1 /* 2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/macroAssembler.inline.hpp" 27 #include "compiler/compiler_globals.hpp" 28 #include "gc/shared/barrierSet.hpp" 29 #include "gc/shared/barrierSetAssembler.hpp" 30 #include "interp_masm_aarch64.hpp" 31 #include "interpreter/interpreter.hpp" 32 #include "interpreter/interpreterRuntime.hpp" 33 #include "logging/log.hpp" 34 #include "oops/arrayOop.hpp" 35 #include "oops/markWord.hpp" 36 #include "oops/method.hpp" 37 #include "oops/methodData.hpp" 38 #include "oops/resolvedFieldEntry.hpp" 39 #include "oops/resolvedIndyEntry.hpp" 40 #include "oops/resolvedMethodEntry.hpp" 41 #include "prims/jvmtiExport.hpp" 42 #include "prims/jvmtiThreadState.hpp" 43 #include "runtime/basicLock.hpp" 44 #include "runtime/frame.inline.hpp" 45 #include "runtime/javaThread.hpp" 46 #include "runtime/runtimeUpcalls.hpp" 47 #include "runtime/safepointMechanism.hpp" 48 #include "runtime/sharedRuntime.hpp" 49 #include "utilities/powerOfTwo.hpp" 50 51 void InterpreterMacroAssembler::narrow(Register result) { 52 53 // Get method->_constMethod->_result_type 54 ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 55 ldr(rscratch1, Address(rscratch1, Method::const_offset())); 56 ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset())); 57 58 Label done, notBool, notByte, notChar; 59 60 // common case first 61 cmpw(rscratch1, T_INT); 62 br(Assembler::EQ, done); 63 64 // mask integer result to narrower return type. 65 cmpw(rscratch1, T_BOOLEAN); 66 br(Assembler::NE, notBool); 67 andw(result, result, 0x1); 68 b(done); 69 70 bind(notBool); 71 cmpw(rscratch1, T_BYTE); 72 br(Assembler::NE, notByte); 73 sbfx(result, result, 0, 8); 74 b(done); 75 76 bind(notByte); 77 cmpw(rscratch1, T_CHAR); 78 br(Assembler::NE, notChar); 79 ubfx(result, result, 0, 16); // truncate upper 16 bits 80 b(done); 81 82 bind(notChar); 83 sbfx(result, result, 0, 16); // sign-extend short 84 85 // Nothing to do for T_INT 86 bind(done); 87 } 88 89 void InterpreterMacroAssembler::jump_to_entry(address entry) { 90 assert(entry, "Entry must have been generated by now"); 91 b(entry); 92 } 93 94 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 95 if (JvmtiExport::can_pop_frame()) { 96 Label L; 97 // Initiate popframe handling only if it is not already being 98 // processed. If the flag has the popframe_processing bit set, it 99 // means that this code is called *during* popframe handling - we 100 // don't want to reenter. 101 // This method is only called just after the call into the vm in 102 // call_VM_base, so the arg registers are available. 103 ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset())); 104 tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L); 105 tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L); 106 // Call Interpreter::remove_activation_preserving_args_entry() to get the 107 // address of the same-named entrypoint in the generated interpreter code. 108 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 109 br(r0); 110 bind(L); 111 } 112 } 113 114 115 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 116 ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset())); 117 const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset()); 118 const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset()); 119 const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset()); 120 switch (state) { 121 case atos: ldr(r0, oop_addr); 122 str(zr, oop_addr); 123 interp_verify_oop(r0, state); break; 124 case ltos: ldr(r0, val_addr); break; 125 case btos: // fall through 126 case ztos: // fall through 127 case ctos: // fall through 128 case stos: // fall through 129 case itos: ldrw(r0, val_addr); break; 130 case ftos: ldrs(v0, val_addr); break; 131 case dtos: ldrd(v0, val_addr); break; 132 case vtos: /* nothing to do */ break; 133 default : ShouldNotReachHere(); 134 } 135 // Clean up tos value in the thread object 136 movw(rscratch1, (int) ilgl); 137 strw(rscratch1, tos_addr); 138 strw(zr, val_addr); 139 } 140 141 142 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 143 if (JvmtiExport::can_force_early_return()) { 144 Label L; 145 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 146 cbz(rscratch1, L); // if (thread->jvmti_thread_state() == nullptr) exit; 147 148 // Initiate earlyret handling only if it is not already being processed. 149 // If the flag has the earlyret_processing bit set, it means that this code 150 // is called *during* earlyret handling - we don't want to reenter. 151 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset())); 152 cmpw(rscratch1, JvmtiThreadState::earlyret_pending); 153 br(Assembler::NE, L); 154 155 // Call Interpreter::remove_activation_early_entry() to get the address of the 156 // same-named entrypoint in the generated interpreter code. 157 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 158 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset())); 159 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1); 160 br(r0); 161 bind(L); 162 } 163 } 164 165 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp( 166 Register reg, 167 int bcp_offset) { 168 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 169 ldrh(reg, Address(rbcp, bcp_offset)); 170 rev16(reg, reg); 171 } 172 173 void InterpreterMacroAssembler::get_dispatch() { 174 uint64_t offset; 175 adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset); 176 // Use add() here after ARDP, rather than lea(). 177 // lea() does not generate anything if its offset is zero. 178 // However, relocs expect to find either an ADD or a load/store 179 // insn after an ADRP. add() always generates an ADD insn, even 180 // for add(Rn, Rn, 0). 181 add(rdispatch, rdispatch, offset); 182 } 183 184 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 185 int bcp_offset, 186 size_t index_size) { 187 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 188 if (index_size == sizeof(u2)) { 189 load_unsigned_short(index, Address(rbcp, bcp_offset)); 190 } else if (index_size == sizeof(u4)) { 191 // assert(EnableInvokeDynamic, "giant index used only for JSR 292"); 192 ldrw(index, Address(rbcp, bcp_offset)); 193 } else if (index_size == sizeof(u1)) { 194 load_unsigned_byte(index, Address(rbcp, bcp_offset)); 195 } else { 196 ShouldNotReachHere(); 197 } 198 } 199 200 void InterpreterMacroAssembler::get_method_counters(Register method, 201 Register mcs, Label& skip) { 202 Label has_counters; 203 ldr(mcs, Address(method, Method::method_counters_offset())); 204 cbnz(mcs, has_counters); 205 call_VM(noreg, CAST_FROM_FN_PTR(address, 206 InterpreterRuntime::build_method_counters), method); 207 ldr(mcs, Address(method, Method::method_counters_offset())); 208 cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory 209 bind(has_counters); 210 } 211 212 // Load object from cpool->resolved_references(index) 213 void InterpreterMacroAssembler::load_resolved_reference_at_index( 214 Register result, Register index, Register tmp) { 215 assert_different_registers(result, index); 216 217 get_constant_pool(result); 218 // load pointer for resolved_references[] objArray 219 ldr(result, Address(result, ConstantPool::cache_offset())); 220 ldr(result, Address(result, ConstantPoolCache::resolved_references_offset())); 221 resolve_oop_handle(result, tmp, rscratch2); 222 // Add in the index 223 add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 224 load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop)), tmp, rscratch2); 225 } 226 227 void InterpreterMacroAssembler::load_resolved_klass_at_offset( 228 Register cpool, Register index, Register klass, Register temp) { 229 add(temp, cpool, index, LSL, LogBytesPerWord); 230 ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index 231 ldr(klass, Address(cpool, ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses 232 add(klass, klass, temp, LSL, LogBytesPerWord); 233 ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes())); 234 } 235 236 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 237 // subtype of super_klass. 238 // 239 // Args: 240 // r0: superklass 241 // Rsub_klass: subklass 242 // 243 // Kills: 244 // r2, r5 245 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 246 Label& ok_is_subtype) { 247 assert(Rsub_klass != r0, "r0 holds superklass"); 248 assert(Rsub_klass != r2, "r2 holds 2ndary super array length"); 249 assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr"); 250 251 // Profile the not-null value's klass. 252 profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5 253 254 // Do the check. 255 check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2 256 } 257 258 // Java Expression Stack 259 260 void InterpreterMacroAssembler::pop_ptr(Register r) { 261 ldr(r, post(esp, wordSize)); 262 } 263 264 void InterpreterMacroAssembler::pop_i(Register r) { 265 ldrw(r, post(esp, wordSize)); 266 } 267 268 void InterpreterMacroAssembler::pop_l(Register r) { 269 ldr(r, post(esp, 2 * Interpreter::stackElementSize)); 270 } 271 272 void InterpreterMacroAssembler::push_ptr(Register r) { 273 str(r, pre(esp, -wordSize)); 274 } 275 276 void InterpreterMacroAssembler::push_i(Register r) { 277 str(r, pre(esp, -wordSize)); 278 } 279 280 void InterpreterMacroAssembler::push_l(Register r) { 281 str(zr, pre(esp, -wordSize)); 282 str(r, pre(esp, - wordSize)); 283 } 284 285 void InterpreterMacroAssembler::pop_f(FloatRegister r) { 286 ldrs(r, post(esp, wordSize)); 287 } 288 289 void InterpreterMacroAssembler::pop_d(FloatRegister r) { 290 ldrd(r, post(esp, 2 * Interpreter::stackElementSize)); 291 } 292 293 void InterpreterMacroAssembler::push_f(FloatRegister r) { 294 strs(r, pre(esp, -wordSize)); 295 } 296 297 void InterpreterMacroAssembler::push_d(FloatRegister r) { 298 strd(r, pre(esp, 2* -wordSize)); 299 } 300 301 void InterpreterMacroAssembler::pop(TosState state) { 302 switch (state) { 303 case atos: pop_ptr(); break; 304 case btos: 305 case ztos: 306 case ctos: 307 case stos: 308 case itos: pop_i(); break; 309 case ltos: pop_l(); break; 310 case ftos: pop_f(); break; 311 case dtos: pop_d(); break; 312 case vtos: /* nothing to do */ break; 313 default: ShouldNotReachHere(); 314 } 315 interp_verify_oop(r0, state); 316 } 317 318 void InterpreterMacroAssembler::push(TosState state) { 319 interp_verify_oop(r0, state); 320 switch (state) { 321 case atos: push_ptr(); break; 322 case btos: 323 case ztos: 324 case ctos: 325 case stos: 326 case itos: push_i(); break; 327 case ltos: push_l(); break; 328 case ftos: push_f(); break; 329 case dtos: push_d(); break; 330 case vtos: /* nothing to do */ break; 331 default : ShouldNotReachHere(); 332 } 333 } 334 335 // Helpers for swap and dup 336 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 337 ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 338 } 339 340 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 341 str(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 342 } 343 344 void InterpreterMacroAssembler::load_float(Address src) { 345 ldrs(v0, src); 346 } 347 348 void InterpreterMacroAssembler::load_double(Address src) { 349 ldrd(v0, src); 350 } 351 352 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 353 // set sender sp 354 mov(r19_sender_sp, sp); 355 // record last_sp 356 sub(rscratch1, esp, rfp); 357 asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 358 str(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 359 } 360 361 // Jump to from_interpreted entry of a call unless single stepping is possible 362 // in this thread in which case we must call the i2i entry 363 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 364 prepare_to_jump_from_interpreted(); 365 366 if (JvmtiExport::can_post_interpreter_events()) { 367 Label run_compiled_code; 368 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 369 // compiled code in threads for which the event is enabled. Check here for 370 // interp_only_mode if these events CAN be enabled. 371 ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset())); 372 cbzw(rscratch1, run_compiled_code); 373 ldr(rscratch1, Address(method, Method::interpreter_entry_offset())); 374 br(rscratch1); 375 bind(run_compiled_code); 376 } 377 378 ldr(rscratch1, Address(method, Method::from_interpreted_offset())); 379 br(rscratch1); 380 } 381 382 // The following two routines provide a hook so that an implementation 383 // can schedule the dispatch in two parts. amd64 does not do this. 384 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 385 } 386 387 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 388 dispatch_next(state, step); 389 } 390 391 void InterpreterMacroAssembler::dispatch_base(TosState state, 392 address* table, 393 bool verifyoop, 394 bool generate_poll) { 395 if (VerifyActivationFrameSize) { 396 Label L; 397 sub(rscratch2, rfp, esp); 398 int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize; 399 subs(rscratch2, rscratch2, min_frame_size); 400 br(Assembler::GE, L); 401 stop("broken stack frame"); 402 bind(L); 403 } 404 if (verifyoop) { 405 interp_verify_oop(r0, state); 406 } 407 408 Label safepoint; 409 address* const safepoint_table = Interpreter::safept_table(state); 410 bool needs_thread_local_poll = generate_poll && table != safepoint_table; 411 412 if (needs_thread_local_poll) { 413 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 414 ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset())); 415 tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint); 416 } 417 418 if (table == Interpreter::dispatch_table(state)) { 419 addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state)); 420 ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3))); 421 } else { 422 mov(rscratch2, (address)table); 423 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 424 } 425 br(rscratch2); 426 427 if (needs_thread_local_poll) { 428 bind(safepoint); 429 lea(rscratch2, ExternalAddress((address)safepoint_table)); 430 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 431 br(rscratch2); 432 } 433 } 434 435 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 436 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 437 } 438 439 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 440 dispatch_base(state, Interpreter::normal_table(state)); 441 } 442 443 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 444 dispatch_base(state, Interpreter::normal_table(state), false); 445 } 446 447 448 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 449 // load next bytecode 450 ldrb(rscratch1, Address(pre(rbcp, step))); 451 dispatch_base(state, Interpreter::dispatch_table(state), /*verifyoop*/true, generate_poll); 452 } 453 454 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 455 // load current bytecode 456 ldrb(rscratch1, Address(rbcp, 0)); 457 dispatch_base(state, table); 458 } 459 460 // remove activation 461 // 462 // Unlock the receiver if this is a synchronized method. 463 // Unlock any Java monitors from synchronized blocks. 464 // Apply stack watermark barrier. 465 // Notify JVMTI. 466 // Remove the activation from the stack. 467 // 468 // If there are locked Java monitors 469 // If throw_monitor_exception 470 // throws IllegalMonitorStateException 471 // Else if install_monitor_exception 472 // installs IllegalMonitorStateException 473 // Else 474 // no error processing 475 void InterpreterMacroAssembler::remove_activation(TosState state, 476 bool throw_monitor_exception, 477 bool install_monitor_exception, 478 bool notify_jvmdi) { 479 // Note: Registers r3 xmm0 may be in use for the 480 // result check if synchronized method 481 Label unlocked, unlock, no_unlock; 482 483 // get the value of _do_not_unlock_if_synchronized into r3 484 const Address do_not_unlock_if_synchronized(rthread, 485 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 486 ldrb(r3, do_not_unlock_if_synchronized); 487 strb(zr, do_not_unlock_if_synchronized); // reset the flag 488 489 // get method access flags 490 ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 491 ldrh(r2, Address(r1, Method::access_flags_offset())); 492 tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked); 493 494 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 495 // is set. 496 cbnz(r3, no_unlock); 497 498 // unlock monitor 499 push(state); // save result 500 501 // BasicObjectLock will be first in list, since this is a 502 // synchronized method. However, need to check that the object has 503 // not been unlocked by an explicit monitorexit bytecode. 504 const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset * 505 wordSize - (int) sizeof(BasicObjectLock)); 506 // We use c_rarg1 so that if we go slow path it will be the correct 507 // register for unlock_object to pass to VM directly 508 lea(c_rarg1, monitor); // address of first monitor 509 510 ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset())); 511 cbnz(r0, unlock); 512 513 pop(state); 514 if (throw_monitor_exception) { 515 // Entry already unlocked, need to throw exception 516 call_VM(noreg, CAST_FROM_FN_PTR(address, 517 InterpreterRuntime::throw_illegal_monitor_state_exception)); 518 should_not_reach_here(); 519 } else { 520 // Monitor already unlocked during a stack unroll. If requested, 521 // install an illegal_monitor_state_exception. Continue with 522 // stack unrolling. 523 if (install_monitor_exception) { 524 call_VM(noreg, CAST_FROM_FN_PTR(address, 525 InterpreterRuntime::new_illegal_monitor_state_exception)); 526 } 527 b(unlocked); 528 } 529 530 bind(unlock); 531 unlock_object(c_rarg1); 532 pop(state); 533 534 // Check that for block-structured locking (i.e., that all locked 535 // objects has been unlocked) 536 bind(unlocked); 537 538 // r0: Might contain return value 539 540 // Check that all monitors are unlocked 541 { 542 Label loop, exception, entry, restart; 543 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 544 const Address monitor_block_top( 545 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 546 const Address monitor_block_bot( 547 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 548 549 bind(restart); 550 // We use c_rarg1 so that if we go slow path it will be the correct 551 // register for unlock_object to pass to VM directly 552 ldr(c_rarg1, monitor_block_top); // derelativize pointer 553 lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize))); 554 // c_rarg1 points to current entry, starting with top-most entry 555 556 lea(r19, monitor_block_bot); // points to word before bottom of 557 // monitor block 558 b(entry); 559 560 // Entry already locked, need to throw exception 561 bind(exception); 562 563 if (throw_monitor_exception) { 564 // Throw exception 565 MacroAssembler::call_VM(noreg, 566 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 567 throw_illegal_monitor_state_exception)); 568 should_not_reach_here(); 569 } else { 570 // Stack unrolling. Unlock object and install illegal_monitor_exception. 571 // Unlock does not block, so don't have to worry about the frame. 572 // We don't have to preserve c_rarg1 since we are going to throw an exception. 573 574 push(state); 575 unlock_object(c_rarg1); 576 pop(state); 577 578 if (install_monitor_exception) { 579 call_VM(noreg, CAST_FROM_FN_PTR(address, 580 InterpreterRuntime:: 581 new_illegal_monitor_state_exception)); 582 } 583 584 b(restart); 585 } 586 587 bind(loop); 588 // check if current entry is used 589 ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset())); 590 cbnz(rscratch1, exception); 591 592 add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry 593 bind(entry); 594 cmp(c_rarg1, r19); // check if bottom reached 595 br(Assembler::NE, loop); // if not at bottom then check this entry 596 } 597 598 bind(no_unlock); 599 600 JFR_ONLY(enter_jfr_critical_section();) 601 602 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 603 // that would normally not be safe to use. Such bad returns into unsafe territory of 604 // the stack, will call InterpreterRuntime::at_unwind. 605 Label slow_path; 606 Label fast_path; 607 safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */); 608 br(Assembler::AL, fast_path); 609 bind(slow_path); 610 push(state); 611 set_last_Java_frame(esp, rfp, pc(), rscratch1); 612 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread); 613 reset_last_Java_frame(true); 614 pop(state); 615 bind(fast_path); 616 617 // JVMTI support. Make sure the safepoint poll test is issued prior. 618 if (notify_jvmdi) { 619 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 620 } else { 621 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 622 } 623 624 // remove activation 625 // get sender esp 626 ldr(rscratch2, 627 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 628 if (StackReservedPages > 0) { 629 // testing if reserved zone needs to be re-enabled 630 Label no_reserved_zone_enabling; 631 632 // check if already enabled - if so no re-enabling needed 633 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 634 ldrw(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset())); 635 cmpw(rscratch1, (u1)StackOverflow::stack_guard_enabled); 636 br(Assembler::EQ, no_reserved_zone_enabling); 637 638 // look for an overflow into the stack reserved zone, i.e. 639 // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation 640 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 641 cmp(rscratch2, rscratch1); 642 br(Assembler::LS, no_reserved_zone_enabling); 643 644 JFR_ONLY(leave_jfr_critical_section();) 645 646 call_VM_leaf( 647 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 648 call_VM(noreg, CAST_FROM_FN_PTR(address, 649 InterpreterRuntime::throw_delayed_StackOverflowError)); 650 should_not_reach_here(); 651 652 bind(no_reserved_zone_enabling); 653 } 654 655 // remove frame anchor 656 leave(); 657 658 JFR_ONLY(leave_jfr_critical_section();) 659 660 // restore sender esp 661 mov(esp, rscratch2); 662 663 // If we're returning to interpreted code we will shortly be 664 // adjusting SP to allow some space for ESP. If we're returning to 665 // compiled code the saved sender SP was saved in sender_sp, so this 666 // restores it. 667 andr(sp, esp, -16); 668 } 669 670 #if INCLUDE_JFR 671 void InterpreterMacroAssembler::enter_jfr_critical_section() { 672 const Address sampling_critical_section(rthread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR)); 673 mov(rscratch1, true); 674 strb(rscratch1, sampling_critical_section); 675 } 676 677 void InterpreterMacroAssembler::leave_jfr_critical_section() { 678 const Address sampling_critical_section(rthread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR)); 679 strb(zr, sampling_critical_section); 680 } 681 #endif // INCLUDE_JFR 682 683 // Lock object 684 // 685 // Args: 686 // c_rarg1: BasicObjectLock to be used for locking 687 // 688 // Kills: 689 // r0 690 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, .. (param regs) 691 // rscratch1, rscratch2 (scratch regs) 692 void InterpreterMacroAssembler::lock_object(Register lock_reg) 693 { 694 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 695 if (LockingMode == LM_MONITOR) { 696 call_VM_preemptable(noreg, 697 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 698 lock_reg); 699 } else { 700 Label count, done; 701 702 const Register swap_reg = r0; 703 const Register tmp = c_rarg2; 704 const Register obj_reg = c_rarg3; // Will contain the oop 705 const Register tmp2 = c_rarg4; 706 const Register tmp3 = c_rarg5; 707 708 const int obj_offset = in_bytes(BasicObjectLock::obj_offset()); 709 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 710 const int mark_offset = lock_offset + 711 BasicLock::displaced_header_offset_in_bytes(); 712 713 Label slow_case; 714 715 // Load object pointer into obj_reg %c_rarg3 716 ldr(obj_reg, Address(lock_reg, obj_offset)); 717 718 if (LockingMode == LM_LIGHTWEIGHT) { 719 lightweight_lock(lock_reg, obj_reg, tmp, tmp2, tmp3, slow_case); 720 b(done); 721 } else if (LockingMode == LM_LEGACY) { 722 723 if (DiagnoseSyncOnValueBasedClasses != 0) { 724 load_klass(tmp, obj_reg); 725 ldrb(tmp, Address(tmp, Klass::misc_flags_offset())); 726 tst(tmp, KlassFlags::_misc_is_value_based_class); 727 br(Assembler::NE, slow_case); 728 } 729 730 // Load (object->mark() | 1) into swap_reg 731 ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 732 orr(swap_reg, rscratch1, 1); 733 734 // Save (object->mark() | 1) into BasicLock's displaced header 735 str(swap_reg, Address(lock_reg, mark_offset)); 736 737 assert(lock_offset == 0, 738 "displached header must be first word in BasicObjectLock"); 739 740 Label fail; 741 cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr); 742 743 // Fast check for recursive lock. 744 // 745 // Can apply the optimization only if this is a stack lock 746 // allocated in this thread. For efficiency, we can focus on 747 // recently allocated stack locks (instead of reading the stack 748 // base and checking whether 'mark' points inside the current 749 // thread stack): 750 // 1) (mark & 7) == 0, and 751 // 2) sp <= mark < mark + os::pagesize() 752 // 753 // Warning: sp + os::pagesize can overflow the stack base. We must 754 // neither apply the optimization for an inflated lock allocated 755 // just above the thread stack (this is why condition 1 matters) 756 // nor apply the optimization if the stack lock is inside the stack 757 // of another thread. The latter is avoided even in case of overflow 758 // because we have guard pages at the end of all stacks. Hence, if 759 // we go over the stack base and hit the stack of another thread, 760 // this should not be in a writeable area that could contain a 761 // stack lock allocated by that thread. As a consequence, a stack 762 // lock less than page size away from sp is guaranteed to be 763 // owned by the current thread. 764 // 765 // These 3 tests can be done by evaluating the following 766 // expression: ((mark - sp) & (7 - os::vm_page_size())), 767 // assuming both stack pointer and pagesize have their 768 // least significant 3 bits clear. 769 // NOTE: the mark is in swap_reg %r0 as the result of cmpxchg 770 // NOTE2: aarch64 does not like to subtract sp from rn so take a 771 // copy 772 mov(rscratch1, sp); 773 sub(swap_reg, swap_reg, rscratch1); 774 ands(swap_reg, swap_reg, (uint64_t)(7 - (int)os::vm_page_size())); 775 776 // Save the test result, for recursive case, the result is zero 777 str(swap_reg, Address(lock_reg, mark_offset)); 778 br(Assembler::NE, slow_case); 779 780 bind(count); 781 inc_held_monitor_count(rscratch1); 782 b(done); 783 } 784 bind(slow_case); 785 786 // Call the runtime routine for slow case 787 call_VM_preemptable(noreg, 788 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 789 lock_reg); 790 791 bind(done); 792 } 793 } 794 795 796 // Unlocks an object. Used in monitorexit bytecode and 797 // remove_activation. Throws an IllegalMonitorException if object is 798 // not locked by current thread. 799 // 800 // Args: 801 // c_rarg1: BasicObjectLock for lock 802 // 803 // Kills: 804 // r0 805 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 806 // rscratch1, rscratch2 (scratch regs) 807 void InterpreterMacroAssembler::unlock_object(Register lock_reg) 808 { 809 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1"); 810 811 if (LockingMode == LM_MONITOR) { 812 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 813 } else { 814 Label count, done; 815 816 const Register swap_reg = r0; 817 const Register header_reg = c_rarg2; // Will contain the old oopMark 818 const Register obj_reg = c_rarg3; // Will contain the oop 819 const Register tmp_reg = c_rarg4; // Temporary used by lightweight_unlock 820 821 save_bcp(); // Save in case of exception 822 823 if (LockingMode != LM_LIGHTWEIGHT) { 824 // Convert from BasicObjectLock structure to object and BasicLock 825 // structure Store the BasicLock address into %r0 826 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset())); 827 } 828 829 // Load oop into obj_reg(%c_rarg3) 830 ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 831 832 // Free entry 833 str(zr, Address(lock_reg, BasicObjectLock::obj_offset())); 834 835 Label slow_case; 836 if (LockingMode == LM_LIGHTWEIGHT) { 837 lightweight_unlock(obj_reg, header_reg, swap_reg, tmp_reg, slow_case); 838 b(done); 839 } else if (LockingMode == LM_LEGACY) { 840 // Load the old header from BasicLock structure 841 ldr(header_reg, Address(swap_reg, 842 BasicLock::displaced_header_offset_in_bytes())); 843 844 // Test for recursion 845 cbz(header_reg, count); 846 847 // Atomic swap back the old header 848 cmpxchg_obj_header(swap_reg, header_reg, obj_reg, rscratch1, count, &slow_case); 849 850 bind(count); 851 dec_held_monitor_count(rscratch1); 852 b(done); 853 } 854 855 bind(slow_case); 856 // Call the runtime routine for slow case. 857 str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj 858 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 859 bind(done); 860 restore_bcp(); 861 } 862 } 863 864 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 865 Label& zero_continue) { 866 assert(ProfileInterpreter, "must be profiling interpreter"); 867 ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 868 cbz(mdp, zero_continue); 869 } 870 871 // Set the method data pointer for the current bcp. 872 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 873 assert(ProfileInterpreter, "must be profiling interpreter"); 874 Label set_mdp; 875 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 876 877 // Test MDO to avoid the call if it is null. 878 ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset()))); 879 cbz(r0, set_mdp); 880 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp); 881 // r0: mdi 882 // mdo is guaranteed to be non-zero here, we checked for it before the call. 883 ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset()))); 884 lea(r1, Address(r1, in_bytes(MethodData::data_offset()))); 885 add(r0, r1, r0); 886 str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 887 bind(set_mdp); 888 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 889 } 890 891 void InterpreterMacroAssembler::verify_method_data_pointer() { 892 assert(ProfileInterpreter, "must be profiling interpreter"); 893 #ifdef ASSERT 894 Label verify_continue; 895 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 896 stp(r2, r3, Address(pre(sp, -2 * wordSize))); 897 test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue 898 get_method(r1); 899 900 // If the mdp is valid, it will point to a DataLayout header which is 901 // consistent with the bcp. The converse is highly probable also. 902 ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset()))); 903 ldr(rscratch1, Address(r1, Method::const_offset())); 904 add(r2, r2, rscratch1, Assembler::LSL); 905 lea(r2, Address(r2, ConstMethod::codes_offset())); 906 cmp(r2, rbcp); 907 br(Assembler::EQ, verify_continue); 908 // r1: method 909 // rbcp: bcp // rbcp == 22 910 // r3: mdp 911 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 912 r1, rbcp, r3); 913 bind(verify_continue); 914 ldp(r2, r3, Address(post(sp, 2 * wordSize))); 915 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 916 #endif // ASSERT 917 } 918 919 920 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 921 int constant, 922 Register value) { 923 assert(ProfileInterpreter, "must be profiling interpreter"); 924 Address data(mdp_in, constant); 925 str(value, data); 926 } 927 928 929 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 930 int constant, 931 bool decrement) { 932 increment_mdp_data_at(mdp_in, noreg, constant, decrement); 933 } 934 935 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 936 Register reg, 937 int constant, 938 bool decrement) { 939 assert(ProfileInterpreter, "must be profiling interpreter"); 940 // %%% this does 64bit counters at best it is wasting space 941 // at worst it is a rare bug when counters overflow 942 943 assert_different_registers(rscratch2, rscratch1, mdp_in, reg); 944 945 Address addr1(mdp_in, constant); 946 Address addr2(rscratch2, reg, Address::lsl(0)); 947 Address &addr = addr1; 948 if (reg != noreg) { 949 lea(rscratch2, addr1); 950 addr = addr2; 951 } 952 953 if (decrement) { 954 // Decrement the register. Set condition codes. 955 // Intel does this 956 // addptr(data, (int32_t) -DataLayout::counter_increment); 957 // If the decrement causes the counter to overflow, stay negative 958 // Label L; 959 // jcc(Assembler::negative, L); 960 // addptr(data, (int32_t) DataLayout::counter_increment); 961 // so we do this 962 ldr(rscratch1, addr); 963 subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment); 964 Label L; 965 br(Assembler::LO, L); // skip store if counter underflow 966 str(rscratch1, addr); 967 bind(L); 968 } else { 969 assert(DataLayout::counter_increment == 1, 970 "flow-free idiom only works with 1"); 971 // Intel does this 972 // Increment the register. Set carry flag. 973 // addptr(data, DataLayout::counter_increment); 974 // If the increment causes the counter to overflow, pull back by 1. 975 // sbbptr(data, (int32_t)0); 976 // so we do this 977 ldr(rscratch1, addr); 978 adds(rscratch1, rscratch1, DataLayout::counter_increment); 979 Label L; 980 br(Assembler::CS, L); // skip store if counter overflow 981 str(rscratch1, addr); 982 bind(L); 983 } 984 } 985 986 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 987 int flag_byte_constant) { 988 assert(ProfileInterpreter, "must be profiling interpreter"); 989 int flags_offset = in_bytes(DataLayout::flags_offset()); 990 // Set the flag 991 ldrb(rscratch1, Address(mdp_in, flags_offset)); 992 orr(rscratch1, rscratch1, flag_byte_constant); 993 strb(rscratch1, Address(mdp_in, flags_offset)); 994 } 995 996 997 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 998 int offset, 999 Register value, 1000 Register test_value_out, 1001 Label& not_equal_continue) { 1002 assert(ProfileInterpreter, "must be profiling interpreter"); 1003 if (test_value_out == noreg) { 1004 ldr(rscratch1, Address(mdp_in, offset)); 1005 cmp(value, rscratch1); 1006 } else { 1007 // Put the test value into a register, so caller can use it: 1008 ldr(test_value_out, Address(mdp_in, offset)); 1009 cmp(value, test_value_out); 1010 } 1011 br(Assembler::NE, not_equal_continue); 1012 } 1013 1014 1015 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1016 int offset_of_disp) { 1017 assert(ProfileInterpreter, "must be profiling interpreter"); 1018 ldr(rscratch1, Address(mdp_in, offset_of_disp)); 1019 add(mdp_in, mdp_in, rscratch1, LSL); 1020 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1021 } 1022 1023 1024 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1025 Register reg, 1026 int offset_of_disp) { 1027 assert(ProfileInterpreter, "must be profiling interpreter"); 1028 lea(rscratch1, Address(mdp_in, offset_of_disp)); 1029 ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0))); 1030 add(mdp_in, mdp_in, rscratch1, LSL); 1031 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1032 } 1033 1034 1035 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1036 int constant) { 1037 assert(ProfileInterpreter, "must be profiling interpreter"); 1038 add(mdp_in, mdp_in, (unsigned)constant); 1039 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1040 } 1041 1042 1043 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1044 assert(ProfileInterpreter, "must be profiling interpreter"); 1045 // save/restore across call_VM 1046 stp(zr, return_bci, Address(pre(sp, -2 * wordSize))); 1047 call_VM(noreg, 1048 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1049 return_bci); 1050 ldp(zr, return_bci, Address(post(sp, 2 * wordSize))); 1051 } 1052 1053 1054 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1055 Register bumped_count) { 1056 if (ProfileInterpreter) { 1057 Label profile_continue; 1058 1059 // If no method data exists, go to profile_continue. 1060 // Otherwise, assign to mdp 1061 test_method_data_pointer(mdp, profile_continue); 1062 1063 // We are taking a branch. Increment the taken count. 1064 // We inline increment_mdp_data_at to return bumped_count in a register 1065 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1066 Address data(mdp, in_bytes(JumpData::taken_offset())); 1067 ldr(bumped_count, data); 1068 assert(DataLayout::counter_increment == 1, 1069 "flow-free idiom only works with 1"); 1070 // Intel does this to catch overflow 1071 // addptr(bumped_count, DataLayout::counter_increment); 1072 // sbbptr(bumped_count, 0); 1073 // so we do this 1074 adds(bumped_count, bumped_count, DataLayout::counter_increment); 1075 Label L; 1076 br(Assembler::CS, L); // skip store if counter overflow 1077 str(bumped_count, data); 1078 bind(L); 1079 // The method data pointer needs to be updated to reflect the new target. 1080 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1081 bind(profile_continue); 1082 } 1083 } 1084 1085 1086 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1087 if (ProfileInterpreter) { 1088 Label profile_continue; 1089 1090 // If no method data exists, go to profile_continue. 1091 test_method_data_pointer(mdp, profile_continue); 1092 1093 // We are taking a branch. Increment the not taken count. 1094 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1095 1096 // The method data pointer needs to be updated to correspond to 1097 // the next bytecode 1098 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1099 bind(profile_continue); 1100 } 1101 } 1102 1103 1104 void InterpreterMacroAssembler::profile_call(Register mdp) { 1105 if (ProfileInterpreter) { 1106 Label profile_continue; 1107 1108 // If no method data exists, go to profile_continue. 1109 test_method_data_pointer(mdp, profile_continue); 1110 1111 // We are making a call. Increment the count. 1112 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1113 1114 // The method data pointer needs to be updated to reflect the new target. 1115 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1116 bind(profile_continue); 1117 } 1118 } 1119 1120 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1121 if (ProfileInterpreter) { 1122 Label profile_continue; 1123 1124 // If no method data exists, go to profile_continue. 1125 test_method_data_pointer(mdp, profile_continue); 1126 1127 // We are making a call. Increment the count. 1128 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1129 1130 // The method data pointer needs to be updated to reflect the new target. 1131 update_mdp_by_constant(mdp, 1132 in_bytes(VirtualCallData:: 1133 virtual_call_data_size())); 1134 bind(profile_continue); 1135 } 1136 } 1137 1138 1139 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1140 Register mdp, 1141 Register reg2, 1142 bool receiver_can_be_null) { 1143 if (ProfileInterpreter) { 1144 Label profile_continue; 1145 1146 // If no method data exists, go to profile_continue. 1147 test_method_data_pointer(mdp, profile_continue); 1148 1149 Label skip_receiver_profile; 1150 if (receiver_can_be_null) { 1151 Label not_null; 1152 // We are making a call. Increment the count for null receiver. 1153 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1154 b(skip_receiver_profile); 1155 bind(not_null); 1156 } 1157 1158 // Record the receiver type. 1159 record_klass_in_profile(receiver, mdp, reg2); 1160 bind(skip_receiver_profile); 1161 1162 // The method data pointer needs to be updated to reflect the new target. 1163 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1164 bind(profile_continue); 1165 } 1166 } 1167 1168 // This routine creates a state machine for updating the multi-row 1169 // type profile at a virtual call site (or other type-sensitive bytecode). 1170 // The machine visits each row (of receiver/count) until the receiver type 1171 // is found, or until it runs out of rows. At the same time, it remembers 1172 // the location of the first empty row. (An empty row records null for its 1173 // receiver, and can be allocated for a newly-observed receiver type.) 1174 // Because there are two degrees of freedom in the state, a simple linear 1175 // search will not work; it must be a decision tree. Hence this helper 1176 // function is recursive, to generate the required tree structured code. 1177 // It's the interpreter, so we are trading off code space for speed. 1178 // See below for example code. 1179 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1180 Register receiver, Register mdp, 1181 Register reg2, int start_row, 1182 Label& done) { 1183 if (TypeProfileWidth == 0) { 1184 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1185 } else { 1186 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1187 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset); 1188 } 1189 } 1190 1191 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, 1192 Register reg2, int start_row, Label& done, int total_rows, 1193 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn) { 1194 int last_row = total_rows - 1; 1195 assert(start_row <= last_row, "must be work left to do"); 1196 // Test this row for both the item and for null. 1197 // Take any of three different outcomes: 1198 // 1. found item => increment count and goto done 1199 // 2. found null => keep looking for case 1, maybe allocate this cell 1200 // 3. found something else => keep looking for cases 1 and 2 1201 // Case 3 is handled by a recursive call. 1202 for (int row = start_row; row <= last_row; row++) { 1203 Label next_test; 1204 bool test_for_null_also = (row == start_row); 1205 1206 // See if the item is item[n]. 1207 int item_offset = in_bytes(item_offset_fn(row)); 1208 test_mdp_data_at(mdp, item_offset, item, 1209 (test_for_null_also ? reg2 : noreg), 1210 next_test); 1211 // (Reg2 now contains the item from the CallData.) 1212 1213 // The item is item[n]. Increment count[n]. 1214 int count_offset = in_bytes(item_count_offset_fn(row)); 1215 increment_mdp_data_at(mdp, count_offset); 1216 b(done); 1217 bind(next_test); 1218 1219 if (test_for_null_also) { 1220 Label found_null; 1221 // Failed the equality check on item[n]... Test for null. 1222 if (start_row == last_row) { 1223 // The only thing left to do is handle the null case. 1224 cbz(reg2, found_null); 1225 // Item did not match any saved item and there is no empty row for it. 1226 // Increment total counter to indicate polymorphic case. 1227 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1228 b(done); 1229 bind(found_null); 1230 break; 1231 } 1232 // Since null is rare, make it be the branch-taken case. 1233 cbz(reg2, found_null); 1234 1235 // Put all the "Case 3" tests here. 1236 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1237 item_offset_fn, item_count_offset_fn); 1238 1239 // Found a null. Keep searching for a matching item, 1240 // but remember that this is an empty (unused) slot. 1241 bind(found_null); 1242 } 1243 } 1244 1245 // In the fall-through case, we found no matching item, but we 1246 // observed the item[start_row] is null. 1247 1248 // Fill in the item field and increment the count. 1249 int item_offset = in_bytes(item_offset_fn(start_row)); 1250 set_mdp_data_at(mdp, item_offset, item); 1251 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1252 mov(reg2, DataLayout::counter_increment); 1253 set_mdp_data_at(mdp, count_offset, reg2); 1254 if (start_row > 0) { 1255 b(done); 1256 } 1257 } 1258 1259 // Example state machine code for three profile rows: 1260 // // main copy of decision tree, rooted at row[1] 1261 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1262 // if (row[0].rec != nullptr) { 1263 // // inner copy of decision tree, rooted at row[1] 1264 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1265 // if (row[1].rec != nullptr) { 1266 // // degenerate decision tree, rooted at row[2] 1267 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1268 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow 1269 // row[2].init(rec); goto done; 1270 // } else { 1271 // // remember row[1] is empty 1272 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1273 // row[1].init(rec); goto done; 1274 // } 1275 // } else { 1276 // // remember row[0] is empty 1277 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1278 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1279 // row[0].init(rec); goto done; 1280 // } 1281 // done: 1282 1283 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1284 Register mdp, Register reg2) { 1285 assert(ProfileInterpreter, "must be profiling"); 1286 Label done; 1287 1288 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done); 1289 1290 bind (done); 1291 } 1292 1293 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1294 Register mdp) { 1295 if (ProfileInterpreter) { 1296 Label profile_continue; 1297 uint row; 1298 1299 // If no method data exists, go to profile_continue. 1300 test_method_data_pointer(mdp, profile_continue); 1301 1302 // Update the total ret count. 1303 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1304 1305 for (row = 0; row < RetData::row_limit(); row++) { 1306 Label next_test; 1307 1308 // See if return_bci is equal to bci[n]: 1309 test_mdp_data_at(mdp, 1310 in_bytes(RetData::bci_offset(row)), 1311 return_bci, noreg, 1312 next_test); 1313 1314 // return_bci is equal to bci[n]. Increment the count. 1315 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1316 1317 // The method data pointer needs to be updated to reflect the new target. 1318 update_mdp_by_offset(mdp, 1319 in_bytes(RetData::bci_displacement_offset(row))); 1320 b(profile_continue); 1321 bind(next_test); 1322 } 1323 1324 update_mdp_for_ret(return_bci); 1325 1326 bind(profile_continue); 1327 } 1328 } 1329 1330 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1331 if (ProfileInterpreter) { 1332 Label profile_continue; 1333 1334 // If no method data exists, go to profile_continue. 1335 test_method_data_pointer(mdp, profile_continue); 1336 1337 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1338 1339 // The method data pointer needs to be updated. 1340 int mdp_delta = in_bytes(BitData::bit_data_size()); 1341 if (TypeProfileCasts) { 1342 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1343 } 1344 update_mdp_by_constant(mdp, mdp_delta); 1345 1346 bind(profile_continue); 1347 } 1348 } 1349 1350 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1351 if (ProfileInterpreter) { 1352 Label profile_continue; 1353 1354 // If no method data exists, go to profile_continue. 1355 test_method_data_pointer(mdp, profile_continue); 1356 1357 // The method data pointer needs to be updated. 1358 int mdp_delta = in_bytes(BitData::bit_data_size()); 1359 if (TypeProfileCasts) { 1360 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1361 1362 // Record the object type. 1363 record_klass_in_profile(klass, mdp, reg2); 1364 } 1365 update_mdp_by_constant(mdp, mdp_delta); 1366 1367 bind(profile_continue); 1368 } 1369 } 1370 1371 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1372 if (ProfileInterpreter) { 1373 Label profile_continue; 1374 1375 // If no method data exists, go to profile_continue. 1376 test_method_data_pointer(mdp, profile_continue); 1377 1378 // Update the default case count 1379 increment_mdp_data_at(mdp, 1380 in_bytes(MultiBranchData::default_count_offset())); 1381 1382 // The method data pointer needs to be updated. 1383 update_mdp_by_offset(mdp, 1384 in_bytes(MultiBranchData:: 1385 default_displacement_offset())); 1386 1387 bind(profile_continue); 1388 } 1389 } 1390 1391 void InterpreterMacroAssembler::profile_switch_case(Register index, 1392 Register mdp, 1393 Register reg2) { 1394 if (ProfileInterpreter) { 1395 Label profile_continue; 1396 1397 // If no method data exists, go to profile_continue. 1398 test_method_data_pointer(mdp, profile_continue); 1399 1400 // Build the base (index * per_case_size_in_bytes()) + 1401 // case_array_offset_in_bytes() 1402 movw(reg2, in_bytes(MultiBranchData::per_case_size())); 1403 movw(rscratch1, in_bytes(MultiBranchData::case_array_offset())); 1404 Assembler::maddw(index, index, reg2, rscratch1); 1405 1406 // Update the case count 1407 increment_mdp_data_at(mdp, 1408 index, 1409 in_bytes(MultiBranchData::relative_count_offset())); 1410 1411 // The method data pointer needs to be updated. 1412 update_mdp_by_offset(mdp, 1413 index, 1414 in_bytes(MultiBranchData:: 1415 relative_displacement_offset())); 1416 1417 bind(profile_continue); 1418 } 1419 } 1420 1421 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 1422 if (state == atos) { 1423 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 1424 } 1425 } 1426 1427 void InterpreterMacroAssembler::generate_runtime_upcalls_on_method_entry() 1428 { 1429 address upcall = RuntimeUpcalls::on_method_entry_upcall_address(); 1430 if (RuntimeUpcalls::does_upcall_need_method_parameter(upcall)) { 1431 get_method(c_rarg1); 1432 call_VM(noreg,upcall, c_rarg1); 1433 } else { 1434 call_VM(noreg,upcall); 1435 } 1436 } 1437 1438 void InterpreterMacroAssembler::notify_method_entry() { 1439 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1440 // track stack depth. If it is possible to enter interp_only_mode we add 1441 // the code to check if the event should be sent. 1442 if (JvmtiExport::can_post_interpreter_events()) { 1443 Label L; 1444 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1445 cbzw(r3, L); 1446 call_VM(noreg, CAST_FROM_FN_PTR(address, 1447 InterpreterRuntime::post_method_entry)); 1448 bind(L); 1449 } 1450 1451 if (DTraceMethodProbes) { 1452 get_method(c_rarg1); 1453 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1454 rthread, c_rarg1); 1455 } 1456 1457 // RedefineClasses() tracing support for obsolete method entry 1458 if (log_is_enabled(Trace, redefine, class, obsolete) || 1459 log_is_enabled(Trace, interpreter, bytecode)) { 1460 get_method(c_rarg1); 1461 call_VM_leaf( 1462 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1463 rthread, c_rarg1); 1464 } 1465 1466 } 1467 1468 1469 void InterpreterMacroAssembler::notify_method_exit( 1470 TosState state, NotifyMethodExitMode mode) { 1471 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1472 // track stack depth. If it is possible to enter interp_only_mode we add 1473 // the code to check if the event should be sent. 1474 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 1475 Label L; 1476 // Note: frame::interpreter_frame_result has a dependency on how the 1477 // method result is saved across the call to post_method_exit. If this 1478 // is changed then the interpreter_frame_result implementation will 1479 // need to be updated too. 1480 1481 // template interpreter will leave the result on the top of the stack. 1482 push(state); 1483 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1484 cbz(r3, L); 1485 call_VM(noreg, 1486 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 1487 bind(L); 1488 pop(state); 1489 } 1490 1491 if (DTraceMethodProbes) { 1492 push(state); 1493 get_method(c_rarg1); 1494 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1495 rthread, c_rarg1); 1496 pop(state); 1497 } 1498 } 1499 1500 1501 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. 1502 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, 1503 int increment, Address mask, 1504 Register scratch, Register scratch2, 1505 bool preloaded, Condition cond, 1506 Label* where) { 1507 if (!preloaded) { 1508 ldrw(scratch, counter_addr); 1509 } 1510 add(scratch, scratch, increment); 1511 strw(scratch, counter_addr); 1512 ldrw(scratch2, mask); 1513 ands(scratch, scratch, scratch2); 1514 br(cond, *where); 1515 } 1516 1517 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 1518 int number_of_arguments) { 1519 // interpreter specific 1520 // 1521 // Note: No need to save/restore rbcp & rlocals pointer since these 1522 // are callee saved registers and no blocking/ GC can happen 1523 // in leaf calls. 1524 #ifdef ASSERT 1525 { 1526 Label L; 1527 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1528 cbz(rscratch1, L); 1529 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 1530 " last_sp != nullptr"); 1531 bind(L); 1532 } 1533 #endif /* ASSERT */ 1534 // super call 1535 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1536 } 1537 1538 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 1539 Register java_thread, 1540 Register last_java_sp, 1541 address entry_point, 1542 int number_of_arguments, 1543 bool check_exceptions) { 1544 // interpreter specific 1545 // 1546 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 1547 // really make a difference for these runtime calls, since they are 1548 // slow anyway. Btw., bcp must be saved/restored since it may change 1549 // due to GC. 1550 // assert(java_thread == noreg , "not expecting a precomputed java thread"); 1551 save_bcp(); 1552 #ifdef ASSERT 1553 { 1554 Label L; 1555 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1556 cbz(rscratch1, L); 1557 stop("InterpreterMacroAssembler::call_VM_base:" 1558 " last_sp != nullptr"); 1559 bind(L); 1560 } 1561 #endif /* ASSERT */ 1562 // super call 1563 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 1564 entry_point, number_of_arguments, 1565 check_exceptions); 1566 // interpreter specific 1567 restore_bcp(); 1568 restore_locals(); 1569 } 1570 1571 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result, 1572 address entry_point, 1573 Register arg_1) { 1574 assert(arg_1 == c_rarg1, ""); 1575 Label resume_pc, not_preempted; 1576 1577 #ifdef ASSERT 1578 { 1579 Label L; 1580 ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1581 cbz(rscratch1, L); 1582 stop("Should not have alternate return address set"); 1583 bind(L); 1584 } 1585 #endif /* ASSERT */ 1586 1587 // Force freeze slow path. 1588 push_cont_fastpath(); 1589 1590 // Make VM call. In case of preemption set last_pc to the one we want to resume to. 1591 adr(rscratch1, resume_pc); 1592 str(rscratch1, Address(rthread, JavaThread::last_Java_pc_offset())); 1593 call_VM_base(oop_result, noreg, noreg, entry_point, 1, false /*check_exceptions*/); 1594 1595 pop_cont_fastpath(); 1596 1597 // Check if preempted. 1598 ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1599 cbz(rscratch1, not_preempted); 1600 str(zr, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1601 br(rscratch1); 1602 1603 // In case of preemption, this is where we will resume once we finally acquire the monitor. 1604 bind(resume_pc); 1605 restore_after_resume(false /* is_native */); 1606 1607 bind(not_preempted); 1608 } 1609 1610 void InterpreterMacroAssembler::restore_after_resume(bool is_native) { 1611 lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter())); 1612 blr(rscratch1); 1613 if (is_native) { 1614 // On resume we need to set up stack as expected 1615 push(dtos); 1616 push(ltos); 1617 } 1618 } 1619 1620 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 1621 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 1622 Label update, next, none; 1623 1624 verify_oop(obj); 1625 1626 cbnz(obj, update); 1627 orptr(mdo_addr, TypeEntries::null_seen); 1628 b(next); 1629 1630 bind(update); 1631 load_klass(obj, obj); 1632 1633 ldr(rscratch1, mdo_addr); 1634 eor(obj, obj, rscratch1); 1635 tst(obj, TypeEntries::type_klass_mask); 1636 br(Assembler::EQ, next); // klass seen before, nothing to 1637 // do. The unknown bit may have been 1638 // set already but no need to check. 1639 1640 tbnz(obj, exact_log2(TypeEntries::type_unknown), next); 1641 // already unknown. Nothing to do anymore. 1642 1643 cbz(rscratch1, none); 1644 cmp(rscratch1, (u1)TypeEntries::null_seen); 1645 br(Assembler::EQ, none); 1646 // There is a chance that the checks above 1647 // fail if another thread has just set the 1648 // profiling to this obj's klass 1649 eor(obj, obj, rscratch1); // get back original value before XOR 1650 ldr(rscratch1, mdo_addr); 1651 eor(obj, obj, rscratch1); 1652 tst(obj, TypeEntries::type_klass_mask); 1653 br(Assembler::EQ, next); 1654 1655 // different than before. Cannot keep accurate profile. 1656 orptr(mdo_addr, TypeEntries::type_unknown); 1657 b(next); 1658 1659 bind(none); 1660 // first time here. Set profile type. 1661 str(obj, mdo_addr); 1662 #ifdef ASSERT 1663 andr(obj, obj, TypeEntries::type_mask); 1664 verify_klass_ptr(obj); 1665 #endif 1666 1667 bind(next); 1668 } 1669 1670 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 1671 if (!ProfileInterpreter) { 1672 return; 1673 } 1674 1675 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1676 Label profile_continue; 1677 1678 test_method_data_pointer(mdp, profile_continue); 1679 1680 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1681 1682 ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start)); 1683 cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag)); 1684 br(Assembler::NE, profile_continue); 1685 1686 if (MethodData::profile_arguments()) { 1687 Label done; 1688 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 1689 1690 for (int i = 0; i < TypeProfileArgsLimit; i++) { 1691 if (i > 0 || MethodData::profile_return()) { 1692 // If return value type is profiled we may have no argument to profile 1693 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1694 sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count()); 1695 cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count()); 1696 add(rscratch1, mdp, off_to_args); 1697 br(Assembler::LT, done); 1698 } 1699 ldr(tmp, Address(callee, Method::const_offset())); 1700 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 1701 // stack offset o (zero based) from the start of the argument 1702 // list, for n arguments translates into offset n - o - 1 from 1703 // the end of the argument list 1704 ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i)))); 1705 sub(tmp, tmp, rscratch1); 1706 sub(tmp, tmp, 1); 1707 Address arg_addr = argument_address(tmp); 1708 ldr(tmp, arg_addr); 1709 1710 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))); 1711 profile_obj_type(tmp, mdo_arg_addr); 1712 1713 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1714 off_to_args += to_add; 1715 } 1716 1717 if (MethodData::profile_return()) { 1718 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1719 sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1720 } 1721 1722 add(rscratch1, mdp, off_to_args); 1723 bind(done); 1724 mov(mdp, rscratch1); 1725 1726 if (MethodData::profile_return()) { 1727 // We're right after the type profile for the last 1728 // argument. tmp is the number of cells left in the 1729 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1730 // if there's a return to profile. 1731 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 1732 add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size)); 1733 } 1734 str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1735 } else { 1736 assert(MethodData::profile_return(), "either profile call args or call ret"); 1737 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 1738 } 1739 1740 // mdp points right after the end of the 1741 // CallTypeData/VirtualCallTypeData, right after the cells for the 1742 // return value type if there's one 1743 1744 bind(profile_continue); 1745 } 1746 } 1747 1748 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 1749 assert_different_registers(mdp, ret, tmp, rbcp); 1750 if (ProfileInterpreter && MethodData::profile_return()) { 1751 Label profile_continue, done; 1752 1753 test_method_data_pointer(mdp, profile_continue); 1754 1755 if (MethodData::profile_return_jsr292_only()) { 1756 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 1757 1758 // If we don't profile all invoke bytecodes we must make sure 1759 // it's a bytecode we indeed profile. We can't go back to the 1760 // beginning of the ProfileData we intend to update to check its 1761 // type because we're right after it and we don't known its 1762 // length 1763 Label do_profile; 1764 ldrb(rscratch1, Address(rbcp, 0)); 1765 cmp(rscratch1, (u1)Bytecodes::_invokedynamic); 1766 br(Assembler::EQ, do_profile); 1767 cmp(rscratch1, (u1)Bytecodes::_invokehandle); 1768 br(Assembler::EQ, do_profile); 1769 get_method(tmp); 1770 ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset())); 1771 subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1772 br(Assembler::NE, profile_continue); 1773 1774 bind(do_profile); 1775 } 1776 1777 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); 1778 mov(tmp, ret); 1779 profile_obj_type(tmp, mdo_ret_addr); 1780 1781 bind(profile_continue); 1782 } 1783 } 1784 1785 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 1786 assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2); 1787 if (ProfileInterpreter && MethodData::profile_parameters()) { 1788 Label profile_continue, done; 1789 1790 test_method_data_pointer(mdp, profile_continue); 1791 1792 // Load the offset of the area within the MDO used for 1793 // parameters. If it's negative we're not profiling any parameters 1794 ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 1795 tbnz(tmp1, 31, profile_continue); // i.e. sign bit set 1796 1797 // Compute a pointer to the area for parameters from the offset 1798 // and move the pointer to the slot for the last 1799 // parameters. Collect profiling from last parameter down. 1800 // mdo start + parameters offset + array length - 1 1801 add(mdp, mdp, tmp1); 1802 ldr(tmp1, Address(mdp, ArrayData::array_len_offset())); 1803 sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 1804 1805 Label loop; 1806 bind(loop); 1807 1808 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 1809 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 1810 int per_arg_scale = exact_log2(DataLayout::cell_size); 1811 add(rscratch1, mdp, off_base); 1812 add(rscratch2, mdp, type_base); 1813 1814 Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale)); 1815 Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale)); 1816 1817 // load offset on the stack from the slot for this parameter 1818 ldr(tmp2, arg_off); 1819 neg(tmp2, tmp2); 1820 // read the parameter from the local area 1821 ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize))); 1822 1823 // profile the parameter 1824 profile_obj_type(tmp2, arg_type); 1825 1826 // go to next parameter 1827 subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 1828 br(Assembler::GE, loop); 1829 1830 bind(profile_continue); 1831 } 1832 } 1833 1834 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 1835 // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp 1836 get_cache_index_at_bcp(index, 1, sizeof(u4)); 1837 // Get address of invokedynamic array 1838 ldr(cache, Address(rcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 1839 // Scale the index to be the entry index * sizeof(ResolvedIndyEntry) 1840 lsl(index, index, log2i_exact(sizeof(ResolvedIndyEntry))); 1841 add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes()); 1842 lea(cache, Address(cache, index)); 1843 } 1844 1845 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 1846 // Get index out of bytecode pointer 1847 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 1848 // Take shortcut if the size is a power of 2 1849 if (is_power_of_2(sizeof(ResolvedFieldEntry))) { 1850 lsl(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2 1851 } else { 1852 mov(cache, sizeof(ResolvedFieldEntry)); 1853 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry) 1854 } 1855 // Get address of field entries array 1856 ldr(cache, Address(rcpool, ConstantPoolCache::field_entries_offset())); 1857 add(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes()); 1858 lea(cache, Address(cache, index)); 1859 // Prevents stale data from being read after the bytecode is patched to the fast bytecode 1860 membar(MacroAssembler::LoadLoad); 1861 } 1862 1863 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) { 1864 // Get index out of bytecode pointer 1865 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 1866 mov(cache, sizeof(ResolvedMethodEntry)); 1867 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry) 1868 1869 // Get address of field entries array 1870 ldr(cache, Address(rcpool, ConstantPoolCache::method_entries_offset())); 1871 add(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes()); 1872 lea(cache, Address(cache, index)); 1873 }