1 /*
   2  * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "compiler/compiler_globals.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/barrierSetAssembler.hpp"
  30 #include "interp_masm_aarch64.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "interpreter/interpreterRuntime.hpp"
  33 #include "logging/log.hpp"
  34 #include "oops/arrayOop.hpp"
  35 #include "oops/markWord.hpp"
  36 #include "oops/method.hpp"
  37 #include "oops/methodData.hpp"
  38 #include "oops/resolvedFieldEntry.hpp"
  39 #include "oops/resolvedIndyEntry.hpp"
  40 #include "oops/resolvedMethodEntry.hpp"
  41 #include "prims/jvmtiExport.hpp"
  42 #include "prims/jvmtiThreadState.hpp"
  43 #include "runtime/basicLock.hpp"
  44 #include "runtime/frame.inline.hpp"
  45 #include "runtime/javaThread.hpp"
  46 #include "runtime/safepointMechanism.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 #include "utilities/powerOfTwo.hpp"
  49 
  50 void InterpreterMacroAssembler::narrow(Register result) {
  51 
  52   // Get method->_constMethod->_result_type
  53   ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
  54   ldr(rscratch1, Address(rscratch1, Method::const_offset()));
  55   ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset()));
  56 
  57   Label done, notBool, notByte, notChar;
  58 
  59   // common case first
  60   cmpw(rscratch1, T_INT);
  61   br(Assembler::EQ, done);
  62 
  63   // mask integer result to narrower return type.
  64   cmpw(rscratch1, T_BOOLEAN);
  65   br(Assembler::NE, notBool);
  66   andw(result, result, 0x1);
  67   b(done);
  68 
  69   bind(notBool);
  70   cmpw(rscratch1, T_BYTE);
  71   br(Assembler::NE, notByte);
  72   sbfx(result, result, 0, 8);
  73   b(done);
  74 
  75   bind(notByte);
  76   cmpw(rscratch1, T_CHAR);
  77   br(Assembler::NE, notChar);
  78   ubfx(result, result, 0, 16);  // truncate upper 16 bits
  79   b(done);
  80 
  81   bind(notChar);
  82   sbfx(result, result, 0, 16);     // sign-extend short
  83 
  84   // Nothing to do for T_INT
  85   bind(done);
  86 }
  87 
  88 void InterpreterMacroAssembler::jump_to_entry(address entry) {
  89   assert(entry, "Entry must have been generated by now");
  90   b(entry);
  91 }
  92 
  93 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
  94   if (JvmtiExport::can_pop_frame()) {
  95     Label L;
  96     // Initiate popframe handling only if it is not already being
  97     // processed.  If the flag has the popframe_processing bit set, it
  98     // means that this code is called *during* popframe handling - we
  99     // don't want to reenter.
 100     // This method is only called just after the call into the vm in
 101     // call_VM_base, so the arg registers are available.
 102     ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
 103     tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L);
 104     tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L);
 105     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 106     // address of the same-named entrypoint in the generated interpreter code.
 107     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 108     br(r0);
 109     bind(L);
 110   }
 111 }
 112 
 113 
 114 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 115   ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 116   const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset());
 117   const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset());
 118   const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset());
 119   switch (state) {
 120     case atos: ldr(r0, oop_addr);
 121                str(zr, oop_addr);
 122                interp_verify_oop(r0, state);        break;
 123     case ltos: ldr(r0, val_addr);                   break;
 124     case btos:                                   // fall through
 125     case ztos:                                   // fall through
 126     case ctos:                                   // fall through
 127     case stos:                                   // fall through
 128     case itos: ldrw(r0, val_addr);                  break;
 129     case ftos: ldrs(v0, val_addr);                  break;
 130     case dtos: ldrd(v0, val_addr);                  break;
 131     case vtos: /* nothing to do */                  break;
 132     default  : ShouldNotReachHere();
 133   }
 134   // Clean up tos value in the thread object
 135   movw(rscratch1, (int) ilgl);
 136   strw(rscratch1, tos_addr);
 137   strw(zr, val_addr);
 138 }
 139 
 140 
 141 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 142   if (JvmtiExport::can_force_early_return()) {
 143     Label L;
 144     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 145     cbz(rscratch1, L); // if (thread->jvmti_thread_state() == nullptr) exit;
 146 
 147     // Initiate earlyret handling only if it is not already being processed.
 148     // If the flag has the earlyret_processing bit set, it means that this code
 149     // is called *during* earlyret handling - we don't want to reenter.
 150     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset()));
 151     cmpw(rscratch1, JvmtiThreadState::earlyret_pending);
 152     br(Assembler::NE, L);
 153 
 154     // Call Interpreter::remove_activation_early_entry() to get the address of the
 155     // same-named entrypoint in the generated interpreter code.
 156     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 157     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset()));
 158     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1);
 159     br(r0);
 160     bind(L);
 161   }
 162 }
 163 
 164 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
 165   Register reg,
 166   int bcp_offset) {
 167   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 168   ldrh(reg, Address(rbcp, bcp_offset));
 169   rev16(reg, reg);
 170 }
 171 
 172 void InterpreterMacroAssembler::get_dispatch() {
 173   uint64_t offset;
 174   adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset);
 175   // Use add() here after ARDP, rather than lea().
 176   // lea() does not generate anything if its offset is zero.
 177   // However, relocs expect to find either an ADD or a load/store
 178   // insn after an ADRP.  add() always generates an ADD insn, even
 179   // for add(Rn, Rn, 0).
 180   add(rdispatch, rdispatch, offset);
 181 }
 182 
 183 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
 184                                                        int bcp_offset,
 185                                                        size_t index_size) {
 186   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 187   if (index_size == sizeof(u2)) {
 188     load_unsigned_short(index, Address(rbcp, bcp_offset));
 189   } else if (index_size == sizeof(u4)) {
 190     // assert(EnableInvokeDynamic, "giant index used only for JSR 292");
 191     ldrw(index, Address(rbcp, bcp_offset));
 192   } else if (index_size == sizeof(u1)) {
 193     load_unsigned_byte(index, Address(rbcp, bcp_offset));
 194   } else {
 195     ShouldNotReachHere();
 196   }
 197 }
 198 
 199 void InterpreterMacroAssembler::get_method_counters(Register method,
 200                                                     Register mcs, Label& skip) {
 201   Label has_counters;
 202   ldr(mcs, Address(method, Method::method_counters_offset()));
 203   cbnz(mcs, has_counters);
 204   call_VM(noreg, CAST_FROM_FN_PTR(address,
 205           InterpreterRuntime::build_method_counters), method);
 206   ldr(mcs, Address(method, Method::method_counters_offset()));
 207   cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory
 208   bind(has_counters);
 209 }
 210 
 211 // Load object from cpool->resolved_references(index)
 212 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 213                                            Register result, Register index, Register tmp) {
 214   assert_different_registers(result, index);
 215 
 216   get_constant_pool(result);
 217   // load pointer for resolved_references[] objArray
 218   ldr(result, Address(result, ConstantPool::cache_offset()));
 219   ldr(result, Address(result, ConstantPoolCache::resolved_references_offset()));
 220   resolve_oop_handle(result, tmp, rscratch2);
 221   // Add in the index
 222   add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 223   load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop)), tmp, rscratch2);
 224 }
 225 
 226 void InterpreterMacroAssembler::load_resolved_klass_at_offset(
 227                              Register cpool, Register index, Register klass, Register temp) {
 228   add(temp, cpool, index, LSL, LogBytesPerWord);
 229   ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index
 230   ldr(klass, Address(cpool,  ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses
 231   add(klass, klass, temp, LSL, LogBytesPerWord);
 232   ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes()));
 233 }
 234 
 235 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
 236 // subtype of super_klass.
 237 //
 238 // Args:
 239 //      r0: superklass
 240 //      Rsub_klass: subklass
 241 //
 242 // Kills:
 243 //      r2, r5
 244 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 245                                                   Label& ok_is_subtype) {
 246   assert(Rsub_klass != r0, "r0 holds superklass");
 247   assert(Rsub_klass != r2, "r2 holds 2ndary super array length");
 248   assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr");
 249 
 250   // Profile the not-null value's klass.
 251   profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5
 252 
 253   // Do the check.
 254   check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2
 255 }
 256 
 257 // Java Expression Stack
 258 
 259 void InterpreterMacroAssembler::pop_ptr(Register r) {
 260   ldr(r, post(esp, wordSize));
 261 }
 262 
 263 void InterpreterMacroAssembler::pop_i(Register r) {
 264   ldrw(r, post(esp, wordSize));
 265 }
 266 
 267 void InterpreterMacroAssembler::pop_l(Register r) {
 268   ldr(r, post(esp, 2 * Interpreter::stackElementSize));
 269 }
 270 
 271 void InterpreterMacroAssembler::push_ptr(Register r) {
 272   str(r, pre(esp, -wordSize));
 273  }
 274 
 275 void InterpreterMacroAssembler::push_i(Register r) {
 276   str(r, pre(esp, -wordSize));
 277 }
 278 
 279 void InterpreterMacroAssembler::push_l(Register r) {
 280   str(zr, pre(esp, -wordSize));
 281   str(r, pre(esp, - wordSize));
 282 }
 283 
 284 void InterpreterMacroAssembler::pop_f(FloatRegister r) {
 285   ldrs(r, post(esp, wordSize));
 286 }
 287 
 288 void InterpreterMacroAssembler::pop_d(FloatRegister r) {
 289   ldrd(r, post(esp, 2 * Interpreter::stackElementSize));
 290 }
 291 
 292 void InterpreterMacroAssembler::push_f(FloatRegister r) {
 293   strs(r, pre(esp, -wordSize));
 294 }
 295 
 296 void InterpreterMacroAssembler::push_d(FloatRegister r) {
 297   strd(r, pre(esp, 2* -wordSize));
 298 }
 299 
 300 void InterpreterMacroAssembler::pop(TosState state) {
 301   switch (state) {
 302   case atos: pop_ptr();                 break;
 303   case btos:
 304   case ztos:
 305   case ctos:
 306   case stos:
 307   case itos: pop_i();                   break;
 308   case ltos: pop_l();                   break;
 309   case ftos: pop_f();                   break;
 310   case dtos: pop_d();                   break;
 311   case vtos: /* nothing to do */        break;
 312   default:   ShouldNotReachHere();
 313   }
 314   interp_verify_oop(r0, state);
 315 }
 316 
 317 void InterpreterMacroAssembler::push(TosState state) {
 318   interp_verify_oop(r0, state);
 319   switch (state) {
 320   case atos: push_ptr();                break;
 321   case btos:
 322   case ztos:
 323   case ctos:
 324   case stos:
 325   case itos: push_i();                  break;
 326   case ltos: push_l();                  break;
 327   case ftos: push_f();                  break;
 328   case dtos: push_d();                  break;
 329   case vtos: /* nothing to do */        break;
 330   default  : ShouldNotReachHere();
 331   }
 332 }
 333 
 334 // Helpers for swap and dup
 335 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 336   ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 337 }
 338 
 339 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 340   str(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 341 }
 342 
 343 void InterpreterMacroAssembler::load_float(Address src) {
 344   ldrs(v0, src);
 345 }
 346 
 347 void InterpreterMacroAssembler::load_double(Address src) {
 348   ldrd(v0, src);
 349 }
 350 
 351 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 352   // set sender sp
 353   mov(r19_sender_sp, sp);
 354   // record last_sp
 355   sub(rscratch1, esp, rfp);
 356   asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
 357   str(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 358 }
 359 
 360 // Jump to from_interpreted entry of a call unless single stepping is possible
 361 // in this thread in which case we must call the i2i entry
 362 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 363   prepare_to_jump_from_interpreted();
 364 
 365   if (JvmtiExport::can_post_interpreter_events()) {
 366     Label run_compiled_code;
 367     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 368     // compiled code in threads for which the event is enabled.  Check here for
 369     // interp_only_mode if these events CAN be enabled.
 370     ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset()));
 371     cbzw(rscratch1, run_compiled_code);
 372     ldr(rscratch1, Address(method, Method::interpreter_entry_offset()));
 373     br(rscratch1);
 374     bind(run_compiled_code);
 375   }
 376 
 377   ldr(rscratch1, Address(method, Method::from_interpreted_offset()));
 378   br(rscratch1);
 379 }
 380 
 381 // The following two routines provide a hook so that an implementation
 382 // can schedule the dispatch in two parts.  amd64 does not do this.
 383 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 384 }
 385 
 386 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 387     dispatch_next(state, step);
 388 }
 389 
 390 void InterpreterMacroAssembler::dispatch_base(TosState state,
 391                                               address* table,
 392                                               bool verifyoop,
 393                                               bool generate_poll) {
 394   if (VerifyActivationFrameSize) {
 395     Label L;
 396     sub(rscratch2, rfp, esp);
 397     int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
 398     subs(rscratch2, rscratch2, min_frame_size);
 399     br(Assembler::GE, L);
 400     stop("broken stack frame");
 401     bind(L);
 402   }
 403   if (verifyoop) {
 404     interp_verify_oop(r0, state);
 405   }
 406 
 407   Label safepoint;
 408   address* const safepoint_table = Interpreter::safept_table(state);
 409   bool needs_thread_local_poll = generate_poll && table != safepoint_table;
 410 
 411   if (needs_thread_local_poll) {
 412     NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
 413     ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset()));
 414     tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint);
 415   }
 416 
 417   if (table == Interpreter::dispatch_table(state)) {
 418     addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state));
 419     ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3)));
 420   } else {
 421     mov(rscratch2, (address)table);
 422     ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
 423   }
 424   br(rscratch2);
 425 
 426   if (needs_thread_local_poll) {
 427     bind(safepoint);
 428     lea(rscratch2, ExternalAddress((address)safepoint_table));
 429     ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
 430     br(rscratch2);
 431   }
 432 }
 433 
 434 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
 435   dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
 436 }
 437 
 438 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 439   dispatch_base(state, Interpreter::normal_table(state));
 440 }
 441 
 442 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 443   dispatch_base(state, Interpreter::normal_table(state), false);
 444 }
 445 
 446 
 447 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
 448   // load next bytecode
 449   ldrb(rscratch1, Address(pre(rbcp, step)));
 450   dispatch_base(state, Interpreter::dispatch_table(state), /*verifyoop*/true, generate_poll);
 451 }
 452 
 453 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 454   // load current bytecode
 455   ldrb(rscratch1, Address(rbcp, 0));
 456   dispatch_base(state, table);
 457 }
 458 
 459 // remove activation
 460 //
 461 // Unlock the receiver if this is a synchronized method.
 462 // Unlock any Java monitors from synchronized blocks.
 463 // Apply stack watermark barrier.
 464 // Notify JVMTI.
 465 // Remove the activation from the stack.
 466 //
 467 // If there are locked Java monitors
 468 //    If throw_monitor_exception
 469 //       throws IllegalMonitorStateException
 470 //    Else if install_monitor_exception
 471 //       installs IllegalMonitorStateException
 472 //    Else
 473 //       no error processing
 474 void InterpreterMacroAssembler::remove_activation(TosState state,
 475                                                   bool throw_monitor_exception,
 476                                                   bool install_monitor_exception,
 477                                                   bool notify_jvmdi) {
 478   // Note: Registers r3 xmm0 may be in use for the
 479   // result check if synchronized method
 480   Label unlocked, unlock, no_unlock;
 481 
 482   // get the value of _do_not_unlock_if_synchronized into r3
 483   const Address do_not_unlock_if_synchronized(rthread,
 484     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 485   ldrb(r3, do_not_unlock_if_synchronized);
 486   strb(zr, do_not_unlock_if_synchronized); // reset the flag
 487 
 488  // get method access flags
 489   ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
 490   ldrh(r2, Address(r1, Method::access_flags_offset()));
 491   tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked);
 492 
 493   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 494   // is set.
 495   cbnz(r3, no_unlock);
 496 
 497   // unlock monitor
 498   push(state); // save result
 499 
 500   // BasicObjectLock will be first in list, since this is a
 501   // synchronized method. However, need to check that the object has
 502   // not been unlocked by an explicit monitorexit bytecode.
 503   const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset *
 504                         wordSize - (int) sizeof(BasicObjectLock));
 505   // We use c_rarg1 so that if we go slow path it will be the correct
 506   // register for unlock_object to pass to VM directly
 507   lea(c_rarg1, monitor); // address of first monitor
 508 
 509   ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
 510   cbnz(r0, unlock);
 511 
 512   pop(state);
 513   if (throw_monitor_exception) {
 514     // Entry already unlocked, need to throw exception
 515     call_VM(noreg, CAST_FROM_FN_PTR(address,
 516                    InterpreterRuntime::throw_illegal_monitor_state_exception));
 517     should_not_reach_here();
 518   } else {
 519     // Monitor already unlocked during a stack unroll. If requested,
 520     // install an illegal_monitor_state_exception.  Continue with
 521     // stack unrolling.
 522     if (install_monitor_exception) {
 523       call_VM(noreg, CAST_FROM_FN_PTR(address,
 524                      InterpreterRuntime::new_illegal_monitor_state_exception));
 525     }
 526     b(unlocked);
 527   }
 528 
 529   bind(unlock);
 530   unlock_object(c_rarg1);
 531   pop(state);
 532 
 533   // Check that for block-structured locking (i.e., that all locked
 534   // objects has been unlocked)
 535   bind(unlocked);
 536 
 537   // r0: Might contain return value
 538 
 539   // Check that all monitors are unlocked
 540   {
 541     Label loop, exception, entry, restart;
 542     const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
 543     const Address monitor_block_top(
 544         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
 545     const Address monitor_block_bot(
 546         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
 547 
 548     bind(restart);
 549     // We use c_rarg1 so that if we go slow path it will be the correct
 550     // register for unlock_object to pass to VM directly
 551     ldr(c_rarg1, monitor_block_top); // derelativize pointer
 552     lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
 553     // c_rarg1 points to current entry, starting with top-most entry
 554 
 555     lea(r19, monitor_block_bot);  // points to word before bottom of
 556                                   // monitor block
 557     b(entry);
 558 
 559     // Entry already locked, need to throw exception
 560     bind(exception);
 561 
 562     if (throw_monitor_exception) {
 563       // Throw exception
 564       MacroAssembler::call_VM(noreg,
 565                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
 566                                    throw_illegal_monitor_state_exception));
 567       should_not_reach_here();
 568     } else {
 569       // Stack unrolling. Unlock object and install illegal_monitor_exception.
 570       // Unlock does not block, so don't have to worry about the frame.
 571       // We don't have to preserve c_rarg1 since we are going to throw an exception.
 572 
 573       push(state);
 574       unlock_object(c_rarg1);
 575       pop(state);
 576 
 577       if (install_monitor_exception) {
 578         call_VM(noreg, CAST_FROM_FN_PTR(address,
 579                                         InterpreterRuntime::
 580                                         new_illegal_monitor_state_exception));
 581       }
 582 
 583       b(restart);
 584     }
 585 
 586     bind(loop);
 587     // check if current entry is used
 588     ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset()));
 589     cbnz(rscratch1, exception);
 590 
 591     add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry
 592     bind(entry);
 593     cmp(c_rarg1, r19); // check if bottom reached
 594     br(Assembler::NE, loop); // if not at bottom then check this entry
 595   }
 596 
 597   bind(no_unlock);
 598 
 599   JFR_ONLY(enter_jfr_critical_section();)
 600 
 601   // The below poll is for the stack watermark barrier. It allows fixing up frames lazily,
 602   // that would normally not be safe to use. Such bad returns into unsafe territory of
 603   // the stack, will call InterpreterRuntime::at_unwind.
 604   Label slow_path;
 605   Label fast_path;
 606   safepoint_poll(slow_path, true /* at_return */, false /* in_nmethod */);
 607   br(Assembler::AL, fast_path);
 608   bind(slow_path);
 609   push(state);
 610   set_last_Java_frame(esp, rfp, pc(), rscratch1);
 611   super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread);
 612   reset_last_Java_frame(true);
 613   pop(state);
 614   bind(fast_path);
 615 
 616   // JVMTI support. Make sure the safepoint poll test is issued prior.
 617   if (notify_jvmdi) {
 618     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
 619   } else {
 620     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
 621   }
 622 
 623   // remove activation
 624   // get sender esp
 625   ldr(rscratch2,
 626       Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
 627   if (StackReservedPages > 0) {
 628     // testing if reserved zone needs to be re-enabled
 629     Label no_reserved_zone_enabling;
 630 
 631     // check if already enabled - if so no re-enabling needed
 632     assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size");
 633     ldrw(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset()));
 634     cmpw(rscratch1, (u1)StackOverflow::stack_guard_enabled);
 635     br(Assembler::EQ, no_reserved_zone_enabling);
 636 
 637     // look for an overflow into the stack reserved zone, i.e.
 638     // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation
 639     ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset()));
 640     cmp(rscratch2, rscratch1);
 641     br(Assembler::LS, no_reserved_zone_enabling);
 642 
 643     JFR_ONLY(leave_jfr_critical_section();)
 644 
 645     call_VM_leaf(
 646       CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
 647     call_VM(noreg, CAST_FROM_FN_PTR(address,
 648                    InterpreterRuntime::throw_delayed_StackOverflowError));
 649     should_not_reach_here();
 650 
 651     bind(no_reserved_zone_enabling);
 652   }
 653 
 654   // remove frame anchor
 655   leave();
 656 
 657   JFR_ONLY(leave_jfr_critical_section();)
 658 
 659   // restore sender esp
 660   mov(esp, rscratch2);
 661 
 662   // If we're returning to interpreted code we will shortly be
 663   // adjusting SP to allow some space for ESP.  If we're returning to
 664   // compiled code the saved sender SP was saved in sender_sp, so this
 665   // restores it.
 666   andr(sp, esp, -16);
 667 }
 668 
 669 #if INCLUDE_JFR
 670 void InterpreterMacroAssembler::enter_jfr_critical_section() {
 671   const Address sampling_critical_section(rthread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR));
 672   mov(rscratch1, true);
 673   strb(rscratch1, sampling_critical_section);
 674 }
 675 
 676 void InterpreterMacroAssembler::leave_jfr_critical_section() {
 677   const Address sampling_critical_section(rthread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR));
 678   strb(zr, sampling_critical_section);
 679 }
 680 #endif // INCLUDE_JFR
 681 
 682 // Lock object
 683 //
 684 // Args:
 685 //      c_rarg1: BasicObjectLock to be used for locking
 686 //
 687 // Kills:
 688 //      r0
 689 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, .. (param regs)
 690 //      rscratch1, rscratch2 (scratch regs)
 691 void InterpreterMacroAssembler::lock_object(Register lock_reg)
 692 {
 693   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
 694 
 695   const Register tmp = c_rarg2;
 696   const Register obj_reg = c_rarg3; // Will contain the oop
 697   const Register tmp2 = c_rarg4;
 698   const Register tmp3 = c_rarg5;
 699 
 700   // Load object pointer into obj_reg %c_rarg3
 701   ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
 702 
 703   Label slow_case, done;
 704   lightweight_lock(lock_reg, obj_reg, tmp, tmp2, tmp3, slow_case);
 705   b(done);
 706 
 707   bind(slow_case);
 708 
 709   // Call the runtime routine for slow case
 710   call_VM_preemptable(noreg,
 711           CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 712           lock_reg);
 713 
 714   bind(done);
 715 }
 716 
 717 
 718 // Unlocks an object. Used in monitorexit bytecode and
 719 // remove_activation.  Throws an IllegalMonitorException if object is
 720 // not locked by current thread.
 721 //
 722 // Args:
 723 //      c_rarg1: BasicObjectLock for lock
 724 //
 725 // Kills:
 726 //      r0
 727 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
 728 //      rscratch1, rscratch2 (scratch regs)
 729 void InterpreterMacroAssembler::unlock_object(Register lock_reg)
 730 {
 731   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
 732 
 733   const Register swap_reg   = r0;
 734   const Register header_reg = c_rarg2;  // Will contain the old oopMark
 735   const Register obj_reg    = c_rarg3;  // Will contain the oop
 736   const Register tmp_reg    = c_rarg4;  // Temporary used by lightweight_unlock
 737 
 738   save_bcp(); // Save in case of exception
 739 
 740   // Load oop into obj_reg(%c_rarg3)
 741   ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
 742 
 743   // Free entry
 744   str(zr, Address(lock_reg, BasicObjectLock::obj_offset()));
 745 
 746   Label slow_case, done;
 747   lightweight_unlock(obj_reg, header_reg, swap_reg, tmp_reg, slow_case);
 748   b(done);
 749 
 750   bind(slow_case);
 751   // Call the runtime routine for slow case.
 752   str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj
 753   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
 754   bind(done);
 755   restore_bcp();
 756 }
 757 
 758 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
 759                                                          Label& zero_continue) {
 760   assert(ProfileInterpreter, "must be profiling interpreter");
 761   ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 762   cbz(mdp, zero_continue);
 763 }
 764 
 765 // Set the method data pointer for the current bcp.
 766 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
 767   assert(ProfileInterpreter, "must be profiling interpreter");
 768   Label set_mdp;
 769   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 770 
 771   // Test MDO to avoid the call if it is null.
 772   ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset())));
 773   cbz(r0, set_mdp);
 774   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp);
 775   // r0: mdi
 776   // mdo is guaranteed to be non-zero here, we checked for it before the call.
 777   ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
 778   lea(r1, Address(r1, in_bytes(MethodData::data_offset())));
 779   add(r0, r1, r0);
 780   str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 781   bind(set_mdp);
 782   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 783 }
 784 
 785 void InterpreterMacroAssembler::verify_method_data_pointer() {
 786   assert(ProfileInterpreter, "must be profiling interpreter");
 787 #ifdef ASSERT
 788   Label verify_continue;
 789   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 790   stp(r2, r3, Address(pre(sp, -2 * wordSize)));
 791   test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue
 792   get_method(r1);
 793 
 794   // If the mdp is valid, it will point to a DataLayout header which is
 795   // consistent with the bcp.  The converse is highly probable also.
 796   ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset())));
 797   ldr(rscratch1, Address(r1, Method::const_offset()));
 798   add(r2, r2, rscratch1, Assembler::LSL);
 799   lea(r2, Address(r2, ConstMethod::codes_offset()));
 800   cmp(r2, rbcp);
 801   br(Assembler::EQ, verify_continue);
 802   // r1: method
 803   // rbcp: bcp // rbcp == 22
 804   // r3: mdp
 805   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
 806                r1, rbcp, r3);
 807   bind(verify_continue);
 808   ldp(r2, r3, Address(post(sp, 2 * wordSize)));
 809   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 810 #endif // ASSERT
 811 }
 812 
 813 
 814 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
 815                                                 int constant,
 816                                                 Register value) {
 817   assert(ProfileInterpreter, "must be profiling interpreter");
 818   Address data(mdp_in, constant);
 819   str(value, data);
 820 }
 821 
 822 
 823 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 824                                                       int constant) {
 825   increment_mdp_data_at(mdp_in, noreg, constant);
 826 }
 827 
 828 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 829                                                       Register index,
 830                                                       int constant) {
 831   assert(ProfileInterpreter, "must be profiling interpreter");
 832 
 833   assert_different_registers(rscratch2, rscratch1, mdp_in, index);
 834 
 835   Address addr1(mdp_in, constant);
 836   Address addr2(rscratch2, index, Address::lsl(0));
 837   Address &addr = addr1;
 838   if (index != noreg) {
 839     lea(rscratch2, addr1);
 840     addr = addr2;
 841   }
 842 
 843   increment(addr, DataLayout::counter_increment);
 844 }
 845 
 846 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
 847                                                 int flag_byte_constant) {
 848   assert(ProfileInterpreter, "must be profiling interpreter");
 849   int flags_offset = in_bytes(DataLayout::flags_offset());
 850   // Set the flag
 851   ldrb(rscratch1, Address(mdp_in, flags_offset));
 852   orr(rscratch1, rscratch1, flag_byte_constant);
 853   strb(rscratch1, Address(mdp_in, flags_offset));
 854 }
 855 
 856 
 857 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
 858                                                  int offset,
 859                                                  Register value,
 860                                                  Register test_value_out,
 861                                                  Label& not_equal_continue) {
 862   assert(ProfileInterpreter, "must be profiling interpreter");
 863   if (test_value_out == noreg) {
 864     ldr(rscratch1, Address(mdp_in, offset));
 865     cmp(value, rscratch1);
 866   } else {
 867     // Put the test value into a register, so caller can use it:
 868     ldr(test_value_out, Address(mdp_in, offset));
 869     cmp(value, test_value_out);
 870   }
 871   br(Assembler::NE, not_equal_continue);
 872 }
 873 
 874 
 875 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
 876                                                      int offset_of_disp) {
 877   assert(ProfileInterpreter, "must be profiling interpreter");
 878   ldr(rscratch1, Address(mdp_in, offset_of_disp));
 879   add(mdp_in, mdp_in, rscratch1, LSL);
 880   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 881 }
 882 
 883 
 884 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
 885                                                      Register reg,
 886                                                      int offset_of_disp) {
 887   assert(ProfileInterpreter, "must be profiling interpreter");
 888   lea(rscratch1, Address(mdp_in, offset_of_disp));
 889   ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0)));
 890   add(mdp_in, mdp_in, rscratch1, LSL);
 891   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 892 }
 893 
 894 
 895 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
 896                                                        int constant) {
 897   assert(ProfileInterpreter, "must be profiling interpreter");
 898   add(mdp_in, mdp_in, (unsigned)constant);
 899   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 900 }
 901 
 902 
 903 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
 904   assert(ProfileInterpreter, "must be profiling interpreter");
 905   // save/restore across call_VM
 906   stp(zr, return_bci, Address(pre(sp, -2 * wordSize)));
 907   call_VM(noreg,
 908           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
 909           return_bci);
 910   ldp(zr, return_bci, Address(post(sp, 2 * wordSize)));
 911 }
 912 
 913 
 914 void InterpreterMacroAssembler::profile_taken_branch(Register mdp) {
 915   if (ProfileInterpreter) {
 916     Label profile_continue;
 917 
 918     // If no method data exists, go to profile_continue.
 919     test_method_data_pointer(mdp, profile_continue);
 920 
 921     // We are taking a branch.  Increment the taken count.
 922     increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
 923 
 924     // The method data pointer needs to be updated to reflect the new target.
 925     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
 926     bind(profile_continue);
 927   }
 928 }
 929 
 930 
 931 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
 932   if (ProfileInterpreter) {
 933     Label profile_continue;
 934 
 935     // If no method data exists, go to profile_continue.
 936     test_method_data_pointer(mdp, profile_continue);
 937 
 938     // We are not taking a branch.  Increment the not taken count.
 939     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
 940 
 941     // The method data pointer needs to be updated to correspond to
 942     // the next bytecode
 943     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
 944     bind(profile_continue);
 945   }
 946 }
 947 
 948 
 949 void InterpreterMacroAssembler::profile_call(Register mdp) {
 950   if (ProfileInterpreter) {
 951     Label profile_continue;
 952 
 953     // If no method data exists, go to profile_continue.
 954     test_method_data_pointer(mdp, profile_continue);
 955 
 956     // We are making a call.  Increment the count.
 957     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
 958 
 959     // The method data pointer needs to be updated to reflect the new target.
 960     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
 961     bind(profile_continue);
 962   }
 963 }
 964 
 965 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
 966   if (ProfileInterpreter) {
 967     Label profile_continue;
 968 
 969     // If no method data exists, go to profile_continue.
 970     test_method_data_pointer(mdp, profile_continue);
 971 
 972     // We are making a call.  Increment the count.
 973     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
 974 
 975     // The method data pointer needs to be updated to reflect the new target.
 976     update_mdp_by_constant(mdp,
 977                            in_bytes(VirtualCallData::
 978                                     virtual_call_data_size()));
 979     bind(profile_continue);
 980   }
 981 }
 982 
 983 
 984 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
 985                                                      Register mdp,
 986                                                      Register reg2,
 987                                                      bool receiver_can_be_null) {
 988   if (ProfileInterpreter) {
 989     Label profile_continue;
 990 
 991     // If no method data exists, go to profile_continue.
 992     test_method_data_pointer(mdp, profile_continue);
 993 
 994     Label skip_receiver_profile;
 995     if (receiver_can_be_null) {
 996       Label not_null;
 997       // We are making a call.  Increment the count for null receiver.
 998       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
 999       b(skip_receiver_profile);
1000       bind(not_null);
1001     }
1002 
1003     // Record the receiver type.
1004     record_klass_in_profile(receiver, mdp, reg2);
1005     bind(skip_receiver_profile);
1006 
1007     // The method data pointer needs to be updated to reflect the new target.
1008     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1009     bind(profile_continue);
1010   }
1011 }
1012 
1013 // This routine creates a state machine for updating the multi-row
1014 // type profile at a virtual call site (or other type-sensitive bytecode).
1015 // The machine visits each row (of receiver/count) until the receiver type
1016 // is found, or until it runs out of rows.  At the same time, it remembers
1017 // the location of the first empty row.  (An empty row records null for its
1018 // receiver, and can be allocated for a newly-observed receiver type.)
1019 // Because there are two degrees of freedom in the state, a simple linear
1020 // search will not work; it must be a decision tree.  Hence this helper
1021 // function is recursive, to generate the required tree structured code.
1022 // It's the interpreter, so we are trading off code space for speed.
1023 // See below for example code.
1024 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1025                                         Register receiver, Register mdp,
1026                                         Register reg2, int start_row,
1027                                         Label& done) {
1028   if (TypeProfileWidth == 0) {
1029     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1030   } else {
1031     record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1032         &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset);
1033   }
1034 }
1035 
1036 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1037                                         Register reg2, int start_row, Label& done, int total_rows,
1038                                         OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn) {
1039   int last_row = total_rows - 1;
1040   assert(start_row <= last_row, "must be work left to do");
1041   // Test this row for both the item and for null.
1042   // Take any of three different outcomes:
1043   //   1. found item => increment count and goto done
1044   //   2. found null => keep looking for case 1, maybe allocate this cell
1045   //   3. found something else => keep looking for cases 1 and 2
1046   // Case 3 is handled by a recursive call.
1047   for (int row = start_row; row <= last_row; row++) {
1048     Label next_test;
1049     bool test_for_null_also = (row == start_row);
1050 
1051     // See if the item is item[n].
1052     int item_offset = in_bytes(item_offset_fn(row));
1053     test_mdp_data_at(mdp, item_offset, item,
1054                      (test_for_null_also ? reg2 : noreg),
1055                      next_test);
1056     // (Reg2 now contains the item from the CallData.)
1057 
1058     // The item is item[n].  Increment count[n].
1059     int count_offset = in_bytes(item_count_offset_fn(row));
1060     increment_mdp_data_at(mdp, count_offset);
1061     b(done);
1062     bind(next_test);
1063 
1064     if (test_for_null_also) {
1065       Label found_null;
1066       // Failed the equality check on item[n]...  Test for null.
1067       if (start_row == last_row) {
1068         // The only thing left to do is handle the null case.
1069         cbz(reg2, found_null);
1070         // Item did not match any saved item and there is no empty row for it.
1071         // Increment total counter to indicate polymorphic case.
1072         increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1073         b(done);
1074         bind(found_null);
1075         break;
1076       }
1077       // Since null is rare, make it be the branch-taken case.
1078       cbz(reg2, found_null);
1079 
1080       // Put all the "Case 3" tests here.
1081       record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1082         item_offset_fn, item_count_offset_fn);
1083 
1084       // Found a null.  Keep searching for a matching item,
1085       // but remember that this is an empty (unused) slot.
1086       bind(found_null);
1087     }
1088   }
1089 
1090   // In the fall-through case, we found no matching item, but we
1091   // observed the item[start_row] is null.
1092 
1093   // Fill in the item field and increment the count.
1094   int item_offset = in_bytes(item_offset_fn(start_row));
1095   set_mdp_data_at(mdp, item_offset, item);
1096   int count_offset = in_bytes(item_count_offset_fn(start_row));
1097   mov(reg2, DataLayout::counter_increment);
1098   set_mdp_data_at(mdp, count_offset, reg2);
1099   if (start_row > 0) {
1100     b(done);
1101   }
1102 }
1103 
1104 // Example state machine code for three profile rows:
1105 //   // main copy of decision tree, rooted at row[1]
1106 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1107 //   if (row[0].rec != nullptr) {
1108 //     // inner copy of decision tree, rooted at row[1]
1109 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1110 //     if (row[1].rec != nullptr) {
1111 //       // degenerate decision tree, rooted at row[2]
1112 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1113 //       if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow
1114 //       row[2].init(rec); goto done;
1115 //     } else {
1116 //       // remember row[1] is empty
1117 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1118 //       row[1].init(rec); goto done;
1119 //     }
1120 //   } else {
1121 //     // remember row[0] is empty
1122 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1123 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1124 //     row[0].init(rec); goto done;
1125 //   }
1126 //   done:
1127 
1128 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1129                                                         Register mdp, Register reg2) {
1130   assert(ProfileInterpreter, "must be profiling");
1131   Label done;
1132 
1133   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
1134 
1135   bind (done);
1136 }
1137 
1138 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1139                                             Register mdp) {
1140   if (ProfileInterpreter) {
1141     Label profile_continue;
1142     uint row;
1143 
1144     // If no method data exists, go to profile_continue.
1145     test_method_data_pointer(mdp, profile_continue);
1146 
1147     // Update the total ret count.
1148     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1149 
1150     for (row = 0; row < RetData::row_limit(); row++) {
1151       Label next_test;
1152 
1153       // See if return_bci is equal to bci[n]:
1154       test_mdp_data_at(mdp,
1155                        in_bytes(RetData::bci_offset(row)),
1156                        return_bci, noreg,
1157                        next_test);
1158 
1159       // return_bci is equal to bci[n].  Increment the count.
1160       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1161 
1162       // The method data pointer needs to be updated to reflect the new target.
1163       update_mdp_by_offset(mdp,
1164                            in_bytes(RetData::bci_displacement_offset(row)));
1165       b(profile_continue);
1166       bind(next_test);
1167     }
1168 
1169     update_mdp_for_ret(return_bci);
1170 
1171     bind(profile_continue);
1172   }
1173 }
1174 
1175 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1176   if (ProfileInterpreter) {
1177     Label profile_continue;
1178 
1179     // If no method data exists, go to profile_continue.
1180     test_method_data_pointer(mdp, profile_continue);
1181 
1182     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1183 
1184     // The method data pointer needs to be updated.
1185     int mdp_delta = in_bytes(BitData::bit_data_size());
1186     if (TypeProfileCasts) {
1187       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1188     }
1189     update_mdp_by_constant(mdp, mdp_delta);
1190 
1191     bind(profile_continue);
1192   }
1193 }
1194 
1195 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1196   if (ProfileInterpreter) {
1197     Label profile_continue;
1198 
1199     // If no method data exists, go to profile_continue.
1200     test_method_data_pointer(mdp, profile_continue);
1201 
1202     // The method data pointer needs to be updated.
1203     int mdp_delta = in_bytes(BitData::bit_data_size());
1204     if (TypeProfileCasts) {
1205       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1206 
1207       // Record the object type.
1208       record_klass_in_profile(klass, mdp, reg2);
1209     }
1210     update_mdp_by_constant(mdp, mdp_delta);
1211 
1212     bind(profile_continue);
1213   }
1214 }
1215 
1216 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1217   if (ProfileInterpreter) {
1218     Label profile_continue;
1219 
1220     // If no method data exists, go to profile_continue.
1221     test_method_data_pointer(mdp, profile_continue);
1222 
1223     // Update the default case count
1224     increment_mdp_data_at(mdp,
1225                           in_bytes(MultiBranchData::default_count_offset()));
1226 
1227     // The method data pointer needs to be updated.
1228     update_mdp_by_offset(mdp,
1229                          in_bytes(MultiBranchData::
1230                                   default_displacement_offset()));
1231 
1232     bind(profile_continue);
1233   }
1234 }
1235 
1236 void InterpreterMacroAssembler::profile_switch_case(Register index,
1237                                                     Register mdp,
1238                                                     Register reg2) {
1239   if (ProfileInterpreter) {
1240     Label profile_continue;
1241 
1242     // If no method data exists, go to profile_continue.
1243     test_method_data_pointer(mdp, profile_continue);
1244 
1245     // Build the base (index * per_case_size_in_bytes()) +
1246     // case_array_offset_in_bytes()
1247     movw(reg2, in_bytes(MultiBranchData::per_case_size()));
1248     movw(rscratch1, in_bytes(MultiBranchData::case_array_offset()));
1249     Assembler::maddw(index, index, reg2, rscratch1);
1250 
1251     // Update the case count
1252     increment_mdp_data_at(mdp,
1253                           index,
1254                           in_bytes(MultiBranchData::relative_count_offset()));
1255 
1256     // The method data pointer needs to be updated.
1257     update_mdp_by_offset(mdp,
1258                          index,
1259                          in_bytes(MultiBranchData::
1260                                   relative_displacement_offset()));
1261 
1262     bind(profile_continue);
1263   }
1264 }
1265 
1266 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) {
1267   if (state == atos) {
1268     MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line);
1269   }
1270 }
1271 
1272 void InterpreterMacroAssembler::notify_method_entry() {
1273   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1274   // track stack depth.  If it is possible to enter interp_only_mode we add
1275   // the code to check if the event should be sent.
1276   if (JvmtiExport::can_post_interpreter_events()) {
1277     Label L;
1278     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1279     cbzw(r3, L);
1280     call_VM(noreg, CAST_FROM_FN_PTR(address,
1281                                     InterpreterRuntime::post_method_entry));
1282     bind(L);
1283   }
1284 
1285   if (DTraceMethodProbes) {
1286     get_method(c_rarg1);
1287     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1288                  rthread, c_rarg1);
1289   }
1290 
1291   // RedefineClasses() tracing support for obsolete method entry
1292   if (log_is_enabled(Trace, redefine, class, obsolete)) {
1293     get_method(c_rarg1);
1294     call_VM_leaf(
1295       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1296       rthread, c_rarg1);
1297   }
1298 
1299  }
1300 
1301 
1302 void InterpreterMacroAssembler::notify_method_exit(
1303     TosState state, NotifyMethodExitMode mode) {
1304   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1305   // track stack depth.  If it is possible to enter interp_only_mode we add
1306   // the code to check if the event should be sent.
1307   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1308     Label L;
1309     // Note: frame::interpreter_frame_result has a dependency on how the
1310     // method result is saved across the call to post_method_exit. If this
1311     // is changed then the interpreter_frame_result implementation will
1312     // need to be updated too.
1313 
1314     // template interpreter will leave the result on the top of the stack.
1315     push(state);
1316     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1317     cbz(r3, L);
1318     call_VM(noreg,
1319             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1320     bind(L);
1321     pop(state);
1322   }
1323 
1324   if (DTraceMethodProbes) {
1325     push(state);
1326     get_method(c_rarg1);
1327     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1328                  rthread, c_rarg1);
1329     pop(state);
1330   }
1331 }
1332 
1333 
1334 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1335 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1336                                                         int increment, Address mask,
1337                                                         Register scratch, Register scratch2,
1338                                                         bool preloaded, Condition cond,
1339                                                         Label* where) {
1340   if (!preloaded) {
1341     ldrw(scratch, counter_addr);
1342   }
1343   add(scratch, scratch, increment);
1344   strw(scratch, counter_addr);
1345   ldrw(scratch2, mask);
1346   ands(scratch, scratch, scratch2);
1347   br(cond, *where);
1348 }
1349 
1350 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
1351                                                   int number_of_arguments) {
1352   // interpreter specific
1353   //
1354   // Note: No need to save/restore rbcp & rlocals pointer since these
1355   //       are callee saved registers and no blocking/ GC can happen
1356   //       in leaf calls.
1357 #ifdef ASSERT
1358   {
1359     Label L;
1360     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1361     cbz(rscratch1, L);
1362     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1363          " last_sp != nullptr");
1364     bind(L);
1365   }
1366 #endif /* ASSERT */
1367   // super call
1368   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
1369 }
1370 
1371 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
1372                                              Register java_thread,
1373                                              Register last_java_sp,
1374                                              address  entry_point,
1375                                              int      number_of_arguments,
1376                                              bool     check_exceptions) {
1377   // interpreter specific
1378   //
1379   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
1380   //       really make a difference for these runtime calls, since they are
1381   //       slow anyway. Btw., bcp must be saved/restored since it may change
1382   //       due to GC.
1383   // assert(java_thread == noreg , "not expecting a precomputed java thread");
1384   save_bcp();
1385 #ifdef ASSERT
1386   {
1387     Label L;
1388     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1389     cbz(rscratch1, L);
1390     stop("InterpreterMacroAssembler::call_VM_base:"
1391          " last_sp != nullptr");
1392     bind(L);
1393   }
1394 #endif /* ASSERT */
1395   // super call
1396   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
1397                                entry_point, number_of_arguments,
1398                      check_exceptions);
1399 // interpreter specific
1400   restore_bcp();
1401   restore_locals();
1402 }
1403 
1404 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result,
1405                                                     address entry_point,
1406                                                     Register arg_1) {
1407   assert(arg_1 == c_rarg1, "");
1408   Label resume_pc, not_preempted;
1409 
1410 #ifdef ASSERT
1411   {
1412     Label L;
1413     ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1414     cbz(rscratch1, L);
1415     stop("Should not have alternate return address set");
1416     bind(L);
1417   }
1418 #endif /* ASSERT */
1419 
1420   // Force freeze slow path.
1421   push_cont_fastpath();
1422 
1423   // Make VM call. In case of preemption set last_pc to the one we want to resume to.
1424   adr(rscratch1, resume_pc);
1425   str(rscratch1, Address(rthread, JavaThread::last_Java_pc_offset()));
1426   call_VM_base(oop_result, noreg, noreg, entry_point, 1, false /*check_exceptions*/);
1427 
1428   pop_cont_fastpath();
1429 
1430   // Check if preempted.
1431   ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1432   cbz(rscratch1, not_preempted);
1433   str(zr, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1434   br(rscratch1);
1435 
1436   // In case of preemption, this is where we will resume once we finally acquire the monitor.
1437   bind(resume_pc);
1438   restore_after_resume(false /* is_native */);
1439 
1440   bind(not_preempted);
1441 }
1442 
1443 void InterpreterMacroAssembler::restore_after_resume(bool is_native) {
1444   lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter()));
1445   blr(rscratch1);
1446   if (is_native) {
1447     // On resume we need to set up stack as expected
1448     push(dtos);
1449     push(ltos);
1450   }
1451 }
1452 
1453 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
1454   assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index());
1455   Label update, next, none;
1456 
1457   verify_oop(obj);
1458 
1459   cbnz(obj, update);
1460   orptr(mdo_addr, TypeEntries::null_seen);
1461   b(next);
1462 
1463   bind(update);
1464   load_klass(obj, obj);
1465 
1466   ldr(rscratch1, mdo_addr);
1467   eor(obj, obj, rscratch1);
1468   tst(obj, TypeEntries::type_klass_mask);
1469   br(Assembler::EQ, next); // klass seen before, nothing to
1470                            // do. The unknown bit may have been
1471                            // set already but no need to check.
1472 
1473   tbnz(obj, exact_log2(TypeEntries::type_unknown), next);
1474   // already unknown. Nothing to do anymore.
1475 
1476   cbz(rscratch1, none);
1477   cmp(rscratch1, (u1)TypeEntries::null_seen);
1478   br(Assembler::EQ, none);
1479   // There is a chance that the checks above
1480   // fail if another thread has just set the
1481   // profiling to this obj's klass
1482   eor(obj, obj, rscratch1); // get back original value before XOR
1483   ldr(rscratch1, mdo_addr);
1484   eor(obj, obj, rscratch1);
1485   tst(obj, TypeEntries::type_klass_mask);
1486   br(Assembler::EQ, next);
1487 
1488   // different than before. Cannot keep accurate profile.
1489   orptr(mdo_addr, TypeEntries::type_unknown);
1490   b(next);
1491 
1492   bind(none);
1493   // first time here. Set profile type.
1494   str(obj, mdo_addr);
1495 #ifdef ASSERT
1496   andr(obj, obj, TypeEntries::type_mask);
1497   verify_klass_ptr(obj);
1498 #endif
1499 
1500   bind(next);
1501 }
1502 
1503 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1504   if (!ProfileInterpreter) {
1505     return;
1506   }
1507 
1508   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1509     Label profile_continue;
1510 
1511     test_method_data_pointer(mdp, profile_continue);
1512 
1513     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1514 
1515     ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start));
1516     cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag));
1517     br(Assembler::NE, profile_continue);
1518 
1519     if (MethodData::profile_arguments()) {
1520       Label done;
1521       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1522 
1523       for (int i = 0; i < TypeProfileArgsLimit; i++) {
1524         if (i > 0 || MethodData::profile_return()) {
1525           // If return value type is profiled we may have no argument to profile
1526           ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1527           sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count());
1528           cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count());
1529           add(rscratch1, mdp, off_to_args);
1530           br(Assembler::LT, done);
1531         }
1532         ldr(tmp, Address(callee, Method::const_offset()));
1533         load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1534         // stack offset o (zero based) from the start of the argument
1535         // list, for n arguments translates into offset n - o - 1 from
1536         // the end of the argument list
1537         ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))));
1538         sub(tmp, tmp, rscratch1);
1539         sub(tmp, tmp, 1);
1540         Address arg_addr = argument_address(tmp);
1541         ldr(tmp, arg_addr);
1542 
1543         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i)));
1544         profile_obj_type(tmp, mdo_arg_addr);
1545 
1546         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1547         off_to_args += to_add;
1548       }
1549 
1550       if (MethodData::profile_return()) {
1551         ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1552         sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1553       }
1554 
1555       add(rscratch1, mdp, off_to_args);
1556       bind(done);
1557       mov(mdp, rscratch1);
1558 
1559       if (MethodData::profile_return()) {
1560         // We're right after the type profile for the last
1561         // argument. tmp is the number of cells left in the
1562         // CallTypeData/VirtualCallTypeData to reach its end. Non null
1563         // if there's a return to profile.
1564         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1565         add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size));
1566       }
1567       str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1568     } else {
1569       assert(MethodData::profile_return(), "either profile call args or call ret");
1570       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
1571     }
1572 
1573     // mdp points right after the end of the
1574     // CallTypeData/VirtualCallTypeData, right after the cells for the
1575     // return value type if there's one
1576 
1577     bind(profile_continue);
1578   }
1579 }
1580 
1581 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1582   assert_different_registers(mdp, ret, tmp, rbcp);
1583   if (ProfileInterpreter && MethodData::profile_return()) {
1584     Label profile_continue, done;
1585 
1586     test_method_data_pointer(mdp, profile_continue);
1587 
1588     if (MethodData::profile_return_jsr292_only()) {
1589       assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
1590 
1591       // If we don't profile all invoke bytecodes we must make sure
1592       // it's a bytecode we indeed profile. We can't go back to the
1593       // beginning of the ProfileData we intend to update to check its
1594       // type because we're right after it and we don't known its
1595       // length
1596       Label do_profile;
1597       ldrb(rscratch1, Address(rbcp, 0));
1598       cmp(rscratch1, (u1)Bytecodes::_invokedynamic);
1599       br(Assembler::EQ, do_profile);
1600       cmp(rscratch1, (u1)Bytecodes::_invokehandle);
1601       br(Assembler::EQ, do_profile);
1602       get_method(tmp);
1603       ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset()));
1604       subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm));
1605       br(Assembler::NE, profile_continue);
1606 
1607       bind(do_profile);
1608     }
1609 
1610     Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
1611     mov(tmp, ret);
1612     profile_obj_type(tmp, mdo_ret_addr);
1613 
1614     bind(profile_continue);
1615   }
1616 }
1617 
1618 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
1619   assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2);
1620   if (ProfileInterpreter && MethodData::profile_parameters()) {
1621     Label profile_continue, done;
1622 
1623     test_method_data_pointer(mdp, profile_continue);
1624 
1625     // Load the offset of the area within the MDO used for
1626     // parameters. If it's negative we're not profiling any parameters
1627     ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
1628     tbnz(tmp1, 31, profile_continue);  // i.e. sign bit set
1629 
1630     // Compute a pointer to the area for parameters from the offset
1631     // and move the pointer to the slot for the last
1632     // parameters. Collect profiling from last parameter down.
1633     // mdo start + parameters offset + array length - 1
1634     add(mdp, mdp, tmp1);
1635     ldr(tmp1, Address(mdp, ArrayData::array_len_offset()));
1636     sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1637 
1638     Label loop;
1639     bind(loop);
1640 
1641     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1642     int type_base = in_bytes(ParametersTypeData::type_offset(0));
1643     int per_arg_scale = exact_log2(DataLayout::cell_size);
1644     add(rscratch1, mdp, off_base);
1645     add(rscratch2, mdp, type_base);
1646 
1647     Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale));
1648     Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale));
1649 
1650     // load offset on the stack from the slot for this parameter
1651     ldr(tmp2, arg_off);
1652     neg(tmp2, tmp2);
1653     // read the parameter from the local area
1654     ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize)));
1655 
1656     // profile the parameter
1657     profile_obj_type(tmp2, arg_type);
1658 
1659     // go to next parameter
1660     subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1661     br(Assembler::GE, loop);
1662 
1663     bind(profile_continue);
1664   }
1665 }
1666 
1667 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) {
1668   // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp
1669   get_cache_index_at_bcp(index, 1, sizeof(u4));
1670   // Get address of invokedynamic array
1671   ldr(cache, Address(rcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset())));
1672   // Scale the index to be the entry index * sizeof(ResolvedIndyEntry)
1673   lsl(index, index, log2i_exact(sizeof(ResolvedIndyEntry)));
1674   add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes());
1675   lea(cache, Address(cache, index));
1676 }
1677 
1678 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) {
1679   // Get index out of bytecode pointer
1680   get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
1681   // Take shortcut if the size is a power of 2
1682   if (is_power_of_2(sizeof(ResolvedFieldEntry))) {
1683     lsl(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2
1684   } else {
1685     mov(cache, sizeof(ResolvedFieldEntry));
1686     mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry)
1687   }
1688   // Get address of field entries array
1689   ldr(cache, Address(rcpool, ConstantPoolCache::field_entries_offset()));
1690   add(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes());
1691   lea(cache, Address(cache, index));
1692   // Prevents stale data from being read after the bytecode is patched to the fast bytecode
1693   membar(MacroAssembler::LoadLoad);
1694 }
1695 
1696 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) {
1697   // Get index out of bytecode pointer
1698   get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
1699   mov(cache, sizeof(ResolvedMethodEntry));
1700   mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry)
1701 
1702   // Get address of field entries array
1703   ldr(cache, Address(rcpool, ConstantPoolCache::method_entries_offset()));
1704   add(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes());
1705   lea(cache, Address(cache, index));
1706 }