1 /*
   2  * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "compiler/compiler_globals.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/barrierSetAssembler.hpp"
  30 #include "interp_masm_aarch64.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "interpreter/interpreterRuntime.hpp"
  33 #include "logging/log.hpp"
  34 #include "oops/arrayOop.hpp"
  35 #include "oops/markWord.hpp"
  36 #include "oops/method.hpp"
  37 #include "oops/methodData.hpp"
  38 #include "oops/resolvedFieldEntry.hpp"
  39 #include "oops/resolvedIndyEntry.hpp"
  40 #include "oops/resolvedMethodEntry.hpp"
  41 #include "prims/jvmtiExport.hpp"
  42 #include "prims/jvmtiThreadState.hpp"
  43 #include "runtime/basicLock.hpp"
  44 #include "runtime/frame.inline.hpp"
  45 #include "runtime/javaThread.hpp"
  46 #include "runtime/runtimeUpcalls.hpp"
  47 #include "runtime/safepointMechanism.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "utilities/powerOfTwo.hpp"
  50 
  51 void InterpreterMacroAssembler::narrow(Register result) {
  52 
  53   // Get method->_constMethod->_result_type
  54   ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
  55   ldr(rscratch1, Address(rscratch1, Method::const_offset()));
  56   ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset()));
  57 
  58   Label done, notBool, notByte, notChar;
  59 
  60   // common case first
  61   cmpw(rscratch1, T_INT);
  62   br(Assembler::EQ, done);
  63 
  64   // mask integer result to narrower return type.
  65   cmpw(rscratch1, T_BOOLEAN);
  66   br(Assembler::NE, notBool);
  67   andw(result, result, 0x1);
  68   b(done);
  69 
  70   bind(notBool);
  71   cmpw(rscratch1, T_BYTE);
  72   br(Assembler::NE, notByte);
  73   sbfx(result, result, 0, 8);
  74   b(done);
  75 
  76   bind(notByte);
  77   cmpw(rscratch1, T_CHAR);
  78   br(Assembler::NE, notChar);
  79   ubfx(result, result, 0, 16);  // truncate upper 16 bits
  80   b(done);
  81 
  82   bind(notChar);
  83   sbfx(result, result, 0, 16);     // sign-extend short
  84 
  85   // Nothing to do for T_INT
  86   bind(done);
  87 }
  88 
  89 void InterpreterMacroAssembler::jump_to_entry(address entry) {
  90   assert(entry, "Entry must have been generated by now");
  91   b(entry);
  92 }
  93 
  94 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
  95   if (JvmtiExport::can_pop_frame()) {
  96     Label L;
  97     // Initiate popframe handling only if it is not already being
  98     // processed.  If the flag has the popframe_processing bit set, it
  99     // means that this code is called *during* popframe handling - we
 100     // don't want to reenter.
 101     // This method is only called just after the call into the vm in
 102     // call_VM_base, so the arg registers are available.
 103     ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
 104     tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L);
 105     tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L);
 106     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 107     // address of the same-named entrypoint in the generated interpreter code.
 108     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 109     br(r0);
 110     bind(L);
 111   }
 112 }
 113 
 114 
 115 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 116   ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 117   const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset());
 118   const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset());
 119   const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset());
 120   switch (state) {
 121     case atos: ldr(r0, oop_addr);
 122                str(zr, oop_addr);
 123                interp_verify_oop(r0, state);        break;
 124     case ltos: ldr(r0, val_addr);                   break;
 125     case btos:                                   // fall through
 126     case ztos:                                   // fall through
 127     case ctos:                                   // fall through
 128     case stos:                                   // fall through
 129     case itos: ldrw(r0, val_addr);                  break;
 130     case ftos: ldrs(v0, val_addr);                  break;
 131     case dtos: ldrd(v0, val_addr);                  break;
 132     case vtos: /* nothing to do */                  break;
 133     default  : ShouldNotReachHere();
 134   }
 135   // Clean up tos value in the thread object
 136   movw(rscratch1, (int) ilgl);
 137   strw(rscratch1, tos_addr);
 138   strw(zr, val_addr);
 139 }
 140 
 141 
 142 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 143   if (JvmtiExport::can_force_early_return()) {
 144     Label L;
 145     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 146     cbz(rscratch1, L); // if (thread->jvmti_thread_state() == nullptr) exit;
 147 
 148     // Initiate earlyret handling only if it is not already being processed.
 149     // If the flag has the earlyret_processing bit set, it means that this code
 150     // is called *during* earlyret handling - we don't want to reenter.
 151     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset()));
 152     cmpw(rscratch1, JvmtiThreadState::earlyret_pending);
 153     br(Assembler::NE, L);
 154 
 155     // Call Interpreter::remove_activation_early_entry() to get the address of the
 156     // same-named entrypoint in the generated interpreter code.
 157     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 158     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset()));
 159     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1);
 160     br(r0);
 161     bind(L);
 162   }
 163 }
 164 
 165 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
 166   Register reg,
 167   int bcp_offset) {
 168   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 169   ldrh(reg, Address(rbcp, bcp_offset));
 170   rev16(reg, reg);
 171 }
 172 
 173 void InterpreterMacroAssembler::get_dispatch() {
 174   uint64_t offset;
 175   adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset);
 176   // Use add() here after ARDP, rather than lea().
 177   // lea() does not generate anything if its offset is zero.
 178   // However, relocs expect to find either an ADD or a load/store
 179   // insn after an ADRP.  add() always generates an ADD insn, even
 180   // for add(Rn, Rn, 0).
 181   add(rdispatch, rdispatch, offset);
 182 }
 183 
 184 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
 185                                                        int bcp_offset,
 186                                                        size_t index_size) {
 187   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 188   if (index_size == sizeof(u2)) {
 189     load_unsigned_short(index, Address(rbcp, bcp_offset));
 190   } else if (index_size == sizeof(u4)) {
 191     // assert(EnableInvokeDynamic, "giant index used only for JSR 292");
 192     ldrw(index, Address(rbcp, bcp_offset));
 193   } else if (index_size == sizeof(u1)) {
 194     load_unsigned_byte(index, Address(rbcp, bcp_offset));
 195   } else {
 196     ShouldNotReachHere();
 197   }
 198 }
 199 
 200 void InterpreterMacroAssembler::get_method_counters(Register method,
 201                                                     Register mcs, Label& skip) {
 202   Label has_counters;
 203   ldr(mcs, Address(method, Method::method_counters_offset()));
 204   cbnz(mcs, has_counters);
 205   call_VM(noreg, CAST_FROM_FN_PTR(address,
 206           InterpreterRuntime::build_method_counters), method);
 207   ldr(mcs, Address(method, Method::method_counters_offset()));
 208   cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory
 209   bind(has_counters);
 210 }
 211 
 212 // Load object from cpool->resolved_references(index)
 213 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 214                                            Register result, Register index, Register tmp) {
 215   assert_different_registers(result, index);
 216 
 217   get_constant_pool(result);
 218   // load pointer for resolved_references[] objArray
 219   ldr(result, Address(result, ConstantPool::cache_offset()));
 220   ldr(result, Address(result, ConstantPoolCache::resolved_references_offset()));
 221   resolve_oop_handle(result, tmp, rscratch2);
 222   // Add in the index
 223   add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 224   load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop)), tmp, rscratch2);
 225 }
 226 
 227 void InterpreterMacroAssembler::load_resolved_klass_at_offset(
 228                              Register cpool, Register index, Register klass, Register temp) {
 229   add(temp, cpool, index, LSL, LogBytesPerWord);
 230   ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index
 231   ldr(klass, Address(cpool,  ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses
 232   add(klass, klass, temp, LSL, LogBytesPerWord);
 233   ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes()));
 234 }
 235 
 236 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
 237 // subtype of super_klass.
 238 //
 239 // Args:
 240 //      r0: superklass
 241 //      Rsub_klass: subklass
 242 //
 243 // Kills:
 244 //      r2, r5
 245 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 246                                                   Label& ok_is_subtype) {
 247   assert(Rsub_klass != r0, "r0 holds superklass");
 248   assert(Rsub_klass != r2, "r2 holds 2ndary super array length");
 249   assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr");
 250 
 251   // Profile the not-null value's klass.
 252   profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5
 253 
 254   // Do the check.
 255   check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2
 256 }
 257 
 258 // Java Expression Stack
 259 
 260 void InterpreterMacroAssembler::pop_ptr(Register r) {
 261   ldr(r, post(esp, wordSize));
 262 }
 263 
 264 void InterpreterMacroAssembler::pop_i(Register r) {
 265   ldrw(r, post(esp, wordSize));
 266 }
 267 
 268 void InterpreterMacroAssembler::pop_l(Register r) {
 269   ldr(r, post(esp, 2 * Interpreter::stackElementSize));
 270 }
 271 
 272 void InterpreterMacroAssembler::push_ptr(Register r) {
 273   str(r, pre(esp, -wordSize));
 274  }
 275 
 276 void InterpreterMacroAssembler::push_i(Register r) {
 277   str(r, pre(esp, -wordSize));
 278 }
 279 
 280 void InterpreterMacroAssembler::push_l(Register r) {
 281   str(zr, pre(esp, -wordSize));
 282   str(r, pre(esp, - wordSize));
 283 }
 284 
 285 void InterpreterMacroAssembler::pop_f(FloatRegister r) {
 286   ldrs(r, post(esp, wordSize));
 287 }
 288 
 289 void InterpreterMacroAssembler::pop_d(FloatRegister r) {
 290   ldrd(r, post(esp, 2 * Interpreter::stackElementSize));
 291 }
 292 
 293 void InterpreterMacroAssembler::push_f(FloatRegister r) {
 294   strs(r, pre(esp, -wordSize));
 295 }
 296 
 297 void InterpreterMacroAssembler::push_d(FloatRegister r) {
 298   strd(r, pre(esp, 2* -wordSize));
 299 }
 300 
 301 void InterpreterMacroAssembler::pop(TosState state) {
 302   switch (state) {
 303   case atos: pop_ptr();                 break;
 304   case btos:
 305   case ztos:
 306   case ctos:
 307   case stos:
 308   case itos: pop_i();                   break;
 309   case ltos: pop_l();                   break;
 310   case ftos: pop_f();                   break;
 311   case dtos: pop_d();                   break;
 312   case vtos: /* nothing to do */        break;
 313   default:   ShouldNotReachHere();
 314   }
 315   interp_verify_oop(r0, state);
 316 }
 317 
 318 void InterpreterMacroAssembler::push(TosState state) {
 319   interp_verify_oop(r0, state);
 320   switch (state) {
 321   case atos: push_ptr();                break;
 322   case btos:
 323   case ztos:
 324   case ctos:
 325   case stos:
 326   case itos: push_i();                  break;
 327   case ltos: push_l();                  break;
 328   case ftos: push_f();                  break;
 329   case dtos: push_d();                  break;
 330   case vtos: /* nothing to do */        break;
 331   default  : ShouldNotReachHere();
 332   }
 333 }
 334 
 335 // Helpers for swap and dup
 336 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 337   ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 338 }
 339 
 340 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 341   str(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 342 }
 343 
 344 void InterpreterMacroAssembler::load_float(Address src) {
 345   ldrs(v0, src);
 346 }
 347 
 348 void InterpreterMacroAssembler::load_double(Address src) {
 349   ldrd(v0, src);
 350 }
 351 
 352 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 353   // set sender sp
 354   mov(r19_sender_sp, sp);
 355   // record last_sp
 356   sub(rscratch1, esp, rfp);
 357   asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
 358   str(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 359 }
 360 
 361 // Jump to from_interpreted entry of a call unless single stepping is possible
 362 // in this thread in which case we must call the i2i entry
 363 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 364   prepare_to_jump_from_interpreted();
 365 
 366   if (JvmtiExport::can_post_interpreter_events()) {
 367     Label run_compiled_code;
 368     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 369     // compiled code in threads for which the event is enabled.  Check here for
 370     // interp_only_mode if these events CAN be enabled.
 371     ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset()));
 372     cbzw(rscratch1, run_compiled_code);
 373     ldr(rscratch1, Address(method, Method::interpreter_entry_offset()));
 374     br(rscratch1);
 375     bind(run_compiled_code);
 376   }
 377 
 378   ldr(rscratch1, Address(method, Method::from_interpreted_offset()));
 379   br(rscratch1);
 380 }
 381 
 382 // The following two routines provide a hook so that an implementation
 383 // can schedule the dispatch in two parts.  amd64 does not do this.
 384 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 385 }
 386 
 387 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 388     dispatch_next(state, step);
 389 }
 390 
 391 void InterpreterMacroAssembler::dispatch_base(TosState state,
 392                                               address* table,
 393                                               bool verifyoop,
 394                                               bool generate_poll) {
 395   if (VerifyActivationFrameSize) {
 396     Label L;
 397     sub(rscratch2, rfp, esp);
 398     int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
 399     subs(rscratch2, rscratch2, min_frame_size);
 400     br(Assembler::GE, L);
 401     stop("broken stack frame");
 402     bind(L);
 403   }
 404   if (verifyoop) {
 405     interp_verify_oop(r0, state);
 406   }
 407 
 408   Label safepoint;
 409   address* const safepoint_table = Interpreter::safept_table(state);
 410   bool needs_thread_local_poll = generate_poll && table != safepoint_table;
 411 
 412   if (needs_thread_local_poll) {
 413     NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
 414     ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset()));
 415     tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint);
 416   }
 417 
 418   if (table == Interpreter::dispatch_table(state)) {
 419     addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state));
 420     ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3)));
 421   } else {
 422     mov(rscratch2, (address)table);
 423     ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
 424   }
 425   br(rscratch2);
 426 
 427   if (needs_thread_local_poll) {
 428     bind(safepoint);
 429     lea(rscratch2, ExternalAddress((address)safepoint_table));
 430     ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
 431     br(rscratch2);
 432   }
 433 }
 434 
 435 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
 436   dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
 437 }
 438 
 439 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 440   dispatch_base(state, Interpreter::normal_table(state));
 441 }
 442 
 443 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 444   dispatch_base(state, Interpreter::normal_table(state), false);
 445 }
 446 
 447 
 448 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
 449   // load next bytecode
 450   ldrb(rscratch1, Address(pre(rbcp, step)));
 451   dispatch_base(state, Interpreter::dispatch_table(state), /*verifyoop*/true, generate_poll);
 452 }
 453 
 454 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 455   // load current bytecode
 456   ldrb(rscratch1, Address(rbcp, 0));
 457   dispatch_base(state, table);
 458 }
 459 
 460 // remove activation
 461 //
 462 // Unlock the receiver if this is a synchronized method.
 463 // Unlock any Java monitors from synchronized blocks.
 464 // Apply stack watermark barrier.
 465 // Notify JVMTI.
 466 // Remove the activation from the stack.
 467 //
 468 // If there are locked Java monitors
 469 //    If throw_monitor_exception
 470 //       throws IllegalMonitorStateException
 471 //    Else if install_monitor_exception
 472 //       installs IllegalMonitorStateException
 473 //    Else
 474 //       no error processing
 475 void InterpreterMacroAssembler::remove_activation(TosState state,
 476                                                   bool throw_monitor_exception,
 477                                                   bool install_monitor_exception,
 478                                                   bool notify_jvmdi) {
 479   // Note: Registers r3 xmm0 may be in use for the
 480   // result check if synchronized method
 481   Label unlocked, unlock, no_unlock;
 482 
 483   // get the value of _do_not_unlock_if_synchronized into r3
 484   const Address do_not_unlock_if_synchronized(rthread,
 485     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 486   ldrb(r3, do_not_unlock_if_synchronized);
 487   strb(zr, do_not_unlock_if_synchronized); // reset the flag
 488 
 489  // get method access flags
 490   ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
 491   ldrh(r2, Address(r1, Method::access_flags_offset()));
 492   tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked);
 493 
 494   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 495   // is set.
 496   cbnz(r3, no_unlock);
 497 
 498   // unlock monitor
 499   push(state); // save result
 500 
 501   // BasicObjectLock will be first in list, since this is a
 502   // synchronized method. However, need to check that the object has
 503   // not been unlocked by an explicit monitorexit bytecode.
 504   const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset *
 505                         wordSize - (int) sizeof(BasicObjectLock));
 506   // We use c_rarg1 so that if we go slow path it will be the correct
 507   // register for unlock_object to pass to VM directly
 508   lea(c_rarg1, monitor); // address of first monitor
 509 
 510   ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
 511   cbnz(r0, unlock);
 512 
 513   pop(state);
 514   if (throw_monitor_exception) {
 515     // Entry already unlocked, need to throw exception
 516     call_VM(noreg, CAST_FROM_FN_PTR(address,
 517                    InterpreterRuntime::throw_illegal_monitor_state_exception));
 518     should_not_reach_here();
 519   } else {
 520     // Monitor already unlocked during a stack unroll. If requested,
 521     // install an illegal_monitor_state_exception.  Continue with
 522     // stack unrolling.
 523     if (install_monitor_exception) {
 524       call_VM(noreg, CAST_FROM_FN_PTR(address,
 525                      InterpreterRuntime::new_illegal_monitor_state_exception));
 526     }
 527     b(unlocked);
 528   }
 529 
 530   bind(unlock);
 531   unlock_object(c_rarg1);
 532   pop(state);
 533 
 534   // Check that for block-structured locking (i.e., that all locked
 535   // objects has been unlocked)
 536   bind(unlocked);
 537 
 538   // r0: Might contain return value
 539 
 540   // Check that all monitors are unlocked
 541   {
 542     Label loop, exception, entry, restart;
 543     const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
 544     const Address monitor_block_top(
 545         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
 546     const Address monitor_block_bot(
 547         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
 548 
 549     bind(restart);
 550     // We use c_rarg1 so that if we go slow path it will be the correct
 551     // register for unlock_object to pass to VM directly
 552     ldr(c_rarg1, monitor_block_top); // derelativize pointer
 553     lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
 554     // c_rarg1 points to current entry, starting with top-most entry
 555 
 556     lea(r19, monitor_block_bot);  // points to word before bottom of
 557                                   // monitor block
 558     b(entry);
 559 
 560     // Entry already locked, need to throw exception
 561     bind(exception);
 562 
 563     if (throw_monitor_exception) {
 564       // Throw exception
 565       MacroAssembler::call_VM(noreg,
 566                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
 567                                    throw_illegal_monitor_state_exception));
 568       should_not_reach_here();
 569     } else {
 570       // Stack unrolling. Unlock object and install illegal_monitor_exception.
 571       // Unlock does not block, so don't have to worry about the frame.
 572       // We don't have to preserve c_rarg1 since we are going to throw an exception.
 573 
 574       push(state);
 575       unlock_object(c_rarg1);
 576       pop(state);
 577 
 578       if (install_monitor_exception) {
 579         call_VM(noreg, CAST_FROM_FN_PTR(address,
 580                                         InterpreterRuntime::
 581                                         new_illegal_monitor_state_exception));
 582       }
 583 
 584       b(restart);
 585     }
 586 
 587     bind(loop);
 588     // check if current entry is used
 589     ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset()));
 590     cbnz(rscratch1, exception);
 591 
 592     add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry
 593     bind(entry);
 594     cmp(c_rarg1, r19); // check if bottom reached
 595     br(Assembler::NE, loop); // if not at bottom then check this entry
 596   }
 597 
 598   bind(no_unlock);
 599 
 600   JFR_ONLY(enter_jfr_critical_section();)
 601 
 602   // The below poll is for the stack watermark barrier. It allows fixing up frames lazily,
 603   // that would normally not be safe to use. Such bad returns into unsafe territory of
 604   // the stack, will call InterpreterRuntime::at_unwind.
 605   Label slow_path;
 606   Label fast_path;
 607   safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */);
 608   br(Assembler::AL, fast_path);
 609   bind(slow_path);
 610   push(state);
 611   set_last_Java_frame(esp, rfp, pc(), rscratch1);
 612   super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread);
 613   reset_last_Java_frame(true);
 614   pop(state);
 615   bind(fast_path);
 616 
 617   // JVMTI support. Make sure the safepoint poll test is issued prior.
 618   if (notify_jvmdi) {
 619     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
 620   } else {
 621     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
 622   }
 623 
 624   // remove activation
 625   // get sender esp
 626   ldr(rscratch2,
 627       Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
 628   if (StackReservedPages > 0) {
 629     // testing if reserved zone needs to be re-enabled
 630     Label no_reserved_zone_enabling;
 631 
 632     // check if already enabled - if so no re-enabling needed
 633     assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size");
 634     ldrw(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset()));
 635     cmpw(rscratch1, (u1)StackOverflow::stack_guard_enabled);
 636     br(Assembler::EQ, no_reserved_zone_enabling);
 637 
 638     // look for an overflow into the stack reserved zone, i.e.
 639     // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation
 640     ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset()));
 641     cmp(rscratch2, rscratch1);
 642     br(Assembler::LS, no_reserved_zone_enabling);
 643 
 644     JFR_ONLY(leave_jfr_critical_section();)
 645 
 646     call_VM_leaf(
 647       CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
 648     call_VM(noreg, CAST_FROM_FN_PTR(address,
 649                    InterpreterRuntime::throw_delayed_StackOverflowError));
 650     should_not_reach_here();
 651 
 652     bind(no_reserved_zone_enabling);
 653   }
 654 
 655   // remove frame anchor
 656   leave();
 657 
 658   JFR_ONLY(leave_jfr_critical_section();)
 659 
 660   // restore sender esp
 661   mov(esp, rscratch2);
 662 
 663   // If we're returning to interpreted code we will shortly be
 664   // adjusting SP to allow some space for ESP.  If we're returning to
 665   // compiled code the saved sender SP was saved in sender_sp, so this
 666   // restores it.
 667   andr(sp, esp, -16);
 668 }
 669 
 670 #if INCLUDE_JFR
 671 void InterpreterMacroAssembler::enter_jfr_critical_section() {
 672   const Address sampling_critical_section(rthread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR));
 673   mov(rscratch1, true);
 674   strb(rscratch1, sampling_critical_section);
 675 }
 676 
 677 void InterpreterMacroAssembler::leave_jfr_critical_section() {
 678   const Address sampling_critical_section(rthread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR));
 679   strb(zr, sampling_critical_section);
 680 }
 681 #endif // INCLUDE_JFR
 682 
 683 // Lock object
 684 //
 685 // Args:
 686 //      c_rarg1: BasicObjectLock to be used for locking
 687 //
 688 // Kills:
 689 //      r0
 690 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, .. (param regs)
 691 //      rscratch1, rscratch2 (scratch regs)
 692 void InterpreterMacroAssembler::lock_object(Register lock_reg)
 693 {
 694   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
 695   if (LockingMode == LM_MONITOR) {
 696     call_VM_preemptable(noreg,
 697             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 698             lock_reg);
 699   } else {
 700     Label count, done;
 701 
 702     const Register swap_reg = r0;
 703     const Register tmp = c_rarg2;
 704     const Register obj_reg = c_rarg3; // Will contain the oop
 705     const Register tmp2 = c_rarg4;
 706     const Register tmp3 = c_rarg5;
 707 
 708     const int obj_offset = in_bytes(BasicObjectLock::obj_offset());
 709     const int lock_offset = in_bytes(BasicObjectLock::lock_offset());
 710     const int mark_offset = lock_offset +
 711                             BasicLock::displaced_header_offset_in_bytes();
 712 
 713     Label slow_case;
 714 
 715     // Load object pointer into obj_reg %c_rarg3
 716     ldr(obj_reg, Address(lock_reg, obj_offset));
 717 
 718     if (LockingMode == LM_LIGHTWEIGHT) {
 719       lightweight_lock(lock_reg, obj_reg, tmp, tmp2, tmp3, slow_case);
 720       b(done);
 721     } else if (LockingMode == LM_LEGACY) {
 722 
 723       if (DiagnoseSyncOnValueBasedClasses != 0) {
 724         load_klass(tmp, obj_reg);
 725         ldrb(tmp, Address(tmp, Klass::misc_flags_offset()));
 726         tst(tmp, KlassFlags::_misc_is_value_based_class);
 727         br(Assembler::NE, slow_case);
 728       }
 729 
 730       // Load (object->mark() | 1) into swap_reg
 731       ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
 732       orr(swap_reg, rscratch1, 1);
 733 
 734       // Save (object->mark() | 1) into BasicLock's displaced header
 735       str(swap_reg, Address(lock_reg, mark_offset));
 736 
 737       assert(lock_offset == 0,
 738              "displached header must be first word in BasicObjectLock");
 739 
 740       Label fail;
 741       cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr);
 742 
 743       // Fast check for recursive lock.
 744       //
 745       // Can apply the optimization only if this is a stack lock
 746       // allocated in this thread. For efficiency, we can focus on
 747       // recently allocated stack locks (instead of reading the stack
 748       // base and checking whether 'mark' points inside the current
 749       // thread stack):
 750       //  1) (mark & 7) == 0, and
 751       //  2) sp <= mark < mark + os::pagesize()
 752       //
 753       // Warning: sp + os::pagesize can overflow the stack base. We must
 754       // neither apply the optimization for an inflated lock allocated
 755       // just above the thread stack (this is why condition 1 matters)
 756       // nor apply the optimization if the stack lock is inside the stack
 757       // of another thread. The latter is avoided even in case of overflow
 758       // because we have guard pages at the end of all stacks. Hence, if
 759       // we go over the stack base and hit the stack of another thread,
 760       // this should not be in a writeable area that could contain a
 761       // stack lock allocated by that thread. As a consequence, a stack
 762       // lock less than page size away from sp is guaranteed to be
 763       // owned by the current thread.
 764       //
 765       // These 3 tests can be done by evaluating the following
 766       // expression: ((mark - sp) & (7 - os::vm_page_size())),
 767       // assuming both stack pointer and pagesize have their
 768       // least significant 3 bits clear.
 769       // NOTE: the mark is in swap_reg %r0 as the result of cmpxchg
 770       // NOTE2: aarch64 does not like to subtract sp from rn so take a
 771       // copy
 772       mov(rscratch1, sp);
 773       sub(swap_reg, swap_reg, rscratch1);
 774       ands(swap_reg, swap_reg, (uint64_t)(7 - (int)os::vm_page_size()));
 775 
 776       // Save the test result, for recursive case, the result is zero
 777       str(swap_reg, Address(lock_reg, mark_offset));
 778       br(Assembler::NE, slow_case);
 779 
 780       bind(count);
 781       inc_held_monitor_count(rscratch1);
 782       b(done);
 783     }
 784     bind(slow_case);
 785 
 786     // Call the runtime routine for slow case
 787     call_VM_preemptable(noreg,
 788             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 789             lock_reg);
 790 
 791     bind(done);
 792   }
 793 }
 794 
 795 
 796 // Unlocks an object. Used in monitorexit bytecode and
 797 // remove_activation.  Throws an IllegalMonitorException if object is
 798 // not locked by current thread.
 799 //
 800 // Args:
 801 //      c_rarg1: BasicObjectLock for lock
 802 //
 803 // Kills:
 804 //      r0
 805 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
 806 //      rscratch1, rscratch2 (scratch regs)
 807 void InterpreterMacroAssembler::unlock_object(Register lock_reg)
 808 {
 809   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
 810 
 811   if (LockingMode == LM_MONITOR) {
 812     call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
 813   } else {
 814     Label count, done;
 815 
 816     const Register swap_reg   = r0;
 817     const Register header_reg = c_rarg2;  // Will contain the old oopMark
 818     const Register obj_reg    = c_rarg3;  // Will contain the oop
 819     const Register tmp_reg    = c_rarg4;  // Temporary used by lightweight_unlock
 820 
 821     save_bcp(); // Save in case of exception
 822 
 823     if (LockingMode != LM_LIGHTWEIGHT) {
 824       // Convert from BasicObjectLock structure to object and BasicLock
 825       // structure Store the BasicLock address into %r0
 826       lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset()));
 827     }
 828 
 829     // Load oop into obj_reg(%c_rarg3)
 830     ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
 831 
 832     // Free entry
 833     str(zr, Address(lock_reg, BasicObjectLock::obj_offset()));
 834 
 835     Label slow_case;
 836     if (LockingMode == LM_LIGHTWEIGHT) {
 837       lightweight_unlock(obj_reg, header_reg, swap_reg, tmp_reg, slow_case);
 838       b(done);
 839     } else if (LockingMode == LM_LEGACY) {
 840       // Load the old header from BasicLock structure
 841       ldr(header_reg, Address(swap_reg,
 842                               BasicLock::displaced_header_offset_in_bytes()));
 843 
 844       // Test for recursion
 845       cbz(header_reg, count);
 846 
 847       // Atomic swap back the old header
 848       cmpxchg_obj_header(swap_reg, header_reg, obj_reg, rscratch1, count, &slow_case);
 849 
 850       bind(count);
 851       dec_held_monitor_count(rscratch1);
 852       b(done);
 853     }
 854 
 855     bind(slow_case);
 856     // Call the runtime routine for slow case.
 857     str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj
 858     call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
 859     bind(done);
 860     restore_bcp();
 861   }
 862 }
 863 
 864 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
 865                                                          Label& zero_continue) {
 866   assert(ProfileInterpreter, "must be profiling interpreter");
 867   ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 868   cbz(mdp, zero_continue);
 869 }
 870 
 871 // Set the method data pointer for the current bcp.
 872 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
 873   assert(ProfileInterpreter, "must be profiling interpreter");
 874   Label set_mdp;
 875   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 876 
 877   // Test MDO to avoid the call if it is null.
 878   ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset())));
 879   cbz(r0, set_mdp);
 880   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp);
 881   // r0: mdi
 882   // mdo is guaranteed to be non-zero here, we checked for it before the call.
 883   ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
 884   lea(r1, Address(r1, in_bytes(MethodData::data_offset())));
 885   add(r0, r1, r0);
 886   str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 887   bind(set_mdp);
 888   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 889 }
 890 
 891 void InterpreterMacroAssembler::verify_method_data_pointer() {
 892   assert(ProfileInterpreter, "must be profiling interpreter");
 893 #ifdef ASSERT
 894   Label verify_continue;
 895   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 896   stp(r2, r3, Address(pre(sp, -2 * wordSize)));
 897   test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue
 898   get_method(r1);
 899 
 900   // If the mdp is valid, it will point to a DataLayout header which is
 901   // consistent with the bcp.  The converse is highly probable also.
 902   ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset())));
 903   ldr(rscratch1, Address(r1, Method::const_offset()));
 904   add(r2, r2, rscratch1, Assembler::LSL);
 905   lea(r2, Address(r2, ConstMethod::codes_offset()));
 906   cmp(r2, rbcp);
 907   br(Assembler::EQ, verify_continue);
 908   // r1: method
 909   // rbcp: bcp // rbcp == 22
 910   // r3: mdp
 911   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
 912                r1, rbcp, r3);
 913   bind(verify_continue);
 914   ldp(r2, r3, Address(post(sp, 2 * wordSize)));
 915   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 916 #endif // ASSERT
 917 }
 918 
 919 
 920 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
 921                                                 int constant,
 922                                                 Register value) {
 923   assert(ProfileInterpreter, "must be profiling interpreter");
 924   Address data(mdp_in, constant);
 925   str(value, data);
 926 }
 927 
 928 
 929 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 930                                                       int constant,
 931                                                       bool decrement) {
 932   increment_mdp_data_at(mdp_in, noreg, constant, decrement);
 933 }
 934 
 935 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 936                                                       Register reg,
 937                                                       int constant,
 938                                                       bool decrement) {
 939   assert(ProfileInterpreter, "must be profiling interpreter");
 940   // %%% this does 64bit counters at best it is wasting space
 941   // at worst it is a rare bug when counters overflow
 942 
 943   assert_different_registers(rscratch2, rscratch1, mdp_in, reg);
 944 
 945   Address addr1(mdp_in, constant);
 946   Address addr2(rscratch2, reg, Address::lsl(0));
 947   Address &addr = addr1;
 948   if (reg != noreg) {
 949     lea(rscratch2, addr1);
 950     addr = addr2;
 951   }
 952 
 953   if (decrement) {
 954     // Decrement the register.  Set condition codes.
 955     // Intel does this
 956     // addptr(data, (int32_t) -DataLayout::counter_increment);
 957     // If the decrement causes the counter to overflow, stay negative
 958     // Label L;
 959     // jcc(Assembler::negative, L);
 960     // addptr(data, (int32_t) DataLayout::counter_increment);
 961     // so we do this
 962     ldr(rscratch1, addr);
 963     subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment);
 964     Label L;
 965     br(Assembler::LO, L);       // skip store if counter underflow
 966     str(rscratch1, addr);
 967     bind(L);
 968   } else {
 969     assert(DataLayout::counter_increment == 1,
 970            "flow-free idiom only works with 1");
 971     // Intel does this
 972     // Increment the register.  Set carry flag.
 973     // addptr(data, DataLayout::counter_increment);
 974     // If the increment causes the counter to overflow, pull back by 1.
 975     // sbbptr(data, (int32_t)0);
 976     // so we do this
 977     ldr(rscratch1, addr);
 978     adds(rscratch1, rscratch1, DataLayout::counter_increment);
 979     Label L;
 980     br(Assembler::CS, L);       // skip store if counter overflow
 981     str(rscratch1, addr);
 982     bind(L);
 983   }
 984 }
 985 
 986 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
 987                                                 int flag_byte_constant) {
 988   assert(ProfileInterpreter, "must be profiling interpreter");
 989   int flags_offset = in_bytes(DataLayout::flags_offset());
 990   // Set the flag
 991   ldrb(rscratch1, Address(mdp_in, flags_offset));
 992   orr(rscratch1, rscratch1, flag_byte_constant);
 993   strb(rscratch1, Address(mdp_in, flags_offset));
 994 }
 995 
 996 
 997 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
 998                                                  int offset,
 999                                                  Register value,
1000                                                  Register test_value_out,
1001                                                  Label& not_equal_continue) {
1002   assert(ProfileInterpreter, "must be profiling interpreter");
1003   if (test_value_out == noreg) {
1004     ldr(rscratch1, Address(mdp_in, offset));
1005     cmp(value, rscratch1);
1006   } else {
1007     // Put the test value into a register, so caller can use it:
1008     ldr(test_value_out, Address(mdp_in, offset));
1009     cmp(value, test_value_out);
1010   }
1011   br(Assembler::NE, not_equal_continue);
1012 }
1013 
1014 
1015 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1016                                                      int offset_of_disp) {
1017   assert(ProfileInterpreter, "must be profiling interpreter");
1018   ldr(rscratch1, Address(mdp_in, offset_of_disp));
1019   add(mdp_in, mdp_in, rscratch1, LSL);
1020   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1021 }
1022 
1023 
1024 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1025                                                      Register reg,
1026                                                      int offset_of_disp) {
1027   assert(ProfileInterpreter, "must be profiling interpreter");
1028   lea(rscratch1, Address(mdp_in, offset_of_disp));
1029   ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0)));
1030   add(mdp_in, mdp_in, rscratch1, LSL);
1031   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1032 }
1033 
1034 
1035 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1036                                                        int constant) {
1037   assert(ProfileInterpreter, "must be profiling interpreter");
1038   add(mdp_in, mdp_in, (unsigned)constant);
1039   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1040 }
1041 
1042 
1043 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1044   assert(ProfileInterpreter, "must be profiling interpreter");
1045   // save/restore across call_VM
1046   stp(zr, return_bci, Address(pre(sp, -2 * wordSize)));
1047   call_VM(noreg,
1048           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1049           return_bci);
1050   ldp(zr, return_bci, Address(post(sp, 2 * wordSize)));
1051 }
1052 
1053 
1054 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1055                                                      Register bumped_count) {
1056   if (ProfileInterpreter) {
1057     Label profile_continue;
1058 
1059     // If no method data exists, go to profile_continue.
1060     // Otherwise, assign to mdp
1061     test_method_data_pointer(mdp, profile_continue);
1062 
1063     // We are taking a branch.  Increment the taken count.
1064     // We inline increment_mdp_data_at to return bumped_count in a register
1065     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1066     Address data(mdp, in_bytes(JumpData::taken_offset()));
1067     ldr(bumped_count, data);
1068     assert(DataLayout::counter_increment == 1,
1069             "flow-free idiom only works with 1");
1070     // Intel does this to catch overflow
1071     // addptr(bumped_count, DataLayout::counter_increment);
1072     // sbbptr(bumped_count, 0);
1073     // so we do this
1074     adds(bumped_count, bumped_count, DataLayout::counter_increment);
1075     Label L;
1076     br(Assembler::CS, L);       // skip store if counter overflow
1077     str(bumped_count, data);
1078     bind(L);
1079     // The method data pointer needs to be updated to reflect the new target.
1080     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1081     bind(profile_continue);
1082   }
1083 }
1084 
1085 
1086 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1087   if (ProfileInterpreter) {
1088     Label profile_continue;
1089 
1090     // If no method data exists, go to profile_continue.
1091     test_method_data_pointer(mdp, profile_continue);
1092 
1093     // We are taking a branch.  Increment the not taken count.
1094     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1095 
1096     // The method data pointer needs to be updated to correspond to
1097     // the next bytecode
1098     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1099     bind(profile_continue);
1100   }
1101 }
1102 
1103 
1104 void InterpreterMacroAssembler::profile_call(Register mdp) {
1105   if (ProfileInterpreter) {
1106     Label profile_continue;
1107 
1108     // If no method data exists, go to profile_continue.
1109     test_method_data_pointer(mdp, profile_continue);
1110 
1111     // We are making a call.  Increment the count.
1112     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1113 
1114     // The method data pointer needs to be updated to reflect the new target.
1115     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1116     bind(profile_continue);
1117   }
1118 }
1119 
1120 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1121   if (ProfileInterpreter) {
1122     Label profile_continue;
1123 
1124     // If no method data exists, go to profile_continue.
1125     test_method_data_pointer(mdp, profile_continue);
1126 
1127     // We are making a call.  Increment the count.
1128     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1129 
1130     // The method data pointer needs to be updated to reflect the new target.
1131     update_mdp_by_constant(mdp,
1132                            in_bytes(VirtualCallData::
1133                                     virtual_call_data_size()));
1134     bind(profile_continue);
1135   }
1136 }
1137 
1138 
1139 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1140                                                      Register mdp,
1141                                                      Register reg2,
1142                                                      bool receiver_can_be_null) {
1143   if (ProfileInterpreter) {
1144     Label profile_continue;
1145 
1146     // If no method data exists, go to profile_continue.
1147     test_method_data_pointer(mdp, profile_continue);
1148 
1149     Label skip_receiver_profile;
1150     if (receiver_can_be_null) {
1151       Label not_null;
1152       // We are making a call.  Increment the count for null receiver.
1153       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1154       b(skip_receiver_profile);
1155       bind(not_null);
1156     }
1157 
1158     // Record the receiver type.
1159     record_klass_in_profile(receiver, mdp, reg2);
1160     bind(skip_receiver_profile);
1161 
1162     // The method data pointer needs to be updated to reflect the new target.
1163     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1164     bind(profile_continue);
1165   }
1166 }
1167 
1168 // This routine creates a state machine for updating the multi-row
1169 // type profile at a virtual call site (or other type-sensitive bytecode).
1170 // The machine visits each row (of receiver/count) until the receiver type
1171 // is found, or until it runs out of rows.  At the same time, it remembers
1172 // the location of the first empty row.  (An empty row records null for its
1173 // receiver, and can be allocated for a newly-observed receiver type.)
1174 // Because there are two degrees of freedom in the state, a simple linear
1175 // search will not work; it must be a decision tree.  Hence this helper
1176 // function is recursive, to generate the required tree structured code.
1177 // It's the interpreter, so we are trading off code space for speed.
1178 // See below for example code.
1179 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1180                                         Register receiver, Register mdp,
1181                                         Register reg2, int start_row,
1182                                         Label& done) {
1183   if (TypeProfileWidth == 0) {
1184     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1185   } else {
1186     record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1187         &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset);
1188   }
1189 }
1190 
1191 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1192                                         Register reg2, int start_row, Label& done, int total_rows,
1193                                         OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn) {
1194   int last_row = total_rows - 1;
1195   assert(start_row <= last_row, "must be work left to do");
1196   // Test this row for both the item and for null.
1197   // Take any of three different outcomes:
1198   //   1. found item => increment count and goto done
1199   //   2. found null => keep looking for case 1, maybe allocate this cell
1200   //   3. found something else => keep looking for cases 1 and 2
1201   // Case 3 is handled by a recursive call.
1202   for (int row = start_row; row <= last_row; row++) {
1203     Label next_test;
1204     bool test_for_null_also = (row == start_row);
1205 
1206     // See if the item is item[n].
1207     int item_offset = in_bytes(item_offset_fn(row));
1208     test_mdp_data_at(mdp, item_offset, item,
1209                      (test_for_null_also ? reg2 : noreg),
1210                      next_test);
1211     // (Reg2 now contains the item from the CallData.)
1212 
1213     // The item is item[n].  Increment count[n].
1214     int count_offset = in_bytes(item_count_offset_fn(row));
1215     increment_mdp_data_at(mdp, count_offset);
1216     b(done);
1217     bind(next_test);
1218 
1219     if (test_for_null_also) {
1220       Label found_null;
1221       // Failed the equality check on item[n]...  Test for null.
1222       if (start_row == last_row) {
1223         // The only thing left to do is handle the null case.
1224         cbz(reg2, found_null);
1225         // Item did not match any saved item and there is no empty row for it.
1226         // Increment total counter to indicate polymorphic case.
1227         increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1228         b(done);
1229         bind(found_null);
1230         break;
1231       }
1232       // Since null is rare, make it be the branch-taken case.
1233       cbz(reg2, found_null);
1234 
1235       // Put all the "Case 3" tests here.
1236       record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1237         item_offset_fn, item_count_offset_fn);
1238 
1239       // Found a null.  Keep searching for a matching item,
1240       // but remember that this is an empty (unused) slot.
1241       bind(found_null);
1242     }
1243   }
1244 
1245   // In the fall-through case, we found no matching item, but we
1246   // observed the item[start_row] is null.
1247 
1248   // Fill in the item field and increment the count.
1249   int item_offset = in_bytes(item_offset_fn(start_row));
1250   set_mdp_data_at(mdp, item_offset, item);
1251   int count_offset = in_bytes(item_count_offset_fn(start_row));
1252   mov(reg2, DataLayout::counter_increment);
1253   set_mdp_data_at(mdp, count_offset, reg2);
1254   if (start_row > 0) {
1255     b(done);
1256   }
1257 }
1258 
1259 // Example state machine code for three profile rows:
1260 //   // main copy of decision tree, rooted at row[1]
1261 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1262 //   if (row[0].rec != nullptr) {
1263 //     // inner copy of decision tree, rooted at row[1]
1264 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1265 //     if (row[1].rec != nullptr) {
1266 //       // degenerate decision tree, rooted at row[2]
1267 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1268 //       if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow
1269 //       row[2].init(rec); goto done;
1270 //     } else {
1271 //       // remember row[1] is empty
1272 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1273 //       row[1].init(rec); goto done;
1274 //     }
1275 //   } else {
1276 //     // remember row[0] is empty
1277 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1278 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1279 //     row[0].init(rec); goto done;
1280 //   }
1281 //   done:
1282 
1283 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1284                                                         Register mdp, Register reg2) {
1285   assert(ProfileInterpreter, "must be profiling");
1286   Label done;
1287 
1288   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
1289 
1290   bind (done);
1291 }
1292 
1293 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1294                                             Register mdp) {
1295   if (ProfileInterpreter) {
1296     Label profile_continue;
1297     uint row;
1298 
1299     // If no method data exists, go to profile_continue.
1300     test_method_data_pointer(mdp, profile_continue);
1301 
1302     // Update the total ret count.
1303     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1304 
1305     for (row = 0; row < RetData::row_limit(); row++) {
1306       Label next_test;
1307 
1308       // See if return_bci is equal to bci[n]:
1309       test_mdp_data_at(mdp,
1310                        in_bytes(RetData::bci_offset(row)),
1311                        return_bci, noreg,
1312                        next_test);
1313 
1314       // return_bci is equal to bci[n].  Increment the count.
1315       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1316 
1317       // The method data pointer needs to be updated to reflect the new target.
1318       update_mdp_by_offset(mdp,
1319                            in_bytes(RetData::bci_displacement_offset(row)));
1320       b(profile_continue);
1321       bind(next_test);
1322     }
1323 
1324     update_mdp_for_ret(return_bci);
1325 
1326     bind(profile_continue);
1327   }
1328 }
1329 
1330 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1331   if (ProfileInterpreter) {
1332     Label profile_continue;
1333 
1334     // If no method data exists, go to profile_continue.
1335     test_method_data_pointer(mdp, profile_continue);
1336 
1337     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1338 
1339     // The method data pointer needs to be updated.
1340     int mdp_delta = in_bytes(BitData::bit_data_size());
1341     if (TypeProfileCasts) {
1342       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1343     }
1344     update_mdp_by_constant(mdp, mdp_delta);
1345 
1346     bind(profile_continue);
1347   }
1348 }
1349 
1350 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1351   if (ProfileInterpreter) {
1352     Label profile_continue;
1353 
1354     // If no method data exists, go to profile_continue.
1355     test_method_data_pointer(mdp, profile_continue);
1356 
1357     // The method data pointer needs to be updated.
1358     int mdp_delta = in_bytes(BitData::bit_data_size());
1359     if (TypeProfileCasts) {
1360       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1361 
1362       // Record the object type.
1363       record_klass_in_profile(klass, mdp, reg2);
1364     }
1365     update_mdp_by_constant(mdp, mdp_delta);
1366 
1367     bind(profile_continue);
1368   }
1369 }
1370 
1371 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1372   if (ProfileInterpreter) {
1373     Label profile_continue;
1374 
1375     // If no method data exists, go to profile_continue.
1376     test_method_data_pointer(mdp, profile_continue);
1377 
1378     // Update the default case count
1379     increment_mdp_data_at(mdp,
1380                           in_bytes(MultiBranchData::default_count_offset()));
1381 
1382     // The method data pointer needs to be updated.
1383     update_mdp_by_offset(mdp,
1384                          in_bytes(MultiBranchData::
1385                                   default_displacement_offset()));
1386 
1387     bind(profile_continue);
1388   }
1389 }
1390 
1391 void InterpreterMacroAssembler::profile_switch_case(Register index,
1392                                                     Register mdp,
1393                                                     Register reg2) {
1394   if (ProfileInterpreter) {
1395     Label profile_continue;
1396 
1397     // If no method data exists, go to profile_continue.
1398     test_method_data_pointer(mdp, profile_continue);
1399 
1400     // Build the base (index * per_case_size_in_bytes()) +
1401     // case_array_offset_in_bytes()
1402     movw(reg2, in_bytes(MultiBranchData::per_case_size()));
1403     movw(rscratch1, in_bytes(MultiBranchData::case_array_offset()));
1404     Assembler::maddw(index, index, reg2, rscratch1);
1405 
1406     // Update the case count
1407     increment_mdp_data_at(mdp,
1408                           index,
1409                           in_bytes(MultiBranchData::relative_count_offset()));
1410 
1411     // The method data pointer needs to be updated.
1412     update_mdp_by_offset(mdp,
1413                          index,
1414                          in_bytes(MultiBranchData::
1415                                   relative_displacement_offset()));
1416 
1417     bind(profile_continue);
1418   }
1419 }
1420 
1421 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) {
1422   if (state == atos) {
1423     MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line);
1424   }
1425 }
1426 
1427 void InterpreterMacroAssembler::generate_runtime_upcalls_on_method_entry()
1428 {
1429   address upcall = RuntimeUpcalls::on_method_entry_upcall_address();
1430   if (RuntimeUpcalls::does_upcall_need_method_parameter(upcall)) {
1431     get_method(c_rarg1);
1432     call_VM(noreg,upcall, c_rarg1);
1433   } else {
1434     call_VM(noreg,upcall);
1435   }
1436 }
1437 
1438 void InterpreterMacroAssembler::notify_method_entry() {
1439   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1440   // track stack depth.  If it is possible to enter interp_only_mode we add
1441   // the code to check if the event should be sent.
1442   if (JvmtiExport::can_post_interpreter_events()) {
1443     Label L;
1444     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1445     cbzw(r3, L);
1446     call_VM(noreg, CAST_FROM_FN_PTR(address,
1447                                     InterpreterRuntime::post_method_entry));
1448     bind(L);
1449   }
1450 
1451   if (DTraceMethodProbes) {
1452     get_method(c_rarg1);
1453     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1454                  rthread, c_rarg1);
1455   }
1456 
1457   // RedefineClasses() tracing support for obsolete method entry
1458   if (log_is_enabled(Trace, redefine, class, obsolete) ||
1459       log_is_enabled(Trace, interpreter, bytecode)) {
1460     get_method(c_rarg1);
1461     call_VM_leaf(
1462       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1463       rthread, c_rarg1);
1464   }
1465 
1466  }
1467 
1468 
1469 void InterpreterMacroAssembler::notify_method_exit(
1470     TosState state, NotifyMethodExitMode mode) {
1471   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1472   // track stack depth.  If it is possible to enter interp_only_mode we add
1473   // the code to check if the event should be sent.
1474   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1475     Label L;
1476     // Note: frame::interpreter_frame_result has a dependency on how the
1477     // method result is saved across the call to post_method_exit. If this
1478     // is changed then the interpreter_frame_result implementation will
1479     // need to be updated too.
1480 
1481     // template interpreter will leave the result on the top of the stack.
1482     push(state);
1483     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1484     cbz(r3, L);
1485     call_VM(noreg,
1486             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1487     bind(L);
1488     pop(state);
1489   }
1490 
1491   if (DTraceMethodProbes) {
1492     push(state);
1493     get_method(c_rarg1);
1494     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1495                  rthread, c_rarg1);
1496     pop(state);
1497   }
1498 }
1499 
1500 
1501 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1502 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1503                                                         int increment, Address mask,
1504                                                         Register scratch, Register scratch2,
1505                                                         bool preloaded, Condition cond,
1506                                                         Label* where) {
1507   if (!preloaded) {
1508     ldrw(scratch, counter_addr);
1509   }
1510   add(scratch, scratch, increment);
1511   strw(scratch, counter_addr);
1512   ldrw(scratch2, mask);
1513   ands(scratch, scratch, scratch2);
1514   br(cond, *where);
1515 }
1516 
1517 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
1518                                                   int number_of_arguments) {
1519   // interpreter specific
1520   //
1521   // Note: No need to save/restore rbcp & rlocals pointer since these
1522   //       are callee saved registers and no blocking/ GC can happen
1523   //       in leaf calls.
1524 #ifdef ASSERT
1525   {
1526     Label L;
1527     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1528     cbz(rscratch1, L);
1529     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1530          " last_sp != nullptr");
1531     bind(L);
1532   }
1533 #endif /* ASSERT */
1534   // super call
1535   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
1536 }
1537 
1538 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
1539                                              Register java_thread,
1540                                              Register last_java_sp,
1541                                              address  entry_point,
1542                                              int      number_of_arguments,
1543                                              bool     check_exceptions) {
1544   // interpreter specific
1545   //
1546   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
1547   //       really make a difference for these runtime calls, since they are
1548   //       slow anyway. Btw., bcp must be saved/restored since it may change
1549   //       due to GC.
1550   // assert(java_thread == noreg , "not expecting a precomputed java thread");
1551   save_bcp();
1552 #ifdef ASSERT
1553   {
1554     Label L;
1555     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1556     cbz(rscratch1, L);
1557     stop("InterpreterMacroAssembler::call_VM_base:"
1558          " last_sp != nullptr");
1559     bind(L);
1560   }
1561 #endif /* ASSERT */
1562   // super call
1563   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
1564                                entry_point, number_of_arguments,
1565                      check_exceptions);
1566 // interpreter specific
1567   restore_bcp();
1568   restore_locals();
1569 }
1570 
1571 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result,
1572                                                     address entry_point,
1573                                                     Register arg_1) {
1574   assert(arg_1 == c_rarg1, "");
1575   Label resume_pc, not_preempted;
1576 
1577 #ifdef ASSERT
1578   {
1579     Label L;
1580     ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1581     cbz(rscratch1, L);
1582     stop("Should not have alternate return address set");
1583     bind(L);
1584   }
1585 #endif /* ASSERT */
1586 
1587   // Force freeze slow path.
1588   push_cont_fastpath();
1589 
1590   // Make VM call. In case of preemption set last_pc to the one we want to resume to.
1591   adr(rscratch1, resume_pc);
1592   str(rscratch1, Address(rthread, JavaThread::last_Java_pc_offset()));
1593   call_VM_base(oop_result, noreg, noreg, entry_point, 1, false /*check_exceptions*/);
1594 
1595   pop_cont_fastpath();
1596 
1597   // Check if preempted.
1598   ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1599   cbz(rscratch1, not_preempted);
1600   str(zr, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1601   br(rscratch1);
1602 
1603   // In case of preemption, this is where we will resume once we finally acquire the monitor.
1604   bind(resume_pc);
1605   restore_after_resume(false /* is_native */);
1606 
1607   bind(not_preempted);
1608 }
1609 
1610 void InterpreterMacroAssembler::restore_after_resume(bool is_native) {
1611   lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter()));
1612   blr(rscratch1);
1613   if (is_native) {
1614     // On resume we need to set up stack as expected
1615     push(dtos);
1616     push(ltos);
1617   }
1618 }
1619 
1620 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
1621   assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index());
1622   Label update, next, none;
1623 
1624   verify_oop(obj);
1625 
1626   cbnz(obj, update);
1627   orptr(mdo_addr, TypeEntries::null_seen);
1628   b(next);
1629 
1630   bind(update);
1631   load_klass(obj, obj);
1632 
1633   ldr(rscratch1, mdo_addr);
1634   eor(obj, obj, rscratch1);
1635   tst(obj, TypeEntries::type_klass_mask);
1636   br(Assembler::EQ, next); // klass seen before, nothing to
1637                            // do. The unknown bit may have been
1638                            // set already but no need to check.
1639 
1640   tbnz(obj, exact_log2(TypeEntries::type_unknown), next);
1641   // already unknown. Nothing to do anymore.
1642 
1643   cbz(rscratch1, none);
1644   cmp(rscratch1, (u1)TypeEntries::null_seen);
1645   br(Assembler::EQ, none);
1646   // There is a chance that the checks above
1647   // fail if another thread has just set the
1648   // profiling to this obj's klass
1649   eor(obj, obj, rscratch1); // get back original value before XOR
1650   ldr(rscratch1, mdo_addr);
1651   eor(obj, obj, rscratch1);
1652   tst(obj, TypeEntries::type_klass_mask);
1653   br(Assembler::EQ, next);
1654 
1655   // different than before. Cannot keep accurate profile.
1656   orptr(mdo_addr, TypeEntries::type_unknown);
1657   b(next);
1658 
1659   bind(none);
1660   // first time here. Set profile type.
1661   str(obj, mdo_addr);
1662 #ifdef ASSERT
1663   andr(obj, obj, TypeEntries::type_mask);
1664   verify_klass_ptr(obj);
1665 #endif
1666 
1667   bind(next);
1668 }
1669 
1670 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1671   if (!ProfileInterpreter) {
1672     return;
1673   }
1674 
1675   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1676     Label profile_continue;
1677 
1678     test_method_data_pointer(mdp, profile_continue);
1679 
1680     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1681 
1682     ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start));
1683     cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag));
1684     br(Assembler::NE, profile_continue);
1685 
1686     if (MethodData::profile_arguments()) {
1687       Label done;
1688       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1689 
1690       for (int i = 0; i < TypeProfileArgsLimit; i++) {
1691         if (i > 0 || MethodData::profile_return()) {
1692           // If return value type is profiled we may have no argument to profile
1693           ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1694           sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count());
1695           cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count());
1696           add(rscratch1, mdp, off_to_args);
1697           br(Assembler::LT, done);
1698         }
1699         ldr(tmp, Address(callee, Method::const_offset()));
1700         load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1701         // stack offset o (zero based) from the start of the argument
1702         // list, for n arguments translates into offset n - o - 1 from
1703         // the end of the argument list
1704         ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))));
1705         sub(tmp, tmp, rscratch1);
1706         sub(tmp, tmp, 1);
1707         Address arg_addr = argument_address(tmp);
1708         ldr(tmp, arg_addr);
1709 
1710         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i)));
1711         profile_obj_type(tmp, mdo_arg_addr);
1712 
1713         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1714         off_to_args += to_add;
1715       }
1716 
1717       if (MethodData::profile_return()) {
1718         ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1719         sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1720       }
1721 
1722       add(rscratch1, mdp, off_to_args);
1723       bind(done);
1724       mov(mdp, rscratch1);
1725 
1726       if (MethodData::profile_return()) {
1727         // We're right after the type profile for the last
1728         // argument. tmp is the number of cells left in the
1729         // CallTypeData/VirtualCallTypeData to reach its end. Non null
1730         // if there's a return to profile.
1731         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1732         add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size));
1733       }
1734       str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1735     } else {
1736       assert(MethodData::profile_return(), "either profile call args or call ret");
1737       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
1738     }
1739 
1740     // mdp points right after the end of the
1741     // CallTypeData/VirtualCallTypeData, right after the cells for the
1742     // return value type if there's one
1743 
1744     bind(profile_continue);
1745   }
1746 }
1747 
1748 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1749   assert_different_registers(mdp, ret, tmp, rbcp);
1750   if (ProfileInterpreter && MethodData::profile_return()) {
1751     Label profile_continue, done;
1752 
1753     test_method_data_pointer(mdp, profile_continue);
1754 
1755     if (MethodData::profile_return_jsr292_only()) {
1756       assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
1757 
1758       // If we don't profile all invoke bytecodes we must make sure
1759       // it's a bytecode we indeed profile. We can't go back to the
1760       // beginning of the ProfileData we intend to update to check its
1761       // type because we're right after it and we don't known its
1762       // length
1763       Label do_profile;
1764       ldrb(rscratch1, Address(rbcp, 0));
1765       cmp(rscratch1, (u1)Bytecodes::_invokedynamic);
1766       br(Assembler::EQ, do_profile);
1767       cmp(rscratch1, (u1)Bytecodes::_invokehandle);
1768       br(Assembler::EQ, do_profile);
1769       get_method(tmp);
1770       ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset()));
1771       subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm));
1772       br(Assembler::NE, profile_continue);
1773 
1774       bind(do_profile);
1775     }
1776 
1777     Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
1778     mov(tmp, ret);
1779     profile_obj_type(tmp, mdo_ret_addr);
1780 
1781     bind(profile_continue);
1782   }
1783 }
1784 
1785 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
1786   assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2);
1787   if (ProfileInterpreter && MethodData::profile_parameters()) {
1788     Label profile_continue, done;
1789 
1790     test_method_data_pointer(mdp, profile_continue);
1791 
1792     // Load the offset of the area within the MDO used for
1793     // parameters. If it's negative we're not profiling any parameters
1794     ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
1795     tbnz(tmp1, 31, profile_continue);  // i.e. sign bit set
1796 
1797     // Compute a pointer to the area for parameters from the offset
1798     // and move the pointer to the slot for the last
1799     // parameters. Collect profiling from last parameter down.
1800     // mdo start + parameters offset + array length - 1
1801     add(mdp, mdp, tmp1);
1802     ldr(tmp1, Address(mdp, ArrayData::array_len_offset()));
1803     sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1804 
1805     Label loop;
1806     bind(loop);
1807 
1808     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1809     int type_base = in_bytes(ParametersTypeData::type_offset(0));
1810     int per_arg_scale = exact_log2(DataLayout::cell_size);
1811     add(rscratch1, mdp, off_base);
1812     add(rscratch2, mdp, type_base);
1813 
1814     Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale));
1815     Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale));
1816 
1817     // load offset on the stack from the slot for this parameter
1818     ldr(tmp2, arg_off);
1819     neg(tmp2, tmp2);
1820     // read the parameter from the local area
1821     ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize)));
1822 
1823     // profile the parameter
1824     profile_obj_type(tmp2, arg_type);
1825 
1826     // go to next parameter
1827     subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1828     br(Assembler::GE, loop);
1829 
1830     bind(profile_continue);
1831   }
1832 }
1833 
1834 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) {
1835   // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp
1836   get_cache_index_at_bcp(index, 1, sizeof(u4));
1837   // Get address of invokedynamic array
1838   ldr(cache, Address(rcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset())));
1839   // Scale the index to be the entry index * sizeof(ResolvedIndyEntry)
1840   lsl(index, index, log2i_exact(sizeof(ResolvedIndyEntry)));
1841   add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes());
1842   lea(cache, Address(cache, index));
1843 }
1844 
1845 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) {
1846   // Get index out of bytecode pointer
1847   get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
1848   // Take shortcut if the size is a power of 2
1849   if (is_power_of_2(sizeof(ResolvedFieldEntry))) {
1850     lsl(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2
1851   } else {
1852     mov(cache, sizeof(ResolvedFieldEntry));
1853     mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry)
1854   }
1855   // Get address of field entries array
1856   ldr(cache, Address(rcpool, ConstantPoolCache::field_entries_offset()));
1857   add(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes());
1858   lea(cache, Address(cache, index));
1859   // Prevents stale data from being read after the bytecode is patched to the fast bytecode
1860   membar(MacroAssembler::LoadLoad);
1861 }
1862 
1863 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) {
1864   // Get index out of bytecode pointer
1865   get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
1866   mov(cache, sizeof(ResolvedMethodEntry));
1867   mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry)
1868 
1869   // Get address of field entries array
1870   ldr(cache, Address(rcpool, ConstantPoolCache::method_entries_offset()));
1871   add(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes());
1872   lea(cache, Address(cache, index));
1873 }