1 /* 2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/macroAssembler.inline.hpp" 27 #include "compiler/compiler_globals.hpp" 28 #include "gc/shared/barrierSet.hpp" 29 #include "gc/shared/barrierSetAssembler.hpp" 30 #include "interp_masm_aarch64.hpp" 31 #include "interpreter/interpreter.hpp" 32 #include "interpreter/interpreterRuntime.hpp" 33 #include "logging/log.hpp" 34 #include "oops/arrayOop.hpp" 35 #include "oops/markWord.hpp" 36 #include "oops/method.hpp" 37 #include "oops/methodData.hpp" 38 #include "oops/resolvedFieldEntry.hpp" 39 #include "oops/resolvedIndyEntry.hpp" 40 #include "oops/resolvedMethodEntry.hpp" 41 #include "prims/jvmtiExport.hpp" 42 #include "prims/jvmtiThreadState.hpp" 43 #include "runtime/basicLock.hpp" 44 #include "runtime/frame.inline.hpp" 45 #include "runtime/javaThread.hpp" 46 #include "runtime/runtimeUpcalls.hpp" 47 #include "runtime/safepointMechanism.hpp" 48 #include "runtime/sharedRuntime.hpp" 49 #include "utilities/powerOfTwo.hpp" 50 51 void InterpreterMacroAssembler::narrow(Register result) { 52 53 // Get method->_constMethod->_result_type 54 ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 55 ldr(rscratch1, Address(rscratch1, Method::const_offset())); 56 ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset())); 57 58 Label done, notBool, notByte, notChar; 59 60 // common case first 61 cmpw(rscratch1, T_INT); 62 br(Assembler::EQ, done); 63 64 // mask integer result to narrower return type. 65 cmpw(rscratch1, T_BOOLEAN); 66 br(Assembler::NE, notBool); 67 andw(result, result, 0x1); 68 b(done); 69 70 bind(notBool); 71 cmpw(rscratch1, T_BYTE); 72 br(Assembler::NE, notByte); 73 sbfx(result, result, 0, 8); 74 b(done); 75 76 bind(notByte); 77 cmpw(rscratch1, T_CHAR); 78 br(Assembler::NE, notChar); 79 ubfx(result, result, 0, 16); // truncate upper 16 bits 80 b(done); 81 82 bind(notChar); 83 sbfx(result, result, 0, 16); // sign-extend short 84 85 // Nothing to do for T_INT 86 bind(done); 87 } 88 89 void InterpreterMacroAssembler::jump_to_entry(address entry) { 90 assert(entry, "Entry must have been generated by now"); 91 b(entry); 92 } 93 94 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 95 if (JvmtiExport::can_pop_frame()) { 96 Label L; 97 // Initiate popframe handling only if it is not already being 98 // processed. If the flag has the popframe_processing bit set, it 99 // means that this code is called *during* popframe handling - we 100 // don't want to reenter. 101 // This method is only called just after the call into the vm in 102 // call_VM_base, so the arg registers are available. 103 ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset())); 104 tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L); 105 tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L); 106 // Call Interpreter::remove_activation_preserving_args_entry() to get the 107 // address of the same-named entrypoint in the generated interpreter code. 108 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 109 br(r0); 110 bind(L); 111 } 112 } 113 114 115 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 116 ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset())); 117 const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset()); 118 const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset()); 119 const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset()); 120 switch (state) { 121 case atos: ldr(r0, oop_addr); 122 str(zr, oop_addr); 123 interp_verify_oop(r0, state); break; 124 case ltos: ldr(r0, val_addr); break; 125 case btos: // fall through 126 case ztos: // fall through 127 case ctos: // fall through 128 case stos: // fall through 129 case itos: ldrw(r0, val_addr); break; 130 case ftos: ldrs(v0, val_addr); break; 131 case dtos: ldrd(v0, val_addr); break; 132 case vtos: /* nothing to do */ break; 133 default : ShouldNotReachHere(); 134 } 135 // Clean up tos value in the thread object 136 movw(rscratch1, (int) ilgl); 137 strw(rscratch1, tos_addr); 138 strw(zr, val_addr); 139 } 140 141 142 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 143 if (JvmtiExport::can_force_early_return()) { 144 Label L; 145 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 146 cbz(rscratch1, L); // if (thread->jvmti_thread_state() == nullptr) exit; 147 148 // Initiate earlyret handling only if it is not already being processed. 149 // If the flag has the earlyret_processing bit set, it means that this code 150 // is called *during* earlyret handling - we don't want to reenter. 151 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset())); 152 cmpw(rscratch1, JvmtiThreadState::earlyret_pending); 153 br(Assembler::NE, L); 154 155 // Call Interpreter::remove_activation_early_entry() to get the address of the 156 // same-named entrypoint in the generated interpreter code. 157 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 158 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset())); 159 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1); 160 br(r0); 161 bind(L); 162 } 163 } 164 165 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp( 166 Register reg, 167 int bcp_offset) { 168 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 169 ldrh(reg, Address(rbcp, bcp_offset)); 170 rev16(reg, reg); 171 } 172 173 void InterpreterMacroAssembler::get_dispatch() { 174 uint64_t offset; 175 adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset); 176 // Use add() here after ARDP, rather than lea(). 177 // lea() does not generate anything if its offset is zero. 178 // However, relocs expect to find either an ADD or a load/store 179 // insn after an ADRP. add() always generates an ADD insn, even 180 // for add(Rn, Rn, 0). 181 add(rdispatch, rdispatch, offset); 182 } 183 184 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 185 int bcp_offset, 186 size_t index_size) { 187 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 188 if (index_size == sizeof(u2)) { 189 load_unsigned_short(index, Address(rbcp, bcp_offset)); 190 } else if (index_size == sizeof(u4)) { 191 // assert(EnableInvokeDynamic, "giant index used only for JSR 292"); 192 ldrw(index, Address(rbcp, bcp_offset)); 193 } else if (index_size == sizeof(u1)) { 194 load_unsigned_byte(index, Address(rbcp, bcp_offset)); 195 } else { 196 ShouldNotReachHere(); 197 } 198 } 199 200 void InterpreterMacroAssembler::get_method_counters(Register method, 201 Register mcs, Label& skip) { 202 Label has_counters; 203 ldr(mcs, Address(method, Method::method_counters_offset())); 204 cbnz(mcs, has_counters); 205 call_VM(noreg, CAST_FROM_FN_PTR(address, 206 InterpreterRuntime::build_method_counters), method); 207 ldr(mcs, Address(method, Method::method_counters_offset())); 208 cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory 209 bind(has_counters); 210 } 211 212 // Load object from cpool->resolved_references(index) 213 void InterpreterMacroAssembler::load_resolved_reference_at_index( 214 Register result, Register index, Register tmp) { 215 assert_different_registers(result, index); 216 217 get_constant_pool(result); 218 // load pointer for resolved_references[] objArray 219 ldr(result, Address(result, ConstantPool::cache_offset())); 220 ldr(result, Address(result, ConstantPoolCache::resolved_references_offset())); 221 resolve_oop_handle(result, tmp, rscratch2); 222 // Add in the index 223 add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 224 load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop)), tmp, rscratch2); 225 } 226 227 void InterpreterMacroAssembler::load_resolved_klass_at_offset( 228 Register cpool, Register index, Register klass, Register temp) { 229 add(temp, cpool, index, LSL, LogBytesPerWord); 230 ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index 231 ldr(klass, Address(cpool, ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses 232 add(klass, klass, temp, LSL, LogBytesPerWord); 233 ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes())); 234 } 235 236 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 237 // subtype of super_klass. 238 // 239 // Args: 240 // r0: superklass 241 // Rsub_klass: subklass 242 // 243 // Kills: 244 // r2, r5 245 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 246 Label& ok_is_subtype) { 247 assert(Rsub_klass != r0, "r0 holds superklass"); 248 assert(Rsub_klass != r2, "r2 holds 2ndary super array length"); 249 assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr"); 250 251 // Profile the not-null value's klass. 252 profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5 253 254 // Do the check. 255 check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2 256 } 257 258 // Java Expression Stack 259 260 void InterpreterMacroAssembler::pop_ptr(Register r) { 261 ldr(r, post(esp, wordSize)); 262 } 263 264 void InterpreterMacroAssembler::pop_i(Register r) { 265 ldrw(r, post(esp, wordSize)); 266 } 267 268 void InterpreterMacroAssembler::pop_l(Register r) { 269 ldr(r, post(esp, 2 * Interpreter::stackElementSize)); 270 } 271 272 void InterpreterMacroAssembler::push_ptr(Register r) { 273 str(r, pre(esp, -wordSize)); 274 } 275 276 void InterpreterMacroAssembler::push_i(Register r) { 277 str(r, pre(esp, -wordSize)); 278 } 279 280 void InterpreterMacroAssembler::push_l(Register r) { 281 str(zr, pre(esp, -wordSize)); 282 str(r, pre(esp, - wordSize)); 283 } 284 285 void InterpreterMacroAssembler::pop_f(FloatRegister r) { 286 ldrs(r, post(esp, wordSize)); 287 } 288 289 void InterpreterMacroAssembler::pop_d(FloatRegister r) { 290 ldrd(r, post(esp, 2 * Interpreter::stackElementSize)); 291 } 292 293 void InterpreterMacroAssembler::push_f(FloatRegister r) { 294 strs(r, pre(esp, -wordSize)); 295 } 296 297 void InterpreterMacroAssembler::push_d(FloatRegister r) { 298 strd(r, pre(esp, 2* -wordSize)); 299 } 300 301 void InterpreterMacroAssembler::pop(TosState state) { 302 switch (state) { 303 case atos: pop_ptr(); break; 304 case btos: 305 case ztos: 306 case ctos: 307 case stos: 308 case itos: pop_i(); break; 309 case ltos: pop_l(); break; 310 case ftos: pop_f(); break; 311 case dtos: pop_d(); break; 312 case vtos: /* nothing to do */ break; 313 default: ShouldNotReachHere(); 314 } 315 interp_verify_oop(r0, state); 316 } 317 318 void InterpreterMacroAssembler::push(TosState state) { 319 interp_verify_oop(r0, state); 320 switch (state) { 321 case atos: push_ptr(); break; 322 case btos: 323 case ztos: 324 case ctos: 325 case stos: 326 case itos: push_i(); break; 327 case ltos: push_l(); break; 328 case ftos: push_f(); break; 329 case dtos: push_d(); break; 330 case vtos: /* nothing to do */ break; 331 default : ShouldNotReachHere(); 332 } 333 } 334 335 // Helpers for swap and dup 336 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 337 ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 338 } 339 340 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 341 str(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 342 } 343 344 void InterpreterMacroAssembler::load_float(Address src) { 345 ldrs(v0, src); 346 } 347 348 void InterpreterMacroAssembler::load_double(Address src) { 349 ldrd(v0, src); 350 } 351 352 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 353 // set sender sp 354 mov(r19_sender_sp, sp); 355 // record last_sp 356 sub(rscratch1, esp, rfp); 357 asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 358 str(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 359 } 360 361 // Jump to from_interpreted entry of a call unless single stepping is possible 362 // in this thread in which case we must call the i2i entry 363 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 364 prepare_to_jump_from_interpreted(); 365 366 if (JvmtiExport::can_post_interpreter_events()) { 367 Label run_compiled_code; 368 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 369 // compiled code in threads for which the event is enabled. Check here for 370 // interp_only_mode if these events CAN be enabled. 371 ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset())); 372 cbzw(rscratch1, run_compiled_code); 373 ldr(rscratch1, Address(method, Method::interpreter_entry_offset())); 374 br(rscratch1); 375 bind(run_compiled_code); 376 } 377 378 ldr(rscratch1, Address(method, Method::from_interpreted_offset())); 379 br(rscratch1); 380 } 381 382 // The following two routines provide a hook so that an implementation 383 // can schedule the dispatch in two parts. amd64 does not do this. 384 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 385 } 386 387 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 388 dispatch_next(state, step); 389 } 390 391 void InterpreterMacroAssembler::dispatch_base(TosState state, 392 address* table, 393 bool verifyoop, 394 bool generate_poll) { 395 if (VerifyActivationFrameSize) { 396 Label L; 397 sub(rscratch2, rfp, esp); 398 int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize; 399 subs(rscratch2, rscratch2, min_frame_size); 400 br(Assembler::GE, L); 401 stop("broken stack frame"); 402 bind(L); 403 } 404 if (verifyoop) { 405 interp_verify_oop(r0, state); 406 } 407 408 Label safepoint; 409 address* const safepoint_table = Interpreter::safept_table(state); 410 bool needs_thread_local_poll = generate_poll && table != safepoint_table; 411 412 if (needs_thread_local_poll) { 413 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 414 ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset())); 415 tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint); 416 } 417 418 if (table == Interpreter::dispatch_table(state)) { 419 addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state)); 420 ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3))); 421 } else { 422 mov(rscratch2, (address)table); 423 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 424 } 425 br(rscratch2); 426 427 if (needs_thread_local_poll) { 428 bind(safepoint); 429 lea(rscratch2, ExternalAddress((address)safepoint_table)); 430 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 431 br(rscratch2); 432 } 433 } 434 435 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 436 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 437 } 438 439 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 440 dispatch_base(state, Interpreter::normal_table(state)); 441 } 442 443 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 444 dispatch_base(state, Interpreter::normal_table(state), false); 445 } 446 447 448 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 449 // load next bytecode 450 ldrb(rscratch1, Address(pre(rbcp, step))); 451 dispatch_base(state, Interpreter::dispatch_table(state), /*verifyoop*/true, generate_poll); 452 } 453 454 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 455 // load current bytecode 456 ldrb(rscratch1, Address(rbcp, 0)); 457 dispatch_base(state, table); 458 } 459 460 // remove activation 461 // 462 // Apply stack watermark barrier. 463 // Unlock the receiver if this is a synchronized method. 464 // Unlock any Java monitors from synchronized blocks. 465 // Remove the activation from the stack. 466 // 467 // If there are locked Java monitors 468 // If throw_monitor_exception 469 // throws IllegalMonitorStateException 470 // Else if install_monitor_exception 471 // installs IllegalMonitorStateException 472 // Else 473 // no error processing 474 void InterpreterMacroAssembler::remove_activation( 475 TosState state, 476 bool throw_monitor_exception, 477 bool install_monitor_exception, 478 bool notify_jvmdi) { 479 // Note: Registers r3 xmm0 may be in use for the 480 // result check if synchronized method 481 Label unlocked, unlock, no_unlock; 482 483 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 484 // that would normally not be safe to use. Such bad returns into unsafe territory of 485 // the stack, will call InterpreterRuntime::at_unwind. 486 Label slow_path; 487 Label fast_path; 488 safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */); 489 br(Assembler::AL, fast_path); 490 bind(slow_path); 491 push(state); 492 set_last_Java_frame(esp, rfp, (address)pc(), rscratch1); 493 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread); 494 reset_last_Java_frame(true); 495 pop(state); 496 bind(fast_path); 497 498 // get the value of _do_not_unlock_if_synchronized into r3 499 const Address do_not_unlock_if_synchronized(rthread, 500 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 501 ldrb(r3, do_not_unlock_if_synchronized); 502 strb(zr, do_not_unlock_if_synchronized); // reset the flag 503 504 // get method access flags 505 ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 506 ldrh(r2, Address(r1, Method::access_flags_offset())); 507 tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked); 508 509 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 510 // is set. 511 cbnz(r3, no_unlock); 512 513 // unlock monitor 514 push(state); // save result 515 516 // BasicObjectLock will be first in list, since this is a 517 // synchronized method. However, need to check that the object has 518 // not been unlocked by an explicit monitorexit bytecode. 519 const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset * 520 wordSize - (int) sizeof(BasicObjectLock)); 521 // We use c_rarg1 so that if we go slow path it will be the correct 522 // register for unlock_object to pass to VM directly 523 lea(c_rarg1, monitor); // address of first monitor 524 525 ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset())); 526 cbnz(r0, unlock); 527 528 pop(state); 529 if (throw_monitor_exception) { 530 // Entry already unlocked, need to throw exception 531 call_VM(noreg, CAST_FROM_FN_PTR(address, 532 InterpreterRuntime::throw_illegal_monitor_state_exception)); 533 should_not_reach_here(); 534 } else { 535 // Monitor already unlocked during a stack unroll. If requested, 536 // install an illegal_monitor_state_exception. Continue with 537 // stack unrolling. 538 if (install_monitor_exception) { 539 call_VM(noreg, CAST_FROM_FN_PTR(address, 540 InterpreterRuntime::new_illegal_monitor_state_exception)); 541 } 542 b(unlocked); 543 } 544 545 bind(unlock); 546 unlock_object(c_rarg1); 547 pop(state); 548 549 // Check that for block-structured locking (i.e., that all locked 550 // objects has been unlocked) 551 bind(unlocked); 552 553 // r0: Might contain return value 554 555 // Check that all monitors are unlocked 556 { 557 Label loop, exception, entry, restart; 558 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 559 const Address monitor_block_top( 560 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 561 const Address monitor_block_bot( 562 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 563 564 bind(restart); 565 // We use c_rarg1 so that if we go slow path it will be the correct 566 // register for unlock_object to pass to VM directly 567 ldr(c_rarg1, monitor_block_top); // derelativize pointer 568 lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize))); 569 // c_rarg1 points to current entry, starting with top-most entry 570 571 lea(r19, monitor_block_bot); // points to word before bottom of 572 // monitor block 573 b(entry); 574 575 // Entry already locked, need to throw exception 576 bind(exception); 577 578 if (throw_monitor_exception) { 579 // Throw exception 580 MacroAssembler::call_VM(noreg, 581 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 582 throw_illegal_monitor_state_exception)); 583 should_not_reach_here(); 584 } else { 585 // Stack unrolling. Unlock object and install illegal_monitor_exception. 586 // Unlock does not block, so don't have to worry about the frame. 587 // We don't have to preserve c_rarg1 since we are going to throw an exception. 588 589 push(state); 590 unlock_object(c_rarg1); 591 pop(state); 592 593 if (install_monitor_exception) { 594 call_VM(noreg, CAST_FROM_FN_PTR(address, 595 InterpreterRuntime:: 596 new_illegal_monitor_state_exception)); 597 } 598 599 b(restart); 600 } 601 602 bind(loop); 603 // check if current entry is used 604 ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset())); 605 cbnz(rscratch1, exception); 606 607 add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry 608 bind(entry); 609 cmp(c_rarg1, r19); // check if bottom reached 610 br(Assembler::NE, loop); // if not at bottom then check this entry 611 } 612 613 bind(no_unlock); 614 615 // jvmti support 616 if (notify_jvmdi) { 617 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 618 } else { 619 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 620 } 621 622 // remove activation 623 // get sender esp 624 ldr(rscratch2, 625 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 626 if (StackReservedPages > 0) { 627 // testing if reserved zone needs to be re-enabled 628 Label no_reserved_zone_enabling; 629 630 // check if already enabled - if so no re-enabling needed 631 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 632 ldrw(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset())); 633 cmpw(rscratch1, (u1)StackOverflow::stack_guard_enabled); 634 br(Assembler::EQ, no_reserved_zone_enabling); 635 636 // look for an overflow into the stack reserved zone, i.e. 637 // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation 638 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 639 cmp(rscratch2, rscratch1); 640 br(Assembler::LS, no_reserved_zone_enabling); 641 642 call_VM_leaf( 643 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 644 call_VM(noreg, CAST_FROM_FN_PTR(address, 645 InterpreterRuntime::throw_delayed_StackOverflowError)); 646 should_not_reach_here(); 647 648 bind(no_reserved_zone_enabling); 649 } 650 651 // restore sender esp 652 mov(esp, rscratch2); 653 // remove frame anchor 654 leave(); 655 // If we're returning to interpreted code we will shortly be 656 // adjusting SP to allow some space for ESP. If we're returning to 657 // compiled code the saved sender SP was saved in sender_sp, so this 658 // restores it. 659 andr(sp, esp, -16); 660 } 661 662 // Lock object 663 // 664 // Args: 665 // c_rarg1: BasicObjectLock to be used for locking 666 // 667 // Kills: 668 // r0 669 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, .. (param regs) 670 // rscratch1, rscratch2 (scratch regs) 671 void InterpreterMacroAssembler::lock_object(Register lock_reg) 672 { 673 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 674 if (LockingMode == LM_MONITOR) { 675 call_VM_preemptable(noreg, 676 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 677 lock_reg); 678 } else { 679 Label count, done; 680 681 const Register swap_reg = r0; 682 const Register tmp = c_rarg2; 683 const Register obj_reg = c_rarg3; // Will contain the oop 684 const Register tmp2 = c_rarg4; 685 const Register tmp3 = c_rarg5; 686 687 const int obj_offset = in_bytes(BasicObjectLock::obj_offset()); 688 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 689 const int mark_offset = lock_offset + 690 BasicLock::displaced_header_offset_in_bytes(); 691 692 Label slow_case; 693 694 // Load object pointer into obj_reg %c_rarg3 695 ldr(obj_reg, Address(lock_reg, obj_offset)); 696 697 if (LockingMode == LM_LIGHTWEIGHT) { 698 lightweight_lock(lock_reg, obj_reg, tmp, tmp2, tmp3, slow_case); 699 b(done); 700 } else if (LockingMode == LM_LEGACY) { 701 702 if (DiagnoseSyncOnValueBasedClasses != 0) { 703 load_klass(tmp, obj_reg); 704 ldrb(tmp, Address(tmp, Klass::misc_flags_offset())); 705 tst(tmp, KlassFlags::_misc_is_value_based_class); 706 br(Assembler::NE, slow_case); 707 } 708 709 // Load (object->mark() | 1) into swap_reg 710 ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 711 orr(swap_reg, rscratch1, 1); 712 713 // Save (object->mark() | 1) into BasicLock's displaced header 714 str(swap_reg, Address(lock_reg, mark_offset)); 715 716 assert(lock_offset == 0, 717 "displached header must be first word in BasicObjectLock"); 718 719 Label fail; 720 cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr); 721 722 // Fast check for recursive lock. 723 // 724 // Can apply the optimization only if this is a stack lock 725 // allocated in this thread. For efficiency, we can focus on 726 // recently allocated stack locks (instead of reading the stack 727 // base and checking whether 'mark' points inside the current 728 // thread stack): 729 // 1) (mark & 7) == 0, and 730 // 2) sp <= mark < mark + os::pagesize() 731 // 732 // Warning: sp + os::pagesize can overflow the stack base. We must 733 // neither apply the optimization for an inflated lock allocated 734 // just above the thread stack (this is why condition 1 matters) 735 // nor apply the optimization if the stack lock is inside the stack 736 // of another thread. The latter is avoided even in case of overflow 737 // because we have guard pages at the end of all stacks. Hence, if 738 // we go over the stack base and hit the stack of another thread, 739 // this should not be in a writeable area that could contain a 740 // stack lock allocated by that thread. As a consequence, a stack 741 // lock less than page size away from sp is guaranteed to be 742 // owned by the current thread. 743 // 744 // These 3 tests can be done by evaluating the following 745 // expression: ((mark - sp) & (7 - os::vm_page_size())), 746 // assuming both stack pointer and pagesize have their 747 // least significant 3 bits clear. 748 // NOTE: the mark is in swap_reg %r0 as the result of cmpxchg 749 // NOTE2: aarch64 does not like to subtract sp from rn so take a 750 // copy 751 mov(rscratch1, sp); 752 sub(swap_reg, swap_reg, rscratch1); 753 ands(swap_reg, swap_reg, (uint64_t)(7 - (int)os::vm_page_size())); 754 755 // Save the test result, for recursive case, the result is zero 756 str(swap_reg, Address(lock_reg, mark_offset)); 757 br(Assembler::NE, slow_case); 758 759 bind(count); 760 inc_held_monitor_count(rscratch1); 761 b(done); 762 } 763 bind(slow_case); 764 765 // Call the runtime routine for slow case 766 call_VM_preemptable(noreg, 767 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 768 lock_reg); 769 770 bind(done); 771 } 772 } 773 774 775 // Unlocks an object. Used in monitorexit bytecode and 776 // remove_activation. Throws an IllegalMonitorException if object is 777 // not locked by current thread. 778 // 779 // Args: 780 // c_rarg1: BasicObjectLock for lock 781 // 782 // Kills: 783 // r0 784 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 785 // rscratch1, rscratch2 (scratch regs) 786 void InterpreterMacroAssembler::unlock_object(Register lock_reg) 787 { 788 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1"); 789 790 if (LockingMode == LM_MONITOR) { 791 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 792 } else { 793 Label count, done; 794 795 const Register swap_reg = r0; 796 const Register header_reg = c_rarg2; // Will contain the old oopMark 797 const Register obj_reg = c_rarg3; // Will contain the oop 798 const Register tmp_reg = c_rarg4; // Temporary used by lightweight_unlock 799 800 save_bcp(); // Save in case of exception 801 802 if (LockingMode != LM_LIGHTWEIGHT) { 803 // Convert from BasicObjectLock structure to object and BasicLock 804 // structure Store the BasicLock address into %r0 805 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset())); 806 } 807 808 // Load oop into obj_reg(%c_rarg3) 809 ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 810 811 // Free entry 812 str(zr, Address(lock_reg, BasicObjectLock::obj_offset())); 813 814 Label slow_case; 815 if (LockingMode == LM_LIGHTWEIGHT) { 816 lightweight_unlock(obj_reg, header_reg, swap_reg, tmp_reg, slow_case); 817 b(done); 818 } else if (LockingMode == LM_LEGACY) { 819 // Load the old header from BasicLock structure 820 ldr(header_reg, Address(swap_reg, 821 BasicLock::displaced_header_offset_in_bytes())); 822 823 // Test for recursion 824 cbz(header_reg, count); 825 826 // Atomic swap back the old header 827 cmpxchg_obj_header(swap_reg, header_reg, obj_reg, rscratch1, count, &slow_case); 828 829 bind(count); 830 dec_held_monitor_count(rscratch1); 831 b(done); 832 } 833 834 bind(slow_case); 835 // Call the runtime routine for slow case. 836 str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj 837 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 838 bind(done); 839 restore_bcp(); 840 } 841 } 842 843 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 844 Label& zero_continue) { 845 assert(ProfileInterpreter, "must be profiling interpreter"); 846 ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 847 cbz(mdp, zero_continue); 848 } 849 850 // Set the method data pointer for the current bcp. 851 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 852 assert(ProfileInterpreter, "must be profiling interpreter"); 853 Label set_mdp; 854 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 855 856 // Test MDO to avoid the call if it is null. 857 ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset()))); 858 cbz(r0, set_mdp); 859 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp); 860 // r0: mdi 861 // mdo is guaranteed to be non-zero here, we checked for it before the call. 862 ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset()))); 863 lea(r1, Address(r1, in_bytes(MethodData::data_offset()))); 864 add(r0, r1, r0); 865 str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 866 bind(set_mdp); 867 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 868 } 869 870 void InterpreterMacroAssembler::verify_method_data_pointer() { 871 assert(ProfileInterpreter, "must be profiling interpreter"); 872 #ifdef ASSERT 873 Label verify_continue; 874 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 875 stp(r2, r3, Address(pre(sp, -2 * wordSize))); 876 test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue 877 get_method(r1); 878 879 // If the mdp is valid, it will point to a DataLayout header which is 880 // consistent with the bcp. The converse is highly probable also. 881 ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset()))); 882 ldr(rscratch1, Address(r1, Method::const_offset())); 883 add(r2, r2, rscratch1, Assembler::LSL); 884 lea(r2, Address(r2, ConstMethod::codes_offset())); 885 cmp(r2, rbcp); 886 br(Assembler::EQ, verify_continue); 887 // r1: method 888 // rbcp: bcp // rbcp == 22 889 // r3: mdp 890 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 891 r1, rbcp, r3); 892 bind(verify_continue); 893 ldp(r2, r3, Address(post(sp, 2 * wordSize))); 894 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 895 #endif // ASSERT 896 } 897 898 899 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 900 int constant, 901 Register value) { 902 assert(ProfileInterpreter, "must be profiling interpreter"); 903 Address data(mdp_in, constant); 904 str(value, data); 905 } 906 907 908 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 909 int constant, 910 bool decrement) { 911 increment_mdp_data_at(mdp_in, noreg, constant, decrement); 912 } 913 914 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 915 Register reg, 916 int constant, 917 bool decrement) { 918 assert(ProfileInterpreter, "must be profiling interpreter"); 919 // %%% this does 64bit counters at best it is wasting space 920 // at worst it is a rare bug when counters overflow 921 922 assert_different_registers(rscratch2, rscratch1, mdp_in, reg); 923 924 Address addr1(mdp_in, constant); 925 Address addr2(rscratch2, reg, Address::lsl(0)); 926 Address &addr = addr1; 927 if (reg != noreg) { 928 lea(rscratch2, addr1); 929 addr = addr2; 930 } 931 932 if (decrement) { 933 // Decrement the register. Set condition codes. 934 // Intel does this 935 // addptr(data, (int32_t) -DataLayout::counter_increment); 936 // If the decrement causes the counter to overflow, stay negative 937 // Label L; 938 // jcc(Assembler::negative, L); 939 // addptr(data, (int32_t) DataLayout::counter_increment); 940 // so we do this 941 ldr(rscratch1, addr); 942 subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment); 943 Label L; 944 br(Assembler::LO, L); // skip store if counter underflow 945 str(rscratch1, addr); 946 bind(L); 947 } else { 948 assert(DataLayout::counter_increment == 1, 949 "flow-free idiom only works with 1"); 950 // Intel does this 951 // Increment the register. Set carry flag. 952 // addptr(data, DataLayout::counter_increment); 953 // If the increment causes the counter to overflow, pull back by 1. 954 // sbbptr(data, (int32_t)0); 955 // so we do this 956 ldr(rscratch1, addr); 957 adds(rscratch1, rscratch1, DataLayout::counter_increment); 958 Label L; 959 br(Assembler::CS, L); // skip store if counter overflow 960 str(rscratch1, addr); 961 bind(L); 962 } 963 } 964 965 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 966 int flag_byte_constant) { 967 assert(ProfileInterpreter, "must be profiling interpreter"); 968 int flags_offset = in_bytes(DataLayout::flags_offset()); 969 // Set the flag 970 ldrb(rscratch1, Address(mdp_in, flags_offset)); 971 orr(rscratch1, rscratch1, flag_byte_constant); 972 strb(rscratch1, Address(mdp_in, flags_offset)); 973 } 974 975 976 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 977 int offset, 978 Register value, 979 Register test_value_out, 980 Label& not_equal_continue) { 981 assert(ProfileInterpreter, "must be profiling interpreter"); 982 if (test_value_out == noreg) { 983 ldr(rscratch1, Address(mdp_in, offset)); 984 cmp(value, rscratch1); 985 } else { 986 // Put the test value into a register, so caller can use it: 987 ldr(test_value_out, Address(mdp_in, offset)); 988 cmp(value, test_value_out); 989 } 990 br(Assembler::NE, not_equal_continue); 991 } 992 993 994 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 995 int offset_of_disp) { 996 assert(ProfileInterpreter, "must be profiling interpreter"); 997 ldr(rscratch1, Address(mdp_in, offset_of_disp)); 998 add(mdp_in, mdp_in, rscratch1, LSL); 999 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1000 } 1001 1002 1003 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1004 Register reg, 1005 int offset_of_disp) { 1006 assert(ProfileInterpreter, "must be profiling interpreter"); 1007 lea(rscratch1, Address(mdp_in, offset_of_disp)); 1008 ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0))); 1009 add(mdp_in, mdp_in, rscratch1, LSL); 1010 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1011 } 1012 1013 1014 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1015 int constant) { 1016 assert(ProfileInterpreter, "must be profiling interpreter"); 1017 add(mdp_in, mdp_in, (unsigned)constant); 1018 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1019 } 1020 1021 1022 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1023 assert(ProfileInterpreter, "must be profiling interpreter"); 1024 // save/restore across call_VM 1025 stp(zr, return_bci, Address(pre(sp, -2 * wordSize))); 1026 call_VM(noreg, 1027 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1028 return_bci); 1029 ldp(zr, return_bci, Address(post(sp, 2 * wordSize))); 1030 } 1031 1032 1033 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1034 Register bumped_count) { 1035 if (ProfileInterpreter) { 1036 Label profile_continue; 1037 1038 // If no method data exists, go to profile_continue. 1039 // Otherwise, assign to mdp 1040 test_method_data_pointer(mdp, profile_continue); 1041 1042 // We are taking a branch. Increment the taken count. 1043 // We inline increment_mdp_data_at to return bumped_count in a register 1044 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1045 Address data(mdp, in_bytes(JumpData::taken_offset())); 1046 ldr(bumped_count, data); 1047 assert(DataLayout::counter_increment == 1, 1048 "flow-free idiom only works with 1"); 1049 // Intel does this to catch overflow 1050 // addptr(bumped_count, DataLayout::counter_increment); 1051 // sbbptr(bumped_count, 0); 1052 // so we do this 1053 adds(bumped_count, bumped_count, DataLayout::counter_increment); 1054 Label L; 1055 br(Assembler::CS, L); // skip store if counter overflow 1056 str(bumped_count, data); 1057 bind(L); 1058 // The method data pointer needs to be updated to reflect the new target. 1059 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1060 bind(profile_continue); 1061 } 1062 } 1063 1064 1065 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1066 if (ProfileInterpreter) { 1067 Label profile_continue; 1068 1069 // If no method data exists, go to profile_continue. 1070 test_method_data_pointer(mdp, profile_continue); 1071 1072 // We are taking a branch. Increment the not taken count. 1073 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1074 1075 // The method data pointer needs to be updated to correspond to 1076 // the next bytecode 1077 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1078 bind(profile_continue); 1079 } 1080 } 1081 1082 1083 void InterpreterMacroAssembler::profile_call(Register mdp) { 1084 if (ProfileInterpreter) { 1085 Label profile_continue; 1086 1087 // If no method data exists, go to profile_continue. 1088 test_method_data_pointer(mdp, profile_continue); 1089 1090 // We are making a call. Increment the count. 1091 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1092 1093 // The method data pointer needs to be updated to reflect the new target. 1094 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1095 bind(profile_continue); 1096 } 1097 } 1098 1099 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1100 if (ProfileInterpreter) { 1101 Label profile_continue; 1102 1103 // If no method data exists, go to profile_continue. 1104 test_method_data_pointer(mdp, profile_continue); 1105 1106 // We are making a call. Increment the count. 1107 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1108 1109 // The method data pointer needs to be updated to reflect the new target. 1110 update_mdp_by_constant(mdp, 1111 in_bytes(VirtualCallData:: 1112 virtual_call_data_size())); 1113 bind(profile_continue); 1114 } 1115 } 1116 1117 1118 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1119 Register mdp, 1120 Register reg2, 1121 bool receiver_can_be_null) { 1122 if (ProfileInterpreter) { 1123 Label profile_continue; 1124 1125 // If no method data exists, go to profile_continue. 1126 test_method_data_pointer(mdp, profile_continue); 1127 1128 Label skip_receiver_profile; 1129 if (receiver_can_be_null) { 1130 Label not_null; 1131 // We are making a call. Increment the count for null receiver. 1132 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1133 b(skip_receiver_profile); 1134 bind(not_null); 1135 } 1136 1137 // Record the receiver type. 1138 record_klass_in_profile(receiver, mdp, reg2); 1139 bind(skip_receiver_profile); 1140 1141 // The method data pointer needs to be updated to reflect the new target. 1142 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1143 bind(profile_continue); 1144 } 1145 } 1146 1147 // This routine creates a state machine for updating the multi-row 1148 // type profile at a virtual call site (or other type-sensitive bytecode). 1149 // The machine visits each row (of receiver/count) until the receiver type 1150 // is found, or until it runs out of rows. At the same time, it remembers 1151 // the location of the first empty row. (An empty row records null for its 1152 // receiver, and can be allocated for a newly-observed receiver type.) 1153 // Because there are two degrees of freedom in the state, a simple linear 1154 // search will not work; it must be a decision tree. Hence this helper 1155 // function is recursive, to generate the required tree structured code. 1156 // It's the interpreter, so we are trading off code space for speed. 1157 // See below for example code. 1158 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1159 Register receiver, Register mdp, 1160 Register reg2, int start_row, 1161 Label& done) { 1162 if (TypeProfileWidth == 0) { 1163 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1164 } else { 1165 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1166 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset); 1167 } 1168 } 1169 1170 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, 1171 Register reg2, int start_row, Label& done, int total_rows, 1172 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn) { 1173 int last_row = total_rows - 1; 1174 assert(start_row <= last_row, "must be work left to do"); 1175 // Test this row for both the item and for null. 1176 // Take any of three different outcomes: 1177 // 1. found item => increment count and goto done 1178 // 2. found null => keep looking for case 1, maybe allocate this cell 1179 // 3. found something else => keep looking for cases 1 and 2 1180 // Case 3 is handled by a recursive call. 1181 for (int row = start_row; row <= last_row; row++) { 1182 Label next_test; 1183 bool test_for_null_also = (row == start_row); 1184 1185 // See if the item is item[n]. 1186 int item_offset = in_bytes(item_offset_fn(row)); 1187 test_mdp_data_at(mdp, item_offset, item, 1188 (test_for_null_also ? reg2 : noreg), 1189 next_test); 1190 // (Reg2 now contains the item from the CallData.) 1191 1192 // The item is item[n]. Increment count[n]. 1193 int count_offset = in_bytes(item_count_offset_fn(row)); 1194 increment_mdp_data_at(mdp, count_offset); 1195 b(done); 1196 bind(next_test); 1197 1198 if (test_for_null_also) { 1199 Label found_null; 1200 // Failed the equality check on item[n]... Test for null. 1201 if (start_row == last_row) { 1202 // The only thing left to do is handle the null case. 1203 cbz(reg2, found_null); 1204 // Item did not match any saved item and there is no empty row for it. 1205 // Increment total counter to indicate polymorphic case. 1206 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1207 b(done); 1208 bind(found_null); 1209 break; 1210 } 1211 // Since null is rare, make it be the branch-taken case. 1212 cbz(reg2, found_null); 1213 1214 // Put all the "Case 3" tests here. 1215 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1216 item_offset_fn, item_count_offset_fn); 1217 1218 // Found a null. Keep searching for a matching item, 1219 // but remember that this is an empty (unused) slot. 1220 bind(found_null); 1221 } 1222 } 1223 1224 // In the fall-through case, we found no matching item, but we 1225 // observed the item[start_row] is null. 1226 1227 // Fill in the item field and increment the count. 1228 int item_offset = in_bytes(item_offset_fn(start_row)); 1229 set_mdp_data_at(mdp, item_offset, item); 1230 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1231 mov(reg2, DataLayout::counter_increment); 1232 set_mdp_data_at(mdp, count_offset, reg2); 1233 if (start_row > 0) { 1234 b(done); 1235 } 1236 } 1237 1238 // Example state machine code for three profile rows: 1239 // // main copy of decision tree, rooted at row[1] 1240 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1241 // if (row[0].rec != nullptr) { 1242 // // inner copy of decision tree, rooted at row[1] 1243 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1244 // if (row[1].rec != nullptr) { 1245 // // degenerate decision tree, rooted at row[2] 1246 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1247 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow 1248 // row[2].init(rec); goto done; 1249 // } else { 1250 // // remember row[1] is empty 1251 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1252 // row[1].init(rec); goto done; 1253 // } 1254 // } else { 1255 // // remember row[0] is empty 1256 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1257 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1258 // row[0].init(rec); goto done; 1259 // } 1260 // done: 1261 1262 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1263 Register mdp, Register reg2) { 1264 assert(ProfileInterpreter, "must be profiling"); 1265 Label done; 1266 1267 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done); 1268 1269 bind (done); 1270 } 1271 1272 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1273 Register mdp) { 1274 if (ProfileInterpreter) { 1275 Label profile_continue; 1276 uint row; 1277 1278 // If no method data exists, go to profile_continue. 1279 test_method_data_pointer(mdp, profile_continue); 1280 1281 // Update the total ret count. 1282 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1283 1284 for (row = 0; row < RetData::row_limit(); row++) { 1285 Label next_test; 1286 1287 // See if return_bci is equal to bci[n]: 1288 test_mdp_data_at(mdp, 1289 in_bytes(RetData::bci_offset(row)), 1290 return_bci, noreg, 1291 next_test); 1292 1293 // return_bci is equal to bci[n]. Increment the count. 1294 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1295 1296 // The method data pointer needs to be updated to reflect the new target. 1297 update_mdp_by_offset(mdp, 1298 in_bytes(RetData::bci_displacement_offset(row))); 1299 b(profile_continue); 1300 bind(next_test); 1301 } 1302 1303 update_mdp_for_ret(return_bci); 1304 1305 bind(profile_continue); 1306 } 1307 } 1308 1309 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1310 if (ProfileInterpreter) { 1311 Label profile_continue; 1312 1313 // If no method data exists, go to profile_continue. 1314 test_method_data_pointer(mdp, profile_continue); 1315 1316 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1317 1318 // The method data pointer needs to be updated. 1319 int mdp_delta = in_bytes(BitData::bit_data_size()); 1320 if (TypeProfileCasts) { 1321 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1322 } 1323 update_mdp_by_constant(mdp, mdp_delta); 1324 1325 bind(profile_continue); 1326 } 1327 } 1328 1329 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1330 if (ProfileInterpreter) { 1331 Label profile_continue; 1332 1333 // If no method data exists, go to profile_continue. 1334 test_method_data_pointer(mdp, profile_continue); 1335 1336 // The method data pointer needs to be updated. 1337 int mdp_delta = in_bytes(BitData::bit_data_size()); 1338 if (TypeProfileCasts) { 1339 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1340 1341 // Record the object type. 1342 record_klass_in_profile(klass, mdp, reg2); 1343 } 1344 update_mdp_by_constant(mdp, mdp_delta); 1345 1346 bind(profile_continue); 1347 } 1348 } 1349 1350 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1351 if (ProfileInterpreter) { 1352 Label profile_continue; 1353 1354 // If no method data exists, go to profile_continue. 1355 test_method_data_pointer(mdp, profile_continue); 1356 1357 // Update the default case count 1358 increment_mdp_data_at(mdp, 1359 in_bytes(MultiBranchData::default_count_offset())); 1360 1361 // The method data pointer needs to be updated. 1362 update_mdp_by_offset(mdp, 1363 in_bytes(MultiBranchData:: 1364 default_displacement_offset())); 1365 1366 bind(profile_continue); 1367 } 1368 } 1369 1370 void InterpreterMacroAssembler::profile_switch_case(Register index, 1371 Register mdp, 1372 Register reg2) { 1373 if (ProfileInterpreter) { 1374 Label profile_continue; 1375 1376 // If no method data exists, go to profile_continue. 1377 test_method_data_pointer(mdp, profile_continue); 1378 1379 // Build the base (index * per_case_size_in_bytes()) + 1380 // case_array_offset_in_bytes() 1381 movw(reg2, in_bytes(MultiBranchData::per_case_size())); 1382 movw(rscratch1, in_bytes(MultiBranchData::case_array_offset())); 1383 Assembler::maddw(index, index, reg2, rscratch1); 1384 1385 // Update the case count 1386 increment_mdp_data_at(mdp, 1387 index, 1388 in_bytes(MultiBranchData::relative_count_offset())); 1389 1390 // The method data pointer needs to be updated. 1391 update_mdp_by_offset(mdp, 1392 index, 1393 in_bytes(MultiBranchData:: 1394 relative_displacement_offset())); 1395 1396 bind(profile_continue); 1397 } 1398 } 1399 1400 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 1401 if (state == atos) { 1402 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 1403 } 1404 } 1405 1406 void InterpreterMacroAssembler::generate_runtime_upcalls_on_method_entry() 1407 { 1408 address upcall = RuntimeUpcalls::on_method_entry_upcall_address(); 1409 if (RuntimeUpcalls::does_upcall_need_method_parameter(upcall)) { 1410 get_method(c_rarg1); 1411 call_VM(noreg,upcall, c_rarg1); 1412 } else { 1413 call_VM(noreg,upcall); 1414 } 1415 } 1416 1417 void InterpreterMacroAssembler::notify_method_entry() { 1418 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1419 // track stack depth. If it is possible to enter interp_only_mode we add 1420 // the code to check if the event should be sent. 1421 if (JvmtiExport::can_post_interpreter_events()) { 1422 Label L; 1423 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1424 cbzw(r3, L); 1425 call_VM(noreg, CAST_FROM_FN_PTR(address, 1426 InterpreterRuntime::post_method_entry)); 1427 bind(L); 1428 } 1429 1430 if (DTraceMethodProbes) { 1431 get_method(c_rarg1); 1432 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1433 rthread, c_rarg1); 1434 } 1435 1436 // RedefineClasses() tracing support for obsolete method entry 1437 if (log_is_enabled(Trace, redefine, class, obsolete) || 1438 log_is_enabled(Trace, interpreter, bytecode)) { 1439 get_method(c_rarg1); 1440 call_VM_leaf( 1441 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1442 rthread, c_rarg1); 1443 } 1444 1445 } 1446 1447 1448 void InterpreterMacroAssembler::notify_method_exit( 1449 TosState state, NotifyMethodExitMode mode) { 1450 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1451 // track stack depth. If it is possible to enter interp_only_mode we add 1452 // the code to check if the event should be sent. 1453 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 1454 Label L; 1455 // Note: frame::interpreter_frame_result has a dependency on how the 1456 // method result is saved across the call to post_method_exit. If this 1457 // is changed then the interpreter_frame_result implementation will 1458 // need to be updated too. 1459 1460 // template interpreter will leave the result on the top of the stack. 1461 push(state); 1462 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1463 cbz(r3, L); 1464 call_VM(noreg, 1465 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 1466 bind(L); 1467 pop(state); 1468 } 1469 1470 if (DTraceMethodProbes) { 1471 push(state); 1472 get_method(c_rarg1); 1473 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1474 rthread, c_rarg1); 1475 pop(state); 1476 } 1477 } 1478 1479 1480 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. 1481 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, 1482 int increment, Address mask, 1483 Register scratch, Register scratch2, 1484 bool preloaded, Condition cond, 1485 Label* where) { 1486 if (!preloaded) { 1487 ldrw(scratch, counter_addr); 1488 } 1489 add(scratch, scratch, increment); 1490 strw(scratch, counter_addr); 1491 ldrw(scratch2, mask); 1492 ands(scratch, scratch, scratch2); 1493 br(cond, *where); 1494 } 1495 1496 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 1497 int number_of_arguments) { 1498 // interpreter specific 1499 // 1500 // Note: No need to save/restore rbcp & rlocals pointer since these 1501 // are callee saved registers and no blocking/ GC can happen 1502 // in leaf calls. 1503 #ifdef ASSERT 1504 { 1505 Label L; 1506 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1507 cbz(rscratch1, L); 1508 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 1509 " last_sp != nullptr"); 1510 bind(L); 1511 } 1512 #endif /* ASSERT */ 1513 // super call 1514 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1515 } 1516 1517 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 1518 Register java_thread, 1519 Register last_java_sp, 1520 address entry_point, 1521 int number_of_arguments, 1522 bool check_exceptions) { 1523 // interpreter specific 1524 // 1525 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 1526 // really make a difference for these runtime calls, since they are 1527 // slow anyway. Btw., bcp must be saved/restored since it may change 1528 // due to GC. 1529 // assert(java_thread == noreg , "not expecting a precomputed java thread"); 1530 save_bcp(); 1531 #ifdef ASSERT 1532 { 1533 Label L; 1534 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1535 cbz(rscratch1, L); 1536 stop("InterpreterMacroAssembler::call_VM_base:" 1537 " last_sp != nullptr"); 1538 bind(L); 1539 } 1540 #endif /* ASSERT */ 1541 // super call 1542 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 1543 entry_point, number_of_arguments, 1544 check_exceptions); 1545 // interpreter specific 1546 restore_bcp(); 1547 restore_locals(); 1548 } 1549 1550 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result, 1551 address entry_point, 1552 Register arg_1) { 1553 assert(arg_1 == c_rarg1, ""); 1554 Label resume_pc, not_preempted; 1555 1556 #ifdef ASSERT 1557 { 1558 Label L; 1559 ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1560 cbz(rscratch1, L); 1561 stop("Should not have alternate return address set"); 1562 bind(L); 1563 } 1564 #endif /* ASSERT */ 1565 1566 // Force freeze slow path. 1567 push_cont_fastpath(); 1568 1569 // Make VM call. In case of preemption set last_pc to the one we want to resume to. 1570 adr(rscratch1, resume_pc); 1571 str(rscratch1, Address(rthread, JavaThread::last_Java_pc_offset())); 1572 call_VM_base(oop_result, noreg, noreg, entry_point, 1, false /*check_exceptions*/); 1573 1574 pop_cont_fastpath(); 1575 1576 // Check if preempted. 1577 ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1578 cbz(rscratch1, not_preempted); 1579 str(zr, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1580 br(rscratch1); 1581 1582 // In case of preemption, this is where we will resume once we finally acquire the monitor. 1583 bind(resume_pc); 1584 restore_after_resume(false /* is_native */); 1585 1586 bind(not_preempted); 1587 } 1588 1589 void InterpreterMacroAssembler::restore_after_resume(bool is_native) { 1590 lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter())); 1591 blr(rscratch1); 1592 if (is_native) { 1593 // On resume we need to set up stack as expected 1594 push(dtos); 1595 push(ltos); 1596 } 1597 } 1598 1599 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 1600 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 1601 Label update, next, none; 1602 1603 verify_oop(obj); 1604 1605 cbnz(obj, update); 1606 orptr(mdo_addr, TypeEntries::null_seen); 1607 b(next); 1608 1609 bind(update); 1610 load_klass(obj, obj); 1611 1612 ldr(rscratch1, mdo_addr); 1613 eor(obj, obj, rscratch1); 1614 tst(obj, TypeEntries::type_klass_mask); 1615 br(Assembler::EQ, next); // klass seen before, nothing to 1616 // do. The unknown bit may have been 1617 // set already but no need to check. 1618 1619 tbnz(obj, exact_log2(TypeEntries::type_unknown), next); 1620 // already unknown. Nothing to do anymore. 1621 1622 cbz(rscratch1, none); 1623 cmp(rscratch1, (u1)TypeEntries::null_seen); 1624 br(Assembler::EQ, none); 1625 // There is a chance that the checks above 1626 // fail if another thread has just set the 1627 // profiling to this obj's klass 1628 eor(obj, obj, rscratch1); // get back original value before XOR 1629 ldr(rscratch1, mdo_addr); 1630 eor(obj, obj, rscratch1); 1631 tst(obj, TypeEntries::type_klass_mask); 1632 br(Assembler::EQ, next); 1633 1634 // different than before. Cannot keep accurate profile. 1635 orptr(mdo_addr, TypeEntries::type_unknown); 1636 b(next); 1637 1638 bind(none); 1639 // first time here. Set profile type. 1640 str(obj, mdo_addr); 1641 #ifdef ASSERT 1642 andr(obj, obj, TypeEntries::type_mask); 1643 verify_klass_ptr(obj); 1644 #endif 1645 1646 bind(next); 1647 } 1648 1649 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 1650 if (!ProfileInterpreter) { 1651 return; 1652 } 1653 1654 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1655 Label profile_continue; 1656 1657 test_method_data_pointer(mdp, profile_continue); 1658 1659 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1660 1661 ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start)); 1662 cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag)); 1663 br(Assembler::NE, profile_continue); 1664 1665 if (MethodData::profile_arguments()) { 1666 Label done; 1667 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 1668 1669 for (int i = 0; i < TypeProfileArgsLimit; i++) { 1670 if (i > 0 || MethodData::profile_return()) { 1671 // If return value type is profiled we may have no argument to profile 1672 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1673 sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count()); 1674 cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count()); 1675 add(rscratch1, mdp, off_to_args); 1676 br(Assembler::LT, done); 1677 } 1678 ldr(tmp, Address(callee, Method::const_offset())); 1679 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 1680 // stack offset o (zero based) from the start of the argument 1681 // list, for n arguments translates into offset n - o - 1 from 1682 // the end of the argument list 1683 ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i)))); 1684 sub(tmp, tmp, rscratch1); 1685 sub(tmp, tmp, 1); 1686 Address arg_addr = argument_address(tmp); 1687 ldr(tmp, arg_addr); 1688 1689 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))); 1690 profile_obj_type(tmp, mdo_arg_addr); 1691 1692 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1693 off_to_args += to_add; 1694 } 1695 1696 if (MethodData::profile_return()) { 1697 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1698 sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1699 } 1700 1701 add(rscratch1, mdp, off_to_args); 1702 bind(done); 1703 mov(mdp, rscratch1); 1704 1705 if (MethodData::profile_return()) { 1706 // We're right after the type profile for the last 1707 // argument. tmp is the number of cells left in the 1708 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1709 // if there's a return to profile. 1710 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 1711 add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size)); 1712 } 1713 str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1714 } else { 1715 assert(MethodData::profile_return(), "either profile call args or call ret"); 1716 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 1717 } 1718 1719 // mdp points right after the end of the 1720 // CallTypeData/VirtualCallTypeData, right after the cells for the 1721 // return value type if there's one 1722 1723 bind(profile_continue); 1724 } 1725 } 1726 1727 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 1728 assert_different_registers(mdp, ret, tmp, rbcp); 1729 if (ProfileInterpreter && MethodData::profile_return()) { 1730 Label profile_continue, done; 1731 1732 test_method_data_pointer(mdp, profile_continue); 1733 1734 if (MethodData::profile_return_jsr292_only()) { 1735 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 1736 1737 // If we don't profile all invoke bytecodes we must make sure 1738 // it's a bytecode we indeed profile. We can't go back to the 1739 // beginning of the ProfileData we intend to update to check its 1740 // type because we're right after it and we don't known its 1741 // length 1742 Label do_profile; 1743 ldrb(rscratch1, Address(rbcp, 0)); 1744 cmp(rscratch1, (u1)Bytecodes::_invokedynamic); 1745 br(Assembler::EQ, do_profile); 1746 cmp(rscratch1, (u1)Bytecodes::_invokehandle); 1747 br(Assembler::EQ, do_profile); 1748 get_method(tmp); 1749 ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset())); 1750 subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1751 br(Assembler::NE, profile_continue); 1752 1753 bind(do_profile); 1754 } 1755 1756 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); 1757 mov(tmp, ret); 1758 profile_obj_type(tmp, mdo_ret_addr); 1759 1760 bind(profile_continue); 1761 } 1762 } 1763 1764 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 1765 assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2); 1766 if (ProfileInterpreter && MethodData::profile_parameters()) { 1767 Label profile_continue, done; 1768 1769 test_method_data_pointer(mdp, profile_continue); 1770 1771 // Load the offset of the area within the MDO used for 1772 // parameters. If it's negative we're not profiling any parameters 1773 ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 1774 tbnz(tmp1, 31, profile_continue); // i.e. sign bit set 1775 1776 // Compute a pointer to the area for parameters from the offset 1777 // and move the pointer to the slot for the last 1778 // parameters. Collect profiling from last parameter down. 1779 // mdo start + parameters offset + array length - 1 1780 add(mdp, mdp, tmp1); 1781 ldr(tmp1, Address(mdp, ArrayData::array_len_offset())); 1782 sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 1783 1784 Label loop; 1785 bind(loop); 1786 1787 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 1788 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 1789 int per_arg_scale = exact_log2(DataLayout::cell_size); 1790 add(rscratch1, mdp, off_base); 1791 add(rscratch2, mdp, type_base); 1792 1793 Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale)); 1794 Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale)); 1795 1796 // load offset on the stack from the slot for this parameter 1797 ldr(tmp2, arg_off); 1798 neg(tmp2, tmp2); 1799 // read the parameter from the local area 1800 ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize))); 1801 1802 // profile the parameter 1803 profile_obj_type(tmp2, arg_type); 1804 1805 // go to next parameter 1806 subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 1807 br(Assembler::GE, loop); 1808 1809 bind(profile_continue); 1810 } 1811 } 1812 1813 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 1814 // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp 1815 get_cache_index_at_bcp(index, 1, sizeof(u4)); 1816 // Get address of invokedynamic array 1817 ldr(cache, Address(rcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 1818 // Scale the index to be the entry index * sizeof(ResolvedIndyEntry) 1819 lsl(index, index, log2i_exact(sizeof(ResolvedIndyEntry))); 1820 add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes()); 1821 lea(cache, Address(cache, index)); 1822 } 1823 1824 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 1825 // Get index out of bytecode pointer 1826 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 1827 // Take shortcut if the size is a power of 2 1828 if (is_power_of_2(sizeof(ResolvedFieldEntry))) { 1829 lsl(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2 1830 } else { 1831 mov(cache, sizeof(ResolvedFieldEntry)); 1832 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry) 1833 } 1834 // Get address of field entries array 1835 ldr(cache, Address(rcpool, ConstantPoolCache::field_entries_offset())); 1836 add(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes()); 1837 lea(cache, Address(cache, index)); 1838 // Prevents stale data from being read after the bytecode is patched to the fast bytecode 1839 membar(MacroAssembler::LoadLoad); 1840 } 1841 1842 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) { 1843 // Get index out of bytecode pointer 1844 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 1845 mov(cache, sizeof(ResolvedMethodEntry)); 1846 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry) 1847 1848 // Get address of field entries array 1849 ldr(cache, Address(rcpool, ConstantPoolCache::method_entries_offset())); 1850 add(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes()); 1851 lea(cache, Address(cache, index)); 1852 }