1 /*
2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26 #include "asm/macroAssembler.inline.hpp"
27 #include "compiler/compiler_globals.hpp"
28 #include "gc/shared/barrierSet.hpp"
29 #include "gc/shared/barrierSetAssembler.hpp"
30 #include "interp_masm_aarch64.hpp"
31 #include "interpreter/interpreter.hpp"
32 #include "interpreter/interpreterRuntime.hpp"
33 #include "logging/log.hpp"
34 #include "oops/arrayOop.hpp"
35 #include "oops/markWord.hpp"
36 #include "oops/method.hpp"
37 #include "oops/methodData.hpp"
38 #include "oops/resolvedFieldEntry.hpp"
39 #include "oops/resolvedIndyEntry.hpp"
40 #include "oops/resolvedMethodEntry.hpp"
41 #include "prims/jvmtiExport.hpp"
42 #include "prims/jvmtiThreadState.hpp"
43 #include "runtime/basicLock.hpp"
44 #include "runtime/frame.inline.hpp"
45 #include "runtime/javaThread.hpp"
46 #include "runtime/safepointMechanism.hpp"
47 #include "runtime/sharedRuntime.hpp"
48 #include "utilities/powerOfTwo.hpp"
49
50 void InterpreterMacroAssembler::narrow(Register result) {
51
52 // Get method->_constMethod->_result_type
53 ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
54 ldr(rscratch1, Address(rscratch1, Method::const_offset()));
55 ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset()));
56
57 Label done, notBool, notByte, notChar;
58
59 // common case first
60 cmpw(rscratch1, T_INT);
61 br(Assembler::EQ, done);
62
63 // mask integer result to narrower return type.
64 cmpw(rscratch1, T_BOOLEAN);
65 br(Assembler::NE, notBool);
66 andw(result, result, 0x1);
67 b(done);
68
69 bind(notBool);
70 cmpw(rscratch1, T_BYTE);
71 br(Assembler::NE, notByte);
72 sbfx(result, result, 0, 8);
73 b(done);
74
75 bind(notByte);
76 cmpw(rscratch1, T_CHAR);
77 br(Assembler::NE, notChar);
78 ubfx(result, result, 0, 16); // truncate upper 16 bits
79 b(done);
80
81 bind(notChar);
82 sbfx(result, result, 0, 16); // sign-extend short
83
84 // Nothing to do for T_INT
85 bind(done);
86 }
87
88 void InterpreterMacroAssembler::jump_to_entry(address entry) {
89 assert(entry, "Entry must have been generated by now");
90 b(entry);
91 }
92
93 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
94 if (JvmtiExport::can_pop_frame()) {
95 Label L;
96 // Initiate popframe handling only if it is not already being
97 // processed. If the flag has the popframe_processing bit set, it
98 // means that this code is called *during* popframe handling - we
99 // don't want to reenter.
100 // This method is only called just after the call into the vm in
101 // call_VM_base, so the arg registers are available.
102 ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
103 tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L);
104 tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L);
105 // Call Interpreter::remove_activation_preserving_args_entry() to get the
106 // address of the same-named entrypoint in the generated interpreter code.
107 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
108 br(r0);
109 bind(L);
110 }
111 }
112
113
114 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
115 ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset()));
116 const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset());
117 const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset());
118 const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset());
119 switch (state) {
120 case atos: ldr(r0, oop_addr);
121 str(zr, oop_addr);
122 interp_verify_oop(r0, state); break;
123 case ltos: ldr(r0, val_addr); break;
124 case btos: // fall through
125 case ztos: // fall through
126 case ctos: // fall through
127 case stos: // fall through
128 case itos: ldrw(r0, val_addr); break;
129 case ftos: ldrs(v0, val_addr); break;
130 case dtos: ldrd(v0, val_addr); break;
131 case vtos: /* nothing to do */ break;
132 default : ShouldNotReachHere();
133 }
134 // Clean up tos value in the thread object
135 movw(rscratch1, (int) ilgl);
136 strw(rscratch1, tos_addr);
137 strw(zr, val_addr);
138 }
139
140
141 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
142 if (JvmtiExport::can_force_early_return()) {
143 Label L;
144 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
145 cbz(rscratch1, L); // if (thread->jvmti_thread_state() == nullptr) exit;
146
147 // Initiate earlyret handling only if it is not already being processed.
148 // If the flag has the earlyret_processing bit set, it means that this code
149 // is called *during* earlyret handling - we don't want to reenter.
150 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset()));
151 cmpw(rscratch1, JvmtiThreadState::earlyret_pending);
152 br(Assembler::NE, L);
153
154 // Call Interpreter::remove_activation_early_entry() to get the address of the
155 // same-named entrypoint in the generated interpreter code.
156 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
157 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset()));
158 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1);
159 br(r0);
160 bind(L);
161 }
162 }
163
164 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
165 Register reg,
166 int bcp_offset) {
167 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
168 ldrh(reg, Address(rbcp, bcp_offset));
169 rev16(reg, reg);
170 }
171
172 void InterpreterMacroAssembler::get_dispatch() {
173 uint64_t offset;
174 adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset);
175 // Use add() here after ARDP, rather than lea().
176 // lea() does not generate anything if its offset is zero.
177 // However, relocs expect to find either an ADD or a load/store
178 // insn after an ADRP. add() always generates an ADD insn, even
179 // for add(Rn, Rn, 0).
180 add(rdispatch, rdispatch, offset);
181 }
182
183 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
184 int bcp_offset,
185 size_t index_size) {
186 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
187 if (index_size == sizeof(u2)) {
188 load_unsigned_short(index, Address(rbcp, bcp_offset));
189 } else if (index_size == sizeof(u4)) {
190 // assert(EnableInvokeDynamic, "giant index used only for JSR 292");
191 ldrw(index, Address(rbcp, bcp_offset));
192 } else if (index_size == sizeof(u1)) {
193 load_unsigned_byte(index, Address(rbcp, bcp_offset));
194 } else {
195 ShouldNotReachHere();
196 }
197 }
198
199 void InterpreterMacroAssembler::get_method_counters(Register method,
200 Register mcs, Label& skip) {
201 Label has_counters;
202 ldr(mcs, Address(method, Method::method_counters_offset()));
203 cbnz(mcs, has_counters);
204 call_VM(noreg, CAST_FROM_FN_PTR(address,
205 InterpreterRuntime::build_method_counters), method);
206 ldr(mcs, Address(method, Method::method_counters_offset()));
207 cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory
208 bind(has_counters);
209 }
210
211 // Load object from cpool->resolved_references(index)
212 void InterpreterMacroAssembler::load_resolved_reference_at_index(
213 Register result, Register index, Register tmp) {
214 assert_different_registers(result, index);
215
216 get_constant_pool(result);
217 // load pointer for resolved_references[] objArray
218 ldr(result, Address(result, ConstantPool::cache_offset()));
219 ldr(result, Address(result, ConstantPoolCache::resolved_references_offset()));
220 resolve_oop_handle(result, tmp, rscratch2);
221 // Add in the index
222 add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
223 load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop)), tmp, rscratch2);
224 }
225
226 void InterpreterMacroAssembler::load_resolved_klass_at_offset(
227 Register cpool, Register index, Register klass, Register temp) {
228 add(temp, cpool, index, LSL, LogBytesPerWord);
229 ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index
230 ldr(klass, Address(cpool, ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses
231 add(klass, klass, temp, LSL, LogBytesPerWord);
232 ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes()));
233 }
234
235 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
236 // subtype of super_klass.
237 //
238 // Args:
239 // r0: superklass
240 // Rsub_klass: subklass
241 //
242 // Kills:
243 // r2
244 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
245 Label& ok_is_subtype) {
246 assert(Rsub_klass != r0, "r0 holds superklass");
247 assert(Rsub_klass != r2, "r2 holds 2ndary super array length");
248
249 // Profile the not-null value's klass.
250 profile_typecheck(r2, Rsub_klass); // blows r2
251
252 // Do the check.
253 check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2
254 }
255
256 // Java Expression Stack
257
258 void InterpreterMacroAssembler::pop_ptr(Register r) {
259 ldr(r, post(esp, wordSize));
260 }
261
262 void InterpreterMacroAssembler::pop_i(Register r) {
263 ldrw(r, post(esp, wordSize));
264 }
265
266 void InterpreterMacroAssembler::pop_l(Register r) {
267 ldr(r, post(esp, 2 * Interpreter::stackElementSize));
268 }
269
270 void InterpreterMacroAssembler::push_ptr(Register r) {
271 str(r, pre(esp, -wordSize));
272 }
273
274 void InterpreterMacroAssembler::push_i(Register r) {
275 str(r, pre(esp, -wordSize));
276 }
277
278 void InterpreterMacroAssembler::push_l(Register r) {
279 str(zr, pre(esp, -wordSize));
280 str(r, pre(esp, - wordSize));
281 }
282
283 void InterpreterMacroAssembler::pop_f(FloatRegister r) {
284 ldrs(r, post(esp, wordSize));
285 }
286
287 void InterpreterMacroAssembler::pop_d(FloatRegister r) {
288 ldrd(r, post(esp, 2 * Interpreter::stackElementSize));
289 }
290
291 void InterpreterMacroAssembler::push_f(FloatRegister r) {
292 strs(r, pre(esp, -wordSize));
293 }
294
295 void InterpreterMacroAssembler::push_d(FloatRegister r) {
296 strd(r, pre(esp, 2* -wordSize));
297 }
298
299 void InterpreterMacroAssembler::pop(TosState state) {
300 switch (state) {
301 case atos: pop_ptr(); break;
302 case btos:
303 case ztos:
304 case ctos:
305 case stos:
306 case itos: pop_i(); break;
307 case ltos: pop_l(); break;
308 case ftos: pop_f(); break;
309 case dtos: pop_d(); break;
310 case vtos: /* nothing to do */ break;
311 default: ShouldNotReachHere();
312 }
313 interp_verify_oop(r0, state);
314 }
315
316 void InterpreterMacroAssembler::push(TosState state) {
317 interp_verify_oop(r0, state);
318 switch (state) {
319 case atos: push_ptr(); break;
320 case btos:
321 case ztos:
322 case ctos:
323 case stos:
324 case itos: push_i(); break;
325 case ltos: push_l(); break;
326 case ftos: push_f(); break;
327 case dtos: push_d(); break;
328 case vtos: /* nothing to do */ break;
329 default : ShouldNotReachHere();
330 }
331 }
332
333 // Helpers for swap and dup
334 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
335 ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
336 }
337
338 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
339 str(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
340 }
341
342 void InterpreterMacroAssembler::load_float(Address src) {
343 ldrs(v0, src);
344 }
345
346 void InterpreterMacroAssembler::load_double(Address src) {
347 ldrd(v0, src);
348 }
349
350 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
351 // set sender sp
352 mov(r19_sender_sp, sp);
353 // record last_sp
354 sub(rscratch1, esp, rfp);
355 asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
356 str(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
357 }
358
359 // Jump to from_interpreted entry of a call unless single stepping is possible
360 // in this thread in which case we must call the i2i entry
361 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
362 prepare_to_jump_from_interpreted();
363
364 if (JvmtiExport::can_post_interpreter_events()) {
365 Label run_compiled_code;
366 // JVMTI events, such as single-stepping, are implemented partly by avoiding running
367 // compiled code in threads for which the event is enabled. Check here for
368 // interp_only_mode if these events CAN be enabled.
369 ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset()));
370 cbzw(rscratch1, run_compiled_code);
371 ldr(rscratch1, Address(method, Method::interpreter_entry_offset()));
372 br(rscratch1);
373 bind(run_compiled_code);
374 }
375
376 ldr(rscratch1, Address(method, Method::from_interpreted_offset()));
377 br(rscratch1);
378 }
379
380 // The following two routines provide a hook so that an implementation
381 // can schedule the dispatch in two parts. amd64 does not do this.
382 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
383 }
384
385 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
386 dispatch_next(state, step);
387 }
388
389 void InterpreterMacroAssembler::dispatch_base(TosState state,
390 address* table,
391 bool verifyoop,
392 bool generate_poll) {
393 if (VerifyActivationFrameSize) {
394 Label L;
395 sub(rscratch2, rfp, esp);
396 int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
397 subs(rscratch2, rscratch2, min_frame_size);
398 br(Assembler::GE, L);
399 stop("broken stack frame");
400 bind(L);
401 }
402 if (verifyoop) {
403 interp_verify_oop(r0, state);
404 }
405
406 Label safepoint;
407 address* const safepoint_table = Interpreter::safept_table(state);
408 bool needs_thread_local_poll = generate_poll && table != safepoint_table;
409
410 if (needs_thread_local_poll) {
411 NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
412 ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset()));
413 tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint);
414 }
415
416 if (table == Interpreter::dispatch_table(state)) {
417 addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state));
418 ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3)));
419 } else {
420 mov(rscratch2, (address)table);
421 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
422 }
423 br(rscratch2);
424
425 if (needs_thread_local_poll) {
426 bind(safepoint);
427 lea(rscratch2, ExternalAddress((address)safepoint_table));
428 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
429 br(rscratch2);
430 }
431 }
432
433 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
434 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
435 }
436
437 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
438 dispatch_base(state, Interpreter::normal_table(state));
439 }
440
441 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
442 dispatch_base(state, Interpreter::normal_table(state), false);
443 }
444
445
446 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
447 // load next bytecode
448 ldrb(rscratch1, Address(pre(rbcp, step)));
449 dispatch_base(state, Interpreter::dispatch_table(state), /*verifyoop*/true, generate_poll);
450 }
451
452 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
453 // load current bytecode
454 ldrb(rscratch1, Address(rbcp, 0));
455 dispatch_base(state, table);
456 }
457
458 // remove activation
459 //
460 // Unlock the receiver if this is a synchronized method.
461 // Unlock any Java monitors from synchronized blocks.
462 // Apply stack watermark barrier.
463 // Notify JVMTI.
464 // Remove the activation from the stack.
465 //
466 // If there are locked Java monitors
467 // If throw_monitor_exception
468 // throws IllegalMonitorStateException
469 // Else if install_monitor_exception
470 // installs IllegalMonitorStateException
471 // Else
472 // no error processing
473 void InterpreterMacroAssembler::remove_activation(TosState state,
474 bool throw_monitor_exception,
475 bool install_monitor_exception,
476 bool notify_jvmdi) {
477 // Note: Registers r3 xmm0 may be in use for the
478 // result check if synchronized method
479 Label unlocked, unlock, no_unlock;
480
481 #ifdef ASSERT
482 Label not_preempted;
483 ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset()));
484 cbz(rscratch1, not_preempted);
485 stop("remove_activation: should not have alternate return address set");
486 bind(not_preempted);
487 #endif /* ASSERT */
488
489 // get the value of _do_not_unlock_if_synchronized into r3
490 const Address do_not_unlock_if_synchronized(rthread,
491 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
492 ldrb(r3, do_not_unlock_if_synchronized);
493 strb(zr, do_not_unlock_if_synchronized); // reset the flag
494
495 // get method access flags
496 ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
497 ldrh(r2, Address(r1, Method::access_flags_offset()));
498 tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked);
499
500 // Don't unlock anything if the _do_not_unlock_if_synchronized flag
501 // is set.
502 cbnz(r3, no_unlock);
503
504 // unlock monitor
505 push(state); // save result
506
507 // BasicObjectLock will be first in list, since this is a
508 // synchronized method. However, need to check that the object has
509 // not been unlocked by an explicit monitorexit bytecode.
510 const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset *
511 wordSize - (int) sizeof(BasicObjectLock));
512 // We use c_rarg1 so that if we go slow path it will be the correct
513 // register for unlock_object to pass to VM directly
514 lea(c_rarg1, monitor); // address of first monitor
515
516 ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
517 cbnz(r0, unlock);
518
519 pop(state);
520 if (throw_monitor_exception) {
521 // Entry already unlocked, need to throw exception
522 call_VM(noreg, CAST_FROM_FN_PTR(address,
523 InterpreterRuntime::throw_illegal_monitor_state_exception));
524 should_not_reach_here();
525 } else {
526 // Monitor already unlocked during a stack unroll. If requested,
527 // install an illegal_monitor_state_exception. Continue with
528 // stack unrolling.
529 if (install_monitor_exception) {
530 call_VM(noreg, CAST_FROM_FN_PTR(address,
531 InterpreterRuntime::new_illegal_monitor_state_exception));
532 }
533 b(unlocked);
534 }
535
536 bind(unlock);
537 unlock_object(c_rarg1);
538 pop(state);
539
540 // Check that for block-structured locking (i.e., that all locked
541 // objects has been unlocked)
542 bind(unlocked);
543
544 // r0: Might contain return value
545
546 // Check that all monitors are unlocked
547 {
548 Label loop, exception, entry, restart;
549 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
550 const Address monitor_block_top(
551 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
552 const Address monitor_block_bot(
553 rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
554
555 bind(restart);
556 // We use c_rarg1 so that if we go slow path it will be the correct
557 // register for unlock_object to pass to VM directly
558 ldr(c_rarg1, monitor_block_top); // derelativize pointer
559 lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
560 // c_rarg1 points to current entry, starting with top-most entry
561
562 lea(r19, monitor_block_bot); // points to word before bottom of
563 // monitor block
564 b(entry);
565
566 // Entry already locked, need to throw exception
567 bind(exception);
568
569 if (throw_monitor_exception) {
570 // Throw exception
571 MacroAssembler::call_VM(noreg,
572 CAST_FROM_FN_PTR(address, InterpreterRuntime::
573 throw_illegal_monitor_state_exception));
574 should_not_reach_here();
575 } else {
576 // Stack unrolling. Unlock object and install illegal_monitor_exception.
577 // Unlock does not block, so don't have to worry about the frame.
578 // We don't have to preserve c_rarg1 since we are going to throw an exception.
579
580 push(state);
581 unlock_object(c_rarg1);
582 pop(state);
583
584 if (install_monitor_exception) {
585 call_VM(noreg, CAST_FROM_FN_PTR(address,
586 InterpreterRuntime::
587 new_illegal_monitor_state_exception));
588 }
589
590 b(restart);
591 }
592
593 bind(loop);
594 // check if current entry is used
595 ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset()));
596 cbnz(rscratch1, exception);
597
598 add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry
599 bind(entry);
600 cmp(c_rarg1, r19); // check if bottom reached
601 br(Assembler::NE, loop); // if not at bottom then check this entry
602 }
603
604 bind(no_unlock);
605
606 JFR_ONLY(enter_jfr_critical_section();)
607
608 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily,
609 // that would normally not be safe to use. Such bad returns into unsafe territory of
610 // the stack, will call InterpreterRuntime::at_unwind.
611 Label slow_path;
612 Label fast_path;
613 safepoint_poll(slow_path, true /* at_return */, false /* in_nmethod */);
614 br(Assembler::AL, fast_path);
615 bind(slow_path);
616 push(state);
617 set_last_Java_frame(esp, rfp, pc(), rscratch1);
618 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread);
619 reset_last_Java_frame(true);
620 pop(state);
621 bind(fast_path);
622
623 // JVMTI support. Make sure the safepoint poll test is issued prior.
624 if (notify_jvmdi) {
625 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA
626 } else {
627 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
628 }
629
630 // remove activation
631 // get sender esp
632 ldr(rscratch2,
633 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
634 if (StackReservedPages > 0) {
635 // testing if reserved zone needs to be re-enabled
636 Label no_reserved_zone_enabling;
637
638 // check if already enabled - if so no re-enabling needed
639 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size");
640 ldrw(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset()));
641 cmpw(rscratch1, (u1)StackOverflow::stack_guard_enabled);
642 br(Assembler::EQ, no_reserved_zone_enabling);
643
644 // look for an overflow into the stack reserved zone, i.e.
645 // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation
646 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset()));
647 cmp(rscratch2, rscratch1);
648 br(Assembler::LS, no_reserved_zone_enabling);
649
650 JFR_ONLY(leave_jfr_critical_section();)
651
652 call_VM_leaf(
653 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
654 call_VM(noreg, CAST_FROM_FN_PTR(address,
655 InterpreterRuntime::throw_delayed_StackOverflowError));
656 should_not_reach_here();
657
658 bind(no_reserved_zone_enabling);
659 }
660
661 // remove frame anchor
662 leave();
663
664 JFR_ONLY(leave_jfr_critical_section();)
665
666 // restore sender esp
667 mov(esp, rscratch2);
668
669 // If we're returning to interpreted code we will shortly be
670 // adjusting SP to allow some space for ESP. If we're returning to
671 // compiled code the saved sender SP was saved in sender_sp, so this
672 // restores it.
673 andr(sp, esp, -16);
674 }
675
676 #if INCLUDE_JFR
677 void InterpreterMacroAssembler::enter_jfr_critical_section() {
678 const Address sampling_critical_section(rthread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR));
679 mov(rscratch1, true);
680 strb(rscratch1, sampling_critical_section);
681 }
682
683 void InterpreterMacroAssembler::leave_jfr_critical_section() {
684 const Address sampling_critical_section(rthread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR));
685 strb(zr, sampling_critical_section);
686 }
687 #endif // INCLUDE_JFR
688
689 // Lock object
690 //
691 // Args:
692 // c_rarg1: BasicObjectLock to be used for locking
693 //
694 // Kills:
695 // r0
696 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, .. (param regs)
697 // rscratch1, rscratch2 (scratch regs)
698 void InterpreterMacroAssembler::lock_object(Register lock_reg)
699 {
700 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
701
702 const Register tmp = c_rarg2;
703 const Register obj_reg = c_rarg3; // Will contain the oop
704 const Register tmp2 = c_rarg4;
705 const Register tmp3 = c_rarg5;
706
707 // Load object pointer into obj_reg %c_rarg3
708 ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
709
710 Label slow_case, done;
711 fast_lock(lock_reg, obj_reg, tmp, tmp2, tmp3, slow_case);
712 b(done);
713
714 bind(slow_case);
715
716 // Call the runtime routine for slow case
717 call_VM_preemptable(noreg,
718 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
719 lock_reg);
720
721 bind(done);
722 }
723
724
725 // Unlocks an object. Used in monitorexit bytecode and
726 // remove_activation. Throws an IllegalMonitorException if object is
727 // not locked by current thread.
728 //
729 // Args:
730 // c_rarg1: BasicObjectLock for lock
731 //
732 // Kills:
733 // r0
734 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
735 // rscratch1, rscratch2 (scratch regs)
736 void InterpreterMacroAssembler::unlock_object(Register lock_reg)
737 {
738 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
739
740 const Register swap_reg = r0;
741 const Register header_reg = c_rarg2; // Will contain the old oopMark
742 const Register obj_reg = c_rarg3; // Will contain the oop
743 const Register tmp_reg = c_rarg4; // Temporary used by fast_unlock
744
745 save_bcp(); // Save in case of exception
746
747 // Load oop into obj_reg(%c_rarg3)
748 ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
749
750 // Free entry
751 str(zr, Address(lock_reg, BasicObjectLock::obj_offset()));
752
753 Label slow_case, done;
754 fast_unlock(obj_reg, header_reg, swap_reg, tmp_reg, slow_case);
755 b(done);
756
757 bind(slow_case);
758 // Call the runtime routine for slow case.
759 str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj
760 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
761 bind(done);
762 restore_bcp();
763 }
764
765 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
766 Label& zero_continue) {
767 assert(ProfileInterpreter, "must be profiling interpreter");
768 ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
769 cbz(mdp, zero_continue);
770 }
771
772 // Set the method data pointer for the current bcp.
773 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
774 assert(ProfileInterpreter, "must be profiling interpreter");
775 Label set_mdp;
776 stp(r0, r1, Address(pre(sp, -2 * wordSize)));
777
778 // Test MDO to avoid the call if it is null.
779 ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset())));
780 cbz(r0, set_mdp);
781 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp);
782 // r0: mdi
783 // mdo is guaranteed to be non-zero here, we checked for it before the call.
784 ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
785 lea(r1, Address(r1, in_bytes(MethodData::data_offset())));
786 add(r0, r1, r0);
787 str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
788 bind(set_mdp);
789 ldp(r0, r1, Address(post(sp, 2 * wordSize)));
790 }
791
792 void InterpreterMacroAssembler::verify_method_data_pointer() {
793 assert(ProfileInterpreter, "must be profiling interpreter");
794 #ifdef ASSERT
795 Label verify_continue;
796 stp(r0, r1, Address(pre(sp, -2 * wordSize)));
797 stp(r2, r3, Address(pre(sp, -2 * wordSize)));
798 test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue
799 get_method(r1);
800
801 // If the mdp is valid, it will point to a DataLayout header which is
802 // consistent with the bcp. The converse is highly probable also.
803 ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset())));
804 ldr(rscratch1, Address(r1, Method::const_offset()));
805 add(r2, r2, rscratch1, Assembler::LSL);
806 lea(r2, Address(r2, ConstMethod::codes_offset()));
807 cmp(r2, rbcp);
808 br(Assembler::EQ, verify_continue);
809 // r1: method
810 // rbcp: bcp // rbcp == 22
811 // r3: mdp
812 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
813 r1, rbcp, r3);
814 bind(verify_continue);
815 ldp(r2, r3, Address(post(sp, 2 * wordSize)));
816 ldp(r0, r1, Address(post(sp, 2 * wordSize)));
817 #endif // ASSERT
818 }
819
820
821 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
822 int constant,
823 Register value) {
824 assert(ProfileInterpreter, "must be profiling interpreter");
825 Address data(mdp_in, constant);
826 str(value, data);
827 }
828
829
830 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
831 int constant) {
832 increment_mdp_data_at(mdp_in, noreg, constant);
833 }
834
835 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
836 Register index,
837 int constant) {
838 assert(ProfileInterpreter, "must be profiling interpreter");
839
840 assert_different_registers(rscratch2, rscratch1, mdp_in, index);
841
842 Address addr1(mdp_in, constant);
843 Address addr2(rscratch2, index, Address::lsl(0));
844 Address &addr = addr1;
845 if (index != noreg) {
846 lea(rscratch2, addr1);
847 addr = addr2;
848 }
849
850 increment(addr, DataLayout::counter_increment);
851 }
852
853 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
854 int flag_byte_constant) {
855 assert(ProfileInterpreter, "must be profiling interpreter");
856 int flags_offset = in_bytes(DataLayout::flags_offset());
857 // Set the flag
858 ldrb(rscratch1, Address(mdp_in, flags_offset));
859 orr(rscratch1, rscratch1, flag_byte_constant);
860 strb(rscratch1, Address(mdp_in, flags_offset));
861 }
862
863
864 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
865 int offset,
866 Register value,
867 Register test_value_out,
868 Label& not_equal_continue) {
869 assert(ProfileInterpreter, "must be profiling interpreter");
870 if (test_value_out == noreg) {
871 ldr(rscratch1, Address(mdp_in, offset));
872 cmp(value, rscratch1);
873 } else {
874 // Put the test value into a register, so caller can use it:
875 ldr(test_value_out, Address(mdp_in, offset));
876 cmp(value, test_value_out);
877 }
878 br(Assembler::NE, not_equal_continue);
879 }
880
881
882 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
883 int offset_of_disp) {
884 assert(ProfileInterpreter, "must be profiling interpreter");
885 ldr(rscratch1, Address(mdp_in, offset_of_disp));
886 add(mdp_in, mdp_in, rscratch1, LSL);
887 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
888 }
889
890
891 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
892 Register reg,
893 int offset_of_disp) {
894 assert(ProfileInterpreter, "must be profiling interpreter");
895 lea(rscratch1, Address(mdp_in, offset_of_disp));
896 ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0)));
897 add(mdp_in, mdp_in, rscratch1, LSL);
898 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
899 }
900
901
902 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
903 int constant) {
904 assert(ProfileInterpreter, "must be profiling interpreter");
905 add(mdp_in, mdp_in, (unsigned)constant);
906 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
907 }
908
909
910 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
911 assert(ProfileInterpreter, "must be profiling interpreter");
912 // save/restore across call_VM
913 stp(zr, return_bci, Address(pre(sp, -2 * wordSize)));
914 call_VM(noreg,
915 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
916 return_bci);
917 ldp(zr, return_bci, Address(post(sp, 2 * wordSize)));
918 }
919
920
921 void InterpreterMacroAssembler::profile_taken_branch(Register mdp) {
922 if (ProfileInterpreter) {
923 Label profile_continue;
924
925 // If no method data exists, go to profile_continue.
926 test_method_data_pointer(mdp, profile_continue);
927
928 // We are taking a branch. Increment the taken count.
929 increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
930
931 // The method data pointer needs to be updated to reflect the new target.
932 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
933 bind(profile_continue);
934 }
935 }
936
937
938 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
939 if (ProfileInterpreter) {
940 Label profile_continue;
941
942 // If no method data exists, go to profile_continue.
943 test_method_data_pointer(mdp, profile_continue);
944
945 // We are not taking a branch. Increment the not taken count.
946 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
947
948 // The method data pointer needs to be updated to correspond to
949 // the next bytecode
950 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
951 bind(profile_continue);
952 }
953 }
954
955
956 void InterpreterMacroAssembler::profile_call(Register mdp) {
957 if (ProfileInterpreter) {
958 Label profile_continue;
959
960 // If no method data exists, go to profile_continue.
961 test_method_data_pointer(mdp, profile_continue);
962
963 // We are making a call. Increment the count.
964 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
965
966 // The method data pointer needs to be updated to reflect the new target.
967 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
968 bind(profile_continue);
969 }
970 }
971
972 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
973 if (ProfileInterpreter) {
974 Label profile_continue;
975
976 // If no method data exists, go to profile_continue.
977 test_method_data_pointer(mdp, profile_continue);
978
979 // We are making a call. Increment the count.
980 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
981
982 // The method data pointer needs to be updated to reflect the new target.
983 update_mdp_by_constant(mdp,
984 in_bytes(VirtualCallData::
985 virtual_call_data_size()));
986 bind(profile_continue);
987 }
988 }
989
990
991 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
992 Register mdp,
993 bool receiver_can_be_null) {
994 if (ProfileInterpreter) {
995 Label profile_continue;
996
997 // If no method data exists, go to profile_continue.
998 test_method_data_pointer(mdp, profile_continue);
999
1000 Label skip_receiver_profile;
1001 if (receiver_can_be_null) {
1002 Label not_null;
1003 // We are making a call. Increment the count for null receiver.
1004 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1005 b(skip_receiver_profile);
1006 bind(not_null);
1007 }
1008
1009 // Record the receiver type.
1010 profile_receiver_type(receiver, mdp, 0);
1011 bind(skip_receiver_profile);
1012
1013 // The method data pointer needs to be updated to reflect the new target.
1014 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1015 bind(profile_continue);
1016 }
1017 }
1018
1019 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1020 Register mdp) {
1021 if (ProfileInterpreter) {
1022 Label profile_continue;
1023 uint row;
1024
1025 // If no method data exists, go to profile_continue.
1026 test_method_data_pointer(mdp, profile_continue);
1027
1028 // Update the total ret count.
1029 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1030
1031 for (row = 0; row < RetData::row_limit(); row++) {
1032 Label next_test;
1033
1034 // See if return_bci is equal to bci[n]:
1035 test_mdp_data_at(mdp,
1036 in_bytes(RetData::bci_offset(row)),
1037 return_bci, noreg,
1038 next_test);
1039
1040 // return_bci is equal to bci[n]. Increment the count.
1041 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1042
1043 // The method data pointer needs to be updated to reflect the new target.
1044 update_mdp_by_offset(mdp,
1045 in_bytes(RetData::bci_displacement_offset(row)));
1046 b(profile_continue);
1047 bind(next_test);
1048 }
1049
1050 update_mdp_for_ret(return_bci);
1051
1052 bind(profile_continue);
1053 }
1054 }
1055
1056 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1057 if (ProfileInterpreter) {
1058 Label profile_continue;
1059
1060 // If no method data exists, go to profile_continue.
1061 test_method_data_pointer(mdp, profile_continue);
1062
1063 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1064
1065 // The method data pointer needs to be updated.
1066 int mdp_delta = in_bytes(BitData::bit_data_size());
1067 if (TypeProfileCasts) {
1068 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1069 }
1070 update_mdp_by_constant(mdp, mdp_delta);
1071
1072 bind(profile_continue);
1073 }
1074 }
1075
1076 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass) {
1077 if (ProfileInterpreter) {
1078 Label profile_continue;
1079
1080 // If no method data exists, go to profile_continue.
1081 test_method_data_pointer(mdp, profile_continue);
1082
1083 // The method data pointer needs to be updated.
1084 int mdp_delta = in_bytes(BitData::bit_data_size());
1085 if (TypeProfileCasts) {
1086 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1087
1088 // Record the object type.
1089 profile_receiver_type(klass, mdp, 0);
1090 }
1091 update_mdp_by_constant(mdp, mdp_delta);
1092
1093 bind(profile_continue);
1094 }
1095 }
1096
1097 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1098 if (ProfileInterpreter) {
1099 Label profile_continue;
1100
1101 // If no method data exists, go to profile_continue.
1102 test_method_data_pointer(mdp, profile_continue);
1103
1104 // Update the default case count
1105 increment_mdp_data_at(mdp,
1106 in_bytes(MultiBranchData::default_count_offset()));
1107
1108 // The method data pointer needs to be updated.
1109 update_mdp_by_offset(mdp,
1110 in_bytes(MultiBranchData::
1111 default_displacement_offset()));
1112
1113 bind(profile_continue);
1114 }
1115 }
1116
1117 void InterpreterMacroAssembler::profile_switch_case(Register index,
1118 Register mdp,
1119 Register reg2) {
1120 if (ProfileInterpreter) {
1121 Label profile_continue;
1122
1123 // If no method data exists, go to profile_continue.
1124 test_method_data_pointer(mdp, profile_continue);
1125
1126 // Build the base (index * per_case_size_in_bytes()) +
1127 // case_array_offset_in_bytes()
1128 movw(reg2, in_bytes(MultiBranchData::per_case_size()));
1129 movw(rscratch1, in_bytes(MultiBranchData::case_array_offset()));
1130 Assembler::maddw(index, index, reg2, rscratch1);
1131
1132 // Update the case count
1133 increment_mdp_data_at(mdp,
1134 index,
1135 in_bytes(MultiBranchData::relative_count_offset()));
1136
1137 // The method data pointer needs to be updated.
1138 update_mdp_by_offset(mdp,
1139 index,
1140 in_bytes(MultiBranchData::
1141 relative_displacement_offset()));
1142
1143 bind(profile_continue);
1144 }
1145 }
1146
1147 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) {
1148 if (state == atos) {
1149 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line);
1150 }
1151 }
1152
1153 void InterpreterMacroAssembler::notify_method_entry() {
1154 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1155 // track stack depth. If it is possible to enter interp_only_mode we add
1156 // the code to check if the event should be sent.
1157 if (JvmtiExport::can_post_interpreter_events()) {
1158 Label L;
1159 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1160 cbzw(r3, L);
1161 call_VM(noreg, CAST_FROM_FN_PTR(address,
1162 InterpreterRuntime::post_method_entry));
1163 bind(L);
1164 }
1165
1166 if (DTraceMethodProbes) {
1167 get_method(c_rarg1);
1168 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1169 rthread, c_rarg1);
1170 }
1171
1172 // RedefineClasses() tracing support for obsolete method entry
1173 if (log_is_enabled(Trace, redefine, class, obsolete)) {
1174 get_method(c_rarg1);
1175 call_VM_leaf(
1176 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1177 rthread, c_rarg1);
1178 }
1179
1180 }
1181
1182
1183 void InterpreterMacroAssembler::notify_method_exit(
1184 TosState state, NotifyMethodExitMode mode) {
1185 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1186 // track stack depth. If it is possible to enter interp_only_mode we add
1187 // the code to check if the event should be sent.
1188 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1189 Label L;
1190 // Note: frame::interpreter_frame_result has a dependency on how the
1191 // method result is saved across the call to post_method_exit. If this
1192 // is changed then the interpreter_frame_result implementation will
1193 // need to be updated too.
1194
1195 // template interpreter will leave the result on the top of the stack.
1196 push(state);
1197 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1198 cbz(r3, L);
1199 call_VM(noreg,
1200 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1201 bind(L);
1202 pop(state);
1203 }
1204
1205 if (DTraceMethodProbes) {
1206 push(state);
1207 get_method(c_rarg1);
1208 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1209 rthread, c_rarg1);
1210 pop(state);
1211 }
1212 }
1213
1214
1215 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1216 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1217 int increment, Address mask,
1218 Register scratch, Register scratch2,
1219 bool preloaded, Condition cond,
1220 Label* where) {
1221 if (!preloaded) {
1222 ldrw(scratch, counter_addr);
1223 }
1224 add(scratch, scratch, increment);
1225 strw(scratch, counter_addr);
1226 ldrw(scratch2, mask);
1227 ands(scratch, scratch, scratch2);
1228 br(cond, *where);
1229 }
1230
1231 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
1232 int number_of_arguments) {
1233 // interpreter specific
1234 //
1235 // Note: No need to save/restore rbcp & rlocals pointer since these
1236 // are callee saved registers and no blocking/ GC can happen
1237 // in leaf calls.
1238 #ifdef ASSERT
1239 {
1240 Label L;
1241 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1242 cbz(rscratch1, L);
1243 stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1244 " last_sp != nullptr");
1245 bind(L);
1246 }
1247 #endif /* ASSERT */
1248 // super call
1249 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
1250 }
1251
1252 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
1253 Register java_thread,
1254 Register last_java_sp,
1255 Label* return_pc,
1256 address entry_point,
1257 int number_of_arguments,
1258 bool check_exceptions) {
1259 // interpreter specific
1260 //
1261 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
1262 // really make a difference for these runtime calls, since they are
1263 // slow anyway. Btw., bcp must be saved/restored since it may change
1264 // due to GC.
1265 // assert(java_thread == noreg , "not expecting a precomputed java thread");
1266 save_bcp();
1267 #ifdef ASSERT
1268 {
1269 Label L;
1270 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1271 cbz(rscratch1, L);
1272 stop("InterpreterMacroAssembler::call_VM_base:"
1273 " last_sp != nullptr");
1274 bind(L);
1275 }
1276 #endif /* ASSERT */
1277 // super call
1278 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
1279 return_pc, entry_point,
1280 number_of_arguments, check_exceptions);
1281 // interpreter specific
1282 restore_bcp();
1283 restore_locals();
1284 }
1285
1286 void InterpreterMacroAssembler::call_VM_preemptable_helper(Register oop_result,
1287 address entry_point,
1288 int number_of_arguments,
1289 bool check_exceptions) {
1290 assert(InterpreterRuntime::is_preemptable_call(entry_point), "VM call not preemptable, should use call_VM()");
1291 Label resume_pc, not_preempted;
1292
1293 #ifdef ASSERT
1294 {
1295 Label L1, L2;
1296 ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1297 cbz(rscratch1, L1);
1298 stop("call_VM_preemptable_helper: Should not have alternate return address set");
1299 bind(L1);
1300 // We check this counter in patch_return_pc_with_preempt_stub() during freeze.
1301 incrementw(Address(rthread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()));
1302 ldrw(rscratch1, Address(rthread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()));
1303 cmpw(rscratch1, 0);
1304 br(Assembler::GT, L2);
1305 stop("call_VM_preemptable_helper: should be > 0");
1306 bind(L2);
1307 }
1308 #endif /* ASSERT */
1309
1310 // Force freeze slow path.
1311 push_cont_fastpath();
1312
1313 // Make VM call. In case of preemption set last_pc to the one we want to resume to.
1314 // Note: call_VM_base will use resume_pc label to set last_Java_pc.
1315 call_VM_base(noreg, noreg, noreg, &resume_pc, entry_point, number_of_arguments, false /*check_exceptions*/);
1316
1317 pop_cont_fastpath();
1318
1319 #ifdef ASSERT
1320 {
1321 Label L;
1322 decrementw(Address(rthread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()));
1323 ldrw(rscratch1, Address(rthread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()));
1324 cmpw(rscratch1, 0);
1325 br(Assembler::GE, L);
1326 stop("call_VM_preemptable_helper: should be >= 0");
1327 bind(L);
1328 }
1329 #endif /* ASSERT */
1330
1331 // Check if preempted.
1332 ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1333 cbz(rscratch1, not_preempted);
1334 str(zr, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1335 br(rscratch1);
1336
1337 // In case of preemption, this is where we will resume once we finally acquire the monitor.
1338 bind(resume_pc);
1339 restore_after_resume(false /* is_native */);
1340
1341 bind(not_preempted);
1342 if (check_exceptions) {
1343 // check for pending exceptions
1344 ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
1345 Label ok;
1346 cbz(rscratch1, ok);
1347 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry()));
1348 br(rscratch1);
1349 bind(ok);
1350 }
1351
1352 // get oop result if there is one and reset the value in the thread
1353 if (oop_result->is_valid()) {
1354 get_vm_result_oop(oop_result, rthread);
1355 }
1356 }
1357
1358 static void pass_arg1(MacroAssembler* masm, Register arg) {
1359 if (c_rarg1 != arg ) {
1360 masm->mov(c_rarg1, arg);
1361 }
1362 }
1363
1364 static void pass_arg2(MacroAssembler* masm, Register arg) {
1365 if (c_rarg2 != arg ) {
1366 masm->mov(c_rarg2, arg);
1367 }
1368 }
1369
1370 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result,
1371 address entry_point,
1372 Register arg_1,
1373 bool check_exceptions) {
1374 pass_arg1(this, arg_1);
1375 call_VM_preemptable_helper(oop_result, entry_point, 1, check_exceptions);
1376 }
1377
1378 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result,
1379 address entry_point,
1380 Register arg_1,
1381 Register arg_2,
1382 bool check_exceptions) {
1383 LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
1384 pass_arg2(this, arg_2);
1385 pass_arg1(this, arg_1);
1386 call_VM_preemptable_helper(oop_result, entry_point, 2, check_exceptions);
1387 }
1388
1389 void InterpreterMacroAssembler::restore_after_resume(bool is_native) {
1390 lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter()));
1391 blr(rscratch1);
1392 if (is_native) {
1393 // On resume we need to set up stack as expected
1394 push(dtos);
1395 push(ltos);
1396 }
1397 }
1398
1399 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
1400 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index());
1401 Label update, next, none;
1402
1403 verify_oop(obj);
1404
1405 cbnz(obj, update);
1406 orptr(mdo_addr, TypeEntries::null_seen);
1407 b(next);
1408
1409 bind(update);
1410 load_klass(obj, obj);
1411
1412 ldr(rscratch1, mdo_addr);
1413 eor(obj, obj, rscratch1);
1414 tst(obj, TypeEntries::type_klass_mask);
1415 br(Assembler::EQ, next); // klass seen before, nothing to
1416 // do. The unknown bit may have been
1417 // set already but no need to check.
1418
1419 tbnz(obj, exact_log2(TypeEntries::type_unknown), next);
1420 // already unknown. Nothing to do anymore.
1421
1422 cbz(rscratch1, none);
1423 cmp(rscratch1, (u1)TypeEntries::null_seen);
1424 br(Assembler::EQ, none);
1425 // There is a chance that the checks above
1426 // fail if another thread has just set the
1427 // profiling to this obj's klass
1428 eor(obj, obj, rscratch1); // get back original value before XOR
1429 ldr(rscratch1, mdo_addr);
1430 eor(obj, obj, rscratch1);
1431 tst(obj, TypeEntries::type_klass_mask);
1432 br(Assembler::EQ, next);
1433
1434 // different than before. Cannot keep accurate profile.
1435 orptr(mdo_addr, TypeEntries::type_unknown);
1436 b(next);
1437
1438 bind(none);
1439 // first time here. Set profile type.
1440 str(obj, mdo_addr);
1441 #ifdef ASSERT
1442 andr(obj, obj, TypeEntries::type_mask);
1443 verify_klass_ptr(obj);
1444 #endif
1445
1446 bind(next);
1447 }
1448
1449 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1450 if (!ProfileInterpreter) {
1451 return;
1452 }
1453
1454 if (MethodData::profile_arguments() || MethodData::profile_return()) {
1455 Label profile_continue;
1456
1457 test_method_data_pointer(mdp, profile_continue);
1458
1459 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1460
1461 ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start));
1462 cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag));
1463 br(Assembler::NE, profile_continue);
1464
1465 if (MethodData::profile_arguments()) {
1466 Label done;
1467 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1468
1469 for (int i = 0; i < TypeProfileArgsLimit; i++) {
1470 if (i > 0 || MethodData::profile_return()) {
1471 // If return value type is profiled we may have no argument to profile
1472 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1473 sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count());
1474 cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count());
1475 add(rscratch1, mdp, off_to_args);
1476 br(Assembler::LT, done);
1477 }
1478 ldr(tmp, Address(callee, Method::const_offset()));
1479 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1480 // stack offset o (zero based) from the start of the argument
1481 // list, for n arguments translates into offset n - o - 1 from
1482 // the end of the argument list
1483 ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))));
1484 sub(tmp, tmp, rscratch1);
1485 sub(tmp, tmp, 1);
1486 Address arg_addr = argument_address(tmp);
1487 ldr(tmp, arg_addr);
1488
1489 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i)));
1490 profile_obj_type(tmp, mdo_arg_addr);
1491
1492 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1493 off_to_args += to_add;
1494 }
1495
1496 if (MethodData::profile_return()) {
1497 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1498 sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1499 }
1500
1501 add(rscratch1, mdp, off_to_args);
1502 bind(done);
1503 mov(mdp, rscratch1);
1504
1505 if (MethodData::profile_return()) {
1506 // We're right after the type profile for the last
1507 // argument. tmp is the number of cells left in the
1508 // CallTypeData/VirtualCallTypeData to reach its end. Non null
1509 // if there's a return to profile.
1510 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1511 add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size));
1512 }
1513 str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1514 } else {
1515 assert(MethodData::profile_return(), "either profile call args or call ret");
1516 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
1517 }
1518
1519 // mdp points right after the end of the
1520 // CallTypeData/VirtualCallTypeData, right after the cells for the
1521 // return value type if there's one
1522
1523 bind(profile_continue);
1524 }
1525 }
1526
1527 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1528 assert_different_registers(mdp, ret, tmp, rbcp);
1529 if (ProfileInterpreter && MethodData::profile_return()) {
1530 Label profile_continue, done;
1531
1532 test_method_data_pointer(mdp, profile_continue);
1533
1534 if (MethodData::profile_return_jsr292_only()) {
1535 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
1536
1537 // If we don't profile all invoke bytecodes we must make sure
1538 // it's a bytecode we indeed profile. We can't go back to the
1539 // beginning of the ProfileData we intend to update to check its
1540 // type because we're right after it and we don't known its
1541 // length
1542 Label do_profile;
1543 ldrb(rscratch1, Address(rbcp, 0));
1544 cmp(rscratch1, (u1)Bytecodes::_invokedynamic);
1545 br(Assembler::EQ, do_profile);
1546 cmp(rscratch1, (u1)Bytecodes::_invokehandle);
1547 br(Assembler::EQ, do_profile);
1548 get_method(tmp);
1549 ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset()));
1550 subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm));
1551 br(Assembler::NE, profile_continue);
1552
1553 bind(do_profile);
1554 }
1555
1556 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
1557 mov(tmp, ret);
1558 profile_obj_type(tmp, mdo_ret_addr);
1559
1560 bind(profile_continue);
1561 }
1562 }
1563
1564 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
1565 assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2);
1566 if (ProfileInterpreter && MethodData::profile_parameters()) {
1567 Label profile_continue, done;
1568
1569 test_method_data_pointer(mdp, profile_continue);
1570
1571 // Load the offset of the area within the MDO used for
1572 // parameters. If it's negative we're not profiling any parameters
1573 ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
1574 tbnz(tmp1, 31, profile_continue); // i.e. sign bit set
1575
1576 // Compute a pointer to the area for parameters from the offset
1577 // and move the pointer to the slot for the last
1578 // parameters. Collect profiling from last parameter down.
1579 // mdo start + parameters offset + array length - 1
1580 add(mdp, mdp, tmp1);
1581 ldr(tmp1, Address(mdp, ArrayData::array_len_offset()));
1582 sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1583
1584 Label loop;
1585 bind(loop);
1586
1587 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1588 int type_base = in_bytes(ParametersTypeData::type_offset(0));
1589 int per_arg_scale = exact_log2(DataLayout::cell_size);
1590 add(rscratch1, mdp, off_base);
1591 add(rscratch2, mdp, type_base);
1592
1593 Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale));
1594 Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale));
1595
1596 // load offset on the stack from the slot for this parameter
1597 ldr(tmp2, arg_off);
1598 neg(tmp2, tmp2);
1599 // read the parameter from the local area
1600 ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize)));
1601
1602 // profile the parameter
1603 profile_obj_type(tmp2, arg_type);
1604
1605 // go to next parameter
1606 subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1607 br(Assembler::GE, loop);
1608
1609 bind(profile_continue);
1610 }
1611 }
1612
1613 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) {
1614 // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp
1615 get_cache_index_at_bcp(index, 1, sizeof(u4));
1616 // Get address of invokedynamic array
1617 ldr(cache, Address(rcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset())));
1618 // Scale the index to be the entry index * sizeof(ResolvedIndyEntry)
1619 lsl(index, index, log2i_exact(sizeof(ResolvedIndyEntry)));
1620 add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes());
1621 lea(cache, Address(cache, index));
1622 }
1623
1624 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) {
1625 // Get index out of bytecode pointer
1626 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
1627 // Take shortcut if the size is a power of 2
1628 if (is_power_of_2(sizeof(ResolvedFieldEntry))) {
1629 lsl(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2
1630 } else {
1631 mov(cache, sizeof(ResolvedFieldEntry));
1632 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry)
1633 }
1634 // Get address of field entries array
1635 ldr(cache, Address(rcpool, ConstantPoolCache::field_entries_offset()));
1636 add(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes());
1637 lea(cache, Address(cache, index));
1638 // Prevents stale data from being read after the bytecode is patched to the fast bytecode
1639 membar(MacroAssembler::LoadLoad);
1640 }
1641
1642 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) {
1643 // Get index out of bytecode pointer
1644 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
1645 mov(cache, sizeof(ResolvedMethodEntry));
1646 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry)
1647
1648 // Get address of field entries array
1649 ldr(cache, Address(rcpool, ConstantPoolCache::method_entries_offset()));
1650 add(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes());
1651 lea(cache, Address(cache, index));
1652 }
1653
1654 #ifdef ASSERT
1655 void InterpreterMacroAssembler::verify_field_offset(Register reg) {
1656 // Verify the field offset is not in the header, implicitly checks for 0
1657 Label L;
1658 subs(zr, reg, oopDesc::base_offset_in_bytes());
1659 br(Assembler::GE, L);
1660 stop("bad field offset");
1661 bind(L);
1662 }
1663 #endif