1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/assembler.hpp" 28 #include "asm/assembler.inline.hpp" 29 #include "ci/ciEnv.hpp" 30 #include "code/compiledIC.hpp" 31 #include "compiler/compileTask.hpp" 32 #include "compiler/disassembler.hpp" 33 #include "compiler/oopMap.hpp" 34 #include "gc/shared/barrierSet.hpp" 35 #include "gc/shared/barrierSetAssembler.hpp" 36 #include "gc/shared/cardTableBarrierSet.hpp" 37 #include "gc/shared/cardTable.hpp" 38 #include "gc/shared/collectedHeap.hpp" 39 #include "gc/shared/tlab_globals.hpp" 40 #include "interpreter/bytecodeHistogram.hpp" 41 #include "interpreter/interpreter.hpp" 42 #include "interpreter/interpreterRuntime.hpp" 43 #include "jvm.h" 44 #include "memory/resourceArea.hpp" 45 #include "memory/universe.hpp" 46 #include "nativeInst_aarch64.hpp" 47 #include "oops/accessDecorators.hpp" 48 #include "oops/compressedKlass.inline.hpp" 49 #include "oops/compressedOops.inline.hpp" 50 #include "oops/klass.inline.hpp" 51 #include "runtime/continuation.hpp" 52 #include "runtime/icache.hpp" 53 #include "runtime/interfaceSupport.inline.hpp" 54 #include "runtime/javaThread.hpp" 55 #include "runtime/jniHandles.inline.hpp" 56 #include "runtime/sharedRuntime.hpp" 57 #include "runtime/stubRoutines.hpp" 58 #include "utilities/globalDefinitions.hpp" 59 #include "utilities/powerOfTwo.hpp" 60 #ifdef COMPILER1 61 #include "c1/c1_LIRAssembler.hpp" 62 #endif 63 #ifdef COMPILER2 64 #include "oops/oop.hpp" 65 #include "opto/compile.hpp" 66 #include "opto/node.hpp" 67 #include "opto/output.hpp" 68 #endif 69 70 #include <sys/types.h> 71 72 #ifdef PRODUCT 73 #define BLOCK_COMMENT(str) /* nothing */ 74 #else 75 #define BLOCK_COMMENT(str) block_comment(str) 76 #endif 77 #define STOP(str) stop(str); 78 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 79 80 #ifdef ASSERT 81 extern "C" void disnm(intptr_t p); 82 #endif 83 // Target-dependent relocation processing 84 // 85 // Instruction sequences whose target may need to be retrieved or 86 // patched are distinguished by their leading instruction, sorting 87 // them into three main instruction groups and related subgroups. 88 // 89 // 1) Branch, Exception and System (insn count = 1) 90 // 1a) Unconditional branch (immediate): 91 // b/bl imm19 92 // 1b) Compare & branch (immediate): 93 // cbz/cbnz Rt imm19 94 // 1c) Test & branch (immediate): 95 // tbz/tbnz Rt imm14 96 // 1d) Conditional branch (immediate): 97 // b.cond imm19 98 // 99 // 2) Loads and Stores (insn count = 1) 100 // 2a) Load register literal: 101 // ldr Rt imm19 102 // 103 // 3) Data Processing Immediate (insn count = 2 or 3) 104 // 3a) PC-rel. addressing 105 // adr/adrp Rx imm21; ldr/str Ry Rx #imm12 106 // adr/adrp Rx imm21; add Ry Rx #imm12 107 // adr/adrp Rx imm21; movk Rx #imm16<<32; ldr/str Ry, [Rx, #offset_in_page] 108 // adr/adrp Rx imm21 109 // adr/adrp Rx imm21; movk Rx #imm16<<32 110 // adr/adrp Rx imm21; movk Rx #imm16<<32; add Ry, Rx, #offset_in_page 111 // The latter form can only happen when the target is an 112 // ExternalAddress, and (by definition) ExternalAddresses don't 113 // move. Because of that property, there is never any need to 114 // patch the last of the three instructions. However, 115 // MacroAssembler::target_addr_for_insn takes all three 116 // instructions into account and returns the correct address. 117 // 3b) Move wide (immediate) 118 // movz Rx #imm16; movk Rx #imm16 << 16; movk Rx #imm16 << 32; 119 // 120 // A switch on a subset of the instruction's bits provides an 121 // efficient dispatch to these subcases. 122 // 123 // insn[28:26] -> main group ('x' == don't care) 124 // 00x -> UNALLOCATED 125 // 100 -> Data Processing Immediate 126 // 101 -> Branch, Exception and System 127 // x1x -> Loads and Stores 128 // 129 // insn[30:25] -> subgroup ('_' == group, 'x' == don't care). 130 // n.b. in some cases extra bits need to be checked to verify the 131 // instruction is as expected 132 // 133 // 1) ... xx101x Branch, Exception and System 134 // 1a) 00___x Unconditional branch (immediate) 135 // 1b) 01___0 Compare & branch (immediate) 136 // 1c) 01___1 Test & branch (immediate) 137 // 1d) 10___0 Conditional branch (immediate) 138 // other Should not happen 139 // 140 // 2) ... xxx1x0 Loads and Stores 141 // 2a) xx1__00 Load/Store register (insn[28] == 1 && insn[24] == 0) 142 // 2aa) x01__00 Load register literal (i.e. requires insn[29] == 0) 143 // strictly should be 64 bit non-FP/SIMD i.e. 144 // 0101_000 (i.e. requires insn[31:24] == 01011000) 145 // 146 // 3) ... xx100x Data Processing Immediate 147 // 3a) xx___00 PC-rel. addressing (n.b. requires insn[24] == 0) 148 // 3b) xx___101 Move wide (immediate) (n.b. requires insn[24:23] == 01) 149 // strictly should be 64 bit movz #imm16<<0 150 // 110___10100 (i.e. requires insn[31:21] == 11010010100) 151 // 152 class RelocActions { 153 protected: 154 typedef int (*reloc_insn)(address insn_addr, address &target); 155 156 virtual reloc_insn adrpMem() = 0; 157 virtual reloc_insn adrpAdd() = 0; 158 virtual reloc_insn adrpMovk() = 0; 159 160 const address _insn_addr; 161 const uint32_t _insn; 162 163 static uint32_t insn_at(address insn_addr, int n) { 164 return ((uint32_t*)insn_addr)[n]; 165 } 166 uint32_t insn_at(int n) const { 167 return insn_at(_insn_addr, n); 168 } 169 170 public: 171 172 RelocActions(address insn_addr) : _insn_addr(insn_addr), _insn(insn_at(insn_addr, 0)) {} 173 RelocActions(address insn_addr, uint32_t insn) 174 : _insn_addr(insn_addr), _insn(insn) {} 175 176 virtual int unconditionalBranch(address insn_addr, address &target) = 0; 177 virtual int conditionalBranch(address insn_addr, address &target) = 0; 178 virtual int testAndBranch(address insn_addr, address &target) = 0; 179 virtual int loadStore(address insn_addr, address &target) = 0; 180 virtual int adr(address insn_addr, address &target) = 0; 181 virtual int adrp(address insn_addr, address &target, reloc_insn inner) = 0; 182 virtual int immediate(address insn_addr, address &target) = 0; 183 virtual void verify(address insn_addr, address &target) = 0; 184 185 int ALWAYSINLINE run(address insn_addr, address &target) { 186 int instructions = 1; 187 188 uint32_t dispatch = Instruction_aarch64::extract(_insn, 30, 25); 189 switch(dispatch) { 190 case 0b001010: 191 case 0b001011: { 192 instructions = unconditionalBranch(insn_addr, target); 193 break; 194 } 195 case 0b101010: // Conditional branch (immediate) 196 case 0b011010: { // Compare & branch (immediate) 197 instructions = conditionalBranch(insn_addr, target); 198 break; 199 } 200 case 0b011011: { 201 instructions = testAndBranch(insn_addr, target); 202 break; 203 } 204 case 0b001100: 205 case 0b001110: 206 case 0b011100: 207 case 0b011110: 208 case 0b101100: 209 case 0b101110: 210 case 0b111100: 211 case 0b111110: { 212 // load/store 213 if ((Instruction_aarch64::extract(_insn, 29, 24) & 0b111011) == 0b011000) { 214 // Load register (literal) 215 instructions = loadStore(insn_addr, target); 216 break; 217 } else { 218 // nothing to do 219 assert(target == nullptr, "did not expect to relocate target for polling page load"); 220 } 221 break; 222 } 223 case 0b001000: 224 case 0b011000: 225 case 0b101000: 226 case 0b111000: { 227 // adr/adrp 228 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 229 int shift = Instruction_aarch64::extract(_insn, 31, 31); 230 if (shift) { 231 uint32_t insn2 = insn_at(1); 232 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 233 Instruction_aarch64::extract(_insn, 4, 0) == 234 Instruction_aarch64::extract(insn2, 9, 5)) { 235 instructions = adrp(insn_addr, target, adrpMem()); 236 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 237 Instruction_aarch64::extract(_insn, 4, 0) == 238 Instruction_aarch64::extract(insn2, 4, 0)) { 239 instructions = adrp(insn_addr, target, adrpAdd()); 240 } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 241 Instruction_aarch64::extract(_insn, 4, 0) == 242 Instruction_aarch64::extract(insn2, 4, 0)) { 243 instructions = adrp(insn_addr, target, adrpMovk()); 244 } else { 245 ShouldNotReachHere(); 246 } 247 } else { 248 instructions = adr(insn_addr, target); 249 } 250 break; 251 } 252 case 0b001001: 253 case 0b011001: 254 case 0b101001: 255 case 0b111001: { 256 instructions = immediate(insn_addr, target); 257 break; 258 } 259 default: { 260 ShouldNotReachHere(); 261 } 262 } 263 264 verify(insn_addr, target); 265 return instructions * NativeInstruction::instruction_size; 266 } 267 }; 268 269 class Patcher : public RelocActions { 270 virtual reloc_insn adrpMem() { return &Patcher::adrpMem_impl; } 271 virtual reloc_insn adrpAdd() { return &Patcher::adrpAdd_impl; } 272 virtual reloc_insn adrpMovk() { return &Patcher::adrpMovk_impl; } 273 274 public: 275 Patcher(address insn_addr) : RelocActions(insn_addr) {} 276 277 virtual int unconditionalBranch(address insn_addr, address &target) { 278 intptr_t offset = (target - insn_addr) >> 2; 279 Instruction_aarch64::spatch(insn_addr, 25, 0, offset); 280 return 1; 281 } 282 virtual int conditionalBranch(address insn_addr, address &target) { 283 intptr_t offset = (target - insn_addr) >> 2; 284 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 285 return 1; 286 } 287 virtual int testAndBranch(address insn_addr, address &target) { 288 intptr_t offset = (target - insn_addr) >> 2; 289 Instruction_aarch64::spatch(insn_addr, 18, 5, offset); 290 return 1; 291 } 292 virtual int loadStore(address insn_addr, address &target) { 293 intptr_t offset = (target - insn_addr) >> 2; 294 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 295 return 1; 296 } 297 virtual int adr(address insn_addr, address &target) { 298 #ifdef ASSERT 299 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 300 #endif 301 // PC-rel. addressing 302 ptrdiff_t offset = target - insn_addr; 303 int offset_lo = offset & 3; 304 offset >>= 2; 305 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 306 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 307 return 1; 308 } 309 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 310 int instructions = 1; 311 #ifdef ASSERT 312 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 313 #endif 314 ptrdiff_t offset = target - insn_addr; 315 instructions = 2; 316 precond(inner != nullptr); 317 // Give the inner reloc a chance to modify the target. 318 address adjusted_target = target; 319 instructions = (*inner)(insn_addr, adjusted_target); 320 uintptr_t pc_page = (uintptr_t)insn_addr >> 12; 321 uintptr_t adr_page = (uintptr_t)adjusted_target >> 12; 322 offset = adr_page - pc_page; 323 int offset_lo = offset & 3; 324 offset >>= 2; 325 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 326 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 327 return instructions; 328 } 329 static int adrpMem_impl(address insn_addr, address &target) { 330 uintptr_t dest = (uintptr_t)target; 331 int offset_lo = dest & 0xfff; 332 uint32_t insn2 = insn_at(insn_addr, 1); 333 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 334 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo >> size); 335 guarantee(((dest >> size) << size) == dest, "misaligned target"); 336 return 2; 337 } 338 static int adrpAdd_impl(address insn_addr, address &target) { 339 uintptr_t dest = (uintptr_t)target; 340 int offset_lo = dest & 0xfff; 341 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo); 342 return 2; 343 } 344 static int adrpMovk_impl(address insn_addr, address &target) { 345 uintptr_t dest = uintptr_t(target); 346 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 20, 5, (uintptr_t)target >> 32); 347 dest = (dest & 0xffffffffULL) | (uintptr_t(insn_addr) & 0xffff00000000ULL); 348 target = address(dest); 349 return 2; 350 } 351 virtual int immediate(address insn_addr, address &target) { 352 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 353 uint64_t dest = (uint64_t)target; 354 // Move wide constant 355 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 356 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 357 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 358 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 359 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 360 return 3; 361 } 362 virtual void verify(address insn_addr, address &target) { 363 #ifdef ASSERT 364 address address_is = MacroAssembler::target_addr_for_insn(insn_addr); 365 if (!(address_is == target)) { 366 tty->print_cr("%p at %p should be %p", address_is, insn_addr, target); 367 disnm((intptr_t)insn_addr); 368 assert(address_is == target, "should be"); 369 } 370 #endif 371 } 372 }; 373 374 // If insn1 and insn2 use the same register to form an address, either 375 // by an offsetted LDR or a simple ADD, return the offset. If the 376 // second instruction is an LDR, the offset may be scaled. 377 static bool offset_for(uint32_t insn1, uint32_t insn2, ptrdiff_t &byte_offset) { 378 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 379 Instruction_aarch64::extract(insn1, 4, 0) == 380 Instruction_aarch64::extract(insn2, 9, 5)) { 381 // Load/store register (unsigned immediate) 382 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 383 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 384 byte_offset <<= size; 385 return true; 386 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 387 Instruction_aarch64::extract(insn1, 4, 0) == 388 Instruction_aarch64::extract(insn2, 4, 0)) { 389 // add (immediate) 390 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 391 return true; 392 } 393 return false; 394 } 395 396 class AArch64Decoder : public RelocActions { 397 virtual reloc_insn adrpMem() { return &AArch64Decoder::adrpMem_impl; } 398 virtual reloc_insn adrpAdd() { return &AArch64Decoder::adrpAdd_impl; } 399 virtual reloc_insn adrpMovk() { return &AArch64Decoder::adrpMovk_impl; } 400 401 public: 402 AArch64Decoder(address insn_addr, uint32_t insn) : RelocActions(insn_addr, insn) {} 403 404 virtual int loadStore(address insn_addr, address &target) { 405 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 406 target = insn_addr + (offset << 2); 407 return 1; 408 } 409 virtual int unconditionalBranch(address insn_addr, address &target) { 410 intptr_t offset = Instruction_aarch64::sextract(_insn, 25, 0); 411 target = insn_addr + (offset << 2); 412 return 1; 413 } 414 virtual int conditionalBranch(address insn_addr, address &target) { 415 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 416 target = address(((uint64_t)insn_addr + (offset << 2))); 417 return 1; 418 } 419 virtual int testAndBranch(address insn_addr, address &target) { 420 intptr_t offset = Instruction_aarch64::sextract(_insn, 18, 5); 421 target = address(((uint64_t)insn_addr + (offset << 2))); 422 return 1; 423 } 424 virtual int adr(address insn_addr, address &target) { 425 // PC-rel. addressing 426 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 427 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 428 target = address((uint64_t)insn_addr + offset); 429 return 1; 430 } 431 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 432 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 433 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 434 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 435 int shift = 12; 436 offset <<= shift; 437 uint64_t target_page = ((uint64_t)insn_addr) + offset; 438 target_page &= ((uint64_t)-1) << shift; 439 uint32_t insn2 = insn_at(1); 440 target = address(target_page); 441 precond(inner != nullptr); 442 (*inner)(insn_addr, target); 443 return 2; 444 } 445 static int adrpMem_impl(address insn_addr, address &target) { 446 uint32_t insn2 = insn_at(insn_addr, 1); 447 // Load/store register (unsigned immediate) 448 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 449 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 450 byte_offset <<= size; 451 target += byte_offset; 452 return 2; 453 } 454 static int adrpAdd_impl(address insn_addr, address &target) { 455 uint32_t insn2 = insn_at(insn_addr, 1); 456 // add (immediate) 457 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 458 target += byte_offset; 459 return 2; 460 } 461 static int adrpMovk_impl(address insn_addr, address &target) { 462 uint32_t insn2 = insn_at(insn_addr, 1); 463 uint64_t dest = uint64_t(target); 464 dest = (dest & 0xffff0000ffffffff) | 465 ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32); 466 target = address(dest); 467 468 // We know the destination 4k page. Maybe we have a third 469 // instruction. 470 uint32_t insn = insn_at(insn_addr, 0); 471 uint32_t insn3 = insn_at(insn_addr, 2); 472 ptrdiff_t byte_offset; 473 if (offset_for(insn, insn3, byte_offset)) { 474 target += byte_offset; 475 return 3; 476 } else { 477 return 2; 478 } 479 } 480 virtual int immediate(address insn_addr, address &target) { 481 uint32_t *insns = (uint32_t *)insn_addr; 482 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 483 // Move wide constant: movz, movk, movk. See movptr(). 484 assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch"); 485 assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch"); 486 target = address(uint64_t(Instruction_aarch64::extract(_insn, 20, 5)) 487 + (uint64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16) 488 + (uint64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32)); 489 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 490 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 491 return 3; 492 } 493 virtual void verify(address insn_addr, address &target) { 494 } 495 }; 496 497 address MacroAssembler::target_addr_for_insn(address insn_addr, uint32_t insn) { 498 AArch64Decoder decoder(insn_addr, insn); 499 address target; 500 decoder.run(insn_addr, target); 501 return target; 502 } 503 504 // Patch any kind of instruction; there may be several instructions. 505 // Return the total length (in bytes) of the instructions. 506 int MacroAssembler::pd_patch_instruction_size(address insn_addr, address target) { 507 Patcher patcher(insn_addr); 508 return patcher.run(insn_addr, target); 509 } 510 511 int MacroAssembler::patch_oop(address insn_addr, address o) { 512 int instructions; 513 unsigned insn = *(unsigned*)insn_addr; 514 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 515 516 // OOPs are either narrow (32 bits) or wide (48 bits). We encode 517 // narrow OOPs by setting the upper 16 bits in the first 518 // instruction. 519 if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) { 520 // Move narrow OOP 521 uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o)); 522 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 523 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 524 instructions = 2; 525 } else { 526 // Move wide OOP 527 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 528 uintptr_t dest = (uintptr_t)o; 529 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 530 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 531 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 532 instructions = 3; 533 } 534 return instructions * NativeInstruction::instruction_size; 535 } 536 537 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) { 538 // Metadata pointers are either narrow (32 bits) or wide (48 bits). 539 // We encode narrow ones by setting the upper 16 bits in the first 540 // instruction. 541 NativeInstruction *insn = nativeInstruction_at(insn_addr); 542 assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 && 543 nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 544 545 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 546 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 547 return 2 * NativeInstruction::instruction_size; 548 } 549 550 address MacroAssembler::target_addr_for_insn_or_null(address insn_addr, unsigned insn) { 551 if (NativeInstruction::is_ldrw_to_zr(address(&insn))) { 552 return nullptr; 553 } 554 return MacroAssembler::target_addr_for_insn(insn_addr, insn); 555 } 556 557 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp) { 558 if (acquire) { 559 lea(tmp, Address(rthread, JavaThread::polling_word_offset())); 560 ldar(tmp, tmp); 561 } else { 562 ldr(tmp, Address(rthread, JavaThread::polling_word_offset())); 563 } 564 if (at_return) { 565 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 566 // we may safely use the sp instead to perform the stack watermark check. 567 cmp(in_nmethod ? sp : rfp, tmp); 568 br(Assembler::HI, slow_path); 569 } else { 570 tbnz(tmp, log2i_exact(SafepointMechanism::poll_bit()), slow_path); 571 } 572 } 573 574 void MacroAssembler::rt_call(address dest, Register tmp) { 575 CodeBlob *cb = CodeCache::find_blob(dest); 576 if (cb) { 577 far_call(RuntimeAddress(dest)); 578 } else { 579 lea(tmp, RuntimeAddress(dest)); 580 blr(tmp); 581 } 582 } 583 584 void MacroAssembler::push_cont_fastpath(Register java_thread) { 585 if (!Continuations::enabled()) return; 586 Label done; 587 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 588 cmp(sp, rscratch1); 589 br(Assembler::LS, done); 590 mov(rscratch1, sp); // we can't use sp as the source in str 591 str(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 592 bind(done); 593 } 594 595 void MacroAssembler::pop_cont_fastpath(Register java_thread) { 596 if (!Continuations::enabled()) return; 597 Label done; 598 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 599 cmp(sp, rscratch1); 600 br(Assembler::LO, done); 601 str(zr, Address(java_thread, JavaThread::cont_fastpath_offset())); 602 bind(done); 603 } 604 605 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 606 // we must set sp to zero to clear frame 607 str(zr, Address(rthread, JavaThread::last_Java_sp_offset())); 608 609 // must clear fp, so that compiled frames are not confused; it is 610 // possible that we need it only for debugging 611 if (clear_fp) { 612 str(zr, Address(rthread, JavaThread::last_Java_fp_offset())); 613 } 614 615 // Always clear the pc because it could have been set by make_walkable() 616 str(zr, Address(rthread, JavaThread::last_Java_pc_offset())); 617 } 618 619 // Calls to C land 620 // 621 // When entering C land, the rfp, & resp of the last Java frame have to be recorded 622 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 623 // has to be reset to 0. This is required to allow proper stack traversal. 624 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 625 Register last_java_fp, 626 Register last_java_pc, 627 Register scratch) { 628 629 if (last_java_pc->is_valid()) { 630 str(last_java_pc, Address(rthread, 631 JavaThread::frame_anchor_offset() 632 + JavaFrameAnchor::last_Java_pc_offset())); 633 } 634 635 // determine last_java_sp register 636 if (last_java_sp == sp) { 637 mov(scratch, sp); 638 last_java_sp = scratch; 639 } else if (!last_java_sp->is_valid()) { 640 last_java_sp = esp; 641 } 642 643 str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset())); 644 645 // last_java_fp is optional 646 if (last_java_fp->is_valid()) { 647 str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset())); 648 } 649 } 650 651 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 652 Register last_java_fp, 653 address last_java_pc, 654 Register scratch) { 655 assert(last_java_pc != nullptr, "must provide a valid PC"); 656 657 adr(scratch, last_java_pc); 658 str(scratch, Address(rthread, 659 JavaThread::frame_anchor_offset() 660 + JavaFrameAnchor::last_Java_pc_offset())); 661 662 set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch); 663 } 664 665 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 666 Register last_java_fp, 667 Label &L, 668 Register scratch) { 669 if (L.is_bound()) { 670 set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch); 671 } else { 672 InstructionMark im(this); 673 L.add_patch_at(code(), locator()); 674 set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch); 675 } 676 } 677 678 static inline bool target_needs_far_branch(address addr) { 679 // codecache size <= 128M 680 if (!MacroAssembler::far_branches()) { 681 return false; 682 } 683 // codecache size > 240M 684 if (MacroAssembler::codestub_branch_needs_far_jump()) { 685 return true; 686 } 687 // codecache size: 128M..240M 688 return !CodeCache::is_non_nmethod(addr); 689 } 690 691 void MacroAssembler::far_call(Address entry, Register tmp) { 692 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 693 assert(CodeCache::find_blob(entry.target()) != nullptr, 694 "destination of far call not found in code cache"); 695 assert(entry.rspec().type() == relocInfo::external_word_type 696 || entry.rspec().type() == relocInfo::runtime_call_type 697 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 698 if (target_needs_far_branch(entry.target())) { 699 uint64_t offset; 700 // We can use ADRP here because we know that the total size of 701 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 702 adrp(tmp, entry, offset); 703 add(tmp, tmp, offset); 704 blr(tmp); 705 } else { 706 bl(entry); 707 } 708 } 709 710 int MacroAssembler::far_jump(Address entry, Register tmp) { 711 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 712 assert(CodeCache::find_blob(entry.target()) != nullptr, 713 "destination of far call not found in code cache"); 714 assert(entry.rspec().type() == relocInfo::external_word_type 715 || entry.rspec().type() == relocInfo::runtime_call_type 716 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 717 address start = pc(); 718 if (target_needs_far_branch(entry.target())) { 719 uint64_t offset; 720 // We can use ADRP here because we know that the total size of 721 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 722 adrp(tmp, entry, offset); 723 add(tmp, tmp, offset); 724 br(tmp); 725 } else { 726 b(entry); 727 } 728 return pc() - start; 729 } 730 731 void MacroAssembler::reserved_stack_check() { 732 // testing if reserved zone needs to be enabled 733 Label no_reserved_zone_enabling; 734 735 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 736 cmp(sp, rscratch1); 737 br(Assembler::LO, no_reserved_zone_enabling); 738 739 enter(); // LR and FP are live. 740 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone))); 741 mov(c_rarg0, rthread); 742 blr(rscratch1); 743 leave(); 744 745 // We have already removed our own frame. 746 // throw_delayed_StackOverflowError will think that it's been 747 // called by our caller. 748 lea(rscratch1, RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry())); 749 br(rscratch1); 750 should_not_reach_here(); 751 752 bind(no_reserved_zone_enabling); 753 } 754 755 static void pass_arg0(MacroAssembler* masm, Register arg) { 756 if (c_rarg0 != arg ) { 757 masm->mov(c_rarg0, arg); 758 } 759 } 760 761 static void pass_arg1(MacroAssembler* masm, Register arg) { 762 if (c_rarg1 != arg ) { 763 masm->mov(c_rarg1, arg); 764 } 765 } 766 767 static void pass_arg2(MacroAssembler* masm, Register arg) { 768 if (c_rarg2 != arg ) { 769 masm->mov(c_rarg2, arg); 770 } 771 } 772 773 static void pass_arg3(MacroAssembler* masm, Register arg) { 774 if (c_rarg3 != arg ) { 775 masm->mov(c_rarg3, arg); 776 } 777 } 778 779 static bool is_preemptable(address entry_point) { 780 return entry_point == CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter); 781 } 782 783 void MacroAssembler::call_VM_base(Register oop_result, 784 Register java_thread, 785 Register last_java_sp, 786 address entry_point, 787 int number_of_arguments, 788 bool check_exceptions) { 789 // determine java_thread register 790 if (!java_thread->is_valid()) { 791 java_thread = rthread; 792 } 793 794 // determine last_java_sp register 795 if (!last_java_sp->is_valid()) { 796 last_java_sp = esp; 797 } 798 799 // debugging support 800 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 801 assert(java_thread == rthread, "unexpected register"); 802 #ifdef ASSERT 803 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 804 // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 805 #endif // ASSERT 806 807 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 808 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 809 810 // push java thread (becomes first argument of C function) 811 812 mov(c_rarg0, java_thread); 813 814 // set last Java frame before call 815 assert(last_java_sp != rfp, "can't use rfp"); 816 817 Label l; 818 if (is_preemptable(entry_point)) { 819 // skip setting last_pc since we already set it to desired value. 820 set_last_Java_frame(last_java_sp, rfp, noreg, rscratch1); 821 } else { 822 set_last_Java_frame(last_java_sp, rfp, l, rscratch1); 823 } 824 825 // do the call, remove parameters 826 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l); 827 828 // lr could be poisoned with PAC signature during throw_pending_exception 829 // if it was tail-call optimized by compiler, since lr is not callee-saved 830 // reload it with proper value 831 adr(lr, l); 832 833 // reset last Java frame 834 // Only interpreter should have to clear fp 835 reset_last_Java_frame(true); 836 837 // C++ interp handles this in the interpreter 838 check_and_handle_popframe(java_thread); 839 check_and_handle_earlyret(java_thread); 840 841 if (check_exceptions) { 842 // check for pending exceptions (java_thread is set upon return) 843 ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset()))); 844 Label ok; 845 cbz(rscratch1, ok); 846 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 847 br(rscratch1); 848 bind(ok); 849 } 850 851 // get oop result if there is one and reset the value in the thread 852 if (oop_result->is_valid()) { 853 get_vm_result(oop_result, java_thread); 854 } 855 } 856 857 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 858 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions); 859 } 860 861 // Check the entry target is always reachable from any branch. 862 static bool is_always_within_branch_range(Address entry) { 863 const address target = entry.target(); 864 865 if (!CodeCache::contains(target)) { 866 // We always use trampolines for callees outside CodeCache. 867 assert(entry.rspec().type() == relocInfo::runtime_call_type, "non-runtime call of an external target"); 868 return false; 869 } 870 871 if (!MacroAssembler::far_branches()) { 872 return true; 873 } 874 875 if (entry.rspec().type() == relocInfo::runtime_call_type) { 876 // Runtime calls are calls of a non-compiled method (stubs, adapters). 877 // Non-compiled methods stay forever in CodeCache. 878 // We check whether the longest possible branch is within the branch range. 879 assert(CodeCache::find_blob(target) != nullptr && 880 !CodeCache::find_blob(target)->is_nmethod(), 881 "runtime call of compiled method"); 882 const address right_longest_branch_start = CodeCache::high_bound() - NativeInstruction::instruction_size; 883 const address left_longest_branch_start = CodeCache::low_bound(); 884 const bool is_reachable = Assembler::reachable_from_branch_at(left_longest_branch_start, target) && 885 Assembler::reachable_from_branch_at(right_longest_branch_start, target); 886 return is_reachable; 887 } 888 889 return false; 890 } 891 892 // Maybe emit a call via a trampoline. If the code cache is small 893 // trampolines won't be emitted. 894 address MacroAssembler::trampoline_call(Address entry) { 895 assert(entry.rspec().type() == relocInfo::runtime_call_type 896 || entry.rspec().type() == relocInfo::opt_virtual_call_type 897 || entry.rspec().type() == relocInfo::static_call_type 898 || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type"); 899 900 address target = entry.target(); 901 902 if (!is_always_within_branch_range(entry)) { 903 if (!in_scratch_emit_size()) { 904 // We don't want to emit a trampoline if C2 is generating dummy 905 // code during its branch shortening phase. 906 if (entry.rspec().type() == relocInfo::runtime_call_type) { 907 assert(CodeBuffer::supports_shared_stubs(), "must support shared stubs"); 908 code()->share_trampoline_for(entry.target(), offset()); 909 } else { 910 address stub = emit_trampoline_stub(offset(), target); 911 if (stub == nullptr) { 912 postcond(pc() == badAddress); 913 return nullptr; // CodeCache is full 914 } 915 } 916 } 917 target = pc(); 918 } 919 920 address call_pc = pc(); 921 relocate(entry.rspec()); 922 bl(target); 923 924 postcond(pc() != badAddress); 925 return call_pc; 926 } 927 928 // Emit a trampoline stub for a call to a target which is too far away. 929 // 930 // code sequences: 931 // 932 // call-site: 933 // branch-and-link to <destination> or <trampoline stub> 934 // 935 // Related trampoline stub for this call site in the stub section: 936 // load the call target from the constant pool 937 // branch (LR still points to the call site above) 938 939 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset, 940 address dest) { 941 // Max stub size: alignment nop, TrampolineStub. 942 address stub = start_a_stub(max_trampoline_stub_size()); 943 if (stub == nullptr) { 944 return nullptr; // CodeBuffer::expand failed 945 } 946 947 // Create a trampoline stub relocation which relates this trampoline stub 948 // with the call instruction at insts_call_instruction_offset in the 949 // instructions code-section. 950 align(wordSize); 951 relocate(trampoline_stub_Relocation::spec(code()->insts()->start() 952 + insts_call_instruction_offset)); 953 const int stub_start_offset = offset(); 954 955 // Now, create the trampoline stub's code: 956 // - load the call 957 // - call 958 Label target; 959 ldr(rscratch1, target); 960 br(rscratch1); 961 bind(target); 962 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset, 963 "should be"); 964 emit_int64((int64_t)dest); 965 966 const address stub_start_addr = addr_at(stub_start_offset); 967 968 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); 969 970 end_a_stub(); 971 return stub_start_addr; 972 } 973 974 int MacroAssembler::max_trampoline_stub_size() { 975 // Max stub size: alignment nop, TrampolineStub. 976 return NativeInstruction::instruction_size + NativeCallTrampolineStub::instruction_size; 977 } 978 979 void MacroAssembler::emit_static_call_stub() { 980 // CompiledDirectCall::set_to_interpreted knows the 981 // exact layout of this stub. 982 983 isb(); 984 mov_metadata(rmethod, nullptr); 985 986 // Jump to the entry point of the c2i stub. 987 movptr(rscratch1, 0); 988 br(rscratch1); 989 } 990 991 int MacroAssembler::static_call_stub_size() { 992 // isb; movk; movz; movz; movk; movz; movz; br 993 return 8 * NativeInstruction::instruction_size; 994 } 995 996 void MacroAssembler::c2bool(Register x) { 997 // implements x == 0 ? 0 : 1 998 // note: must only look at least-significant byte of x 999 // since C-style booleans are stored in one byte 1000 // only! (was bug) 1001 tst(x, 0xff); 1002 cset(x, Assembler::NE); 1003 } 1004 1005 address MacroAssembler::ic_call(address entry, jint method_index) { 1006 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 1007 // address const_ptr = long_constant((jlong)Universe::non_oop_word()); 1008 // uintptr_t offset; 1009 // ldr_constant(rscratch2, const_ptr); 1010 movptr(rscratch2, (intptr_t)Universe::non_oop_word()); 1011 return trampoline_call(Address(entry, rh)); 1012 } 1013 1014 int MacroAssembler::ic_check_size() { 1015 int extra_instructions = UseCompactObjectHeaders ? 1 : 0; 1016 if (target_needs_far_branch(CAST_FROM_FN_PTR(address, SharedRuntime::get_ic_miss_stub()))) { 1017 return NativeInstruction::instruction_size * (7 + extra_instructions); 1018 } else { 1019 return NativeInstruction::instruction_size * (5 + extra_instructions); 1020 } 1021 } 1022 1023 int MacroAssembler::ic_check(int end_alignment) { 1024 Register receiver = j_rarg0; 1025 Register data = rscratch2; 1026 Register tmp1 = rscratch1; 1027 Register tmp2 = r10; 1028 1029 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed 1030 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 1031 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align 1032 // before the inline cache check here, and not after 1033 align(end_alignment, offset() + ic_check_size()); 1034 1035 int uep_offset = offset(); 1036 1037 if (UseCompactObjectHeaders) { 1038 load_narrow_klass_compact(tmp1, receiver); 1039 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1040 cmpw(tmp1, tmp2); 1041 } else if (UseCompressedClassPointers) { 1042 ldrw(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1043 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1044 cmpw(tmp1, tmp2); 1045 } else { 1046 ldr(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1047 ldr(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1048 cmp(tmp1, tmp2); 1049 } 1050 1051 Label dont; 1052 br(Assembler::EQ, dont); 1053 far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1054 bind(dont); 1055 assert((offset() % end_alignment) == 0, "Misaligned verified entry point"); 1056 1057 return uep_offset; 1058 } 1059 1060 // Implementation of call_VM versions 1061 1062 void MacroAssembler::call_VM(Register oop_result, 1063 address entry_point, 1064 bool check_exceptions) { 1065 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1066 } 1067 1068 void MacroAssembler::call_VM(Register oop_result, 1069 address entry_point, 1070 Register arg_1, 1071 bool check_exceptions) { 1072 pass_arg1(this, arg_1); 1073 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1074 } 1075 1076 void MacroAssembler::call_VM(Register oop_result, 1077 address entry_point, 1078 Register arg_1, 1079 Register arg_2, 1080 bool check_exceptions) { 1081 assert_different_registers(arg_1, c_rarg2); 1082 pass_arg2(this, arg_2); 1083 pass_arg1(this, arg_1); 1084 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1085 } 1086 1087 void MacroAssembler::call_VM(Register oop_result, 1088 address entry_point, 1089 Register arg_1, 1090 Register arg_2, 1091 Register arg_3, 1092 bool check_exceptions) { 1093 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1094 assert_different_registers(arg_2, c_rarg3); 1095 pass_arg3(this, arg_3); 1096 1097 pass_arg2(this, arg_2); 1098 1099 pass_arg1(this, arg_1); 1100 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1101 } 1102 1103 void MacroAssembler::call_VM(Register oop_result, 1104 Register last_java_sp, 1105 address entry_point, 1106 int number_of_arguments, 1107 bool check_exceptions) { 1108 call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1109 } 1110 1111 void MacroAssembler::call_VM(Register oop_result, 1112 Register last_java_sp, 1113 address entry_point, 1114 Register arg_1, 1115 bool check_exceptions) { 1116 pass_arg1(this, arg_1); 1117 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1118 } 1119 1120 void MacroAssembler::call_VM(Register oop_result, 1121 Register last_java_sp, 1122 address entry_point, 1123 Register arg_1, 1124 Register arg_2, 1125 bool check_exceptions) { 1126 1127 assert_different_registers(arg_1, c_rarg2); 1128 pass_arg2(this, arg_2); 1129 pass_arg1(this, arg_1); 1130 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1131 } 1132 1133 void MacroAssembler::call_VM(Register oop_result, 1134 Register last_java_sp, 1135 address entry_point, 1136 Register arg_1, 1137 Register arg_2, 1138 Register arg_3, 1139 bool check_exceptions) { 1140 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1141 assert_different_registers(arg_2, c_rarg3); 1142 pass_arg3(this, arg_3); 1143 pass_arg2(this, arg_2); 1144 pass_arg1(this, arg_1); 1145 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1146 } 1147 1148 1149 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { 1150 ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); 1151 str(zr, Address(java_thread, JavaThread::vm_result_offset())); 1152 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1153 } 1154 1155 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { 1156 ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); 1157 str(zr, Address(java_thread, JavaThread::vm_result_2_offset())); 1158 } 1159 1160 void MacroAssembler::align(int modulus) { 1161 align(modulus, offset()); 1162 } 1163 1164 // Ensure that the code at target bytes offset from the current offset() is aligned 1165 // according to modulus. 1166 void MacroAssembler::align(int modulus, int target) { 1167 int delta = target - offset(); 1168 while ((offset() + delta) % modulus != 0) nop(); 1169 } 1170 1171 void MacroAssembler::post_call_nop() { 1172 if (!Continuations::enabled()) { 1173 return; 1174 } 1175 InstructionMark im(this); 1176 relocate(post_call_nop_Relocation::spec()); 1177 InlineSkippedInstructionsCounter skipCounter(this); 1178 nop(); 1179 movk(zr, 0); 1180 movk(zr, 0); 1181 } 1182 1183 // these are no-ops overridden by InterpreterMacroAssembler 1184 1185 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } 1186 1187 void MacroAssembler::check_and_handle_popframe(Register java_thread) { } 1188 1189 // Look up the method for a megamorphic invokeinterface call. 1190 // The target method is determined by <intf_klass, itable_index>. 1191 // The receiver klass is in recv_klass. 1192 // On success, the result will be in method_result, and execution falls through. 1193 // On failure, execution transfers to the given label. 1194 void MacroAssembler::lookup_interface_method(Register recv_klass, 1195 Register intf_klass, 1196 RegisterOrConstant itable_index, 1197 Register method_result, 1198 Register scan_temp, 1199 Label& L_no_such_interface, 1200 bool return_method) { 1201 assert_different_registers(recv_klass, intf_klass, scan_temp); 1202 assert_different_registers(method_result, intf_klass, scan_temp); 1203 assert(recv_klass != method_result || !return_method, 1204 "recv_klass can be destroyed when method isn't needed"); 1205 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 1206 "caller must use same register for non-constant itable index as for method"); 1207 1208 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 1209 int vtable_base = in_bytes(Klass::vtable_start_offset()); 1210 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 1211 int scan_step = itableOffsetEntry::size() * wordSize; 1212 int vte_size = vtableEntry::size_in_bytes(); 1213 assert(vte_size == wordSize, "else adjust times_vte_scale"); 1214 1215 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1216 1217 // Could store the aligned, prescaled offset in the klass. 1218 // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 1219 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3))); 1220 add(scan_temp, scan_temp, vtable_base); 1221 1222 if (return_method) { 1223 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 1224 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 1225 // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 1226 lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3))); 1227 if (itentry_off) 1228 add(recv_klass, recv_klass, itentry_off); 1229 } 1230 1231 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 1232 // if (scan->interface() == intf) { 1233 // result = (klass + scan->offset() + itable_index); 1234 // } 1235 // } 1236 Label search, found_method; 1237 1238 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1239 cmp(intf_klass, method_result); 1240 br(Assembler::EQ, found_method); 1241 bind(search); 1242 // Check that the previous entry is non-null. A null entry means that 1243 // the receiver class doesn't implement the interface, and wasn't the 1244 // same as when the caller was compiled. 1245 cbz(method_result, L_no_such_interface); 1246 if (itableOffsetEntry::interface_offset() != 0) { 1247 add(scan_temp, scan_temp, scan_step); 1248 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1249 } else { 1250 ldr(method_result, Address(pre(scan_temp, scan_step))); 1251 } 1252 cmp(intf_klass, method_result); 1253 br(Assembler::NE, search); 1254 1255 bind(found_method); 1256 1257 // Got a hit. 1258 if (return_method) { 1259 ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 1260 ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0))); 1261 } 1262 } 1263 1264 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 1265 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData 1266 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 1267 // The target method is determined by <holder_klass, itable_index>. 1268 // The receiver klass is in recv_klass. 1269 // On success, the result will be in method_result, and execution falls through. 1270 // On failure, execution transfers to the given label. 1271 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 1272 Register holder_klass, 1273 Register resolved_klass, 1274 Register method_result, 1275 Register temp_itbl_klass, 1276 Register scan_temp, 1277 int itable_index, 1278 Label& L_no_such_interface) { 1279 // 'method_result' is only used as output register at the very end of this method. 1280 // Until then we can reuse it as 'holder_offset'. 1281 Register holder_offset = method_result; 1282 assert_different_registers(resolved_klass, recv_klass, holder_klass, temp_itbl_klass, scan_temp, holder_offset); 1283 1284 int vtable_start_offset = in_bytes(Klass::vtable_start_offset()); 1285 int itable_offset_entry_size = itableOffsetEntry::size() * wordSize; 1286 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 1287 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 1288 1289 Label L_loop_search_resolved_entry, L_resolved_found, L_holder_found; 1290 1291 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1292 add(recv_klass, recv_klass, vtable_start_offset + ioffset); 1293 // itableOffsetEntry[] itable = recv_klass + Klass::vtable_start_offset() + sizeof(vtableEntry) * recv_klass->_vtable_len; 1294 // temp_itbl_klass = itable[0]._interface; 1295 int vtblEntrySize = vtableEntry::size_in_bytes(); 1296 assert(vtblEntrySize == wordSize, "ldr lsl shift amount must be 3"); 1297 ldr(temp_itbl_klass, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1298 mov(holder_offset, zr); 1299 // scan_temp = &(itable[0]._interface) 1300 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1301 1302 // Initial checks: 1303 // - if (holder_klass != resolved_klass), go to "scan for resolved" 1304 // - if (itable[0] == holder_klass), shortcut to "holder found" 1305 // - if (itable[0] == 0), no such interface 1306 cmp(resolved_klass, holder_klass); 1307 br(Assembler::NE, L_loop_search_resolved_entry); 1308 cmp(holder_klass, temp_itbl_klass); 1309 br(Assembler::EQ, L_holder_found); 1310 cbz(temp_itbl_klass, L_no_such_interface); 1311 1312 // Loop: Look for holder_klass record in itable 1313 // do { 1314 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1315 // if (temp_itbl_klass == holder_klass) { 1316 // goto L_holder_found; // Found! 1317 // } 1318 // } while (temp_itbl_klass != 0); 1319 // goto L_no_such_interface // Not found. 1320 Label L_search_holder; 1321 bind(L_search_holder); 1322 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1323 cmp(holder_klass, temp_itbl_klass); 1324 br(Assembler::EQ, L_holder_found); 1325 cbnz(temp_itbl_klass, L_search_holder); 1326 1327 b(L_no_such_interface); 1328 1329 // Loop: Look for resolved_class record in itable 1330 // while (true) { 1331 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1332 // if (temp_itbl_klass == 0) { 1333 // goto L_no_such_interface; 1334 // } 1335 // if (temp_itbl_klass == resolved_klass) { 1336 // goto L_resolved_found; // Found! 1337 // } 1338 // if (temp_itbl_klass == holder_klass) { 1339 // holder_offset = scan_temp; 1340 // } 1341 // } 1342 // 1343 Label L_loop_search_resolved; 1344 bind(L_loop_search_resolved); 1345 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1346 bind(L_loop_search_resolved_entry); 1347 cbz(temp_itbl_klass, L_no_such_interface); 1348 cmp(resolved_klass, temp_itbl_klass); 1349 br(Assembler::EQ, L_resolved_found); 1350 cmp(holder_klass, temp_itbl_klass); 1351 br(Assembler::NE, L_loop_search_resolved); 1352 mov(holder_offset, scan_temp); 1353 b(L_loop_search_resolved); 1354 1355 // See if we already have a holder klass. If not, go and scan for it. 1356 bind(L_resolved_found); 1357 cbz(holder_offset, L_search_holder); 1358 mov(scan_temp, holder_offset); 1359 1360 // Finally, scan_temp contains holder_klass vtable offset 1361 bind(L_holder_found); 1362 ldrw(method_result, Address(scan_temp, ooffset - ioffset)); 1363 add(recv_klass, recv_klass, itable_index * wordSize + in_bytes(itableMethodEntry::method_offset()) 1364 - vtable_start_offset - ioffset); // substract offsets to restore the original value of recv_klass 1365 ldr(method_result, Address(recv_klass, method_result, Address::uxtw(0))); 1366 } 1367 1368 // virtual method calling 1369 void MacroAssembler::lookup_virtual_method(Register recv_klass, 1370 RegisterOrConstant vtable_index, 1371 Register method_result) { 1372 assert(vtableEntry::size() * wordSize == 8, 1373 "adjust the scaling in the code below"); 1374 int64_t vtable_offset_in_bytes = in_bytes(Klass::vtable_start_offset() + vtableEntry::method_offset()); 1375 1376 if (vtable_index.is_register()) { 1377 lea(method_result, Address(recv_klass, 1378 vtable_index.as_register(), 1379 Address::lsl(LogBytesPerWord))); 1380 ldr(method_result, Address(method_result, vtable_offset_in_bytes)); 1381 } else { 1382 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize; 1383 ldr(method_result, 1384 form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0)); 1385 } 1386 } 1387 1388 void MacroAssembler::check_klass_subtype(Register sub_klass, 1389 Register super_klass, 1390 Register temp_reg, 1391 Label& L_success) { 1392 Label L_failure; 1393 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 1394 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 1395 bind(L_failure); 1396 } 1397 1398 1399 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 1400 Register super_klass, 1401 Register temp_reg, 1402 Label* L_success, 1403 Label* L_failure, 1404 Label* L_slow_path, 1405 Register super_check_offset) { 1406 assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset); 1407 bool must_load_sco = ! super_check_offset->is_valid(); 1408 if (must_load_sco) { 1409 assert(temp_reg != noreg, "supply either a temp or a register offset"); 1410 } 1411 1412 Label L_fallthrough; 1413 int label_nulls = 0; 1414 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1415 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1416 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 1417 assert(label_nulls <= 1, "at most one null in the batch"); 1418 1419 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1420 Address super_check_offset_addr(super_klass, sco_offset); 1421 1422 // Hacked jmp, which may only be used just before L_fallthrough. 1423 #define final_jmp(label) \ 1424 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 1425 else b(label) /*omit semi*/ 1426 1427 // If the pointers are equal, we are done (e.g., String[] elements). 1428 // This self-check enables sharing of secondary supertype arrays among 1429 // non-primary types such as array-of-interface. Otherwise, each such 1430 // type would need its own customized SSA. 1431 // We move this check to the front of the fast path because many 1432 // type checks are in fact trivially successful in this manner, 1433 // so we get a nicely predicted branch right at the start of the check. 1434 cmp(sub_klass, super_klass); 1435 br(Assembler::EQ, *L_success); 1436 1437 // Check the supertype display: 1438 if (must_load_sco) { 1439 ldrw(temp_reg, super_check_offset_addr); 1440 super_check_offset = temp_reg; 1441 } 1442 1443 Address super_check_addr(sub_klass, super_check_offset); 1444 ldr(rscratch1, super_check_addr); 1445 cmp(super_klass, rscratch1); // load displayed supertype 1446 br(Assembler::EQ, *L_success); 1447 1448 // This check has worked decisively for primary supers. 1449 // Secondary supers are sought in the super_cache ('super_cache_addr'). 1450 // (Secondary supers are interfaces and very deeply nested subtypes.) 1451 // This works in the same check above because of a tricky aliasing 1452 // between the super_cache and the primary super display elements. 1453 // (The 'super_check_addr' can address either, as the case requires.) 1454 // Note that the cache is updated below if it does not help us find 1455 // what we need immediately. 1456 // So if it was a primary super, we can just fail immediately. 1457 // Otherwise, it's the slow path for us (no success at this point). 1458 1459 sub(rscratch1, super_check_offset, in_bytes(Klass::secondary_super_cache_offset())); 1460 if (L_failure == &L_fallthrough) { 1461 cbz(rscratch1, *L_slow_path); 1462 } else { 1463 cbnz(rscratch1, *L_failure); 1464 final_jmp(*L_slow_path); 1465 } 1466 1467 bind(L_fallthrough); 1468 1469 #undef final_jmp 1470 } 1471 1472 // These two are taken from x86, but they look generally useful 1473 1474 // scans count pointer sized words at [addr] for occurrence of value, 1475 // generic 1476 void MacroAssembler::repne_scan(Register addr, Register value, Register count, 1477 Register scratch) { 1478 Label Lloop, Lexit; 1479 cbz(count, Lexit); 1480 bind(Lloop); 1481 ldr(scratch, post(addr, wordSize)); 1482 cmp(value, scratch); 1483 br(EQ, Lexit); 1484 sub(count, count, 1); 1485 cbnz(count, Lloop); 1486 bind(Lexit); 1487 } 1488 1489 // scans count 4 byte words at [addr] for occurrence of value, 1490 // generic 1491 void MacroAssembler::repne_scanw(Register addr, Register value, Register count, 1492 Register scratch) { 1493 Label Lloop, Lexit; 1494 cbz(count, Lexit); 1495 bind(Lloop); 1496 ldrw(scratch, post(addr, wordSize)); 1497 cmpw(value, scratch); 1498 br(EQ, Lexit); 1499 sub(count, count, 1); 1500 cbnz(count, Lloop); 1501 bind(Lexit); 1502 } 1503 1504 void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass, 1505 Register super_klass, 1506 Register temp_reg, 1507 Register temp2_reg, 1508 Label* L_success, 1509 Label* L_failure, 1510 bool set_cond_codes) { 1511 // NB! Callers may assume that, when temp2_reg is a valid register, 1512 // this code sets it to a nonzero value. 1513 1514 assert_different_registers(sub_klass, super_klass, temp_reg); 1515 if (temp2_reg != noreg) 1516 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1517 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 1518 1519 Label L_fallthrough; 1520 int label_nulls = 0; 1521 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1522 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1523 assert(label_nulls <= 1, "at most one null in the batch"); 1524 1525 // a couple of useful fields in sub_klass: 1526 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 1527 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1528 Address secondary_supers_addr(sub_klass, ss_offset); 1529 Address super_cache_addr( sub_klass, sc_offset); 1530 1531 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1532 1533 // Do a linear scan of the secondary super-klass chain. 1534 // This code is rarely used, so simplicity is a virtue here. 1535 // The repne_scan instruction uses fixed registers, which we must spill. 1536 // Don't worry too much about pre-existing connections with the input regs. 1537 1538 assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super) 1539 assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter) 1540 1541 RegSet pushed_registers; 1542 if (!IS_A_TEMP(r2)) pushed_registers += r2; 1543 if (!IS_A_TEMP(r5)) pushed_registers += r5; 1544 1545 if (super_klass != r0) { 1546 if (!IS_A_TEMP(r0)) pushed_registers += r0; 1547 } 1548 1549 push(pushed_registers, sp); 1550 1551 // Get super_klass value into r0 (even if it was in r5 or r2). 1552 if (super_klass != r0) { 1553 mov(r0, super_klass); 1554 } 1555 1556 #ifndef PRODUCT 1557 incrementw(ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr)); 1558 #endif //PRODUCT 1559 1560 // We will consult the secondary-super array. 1561 ldr(r5, secondary_supers_addr); 1562 // Load the array length. 1563 ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes())); 1564 // Skip to start of data. 1565 add(r5, r5, Array<Klass*>::base_offset_in_bytes()); 1566 1567 cmp(sp, zr); // Clear Z flag; SP is never zero 1568 // Scan R2 words at [R5] for an occurrence of R0. 1569 // Set NZ/Z based on last compare. 1570 repne_scan(r5, r0, r2, rscratch1); 1571 1572 // Unspill the temp. registers: 1573 pop(pushed_registers, sp); 1574 1575 br(Assembler::NE, *L_failure); 1576 1577 // Success. Cache the super we found and proceed in triumph. 1578 1579 if (UseSecondarySupersCache) { 1580 str(super_klass, super_cache_addr); 1581 } 1582 1583 if (L_success != &L_fallthrough) { 1584 b(*L_success); 1585 } 1586 1587 #undef IS_A_TEMP 1588 1589 bind(L_fallthrough); 1590 } 1591 1592 // If Register r is invalid, remove a new register from 1593 // available_regs, and add new register to regs_to_push. 1594 Register MacroAssembler::allocate_if_noreg(Register r, 1595 RegSetIterator<Register> &available_regs, 1596 RegSet ®s_to_push) { 1597 if (!r->is_valid()) { 1598 r = *available_regs++; 1599 regs_to_push += r; 1600 } 1601 return r; 1602 } 1603 1604 // check_klass_subtype_slow_path_table() looks for super_klass in the 1605 // hash table belonging to super_klass, branching to L_success or 1606 // L_failure as appropriate. This is essentially a shim which 1607 // allocates registers as necessary then calls 1608 // lookup_secondary_supers_table() to do the work. Any of the temp 1609 // regs may be noreg, in which case this logic will chooses some 1610 // registers push and pop them from the stack. 1611 void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass, 1612 Register super_klass, 1613 Register temp_reg, 1614 Register temp2_reg, 1615 Register temp3_reg, 1616 Register result_reg, 1617 FloatRegister vtemp, 1618 Label* L_success, 1619 Label* L_failure, 1620 bool set_cond_codes) { 1621 RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg); 1622 1623 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1624 1625 Label L_fallthrough; 1626 int label_nulls = 0; 1627 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1628 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1629 assert(label_nulls <= 1, "at most one null in the batch"); 1630 1631 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1632 1633 RegSetIterator<Register> available_regs 1634 = (RegSet::range(r0, r15) - temps - sub_klass - super_klass).begin(); 1635 1636 RegSet pushed_regs; 1637 1638 temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs); 1639 temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs); 1640 temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs); 1641 result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs); 1642 1643 push(pushed_regs, sp); 1644 1645 lookup_secondary_supers_table_var(sub_klass, 1646 super_klass, 1647 temp_reg, temp2_reg, temp3_reg, vtemp, result_reg, 1648 nullptr); 1649 cmp(result_reg, zr); 1650 1651 // Unspill the temp. registers: 1652 pop(pushed_regs, sp); 1653 1654 // NB! Callers may assume that, when set_cond_codes is true, this 1655 // code sets temp2_reg to a nonzero value. 1656 if (set_cond_codes) { 1657 mov(temp2_reg, 1); 1658 } 1659 1660 br(Assembler::NE, *L_failure); 1661 1662 if (L_success != &L_fallthrough) { 1663 b(*L_success); 1664 } 1665 1666 bind(L_fallthrough); 1667 } 1668 1669 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 1670 Register super_klass, 1671 Register temp_reg, 1672 Register temp2_reg, 1673 Label* L_success, 1674 Label* L_failure, 1675 bool set_cond_codes) { 1676 if (UseSecondarySupersTable) { 1677 check_klass_subtype_slow_path_table 1678 (sub_klass, super_klass, temp_reg, temp2_reg, /*temp3*/noreg, /*result*/noreg, 1679 /*vtemp*/fnoreg, 1680 L_success, L_failure, set_cond_codes); 1681 } else { 1682 check_klass_subtype_slow_path_linear 1683 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, set_cond_codes); 1684 } 1685 } 1686 1687 1688 // Ensure that the inline code and the stub are using the same registers. 1689 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \ 1690 do { \ 1691 assert(r_super_klass == r0 && \ 1692 r_array_base == r1 && \ 1693 r_array_length == r2 && \ 1694 (r_array_index == r3 || r_array_index == noreg) && \ 1695 (r_sub_klass == r4 || r_sub_klass == noreg) && \ 1696 (r_bitmap == rscratch2 || r_bitmap == noreg) && \ 1697 (result == r5 || result == noreg), "registers must match aarch64.ad"); \ 1698 } while(0) 1699 1700 bool MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass, 1701 Register r_super_klass, 1702 Register temp1, 1703 Register temp2, 1704 Register temp3, 1705 FloatRegister vtemp, 1706 Register result, 1707 u1 super_klass_slot, 1708 bool stub_is_near) { 1709 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1710 1711 Label L_fallthrough; 1712 1713 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1714 1715 const Register 1716 r_array_base = temp1, // r1 1717 r_array_length = temp2, // r2 1718 r_array_index = temp3, // r3 1719 r_bitmap = rscratch2; 1720 1721 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1722 1723 u1 bit = super_klass_slot; 1724 1725 // Make sure that result is nonzero if the TBZ below misses. 1726 mov(result, 1); 1727 1728 // We're going to need the bitmap in a vector reg and in a core reg, 1729 // so load both now. 1730 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1731 if (bit != 0) { 1732 ldrd(vtemp, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1733 } 1734 // First check the bitmap to see if super_klass might be present. If 1735 // the bit is zero, we are certain that super_klass is not one of 1736 // the secondary supers. 1737 tbz(r_bitmap, bit, L_fallthrough); 1738 1739 // Get the first array index that can contain super_klass into r_array_index. 1740 if (bit != 0) { 1741 shld(vtemp, vtemp, Klass::SECONDARY_SUPERS_TABLE_MASK - bit); 1742 cnt(vtemp, T8B, vtemp); 1743 addv(vtemp, T8B, vtemp); 1744 fmovd(r_array_index, vtemp); 1745 } else { 1746 mov(r_array_index, (u1)1); 1747 } 1748 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1749 1750 // We will consult the secondary-super array. 1751 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1752 1753 // The value i in r_array_index is >= 1, so even though r_array_base 1754 // points to the length, we don't need to adjust it to point to the 1755 // data. 1756 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1757 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1758 1759 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1760 eor(result, result, r_super_klass); 1761 cbz(result, L_fallthrough); // Found a match 1762 1763 // Is there another entry to check? Consult the bitmap. 1764 tbz(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK, L_fallthrough); 1765 1766 // Linear probe. 1767 if (bit != 0) { 1768 ror(r_bitmap, r_bitmap, bit); 1769 } 1770 1771 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1772 // The next slot to be inspected, by the stub we're about to call, 1773 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1774 // have been checked. 1775 Address stub = RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub()); 1776 if (stub_is_near) { 1777 bl(stub); 1778 } else { 1779 address call = trampoline_call(stub); 1780 if (call == nullptr) { 1781 return false; // trampoline allocation failed 1782 } 1783 } 1784 1785 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1786 1787 bind(L_fallthrough); 1788 1789 if (VerifySecondarySupers) { 1790 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1791 temp1, temp2, result); // r1, r2, r5 1792 } 1793 return true; 1794 } 1795 1796 // At runtime, return 0 in result if r_super_klass is a superclass of 1797 // r_sub_klass, otherwise return nonzero. Use this version of 1798 // lookup_secondary_supers_table() if you don't know ahead of time 1799 // which superclass will be searched for. Used by interpreter and 1800 // runtime stubs. It is larger and has somewhat greater latency than 1801 // the version above, which takes a constant super_klass_slot. 1802 void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass, 1803 Register r_super_klass, 1804 Register temp1, 1805 Register temp2, 1806 Register temp3, 1807 FloatRegister vtemp, 1808 Register result, 1809 Label *L_success) { 1810 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1811 1812 Label L_fallthrough; 1813 1814 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1815 1816 const Register 1817 r_array_index = temp3, 1818 slot = rscratch1, 1819 r_bitmap = rscratch2; 1820 1821 ldrb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 1822 1823 // Make sure that result is nonzero if the test below misses. 1824 mov(result, 1); 1825 1826 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1827 1828 // First check the bitmap to see if super_klass might be present. If 1829 // the bit is zero, we are certain that super_klass is not one of 1830 // the secondary supers. 1831 1832 // This next instruction is equivalent to: 1833 // mov(tmp_reg, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); 1834 // sub(temp2, tmp_reg, slot); 1835 eor(temp2, slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); 1836 lslv(temp2, r_bitmap, temp2); 1837 tbz(temp2, Klass::SECONDARY_SUPERS_TABLE_SIZE - 1, L_fallthrough); 1838 1839 bool must_save_v0 = (vtemp == fnoreg); 1840 if (must_save_v0) { 1841 // temp1 and result are free, so use them to preserve vtemp 1842 vtemp = v0; 1843 mov(temp1, vtemp, D, 0); 1844 mov(result, vtemp, D, 1); 1845 } 1846 1847 // Get the first array index that can contain super_klass into r_array_index. 1848 mov(vtemp, D, 0, temp2); 1849 cnt(vtemp, T8B, vtemp); 1850 addv(vtemp, T8B, vtemp); 1851 mov(r_array_index, vtemp, D, 0); 1852 1853 if (must_save_v0) { 1854 mov(vtemp, D, 0, temp1 ); 1855 mov(vtemp, D, 1, result); 1856 } 1857 1858 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1859 1860 const Register 1861 r_array_base = temp1, 1862 r_array_length = temp2; 1863 1864 // The value i in r_array_index is >= 1, so even though r_array_base 1865 // points to the length, we don't need to adjust it to point to the 1866 // data. 1867 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1868 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1869 1870 // We will consult the secondary-super array. 1871 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1872 1873 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1874 eor(result, result, r_super_klass); 1875 cbz(result, L_success ? *L_success : L_fallthrough); // Found a match 1876 1877 // Is there another entry to check? Consult the bitmap. 1878 rorv(r_bitmap, r_bitmap, slot); 1879 // rol(r_bitmap, r_bitmap, 1); 1880 tbz(r_bitmap, 1, L_fallthrough); 1881 1882 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1883 // The next slot to be inspected, by the logic we're about to call, 1884 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1885 // have been checked. 1886 lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index, 1887 r_bitmap, r_array_length, result, /*is_stub*/false); 1888 1889 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1890 1891 bind(L_fallthrough); 1892 1893 if (VerifySecondarySupers) { 1894 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1895 temp1, temp2, result); // r1, r2, r5 1896 } 1897 1898 if (L_success) { 1899 cbz(result, *L_success); 1900 } 1901 } 1902 1903 // Called by code generated by check_klass_subtype_slow_path 1904 // above. This is called when there is a collision in the hashed 1905 // lookup in the secondary supers array. 1906 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass, 1907 Register r_array_base, 1908 Register r_array_index, 1909 Register r_bitmap, 1910 Register temp1, 1911 Register result, 1912 bool is_stub) { 1913 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, result, rscratch1); 1914 1915 const Register 1916 r_array_length = temp1, 1917 r_sub_klass = noreg; // unused 1918 1919 if (is_stub) { 1920 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1921 } 1922 1923 Label L_fallthrough, L_huge; 1924 1925 // Load the array length. 1926 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 1927 // And adjust the array base to point to the data. 1928 // NB! Effectively increments current slot index by 1. 1929 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, ""); 1930 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 1931 1932 // The bitmap is full to bursting. 1933 // Implicit invariant: BITMAP_FULL implies (length > 0) 1934 assert(Klass::SECONDARY_SUPERS_BITMAP_FULL == ~uintx(0), ""); 1935 cmpw(r_array_length, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 2)); 1936 br(GT, L_huge); 1937 1938 // NB! Our caller has checked bits 0 and 1 in the bitmap. The 1939 // current slot (at secondary_supers[r_array_index]) has not yet 1940 // been inspected, and r_array_index may be out of bounds if we 1941 // wrapped around the end of the array. 1942 1943 { // This is conventional linear probing, but instead of terminating 1944 // when a null entry is found in the table, we maintain a bitmap 1945 // in which a 0 indicates missing entries. 1946 // As long as the bitmap is not completely full, 1947 // array_length == popcount(bitmap). The array_length check above 1948 // guarantees there are 0s in the bitmap, so the loop eventually 1949 // terminates. 1950 Label L_loop; 1951 bind(L_loop); 1952 1953 // Check for wraparound. 1954 cmp(r_array_index, r_array_length); 1955 csel(r_array_index, zr, r_array_index, GE); 1956 1957 ldr(rscratch1, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1958 eor(result, rscratch1, r_super_klass); 1959 cbz(result, L_fallthrough); 1960 1961 tbz(r_bitmap, 2, L_fallthrough); // look-ahead check (Bit 2); result is non-zero 1962 1963 ror(r_bitmap, r_bitmap, 1); 1964 add(r_array_index, r_array_index, 1); 1965 b(L_loop); 1966 } 1967 1968 { // Degenerate case: more than 64 secondary supers. 1969 // FIXME: We could do something smarter here, maybe a vectorized 1970 // comparison or a binary search, but is that worth any added 1971 // complexity? 1972 bind(L_huge); 1973 cmp(sp, zr); // Clear Z flag; SP is never zero 1974 repne_scan(r_array_base, r_super_klass, r_array_length, rscratch1); 1975 cset(result, NE); // result == 0 iff we got a match. 1976 } 1977 1978 bind(L_fallthrough); 1979 } 1980 1981 // Make sure that the hashed lookup and a linear scan agree. 1982 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass, 1983 Register r_super_klass, 1984 Register temp1, 1985 Register temp2, 1986 Register result) { 1987 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, result, rscratch1); 1988 1989 const Register 1990 r_array_base = temp1, 1991 r_array_length = temp2, 1992 r_array_index = noreg, // unused 1993 r_bitmap = noreg; // unused 1994 1995 BLOCK_COMMENT("verify_secondary_supers_table {"); 1996 1997 // We will consult the secondary-super array. 1998 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1999 2000 // Load the array length. 2001 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 2002 // And adjust the array base to point to the data. 2003 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 2004 2005 cmp(sp, zr); // Clear Z flag; SP is never zero 2006 // Scan R2 words at [R5] for an occurrence of R0. 2007 // Set NZ/Z based on last compare. 2008 repne_scan(/*addr*/r_array_base, /*value*/r_super_klass, /*count*/r_array_length, rscratch2); 2009 // rscratch1 == 0 iff we got a match. 2010 cset(rscratch1, NE); 2011 2012 Label passed; 2013 cmp(result, zr); 2014 cset(result, NE); // normalize result to 0/1 for comparison 2015 2016 cmp(rscratch1, result); 2017 br(EQ, passed); 2018 { 2019 mov(r0, r_super_klass); // r0 <- r0 2020 mov(r1, r_sub_klass); // r1 <- r4 2021 mov(r2, /*expected*/rscratch1); // r2 <- r8 2022 mov(r3, result); // r3 <- r5 2023 mov(r4, (address)("mismatch")); // r4 <- const 2024 rt_call(CAST_FROM_FN_PTR(address, Klass::on_secondary_supers_verification_failure), rscratch2); 2025 should_not_reach_here(); 2026 } 2027 bind(passed); 2028 2029 BLOCK_COMMENT("} verify_secondary_supers_table"); 2030 } 2031 2032 void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) { 2033 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 2034 assert_different_registers(klass, rthread, scratch); 2035 2036 Label L_fallthrough, L_tmp; 2037 if (L_fast_path == nullptr) { 2038 L_fast_path = &L_fallthrough; 2039 } else if (L_slow_path == nullptr) { 2040 L_slow_path = &L_fallthrough; 2041 } 2042 // Fast path check: class is fully initialized 2043 lea(scratch, Address(klass, InstanceKlass::init_state_offset())); 2044 ldarb(scratch, scratch); 2045 subs(zr, scratch, InstanceKlass::fully_initialized); 2046 br(Assembler::EQ, *L_fast_path); 2047 2048 // Fast path check: current thread is initializer thread 2049 ldr(scratch, Address(klass, InstanceKlass::init_thread_offset())); 2050 cmp(rthread, scratch); 2051 2052 if (L_slow_path == &L_fallthrough) { 2053 br(Assembler::EQ, *L_fast_path); 2054 bind(*L_slow_path); 2055 } else if (L_fast_path == &L_fallthrough) { 2056 br(Assembler::NE, *L_slow_path); 2057 bind(*L_fast_path); 2058 } else { 2059 Unimplemented(); 2060 } 2061 } 2062 2063 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 2064 if (!VerifyOops) return; 2065 2066 // Pass register number to verify_oop_subroutine 2067 const char* b = nullptr; 2068 { 2069 ResourceMark rm; 2070 stringStream ss; 2071 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 2072 b = code_string(ss.as_string()); 2073 } 2074 BLOCK_COMMENT("verify_oop {"); 2075 2076 strip_return_address(); // This might happen within a stack frame. 2077 protect_return_address(); 2078 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 2079 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 2080 2081 mov(r0, reg); 2082 movptr(rscratch1, (uintptr_t)(address)b); 2083 2084 // call indirectly to solve generation ordering problem 2085 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address())); 2086 ldr(rscratch2, Address(rscratch2)); 2087 blr(rscratch2); 2088 2089 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 2090 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 2091 authenticate_return_address(); 2092 2093 BLOCK_COMMENT("} verify_oop"); 2094 } 2095 2096 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 2097 if (!VerifyOops) return; 2098 2099 const char* b = nullptr; 2100 { 2101 ResourceMark rm; 2102 stringStream ss; 2103 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 2104 b = code_string(ss.as_string()); 2105 } 2106 BLOCK_COMMENT("verify_oop_addr {"); 2107 2108 strip_return_address(); // This might happen within a stack frame. 2109 protect_return_address(); 2110 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 2111 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 2112 2113 // addr may contain sp so we will have to adjust it based on the 2114 // pushes that we just did. 2115 if (addr.uses(sp)) { 2116 lea(r0, addr); 2117 ldr(r0, Address(r0, 4 * wordSize)); 2118 } else { 2119 ldr(r0, addr); 2120 } 2121 movptr(rscratch1, (uintptr_t)(address)b); 2122 2123 // call indirectly to solve generation ordering problem 2124 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address())); 2125 ldr(rscratch2, Address(rscratch2)); 2126 blr(rscratch2); 2127 2128 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 2129 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 2130 authenticate_return_address(); 2131 2132 BLOCK_COMMENT("} verify_oop_addr"); 2133 } 2134 2135 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 2136 int extra_slot_offset) { 2137 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 2138 int stackElementSize = Interpreter::stackElementSize; 2139 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 2140 #ifdef ASSERT 2141 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 2142 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 2143 #endif 2144 if (arg_slot.is_constant()) { 2145 return Address(esp, arg_slot.as_constant() * stackElementSize 2146 + offset); 2147 } else { 2148 add(rscratch1, esp, arg_slot.as_register(), 2149 ext::uxtx, exact_log2(stackElementSize)); 2150 return Address(rscratch1, offset); 2151 } 2152 } 2153 2154 void MacroAssembler::call_VM_leaf_base(address entry_point, 2155 int number_of_arguments, 2156 Label *retaddr) { 2157 Label E, L; 2158 2159 stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize))); 2160 2161 mov(rscratch1, entry_point); 2162 blr(rscratch1); 2163 if (retaddr) 2164 bind(*retaddr); 2165 2166 ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize))); 2167 } 2168 2169 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 2170 call_VM_leaf_base(entry_point, number_of_arguments); 2171 } 2172 2173 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 2174 pass_arg0(this, arg_0); 2175 call_VM_leaf_base(entry_point, 1); 2176 } 2177 2178 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 2179 assert_different_registers(arg_1, c_rarg0); 2180 pass_arg0(this, arg_0); 2181 pass_arg1(this, arg_1); 2182 call_VM_leaf_base(entry_point, 2); 2183 } 2184 2185 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, 2186 Register arg_1, Register arg_2) { 2187 assert_different_registers(arg_1, c_rarg0); 2188 assert_different_registers(arg_2, c_rarg0, c_rarg1); 2189 pass_arg0(this, arg_0); 2190 pass_arg1(this, arg_1); 2191 pass_arg2(this, arg_2); 2192 call_VM_leaf_base(entry_point, 3); 2193 } 2194 2195 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 2196 pass_arg0(this, arg_0); 2197 MacroAssembler::call_VM_leaf_base(entry_point, 1); 2198 } 2199 2200 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 2201 2202 assert_different_registers(arg_0, c_rarg1); 2203 pass_arg1(this, arg_1); 2204 pass_arg0(this, arg_0); 2205 MacroAssembler::call_VM_leaf_base(entry_point, 2); 2206 } 2207 2208 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 2209 assert_different_registers(arg_0, c_rarg1, c_rarg2); 2210 assert_different_registers(arg_1, c_rarg2); 2211 pass_arg2(this, arg_2); 2212 pass_arg1(this, arg_1); 2213 pass_arg0(this, arg_0); 2214 MacroAssembler::call_VM_leaf_base(entry_point, 3); 2215 } 2216 2217 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 2218 assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3); 2219 assert_different_registers(arg_1, c_rarg2, c_rarg3); 2220 assert_different_registers(arg_2, c_rarg3); 2221 pass_arg3(this, arg_3); 2222 pass_arg2(this, arg_2); 2223 pass_arg1(this, arg_1); 2224 pass_arg0(this, arg_0); 2225 MacroAssembler::call_VM_leaf_base(entry_point, 4); 2226 } 2227 2228 void MacroAssembler::null_check(Register reg, int offset) { 2229 if (needs_explicit_null_check(offset)) { 2230 // provoke OS null exception if reg is null by 2231 // accessing M[reg] w/o changing any registers 2232 // NOTE: this is plenty to provoke a segv 2233 ldr(zr, Address(reg)); 2234 } else { 2235 // nothing to do, (later) access of M[reg + offset] 2236 // will provoke OS null exception if reg is null 2237 } 2238 } 2239 2240 // MacroAssembler protected routines needed to implement 2241 // public methods 2242 2243 void MacroAssembler::mov(Register r, Address dest) { 2244 code_section()->relocate(pc(), dest.rspec()); 2245 uint64_t imm64 = (uint64_t)dest.target(); 2246 movptr(r, imm64); 2247 } 2248 2249 // Move a constant pointer into r. In AArch64 mode the virtual 2250 // address space is 48 bits in size, so we only need three 2251 // instructions to create a patchable instruction sequence that can 2252 // reach anywhere. 2253 void MacroAssembler::movptr(Register r, uintptr_t imm64) { 2254 #ifndef PRODUCT 2255 { 2256 char buffer[64]; 2257 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64); 2258 block_comment(buffer); 2259 } 2260 #endif 2261 assert(imm64 < (1ull << 48), "48-bit overflow in address constant"); 2262 movz(r, imm64 & 0xffff); 2263 imm64 >>= 16; 2264 movk(r, imm64 & 0xffff, 16); 2265 imm64 >>= 16; 2266 movk(r, imm64 & 0xffff, 32); 2267 } 2268 2269 // Macro to mov replicated immediate to vector register. 2270 // imm64: only the lower 8/16/32 bits are considered for B/H/S type. That is, 2271 // the upper 56/48/32 bits must be zeros for B/H/S type. 2272 // Vd will get the following values for different arrangements in T 2273 // imm64 == hex 000000gh T8B: Vd = ghghghghghghghgh 2274 // imm64 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh 2275 // imm64 == hex 0000efgh T4H: Vd = efghefghefghefgh 2276 // imm64 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh 2277 // imm64 == hex abcdefgh T2S: Vd = abcdefghabcdefgh 2278 // imm64 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh 2279 // imm64 == hex abcdefgh T1D: Vd = 00000000abcdefgh 2280 // imm64 == hex abcdefgh T2D: Vd = 00000000abcdefgh00000000abcdefgh 2281 // Clobbers rscratch1 2282 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64) { 2283 assert(T != T1Q, "unsupported"); 2284 if (T == T1D || T == T2D) { 2285 int imm = operand_valid_for_movi_immediate(imm64, T); 2286 if (-1 != imm) { 2287 movi(Vd, T, imm); 2288 } else { 2289 mov(rscratch1, imm64); 2290 dup(Vd, T, rscratch1); 2291 } 2292 return; 2293 } 2294 2295 #ifdef ASSERT 2296 if (T == T8B || T == T16B) assert((imm64 & ~0xff) == 0, "extraneous bits (T8B/T16B)"); 2297 if (T == T4H || T == T8H) assert((imm64 & ~0xffff) == 0, "extraneous bits (T4H/T8H)"); 2298 if (T == T2S || T == T4S) assert((imm64 & ~0xffffffff) == 0, "extraneous bits (T2S/T4S)"); 2299 #endif 2300 int shift = operand_valid_for_movi_immediate(imm64, T); 2301 uint32_t imm32 = imm64 & 0xffffffffULL; 2302 if (shift >= 0) { 2303 movi(Vd, T, (imm32 >> shift) & 0xff, shift); 2304 } else { 2305 movw(rscratch1, imm32); 2306 dup(Vd, T, rscratch1); 2307 } 2308 } 2309 2310 void MacroAssembler::mov_immediate64(Register dst, uint64_t imm64) 2311 { 2312 #ifndef PRODUCT 2313 { 2314 char buffer[64]; 2315 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, imm64); 2316 block_comment(buffer); 2317 } 2318 #endif 2319 if (operand_valid_for_logical_immediate(false, imm64)) { 2320 orr(dst, zr, imm64); 2321 } else { 2322 // we can use a combination of MOVZ or MOVN with 2323 // MOVK to build up the constant 2324 uint64_t imm_h[4]; 2325 int zero_count = 0; 2326 int neg_count = 0; 2327 int i; 2328 for (i = 0; i < 4; i++) { 2329 imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL); 2330 if (imm_h[i] == 0) { 2331 zero_count++; 2332 } else if (imm_h[i] == 0xffffL) { 2333 neg_count++; 2334 } 2335 } 2336 if (zero_count == 4) { 2337 // one MOVZ will do 2338 movz(dst, 0); 2339 } else if (neg_count == 4) { 2340 // one MOVN will do 2341 movn(dst, 0); 2342 } else if (zero_count == 3) { 2343 for (i = 0; i < 4; i++) { 2344 if (imm_h[i] != 0L) { 2345 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2346 break; 2347 } 2348 } 2349 } else if (neg_count == 3) { 2350 // one MOVN will do 2351 for (int i = 0; i < 4; i++) { 2352 if (imm_h[i] != 0xffffL) { 2353 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2354 break; 2355 } 2356 } 2357 } else if (zero_count == 2) { 2358 // one MOVZ and one MOVK will do 2359 for (i = 0; i < 3; i++) { 2360 if (imm_h[i] != 0L) { 2361 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2362 i++; 2363 break; 2364 } 2365 } 2366 for (;i < 4; i++) { 2367 if (imm_h[i] != 0L) { 2368 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2369 } 2370 } 2371 } else if (neg_count == 2) { 2372 // one MOVN and one MOVK will do 2373 for (i = 0; i < 4; i++) { 2374 if (imm_h[i] != 0xffffL) { 2375 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2376 i++; 2377 break; 2378 } 2379 } 2380 for (;i < 4; i++) { 2381 if (imm_h[i] != 0xffffL) { 2382 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2383 } 2384 } 2385 } else if (zero_count == 1) { 2386 // one MOVZ and two MOVKs will do 2387 for (i = 0; i < 4; i++) { 2388 if (imm_h[i] != 0L) { 2389 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2390 i++; 2391 break; 2392 } 2393 } 2394 for (;i < 4; i++) { 2395 if (imm_h[i] != 0x0L) { 2396 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2397 } 2398 } 2399 } else if (neg_count == 1) { 2400 // one MOVN and two MOVKs will do 2401 for (i = 0; i < 4; i++) { 2402 if (imm_h[i] != 0xffffL) { 2403 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2404 i++; 2405 break; 2406 } 2407 } 2408 for (;i < 4; i++) { 2409 if (imm_h[i] != 0xffffL) { 2410 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2411 } 2412 } 2413 } else { 2414 // use a MOVZ and 3 MOVKs (makes it easier to debug) 2415 movz(dst, (uint32_t)imm_h[0], 0); 2416 for (i = 1; i < 4; i++) { 2417 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2418 } 2419 } 2420 } 2421 } 2422 2423 void MacroAssembler::mov_immediate32(Register dst, uint32_t imm32) 2424 { 2425 #ifndef PRODUCT 2426 { 2427 char buffer[64]; 2428 snprintf(buffer, sizeof(buffer), "0x%" PRIX32, imm32); 2429 block_comment(buffer); 2430 } 2431 #endif 2432 if (operand_valid_for_logical_immediate(true, imm32)) { 2433 orrw(dst, zr, imm32); 2434 } else { 2435 // we can use MOVZ, MOVN or two calls to MOVK to build up the 2436 // constant 2437 uint32_t imm_h[2]; 2438 imm_h[0] = imm32 & 0xffff; 2439 imm_h[1] = ((imm32 >> 16) & 0xffff); 2440 if (imm_h[0] == 0) { 2441 movzw(dst, imm_h[1], 16); 2442 } else if (imm_h[0] == 0xffff) { 2443 movnw(dst, imm_h[1] ^ 0xffff, 16); 2444 } else if (imm_h[1] == 0) { 2445 movzw(dst, imm_h[0], 0); 2446 } else if (imm_h[1] == 0xffff) { 2447 movnw(dst, imm_h[0] ^ 0xffff, 0); 2448 } else { 2449 // use a MOVZ and MOVK (makes it easier to debug) 2450 movzw(dst, imm_h[0], 0); 2451 movkw(dst, imm_h[1], 16); 2452 } 2453 } 2454 } 2455 2456 // Form an address from base + offset in Rd. Rd may or may 2457 // not actually be used: you must use the Address that is returned. 2458 // It is up to you to ensure that the shift provided matches the size 2459 // of your data. 2460 Address MacroAssembler::form_address(Register Rd, Register base, int64_t byte_offset, int shift) { 2461 if (Address::offset_ok_for_immed(byte_offset, shift)) 2462 // It fits; no need for any heroics 2463 return Address(base, byte_offset); 2464 2465 // Don't do anything clever with negative or misaligned offsets 2466 unsigned mask = (1 << shift) - 1; 2467 if (byte_offset < 0 || byte_offset & mask) { 2468 mov(Rd, byte_offset); 2469 add(Rd, base, Rd); 2470 return Address(Rd); 2471 } 2472 2473 // See if we can do this with two 12-bit offsets 2474 { 2475 uint64_t word_offset = byte_offset >> shift; 2476 uint64_t masked_offset = word_offset & 0xfff000; 2477 if (Address::offset_ok_for_immed(word_offset - masked_offset, 0) 2478 && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) { 2479 add(Rd, base, masked_offset << shift); 2480 word_offset -= masked_offset; 2481 return Address(Rd, word_offset << shift); 2482 } 2483 } 2484 2485 // Do it the hard way 2486 mov(Rd, byte_offset); 2487 add(Rd, base, Rd); 2488 return Address(Rd); 2489 } 2490 2491 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb, 2492 bool want_remainder, Register scratch) 2493 { 2494 // Full implementation of Java idiv and irem. The function 2495 // returns the (pc) offset of the div instruction - may be needed 2496 // for implicit exceptions. 2497 // 2498 // constraint : ra/rb =/= scratch 2499 // normal case 2500 // 2501 // input : ra: dividend 2502 // rb: divisor 2503 // 2504 // result: either 2505 // quotient (= ra idiv rb) 2506 // remainder (= ra irem rb) 2507 2508 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2509 2510 int idivl_offset = offset(); 2511 if (! want_remainder) { 2512 sdivw(result, ra, rb); 2513 } else { 2514 sdivw(scratch, ra, rb); 2515 Assembler::msubw(result, scratch, rb, ra); 2516 } 2517 2518 return idivl_offset; 2519 } 2520 2521 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb, 2522 bool want_remainder, Register scratch) 2523 { 2524 // Full implementation of Java ldiv and lrem. The function 2525 // returns the (pc) offset of the div instruction - may be needed 2526 // for implicit exceptions. 2527 // 2528 // constraint : ra/rb =/= scratch 2529 // normal case 2530 // 2531 // input : ra: dividend 2532 // rb: divisor 2533 // 2534 // result: either 2535 // quotient (= ra idiv rb) 2536 // remainder (= ra irem rb) 2537 2538 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2539 2540 int idivq_offset = offset(); 2541 if (! want_remainder) { 2542 sdiv(result, ra, rb); 2543 } else { 2544 sdiv(scratch, ra, rb); 2545 Assembler::msub(result, scratch, rb, ra); 2546 } 2547 2548 return idivq_offset; 2549 } 2550 2551 void MacroAssembler::membar(Membar_mask_bits order_constraint) { 2552 address prev = pc() - NativeMembar::instruction_size; 2553 address last = code()->last_insn(); 2554 if (last != nullptr && nativeInstruction_at(last)->is_Membar() && prev == last) { 2555 NativeMembar *bar = NativeMembar_at(prev); 2556 if (AlwaysMergeDMB) { 2557 bar->set_kind(bar->get_kind() | order_constraint); 2558 BLOCK_COMMENT("merged membar(always)"); 2559 return; 2560 } 2561 // Don't promote DMB ST|DMB LD to DMB (a full barrier) because 2562 // doing so would introduce a StoreLoad which the caller did not 2563 // intend 2564 if (bar->get_kind() == order_constraint 2565 || bar->get_kind() == AnyAny 2566 || order_constraint == AnyAny) { 2567 // We are merging two memory barrier instructions. On AArch64 we 2568 // can do this simply by ORing them together. 2569 bar->set_kind(bar->get_kind() | order_constraint); 2570 BLOCK_COMMENT("merged membar"); 2571 return; 2572 } else { 2573 // A special case like "DMB ST;DMB LD;DMB ST", the last DMB can be skipped 2574 // We need check the last 2 instructions 2575 address prev2 = prev - NativeMembar::instruction_size; 2576 if (last != code()->last_label() && nativeInstruction_at(prev2)->is_Membar()) { 2577 NativeMembar *bar2 = NativeMembar_at(prev2); 2578 assert(bar2->get_kind() == order_constraint, "it should be merged before"); 2579 BLOCK_COMMENT("merged membar(elided)"); 2580 return; 2581 } 2582 } 2583 } 2584 code()->set_last_insn(pc()); 2585 dmb(Assembler::barrier(order_constraint)); 2586 } 2587 2588 bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) { 2589 if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) { 2590 merge_ldst(rt, adr, size_in_bytes, is_store); 2591 code()->clear_last_insn(); 2592 return true; 2593 } else { 2594 assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported."); 2595 const uint64_t mask = size_in_bytes - 1; 2596 if (adr.getMode() == Address::base_plus_offset && 2597 (adr.offset() & mask) == 0) { // only supports base_plus_offset. 2598 code()->set_last_insn(pc()); 2599 } 2600 return false; 2601 } 2602 } 2603 2604 void MacroAssembler::ldr(Register Rx, const Address &adr) { 2605 // We always try to merge two adjacent loads into one ldp. 2606 if (!try_merge_ldst(Rx, adr, 8, false)) { 2607 Assembler::ldr(Rx, adr); 2608 } 2609 } 2610 2611 void MacroAssembler::ldrw(Register Rw, const Address &adr) { 2612 // We always try to merge two adjacent loads into one ldp. 2613 if (!try_merge_ldst(Rw, adr, 4, false)) { 2614 Assembler::ldrw(Rw, adr); 2615 } 2616 } 2617 2618 void MacroAssembler::str(Register Rx, const Address &adr) { 2619 // We always try to merge two adjacent stores into one stp. 2620 if (!try_merge_ldst(Rx, adr, 8, true)) { 2621 Assembler::str(Rx, adr); 2622 } 2623 } 2624 2625 void MacroAssembler::strw(Register Rw, const Address &adr) { 2626 // We always try to merge two adjacent stores into one stp. 2627 if (!try_merge_ldst(Rw, adr, 4, true)) { 2628 Assembler::strw(Rw, adr); 2629 } 2630 } 2631 2632 // MacroAssembler routines found actually to be needed 2633 2634 void MacroAssembler::push(Register src) 2635 { 2636 str(src, Address(pre(esp, -1 * wordSize))); 2637 } 2638 2639 void MacroAssembler::pop(Register dst) 2640 { 2641 ldr(dst, Address(post(esp, 1 * wordSize))); 2642 } 2643 2644 // Note: load_unsigned_short used to be called load_unsigned_word. 2645 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 2646 int off = offset(); 2647 ldrh(dst, src); 2648 return off; 2649 } 2650 2651 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 2652 int off = offset(); 2653 ldrb(dst, src); 2654 return off; 2655 } 2656 2657 int MacroAssembler::load_signed_short(Register dst, Address src) { 2658 int off = offset(); 2659 ldrsh(dst, src); 2660 return off; 2661 } 2662 2663 int MacroAssembler::load_signed_byte(Register dst, Address src) { 2664 int off = offset(); 2665 ldrsb(dst, src); 2666 return off; 2667 } 2668 2669 int MacroAssembler::load_signed_short32(Register dst, Address src) { 2670 int off = offset(); 2671 ldrshw(dst, src); 2672 return off; 2673 } 2674 2675 int MacroAssembler::load_signed_byte32(Register dst, Address src) { 2676 int off = offset(); 2677 ldrsbw(dst, src); 2678 return off; 2679 } 2680 2681 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) { 2682 switch (size_in_bytes) { 2683 case 8: ldr(dst, src); break; 2684 case 4: ldrw(dst, src); break; 2685 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 2686 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 2687 default: ShouldNotReachHere(); 2688 } 2689 } 2690 2691 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes) { 2692 switch (size_in_bytes) { 2693 case 8: str(src, dst); break; 2694 case 4: strw(src, dst); break; 2695 case 2: strh(src, dst); break; 2696 case 1: strb(src, dst); break; 2697 default: ShouldNotReachHere(); 2698 } 2699 } 2700 2701 void MacroAssembler::decrementw(Register reg, int value) 2702 { 2703 if (value < 0) { incrementw(reg, -value); return; } 2704 if (value == 0) { return; } 2705 if (value < (1 << 12)) { subw(reg, reg, value); return; } 2706 /* else */ { 2707 guarantee(reg != rscratch2, "invalid dst for register decrement"); 2708 movw(rscratch2, (unsigned)value); 2709 subw(reg, reg, rscratch2); 2710 } 2711 } 2712 2713 void MacroAssembler::decrement(Register reg, int value) 2714 { 2715 if (value < 0) { increment(reg, -value); return; } 2716 if (value == 0) { return; } 2717 if (value < (1 << 12)) { sub(reg, reg, value); return; } 2718 /* else */ { 2719 assert(reg != rscratch2, "invalid dst for register decrement"); 2720 mov(rscratch2, (uint64_t)value); 2721 sub(reg, reg, rscratch2); 2722 } 2723 } 2724 2725 void MacroAssembler::decrementw(Address dst, int value) 2726 { 2727 assert(!dst.uses(rscratch1), "invalid dst for address decrement"); 2728 if (dst.getMode() == Address::literal) { 2729 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2730 lea(rscratch2, dst); 2731 dst = Address(rscratch2); 2732 } 2733 ldrw(rscratch1, dst); 2734 decrementw(rscratch1, value); 2735 strw(rscratch1, dst); 2736 } 2737 2738 void MacroAssembler::decrement(Address dst, int value) 2739 { 2740 assert(!dst.uses(rscratch1), "invalid address for decrement"); 2741 if (dst.getMode() == Address::literal) { 2742 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2743 lea(rscratch2, dst); 2744 dst = Address(rscratch2); 2745 } 2746 ldr(rscratch1, dst); 2747 decrement(rscratch1, value); 2748 str(rscratch1, dst); 2749 } 2750 2751 void MacroAssembler::incrementw(Register reg, int value) 2752 { 2753 if (value < 0) { decrementw(reg, -value); return; } 2754 if (value == 0) { return; } 2755 if (value < (1 << 12)) { addw(reg, reg, value); return; } 2756 /* else */ { 2757 assert(reg != rscratch2, "invalid dst for register increment"); 2758 movw(rscratch2, (unsigned)value); 2759 addw(reg, reg, rscratch2); 2760 } 2761 } 2762 2763 void MacroAssembler::increment(Register reg, int value) 2764 { 2765 if (value < 0) { decrement(reg, -value); return; } 2766 if (value == 0) { return; } 2767 if (value < (1 << 12)) { add(reg, reg, value); return; } 2768 /* else */ { 2769 assert(reg != rscratch2, "invalid dst for register increment"); 2770 movw(rscratch2, (unsigned)value); 2771 add(reg, reg, rscratch2); 2772 } 2773 } 2774 2775 void MacroAssembler::incrementw(Address dst, int value) 2776 { 2777 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2778 if (dst.getMode() == Address::literal) { 2779 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2780 lea(rscratch2, dst); 2781 dst = Address(rscratch2); 2782 } 2783 ldrw(rscratch1, dst); 2784 incrementw(rscratch1, value); 2785 strw(rscratch1, dst); 2786 } 2787 2788 void MacroAssembler::increment(Address dst, int value) 2789 { 2790 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2791 if (dst.getMode() == Address::literal) { 2792 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2793 lea(rscratch2, dst); 2794 dst = Address(rscratch2); 2795 } 2796 ldr(rscratch1, dst); 2797 increment(rscratch1, value); 2798 str(rscratch1, dst); 2799 } 2800 2801 // Push lots of registers in the bit set supplied. Don't push sp. 2802 // Return the number of words pushed 2803 int MacroAssembler::push(unsigned int bitset, Register stack) { 2804 int words_pushed = 0; 2805 2806 // Scan bitset to accumulate register pairs 2807 unsigned char regs[32]; 2808 int count = 0; 2809 for (int reg = 0; reg <= 30; reg++) { 2810 if (1 & bitset) 2811 regs[count++] = reg; 2812 bitset >>= 1; 2813 } 2814 regs[count++] = zr->raw_encoding(); 2815 count &= ~1; // Only push an even number of regs 2816 2817 if (count) { 2818 stp(as_Register(regs[0]), as_Register(regs[1]), 2819 Address(pre(stack, -count * wordSize))); 2820 words_pushed += 2; 2821 } 2822 for (int i = 2; i < count; i += 2) { 2823 stp(as_Register(regs[i]), as_Register(regs[i+1]), 2824 Address(stack, i * wordSize)); 2825 words_pushed += 2; 2826 } 2827 2828 assert(words_pushed == count, "oops, pushed != count"); 2829 2830 return count; 2831 } 2832 2833 int MacroAssembler::pop(unsigned int bitset, Register stack) { 2834 int words_pushed = 0; 2835 2836 // Scan bitset to accumulate register pairs 2837 unsigned char regs[32]; 2838 int count = 0; 2839 for (int reg = 0; reg <= 30; reg++) { 2840 if (1 & bitset) 2841 regs[count++] = reg; 2842 bitset >>= 1; 2843 } 2844 regs[count++] = zr->raw_encoding(); 2845 count &= ~1; 2846 2847 for (int i = 2; i < count; i += 2) { 2848 ldp(as_Register(regs[i]), as_Register(regs[i+1]), 2849 Address(stack, i * wordSize)); 2850 words_pushed += 2; 2851 } 2852 if (count) { 2853 ldp(as_Register(regs[0]), as_Register(regs[1]), 2854 Address(post(stack, count * wordSize))); 2855 words_pushed += 2; 2856 } 2857 2858 assert(words_pushed == count, "oops, pushed != count"); 2859 2860 return count; 2861 } 2862 2863 // Push lots of registers in the bit set supplied. Don't push sp. 2864 // Return the number of dwords pushed 2865 int MacroAssembler::push_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 2866 int words_pushed = 0; 2867 bool use_sve = false; 2868 int sve_vector_size_in_bytes = 0; 2869 2870 #ifdef COMPILER2 2871 use_sve = Matcher::supports_scalable_vector(); 2872 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2873 #endif 2874 2875 // Scan bitset to accumulate register pairs 2876 unsigned char regs[32]; 2877 int count = 0; 2878 for (int reg = 0; reg <= 31; reg++) { 2879 if (1 & bitset) 2880 regs[count++] = reg; 2881 bitset >>= 1; 2882 } 2883 2884 if (count == 0) { 2885 return 0; 2886 } 2887 2888 if (mode == PushPopFull) { 2889 if (use_sve && sve_vector_size_in_bytes > 16) { 2890 mode = PushPopSVE; 2891 } else { 2892 mode = PushPopNeon; 2893 } 2894 } 2895 2896 #ifndef PRODUCT 2897 { 2898 char buffer[48]; 2899 if (mode == PushPopSVE) { 2900 snprintf(buffer, sizeof(buffer), "push_fp: %d SVE registers", count); 2901 } else if (mode == PushPopNeon) { 2902 snprintf(buffer, sizeof(buffer), "push_fp: %d Neon registers", count); 2903 } else { 2904 snprintf(buffer, sizeof(buffer), "push_fp: %d fp registers", count); 2905 } 2906 block_comment(buffer); 2907 } 2908 #endif 2909 2910 if (mode == PushPopSVE) { 2911 sub(stack, stack, sve_vector_size_in_bytes * count); 2912 for (int i = 0; i < count; i++) { 2913 sve_str(as_FloatRegister(regs[i]), Address(stack, i)); 2914 } 2915 return count * sve_vector_size_in_bytes / 8; 2916 } 2917 2918 if (mode == PushPopNeon) { 2919 if (count == 1) { 2920 strq(as_FloatRegister(regs[0]), Address(pre(stack, -wordSize * 2))); 2921 return 2; 2922 } 2923 2924 bool odd = (count & 1) == 1; 2925 int push_slots = count + (odd ? 1 : 0); 2926 2927 // Always pushing full 128 bit registers. 2928 stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize * 2))); 2929 words_pushed += 2; 2930 2931 for (int i = 2; i + 1 < count; i += 2) { 2932 stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 2933 words_pushed += 2; 2934 } 2935 2936 if (odd) { 2937 strq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 2938 words_pushed++; 2939 } 2940 2941 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 2942 return count * 2; 2943 } 2944 2945 if (mode == PushPopFp) { 2946 bool odd = (count & 1) == 1; 2947 int push_slots = count + (odd ? 1 : 0); 2948 2949 if (count == 1) { 2950 // Stack pointer must be 16 bytes aligned 2951 strd(as_FloatRegister(regs[0]), Address(pre(stack, -push_slots * wordSize))); 2952 return 1; 2953 } 2954 2955 stpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize))); 2956 words_pushed += 2; 2957 2958 for (int i = 2; i + 1 < count; i += 2) { 2959 stpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 2960 words_pushed += 2; 2961 } 2962 2963 if (odd) { 2964 // Stack pointer must be 16 bytes aligned 2965 strd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 2966 words_pushed++; 2967 } 2968 2969 assert(words_pushed == count, "oops, pushed != count"); 2970 2971 return count; 2972 } 2973 2974 return 0; 2975 } 2976 2977 // Return the number of dwords popped 2978 int MacroAssembler::pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 2979 int words_pushed = 0; 2980 bool use_sve = false; 2981 int sve_vector_size_in_bytes = 0; 2982 2983 #ifdef COMPILER2 2984 use_sve = Matcher::supports_scalable_vector(); 2985 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2986 #endif 2987 // Scan bitset to accumulate register pairs 2988 unsigned char regs[32]; 2989 int count = 0; 2990 for (int reg = 0; reg <= 31; reg++) { 2991 if (1 & bitset) 2992 regs[count++] = reg; 2993 bitset >>= 1; 2994 } 2995 2996 if (count == 0) { 2997 return 0; 2998 } 2999 3000 if (mode == PushPopFull) { 3001 if (use_sve && sve_vector_size_in_bytes > 16) { 3002 mode = PushPopSVE; 3003 } else { 3004 mode = PushPopNeon; 3005 } 3006 } 3007 3008 #ifndef PRODUCT 3009 { 3010 char buffer[48]; 3011 if (mode == PushPopSVE) { 3012 snprintf(buffer, sizeof(buffer), "pop_fp: %d SVE registers", count); 3013 } else if (mode == PushPopNeon) { 3014 snprintf(buffer, sizeof(buffer), "pop_fp: %d Neon registers", count); 3015 } else { 3016 snprintf(buffer, sizeof(buffer), "pop_fp: %d fp registers", count); 3017 } 3018 block_comment(buffer); 3019 } 3020 #endif 3021 3022 if (mode == PushPopSVE) { 3023 for (int i = count - 1; i >= 0; i--) { 3024 sve_ldr(as_FloatRegister(regs[i]), Address(stack, i)); 3025 } 3026 add(stack, stack, sve_vector_size_in_bytes * count); 3027 return count * sve_vector_size_in_bytes / 8; 3028 } 3029 3030 if (mode == PushPopNeon) { 3031 if (count == 1) { 3032 ldrq(as_FloatRegister(regs[0]), Address(post(stack, wordSize * 2))); 3033 return 2; 3034 } 3035 3036 bool odd = (count & 1) == 1; 3037 int push_slots = count + (odd ? 1 : 0); 3038 3039 if (odd) { 3040 ldrq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 3041 words_pushed++; 3042 } 3043 3044 for (int i = 2; i + 1 < count; i += 2) { 3045 ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 3046 words_pushed += 2; 3047 } 3048 3049 ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize * 2))); 3050 words_pushed += 2; 3051 3052 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 3053 3054 return count * 2; 3055 } 3056 3057 if (mode == PushPopFp) { 3058 bool odd = (count & 1) == 1; 3059 int push_slots = count + (odd ? 1 : 0); 3060 3061 if (count == 1) { 3062 ldrd(as_FloatRegister(regs[0]), Address(post(stack, push_slots * wordSize))); 3063 return 1; 3064 } 3065 3066 if (odd) { 3067 ldrd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 3068 words_pushed++; 3069 } 3070 3071 for (int i = 2; i + 1 < count; i += 2) { 3072 ldpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 3073 words_pushed += 2; 3074 } 3075 3076 ldpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize))); 3077 words_pushed += 2; 3078 3079 assert(words_pushed == count, "oops, pushed != count"); 3080 3081 return count; 3082 } 3083 3084 return 0; 3085 } 3086 3087 // Return the number of dwords pushed 3088 int MacroAssembler::push_p(unsigned int bitset, Register stack) { 3089 bool use_sve = false; 3090 int sve_predicate_size_in_slots = 0; 3091 3092 #ifdef COMPILER2 3093 use_sve = Matcher::supports_scalable_vector(); 3094 if (use_sve) { 3095 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 3096 } 3097 #endif 3098 3099 if (!use_sve) { 3100 return 0; 3101 } 3102 3103 unsigned char regs[PRegister::number_of_registers]; 3104 int count = 0; 3105 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 3106 if (1 & bitset) 3107 regs[count++] = reg; 3108 bitset >>= 1; 3109 } 3110 3111 if (count == 0) { 3112 return 0; 3113 } 3114 3115 int total_push_bytes = align_up(sve_predicate_size_in_slots * 3116 VMRegImpl::stack_slot_size * count, 16); 3117 sub(stack, stack, total_push_bytes); 3118 for (int i = 0; i < count; i++) { 3119 sve_str(as_PRegister(regs[i]), Address(stack, i)); 3120 } 3121 return total_push_bytes / 8; 3122 } 3123 3124 // Return the number of dwords popped 3125 int MacroAssembler::pop_p(unsigned int bitset, Register stack) { 3126 bool use_sve = false; 3127 int sve_predicate_size_in_slots = 0; 3128 3129 #ifdef COMPILER2 3130 use_sve = Matcher::supports_scalable_vector(); 3131 if (use_sve) { 3132 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 3133 } 3134 #endif 3135 3136 if (!use_sve) { 3137 return 0; 3138 } 3139 3140 unsigned char regs[PRegister::number_of_registers]; 3141 int count = 0; 3142 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 3143 if (1 & bitset) 3144 regs[count++] = reg; 3145 bitset >>= 1; 3146 } 3147 3148 if (count == 0) { 3149 return 0; 3150 } 3151 3152 int total_pop_bytes = align_up(sve_predicate_size_in_slots * 3153 VMRegImpl::stack_slot_size * count, 16); 3154 for (int i = count - 1; i >= 0; i--) { 3155 sve_ldr(as_PRegister(regs[i]), Address(stack, i)); 3156 } 3157 add(stack, stack, total_pop_bytes); 3158 return total_pop_bytes / 8; 3159 } 3160 3161 #ifdef ASSERT 3162 void MacroAssembler::verify_heapbase(const char* msg) { 3163 #if 0 3164 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed"); 3165 assert (Universe::heap() != nullptr, "java heap should be initialized"); 3166 if (!UseCompressedOops || Universe::ptr_base() == nullptr) { 3167 // rheapbase is allocated as general register 3168 return; 3169 } 3170 if (CheckCompressedOops) { 3171 Label ok; 3172 push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1 3173 cmpptr(rheapbase, ExternalAddress(CompressedOops::base_addr())); 3174 br(Assembler::EQ, ok); 3175 stop(msg); 3176 bind(ok); 3177 pop(1 << rscratch1->encoding(), sp); 3178 } 3179 #endif 3180 } 3181 #endif 3182 3183 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) { 3184 assert_different_registers(value, tmp1, tmp2); 3185 Label done, tagged, weak_tagged; 3186 3187 cbz(value, done); // Use null as-is. 3188 tst(value, JNIHandles::tag_mask); // Test for tag. 3189 br(Assembler::NE, tagged); 3190 3191 // Resolve local handle 3192 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp1, tmp2); 3193 verify_oop(value); 3194 b(done); 3195 3196 bind(tagged); 3197 STATIC_ASSERT(JNIHandles::TypeTag::weak_global == 0b1); 3198 tbnz(value, 0, weak_tagged); // Test for weak tag. 3199 3200 // Resolve global handle 3201 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3202 verify_oop(value); 3203 b(done); 3204 3205 bind(weak_tagged); 3206 // Resolve jweak. 3207 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 3208 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp1, tmp2); 3209 verify_oop(value); 3210 3211 bind(done); 3212 } 3213 3214 void MacroAssembler::resolve_global_jobject(Register value, Register tmp1, Register tmp2) { 3215 assert_different_registers(value, tmp1, tmp2); 3216 Label done; 3217 3218 cbz(value, done); // Use null as-is. 3219 3220 #ifdef ASSERT 3221 { 3222 STATIC_ASSERT(JNIHandles::TypeTag::global == 0b10); 3223 Label valid_global_tag; 3224 tbnz(value, 1, valid_global_tag); // Test for global tag 3225 stop("non global jobject using resolve_global_jobject"); 3226 bind(valid_global_tag); 3227 } 3228 #endif 3229 3230 // Resolve global handle 3231 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3232 verify_oop(value); 3233 3234 bind(done); 3235 } 3236 3237 void MacroAssembler::stop(const char* msg) { 3238 BLOCK_COMMENT(msg); 3239 dcps1(0xdeae); 3240 emit_int64((uintptr_t)msg); 3241 } 3242 3243 void MacroAssembler::unimplemented(const char* what) { 3244 const char* buf = nullptr; 3245 { 3246 ResourceMark rm; 3247 stringStream ss; 3248 ss.print("unimplemented: %s", what); 3249 buf = code_string(ss.as_string()); 3250 } 3251 stop(buf); 3252 } 3253 3254 void MacroAssembler::_assert_asm(Assembler::Condition cc, const char* msg) { 3255 #ifdef ASSERT 3256 Label OK; 3257 br(cc, OK); 3258 stop(msg); 3259 bind(OK); 3260 #endif 3261 } 3262 3263 // If a constant does not fit in an immediate field, generate some 3264 // number of MOV instructions and then perform the operation. 3265 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 3266 add_sub_imm_insn insn1, 3267 add_sub_reg_insn insn2, 3268 bool is32) { 3269 assert(Rd != zr, "Rd = zr and not setting flags?"); 3270 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3271 if (fits) { 3272 (this->*insn1)(Rd, Rn, imm); 3273 } else { 3274 if (uabs(imm) < (1 << 24)) { 3275 (this->*insn1)(Rd, Rn, imm & -(1 << 12)); 3276 (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1)); 3277 } else { 3278 assert_different_registers(Rd, Rn); 3279 mov(Rd, imm); 3280 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3281 } 3282 } 3283 } 3284 3285 // Separate vsn which sets the flags. Optimisations are more restricted 3286 // because we must set the flags correctly. 3287 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 3288 add_sub_imm_insn insn1, 3289 add_sub_reg_insn insn2, 3290 bool is32) { 3291 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3292 if (fits) { 3293 (this->*insn1)(Rd, Rn, imm); 3294 } else { 3295 assert_different_registers(Rd, Rn); 3296 assert(Rd != zr, "overflow in immediate operand"); 3297 mov(Rd, imm); 3298 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3299 } 3300 } 3301 3302 3303 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) { 3304 if (increment.is_register()) { 3305 add(Rd, Rn, increment.as_register()); 3306 } else { 3307 add(Rd, Rn, increment.as_constant()); 3308 } 3309 } 3310 3311 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) { 3312 if (increment.is_register()) { 3313 addw(Rd, Rn, increment.as_register()); 3314 } else { 3315 addw(Rd, Rn, increment.as_constant()); 3316 } 3317 } 3318 3319 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) { 3320 if (decrement.is_register()) { 3321 sub(Rd, Rn, decrement.as_register()); 3322 } else { 3323 sub(Rd, Rn, decrement.as_constant()); 3324 } 3325 } 3326 3327 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) { 3328 if (decrement.is_register()) { 3329 subw(Rd, Rn, decrement.as_register()); 3330 } else { 3331 subw(Rd, Rn, decrement.as_constant()); 3332 } 3333 } 3334 3335 void MacroAssembler::reinit_heapbase() 3336 { 3337 if (UseCompressedOops) { 3338 if (Universe::is_fully_initialized()) { 3339 mov(rheapbase, CompressedOops::base()); 3340 } else { 3341 lea(rheapbase, ExternalAddress(CompressedOops::base_addr())); 3342 ldr(rheapbase, Address(rheapbase)); 3343 } 3344 } 3345 } 3346 3347 // this simulates the behaviour of the x86 cmpxchg instruction using a 3348 // load linked/store conditional pair. we use the acquire/release 3349 // versions of these instructions so that we flush pending writes as 3350 // per Java semantics. 3351 3352 // n.b the x86 version assumes the old value to be compared against is 3353 // in rax and updates rax with the value located in memory if the 3354 // cmpxchg fails. we supply a register for the old value explicitly 3355 3356 // the aarch64 load linked/store conditional instructions do not 3357 // accept an offset. so, unlike x86, we must provide a plain register 3358 // to identify the memory word to be compared/exchanged rather than a 3359 // register+offset Address. 3360 3361 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 3362 Label &succeed, Label *fail) { 3363 // oldv holds comparison value 3364 // newv holds value to write in exchange 3365 // addr identifies memory word to compare against/update 3366 if (UseLSE) { 3367 mov(tmp, oldv); 3368 casal(Assembler::xword, oldv, newv, addr); 3369 cmp(tmp, oldv); 3370 br(Assembler::EQ, succeed); 3371 membar(AnyAny); 3372 } else { 3373 Label retry_load, nope; 3374 prfm(Address(addr), PSTL1STRM); 3375 bind(retry_load); 3376 // flush and load exclusive from the memory location 3377 // and fail if it is not what we expect 3378 ldaxr(tmp, addr); 3379 cmp(tmp, oldv); 3380 br(Assembler::NE, nope); 3381 // if we store+flush with no intervening write tmp will be zero 3382 stlxr(tmp, newv, addr); 3383 cbzw(tmp, succeed); 3384 // retry so we only ever return after a load fails to compare 3385 // ensures we don't return a stale value after a failed write. 3386 b(retry_load); 3387 // if the memory word differs we return it in oldv and signal a fail 3388 bind(nope); 3389 membar(AnyAny); 3390 mov(oldv, tmp); 3391 } 3392 if (fail) 3393 b(*fail); 3394 } 3395 3396 void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 3397 Label &succeed, Label *fail) { 3398 assert(oopDesc::mark_offset_in_bytes() == 0, "assumption"); 3399 cmpxchgptr(oldv, newv, obj, tmp, succeed, fail); 3400 } 3401 3402 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 3403 Label &succeed, Label *fail) { 3404 // oldv holds comparison value 3405 // newv holds value to write in exchange 3406 // addr identifies memory word to compare against/update 3407 // tmp returns 0/1 for success/failure 3408 if (UseLSE) { 3409 mov(tmp, oldv); 3410 casal(Assembler::word, oldv, newv, addr); 3411 cmp(tmp, oldv); 3412 br(Assembler::EQ, succeed); 3413 membar(AnyAny); 3414 } else { 3415 Label retry_load, nope; 3416 prfm(Address(addr), PSTL1STRM); 3417 bind(retry_load); 3418 // flush and load exclusive from the memory location 3419 // and fail if it is not what we expect 3420 ldaxrw(tmp, addr); 3421 cmp(tmp, oldv); 3422 br(Assembler::NE, nope); 3423 // if we store+flush with no intervening write tmp will be zero 3424 stlxrw(tmp, newv, addr); 3425 cbzw(tmp, succeed); 3426 // retry so we only ever return after a load fails to compare 3427 // ensures we don't return a stale value after a failed write. 3428 b(retry_load); 3429 // if the memory word differs we return it in oldv and signal a fail 3430 bind(nope); 3431 membar(AnyAny); 3432 mov(oldv, tmp); 3433 } 3434 if (fail) 3435 b(*fail); 3436 } 3437 3438 // A generic CAS; success or failure is in the EQ flag. A weak CAS 3439 // doesn't retry and may fail spuriously. If the oldval is wanted, 3440 // Pass a register for the result, otherwise pass noreg. 3441 3442 // Clobbers rscratch1 3443 void MacroAssembler::cmpxchg(Register addr, Register expected, 3444 Register new_val, 3445 enum operand_size size, 3446 bool acquire, bool release, 3447 bool weak, 3448 Register result) { 3449 if (result == noreg) result = rscratch1; 3450 BLOCK_COMMENT("cmpxchg {"); 3451 if (UseLSE) { 3452 mov(result, expected); 3453 lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true); 3454 compare_eq(result, expected, size); 3455 #ifdef ASSERT 3456 // Poison rscratch1 which is written on !UseLSE branch 3457 mov(rscratch1, 0x1f1f1f1f1f1f1f1f); 3458 #endif 3459 } else { 3460 Label retry_load, done; 3461 prfm(Address(addr), PSTL1STRM); 3462 bind(retry_load); 3463 load_exclusive(result, addr, size, acquire); 3464 compare_eq(result, expected, size); 3465 br(Assembler::NE, done); 3466 store_exclusive(rscratch1, new_val, addr, size, release); 3467 if (weak) { 3468 cmpw(rscratch1, 0u); // If the store fails, return NE to our caller. 3469 } else { 3470 cbnzw(rscratch1, retry_load); 3471 } 3472 bind(done); 3473 } 3474 BLOCK_COMMENT("} cmpxchg"); 3475 } 3476 3477 // A generic comparison. Only compares for equality, clobbers rscratch1. 3478 void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) { 3479 if (size == xword) { 3480 cmp(rm, rn); 3481 } else if (size == word) { 3482 cmpw(rm, rn); 3483 } else if (size == halfword) { 3484 eorw(rscratch1, rm, rn); 3485 ands(zr, rscratch1, 0xffff); 3486 } else if (size == byte) { 3487 eorw(rscratch1, rm, rn); 3488 ands(zr, rscratch1, 0xff); 3489 } else { 3490 ShouldNotReachHere(); 3491 } 3492 } 3493 3494 3495 static bool different(Register a, RegisterOrConstant b, Register c) { 3496 if (b.is_constant()) 3497 return a != c; 3498 else 3499 return a != b.as_register() && a != c && b.as_register() != c; 3500 } 3501 3502 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \ 3503 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \ 3504 if (UseLSE) { \ 3505 prev = prev->is_valid() ? prev : zr; \ 3506 if (incr.is_register()) { \ 3507 AOP(sz, incr.as_register(), prev, addr); \ 3508 } else { \ 3509 mov(rscratch2, incr.as_constant()); \ 3510 AOP(sz, rscratch2, prev, addr); \ 3511 } \ 3512 return; \ 3513 } \ 3514 Register result = rscratch2; \ 3515 if (prev->is_valid()) \ 3516 result = different(prev, incr, addr) ? prev : rscratch2; \ 3517 \ 3518 Label retry_load; \ 3519 prfm(Address(addr), PSTL1STRM); \ 3520 bind(retry_load); \ 3521 LDXR(result, addr); \ 3522 OP(rscratch1, result, incr); \ 3523 STXR(rscratch2, rscratch1, addr); \ 3524 cbnzw(rscratch2, retry_load); \ 3525 if (prev->is_valid() && prev != result) { \ 3526 IOP(prev, rscratch1, incr); \ 3527 } \ 3528 } 3529 3530 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword) 3531 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word) 3532 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword) 3533 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word) 3534 3535 #undef ATOMIC_OP 3536 3537 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \ 3538 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \ 3539 if (UseLSE) { \ 3540 prev = prev->is_valid() ? prev : zr; \ 3541 AOP(sz, newv, prev, addr); \ 3542 return; \ 3543 } \ 3544 Register result = rscratch2; \ 3545 if (prev->is_valid()) \ 3546 result = different(prev, newv, addr) ? prev : rscratch2; \ 3547 \ 3548 Label retry_load; \ 3549 prfm(Address(addr), PSTL1STRM); \ 3550 bind(retry_load); \ 3551 LDXR(result, addr); \ 3552 STXR(rscratch1, newv, addr); \ 3553 cbnzw(rscratch1, retry_load); \ 3554 if (prev->is_valid() && prev != result) \ 3555 mov(prev, result); \ 3556 } 3557 3558 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword) 3559 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word) 3560 ATOMIC_XCHG(xchgl, swpl, ldxr, stlxr, Assembler::xword) 3561 ATOMIC_XCHG(xchglw, swpl, ldxrw, stlxrw, Assembler::word) 3562 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword) 3563 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word) 3564 3565 #undef ATOMIC_XCHG 3566 3567 #ifndef PRODUCT 3568 extern "C" void findpc(intptr_t x); 3569 #endif 3570 3571 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) 3572 { 3573 // In order to get locks to work, we need to fake a in_VM state 3574 if (ShowMessageBoxOnError ) { 3575 JavaThread* thread = JavaThread::current(); 3576 JavaThreadState saved_state = thread->thread_state(); 3577 thread->set_thread_state(_thread_in_vm); 3578 #ifndef PRODUCT 3579 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 3580 ttyLocker ttyl; 3581 BytecodeCounter::print(); 3582 } 3583 #endif 3584 if (os::message_box(msg, "Execution stopped, print registers?")) { 3585 ttyLocker ttyl; 3586 tty->print_cr(" pc = 0x%016" PRIx64, pc); 3587 #ifndef PRODUCT 3588 tty->cr(); 3589 findpc(pc); 3590 tty->cr(); 3591 #endif 3592 tty->print_cr(" r0 = 0x%016" PRIx64, regs[0]); 3593 tty->print_cr(" r1 = 0x%016" PRIx64, regs[1]); 3594 tty->print_cr(" r2 = 0x%016" PRIx64, regs[2]); 3595 tty->print_cr(" r3 = 0x%016" PRIx64, regs[3]); 3596 tty->print_cr(" r4 = 0x%016" PRIx64, regs[4]); 3597 tty->print_cr(" r5 = 0x%016" PRIx64, regs[5]); 3598 tty->print_cr(" r6 = 0x%016" PRIx64, regs[6]); 3599 tty->print_cr(" r7 = 0x%016" PRIx64, regs[7]); 3600 tty->print_cr(" r8 = 0x%016" PRIx64, regs[8]); 3601 tty->print_cr(" r9 = 0x%016" PRIx64, regs[9]); 3602 tty->print_cr("r10 = 0x%016" PRIx64, regs[10]); 3603 tty->print_cr("r11 = 0x%016" PRIx64, regs[11]); 3604 tty->print_cr("r12 = 0x%016" PRIx64, regs[12]); 3605 tty->print_cr("r13 = 0x%016" PRIx64, regs[13]); 3606 tty->print_cr("r14 = 0x%016" PRIx64, regs[14]); 3607 tty->print_cr("r15 = 0x%016" PRIx64, regs[15]); 3608 tty->print_cr("r16 = 0x%016" PRIx64, regs[16]); 3609 tty->print_cr("r17 = 0x%016" PRIx64, regs[17]); 3610 tty->print_cr("r18 = 0x%016" PRIx64, regs[18]); 3611 tty->print_cr("r19 = 0x%016" PRIx64, regs[19]); 3612 tty->print_cr("r20 = 0x%016" PRIx64, regs[20]); 3613 tty->print_cr("r21 = 0x%016" PRIx64, regs[21]); 3614 tty->print_cr("r22 = 0x%016" PRIx64, regs[22]); 3615 tty->print_cr("r23 = 0x%016" PRIx64, regs[23]); 3616 tty->print_cr("r24 = 0x%016" PRIx64, regs[24]); 3617 tty->print_cr("r25 = 0x%016" PRIx64, regs[25]); 3618 tty->print_cr("r26 = 0x%016" PRIx64, regs[26]); 3619 tty->print_cr("r27 = 0x%016" PRIx64, regs[27]); 3620 tty->print_cr("r28 = 0x%016" PRIx64, regs[28]); 3621 tty->print_cr("r30 = 0x%016" PRIx64, regs[30]); 3622 tty->print_cr("r31 = 0x%016" PRIx64, regs[31]); 3623 BREAKPOINT; 3624 } 3625 } 3626 fatal("DEBUG MESSAGE: %s", msg); 3627 } 3628 3629 RegSet MacroAssembler::call_clobbered_gp_registers() { 3630 RegSet regs = RegSet::range(r0, r17) - RegSet::of(rscratch1, rscratch2); 3631 #ifndef R18_RESERVED 3632 regs += r18_tls; 3633 #endif 3634 return regs; 3635 } 3636 3637 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) { 3638 int step = 4 * wordSize; 3639 push(call_clobbered_gp_registers() - exclude, sp); 3640 sub(sp, sp, step); 3641 mov(rscratch1, -step); 3642 // Push v0-v7, v16-v31. 3643 for (int i = 31; i>= 4; i -= 4) { 3644 if (i <= v7->encoding() || i >= v16->encoding()) 3645 st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1), 3646 as_FloatRegister(i), T1D, Address(post(sp, rscratch1))); 3647 } 3648 st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2), 3649 as_FloatRegister(3), T1D, Address(sp)); 3650 } 3651 3652 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) { 3653 for (int i = 0; i < 32; i += 4) { 3654 if (i <= v7->encoding() || i >= v16->encoding()) 3655 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3656 as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize))); 3657 } 3658 3659 reinitialize_ptrue(); 3660 3661 pop(call_clobbered_gp_registers() - exclude, sp); 3662 } 3663 3664 void MacroAssembler::push_CPU_state(bool save_vectors, bool use_sve, 3665 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3666 push(RegSet::range(r0, r29), sp); // integer registers except lr & sp 3667 if (save_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3668 sub(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3669 for (int i = 0; i < FloatRegister::number_of_registers; i++) { 3670 sve_str(as_FloatRegister(i), Address(sp, i)); 3671 } 3672 } else { 3673 int step = (save_vectors ? 8 : 4) * wordSize; 3674 mov(rscratch1, -step); 3675 sub(sp, sp, step); 3676 for (int i = 28; i >= 4; i -= 4) { 3677 st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3678 as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1))); 3679 } 3680 st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp); 3681 } 3682 if (save_vectors && use_sve && total_predicate_in_bytes > 0) { 3683 sub(sp, sp, total_predicate_in_bytes); 3684 for (int i = 0; i < PRegister::number_of_registers; i++) { 3685 sve_str(as_PRegister(i), Address(sp, i)); 3686 } 3687 } 3688 } 3689 3690 void MacroAssembler::pop_CPU_state(bool restore_vectors, bool use_sve, 3691 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3692 if (restore_vectors && use_sve && total_predicate_in_bytes > 0) { 3693 for (int i = PRegister::number_of_registers - 1; i >= 0; i--) { 3694 sve_ldr(as_PRegister(i), Address(sp, i)); 3695 } 3696 add(sp, sp, total_predicate_in_bytes); 3697 } 3698 if (restore_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3699 for (int i = FloatRegister::number_of_registers - 1; i >= 0; i--) { 3700 sve_ldr(as_FloatRegister(i), Address(sp, i)); 3701 } 3702 add(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3703 } else { 3704 int step = (restore_vectors ? 8 : 4) * wordSize; 3705 for (int i = 0; i <= 28; i += 4) 3706 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3707 as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step))); 3708 } 3709 3710 // We may use predicate registers and rely on ptrue with SVE, 3711 // regardless of wide vector (> 8 bytes) used or not. 3712 if (use_sve) { 3713 reinitialize_ptrue(); 3714 } 3715 3716 // integer registers except lr & sp 3717 pop(RegSet::range(r0, r17), sp); 3718 #ifdef R18_RESERVED 3719 ldp(zr, r19, Address(post(sp, 2 * wordSize))); 3720 pop(RegSet::range(r20, r29), sp); 3721 #else 3722 pop(RegSet::range(r18_tls, r29), sp); 3723 #endif 3724 } 3725 3726 /** 3727 * Helpers for multiply_to_len(). 3728 */ 3729 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 3730 Register src1, Register src2) { 3731 adds(dest_lo, dest_lo, src1); 3732 adc(dest_hi, dest_hi, zr); 3733 adds(dest_lo, dest_lo, src2); 3734 adc(final_dest_hi, dest_hi, zr); 3735 } 3736 3737 // Generate an address from (r + r1 extend offset). "size" is the 3738 // size of the operand. The result may be in rscratch2. 3739 Address MacroAssembler::offsetted_address(Register r, Register r1, 3740 Address::extend ext, int offset, int size) { 3741 if (offset || (ext.shift() % size != 0)) { 3742 lea(rscratch2, Address(r, r1, ext)); 3743 return Address(rscratch2, offset); 3744 } else { 3745 return Address(r, r1, ext); 3746 } 3747 } 3748 3749 Address MacroAssembler::spill_address(int size, int offset, Register tmp) 3750 { 3751 assert(offset >= 0, "spill to negative address?"); 3752 // Offset reachable ? 3753 // Not aligned - 9 bits signed offset 3754 // Aligned - 12 bits unsigned offset shifted 3755 Register base = sp; 3756 if ((offset & (size-1)) && offset >= (1<<8)) { 3757 add(tmp, base, offset & ((1<<12)-1)); 3758 base = tmp; 3759 offset &= -1u<<12; 3760 } 3761 3762 if (offset >= (1<<12) * size) { 3763 add(tmp, base, offset & (((1<<12)-1)<<12)); 3764 base = tmp; 3765 offset &= ~(((1<<12)-1)<<12); 3766 } 3767 3768 return Address(base, offset); 3769 } 3770 3771 Address MacroAssembler::sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp) { 3772 assert(offset >= 0, "spill to negative address?"); 3773 3774 Register base = sp; 3775 3776 // An immediate offset in the range 0 to 255 which is multiplied 3777 // by the current vector or predicate register size in bytes. 3778 if (offset % sve_reg_size_in_bytes == 0 && offset < ((1<<8)*sve_reg_size_in_bytes)) { 3779 return Address(base, offset / sve_reg_size_in_bytes); 3780 } 3781 3782 add(tmp, base, offset); 3783 return Address(tmp); 3784 } 3785 3786 // Checks whether offset is aligned. 3787 // Returns true if it is, else false. 3788 bool MacroAssembler::merge_alignment_check(Register base, 3789 size_t size, 3790 int64_t cur_offset, 3791 int64_t prev_offset) const { 3792 if (AvoidUnalignedAccesses) { 3793 if (base == sp) { 3794 // Checks whether low offset if aligned to pair of registers. 3795 int64_t pair_mask = size * 2 - 1; 3796 int64_t offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3797 return (offset & pair_mask) == 0; 3798 } else { // If base is not sp, we can't guarantee the access is aligned. 3799 return false; 3800 } 3801 } else { 3802 int64_t mask = size - 1; 3803 // Load/store pair instruction only supports element size aligned offset. 3804 return (cur_offset & mask) == 0 && (prev_offset & mask) == 0; 3805 } 3806 } 3807 3808 // Checks whether current and previous loads/stores can be merged. 3809 // Returns true if it can be merged, else false. 3810 bool MacroAssembler::ldst_can_merge(Register rt, 3811 const Address &adr, 3812 size_t cur_size_in_bytes, 3813 bool is_store) const { 3814 address prev = pc() - NativeInstruction::instruction_size; 3815 address last = code()->last_insn(); 3816 3817 if (last == nullptr || !nativeInstruction_at(last)->is_Imm_LdSt()) { 3818 return false; 3819 } 3820 3821 if (adr.getMode() != Address::base_plus_offset || prev != last) { 3822 return false; 3823 } 3824 3825 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3826 size_t prev_size_in_bytes = prev_ldst->size_in_bytes(); 3827 3828 assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging."); 3829 assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging."); 3830 3831 if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) { 3832 return false; 3833 } 3834 3835 int64_t max_offset = 63 * prev_size_in_bytes; 3836 int64_t min_offset = -64 * prev_size_in_bytes; 3837 3838 assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged."); 3839 3840 // Only same base can be merged. 3841 if (adr.base() != prev_ldst->base()) { 3842 return false; 3843 } 3844 3845 int64_t cur_offset = adr.offset(); 3846 int64_t prev_offset = prev_ldst->offset(); 3847 size_t diff = abs(cur_offset - prev_offset); 3848 if (diff != prev_size_in_bytes) { 3849 return false; 3850 } 3851 3852 // Following cases can not be merged: 3853 // ldr x2, [x2, #8] 3854 // ldr x3, [x2, #16] 3855 // or: 3856 // ldr x2, [x3, #8] 3857 // ldr x2, [x3, #16] 3858 // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL. 3859 if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) { 3860 return false; 3861 } 3862 3863 int64_t low_offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3864 // Offset range must be in ldp/stp instruction's range. 3865 if (low_offset > max_offset || low_offset < min_offset) { 3866 return false; 3867 } 3868 3869 if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) { 3870 return true; 3871 } 3872 3873 return false; 3874 } 3875 3876 // Merge current load/store with previous load/store into ldp/stp. 3877 void MacroAssembler::merge_ldst(Register rt, 3878 const Address &adr, 3879 size_t cur_size_in_bytes, 3880 bool is_store) { 3881 3882 assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged."); 3883 3884 Register rt_low, rt_high; 3885 address prev = pc() - NativeInstruction::instruction_size; 3886 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3887 3888 int64_t offset; 3889 3890 if (adr.offset() < prev_ldst->offset()) { 3891 offset = adr.offset(); 3892 rt_low = rt; 3893 rt_high = prev_ldst->target(); 3894 } else { 3895 offset = prev_ldst->offset(); 3896 rt_low = prev_ldst->target(); 3897 rt_high = rt; 3898 } 3899 3900 Address adr_p = Address(prev_ldst->base(), offset); 3901 // Overwrite previous generated binary. 3902 code_section()->set_end(prev); 3903 3904 const size_t sz = prev_ldst->size_in_bytes(); 3905 assert(sz == 8 || sz == 4, "only supports 64/32bit merging."); 3906 if (!is_store) { 3907 BLOCK_COMMENT("merged ldr pair"); 3908 if (sz == 8) { 3909 ldp(rt_low, rt_high, adr_p); 3910 } else { 3911 ldpw(rt_low, rt_high, adr_p); 3912 } 3913 } else { 3914 BLOCK_COMMENT("merged str pair"); 3915 if (sz == 8) { 3916 stp(rt_low, rt_high, adr_p); 3917 } else { 3918 stpw(rt_low, rt_high, adr_p); 3919 } 3920 } 3921 } 3922 3923 /** 3924 * Multiply 64 bit by 64 bit first loop. 3925 */ 3926 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 3927 Register y, Register y_idx, Register z, 3928 Register carry, Register product, 3929 Register idx, Register kdx) { 3930 // 3931 // jlong carry, x[], y[], z[]; 3932 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 3933 // huge_128 product = y[idx] * x[xstart] + carry; 3934 // z[kdx] = (jlong)product; 3935 // carry = (jlong)(product >>> 64); 3936 // } 3937 // z[xstart] = carry; 3938 // 3939 3940 Label L_first_loop, L_first_loop_exit; 3941 Label L_one_x, L_one_y, L_multiply; 3942 3943 subsw(xstart, xstart, 1); 3944 br(Assembler::MI, L_one_x); 3945 3946 lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt))); 3947 ldr(x_xstart, Address(rscratch1)); 3948 ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian 3949 3950 bind(L_first_loop); 3951 subsw(idx, idx, 1); 3952 br(Assembler::MI, L_first_loop_exit); 3953 subsw(idx, idx, 1); 3954 br(Assembler::MI, L_one_y); 3955 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3956 ldr(y_idx, Address(rscratch1)); 3957 ror(y_idx, y_idx, 32); // convert big-endian to little-endian 3958 bind(L_multiply); 3959 3960 // AArch64 has a multiply-accumulate instruction that we can't use 3961 // here because it has no way to process carries, so we have to use 3962 // separate add and adc instructions. Bah. 3963 umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product 3964 mul(product, x_xstart, y_idx); 3965 adds(product, product, carry); 3966 adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product 3967 3968 subw(kdx, kdx, 2); 3969 ror(product, product, 32); // back to big-endian 3970 str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong)); 3971 3972 b(L_first_loop); 3973 3974 bind(L_one_y); 3975 ldrw(y_idx, Address(y, 0)); 3976 b(L_multiply); 3977 3978 bind(L_one_x); 3979 ldrw(x_xstart, Address(x, 0)); 3980 b(L_first_loop); 3981 3982 bind(L_first_loop_exit); 3983 } 3984 3985 /** 3986 * Multiply 128 bit by 128. Unrolled inner loop. 3987 * 3988 */ 3989 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z, 3990 Register carry, Register carry2, 3991 Register idx, Register jdx, 3992 Register yz_idx1, Register yz_idx2, 3993 Register tmp, Register tmp3, Register tmp4, 3994 Register tmp6, Register product_hi) { 3995 3996 // jlong carry, x[], y[], z[]; 3997 // int kdx = ystart+1; 3998 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 3999 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry; 4000 // jlong carry2 = (jlong)(tmp3 >>> 64); 4001 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2; 4002 // carry = (jlong)(tmp4 >>> 64); 4003 // z[kdx+idx+1] = (jlong)tmp3; 4004 // z[kdx+idx] = (jlong)tmp4; 4005 // } 4006 // idx += 2; 4007 // if (idx > 0) { 4008 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry; 4009 // z[kdx+idx] = (jlong)yz_idx1; 4010 // carry = (jlong)(yz_idx1 >>> 64); 4011 // } 4012 // 4013 4014 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 4015 4016 lsrw(jdx, idx, 2); 4017 4018 bind(L_third_loop); 4019 4020 subsw(jdx, jdx, 1); 4021 br(Assembler::MI, L_third_loop_exit); 4022 subw(idx, idx, 4); 4023 4024 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4025 4026 ldp(yz_idx2, yz_idx1, Address(rscratch1, 0)); 4027 4028 lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4029 4030 ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 4031 ror(yz_idx2, yz_idx2, 32); 4032 4033 ldp(rscratch2, rscratch1, Address(tmp6, 0)); 4034 4035 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 4036 umulh(tmp4, product_hi, yz_idx1); 4037 4038 ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian 4039 ror(rscratch2, rscratch2, 32); 4040 4041 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp 4042 umulh(carry2, product_hi, yz_idx2); 4043 4044 // propagate sum of both multiplications into carry:tmp4:tmp3 4045 adds(tmp3, tmp3, carry); 4046 adc(tmp4, tmp4, zr); 4047 adds(tmp3, tmp3, rscratch1); 4048 adcs(tmp4, tmp4, tmp); 4049 adc(carry, carry2, zr); 4050 adds(tmp4, tmp4, rscratch2); 4051 adc(carry, carry, zr); 4052 4053 ror(tmp3, tmp3, 32); // convert little-endian to big-endian 4054 ror(tmp4, tmp4, 32); 4055 stp(tmp4, tmp3, Address(tmp6, 0)); 4056 4057 b(L_third_loop); 4058 bind (L_third_loop_exit); 4059 4060 andw (idx, idx, 0x3); 4061 cbz(idx, L_post_third_loop_done); 4062 4063 Label L_check_1; 4064 subsw(idx, idx, 2); 4065 br(Assembler::MI, L_check_1); 4066 4067 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4068 ldr(yz_idx1, Address(rscratch1, 0)); 4069 ror(yz_idx1, yz_idx1, 32); 4070 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 4071 umulh(tmp4, product_hi, yz_idx1); 4072 lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4073 ldr(yz_idx2, Address(rscratch1, 0)); 4074 ror(yz_idx2, yz_idx2, 32); 4075 4076 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2); 4077 4078 ror(tmp3, tmp3, 32); 4079 str(tmp3, Address(rscratch1, 0)); 4080 4081 bind (L_check_1); 4082 4083 andw (idx, idx, 0x1); 4084 subsw(idx, idx, 1); 4085 br(Assembler::MI, L_post_third_loop_done); 4086 ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4087 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3 4088 umulh(carry2, tmp4, product_hi); 4089 ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4090 4091 add2_with_carry(carry2, tmp3, tmp4, carry); 4092 4093 strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4094 extr(carry, carry2, tmp3, 32); 4095 4096 bind(L_post_third_loop_done); 4097 } 4098 4099 /** 4100 * Code for BigInteger::multiplyToLen() intrinsic. 4101 * 4102 * r0: x 4103 * r1: xlen 4104 * r2: y 4105 * r3: ylen 4106 * r4: z 4107 * r5: tmp0 4108 * r10: tmp1 4109 * r11: tmp2 4110 * r12: tmp3 4111 * r13: tmp4 4112 * r14: tmp5 4113 * r15: tmp6 4114 * r16: tmp7 4115 * 4116 */ 4117 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, 4118 Register z, Register tmp0, 4119 Register tmp1, Register tmp2, Register tmp3, Register tmp4, 4120 Register tmp5, Register tmp6, Register product_hi) { 4121 4122 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, product_hi); 4123 4124 const Register idx = tmp1; 4125 const Register kdx = tmp2; 4126 const Register xstart = tmp3; 4127 4128 const Register y_idx = tmp4; 4129 const Register carry = tmp5; 4130 const Register product = xlen; 4131 const Register x_xstart = tmp0; 4132 4133 // First Loop. 4134 // 4135 // final static long LONG_MASK = 0xffffffffL; 4136 // int xstart = xlen - 1; 4137 // int ystart = ylen - 1; 4138 // long carry = 0; 4139 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 4140 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 4141 // z[kdx] = (int)product; 4142 // carry = product >>> 32; 4143 // } 4144 // z[xstart] = (int)carry; 4145 // 4146 4147 movw(idx, ylen); // idx = ylen; 4148 addw(kdx, xlen, ylen); // kdx = xlen+ylen; 4149 mov(carry, zr); // carry = 0; 4150 4151 Label L_done; 4152 4153 movw(xstart, xlen); 4154 subsw(xstart, xstart, 1); 4155 br(Assembler::MI, L_done); 4156 4157 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 4158 4159 Label L_second_loop; 4160 cbzw(kdx, L_second_loop); 4161 4162 Label L_carry; 4163 subw(kdx, kdx, 1); 4164 cbzw(kdx, L_carry); 4165 4166 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 4167 lsr(carry, carry, 32); 4168 subw(kdx, kdx, 1); 4169 4170 bind(L_carry); 4171 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 4172 4173 // Second and third (nested) loops. 4174 // 4175 // for (int i = xstart-1; i >= 0; i--) { // Second loop 4176 // carry = 0; 4177 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 4178 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 4179 // (z[k] & LONG_MASK) + carry; 4180 // z[k] = (int)product; 4181 // carry = product >>> 32; 4182 // } 4183 // z[i] = (int)carry; 4184 // } 4185 // 4186 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi 4187 4188 const Register jdx = tmp1; 4189 4190 bind(L_second_loop); 4191 mov(carry, zr); // carry = 0; 4192 movw(jdx, ylen); // j = ystart+1 4193 4194 subsw(xstart, xstart, 1); // i = xstart-1; 4195 br(Assembler::MI, L_done); 4196 4197 str(z, Address(pre(sp, -4 * wordSize))); 4198 4199 Label L_last_x; 4200 lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j 4201 subsw(xstart, xstart, 1); // i = xstart-1; 4202 br(Assembler::MI, L_last_x); 4203 4204 lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt))); 4205 ldr(product_hi, Address(rscratch1)); 4206 ror(product_hi, product_hi, 32); // convert big-endian to little-endian 4207 4208 Label L_third_loop_prologue; 4209 bind(L_third_loop_prologue); 4210 4211 str(ylen, Address(sp, wordSize)); 4212 stp(x, xstart, Address(sp, 2 * wordSize)); 4213 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product, 4214 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi); 4215 ldp(z, ylen, Address(post(sp, 2 * wordSize))); 4216 ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen 4217 4218 addw(tmp3, xlen, 1); 4219 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4220 subsw(tmp3, tmp3, 1); 4221 br(Assembler::MI, L_done); 4222 4223 lsr(carry, carry, 32); 4224 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4225 b(L_second_loop); 4226 4227 // Next infrequent code is moved outside loops. 4228 bind(L_last_x); 4229 ldrw(product_hi, Address(x, 0)); 4230 b(L_third_loop_prologue); 4231 4232 bind(L_done); 4233 } 4234 4235 // Code for BigInteger::mulAdd intrinsic 4236 // out = r0 4237 // in = r1 4238 // offset = r2 (already out.length-offset) 4239 // len = r3 4240 // k = r4 4241 // 4242 // pseudo code from java implementation: 4243 // carry = 0; 4244 // offset = out.length-offset - 1; 4245 // for (int j=len-1; j >= 0; j--) { 4246 // product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry; 4247 // out[offset--] = (int)product; 4248 // carry = product >>> 32; 4249 // } 4250 // return (int)carry; 4251 void MacroAssembler::mul_add(Register out, Register in, Register offset, 4252 Register len, Register k) { 4253 Label LOOP, END; 4254 // pre-loop 4255 cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches 4256 csel(out, zr, out, Assembler::EQ); 4257 br(Assembler::EQ, END); 4258 add(in, in, len, LSL, 2); // in[j+1] address 4259 add(offset, out, offset, LSL, 2); // out[offset + 1] address 4260 mov(out, zr); // used to keep carry now 4261 BIND(LOOP); 4262 ldrw(rscratch1, Address(pre(in, -4))); 4263 madd(rscratch1, rscratch1, k, out); 4264 ldrw(rscratch2, Address(pre(offset, -4))); 4265 add(rscratch1, rscratch1, rscratch2); 4266 strw(rscratch1, Address(offset)); 4267 lsr(out, rscratch1, 32); 4268 subs(len, len, 1); 4269 br(Assembler::NE, LOOP); 4270 BIND(END); 4271 } 4272 4273 /** 4274 * Emits code to update CRC-32 with a byte value according to constants in table 4275 * 4276 * @param [in,out]crc Register containing the crc. 4277 * @param [in]val Register containing the byte to fold into the CRC. 4278 * @param [in]table Register containing the table of crc constants. 4279 * 4280 * uint32_t crc; 4281 * val = crc_table[(val ^ crc) & 0xFF]; 4282 * crc = val ^ (crc >> 8); 4283 * 4284 */ 4285 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 4286 eor(val, val, crc); 4287 andr(val, val, 0xff); 4288 ldrw(val, Address(table, val, Address::lsl(2))); 4289 eor(crc, val, crc, Assembler::LSR, 8); 4290 } 4291 4292 /** 4293 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3 4294 * 4295 * @param [in,out]crc Register containing the crc. 4296 * @param [in]v Register containing the 32-bit to fold into the CRC. 4297 * @param [in]table0 Register containing table 0 of crc constants. 4298 * @param [in]table1 Register containing table 1 of crc constants. 4299 * @param [in]table2 Register containing table 2 of crc constants. 4300 * @param [in]table3 Register containing table 3 of crc constants. 4301 * 4302 * uint32_t crc; 4303 * v = crc ^ v 4304 * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24] 4305 * 4306 */ 4307 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp, 4308 Register table0, Register table1, Register table2, Register table3, 4309 bool upper) { 4310 eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0); 4311 uxtb(tmp, v); 4312 ldrw(crc, Address(table3, tmp, Address::lsl(2))); 4313 ubfx(tmp, v, 8, 8); 4314 ldrw(tmp, Address(table2, tmp, Address::lsl(2))); 4315 eor(crc, crc, tmp); 4316 ubfx(tmp, v, 16, 8); 4317 ldrw(tmp, Address(table1, tmp, Address::lsl(2))); 4318 eor(crc, crc, tmp); 4319 ubfx(tmp, v, 24, 8); 4320 ldrw(tmp, Address(table0, tmp, Address::lsl(2))); 4321 eor(crc, crc, tmp); 4322 } 4323 4324 void MacroAssembler::kernel_crc32_using_crypto_pmull(Register crc, Register buf, 4325 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4326 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4327 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4328 4329 subs(tmp0, len, 384); 4330 mvnw(crc, crc); 4331 br(Assembler::GE, CRC_by128_pre); 4332 BIND(CRC_less128); 4333 subs(len, len, 32); 4334 br(Assembler::GE, CRC_by32_loop); 4335 BIND(CRC_less32); 4336 adds(len, len, 32 - 4); 4337 br(Assembler::GE, CRC_by4_loop); 4338 adds(len, len, 4); 4339 br(Assembler::GT, CRC_by1_loop); 4340 b(L_exit); 4341 4342 BIND(CRC_by32_loop); 4343 ldp(tmp0, tmp1, Address(buf)); 4344 crc32x(crc, crc, tmp0); 4345 ldp(tmp2, tmp3, Address(buf, 16)); 4346 crc32x(crc, crc, tmp1); 4347 add(buf, buf, 32); 4348 crc32x(crc, crc, tmp2); 4349 subs(len, len, 32); 4350 crc32x(crc, crc, tmp3); 4351 br(Assembler::GE, CRC_by32_loop); 4352 cmn(len, (u1)32); 4353 br(Assembler::NE, CRC_less32); 4354 b(L_exit); 4355 4356 BIND(CRC_by4_loop); 4357 ldrw(tmp0, Address(post(buf, 4))); 4358 subs(len, len, 4); 4359 crc32w(crc, crc, tmp0); 4360 br(Assembler::GE, CRC_by4_loop); 4361 adds(len, len, 4); 4362 br(Assembler::LE, L_exit); 4363 BIND(CRC_by1_loop); 4364 ldrb(tmp0, Address(post(buf, 1))); 4365 subs(len, len, 1); 4366 crc32b(crc, crc, tmp0); 4367 br(Assembler::GT, CRC_by1_loop); 4368 b(L_exit); 4369 4370 BIND(CRC_by128_pre); 4371 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4372 4*256*sizeof(juint) + 8*sizeof(juint)); 4373 mov(crc, 0); 4374 crc32x(crc, crc, tmp0); 4375 crc32x(crc, crc, tmp1); 4376 4377 cbnz(len, CRC_less128); 4378 4379 BIND(L_exit); 4380 mvnw(crc, crc); 4381 } 4382 4383 void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf, 4384 Register len, Register tmp0, Register tmp1, Register tmp2, 4385 Register tmp3) { 4386 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4387 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4388 4389 mvnw(crc, crc); 4390 4391 subs(len, len, 128); 4392 br(Assembler::GE, CRC_by64_pre); 4393 BIND(CRC_less64); 4394 adds(len, len, 128-32); 4395 br(Assembler::GE, CRC_by32_loop); 4396 BIND(CRC_less32); 4397 adds(len, len, 32-4); 4398 br(Assembler::GE, CRC_by4_loop); 4399 adds(len, len, 4); 4400 br(Assembler::GT, CRC_by1_loop); 4401 b(L_exit); 4402 4403 BIND(CRC_by32_loop); 4404 ldp(tmp0, tmp1, Address(post(buf, 16))); 4405 subs(len, len, 32); 4406 crc32x(crc, crc, tmp0); 4407 ldr(tmp2, Address(post(buf, 8))); 4408 crc32x(crc, crc, tmp1); 4409 ldr(tmp3, Address(post(buf, 8))); 4410 crc32x(crc, crc, tmp2); 4411 crc32x(crc, crc, tmp3); 4412 br(Assembler::GE, CRC_by32_loop); 4413 cmn(len, (u1)32); 4414 br(Assembler::NE, CRC_less32); 4415 b(L_exit); 4416 4417 BIND(CRC_by4_loop); 4418 ldrw(tmp0, Address(post(buf, 4))); 4419 subs(len, len, 4); 4420 crc32w(crc, crc, tmp0); 4421 br(Assembler::GE, CRC_by4_loop); 4422 adds(len, len, 4); 4423 br(Assembler::LE, L_exit); 4424 BIND(CRC_by1_loop); 4425 ldrb(tmp0, Address(post(buf, 1))); 4426 subs(len, len, 1); 4427 crc32b(crc, crc, tmp0); 4428 br(Assembler::GT, CRC_by1_loop); 4429 b(L_exit); 4430 4431 BIND(CRC_by64_pre); 4432 sub(buf, buf, 8); 4433 ldp(tmp0, tmp1, Address(buf, 8)); 4434 crc32x(crc, crc, tmp0); 4435 ldr(tmp2, Address(buf, 24)); 4436 crc32x(crc, crc, tmp1); 4437 ldr(tmp3, Address(buf, 32)); 4438 crc32x(crc, crc, tmp2); 4439 ldr(tmp0, Address(buf, 40)); 4440 crc32x(crc, crc, tmp3); 4441 ldr(tmp1, Address(buf, 48)); 4442 crc32x(crc, crc, tmp0); 4443 ldr(tmp2, Address(buf, 56)); 4444 crc32x(crc, crc, tmp1); 4445 ldr(tmp3, Address(pre(buf, 64))); 4446 4447 b(CRC_by64_loop); 4448 4449 align(CodeEntryAlignment); 4450 BIND(CRC_by64_loop); 4451 subs(len, len, 64); 4452 crc32x(crc, crc, tmp2); 4453 ldr(tmp0, Address(buf, 8)); 4454 crc32x(crc, crc, tmp3); 4455 ldr(tmp1, Address(buf, 16)); 4456 crc32x(crc, crc, tmp0); 4457 ldr(tmp2, Address(buf, 24)); 4458 crc32x(crc, crc, tmp1); 4459 ldr(tmp3, Address(buf, 32)); 4460 crc32x(crc, crc, tmp2); 4461 ldr(tmp0, Address(buf, 40)); 4462 crc32x(crc, crc, tmp3); 4463 ldr(tmp1, Address(buf, 48)); 4464 crc32x(crc, crc, tmp0); 4465 ldr(tmp2, Address(buf, 56)); 4466 crc32x(crc, crc, tmp1); 4467 ldr(tmp3, Address(pre(buf, 64))); 4468 br(Assembler::GE, CRC_by64_loop); 4469 4470 // post-loop 4471 crc32x(crc, crc, tmp2); 4472 crc32x(crc, crc, tmp3); 4473 4474 sub(len, len, 64); 4475 add(buf, buf, 8); 4476 cmn(len, (u1)128); 4477 br(Assembler::NE, CRC_less64); 4478 BIND(L_exit); 4479 mvnw(crc, crc); 4480 } 4481 4482 /** 4483 * @param crc register containing existing CRC (32-bit) 4484 * @param buf register pointing to input byte buffer (byte*) 4485 * @param len register containing number of bytes 4486 * @param table register that will contain address of CRC table 4487 * @param tmp scratch register 4488 */ 4489 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, 4490 Register table0, Register table1, Register table2, Register table3, 4491 Register tmp, Register tmp2, Register tmp3) { 4492 Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit; 4493 4494 if (UseCryptoPmullForCRC32) { 4495 kernel_crc32_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4496 return; 4497 } 4498 4499 if (UseCRC32) { 4500 kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3); 4501 return; 4502 } 4503 4504 mvnw(crc, crc); 4505 4506 { 4507 uint64_t offset; 4508 adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4509 add(table0, table0, offset); 4510 } 4511 add(table1, table0, 1*256*sizeof(juint)); 4512 add(table2, table0, 2*256*sizeof(juint)); 4513 add(table3, table0, 3*256*sizeof(juint)); 4514 4515 { // Neon code start 4516 cmp(len, (u1)64); 4517 br(Assembler::LT, L_by16); 4518 eor(v16, T16B, v16, v16); 4519 4520 Label L_fold; 4521 4522 add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants 4523 4524 ld1(v0, v1, T2D, post(buf, 32)); 4525 ld1r(v4, T2D, post(tmp, 8)); 4526 ld1r(v5, T2D, post(tmp, 8)); 4527 ld1r(v6, T2D, post(tmp, 8)); 4528 ld1r(v7, T2D, post(tmp, 8)); 4529 mov(v16, S, 0, crc); 4530 4531 eor(v0, T16B, v0, v16); 4532 sub(len, len, 64); 4533 4534 BIND(L_fold); 4535 pmull(v22, T8H, v0, v5, T8B); 4536 pmull(v20, T8H, v0, v7, T8B); 4537 pmull(v23, T8H, v0, v4, T8B); 4538 pmull(v21, T8H, v0, v6, T8B); 4539 4540 pmull2(v18, T8H, v0, v5, T16B); 4541 pmull2(v16, T8H, v0, v7, T16B); 4542 pmull2(v19, T8H, v0, v4, T16B); 4543 pmull2(v17, T8H, v0, v6, T16B); 4544 4545 uzp1(v24, T8H, v20, v22); 4546 uzp2(v25, T8H, v20, v22); 4547 eor(v20, T16B, v24, v25); 4548 4549 uzp1(v26, T8H, v16, v18); 4550 uzp2(v27, T8H, v16, v18); 4551 eor(v16, T16B, v26, v27); 4552 4553 ushll2(v22, T4S, v20, T8H, 8); 4554 ushll(v20, T4S, v20, T4H, 8); 4555 4556 ushll2(v18, T4S, v16, T8H, 8); 4557 ushll(v16, T4S, v16, T4H, 8); 4558 4559 eor(v22, T16B, v23, v22); 4560 eor(v18, T16B, v19, v18); 4561 eor(v20, T16B, v21, v20); 4562 eor(v16, T16B, v17, v16); 4563 4564 uzp1(v17, T2D, v16, v20); 4565 uzp2(v21, T2D, v16, v20); 4566 eor(v17, T16B, v17, v21); 4567 4568 ushll2(v20, T2D, v17, T4S, 16); 4569 ushll(v16, T2D, v17, T2S, 16); 4570 4571 eor(v20, T16B, v20, v22); 4572 eor(v16, T16B, v16, v18); 4573 4574 uzp1(v17, T2D, v20, v16); 4575 uzp2(v21, T2D, v20, v16); 4576 eor(v28, T16B, v17, v21); 4577 4578 pmull(v22, T8H, v1, v5, T8B); 4579 pmull(v20, T8H, v1, v7, T8B); 4580 pmull(v23, T8H, v1, v4, T8B); 4581 pmull(v21, T8H, v1, v6, T8B); 4582 4583 pmull2(v18, T8H, v1, v5, T16B); 4584 pmull2(v16, T8H, v1, v7, T16B); 4585 pmull2(v19, T8H, v1, v4, T16B); 4586 pmull2(v17, T8H, v1, v6, T16B); 4587 4588 ld1(v0, v1, T2D, post(buf, 32)); 4589 4590 uzp1(v24, T8H, v20, v22); 4591 uzp2(v25, T8H, v20, v22); 4592 eor(v20, T16B, v24, v25); 4593 4594 uzp1(v26, T8H, v16, v18); 4595 uzp2(v27, T8H, v16, v18); 4596 eor(v16, T16B, v26, v27); 4597 4598 ushll2(v22, T4S, v20, T8H, 8); 4599 ushll(v20, T4S, v20, T4H, 8); 4600 4601 ushll2(v18, T4S, v16, T8H, 8); 4602 ushll(v16, T4S, v16, T4H, 8); 4603 4604 eor(v22, T16B, v23, v22); 4605 eor(v18, T16B, v19, v18); 4606 eor(v20, T16B, v21, v20); 4607 eor(v16, T16B, v17, v16); 4608 4609 uzp1(v17, T2D, v16, v20); 4610 uzp2(v21, T2D, v16, v20); 4611 eor(v16, T16B, v17, v21); 4612 4613 ushll2(v20, T2D, v16, T4S, 16); 4614 ushll(v16, T2D, v16, T2S, 16); 4615 4616 eor(v20, T16B, v22, v20); 4617 eor(v16, T16B, v16, v18); 4618 4619 uzp1(v17, T2D, v20, v16); 4620 uzp2(v21, T2D, v20, v16); 4621 eor(v20, T16B, v17, v21); 4622 4623 shl(v16, T2D, v28, 1); 4624 shl(v17, T2D, v20, 1); 4625 4626 eor(v0, T16B, v0, v16); 4627 eor(v1, T16B, v1, v17); 4628 4629 subs(len, len, 32); 4630 br(Assembler::GE, L_fold); 4631 4632 mov(crc, 0); 4633 mov(tmp, v0, D, 0); 4634 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4635 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4636 mov(tmp, v0, D, 1); 4637 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4638 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4639 mov(tmp, v1, D, 0); 4640 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4641 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4642 mov(tmp, v1, D, 1); 4643 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4644 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4645 4646 add(len, len, 32); 4647 } // Neon code end 4648 4649 BIND(L_by16); 4650 subs(len, len, 16); 4651 br(Assembler::GE, L_by16_loop); 4652 adds(len, len, 16-4); 4653 br(Assembler::GE, L_by4_loop); 4654 adds(len, len, 4); 4655 br(Assembler::GT, L_by1_loop); 4656 b(L_exit); 4657 4658 BIND(L_by4_loop); 4659 ldrw(tmp, Address(post(buf, 4))); 4660 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3); 4661 subs(len, len, 4); 4662 br(Assembler::GE, L_by4_loop); 4663 adds(len, len, 4); 4664 br(Assembler::LE, L_exit); 4665 BIND(L_by1_loop); 4666 subs(len, len, 1); 4667 ldrb(tmp, Address(post(buf, 1))); 4668 update_byte_crc32(crc, tmp, table0); 4669 br(Assembler::GT, L_by1_loop); 4670 b(L_exit); 4671 4672 align(CodeEntryAlignment); 4673 BIND(L_by16_loop); 4674 subs(len, len, 16); 4675 ldp(tmp, tmp3, Address(post(buf, 16))); 4676 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4677 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4678 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false); 4679 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true); 4680 br(Assembler::GE, L_by16_loop); 4681 adds(len, len, 16-4); 4682 br(Assembler::GE, L_by4_loop); 4683 adds(len, len, 4); 4684 br(Assembler::GT, L_by1_loop); 4685 BIND(L_exit); 4686 mvnw(crc, crc); 4687 } 4688 4689 void MacroAssembler::kernel_crc32c_using_crypto_pmull(Register crc, Register buf, 4690 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4691 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4692 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4693 4694 subs(tmp0, len, 384); 4695 br(Assembler::GE, CRC_by128_pre); 4696 BIND(CRC_less128); 4697 subs(len, len, 32); 4698 br(Assembler::GE, CRC_by32_loop); 4699 BIND(CRC_less32); 4700 adds(len, len, 32 - 4); 4701 br(Assembler::GE, CRC_by4_loop); 4702 adds(len, len, 4); 4703 br(Assembler::GT, CRC_by1_loop); 4704 b(L_exit); 4705 4706 BIND(CRC_by32_loop); 4707 ldp(tmp0, tmp1, Address(buf)); 4708 crc32cx(crc, crc, tmp0); 4709 ldr(tmp2, Address(buf, 16)); 4710 crc32cx(crc, crc, tmp1); 4711 ldr(tmp3, Address(buf, 24)); 4712 crc32cx(crc, crc, tmp2); 4713 add(buf, buf, 32); 4714 subs(len, len, 32); 4715 crc32cx(crc, crc, tmp3); 4716 br(Assembler::GE, CRC_by32_loop); 4717 cmn(len, (u1)32); 4718 br(Assembler::NE, CRC_less32); 4719 b(L_exit); 4720 4721 BIND(CRC_by4_loop); 4722 ldrw(tmp0, Address(post(buf, 4))); 4723 subs(len, len, 4); 4724 crc32cw(crc, crc, tmp0); 4725 br(Assembler::GE, CRC_by4_loop); 4726 adds(len, len, 4); 4727 br(Assembler::LE, L_exit); 4728 BIND(CRC_by1_loop); 4729 ldrb(tmp0, Address(post(buf, 1))); 4730 subs(len, len, 1); 4731 crc32cb(crc, crc, tmp0); 4732 br(Assembler::GT, CRC_by1_loop); 4733 b(L_exit); 4734 4735 BIND(CRC_by128_pre); 4736 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4737 4*256*sizeof(juint) + 8*sizeof(juint) + 0x50); 4738 mov(crc, 0); 4739 crc32cx(crc, crc, tmp0); 4740 crc32cx(crc, crc, tmp1); 4741 4742 cbnz(len, CRC_less128); 4743 4744 BIND(L_exit); 4745 } 4746 4747 void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf, 4748 Register len, Register tmp0, Register tmp1, Register tmp2, 4749 Register tmp3) { 4750 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4751 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4752 4753 subs(len, len, 128); 4754 br(Assembler::GE, CRC_by64_pre); 4755 BIND(CRC_less64); 4756 adds(len, len, 128-32); 4757 br(Assembler::GE, CRC_by32_loop); 4758 BIND(CRC_less32); 4759 adds(len, len, 32-4); 4760 br(Assembler::GE, CRC_by4_loop); 4761 adds(len, len, 4); 4762 br(Assembler::GT, CRC_by1_loop); 4763 b(L_exit); 4764 4765 BIND(CRC_by32_loop); 4766 ldp(tmp0, tmp1, Address(post(buf, 16))); 4767 subs(len, len, 32); 4768 crc32cx(crc, crc, tmp0); 4769 ldr(tmp2, Address(post(buf, 8))); 4770 crc32cx(crc, crc, tmp1); 4771 ldr(tmp3, Address(post(buf, 8))); 4772 crc32cx(crc, crc, tmp2); 4773 crc32cx(crc, crc, tmp3); 4774 br(Assembler::GE, CRC_by32_loop); 4775 cmn(len, (u1)32); 4776 br(Assembler::NE, CRC_less32); 4777 b(L_exit); 4778 4779 BIND(CRC_by4_loop); 4780 ldrw(tmp0, Address(post(buf, 4))); 4781 subs(len, len, 4); 4782 crc32cw(crc, crc, tmp0); 4783 br(Assembler::GE, CRC_by4_loop); 4784 adds(len, len, 4); 4785 br(Assembler::LE, L_exit); 4786 BIND(CRC_by1_loop); 4787 ldrb(tmp0, Address(post(buf, 1))); 4788 subs(len, len, 1); 4789 crc32cb(crc, crc, tmp0); 4790 br(Assembler::GT, CRC_by1_loop); 4791 b(L_exit); 4792 4793 BIND(CRC_by64_pre); 4794 sub(buf, buf, 8); 4795 ldp(tmp0, tmp1, Address(buf, 8)); 4796 crc32cx(crc, crc, tmp0); 4797 ldr(tmp2, Address(buf, 24)); 4798 crc32cx(crc, crc, tmp1); 4799 ldr(tmp3, Address(buf, 32)); 4800 crc32cx(crc, crc, tmp2); 4801 ldr(tmp0, Address(buf, 40)); 4802 crc32cx(crc, crc, tmp3); 4803 ldr(tmp1, Address(buf, 48)); 4804 crc32cx(crc, crc, tmp0); 4805 ldr(tmp2, Address(buf, 56)); 4806 crc32cx(crc, crc, tmp1); 4807 ldr(tmp3, Address(pre(buf, 64))); 4808 4809 b(CRC_by64_loop); 4810 4811 align(CodeEntryAlignment); 4812 BIND(CRC_by64_loop); 4813 subs(len, len, 64); 4814 crc32cx(crc, crc, tmp2); 4815 ldr(tmp0, Address(buf, 8)); 4816 crc32cx(crc, crc, tmp3); 4817 ldr(tmp1, Address(buf, 16)); 4818 crc32cx(crc, crc, tmp0); 4819 ldr(tmp2, Address(buf, 24)); 4820 crc32cx(crc, crc, tmp1); 4821 ldr(tmp3, Address(buf, 32)); 4822 crc32cx(crc, crc, tmp2); 4823 ldr(tmp0, Address(buf, 40)); 4824 crc32cx(crc, crc, tmp3); 4825 ldr(tmp1, Address(buf, 48)); 4826 crc32cx(crc, crc, tmp0); 4827 ldr(tmp2, Address(buf, 56)); 4828 crc32cx(crc, crc, tmp1); 4829 ldr(tmp3, Address(pre(buf, 64))); 4830 br(Assembler::GE, CRC_by64_loop); 4831 4832 // post-loop 4833 crc32cx(crc, crc, tmp2); 4834 crc32cx(crc, crc, tmp3); 4835 4836 sub(len, len, 64); 4837 add(buf, buf, 8); 4838 cmn(len, (u1)128); 4839 br(Assembler::NE, CRC_less64); 4840 BIND(L_exit); 4841 } 4842 4843 /** 4844 * @param crc register containing existing CRC (32-bit) 4845 * @param buf register pointing to input byte buffer (byte*) 4846 * @param len register containing number of bytes 4847 * @param table register that will contain address of CRC table 4848 * @param tmp scratch register 4849 */ 4850 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len, 4851 Register table0, Register table1, Register table2, Register table3, 4852 Register tmp, Register tmp2, Register tmp3) { 4853 if (UseCryptoPmullForCRC32) { 4854 kernel_crc32c_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4855 } else { 4856 kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3); 4857 } 4858 } 4859 4860 void MacroAssembler::kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 4861 Register len, Register tmp0, Register tmp1, Register tmp2, size_t table_offset) { 4862 Label CRC_by128_loop; 4863 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4864 4865 sub(len, len, 256); 4866 Register table = tmp0; 4867 { 4868 uint64_t offset; 4869 adrp(table, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4870 add(table, table, offset); 4871 } 4872 add(table, table, table_offset); 4873 4874 // Registers v0..v7 are used as data registers. 4875 // Registers v16..v31 are used as tmp registers. 4876 sub(buf, buf, 0x10); 4877 ldrq(v0, Address(buf, 0x10)); 4878 ldrq(v1, Address(buf, 0x20)); 4879 ldrq(v2, Address(buf, 0x30)); 4880 ldrq(v3, Address(buf, 0x40)); 4881 ldrq(v4, Address(buf, 0x50)); 4882 ldrq(v5, Address(buf, 0x60)); 4883 ldrq(v6, Address(buf, 0x70)); 4884 ldrq(v7, Address(pre(buf, 0x80))); 4885 4886 movi(v31, T4S, 0); 4887 mov(v31, S, 0, crc); 4888 eor(v0, T16B, v0, v31); 4889 4890 // Register v16 contains constants from the crc table. 4891 ldrq(v16, Address(table)); 4892 b(CRC_by128_loop); 4893 4894 align(OptoLoopAlignment); 4895 BIND(CRC_by128_loop); 4896 pmull (v17, T1Q, v0, v16, T1D); 4897 pmull2(v18, T1Q, v0, v16, T2D); 4898 ldrq(v0, Address(buf, 0x10)); 4899 eor3(v0, T16B, v17, v18, v0); 4900 4901 pmull (v19, T1Q, v1, v16, T1D); 4902 pmull2(v20, T1Q, v1, v16, T2D); 4903 ldrq(v1, Address(buf, 0x20)); 4904 eor3(v1, T16B, v19, v20, v1); 4905 4906 pmull (v21, T1Q, v2, v16, T1D); 4907 pmull2(v22, T1Q, v2, v16, T2D); 4908 ldrq(v2, Address(buf, 0x30)); 4909 eor3(v2, T16B, v21, v22, v2); 4910 4911 pmull (v23, T1Q, v3, v16, T1D); 4912 pmull2(v24, T1Q, v3, v16, T2D); 4913 ldrq(v3, Address(buf, 0x40)); 4914 eor3(v3, T16B, v23, v24, v3); 4915 4916 pmull (v25, T1Q, v4, v16, T1D); 4917 pmull2(v26, T1Q, v4, v16, T2D); 4918 ldrq(v4, Address(buf, 0x50)); 4919 eor3(v4, T16B, v25, v26, v4); 4920 4921 pmull (v27, T1Q, v5, v16, T1D); 4922 pmull2(v28, T1Q, v5, v16, T2D); 4923 ldrq(v5, Address(buf, 0x60)); 4924 eor3(v5, T16B, v27, v28, v5); 4925 4926 pmull (v29, T1Q, v6, v16, T1D); 4927 pmull2(v30, T1Q, v6, v16, T2D); 4928 ldrq(v6, Address(buf, 0x70)); 4929 eor3(v6, T16B, v29, v30, v6); 4930 4931 // Reuse registers v23, v24. 4932 // Using them won't block the first instruction of the next iteration. 4933 pmull (v23, T1Q, v7, v16, T1D); 4934 pmull2(v24, T1Q, v7, v16, T2D); 4935 ldrq(v7, Address(pre(buf, 0x80))); 4936 eor3(v7, T16B, v23, v24, v7); 4937 4938 subs(len, len, 0x80); 4939 br(Assembler::GE, CRC_by128_loop); 4940 4941 // fold into 512 bits 4942 // Use v31 for constants because v16 can be still in use. 4943 ldrq(v31, Address(table, 0x10)); 4944 4945 pmull (v17, T1Q, v0, v31, T1D); 4946 pmull2(v18, T1Q, v0, v31, T2D); 4947 eor3(v0, T16B, v17, v18, v4); 4948 4949 pmull (v19, T1Q, v1, v31, T1D); 4950 pmull2(v20, T1Q, v1, v31, T2D); 4951 eor3(v1, T16B, v19, v20, v5); 4952 4953 pmull (v21, T1Q, v2, v31, T1D); 4954 pmull2(v22, T1Q, v2, v31, T2D); 4955 eor3(v2, T16B, v21, v22, v6); 4956 4957 pmull (v23, T1Q, v3, v31, T1D); 4958 pmull2(v24, T1Q, v3, v31, T2D); 4959 eor3(v3, T16B, v23, v24, v7); 4960 4961 // fold into 128 bits 4962 // Use v17 for constants because v31 can be still in use. 4963 ldrq(v17, Address(table, 0x20)); 4964 pmull (v25, T1Q, v0, v17, T1D); 4965 pmull2(v26, T1Q, v0, v17, T2D); 4966 eor3(v3, T16B, v3, v25, v26); 4967 4968 // Use v18 for constants because v17 can be still in use. 4969 ldrq(v18, Address(table, 0x30)); 4970 pmull (v27, T1Q, v1, v18, T1D); 4971 pmull2(v28, T1Q, v1, v18, T2D); 4972 eor3(v3, T16B, v3, v27, v28); 4973 4974 // Use v19 for constants because v18 can be still in use. 4975 ldrq(v19, Address(table, 0x40)); 4976 pmull (v29, T1Q, v2, v19, T1D); 4977 pmull2(v30, T1Q, v2, v19, T2D); 4978 eor3(v0, T16B, v3, v29, v30); 4979 4980 add(len, len, 0x80); 4981 add(buf, buf, 0x10); 4982 4983 mov(tmp0, v0, D, 0); 4984 mov(tmp1, v0, D, 1); 4985 } 4986 4987 void MacroAssembler::addptr(const Address &dst, int32_t src) { 4988 Address adr; 4989 switch(dst.getMode()) { 4990 case Address::base_plus_offset: 4991 // This is the expected mode, although we allow all the other 4992 // forms below. 4993 adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord); 4994 break; 4995 default: 4996 lea(rscratch2, dst); 4997 adr = Address(rscratch2); 4998 break; 4999 } 5000 ldr(rscratch1, adr); 5001 add(rscratch1, rscratch1, src); 5002 str(rscratch1, adr); 5003 } 5004 5005 void MacroAssembler::cmpptr(Register src1, Address src2) { 5006 uint64_t offset; 5007 adrp(rscratch1, src2, offset); 5008 ldr(rscratch1, Address(rscratch1, offset)); 5009 cmp(src1, rscratch1); 5010 } 5011 5012 void MacroAssembler::cmpoop(Register obj1, Register obj2) { 5013 cmp(obj1, obj2); 5014 } 5015 5016 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 5017 load_method_holder(rresult, rmethod); 5018 ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 5019 } 5020 5021 void MacroAssembler::load_method_holder(Register holder, Register method) { 5022 ldr(holder, Address(method, Method::const_offset())); // ConstMethod* 5023 ldr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 5024 ldr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 5025 } 5026 5027 // Loads the obj's Klass* into dst. 5028 // Preserves all registers (incl src, rscratch1 and rscratch2). 5029 // Input: 5030 // src - the oop we want to load the klass from. 5031 // dst - output narrow klass. 5032 void MacroAssembler::load_narrow_klass_compact(Register dst, Register src) { 5033 assert(UseCompactObjectHeaders, "expects UseCompactObjectHeaders"); 5034 ldr(dst, Address(src, oopDesc::mark_offset_in_bytes())); 5035 lsr(dst, dst, markWord::klass_shift); 5036 } 5037 5038 void MacroAssembler::load_klass(Register dst, Register src) { 5039 if (UseCompactObjectHeaders) { 5040 load_narrow_klass_compact(dst, src); 5041 decode_klass_not_null(dst); 5042 } else if (UseCompressedClassPointers) { 5043 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5044 decode_klass_not_null(dst); 5045 } else { 5046 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5047 } 5048 } 5049 5050 void MacroAssembler::restore_cpu_control_state_after_jni(Register tmp1, Register tmp2) { 5051 if (RestoreMXCSROnJNICalls) { 5052 Label OK; 5053 get_fpcr(tmp1); 5054 mov(tmp2, tmp1); 5055 // Set FPCR to the state we need. We do want Round to Nearest. We 5056 // don't want non-IEEE rounding modes or floating-point traps. 5057 bfi(tmp1, zr, 22, 4); // Clear DN, FZ, and Rmode 5058 bfi(tmp1, zr, 8, 5); // Clear exception-control bits (8-12) 5059 bfi(tmp1, zr, 0, 2); // Clear AH:FIZ 5060 eor(tmp2, tmp1, tmp2); 5061 cbz(tmp2, OK); // Only reset FPCR if it's wrong 5062 set_fpcr(tmp1); 5063 bind(OK); 5064 } 5065 } 5066 5067 // ((OopHandle)result).resolve(); 5068 void MacroAssembler::resolve_oop_handle(Register result, Register tmp1, Register tmp2) { 5069 // OopHandle::resolve is an indirection. 5070 access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp1, tmp2); 5071 } 5072 5073 // ((WeakHandle)result).resolve(); 5074 void MacroAssembler::resolve_weak_handle(Register result, Register tmp1, Register tmp2) { 5075 assert_different_registers(result, tmp1, tmp2); 5076 Label resolved; 5077 5078 // A null weak handle resolves to null. 5079 cbz(result, resolved); 5080 5081 // Only 64 bit platforms support GCs that require a tmp register 5082 // WeakHandle::resolve is an indirection like jweak. 5083 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 5084 result, Address(result), tmp1, tmp2); 5085 bind(resolved); 5086 } 5087 5088 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp1, Register tmp2) { 5089 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 5090 ldr(dst, Address(rmethod, Method::const_offset())); 5091 ldr(dst, Address(dst, ConstMethod::constants_offset())); 5092 ldr(dst, Address(dst, ConstantPool::pool_holder_offset())); 5093 ldr(dst, Address(dst, mirror_offset)); 5094 resolve_oop_handle(dst, tmp1, tmp2); 5095 } 5096 5097 void MacroAssembler::cmp_klass(Register obj, Register klass, Register tmp) { 5098 assert_different_registers(obj, klass, tmp); 5099 if (UseCompressedClassPointers) { 5100 if (UseCompactObjectHeaders) { 5101 load_narrow_klass_compact(tmp, obj); 5102 } else { 5103 ldrw(tmp, Address(obj, oopDesc::klass_offset_in_bytes())); 5104 } 5105 if (CompressedKlassPointers::base() == nullptr) { 5106 cmp(klass, tmp, LSL, CompressedKlassPointers::shift()); 5107 return; 5108 } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0 5109 && CompressedKlassPointers::shift() == 0) { 5110 // Only the bottom 32 bits matter 5111 cmpw(klass, tmp); 5112 return; 5113 } 5114 decode_klass_not_null(tmp); 5115 } else { 5116 ldr(tmp, Address(obj, oopDesc::klass_offset_in_bytes())); 5117 } 5118 cmp(klass, tmp); 5119 } 5120 5121 void MacroAssembler::cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2) { 5122 if (UseCompactObjectHeaders) { 5123 load_narrow_klass_compact(tmp1, obj1); 5124 load_narrow_klass_compact(tmp2, obj2); 5125 cmpw(tmp1, tmp2); 5126 } else if (UseCompressedClassPointers) { 5127 ldrw(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5128 ldrw(tmp2, Address(obj2, oopDesc::klass_offset_in_bytes())); 5129 cmpw(tmp1, tmp2); 5130 } else { 5131 ldr(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5132 ldr(tmp2, Address(obj2, oopDesc::klass_offset_in_bytes())); 5133 cmp(tmp1, tmp2); 5134 } 5135 } 5136 5137 void MacroAssembler::store_klass(Register dst, Register src) { 5138 // FIXME: Should this be a store release? concurrent gcs assumes 5139 // klass length is valid if klass field is not null. 5140 assert(!UseCompactObjectHeaders, "not with compact headers"); 5141 if (UseCompressedClassPointers) { 5142 encode_klass_not_null(src); 5143 strw(src, Address(dst, oopDesc::klass_offset_in_bytes())); 5144 } else { 5145 str(src, Address(dst, oopDesc::klass_offset_in_bytes())); 5146 } 5147 } 5148 5149 void MacroAssembler::store_klass_gap(Register dst, Register src) { 5150 assert(!UseCompactObjectHeaders, "not with compact headers"); 5151 if (UseCompressedClassPointers) { 5152 // Store to klass gap in destination 5153 strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes())); 5154 } 5155 } 5156 5157 // Algorithm must match CompressedOops::encode. 5158 void MacroAssembler::encode_heap_oop(Register d, Register s) { 5159 #ifdef ASSERT 5160 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 5161 #endif 5162 verify_oop_msg(s, "broken oop in encode_heap_oop"); 5163 if (CompressedOops::base() == nullptr) { 5164 if (CompressedOops::shift() != 0) { 5165 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5166 lsr(d, s, LogMinObjAlignmentInBytes); 5167 } else { 5168 mov(d, s); 5169 } 5170 } else { 5171 subs(d, s, rheapbase); 5172 csel(d, d, zr, Assembler::HS); 5173 lsr(d, d, LogMinObjAlignmentInBytes); 5174 5175 /* Old algorithm: is this any worse? 5176 Label nonnull; 5177 cbnz(r, nonnull); 5178 sub(r, r, rheapbase); 5179 bind(nonnull); 5180 lsr(r, r, LogMinObjAlignmentInBytes); 5181 */ 5182 } 5183 } 5184 5185 void MacroAssembler::encode_heap_oop_not_null(Register r) { 5186 #ifdef ASSERT 5187 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 5188 if (CheckCompressedOops) { 5189 Label ok; 5190 cbnz(r, ok); 5191 stop("null oop passed to encode_heap_oop_not_null"); 5192 bind(ok); 5193 } 5194 #endif 5195 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 5196 if (CompressedOops::base() != nullptr) { 5197 sub(r, r, rheapbase); 5198 } 5199 if (CompressedOops::shift() != 0) { 5200 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5201 lsr(r, r, LogMinObjAlignmentInBytes); 5202 } 5203 } 5204 5205 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 5206 #ifdef ASSERT 5207 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 5208 if (CheckCompressedOops) { 5209 Label ok; 5210 cbnz(src, ok); 5211 stop("null oop passed to encode_heap_oop_not_null2"); 5212 bind(ok); 5213 } 5214 #endif 5215 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 5216 5217 Register data = src; 5218 if (CompressedOops::base() != nullptr) { 5219 sub(dst, src, rheapbase); 5220 data = dst; 5221 } 5222 if (CompressedOops::shift() != 0) { 5223 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5224 lsr(dst, data, LogMinObjAlignmentInBytes); 5225 data = dst; 5226 } 5227 if (data == src) 5228 mov(dst, src); 5229 } 5230 5231 void MacroAssembler::decode_heap_oop(Register d, Register s) { 5232 #ifdef ASSERT 5233 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 5234 #endif 5235 if (CompressedOops::base() == nullptr) { 5236 if (CompressedOops::shift() != 0) { 5237 lsl(d, s, CompressedOops::shift()); 5238 } else if (d != s) { 5239 mov(d, s); 5240 } 5241 } else { 5242 Label done; 5243 if (d != s) 5244 mov(d, s); 5245 cbz(s, done); 5246 add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes); 5247 bind(done); 5248 } 5249 verify_oop_msg(d, "broken oop in decode_heap_oop"); 5250 } 5251 5252 void MacroAssembler::decode_heap_oop_not_null(Register r) { 5253 assert (UseCompressedOops, "should only be used for compressed headers"); 5254 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5255 // Cannot assert, unverified entry point counts instructions (see .ad file) 5256 // vtableStubs also counts instructions in pd_code_size_limit. 5257 // Also do not verify_oop as this is called by verify_oop. 5258 if (CompressedOops::shift() != 0) { 5259 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5260 if (CompressedOops::base() != nullptr) { 5261 add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5262 } else { 5263 add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5264 } 5265 } else { 5266 assert (CompressedOops::base() == nullptr, "sanity"); 5267 } 5268 } 5269 5270 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 5271 assert (UseCompressedOops, "should only be used for compressed headers"); 5272 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5273 // Cannot assert, unverified entry point counts instructions (see .ad file) 5274 // vtableStubs also counts instructions in pd_code_size_limit. 5275 // Also do not verify_oop as this is called by verify_oop. 5276 if (CompressedOops::shift() != 0) { 5277 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5278 if (CompressedOops::base() != nullptr) { 5279 add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5280 } else { 5281 add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5282 } 5283 } else { 5284 assert (CompressedOops::base() == nullptr, "sanity"); 5285 if (dst != src) { 5286 mov(dst, src); 5287 } 5288 } 5289 } 5290 5291 MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone); 5292 5293 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() { 5294 assert(UseCompressedClassPointers, "not using compressed class pointers"); 5295 assert(Metaspace::initialized(), "metaspace not initialized yet"); 5296 5297 if (_klass_decode_mode != KlassDecodeNone) { 5298 return _klass_decode_mode; 5299 } 5300 5301 if (CompressedKlassPointers::base() == nullptr) { 5302 return (_klass_decode_mode = KlassDecodeZero); 5303 } 5304 5305 if (operand_valid_for_logical_immediate( 5306 /*is32*/false, (uint64_t)CompressedKlassPointers::base())) { 5307 const size_t range = CompressedKlassPointers::klass_range_end() - CompressedKlassPointers::base(); 5308 const uint64_t range_mask = (1ULL << log2i(range)) - 1; 5309 if (((uint64_t)CompressedKlassPointers::base() & range_mask) == 0) { 5310 return (_klass_decode_mode = KlassDecodeXor); 5311 } 5312 } 5313 5314 const uint64_t shifted_base = 5315 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 5316 guarantee((shifted_base & 0xffff0000ffffffff) == 0, 5317 "compressed class base bad alignment"); 5318 5319 return (_klass_decode_mode = KlassDecodeMovk); 5320 } 5321 5322 void MacroAssembler::encode_klass_not_null(Register dst, Register src) { 5323 switch (klass_decode_mode()) { 5324 case KlassDecodeZero: 5325 if (CompressedKlassPointers::shift() != 0) { 5326 lsr(dst, src, CompressedKlassPointers::shift()); 5327 } else { 5328 if (dst != src) mov(dst, src); 5329 } 5330 break; 5331 5332 case KlassDecodeXor: 5333 if (CompressedKlassPointers::shift() != 0) { 5334 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5335 lsr(dst, dst, CompressedKlassPointers::shift()); 5336 } else { 5337 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5338 } 5339 break; 5340 5341 case KlassDecodeMovk: 5342 if (CompressedKlassPointers::shift() != 0) { 5343 ubfx(dst, src, CompressedKlassPointers::shift(), 32); 5344 } else { 5345 movw(dst, src); 5346 } 5347 break; 5348 5349 case KlassDecodeNone: 5350 ShouldNotReachHere(); 5351 break; 5352 } 5353 } 5354 5355 void MacroAssembler::encode_klass_not_null(Register r) { 5356 encode_klass_not_null(r, r); 5357 } 5358 5359 void MacroAssembler::decode_klass_not_null(Register dst, Register src) { 5360 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5361 5362 switch (klass_decode_mode()) { 5363 case KlassDecodeZero: 5364 if (CompressedKlassPointers::shift() != 0) { 5365 lsl(dst, src, CompressedKlassPointers::shift()); 5366 } else { 5367 if (dst != src) mov(dst, src); 5368 } 5369 break; 5370 5371 case KlassDecodeXor: 5372 if (CompressedKlassPointers::shift() != 0) { 5373 lsl(dst, src, CompressedKlassPointers::shift()); 5374 eor(dst, dst, (uint64_t)CompressedKlassPointers::base()); 5375 } else { 5376 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5377 } 5378 break; 5379 5380 case KlassDecodeMovk: { 5381 const uint64_t shifted_base = 5382 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 5383 5384 if (dst != src) movw(dst, src); 5385 movk(dst, shifted_base >> 32, 32); 5386 5387 if (CompressedKlassPointers::shift() != 0) { 5388 lsl(dst, dst, CompressedKlassPointers::shift()); 5389 } 5390 5391 break; 5392 } 5393 5394 case KlassDecodeNone: 5395 ShouldNotReachHere(); 5396 break; 5397 } 5398 } 5399 5400 void MacroAssembler::decode_klass_not_null(Register r) { 5401 decode_klass_not_null(r, r); 5402 } 5403 5404 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 5405 #ifdef ASSERT 5406 { 5407 ThreadInVMfromUnknown tiv; 5408 assert (UseCompressedOops, "should only be used for compressed oops"); 5409 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5410 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5411 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5412 } 5413 #endif 5414 int oop_index = oop_recorder()->find_index(obj); 5415 InstructionMark im(this); 5416 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5417 code_section()->relocate(inst_mark(), rspec); 5418 movz(dst, 0xDEAD, 16); 5419 movk(dst, 0xBEEF); 5420 } 5421 5422 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 5423 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5424 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5425 int index = oop_recorder()->find_index(k); 5426 assert(! Universe::heap()->is_in(k), "should not be an oop"); 5427 5428 InstructionMark im(this); 5429 RelocationHolder rspec = metadata_Relocation::spec(index); 5430 code_section()->relocate(inst_mark(), rspec); 5431 narrowKlass nk = CompressedKlassPointers::encode(k); 5432 movz(dst, (nk >> 16), 16); 5433 movk(dst, nk & 0xffff); 5434 } 5435 5436 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, 5437 Register dst, Address src, 5438 Register tmp1, Register tmp2) { 5439 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5440 decorators = AccessInternal::decorator_fixup(decorators, type); 5441 bool as_raw = (decorators & AS_RAW) != 0; 5442 if (as_raw) { 5443 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2); 5444 } else { 5445 bs->load_at(this, decorators, type, dst, src, tmp1, tmp2); 5446 } 5447 } 5448 5449 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, 5450 Address dst, Register val, 5451 Register tmp1, Register tmp2, Register tmp3) { 5452 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5453 decorators = AccessInternal::decorator_fixup(decorators, type); 5454 bool as_raw = (decorators & AS_RAW) != 0; 5455 if (as_raw) { 5456 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5457 } else { 5458 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5459 } 5460 } 5461 5462 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 5463 Register tmp2, DecoratorSet decorators) { 5464 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2); 5465 } 5466 5467 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 5468 Register tmp2, DecoratorSet decorators) { 5469 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2); 5470 } 5471 5472 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 5473 Register tmp2, Register tmp3, DecoratorSet decorators) { 5474 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 5475 } 5476 5477 // Used for storing nulls. 5478 void MacroAssembler::store_heap_oop_null(Address dst) { 5479 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 5480 } 5481 5482 Address MacroAssembler::allocate_metadata_address(Metadata* obj) { 5483 assert(oop_recorder() != nullptr, "this assembler needs a Recorder"); 5484 int index = oop_recorder()->allocate_metadata_index(obj); 5485 RelocationHolder rspec = metadata_Relocation::spec(index); 5486 return Address((address)obj, rspec); 5487 } 5488 5489 // Move an oop into a register. 5490 void MacroAssembler::movoop(Register dst, jobject obj) { 5491 int oop_index; 5492 if (obj == nullptr) { 5493 oop_index = oop_recorder()->allocate_oop_index(obj); 5494 } else { 5495 #ifdef ASSERT 5496 { 5497 ThreadInVMfromUnknown tiv; 5498 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5499 } 5500 #endif 5501 oop_index = oop_recorder()->find_index(obj); 5502 } 5503 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5504 5505 if (BarrierSet::barrier_set()->barrier_set_assembler()->supports_instruction_patching()) { 5506 mov(dst, Address((address)obj, rspec)); 5507 } else { 5508 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address 5509 ldr_constant(dst, Address(dummy, rspec)); 5510 } 5511 5512 } 5513 5514 // Move a metadata address into a register. 5515 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 5516 int oop_index; 5517 if (obj == nullptr) { 5518 oop_index = oop_recorder()->allocate_metadata_index(obj); 5519 } else { 5520 oop_index = oop_recorder()->find_index(obj); 5521 } 5522 RelocationHolder rspec = metadata_Relocation::spec(oop_index); 5523 mov(dst, Address((address)obj, rspec)); 5524 } 5525 5526 Address MacroAssembler::constant_oop_address(jobject obj) { 5527 #ifdef ASSERT 5528 { 5529 ThreadInVMfromUnknown tiv; 5530 assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5531 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop"); 5532 } 5533 #endif 5534 int oop_index = oop_recorder()->find_index(obj); 5535 return Address((address)obj, oop_Relocation::spec(oop_index)); 5536 } 5537 5538 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 5539 void MacroAssembler::tlab_allocate(Register obj, 5540 Register var_size_in_bytes, 5541 int con_size_in_bytes, 5542 Register t1, 5543 Register t2, 5544 Label& slow_case) { 5545 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5546 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 5547 } 5548 5549 void MacroAssembler::inc_held_monitor_count(Register tmp) { 5550 Address dst(rthread, JavaThread::held_monitor_count_offset()); 5551 #ifdef ASSERT 5552 ldr(tmp, dst); 5553 increment(tmp); 5554 str(tmp, dst); 5555 Label ok; 5556 tbz(tmp, 63, ok); 5557 STOP("assert(held monitor count underflow)"); 5558 should_not_reach_here(); 5559 bind(ok); 5560 #else 5561 increment(dst); 5562 #endif 5563 } 5564 5565 void MacroAssembler::dec_held_monitor_count(Register tmp) { 5566 Address dst(rthread, JavaThread::held_monitor_count_offset()); 5567 #ifdef ASSERT 5568 ldr(tmp, dst); 5569 decrement(tmp); 5570 str(tmp, dst); 5571 Label ok; 5572 tbz(tmp, 63, ok); 5573 STOP("assert(held monitor count underflow)"); 5574 should_not_reach_here(); 5575 bind(ok); 5576 #else 5577 decrement(dst); 5578 #endif 5579 } 5580 5581 void MacroAssembler::verify_tlab() { 5582 #ifdef ASSERT 5583 if (UseTLAB && VerifyOops) { 5584 Label next, ok; 5585 5586 stp(rscratch2, rscratch1, Address(pre(sp, -16))); 5587 5588 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5589 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 5590 cmp(rscratch2, rscratch1); 5591 br(Assembler::HS, next); 5592 STOP("assert(top >= start)"); 5593 should_not_reach_here(); 5594 5595 bind(next); 5596 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 5597 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5598 cmp(rscratch2, rscratch1); 5599 br(Assembler::HS, ok); 5600 STOP("assert(top <= end)"); 5601 should_not_reach_here(); 5602 5603 bind(ok); 5604 ldp(rscratch2, rscratch1, Address(post(sp, 16))); 5605 } 5606 #endif 5607 } 5608 5609 // Writes to stack successive pages until offset reached to check for 5610 // stack overflow + shadow pages. This clobbers tmp. 5611 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 5612 assert_different_registers(tmp, size, rscratch1); 5613 mov(tmp, sp); 5614 // Bang stack for total size given plus shadow page size. 5615 // Bang one page at a time because large size can bang beyond yellow and 5616 // red zones. 5617 Label loop; 5618 mov(rscratch1, (int)os::vm_page_size()); 5619 bind(loop); 5620 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5621 subsw(size, size, rscratch1); 5622 str(size, Address(tmp)); 5623 br(Assembler::GT, loop); 5624 5625 // Bang down shadow pages too. 5626 // At this point, (tmp-0) is the last address touched, so don't 5627 // touch it again. (It was touched as (tmp-pagesize) but then tmp 5628 // was post-decremented.) Skip this address by starting at i=1, and 5629 // touch a few more pages below. N.B. It is important to touch all 5630 // the way down to and including i=StackShadowPages. 5631 for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()) - 1; i++) { 5632 // this could be any sized move but this is can be a debugging crumb 5633 // so the bigger the better. 5634 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5635 str(size, Address(tmp)); 5636 } 5637 } 5638 5639 // Move the address of the polling page into dest. 5640 void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) { 5641 ldr(dest, Address(rthread, JavaThread::polling_page_offset())); 5642 } 5643 5644 // Read the polling page. The address of the polling page must 5645 // already be in r. 5646 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) { 5647 address mark; 5648 { 5649 InstructionMark im(this); 5650 code_section()->relocate(inst_mark(), rtype); 5651 ldrw(zr, Address(r, 0)); 5652 mark = inst_mark(); 5653 } 5654 verify_cross_modify_fence_not_required(); 5655 return mark; 5656 } 5657 5658 void MacroAssembler::adrp(Register reg1, const Address &dest, uint64_t &byte_offset) { 5659 relocInfo::relocType rtype = dest.rspec().reloc()->type(); 5660 uint64_t low_page = (uint64_t)CodeCache::low_bound() >> 12; 5661 uint64_t high_page = (uint64_t)(CodeCache::high_bound()-1) >> 12; 5662 uint64_t dest_page = (uint64_t)dest.target() >> 12; 5663 int64_t offset_low = dest_page - low_page; 5664 int64_t offset_high = dest_page - high_page; 5665 5666 assert(is_valid_AArch64_address(dest.target()), "bad address"); 5667 assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address"); 5668 5669 InstructionMark im(this); 5670 code_section()->relocate(inst_mark(), dest.rspec()); 5671 // 8143067: Ensure that the adrp can reach the dest from anywhere within 5672 // the code cache so that if it is relocated we know it will still reach 5673 if (offset_high >= -(1<<20) && offset_low < (1<<20)) { 5674 _adrp(reg1, dest.target()); 5675 } else { 5676 uint64_t target = (uint64_t)dest.target(); 5677 uint64_t adrp_target 5678 = (target & 0xffffffffULL) | ((uint64_t)pc() & 0xffff00000000ULL); 5679 5680 _adrp(reg1, (address)adrp_target); 5681 movk(reg1, target >> 32, 32); 5682 } 5683 byte_offset = (uint64_t)dest.target() & 0xfff; 5684 } 5685 5686 void MacroAssembler::load_byte_map_base(Register reg) { 5687 CardTable::CardValue* byte_map_base = 5688 ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base(); 5689 5690 // Strictly speaking the byte_map_base isn't an address at all, and it might 5691 // even be negative. It is thus materialised as a constant. 5692 mov(reg, (uint64_t)byte_map_base); 5693 } 5694 5695 void MacroAssembler::build_frame(int framesize) { 5696 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5697 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5698 protect_return_address(); 5699 if (framesize < ((1 << 9) + 2 * wordSize)) { 5700 sub(sp, sp, framesize); 5701 stp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5702 if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize); 5703 } else { 5704 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 5705 if (PreserveFramePointer) mov(rfp, sp); 5706 if (framesize < ((1 << 12) + 2 * wordSize)) 5707 sub(sp, sp, framesize - 2 * wordSize); 5708 else { 5709 mov(rscratch1, framesize - 2 * wordSize); 5710 sub(sp, sp, rscratch1); 5711 } 5712 } 5713 verify_cross_modify_fence_not_required(); 5714 } 5715 5716 void MacroAssembler::remove_frame(int framesize) { 5717 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5718 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5719 if (framesize < ((1 << 9) + 2 * wordSize)) { 5720 ldp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5721 add(sp, sp, framesize); 5722 } else { 5723 if (framesize < ((1 << 12) + 2 * wordSize)) 5724 add(sp, sp, framesize - 2 * wordSize); 5725 else { 5726 mov(rscratch1, framesize - 2 * wordSize); 5727 add(sp, sp, rscratch1); 5728 } 5729 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 5730 } 5731 authenticate_return_address(); 5732 } 5733 5734 5735 // This method counts leading positive bytes (highest bit not set) in provided byte array 5736 address MacroAssembler::count_positives(Register ary1, Register len, Register result) { 5737 // Simple and most common case of aligned small array which is not at the 5738 // end of memory page is placed here. All other cases are in stub. 5739 Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE; 5740 const uint64_t UPPER_BIT_MASK=0x8080808080808080; 5741 assert_different_registers(ary1, len, result); 5742 5743 mov(result, len); 5744 cmpw(len, 0); 5745 br(LE, DONE); 5746 cmpw(len, 4 * wordSize); 5747 br(GE, STUB_LONG); // size > 32 then go to stub 5748 5749 int shift = 64 - exact_log2(os::vm_page_size()); 5750 lsl(rscratch1, ary1, shift); 5751 mov(rscratch2, (size_t)(4 * wordSize) << shift); 5752 adds(rscratch2, rscratch1, rscratch2); // At end of page? 5753 br(CS, STUB); // at the end of page then go to stub 5754 subs(len, len, wordSize); 5755 br(LT, END); 5756 5757 BIND(LOOP); 5758 ldr(rscratch1, Address(post(ary1, wordSize))); 5759 tst(rscratch1, UPPER_BIT_MASK); 5760 br(NE, SET_RESULT); 5761 subs(len, len, wordSize); 5762 br(GE, LOOP); 5763 cmpw(len, -wordSize); 5764 br(EQ, DONE); 5765 5766 BIND(END); 5767 ldr(rscratch1, Address(ary1)); 5768 sub(rscratch2, zr, len, LSL, 3); // LSL 3 is to get bits from bytes 5769 lslv(rscratch1, rscratch1, rscratch2); 5770 tst(rscratch1, UPPER_BIT_MASK); 5771 br(NE, SET_RESULT); 5772 b(DONE); 5773 5774 BIND(STUB); 5775 RuntimeAddress count_pos = RuntimeAddress(StubRoutines::aarch64::count_positives()); 5776 assert(count_pos.target() != nullptr, "count_positives stub has not been generated"); 5777 address tpc1 = trampoline_call(count_pos); 5778 if (tpc1 == nullptr) { 5779 DEBUG_ONLY(reset_labels(STUB_LONG, SET_RESULT, DONE)); 5780 postcond(pc() == badAddress); 5781 return nullptr; 5782 } 5783 b(DONE); 5784 5785 BIND(STUB_LONG); 5786 RuntimeAddress count_pos_long = RuntimeAddress(StubRoutines::aarch64::count_positives_long()); 5787 assert(count_pos_long.target() != nullptr, "count_positives_long stub has not been generated"); 5788 address tpc2 = trampoline_call(count_pos_long); 5789 if (tpc2 == nullptr) { 5790 DEBUG_ONLY(reset_labels(SET_RESULT, DONE)); 5791 postcond(pc() == badAddress); 5792 return nullptr; 5793 } 5794 b(DONE); 5795 5796 BIND(SET_RESULT); 5797 5798 add(len, len, wordSize); 5799 sub(result, result, len); 5800 5801 BIND(DONE); 5802 postcond(pc() != badAddress); 5803 return pc(); 5804 } 5805 5806 // Clobbers: rscratch1, rscratch2, rflags 5807 // May also clobber v0-v7 when (!UseSimpleArrayEquals && UseSIMDForArrayEquals) 5808 address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3, 5809 Register tmp4, Register tmp5, Register result, 5810 Register cnt1, int elem_size) { 5811 Label DONE, SAME; 5812 Register tmp1 = rscratch1; 5813 Register tmp2 = rscratch2; 5814 int elem_per_word = wordSize/elem_size; 5815 int log_elem_size = exact_log2(elem_size); 5816 int klass_offset = arrayOopDesc::klass_offset_in_bytes(); 5817 int length_offset = arrayOopDesc::length_offset_in_bytes(); 5818 int base_offset 5819 = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE); 5820 // When the length offset is not aligned to 8 bytes, 5821 // then we align it down. This is valid because the new 5822 // offset will always be the klass which is the same 5823 // for type arrays. 5824 int start_offset = align_down(length_offset, BytesPerWord); 5825 int extra_length = base_offset - start_offset; 5826 assert(start_offset == length_offset || start_offset == klass_offset, 5827 "start offset must be 8-byte-aligned or be the klass offset"); 5828 assert(base_offset != start_offset, "must include the length field"); 5829 extra_length = extra_length / elem_size; // We count in elements, not bytes. 5830 int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16); 5831 5832 assert(elem_size == 1 || elem_size == 2, "must be char or byte"); 5833 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 5834 5835 #ifndef PRODUCT 5836 { 5837 const char kind = (elem_size == 2) ? 'U' : 'L'; 5838 char comment[64]; 5839 snprintf(comment, sizeof comment, "array_equals%c{", kind); 5840 BLOCK_COMMENT(comment); 5841 } 5842 #endif 5843 5844 // if (a1 == a2) 5845 // return true; 5846 cmpoop(a1, a2); // May have read barriers for a1 and a2. 5847 br(EQ, SAME); 5848 5849 if (UseSimpleArrayEquals) { 5850 Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL; 5851 // if (a1 == nullptr || a2 == nullptr) 5852 // return false; 5853 // a1 & a2 == 0 means (some-pointer is null) or 5854 // (very-rare-or-even-probably-impossible-pointer-values) 5855 // so, we can save one branch in most cases 5856 tst(a1, a2); 5857 mov(result, false); 5858 br(EQ, A_MIGHT_BE_NULL); 5859 // if (a1.length != a2.length) 5860 // return false; 5861 bind(A_IS_NOT_NULL); 5862 ldrw(cnt1, Address(a1, length_offset)); 5863 // Increase loop counter by diff between base- and actual start-offset. 5864 addw(cnt1, cnt1, extra_length); 5865 lea(a1, Address(a1, start_offset)); 5866 lea(a2, Address(a2, start_offset)); 5867 // Check for short strings, i.e. smaller than wordSize. 5868 subs(cnt1, cnt1, elem_per_word); 5869 br(Assembler::LT, SHORT); 5870 // Main 8 byte comparison loop. 5871 bind(NEXT_WORD); { 5872 ldr(tmp1, Address(post(a1, wordSize))); 5873 ldr(tmp2, Address(post(a2, wordSize))); 5874 subs(cnt1, cnt1, elem_per_word); 5875 eor(tmp5, tmp1, tmp2); 5876 cbnz(tmp5, DONE); 5877 } br(GT, NEXT_WORD); 5878 // Last longword. In the case where length == 4 we compare the 5879 // same longword twice, but that's still faster than another 5880 // conditional branch. 5881 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 5882 // length == 4. 5883 if (log_elem_size > 0) 5884 lsl(cnt1, cnt1, log_elem_size); 5885 ldr(tmp3, Address(a1, cnt1)); 5886 ldr(tmp4, Address(a2, cnt1)); 5887 eor(tmp5, tmp3, tmp4); 5888 cbnz(tmp5, DONE); 5889 b(SAME); 5890 bind(A_MIGHT_BE_NULL); 5891 // in case both a1 and a2 are not-null, proceed with loads 5892 cbz(a1, DONE); 5893 cbz(a2, DONE); 5894 b(A_IS_NOT_NULL); 5895 bind(SHORT); 5896 5897 tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left. 5898 { 5899 ldrw(tmp1, Address(post(a1, 4))); 5900 ldrw(tmp2, Address(post(a2, 4))); 5901 eorw(tmp5, tmp1, tmp2); 5902 cbnzw(tmp5, DONE); 5903 } 5904 bind(TAIL03); 5905 tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left. 5906 { 5907 ldrh(tmp3, Address(post(a1, 2))); 5908 ldrh(tmp4, Address(post(a2, 2))); 5909 eorw(tmp5, tmp3, tmp4); 5910 cbnzw(tmp5, DONE); 5911 } 5912 bind(TAIL01); 5913 if (elem_size == 1) { // Only needed when comparing byte arrays. 5914 tbz(cnt1, 0, SAME); // 0-1 bytes left. 5915 { 5916 ldrb(tmp1, a1); 5917 ldrb(tmp2, a2); 5918 eorw(tmp5, tmp1, tmp2); 5919 cbnzw(tmp5, DONE); 5920 } 5921 } 5922 } else { 5923 Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB, 5924 CSET_EQ, LAST_CHECK; 5925 mov(result, false); 5926 cbz(a1, DONE); 5927 ldrw(cnt1, Address(a1, length_offset)); 5928 cbz(a2, DONE); 5929 // Increase loop counter by diff between base- and actual start-offset. 5930 addw(cnt1, cnt1, extra_length); 5931 5932 // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's 5933 // faster to perform another branch before comparing a1 and a2 5934 cmp(cnt1, (u1)elem_per_word); 5935 br(LE, SHORT); // short or same 5936 ldr(tmp3, Address(pre(a1, start_offset))); 5937 subs(zr, cnt1, stubBytesThreshold); 5938 br(GE, STUB); 5939 ldr(tmp4, Address(pre(a2, start_offset))); 5940 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 5941 5942 // Main 16 byte comparison loop with 2 exits 5943 bind(NEXT_DWORD); { 5944 ldr(tmp1, Address(pre(a1, wordSize))); 5945 ldr(tmp2, Address(pre(a2, wordSize))); 5946 subs(cnt1, cnt1, 2 * elem_per_word); 5947 br(LE, TAIL); 5948 eor(tmp4, tmp3, tmp4); 5949 cbnz(tmp4, DONE); 5950 ldr(tmp3, Address(pre(a1, wordSize))); 5951 ldr(tmp4, Address(pre(a2, wordSize))); 5952 cmp(cnt1, (u1)elem_per_word); 5953 br(LE, TAIL2); 5954 cmp(tmp1, tmp2); 5955 } br(EQ, NEXT_DWORD); 5956 b(DONE); 5957 5958 bind(TAIL); 5959 eor(tmp4, tmp3, tmp4); 5960 eor(tmp2, tmp1, tmp2); 5961 lslv(tmp2, tmp2, tmp5); 5962 orr(tmp5, tmp4, tmp2); 5963 cmp(tmp5, zr); 5964 b(CSET_EQ); 5965 5966 bind(TAIL2); 5967 eor(tmp2, tmp1, tmp2); 5968 cbnz(tmp2, DONE); 5969 b(LAST_CHECK); 5970 5971 bind(STUB); 5972 ldr(tmp4, Address(pre(a2, start_offset))); 5973 if (elem_size == 2) { // convert to byte counter 5974 lsl(cnt1, cnt1, 1); 5975 } 5976 eor(tmp5, tmp3, tmp4); 5977 cbnz(tmp5, DONE); 5978 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals()); 5979 assert(stub.target() != nullptr, "array_equals_long stub has not been generated"); 5980 address tpc = trampoline_call(stub); 5981 if (tpc == nullptr) { 5982 DEBUG_ONLY(reset_labels(SHORT, LAST_CHECK, CSET_EQ, SAME, DONE)); 5983 postcond(pc() == badAddress); 5984 return nullptr; 5985 } 5986 b(DONE); 5987 5988 // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2) 5989 // so, if a2 == null => return false(0), else return true, so we can return a2 5990 mov(result, a2); 5991 b(DONE); 5992 bind(SHORT); 5993 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 5994 ldr(tmp3, Address(a1, start_offset)); 5995 ldr(tmp4, Address(a2, start_offset)); 5996 bind(LAST_CHECK); 5997 eor(tmp4, tmp3, tmp4); 5998 lslv(tmp5, tmp4, tmp5); 5999 cmp(tmp5, zr); 6000 bind(CSET_EQ); 6001 cset(result, EQ); 6002 b(DONE); 6003 } 6004 6005 bind(SAME); 6006 mov(result, true); 6007 // That's it. 6008 bind(DONE); 6009 6010 BLOCK_COMMENT("} array_equals"); 6011 postcond(pc() != badAddress); 6012 return pc(); 6013 } 6014 6015 // Compare Strings 6016 6017 // For Strings we're passed the address of the first characters in a1 6018 // and a2 and the length in cnt1. 6019 // There are two implementations. For arrays >= 8 bytes, all 6020 // comparisons (including the final one, which may overlap) are 6021 // performed 8 bytes at a time. For strings < 8 bytes, we compare a 6022 // halfword, then a short, and then a byte. 6023 6024 void MacroAssembler::string_equals(Register a1, Register a2, 6025 Register result, Register cnt1) 6026 { 6027 Label SAME, DONE, SHORT, NEXT_WORD; 6028 Register tmp1 = rscratch1; 6029 Register tmp2 = rscratch2; 6030 Register cnt2 = tmp2; // cnt2 only used in array length compare 6031 6032 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 6033 6034 #ifndef PRODUCT 6035 { 6036 char comment[64]; 6037 snprintf(comment, sizeof comment, "{string_equalsL"); 6038 BLOCK_COMMENT(comment); 6039 } 6040 #endif 6041 6042 mov(result, false); 6043 6044 // Check for short strings, i.e. smaller than wordSize. 6045 subs(cnt1, cnt1, wordSize); 6046 br(Assembler::LT, SHORT); 6047 // Main 8 byte comparison loop. 6048 bind(NEXT_WORD); { 6049 ldr(tmp1, Address(post(a1, wordSize))); 6050 ldr(tmp2, Address(post(a2, wordSize))); 6051 subs(cnt1, cnt1, wordSize); 6052 eor(tmp1, tmp1, tmp2); 6053 cbnz(tmp1, DONE); 6054 } br(GT, NEXT_WORD); 6055 // Last longword. In the case where length == 4 we compare the 6056 // same longword twice, but that's still faster than another 6057 // conditional branch. 6058 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 6059 // length == 4. 6060 ldr(tmp1, Address(a1, cnt1)); 6061 ldr(tmp2, Address(a2, cnt1)); 6062 eor(tmp2, tmp1, tmp2); 6063 cbnz(tmp2, DONE); 6064 b(SAME); 6065 6066 bind(SHORT); 6067 Label TAIL03, TAIL01; 6068 6069 tbz(cnt1, 2, TAIL03); // 0-7 bytes left. 6070 { 6071 ldrw(tmp1, Address(post(a1, 4))); 6072 ldrw(tmp2, Address(post(a2, 4))); 6073 eorw(tmp1, tmp1, tmp2); 6074 cbnzw(tmp1, DONE); 6075 } 6076 bind(TAIL03); 6077 tbz(cnt1, 1, TAIL01); // 0-3 bytes left. 6078 { 6079 ldrh(tmp1, Address(post(a1, 2))); 6080 ldrh(tmp2, Address(post(a2, 2))); 6081 eorw(tmp1, tmp1, tmp2); 6082 cbnzw(tmp1, DONE); 6083 } 6084 bind(TAIL01); 6085 tbz(cnt1, 0, SAME); // 0-1 bytes left. 6086 { 6087 ldrb(tmp1, a1); 6088 ldrb(tmp2, a2); 6089 eorw(tmp1, tmp1, tmp2); 6090 cbnzw(tmp1, DONE); 6091 } 6092 // Arrays are equal. 6093 bind(SAME); 6094 mov(result, true); 6095 6096 // That's it. 6097 bind(DONE); 6098 BLOCK_COMMENT("} string_equals"); 6099 } 6100 6101 6102 // The size of the blocks erased by the zero_blocks stub. We must 6103 // handle anything smaller than this ourselves in zero_words(). 6104 const int MacroAssembler::zero_words_block_size = 8; 6105 6106 // zero_words() is used by C2 ClearArray patterns and by 6107 // C1_MacroAssembler. It is as small as possible, handling small word 6108 // counts locally and delegating anything larger to the zero_blocks 6109 // stub. It is expanded many times in compiled code, so it is 6110 // important to keep it short. 6111 6112 // ptr: Address of a buffer to be zeroed. 6113 // cnt: Count in HeapWords. 6114 // 6115 // ptr, cnt, rscratch1, and rscratch2 are clobbered. 6116 address MacroAssembler::zero_words(Register ptr, Register cnt) 6117 { 6118 assert(is_power_of_2(zero_words_block_size), "adjust this"); 6119 6120 BLOCK_COMMENT("zero_words {"); 6121 assert(ptr == r10 && cnt == r11, "mismatch in register usage"); 6122 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 6123 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 6124 6125 subs(rscratch1, cnt, zero_words_block_size); 6126 Label around; 6127 br(LO, around); 6128 { 6129 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 6130 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 6131 // Make sure this is a C2 compilation. C1 allocates space only for 6132 // trampoline stubs generated by Call LIR ops, and in any case it 6133 // makes sense for a C1 compilation task to proceed as quickly as 6134 // possible. 6135 CompileTask* task; 6136 if (StubRoutines::aarch64::complete() 6137 && Thread::current()->is_Compiler_thread() 6138 && (task = ciEnv::current()->task()) 6139 && is_c2_compile(task->comp_level())) { 6140 address tpc = trampoline_call(zero_blocks); 6141 if (tpc == nullptr) { 6142 DEBUG_ONLY(reset_labels(around)); 6143 return nullptr; 6144 } 6145 } else { 6146 far_call(zero_blocks); 6147 } 6148 } 6149 bind(around); 6150 6151 // We have a few words left to do. zero_blocks has adjusted r10 and r11 6152 // for us. 6153 for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) { 6154 Label l; 6155 tbz(cnt, exact_log2(i), l); 6156 for (int j = 0; j < i; j += 2) { 6157 stp(zr, zr, post(ptr, 2 * BytesPerWord)); 6158 } 6159 bind(l); 6160 } 6161 { 6162 Label l; 6163 tbz(cnt, 0, l); 6164 str(zr, Address(ptr)); 6165 bind(l); 6166 } 6167 6168 BLOCK_COMMENT("} zero_words"); 6169 return pc(); 6170 } 6171 6172 // base: Address of a buffer to be zeroed, 8 bytes aligned. 6173 // cnt: Immediate count in HeapWords. 6174 // 6175 // r10, r11, rscratch1, and rscratch2 are clobbered. 6176 address MacroAssembler::zero_words(Register base, uint64_t cnt) 6177 { 6178 assert(wordSize <= BlockZeroingLowLimit, 6179 "increase BlockZeroingLowLimit"); 6180 address result = nullptr; 6181 if (cnt <= (uint64_t)BlockZeroingLowLimit / BytesPerWord) { 6182 #ifndef PRODUCT 6183 { 6184 char buf[64]; 6185 snprintf(buf, sizeof buf, "zero_words (count = %" PRIu64 ") {", cnt); 6186 BLOCK_COMMENT(buf); 6187 } 6188 #endif 6189 if (cnt >= 16) { 6190 uint64_t loops = cnt/16; 6191 if (loops > 1) { 6192 mov(rscratch2, loops - 1); 6193 } 6194 { 6195 Label loop; 6196 bind(loop); 6197 for (int i = 0; i < 16; i += 2) { 6198 stp(zr, zr, Address(base, i * BytesPerWord)); 6199 } 6200 add(base, base, 16 * BytesPerWord); 6201 if (loops > 1) { 6202 subs(rscratch2, rscratch2, 1); 6203 br(GE, loop); 6204 } 6205 } 6206 } 6207 cnt %= 16; 6208 int i = cnt & 1; // store any odd word to start 6209 if (i) str(zr, Address(base)); 6210 for (; i < (int)cnt; i += 2) { 6211 stp(zr, zr, Address(base, i * wordSize)); 6212 } 6213 BLOCK_COMMENT("} zero_words"); 6214 result = pc(); 6215 } else { 6216 mov(r10, base); mov(r11, cnt); 6217 result = zero_words(r10, r11); 6218 } 6219 return result; 6220 } 6221 6222 // Zero blocks of memory by using DC ZVA. 6223 // 6224 // Aligns the base address first sufficiently for DC ZVA, then uses 6225 // DC ZVA repeatedly for every full block. cnt is the size to be 6226 // zeroed in HeapWords. Returns the count of words left to be zeroed 6227 // in cnt. 6228 // 6229 // NOTE: This is intended to be used in the zero_blocks() stub. If 6230 // you want to use it elsewhere, note that cnt must be >= 2*zva_length. 6231 void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) { 6232 Register tmp = rscratch1; 6233 Register tmp2 = rscratch2; 6234 int zva_length = VM_Version::zva_length(); 6235 Label initial_table_end, loop_zva; 6236 Label fini; 6237 6238 // Base must be 16 byte aligned. If not just return and let caller handle it 6239 tst(base, 0x0f); 6240 br(Assembler::NE, fini); 6241 // Align base with ZVA length. 6242 neg(tmp, base); 6243 andr(tmp, tmp, zva_length - 1); 6244 6245 // tmp: the number of bytes to be filled to align the base with ZVA length. 6246 add(base, base, tmp); 6247 sub(cnt, cnt, tmp, Assembler::ASR, 3); 6248 adr(tmp2, initial_table_end); 6249 sub(tmp2, tmp2, tmp, Assembler::LSR, 2); 6250 br(tmp2); 6251 6252 for (int i = -zva_length + 16; i < 0; i += 16) 6253 stp(zr, zr, Address(base, i)); 6254 bind(initial_table_end); 6255 6256 sub(cnt, cnt, zva_length >> 3); 6257 bind(loop_zva); 6258 dc(Assembler::ZVA, base); 6259 subs(cnt, cnt, zva_length >> 3); 6260 add(base, base, zva_length); 6261 br(Assembler::GE, loop_zva); 6262 add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA 6263 bind(fini); 6264 } 6265 6266 // base: Address of a buffer to be filled, 8 bytes aligned. 6267 // cnt: Count in 8-byte unit. 6268 // value: Value to be filled with. 6269 // base will point to the end of the buffer after filling. 6270 void MacroAssembler::fill_words(Register base, Register cnt, Register value) 6271 { 6272 // Algorithm: 6273 // 6274 // if (cnt == 0) { 6275 // return; 6276 // } 6277 // if ((p & 8) != 0) { 6278 // *p++ = v; 6279 // } 6280 // 6281 // scratch1 = cnt & 14; 6282 // cnt -= scratch1; 6283 // p += scratch1; 6284 // switch (scratch1 / 2) { 6285 // do { 6286 // cnt -= 16; 6287 // p[-16] = v; 6288 // p[-15] = v; 6289 // case 7: 6290 // p[-14] = v; 6291 // p[-13] = v; 6292 // case 6: 6293 // p[-12] = v; 6294 // p[-11] = v; 6295 // // ... 6296 // case 1: 6297 // p[-2] = v; 6298 // p[-1] = v; 6299 // case 0: 6300 // p += 16; 6301 // } while (cnt); 6302 // } 6303 // if ((cnt & 1) == 1) { 6304 // *p++ = v; 6305 // } 6306 6307 assert_different_registers(base, cnt, value, rscratch1, rscratch2); 6308 6309 Label fini, skip, entry, loop; 6310 const int unroll = 8; // Number of stp instructions we'll unroll 6311 6312 cbz(cnt, fini); 6313 tbz(base, 3, skip); 6314 str(value, Address(post(base, 8))); 6315 sub(cnt, cnt, 1); 6316 bind(skip); 6317 6318 andr(rscratch1, cnt, (unroll-1) * 2); 6319 sub(cnt, cnt, rscratch1); 6320 add(base, base, rscratch1, Assembler::LSL, 3); 6321 adr(rscratch2, entry); 6322 sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1); 6323 br(rscratch2); 6324 6325 bind(loop); 6326 add(base, base, unroll * 16); 6327 for (int i = -unroll; i < 0; i++) 6328 stp(value, value, Address(base, i * 16)); 6329 bind(entry); 6330 subs(cnt, cnt, unroll * 2); 6331 br(Assembler::GE, loop); 6332 6333 tbz(cnt, 0, fini); 6334 str(value, Address(post(base, 8))); 6335 bind(fini); 6336 } 6337 6338 // Intrinsic for 6339 // 6340 // - sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray 6341 // return the number of characters copied. 6342 // - java/lang/StringUTF16.compress 6343 // return index of non-latin1 character if copy fails, otherwise 'len'. 6344 // 6345 // This version always returns the number of characters copied, and does not 6346 // clobber the 'len' register. A successful copy will complete with the post- 6347 // condition: 'res' == 'len', while an unsuccessful copy will exit with the 6348 // post-condition: 0 <= 'res' < 'len'. 6349 // 6350 // NOTE: Attempts to use 'ld2' (and 'umaxv' in the ISO part) has proven to 6351 // degrade performance (on Ampere Altra - Neoverse N1), to an extent 6352 // beyond the acceptable, even though the footprint would be smaller. 6353 // Using 'umaxv' in the ASCII-case comes with a small penalty but does 6354 // avoid additional bloat. 6355 // 6356 // Clobbers: src, dst, res, rscratch1, rscratch2, rflags 6357 void MacroAssembler::encode_iso_array(Register src, Register dst, 6358 Register len, Register res, bool ascii, 6359 FloatRegister vtmp0, FloatRegister vtmp1, 6360 FloatRegister vtmp2, FloatRegister vtmp3, 6361 FloatRegister vtmp4, FloatRegister vtmp5) 6362 { 6363 Register cnt = res; 6364 Register max = rscratch1; 6365 Register chk = rscratch2; 6366 6367 prfm(Address(src), PLDL1STRM); 6368 movw(cnt, len); 6369 6370 #define ASCII(insn) do { if (ascii) { insn; } } while (0) 6371 6372 Label LOOP_32, DONE_32, FAIL_32; 6373 6374 BIND(LOOP_32); 6375 { 6376 cmpw(cnt, 32); 6377 br(LT, DONE_32); 6378 ld1(vtmp0, vtmp1, vtmp2, vtmp3, T8H, Address(post(src, 64))); 6379 // Extract lower bytes. 6380 FloatRegister vlo0 = vtmp4; 6381 FloatRegister vlo1 = vtmp5; 6382 uzp1(vlo0, T16B, vtmp0, vtmp1); 6383 uzp1(vlo1, T16B, vtmp2, vtmp3); 6384 // Merge bits... 6385 orr(vtmp0, T16B, vtmp0, vtmp1); 6386 orr(vtmp2, T16B, vtmp2, vtmp3); 6387 // Extract merged upper bytes. 6388 FloatRegister vhix = vtmp0; 6389 uzp2(vhix, T16B, vtmp0, vtmp2); 6390 // ISO-check on hi-parts (all zero). 6391 // ASCII-check on lo-parts (no sign). 6392 FloatRegister vlox = vtmp1; // Merge lower bytes. 6393 ASCII(orr(vlox, T16B, vlo0, vlo1)); 6394 umov(chk, vhix, D, 1); ASCII(cm(LT, vlox, T16B, vlox)); 6395 fmovd(max, vhix); ASCII(umaxv(vlox, T16B, vlox)); 6396 orr(chk, chk, max); ASCII(umov(max, vlox, B, 0)); 6397 ASCII(orr(chk, chk, max)); 6398 cbnz(chk, FAIL_32); 6399 subw(cnt, cnt, 32); 6400 st1(vlo0, vlo1, T16B, Address(post(dst, 32))); 6401 b(LOOP_32); 6402 } 6403 BIND(FAIL_32); 6404 sub(src, src, 64); 6405 BIND(DONE_32); 6406 6407 Label LOOP_8, SKIP_8; 6408 6409 BIND(LOOP_8); 6410 { 6411 cmpw(cnt, 8); 6412 br(LT, SKIP_8); 6413 FloatRegister vhi = vtmp0; 6414 FloatRegister vlo = vtmp1; 6415 ld1(vtmp3, T8H, src); 6416 uzp1(vlo, T16B, vtmp3, vtmp3); 6417 uzp2(vhi, T16B, vtmp3, vtmp3); 6418 // ISO-check on hi-parts (all zero). 6419 // ASCII-check on lo-parts (no sign). 6420 ASCII(cm(LT, vtmp2, T16B, vlo)); 6421 fmovd(chk, vhi); ASCII(umaxv(vtmp2, T16B, vtmp2)); 6422 ASCII(umov(max, vtmp2, B, 0)); 6423 ASCII(orr(chk, chk, max)); 6424 cbnz(chk, SKIP_8); 6425 6426 strd(vlo, Address(post(dst, 8))); 6427 subw(cnt, cnt, 8); 6428 add(src, src, 16); 6429 b(LOOP_8); 6430 } 6431 BIND(SKIP_8); 6432 6433 #undef ASCII 6434 6435 Label LOOP, DONE; 6436 6437 cbz(cnt, DONE); 6438 BIND(LOOP); 6439 { 6440 Register chr = rscratch1; 6441 ldrh(chr, Address(post(src, 2))); 6442 tst(chr, ascii ? 0xff80 : 0xff00); 6443 br(NE, DONE); 6444 strb(chr, Address(post(dst, 1))); 6445 subs(cnt, cnt, 1); 6446 br(GT, LOOP); 6447 } 6448 BIND(DONE); 6449 // Return index where we stopped. 6450 subw(res, len, cnt); 6451 } 6452 6453 // Inflate byte[] array to char[]. 6454 // Clobbers: src, dst, len, rflags, rscratch1, v0-v6 6455 address MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 6456 FloatRegister vtmp1, FloatRegister vtmp2, 6457 FloatRegister vtmp3, Register tmp4) { 6458 Label big, done, after_init, to_stub; 6459 6460 assert_different_registers(src, dst, len, tmp4, rscratch1); 6461 6462 fmovd(vtmp1, 0.0); 6463 lsrw(tmp4, len, 3); 6464 bind(after_init); 6465 cbnzw(tmp4, big); 6466 // Short string: less than 8 bytes. 6467 { 6468 Label loop, tiny; 6469 6470 cmpw(len, 4); 6471 br(LT, tiny); 6472 // Use SIMD to do 4 bytes. 6473 ldrs(vtmp2, post(src, 4)); 6474 zip1(vtmp3, T8B, vtmp2, vtmp1); 6475 subw(len, len, 4); 6476 strd(vtmp3, post(dst, 8)); 6477 6478 cbzw(len, done); 6479 6480 // Do the remaining bytes by steam. 6481 bind(loop); 6482 ldrb(tmp4, post(src, 1)); 6483 strh(tmp4, post(dst, 2)); 6484 subw(len, len, 1); 6485 6486 bind(tiny); 6487 cbnz(len, loop); 6488 6489 b(done); 6490 } 6491 6492 if (SoftwarePrefetchHintDistance >= 0) { 6493 bind(to_stub); 6494 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate()); 6495 assert(stub.target() != nullptr, "large_byte_array_inflate stub has not been generated"); 6496 address tpc = trampoline_call(stub); 6497 if (tpc == nullptr) { 6498 DEBUG_ONLY(reset_labels(big, done)); 6499 postcond(pc() == badAddress); 6500 return nullptr; 6501 } 6502 b(after_init); 6503 } 6504 6505 // Unpack the bytes 8 at a time. 6506 bind(big); 6507 { 6508 Label loop, around, loop_last, loop_start; 6509 6510 if (SoftwarePrefetchHintDistance >= 0) { 6511 const int large_loop_threshold = (64 + 16)/8; 6512 ldrd(vtmp2, post(src, 8)); 6513 andw(len, len, 7); 6514 cmp(tmp4, (u1)large_loop_threshold); 6515 br(GE, to_stub); 6516 b(loop_start); 6517 6518 bind(loop); 6519 ldrd(vtmp2, post(src, 8)); 6520 bind(loop_start); 6521 subs(tmp4, tmp4, 1); 6522 br(EQ, loop_last); 6523 zip1(vtmp2, T16B, vtmp2, vtmp1); 6524 ldrd(vtmp3, post(src, 8)); 6525 st1(vtmp2, T8H, post(dst, 16)); 6526 subs(tmp4, tmp4, 1); 6527 zip1(vtmp3, T16B, vtmp3, vtmp1); 6528 st1(vtmp3, T8H, post(dst, 16)); 6529 br(NE, loop); 6530 b(around); 6531 bind(loop_last); 6532 zip1(vtmp2, T16B, vtmp2, vtmp1); 6533 st1(vtmp2, T8H, post(dst, 16)); 6534 bind(around); 6535 cbz(len, done); 6536 } else { 6537 andw(len, len, 7); 6538 bind(loop); 6539 ldrd(vtmp2, post(src, 8)); 6540 sub(tmp4, tmp4, 1); 6541 zip1(vtmp3, T16B, vtmp2, vtmp1); 6542 st1(vtmp3, T8H, post(dst, 16)); 6543 cbnz(tmp4, loop); 6544 } 6545 } 6546 6547 // Do the tail of up to 8 bytes. 6548 add(src, src, len); 6549 ldrd(vtmp3, Address(src, -8)); 6550 add(dst, dst, len, ext::uxtw, 1); 6551 zip1(vtmp3, T16B, vtmp3, vtmp1); 6552 strq(vtmp3, Address(dst, -16)); 6553 6554 bind(done); 6555 postcond(pc() != badAddress); 6556 return pc(); 6557 } 6558 6559 // Compress char[] array to byte[]. 6560 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 6561 // Return the array length if every element in array can be encoded, 6562 // otherwise, the index of first non-latin1 (> 0xff) character. 6563 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 6564 Register res, 6565 FloatRegister tmp0, FloatRegister tmp1, 6566 FloatRegister tmp2, FloatRegister tmp3, 6567 FloatRegister tmp4, FloatRegister tmp5) { 6568 encode_iso_array(src, dst, len, res, false, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5); 6569 } 6570 6571 // java.math.round(double a) 6572 // Returns the closest long to the argument, with ties rounding to 6573 // positive infinity. This requires some fiddling for corner 6574 // cases. We take care to avoid double rounding in e.g. (jlong)(a + 0.5). 6575 void MacroAssembler::java_round_double(Register dst, FloatRegister src, 6576 FloatRegister ftmp) { 6577 Label DONE; 6578 BLOCK_COMMENT("java_round_double: { "); 6579 fmovd(rscratch1, src); 6580 // Use RoundToNearestTiesAway unless src small and -ve. 6581 fcvtasd(dst, src); 6582 // Test if src >= 0 || abs(src) >= 0x1.0p52 6583 eor(rscratch1, rscratch1, UCONST64(1) << 63); // flip sign bit 6584 mov(rscratch2, julong_cast(0x1.0p52)); 6585 cmp(rscratch1, rscratch2); 6586 br(HS, DONE); { 6587 // src < 0 && abs(src) < 0x1.0p52 6588 // src may have a fractional part, so add 0.5 6589 fmovd(ftmp, 0.5); 6590 faddd(ftmp, src, ftmp); 6591 // Convert double to jlong, use RoundTowardsNegative 6592 fcvtmsd(dst, ftmp); 6593 } 6594 bind(DONE); 6595 BLOCK_COMMENT("} java_round_double"); 6596 } 6597 6598 void MacroAssembler::java_round_float(Register dst, FloatRegister src, 6599 FloatRegister ftmp) { 6600 Label DONE; 6601 BLOCK_COMMENT("java_round_float: { "); 6602 fmovs(rscratch1, src); 6603 // Use RoundToNearestTiesAway unless src small and -ve. 6604 fcvtassw(dst, src); 6605 // Test if src >= 0 || abs(src) >= 0x1.0p23 6606 eor(rscratch1, rscratch1, 0x80000000); // flip sign bit 6607 mov(rscratch2, jint_cast(0x1.0p23f)); 6608 cmp(rscratch1, rscratch2); 6609 br(HS, DONE); { 6610 // src < 0 && |src| < 0x1.0p23 6611 // src may have a fractional part, so add 0.5 6612 fmovs(ftmp, 0.5f); 6613 fadds(ftmp, src, ftmp); 6614 // Convert float to jint, use RoundTowardsNegative 6615 fcvtmssw(dst, ftmp); 6616 } 6617 bind(DONE); 6618 BLOCK_COMMENT("} java_round_float"); 6619 } 6620 6621 // get_thread() can be called anywhere inside generated code so we 6622 // need to save whatever non-callee save context might get clobbered 6623 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed, 6624 // the call setup code. 6625 // 6626 // On Linux, aarch64_get_thread_helper() clobbers only r0, r1, and flags. 6627 // On other systems, the helper is a usual C function. 6628 // 6629 void MacroAssembler::get_thread(Register dst) { 6630 RegSet saved_regs = 6631 LINUX_ONLY(RegSet::range(r0, r1) + lr - dst) 6632 NOT_LINUX (RegSet::range(r0, r17) + lr - dst); 6633 6634 protect_return_address(); 6635 push(saved_regs, sp); 6636 6637 mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper)); 6638 blr(lr); 6639 if (dst != c_rarg0) { 6640 mov(dst, c_rarg0); 6641 } 6642 6643 pop(saved_regs, sp); 6644 authenticate_return_address(); 6645 } 6646 6647 void MacroAssembler::cache_wb(Address line) { 6648 assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset"); 6649 assert(line.index() == noreg, "index should be noreg"); 6650 assert(line.offset() == 0, "offset should be 0"); 6651 // would like to assert this 6652 // assert(line._ext.shift == 0, "shift should be zero"); 6653 if (VM_Version::supports_dcpop()) { 6654 // writeback using clear virtual address to point of persistence 6655 dc(Assembler::CVAP, line.base()); 6656 } else { 6657 // no need to generate anything as Unsafe.writebackMemory should 6658 // never invoke this stub 6659 } 6660 } 6661 6662 void MacroAssembler::cache_wbsync(bool is_pre) { 6663 // we only need a barrier post sync 6664 if (!is_pre) { 6665 membar(Assembler::AnyAny); 6666 } 6667 } 6668 6669 void MacroAssembler::verify_sve_vector_length(Register tmp) { 6670 if (!UseSVE || VM_Version::get_max_supported_sve_vector_length() == FloatRegister::sve_vl_min) { 6671 return; 6672 } 6673 // Make sure that native code does not change SVE vector length. 6674 Label verify_ok; 6675 movw(tmp, zr); 6676 sve_inc(tmp, B); 6677 subsw(zr, tmp, VM_Version::get_initial_sve_vector_length()); 6678 br(EQ, verify_ok); 6679 stop("Error: SVE vector length has changed since jvm startup"); 6680 bind(verify_ok); 6681 } 6682 6683 void MacroAssembler::verify_ptrue() { 6684 Label verify_ok; 6685 if (!UseSVE) { 6686 return; 6687 } 6688 sve_cntp(rscratch1, B, ptrue, ptrue); // get true elements count. 6689 sve_dec(rscratch1, B); 6690 cbz(rscratch1, verify_ok); 6691 stop("Error: the preserved predicate register (p7) elements are not all true"); 6692 bind(verify_ok); 6693 } 6694 6695 void MacroAssembler::safepoint_isb() { 6696 isb(); 6697 #ifndef PRODUCT 6698 if (VerifyCrossModifyFence) { 6699 // Clear the thread state. 6700 strb(zr, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 6701 } 6702 #endif 6703 } 6704 6705 #ifndef PRODUCT 6706 void MacroAssembler::verify_cross_modify_fence_not_required() { 6707 if (VerifyCrossModifyFence) { 6708 // Check if thread needs a cross modify fence. 6709 ldrb(rscratch1, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 6710 Label fence_not_required; 6711 cbz(rscratch1, fence_not_required); 6712 // If it does then fail. 6713 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::verify_cross_modify_fence_failure))); 6714 mov(c_rarg0, rthread); 6715 blr(rscratch1); 6716 bind(fence_not_required); 6717 } 6718 } 6719 #endif 6720 6721 void MacroAssembler::spin_wait() { 6722 for (int i = 0; i < VM_Version::spin_wait_desc().inst_count(); ++i) { 6723 switch (VM_Version::spin_wait_desc().inst()) { 6724 case SpinWait::NOP: 6725 nop(); 6726 break; 6727 case SpinWait::ISB: 6728 isb(); 6729 break; 6730 case SpinWait::YIELD: 6731 yield(); 6732 break; 6733 default: 6734 ShouldNotReachHere(); 6735 } 6736 } 6737 } 6738 6739 // Stack frame creation/removal 6740 6741 void MacroAssembler::enter(bool strip_ret_addr) { 6742 if (strip_ret_addr) { 6743 // Addresses can only be signed once. If there are multiple nested frames being created 6744 // in the same function, then the return address needs stripping first. 6745 strip_return_address(); 6746 } 6747 protect_return_address(); 6748 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 6749 mov(rfp, sp); 6750 } 6751 6752 void MacroAssembler::leave() { 6753 mov(sp, rfp); 6754 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 6755 authenticate_return_address(); 6756 } 6757 6758 // ROP Protection 6759 // Use the AArch64 PAC feature to add ROP protection for generated code. Use whenever creating/ 6760 // destroying stack frames or whenever directly loading/storing the LR to memory. 6761 // If ROP protection is not set then these functions are no-ops. 6762 // For more details on PAC see pauth_aarch64.hpp. 6763 6764 // Sign the LR. Use during construction of a stack frame, before storing the LR to memory. 6765 // Uses value zero as the modifier. 6766 // 6767 void MacroAssembler::protect_return_address() { 6768 if (VM_Version::use_rop_protection()) { 6769 check_return_address(); 6770 paciaz(); 6771 } 6772 } 6773 6774 // Sign the return value in the given register. Use before updating the LR in the existing stack 6775 // frame for the current function. 6776 // Uses value zero as the modifier. 6777 // 6778 void MacroAssembler::protect_return_address(Register return_reg) { 6779 if (VM_Version::use_rop_protection()) { 6780 check_return_address(return_reg); 6781 paciza(return_reg); 6782 } 6783 } 6784 6785 // Authenticate the LR. Use before function return, after restoring FP and loading LR from memory. 6786 // Uses value zero as the modifier. 6787 // 6788 void MacroAssembler::authenticate_return_address() { 6789 if (VM_Version::use_rop_protection()) { 6790 autiaz(); 6791 check_return_address(); 6792 } 6793 } 6794 6795 // Authenticate the return value in the given register. Use before updating the LR in the existing 6796 // stack frame for the current function. 6797 // Uses value zero as the modifier. 6798 // 6799 void MacroAssembler::authenticate_return_address(Register return_reg) { 6800 if (VM_Version::use_rop_protection()) { 6801 autiza(return_reg); 6802 check_return_address(return_reg); 6803 } 6804 } 6805 6806 // Strip any PAC data from LR without performing any authentication. Use with caution - only if 6807 // there is no guaranteed way of authenticating the LR. 6808 // 6809 void MacroAssembler::strip_return_address() { 6810 if (VM_Version::use_rop_protection()) { 6811 xpaclri(); 6812 } 6813 } 6814 6815 #ifndef PRODUCT 6816 // PAC failures can be difficult to debug. After an authentication failure, a segfault will only 6817 // occur when the pointer is used - ie when the program returns to the invalid LR. At this point 6818 // it is difficult to debug back to the callee function. 6819 // This function simply loads from the address in the given register. 6820 // Use directly after authentication to catch authentication failures. 6821 // Also use before signing to check that the pointer is valid and hasn't already been signed. 6822 // 6823 void MacroAssembler::check_return_address(Register return_reg) { 6824 if (VM_Version::use_rop_protection()) { 6825 ldr(zr, Address(return_reg)); 6826 } 6827 } 6828 #endif 6829 6830 // The java_calling_convention describes stack locations as ideal slots on 6831 // a frame with no abi restrictions. Since we must observe abi restrictions 6832 // (like the placement of the register window) the slots must be biased by 6833 // the following value. 6834 static int reg2offset_in(VMReg r) { 6835 // Account for saved rfp and lr 6836 // This should really be in_preserve_stack_slots 6837 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 6838 } 6839 6840 static int reg2offset_out(VMReg r) { 6841 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 6842 } 6843 6844 // On 64bit we will store integer like items to the stack as 6845 // 64bits items (AArch64 ABI) even though java would only store 6846 // 32bits for a parameter. On 32bit it will simply be 32bits 6847 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 6848 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp) { 6849 if (src.first()->is_stack()) { 6850 if (dst.first()->is_stack()) { 6851 // stack to stack 6852 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 6853 str(tmp, Address(sp, reg2offset_out(dst.first()))); 6854 } else { 6855 // stack to reg 6856 ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 6857 } 6858 } else if (dst.first()->is_stack()) { 6859 // reg to stack 6860 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 6861 } else { 6862 if (dst.first() != src.first()) { 6863 sxtw(dst.first()->as_Register(), src.first()->as_Register()); 6864 } 6865 } 6866 } 6867 6868 // An oop arg. Must pass a handle not the oop itself 6869 void MacroAssembler::object_move( 6870 OopMap* map, 6871 int oop_handle_offset, 6872 int framesize_in_slots, 6873 VMRegPair src, 6874 VMRegPair dst, 6875 bool is_receiver, 6876 int* receiver_offset) { 6877 6878 // must pass a handle. First figure out the location we use as a handle 6879 6880 Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register(); 6881 6882 // See if oop is null if it is we need no handle 6883 6884 if (src.first()->is_stack()) { 6885 6886 // Oop is already on the stack as an argument 6887 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 6888 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 6889 if (is_receiver) { 6890 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 6891 } 6892 6893 ldr(rscratch1, Address(rfp, reg2offset_in(src.first()))); 6894 lea(rHandle, Address(rfp, reg2offset_in(src.first()))); 6895 // conditionally move a null 6896 cmp(rscratch1, zr); 6897 csel(rHandle, zr, rHandle, Assembler::EQ); 6898 } else { 6899 6900 // Oop is in an a register we must store it to the space we reserve 6901 // on the stack for oop_handles and pass a handle if oop is non-null 6902 6903 const Register rOop = src.first()->as_Register(); 6904 int oop_slot; 6905 if (rOop == j_rarg0) 6906 oop_slot = 0; 6907 else if (rOop == j_rarg1) 6908 oop_slot = 1; 6909 else if (rOop == j_rarg2) 6910 oop_slot = 2; 6911 else if (rOop == j_rarg3) 6912 oop_slot = 3; 6913 else if (rOop == j_rarg4) 6914 oop_slot = 4; 6915 else if (rOop == j_rarg5) 6916 oop_slot = 5; 6917 else if (rOop == j_rarg6) 6918 oop_slot = 6; 6919 else { 6920 assert(rOop == j_rarg7, "wrong register"); 6921 oop_slot = 7; 6922 } 6923 6924 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 6925 int offset = oop_slot*VMRegImpl::stack_slot_size; 6926 6927 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 6928 // Store oop in handle area, may be null 6929 str(rOop, Address(sp, offset)); 6930 if (is_receiver) { 6931 *receiver_offset = offset; 6932 } 6933 6934 cmp(rOop, zr); 6935 lea(rHandle, Address(sp, offset)); 6936 // conditionally move a null 6937 csel(rHandle, zr, rHandle, Assembler::EQ); 6938 } 6939 6940 // If arg is on the stack then place it otherwise it is already in correct reg. 6941 if (dst.first()->is_stack()) { 6942 str(rHandle, Address(sp, reg2offset_out(dst.first()))); 6943 } 6944 } 6945 6946 // A float arg may have to do float reg int reg conversion 6947 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp) { 6948 if (src.first()->is_stack()) { 6949 if (dst.first()->is_stack()) { 6950 ldrw(tmp, Address(rfp, reg2offset_in(src.first()))); 6951 strw(tmp, Address(sp, reg2offset_out(dst.first()))); 6952 } else { 6953 ldrs(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 6954 } 6955 } else if (src.first() != dst.first()) { 6956 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 6957 fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 6958 else 6959 strs(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 6960 } 6961 } 6962 6963 // A long move 6964 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp) { 6965 if (src.first()->is_stack()) { 6966 if (dst.first()->is_stack()) { 6967 // stack to stack 6968 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 6969 str(tmp, Address(sp, reg2offset_out(dst.first()))); 6970 } else { 6971 // stack to reg 6972 ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 6973 } 6974 } else if (dst.first()->is_stack()) { 6975 // reg to stack 6976 // Do we really have to sign extend??? 6977 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 6978 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 6979 } else { 6980 if (dst.first() != src.first()) { 6981 mov(dst.first()->as_Register(), src.first()->as_Register()); 6982 } 6983 } 6984 } 6985 6986 6987 // A double move 6988 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp) { 6989 if (src.first()->is_stack()) { 6990 if (dst.first()->is_stack()) { 6991 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 6992 str(tmp, Address(sp, reg2offset_out(dst.first()))); 6993 } else { 6994 ldrd(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 6995 } 6996 } else if (src.first() != dst.first()) { 6997 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 6998 fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 6999 else 7000 strd(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 7001 } 7002 } 7003 7004 // Implements lightweight-locking. 7005 // 7006 // - obj: the object to be locked 7007 // - t1, t2, t3: temporary registers, will be destroyed 7008 // - slow: branched to if locking fails, absolute offset may larger than 32KB (imm14 encoding). 7009 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow) { 7010 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 7011 assert_different_registers(basic_lock, obj, t1, t2, t3, rscratch1); 7012 7013 Label push; 7014 const Register top = t1; 7015 const Register mark = t2; 7016 const Register t = t3; 7017 7018 // Preload the markWord. It is important that this is the first 7019 // instruction emitted as it is part of C1's null check semantics. 7020 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 7021 7022 if (UseObjectMonitorTable) { 7023 // Clear cache in case fast locking succeeds. 7024 str(zr, Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes())))); 7025 } 7026 7027 // Check if the lock-stack is full. 7028 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7029 cmpw(top, (unsigned)LockStack::end_offset()); 7030 br(Assembler::GE, slow); 7031 7032 // Check for recursion. 7033 subw(t, top, oopSize); 7034 ldr(t, Address(rthread, t)); 7035 cmp(obj, t); 7036 br(Assembler::EQ, push); 7037 7038 // Check header for monitor (0b10). 7039 tst(mark, markWord::monitor_value); 7040 br(Assembler::NE, slow); 7041 7042 // Try to lock. Transition lock bits 0b01 => 0b00 7043 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 7044 orr(mark, mark, markWord::unlocked_value); 7045 eor(t, mark, markWord::unlocked_value); 7046 cmpxchg(/*addr*/ obj, /*expected*/ mark, /*new*/ t, Assembler::xword, 7047 /*acquire*/ true, /*release*/ false, /*weak*/ false, noreg); 7048 br(Assembler::NE, slow); 7049 7050 bind(push); 7051 // After successful lock, push object on lock-stack. 7052 str(obj, Address(rthread, top)); 7053 addw(top, top, oopSize); 7054 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7055 } 7056 7057 // Implements lightweight-unlocking. 7058 // 7059 // - obj: the object to be unlocked 7060 // - t1, t2, t3: temporary registers 7061 // - slow: branched to if unlocking fails, absolute offset may larger than 32KB (imm14 encoding). 7062 void MacroAssembler::lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow) { 7063 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 7064 // cmpxchg clobbers rscratch1. 7065 assert_different_registers(obj, t1, t2, t3, rscratch1); 7066 7067 #ifdef ASSERT 7068 { 7069 // Check for lock-stack underflow. 7070 Label stack_ok; 7071 ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 7072 cmpw(t1, (unsigned)LockStack::start_offset()); 7073 br(Assembler::GE, stack_ok); 7074 STOP("Lock-stack underflow"); 7075 bind(stack_ok); 7076 } 7077 #endif 7078 7079 Label unlocked, push_and_slow; 7080 const Register top = t1; 7081 const Register mark = t2; 7082 const Register t = t3; 7083 7084 // Check if obj is top of lock-stack. 7085 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7086 subw(top, top, oopSize); 7087 ldr(t, Address(rthread, top)); 7088 cmp(obj, t); 7089 br(Assembler::NE, slow); 7090 7091 // Pop lock-stack. 7092 DEBUG_ONLY(str(zr, Address(rthread, top));) 7093 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7094 7095 // Check if recursive. 7096 subw(t, top, oopSize); 7097 ldr(t, Address(rthread, t)); 7098 cmp(obj, t); 7099 br(Assembler::EQ, unlocked); 7100 7101 // Not recursive. Check header for monitor (0b10). 7102 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 7103 tbnz(mark, log2i_exact(markWord::monitor_value), push_and_slow); 7104 7105 #ifdef ASSERT 7106 // Check header not unlocked (0b01). 7107 Label not_unlocked; 7108 tbz(mark, log2i_exact(markWord::unlocked_value), not_unlocked); 7109 stop("lightweight_unlock already unlocked"); 7110 bind(not_unlocked); 7111 #endif 7112 7113 // Try to unlock. Transition lock bits 0b00 => 0b01 7114 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 7115 orr(t, mark, markWord::unlocked_value); 7116 cmpxchg(obj, mark, t, Assembler::xword, 7117 /*acquire*/ false, /*release*/ true, /*weak*/ false, noreg); 7118 br(Assembler::EQ, unlocked); 7119 7120 bind(push_and_slow); 7121 // Restore lock-stack and handle the unlock in runtime. 7122 DEBUG_ONLY(str(obj, Address(rthread, top));) 7123 addw(top, top, oopSize); 7124 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7125 b(slow); 7126 7127 bind(unlocked); 7128 }