1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/assembler.hpp" 27 #include "asm/assembler.inline.hpp" 28 #include "ci/ciEnv.hpp" 29 #include "code/compiledIC.hpp" 30 #include "compiler/compileTask.hpp" 31 #include "compiler/disassembler.hpp" 32 #include "compiler/oopMap.hpp" 33 #include "gc/shared/barrierSet.hpp" 34 #include "gc/shared/barrierSetAssembler.hpp" 35 #include "gc/shared/cardTableBarrierSet.hpp" 36 #include "gc/shared/cardTable.hpp" 37 #include "gc/shared/collectedHeap.hpp" 38 #include "gc/shared/tlab_globals.hpp" 39 #include "interpreter/bytecodeHistogram.hpp" 40 #include "interpreter/interpreter.hpp" 41 #include "interpreter/interpreterRuntime.hpp" 42 #include "jvm.h" 43 #include "memory/resourceArea.hpp" 44 #include "memory/universe.hpp" 45 #include "nativeInst_aarch64.hpp" 46 #include "oops/accessDecorators.hpp" 47 #include "oops/compressedKlass.inline.hpp" 48 #include "oops/compressedOops.inline.hpp" 49 #include "oops/klass.inline.hpp" 50 #include "runtime/continuation.hpp" 51 #include "runtime/icache.hpp" 52 #include "runtime/interfaceSupport.inline.hpp" 53 #include "runtime/javaThread.hpp" 54 #include "runtime/jniHandles.inline.hpp" 55 #include "runtime/sharedRuntime.hpp" 56 #include "runtime/stubRoutines.hpp" 57 #include "utilities/globalDefinitions.hpp" 58 #include "utilities/powerOfTwo.hpp" 59 #ifdef COMPILER1 60 #include "c1/c1_LIRAssembler.hpp" 61 #endif 62 #ifdef COMPILER2 63 #include "oops/oop.hpp" 64 #include "opto/compile.hpp" 65 #include "opto/node.hpp" 66 #include "opto/output.hpp" 67 #endif 68 69 #include <sys/types.h> 70 71 #ifdef PRODUCT 72 #define BLOCK_COMMENT(str) /* nothing */ 73 #else 74 #define BLOCK_COMMENT(str) block_comment(str) 75 #endif 76 #define STOP(str) stop(str); 77 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 78 79 #ifdef ASSERT 80 extern "C" void disnm(intptr_t p); 81 #endif 82 // Target-dependent relocation processing 83 // 84 // Instruction sequences whose target may need to be retrieved or 85 // patched are distinguished by their leading instruction, sorting 86 // them into three main instruction groups and related subgroups. 87 // 88 // 1) Branch, Exception and System (insn count = 1) 89 // 1a) Unconditional branch (immediate): 90 // b/bl imm19 91 // 1b) Compare & branch (immediate): 92 // cbz/cbnz Rt imm19 93 // 1c) Test & branch (immediate): 94 // tbz/tbnz Rt imm14 95 // 1d) Conditional branch (immediate): 96 // b.cond imm19 97 // 98 // 2) Loads and Stores (insn count = 1) 99 // 2a) Load register literal: 100 // ldr Rt imm19 101 // 102 // 3) Data Processing Immediate (insn count = 2 or 3) 103 // 3a) PC-rel. addressing 104 // adr/adrp Rx imm21; ldr/str Ry Rx #imm12 105 // adr/adrp Rx imm21; add Ry Rx #imm12 106 // adr/adrp Rx imm21; movk Rx #imm16<<32; ldr/str Ry, [Rx, #offset_in_page] 107 // adr/adrp Rx imm21 108 // adr/adrp Rx imm21; movk Rx #imm16<<32 109 // adr/adrp Rx imm21; movk Rx #imm16<<32; add Ry, Rx, #offset_in_page 110 // The latter form can only happen when the target is an 111 // ExternalAddress, and (by definition) ExternalAddresses don't 112 // move. Because of that property, there is never any need to 113 // patch the last of the three instructions. However, 114 // MacroAssembler::target_addr_for_insn takes all three 115 // instructions into account and returns the correct address. 116 // 3b) Move wide (immediate) 117 // movz Rx #imm16; movk Rx #imm16 << 16; movk Rx #imm16 << 32; 118 // 119 // A switch on a subset of the instruction's bits provides an 120 // efficient dispatch to these subcases. 121 // 122 // insn[28:26] -> main group ('x' == don't care) 123 // 00x -> UNALLOCATED 124 // 100 -> Data Processing Immediate 125 // 101 -> Branch, Exception and System 126 // x1x -> Loads and Stores 127 // 128 // insn[30:25] -> subgroup ('_' == group, 'x' == don't care). 129 // n.b. in some cases extra bits need to be checked to verify the 130 // instruction is as expected 131 // 132 // 1) ... xx101x Branch, Exception and System 133 // 1a) 00___x Unconditional branch (immediate) 134 // 1b) 01___0 Compare & branch (immediate) 135 // 1c) 01___1 Test & branch (immediate) 136 // 1d) 10___0 Conditional branch (immediate) 137 // other Should not happen 138 // 139 // 2) ... xxx1x0 Loads and Stores 140 // 2a) xx1__00 Load/Store register (insn[28] == 1 && insn[24] == 0) 141 // 2aa) x01__00 Load register literal (i.e. requires insn[29] == 0) 142 // strictly should be 64 bit non-FP/SIMD i.e. 143 // 0101_000 (i.e. requires insn[31:24] == 01011000) 144 // 145 // 3) ... xx100x Data Processing Immediate 146 // 3a) xx___00 PC-rel. addressing (n.b. requires insn[24] == 0) 147 // 3b) xx___101 Move wide (immediate) (n.b. requires insn[24:23] == 01) 148 // strictly should be 64 bit movz #imm16<<0 149 // 110___10100 (i.e. requires insn[31:21] == 11010010100) 150 // 151 class RelocActions { 152 protected: 153 typedef int (*reloc_insn)(address insn_addr, address &target); 154 155 virtual reloc_insn adrpMem() = 0; 156 virtual reloc_insn adrpAdd() = 0; 157 virtual reloc_insn adrpMovk() = 0; 158 159 const address _insn_addr; 160 const uint32_t _insn; 161 162 static uint32_t insn_at(address insn_addr, int n) { 163 return ((uint32_t*)insn_addr)[n]; 164 } 165 uint32_t insn_at(int n) const { 166 return insn_at(_insn_addr, n); 167 } 168 169 public: 170 171 RelocActions(address insn_addr) : _insn_addr(insn_addr), _insn(insn_at(insn_addr, 0)) {} 172 RelocActions(address insn_addr, uint32_t insn) 173 : _insn_addr(insn_addr), _insn(insn) {} 174 175 virtual int unconditionalBranch(address insn_addr, address &target) = 0; 176 virtual int conditionalBranch(address insn_addr, address &target) = 0; 177 virtual int testAndBranch(address insn_addr, address &target) = 0; 178 virtual int loadStore(address insn_addr, address &target) = 0; 179 virtual int adr(address insn_addr, address &target) = 0; 180 virtual int adrp(address insn_addr, address &target, reloc_insn inner) = 0; 181 virtual int immediate(address insn_addr, address &target) = 0; 182 virtual void verify(address insn_addr, address &target) = 0; 183 184 int ALWAYSINLINE run(address insn_addr, address &target) { 185 int instructions = 1; 186 187 uint32_t dispatch = Instruction_aarch64::extract(_insn, 30, 25); 188 switch(dispatch) { 189 case 0b001010: 190 case 0b001011: { 191 instructions = unconditionalBranch(insn_addr, target); 192 break; 193 } 194 case 0b101010: // Conditional branch (immediate) 195 case 0b011010: { // Compare & branch (immediate) 196 instructions = conditionalBranch(insn_addr, target); 197 break; 198 } 199 case 0b011011: { 200 instructions = testAndBranch(insn_addr, target); 201 break; 202 } 203 case 0b001100: 204 case 0b001110: 205 case 0b011100: 206 case 0b011110: 207 case 0b101100: 208 case 0b101110: 209 case 0b111100: 210 case 0b111110: { 211 // load/store 212 if ((Instruction_aarch64::extract(_insn, 29, 24) & 0b111011) == 0b011000) { 213 // Load register (literal) 214 instructions = loadStore(insn_addr, target); 215 break; 216 } else { 217 // nothing to do 218 assert(target == nullptr, "did not expect to relocate target for polling page load"); 219 } 220 break; 221 } 222 case 0b001000: 223 case 0b011000: 224 case 0b101000: 225 case 0b111000: { 226 // adr/adrp 227 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 228 int shift = Instruction_aarch64::extract(_insn, 31, 31); 229 if (shift) { 230 uint32_t insn2 = insn_at(1); 231 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 232 Instruction_aarch64::extract(_insn, 4, 0) == 233 Instruction_aarch64::extract(insn2, 9, 5)) { 234 instructions = adrp(insn_addr, target, adrpMem()); 235 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 236 Instruction_aarch64::extract(_insn, 4, 0) == 237 Instruction_aarch64::extract(insn2, 4, 0)) { 238 instructions = adrp(insn_addr, target, adrpAdd()); 239 } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 240 Instruction_aarch64::extract(_insn, 4, 0) == 241 Instruction_aarch64::extract(insn2, 4, 0)) { 242 instructions = adrp(insn_addr, target, adrpMovk()); 243 } else { 244 ShouldNotReachHere(); 245 } 246 } else { 247 instructions = adr(insn_addr, target); 248 } 249 break; 250 } 251 case 0b001001: 252 case 0b011001: 253 case 0b101001: 254 case 0b111001: { 255 instructions = immediate(insn_addr, target); 256 break; 257 } 258 default: { 259 ShouldNotReachHere(); 260 } 261 } 262 263 verify(insn_addr, target); 264 return instructions * NativeInstruction::instruction_size; 265 } 266 }; 267 268 class Patcher : public RelocActions { 269 virtual reloc_insn adrpMem() { return &Patcher::adrpMem_impl; } 270 virtual reloc_insn adrpAdd() { return &Patcher::adrpAdd_impl; } 271 virtual reloc_insn adrpMovk() { return &Patcher::adrpMovk_impl; } 272 273 public: 274 Patcher(address insn_addr) : RelocActions(insn_addr) {} 275 276 virtual int unconditionalBranch(address insn_addr, address &target) { 277 intptr_t offset = (target - insn_addr) >> 2; 278 Instruction_aarch64::spatch(insn_addr, 25, 0, offset); 279 return 1; 280 } 281 virtual int conditionalBranch(address insn_addr, address &target) { 282 intptr_t offset = (target - insn_addr) >> 2; 283 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 284 return 1; 285 } 286 virtual int testAndBranch(address insn_addr, address &target) { 287 intptr_t offset = (target - insn_addr) >> 2; 288 Instruction_aarch64::spatch(insn_addr, 18, 5, offset); 289 return 1; 290 } 291 virtual int loadStore(address insn_addr, address &target) { 292 intptr_t offset = (target - insn_addr) >> 2; 293 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 294 return 1; 295 } 296 virtual int adr(address insn_addr, address &target) { 297 #ifdef ASSERT 298 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 299 #endif 300 // PC-rel. addressing 301 ptrdiff_t offset = target - insn_addr; 302 int offset_lo = offset & 3; 303 offset >>= 2; 304 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 305 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 306 return 1; 307 } 308 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 309 int instructions = 1; 310 #ifdef ASSERT 311 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 312 #endif 313 ptrdiff_t offset = target - insn_addr; 314 instructions = 2; 315 precond(inner != nullptr); 316 // Give the inner reloc a chance to modify the target. 317 address adjusted_target = target; 318 instructions = (*inner)(insn_addr, adjusted_target); 319 uintptr_t pc_page = (uintptr_t)insn_addr >> 12; 320 uintptr_t adr_page = (uintptr_t)adjusted_target >> 12; 321 offset = adr_page - pc_page; 322 int offset_lo = offset & 3; 323 offset >>= 2; 324 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 325 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 326 return instructions; 327 } 328 static int adrpMem_impl(address insn_addr, address &target) { 329 uintptr_t dest = (uintptr_t)target; 330 int offset_lo = dest & 0xfff; 331 uint32_t insn2 = insn_at(insn_addr, 1); 332 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 333 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo >> size); 334 guarantee(((dest >> size) << size) == dest, "misaligned target"); 335 return 2; 336 } 337 static int adrpAdd_impl(address insn_addr, address &target) { 338 uintptr_t dest = (uintptr_t)target; 339 int offset_lo = dest & 0xfff; 340 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo); 341 return 2; 342 } 343 static int adrpMovk_impl(address insn_addr, address &target) { 344 uintptr_t dest = uintptr_t(target); 345 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 20, 5, (uintptr_t)target >> 32); 346 dest = (dest & 0xffffffffULL) | (uintptr_t(insn_addr) & 0xffff00000000ULL); 347 target = address(dest); 348 return 2; 349 } 350 virtual int immediate(address insn_addr, address &target) { 351 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 352 uint64_t dest = (uint64_t)target; 353 // Move wide constant 354 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 355 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 356 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 357 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 358 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 359 return 3; 360 } 361 virtual void verify(address insn_addr, address &target) { 362 #ifdef ASSERT 363 address address_is = MacroAssembler::target_addr_for_insn(insn_addr); 364 if (!(address_is == target)) { 365 tty->print_cr("%p at %p should be %p", address_is, insn_addr, target); 366 disnm((intptr_t)insn_addr); 367 assert(address_is == target, "should be"); 368 } 369 #endif 370 } 371 }; 372 373 // If insn1 and insn2 use the same register to form an address, either 374 // by an offsetted LDR or a simple ADD, return the offset. If the 375 // second instruction is an LDR, the offset may be scaled. 376 static bool offset_for(uint32_t insn1, uint32_t insn2, ptrdiff_t &byte_offset) { 377 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 378 Instruction_aarch64::extract(insn1, 4, 0) == 379 Instruction_aarch64::extract(insn2, 9, 5)) { 380 // Load/store register (unsigned immediate) 381 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 382 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 383 byte_offset <<= size; 384 return true; 385 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 386 Instruction_aarch64::extract(insn1, 4, 0) == 387 Instruction_aarch64::extract(insn2, 4, 0)) { 388 // add (immediate) 389 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 390 return true; 391 } 392 return false; 393 } 394 395 class AArch64Decoder : public RelocActions { 396 virtual reloc_insn adrpMem() { return &AArch64Decoder::adrpMem_impl; } 397 virtual reloc_insn adrpAdd() { return &AArch64Decoder::adrpAdd_impl; } 398 virtual reloc_insn adrpMovk() { return &AArch64Decoder::adrpMovk_impl; } 399 400 public: 401 AArch64Decoder(address insn_addr, uint32_t insn) : RelocActions(insn_addr, insn) {} 402 403 virtual int loadStore(address insn_addr, address &target) { 404 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 405 target = insn_addr + (offset << 2); 406 return 1; 407 } 408 virtual int unconditionalBranch(address insn_addr, address &target) { 409 intptr_t offset = Instruction_aarch64::sextract(_insn, 25, 0); 410 target = insn_addr + (offset << 2); 411 return 1; 412 } 413 virtual int conditionalBranch(address insn_addr, address &target) { 414 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 415 target = address(((uint64_t)insn_addr + (offset << 2))); 416 return 1; 417 } 418 virtual int testAndBranch(address insn_addr, address &target) { 419 intptr_t offset = Instruction_aarch64::sextract(_insn, 18, 5); 420 target = address(((uint64_t)insn_addr + (offset << 2))); 421 return 1; 422 } 423 virtual int adr(address insn_addr, address &target) { 424 // PC-rel. addressing 425 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 426 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 427 target = address((uint64_t)insn_addr + offset); 428 return 1; 429 } 430 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 431 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 432 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 433 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 434 int shift = 12; 435 offset <<= shift; 436 uint64_t target_page = ((uint64_t)insn_addr) + offset; 437 target_page &= ((uint64_t)-1) << shift; 438 uint32_t insn2 = insn_at(1); 439 target = address(target_page); 440 precond(inner != nullptr); 441 (*inner)(insn_addr, target); 442 return 2; 443 } 444 static int adrpMem_impl(address insn_addr, address &target) { 445 uint32_t insn2 = insn_at(insn_addr, 1); 446 // Load/store register (unsigned immediate) 447 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 448 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 449 byte_offset <<= size; 450 target += byte_offset; 451 return 2; 452 } 453 static int adrpAdd_impl(address insn_addr, address &target) { 454 uint32_t insn2 = insn_at(insn_addr, 1); 455 // add (immediate) 456 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 457 target += byte_offset; 458 return 2; 459 } 460 static int adrpMovk_impl(address insn_addr, address &target) { 461 uint32_t insn2 = insn_at(insn_addr, 1); 462 uint64_t dest = uint64_t(target); 463 dest = (dest & 0xffff0000ffffffff) | 464 ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32); 465 target = address(dest); 466 467 // We know the destination 4k page. Maybe we have a third 468 // instruction. 469 uint32_t insn = insn_at(insn_addr, 0); 470 uint32_t insn3 = insn_at(insn_addr, 2); 471 ptrdiff_t byte_offset; 472 if (offset_for(insn, insn3, byte_offset)) { 473 target += byte_offset; 474 return 3; 475 } else { 476 return 2; 477 } 478 } 479 virtual int immediate(address insn_addr, address &target) { 480 uint32_t *insns = (uint32_t *)insn_addr; 481 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 482 // Move wide constant: movz, movk, movk. See movptr(). 483 assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch"); 484 assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch"); 485 target = address(uint64_t(Instruction_aarch64::extract(_insn, 20, 5)) 486 + (uint64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16) 487 + (uint64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32)); 488 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 489 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 490 return 3; 491 } 492 virtual void verify(address insn_addr, address &target) { 493 } 494 }; 495 496 address MacroAssembler::target_addr_for_insn(address insn_addr, uint32_t insn) { 497 AArch64Decoder decoder(insn_addr, insn); 498 address target; 499 decoder.run(insn_addr, target); 500 return target; 501 } 502 503 // Patch any kind of instruction; there may be several instructions. 504 // Return the total length (in bytes) of the instructions. 505 int MacroAssembler::pd_patch_instruction_size(address insn_addr, address target) { 506 Patcher patcher(insn_addr); 507 return patcher.run(insn_addr, target); 508 } 509 510 int MacroAssembler::patch_oop(address insn_addr, address o) { 511 int instructions; 512 unsigned insn = *(unsigned*)insn_addr; 513 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 514 515 // OOPs are either narrow (32 bits) or wide (48 bits). We encode 516 // narrow OOPs by setting the upper 16 bits in the first 517 // instruction. 518 if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) { 519 // Move narrow OOP 520 uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o)); 521 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 522 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 523 instructions = 2; 524 } else { 525 // Move wide OOP 526 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 527 uintptr_t dest = (uintptr_t)o; 528 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 529 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 530 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 531 instructions = 3; 532 } 533 return instructions * NativeInstruction::instruction_size; 534 } 535 536 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) { 537 // Metadata pointers are either narrow (32 bits) or wide (48 bits). 538 // We encode narrow ones by setting the upper 16 bits in the first 539 // instruction. 540 NativeInstruction *insn = nativeInstruction_at(insn_addr); 541 assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 && 542 nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 543 544 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 545 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 546 return 2 * NativeInstruction::instruction_size; 547 } 548 549 address MacroAssembler::target_addr_for_insn_or_null(address insn_addr, unsigned insn) { 550 if (NativeInstruction::is_ldrw_to_zr(address(&insn))) { 551 return nullptr; 552 } 553 return MacroAssembler::target_addr_for_insn(insn_addr, insn); 554 } 555 556 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp) { 557 if (acquire) { 558 lea(tmp, Address(rthread, JavaThread::polling_word_offset())); 559 ldar(tmp, tmp); 560 } else { 561 ldr(tmp, Address(rthread, JavaThread::polling_word_offset())); 562 } 563 if (at_return) { 564 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 565 // we may safely use the sp instead to perform the stack watermark check. 566 cmp(in_nmethod ? sp : rfp, tmp); 567 br(Assembler::HI, slow_path); 568 } else { 569 tbnz(tmp, log2i_exact(SafepointMechanism::poll_bit()), slow_path); 570 } 571 } 572 573 void MacroAssembler::rt_call(address dest, Register tmp) { 574 CodeBlob *cb = CodeCache::find_blob(dest); 575 if (cb) { 576 far_call(RuntimeAddress(dest)); 577 } else { 578 lea(tmp, RuntimeAddress(dest)); 579 blr(tmp); 580 } 581 } 582 583 void MacroAssembler::push_cont_fastpath(Register java_thread) { 584 if (!Continuations::enabled()) return; 585 Label done; 586 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 587 cmp(sp, rscratch1); 588 br(Assembler::LS, done); 589 mov(rscratch1, sp); // we can't use sp as the source in str 590 str(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 591 bind(done); 592 } 593 594 void MacroAssembler::pop_cont_fastpath(Register java_thread) { 595 if (!Continuations::enabled()) return; 596 Label done; 597 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 598 cmp(sp, rscratch1); 599 br(Assembler::LO, done); 600 str(zr, Address(java_thread, JavaThread::cont_fastpath_offset())); 601 bind(done); 602 } 603 604 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 605 // we must set sp to zero to clear frame 606 str(zr, Address(rthread, JavaThread::last_Java_sp_offset())); 607 608 // must clear fp, so that compiled frames are not confused; it is 609 // possible that we need it only for debugging 610 if (clear_fp) { 611 str(zr, Address(rthread, JavaThread::last_Java_fp_offset())); 612 } 613 614 // Always clear the pc because it could have been set by make_walkable() 615 str(zr, Address(rthread, JavaThread::last_Java_pc_offset())); 616 } 617 618 // Calls to C land 619 // 620 // When entering C land, the rfp, & resp of the last Java frame have to be recorded 621 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 622 // has to be reset to 0. This is required to allow proper stack traversal. 623 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 624 Register last_java_fp, 625 Register last_java_pc, 626 Register scratch) { 627 628 if (last_java_pc->is_valid()) { 629 str(last_java_pc, Address(rthread, 630 JavaThread::frame_anchor_offset() 631 + JavaFrameAnchor::last_Java_pc_offset())); 632 } 633 634 // determine last_java_sp register 635 if (last_java_sp == sp) { 636 mov(scratch, sp); 637 last_java_sp = scratch; 638 } else if (!last_java_sp->is_valid()) { 639 last_java_sp = esp; 640 } 641 642 str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset())); 643 644 // last_java_fp is optional 645 if (last_java_fp->is_valid()) { 646 str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset())); 647 } 648 } 649 650 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 651 Register last_java_fp, 652 address last_java_pc, 653 Register scratch) { 654 assert(last_java_pc != nullptr, "must provide a valid PC"); 655 656 adr(scratch, last_java_pc); 657 str(scratch, Address(rthread, 658 JavaThread::frame_anchor_offset() 659 + JavaFrameAnchor::last_Java_pc_offset())); 660 661 set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch); 662 } 663 664 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 665 Register last_java_fp, 666 Label &L, 667 Register scratch) { 668 if (L.is_bound()) { 669 set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch); 670 } else { 671 InstructionMark im(this); 672 L.add_patch_at(code(), locator()); 673 set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch); 674 } 675 } 676 677 static inline bool target_needs_far_branch(address addr) { 678 if (AOTCodeCache::is_on_for_dump()) { 679 return true; 680 } 681 // codecache size <= 128M 682 if (!MacroAssembler::far_branches()) { 683 return false; 684 } 685 // codecache size > 240M 686 if (MacroAssembler::codestub_branch_needs_far_jump()) { 687 return true; 688 } 689 // codecache size: 128M..240M 690 return !CodeCache::is_non_nmethod(addr); 691 } 692 693 void MacroAssembler::far_call(Address entry, Register tmp) { 694 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 695 assert(CodeCache::find_blob(entry.target()) != nullptr, 696 "destination of far call not found in code cache"); 697 assert(entry.rspec().type() == relocInfo::external_word_type 698 || entry.rspec().type() == relocInfo::runtime_call_type 699 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 700 if (target_needs_far_branch(entry.target())) { 701 uint64_t offset; 702 // We can use ADRP here because we know that the total size of 703 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 704 adrp(tmp, entry, offset); 705 add(tmp, tmp, offset); 706 blr(tmp); 707 } else { 708 bl(entry); 709 } 710 } 711 712 int MacroAssembler::far_jump(Address entry, Register tmp) { 713 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 714 assert(CodeCache::find_blob(entry.target()) != nullptr, 715 "destination of far call not found in code cache"); 716 assert(entry.rspec().type() == relocInfo::external_word_type 717 || entry.rspec().type() == relocInfo::runtime_call_type 718 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 719 address start = pc(); 720 if (target_needs_far_branch(entry.target())) { 721 uint64_t offset; 722 // We can use ADRP here because we know that the total size of 723 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 724 adrp(tmp, entry, offset); 725 add(tmp, tmp, offset); 726 br(tmp); 727 } else { 728 b(entry); 729 } 730 return pc() - start; 731 } 732 733 void MacroAssembler::reserved_stack_check() { 734 // testing if reserved zone needs to be enabled 735 Label no_reserved_zone_enabling; 736 737 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 738 cmp(sp, rscratch1); 739 br(Assembler::LO, no_reserved_zone_enabling); 740 741 enter(); // LR and FP are live. 742 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone))); 743 mov(c_rarg0, rthread); 744 blr(rscratch1); 745 leave(); 746 747 // We have already removed our own frame. 748 // throw_delayed_StackOverflowError will think that it's been 749 // called by our caller. 750 lea(rscratch1, RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry())); 751 br(rscratch1); 752 should_not_reach_here(); 753 754 bind(no_reserved_zone_enabling); 755 } 756 757 static void pass_arg0(MacroAssembler* masm, Register arg) { 758 if (c_rarg0 != arg ) { 759 masm->mov(c_rarg0, arg); 760 } 761 } 762 763 static void pass_arg1(MacroAssembler* masm, Register arg) { 764 if (c_rarg1 != arg ) { 765 masm->mov(c_rarg1, arg); 766 } 767 } 768 769 static void pass_arg2(MacroAssembler* masm, Register arg) { 770 if (c_rarg2 != arg ) { 771 masm->mov(c_rarg2, arg); 772 } 773 } 774 775 static void pass_arg3(MacroAssembler* masm, Register arg) { 776 if (c_rarg3 != arg ) { 777 masm->mov(c_rarg3, arg); 778 } 779 } 780 781 static bool is_preemptable(address entry_point) { 782 return entry_point == CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter); 783 } 784 785 void MacroAssembler::call_VM_base(Register oop_result, 786 Register java_thread, 787 Register last_java_sp, 788 address entry_point, 789 int number_of_arguments, 790 bool check_exceptions) { 791 // determine java_thread register 792 if (!java_thread->is_valid()) { 793 java_thread = rthread; 794 } 795 796 // determine last_java_sp register 797 if (!last_java_sp->is_valid()) { 798 last_java_sp = esp; 799 } 800 801 // debugging support 802 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 803 assert(java_thread == rthread, "unexpected register"); 804 #ifdef ASSERT 805 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 806 // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 807 #endif // ASSERT 808 809 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 810 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 811 812 // push java thread (becomes first argument of C function) 813 814 mov(c_rarg0, java_thread); 815 816 // set last Java frame before call 817 assert(last_java_sp != rfp, "can't use rfp"); 818 819 Label l; 820 if (is_preemptable(entry_point)) { 821 // skip setting last_pc since we already set it to desired value. 822 set_last_Java_frame(last_java_sp, rfp, noreg, rscratch1); 823 } else { 824 set_last_Java_frame(last_java_sp, rfp, l, rscratch1); 825 } 826 827 // do the call, remove parameters 828 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l); 829 830 // lr could be poisoned with PAC signature during throw_pending_exception 831 // if it was tail-call optimized by compiler, since lr is not callee-saved 832 // reload it with proper value 833 adr(lr, l); 834 835 // reset last Java frame 836 // Only interpreter should have to clear fp 837 reset_last_Java_frame(true); 838 839 // C++ interp handles this in the interpreter 840 check_and_handle_popframe(java_thread); 841 check_and_handle_earlyret(java_thread); 842 843 if (check_exceptions) { 844 // check for pending exceptions (java_thread is set upon return) 845 ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset()))); 846 Label ok; 847 cbz(rscratch1, ok); 848 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 849 br(rscratch1); 850 bind(ok); 851 } 852 853 // get oop result if there is one and reset the value in the thread 854 if (oop_result->is_valid()) { 855 get_vm_result_oop(oop_result, java_thread); 856 } 857 } 858 859 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 860 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions); 861 } 862 863 // Check the entry target is always reachable from any branch. 864 static bool is_always_within_branch_range(Address entry) { 865 if (AOTCodeCache::is_on_for_dump()) { 866 return false; 867 } 868 const address target = entry.target(); 869 870 if (!CodeCache::contains(target)) { 871 // We always use trampolines for callees outside CodeCache. 872 assert(entry.rspec().type() == relocInfo::runtime_call_type, "non-runtime call of an external target"); 873 return false; 874 } 875 876 if (!MacroAssembler::far_branches()) { 877 return true; 878 } 879 880 if (entry.rspec().type() == relocInfo::runtime_call_type) { 881 // Runtime calls are calls of a non-compiled method (stubs, adapters). 882 // Non-compiled methods stay forever in CodeCache. 883 // We check whether the longest possible branch is within the branch range. 884 assert(CodeCache::find_blob(target) != nullptr && 885 !CodeCache::find_blob(target)->is_nmethod(), 886 "runtime call of compiled method"); 887 const address right_longest_branch_start = CodeCache::high_bound() - NativeInstruction::instruction_size; 888 const address left_longest_branch_start = CodeCache::low_bound(); 889 const bool is_reachable = Assembler::reachable_from_branch_at(left_longest_branch_start, target) && 890 Assembler::reachable_from_branch_at(right_longest_branch_start, target); 891 return is_reachable; 892 } 893 894 return false; 895 } 896 897 // Maybe emit a call via a trampoline. If the code cache is small 898 // trampolines won't be emitted. 899 address MacroAssembler::trampoline_call(Address entry) { 900 assert(entry.rspec().type() == relocInfo::runtime_call_type 901 || entry.rspec().type() == relocInfo::opt_virtual_call_type 902 || entry.rspec().type() == relocInfo::static_call_type 903 || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type"); 904 905 address target = entry.target(); 906 907 if (!is_always_within_branch_range(entry)) { 908 if (!in_scratch_emit_size()) { 909 // We don't want to emit a trampoline if C2 is generating dummy 910 // code during its branch shortening phase. 911 if (entry.rspec().type() == relocInfo::runtime_call_type) { 912 assert(CodeBuffer::supports_shared_stubs(), "must support shared stubs"); 913 code()->share_trampoline_for(entry.target(), offset()); 914 } else { 915 address stub = emit_trampoline_stub(offset(), target); 916 if (stub == nullptr) { 917 postcond(pc() == badAddress); 918 return nullptr; // CodeCache is full 919 } 920 } 921 } 922 target = pc(); 923 } 924 925 address call_pc = pc(); 926 relocate(entry.rspec()); 927 bl(target); 928 929 postcond(pc() != badAddress); 930 return call_pc; 931 } 932 933 // Emit a trampoline stub for a call to a target which is too far away. 934 // 935 // code sequences: 936 // 937 // call-site: 938 // branch-and-link to <destination> or <trampoline stub> 939 // 940 // Related trampoline stub for this call site in the stub section: 941 // load the call target from the constant pool 942 // branch (LR still points to the call site above) 943 944 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset, 945 address dest) { 946 // Max stub size: alignment nop, TrampolineStub. 947 address stub = start_a_stub(max_trampoline_stub_size()); 948 if (stub == nullptr) { 949 return nullptr; // CodeBuffer::expand failed 950 } 951 952 // Create a trampoline stub relocation which relates this trampoline stub 953 // with the call instruction at insts_call_instruction_offset in the 954 // instructions code-section. 955 align(wordSize); 956 relocate(trampoline_stub_Relocation::spec(code()->insts()->start() 957 + insts_call_instruction_offset)); 958 const int stub_start_offset = offset(); 959 960 // Now, create the trampoline stub's code: 961 // - load the call 962 // - call 963 Label target; 964 ldr(rscratch1, target); 965 br(rscratch1); 966 bind(target); 967 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset, 968 "should be"); 969 emit_int64((int64_t)dest); 970 971 const address stub_start_addr = addr_at(stub_start_offset); 972 973 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); 974 975 end_a_stub(); 976 return stub_start_addr; 977 } 978 979 int MacroAssembler::max_trampoline_stub_size() { 980 // Max stub size: alignment nop, TrampolineStub. 981 return NativeInstruction::instruction_size + NativeCallTrampolineStub::instruction_size; 982 } 983 984 void MacroAssembler::emit_static_call_stub() { 985 // CompiledDirectCall::set_to_interpreted knows the 986 // exact layout of this stub. 987 988 isb(); 989 mov_metadata(rmethod, nullptr); 990 991 // Jump to the entry point of the c2i stub. 992 movptr(rscratch1, 0); 993 br(rscratch1); 994 } 995 996 int MacroAssembler::static_call_stub_size() { 997 // isb; movk; movz; movz; movk; movz; movz; br 998 return 8 * NativeInstruction::instruction_size; 999 } 1000 1001 void MacroAssembler::c2bool(Register x) { 1002 // implements x == 0 ? 0 : 1 1003 // note: must only look at least-significant byte of x 1004 // since C-style booleans are stored in one byte 1005 // only! (was bug) 1006 tst(x, 0xff); 1007 cset(x, Assembler::NE); 1008 } 1009 1010 address MacroAssembler::ic_call(address entry, jint method_index) { 1011 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 1012 movptr(rscratch2, (intptr_t)Universe::non_oop_word()); 1013 return trampoline_call(Address(entry, rh)); 1014 } 1015 1016 int MacroAssembler::ic_check_size() { 1017 int extra_instructions = UseCompactObjectHeaders ? 1 : 0; 1018 if (target_needs_far_branch(CAST_FROM_FN_PTR(address, SharedRuntime::get_ic_miss_stub()))) { 1019 return NativeInstruction::instruction_size * (7 + extra_instructions); 1020 } else { 1021 return NativeInstruction::instruction_size * (5 + extra_instructions); 1022 } 1023 } 1024 1025 int MacroAssembler::ic_check(int end_alignment) { 1026 Register receiver = j_rarg0; 1027 Register data = rscratch2; 1028 Register tmp1 = rscratch1; 1029 Register tmp2 = r10; 1030 1031 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed 1032 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 1033 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align 1034 // before the inline cache check here, and not after 1035 align(end_alignment, offset() + ic_check_size()); 1036 1037 int uep_offset = offset(); 1038 1039 if (UseCompactObjectHeaders) { 1040 load_narrow_klass_compact(tmp1, receiver); 1041 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1042 cmpw(tmp1, tmp2); 1043 } else if (UseCompressedClassPointers) { 1044 ldrw(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1045 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1046 cmpw(tmp1, tmp2); 1047 } else { 1048 ldr(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1049 ldr(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1050 cmp(tmp1, tmp2); 1051 } 1052 1053 Label dont; 1054 br(Assembler::EQ, dont); 1055 far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1056 bind(dont); 1057 assert((offset() % end_alignment) == 0, "Misaligned verified entry point"); 1058 1059 return uep_offset; 1060 } 1061 1062 // Implementation of call_VM versions 1063 1064 void MacroAssembler::call_VM(Register oop_result, 1065 address entry_point, 1066 bool check_exceptions) { 1067 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1068 } 1069 1070 void MacroAssembler::call_VM(Register oop_result, 1071 address entry_point, 1072 Register arg_1, 1073 bool check_exceptions) { 1074 pass_arg1(this, arg_1); 1075 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1076 } 1077 1078 void MacroAssembler::call_VM(Register oop_result, 1079 address entry_point, 1080 Register arg_1, 1081 Register arg_2, 1082 bool check_exceptions) { 1083 assert_different_registers(arg_1, c_rarg2); 1084 pass_arg2(this, arg_2); 1085 pass_arg1(this, arg_1); 1086 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1087 } 1088 1089 void MacroAssembler::call_VM(Register oop_result, 1090 address entry_point, 1091 Register arg_1, 1092 Register arg_2, 1093 Register arg_3, 1094 bool check_exceptions) { 1095 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1096 assert_different_registers(arg_2, c_rarg3); 1097 pass_arg3(this, arg_3); 1098 1099 pass_arg2(this, arg_2); 1100 1101 pass_arg1(this, arg_1); 1102 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1103 } 1104 1105 void MacroAssembler::call_VM(Register oop_result, 1106 Register last_java_sp, 1107 address entry_point, 1108 int number_of_arguments, 1109 bool check_exceptions) { 1110 call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1111 } 1112 1113 void MacroAssembler::call_VM(Register oop_result, 1114 Register last_java_sp, 1115 address entry_point, 1116 Register arg_1, 1117 bool check_exceptions) { 1118 pass_arg1(this, arg_1); 1119 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1120 } 1121 1122 void MacroAssembler::call_VM(Register oop_result, 1123 Register last_java_sp, 1124 address entry_point, 1125 Register arg_1, 1126 Register arg_2, 1127 bool check_exceptions) { 1128 1129 assert_different_registers(arg_1, c_rarg2); 1130 pass_arg2(this, arg_2); 1131 pass_arg1(this, arg_1); 1132 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1133 } 1134 1135 void MacroAssembler::call_VM(Register oop_result, 1136 Register last_java_sp, 1137 address entry_point, 1138 Register arg_1, 1139 Register arg_2, 1140 Register arg_3, 1141 bool check_exceptions) { 1142 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1143 assert_different_registers(arg_2, c_rarg3); 1144 pass_arg3(this, arg_3); 1145 pass_arg2(this, arg_2); 1146 pass_arg1(this, arg_1); 1147 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1148 } 1149 1150 1151 void MacroAssembler::get_vm_result_oop(Register oop_result, Register java_thread) { 1152 ldr(oop_result, Address(java_thread, JavaThread::vm_result_oop_offset())); 1153 str(zr, Address(java_thread, JavaThread::vm_result_oop_offset())); 1154 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1155 } 1156 1157 void MacroAssembler::get_vm_result_metadata(Register metadata_result, Register java_thread) { 1158 ldr(metadata_result, Address(java_thread, JavaThread::vm_result_metadata_offset())); 1159 str(zr, Address(java_thread, JavaThread::vm_result_metadata_offset())); 1160 } 1161 1162 void MacroAssembler::align(int modulus) { 1163 align(modulus, offset()); 1164 } 1165 1166 // Ensure that the code at target bytes offset from the current offset() is aligned 1167 // according to modulus. 1168 void MacroAssembler::align(int modulus, int target) { 1169 int delta = target - offset(); 1170 while ((offset() + delta) % modulus != 0) nop(); 1171 } 1172 1173 void MacroAssembler::post_call_nop() { 1174 if (!Continuations::enabled()) { 1175 return; 1176 } 1177 InstructionMark im(this); 1178 relocate(post_call_nop_Relocation::spec()); 1179 InlineSkippedInstructionsCounter skipCounter(this); 1180 nop(); 1181 movk(zr, 0); 1182 movk(zr, 0); 1183 } 1184 1185 // these are no-ops overridden by InterpreterMacroAssembler 1186 1187 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } 1188 1189 void MacroAssembler::check_and_handle_popframe(Register java_thread) { } 1190 1191 // Look up the method for a megamorphic invokeinterface call. 1192 // The target method is determined by <intf_klass, itable_index>. 1193 // The receiver klass is in recv_klass. 1194 // On success, the result will be in method_result, and execution falls through. 1195 // On failure, execution transfers to the given label. 1196 void MacroAssembler::lookup_interface_method(Register recv_klass, 1197 Register intf_klass, 1198 RegisterOrConstant itable_index, 1199 Register method_result, 1200 Register scan_temp, 1201 Label& L_no_such_interface, 1202 bool return_method) { 1203 assert_different_registers(recv_klass, intf_klass, scan_temp); 1204 assert_different_registers(method_result, intf_klass, scan_temp); 1205 assert(recv_klass != method_result || !return_method, 1206 "recv_klass can be destroyed when method isn't needed"); 1207 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 1208 "caller must use same register for non-constant itable index as for method"); 1209 1210 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 1211 int vtable_base = in_bytes(Klass::vtable_start_offset()); 1212 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 1213 int scan_step = itableOffsetEntry::size() * wordSize; 1214 int vte_size = vtableEntry::size_in_bytes(); 1215 assert(vte_size == wordSize, "else adjust times_vte_scale"); 1216 1217 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1218 1219 // Could store the aligned, prescaled offset in the klass. 1220 // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 1221 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3))); 1222 add(scan_temp, scan_temp, vtable_base); 1223 1224 if (return_method) { 1225 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 1226 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 1227 // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 1228 lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3))); 1229 if (itentry_off) 1230 add(recv_klass, recv_klass, itentry_off); 1231 } 1232 1233 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 1234 // if (scan->interface() == intf) { 1235 // result = (klass + scan->offset() + itable_index); 1236 // } 1237 // } 1238 Label search, found_method; 1239 1240 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1241 cmp(intf_klass, method_result); 1242 br(Assembler::EQ, found_method); 1243 bind(search); 1244 // Check that the previous entry is non-null. A null entry means that 1245 // the receiver class doesn't implement the interface, and wasn't the 1246 // same as when the caller was compiled. 1247 cbz(method_result, L_no_such_interface); 1248 if (itableOffsetEntry::interface_offset() != 0) { 1249 add(scan_temp, scan_temp, scan_step); 1250 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1251 } else { 1252 ldr(method_result, Address(pre(scan_temp, scan_step))); 1253 } 1254 cmp(intf_klass, method_result); 1255 br(Assembler::NE, search); 1256 1257 bind(found_method); 1258 1259 // Got a hit. 1260 if (return_method) { 1261 ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 1262 ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0))); 1263 } 1264 } 1265 1266 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 1267 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData 1268 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 1269 // The target method is determined by <holder_klass, itable_index>. 1270 // The receiver klass is in recv_klass. 1271 // On success, the result will be in method_result, and execution falls through. 1272 // On failure, execution transfers to the given label. 1273 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 1274 Register holder_klass, 1275 Register resolved_klass, 1276 Register method_result, 1277 Register temp_itbl_klass, 1278 Register scan_temp, 1279 int itable_index, 1280 Label& L_no_such_interface) { 1281 // 'method_result' is only used as output register at the very end of this method. 1282 // Until then we can reuse it as 'holder_offset'. 1283 Register holder_offset = method_result; 1284 assert_different_registers(resolved_klass, recv_klass, holder_klass, temp_itbl_klass, scan_temp, holder_offset); 1285 1286 int vtable_start_offset = in_bytes(Klass::vtable_start_offset()); 1287 int itable_offset_entry_size = itableOffsetEntry::size() * wordSize; 1288 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 1289 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 1290 1291 Label L_loop_search_resolved_entry, L_resolved_found, L_holder_found; 1292 1293 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1294 add(recv_klass, recv_klass, vtable_start_offset + ioffset); 1295 // itableOffsetEntry[] itable = recv_klass + Klass::vtable_start_offset() + sizeof(vtableEntry) * recv_klass->_vtable_len; 1296 // temp_itbl_klass = itable[0]._interface; 1297 int vtblEntrySize = vtableEntry::size_in_bytes(); 1298 assert(vtblEntrySize == wordSize, "ldr lsl shift amount must be 3"); 1299 ldr(temp_itbl_klass, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1300 mov(holder_offset, zr); 1301 // scan_temp = &(itable[0]._interface) 1302 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1303 1304 // Initial checks: 1305 // - if (holder_klass != resolved_klass), go to "scan for resolved" 1306 // - if (itable[0] == holder_klass), shortcut to "holder found" 1307 // - if (itable[0] == 0), no such interface 1308 cmp(resolved_klass, holder_klass); 1309 br(Assembler::NE, L_loop_search_resolved_entry); 1310 cmp(holder_klass, temp_itbl_klass); 1311 br(Assembler::EQ, L_holder_found); 1312 cbz(temp_itbl_klass, L_no_such_interface); 1313 1314 // Loop: Look for holder_klass record in itable 1315 // do { 1316 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1317 // if (temp_itbl_klass == holder_klass) { 1318 // goto L_holder_found; // Found! 1319 // } 1320 // } while (temp_itbl_klass != 0); 1321 // goto L_no_such_interface // Not found. 1322 Label L_search_holder; 1323 bind(L_search_holder); 1324 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1325 cmp(holder_klass, temp_itbl_klass); 1326 br(Assembler::EQ, L_holder_found); 1327 cbnz(temp_itbl_klass, L_search_holder); 1328 1329 b(L_no_such_interface); 1330 1331 // Loop: Look for resolved_class record in itable 1332 // while (true) { 1333 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1334 // if (temp_itbl_klass == 0) { 1335 // goto L_no_such_interface; 1336 // } 1337 // if (temp_itbl_klass == resolved_klass) { 1338 // goto L_resolved_found; // Found! 1339 // } 1340 // if (temp_itbl_klass == holder_klass) { 1341 // holder_offset = scan_temp; 1342 // } 1343 // } 1344 // 1345 Label L_loop_search_resolved; 1346 bind(L_loop_search_resolved); 1347 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1348 bind(L_loop_search_resolved_entry); 1349 cbz(temp_itbl_klass, L_no_such_interface); 1350 cmp(resolved_klass, temp_itbl_klass); 1351 br(Assembler::EQ, L_resolved_found); 1352 cmp(holder_klass, temp_itbl_klass); 1353 br(Assembler::NE, L_loop_search_resolved); 1354 mov(holder_offset, scan_temp); 1355 b(L_loop_search_resolved); 1356 1357 // See if we already have a holder klass. If not, go and scan for it. 1358 bind(L_resolved_found); 1359 cbz(holder_offset, L_search_holder); 1360 mov(scan_temp, holder_offset); 1361 1362 // Finally, scan_temp contains holder_klass vtable offset 1363 bind(L_holder_found); 1364 ldrw(method_result, Address(scan_temp, ooffset - ioffset)); 1365 add(recv_klass, recv_klass, itable_index * wordSize + in_bytes(itableMethodEntry::method_offset()) 1366 - vtable_start_offset - ioffset); // substract offsets to restore the original value of recv_klass 1367 ldr(method_result, Address(recv_klass, method_result, Address::uxtw(0))); 1368 } 1369 1370 // virtual method calling 1371 void MacroAssembler::lookup_virtual_method(Register recv_klass, 1372 RegisterOrConstant vtable_index, 1373 Register method_result) { 1374 assert(vtableEntry::size() * wordSize == 8, 1375 "adjust the scaling in the code below"); 1376 int64_t vtable_offset_in_bytes = in_bytes(Klass::vtable_start_offset() + vtableEntry::method_offset()); 1377 1378 if (vtable_index.is_register()) { 1379 lea(method_result, Address(recv_klass, 1380 vtable_index.as_register(), 1381 Address::lsl(LogBytesPerWord))); 1382 ldr(method_result, Address(method_result, vtable_offset_in_bytes)); 1383 } else { 1384 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize; 1385 ldr(method_result, 1386 form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0)); 1387 } 1388 } 1389 1390 void MacroAssembler::check_klass_subtype(Register sub_klass, 1391 Register super_klass, 1392 Register temp_reg, 1393 Label& L_success) { 1394 Label L_failure; 1395 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 1396 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 1397 bind(L_failure); 1398 } 1399 1400 1401 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 1402 Register super_klass, 1403 Register temp_reg, 1404 Label* L_success, 1405 Label* L_failure, 1406 Label* L_slow_path, 1407 Register super_check_offset) { 1408 assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset); 1409 bool must_load_sco = ! super_check_offset->is_valid(); 1410 if (must_load_sco) { 1411 assert(temp_reg != noreg, "supply either a temp or a register offset"); 1412 } 1413 1414 Label L_fallthrough; 1415 int label_nulls = 0; 1416 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1417 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1418 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 1419 assert(label_nulls <= 1, "at most one null in the batch"); 1420 1421 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1422 Address super_check_offset_addr(super_klass, sco_offset); 1423 1424 // Hacked jmp, which may only be used just before L_fallthrough. 1425 #define final_jmp(label) \ 1426 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 1427 else b(label) /*omit semi*/ 1428 1429 // If the pointers are equal, we are done (e.g., String[] elements). 1430 // This self-check enables sharing of secondary supertype arrays among 1431 // non-primary types such as array-of-interface. Otherwise, each such 1432 // type would need its own customized SSA. 1433 // We move this check to the front of the fast path because many 1434 // type checks are in fact trivially successful in this manner, 1435 // so we get a nicely predicted branch right at the start of the check. 1436 cmp(sub_klass, super_klass); 1437 br(Assembler::EQ, *L_success); 1438 1439 // Check the supertype display: 1440 if (must_load_sco) { 1441 ldrw(temp_reg, super_check_offset_addr); 1442 super_check_offset = temp_reg; 1443 } 1444 1445 Address super_check_addr(sub_klass, super_check_offset); 1446 ldr(rscratch1, super_check_addr); 1447 cmp(super_klass, rscratch1); // load displayed supertype 1448 br(Assembler::EQ, *L_success); 1449 1450 // This check has worked decisively for primary supers. 1451 // Secondary supers are sought in the super_cache ('super_cache_addr'). 1452 // (Secondary supers are interfaces and very deeply nested subtypes.) 1453 // This works in the same check above because of a tricky aliasing 1454 // between the super_cache and the primary super display elements. 1455 // (The 'super_check_addr' can address either, as the case requires.) 1456 // Note that the cache is updated below if it does not help us find 1457 // what we need immediately. 1458 // So if it was a primary super, we can just fail immediately. 1459 // Otherwise, it's the slow path for us (no success at this point). 1460 1461 sub(rscratch1, super_check_offset, in_bytes(Klass::secondary_super_cache_offset())); 1462 if (L_failure == &L_fallthrough) { 1463 cbz(rscratch1, *L_slow_path); 1464 } else { 1465 cbnz(rscratch1, *L_failure); 1466 final_jmp(*L_slow_path); 1467 } 1468 1469 bind(L_fallthrough); 1470 1471 #undef final_jmp 1472 } 1473 1474 // These two are taken from x86, but they look generally useful 1475 1476 // scans count pointer sized words at [addr] for occurrence of value, 1477 // generic 1478 void MacroAssembler::repne_scan(Register addr, Register value, Register count, 1479 Register scratch) { 1480 Label Lloop, Lexit; 1481 cbz(count, Lexit); 1482 bind(Lloop); 1483 ldr(scratch, post(addr, wordSize)); 1484 cmp(value, scratch); 1485 br(EQ, Lexit); 1486 sub(count, count, 1); 1487 cbnz(count, Lloop); 1488 bind(Lexit); 1489 } 1490 1491 // scans count 4 byte words at [addr] for occurrence of value, 1492 // generic 1493 void MacroAssembler::repne_scanw(Register addr, Register value, Register count, 1494 Register scratch) { 1495 Label Lloop, Lexit; 1496 cbz(count, Lexit); 1497 bind(Lloop); 1498 ldrw(scratch, post(addr, wordSize)); 1499 cmpw(value, scratch); 1500 br(EQ, Lexit); 1501 sub(count, count, 1); 1502 cbnz(count, Lloop); 1503 bind(Lexit); 1504 } 1505 1506 void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass, 1507 Register super_klass, 1508 Register temp_reg, 1509 Register temp2_reg, 1510 Label* L_success, 1511 Label* L_failure, 1512 bool set_cond_codes) { 1513 // NB! Callers may assume that, when temp2_reg is a valid register, 1514 // this code sets it to a nonzero value. 1515 1516 assert_different_registers(sub_klass, super_klass, temp_reg); 1517 if (temp2_reg != noreg) 1518 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1519 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 1520 1521 Label L_fallthrough; 1522 int label_nulls = 0; 1523 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1524 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1525 assert(label_nulls <= 1, "at most one null in the batch"); 1526 1527 // a couple of useful fields in sub_klass: 1528 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 1529 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1530 Address secondary_supers_addr(sub_klass, ss_offset); 1531 Address super_cache_addr( sub_klass, sc_offset); 1532 1533 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1534 1535 // Do a linear scan of the secondary super-klass chain. 1536 // This code is rarely used, so simplicity is a virtue here. 1537 // The repne_scan instruction uses fixed registers, which we must spill. 1538 // Don't worry too much about pre-existing connections with the input regs. 1539 1540 assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super) 1541 assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter) 1542 1543 RegSet pushed_registers; 1544 if (!IS_A_TEMP(r2)) pushed_registers += r2; 1545 if (!IS_A_TEMP(r5)) pushed_registers += r5; 1546 1547 if (super_klass != r0) { 1548 if (!IS_A_TEMP(r0)) pushed_registers += r0; 1549 } 1550 1551 push(pushed_registers, sp); 1552 1553 // Get super_klass value into r0 (even if it was in r5 or r2). 1554 if (super_klass != r0) { 1555 mov(r0, super_klass); 1556 } 1557 1558 #ifndef PRODUCT 1559 incrementw(ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr)); 1560 #endif //PRODUCT 1561 1562 // We will consult the secondary-super array. 1563 ldr(r5, secondary_supers_addr); 1564 // Load the array length. 1565 ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes())); 1566 // Skip to start of data. 1567 add(r5, r5, Array<Klass*>::base_offset_in_bytes()); 1568 1569 cmp(sp, zr); // Clear Z flag; SP is never zero 1570 // Scan R2 words at [R5] for an occurrence of R0. 1571 // Set NZ/Z based on last compare. 1572 repne_scan(r5, r0, r2, rscratch1); 1573 1574 // Unspill the temp. registers: 1575 pop(pushed_registers, sp); 1576 1577 br(Assembler::NE, *L_failure); 1578 1579 // Success. Cache the super we found and proceed in triumph. 1580 1581 if (UseSecondarySupersCache) { 1582 str(super_klass, super_cache_addr); 1583 } 1584 1585 if (L_success != &L_fallthrough) { 1586 b(*L_success); 1587 } 1588 1589 #undef IS_A_TEMP 1590 1591 bind(L_fallthrough); 1592 } 1593 1594 // If Register r is invalid, remove a new register from 1595 // available_regs, and add new register to regs_to_push. 1596 Register MacroAssembler::allocate_if_noreg(Register r, 1597 RegSetIterator<Register> &available_regs, 1598 RegSet ®s_to_push) { 1599 if (!r->is_valid()) { 1600 r = *available_regs++; 1601 regs_to_push += r; 1602 } 1603 return r; 1604 } 1605 1606 // check_klass_subtype_slow_path_table() looks for super_klass in the 1607 // hash table belonging to super_klass, branching to L_success or 1608 // L_failure as appropriate. This is essentially a shim which 1609 // allocates registers as necessary then calls 1610 // lookup_secondary_supers_table() to do the work. Any of the temp 1611 // regs may be noreg, in which case this logic will chooses some 1612 // registers push and pop them from the stack. 1613 void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass, 1614 Register super_klass, 1615 Register temp_reg, 1616 Register temp2_reg, 1617 Register temp3_reg, 1618 Register result_reg, 1619 FloatRegister vtemp, 1620 Label* L_success, 1621 Label* L_failure, 1622 bool set_cond_codes) { 1623 RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg); 1624 1625 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1626 1627 Label L_fallthrough; 1628 int label_nulls = 0; 1629 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1630 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1631 assert(label_nulls <= 1, "at most one null in the batch"); 1632 1633 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1634 1635 RegSetIterator<Register> available_regs 1636 = (RegSet::range(r0, r15) - temps - sub_klass - super_klass).begin(); 1637 1638 RegSet pushed_regs; 1639 1640 temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs); 1641 temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs); 1642 temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs); 1643 result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs); 1644 1645 push(pushed_regs, sp); 1646 1647 lookup_secondary_supers_table_var(sub_klass, 1648 super_klass, 1649 temp_reg, temp2_reg, temp3_reg, vtemp, result_reg, 1650 nullptr); 1651 cmp(result_reg, zr); 1652 1653 // Unspill the temp. registers: 1654 pop(pushed_regs, sp); 1655 1656 // NB! Callers may assume that, when set_cond_codes is true, this 1657 // code sets temp2_reg to a nonzero value. 1658 if (set_cond_codes) { 1659 mov(temp2_reg, 1); 1660 } 1661 1662 br(Assembler::NE, *L_failure); 1663 1664 if (L_success != &L_fallthrough) { 1665 b(*L_success); 1666 } 1667 1668 bind(L_fallthrough); 1669 } 1670 1671 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 1672 Register super_klass, 1673 Register temp_reg, 1674 Register temp2_reg, 1675 Label* L_success, 1676 Label* L_failure, 1677 bool set_cond_codes) { 1678 if (UseSecondarySupersTable) { 1679 check_klass_subtype_slow_path_table 1680 (sub_klass, super_klass, temp_reg, temp2_reg, /*temp3*/noreg, /*result*/noreg, 1681 /*vtemp*/fnoreg, 1682 L_success, L_failure, set_cond_codes); 1683 } else { 1684 check_klass_subtype_slow_path_linear 1685 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, set_cond_codes); 1686 } 1687 } 1688 1689 1690 // Ensure that the inline code and the stub are using the same registers. 1691 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \ 1692 do { \ 1693 assert(r_super_klass == r0 && \ 1694 r_array_base == r1 && \ 1695 r_array_length == r2 && \ 1696 (r_array_index == r3 || r_array_index == noreg) && \ 1697 (r_sub_klass == r4 || r_sub_klass == noreg) && \ 1698 (r_bitmap == rscratch2 || r_bitmap == noreg) && \ 1699 (result == r5 || result == noreg), "registers must match aarch64.ad"); \ 1700 } while(0) 1701 1702 bool MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass, 1703 Register r_super_klass, 1704 Register temp1, 1705 Register temp2, 1706 Register temp3, 1707 FloatRegister vtemp, 1708 Register result, 1709 u1 super_klass_slot, 1710 bool stub_is_near) { 1711 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1712 1713 Label L_fallthrough; 1714 1715 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1716 1717 const Register 1718 r_array_base = temp1, // r1 1719 r_array_length = temp2, // r2 1720 r_array_index = temp3, // r3 1721 r_bitmap = rscratch2; 1722 1723 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1724 1725 u1 bit = super_klass_slot; 1726 1727 // Make sure that result is nonzero if the TBZ below misses. 1728 mov(result, 1); 1729 1730 // We're going to need the bitmap in a vector reg and in a core reg, 1731 // so load both now. 1732 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1733 if (bit != 0) { 1734 ldrd(vtemp, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1735 } 1736 // First check the bitmap to see if super_klass might be present. If 1737 // the bit is zero, we are certain that super_klass is not one of 1738 // the secondary supers. 1739 tbz(r_bitmap, bit, L_fallthrough); 1740 1741 // Get the first array index that can contain super_klass into r_array_index. 1742 if (bit != 0) { 1743 shld(vtemp, vtemp, Klass::SECONDARY_SUPERS_TABLE_MASK - bit); 1744 cnt(vtemp, T8B, vtemp); 1745 addv(vtemp, T8B, vtemp); 1746 fmovd(r_array_index, vtemp); 1747 } else { 1748 mov(r_array_index, (u1)1); 1749 } 1750 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1751 1752 // We will consult the secondary-super array. 1753 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1754 1755 // The value i in r_array_index is >= 1, so even though r_array_base 1756 // points to the length, we don't need to adjust it to point to the 1757 // data. 1758 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1759 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1760 1761 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1762 eor(result, result, r_super_klass); 1763 cbz(result, L_fallthrough); // Found a match 1764 1765 // Is there another entry to check? Consult the bitmap. 1766 tbz(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK, L_fallthrough); 1767 1768 // Linear probe. 1769 if (bit != 0) { 1770 ror(r_bitmap, r_bitmap, bit); 1771 } 1772 1773 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1774 // The next slot to be inspected, by the stub we're about to call, 1775 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1776 // have been checked. 1777 Address stub = RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub()); 1778 if (stub_is_near) { 1779 bl(stub); 1780 } else { 1781 address call = trampoline_call(stub); 1782 if (call == nullptr) { 1783 return false; // trampoline allocation failed 1784 } 1785 } 1786 1787 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1788 1789 bind(L_fallthrough); 1790 1791 if (VerifySecondarySupers) { 1792 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1793 temp1, temp2, result); // r1, r2, r5 1794 } 1795 return true; 1796 } 1797 1798 // At runtime, return 0 in result if r_super_klass is a superclass of 1799 // r_sub_klass, otherwise return nonzero. Use this version of 1800 // lookup_secondary_supers_table() if you don't know ahead of time 1801 // which superclass will be searched for. Used by interpreter and 1802 // runtime stubs. It is larger and has somewhat greater latency than 1803 // the version above, which takes a constant super_klass_slot. 1804 void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass, 1805 Register r_super_klass, 1806 Register temp1, 1807 Register temp2, 1808 Register temp3, 1809 FloatRegister vtemp, 1810 Register result, 1811 Label *L_success) { 1812 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1813 1814 Label L_fallthrough; 1815 1816 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1817 1818 const Register 1819 r_array_index = temp3, 1820 slot = rscratch1, 1821 r_bitmap = rscratch2; 1822 1823 ldrb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 1824 1825 // Make sure that result is nonzero if the test below misses. 1826 mov(result, 1); 1827 1828 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1829 1830 // First check the bitmap to see if super_klass might be present. If 1831 // the bit is zero, we are certain that super_klass is not one of 1832 // the secondary supers. 1833 1834 // This next instruction is equivalent to: 1835 // mov(tmp_reg, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); 1836 // sub(temp2, tmp_reg, slot); 1837 eor(temp2, slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); 1838 lslv(temp2, r_bitmap, temp2); 1839 tbz(temp2, Klass::SECONDARY_SUPERS_TABLE_SIZE - 1, L_fallthrough); 1840 1841 bool must_save_v0 = (vtemp == fnoreg); 1842 if (must_save_v0) { 1843 // temp1 and result are free, so use them to preserve vtemp 1844 vtemp = v0; 1845 mov(temp1, vtemp, D, 0); 1846 mov(result, vtemp, D, 1); 1847 } 1848 1849 // Get the first array index that can contain super_klass into r_array_index. 1850 mov(vtemp, D, 0, temp2); 1851 cnt(vtemp, T8B, vtemp); 1852 addv(vtemp, T8B, vtemp); 1853 mov(r_array_index, vtemp, D, 0); 1854 1855 if (must_save_v0) { 1856 mov(vtemp, D, 0, temp1 ); 1857 mov(vtemp, D, 1, result); 1858 } 1859 1860 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1861 1862 const Register 1863 r_array_base = temp1, 1864 r_array_length = temp2; 1865 1866 // The value i in r_array_index is >= 1, so even though r_array_base 1867 // points to the length, we don't need to adjust it to point to the 1868 // data. 1869 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1870 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1871 1872 // We will consult the secondary-super array. 1873 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1874 1875 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1876 eor(result, result, r_super_klass); 1877 cbz(result, L_success ? *L_success : L_fallthrough); // Found a match 1878 1879 // Is there another entry to check? Consult the bitmap. 1880 rorv(r_bitmap, r_bitmap, slot); 1881 // rol(r_bitmap, r_bitmap, 1); 1882 tbz(r_bitmap, 1, L_fallthrough); 1883 1884 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1885 // The next slot to be inspected, by the logic we're about to call, 1886 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1887 // have been checked. 1888 lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index, 1889 r_bitmap, r_array_length, result, /*is_stub*/false); 1890 1891 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1892 1893 bind(L_fallthrough); 1894 1895 if (VerifySecondarySupers) { 1896 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1897 temp1, temp2, result); // r1, r2, r5 1898 } 1899 1900 if (L_success) { 1901 cbz(result, *L_success); 1902 } 1903 } 1904 1905 // Called by code generated by check_klass_subtype_slow_path 1906 // above. This is called when there is a collision in the hashed 1907 // lookup in the secondary supers array. 1908 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass, 1909 Register r_array_base, 1910 Register r_array_index, 1911 Register r_bitmap, 1912 Register temp1, 1913 Register result, 1914 bool is_stub) { 1915 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, result, rscratch1); 1916 1917 const Register 1918 r_array_length = temp1, 1919 r_sub_klass = noreg; // unused 1920 1921 if (is_stub) { 1922 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1923 } 1924 1925 Label L_fallthrough, L_huge; 1926 1927 // Load the array length. 1928 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 1929 // And adjust the array base to point to the data. 1930 // NB! Effectively increments current slot index by 1. 1931 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, ""); 1932 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 1933 1934 // The bitmap is full to bursting. 1935 // Implicit invariant: BITMAP_FULL implies (length > 0) 1936 assert(Klass::SECONDARY_SUPERS_BITMAP_FULL == ~uintx(0), ""); 1937 cmpw(r_array_length, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 2)); 1938 br(GT, L_huge); 1939 1940 // NB! Our caller has checked bits 0 and 1 in the bitmap. The 1941 // current slot (at secondary_supers[r_array_index]) has not yet 1942 // been inspected, and r_array_index may be out of bounds if we 1943 // wrapped around the end of the array. 1944 1945 { // This is conventional linear probing, but instead of terminating 1946 // when a null entry is found in the table, we maintain a bitmap 1947 // in which a 0 indicates missing entries. 1948 // As long as the bitmap is not completely full, 1949 // array_length == popcount(bitmap). The array_length check above 1950 // guarantees there are 0s in the bitmap, so the loop eventually 1951 // terminates. 1952 Label L_loop; 1953 bind(L_loop); 1954 1955 // Check for wraparound. 1956 cmp(r_array_index, r_array_length); 1957 csel(r_array_index, zr, r_array_index, GE); 1958 1959 ldr(rscratch1, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1960 eor(result, rscratch1, r_super_klass); 1961 cbz(result, L_fallthrough); 1962 1963 tbz(r_bitmap, 2, L_fallthrough); // look-ahead check (Bit 2); result is non-zero 1964 1965 ror(r_bitmap, r_bitmap, 1); 1966 add(r_array_index, r_array_index, 1); 1967 b(L_loop); 1968 } 1969 1970 { // Degenerate case: more than 64 secondary supers. 1971 // FIXME: We could do something smarter here, maybe a vectorized 1972 // comparison or a binary search, but is that worth any added 1973 // complexity? 1974 bind(L_huge); 1975 cmp(sp, zr); // Clear Z flag; SP is never zero 1976 repne_scan(r_array_base, r_super_klass, r_array_length, rscratch1); 1977 cset(result, NE); // result == 0 iff we got a match. 1978 } 1979 1980 bind(L_fallthrough); 1981 } 1982 1983 // Make sure that the hashed lookup and a linear scan agree. 1984 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass, 1985 Register r_super_klass, 1986 Register temp1, 1987 Register temp2, 1988 Register result) { 1989 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, result, rscratch1); 1990 1991 const Register 1992 r_array_base = temp1, 1993 r_array_length = temp2, 1994 r_array_index = noreg, // unused 1995 r_bitmap = noreg; // unused 1996 1997 BLOCK_COMMENT("verify_secondary_supers_table {"); 1998 1999 // We will consult the secondary-super array. 2000 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 2001 2002 // Load the array length. 2003 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 2004 // And adjust the array base to point to the data. 2005 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 2006 2007 cmp(sp, zr); // Clear Z flag; SP is never zero 2008 // Scan R2 words at [R5] for an occurrence of R0. 2009 // Set NZ/Z based on last compare. 2010 repne_scan(/*addr*/r_array_base, /*value*/r_super_klass, /*count*/r_array_length, rscratch2); 2011 // rscratch1 == 0 iff we got a match. 2012 cset(rscratch1, NE); 2013 2014 Label passed; 2015 cmp(result, zr); 2016 cset(result, NE); // normalize result to 0/1 for comparison 2017 2018 cmp(rscratch1, result); 2019 br(EQ, passed); 2020 { 2021 mov(r0, r_super_klass); // r0 <- r0 2022 mov(r1, r_sub_klass); // r1 <- r4 2023 mov(r2, /*expected*/rscratch1); // r2 <- r8 2024 mov(r3, result); // r3 <- r5 2025 mov(r4, (address)("mismatch")); // r4 <- const 2026 rt_call(CAST_FROM_FN_PTR(address, Klass::on_secondary_supers_verification_failure), rscratch2); 2027 should_not_reach_here(); 2028 } 2029 bind(passed); 2030 2031 BLOCK_COMMENT("} verify_secondary_supers_table"); 2032 } 2033 2034 void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) { 2035 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 2036 assert_different_registers(klass, rthread, scratch); 2037 2038 Label L_fallthrough, L_tmp; 2039 if (L_fast_path == nullptr) { 2040 L_fast_path = &L_fallthrough; 2041 } else if (L_slow_path == nullptr) { 2042 L_slow_path = &L_fallthrough; 2043 } 2044 // Fast path check: class is fully initialized 2045 lea(scratch, Address(klass, InstanceKlass::init_state_offset())); 2046 ldarb(scratch, scratch); 2047 cmp(scratch, InstanceKlass::fully_initialized); 2048 br(Assembler::EQ, *L_fast_path); 2049 2050 // Fast path check: current thread is initializer thread 2051 ldr(scratch, Address(klass, InstanceKlass::init_thread_offset())); 2052 cmp(rthread, scratch); 2053 2054 if (L_slow_path == &L_fallthrough) { 2055 br(Assembler::EQ, *L_fast_path); 2056 bind(*L_slow_path); 2057 } else if (L_fast_path == &L_fallthrough) { 2058 br(Assembler::NE, *L_slow_path); 2059 bind(*L_fast_path); 2060 } else { 2061 Unimplemented(); 2062 } 2063 } 2064 2065 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 2066 if (!VerifyOops) return; 2067 2068 // Pass register number to verify_oop_subroutine 2069 const char* b = nullptr; 2070 { 2071 ResourceMark rm; 2072 stringStream ss; 2073 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 2074 b = code_string(ss.as_string()); 2075 } 2076 BLOCK_COMMENT("verify_oop {"); 2077 2078 strip_return_address(); // This might happen within a stack frame. 2079 protect_return_address(); 2080 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 2081 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 2082 2083 mov(r0, reg); 2084 movptr(rscratch1, (uintptr_t)(address)b); 2085 2086 // call indirectly to solve generation ordering problem 2087 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address())); 2088 ldr(rscratch2, Address(rscratch2)); 2089 blr(rscratch2); 2090 2091 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 2092 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 2093 authenticate_return_address(); 2094 2095 BLOCK_COMMENT("} verify_oop"); 2096 } 2097 2098 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 2099 if (!VerifyOops) return; 2100 2101 const char* b = nullptr; 2102 { 2103 ResourceMark rm; 2104 stringStream ss; 2105 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 2106 b = code_string(ss.as_string()); 2107 } 2108 BLOCK_COMMENT("verify_oop_addr {"); 2109 2110 strip_return_address(); // This might happen within a stack frame. 2111 protect_return_address(); 2112 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 2113 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 2114 2115 // addr may contain sp so we will have to adjust it based on the 2116 // pushes that we just did. 2117 if (addr.uses(sp)) { 2118 lea(r0, addr); 2119 ldr(r0, Address(r0, 4 * wordSize)); 2120 } else { 2121 ldr(r0, addr); 2122 } 2123 movptr(rscratch1, (uintptr_t)(address)b); 2124 2125 // call indirectly to solve generation ordering problem 2126 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address())); 2127 ldr(rscratch2, Address(rscratch2)); 2128 blr(rscratch2); 2129 2130 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 2131 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 2132 authenticate_return_address(); 2133 2134 BLOCK_COMMENT("} verify_oop_addr"); 2135 } 2136 2137 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 2138 int extra_slot_offset) { 2139 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 2140 int stackElementSize = Interpreter::stackElementSize; 2141 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 2142 #ifdef ASSERT 2143 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 2144 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 2145 #endif 2146 if (arg_slot.is_constant()) { 2147 return Address(esp, arg_slot.as_constant() * stackElementSize 2148 + offset); 2149 } else { 2150 add(rscratch1, esp, arg_slot.as_register(), 2151 ext::uxtx, exact_log2(stackElementSize)); 2152 return Address(rscratch1, offset); 2153 } 2154 } 2155 2156 void MacroAssembler::call_VM_leaf_base(address entry_point, 2157 int number_of_arguments, 2158 Label *retaddr) { 2159 Label E, L; 2160 2161 stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize))); 2162 2163 mov(rscratch1, RuntimeAddress(entry_point)); 2164 blr(rscratch1); 2165 if (retaddr) 2166 bind(*retaddr); 2167 2168 ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize))); 2169 } 2170 2171 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 2172 call_VM_leaf_base(entry_point, number_of_arguments); 2173 } 2174 2175 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 2176 pass_arg0(this, arg_0); 2177 call_VM_leaf_base(entry_point, 1); 2178 } 2179 2180 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 2181 assert_different_registers(arg_1, c_rarg0); 2182 pass_arg0(this, arg_0); 2183 pass_arg1(this, arg_1); 2184 call_VM_leaf_base(entry_point, 2); 2185 } 2186 2187 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, 2188 Register arg_1, Register arg_2) { 2189 assert_different_registers(arg_1, c_rarg0); 2190 assert_different_registers(arg_2, c_rarg0, c_rarg1); 2191 pass_arg0(this, arg_0); 2192 pass_arg1(this, arg_1); 2193 pass_arg2(this, arg_2); 2194 call_VM_leaf_base(entry_point, 3); 2195 } 2196 2197 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 2198 pass_arg0(this, arg_0); 2199 MacroAssembler::call_VM_leaf_base(entry_point, 1); 2200 } 2201 2202 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 2203 2204 assert_different_registers(arg_0, c_rarg1); 2205 pass_arg1(this, arg_1); 2206 pass_arg0(this, arg_0); 2207 MacroAssembler::call_VM_leaf_base(entry_point, 2); 2208 } 2209 2210 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 2211 assert_different_registers(arg_0, c_rarg1, c_rarg2); 2212 assert_different_registers(arg_1, c_rarg2); 2213 pass_arg2(this, arg_2); 2214 pass_arg1(this, arg_1); 2215 pass_arg0(this, arg_0); 2216 MacroAssembler::call_VM_leaf_base(entry_point, 3); 2217 } 2218 2219 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 2220 assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3); 2221 assert_different_registers(arg_1, c_rarg2, c_rarg3); 2222 assert_different_registers(arg_2, c_rarg3); 2223 pass_arg3(this, arg_3); 2224 pass_arg2(this, arg_2); 2225 pass_arg1(this, arg_1); 2226 pass_arg0(this, arg_0); 2227 MacroAssembler::call_VM_leaf_base(entry_point, 4); 2228 } 2229 2230 void MacroAssembler::null_check(Register reg, int offset) { 2231 if (needs_explicit_null_check(offset)) { 2232 // provoke OS null exception if reg is null by 2233 // accessing M[reg] w/o changing any registers 2234 // NOTE: this is plenty to provoke a segv 2235 ldr(zr, Address(reg)); 2236 } else { 2237 // nothing to do, (later) access of M[reg + offset] 2238 // will provoke OS null exception if reg is null 2239 } 2240 } 2241 2242 // MacroAssembler protected routines needed to implement 2243 // public methods 2244 2245 void MacroAssembler::mov(Register r, Address dest) { 2246 code_section()->relocate(pc(), dest.rspec()); 2247 uint64_t imm64 = (uint64_t)dest.target(); 2248 movptr(r, imm64); 2249 } 2250 2251 // Move a constant pointer into r. In AArch64 mode the virtual 2252 // address space is 48 bits in size, so we only need three 2253 // instructions to create a patchable instruction sequence that can 2254 // reach anywhere. 2255 void MacroAssembler::movptr(Register r, uintptr_t imm64) { 2256 #ifndef PRODUCT 2257 { 2258 char buffer[64]; 2259 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64); 2260 block_comment(buffer); 2261 } 2262 #endif 2263 assert(imm64 < (1ull << 48), "48-bit overflow in address constant"); 2264 movz(r, imm64 & 0xffff); 2265 imm64 >>= 16; 2266 movk(r, imm64 & 0xffff, 16); 2267 imm64 >>= 16; 2268 movk(r, imm64 & 0xffff, 32); 2269 } 2270 2271 // Macro to mov replicated immediate to vector register. 2272 // imm64: only the lower 8/16/32 bits are considered for B/H/S type. That is, 2273 // the upper 56/48/32 bits must be zeros for B/H/S type. 2274 // Vd will get the following values for different arrangements in T 2275 // imm64 == hex 000000gh T8B: Vd = ghghghghghghghgh 2276 // imm64 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh 2277 // imm64 == hex 0000efgh T4H: Vd = efghefghefghefgh 2278 // imm64 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh 2279 // imm64 == hex abcdefgh T2S: Vd = abcdefghabcdefgh 2280 // imm64 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh 2281 // imm64 == hex abcdefgh T1D: Vd = 00000000abcdefgh 2282 // imm64 == hex abcdefgh T2D: Vd = 00000000abcdefgh00000000abcdefgh 2283 // Clobbers rscratch1 2284 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64) { 2285 assert(T != T1Q, "unsupported"); 2286 if (T == T1D || T == T2D) { 2287 int imm = operand_valid_for_movi_immediate(imm64, T); 2288 if (-1 != imm) { 2289 movi(Vd, T, imm); 2290 } else { 2291 mov(rscratch1, imm64); 2292 dup(Vd, T, rscratch1); 2293 } 2294 return; 2295 } 2296 2297 #ifdef ASSERT 2298 if (T == T8B || T == T16B) assert((imm64 & ~0xff) == 0, "extraneous bits (T8B/T16B)"); 2299 if (T == T4H || T == T8H) assert((imm64 & ~0xffff) == 0, "extraneous bits (T4H/T8H)"); 2300 if (T == T2S || T == T4S) assert((imm64 & ~0xffffffff) == 0, "extraneous bits (T2S/T4S)"); 2301 #endif 2302 int shift = operand_valid_for_movi_immediate(imm64, T); 2303 uint32_t imm32 = imm64 & 0xffffffffULL; 2304 if (shift >= 0) { 2305 movi(Vd, T, (imm32 >> shift) & 0xff, shift); 2306 } else { 2307 movw(rscratch1, imm32); 2308 dup(Vd, T, rscratch1); 2309 } 2310 } 2311 2312 void MacroAssembler::mov_immediate64(Register dst, uint64_t imm64) 2313 { 2314 #ifndef PRODUCT 2315 { 2316 char buffer[64]; 2317 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, imm64); 2318 block_comment(buffer); 2319 } 2320 #endif 2321 if (operand_valid_for_logical_immediate(false, imm64)) { 2322 orr(dst, zr, imm64); 2323 } else { 2324 // we can use a combination of MOVZ or MOVN with 2325 // MOVK to build up the constant 2326 uint64_t imm_h[4]; 2327 int zero_count = 0; 2328 int neg_count = 0; 2329 int i; 2330 for (i = 0; i < 4; i++) { 2331 imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL); 2332 if (imm_h[i] == 0) { 2333 zero_count++; 2334 } else if (imm_h[i] == 0xffffL) { 2335 neg_count++; 2336 } 2337 } 2338 if (zero_count == 4) { 2339 // one MOVZ will do 2340 movz(dst, 0); 2341 } else if (neg_count == 4) { 2342 // one MOVN will do 2343 movn(dst, 0); 2344 } else if (zero_count == 3) { 2345 for (i = 0; i < 4; i++) { 2346 if (imm_h[i] != 0L) { 2347 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2348 break; 2349 } 2350 } 2351 } else if (neg_count == 3) { 2352 // one MOVN will do 2353 for (int i = 0; i < 4; i++) { 2354 if (imm_h[i] != 0xffffL) { 2355 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2356 break; 2357 } 2358 } 2359 } else if (zero_count == 2) { 2360 // one MOVZ and one MOVK will do 2361 for (i = 0; i < 3; i++) { 2362 if (imm_h[i] != 0L) { 2363 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2364 i++; 2365 break; 2366 } 2367 } 2368 for (;i < 4; i++) { 2369 if (imm_h[i] != 0L) { 2370 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2371 } 2372 } 2373 } else if (neg_count == 2) { 2374 // one MOVN and one MOVK will do 2375 for (i = 0; i < 4; i++) { 2376 if (imm_h[i] != 0xffffL) { 2377 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2378 i++; 2379 break; 2380 } 2381 } 2382 for (;i < 4; i++) { 2383 if (imm_h[i] != 0xffffL) { 2384 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2385 } 2386 } 2387 } else if (zero_count == 1) { 2388 // one MOVZ and two MOVKs will do 2389 for (i = 0; i < 4; i++) { 2390 if (imm_h[i] != 0L) { 2391 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2392 i++; 2393 break; 2394 } 2395 } 2396 for (;i < 4; i++) { 2397 if (imm_h[i] != 0x0L) { 2398 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2399 } 2400 } 2401 } else if (neg_count == 1) { 2402 // one MOVN and two MOVKs will do 2403 for (i = 0; i < 4; i++) { 2404 if (imm_h[i] != 0xffffL) { 2405 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2406 i++; 2407 break; 2408 } 2409 } 2410 for (;i < 4; i++) { 2411 if (imm_h[i] != 0xffffL) { 2412 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2413 } 2414 } 2415 } else { 2416 // use a MOVZ and 3 MOVKs (makes it easier to debug) 2417 movz(dst, (uint32_t)imm_h[0], 0); 2418 for (i = 1; i < 4; i++) { 2419 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2420 } 2421 } 2422 } 2423 } 2424 2425 void MacroAssembler::mov_immediate32(Register dst, uint32_t imm32) 2426 { 2427 #ifndef PRODUCT 2428 { 2429 char buffer[64]; 2430 snprintf(buffer, sizeof(buffer), "0x%" PRIX32, imm32); 2431 block_comment(buffer); 2432 } 2433 #endif 2434 if (operand_valid_for_logical_immediate(true, imm32)) { 2435 orrw(dst, zr, imm32); 2436 } else { 2437 // we can use MOVZ, MOVN or two calls to MOVK to build up the 2438 // constant 2439 uint32_t imm_h[2]; 2440 imm_h[0] = imm32 & 0xffff; 2441 imm_h[1] = ((imm32 >> 16) & 0xffff); 2442 if (imm_h[0] == 0) { 2443 movzw(dst, imm_h[1], 16); 2444 } else if (imm_h[0] == 0xffff) { 2445 movnw(dst, imm_h[1] ^ 0xffff, 16); 2446 } else if (imm_h[1] == 0) { 2447 movzw(dst, imm_h[0], 0); 2448 } else if (imm_h[1] == 0xffff) { 2449 movnw(dst, imm_h[0] ^ 0xffff, 0); 2450 } else { 2451 // use a MOVZ and MOVK (makes it easier to debug) 2452 movzw(dst, imm_h[0], 0); 2453 movkw(dst, imm_h[1], 16); 2454 } 2455 } 2456 } 2457 2458 // Form an address from base + offset in Rd. Rd may or may 2459 // not actually be used: you must use the Address that is returned. 2460 // It is up to you to ensure that the shift provided matches the size 2461 // of your data. 2462 Address MacroAssembler::form_address(Register Rd, Register base, int64_t byte_offset, int shift) { 2463 if (Address::offset_ok_for_immed(byte_offset, shift)) 2464 // It fits; no need for any heroics 2465 return Address(base, byte_offset); 2466 2467 // Don't do anything clever with negative or misaligned offsets 2468 unsigned mask = (1 << shift) - 1; 2469 if (byte_offset < 0 || byte_offset & mask) { 2470 mov(Rd, byte_offset); 2471 add(Rd, base, Rd); 2472 return Address(Rd); 2473 } 2474 2475 // See if we can do this with two 12-bit offsets 2476 { 2477 uint64_t word_offset = byte_offset >> shift; 2478 uint64_t masked_offset = word_offset & 0xfff000; 2479 if (Address::offset_ok_for_immed(word_offset - masked_offset, 0) 2480 && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) { 2481 add(Rd, base, masked_offset << shift); 2482 word_offset -= masked_offset; 2483 return Address(Rd, word_offset << shift); 2484 } 2485 } 2486 2487 // Do it the hard way 2488 mov(Rd, byte_offset); 2489 add(Rd, base, Rd); 2490 return Address(Rd); 2491 } 2492 2493 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb, 2494 bool want_remainder, Register scratch) 2495 { 2496 // Full implementation of Java idiv and irem. The function 2497 // returns the (pc) offset of the div instruction - may be needed 2498 // for implicit exceptions. 2499 // 2500 // constraint : ra/rb =/= scratch 2501 // normal case 2502 // 2503 // input : ra: dividend 2504 // rb: divisor 2505 // 2506 // result: either 2507 // quotient (= ra idiv rb) 2508 // remainder (= ra irem rb) 2509 2510 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2511 2512 int idivl_offset = offset(); 2513 if (! want_remainder) { 2514 sdivw(result, ra, rb); 2515 } else { 2516 sdivw(scratch, ra, rb); 2517 Assembler::msubw(result, scratch, rb, ra); 2518 } 2519 2520 return idivl_offset; 2521 } 2522 2523 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb, 2524 bool want_remainder, Register scratch) 2525 { 2526 // Full implementation of Java ldiv and lrem. The function 2527 // returns the (pc) offset of the div instruction - may be needed 2528 // for implicit exceptions. 2529 // 2530 // constraint : ra/rb =/= scratch 2531 // normal case 2532 // 2533 // input : ra: dividend 2534 // rb: divisor 2535 // 2536 // result: either 2537 // quotient (= ra idiv rb) 2538 // remainder (= ra irem rb) 2539 2540 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2541 2542 int idivq_offset = offset(); 2543 if (! want_remainder) { 2544 sdiv(result, ra, rb); 2545 } else { 2546 sdiv(scratch, ra, rb); 2547 Assembler::msub(result, scratch, rb, ra); 2548 } 2549 2550 return idivq_offset; 2551 } 2552 2553 void MacroAssembler::membar(Membar_mask_bits order_constraint) { 2554 address prev = pc() - NativeMembar::instruction_size; 2555 address last = code()->last_insn(); 2556 if (last != nullptr && nativeInstruction_at(last)->is_Membar() && prev == last) { 2557 NativeMembar *bar = NativeMembar_at(prev); 2558 if (AlwaysMergeDMB) { 2559 bar->set_kind(bar->get_kind() | order_constraint); 2560 BLOCK_COMMENT("merged membar(always)"); 2561 return; 2562 } 2563 // Don't promote DMB ST|DMB LD to DMB (a full barrier) because 2564 // doing so would introduce a StoreLoad which the caller did not 2565 // intend 2566 if (bar->get_kind() == order_constraint 2567 || bar->get_kind() == AnyAny 2568 || order_constraint == AnyAny) { 2569 // We are merging two memory barrier instructions. On AArch64 we 2570 // can do this simply by ORing them together. 2571 bar->set_kind(bar->get_kind() | order_constraint); 2572 BLOCK_COMMENT("merged membar"); 2573 return; 2574 } else { 2575 // A special case like "DMB ST;DMB LD;DMB ST", the last DMB can be skipped 2576 // We need check the last 2 instructions 2577 address prev2 = prev - NativeMembar::instruction_size; 2578 if (last != code()->last_label() && nativeInstruction_at(prev2)->is_Membar()) { 2579 NativeMembar *bar2 = NativeMembar_at(prev2); 2580 assert(bar2->get_kind() == order_constraint, "it should be merged before"); 2581 BLOCK_COMMENT("merged membar(elided)"); 2582 return; 2583 } 2584 } 2585 } 2586 code()->set_last_insn(pc()); 2587 dmb(Assembler::barrier(order_constraint)); 2588 } 2589 2590 bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) { 2591 if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) { 2592 merge_ldst(rt, adr, size_in_bytes, is_store); 2593 code()->clear_last_insn(); 2594 return true; 2595 } else { 2596 assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported."); 2597 const uint64_t mask = size_in_bytes - 1; 2598 if (adr.getMode() == Address::base_plus_offset && 2599 (adr.offset() & mask) == 0) { // only supports base_plus_offset. 2600 code()->set_last_insn(pc()); 2601 } 2602 return false; 2603 } 2604 } 2605 2606 void MacroAssembler::ldr(Register Rx, const Address &adr) { 2607 // We always try to merge two adjacent loads into one ldp. 2608 if (!try_merge_ldst(Rx, adr, 8, false)) { 2609 Assembler::ldr(Rx, adr); 2610 } 2611 } 2612 2613 void MacroAssembler::ldrw(Register Rw, const Address &adr) { 2614 // We always try to merge two adjacent loads into one ldp. 2615 if (!try_merge_ldst(Rw, adr, 4, false)) { 2616 Assembler::ldrw(Rw, adr); 2617 } 2618 } 2619 2620 void MacroAssembler::str(Register Rx, const Address &adr) { 2621 // We always try to merge two adjacent stores into one stp. 2622 if (!try_merge_ldst(Rx, adr, 8, true)) { 2623 Assembler::str(Rx, adr); 2624 } 2625 } 2626 2627 void MacroAssembler::strw(Register Rw, const Address &adr) { 2628 // We always try to merge two adjacent stores into one stp. 2629 if (!try_merge_ldst(Rw, adr, 4, true)) { 2630 Assembler::strw(Rw, adr); 2631 } 2632 } 2633 2634 // MacroAssembler routines found actually to be needed 2635 2636 void MacroAssembler::push(Register src) 2637 { 2638 str(src, Address(pre(esp, -1 * wordSize))); 2639 } 2640 2641 void MacroAssembler::pop(Register dst) 2642 { 2643 ldr(dst, Address(post(esp, 1 * wordSize))); 2644 } 2645 2646 // Note: load_unsigned_short used to be called load_unsigned_word. 2647 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 2648 int off = offset(); 2649 ldrh(dst, src); 2650 return off; 2651 } 2652 2653 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 2654 int off = offset(); 2655 ldrb(dst, src); 2656 return off; 2657 } 2658 2659 int MacroAssembler::load_signed_short(Register dst, Address src) { 2660 int off = offset(); 2661 ldrsh(dst, src); 2662 return off; 2663 } 2664 2665 int MacroAssembler::load_signed_byte(Register dst, Address src) { 2666 int off = offset(); 2667 ldrsb(dst, src); 2668 return off; 2669 } 2670 2671 int MacroAssembler::load_signed_short32(Register dst, Address src) { 2672 int off = offset(); 2673 ldrshw(dst, src); 2674 return off; 2675 } 2676 2677 int MacroAssembler::load_signed_byte32(Register dst, Address src) { 2678 int off = offset(); 2679 ldrsbw(dst, src); 2680 return off; 2681 } 2682 2683 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) { 2684 switch (size_in_bytes) { 2685 case 8: ldr(dst, src); break; 2686 case 4: ldrw(dst, src); break; 2687 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 2688 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 2689 default: ShouldNotReachHere(); 2690 } 2691 } 2692 2693 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes) { 2694 switch (size_in_bytes) { 2695 case 8: str(src, dst); break; 2696 case 4: strw(src, dst); break; 2697 case 2: strh(src, dst); break; 2698 case 1: strb(src, dst); break; 2699 default: ShouldNotReachHere(); 2700 } 2701 } 2702 2703 void MacroAssembler::decrementw(Register reg, int value) 2704 { 2705 if (value < 0) { incrementw(reg, -value); return; } 2706 if (value == 0) { return; } 2707 if (value < (1 << 12)) { subw(reg, reg, value); return; } 2708 /* else */ { 2709 guarantee(reg != rscratch2, "invalid dst for register decrement"); 2710 movw(rscratch2, (unsigned)value); 2711 subw(reg, reg, rscratch2); 2712 } 2713 } 2714 2715 void MacroAssembler::decrement(Register reg, int value) 2716 { 2717 if (value < 0) { increment(reg, -value); return; } 2718 if (value == 0) { return; } 2719 if (value < (1 << 12)) { sub(reg, reg, value); return; } 2720 /* else */ { 2721 assert(reg != rscratch2, "invalid dst for register decrement"); 2722 mov(rscratch2, (uint64_t)value); 2723 sub(reg, reg, rscratch2); 2724 } 2725 } 2726 2727 void MacroAssembler::decrementw(Address dst, int value) 2728 { 2729 assert(!dst.uses(rscratch1), "invalid dst for address decrement"); 2730 if (dst.getMode() == Address::literal) { 2731 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2732 lea(rscratch2, dst); 2733 dst = Address(rscratch2); 2734 } 2735 ldrw(rscratch1, dst); 2736 decrementw(rscratch1, value); 2737 strw(rscratch1, dst); 2738 } 2739 2740 void MacroAssembler::decrement(Address dst, int value) 2741 { 2742 assert(!dst.uses(rscratch1), "invalid address for decrement"); 2743 if (dst.getMode() == Address::literal) { 2744 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2745 lea(rscratch2, dst); 2746 dst = Address(rscratch2); 2747 } 2748 ldr(rscratch1, dst); 2749 decrement(rscratch1, value); 2750 str(rscratch1, dst); 2751 } 2752 2753 void MacroAssembler::incrementw(Register reg, int value) 2754 { 2755 if (value < 0) { decrementw(reg, -value); return; } 2756 if (value == 0) { return; } 2757 if (value < (1 << 12)) { addw(reg, reg, value); return; } 2758 /* else */ { 2759 assert(reg != rscratch2, "invalid dst for register increment"); 2760 movw(rscratch2, (unsigned)value); 2761 addw(reg, reg, rscratch2); 2762 } 2763 } 2764 2765 void MacroAssembler::increment(Register reg, int value) 2766 { 2767 if (value < 0) { decrement(reg, -value); return; } 2768 if (value == 0) { return; } 2769 if (value < (1 << 12)) { add(reg, reg, value); return; } 2770 /* else */ { 2771 assert(reg != rscratch2, "invalid dst for register increment"); 2772 movw(rscratch2, (unsigned)value); 2773 add(reg, reg, rscratch2); 2774 } 2775 } 2776 2777 void MacroAssembler::incrementw(Address dst, int value) 2778 { 2779 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2780 if (dst.getMode() == Address::literal) { 2781 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2782 lea(rscratch2, dst); 2783 dst = Address(rscratch2); 2784 } 2785 ldrw(rscratch1, dst); 2786 incrementw(rscratch1, value); 2787 strw(rscratch1, dst); 2788 } 2789 2790 void MacroAssembler::increment(Address dst, int value) 2791 { 2792 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2793 if (dst.getMode() == Address::literal) { 2794 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2795 lea(rscratch2, dst); 2796 dst = Address(rscratch2); 2797 } 2798 ldr(rscratch1, dst); 2799 increment(rscratch1, value); 2800 str(rscratch1, dst); 2801 } 2802 2803 // Push lots of registers in the bit set supplied. Don't push sp. 2804 // Return the number of words pushed 2805 int MacroAssembler::push(unsigned int bitset, Register stack) { 2806 int words_pushed = 0; 2807 2808 // Scan bitset to accumulate register pairs 2809 unsigned char regs[32]; 2810 int count = 0; 2811 for (int reg = 0; reg <= 30; reg++) { 2812 if (1 & bitset) 2813 regs[count++] = reg; 2814 bitset >>= 1; 2815 } 2816 regs[count++] = zr->raw_encoding(); 2817 count &= ~1; // Only push an even number of regs 2818 2819 if (count) { 2820 stp(as_Register(regs[0]), as_Register(regs[1]), 2821 Address(pre(stack, -count * wordSize))); 2822 words_pushed += 2; 2823 } 2824 for (int i = 2; i < count; i += 2) { 2825 stp(as_Register(regs[i]), as_Register(regs[i+1]), 2826 Address(stack, i * wordSize)); 2827 words_pushed += 2; 2828 } 2829 2830 assert(words_pushed == count, "oops, pushed != count"); 2831 2832 return count; 2833 } 2834 2835 int MacroAssembler::pop(unsigned int bitset, Register stack) { 2836 int words_pushed = 0; 2837 2838 // Scan bitset to accumulate register pairs 2839 unsigned char regs[32]; 2840 int count = 0; 2841 for (int reg = 0; reg <= 30; reg++) { 2842 if (1 & bitset) 2843 regs[count++] = reg; 2844 bitset >>= 1; 2845 } 2846 regs[count++] = zr->raw_encoding(); 2847 count &= ~1; 2848 2849 for (int i = 2; i < count; i += 2) { 2850 ldp(as_Register(regs[i]), as_Register(regs[i+1]), 2851 Address(stack, i * wordSize)); 2852 words_pushed += 2; 2853 } 2854 if (count) { 2855 ldp(as_Register(regs[0]), as_Register(regs[1]), 2856 Address(post(stack, count * wordSize))); 2857 words_pushed += 2; 2858 } 2859 2860 assert(words_pushed == count, "oops, pushed != count"); 2861 2862 return count; 2863 } 2864 2865 // Push lots of registers in the bit set supplied. Don't push sp. 2866 // Return the number of dwords pushed 2867 int MacroAssembler::push_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 2868 int words_pushed = 0; 2869 bool use_sve = false; 2870 int sve_vector_size_in_bytes = 0; 2871 2872 #ifdef COMPILER2 2873 use_sve = Matcher::supports_scalable_vector(); 2874 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2875 #endif 2876 2877 // Scan bitset to accumulate register pairs 2878 unsigned char regs[32]; 2879 int count = 0; 2880 for (int reg = 0; reg <= 31; reg++) { 2881 if (1 & bitset) 2882 regs[count++] = reg; 2883 bitset >>= 1; 2884 } 2885 2886 if (count == 0) { 2887 return 0; 2888 } 2889 2890 if (mode == PushPopFull) { 2891 if (use_sve && sve_vector_size_in_bytes > 16) { 2892 mode = PushPopSVE; 2893 } else { 2894 mode = PushPopNeon; 2895 } 2896 } 2897 2898 #ifndef PRODUCT 2899 { 2900 char buffer[48]; 2901 if (mode == PushPopSVE) { 2902 snprintf(buffer, sizeof(buffer), "push_fp: %d SVE registers", count); 2903 } else if (mode == PushPopNeon) { 2904 snprintf(buffer, sizeof(buffer), "push_fp: %d Neon registers", count); 2905 } else { 2906 snprintf(buffer, sizeof(buffer), "push_fp: %d fp registers", count); 2907 } 2908 block_comment(buffer); 2909 } 2910 #endif 2911 2912 if (mode == PushPopSVE) { 2913 sub(stack, stack, sve_vector_size_in_bytes * count); 2914 for (int i = 0; i < count; i++) { 2915 sve_str(as_FloatRegister(regs[i]), Address(stack, i)); 2916 } 2917 return count * sve_vector_size_in_bytes / 8; 2918 } 2919 2920 if (mode == PushPopNeon) { 2921 if (count == 1) { 2922 strq(as_FloatRegister(regs[0]), Address(pre(stack, -wordSize * 2))); 2923 return 2; 2924 } 2925 2926 bool odd = (count & 1) == 1; 2927 int push_slots = count + (odd ? 1 : 0); 2928 2929 // Always pushing full 128 bit registers. 2930 stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize * 2))); 2931 words_pushed += 2; 2932 2933 for (int i = 2; i + 1 < count; i += 2) { 2934 stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 2935 words_pushed += 2; 2936 } 2937 2938 if (odd) { 2939 strq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 2940 words_pushed++; 2941 } 2942 2943 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 2944 return count * 2; 2945 } 2946 2947 if (mode == PushPopFp) { 2948 bool odd = (count & 1) == 1; 2949 int push_slots = count + (odd ? 1 : 0); 2950 2951 if (count == 1) { 2952 // Stack pointer must be 16 bytes aligned 2953 strd(as_FloatRegister(regs[0]), Address(pre(stack, -push_slots * wordSize))); 2954 return 1; 2955 } 2956 2957 stpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize))); 2958 words_pushed += 2; 2959 2960 for (int i = 2; i + 1 < count; i += 2) { 2961 stpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 2962 words_pushed += 2; 2963 } 2964 2965 if (odd) { 2966 // Stack pointer must be 16 bytes aligned 2967 strd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 2968 words_pushed++; 2969 } 2970 2971 assert(words_pushed == count, "oops, pushed != count"); 2972 2973 return count; 2974 } 2975 2976 return 0; 2977 } 2978 2979 // Return the number of dwords popped 2980 int MacroAssembler::pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 2981 int words_pushed = 0; 2982 bool use_sve = false; 2983 int sve_vector_size_in_bytes = 0; 2984 2985 #ifdef COMPILER2 2986 use_sve = Matcher::supports_scalable_vector(); 2987 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2988 #endif 2989 // Scan bitset to accumulate register pairs 2990 unsigned char regs[32]; 2991 int count = 0; 2992 for (int reg = 0; reg <= 31; reg++) { 2993 if (1 & bitset) 2994 regs[count++] = reg; 2995 bitset >>= 1; 2996 } 2997 2998 if (count == 0) { 2999 return 0; 3000 } 3001 3002 if (mode == PushPopFull) { 3003 if (use_sve && sve_vector_size_in_bytes > 16) { 3004 mode = PushPopSVE; 3005 } else { 3006 mode = PushPopNeon; 3007 } 3008 } 3009 3010 #ifndef PRODUCT 3011 { 3012 char buffer[48]; 3013 if (mode == PushPopSVE) { 3014 snprintf(buffer, sizeof(buffer), "pop_fp: %d SVE registers", count); 3015 } else if (mode == PushPopNeon) { 3016 snprintf(buffer, sizeof(buffer), "pop_fp: %d Neon registers", count); 3017 } else { 3018 snprintf(buffer, sizeof(buffer), "pop_fp: %d fp registers", count); 3019 } 3020 block_comment(buffer); 3021 } 3022 #endif 3023 3024 if (mode == PushPopSVE) { 3025 for (int i = count - 1; i >= 0; i--) { 3026 sve_ldr(as_FloatRegister(regs[i]), Address(stack, i)); 3027 } 3028 add(stack, stack, sve_vector_size_in_bytes * count); 3029 return count * sve_vector_size_in_bytes / 8; 3030 } 3031 3032 if (mode == PushPopNeon) { 3033 if (count == 1) { 3034 ldrq(as_FloatRegister(regs[0]), Address(post(stack, wordSize * 2))); 3035 return 2; 3036 } 3037 3038 bool odd = (count & 1) == 1; 3039 int push_slots = count + (odd ? 1 : 0); 3040 3041 if (odd) { 3042 ldrq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 3043 words_pushed++; 3044 } 3045 3046 for (int i = 2; i + 1 < count; i += 2) { 3047 ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 3048 words_pushed += 2; 3049 } 3050 3051 ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize * 2))); 3052 words_pushed += 2; 3053 3054 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 3055 3056 return count * 2; 3057 } 3058 3059 if (mode == PushPopFp) { 3060 bool odd = (count & 1) == 1; 3061 int push_slots = count + (odd ? 1 : 0); 3062 3063 if (count == 1) { 3064 ldrd(as_FloatRegister(regs[0]), Address(post(stack, push_slots * wordSize))); 3065 return 1; 3066 } 3067 3068 if (odd) { 3069 ldrd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 3070 words_pushed++; 3071 } 3072 3073 for (int i = 2; i + 1 < count; i += 2) { 3074 ldpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 3075 words_pushed += 2; 3076 } 3077 3078 ldpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize))); 3079 words_pushed += 2; 3080 3081 assert(words_pushed == count, "oops, pushed != count"); 3082 3083 return count; 3084 } 3085 3086 return 0; 3087 } 3088 3089 // Return the number of dwords pushed 3090 int MacroAssembler::push_p(unsigned int bitset, Register stack) { 3091 bool use_sve = false; 3092 int sve_predicate_size_in_slots = 0; 3093 3094 #ifdef COMPILER2 3095 use_sve = Matcher::supports_scalable_vector(); 3096 if (use_sve) { 3097 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 3098 } 3099 #endif 3100 3101 if (!use_sve) { 3102 return 0; 3103 } 3104 3105 unsigned char regs[PRegister::number_of_registers]; 3106 int count = 0; 3107 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 3108 if (1 & bitset) 3109 regs[count++] = reg; 3110 bitset >>= 1; 3111 } 3112 3113 if (count == 0) { 3114 return 0; 3115 } 3116 3117 int total_push_bytes = align_up(sve_predicate_size_in_slots * 3118 VMRegImpl::stack_slot_size * count, 16); 3119 sub(stack, stack, total_push_bytes); 3120 for (int i = 0; i < count; i++) { 3121 sve_str(as_PRegister(regs[i]), Address(stack, i)); 3122 } 3123 return total_push_bytes / 8; 3124 } 3125 3126 // Return the number of dwords popped 3127 int MacroAssembler::pop_p(unsigned int bitset, Register stack) { 3128 bool use_sve = false; 3129 int sve_predicate_size_in_slots = 0; 3130 3131 #ifdef COMPILER2 3132 use_sve = Matcher::supports_scalable_vector(); 3133 if (use_sve) { 3134 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 3135 } 3136 #endif 3137 3138 if (!use_sve) { 3139 return 0; 3140 } 3141 3142 unsigned char regs[PRegister::number_of_registers]; 3143 int count = 0; 3144 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 3145 if (1 & bitset) 3146 regs[count++] = reg; 3147 bitset >>= 1; 3148 } 3149 3150 if (count == 0) { 3151 return 0; 3152 } 3153 3154 int total_pop_bytes = align_up(sve_predicate_size_in_slots * 3155 VMRegImpl::stack_slot_size * count, 16); 3156 for (int i = count - 1; i >= 0; i--) { 3157 sve_ldr(as_PRegister(regs[i]), Address(stack, i)); 3158 } 3159 add(stack, stack, total_pop_bytes); 3160 return total_pop_bytes / 8; 3161 } 3162 3163 #ifdef ASSERT 3164 void MacroAssembler::verify_heapbase(const char* msg) { 3165 #if 0 3166 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed"); 3167 assert (Universe::heap() != nullptr, "java heap should be initialized"); 3168 if (!UseCompressedOops || Universe::ptr_base() == nullptr) { 3169 // rheapbase is allocated as general register 3170 return; 3171 } 3172 if (CheckCompressedOops) { 3173 Label ok; 3174 push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1 3175 cmpptr(rheapbase, ExternalAddress(CompressedOops::base_addr())); 3176 br(Assembler::EQ, ok); 3177 stop(msg); 3178 bind(ok); 3179 pop(1 << rscratch1->encoding(), sp); 3180 } 3181 #endif 3182 } 3183 #endif 3184 3185 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) { 3186 assert_different_registers(value, tmp1, tmp2); 3187 Label done, tagged, weak_tagged; 3188 3189 cbz(value, done); // Use null as-is. 3190 tst(value, JNIHandles::tag_mask); // Test for tag. 3191 br(Assembler::NE, tagged); 3192 3193 // Resolve local handle 3194 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp1, tmp2); 3195 verify_oop(value); 3196 b(done); 3197 3198 bind(tagged); 3199 STATIC_ASSERT(JNIHandles::TypeTag::weak_global == 0b1); 3200 tbnz(value, 0, weak_tagged); // Test for weak tag. 3201 3202 // Resolve global handle 3203 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3204 verify_oop(value); 3205 b(done); 3206 3207 bind(weak_tagged); 3208 // Resolve jweak. 3209 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 3210 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp1, tmp2); 3211 verify_oop(value); 3212 3213 bind(done); 3214 } 3215 3216 void MacroAssembler::resolve_global_jobject(Register value, Register tmp1, Register tmp2) { 3217 assert_different_registers(value, tmp1, tmp2); 3218 Label done; 3219 3220 cbz(value, done); // Use null as-is. 3221 3222 #ifdef ASSERT 3223 { 3224 STATIC_ASSERT(JNIHandles::TypeTag::global == 0b10); 3225 Label valid_global_tag; 3226 tbnz(value, 1, valid_global_tag); // Test for global tag 3227 stop("non global jobject using resolve_global_jobject"); 3228 bind(valid_global_tag); 3229 } 3230 #endif 3231 3232 // Resolve global handle 3233 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3234 verify_oop(value); 3235 3236 bind(done); 3237 } 3238 3239 void MacroAssembler::stop(const char* msg) { 3240 // Skip AOT caching C strings in scratch buffer. 3241 const char* str = (code_section()->scratch_emit()) ? msg : AOTCodeCache::add_C_string(msg); 3242 BLOCK_COMMENT(str); 3243 // load msg into r0 so we can access it from the signal handler 3244 // ExternalAddress enables saving and restoring via the code cache 3245 lea(c_rarg0, ExternalAddress((address) str)); 3246 dcps1(0xdeae); 3247 } 3248 3249 void MacroAssembler::unimplemented(const char* what) { 3250 const char* buf = nullptr; 3251 { 3252 ResourceMark rm; 3253 stringStream ss; 3254 ss.print("unimplemented: %s", what); 3255 buf = code_string(ss.as_string()); 3256 } 3257 stop(buf); 3258 } 3259 3260 void MacroAssembler::_assert_asm(Assembler::Condition cc, const char* msg) { 3261 #ifdef ASSERT 3262 Label OK; 3263 br(cc, OK); 3264 stop(msg); 3265 bind(OK); 3266 #endif 3267 } 3268 3269 // If a constant does not fit in an immediate field, generate some 3270 // number of MOV instructions and then perform the operation. 3271 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 3272 add_sub_imm_insn insn1, 3273 add_sub_reg_insn insn2, 3274 bool is32) { 3275 assert(Rd != zr, "Rd = zr and not setting flags?"); 3276 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3277 if (fits) { 3278 (this->*insn1)(Rd, Rn, imm); 3279 } else { 3280 if (uabs(imm) < (1 << 24)) { 3281 (this->*insn1)(Rd, Rn, imm & -(1 << 12)); 3282 (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1)); 3283 } else { 3284 assert_different_registers(Rd, Rn); 3285 mov(Rd, imm); 3286 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3287 } 3288 } 3289 } 3290 3291 // Separate vsn which sets the flags. Optimisations are more restricted 3292 // because we must set the flags correctly. 3293 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 3294 add_sub_imm_insn insn1, 3295 add_sub_reg_insn insn2, 3296 bool is32) { 3297 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3298 if (fits) { 3299 (this->*insn1)(Rd, Rn, imm); 3300 } else { 3301 assert_different_registers(Rd, Rn); 3302 assert(Rd != zr, "overflow in immediate operand"); 3303 mov(Rd, imm); 3304 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3305 } 3306 } 3307 3308 3309 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) { 3310 if (increment.is_register()) { 3311 add(Rd, Rn, increment.as_register()); 3312 } else { 3313 add(Rd, Rn, increment.as_constant()); 3314 } 3315 } 3316 3317 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) { 3318 if (increment.is_register()) { 3319 addw(Rd, Rn, increment.as_register()); 3320 } else { 3321 addw(Rd, Rn, increment.as_constant()); 3322 } 3323 } 3324 3325 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) { 3326 if (decrement.is_register()) { 3327 sub(Rd, Rn, decrement.as_register()); 3328 } else { 3329 sub(Rd, Rn, decrement.as_constant()); 3330 } 3331 } 3332 3333 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) { 3334 if (decrement.is_register()) { 3335 subw(Rd, Rn, decrement.as_register()); 3336 } else { 3337 subw(Rd, Rn, decrement.as_constant()); 3338 } 3339 } 3340 3341 void MacroAssembler::reinit_heapbase() 3342 { 3343 if (UseCompressedOops) { 3344 if (Universe::is_fully_initialized()) { 3345 mov(rheapbase, CompressedOops::base()); 3346 } else { 3347 lea(rheapbase, ExternalAddress(CompressedOops::base_addr())); 3348 ldr(rheapbase, Address(rheapbase)); 3349 } 3350 } 3351 } 3352 3353 // this simulates the behaviour of the x86 cmpxchg instruction using a 3354 // load linked/store conditional pair. we use the acquire/release 3355 // versions of these instructions so that we flush pending writes as 3356 // per Java semantics. 3357 3358 // n.b the x86 version assumes the old value to be compared against is 3359 // in rax and updates rax with the value located in memory if the 3360 // cmpxchg fails. we supply a register for the old value explicitly 3361 3362 // the aarch64 load linked/store conditional instructions do not 3363 // accept an offset. so, unlike x86, we must provide a plain register 3364 // to identify the memory word to be compared/exchanged rather than a 3365 // register+offset Address. 3366 3367 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 3368 Label &succeed, Label *fail) { 3369 // oldv holds comparison value 3370 // newv holds value to write in exchange 3371 // addr identifies memory word to compare against/update 3372 if (UseLSE) { 3373 mov(tmp, oldv); 3374 casal(Assembler::xword, oldv, newv, addr); 3375 cmp(tmp, oldv); 3376 br(Assembler::EQ, succeed); 3377 membar(AnyAny); 3378 } else { 3379 Label retry_load, nope; 3380 prfm(Address(addr), PSTL1STRM); 3381 bind(retry_load); 3382 // flush and load exclusive from the memory location 3383 // and fail if it is not what we expect 3384 ldaxr(tmp, addr); 3385 cmp(tmp, oldv); 3386 br(Assembler::NE, nope); 3387 // if we store+flush with no intervening write tmp will be zero 3388 stlxr(tmp, newv, addr); 3389 cbzw(tmp, succeed); 3390 // retry so we only ever return after a load fails to compare 3391 // ensures we don't return a stale value after a failed write. 3392 b(retry_load); 3393 // if the memory word differs we return it in oldv and signal a fail 3394 bind(nope); 3395 membar(AnyAny); 3396 mov(oldv, tmp); 3397 } 3398 if (fail) 3399 b(*fail); 3400 } 3401 3402 void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 3403 Label &succeed, Label *fail) { 3404 assert(oopDesc::mark_offset_in_bytes() == 0, "assumption"); 3405 cmpxchgptr(oldv, newv, obj, tmp, succeed, fail); 3406 } 3407 3408 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 3409 Label &succeed, Label *fail) { 3410 // oldv holds comparison value 3411 // newv holds value to write in exchange 3412 // addr identifies memory word to compare against/update 3413 // tmp returns 0/1 for success/failure 3414 if (UseLSE) { 3415 mov(tmp, oldv); 3416 casal(Assembler::word, oldv, newv, addr); 3417 cmp(tmp, oldv); 3418 br(Assembler::EQ, succeed); 3419 membar(AnyAny); 3420 } else { 3421 Label retry_load, nope; 3422 prfm(Address(addr), PSTL1STRM); 3423 bind(retry_load); 3424 // flush and load exclusive from the memory location 3425 // and fail if it is not what we expect 3426 ldaxrw(tmp, addr); 3427 cmp(tmp, oldv); 3428 br(Assembler::NE, nope); 3429 // if we store+flush with no intervening write tmp will be zero 3430 stlxrw(tmp, newv, addr); 3431 cbzw(tmp, succeed); 3432 // retry so we only ever return after a load fails to compare 3433 // ensures we don't return a stale value after a failed write. 3434 b(retry_load); 3435 // if the memory word differs we return it in oldv and signal a fail 3436 bind(nope); 3437 membar(AnyAny); 3438 mov(oldv, tmp); 3439 } 3440 if (fail) 3441 b(*fail); 3442 } 3443 3444 // A generic CAS; success or failure is in the EQ flag. A weak CAS 3445 // doesn't retry and may fail spuriously. If the oldval is wanted, 3446 // Pass a register for the result, otherwise pass noreg. 3447 3448 // Clobbers rscratch1 3449 void MacroAssembler::cmpxchg(Register addr, Register expected, 3450 Register new_val, 3451 enum operand_size size, 3452 bool acquire, bool release, 3453 bool weak, 3454 Register result) { 3455 if (result == noreg) result = rscratch1; 3456 BLOCK_COMMENT("cmpxchg {"); 3457 if (UseLSE) { 3458 mov(result, expected); 3459 lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true); 3460 compare_eq(result, expected, size); 3461 #ifdef ASSERT 3462 // Poison rscratch1 which is written on !UseLSE branch 3463 mov(rscratch1, 0x1f1f1f1f1f1f1f1f); 3464 #endif 3465 } else { 3466 Label retry_load, done; 3467 prfm(Address(addr), PSTL1STRM); 3468 bind(retry_load); 3469 load_exclusive(result, addr, size, acquire); 3470 compare_eq(result, expected, size); 3471 br(Assembler::NE, done); 3472 store_exclusive(rscratch1, new_val, addr, size, release); 3473 if (weak) { 3474 cmpw(rscratch1, 0u); // If the store fails, return NE to our caller. 3475 } else { 3476 cbnzw(rscratch1, retry_load); 3477 } 3478 bind(done); 3479 } 3480 BLOCK_COMMENT("} cmpxchg"); 3481 } 3482 3483 // A generic comparison. Only compares for equality, clobbers rscratch1. 3484 void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) { 3485 if (size == xword) { 3486 cmp(rm, rn); 3487 } else if (size == word) { 3488 cmpw(rm, rn); 3489 } else if (size == halfword) { 3490 eorw(rscratch1, rm, rn); 3491 ands(zr, rscratch1, 0xffff); 3492 } else if (size == byte) { 3493 eorw(rscratch1, rm, rn); 3494 ands(zr, rscratch1, 0xff); 3495 } else { 3496 ShouldNotReachHere(); 3497 } 3498 } 3499 3500 3501 static bool different(Register a, RegisterOrConstant b, Register c) { 3502 if (b.is_constant()) 3503 return a != c; 3504 else 3505 return a != b.as_register() && a != c && b.as_register() != c; 3506 } 3507 3508 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \ 3509 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \ 3510 if (UseLSE) { \ 3511 prev = prev->is_valid() ? prev : zr; \ 3512 if (incr.is_register()) { \ 3513 AOP(sz, incr.as_register(), prev, addr); \ 3514 } else { \ 3515 mov(rscratch2, incr.as_constant()); \ 3516 AOP(sz, rscratch2, prev, addr); \ 3517 } \ 3518 return; \ 3519 } \ 3520 Register result = rscratch2; \ 3521 if (prev->is_valid()) \ 3522 result = different(prev, incr, addr) ? prev : rscratch2; \ 3523 \ 3524 Label retry_load; \ 3525 prfm(Address(addr), PSTL1STRM); \ 3526 bind(retry_load); \ 3527 LDXR(result, addr); \ 3528 OP(rscratch1, result, incr); \ 3529 STXR(rscratch2, rscratch1, addr); \ 3530 cbnzw(rscratch2, retry_load); \ 3531 if (prev->is_valid() && prev != result) { \ 3532 IOP(prev, rscratch1, incr); \ 3533 } \ 3534 } 3535 3536 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword) 3537 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word) 3538 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword) 3539 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word) 3540 3541 #undef ATOMIC_OP 3542 3543 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \ 3544 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \ 3545 if (UseLSE) { \ 3546 prev = prev->is_valid() ? prev : zr; \ 3547 AOP(sz, newv, prev, addr); \ 3548 return; \ 3549 } \ 3550 Register result = rscratch2; \ 3551 if (prev->is_valid()) \ 3552 result = different(prev, newv, addr) ? prev : rscratch2; \ 3553 \ 3554 Label retry_load; \ 3555 prfm(Address(addr), PSTL1STRM); \ 3556 bind(retry_load); \ 3557 LDXR(result, addr); \ 3558 STXR(rscratch1, newv, addr); \ 3559 cbnzw(rscratch1, retry_load); \ 3560 if (prev->is_valid() && prev != result) \ 3561 mov(prev, result); \ 3562 } 3563 3564 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword) 3565 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word) 3566 ATOMIC_XCHG(xchgl, swpl, ldxr, stlxr, Assembler::xword) 3567 ATOMIC_XCHG(xchglw, swpl, ldxrw, stlxrw, Assembler::word) 3568 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword) 3569 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word) 3570 3571 #undef ATOMIC_XCHG 3572 3573 #ifndef PRODUCT 3574 extern "C" void findpc(intptr_t x); 3575 #endif 3576 3577 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) 3578 { 3579 // In order to get locks to work, we need to fake a in_VM state 3580 if (ShowMessageBoxOnError ) { 3581 JavaThread* thread = JavaThread::current(); 3582 JavaThreadState saved_state = thread->thread_state(); 3583 thread->set_thread_state(_thread_in_vm); 3584 #ifndef PRODUCT 3585 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 3586 ttyLocker ttyl; 3587 BytecodeCounter::print(); 3588 } 3589 #endif 3590 if (os::message_box(msg, "Execution stopped, print registers?")) { 3591 ttyLocker ttyl; 3592 tty->print_cr(" pc = 0x%016" PRIx64, pc); 3593 #ifndef PRODUCT 3594 tty->cr(); 3595 findpc(pc); 3596 tty->cr(); 3597 #endif 3598 tty->print_cr(" r0 = 0x%016" PRIx64, regs[0]); 3599 tty->print_cr(" r1 = 0x%016" PRIx64, regs[1]); 3600 tty->print_cr(" r2 = 0x%016" PRIx64, regs[2]); 3601 tty->print_cr(" r3 = 0x%016" PRIx64, regs[3]); 3602 tty->print_cr(" r4 = 0x%016" PRIx64, regs[4]); 3603 tty->print_cr(" r5 = 0x%016" PRIx64, regs[5]); 3604 tty->print_cr(" r6 = 0x%016" PRIx64, regs[6]); 3605 tty->print_cr(" r7 = 0x%016" PRIx64, regs[7]); 3606 tty->print_cr(" r8 = 0x%016" PRIx64, regs[8]); 3607 tty->print_cr(" r9 = 0x%016" PRIx64, regs[9]); 3608 tty->print_cr("r10 = 0x%016" PRIx64, regs[10]); 3609 tty->print_cr("r11 = 0x%016" PRIx64, regs[11]); 3610 tty->print_cr("r12 = 0x%016" PRIx64, regs[12]); 3611 tty->print_cr("r13 = 0x%016" PRIx64, regs[13]); 3612 tty->print_cr("r14 = 0x%016" PRIx64, regs[14]); 3613 tty->print_cr("r15 = 0x%016" PRIx64, regs[15]); 3614 tty->print_cr("r16 = 0x%016" PRIx64, regs[16]); 3615 tty->print_cr("r17 = 0x%016" PRIx64, regs[17]); 3616 tty->print_cr("r18 = 0x%016" PRIx64, regs[18]); 3617 tty->print_cr("r19 = 0x%016" PRIx64, regs[19]); 3618 tty->print_cr("r20 = 0x%016" PRIx64, regs[20]); 3619 tty->print_cr("r21 = 0x%016" PRIx64, regs[21]); 3620 tty->print_cr("r22 = 0x%016" PRIx64, regs[22]); 3621 tty->print_cr("r23 = 0x%016" PRIx64, regs[23]); 3622 tty->print_cr("r24 = 0x%016" PRIx64, regs[24]); 3623 tty->print_cr("r25 = 0x%016" PRIx64, regs[25]); 3624 tty->print_cr("r26 = 0x%016" PRIx64, regs[26]); 3625 tty->print_cr("r27 = 0x%016" PRIx64, regs[27]); 3626 tty->print_cr("r28 = 0x%016" PRIx64, regs[28]); 3627 tty->print_cr("r30 = 0x%016" PRIx64, regs[30]); 3628 tty->print_cr("r31 = 0x%016" PRIx64, regs[31]); 3629 BREAKPOINT; 3630 } 3631 } 3632 fatal("DEBUG MESSAGE: %s", msg); 3633 } 3634 3635 RegSet MacroAssembler::call_clobbered_gp_registers() { 3636 RegSet regs = RegSet::range(r0, r17) - RegSet::of(rscratch1, rscratch2); 3637 #ifndef R18_RESERVED 3638 regs += r18_tls; 3639 #endif 3640 return regs; 3641 } 3642 3643 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) { 3644 int step = 4 * wordSize; 3645 push(call_clobbered_gp_registers() - exclude, sp); 3646 sub(sp, sp, step); 3647 mov(rscratch1, -step); 3648 // Push v0-v7, v16-v31. 3649 for (int i = 31; i>= 4; i -= 4) { 3650 if (i <= v7->encoding() || i >= v16->encoding()) 3651 st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1), 3652 as_FloatRegister(i), T1D, Address(post(sp, rscratch1))); 3653 } 3654 st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2), 3655 as_FloatRegister(3), T1D, Address(sp)); 3656 } 3657 3658 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) { 3659 for (int i = 0; i < 32; i += 4) { 3660 if (i <= v7->encoding() || i >= v16->encoding()) 3661 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3662 as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize))); 3663 } 3664 3665 reinitialize_ptrue(); 3666 3667 pop(call_clobbered_gp_registers() - exclude, sp); 3668 } 3669 3670 void MacroAssembler::push_CPU_state(bool save_vectors, bool use_sve, 3671 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3672 push(RegSet::range(r0, r29), sp); // integer registers except lr & sp 3673 if (save_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3674 sub(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3675 for (int i = 0; i < FloatRegister::number_of_registers; i++) { 3676 sve_str(as_FloatRegister(i), Address(sp, i)); 3677 } 3678 } else { 3679 int step = (save_vectors ? 8 : 4) * wordSize; 3680 mov(rscratch1, -step); 3681 sub(sp, sp, step); 3682 for (int i = 28; i >= 4; i -= 4) { 3683 st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3684 as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1))); 3685 } 3686 st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp); 3687 } 3688 if (save_vectors && use_sve && total_predicate_in_bytes > 0) { 3689 sub(sp, sp, total_predicate_in_bytes); 3690 for (int i = 0; i < PRegister::number_of_registers; i++) { 3691 sve_str(as_PRegister(i), Address(sp, i)); 3692 } 3693 } 3694 } 3695 3696 void MacroAssembler::pop_CPU_state(bool restore_vectors, bool use_sve, 3697 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3698 if (restore_vectors && use_sve && total_predicate_in_bytes > 0) { 3699 for (int i = PRegister::number_of_registers - 1; i >= 0; i--) { 3700 sve_ldr(as_PRegister(i), Address(sp, i)); 3701 } 3702 add(sp, sp, total_predicate_in_bytes); 3703 } 3704 if (restore_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3705 for (int i = FloatRegister::number_of_registers - 1; i >= 0; i--) { 3706 sve_ldr(as_FloatRegister(i), Address(sp, i)); 3707 } 3708 add(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3709 } else { 3710 int step = (restore_vectors ? 8 : 4) * wordSize; 3711 for (int i = 0; i <= 28; i += 4) 3712 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3713 as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step))); 3714 } 3715 3716 // We may use predicate registers and rely on ptrue with SVE, 3717 // regardless of wide vector (> 8 bytes) used or not. 3718 if (use_sve) { 3719 reinitialize_ptrue(); 3720 } 3721 3722 // integer registers except lr & sp 3723 pop(RegSet::range(r0, r17), sp); 3724 #ifdef R18_RESERVED 3725 ldp(zr, r19, Address(post(sp, 2 * wordSize))); 3726 pop(RegSet::range(r20, r29), sp); 3727 #else 3728 pop(RegSet::range(r18_tls, r29), sp); 3729 #endif 3730 } 3731 3732 /** 3733 * Helpers for multiply_to_len(). 3734 */ 3735 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 3736 Register src1, Register src2) { 3737 adds(dest_lo, dest_lo, src1); 3738 adc(dest_hi, dest_hi, zr); 3739 adds(dest_lo, dest_lo, src2); 3740 adc(final_dest_hi, dest_hi, zr); 3741 } 3742 3743 // Generate an address from (r + r1 extend offset). "size" is the 3744 // size of the operand. The result may be in rscratch2. 3745 Address MacroAssembler::offsetted_address(Register r, Register r1, 3746 Address::extend ext, int offset, int size) { 3747 if (offset || (ext.shift() % size != 0)) { 3748 lea(rscratch2, Address(r, r1, ext)); 3749 return Address(rscratch2, offset); 3750 } else { 3751 return Address(r, r1, ext); 3752 } 3753 } 3754 3755 Address MacroAssembler::spill_address(int size, int offset, Register tmp) 3756 { 3757 assert(offset >= 0, "spill to negative address?"); 3758 // Offset reachable ? 3759 // Not aligned - 9 bits signed offset 3760 // Aligned - 12 bits unsigned offset shifted 3761 Register base = sp; 3762 if ((offset & (size-1)) && offset >= (1<<8)) { 3763 add(tmp, base, offset & ((1<<12)-1)); 3764 base = tmp; 3765 offset &= -1u<<12; 3766 } 3767 3768 if (offset >= (1<<12) * size) { 3769 add(tmp, base, offset & (((1<<12)-1)<<12)); 3770 base = tmp; 3771 offset &= ~(((1<<12)-1)<<12); 3772 } 3773 3774 return Address(base, offset); 3775 } 3776 3777 Address MacroAssembler::sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp) { 3778 assert(offset >= 0, "spill to negative address?"); 3779 3780 Register base = sp; 3781 3782 // An immediate offset in the range 0 to 255 which is multiplied 3783 // by the current vector or predicate register size in bytes. 3784 if (offset % sve_reg_size_in_bytes == 0 && offset < ((1<<8)*sve_reg_size_in_bytes)) { 3785 return Address(base, offset / sve_reg_size_in_bytes); 3786 } 3787 3788 add(tmp, base, offset); 3789 return Address(tmp); 3790 } 3791 3792 // Checks whether offset is aligned. 3793 // Returns true if it is, else false. 3794 bool MacroAssembler::merge_alignment_check(Register base, 3795 size_t size, 3796 int64_t cur_offset, 3797 int64_t prev_offset) const { 3798 if (AvoidUnalignedAccesses) { 3799 if (base == sp) { 3800 // Checks whether low offset if aligned to pair of registers. 3801 int64_t pair_mask = size * 2 - 1; 3802 int64_t offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3803 return (offset & pair_mask) == 0; 3804 } else { // If base is not sp, we can't guarantee the access is aligned. 3805 return false; 3806 } 3807 } else { 3808 int64_t mask = size - 1; 3809 // Load/store pair instruction only supports element size aligned offset. 3810 return (cur_offset & mask) == 0 && (prev_offset & mask) == 0; 3811 } 3812 } 3813 3814 // Checks whether current and previous loads/stores can be merged. 3815 // Returns true if it can be merged, else false. 3816 bool MacroAssembler::ldst_can_merge(Register rt, 3817 const Address &adr, 3818 size_t cur_size_in_bytes, 3819 bool is_store) const { 3820 address prev = pc() - NativeInstruction::instruction_size; 3821 address last = code()->last_insn(); 3822 3823 if (last == nullptr || !nativeInstruction_at(last)->is_Imm_LdSt()) { 3824 return false; 3825 } 3826 3827 if (adr.getMode() != Address::base_plus_offset || prev != last) { 3828 return false; 3829 } 3830 3831 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3832 size_t prev_size_in_bytes = prev_ldst->size_in_bytes(); 3833 3834 assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging."); 3835 assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging."); 3836 3837 if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) { 3838 return false; 3839 } 3840 3841 int64_t max_offset = 63 * prev_size_in_bytes; 3842 int64_t min_offset = -64 * prev_size_in_bytes; 3843 3844 assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged."); 3845 3846 // Only same base can be merged. 3847 if (adr.base() != prev_ldst->base()) { 3848 return false; 3849 } 3850 3851 int64_t cur_offset = adr.offset(); 3852 int64_t prev_offset = prev_ldst->offset(); 3853 size_t diff = abs(cur_offset - prev_offset); 3854 if (diff != prev_size_in_bytes) { 3855 return false; 3856 } 3857 3858 // Following cases can not be merged: 3859 // ldr x2, [x2, #8] 3860 // ldr x3, [x2, #16] 3861 // or: 3862 // ldr x2, [x3, #8] 3863 // ldr x2, [x3, #16] 3864 // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL. 3865 if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) { 3866 return false; 3867 } 3868 3869 int64_t low_offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3870 // Offset range must be in ldp/stp instruction's range. 3871 if (low_offset > max_offset || low_offset < min_offset) { 3872 return false; 3873 } 3874 3875 if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) { 3876 return true; 3877 } 3878 3879 return false; 3880 } 3881 3882 // Merge current load/store with previous load/store into ldp/stp. 3883 void MacroAssembler::merge_ldst(Register rt, 3884 const Address &adr, 3885 size_t cur_size_in_bytes, 3886 bool is_store) { 3887 3888 assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged."); 3889 3890 Register rt_low, rt_high; 3891 address prev = pc() - NativeInstruction::instruction_size; 3892 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3893 3894 int64_t offset; 3895 3896 if (adr.offset() < prev_ldst->offset()) { 3897 offset = adr.offset(); 3898 rt_low = rt; 3899 rt_high = prev_ldst->target(); 3900 } else { 3901 offset = prev_ldst->offset(); 3902 rt_low = prev_ldst->target(); 3903 rt_high = rt; 3904 } 3905 3906 Address adr_p = Address(prev_ldst->base(), offset); 3907 // Overwrite previous generated binary. 3908 code_section()->set_end(prev); 3909 3910 const size_t sz = prev_ldst->size_in_bytes(); 3911 assert(sz == 8 || sz == 4, "only supports 64/32bit merging."); 3912 if (!is_store) { 3913 BLOCK_COMMENT("merged ldr pair"); 3914 if (sz == 8) { 3915 ldp(rt_low, rt_high, adr_p); 3916 } else { 3917 ldpw(rt_low, rt_high, adr_p); 3918 } 3919 } else { 3920 BLOCK_COMMENT("merged str pair"); 3921 if (sz == 8) { 3922 stp(rt_low, rt_high, adr_p); 3923 } else { 3924 stpw(rt_low, rt_high, adr_p); 3925 } 3926 } 3927 } 3928 3929 /** 3930 * Multiply 64 bit by 64 bit first loop. 3931 */ 3932 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 3933 Register y, Register y_idx, Register z, 3934 Register carry, Register product, 3935 Register idx, Register kdx) { 3936 // 3937 // jlong carry, x[], y[], z[]; 3938 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 3939 // huge_128 product = y[idx] * x[xstart] + carry; 3940 // z[kdx] = (jlong)product; 3941 // carry = (jlong)(product >>> 64); 3942 // } 3943 // z[xstart] = carry; 3944 // 3945 3946 Label L_first_loop, L_first_loop_exit; 3947 Label L_one_x, L_one_y, L_multiply; 3948 3949 subsw(xstart, xstart, 1); 3950 br(Assembler::MI, L_one_x); 3951 3952 lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt))); 3953 ldr(x_xstart, Address(rscratch1)); 3954 ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian 3955 3956 bind(L_first_loop); 3957 subsw(idx, idx, 1); 3958 br(Assembler::MI, L_first_loop_exit); 3959 subsw(idx, idx, 1); 3960 br(Assembler::MI, L_one_y); 3961 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3962 ldr(y_idx, Address(rscratch1)); 3963 ror(y_idx, y_idx, 32); // convert big-endian to little-endian 3964 bind(L_multiply); 3965 3966 // AArch64 has a multiply-accumulate instruction that we can't use 3967 // here because it has no way to process carries, so we have to use 3968 // separate add and adc instructions. Bah. 3969 umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product 3970 mul(product, x_xstart, y_idx); 3971 adds(product, product, carry); 3972 adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product 3973 3974 subw(kdx, kdx, 2); 3975 ror(product, product, 32); // back to big-endian 3976 str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong)); 3977 3978 b(L_first_loop); 3979 3980 bind(L_one_y); 3981 ldrw(y_idx, Address(y, 0)); 3982 b(L_multiply); 3983 3984 bind(L_one_x); 3985 ldrw(x_xstart, Address(x, 0)); 3986 b(L_first_loop); 3987 3988 bind(L_first_loop_exit); 3989 } 3990 3991 /** 3992 * Multiply 128 bit by 128. Unrolled inner loop. 3993 * 3994 */ 3995 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z, 3996 Register carry, Register carry2, 3997 Register idx, Register jdx, 3998 Register yz_idx1, Register yz_idx2, 3999 Register tmp, Register tmp3, Register tmp4, 4000 Register tmp6, Register product_hi) { 4001 4002 // jlong carry, x[], y[], z[]; 4003 // int kdx = ystart+1; 4004 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 4005 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry; 4006 // jlong carry2 = (jlong)(tmp3 >>> 64); 4007 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2; 4008 // carry = (jlong)(tmp4 >>> 64); 4009 // z[kdx+idx+1] = (jlong)tmp3; 4010 // z[kdx+idx] = (jlong)tmp4; 4011 // } 4012 // idx += 2; 4013 // if (idx > 0) { 4014 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry; 4015 // z[kdx+idx] = (jlong)yz_idx1; 4016 // carry = (jlong)(yz_idx1 >>> 64); 4017 // } 4018 // 4019 4020 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 4021 4022 lsrw(jdx, idx, 2); 4023 4024 bind(L_third_loop); 4025 4026 subsw(jdx, jdx, 1); 4027 br(Assembler::MI, L_third_loop_exit); 4028 subw(idx, idx, 4); 4029 4030 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4031 4032 ldp(yz_idx2, yz_idx1, Address(rscratch1, 0)); 4033 4034 lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4035 4036 ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 4037 ror(yz_idx2, yz_idx2, 32); 4038 4039 ldp(rscratch2, rscratch1, Address(tmp6, 0)); 4040 4041 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 4042 umulh(tmp4, product_hi, yz_idx1); 4043 4044 ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian 4045 ror(rscratch2, rscratch2, 32); 4046 4047 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp 4048 umulh(carry2, product_hi, yz_idx2); 4049 4050 // propagate sum of both multiplications into carry:tmp4:tmp3 4051 adds(tmp3, tmp3, carry); 4052 adc(tmp4, tmp4, zr); 4053 adds(tmp3, tmp3, rscratch1); 4054 adcs(tmp4, tmp4, tmp); 4055 adc(carry, carry2, zr); 4056 adds(tmp4, tmp4, rscratch2); 4057 adc(carry, carry, zr); 4058 4059 ror(tmp3, tmp3, 32); // convert little-endian to big-endian 4060 ror(tmp4, tmp4, 32); 4061 stp(tmp4, tmp3, Address(tmp6, 0)); 4062 4063 b(L_third_loop); 4064 bind (L_third_loop_exit); 4065 4066 andw (idx, idx, 0x3); 4067 cbz(idx, L_post_third_loop_done); 4068 4069 Label L_check_1; 4070 subsw(idx, idx, 2); 4071 br(Assembler::MI, L_check_1); 4072 4073 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4074 ldr(yz_idx1, Address(rscratch1, 0)); 4075 ror(yz_idx1, yz_idx1, 32); 4076 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 4077 umulh(tmp4, product_hi, yz_idx1); 4078 lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4079 ldr(yz_idx2, Address(rscratch1, 0)); 4080 ror(yz_idx2, yz_idx2, 32); 4081 4082 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2); 4083 4084 ror(tmp3, tmp3, 32); 4085 str(tmp3, Address(rscratch1, 0)); 4086 4087 bind (L_check_1); 4088 4089 andw (idx, idx, 0x1); 4090 subsw(idx, idx, 1); 4091 br(Assembler::MI, L_post_third_loop_done); 4092 ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4093 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3 4094 umulh(carry2, tmp4, product_hi); 4095 ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4096 4097 add2_with_carry(carry2, tmp3, tmp4, carry); 4098 4099 strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4100 extr(carry, carry2, tmp3, 32); 4101 4102 bind(L_post_third_loop_done); 4103 } 4104 4105 /** 4106 * Code for BigInteger::multiplyToLen() intrinsic. 4107 * 4108 * r0: x 4109 * r1: xlen 4110 * r2: y 4111 * r3: ylen 4112 * r4: z 4113 * r5: tmp0 4114 * r10: tmp1 4115 * r11: tmp2 4116 * r12: tmp3 4117 * r13: tmp4 4118 * r14: tmp5 4119 * r15: tmp6 4120 * r16: tmp7 4121 * 4122 */ 4123 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, 4124 Register z, Register tmp0, 4125 Register tmp1, Register tmp2, Register tmp3, Register tmp4, 4126 Register tmp5, Register tmp6, Register product_hi) { 4127 4128 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, product_hi); 4129 4130 const Register idx = tmp1; 4131 const Register kdx = tmp2; 4132 const Register xstart = tmp3; 4133 4134 const Register y_idx = tmp4; 4135 const Register carry = tmp5; 4136 const Register product = xlen; 4137 const Register x_xstart = tmp0; 4138 4139 // First Loop. 4140 // 4141 // final static long LONG_MASK = 0xffffffffL; 4142 // int xstart = xlen - 1; 4143 // int ystart = ylen - 1; 4144 // long carry = 0; 4145 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 4146 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 4147 // z[kdx] = (int)product; 4148 // carry = product >>> 32; 4149 // } 4150 // z[xstart] = (int)carry; 4151 // 4152 4153 movw(idx, ylen); // idx = ylen; 4154 addw(kdx, xlen, ylen); // kdx = xlen+ylen; 4155 mov(carry, zr); // carry = 0; 4156 4157 Label L_done; 4158 4159 movw(xstart, xlen); 4160 subsw(xstart, xstart, 1); 4161 br(Assembler::MI, L_done); 4162 4163 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 4164 4165 Label L_second_loop; 4166 cbzw(kdx, L_second_loop); 4167 4168 Label L_carry; 4169 subw(kdx, kdx, 1); 4170 cbzw(kdx, L_carry); 4171 4172 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 4173 lsr(carry, carry, 32); 4174 subw(kdx, kdx, 1); 4175 4176 bind(L_carry); 4177 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 4178 4179 // Second and third (nested) loops. 4180 // 4181 // for (int i = xstart-1; i >= 0; i--) { // Second loop 4182 // carry = 0; 4183 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 4184 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 4185 // (z[k] & LONG_MASK) + carry; 4186 // z[k] = (int)product; 4187 // carry = product >>> 32; 4188 // } 4189 // z[i] = (int)carry; 4190 // } 4191 // 4192 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi 4193 4194 const Register jdx = tmp1; 4195 4196 bind(L_second_loop); 4197 mov(carry, zr); // carry = 0; 4198 movw(jdx, ylen); // j = ystart+1 4199 4200 subsw(xstart, xstart, 1); // i = xstart-1; 4201 br(Assembler::MI, L_done); 4202 4203 str(z, Address(pre(sp, -4 * wordSize))); 4204 4205 Label L_last_x; 4206 lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j 4207 subsw(xstart, xstart, 1); // i = xstart-1; 4208 br(Assembler::MI, L_last_x); 4209 4210 lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt))); 4211 ldr(product_hi, Address(rscratch1)); 4212 ror(product_hi, product_hi, 32); // convert big-endian to little-endian 4213 4214 Label L_third_loop_prologue; 4215 bind(L_third_loop_prologue); 4216 4217 str(ylen, Address(sp, wordSize)); 4218 stp(x, xstart, Address(sp, 2 * wordSize)); 4219 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product, 4220 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi); 4221 ldp(z, ylen, Address(post(sp, 2 * wordSize))); 4222 ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen 4223 4224 addw(tmp3, xlen, 1); 4225 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4226 subsw(tmp3, tmp3, 1); 4227 br(Assembler::MI, L_done); 4228 4229 lsr(carry, carry, 32); 4230 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4231 b(L_second_loop); 4232 4233 // Next infrequent code is moved outside loops. 4234 bind(L_last_x); 4235 ldrw(product_hi, Address(x, 0)); 4236 b(L_third_loop_prologue); 4237 4238 bind(L_done); 4239 } 4240 4241 // Code for BigInteger::mulAdd intrinsic 4242 // out = r0 4243 // in = r1 4244 // offset = r2 (already out.length-offset) 4245 // len = r3 4246 // k = r4 4247 // 4248 // pseudo code from java implementation: 4249 // carry = 0; 4250 // offset = out.length-offset - 1; 4251 // for (int j=len-1; j >= 0; j--) { 4252 // product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry; 4253 // out[offset--] = (int)product; 4254 // carry = product >>> 32; 4255 // } 4256 // return (int)carry; 4257 void MacroAssembler::mul_add(Register out, Register in, Register offset, 4258 Register len, Register k) { 4259 Label LOOP, END; 4260 // pre-loop 4261 cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches 4262 csel(out, zr, out, Assembler::EQ); 4263 br(Assembler::EQ, END); 4264 add(in, in, len, LSL, 2); // in[j+1] address 4265 add(offset, out, offset, LSL, 2); // out[offset + 1] address 4266 mov(out, zr); // used to keep carry now 4267 BIND(LOOP); 4268 ldrw(rscratch1, Address(pre(in, -4))); 4269 madd(rscratch1, rscratch1, k, out); 4270 ldrw(rscratch2, Address(pre(offset, -4))); 4271 add(rscratch1, rscratch1, rscratch2); 4272 strw(rscratch1, Address(offset)); 4273 lsr(out, rscratch1, 32); 4274 subs(len, len, 1); 4275 br(Assembler::NE, LOOP); 4276 BIND(END); 4277 } 4278 4279 /** 4280 * Emits code to update CRC-32 with a byte value according to constants in table 4281 * 4282 * @param [in,out]crc Register containing the crc. 4283 * @param [in]val Register containing the byte to fold into the CRC. 4284 * @param [in]table Register containing the table of crc constants. 4285 * 4286 * uint32_t crc; 4287 * val = crc_table[(val ^ crc) & 0xFF]; 4288 * crc = val ^ (crc >> 8); 4289 * 4290 */ 4291 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 4292 eor(val, val, crc); 4293 andr(val, val, 0xff); 4294 ldrw(val, Address(table, val, Address::lsl(2))); 4295 eor(crc, val, crc, Assembler::LSR, 8); 4296 } 4297 4298 /** 4299 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3 4300 * 4301 * @param [in,out]crc Register containing the crc. 4302 * @param [in]v Register containing the 32-bit to fold into the CRC. 4303 * @param [in]table0 Register containing table 0 of crc constants. 4304 * @param [in]table1 Register containing table 1 of crc constants. 4305 * @param [in]table2 Register containing table 2 of crc constants. 4306 * @param [in]table3 Register containing table 3 of crc constants. 4307 * 4308 * uint32_t crc; 4309 * v = crc ^ v 4310 * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24] 4311 * 4312 */ 4313 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp, 4314 Register table0, Register table1, Register table2, Register table3, 4315 bool upper) { 4316 eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0); 4317 uxtb(tmp, v); 4318 ldrw(crc, Address(table3, tmp, Address::lsl(2))); 4319 ubfx(tmp, v, 8, 8); 4320 ldrw(tmp, Address(table2, tmp, Address::lsl(2))); 4321 eor(crc, crc, tmp); 4322 ubfx(tmp, v, 16, 8); 4323 ldrw(tmp, Address(table1, tmp, Address::lsl(2))); 4324 eor(crc, crc, tmp); 4325 ubfx(tmp, v, 24, 8); 4326 ldrw(tmp, Address(table0, tmp, Address::lsl(2))); 4327 eor(crc, crc, tmp); 4328 } 4329 4330 void MacroAssembler::kernel_crc32_using_crypto_pmull(Register crc, Register buf, 4331 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4332 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4333 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4334 4335 subs(tmp0, len, 384); 4336 mvnw(crc, crc); 4337 br(Assembler::GE, CRC_by128_pre); 4338 BIND(CRC_less128); 4339 subs(len, len, 32); 4340 br(Assembler::GE, CRC_by32_loop); 4341 BIND(CRC_less32); 4342 adds(len, len, 32 - 4); 4343 br(Assembler::GE, CRC_by4_loop); 4344 adds(len, len, 4); 4345 br(Assembler::GT, CRC_by1_loop); 4346 b(L_exit); 4347 4348 BIND(CRC_by32_loop); 4349 ldp(tmp0, tmp1, Address(buf)); 4350 crc32x(crc, crc, tmp0); 4351 ldp(tmp2, tmp3, Address(buf, 16)); 4352 crc32x(crc, crc, tmp1); 4353 add(buf, buf, 32); 4354 crc32x(crc, crc, tmp2); 4355 subs(len, len, 32); 4356 crc32x(crc, crc, tmp3); 4357 br(Assembler::GE, CRC_by32_loop); 4358 cmn(len, (u1)32); 4359 br(Assembler::NE, CRC_less32); 4360 b(L_exit); 4361 4362 BIND(CRC_by4_loop); 4363 ldrw(tmp0, Address(post(buf, 4))); 4364 subs(len, len, 4); 4365 crc32w(crc, crc, tmp0); 4366 br(Assembler::GE, CRC_by4_loop); 4367 adds(len, len, 4); 4368 br(Assembler::LE, L_exit); 4369 BIND(CRC_by1_loop); 4370 ldrb(tmp0, Address(post(buf, 1))); 4371 subs(len, len, 1); 4372 crc32b(crc, crc, tmp0); 4373 br(Assembler::GT, CRC_by1_loop); 4374 b(L_exit); 4375 4376 BIND(CRC_by128_pre); 4377 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4378 4*256*sizeof(juint) + 8*sizeof(juint)); 4379 mov(crc, 0); 4380 crc32x(crc, crc, tmp0); 4381 crc32x(crc, crc, tmp1); 4382 4383 cbnz(len, CRC_less128); 4384 4385 BIND(L_exit); 4386 mvnw(crc, crc); 4387 } 4388 4389 void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf, 4390 Register len, Register tmp0, Register tmp1, Register tmp2, 4391 Register tmp3) { 4392 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4393 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4394 4395 mvnw(crc, crc); 4396 4397 subs(len, len, 128); 4398 br(Assembler::GE, CRC_by64_pre); 4399 BIND(CRC_less64); 4400 adds(len, len, 128-32); 4401 br(Assembler::GE, CRC_by32_loop); 4402 BIND(CRC_less32); 4403 adds(len, len, 32-4); 4404 br(Assembler::GE, CRC_by4_loop); 4405 adds(len, len, 4); 4406 br(Assembler::GT, CRC_by1_loop); 4407 b(L_exit); 4408 4409 BIND(CRC_by32_loop); 4410 ldp(tmp0, tmp1, Address(post(buf, 16))); 4411 subs(len, len, 32); 4412 crc32x(crc, crc, tmp0); 4413 ldr(tmp2, Address(post(buf, 8))); 4414 crc32x(crc, crc, tmp1); 4415 ldr(tmp3, Address(post(buf, 8))); 4416 crc32x(crc, crc, tmp2); 4417 crc32x(crc, crc, tmp3); 4418 br(Assembler::GE, CRC_by32_loop); 4419 cmn(len, (u1)32); 4420 br(Assembler::NE, CRC_less32); 4421 b(L_exit); 4422 4423 BIND(CRC_by4_loop); 4424 ldrw(tmp0, Address(post(buf, 4))); 4425 subs(len, len, 4); 4426 crc32w(crc, crc, tmp0); 4427 br(Assembler::GE, CRC_by4_loop); 4428 adds(len, len, 4); 4429 br(Assembler::LE, L_exit); 4430 BIND(CRC_by1_loop); 4431 ldrb(tmp0, Address(post(buf, 1))); 4432 subs(len, len, 1); 4433 crc32b(crc, crc, tmp0); 4434 br(Assembler::GT, CRC_by1_loop); 4435 b(L_exit); 4436 4437 BIND(CRC_by64_pre); 4438 sub(buf, buf, 8); 4439 ldp(tmp0, tmp1, Address(buf, 8)); 4440 crc32x(crc, crc, tmp0); 4441 ldr(tmp2, Address(buf, 24)); 4442 crc32x(crc, crc, tmp1); 4443 ldr(tmp3, Address(buf, 32)); 4444 crc32x(crc, crc, tmp2); 4445 ldr(tmp0, Address(buf, 40)); 4446 crc32x(crc, crc, tmp3); 4447 ldr(tmp1, Address(buf, 48)); 4448 crc32x(crc, crc, tmp0); 4449 ldr(tmp2, Address(buf, 56)); 4450 crc32x(crc, crc, tmp1); 4451 ldr(tmp3, Address(pre(buf, 64))); 4452 4453 b(CRC_by64_loop); 4454 4455 align(CodeEntryAlignment); 4456 BIND(CRC_by64_loop); 4457 subs(len, len, 64); 4458 crc32x(crc, crc, tmp2); 4459 ldr(tmp0, Address(buf, 8)); 4460 crc32x(crc, crc, tmp3); 4461 ldr(tmp1, Address(buf, 16)); 4462 crc32x(crc, crc, tmp0); 4463 ldr(tmp2, Address(buf, 24)); 4464 crc32x(crc, crc, tmp1); 4465 ldr(tmp3, Address(buf, 32)); 4466 crc32x(crc, crc, tmp2); 4467 ldr(tmp0, Address(buf, 40)); 4468 crc32x(crc, crc, tmp3); 4469 ldr(tmp1, Address(buf, 48)); 4470 crc32x(crc, crc, tmp0); 4471 ldr(tmp2, Address(buf, 56)); 4472 crc32x(crc, crc, tmp1); 4473 ldr(tmp3, Address(pre(buf, 64))); 4474 br(Assembler::GE, CRC_by64_loop); 4475 4476 // post-loop 4477 crc32x(crc, crc, tmp2); 4478 crc32x(crc, crc, tmp3); 4479 4480 sub(len, len, 64); 4481 add(buf, buf, 8); 4482 cmn(len, (u1)128); 4483 br(Assembler::NE, CRC_less64); 4484 BIND(L_exit); 4485 mvnw(crc, crc); 4486 } 4487 4488 /** 4489 * @param crc register containing existing CRC (32-bit) 4490 * @param buf register pointing to input byte buffer (byte*) 4491 * @param len register containing number of bytes 4492 * @param table register that will contain address of CRC table 4493 * @param tmp scratch register 4494 */ 4495 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, 4496 Register table0, Register table1, Register table2, Register table3, 4497 Register tmp, Register tmp2, Register tmp3) { 4498 Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit; 4499 4500 if (UseCryptoPmullForCRC32) { 4501 kernel_crc32_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4502 return; 4503 } 4504 4505 if (UseCRC32) { 4506 kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3); 4507 return; 4508 } 4509 4510 mvnw(crc, crc); 4511 4512 { 4513 uint64_t offset; 4514 adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4515 add(table0, table0, offset); 4516 } 4517 add(table1, table0, 1*256*sizeof(juint)); 4518 add(table2, table0, 2*256*sizeof(juint)); 4519 add(table3, table0, 3*256*sizeof(juint)); 4520 4521 { // Neon code start 4522 cmp(len, (u1)64); 4523 br(Assembler::LT, L_by16); 4524 eor(v16, T16B, v16, v16); 4525 4526 Label L_fold; 4527 4528 add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants 4529 4530 ld1(v0, v1, T2D, post(buf, 32)); 4531 ld1r(v4, T2D, post(tmp, 8)); 4532 ld1r(v5, T2D, post(tmp, 8)); 4533 ld1r(v6, T2D, post(tmp, 8)); 4534 ld1r(v7, T2D, post(tmp, 8)); 4535 mov(v16, S, 0, crc); 4536 4537 eor(v0, T16B, v0, v16); 4538 sub(len, len, 64); 4539 4540 BIND(L_fold); 4541 pmull(v22, T8H, v0, v5, T8B); 4542 pmull(v20, T8H, v0, v7, T8B); 4543 pmull(v23, T8H, v0, v4, T8B); 4544 pmull(v21, T8H, v0, v6, T8B); 4545 4546 pmull2(v18, T8H, v0, v5, T16B); 4547 pmull2(v16, T8H, v0, v7, T16B); 4548 pmull2(v19, T8H, v0, v4, T16B); 4549 pmull2(v17, T8H, v0, v6, T16B); 4550 4551 uzp1(v24, T8H, v20, v22); 4552 uzp2(v25, T8H, v20, v22); 4553 eor(v20, T16B, v24, v25); 4554 4555 uzp1(v26, T8H, v16, v18); 4556 uzp2(v27, T8H, v16, v18); 4557 eor(v16, T16B, v26, v27); 4558 4559 ushll2(v22, T4S, v20, T8H, 8); 4560 ushll(v20, T4S, v20, T4H, 8); 4561 4562 ushll2(v18, T4S, v16, T8H, 8); 4563 ushll(v16, T4S, v16, T4H, 8); 4564 4565 eor(v22, T16B, v23, v22); 4566 eor(v18, T16B, v19, v18); 4567 eor(v20, T16B, v21, v20); 4568 eor(v16, T16B, v17, v16); 4569 4570 uzp1(v17, T2D, v16, v20); 4571 uzp2(v21, T2D, v16, v20); 4572 eor(v17, T16B, v17, v21); 4573 4574 ushll2(v20, T2D, v17, T4S, 16); 4575 ushll(v16, T2D, v17, T2S, 16); 4576 4577 eor(v20, T16B, v20, v22); 4578 eor(v16, T16B, v16, v18); 4579 4580 uzp1(v17, T2D, v20, v16); 4581 uzp2(v21, T2D, v20, v16); 4582 eor(v28, T16B, v17, v21); 4583 4584 pmull(v22, T8H, v1, v5, T8B); 4585 pmull(v20, T8H, v1, v7, T8B); 4586 pmull(v23, T8H, v1, v4, T8B); 4587 pmull(v21, T8H, v1, v6, T8B); 4588 4589 pmull2(v18, T8H, v1, v5, T16B); 4590 pmull2(v16, T8H, v1, v7, T16B); 4591 pmull2(v19, T8H, v1, v4, T16B); 4592 pmull2(v17, T8H, v1, v6, T16B); 4593 4594 ld1(v0, v1, T2D, post(buf, 32)); 4595 4596 uzp1(v24, T8H, v20, v22); 4597 uzp2(v25, T8H, v20, v22); 4598 eor(v20, T16B, v24, v25); 4599 4600 uzp1(v26, T8H, v16, v18); 4601 uzp2(v27, T8H, v16, v18); 4602 eor(v16, T16B, v26, v27); 4603 4604 ushll2(v22, T4S, v20, T8H, 8); 4605 ushll(v20, T4S, v20, T4H, 8); 4606 4607 ushll2(v18, T4S, v16, T8H, 8); 4608 ushll(v16, T4S, v16, T4H, 8); 4609 4610 eor(v22, T16B, v23, v22); 4611 eor(v18, T16B, v19, v18); 4612 eor(v20, T16B, v21, v20); 4613 eor(v16, T16B, v17, v16); 4614 4615 uzp1(v17, T2D, v16, v20); 4616 uzp2(v21, T2D, v16, v20); 4617 eor(v16, T16B, v17, v21); 4618 4619 ushll2(v20, T2D, v16, T4S, 16); 4620 ushll(v16, T2D, v16, T2S, 16); 4621 4622 eor(v20, T16B, v22, v20); 4623 eor(v16, T16B, v16, v18); 4624 4625 uzp1(v17, T2D, v20, v16); 4626 uzp2(v21, T2D, v20, v16); 4627 eor(v20, T16B, v17, v21); 4628 4629 shl(v16, T2D, v28, 1); 4630 shl(v17, T2D, v20, 1); 4631 4632 eor(v0, T16B, v0, v16); 4633 eor(v1, T16B, v1, v17); 4634 4635 subs(len, len, 32); 4636 br(Assembler::GE, L_fold); 4637 4638 mov(crc, 0); 4639 mov(tmp, v0, D, 0); 4640 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4641 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4642 mov(tmp, v0, D, 1); 4643 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4644 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4645 mov(tmp, v1, D, 0); 4646 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4647 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4648 mov(tmp, v1, D, 1); 4649 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4650 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4651 4652 add(len, len, 32); 4653 } // Neon code end 4654 4655 BIND(L_by16); 4656 subs(len, len, 16); 4657 br(Assembler::GE, L_by16_loop); 4658 adds(len, len, 16-4); 4659 br(Assembler::GE, L_by4_loop); 4660 adds(len, len, 4); 4661 br(Assembler::GT, L_by1_loop); 4662 b(L_exit); 4663 4664 BIND(L_by4_loop); 4665 ldrw(tmp, Address(post(buf, 4))); 4666 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3); 4667 subs(len, len, 4); 4668 br(Assembler::GE, L_by4_loop); 4669 adds(len, len, 4); 4670 br(Assembler::LE, L_exit); 4671 BIND(L_by1_loop); 4672 subs(len, len, 1); 4673 ldrb(tmp, Address(post(buf, 1))); 4674 update_byte_crc32(crc, tmp, table0); 4675 br(Assembler::GT, L_by1_loop); 4676 b(L_exit); 4677 4678 align(CodeEntryAlignment); 4679 BIND(L_by16_loop); 4680 subs(len, len, 16); 4681 ldp(tmp, tmp3, Address(post(buf, 16))); 4682 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4683 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4684 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false); 4685 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true); 4686 br(Assembler::GE, L_by16_loop); 4687 adds(len, len, 16-4); 4688 br(Assembler::GE, L_by4_loop); 4689 adds(len, len, 4); 4690 br(Assembler::GT, L_by1_loop); 4691 BIND(L_exit); 4692 mvnw(crc, crc); 4693 } 4694 4695 void MacroAssembler::kernel_crc32c_using_crypto_pmull(Register crc, Register buf, 4696 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4697 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4698 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4699 4700 subs(tmp0, len, 384); 4701 br(Assembler::GE, CRC_by128_pre); 4702 BIND(CRC_less128); 4703 subs(len, len, 32); 4704 br(Assembler::GE, CRC_by32_loop); 4705 BIND(CRC_less32); 4706 adds(len, len, 32 - 4); 4707 br(Assembler::GE, CRC_by4_loop); 4708 adds(len, len, 4); 4709 br(Assembler::GT, CRC_by1_loop); 4710 b(L_exit); 4711 4712 BIND(CRC_by32_loop); 4713 ldp(tmp0, tmp1, Address(buf)); 4714 crc32cx(crc, crc, tmp0); 4715 ldr(tmp2, Address(buf, 16)); 4716 crc32cx(crc, crc, tmp1); 4717 ldr(tmp3, Address(buf, 24)); 4718 crc32cx(crc, crc, tmp2); 4719 add(buf, buf, 32); 4720 subs(len, len, 32); 4721 crc32cx(crc, crc, tmp3); 4722 br(Assembler::GE, CRC_by32_loop); 4723 cmn(len, (u1)32); 4724 br(Assembler::NE, CRC_less32); 4725 b(L_exit); 4726 4727 BIND(CRC_by4_loop); 4728 ldrw(tmp0, Address(post(buf, 4))); 4729 subs(len, len, 4); 4730 crc32cw(crc, crc, tmp0); 4731 br(Assembler::GE, CRC_by4_loop); 4732 adds(len, len, 4); 4733 br(Assembler::LE, L_exit); 4734 BIND(CRC_by1_loop); 4735 ldrb(tmp0, Address(post(buf, 1))); 4736 subs(len, len, 1); 4737 crc32cb(crc, crc, tmp0); 4738 br(Assembler::GT, CRC_by1_loop); 4739 b(L_exit); 4740 4741 BIND(CRC_by128_pre); 4742 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4743 4*256*sizeof(juint) + 8*sizeof(juint) + 0x50); 4744 mov(crc, 0); 4745 crc32cx(crc, crc, tmp0); 4746 crc32cx(crc, crc, tmp1); 4747 4748 cbnz(len, CRC_less128); 4749 4750 BIND(L_exit); 4751 } 4752 4753 void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf, 4754 Register len, Register tmp0, Register tmp1, Register tmp2, 4755 Register tmp3) { 4756 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4757 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4758 4759 subs(len, len, 128); 4760 br(Assembler::GE, CRC_by64_pre); 4761 BIND(CRC_less64); 4762 adds(len, len, 128-32); 4763 br(Assembler::GE, CRC_by32_loop); 4764 BIND(CRC_less32); 4765 adds(len, len, 32-4); 4766 br(Assembler::GE, CRC_by4_loop); 4767 adds(len, len, 4); 4768 br(Assembler::GT, CRC_by1_loop); 4769 b(L_exit); 4770 4771 BIND(CRC_by32_loop); 4772 ldp(tmp0, tmp1, Address(post(buf, 16))); 4773 subs(len, len, 32); 4774 crc32cx(crc, crc, tmp0); 4775 ldr(tmp2, Address(post(buf, 8))); 4776 crc32cx(crc, crc, tmp1); 4777 ldr(tmp3, Address(post(buf, 8))); 4778 crc32cx(crc, crc, tmp2); 4779 crc32cx(crc, crc, tmp3); 4780 br(Assembler::GE, CRC_by32_loop); 4781 cmn(len, (u1)32); 4782 br(Assembler::NE, CRC_less32); 4783 b(L_exit); 4784 4785 BIND(CRC_by4_loop); 4786 ldrw(tmp0, Address(post(buf, 4))); 4787 subs(len, len, 4); 4788 crc32cw(crc, crc, tmp0); 4789 br(Assembler::GE, CRC_by4_loop); 4790 adds(len, len, 4); 4791 br(Assembler::LE, L_exit); 4792 BIND(CRC_by1_loop); 4793 ldrb(tmp0, Address(post(buf, 1))); 4794 subs(len, len, 1); 4795 crc32cb(crc, crc, tmp0); 4796 br(Assembler::GT, CRC_by1_loop); 4797 b(L_exit); 4798 4799 BIND(CRC_by64_pre); 4800 sub(buf, buf, 8); 4801 ldp(tmp0, tmp1, Address(buf, 8)); 4802 crc32cx(crc, crc, tmp0); 4803 ldr(tmp2, Address(buf, 24)); 4804 crc32cx(crc, crc, tmp1); 4805 ldr(tmp3, Address(buf, 32)); 4806 crc32cx(crc, crc, tmp2); 4807 ldr(tmp0, Address(buf, 40)); 4808 crc32cx(crc, crc, tmp3); 4809 ldr(tmp1, Address(buf, 48)); 4810 crc32cx(crc, crc, tmp0); 4811 ldr(tmp2, Address(buf, 56)); 4812 crc32cx(crc, crc, tmp1); 4813 ldr(tmp3, Address(pre(buf, 64))); 4814 4815 b(CRC_by64_loop); 4816 4817 align(CodeEntryAlignment); 4818 BIND(CRC_by64_loop); 4819 subs(len, len, 64); 4820 crc32cx(crc, crc, tmp2); 4821 ldr(tmp0, Address(buf, 8)); 4822 crc32cx(crc, crc, tmp3); 4823 ldr(tmp1, Address(buf, 16)); 4824 crc32cx(crc, crc, tmp0); 4825 ldr(tmp2, Address(buf, 24)); 4826 crc32cx(crc, crc, tmp1); 4827 ldr(tmp3, Address(buf, 32)); 4828 crc32cx(crc, crc, tmp2); 4829 ldr(tmp0, Address(buf, 40)); 4830 crc32cx(crc, crc, tmp3); 4831 ldr(tmp1, Address(buf, 48)); 4832 crc32cx(crc, crc, tmp0); 4833 ldr(tmp2, Address(buf, 56)); 4834 crc32cx(crc, crc, tmp1); 4835 ldr(tmp3, Address(pre(buf, 64))); 4836 br(Assembler::GE, CRC_by64_loop); 4837 4838 // post-loop 4839 crc32cx(crc, crc, tmp2); 4840 crc32cx(crc, crc, tmp3); 4841 4842 sub(len, len, 64); 4843 add(buf, buf, 8); 4844 cmn(len, (u1)128); 4845 br(Assembler::NE, CRC_less64); 4846 BIND(L_exit); 4847 } 4848 4849 /** 4850 * @param crc register containing existing CRC (32-bit) 4851 * @param buf register pointing to input byte buffer (byte*) 4852 * @param len register containing number of bytes 4853 * @param table register that will contain address of CRC table 4854 * @param tmp scratch register 4855 */ 4856 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len, 4857 Register table0, Register table1, Register table2, Register table3, 4858 Register tmp, Register tmp2, Register tmp3) { 4859 if (UseCryptoPmullForCRC32) { 4860 kernel_crc32c_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4861 } else { 4862 kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3); 4863 } 4864 } 4865 4866 void MacroAssembler::kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 4867 Register len, Register tmp0, Register tmp1, Register tmp2, size_t table_offset) { 4868 Label CRC_by128_loop; 4869 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4870 4871 sub(len, len, 256); 4872 Register table = tmp0; 4873 { 4874 uint64_t offset; 4875 adrp(table, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4876 add(table, table, offset); 4877 } 4878 add(table, table, table_offset); 4879 4880 // Registers v0..v7 are used as data registers. 4881 // Registers v16..v31 are used as tmp registers. 4882 sub(buf, buf, 0x10); 4883 ldrq(v0, Address(buf, 0x10)); 4884 ldrq(v1, Address(buf, 0x20)); 4885 ldrq(v2, Address(buf, 0x30)); 4886 ldrq(v3, Address(buf, 0x40)); 4887 ldrq(v4, Address(buf, 0x50)); 4888 ldrq(v5, Address(buf, 0x60)); 4889 ldrq(v6, Address(buf, 0x70)); 4890 ldrq(v7, Address(pre(buf, 0x80))); 4891 4892 movi(v31, T4S, 0); 4893 mov(v31, S, 0, crc); 4894 eor(v0, T16B, v0, v31); 4895 4896 // Register v16 contains constants from the crc table. 4897 ldrq(v16, Address(table)); 4898 b(CRC_by128_loop); 4899 4900 align(OptoLoopAlignment); 4901 BIND(CRC_by128_loop); 4902 pmull (v17, T1Q, v0, v16, T1D); 4903 pmull2(v18, T1Q, v0, v16, T2D); 4904 ldrq(v0, Address(buf, 0x10)); 4905 eor3(v0, T16B, v17, v18, v0); 4906 4907 pmull (v19, T1Q, v1, v16, T1D); 4908 pmull2(v20, T1Q, v1, v16, T2D); 4909 ldrq(v1, Address(buf, 0x20)); 4910 eor3(v1, T16B, v19, v20, v1); 4911 4912 pmull (v21, T1Q, v2, v16, T1D); 4913 pmull2(v22, T1Q, v2, v16, T2D); 4914 ldrq(v2, Address(buf, 0x30)); 4915 eor3(v2, T16B, v21, v22, v2); 4916 4917 pmull (v23, T1Q, v3, v16, T1D); 4918 pmull2(v24, T1Q, v3, v16, T2D); 4919 ldrq(v3, Address(buf, 0x40)); 4920 eor3(v3, T16B, v23, v24, v3); 4921 4922 pmull (v25, T1Q, v4, v16, T1D); 4923 pmull2(v26, T1Q, v4, v16, T2D); 4924 ldrq(v4, Address(buf, 0x50)); 4925 eor3(v4, T16B, v25, v26, v4); 4926 4927 pmull (v27, T1Q, v5, v16, T1D); 4928 pmull2(v28, T1Q, v5, v16, T2D); 4929 ldrq(v5, Address(buf, 0x60)); 4930 eor3(v5, T16B, v27, v28, v5); 4931 4932 pmull (v29, T1Q, v6, v16, T1D); 4933 pmull2(v30, T1Q, v6, v16, T2D); 4934 ldrq(v6, Address(buf, 0x70)); 4935 eor3(v6, T16B, v29, v30, v6); 4936 4937 // Reuse registers v23, v24. 4938 // Using them won't block the first instruction of the next iteration. 4939 pmull (v23, T1Q, v7, v16, T1D); 4940 pmull2(v24, T1Q, v7, v16, T2D); 4941 ldrq(v7, Address(pre(buf, 0x80))); 4942 eor3(v7, T16B, v23, v24, v7); 4943 4944 subs(len, len, 0x80); 4945 br(Assembler::GE, CRC_by128_loop); 4946 4947 // fold into 512 bits 4948 // Use v31 for constants because v16 can be still in use. 4949 ldrq(v31, Address(table, 0x10)); 4950 4951 pmull (v17, T1Q, v0, v31, T1D); 4952 pmull2(v18, T1Q, v0, v31, T2D); 4953 eor3(v0, T16B, v17, v18, v4); 4954 4955 pmull (v19, T1Q, v1, v31, T1D); 4956 pmull2(v20, T1Q, v1, v31, T2D); 4957 eor3(v1, T16B, v19, v20, v5); 4958 4959 pmull (v21, T1Q, v2, v31, T1D); 4960 pmull2(v22, T1Q, v2, v31, T2D); 4961 eor3(v2, T16B, v21, v22, v6); 4962 4963 pmull (v23, T1Q, v3, v31, T1D); 4964 pmull2(v24, T1Q, v3, v31, T2D); 4965 eor3(v3, T16B, v23, v24, v7); 4966 4967 // fold into 128 bits 4968 // Use v17 for constants because v31 can be still in use. 4969 ldrq(v17, Address(table, 0x20)); 4970 pmull (v25, T1Q, v0, v17, T1D); 4971 pmull2(v26, T1Q, v0, v17, T2D); 4972 eor3(v3, T16B, v3, v25, v26); 4973 4974 // Use v18 for constants because v17 can be still in use. 4975 ldrq(v18, Address(table, 0x30)); 4976 pmull (v27, T1Q, v1, v18, T1D); 4977 pmull2(v28, T1Q, v1, v18, T2D); 4978 eor3(v3, T16B, v3, v27, v28); 4979 4980 // Use v19 for constants because v18 can be still in use. 4981 ldrq(v19, Address(table, 0x40)); 4982 pmull (v29, T1Q, v2, v19, T1D); 4983 pmull2(v30, T1Q, v2, v19, T2D); 4984 eor3(v0, T16B, v3, v29, v30); 4985 4986 add(len, len, 0x80); 4987 add(buf, buf, 0x10); 4988 4989 mov(tmp0, v0, D, 0); 4990 mov(tmp1, v0, D, 1); 4991 } 4992 4993 void MacroAssembler::addptr(const Address &dst, int32_t src) { 4994 Address adr; 4995 switch(dst.getMode()) { 4996 case Address::base_plus_offset: 4997 // This is the expected mode, although we allow all the other 4998 // forms below. 4999 adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord); 5000 break; 5001 default: 5002 lea(rscratch2, dst); 5003 adr = Address(rscratch2); 5004 break; 5005 } 5006 ldr(rscratch1, adr); 5007 add(rscratch1, rscratch1, src); 5008 str(rscratch1, adr); 5009 } 5010 5011 void MacroAssembler::cmpptr(Register src1, Address src2) { 5012 uint64_t offset; 5013 adrp(rscratch1, src2, offset); 5014 ldr(rscratch1, Address(rscratch1, offset)); 5015 cmp(src1, rscratch1); 5016 } 5017 5018 void MacroAssembler::cmpoop(Register obj1, Register obj2) { 5019 cmp(obj1, obj2); 5020 } 5021 5022 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 5023 load_method_holder(rresult, rmethod); 5024 ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 5025 } 5026 5027 void MacroAssembler::load_method_holder(Register holder, Register method) { 5028 ldr(holder, Address(method, Method::const_offset())); // ConstMethod* 5029 ldr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 5030 ldr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 5031 } 5032 5033 // Loads the obj's Klass* into dst. 5034 // Preserves all registers (incl src, rscratch1 and rscratch2). 5035 // Input: 5036 // src - the oop we want to load the klass from. 5037 // dst - output narrow klass. 5038 void MacroAssembler::load_narrow_klass_compact(Register dst, Register src) { 5039 assert(UseCompactObjectHeaders, "expects UseCompactObjectHeaders"); 5040 ldr(dst, Address(src, oopDesc::mark_offset_in_bytes())); 5041 lsr(dst, dst, markWord::klass_shift); 5042 } 5043 5044 void MacroAssembler::load_klass(Register dst, Register src) { 5045 if (UseCompactObjectHeaders) { 5046 load_narrow_klass_compact(dst, src); 5047 decode_klass_not_null(dst); 5048 } else if (UseCompressedClassPointers) { 5049 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5050 decode_klass_not_null(dst); 5051 } else { 5052 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5053 } 5054 } 5055 5056 void MacroAssembler::restore_cpu_control_state_after_jni(Register tmp1, Register tmp2) { 5057 if (RestoreMXCSROnJNICalls) { 5058 Label OK; 5059 get_fpcr(tmp1); 5060 mov(tmp2, tmp1); 5061 // Set FPCR to the state we need. We do want Round to Nearest. We 5062 // don't want non-IEEE rounding modes or floating-point traps. 5063 bfi(tmp1, zr, 22, 4); // Clear DN, FZ, and Rmode 5064 bfi(tmp1, zr, 8, 5); // Clear exception-control bits (8-12) 5065 bfi(tmp1, zr, 0, 2); // Clear AH:FIZ 5066 eor(tmp2, tmp1, tmp2); 5067 cbz(tmp2, OK); // Only reset FPCR if it's wrong 5068 set_fpcr(tmp1); 5069 bind(OK); 5070 } 5071 } 5072 5073 // ((OopHandle)result).resolve(); 5074 void MacroAssembler::resolve_oop_handle(Register result, Register tmp1, Register tmp2) { 5075 // OopHandle::resolve is an indirection. 5076 access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp1, tmp2); 5077 } 5078 5079 // ((WeakHandle)result).resolve(); 5080 void MacroAssembler::resolve_weak_handle(Register result, Register tmp1, Register tmp2) { 5081 assert_different_registers(result, tmp1, tmp2); 5082 Label resolved; 5083 5084 // A null weak handle resolves to null. 5085 cbz(result, resolved); 5086 5087 // Only 64 bit platforms support GCs that require a tmp register 5088 // WeakHandle::resolve is an indirection like jweak. 5089 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 5090 result, Address(result), tmp1, tmp2); 5091 bind(resolved); 5092 } 5093 5094 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp1, Register tmp2) { 5095 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 5096 ldr(dst, Address(rmethod, Method::const_offset())); 5097 ldr(dst, Address(dst, ConstMethod::constants_offset())); 5098 ldr(dst, Address(dst, ConstantPool::pool_holder_offset())); 5099 ldr(dst, Address(dst, mirror_offset)); 5100 resolve_oop_handle(dst, tmp1, tmp2); 5101 } 5102 5103 void MacroAssembler::cmp_klass(Register obj, Register klass, Register tmp) { 5104 assert_different_registers(obj, klass, tmp); 5105 if (UseCompressedClassPointers) { 5106 if (UseCompactObjectHeaders) { 5107 load_narrow_klass_compact(tmp, obj); 5108 } else { 5109 ldrw(tmp, Address(obj, oopDesc::klass_offset_in_bytes())); 5110 } 5111 if (CompressedKlassPointers::base() == nullptr) { 5112 cmp(klass, tmp, LSL, CompressedKlassPointers::shift()); 5113 return; 5114 } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0 5115 && CompressedKlassPointers::shift() == 0) { 5116 // Only the bottom 32 bits matter 5117 cmpw(klass, tmp); 5118 return; 5119 } 5120 decode_klass_not_null(tmp); 5121 } else { 5122 ldr(tmp, Address(obj, oopDesc::klass_offset_in_bytes())); 5123 } 5124 cmp(klass, tmp); 5125 } 5126 5127 void MacroAssembler::cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2) { 5128 if (UseCompactObjectHeaders) { 5129 load_narrow_klass_compact(tmp1, obj1); 5130 load_narrow_klass_compact(tmp2, obj2); 5131 cmpw(tmp1, tmp2); 5132 } else if (UseCompressedClassPointers) { 5133 ldrw(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5134 ldrw(tmp2, Address(obj2, oopDesc::klass_offset_in_bytes())); 5135 cmpw(tmp1, tmp2); 5136 } else { 5137 ldr(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5138 ldr(tmp2, Address(obj2, oopDesc::klass_offset_in_bytes())); 5139 cmp(tmp1, tmp2); 5140 } 5141 } 5142 5143 void MacroAssembler::store_klass(Register dst, Register src) { 5144 // FIXME: Should this be a store release? concurrent gcs assumes 5145 // klass length is valid if klass field is not null. 5146 assert(!UseCompactObjectHeaders, "not with compact headers"); 5147 if (UseCompressedClassPointers) { 5148 encode_klass_not_null(src); 5149 strw(src, Address(dst, oopDesc::klass_offset_in_bytes())); 5150 } else { 5151 str(src, Address(dst, oopDesc::klass_offset_in_bytes())); 5152 } 5153 } 5154 5155 void MacroAssembler::store_klass_gap(Register dst, Register src) { 5156 assert(!UseCompactObjectHeaders, "not with compact headers"); 5157 if (UseCompressedClassPointers) { 5158 // Store to klass gap in destination 5159 strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes())); 5160 } 5161 } 5162 5163 // Algorithm must match CompressedOops::encode. 5164 void MacroAssembler::encode_heap_oop(Register d, Register s) { 5165 #ifdef ASSERT 5166 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 5167 #endif 5168 verify_oop_msg(s, "broken oop in encode_heap_oop"); 5169 if (CompressedOops::base() == nullptr) { 5170 if (CompressedOops::shift() != 0) { 5171 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5172 lsr(d, s, LogMinObjAlignmentInBytes); 5173 } else { 5174 mov(d, s); 5175 } 5176 } else { 5177 subs(d, s, rheapbase); 5178 csel(d, d, zr, Assembler::HS); 5179 lsr(d, d, LogMinObjAlignmentInBytes); 5180 5181 /* Old algorithm: is this any worse? 5182 Label nonnull; 5183 cbnz(r, nonnull); 5184 sub(r, r, rheapbase); 5185 bind(nonnull); 5186 lsr(r, r, LogMinObjAlignmentInBytes); 5187 */ 5188 } 5189 } 5190 5191 void MacroAssembler::encode_heap_oop_not_null(Register r) { 5192 #ifdef ASSERT 5193 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 5194 if (CheckCompressedOops) { 5195 Label ok; 5196 cbnz(r, ok); 5197 stop("null oop passed to encode_heap_oop_not_null"); 5198 bind(ok); 5199 } 5200 #endif 5201 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 5202 if (CompressedOops::base() != nullptr) { 5203 sub(r, r, rheapbase); 5204 } 5205 if (CompressedOops::shift() != 0) { 5206 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5207 lsr(r, r, LogMinObjAlignmentInBytes); 5208 } 5209 } 5210 5211 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 5212 #ifdef ASSERT 5213 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 5214 if (CheckCompressedOops) { 5215 Label ok; 5216 cbnz(src, ok); 5217 stop("null oop passed to encode_heap_oop_not_null2"); 5218 bind(ok); 5219 } 5220 #endif 5221 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 5222 5223 Register data = src; 5224 if (CompressedOops::base() != nullptr) { 5225 sub(dst, src, rheapbase); 5226 data = dst; 5227 } 5228 if (CompressedOops::shift() != 0) { 5229 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5230 lsr(dst, data, LogMinObjAlignmentInBytes); 5231 data = dst; 5232 } 5233 if (data == src) 5234 mov(dst, src); 5235 } 5236 5237 void MacroAssembler::decode_heap_oop(Register d, Register s) { 5238 #ifdef ASSERT 5239 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 5240 #endif 5241 if (CompressedOops::base() == nullptr) { 5242 if (CompressedOops::shift() != 0) { 5243 lsl(d, s, CompressedOops::shift()); 5244 } else if (d != s) { 5245 mov(d, s); 5246 } 5247 } else { 5248 Label done; 5249 if (d != s) 5250 mov(d, s); 5251 cbz(s, done); 5252 add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes); 5253 bind(done); 5254 } 5255 verify_oop_msg(d, "broken oop in decode_heap_oop"); 5256 } 5257 5258 void MacroAssembler::decode_heap_oop_not_null(Register r) { 5259 assert (UseCompressedOops, "should only be used for compressed headers"); 5260 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5261 // Cannot assert, unverified entry point counts instructions (see .ad file) 5262 // vtableStubs also counts instructions in pd_code_size_limit. 5263 // Also do not verify_oop as this is called by verify_oop. 5264 if (CompressedOops::shift() != 0) { 5265 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5266 if (CompressedOops::base() != nullptr) { 5267 add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5268 } else { 5269 add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5270 } 5271 } else { 5272 assert (CompressedOops::base() == nullptr, "sanity"); 5273 } 5274 } 5275 5276 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 5277 assert (UseCompressedOops, "should only be used for compressed headers"); 5278 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5279 // Cannot assert, unverified entry point counts instructions (see .ad file) 5280 // vtableStubs also counts instructions in pd_code_size_limit. 5281 // Also do not verify_oop as this is called by verify_oop. 5282 if (CompressedOops::shift() != 0) { 5283 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5284 if (CompressedOops::base() != nullptr) { 5285 add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5286 } else { 5287 add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5288 } 5289 } else { 5290 assert (CompressedOops::base() == nullptr, "sanity"); 5291 if (dst != src) { 5292 mov(dst, src); 5293 } 5294 } 5295 } 5296 5297 MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone); 5298 5299 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() { 5300 assert(Metaspace::initialized(), "metaspace not initialized yet"); 5301 assert(_klass_decode_mode != KlassDecodeNone, "should be initialized"); 5302 return _klass_decode_mode; 5303 } 5304 5305 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode(address base, int shift, const size_t range) { 5306 assert(UseCompressedClassPointers, "not using compressed class pointers"); 5307 5308 // KlassDecodeMode shouldn't be set already. 5309 assert(_klass_decode_mode == KlassDecodeNone, "set once"); 5310 5311 if (base == nullptr) { 5312 return KlassDecodeZero; 5313 } 5314 5315 if (operand_valid_for_logical_immediate( 5316 /*is32*/false, (uint64_t)base)) { 5317 const uint64_t range_mask = right_n_bits(log2i_ceil(range)); 5318 if (((uint64_t)base & range_mask) == 0) { 5319 return KlassDecodeXor; 5320 } 5321 } 5322 5323 const uint64_t shifted_base = 5324 (uint64_t)base >> shift; 5325 if ((shifted_base & 0xffff0000ffffffff) == 0) { 5326 return KlassDecodeMovk; 5327 } 5328 5329 // No valid encoding. 5330 return KlassDecodeNone; 5331 } 5332 5333 // Check if one of the above decoding modes will work for given base, shift and range. 5334 bool MacroAssembler::check_klass_decode_mode(address base, int shift, const size_t range) { 5335 return klass_decode_mode(base, shift, range) != KlassDecodeNone; 5336 } 5337 5338 bool MacroAssembler::set_klass_decode_mode(address base, int shift, const size_t range) { 5339 _klass_decode_mode = klass_decode_mode(base, shift, range); 5340 return _klass_decode_mode != KlassDecodeNone; 5341 } 5342 5343 void MacroAssembler::encode_klass_not_null(Register dst, Register src) { 5344 switch (klass_decode_mode()) { 5345 case KlassDecodeZero: 5346 if (CompressedKlassPointers::shift() != 0) { 5347 lsr(dst, src, CompressedKlassPointers::shift()); 5348 } else { 5349 if (dst != src) mov(dst, src); 5350 } 5351 break; 5352 5353 case KlassDecodeXor: 5354 if (CompressedKlassPointers::shift() != 0) { 5355 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5356 lsr(dst, dst, CompressedKlassPointers::shift()); 5357 } else { 5358 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5359 } 5360 break; 5361 5362 case KlassDecodeMovk: 5363 if (CompressedKlassPointers::shift() != 0) { 5364 ubfx(dst, src, CompressedKlassPointers::shift(), 32); 5365 } else { 5366 movw(dst, src); 5367 } 5368 break; 5369 5370 case KlassDecodeNone: 5371 ShouldNotReachHere(); 5372 break; 5373 } 5374 } 5375 5376 void MacroAssembler::encode_klass_not_null(Register r) { 5377 encode_klass_not_null(r, r); 5378 } 5379 5380 void MacroAssembler::decode_klass_not_null(Register dst, Register src) { 5381 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5382 5383 switch (klass_decode_mode()) { 5384 case KlassDecodeZero: 5385 if (CompressedKlassPointers::shift() != 0) { 5386 lsl(dst, src, CompressedKlassPointers::shift()); 5387 } else { 5388 if (dst != src) mov(dst, src); 5389 } 5390 break; 5391 5392 case KlassDecodeXor: 5393 if (CompressedKlassPointers::shift() != 0) { 5394 lsl(dst, src, CompressedKlassPointers::shift()); 5395 eor(dst, dst, (uint64_t)CompressedKlassPointers::base()); 5396 } else { 5397 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5398 } 5399 break; 5400 5401 case KlassDecodeMovk: { 5402 const uint64_t shifted_base = 5403 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 5404 5405 if (dst != src) movw(dst, src); 5406 movk(dst, shifted_base >> 32, 32); 5407 5408 if (CompressedKlassPointers::shift() != 0) { 5409 lsl(dst, dst, CompressedKlassPointers::shift()); 5410 } 5411 5412 break; 5413 } 5414 5415 case KlassDecodeNone: 5416 ShouldNotReachHere(); 5417 break; 5418 } 5419 } 5420 5421 void MacroAssembler::decode_klass_not_null(Register r) { 5422 decode_klass_not_null(r, r); 5423 } 5424 5425 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 5426 #ifdef ASSERT 5427 { 5428 ThreadInVMfromUnknown tiv; 5429 assert (UseCompressedOops, "should only be used for compressed oops"); 5430 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5431 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5432 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5433 } 5434 #endif 5435 int oop_index = oop_recorder()->find_index(obj); 5436 InstructionMark im(this); 5437 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5438 code_section()->relocate(inst_mark(), rspec); 5439 movz(dst, 0xDEAD, 16); 5440 movk(dst, 0xBEEF); 5441 } 5442 5443 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 5444 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5445 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5446 int index = oop_recorder()->find_index(k); 5447 assert(! Universe::heap()->is_in(k), "should not be an oop"); 5448 5449 InstructionMark im(this); 5450 RelocationHolder rspec = metadata_Relocation::spec(index); 5451 code_section()->relocate(inst_mark(), rspec); 5452 narrowKlass nk = CompressedKlassPointers::encode(k); 5453 movz(dst, (nk >> 16), 16); 5454 movk(dst, nk & 0xffff); 5455 } 5456 5457 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, 5458 Register dst, Address src, 5459 Register tmp1, Register tmp2) { 5460 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5461 decorators = AccessInternal::decorator_fixup(decorators, type); 5462 bool as_raw = (decorators & AS_RAW) != 0; 5463 if (as_raw) { 5464 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2); 5465 } else { 5466 bs->load_at(this, decorators, type, dst, src, tmp1, tmp2); 5467 } 5468 } 5469 5470 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, 5471 Address dst, Register val, 5472 Register tmp1, Register tmp2, Register tmp3) { 5473 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5474 decorators = AccessInternal::decorator_fixup(decorators, type); 5475 bool as_raw = (decorators & AS_RAW) != 0; 5476 if (as_raw) { 5477 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5478 } else { 5479 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5480 } 5481 } 5482 5483 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 5484 Register tmp2, DecoratorSet decorators) { 5485 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2); 5486 } 5487 5488 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 5489 Register tmp2, DecoratorSet decorators) { 5490 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2); 5491 } 5492 5493 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 5494 Register tmp2, Register tmp3, DecoratorSet decorators) { 5495 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 5496 } 5497 5498 // Used for storing nulls. 5499 void MacroAssembler::store_heap_oop_null(Address dst) { 5500 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 5501 } 5502 5503 Address MacroAssembler::allocate_metadata_address(Metadata* obj) { 5504 assert(oop_recorder() != nullptr, "this assembler needs a Recorder"); 5505 int index = oop_recorder()->allocate_metadata_index(obj); 5506 RelocationHolder rspec = metadata_Relocation::spec(index); 5507 return Address((address)obj, rspec); 5508 } 5509 5510 // Move an oop into a register. 5511 void MacroAssembler::movoop(Register dst, jobject obj) { 5512 int oop_index; 5513 if (obj == nullptr) { 5514 oop_index = oop_recorder()->allocate_oop_index(obj); 5515 } else { 5516 #ifdef ASSERT 5517 { 5518 ThreadInVMfromUnknown tiv; 5519 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5520 } 5521 #endif 5522 oop_index = oop_recorder()->find_index(obj); 5523 } 5524 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5525 5526 if (BarrierSet::barrier_set()->barrier_set_assembler()->supports_instruction_patching()) { 5527 mov(dst, Address((address)obj, rspec)); 5528 } else { 5529 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address 5530 ldr(dst, Address(dummy, rspec)); 5531 } 5532 } 5533 5534 // Move a metadata address into a register. 5535 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 5536 int oop_index; 5537 if (obj == nullptr) { 5538 oop_index = oop_recorder()->allocate_metadata_index(obj); 5539 } else { 5540 oop_index = oop_recorder()->find_index(obj); 5541 } 5542 RelocationHolder rspec = metadata_Relocation::spec(oop_index); 5543 mov(dst, Address((address)obj, rspec)); 5544 } 5545 5546 Address MacroAssembler::constant_oop_address(jobject obj) { 5547 #ifdef ASSERT 5548 { 5549 ThreadInVMfromUnknown tiv; 5550 assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5551 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop"); 5552 } 5553 #endif 5554 int oop_index = oop_recorder()->find_index(obj); 5555 return Address((address)obj, oop_Relocation::spec(oop_index)); 5556 } 5557 5558 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 5559 void MacroAssembler::tlab_allocate(Register obj, 5560 Register var_size_in_bytes, 5561 int con_size_in_bytes, 5562 Register t1, 5563 Register t2, 5564 Label& slow_case) { 5565 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5566 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 5567 } 5568 5569 void MacroAssembler::inc_held_monitor_count(Register tmp) { 5570 Address dst(rthread, JavaThread::held_monitor_count_offset()); 5571 #ifdef ASSERT 5572 ldr(tmp, dst); 5573 increment(tmp); 5574 str(tmp, dst); 5575 Label ok; 5576 tbz(tmp, 63, ok); 5577 STOP("assert(held monitor count underflow)"); 5578 should_not_reach_here(); 5579 bind(ok); 5580 #else 5581 increment(dst); 5582 #endif 5583 } 5584 5585 void MacroAssembler::dec_held_monitor_count(Register tmp) { 5586 Address dst(rthread, JavaThread::held_monitor_count_offset()); 5587 #ifdef ASSERT 5588 ldr(tmp, dst); 5589 decrement(tmp); 5590 str(tmp, dst); 5591 Label ok; 5592 tbz(tmp, 63, ok); 5593 STOP("assert(held monitor count underflow)"); 5594 should_not_reach_here(); 5595 bind(ok); 5596 #else 5597 decrement(dst); 5598 #endif 5599 } 5600 5601 void MacroAssembler::verify_tlab() { 5602 #ifdef ASSERT 5603 if (UseTLAB && VerifyOops) { 5604 Label next, ok; 5605 5606 stp(rscratch2, rscratch1, Address(pre(sp, -16))); 5607 5608 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5609 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 5610 cmp(rscratch2, rscratch1); 5611 br(Assembler::HS, next); 5612 STOP("assert(top >= start)"); 5613 should_not_reach_here(); 5614 5615 bind(next); 5616 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 5617 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5618 cmp(rscratch2, rscratch1); 5619 br(Assembler::HS, ok); 5620 STOP("assert(top <= end)"); 5621 should_not_reach_here(); 5622 5623 bind(ok); 5624 ldp(rscratch2, rscratch1, Address(post(sp, 16))); 5625 } 5626 #endif 5627 } 5628 5629 // Writes to stack successive pages until offset reached to check for 5630 // stack overflow + shadow pages. This clobbers tmp. 5631 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 5632 assert_different_registers(tmp, size, rscratch1); 5633 mov(tmp, sp); 5634 // Bang stack for total size given plus shadow page size. 5635 // Bang one page at a time because large size can bang beyond yellow and 5636 // red zones. 5637 Label loop; 5638 mov(rscratch1, (int)os::vm_page_size()); 5639 bind(loop); 5640 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5641 subsw(size, size, rscratch1); 5642 str(size, Address(tmp)); 5643 br(Assembler::GT, loop); 5644 5645 // Bang down shadow pages too. 5646 // At this point, (tmp-0) is the last address touched, so don't 5647 // touch it again. (It was touched as (tmp-pagesize) but then tmp 5648 // was post-decremented.) Skip this address by starting at i=1, and 5649 // touch a few more pages below. N.B. It is important to touch all 5650 // the way down to and including i=StackShadowPages. 5651 for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()) - 1; i++) { 5652 // this could be any sized move but this is can be a debugging crumb 5653 // so the bigger the better. 5654 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5655 str(size, Address(tmp)); 5656 } 5657 } 5658 5659 // Move the address of the polling page into dest. 5660 void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) { 5661 ldr(dest, Address(rthread, JavaThread::polling_page_offset())); 5662 } 5663 5664 // Read the polling page. The address of the polling page must 5665 // already be in r. 5666 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) { 5667 address mark; 5668 { 5669 InstructionMark im(this); 5670 code_section()->relocate(inst_mark(), rtype); 5671 ldrw(zr, Address(r, 0)); 5672 mark = inst_mark(); 5673 } 5674 verify_cross_modify_fence_not_required(); 5675 return mark; 5676 } 5677 5678 void MacroAssembler::adrp(Register reg1, const Address &dest, uint64_t &byte_offset) { 5679 relocInfo::relocType rtype = dest.rspec().reloc()->type(); 5680 uint64_t low_page = (uint64_t)CodeCache::low_bound() >> 12; 5681 uint64_t high_page = (uint64_t)(CodeCache::high_bound()-1) >> 12; 5682 uint64_t dest_page = (uint64_t)dest.target() >> 12; 5683 int64_t offset_low = dest_page - low_page; 5684 int64_t offset_high = dest_page - high_page; 5685 5686 assert(is_valid_AArch64_address(dest.target()), "bad address"); 5687 assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address"); 5688 5689 InstructionMark im(this); 5690 code_section()->relocate(inst_mark(), dest.rspec()); 5691 // 8143067: Ensure that the adrp can reach the dest from anywhere within 5692 // the code cache so that if it is relocated we know it will still reach 5693 if (offset_high >= -(1<<20) && offset_low < (1<<20)) { 5694 _adrp(reg1, dest.target()); 5695 } else { 5696 uint64_t target = (uint64_t)dest.target(); 5697 uint64_t adrp_target 5698 = (target & 0xffffffffULL) | ((uint64_t)pc() & 0xffff00000000ULL); 5699 5700 _adrp(reg1, (address)adrp_target); 5701 movk(reg1, target >> 32, 32); 5702 } 5703 byte_offset = (uint64_t)dest.target() & 0xfff; 5704 } 5705 5706 void MacroAssembler::load_byte_map_base(Register reg) { 5707 CardTable::CardValue* byte_map_base = 5708 ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base(); 5709 5710 // Strictly speaking the byte_map_base isn't an address at all, and it might 5711 // even be negative. It is thus materialised as a constant. 5712 mov(reg, (uint64_t)byte_map_base); 5713 } 5714 5715 void MacroAssembler::build_frame(int framesize) { 5716 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5717 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5718 protect_return_address(); 5719 if (framesize < ((1 << 9) + 2 * wordSize)) { 5720 sub(sp, sp, framesize); 5721 stp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5722 if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize); 5723 } else { 5724 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 5725 if (PreserveFramePointer) mov(rfp, sp); 5726 if (framesize < ((1 << 12) + 2 * wordSize)) 5727 sub(sp, sp, framesize - 2 * wordSize); 5728 else { 5729 mov(rscratch1, framesize - 2 * wordSize); 5730 sub(sp, sp, rscratch1); 5731 } 5732 } 5733 verify_cross_modify_fence_not_required(); 5734 } 5735 5736 void MacroAssembler::remove_frame(int framesize) { 5737 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5738 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5739 if (framesize < ((1 << 9) + 2 * wordSize)) { 5740 ldp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5741 add(sp, sp, framesize); 5742 } else { 5743 if (framesize < ((1 << 12) + 2 * wordSize)) 5744 add(sp, sp, framesize - 2 * wordSize); 5745 else { 5746 mov(rscratch1, framesize - 2 * wordSize); 5747 add(sp, sp, rscratch1); 5748 } 5749 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 5750 } 5751 authenticate_return_address(); 5752 } 5753 5754 5755 // This method counts leading positive bytes (highest bit not set) in provided byte array 5756 address MacroAssembler::count_positives(Register ary1, Register len, Register result) { 5757 // Simple and most common case of aligned small array which is not at the 5758 // end of memory page is placed here. All other cases are in stub. 5759 Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE; 5760 const uint64_t UPPER_BIT_MASK=0x8080808080808080; 5761 assert_different_registers(ary1, len, result); 5762 5763 mov(result, len); 5764 cmpw(len, 0); 5765 br(LE, DONE); 5766 cmpw(len, 4 * wordSize); 5767 br(GE, STUB_LONG); // size > 32 then go to stub 5768 5769 int shift = 64 - exact_log2(os::vm_page_size()); 5770 lsl(rscratch1, ary1, shift); 5771 mov(rscratch2, (size_t)(4 * wordSize) << shift); 5772 adds(rscratch2, rscratch1, rscratch2); // At end of page? 5773 br(CS, STUB); // at the end of page then go to stub 5774 subs(len, len, wordSize); 5775 br(LT, END); 5776 5777 BIND(LOOP); 5778 ldr(rscratch1, Address(post(ary1, wordSize))); 5779 tst(rscratch1, UPPER_BIT_MASK); 5780 br(NE, SET_RESULT); 5781 subs(len, len, wordSize); 5782 br(GE, LOOP); 5783 cmpw(len, -wordSize); 5784 br(EQ, DONE); 5785 5786 BIND(END); 5787 ldr(rscratch1, Address(ary1)); 5788 sub(rscratch2, zr, len, LSL, 3); // LSL 3 is to get bits from bytes 5789 lslv(rscratch1, rscratch1, rscratch2); 5790 tst(rscratch1, UPPER_BIT_MASK); 5791 br(NE, SET_RESULT); 5792 b(DONE); 5793 5794 BIND(STUB); 5795 RuntimeAddress count_pos = RuntimeAddress(StubRoutines::aarch64::count_positives()); 5796 assert(count_pos.target() != nullptr, "count_positives stub has not been generated"); 5797 address tpc1 = trampoline_call(count_pos); 5798 if (tpc1 == nullptr) { 5799 DEBUG_ONLY(reset_labels(STUB_LONG, SET_RESULT, DONE)); 5800 postcond(pc() == badAddress); 5801 return nullptr; 5802 } 5803 b(DONE); 5804 5805 BIND(STUB_LONG); 5806 RuntimeAddress count_pos_long = RuntimeAddress(StubRoutines::aarch64::count_positives_long()); 5807 assert(count_pos_long.target() != nullptr, "count_positives_long stub has not been generated"); 5808 address tpc2 = trampoline_call(count_pos_long); 5809 if (tpc2 == nullptr) { 5810 DEBUG_ONLY(reset_labels(SET_RESULT, DONE)); 5811 postcond(pc() == badAddress); 5812 return nullptr; 5813 } 5814 b(DONE); 5815 5816 BIND(SET_RESULT); 5817 5818 add(len, len, wordSize); 5819 sub(result, result, len); 5820 5821 BIND(DONE); 5822 postcond(pc() != badAddress); 5823 return pc(); 5824 } 5825 5826 // Clobbers: rscratch1, rscratch2, rflags 5827 // May also clobber v0-v7 when (!UseSimpleArrayEquals && UseSIMDForArrayEquals) 5828 address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3, 5829 Register tmp4, Register tmp5, Register result, 5830 Register cnt1, int elem_size) { 5831 Label DONE, SAME; 5832 Register tmp1 = rscratch1; 5833 Register tmp2 = rscratch2; 5834 int elem_per_word = wordSize/elem_size; 5835 int log_elem_size = exact_log2(elem_size); 5836 int klass_offset = arrayOopDesc::klass_offset_in_bytes(); 5837 int length_offset = arrayOopDesc::length_offset_in_bytes(); 5838 int base_offset 5839 = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE); 5840 // When the length offset is not aligned to 8 bytes, 5841 // then we align it down. This is valid because the new 5842 // offset will always be the klass which is the same 5843 // for type arrays. 5844 int start_offset = align_down(length_offset, BytesPerWord); 5845 int extra_length = base_offset - start_offset; 5846 assert(start_offset == length_offset || start_offset == klass_offset, 5847 "start offset must be 8-byte-aligned or be the klass offset"); 5848 assert(base_offset != start_offset, "must include the length field"); 5849 extra_length = extra_length / elem_size; // We count in elements, not bytes. 5850 int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16); 5851 5852 assert(elem_size == 1 || elem_size == 2, "must be char or byte"); 5853 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 5854 5855 #ifndef PRODUCT 5856 { 5857 const char kind = (elem_size == 2) ? 'U' : 'L'; 5858 char comment[64]; 5859 snprintf(comment, sizeof comment, "array_equals%c{", kind); 5860 BLOCK_COMMENT(comment); 5861 } 5862 #endif 5863 5864 // if (a1 == a2) 5865 // return true; 5866 cmpoop(a1, a2); // May have read barriers for a1 and a2. 5867 br(EQ, SAME); 5868 5869 if (UseSimpleArrayEquals) { 5870 Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL; 5871 // if (a1 == nullptr || a2 == nullptr) 5872 // return false; 5873 // a1 & a2 == 0 means (some-pointer is null) or 5874 // (very-rare-or-even-probably-impossible-pointer-values) 5875 // so, we can save one branch in most cases 5876 tst(a1, a2); 5877 mov(result, false); 5878 br(EQ, A_MIGHT_BE_NULL); 5879 // if (a1.length != a2.length) 5880 // return false; 5881 bind(A_IS_NOT_NULL); 5882 ldrw(cnt1, Address(a1, length_offset)); 5883 // Increase loop counter by diff between base- and actual start-offset. 5884 addw(cnt1, cnt1, extra_length); 5885 lea(a1, Address(a1, start_offset)); 5886 lea(a2, Address(a2, start_offset)); 5887 // Check for short strings, i.e. smaller than wordSize. 5888 subs(cnt1, cnt1, elem_per_word); 5889 br(Assembler::LT, SHORT); 5890 // Main 8 byte comparison loop. 5891 bind(NEXT_WORD); { 5892 ldr(tmp1, Address(post(a1, wordSize))); 5893 ldr(tmp2, Address(post(a2, wordSize))); 5894 subs(cnt1, cnt1, elem_per_word); 5895 eor(tmp5, tmp1, tmp2); 5896 cbnz(tmp5, DONE); 5897 } br(GT, NEXT_WORD); 5898 // Last longword. In the case where length == 4 we compare the 5899 // same longword twice, but that's still faster than another 5900 // conditional branch. 5901 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 5902 // length == 4. 5903 if (log_elem_size > 0) 5904 lsl(cnt1, cnt1, log_elem_size); 5905 ldr(tmp3, Address(a1, cnt1)); 5906 ldr(tmp4, Address(a2, cnt1)); 5907 eor(tmp5, tmp3, tmp4); 5908 cbnz(tmp5, DONE); 5909 b(SAME); 5910 bind(A_MIGHT_BE_NULL); 5911 // in case both a1 and a2 are not-null, proceed with loads 5912 cbz(a1, DONE); 5913 cbz(a2, DONE); 5914 b(A_IS_NOT_NULL); 5915 bind(SHORT); 5916 5917 tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left. 5918 { 5919 ldrw(tmp1, Address(post(a1, 4))); 5920 ldrw(tmp2, Address(post(a2, 4))); 5921 eorw(tmp5, tmp1, tmp2); 5922 cbnzw(tmp5, DONE); 5923 } 5924 bind(TAIL03); 5925 tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left. 5926 { 5927 ldrh(tmp3, Address(post(a1, 2))); 5928 ldrh(tmp4, Address(post(a2, 2))); 5929 eorw(tmp5, tmp3, tmp4); 5930 cbnzw(tmp5, DONE); 5931 } 5932 bind(TAIL01); 5933 if (elem_size == 1) { // Only needed when comparing byte arrays. 5934 tbz(cnt1, 0, SAME); // 0-1 bytes left. 5935 { 5936 ldrb(tmp1, a1); 5937 ldrb(tmp2, a2); 5938 eorw(tmp5, tmp1, tmp2); 5939 cbnzw(tmp5, DONE); 5940 } 5941 } 5942 } else { 5943 Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB, 5944 CSET_EQ, LAST_CHECK; 5945 mov(result, false); 5946 cbz(a1, DONE); 5947 ldrw(cnt1, Address(a1, length_offset)); 5948 cbz(a2, DONE); 5949 // Increase loop counter by diff between base- and actual start-offset. 5950 addw(cnt1, cnt1, extra_length); 5951 5952 // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's 5953 // faster to perform another branch before comparing a1 and a2 5954 cmp(cnt1, (u1)elem_per_word); 5955 br(LE, SHORT); // short or same 5956 ldr(tmp3, Address(pre(a1, start_offset))); 5957 subs(zr, cnt1, stubBytesThreshold); 5958 br(GE, STUB); 5959 ldr(tmp4, Address(pre(a2, start_offset))); 5960 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 5961 5962 // Main 16 byte comparison loop with 2 exits 5963 bind(NEXT_DWORD); { 5964 ldr(tmp1, Address(pre(a1, wordSize))); 5965 ldr(tmp2, Address(pre(a2, wordSize))); 5966 subs(cnt1, cnt1, 2 * elem_per_word); 5967 br(LE, TAIL); 5968 eor(tmp4, tmp3, tmp4); 5969 cbnz(tmp4, DONE); 5970 ldr(tmp3, Address(pre(a1, wordSize))); 5971 ldr(tmp4, Address(pre(a2, wordSize))); 5972 cmp(cnt1, (u1)elem_per_word); 5973 br(LE, TAIL2); 5974 cmp(tmp1, tmp2); 5975 } br(EQ, NEXT_DWORD); 5976 b(DONE); 5977 5978 bind(TAIL); 5979 eor(tmp4, tmp3, tmp4); 5980 eor(tmp2, tmp1, tmp2); 5981 lslv(tmp2, tmp2, tmp5); 5982 orr(tmp5, tmp4, tmp2); 5983 cmp(tmp5, zr); 5984 b(CSET_EQ); 5985 5986 bind(TAIL2); 5987 eor(tmp2, tmp1, tmp2); 5988 cbnz(tmp2, DONE); 5989 b(LAST_CHECK); 5990 5991 bind(STUB); 5992 ldr(tmp4, Address(pre(a2, start_offset))); 5993 if (elem_size == 2) { // convert to byte counter 5994 lsl(cnt1, cnt1, 1); 5995 } 5996 eor(tmp5, tmp3, tmp4); 5997 cbnz(tmp5, DONE); 5998 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals()); 5999 assert(stub.target() != nullptr, "array_equals_long stub has not been generated"); 6000 address tpc = trampoline_call(stub); 6001 if (tpc == nullptr) { 6002 DEBUG_ONLY(reset_labels(SHORT, LAST_CHECK, CSET_EQ, SAME, DONE)); 6003 postcond(pc() == badAddress); 6004 return nullptr; 6005 } 6006 b(DONE); 6007 6008 // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2) 6009 // so, if a2 == null => return false(0), else return true, so we can return a2 6010 mov(result, a2); 6011 b(DONE); 6012 bind(SHORT); 6013 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 6014 ldr(tmp3, Address(a1, start_offset)); 6015 ldr(tmp4, Address(a2, start_offset)); 6016 bind(LAST_CHECK); 6017 eor(tmp4, tmp3, tmp4); 6018 lslv(tmp5, tmp4, tmp5); 6019 cmp(tmp5, zr); 6020 bind(CSET_EQ); 6021 cset(result, EQ); 6022 b(DONE); 6023 } 6024 6025 bind(SAME); 6026 mov(result, true); 6027 // That's it. 6028 bind(DONE); 6029 6030 BLOCK_COMMENT("} array_equals"); 6031 postcond(pc() != badAddress); 6032 return pc(); 6033 } 6034 6035 // Compare Strings 6036 6037 // For Strings we're passed the address of the first characters in a1 6038 // and a2 and the length in cnt1. 6039 // There are two implementations. For arrays >= 8 bytes, all 6040 // comparisons (including the final one, which may overlap) are 6041 // performed 8 bytes at a time. For strings < 8 bytes, we compare a 6042 // halfword, then a short, and then a byte. 6043 6044 void MacroAssembler::string_equals(Register a1, Register a2, 6045 Register result, Register cnt1) 6046 { 6047 Label SAME, DONE, SHORT, NEXT_WORD; 6048 Register tmp1 = rscratch1; 6049 Register tmp2 = rscratch2; 6050 Register cnt2 = tmp2; // cnt2 only used in array length compare 6051 6052 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 6053 6054 #ifndef PRODUCT 6055 { 6056 char comment[64]; 6057 snprintf(comment, sizeof comment, "{string_equalsL"); 6058 BLOCK_COMMENT(comment); 6059 } 6060 #endif 6061 6062 mov(result, false); 6063 6064 // Check for short strings, i.e. smaller than wordSize. 6065 subs(cnt1, cnt1, wordSize); 6066 br(Assembler::LT, SHORT); 6067 // Main 8 byte comparison loop. 6068 bind(NEXT_WORD); { 6069 ldr(tmp1, Address(post(a1, wordSize))); 6070 ldr(tmp2, Address(post(a2, wordSize))); 6071 subs(cnt1, cnt1, wordSize); 6072 eor(tmp1, tmp1, tmp2); 6073 cbnz(tmp1, DONE); 6074 } br(GT, NEXT_WORD); 6075 // Last longword. In the case where length == 4 we compare the 6076 // same longword twice, but that's still faster than another 6077 // conditional branch. 6078 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 6079 // length == 4. 6080 ldr(tmp1, Address(a1, cnt1)); 6081 ldr(tmp2, Address(a2, cnt1)); 6082 eor(tmp2, tmp1, tmp2); 6083 cbnz(tmp2, DONE); 6084 b(SAME); 6085 6086 bind(SHORT); 6087 Label TAIL03, TAIL01; 6088 6089 tbz(cnt1, 2, TAIL03); // 0-7 bytes left. 6090 { 6091 ldrw(tmp1, Address(post(a1, 4))); 6092 ldrw(tmp2, Address(post(a2, 4))); 6093 eorw(tmp1, tmp1, tmp2); 6094 cbnzw(tmp1, DONE); 6095 } 6096 bind(TAIL03); 6097 tbz(cnt1, 1, TAIL01); // 0-3 bytes left. 6098 { 6099 ldrh(tmp1, Address(post(a1, 2))); 6100 ldrh(tmp2, Address(post(a2, 2))); 6101 eorw(tmp1, tmp1, tmp2); 6102 cbnzw(tmp1, DONE); 6103 } 6104 bind(TAIL01); 6105 tbz(cnt1, 0, SAME); // 0-1 bytes left. 6106 { 6107 ldrb(tmp1, a1); 6108 ldrb(tmp2, a2); 6109 eorw(tmp1, tmp1, tmp2); 6110 cbnzw(tmp1, DONE); 6111 } 6112 // Arrays are equal. 6113 bind(SAME); 6114 mov(result, true); 6115 6116 // That's it. 6117 bind(DONE); 6118 BLOCK_COMMENT("} string_equals"); 6119 } 6120 6121 6122 // The size of the blocks erased by the zero_blocks stub. We must 6123 // handle anything smaller than this ourselves in zero_words(). 6124 const int MacroAssembler::zero_words_block_size = 8; 6125 6126 // zero_words() is used by C2 ClearArray patterns and by 6127 // C1_MacroAssembler. It is as small as possible, handling small word 6128 // counts locally and delegating anything larger to the zero_blocks 6129 // stub. It is expanded many times in compiled code, so it is 6130 // important to keep it short. 6131 6132 // ptr: Address of a buffer to be zeroed. 6133 // cnt: Count in HeapWords. 6134 // 6135 // ptr, cnt, rscratch1, and rscratch2 are clobbered. 6136 address MacroAssembler::zero_words(Register ptr, Register cnt) 6137 { 6138 assert(is_power_of_2(zero_words_block_size), "adjust this"); 6139 6140 BLOCK_COMMENT("zero_words {"); 6141 assert(ptr == r10 && cnt == r11, "mismatch in register usage"); 6142 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 6143 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 6144 6145 subs(rscratch1, cnt, zero_words_block_size); 6146 Label around; 6147 br(LO, around); 6148 { 6149 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 6150 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 6151 // Make sure this is a C2 compilation. C1 allocates space only for 6152 // trampoline stubs generated by Call LIR ops, and in any case it 6153 // makes sense for a C1 compilation task to proceed as quickly as 6154 // possible. 6155 CompileTask* task; 6156 if (StubRoutines::aarch64::complete() 6157 && Thread::current()->is_Compiler_thread() 6158 && (task = ciEnv::current()->task()) 6159 && is_c2_compile(task->comp_level())) { 6160 address tpc = trampoline_call(zero_blocks); 6161 if (tpc == nullptr) { 6162 DEBUG_ONLY(reset_labels(around)); 6163 return nullptr; 6164 } 6165 } else { 6166 far_call(zero_blocks); 6167 } 6168 } 6169 bind(around); 6170 6171 // We have a few words left to do. zero_blocks has adjusted r10 and r11 6172 // for us. 6173 for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) { 6174 Label l; 6175 tbz(cnt, exact_log2(i), l); 6176 for (int j = 0; j < i; j += 2) { 6177 stp(zr, zr, post(ptr, 2 * BytesPerWord)); 6178 } 6179 bind(l); 6180 } 6181 { 6182 Label l; 6183 tbz(cnt, 0, l); 6184 str(zr, Address(ptr)); 6185 bind(l); 6186 } 6187 6188 BLOCK_COMMENT("} zero_words"); 6189 return pc(); 6190 } 6191 6192 // base: Address of a buffer to be zeroed, 8 bytes aligned. 6193 // cnt: Immediate count in HeapWords. 6194 // 6195 // r10, r11, rscratch1, and rscratch2 are clobbered. 6196 address MacroAssembler::zero_words(Register base, uint64_t cnt) 6197 { 6198 assert(wordSize <= BlockZeroingLowLimit, 6199 "increase BlockZeroingLowLimit"); 6200 address result = nullptr; 6201 if (cnt <= (uint64_t)BlockZeroingLowLimit / BytesPerWord) { 6202 #ifndef PRODUCT 6203 { 6204 char buf[64]; 6205 snprintf(buf, sizeof buf, "zero_words (count = %" PRIu64 ") {", cnt); 6206 BLOCK_COMMENT(buf); 6207 } 6208 #endif 6209 if (cnt >= 16) { 6210 uint64_t loops = cnt/16; 6211 if (loops > 1) { 6212 mov(rscratch2, loops - 1); 6213 } 6214 { 6215 Label loop; 6216 bind(loop); 6217 for (int i = 0; i < 16; i += 2) { 6218 stp(zr, zr, Address(base, i * BytesPerWord)); 6219 } 6220 add(base, base, 16 * BytesPerWord); 6221 if (loops > 1) { 6222 subs(rscratch2, rscratch2, 1); 6223 br(GE, loop); 6224 } 6225 } 6226 } 6227 cnt %= 16; 6228 int i = cnt & 1; // store any odd word to start 6229 if (i) str(zr, Address(base)); 6230 for (; i < (int)cnt; i += 2) { 6231 stp(zr, zr, Address(base, i * wordSize)); 6232 } 6233 BLOCK_COMMENT("} zero_words"); 6234 result = pc(); 6235 } else { 6236 mov(r10, base); mov(r11, cnt); 6237 result = zero_words(r10, r11); 6238 } 6239 return result; 6240 } 6241 6242 // Zero blocks of memory by using DC ZVA. 6243 // 6244 // Aligns the base address first sufficiently for DC ZVA, then uses 6245 // DC ZVA repeatedly for every full block. cnt is the size to be 6246 // zeroed in HeapWords. Returns the count of words left to be zeroed 6247 // in cnt. 6248 // 6249 // NOTE: This is intended to be used in the zero_blocks() stub. If 6250 // you want to use it elsewhere, note that cnt must be >= 2*zva_length. 6251 void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) { 6252 Register tmp = rscratch1; 6253 Register tmp2 = rscratch2; 6254 int zva_length = VM_Version::zva_length(); 6255 Label initial_table_end, loop_zva; 6256 Label fini; 6257 6258 // Base must be 16 byte aligned. If not just return and let caller handle it 6259 tst(base, 0x0f); 6260 br(Assembler::NE, fini); 6261 // Align base with ZVA length. 6262 neg(tmp, base); 6263 andr(tmp, tmp, zva_length - 1); 6264 6265 // tmp: the number of bytes to be filled to align the base with ZVA length. 6266 add(base, base, tmp); 6267 sub(cnt, cnt, tmp, Assembler::ASR, 3); 6268 adr(tmp2, initial_table_end); 6269 sub(tmp2, tmp2, tmp, Assembler::LSR, 2); 6270 br(tmp2); 6271 6272 for (int i = -zva_length + 16; i < 0; i += 16) 6273 stp(zr, zr, Address(base, i)); 6274 bind(initial_table_end); 6275 6276 sub(cnt, cnt, zva_length >> 3); 6277 bind(loop_zva); 6278 dc(Assembler::ZVA, base); 6279 subs(cnt, cnt, zva_length >> 3); 6280 add(base, base, zva_length); 6281 br(Assembler::GE, loop_zva); 6282 add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA 6283 bind(fini); 6284 } 6285 6286 // base: Address of a buffer to be filled, 8 bytes aligned. 6287 // cnt: Count in 8-byte unit. 6288 // value: Value to be filled with. 6289 // base will point to the end of the buffer after filling. 6290 void MacroAssembler::fill_words(Register base, Register cnt, Register value) 6291 { 6292 // Algorithm: 6293 // 6294 // if (cnt == 0) { 6295 // return; 6296 // } 6297 // if ((p & 8) != 0) { 6298 // *p++ = v; 6299 // } 6300 // 6301 // scratch1 = cnt & 14; 6302 // cnt -= scratch1; 6303 // p += scratch1; 6304 // switch (scratch1 / 2) { 6305 // do { 6306 // cnt -= 16; 6307 // p[-16] = v; 6308 // p[-15] = v; 6309 // case 7: 6310 // p[-14] = v; 6311 // p[-13] = v; 6312 // case 6: 6313 // p[-12] = v; 6314 // p[-11] = v; 6315 // // ... 6316 // case 1: 6317 // p[-2] = v; 6318 // p[-1] = v; 6319 // case 0: 6320 // p += 16; 6321 // } while (cnt); 6322 // } 6323 // if ((cnt & 1) == 1) { 6324 // *p++ = v; 6325 // } 6326 6327 assert_different_registers(base, cnt, value, rscratch1, rscratch2); 6328 6329 Label fini, skip, entry, loop; 6330 const int unroll = 8; // Number of stp instructions we'll unroll 6331 6332 cbz(cnt, fini); 6333 tbz(base, 3, skip); 6334 str(value, Address(post(base, 8))); 6335 sub(cnt, cnt, 1); 6336 bind(skip); 6337 6338 andr(rscratch1, cnt, (unroll-1) * 2); 6339 sub(cnt, cnt, rscratch1); 6340 add(base, base, rscratch1, Assembler::LSL, 3); 6341 adr(rscratch2, entry); 6342 sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1); 6343 br(rscratch2); 6344 6345 bind(loop); 6346 add(base, base, unroll * 16); 6347 for (int i = -unroll; i < 0; i++) 6348 stp(value, value, Address(base, i * 16)); 6349 bind(entry); 6350 subs(cnt, cnt, unroll * 2); 6351 br(Assembler::GE, loop); 6352 6353 tbz(cnt, 0, fini); 6354 str(value, Address(post(base, 8))); 6355 bind(fini); 6356 } 6357 6358 // Intrinsic for 6359 // 6360 // - sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray 6361 // return the number of characters copied. 6362 // - java/lang/StringUTF16.compress 6363 // return index of non-latin1 character if copy fails, otherwise 'len'. 6364 // 6365 // This version always returns the number of characters copied, and does not 6366 // clobber the 'len' register. A successful copy will complete with the post- 6367 // condition: 'res' == 'len', while an unsuccessful copy will exit with the 6368 // post-condition: 0 <= 'res' < 'len'. 6369 // 6370 // NOTE: Attempts to use 'ld2' (and 'umaxv' in the ISO part) has proven to 6371 // degrade performance (on Ampere Altra - Neoverse N1), to an extent 6372 // beyond the acceptable, even though the footprint would be smaller. 6373 // Using 'umaxv' in the ASCII-case comes with a small penalty but does 6374 // avoid additional bloat. 6375 // 6376 // Clobbers: src, dst, res, rscratch1, rscratch2, rflags 6377 void MacroAssembler::encode_iso_array(Register src, Register dst, 6378 Register len, Register res, bool ascii, 6379 FloatRegister vtmp0, FloatRegister vtmp1, 6380 FloatRegister vtmp2, FloatRegister vtmp3, 6381 FloatRegister vtmp4, FloatRegister vtmp5) 6382 { 6383 Register cnt = res; 6384 Register max = rscratch1; 6385 Register chk = rscratch2; 6386 6387 prfm(Address(src), PLDL1STRM); 6388 movw(cnt, len); 6389 6390 #define ASCII(insn) do { if (ascii) { insn; } } while (0) 6391 6392 Label LOOP_32, DONE_32, FAIL_32; 6393 6394 BIND(LOOP_32); 6395 { 6396 cmpw(cnt, 32); 6397 br(LT, DONE_32); 6398 ld1(vtmp0, vtmp1, vtmp2, vtmp3, T8H, Address(post(src, 64))); 6399 // Extract lower bytes. 6400 FloatRegister vlo0 = vtmp4; 6401 FloatRegister vlo1 = vtmp5; 6402 uzp1(vlo0, T16B, vtmp0, vtmp1); 6403 uzp1(vlo1, T16B, vtmp2, vtmp3); 6404 // Merge bits... 6405 orr(vtmp0, T16B, vtmp0, vtmp1); 6406 orr(vtmp2, T16B, vtmp2, vtmp3); 6407 // Extract merged upper bytes. 6408 FloatRegister vhix = vtmp0; 6409 uzp2(vhix, T16B, vtmp0, vtmp2); 6410 // ISO-check on hi-parts (all zero). 6411 // ASCII-check on lo-parts (no sign). 6412 FloatRegister vlox = vtmp1; // Merge lower bytes. 6413 ASCII(orr(vlox, T16B, vlo0, vlo1)); 6414 umov(chk, vhix, D, 1); ASCII(cm(LT, vlox, T16B, vlox)); 6415 fmovd(max, vhix); ASCII(umaxv(vlox, T16B, vlox)); 6416 orr(chk, chk, max); ASCII(umov(max, vlox, B, 0)); 6417 ASCII(orr(chk, chk, max)); 6418 cbnz(chk, FAIL_32); 6419 subw(cnt, cnt, 32); 6420 st1(vlo0, vlo1, T16B, Address(post(dst, 32))); 6421 b(LOOP_32); 6422 } 6423 BIND(FAIL_32); 6424 sub(src, src, 64); 6425 BIND(DONE_32); 6426 6427 Label LOOP_8, SKIP_8; 6428 6429 BIND(LOOP_8); 6430 { 6431 cmpw(cnt, 8); 6432 br(LT, SKIP_8); 6433 FloatRegister vhi = vtmp0; 6434 FloatRegister vlo = vtmp1; 6435 ld1(vtmp3, T8H, src); 6436 uzp1(vlo, T16B, vtmp3, vtmp3); 6437 uzp2(vhi, T16B, vtmp3, vtmp3); 6438 // ISO-check on hi-parts (all zero). 6439 // ASCII-check on lo-parts (no sign). 6440 ASCII(cm(LT, vtmp2, T16B, vlo)); 6441 fmovd(chk, vhi); ASCII(umaxv(vtmp2, T16B, vtmp2)); 6442 ASCII(umov(max, vtmp2, B, 0)); 6443 ASCII(orr(chk, chk, max)); 6444 cbnz(chk, SKIP_8); 6445 6446 strd(vlo, Address(post(dst, 8))); 6447 subw(cnt, cnt, 8); 6448 add(src, src, 16); 6449 b(LOOP_8); 6450 } 6451 BIND(SKIP_8); 6452 6453 #undef ASCII 6454 6455 Label LOOP, DONE; 6456 6457 cbz(cnt, DONE); 6458 BIND(LOOP); 6459 { 6460 Register chr = rscratch1; 6461 ldrh(chr, Address(post(src, 2))); 6462 tst(chr, ascii ? 0xff80 : 0xff00); 6463 br(NE, DONE); 6464 strb(chr, Address(post(dst, 1))); 6465 subs(cnt, cnt, 1); 6466 br(GT, LOOP); 6467 } 6468 BIND(DONE); 6469 // Return index where we stopped. 6470 subw(res, len, cnt); 6471 } 6472 6473 // Inflate byte[] array to char[]. 6474 // Clobbers: src, dst, len, rflags, rscratch1, v0-v6 6475 address MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 6476 FloatRegister vtmp1, FloatRegister vtmp2, 6477 FloatRegister vtmp3, Register tmp4) { 6478 Label big, done, after_init, to_stub; 6479 6480 assert_different_registers(src, dst, len, tmp4, rscratch1); 6481 6482 fmovd(vtmp1, 0.0); 6483 lsrw(tmp4, len, 3); 6484 bind(after_init); 6485 cbnzw(tmp4, big); 6486 // Short string: less than 8 bytes. 6487 { 6488 Label loop, tiny; 6489 6490 cmpw(len, 4); 6491 br(LT, tiny); 6492 // Use SIMD to do 4 bytes. 6493 ldrs(vtmp2, post(src, 4)); 6494 zip1(vtmp3, T8B, vtmp2, vtmp1); 6495 subw(len, len, 4); 6496 strd(vtmp3, post(dst, 8)); 6497 6498 cbzw(len, done); 6499 6500 // Do the remaining bytes by steam. 6501 bind(loop); 6502 ldrb(tmp4, post(src, 1)); 6503 strh(tmp4, post(dst, 2)); 6504 subw(len, len, 1); 6505 6506 bind(tiny); 6507 cbnz(len, loop); 6508 6509 b(done); 6510 } 6511 6512 if (SoftwarePrefetchHintDistance >= 0) { 6513 bind(to_stub); 6514 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate()); 6515 assert(stub.target() != nullptr, "large_byte_array_inflate stub has not been generated"); 6516 address tpc = trampoline_call(stub); 6517 if (tpc == nullptr) { 6518 DEBUG_ONLY(reset_labels(big, done)); 6519 postcond(pc() == badAddress); 6520 return nullptr; 6521 } 6522 b(after_init); 6523 } 6524 6525 // Unpack the bytes 8 at a time. 6526 bind(big); 6527 { 6528 Label loop, around, loop_last, loop_start; 6529 6530 if (SoftwarePrefetchHintDistance >= 0) { 6531 const int large_loop_threshold = (64 + 16)/8; 6532 ldrd(vtmp2, post(src, 8)); 6533 andw(len, len, 7); 6534 cmp(tmp4, (u1)large_loop_threshold); 6535 br(GE, to_stub); 6536 b(loop_start); 6537 6538 bind(loop); 6539 ldrd(vtmp2, post(src, 8)); 6540 bind(loop_start); 6541 subs(tmp4, tmp4, 1); 6542 br(EQ, loop_last); 6543 zip1(vtmp2, T16B, vtmp2, vtmp1); 6544 ldrd(vtmp3, post(src, 8)); 6545 st1(vtmp2, T8H, post(dst, 16)); 6546 subs(tmp4, tmp4, 1); 6547 zip1(vtmp3, T16B, vtmp3, vtmp1); 6548 st1(vtmp3, T8H, post(dst, 16)); 6549 br(NE, loop); 6550 b(around); 6551 bind(loop_last); 6552 zip1(vtmp2, T16B, vtmp2, vtmp1); 6553 st1(vtmp2, T8H, post(dst, 16)); 6554 bind(around); 6555 cbz(len, done); 6556 } else { 6557 andw(len, len, 7); 6558 bind(loop); 6559 ldrd(vtmp2, post(src, 8)); 6560 sub(tmp4, tmp4, 1); 6561 zip1(vtmp3, T16B, vtmp2, vtmp1); 6562 st1(vtmp3, T8H, post(dst, 16)); 6563 cbnz(tmp4, loop); 6564 } 6565 } 6566 6567 // Do the tail of up to 8 bytes. 6568 add(src, src, len); 6569 ldrd(vtmp3, Address(src, -8)); 6570 add(dst, dst, len, ext::uxtw, 1); 6571 zip1(vtmp3, T16B, vtmp3, vtmp1); 6572 strq(vtmp3, Address(dst, -16)); 6573 6574 bind(done); 6575 postcond(pc() != badAddress); 6576 return pc(); 6577 } 6578 6579 // Compress char[] array to byte[]. 6580 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 6581 // Return the array length if every element in array can be encoded, 6582 // otherwise, the index of first non-latin1 (> 0xff) character. 6583 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 6584 Register res, 6585 FloatRegister tmp0, FloatRegister tmp1, 6586 FloatRegister tmp2, FloatRegister tmp3, 6587 FloatRegister tmp4, FloatRegister tmp5) { 6588 encode_iso_array(src, dst, len, res, false, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5); 6589 } 6590 6591 // java.math.round(double a) 6592 // Returns the closest long to the argument, with ties rounding to 6593 // positive infinity. This requires some fiddling for corner 6594 // cases. We take care to avoid double rounding in e.g. (jlong)(a + 0.5). 6595 void MacroAssembler::java_round_double(Register dst, FloatRegister src, 6596 FloatRegister ftmp) { 6597 Label DONE; 6598 BLOCK_COMMENT("java_round_double: { "); 6599 fmovd(rscratch1, src); 6600 // Use RoundToNearestTiesAway unless src small and -ve. 6601 fcvtasd(dst, src); 6602 // Test if src >= 0 || abs(src) >= 0x1.0p52 6603 eor(rscratch1, rscratch1, UCONST64(1) << 63); // flip sign bit 6604 mov(rscratch2, julong_cast(0x1.0p52)); 6605 cmp(rscratch1, rscratch2); 6606 br(HS, DONE); { 6607 // src < 0 && abs(src) < 0x1.0p52 6608 // src may have a fractional part, so add 0.5 6609 fmovd(ftmp, 0.5); 6610 faddd(ftmp, src, ftmp); 6611 // Convert double to jlong, use RoundTowardsNegative 6612 fcvtmsd(dst, ftmp); 6613 } 6614 bind(DONE); 6615 BLOCK_COMMENT("} java_round_double"); 6616 } 6617 6618 void MacroAssembler::java_round_float(Register dst, FloatRegister src, 6619 FloatRegister ftmp) { 6620 Label DONE; 6621 BLOCK_COMMENT("java_round_float: { "); 6622 fmovs(rscratch1, src); 6623 // Use RoundToNearestTiesAway unless src small and -ve. 6624 fcvtassw(dst, src); 6625 // Test if src >= 0 || abs(src) >= 0x1.0p23 6626 eor(rscratch1, rscratch1, 0x80000000); // flip sign bit 6627 mov(rscratch2, jint_cast(0x1.0p23f)); 6628 cmp(rscratch1, rscratch2); 6629 br(HS, DONE); { 6630 // src < 0 && |src| < 0x1.0p23 6631 // src may have a fractional part, so add 0.5 6632 fmovs(ftmp, 0.5f); 6633 fadds(ftmp, src, ftmp); 6634 // Convert float to jint, use RoundTowardsNegative 6635 fcvtmssw(dst, ftmp); 6636 } 6637 bind(DONE); 6638 BLOCK_COMMENT("} java_round_float"); 6639 } 6640 6641 // get_thread() can be called anywhere inside generated code so we 6642 // need to save whatever non-callee save context might get clobbered 6643 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed, 6644 // the call setup code. 6645 // 6646 // On Linux, aarch64_get_thread_helper() clobbers only r0, r1, and flags. 6647 // On other systems, the helper is a usual C function. 6648 // 6649 void MacroAssembler::get_thread(Register dst) { 6650 RegSet saved_regs = 6651 LINUX_ONLY(RegSet::range(r0, r1) + lr - dst) 6652 NOT_LINUX (RegSet::range(r0, r17) + lr - dst); 6653 6654 protect_return_address(); 6655 push(saved_regs, sp); 6656 6657 mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper)); 6658 blr(lr); 6659 if (dst != c_rarg0) { 6660 mov(dst, c_rarg0); 6661 } 6662 6663 pop(saved_regs, sp); 6664 authenticate_return_address(); 6665 } 6666 6667 void MacroAssembler::cache_wb(Address line) { 6668 assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset"); 6669 assert(line.index() == noreg, "index should be noreg"); 6670 assert(line.offset() == 0, "offset should be 0"); 6671 // would like to assert this 6672 // assert(line._ext.shift == 0, "shift should be zero"); 6673 if (VM_Version::supports_dcpop()) { 6674 // writeback using clear virtual address to point of persistence 6675 dc(Assembler::CVAP, line.base()); 6676 } else { 6677 // no need to generate anything as Unsafe.writebackMemory should 6678 // never invoke this stub 6679 } 6680 } 6681 6682 void MacroAssembler::cache_wbsync(bool is_pre) { 6683 // we only need a barrier post sync 6684 if (!is_pre) { 6685 membar(Assembler::AnyAny); 6686 } 6687 } 6688 6689 void MacroAssembler::verify_sve_vector_length(Register tmp) { 6690 if (!UseSVE || VM_Version::get_max_supported_sve_vector_length() == FloatRegister::sve_vl_min) { 6691 return; 6692 } 6693 // Make sure that native code does not change SVE vector length. 6694 Label verify_ok; 6695 movw(tmp, zr); 6696 sve_inc(tmp, B); 6697 subsw(zr, tmp, VM_Version::get_initial_sve_vector_length()); 6698 br(EQ, verify_ok); 6699 stop("Error: SVE vector length has changed since jvm startup"); 6700 bind(verify_ok); 6701 } 6702 6703 void MacroAssembler::verify_ptrue() { 6704 Label verify_ok; 6705 if (!UseSVE) { 6706 return; 6707 } 6708 sve_cntp(rscratch1, B, ptrue, ptrue); // get true elements count. 6709 sve_dec(rscratch1, B); 6710 cbz(rscratch1, verify_ok); 6711 stop("Error: the preserved predicate register (p7) elements are not all true"); 6712 bind(verify_ok); 6713 } 6714 6715 void MacroAssembler::safepoint_isb() { 6716 isb(); 6717 #ifndef PRODUCT 6718 if (VerifyCrossModifyFence) { 6719 // Clear the thread state. 6720 strb(zr, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 6721 } 6722 #endif 6723 } 6724 6725 #ifndef PRODUCT 6726 void MacroAssembler::verify_cross_modify_fence_not_required() { 6727 if (VerifyCrossModifyFence) { 6728 // Check if thread needs a cross modify fence. 6729 ldrb(rscratch1, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 6730 Label fence_not_required; 6731 cbz(rscratch1, fence_not_required); 6732 // If it does then fail. 6733 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::verify_cross_modify_fence_failure))); 6734 mov(c_rarg0, rthread); 6735 blr(rscratch1); 6736 bind(fence_not_required); 6737 } 6738 } 6739 #endif 6740 6741 void MacroAssembler::spin_wait() { 6742 for (int i = 0; i < VM_Version::spin_wait_desc().inst_count(); ++i) { 6743 switch (VM_Version::spin_wait_desc().inst()) { 6744 case SpinWait::NOP: 6745 nop(); 6746 break; 6747 case SpinWait::ISB: 6748 isb(); 6749 break; 6750 case SpinWait::YIELD: 6751 yield(); 6752 break; 6753 default: 6754 ShouldNotReachHere(); 6755 } 6756 } 6757 } 6758 6759 // Stack frame creation/removal 6760 6761 void MacroAssembler::enter(bool strip_ret_addr) { 6762 if (strip_ret_addr) { 6763 // Addresses can only be signed once. If there are multiple nested frames being created 6764 // in the same function, then the return address needs stripping first. 6765 strip_return_address(); 6766 } 6767 protect_return_address(); 6768 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 6769 mov(rfp, sp); 6770 } 6771 6772 void MacroAssembler::leave() { 6773 mov(sp, rfp); 6774 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 6775 authenticate_return_address(); 6776 } 6777 6778 // ROP Protection 6779 // Use the AArch64 PAC feature to add ROP protection for generated code. Use whenever creating/ 6780 // destroying stack frames or whenever directly loading/storing the LR to memory. 6781 // If ROP protection is not set then these functions are no-ops. 6782 // For more details on PAC see pauth_aarch64.hpp. 6783 6784 // Sign the LR. Use during construction of a stack frame, before storing the LR to memory. 6785 // Uses value zero as the modifier. 6786 // 6787 void MacroAssembler::protect_return_address() { 6788 if (VM_Version::use_rop_protection()) { 6789 check_return_address(); 6790 paciaz(); 6791 } 6792 } 6793 6794 // Sign the return value in the given register. Use before updating the LR in the existing stack 6795 // frame for the current function. 6796 // Uses value zero as the modifier. 6797 // 6798 void MacroAssembler::protect_return_address(Register return_reg) { 6799 if (VM_Version::use_rop_protection()) { 6800 check_return_address(return_reg); 6801 paciza(return_reg); 6802 } 6803 } 6804 6805 // Authenticate the LR. Use before function return, after restoring FP and loading LR from memory. 6806 // Uses value zero as the modifier. 6807 // 6808 void MacroAssembler::authenticate_return_address() { 6809 if (VM_Version::use_rop_protection()) { 6810 autiaz(); 6811 check_return_address(); 6812 } 6813 } 6814 6815 // Authenticate the return value in the given register. Use before updating the LR in the existing 6816 // stack frame for the current function. 6817 // Uses value zero as the modifier. 6818 // 6819 void MacroAssembler::authenticate_return_address(Register return_reg) { 6820 if (VM_Version::use_rop_protection()) { 6821 autiza(return_reg); 6822 check_return_address(return_reg); 6823 } 6824 } 6825 6826 // Strip any PAC data from LR without performing any authentication. Use with caution - only if 6827 // there is no guaranteed way of authenticating the LR. 6828 // 6829 void MacroAssembler::strip_return_address() { 6830 if (VM_Version::use_rop_protection()) { 6831 xpaclri(); 6832 } 6833 } 6834 6835 #ifndef PRODUCT 6836 // PAC failures can be difficult to debug. After an authentication failure, a segfault will only 6837 // occur when the pointer is used - ie when the program returns to the invalid LR. At this point 6838 // it is difficult to debug back to the callee function. 6839 // This function simply loads from the address in the given register. 6840 // Use directly after authentication to catch authentication failures. 6841 // Also use before signing to check that the pointer is valid and hasn't already been signed. 6842 // 6843 void MacroAssembler::check_return_address(Register return_reg) { 6844 if (VM_Version::use_rop_protection()) { 6845 ldr(zr, Address(return_reg)); 6846 } 6847 } 6848 #endif 6849 6850 // The java_calling_convention describes stack locations as ideal slots on 6851 // a frame with no abi restrictions. Since we must observe abi restrictions 6852 // (like the placement of the register window) the slots must be biased by 6853 // the following value. 6854 static int reg2offset_in(VMReg r) { 6855 // Account for saved rfp and lr 6856 // This should really be in_preserve_stack_slots 6857 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 6858 } 6859 6860 static int reg2offset_out(VMReg r) { 6861 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 6862 } 6863 6864 // On 64bit we will store integer like items to the stack as 6865 // 64bits items (AArch64 ABI) even though java would only store 6866 // 32bits for a parameter. On 32bit it will simply be 32bits 6867 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 6868 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp) { 6869 if (src.first()->is_stack()) { 6870 if (dst.first()->is_stack()) { 6871 // stack to stack 6872 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 6873 str(tmp, Address(sp, reg2offset_out(dst.first()))); 6874 } else { 6875 // stack to reg 6876 ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 6877 } 6878 } else if (dst.first()->is_stack()) { 6879 // reg to stack 6880 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 6881 } else { 6882 if (dst.first() != src.first()) { 6883 sxtw(dst.first()->as_Register(), src.first()->as_Register()); 6884 } 6885 } 6886 } 6887 6888 // An oop arg. Must pass a handle not the oop itself 6889 void MacroAssembler::object_move( 6890 OopMap* map, 6891 int oop_handle_offset, 6892 int framesize_in_slots, 6893 VMRegPair src, 6894 VMRegPair dst, 6895 bool is_receiver, 6896 int* receiver_offset) { 6897 6898 // must pass a handle. First figure out the location we use as a handle 6899 6900 Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register(); 6901 6902 // See if oop is null if it is we need no handle 6903 6904 if (src.first()->is_stack()) { 6905 6906 // Oop is already on the stack as an argument 6907 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 6908 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 6909 if (is_receiver) { 6910 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 6911 } 6912 6913 ldr(rscratch1, Address(rfp, reg2offset_in(src.first()))); 6914 lea(rHandle, Address(rfp, reg2offset_in(src.first()))); 6915 // conditionally move a null 6916 cmp(rscratch1, zr); 6917 csel(rHandle, zr, rHandle, Assembler::EQ); 6918 } else { 6919 6920 // Oop is in an a register we must store it to the space we reserve 6921 // on the stack for oop_handles and pass a handle if oop is non-null 6922 6923 const Register rOop = src.first()->as_Register(); 6924 int oop_slot; 6925 if (rOop == j_rarg0) 6926 oop_slot = 0; 6927 else if (rOop == j_rarg1) 6928 oop_slot = 1; 6929 else if (rOop == j_rarg2) 6930 oop_slot = 2; 6931 else if (rOop == j_rarg3) 6932 oop_slot = 3; 6933 else if (rOop == j_rarg4) 6934 oop_slot = 4; 6935 else if (rOop == j_rarg5) 6936 oop_slot = 5; 6937 else if (rOop == j_rarg6) 6938 oop_slot = 6; 6939 else { 6940 assert(rOop == j_rarg7, "wrong register"); 6941 oop_slot = 7; 6942 } 6943 6944 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 6945 int offset = oop_slot*VMRegImpl::stack_slot_size; 6946 6947 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 6948 // Store oop in handle area, may be null 6949 str(rOop, Address(sp, offset)); 6950 if (is_receiver) { 6951 *receiver_offset = offset; 6952 } 6953 6954 cmp(rOop, zr); 6955 lea(rHandle, Address(sp, offset)); 6956 // conditionally move a null 6957 csel(rHandle, zr, rHandle, Assembler::EQ); 6958 } 6959 6960 // If arg is on the stack then place it otherwise it is already in correct reg. 6961 if (dst.first()->is_stack()) { 6962 str(rHandle, Address(sp, reg2offset_out(dst.first()))); 6963 } 6964 } 6965 6966 // A float arg may have to do float reg int reg conversion 6967 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp) { 6968 if (src.first()->is_stack()) { 6969 if (dst.first()->is_stack()) { 6970 ldrw(tmp, Address(rfp, reg2offset_in(src.first()))); 6971 strw(tmp, Address(sp, reg2offset_out(dst.first()))); 6972 } else { 6973 ldrs(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 6974 } 6975 } else if (src.first() != dst.first()) { 6976 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 6977 fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 6978 else 6979 strs(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 6980 } 6981 } 6982 6983 // A long move 6984 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp) { 6985 if (src.first()->is_stack()) { 6986 if (dst.first()->is_stack()) { 6987 // stack to stack 6988 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 6989 str(tmp, Address(sp, reg2offset_out(dst.first()))); 6990 } else { 6991 // stack to reg 6992 ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 6993 } 6994 } else if (dst.first()->is_stack()) { 6995 // reg to stack 6996 // Do we really have to sign extend??? 6997 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 6998 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 6999 } else { 7000 if (dst.first() != src.first()) { 7001 mov(dst.first()->as_Register(), src.first()->as_Register()); 7002 } 7003 } 7004 } 7005 7006 7007 // A double move 7008 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp) { 7009 if (src.first()->is_stack()) { 7010 if (dst.first()->is_stack()) { 7011 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 7012 str(tmp, Address(sp, reg2offset_out(dst.first()))); 7013 } else { 7014 ldrd(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 7015 } 7016 } else if (src.first() != dst.first()) { 7017 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 7018 fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 7019 else 7020 strd(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 7021 } 7022 } 7023 7024 // Implements lightweight-locking. 7025 // 7026 // - obj: the object to be locked 7027 // - t1, t2, t3: temporary registers, will be destroyed 7028 // - slow: branched to if locking fails, absolute offset may larger than 32KB (imm14 encoding). 7029 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow) { 7030 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 7031 assert_different_registers(basic_lock, obj, t1, t2, t3, rscratch1); 7032 7033 Label push; 7034 const Register top = t1; 7035 const Register mark = t2; 7036 const Register t = t3; 7037 7038 // Preload the markWord. It is important that this is the first 7039 // instruction emitted as it is part of C1's null check semantics. 7040 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 7041 7042 if (UseObjectMonitorTable) { 7043 // Clear cache in case fast locking succeeds or we need to take the slow-path. 7044 str(zr, Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes())))); 7045 } 7046 7047 if (DiagnoseSyncOnValueBasedClasses != 0) { 7048 load_klass(t1, obj); 7049 ldrb(t1, Address(t1, Klass::misc_flags_offset())); 7050 tst(t1, KlassFlags::_misc_is_value_based_class); 7051 br(Assembler::NE, slow); 7052 } 7053 7054 // Check if the lock-stack is full. 7055 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7056 cmpw(top, (unsigned)LockStack::end_offset()); 7057 br(Assembler::GE, slow); 7058 7059 // Check for recursion. 7060 subw(t, top, oopSize); 7061 ldr(t, Address(rthread, t)); 7062 cmp(obj, t); 7063 br(Assembler::EQ, push); 7064 7065 // Check header for monitor (0b10). 7066 tst(mark, markWord::monitor_value); 7067 br(Assembler::NE, slow); 7068 7069 // Try to lock. Transition lock bits 0b01 => 0b00 7070 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 7071 orr(mark, mark, markWord::unlocked_value); 7072 eor(t, mark, markWord::unlocked_value); 7073 cmpxchg(/*addr*/ obj, /*expected*/ mark, /*new*/ t, Assembler::xword, 7074 /*acquire*/ true, /*release*/ false, /*weak*/ false, noreg); 7075 br(Assembler::NE, slow); 7076 7077 bind(push); 7078 // After successful lock, push object on lock-stack. 7079 str(obj, Address(rthread, top)); 7080 addw(top, top, oopSize); 7081 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7082 } 7083 7084 // Implements lightweight-unlocking. 7085 // 7086 // - obj: the object to be unlocked 7087 // - t1, t2, t3: temporary registers 7088 // - slow: branched to if unlocking fails, absolute offset may larger than 32KB (imm14 encoding). 7089 void MacroAssembler::lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow) { 7090 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 7091 // cmpxchg clobbers rscratch1. 7092 assert_different_registers(obj, t1, t2, t3, rscratch1); 7093 7094 #ifdef ASSERT 7095 { 7096 // Check for lock-stack underflow. 7097 Label stack_ok; 7098 ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 7099 cmpw(t1, (unsigned)LockStack::start_offset()); 7100 br(Assembler::GE, stack_ok); 7101 STOP("Lock-stack underflow"); 7102 bind(stack_ok); 7103 } 7104 #endif 7105 7106 Label unlocked, push_and_slow; 7107 const Register top = t1; 7108 const Register mark = t2; 7109 const Register t = t3; 7110 7111 // Check if obj is top of lock-stack. 7112 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7113 subw(top, top, oopSize); 7114 ldr(t, Address(rthread, top)); 7115 cmp(obj, t); 7116 br(Assembler::NE, slow); 7117 7118 // Pop lock-stack. 7119 DEBUG_ONLY(str(zr, Address(rthread, top));) 7120 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7121 7122 // Check if recursive. 7123 subw(t, top, oopSize); 7124 ldr(t, Address(rthread, t)); 7125 cmp(obj, t); 7126 br(Assembler::EQ, unlocked); 7127 7128 // Not recursive. Check header for monitor (0b10). 7129 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 7130 tbnz(mark, log2i_exact(markWord::monitor_value), push_and_slow); 7131 7132 #ifdef ASSERT 7133 // Check header not unlocked (0b01). 7134 Label not_unlocked; 7135 tbz(mark, log2i_exact(markWord::unlocked_value), not_unlocked); 7136 stop("lightweight_unlock already unlocked"); 7137 bind(not_unlocked); 7138 #endif 7139 7140 // Try to unlock. Transition lock bits 0b00 => 0b01 7141 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 7142 orr(t, mark, markWord::unlocked_value); 7143 cmpxchg(obj, mark, t, Assembler::xword, 7144 /*acquire*/ false, /*release*/ true, /*weak*/ false, noreg); 7145 br(Assembler::EQ, unlocked); 7146 7147 bind(push_and_slow); 7148 // Restore lock-stack and handle the unlock in runtime. 7149 DEBUG_ONLY(str(obj, Address(rthread, top));) 7150 addw(top, top, oopSize); 7151 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7152 b(slow); 7153 7154 bind(unlocked); 7155 }