1 /*
   2  * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "compiler/compiler_globals.hpp"
  29 #include "gc/shared/barrierSet.hpp"
  30 #include "gc/shared/barrierSetAssembler.hpp"
  31 #include "interp_masm_aarch64.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/interpreterRuntime.hpp"
  34 #include "logging/log.hpp"
  35 #include "oops/arrayOop.hpp"
  36 #include "oops/markWord.hpp"
  37 #include "oops/method.hpp"
  38 #include "oops/methodData.hpp"
  39 #include "oops/resolvedFieldEntry.hpp"
  40 #include "oops/resolvedIndyEntry.hpp"
  41 #include "oops/resolvedMethodEntry.hpp"
  42 #include "prims/jvmtiExport.hpp"
  43 #include "prims/jvmtiThreadState.hpp"
  44 #include "runtime/basicLock.hpp"
  45 #include "runtime/frame.inline.hpp"
  46 #include "runtime/javaThread.hpp"
  47 #include "runtime/runtimeUpcalls.hpp"
  48 #include "runtime/safepointMechanism.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "utilities/powerOfTwo.hpp"
  51 
  52 void InterpreterMacroAssembler::narrow(Register result) {
  53 
  54   // Get method->_constMethod->_result_type
  55   ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
  56   ldr(rscratch1, Address(rscratch1, Method::const_offset()));
  57   ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset()));
  58 
  59   Label done, notBool, notByte, notChar;
  60 
  61   // common case first
  62   cmpw(rscratch1, T_INT);
  63   br(Assembler::EQ, done);
  64 
  65   // mask integer result to narrower return type.
  66   cmpw(rscratch1, T_BOOLEAN);
  67   br(Assembler::NE, notBool);
  68   andw(result, result, 0x1);
  69   b(done);
  70 
  71   bind(notBool);
  72   cmpw(rscratch1, T_BYTE);
  73   br(Assembler::NE, notByte);
  74   sbfx(result, result, 0, 8);
  75   b(done);
  76 
  77   bind(notByte);
  78   cmpw(rscratch1, T_CHAR);
  79   br(Assembler::NE, notChar);
  80   ubfx(result, result, 0, 16);  // truncate upper 16 bits
  81   b(done);
  82 
  83   bind(notChar);
  84   sbfx(result, result, 0, 16);     // sign-extend short
  85 
  86   // Nothing to do for T_INT
  87   bind(done);
  88 }
  89 
  90 void InterpreterMacroAssembler::jump_to_entry(address entry) {
  91   assert(entry, "Entry must have been generated by now");
  92   b(entry);
  93 }
  94 
  95 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
  96   if (JvmtiExport::can_pop_frame()) {
  97     Label L;
  98     // Initiate popframe handling only if it is not already being
  99     // processed.  If the flag has the popframe_processing bit set, it
 100     // means that this code is called *during* popframe handling - we
 101     // don't want to reenter.
 102     // This method is only called just after the call into the vm in
 103     // call_VM_base, so the arg registers are available.
 104     ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
 105     tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L);
 106     tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L);
 107     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 108     // address of the same-named entrypoint in the generated interpreter code.
 109     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 110     br(r0);
 111     bind(L);
 112   }
 113 }
 114 
 115 
 116 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 117   ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 118   const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset());
 119   const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset());
 120   const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset());
 121   switch (state) {
 122     case atos: ldr(r0, oop_addr);
 123                str(zr, oop_addr);
 124                interp_verify_oop(r0, state);        break;
 125     case ltos: ldr(r0, val_addr);                   break;
 126     case btos:                                   // fall through
 127     case ztos:                                   // fall through
 128     case ctos:                                   // fall through
 129     case stos:                                   // fall through
 130     case itos: ldrw(r0, val_addr);                  break;
 131     case ftos: ldrs(v0, val_addr);                  break;
 132     case dtos: ldrd(v0, val_addr);                  break;
 133     case vtos: /* nothing to do */                  break;
 134     default  : ShouldNotReachHere();
 135   }
 136   // Clean up tos value in the thread object
 137   movw(rscratch1, (int) ilgl);
 138   strw(rscratch1, tos_addr);
 139   strw(zr, val_addr);
 140 }
 141 
 142 
 143 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 144   if (JvmtiExport::can_force_early_return()) {
 145     Label L;
 146     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 147     cbz(rscratch1, L); // if (thread->jvmti_thread_state() == nullptr) exit;
 148 
 149     // Initiate earlyret handling only if it is not already being processed.
 150     // If the flag has the earlyret_processing bit set, it means that this code
 151     // is called *during* earlyret handling - we don't want to reenter.
 152     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset()));
 153     cmpw(rscratch1, JvmtiThreadState::earlyret_pending);
 154     br(Assembler::NE, L);
 155 
 156     // Call Interpreter::remove_activation_early_entry() to get the address of the
 157     // same-named entrypoint in the generated interpreter code.
 158     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 159     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset()));
 160     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1);
 161     br(r0);
 162     bind(L);
 163   }
 164 }
 165 
 166 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
 167   Register reg,
 168   int bcp_offset) {
 169   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 170   ldrh(reg, Address(rbcp, bcp_offset));
 171   rev16(reg, reg);
 172 }
 173 
 174 void InterpreterMacroAssembler::get_dispatch() {
 175   uint64_t offset;
 176   adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset);
 177   // Use add() here after ARDP, rather than lea().
 178   // lea() does not generate anything if its offset is zero.
 179   // However, relocs expect to find either an ADD or a load/store
 180   // insn after an ADRP.  add() always generates an ADD insn, even
 181   // for add(Rn, Rn, 0).
 182   add(rdispatch, rdispatch, offset);
 183 }
 184 
 185 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
 186                                                        int bcp_offset,
 187                                                        size_t index_size) {
 188   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 189   if (index_size == sizeof(u2)) {
 190     load_unsigned_short(index, Address(rbcp, bcp_offset));
 191   } else if (index_size == sizeof(u4)) {
 192     // assert(EnableInvokeDynamic, "giant index used only for JSR 292");
 193     ldrw(index, Address(rbcp, bcp_offset));
 194   } else if (index_size == sizeof(u1)) {
 195     load_unsigned_byte(index, Address(rbcp, bcp_offset));
 196   } else {
 197     ShouldNotReachHere();
 198   }
 199 }
 200 
 201 void InterpreterMacroAssembler::get_method_counters(Register method,
 202                                                     Register mcs, Label& skip) {
 203   Label has_counters;
 204   ldr(mcs, Address(method, Method::method_counters_offset()));
 205   cbnz(mcs, has_counters);
 206   call_VM(noreg, CAST_FROM_FN_PTR(address,
 207           InterpreterRuntime::build_method_counters), method);
 208   ldr(mcs, Address(method, Method::method_counters_offset()));
 209   cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory
 210   bind(has_counters);
 211 }
 212 
 213 // Load object from cpool->resolved_references(index)
 214 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 215                                            Register result, Register index, Register tmp) {
 216   assert_different_registers(result, index);
 217 
 218   get_constant_pool(result);
 219   // load pointer for resolved_references[] objArray
 220   ldr(result, Address(result, ConstantPool::cache_offset()));
 221   ldr(result, Address(result, ConstantPoolCache::resolved_references_offset()));
 222   resolve_oop_handle(result, tmp, rscratch2);
 223   // Add in the index
 224   add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 225   load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop)), tmp, rscratch2);
 226 }
 227 
 228 void InterpreterMacroAssembler::load_resolved_klass_at_offset(
 229                              Register cpool, Register index, Register klass, Register temp) {
 230   add(temp, cpool, index, LSL, LogBytesPerWord);
 231   ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index
 232   ldr(klass, Address(cpool,  ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses
 233   add(klass, klass, temp, LSL, LogBytesPerWord);
 234   ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes()));
 235 }
 236 
 237 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
 238 // subtype of super_klass.
 239 //
 240 // Args:
 241 //      r0: superklass
 242 //      Rsub_klass: subklass
 243 //
 244 // Kills:
 245 //      r2, r5
 246 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 247                                                   Label& ok_is_subtype) {
 248   assert(Rsub_klass != r0, "r0 holds superklass");
 249   assert(Rsub_klass != r2, "r2 holds 2ndary super array length");
 250   assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr");
 251 
 252   // Profile the not-null value's klass.
 253   profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5
 254 
 255   // Do the check.
 256   check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2
 257 }
 258 
 259 // Java Expression Stack
 260 
 261 void InterpreterMacroAssembler::pop_ptr(Register r) {
 262   ldr(r, post(esp, wordSize));
 263 }
 264 
 265 void InterpreterMacroAssembler::pop_i(Register r) {
 266   ldrw(r, post(esp, wordSize));
 267 }
 268 
 269 void InterpreterMacroAssembler::pop_l(Register r) {
 270   ldr(r, post(esp, 2 * Interpreter::stackElementSize));
 271 }
 272 
 273 void InterpreterMacroAssembler::push_ptr(Register r) {
 274   str(r, pre(esp, -wordSize));
 275  }
 276 
 277 void InterpreterMacroAssembler::push_i(Register r) {
 278   str(r, pre(esp, -wordSize));
 279 }
 280 
 281 void InterpreterMacroAssembler::push_l(Register r) {
 282   str(zr, pre(esp, -wordSize));
 283   str(r, pre(esp, - wordSize));
 284 }
 285 
 286 void InterpreterMacroAssembler::pop_f(FloatRegister r) {
 287   ldrs(r, post(esp, wordSize));
 288 }
 289 
 290 void InterpreterMacroAssembler::pop_d(FloatRegister r) {
 291   ldrd(r, post(esp, 2 * Interpreter::stackElementSize));
 292 }
 293 
 294 void InterpreterMacroAssembler::push_f(FloatRegister r) {
 295   strs(r, pre(esp, -wordSize));
 296 }
 297 
 298 void InterpreterMacroAssembler::push_d(FloatRegister r) {
 299   strd(r, pre(esp, 2* -wordSize));
 300 }
 301 
 302 void InterpreterMacroAssembler::pop(TosState state) {
 303   switch (state) {
 304   case atos: pop_ptr();                 break;
 305   case btos:
 306   case ztos:
 307   case ctos:
 308   case stos:
 309   case itos: pop_i();                   break;
 310   case ltos: pop_l();                   break;
 311   case ftos: pop_f();                   break;
 312   case dtos: pop_d();                   break;
 313   case vtos: /* nothing to do */        break;
 314   default:   ShouldNotReachHere();
 315   }
 316   interp_verify_oop(r0, state);
 317 }
 318 
 319 void InterpreterMacroAssembler::push(TosState state) {
 320   interp_verify_oop(r0, state);
 321   switch (state) {
 322   case atos: push_ptr();                break;
 323   case btos:
 324   case ztos:
 325   case ctos:
 326   case stos:
 327   case itos: push_i();                  break;
 328   case ltos: push_l();                  break;
 329   case ftos: push_f();                  break;
 330   case dtos: push_d();                  break;
 331   case vtos: /* nothing to do */        break;
 332   default  : ShouldNotReachHere();
 333   }
 334 }
 335 
 336 // Helpers for swap and dup
 337 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 338   ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 339 }
 340 
 341 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 342   str(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 343 }
 344 
 345 void InterpreterMacroAssembler::load_float(Address src) {
 346   ldrs(v0, src);
 347 }
 348 
 349 void InterpreterMacroAssembler::load_double(Address src) {
 350   ldrd(v0, src);
 351 }
 352 
 353 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 354   // set sender sp
 355   mov(r19_sender_sp, sp);
 356   // record last_sp
 357   sub(rscratch1, esp, rfp);
 358   asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
 359   str(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 360 }
 361 
 362 // Jump to from_interpreted entry of a call unless single stepping is possible
 363 // in this thread in which case we must call the i2i entry
 364 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 365   prepare_to_jump_from_interpreted();
 366 
 367   if (JvmtiExport::can_post_interpreter_events()) {
 368     Label run_compiled_code;
 369     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 370     // compiled code in threads for which the event is enabled.  Check here for
 371     // interp_only_mode if these events CAN be enabled.
 372     ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset()));
 373     cbzw(rscratch1, run_compiled_code);
 374     ldr(rscratch1, Address(method, Method::interpreter_entry_offset()));
 375     br(rscratch1);
 376     bind(run_compiled_code);
 377   }
 378 
 379   ldr(rscratch1, Address(method, Method::from_interpreted_offset()));
 380   br(rscratch1);
 381 }
 382 
 383 // The following two routines provide a hook so that an implementation
 384 // can schedule the dispatch in two parts.  amd64 does not do this.
 385 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 386 }
 387 
 388 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 389     dispatch_next(state, step);
 390 }
 391 
 392 void InterpreterMacroAssembler::dispatch_base(TosState state,
 393                                               address* table,
 394                                               bool verifyoop,
 395                                               bool generate_poll) {
 396   if (VerifyActivationFrameSize) {
 397     Label L;
 398     sub(rscratch2, rfp, esp);
 399     int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
 400     subs(rscratch2, rscratch2, min_frame_size);
 401     br(Assembler::GE, L);
 402     stop("broken stack frame");
 403     bind(L);
 404   }
 405   if (verifyoop) {
 406     interp_verify_oop(r0, state);
 407   }
 408 
 409   Label safepoint;
 410   address* const safepoint_table = Interpreter::safept_table(state);
 411   bool needs_thread_local_poll = generate_poll && table != safepoint_table;
 412 
 413   if (needs_thread_local_poll) {
 414     NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
 415     ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset()));
 416     tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint);
 417   }
 418 
 419   if (table == Interpreter::dispatch_table(state)) {
 420     addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state));
 421     ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3)));
 422   } else {
 423     mov(rscratch2, (address)table);
 424     ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
 425   }
 426   br(rscratch2);
 427 
 428   if (needs_thread_local_poll) {
 429     bind(safepoint);
 430     lea(rscratch2, ExternalAddress((address)safepoint_table));
 431     ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
 432     br(rscratch2);
 433   }
 434 }
 435 
 436 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
 437   dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
 438 }
 439 
 440 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 441   dispatch_base(state, Interpreter::normal_table(state));
 442 }
 443 
 444 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 445   dispatch_base(state, Interpreter::normal_table(state), false);
 446 }
 447 
 448 
 449 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
 450   // load next bytecode
 451   ldrb(rscratch1, Address(pre(rbcp, step)));
 452   dispatch_base(state, Interpreter::dispatch_table(state), /*verifyoop*/true, generate_poll);
 453 }
 454 
 455 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 456   // load current bytecode
 457   ldrb(rscratch1, Address(rbcp, 0));
 458   dispatch_base(state, table);
 459 }
 460 
 461 // remove activation
 462 //
 463 // Apply stack watermark barrier.
 464 // Unlock the receiver if this is a synchronized method.
 465 // Unlock any Java monitors from synchronized blocks.
 466 // Remove the activation from the stack.
 467 //
 468 // If there are locked Java monitors
 469 //    If throw_monitor_exception
 470 //       throws IllegalMonitorStateException
 471 //    Else if install_monitor_exception
 472 //       installs IllegalMonitorStateException
 473 //    Else
 474 //       no error processing
 475 void InterpreterMacroAssembler::remove_activation(
 476         TosState state,
 477         bool throw_monitor_exception,
 478         bool install_monitor_exception,
 479         bool notify_jvmdi) {
 480   // Note: Registers r3 xmm0 may be in use for the
 481   // result check if synchronized method
 482   Label unlocked, unlock, no_unlock;
 483 
 484   // The below poll is for the stack watermark barrier. It allows fixing up frames lazily,
 485   // that would normally not be safe to use. Such bad returns into unsafe territory of
 486   // the stack, will call InterpreterRuntime::at_unwind.
 487   Label slow_path;
 488   Label fast_path;
 489   safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */);
 490   br(Assembler::AL, fast_path);
 491   bind(slow_path);
 492   push(state);
 493   set_last_Java_frame(esp, rfp, (address)pc(), rscratch1);
 494   super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread);
 495   reset_last_Java_frame(true);
 496   pop(state);
 497   bind(fast_path);
 498 
 499   // get the value of _do_not_unlock_if_synchronized into r3
 500   const Address do_not_unlock_if_synchronized(rthread,
 501     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 502   ldrb(r3, do_not_unlock_if_synchronized);
 503   strb(zr, do_not_unlock_if_synchronized); // reset the flag
 504 
 505  // get method access flags
 506   ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
 507   ldrh(r2, Address(r1, Method::access_flags_offset()));
 508   tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked);
 509 
 510   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 511   // is set.
 512   cbnz(r3, no_unlock);
 513 
 514   // unlock monitor
 515   push(state); // save result
 516 
 517   // BasicObjectLock will be first in list, since this is a
 518   // synchronized method. However, need to check that the object has
 519   // not been unlocked by an explicit monitorexit bytecode.
 520   const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset *
 521                         wordSize - (int) sizeof(BasicObjectLock));
 522   // We use c_rarg1 so that if we go slow path it will be the correct
 523   // register for unlock_object to pass to VM directly
 524   lea(c_rarg1, monitor); // address of first monitor
 525 
 526   ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
 527   cbnz(r0, unlock);
 528 
 529   pop(state);
 530   if (throw_monitor_exception) {
 531     // Entry already unlocked, need to throw exception
 532     call_VM(noreg, CAST_FROM_FN_PTR(address,
 533                    InterpreterRuntime::throw_illegal_monitor_state_exception));
 534     should_not_reach_here();
 535   } else {
 536     // Monitor already unlocked during a stack unroll. If requested,
 537     // install an illegal_monitor_state_exception.  Continue with
 538     // stack unrolling.
 539     if (install_monitor_exception) {
 540       call_VM(noreg, CAST_FROM_FN_PTR(address,
 541                      InterpreterRuntime::new_illegal_monitor_state_exception));
 542     }
 543     b(unlocked);
 544   }
 545 
 546   bind(unlock);
 547   unlock_object(c_rarg1);
 548   pop(state);
 549 
 550   // Check that for block-structured locking (i.e., that all locked
 551   // objects has been unlocked)
 552   bind(unlocked);
 553 
 554   // r0: Might contain return value
 555 
 556   // Check that all monitors are unlocked
 557   {
 558     Label loop, exception, entry, restart;
 559     const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
 560     const Address monitor_block_top(
 561         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
 562     const Address monitor_block_bot(
 563         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
 564 
 565     bind(restart);
 566     // We use c_rarg1 so that if we go slow path it will be the correct
 567     // register for unlock_object to pass to VM directly
 568     ldr(c_rarg1, monitor_block_top); // derelativize pointer
 569     lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
 570     // c_rarg1 points to current entry, starting with top-most entry
 571 
 572     lea(r19, monitor_block_bot);  // points to word before bottom of
 573                                   // monitor block
 574     b(entry);
 575 
 576     // Entry already locked, need to throw exception
 577     bind(exception);
 578 
 579     if (throw_monitor_exception) {
 580       // Throw exception
 581       MacroAssembler::call_VM(noreg,
 582                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
 583                                    throw_illegal_monitor_state_exception));
 584       should_not_reach_here();
 585     } else {
 586       // Stack unrolling. Unlock object and install illegal_monitor_exception.
 587       // Unlock does not block, so don't have to worry about the frame.
 588       // We don't have to preserve c_rarg1 since we are going to throw an exception.
 589 
 590       push(state);
 591       unlock_object(c_rarg1);
 592       pop(state);
 593 
 594       if (install_monitor_exception) {
 595         call_VM(noreg, CAST_FROM_FN_PTR(address,
 596                                         InterpreterRuntime::
 597                                         new_illegal_monitor_state_exception));
 598       }
 599 
 600       b(restart);
 601     }
 602 
 603     bind(loop);
 604     // check if current entry is used
 605     ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset()));
 606     cbnz(rscratch1, exception);
 607 
 608     add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry
 609     bind(entry);
 610     cmp(c_rarg1, r19); // check if bottom reached
 611     br(Assembler::NE, loop); // if not at bottom then check this entry
 612   }
 613 
 614   bind(no_unlock);
 615 
 616   // jvmti support
 617   if (notify_jvmdi) {
 618     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
 619   } else {
 620     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
 621   }
 622 
 623   // remove activation
 624   // get sender esp
 625   ldr(rscratch2,
 626       Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
 627   if (StackReservedPages > 0) {
 628     // testing if reserved zone needs to be re-enabled
 629     Label no_reserved_zone_enabling;
 630 
 631     // check if already enabled - if so no re-enabling needed
 632     assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size");
 633     ldrw(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset()));
 634     cmpw(rscratch1, (u1)StackOverflow::stack_guard_enabled);
 635     br(Assembler::EQ, no_reserved_zone_enabling);
 636 
 637     // look for an overflow into the stack reserved zone, i.e.
 638     // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation
 639     ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset()));
 640     cmp(rscratch2, rscratch1);
 641     br(Assembler::LS, no_reserved_zone_enabling);
 642 
 643     call_VM_leaf(
 644       CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
 645     call_VM(noreg, CAST_FROM_FN_PTR(address,
 646                    InterpreterRuntime::throw_delayed_StackOverflowError));
 647     should_not_reach_here();
 648 
 649     bind(no_reserved_zone_enabling);
 650   }
 651 
 652   // restore sender esp
 653   mov(esp, rscratch2);
 654   // remove frame anchor
 655   leave();
 656   // If we're returning to interpreted code we will shortly be
 657   // adjusting SP to allow some space for ESP.  If we're returning to
 658   // compiled code the saved sender SP was saved in sender_sp, so this
 659   // restores it.
 660   andr(sp, esp, -16);
 661 }
 662 
 663 // Lock object
 664 //
 665 // Args:
 666 //      c_rarg1: BasicObjectLock to be used for locking
 667 //
 668 // Kills:
 669 //      r0
 670 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, .. (param regs)
 671 //      rscratch1, rscratch2 (scratch regs)
 672 void InterpreterMacroAssembler::lock_object(Register lock_reg)
 673 {
 674   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
 675   if (LockingMode == LM_MONITOR) {
 676     call_VM_preemptable(noreg,
 677             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 678             lock_reg);
 679   } else {
 680     Label count, done;
 681 
 682     const Register swap_reg = r0;
 683     const Register tmp = c_rarg2;
 684     const Register obj_reg = c_rarg3; // Will contain the oop
 685     const Register tmp2 = c_rarg4;
 686     const Register tmp3 = c_rarg5;
 687 
 688     const int obj_offset = in_bytes(BasicObjectLock::obj_offset());
 689     const int lock_offset = in_bytes(BasicObjectLock::lock_offset());
 690     const int mark_offset = lock_offset +
 691                             BasicLock::displaced_header_offset_in_bytes();
 692 
 693     Label slow_case;
 694 
 695     // Load object pointer into obj_reg %c_rarg3
 696     ldr(obj_reg, Address(lock_reg, obj_offset));
 697 
 698     if (DiagnoseSyncOnValueBasedClasses != 0) {
 699       load_klass(tmp, obj_reg);
 700       ldrb(tmp, Address(tmp, Klass::misc_flags_offset()));
 701       tst(tmp, KlassFlags::_misc_is_value_based_class);
 702       br(Assembler::NE, slow_case);
 703     }
 704 
 705     if (LockingMode == LM_LIGHTWEIGHT) {
 706       lightweight_lock(lock_reg, obj_reg, tmp, tmp2, tmp3, slow_case);
 707       b(done);
 708     } else if (LockingMode == LM_LEGACY) {
 709       // Load (object->mark() | 1) into swap_reg
 710       ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
 711       orr(swap_reg, rscratch1, 1);
 712 
 713       // Save (object->mark() | 1) into BasicLock's displaced header
 714       str(swap_reg, Address(lock_reg, mark_offset));
 715 
 716       assert(lock_offset == 0,
 717              "displached header must be first word in BasicObjectLock");
 718 
 719       Label fail;
 720       cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr);
 721 
 722       // Fast check for recursive lock.
 723       //
 724       // Can apply the optimization only if this is a stack lock
 725       // allocated in this thread. For efficiency, we can focus on
 726       // recently allocated stack locks (instead of reading the stack
 727       // base and checking whether 'mark' points inside the current
 728       // thread stack):
 729       //  1) (mark & 7) == 0, and
 730       //  2) sp <= mark < mark + os::pagesize()
 731       //
 732       // Warning: sp + os::pagesize can overflow the stack base. We must
 733       // neither apply the optimization for an inflated lock allocated
 734       // just above the thread stack (this is why condition 1 matters)
 735       // nor apply the optimization if the stack lock is inside the stack
 736       // of another thread. The latter is avoided even in case of overflow
 737       // because we have guard pages at the end of all stacks. Hence, if
 738       // we go over the stack base and hit the stack of another thread,
 739       // this should not be in a writeable area that could contain a
 740       // stack lock allocated by that thread. As a consequence, a stack
 741       // lock less than page size away from sp is guaranteed to be
 742       // owned by the current thread.
 743       //
 744       // These 3 tests can be done by evaluating the following
 745       // expression: ((mark - sp) & (7 - os::vm_page_size())),
 746       // assuming both stack pointer and pagesize have their
 747       // least significant 3 bits clear.
 748       // NOTE: the mark is in swap_reg %r0 as the result of cmpxchg
 749       // NOTE2: aarch64 does not like to subtract sp from rn so take a
 750       // copy
 751       mov(rscratch1, sp);
 752       sub(swap_reg, swap_reg, rscratch1);
 753       ands(swap_reg, swap_reg, (uint64_t)(7 - (int)os::vm_page_size()));
 754 
 755       // Save the test result, for recursive case, the result is zero
 756       str(swap_reg, Address(lock_reg, mark_offset));
 757       br(Assembler::NE, slow_case);
 758 
 759       bind(count);
 760       inc_held_monitor_count(rscratch1);
 761       b(done);
 762     }
 763     bind(slow_case);
 764 
 765     // Call the runtime routine for slow case
 766     call_VM_preemptable(noreg,
 767             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 768             lock_reg);
 769 
 770     bind(done);
 771   }
 772 }
 773 
 774 
 775 // Unlocks an object. Used in monitorexit bytecode and
 776 // remove_activation.  Throws an IllegalMonitorException if object is
 777 // not locked by current thread.
 778 //
 779 // Args:
 780 //      c_rarg1: BasicObjectLock for lock
 781 //
 782 // Kills:
 783 //      r0
 784 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
 785 //      rscratch1, rscratch2 (scratch regs)
 786 void InterpreterMacroAssembler::unlock_object(Register lock_reg)
 787 {
 788   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
 789 
 790   if (LockingMode == LM_MONITOR) {
 791     call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
 792   } else {
 793     Label count, done;
 794 
 795     const Register swap_reg   = r0;
 796     const Register header_reg = c_rarg2;  // Will contain the old oopMark
 797     const Register obj_reg    = c_rarg3;  // Will contain the oop
 798     const Register tmp_reg    = c_rarg4;  // Temporary used by lightweight_unlock
 799 
 800     save_bcp(); // Save in case of exception
 801 
 802     if (LockingMode != LM_LIGHTWEIGHT) {
 803       // Convert from BasicObjectLock structure to object and BasicLock
 804       // structure Store the BasicLock address into %r0
 805       lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset()));
 806     }
 807 
 808     // Load oop into obj_reg(%c_rarg3)
 809     ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
 810 
 811     // Free entry
 812     str(zr, Address(lock_reg, BasicObjectLock::obj_offset()));
 813 
 814     Label slow_case;
 815     if (LockingMode == LM_LIGHTWEIGHT) {
 816       lightweight_unlock(obj_reg, header_reg, swap_reg, tmp_reg, slow_case);
 817       b(done);
 818     } else if (LockingMode == LM_LEGACY) {
 819       // Load the old header from BasicLock structure
 820       ldr(header_reg, Address(swap_reg,
 821                               BasicLock::displaced_header_offset_in_bytes()));
 822 
 823       // Test for recursion
 824       cbz(header_reg, count);
 825 
 826       // Atomic swap back the old header
 827       cmpxchg_obj_header(swap_reg, header_reg, obj_reg, rscratch1, count, &slow_case);
 828 
 829       bind(count);
 830       dec_held_monitor_count(rscratch1);
 831       b(done);
 832     }
 833 
 834     bind(slow_case);
 835     // Call the runtime routine for slow case.
 836     str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj
 837     call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
 838     bind(done);
 839     restore_bcp();
 840   }
 841 }
 842 
 843 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
 844                                                          Label& zero_continue) {
 845   assert(ProfileInterpreter, "must be profiling interpreter");
 846   ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 847   cbz(mdp, zero_continue);
 848 }
 849 
 850 // Set the method data pointer for the current bcp.
 851 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
 852   assert(ProfileInterpreter, "must be profiling interpreter");
 853   Label set_mdp;
 854   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 855 
 856   // Test MDO to avoid the call if it is null.
 857   ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset())));
 858   cbz(r0, set_mdp);
 859   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp);
 860   // r0: mdi
 861   // mdo is guaranteed to be non-zero here, we checked for it before the call.
 862   ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
 863   lea(r1, Address(r1, in_bytes(MethodData::data_offset())));
 864   add(r0, r1, r0);
 865   str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 866   bind(set_mdp);
 867   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 868 }
 869 
 870 void InterpreterMacroAssembler::verify_method_data_pointer() {
 871   assert(ProfileInterpreter, "must be profiling interpreter");
 872 #ifdef ASSERT
 873   Label verify_continue;
 874   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 875   stp(r2, r3, Address(pre(sp, -2 * wordSize)));
 876   test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue
 877   get_method(r1);
 878 
 879   // If the mdp is valid, it will point to a DataLayout header which is
 880   // consistent with the bcp.  The converse is highly probable also.
 881   ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset())));
 882   ldr(rscratch1, Address(r1, Method::const_offset()));
 883   add(r2, r2, rscratch1, Assembler::LSL);
 884   lea(r2, Address(r2, ConstMethod::codes_offset()));
 885   cmp(r2, rbcp);
 886   br(Assembler::EQ, verify_continue);
 887   // r1: method
 888   // rbcp: bcp // rbcp == 22
 889   // r3: mdp
 890   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
 891                r1, rbcp, r3);
 892   bind(verify_continue);
 893   ldp(r2, r3, Address(post(sp, 2 * wordSize)));
 894   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 895 #endif // ASSERT
 896 }
 897 
 898 
 899 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
 900                                                 int constant,
 901                                                 Register value) {
 902   assert(ProfileInterpreter, "must be profiling interpreter");
 903   Address data(mdp_in, constant);
 904   str(value, data);
 905 }
 906 
 907 
 908 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 909                                                       int constant,
 910                                                       bool decrement) {
 911   increment_mdp_data_at(mdp_in, noreg, constant, decrement);
 912 }
 913 
 914 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 915                                                       Register reg,
 916                                                       int constant,
 917                                                       bool decrement) {
 918   assert(ProfileInterpreter, "must be profiling interpreter");
 919   // %%% this does 64bit counters at best it is wasting space
 920   // at worst it is a rare bug when counters overflow
 921 
 922   assert_different_registers(rscratch2, rscratch1, mdp_in, reg);
 923 
 924   Address addr1(mdp_in, constant);
 925   Address addr2(rscratch2, reg, Address::lsl(0));
 926   Address &addr = addr1;
 927   if (reg != noreg) {
 928     lea(rscratch2, addr1);
 929     addr = addr2;
 930   }
 931 
 932   if (decrement) {
 933     // Decrement the register.  Set condition codes.
 934     // Intel does this
 935     // addptr(data, (int32_t) -DataLayout::counter_increment);
 936     // If the decrement causes the counter to overflow, stay negative
 937     // Label L;
 938     // jcc(Assembler::negative, L);
 939     // addptr(data, (int32_t) DataLayout::counter_increment);
 940     // so we do this
 941     ldr(rscratch1, addr);
 942     subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment);
 943     Label L;
 944     br(Assembler::LO, L);       // skip store if counter underflow
 945     str(rscratch1, addr);
 946     bind(L);
 947   } else {
 948     assert(DataLayout::counter_increment == 1,
 949            "flow-free idiom only works with 1");
 950     // Intel does this
 951     // Increment the register.  Set carry flag.
 952     // addptr(data, DataLayout::counter_increment);
 953     // If the increment causes the counter to overflow, pull back by 1.
 954     // sbbptr(data, (int32_t)0);
 955     // so we do this
 956     ldr(rscratch1, addr);
 957     adds(rscratch1, rscratch1, DataLayout::counter_increment);
 958     Label L;
 959     br(Assembler::CS, L);       // skip store if counter overflow
 960     str(rscratch1, addr);
 961     bind(L);
 962   }
 963 }
 964 
 965 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
 966                                                 int flag_byte_constant) {
 967   assert(ProfileInterpreter, "must be profiling interpreter");
 968   int flags_offset = in_bytes(DataLayout::flags_offset());
 969   // Set the flag
 970   ldrb(rscratch1, Address(mdp_in, flags_offset));
 971   orr(rscratch1, rscratch1, flag_byte_constant);
 972   strb(rscratch1, Address(mdp_in, flags_offset));
 973 }
 974 
 975 
 976 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
 977                                                  int offset,
 978                                                  Register value,
 979                                                  Register test_value_out,
 980                                                  Label& not_equal_continue) {
 981   assert(ProfileInterpreter, "must be profiling interpreter");
 982   if (test_value_out == noreg) {
 983     ldr(rscratch1, Address(mdp_in, offset));
 984     cmp(value, rscratch1);
 985   } else {
 986     // Put the test value into a register, so caller can use it:
 987     ldr(test_value_out, Address(mdp_in, offset));
 988     cmp(value, test_value_out);
 989   }
 990   br(Assembler::NE, not_equal_continue);
 991 }
 992 
 993 
 994 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
 995                                                      int offset_of_disp) {
 996   assert(ProfileInterpreter, "must be profiling interpreter");
 997   ldr(rscratch1, Address(mdp_in, offset_of_disp));
 998   add(mdp_in, mdp_in, rscratch1, LSL);
 999   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1000 }
1001 
1002 
1003 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1004                                                      Register reg,
1005                                                      int offset_of_disp) {
1006   assert(ProfileInterpreter, "must be profiling interpreter");
1007   lea(rscratch1, Address(mdp_in, offset_of_disp));
1008   ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0)));
1009   add(mdp_in, mdp_in, rscratch1, LSL);
1010   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1011 }
1012 
1013 
1014 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1015                                                        int constant) {
1016   assert(ProfileInterpreter, "must be profiling interpreter");
1017   add(mdp_in, mdp_in, (unsigned)constant);
1018   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1019 }
1020 
1021 
1022 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1023   assert(ProfileInterpreter, "must be profiling interpreter");
1024   // save/restore across call_VM
1025   stp(zr, return_bci, Address(pre(sp, -2 * wordSize)));
1026   call_VM(noreg,
1027           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1028           return_bci);
1029   ldp(zr, return_bci, Address(post(sp, 2 * wordSize)));
1030 }
1031 
1032 
1033 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1034                                                      Register bumped_count) {
1035   if (ProfileInterpreter) {
1036     Label profile_continue;
1037 
1038     // If no method data exists, go to profile_continue.
1039     // Otherwise, assign to mdp
1040     test_method_data_pointer(mdp, profile_continue);
1041 
1042     // We are taking a branch.  Increment the taken count.
1043     // We inline increment_mdp_data_at to return bumped_count in a register
1044     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1045     Address data(mdp, in_bytes(JumpData::taken_offset()));
1046     ldr(bumped_count, data);
1047     assert(DataLayout::counter_increment == 1,
1048             "flow-free idiom only works with 1");
1049     // Intel does this to catch overflow
1050     // addptr(bumped_count, DataLayout::counter_increment);
1051     // sbbptr(bumped_count, 0);
1052     // so we do this
1053     adds(bumped_count, bumped_count, DataLayout::counter_increment);
1054     Label L;
1055     br(Assembler::CS, L);       // skip store if counter overflow
1056     str(bumped_count, data);
1057     bind(L);
1058     // The method data pointer needs to be updated to reflect the new target.
1059     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1060     bind(profile_continue);
1061   }
1062 }
1063 
1064 
1065 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1066   if (ProfileInterpreter) {
1067     Label profile_continue;
1068 
1069     // If no method data exists, go to profile_continue.
1070     test_method_data_pointer(mdp, profile_continue);
1071 
1072     // We are taking a branch.  Increment the not taken count.
1073     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1074 
1075     // The method data pointer needs to be updated to correspond to
1076     // the next bytecode
1077     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1078     bind(profile_continue);
1079   }
1080 }
1081 
1082 
1083 void InterpreterMacroAssembler::profile_call(Register mdp) {
1084   if (ProfileInterpreter) {
1085     Label profile_continue;
1086 
1087     // If no method data exists, go to profile_continue.
1088     test_method_data_pointer(mdp, profile_continue);
1089 
1090     // We are making a call.  Increment the count.
1091     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1092 
1093     // The method data pointer needs to be updated to reflect the new target.
1094     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1095     bind(profile_continue);
1096   }
1097 }
1098 
1099 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1100   if (ProfileInterpreter) {
1101     Label profile_continue;
1102 
1103     // If no method data exists, go to profile_continue.
1104     test_method_data_pointer(mdp, profile_continue);
1105 
1106     // We are making a call.  Increment the count.
1107     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1108 
1109     // The method data pointer needs to be updated to reflect the new target.
1110     update_mdp_by_constant(mdp,
1111                            in_bytes(VirtualCallData::
1112                                     virtual_call_data_size()));
1113     bind(profile_continue);
1114   }
1115 }
1116 
1117 
1118 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1119                                                      Register mdp,
1120                                                      Register reg2,
1121                                                      bool receiver_can_be_null) {
1122   if (ProfileInterpreter) {
1123     Label profile_continue;
1124 
1125     // If no method data exists, go to profile_continue.
1126     test_method_data_pointer(mdp, profile_continue);
1127 
1128     Label skip_receiver_profile;
1129     if (receiver_can_be_null) {
1130       Label not_null;
1131       // We are making a call.  Increment the count for null receiver.
1132       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1133       b(skip_receiver_profile);
1134       bind(not_null);
1135     }
1136 
1137     // Record the receiver type.
1138     record_klass_in_profile(receiver, mdp, reg2);
1139     bind(skip_receiver_profile);
1140 
1141     // The method data pointer needs to be updated to reflect the new target.
1142     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1143     bind(profile_continue);
1144   }
1145 }
1146 
1147 // This routine creates a state machine for updating the multi-row
1148 // type profile at a virtual call site (or other type-sensitive bytecode).
1149 // The machine visits each row (of receiver/count) until the receiver type
1150 // is found, or until it runs out of rows.  At the same time, it remembers
1151 // the location of the first empty row.  (An empty row records null for its
1152 // receiver, and can be allocated for a newly-observed receiver type.)
1153 // Because there are two degrees of freedom in the state, a simple linear
1154 // search will not work; it must be a decision tree.  Hence this helper
1155 // function is recursive, to generate the required tree structured code.
1156 // It's the interpreter, so we are trading off code space for speed.
1157 // See below for example code.
1158 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1159                                         Register receiver, Register mdp,
1160                                         Register reg2, int start_row,
1161                                         Label& done) {
1162   if (TypeProfileWidth == 0) {
1163     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1164   } else {
1165     record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1166         &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset);
1167   }
1168 }
1169 
1170 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1171                                         Register reg2, int start_row, Label& done, int total_rows,
1172                                         OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn) {
1173   int last_row = total_rows - 1;
1174   assert(start_row <= last_row, "must be work left to do");
1175   // Test this row for both the item and for null.
1176   // Take any of three different outcomes:
1177   //   1. found item => increment count and goto done
1178   //   2. found null => keep looking for case 1, maybe allocate this cell
1179   //   3. found something else => keep looking for cases 1 and 2
1180   // Case 3 is handled by a recursive call.
1181   for (int row = start_row; row <= last_row; row++) {
1182     Label next_test;
1183     bool test_for_null_also = (row == start_row);
1184 
1185     // See if the item is item[n].
1186     int item_offset = in_bytes(item_offset_fn(row));
1187     test_mdp_data_at(mdp, item_offset, item,
1188                      (test_for_null_also ? reg2 : noreg),
1189                      next_test);
1190     // (Reg2 now contains the item from the CallData.)
1191 
1192     // The item is item[n].  Increment count[n].
1193     int count_offset = in_bytes(item_count_offset_fn(row));
1194     increment_mdp_data_at(mdp, count_offset);
1195     b(done);
1196     bind(next_test);
1197 
1198     if (test_for_null_also) {
1199       Label found_null;
1200       // Failed the equality check on item[n]...  Test for null.
1201       if (start_row == last_row) {
1202         // The only thing left to do is handle the null case.
1203         cbz(reg2, found_null);
1204         // Item did not match any saved item and there is no empty row for it.
1205         // Increment total counter to indicate polymorphic case.
1206         increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1207         b(done);
1208         bind(found_null);
1209         break;
1210       }
1211       // Since null is rare, make it be the branch-taken case.
1212       cbz(reg2, found_null);
1213 
1214       // Put all the "Case 3" tests here.
1215       record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1216         item_offset_fn, item_count_offset_fn);
1217 
1218       // Found a null.  Keep searching for a matching item,
1219       // but remember that this is an empty (unused) slot.
1220       bind(found_null);
1221     }
1222   }
1223 
1224   // In the fall-through case, we found no matching item, but we
1225   // observed the item[start_row] is null.
1226 
1227   // Fill in the item field and increment the count.
1228   int item_offset = in_bytes(item_offset_fn(start_row));
1229   set_mdp_data_at(mdp, item_offset, item);
1230   int count_offset = in_bytes(item_count_offset_fn(start_row));
1231   mov(reg2, DataLayout::counter_increment);
1232   set_mdp_data_at(mdp, count_offset, reg2);
1233   if (start_row > 0) {
1234     b(done);
1235   }
1236 }
1237 
1238 // Example state machine code for three profile rows:
1239 //   // main copy of decision tree, rooted at row[1]
1240 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1241 //   if (row[0].rec != nullptr) {
1242 //     // inner copy of decision tree, rooted at row[1]
1243 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1244 //     if (row[1].rec != nullptr) {
1245 //       // degenerate decision tree, rooted at row[2]
1246 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1247 //       if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow
1248 //       row[2].init(rec); goto done;
1249 //     } else {
1250 //       // remember row[1] is empty
1251 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1252 //       row[1].init(rec); goto done;
1253 //     }
1254 //   } else {
1255 //     // remember row[0] is empty
1256 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1257 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1258 //     row[0].init(rec); goto done;
1259 //   }
1260 //   done:
1261 
1262 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1263                                                         Register mdp, Register reg2) {
1264   assert(ProfileInterpreter, "must be profiling");
1265   Label done;
1266 
1267   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
1268 
1269   bind (done);
1270 }
1271 
1272 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1273                                             Register mdp) {
1274   if (ProfileInterpreter) {
1275     Label profile_continue;
1276     uint row;
1277 
1278     // If no method data exists, go to profile_continue.
1279     test_method_data_pointer(mdp, profile_continue);
1280 
1281     // Update the total ret count.
1282     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1283 
1284     for (row = 0; row < RetData::row_limit(); row++) {
1285       Label next_test;
1286 
1287       // See if return_bci is equal to bci[n]:
1288       test_mdp_data_at(mdp,
1289                        in_bytes(RetData::bci_offset(row)),
1290                        return_bci, noreg,
1291                        next_test);
1292 
1293       // return_bci is equal to bci[n].  Increment the count.
1294       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1295 
1296       // The method data pointer needs to be updated to reflect the new target.
1297       update_mdp_by_offset(mdp,
1298                            in_bytes(RetData::bci_displacement_offset(row)));
1299       b(profile_continue);
1300       bind(next_test);
1301     }
1302 
1303     update_mdp_for_ret(return_bci);
1304 
1305     bind(profile_continue);
1306   }
1307 }
1308 
1309 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1310   if (ProfileInterpreter) {
1311     Label profile_continue;
1312 
1313     // If no method data exists, go to profile_continue.
1314     test_method_data_pointer(mdp, profile_continue);
1315 
1316     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1317 
1318     // The method data pointer needs to be updated.
1319     int mdp_delta = in_bytes(BitData::bit_data_size());
1320     if (TypeProfileCasts) {
1321       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1322     }
1323     update_mdp_by_constant(mdp, mdp_delta);
1324 
1325     bind(profile_continue);
1326   }
1327 }
1328 
1329 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1330   if (ProfileInterpreter) {
1331     Label profile_continue;
1332 
1333     // If no method data exists, go to profile_continue.
1334     test_method_data_pointer(mdp, profile_continue);
1335 
1336     // The method data pointer needs to be updated.
1337     int mdp_delta = in_bytes(BitData::bit_data_size());
1338     if (TypeProfileCasts) {
1339       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1340 
1341       // Record the object type.
1342       record_klass_in_profile(klass, mdp, reg2);
1343     }
1344     update_mdp_by_constant(mdp, mdp_delta);
1345 
1346     bind(profile_continue);
1347   }
1348 }
1349 
1350 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1351   if (ProfileInterpreter) {
1352     Label profile_continue;
1353 
1354     // If no method data exists, go to profile_continue.
1355     test_method_data_pointer(mdp, profile_continue);
1356 
1357     // Update the default case count
1358     increment_mdp_data_at(mdp,
1359                           in_bytes(MultiBranchData::default_count_offset()));
1360 
1361     // The method data pointer needs to be updated.
1362     update_mdp_by_offset(mdp,
1363                          in_bytes(MultiBranchData::
1364                                   default_displacement_offset()));
1365 
1366     bind(profile_continue);
1367   }
1368 }
1369 
1370 void InterpreterMacroAssembler::profile_switch_case(Register index,
1371                                                     Register mdp,
1372                                                     Register reg2) {
1373   if (ProfileInterpreter) {
1374     Label profile_continue;
1375 
1376     // If no method data exists, go to profile_continue.
1377     test_method_data_pointer(mdp, profile_continue);
1378 
1379     // Build the base (index * per_case_size_in_bytes()) +
1380     // case_array_offset_in_bytes()
1381     movw(reg2, in_bytes(MultiBranchData::per_case_size()));
1382     movw(rscratch1, in_bytes(MultiBranchData::case_array_offset()));
1383     Assembler::maddw(index, index, reg2, rscratch1);
1384 
1385     // Update the case count
1386     increment_mdp_data_at(mdp,
1387                           index,
1388                           in_bytes(MultiBranchData::relative_count_offset()));
1389 
1390     // The method data pointer needs to be updated.
1391     update_mdp_by_offset(mdp,
1392                          index,
1393                          in_bytes(MultiBranchData::
1394                                   relative_displacement_offset()));
1395 
1396     bind(profile_continue);
1397   }
1398 }
1399 
1400 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) {
1401   if (state == atos) {
1402     MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line);
1403   }
1404 }
1405 
1406 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; }
1407 
1408 void InterpreterMacroAssembler::generate_runtime_upcalls_on_method_entry()
1409 {
1410   address upcall = RuntimeUpcalls::on_method_entry_upcall_address();
1411   if (RuntimeUpcalls::does_upcall_need_method_parameter(upcall)) {
1412     get_method(c_rarg1);
1413     call_VM(noreg,upcall, c_rarg1);
1414   } else {
1415     call_VM(noreg,upcall);
1416   }
1417 }
1418 
1419 void InterpreterMacroAssembler::notify_method_entry() {
1420   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1421   // track stack depth.  If it is possible to enter interp_only_mode we add
1422   // the code to check if the event should be sent.
1423   if (JvmtiExport::can_post_interpreter_events()) {
1424     Label L;
1425     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1426     cbzw(r3, L);
1427     call_VM(noreg, CAST_FROM_FN_PTR(address,
1428                                     InterpreterRuntime::post_method_entry));
1429     bind(L);
1430   }
1431 
1432   if (DTraceMethodProbes) {
1433     get_method(c_rarg1);
1434     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1435                  rthread, c_rarg1);
1436   }
1437 
1438   // RedefineClasses() tracing support for obsolete method entry
1439   if (log_is_enabled(Trace, redefine, class, obsolete) ||
1440       log_is_enabled(Trace, interpreter, bytecode)) {
1441     get_method(c_rarg1);
1442     call_VM_leaf(
1443       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1444       rthread, c_rarg1);
1445   }
1446 
1447  }
1448 
1449 
1450 void InterpreterMacroAssembler::notify_method_exit(
1451     TosState state, NotifyMethodExitMode mode) {
1452   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1453   // track stack depth.  If it is possible to enter interp_only_mode we add
1454   // the code to check if the event should be sent.
1455   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1456     Label L;
1457     // Note: frame::interpreter_frame_result has a dependency on how the
1458     // method result is saved across the call to post_method_exit. If this
1459     // is changed then the interpreter_frame_result implementation will
1460     // need to be updated too.
1461 
1462     // template interpreter will leave the result on the top of the stack.
1463     push(state);
1464     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1465     cbz(r3, L);
1466     call_VM(noreg,
1467             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1468     bind(L);
1469     pop(state);
1470   }
1471 
1472   if (DTraceMethodProbes) {
1473     push(state);
1474     get_method(c_rarg1);
1475     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1476                  rthread, c_rarg1);
1477     pop(state);
1478   }
1479 }
1480 
1481 
1482 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1483 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1484                                                         int increment, Address mask,
1485                                                         Register scratch, Register scratch2,
1486                                                         bool preloaded, Condition cond,
1487                                                         Label* where) {
1488   if (!preloaded) {
1489     ldrw(scratch, counter_addr);
1490   }
1491   add(scratch, scratch, increment);
1492   strw(scratch, counter_addr);
1493   ldrw(scratch2, mask);
1494   ands(scratch, scratch, scratch2);
1495   br(cond, *where);
1496 }
1497 
1498 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
1499                                                   int number_of_arguments) {
1500   // interpreter specific
1501   //
1502   // Note: No need to save/restore rbcp & rlocals pointer since these
1503   //       are callee saved registers and no blocking/ GC can happen
1504   //       in leaf calls.
1505 #ifdef ASSERT
1506   {
1507     Label L;
1508     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1509     cbz(rscratch1, L);
1510     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1511          " last_sp != nullptr");
1512     bind(L);
1513   }
1514 #endif /* ASSERT */
1515   // super call
1516   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
1517 }
1518 
1519 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
1520                                              Register java_thread,
1521                                              Register last_java_sp,
1522                                              address  entry_point,
1523                                              int      number_of_arguments,
1524                                              bool     check_exceptions) {
1525   // interpreter specific
1526   //
1527   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
1528   //       really make a difference for these runtime calls, since they are
1529   //       slow anyway. Btw., bcp must be saved/restored since it may change
1530   //       due to GC.
1531   // assert(java_thread == noreg , "not expecting a precomputed java thread");
1532   save_bcp();
1533 #ifdef ASSERT
1534   {
1535     Label L;
1536     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1537     cbz(rscratch1, L);
1538     stop("InterpreterMacroAssembler::call_VM_base:"
1539          " last_sp != nullptr");
1540     bind(L);
1541   }
1542 #endif /* ASSERT */
1543   // super call
1544   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
1545                                entry_point, number_of_arguments,
1546                      check_exceptions);
1547 // interpreter specific
1548   restore_bcp();
1549   restore_locals();
1550 }
1551 
1552 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result,
1553                                                     address entry_point,
1554                                                     Register arg_1) {
1555   assert(arg_1 == c_rarg1, "");
1556   Label resume_pc, not_preempted;
1557 
1558 #ifdef ASSERT
1559   {
1560     Label L;
1561     ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1562     cbz(rscratch1, L);
1563     stop("Should not have alternate return address set");
1564     bind(L);
1565   }
1566 #endif /* ASSERT */
1567 
1568   // Force freeze slow path.
1569   push_cont_fastpath();
1570 
1571   // Make VM call. In case of preemption set last_pc to the one we want to resume to.
1572   adr(rscratch1, resume_pc);
1573   str(rscratch1, Address(rthread, JavaThread::last_Java_pc_offset()));
1574   call_VM_base(oop_result, noreg, noreg, entry_point, 1, false /*check_exceptions*/);
1575 
1576   pop_cont_fastpath();
1577 
1578   // Check if preempted.
1579   ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1580   cbz(rscratch1, not_preempted);
1581   str(zr, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1582   br(rscratch1);
1583 
1584   // In case of preemption, this is where we will resume once we finally acquire the monitor.
1585   bind(resume_pc);
1586   restore_after_resume(false /* is_native */);
1587 
1588   bind(not_preempted);
1589 }
1590 
1591 void InterpreterMacroAssembler::restore_after_resume(bool is_native) {
1592   lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter()));
1593   blr(rscratch1);
1594   if (is_native) {
1595     // On resume we need to set up stack as expected
1596     push(dtos);
1597     push(ltos);
1598   }
1599 }
1600 
1601 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
1602   assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index());
1603   Label update, next, none;
1604 
1605   verify_oop(obj);
1606 
1607   cbnz(obj, update);
1608   orptr(mdo_addr, TypeEntries::null_seen);
1609   b(next);
1610 
1611   bind(update);
1612   load_klass(obj, obj);
1613 
1614   ldr(rscratch1, mdo_addr);
1615   eor(obj, obj, rscratch1);
1616   tst(obj, TypeEntries::type_klass_mask);
1617   br(Assembler::EQ, next); // klass seen before, nothing to
1618                            // do. The unknown bit may have been
1619                            // set already but no need to check.
1620 
1621   tbnz(obj, exact_log2(TypeEntries::type_unknown), next);
1622   // already unknown. Nothing to do anymore.
1623 
1624   cbz(rscratch1, none);
1625   cmp(rscratch1, (u1)TypeEntries::null_seen);
1626   br(Assembler::EQ, none);
1627   // There is a chance that the checks above
1628   // fail if another thread has just set the
1629   // profiling to this obj's klass
1630   eor(obj, obj, rscratch1); // get back original value before XOR
1631   ldr(rscratch1, mdo_addr);
1632   eor(obj, obj, rscratch1);
1633   tst(obj, TypeEntries::type_klass_mask);
1634   br(Assembler::EQ, next);
1635 
1636   // different than before. Cannot keep accurate profile.
1637   orptr(mdo_addr, TypeEntries::type_unknown);
1638   b(next);
1639 
1640   bind(none);
1641   // first time here. Set profile type.
1642   str(obj, mdo_addr);
1643 #ifdef ASSERT
1644   andr(obj, obj, TypeEntries::type_mask);
1645   verify_klass_ptr(obj);
1646 #endif
1647 
1648   bind(next);
1649 }
1650 
1651 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1652   if (!ProfileInterpreter) {
1653     return;
1654   }
1655 
1656   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1657     Label profile_continue;
1658 
1659     test_method_data_pointer(mdp, profile_continue);
1660 
1661     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1662 
1663     ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start));
1664     cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag));
1665     br(Assembler::NE, profile_continue);
1666 
1667     if (MethodData::profile_arguments()) {
1668       Label done;
1669       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1670 
1671       for (int i = 0; i < TypeProfileArgsLimit; i++) {
1672         if (i > 0 || MethodData::profile_return()) {
1673           // If return value type is profiled we may have no argument to profile
1674           ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1675           sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count());
1676           cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count());
1677           add(rscratch1, mdp, off_to_args);
1678           br(Assembler::LT, done);
1679         }
1680         ldr(tmp, Address(callee, Method::const_offset()));
1681         load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1682         // stack offset o (zero based) from the start of the argument
1683         // list, for n arguments translates into offset n - o - 1 from
1684         // the end of the argument list
1685         ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))));
1686         sub(tmp, tmp, rscratch1);
1687         sub(tmp, tmp, 1);
1688         Address arg_addr = argument_address(tmp);
1689         ldr(tmp, arg_addr);
1690 
1691         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i)));
1692         profile_obj_type(tmp, mdo_arg_addr);
1693 
1694         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1695         off_to_args += to_add;
1696       }
1697 
1698       if (MethodData::profile_return()) {
1699         ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1700         sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1701       }
1702 
1703       add(rscratch1, mdp, off_to_args);
1704       bind(done);
1705       mov(mdp, rscratch1);
1706 
1707       if (MethodData::profile_return()) {
1708         // We're right after the type profile for the last
1709         // argument. tmp is the number of cells left in the
1710         // CallTypeData/VirtualCallTypeData to reach its end. Non null
1711         // if there's a return to profile.
1712         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1713         add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size));
1714       }
1715       str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1716     } else {
1717       assert(MethodData::profile_return(), "either profile call args or call ret");
1718       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
1719     }
1720 
1721     // mdp points right after the end of the
1722     // CallTypeData/VirtualCallTypeData, right after the cells for the
1723     // return value type if there's one
1724 
1725     bind(profile_continue);
1726   }
1727 }
1728 
1729 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1730   assert_different_registers(mdp, ret, tmp, rbcp);
1731   if (ProfileInterpreter && MethodData::profile_return()) {
1732     Label profile_continue, done;
1733 
1734     test_method_data_pointer(mdp, profile_continue);
1735 
1736     if (MethodData::profile_return_jsr292_only()) {
1737       assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
1738 
1739       // If we don't profile all invoke bytecodes we must make sure
1740       // it's a bytecode we indeed profile. We can't go back to the
1741       // beginning of the ProfileData we intend to update to check its
1742       // type because we're right after it and we don't known its
1743       // length
1744       Label do_profile;
1745       ldrb(rscratch1, Address(rbcp, 0));
1746       cmp(rscratch1, (u1)Bytecodes::_invokedynamic);
1747       br(Assembler::EQ, do_profile);
1748       cmp(rscratch1, (u1)Bytecodes::_invokehandle);
1749       br(Assembler::EQ, do_profile);
1750       get_method(tmp);
1751       ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset()));
1752       subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm));
1753       br(Assembler::NE, profile_continue);
1754 
1755       bind(do_profile);
1756     }
1757 
1758     Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
1759     mov(tmp, ret);
1760     profile_obj_type(tmp, mdo_ret_addr);
1761 
1762     bind(profile_continue);
1763   }
1764 }
1765 
1766 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
1767   assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2);
1768   if (ProfileInterpreter && MethodData::profile_parameters()) {
1769     Label profile_continue, done;
1770 
1771     test_method_data_pointer(mdp, profile_continue);
1772 
1773     // Load the offset of the area within the MDO used for
1774     // parameters. If it's negative we're not profiling any parameters
1775     ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
1776     tbnz(tmp1, 31, profile_continue);  // i.e. sign bit set
1777 
1778     // Compute a pointer to the area for parameters from the offset
1779     // and move the pointer to the slot for the last
1780     // parameters. Collect profiling from last parameter down.
1781     // mdo start + parameters offset + array length - 1
1782     add(mdp, mdp, tmp1);
1783     ldr(tmp1, Address(mdp, ArrayData::array_len_offset()));
1784     sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1785 
1786     Label loop;
1787     bind(loop);
1788 
1789     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1790     int type_base = in_bytes(ParametersTypeData::type_offset(0));
1791     int per_arg_scale = exact_log2(DataLayout::cell_size);
1792     add(rscratch1, mdp, off_base);
1793     add(rscratch2, mdp, type_base);
1794 
1795     Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale));
1796     Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale));
1797 
1798     // load offset on the stack from the slot for this parameter
1799     ldr(tmp2, arg_off);
1800     neg(tmp2, tmp2);
1801     // read the parameter from the local area
1802     ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize)));
1803 
1804     // profile the parameter
1805     profile_obj_type(tmp2, arg_type);
1806 
1807     // go to next parameter
1808     subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1809     br(Assembler::GE, loop);
1810 
1811     bind(profile_continue);
1812   }
1813 }
1814 
1815 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) {
1816   // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp
1817   get_cache_index_at_bcp(index, 1, sizeof(u4));
1818   // Get address of invokedynamic array
1819   ldr(cache, Address(rcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset())));
1820   // Scale the index to be the entry index * sizeof(ResolvedIndyEntry)
1821   lsl(index, index, log2i_exact(sizeof(ResolvedIndyEntry)));
1822   add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes());
1823   lea(cache, Address(cache, index));
1824 }
1825 
1826 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) {
1827   // Get index out of bytecode pointer
1828   get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
1829   // Take shortcut if the size is a power of 2
1830   if (is_power_of_2(sizeof(ResolvedFieldEntry))) {
1831     lsl(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2
1832   } else {
1833     mov(cache, sizeof(ResolvedFieldEntry));
1834     mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry)
1835   }
1836   // Get address of field entries array
1837   ldr(cache, Address(rcpool, ConstantPoolCache::field_entries_offset()));
1838   add(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes());
1839   lea(cache, Address(cache, index));
1840   // Prevents stale data from being read after the bytecode is patched to the fast bytecode
1841   membar(MacroAssembler::LoadLoad);
1842 }
1843 
1844 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) {
1845   // Get index out of bytecode pointer
1846   get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
1847   mov(cache, sizeof(ResolvedMethodEntry));
1848   mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry)
1849 
1850   // Get address of field entries array
1851   ldr(cache, Address(rcpool, ConstantPoolCache::method_entries_offset()));
1852   add(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes());
1853   lea(cache, Address(cache, index));
1854 }