1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/assembler.hpp" 27 #include "asm/assembler.inline.hpp" 28 #include "ci/ciEnv.hpp" 29 #include "code/compiledIC.hpp" 30 #include "compiler/compileTask.hpp" 31 #include "compiler/disassembler.hpp" 32 #include "compiler/oopMap.hpp" 33 #include "gc/shared/barrierSet.hpp" 34 #include "gc/shared/barrierSetAssembler.hpp" 35 #include "gc/shared/cardTableBarrierSet.hpp" 36 #include "gc/shared/cardTable.hpp" 37 #include "gc/shared/collectedHeap.hpp" 38 #include "gc/shared/tlab_globals.hpp" 39 #include "interpreter/bytecodeHistogram.hpp" 40 #include "interpreter/interpreter.hpp" 41 #include "interpreter/interpreterRuntime.hpp" 42 #include "jvm.h" 43 #include "memory/resourceArea.hpp" 44 #include "memory/universe.hpp" 45 #include "nativeInst_aarch64.hpp" 46 #include "oops/accessDecorators.hpp" 47 #include "oops/compressedKlass.inline.hpp" 48 #include "oops/compressedOops.inline.hpp" 49 #include "oops/klass.inline.hpp" 50 #include "runtime/continuation.hpp" 51 #include "runtime/icache.hpp" 52 #include "runtime/interfaceSupport.inline.hpp" 53 #include "runtime/javaThread.hpp" 54 #include "runtime/jniHandles.inline.hpp" 55 #include "runtime/sharedRuntime.hpp" 56 #include "runtime/stubRoutines.hpp" 57 #include "utilities/globalDefinitions.hpp" 58 #include "utilities/powerOfTwo.hpp" 59 #ifdef COMPILER1 60 #include "c1/c1_LIRAssembler.hpp" 61 #endif 62 #ifdef COMPILER2 63 #include "oops/oop.hpp" 64 #include "opto/compile.hpp" 65 #include "opto/node.hpp" 66 #include "opto/output.hpp" 67 #endif 68 69 #include <sys/types.h> 70 71 #ifdef PRODUCT 72 #define BLOCK_COMMENT(str) /* nothing */ 73 #else 74 #define BLOCK_COMMENT(str) block_comment(str) 75 #endif 76 #define STOP(str) stop(str); 77 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 78 79 #ifdef ASSERT 80 extern "C" void disnm(intptr_t p); 81 #endif 82 // Target-dependent relocation processing 83 // 84 // Instruction sequences whose target may need to be retrieved or 85 // patched are distinguished by their leading instruction, sorting 86 // them into three main instruction groups and related subgroups. 87 // 88 // 1) Branch, Exception and System (insn count = 1) 89 // 1a) Unconditional branch (immediate): 90 // b/bl imm19 91 // 1b) Compare & branch (immediate): 92 // cbz/cbnz Rt imm19 93 // 1c) Test & branch (immediate): 94 // tbz/tbnz Rt imm14 95 // 1d) Conditional branch (immediate): 96 // b.cond imm19 97 // 98 // 2) Loads and Stores (insn count = 1) 99 // 2a) Load register literal: 100 // ldr Rt imm19 101 // 102 // 3) Data Processing Immediate (insn count = 2 or 3) 103 // 3a) PC-rel. addressing 104 // adr/adrp Rx imm21; ldr/str Ry Rx #imm12 105 // adr/adrp Rx imm21; add Ry Rx #imm12 106 // adr/adrp Rx imm21; movk Rx #imm16<<32; ldr/str Ry, [Rx, #offset_in_page] 107 // adr/adrp Rx imm21 108 // adr/adrp Rx imm21; movk Rx #imm16<<32 109 // adr/adrp Rx imm21; movk Rx #imm16<<32; add Ry, Rx, #offset_in_page 110 // The latter form can only happen when the target is an 111 // ExternalAddress, and (by definition) ExternalAddresses don't 112 // move. Because of that property, there is never any need to 113 // patch the last of the three instructions. However, 114 // MacroAssembler::target_addr_for_insn takes all three 115 // instructions into account and returns the correct address. 116 // 3b) Move wide (immediate) 117 // movz Rx #imm16; movk Rx #imm16 << 16; movk Rx #imm16 << 32; 118 // 119 // A switch on a subset of the instruction's bits provides an 120 // efficient dispatch to these subcases. 121 // 122 // insn[28:26] -> main group ('x' == don't care) 123 // 00x -> UNALLOCATED 124 // 100 -> Data Processing Immediate 125 // 101 -> Branch, Exception and System 126 // x1x -> Loads and Stores 127 // 128 // insn[30:25] -> subgroup ('_' == group, 'x' == don't care). 129 // n.b. in some cases extra bits need to be checked to verify the 130 // instruction is as expected 131 // 132 // 1) ... xx101x Branch, Exception and System 133 // 1a) 00___x Unconditional branch (immediate) 134 // 1b) 01___0 Compare & branch (immediate) 135 // 1c) 01___1 Test & branch (immediate) 136 // 1d) 10___0 Conditional branch (immediate) 137 // other Should not happen 138 // 139 // 2) ... xxx1x0 Loads and Stores 140 // 2a) xx1__00 Load/Store register (insn[28] == 1 && insn[24] == 0) 141 // 2aa) x01__00 Load register literal (i.e. requires insn[29] == 0) 142 // strictly should be 64 bit non-FP/SIMD i.e. 143 // 0101_000 (i.e. requires insn[31:24] == 01011000) 144 // 145 // 3) ... xx100x Data Processing Immediate 146 // 3a) xx___00 PC-rel. addressing (n.b. requires insn[24] == 0) 147 // 3b) xx___101 Move wide (immediate) (n.b. requires insn[24:23] == 01) 148 // strictly should be 64 bit movz #imm16<<0 149 // 110___10100 (i.e. requires insn[31:21] == 11010010100) 150 // 151 class RelocActions { 152 protected: 153 typedef int (*reloc_insn)(address insn_addr, address &target); 154 155 virtual reloc_insn adrpMem() = 0; 156 virtual reloc_insn adrpAdd() = 0; 157 virtual reloc_insn adrpMovk() = 0; 158 159 const address _insn_addr; 160 const uint32_t _insn; 161 162 static uint32_t insn_at(address insn_addr, int n) { 163 return ((uint32_t*)insn_addr)[n]; 164 } 165 uint32_t insn_at(int n) const { 166 return insn_at(_insn_addr, n); 167 } 168 169 public: 170 171 RelocActions(address insn_addr) : _insn_addr(insn_addr), _insn(insn_at(insn_addr, 0)) {} 172 RelocActions(address insn_addr, uint32_t insn) 173 : _insn_addr(insn_addr), _insn(insn) {} 174 175 virtual int unconditionalBranch(address insn_addr, address &target) = 0; 176 virtual int conditionalBranch(address insn_addr, address &target) = 0; 177 virtual int testAndBranch(address insn_addr, address &target) = 0; 178 virtual int loadStore(address insn_addr, address &target) = 0; 179 virtual int adr(address insn_addr, address &target) = 0; 180 virtual int adrp(address insn_addr, address &target, reloc_insn inner) = 0; 181 virtual int immediate(address insn_addr, address &target) = 0; 182 virtual void verify(address insn_addr, address &target) = 0; 183 184 int ALWAYSINLINE run(address insn_addr, address &target) { 185 int instructions = 1; 186 187 uint32_t dispatch = Instruction_aarch64::extract(_insn, 30, 25); 188 switch(dispatch) { 189 case 0b001010: 190 case 0b001011: { 191 instructions = unconditionalBranch(insn_addr, target); 192 break; 193 } 194 case 0b101010: // Conditional branch (immediate) 195 case 0b011010: { // Compare & branch (immediate) 196 instructions = conditionalBranch(insn_addr, target); 197 break; 198 } 199 case 0b011011: { 200 instructions = testAndBranch(insn_addr, target); 201 break; 202 } 203 case 0b001100: 204 case 0b001110: 205 case 0b011100: 206 case 0b011110: 207 case 0b101100: 208 case 0b101110: 209 case 0b111100: 210 case 0b111110: { 211 // load/store 212 if ((Instruction_aarch64::extract(_insn, 29, 24) & 0b111011) == 0b011000) { 213 // Load register (literal) 214 instructions = loadStore(insn_addr, target); 215 break; 216 } else { 217 // nothing to do 218 assert(target == nullptr, "did not expect to relocate target for polling page load"); 219 } 220 break; 221 } 222 case 0b001000: 223 case 0b011000: 224 case 0b101000: 225 case 0b111000: { 226 // adr/adrp 227 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 228 int shift = Instruction_aarch64::extract(_insn, 31, 31); 229 if (shift) { 230 uint32_t insn2 = insn_at(1); 231 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 232 Instruction_aarch64::extract(_insn, 4, 0) == 233 Instruction_aarch64::extract(insn2, 9, 5)) { 234 instructions = adrp(insn_addr, target, adrpMem()); 235 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 236 Instruction_aarch64::extract(_insn, 4, 0) == 237 Instruction_aarch64::extract(insn2, 4, 0)) { 238 instructions = adrp(insn_addr, target, adrpAdd()); 239 } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 240 Instruction_aarch64::extract(_insn, 4, 0) == 241 Instruction_aarch64::extract(insn2, 4, 0)) { 242 instructions = adrp(insn_addr, target, adrpMovk()); 243 } else { 244 ShouldNotReachHere(); 245 } 246 } else { 247 instructions = adr(insn_addr, target); 248 } 249 break; 250 } 251 case 0b001001: 252 case 0b011001: 253 case 0b101001: 254 case 0b111001: { 255 instructions = immediate(insn_addr, target); 256 break; 257 } 258 default: { 259 ShouldNotReachHere(); 260 } 261 } 262 263 verify(insn_addr, target); 264 return instructions * NativeInstruction::instruction_size; 265 } 266 }; 267 268 class Patcher : public RelocActions { 269 virtual reloc_insn adrpMem() { return &Patcher::adrpMem_impl; } 270 virtual reloc_insn adrpAdd() { return &Patcher::adrpAdd_impl; } 271 virtual reloc_insn adrpMovk() { return &Patcher::adrpMovk_impl; } 272 273 public: 274 Patcher(address insn_addr) : RelocActions(insn_addr) {} 275 276 virtual int unconditionalBranch(address insn_addr, address &target) { 277 intptr_t offset = (target - insn_addr) >> 2; 278 Instruction_aarch64::spatch(insn_addr, 25, 0, offset); 279 return 1; 280 } 281 virtual int conditionalBranch(address insn_addr, address &target) { 282 intptr_t offset = (target - insn_addr) >> 2; 283 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 284 return 1; 285 } 286 virtual int testAndBranch(address insn_addr, address &target) { 287 intptr_t offset = (target - insn_addr) >> 2; 288 Instruction_aarch64::spatch(insn_addr, 18, 5, offset); 289 return 1; 290 } 291 virtual int loadStore(address insn_addr, address &target) { 292 intptr_t offset = (target - insn_addr) >> 2; 293 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 294 return 1; 295 } 296 virtual int adr(address insn_addr, address &target) { 297 #ifdef ASSERT 298 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 299 #endif 300 // PC-rel. addressing 301 ptrdiff_t offset = target - insn_addr; 302 int offset_lo = offset & 3; 303 offset >>= 2; 304 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 305 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 306 return 1; 307 } 308 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 309 int instructions = 1; 310 #ifdef ASSERT 311 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 312 #endif 313 ptrdiff_t offset = target - insn_addr; 314 instructions = 2; 315 precond(inner != nullptr); 316 // Give the inner reloc a chance to modify the target. 317 address adjusted_target = target; 318 instructions = (*inner)(insn_addr, adjusted_target); 319 uintptr_t pc_page = (uintptr_t)insn_addr >> 12; 320 uintptr_t adr_page = (uintptr_t)adjusted_target >> 12; 321 offset = adr_page - pc_page; 322 int offset_lo = offset & 3; 323 offset >>= 2; 324 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 325 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 326 return instructions; 327 } 328 static int adrpMem_impl(address insn_addr, address &target) { 329 uintptr_t dest = (uintptr_t)target; 330 int offset_lo = dest & 0xfff; 331 uint32_t insn2 = insn_at(insn_addr, 1); 332 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 333 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo >> size); 334 guarantee(((dest >> size) << size) == dest, "misaligned target"); 335 return 2; 336 } 337 static int adrpAdd_impl(address insn_addr, address &target) { 338 uintptr_t dest = (uintptr_t)target; 339 int offset_lo = dest & 0xfff; 340 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo); 341 return 2; 342 } 343 static int adrpMovk_impl(address insn_addr, address &target) { 344 uintptr_t dest = uintptr_t(target); 345 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 20, 5, (uintptr_t)target >> 32); 346 dest = (dest & 0xffffffffULL) | (uintptr_t(insn_addr) & 0xffff00000000ULL); 347 target = address(dest); 348 return 2; 349 } 350 virtual int immediate(address insn_addr, address &target) { 351 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 352 uint64_t dest = (uint64_t)target; 353 // Move wide constant 354 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 355 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 356 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 357 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 358 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 359 return 3; 360 } 361 virtual void verify(address insn_addr, address &target) { 362 #ifdef ASSERT 363 address address_is = MacroAssembler::target_addr_for_insn(insn_addr); 364 if (!(address_is == target)) { 365 tty->print_cr("%p at %p should be %p", address_is, insn_addr, target); 366 disnm((intptr_t)insn_addr); 367 assert(address_is == target, "should be"); 368 } 369 #endif 370 } 371 }; 372 373 // If insn1 and insn2 use the same register to form an address, either 374 // by an offsetted LDR or a simple ADD, return the offset. If the 375 // second instruction is an LDR, the offset may be scaled. 376 static bool offset_for(uint32_t insn1, uint32_t insn2, ptrdiff_t &byte_offset) { 377 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 378 Instruction_aarch64::extract(insn1, 4, 0) == 379 Instruction_aarch64::extract(insn2, 9, 5)) { 380 // Load/store register (unsigned immediate) 381 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 382 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 383 byte_offset <<= size; 384 return true; 385 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 386 Instruction_aarch64::extract(insn1, 4, 0) == 387 Instruction_aarch64::extract(insn2, 4, 0)) { 388 // add (immediate) 389 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 390 return true; 391 } 392 return false; 393 } 394 395 class AArch64Decoder : public RelocActions { 396 virtual reloc_insn adrpMem() { return &AArch64Decoder::adrpMem_impl; } 397 virtual reloc_insn adrpAdd() { return &AArch64Decoder::adrpAdd_impl; } 398 virtual reloc_insn adrpMovk() { return &AArch64Decoder::adrpMovk_impl; } 399 400 public: 401 AArch64Decoder(address insn_addr, uint32_t insn) : RelocActions(insn_addr, insn) {} 402 403 virtual int loadStore(address insn_addr, address &target) { 404 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 405 target = insn_addr + (offset << 2); 406 return 1; 407 } 408 virtual int unconditionalBranch(address insn_addr, address &target) { 409 intptr_t offset = Instruction_aarch64::sextract(_insn, 25, 0); 410 target = insn_addr + (offset << 2); 411 return 1; 412 } 413 virtual int conditionalBranch(address insn_addr, address &target) { 414 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 415 target = address(((uint64_t)insn_addr + (offset << 2))); 416 return 1; 417 } 418 virtual int testAndBranch(address insn_addr, address &target) { 419 intptr_t offset = Instruction_aarch64::sextract(_insn, 18, 5); 420 target = address(((uint64_t)insn_addr + (offset << 2))); 421 return 1; 422 } 423 virtual int adr(address insn_addr, address &target) { 424 // PC-rel. addressing 425 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 426 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 427 target = address((uint64_t)insn_addr + offset); 428 return 1; 429 } 430 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 431 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 432 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 433 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 434 int shift = 12; 435 offset <<= shift; 436 uint64_t target_page = ((uint64_t)insn_addr) + offset; 437 target_page &= ((uint64_t)-1) << shift; 438 uint32_t insn2 = insn_at(1); 439 target = address(target_page); 440 precond(inner != nullptr); 441 (*inner)(insn_addr, target); 442 return 2; 443 } 444 static int adrpMem_impl(address insn_addr, address &target) { 445 uint32_t insn2 = insn_at(insn_addr, 1); 446 // Load/store register (unsigned immediate) 447 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 448 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 449 byte_offset <<= size; 450 target += byte_offset; 451 return 2; 452 } 453 static int adrpAdd_impl(address insn_addr, address &target) { 454 uint32_t insn2 = insn_at(insn_addr, 1); 455 // add (immediate) 456 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 457 target += byte_offset; 458 return 2; 459 } 460 static int adrpMovk_impl(address insn_addr, address &target) { 461 uint32_t insn2 = insn_at(insn_addr, 1); 462 uint64_t dest = uint64_t(target); 463 dest = (dest & 0xffff0000ffffffff) | 464 ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32); 465 target = address(dest); 466 467 // We know the destination 4k page. Maybe we have a third 468 // instruction. 469 uint32_t insn = insn_at(insn_addr, 0); 470 uint32_t insn3 = insn_at(insn_addr, 2); 471 ptrdiff_t byte_offset; 472 if (offset_for(insn, insn3, byte_offset)) { 473 target += byte_offset; 474 return 3; 475 } else { 476 return 2; 477 } 478 } 479 virtual int immediate(address insn_addr, address &target) { 480 uint32_t *insns = (uint32_t *)insn_addr; 481 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 482 // Move wide constant: movz, movk, movk. See movptr(). 483 assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch"); 484 assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch"); 485 target = address(uint64_t(Instruction_aarch64::extract(_insn, 20, 5)) 486 + (uint64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16) 487 + (uint64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32)); 488 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 489 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 490 return 3; 491 } 492 virtual void verify(address insn_addr, address &target) { 493 } 494 }; 495 496 address MacroAssembler::target_addr_for_insn(address insn_addr, uint32_t insn) { 497 AArch64Decoder decoder(insn_addr, insn); 498 address target; 499 decoder.run(insn_addr, target); 500 return target; 501 } 502 503 // Patch any kind of instruction; there may be several instructions. 504 // Return the total length (in bytes) of the instructions. 505 int MacroAssembler::pd_patch_instruction_size(address insn_addr, address target) { 506 Patcher patcher(insn_addr); 507 return patcher.run(insn_addr, target); 508 } 509 510 int MacroAssembler::patch_oop(address insn_addr, address o) { 511 int instructions; 512 unsigned insn = *(unsigned*)insn_addr; 513 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 514 515 // OOPs are either narrow (32 bits) or wide (48 bits). We encode 516 // narrow OOPs by setting the upper 16 bits in the first 517 // instruction. 518 if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) { 519 // Move narrow OOP 520 uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o)); 521 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 522 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 523 instructions = 2; 524 } else { 525 // Move wide OOP 526 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 527 uintptr_t dest = (uintptr_t)o; 528 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 529 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 530 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 531 instructions = 3; 532 } 533 return instructions * NativeInstruction::instruction_size; 534 } 535 536 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) { 537 // Metadata pointers are either narrow (32 bits) or wide (48 bits). 538 // We encode narrow ones by setting the upper 16 bits in the first 539 // instruction. 540 NativeInstruction *insn = nativeInstruction_at(insn_addr); 541 assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 && 542 nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 543 544 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 545 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 546 return 2 * NativeInstruction::instruction_size; 547 } 548 549 address MacroAssembler::target_addr_for_insn_or_null(address insn_addr, unsigned insn) { 550 if (NativeInstruction::is_ldrw_to_zr(address(&insn))) { 551 return nullptr; 552 } 553 return MacroAssembler::target_addr_for_insn(insn_addr, insn); 554 } 555 556 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp) { 557 if (acquire) { 558 lea(tmp, Address(rthread, JavaThread::polling_word_offset())); 559 ldar(tmp, tmp); 560 } else { 561 ldr(tmp, Address(rthread, JavaThread::polling_word_offset())); 562 } 563 if (at_return) { 564 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 565 // we may safely use the sp instead to perform the stack watermark check. 566 cmp(in_nmethod ? sp : rfp, tmp); 567 br(Assembler::HI, slow_path); 568 } else { 569 tbnz(tmp, log2i_exact(SafepointMechanism::poll_bit()), slow_path); 570 } 571 } 572 573 void MacroAssembler::rt_call(address dest, Register tmp) { 574 CodeBlob *cb = CodeCache::find_blob(dest); 575 if (cb) { 576 far_call(RuntimeAddress(dest)); 577 } else { 578 lea(tmp, RuntimeAddress(dest)); 579 blr(tmp); 580 } 581 } 582 583 void MacroAssembler::push_cont_fastpath(Register java_thread) { 584 if (!Continuations::enabled()) return; 585 Label done; 586 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 587 cmp(sp, rscratch1); 588 br(Assembler::LS, done); 589 mov(rscratch1, sp); // we can't use sp as the source in str 590 str(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 591 bind(done); 592 } 593 594 void MacroAssembler::pop_cont_fastpath(Register java_thread) { 595 if (!Continuations::enabled()) return; 596 Label done; 597 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 598 cmp(sp, rscratch1); 599 br(Assembler::LO, done); 600 str(zr, Address(java_thread, JavaThread::cont_fastpath_offset())); 601 bind(done); 602 } 603 604 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 605 // we must set sp to zero to clear frame 606 str(zr, Address(rthread, JavaThread::last_Java_sp_offset())); 607 608 // must clear fp, so that compiled frames are not confused; it is 609 // possible that we need it only for debugging 610 if (clear_fp) { 611 str(zr, Address(rthread, JavaThread::last_Java_fp_offset())); 612 } 613 614 // Always clear the pc because it could have been set by make_walkable() 615 str(zr, Address(rthread, JavaThread::last_Java_pc_offset())); 616 } 617 618 // Calls to C land 619 // 620 // When entering C land, the rfp, & resp of the last Java frame have to be recorded 621 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 622 // has to be reset to 0. This is required to allow proper stack traversal. 623 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 624 Register last_java_fp, 625 Register last_java_pc, 626 Register scratch) { 627 628 if (last_java_pc->is_valid()) { 629 str(last_java_pc, Address(rthread, 630 JavaThread::frame_anchor_offset() 631 + JavaFrameAnchor::last_Java_pc_offset())); 632 } 633 634 // determine last_java_sp register 635 if (last_java_sp == sp) { 636 mov(scratch, sp); 637 last_java_sp = scratch; 638 } else if (!last_java_sp->is_valid()) { 639 last_java_sp = esp; 640 } 641 642 str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset())); 643 644 // last_java_fp is optional 645 if (last_java_fp->is_valid()) { 646 str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset())); 647 } 648 } 649 650 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 651 Register last_java_fp, 652 address last_java_pc, 653 Register scratch) { 654 assert(last_java_pc != nullptr, "must provide a valid PC"); 655 656 adr(scratch, last_java_pc); 657 str(scratch, Address(rthread, 658 JavaThread::frame_anchor_offset() 659 + JavaFrameAnchor::last_Java_pc_offset())); 660 661 set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch); 662 } 663 664 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 665 Register last_java_fp, 666 Label &L, 667 Register scratch) { 668 if (L.is_bound()) { 669 set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch); 670 } else { 671 InstructionMark im(this); 672 L.add_patch_at(code(), locator()); 673 set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch); 674 } 675 } 676 677 static inline bool target_needs_far_branch(address addr) { 678 // codecache size <= 128M 679 if (!MacroAssembler::far_branches()) { 680 return false; 681 } 682 // codecache size > 240M 683 if (MacroAssembler::codestub_branch_needs_far_jump()) { 684 return true; 685 } 686 // codecache size: 128M..240M 687 return !CodeCache::is_non_nmethod(addr); 688 } 689 690 void MacroAssembler::far_call(Address entry, Register tmp) { 691 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 692 assert(CodeCache::find_blob(entry.target()) != nullptr, 693 "destination of far call not found in code cache"); 694 assert(entry.rspec().type() == relocInfo::external_word_type 695 || entry.rspec().type() == relocInfo::runtime_call_type 696 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 697 if (target_needs_far_branch(entry.target())) { 698 uint64_t offset; 699 // We can use ADRP here because we know that the total size of 700 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 701 adrp(tmp, entry, offset); 702 add(tmp, tmp, offset); 703 blr(tmp); 704 } else { 705 bl(entry); 706 } 707 } 708 709 int MacroAssembler::far_jump(Address entry, Register tmp) { 710 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 711 assert(CodeCache::find_blob(entry.target()) != nullptr, 712 "destination of far call not found in code cache"); 713 assert(entry.rspec().type() == relocInfo::external_word_type 714 || entry.rspec().type() == relocInfo::runtime_call_type 715 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 716 address start = pc(); 717 if (target_needs_far_branch(entry.target())) { 718 uint64_t offset; 719 // We can use ADRP here because we know that the total size of 720 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 721 adrp(tmp, entry, offset); 722 add(tmp, tmp, offset); 723 br(tmp); 724 } else { 725 b(entry); 726 } 727 return pc() - start; 728 } 729 730 void MacroAssembler::reserved_stack_check() { 731 // testing if reserved zone needs to be enabled 732 Label no_reserved_zone_enabling; 733 734 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 735 cmp(sp, rscratch1); 736 br(Assembler::LO, no_reserved_zone_enabling); 737 738 enter(); // LR and FP are live. 739 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone))); 740 mov(c_rarg0, rthread); 741 blr(rscratch1); 742 leave(); 743 744 // We have already removed our own frame. 745 // throw_delayed_StackOverflowError will think that it's been 746 // called by our caller. 747 lea(rscratch1, RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry())); 748 br(rscratch1); 749 should_not_reach_here(); 750 751 bind(no_reserved_zone_enabling); 752 } 753 754 static void pass_arg0(MacroAssembler* masm, Register arg) { 755 if (c_rarg0 != arg ) { 756 masm->mov(c_rarg0, arg); 757 } 758 } 759 760 static void pass_arg1(MacroAssembler* masm, Register arg) { 761 if (c_rarg1 != arg ) { 762 masm->mov(c_rarg1, arg); 763 } 764 } 765 766 static void pass_arg2(MacroAssembler* masm, Register arg) { 767 if (c_rarg2 != arg ) { 768 masm->mov(c_rarg2, arg); 769 } 770 } 771 772 static void pass_arg3(MacroAssembler* masm, Register arg) { 773 if (c_rarg3 != arg ) { 774 masm->mov(c_rarg3, arg); 775 } 776 } 777 778 static bool is_preemptable(address entry_point) { 779 return entry_point == CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter); 780 } 781 782 void MacroAssembler::call_VM_base(Register oop_result, 783 Register java_thread, 784 Register last_java_sp, 785 address entry_point, 786 int number_of_arguments, 787 bool check_exceptions) { 788 // determine java_thread register 789 if (!java_thread->is_valid()) { 790 java_thread = rthread; 791 } 792 793 // determine last_java_sp register 794 if (!last_java_sp->is_valid()) { 795 last_java_sp = esp; 796 } 797 798 // debugging support 799 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 800 assert(java_thread == rthread, "unexpected register"); 801 #ifdef ASSERT 802 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 803 // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 804 #endif // ASSERT 805 806 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 807 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 808 809 // push java thread (becomes first argument of C function) 810 811 mov(c_rarg0, java_thread); 812 813 // set last Java frame before call 814 assert(last_java_sp != rfp, "can't use rfp"); 815 816 Label l; 817 if (is_preemptable(entry_point)) { 818 // skip setting last_pc since we already set it to desired value. 819 set_last_Java_frame(last_java_sp, rfp, noreg, rscratch1); 820 } else { 821 set_last_Java_frame(last_java_sp, rfp, l, rscratch1); 822 } 823 824 // do the call, remove parameters 825 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l); 826 827 // lr could be poisoned with PAC signature during throw_pending_exception 828 // if it was tail-call optimized by compiler, since lr is not callee-saved 829 // reload it with proper value 830 adr(lr, l); 831 832 // reset last Java frame 833 // Only interpreter should have to clear fp 834 reset_last_Java_frame(true); 835 836 // C++ interp handles this in the interpreter 837 check_and_handle_popframe(java_thread); 838 check_and_handle_earlyret(java_thread); 839 840 if (check_exceptions) { 841 // check for pending exceptions (java_thread is set upon return) 842 ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset()))); 843 Label ok; 844 cbz(rscratch1, ok); 845 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 846 br(rscratch1); 847 bind(ok); 848 } 849 850 // get oop result if there is one and reset the value in the thread 851 if (oop_result->is_valid()) { 852 get_vm_result(oop_result, java_thread); 853 } 854 } 855 856 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 857 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions); 858 } 859 860 // Check the entry target is always reachable from any branch. 861 static bool is_always_within_branch_range(Address entry) { 862 const address target = entry.target(); 863 864 if (!CodeCache::contains(target)) { 865 // We always use trampolines for callees outside CodeCache. 866 assert(entry.rspec().type() == relocInfo::runtime_call_type, "non-runtime call of an external target"); 867 return false; 868 } 869 870 if (!MacroAssembler::far_branches()) { 871 return true; 872 } 873 874 if (entry.rspec().type() == relocInfo::runtime_call_type) { 875 // Runtime calls are calls of a non-compiled method (stubs, adapters). 876 // Non-compiled methods stay forever in CodeCache. 877 // We check whether the longest possible branch is within the branch range. 878 assert(CodeCache::find_blob(target) != nullptr && 879 !CodeCache::find_blob(target)->is_nmethod(), 880 "runtime call of compiled method"); 881 const address right_longest_branch_start = CodeCache::high_bound() - NativeInstruction::instruction_size; 882 const address left_longest_branch_start = CodeCache::low_bound(); 883 const bool is_reachable = Assembler::reachable_from_branch_at(left_longest_branch_start, target) && 884 Assembler::reachable_from_branch_at(right_longest_branch_start, target); 885 return is_reachable; 886 } 887 888 return false; 889 } 890 891 // Maybe emit a call via a trampoline. If the code cache is small 892 // trampolines won't be emitted. 893 address MacroAssembler::trampoline_call(Address entry) { 894 assert(entry.rspec().type() == relocInfo::runtime_call_type 895 || entry.rspec().type() == relocInfo::opt_virtual_call_type 896 || entry.rspec().type() == relocInfo::static_call_type 897 || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type"); 898 899 address target = entry.target(); 900 901 if (!is_always_within_branch_range(entry)) { 902 if (!in_scratch_emit_size()) { 903 // We don't want to emit a trampoline if C2 is generating dummy 904 // code during its branch shortening phase. 905 if (entry.rspec().type() == relocInfo::runtime_call_type) { 906 assert(CodeBuffer::supports_shared_stubs(), "must support shared stubs"); 907 code()->share_trampoline_for(entry.target(), offset()); 908 } else { 909 address stub = emit_trampoline_stub(offset(), target); 910 if (stub == nullptr) { 911 postcond(pc() == badAddress); 912 return nullptr; // CodeCache is full 913 } 914 } 915 } 916 target = pc(); 917 } 918 919 address call_pc = pc(); 920 relocate(entry.rspec()); 921 bl(target); 922 923 postcond(pc() != badAddress); 924 return call_pc; 925 } 926 927 // Emit a trampoline stub for a call to a target which is too far away. 928 // 929 // code sequences: 930 // 931 // call-site: 932 // branch-and-link to <destination> or <trampoline stub> 933 // 934 // Related trampoline stub for this call site in the stub section: 935 // load the call target from the constant pool 936 // branch (LR still points to the call site above) 937 938 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset, 939 address dest) { 940 // Max stub size: alignment nop, TrampolineStub. 941 address stub = start_a_stub(max_trampoline_stub_size()); 942 if (stub == nullptr) { 943 return nullptr; // CodeBuffer::expand failed 944 } 945 946 // Create a trampoline stub relocation which relates this trampoline stub 947 // with the call instruction at insts_call_instruction_offset in the 948 // instructions code-section. 949 align(wordSize); 950 relocate(trampoline_stub_Relocation::spec(code()->insts()->start() 951 + insts_call_instruction_offset)); 952 const int stub_start_offset = offset(); 953 954 // Now, create the trampoline stub's code: 955 // - load the call 956 // - call 957 Label target; 958 ldr(rscratch1, target); 959 br(rscratch1); 960 bind(target); 961 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset, 962 "should be"); 963 emit_int64((int64_t)dest); 964 965 const address stub_start_addr = addr_at(stub_start_offset); 966 967 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); 968 969 end_a_stub(); 970 return stub_start_addr; 971 } 972 973 int MacroAssembler::max_trampoline_stub_size() { 974 // Max stub size: alignment nop, TrampolineStub. 975 return NativeInstruction::instruction_size + NativeCallTrampolineStub::instruction_size; 976 } 977 978 void MacroAssembler::emit_static_call_stub() { 979 // CompiledDirectCall::set_to_interpreted knows the 980 // exact layout of this stub. 981 982 isb(); 983 mov_metadata(rmethod, nullptr); 984 985 // Jump to the entry point of the c2i stub. 986 movptr(rscratch1, 0); 987 br(rscratch1); 988 } 989 990 int MacroAssembler::static_call_stub_size() { 991 // isb; movk; movz; movz; movk; movz; movz; br 992 return 8 * NativeInstruction::instruction_size; 993 } 994 995 void MacroAssembler::c2bool(Register x) { 996 // implements x == 0 ? 0 : 1 997 // note: must only look at least-significant byte of x 998 // since C-style booleans are stored in one byte 999 // only! (was bug) 1000 tst(x, 0xff); 1001 cset(x, Assembler::NE); 1002 } 1003 1004 address MacroAssembler::ic_call(address entry, jint method_index) { 1005 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 1006 // address const_ptr = long_constant((jlong)Universe::non_oop_word()); 1007 // uintptr_t offset; 1008 // ldr_constant(rscratch2, const_ptr); 1009 movptr(rscratch2, (intptr_t)Universe::non_oop_word()); 1010 return trampoline_call(Address(entry, rh)); 1011 } 1012 1013 int MacroAssembler::ic_check_size() { 1014 int extra_instructions = UseCompactObjectHeaders ? 1 : 0; 1015 if (target_needs_far_branch(CAST_FROM_FN_PTR(address, SharedRuntime::get_ic_miss_stub()))) { 1016 return NativeInstruction::instruction_size * (7 + extra_instructions); 1017 } else { 1018 return NativeInstruction::instruction_size * (5 + extra_instructions); 1019 } 1020 } 1021 1022 int MacroAssembler::ic_check(int end_alignment) { 1023 Register receiver = j_rarg0; 1024 Register data = rscratch2; 1025 Register tmp1 = rscratch1; 1026 Register tmp2 = r10; 1027 1028 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed 1029 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 1030 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align 1031 // before the inline cache check here, and not after 1032 align(end_alignment, offset() + ic_check_size()); 1033 1034 int uep_offset = offset(); 1035 1036 if (UseCompactObjectHeaders) { 1037 load_narrow_klass_compact(tmp1, receiver); 1038 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1039 cmpw(tmp1, tmp2); 1040 } else if (UseCompressedClassPointers) { 1041 ldrw(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1042 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1043 cmpw(tmp1, tmp2); 1044 } else { 1045 ldr(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1046 ldr(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1047 cmp(tmp1, tmp2); 1048 } 1049 1050 Label dont; 1051 br(Assembler::EQ, dont); 1052 far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1053 bind(dont); 1054 assert((offset() % end_alignment) == 0, "Misaligned verified entry point"); 1055 1056 return uep_offset; 1057 } 1058 1059 // Implementation of call_VM versions 1060 1061 void MacroAssembler::call_VM(Register oop_result, 1062 address entry_point, 1063 bool check_exceptions) { 1064 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1065 } 1066 1067 void MacroAssembler::call_VM(Register oop_result, 1068 address entry_point, 1069 Register arg_1, 1070 bool check_exceptions) { 1071 pass_arg1(this, arg_1); 1072 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1073 } 1074 1075 void MacroAssembler::call_VM(Register oop_result, 1076 address entry_point, 1077 Register arg_1, 1078 Register arg_2, 1079 bool check_exceptions) { 1080 assert_different_registers(arg_1, c_rarg2); 1081 pass_arg2(this, arg_2); 1082 pass_arg1(this, arg_1); 1083 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1084 } 1085 1086 void MacroAssembler::call_VM(Register oop_result, 1087 address entry_point, 1088 Register arg_1, 1089 Register arg_2, 1090 Register arg_3, 1091 bool check_exceptions) { 1092 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1093 assert_different_registers(arg_2, c_rarg3); 1094 pass_arg3(this, arg_3); 1095 1096 pass_arg2(this, arg_2); 1097 1098 pass_arg1(this, arg_1); 1099 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1100 } 1101 1102 void MacroAssembler::call_VM(Register oop_result, 1103 Register last_java_sp, 1104 address entry_point, 1105 int number_of_arguments, 1106 bool check_exceptions) { 1107 call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1108 } 1109 1110 void MacroAssembler::call_VM(Register oop_result, 1111 Register last_java_sp, 1112 address entry_point, 1113 Register arg_1, 1114 bool check_exceptions) { 1115 pass_arg1(this, arg_1); 1116 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1117 } 1118 1119 void MacroAssembler::call_VM(Register oop_result, 1120 Register last_java_sp, 1121 address entry_point, 1122 Register arg_1, 1123 Register arg_2, 1124 bool check_exceptions) { 1125 1126 assert_different_registers(arg_1, c_rarg2); 1127 pass_arg2(this, arg_2); 1128 pass_arg1(this, arg_1); 1129 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1130 } 1131 1132 void MacroAssembler::call_VM(Register oop_result, 1133 Register last_java_sp, 1134 address entry_point, 1135 Register arg_1, 1136 Register arg_2, 1137 Register arg_3, 1138 bool check_exceptions) { 1139 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1140 assert_different_registers(arg_2, c_rarg3); 1141 pass_arg3(this, arg_3); 1142 pass_arg2(this, arg_2); 1143 pass_arg1(this, arg_1); 1144 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1145 } 1146 1147 1148 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { 1149 ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); 1150 str(zr, Address(java_thread, JavaThread::vm_result_offset())); 1151 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1152 } 1153 1154 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { 1155 ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); 1156 str(zr, Address(java_thread, JavaThread::vm_result_2_offset())); 1157 } 1158 1159 void MacroAssembler::align(int modulus) { 1160 align(modulus, offset()); 1161 } 1162 1163 // Ensure that the code at target bytes offset from the current offset() is aligned 1164 // according to modulus. 1165 void MacroAssembler::align(int modulus, int target) { 1166 int delta = target - offset(); 1167 while ((offset() + delta) % modulus != 0) nop(); 1168 } 1169 1170 void MacroAssembler::post_call_nop() { 1171 if (!Continuations::enabled()) { 1172 return; 1173 } 1174 InstructionMark im(this); 1175 relocate(post_call_nop_Relocation::spec()); 1176 InlineSkippedInstructionsCounter skipCounter(this); 1177 nop(); 1178 movk(zr, 0); 1179 movk(zr, 0); 1180 } 1181 1182 // these are no-ops overridden by InterpreterMacroAssembler 1183 1184 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } 1185 1186 void MacroAssembler::check_and_handle_popframe(Register java_thread) { } 1187 1188 // Look up the method for a megamorphic invokeinterface call. 1189 // The target method is determined by <intf_klass, itable_index>. 1190 // The receiver klass is in recv_klass. 1191 // On success, the result will be in method_result, and execution falls through. 1192 // On failure, execution transfers to the given label. 1193 void MacroAssembler::lookup_interface_method(Register recv_klass, 1194 Register intf_klass, 1195 RegisterOrConstant itable_index, 1196 Register method_result, 1197 Register scan_temp, 1198 Label& L_no_such_interface, 1199 bool return_method) { 1200 assert_different_registers(recv_klass, intf_klass, scan_temp); 1201 assert_different_registers(method_result, intf_klass, scan_temp); 1202 assert(recv_klass != method_result || !return_method, 1203 "recv_klass can be destroyed when method isn't needed"); 1204 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 1205 "caller must use same register for non-constant itable index as for method"); 1206 1207 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 1208 int vtable_base = in_bytes(Klass::vtable_start_offset()); 1209 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 1210 int scan_step = itableOffsetEntry::size() * wordSize; 1211 int vte_size = vtableEntry::size_in_bytes(); 1212 assert(vte_size == wordSize, "else adjust times_vte_scale"); 1213 1214 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1215 1216 // Could store the aligned, prescaled offset in the klass. 1217 // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 1218 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3))); 1219 add(scan_temp, scan_temp, vtable_base); 1220 1221 if (return_method) { 1222 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 1223 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 1224 // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 1225 lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3))); 1226 if (itentry_off) 1227 add(recv_klass, recv_klass, itentry_off); 1228 } 1229 1230 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 1231 // if (scan->interface() == intf) { 1232 // result = (klass + scan->offset() + itable_index); 1233 // } 1234 // } 1235 Label search, found_method; 1236 1237 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1238 cmp(intf_klass, method_result); 1239 br(Assembler::EQ, found_method); 1240 bind(search); 1241 // Check that the previous entry is non-null. A null entry means that 1242 // the receiver class doesn't implement the interface, and wasn't the 1243 // same as when the caller was compiled. 1244 cbz(method_result, L_no_such_interface); 1245 if (itableOffsetEntry::interface_offset() != 0) { 1246 add(scan_temp, scan_temp, scan_step); 1247 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1248 } else { 1249 ldr(method_result, Address(pre(scan_temp, scan_step))); 1250 } 1251 cmp(intf_klass, method_result); 1252 br(Assembler::NE, search); 1253 1254 bind(found_method); 1255 1256 // Got a hit. 1257 if (return_method) { 1258 ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 1259 ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0))); 1260 } 1261 } 1262 1263 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 1264 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData 1265 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 1266 // The target method is determined by <holder_klass, itable_index>. 1267 // The receiver klass is in recv_klass. 1268 // On success, the result will be in method_result, and execution falls through. 1269 // On failure, execution transfers to the given label. 1270 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 1271 Register holder_klass, 1272 Register resolved_klass, 1273 Register method_result, 1274 Register temp_itbl_klass, 1275 Register scan_temp, 1276 int itable_index, 1277 Label& L_no_such_interface) { 1278 // 'method_result' is only used as output register at the very end of this method. 1279 // Until then we can reuse it as 'holder_offset'. 1280 Register holder_offset = method_result; 1281 assert_different_registers(resolved_klass, recv_klass, holder_klass, temp_itbl_klass, scan_temp, holder_offset); 1282 1283 int vtable_start_offset = in_bytes(Klass::vtable_start_offset()); 1284 int itable_offset_entry_size = itableOffsetEntry::size() * wordSize; 1285 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 1286 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 1287 1288 Label L_loop_search_resolved_entry, L_resolved_found, L_holder_found; 1289 1290 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1291 add(recv_klass, recv_klass, vtable_start_offset + ioffset); 1292 // itableOffsetEntry[] itable = recv_klass + Klass::vtable_start_offset() + sizeof(vtableEntry) * recv_klass->_vtable_len; 1293 // temp_itbl_klass = itable[0]._interface; 1294 int vtblEntrySize = vtableEntry::size_in_bytes(); 1295 assert(vtblEntrySize == wordSize, "ldr lsl shift amount must be 3"); 1296 ldr(temp_itbl_klass, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1297 mov(holder_offset, zr); 1298 // scan_temp = &(itable[0]._interface) 1299 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1300 1301 // Initial checks: 1302 // - if (holder_klass != resolved_klass), go to "scan for resolved" 1303 // - if (itable[0] == holder_klass), shortcut to "holder found" 1304 // - if (itable[0] == 0), no such interface 1305 cmp(resolved_klass, holder_klass); 1306 br(Assembler::NE, L_loop_search_resolved_entry); 1307 cmp(holder_klass, temp_itbl_klass); 1308 br(Assembler::EQ, L_holder_found); 1309 cbz(temp_itbl_klass, L_no_such_interface); 1310 1311 // Loop: Look for holder_klass record in itable 1312 // do { 1313 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1314 // if (temp_itbl_klass == holder_klass) { 1315 // goto L_holder_found; // Found! 1316 // } 1317 // } while (temp_itbl_klass != 0); 1318 // goto L_no_such_interface // Not found. 1319 Label L_search_holder; 1320 bind(L_search_holder); 1321 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1322 cmp(holder_klass, temp_itbl_klass); 1323 br(Assembler::EQ, L_holder_found); 1324 cbnz(temp_itbl_klass, L_search_holder); 1325 1326 b(L_no_such_interface); 1327 1328 // Loop: Look for resolved_class record in itable 1329 // while (true) { 1330 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1331 // if (temp_itbl_klass == 0) { 1332 // goto L_no_such_interface; 1333 // } 1334 // if (temp_itbl_klass == resolved_klass) { 1335 // goto L_resolved_found; // Found! 1336 // } 1337 // if (temp_itbl_klass == holder_klass) { 1338 // holder_offset = scan_temp; 1339 // } 1340 // } 1341 // 1342 Label L_loop_search_resolved; 1343 bind(L_loop_search_resolved); 1344 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1345 bind(L_loop_search_resolved_entry); 1346 cbz(temp_itbl_klass, L_no_such_interface); 1347 cmp(resolved_klass, temp_itbl_klass); 1348 br(Assembler::EQ, L_resolved_found); 1349 cmp(holder_klass, temp_itbl_klass); 1350 br(Assembler::NE, L_loop_search_resolved); 1351 mov(holder_offset, scan_temp); 1352 b(L_loop_search_resolved); 1353 1354 // See if we already have a holder klass. If not, go and scan for it. 1355 bind(L_resolved_found); 1356 cbz(holder_offset, L_search_holder); 1357 mov(scan_temp, holder_offset); 1358 1359 // Finally, scan_temp contains holder_klass vtable offset 1360 bind(L_holder_found); 1361 ldrw(method_result, Address(scan_temp, ooffset - ioffset)); 1362 add(recv_klass, recv_klass, itable_index * wordSize + in_bytes(itableMethodEntry::method_offset()) 1363 - vtable_start_offset - ioffset); // substract offsets to restore the original value of recv_klass 1364 ldr(method_result, Address(recv_klass, method_result, Address::uxtw(0))); 1365 } 1366 1367 // virtual method calling 1368 void MacroAssembler::lookup_virtual_method(Register recv_klass, 1369 RegisterOrConstant vtable_index, 1370 Register method_result) { 1371 assert(vtableEntry::size() * wordSize == 8, 1372 "adjust the scaling in the code below"); 1373 int64_t vtable_offset_in_bytes = in_bytes(Klass::vtable_start_offset() + vtableEntry::method_offset()); 1374 1375 if (vtable_index.is_register()) { 1376 lea(method_result, Address(recv_klass, 1377 vtable_index.as_register(), 1378 Address::lsl(LogBytesPerWord))); 1379 ldr(method_result, Address(method_result, vtable_offset_in_bytes)); 1380 } else { 1381 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize; 1382 ldr(method_result, 1383 form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0)); 1384 } 1385 } 1386 1387 void MacroAssembler::check_klass_subtype(Register sub_klass, 1388 Register super_klass, 1389 Register temp_reg, 1390 Label& L_success) { 1391 Label L_failure; 1392 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 1393 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 1394 bind(L_failure); 1395 } 1396 1397 1398 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 1399 Register super_klass, 1400 Register temp_reg, 1401 Label* L_success, 1402 Label* L_failure, 1403 Label* L_slow_path, 1404 Register super_check_offset) { 1405 assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset); 1406 bool must_load_sco = ! super_check_offset->is_valid(); 1407 if (must_load_sco) { 1408 assert(temp_reg != noreg, "supply either a temp or a register offset"); 1409 } 1410 1411 Label L_fallthrough; 1412 int label_nulls = 0; 1413 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1414 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1415 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 1416 assert(label_nulls <= 1, "at most one null in the batch"); 1417 1418 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1419 Address super_check_offset_addr(super_klass, sco_offset); 1420 1421 // Hacked jmp, which may only be used just before L_fallthrough. 1422 #define final_jmp(label) \ 1423 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 1424 else b(label) /*omit semi*/ 1425 1426 // If the pointers are equal, we are done (e.g., String[] elements). 1427 // This self-check enables sharing of secondary supertype arrays among 1428 // non-primary types such as array-of-interface. Otherwise, each such 1429 // type would need its own customized SSA. 1430 // We move this check to the front of the fast path because many 1431 // type checks are in fact trivially successful in this manner, 1432 // so we get a nicely predicted branch right at the start of the check. 1433 cmp(sub_klass, super_klass); 1434 br(Assembler::EQ, *L_success); 1435 1436 // Check the supertype display: 1437 if (must_load_sco) { 1438 ldrw(temp_reg, super_check_offset_addr); 1439 super_check_offset = temp_reg; 1440 } 1441 1442 Address super_check_addr(sub_klass, super_check_offset); 1443 ldr(rscratch1, super_check_addr); 1444 cmp(super_klass, rscratch1); // load displayed supertype 1445 br(Assembler::EQ, *L_success); 1446 1447 // This check has worked decisively for primary supers. 1448 // Secondary supers are sought in the super_cache ('super_cache_addr'). 1449 // (Secondary supers are interfaces and very deeply nested subtypes.) 1450 // This works in the same check above because of a tricky aliasing 1451 // between the super_cache and the primary super display elements. 1452 // (The 'super_check_addr' can address either, as the case requires.) 1453 // Note that the cache is updated below if it does not help us find 1454 // what we need immediately. 1455 // So if it was a primary super, we can just fail immediately. 1456 // Otherwise, it's the slow path for us (no success at this point). 1457 1458 sub(rscratch1, super_check_offset, in_bytes(Klass::secondary_super_cache_offset())); 1459 if (L_failure == &L_fallthrough) { 1460 cbz(rscratch1, *L_slow_path); 1461 } else { 1462 cbnz(rscratch1, *L_failure); 1463 final_jmp(*L_slow_path); 1464 } 1465 1466 bind(L_fallthrough); 1467 1468 #undef final_jmp 1469 } 1470 1471 // These two are taken from x86, but they look generally useful 1472 1473 // scans count pointer sized words at [addr] for occurrence of value, 1474 // generic 1475 void MacroAssembler::repne_scan(Register addr, Register value, Register count, 1476 Register scratch) { 1477 Label Lloop, Lexit; 1478 cbz(count, Lexit); 1479 bind(Lloop); 1480 ldr(scratch, post(addr, wordSize)); 1481 cmp(value, scratch); 1482 br(EQ, Lexit); 1483 sub(count, count, 1); 1484 cbnz(count, Lloop); 1485 bind(Lexit); 1486 } 1487 1488 // scans count 4 byte words at [addr] for occurrence of value, 1489 // generic 1490 void MacroAssembler::repne_scanw(Register addr, Register value, Register count, 1491 Register scratch) { 1492 Label Lloop, Lexit; 1493 cbz(count, Lexit); 1494 bind(Lloop); 1495 ldrw(scratch, post(addr, wordSize)); 1496 cmpw(value, scratch); 1497 br(EQ, Lexit); 1498 sub(count, count, 1); 1499 cbnz(count, Lloop); 1500 bind(Lexit); 1501 } 1502 1503 void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass, 1504 Register super_klass, 1505 Register temp_reg, 1506 Register temp2_reg, 1507 Label* L_success, 1508 Label* L_failure, 1509 bool set_cond_codes) { 1510 // NB! Callers may assume that, when temp2_reg is a valid register, 1511 // this code sets it to a nonzero value. 1512 1513 assert_different_registers(sub_klass, super_klass, temp_reg); 1514 if (temp2_reg != noreg) 1515 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1516 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 1517 1518 Label L_fallthrough; 1519 int label_nulls = 0; 1520 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1521 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1522 assert(label_nulls <= 1, "at most one null in the batch"); 1523 1524 // a couple of useful fields in sub_klass: 1525 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 1526 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1527 Address secondary_supers_addr(sub_klass, ss_offset); 1528 Address super_cache_addr( sub_klass, sc_offset); 1529 1530 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1531 1532 // Do a linear scan of the secondary super-klass chain. 1533 // This code is rarely used, so simplicity is a virtue here. 1534 // The repne_scan instruction uses fixed registers, which we must spill. 1535 // Don't worry too much about pre-existing connections with the input regs. 1536 1537 assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super) 1538 assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter) 1539 1540 RegSet pushed_registers; 1541 if (!IS_A_TEMP(r2)) pushed_registers += r2; 1542 if (!IS_A_TEMP(r5)) pushed_registers += r5; 1543 1544 if (super_klass != r0) { 1545 if (!IS_A_TEMP(r0)) pushed_registers += r0; 1546 } 1547 1548 push(pushed_registers, sp); 1549 1550 // Get super_klass value into r0 (even if it was in r5 or r2). 1551 if (super_klass != r0) { 1552 mov(r0, super_klass); 1553 } 1554 1555 #ifndef PRODUCT 1556 incrementw(ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr)); 1557 #endif //PRODUCT 1558 1559 // We will consult the secondary-super array. 1560 ldr(r5, secondary_supers_addr); 1561 // Load the array length. 1562 ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes())); 1563 // Skip to start of data. 1564 add(r5, r5, Array<Klass*>::base_offset_in_bytes()); 1565 1566 cmp(sp, zr); // Clear Z flag; SP is never zero 1567 // Scan R2 words at [R5] for an occurrence of R0. 1568 // Set NZ/Z based on last compare. 1569 repne_scan(r5, r0, r2, rscratch1); 1570 1571 // Unspill the temp. registers: 1572 pop(pushed_registers, sp); 1573 1574 br(Assembler::NE, *L_failure); 1575 1576 // Success. Cache the super we found and proceed in triumph. 1577 1578 if (UseSecondarySupersCache) { 1579 str(super_klass, super_cache_addr); 1580 } 1581 1582 if (L_success != &L_fallthrough) { 1583 b(*L_success); 1584 } 1585 1586 #undef IS_A_TEMP 1587 1588 bind(L_fallthrough); 1589 } 1590 1591 // If Register r is invalid, remove a new register from 1592 // available_regs, and add new register to regs_to_push. 1593 Register MacroAssembler::allocate_if_noreg(Register r, 1594 RegSetIterator<Register> &available_regs, 1595 RegSet ®s_to_push) { 1596 if (!r->is_valid()) { 1597 r = *available_regs++; 1598 regs_to_push += r; 1599 } 1600 return r; 1601 } 1602 1603 // check_klass_subtype_slow_path_table() looks for super_klass in the 1604 // hash table belonging to super_klass, branching to L_success or 1605 // L_failure as appropriate. This is essentially a shim which 1606 // allocates registers as necessary then calls 1607 // lookup_secondary_supers_table() to do the work. Any of the temp 1608 // regs may be noreg, in which case this logic will chooses some 1609 // registers push and pop them from the stack. 1610 void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass, 1611 Register super_klass, 1612 Register temp_reg, 1613 Register temp2_reg, 1614 Register temp3_reg, 1615 Register result_reg, 1616 FloatRegister vtemp, 1617 Label* L_success, 1618 Label* L_failure, 1619 bool set_cond_codes) { 1620 RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg); 1621 1622 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1623 1624 Label L_fallthrough; 1625 int label_nulls = 0; 1626 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1627 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1628 assert(label_nulls <= 1, "at most one null in the batch"); 1629 1630 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1631 1632 RegSetIterator<Register> available_regs 1633 = (RegSet::range(r0, r15) - temps - sub_klass - super_klass).begin(); 1634 1635 RegSet pushed_regs; 1636 1637 temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs); 1638 temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs); 1639 temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs); 1640 result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs); 1641 1642 push(pushed_regs, sp); 1643 1644 lookup_secondary_supers_table_var(sub_klass, 1645 super_klass, 1646 temp_reg, temp2_reg, temp3_reg, vtemp, result_reg, 1647 nullptr); 1648 cmp(result_reg, zr); 1649 1650 // Unspill the temp. registers: 1651 pop(pushed_regs, sp); 1652 1653 // NB! Callers may assume that, when set_cond_codes is true, this 1654 // code sets temp2_reg to a nonzero value. 1655 if (set_cond_codes) { 1656 mov(temp2_reg, 1); 1657 } 1658 1659 br(Assembler::NE, *L_failure); 1660 1661 if (L_success != &L_fallthrough) { 1662 b(*L_success); 1663 } 1664 1665 bind(L_fallthrough); 1666 } 1667 1668 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 1669 Register super_klass, 1670 Register temp_reg, 1671 Register temp2_reg, 1672 Label* L_success, 1673 Label* L_failure, 1674 bool set_cond_codes) { 1675 if (UseSecondarySupersTable) { 1676 check_klass_subtype_slow_path_table 1677 (sub_klass, super_klass, temp_reg, temp2_reg, /*temp3*/noreg, /*result*/noreg, 1678 /*vtemp*/fnoreg, 1679 L_success, L_failure, set_cond_codes); 1680 } else { 1681 check_klass_subtype_slow_path_linear 1682 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, set_cond_codes); 1683 } 1684 } 1685 1686 1687 // Ensure that the inline code and the stub are using the same registers. 1688 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \ 1689 do { \ 1690 assert(r_super_klass == r0 && \ 1691 r_array_base == r1 && \ 1692 r_array_length == r2 && \ 1693 (r_array_index == r3 || r_array_index == noreg) && \ 1694 (r_sub_klass == r4 || r_sub_klass == noreg) && \ 1695 (r_bitmap == rscratch2 || r_bitmap == noreg) && \ 1696 (result == r5 || result == noreg), "registers must match aarch64.ad"); \ 1697 } while(0) 1698 1699 bool MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass, 1700 Register r_super_klass, 1701 Register temp1, 1702 Register temp2, 1703 Register temp3, 1704 FloatRegister vtemp, 1705 Register result, 1706 u1 super_klass_slot, 1707 bool stub_is_near) { 1708 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1709 1710 Label L_fallthrough; 1711 1712 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1713 1714 const Register 1715 r_array_base = temp1, // r1 1716 r_array_length = temp2, // r2 1717 r_array_index = temp3, // r3 1718 r_bitmap = rscratch2; 1719 1720 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1721 1722 u1 bit = super_klass_slot; 1723 1724 // Make sure that result is nonzero if the TBZ below misses. 1725 mov(result, 1); 1726 1727 // We're going to need the bitmap in a vector reg and in a core reg, 1728 // so load both now. 1729 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1730 if (bit != 0) { 1731 ldrd(vtemp, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1732 } 1733 // First check the bitmap to see if super_klass might be present. If 1734 // the bit is zero, we are certain that super_klass is not one of 1735 // the secondary supers. 1736 tbz(r_bitmap, bit, L_fallthrough); 1737 1738 // Get the first array index that can contain super_klass into r_array_index. 1739 if (bit != 0) { 1740 shld(vtemp, vtemp, Klass::SECONDARY_SUPERS_TABLE_MASK - bit); 1741 cnt(vtemp, T8B, vtemp); 1742 addv(vtemp, T8B, vtemp); 1743 fmovd(r_array_index, vtemp); 1744 } else { 1745 mov(r_array_index, (u1)1); 1746 } 1747 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1748 1749 // We will consult the secondary-super array. 1750 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1751 1752 // The value i in r_array_index is >= 1, so even though r_array_base 1753 // points to the length, we don't need to adjust it to point to the 1754 // data. 1755 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1756 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1757 1758 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1759 eor(result, result, r_super_klass); 1760 cbz(result, L_fallthrough); // Found a match 1761 1762 // Is there another entry to check? Consult the bitmap. 1763 tbz(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK, L_fallthrough); 1764 1765 // Linear probe. 1766 if (bit != 0) { 1767 ror(r_bitmap, r_bitmap, bit); 1768 } 1769 1770 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1771 // The next slot to be inspected, by the stub we're about to call, 1772 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1773 // have been checked. 1774 Address stub = RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub()); 1775 if (stub_is_near) { 1776 bl(stub); 1777 } else { 1778 address call = trampoline_call(stub); 1779 if (call == nullptr) { 1780 return false; // trampoline allocation failed 1781 } 1782 } 1783 1784 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1785 1786 bind(L_fallthrough); 1787 1788 if (VerifySecondarySupers) { 1789 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1790 temp1, temp2, result); // r1, r2, r5 1791 } 1792 return true; 1793 } 1794 1795 // At runtime, return 0 in result if r_super_klass is a superclass of 1796 // r_sub_klass, otherwise return nonzero. Use this version of 1797 // lookup_secondary_supers_table() if you don't know ahead of time 1798 // which superclass will be searched for. Used by interpreter and 1799 // runtime stubs. It is larger and has somewhat greater latency than 1800 // the version above, which takes a constant super_klass_slot. 1801 void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass, 1802 Register r_super_klass, 1803 Register temp1, 1804 Register temp2, 1805 Register temp3, 1806 FloatRegister vtemp, 1807 Register result, 1808 Label *L_success) { 1809 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1810 1811 Label L_fallthrough; 1812 1813 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1814 1815 const Register 1816 r_array_index = temp3, 1817 slot = rscratch1, 1818 r_bitmap = rscratch2; 1819 1820 ldrb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 1821 1822 // Make sure that result is nonzero if the test below misses. 1823 mov(result, 1); 1824 1825 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1826 1827 // First check the bitmap to see if super_klass might be present. If 1828 // the bit is zero, we are certain that super_klass is not one of 1829 // the secondary supers. 1830 1831 // This next instruction is equivalent to: 1832 // mov(tmp_reg, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); 1833 // sub(temp2, tmp_reg, slot); 1834 eor(temp2, slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); 1835 lslv(temp2, r_bitmap, temp2); 1836 tbz(temp2, Klass::SECONDARY_SUPERS_TABLE_SIZE - 1, L_fallthrough); 1837 1838 bool must_save_v0 = (vtemp == fnoreg); 1839 if (must_save_v0) { 1840 // temp1 and result are free, so use them to preserve vtemp 1841 vtemp = v0; 1842 mov(temp1, vtemp, D, 0); 1843 mov(result, vtemp, D, 1); 1844 } 1845 1846 // Get the first array index that can contain super_klass into r_array_index. 1847 mov(vtemp, D, 0, temp2); 1848 cnt(vtemp, T8B, vtemp); 1849 addv(vtemp, T8B, vtemp); 1850 mov(r_array_index, vtemp, D, 0); 1851 1852 if (must_save_v0) { 1853 mov(vtemp, D, 0, temp1 ); 1854 mov(vtemp, D, 1, result); 1855 } 1856 1857 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1858 1859 const Register 1860 r_array_base = temp1, 1861 r_array_length = temp2; 1862 1863 // The value i in r_array_index is >= 1, so even though r_array_base 1864 // points to the length, we don't need to adjust it to point to the 1865 // data. 1866 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1867 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1868 1869 // We will consult the secondary-super array. 1870 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1871 1872 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1873 eor(result, result, r_super_klass); 1874 cbz(result, L_success ? *L_success : L_fallthrough); // Found a match 1875 1876 // Is there another entry to check? Consult the bitmap. 1877 rorv(r_bitmap, r_bitmap, slot); 1878 // rol(r_bitmap, r_bitmap, 1); 1879 tbz(r_bitmap, 1, L_fallthrough); 1880 1881 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1882 // The next slot to be inspected, by the logic we're about to call, 1883 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1884 // have been checked. 1885 lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index, 1886 r_bitmap, r_array_length, result, /*is_stub*/false); 1887 1888 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1889 1890 bind(L_fallthrough); 1891 1892 if (VerifySecondarySupers) { 1893 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1894 temp1, temp2, result); // r1, r2, r5 1895 } 1896 1897 if (L_success) { 1898 cbz(result, *L_success); 1899 } 1900 } 1901 1902 // Called by code generated by check_klass_subtype_slow_path 1903 // above. This is called when there is a collision in the hashed 1904 // lookup in the secondary supers array. 1905 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass, 1906 Register r_array_base, 1907 Register r_array_index, 1908 Register r_bitmap, 1909 Register temp1, 1910 Register result, 1911 bool is_stub) { 1912 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, result, rscratch1); 1913 1914 const Register 1915 r_array_length = temp1, 1916 r_sub_klass = noreg; // unused 1917 1918 if (is_stub) { 1919 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1920 } 1921 1922 Label L_fallthrough, L_huge; 1923 1924 // Load the array length. 1925 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 1926 // And adjust the array base to point to the data. 1927 // NB! Effectively increments current slot index by 1. 1928 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, ""); 1929 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 1930 1931 // The bitmap is full to bursting. 1932 // Implicit invariant: BITMAP_FULL implies (length > 0) 1933 assert(Klass::SECONDARY_SUPERS_BITMAP_FULL == ~uintx(0), ""); 1934 cmpw(r_array_length, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 2)); 1935 br(GT, L_huge); 1936 1937 // NB! Our caller has checked bits 0 and 1 in the bitmap. The 1938 // current slot (at secondary_supers[r_array_index]) has not yet 1939 // been inspected, and r_array_index may be out of bounds if we 1940 // wrapped around the end of the array. 1941 1942 { // This is conventional linear probing, but instead of terminating 1943 // when a null entry is found in the table, we maintain a bitmap 1944 // in which a 0 indicates missing entries. 1945 // As long as the bitmap is not completely full, 1946 // array_length == popcount(bitmap). The array_length check above 1947 // guarantees there are 0s in the bitmap, so the loop eventually 1948 // terminates. 1949 Label L_loop; 1950 bind(L_loop); 1951 1952 // Check for wraparound. 1953 cmp(r_array_index, r_array_length); 1954 csel(r_array_index, zr, r_array_index, GE); 1955 1956 ldr(rscratch1, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1957 eor(result, rscratch1, r_super_klass); 1958 cbz(result, L_fallthrough); 1959 1960 tbz(r_bitmap, 2, L_fallthrough); // look-ahead check (Bit 2); result is non-zero 1961 1962 ror(r_bitmap, r_bitmap, 1); 1963 add(r_array_index, r_array_index, 1); 1964 b(L_loop); 1965 } 1966 1967 { // Degenerate case: more than 64 secondary supers. 1968 // FIXME: We could do something smarter here, maybe a vectorized 1969 // comparison or a binary search, but is that worth any added 1970 // complexity? 1971 bind(L_huge); 1972 cmp(sp, zr); // Clear Z flag; SP is never zero 1973 repne_scan(r_array_base, r_super_klass, r_array_length, rscratch1); 1974 cset(result, NE); // result == 0 iff we got a match. 1975 } 1976 1977 bind(L_fallthrough); 1978 } 1979 1980 // Make sure that the hashed lookup and a linear scan agree. 1981 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass, 1982 Register r_super_klass, 1983 Register temp1, 1984 Register temp2, 1985 Register result) { 1986 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, result, rscratch1); 1987 1988 const Register 1989 r_array_base = temp1, 1990 r_array_length = temp2, 1991 r_array_index = noreg, // unused 1992 r_bitmap = noreg; // unused 1993 1994 BLOCK_COMMENT("verify_secondary_supers_table {"); 1995 1996 // We will consult the secondary-super array. 1997 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1998 1999 // Load the array length. 2000 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 2001 // And adjust the array base to point to the data. 2002 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 2003 2004 cmp(sp, zr); // Clear Z flag; SP is never zero 2005 // Scan R2 words at [R5] for an occurrence of R0. 2006 // Set NZ/Z based on last compare. 2007 repne_scan(/*addr*/r_array_base, /*value*/r_super_klass, /*count*/r_array_length, rscratch2); 2008 // rscratch1 == 0 iff we got a match. 2009 cset(rscratch1, NE); 2010 2011 Label passed; 2012 cmp(result, zr); 2013 cset(result, NE); // normalize result to 0/1 for comparison 2014 2015 cmp(rscratch1, result); 2016 br(EQ, passed); 2017 { 2018 mov(r0, r_super_klass); // r0 <- r0 2019 mov(r1, r_sub_klass); // r1 <- r4 2020 mov(r2, /*expected*/rscratch1); // r2 <- r8 2021 mov(r3, result); // r3 <- r5 2022 mov(r4, (address)("mismatch")); // r4 <- const 2023 rt_call(CAST_FROM_FN_PTR(address, Klass::on_secondary_supers_verification_failure), rscratch2); 2024 should_not_reach_here(); 2025 } 2026 bind(passed); 2027 2028 BLOCK_COMMENT("} verify_secondary_supers_table"); 2029 } 2030 2031 void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) { 2032 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 2033 assert_different_registers(klass, rthread, scratch); 2034 2035 Label L_fallthrough, L_tmp; 2036 if (L_fast_path == nullptr) { 2037 L_fast_path = &L_fallthrough; 2038 } else if (L_slow_path == nullptr) { 2039 L_slow_path = &L_fallthrough; 2040 } 2041 // Fast path check: class is fully initialized 2042 lea(scratch, Address(klass, InstanceKlass::init_state_offset())); 2043 ldarb(scratch, scratch); 2044 subs(zr, scratch, InstanceKlass::fully_initialized); 2045 br(Assembler::EQ, *L_fast_path); 2046 2047 // Fast path check: current thread is initializer thread 2048 ldr(scratch, Address(klass, InstanceKlass::init_thread_offset())); 2049 cmp(rthread, scratch); 2050 2051 if (L_slow_path == &L_fallthrough) { 2052 br(Assembler::EQ, *L_fast_path); 2053 bind(*L_slow_path); 2054 } else if (L_fast_path == &L_fallthrough) { 2055 br(Assembler::NE, *L_slow_path); 2056 bind(*L_fast_path); 2057 } else { 2058 Unimplemented(); 2059 } 2060 } 2061 2062 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 2063 if (!VerifyOops) return; 2064 2065 // Pass register number to verify_oop_subroutine 2066 const char* b = nullptr; 2067 { 2068 ResourceMark rm; 2069 stringStream ss; 2070 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 2071 b = code_string(ss.as_string()); 2072 } 2073 BLOCK_COMMENT("verify_oop {"); 2074 2075 strip_return_address(); // This might happen within a stack frame. 2076 protect_return_address(); 2077 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 2078 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 2079 2080 mov(r0, reg); 2081 movptr(rscratch1, (uintptr_t)(address)b); 2082 2083 // call indirectly to solve generation ordering problem 2084 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address())); 2085 ldr(rscratch2, Address(rscratch2)); 2086 blr(rscratch2); 2087 2088 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 2089 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 2090 authenticate_return_address(); 2091 2092 BLOCK_COMMENT("} verify_oop"); 2093 } 2094 2095 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 2096 if (!VerifyOops) return; 2097 2098 const char* b = nullptr; 2099 { 2100 ResourceMark rm; 2101 stringStream ss; 2102 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 2103 b = code_string(ss.as_string()); 2104 } 2105 BLOCK_COMMENT("verify_oop_addr {"); 2106 2107 strip_return_address(); // This might happen within a stack frame. 2108 protect_return_address(); 2109 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 2110 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 2111 2112 // addr may contain sp so we will have to adjust it based on the 2113 // pushes that we just did. 2114 if (addr.uses(sp)) { 2115 lea(r0, addr); 2116 ldr(r0, Address(r0, 4 * wordSize)); 2117 } else { 2118 ldr(r0, addr); 2119 } 2120 movptr(rscratch1, (uintptr_t)(address)b); 2121 2122 // call indirectly to solve generation ordering problem 2123 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address())); 2124 ldr(rscratch2, Address(rscratch2)); 2125 blr(rscratch2); 2126 2127 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 2128 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 2129 authenticate_return_address(); 2130 2131 BLOCK_COMMENT("} verify_oop_addr"); 2132 } 2133 2134 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 2135 int extra_slot_offset) { 2136 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 2137 int stackElementSize = Interpreter::stackElementSize; 2138 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 2139 #ifdef ASSERT 2140 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 2141 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 2142 #endif 2143 if (arg_slot.is_constant()) { 2144 return Address(esp, arg_slot.as_constant() * stackElementSize 2145 + offset); 2146 } else { 2147 add(rscratch1, esp, arg_slot.as_register(), 2148 ext::uxtx, exact_log2(stackElementSize)); 2149 return Address(rscratch1, offset); 2150 } 2151 } 2152 2153 void MacroAssembler::call_VM_leaf_base(address entry_point, 2154 int number_of_arguments, 2155 Label *retaddr) { 2156 Label E, L; 2157 2158 stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize))); 2159 2160 mov(rscratch1, entry_point); 2161 blr(rscratch1); 2162 if (retaddr) 2163 bind(*retaddr); 2164 2165 ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize))); 2166 } 2167 2168 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 2169 call_VM_leaf_base(entry_point, number_of_arguments); 2170 } 2171 2172 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 2173 pass_arg0(this, arg_0); 2174 call_VM_leaf_base(entry_point, 1); 2175 } 2176 2177 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 2178 assert_different_registers(arg_1, c_rarg0); 2179 pass_arg0(this, arg_0); 2180 pass_arg1(this, arg_1); 2181 call_VM_leaf_base(entry_point, 2); 2182 } 2183 2184 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, 2185 Register arg_1, Register arg_2) { 2186 assert_different_registers(arg_1, c_rarg0); 2187 assert_different_registers(arg_2, c_rarg0, c_rarg1); 2188 pass_arg0(this, arg_0); 2189 pass_arg1(this, arg_1); 2190 pass_arg2(this, arg_2); 2191 call_VM_leaf_base(entry_point, 3); 2192 } 2193 2194 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 2195 pass_arg0(this, arg_0); 2196 MacroAssembler::call_VM_leaf_base(entry_point, 1); 2197 } 2198 2199 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 2200 2201 assert_different_registers(arg_0, c_rarg1); 2202 pass_arg1(this, arg_1); 2203 pass_arg0(this, arg_0); 2204 MacroAssembler::call_VM_leaf_base(entry_point, 2); 2205 } 2206 2207 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 2208 assert_different_registers(arg_0, c_rarg1, c_rarg2); 2209 assert_different_registers(arg_1, c_rarg2); 2210 pass_arg2(this, arg_2); 2211 pass_arg1(this, arg_1); 2212 pass_arg0(this, arg_0); 2213 MacroAssembler::call_VM_leaf_base(entry_point, 3); 2214 } 2215 2216 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 2217 assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3); 2218 assert_different_registers(arg_1, c_rarg2, c_rarg3); 2219 assert_different_registers(arg_2, c_rarg3); 2220 pass_arg3(this, arg_3); 2221 pass_arg2(this, arg_2); 2222 pass_arg1(this, arg_1); 2223 pass_arg0(this, arg_0); 2224 MacroAssembler::call_VM_leaf_base(entry_point, 4); 2225 } 2226 2227 void MacroAssembler::null_check(Register reg, int offset) { 2228 if (needs_explicit_null_check(offset)) { 2229 // provoke OS null exception if reg is null by 2230 // accessing M[reg] w/o changing any registers 2231 // NOTE: this is plenty to provoke a segv 2232 ldr(zr, Address(reg)); 2233 } else { 2234 // nothing to do, (later) access of M[reg + offset] 2235 // will provoke OS null exception if reg is null 2236 } 2237 } 2238 2239 // MacroAssembler protected routines needed to implement 2240 // public methods 2241 2242 void MacroAssembler::mov(Register r, Address dest) { 2243 code_section()->relocate(pc(), dest.rspec()); 2244 uint64_t imm64 = (uint64_t)dest.target(); 2245 movptr(r, imm64); 2246 } 2247 2248 // Move a constant pointer into r. In AArch64 mode the virtual 2249 // address space is 48 bits in size, so we only need three 2250 // instructions to create a patchable instruction sequence that can 2251 // reach anywhere. 2252 void MacroAssembler::movptr(Register r, uintptr_t imm64) { 2253 #ifndef PRODUCT 2254 { 2255 char buffer[64]; 2256 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64); 2257 block_comment(buffer); 2258 } 2259 #endif 2260 assert(imm64 < (1ull << 48), "48-bit overflow in address constant"); 2261 movz(r, imm64 & 0xffff); 2262 imm64 >>= 16; 2263 movk(r, imm64 & 0xffff, 16); 2264 imm64 >>= 16; 2265 movk(r, imm64 & 0xffff, 32); 2266 } 2267 2268 // Macro to mov replicated immediate to vector register. 2269 // imm64: only the lower 8/16/32 bits are considered for B/H/S type. That is, 2270 // the upper 56/48/32 bits must be zeros for B/H/S type. 2271 // Vd will get the following values for different arrangements in T 2272 // imm64 == hex 000000gh T8B: Vd = ghghghghghghghgh 2273 // imm64 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh 2274 // imm64 == hex 0000efgh T4H: Vd = efghefghefghefgh 2275 // imm64 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh 2276 // imm64 == hex abcdefgh T2S: Vd = abcdefghabcdefgh 2277 // imm64 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh 2278 // imm64 == hex abcdefgh T1D: Vd = 00000000abcdefgh 2279 // imm64 == hex abcdefgh T2D: Vd = 00000000abcdefgh00000000abcdefgh 2280 // Clobbers rscratch1 2281 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64) { 2282 assert(T != T1Q, "unsupported"); 2283 if (T == T1D || T == T2D) { 2284 int imm = operand_valid_for_movi_immediate(imm64, T); 2285 if (-1 != imm) { 2286 movi(Vd, T, imm); 2287 } else { 2288 mov(rscratch1, imm64); 2289 dup(Vd, T, rscratch1); 2290 } 2291 return; 2292 } 2293 2294 #ifdef ASSERT 2295 if (T == T8B || T == T16B) assert((imm64 & ~0xff) == 0, "extraneous bits (T8B/T16B)"); 2296 if (T == T4H || T == T8H) assert((imm64 & ~0xffff) == 0, "extraneous bits (T4H/T8H)"); 2297 if (T == T2S || T == T4S) assert((imm64 & ~0xffffffff) == 0, "extraneous bits (T2S/T4S)"); 2298 #endif 2299 int shift = operand_valid_for_movi_immediate(imm64, T); 2300 uint32_t imm32 = imm64 & 0xffffffffULL; 2301 if (shift >= 0) { 2302 movi(Vd, T, (imm32 >> shift) & 0xff, shift); 2303 } else { 2304 movw(rscratch1, imm32); 2305 dup(Vd, T, rscratch1); 2306 } 2307 } 2308 2309 void MacroAssembler::mov_immediate64(Register dst, uint64_t imm64) 2310 { 2311 #ifndef PRODUCT 2312 { 2313 char buffer[64]; 2314 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, imm64); 2315 block_comment(buffer); 2316 } 2317 #endif 2318 if (operand_valid_for_logical_immediate(false, imm64)) { 2319 orr(dst, zr, imm64); 2320 } else { 2321 // we can use a combination of MOVZ or MOVN with 2322 // MOVK to build up the constant 2323 uint64_t imm_h[4]; 2324 int zero_count = 0; 2325 int neg_count = 0; 2326 int i; 2327 for (i = 0; i < 4; i++) { 2328 imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL); 2329 if (imm_h[i] == 0) { 2330 zero_count++; 2331 } else if (imm_h[i] == 0xffffL) { 2332 neg_count++; 2333 } 2334 } 2335 if (zero_count == 4) { 2336 // one MOVZ will do 2337 movz(dst, 0); 2338 } else if (neg_count == 4) { 2339 // one MOVN will do 2340 movn(dst, 0); 2341 } else if (zero_count == 3) { 2342 for (i = 0; i < 4; i++) { 2343 if (imm_h[i] != 0L) { 2344 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2345 break; 2346 } 2347 } 2348 } else if (neg_count == 3) { 2349 // one MOVN will do 2350 for (int i = 0; i < 4; i++) { 2351 if (imm_h[i] != 0xffffL) { 2352 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2353 break; 2354 } 2355 } 2356 } else if (zero_count == 2) { 2357 // one MOVZ and one MOVK will do 2358 for (i = 0; i < 3; i++) { 2359 if (imm_h[i] != 0L) { 2360 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2361 i++; 2362 break; 2363 } 2364 } 2365 for (;i < 4; i++) { 2366 if (imm_h[i] != 0L) { 2367 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2368 } 2369 } 2370 } else if (neg_count == 2) { 2371 // one MOVN and one MOVK will do 2372 for (i = 0; i < 4; i++) { 2373 if (imm_h[i] != 0xffffL) { 2374 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2375 i++; 2376 break; 2377 } 2378 } 2379 for (;i < 4; i++) { 2380 if (imm_h[i] != 0xffffL) { 2381 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2382 } 2383 } 2384 } else if (zero_count == 1) { 2385 // one MOVZ and two MOVKs will do 2386 for (i = 0; i < 4; i++) { 2387 if (imm_h[i] != 0L) { 2388 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2389 i++; 2390 break; 2391 } 2392 } 2393 for (;i < 4; i++) { 2394 if (imm_h[i] != 0x0L) { 2395 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2396 } 2397 } 2398 } else if (neg_count == 1) { 2399 // one MOVN and two MOVKs will do 2400 for (i = 0; i < 4; i++) { 2401 if (imm_h[i] != 0xffffL) { 2402 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2403 i++; 2404 break; 2405 } 2406 } 2407 for (;i < 4; i++) { 2408 if (imm_h[i] != 0xffffL) { 2409 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2410 } 2411 } 2412 } else { 2413 // use a MOVZ and 3 MOVKs (makes it easier to debug) 2414 movz(dst, (uint32_t)imm_h[0], 0); 2415 for (i = 1; i < 4; i++) { 2416 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2417 } 2418 } 2419 } 2420 } 2421 2422 void MacroAssembler::mov_immediate32(Register dst, uint32_t imm32) 2423 { 2424 #ifndef PRODUCT 2425 { 2426 char buffer[64]; 2427 snprintf(buffer, sizeof(buffer), "0x%" PRIX32, imm32); 2428 block_comment(buffer); 2429 } 2430 #endif 2431 if (operand_valid_for_logical_immediate(true, imm32)) { 2432 orrw(dst, zr, imm32); 2433 } else { 2434 // we can use MOVZ, MOVN or two calls to MOVK to build up the 2435 // constant 2436 uint32_t imm_h[2]; 2437 imm_h[0] = imm32 & 0xffff; 2438 imm_h[1] = ((imm32 >> 16) & 0xffff); 2439 if (imm_h[0] == 0) { 2440 movzw(dst, imm_h[1], 16); 2441 } else if (imm_h[0] == 0xffff) { 2442 movnw(dst, imm_h[1] ^ 0xffff, 16); 2443 } else if (imm_h[1] == 0) { 2444 movzw(dst, imm_h[0], 0); 2445 } else if (imm_h[1] == 0xffff) { 2446 movnw(dst, imm_h[0] ^ 0xffff, 0); 2447 } else { 2448 // use a MOVZ and MOVK (makes it easier to debug) 2449 movzw(dst, imm_h[0], 0); 2450 movkw(dst, imm_h[1], 16); 2451 } 2452 } 2453 } 2454 2455 // Form an address from base + offset in Rd. Rd may or may 2456 // not actually be used: you must use the Address that is returned. 2457 // It is up to you to ensure that the shift provided matches the size 2458 // of your data. 2459 Address MacroAssembler::form_address(Register Rd, Register base, int64_t byte_offset, int shift) { 2460 if (Address::offset_ok_for_immed(byte_offset, shift)) 2461 // It fits; no need for any heroics 2462 return Address(base, byte_offset); 2463 2464 // Don't do anything clever with negative or misaligned offsets 2465 unsigned mask = (1 << shift) - 1; 2466 if (byte_offset < 0 || byte_offset & mask) { 2467 mov(Rd, byte_offset); 2468 add(Rd, base, Rd); 2469 return Address(Rd); 2470 } 2471 2472 // See if we can do this with two 12-bit offsets 2473 { 2474 uint64_t word_offset = byte_offset >> shift; 2475 uint64_t masked_offset = word_offset & 0xfff000; 2476 if (Address::offset_ok_for_immed(word_offset - masked_offset, 0) 2477 && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) { 2478 add(Rd, base, masked_offset << shift); 2479 word_offset -= masked_offset; 2480 return Address(Rd, word_offset << shift); 2481 } 2482 } 2483 2484 // Do it the hard way 2485 mov(Rd, byte_offset); 2486 add(Rd, base, Rd); 2487 return Address(Rd); 2488 } 2489 2490 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb, 2491 bool want_remainder, Register scratch) 2492 { 2493 // Full implementation of Java idiv and irem. The function 2494 // returns the (pc) offset of the div instruction - may be needed 2495 // for implicit exceptions. 2496 // 2497 // constraint : ra/rb =/= scratch 2498 // normal case 2499 // 2500 // input : ra: dividend 2501 // rb: divisor 2502 // 2503 // result: either 2504 // quotient (= ra idiv rb) 2505 // remainder (= ra irem rb) 2506 2507 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2508 2509 int idivl_offset = offset(); 2510 if (! want_remainder) { 2511 sdivw(result, ra, rb); 2512 } else { 2513 sdivw(scratch, ra, rb); 2514 Assembler::msubw(result, scratch, rb, ra); 2515 } 2516 2517 return idivl_offset; 2518 } 2519 2520 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb, 2521 bool want_remainder, Register scratch) 2522 { 2523 // Full implementation of Java ldiv and lrem. The function 2524 // returns the (pc) offset of the div instruction - may be needed 2525 // for implicit exceptions. 2526 // 2527 // constraint : ra/rb =/= scratch 2528 // normal case 2529 // 2530 // input : ra: dividend 2531 // rb: divisor 2532 // 2533 // result: either 2534 // quotient (= ra idiv rb) 2535 // remainder (= ra irem rb) 2536 2537 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2538 2539 int idivq_offset = offset(); 2540 if (! want_remainder) { 2541 sdiv(result, ra, rb); 2542 } else { 2543 sdiv(scratch, ra, rb); 2544 Assembler::msub(result, scratch, rb, ra); 2545 } 2546 2547 return idivq_offset; 2548 } 2549 2550 void MacroAssembler::membar(Membar_mask_bits order_constraint) { 2551 address prev = pc() - NativeMembar::instruction_size; 2552 address last = code()->last_insn(); 2553 if (last != nullptr && nativeInstruction_at(last)->is_Membar() && prev == last) { 2554 NativeMembar *bar = NativeMembar_at(prev); 2555 if (AlwaysMergeDMB) { 2556 bar->set_kind(bar->get_kind() | order_constraint); 2557 BLOCK_COMMENT("merged membar(always)"); 2558 return; 2559 } 2560 // Don't promote DMB ST|DMB LD to DMB (a full barrier) because 2561 // doing so would introduce a StoreLoad which the caller did not 2562 // intend 2563 if (bar->get_kind() == order_constraint 2564 || bar->get_kind() == AnyAny 2565 || order_constraint == AnyAny) { 2566 // We are merging two memory barrier instructions. On AArch64 we 2567 // can do this simply by ORing them together. 2568 bar->set_kind(bar->get_kind() | order_constraint); 2569 BLOCK_COMMENT("merged membar"); 2570 return; 2571 } else { 2572 // A special case like "DMB ST;DMB LD;DMB ST", the last DMB can be skipped 2573 // We need check the last 2 instructions 2574 address prev2 = prev - NativeMembar::instruction_size; 2575 if (last != code()->last_label() && nativeInstruction_at(prev2)->is_Membar()) { 2576 NativeMembar *bar2 = NativeMembar_at(prev2); 2577 assert(bar2->get_kind() == order_constraint, "it should be merged before"); 2578 BLOCK_COMMENT("merged membar(elided)"); 2579 return; 2580 } 2581 } 2582 } 2583 code()->set_last_insn(pc()); 2584 dmb(Assembler::barrier(order_constraint)); 2585 } 2586 2587 bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) { 2588 if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) { 2589 merge_ldst(rt, adr, size_in_bytes, is_store); 2590 code()->clear_last_insn(); 2591 return true; 2592 } else { 2593 assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported."); 2594 const uint64_t mask = size_in_bytes - 1; 2595 if (adr.getMode() == Address::base_plus_offset && 2596 (adr.offset() & mask) == 0) { // only supports base_plus_offset. 2597 code()->set_last_insn(pc()); 2598 } 2599 return false; 2600 } 2601 } 2602 2603 void MacroAssembler::ldr(Register Rx, const Address &adr) { 2604 // We always try to merge two adjacent loads into one ldp. 2605 if (!try_merge_ldst(Rx, adr, 8, false)) { 2606 Assembler::ldr(Rx, adr); 2607 } 2608 } 2609 2610 void MacroAssembler::ldrw(Register Rw, const Address &adr) { 2611 // We always try to merge two adjacent loads into one ldp. 2612 if (!try_merge_ldst(Rw, adr, 4, false)) { 2613 Assembler::ldrw(Rw, adr); 2614 } 2615 } 2616 2617 void MacroAssembler::str(Register Rx, const Address &adr) { 2618 // We always try to merge two adjacent stores into one stp. 2619 if (!try_merge_ldst(Rx, adr, 8, true)) { 2620 Assembler::str(Rx, adr); 2621 } 2622 } 2623 2624 void MacroAssembler::strw(Register Rw, const Address &adr) { 2625 // We always try to merge two adjacent stores into one stp. 2626 if (!try_merge_ldst(Rw, adr, 4, true)) { 2627 Assembler::strw(Rw, adr); 2628 } 2629 } 2630 2631 // MacroAssembler routines found actually to be needed 2632 2633 void MacroAssembler::push(Register src) 2634 { 2635 str(src, Address(pre(esp, -1 * wordSize))); 2636 } 2637 2638 void MacroAssembler::pop(Register dst) 2639 { 2640 ldr(dst, Address(post(esp, 1 * wordSize))); 2641 } 2642 2643 // Note: load_unsigned_short used to be called load_unsigned_word. 2644 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 2645 int off = offset(); 2646 ldrh(dst, src); 2647 return off; 2648 } 2649 2650 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 2651 int off = offset(); 2652 ldrb(dst, src); 2653 return off; 2654 } 2655 2656 int MacroAssembler::load_signed_short(Register dst, Address src) { 2657 int off = offset(); 2658 ldrsh(dst, src); 2659 return off; 2660 } 2661 2662 int MacroAssembler::load_signed_byte(Register dst, Address src) { 2663 int off = offset(); 2664 ldrsb(dst, src); 2665 return off; 2666 } 2667 2668 int MacroAssembler::load_signed_short32(Register dst, Address src) { 2669 int off = offset(); 2670 ldrshw(dst, src); 2671 return off; 2672 } 2673 2674 int MacroAssembler::load_signed_byte32(Register dst, Address src) { 2675 int off = offset(); 2676 ldrsbw(dst, src); 2677 return off; 2678 } 2679 2680 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) { 2681 switch (size_in_bytes) { 2682 case 8: ldr(dst, src); break; 2683 case 4: ldrw(dst, src); break; 2684 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 2685 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 2686 default: ShouldNotReachHere(); 2687 } 2688 } 2689 2690 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes) { 2691 switch (size_in_bytes) { 2692 case 8: str(src, dst); break; 2693 case 4: strw(src, dst); break; 2694 case 2: strh(src, dst); break; 2695 case 1: strb(src, dst); break; 2696 default: ShouldNotReachHere(); 2697 } 2698 } 2699 2700 void MacroAssembler::decrementw(Register reg, int value) 2701 { 2702 if (value < 0) { incrementw(reg, -value); return; } 2703 if (value == 0) { return; } 2704 if (value < (1 << 12)) { subw(reg, reg, value); return; } 2705 /* else */ { 2706 guarantee(reg != rscratch2, "invalid dst for register decrement"); 2707 movw(rscratch2, (unsigned)value); 2708 subw(reg, reg, rscratch2); 2709 } 2710 } 2711 2712 void MacroAssembler::decrement(Register reg, int value) 2713 { 2714 if (value < 0) { increment(reg, -value); return; } 2715 if (value == 0) { return; } 2716 if (value < (1 << 12)) { sub(reg, reg, value); return; } 2717 /* else */ { 2718 assert(reg != rscratch2, "invalid dst for register decrement"); 2719 mov(rscratch2, (uint64_t)value); 2720 sub(reg, reg, rscratch2); 2721 } 2722 } 2723 2724 void MacroAssembler::decrementw(Address dst, int value) 2725 { 2726 assert(!dst.uses(rscratch1), "invalid dst for address decrement"); 2727 if (dst.getMode() == Address::literal) { 2728 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2729 lea(rscratch2, dst); 2730 dst = Address(rscratch2); 2731 } 2732 ldrw(rscratch1, dst); 2733 decrementw(rscratch1, value); 2734 strw(rscratch1, dst); 2735 } 2736 2737 void MacroAssembler::decrement(Address dst, int value) 2738 { 2739 assert(!dst.uses(rscratch1), "invalid address for decrement"); 2740 if (dst.getMode() == Address::literal) { 2741 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2742 lea(rscratch2, dst); 2743 dst = Address(rscratch2); 2744 } 2745 ldr(rscratch1, dst); 2746 decrement(rscratch1, value); 2747 str(rscratch1, dst); 2748 } 2749 2750 void MacroAssembler::incrementw(Register reg, int value) 2751 { 2752 if (value < 0) { decrementw(reg, -value); return; } 2753 if (value == 0) { return; } 2754 if (value < (1 << 12)) { addw(reg, reg, value); return; } 2755 /* else */ { 2756 assert(reg != rscratch2, "invalid dst for register increment"); 2757 movw(rscratch2, (unsigned)value); 2758 addw(reg, reg, rscratch2); 2759 } 2760 } 2761 2762 void MacroAssembler::increment(Register reg, int value) 2763 { 2764 if (value < 0) { decrement(reg, -value); return; } 2765 if (value == 0) { return; } 2766 if (value < (1 << 12)) { add(reg, reg, value); return; } 2767 /* else */ { 2768 assert(reg != rscratch2, "invalid dst for register increment"); 2769 movw(rscratch2, (unsigned)value); 2770 add(reg, reg, rscratch2); 2771 } 2772 } 2773 2774 void MacroAssembler::incrementw(Address dst, int value) 2775 { 2776 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2777 if (dst.getMode() == Address::literal) { 2778 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2779 lea(rscratch2, dst); 2780 dst = Address(rscratch2); 2781 } 2782 ldrw(rscratch1, dst); 2783 incrementw(rscratch1, value); 2784 strw(rscratch1, dst); 2785 } 2786 2787 void MacroAssembler::increment(Address dst, int value) 2788 { 2789 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2790 if (dst.getMode() == Address::literal) { 2791 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2792 lea(rscratch2, dst); 2793 dst = Address(rscratch2); 2794 } 2795 ldr(rscratch1, dst); 2796 increment(rscratch1, value); 2797 str(rscratch1, dst); 2798 } 2799 2800 // Push lots of registers in the bit set supplied. Don't push sp. 2801 // Return the number of words pushed 2802 int MacroAssembler::push(unsigned int bitset, Register stack) { 2803 int words_pushed = 0; 2804 2805 // Scan bitset to accumulate register pairs 2806 unsigned char regs[32]; 2807 int count = 0; 2808 for (int reg = 0; reg <= 30; reg++) { 2809 if (1 & bitset) 2810 regs[count++] = reg; 2811 bitset >>= 1; 2812 } 2813 regs[count++] = zr->raw_encoding(); 2814 count &= ~1; // Only push an even number of regs 2815 2816 if (count) { 2817 stp(as_Register(regs[0]), as_Register(regs[1]), 2818 Address(pre(stack, -count * wordSize))); 2819 words_pushed += 2; 2820 } 2821 for (int i = 2; i < count; i += 2) { 2822 stp(as_Register(regs[i]), as_Register(regs[i+1]), 2823 Address(stack, i * wordSize)); 2824 words_pushed += 2; 2825 } 2826 2827 assert(words_pushed == count, "oops, pushed != count"); 2828 2829 return count; 2830 } 2831 2832 int MacroAssembler::pop(unsigned int bitset, Register stack) { 2833 int words_pushed = 0; 2834 2835 // Scan bitset to accumulate register pairs 2836 unsigned char regs[32]; 2837 int count = 0; 2838 for (int reg = 0; reg <= 30; reg++) { 2839 if (1 & bitset) 2840 regs[count++] = reg; 2841 bitset >>= 1; 2842 } 2843 regs[count++] = zr->raw_encoding(); 2844 count &= ~1; 2845 2846 for (int i = 2; i < count; i += 2) { 2847 ldp(as_Register(regs[i]), as_Register(regs[i+1]), 2848 Address(stack, i * wordSize)); 2849 words_pushed += 2; 2850 } 2851 if (count) { 2852 ldp(as_Register(regs[0]), as_Register(regs[1]), 2853 Address(post(stack, count * wordSize))); 2854 words_pushed += 2; 2855 } 2856 2857 assert(words_pushed == count, "oops, pushed != count"); 2858 2859 return count; 2860 } 2861 2862 // Push lots of registers in the bit set supplied. Don't push sp. 2863 // Return the number of dwords pushed 2864 int MacroAssembler::push_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 2865 int words_pushed = 0; 2866 bool use_sve = false; 2867 int sve_vector_size_in_bytes = 0; 2868 2869 #ifdef COMPILER2 2870 use_sve = Matcher::supports_scalable_vector(); 2871 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2872 #endif 2873 2874 // Scan bitset to accumulate register pairs 2875 unsigned char regs[32]; 2876 int count = 0; 2877 for (int reg = 0; reg <= 31; reg++) { 2878 if (1 & bitset) 2879 regs[count++] = reg; 2880 bitset >>= 1; 2881 } 2882 2883 if (count == 0) { 2884 return 0; 2885 } 2886 2887 if (mode == PushPopFull) { 2888 if (use_sve && sve_vector_size_in_bytes > 16) { 2889 mode = PushPopSVE; 2890 } else { 2891 mode = PushPopNeon; 2892 } 2893 } 2894 2895 #ifndef PRODUCT 2896 { 2897 char buffer[48]; 2898 if (mode == PushPopSVE) { 2899 snprintf(buffer, sizeof(buffer), "push_fp: %d SVE registers", count); 2900 } else if (mode == PushPopNeon) { 2901 snprintf(buffer, sizeof(buffer), "push_fp: %d Neon registers", count); 2902 } else { 2903 snprintf(buffer, sizeof(buffer), "push_fp: %d fp registers", count); 2904 } 2905 block_comment(buffer); 2906 } 2907 #endif 2908 2909 if (mode == PushPopSVE) { 2910 sub(stack, stack, sve_vector_size_in_bytes * count); 2911 for (int i = 0; i < count; i++) { 2912 sve_str(as_FloatRegister(regs[i]), Address(stack, i)); 2913 } 2914 return count * sve_vector_size_in_bytes / 8; 2915 } 2916 2917 if (mode == PushPopNeon) { 2918 if (count == 1) { 2919 strq(as_FloatRegister(regs[0]), Address(pre(stack, -wordSize * 2))); 2920 return 2; 2921 } 2922 2923 bool odd = (count & 1) == 1; 2924 int push_slots = count + (odd ? 1 : 0); 2925 2926 // Always pushing full 128 bit registers. 2927 stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize * 2))); 2928 words_pushed += 2; 2929 2930 for (int i = 2; i + 1 < count; i += 2) { 2931 stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 2932 words_pushed += 2; 2933 } 2934 2935 if (odd) { 2936 strq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 2937 words_pushed++; 2938 } 2939 2940 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 2941 return count * 2; 2942 } 2943 2944 if (mode == PushPopFp) { 2945 bool odd = (count & 1) == 1; 2946 int push_slots = count + (odd ? 1 : 0); 2947 2948 if (count == 1) { 2949 // Stack pointer must be 16 bytes aligned 2950 strd(as_FloatRegister(regs[0]), Address(pre(stack, -push_slots * wordSize))); 2951 return 1; 2952 } 2953 2954 stpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize))); 2955 words_pushed += 2; 2956 2957 for (int i = 2; i + 1 < count; i += 2) { 2958 stpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 2959 words_pushed += 2; 2960 } 2961 2962 if (odd) { 2963 // Stack pointer must be 16 bytes aligned 2964 strd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 2965 words_pushed++; 2966 } 2967 2968 assert(words_pushed == count, "oops, pushed != count"); 2969 2970 return count; 2971 } 2972 2973 return 0; 2974 } 2975 2976 // Return the number of dwords popped 2977 int MacroAssembler::pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 2978 int words_pushed = 0; 2979 bool use_sve = false; 2980 int sve_vector_size_in_bytes = 0; 2981 2982 #ifdef COMPILER2 2983 use_sve = Matcher::supports_scalable_vector(); 2984 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2985 #endif 2986 // Scan bitset to accumulate register pairs 2987 unsigned char regs[32]; 2988 int count = 0; 2989 for (int reg = 0; reg <= 31; reg++) { 2990 if (1 & bitset) 2991 regs[count++] = reg; 2992 bitset >>= 1; 2993 } 2994 2995 if (count == 0) { 2996 return 0; 2997 } 2998 2999 if (mode == PushPopFull) { 3000 if (use_sve && sve_vector_size_in_bytes > 16) { 3001 mode = PushPopSVE; 3002 } else { 3003 mode = PushPopNeon; 3004 } 3005 } 3006 3007 #ifndef PRODUCT 3008 { 3009 char buffer[48]; 3010 if (mode == PushPopSVE) { 3011 snprintf(buffer, sizeof(buffer), "pop_fp: %d SVE registers", count); 3012 } else if (mode == PushPopNeon) { 3013 snprintf(buffer, sizeof(buffer), "pop_fp: %d Neon registers", count); 3014 } else { 3015 snprintf(buffer, sizeof(buffer), "pop_fp: %d fp registers", count); 3016 } 3017 block_comment(buffer); 3018 } 3019 #endif 3020 3021 if (mode == PushPopSVE) { 3022 for (int i = count - 1; i >= 0; i--) { 3023 sve_ldr(as_FloatRegister(regs[i]), Address(stack, i)); 3024 } 3025 add(stack, stack, sve_vector_size_in_bytes * count); 3026 return count * sve_vector_size_in_bytes / 8; 3027 } 3028 3029 if (mode == PushPopNeon) { 3030 if (count == 1) { 3031 ldrq(as_FloatRegister(regs[0]), Address(post(stack, wordSize * 2))); 3032 return 2; 3033 } 3034 3035 bool odd = (count & 1) == 1; 3036 int push_slots = count + (odd ? 1 : 0); 3037 3038 if (odd) { 3039 ldrq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 3040 words_pushed++; 3041 } 3042 3043 for (int i = 2; i + 1 < count; i += 2) { 3044 ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 3045 words_pushed += 2; 3046 } 3047 3048 ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize * 2))); 3049 words_pushed += 2; 3050 3051 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 3052 3053 return count * 2; 3054 } 3055 3056 if (mode == PushPopFp) { 3057 bool odd = (count & 1) == 1; 3058 int push_slots = count + (odd ? 1 : 0); 3059 3060 if (count == 1) { 3061 ldrd(as_FloatRegister(regs[0]), Address(post(stack, push_slots * wordSize))); 3062 return 1; 3063 } 3064 3065 if (odd) { 3066 ldrd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 3067 words_pushed++; 3068 } 3069 3070 for (int i = 2; i + 1 < count; i += 2) { 3071 ldpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 3072 words_pushed += 2; 3073 } 3074 3075 ldpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize))); 3076 words_pushed += 2; 3077 3078 assert(words_pushed == count, "oops, pushed != count"); 3079 3080 return count; 3081 } 3082 3083 return 0; 3084 } 3085 3086 // Return the number of dwords pushed 3087 int MacroAssembler::push_p(unsigned int bitset, Register stack) { 3088 bool use_sve = false; 3089 int sve_predicate_size_in_slots = 0; 3090 3091 #ifdef COMPILER2 3092 use_sve = Matcher::supports_scalable_vector(); 3093 if (use_sve) { 3094 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 3095 } 3096 #endif 3097 3098 if (!use_sve) { 3099 return 0; 3100 } 3101 3102 unsigned char regs[PRegister::number_of_registers]; 3103 int count = 0; 3104 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 3105 if (1 & bitset) 3106 regs[count++] = reg; 3107 bitset >>= 1; 3108 } 3109 3110 if (count == 0) { 3111 return 0; 3112 } 3113 3114 int total_push_bytes = align_up(sve_predicate_size_in_slots * 3115 VMRegImpl::stack_slot_size * count, 16); 3116 sub(stack, stack, total_push_bytes); 3117 for (int i = 0; i < count; i++) { 3118 sve_str(as_PRegister(regs[i]), Address(stack, i)); 3119 } 3120 return total_push_bytes / 8; 3121 } 3122 3123 // Return the number of dwords popped 3124 int MacroAssembler::pop_p(unsigned int bitset, Register stack) { 3125 bool use_sve = false; 3126 int sve_predicate_size_in_slots = 0; 3127 3128 #ifdef COMPILER2 3129 use_sve = Matcher::supports_scalable_vector(); 3130 if (use_sve) { 3131 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 3132 } 3133 #endif 3134 3135 if (!use_sve) { 3136 return 0; 3137 } 3138 3139 unsigned char regs[PRegister::number_of_registers]; 3140 int count = 0; 3141 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 3142 if (1 & bitset) 3143 regs[count++] = reg; 3144 bitset >>= 1; 3145 } 3146 3147 if (count == 0) { 3148 return 0; 3149 } 3150 3151 int total_pop_bytes = align_up(sve_predicate_size_in_slots * 3152 VMRegImpl::stack_slot_size * count, 16); 3153 for (int i = count - 1; i >= 0; i--) { 3154 sve_ldr(as_PRegister(regs[i]), Address(stack, i)); 3155 } 3156 add(stack, stack, total_pop_bytes); 3157 return total_pop_bytes / 8; 3158 } 3159 3160 #ifdef ASSERT 3161 void MacroAssembler::verify_heapbase(const char* msg) { 3162 #if 0 3163 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed"); 3164 assert (Universe::heap() != nullptr, "java heap should be initialized"); 3165 if (!UseCompressedOops || Universe::ptr_base() == nullptr) { 3166 // rheapbase is allocated as general register 3167 return; 3168 } 3169 if (CheckCompressedOops) { 3170 Label ok; 3171 push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1 3172 cmpptr(rheapbase, ExternalAddress(CompressedOops::base_addr())); 3173 br(Assembler::EQ, ok); 3174 stop(msg); 3175 bind(ok); 3176 pop(1 << rscratch1->encoding(), sp); 3177 } 3178 #endif 3179 } 3180 #endif 3181 3182 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) { 3183 assert_different_registers(value, tmp1, tmp2); 3184 Label done, tagged, weak_tagged; 3185 3186 cbz(value, done); // Use null as-is. 3187 tst(value, JNIHandles::tag_mask); // Test for tag. 3188 br(Assembler::NE, tagged); 3189 3190 // Resolve local handle 3191 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp1, tmp2); 3192 verify_oop(value); 3193 b(done); 3194 3195 bind(tagged); 3196 STATIC_ASSERT(JNIHandles::TypeTag::weak_global == 0b1); 3197 tbnz(value, 0, weak_tagged); // Test for weak tag. 3198 3199 // Resolve global handle 3200 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3201 verify_oop(value); 3202 b(done); 3203 3204 bind(weak_tagged); 3205 // Resolve jweak. 3206 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 3207 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp1, tmp2); 3208 verify_oop(value); 3209 3210 bind(done); 3211 } 3212 3213 void MacroAssembler::resolve_global_jobject(Register value, Register tmp1, Register tmp2) { 3214 assert_different_registers(value, tmp1, tmp2); 3215 Label done; 3216 3217 cbz(value, done); // Use null as-is. 3218 3219 #ifdef ASSERT 3220 { 3221 STATIC_ASSERT(JNIHandles::TypeTag::global == 0b10); 3222 Label valid_global_tag; 3223 tbnz(value, 1, valid_global_tag); // Test for global tag 3224 stop("non global jobject using resolve_global_jobject"); 3225 bind(valid_global_tag); 3226 } 3227 #endif 3228 3229 // Resolve global handle 3230 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3231 verify_oop(value); 3232 3233 bind(done); 3234 } 3235 3236 void MacroAssembler::stop(const char* msg) { 3237 BLOCK_COMMENT(msg); 3238 dcps1(0xdeae); 3239 emit_int64((uintptr_t)msg); 3240 } 3241 3242 void MacroAssembler::unimplemented(const char* what) { 3243 const char* buf = nullptr; 3244 { 3245 ResourceMark rm; 3246 stringStream ss; 3247 ss.print("unimplemented: %s", what); 3248 buf = code_string(ss.as_string()); 3249 } 3250 stop(buf); 3251 } 3252 3253 void MacroAssembler::_assert_asm(Assembler::Condition cc, const char* msg) { 3254 #ifdef ASSERT 3255 Label OK; 3256 br(cc, OK); 3257 stop(msg); 3258 bind(OK); 3259 #endif 3260 } 3261 3262 // If a constant does not fit in an immediate field, generate some 3263 // number of MOV instructions and then perform the operation. 3264 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 3265 add_sub_imm_insn insn1, 3266 add_sub_reg_insn insn2, 3267 bool is32) { 3268 assert(Rd != zr, "Rd = zr and not setting flags?"); 3269 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3270 if (fits) { 3271 (this->*insn1)(Rd, Rn, imm); 3272 } else { 3273 if (uabs(imm) < (1 << 24)) { 3274 (this->*insn1)(Rd, Rn, imm & -(1 << 12)); 3275 (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1)); 3276 } else { 3277 assert_different_registers(Rd, Rn); 3278 mov(Rd, imm); 3279 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3280 } 3281 } 3282 } 3283 3284 // Separate vsn which sets the flags. Optimisations are more restricted 3285 // because we must set the flags correctly. 3286 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 3287 add_sub_imm_insn insn1, 3288 add_sub_reg_insn insn2, 3289 bool is32) { 3290 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3291 if (fits) { 3292 (this->*insn1)(Rd, Rn, imm); 3293 } else { 3294 assert_different_registers(Rd, Rn); 3295 assert(Rd != zr, "overflow in immediate operand"); 3296 mov(Rd, imm); 3297 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3298 } 3299 } 3300 3301 3302 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) { 3303 if (increment.is_register()) { 3304 add(Rd, Rn, increment.as_register()); 3305 } else { 3306 add(Rd, Rn, increment.as_constant()); 3307 } 3308 } 3309 3310 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) { 3311 if (increment.is_register()) { 3312 addw(Rd, Rn, increment.as_register()); 3313 } else { 3314 addw(Rd, Rn, increment.as_constant()); 3315 } 3316 } 3317 3318 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) { 3319 if (decrement.is_register()) { 3320 sub(Rd, Rn, decrement.as_register()); 3321 } else { 3322 sub(Rd, Rn, decrement.as_constant()); 3323 } 3324 } 3325 3326 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) { 3327 if (decrement.is_register()) { 3328 subw(Rd, Rn, decrement.as_register()); 3329 } else { 3330 subw(Rd, Rn, decrement.as_constant()); 3331 } 3332 } 3333 3334 void MacroAssembler::reinit_heapbase() 3335 { 3336 if (UseCompressedOops) { 3337 if (Universe::is_fully_initialized()) { 3338 mov(rheapbase, CompressedOops::base()); 3339 } else { 3340 lea(rheapbase, ExternalAddress(CompressedOops::base_addr())); 3341 ldr(rheapbase, Address(rheapbase)); 3342 } 3343 } 3344 } 3345 3346 // this simulates the behaviour of the x86 cmpxchg instruction using a 3347 // load linked/store conditional pair. we use the acquire/release 3348 // versions of these instructions so that we flush pending writes as 3349 // per Java semantics. 3350 3351 // n.b the x86 version assumes the old value to be compared against is 3352 // in rax and updates rax with the value located in memory if the 3353 // cmpxchg fails. we supply a register for the old value explicitly 3354 3355 // the aarch64 load linked/store conditional instructions do not 3356 // accept an offset. so, unlike x86, we must provide a plain register 3357 // to identify the memory word to be compared/exchanged rather than a 3358 // register+offset Address. 3359 3360 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 3361 Label &succeed, Label *fail) { 3362 // oldv holds comparison value 3363 // newv holds value to write in exchange 3364 // addr identifies memory word to compare against/update 3365 if (UseLSE) { 3366 mov(tmp, oldv); 3367 casal(Assembler::xword, oldv, newv, addr); 3368 cmp(tmp, oldv); 3369 br(Assembler::EQ, succeed); 3370 membar(AnyAny); 3371 } else { 3372 Label retry_load, nope; 3373 prfm(Address(addr), PSTL1STRM); 3374 bind(retry_load); 3375 // flush and load exclusive from the memory location 3376 // and fail if it is not what we expect 3377 ldaxr(tmp, addr); 3378 cmp(tmp, oldv); 3379 br(Assembler::NE, nope); 3380 // if we store+flush with no intervening write tmp will be zero 3381 stlxr(tmp, newv, addr); 3382 cbzw(tmp, succeed); 3383 // retry so we only ever return after a load fails to compare 3384 // ensures we don't return a stale value after a failed write. 3385 b(retry_load); 3386 // if the memory word differs we return it in oldv and signal a fail 3387 bind(nope); 3388 membar(AnyAny); 3389 mov(oldv, tmp); 3390 } 3391 if (fail) 3392 b(*fail); 3393 } 3394 3395 void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 3396 Label &succeed, Label *fail) { 3397 assert(oopDesc::mark_offset_in_bytes() == 0, "assumption"); 3398 cmpxchgptr(oldv, newv, obj, tmp, succeed, fail); 3399 } 3400 3401 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 3402 Label &succeed, Label *fail) { 3403 // oldv holds comparison value 3404 // newv holds value to write in exchange 3405 // addr identifies memory word to compare against/update 3406 // tmp returns 0/1 for success/failure 3407 if (UseLSE) { 3408 mov(tmp, oldv); 3409 casal(Assembler::word, oldv, newv, addr); 3410 cmp(tmp, oldv); 3411 br(Assembler::EQ, succeed); 3412 membar(AnyAny); 3413 } else { 3414 Label retry_load, nope; 3415 prfm(Address(addr), PSTL1STRM); 3416 bind(retry_load); 3417 // flush and load exclusive from the memory location 3418 // and fail if it is not what we expect 3419 ldaxrw(tmp, addr); 3420 cmp(tmp, oldv); 3421 br(Assembler::NE, nope); 3422 // if we store+flush with no intervening write tmp will be zero 3423 stlxrw(tmp, newv, addr); 3424 cbzw(tmp, succeed); 3425 // retry so we only ever return after a load fails to compare 3426 // ensures we don't return a stale value after a failed write. 3427 b(retry_load); 3428 // if the memory word differs we return it in oldv and signal a fail 3429 bind(nope); 3430 membar(AnyAny); 3431 mov(oldv, tmp); 3432 } 3433 if (fail) 3434 b(*fail); 3435 } 3436 3437 // A generic CAS; success or failure is in the EQ flag. A weak CAS 3438 // doesn't retry and may fail spuriously. If the oldval is wanted, 3439 // Pass a register for the result, otherwise pass noreg. 3440 3441 // Clobbers rscratch1 3442 void MacroAssembler::cmpxchg(Register addr, Register expected, 3443 Register new_val, 3444 enum operand_size size, 3445 bool acquire, bool release, 3446 bool weak, 3447 Register result) { 3448 if (result == noreg) result = rscratch1; 3449 BLOCK_COMMENT("cmpxchg {"); 3450 if (UseLSE) { 3451 mov(result, expected); 3452 lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true); 3453 compare_eq(result, expected, size); 3454 #ifdef ASSERT 3455 // Poison rscratch1 which is written on !UseLSE branch 3456 mov(rscratch1, 0x1f1f1f1f1f1f1f1f); 3457 #endif 3458 } else { 3459 Label retry_load, done; 3460 prfm(Address(addr), PSTL1STRM); 3461 bind(retry_load); 3462 load_exclusive(result, addr, size, acquire); 3463 compare_eq(result, expected, size); 3464 br(Assembler::NE, done); 3465 store_exclusive(rscratch1, new_val, addr, size, release); 3466 if (weak) { 3467 cmpw(rscratch1, 0u); // If the store fails, return NE to our caller. 3468 } else { 3469 cbnzw(rscratch1, retry_load); 3470 } 3471 bind(done); 3472 } 3473 BLOCK_COMMENT("} cmpxchg"); 3474 } 3475 3476 // A generic comparison. Only compares for equality, clobbers rscratch1. 3477 void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) { 3478 if (size == xword) { 3479 cmp(rm, rn); 3480 } else if (size == word) { 3481 cmpw(rm, rn); 3482 } else if (size == halfword) { 3483 eorw(rscratch1, rm, rn); 3484 ands(zr, rscratch1, 0xffff); 3485 } else if (size == byte) { 3486 eorw(rscratch1, rm, rn); 3487 ands(zr, rscratch1, 0xff); 3488 } else { 3489 ShouldNotReachHere(); 3490 } 3491 } 3492 3493 3494 static bool different(Register a, RegisterOrConstant b, Register c) { 3495 if (b.is_constant()) 3496 return a != c; 3497 else 3498 return a != b.as_register() && a != c && b.as_register() != c; 3499 } 3500 3501 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \ 3502 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \ 3503 if (UseLSE) { \ 3504 prev = prev->is_valid() ? prev : zr; \ 3505 if (incr.is_register()) { \ 3506 AOP(sz, incr.as_register(), prev, addr); \ 3507 } else { \ 3508 mov(rscratch2, incr.as_constant()); \ 3509 AOP(sz, rscratch2, prev, addr); \ 3510 } \ 3511 return; \ 3512 } \ 3513 Register result = rscratch2; \ 3514 if (prev->is_valid()) \ 3515 result = different(prev, incr, addr) ? prev : rscratch2; \ 3516 \ 3517 Label retry_load; \ 3518 prfm(Address(addr), PSTL1STRM); \ 3519 bind(retry_load); \ 3520 LDXR(result, addr); \ 3521 OP(rscratch1, result, incr); \ 3522 STXR(rscratch2, rscratch1, addr); \ 3523 cbnzw(rscratch2, retry_load); \ 3524 if (prev->is_valid() && prev != result) { \ 3525 IOP(prev, rscratch1, incr); \ 3526 } \ 3527 } 3528 3529 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword) 3530 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word) 3531 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword) 3532 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word) 3533 3534 #undef ATOMIC_OP 3535 3536 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \ 3537 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \ 3538 if (UseLSE) { \ 3539 prev = prev->is_valid() ? prev : zr; \ 3540 AOP(sz, newv, prev, addr); \ 3541 return; \ 3542 } \ 3543 Register result = rscratch2; \ 3544 if (prev->is_valid()) \ 3545 result = different(prev, newv, addr) ? prev : rscratch2; \ 3546 \ 3547 Label retry_load; \ 3548 prfm(Address(addr), PSTL1STRM); \ 3549 bind(retry_load); \ 3550 LDXR(result, addr); \ 3551 STXR(rscratch1, newv, addr); \ 3552 cbnzw(rscratch1, retry_load); \ 3553 if (prev->is_valid() && prev != result) \ 3554 mov(prev, result); \ 3555 } 3556 3557 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword) 3558 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word) 3559 ATOMIC_XCHG(xchgl, swpl, ldxr, stlxr, Assembler::xword) 3560 ATOMIC_XCHG(xchglw, swpl, ldxrw, stlxrw, Assembler::word) 3561 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword) 3562 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word) 3563 3564 #undef ATOMIC_XCHG 3565 3566 #ifndef PRODUCT 3567 extern "C" void findpc(intptr_t x); 3568 #endif 3569 3570 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) 3571 { 3572 // In order to get locks to work, we need to fake a in_VM state 3573 if (ShowMessageBoxOnError ) { 3574 JavaThread* thread = JavaThread::current(); 3575 JavaThreadState saved_state = thread->thread_state(); 3576 thread->set_thread_state(_thread_in_vm); 3577 #ifndef PRODUCT 3578 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 3579 ttyLocker ttyl; 3580 BytecodeCounter::print(); 3581 } 3582 #endif 3583 if (os::message_box(msg, "Execution stopped, print registers?")) { 3584 ttyLocker ttyl; 3585 tty->print_cr(" pc = 0x%016" PRIx64, pc); 3586 #ifndef PRODUCT 3587 tty->cr(); 3588 findpc(pc); 3589 tty->cr(); 3590 #endif 3591 tty->print_cr(" r0 = 0x%016" PRIx64, regs[0]); 3592 tty->print_cr(" r1 = 0x%016" PRIx64, regs[1]); 3593 tty->print_cr(" r2 = 0x%016" PRIx64, regs[2]); 3594 tty->print_cr(" r3 = 0x%016" PRIx64, regs[3]); 3595 tty->print_cr(" r4 = 0x%016" PRIx64, regs[4]); 3596 tty->print_cr(" r5 = 0x%016" PRIx64, regs[5]); 3597 tty->print_cr(" r6 = 0x%016" PRIx64, regs[6]); 3598 tty->print_cr(" r7 = 0x%016" PRIx64, regs[7]); 3599 tty->print_cr(" r8 = 0x%016" PRIx64, regs[8]); 3600 tty->print_cr(" r9 = 0x%016" PRIx64, regs[9]); 3601 tty->print_cr("r10 = 0x%016" PRIx64, regs[10]); 3602 tty->print_cr("r11 = 0x%016" PRIx64, regs[11]); 3603 tty->print_cr("r12 = 0x%016" PRIx64, regs[12]); 3604 tty->print_cr("r13 = 0x%016" PRIx64, regs[13]); 3605 tty->print_cr("r14 = 0x%016" PRIx64, regs[14]); 3606 tty->print_cr("r15 = 0x%016" PRIx64, regs[15]); 3607 tty->print_cr("r16 = 0x%016" PRIx64, regs[16]); 3608 tty->print_cr("r17 = 0x%016" PRIx64, regs[17]); 3609 tty->print_cr("r18 = 0x%016" PRIx64, regs[18]); 3610 tty->print_cr("r19 = 0x%016" PRIx64, regs[19]); 3611 tty->print_cr("r20 = 0x%016" PRIx64, regs[20]); 3612 tty->print_cr("r21 = 0x%016" PRIx64, regs[21]); 3613 tty->print_cr("r22 = 0x%016" PRIx64, regs[22]); 3614 tty->print_cr("r23 = 0x%016" PRIx64, regs[23]); 3615 tty->print_cr("r24 = 0x%016" PRIx64, regs[24]); 3616 tty->print_cr("r25 = 0x%016" PRIx64, regs[25]); 3617 tty->print_cr("r26 = 0x%016" PRIx64, regs[26]); 3618 tty->print_cr("r27 = 0x%016" PRIx64, regs[27]); 3619 tty->print_cr("r28 = 0x%016" PRIx64, regs[28]); 3620 tty->print_cr("r30 = 0x%016" PRIx64, regs[30]); 3621 tty->print_cr("r31 = 0x%016" PRIx64, regs[31]); 3622 BREAKPOINT; 3623 } 3624 } 3625 fatal("DEBUG MESSAGE: %s", msg); 3626 } 3627 3628 RegSet MacroAssembler::call_clobbered_gp_registers() { 3629 RegSet regs = RegSet::range(r0, r17) - RegSet::of(rscratch1, rscratch2); 3630 #ifndef R18_RESERVED 3631 regs += r18_tls; 3632 #endif 3633 return regs; 3634 } 3635 3636 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) { 3637 int step = 4 * wordSize; 3638 push(call_clobbered_gp_registers() - exclude, sp); 3639 sub(sp, sp, step); 3640 mov(rscratch1, -step); 3641 // Push v0-v7, v16-v31. 3642 for (int i = 31; i>= 4; i -= 4) { 3643 if (i <= v7->encoding() || i >= v16->encoding()) 3644 st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1), 3645 as_FloatRegister(i), T1D, Address(post(sp, rscratch1))); 3646 } 3647 st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2), 3648 as_FloatRegister(3), T1D, Address(sp)); 3649 } 3650 3651 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) { 3652 for (int i = 0; i < 32; i += 4) { 3653 if (i <= v7->encoding() || i >= v16->encoding()) 3654 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3655 as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize))); 3656 } 3657 3658 reinitialize_ptrue(); 3659 3660 pop(call_clobbered_gp_registers() - exclude, sp); 3661 } 3662 3663 void MacroAssembler::push_CPU_state(bool save_vectors, bool use_sve, 3664 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3665 push(RegSet::range(r0, r29), sp); // integer registers except lr & sp 3666 if (save_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3667 sub(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3668 for (int i = 0; i < FloatRegister::number_of_registers; i++) { 3669 sve_str(as_FloatRegister(i), Address(sp, i)); 3670 } 3671 } else { 3672 int step = (save_vectors ? 8 : 4) * wordSize; 3673 mov(rscratch1, -step); 3674 sub(sp, sp, step); 3675 for (int i = 28; i >= 4; i -= 4) { 3676 st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3677 as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1))); 3678 } 3679 st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp); 3680 } 3681 if (save_vectors && use_sve && total_predicate_in_bytes > 0) { 3682 sub(sp, sp, total_predicate_in_bytes); 3683 for (int i = 0; i < PRegister::number_of_registers; i++) { 3684 sve_str(as_PRegister(i), Address(sp, i)); 3685 } 3686 } 3687 } 3688 3689 void MacroAssembler::pop_CPU_state(bool restore_vectors, bool use_sve, 3690 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3691 if (restore_vectors && use_sve && total_predicate_in_bytes > 0) { 3692 for (int i = PRegister::number_of_registers - 1; i >= 0; i--) { 3693 sve_ldr(as_PRegister(i), Address(sp, i)); 3694 } 3695 add(sp, sp, total_predicate_in_bytes); 3696 } 3697 if (restore_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3698 for (int i = FloatRegister::number_of_registers - 1; i >= 0; i--) { 3699 sve_ldr(as_FloatRegister(i), Address(sp, i)); 3700 } 3701 add(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3702 } else { 3703 int step = (restore_vectors ? 8 : 4) * wordSize; 3704 for (int i = 0; i <= 28; i += 4) 3705 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3706 as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step))); 3707 } 3708 3709 // We may use predicate registers and rely on ptrue with SVE, 3710 // regardless of wide vector (> 8 bytes) used or not. 3711 if (use_sve) { 3712 reinitialize_ptrue(); 3713 } 3714 3715 // integer registers except lr & sp 3716 pop(RegSet::range(r0, r17), sp); 3717 #ifdef R18_RESERVED 3718 ldp(zr, r19, Address(post(sp, 2 * wordSize))); 3719 pop(RegSet::range(r20, r29), sp); 3720 #else 3721 pop(RegSet::range(r18_tls, r29), sp); 3722 #endif 3723 } 3724 3725 /** 3726 * Helpers for multiply_to_len(). 3727 */ 3728 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 3729 Register src1, Register src2) { 3730 adds(dest_lo, dest_lo, src1); 3731 adc(dest_hi, dest_hi, zr); 3732 adds(dest_lo, dest_lo, src2); 3733 adc(final_dest_hi, dest_hi, zr); 3734 } 3735 3736 // Generate an address from (r + r1 extend offset). "size" is the 3737 // size of the operand. The result may be in rscratch2. 3738 Address MacroAssembler::offsetted_address(Register r, Register r1, 3739 Address::extend ext, int offset, int size) { 3740 if (offset || (ext.shift() % size != 0)) { 3741 lea(rscratch2, Address(r, r1, ext)); 3742 return Address(rscratch2, offset); 3743 } else { 3744 return Address(r, r1, ext); 3745 } 3746 } 3747 3748 Address MacroAssembler::spill_address(int size, int offset, Register tmp) 3749 { 3750 assert(offset >= 0, "spill to negative address?"); 3751 // Offset reachable ? 3752 // Not aligned - 9 bits signed offset 3753 // Aligned - 12 bits unsigned offset shifted 3754 Register base = sp; 3755 if ((offset & (size-1)) && offset >= (1<<8)) { 3756 add(tmp, base, offset & ((1<<12)-1)); 3757 base = tmp; 3758 offset &= -1u<<12; 3759 } 3760 3761 if (offset >= (1<<12) * size) { 3762 add(tmp, base, offset & (((1<<12)-1)<<12)); 3763 base = tmp; 3764 offset &= ~(((1<<12)-1)<<12); 3765 } 3766 3767 return Address(base, offset); 3768 } 3769 3770 Address MacroAssembler::sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp) { 3771 assert(offset >= 0, "spill to negative address?"); 3772 3773 Register base = sp; 3774 3775 // An immediate offset in the range 0 to 255 which is multiplied 3776 // by the current vector or predicate register size in bytes. 3777 if (offset % sve_reg_size_in_bytes == 0 && offset < ((1<<8)*sve_reg_size_in_bytes)) { 3778 return Address(base, offset / sve_reg_size_in_bytes); 3779 } 3780 3781 add(tmp, base, offset); 3782 return Address(tmp); 3783 } 3784 3785 // Checks whether offset is aligned. 3786 // Returns true if it is, else false. 3787 bool MacroAssembler::merge_alignment_check(Register base, 3788 size_t size, 3789 int64_t cur_offset, 3790 int64_t prev_offset) const { 3791 if (AvoidUnalignedAccesses) { 3792 if (base == sp) { 3793 // Checks whether low offset if aligned to pair of registers. 3794 int64_t pair_mask = size * 2 - 1; 3795 int64_t offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3796 return (offset & pair_mask) == 0; 3797 } else { // If base is not sp, we can't guarantee the access is aligned. 3798 return false; 3799 } 3800 } else { 3801 int64_t mask = size - 1; 3802 // Load/store pair instruction only supports element size aligned offset. 3803 return (cur_offset & mask) == 0 && (prev_offset & mask) == 0; 3804 } 3805 } 3806 3807 // Checks whether current and previous loads/stores can be merged. 3808 // Returns true if it can be merged, else false. 3809 bool MacroAssembler::ldst_can_merge(Register rt, 3810 const Address &adr, 3811 size_t cur_size_in_bytes, 3812 bool is_store) const { 3813 address prev = pc() - NativeInstruction::instruction_size; 3814 address last = code()->last_insn(); 3815 3816 if (last == nullptr || !nativeInstruction_at(last)->is_Imm_LdSt()) { 3817 return false; 3818 } 3819 3820 if (adr.getMode() != Address::base_plus_offset || prev != last) { 3821 return false; 3822 } 3823 3824 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3825 size_t prev_size_in_bytes = prev_ldst->size_in_bytes(); 3826 3827 assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging."); 3828 assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging."); 3829 3830 if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) { 3831 return false; 3832 } 3833 3834 int64_t max_offset = 63 * prev_size_in_bytes; 3835 int64_t min_offset = -64 * prev_size_in_bytes; 3836 3837 assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged."); 3838 3839 // Only same base can be merged. 3840 if (adr.base() != prev_ldst->base()) { 3841 return false; 3842 } 3843 3844 int64_t cur_offset = adr.offset(); 3845 int64_t prev_offset = prev_ldst->offset(); 3846 size_t diff = abs(cur_offset - prev_offset); 3847 if (diff != prev_size_in_bytes) { 3848 return false; 3849 } 3850 3851 // Following cases can not be merged: 3852 // ldr x2, [x2, #8] 3853 // ldr x3, [x2, #16] 3854 // or: 3855 // ldr x2, [x3, #8] 3856 // ldr x2, [x3, #16] 3857 // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL. 3858 if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) { 3859 return false; 3860 } 3861 3862 int64_t low_offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3863 // Offset range must be in ldp/stp instruction's range. 3864 if (low_offset > max_offset || low_offset < min_offset) { 3865 return false; 3866 } 3867 3868 if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) { 3869 return true; 3870 } 3871 3872 return false; 3873 } 3874 3875 // Merge current load/store with previous load/store into ldp/stp. 3876 void MacroAssembler::merge_ldst(Register rt, 3877 const Address &adr, 3878 size_t cur_size_in_bytes, 3879 bool is_store) { 3880 3881 assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged."); 3882 3883 Register rt_low, rt_high; 3884 address prev = pc() - NativeInstruction::instruction_size; 3885 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3886 3887 int64_t offset; 3888 3889 if (adr.offset() < prev_ldst->offset()) { 3890 offset = adr.offset(); 3891 rt_low = rt; 3892 rt_high = prev_ldst->target(); 3893 } else { 3894 offset = prev_ldst->offset(); 3895 rt_low = prev_ldst->target(); 3896 rt_high = rt; 3897 } 3898 3899 Address adr_p = Address(prev_ldst->base(), offset); 3900 // Overwrite previous generated binary. 3901 code_section()->set_end(prev); 3902 3903 const size_t sz = prev_ldst->size_in_bytes(); 3904 assert(sz == 8 || sz == 4, "only supports 64/32bit merging."); 3905 if (!is_store) { 3906 BLOCK_COMMENT("merged ldr pair"); 3907 if (sz == 8) { 3908 ldp(rt_low, rt_high, adr_p); 3909 } else { 3910 ldpw(rt_low, rt_high, adr_p); 3911 } 3912 } else { 3913 BLOCK_COMMENT("merged str pair"); 3914 if (sz == 8) { 3915 stp(rt_low, rt_high, adr_p); 3916 } else { 3917 stpw(rt_low, rt_high, adr_p); 3918 } 3919 } 3920 } 3921 3922 /** 3923 * Multiply 64 bit by 64 bit first loop. 3924 */ 3925 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 3926 Register y, Register y_idx, Register z, 3927 Register carry, Register product, 3928 Register idx, Register kdx) { 3929 // 3930 // jlong carry, x[], y[], z[]; 3931 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 3932 // huge_128 product = y[idx] * x[xstart] + carry; 3933 // z[kdx] = (jlong)product; 3934 // carry = (jlong)(product >>> 64); 3935 // } 3936 // z[xstart] = carry; 3937 // 3938 3939 Label L_first_loop, L_first_loop_exit; 3940 Label L_one_x, L_one_y, L_multiply; 3941 3942 subsw(xstart, xstart, 1); 3943 br(Assembler::MI, L_one_x); 3944 3945 lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt))); 3946 ldr(x_xstart, Address(rscratch1)); 3947 ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian 3948 3949 bind(L_first_loop); 3950 subsw(idx, idx, 1); 3951 br(Assembler::MI, L_first_loop_exit); 3952 subsw(idx, idx, 1); 3953 br(Assembler::MI, L_one_y); 3954 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3955 ldr(y_idx, Address(rscratch1)); 3956 ror(y_idx, y_idx, 32); // convert big-endian to little-endian 3957 bind(L_multiply); 3958 3959 // AArch64 has a multiply-accumulate instruction that we can't use 3960 // here because it has no way to process carries, so we have to use 3961 // separate add and adc instructions. Bah. 3962 umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product 3963 mul(product, x_xstart, y_idx); 3964 adds(product, product, carry); 3965 adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product 3966 3967 subw(kdx, kdx, 2); 3968 ror(product, product, 32); // back to big-endian 3969 str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong)); 3970 3971 b(L_first_loop); 3972 3973 bind(L_one_y); 3974 ldrw(y_idx, Address(y, 0)); 3975 b(L_multiply); 3976 3977 bind(L_one_x); 3978 ldrw(x_xstart, Address(x, 0)); 3979 b(L_first_loop); 3980 3981 bind(L_first_loop_exit); 3982 } 3983 3984 /** 3985 * Multiply 128 bit by 128. Unrolled inner loop. 3986 * 3987 */ 3988 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z, 3989 Register carry, Register carry2, 3990 Register idx, Register jdx, 3991 Register yz_idx1, Register yz_idx2, 3992 Register tmp, Register tmp3, Register tmp4, 3993 Register tmp6, Register product_hi) { 3994 3995 // jlong carry, x[], y[], z[]; 3996 // int kdx = ystart+1; 3997 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 3998 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry; 3999 // jlong carry2 = (jlong)(tmp3 >>> 64); 4000 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2; 4001 // carry = (jlong)(tmp4 >>> 64); 4002 // z[kdx+idx+1] = (jlong)tmp3; 4003 // z[kdx+idx] = (jlong)tmp4; 4004 // } 4005 // idx += 2; 4006 // if (idx > 0) { 4007 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry; 4008 // z[kdx+idx] = (jlong)yz_idx1; 4009 // carry = (jlong)(yz_idx1 >>> 64); 4010 // } 4011 // 4012 4013 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 4014 4015 lsrw(jdx, idx, 2); 4016 4017 bind(L_third_loop); 4018 4019 subsw(jdx, jdx, 1); 4020 br(Assembler::MI, L_third_loop_exit); 4021 subw(idx, idx, 4); 4022 4023 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4024 4025 ldp(yz_idx2, yz_idx1, Address(rscratch1, 0)); 4026 4027 lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4028 4029 ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 4030 ror(yz_idx2, yz_idx2, 32); 4031 4032 ldp(rscratch2, rscratch1, Address(tmp6, 0)); 4033 4034 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 4035 umulh(tmp4, product_hi, yz_idx1); 4036 4037 ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian 4038 ror(rscratch2, rscratch2, 32); 4039 4040 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp 4041 umulh(carry2, product_hi, yz_idx2); 4042 4043 // propagate sum of both multiplications into carry:tmp4:tmp3 4044 adds(tmp3, tmp3, carry); 4045 adc(tmp4, tmp4, zr); 4046 adds(tmp3, tmp3, rscratch1); 4047 adcs(tmp4, tmp4, tmp); 4048 adc(carry, carry2, zr); 4049 adds(tmp4, tmp4, rscratch2); 4050 adc(carry, carry, zr); 4051 4052 ror(tmp3, tmp3, 32); // convert little-endian to big-endian 4053 ror(tmp4, tmp4, 32); 4054 stp(tmp4, tmp3, Address(tmp6, 0)); 4055 4056 b(L_third_loop); 4057 bind (L_third_loop_exit); 4058 4059 andw (idx, idx, 0x3); 4060 cbz(idx, L_post_third_loop_done); 4061 4062 Label L_check_1; 4063 subsw(idx, idx, 2); 4064 br(Assembler::MI, L_check_1); 4065 4066 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4067 ldr(yz_idx1, Address(rscratch1, 0)); 4068 ror(yz_idx1, yz_idx1, 32); 4069 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 4070 umulh(tmp4, product_hi, yz_idx1); 4071 lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4072 ldr(yz_idx2, Address(rscratch1, 0)); 4073 ror(yz_idx2, yz_idx2, 32); 4074 4075 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2); 4076 4077 ror(tmp3, tmp3, 32); 4078 str(tmp3, Address(rscratch1, 0)); 4079 4080 bind (L_check_1); 4081 4082 andw (idx, idx, 0x1); 4083 subsw(idx, idx, 1); 4084 br(Assembler::MI, L_post_third_loop_done); 4085 ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4086 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3 4087 umulh(carry2, tmp4, product_hi); 4088 ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4089 4090 add2_with_carry(carry2, tmp3, tmp4, carry); 4091 4092 strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4093 extr(carry, carry2, tmp3, 32); 4094 4095 bind(L_post_third_loop_done); 4096 } 4097 4098 /** 4099 * Code for BigInteger::multiplyToLen() intrinsic. 4100 * 4101 * r0: x 4102 * r1: xlen 4103 * r2: y 4104 * r3: ylen 4105 * r4: z 4106 * r5: tmp0 4107 * r10: tmp1 4108 * r11: tmp2 4109 * r12: tmp3 4110 * r13: tmp4 4111 * r14: tmp5 4112 * r15: tmp6 4113 * r16: tmp7 4114 * 4115 */ 4116 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, 4117 Register z, Register tmp0, 4118 Register tmp1, Register tmp2, Register tmp3, Register tmp4, 4119 Register tmp5, Register tmp6, Register product_hi) { 4120 4121 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, product_hi); 4122 4123 const Register idx = tmp1; 4124 const Register kdx = tmp2; 4125 const Register xstart = tmp3; 4126 4127 const Register y_idx = tmp4; 4128 const Register carry = tmp5; 4129 const Register product = xlen; 4130 const Register x_xstart = tmp0; 4131 4132 // First Loop. 4133 // 4134 // final static long LONG_MASK = 0xffffffffL; 4135 // int xstart = xlen - 1; 4136 // int ystart = ylen - 1; 4137 // long carry = 0; 4138 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 4139 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 4140 // z[kdx] = (int)product; 4141 // carry = product >>> 32; 4142 // } 4143 // z[xstart] = (int)carry; 4144 // 4145 4146 movw(idx, ylen); // idx = ylen; 4147 addw(kdx, xlen, ylen); // kdx = xlen+ylen; 4148 mov(carry, zr); // carry = 0; 4149 4150 Label L_done; 4151 4152 movw(xstart, xlen); 4153 subsw(xstart, xstart, 1); 4154 br(Assembler::MI, L_done); 4155 4156 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 4157 4158 Label L_second_loop; 4159 cbzw(kdx, L_second_loop); 4160 4161 Label L_carry; 4162 subw(kdx, kdx, 1); 4163 cbzw(kdx, L_carry); 4164 4165 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 4166 lsr(carry, carry, 32); 4167 subw(kdx, kdx, 1); 4168 4169 bind(L_carry); 4170 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 4171 4172 // Second and third (nested) loops. 4173 // 4174 // for (int i = xstart-1; i >= 0; i--) { // Second loop 4175 // carry = 0; 4176 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 4177 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 4178 // (z[k] & LONG_MASK) + carry; 4179 // z[k] = (int)product; 4180 // carry = product >>> 32; 4181 // } 4182 // z[i] = (int)carry; 4183 // } 4184 // 4185 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi 4186 4187 const Register jdx = tmp1; 4188 4189 bind(L_second_loop); 4190 mov(carry, zr); // carry = 0; 4191 movw(jdx, ylen); // j = ystart+1 4192 4193 subsw(xstart, xstart, 1); // i = xstart-1; 4194 br(Assembler::MI, L_done); 4195 4196 str(z, Address(pre(sp, -4 * wordSize))); 4197 4198 Label L_last_x; 4199 lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j 4200 subsw(xstart, xstart, 1); // i = xstart-1; 4201 br(Assembler::MI, L_last_x); 4202 4203 lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt))); 4204 ldr(product_hi, Address(rscratch1)); 4205 ror(product_hi, product_hi, 32); // convert big-endian to little-endian 4206 4207 Label L_third_loop_prologue; 4208 bind(L_third_loop_prologue); 4209 4210 str(ylen, Address(sp, wordSize)); 4211 stp(x, xstart, Address(sp, 2 * wordSize)); 4212 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product, 4213 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi); 4214 ldp(z, ylen, Address(post(sp, 2 * wordSize))); 4215 ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen 4216 4217 addw(tmp3, xlen, 1); 4218 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4219 subsw(tmp3, tmp3, 1); 4220 br(Assembler::MI, L_done); 4221 4222 lsr(carry, carry, 32); 4223 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4224 b(L_second_loop); 4225 4226 // Next infrequent code is moved outside loops. 4227 bind(L_last_x); 4228 ldrw(product_hi, Address(x, 0)); 4229 b(L_third_loop_prologue); 4230 4231 bind(L_done); 4232 } 4233 4234 // Code for BigInteger::mulAdd intrinsic 4235 // out = r0 4236 // in = r1 4237 // offset = r2 (already out.length-offset) 4238 // len = r3 4239 // k = r4 4240 // 4241 // pseudo code from java implementation: 4242 // carry = 0; 4243 // offset = out.length-offset - 1; 4244 // for (int j=len-1; j >= 0; j--) { 4245 // product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry; 4246 // out[offset--] = (int)product; 4247 // carry = product >>> 32; 4248 // } 4249 // return (int)carry; 4250 void MacroAssembler::mul_add(Register out, Register in, Register offset, 4251 Register len, Register k) { 4252 Label LOOP, END; 4253 // pre-loop 4254 cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches 4255 csel(out, zr, out, Assembler::EQ); 4256 br(Assembler::EQ, END); 4257 add(in, in, len, LSL, 2); // in[j+1] address 4258 add(offset, out, offset, LSL, 2); // out[offset + 1] address 4259 mov(out, zr); // used to keep carry now 4260 BIND(LOOP); 4261 ldrw(rscratch1, Address(pre(in, -4))); 4262 madd(rscratch1, rscratch1, k, out); 4263 ldrw(rscratch2, Address(pre(offset, -4))); 4264 add(rscratch1, rscratch1, rscratch2); 4265 strw(rscratch1, Address(offset)); 4266 lsr(out, rscratch1, 32); 4267 subs(len, len, 1); 4268 br(Assembler::NE, LOOP); 4269 BIND(END); 4270 } 4271 4272 /** 4273 * Emits code to update CRC-32 with a byte value according to constants in table 4274 * 4275 * @param [in,out]crc Register containing the crc. 4276 * @param [in]val Register containing the byte to fold into the CRC. 4277 * @param [in]table Register containing the table of crc constants. 4278 * 4279 * uint32_t crc; 4280 * val = crc_table[(val ^ crc) & 0xFF]; 4281 * crc = val ^ (crc >> 8); 4282 * 4283 */ 4284 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 4285 eor(val, val, crc); 4286 andr(val, val, 0xff); 4287 ldrw(val, Address(table, val, Address::lsl(2))); 4288 eor(crc, val, crc, Assembler::LSR, 8); 4289 } 4290 4291 /** 4292 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3 4293 * 4294 * @param [in,out]crc Register containing the crc. 4295 * @param [in]v Register containing the 32-bit to fold into the CRC. 4296 * @param [in]table0 Register containing table 0 of crc constants. 4297 * @param [in]table1 Register containing table 1 of crc constants. 4298 * @param [in]table2 Register containing table 2 of crc constants. 4299 * @param [in]table3 Register containing table 3 of crc constants. 4300 * 4301 * uint32_t crc; 4302 * v = crc ^ v 4303 * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24] 4304 * 4305 */ 4306 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp, 4307 Register table0, Register table1, Register table2, Register table3, 4308 bool upper) { 4309 eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0); 4310 uxtb(tmp, v); 4311 ldrw(crc, Address(table3, tmp, Address::lsl(2))); 4312 ubfx(tmp, v, 8, 8); 4313 ldrw(tmp, Address(table2, tmp, Address::lsl(2))); 4314 eor(crc, crc, tmp); 4315 ubfx(tmp, v, 16, 8); 4316 ldrw(tmp, Address(table1, tmp, Address::lsl(2))); 4317 eor(crc, crc, tmp); 4318 ubfx(tmp, v, 24, 8); 4319 ldrw(tmp, Address(table0, tmp, Address::lsl(2))); 4320 eor(crc, crc, tmp); 4321 } 4322 4323 void MacroAssembler::kernel_crc32_using_crypto_pmull(Register crc, Register buf, 4324 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4325 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4326 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4327 4328 subs(tmp0, len, 384); 4329 mvnw(crc, crc); 4330 br(Assembler::GE, CRC_by128_pre); 4331 BIND(CRC_less128); 4332 subs(len, len, 32); 4333 br(Assembler::GE, CRC_by32_loop); 4334 BIND(CRC_less32); 4335 adds(len, len, 32 - 4); 4336 br(Assembler::GE, CRC_by4_loop); 4337 adds(len, len, 4); 4338 br(Assembler::GT, CRC_by1_loop); 4339 b(L_exit); 4340 4341 BIND(CRC_by32_loop); 4342 ldp(tmp0, tmp1, Address(buf)); 4343 crc32x(crc, crc, tmp0); 4344 ldp(tmp2, tmp3, Address(buf, 16)); 4345 crc32x(crc, crc, tmp1); 4346 add(buf, buf, 32); 4347 crc32x(crc, crc, tmp2); 4348 subs(len, len, 32); 4349 crc32x(crc, crc, tmp3); 4350 br(Assembler::GE, CRC_by32_loop); 4351 cmn(len, (u1)32); 4352 br(Assembler::NE, CRC_less32); 4353 b(L_exit); 4354 4355 BIND(CRC_by4_loop); 4356 ldrw(tmp0, Address(post(buf, 4))); 4357 subs(len, len, 4); 4358 crc32w(crc, crc, tmp0); 4359 br(Assembler::GE, CRC_by4_loop); 4360 adds(len, len, 4); 4361 br(Assembler::LE, L_exit); 4362 BIND(CRC_by1_loop); 4363 ldrb(tmp0, Address(post(buf, 1))); 4364 subs(len, len, 1); 4365 crc32b(crc, crc, tmp0); 4366 br(Assembler::GT, CRC_by1_loop); 4367 b(L_exit); 4368 4369 BIND(CRC_by128_pre); 4370 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4371 4*256*sizeof(juint) + 8*sizeof(juint)); 4372 mov(crc, 0); 4373 crc32x(crc, crc, tmp0); 4374 crc32x(crc, crc, tmp1); 4375 4376 cbnz(len, CRC_less128); 4377 4378 BIND(L_exit); 4379 mvnw(crc, crc); 4380 } 4381 4382 void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf, 4383 Register len, Register tmp0, Register tmp1, Register tmp2, 4384 Register tmp3) { 4385 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4386 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4387 4388 mvnw(crc, crc); 4389 4390 subs(len, len, 128); 4391 br(Assembler::GE, CRC_by64_pre); 4392 BIND(CRC_less64); 4393 adds(len, len, 128-32); 4394 br(Assembler::GE, CRC_by32_loop); 4395 BIND(CRC_less32); 4396 adds(len, len, 32-4); 4397 br(Assembler::GE, CRC_by4_loop); 4398 adds(len, len, 4); 4399 br(Assembler::GT, CRC_by1_loop); 4400 b(L_exit); 4401 4402 BIND(CRC_by32_loop); 4403 ldp(tmp0, tmp1, Address(post(buf, 16))); 4404 subs(len, len, 32); 4405 crc32x(crc, crc, tmp0); 4406 ldr(tmp2, Address(post(buf, 8))); 4407 crc32x(crc, crc, tmp1); 4408 ldr(tmp3, Address(post(buf, 8))); 4409 crc32x(crc, crc, tmp2); 4410 crc32x(crc, crc, tmp3); 4411 br(Assembler::GE, CRC_by32_loop); 4412 cmn(len, (u1)32); 4413 br(Assembler::NE, CRC_less32); 4414 b(L_exit); 4415 4416 BIND(CRC_by4_loop); 4417 ldrw(tmp0, Address(post(buf, 4))); 4418 subs(len, len, 4); 4419 crc32w(crc, crc, tmp0); 4420 br(Assembler::GE, CRC_by4_loop); 4421 adds(len, len, 4); 4422 br(Assembler::LE, L_exit); 4423 BIND(CRC_by1_loop); 4424 ldrb(tmp0, Address(post(buf, 1))); 4425 subs(len, len, 1); 4426 crc32b(crc, crc, tmp0); 4427 br(Assembler::GT, CRC_by1_loop); 4428 b(L_exit); 4429 4430 BIND(CRC_by64_pre); 4431 sub(buf, buf, 8); 4432 ldp(tmp0, tmp1, Address(buf, 8)); 4433 crc32x(crc, crc, tmp0); 4434 ldr(tmp2, Address(buf, 24)); 4435 crc32x(crc, crc, tmp1); 4436 ldr(tmp3, Address(buf, 32)); 4437 crc32x(crc, crc, tmp2); 4438 ldr(tmp0, Address(buf, 40)); 4439 crc32x(crc, crc, tmp3); 4440 ldr(tmp1, Address(buf, 48)); 4441 crc32x(crc, crc, tmp0); 4442 ldr(tmp2, Address(buf, 56)); 4443 crc32x(crc, crc, tmp1); 4444 ldr(tmp3, Address(pre(buf, 64))); 4445 4446 b(CRC_by64_loop); 4447 4448 align(CodeEntryAlignment); 4449 BIND(CRC_by64_loop); 4450 subs(len, len, 64); 4451 crc32x(crc, crc, tmp2); 4452 ldr(tmp0, Address(buf, 8)); 4453 crc32x(crc, crc, tmp3); 4454 ldr(tmp1, Address(buf, 16)); 4455 crc32x(crc, crc, tmp0); 4456 ldr(tmp2, Address(buf, 24)); 4457 crc32x(crc, crc, tmp1); 4458 ldr(tmp3, Address(buf, 32)); 4459 crc32x(crc, crc, tmp2); 4460 ldr(tmp0, Address(buf, 40)); 4461 crc32x(crc, crc, tmp3); 4462 ldr(tmp1, Address(buf, 48)); 4463 crc32x(crc, crc, tmp0); 4464 ldr(tmp2, Address(buf, 56)); 4465 crc32x(crc, crc, tmp1); 4466 ldr(tmp3, Address(pre(buf, 64))); 4467 br(Assembler::GE, CRC_by64_loop); 4468 4469 // post-loop 4470 crc32x(crc, crc, tmp2); 4471 crc32x(crc, crc, tmp3); 4472 4473 sub(len, len, 64); 4474 add(buf, buf, 8); 4475 cmn(len, (u1)128); 4476 br(Assembler::NE, CRC_less64); 4477 BIND(L_exit); 4478 mvnw(crc, crc); 4479 } 4480 4481 /** 4482 * @param crc register containing existing CRC (32-bit) 4483 * @param buf register pointing to input byte buffer (byte*) 4484 * @param len register containing number of bytes 4485 * @param table register that will contain address of CRC table 4486 * @param tmp scratch register 4487 */ 4488 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, 4489 Register table0, Register table1, Register table2, Register table3, 4490 Register tmp, Register tmp2, Register tmp3) { 4491 Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit; 4492 4493 if (UseCryptoPmullForCRC32) { 4494 kernel_crc32_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4495 return; 4496 } 4497 4498 if (UseCRC32) { 4499 kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3); 4500 return; 4501 } 4502 4503 mvnw(crc, crc); 4504 4505 { 4506 uint64_t offset; 4507 adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4508 add(table0, table0, offset); 4509 } 4510 add(table1, table0, 1*256*sizeof(juint)); 4511 add(table2, table0, 2*256*sizeof(juint)); 4512 add(table3, table0, 3*256*sizeof(juint)); 4513 4514 { // Neon code start 4515 cmp(len, (u1)64); 4516 br(Assembler::LT, L_by16); 4517 eor(v16, T16B, v16, v16); 4518 4519 Label L_fold; 4520 4521 add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants 4522 4523 ld1(v0, v1, T2D, post(buf, 32)); 4524 ld1r(v4, T2D, post(tmp, 8)); 4525 ld1r(v5, T2D, post(tmp, 8)); 4526 ld1r(v6, T2D, post(tmp, 8)); 4527 ld1r(v7, T2D, post(tmp, 8)); 4528 mov(v16, S, 0, crc); 4529 4530 eor(v0, T16B, v0, v16); 4531 sub(len, len, 64); 4532 4533 BIND(L_fold); 4534 pmull(v22, T8H, v0, v5, T8B); 4535 pmull(v20, T8H, v0, v7, T8B); 4536 pmull(v23, T8H, v0, v4, T8B); 4537 pmull(v21, T8H, v0, v6, T8B); 4538 4539 pmull2(v18, T8H, v0, v5, T16B); 4540 pmull2(v16, T8H, v0, v7, T16B); 4541 pmull2(v19, T8H, v0, v4, T16B); 4542 pmull2(v17, T8H, v0, v6, T16B); 4543 4544 uzp1(v24, T8H, v20, v22); 4545 uzp2(v25, T8H, v20, v22); 4546 eor(v20, T16B, v24, v25); 4547 4548 uzp1(v26, T8H, v16, v18); 4549 uzp2(v27, T8H, v16, v18); 4550 eor(v16, T16B, v26, v27); 4551 4552 ushll2(v22, T4S, v20, T8H, 8); 4553 ushll(v20, T4S, v20, T4H, 8); 4554 4555 ushll2(v18, T4S, v16, T8H, 8); 4556 ushll(v16, T4S, v16, T4H, 8); 4557 4558 eor(v22, T16B, v23, v22); 4559 eor(v18, T16B, v19, v18); 4560 eor(v20, T16B, v21, v20); 4561 eor(v16, T16B, v17, v16); 4562 4563 uzp1(v17, T2D, v16, v20); 4564 uzp2(v21, T2D, v16, v20); 4565 eor(v17, T16B, v17, v21); 4566 4567 ushll2(v20, T2D, v17, T4S, 16); 4568 ushll(v16, T2D, v17, T2S, 16); 4569 4570 eor(v20, T16B, v20, v22); 4571 eor(v16, T16B, v16, v18); 4572 4573 uzp1(v17, T2D, v20, v16); 4574 uzp2(v21, T2D, v20, v16); 4575 eor(v28, T16B, v17, v21); 4576 4577 pmull(v22, T8H, v1, v5, T8B); 4578 pmull(v20, T8H, v1, v7, T8B); 4579 pmull(v23, T8H, v1, v4, T8B); 4580 pmull(v21, T8H, v1, v6, T8B); 4581 4582 pmull2(v18, T8H, v1, v5, T16B); 4583 pmull2(v16, T8H, v1, v7, T16B); 4584 pmull2(v19, T8H, v1, v4, T16B); 4585 pmull2(v17, T8H, v1, v6, T16B); 4586 4587 ld1(v0, v1, T2D, post(buf, 32)); 4588 4589 uzp1(v24, T8H, v20, v22); 4590 uzp2(v25, T8H, v20, v22); 4591 eor(v20, T16B, v24, v25); 4592 4593 uzp1(v26, T8H, v16, v18); 4594 uzp2(v27, T8H, v16, v18); 4595 eor(v16, T16B, v26, v27); 4596 4597 ushll2(v22, T4S, v20, T8H, 8); 4598 ushll(v20, T4S, v20, T4H, 8); 4599 4600 ushll2(v18, T4S, v16, T8H, 8); 4601 ushll(v16, T4S, v16, T4H, 8); 4602 4603 eor(v22, T16B, v23, v22); 4604 eor(v18, T16B, v19, v18); 4605 eor(v20, T16B, v21, v20); 4606 eor(v16, T16B, v17, v16); 4607 4608 uzp1(v17, T2D, v16, v20); 4609 uzp2(v21, T2D, v16, v20); 4610 eor(v16, T16B, v17, v21); 4611 4612 ushll2(v20, T2D, v16, T4S, 16); 4613 ushll(v16, T2D, v16, T2S, 16); 4614 4615 eor(v20, T16B, v22, v20); 4616 eor(v16, T16B, v16, v18); 4617 4618 uzp1(v17, T2D, v20, v16); 4619 uzp2(v21, T2D, v20, v16); 4620 eor(v20, T16B, v17, v21); 4621 4622 shl(v16, T2D, v28, 1); 4623 shl(v17, T2D, v20, 1); 4624 4625 eor(v0, T16B, v0, v16); 4626 eor(v1, T16B, v1, v17); 4627 4628 subs(len, len, 32); 4629 br(Assembler::GE, L_fold); 4630 4631 mov(crc, 0); 4632 mov(tmp, v0, D, 0); 4633 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4634 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4635 mov(tmp, v0, D, 1); 4636 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4637 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4638 mov(tmp, v1, D, 0); 4639 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4640 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4641 mov(tmp, v1, D, 1); 4642 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4643 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4644 4645 add(len, len, 32); 4646 } // Neon code end 4647 4648 BIND(L_by16); 4649 subs(len, len, 16); 4650 br(Assembler::GE, L_by16_loop); 4651 adds(len, len, 16-4); 4652 br(Assembler::GE, L_by4_loop); 4653 adds(len, len, 4); 4654 br(Assembler::GT, L_by1_loop); 4655 b(L_exit); 4656 4657 BIND(L_by4_loop); 4658 ldrw(tmp, Address(post(buf, 4))); 4659 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3); 4660 subs(len, len, 4); 4661 br(Assembler::GE, L_by4_loop); 4662 adds(len, len, 4); 4663 br(Assembler::LE, L_exit); 4664 BIND(L_by1_loop); 4665 subs(len, len, 1); 4666 ldrb(tmp, Address(post(buf, 1))); 4667 update_byte_crc32(crc, tmp, table0); 4668 br(Assembler::GT, L_by1_loop); 4669 b(L_exit); 4670 4671 align(CodeEntryAlignment); 4672 BIND(L_by16_loop); 4673 subs(len, len, 16); 4674 ldp(tmp, tmp3, Address(post(buf, 16))); 4675 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4676 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4677 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false); 4678 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true); 4679 br(Assembler::GE, L_by16_loop); 4680 adds(len, len, 16-4); 4681 br(Assembler::GE, L_by4_loop); 4682 adds(len, len, 4); 4683 br(Assembler::GT, L_by1_loop); 4684 BIND(L_exit); 4685 mvnw(crc, crc); 4686 } 4687 4688 void MacroAssembler::kernel_crc32c_using_crypto_pmull(Register crc, Register buf, 4689 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4690 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4691 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4692 4693 subs(tmp0, len, 384); 4694 br(Assembler::GE, CRC_by128_pre); 4695 BIND(CRC_less128); 4696 subs(len, len, 32); 4697 br(Assembler::GE, CRC_by32_loop); 4698 BIND(CRC_less32); 4699 adds(len, len, 32 - 4); 4700 br(Assembler::GE, CRC_by4_loop); 4701 adds(len, len, 4); 4702 br(Assembler::GT, CRC_by1_loop); 4703 b(L_exit); 4704 4705 BIND(CRC_by32_loop); 4706 ldp(tmp0, tmp1, Address(buf)); 4707 crc32cx(crc, crc, tmp0); 4708 ldr(tmp2, Address(buf, 16)); 4709 crc32cx(crc, crc, tmp1); 4710 ldr(tmp3, Address(buf, 24)); 4711 crc32cx(crc, crc, tmp2); 4712 add(buf, buf, 32); 4713 subs(len, len, 32); 4714 crc32cx(crc, crc, tmp3); 4715 br(Assembler::GE, CRC_by32_loop); 4716 cmn(len, (u1)32); 4717 br(Assembler::NE, CRC_less32); 4718 b(L_exit); 4719 4720 BIND(CRC_by4_loop); 4721 ldrw(tmp0, Address(post(buf, 4))); 4722 subs(len, len, 4); 4723 crc32cw(crc, crc, tmp0); 4724 br(Assembler::GE, CRC_by4_loop); 4725 adds(len, len, 4); 4726 br(Assembler::LE, L_exit); 4727 BIND(CRC_by1_loop); 4728 ldrb(tmp0, Address(post(buf, 1))); 4729 subs(len, len, 1); 4730 crc32cb(crc, crc, tmp0); 4731 br(Assembler::GT, CRC_by1_loop); 4732 b(L_exit); 4733 4734 BIND(CRC_by128_pre); 4735 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4736 4*256*sizeof(juint) + 8*sizeof(juint) + 0x50); 4737 mov(crc, 0); 4738 crc32cx(crc, crc, tmp0); 4739 crc32cx(crc, crc, tmp1); 4740 4741 cbnz(len, CRC_less128); 4742 4743 BIND(L_exit); 4744 } 4745 4746 void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf, 4747 Register len, Register tmp0, Register tmp1, Register tmp2, 4748 Register tmp3) { 4749 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4750 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4751 4752 subs(len, len, 128); 4753 br(Assembler::GE, CRC_by64_pre); 4754 BIND(CRC_less64); 4755 adds(len, len, 128-32); 4756 br(Assembler::GE, CRC_by32_loop); 4757 BIND(CRC_less32); 4758 adds(len, len, 32-4); 4759 br(Assembler::GE, CRC_by4_loop); 4760 adds(len, len, 4); 4761 br(Assembler::GT, CRC_by1_loop); 4762 b(L_exit); 4763 4764 BIND(CRC_by32_loop); 4765 ldp(tmp0, tmp1, Address(post(buf, 16))); 4766 subs(len, len, 32); 4767 crc32cx(crc, crc, tmp0); 4768 ldr(tmp2, Address(post(buf, 8))); 4769 crc32cx(crc, crc, tmp1); 4770 ldr(tmp3, Address(post(buf, 8))); 4771 crc32cx(crc, crc, tmp2); 4772 crc32cx(crc, crc, tmp3); 4773 br(Assembler::GE, CRC_by32_loop); 4774 cmn(len, (u1)32); 4775 br(Assembler::NE, CRC_less32); 4776 b(L_exit); 4777 4778 BIND(CRC_by4_loop); 4779 ldrw(tmp0, Address(post(buf, 4))); 4780 subs(len, len, 4); 4781 crc32cw(crc, crc, tmp0); 4782 br(Assembler::GE, CRC_by4_loop); 4783 adds(len, len, 4); 4784 br(Assembler::LE, L_exit); 4785 BIND(CRC_by1_loop); 4786 ldrb(tmp0, Address(post(buf, 1))); 4787 subs(len, len, 1); 4788 crc32cb(crc, crc, tmp0); 4789 br(Assembler::GT, CRC_by1_loop); 4790 b(L_exit); 4791 4792 BIND(CRC_by64_pre); 4793 sub(buf, buf, 8); 4794 ldp(tmp0, tmp1, Address(buf, 8)); 4795 crc32cx(crc, crc, tmp0); 4796 ldr(tmp2, Address(buf, 24)); 4797 crc32cx(crc, crc, tmp1); 4798 ldr(tmp3, Address(buf, 32)); 4799 crc32cx(crc, crc, tmp2); 4800 ldr(tmp0, Address(buf, 40)); 4801 crc32cx(crc, crc, tmp3); 4802 ldr(tmp1, Address(buf, 48)); 4803 crc32cx(crc, crc, tmp0); 4804 ldr(tmp2, Address(buf, 56)); 4805 crc32cx(crc, crc, tmp1); 4806 ldr(tmp3, Address(pre(buf, 64))); 4807 4808 b(CRC_by64_loop); 4809 4810 align(CodeEntryAlignment); 4811 BIND(CRC_by64_loop); 4812 subs(len, len, 64); 4813 crc32cx(crc, crc, tmp2); 4814 ldr(tmp0, Address(buf, 8)); 4815 crc32cx(crc, crc, tmp3); 4816 ldr(tmp1, Address(buf, 16)); 4817 crc32cx(crc, crc, tmp0); 4818 ldr(tmp2, Address(buf, 24)); 4819 crc32cx(crc, crc, tmp1); 4820 ldr(tmp3, Address(buf, 32)); 4821 crc32cx(crc, crc, tmp2); 4822 ldr(tmp0, Address(buf, 40)); 4823 crc32cx(crc, crc, tmp3); 4824 ldr(tmp1, Address(buf, 48)); 4825 crc32cx(crc, crc, tmp0); 4826 ldr(tmp2, Address(buf, 56)); 4827 crc32cx(crc, crc, tmp1); 4828 ldr(tmp3, Address(pre(buf, 64))); 4829 br(Assembler::GE, CRC_by64_loop); 4830 4831 // post-loop 4832 crc32cx(crc, crc, tmp2); 4833 crc32cx(crc, crc, tmp3); 4834 4835 sub(len, len, 64); 4836 add(buf, buf, 8); 4837 cmn(len, (u1)128); 4838 br(Assembler::NE, CRC_less64); 4839 BIND(L_exit); 4840 } 4841 4842 /** 4843 * @param crc register containing existing CRC (32-bit) 4844 * @param buf register pointing to input byte buffer (byte*) 4845 * @param len register containing number of bytes 4846 * @param table register that will contain address of CRC table 4847 * @param tmp scratch register 4848 */ 4849 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len, 4850 Register table0, Register table1, Register table2, Register table3, 4851 Register tmp, Register tmp2, Register tmp3) { 4852 if (UseCryptoPmullForCRC32) { 4853 kernel_crc32c_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4854 } else { 4855 kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3); 4856 } 4857 } 4858 4859 void MacroAssembler::kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 4860 Register len, Register tmp0, Register tmp1, Register tmp2, size_t table_offset) { 4861 Label CRC_by128_loop; 4862 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4863 4864 sub(len, len, 256); 4865 Register table = tmp0; 4866 { 4867 uint64_t offset; 4868 adrp(table, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4869 add(table, table, offset); 4870 } 4871 add(table, table, table_offset); 4872 4873 // Registers v0..v7 are used as data registers. 4874 // Registers v16..v31 are used as tmp registers. 4875 sub(buf, buf, 0x10); 4876 ldrq(v0, Address(buf, 0x10)); 4877 ldrq(v1, Address(buf, 0x20)); 4878 ldrq(v2, Address(buf, 0x30)); 4879 ldrq(v3, Address(buf, 0x40)); 4880 ldrq(v4, Address(buf, 0x50)); 4881 ldrq(v5, Address(buf, 0x60)); 4882 ldrq(v6, Address(buf, 0x70)); 4883 ldrq(v7, Address(pre(buf, 0x80))); 4884 4885 movi(v31, T4S, 0); 4886 mov(v31, S, 0, crc); 4887 eor(v0, T16B, v0, v31); 4888 4889 // Register v16 contains constants from the crc table. 4890 ldrq(v16, Address(table)); 4891 b(CRC_by128_loop); 4892 4893 align(OptoLoopAlignment); 4894 BIND(CRC_by128_loop); 4895 pmull (v17, T1Q, v0, v16, T1D); 4896 pmull2(v18, T1Q, v0, v16, T2D); 4897 ldrq(v0, Address(buf, 0x10)); 4898 eor3(v0, T16B, v17, v18, v0); 4899 4900 pmull (v19, T1Q, v1, v16, T1D); 4901 pmull2(v20, T1Q, v1, v16, T2D); 4902 ldrq(v1, Address(buf, 0x20)); 4903 eor3(v1, T16B, v19, v20, v1); 4904 4905 pmull (v21, T1Q, v2, v16, T1D); 4906 pmull2(v22, T1Q, v2, v16, T2D); 4907 ldrq(v2, Address(buf, 0x30)); 4908 eor3(v2, T16B, v21, v22, v2); 4909 4910 pmull (v23, T1Q, v3, v16, T1D); 4911 pmull2(v24, T1Q, v3, v16, T2D); 4912 ldrq(v3, Address(buf, 0x40)); 4913 eor3(v3, T16B, v23, v24, v3); 4914 4915 pmull (v25, T1Q, v4, v16, T1D); 4916 pmull2(v26, T1Q, v4, v16, T2D); 4917 ldrq(v4, Address(buf, 0x50)); 4918 eor3(v4, T16B, v25, v26, v4); 4919 4920 pmull (v27, T1Q, v5, v16, T1D); 4921 pmull2(v28, T1Q, v5, v16, T2D); 4922 ldrq(v5, Address(buf, 0x60)); 4923 eor3(v5, T16B, v27, v28, v5); 4924 4925 pmull (v29, T1Q, v6, v16, T1D); 4926 pmull2(v30, T1Q, v6, v16, T2D); 4927 ldrq(v6, Address(buf, 0x70)); 4928 eor3(v6, T16B, v29, v30, v6); 4929 4930 // Reuse registers v23, v24. 4931 // Using them won't block the first instruction of the next iteration. 4932 pmull (v23, T1Q, v7, v16, T1D); 4933 pmull2(v24, T1Q, v7, v16, T2D); 4934 ldrq(v7, Address(pre(buf, 0x80))); 4935 eor3(v7, T16B, v23, v24, v7); 4936 4937 subs(len, len, 0x80); 4938 br(Assembler::GE, CRC_by128_loop); 4939 4940 // fold into 512 bits 4941 // Use v31 for constants because v16 can be still in use. 4942 ldrq(v31, Address(table, 0x10)); 4943 4944 pmull (v17, T1Q, v0, v31, T1D); 4945 pmull2(v18, T1Q, v0, v31, T2D); 4946 eor3(v0, T16B, v17, v18, v4); 4947 4948 pmull (v19, T1Q, v1, v31, T1D); 4949 pmull2(v20, T1Q, v1, v31, T2D); 4950 eor3(v1, T16B, v19, v20, v5); 4951 4952 pmull (v21, T1Q, v2, v31, T1D); 4953 pmull2(v22, T1Q, v2, v31, T2D); 4954 eor3(v2, T16B, v21, v22, v6); 4955 4956 pmull (v23, T1Q, v3, v31, T1D); 4957 pmull2(v24, T1Q, v3, v31, T2D); 4958 eor3(v3, T16B, v23, v24, v7); 4959 4960 // fold into 128 bits 4961 // Use v17 for constants because v31 can be still in use. 4962 ldrq(v17, Address(table, 0x20)); 4963 pmull (v25, T1Q, v0, v17, T1D); 4964 pmull2(v26, T1Q, v0, v17, T2D); 4965 eor3(v3, T16B, v3, v25, v26); 4966 4967 // Use v18 for constants because v17 can be still in use. 4968 ldrq(v18, Address(table, 0x30)); 4969 pmull (v27, T1Q, v1, v18, T1D); 4970 pmull2(v28, T1Q, v1, v18, T2D); 4971 eor3(v3, T16B, v3, v27, v28); 4972 4973 // Use v19 for constants because v18 can be still in use. 4974 ldrq(v19, Address(table, 0x40)); 4975 pmull (v29, T1Q, v2, v19, T1D); 4976 pmull2(v30, T1Q, v2, v19, T2D); 4977 eor3(v0, T16B, v3, v29, v30); 4978 4979 add(len, len, 0x80); 4980 add(buf, buf, 0x10); 4981 4982 mov(tmp0, v0, D, 0); 4983 mov(tmp1, v0, D, 1); 4984 } 4985 4986 void MacroAssembler::addptr(const Address &dst, int32_t src) { 4987 Address adr; 4988 switch(dst.getMode()) { 4989 case Address::base_plus_offset: 4990 // This is the expected mode, although we allow all the other 4991 // forms below. 4992 adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord); 4993 break; 4994 default: 4995 lea(rscratch2, dst); 4996 adr = Address(rscratch2); 4997 break; 4998 } 4999 ldr(rscratch1, adr); 5000 add(rscratch1, rscratch1, src); 5001 str(rscratch1, adr); 5002 } 5003 5004 void MacroAssembler::cmpptr(Register src1, Address src2) { 5005 uint64_t offset; 5006 adrp(rscratch1, src2, offset); 5007 ldr(rscratch1, Address(rscratch1, offset)); 5008 cmp(src1, rscratch1); 5009 } 5010 5011 void MacroAssembler::cmpoop(Register obj1, Register obj2) { 5012 cmp(obj1, obj2); 5013 } 5014 5015 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 5016 load_method_holder(rresult, rmethod); 5017 ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 5018 } 5019 5020 void MacroAssembler::load_method_holder(Register holder, Register method) { 5021 ldr(holder, Address(method, Method::const_offset())); // ConstMethod* 5022 ldr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 5023 ldr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 5024 } 5025 5026 // Loads the obj's Klass* into dst. 5027 // Preserves all registers (incl src, rscratch1 and rscratch2). 5028 // Input: 5029 // src - the oop we want to load the klass from. 5030 // dst - output narrow klass. 5031 void MacroAssembler::load_narrow_klass_compact(Register dst, Register src) { 5032 assert(UseCompactObjectHeaders, "expects UseCompactObjectHeaders"); 5033 ldr(dst, Address(src, oopDesc::mark_offset_in_bytes())); 5034 lsr(dst, dst, markWord::klass_shift); 5035 } 5036 5037 void MacroAssembler::load_klass(Register dst, Register src) { 5038 if (UseCompactObjectHeaders) { 5039 load_narrow_klass_compact(dst, src); 5040 decode_klass_not_null(dst); 5041 } else if (UseCompressedClassPointers) { 5042 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5043 decode_klass_not_null(dst); 5044 } else { 5045 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5046 } 5047 } 5048 5049 void MacroAssembler::restore_cpu_control_state_after_jni(Register tmp1, Register tmp2) { 5050 if (RestoreMXCSROnJNICalls) { 5051 Label OK; 5052 get_fpcr(tmp1); 5053 mov(tmp2, tmp1); 5054 // Set FPCR to the state we need. We do want Round to Nearest. We 5055 // don't want non-IEEE rounding modes or floating-point traps. 5056 bfi(tmp1, zr, 22, 4); // Clear DN, FZ, and Rmode 5057 bfi(tmp1, zr, 8, 5); // Clear exception-control bits (8-12) 5058 bfi(tmp1, zr, 0, 2); // Clear AH:FIZ 5059 eor(tmp2, tmp1, tmp2); 5060 cbz(tmp2, OK); // Only reset FPCR if it's wrong 5061 set_fpcr(tmp1); 5062 bind(OK); 5063 } 5064 } 5065 5066 // ((OopHandle)result).resolve(); 5067 void MacroAssembler::resolve_oop_handle(Register result, Register tmp1, Register tmp2) { 5068 // OopHandle::resolve is an indirection. 5069 access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp1, tmp2); 5070 } 5071 5072 // ((WeakHandle)result).resolve(); 5073 void MacroAssembler::resolve_weak_handle(Register result, Register tmp1, Register tmp2) { 5074 assert_different_registers(result, tmp1, tmp2); 5075 Label resolved; 5076 5077 // A null weak handle resolves to null. 5078 cbz(result, resolved); 5079 5080 // Only 64 bit platforms support GCs that require a tmp register 5081 // WeakHandle::resolve is an indirection like jweak. 5082 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 5083 result, Address(result), tmp1, tmp2); 5084 bind(resolved); 5085 } 5086 5087 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp1, Register tmp2) { 5088 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 5089 ldr(dst, Address(rmethod, Method::const_offset())); 5090 ldr(dst, Address(dst, ConstMethod::constants_offset())); 5091 ldr(dst, Address(dst, ConstantPool::pool_holder_offset())); 5092 ldr(dst, Address(dst, mirror_offset)); 5093 resolve_oop_handle(dst, tmp1, tmp2); 5094 } 5095 5096 void MacroAssembler::cmp_klass(Register obj, Register klass, Register tmp) { 5097 assert_different_registers(obj, klass, tmp); 5098 if (UseCompressedClassPointers) { 5099 if (UseCompactObjectHeaders) { 5100 load_narrow_klass_compact(tmp, obj); 5101 } else { 5102 ldrw(tmp, Address(obj, oopDesc::klass_offset_in_bytes())); 5103 } 5104 if (CompressedKlassPointers::base() == nullptr) { 5105 cmp(klass, tmp, LSL, CompressedKlassPointers::shift()); 5106 return; 5107 } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0 5108 && CompressedKlassPointers::shift() == 0) { 5109 // Only the bottom 32 bits matter 5110 cmpw(klass, tmp); 5111 return; 5112 } 5113 decode_klass_not_null(tmp); 5114 } else { 5115 ldr(tmp, Address(obj, oopDesc::klass_offset_in_bytes())); 5116 } 5117 cmp(klass, tmp); 5118 } 5119 5120 void MacroAssembler::cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2) { 5121 if (UseCompactObjectHeaders) { 5122 load_narrow_klass_compact(tmp1, obj1); 5123 load_narrow_klass_compact(tmp2, obj2); 5124 cmpw(tmp1, tmp2); 5125 } else if (UseCompressedClassPointers) { 5126 ldrw(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5127 ldrw(tmp2, Address(obj2, oopDesc::klass_offset_in_bytes())); 5128 cmpw(tmp1, tmp2); 5129 } else { 5130 ldr(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5131 ldr(tmp2, Address(obj2, oopDesc::klass_offset_in_bytes())); 5132 cmp(tmp1, tmp2); 5133 } 5134 } 5135 5136 void MacroAssembler::store_klass(Register dst, Register src) { 5137 // FIXME: Should this be a store release? concurrent gcs assumes 5138 // klass length is valid if klass field is not null. 5139 assert(!UseCompactObjectHeaders, "not with compact headers"); 5140 if (UseCompressedClassPointers) { 5141 encode_klass_not_null(src); 5142 strw(src, Address(dst, oopDesc::klass_offset_in_bytes())); 5143 } else { 5144 str(src, Address(dst, oopDesc::klass_offset_in_bytes())); 5145 } 5146 } 5147 5148 void MacroAssembler::store_klass_gap(Register dst, Register src) { 5149 assert(!UseCompactObjectHeaders, "not with compact headers"); 5150 if (UseCompressedClassPointers) { 5151 // Store to klass gap in destination 5152 strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes())); 5153 } 5154 } 5155 5156 // Algorithm must match CompressedOops::encode. 5157 void MacroAssembler::encode_heap_oop(Register d, Register s) { 5158 #ifdef ASSERT 5159 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 5160 #endif 5161 verify_oop_msg(s, "broken oop in encode_heap_oop"); 5162 if (CompressedOops::base() == nullptr) { 5163 if (CompressedOops::shift() != 0) { 5164 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5165 lsr(d, s, LogMinObjAlignmentInBytes); 5166 } else { 5167 mov(d, s); 5168 } 5169 } else { 5170 subs(d, s, rheapbase); 5171 csel(d, d, zr, Assembler::HS); 5172 lsr(d, d, LogMinObjAlignmentInBytes); 5173 5174 /* Old algorithm: is this any worse? 5175 Label nonnull; 5176 cbnz(r, nonnull); 5177 sub(r, r, rheapbase); 5178 bind(nonnull); 5179 lsr(r, r, LogMinObjAlignmentInBytes); 5180 */ 5181 } 5182 } 5183 5184 void MacroAssembler::encode_heap_oop_not_null(Register r) { 5185 #ifdef ASSERT 5186 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 5187 if (CheckCompressedOops) { 5188 Label ok; 5189 cbnz(r, ok); 5190 stop("null oop passed to encode_heap_oop_not_null"); 5191 bind(ok); 5192 } 5193 #endif 5194 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 5195 if (CompressedOops::base() != nullptr) { 5196 sub(r, r, rheapbase); 5197 } 5198 if (CompressedOops::shift() != 0) { 5199 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5200 lsr(r, r, LogMinObjAlignmentInBytes); 5201 } 5202 } 5203 5204 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 5205 #ifdef ASSERT 5206 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 5207 if (CheckCompressedOops) { 5208 Label ok; 5209 cbnz(src, ok); 5210 stop("null oop passed to encode_heap_oop_not_null2"); 5211 bind(ok); 5212 } 5213 #endif 5214 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 5215 5216 Register data = src; 5217 if (CompressedOops::base() != nullptr) { 5218 sub(dst, src, rheapbase); 5219 data = dst; 5220 } 5221 if (CompressedOops::shift() != 0) { 5222 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5223 lsr(dst, data, LogMinObjAlignmentInBytes); 5224 data = dst; 5225 } 5226 if (data == src) 5227 mov(dst, src); 5228 } 5229 5230 void MacroAssembler::decode_heap_oop(Register d, Register s) { 5231 #ifdef ASSERT 5232 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 5233 #endif 5234 if (CompressedOops::base() == nullptr) { 5235 if (CompressedOops::shift() != 0) { 5236 lsl(d, s, CompressedOops::shift()); 5237 } else if (d != s) { 5238 mov(d, s); 5239 } 5240 } else { 5241 Label done; 5242 if (d != s) 5243 mov(d, s); 5244 cbz(s, done); 5245 add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes); 5246 bind(done); 5247 } 5248 verify_oop_msg(d, "broken oop in decode_heap_oop"); 5249 } 5250 5251 void MacroAssembler::decode_heap_oop_not_null(Register r) { 5252 assert (UseCompressedOops, "should only be used for compressed headers"); 5253 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5254 // Cannot assert, unverified entry point counts instructions (see .ad file) 5255 // vtableStubs also counts instructions in pd_code_size_limit. 5256 // Also do not verify_oop as this is called by verify_oop. 5257 if (CompressedOops::shift() != 0) { 5258 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5259 if (CompressedOops::base() != nullptr) { 5260 add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5261 } else { 5262 add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5263 } 5264 } else { 5265 assert (CompressedOops::base() == nullptr, "sanity"); 5266 } 5267 } 5268 5269 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 5270 assert (UseCompressedOops, "should only be used for compressed headers"); 5271 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5272 // Cannot assert, unverified entry point counts instructions (see .ad file) 5273 // vtableStubs also counts instructions in pd_code_size_limit. 5274 // Also do not verify_oop as this is called by verify_oop. 5275 if (CompressedOops::shift() != 0) { 5276 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5277 if (CompressedOops::base() != nullptr) { 5278 add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5279 } else { 5280 add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5281 } 5282 } else { 5283 assert (CompressedOops::base() == nullptr, "sanity"); 5284 if (dst != src) { 5285 mov(dst, src); 5286 } 5287 } 5288 } 5289 5290 MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone); 5291 5292 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() { 5293 assert(Metaspace::initialized(), "metaspace not initialized yet"); 5294 assert(_klass_decode_mode != KlassDecodeNone, "should be initialized"); 5295 return _klass_decode_mode; 5296 } 5297 5298 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode(address base, int shift, const size_t range) { 5299 assert(UseCompressedClassPointers, "not using compressed class pointers"); 5300 5301 // KlassDecodeMode shouldn't be set already. 5302 assert(_klass_decode_mode == KlassDecodeNone, "set once"); 5303 5304 if (base == nullptr) { 5305 return KlassDecodeZero; 5306 } 5307 5308 if (operand_valid_for_logical_immediate( 5309 /*is32*/false, (uint64_t)base)) { 5310 const uint64_t range_mask = right_n_bits(log2i_ceil(range)); 5311 if (((uint64_t)base & range_mask) == 0) { 5312 return KlassDecodeXor; 5313 } 5314 } 5315 5316 const uint64_t shifted_base = 5317 (uint64_t)base >> shift; 5318 if ((shifted_base & 0xffff0000ffffffff) == 0) { 5319 return KlassDecodeMovk; 5320 } 5321 5322 // No valid encoding. 5323 return KlassDecodeNone; 5324 } 5325 5326 // Check if one of the above decoding modes will work for given base, shift and range. 5327 bool MacroAssembler::check_klass_decode_mode(address base, int shift, const size_t range) { 5328 return klass_decode_mode(base, shift, range) != KlassDecodeNone; 5329 } 5330 5331 bool MacroAssembler::set_klass_decode_mode(address base, int shift, const size_t range) { 5332 _klass_decode_mode = klass_decode_mode(base, shift, range); 5333 return _klass_decode_mode != KlassDecodeNone; 5334 } 5335 5336 void MacroAssembler::encode_klass_not_null(Register dst, Register src) { 5337 switch (klass_decode_mode()) { 5338 case KlassDecodeZero: 5339 if (CompressedKlassPointers::shift() != 0) { 5340 lsr(dst, src, CompressedKlassPointers::shift()); 5341 } else { 5342 if (dst != src) mov(dst, src); 5343 } 5344 break; 5345 5346 case KlassDecodeXor: 5347 if (CompressedKlassPointers::shift() != 0) { 5348 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5349 lsr(dst, dst, CompressedKlassPointers::shift()); 5350 } else { 5351 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5352 } 5353 break; 5354 5355 case KlassDecodeMovk: 5356 if (CompressedKlassPointers::shift() != 0) { 5357 ubfx(dst, src, CompressedKlassPointers::shift(), 32); 5358 } else { 5359 movw(dst, src); 5360 } 5361 break; 5362 5363 case KlassDecodeNone: 5364 ShouldNotReachHere(); 5365 break; 5366 } 5367 } 5368 5369 void MacroAssembler::encode_klass_not_null(Register r) { 5370 encode_klass_not_null(r, r); 5371 } 5372 5373 void MacroAssembler::decode_klass_not_null(Register dst, Register src) { 5374 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5375 5376 switch (klass_decode_mode()) { 5377 case KlassDecodeZero: 5378 if (CompressedKlassPointers::shift() != 0) { 5379 lsl(dst, src, CompressedKlassPointers::shift()); 5380 } else { 5381 if (dst != src) mov(dst, src); 5382 } 5383 break; 5384 5385 case KlassDecodeXor: 5386 if (CompressedKlassPointers::shift() != 0) { 5387 lsl(dst, src, CompressedKlassPointers::shift()); 5388 eor(dst, dst, (uint64_t)CompressedKlassPointers::base()); 5389 } else { 5390 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5391 } 5392 break; 5393 5394 case KlassDecodeMovk: { 5395 const uint64_t shifted_base = 5396 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 5397 5398 if (dst != src) movw(dst, src); 5399 movk(dst, shifted_base >> 32, 32); 5400 5401 if (CompressedKlassPointers::shift() != 0) { 5402 lsl(dst, dst, CompressedKlassPointers::shift()); 5403 } 5404 5405 break; 5406 } 5407 5408 case KlassDecodeNone: 5409 ShouldNotReachHere(); 5410 break; 5411 } 5412 } 5413 5414 void MacroAssembler::decode_klass_not_null(Register r) { 5415 decode_klass_not_null(r, r); 5416 } 5417 5418 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 5419 #ifdef ASSERT 5420 { 5421 ThreadInVMfromUnknown tiv; 5422 assert (UseCompressedOops, "should only be used for compressed oops"); 5423 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5424 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5425 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5426 } 5427 #endif 5428 int oop_index = oop_recorder()->find_index(obj); 5429 InstructionMark im(this); 5430 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5431 code_section()->relocate(inst_mark(), rspec); 5432 movz(dst, 0xDEAD, 16); 5433 movk(dst, 0xBEEF); 5434 } 5435 5436 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 5437 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5438 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5439 int index = oop_recorder()->find_index(k); 5440 assert(! Universe::heap()->is_in(k), "should not be an oop"); 5441 5442 InstructionMark im(this); 5443 RelocationHolder rspec = metadata_Relocation::spec(index); 5444 code_section()->relocate(inst_mark(), rspec); 5445 narrowKlass nk = CompressedKlassPointers::encode(k); 5446 movz(dst, (nk >> 16), 16); 5447 movk(dst, nk & 0xffff); 5448 } 5449 5450 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, 5451 Register dst, Address src, 5452 Register tmp1, Register tmp2) { 5453 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5454 decorators = AccessInternal::decorator_fixup(decorators, type); 5455 bool as_raw = (decorators & AS_RAW) != 0; 5456 if (as_raw) { 5457 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2); 5458 } else { 5459 bs->load_at(this, decorators, type, dst, src, tmp1, tmp2); 5460 } 5461 } 5462 5463 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, 5464 Address dst, Register val, 5465 Register tmp1, Register tmp2, Register tmp3) { 5466 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5467 decorators = AccessInternal::decorator_fixup(decorators, type); 5468 bool as_raw = (decorators & AS_RAW) != 0; 5469 if (as_raw) { 5470 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5471 } else { 5472 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5473 } 5474 } 5475 5476 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 5477 Register tmp2, DecoratorSet decorators) { 5478 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2); 5479 } 5480 5481 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 5482 Register tmp2, DecoratorSet decorators) { 5483 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2); 5484 } 5485 5486 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 5487 Register tmp2, Register tmp3, DecoratorSet decorators) { 5488 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 5489 } 5490 5491 // Used for storing nulls. 5492 void MacroAssembler::store_heap_oop_null(Address dst) { 5493 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 5494 } 5495 5496 Address MacroAssembler::allocate_metadata_address(Metadata* obj) { 5497 assert(oop_recorder() != nullptr, "this assembler needs a Recorder"); 5498 int index = oop_recorder()->allocate_metadata_index(obj); 5499 RelocationHolder rspec = metadata_Relocation::spec(index); 5500 return Address((address)obj, rspec); 5501 } 5502 5503 // Move an oop into a register. 5504 void MacroAssembler::movoop(Register dst, jobject obj) { 5505 int oop_index; 5506 if (obj == nullptr) { 5507 oop_index = oop_recorder()->allocate_oop_index(obj); 5508 } else { 5509 #ifdef ASSERT 5510 { 5511 ThreadInVMfromUnknown tiv; 5512 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5513 } 5514 #endif 5515 oop_index = oop_recorder()->find_index(obj); 5516 } 5517 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5518 5519 if (BarrierSet::barrier_set()->barrier_set_assembler()->supports_instruction_patching()) { 5520 mov(dst, Address((address)obj, rspec)); 5521 } else { 5522 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address 5523 ldr_constant(dst, Address(dummy, rspec)); 5524 } 5525 5526 } 5527 5528 // Move a metadata address into a register. 5529 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 5530 int oop_index; 5531 if (obj == nullptr) { 5532 oop_index = oop_recorder()->allocate_metadata_index(obj); 5533 } else { 5534 oop_index = oop_recorder()->find_index(obj); 5535 } 5536 RelocationHolder rspec = metadata_Relocation::spec(oop_index); 5537 mov(dst, Address((address)obj, rspec)); 5538 } 5539 5540 Address MacroAssembler::constant_oop_address(jobject obj) { 5541 #ifdef ASSERT 5542 { 5543 ThreadInVMfromUnknown tiv; 5544 assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5545 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop"); 5546 } 5547 #endif 5548 int oop_index = oop_recorder()->find_index(obj); 5549 return Address((address)obj, oop_Relocation::spec(oop_index)); 5550 } 5551 5552 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 5553 void MacroAssembler::tlab_allocate(Register obj, 5554 Register var_size_in_bytes, 5555 int con_size_in_bytes, 5556 Register t1, 5557 Register t2, 5558 Label& slow_case) { 5559 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5560 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 5561 } 5562 5563 void MacroAssembler::inc_held_monitor_count(Register tmp) { 5564 Address dst(rthread, JavaThread::held_monitor_count_offset()); 5565 #ifdef ASSERT 5566 ldr(tmp, dst); 5567 increment(tmp); 5568 str(tmp, dst); 5569 Label ok; 5570 tbz(tmp, 63, ok); 5571 STOP("assert(held monitor count underflow)"); 5572 should_not_reach_here(); 5573 bind(ok); 5574 #else 5575 increment(dst); 5576 #endif 5577 } 5578 5579 void MacroAssembler::dec_held_monitor_count(Register tmp) { 5580 Address dst(rthread, JavaThread::held_monitor_count_offset()); 5581 #ifdef ASSERT 5582 ldr(tmp, dst); 5583 decrement(tmp); 5584 str(tmp, dst); 5585 Label ok; 5586 tbz(tmp, 63, ok); 5587 STOP("assert(held monitor count underflow)"); 5588 should_not_reach_here(); 5589 bind(ok); 5590 #else 5591 decrement(dst); 5592 #endif 5593 } 5594 5595 void MacroAssembler::verify_tlab() { 5596 #ifdef ASSERT 5597 if (UseTLAB && VerifyOops) { 5598 Label next, ok; 5599 5600 stp(rscratch2, rscratch1, Address(pre(sp, -16))); 5601 5602 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5603 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 5604 cmp(rscratch2, rscratch1); 5605 br(Assembler::HS, next); 5606 STOP("assert(top >= start)"); 5607 should_not_reach_here(); 5608 5609 bind(next); 5610 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 5611 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5612 cmp(rscratch2, rscratch1); 5613 br(Assembler::HS, ok); 5614 STOP("assert(top <= end)"); 5615 should_not_reach_here(); 5616 5617 bind(ok); 5618 ldp(rscratch2, rscratch1, Address(post(sp, 16))); 5619 } 5620 #endif 5621 } 5622 5623 // Writes to stack successive pages until offset reached to check for 5624 // stack overflow + shadow pages. This clobbers tmp. 5625 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 5626 assert_different_registers(tmp, size, rscratch1); 5627 mov(tmp, sp); 5628 // Bang stack for total size given plus shadow page size. 5629 // Bang one page at a time because large size can bang beyond yellow and 5630 // red zones. 5631 Label loop; 5632 mov(rscratch1, (int)os::vm_page_size()); 5633 bind(loop); 5634 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5635 subsw(size, size, rscratch1); 5636 str(size, Address(tmp)); 5637 br(Assembler::GT, loop); 5638 5639 // Bang down shadow pages too. 5640 // At this point, (tmp-0) is the last address touched, so don't 5641 // touch it again. (It was touched as (tmp-pagesize) but then tmp 5642 // was post-decremented.) Skip this address by starting at i=1, and 5643 // touch a few more pages below. N.B. It is important to touch all 5644 // the way down to and including i=StackShadowPages. 5645 for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()) - 1; i++) { 5646 // this could be any sized move but this is can be a debugging crumb 5647 // so the bigger the better. 5648 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5649 str(size, Address(tmp)); 5650 } 5651 } 5652 5653 // Move the address of the polling page into dest. 5654 void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) { 5655 ldr(dest, Address(rthread, JavaThread::polling_page_offset())); 5656 } 5657 5658 // Read the polling page. The address of the polling page must 5659 // already be in r. 5660 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) { 5661 address mark; 5662 { 5663 InstructionMark im(this); 5664 code_section()->relocate(inst_mark(), rtype); 5665 ldrw(zr, Address(r, 0)); 5666 mark = inst_mark(); 5667 } 5668 verify_cross_modify_fence_not_required(); 5669 return mark; 5670 } 5671 5672 void MacroAssembler::adrp(Register reg1, const Address &dest, uint64_t &byte_offset) { 5673 relocInfo::relocType rtype = dest.rspec().reloc()->type(); 5674 uint64_t low_page = (uint64_t)CodeCache::low_bound() >> 12; 5675 uint64_t high_page = (uint64_t)(CodeCache::high_bound()-1) >> 12; 5676 uint64_t dest_page = (uint64_t)dest.target() >> 12; 5677 int64_t offset_low = dest_page - low_page; 5678 int64_t offset_high = dest_page - high_page; 5679 5680 assert(is_valid_AArch64_address(dest.target()), "bad address"); 5681 assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address"); 5682 5683 InstructionMark im(this); 5684 code_section()->relocate(inst_mark(), dest.rspec()); 5685 // 8143067: Ensure that the adrp can reach the dest from anywhere within 5686 // the code cache so that if it is relocated we know it will still reach 5687 if (offset_high >= -(1<<20) && offset_low < (1<<20)) { 5688 _adrp(reg1, dest.target()); 5689 } else { 5690 uint64_t target = (uint64_t)dest.target(); 5691 uint64_t adrp_target 5692 = (target & 0xffffffffULL) | ((uint64_t)pc() & 0xffff00000000ULL); 5693 5694 _adrp(reg1, (address)adrp_target); 5695 movk(reg1, target >> 32, 32); 5696 } 5697 byte_offset = (uint64_t)dest.target() & 0xfff; 5698 } 5699 5700 void MacroAssembler::load_byte_map_base(Register reg) { 5701 CardTable::CardValue* byte_map_base = 5702 ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base(); 5703 5704 // Strictly speaking the byte_map_base isn't an address at all, and it might 5705 // even be negative. It is thus materialised as a constant. 5706 mov(reg, (uint64_t)byte_map_base); 5707 } 5708 5709 void MacroAssembler::build_frame(int framesize) { 5710 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5711 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5712 protect_return_address(); 5713 if (framesize < ((1 << 9) + 2 * wordSize)) { 5714 sub(sp, sp, framesize); 5715 stp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5716 if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize); 5717 } else { 5718 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 5719 if (PreserveFramePointer) mov(rfp, sp); 5720 if (framesize < ((1 << 12) + 2 * wordSize)) 5721 sub(sp, sp, framesize - 2 * wordSize); 5722 else { 5723 mov(rscratch1, framesize - 2 * wordSize); 5724 sub(sp, sp, rscratch1); 5725 } 5726 } 5727 verify_cross_modify_fence_not_required(); 5728 } 5729 5730 void MacroAssembler::remove_frame(int framesize) { 5731 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5732 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5733 if (framesize < ((1 << 9) + 2 * wordSize)) { 5734 ldp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5735 add(sp, sp, framesize); 5736 } else { 5737 if (framesize < ((1 << 12) + 2 * wordSize)) 5738 add(sp, sp, framesize - 2 * wordSize); 5739 else { 5740 mov(rscratch1, framesize - 2 * wordSize); 5741 add(sp, sp, rscratch1); 5742 } 5743 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 5744 } 5745 authenticate_return_address(); 5746 } 5747 5748 5749 // This method counts leading positive bytes (highest bit not set) in provided byte array 5750 address MacroAssembler::count_positives(Register ary1, Register len, Register result) { 5751 // Simple and most common case of aligned small array which is not at the 5752 // end of memory page is placed here. All other cases are in stub. 5753 Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE; 5754 const uint64_t UPPER_BIT_MASK=0x8080808080808080; 5755 assert_different_registers(ary1, len, result); 5756 5757 mov(result, len); 5758 cmpw(len, 0); 5759 br(LE, DONE); 5760 cmpw(len, 4 * wordSize); 5761 br(GE, STUB_LONG); // size > 32 then go to stub 5762 5763 int shift = 64 - exact_log2(os::vm_page_size()); 5764 lsl(rscratch1, ary1, shift); 5765 mov(rscratch2, (size_t)(4 * wordSize) << shift); 5766 adds(rscratch2, rscratch1, rscratch2); // At end of page? 5767 br(CS, STUB); // at the end of page then go to stub 5768 subs(len, len, wordSize); 5769 br(LT, END); 5770 5771 BIND(LOOP); 5772 ldr(rscratch1, Address(post(ary1, wordSize))); 5773 tst(rscratch1, UPPER_BIT_MASK); 5774 br(NE, SET_RESULT); 5775 subs(len, len, wordSize); 5776 br(GE, LOOP); 5777 cmpw(len, -wordSize); 5778 br(EQ, DONE); 5779 5780 BIND(END); 5781 ldr(rscratch1, Address(ary1)); 5782 sub(rscratch2, zr, len, LSL, 3); // LSL 3 is to get bits from bytes 5783 lslv(rscratch1, rscratch1, rscratch2); 5784 tst(rscratch1, UPPER_BIT_MASK); 5785 br(NE, SET_RESULT); 5786 b(DONE); 5787 5788 BIND(STUB); 5789 RuntimeAddress count_pos = RuntimeAddress(StubRoutines::aarch64::count_positives()); 5790 assert(count_pos.target() != nullptr, "count_positives stub has not been generated"); 5791 address tpc1 = trampoline_call(count_pos); 5792 if (tpc1 == nullptr) { 5793 DEBUG_ONLY(reset_labels(STUB_LONG, SET_RESULT, DONE)); 5794 postcond(pc() == badAddress); 5795 return nullptr; 5796 } 5797 b(DONE); 5798 5799 BIND(STUB_LONG); 5800 RuntimeAddress count_pos_long = RuntimeAddress(StubRoutines::aarch64::count_positives_long()); 5801 assert(count_pos_long.target() != nullptr, "count_positives_long stub has not been generated"); 5802 address tpc2 = trampoline_call(count_pos_long); 5803 if (tpc2 == nullptr) { 5804 DEBUG_ONLY(reset_labels(SET_RESULT, DONE)); 5805 postcond(pc() == badAddress); 5806 return nullptr; 5807 } 5808 b(DONE); 5809 5810 BIND(SET_RESULT); 5811 5812 add(len, len, wordSize); 5813 sub(result, result, len); 5814 5815 BIND(DONE); 5816 postcond(pc() != badAddress); 5817 return pc(); 5818 } 5819 5820 // Clobbers: rscratch1, rscratch2, rflags 5821 // May also clobber v0-v7 when (!UseSimpleArrayEquals && UseSIMDForArrayEquals) 5822 address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3, 5823 Register tmp4, Register tmp5, Register result, 5824 Register cnt1, int elem_size) { 5825 Label DONE, SAME; 5826 Register tmp1 = rscratch1; 5827 Register tmp2 = rscratch2; 5828 int elem_per_word = wordSize/elem_size; 5829 int log_elem_size = exact_log2(elem_size); 5830 int klass_offset = arrayOopDesc::klass_offset_in_bytes(); 5831 int length_offset = arrayOopDesc::length_offset_in_bytes(); 5832 int base_offset 5833 = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE); 5834 // When the length offset is not aligned to 8 bytes, 5835 // then we align it down. This is valid because the new 5836 // offset will always be the klass which is the same 5837 // for type arrays. 5838 int start_offset = align_down(length_offset, BytesPerWord); 5839 int extra_length = base_offset - start_offset; 5840 assert(start_offset == length_offset || start_offset == klass_offset, 5841 "start offset must be 8-byte-aligned or be the klass offset"); 5842 assert(base_offset != start_offset, "must include the length field"); 5843 extra_length = extra_length / elem_size; // We count in elements, not bytes. 5844 int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16); 5845 5846 assert(elem_size == 1 || elem_size == 2, "must be char or byte"); 5847 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 5848 5849 #ifndef PRODUCT 5850 { 5851 const char kind = (elem_size == 2) ? 'U' : 'L'; 5852 char comment[64]; 5853 snprintf(comment, sizeof comment, "array_equals%c{", kind); 5854 BLOCK_COMMENT(comment); 5855 } 5856 #endif 5857 5858 // if (a1 == a2) 5859 // return true; 5860 cmpoop(a1, a2); // May have read barriers for a1 and a2. 5861 br(EQ, SAME); 5862 5863 if (UseSimpleArrayEquals) { 5864 Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL; 5865 // if (a1 == nullptr || a2 == nullptr) 5866 // return false; 5867 // a1 & a2 == 0 means (some-pointer is null) or 5868 // (very-rare-or-even-probably-impossible-pointer-values) 5869 // so, we can save one branch in most cases 5870 tst(a1, a2); 5871 mov(result, false); 5872 br(EQ, A_MIGHT_BE_NULL); 5873 // if (a1.length != a2.length) 5874 // return false; 5875 bind(A_IS_NOT_NULL); 5876 ldrw(cnt1, Address(a1, length_offset)); 5877 // Increase loop counter by diff between base- and actual start-offset. 5878 addw(cnt1, cnt1, extra_length); 5879 lea(a1, Address(a1, start_offset)); 5880 lea(a2, Address(a2, start_offset)); 5881 // Check for short strings, i.e. smaller than wordSize. 5882 subs(cnt1, cnt1, elem_per_word); 5883 br(Assembler::LT, SHORT); 5884 // Main 8 byte comparison loop. 5885 bind(NEXT_WORD); { 5886 ldr(tmp1, Address(post(a1, wordSize))); 5887 ldr(tmp2, Address(post(a2, wordSize))); 5888 subs(cnt1, cnt1, elem_per_word); 5889 eor(tmp5, tmp1, tmp2); 5890 cbnz(tmp5, DONE); 5891 } br(GT, NEXT_WORD); 5892 // Last longword. In the case where length == 4 we compare the 5893 // same longword twice, but that's still faster than another 5894 // conditional branch. 5895 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 5896 // length == 4. 5897 if (log_elem_size > 0) 5898 lsl(cnt1, cnt1, log_elem_size); 5899 ldr(tmp3, Address(a1, cnt1)); 5900 ldr(tmp4, Address(a2, cnt1)); 5901 eor(tmp5, tmp3, tmp4); 5902 cbnz(tmp5, DONE); 5903 b(SAME); 5904 bind(A_MIGHT_BE_NULL); 5905 // in case both a1 and a2 are not-null, proceed with loads 5906 cbz(a1, DONE); 5907 cbz(a2, DONE); 5908 b(A_IS_NOT_NULL); 5909 bind(SHORT); 5910 5911 tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left. 5912 { 5913 ldrw(tmp1, Address(post(a1, 4))); 5914 ldrw(tmp2, Address(post(a2, 4))); 5915 eorw(tmp5, tmp1, tmp2); 5916 cbnzw(tmp5, DONE); 5917 } 5918 bind(TAIL03); 5919 tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left. 5920 { 5921 ldrh(tmp3, Address(post(a1, 2))); 5922 ldrh(tmp4, Address(post(a2, 2))); 5923 eorw(tmp5, tmp3, tmp4); 5924 cbnzw(tmp5, DONE); 5925 } 5926 bind(TAIL01); 5927 if (elem_size == 1) { // Only needed when comparing byte arrays. 5928 tbz(cnt1, 0, SAME); // 0-1 bytes left. 5929 { 5930 ldrb(tmp1, a1); 5931 ldrb(tmp2, a2); 5932 eorw(tmp5, tmp1, tmp2); 5933 cbnzw(tmp5, DONE); 5934 } 5935 } 5936 } else { 5937 Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB, 5938 CSET_EQ, LAST_CHECK; 5939 mov(result, false); 5940 cbz(a1, DONE); 5941 ldrw(cnt1, Address(a1, length_offset)); 5942 cbz(a2, DONE); 5943 // Increase loop counter by diff between base- and actual start-offset. 5944 addw(cnt1, cnt1, extra_length); 5945 5946 // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's 5947 // faster to perform another branch before comparing a1 and a2 5948 cmp(cnt1, (u1)elem_per_word); 5949 br(LE, SHORT); // short or same 5950 ldr(tmp3, Address(pre(a1, start_offset))); 5951 subs(zr, cnt1, stubBytesThreshold); 5952 br(GE, STUB); 5953 ldr(tmp4, Address(pre(a2, start_offset))); 5954 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 5955 5956 // Main 16 byte comparison loop with 2 exits 5957 bind(NEXT_DWORD); { 5958 ldr(tmp1, Address(pre(a1, wordSize))); 5959 ldr(tmp2, Address(pre(a2, wordSize))); 5960 subs(cnt1, cnt1, 2 * elem_per_word); 5961 br(LE, TAIL); 5962 eor(tmp4, tmp3, tmp4); 5963 cbnz(tmp4, DONE); 5964 ldr(tmp3, Address(pre(a1, wordSize))); 5965 ldr(tmp4, Address(pre(a2, wordSize))); 5966 cmp(cnt1, (u1)elem_per_word); 5967 br(LE, TAIL2); 5968 cmp(tmp1, tmp2); 5969 } br(EQ, NEXT_DWORD); 5970 b(DONE); 5971 5972 bind(TAIL); 5973 eor(tmp4, tmp3, tmp4); 5974 eor(tmp2, tmp1, tmp2); 5975 lslv(tmp2, tmp2, tmp5); 5976 orr(tmp5, tmp4, tmp2); 5977 cmp(tmp5, zr); 5978 b(CSET_EQ); 5979 5980 bind(TAIL2); 5981 eor(tmp2, tmp1, tmp2); 5982 cbnz(tmp2, DONE); 5983 b(LAST_CHECK); 5984 5985 bind(STUB); 5986 ldr(tmp4, Address(pre(a2, start_offset))); 5987 if (elem_size == 2) { // convert to byte counter 5988 lsl(cnt1, cnt1, 1); 5989 } 5990 eor(tmp5, tmp3, tmp4); 5991 cbnz(tmp5, DONE); 5992 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals()); 5993 assert(stub.target() != nullptr, "array_equals_long stub has not been generated"); 5994 address tpc = trampoline_call(stub); 5995 if (tpc == nullptr) { 5996 DEBUG_ONLY(reset_labels(SHORT, LAST_CHECK, CSET_EQ, SAME, DONE)); 5997 postcond(pc() == badAddress); 5998 return nullptr; 5999 } 6000 b(DONE); 6001 6002 // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2) 6003 // so, if a2 == null => return false(0), else return true, so we can return a2 6004 mov(result, a2); 6005 b(DONE); 6006 bind(SHORT); 6007 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 6008 ldr(tmp3, Address(a1, start_offset)); 6009 ldr(tmp4, Address(a2, start_offset)); 6010 bind(LAST_CHECK); 6011 eor(tmp4, tmp3, tmp4); 6012 lslv(tmp5, tmp4, tmp5); 6013 cmp(tmp5, zr); 6014 bind(CSET_EQ); 6015 cset(result, EQ); 6016 b(DONE); 6017 } 6018 6019 bind(SAME); 6020 mov(result, true); 6021 // That's it. 6022 bind(DONE); 6023 6024 BLOCK_COMMENT("} array_equals"); 6025 postcond(pc() != badAddress); 6026 return pc(); 6027 } 6028 6029 // Compare Strings 6030 6031 // For Strings we're passed the address of the first characters in a1 6032 // and a2 and the length in cnt1. 6033 // There are two implementations. For arrays >= 8 bytes, all 6034 // comparisons (including the final one, which may overlap) are 6035 // performed 8 bytes at a time. For strings < 8 bytes, we compare a 6036 // halfword, then a short, and then a byte. 6037 6038 void MacroAssembler::string_equals(Register a1, Register a2, 6039 Register result, Register cnt1) 6040 { 6041 Label SAME, DONE, SHORT, NEXT_WORD; 6042 Register tmp1 = rscratch1; 6043 Register tmp2 = rscratch2; 6044 Register cnt2 = tmp2; // cnt2 only used in array length compare 6045 6046 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 6047 6048 #ifndef PRODUCT 6049 { 6050 char comment[64]; 6051 snprintf(comment, sizeof comment, "{string_equalsL"); 6052 BLOCK_COMMENT(comment); 6053 } 6054 #endif 6055 6056 mov(result, false); 6057 6058 // Check for short strings, i.e. smaller than wordSize. 6059 subs(cnt1, cnt1, wordSize); 6060 br(Assembler::LT, SHORT); 6061 // Main 8 byte comparison loop. 6062 bind(NEXT_WORD); { 6063 ldr(tmp1, Address(post(a1, wordSize))); 6064 ldr(tmp2, Address(post(a2, wordSize))); 6065 subs(cnt1, cnt1, wordSize); 6066 eor(tmp1, tmp1, tmp2); 6067 cbnz(tmp1, DONE); 6068 } br(GT, NEXT_WORD); 6069 // Last longword. In the case where length == 4 we compare the 6070 // same longword twice, but that's still faster than another 6071 // conditional branch. 6072 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 6073 // length == 4. 6074 ldr(tmp1, Address(a1, cnt1)); 6075 ldr(tmp2, Address(a2, cnt1)); 6076 eor(tmp2, tmp1, tmp2); 6077 cbnz(tmp2, DONE); 6078 b(SAME); 6079 6080 bind(SHORT); 6081 Label TAIL03, TAIL01; 6082 6083 tbz(cnt1, 2, TAIL03); // 0-7 bytes left. 6084 { 6085 ldrw(tmp1, Address(post(a1, 4))); 6086 ldrw(tmp2, Address(post(a2, 4))); 6087 eorw(tmp1, tmp1, tmp2); 6088 cbnzw(tmp1, DONE); 6089 } 6090 bind(TAIL03); 6091 tbz(cnt1, 1, TAIL01); // 0-3 bytes left. 6092 { 6093 ldrh(tmp1, Address(post(a1, 2))); 6094 ldrh(tmp2, Address(post(a2, 2))); 6095 eorw(tmp1, tmp1, tmp2); 6096 cbnzw(tmp1, DONE); 6097 } 6098 bind(TAIL01); 6099 tbz(cnt1, 0, SAME); // 0-1 bytes left. 6100 { 6101 ldrb(tmp1, a1); 6102 ldrb(tmp2, a2); 6103 eorw(tmp1, tmp1, tmp2); 6104 cbnzw(tmp1, DONE); 6105 } 6106 // Arrays are equal. 6107 bind(SAME); 6108 mov(result, true); 6109 6110 // That's it. 6111 bind(DONE); 6112 BLOCK_COMMENT("} string_equals"); 6113 } 6114 6115 6116 // The size of the blocks erased by the zero_blocks stub. We must 6117 // handle anything smaller than this ourselves in zero_words(). 6118 const int MacroAssembler::zero_words_block_size = 8; 6119 6120 // zero_words() is used by C2 ClearArray patterns and by 6121 // C1_MacroAssembler. It is as small as possible, handling small word 6122 // counts locally and delegating anything larger to the zero_blocks 6123 // stub. It is expanded many times in compiled code, so it is 6124 // important to keep it short. 6125 6126 // ptr: Address of a buffer to be zeroed. 6127 // cnt: Count in HeapWords. 6128 // 6129 // ptr, cnt, rscratch1, and rscratch2 are clobbered. 6130 address MacroAssembler::zero_words(Register ptr, Register cnt) 6131 { 6132 assert(is_power_of_2(zero_words_block_size), "adjust this"); 6133 6134 BLOCK_COMMENT("zero_words {"); 6135 assert(ptr == r10 && cnt == r11, "mismatch in register usage"); 6136 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 6137 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 6138 6139 subs(rscratch1, cnt, zero_words_block_size); 6140 Label around; 6141 br(LO, around); 6142 { 6143 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 6144 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 6145 // Make sure this is a C2 compilation. C1 allocates space only for 6146 // trampoline stubs generated by Call LIR ops, and in any case it 6147 // makes sense for a C1 compilation task to proceed as quickly as 6148 // possible. 6149 CompileTask* task; 6150 if (StubRoutines::aarch64::complete() 6151 && Thread::current()->is_Compiler_thread() 6152 && (task = ciEnv::current()->task()) 6153 && is_c2_compile(task->comp_level())) { 6154 address tpc = trampoline_call(zero_blocks); 6155 if (tpc == nullptr) { 6156 DEBUG_ONLY(reset_labels(around)); 6157 return nullptr; 6158 } 6159 } else { 6160 far_call(zero_blocks); 6161 } 6162 } 6163 bind(around); 6164 6165 // We have a few words left to do. zero_blocks has adjusted r10 and r11 6166 // for us. 6167 for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) { 6168 Label l; 6169 tbz(cnt, exact_log2(i), l); 6170 for (int j = 0; j < i; j += 2) { 6171 stp(zr, zr, post(ptr, 2 * BytesPerWord)); 6172 } 6173 bind(l); 6174 } 6175 { 6176 Label l; 6177 tbz(cnt, 0, l); 6178 str(zr, Address(ptr)); 6179 bind(l); 6180 } 6181 6182 BLOCK_COMMENT("} zero_words"); 6183 return pc(); 6184 } 6185 6186 // base: Address of a buffer to be zeroed, 8 bytes aligned. 6187 // cnt: Immediate count in HeapWords. 6188 // 6189 // r10, r11, rscratch1, and rscratch2 are clobbered. 6190 address MacroAssembler::zero_words(Register base, uint64_t cnt) 6191 { 6192 assert(wordSize <= BlockZeroingLowLimit, 6193 "increase BlockZeroingLowLimit"); 6194 address result = nullptr; 6195 if (cnt <= (uint64_t)BlockZeroingLowLimit / BytesPerWord) { 6196 #ifndef PRODUCT 6197 { 6198 char buf[64]; 6199 snprintf(buf, sizeof buf, "zero_words (count = %" PRIu64 ") {", cnt); 6200 BLOCK_COMMENT(buf); 6201 } 6202 #endif 6203 if (cnt >= 16) { 6204 uint64_t loops = cnt/16; 6205 if (loops > 1) { 6206 mov(rscratch2, loops - 1); 6207 } 6208 { 6209 Label loop; 6210 bind(loop); 6211 for (int i = 0; i < 16; i += 2) { 6212 stp(zr, zr, Address(base, i * BytesPerWord)); 6213 } 6214 add(base, base, 16 * BytesPerWord); 6215 if (loops > 1) { 6216 subs(rscratch2, rscratch2, 1); 6217 br(GE, loop); 6218 } 6219 } 6220 } 6221 cnt %= 16; 6222 int i = cnt & 1; // store any odd word to start 6223 if (i) str(zr, Address(base)); 6224 for (; i < (int)cnt; i += 2) { 6225 stp(zr, zr, Address(base, i * wordSize)); 6226 } 6227 BLOCK_COMMENT("} zero_words"); 6228 result = pc(); 6229 } else { 6230 mov(r10, base); mov(r11, cnt); 6231 result = zero_words(r10, r11); 6232 } 6233 return result; 6234 } 6235 6236 // Zero blocks of memory by using DC ZVA. 6237 // 6238 // Aligns the base address first sufficiently for DC ZVA, then uses 6239 // DC ZVA repeatedly for every full block. cnt is the size to be 6240 // zeroed in HeapWords. Returns the count of words left to be zeroed 6241 // in cnt. 6242 // 6243 // NOTE: This is intended to be used in the zero_blocks() stub. If 6244 // you want to use it elsewhere, note that cnt must be >= 2*zva_length. 6245 void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) { 6246 Register tmp = rscratch1; 6247 Register tmp2 = rscratch2; 6248 int zva_length = VM_Version::zva_length(); 6249 Label initial_table_end, loop_zva; 6250 Label fini; 6251 6252 // Base must be 16 byte aligned. If not just return and let caller handle it 6253 tst(base, 0x0f); 6254 br(Assembler::NE, fini); 6255 // Align base with ZVA length. 6256 neg(tmp, base); 6257 andr(tmp, tmp, zva_length - 1); 6258 6259 // tmp: the number of bytes to be filled to align the base with ZVA length. 6260 add(base, base, tmp); 6261 sub(cnt, cnt, tmp, Assembler::ASR, 3); 6262 adr(tmp2, initial_table_end); 6263 sub(tmp2, tmp2, tmp, Assembler::LSR, 2); 6264 br(tmp2); 6265 6266 for (int i = -zva_length + 16; i < 0; i += 16) 6267 stp(zr, zr, Address(base, i)); 6268 bind(initial_table_end); 6269 6270 sub(cnt, cnt, zva_length >> 3); 6271 bind(loop_zva); 6272 dc(Assembler::ZVA, base); 6273 subs(cnt, cnt, zva_length >> 3); 6274 add(base, base, zva_length); 6275 br(Assembler::GE, loop_zva); 6276 add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA 6277 bind(fini); 6278 } 6279 6280 // base: Address of a buffer to be filled, 8 bytes aligned. 6281 // cnt: Count in 8-byte unit. 6282 // value: Value to be filled with. 6283 // base will point to the end of the buffer after filling. 6284 void MacroAssembler::fill_words(Register base, Register cnt, Register value) 6285 { 6286 // Algorithm: 6287 // 6288 // if (cnt == 0) { 6289 // return; 6290 // } 6291 // if ((p & 8) != 0) { 6292 // *p++ = v; 6293 // } 6294 // 6295 // scratch1 = cnt & 14; 6296 // cnt -= scratch1; 6297 // p += scratch1; 6298 // switch (scratch1 / 2) { 6299 // do { 6300 // cnt -= 16; 6301 // p[-16] = v; 6302 // p[-15] = v; 6303 // case 7: 6304 // p[-14] = v; 6305 // p[-13] = v; 6306 // case 6: 6307 // p[-12] = v; 6308 // p[-11] = v; 6309 // // ... 6310 // case 1: 6311 // p[-2] = v; 6312 // p[-1] = v; 6313 // case 0: 6314 // p += 16; 6315 // } while (cnt); 6316 // } 6317 // if ((cnt & 1) == 1) { 6318 // *p++ = v; 6319 // } 6320 6321 assert_different_registers(base, cnt, value, rscratch1, rscratch2); 6322 6323 Label fini, skip, entry, loop; 6324 const int unroll = 8; // Number of stp instructions we'll unroll 6325 6326 cbz(cnt, fini); 6327 tbz(base, 3, skip); 6328 str(value, Address(post(base, 8))); 6329 sub(cnt, cnt, 1); 6330 bind(skip); 6331 6332 andr(rscratch1, cnt, (unroll-1) * 2); 6333 sub(cnt, cnt, rscratch1); 6334 add(base, base, rscratch1, Assembler::LSL, 3); 6335 adr(rscratch2, entry); 6336 sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1); 6337 br(rscratch2); 6338 6339 bind(loop); 6340 add(base, base, unroll * 16); 6341 for (int i = -unroll; i < 0; i++) 6342 stp(value, value, Address(base, i * 16)); 6343 bind(entry); 6344 subs(cnt, cnt, unroll * 2); 6345 br(Assembler::GE, loop); 6346 6347 tbz(cnt, 0, fini); 6348 str(value, Address(post(base, 8))); 6349 bind(fini); 6350 } 6351 6352 // Intrinsic for 6353 // 6354 // - sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray 6355 // return the number of characters copied. 6356 // - java/lang/StringUTF16.compress 6357 // return index of non-latin1 character if copy fails, otherwise 'len'. 6358 // 6359 // This version always returns the number of characters copied, and does not 6360 // clobber the 'len' register. A successful copy will complete with the post- 6361 // condition: 'res' == 'len', while an unsuccessful copy will exit with the 6362 // post-condition: 0 <= 'res' < 'len'. 6363 // 6364 // NOTE: Attempts to use 'ld2' (and 'umaxv' in the ISO part) has proven to 6365 // degrade performance (on Ampere Altra - Neoverse N1), to an extent 6366 // beyond the acceptable, even though the footprint would be smaller. 6367 // Using 'umaxv' in the ASCII-case comes with a small penalty but does 6368 // avoid additional bloat. 6369 // 6370 // Clobbers: src, dst, res, rscratch1, rscratch2, rflags 6371 void MacroAssembler::encode_iso_array(Register src, Register dst, 6372 Register len, Register res, bool ascii, 6373 FloatRegister vtmp0, FloatRegister vtmp1, 6374 FloatRegister vtmp2, FloatRegister vtmp3, 6375 FloatRegister vtmp4, FloatRegister vtmp5) 6376 { 6377 Register cnt = res; 6378 Register max = rscratch1; 6379 Register chk = rscratch2; 6380 6381 prfm(Address(src), PLDL1STRM); 6382 movw(cnt, len); 6383 6384 #define ASCII(insn) do { if (ascii) { insn; } } while (0) 6385 6386 Label LOOP_32, DONE_32, FAIL_32; 6387 6388 BIND(LOOP_32); 6389 { 6390 cmpw(cnt, 32); 6391 br(LT, DONE_32); 6392 ld1(vtmp0, vtmp1, vtmp2, vtmp3, T8H, Address(post(src, 64))); 6393 // Extract lower bytes. 6394 FloatRegister vlo0 = vtmp4; 6395 FloatRegister vlo1 = vtmp5; 6396 uzp1(vlo0, T16B, vtmp0, vtmp1); 6397 uzp1(vlo1, T16B, vtmp2, vtmp3); 6398 // Merge bits... 6399 orr(vtmp0, T16B, vtmp0, vtmp1); 6400 orr(vtmp2, T16B, vtmp2, vtmp3); 6401 // Extract merged upper bytes. 6402 FloatRegister vhix = vtmp0; 6403 uzp2(vhix, T16B, vtmp0, vtmp2); 6404 // ISO-check on hi-parts (all zero). 6405 // ASCII-check on lo-parts (no sign). 6406 FloatRegister vlox = vtmp1; // Merge lower bytes. 6407 ASCII(orr(vlox, T16B, vlo0, vlo1)); 6408 umov(chk, vhix, D, 1); ASCII(cm(LT, vlox, T16B, vlox)); 6409 fmovd(max, vhix); ASCII(umaxv(vlox, T16B, vlox)); 6410 orr(chk, chk, max); ASCII(umov(max, vlox, B, 0)); 6411 ASCII(orr(chk, chk, max)); 6412 cbnz(chk, FAIL_32); 6413 subw(cnt, cnt, 32); 6414 st1(vlo0, vlo1, T16B, Address(post(dst, 32))); 6415 b(LOOP_32); 6416 } 6417 BIND(FAIL_32); 6418 sub(src, src, 64); 6419 BIND(DONE_32); 6420 6421 Label LOOP_8, SKIP_8; 6422 6423 BIND(LOOP_8); 6424 { 6425 cmpw(cnt, 8); 6426 br(LT, SKIP_8); 6427 FloatRegister vhi = vtmp0; 6428 FloatRegister vlo = vtmp1; 6429 ld1(vtmp3, T8H, src); 6430 uzp1(vlo, T16B, vtmp3, vtmp3); 6431 uzp2(vhi, T16B, vtmp3, vtmp3); 6432 // ISO-check on hi-parts (all zero). 6433 // ASCII-check on lo-parts (no sign). 6434 ASCII(cm(LT, vtmp2, T16B, vlo)); 6435 fmovd(chk, vhi); ASCII(umaxv(vtmp2, T16B, vtmp2)); 6436 ASCII(umov(max, vtmp2, B, 0)); 6437 ASCII(orr(chk, chk, max)); 6438 cbnz(chk, SKIP_8); 6439 6440 strd(vlo, Address(post(dst, 8))); 6441 subw(cnt, cnt, 8); 6442 add(src, src, 16); 6443 b(LOOP_8); 6444 } 6445 BIND(SKIP_8); 6446 6447 #undef ASCII 6448 6449 Label LOOP, DONE; 6450 6451 cbz(cnt, DONE); 6452 BIND(LOOP); 6453 { 6454 Register chr = rscratch1; 6455 ldrh(chr, Address(post(src, 2))); 6456 tst(chr, ascii ? 0xff80 : 0xff00); 6457 br(NE, DONE); 6458 strb(chr, Address(post(dst, 1))); 6459 subs(cnt, cnt, 1); 6460 br(GT, LOOP); 6461 } 6462 BIND(DONE); 6463 // Return index where we stopped. 6464 subw(res, len, cnt); 6465 } 6466 6467 // Inflate byte[] array to char[]. 6468 // Clobbers: src, dst, len, rflags, rscratch1, v0-v6 6469 address MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 6470 FloatRegister vtmp1, FloatRegister vtmp2, 6471 FloatRegister vtmp3, Register tmp4) { 6472 Label big, done, after_init, to_stub; 6473 6474 assert_different_registers(src, dst, len, tmp4, rscratch1); 6475 6476 fmovd(vtmp1, 0.0); 6477 lsrw(tmp4, len, 3); 6478 bind(after_init); 6479 cbnzw(tmp4, big); 6480 // Short string: less than 8 bytes. 6481 { 6482 Label loop, tiny; 6483 6484 cmpw(len, 4); 6485 br(LT, tiny); 6486 // Use SIMD to do 4 bytes. 6487 ldrs(vtmp2, post(src, 4)); 6488 zip1(vtmp3, T8B, vtmp2, vtmp1); 6489 subw(len, len, 4); 6490 strd(vtmp3, post(dst, 8)); 6491 6492 cbzw(len, done); 6493 6494 // Do the remaining bytes by steam. 6495 bind(loop); 6496 ldrb(tmp4, post(src, 1)); 6497 strh(tmp4, post(dst, 2)); 6498 subw(len, len, 1); 6499 6500 bind(tiny); 6501 cbnz(len, loop); 6502 6503 b(done); 6504 } 6505 6506 if (SoftwarePrefetchHintDistance >= 0) { 6507 bind(to_stub); 6508 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate()); 6509 assert(stub.target() != nullptr, "large_byte_array_inflate stub has not been generated"); 6510 address tpc = trampoline_call(stub); 6511 if (tpc == nullptr) { 6512 DEBUG_ONLY(reset_labels(big, done)); 6513 postcond(pc() == badAddress); 6514 return nullptr; 6515 } 6516 b(after_init); 6517 } 6518 6519 // Unpack the bytes 8 at a time. 6520 bind(big); 6521 { 6522 Label loop, around, loop_last, loop_start; 6523 6524 if (SoftwarePrefetchHintDistance >= 0) { 6525 const int large_loop_threshold = (64 + 16)/8; 6526 ldrd(vtmp2, post(src, 8)); 6527 andw(len, len, 7); 6528 cmp(tmp4, (u1)large_loop_threshold); 6529 br(GE, to_stub); 6530 b(loop_start); 6531 6532 bind(loop); 6533 ldrd(vtmp2, post(src, 8)); 6534 bind(loop_start); 6535 subs(tmp4, tmp4, 1); 6536 br(EQ, loop_last); 6537 zip1(vtmp2, T16B, vtmp2, vtmp1); 6538 ldrd(vtmp3, post(src, 8)); 6539 st1(vtmp2, T8H, post(dst, 16)); 6540 subs(tmp4, tmp4, 1); 6541 zip1(vtmp3, T16B, vtmp3, vtmp1); 6542 st1(vtmp3, T8H, post(dst, 16)); 6543 br(NE, loop); 6544 b(around); 6545 bind(loop_last); 6546 zip1(vtmp2, T16B, vtmp2, vtmp1); 6547 st1(vtmp2, T8H, post(dst, 16)); 6548 bind(around); 6549 cbz(len, done); 6550 } else { 6551 andw(len, len, 7); 6552 bind(loop); 6553 ldrd(vtmp2, post(src, 8)); 6554 sub(tmp4, tmp4, 1); 6555 zip1(vtmp3, T16B, vtmp2, vtmp1); 6556 st1(vtmp3, T8H, post(dst, 16)); 6557 cbnz(tmp4, loop); 6558 } 6559 } 6560 6561 // Do the tail of up to 8 bytes. 6562 add(src, src, len); 6563 ldrd(vtmp3, Address(src, -8)); 6564 add(dst, dst, len, ext::uxtw, 1); 6565 zip1(vtmp3, T16B, vtmp3, vtmp1); 6566 strq(vtmp3, Address(dst, -16)); 6567 6568 bind(done); 6569 postcond(pc() != badAddress); 6570 return pc(); 6571 } 6572 6573 // Compress char[] array to byte[]. 6574 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 6575 // Return the array length if every element in array can be encoded, 6576 // otherwise, the index of first non-latin1 (> 0xff) character. 6577 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 6578 Register res, 6579 FloatRegister tmp0, FloatRegister tmp1, 6580 FloatRegister tmp2, FloatRegister tmp3, 6581 FloatRegister tmp4, FloatRegister tmp5) { 6582 encode_iso_array(src, dst, len, res, false, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5); 6583 } 6584 6585 // java.math.round(double a) 6586 // Returns the closest long to the argument, with ties rounding to 6587 // positive infinity. This requires some fiddling for corner 6588 // cases. We take care to avoid double rounding in e.g. (jlong)(a + 0.5). 6589 void MacroAssembler::java_round_double(Register dst, FloatRegister src, 6590 FloatRegister ftmp) { 6591 Label DONE; 6592 BLOCK_COMMENT("java_round_double: { "); 6593 fmovd(rscratch1, src); 6594 // Use RoundToNearestTiesAway unless src small and -ve. 6595 fcvtasd(dst, src); 6596 // Test if src >= 0 || abs(src) >= 0x1.0p52 6597 eor(rscratch1, rscratch1, UCONST64(1) << 63); // flip sign bit 6598 mov(rscratch2, julong_cast(0x1.0p52)); 6599 cmp(rscratch1, rscratch2); 6600 br(HS, DONE); { 6601 // src < 0 && abs(src) < 0x1.0p52 6602 // src may have a fractional part, so add 0.5 6603 fmovd(ftmp, 0.5); 6604 faddd(ftmp, src, ftmp); 6605 // Convert double to jlong, use RoundTowardsNegative 6606 fcvtmsd(dst, ftmp); 6607 } 6608 bind(DONE); 6609 BLOCK_COMMENT("} java_round_double"); 6610 } 6611 6612 void MacroAssembler::java_round_float(Register dst, FloatRegister src, 6613 FloatRegister ftmp) { 6614 Label DONE; 6615 BLOCK_COMMENT("java_round_float: { "); 6616 fmovs(rscratch1, src); 6617 // Use RoundToNearestTiesAway unless src small and -ve. 6618 fcvtassw(dst, src); 6619 // Test if src >= 0 || abs(src) >= 0x1.0p23 6620 eor(rscratch1, rscratch1, 0x80000000); // flip sign bit 6621 mov(rscratch2, jint_cast(0x1.0p23f)); 6622 cmp(rscratch1, rscratch2); 6623 br(HS, DONE); { 6624 // src < 0 && |src| < 0x1.0p23 6625 // src may have a fractional part, so add 0.5 6626 fmovs(ftmp, 0.5f); 6627 fadds(ftmp, src, ftmp); 6628 // Convert float to jint, use RoundTowardsNegative 6629 fcvtmssw(dst, ftmp); 6630 } 6631 bind(DONE); 6632 BLOCK_COMMENT("} java_round_float"); 6633 } 6634 6635 // get_thread() can be called anywhere inside generated code so we 6636 // need to save whatever non-callee save context might get clobbered 6637 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed, 6638 // the call setup code. 6639 // 6640 // On Linux, aarch64_get_thread_helper() clobbers only r0, r1, and flags. 6641 // On other systems, the helper is a usual C function. 6642 // 6643 void MacroAssembler::get_thread(Register dst) { 6644 RegSet saved_regs = 6645 LINUX_ONLY(RegSet::range(r0, r1) + lr - dst) 6646 NOT_LINUX (RegSet::range(r0, r17) + lr - dst); 6647 6648 protect_return_address(); 6649 push(saved_regs, sp); 6650 6651 mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper)); 6652 blr(lr); 6653 if (dst != c_rarg0) { 6654 mov(dst, c_rarg0); 6655 } 6656 6657 pop(saved_regs, sp); 6658 authenticate_return_address(); 6659 } 6660 6661 void MacroAssembler::cache_wb(Address line) { 6662 assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset"); 6663 assert(line.index() == noreg, "index should be noreg"); 6664 assert(line.offset() == 0, "offset should be 0"); 6665 // would like to assert this 6666 // assert(line._ext.shift == 0, "shift should be zero"); 6667 if (VM_Version::supports_dcpop()) { 6668 // writeback using clear virtual address to point of persistence 6669 dc(Assembler::CVAP, line.base()); 6670 } else { 6671 // no need to generate anything as Unsafe.writebackMemory should 6672 // never invoke this stub 6673 } 6674 } 6675 6676 void MacroAssembler::cache_wbsync(bool is_pre) { 6677 // we only need a barrier post sync 6678 if (!is_pre) { 6679 membar(Assembler::AnyAny); 6680 } 6681 } 6682 6683 void MacroAssembler::verify_sve_vector_length(Register tmp) { 6684 if (!UseSVE || VM_Version::get_max_supported_sve_vector_length() == FloatRegister::sve_vl_min) { 6685 return; 6686 } 6687 // Make sure that native code does not change SVE vector length. 6688 Label verify_ok; 6689 movw(tmp, zr); 6690 sve_inc(tmp, B); 6691 subsw(zr, tmp, VM_Version::get_initial_sve_vector_length()); 6692 br(EQ, verify_ok); 6693 stop("Error: SVE vector length has changed since jvm startup"); 6694 bind(verify_ok); 6695 } 6696 6697 void MacroAssembler::verify_ptrue() { 6698 Label verify_ok; 6699 if (!UseSVE) { 6700 return; 6701 } 6702 sve_cntp(rscratch1, B, ptrue, ptrue); // get true elements count. 6703 sve_dec(rscratch1, B); 6704 cbz(rscratch1, verify_ok); 6705 stop("Error: the preserved predicate register (p7) elements are not all true"); 6706 bind(verify_ok); 6707 } 6708 6709 void MacroAssembler::safepoint_isb() { 6710 isb(); 6711 #ifndef PRODUCT 6712 if (VerifyCrossModifyFence) { 6713 // Clear the thread state. 6714 strb(zr, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 6715 } 6716 #endif 6717 } 6718 6719 #ifndef PRODUCT 6720 void MacroAssembler::verify_cross_modify_fence_not_required() { 6721 if (VerifyCrossModifyFence) { 6722 // Check if thread needs a cross modify fence. 6723 ldrb(rscratch1, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 6724 Label fence_not_required; 6725 cbz(rscratch1, fence_not_required); 6726 // If it does then fail. 6727 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::verify_cross_modify_fence_failure))); 6728 mov(c_rarg0, rthread); 6729 blr(rscratch1); 6730 bind(fence_not_required); 6731 } 6732 } 6733 #endif 6734 6735 void MacroAssembler::spin_wait() { 6736 for (int i = 0; i < VM_Version::spin_wait_desc().inst_count(); ++i) { 6737 switch (VM_Version::spin_wait_desc().inst()) { 6738 case SpinWait::NOP: 6739 nop(); 6740 break; 6741 case SpinWait::ISB: 6742 isb(); 6743 break; 6744 case SpinWait::YIELD: 6745 yield(); 6746 break; 6747 default: 6748 ShouldNotReachHere(); 6749 } 6750 } 6751 } 6752 6753 // Stack frame creation/removal 6754 6755 void MacroAssembler::enter(bool strip_ret_addr) { 6756 if (strip_ret_addr) { 6757 // Addresses can only be signed once. If there are multiple nested frames being created 6758 // in the same function, then the return address needs stripping first. 6759 strip_return_address(); 6760 } 6761 protect_return_address(); 6762 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 6763 mov(rfp, sp); 6764 } 6765 6766 void MacroAssembler::leave() { 6767 mov(sp, rfp); 6768 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 6769 authenticate_return_address(); 6770 } 6771 6772 // ROP Protection 6773 // Use the AArch64 PAC feature to add ROP protection for generated code. Use whenever creating/ 6774 // destroying stack frames or whenever directly loading/storing the LR to memory. 6775 // If ROP protection is not set then these functions are no-ops. 6776 // For more details on PAC see pauth_aarch64.hpp. 6777 6778 // Sign the LR. Use during construction of a stack frame, before storing the LR to memory. 6779 // Uses value zero as the modifier. 6780 // 6781 void MacroAssembler::protect_return_address() { 6782 if (VM_Version::use_rop_protection()) { 6783 check_return_address(); 6784 paciaz(); 6785 } 6786 } 6787 6788 // Sign the return value in the given register. Use before updating the LR in the existing stack 6789 // frame for the current function. 6790 // Uses value zero as the modifier. 6791 // 6792 void MacroAssembler::protect_return_address(Register return_reg) { 6793 if (VM_Version::use_rop_protection()) { 6794 check_return_address(return_reg); 6795 paciza(return_reg); 6796 } 6797 } 6798 6799 // Authenticate the LR. Use before function return, after restoring FP and loading LR from memory. 6800 // Uses value zero as the modifier. 6801 // 6802 void MacroAssembler::authenticate_return_address() { 6803 if (VM_Version::use_rop_protection()) { 6804 autiaz(); 6805 check_return_address(); 6806 } 6807 } 6808 6809 // Authenticate the return value in the given register. Use before updating the LR in the existing 6810 // stack frame for the current function. 6811 // Uses value zero as the modifier. 6812 // 6813 void MacroAssembler::authenticate_return_address(Register return_reg) { 6814 if (VM_Version::use_rop_protection()) { 6815 autiza(return_reg); 6816 check_return_address(return_reg); 6817 } 6818 } 6819 6820 // Strip any PAC data from LR without performing any authentication. Use with caution - only if 6821 // there is no guaranteed way of authenticating the LR. 6822 // 6823 void MacroAssembler::strip_return_address() { 6824 if (VM_Version::use_rop_protection()) { 6825 xpaclri(); 6826 } 6827 } 6828 6829 #ifndef PRODUCT 6830 // PAC failures can be difficult to debug. After an authentication failure, a segfault will only 6831 // occur when the pointer is used - ie when the program returns to the invalid LR. At this point 6832 // it is difficult to debug back to the callee function. 6833 // This function simply loads from the address in the given register. 6834 // Use directly after authentication to catch authentication failures. 6835 // Also use before signing to check that the pointer is valid and hasn't already been signed. 6836 // 6837 void MacroAssembler::check_return_address(Register return_reg) { 6838 if (VM_Version::use_rop_protection()) { 6839 ldr(zr, Address(return_reg)); 6840 } 6841 } 6842 #endif 6843 6844 // The java_calling_convention describes stack locations as ideal slots on 6845 // a frame with no abi restrictions. Since we must observe abi restrictions 6846 // (like the placement of the register window) the slots must be biased by 6847 // the following value. 6848 static int reg2offset_in(VMReg r) { 6849 // Account for saved rfp and lr 6850 // This should really be in_preserve_stack_slots 6851 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 6852 } 6853 6854 static int reg2offset_out(VMReg r) { 6855 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 6856 } 6857 6858 // On 64bit we will store integer like items to the stack as 6859 // 64bits items (AArch64 ABI) even though java would only store 6860 // 32bits for a parameter. On 32bit it will simply be 32bits 6861 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 6862 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp) { 6863 if (src.first()->is_stack()) { 6864 if (dst.first()->is_stack()) { 6865 // stack to stack 6866 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 6867 str(tmp, Address(sp, reg2offset_out(dst.first()))); 6868 } else { 6869 // stack to reg 6870 ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 6871 } 6872 } else if (dst.first()->is_stack()) { 6873 // reg to stack 6874 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 6875 } else { 6876 if (dst.first() != src.first()) { 6877 sxtw(dst.first()->as_Register(), src.first()->as_Register()); 6878 } 6879 } 6880 } 6881 6882 // An oop arg. Must pass a handle not the oop itself 6883 void MacroAssembler::object_move( 6884 OopMap* map, 6885 int oop_handle_offset, 6886 int framesize_in_slots, 6887 VMRegPair src, 6888 VMRegPair dst, 6889 bool is_receiver, 6890 int* receiver_offset) { 6891 6892 // must pass a handle. First figure out the location we use as a handle 6893 6894 Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register(); 6895 6896 // See if oop is null if it is we need no handle 6897 6898 if (src.first()->is_stack()) { 6899 6900 // Oop is already on the stack as an argument 6901 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 6902 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 6903 if (is_receiver) { 6904 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 6905 } 6906 6907 ldr(rscratch1, Address(rfp, reg2offset_in(src.first()))); 6908 lea(rHandle, Address(rfp, reg2offset_in(src.first()))); 6909 // conditionally move a null 6910 cmp(rscratch1, zr); 6911 csel(rHandle, zr, rHandle, Assembler::EQ); 6912 } else { 6913 6914 // Oop is in an a register we must store it to the space we reserve 6915 // on the stack for oop_handles and pass a handle if oop is non-null 6916 6917 const Register rOop = src.first()->as_Register(); 6918 int oop_slot; 6919 if (rOop == j_rarg0) 6920 oop_slot = 0; 6921 else if (rOop == j_rarg1) 6922 oop_slot = 1; 6923 else if (rOop == j_rarg2) 6924 oop_slot = 2; 6925 else if (rOop == j_rarg3) 6926 oop_slot = 3; 6927 else if (rOop == j_rarg4) 6928 oop_slot = 4; 6929 else if (rOop == j_rarg5) 6930 oop_slot = 5; 6931 else if (rOop == j_rarg6) 6932 oop_slot = 6; 6933 else { 6934 assert(rOop == j_rarg7, "wrong register"); 6935 oop_slot = 7; 6936 } 6937 6938 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 6939 int offset = oop_slot*VMRegImpl::stack_slot_size; 6940 6941 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 6942 // Store oop in handle area, may be null 6943 str(rOop, Address(sp, offset)); 6944 if (is_receiver) { 6945 *receiver_offset = offset; 6946 } 6947 6948 cmp(rOop, zr); 6949 lea(rHandle, Address(sp, offset)); 6950 // conditionally move a null 6951 csel(rHandle, zr, rHandle, Assembler::EQ); 6952 } 6953 6954 // If arg is on the stack then place it otherwise it is already in correct reg. 6955 if (dst.first()->is_stack()) { 6956 str(rHandle, Address(sp, reg2offset_out(dst.first()))); 6957 } 6958 } 6959 6960 // A float arg may have to do float reg int reg conversion 6961 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp) { 6962 if (src.first()->is_stack()) { 6963 if (dst.first()->is_stack()) { 6964 ldrw(tmp, Address(rfp, reg2offset_in(src.first()))); 6965 strw(tmp, Address(sp, reg2offset_out(dst.first()))); 6966 } else { 6967 ldrs(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 6968 } 6969 } else if (src.first() != dst.first()) { 6970 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 6971 fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 6972 else 6973 strs(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 6974 } 6975 } 6976 6977 // A long move 6978 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp) { 6979 if (src.first()->is_stack()) { 6980 if (dst.first()->is_stack()) { 6981 // stack to stack 6982 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 6983 str(tmp, Address(sp, reg2offset_out(dst.first()))); 6984 } else { 6985 // stack to reg 6986 ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 6987 } 6988 } else if (dst.first()->is_stack()) { 6989 // reg to stack 6990 // Do we really have to sign extend??? 6991 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 6992 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 6993 } else { 6994 if (dst.first() != src.first()) { 6995 mov(dst.first()->as_Register(), src.first()->as_Register()); 6996 } 6997 } 6998 } 6999 7000 7001 // A double move 7002 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp) { 7003 if (src.first()->is_stack()) { 7004 if (dst.first()->is_stack()) { 7005 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 7006 str(tmp, Address(sp, reg2offset_out(dst.first()))); 7007 } else { 7008 ldrd(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 7009 } 7010 } else if (src.first() != dst.first()) { 7011 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 7012 fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 7013 else 7014 strd(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 7015 } 7016 } 7017 7018 // Implements lightweight-locking. 7019 // 7020 // - obj: the object to be locked 7021 // - t1, t2, t3: temporary registers, will be destroyed 7022 // - slow: branched to if locking fails, absolute offset may larger than 32KB (imm14 encoding). 7023 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow) { 7024 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 7025 assert_different_registers(basic_lock, obj, t1, t2, t3, rscratch1); 7026 7027 Label push; 7028 const Register top = t1; 7029 const Register mark = t2; 7030 const Register t = t3; 7031 7032 // Preload the markWord. It is important that this is the first 7033 // instruction emitted as it is part of C1's null check semantics. 7034 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 7035 7036 if (UseObjectMonitorTable) { 7037 // Clear cache in case fast locking succeeds. 7038 str(zr, Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes())))); 7039 } 7040 7041 // Check if the lock-stack is full. 7042 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7043 cmpw(top, (unsigned)LockStack::end_offset()); 7044 br(Assembler::GE, slow); 7045 7046 // Check for recursion. 7047 subw(t, top, oopSize); 7048 ldr(t, Address(rthread, t)); 7049 cmp(obj, t); 7050 br(Assembler::EQ, push); 7051 7052 // Check header for monitor (0b10). 7053 tst(mark, markWord::monitor_value); 7054 br(Assembler::NE, slow); 7055 7056 // Try to lock. Transition lock bits 0b01 => 0b00 7057 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 7058 orr(mark, mark, markWord::unlocked_value); 7059 eor(t, mark, markWord::unlocked_value); 7060 cmpxchg(/*addr*/ obj, /*expected*/ mark, /*new*/ t, Assembler::xword, 7061 /*acquire*/ true, /*release*/ false, /*weak*/ false, noreg); 7062 br(Assembler::NE, slow); 7063 7064 bind(push); 7065 // After successful lock, push object on lock-stack. 7066 str(obj, Address(rthread, top)); 7067 addw(top, top, oopSize); 7068 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7069 } 7070 7071 // Implements lightweight-unlocking. 7072 // 7073 // - obj: the object to be unlocked 7074 // - t1, t2, t3: temporary registers 7075 // - slow: branched to if unlocking fails, absolute offset may larger than 32KB (imm14 encoding). 7076 void MacroAssembler::lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow) { 7077 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 7078 // cmpxchg clobbers rscratch1. 7079 assert_different_registers(obj, t1, t2, t3, rscratch1); 7080 7081 #ifdef ASSERT 7082 { 7083 // Check for lock-stack underflow. 7084 Label stack_ok; 7085 ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 7086 cmpw(t1, (unsigned)LockStack::start_offset()); 7087 br(Assembler::GE, stack_ok); 7088 STOP("Lock-stack underflow"); 7089 bind(stack_ok); 7090 } 7091 #endif 7092 7093 Label unlocked, push_and_slow; 7094 const Register top = t1; 7095 const Register mark = t2; 7096 const Register t = t3; 7097 7098 // Check if obj is top of lock-stack. 7099 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7100 subw(top, top, oopSize); 7101 ldr(t, Address(rthread, top)); 7102 cmp(obj, t); 7103 br(Assembler::NE, slow); 7104 7105 // Pop lock-stack. 7106 DEBUG_ONLY(str(zr, Address(rthread, top));) 7107 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7108 7109 // Check if recursive. 7110 subw(t, top, oopSize); 7111 ldr(t, Address(rthread, t)); 7112 cmp(obj, t); 7113 br(Assembler::EQ, unlocked); 7114 7115 // Not recursive. Check header for monitor (0b10). 7116 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 7117 tbnz(mark, log2i_exact(markWord::monitor_value), push_and_slow); 7118 7119 #ifdef ASSERT 7120 // Check header not unlocked (0b01). 7121 Label not_unlocked; 7122 tbz(mark, log2i_exact(markWord::unlocked_value), not_unlocked); 7123 stop("lightweight_unlock already unlocked"); 7124 bind(not_unlocked); 7125 #endif 7126 7127 // Try to unlock. Transition lock bits 0b00 => 0b01 7128 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 7129 orr(t, mark, markWord::unlocked_value); 7130 cmpxchg(obj, mark, t, Assembler::xword, 7131 /*acquire*/ false, /*release*/ true, /*weak*/ false, noreg); 7132 br(Assembler::EQ, unlocked); 7133 7134 bind(push_and_slow); 7135 // Restore lock-stack and handle the unlock in runtime. 7136 DEBUG_ONLY(str(obj, Address(rthread, top));) 7137 addw(top, top, oopSize); 7138 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7139 b(slow); 7140 7141 bind(unlocked); 7142 }