1 /* 2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/macroAssembler.inline.hpp" 27 #include "compiler/compiler_globals.hpp" 28 #include "gc/shared/barrierSet.hpp" 29 #include "gc/shared/barrierSetAssembler.hpp" 30 #include "interp_masm_aarch64.hpp" 31 #include "interpreter/interpreter.hpp" 32 #include "interpreter/interpreterRuntime.hpp" 33 #include "logging/log.hpp" 34 #include "oops/arrayOop.hpp" 35 #include "oops/markWord.hpp" 36 #include "oops/method.hpp" 37 #include "oops/methodData.hpp" 38 #include "oops/resolvedFieldEntry.hpp" 39 #include "oops/resolvedIndyEntry.hpp" 40 #include "oops/resolvedMethodEntry.hpp" 41 #include "prims/jvmtiExport.hpp" 42 #include "prims/jvmtiThreadState.hpp" 43 #include "runtime/basicLock.hpp" 44 #include "runtime/frame.inline.hpp" 45 #include "runtime/javaThread.hpp" 46 #include "runtime/safepointMechanism.hpp" 47 #include "runtime/sharedRuntime.hpp" 48 #include "utilities/powerOfTwo.hpp" 49 50 void InterpreterMacroAssembler::narrow(Register result) { 51 52 // Get method->_constMethod->_result_type 53 ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 54 ldr(rscratch1, Address(rscratch1, Method::const_offset())); 55 ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset())); 56 57 Label done, notBool, notByte, notChar; 58 59 // common case first 60 cmpw(rscratch1, T_INT); 61 br(Assembler::EQ, done); 62 63 // mask integer result to narrower return type. 64 cmpw(rscratch1, T_BOOLEAN); 65 br(Assembler::NE, notBool); 66 andw(result, result, 0x1); 67 b(done); 68 69 bind(notBool); 70 cmpw(rscratch1, T_BYTE); 71 br(Assembler::NE, notByte); 72 sbfx(result, result, 0, 8); 73 b(done); 74 75 bind(notByte); 76 cmpw(rscratch1, T_CHAR); 77 br(Assembler::NE, notChar); 78 ubfx(result, result, 0, 16); // truncate upper 16 bits 79 b(done); 80 81 bind(notChar); 82 sbfx(result, result, 0, 16); // sign-extend short 83 84 // Nothing to do for T_INT 85 bind(done); 86 } 87 88 void InterpreterMacroAssembler::jump_to_entry(address entry) { 89 assert(entry, "Entry must have been generated by now"); 90 b(entry); 91 } 92 93 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 94 if (JvmtiExport::can_pop_frame()) { 95 Label L; 96 // Initiate popframe handling only if it is not already being 97 // processed. If the flag has the popframe_processing bit set, it 98 // means that this code is called *during* popframe handling - we 99 // don't want to reenter. 100 // This method is only called just after the call into the vm in 101 // call_VM_base, so the arg registers are available. 102 ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset())); 103 tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L); 104 tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L); 105 // Call Interpreter::remove_activation_preserving_args_entry() to get the 106 // address of the same-named entrypoint in the generated interpreter code. 107 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 108 br(r0); 109 bind(L); 110 } 111 } 112 113 114 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 115 ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset())); 116 const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset()); 117 const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset()); 118 const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset()); 119 switch (state) { 120 case atos: ldr(r0, oop_addr); 121 str(zr, oop_addr); 122 interp_verify_oop(r0, state); break; 123 case ltos: ldr(r0, val_addr); break; 124 case btos: // fall through 125 case ztos: // fall through 126 case ctos: // fall through 127 case stos: // fall through 128 case itos: ldrw(r0, val_addr); break; 129 case ftos: ldrs(v0, val_addr); break; 130 case dtos: ldrd(v0, val_addr); break; 131 case vtos: /* nothing to do */ break; 132 default : ShouldNotReachHere(); 133 } 134 // Clean up tos value in the thread object 135 movw(rscratch1, (int) ilgl); 136 strw(rscratch1, tos_addr); 137 strw(zr, val_addr); 138 } 139 140 141 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 142 if (JvmtiExport::can_force_early_return()) { 143 Label L; 144 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 145 cbz(rscratch1, L); // if (thread->jvmti_thread_state() == nullptr) exit; 146 147 // Initiate earlyret handling only if it is not already being processed. 148 // If the flag has the earlyret_processing bit set, it means that this code 149 // is called *during* earlyret handling - we don't want to reenter. 150 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset())); 151 cmpw(rscratch1, JvmtiThreadState::earlyret_pending); 152 br(Assembler::NE, L); 153 154 // Call Interpreter::remove_activation_early_entry() to get the address of the 155 // same-named entrypoint in the generated interpreter code. 156 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 157 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset())); 158 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1); 159 br(r0); 160 bind(L); 161 } 162 } 163 164 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp( 165 Register reg, 166 int bcp_offset) { 167 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 168 ldrh(reg, Address(rbcp, bcp_offset)); 169 rev16(reg, reg); 170 } 171 172 void InterpreterMacroAssembler::get_dispatch() { 173 uint64_t offset; 174 adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset); 175 // Use add() here after ARDP, rather than lea(). 176 // lea() does not generate anything if its offset is zero. 177 // However, relocs expect to find either an ADD or a load/store 178 // insn after an ADRP. add() always generates an ADD insn, even 179 // for add(Rn, Rn, 0). 180 add(rdispatch, rdispatch, offset); 181 } 182 183 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 184 int bcp_offset, 185 size_t index_size) { 186 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 187 if (index_size == sizeof(u2)) { 188 load_unsigned_short(index, Address(rbcp, bcp_offset)); 189 } else if (index_size == sizeof(u4)) { 190 // assert(EnableInvokeDynamic, "giant index used only for JSR 292"); 191 ldrw(index, Address(rbcp, bcp_offset)); 192 } else if (index_size == sizeof(u1)) { 193 load_unsigned_byte(index, Address(rbcp, bcp_offset)); 194 } else { 195 ShouldNotReachHere(); 196 } 197 } 198 199 void InterpreterMacroAssembler::get_method_counters(Register method, 200 Register mcs, Label& skip) { 201 Label has_counters; 202 ldr(mcs, Address(method, Method::method_counters_offset())); 203 cbnz(mcs, has_counters); 204 call_VM(noreg, CAST_FROM_FN_PTR(address, 205 InterpreterRuntime::build_method_counters), method); 206 ldr(mcs, Address(method, Method::method_counters_offset())); 207 cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory 208 bind(has_counters); 209 } 210 211 // Load object from cpool->resolved_references(index) 212 void InterpreterMacroAssembler::load_resolved_reference_at_index( 213 Register result, Register index, Register tmp) { 214 assert_different_registers(result, index); 215 216 get_constant_pool(result); 217 // load pointer for resolved_references[] objArray 218 ldr(result, Address(result, ConstantPool::cache_offset())); 219 ldr(result, Address(result, ConstantPoolCache::resolved_references_offset())); 220 resolve_oop_handle(result, tmp, rscratch2); 221 // Add in the index 222 add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 223 load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop)), tmp, rscratch2); 224 } 225 226 void InterpreterMacroAssembler::load_resolved_klass_at_offset( 227 Register cpool, Register index, Register klass, Register temp) { 228 add(temp, cpool, index, LSL, LogBytesPerWord); 229 ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index 230 ldr(klass, Address(cpool, ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses 231 add(klass, klass, temp, LSL, LogBytesPerWord); 232 ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes())); 233 } 234 235 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 236 // subtype of super_klass. 237 // 238 // Args: 239 // r0: superklass 240 // Rsub_klass: subklass 241 // 242 // Kills: 243 // r2, r5 244 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 245 Label& ok_is_subtype) { 246 assert(Rsub_klass != r0, "r0 holds superklass"); 247 assert(Rsub_klass != r2, "r2 holds 2ndary super array length"); 248 assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr"); 249 250 // Profile the not-null value's klass. 251 profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5 252 253 // Do the check. 254 check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2 255 } 256 257 // Java Expression Stack 258 259 void InterpreterMacroAssembler::pop_ptr(Register r) { 260 ldr(r, post(esp, wordSize)); 261 } 262 263 void InterpreterMacroAssembler::pop_i(Register r) { 264 ldrw(r, post(esp, wordSize)); 265 } 266 267 void InterpreterMacroAssembler::pop_l(Register r) { 268 ldr(r, post(esp, 2 * Interpreter::stackElementSize)); 269 } 270 271 void InterpreterMacroAssembler::push_ptr(Register r) { 272 str(r, pre(esp, -wordSize)); 273 } 274 275 void InterpreterMacroAssembler::push_i(Register r) { 276 str(r, pre(esp, -wordSize)); 277 } 278 279 void InterpreterMacroAssembler::push_l(Register r) { 280 str(zr, pre(esp, -wordSize)); 281 str(r, pre(esp, - wordSize)); 282 } 283 284 void InterpreterMacroAssembler::pop_f(FloatRegister r) { 285 ldrs(r, post(esp, wordSize)); 286 } 287 288 void InterpreterMacroAssembler::pop_d(FloatRegister r) { 289 ldrd(r, post(esp, 2 * Interpreter::stackElementSize)); 290 } 291 292 void InterpreterMacroAssembler::push_f(FloatRegister r) { 293 strs(r, pre(esp, -wordSize)); 294 } 295 296 void InterpreterMacroAssembler::push_d(FloatRegister r) { 297 strd(r, pre(esp, 2* -wordSize)); 298 } 299 300 void InterpreterMacroAssembler::pop(TosState state) { 301 switch (state) { 302 case atos: pop_ptr(); break; 303 case btos: 304 case ztos: 305 case ctos: 306 case stos: 307 case itos: pop_i(); break; 308 case ltos: pop_l(); break; 309 case ftos: pop_f(); break; 310 case dtos: pop_d(); break; 311 case vtos: /* nothing to do */ break; 312 default: ShouldNotReachHere(); 313 } 314 interp_verify_oop(r0, state); 315 } 316 317 void InterpreterMacroAssembler::push(TosState state) { 318 interp_verify_oop(r0, state); 319 switch (state) { 320 case atos: push_ptr(); break; 321 case btos: 322 case ztos: 323 case ctos: 324 case stos: 325 case itos: push_i(); break; 326 case ltos: push_l(); break; 327 case ftos: push_f(); break; 328 case dtos: push_d(); break; 329 case vtos: /* nothing to do */ break; 330 default : ShouldNotReachHere(); 331 } 332 } 333 334 // Helpers for swap and dup 335 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 336 ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 337 } 338 339 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 340 str(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 341 } 342 343 void InterpreterMacroAssembler::load_float(Address src) { 344 ldrs(v0, src); 345 } 346 347 void InterpreterMacroAssembler::load_double(Address src) { 348 ldrd(v0, src); 349 } 350 351 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 352 // set sender sp 353 mov(r19_sender_sp, sp); 354 // record last_sp 355 sub(rscratch1, esp, rfp); 356 asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 357 str(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 358 } 359 360 // Jump to from_interpreted entry of a call unless single stepping is possible 361 // in this thread in which case we must call the i2i entry 362 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 363 prepare_to_jump_from_interpreted(); 364 365 if (JvmtiExport::can_post_interpreter_events()) { 366 Label run_compiled_code; 367 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 368 // compiled code in threads for which the event is enabled. Check here for 369 // interp_only_mode if these events CAN be enabled. 370 ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset())); 371 cbzw(rscratch1, run_compiled_code); 372 ldr(rscratch1, Address(method, Method::interpreter_entry_offset())); 373 br(rscratch1); 374 bind(run_compiled_code); 375 } 376 377 ldr(rscratch1, Address(method, Method::from_interpreted_offset())); 378 br(rscratch1); 379 } 380 381 // The following two routines provide a hook so that an implementation 382 // can schedule the dispatch in two parts. amd64 does not do this. 383 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 384 } 385 386 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 387 dispatch_next(state, step); 388 } 389 390 void InterpreterMacroAssembler::dispatch_base(TosState state, 391 address* table, 392 bool verifyoop, 393 bool generate_poll) { 394 if (VerifyActivationFrameSize) { 395 Label L; 396 sub(rscratch2, rfp, esp); 397 int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize; 398 subs(rscratch2, rscratch2, min_frame_size); 399 br(Assembler::GE, L); 400 stop("broken stack frame"); 401 bind(L); 402 } 403 if (verifyoop) { 404 interp_verify_oop(r0, state); 405 } 406 407 Label safepoint; 408 address* const safepoint_table = Interpreter::safept_table(state); 409 bool needs_thread_local_poll = generate_poll && table != safepoint_table; 410 411 if (needs_thread_local_poll) { 412 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 413 ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset())); 414 tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint); 415 } 416 417 if (table == Interpreter::dispatch_table(state)) { 418 addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state)); 419 ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3))); 420 } else { 421 mov(rscratch2, (address)table); 422 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 423 } 424 br(rscratch2); 425 426 if (needs_thread_local_poll) { 427 bind(safepoint); 428 lea(rscratch2, ExternalAddress((address)safepoint_table)); 429 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 430 br(rscratch2); 431 } 432 } 433 434 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 435 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 436 } 437 438 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 439 dispatch_base(state, Interpreter::normal_table(state)); 440 } 441 442 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 443 dispatch_base(state, Interpreter::normal_table(state), false); 444 } 445 446 447 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 448 // load next bytecode 449 ldrb(rscratch1, Address(pre(rbcp, step))); 450 dispatch_base(state, Interpreter::dispatch_table(state), /*verifyoop*/true, generate_poll); 451 } 452 453 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 454 // load current bytecode 455 ldrb(rscratch1, Address(rbcp, 0)); 456 dispatch_base(state, table); 457 } 458 459 // remove activation 460 // 461 // Unlock the receiver if this is a synchronized method. 462 // Unlock any Java monitors from synchronized blocks. 463 // Apply stack watermark barrier. 464 // Notify JVMTI. 465 // Remove the activation from the stack. 466 // 467 // If there are locked Java monitors 468 // If throw_monitor_exception 469 // throws IllegalMonitorStateException 470 // Else if install_monitor_exception 471 // installs IllegalMonitorStateException 472 // Else 473 // no error processing 474 void InterpreterMacroAssembler::remove_activation(TosState state, 475 bool throw_monitor_exception, 476 bool install_monitor_exception, 477 bool notify_jvmdi) { 478 // Note: Registers r3 xmm0 may be in use for the 479 // result check if synchronized method 480 Label unlocked, unlock, no_unlock; 481 482 // get the value of _do_not_unlock_if_synchronized into r3 483 const Address do_not_unlock_if_synchronized(rthread, 484 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 485 ldrb(r3, do_not_unlock_if_synchronized); 486 strb(zr, do_not_unlock_if_synchronized); // reset the flag 487 488 // get method access flags 489 ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 490 ldrh(r2, Address(r1, Method::access_flags_offset())); 491 tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked); 492 493 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 494 // is set. 495 cbnz(r3, no_unlock); 496 497 // unlock monitor 498 push(state); // save result 499 500 // BasicObjectLock will be first in list, since this is a 501 // synchronized method. However, need to check that the object has 502 // not been unlocked by an explicit monitorexit bytecode. 503 const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset * 504 wordSize - (int) sizeof(BasicObjectLock)); 505 // We use c_rarg1 so that if we go slow path it will be the correct 506 // register for unlock_object to pass to VM directly 507 lea(c_rarg1, monitor); // address of first monitor 508 509 ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset())); 510 cbnz(r0, unlock); 511 512 pop(state); 513 if (throw_monitor_exception) { 514 // Entry already unlocked, need to throw exception 515 call_VM(noreg, CAST_FROM_FN_PTR(address, 516 InterpreterRuntime::throw_illegal_monitor_state_exception)); 517 should_not_reach_here(); 518 } else { 519 // Monitor already unlocked during a stack unroll. If requested, 520 // install an illegal_monitor_state_exception. Continue with 521 // stack unrolling. 522 if (install_monitor_exception) { 523 call_VM(noreg, CAST_FROM_FN_PTR(address, 524 InterpreterRuntime::new_illegal_monitor_state_exception)); 525 } 526 b(unlocked); 527 } 528 529 bind(unlock); 530 unlock_object(c_rarg1); 531 pop(state); 532 533 // Check that for block-structured locking (i.e., that all locked 534 // objects has been unlocked) 535 bind(unlocked); 536 537 // r0: Might contain return value 538 539 // Check that all monitors are unlocked 540 { 541 Label loop, exception, entry, restart; 542 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 543 const Address monitor_block_top( 544 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 545 const Address monitor_block_bot( 546 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 547 548 bind(restart); 549 // We use c_rarg1 so that if we go slow path it will be the correct 550 // register for unlock_object to pass to VM directly 551 ldr(c_rarg1, monitor_block_top); // derelativize pointer 552 lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize))); 553 // c_rarg1 points to current entry, starting with top-most entry 554 555 lea(r19, monitor_block_bot); // points to word before bottom of 556 // monitor block 557 b(entry); 558 559 // Entry already locked, need to throw exception 560 bind(exception); 561 562 if (throw_monitor_exception) { 563 // Throw exception 564 MacroAssembler::call_VM(noreg, 565 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 566 throw_illegal_monitor_state_exception)); 567 should_not_reach_here(); 568 } else { 569 // Stack unrolling. Unlock object and install illegal_monitor_exception. 570 // Unlock does not block, so don't have to worry about the frame. 571 // We don't have to preserve c_rarg1 since we are going to throw an exception. 572 573 push(state); 574 unlock_object(c_rarg1); 575 pop(state); 576 577 if (install_monitor_exception) { 578 call_VM(noreg, CAST_FROM_FN_PTR(address, 579 InterpreterRuntime:: 580 new_illegal_monitor_state_exception)); 581 } 582 583 b(restart); 584 } 585 586 bind(loop); 587 // check if current entry is used 588 ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset())); 589 cbnz(rscratch1, exception); 590 591 add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry 592 bind(entry); 593 cmp(c_rarg1, r19); // check if bottom reached 594 br(Assembler::NE, loop); // if not at bottom then check this entry 595 } 596 597 bind(no_unlock); 598 599 JFR_ONLY(enter_jfr_critical_section();) 600 601 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 602 // that would normally not be safe to use. Such bad returns into unsafe territory of 603 // the stack, will call InterpreterRuntime::at_unwind. 604 Label slow_path; 605 Label fast_path; 606 safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */); 607 br(Assembler::AL, fast_path); 608 bind(slow_path); 609 push(state); 610 set_last_Java_frame(esp, rfp, pc(), rscratch1); 611 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread); 612 reset_last_Java_frame(true); 613 pop(state); 614 bind(fast_path); 615 616 // JVMTI support. Make sure the safepoint poll test is issued prior. 617 if (notify_jvmdi) { 618 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 619 } else { 620 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 621 } 622 623 // remove activation 624 // get sender esp 625 ldr(rscratch2, 626 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 627 if (StackReservedPages > 0) { 628 // testing if reserved zone needs to be re-enabled 629 Label no_reserved_zone_enabling; 630 631 // check if already enabled - if so no re-enabling needed 632 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 633 ldrw(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset())); 634 cmpw(rscratch1, (u1)StackOverflow::stack_guard_enabled); 635 br(Assembler::EQ, no_reserved_zone_enabling); 636 637 // look for an overflow into the stack reserved zone, i.e. 638 // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation 639 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 640 cmp(rscratch2, rscratch1); 641 br(Assembler::LS, no_reserved_zone_enabling); 642 643 JFR_ONLY(leave_jfr_critical_section();) 644 645 call_VM_leaf( 646 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 647 call_VM(noreg, CAST_FROM_FN_PTR(address, 648 InterpreterRuntime::throw_delayed_StackOverflowError)); 649 should_not_reach_here(); 650 651 bind(no_reserved_zone_enabling); 652 } 653 654 // remove frame anchor 655 leave(); 656 657 JFR_ONLY(leave_jfr_critical_section();) 658 659 // restore sender esp 660 mov(esp, rscratch2); 661 662 // If we're returning to interpreted code we will shortly be 663 // adjusting SP to allow some space for ESP. If we're returning to 664 // compiled code the saved sender SP was saved in sender_sp, so this 665 // restores it. 666 andr(sp, esp, -16); 667 } 668 669 #if INCLUDE_JFR 670 void InterpreterMacroAssembler::enter_jfr_critical_section() { 671 const Address sampling_critical_section(rthread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR)); 672 mov(rscratch1, true); 673 strb(rscratch1, sampling_critical_section); 674 } 675 676 void InterpreterMacroAssembler::leave_jfr_critical_section() { 677 const Address sampling_critical_section(rthread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR)); 678 strb(zr, sampling_critical_section); 679 } 680 #endif // INCLUDE_JFR 681 682 // Lock object 683 // 684 // Args: 685 // c_rarg1: BasicObjectLock to be used for locking 686 // 687 // Kills: 688 // r0 689 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, .. (param regs) 690 // rscratch1, rscratch2 (scratch regs) 691 void InterpreterMacroAssembler::lock_object(Register lock_reg) 692 { 693 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 694 if (LockingMode == LM_MONITOR) { 695 call_VM_preemptable(noreg, 696 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 697 lock_reg); 698 } else { 699 Label count, done; 700 701 const Register swap_reg = r0; 702 const Register tmp = c_rarg2; 703 const Register obj_reg = c_rarg3; // Will contain the oop 704 const Register tmp2 = c_rarg4; 705 const Register tmp3 = c_rarg5; 706 707 const int obj_offset = in_bytes(BasicObjectLock::obj_offset()); 708 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 709 const int mark_offset = lock_offset + 710 BasicLock::displaced_header_offset_in_bytes(); 711 712 Label slow_case; 713 714 // Load object pointer into obj_reg %c_rarg3 715 ldr(obj_reg, Address(lock_reg, obj_offset)); 716 717 if (LockingMode == LM_LIGHTWEIGHT) { 718 lightweight_lock(lock_reg, obj_reg, tmp, tmp2, tmp3, slow_case); 719 b(done); 720 } else if (LockingMode == LM_LEGACY) { 721 722 if (DiagnoseSyncOnValueBasedClasses != 0) { 723 load_klass(tmp, obj_reg); 724 ldrb(tmp, Address(tmp, Klass::misc_flags_offset())); 725 tst(tmp, KlassFlags::_misc_is_value_based_class); 726 br(Assembler::NE, slow_case); 727 } 728 729 // Load (object->mark() | 1) into swap_reg 730 ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 731 orr(swap_reg, rscratch1, 1); 732 733 // Save (object->mark() | 1) into BasicLock's displaced header 734 str(swap_reg, Address(lock_reg, mark_offset)); 735 736 assert(lock_offset == 0, 737 "displached header must be first word in BasicObjectLock"); 738 739 Label fail; 740 cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr); 741 742 // Fast check for recursive lock. 743 // 744 // Can apply the optimization only if this is a stack lock 745 // allocated in this thread. For efficiency, we can focus on 746 // recently allocated stack locks (instead of reading the stack 747 // base and checking whether 'mark' points inside the current 748 // thread stack): 749 // 1) (mark & 7) == 0, and 750 // 2) sp <= mark < mark + os::pagesize() 751 // 752 // Warning: sp + os::pagesize can overflow the stack base. We must 753 // neither apply the optimization for an inflated lock allocated 754 // just above the thread stack (this is why condition 1 matters) 755 // nor apply the optimization if the stack lock is inside the stack 756 // of another thread. The latter is avoided even in case of overflow 757 // because we have guard pages at the end of all stacks. Hence, if 758 // we go over the stack base and hit the stack of another thread, 759 // this should not be in a writeable area that could contain a 760 // stack lock allocated by that thread. As a consequence, a stack 761 // lock less than page size away from sp is guaranteed to be 762 // owned by the current thread. 763 // 764 // These 3 tests can be done by evaluating the following 765 // expression: ((mark - sp) & (7 - os::vm_page_size())), 766 // assuming both stack pointer and pagesize have their 767 // least significant 3 bits clear. 768 // NOTE: the mark is in swap_reg %r0 as the result of cmpxchg 769 // NOTE2: aarch64 does not like to subtract sp from rn so take a 770 // copy 771 mov(rscratch1, sp); 772 sub(swap_reg, swap_reg, rscratch1); 773 ands(swap_reg, swap_reg, (uint64_t)(7 - (int)os::vm_page_size())); 774 775 // Save the test result, for recursive case, the result is zero 776 str(swap_reg, Address(lock_reg, mark_offset)); 777 br(Assembler::NE, slow_case); 778 779 bind(count); 780 inc_held_monitor_count(rscratch1); 781 b(done); 782 } 783 bind(slow_case); 784 785 // Call the runtime routine for slow case 786 call_VM_preemptable(noreg, 787 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 788 lock_reg); 789 790 bind(done); 791 } 792 } 793 794 795 // Unlocks an object. Used in monitorexit bytecode and 796 // remove_activation. Throws an IllegalMonitorException if object is 797 // not locked by current thread. 798 // 799 // Args: 800 // c_rarg1: BasicObjectLock for lock 801 // 802 // Kills: 803 // r0 804 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 805 // rscratch1, rscratch2 (scratch regs) 806 void InterpreterMacroAssembler::unlock_object(Register lock_reg) 807 { 808 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1"); 809 810 if (LockingMode == LM_MONITOR) { 811 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 812 } else { 813 Label count, done; 814 815 const Register swap_reg = r0; 816 const Register header_reg = c_rarg2; // Will contain the old oopMark 817 const Register obj_reg = c_rarg3; // Will contain the oop 818 const Register tmp_reg = c_rarg4; // Temporary used by lightweight_unlock 819 820 save_bcp(); // Save in case of exception 821 822 if (LockingMode != LM_LIGHTWEIGHT) { 823 // Convert from BasicObjectLock structure to object and BasicLock 824 // structure Store the BasicLock address into %r0 825 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset())); 826 } 827 828 // Load oop into obj_reg(%c_rarg3) 829 ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 830 831 // Free entry 832 str(zr, Address(lock_reg, BasicObjectLock::obj_offset())); 833 834 Label slow_case; 835 if (LockingMode == LM_LIGHTWEIGHT) { 836 lightweight_unlock(obj_reg, header_reg, swap_reg, tmp_reg, slow_case); 837 b(done); 838 } else if (LockingMode == LM_LEGACY) { 839 // Load the old header from BasicLock structure 840 ldr(header_reg, Address(swap_reg, 841 BasicLock::displaced_header_offset_in_bytes())); 842 843 // Test for recursion 844 cbz(header_reg, count); 845 846 // Atomic swap back the old header 847 cmpxchg_obj_header(swap_reg, header_reg, obj_reg, rscratch1, count, &slow_case); 848 849 bind(count); 850 dec_held_monitor_count(rscratch1); 851 b(done); 852 } 853 854 bind(slow_case); 855 // Call the runtime routine for slow case. 856 str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj 857 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 858 bind(done); 859 restore_bcp(); 860 } 861 } 862 863 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 864 Label& zero_continue) { 865 assert(ProfileInterpreter, "must be profiling interpreter"); 866 ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 867 cbz(mdp, zero_continue); 868 } 869 870 // Set the method data pointer for the current bcp. 871 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 872 assert(ProfileInterpreter, "must be profiling interpreter"); 873 Label set_mdp; 874 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 875 876 // Test MDO to avoid the call if it is null. 877 ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset()))); 878 cbz(r0, set_mdp); 879 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp); 880 // r0: mdi 881 // mdo is guaranteed to be non-zero here, we checked for it before the call. 882 ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset()))); 883 lea(r1, Address(r1, in_bytes(MethodData::data_offset()))); 884 add(r0, r1, r0); 885 str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 886 bind(set_mdp); 887 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 888 } 889 890 void InterpreterMacroAssembler::verify_method_data_pointer() { 891 assert(ProfileInterpreter, "must be profiling interpreter"); 892 #ifdef ASSERT 893 Label verify_continue; 894 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 895 stp(r2, r3, Address(pre(sp, -2 * wordSize))); 896 test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue 897 get_method(r1); 898 899 // If the mdp is valid, it will point to a DataLayout header which is 900 // consistent with the bcp. The converse is highly probable also. 901 ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset()))); 902 ldr(rscratch1, Address(r1, Method::const_offset())); 903 add(r2, r2, rscratch1, Assembler::LSL); 904 lea(r2, Address(r2, ConstMethod::codes_offset())); 905 cmp(r2, rbcp); 906 br(Assembler::EQ, verify_continue); 907 // r1: method 908 // rbcp: bcp // rbcp == 22 909 // r3: mdp 910 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 911 r1, rbcp, r3); 912 bind(verify_continue); 913 ldp(r2, r3, Address(post(sp, 2 * wordSize))); 914 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 915 #endif // ASSERT 916 } 917 918 919 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 920 int constant, 921 Register value) { 922 assert(ProfileInterpreter, "must be profiling interpreter"); 923 Address data(mdp_in, constant); 924 str(value, data); 925 } 926 927 928 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 929 int constant, 930 bool decrement) { 931 increment_mdp_data_at(mdp_in, noreg, constant, decrement); 932 } 933 934 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 935 Register reg, 936 int constant, 937 bool decrement) { 938 assert(ProfileInterpreter, "must be profiling interpreter"); 939 // %%% this does 64bit counters at best it is wasting space 940 // at worst it is a rare bug when counters overflow 941 942 assert_different_registers(rscratch2, rscratch1, mdp_in, reg); 943 944 Address addr1(mdp_in, constant); 945 Address addr2(rscratch2, reg, Address::lsl(0)); 946 Address &addr = addr1; 947 if (reg != noreg) { 948 lea(rscratch2, addr1); 949 addr = addr2; 950 } 951 952 if (decrement) { 953 // Decrement the register. Set condition codes. 954 // Intel does this 955 // addptr(data, (int32_t) -DataLayout::counter_increment); 956 // If the decrement causes the counter to overflow, stay negative 957 // Label L; 958 // jcc(Assembler::negative, L); 959 // addptr(data, (int32_t) DataLayout::counter_increment); 960 // so we do this 961 ldr(rscratch1, addr); 962 subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment); 963 Label L; 964 br(Assembler::LO, L); // skip store if counter underflow 965 str(rscratch1, addr); 966 bind(L); 967 } else { 968 assert(DataLayout::counter_increment == 1, 969 "flow-free idiom only works with 1"); 970 // Intel does this 971 // Increment the register. Set carry flag. 972 // addptr(data, DataLayout::counter_increment); 973 // If the increment causes the counter to overflow, pull back by 1. 974 // sbbptr(data, (int32_t)0); 975 // so we do this 976 ldr(rscratch1, addr); 977 adds(rscratch1, rscratch1, DataLayout::counter_increment); 978 Label L; 979 br(Assembler::CS, L); // skip store if counter overflow 980 str(rscratch1, addr); 981 bind(L); 982 } 983 } 984 985 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 986 int flag_byte_constant) { 987 assert(ProfileInterpreter, "must be profiling interpreter"); 988 int flags_offset = in_bytes(DataLayout::flags_offset()); 989 // Set the flag 990 ldrb(rscratch1, Address(mdp_in, flags_offset)); 991 orr(rscratch1, rscratch1, flag_byte_constant); 992 strb(rscratch1, Address(mdp_in, flags_offset)); 993 } 994 995 996 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 997 int offset, 998 Register value, 999 Register test_value_out, 1000 Label& not_equal_continue) { 1001 assert(ProfileInterpreter, "must be profiling interpreter"); 1002 if (test_value_out == noreg) { 1003 ldr(rscratch1, Address(mdp_in, offset)); 1004 cmp(value, rscratch1); 1005 } else { 1006 // Put the test value into a register, so caller can use it: 1007 ldr(test_value_out, Address(mdp_in, offset)); 1008 cmp(value, test_value_out); 1009 } 1010 br(Assembler::NE, not_equal_continue); 1011 } 1012 1013 1014 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1015 int offset_of_disp) { 1016 assert(ProfileInterpreter, "must be profiling interpreter"); 1017 ldr(rscratch1, Address(mdp_in, offset_of_disp)); 1018 add(mdp_in, mdp_in, rscratch1, LSL); 1019 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1020 } 1021 1022 1023 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1024 Register reg, 1025 int offset_of_disp) { 1026 assert(ProfileInterpreter, "must be profiling interpreter"); 1027 lea(rscratch1, Address(mdp_in, offset_of_disp)); 1028 ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0))); 1029 add(mdp_in, mdp_in, rscratch1, LSL); 1030 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1031 } 1032 1033 1034 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1035 int constant) { 1036 assert(ProfileInterpreter, "must be profiling interpreter"); 1037 add(mdp_in, mdp_in, (unsigned)constant); 1038 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1039 } 1040 1041 1042 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1043 assert(ProfileInterpreter, "must be profiling interpreter"); 1044 // save/restore across call_VM 1045 stp(zr, return_bci, Address(pre(sp, -2 * wordSize))); 1046 call_VM(noreg, 1047 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1048 return_bci); 1049 ldp(zr, return_bci, Address(post(sp, 2 * wordSize))); 1050 } 1051 1052 1053 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1054 Register bumped_count) { 1055 if (ProfileInterpreter) { 1056 Label profile_continue; 1057 1058 // If no method data exists, go to profile_continue. 1059 // Otherwise, assign to mdp 1060 test_method_data_pointer(mdp, profile_continue); 1061 1062 // We are taking a branch. Increment the taken count. 1063 // We inline increment_mdp_data_at to return bumped_count in a register 1064 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1065 Address data(mdp, in_bytes(JumpData::taken_offset())); 1066 ldr(bumped_count, data); 1067 assert(DataLayout::counter_increment == 1, 1068 "flow-free idiom only works with 1"); 1069 // Intel does this to catch overflow 1070 // addptr(bumped_count, DataLayout::counter_increment); 1071 // sbbptr(bumped_count, 0); 1072 // so we do this 1073 adds(bumped_count, bumped_count, DataLayout::counter_increment); 1074 Label L; 1075 br(Assembler::CS, L); // skip store if counter overflow 1076 str(bumped_count, data); 1077 bind(L); 1078 // The method data pointer needs to be updated to reflect the new target. 1079 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1080 bind(profile_continue); 1081 } 1082 } 1083 1084 1085 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1086 if (ProfileInterpreter) { 1087 Label profile_continue; 1088 1089 // If no method data exists, go to profile_continue. 1090 test_method_data_pointer(mdp, profile_continue); 1091 1092 // We are taking a branch. Increment the not taken count. 1093 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1094 1095 // The method data pointer needs to be updated to correspond to 1096 // the next bytecode 1097 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1098 bind(profile_continue); 1099 } 1100 } 1101 1102 1103 void InterpreterMacroAssembler::profile_call(Register mdp) { 1104 if (ProfileInterpreter) { 1105 Label profile_continue; 1106 1107 // If no method data exists, go to profile_continue. 1108 test_method_data_pointer(mdp, profile_continue); 1109 1110 // We are making a call. Increment the count. 1111 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1112 1113 // The method data pointer needs to be updated to reflect the new target. 1114 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1115 bind(profile_continue); 1116 } 1117 } 1118 1119 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1120 if (ProfileInterpreter) { 1121 Label profile_continue; 1122 1123 // If no method data exists, go to profile_continue. 1124 test_method_data_pointer(mdp, profile_continue); 1125 1126 // We are making a call. Increment the count. 1127 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1128 1129 // The method data pointer needs to be updated to reflect the new target. 1130 update_mdp_by_constant(mdp, 1131 in_bytes(VirtualCallData:: 1132 virtual_call_data_size())); 1133 bind(profile_continue); 1134 } 1135 } 1136 1137 1138 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1139 Register mdp, 1140 Register reg2, 1141 bool receiver_can_be_null) { 1142 if (ProfileInterpreter) { 1143 Label profile_continue; 1144 1145 // If no method data exists, go to profile_continue. 1146 test_method_data_pointer(mdp, profile_continue); 1147 1148 Label skip_receiver_profile; 1149 if (receiver_can_be_null) { 1150 Label not_null; 1151 // We are making a call. Increment the count for null receiver. 1152 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1153 b(skip_receiver_profile); 1154 bind(not_null); 1155 } 1156 1157 // Record the receiver type. 1158 record_klass_in_profile(receiver, mdp, reg2); 1159 bind(skip_receiver_profile); 1160 1161 // The method data pointer needs to be updated to reflect the new target. 1162 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1163 bind(profile_continue); 1164 } 1165 } 1166 1167 // This routine creates a state machine for updating the multi-row 1168 // type profile at a virtual call site (or other type-sensitive bytecode). 1169 // The machine visits each row (of receiver/count) until the receiver type 1170 // is found, or until it runs out of rows. At the same time, it remembers 1171 // the location of the first empty row. (An empty row records null for its 1172 // receiver, and can be allocated for a newly-observed receiver type.) 1173 // Because there are two degrees of freedom in the state, a simple linear 1174 // search will not work; it must be a decision tree. Hence this helper 1175 // function is recursive, to generate the required tree structured code. 1176 // It's the interpreter, so we are trading off code space for speed. 1177 // See below for example code. 1178 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1179 Register receiver, Register mdp, 1180 Register reg2, int start_row, 1181 Label& done) { 1182 if (TypeProfileWidth == 0) { 1183 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1184 } else { 1185 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1186 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset); 1187 } 1188 } 1189 1190 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, 1191 Register reg2, int start_row, Label& done, int total_rows, 1192 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn) { 1193 int last_row = total_rows - 1; 1194 assert(start_row <= last_row, "must be work left to do"); 1195 // Test this row for both the item and for null. 1196 // Take any of three different outcomes: 1197 // 1. found item => increment count and goto done 1198 // 2. found null => keep looking for case 1, maybe allocate this cell 1199 // 3. found something else => keep looking for cases 1 and 2 1200 // Case 3 is handled by a recursive call. 1201 for (int row = start_row; row <= last_row; row++) { 1202 Label next_test; 1203 bool test_for_null_also = (row == start_row); 1204 1205 // See if the item is item[n]. 1206 int item_offset = in_bytes(item_offset_fn(row)); 1207 test_mdp_data_at(mdp, item_offset, item, 1208 (test_for_null_also ? reg2 : noreg), 1209 next_test); 1210 // (Reg2 now contains the item from the CallData.) 1211 1212 // The item is item[n]. Increment count[n]. 1213 int count_offset = in_bytes(item_count_offset_fn(row)); 1214 increment_mdp_data_at(mdp, count_offset); 1215 b(done); 1216 bind(next_test); 1217 1218 if (test_for_null_also) { 1219 Label found_null; 1220 // Failed the equality check on item[n]... Test for null. 1221 if (start_row == last_row) { 1222 // The only thing left to do is handle the null case. 1223 cbz(reg2, found_null); 1224 // Item did not match any saved item and there is no empty row for it. 1225 // Increment total counter to indicate polymorphic case. 1226 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1227 b(done); 1228 bind(found_null); 1229 break; 1230 } 1231 // Since null is rare, make it be the branch-taken case. 1232 cbz(reg2, found_null); 1233 1234 // Put all the "Case 3" tests here. 1235 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1236 item_offset_fn, item_count_offset_fn); 1237 1238 // Found a null. Keep searching for a matching item, 1239 // but remember that this is an empty (unused) slot. 1240 bind(found_null); 1241 } 1242 } 1243 1244 // In the fall-through case, we found no matching item, but we 1245 // observed the item[start_row] is null. 1246 1247 // Fill in the item field and increment the count. 1248 int item_offset = in_bytes(item_offset_fn(start_row)); 1249 set_mdp_data_at(mdp, item_offset, item); 1250 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1251 mov(reg2, DataLayout::counter_increment); 1252 set_mdp_data_at(mdp, count_offset, reg2); 1253 if (start_row > 0) { 1254 b(done); 1255 } 1256 } 1257 1258 // Example state machine code for three profile rows: 1259 // // main copy of decision tree, rooted at row[1] 1260 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1261 // if (row[0].rec != nullptr) { 1262 // // inner copy of decision tree, rooted at row[1] 1263 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1264 // if (row[1].rec != nullptr) { 1265 // // degenerate decision tree, rooted at row[2] 1266 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1267 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow 1268 // row[2].init(rec); goto done; 1269 // } else { 1270 // // remember row[1] is empty 1271 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1272 // row[1].init(rec); goto done; 1273 // } 1274 // } else { 1275 // // remember row[0] is empty 1276 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1277 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1278 // row[0].init(rec); goto done; 1279 // } 1280 // done: 1281 1282 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1283 Register mdp, Register reg2) { 1284 assert(ProfileInterpreter, "must be profiling"); 1285 Label done; 1286 1287 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done); 1288 1289 bind (done); 1290 } 1291 1292 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1293 Register mdp) { 1294 if (ProfileInterpreter) { 1295 Label profile_continue; 1296 uint row; 1297 1298 // If no method data exists, go to profile_continue. 1299 test_method_data_pointer(mdp, profile_continue); 1300 1301 // Update the total ret count. 1302 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1303 1304 for (row = 0; row < RetData::row_limit(); row++) { 1305 Label next_test; 1306 1307 // See if return_bci is equal to bci[n]: 1308 test_mdp_data_at(mdp, 1309 in_bytes(RetData::bci_offset(row)), 1310 return_bci, noreg, 1311 next_test); 1312 1313 // return_bci is equal to bci[n]. Increment the count. 1314 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1315 1316 // The method data pointer needs to be updated to reflect the new target. 1317 update_mdp_by_offset(mdp, 1318 in_bytes(RetData::bci_displacement_offset(row))); 1319 b(profile_continue); 1320 bind(next_test); 1321 } 1322 1323 update_mdp_for_ret(return_bci); 1324 1325 bind(profile_continue); 1326 } 1327 } 1328 1329 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1330 if (ProfileInterpreter) { 1331 Label profile_continue; 1332 1333 // If no method data exists, go to profile_continue. 1334 test_method_data_pointer(mdp, profile_continue); 1335 1336 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1337 1338 // The method data pointer needs to be updated. 1339 int mdp_delta = in_bytes(BitData::bit_data_size()); 1340 if (TypeProfileCasts) { 1341 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1342 } 1343 update_mdp_by_constant(mdp, mdp_delta); 1344 1345 bind(profile_continue); 1346 } 1347 } 1348 1349 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1350 if (ProfileInterpreter) { 1351 Label profile_continue; 1352 1353 // If no method data exists, go to profile_continue. 1354 test_method_data_pointer(mdp, profile_continue); 1355 1356 // The method data pointer needs to be updated. 1357 int mdp_delta = in_bytes(BitData::bit_data_size()); 1358 if (TypeProfileCasts) { 1359 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1360 1361 // Record the object type. 1362 record_klass_in_profile(klass, mdp, reg2); 1363 } 1364 update_mdp_by_constant(mdp, mdp_delta); 1365 1366 bind(profile_continue); 1367 } 1368 } 1369 1370 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1371 if (ProfileInterpreter) { 1372 Label profile_continue; 1373 1374 // If no method data exists, go to profile_continue. 1375 test_method_data_pointer(mdp, profile_continue); 1376 1377 // Update the default case count 1378 increment_mdp_data_at(mdp, 1379 in_bytes(MultiBranchData::default_count_offset())); 1380 1381 // The method data pointer needs to be updated. 1382 update_mdp_by_offset(mdp, 1383 in_bytes(MultiBranchData:: 1384 default_displacement_offset())); 1385 1386 bind(profile_continue); 1387 } 1388 } 1389 1390 void InterpreterMacroAssembler::profile_switch_case(Register index, 1391 Register mdp, 1392 Register reg2) { 1393 if (ProfileInterpreter) { 1394 Label profile_continue; 1395 1396 // If no method data exists, go to profile_continue. 1397 test_method_data_pointer(mdp, profile_continue); 1398 1399 // Build the base (index * per_case_size_in_bytes()) + 1400 // case_array_offset_in_bytes() 1401 movw(reg2, in_bytes(MultiBranchData::per_case_size())); 1402 movw(rscratch1, in_bytes(MultiBranchData::case_array_offset())); 1403 Assembler::maddw(index, index, reg2, rscratch1); 1404 1405 // Update the case count 1406 increment_mdp_data_at(mdp, 1407 index, 1408 in_bytes(MultiBranchData::relative_count_offset())); 1409 1410 // The method data pointer needs to be updated. 1411 update_mdp_by_offset(mdp, 1412 index, 1413 in_bytes(MultiBranchData:: 1414 relative_displacement_offset())); 1415 1416 bind(profile_continue); 1417 } 1418 } 1419 1420 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 1421 if (state == atos) { 1422 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 1423 } 1424 } 1425 1426 void InterpreterMacroAssembler::notify_method_entry() { 1427 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1428 // track stack depth. If it is possible to enter interp_only_mode we add 1429 // the code to check if the event should be sent. 1430 if (JvmtiExport::can_post_interpreter_events()) { 1431 Label L; 1432 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1433 cbzw(r3, L); 1434 call_VM(noreg, CAST_FROM_FN_PTR(address, 1435 InterpreterRuntime::post_method_entry)); 1436 bind(L); 1437 } 1438 1439 if (DTraceMethodProbes) { 1440 get_method(c_rarg1); 1441 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1442 rthread, c_rarg1); 1443 } 1444 1445 // RedefineClasses() tracing support for obsolete method entry 1446 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1447 get_method(c_rarg1); 1448 call_VM_leaf( 1449 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1450 rthread, c_rarg1); 1451 } 1452 1453 } 1454 1455 1456 void InterpreterMacroAssembler::notify_method_exit( 1457 TosState state, NotifyMethodExitMode mode) { 1458 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1459 // track stack depth. If it is possible to enter interp_only_mode we add 1460 // the code to check if the event should be sent. 1461 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 1462 Label L; 1463 // Note: frame::interpreter_frame_result has a dependency on how the 1464 // method result is saved across the call to post_method_exit. If this 1465 // is changed then the interpreter_frame_result implementation will 1466 // need to be updated too. 1467 1468 // template interpreter will leave the result on the top of the stack. 1469 push(state); 1470 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1471 cbz(r3, L); 1472 call_VM(noreg, 1473 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 1474 bind(L); 1475 pop(state); 1476 } 1477 1478 if (DTraceMethodProbes) { 1479 push(state); 1480 get_method(c_rarg1); 1481 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1482 rthread, c_rarg1); 1483 pop(state); 1484 } 1485 } 1486 1487 1488 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. 1489 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, 1490 int increment, Address mask, 1491 Register scratch, Register scratch2, 1492 bool preloaded, Condition cond, 1493 Label* where) { 1494 if (!preloaded) { 1495 ldrw(scratch, counter_addr); 1496 } 1497 add(scratch, scratch, increment); 1498 strw(scratch, counter_addr); 1499 ldrw(scratch2, mask); 1500 ands(scratch, scratch, scratch2); 1501 br(cond, *where); 1502 } 1503 1504 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 1505 int number_of_arguments) { 1506 // interpreter specific 1507 // 1508 // Note: No need to save/restore rbcp & rlocals pointer since these 1509 // are callee saved registers and no blocking/ GC can happen 1510 // in leaf calls. 1511 #ifdef ASSERT 1512 { 1513 Label L; 1514 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1515 cbz(rscratch1, L); 1516 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 1517 " last_sp != nullptr"); 1518 bind(L); 1519 } 1520 #endif /* ASSERT */ 1521 // super call 1522 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1523 } 1524 1525 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 1526 Register java_thread, 1527 Register last_java_sp, 1528 address entry_point, 1529 int number_of_arguments, 1530 bool check_exceptions) { 1531 // interpreter specific 1532 // 1533 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 1534 // really make a difference for these runtime calls, since they are 1535 // slow anyway. Btw., bcp must be saved/restored since it may change 1536 // due to GC. 1537 // assert(java_thread == noreg , "not expecting a precomputed java thread"); 1538 save_bcp(); 1539 #ifdef ASSERT 1540 { 1541 Label L; 1542 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1543 cbz(rscratch1, L); 1544 stop("InterpreterMacroAssembler::call_VM_base:" 1545 " last_sp != nullptr"); 1546 bind(L); 1547 } 1548 #endif /* ASSERT */ 1549 // super call 1550 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 1551 entry_point, number_of_arguments, 1552 check_exceptions); 1553 // interpreter specific 1554 restore_bcp(); 1555 restore_locals(); 1556 } 1557 1558 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result, 1559 address entry_point, 1560 Register arg_1) { 1561 assert(arg_1 == c_rarg1, ""); 1562 Label resume_pc, not_preempted; 1563 1564 #ifdef ASSERT 1565 { 1566 Label L; 1567 ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1568 cbz(rscratch1, L); 1569 stop("Should not have alternate return address set"); 1570 bind(L); 1571 } 1572 #endif /* ASSERT */ 1573 1574 // Force freeze slow path. 1575 push_cont_fastpath(); 1576 1577 // Make VM call. In case of preemption set last_pc to the one we want to resume to. 1578 adr(rscratch1, resume_pc); 1579 str(rscratch1, Address(rthread, JavaThread::last_Java_pc_offset())); 1580 call_VM_base(oop_result, noreg, noreg, entry_point, 1, false /*check_exceptions*/); 1581 1582 pop_cont_fastpath(); 1583 1584 // Check if preempted. 1585 ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1586 cbz(rscratch1, not_preempted); 1587 str(zr, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1588 br(rscratch1); 1589 1590 // In case of preemption, this is where we will resume once we finally acquire the monitor. 1591 bind(resume_pc); 1592 restore_after_resume(false /* is_native */); 1593 1594 bind(not_preempted); 1595 } 1596 1597 void InterpreterMacroAssembler::restore_after_resume(bool is_native) { 1598 lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter())); 1599 blr(rscratch1); 1600 if (is_native) { 1601 // On resume we need to set up stack as expected 1602 push(dtos); 1603 push(ltos); 1604 } 1605 } 1606 1607 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 1608 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 1609 Label update, next, none; 1610 1611 verify_oop(obj); 1612 1613 cbnz(obj, update); 1614 orptr(mdo_addr, TypeEntries::null_seen); 1615 b(next); 1616 1617 bind(update); 1618 load_klass(obj, obj); 1619 1620 ldr(rscratch1, mdo_addr); 1621 eor(obj, obj, rscratch1); 1622 tst(obj, TypeEntries::type_klass_mask); 1623 br(Assembler::EQ, next); // klass seen before, nothing to 1624 // do. The unknown bit may have been 1625 // set already but no need to check. 1626 1627 tbnz(obj, exact_log2(TypeEntries::type_unknown), next); 1628 // already unknown. Nothing to do anymore. 1629 1630 cbz(rscratch1, none); 1631 cmp(rscratch1, (u1)TypeEntries::null_seen); 1632 br(Assembler::EQ, none); 1633 // There is a chance that the checks above 1634 // fail if another thread has just set the 1635 // profiling to this obj's klass 1636 eor(obj, obj, rscratch1); // get back original value before XOR 1637 ldr(rscratch1, mdo_addr); 1638 eor(obj, obj, rscratch1); 1639 tst(obj, TypeEntries::type_klass_mask); 1640 br(Assembler::EQ, next); 1641 1642 // different than before. Cannot keep accurate profile. 1643 orptr(mdo_addr, TypeEntries::type_unknown); 1644 b(next); 1645 1646 bind(none); 1647 // first time here. Set profile type. 1648 str(obj, mdo_addr); 1649 #ifdef ASSERT 1650 andr(obj, obj, TypeEntries::type_mask); 1651 verify_klass_ptr(obj); 1652 #endif 1653 1654 bind(next); 1655 } 1656 1657 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 1658 if (!ProfileInterpreter) { 1659 return; 1660 } 1661 1662 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1663 Label profile_continue; 1664 1665 test_method_data_pointer(mdp, profile_continue); 1666 1667 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1668 1669 ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start)); 1670 cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag)); 1671 br(Assembler::NE, profile_continue); 1672 1673 if (MethodData::profile_arguments()) { 1674 Label done; 1675 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 1676 1677 for (int i = 0; i < TypeProfileArgsLimit; i++) { 1678 if (i > 0 || MethodData::profile_return()) { 1679 // If return value type is profiled we may have no argument to profile 1680 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1681 sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count()); 1682 cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count()); 1683 add(rscratch1, mdp, off_to_args); 1684 br(Assembler::LT, done); 1685 } 1686 ldr(tmp, Address(callee, Method::const_offset())); 1687 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 1688 // stack offset o (zero based) from the start of the argument 1689 // list, for n arguments translates into offset n - o - 1 from 1690 // the end of the argument list 1691 ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i)))); 1692 sub(tmp, tmp, rscratch1); 1693 sub(tmp, tmp, 1); 1694 Address arg_addr = argument_address(tmp); 1695 ldr(tmp, arg_addr); 1696 1697 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))); 1698 profile_obj_type(tmp, mdo_arg_addr); 1699 1700 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1701 off_to_args += to_add; 1702 } 1703 1704 if (MethodData::profile_return()) { 1705 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1706 sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1707 } 1708 1709 add(rscratch1, mdp, off_to_args); 1710 bind(done); 1711 mov(mdp, rscratch1); 1712 1713 if (MethodData::profile_return()) { 1714 // We're right after the type profile for the last 1715 // argument. tmp is the number of cells left in the 1716 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1717 // if there's a return to profile. 1718 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 1719 add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size)); 1720 } 1721 str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1722 } else { 1723 assert(MethodData::profile_return(), "either profile call args or call ret"); 1724 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 1725 } 1726 1727 // mdp points right after the end of the 1728 // CallTypeData/VirtualCallTypeData, right after the cells for the 1729 // return value type if there's one 1730 1731 bind(profile_continue); 1732 } 1733 } 1734 1735 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 1736 assert_different_registers(mdp, ret, tmp, rbcp); 1737 if (ProfileInterpreter && MethodData::profile_return()) { 1738 Label profile_continue, done; 1739 1740 test_method_data_pointer(mdp, profile_continue); 1741 1742 if (MethodData::profile_return_jsr292_only()) { 1743 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 1744 1745 // If we don't profile all invoke bytecodes we must make sure 1746 // it's a bytecode we indeed profile. We can't go back to the 1747 // beginning of the ProfileData we intend to update to check its 1748 // type because we're right after it and we don't known its 1749 // length 1750 Label do_profile; 1751 ldrb(rscratch1, Address(rbcp, 0)); 1752 cmp(rscratch1, (u1)Bytecodes::_invokedynamic); 1753 br(Assembler::EQ, do_profile); 1754 cmp(rscratch1, (u1)Bytecodes::_invokehandle); 1755 br(Assembler::EQ, do_profile); 1756 get_method(tmp); 1757 ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset())); 1758 subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1759 br(Assembler::NE, profile_continue); 1760 1761 bind(do_profile); 1762 } 1763 1764 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); 1765 mov(tmp, ret); 1766 profile_obj_type(tmp, mdo_ret_addr); 1767 1768 bind(profile_continue); 1769 } 1770 } 1771 1772 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 1773 assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2); 1774 if (ProfileInterpreter && MethodData::profile_parameters()) { 1775 Label profile_continue, done; 1776 1777 test_method_data_pointer(mdp, profile_continue); 1778 1779 // Load the offset of the area within the MDO used for 1780 // parameters. If it's negative we're not profiling any parameters 1781 ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 1782 tbnz(tmp1, 31, profile_continue); // i.e. sign bit set 1783 1784 // Compute a pointer to the area for parameters from the offset 1785 // and move the pointer to the slot for the last 1786 // parameters. Collect profiling from last parameter down. 1787 // mdo start + parameters offset + array length - 1 1788 add(mdp, mdp, tmp1); 1789 ldr(tmp1, Address(mdp, ArrayData::array_len_offset())); 1790 sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 1791 1792 Label loop; 1793 bind(loop); 1794 1795 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 1796 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 1797 int per_arg_scale = exact_log2(DataLayout::cell_size); 1798 add(rscratch1, mdp, off_base); 1799 add(rscratch2, mdp, type_base); 1800 1801 Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale)); 1802 Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale)); 1803 1804 // load offset on the stack from the slot for this parameter 1805 ldr(tmp2, arg_off); 1806 neg(tmp2, tmp2); 1807 // read the parameter from the local area 1808 ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize))); 1809 1810 // profile the parameter 1811 profile_obj_type(tmp2, arg_type); 1812 1813 // go to next parameter 1814 subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 1815 br(Assembler::GE, loop); 1816 1817 bind(profile_continue); 1818 } 1819 } 1820 1821 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 1822 // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp 1823 get_cache_index_at_bcp(index, 1, sizeof(u4)); 1824 // Get address of invokedynamic array 1825 ldr(cache, Address(rcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 1826 // Scale the index to be the entry index * sizeof(ResolvedIndyEntry) 1827 lsl(index, index, log2i_exact(sizeof(ResolvedIndyEntry))); 1828 add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes()); 1829 lea(cache, Address(cache, index)); 1830 } 1831 1832 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 1833 // Get index out of bytecode pointer 1834 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 1835 // Take shortcut if the size is a power of 2 1836 if (is_power_of_2(sizeof(ResolvedFieldEntry))) { 1837 lsl(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2 1838 } else { 1839 mov(cache, sizeof(ResolvedFieldEntry)); 1840 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry) 1841 } 1842 // Get address of field entries array 1843 ldr(cache, Address(rcpool, ConstantPoolCache::field_entries_offset())); 1844 add(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes()); 1845 lea(cache, Address(cache, index)); 1846 // Prevents stale data from being read after the bytecode is patched to the fast bytecode 1847 membar(MacroAssembler::LoadLoad); 1848 } 1849 1850 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) { 1851 // Get index out of bytecode pointer 1852 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 1853 mov(cache, sizeof(ResolvedMethodEntry)); 1854 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry) 1855 1856 // Get address of field entries array 1857 ldr(cache, Address(rcpool, ConstantPoolCache::method_entries_offset())); 1858 add(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes()); 1859 lea(cache, Address(cache, index)); 1860 }