1 /*
   2  * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "compiler/compiler_globals.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/barrierSetAssembler.hpp"
  30 #include "interp_masm_aarch64.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "interpreter/interpreterRuntime.hpp"
  33 #include "logging/log.hpp"
  34 #include "oops/arrayOop.hpp"
  35 #include "oops/markWord.hpp"
  36 #include "oops/method.hpp"
  37 #include "oops/methodData.hpp"
  38 #include "oops/resolvedFieldEntry.hpp"
  39 #include "oops/resolvedIndyEntry.hpp"
  40 #include "oops/resolvedMethodEntry.hpp"
  41 #include "prims/jvmtiExport.hpp"
  42 #include "prims/jvmtiThreadState.hpp"
  43 #include "runtime/basicLock.hpp"
  44 #include "runtime/frame.inline.hpp"
  45 #include "runtime/javaThread.hpp"
  46 #include "runtime/runtimeUpcalls.hpp"
  47 #include "runtime/safepointMechanism.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "utilities/powerOfTwo.hpp"
  50 
  51 void InterpreterMacroAssembler::narrow(Register result) {
  52 
  53   // Get method->_constMethod->_result_type
  54   ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
  55   ldr(rscratch1, Address(rscratch1, Method::const_offset()));
  56   ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset()));
  57 
  58   Label done, notBool, notByte, notChar;
  59 
  60   // common case first
  61   cmpw(rscratch1, T_INT);
  62   br(Assembler::EQ, done);
  63 
  64   // mask integer result to narrower return type.
  65   cmpw(rscratch1, T_BOOLEAN);
  66   br(Assembler::NE, notBool);
  67   andw(result, result, 0x1);
  68   b(done);
  69 
  70   bind(notBool);
  71   cmpw(rscratch1, T_BYTE);
  72   br(Assembler::NE, notByte);
  73   sbfx(result, result, 0, 8);
  74   b(done);
  75 
  76   bind(notByte);
  77   cmpw(rscratch1, T_CHAR);
  78   br(Assembler::NE, notChar);
  79   ubfx(result, result, 0, 16);  // truncate upper 16 bits
  80   b(done);
  81 
  82   bind(notChar);
  83   sbfx(result, result, 0, 16);     // sign-extend short
  84 
  85   // Nothing to do for T_INT
  86   bind(done);
  87 }
  88 
  89 void InterpreterMacroAssembler::jump_to_entry(address entry) {
  90   assert(entry, "Entry must have been generated by now");
  91   b(entry);
  92 }
  93 
  94 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
  95   if (JvmtiExport::can_pop_frame()) {
  96     Label L;
  97     // Initiate popframe handling only if it is not already being
  98     // processed.  If the flag has the popframe_processing bit set, it
  99     // means that this code is called *during* popframe handling - we
 100     // don't want to reenter.
 101     // This method is only called just after the call into the vm in
 102     // call_VM_base, so the arg registers are available.
 103     ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
 104     tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L);
 105     tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L);
 106     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 107     // address of the same-named entrypoint in the generated interpreter code.
 108     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 109     br(r0);
 110     bind(L);
 111   }
 112 }
 113 
 114 
 115 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 116   ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 117   const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset());
 118   const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset());
 119   const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset());
 120   switch (state) {
 121     case atos: ldr(r0, oop_addr);
 122                str(zr, oop_addr);
 123                interp_verify_oop(r0, state);        break;
 124     case ltos: ldr(r0, val_addr);                   break;
 125     case btos:                                   // fall through
 126     case ztos:                                   // fall through
 127     case ctos:                                   // fall through
 128     case stos:                                   // fall through
 129     case itos: ldrw(r0, val_addr);                  break;
 130     case ftos: ldrs(v0, val_addr);                  break;
 131     case dtos: ldrd(v0, val_addr);                  break;
 132     case vtos: /* nothing to do */                  break;
 133     default  : ShouldNotReachHere();
 134   }
 135   // Clean up tos value in the thread object
 136   movw(rscratch1, (int) ilgl);
 137   strw(rscratch1, tos_addr);
 138   strw(zr, val_addr);
 139 }
 140 
 141 
 142 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 143   if (JvmtiExport::can_force_early_return()) {
 144     Label L;
 145     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 146     cbz(rscratch1, L); // if (thread->jvmti_thread_state() == nullptr) exit;
 147 
 148     // Initiate earlyret handling only if it is not already being processed.
 149     // If the flag has the earlyret_processing bit set, it means that this code
 150     // is called *during* earlyret handling - we don't want to reenter.
 151     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset()));
 152     cmpw(rscratch1, JvmtiThreadState::earlyret_pending);
 153     br(Assembler::NE, L);
 154 
 155     // Call Interpreter::remove_activation_early_entry() to get the address of the
 156     // same-named entrypoint in the generated interpreter code.
 157     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 158     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset()));
 159     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1);
 160     br(r0);
 161     bind(L);
 162   }
 163 }
 164 
 165 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
 166   Register reg,
 167   int bcp_offset) {
 168   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 169   ldrh(reg, Address(rbcp, bcp_offset));
 170   rev16(reg, reg);
 171 }
 172 
 173 void InterpreterMacroAssembler::get_dispatch() {
 174   uint64_t offset;
 175   adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset);
 176   // Use add() here after ARDP, rather than lea().
 177   // lea() does not generate anything if its offset is zero.
 178   // However, relocs expect to find either an ADD or a load/store
 179   // insn after an ADRP.  add() always generates an ADD insn, even
 180   // for add(Rn, Rn, 0).
 181   add(rdispatch, rdispatch, offset);
 182 }
 183 
 184 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
 185                                                        int bcp_offset,
 186                                                        size_t index_size) {
 187   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 188   if (index_size == sizeof(u2)) {
 189     load_unsigned_short(index, Address(rbcp, bcp_offset));
 190   } else if (index_size == sizeof(u4)) {
 191     // assert(EnableInvokeDynamic, "giant index used only for JSR 292");
 192     ldrw(index, Address(rbcp, bcp_offset));
 193   } else if (index_size == sizeof(u1)) {
 194     load_unsigned_byte(index, Address(rbcp, bcp_offset));
 195   } else {
 196     ShouldNotReachHere();
 197   }
 198 }
 199 
 200 void InterpreterMacroAssembler::get_method_counters(Register method,
 201                                                     Register mcs, Label& skip) {
 202   Label has_counters;
 203   ldr(mcs, Address(method, Method::method_counters_offset()));
 204   cbnz(mcs, has_counters);
 205   call_VM(noreg, CAST_FROM_FN_PTR(address,
 206           InterpreterRuntime::build_method_counters), method);
 207   ldr(mcs, Address(method, Method::method_counters_offset()));
 208   cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory
 209   bind(has_counters);
 210 }
 211 
 212 // Load object from cpool->resolved_references(index)
 213 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 214                                            Register result, Register index, Register tmp) {
 215   assert_different_registers(result, index);
 216 
 217   get_constant_pool(result);
 218   // load pointer for resolved_references[] objArray
 219   ldr(result, Address(result, ConstantPool::cache_offset()));
 220   ldr(result, Address(result, ConstantPoolCache::resolved_references_offset()));
 221   resolve_oop_handle(result, tmp, rscratch2);
 222   // Add in the index
 223   add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 224   load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop)), tmp, rscratch2);
 225 }
 226 
 227 void InterpreterMacroAssembler::load_resolved_klass_at_offset(
 228                              Register cpool, Register index, Register klass, Register temp) {
 229   add(temp, cpool, index, LSL, LogBytesPerWord);
 230   ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index
 231   ldr(klass, Address(cpool,  ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses
 232   add(klass, klass, temp, LSL, LogBytesPerWord);
 233   ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes()));
 234 }
 235 
 236 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
 237 // subtype of super_klass.
 238 //
 239 // Args:
 240 //      r0: superklass
 241 //      Rsub_klass: subklass
 242 //
 243 // Kills:
 244 //      r2, r5
 245 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 246                                                   Label& ok_is_subtype) {
 247   assert(Rsub_klass != r0, "r0 holds superklass");
 248   assert(Rsub_klass != r2, "r2 holds 2ndary super array length");
 249   assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr");
 250 
 251   // Profile the not-null value's klass.
 252   profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5
 253 
 254   // Do the check.
 255   check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2
 256 }
 257 
 258 // Java Expression Stack
 259 
 260 void InterpreterMacroAssembler::pop_ptr(Register r) {
 261   ldr(r, post(esp, wordSize));
 262 }
 263 
 264 void InterpreterMacroAssembler::pop_i(Register r) {
 265   ldrw(r, post(esp, wordSize));
 266 }
 267 
 268 void InterpreterMacroAssembler::pop_l(Register r) {
 269   ldr(r, post(esp, 2 * Interpreter::stackElementSize));
 270 }
 271 
 272 void InterpreterMacroAssembler::push_ptr(Register r) {
 273   str(r, pre(esp, -wordSize));
 274  }
 275 
 276 void InterpreterMacroAssembler::push_i(Register r) {
 277   str(r, pre(esp, -wordSize));
 278 }
 279 
 280 void InterpreterMacroAssembler::push_l(Register r) {
 281   str(zr, pre(esp, -wordSize));
 282   str(r, pre(esp, - wordSize));
 283 }
 284 
 285 void InterpreterMacroAssembler::pop_f(FloatRegister r) {
 286   ldrs(r, post(esp, wordSize));
 287 }
 288 
 289 void InterpreterMacroAssembler::pop_d(FloatRegister r) {
 290   ldrd(r, post(esp, 2 * Interpreter::stackElementSize));
 291 }
 292 
 293 void InterpreterMacroAssembler::push_f(FloatRegister r) {
 294   strs(r, pre(esp, -wordSize));
 295 }
 296 
 297 void InterpreterMacroAssembler::push_d(FloatRegister r) {
 298   strd(r, pre(esp, 2* -wordSize));
 299 }
 300 
 301 void InterpreterMacroAssembler::pop(TosState state) {
 302   switch (state) {
 303   case atos: pop_ptr();                 break;
 304   case btos:
 305   case ztos:
 306   case ctos:
 307   case stos:
 308   case itos: pop_i();                   break;
 309   case ltos: pop_l();                   break;
 310   case ftos: pop_f();                   break;
 311   case dtos: pop_d();                   break;
 312   case vtos: /* nothing to do */        break;
 313   default:   ShouldNotReachHere();
 314   }
 315   interp_verify_oop(r0, state);
 316 }
 317 
 318 void InterpreterMacroAssembler::push(TosState state) {
 319   interp_verify_oop(r0, state);
 320   switch (state) {
 321   case atos: push_ptr();                break;
 322   case btos:
 323   case ztos:
 324   case ctos:
 325   case stos:
 326   case itos: push_i();                  break;
 327   case ltos: push_l();                  break;
 328   case ftos: push_f();                  break;
 329   case dtos: push_d();                  break;
 330   case vtos: /* nothing to do */        break;
 331   default  : ShouldNotReachHere();
 332   }
 333 }
 334 
 335 // Helpers for swap and dup
 336 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 337   ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 338 }
 339 
 340 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 341   str(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 342 }
 343 
 344 void InterpreterMacroAssembler::load_float(Address src) {
 345   ldrs(v0, src);
 346 }
 347 
 348 void InterpreterMacroAssembler::load_double(Address src) {
 349   ldrd(v0, src);
 350 }
 351 
 352 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 353   // set sender sp
 354   mov(r19_sender_sp, sp);
 355   // record last_sp
 356   sub(rscratch1, esp, rfp);
 357   asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
 358   str(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 359 }
 360 
 361 // Jump to from_interpreted entry of a call unless single stepping is possible
 362 // in this thread in which case we must call the i2i entry
 363 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 364   prepare_to_jump_from_interpreted();
 365 
 366   if (JvmtiExport::can_post_interpreter_events()) {
 367     Label run_compiled_code;
 368     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 369     // compiled code in threads for which the event is enabled.  Check here for
 370     // interp_only_mode if these events CAN be enabled.
 371     ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset()));
 372     cbzw(rscratch1, run_compiled_code);
 373     ldr(rscratch1, Address(method, Method::interpreter_entry_offset()));
 374     br(rscratch1);
 375     bind(run_compiled_code);
 376   }
 377 
 378   ldr(rscratch1, Address(method, Method::from_interpreted_offset()));
 379   br(rscratch1);
 380 }
 381 
 382 // The following two routines provide a hook so that an implementation
 383 // can schedule the dispatch in two parts.  amd64 does not do this.
 384 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 385 }
 386 
 387 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 388     dispatch_next(state, step);
 389 }
 390 
 391 void InterpreterMacroAssembler::dispatch_base(TosState state,
 392                                               address* table,
 393                                               bool verifyoop,
 394                                               bool generate_poll) {
 395   if (VerifyActivationFrameSize) {
 396     Label L;
 397     sub(rscratch2, rfp, esp);
 398     int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
 399     subs(rscratch2, rscratch2, min_frame_size);
 400     br(Assembler::GE, L);
 401     stop("broken stack frame");
 402     bind(L);
 403   }
 404   if (verifyoop) {
 405     interp_verify_oop(r0, state);
 406   }
 407 
 408   Label safepoint;
 409   address* const safepoint_table = Interpreter::safept_table(state);
 410   bool needs_thread_local_poll = generate_poll && table != safepoint_table;
 411 
 412   if (needs_thread_local_poll) {
 413     NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
 414     ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset()));
 415     tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint);
 416   }
 417 
 418   if (table == Interpreter::dispatch_table(state)) {
 419     addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state));
 420     ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3)));
 421   } else {
 422     mov(rscratch2, (address)table);
 423     ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
 424   }
 425   br(rscratch2);
 426 
 427   if (needs_thread_local_poll) {
 428     bind(safepoint);
 429     lea(rscratch2, ExternalAddress((address)safepoint_table));
 430     ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
 431     br(rscratch2);
 432   }
 433 }
 434 
 435 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
 436   dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
 437 }
 438 
 439 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 440   dispatch_base(state, Interpreter::normal_table(state));
 441 }
 442 
 443 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 444   dispatch_base(state, Interpreter::normal_table(state), false);
 445 }
 446 
 447 
 448 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
 449   // load next bytecode
 450   ldrb(rscratch1, Address(pre(rbcp, step)));
 451   dispatch_base(state, Interpreter::dispatch_table(state), /*verifyoop*/true, generate_poll);
 452 }
 453 
 454 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 455   // load current bytecode
 456   ldrb(rscratch1, Address(rbcp, 0));
 457   dispatch_base(state, table);
 458 }
 459 
 460 // remove activation
 461 //
 462 // Unlock the receiver if this is a synchronized method.
 463 // Unlock any Java monitors from synchronized blocks.
 464 // Apply stack watermark barrier.
 465 // Notify JVMTI.
 466 // Remove the activation from the stack.
 467 //
 468 // If there are locked Java monitors
 469 //    If throw_monitor_exception
 470 //       throws IllegalMonitorStateException
 471 //    Else if install_monitor_exception
 472 //       installs IllegalMonitorStateException
 473 //    Else
 474 //       no error processing
 475 void InterpreterMacroAssembler::remove_activation(TosState state,
 476                                                   bool throw_monitor_exception,
 477                                                   bool install_monitor_exception,
 478                                                   bool notify_jvmdi) {
 479   // Note: Registers r3 xmm0 may be in use for the
 480   // result check if synchronized method
 481   Label unlocked, unlock, no_unlock;
 482 
 483   // get the value of _do_not_unlock_if_synchronized into r3
 484   const Address do_not_unlock_if_synchronized(rthread,
 485     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 486   ldrb(r3, do_not_unlock_if_synchronized);
 487   strb(zr, do_not_unlock_if_synchronized); // reset the flag
 488 
 489  // get method access flags
 490   ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
 491   ldrh(r2, Address(r1, Method::access_flags_offset()));
 492   tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked);
 493 
 494   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 495   // is set.
 496   cbnz(r3, no_unlock);
 497 
 498   // unlock monitor
 499   push(state); // save result
 500 
 501   // BasicObjectLock will be first in list, since this is a
 502   // synchronized method. However, need to check that the object has
 503   // not been unlocked by an explicit monitorexit bytecode.
 504   const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset *
 505                         wordSize - (int) sizeof(BasicObjectLock));
 506   // We use c_rarg1 so that if we go slow path it will be the correct
 507   // register for unlock_object to pass to VM directly
 508   lea(c_rarg1, monitor); // address of first monitor
 509 
 510   ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
 511   cbnz(r0, unlock);
 512 
 513   pop(state);
 514   if (throw_monitor_exception) {
 515     // Entry already unlocked, need to throw exception
 516     call_VM(noreg, CAST_FROM_FN_PTR(address,
 517                    InterpreterRuntime::throw_illegal_monitor_state_exception));
 518     should_not_reach_here();
 519   } else {
 520     // Monitor already unlocked during a stack unroll. If requested,
 521     // install an illegal_monitor_state_exception.  Continue with
 522     // stack unrolling.
 523     if (install_monitor_exception) {
 524       call_VM(noreg, CAST_FROM_FN_PTR(address,
 525                      InterpreterRuntime::new_illegal_monitor_state_exception));
 526     }
 527     b(unlocked);
 528   }
 529 
 530   bind(unlock);
 531   unlock_object(c_rarg1);
 532   pop(state);
 533 
 534   // Check that for block-structured locking (i.e., that all locked
 535   // objects has been unlocked)
 536   bind(unlocked);
 537 
 538   // r0: Might contain return value
 539 
 540   // Check that all monitors are unlocked
 541   {
 542     Label loop, exception, entry, restart;
 543     const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
 544     const Address monitor_block_top(
 545         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
 546     const Address monitor_block_bot(
 547         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
 548 
 549     bind(restart);
 550     // We use c_rarg1 so that if we go slow path it will be the correct
 551     // register for unlock_object to pass to VM directly
 552     ldr(c_rarg1, monitor_block_top); // derelativize pointer
 553     lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
 554     // c_rarg1 points to current entry, starting with top-most entry
 555 
 556     lea(r19, monitor_block_bot);  // points to word before bottom of
 557                                   // monitor block
 558     b(entry);
 559 
 560     // Entry already locked, need to throw exception
 561     bind(exception);
 562 
 563     if (throw_monitor_exception) {
 564       // Throw exception
 565       MacroAssembler::call_VM(noreg,
 566                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
 567                                    throw_illegal_monitor_state_exception));
 568       should_not_reach_here();
 569     } else {
 570       // Stack unrolling. Unlock object and install illegal_monitor_exception.
 571       // Unlock does not block, so don't have to worry about the frame.
 572       // We don't have to preserve c_rarg1 since we are going to throw an exception.
 573 
 574       push(state);
 575       unlock_object(c_rarg1);
 576       pop(state);
 577 
 578       if (install_monitor_exception) {
 579         call_VM(noreg, CAST_FROM_FN_PTR(address,
 580                                         InterpreterRuntime::
 581                                         new_illegal_monitor_state_exception));
 582       }
 583 
 584       b(restart);
 585     }
 586 
 587     bind(loop);
 588     // check if current entry is used
 589     ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset()));
 590     cbnz(rscratch1, exception);
 591 
 592     add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry
 593     bind(entry);
 594     cmp(c_rarg1, r19); // check if bottom reached
 595     br(Assembler::NE, loop); // if not at bottom then check this entry
 596   }
 597 
 598   bind(no_unlock);
 599 
 600   JFR_ONLY(enter_jfr_critical_section();)
 601 
 602   // The below poll is for the stack watermark barrier. It allows fixing up frames lazily,
 603   // that would normally not be safe to use. Such bad returns into unsafe territory of
 604   // the stack, will call InterpreterRuntime::at_unwind.
 605   Label slow_path;
 606   Label fast_path;
 607   safepoint_poll(slow_path, true /* at_return */, false /* in_nmethod */);
 608   br(Assembler::AL, fast_path);
 609   bind(slow_path);
 610   push(state);
 611   set_last_Java_frame(esp, rfp, pc(), rscratch1);
 612   super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread);
 613   reset_last_Java_frame(true);
 614   pop(state);
 615   bind(fast_path);
 616 
 617   // JVMTI support. Make sure the safepoint poll test is issued prior.
 618   if (notify_jvmdi) {
 619     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
 620   } else {
 621     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
 622   }
 623 
 624   // remove activation
 625   // get sender esp
 626   ldr(rscratch2,
 627       Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
 628   if (StackReservedPages > 0) {
 629     // testing if reserved zone needs to be re-enabled
 630     Label no_reserved_zone_enabling;
 631 
 632     // check if already enabled - if so no re-enabling needed
 633     assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size");
 634     ldrw(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset()));
 635     cmpw(rscratch1, (u1)StackOverflow::stack_guard_enabled);
 636     br(Assembler::EQ, no_reserved_zone_enabling);
 637 
 638     // look for an overflow into the stack reserved zone, i.e.
 639     // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation
 640     ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset()));
 641     cmp(rscratch2, rscratch1);
 642     br(Assembler::LS, no_reserved_zone_enabling);
 643 
 644     JFR_ONLY(leave_jfr_critical_section();)
 645 
 646     call_VM_leaf(
 647       CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
 648     call_VM(noreg, CAST_FROM_FN_PTR(address,
 649                    InterpreterRuntime::throw_delayed_StackOverflowError));
 650     should_not_reach_here();
 651 
 652     bind(no_reserved_zone_enabling);
 653   }
 654 
 655   // remove frame anchor
 656   leave();
 657 
 658   JFR_ONLY(leave_jfr_critical_section();)
 659 
 660   // restore sender esp
 661   mov(esp, rscratch2);
 662 
 663   // If we're returning to interpreted code we will shortly be
 664   // adjusting SP to allow some space for ESP.  If we're returning to
 665   // compiled code the saved sender SP was saved in sender_sp, so this
 666   // restores it.
 667   andr(sp, esp, -16);
 668 }
 669 
 670 #if INCLUDE_JFR
 671 void InterpreterMacroAssembler::enter_jfr_critical_section() {
 672   const Address sampling_critical_section(rthread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR));
 673   mov(rscratch1, true);
 674   strb(rscratch1, sampling_critical_section);
 675 }
 676 
 677 void InterpreterMacroAssembler::leave_jfr_critical_section() {
 678   const Address sampling_critical_section(rthread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR));
 679   strb(zr, sampling_critical_section);
 680 }
 681 #endif // INCLUDE_JFR
 682 
 683 // Lock object
 684 //
 685 // Args:
 686 //      c_rarg1: BasicObjectLock to be used for locking
 687 //
 688 // Kills:
 689 //      r0
 690 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, .. (param regs)
 691 //      rscratch1, rscratch2 (scratch regs)
 692 void InterpreterMacroAssembler::lock_object(Register lock_reg)
 693 {
 694   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
 695 
 696   const Register tmp = c_rarg2;
 697   const Register obj_reg = c_rarg3; // Will contain the oop
 698   const Register tmp2 = c_rarg4;
 699   const Register tmp3 = c_rarg5;
 700 
 701   // Load object pointer into obj_reg %c_rarg3
 702   ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
 703 
 704   Label slow_case, done;
 705   lightweight_lock(lock_reg, obj_reg, tmp, tmp2, tmp3, slow_case);
 706   b(done);
 707 
 708   bind(slow_case);
 709 
 710   // Call the runtime routine for slow case
 711   call_VM_preemptable(noreg,
 712           CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 713           lock_reg);
 714 
 715   bind(done);
 716 }
 717 
 718 
 719 // Unlocks an object. Used in monitorexit bytecode and
 720 // remove_activation.  Throws an IllegalMonitorException if object is
 721 // not locked by current thread.
 722 //
 723 // Args:
 724 //      c_rarg1: BasicObjectLock for lock
 725 //
 726 // Kills:
 727 //      r0
 728 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
 729 //      rscratch1, rscratch2 (scratch regs)
 730 void InterpreterMacroAssembler::unlock_object(Register lock_reg)
 731 {
 732   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
 733 
 734   const Register swap_reg   = r0;
 735   const Register header_reg = c_rarg2;  // Will contain the old oopMark
 736   const Register obj_reg    = c_rarg3;  // Will contain the oop
 737   const Register tmp_reg    = c_rarg4;  // Temporary used by lightweight_unlock
 738 
 739   save_bcp(); // Save in case of exception
 740 
 741   // Load oop into obj_reg(%c_rarg3)
 742   ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
 743 
 744   // Free entry
 745   str(zr, Address(lock_reg, BasicObjectLock::obj_offset()));
 746 
 747   Label slow_case, done;
 748   lightweight_unlock(obj_reg, header_reg, swap_reg, tmp_reg, slow_case);
 749   b(done);
 750 
 751   bind(slow_case);
 752   // Call the runtime routine for slow case.
 753   str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj
 754   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
 755   bind(done);
 756   restore_bcp();
 757 }
 758 
 759 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
 760                                                          Label& zero_continue) {
 761   assert(ProfileInterpreter, "must be profiling interpreter");
 762   ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 763   cbz(mdp, zero_continue);
 764 }
 765 
 766 // Set the method data pointer for the current bcp.
 767 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
 768   assert(ProfileInterpreter, "must be profiling interpreter");
 769   Label set_mdp;
 770   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 771 
 772   // Test MDO to avoid the call if it is null.
 773   ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset())));
 774   cbz(r0, set_mdp);
 775   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp);
 776   // r0: mdi
 777   // mdo is guaranteed to be non-zero here, we checked for it before the call.
 778   ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
 779   lea(r1, Address(r1, in_bytes(MethodData::data_offset())));
 780   add(r0, r1, r0);
 781   str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 782   bind(set_mdp);
 783   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 784 }
 785 
 786 void InterpreterMacroAssembler::verify_method_data_pointer() {
 787   assert(ProfileInterpreter, "must be profiling interpreter");
 788 #ifdef ASSERT
 789   Label verify_continue;
 790   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 791   stp(r2, r3, Address(pre(sp, -2 * wordSize)));
 792   test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue
 793   get_method(r1);
 794 
 795   // If the mdp is valid, it will point to a DataLayout header which is
 796   // consistent with the bcp.  The converse is highly probable also.
 797   ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset())));
 798   ldr(rscratch1, Address(r1, Method::const_offset()));
 799   add(r2, r2, rscratch1, Assembler::LSL);
 800   lea(r2, Address(r2, ConstMethod::codes_offset()));
 801   cmp(r2, rbcp);
 802   br(Assembler::EQ, verify_continue);
 803   // r1: method
 804   // rbcp: bcp // rbcp == 22
 805   // r3: mdp
 806   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
 807                r1, rbcp, r3);
 808   bind(verify_continue);
 809   ldp(r2, r3, Address(post(sp, 2 * wordSize)));
 810   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 811 #endif // ASSERT
 812 }
 813 
 814 
 815 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
 816                                                 int constant,
 817                                                 Register value) {
 818   assert(ProfileInterpreter, "must be profiling interpreter");
 819   Address data(mdp_in, constant);
 820   str(value, data);
 821 }
 822 
 823 
 824 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 825                                                       int constant) {
 826   increment_mdp_data_at(mdp_in, noreg, constant);
 827 }
 828 
 829 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 830                                                       Register index,
 831                                                       int constant) {
 832   assert(ProfileInterpreter, "must be profiling interpreter");
 833 
 834   assert_different_registers(rscratch2, rscratch1, mdp_in, index);
 835 
 836   Address addr1(mdp_in, constant);
 837   Address addr2(rscratch2, index, Address::lsl(0));
 838   Address &addr = addr1;
 839   if (index != noreg) {
 840     lea(rscratch2, addr1);
 841     addr = addr2;
 842   }
 843 
 844   increment(addr, DataLayout::counter_increment);
 845 }
 846 
 847 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
 848                                                 int flag_byte_constant) {
 849   assert(ProfileInterpreter, "must be profiling interpreter");
 850   int flags_offset = in_bytes(DataLayout::flags_offset());
 851   // Set the flag
 852   ldrb(rscratch1, Address(mdp_in, flags_offset));
 853   orr(rscratch1, rscratch1, flag_byte_constant);
 854   strb(rscratch1, Address(mdp_in, flags_offset));
 855 }
 856 
 857 
 858 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
 859                                                  int offset,
 860                                                  Register value,
 861                                                  Register test_value_out,
 862                                                  Label& not_equal_continue) {
 863   assert(ProfileInterpreter, "must be profiling interpreter");
 864   if (test_value_out == noreg) {
 865     ldr(rscratch1, Address(mdp_in, offset));
 866     cmp(value, rscratch1);
 867   } else {
 868     // Put the test value into a register, so caller can use it:
 869     ldr(test_value_out, Address(mdp_in, offset));
 870     cmp(value, test_value_out);
 871   }
 872   br(Assembler::NE, not_equal_continue);
 873 }
 874 
 875 
 876 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
 877                                                      int offset_of_disp) {
 878   assert(ProfileInterpreter, "must be profiling interpreter");
 879   ldr(rscratch1, Address(mdp_in, offset_of_disp));
 880   add(mdp_in, mdp_in, rscratch1, LSL);
 881   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 882 }
 883 
 884 
 885 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
 886                                                      Register reg,
 887                                                      int offset_of_disp) {
 888   assert(ProfileInterpreter, "must be profiling interpreter");
 889   lea(rscratch1, Address(mdp_in, offset_of_disp));
 890   ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0)));
 891   add(mdp_in, mdp_in, rscratch1, LSL);
 892   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 893 }
 894 
 895 
 896 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
 897                                                        int constant) {
 898   assert(ProfileInterpreter, "must be profiling interpreter");
 899   add(mdp_in, mdp_in, (unsigned)constant);
 900   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 901 }
 902 
 903 
 904 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
 905   assert(ProfileInterpreter, "must be profiling interpreter");
 906   // save/restore across call_VM
 907   stp(zr, return_bci, Address(pre(sp, -2 * wordSize)));
 908   call_VM(noreg,
 909           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
 910           return_bci);
 911   ldp(zr, return_bci, Address(post(sp, 2 * wordSize)));
 912 }
 913 
 914 
 915 void InterpreterMacroAssembler::profile_taken_branch(Register mdp) {
 916   if (ProfileInterpreter) {
 917     Label profile_continue;
 918 
 919     // If no method data exists, go to profile_continue.
 920     test_method_data_pointer(mdp, profile_continue);
 921 
 922     // We are taking a branch.  Increment the taken count.
 923     increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
 924 
 925     // The method data pointer needs to be updated to reflect the new target.
 926     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
 927     bind(profile_continue);
 928   }
 929 }
 930 
 931 
 932 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
 933   if (ProfileInterpreter) {
 934     Label profile_continue;
 935 
 936     // If no method data exists, go to profile_continue.
 937     test_method_data_pointer(mdp, profile_continue);
 938 
 939     // We are not taking a branch.  Increment the not taken count.
 940     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
 941 
 942     // The method data pointer needs to be updated to correspond to
 943     // the next bytecode
 944     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
 945     bind(profile_continue);
 946   }
 947 }
 948 
 949 
 950 void InterpreterMacroAssembler::profile_call(Register mdp) {
 951   if (ProfileInterpreter) {
 952     Label profile_continue;
 953 
 954     // If no method data exists, go to profile_continue.
 955     test_method_data_pointer(mdp, profile_continue);
 956 
 957     // We are making a call.  Increment the count.
 958     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
 959 
 960     // The method data pointer needs to be updated to reflect the new target.
 961     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
 962     bind(profile_continue);
 963   }
 964 }
 965 
 966 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
 967   if (ProfileInterpreter) {
 968     Label profile_continue;
 969 
 970     // If no method data exists, go to profile_continue.
 971     test_method_data_pointer(mdp, profile_continue);
 972 
 973     // We are making a call.  Increment the count.
 974     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
 975 
 976     // The method data pointer needs to be updated to reflect the new target.
 977     update_mdp_by_constant(mdp,
 978                            in_bytes(VirtualCallData::
 979                                     virtual_call_data_size()));
 980     bind(profile_continue);
 981   }
 982 }
 983 
 984 
 985 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
 986                                                      Register mdp,
 987                                                      Register reg2,
 988                                                      bool receiver_can_be_null) {
 989   if (ProfileInterpreter) {
 990     Label profile_continue;
 991 
 992     // If no method data exists, go to profile_continue.
 993     test_method_data_pointer(mdp, profile_continue);
 994 
 995     Label skip_receiver_profile;
 996     if (receiver_can_be_null) {
 997       Label not_null;
 998       // We are making a call.  Increment the count for null receiver.
 999       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1000       b(skip_receiver_profile);
1001       bind(not_null);
1002     }
1003 
1004     // Record the receiver type.
1005     record_klass_in_profile(receiver, mdp, reg2);
1006     bind(skip_receiver_profile);
1007 
1008     // The method data pointer needs to be updated to reflect the new target.
1009     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1010     bind(profile_continue);
1011   }
1012 }
1013 
1014 // This routine creates a state machine for updating the multi-row
1015 // type profile at a virtual call site (or other type-sensitive bytecode).
1016 // The machine visits each row (of receiver/count) until the receiver type
1017 // is found, or until it runs out of rows.  At the same time, it remembers
1018 // the location of the first empty row.  (An empty row records null for its
1019 // receiver, and can be allocated for a newly-observed receiver type.)
1020 // Because there are two degrees of freedom in the state, a simple linear
1021 // search will not work; it must be a decision tree.  Hence this helper
1022 // function is recursive, to generate the required tree structured code.
1023 // It's the interpreter, so we are trading off code space for speed.
1024 // See below for example code.
1025 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1026                                         Register receiver, Register mdp,
1027                                         Register reg2, int start_row,
1028                                         Label& done) {
1029   if (TypeProfileWidth == 0) {
1030     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1031   } else {
1032     record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1033         &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset);
1034   }
1035 }
1036 
1037 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1038                                         Register reg2, int start_row, Label& done, int total_rows,
1039                                         OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn) {
1040   int last_row = total_rows - 1;
1041   assert(start_row <= last_row, "must be work left to do");
1042   // Test this row for both the item and for null.
1043   // Take any of three different outcomes:
1044   //   1. found item => increment count and goto done
1045   //   2. found null => keep looking for case 1, maybe allocate this cell
1046   //   3. found something else => keep looking for cases 1 and 2
1047   // Case 3 is handled by a recursive call.
1048   for (int row = start_row; row <= last_row; row++) {
1049     Label next_test;
1050     bool test_for_null_also = (row == start_row);
1051 
1052     // See if the item is item[n].
1053     int item_offset = in_bytes(item_offset_fn(row));
1054     test_mdp_data_at(mdp, item_offset, item,
1055                      (test_for_null_also ? reg2 : noreg),
1056                      next_test);
1057     // (Reg2 now contains the item from the CallData.)
1058 
1059     // The item is item[n].  Increment count[n].
1060     int count_offset = in_bytes(item_count_offset_fn(row));
1061     increment_mdp_data_at(mdp, count_offset);
1062     b(done);
1063     bind(next_test);
1064 
1065     if (test_for_null_also) {
1066       Label found_null;
1067       // Failed the equality check on item[n]...  Test for null.
1068       if (start_row == last_row) {
1069         // The only thing left to do is handle the null case.
1070         cbz(reg2, found_null);
1071         // Item did not match any saved item and there is no empty row for it.
1072         // Increment total counter to indicate polymorphic case.
1073         increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1074         b(done);
1075         bind(found_null);
1076         break;
1077       }
1078       // Since null is rare, make it be the branch-taken case.
1079       cbz(reg2, found_null);
1080 
1081       // Put all the "Case 3" tests here.
1082       record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1083         item_offset_fn, item_count_offset_fn);
1084 
1085       // Found a null.  Keep searching for a matching item,
1086       // but remember that this is an empty (unused) slot.
1087       bind(found_null);
1088     }
1089   }
1090 
1091   // In the fall-through case, we found no matching item, but we
1092   // observed the item[start_row] is null.
1093 
1094   // Fill in the item field and increment the count.
1095   int item_offset = in_bytes(item_offset_fn(start_row));
1096   set_mdp_data_at(mdp, item_offset, item);
1097   int count_offset = in_bytes(item_count_offset_fn(start_row));
1098   mov(reg2, DataLayout::counter_increment);
1099   set_mdp_data_at(mdp, count_offset, reg2);
1100   if (start_row > 0) {
1101     b(done);
1102   }
1103 }
1104 
1105 // Example state machine code for three profile rows:
1106 //   // main copy of decision tree, rooted at row[1]
1107 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1108 //   if (row[0].rec != nullptr) {
1109 //     // inner copy of decision tree, rooted at row[1]
1110 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1111 //     if (row[1].rec != nullptr) {
1112 //       // degenerate decision tree, rooted at row[2]
1113 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1114 //       if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow
1115 //       row[2].init(rec); goto done;
1116 //     } else {
1117 //       // remember row[1] is empty
1118 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1119 //       row[1].init(rec); goto done;
1120 //     }
1121 //   } else {
1122 //     // remember row[0] is empty
1123 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1124 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1125 //     row[0].init(rec); goto done;
1126 //   }
1127 //   done:
1128 
1129 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1130                                                         Register mdp, Register reg2) {
1131   assert(ProfileInterpreter, "must be profiling");
1132   Label done;
1133 
1134   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
1135 
1136   bind (done);
1137 }
1138 
1139 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1140                                             Register mdp) {
1141   if (ProfileInterpreter) {
1142     Label profile_continue;
1143     uint row;
1144 
1145     // If no method data exists, go to profile_continue.
1146     test_method_data_pointer(mdp, profile_continue);
1147 
1148     // Update the total ret count.
1149     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1150 
1151     for (row = 0; row < RetData::row_limit(); row++) {
1152       Label next_test;
1153 
1154       // See if return_bci is equal to bci[n]:
1155       test_mdp_data_at(mdp,
1156                        in_bytes(RetData::bci_offset(row)),
1157                        return_bci, noreg,
1158                        next_test);
1159 
1160       // return_bci is equal to bci[n].  Increment the count.
1161       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1162 
1163       // The method data pointer needs to be updated to reflect the new target.
1164       update_mdp_by_offset(mdp,
1165                            in_bytes(RetData::bci_displacement_offset(row)));
1166       b(profile_continue);
1167       bind(next_test);
1168     }
1169 
1170     update_mdp_for_ret(return_bci);
1171 
1172     bind(profile_continue);
1173   }
1174 }
1175 
1176 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1177   if (ProfileInterpreter) {
1178     Label profile_continue;
1179 
1180     // If no method data exists, go to profile_continue.
1181     test_method_data_pointer(mdp, profile_continue);
1182 
1183     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1184 
1185     // The method data pointer needs to be updated.
1186     int mdp_delta = in_bytes(BitData::bit_data_size());
1187     if (TypeProfileCasts) {
1188       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1189     }
1190     update_mdp_by_constant(mdp, mdp_delta);
1191 
1192     bind(profile_continue);
1193   }
1194 }
1195 
1196 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1197   if (ProfileInterpreter) {
1198     Label profile_continue;
1199 
1200     // If no method data exists, go to profile_continue.
1201     test_method_data_pointer(mdp, profile_continue);
1202 
1203     // The method data pointer needs to be updated.
1204     int mdp_delta = in_bytes(BitData::bit_data_size());
1205     if (TypeProfileCasts) {
1206       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1207 
1208       // Record the object type.
1209       record_klass_in_profile(klass, mdp, reg2);
1210     }
1211     update_mdp_by_constant(mdp, mdp_delta);
1212 
1213     bind(profile_continue);
1214   }
1215 }
1216 
1217 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1218   if (ProfileInterpreter) {
1219     Label profile_continue;
1220 
1221     // If no method data exists, go to profile_continue.
1222     test_method_data_pointer(mdp, profile_continue);
1223 
1224     // Update the default case count
1225     increment_mdp_data_at(mdp,
1226                           in_bytes(MultiBranchData::default_count_offset()));
1227 
1228     // The method data pointer needs to be updated.
1229     update_mdp_by_offset(mdp,
1230                          in_bytes(MultiBranchData::
1231                                   default_displacement_offset()));
1232 
1233     bind(profile_continue);
1234   }
1235 }
1236 
1237 void InterpreterMacroAssembler::profile_switch_case(Register index,
1238                                                     Register mdp,
1239                                                     Register reg2) {
1240   if (ProfileInterpreter) {
1241     Label profile_continue;
1242 
1243     // If no method data exists, go to profile_continue.
1244     test_method_data_pointer(mdp, profile_continue);
1245 
1246     // Build the base (index * per_case_size_in_bytes()) +
1247     // case_array_offset_in_bytes()
1248     movw(reg2, in_bytes(MultiBranchData::per_case_size()));
1249     movw(rscratch1, in_bytes(MultiBranchData::case_array_offset()));
1250     Assembler::maddw(index, index, reg2, rscratch1);
1251 
1252     // Update the case count
1253     increment_mdp_data_at(mdp,
1254                           index,
1255                           in_bytes(MultiBranchData::relative_count_offset()));
1256 
1257     // The method data pointer needs to be updated.
1258     update_mdp_by_offset(mdp,
1259                          index,
1260                          in_bytes(MultiBranchData::
1261                                   relative_displacement_offset()));
1262 
1263     bind(profile_continue);
1264   }
1265 }
1266 
1267 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) {
1268   if (state == atos) {
1269     MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line);
1270   }
1271 }
1272 
1273 void InterpreterMacroAssembler::generate_runtime_upcalls_on_method_entry()
1274 {
1275   address upcall = RuntimeUpcalls::on_method_entry_upcall_address();
1276   if (RuntimeUpcalls::does_upcall_need_method_parameter(upcall)) {
1277     get_method(c_rarg1);
1278     call_VM(noreg,upcall, c_rarg1);
1279   } else {
1280     call_VM(noreg,upcall);
1281   }
1282 }
1283 
1284 void InterpreterMacroAssembler::notify_method_entry() {
1285   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1286   // track stack depth.  If it is possible to enter interp_only_mode we add
1287   // the code to check if the event should be sent.
1288   if (JvmtiExport::can_post_interpreter_events()) {
1289     Label L;
1290     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1291     cbzw(r3, L);
1292     call_VM(noreg, CAST_FROM_FN_PTR(address,
1293                                     InterpreterRuntime::post_method_entry));
1294     bind(L);
1295   }
1296 
1297   if (DTraceMethodProbes) {
1298     get_method(c_rarg1);
1299     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1300                  rthread, c_rarg1);
1301   }
1302 
1303   // RedefineClasses() tracing support for obsolete method entry
1304   if (log_is_enabled(Trace, redefine, class, obsolete) ||
1305       log_is_enabled(Trace, interpreter, bytecode)) {
1306     get_method(c_rarg1);
1307     call_VM_leaf(
1308       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1309       rthread, c_rarg1);
1310   }
1311 
1312  }
1313 
1314 
1315 void InterpreterMacroAssembler::notify_method_exit(
1316     TosState state, NotifyMethodExitMode mode) {
1317   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1318   // track stack depth.  If it is possible to enter interp_only_mode we add
1319   // the code to check if the event should be sent.
1320   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1321     Label L;
1322     // Note: frame::interpreter_frame_result has a dependency on how the
1323     // method result is saved across the call to post_method_exit. If this
1324     // is changed then the interpreter_frame_result implementation will
1325     // need to be updated too.
1326 
1327     // template interpreter will leave the result on the top of the stack.
1328     push(state);
1329     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1330     cbz(r3, L);
1331     call_VM(noreg,
1332             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1333     bind(L);
1334     pop(state);
1335   }
1336 
1337   if (DTraceMethodProbes) {
1338     push(state);
1339     get_method(c_rarg1);
1340     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1341                  rthread, c_rarg1);
1342     pop(state);
1343   }
1344 }
1345 
1346 
1347 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1348 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1349                                                         int increment, Address mask,
1350                                                         Register scratch, Register scratch2,
1351                                                         bool preloaded, Condition cond,
1352                                                         Label* where) {
1353   if (!preloaded) {
1354     ldrw(scratch, counter_addr);
1355   }
1356   add(scratch, scratch, increment);
1357   strw(scratch, counter_addr);
1358   ldrw(scratch2, mask);
1359   ands(scratch, scratch, scratch2);
1360   br(cond, *where);
1361 }
1362 
1363 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
1364                                                   int number_of_arguments) {
1365   // interpreter specific
1366   //
1367   // Note: No need to save/restore rbcp & rlocals pointer since these
1368   //       are callee saved registers and no blocking/ GC can happen
1369   //       in leaf calls.
1370 #ifdef ASSERT
1371   {
1372     Label L;
1373     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1374     cbz(rscratch1, L);
1375     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1376          " last_sp != nullptr");
1377     bind(L);
1378   }
1379 #endif /* ASSERT */
1380   // super call
1381   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
1382 }
1383 
1384 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
1385                                              Register java_thread,
1386                                              Register last_java_sp,
1387                                              address  entry_point,
1388                                              int      number_of_arguments,
1389                                              bool     check_exceptions) {
1390   // interpreter specific
1391   //
1392   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
1393   //       really make a difference for these runtime calls, since they are
1394   //       slow anyway. Btw., bcp must be saved/restored since it may change
1395   //       due to GC.
1396   // assert(java_thread == noreg , "not expecting a precomputed java thread");
1397   save_bcp();
1398 #ifdef ASSERT
1399   {
1400     Label L;
1401     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1402     cbz(rscratch1, L);
1403     stop("InterpreterMacroAssembler::call_VM_base:"
1404          " last_sp != nullptr");
1405     bind(L);
1406   }
1407 #endif /* ASSERT */
1408   // super call
1409   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
1410                                entry_point, number_of_arguments,
1411                      check_exceptions);
1412 // interpreter specific
1413   restore_bcp();
1414   restore_locals();
1415 }
1416 
1417 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result,
1418                                                     address entry_point,
1419                                                     Register arg_1) {
1420   assert(arg_1 == c_rarg1, "");
1421   Label resume_pc, not_preempted;
1422 
1423 #ifdef ASSERT
1424   {
1425     Label L;
1426     ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1427     cbz(rscratch1, L);
1428     stop("Should not have alternate return address set");
1429     bind(L);
1430   }
1431 #endif /* ASSERT */
1432 
1433   // Force freeze slow path.
1434   push_cont_fastpath();
1435 
1436   // Make VM call. In case of preemption set last_pc to the one we want to resume to.
1437   adr(rscratch1, resume_pc);
1438   str(rscratch1, Address(rthread, JavaThread::last_Java_pc_offset()));
1439   call_VM_base(oop_result, noreg, noreg, entry_point, 1, false /*check_exceptions*/);
1440 
1441   pop_cont_fastpath();
1442 
1443   // Check if preempted.
1444   ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1445   cbz(rscratch1, not_preempted);
1446   str(zr, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1447   br(rscratch1);
1448 
1449   // In case of preemption, this is where we will resume once we finally acquire the monitor.
1450   bind(resume_pc);
1451   restore_after_resume(false /* is_native */);
1452 
1453   bind(not_preempted);
1454 }
1455 
1456 void InterpreterMacroAssembler::restore_after_resume(bool is_native) {
1457   lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter()));
1458   blr(rscratch1);
1459   if (is_native) {
1460     // On resume we need to set up stack as expected
1461     push(dtos);
1462     push(ltos);
1463   }
1464 }
1465 
1466 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
1467   assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index());
1468   Label update, next, none;
1469 
1470   verify_oop(obj);
1471 
1472   cbnz(obj, update);
1473   orptr(mdo_addr, TypeEntries::null_seen);
1474   b(next);
1475 
1476   bind(update);
1477   load_klass(obj, obj);
1478 
1479   ldr(rscratch1, mdo_addr);
1480   eor(obj, obj, rscratch1);
1481   tst(obj, TypeEntries::type_klass_mask);
1482   br(Assembler::EQ, next); // klass seen before, nothing to
1483                            // do. The unknown bit may have been
1484                            // set already but no need to check.
1485 
1486   tbnz(obj, exact_log2(TypeEntries::type_unknown), next);
1487   // already unknown. Nothing to do anymore.
1488 
1489   cbz(rscratch1, none);
1490   cmp(rscratch1, (u1)TypeEntries::null_seen);
1491   br(Assembler::EQ, none);
1492   // There is a chance that the checks above
1493   // fail if another thread has just set the
1494   // profiling to this obj's klass
1495   eor(obj, obj, rscratch1); // get back original value before XOR
1496   ldr(rscratch1, mdo_addr);
1497   eor(obj, obj, rscratch1);
1498   tst(obj, TypeEntries::type_klass_mask);
1499   br(Assembler::EQ, next);
1500 
1501   // different than before. Cannot keep accurate profile.
1502   orptr(mdo_addr, TypeEntries::type_unknown);
1503   b(next);
1504 
1505   bind(none);
1506   // first time here. Set profile type.
1507   str(obj, mdo_addr);
1508 #ifdef ASSERT
1509   andr(obj, obj, TypeEntries::type_mask);
1510   verify_klass_ptr(obj);
1511 #endif
1512 
1513   bind(next);
1514 }
1515 
1516 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1517   if (!ProfileInterpreter) {
1518     return;
1519   }
1520 
1521   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1522     Label profile_continue;
1523 
1524     test_method_data_pointer(mdp, profile_continue);
1525 
1526     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1527 
1528     ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start));
1529     cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag));
1530     br(Assembler::NE, profile_continue);
1531 
1532     if (MethodData::profile_arguments()) {
1533       Label done;
1534       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1535 
1536       for (int i = 0; i < TypeProfileArgsLimit; i++) {
1537         if (i > 0 || MethodData::profile_return()) {
1538           // If return value type is profiled we may have no argument to profile
1539           ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1540           sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count());
1541           cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count());
1542           add(rscratch1, mdp, off_to_args);
1543           br(Assembler::LT, done);
1544         }
1545         ldr(tmp, Address(callee, Method::const_offset()));
1546         load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1547         // stack offset o (zero based) from the start of the argument
1548         // list, for n arguments translates into offset n - o - 1 from
1549         // the end of the argument list
1550         ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))));
1551         sub(tmp, tmp, rscratch1);
1552         sub(tmp, tmp, 1);
1553         Address arg_addr = argument_address(tmp);
1554         ldr(tmp, arg_addr);
1555 
1556         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i)));
1557         profile_obj_type(tmp, mdo_arg_addr);
1558 
1559         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1560         off_to_args += to_add;
1561       }
1562 
1563       if (MethodData::profile_return()) {
1564         ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1565         sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1566       }
1567 
1568       add(rscratch1, mdp, off_to_args);
1569       bind(done);
1570       mov(mdp, rscratch1);
1571 
1572       if (MethodData::profile_return()) {
1573         // We're right after the type profile for the last
1574         // argument. tmp is the number of cells left in the
1575         // CallTypeData/VirtualCallTypeData to reach its end. Non null
1576         // if there's a return to profile.
1577         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1578         add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size));
1579       }
1580       str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1581     } else {
1582       assert(MethodData::profile_return(), "either profile call args or call ret");
1583       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
1584     }
1585 
1586     // mdp points right after the end of the
1587     // CallTypeData/VirtualCallTypeData, right after the cells for the
1588     // return value type if there's one
1589 
1590     bind(profile_continue);
1591   }
1592 }
1593 
1594 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1595   assert_different_registers(mdp, ret, tmp, rbcp);
1596   if (ProfileInterpreter && MethodData::profile_return()) {
1597     Label profile_continue, done;
1598 
1599     test_method_data_pointer(mdp, profile_continue);
1600 
1601     if (MethodData::profile_return_jsr292_only()) {
1602       assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
1603 
1604       // If we don't profile all invoke bytecodes we must make sure
1605       // it's a bytecode we indeed profile. We can't go back to the
1606       // beginning of the ProfileData we intend to update to check its
1607       // type because we're right after it and we don't known its
1608       // length
1609       Label do_profile;
1610       ldrb(rscratch1, Address(rbcp, 0));
1611       cmp(rscratch1, (u1)Bytecodes::_invokedynamic);
1612       br(Assembler::EQ, do_profile);
1613       cmp(rscratch1, (u1)Bytecodes::_invokehandle);
1614       br(Assembler::EQ, do_profile);
1615       get_method(tmp);
1616       ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset()));
1617       subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm));
1618       br(Assembler::NE, profile_continue);
1619 
1620       bind(do_profile);
1621     }
1622 
1623     Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
1624     mov(tmp, ret);
1625     profile_obj_type(tmp, mdo_ret_addr);
1626 
1627     bind(profile_continue);
1628   }
1629 }
1630 
1631 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
1632   assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2);
1633   if (ProfileInterpreter && MethodData::profile_parameters()) {
1634     Label profile_continue, done;
1635 
1636     test_method_data_pointer(mdp, profile_continue);
1637 
1638     // Load the offset of the area within the MDO used for
1639     // parameters. If it's negative we're not profiling any parameters
1640     ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
1641     tbnz(tmp1, 31, profile_continue);  // i.e. sign bit set
1642 
1643     // Compute a pointer to the area for parameters from the offset
1644     // and move the pointer to the slot for the last
1645     // parameters. Collect profiling from last parameter down.
1646     // mdo start + parameters offset + array length - 1
1647     add(mdp, mdp, tmp1);
1648     ldr(tmp1, Address(mdp, ArrayData::array_len_offset()));
1649     sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1650 
1651     Label loop;
1652     bind(loop);
1653 
1654     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1655     int type_base = in_bytes(ParametersTypeData::type_offset(0));
1656     int per_arg_scale = exact_log2(DataLayout::cell_size);
1657     add(rscratch1, mdp, off_base);
1658     add(rscratch2, mdp, type_base);
1659 
1660     Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale));
1661     Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale));
1662 
1663     // load offset on the stack from the slot for this parameter
1664     ldr(tmp2, arg_off);
1665     neg(tmp2, tmp2);
1666     // read the parameter from the local area
1667     ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize)));
1668 
1669     // profile the parameter
1670     profile_obj_type(tmp2, arg_type);
1671 
1672     // go to next parameter
1673     subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1674     br(Assembler::GE, loop);
1675 
1676     bind(profile_continue);
1677   }
1678 }
1679 
1680 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) {
1681   // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp
1682   get_cache_index_at_bcp(index, 1, sizeof(u4));
1683   // Get address of invokedynamic array
1684   ldr(cache, Address(rcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset())));
1685   // Scale the index to be the entry index * sizeof(ResolvedIndyEntry)
1686   lsl(index, index, log2i_exact(sizeof(ResolvedIndyEntry)));
1687   add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes());
1688   lea(cache, Address(cache, index));
1689 }
1690 
1691 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) {
1692   // Get index out of bytecode pointer
1693   get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
1694   // Take shortcut if the size is a power of 2
1695   if (is_power_of_2(sizeof(ResolvedFieldEntry))) {
1696     lsl(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2
1697   } else {
1698     mov(cache, sizeof(ResolvedFieldEntry));
1699     mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry)
1700   }
1701   // Get address of field entries array
1702   ldr(cache, Address(rcpool, ConstantPoolCache::field_entries_offset()));
1703   add(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes());
1704   lea(cache, Address(cache, index));
1705   // Prevents stale data from being read after the bytecode is patched to the fast bytecode
1706   membar(MacroAssembler::LoadLoad);
1707 }
1708 
1709 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) {
1710   // Get index out of bytecode pointer
1711   get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
1712   mov(cache, sizeof(ResolvedMethodEntry));
1713   mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry)
1714 
1715   // Get address of field entries array
1716   ldr(cache, Address(rcpool, ConstantPoolCache::method_entries_offset()));
1717   add(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes());
1718   lea(cache, Address(cache, index));
1719 }