1 /* 2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/macroAssembler.inline.hpp" 27 #include "compiler/compiler_globals.hpp" 28 #include "gc/shared/barrierSet.hpp" 29 #include "gc/shared/barrierSetAssembler.hpp" 30 #include "interp_masm_aarch64.hpp" 31 #include "interpreter/interpreter.hpp" 32 #include "interpreter/interpreterRuntime.hpp" 33 #include "logging/log.hpp" 34 #include "oops/arrayOop.hpp" 35 #include "oops/markWord.hpp" 36 #include "oops/method.hpp" 37 #include "oops/methodData.hpp" 38 #include "oops/resolvedFieldEntry.hpp" 39 #include "oops/resolvedIndyEntry.hpp" 40 #include "oops/resolvedMethodEntry.hpp" 41 #include "prims/jvmtiExport.hpp" 42 #include "prims/jvmtiThreadState.hpp" 43 #include "runtime/basicLock.hpp" 44 #include "runtime/frame.inline.hpp" 45 #include "runtime/javaThread.hpp" 46 #include "runtime/runtimeUpcalls.hpp" 47 #include "runtime/safepointMechanism.hpp" 48 #include "runtime/sharedRuntime.hpp" 49 #include "utilities/powerOfTwo.hpp" 50 51 void InterpreterMacroAssembler::narrow(Register result) { 52 53 // Get method->_constMethod->_result_type 54 ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 55 ldr(rscratch1, Address(rscratch1, Method::const_offset())); 56 ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset())); 57 58 Label done, notBool, notByte, notChar; 59 60 // common case first 61 cmpw(rscratch1, T_INT); 62 br(Assembler::EQ, done); 63 64 // mask integer result to narrower return type. 65 cmpw(rscratch1, T_BOOLEAN); 66 br(Assembler::NE, notBool); 67 andw(result, result, 0x1); 68 b(done); 69 70 bind(notBool); 71 cmpw(rscratch1, T_BYTE); 72 br(Assembler::NE, notByte); 73 sbfx(result, result, 0, 8); 74 b(done); 75 76 bind(notByte); 77 cmpw(rscratch1, T_CHAR); 78 br(Assembler::NE, notChar); 79 ubfx(result, result, 0, 16); // truncate upper 16 bits 80 b(done); 81 82 bind(notChar); 83 sbfx(result, result, 0, 16); // sign-extend short 84 85 // Nothing to do for T_INT 86 bind(done); 87 } 88 89 void InterpreterMacroAssembler::jump_to_entry(address entry) { 90 assert(entry, "Entry must have been generated by now"); 91 b(entry); 92 } 93 94 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 95 if (JvmtiExport::can_pop_frame()) { 96 Label L; 97 // Initiate popframe handling only if it is not already being 98 // processed. If the flag has the popframe_processing bit set, it 99 // means that this code is called *during* popframe handling - we 100 // don't want to reenter. 101 // This method is only called just after the call into the vm in 102 // call_VM_base, so the arg registers are available. 103 ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset())); 104 tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L); 105 tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L); 106 // Call Interpreter::remove_activation_preserving_args_entry() to get the 107 // address of the same-named entrypoint in the generated interpreter code. 108 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 109 br(r0); 110 bind(L); 111 } 112 } 113 114 115 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 116 ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset())); 117 const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset()); 118 const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset()); 119 const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset()); 120 switch (state) { 121 case atos: ldr(r0, oop_addr); 122 str(zr, oop_addr); 123 interp_verify_oop(r0, state); break; 124 case ltos: ldr(r0, val_addr); break; 125 case btos: // fall through 126 case ztos: // fall through 127 case ctos: // fall through 128 case stos: // fall through 129 case itos: ldrw(r0, val_addr); break; 130 case ftos: ldrs(v0, val_addr); break; 131 case dtos: ldrd(v0, val_addr); break; 132 case vtos: /* nothing to do */ break; 133 default : ShouldNotReachHere(); 134 } 135 // Clean up tos value in the thread object 136 movw(rscratch1, (int) ilgl); 137 strw(rscratch1, tos_addr); 138 strw(zr, val_addr); 139 } 140 141 142 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 143 if (JvmtiExport::can_force_early_return()) { 144 Label L; 145 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 146 cbz(rscratch1, L); // if (thread->jvmti_thread_state() == nullptr) exit; 147 148 // Initiate earlyret handling only if it is not already being processed. 149 // If the flag has the earlyret_processing bit set, it means that this code 150 // is called *during* earlyret handling - we don't want to reenter. 151 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset())); 152 cmpw(rscratch1, JvmtiThreadState::earlyret_pending); 153 br(Assembler::NE, L); 154 155 // Call Interpreter::remove_activation_early_entry() to get the address of the 156 // same-named entrypoint in the generated interpreter code. 157 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 158 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset())); 159 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1); 160 br(r0); 161 bind(L); 162 } 163 } 164 165 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp( 166 Register reg, 167 int bcp_offset) { 168 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 169 ldrh(reg, Address(rbcp, bcp_offset)); 170 rev16(reg, reg); 171 } 172 173 void InterpreterMacroAssembler::get_dispatch() { 174 uint64_t offset; 175 adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset); 176 // Use add() here after ARDP, rather than lea(). 177 // lea() does not generate anything if its offset is zero. 178 // However, relocs expect to find either an ADD or a load/store 179 // insn after an ADRP. add() always generates an ADD insn, even 180 // for add(Rn, Rn, 0). 181 add(rdispatch, rdispatch, offset); 182 } 183 184 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 185 int bcp_offset, 186 size_t index_size) { 187 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 188 if (index_size == sizeof(u2)) { 189 load_unsigned_short(index, Address(rbcp, bcp_offset)); 190 } else if (index_size == sizeof(u4)) { 191 // assert(EnableInvokeDynamic, "giant index used only for JSR 292"); 192 ldrw(index, Address(rbcp, bcp_offset)); 193 } else if (index_size == sizeof(u1)) { 194 load_unsigned_byte(index, Address(rbcp, bcp_offset)); 195 } else { 196 ShouldNotReachHere(); 197 } 198 } 199 200 void InterpreterMacroAssembler::get_method_counters(Register method, 201 Register mcs, Label& skip) { 202 Label has_counters; 203 ldr(mcs, Address(method, Method::method_counters_offset())); 204 cbnz(mcs, has_counters); 205 call_VM(noreg, CAST_FROM_FN_PTR(address, 206 InterpreterRuntime::build_method_counters), method); 207 ldr(mcs, Address(method, Method::method_counters_offset())); 208 cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory 209 bind(has_counters); 210 } 211 212 // Load object from cpool->resolved_references(index) 213 void InterpreterMacroAssembler::load_resolved_reference_at_index( 214 Register result, Register index, Register tmp) { 215 assert_different_registers(result, index); 216 217 get_constant_pool(result); 218 // load pointer for resolved_references[] objArray 219 ldr(result, Address(result, ConstantPool::cache_offset())); 220 ldr(result, Address(result, ConstantPoolCache::resolved_references_offset())); 221 resolve_oop_handle(result, tmp, rscratch2); 222 // Add in the index 223 add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 224 load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop)), tmp, rscratch2); 225 } 226 227 void InterpreterMacroAssembler::load_resolved_klass_at_offset( 228 Register cpool, Register index, Register klass, Register temp) { 229 add(temp, cpool, index, LSL, LogBytesPerWord); 230 ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index 231 ldr(klass, Address(cpool, ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses 232 add(klass, klass, temp, LSL, LogBytesPerWord); 233 ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes())); 234 } 235 236 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 237 // subtype of super_klass. 238 // 239 // Args: 240 // r0: superklass 241 // Rsub_klass: subklass 242 // 243 // Kills: 244 // r2, r5 245 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 246 Label& ok_is_subtype) { 247 assert(Rsub_klass != r0, "r0 holds superklass"); 248 assert(Rsub_klass != r2, "r2 holds 2ndary super array length"); 249 assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr"); 250 251 // Profile the not-null value's klass. 252 profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5 253 254 // Do the check. 255 check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2 256 } 257 258 // Java Expression Stack 259 260 void InterpreterMacroAssembler::pop_ptr(Register r) { 261 ldr(r, post(esp, wordSize)); 262 } 263 264 void InterpreterMacroAssembler::pop_i(Register r) { 265 ldrw(r, post(esp, wordSize)); 266 } 267 268 void InterpreterMacroAssembler::pop_l(Register r) { 269 ldr(r, post(esp, 2 * Interpreter::stackElementSize)); 270 } 271 272 void InterpreterMacroAssembler::push_ptr(Register r) { 273 str(r, pre(esp, -wordSize)); 274 } 275 276 void InterpreterMacroAssembler::push_i(Register r) { 277 str(r, pre(esp, -wordSize)); 278 } 279 280 void InterpreterMacroAssembler::push_l(Register r) { 281 str(zr, pre(esp, -wordSize)); 282 str(r, pre(esp, - wordSize)); 283 } 284 285 void InterpreterMacroAssembler::pop_f(FloatRegister r) { 286 ldrs(r, post(esp, wordSize)); 287 } 288 289 void InterpreterMacroAssembler::pop_d(FloatRegister r) { 290 ldrd(r, post(esp, 2 * Interpreter::stackElementSize)); 291 } 292 293 void InterpreterMacroAssembler::push_f(FloatRegister r) { 294 strs(r, pre(esp, -wordSize)); 295 } 296 297 void InterpreterMacroAssembler::push_d(FloatRegister r) { 298 strd(r, pre(esp, 2* -wordSize)); 299 } 300 301 void InterpreterMacroAssembler::pop(TosState state) { 302 switch (state) { 303 case atos: pop_ptr(); break; 304 case btos: 305 case ztos: 306 case ctos: 307 case stos: 308 case itos: pop_i(); break; 309 case ltos: pop_l(); break; 310 case ftos: pop_f(); break; 311 case dtos: pop_d(); break; 312 case vtos: /* nothing to do */ break; 313 default: ShouldNotReachHere(); 314 } 315 interp_verify_oop(r0, state); 316 } 317 318 void InterpreterMacroAssembler::push(TosState state) { 319 interp_verify_oop(r0, state); 320 switch (state) { 321 case atos: push_ptr(); break; 322 case btos: 323 case ztos: 324 case ctos: 325 case stos: 326 case itos: push_i(); break; 327 case ltos: push_l(); break; 328 case ftos: push_f(); break; 329 case dtos: push_d(); break; 330 case vtos: /* nothing to do */ break; 331 default : ShouldNotReachHere(); 332 } 333 } 334 335 // Helpers for swap and dup 336 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 337 ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 338 } 339 340 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 341 str(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 342 } 343 344 void InterpreterMacroAssembler::load_float(Address src) { 345 ldrs(v0, src); 346 } 347 348 void InterpreterMacroAssembler::load_double(Address src) { 349 ldrd(v0, src); 350 } 351 352 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 353 // set sender sp 354 mov(r19_sender_sp, sp); 355 // record last_sp 356 sub(rscratch1, esp, rfp); 357 asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 358 str(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 359 } 360 361 // Jump to from_interpreted entry of a call unless single stepping is possible 362 // in this thread in which case we must call the i2i entry 363 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 364 prepare_to_jump_from_interpreted(); 365 366 if (JvmtiExport::can_post_interpreter_events()) { 367 Label run_compiled_code; 368 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 369 // compiled code in threads for which the event is enabled. Check here for 370 // interp_only_mode if these events CAN be enabled. 371 ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset())); 372 cbzw(rscratch1, run_compiled_code); 373 ldr(rscratch1, Address(method, Method::interpreter_entry_offset())); 374 br(rscratch1); 375 bind(run_compiled_code); 376 } 377 378 ldr(rscratch1, Address(method, Method::from_interpreted_offset())); 379 br(rscratch1); 380 } 381 382 // The following two routines provide a hook so that an implementation 383 // can schedule the dispatch in two parts. amd64 does not do this. 384 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 385 } 386 387 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 388 dispatch_next(state, step); 389 } 390 391 void InterpreterMacroAssembler::dispatch_base(TosState state, 392 address* table, 393 bool verifyoop, 394 bool generate_poll) { 395 if (VerifyActivationFrameSize) { 396 Label L; 397 sub(rscratch2, rfp, esp); 398 int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize; 399 subs(rscratch2, rscratch2, min_frame_size); 400 br(Assembler::GE, L); 401 stop("broken stack frame"); 402 bind(L); 403 } 404 if (verifyoop) { 405 interp_verify_oop(r0, state); 406 } 407 408 Label safepoint; 409 address* const safepoint_table = Interpreter::safept_table(state); 410 bool needs_thread_local_poll = generate_poll && table != safepoint_table; 411 412 if (needs_thread_local_poll) { 413 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 414 ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset())); 415 tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint); 416 } 417 418 if (table == Interpreter::dispatch_table(state)) { 419 addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state)); 420 ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3))); 421 } else { 422 mov(rscratch2, (address)table); 423 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 424 } 425 br(rscratch2); 426 427 if (needs_thread_local_poll) { 428 bind(safepoint); 429 lea(rscratch2, ExternalAddress((address)safepoint_table)); 430 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 431 br(rscratch2); 432 } 433 } 434 435 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 436 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 437 } 438 439 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 440 dispatch_base(state, Interpreter::normal_table(state)); 441 } 442 443 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 444 dispatch_base(state, Interpreter::normal_table(state), false); 445 } 446 447 448 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 449 // load next bytecode 450 ldrb(rscratch1, Address(pre(rbcp, step))); 451 dispatch_base(state, Interpreter::dispatch_table(state), /*verifyoop*/true, generate_poll); 452 } 453 454 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 455 // load current bytecode 456 ldrb(rscratch1, Address(rbcp, 0)); 457 dispatch_base(state, table); 458 } 459 460 // remove activation 461 // 462 // Unlock the receiver if this is a synchronized method. 463 // Unlock any Java monitors from synchronized blocks. 464 // Apply stack watermark barrier. 465 // Notify JVMTI. 466 // Remove the activation from the stack. 467 // 468 // If there are locked Java monitors 469 // If throw_monitor_exception 470 // throws IllegalMonitorStateException 471 // Else if install_monitor_exception 472 // installs IllegalMonitorStateException 473 // Else 474 // no error processing 475 void InterpreterMacroAssembler::remove_activation(TosState state, 476 bool throw_monitor_exception, 477 bool install_monitor_exception, 478 bool notify_jvmdi) { 479 // Note: Registers r3 xmm0 may be in use for the 480 // result check if synchronized method 481 Label unlocked, unlock, no_unlock; 482 483 // get the value of _do_not_unlock_if_synchronized into r3 484 const Address do_not_unlock_if_synchronized(rthread, 485 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 486 ldrb(r3, do_not_unlock_if_synchronized); 487 strb(zr, do_not_unlock_if_synchronized); // reset the flag 488 489 // get method access flags 490 ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 491 ldrh(r2, Address(r1, Method::access_flags_offset())); 492 tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked); 493 494 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 495 // is set. 496 cbnz(r3, no_unlock); 497 498 // unlock monitor 499 push(state); // save result 500 501 // BasicObjectLock will be first in list, since this is a 502 // synchronized method. However, need to check that the object has 503 // not been unlocked by an explicit monitorexit bytecode. 504 const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset * 505 wordSize - (int) sizeof(BasicObjectLock)); 506 // We use c_rarg1 so that if we go slow path it will be the correct 507 // register for unlock_object to pass to VM directly 508 lea(c_rarg1, monitor); // address of first monitor 509 510 ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset())); 511 cbnz(r0, unlock); 512 513 pop(state); 514 if (throw_monitor_exception) { 515 // Entry already unlocked, need to throw exception 516 call_VM(noreg, CAST_FROM_FN_PTR(address, 517 InterpreterRuntime::throw_illegal_monitor_state_exception)); 518 should_not_reach_here(); 519 } else { 520 // Monitor already unlocked during a stack unroll. If requested, 521 // install an illegal_monitor_state_exception. Continue with 522 // stack unrolling. 523 if (install_monitor_exception) { 524 call_VM(noreg, CAST_FROM_FN_PTR(address, 525 InterpreterRuntime::new_illegal_monitor_state_exception)); 526 } 527 b(unlocked); 528 } 529 530 bind(unlock); 531 unlock_object(c_rarg1); 532 pop(state); 533 534 // Check that for block-structured locking (i.e., that all locked 535 // objects has been unlocked) 536 bind(unlocked); 537 538 // r0: Might contain return value 539 540 // Check that all monitors are unlocked 541 { 542 Label loop, exception, entry, restart; 543 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 544 const Address monitor_block_top( 545 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 546 const Address monitor_block_bot( 547 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 548 549 bind(restart); 550 // We use c_rarg1 so that if we go slow path it will be the correct 551 // register for unlock_object to pass to VM directly 552 ldr(c_rarg1, monitor_block_top); // derelativize pointer 553 lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize))); 554 // c_rarg1 points to current entry, starting with top-most entry 555 556 lea(r19, monitor_block_bot); // points to word before bottom of 557 // monitor block 558 b(entry); 559 560 // Entry already locked, need to throw exception 561 bind(exception); 562 563 if (throw_monitor_exception) { 564 // Throw exception 565 MacroAssembler::call_VM(noreg, 566 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 567 throw_illegal_monitor_state_exception)); 568 should_not_reach_here(); 569 } else { 570 // Stack unrolling. Unlock object and install illegal_monitor_exception. 571 // Unlock does not block, so don't have to worry about the frame. 572 // We don't have to preserve c_rarg1 since we are going to throw an exception. 573 574 push(state); 575 unlock_object(c_rarg1); 576 pop(state); 577 578 if (install_monitor_exception) { 579 call_VM(noreg, CAST_FROM_FN_PTR(address, 580 InterpreterRuntime:: 581 new_illegal_monitor_state_exception)); 582 } 583 584 b(restart); 585 } 586 587 bind(loop); 588 // check if current entry is used 589 ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset())); 590 cbnz(rscratch1, exception); 591 592 add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry 593 bind(entry); 594 cmp(c_rarg1, r19); // check if bottom reached 595 br(Assembler::NE, loop); // if not at bottom then check this entry 596 } 597 598 bind(no_unlock); 599 600 JFR_ONLY(enter_jfr_critical_section();) 601 602 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 603 // that would normally not be safe to use. Such bad returns into unsafe territory of 604 // the stack, will call InterpreterRuntime::at_unwind. 605 Label slow_path; 606 Label fast_path; 607 safepoint_poll(slow_path, true /* at_return */, false /* in_nmethod */); 608 br(Assembler::AL, fast_path); 609 bind(slow_path); 610 push(state); 611 set_last_Java_frame(esp, rfp, pc(), rscratch1); 612 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread); 613 reset_last_Java_frame(true); 614 pop(state); 615 bind(fast_path); 616 617 // JVMTI support. Make sure the safepoint poll test is issued prior. 618 if (notify_jvmdi) { 619 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 620 } else { 621 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 622 } 623 624 // remove activation 625 // get sender esp 626 ldr(rscratch2, 627 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 628 if (StackReservedPages > 0) { 629 // testing if reserved zone needs to be re-enabled 630 Label no_reserved_zone_enabling; 631 632 // check if already enabled - if so no re-enabling needed 633 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 634 ldrw(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset())); 635 cmpw(rscratch1, (u1)StackOverflow::stack_guard_enabled); 636 br(Assembler::EQ, no_reserved_zone_enabling); 637 638 // look for an overflow into the stack reserved zone, i.e. 639 // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation 640 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 641 cmp(rscratch2, rscratch1); 642 br(Assembler::LS, no_reserved_zone_enabling); 643 644 JFR_ONLY(leave_jfr_critical_section();) 645 646 call_VM_leaf( 647 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 648 call_VM(noreg, CAST_FROM_FN_PTR(address, 649 InterpreterRuntime::throw_delayed_StackOverflowError)); 650 should_not_reach_here(); 651 652 bind(no_reserved_zone_enabling); 653 } 654 655 // remove frame anchor 656 leave(); 657 658 JFR_ONLY(leave_jfr_critical_section();) 659 660 // restore sender esp 661 mov(esp, rscratch2); 662 663 // If we're returning to interpreted code we will shortly be 664 // adjusting SP to allow some space for ESP. If we're returning to 665 // compiled code the saved sender SP was saved in sender_sp, so this 666 // restores it. 667 andr(sp, esp, -16); 668 } 669 670 #if INCLUDE_JFR 671 void InterpreterMacroAssembler::enter_jfr_critical_section() { 672 const Address sampling_critical_section(rthread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR)); 673 mov(rscratch1, true); 674 strb(rscratch1, sampling_critical_section); 675 } 676 677 void InterpreterMacroAssembler::leave_jfr_critical_section() { 678 const Address sampling_critical_section(rthread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR)); 679 strb(zr, sampling_critical_section); 680 } 681 #endif // INCLUDE_JFR 682 683 // Lock object 684 // 685 // Args: 686 // c_rarg1: BasicObjectLock to be used for locking 687 // 688 // Kills: 689 // r0 690 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, .. (param regs) 691 // rscratch1, rscratch2 (scratch regs) 692 void InterpreterMacroAssembler::lock_object(Register lock_reg) 693 { 694 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 695 696 const Register tmp = c_rarg2; 697 const Register obj_reg = c_rarg3; // Will contain the oop 698 const Register tmp2 = c_rarg4; 699 const Register tmp3 = c_rarg5; 700 701 // Load object pointer into obj_reg %c_rarg3 702 ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 703 704 Label slow_case, done; 705 lightweight_lock(lock_reg, obj_reg, tmp, tmp2, tmp3, slow_case); 706 b(done); 707 708 bind(slow_case); 709 710 // Call the runtime routine for slow case 711 call_VM_preemptable(noreg, 712 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 713 lock_reg); 714 715 bind(done); 716 } 717 718 719 // Unlocks an object. Used in monitorexit bytecode and 720 // remove_activation. Throws an IllegalMonitorException if object is 721 // not locked by current thread. 722 // 723 // Args: 724 // c_rarg1: BasicObjectLock for lock 725 // 726 // Kills: 727 // r0 728 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 729 // rscratch1, rscratch2 (scratch regs) 730 void InterpreterMacroAssembler::unlock_object(Register lock_reg) 731 { 732 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1"); 733 734 const Register swap_reg = r0; 735 const Register header_reg = c_rarg2; // Will contain the old oopMark 736 const Register obj_reg = c_rarg3; // Will contain the oop 737 const Register tmp_reg = c_rarg4; // Temporary used by lightweight_unlock 738 739 save_bcp(); // Save in case of exception 740 741 // Load oop into obj_reg(%c_rarg3) 742 ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 743 744 // Free entry 745 str(zr, Address(lock_reg, BasicObjectLock::obj_offset())); 746 747 Label slow_case, done; 748 lightweight_unlock(obj_reg, header_reg, swap_reg, tmp_reg, slow_case); 749 b(done); 750 751 bind(slow_case); 752 // Call the runtime routine for slow case. 753 str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj 754 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 755 bind(done); 756 restore_bcp(); 757 } 758 759 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 760 Label& zero_continue) { 761 assert(ProfileInterpreter, "must be profiling interpreter"); 762 ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 763 cbz(mdp, zero_continue); 764 } 765 766 // Set the method data pointer for the current bcp. 767 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 768 assert(ProfileInterpreter, "must be profiling interpreter"); 769 Label set_mdp; 770 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 771 772 // Test MDO to avoid the call if it is null. 773 ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset()))); 774 cbz(r0, set_mdp); 775 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp); 776 // r0: mdi 777 // mdo is guaranteed to be non-zero here, we checked for it before the call. 778 ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset()))); 779 lea(r1, Address(r1, in_bytes(MethodData::data_offset()))); 780 add(r0, r1, r0); 781 str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 782 bind(set_mdp); 783 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 784 } 785 786 void InterpreterMacroAssembler::verify_method_data_pointer() { 787 assert(ProfileInterpreter, "must be profiling interpreter"); 788 #ifdef ASSERT 789 Label verify_continue; 790 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 791 stp(r2, r3, Address(pre(sp, -2 * wordSize))); 792 test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue 793 get_method(r1); 794 795 // If the mdp is valid, it will point to a DataLayout header which is 796 // consistent with the bcp. The converse is highly probable also. 797 ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset()))); 798 ldr(rscratch1, Address(r1, Method::const_offset())); 799 add(r2, r2, rscratch1, Assembler::LSL); 800 lea(r2, Address(r2, ConstMethod::codes_offset())); 801 cmp(r2, rbcp); 802 br(Assembler::EQ, verify_continue); 803 // r1: method 804 // rbcp: bcp // rbcp == 22 805 // r3: mdp 806 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 807 r1, rbcp, r3); 808 bind(verify_continue); 809 ldp(r2, r3, Address(post(sp, 2 * wordSize))); 810 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 811 #endif // ASSERT 812 } 813 814 815 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 816 int constant, 817 Register value) { 818 assert(ProfileInterpreter, "must be profiling interpreter"); 819 Address data(mdp_in, constant); 820 str(value, data); 821 } 822 823 824 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 825 int constant) { 826 increment_mdp_data_at(mdp_in, noreg, constant); 827 } 828 829 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 830 Register index, 831 int constant) { 832 assert(ProfileInterpreter, "must be profiling interpreter"); 833 834 assert_different_registers(rscratch2, rscratch1, mdp_in, index); 835 836 Address addr1(mdp_in, constant); 837 Address addr2(rscratch2, index, Address::lsl(0)); 838 Address &addr = addr1; 839 if (index != noreg) { 840 lea(rscratch2, addr1); 841 addr = addr2; 842 } 843 844 increment(addr, DataLayout::counter_increment); 845 } 846 847 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 848 int flag_byte_constant) { 849 assert(ProfileInterpreter, "must be profiling interpreter"); 850 int flags_offset = in_bytes(DataLayout::flags_offset()); 851 // Set the flag 852 ldrb(rscratch1, Address(mdp_in, flags_offset)); 853 orr(rscratch1, rscratch1, flag_byte_constant); 854 strb(rscratch1, Address(mdp_in, flags_offset)); 855 } 856 857 858 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 859 int offset, 860 Register value, 861 Register test_value_out, 862 Label& not_equal_continue) { 863 assert(ProfileInterpreter, "must be profiling interpreter"); 864 if (test_value_out == noreg) { 865 ldr(rscratch1, Address(mdp_in, offset)); 866 cmp(value, rscratch1); 867 } else { 868 // Put the test value into a register, so caller can use it: 869 ldr(test_value_out, Address(mdp_in, offset)); 870 cmp(value, test_value_out); 871 } 872 br(Assembler::NE, not_equal_continue); 873 } 874 875 876 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 877 int offset_of_disp) { 878 assert(ProfileInterpreter, "must be profiling interpreter"); 879 ldr(rscratch1, Address(mdp_in, offset_of_disp)); 880 add(mdp_in, mdp_in, rscratch1, LSL); 881 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 882 } 883 884 885 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 886 Register reg, 887 int offset_of_disp) { 888 assert(ProfileInterpreter, "must be profiling interpreter"); 889 lea(rscratch1, Address(mdp_in, offset_of_disp)); 890 ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0))); 891 add(mdp_in, mdp_in, rscratch1, LSL); 892 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 893 } 894 895 896 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 897 int constant) { 898 assert(ProfileInterpreter, "must be profiling interpreter"); 899 add(mdp_in, mdp_in, (unsigned)constant); 900 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 901 } 902 903 904 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 905 assert(ProfileInterpreter, "must be profiling interpreter"); 906 // save/restore across call_VM 907 stp(zr, return_bci, Address(pre(sp, -2 * wordSize))); 908 call_VM(noreg, 909 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 910 return_bci); 911 ldp(zr, return_bci, Address(post(sp, 2 * wordSize))); 912 } 913 914 915 void InterpreterMacroAssembler::profile_taken_branch(Register mdp) { 916 if (ProfileInterpreter) { 917 Label profile_continue; 918 919 // If no method data exists, go to profile_continue. 920 test_method_data_pointer(mdp, profile_continue); 921 922 // We are taking a branch. Increment the taken count. 923 increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 924 925 // The method data pointer needs to be updated to reflect the new target. 926 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 927 bind(profile_continue); 928 } 929 } 930 931 932 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 933 if (ProfileInterpreter) { 934 Label profile_continue; 935 936 // If no method data exists, go to profile_continue. 937 test_method_data_pointer(mdp, profile_continue); 938 939 // We are not taking a branch. Increment the not taken count. 940 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 941 942 // The method data pointer needs to be updated to correspond to 943 // the next bytecode 944 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 945 bind(profile_continue); 946 } 947 } 948 949 950 void InterpreterMacroAssembler::profile_call(Register mdp) { 951 if (ProfileInterpreter) { 952 Label profile_continue; 953 954 // If no method data exists, go to profile_continue. 955 test_method_data_pointer(mdp, profile_continue); 956 957 // We are making a call. Increment the count. 958 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 959 960 // The method data pointer needs to be updated to reflect the new target. 961 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 962 bind(profile_continue); 963 } 964 } 965 966 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 967 if (ProfileInterpreter) { 968 Label profile_continue; 969 970 // If no method data exists, go to profile_continue. 971 test_method_data_pointer(mdp, profile_continue); 972 973 // We are making a call. Increment the count. 974 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 975 976 // The method data pointer needs to be updated to reflect the new target. 977 update_mdp_by_constant(mdp, 978 in_bytes(VirtualCallData:: 979 virtual_call_data_size())); 980 bind(profile_continue); 981 } 982 } 983 984 985 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 986 Register mdp, 987 Register reg2, 988 bool receiver_can_be_null) { 989 if (ProfileInterpreter) { 990 Label profile_continue; 991 992 // If no method data exists, go to profile_continue. 993 test_method_data_pointer(mdp, profile_continue); 994 995 Label skip_receiver_profile; 996 if (receiver_can_be_null) { 997 Label not_null; 998 // We are making a call. Increment the count for null receiver. 999 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1000 b(skip_receiver_profile); 1001 bind(not_null); 1002 } 1003 1004 // Record the receiver type. 1005 record_klass_in_profile(receiver, mdp, reg2); 1006 bind(skip_receiver_profile); 1007 1008 // The method data pointer needs to be updated to reflect the new target. 1009 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1010 bind(profile_continue); 1011 } 1012 } 1013 1014 // This routine creates a state machine for updating the multi-row 1015 // type profile at a virtual call site (or other type-sensitive bytecode). 1016 // The machine visits each row (of receiver/count) until the receiver type 1017 // is found, or until it runs out of rows. At the same time, it remembers 1018 // the location of the first empty row. (An empty row records null for its 1019 // receiver, and can be allocated for a newly-observed receiver type.) 1020 // Because there are two degrees of freedom in the state, a simple linear 1021 // search will not work; it must be a decision tree. Hence this helper 1022 // function is recursive, to generate the required tree structured code. 1023 // It's the interpreter, so we are trading off code space for speed. 1024 // See below for example code. 1025 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1026 Register receiver, Register mdp, 1027 Register reg2, int start_row, 1028 Label& done) { 1029 if (TypeProfileWidth == 0) { 1030 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1031 } else { 1032 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1033 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset); 1034 } 1035 } 1036 1037 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, 1038 Register reg2, int start_row, Label& done, int total_rows, 1039 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn) { 1040 int last_row = total_rows - 1; 1041 assert(start_row <= last_row, "must be work left to do"); 1042 // Test this row for both the item and for null. 1043 // Take any of three different outcomes: 1044 // 1. found item => increment count and goto done 1045 // 2. found null => keep looking for case 1, maybe allocate this cell 1046 // 3. found something else => keep looking for cases 1 and 2 1047 // Case 3 is handled by a recursive call. 1048 for (int row = start_row; row <= last_row; row++) { 1049 Label next_test; 1050 bool test_for_null_also = (row == start_row); 1051 1052 // See if the item is item[n]. 1053 int item_offset = in_bytes(item_offset_fn(row)); 1054 test_mdp_data_at(mdp, item_offset, item, 1055 (test_for_null_also ? reg2 : noreg), 1056 next_test); 1057 // (Reg2 now contains the item from the CallData.) 1058 1059 // The item is item[n]. Increment count[n]. 1060 int count_offset = in_bytes(item_count_offset_fn(row)); 1061 increment_mdp_data_at(mdp, count_offset); 1062 b(done); 1063 bind(next_test); 1064 1065 if (test_for_null_also) { 1066 Label found_null; 1067 // Failed the equality check on item[n]... Test for null. 1068 if (start_row == last_row) { 1069 // The only thing left to do is handle the null case. 1070 cbz(reg2, found_null); 1071 // Item did not match any saved item and there is no empty row for it. 1072 // Increment total counter to indicate polymorphic case. 1073 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1074 b(done); 1075 bind(found_null); 1076 break; 1077 } 1078 // Since null is rare, make it be the branch-taken case. 1079 cbz(reg2, found_null); 1080 1081 // Put all the "Case 3" tests here. 1082 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1083 item_offset_fn, item_count_offset_fn); 1084 1085 // Found a null. Keep searching for a matching item, 1086 // but remember that this is an empty (unused) slot. 1087 bind(found_null); 1088 } 1089 } 1090 1091 // In the fall-through case, we found no matching item, but we 1092 // observed the item[start_row] is null. 1093 1094 // Fill in the item field and increment the count. 1095 int item_offset = in_bytes(item_offset_fn(start_row)); 1096 set_mdp_data_at(mdp, item_offset, item); 1097 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1098 mov(reg2, DataLayout::counter_increment); 1099 set_mdp_data_at(mdp, count_offset, reg2); 1100 if (start_row > 0) { 1101 b(done); 1102 } 1103 } 1104 1105 // Example state machine code for three profile rows: 1106 // // main copy of decision tree, rooted at row[1] 1107 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1108 // if (row[0].rec != nullptr) { 1109 // // inner copy of decision tree, rooted at row[1] 1110 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1111 // if (row[1].rec != nullptr) { 1112 // // degenerate decision tree, rooted at row[2] 1113 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1114 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow 1115 // row[2].init(rec); goto done; 1116 // } else { 1117 // // remember row[1] is empty 1118 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1119 // row[1].init(rec); goto done; 1120 // } 1121 // } else { 1122 // // remember row[0] is empty 1123 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1124 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1125 // row[0].init(rec); goto done; 1126 // } 1127 // done: 1128 1129 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1130 Register mdp, Register reg2) { 1131 assert(ProfileInterpreter, "must be profiling"); 1132 Label done; 1133 1134 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done); 1135 1136 bind (done); 1137 } 1138 1139 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1140 Register mdp) { 1141 if (ProfileInterpreter) { 1142 Label profile_continue; 1143 uint row; 1144 1145 // If no method data exists, go to profile_continue. 1146 test_method_data_pointer(mdp, profile_continue); 1147 1148 // Update the total ret count. 1149 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1150 1151 for (row = 0; row < RetData::row_limit(); row++) { 1152 Label next_test; 1153 1154 // See if return_bci is equal to bci[n]: 1155 test_mdp_data_at(mdp, 1156 in_bytes(RetData::bci_offset(row)), 1157 return_bci, noreg, 1158 next_test); 1159 1160 // return_bci is equal to bci[n]. Increment the count. 1161 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1162 1163 // The method data pointer needs to be updated to reflect the new target. 1164 update_mdp_by_offset(mdp, 1165 in_bytes(RetData::bci_displacement_offset(row))); 1166 b(profile_continue); 1167 bind(next_test); 1168 } 1169 1170 update_mdp_for_ret(return_bci); 1171 1172 bind(profile_continue); 1173 } 1174 } 1175 1176 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1177 if (ProfileInterpreter) { 1178 Label profile_continue; 1179 1180 // If no method data exists, go to profile_continue. 1181 test_method_data_pointer(mdp, profile_continue); 1182 1183 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1184 1185 // The method data pointer needs to be updated. 1186 int mdp_delta = in_bytes(BitData::bit_data_size()); 1187 if (TypeProfileCasts) { 1188 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1189 } 1190 update_mdp_by_constant(mdp, mdp_delta); 1191 1192 bind(profile_continue); 1193 } 1194 } 1195 1196 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1197 if (ProfileInterpreter) { 1198 Label profile_continue; 1199 1200 // If no method data exists, go to profile_continue. 1201 test_method_data_pointer(mdp, profile_continue); 1202 1203 // The method data pointer needs to be updated. 1204 int mdp_delta = in_bytes(BitData::bit_data_size()); 1205 if (TypeProfileCasts) { 1206 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1207 1208 // Record the object type. 1209 record_klass_in_profile(klass, mdp, reg2); 1210 } 1211 update_mdp_by_constant(mdp, mdp_delta); 1212 1213 bind(profile_continue); 1214 } 1215 } 1216 1217 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1218 if (ProfileInterpreter) { 1219 Label profile_continue; 1220 1221 // If no method data exists, go to profile_continue. 1222 test_method_data_pointer(mdp, profile_continue); 1223 1224 // Update the default case count 1225 increment_mdp_data_at(mdp, 1226 in_bytes(MultiBranchData::default_count_offset())); 1227 1228 // The method data pointer needs to be updated. 1229 update_mdp_by_offset(mdp, 1230 in_bytes(MultiBranchData:: 1231 default_displacement_offset())); 1232 1233 bind(profile_continue); 1234 } 1235 } 1236 1237 void InterpreterMacroAssembler::profile_switch_case(Register index, 1238 Register mdp, 1239 Register reg2) { 1240 if (ProfileInterpreter) { 1241 Label profile_continue; 1242 1243 // If no method data exists, go to profile_continue. 1244 test_method_data_pointer(mdp, profile_continue); 1245 1246 // Build the base (index * per_case_size_in_bytes()) + 1247 // case_array_offset_in_bytes() 1248 movw(reg2, in_bytes(MultiBranchData::per_case_size())); 1249 movw(rscratch1, in_bytes(MultiBranchData::case_array_offset())); 1250 Assembler::maddw(index, index, reg2, rscratch1); 1251 1252 // Update the case count 1253 increment_mdp_data_at(mdp, 1254 index, 1255 in_bytes(MultiBranchData::relative_count_offset())); 1256 1257 // The method data pointer needs to be updated. 1258 update_mdp_by_offset(mdp, 1259 index, 1260 in_bytes(MultiBranchData:: 1261 relative_displacement_offset())); 1262 1263 bind(profile_continue); 1264 } 1265 } 1266 1267 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 1268 if (state == atos) { 1269 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 1270 } 1271 } 1272 1273 void InterpreterMacroAssembler::generate_runtime_upcalls_on_method_entry() 1274 { 1275 address upcall = RuntimeUpcalls::on_method_entry_upcall_address(); 1276 if (RuntimeUpcalls::does_upcall_need_method_parameter(upcall)) { 1277 get_method(c_rarg1); 1278 call_VM(noreg,upcall, c_rarg1); 1279 } else { 1280 call_VM(noreg,upcall); 1281 } 1282 } 1283 1284 void InterpreterMacroAssembler::notify_method_entry() { 1285 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1286 // track stack depth. If it is possible to enter interp_only_mode we add 1287 // the code to check if the event should be sent. 1288 if (JvmtiExport::can_post_interpreter_events()) { 1289 Label L; 1290 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1291 cbzw(r3, L); 1292 call_VM(noreg, CAST_FROM_FN_PTR(address, 1293 InterpreterRuntime::post_method_entry)); 1294 bind(L); 1295 } 1296 1297 if (DTraceMethodProbes) { 1298 get_method(c_rarg1); 1299 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1300 rthread, c_rarg1); 1301 } 1302 1303 // RedefineClasses() tracing support for obsolete method entry 1304 if (log_is_enabled(Trace, redefine, class, obsolete) || 1305 log_is_enabled(Trace, interpreter, bytecode)) { 1306 get_method(c_rarg1); 1307 call_VM_leaf( 1308 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1309 rthread, c_rarg1); 1310 } 1311 1312 } 1313 1314 1315 void InterpreterMacroAssembler::notify_method_exit( 1316 TosState state, NotifyMethodExitMode mode) { 1317 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1318 // track stack depth. If it is possible to enter interp_only_mode we add 1319 // the code to check if the event should be sent. 1320 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 1321 Label L; 1322 // Note: frame::interpreter_frame_result has a dependency on how the 1323 // method result is saved across the call to post_method_exit. If this 1324 // is changed then the interpreter_frame_result implementation will 1325 // need to be updated too. 1326 1327 // template interpreter will leave the result on the top of the stack. 1328 push(state); 1329 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1330 cbz(r3, L); 1331 call_VM(noreg, 1332 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 1333 bind(L); 1334 pop(state); 1335 } 1336 1337 if (DTraceMethodProbes) { 1338 push(state); 1339 get_method(c_rarg1); 1340 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1341 rthread, c_rarg1); 1342 pop(state); 1343 } 1344 } 1345 1346 1347 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. 1348 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, 1349 int increment, Address mask, 1350 Register scratch, Register scratch2, 1351 bool preloaded, Condition cond, 1352 Label* where) { 1353 if (!preloaded) { 1354 ldrw(scratch, counter_addr); 1355 } 1356 add(scratch, scratch, increment); 1357 strw(scratch, counter_addr); 1358 ldrw(scratch2, mask); 1359 ands(scratch, scratch, scratch2); 1360 br(cond, *where); 1361 } 1362 1363 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 1364 int number_of_arguments) { 1365 // interpreter specific 1366 // 1367 // Note: No need to save/restore rbcp & rlocals pointer since these 1368 // are callee saved registers and no blocking/ GC can happen 1369 // in leaf calls. 1370 #ifdef ASSERT 1371 { 1372 Label L; 1373 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1374 cbz(rscratch1, L); 1375 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 1376 " last_sp != nullptr"); 1377 bind(L); 1378 } 1379 #endif /* ASSERT */ 1380 // super call 1381 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1382 } 1383 1384 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 1385 Register java_thread, 1386 Register last_java_sp, 1387 address entry_point, 1388 int number_of_arguments, 1389 bool check_exceptions) { 1390 // interpreter specific 1391 // 1392 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 1393 // really make a difference for these runtime calls, since they are 1394 // slow anyway. Btw., bcp must be saved/restored since it may change 1395 // due to GC. 1396 // assert(java_thread == noreg , "not expecting a precomputed java thread"); 1397 save_bcp(); 1398 #ifdef ASSERT 1399 { 1400 Label L; 1401 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1402 cbz(rscratch1, L); 1403 stop("InterpreterMacroAssembler::call_VM_base:" 1404 " last_sp != nullptr"); 1405 bind(L); 1406 } 1407 #endif /* ASSERT */ 1408 // super call 1409 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 1410 entry_point, number_of_arguments, 1411 check_exceptions); 1412 // interpreter specific 1413 restore_bcp(); 1414 restore_locals(); 1415 } 1416 1417 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result, 1418 address entry_point, 1419 Register arg_1) { 1420 assert(arg_1 == c_rarg1, ""); 1421 Label resume_pc, not_preempted; 1422 1423 #ifdef ASSERT 1424 { 1425 Label L; 1426 ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1427 cbz(rscratch1, L); 1428 stop("Should not have alternate return address set"); 1429 bind(L); 1430 } 1431 #endif /* ASSERT */ 1432 1433 // Force freeze slow path. 1434 push_cont_fastpath(); 1435 1436 // Make VM call. In case of preemption set last_pc to the one we want to resume to. 1437 adr(rscratch1, resume_pc); 1438 str(rscratch1, Address(rthread, JavaThread::last_Java_pc_offset())); 1439 call_VM_base(oop_result, noreg, noreg, entry_point, 1, false /*check_exceptions*/); 1440 1441 pop_cont_fastpath(); 1442 1443 // Check if preempted. 1444 ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1445 cbz(rscratch1, not_preempted); 1446 str(zr, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1447 br(rscratch1); 1448 1449 // In case of preemption, this is where we will resume once we finally acquire the monitor. 1450 bind(resume_pc); 1451 restore_after_resume(false /* is_native */); 1452 1453 bind(not_preempted); 1454 } 1455 1456 void InterpreterMacroAssembler::restore_after_resume(bool is_native) { 1457 lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter())); 1458 blr(rscratch1); 1459 if (is_native) { 1460 // On resume we need to set up stack as expected 1461 push(dtos); 1462 push(ltos); 1463 } 1464 } 1465 1466 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 1467 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 1468 Label update, next, none; 1469 1470 verify_oop(obj); 1471 1472 cbnz(obj, update); 1473 orptr(mdo_addr, TypeEntries::null_seen); 1474 b(next); 1475 1476 bind(update); 1477 load_klass(obj, obj); 1478 1479 ldr(rscratch1, mdo_addr); 1480 eor(obj, obj, rscratch1); 1481 tst(obj, TypeEntries::type_klass_mask); 1482 br(Assembler::EQ, next); // klass seen before, nothing to 1483 // do. The unknown bit may have been 1484 // set already but no need to check. 1485 1486 tbnz(obj, exact_log2(TypeEntries::type_unknown), next); 1487 // already unknown. Nothing to do anymore. 1488 1489 cbz(rscratch1, none); 1490 cmp(rscratch1, (u1)TypeEntries::null_seen); 1491 br(Assembler::EQ, none); 1492 // There is a chance that the checks above 1493 // fail if another thread has just set the 1494 // profiling to this obj's klass 1495 eor(obj, obj, rscratch1); // get back original value before XOR 1496 ldr(rscratch1, mdo_addr); 1497 eor(obj, obj, rscratch1); 1498 tst(obj, TypeEntries::type_klass_mask); 1499 br(Assembler::EQ, next); 1500 1501 // different than before. Cannot keep accurate profile. 1502 orptr(mdo_addr, TypeEntries::type_unknown); 1503 b(next); 1504 1505 bind(none); 1506 // first time here. Set profile type. 1507 str(obj, mdo_addr); 1508 #ifdef ASSERT 1509 andr(obj, obj, TypeEntries::type_mask); 1510 verify_klass_ptr(obj); 1511 #endif 1512 1513 bind(next); 1514 } 1515 1516 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 1517 if (!ProfileInterpreter) { 1518 return; 1519 } 1520 1521 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1522 Label profile_continue; 1523 1524 test_method_data_pointer(mdp, profile_continue); 1525 1526 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1527 1528 ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start)); 1529 cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag)); 1530 br(Assembler::NE, profile_continue); 1531 1532 if (MethodData::profile_arguments()) { 1533 Label done; 1534 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 1535 1536 for (int i = 0; i < TypeProfileArgsLimit; i++) { 1537 if (i > 0 || MethodData::profile_return()) { 1538 // If return value type is profiled we may have no argument to profile 1539 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1540 sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count()); 1541 cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count()); 1542 add(rscratch1, mdp, off_to_args); 1543 br(Assembler::LT, done); 1544 } 1545 ldr(tmp, Address(callee, Method::const_offset())); 1546 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 1547 // stack offset o (zero based) from the start of the argument 1548 // list, for n arguments translates into offset n - o - 1 from 1549 // the end of the argument list 1550 ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i)))); 1551 sub(tmp, tmp, rscratch1); 1552 sub(tmp, tmp, 1); 1553 Address arg_addr = argument_address(tmp); 1554 ldr(tmp, arg_addr); 1555 1556 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))); 1557 profile_obj_type(tmp, mdo_arg_addr); 1558 1559 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1560 off_to_args += to_add; 1561 } 1562 1563 if (MethodData::profile_return()) { 1564 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1565 sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1566 } 1567 1568 add(rscratch1, mdp, off_to_args); 1569 bind(done); 1570 mov(mdp, rscratch1); 1571 1572 if (MethodData::profile_return()) { 1573 // We're right after the type profile for the last 1574 // argument. tmp is the number of cells left in the 1575 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1576 // if there's a return to profile. 1577 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 1578 add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size)); 1579 } 1580 str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1581 } else { 1582 assert(MethodData::profile_return(), "either profile call args or call ret"); 1583 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 1584 } 1585 1586 // mdp points right after the end of the 1587 // CallTypeData/VirtualCallTypeData, right after the cells for the 1588 // return value type if there's one 1589 1590 bind(profile_continue); 1591 } 1592 } 1593 1594 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 1595 assert_different_registers(mdp, ret, tmp, rbcp); 1596 if (ProfileInterpreter && MethodData::profile_return()) { 1597 Label profile_continue, done; 1598 1599 test_method_data_pointer(mdp, profile_continue); 1600 1601 if (MethodData::profile_return_jsr292_only()) { 1602 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 1603 1604 // If we don't profile all invoke bytecodes we must make sure 1605 // it's a bytecode we indeed profile. We can't go back to the 1606 // beginning of the ProfileData we intend to update to check its 1607 // type because we're right after it and we don't known its 1608 // length 1609 Label do_profile; 1610 ldrb(rscratch1, Address(rbcp, 0)); 1611 cmp(rscratch1, (u1)Bytecodes::_invokedynamic); 1612 br(Assembler::EQ, do_profile); 1613 cmp(rscratch1, (u1)Bytecodes::_invokehandle); 1614 br(Assembler::EQ, do_profile); 1615 get_method(tmp); 1616 ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset())); 1617 subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1618 br(Assembler::NE, profile_continue); 1619 1620 bind(do_profile); 1621 } 1622 1623 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); 1624 mov(tmp, ret); 1625 profile_obj_type(tmp, mdo_ret_addr); 1626 1627 bind(profile_continue); 1628 } 1629 } 1630 1631 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 1632 assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2); 1633 if (ProfileInterpreter && MethodData::profile_parameters()) { 1634 Label profile_continue, done; 1635 1636 test_method_data_pointer(mdp, profile_continue); 1637 1638 // Load the offset of the area within the MDO used for 1639 // parameters. If it's negative we're not profiling any parameters 1640 ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 1641 tbnz(tmp1, 31, profile_continue); // i.e. sign bit set 1642 1643 // Compute a pointer to the area for parameters from the offset 1644 // and move the pointer to the slot for the last 1645 // parameters. Collect profiling from last parameter down. 1646 // mdo start + parameters offset + array length - 1 1647 add(mdp, mdp, tmp1); 1648 ldr(tmp1, Address(mdp, ArrayData::array_len_offset())); 1649 sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 1650 1651 Label loop; 1652 bind(loop); 1653 1654 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 1655 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 1656 int per_arg_scale = exact_log2(DataLayout::cell_size); 1657 add(rscratch1, mdp, off_base); 1658 add(rscratch2, mdp, type_base); 1659 1660 Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale)); 1661 Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale)); 1662 1663 // load offset on the stack from the slot for this parameter 1664 ldr(tmp2, arg_off); 1665 neg(tmp2, tmp2); 1666 // read the parameter from the local area 1667 ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize))); 1668 1669 // profile the parameter 1670 profile_obj_type(tmp2, arg_type); 1671 1672 // go to next parameter 1673 subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 1674 br(Assembler::GE, loop); 1675 1676 bind(profile_continue); 1677 } 1678 } 1679 1680 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 1681 // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp 1682 get_cache_index_at_bcp(index, 1, sizeof(u4)); 1683 // Get address of invokedynamic array 1684 ldr(cache, Address(rcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 1685 // Scale the index to be the entry index * sizeof(ResolvedIndyEntry) 1686 lsl(index, index, log2i_exact(sizeof(ResolvedIndyEntry))); 1687 add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes()); 1688 lea(cache, Address(cache, index)); 1689 } 1690 1691 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 1692 // Get index out of bytecode pointer 1693 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 1694 // Take shortcut if the size is a power of 2 1695 if (is_power_of_2(sizeof(ResolvedFieldEntry))) { 1696 lsl(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2 1697 } else { 1698 mov(cache, sizeof(ResolvedFieldEntry)); 1699 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry) 1700 } 1701 // Get address of field entries array 1702 ldr(cache, Address(rcpool, ConstantPoolCache::field_entries_offset())); 1703 add(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes()); 1704 lea(cache, Address(cache, index)); 1705 // Prevents stale data from being read after the bytecode is patched to the fast bytecode 1706 membar(MacroAssembler::LoadLoad); 1707 } 1708 1709 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) { 1710 // Get index out of bytecode pointer 1711 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 1712 mov(cache, sizeof(ResolvedMethodEntry)); 1713 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry) 1714 1715 // Get address of field entries array 1716 ldr(cache, Address(rcpool, ConstantPoolCache::method_entries_offset())); 1717 add(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes()); 1718 lea(cache, Address(cache, index)); 1719 }