_exact(sizeof(ResolvedIndyEntry))); 1804 add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes()); 1805 lea(cache, Address(cache, index)); 1806 } 1807 1808 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 1809 // Get index out of bytecode pointer 1810 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 1811 // Take shortcut if the size is a power of 2 1812 if (is_power_of_2(sizeof(ResolvedFieldEntry))) { 1813 lsl(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2 1814 } else { 1815 mov(cache, sizeof(ResolvedFieldEntry)); 1816 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry) 1817 } 1818 // Get address of field entries array 1819 ldr(cache, Address(rcpool, ConstantPoolCache::field_entries_offset())); 1820 add(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes()); 1821 lea(cache, Address(cache, index)); 1822 // Prevents stale data from being read after the bytecode is patched to the fast bytecode 1823 membar(MacroAssembler::LoadLoad); 1824 } 1825 1826 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) { 1827 // Get index out of bytecode pointer 1828 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 1829 mov(cache, sizeof(ResolvedMethodEntry)); 1830 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry) 1831 1832 // Get address of field entries array 1833 ldr(cache, Address(rcpool, ConstantPoolCache::method_entries_offset())); 1834 add(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes()); 1835 lea(cache, Address(cache, index)); 1836 }