1 /* 2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "compiler/compiler_globals.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interp_masm_aarch64.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "logging/log.hpp" 35 #include "oops/arrayOop.hpp" 36 #include "oops/markWord.hpp" 37 #include "oops/method.hpp" 38 #include "oops/methodData.hpp" 39 #include "oops/resolvedFieldEntry.hpp" 40 #include "oops/resolvedIndyEntry.hpp" 41 #include "oops/resolvedMethodEntry.hpp" 42 #include "prims/jvmtiExport.hpp" 43 #include "prims/jvmtiThreadState.hpp" 44 #include "runtime/basicLock.hpp" 45 #include "runtime/frame.inline.hpp" 46 #include "runtime/javaThread.hpp" 47 #include "runtime/safepointMechanism.hpp" 48 #include "runtime/sharedRuntime.hpp" 49 #include "utilities/powerOfTwo.hpp" 50 51 void InterpreterMacroAssembler::narrow(Register result) { 52 53 // Get method->_constMethod->_result_type 54 ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 55 ldr(rscratch1, Address(rscratch1, Method::const_offset())); 56 ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset())); 57 58 Label done, notBool, notByte, notChar; 59 60 // common case first 61 cmpw(rscratch1, T_INT); 62 br(Assembler::EQ, done); 63 64 // mask integer result to narrower return type. 65 cmpw(rscratch1, T_BOOLEAN); 66 br(Assembler::NE, notBool); 67 andw(result, result, 0x1); 68 b(done); 69 70 bind(notBool); 71 cmpw(rscratch1, T_BYTE); 72 br(Assembler::NE, notByte); 73 sbfx(result, result, 0, 8); 74 b(done); 75 76 bind(notByte); 77 cmpw(rscratch1, T_CHAR); 78 br(Assembler::NE, notChar); 79 ubfx(result, result, 0, 16); // truncate upper 16 bits 80 b(done); 81 82 bind(notChar); 83 sbfx(result, result, 0, 16); // sign-extend short 84 85 // Nothing to do for T_INT 86 bind(done); 87 } 88 89 void InterpreterMacroAssembler::jump_to_entry(address entry) { 90 assert(entry, "Entry must have been generated by now"); 91 b(entry); 92 } 93 94 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 95 if (JvmtiExport::can_pop_frame()) { 96 Label L; 97 // Initiate popframe handling only if it is not already being 98 // processed. If the flag has the popframe_processing bit set, it 99 // means that this code is called *during* popframe handling - we 100 // don't want to reenter. 101 // This method is only called just after the call into the vm in 102 // call_VM_base, so the arg registers are available. 103 ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset())); 104 tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L); 105 tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L); 106 // Call Interpreter::remove_activation_preserving_args_entry() to get the 107 // address of the same-named entrypoint in the generated interpreter code. 108 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 109 br(r0); 110 bind(L); 111 } 112 } 113 114 115 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 116 ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset())); 117 const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset()); 118 const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset()); 119 const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset()); 120 switch (state) { 121 case atos: ldr(r0, oop_addr); 122 str(zr, oop_addr); 123 interp_verify_oop(r0, state); break; 124 case ltos: ldr(r0, val_addr); break; 125 case btos: // fall through 126 case ztos: // fall through 127 case ctos: // fall through 128 case stos: // fall through 129 case itos: ldrw(r0, val_addr); break; 130 case ftos: ldrs(v0, val_addr); break; 131 case dtos: ldrd(v0, val_addr); break; 132 case vtos: /* nothing to do */ break; 133 default : ShouldNotReachHere(); 134 } 135 // Clean up tos value in the thread object 136 movw(rscratch1, (int) ilgl); 137 strw(rscratch1, tos_addr); 138 strw(zr, val_addr); 139 } 140 141 142 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 143 if (JvmtiExport::can_force_early_return()) { 144 Label L; 145 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 146 cbz(rscratch1, L); // if (thread->jvmti_thread_state() == nullptr) exit; 147 148 // Initiate earlyret handling only if it is not already being processed. 149 // If the flag has the earlyret_processing bit set, it means that this code 150 // is called *during* earlyret handling - we don't want to reenter. 151 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset())); 152 cmpw(rscratch1, JvmtiThreadState::earlyret_pending); 153 br(Assembler::NE, L); 154 155 // Call Interpreter::remove_activation_early_entry() to get the address of the 156 // same-named entrypoint in the generated interpreter code. 157 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 158 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset())); 159 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1); 160 br(r0); 161 bind(L); 162 } 163 } 164 165 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp( 166 Register reg, 167 int bcp_offset) { 168 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 169 ldrh(reg, Address(rbcp, bcp_offset)); 170 rev16(reg, reg); 171 } 172 173 void InterpreterMacroAssembler::get_dispatch() { 174 uint64_t offset; 175 adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset); 176 // Use add() here after ARDP, rather than lea(). 177 // lea() does not generate anything if its offset is zero. 178 // However, relocs expect to find either an ADD or a load/store 179 // insn after an ADRP. add() always generates an ADD insn, even 180 // for add(Rn, Rn, 0). 181 add(rdispatch, rdispatch, offset); 182 } 183 184 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 185 int bcp_offset, 186 size_t index_size) { 187 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 188 if (index_size == sizeof(u2)) { 189 load_unsigned_short(index, Address(rbcp, bcp_offset)); 190 } else if (index_size == sizeof(u4)) { 191 // assert(EnableInvokeDynamic, "giant index used only for JSR 292"); 192 ldrw(index, Address(rbcp, bcp_offset)); 193 } else if (index_size == sizeof(u1)) { 194 load_unsigned_byte(index, Address(rbcp, bcp_offset)); 195 } else { 196 ShouldNotReachHere(); 197 } 198 } 199 200 void InterpreterMacroAssembler::get_method_counters(Register method, 201 Register mcs, Label& skip) { 202 Label has_counters; 203 ldr(mcs, Address(method, Method::method_counters_offset())); 204 cbnz(mcs, has_counters); 205 call_VM(noreg, CAST_FROM_FN_PTR(address, 206 InterpreterRuntime::build_method_counters), method); 207 ldr(mcs, Address(method, Method::method_counters_offset())); 208 cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory 209 bind(has_counters); 210 } 211 212 // Load object from cpool->resolved_references(index) 213 void InterpreterMacroAssembler::load_resolved_reference_at_index( 214 Register result, Register index, Register tmp) { 215 assert_different_registers(result, index); 216 217 get_constant_pool(result); 218 // load pointer for resolved_references[] objArray 219 ldr(result, Address(result, ConstantPool::cache_offset())); 220 ldr(result, Address(result, ConstantPoolCache::resolved_references_offset())); 221 resolve_oop_handle(result, tmp, rscratch2); 222 // Add in the index 223 add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 224 load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop)), tmp, rscratch2); 225 } 226 227 void InterpreterMacroAssembler::load_resolved_klass_at_offset( 228 Register cpool, Register index, Register klass, Register temp) { 229 add(temp, cpool, index, LSL, LogBytesPerWord); 230 ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index 231 ldr(klass, Address(cpool, ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses 232 add(klass, klass, temp, LSL, LogBytesPerWord); 233 ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes())); 234 } 235 236 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 237 // subtype of super_klass. 238 // 239 // Args: 240 // r0: superklass 241 // Rsub_klass: subklass 242 // 243 // Kills: 244 // r2, r5 245 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 246 Label& ok_is_subtype) { 247 assert(Rsub_klass != r0, "r0 holds superklass"); 248 assert(Rsub_klass != r2, "r2 holds 2ndary super array length"); 249 assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr"); 250 251 // Profile the not-null value's klass. 252 profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5 253 254 // Do the check. 255 check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2 256 } 257 258 // Java Expression Stack 259 260 void InterpreterMacroAssembler::pop_ptr(Register r) { 261 ldr(r, post(esp, wordSize)); 262 } 263 264 void InterpreterMacroAssembler::pop_i(Register r) { 265 ldrw(r, post(esp, wordSize)); 266 } 267 268 void InterpreterMacroAssembler::pop_l(Register r) { 269 ldr(r, post(esp, 2 * Interpreter::stackElementSize)); 270 } 271 272 void InterpreterMacroAssembler::push_ptr(Register r) { 273 str(r, pre(esp, -wordSize)); 274 } 275 276 void InterpreterMacroAssembler::push_i(Register r) { 277 str(r, pre(esp, -wordSize)); 278 } 279 280 void InterpreterMacroAssembler::push_l(Register r) { 281 str(zr, pre(esp, -wordSize)); 282 str(r, pre(esp, - wordSize)); 283 } 284 285 void InterpreterMacroAssembler::pop_f(FloatRegister r) { 286 ldrs(r, post(esp, wordSize)); 287 } 288 289 void InterpreterMacroAssembler::pop_d(FloatRegister r) { 290 ldrd(r, post(esp, 2 * Interpreter::stackElementSize)); 291 } 292 293 void InterpreterMacroAssembler::push_f(FloatRegister r) { 294 strs(r, pre(esp, -wordSize)); 295 } 296 297 void InterpreterMacroAssembler::push_d(FloatRegister r) { 298 strd(r, pre(esp, 2* -wordSize)); 299 } 300 301 void InterpreterMacroAssembler::pop(TosState state) { 302 switch (state) { 303 case atos: pop_ptr(); break; 304 case btos: 305 case ztos: 306 case ctos: 307 case stos: 308 case itos: pop_i(); break; 309 case ltos: pop_l(); break; 310 case ftos: pop_f(); break; 311 case dtos: pop_d(); break; 312 case vtos: /* nothing to do */ break; 313 default: ShouldNotReachHere(); 314 } 315 interp_verify_oop(r0, state); 316 } 317 318 void InterpreterMacroAssembler::push(TosState state) { 319 interp_verify_oop(r0, state); 320 switch (state) { 321 case atos: push_ptr(); break; 322 case btos: 323 case ztos: 324 case ctos: 325 case stos: 326 case itos: push_i(); break; 327 case ltos: push_l(); break; 328 case ftos: push_f(); break; 329 case dtos: push_d(); break; 330 case vtos: /* nothing to do */ break; 331 default : ShouldNotReachHere(); 332 } 333 } 334 335 // Helpers for swap and dup 336 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 337 ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 338 } 339 340 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 341 str(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 342 } 343 344 void InterpreterMacroAssembler::load_float(Address src) { 345 ldrs(v0, src); 346 } 347 348 void InterpreterMacroAssembler::load_double(Address src) { 349 ldrd(v0, src); 350 } 351 352 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 353 // set sender sp 354 mov(r19_sender_sp, sp); 355 // record last_sp 356 sub(rscratch1, esp, rfp); 357 asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 358 str(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 359 } 360 361 // Jump to from_interpreted entry of a call unless single stepping is possible 362 // in this thread in which case we must call the i2i entry 363 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 364 prepare_to_jump_from_interpreted(); 365 366 if (JvmtiExport::can_post_interpreter_events()) { 367 Label run_compiled_code; 368 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 369 // compiled code in threads for which the event is enabled. Check here for 370 // interp_only_mode if these events CAN be enabled. 371 ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset())); 372 cbzw(rscratch1, run_compiled_code); 373 ldr(rscratch1, Address(method, Method::interpreter_entry_offset())); 374 br(rscratch1); 375 bind(run_compiled_code); 376 } 377 378 ldr(rscratch1, Address(method, Method::from_interpreted_offset())); 379 br(rscratch1); 380 } 381 382 // The following two routines provide a hook so that an implementation 383 // can schedule the dispatch in two parts. amd64 does not do this. 384 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 385 } 386 387 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 388 dispatch_next(state, step); 389 } 390 391 void InterpreterMacroAssembler::dispatch_base(TosState state, 392 address* table, 393 bool verifyoop, 394 bool generate_poll) { 395 if (VerifyActivationFrameSize) { 396 Label L; 397 sub(rscratch2, rfp, esp); 398 int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize; 399 subs(rscratch2, rscratch2, min_frame_size); 400 br(Assembler::GE, L); 401 stop("broken stack frame"); 402 bind(L); 403 } 404 if (verifyoop) { 405 interp_verify_oop(r0, state); 406 } 407 408 Label safepoint; 409 address* const safepoint_table = Interpreter::safept_table(state); 410 bool needs_thread_local_poll = generate_poll && table != safepoint_table; 411 412 if (needs_thread_local_poll) { 413 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 414 ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset())); 415 tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint); 416 } 417 418 if (table == Interpreter::dispatch_table(state)) { 419 addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state)); 420 ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3))); 421 } else { 422 mov(rscratch2, (address)table); 423 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 424 } 425 br(rscratch2); 426 427 if (needs_thread_local_poll) { 428 bind(safepoint); 429 lea(rscratch2, ExternalAddress((address)safepoint_table)); 430 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 431 br(rscratch2); 432 } 433 } 434 435 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 436 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 437 } 438 439 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 440 dispatch_base(state, Interpreter::normal_table(state)); 441 } 442 443 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 444 dispatch_base(state, Interpreter::normal_table(state), false); 445 } 446 447 448 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 449 // load next bytecode 450 ldrb(rscratch1, Address(pre(rbcp, step))); 451 dispatch_base(state, Interpreter::dispatch_table(state), /*verifyoop*/true, generate_poll); 452 } 453 454 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 455 // load current bytecode 456 ldrb(rscratch1, Address(rbcp, 0)); 457 dispatch_base(state, table); 458 } 459 460 // remove activation 461 // 462 // Apply stack watermark barrier. 463 // Unlock the receiver if this is a synchronized method. 464 // Unlock any Java monitors from synchronized blocks. 465 // Remove the activation from the stack. 466 // 467 // If there are locked Java monitors 468 // If throw_monitor_exception 469 // throws IllegalMonitorStateException 470 // Else if install_monitor_exception 471 // installs IllegalMonitorStateException 472 // Else 473 // no error processing 474 void InterpreterMacroAssembler::remove_activation( 475 TosState state, 476 bool throw_monitor_exception, 477 bool install_monitor_exception, 478 bool notify_jvmdi) { 479 // Note: Registers r3 xmm0 may be in use for the 480 // result check if synchronized method 481 Label unlocked, unlock, no_unlock; 482 483 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 484 // that would normally not be safe to use. Such bad returns into unsafe territory of 485 // the stack, will call InterpreterRuntime::at_unwind. 486 Label slow_path; 487 Label fast_path; 488 safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */); 489 br(Assembler::AL, fast_path); 490 bind(slow_path); 491 push(state); 492 set_last_Java_frame(esp, rfp, (address)pc(), rscratch1); 493 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread); 494 reset_last_Java_frame(true); 495 pop(state); 496 bind(fast_path); 497 498 // get the value of _do_not_unlock_if_synchronized into r3 499 const Address do_not_unlock_if_synchronized(rthread, 500 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 501 ldrb(r3, do_not_unlock_if_synchronized); 502 strb(zr, do_not_unlock_if_synchronized); // reset the flag 503 504 // get method access flags 505 ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 506 ldrh(r2, Address(r1, Method::access_flags_offset())); 507 tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked); 508 509 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 510 // is set. 511 cbnz(r3, no_unlock); 512 513 // unlock monitor 514 push(state); // save result 515 516 // BasicObjectLock will be first in list, since this is a 517 // synchronized method. However, need to check that the object has 518 // not been unlocked by an explicit monitorexit bytecode. 519 const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset * 520 wordSize - (int) sizeof(BasicObjectLock)); 521 // We use c_rarg1 so that if we go slow path it will be the correct 522 // register for unlock_object to pass to VM directly 523 lea(c_rarg1, monitor); // address of first monitor 524 525 ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset())); 526 cbnz(r0, unlock); 527 528 pop(state); 529 if (throw_monitor_exception) { 530 // Entry already unlocked, need to throw exception 531 call_VM(noreg, CAST_FROM_FN_PTR(address, 532 InterpreterRuntime::throw_illegal_monitor_state_exception)); 533 should_not_reach_here(); 534 } else { 535 // Monitor already unlocked during a stack unroll. If requested, 536 // install an illegal_monitor_state_exception. Continue with 537 // stack unrolling. 538 if (install_monitor_exception) { 539 call_VM(noreg, CAST_FROM_FN_PTR(address, 540 InterpreterRuntime::new_illegal_monitor_state_exception)); 541 } 542 b(unlocked); 543 } 544 545 bind(unlock); 546 unlock_object(c_rarg1); 547 pop(state); 548 549 // Check that for block-structured locking (i.e., that all locked 550 // objects has been unlocked) 551 bind(unlocked); 552 553 // r0: Might contain return value 554 555 // Check that all monitors are unlocked 556 { 557 Label loop, exception, entry, restart; 558 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 559 const Address monitor_block_top( 560 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 561 const Address monitor_block_bot( 562 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 563 564 bind(restart); 565 // We use c_rarg1 so that if we go slow path it will be the correct 566 // register for unlock_object to pass to VM directly 567 ldr(c_rarg1, monitor_block_top); // derelativize pointer 568 lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize))); 569 // c_rarg1 points to current entry, starting with top-most entry 570 571 lea(r19, monitor_block_bot); // points to word before bottom of 572 // monitor block 573 b(entry); 574 575 // Entry already locked, need to throw exception 576 bind(exception); 577 578 if (throw_monitor_exception) { 579 // Throw exception 580 MacroAssembler::call_VM(noreg, 581 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 582 throw_illegal_monitor_state_exception)); 583 should_not_reach_here(); 584 } else { 585 // Stack unrolling. Unlock object and install illegal_monitor_exception. 586 // Unlock does not block, so don't have to worry about the frame. 587 // We don't have to preserve c_rarg1 since we are going to throw an exception. 588 589 push(state); 590 unlock_object(c_rarg1); 591 pop(state); 592 593 if (install_monitor_exception) { 594 call_VM(noreg, CAST_FROM_FN_PTR(address, 595 InterpreterRuntime:: 596 new_illegal_monitor_state_exception)); 597 } 598 599 b(restart); 600 } 601 602 bind(loop); 603 // check if current entry is used 604 ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset())); 605 cbnz(rscratch1, exception); 606 607 add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry 608 bind(entry); 609 cmp(c_rarg1, r19); // check if bottom reached 610 br(Assembler::NE, loop); // if not at bottom then check this entry 611 } 612 613 bind(no_unlock); 614 615 // jvmti support 616 if (notify_jvmdi) { 617 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 618 } else { 619 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 620 } 621 622 // remove activation 623 // get sender esp 624 ldr(rscratch2, 625 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 626 if (StackReservedPages > 0) { 627 // testing if reserved zone needs to be re-enabled 628 Label no_reserved_zone_enabling; 629 630 // check if already enabled - if so no re-enabling needed 631 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 632 ldrw(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset())); 633 cmpw(rscratch1, (u1)StackOverflow::stack_guard_enabled); 634 br(Assembler::EQ, no_reserved_zone_enabling); 635 636 // look for an overflow into the stack reserved zone, i.e. 637 // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation 638 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 639 cmp(rscratch2, rscratch1); 640 br(Assembler::LS, no_reserved_zone_enabling); 641 642 call_VM_leaf( 643 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 644 call_VM(noreg, CAST_FROM_FN_PTR(address, 645 InterpreterRuntime::throw_delayed_StackOverflowError)); 646 should_not_reach_here(); 647 648 bind(no_reserved_zone_enabling); 649 } 650 651 // restore sender esp 652 mov(esp, rscratch2); 653 // remove frame anchor 654 leave(); 655 // If we're returning to interpreted code we will shortly be 656 // adjusting SP to allow some space for ESP. If we're returning to 657 // compiled code the saved sender SP was saved in sender_sp, so this 658 // restores it. 659 andr(sp, esp, -16); 660 } 661 662 // Lock object 663 // 664 // Args: 665 // c_rarg1: BasicObjectLock to be used for locking 666 // 667 // Kills: 668 // r0 669 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, .. (param regs) 670 // rscratch1, rscratch2 (scratch regs) 671 void InterpreterMacroAssembler::lock_object(Register lock_reg) 672 { 673 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 674 if (LockingMode == LM_MONITOR) { 675 call_VM_preemptable(noreg, 676 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 677 lock_reg); 678 } else { 679 Label count, done; 680 681 const Register swap_reg = r0; 682 const Register tmp = c_rarg2; 683 const Register obj_reg = c_rarg3; // Will contain the oop 684 const Register tmp2 = c_rarg4; 685 const Register tmp3 = c_rarg5; 686 687 const int obj_offset = in_bytes(BasicObjectLock::obj_offset()); 688 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 689 const int mark_offset = lock_offset + 690 BasicLock::displaced_header_offset_in_bytes(); 691 692 Label slow_case; 693 694 // Load object pointer into obj_reg %c_rarg3 695 ldr(obj_reg, Address(lock_reg, obj_offset)); 696 697 if (DiagnoseSyncOnValueBasedClasses != 0) { 698 load_klass(tmp, obj_reg); 699 ldrb(tmp, Address(tmp, Klass::misc_flags_offset())); 700 tst(tmp, KlassFlags::_misc_is_value_based_class); 701 br(Assembler::NE, slow_case); 702 } 703 704 if (LockingMode == LM_LIGHTWEIGHT) { 705 lightweight_lock(lock_reg, obj_reg, tmp, tmp2, tmp3, slow_case); 706 b(done); 707 } else if (LockingMode == LM_LEGACY) { 708 // Load (object->mark() | 1) into swap_reg 709 ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 710 orr(swap_reg, rscratch1, 1); 711 712 // Save (object->mark() | 1) into BasicLock's displaced header 713 str(swap_reg, Address(lock_reg, mark_offset)); 714 715 assert(lock_offset == 0, 716 "displached header must be first word in BasicObjectLock"); 717 718 Label fail; 719 cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr); 720 721 // Fast check for recursive lock. 722 // 723 // Can apply the optimization only if this is a stack lock 724 // allocated in this thread. For efficiency, we can focus on 725 // recently allocated stack locks (instead of reading the stack 726 // base and checking whether 'mark' points inside the current 727 // thread stack): 728 // 1) (mark & 7) == 0, and 729 // 2) sp <= mark < mark + os::pagesize() 730 // 731 // Warning: sp + os::pagesize can overflow the stack base. We must 732 // neither apply the optimization for an inflated lock allocated 733 // just above the thread stack (this is why condition 1 matters) 734 // nor apply the optimization if the stack lock is inside the stack 735 // of another thread. The latter is avoided even in case of overflow 736 // because we have guard pages at the end of all stacks. Hence, if 737 // we go over the stack base and hit the stack of another thread, 738 // this should not be in a writeable area that could contain a 739 // stack lock allocated by that thread. As a consequence, a stack 740 // lock less than page size away from sp is guaranteed to be 741 // owned by the current thread. 742 // 743 // These 3 tests can be done by evaluating the following 744 // expression: ((mark - sp) & (7 - os::vm_page_size())), 745 // assuming both stack pointer and pagesize have their 746 // least significant 3 bits clear. 747 // NOTE: the mark is in swap_reg %r0 as the result of cmpxchg 748 // NOTE2: aarch64 does not like to subtract sp from rn so take a 749 // copy 750 mov(rscratch1, sp); 751 sub(swap_reg, swap_reg, rscratch1); 752 ands(swap_reg, swap_reg, (uint64_t)(7 - (int)os::vm_page_size())); 753 754 // Save the test result, for recursive case, the result is zero 755 str(swap_reg, Address(lock_reg, mark_offset)); 756 br(Assembler::NE, slow_case); 757 758 bind(count); 759 inc_held_monitor_count(rscratch1); 760 b(done); 761 } 762 bind(slow_case); 763 764 // Call the runtime routine for slow case 765 call_VM_preemptable(noreg, 766 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 767 lock_reg); 768 769 bind(done); 770 } 771 } 772 773 774 // Unlocks an object. Used in monitorexit bytecode and 775 // remove_activation. Throws an IllegalMonitorException if object is 776 // not locked by current thread. 777 // 778 // Args: 779 // c_rarg1: BasicObjectLock for lock 780 // 781 // Kills: 782 // r0 783 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 784 // rscratch1, rscratch2 (scratch regs) 785 void InterpreterMacroAssembler::unlock_object(Register lock_reg) 786 { 787 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1"); 788 789 if (LockingMode == LM_MONITOR) { 790 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 791 } else { 792 Label count, done; 793 794 const Register swap_reg = r0; 795 const Register header_reg = c_rarg2; // Will contain the old oopMark 796 const Register obj_reg = c_rarg3; // Will contain the oop 797 const Register tmp_reg = c_rarg4; // Temporary used by lightweight_unlock 798 799 save_bcp(); // Save in case of exception 800 801 if (LockingMode != LM_LIGHTWEIGHT) { 802 // Convert from BasicObjectLock structure to object and BasicLock 803 // structure Store the BasicLock address into %r0 804 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset())); 805 } 806 807 // Load oop into obj_reg(%c_rarg3) 808 ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 809 810 // Free entry 811 str(zr, Address(lock_reg, BasicObjectLock::obj_offset())); 812 813 Label slow_case; 814 if (LockingMode == LM_LIGHTWEIGHT) { 815 lightweight_unlock(obj_reg, header_reg, swap_reg, tmp_reg, slow_case); 816 b(done); 817 } else if (LockingMode == LM_LEGACY) { 818 // Load the old header from BasicLock structure 819 ldr(header_reg, Address(swap_reg, 820 BasicLock::displaced_header_offset_in_bytes())); 821 822 // Test for recursion 823 cbz(header_reg, count); 824 825 // Atomic swap back the old header 826 cmpxchg_obj_header(swap_reg, header_reg, obj_reg, rscratch1, count, &slow_case); 827 828 bind(count); 829 dec_held_monitor_count(rscratch1); 830 b(done); 831 } 832 833 bind(slow_case); 834 // Call the runtime routine for slow case. 835 str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj 836 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 837 bind(done); 838 restore_bcp(); 839 } 840 } 841 842 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 843 Label& zero_continue) { 844 assert(ProfileInterpreter, "must be profiling interpreter"); 845 ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 846 cbz(mdp, zero_continue); 847 } 848 849 // Set the method data pointer for the current bcp. 850 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 851 assert(ProfileInterpreter, "must be profiling interpreter"); 852 Label set_mdp; 853 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 854 855 // Test MDO to avoid the call if it is null. 856 ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset()))); 857 cbz(r0, set_mdp); 858 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp); 859 // r0: mdi 860 // mdo is guaranteed to be non-zero here, we checked for it before the call. 861 ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset()))); 862 lea(r1, Address(r1, in_bytes(MethodData::data_offset()))); 863 add(r0, r1, r0); 864 str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 865 bind(set_mdp); 866 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 867 } 868 869 void InterpreterMacroAssembler::verify_method_data_pointer() { 870 assert(ProfileInterpreter, "must be profiling interpreter"); 871 #ifdef ASSERT 872 Label verify_continue; 873 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 874 stp(r2, r3, Address(pre(sp, -2 * wordSize))); 875 test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue 876 get_method(r1); 877 878 // If the mdp is valid, it will point to a DataLayout header which is 879 // consistent with the bcp. The converse is highly probable also. 880 ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset()))); 881 ldr(rscratch1, Address(r1, Method::const_offset())); 882 add(r2, r2, rscratch1, Assembler::LSL); 883 lea(r2, Address(r2, ConstMethod::codes_offset())); 884 cmp(r2, rbcp); 885 br(Assembler::EQ, verify_continue); 886 // r1: method 887 // rbcp: bcp // rbcp == 22 888 // r3: mdp 889 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 890 r1, rbcp, r3); 891 bind(verify_continue); 892 ldp(r2, r3, Address(post(sp, 2 * wordSize))); 893 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 894 #endif // ASSERT 895 } 896 897 898 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 899 int constant, 900 Register value) { 901 assert(ProfileInterpreter, "must be profiling interpreter"); 902 Address data(mdp_in, constant); 903 str(value, data); 904 } 905 906 907 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 908 int constant, 909 bool decrement) { 910 increment_mdp_data_at(mdp_in, noreg, constant, decrement); 911 } 912 913 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 914 Register reg, 915 int constant, 916 bool decrement) { 917 assert(ProfileInterpreter, "must be profiling interpreter"); 918 // %%% this does 64bit counters at best it is wasting space 919 // at worst it is a rare bug when counters overflow 920 921 assert_different_registers(rscratch2, rscratch1, mdp_in, reg); 922 923 Address addr1(mdp_in, constant); 924 Address addr2(rscratch2, reg, Address::lsl(0)); 925 Address &addr = addr1; 926 if (reg != noreg) { 927 lea(rscratch2, addr1); 928 addr = addr2; 929 } 930 931 if (decrement) { 932 // Decrement the register. Set condition codes. 933 // Intel does this 934 // addptr(data, (int32_t) -DataLayout::counter_increment); 935 // If the decrement causes the counter to overflow, stay negative 936 // Label L; 937 // jcc(Assembler::negative, L); 938 // addptr(data, (int32_t) DataLayout::counter_increment); 939 // so we do this 940 ldr(rscratch1, addr); 941 subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment); 942 Label L; 943 br(Assembler::LO, L); // skip store if counter underflow 944 str(rscratch1, addr); 945 bind(L); 946 } else { 947 assert(DataLayout::counter_increment == 1, 948 "flow-free idiom only works with 1"); 949 // Intel does this 950 // Increment the register. Set carry flag. 951 // addptr(data, DataLayout::counter_increment); 952 // If the increment causes the counter to overflow, pull back by 1. 953 // sbbptr(data, (int32_t)0); 954 // so we do this 955 ldr(rscratch1, addr); 956 adds(rscratch1, rscratch1, DataLayout::counter_increment); 957 Label L; 958 br(Assembler::CS, L); // skip store if counter overflow 959 str(rscratch1, addr); 960 bind(L); 961 } 962 } 963 964 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 965 int flag_byte_constant) { 966 assert(ProfileInterpreter, "must be profiling interpreter"); 967 int flags_offset = in_bytes(DataLayout::flags_offset()); 968 // Set the flag 969 ldrb(rscratch1, Address(mdp_in, flags_offset)); 970 orr(rscratch1, rscratch1, flag_byte_constant); 971 strb(rscratch1, Address(mdp_in, flags_offset)); 972 } 973 974 975 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 976 int offset, 977 Register value, 978 Register test_value_out, 979 Label& not_equal_continue) { 980 assert(ProfileInterpreter, "must be profiling interpreter"); 981 if (test_value_out == noreg) { 982 ldr(rscratch1, Address(mdp_in, offset)); 983 cmp(value, rscratch1); 984 } else { 985 // Put the test value into a register, so caller can use it: 986 ldr(test_value_out, Address(mdp_in, offset)); 987 cmp(value, test_value_out); 988 } 989 br(Assembler::NE, not_equal_continue); 990 } 991 992 993 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 994 int offset_of_disp) { 995 assert(ProfileInterpreter, "must be profiling interpreter"); 996 ldr(rscratch1, Address(mdp_in, offset_of_disp)); 997 add(mdp_in, mdp_in, rscratch1, LSL); 998 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 999 } 1000 1001 1002 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1003 Register reg, 1004 int offset_of_disp) { 1005 assert(ProfileInterpreter, "must be profiling interpreter"); 1006 lea(rscratch1, Address(mdp_in, offset_of_disp)); 1007 ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0))); 1008 add(mdp_in, mdp_in, rscratch1, LSL); 1009 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1010 } 1011 1012 1013 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1014 int constant) { 1015 assert(ProfileInterpreter, "must be profiling interpreter"); 1016 add(mdp_in, mdp_in, (unsigned)constant); 1017 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1018 } 1019 1020 1021 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1022 assert(ProfileInterpreter, "must be profiling interpreter"); 1023 // save/restore across call_VM 1024 stp(zr, return_bci, Address(pre(sp, -2 * wordSize))); 1025 call_VM(noreg, 1026 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1027 return_bci); 1028 ldp(zr, return_bci, Address(post(sp, 2 * wordSize))); 1029 } 1030 1031 1032 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1033 Register bumped_count) { 1034 if (ProfileInterpreter) { 1035 Label profile_continue; 1036 1037 // If no method data exists, go to profile_continue. 1038 // Otherwise, assign to mdp 1039 test_method_data_pointer(mdp, profile_continue); 1040 1041 // We are taking a branch. Increment the taken count. 1042 // We inline increment_mdp_data_at to return bumped_count in a register 1043 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1044 Address data(mdp, in_bytes(JumpData::taken_offset())); 1045 ldr(bumped_count, data); 1046 assert(DataLayout::counter_increment == 1, 1047 "flow-free idiom only works with 1"); 1048 // Intel does this to catch overflow 1049 // addptr(bumped_count, DataLayout::counter_increment); 1050 // sbbptr(bumped_count, 0); 1051 // so we do this 1052 adds(bumped_count, bumped_count, DataLayout::counter_increment); 1053 Label L; 1054 br(Assembler::CS, L); // skip store if counter overflow 1055 str(bumped_count, data); 1056 bind(L); 1057 // The method data pointer needs to be updated to reflect the new target. 1058 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1059 bind(profile_continue); 1060 } 1061 } 1062 1063 1064 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1065 if (ProfileInterpreter) { 1066 Label profile_continue; 1067 1068 // If no method data exists, go to profile_continue. 1069 test_method_data_pointer(mdp, profile_continue); 1070 1071 // We are taking a branch. Increment the not taken count. 1072 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1073 1074 // The method data pointer needs to be updated to correspond to 1075 // the next bytecode 1076 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1077 bind(profile_continue); 1078 } 1079 } 1080 1081 1082 void InterpreterMacroAssembler::profile_call(Register mdp) { 1083 if (ProfileInterpreter) { 1084 Label profile_continue; 1085 1086 // If no method data exists, go to profile_continue. 1087 test_method_data_pointer(mdp, profile_continue); 1088 1089 // We are making a call. Increment the count. 1090 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1091 1092 // The method data pointer needs to be updated to reflect the new target. 1093 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1094 bind(profile_continue); 1095 } 1096 } 1097 1098 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1099 if (ProfileInterpreter) { 1100 Label profile_continue; 1101 1102 // If no method data exists, go to profile_continue. 1103 test_method_data_pointer(mdp, profile_continue); 1104 1105 // We are making a call. Increment the count. 1106 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1107 1108 // The method data pointer needs to be updated to reflect the new target. 1109 update_mdp_by_constant(mdp, 1110 in_bytes(VirtualCallData:: 1111 virtual_call_data_size())); 1112 bind(profile_continue); 1113 } 1114 } 1115 1116 1117 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1118 Register mdp, 1119 Register reg2, 1120 bool receiver_can_be_null) { 1121 if (ProfileInterpreter) { 1122 Label profile_continue; 1123 1124 // If no method data exists, go to profile_continue. 1125 test_method_data_pointer(mdp, profile_continue); 1126 1127 Label skip_receiver_profile; 1128 if (receiver_can_be_null) { 1129 Label not_null; 1130 // We are making a call. Increment the count for null receiver. 1131 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1132 b(skip_receiver_profile); 1133 bind(not_null); 1134 } 1135 1136 // Record the receiver type. 1137 record_klass_in_profile(receiver, mdp, reg2); 1138 bind(skip_receiver_profile); 1139 1140 // The method data pointer needs to be updated to reflect the new target. 1141 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1142 bind(profile_continue); 1143 } 1144 } 1145 1146 // This routine creates a state machine for updating the multi-row 1147 // type profile at a virtual call site (or other type-sensitive bytecode). 1148 // The machine visits each row (of receiver/count) until the receiver type 1149 // is found, or until it runs out of rows. At the same time, it remembers 1150 // the location of the first empty row. (An empty row records null for its 1151 // receiver, and can be allocated for a newly-observed receiver type.) 1152 // Because there are two degrees of freedom in the state, a simple linear 1153 // search will not work; it must be a decision tree. Hence this helper 1154 // function is recursive, to generate the required tree structured code. 1155 // It's the interpreter, so we are trading off code space for speed. 1156 // See below for example code. 1157 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1158 Register receiver, Register mdp, 1159 Register reg2, int start_row, 1160 Label& done) { 1161 if (TypeProfileWidth == 0) { 1162 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1163 } else { 1164 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1165 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset); 1166 } 1167 } 1168 1169 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, 1170 Register reg2, int start_row, Label& done, int total_rows, 1171 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn) { 1172 int last_row = total_rows - 1; 1173 assert(start_row <= last_row, "must be work left to do"); 1174 // Test this row for both the item and for null. 1175 // Take any of three different outcomes: 1176 // 1. found item => increment count and goto done 1177 // 2. found null => keep looking for case 1, maybe allocate this cell 1178 // 3. found something else => keep looking for cases 1 and 2 1179 // Case 3 is handled by a recursive call. 1180 for (int row = start_row; row <= last_row; row++) { 1181 Label next_test; 1182 bool test_for_null_also = (row == start_row); 1183 1184 // See if the item is item[n]. 1185 int item_offset = in_bytes(item_offset_fn(row)); 1186 test_mdp_data_at(mdp, item_offset, item, 1187 (test_for_null_also ? reg2 : noreg), 1188 next_test); 1189 // (Reg2 now contains the item from the CallData.) 1190 1191 // The item is item[n]. Increment count[n]. 1192 int count_offset = in_bytes(item_count_offset_fn(row)); 1193 increment_mdp_data_at(mdp, count_offset); 1194 b(done); 1195 bind(next_test); 1196 1197 if (test_for_null_also) { 1198 Label found_null; 1199 // Failed the equality check on item[n]... Test for null. 1200 if (start_row == last_row) { 1201 // The only thing left to do is handle the null case. 1202 cbz(reg2, found_null); 1203 // Item did not match any saved item and there is no empty row for it. 1204 // Increment total counter to indicate polymorphic case. 1205 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1206 b(done); 1207 bind(found_null); 1208 break; 1209 } 1210 // Since null is rare, make it be the branch-taken case. 1211 cbz(reg2, found_null); 1212 1213 // Put all the "Case 3" tests here. 1214 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1215 item_offset_fn, item_count_offset_fn); 1216 1217 // Found a null. Keep searching for a matching item, 1218 // but remember that this is an empty (unused) slot. 1219 bind(found_null); 1220 } 1221 } 1222 1223 // In the fall-through case, we found no matching item, but we 1224 // observed the item[start_row] is null. 1225 1226 // Fill in the item field and increment the count. 1227 int item_offset = in_bytes(item_offset_fn(start_row)); 1228 set_mdp_data_at(mdp, item_offset, item); 1229 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1230 mov(reg2, DataLayout::counter_increment); 1231 set_mdp_data_at(mdp, count_offset, reg2); 1232 if (start_row > 0) { 1233 b(done); 1234 } 1235 } 1236 1237 // Example state machine code for three profile rows: 1238 // // main copy of decision tree, rooted at row[1] 1239 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1240 // if (row[0].rec != nullptr) { 1241 // // inner copy of decision tree, rooted at row[1] 1242 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1243 // if (row[1].rec != nullptr) { 1244 // // degenerate decision tree, rooted at row[2] 1245 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1246 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow 1247 // row[2].init(rec); goto done; 1248 // } else { 1249 // // remember row[1] is empty 1250 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1251 // row[1].init(rec); goto done; 1252 // } 1253 // } else { 1254 // // remember row[0] is empty 1255 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1256 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1257 // row[0].init(rec); goto done; 1258 // } 1259 // done: 1260 1261 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1262 Register mdp, Register reg2) { 1263 assert(ProfileInterpreter, "must be profiling"); 1264 Label done; 1265 1266 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done); 1267 1268 bind (done); 1269 } 1270 1271 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1272 Register mdp) { 1273 if (ProfileInterpreter) { 1274 Label profile_continue; 1275 uint row; 1276 1277 // If no method data exists, go to profile_continue. 1278 test_method_data_pointer(mdp, profile_continue); 1279 1280 // Update the total ret count. 1281 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1282 1283 for (row = 0; row < RetData::row_limit(); row++) { 1284 Label next_test; 1285 1286 // See if return_bci is equal to bci[n]: 1287 test_mdp_data_at(mdp, 1288 in_bytes(RetData::bci_offset(row)), 1289 return_bci, noreg, 1290 next_test); 1291 1292 // return_bci is equal to bci[n]. Increment the count. 1293 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1294 1295 // The method data pointer needs to be updated to reflect the new target. 1296 update_mdp_by_offset(mdp, 1297 in_bytes(RetData::bci_displacement_offset(row))); 1298 b(profile_continue); 1299 bind(next_test); 1300 } 1301 1302 update_mdp_for_ret(return_bci); 1303 1304 bind(profile_continue); 1305 } 1306 } 1307 1308 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1309 if (ProfileInterpreter) { 1310 Label profile_continue; 1311 1312 // If no method data exists, go to profile_continue. 1313 test_method_data_pointer(mdp, profile_continue); 1314 1315 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1316 1317 // The method data pointer needs to be updated. 1318 int mdp_delta = in_bytes(BitData::bit_data_size()); 1319 if (TypeProfileCasts) { 1320 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1321 } 1322 update_mdp_by_constant(mdp, mdp_delta); 1323 1324 bind(profile_continue); 1325 } 1326 } 1327 1328 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1329 if (ProfileInterpreter) { 1330 Label profile_continue; 1331 1332 // If no method data exists, go to profile_continue. 1333 test_method_data_pointer(mdp, profile_continue); 1334 1335 // The method data pointer needs to be updated. 1336 int mdp_delta = in_bytes(BitData::bit_data_size()); 1337 if (TypeProfileCasts) { 1338 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1339 1340 // Record the object type. 1341 record_klass_in_profile(klass, mdp, reg2); 1342 } 1343 update_mdp_by_constant(mdp, mdp_delta); 1344 1345 bind(profile_continue); 1346 } 1347 } 1348 1349 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1350 if (ProfileInterpreter) { 1351 Label profile_continue; 1352 1353 // If no method data exists, go to profile_continue. 1354 test_method_data_pointer(mdp, profile_continue); 1355 1356 // Update the default case count 1357 increment_mdp_data_at(mdp, 1358 in_bytes(MultiBranchData::default_count_offset())); 1359 1360 // The method data pointer needs to be updated. 1361 update_mdp_by_offset(mdp, 1362 in_bytes(MultiBranchData:: 1363 default_displacement_offset())); 1364 1365 bind(profile_continue); 1366 } 1367 } 1368 1369 void InterpreterMacroAssembler::profile_switch_case(Register index, 1370 Register mdp, 1371 Register reg2) { 1372 if (ProfileInterpreter) { 1373 Label profile_continue; 1374 1375 // If no method data exists, go to profile_continue. 1376 test_method_data_pointer(mdp, profile_continue); 1377 1378 // Build the base (index * per_case_size_in_bytes()) + 1379 // case_array_offset_in_bytes() 1380 movw(reg2, in_bytes(MultiBranchData::per_case_size())); 1381 movw(rscratch1, in_bytes(MultiBranchData::case_array_offset())); 1382 Assembler::maddw(index, index, reg2, rscratch1); 1383 1384 // Update the case count 1385 increment_mdp_data_at(mdp, 1386 index, 1387 in_bytes(MultiBranchData::relative_count_offset())); 1388 1389 // The method data pointer needs to be updated. 1390 update_mdp_by_offset(mdp, 1391 index, 1392 in_bytes(MultiBranchData:: 1393 relative_displacement_offset())); 1394 1395 bind(profile_continue); 1396 } 1397 } 1398 1399 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 1400 if (state == atos) { 1401 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 1402 } 1403 } 1404 1405 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; } 1406 1407 1408 void InterpreterMacroAssembler::notify_method_entry() { 1409 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1410 // track stack depth. If it is possible to enter interp_only_mode we add 1411 // the code to check if the event should be sent. 1412 if (JvmtiExport::can_post_interpreter_events()) { 1413 Label L; 1414 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1415 cbzw(r3, L); 1416 call_VM(noreg, CAST_FROM_FN_PTR(address, 1417 InterpreterRuntime::post_method_entry)); 1418 bind(L); 1419 } 1420 1421 if (DTraceMethodProbes) { 1422 get_method(c_rarg1); 1423 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1424 rthread, c_rarg1); 1425 } 1426 1427 // RedefineClasses() tracing support for obsolete method entry 1428 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1429 get_method(c_rarg1); 1430 call_VM_leaf( 1431 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1432 rthread, c_rarg1); 1433 } 1434 1435 } 1436 1437 1438 void InterpreterMacroAssembler::notify_method_exit( 1439 TosState state, NotifyMethodExitMode mode) { 1440 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1441 // track stack depth. If it is possible to enter interp_only_mode we add 1442 // the code to check if the event should be sent. 1443 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 1444 Label L; 1445 // Note: frame::interpreter_frame_result has a dependency on how the 1446 // method result is saved across the call to post_method_exit. If this 1447 // is changed then the interpreter_frame_result implementation will 1448 // need to be updated too. 1449 1450 // template interpreter will leave the result on the top of the stack. 1451 push(state); 1452 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1453 cbz(r3, L); 1454 call_VM(noreg, 1455 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 1456 bind(L); 1457 pop(state); 1458 } 1459 1460 if (DTraceMethodProbes) { 1461 push(state); 1462 get_method(c_rarg1); 1463 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1464 rthread, c_rarg1); 1465 pop(state); 1466 } 1467 } 1468 1469 1470 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. 1471 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, 1472 int increment, Address mask, 1473 Register scratch, Register scratch2, 1474 bool preloaded, Condition cond, 1475 Label* where) { 1476 if (!preloaded) { 1477 ldrw(scratch, counter_addr); 1478 } 1479 add(scratch, scratch, increment); 1480 strw(scratch, counter_addr); 1481 ldrw(scratch2, mask); 1482 ands(scratch, scratch, scratch2); 1483 br(cond, *where); 1484 } 1485 1486 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 1487 int number_of_arguments) { 1488 // interpreter specific 1489 // 1490 // Note: No need to save/restore rbcp & rlocals pointer since these 1491 // are callee saved registers and no blocking/ GC can happen 1492 // in leaf calls. 1493 #ifdef ASSERT 1494 { 1495 Label L; 1496 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1497 cbz(rscratch1, L); 1498 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 1499 " last_sp != nullptr"); 1500 bind(L); 1501 } 1502 #endif /* ASSERT */ 1503 // super call 1504 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1505 } 1506 1507 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 1508 Register java_thread, 1509 Register last_java_sp, 1510 address entry_point, 1511 int number_of_arguments, 1512 bool check_exceptions) { 1513 // interpreter specific 1514 // 1515 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 1516 // really make a difference for these runtime calls, since they are 1517 // slow anyway. Btw., bcp must be saved/restored since it may change 1518 // due to GC. 1519 // assert(java_thread == noreg , "not expecting a precomputed java thread"); 1520 save_bcp(); 1521 #ifdef ASSERT 1522 { 1523 Label L; 1524 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1525 cbz(rscratch1, L); 1526 stop("InterpreterMacroAssembler::call_VM_base:" 1527 " last_sp != nullptr"); 1528 bind(L); 1529 } 1530 #endif /* ASSERT */ 1531 // super call 1532 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 1533 entry_point, number_of_arguments, 1534 check_exceptions); 1535 // interpreter specific 1536 restore_bcp(); 1537 restore_locals(); 1538 } 1539 1540 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result, 1541 address entry_point, 1542 Register arg_1) { 1543 assert(arg_1 == c_rarg1, ""); 1544 Label resume_pc, not_preempted; 1545 1546 #ifdef ASSERT 1547 { 1548 Label L; 1549 ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1550 cbz(rscratch1, L); 1551 stop("Should not have alternate return address set"); 1552 bind(L); 1553 } 1554 #endif /* ASSERT */ 1555 1556 // Force freeze slow path. 1557 push_cont_fastpath(); 1558 1559 // Make VM call. In case of preemption set last_pc to the one we want to resume to. 1560 adr(rscratch1, resume_pc); 1561 str(rscratch1, Address(rthread, JavaThread::last_Java_pc_offset())); 1562 call_VM_base(oop_result, noreg, noreg, entry_point, 1, false /*check_exceptions*/); 1563 1564 pop_cont_fastpath(); 1565 1566 // Check if preempted. 1567 ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1568 cbz(rscratch1, not_preempted); 1569 str(zr, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1570 br(rscratch1); 1571 1572 // In case of preemption, this is where we will resume once we finally acquire the monitor. 1573 bind(resume_pc); 1574 restore_after_resume(false /* is_native */); 1575 1576 bind(not_preempted); 1577 } 1578 1579 void InterpreterMacroAssembler::restore_after_resume(bool is_native) { 1580 lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter())); 1581 blr(rscratch1); 1582 if (is_native) { 1583 // On resume we need to set up stack as expected 1584 push(dtos); 1585 push(ltos); 1586 } 1587 } 1588 1589 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 1590 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 1591 Label update, next, none; 1592 1593 verify_oop(obj); 1594 1595 cbnz(obj, update); 1596 orptr(mdo_addr, TypeEntries::null_seen); 1597 b(next); 1598 1599 bind(update); 1600 load_klass(obj, obj); 1601 1602 ldr(rscratch1, mdo_addr); 1603 eor(obj, obj, rscratch1); 1604 tst(obj, TypeEntries::type_klass_mask); 1605 br(Assembler::EQ, next); // klass seen before, nothing to 1606 // do. The unknown bit may have been 1607 // set already but no need to check. 1608 1609 tbnz(obj, exact_log2(TypeEntries::type_unknown), next); 1610 // already unknown. Nothing to do anymore. 1611 1612 cbz(rscratch1, none); 1613 cmp(rscratch1, (u1)TypeEntries::null_seen); 1614 br(Assembler::EQ, none); 1615 // There is a chance that the checks above 1616 // fail if another thread has just set the 1617 // profiling to this obj's klass 1618 eor(obj, obj, rscratch1); // get back original value before XOR 1619 ldr(rscratch1, mdo_addr); 1620 eor(obj, obj, rscratch1); 1621 tst(obj, TypeEntries::type_klass_mask); 1622 br(Assembler::EQ, next); 1623 1624 // different than before. Cannot keep accurate profile. 1625 orptr(mdo_addr, TypeEntries::type_unknown); 1626 b(next); 1627 1628 bind(none); 1629 // first time here. Set profile type. 1630 str(obj, mdo_addr); 1631 #ifdef ASSERT 1632 andr(obj, obj, TypeEntries::type_mask); 1633 verify_klass_ptr(obj); 1634 #endif 1635 1636 bind(next); 1637 } 1638 1639 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 1640 if (!ProfileInterpreter) { 1641 return; 1642 } 1643 1644 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1645 Label profile_continue; 1646 1647 test_method_data_pointer(mdp, profile_continue); 1648 1649 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1650 1651 ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start)); 1652 cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag)); 1653 br(Assembler::NE, profile_continue); 1654 1655 if (MethodData::profile_arguments()) { 1656 Label done; 1657 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 1658 1659 for (int i = 0; i < TypeProfileArgsLimit; i++) { 1660 if (i > 0 || MethodData::profile_return()) { 1661 // If return value type is profiled we may have no argument to profile 1662 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1663 sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count()); 1664 cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count()); 1665 add(rscratch1, mdp, off_to_args); 1666 br(Assembler::LT, done); 1667 } 1668 ldr(tmp, Address(callee, Method::const_offset())); 1669 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 1670 // stack offset o (zero based) from the start of the argument 1671 // list, for n arguments translates into offset n - o - 1 from 1672 // the end of the argument list 1673 ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i)))); 1674 sub(tmp, tmp, rscratch1); 1675 sub(tmp, tmp, 1); 1676 Address arg_addr = argument_address(tmp); 1677 ldr(tmp, arg_addr); 1678 1679 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))); 1680 profile_obj_type(tmp, mdo_arg_addr); 1681 1682 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1683 off_to_args += to_add; 1684 } 1685 1686 if (MethodData::profile_return()) { 1687 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1688 sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1689 } 1690 1691 add(rscratch1, mdp, off_to_args); 1692 bind(done); 1693 mov(mdp, rscratch1); 1694 1695 if (MethodData::profile_return()) { 1696 // We're right after the type profile for the last 1697 // argument. tmp is the number of cells left in the 1698 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1699 // if there's a return to profile. 1700 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 1701 add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size)); 1702 } 1703 str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1704 } else { 1705 assert(MethodData::profile_return(), "either profile call args or call ret"); 1706 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 1707 } 1708 1709 // mdp points right after the end of the 1710 // CallTypeData/VirtualCallTypeData, right after the cells for the 1711 // return value type if there's one 1712 1713 bind(profile_continue); 1714 } 1715 } 1716 1717 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 1718 assert_different_registers(mdp, ret, tmp, rbcp); 1719 if (ProfileInterpreter && MethodData::profile_return()) { 1720 Label profile_continue, done; 1721 1722 test_method_data_pointer(mdp, profile_continue); 1723 1724 if (MethodData::profile_return_jsr292_only()) { 1725 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 1726 1727 // If we don't profile all invoke bytecodes we must make sure 1728 // it's a bytecode we indeed profile. We can't go back to the 1729 // beginning of the ProfileData we intend to update to check its 1730 // type because we're right after it and we don't known its 1731 // length 1732 Label do_profile; 1733 ldrb(rscratch1, Address(rbcp, 0)); 1734 cmp(rscratch1, (u1)Bytecodes::_invokedynamic); 1735 br(Assembler::EQ, do_profile); 1736 cmp(rscratch1, (u1)Bytecodes::_invokehandle); 1737 br(Assembler::EQ, do_profile); 1738 get_method(tmp); 1739 ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset())); 1740 subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1741 br(Assembler::NE, profile_continue); 1742 1743 bind(do_profile); 1744 } 1745 1746 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); 1747 mov(tmp, ret); 1748 profile_obj_type(tmp, mdo_ret_addr); 1749 1750 bind(profile_continue); 1751 } 1752 } 1753 1754 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 1755 assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2); 1756 if (ProfileInterpreter && MethodData::profile_parameters()) { 1757 Label profile_continue, done; 1758 1759 test_method_data_pointer(mdp, profile_continue); 1760 1761 // Load the offset of the area within the MDO used for 1762 // parameters. If it's negative we're not profiling any parameters 1763 ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 1764 tbnz(tmp1, 31, profile_continue); // i.e. sign bit set 1765 1766 // Compute a pointer to the area for parameters from the offset 1767 // and move the pointer to the slot for the last 1768 // parameters. Collect profiling from last parameter down. 1769 // mdo start + parameters offset + array length - 1 1770 add(mdp, mdp, tmp1); 1771 ldr(tmp1, Address(mdp, ArrayData::array_len_offset())); 1772 sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 1773 1774 Label loop; 1775 bind(loop); 1776 1777 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 1778 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 1779 int per_arg_scale = exact_log2(DataLayout::cell_size); 1780 add(rscratch1, mdp, off_base); 1781 add(rscratch2, mdp, type_base); 1782 1783 Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale)); 1784 Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale)); 1785 1786 // load offset on the stack from the slot for this parameter 1787 ldr(tmp2, arg_off); 1788 neg(tmp2, tmp2); 1789 // read the parameter from the local area 1790 ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize))); 1791 1792 // profile the parameter 1793 profile_obj_type(tmp2, arg_type); 1794 1795 // go to next parameter 1796 subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 1797 br(Assembler::GE, loop); 1798 1799 bind(profile_continue); 1800 } 1801 } 1802 1803 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 1804 // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp 1805 get_cache_index_at_bcp(index, 1, sizeof(u4)); 1806 // Get address of invokedynamic array 1807 ldr(cache, Address(rcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 1808 // Scale the index to be the entry index * sizeof(ResolvedIndyEntry) 1809 lsl(index, index, log2i_exact(sizeof(ResolvedIndyEntry))); 1810 add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes()); 1811 lea(cache, Address(cache, index)); 1812 } 1813 1814 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 1815 // Get index out of bytecode pointer 1816 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 1817 // Take shortcut if the size is a power of 2 1818 if (is_power_of_2(sizeof(ResolvedFieldEntry))) { 1819 lsl(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2 1820 } else { 1821 mov(cache, sizeof(ResolvedFieldEntry)); 1822 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry) 1823 } 1824 // Get address of field entries array 1825 ldr(cache, Address(rcpool, ConstantPoolCache::field_entries_offset())); 1826 add(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes()); 1827 lea(cache, Address(cache, index)); 1828 // Prevents stale data from being read after the bytecode is patched to the fast bytecode 1829 membar(MacroAssembler::LoadLoad); 1830 } 1831 1832 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) { 1833 // Get index out of bytecode pointer 1834 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 1835 mov(cache, sizeof(ResolvedMethodEntry)); 1836 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry) 1837 1838 // Get address of field entries array 1839 ldr(cache, Address(rcpool, ConstantPoolCache::method_entries_offset())); 1840 add(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes()); 1841 lea(cache, Address(cache, index)); 1842 }