1 /*
   2  * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "compiler/compiler_globals.hpp"
  29 #include "gc/shared/barrierSet.hpp"
  30 #include "gc/shared/barrierSetAssembler.hpp"
  31 #include "interp_masm_aarch64.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/interpreterRuntime.hpp"
  34 #include "logging/log.hpp"
  35 #include "oops/arrayOop.hpp"
  36 #include "oops/markWord.hpp"
  37 #include "oops/method.hpp"
  38 #include "oops/methodData.hpp"
  39 #include "oops/resolvedFieldEntry.hpp"
  40 #include "oops/resolvedIndyEntry.hpp"
  41 #include "oops/resolvedMethodEntry.hpp"
  42 #include "prims/jvmtiExport.hpp"
  43 #include "prims/jvmtiThreadState.hpp"
  44 #include "runtime/basicLock.hpp"
  45 #include "runtime/frame.inline.hpp"
  46 #include "runtime/javaThread.hpp"
  47 #include "runtime/runtimeUpcalls.hpp"
  48 #include "runtime/safepointMechanism.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "utilities/powerOfTwo.hpp"
  51 
  52 void InterpreterMacroAssembler::narrow(Register result) {
  53 
  54   // Get method->_constMethod->_result_type
  55   ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
  56   ldr(rscratch1, Address(rscratch1, Method::const_offset()));
  57   ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset()));
  58 
  59   Label done, notBool, notByte, notChar;
  60 
  61   // common case first
  62   cmpw(rscratch1, T_INT);
  63   br(Assembler::EQ, done);
  64 
  65   // mask integer result to narrower return type.
  66   cmpw(rscratch1, T_BOOLEAN);
  67   br(Assembler::NE, notBool);
  68   andw(result, result, 0x1);
  69   b(done);
  70 
  71   bind(notBool);
  72   cmpw(rscratch1, T_BYTE);
  73   br(Assembler::NE, notByte);
  74   sbfx(result, result, 0, 8);
  75   b(done);
  76 
  77   bind(notByte);
  78   cmpw(rscratch1, T_CHAR);
  79   br(Assembler::NE, notChar);
  80   ubfx(result, result, 0, 16);  // truncate upper 16 bits
  81   b(done);
  82 
  83   bind(notChar);
  84   sbfx(result, result, 0, 16);     // sign-extend short
  85 
  86   // Nothing to do for T_INT
  87   bind(done);
  88 }
  89 
  90 void InterpreterMacroAssembler::jump_to_entry(address entry) {
  91   assert(entry, "Entry must have been generated by now");
  92   b(entry);
  93 }
  94 
  95 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
  96   if (JvmtiExport::can_pop_frame()) {
  97     Label L;
  98     // Initiate popframe handling only if it is not already being
  99     // processed.  If the flag has the popframe_processing bit set, it
 100     // means that this code is called *during* popframe handling - we
 101     // don't want to reenter.
 102     // This method is only called just after the call into the vm in
 103     // call_VM_base, so the arg registers are available.
 104     ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
 105     tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L);
 106     tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L);
 107     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 108     // address of the same-named entrypoint in the generated interpreter code.
 109     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 110     br(r0);
 111     bind(L);
 112   }
 113 }
 114 
 115 
 116 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 117   ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 118   const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset());
 119   const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset());
 120   const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset());
 121   switch (state) {
 122     case atos: ldr(r0, oop_addr);
 123                str(zr, oop_addr);
 124                interp_verify_oop(r0, state);        break;
 125     case ltos: ldr(r0, val_addr);                   break;
 126     case btos:                                   // fall through
 127     case ztos:                                   // fall through
 128     case ctos:                                   // fall through
 129     case stos:                                   // fall through
 130     case itos: ldrw(r0, val_addr);                  break;
 131     case ftos: ldrs(v0, val_addr);                  break;
 132     case dtos: ldrd(v0, val_addr);                  break;
 133     case vtos: /* nothing to do */                  break;
 134     default  : ShouldNotReachHere();
 135   }
 136   // Clean up tos value in the thread object
 137   movw(rscratch1, (int) ilgl);
 138   strw(rscratch1, tos_addr);
 139   strw(zr, val_addr);
 140 }
 141 
 142 
 143 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 144   if (JvmtiExport::can_force_early_return()) {
 145     Label L;
 146     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 147     cbz(rscratch1, L); // if (thread->jvmti_thread_state() == nullptr) exit;
 148 
 149     // Initiate earlyret handling only if it is not already being processed.
 150     // If the flag has the earlyret_processing bit set, it means that this code
 151     // is called *during* earlyret handling - we don't want to reenter.
 152     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset()));
 153     cmpw(rscratch1, JvmtiThreadState::earlyret_pending);
 154     br(Assembler::NE, L);
 155 
 156     // Call Interpreter::remove_activation_early_entry() to get the address of the
 157     // same-named entrypoint in the generated interpreter code.
 158     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 159     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset()));
 160     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1);
 161     br(r0);
 162     bind(L);
 163   }
 164 }
 165 
 166 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
 167   Register reg,
 168   int bcp_offset) {
 169   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 170   ldrh(reg, Address(rbcp, bcp_offset));
 171   rev16(reg, reg);
 172 }
 173 
 174 void InterpreterMacroAssembler::get_dispatch() {
 175   uint64_t offset;
 176   adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset);
 177   // Use add() here after ARDP, rather than lea().
 178   // lea() does not generate anything if its offset is zero.
 179   // However, relocs expect to find either an ADD or a load/store
 180   // insn after an ADRP.  add() always generates an ADD insn, even
 181   // for add(Rn, Rn, 0).
 182   add(rdispatch, rdispatch, offset);
 183 }
 184 
 185 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
 186                                                        int bcp_offset,
 187                                                        size_t index_size) {
 188   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 189   if (index_size == sizeof(u2)) {
 190     load_unsigned_short(index, Address(rbcp, bcp_offset));
 191   } else if (index_size == sizeof(u4)) {
 192     // assert(EnableInvokeDynamic, "giant index used only for JSR 292");
 193     ldrw(index, Address(rbcp, bcp_offset));
 194   } else if (index_size == sizeof(u1)) {
 195     load_unsigned_byte(index, Address(rbcp, bcp_offset));
 196   } else {
 197     ShouldNotReachHere();
 198   }
 199 }
 200 
 201 void InterpreterMacroAssembler::get_method_counters(Register method,
 202                                                     Register mcs, Label& skip) {
 203   Label has_counters;
 204   ldr(mcs, Address(method, Method::method_counters_offset()));
 205   cbnz(mcs, has_counters);
 206   call_VM(noreg, CAST_FROM_FN_PTR(address,
 207           InterpreterRuntime::build_method_counters), method);
 208   ldr(mcs, Address(method, Method::method_counters_offset()));
 209   cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory
 210   bind(has_counters);
 211 }
 212 
 213 // Load object from cpool->resolved_references(index)
 214 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 215                                            Register result, Register index, Register tmp) {
 216   assert_different_registers(result, index);
 217 
 218   get_constant_pool(result);
 219   // load pointer for resolved_references[] objArray
 220   ldr(result, Address(result, ConstantPool::cache_offset()));
 221   ldr(result, Address(result, ConstantPoolCache::resolved_references_offset()));
 222   resolve_oop_handle(result, tmp, rscratch2);
 223   // Add in the index
 224   add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 225   load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop)), tmp, rscratch2);
 226 }
 227 
 228 void InterpreterMacroAssembler::load_resolved_klass_at_offset(
 229                              Register cpool, Register index, Register klass, Register temp) {
 230   add(temp, cpool, index, LSL, LogBytesPerWord);
 231   ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index
 232   ldr(klass, Address(cpool,  ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses
 233   add(klass, klass, temp, LSL, LogBytesPerWord);
 234   ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes()));
 235 }
 236 
 237 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
 238 // subtype of super_klass.
 239 //
 240 // Args:
 241 //      r0: superklass
 242 //      Rsub_klass: subklass
 243 //
 244 // Kills:
 245 //      r2, r5
 246 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 247                                                   Label& ok_is_subtype) {
 248   assert(Rsub_klass != r0, "r0 holds superklass");
 249   assert(Rsub_klass != r2, "r2 holds 2ndary super array length");
 250   assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr");
 251 
 252   // Profile the not-null value's klass.
 253   profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5
 254 
 255   // Do the check.
 256   check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2
 257 }
 258 
 259 // Java Expression Stack
 260 
 261 void InterpreterMacroAssembler::pop_ptr(Register r) {
 262   ldr(r, post(esp, wordSize));
 263 }
 264 
 265 void InterpreterMacroAssembler::pop_i(Register r) {
 266   ldrw(r, post(esp, wordSize));
 267 }
 268 
 269 void InterpreterMacroAssembler::pop_l(Register r) {
 270   ldr(r, post(esp, 2 * Interpreter::stackElementSize));
 271 }
 272 
 273 void InterpreterMacroAssembler::push_ptr(Register r) {
 274   str(r, pre(esp, -wordSize));
 275  }
 276 
 277 void InterpreterMacroAssembler::push_i(Register r) {
 278   str(r, pre(esp, -wordSize));
 279 }
 280 
 281 void InterpreterMacroAssembler::push_l(Register r) {
 282   str(zr, pre(esp, -wordSize));
 283   str(r, pre(esp, - wordSize));
 284 }
 285 
 286 void InterpreterMacroAssembler::pop_f(FloatRegister r) {
 287   ldrs(r, post(esp, wordSize));
 288 }
 289 
 290 void InterpreterMacroAssembler::pop_d(FloatRegister r) {
 291   ldrd(r, post(esp, 2 * Interpreter::stackElementSize));
 292 }
 293 
 294 void InterpreterMacroAssembler::push_f(FloatRegister r) {
 295   strs(r, pre(esp, -wordSize));
 296 }
 297 
 298 void InterpreterMacroAssembler::push_d(FloatRegister r) {
 299   strd(r, pre(esp, 2* -wordSize));
 300 }
 301 
 302 void InterpreterMacroAssembler::pop(TosState state) {
 303   switch (state) {
 304   case atos: pop_ptr();                 break;
 305   case btos:
 306   case ztos:
 307   case ctos:
 308   case stos:
 309   case itos: pop_i();                   break;
 310   case ltos: pop_l();                   break;
 311   case ftos: pop_f();                   break;
 312   case dtos: pop_d();                   break;
 313   case vtos: /* nothing to do */        break;
 314   default:   ShouldNotReachHere();
 315   }
 316   interp_verify_oop(r0, state);
 317 }
 318 
 319 void InterpreterMacroAssembler::push(TosState state) {
 320   interp_verify_oop(r0, state);
 321   switch (state) {
 322   case atos: push_ptr();                break;
 323   case btos:
 324   case ztos:
 325   case ctos:
 326   case stos:
 327   case itos: push_i();                  break;
 328   case ltos: push_l();                  break;
 329   case ftos: push_f();                  break;
 330   case dtos: push_d();                  break;
 331   case vtos: /* nothing to do */        break;
 332   default  : ShouldNotReachHere();
 333   }
 334 }
 335 
 336 // Helpers for swap and dup
 337 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 338   ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 339 }
 340 
 341 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 342   str(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 343 }
 344 
 345 void InterpreterMacroAssembler::load_float(Address src) {
 346   ldrs(v0, src);
 347 }
 348 
 349 void InterpreterMacroAssembler::load_double(Address src) {
 350   ldrd(v0, src);
 351 }
 352 
 353 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 354   // set sender sp
 355   mov(r19_sender_sp, sp);
 356   // record last_sp
 357   sub(rscratch1, esp, rfp);
 358   asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
 359   str(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 360 }
 361 
 362 // Jump to from_interpreted entry of a call unless single stepping is possible
 363 // in this thread in which case we must call the i2i entry
 364 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 365   prepare_to_jump_from_interpreted();
 366 
 367   if (JvmtiExport::can_post_interpreter_events()) {
 368     Label run_compiled_code;
 369     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 370     // compiled code in threads for which the event is enabled.  Check here for
 371     // interp_only_mode if these events CAN be enabled.
 372     ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset()));
 373     cbzw(rscratch1, run_compiled_code);
 374     ldr(rscratch1, Address(method, Method::interpreter_entry_offset()));
 375     br(rscratch1);
 376     bind(run_compiled_code);
 377   }
 378 
 379   ldr(rscratch1, Address(method, Method::from_interpreted_offset()));
 380   br(rscratch1);
 381 }
 382 
 383 // The following two routines provide a hook so that an implementation
 384 // can schedule the dispatch in two parts.  amd64 does not do this.
 385 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 386 }
 387 
 388 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 389     dispatch_next(state, step);
 390 }
 391 
 392 void InterpreterMacroAssembler::dispatch_base(TosState state,
 393                                               address* table,
 394                                               bool verifyoop,
 395                                               bool generate_poll) {
 396   if (VerifyActivationFrameSize) {
 397     Unimplemented();
 398   }
 399   if (verifyoop) {
 400     interp_verify_oop(r0, state);
 401   }
 402 
 403   Label safepoint;
 404   address* const safepoint_table = Interpreter::safept_table(state);
 405   bool needs_thread_local_poll = generate_poll && table != safepoint_table;
 406 
 407   if (needs_thread_local_poll) {
 408     NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
 409     ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset()));
 410     tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint);
 411   }
 412 
 413   if (table == Interpreter::dispatch_table(state)) {
 414     addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state));
 415     ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3)));
 416   } else {
 417     mov(rscratch2, (address)table);
 418     ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
 419   }
 420   br(rscratch2);
 421 
 422   if (needs_thread_local_poll) {
 423     bind(safepoint);
 424     lea(rscratch2, ExternalAddress((address)safepoint_table));
 425     ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
 426     br(rscratch2);
 427   }
 428 }
 429 
 430 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
 431   dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
 432 }
 433 
 434 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 435   dispatch_base(state, Interpreter::normal_table(state));
 436 }
 437 
 438 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 439   dispatch_base(state, Interpreter::normal_table(state), false);
 440 }
 441 
 442 
 443 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
 444   // load next bytecode
 445   ldrb(rscratch1, Address(pre(rbcp, step)));
 446   dispatch_base(state, Interpreter::dispatch_table(state), /*verifyoop*/true, generate_poll);
 447 }
 448 
 449 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 450   // load current bytecode
 451   ldrb(rscratch1, Address(rbcp, 0));
 452   dispatch_base(state, table);
 453 }
 454 
 455 // remove activation
 456 //
 457 // Apply stack watermark barrier.
 458 // Unlock the receiver if this is a synchronized method.
 459 // Unlock any Java monitors from synchronized blocks.
 460 // Remove the activation from the stack.
 461 //
 462 // If there are locked Java monitors
 463 //    If throw_monitor_exception
 464 //       throws IllegalMonitorStateException
 465 //    Else if install_monitor_exception
 466 //       installs IllegalMonitorStateException
 467 //    Else
 468 //       no error processing
 469 void InterpreterMacroAssembler::remove_activation(
 470         TosState state,
 471         bool throw_monitor_exception,
 472         bool install_monitor_exception,
 473         bool notify_jvmdi) {
 474   // Note: Registers r3 xmm0 may be in use for the
 475   // result check if synchronized method
 476   Label unlocked, unlock, no_unlock;
 477 
 478   // The below poll is for the stack watermark barrier. It allows fixing up frames lazily,
 479   // that would normally not be safe to use. Such bad returns into unsafe territory of
 480   // the stack, will call InterpreterRuntime::at_unwind.
 481   Label slow_path;
 482   Label fast_path;
 483   safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */);
 484   br(Assembler::AL, fast_path);
 485   bind(slow_path);
 486   push(state);
 487   set_last_Java_frame(esp, rfp, (address)pc(), rscratch1);
 488   super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread);
 489   reset_last_Java_frame(true);
 490   pop(state);
 491   bind(fast_path);
 492 
 493   // get the value of _do_not_unlock_if_synchronized into r3
 494   const Address do_not_unlock_if_synchronized(rthread,
 495     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 496   ldrb(r3, do_not_unlock_if_synchronized);
 497   strb(zr, do_not_unlock_if_synchronized); // reset the flag
 498 
 499  // get method access flags
 500   ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
 501   ldr(r2, Address(r1, Method::access_flags_offset()));
 502   tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked);
 503 
 504   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 505   // is set.
 506   cbnz(r3, no_unlock);
 507 
 508   // unlock monitor
 509   push(state); // save result
 510 
 511   // BasicObjectLock will be first in list, since this is a
 512   // synchronized method. However, need to check that the object has
 513   // not been unlocked by an explicit monitorexit bytecode.
 514   const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset *
 515                         wordSize - (int) sizeof(BasicObjectLock));
 516   // We use c_rarg1 so that if we go slow path it will be the correct
 517   // register for unlock_object to pass to VM directly
 518   lea(c_rarg1, monitor); // address of first monitor
 519 
 520   ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
 521   cbnz(r0, unlock);
 522 
 523   pop(state);
 524   if (throw_monitor_exception) {
 525     // Entry already unlocked, need to throw exception
 526     call_VM(noreg, CAST_FROM_FN_PTR(address,
 527                    InterpreterRuntime::throw_illegal_monitor_state_exception));
 528     should_not_reach_here();
 529   } else {
 530     // Monitor already unlocked during a stack unroll. If requested,
 531     // install an illegal_monitor_state_exception.  Continue with
 532     // stack unrolling.
 533     if (install_monitor_exception) {
 534       call_VM(noreg, CAST_FROM_FN_PTR(address,
 535                      InterpreterRuntime::new_illegal_monitor_state_exception));
 536     }
 537     b(unlocked);
 538   }
 539 
 540   bind(unlock);
 541   unlock_object(c_rarg1);
 542   pop(state);
 543 
 544   // Check that for block-structured locking (i.e., that all locked
 545   // objects has been unlocked)
 546   bind(unlocked);
 547 
 548   // r0: Might contain return value
 549 
 550   // Check that all monitors are unlocked
 551   {
 552     Label loop, exception, entry, restart;
 553     const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
 554     const Address monitor_block_top(
 555         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
 556     const Address monitor_block_bot(
 557         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
 558 
 559     bind(restart);
 560     // We use c_rarg1 so that if we go slow path it will be the correct
 561     // register for unlock_object to pass to VM directly
 562     ldr(c_rarg1, monitor_block_top); // derelativize pointer
 563     lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
 564     // c_rarg1 points to current entry, starting with top-most entry
 565 
 566     lea(r19, monitor_block_bot);  // points to word before bottom of
 567                                   // monitor block
 568     b(entry);
 569 
 570     // Entry already locked, need to throw exception
 571     bind(exception);
 572 
 573     if (throw_monitor_exception) {
 574       // Throw exception
 575       MacroAssembler::call_VM(noreg,
 576                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
 577                                    throw_illegal_monitor_state_exception));
 578       should_not_reach_here();
 579     } else {
 580       // Stack unrolling. Unlock object and install illegal_monitor_exception.
 581       // Unlock does not block, so don't have to worry about the frame.
 582       // We don't have to preserve c_rarg1 since we are going to throw an exception.
 583 
 584       push(state);
 585       unlock_object(c_rarg1);
 586       pop(state);
 587 
 588       if (install_monitor_exception) {
 589         call_VM(noreg, CAST_FROM_FN_PTR(address,
 590                                         InterpreterRuntime::
 591                                         new_illegal_monitor_state_exception));
 592       }
 593 
 594       b(restart);
 595     }
 596 
 597     bind(loop);
 598     // check if current entry is used
 599     ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset()));
 600     cbnz(rscratch1, exception);
 601 
 602     add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry
 603     bind(entry);
 604     cmp(c_rarg1, r19); // check if bottom reached
 605     br(Assembler::NE, loop); // if not at bottom then check this entry
 606   }
 607 
 608   bind(no_unlock);
 609 
 610   // jvmti support
 611   if (notify_jvmdi) {
 612     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
 613   } else {
 614     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
 615   }
 616 
 617   // remove activation
 618   // get sender esp
 619   ldr(rscratch2,
 620       Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
 621   if (StackReservedPages > 0) {
 622     // testing if reserved zone needs to be re-enabled
 623     Label no_reserved_zone_enabling;
 624 
 625     // check if already enabled - if so no re-enabling needed
 626     assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size");
 627     ldrw(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset()));
 628     cmpw(rscratch1, (u1)StackOverflow::stack_guard_enabled);
 629     br(Assembler::EQ, no_reserved_zone_enabling);
 630 
 631     // look for an overflow into the stack reserved zone, i.e.
 632     // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation
 633     ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset()));
 634     cmp(rscratch2, rscratch1);
 635     br(Assembler::LS, no_reserved_zone_enabling);
 636 
 637     call_VM_leaf(
 638       CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
 639     call_VM(noreg, CAST_FROM_FN_PTR(address,
 640                    InterpreterRuntime::throw_delayed_StackOverflowError));
 641     should_not_reach_here();
 642 
 643     bind(no_reserved_zone_enabling);
 644   }
 645 
 646   // restore sender esp
 647   mov(esp, rscratch2);
 648   // remove frame anchor
 649   leave();
 650   // If we're returning to interpreted code we will shortly be
 651   // adjusting SP to allow some space for ESP.  If we're returning to
 652   // compiled code the saved sender SP was saved in sender_sp, so this
 653   // restores it.
 654   andr(sp, esp, -16);
 655 }
 656 
 657 // Lock object
 658 //
 659 // Args:
 660 //      c_rarg1: BasicObjectLock to be used for locking
 661 //
 662 // Kills:
 663 //      r0
 664 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, .. (param regs)
 665 //      rscratch1, rscratch2 (scratch regs)
 666 void InterpreterMacroAssembler::lock_object(Register lock_reg)
 667 {
 668   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
 669   if (LockingMode == LM_MONITOR) {
 670     call_VM_preemptable(noreg,
 671             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 672             lock_reg);
 673   } else {
 674     Label count, done;
 675 
 676     const Register swap_reg = r0;
 677     const Register tmp = c_rarg2;
 678     const Register obj_reg = c_rarg3; // Will contain the oop
 679     const Register tmp2 = c_rarg4;
 680     const Register tmp3 = c_rarg5;
 681 
 682     const int obj_offset = in_bytes(BasicObjectLock::obj_offset());
 683     const int lock_offset = in_bytes(BasicObjectLock::lock_offset());
 684     const int mark_offset = lock_offset +
 685                             BasicLock::displaced_header_offset_in_bytes();
 686 
 687     Label slow_case;
 688 
 689     // Load object pointer into obj_reg %c_rarg3
 690     ldr(obj_reg, Address(lock_reg, obj_offset));
 691 
 692     if (DiagnoseSyncOnValueBasedClasses != 0) {
 693       load_klass(tmp, obj_reg);
 694       ldrb(tmp, Address(tmp, Klass::misc_flags_offset()));
 695       tst(tmp, KlassFlags::_misc_is_value_based_class);
 696       br(Assembler::NE, slow_case);
 697     }
 698 
 699     if (LockingMode == LM_LIGHTWEIGHT) {
 700       lightweight_lock(lock_reg, obj_reg, tmp, tmp2, tmp3, slow_case);
 701       b(done);
 702     } else if (LockingMode == LM_LEGACY) {
 703       // Load (object->mark() | 1) into swap_reg
 704       ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
 705       orr(swap_reg, rscratch1, 1);
 706 
 707       // Save (object->mark() | 1) into BasicLock's displaced header
 708       str(swap_reg, Address(lock_reg, mark_offset));
 709 
 710       assert(lock_offset == 0,
 711              "displached header must be first word in BasicObjectLock");
 712 
 713       Label fail;
 714       cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr);
 715 
 716       // Fast check for recursive lock.
 717       //
 718       // Can apply the optimization only if this is a stack lock
 719       // allocated in this thread. For efficiency, we can focus on
 720       // recently allocated stack locks (instead of reading the stack
 721       // base and checking whether 'mark' points inside the current
 722       // thread stack):
 723       //  1) (mark & 7) == 0, and
 724       //  2) sp <= mark < mark + os::pagesize()
 725       //
 726       // Warning: sp + os::pagesize can overflow the stack base. We must
 727       // neither apply the optimization for an inflated lock allocated
 728       // just above the thread stack (this is why condition 1 matters)
 729       // nor apply the optimization if the stack lock is inside the stack
 730       // of another thread. The latter is avoided even in case of overflow
 731       // because we have guard pages at the end of all stacks. Hence, if
 732       // we go over the stack base and hit the stack of another thread,
 733       // this should not be in a writeable area that could contain a
 734       // stack lock allocated by that thread. As a consequence, a stack
 735       // lock less than page size away from sp is guaranteed to be
 736       // owned by the current thread.
 737       //
 738       // These 3 tests can be done by evaluating the following
 739       // expression: ((mark - sp) & (7 - os::vm_page_size())),
 740       // assuming both stack pointer and pagesize have their
 741       // least significant 3 bits clear.
 742       // NOTE: the mark is in swap_reg %r0 as the result of cmpxchg
 743       // NOTE2: aarch64 does not like to subtract sp from rn so take a
 744       // copy
 745       mov(rscratch1, sp);
 746       sub(swap_reg, swap_reg, rscratch1);
 747       ands(swap_reg, swap_reg, (uint64_t)(7 - (int)os::vm_page_size()));
 748 
 749       // Save the test result, for recursive case, the result is zero
 750       str(swap_reg, Address(lock_reg, mark_offset));
 751       br(Assembler::NE, slow_case);
 752 
 753       bind(count);
 754       inc_held_monitor_count(rscratch1);
 755       b(done);
 756     }
 757     bind(slow_case);
 758 
 759     // Call the runtime routine for slow case
 760     call_VM_preemptable(noreg,
 761             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 762             lock_reg);
 763 
 764     bind(done);
 765   }
 766 }
 767 
 768 
 769 // Unlocks an object. Used in monitorexit bytecode and
 770 // remove_activation.  Throws an IllegalMonitorException if object is
 771 // not locked by current thread.
 772 //
 773 // Args:
 774 //      c_rarg1: BasicObjectLock for lock
 775 //
 776 // Kills:
 777 //      r0
 778 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
 779 //      rscratch1, rscratch2 (scratch regs)
 780 void InterpreterMacroAssembler::unlock_object(Register lock_reg)
 781 {
 782   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
 783 
 784   if (LockingMode == LM_MONITOR) {
 785     call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
 786   } else {
 787     Label count, done;
 788 
 789     const Register swap_reg   = r0;
 790     const Register header_reg = c_rarg2;  // Will contain the old oopMark
 791     const Register obj_reg    = c_rarg3;  // Will contain the oop
 792     const Register tmp_reg    = c_rarg4;  // Temporary used by lightweight_unlock
 793 
 794     save_bcp(); // Save in case of exception
 795 
 796     if (LockingMode != LM_LIGHTWEIGHT) {
 797       // Convert from BasicObjectLock structure to object and BasicLock
 798       // structure Store the BasicLock address into %r0
 799       lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset()));
 800     }
 801 
 802     // Load oop into obj_reg(%c_rarg3)
 803     ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
 804 
 805     // Free entry
 806     str(zr, Address(lock_reg, BasicObjectLock::obj_offset()));
 807 
 808     Label slow_case;
 809     if (LockingMode == LM_LIGHTWEIGHT) {
 810       lightweight_unlock(obj_reg, header_reg, swap_reg, tmp_reg, slow_case);
 811       b(done);
 812     } else if (LockingMode == LM_LEGACY) {
 813       // Load the old header from BasicLock structure
 814       ldr(header_reg, Address(swap_reg,
 815                               BasicLock::displaced_header_offset_in_bytes()));
 816 
 817       // Test for recursion
 818       cbz(header_reg, count);
 819 
 820       // Atomic swap back the old header
 821       cmpxchg_obj_header(swap_reg, header_reg, obj_reg, rscratch1, count, &slow_case);
 822 
 823       bind(count);
 824       dec_held_monitor_count(rscratch1);
 825       b(done);
 826     }
 827 
 828     bind(slow_case);
 829     // Call the runtime routine for slow case.
 830     str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj
 831     call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
 832     bind(done);
 833     restore_bcp();
 834   }
 835 }
 836 
 837 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
 838                                                          Label& zero_continue) {
 839   assert(ProfileInterpreter, "must be profiling interpreter");
 840   ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 841   cbz(mdp, zero_continue);
 842 }
 843 
 844 // Set the method data pointer for the current bcp.
 845 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
 846   assert(ProfileInterpreter, "must be profiling interpreter");
 847   Label set_mdp;
 848   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 849 
 850   // Test MDO to avoid the call if it is null.
 851   ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset())));
 852   cbz(r0, set_mdp);
 853   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp);
 854   // r0: mdi
 855   // mdo is guaranteed to be non-zero here, we checked for it before the call.
 856   ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
 857   lea(r1, Address(r1, in_bytes(MethodData::data_offset())));
 858   add(r0, r1, r0);
 859   str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 860   bind(set_mdp);
 861   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 862 }
 863 
 864 void InterpreterMacroAssembler::verify_method_data_pointer() {
 865   assert(ProfileInterpreter, "must be profiling interpreter");
 866 #ifdef ASSERT
 867   Label verify_continue;
 868   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 869   stp(r2, r3, Address(pre(sp, -2 * wordSize)));
 870   test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue
 871   get_method(r1);
 872 
 873   // If the mdp is valid, it will point to a DataLayout header which is
 874   // consistent with the bcp.  The converse is highly probable also.
 875   ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset())));
 876   ldr(rscratch1, Address(r1, Method::const_offset()));
 877   add(r2, r2, rscratch1, Assembler::LSL);
 878   lea(r2, Address(r2, ConstMethod::codes_offset()));
 879   cmp(r2, rbcp);
 880   br(Assembler::EQ, verify_continue);
 881   // r1: method
 882   // rbcp: bcp // rbcp == 22
 883   // r3: mdp
 884   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
 885                r1, rbcp, r3);
 886   bind(verify_continue);
 887   ldp(r2, r3, Address(post(sp, 2 * wordSize)));
 888   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 889 #endif // ASSERT
 890 }
 891 
 892 
 893 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
 894                                                 int constant,
 895                                                 Register value) {
 896   assert(ProfileInterpreter, "must be profiling interpreter");
 897   Address data(mdp_in, constant);
 898   str(value, data);
 899 }
 900 
 901 
 902 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 903                                                       int constant,
 904                                                       bool decrement) {
 905   increment_mdp_data_at(mdp_in, noreg, constant, decrement);
 906 }
 907 
 908 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 909                                                       Register reg,
 910                                                       int constant,
 911                                                       bool decrement) {
 912   assert(ProfileInterpreter, "must be profiling interpreter");
 913   // %%% this does 64bit counters at best it is wasting space
 914   // at worst it is a rare bug when counters overflow
 915 
 916   assert_different_registers(rscratch2, rscratch1, mdp_in, reg);
 917 
 918   Address addr1(mdp_in, constant);
 919   Address addr2(rscratch2, reg, Address::lsl(0));
 920   Address &addr = addr1;
 921   if (reg != noreg) {
 922     lea(rscratch2, addr1);
 923     addr = addr2;
 924   }
 925 
 926   if (decrement) {
 927     // Decrement the register.  Set condition codes.
 928     // Intel does this
 929     // addptr(data, (int32_t) -DataLayout::counter_increment);
 930     // If the decrement causes the counter to overflow, stay negative
 931     // Label L;
 932     // jcc(Assembler::negative, L);
 933     // addptr(data, (int32_t) DataLayout::counter_increment);
 934     // so we do this
 935     ldr(rscratch1, addr);
 936     subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment);
 937     Label L;
 938     br(Assembler::LO, L);       // skip store if counter underflow
 939     str(rscratch1, addr);
 940     bind(L);
 941   } else {
 942     assert(DataLayout::counter_increment == 1,
 943            "flow-free idiom only works with 1");
 944     // Intel does this
 945     // Increment the register.  Set carry flag.
 946     // addptr(data, DataLayout::counter_increment);
 947     // If the increment causes the counter to overflow, pull back by 1.
 948     // sbbptr(data, (int32_t)0);
 949     // so we do this
 950     ldr(rscratch1, addr);
 951     adds(rscratch1, rscratch1, DataLayout::counter_increment);
 952     Label L;
 953     br(Assembler::CS, L);       // skip store if counter overflow
 954     str(rscratch1, addr);
 955     bind(L);
 956   }
 957 }
 958 
 959 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
 960                                                 int flag_byte_constant) {
 961   assert(ProfileInterpreter, "must be profiling interpreter");
 962   int flags_offset = in_bytes(DataLayout::flags_offset());
 963   // Set the flag
 964   ldrb(rscratch1, Address(mdp_in, flags_offset));
 965   orr(rscratch1, rscratch1, flag_byte_constant);
 966   strb(rscratch1, Address(mdp_in, flags_offset));
 967 }
 968 
 969 
 970 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
 971                                                  int offset,
 972                                                  Register value,
 973                                                  Register test_value_out,
 974                                                  Label& not_equal_continue) {
 975   assert(ProfileInterpreter, "must be profiling interpreter");
 976   if (test_value_out == noreg) {
 977     ldr(rscratch1, Address(mdp_in, offset));
 978     cmp(value, rscratch1);
 979   } else {
 980     // Put the test value into a register, so caller can use it:
 981     ldr(test_value_out, Address(mdp_in, offset));
 982     cmp(value, test_value_out);
 983   }
 984   br(Assembler::NE, not_equal_continue);
 985 }
 986 
 987 
 988 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
 989                                                      int offset_of_disp) {
 990   assert(ProfileInterpreter, "must be profiling interpreter");
 991   ldr(rscratch1, Address(mdp_in, offset_of_disp));
 992   add(mdp_in, mdp_in, rscratch1, LSL);
 993   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 994 }
 995 
 996 
 997 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
 998                                                      Register reg,
 999                                                      int offset_of_disp) {
1000   assert(ProfileInterpreter, "must be profiling interpreter");
1001   lea(rscratch1, Address(mdp_in, offset_of_disp));
1002   ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0)));
1003   add(mdp_in, mdp_in, rscratch1, LSL);
1004   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1005 }
1006 
1007 
1008 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1009                                                        int constant) {
1010   assert(ProfileInterpreter, "must be profiling interpreter");
1011   add(mdp_in, mdp_in, (unsigned)constant);
1012   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1013 }
1014 
1015 
1016 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1017   assert(ProfileInterpreter, "must be profiling interpreter");
1018   // save/restore across call_VM
1019   stp(zr, return_bci, Address(pre(sp, -2 * wordSize)));
1020   call_VM(noreg,
1021           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1022           return_bci);
1023   ldp(zr, return_bci, Address(post(sp, 2 * wordSize)));
1024 }
1025 
1026 
1027 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1028                                                      Register bumped_count) {
1029   if (ProfileInterpreter) {
1030     Label profile_continue;
1031 
1032     // If no method data exists, go to profile_continue.
1033     // Otherwise, assign to mdp
1034     test_method_data_pointer(mdp, profile_continue);
1035 
1036     // We are taking a branch.  Increment the taken count.
1037     // We inline increment_mdp_data_at to return bumped_count in a register
1038     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1039     Address data(mdp, in_bytes(JumpData::taken_offset()));
1040     ldr(bumped_count, data);
1041     assert(DataLayout::counter_increment == 1,
1042             "flow-free idiom only works with 1");
1043     // Intel does this to catch overflow
1044     // addptr(bumped_count, DataLayout::counter_increment);
1045     // sbbptr(bumped_count, 0);
1046     // so we do this
1047     adds(bumped_count, bumped_count, DataLayout::counter_increment);
1048     Label L;
1049     br(Assembler::CS, L);       // skip store if counter overflow
1050     str(bumped_count, data);
1051     bind(L);
1052     // The method data pointer needs to be updated to reflect the new target.
1053     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1054     bind(profile_continue);
1055   }
1056 }
1057 
1058 
1059 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1060   if (ProfileInterpreter) {
1061     Label profile_continue;
1062 
1063     // If no method data exists, go to profile_continue.
1064     test_method_data_pointer(mdp, profile_continue);
1065 
1066     // We are taking a branch.  Increment the not taken count.
1067     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1068 
1069     // The method data pointer needs to be updated to correspond to
1070     // the next bytecode
1071     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1072     bind(profile_continue);
1073   }
1074 }
1075 
1076 
1077 void InterpreterMacroAssembler::profile_call(Register mdp) {
1078   if (ProfileInterpreter) {
1079     Label profile_continue;
1080 
1081     // If no method data exists, go to profile_continue.
1082     test_method_data_pointer(mdp, profile_continue);
1083 
1084     // We are making a call.  Increment the count.
1085     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1086 
1087     // The method data pointer needs to be updated to reflect the new target.
1088     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1089     bind(profile_continue);
1090   }
1091 }
1092 
1093 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1094   if (ProfileInterpreter) {
1095     Label profile_continue;
1096 
1097     // If no method data exists, go to profile_continue.
1098     test_method_data_pointer(mdp, profile_continue);
1099 
1100     // We are making a call.  Increment the count.
1101     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1102 
1103     // The method data pointer needs to be updated to reflect the new target.
1104     update_mdp_by_constant(mdp,
1105                            in_bytes(VirtualCallData::
1106                                     virtual_call_data_size()));
1107     bind(profile_continue);
1108   }
1109 }
1110 
1111 
1112 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1113                                                      Register mdp,
1114                                                      Register reg2,
1115                                                      bool receiver_can_be_null) {
1116   if (ProfileInterpreter) {
1117     Label profile_continue;
1118 
1119     // If no method data exists, go to profile_continue.
1120     test_method_data_pointer(mdp, profile_continue);
1121 
1122     Label skip_receiver_profile;
1123     if (receiver_can_be_null) {
1124       Label not_null;
1125       // We are making a call.  Increment the count for null receiver.
1126       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1127       b(skip_receiver_profile);
1128       bind(not_null);
1129     }
1130 
1131     // Record the receiver type.
1132     record_klass_in_profile(receiver, mdp, reg2);
1133     bind(skip_receiver_profile);
1134 
1135     // The method data pointer needs to be updated to reflect the new target.
1136     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1137     bind(profile_continue);
1138   }
1139 }
1140 
1141 // This routine creates a state machine for updating the multi-row
1142 // type profile at a virtual call site (or other type-sensitive bytecode).
1143 // The machine visits each row (of receiver/count) until the receiver type
1144 // is found, or until it runs out of rows.  At the same time, it remembers
1145 // the location of the first empty row.  (An empty row records null for its
1146 // receiver, and can be allocated for a newly-observed receiver type.)
1147 // Because there are two degrees of freedom in the state, a simple linear
1148 // search will not work; it must be a decision tree.  Hence this helper
1149 // function is recursive, to generate the required tree structured code.
1150 // It's the interpreter, so we are trading off code space for speed.
1151 // See below for example code.
1152 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1153                                         Register receiver, Register mdp,
1154                                         Register reg2, int start_row,
1155                                         Label& done) {
1156   if (TypeProfileWidth == 0) {
1157     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1158   } else {
1159     record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1160         &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset);
1161   }
1162 }
1163 
1164 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1165                                         Register reg2, int start_row, Label& done, int total_rows,
1166                                         OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn) {
1167   int last_row = total_rows - 1;
1168   assert(start_row <= last_row, "must be work left to do");
1169   // Test this row for both the item and for null.
1170   // Take any of three different outcomes:
1171   //   1. found item => increment count and goto done
1172   //   2. found null => keep looking for case 1, maybe allocate this cell
1173   //   3. found something else => keep looking for cases 1 and 2
1174   // Case 3 is handled by a recursive call.
1175   for (int row = start_row; row <= last_row; row++) {
1176     Label next_test;
1177     bool test_for_null_also = (row == start_row);
1178 
1179     // See if the item is item[n].
1180     int item_offset = in_bytes(item_offset_fn(row));
1181     test_mdp_data_at(mdp, item_offset, item,
1182                      (test_for_null_also ? reg2 : noreg),
1183                      next_test);
1184     // (Reg2 now contains the item from the CallData.)
1185 
1186     // The item is item[n].  Increment count[n].
1187     int count_offset = in_bytes(item_count_offset_fn(row));
1188     increment_mdp_data_at(mdp, count_offset);
1189     b(done);
1190     bind(next_test);
1191 
1192     if (test_for_null_also) {
1193       Label found_null;
1194       // Failed the equality check on item[n]...  Test for null.
1195       if (start_row == last_row) {
1196         // The only thing left to do is handle the null case.
1197         cbz(reg2, found_null);
1198         // Item did not match any saved item and there is no empty row for it.
1199         // Increment total counter to indicate polymorphic case.
1200         increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1201         b(done);
1202         bind(found_null);
1203         break;
1204       }
1205       // Since null is rare, make it be the branch-taken case.
1206       cbz(reg2, found_null);
1207 
1208       // Put all the "Case 3" tests here.
1209       record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1210         item_offset_fn, item_count_offset_fn);
1211 
1212       // Found a null.  Keep searching for a matching item,
1213       // but remember that this is an empty (unused) slot.
1214       bind(found_null);
1215     }
1216   }
1217 
1218   // In the fall-through case, we found no matching item, but we
1219   // observed the item[start_row] is null.
1220 
1221   // Fill in the item field and increment the count.
1222   int item_offset = in_bytes(item_offset_fn(start_row));
1223   set_mdp_data_at(mdp, item_offset, item);
1224   int count_offset = in_bytes(item_count_offset_fn(start_row));
1225   mov(reg2, DataLayout::counter_increment);
1226   set_mdp_data_at(mdp, count_offset, reg2);
1227   if (start_row > 0) {
1228     b(done);
1229   }
1230 }
1231 
1232 // Example state machine code for three profile rows:
1233 //   // main copy of decision tree, rooted at row[1]
1234 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1235 //   if (row[0].rec != nullptr) {
1236 //     // inner copy of decision tree, rooted at row[1]
1237 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1238 //     if (row[1].rec != nullptr) {
1239 //       // degenerate decision tree, rooted at row[2]
1240 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1241 //       if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow
1242 //       row[2].init(rec); goto done;
1243 //     } else {
1244 //       // remember row[1] is empty
1245 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1246 //       row[1].init(rec); goto done;
1247 //     }
1248 //   } else {
1249 //     // remember row[0] is empty
1250 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1251 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1252 //     row[0].init(rec); goto done;
1253 //   }
1254 //   done:
1255 
1256 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1257                                                         Register mdp, Register reg2) {
1258   assert(ProfileInterpreter, "must be profiling");
1259   Label done;
1260 
1261   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
1262 
1263   bind (done);
1264 }
1265 
1266 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1267                                             Register mdp) {
1268   if (ProfileInterpreter) {
1269     Label profile_continue;
1270     uint row;
1271 
1272     // If no method data exists, go to profile_continue.
1273     test_method_data_pointer(mdp, profile_continue);
1274 
1275     // Update the total ret count.
1276     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1277 
1278     for (row = 0; row < RetData::row_limit(); row++) {
1279       Label next_test;
1280 
1281       // See if return_bci is equal to bci[n]:
1282       test_mdp_data_at(mdp,
1283                        in_bytes(RetData::bci_offset(row)),
1284                        return_bci, noreg,
1285                        next_test);
1286 
1287       // return_bci is equal to bci[n].  Increment the count.
1288       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1289 
1290       // The method data pointer needs to be updated to reflect the new target.
1291       update_mdp_by_offset(mdp,
1292                            in_bytes(RetData::bci_displacement_offset(row)));
1293       b(profile_continue);
1294       bind(next_test);
1295     }
1296 
1297     update_mdp_for_ret(return_bci);
1298 
1299     bind(profile_continue);
1300   }
1301 }
1302 
1303 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1304   if (ProfileInterpreter) {
1305     Label profile_continue;
1306 
1307     // If no method data exists, go to profile_continue.
1308     test_method_data_pointer(mdp, profile_continue);
1309 
1310     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1311 
1312     // The method data pointer needs to be updated.
1313     int mdp_delta = in_bytes(BitData::bit_data_size());
1314     if (TypeProfileCasts) {
1315       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1316     }
1317     update_mdp_by_constant(mdp, mdp_delta);
1318 
1319     bind(profile_continue);
1320   }
1321 }
1322 
1323 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1324   if (ProfileInterpreter) {
1325     Label profile_continue;
1326 
1327     // If no method data exists, go to profile_continue.
1328     test_method_data_pointer(mdp, profile_continue);
1329 
1330     // The method data pointer needs to be updated.
1331     int mdp_delta = in_bytes(BitData::bit_data_size());
1332     if (TypeProfileCasts) {
1333       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1334 
1335       // Record the object type.
1336       record_klass_in_profile(klass, mdp, reg2);
1337     }
1338     update_mdp_by_constant(mdp, mdp_delta);
1339 
1340     bind(profile_continue);
1341   }
1342 }
1343 
1344 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1345   if (ProfileInterpreter) {
1346     Label profile_continue;
1347 
1348     // If no method data exists, go to profile_continue.
1349     test_method_data_pointer(mdp, profile_continue);
1350 
1351     // Update the default case count
1352     increment_mdp_data_at(mdp,
1353                           in_bytes(MultiBranchData::default_count_offset()));
1354 
1355     // The method data pointer needs to be updated.
1356     update_mdp_by_offset(mdp,
1357                          in_bytes(MultiBranchData::
1358                                   default_displacement_offset()));
1359 
1360     bind(profile_continue);
1361   }
1362 }
1363 
1364 void InterpreterMacroAssembler::profile_switch_case(Register index,
1365                                                     Register mdp,
1366                                                     Register reg2) {
1367   if (ProfileInterpreter) {
1368     Label profile_continue;
1369 
1370     // If no method data exists, go to profile_continue.
1371     test_method_data_pointer(mdp, profile_continue);
1372 
1373     // Build the base (index * per_case_size_in_bytes()) +
1374     // case_array_offset_in_bytes()
1375     movw(reg2, in_bytes(MultiBranchData::per_case_size()));
1376     movw(rscratch1, in_bytes(MultiBranchData::case_array_offset()));
1377     Assembler::maddw(index, index, reg2, rscratch1);
1378 
1379     // Update the case count
1380     increment_mdp_data_at(mdp,
1381                           index,
1382                           in_bytes(MultiBranchData::relative_count_offset()));
1383 
1384     // The method data pointer needs to be updated.
1385     update_mdp_by_offset(mdp,
1386                          index,
1387                          in_bytes(MultiBranchData::
1388                                   relative_displacement_offset()));
1389 
1390     bind(profile_continue);
1391   }
1392 }
1393 
1394 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) {
1395   if (state == atos) {
1396     MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line);
1397   }
1398 }
1399 
1400 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; }
1401 
1402 void InterpreterMacroAssembler::generate_runtime_upcalls_on_method_entry()
1403 {
1404   address upcall = RuntimeUpcalls::on_method_entry_upcall_address();
1405   if (RuntimeUpcalls::does_upcall_need_method_parameter(upcall)) {
1406     get_method(c_rarg1);
1407     call_VM(noreg,upcall, c_rarg1);
1408   } else {
1409     call_VM(noreg,upcall);
1410   }
1411 }
1412 
1413 void InterpreterMacroAssembler::notify_method_entry() {
1414   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1415   // track stack depth.  If it is possible to enter interp_only_mode we add
1416   // the code to check if the event should be sent.
1417   if (JvmtiExport::can_post_interpreter_events()) {
1418     Label L;
1419     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1420     cbzw(r3, L);
1421     call_VM(noreg, CAST_FROM_FN_PTR(address,
1422                                     InterpreterRuntime::post_method_entry));
1423     bind(L);
1424   }
1425 
1426   if (DTraceMethodProbes) {
1427     get_method(c_rarg1);
1428     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1429                  rthread, c_rarg1);
1430   }
1431 
1432   // RedefineClasses() tracing support for obsolete method entry
1433   if (log_is_enabled(Trace, redefine, class, obsolete) ||
1434       log_is_enabled(Trace, interpreter, bytecode)) {
1435     get_method(c_rarg1);
1436     call_VM_leaf(
1437       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1438       rthread, c_rarg1);
1439   }
1440 
1441  }
1442 
1443 
1444 void InterpreterMacroAssembler::notify_method_exit(
1445     TosState state, NotifyMethodExitMode mode) {
1446   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1447   // track stack depth.  If it is possible to enter interp_only_mode we add
1448   // the code to check if the event should be sent.
1449   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1450     Label L;
1451     // Note: frame::interpreter_frame_result has a dependency on how the
1452     // method result is saved across the call to post_method_exit. If this
1453     // is changed then the interpreter_frame_result implementation will
1454     // need to be updated too.
1455 
1456     // template interpreter will leave the result on the top of the stack.
1457     push(state);
1458     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1459     cbz(r3, L);
1460     call_VM(noreg,
1461             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1462     bind(L);
1463     pop(state);
1464   }
1465 
1466   if (DTraceMethodProbes) {
1467     push(state);
1468     get_method(c_rarg1);
1469     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1470                  rthread, c_rarg1);
1471     pop(state);
1472   }
1473 }
1474 
1475 
1476 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1477 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1478                                                         int increment, Address mask,
1479                                                         Register scratch, Register scratch2,
1480                                                         bool preloaded, Condition cond,
1481                                                         Label* where) {
1482   if (!preloaded) {
1483     ldrw(scratch, counter_addr);
1484   }
1485   add(scratch, scratch, increment);
1486   strw(scratch, counter_addr);
1487   ldrw(scratch2, mask);
1488   ands(scratch, scratch, scratch2);
1489   br(cond, *where);
1490 }
1491 
1492 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
1493                                                   int number_of_arguments) {
1494   // interpreter specific
1495   //
1496   // Note: No need to save/restore rbcp & rlocals pointer since these
1497   //       are callee saved registers and no blocking/ GC can happen
1498   //       in leaf calls.
1499 #ifdef ASSERT
1500   {
1501     Label L;
1502     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1503     cbz(rscratch1, L);
1504     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1505          " last_sp != nullptr");
1506     bind(L);
1507   }
1508 #endif /* ASSERT */
1509   // super call
1510   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
1511 }
1512 
1513 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
1514                                              Register java_thread,
1515                                              Register last_java_sp,
1516                                              address  entry_point,
1517                                              int      number_of_arguments,
1518                                              bool     check_exceptions) {
1519   // interpreter specific
1520   //
1521   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
1522   //       really make a difference for these runtime calls, since they are
1523   //       slow anyway. Btw., bcp must be saved/restored since it may change
1524   //       due to GC.
1525   // assert(java_thread == noreg , "not expecting a precomputed java thread");
1526   save_bcp();
1527 #ifdef ASSERT
1528   {
1529     Label L;
1530     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1531     cbz(rscratch1, L);
1532     stop("InterpreterMacroAssembler::call_VM_base:"
1533          " last_sp != nullptr");
1534     bind(L);
1535   }
1536 #endif /* ASSERT */
1537   // super call
1538   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
1539                                entry_point, number_of_arguments,
1540                      check_exceptions);
1541 // interpreter specific
1542   restore_bcp();
1543   restore_locals();
1544 }
1545 
1546 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result,
1547                                                     address entry_point,
1548                                                     Register arg_1) {
1549   assert(arg_1 == c_rarg1, "");
1550   Label resume_pc, not_preempted;
1551 
1552 #ifdef ASSERT
1553   {
1554     Label L;
1555     ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1556     cbz(rscratch1, L);
1557     stop("Should not have alternate return address set");
1558     bind(L);
1559   }
1560 #endif /* ASSERT */
1561 
1562   // Force freeze slow path.
1563   push_cont_fastpath();
1564 
1565   // Make VM call. In case of preemption set last_pc to the one we want to resume to.
1566   adr(rscratch1, resume_pc);
1567   str(rscratch1, Address(rthread, JavaThread::last_Java_pc_offset()));
1568   call_VM_base(oop_result, noreg, noreg, entry_point, 1, false /*check_exceptions*/);
1569 
1570   pop_cont_fastpath();
1571 
1572   // Check if preempted.
1573   ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1574   cbz(rscratch1, not_preempted);
1575   str(zr, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1576   br(rscratch1);
1577 
1578   // In case of preemption, this is where we will resume once we finally acquire the monitor.
1579   bind(resume_pc);
1580   restore_after_resume(false /* is_native */);
1581 
1582   bind(not_preempted);
1583 }
1584 
1585 void InterpreterMacroAssembler::restore_after_resume(bool is_native) {
1586   lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter()));
1587   blr(rscratch1);
1588   if (is_native) {
1589     // On resume we need to set up stack as expected
1590     push(dtos);
1591     push(ltos);
1592   }
1593 }
1594 
1595 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
1596   assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index());
1597   Label update, next, none;
1598 
1599   verify_oop(obj);
1600 
1601   cbnz(obj, update);
1602   orptr(mdo_addr, TypeEntries::null_seen);
1603   b(next);
1604 
1605   bind(update);
1606   load_klass(obj, obj);
1607 
1608   ldr(rscratch1, mdo_addr);
1609   eor(obj, obj, rscratch1);
1610   tst(obj, TypeEntries::type_klass_mask);
1611   br(Assembler::EQ, next); // klass seen before, nothing to
1612                            // do. The unknown bit may have been
1613                            // set already but no need to check.
1614 
1615   tbnz(obj, exact_log2(TypeEntries::type_unknown), next);
1616   // already unknown. Nothing to do anymore.
1617 
1618   cbz(rscratch1, none);
1619   cmp(rscratch1, (u1)TypeEntries::null_seen);
1620   br(Assembler::EQ, none);
1621   // There is a chance that the checks above
1622   // fail if another thread has just set the
1623   // profiling to this obj's klass
1624   eor(obj, obj, rscratch1); // get back original value before XOR
1625   ldr(rscratch1, mdo_addr);
1626   eor(obj, obj, rscratch1);
1627   tst(obj, TypeEntries::type_klass_mask);
1628   br(Assembler::EQ, next);
1629 
1630   // different than before. Cannot keep accurate profile.
1631   orptr(mdo_addr, TypeEntries::type_unknown);
1632   b(next);
1633 
1634   bind(none);
1635   // first time here. Set profile type.
1636   str(obj, mdo_addr);
1637 #ifdef ASSERT
1638   andr(obj, obj, TypeEntries::type_mask);
1639   verify_klass_ptr(obj);
1640 #endif
1641 
1642   bind(next);
1643 }
1644 
1645 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1646   if (!ProfileInterpreter) {
1647     return;
1648   }
1649 
1650   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1651     Label profile_continue;
1652 
1653     test_method_data_pointer(mdp, profile_continue);
1654 
1655     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1656 
1657     ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start));
1658     cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag));
1659     br(Assembler::NE, profile_continue);
1660 
1661     if (MethodData::profile_arguments()) {
1662       Label done;
1663       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1664 
1665       for (int i = 0; i < TypeProfileArgsLimit; i++) {
1666         if (i > 0 || MethodData::profile_return()) {
1667           // If return value type is profiled we may have no argument to profile
1668           ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1669           sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count());
1670           cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count());
1671           add(rscratch1, mdp, off_to_args);
1672           br(Assembler::LT, done);
1673         }
1674         ldr(tmp, Address(callee, Method::const_offset()));
1675         load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1676         // stack offset o (zero based) from the start of the argument
1677         // list, for n arguments translates into offset n - o - 1 from
1678         // the end of the argument list
1679         ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))));
1680         sub(tmp, tmp, rscratch1);
1681         sub(tmp, tmp, 1);
1682         Address arg_addr = argument_address(tmp);
1683         ldr(tmp, arg_addr);
1684 
1685         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i)));
1686         profile_obj_type(tmp, mdo_arg_addr);
1687 
1688         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1689         off_to_args += to_add;
1690       }
1691 
1692       if (MethodData::profile_return()) {
1693         ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1694         sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1695       }
1696 
1697       add(rscratch1, mdp, off_to_args);
1698       bind(done);
1699       mov(mdp, rscratch1);
1700 
1701       if (MethodData::profile_return()) {
1702         // We're right after the type profile for the last
1703         // argument. tmp is the number of cells left in the
1704         // CallTypeData/VirtualCallTypeData to reach its end. Non null
1705         // if there's a return to profile.
1706         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1707         add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size));
1708       }
1709       str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1710     } else {
1711       assert(MethodData::profile_return(), "either profile call args or call ret");
1712       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
1713     }
1714 
1715     // mdp points right after the end of the
1716     // CallTypeData/VirtualCallTypeData, right after the cells for the
1717     // return value type if there's one
1718 
1719     bind(profile_continue);
1720   }
1721 }
1722 
1723 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1724   assert_different_registers(mdp, ret, tmp, rbcp);
1725   if (ProfileInterpreter && MethodData::profile_return()) {
1726     Label profile_continue, done;
1727 
1728     test_method_data_pointer(mdp, profile_continue);
1729 
1730     if (MethodData::profile_return_jsr292_only()) {
1731       assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
1732 
1733       // If we don't profile all invoke bytecodes we must make sure
1734       // it's a bytecode we indeed profile. We can't go back to the
1735       // beginning of the ProfileData we intend to update to check its
1736       // type because we're right after it and we don't known its
1737       // length
1738       Label do_profile;
1739       ldrb(rscratch1, Address(rbcp, 0));
1740       cmp(rscratch1, (u1)Bytecodes::_invokedynamic);
1741       br(Assembler::EQ, do_profile);
1742       cmp(rscratch1, (u1)Bytecodes::_invokehandle);
1743       br(Assembler::EQ, do_profile);
1744       get_method(tmp);
1745       ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset()));
1746       subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm));
1747       br(Assembler::NE, profile_continue);
1748 
1749       bind(do_profile);
1750     }
1751 
1752     Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
1753     mov(tmp, ret);
1754     profile_obj_type(tmp, mdo_ret_addr);
1755 
1756     bind(profile_continue);
1757   }
1758 }
1759 
1760 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
1761   assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2);
1762   if (ProfileInterpreter && MethodData::profile_parameters()) {
1763     Label profile_continue, done;
1764 
1765     test_method_data_pointer(mdp, profile_continue);
1766 
1767     // Load the offset of the area within the MDO used for
1768     // parameters. If it's negative we're not profiling any parameters
1769     ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
1770     tbnz(tmp1, 31, profile_continue);  // i.e. sign bit set
1771 
1772     // Compute a pointer to the area for parameters from the offset
1773     // and move the pointer to the slot for the last
1774     // parameters. Collect profiling from last parameter down.
1775     // mdo start + parameters offset + array length - 1
1776     add(mdp, mdp, tmp1);
1777     ldr(tmp1, Address(mdp, ArrayData::array_len_offset()));
1778     sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1779 
1780     Label loop;
1781     bind(loop);
1782 
1783     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1784     int type_base = in_bytes(ParametersTypeData::type_offset(0));
1785     int per_arg_scale = exact_log2(DataLayout::cell_size);
1786     add(rscratch1, mdp, off_base);
1787     add(rscratch2, mdp, type_base);
1788 
1789     Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale));
1790     Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale));
1791 
1792     // load offset on the stack from the slot for this parameter
1793     ldr(tmp2, arg_off);
1794     neg(tmp2, tmp2);
1795     // read the parameter from the local area
1796     ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize)));
1797 
1798     // profile the parameter
1799     profile_obj_type(tmp2, arg_type);
1800 
1801     // go to next parameter
1802     subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1803     br(Assembler::GE, loop);
1804 
1805     bind(profile_continue);
1806   }
1807 }
1808 
1809 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) {
1810   // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp
1811   get_cache_index_at_bcp(index, 1, sizeof(u4));
1812   // Get address of invokedynamic array
1813   ldr(cache, Address(rcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset())));
1814   // Scale the index to be the entry index * sizeof(ResolvedIndyEntry)
1815   lsl(index, index, log2i_exact(sizeof(ResolvedIndyEntry)));
1816   add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes());
1817   lea(cache, Address(cache, index));
1818 }
1819 
1820 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) {
1821   // Get index out of bytecode pointer
1822   get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
1823   // Take shortcut if the size is a power of 2
1824   if (is_power_of_2(sizeof(ResolvedFieldEntry))) {
1825     lsl(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2
1826   } else {
1827     mov(cache, sizeof(ResolvedFieldEntry));
1828     mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry)
1829   }
1830   // Get address of field entries array
1831   ldr(cache, Address(rcpool, ConstantPoolCache::field_entries_offset()));
1832   add(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes());
1833   lea(cache, Address(cache, index));
1834   // Prevents stale data from being read after the bytecode is patched to the fast bytecode
1835   membar(MacroAssembler::LoadLoad);
1836 }
1837 
1838 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) {
1839   // Get index out of bytecode pointer
1840   get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
1841   mov(cache, sizeof(ResolvedMethodEntry));
1842   mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry)
1843 
1844   // Get address of field entries array
1845   ldr(cache, Address(rcpool, ConstantPoolCache::method_entries_offset()));
1846   add(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes());
1847   lea(cache, Address(cache, index));
1848 }