1 /*
   2  * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "compiler/compiler_globals.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/barrierSetAssembler.hpp"
  30 #include "interp_masm_aarch64.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "interpreter/interpreterRuntime.hpp"
  33 #include "logging/log.hpp"
  34 #include "oops/arrayOop.hpp"
  35 #include "oops/markWord.hpp"
  36 #include "oops/method.hpp"
  37 #include "oops/methodData.hpp"
  38 #include "oops/resolvedFieldEntry.hpp"
  39 #include "oops/resolvedIndyEntry.hpp"
  40 #include "oops/resolvedMethodEntry.hpp"
  41 #include "prims/jvmtiExport.hpp"
  42 #include "prims/jvmtiThreadState.hpp"
  43 #include "runtime/basicLock.hpp"
  44 #include "runtime/frame.inline.hpp"
  45 #include "runtime/javaThread.hpp"
  46 #include "runtime/runtimeUpcalls.hpp"
  47 #include "runtime/safepointMechanism.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "utilities/powerOfTwo.hpp"
  50 
  51 void InterpreterMacroAssembler::narrow(Register result) {
  52 
  53   // Get method->_constMethod->_result_type
  54   ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
  55   ldr(rscratch1, Address(rscratch1, Method::const_offset()));
  56   ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset()));
  57 
  58   Label done, notBool, notByte, notChar;
  59 
  60   // common case first
  61   cmpw(rscratch1, T_INT);
  62   br(Assembler::EQ, done);
  63 
  64   // mask integer result to narrower return type.
  65   cmpw(rscratch1, T_BOOLEAN);
  66   br(Assembler::NE, notBool);
  67   andw(result, result, 0x1);
  68   b(done);
  69 
  70   bind(notBool);
  71   cmpw(rscratch1, T_BYTE);
  72   br(Assembler::NE, notByte);
  73   sbfx(result, result, 0, 8);
  74   b(done);
  75 
  76   bind(notByte);
  77   cmpw(rscratch1, T_CHAR);
  78   br(Assembler::NE, notChar);
  79   ubfx(result, result, 0, 16);  // truncate upper 16 bits
  80   b(done);
  81 
  82   bind(notChar);
  83   sbfx(result, result, 0, 16);     // sign-extend short
  84 
  85   // Nothing to do for T_INT
  86   bind(done);
  87 }
  88 
  89 void InterpreterMacroAssembler::jump_to_entry(address entry) {
  90   assert(entry, "Entry must have been generated by now");
  91   b(entry);
  92 }
  93 
  94 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
  95   if (JvmtiExport::can_pop_frame()) {
  96     Label L;
  97     // Initiate popframe handling only if it is not already being
  98     // processed.  If the flag has the popframe_processing bit set, it
  99     // means that this code is called *during* popframe handling - we
 100     // don't want to reenter.
 101     // This method is only called just after the call into the vm in
 102     // call_VM_base, so the arg registers are available.
 103     ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
 104     tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L);
 105     tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L);
 106     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 107     // address of the same-named entrypoint in the generated interpreter code.
 108     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 109     br(r0);
 110     bind(L);
 111   }
 112 }
 113 
 114 
 115 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 116   ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 117   const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset());
 118   const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset());
 119   const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset());
 120   switch (state) {
 121     case atos: ldr(r0, oop_addr);
 122                str(zr, oop_addr);
 123                interp_verify_oop(r0, state);        break;
 124     case ltos: ldr(r0, val_addr);                   break;
 125     case btos:                                   // fall through
 126     case ztos:                                   // fall through
 127     case ctos:                                   // fall through
 128     case stos:                                   // fall through
 129     case itos: ldrw(r0, val_addr);                  break;
 130     case ftos: ldrs(v0, val_addr);                  break;
 131     case dtos: ldrd(v0, val_addr);                  break;
 132     case vtos: /* nothing to do */                  break;
 133     default  : ShouldNotReachHere();
 134   }
 135   // Clean up tos value in the thread object
 136   movw(rscratch1, (int) ilgl);
 137   strw(rscratch1, tos_addr);
 138   strw(zr, val_addr);
 139 }
 140 
 141 
 142 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 143   if (JvmtiExport::can_force_early_return()) {
 144     Label L;
 145     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 146     cbz(rscratch1, L); // if (thread->jvmti_thread_state() == nullptr) exit;
 147 
 148     // Initiate earlyret handling only if it is not already being processed.
 149     // If the flag has the earlyret_processing bit set, it means that this code
 150     // is called *during* earlyret handling - we don't want to reenter.
 151     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset()));
 152     cmpw(rscratch1, JvmtiThreadState::earlyret_pending);
 153     br(Assembler::NE, L);
 154 
 155     // Call Interpreter::remove_activation_early_entry() to get the address of the
 156     // same-named entrypoint in the generated interpreter code.
 157     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 158     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset()));
 159     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1);
 160     br(r0);
 161     bind(L);
 162   }
 163 }
 164 
 165 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
 166   Register reg,
 167   int bcp_offset) {
 168   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 169   ldrh(reg, Address(rbcp, bcp_offset));
 170   rev16(reg, reg);
 171 }
 172 
 173 void InterpreterMacroAssembler::get_dispatch() {
 174   uint64_t offset;
 175   adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset);
 176   // Use add() here after ARDP, rather than lea().
 177   // lea() does not generate anything if its offset is zero.
 178   // However, relocs expect to find either an ADD or a load/store
 179   // insn after an ADRP.  add() always generates an ADD insn, even
 180   // for add(Rn, Rn, 0).
 181   add(rdispatch, rdispatch, offset);
 182 }
 183 
 184 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
 185                                                        int bcp_offset,
 186                                                        size_t index_size) {
 187   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 188   if (index_size == sizeof(u2)) {
 189     load_unsigned_short(index, Address(rbcp, bcp_offset));
 190   } else if (index_size == sizeof(u4)) {
 191     // assert(EnableInvokeDynamic, "giant index used only for JSR 292");
 192     ldrw(index, Address(rbcp, bcp_offset));
 193   } else if (index_size == sizeof(u1)) {
 194     load_unsigned_byte(index, Address(rbcp, bcp_offset));
 195   } else {
 196     ShouldNotReachHere();
 197   }
 198 }
 199 
 200 void InterpreterMacroAssembler::get_method_counters(Register method,
 201                                                     Register mcs, Label& skip) {
 202   Label has_counters;
 203   ldr(mcs, Address(method, Method::method_counters_offset()));
 204   cbnz(mcs, has_counters);
 205   call_VM(noreg, CAST_FROM_FN_PTR(address,
 206           InterpreterRuntime::build_method_counters), method);
 207   ldr(mcs, Address(method, Method::method_counters_offset()));
 208   cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory
 209   bind(has_counters);
 210 }
 211 
 212 // Load object from cpool->resolved_references(index)
 213 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 214                                            Register result, Register index, Register tmp) {
 215   assert_different_registers(result, index);
 216 
 217   get_constant_pool(result);
 218   // load pointer for resolved_references[] objArray
 219   ldr(result, Address(result, ConstantPool::cache_offset()));
 220   ldr(result, Address(result, ConstantPoolCache::resolved_references_offset()));
 221   resolve_oop_handle(result, tmp, rscratch2);
 222   // Add in the index
 223   add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 224   load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop)), tmp, rscratch2);
 225 }
 226 
 227 void InterpreterMacroAssembler::load_resolved_klass_at_offset(
 228                              Register cpool, Register index, Register klass, Register temp) {
 229   add(temp, cpool, index, LSL, LogBytesPerWord);
 230   ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index
 231   ldr(klass, Address(cpool,  ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses
 232   add(klass, klass, temp, LSL, LogBytesPerWord);
 233   ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes()));
 234 }
 235 
 236 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
 237 // subtype of super_klass.
 238 //
 239 // Args:
 240 //      r0: superklass
 241 //      Rsub_klass: subklass
 242 //
 243 // Kills:
 244 //      r2, r5
 245 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 246                                                   Label& ok_is_subtype) {
 247   assert(Rsub_klass != r0, "r0 holds superklass");
 248   assert(Rsub_klass != r2, "r2 holds 2ndary super array length");
 249   assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr");
 250 
 251   // Profile the not-null value's klass.
 252   profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5
 253 
 254   // Do the check.
 255   check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2
 256 }
 257 
 258 // Java Expression Stack
 259 
 260 void InterpreterMacroAssembler::pop_ptr(Register r) {
 261   ldr(r, post(esp, wordSize));
 262 }
 263 
 264 void InterpreterMacroAssembler::pop_i(Register r) {
 265   ldrw(r, post(esp, wordSize));
 266 }
 267 
 268 void InterpreterMacroAssembler::pop_l(Register r) {
 269   ldr(r, post(esp, 2 * Interpreter::stackElementSize));
 270 }
 271 
 272 void InterpreterMacroAssembler::push_ptr(Register r) {
 273   str(r, pre(esp, -wordSize));
 274  }
 275 
 276 void InterpreterMacroAssembler::push_i(Register r) {
 277   str(r, pre(esp, -wordSize));
 278 }
 279 
 280 void InterpreterMacroAssembler::push_l(Register r) {
 281   str(zr, pre(esp, -wordSize));
 282   str(r, pre(esp, - wordSize));
 283 }
 284 
 285 void InterpreterMacroAssembler::pop_f(FloatRegister r) {
 286   ldrs(r, post(esp, wordSize));
 287 }
 288 
 289 void InterpreterMacroAssembler::pop_d(FloatRegister r) {
 290   ldrd(r, post(esp, 2 * Interpreter::stackElementSize));
 291 }
 292 
 293 void InterpreterMacroAssembler::push_f(FloatRegister r) {
 294   strs(r, pre(esp, -wordSize));
 295 }
 296 
 297 void InterpreterMacroAssembler::push_d(FloatRegister r) {
 298   strd(r, pre(esp, 2* -wordSize));
 299 }
 300 
 301 void InterpreterMacroAssembler::pop(TosState state) {
 302   switch (state) {
 303   case atos: pop_ptr();                 break;
 304   case btos:
 305   case ztos:
 306   case ctos:
 307   case stos:
 308   case itos: pop_i();                   break;
 309   case ltos: pop_l();                   break;
 310   case ftos: pop_f();                   break;
 311   case dtos: pop_d();                   break;
 312   case vtos: /* nothing to do */        break;
 313   default:   ShouldNotReachHere();
 314   }
 315   interp_verify_oop(r0, state);
 316 }
 317 
 318 void InterpreterMacroAssembler::push(TosState state) {
 319   interp_verify_oop(r0, state);
 320   switch (state) {
 321   case atos: push_ptr();                break;
 322   case btos:
 323   case ztos:
 324   case ctos:
 325   case stos:
 326   case itos: push_i();                  break;
 327   case ltos: push_l();                  break;
 328   case ftos: push_f();                  break;
 329   case dtos: push_d();                  break;
 330   case vtos: /* nothing to do */        break;
 331   default  : ShouldNotReachHere();
 332   }
 333 }
 334 
 335 // Helpers for swap and dup
 336 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 337   ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 338 }
 339 
 340 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 341   str(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 342 }
 343 
 344 void InterpreterMacroAssembler::load_float(Address src) {
 345   ldrs(v0, src);
 346 }
 347 
 348 void InterpreterMacroAssembler::load_double(Address src) {
 349   ldrd(v0, src);
 350 }
 351 
 352 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 353   // set sender sp
 354   mov(r19_sender_sp, sp);
 355   // record last_sp
 356   sub(rscratch1, esp, rfp);
 357   asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
 358   str(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 359 }
 360 
 361 // Jump to from_interpreted entry of a call unless single stepping is possible
 362 // in this thread in which case we must call the i2i entry
 363 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 364   prepare_to_jump_from_interpreted();
 365 
 366   if (JvmtiExport::can_post_interpreter_events()) {
 367     Label run_compiled_code;
 368     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 369     // compiled code in threads for which the event is enabled.  Check here for
 370     // interp_only_mode if these events CAN be enabled.
 371     ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset()));
 372     cbzw(rscratch1, run_compiled_code);
 373     ldr(rscratch1, Address(method, Method::interpreter_entry_offset()));
 374     br(rscratch1);
 375     bind(run_compiled_code);
 376   }
 377 
 378   ldr(rscratch1, Address(method, Method::from_interpreted_offset()));
 379   br(rscratch1);
 380 }
 381 
 382 // The following two routines provide a hook so that an implementation
 383 // can schedule the dispatch in two parts.  amd64 does not do this.
 384 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 385 }
 386 
 387 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 388     dispatch_next(state, step);
 389 }
 390 
 391 void InterpreterMacroAssembler::dispatch_base(TosState state,
 392                                               address* table,
 393                                               bool verifyoop,
 394                                               bool generate_poll) {
 395   if (VerifyActivationFrameSize) {
 396     Label L;
 397     sub(rscratch2, rfp, esp);
 398     int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
 399     subs(rscratch2, rscratch2, min_frame_size);
 400     br(Assembler::GE, L);
 401     stop("broken stack frame");
 402     bind(L);
 403   }
 404   if (verifyoop) {
 405     interp_verify_oop(r0, state);
 406   }
 407 
 408   Label safepoint;
 409   address* const safepoint_table = Interpreter::safept_table(state);
 410   bool needs_thread_local_poll = generate_poll && table != safepoint_table;
 411 
 412   if (needs_thread_local_poll) {
 413     NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
 414     ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset()));
 415     tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint);
 416   }
 417 
 418   if (table == Interpreter::dispatch_table(state)) {
 419     addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state));
 420     ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3)));
 421   } else {
 422     mov(rscratch2, (address)table);
 423     ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
 424   }
 425   br(rscratch2);
 426 
 427   if (needs_thread_local_poll) {
 428     bind(safepoint);
 429     lea(rscratch2, ExternalAddress((address)safepoint_table));
 430     ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
 431     br(rscratch2);
 432   }
 433 }
 434 
 435 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
 436   dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
 437 }
 438 
 439 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 440   dispatch_base(state, Interpreter::normal_table(state));
 441 }
 442 
 443 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 444   dispatch_base(state, Interpreter::normal_table(state), false);
 445 }
 446 
 447 
 448 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
 449   // load next bytecode
 450   ldrb(rscratch1, Address(pre(rbcp, step)));
 451   dispatch_base(state, Interpreter::dispatch_table(state), /*verifyoop*/true, generate_poll);
 452 }
 453 
 454 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 455   // load current bytecode
 456   ldrb(rscratch1, Address(rbcp, 0));
 457   dispatch_base(state, table);
 458 }
 459 
 460 // remove activation
 461 //
 462 // Unlock the receiver if this is a synchronized method.
 463 // Unlock any Java monitors from synchronized blocks.
 464 // Apply stack watermark barrier.
 465 // Notify JVMTI.
 466 // Remove the activation from the stack.
 467 //
 468 // If there are locked Java monitors
 469 //    If throw_monitor_exception
 470 //       throws IllegalMonitorStateException
 471 //    Else if install_monitor_exception
 472 //       installs IllegalMonitorStateException
 473 //    Else
 474 //       no error processing
 475 void InterpreterMacroAssembler::remove_activation(TosState state,
 476                                                   bool throw_monitor_exception,
 477                                                   bool install_monitor_exception,
 478                                                   bool notify_jvmdi) {
 479   // Note: Registers r3 xmm0 may be in use for the
 480   // result check if synchronized method
 481   Label unlocked, unlock, no_unlock;
 482 
 483 #ifdef ASSERT
 484   Label not_preempted;
 485   ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset()));
 486   cbz(rscratch1, not_preempted);
 487   stop("remove_activation: should not have alternate return address set");
 488   bind(not_preempted);
 489 #endif /* ASSERT */
 490 
 491   // get the value of _do_not_unlock_if_synchronized into r3
 492   const Address do_not_unlock_if_synchronized(rthread,
 493     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 494   ldrb(r3, do_not_unlock_if_synchronized);
 495   strb(zr, do_not_unlock_if_synchronized); // reset the flag
 496 
 497  // get method access flags
 498   ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
 499   ldrh(r2, Address(r1, Method::access_flags_offset()));
 500   tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked);
 501 
 502   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 503   // is set.
 504   cbnz(r3, no_unlock);
 505 
 506   // unlock monitor
 507   push(state); // save result
 508 
 509   // BasicObjectLock will be first in list, since this is a
 510   // synchronized method. However, need to check that the object has
 511   // not been unlocked by an explicit monitorexit bytecode.
 512   const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset *
 513                         wordSize - (int) sizeof(BasicObjectLock));
 514   // We use c_rarg1 so that if we go slow path it will be the correct
 515   // register for unlock_object to pass to VM directly
 516   lea(c_rarg1, monitor); // address of first monitor
 517 
 518   ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
 519   cbnz(r0, unlock);
 520 
 521   pop(state);
 522   if (throw_monitor_exception) {
 523     // Entry already unlocked, need to throw exception
 524     call_VM(noreg, CAST_FROM_FN_PTR(address,
 525                    InterpreterRuntime::throw_illegal_monitor_state_exception));
 526     should_not_reach_here();
 527   } else {
 528     // Monitor already unlocked during a stack unroll. If requested,
 529     // install an illegal_monitor_state_exception.  Continue with
 530     // stack unrolling.
 531     if (install_monitor_exception) {
 532       call_VM(noreg, CAST_FROM_FN_PTR(address,
 533                      InterpreterRuntime::new_illegal_monitor_state_exception));
 534     }
 535     b(unlocked);
 536   }
 537 
 538   bind(unlock);
 539   unlock_object(c_rarg1);
 540   pop(state);
 541 
 542   // Check that for block-structured locking (i.e., that all locked
 543   // objects has been unlocked)
 544   bind(unlocked);
 545 
 546   // r0: Might contain return value
 547 
 548   // Check that all monitors are unlocked
 549   {
 550     Label loop, exception, entry, restart;
 551     const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
 552     const Address monitor_block_top(
 553         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
 554     const Address monitor_block_bot(
 555         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
 556 
 557     bind(restart);
 558     // We use c_rarg1 so that if we go slow path it will be the correct
 559     // register for unlock_object to pass to VM directly
 560     ldr(c_rarg1, monitor_block_top); // derelativize pointer
 561     lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
 562     // c_rarg1 points to current entry, starting with top-most entry
 563 
 564     lea(r19, monitor_block_bot);  // points to word before bottom of
 565                                   // monitor block
 566     b(entry);
 567 
 568     // Entry already locked, need to throw exception
 569     bind(exception);
 570 
 571     if (throw_monitor_exception) {
 572       // Throw exception
 573       MacroAssembler::call_VM(noreg,
 574                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
 575                                    throw_illegal_monitor_state_exception));
 576       should_not_reach_here();
 577     } else {
 578       // Stack unrolling. Unlock object and install illegal_monitor_exception.
 579       // Unlock does not block, so don't have to worry about the frame.
 580       // We don't have to preserve c_rarg1 since we are going to throw an exception.
 581 
 582       push(state);
 583       unlock_object(c_rarg1);
 584       pop(state);
 585 
 586       if (install_monitor_exception) {
 587         call_VM(noreg, CAST_FROM_FN_PTR(address,
 588                                         InterpreterRuntime::
 589                                         new_illegal_monitor_state_exception));
 590       }
 591 
 592       b(restart);
 593     }
 594 
 595     bind(loop);
 596     // check if current entry is used
 597     ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset()));
 598     cbnz(rscratch1, exception);
 599 
 600     add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry
 601     bind(entry);
 602     cmp(c_rarg1, r19); // check if bottom reached
 603     br(Assembler::NE, loop); // if not at bottom then check this entry
 604   }
 605 
 606   bind(no_unlock);
 607 
 608   JFR_ONLY(enter_jfr_critical_section();)
 609 
 610   // The below poll is for the stack watermark barrier. It allows fixing up frames lazily,
 611   // that would normally not be safe to use. Such bad returns into unsafe territory of
 612   // the stack, will call InterpreterRuntime::at_unwind.
 613   Label slow_path;
 614   Label fast_path;
 615   safepoint_poll(slow_path, true /* at_return */, false /* in_nmethod */);
 616   br(Assembler::AL, fast_path);
 617   bind(slow_path);
 618   push(state);
 619   set_last_Java_frame(esp, rfp, pc(), rscratch1);
 620   super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread);
 621   reset_last_Java_frame(true);
 622   pop(state);
 623   bind(fast_path);
 624 
 625   // JVMTI support. Make sure the safepoint poll test is issued prior.
 626   if (notify_jvmdi) {
 627     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
 628   } else {
 629     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
 630   }
 631 
 632   // remove activation
 633   // get sender esp
 634   ldr(rscratch2,
 635       Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
 636   if (StackReservedPages > 0) {
 637     // testing if reserved zone needs to be re-enabled
 638     Label no_reserved_zone_enabling;
 639 
 640     // check if already enabled - if so no re-enabling needed
 641     assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size");
 642     ldrw(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset()));
 643     cmpw(rscratch1, (u1)StackOverflow::stack_guard_enabled);
 644     br(Assembler::EQ, no_reserved_zone_enabling);
 645 
 646     // look for an overflow into the stack reserved zone, i.e.
 647     // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation
 648     ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset()));
 649     cmp(rscratch2, rscratch1);
 650     br(Assembler::LS, no_reserved_zone_enabling);
 651 
 652     JFR_ONLY(leave_jfr_critical_section();)
 653 
 654     call_VM_leaf(
 655       CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
 656     call_VM(noreg, CAST_FROM_FN_PTR(address,
 657                    InterpreterRuntime::throw_delayed_StackOverflowError));
 658     should_not_reach_here();
 659 
 660     bind(no_reserved_zone_enabling);
 661   }
 662 
 663   // remove frame anchor
 664   leave();
 665 
 666   JFR_ONLY(leave_jfr_critical_section();)
 667 
 668   // restore sender esp
 669   mov(esp, rscratch2);
 670 
 671   // If we're returning to interpreted code we will shortly be
 672   // adjusting SP to allow some space for ESP.  If we're returning to
 673   // compiled code the saved sender SP was saved in sender_sp, so this
 674   // restores it.
 675   andr(sp, esp, -16);
 676 }
 677 
 678 #if INCLUDE_JFR
 679 void InterpreterMacroAssembler::enter_jfr_critical_section() {
 680   const Address sampling_critical_section(rthread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR));
 681   mov(rscratch1, true);
 682   strb(rscratch1, sampling_critical_section);
 683 }
 684 
 685 void InterpreterMacroAssembler::leave_jfr_critical_section() {
 686   const Address sampling_critical_section(rthread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR));
 687   strb(zr, sampling_critical_section);
 688 }
 689 #endif // INCLUDE_JFR
 690 
 691 // Lock object
 692 //
 693 // Args:
 694 //      c_rarg1: BasicObjectLock to be used for locking
 695 //
 696 // Kills:
 697 //      r0
 698 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, .. (param regs)
 699 //      rscratch1, rscratch2 (scratch regs)
 700 void InterpreterMacroAssembler::lock_object(Register lock_reg)
 701 {
 702   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
 703 
 704   const Register tmp = c_rarg2;
 705   const Register obj_reg = c_rarg3; // Will contain the oop
 706   const Register tmp2 = c_rarg4;
 707   const Register tmp3 = c_rarg5;
 708 
 709   // Load object pointer into obj_reg %c_rarg3
 710   ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
 711 
 712   Label slow_case, done;
 713   fast_lock(lock_reg, obj_reg, tmp, tmp2, tmp3, slow_case);
 714   b(done);
 715 
 716   bind(slow_case);
 717 
 718   // Call the runtime routine for slow case
 719   call_VM_preemptable(noreg,
 720           CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 721           lock_reg);
 722 
 723   bind(done);
 724 }
 725 
 726 
 727 // Unlocks an object. Used in monitorexit bytecode and
 728 // remove_activation.  Throws an IllegalMonitorException if object is
 729 // not locked by current thread.
 730 //
 731 // Args:
 732 //      c_rarg1: BasicObjectLock for lock
 733 //
 734 // Kills:
 735 //      r0
 736 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
 737 //      rscratch1, rscratch2 (scratch regs)
 738 void InterpreterMacroAssembler::unlock_object(Register lock_reg)
 739 {
 740   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
 741 
 742   const Register swap_reg   = r0;
 743   const Register header_reg = c_rarg2;  // Will contain the old oopMark
 744   const Register obj_reg    = c_rarg3;  // Will contain the oop
 745   const Register tmp_reg    = c_rarg4;  // Temporary used by fast_unlock
 746 
 747   save_bcp(); // Save in case of exception
 748 
 749   // Load oop into obj_reg(%c_rarg3)
 750   ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
 751 
 752   // Free entry
 753   str(zr, Address(lock_reg, BasicObjectLock::obj_offset()));
 754 
 755   Label slow_case, done;
 756   fast_unlock(obj_reg, header_reg, swap_reg, tmp_reg, slow_case);
 757   b(done);
 758 
 759   bind(slow_case);
 760   // Call the runtime routine for slow case.
 761   str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj
 762   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
 763   bind(done);
 764   restore_bcp();
 765 }
 766 
 767 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
 768                                                          Label& zero_continue) {
 769   assert(ProfileInterpreter, "must be profiling interpreter");
 770   ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 771   cbz(mdp, zero_continue);
 772 }
 773 
 774 // Set the method data pointer for the current bcp.
 775 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
 776   assert(ProfileInterpreter, "must be profiling interpreter");
 777   Label set_mdp;
 778   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 779 
 780   // Test MDO to avoid the call if it is null.
 781   ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset())));
 782   cbz(r0, set_mdp);
 783   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp);
 784   // r0: mdi
 785   // mdo is guaranteed to be non-zero here, we checked for it before the call.
 786   ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
 787   lea(r1, Address(r1, in_bytes(MethodData::data_offset())));
 788   add(r0, r1, r0);
 789   str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 790   bind(set_mdp);
 791   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 792 }
 793 
 794 void InterpreterMacroAssembler::verify_method_data_pointer() {
 795   assert(ProfileInterpreter, "must be profiling interpreter");
 796 #ifdef ASSERT
 797   Label verify_continue;
 798   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 799   stp(r2, r3, Address(pre(sp, -2 * wordSize)));
 800   test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue
 801   get_method(r1);
 802 
 803   // If the mdp is valid, it will point to a DataLayout header which is
 804   // consistent with the bcp.  The converse is highly probable also.
 805   ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset())));
 806   ldr(rscratch1, Address(r1, Method::const_offset()));
 807   add(r2, r2, rscratch1, Assembler::LSL);
 808   lea(r2, Address(r2, ConstMethod::codes_offset()));
 809   cmp(r2, rbcp);
 810   br(Assembler::EQ, verify_continue);
 811   // r1: method
 812   // rbcp: bcp // rbcp == 22
 813   // r3: mdp
 814   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
 815                r1, rbcp, r3);
 816   bind(verify_continue);
 817   ldp(r2, r3, Address(post(sp, 2 * wordSize)));
 818   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 819 #endif // ASSERT
 820 }
 821 
 822 
 823 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
 824                                                 int constant,
 825                                                 Register value) {
 826   assert(ProfileInterpreter, "must be profiling interpreter");
 827   Address data(mdp_in, constant);
 828   str(value, data);
 829 }
 830 
 831 
 832 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 833                                                       int constant) {
 834   increment_mdp_data_at(mdp_in, noreg, constant);
 835 }
 836 
 837 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 838                                                       Register index,
 839                                                       int constant) {
 840   assert(ProfileInterpreter, "must be profiling interpreter");
 841 
 842   assert_different_registers(rscratch2, rscratch1, mdp_in, index);
 843 
 844   Address addr1(mdp_in, constant);
 845   Address addr2(rscratch2, index, Address::lsl(0));
 846   Address &addr = addr1;
 847   if (index != noreg) {
 848     lea(rscratch2, addr1);
 849     addr = addr2;
 850   }
 851 
 852   increment(addr, DataLayout::counter_increment);
 853 }
 854 
 855 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
 856                                                 int flag_byte_constant) {
 857   assert(ProfileInterpreter, "must be profiling interpreter");
 858   int flags_offset = in_bytes(DataLayout::flags_offset());
 859   // Set the flag
 860   ldrb(rscratch1, Address(mdp_in, flags_offset));
 861   orr(rscratch1, rscratch1, flag_byte_constant);
 862   strb(rscratch1, Address(mdp_in, flags_offset));
 863 }
 864 
 865 
 866 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
 867                                                  int offset,
 868                                                  Register value,
 869                                                  Register test_value_out,
 870                                                  Label& not_equal_continue) {
 871   assert(ProfileInterpreter, "must be profiling interpreter");
 872   if (test_value_out == noreg) {
 873     ldr(rscratch1, Address(mdp_in, offset));
 874     cmp(value, rscratch1);
 875   } else {
 876     // Put the test value into a register, so caller can use it:
 877     ldr(test_value_out, Address(mdp_in, offset));
 878     cmp(value, test_value_out);
 879   }
 880   br(Assembler::NE, not_equal_continue);
 881 }
 882 
 883 
 884 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
 885                                                      int offset_of_disp) {
 886   assert(ProfileInterpreter, "must be profiling interpreter");
 887   ldr(rscratch1, Address(mdp_in, offset_of_disp));
 888   add(mdp_in, mdp_in, rscratch1, LSL);
 889   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 890 }
 891 
 892 
 893 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
 894                                                      Register reg,
 895                                                      int offset_of_disp) {
 896   assert(ProfileInterpreter, "must be profiling interpreter");
 897   lea(rscratch1, Address(mdp_in, offset_of_disp));
 898   ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0)));
 899   add(mdp_in, mdp_in, rscratch1, LSL);
 900   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 901 }
 902 
 903 
 904 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
 905                                                        int constant) {
 906   assert(ProfileInterpreter, "must be profiling interpreter");
 907   add(mdp_in, mdp_in, (unsigned)constant);
 908   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 909 }
 910 
 911 
 912 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
 913   assert(ProfileInterpreter, "must be profiling interpreter");
 914   // save/restore across call_VM
 915   stp(zr, return_bci, Address(pre(sp, -2 * wordSize)));
 916   call_VM(noreg,
 917           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
 918           return_bci);
 919   ldp(zr, return_bci, Address(post(sp, 2 * wordSize)));
 920 }
 921 
 922 
 923 void InterpreterMacroAssembler::profile_taken_branch(Register mdp) {
 924   if (ProfileInterpreter) {
 925     Label profile_continue;
 926 
 927     // If no method data exists, go to profile_continue.
 928     test_method_data_pointer(mdp, profile_continue);
 929 
 930     // We are taking a branch.  Increment the taken count.
 931     increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
 932 
 933     // The method data pointer needs to be updated to reflect the new target.
 934     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
 935     bind(profile_continue);
 936   }
 937 }
 938 
 939 
 940 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
 941   if (ProfileInterpreter) {
 942     Label profile_continue;
 943 
 944     // If no method data exists, go to profile_continue.
 945     test_method_data_pointer(mdp, profile_continue);
 946 
 947     // We are not taking a branch.  Increment the not taken count.
 948     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
 949 
 950     // The method data pointer needs to be updated to correspond to
 951     // the next bytecode
 952     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
 953     bind(profile_continue);
 954   }
 955 }
 956 
 957 
 958 void InterpreterMacroAssembler::profile_call(Register mdp) {
 959   if (ProfileInterpreter) {
 960     Label profile_continue;
 961 
 962     // If no method data exists, go to profile_continue.
 963     test_method_data_pointer(mdp, profile_continue);
 964 
 965     // We are making a call.  Increment the count.
 966     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
 967 
 968     // The method data pointer needs to be updated to reflect the new target.
 969     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
 970     bind(profile_continue);
 971   }
 972 }
 973 
 974 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
 975   if (ProfileInterpreter) {
 976     Label profile_continue;
 977 
 978     // If no method data exists, go to profile_continue.
 979     test_method_data_pointer(mdp, profile_continue);
 980 
 981     // We are making a call.  Increment the count.
 982     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
 983 
 984     // The method data pointer needs to be updated to reflect the new target.
 985     update_mdp_by_constant(mdp,
 986                            in_bytes(VirtualCallData::
 987                                     virtual_call_data_size()));
 988     bind(profile_continue);
 989   }
 990 }
 991 
 992 
 993 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
 994                                                      Register mdp,
 995                                                      Register reg2,
 996                                                      bool receiver_can_be_null) {
 997   if (ProfileInterpreter) {
 998     Label profile_continue;
 999 
1000     // If no method data exists, go to profile_continue.
1001     test_method_data_pointer(mdp, profile_continue);
1002 
1003     Label skip_receiver_profile;
1004     if (receiver_can_be_null) {
1005       Label not_null;
1006       // We are making a call.  Increment the count for null receiver.
1007       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1008       b(skip_receiver_profile);
1009       bind(not_null);
1010     }
1011 
1012     // Record the receiver type.
1013     record_klass_in_profile(receiver, mdp, reg2);
1014     bind(skip_receiver_profile);
1015 
1016     // The method data pointer needs to be updated to reflect the new target.
1017     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1018     bind(profile_continue);
1019   }
1020 }
1021 
1022 // This routine creates a state machine for updating the multi-row
1023 // type profile at a virtual call site (or other type-sensitive bytecode).
1024 // The machine visits each row (of receiver/count) until the receiver type
1025 // is found, or until it runs out of rows.  At the same time, it remembers
1026 // the location of the first empty row.  (An empty row records null for its
1027 // receiver, and can be allocated for a newly-observed receiver type.)
1028 // Because there are two degrees of freedom in the state, a simple linear
1029 // search will not work; it must be a decision tree.  Hence this helper
1030 // function is recursive, to generate the required tree structured code.
1031 // It's the interpreter, so we are trading off code space for speed.
1032 // See below for example code.
1033 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1034                                         Register receiver, Register mdp,
1035                                         Register reg2, int start_row,
1036                                         Label& done) {
1037   if (TypeProfileWidth == 0) {
1038     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1039   } else {
1040     record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1041         &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset);
1042   }
1043 }
1044 
1045 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1046                                         Register reg2, int start_row, Label& done, int total_rows,
1047                                         OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn) {
1048   int last_row = total_rows - 1;
1049   assert(start_row <= last_row, "must be work left to do");
1050   // Test this row for both the item and for null.
1051   // Take any of three different outcomes:
1052   //   1. found item => increment count and goto done
1053   //   2. found null => keep looking for case 1, maybe allocate this cell
1054   //   3. found something else => keep looking for cases 1 and 2
1055   // Case 3 is handled by a recursive call.
1056   for (int row = start_row; row <= last_row; row++) {
1057     Label next_test;
1058     bool test_for_null_also = (row == start_row);
1059 
1060     // See if the item is item[n].
1061     int item_offset = in_bytes(item_offset_fn(row));
1062     test_mdp_data_at(mdp, item_offset, item,
1063                      (test_for_null_also ? reg2 : noreg),
1064                      next_test);
1065     // (Reg2 now contains the item from the CallData.)
1066 
1067     // The item is item[n].  Increment count[n].
1068     int count_offset = in_bytes(item_count_offset_fn(row));
1069     increment_mdp_data_at(mdp, count_offset);
1070     b(done);
1071     bind(next_test);
1072 
1073     if (test_for_null_also) {
1074       Label found_null;
1075       // Failed the equality check on item[n]...  Test for null.
1076       if (start_row == last_row) {
1077         // The only thing left to do is handle the null case.
1078         cbz(reg2, found_null);
1079         // Item did not match any saved item and there is no empty row for it.
1080         // Increment total counter to indicate polymorphic case.
1081         increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1082         b(done);
1083         bind(found_null);
1084         break;
1085       }
1086       // Since null is rare, make it be the branch-taken case.
1087       cbz(reg2, found_null);
1088 
1089       // Put all the "Case 3" tests here.
1090       record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1091         item_offset_fn, item_count_offset_fn);
1092 
1093       // Found a null.  Keep searching for a matching item,
1094       // but remember that this is an empty (unused) slot.
1095       bind(found_null);
1096     }
1097   }
1098 
1099   // In the fall-through case, we found no matching item, but we
1100   // observed the item[start_row] is null.
1101 
1102   // Fill in the item field and increment the count.
1103   int item_offset = in_bytes(item_offset_fn(start_row));
1104   set_mdp_data_at(mdp, item_offset, item);
1105   int count_offset = in_bytes(item_count_offset_fn(start_row));
1106   mov(reg2, DataLayout::counter_increment);
1107   set_mdp_data_at(mdp, count_offset, reg2);
1108   if (start_row > 0) {
1109     b(done);
1110   }
1111 }
1112 
1113 // Example state machine code for three profile rows:
1114 //   // main copy of decision tree, rooted at row[1]
1115 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1116 //   if (row[0].rec != nullptr) {
1117 //     // inner copy of decision tree, rooted at row[1]
1118 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1119 //     if (row[1].rec != nullptr) {
1120 //       // degenerate decision tree, rooted at row[2]
1121 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1122 //       if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow
1123 //       row[2].init(rec); goto done;
1124 //     } else {
1125 //       // remember row[1] is empty
1126 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1127 //       row[1].init(rec); goto done;
1128 //     }
1129 //   } else {
1130 //     // remember row[0] is empty
1131 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1132 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1133 //     row[0].init(rec); goto done;
1134 //   }
1135 //   done:
1136 
1137 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1138                                                         Register mdp, Register reg2) {
1139   assert(ProfileInterpreter, "must be profiling");
1140   Label done;
1141 
1142   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
1143 
1144   bind (done);
1145 }
1146 
1147 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1148                                             Register mdp) {
1149   if (ProfileInterpreter) {
1150     Label profile_continue;
1151     uint row;
1152 
1153     // If no method data exists, go to profile_continue.
1154     test_method_data_pointer(mdp, profile_continue);
1155 
1156     // Update the total ret count.
1157     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1158 
1159     for (row = 0; row < RetData::row_limit(); row++) {
1160       Label next_test;
1161 
1162       // See if return_bci is equal to bci[n]:
1163       test_mdp_data_at(mdp,
1164                        in_bytes(RetData::bci_offset(row)),
1165                        return_bci, noreg,
1166                        next_test);
1167 
1168       // return_bci is equal to bci[n].  Increment the count.
1169       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1170 
1171       // The method data pointer needs to be updated to reflect the new target.
1172       update_mdp_by_offset(mdp,
1173                            in_bytes(RetData::bci_displacement_offset(row)));
1174       b(profile_continue);
1175       bind(next_test);
1176     }
1177 
1178     update_mdp_for_ret(return_bci);
1179 
1180     bind(profile_continue);
1181   }
1182 }
1183 
1184 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1185   if (ProfileInterpreter) {
1186     Label profile_continue;
1187 
1188     // If no method data exists, go to profile_continue.
1189     test_method_data_pointer(mdp, profile_continue);
1190 
1191     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1192 
1193     // The method data pointer needs to be updated.
1194     int mdp_delta = in_bytes(BitData::bit_data_size());
1195     if (TypeProfileCasts) {
1196       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1197     }
1198     update_mdp_by_constant(mdp, mdp_delta);
1199 
1200     bind(profile_continue);
1201   }
1202 }
1203 
1204 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1205   if (ProfileInterpreter) {
1206     Label profile_continue;
1207 
1208     // If no method data exists, go to profile_continue.
1209     test_method_data_pointer(mdp, profile_continue);
1210 
1211     // The method data pointer needs to be updated.
1212     int mdp_delta = in_bytes(BitData::bit_data_size());
1213     if (TypeProfileCasts) {
1214       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1215 
1216       // Record the object type.
1217       record_klass_in_profile(klass, mdp, reg2);
1218     }
1219     update_mdp_by_constant(mdp, mdp_delta);
1220 
1221     bind(profile_continue);
1222   }
1223 }
1224 
1225 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1226   if (ProfileInterpreter) {
1227     Label profile_continue;
1228 
1229     // If no method data exists, go to profile_continue.
1230     test_method_data_pointer(mdp, profile_continue);
1231 
1232     // Update the default case count
1233     increment_mdp_data_at(mdp,
1234                           in_bytes(MultiBranchData::default_count_offset()));
1235 
1236     // The method data pointer needs to be updated.
1237     update_mdp_by_offset(mdp,
1238                          in_bytes(MultiBranchData::
1239                                   default_displacement_offset()));
1240 
1241     bind(profile_continue);
1242   }
1243 }
1244 
1245 void InterpreterMacroAssembler::profile_switch_case(Register index,
1246                                                     Register mdp,
1247                                                     Register reg2) {
1248   if (ProfileInterpreter) {
1249     Label profile_continue;
1250 
1251     // If no method data exists, go to profile_continue.
1252     test_method_data_pointer(mdp, profile_continue);
1253 
1254     // Build the base (index * per_case_size_in_bytes()) +
1255     // case_array_offset_in_bytes()
1256     movw(reg2, in_bytes(MultiBranchData::per_case_size()));
1257     movw(rscratch1, in_bytes(MultiBranchData::case_array_offset()));
1258     Assembler::maddw(index, index, reg2, rscratch1);
1259 
1260     // Update the case count
1261     increment_mdp_data_at(mdp,
1262                           index,
1263                           in_bytes(MultiBranchData::relative_count_offset()));
1264 
1265     // The method data pointer needs to be updated.
1266     update_mdp_by_offset(mdp,
1267                          index,
1268                          in_bytes(MultiBranchData::
1269                                   relative_displacement_offset()));
1270 
1271     bind(profile_continue);
1272   }
1273 }
1274 
1275 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) {
1276   if (state == atos) {
1277     MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line);
1278   }
1279 }
1280 
1281 void InterpreterMacroAssembler::generate_runtime_upcalls_on_method_entry()
1282 {
1283   address upcall = RuntimeUpcalls::on_method_entry_upcall_address();
1284   if (RuntimeUpcalls::does_upcall_need_method_parameter(upcall)) {
1285     get_method(c_rarg1);
1286     call_VM(noreg,upcall, c_rarg1);
1287   } else {
1288     call_VM(noreg,upcall);
1289   }
1290 }
1291 
1292 void InterpreterMacroAssembler::notify_method_entry() {
1293   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1294   // track stack depth.  If it is possible to enter interp_only_mode we add
1295   // the code to check if the event should be sent.
1296   if (JvmtiExport::can_post_interpreter_events()) {
1297     Label L;
1298     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1299     cbzw(r3, L);
1300     call_VM(noreg, CAST_FROM_FN_PTR(address,
1301                                     InterpreterRuntime::post_method_entry));
1302     bind(L);
1303   }
1304 
1305   if (DTraceMethodProbes) {
1306     get_method(c_rarg1);
1307     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1308                  rthread, c_rarg1);
1309   }
1310 
1311   // RedefineClasses() tracing support for obsolete method entry
1312   if (log_is_enabled(Trace, redefine, class, obsolete) ||
1313       log_is_enabled(Trace, interpreter, bytecode)) {
1314     get_method(c_rarg1);
1315     call_VM_leaf(
1316       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1317       rthread, c_rarg1);
1318   }
1319 
1320  }
1321 
1322 
1323 void InterpreterMacroAssembler::notify_method_exit(
1324     TosState state, NotifyMethodExitMode mode) {
1325   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1326   // track stack depth.  If it is possible to enter interp_only_mode we add
1327   // the code to check if the event should be sent.
1328   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1329     Label L;
1330     // Note: frame::interpreter_frame_result has a dependency on how the
1331     // method result is saved across the call to post_method_exit. If this
1332     // is changed then the interpreter_frame_result implementation will
1333     // need to be updated too.
1334 
1335     // template interpreter will leave the result on the top of the stack.
1336     push(state);
1337     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1338     cbz(r3, L);
1339     call_VM(noreg,
1340             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1341     bind(L);
1342     pop(state);
1343   }
1344 
1345   if (DTraceMethodProbes) {
1346     push(state);
1347     get_method(c_rarg1);
1348     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1349                  rthread, c_rarg1);
1350     pop(state);
1351   }
1352 }
1353 
1354 
1355 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1356 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1357                                                         int increment, Address mask,
1358                                                         Register scratch, Register scratch2,
1359                                                         bool preloaded, Condition cond,
1360                                                         Label* where) {
1361   if (!preloaded) {
1362     ldrw(scratch, counter_addr);
1363   }
1364   add(scratch, scratch, increment);
1365   strw(scratch, counter_addr);
1366   ldrw(scratch2, mask);
1367   ands(scratch, scratch, scratch2);
1368   br(cond, *where);
1369 }
1370 
1371 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
1372                                                   int number_of_arguments) {
1373   // interpreter specific
1374   //
1375   // Note: No need to save/restore rbcp & rlocals pointer since these
1376   //       are callee saved registers and no blocking/ GC can happen
1377   //       in leaf calls.
1378 #ifdef ASSERT
1379   {
1380     Label L;
1381     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1382     cbz(rscratch1, L);
1383     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1384          " last_sp != nullptr");
1385     bind(L);
1386   }
1387 #endif /* ASSERT */
1388   // super call
1389   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
1390 }
1391 
1392 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
1393                                              Register java_thread,
1394                                              Register last_java_sp,
1395                                              Label*   return_pc,
1396                                              address  entry_point,
1397                                              int      number_of_arguments,
1398                                              bool     check_exceptions) {
1399   // interpreter specific
1400   //
1401   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
1402   //       really make a difference for these runtime calls, since they are
1403   //       slow anyway. Btw., bcp must be saved/restored since it may change
1404   //       due to GC.
1405   // assert(java_thread == noreg , "not expecting a precomputed java thread");
1406   save_bcp();
1407 #ifdef ASSERT
1408   {
1409     Label L;
1410     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1411     cbz(rscratch1, L);
1412     stop("InterpreterMacroAssembler::call_VM_base:"
1413          " last_sp != nullptr");
1414     bind(L);
1415   }
1416 #endif /* ASSERT */
1417   // super call
1418   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
1419                                return_pc, entry_point,
1420                                number_of_arguments, check_exceptions);
1421 // interpreter specific
1422   restore_bcp();
1423   restore_locals();
1424 }
1425 
1426 void InterpreterMacroAssembler::call_VM_preemptable_helper(Register oop_result,
1427                                                            address entry_point,
1428                                                            int number_of_arguments,
1429                                                            bool check_exceptions) {
1430   assert(InterpreterRuntime::is_preemptable_call(entry_point), "VM call not preemptable, should use call_VM()");
1431   Label resume_pc, not_preempted;
1432 
1433 #ifdef ASSERT
1434   {
1435     Label L1, L2;
1436     ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1437     cbz(rscratch1, L1);
1438     stop("call_VM_preemptable_helper: Should not have alternate return address set");
1439     bind(L1);
1440     // We check this counter in patch_return_pc_with_preempt_stub() during freeze.
1441     incrementw(Address(rthread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()));
1442     ldrw(rscratch1, Address(rthread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()));
1443     cmpw(rscratch1, 0);
1444     br(Assembler::GT, L2);
1445     stop("call_VM_preemptable_helper: should be > 0");
1446     bind(L2);
1447   }
1448 #endif /* ASSERT */
1449 
1450   // Force freeze slow path.
1451   push_cont_fastpath();
1452 
1453   // Make VM call. In case of preemption set last_pc to the one we want to resume to.
1454   // Note: call_VM_base will use resume_pc label to set last_Java_pc.
1455   call_VM_base(noreg, noreg, noreg, &resume_pc, entry_point, number_of_arguments, false /*check_exceptions*/);
1456 
1457   pop_cont_fastpath();
1458 
1459 #ifdef ASSERT
1460   {
1461     Label L;
1462     decrementw(Address(rthread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()));
1463     ldrw(rscratch1, Address(rthread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()));
1464     cmpw(rscratch1, 0);
1465     br(Assembler::GE, L);
1466     stop("call_VM_preemptable_helper: should be >= 0");
1467     bind(L);
1468   }
1469 #endif /* ASSERT */
1470 
1471   // Check if preempted.
1472   ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1473   cbz(rscratch1, not_preempted);
1474   str(zr, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1475   br(rscratch1);
1476 
1477   // In case of preemption, this is where we will resume once we finally acquire the monitor.
1478   bind(resume_pc);
1479   restore_after_resume(false /* is_native */);
1480 
1481   bind(not_preempted);
1482   if (check_exceptions) {
1483     // check for pending exceptions
1484     ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
1485     Label ok;
1486     cbz(rscratch1, ok);
1487     lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry()));
1488     br(rscratch1);
1489     bind(ok);
1490   }
1491 
1492   // get oop result if there is one and reset the value in the thread
1493   if (oop_result->is_valid()) {
1494     get_vm_result_oop(oop_result, rthread);
1495   }
1496 }
1497 
1498 static void pass_arg1(MacroAssembler* masm, Register arg) {
1499   if (c_rarg1 != arg ) {
1500     masm->mov(c_rarg1, arg);
1501   }
1502 }
1503 
1504 static void pass_arg2(MacroAssembler* masm, Register arg) {
1505   if (c_rarg2 != arg ) {
1506     masm->mov(c_rarg2, arg);
1507   }
1508 }
1509 
1510 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result,
1511                                          address entry_point,
1512                                          Register arg_1,
1513                                          bool check_exceptions) {
1514   pass_arg1(this, arg_1);
1515   call_VM_preemptable_helper(oop_result, entry_point, 1, check_exceptions);
1516 }
1517 
1518 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result,
1519                                          address entry_point,
1520                                          Register arg_1,
1521                                          Register arg_2,
1522                                          bool check_exceptions) {
1523   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
1524   pass_arg2(this, arg_2);
1525   pass_arg1(this, arg_1);
1526   call_VM_preemptable_helper(oop_result, entry_point, 2, check_exceptions);
1527 }
1528 
1529 void InterpreterMacroAssembler::restore_after_resume(bool is_native) {
1530   lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter()));
1531   blr(rscratch1);
1532   if (is_native) {
1533     // On resume we need to set up stack as expected
1534     push(dtos);
1535     push(ltos);
1536   }
1537 }
1538 
1539 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
1540   assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index());
1541   Label update, next, none;
1542 
1543   verify_oop(obj);
1544 
1545   cbnz(obj, update);
1546   orptr(mdo_addr, TypeEntries::null_seen);
1547   b(next);
1548 
1549   bind(update);
1550   load_klass(obj, obj);
1551 
1552   ldr(rscratch1, mdo_addr);
1553   eor(obj, obj, rscratch1);
1554   tst(obj, TypeEntries::type_klass_mask);
1555   br(Assembler::EQ, next); // klass seen before, nothing to
1556                            // do. The unknown bit may have been
1557                            // set already but no need to check.
1558 
1559   tbnz(obj, exact_log2(TypeEntries::type_unknown), next);
1560   // already unknown. Nothing to do anymore.
1561 
1562   cbz(rscratch1, none);
1563   cmp(rscratch1, (u1)TypeEntries::null_seen);
1564   br(Assembler::EQ, none);
1565   // There is a chance that the checks above
1566   // fail if another thread has just set the
1567   // profiling to this obj's klass
1568   eor(obj, obj, rscratch1); // get back original value before XOR
1569   ldr(rscratch1, mdo_addr);
1570   eor(obj, obj, rscratch1);
1571   tst(obj, TypeEntries::type_klass_mask);
1572   br(Assembler::EQ, next);
1573 
1574   // different than before. Cannot keep accurate profile.
1575   orptr(mdo_addr, TypeEntries::type_unknown);
1576   b(next);
1577 
1578   bind(none);
1579   // first time here. Set profile type.
1580   str(obj, mdo_addr);
1581 #ifdef ASSERT
1582   andr(obj, obj, TypeEntries::type_mask);
1583   verify_klass_ptr(obj);
1584 #endif
1585 
1586   bind(next);
1587 }
1588 
1589 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1590   if (!ProfileInterpreter) {
1591     return;
1592   }
1593 
1594   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1595     Label profile_continue;
1596 
1597     test_method_data_pointer(mdp, profile_continue);
1598 
1599     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1600 
1601     ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start));
1602     cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag));
1603     br(Assembler::NE, profile_continue);
1604 
1605     if (MethodData::profile_arguments()) {
1606       Label done;
1607       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1608 
1609       for (int i = 0; i < TypeProfileArgsLimit; i++) {
1610         if (i > 0 || MethodData::profile_return()) {
1611           // If return value type is profiled we may have no argument to profile
1612           ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1613           sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count());
1614           cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count());
1615           add(rscratch1, mdp, off_to_args);
1616           br(Assembler::LT, done);
1617         }
1618         ldr(tmp, Address(callee, Method::const_offset()));
1619         load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1620         // stack offset o (zero based) from the start of the argument
1621         // list, for n arguments translates into offset n - o - 1 from
1622         // the end of the argument list
1623         ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))));
1624         sub(tmp, tmp, rscratch1);
1625         sub(tmp, tmp, 1);
1626         Address arg_addr = argument_address(tmp);
1627         ldr(tmp, arg_addr);
1628 
1629         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i)));
1630         profile_obj_type(tmp, mdo_arg_addr);
1631 
1632         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1633         off_to_args += to_add;
1634       }
1635 
1636       if (MethodData::profile_return()) {
1637         ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1638         sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1639       }
1640 
1641       add(rscratch1, mdp, off_to_args);
1642       bind(done);
1643       mov(mdp, rscratch1);
1644 
1645       if (MethodData::profile_return()) {
1646         // We're right after the type profile for the last
1647         // argument. tmp is the number of cells left in the
1648         // CallTypeData/VirtualCallTypeData to reach its end. Non null
1649         // if there's a return to profile.
1650         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1651         add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size));
1652       }
1653       str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1654     } else {
1655       assert(MethodData::profile_return(), "either profile call args or call ret");
1656       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
1657     }
1658 
1659     // mdp points right after the end of the
1660     // CallTypeData/VirtualCallTypeData, right after the cells for the
1661     // return value type if there's one
1662 
1663     bind(profile_continue);
1664   }
1665 }
1666 
1667 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1668   assert_different_registers(mdp, ret, tmp, rbcp);
1669   if (ProfileInterpreter && MethodData::profile_return()) {
1670     Label profile_continue, done;
1671 
1672     test_method_data_pointer(mdp, profile_continue);
1673 
1674     if (MethodData::profile_return_jsr292_only()) {
1675       assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
1676 
1677       // If we don't profile all invoke bytecodes we must make sure
1678       // it's a bytecode we indeed profile. We can't go back to the
1679       // beginning of the ProfileData we intend to update to check its
1680       // type because we're right after it and we don't known its
1681       // length
1682       Label do_profile;
1683       ldrb(rscratch1, Address(rbcp, 0));
1684       cmp(rscratch1, (u1)Bytecodes::_invokedynamic);
1685       br(Assembler::EQ, do_profile);
1686       cmp(rscratch1, (u1)Bytecodes::_invokehandle);
1687       br(Assembler::EQ, do_profile);
1688       get_method(tmp);
1689       ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset()));
1690       subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm));
1691       br(Assembler::NE, profile_continue);
1692 
1693       bind(do_profile);
1694     }
1695 
1696     Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
1697     mov(tmp, ret);
1698     profile_obj_type(tmp, mdo_ret_addr);
1699 
1700     bind(profile_continue);
1701   }
1702 }
1703 
1704 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
1705   assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2);
1706   if (ProfileInterpreter && MethodData::profile_parameters()) {
1707     Label profile_continue, done;
1708 
1709     test_method_data_pointer(mdp, profile_continue);
1710 
1711     // Load the offset of the area within the MDO used for
1712     // parameters. If it's negative we're not profiling any parameters
1713     ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
1714     tbnz(tmp1, 31, profile_continue);  // i.e. sign bit set
1715 
1716     // Compute a pointer to the area for parameters from the offset
1717     // and move the pointer to the slot for the last
1718     // parameters. Collect profiling from last parameter down.
1719     // mdo start + parameters offset + array length - 1
1720     add(mdp, mdp, tmp1);
1721     ldr(tmp1, Address(mdp, ArrayData::array_len_offset()));
1722     sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1723 
1724     Label loop;
1725     bind(loop);
1726 
1727     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1728     int type_base = in_bytes(ParametersTypeData::type_offset(0));
1729     int per_arg_scale = exact_log2(DataLayout::cell_size);
1730     add(rscratch1, mdp, off_base);
1731     add(rscratch2, mdp, type_base);
1732 
1733     Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale));
1734     Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale));
1735 
1736     // load offset on the stack from the slot for this parameter
1737     ldr(tmp2, arg_off);
1738     neg(tmp2, tmp2);
1739     // read the parameter from the local area
1740     ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize)));
1741 
1742     // profile the parameter
1743     profile_obj_type(tmp2, arg_type);
1744 
1745     // go to next parameter
1746     subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1747     br(Assembler::GE, loop);
1748 
1749     bind(profile_continue);
1750   }
1751 }
1752 
1753 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) {
1754   // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp
1755   get_cache_index_at_bcp(index, 1, sizeof(u4));
1756   // Get address of invokedynamic array
1757   ldr(cache, Address(rcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset())));
1758   // Scale the index to be the entry index * sizeof(ResolvedIndyEntry)
1759   lsl(index, index, log2i_exact(sizeof(ResolvedIndyEntry)));
1760   add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes());
1761   lea(cache, Address(cache, index));
1762 }
1763 
1764 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) {
1765   // Get index out of bytecode pointer
1766   get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
1767   // Take shortcut if the size is a power of 2
1768   if (is_power_of_2(sizeof(ResolvedFieldEntry))) {
1769     lsl(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2
1770   } else {
1771     mov(cache, sizeof(ResolvedFieldEntry));
1772     mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry)
1773   }
1774   // Get address of field entries array
1775   ldr(cache, Address(rcpool, ConstantPoolCache::field_entries_offset()));
1776   add(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes());
1777   lea(cache, Address(cache, index));
1778   // Prevents stale data from being read after the bytecode is patched to the fast bytecode
1779   membar(MacroAssembler::LoadLoad);
1780 }
1781 
1782 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) {
1783   // Get index out of bytecode pointer
1784   get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
1785   mov(cache, sizeof(ResolvedMethodEntry));
1786   mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry)
1787 
1788   // Get address of field entries array
1789   ldr(cache, Address(rcpool, ConstantPoolCache::method_entries_offset()));
1790   add(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes());
1791   lea(cache, Address(cache, index));
1792 }
1793 
1794 #ifdef ASSERT
1795 void InterpreterMacroAssembler::verify_field_offset(Register reg) {
1796   // Verify the field offset is not in the header, implicitly checks for 0
1797   Label L;
1798   subs(zr, reg, oopDesc::base_offset_in_bytes());
1799   br(Assembler::GE, L);
1800   stop("bad field offset");
1801   bind(L);
1802 }
1803 #endif