1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/assembler.hpp"
  28 #include "asm/assembler.inline.hpp"
  29 #include "ci/ciEnv.hpp"
  30 #include "code/compiledIC.hpp"
  31 #include "compiler/compileTask.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "compiler/oopMap.hpp"
  34 #include "gc/shared/barrierSet.hpp"
  35 #include "gc/shared/barrierSetAssembler.hpp"
  36 #include "gc/shared/cardTableBarrierSet.hpp"
  37 #include "gc/shared/cardTable.hpp"
  38 #include "gc/shared/collectedHeap.hpp"
  39 #include "gc/shared/tlab_globals.hpp"
  40 #include "interpreter/bytecodeHistogram.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "jvm.h"
  43 #include "memory/resourceArea.hpp"
  44 #include "memory/universe.hpp"
  45 #include "nativeInst_aarch64.hpp"
  46 #include "oops/accessDecorators.hpp"
  47 #include "oops/compressedKlass.inline.hpp"
  48 #include "oops/compressedOops.inline.hpp"
  49 #include "oops/klass.inline.hpp"
  50 #include "runtime/continuation.hpp"
  51 #include "runtime/icache.hpp"
  52 #include "runtime/interfaceSupport.inline.hpp"
  53 #include "runtime/javaThread.hpp"
  54 #include "runtime/jniHandles.inline.hpp"
  55 #include "runtime/sharedRuntime.hpp"
  56 #include "runtime/stubRoutines.hpp"
  57 #include "utilities/globalDefinitions.hpp"
  58 #include "utilities/powerOfTwo.hpp"
  59 #ifdef COMPILER1
  60 #include "c1/c1_LIRAssembler.hpp"
  61 #endif
  62 #ifdef COMPILER2
  63 #include "oops/oop.hpp"
  64 #include "opto/compile.hpp"
  65 #include "opto/node.hpp"
  66 #include "opto/output.hpp"
  67 #endif
  68 
  69 #include <sys/types.h>
  70 
  71 #ifdef PRODUCT
  72 #define BLOCK_COMMENT(str) /* nothing */
  73 #else
  74 #define BLOCK_COMMENT(str) block_comment(str)
  75 #endif
  76 #define STOP(str) stop(str);
  77 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  78 
  79 #ifdef ASSERT
  80 extern "C" void disnm(intptr_t p);
  81 #endif
  82 // Target-dependent relocation processing
  83 //
  84 // Instruction sequences whose target may need to be retrieved or
  85 // patched are distinguished by their leading instruction, sorting
  86 // them into three main instruction groups and related subgroups.
  87 //
  88 // 1) Branch, Exception and System (insn count = 1)
  89 //    1a) Unconditional branch (immediate):
  90 //      b/bl imm19
  91 //    1b) Compare & branch (immediate):
  92 //      cbz/cbnz Rt imm19
  93 //    1c) Test & branch (immediate):
  94 //      tbz/tbnz Rt imm14
  95 //    1d) Conditional branch (immediate):
  96 //      b.cond imm19
  97 //
  98 // 2) Loads and Stores (insn count = 1)
  99 //    2a) Load register literal:
 100 //      ldr Rt imm19
 101 //
 102 // 3) Data Processing Immediate (insn count = 2 or 3)
 103 //    3a) PC-rel. addressing
 104 //      adr/adrp Rx imm21; ldr/str Ry Rx  #imm12
 105 //      adr/adrp Rx imm21; add Ry Rx  #imm12
 106 //      adr/adrp Rx imm21; movk Rx #imm16<<32; ldr/str Ry, [Rx, #offset_in_page]
 107 //      adr/adrp Rx imm21
 108 //      adr/adrp Rx imm21; movk Rx #imm16<<32
 109 //      adr/adrp Rx imm21; movk Rx #imm16<<32; add Ry, Rx, #offset_in_page
 110 //      The latter form can only happen when the target is an
 111 //      ExternalAddress, and (by definition) ExternalAddresses don't
 112 //      move. Because of that property, there is never any need to
 113 //      patch the last of the three instructions. However,
 114 //      MacroAssembler::target_addr_for_insn takes all three
 115 //      instructions into account and returns the correct address.
 116 //    3b) Move wide (immediate)
 117 //      movz Rx #imm16; movk Rx #imm16 << 16; movk Rx #imm16 << 32;
 118 //
 119 // A switch on a subset of the instruction's bits provides an
 120 // efficient dispatch to these subcases.
 121 //
 122 // insn[28:26] -> main group ('x' == don't care)
 123 //   00x -> UNALLOCATED
 124 //   100 -> Data Processing Immediate
 125 //   101 -> Branch, Exception and System
 126 //   x1x -> Loads and Stores
 127 //
 128 // insn[30:25] -> subgroup ('_' == group, 'x' == don't care).
 129 // n.b. in some cases extra bits need to be checked to verify the
 130 // instruction is as expected
 131 //
 132 // 1) ... xx101x Branch, Exception and System
 133 //   1a)  00___x Unconditional branch (immediate)
 134 //   1b)  01___0 Compare & branch (immediate)
 135 //   1c)  01___1 Test & branch (immediate)
 136 //   1d)  10___0 Conditional branch (immediate)
 137 //        other  Should not happen
 138 //
 139 // 2) ... xxx1x0 Loads and Stores
 140 //   2a)  xx1__00 Load/Store register (insn[28] == 1 && insn[24] == 0)
 141 //   2aa) x01__00 Load register literal (i.e. requires insn[29] == 0)
 142 //                strictly should be 64 bit non-FP/SIMD i.e.
 143 //       0101_000 (i.e. requires insn[31:24] == 01011000)
 144 //
 145 // 3) ... xx100x Data Processing Immediate
 146 //   3a)  xx___00 PC-rel. addressing (n.b. requires insn[24] == 0)
 147 //   3b)  xx___101 Move wide (immediate) (n.b. requires insn[24:23] == 01)
 148 //                 strictly should be 64 bit movz #imm16<<0
 149 //       110___10100 (i.e. requires insn[31:21] == 11010010100)
 150 //
 151 class RelocActions {
 152 protected:
 153   typedef int (*reloc_insn)(address insn_addr, address &target);
 154 
 155   virtual reloc_insn adrpMem() = 0;
 156   virtual reloc_insn adrpAdd() = 0;
 157   virtual reloc_insn adrpMovk() = 0;
 158 
 159   const address _insn_addr;
 160   const uint32_t _insn;
 161 
 162   static uint32_t insn_at(address insn_addr, int n) {
 163     return ((uint32_t*)insn_addr)[n];
 164   }
 165   uint32_t insn_at(int n) const {
 166     return insn_at(_insn_addr, n);
 167   }
 168 
 169 public:
 170 
 171   RelocActions(address insn_addr) : _insn_addr(insn_addr), _insn(insn_at(insn_addr, 0)) {}
 172   RelocActions(address insn_addr, uint32_t insn)
 173     :  _insn_addr(insn_addr), _insn(insn) {}
 174 
 175   virtual int unconditionalBranch(address insn_addr, address &target) = 0;
 176   virtual int conditionalBranch(address insn_addr, address &target) = 0;
 177   virtual int testAndBranch(address insn_addr, address &target) = 0;
 178   virtual int loadStore(address insn_addr, address &target) = 0;
 179   virtual int adr(address insn_addr, address &target) = 0;
 180   virtual int adrp(address insn_addr, address &target, reloc_insn inner) = 0;
 181   virtual int immediate(address insn_addr, address &target) = 0;
 182   virtual void verify(address insn_addr, address &target) = 0;
 183 
 184   int ALWAYSINLINE run(address insn_addr, address &target) {
 185     int instructions = 1;
 186 
 187     uint32_t dispatch = Instruction_aarch64::extract(_insn, 30, 25);
 188     switch(dispatch) {
 189       case 0b001010:
 190       case 0b001011: {
 191         instructions = unconditionalBranch(insn_addr, target);
 192         break;
 193       }
 194       case 0b101010:   // Conditional branch (immediate)
 195       case 0b011010: { // Compare & branch (immediate)
 196         instructions = conditionalBranch(insn_addr, target);
 197           break;
 198       }
 199       case 0b011011: {
 200         instructions = testAndBranch(insn_addr, target);
 201         break;
 202       }
 203       case 0b001100:
 204       case 0b001110:
 205       case 0b011100:
 206       case 0b011110:
 207       case 0b101100:
 208       case 0b101110:
 209       case 0b111100:
 210       case 0b111110: {
 211         // load/store
 212         if ((Instruction_aarch64::extract(_insn, 29, 24) & 0b111011) == 0b011000) {
 213           // Load register (literal)
 214           instructions = loadStore(insn_addr, target);
 215           break;
 216         } else {
 217           // nothing to do
 218           assert(target == nullptr, "did not expect to relocate target for polling page load");
 219         }
 220         break;
 221       }
 222       case 0b001000:
 223       case 0b011000:
 224       case 0b101000:
 225       case 0b111000: {
 226         // adr/adrp
 227         assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be");
 228         int shift = Instruction_aarch64::extract(_insn, 31, 31);
 229         if (shift) {
 230           uint32_t insn2 = insn_at(1);
 231           if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 &&
 232               Instruction_aarch64::extract(_insn, 4, 0) ==
 233               Instruction_aarch64::extract(insn2, 9, 5)) {
 234             instructions = adrp(insn_addr, target, adrpMem());
 235           } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 &&
 236                      Instruction_aarch64::extract(_insn, 4, 0) ==
 237                      Instruction_aarch64::extract(insn2, 4, 0)) {
 238             instructions = adrp(insn_addr, target, adrpAdd());
 239           } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 &&
 240                      Instruction_aarch64::extract(_insn, 4, 0) ==
 241                      Instruction_aarch64::extract(insn2, 4, 0)) {
 242             instructions = adrp(insn_addr, target, adrpMovk());
 243           } else {
 244             ShouldNotReachHere();
 245           }
 246         } else {
 247           instructions = adr(insn_addr, target);
 248         }
 249         break;
 250       }
 251       case 0b001001:
 252       case 0b011001:
 253       case 0b101001:
 254       case 0b111001: {
 255         instructions = immediate(insn_addr, target);
 256         break;
 257       }
 258       default: {
 259         ShouldNotReachHere();
 260       }
 261     }
 262 
 263     verify(insn_addr, target);
 264     return instructions * NativeInstruction::instruction_size;
 265   }
 266 };
 267 
 268 class Patcher : public RelocActions {
 269   virtual reloc_insn adrpMem() { return &Patcher::adrpMem_impl; }
 270   virtual reloc_insn adrpAdd() { return &Patcher::adrpAdd_impl; }
 271   virtual reloc_insn adrpMovk() { return &Patcher::adrpMovk_impl; }
 272 
 273 public:
 274   Patcher(address insn_addr) : RelocActions(insn_addr) {}
 275 
 276   virtual int unconditionalBranch(address insn_addr, address &target) {
 277     intptr_t offset = (target - insn_addr) >> 2;
 278     Instruction_aarch64::spatch(insn_addr, 25, 0, offset);
 279     return 1;
 280   }
 281   virtual int conditionalBranch(address insn_addr, address &target) {
 282     intptr_t offset = (target - insn_addr) >> 2;
 283     Instruction_aarch64::spatch(insn_addr, 23, 5, offset);
 284     return 1;
 285   }
 286   virtual int testAndBranch(address insn_addr, address &target) {
 287     intptr_t offset = (target - insn_addr) >> 2;
 288     Instruction_aarch64::spatch(insn_addr, 18, 5, offset);
 289     return 1;
 290   }
 291   virtual int loadStore(address insn_addr, address &target) {
 292     intptr_t offset = (target - insn_addr) >> 2;
 293     Instruction_aarch64::spatch(insn_addr, 23, 5, offset);
 294     return 1;
 295   }
 296   virtual int adr(address insn_addr, address &target) {
 297 #ifdef ASSERT
 298     assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be");
 299 #endif
 300     // PC-rel. addressing
 301     ptrdiff_t offset = target - insn_addr;
 302     int offset_lo = offset & 3;
 303     offset >>= 2;
 304     Instruction_aarch64::spatch(insn_addr, 23, 5, offset);
 305     Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo);
 306     return 1;
 307   }
 308   virtual int adrp(address insn_addr, address &target, reloc_insn inner) {
 309     int instructions = 1;
 310 #ifdef ASSERT
 311     assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be");
 312 #endif
 313     ptrdiff_t offset = target - insn_addr;
 314     instructions = 2;
 315     precond(inner != nullptr);
 316     // Give the inner reloc a chance to modify the target.
 317     address adjusted_target = target;
 318     instructions = (*inner)(insn_addr, adjusted_target);
 319     uintptr_t pc_page = (uintptr_t)insn_addr >> 12;
 320     uintptr_t adr_page = (uintptr_t)adjusted_target >> 12;
 321     offset = adr_page - pc_page;
 322     int offset_lo = offset & 3;
 323     offset >>= 2;
 324     Instruction_aarch64::spatch(insn_addr, 23, 5, offset);
 325     Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo);
 326     return instructions;
 327   }
 328   static int adrpMem_impl(address insn_addr, address &target) {
 329     uintptr_t dest = (uintptr_t)target;
 330     int offset_lo = dest & 0xfff;
 331     uint32_t insn2 = insn_at(insn_addr, 1);
 332     uint32_t size = Instruction_aarch64::extract(insn2, 31, 30);
 333     Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo >> size);
 334     guarantee(((dest >> size) << size) == dest, "misaligned target");
 335     return 2;
 336   }
 337   static int adrpAdd_impl(address insn_addr, address &target) {
 338     uintptr_t dest = (uintptr_t)target;
 339     int offset_lo = dest & 0xfff;
 340     Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo);
 341     return 2;
 342   }
 343   static int adrpMovk_impl(address insn_addr, address &target) {
 344     uintptr_t dest = uintptr_t(target);
 345     Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 20, 5, (uintptr_t)target >> 32);
 346     dest = (dest & 0xffffffffULL) | (uintptr_t(insn_addr) & 0xffff00000000ULL);
 347     target = address(dest);
 348     return 2;
 349   }
 350   virtual int immediate(address insn_addr, address &target) {
 351     assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be");
 352     uint64_t dest = (uint64_t)target;
 353     // Move wide constant
 354     assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
 355     assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch");
 356     Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff);
 357     Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff);
 358     Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff);
 359     return 3;
 360   }
 361   virtual void verify(address insn_addr, address &target) {
 362 #ifdef ASSERT
 363     address address_is = MacroAssembler::target_addr_for_insn(insn_addr);
 364     if (!(address_is == target)) {
 365       tty->print_cr("%p at %p should be %p", address_is, insn_addr, target);
 366       disnm((intptr_t)insn_addr);
 367       assert(address_is == target, "should be");
 368     }
 369 #endif
 370   }
 371 };
 372 
 373 // If insn1 and insn2 use the same register to form an address, either
 374 // by an offsetted LDR or a simple ADD, return the offset. If the
 375 // second instruction is an LDR, the offset may be scaled.
 376 static bool offset_for(uint32_t insn1, uint32_t insn2, ptrdiff_t &byte_offset) {
 377   if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 &&
 378       Instruction_aarch64::extract(insn1, 4, 0) ==
 379       Instruction_aarch64::extract(insn2, 9, 5)) {
 380     // Load/store register (unsigned immediate)
 381     byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
 382     uint32_t size = Instruction_aarch64::extract(insn2, 31, 30);
 383     byte_offset <<= size;
 384     return true;
 385   } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 &&
 386              Instruction_aarch64::extract(insn1, 4, 0) ==
 387              Instruction_aarch64::extract(insn2, 4, 0)) {
 388     // add (immediate)
 389     byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
 390     return true;
 391   }
 392   return false;
 393 }
 394 
 395 class AArch64Decoder : public RelocActions {
 396   virtual reloc_insn adrpMem() { return &AArch64Decoder::adrpMem_impl; }
 397   virtual reloc_insn adrpAdd() { return &AArch64Decoder::adrpAdd_impl; }
 398   virtual reloc_insn adrpMovk() { return &AArch64Decoder::adrpMovk_impl; }
 399 
 400 public:
 401   AArch64Decoder(address insn_addr, uint32_t insn) : RelocActions(insn_addr, insn) {}
 402 
 403   virtual int loadStore(address insn_addr, address &target) {
 404     intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5);
 405     target = insn_addr + (offset << 2);
 406     return 1;
 407   }
 408   virtual int unconditionalBranch(address insn_addr, address &target) {
 409     intptr_t offset = Instruction_aarch64::sextract(_insn, 25, 0);
 410     target = insn_addr + (offset << 2);
 411     return 1;
 412   }
 413   virtual int conditionalBranch(address insn_addr, address &target) {
 414     intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5);
 415     target = address(((uint64_t)insn_addr + (offset << 2)));
 416     return 1;
 417   }
 418   virtual int testAndBranch(address insn_addr, address &target) {
 419     intptr_t offset = Instruction_aarch64::sextract(_insn, 18, 5);
 420     target = address(((uint64_t)insn_addr + (offset << 2)));
 421     return 1;
 422   }
 423   virtual int adr(address insn_addr, address &target) {
 424     // PC-rel. addressing
 425     intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29);
 426     offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2;
 427     target = address((uint64_t)insn_addr + offset);
 428     return 1;
 429   }
 430   virtual int adrp(address insn_addr, address &target, reloc_insn inner) {
 431     assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be");
 432     intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29);
 433     offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2;
 434     int shift = 12;
 435     offset <<= shift;
 436     uint64_t target_page = ((uint64_t)insn_addr) + offset;
 437     target_page &= ((uint64_t)-1) << shift;
 438     uint32_t insn2 = insn_at(1);
 439     target = address(target_page);
 440     precond(inner != nullptr);
 441     (*inner)(insn_addr, target);
 442     return 2;
 443   }
 444   static int adrpMem_impl(address insn_addr, address &target) {
 445     uint32_t insn2 = insn_at(insn_addr, 1);
 446     // Load/store register (unsigned immediate)
 447     ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
 448     uint32_t size = Instruction_aarch64::extract(insn2, 31, 30);
 449     byte_offset <<= size;
 450     target += byte_offset;
 451     return 2;
 452   }
 453   static int adrpAdd_impl(address insn_addr, address &target) {
 454     uint32_t insn2 = insn_at(insn_addr, 1);
 455     // add (immediate)
 456     ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
 457     target += byte_offset;
 458     return 2;
 459   }
 460   static int adrpMovk_impl(address insn_addr, address &target) {
 461     uint32_t insn2 = insn_at(insn_addr, 1);
 462     uint64_t dest = uint64_t(target);
 463     dest = (dest & 0xffff0000ffffffff) |
 464       ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32);
 465     target = address(dest);
 466 
 467     // We know the destination 4k page. Maybe we have a third
 468     // instruction.
 469     uint32_t insn = insn_at(insn_addr, 0);
 470     uint32_t insn3 = insn_at(insn_addr, 2);
 471     ptrdiff_t byte_offset;
 472     if (offset_for(insn, insn3, byte_offset)) {
 473       target += byte_offset;
 474       return 3;
 475     } else {
 476       return 2;
 477     }
 478   }
 479   virtual int immediate(address insn_addr, address &target) {
 480     uint32_t *insns = (uint32_t *)insn_addr;
 481     assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be");
 482     // Move wide constant: movz, movk, movk.  See movptr().
 483     assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch");
 484     assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch");
 485     target = address(uint64_t(Instruction_aarch64::extract(_insn, 20, 5))
 486                  + (uint64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16)
 487                  + (uint64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32));
 488     assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
 489     assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch");
 490     return 3;
 491   }
 492   virtual void verify(address insn_addr, address &target) {
 493   }
 494 };
 495 
 496 address MacroAssembler::target_addr_for_insn(address insn_addr, uint32_t insn) {
 497   AArch64Decoder decoder(insn_addr, insn);
 498   address target;
 499   decoder.run(insn_addr, target);
 500   return target;
 501 }
 502 
 503 // Patch any kind of instruction; there may be several instructions.
 504 // Return the total length (in bytes) of the instructions.
 505 int MacroAssembler::pd_patch_instruction_size(address insn_addr, address target) {
 506   Patcher patcher(insn_addr);
 507   return patcher.run(insn_addr, target);
 508 }
 509 
 510 int MacroAssembler::patch_oop(address insn_addr, address o) {
 511   int instructions;
 512   unsigned insn = *(unsigned*)insn_addr;
 513   assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
 514 
 515   // OOPs are either narrow (32 bits) or wide (48 bits).  We encode
 516   // narrow OOPs by setting the upper 16 bits in the first
 517   // instruction.
 518   if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) {
 519     // Move narrow OOP
 520     uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o));
 521     Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16);
 522     Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff);
 523     instructions = 2;
 524   } else {
 525     // Move wide OOP
 526     assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch");
 527     uintptr_t dest = (uintptr_t)o;
 528     Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff);
 529     Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff);
 530     Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff);
 531     instructions = 3;
 532   }
 533   return instructions * NativeInstruction::instruction_size;
 534 }
 535 
 536 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) {
 537   // Metadata pointers are either narrow (32 bits) or wide (48 bits).
 538   // We encode narrow ones by setting the upper 16 bits in the first
 539   // instruction.
 540   NativeInstruction *insn = nativeInstruction_at(insn_addr);
 541   assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 &&
 542          nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
 543 
 544   Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16);
 545   Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff);
 546   return 2 * NativeInstruction::instruction_size;
 547 }
 548 
 549 address MacroAssembler::target_addr_for_insn_or_null(address insn_addr, unsigned insn) {
 550   if (NativeInstruction::is_ldrw_to_zr(address(&insn))) {
 551     return nullptr;
 552   }
 553   return MacroAssembler::target_addr_for_insn(insn_addr, insn);
 554 }
 555 
 556 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp) {
 557   if (acquire) {
 558     lea(tmp, Address(rthread, JavaThread::polling_word_offset()));
 559     ldar(tmp, tmp);
 560   } else {
 561     ldr(tmp, Address(rthread, JavaThread::polling_word_offset()));
 562   }
 563   if (at_return) {
 564     // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore,
 565     // we may safely use the sp instead to perform the stack watermark check.
 566     cmp(in_nmethod ? sp : rfp, tmp);
 567     br(Assembler::HI, slow_path);
 568   } else {
 569     tbnz(tmp, log2i_exact(SafepointMechanism::poll_bit()), slow_path);
 570   }
 571 }
 572 
 573 void MacroAssembler::rt_call(address dest, Register tmp) {
 574   CodeBlob *cb = CodeCache::find_blob(dest);
 575   if (cb) {
 576     far_call(RuntimeAddress(dest));
 577   } else {
 578     lea(tmp, RuntimeAddress(dest));
 579     blr(tmp);
 580   }
 581 }
 582 
 583 void MacroAssembler::push_cont_fastpath(Register java_thread) {
 584   if (!Continuations::enabled()) return;
 585   Label done;
 586   ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset()));
 587   cmp(sp, rscratch1);
 588   br(Assembler::LS, done);
 589   mov(rscratch1, sp); // we can't use sp as the source in str
 590   str(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset()));
 591   bind(done);
 592 }
 593 
 594 void MacroAssembler::pop_cont_fastpath(Register java_thread) {
 595   if (!Continuations::enabled()) return;
 596   Label done;
 597   ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset()));
 598   cmp(sp, rscratch1);
 599   br(Assembler::LO, done);
 600   str(zr, Address(java_thread, JavaThread::cont_fastpath_offset()));
 601   bind(done);
 602 }
 603 
 604 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
 605   // we must set sp to zero to clear frame
 606   str(zr, Address(rthread, JavaThread::last_Java_sp_offset()));
 607 
 608   // must clear fp, so that compiled frames are not confused; it is
 609   // possible that we need it only for debugging
 610   if (clear_fp) {
 611     str(zr, Address(rthread, JavaThread::last_Java_fp_offset()));
 612   }
 613 
 614   // Always clear the pc because it could have been set by make_walkable()
 615   str(zr, Address(rthread, JavaThread::last_Java_pc_offset()));
 616 }
 617 
 618 // Calls to C land
 619 //
 620 // When entering C land, the rfp, & resp of the last Java frame have to be recorded
 621 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
 622 // has to be reset to 0. This is required to allow proper stack traversal.
 623 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 624                                          Register last_java_fp,
 625                                          Register last_java_pc,
 626                                          Register scratch) {
 627 
 628   if (last_java_pc->is_valid()) {
 629       str(last_java_pc, Address(rthread,
 630                                 JavaThread::frame_anchor_offset()
 631                                 + JavaFrameAnchor::last_Java_pc_offset()));
 632     }
 633 
 634   // determine last_java_sp register
 635   if (last_java_sp == sp) {
 636     mov(scratch, sp);
 637     last_java_sp = scratch;
 638   } else if (!last_java_sp->is_valid()) {
 639     last_java_sp = esp;
 640   }
 641 
 642   str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset()));
 643 
 644   // last_java_fp is optional
 645   if (last_java_fp->is_valid()) {
 646     str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset()));
 647   }
 648 }
 649 
 650 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 651                                          Register last_java_fp,
 652                                          address  last_java_pc,
 653                                          Register scratch) {
 654   assert(last_java_pc != nullptr, "must provide a valid PC");
 655 
 656   adr(scratch, last_java_pc);
 657   str(scratch, Address(rthread,
 658                        JavaThread::frame_anchor_offset()
 659                        + JavaFrameAnchor::last_Java_pc_offset()));
 660 
 661   set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch);
 662 }
 663 
 664 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 665                                          Register last_java_fp,
 666                                          Label &L,
 667                                          Register scratch) {
 668   if (L.is_bound()) {
 669     set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch);
 670   } else {
 671     InstructionMark im(this);
 672     L.add_patch_at(code(), locator());
 673     set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch);
 674   }
 675 }
 676 
 677 static inline bool target_needs_far_branch(address addr) {
 678   // codecache size <= 128M
 679   if (!MacroAssembler::far_branches()) {
 680     return false;
 681   }
 682   // codecache size > 240M
 683   if (MacroAssembler::codestub_branch_needs_far_jump()) {
 684     return true;
 685   }
 686   // codecache size: 128M..240M
 687   return !CodeCache::is_non_nmethod(addr);
 688 }
 689 
 690 void MacroAssembler::far_call(Address entry, Register tmp) {
 691   assert(ReservedCodeCacheSize < 4*G, "branch out of range");
 692   assert(CodeCache::find_blob(entry.target()) != nullptr,
 693          "destination of far call not found in code cache");
 694   assert(entry.rspec().type() == relocInfo::external_word_type
 695          || entry.rspec().type() == relocInfo::runtime_call_type
 696          || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type");
 697   if (target_needs_far_branch(entry.target())) {
 698     uint64_t offset;
 699     // We can use ADRP here because we know that the total size of
 700     // the code cache cannot exceed 2Gb (ADRP limit is 4GB).
 701     adrp(tmp, entry, offset);
 702     add(tmp, tmp, offset);
 703     blr(tmp);
 704   } else {
 705     bl(entry);
 706   }
 707 }
 708 
 709 int MacroAssembler::far_jump(Address entry, Register tmp) {
 710   assert(ReservedCodeCacheSize < 4*G, "branch out of range");
 711   assert(CodeCache::find_blob(entry.target()) != nullptr,
 712          "destination of far call not found in code cache");
 713   assert(entry.rspec().type() == relocInfo::external_word_type
 714          || entry.rspec().type() == relocInfo::runtime_call_type
 715          || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type");
 716   address start = pc();
 717   if (target_needs_far_branch(entry.target())) {
 718     uint64_t offset;
 719     // We can use ADRP here because we know that the total size of
 720     // the code cache cannot exceed 2Gb (ADRP limit is 4GB).
 721     adrp(tmp, entry, offset);
 722     add(tmp, tmp, offset);
 723     br(tmp);
 724   } else {
 725     b(entry);
 726   }
 727   return pc() - start;
 728 }
 729 
 730 void MacroAssembler::reserved_stack_check() {
 731     // testing if reserved zone needs to be enabled
 732     Label no_reserved_zone_enabling;
 733 
 734     ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset()));
 735     cmp(sp, rscratch1);
 736     br(Assembler::LO, no_reserved_zone_enabling);
 737 
 738     enter();   // LR and FP are live.
 739     lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone)));
 740     mov(c_rarg0, rthread);
 741     blr(rscratch1);
 742     leave();
 743 
 744     // We have already removed our own frame.
 745     // throw_delayed_StackOverflowError will think that it's been
 746     // called by our caller.
 747     lea(rscratch1, RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry()));
 748     br(rscratch1);
 749     should_not_reach_here();
 750 
 751     bind(no_reserved_zone_enabling);
 752 }
 753 
 754 static void pass_arg0(MacroAssembler* masm, Register arg) {
 755   if (c_rarg0 != arg ) {
 756     masm->mov(c_rarg0, arg);
 757   }
 758 }
 759 
 760 static void pass_arg1(MacroAssembler* masm, Register arg) {
 761   if (c_rarg1 != arg ) {
 762     masm->mov(c_rarg1, arg);
 763   }
 764 }
 765 
 766 static void pass_arg2(MacroAssembler* masm, Register arg) {
 767   if (c_rarg2 != arg ) {
 768     masm->mov(c_rarg2, arg);
 769   }
 770 }
 771 
 772 static void pass_arg3(MacroAssembler* masm, Register arg) {
 773   if (c_rarg3 != arg ) {
 774     masm->mov(c_rarg3, arg);
 775   }
 776 }
 777 
 778 void MacroAssembler::call_VM_base(Register oop_result,
 779                                   Register java_thread,
 780                                   Register last_java_sp,
 781                                   address  entry_point,
 782                                   int      number_of_arguments,
 783                                   bool     check_exceptions) {
 784    // determine java_thread register
 785   if (!java_thread->is_valid()) {
 786     java_thread = rthread;
 787   }
 788 
 789   // determine last_java_sp register
 790   if (!last_java_sp->is_valid()) {
 791     last_java_sp = esp;
 792   }
 793 
 794   // debugging support
 795   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
 796   assert(java_thread == rthread, "unexpected register");
 797 #ifdef ASSERT
 798   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
 799   // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");
 800 #endif // ASSERT
 801 
 802   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
 803   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
 804 
 805   // push java thread (becomes first argument of C function)
 806 
 807   mov(c_rarg0, java_thread);
 808 
 809   // set last Java frame before call
 810   assert(last_java_sp != rfp, "can't use rfp");
 811 
 812   Label l;
 813   set_last_Java_frame(last_java_sp, rfp, l, rscratch1);
 814 
 815   // do the call, remove parameters
 816   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l);
 817 
 818   // lr could be poisoned with PAC signature during throw_pending_exception
 819   // if it was tail-call optimized by compiler, since lr is not callee-saved
 820   // reload it with proper value
 821   adr(lr, l);
 822 
 823   // reset last Java frame
 824   // Only interpreter should have to clear fp
 825   reset_last_Java_frame(true);
 826 
 827    // C++ interp handles this in the interpreter
 828   check_and_handle_popframe(java_thread);
 829   check_and_handle_earlyret(java_thread);
 830 
 831   if (check_exceptions) {
 832     // check for pending exceptions (java_thread is set upon return)
 833     ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset())));
 834     Label ok;
 835     cbz(rscratch1, ok);
 836     lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry()));
 837     br(rscratch1);
 838     bind(ok);
 839   }
 840 
 841   // get oop result if there is one and reset the value in the thread
 842   if (oop_result->is_valid()) {
 843     get_vm_result(oop_result, java_thread);
 844   }
 845 }
 846 
 847 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
 848   call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
 849 }
 850 
 851 // Check the entry target is always reachable from any branch.
 852 static bool is_always_within_branch_range(Address entry) {
 853   const address target = entry.target();
 854 
 855   if (!CodeCache::contains(target)) {
 856     // We always use trampolines for callees outside CodeCache.
 857     assert(entry.rspec().type() == relocInfo::runtime_call_type, "non-runtime call of an external target");
 858     return false;
 859   }
 860 
 861   if (!MacroAssembler::far_branches()) {
 862     return true;
 863   }
 864 
 865   if (entry.rspec().type() == relocInfo::runtime_call_type) {
 866     // Runtime calls are calls of a non-compiled method (stubs, adapters).
 867     // Non-compiled methods stay forever in CodeCache.
 868     // We check whether the longest possible branch is within the branch range.
 869     assert(CodeCache::find_blob(target) != nullptr &&
 870           !CodeCache::find_blob(target)->is_nmethod(),
 871           "runtime call of compiled method");
 872     const address right_longest_branch_start = CodeCache::high_bound() - NativeInstruction::instruction_size;
 873     const address left_longest_branch_start = CodeCache::low_bound();
 874     const bool is_reachable = Assembler::reachable_from_branch_at(left_longest_branch_start, target) &&
 875                               Assembler::reachable_from_branch_at(right_longest_branch_start, target);
 876     return is_reachable;
 877   }
 878 
 879   return false;
 880 }
 881 
 882 // Maybe emit a call via a trampoline. If the code cache is small
 883 // trampolines won't be emitted.
 884 address MacroAssembler::trampoline_call(Address entry) {
 885   assert(entry.rspec().type() == relocInfo::runtime_call_type
 886          || entry.rspec().type() == relocInfo::opt_virtual_call_type
 887          || entry.rspec().type() == relocInfo::static_call_type
 888          || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type");
 889 
 890   address target = entry.target();
 891 
 892   if (!is_always_within_branch_range(entry)) {
 893     if (!in_scratch_emit_size()) {
 894       // We don't want to emit a trampoline if C2 is generating dummy
 895       // code during its branch shortening phase.
 896       if (entry.rspec().type() == relocInfo::runtime_call_type) {
 897         assert(CodeBuffer::supports_shared_stubs(), "must support shared stubs");
 898         code()->share_trampoline_for(entry.target(), offset());
 899       } else {
 900         address stub = emit_trampoline_stub(offset(), target);
 901         if (stub == nullptr) {
 902           postcond(pc() == badAddress);
 903           return nullptr; // CodeCache is full
 904         }
 905       }
 906     }
 907     target = pc();
 908   }
 909 
 910   address call_pc = pc();
 911   relocate(entry.rspec());
 912   bl(target);
 913 
 914   postcond(pc() != badAddress);
 915   return call_pc;
 916 }
 917 
 918 // Emit a trampoline stub for a call to a target which is too far away.
 919 //
 920 // code sequences:
 921 //
 922 // call-site:
 923 //   branch-and-link to <destination> or <trampoline stub>
 924 //
 925 // Related trampoline stub for this call site in the stub section:
 926 //   load the call target from the constant pool
 927 //   branch (LR still points to the call site above)
 928 
 929 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset,
 930                                              address dest) {
 931   // Max stub size: alignment nop, TrampolineStub.
 932   address stub = start_a_stub(max_trampoline_stub_size());
 933   if (stub == nullptr) {
 934     return nullptr;  // CodeBuffer::expand failed
 935   }
 936 
 937   // Create a trampoline stub relocation which relates this trampoline stub
 938   // with the call instruction at insts_call_instruction_offset in the
 939   // instructions code-section.
 940   align(wordSize);
 941   relocate(trampoline_stub_Relocation::spec(code()->insts()->start()
 942                                             + insts_call_instruction_offset));
 943   const int stub_start_offset = offset();
 944 
 945   // Now, create the trampoline stub's code:
 946   // - load the call
 947   // - call
 948   Label target;
 949   ldr(rscratch1, target);
 950   br(rscratch1);
 951   bind(target);
 952   assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset,
 953          "should be");
 954   emit_int64((int64_t)dest);
 955 
 956   const address stub_start_addr = addr_at(stub_start_offset);
 957 
 958   assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
 959 
 960   end_a_stub();
 961   return stub_start_addr;
 962 }
 963 
 964 int MacroAssembler::max_trampoline_stub_size() {
 965   // Max stub size: alignment nop, TrampolineStub.
 966   return NativeInstruction::instruction_size + NativeCallTrampolineStub::instruction_size;
 967 }
 968 
 969 void MacroAssembler::emit_static_call_stub() {
 970   // CompiledDirectCall::set_to_interpreted knows the
 971   // exact layout of this stub.
 972 
 973   isb();
 974   mov_metadata(rmethod, nullptr);
 975 
 976   // Jump to the entry point of the c2i stub.
 977   movptr(rscratch1, 0);
 978   br(rscratch1);
 979 }
 980 
 981 int MacroAssembler::static_call_stub_size() {
 982   // isb; movk; movz; movz; movk; movz; movz; br
 983   return 8 * NativeInstruction::instruction_size;
 984 }
 985 
 986 void MacroAssembler::c2bool(Register x) {
 987   // implements x == 0 ? 0 : 1
 988   // note: must only look at least-significant byte of x
 989   //       since C-style booleans are stored in one byte
 990   //       only! (was bug)
 991   tst(x, 0xff);
 992   cset(x, Assembler::NE);
 993 }
 994 
 995 address MacroAssembler::ic_call(address entry, jint method_index) {
 996   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
 997   // address const_ptr = long_constant((jlong)Universe::non_oop_word());
 998   // uintptr_t offset;
 999   // ldr_constant(rscratch2, const_ptr);
1000   movptr(rscratch2, (intptr_t)Universe::non_oop_word());
1001   return trampoline_call(Address(entry, rh));
1002 }
1003 
1004 int MacroAssembler::ic_check_size() {
1005   if (target_needs_far_branch(CAST_FROM_FN_PTR(address, SharedRuntime::get_ic_miss_stub()))) {
1006     return NativeInstruction::instruction_size * 7;
1007   } else {
1008     return NativeInstruction::instruction_size * 5;
1009   }
1010 }
1011 
1012 int MacroAssembler::ic_check(int end_alignment) {
1013   Register receiver = j_rarg0;
1014   Register data = rscratch2;
1015   Register tmp1 = rscratch1;
1016   Register tmp2 = r10;
1017 
1018   // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed
1019   // before the inline cache check, so we don't have to execute any nop instructions when dispatching
1020   // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align
1021   // before the inline cache check here, and not after
1022   align(end_alignment, offset() + ic_check_size());
1023 
1024   int uep_offset = offset();
1025 
1026   if (UseCompressedClassPointers) {
1027     ldrw(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes()));
1028     ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset()));
1029     cmpw(tmp1, tmp2);
1030   } else {
1031     ldr(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes()));
1032     ldr(tmp2, Address(data, CompiledICData::speculated_klass_offset()));
1033     cmp(tmp1, tmp2);
1034   }
1035 
1036   Label dont;
1037   br(Assembler::EQ, dont);
1038   far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1039   bind(dont);
1040   assert((offset() % end_alignment) == 0, "Misaligned verified entry point");
1041 
1042   return uep_offset;
1043 }
1044 
1045 // Implementation of call_VM versions
1046 
1047 void MacroAssembler::call_VM(Register oop_result,
1048                              address entry_point,
1049                              bool check_exceptions) {
1050   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
1051 }
1052 
1053 void MacroAssembler::call_VM(Register oop_result,
1054                              address entry_point,
1055                              Register arg_1,
1056                              bool check_exceptions) {
1057   pass_arg1(this, arg_1);
1058   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
1059 }
1060 
1061 void MacroAssembler::call_VM(Register oop_result,
1062                              address entry_point,
1063                              Register arg_1,
1064                              Register arg_2,
1065                              bool check_exceptions) {
1066   assert_different_registers(arg_1, c_rarg2);
1067   pass_arg2(this, arg_2);
1068   pass_arg1(this, arg_1);
1069   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
1070 }
1071 
1072 void MacroAssembler::call_VM(Register oop_result,
1073                              address entry_point,
1074                              Register arg_1,
1075                              Register arg_2,
1076                              Register arg_3,
1077                              bool check_exceptions) {
1078   assert_different_registers(arg_1, c_rarg2, c_rarg3);
1079   assert_different_registers(arg_2, c_rarg3);
1080   pass_arg3(this, arg_3);
1081 
1082   pass_arg2(this, arg_2);
1083 
1084   pass_arg1(this, arg_1);
1085   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
1086 }
1087 
1088 void MacroAssembler::call_VM(Register oop_result,
1089                              Register last_java_sp,
1090                              address entry_point,
1091                              int number_of_arguments,
1092                              bool check_exceptions) {
1093   call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
1094 }
1095 
1096 void MacroAssembler::call_VM(Register oop_result,
1097                              Register last_java_sp,
1098                              address entry_point,
1099                              Register arg_1,
1100                              bool check_exceptions) {
1101   pass_arg1(this, arg_1);
1102   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
1103 }
1104 
1105 void MacroAssembler::call_VM(Register oop_result,
1106                              Register last_java_sp,
1107                              address entry_point,
1108                              Register arg_1,
1109                              Register arg_2,
1110                              bool check_exceptions) {
1111 
1112   assert_different_registers(arg_1, c_rarg2);
1113   pass_arg2(this, arg_2);
1114   pass_arg1(this, arg_1);
1115   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
1116 }
1117 
1118 void MacroAssembler::call_VM(Register oop_result,
1119                              Register last_java_sp,
1120                              address entry_point,
1121                              Register arg_1,
1122                              Register arg_2,
1123                              Register arg_3,
1124                              bool check_exceptions) {
1125   assert_different_registers(arg_1, c_rarg2, c_rarg3);
1126   assert_different_registers(arg_2, c_rarg3);
1127   pass_arg3(this, arg_3);
1128   pass_arg2(this, arg_2);
1129   pass_arg1(this, arg_1);
1130   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
1131 }
1132 
1133 
1134 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
1135   ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
1136   str(zr, Address(java_thread, JavaThread::vm_result_offset()));
1137   verify_oop_msg(oop_result, "broken oop in call_VM_base");
1138 }
1139 
1140 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
1141   ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
1142   str(zr, Address(java_thread, JavaThread::vm_result_2_offset()));
1143 }
1144 
1145 void MacroAssembler::align(int modulus) {
1146   align(modulus, offset());
1147 }
1148 
1149 // Ensure that the code at target bytes offset from the current offset() is aligned
1150 // according to modulus.
1151 void MacroAssembler::align(int modulus, int target) {
1152   int delta = target - offset();
1153   while ((offset() + delta) % modulus != 0) nop();
1154 }
1155 
1156 void MacroAssembler::post_call_nop() {
1157   if (!Continuations::enabled()) {
1158     return;
1159   }
1160   InstructionMark im(this);
1161   relocate(post_call_nop_Relocation::spec());
1162   InlineSkippedInstructionsCounter skipCounter(this);
1163   nop();
1164   movk(zr, 0);
1165   movk(zr, 0);
1166 }
1167 
1168 // these are no-ops overridden by InterpreterMacroAssembler
1169 
1170 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { }
1171 
1172 void MacroAssembler::check_and_handle_popframe(Register java_thread) { }
1173 
1174 // Look up the method for a megamorphic invokeinterface call.
1175 // The target method is determined by <intf_klass, itable_index>.
1176 // The receiver klass is in recv_klass.
1177 // On success, the result will be in method_result, and execution falls through.
1178 // On failure, execution transfers to the given label.
1179 void MacroAssembler::lookup_interface_method(Register recv_klass,
1180                                              Register intf_klass,
1181                                              RegisterOrConstant itable_index,
1182                                              Register method_result,
1183                                              Register scan_temp,
1184                                              Label& L_no_such_interface,
1185                          bool return_method) {
1186   assert_different_registers(recv_klass, intf_klass, scan_temp);
1187   assert_different_registers(method_result, intf_klass, scan_temp);
1188   assert(recv_klass != method_result || !return_method,
1189      "recv_klass can be destroyed when method isn't needed");
1190   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
1191          "caller must use same register for non-constant itable index as for method");
1192 
1193   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
1194   int vtable_base = in_bytes(Klass::vtable_start_offset());
1195   int itentry_off = in_bytes(itableMethodEntry::method_offset());
1196   int scan_step   = itableOffsetEntry::size() * wordSize;
1197   int vte_size    = vtableEntry::size_in_bytes();
1198   assert(vte_size == wordSize, "else adjust times_vte_scale");
1199 
1200   ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
1201 
1202   // Could store the aligned, prescaled offset in the klass.
1203   // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
1204   lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3)));
1205   add(scan_temp, scan_temp, vtable_base);
1206 
1207   if (return_method) {
1208     // Adjust recv_klass by scaled itable_index, so we can free itable_index.
1209     assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
1210     // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
1211     lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3)));
1212     if (itentry_off)
1213       add(recv_klass, recv_klass, itentry_off);
1214   }
1215 
1216   // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) {
1217   //   if (scan->interface() == intf) {
1218   //     result = (klass + scan->offset() + itable_index);
1219   //   }
1220   // }
1221   Label search, found_method;
1222 
1223   ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset()));
1224   cmp(intf_klass, method_result);
1225   br(Assembler::EQ, found_method);
1226   bind(search);
1227   // Check that the previous entry is non-null.  A null entry means that
1228   // the receiver class doesn't implement the interface, and wasn't the
1229   // same as when the caller was compiled.
1230   cbz(method_result, L_no_such_interface);
1231   if (itableOffsetEntry::interface_offset() != 0) {
1232     add(scan_temp, scan_temp, scan_step);
1233     ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset()));
1234   } else {
1235     ldr(method_result, Address(pre(scan_temp, scan_step)));
1236   }
1237   cmp(intf_klass, method_result);
1238   br(Assembler::NE, search);
1239 
1240   bind(found_method);
1241 
1242   // Got a hit.
1243   if (return_method) {
1244     ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset()));
1245     ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0)));
1246   }
1247 }
1248 
1249 // Look up the method for a megamorphic invokeinterface call in a single pass over itable:
1250 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData
1251 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index
1252 // The target method is determined by <holder_klass, itable_index>.
1253 // The receiver klass is in recv_klass.
1254 // On success, the result will be in method_result, and execution falls through.
1255 // On failure, execution transfers to the given label.
1256 void MacroAssembler::lookup_interface_method_stub(Register recv_klass,
1257                                                   Register holder_klass,
1258                                                   Register resolved_klass,
1259                                                   Register method_result,
1260                                                   Register temp_itbl_klass,
1261                                                   Register scan_temp,
1262                                                   int itable_index,
1263                                                   Label& L_no_such_interface) {
1264   // 'method_result' is only used as output register at the very end of this method.
1265   // Until then we can reuse it as 'holder_offset'.
1266   Register holder_offset = method_result;
1267   assert_different_registers(resolved_klass, recv_klass, holder_klass, temp_itbl_klass, scan_temp, holder_offset);
1268 
1269   int vtable_start_offset = in_bytes(Klass::vtable_start_offset());
1270   int itable_offset_entry_size = itableOffsetEntry::size() * wordSize;
1271   int ioffset = in_bytes(itableOffsetEntry::interface_offset());
1272   int ooffset = in_bytes(itableOffsetEntry::offset_offset());
1273 
1274   Label L_loop_search_resolved_entry, L_resolved_found, L_holder_found;
1275 
1276   ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
1277   add(recv_klass, recv_klass, vtable_start_offset + ioffset);
1278   // itableOffsetEntry[] itable = recv_klass + Klass::vtable_start_offset() + sizeof(vtableEntry) * recv_klass->_vtable_len;
1279   // temp_itbl_klass = itable[0]._interface;
1280   int vtblEntrySize = vtableEntry::size_in_bytes();
1281   assert(vtblEntrySize == wordSize, "ldr lsl shift amount must be 3");
1282   ldr(temp_itbl_klass, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize))));
1283   mov(holder_offset, zr);
1284   // scan_temp = &(itable[0]._interface)
1285   lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize))));
1286 
1287   // Initial checks:
1288   //   - if (holder_klass != resolved_klass), go to "scan for resolved"
1289   //   - if (itable[0] == holder_klass), shortcut to "holder found"
1290   //   - if (itable[0] == 0), no such interface
1291   cmp(resolved_klass, holder_klass);
1292   br(Assembler::NE, L_loop_search_resolved_entry);
1293   cmp(holder_klass, temp_itbl_klass);
1294   br(Assembler::EQ, L_holder_found);
1295   cbz(temp_itbl_klass, L_no_such_interface);
1296 
1297   // Loop: Look for holder_klass record in itable
1298   //   do {
1299   //     temp_itbl_klass = *(scan_temp += itable_offset_entry_size);
1300   //     if (temp_itbl_klass == holder_klass) {
1301   //       goto L_holder_found; // Found!
1302   //     }
1303   //   } while (temp_itbl_klass != 0);
1304   //   goto L_no_such_interface // Not found.
1305   Label L_search_holder;
1306   bind(L_search_holder);
1307     ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size)));
1308     cmp(holder_klass, temp_itbl_klass);
1309     br(Assembler::EQ, L_holder_found);
1310     cbnz(temp_itbl_klass, L_search_holder);
1311 
1312   b(L_no_such_interface);
1313 
1314   // Loop: Look for resolved_class record in itable
1315   //   while (true) {
1316   //     temp_itbl_klass = *(scan_temp += itable_offset_entry_size);
1317   //     if (temp_itbl_klass == 0) {
1318   //       goto L_no_such_interface;
1319   //     }
1320   //     if (temp_itbl_klass == resolved_klass) {
1321   //        goto L_resolved_found;  // Found!
1322   //     }
1323   //     if (temp_itbl_klass == holder_klass) {
1324   //        holder_offset = scan_temp;
1325   //     }
1326   //   }
1327   //
1328   Label L_loop_search_resolved;
1329   bind(L_loop_search_resolved);
1330     ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size)));
1331   bind(L_loop_search_resolved_entry);
1332     cbz(temp_itbl_klass, L_no_such_interface);
1333     cmp(resolved_klass, temp_itbl_klass);
1334     br(Assembler::EQ, L_resolved_found);
1335     cmp(holder_klass, temp_itbl_klass);
1336     br(Assembler::NE, L_loop_search_resolved);
1337     mov(holder_offset, scan_temp);
1338     b(L_loop_search_resolved);
1339 
1340   // See if we already have a holder klass. If not, go and scan for it.
1341   bind(L_resolved_found);
1342   cbz(holder_offset, L_search_holder);
1343   mov(scan_temp, holder_offset);
1344 
1345   // Finally, scan_temp contains holder_klass vtable offset
1346   bind(L_holder_found);
1347   ldrw(method_result, Address(scan_temp, ooffset - ioffset));
1348   add(recv_klass, recv_klass, itable_index * wordSize + in_bytes(itableMethodEntry::method_offset())
1349     - vtable_start_offset - ioffset); // substract offsets to restore the original value of recv_klass
1350   ldr(method_result, Address(recv_klass, method_result, Address::uxtw(0)));
1351 }
1352 
1353 // virtual method calling
1354 void MacroAssembler::lookup_virtual_method(Register recv_klass,
1355                                            RegisterOrConstant vtable_index,
1356                                            Register method_result) {
1357   assert(vtableEntry::size() * wordSize == 8,
1358          "adjust the scaling in the code below");
1359   int64_t vtable_offset_in_bytes = in_bytes(Klass::vtable_start_offset() + vtableEntry::method_offset());
1360 
1361   if (vtable_index.is_register()) {
1362     lea(method_result, Address(recv_klass,
1363                                vtable_index.as_register(),
1364                                Address::lsl(LogBytesPerWord)));
1365     ldr(method_result, Address(method_result, vtable_offset_in_bytes));
1366   } else {
1367     vtable_offset_in_bytes += vtable_index.as_constant() * wordSize;
1368     ldr(method_result,
1369         form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0));
1370   }
1371 }
1372 
1373 void MacroAssembler::check_klass_subtype(Register sub_klass,
1374                            Register super_klass,
1375                            Register temp_reg,
1376                            Label& L_success) {
1377   Label L_failure;
1378   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, nullptr);
1379   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr);
1380   bind(L_failure);
1381 }
1382 
1383 
1384 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
1385                                                    Register super_klass,
1386                                                    Register temp_reg,
1387                                                    Label* L_success,
1388                                                    Label* L_failure,
1389                                                    Label* L_slow_path,
1390                                         RegisterOrConstant super_check_offset) {
1391   assert_different_registers(sub_klass, super_klass, temp_reg);
1392   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
1393   if (super_check_offset.is_register()) {
1394     assert_different_registers(sub_klass, super_klass,
1395                                super_check_offset.as_register());
1396   } else if (must_load_sco) {
1397     assert(temp_reg != noreg, "supply either a temp or a register offset");
1398   }
1399 
1400   Label L_fallthrough;
1401   int label_nulls = 0;
1402   if (L_success == nullptr)   { L_success   = &L_fallthrough; label_nulls++; }
1403   if (L_failure == nullptr)   { L_failure   = &L_fallthrough; label_nulls++; }
1404   if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; }
1405   assert(label_nulls <= 1, "at most one null in the batch");
1406 
1407   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1408   int sco_offset = in_bytes(Klass::super_check_offset_offset());
1409   Address super_check_offset_addr(super_klass, sco_offset);
1410 
1411   // Hacked jmp, which may only be used just before L_fallthrough.
1412 #define final_jmp(label)                                                \
1413   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
1414   else                            b(label)                /*omit semi*/
1415 
1416   // If the pointers are equal, we are done (e.g., String[] elements).
1417   // This self-check enables sharing of secondary supertype arrays among
1418   // non-primary types such as array-of-interface.  Otherwise, each such
1419   // type would need its own customized SSA.
1420   // We move this check to the front of the fast path because many
1421   // type checks are in fact trivially successful in this manner,
1422   // so we get a nicely predicted branch right at the start of the check.
1423   cmp(sub_klass, super_klass);
1424   br(Assembler::EQ, *L_success);
1425 
1426   // Check the supertype display:
1427   if (must_load_sco) {
1428     ldrw(temp_reg, super_check_offset_addr);
1429     super_check_offset = RegisterOrConstant(temp_reg);
1430   }
1431   Address super_check_addr(sub_klass, super_check_offset);
1432   ldr(rscratch1, super_check_addr);
1433   cmp(super_klass, rscratch1); // load displayed supertype
1434 
1435   // This check has worked decisively for primary supers.
1436   // Secondary supers are sought in the super_cache ('super_cache_addr').
1437   // (Secondary supers are interfaces and very deeply nested subtypes.)
1438   // This works in the same check above because of a tricky aliasing
1439   // between the super_cache and the primary super display elements.
1440   // (The 'super_check_addr' can address either, as the case requires.)
1441   // Note that the cache is updated below if it does not help us find
1442   // what we need immediately.
1443   // So if it was a primary super, we can just fail immediately.
1444   // Otherwise, it's the slow path for us (no success at this point).
1445 
1446   if (super_check_offset.is_register()) {
1447     br(Assembler::EQ, *L_success);
1448     subs(zr, super_check_offset.as_register(), sc_offset);
1449     if (L_failure == &L_fallthrough) {
1450       br(Assembler::EQ, *L_slow_path);
1451     } else {
1452       br(Assembler::NE, *L_failure);
1453       final_jmp(*L_slow_path);
1454     }
1455   } else if (super_check_offset.as_constant() == sc_offset) {
1456     // Need a slow path; fast failure is impossible.
1457     if (L_slow_path == &L_fallthrough) {
1458       br(Assembler::EQ, *L_success);
1459     } else {
1460       br(Assembler::NE, *L_slow_path);
1461       final_jmp(*L_success);
1462     }
1463   } else {
1464     // No slow path; it's a fast decision.
1465     if (L_failure == &L_fallthrough) {
1466       br(Assembler::EQ, *L_success);
1467     } else {
1468       br(Assembler::NE, *L_failure);
1469       final_jmp(*L_success);
1470     }
1471   }
1472 
1473   bind(L_fallthrough);
1474 
1475 #undef final_jmp
1476 }
1477 
1478 // These two are taken from x86, but they look generally useful
1479 
1480 // scans count pointer sized words at [addr] for occurrence of value,
1481 // generic
1482 void MacroAssembler::repne_scan(Register addr, Register value, Register count,
1483                                 Register scratch) {
1484   Label Lloop, Lexit;
1485   cbz(count, Lexit);
1486   bind(Lloop);
1487   ldr(scratch, post(addr, wordSize));
1488   cmp(value, scratch);
1489   br(EQ, Lexit);
1490   sub(count, count, 1);
1491   cbnz(count, Lloop);
1492   bind(Lexit);
1493 }
1494 
1495 // scans count 4 byte words at [addr] for occurrence of value,
1496 // generic
1497 void MacroAssembler::repne_scanw(Register addr, Register value, Register count,
1498                                 Register scratch) {
1499   Label Lloop, Lexit;
1500   cbz(count, Lexit);
1501   bind(Lloop);
1502   ldrw(scratch, post(addr, wordSize));
1503   cmpw(value, scratch);
1504   br(EQ, Lexit);
1505   sub(count, count, 1);
1506   cbnz(count, Lloop);
1507   bind(Lexit);
1508 }
1509 
1510 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
1511                                                    Register super_klass,
1512                                                    Register temp_reg,
1513                                                    Register temp2_reg,
1514                                                    Label* L_success,
1515                                                    Label* L_failure,
1516                                                    bool set_cond_codes) {
1517   // NB! Callers may assume that, when temp2_reg is a valid register,
1518   // this code sets it to a nonzero value.
1519 
1520   assert_different_registers(sub_klass, super_klass, temp_reg);
1521   if (temp2_reg != noreg)
1522     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1);
1523 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
1524 
1525   Label L_fallthrough;
1526   int label_nulls = 0;
1527   if (L_success == nullptr)   { L_success   = &L_fallthrough; label_nulls++; }
1528   if (L_failure == nullptr)   { L_failure   = &L_fallthrough; label_nulls++; }
1529   assert(label_nulls <= 1, "at most one null in the batch");
1530 
1531   // a couple of useful fields in sub_klass:
1532   int ss_offset = in_bytes(Klass::secondary_supers_offset());
1533   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1534   Address secondary_supers_addr(sub_klass, ss_offset);
1535   Address super_cache_addr(     sub_klass, sc_offset);
1536 
1537   BLOCK_COMMENT("check_klass_subtype_slow_path");
1538 
1539   // Do a linear scan of the secondary super-klass chain.
1540   // This code is rarely used, so simplicity is a virtue here.
1541   // The repne_scan instruction uses fixed registers, which we must spill.
1542   // Don't worry too much about pre-existing connections with the input regs.
1543 
1544   assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super)
1545   assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter)
1546 
1547   RegSet pushed_registers;
1548   if (!IS_A_TEMP(r2))    pushed_registers += r2;
1549   if (!IS_A_TEMP(r5))    pushed_registers += r5;
1550 
1551   if (super_klass != r0) {
1552     if (!IS_A_TEMP(r0))   pushed_registers += r0;
1553   }
1554 
1555   push(pushed_registers, sp);
1556 
1557   // Get super_klass value into r0 (even if it was in r5 or r2).
1558   if (super_klass != r0) {
1559     mov(r0, super_klass);
1560   }
1561 
1562 #ifndef PRODUCT
1563   incrementw(ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr));
1564 #endif //PRODUCT
1565 
1566   // We will consult the secondary-super array.
1567   ldr(r5, secondary_supers_addr);
1568   // Load the array length.
1569   ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes()));
1570   // Skip to start of data.
1571   add(r5, r5, Array<Klass*>::base_offset_in_bytes());
1572 
1573   cmp(sp, zr); // Clear Z flag; SP is never zero
1574   // Scan R2 words at [R5] for an occurrence of R0.
1575   // Set NZ/Z based on last compare.
1576   repne_scan(r5, r0, r2, rscratch1);
1577 
1578   // Unspill the temp. registers:
1579   pop(pushed_registers, sp);
1580 
1581   br(Assembler::NE, *L_failure);
1582 
1583   // Success.  Cache the super we found and proceed in triumph.
1584   str(super_klass, super_cache_addr);
1585 
1586   if (L_success != &L_fallthrough) {
1587     b(*L_success);
1588   }
1589 
1590 #undef IS_A_TEMP
1591 
1592   bind(L_fallthrough);
1593 }
1594 
1595 // Ensure that the inline code and the stub are using the same registers.
1596 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS                    \
1597 do {                                                               \
1598   assert(r_super_klass  == r0                                   && \
1599          r_array_base   == r1                                   && \
1600          r_array_length == r2                                   && \
1601          (r_array_index == r3        || r_array_index == noreg) && \
1602          (r_sub_klass   == r4        || r_sub_klass   == noreg) && \
1603          (r_bitmap      == rscratch2 || r_bitmap      == noreg) && \
1604          (result        == r5        || result        == noreg), "registers must match aarch64.ad"); \
1605 } while(0)
1606 
1607 // Return true: we succeeded in generating this code
1608 bool MacroAssembler::lookup_secondary_supers_table(Register r_sub_klass,
1609                                                    Register r_super_klass,
1610                                                    Register temp1,
1611                                                    Register temp2,
1612                                                    Register temp3,
1613                                                    FloatRegister vtemp,
1614                                                    Register result,
1615                                                    u1 super_klass_slot,
1616                                                    bool stub_is_near) {
1617   assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2);
1618 
1619   Label L_fallthrough;
1620 
1621   BLOCK_COMMENT("lookup_secondary_supers_table {");
1622 
1623   const Register
1624     r_array_base   = temp1, // r1
1625     r_array_length = temp2, // r2
1626     r_array_index  = temp3, // r3
1627     r_bitmap       = rscratch2;
1628 
1629   LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS;
1630 
1631   u1 bit = super_klass_slot;
1632 
1633   // Make sure that result is nonzero if the TBZ below misses.
1634   mov(result, 1);
1635 
1636   // We're going to need the bitmap in a vector reg and in a core reg,
1637   // so load both now.
1638   ldr(r_bitmap, Address(r_sub_klass, Klass::bitmap_offset()));
1639   if (bit != 0) {
1640     ldrd(vtemp, Address(r_sub_klass, Klass::bitmap_offset()));
1641   }
1642   // First check the bitmap to see if super_klass might be present. If
1643   // the bit is zero, we are certain that super_klass is not one of
1644   // the secondary supers.
1645   tbz(r_bitmap, bit, L_fallthrough);
1646 
1647   // Get the first array index that can contain super_klass into r_array_index.
1648   if (bit != 0) {
1649     shld(vtemp, vtemp, Klass::SECONDARY_SUPERS_TABLE_MASK - bit);
1650     cnt(vtemp, T8B, vtemp);
1651     addv(vtemp, T8B, vtemp);
1652     fmovd(r_array_index, vtemp);
1653   } else {
1654     mov(r_array_index, (u1)1);
1655   }
1656   // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word.
1657 
1658   // We will consult the secondary-super array.
1659   ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset())));
1660 
1661   // The value i in r_array_index is >= 1, so even though r_array_base
1662   // points to the length, we don't need to adjust it to point to the
1663   // data.
1664   assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code");
1665   assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code");
1666 
1667   ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord)));
1668   eor(result, result, r_super_klass);
1669   cbz(result, L_fallthrough); // Found a match
1670 
1671   // Is there another entry to check? Consult the bitmap.
1672   tbz(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK, L_fallthrough);
1673 
1674   // Linear probe.
1675   if (bit != 0) {
1676     ror(r_bitmap, r_bitmap, bit);
1677   }
1678 
1679   // The slot we just inspected is at secondary_supers[r_array_index - 1].
1680   // The next slot to be inspected, by the stub we're about to call,
1681   // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap
1682   // have been checked.
1683   Address stub = RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub());
1684   if (stub_is_near) {
1685     bl(stub);
1686   } else {
1687     address call = trampoline_call(stub);
1688     if (call == nullptr) {
1689       return false; // trampoline allocation failed
1690     }
1691   }
1692 
1693   BLOCK_COMMENT("} lookup_secondary_supers_table");
1694 
1695   bind(L_fallthrough);
1696 
1697   if (VerifySecondarySupers) {
1698     verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0
1699                                   temp1, temp2, result);      // r1, r2, r5
1700   }
1701   return true;
1702 }
1703 
1704 // Called by code generated by check_klass_subtype_slow_path
1705 // above. This is called when there is a collision in the hashed
1706 // lookup in the secondary supers array.
1707 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass,
1708                                                              Register r_array_base,
1709                                                              Register r_array_index,
1710                                                              Register r_bitmap,
1711                                                              Register temp1,
1712                                                              Register result) {
1713   assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, result, rscratch1);
1714 
1715   const Register
1716     r_array_length = temp1,
1717     r_sub_klass    = noreg; // unused
1718 
1719   LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS;
1720 
1721   Label L_fallthrough, L_huge;
1722 
1723   // Load the array length.
1724   ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes()));
1725   // And adjust the array base to point to the data.
1726   // NB! Effectively increments current slot index by 1.
1727   assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "");
1728   add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes());
1729 
1730   // The bitmap is full to bursting.
1731   // Implicit invariant: BITMAP_FULL implies (length > 0)
1732   assert(Klass::SECONDARY_SUPERS_BITMAP_FULL == ~uintx(0), "");
1733   cmpw(r_array_length, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 2));
1734   br(GT, L_huge);
1735 
1736   // NB! Our caller has checked bits 0 and 1 in the bitmap. The
1737   // current slot (at secondary_supers[r_array_index]) has not yet
1738   // been inspected, and r_array_index may be out of bounds if we
1739   // wrapped around the end of the array.
1740 
1741   { // This is conventional linear probing, but instead of terminating
1742     // when a null entry is found in the table, we maintain a bitmap
1743     // in which a 0 indicates missing entries.
1744     // The check above guarantees there are 0s in the bitmap, so the loop
1745     // eventually terminates.
1746     Label L_loop;
1747     bind(L_loop);
1748 
1749     // Check for wraparound.
1750     cmp(r_array_index, r_array_length);
1751     csel(r_array_index, zr, r_array_index, GE);
1752 
1753     ldr(rscratch1, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord)));
1754     eor(result, rscratch1, r_super_klass);
1755     cbz(result, L_fallthrough);
1756 
1757     tbz(r_bitmap, 2, L_fallthrough); // look-ahead check (Bit 2); result is non-zero
1758 
1759     ror(r_bitmap, r_bitmap, 1);
1760     add(r_array_index, r_array_index, 1);
1761     b(L_loop);
1762   }
1763 
1764   { // Degenerate case: more than 64 secondary supers.
1765     // FIXME: We could do something smarter here, maybe a vectorized
1766     // comparison or a binary search, but is that worth any added
1767     // complexity?
1768     bind(L_huge);
1769     cmp(sp, zr); // Clear Z flag; SP is never zero
1770     repne_scan(r_array_base, r_super_klass, r_array_length, rscratch1);
1771     cset(result, NE); // result == 0 iff we got a match.
1772   }
1773 
1774   bind(L_fallthrough);
1775 }
1776 
1777 // Make sure that the hashed lookup and a linear scan agree.
1778 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass,
1779                                                    Register r_super_klass,
1780                                                    Register temp1,
1781                                                    Register temp2,
1782                                                    Register result) {
1783   assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, result, rscratch1);
1784 
1785   const Register
1786     r_array_base   = temp1,
1787     r_array_length = temp2,
1788     r_array_index  = noreg, // unused
1789     r_bitmap       = noreg; // unused
1790 
1791   LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS;
1792 
1793   BLOCK_COMMENT("verify_secondary_supers_table {");
1794 
1795   // We will consult the secondary-super array.
1796   ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset())));
1797 
1798   // Load the array length.
1799   ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes()));
1800   // And adjust the array base to point to the data.
1801   add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes());
1802 
1803   cmp(sp, zr); // Clear Z flag; SP is never zero
1804   // Scan R2 words at [R5] for an occurrence of R0.
1805   // Set NZ/Z based on last compare.
1806   repne_scan(/*addr*/r_array_base, /*value*/r_super_klass, /*count*/r_array_length, rscratch2);
1807   // rscratch1 == 0 iff we got a match.
1808   cset(rscratch1, NE);
1809 
1810   Label passed;
1811   cmp(result, zr);
1812   cset(result, NE); // normalize result to 0/1 for comparison
1813 
1814   cmp(rscratch1, result);
1815   br(EQ, passed);
1816   {
1817     mov(r0, r_super_klass);         // r0 <- r0
1818     mov(r1, r_sub_klass);           // r1 <- r4
1819     mov(r2, /*expected*/rscratch1); // r2 <- r8
1820     mov(r3, result);                // r3 <- r5
1821     mov(r4, (address)("mismatch")); // r4 <- const
1822     rt_call(CAST_FROM_FN_PTR(address, Klass::on_secondary_supers_verification_failure), rscratch2);
1823     should_not_reach_here();
1824   }
1825   bind(passed);
1826 
1827   BLOCK_COMMENT("} verify_secondary_supers_table");
1828 }
1829 
1830 void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) {
1831   assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required");
1832   assert_different_registers(klass, rthread, scratch);
1833 
1834   Label L_fallthrough, L_tmp;
1835   if (L_fast_path == nullptr) {
1836     L_fast_path = &L_fallthrough;
1837   } else if (L_slow_path == nullptr) {
1838     L_slow_path = &L_fallthrough;
1839   }
1840   // Fast path check: class is fully initialized
1841   lea(scratch, Address(klass, InstanceKlass::init_state_offset()));
1842   ldarb(scratch, scratch);
1843   subs(zr, scratch, InstanceKlass::fully_initialized);
1844   br(Assembler::EQ, *L_fast_path);
1845 
1846   // Fast path check: current thread is initializer thread
1847   ldr(scratch, Address(klass, InstanceKlass::init_thread_offset()));
1848   cmp(rthread, scratch);
1849 
1850   if (L_slow_path == &L_fallthrough) {
1851     br(Assembler::EQ, *L_fast_path);
1852     bind(*L_slow_path);
1853   } else if (L_fast_path == &L_fallthrough) {
1854     br(Assembler::NE, *L_slow_path);
1855     bind(*L_fast_path);
1856   } else {
1857     Unimplemented();
1858   }
1859 }
1860 
1861 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) {
1862   if (!VerifyOops) return;
1863 
1864   // Pass register number to verify_oop_subroutine
1865   const char* b = nullptr;
1866   {
1867     ResourceMark rm;
1868     stringStream ss;
1869     ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line);
1870     b = code_string(ss.as_string());
1871   }
1872   BLOCK_COMMENT("verify_oop {");
1873 
1874   strip_return_address(); // This might happen within a stack frame.
1875   protect_return_address();
1876   stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
1877   stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
1878 
1879   mov(r0, reg);
1880   movptr(rscratch1, (uintptr_t)(address)b);
1881 
1882   // call indirectly to solve generation ordering problem
1883   lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address()));
1884   ldr(rscratch2, Address(rscratch2));
1885   blr(rscratch2);
1886 
1887   ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
1888   ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
1889   authenticate_return_address();
1890 
1891   BLOCK_COMMENT("} verify_oop");
1892 }
1893 
1894 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) {
1895   if (!VerifyOops) return;
1896 
1897   const char* b = nullptr;
1898   {
1899     ResourceMark rm;
1900     stringStream ss;
1901     ss.print("verify_oop_addr: %s (%s:%d)", s, file, line);
1902     b = code_string(ss.as_string());
1903   }
1904   BLOCK_COMMENT("verify_oop_addr {");
1905 
1906   strip_return_address(); // This might happen within a stack frame.
1907   protect_return_address();
1908   stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
1909   stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
1910 
1911   // addr may contain sp so we will have to adjust it based on the
1912   // pushes that we just did.
1913   if (addr.uses(sp)) {
1914     lea(r0, addr);
1915     ldr(r0, Address(r0, 4 * wordSize));
1916   } else {
1917     ldr(r0, addr);
1918   }
1919   movptr(rscratch1, (uintptr_t)(address)b);
1920 
1921   // call indirectly to solve generation ordering problem
1922   lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address()));
1923   ldr(rscratch2, Address(rscratch2));
1924   blr(rscratch2);
1925 
1926   ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
1927   ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
1928   authenticate_return_address();
1929 
1930   BLOCK_COMMENT("} verify_oop_addr");
1931 }
1932 
1933 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
1934                                          int extra_slot_offset) {
1935   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
1936   int stackElementSize = Interpreter::stackElementSize;
1937   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
1938 #ifdef ASSERT
1939   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
1940   assert(offset1 - offset == stackElementSize, "correct arithmetic");
1941 #endif
1942   if (arg_slot.is_constant()) {
1943     return Address(esp, arg_slot.as_constant() * stackElementSize
1944                    + offset);
1945   } else {
1946     add(rscratch1, esp, arg_slot.as_register(),
1947         ext::uxtx, exact_log2(stackElementSize));
1948     return Address(rscratch1, offset);
1949   }
1950 }
1951 
1952 void MacroAssembler::call_VM_leaf_base(address entry_point,
1953                                        int number_of_arguments,
1954                                        Label *retaddr) {
1955   Label E, L;
1956 
1957   stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize)));
1958 
1959   mov(rscratch1, entry_point);
1960   blr(rscratch1);
1961   if (retaddr)
1962     bind(*retaddr);
1963 
1964   ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize)));
1965 }
1966 
1967 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
1968   call_VM_leaf_base(entry_point, number_of_arguments);
1969 }
1970 
1971 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
1972   pass_arg0(this, arg_0);
1973   call_VM_leaf_base(entry_point, 1);
1974 }
1975 
1976 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1977   assert_different_registers(arg_1, c_rarg0);
1978   pass_arg0(this, arg_0);
1979   pass_arg1(this, arg_1);
1980   call_VM_leaf_base(entry_point, 2);
1981 }
1982 
1983 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0,
1984                                   Register arg_1, Register arg_2) {
1985   assert_different_registers(arg_1, c_rarg0);
1986   assert_different_registers(arg_2, c_rarg0, c_rarg1);
1987   pass_arg0(this, arg_0);
1988   pass_arg1(this, arg_1);
1989   pass_arg2(this, arg_2);
1990   call_VM_leaf_base(entry_point, 3);
1991 }
1992 
1993 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
1994   pass_arg0(this, arg_0);
1995   MacroAssembler::call_VM_leaf_base(entry_point, 1);
1996 }
1997 
1998 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1999 
2000   assert_different_registers(arg_0, c_rarg1);
2001   pass_arg1(this, arg_1);
2002   pass_arg0(this, arg_0);
2003   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2004 }
2005 
2006 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2007   assert_different_registers(arg_0, c_rarg1, c_rarg2);
2008   assert_different_registers(arg_1, c_rarg2);
2009   pass_arg2(this, arg_2);
2010   pass_arg1(this, arg_1);
2011   pass_arg0(this, arg_0);
2012   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2013 }
2014 
2015 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2016   assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3);
2017   assert_different_registers(arg_1, c_rarg2, c_rarg3);
2018   assert_different_registers(arg_2, c_rarg3);
2019   pass_arg3(this, arg_3);
2020   pass_arg2(this, arg_2);
2021   pass_arg1(this, arg_1);
2022   pass_arg0(this, arg_0);
2023   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2024 }
2025 
2026 void MacroAssembler::null_check(Register reg, int offset) {
2027   if (needs_explicit_null_check(offset)) {
2028     // provoke OS null exception if reg is null by
2029     // accessing M[reg] w/o changing any registers
2030     // NOTE: this is plenty to provoke a segv
2031     ldr(zr, Address(reg));
2032   } else {
2033     // nothing to do, (later) access of M[reg + offset]
2034     // will provoke OS null exception if reg is null
2035   }
2036 }
2037 
2038 // MacroAssembler protected routines needed to implement
2039 // public methods
2040 
2041 void MacroAssembler::mov(Register r, Address dest) {
2042   code_section()->relocate(pc(), dest.rspec());
2043   uint64_t imm64 = (uint64_t)dest.target();
2044   movptr(r, imm64);
2045 }
2046 
2047 // Move a constant pointer into r.  In AArch64 mode the virtual
2048 // address space is 48 bits in size, so we only need three
2049 // instructions to create a patchable instruction sequence that can
2050 // reach anywhere.
2051 void MacroAssembler::movptr(Register r, uintptr_t imm64) {
2052 #ifndef PRODUCT
2053   {
2054     char buffer[64];
2055     snprintf(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64);
2056     block_comment(buffer);
2057   }
2058 #endif
2059   assert(imm64 < (1ull << 48), "48-bit overflow in address constant");
2060   movz(r, imm64 & 0xffff);
2061   imm64 >>= 16;
2062   movk(r, imm64 & 0xffff, 16);
2063   imm64 >>= 16;
2064   movk(r, imm64 & 0xffff, 32);
2065 }
2066 
2067 // Macro to mov replicated immediate to vector register.
2068 // imm64: only the lower 8/16/32 bits are considered for B/H/S type. That is,
2069 //        the upper 56/48/32 bits must be zeros for B/H/S type.
2070 // Vd will get the following values for different arrangements in T
2071 //   imm64 == hex 000000gh  T8B:  Vd = ghghghghghghghgh
2072 //   imm64 == hex 000000gh  T16B: Vd = ghghghghghghghghghghghghghghghgh
2073 //   imm64 == hex 0000efgh  T4H:  Vd = efghefghefghefgh
2074 //   imm64 == hex 0000efgh  T8H:  Vd = efghefghefghefghefghefghefghefgh
2075 //   imm64 == hex abcdefgh  T2S:  Vd = abcdefghabcdefgh
2076 //   imm64 == hex abcdefgh  T4S:  Vd = abcdefghabcdefghabcdefghabcdefgh
2077 //   imm64 == hex abcdefgh  T1D:  Vd = 00000000abcdefgh
2078 //   imm64 == hex abcdefgh  T2D:  Vd = 00000000abcdefgh00000000abcdefgh
2079 // Clobbers rscratch1
2080 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64) {
2081   assert(T != T1Q, "unsupported");
2082   if (T == T1D || T == T2D) {
2083     int imm = operand_valid_for_movi_immediate(imm64, T);
2084     if (-1 != imm) {
2085       movi(Vd, T, imm);
2086     } else {
2087       mov(rscratch1, imm64);
2088       dup(Vd, T, rscratch1);
2089     }
2090     return;
2091   }
2092 
2093 #ifdef ASSERT
2094   if (T == T8B || T == T16B) assert((imm64 & ~0xff) == 0, "extraneous bits (T8B/T16B)");
2095   if (T == T4H || T == T8H) assert((imm64  & ~0xffff) == 0, "extraneous bits (T4H/T8H)");
2096   if (T == T2S || T == T4S) assert((imm64  & ~0xffffffff) == 0, "extraneous bits (T2S/T4S)");
2097 #endif
2098   int shift = operand_valid_for_movi_immediate(imm64, T);
2099   uint32_t imm32 = imm64 & 0xffffffffULL;
2100   if (shift >= 0) {
2101     movi(Vd, T, (imm32 >> shift) & 0xff, shift);
2102   } else {
2103     movw(rscratch1, imm32);
2104     dup(Vd, T, rscratch1);
2105   }
2106 }
2107 
2108 void MacroAssembler::mov_immediate64(Register dst, uint64_t imm64)
2109 {
2110 #ifndef PRODUCT
2111   {
2112     char buffer[64];
2113     snprintf(buffer, sizeof(buffer), "0x%" PRIX64, imm64);
2114     block_comment(buffer);
2115   }
2116 #endif
2117   if (operand_valid_for_logical_immediate(false, imm64)) {
2118     orr(dst, zr, imm64);
2119   } else {
2120     // we can use a combination of MOVZ or MOVN with
2121     // MOVK to build up the constant
2122     uint64_t imm_h[4];
2123     int zero_count = 0;
2124     int neg_count = 0;
2125     int i;
2126     for (i = 0; i < 4; i++) {
2127       imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL);
2128       if (imm_h[i] == 0) {
2129         zero_count++;
2130       } else if (imm_h[i] == 0xffffL) {
2131         neg_count++;
2132       }
2133     }
2134     if (zero_count == 4) {
2135       // one MOVZ will do
2136       movz(dst, 0);
2137     } else if (neg_count == 4) {
2138       // one MOVN will do
2139       movn(dst, 0);
2140     } else if (zero_count == 3) {
2141       for (i = 0; i < 4; i++) {
2142         if (imm_h[i] != 0L) {
2143           movz(dst, (uint32_t)imm_h[i], (i << 4));
2144           break;
2145         }
2146       }
2147     } else if (neg_count == 3) {
2148       // one MOVN will do
2149       for (int i = 0; i < 4; i++) {
2150         if (imm_h[i] != 0xffffL) {
2151           movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4));
2152           break;
2153         }
2154       }
2155     } else if (zero_count == 2) {
2156       // one MOVZ and one MOVK will do
2157       for (i = 0; i < 3; i++) {
2158         if (imm_h[i] != 0L) {
2159           movz(dst, (uint32_t)imm_h[i], (i << 4));
2160           i++;
2161           break;
2162         }
2163       }
2164       for (;i < 4; i++) {
2165         if (imm_h[i] != 0L) {
2166           movk(dst, (uint32_t)imm_h[i], (i << 4));
2167         }
2168       }
2169     } else if (neg_count == 2) {
2170       // one MOVN and one MOVK will do
2171       for (i = 0; i < 4; i++) {
2172         if (imm_h[i] != 0xffffL) {
2173           movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4));
2174           i++;
2175           break;
2176         }
2177       }
2178       for (;i < 4; i++) {
2179         if (imm_h[i] != 0xffffL) {
2180           movk(dst, (uint32_t)imm_h[i], (i << 4));
2181         }
2182       }
2183     } else if (zero_count == 1) {
2184       // one MOVZ and two MOVKs will do
2185       for (i = 0; i < 4; i++) {
2186         if (imm_h[i] != 0L) {
2187           movz(dst, (uint32_t)imm_h[i], (i << 4));
2188           i++;
2189           break;
2190         }
2191       }
2192       for (;i < 4; i++) {
2193         if (imm_h[i] != 0x0L) {
2194           movk(dst, (uint32_t)imm_h[i], (i << 4));
2195         }
2196       }
2197     } else if (neg_count == 1) {
2198       // one MOVN and two MOVKs will do
2199       for (i = 0; i < 4; i++) {
2200         if (imm_h[i] != 0xffffL) {
2201           movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4));
2202           i++;
2203           break;
2204         }
2205       }
2206       for (;i < 4; i++) {
2207         if (imm_h[i] != 0xffffL) {
2208           movk(dst, (uint32_t)imm_h[i], (i << 4));
2209         }
2210       }
2211     } else {
2212       // use a MOVZ and 3 MOVKs (makes it easier to debug)
2213       movz(dst, (uint32_t)imm_h[0], 0);
2214       for (i = 1; i < 4; i++) {
2215         movk(dst, (uint32_t)imm_h[i], (i << 4));
2216       }
2217     }
2218   }
2219 }
2220 
2221 void MacroAssembler::mov_immediate32(Register dst, uint32_t imm32)
2222 {
2223 #ifndef PRODUCT
2224     {
2225       char buffer[64];
2226       snprintf(buffer, sizeof(buffer), "0x%" PRIX32, imm32);
2227       block_comment(buffer);
2228     }
2229 #endif
2230   if (operand_valid_for_logical_immediate(true, imm32)) {
2231     orrw(dst, zr, imm32);
2232   } else {
2233     // we can use MOVZ, MOVN or two calls to MOVK to build up the
2234     // constant
2235     uint32_t imm_h[2];
2236     imm_h[0] = imm32 & 0xffff;
2237     imm_h[1] = ((imm32 >> 16) & 0xffff);
2238     if (imm_h[0] == 0) {
2239       movzw(dst, imm_h[1], 16);
2240     } else if (imm_h[0] == 0xffff) {
2241       movnw(dst, imm_h[1] ^ 0xffff, 16);
2242     } else if (imm_h[1] == 0) {
2243       movzw(dst, imm_h[0], 0);
2244     } else if (imm_h[1] == 0xffff) {
2245       movnw(dst, imm_h[0] ^ 0xffff, 0);
2246     } else {
2247       // use a MOVZ and MOVK (makes it easier to debug)
2248       movzw(dst, imm_h[0], 0);
2249       movkw(dst, imm_h[1], 16);
2250     }
2251   }
2252 }
2253 
2254 // Form an address from base + offset in Rd.  Rd may or may
2255 // not actually be used: you must use the Address that is returned.
2256 // It is up to you to ensure that the shift provided matches the size
2257 // of your data.
2258 Address MacroAssembler::form_address(Register Rd, Register base, int64_t byte_offset, int shift) {
2259   if (Address::offset_ok_for_immed(byte_offset, shift))
2260     // It fits; no need for any heroics
2261     return Address(base, byte_offset);
2262 
2263   // Don't do anything clever with negative or misaligned offsets
2264   unsigned mask = (1 << shift) - 1;
2265   if (byte_offset < 0 || byte_offset & mask) {
2266     mov(Rd, byte_offset);
2267     add(Rd, base, Rd);
2268     return Address(Rd);
2269   }
2270 
2271   // See if we can do this with two 12-bit offsets
2272   {
2273     uint64_t word_offset = byte_offset >> shift;
2274     uint64_t masked_offset = word_offset & 0xfff000;
2275     if (Address::offset_ok_for_immed(word_offset - masked_offset, 0)
2276         && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) {
2277       add(Rd, base, masked_offset << shift);
2278       word_offset -= masked_offset;
2279       return Address(Rd, word_offset << shift);
2280     }
2281   }
2282 
2283   // Do it the hard way
2284   mov(Rd, byte_offset);
2285   add(Rd, base, Rd);
2286   return Address(Rd);
2287 }
2288 
2289 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb,
2290                                     bool want_remainder, Register scratch)
2291 {
2292   // Full implementation of Java idiv and irem.  The function
2293   // returns the (pc) offset of the div instruction - may be needed
2294   // for implicit exceptions.
2295   //
2296   // constraint : ra/rb =/= scratch
2297   //         normal case
2298   //
2299   // input : ra: dividend
2300   //         rb: divisor
2301   //
2302   // result: either
2303   //         quotient  (= ra idiv rb)
2304   //         remainder (= ra irem rb)
2305 
2306   assert(ra != scratch && rb != scratch, "reg cannot be scratch");
2307 
2308   int idivl_offset = offset();
2309   if (! want_remainder) {
2310     sdivw(result, ra, rb);
2311   } else {
2312     sdivw(scratch, ra, rb);
2313     Assembler::msubw(result, scratch, rb, ra);
2314   }
2315 
2316   return idivl_offset;
2317 }
2318 
2319 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb,
2320                                     bool want_remainder, Register scratch)
2321 {
2322   // Full implementation of Java ldiv and lrem.  The function
2323   // returns the (pc) offset of the div instruction - may be needed
2324   // for implicit exceptions.
2325   //
2326   // constraint : ra/rb =/= scratch
2327   //         normal case
2328   //
2329   // input : ra: dividend
2330   //         rb: divisor
2331   //
2332   // result: either
2333   //         quotient  (= ra idiv rb)
2334   //         remainder (= ra irem rb)
2335 
2336   assert(ra != scratch && rb != scratch, "reg cannot be scratch");
2337 
2338   int idivq_offset = offset();
2339   if (! want_remainder) {
2340     sdiv(result, ra, rb);
2341   } else {
2342     sdiv(scratch, ra, rb);
2343     Assembler::msub(result, scratch, rb, ra);
2344   }
2345 
2346   return idivq_offset;
2347 }
2348 
2349 void MacroAssembler::membar(Membar_mask_bits order_constraint) {
2350   address prev = pc() - NativeMembar::instruction_size;
2351   address last = code()->last_insn();
2352   if (last != nullptr && nativeInstruction_at(last)->is_Membar() && prev == last) {
2353     NativeMembar *bar = NativeMembar_at(prev);
2354     if (AlwaysMergeDMB) {
2355       bar->set_kind(bar->get_kind() | order_constraint);
2356       BLOCK_COMMENT("merged membar(always)");
2357       return;
2358     }
2359     // Don't promote DMB ST|DMB LD to DMB (a full barrier) because
2360     // doing so would introduce a StoreLoad which the caller did not
2361     // intend
2362     if (bar->get_kind() == order_constraint
2363         || bar->get_kind() == AnyAny
2364         || order_constraint == AnyAny) {
2365       // We are merging two memory barrier instructions.  On AArch64 we
2366       // can do this simply by ORing them together.
2367       bar->set_kind(bar->get_kind() | order_constraint);
2368       BLOCK_COMMENT("merged membar");
2369       return;
2370     } else {
2371       // A special case like "DMB ST;DMB LD;DMB ST", the last DMB can be skipped
2372       // We need check the last 2 instructions
2373       address prev2 = prev - NativeMembar::instruction_size;
2374       if (last != code()->last_label() && nativeInstruction_at(prev2)->is_Membar()) {
2375         NativeMembar *bar2 = NativeMembar_at(prev2);
2376         assert(bar2->get_kind() == order_constraint, "it should be merged before");
2377         BLOCK_COMMENT("merged membar(elided)");
2378         return;
2379       }
2380     }
2381   }
2382   code()->set_last_insn(pc());
2383   dmb(Assembler::barrier(order_constraint));
2384 }
2385 
2386 bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) {
2387   if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) {
2388     merge_ldst(rt, adr, size_in_bytes, is_store);
2389     code()->clear_last_insn();
2390     return true;
2391   } else {
2392     assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported.");
2393     const uint64_t mask = size_in_bytes - 1;
2394     if (adr.getMode() == Address::base_plus_offset &&
2395         (adr.offset() & mask) == 0) { // only supports base_plus_offset.
2396       code()->set_last_insn(pc());
2397     }
2398     return false;
2399   }
2400 }
2401 
2402 void MacroAssembler::ldr(Register Rx, const Address &adr) {
2403   // We always try to merge two adjacent loads into one ldp.
2404   if (!try_merge_ldst(Rx, adr, 8, false)) {
2405     Assembler::ldr(Rx, adr);
2406   }
2407 }
2408 
2409 void MacroAssembler::ldrw(Register Rw, const Address &adr) {
2410   // We always try to merge two adjacent loads into one ldp.
2411   if (!try_merge_ldst(Rw, adr, 4, false)) {
2412     Assembler::ldrw(Rw, adr);
2413   }
2414 }
2415 
2416 void MacroAssembler::str(Register Rx, const Address &adr) {
2417   // We always try to merge two adjacent stores into one stp.
2418   if (!try_merge_ldst(Rx, adr, 8, true)) {
2419     Assembler::str(Rx, adr);
2420   }
2421 }
2422 
2423 void MacroAssembler::strw(Register Rw, const Address &adr) {
2424   // We always try to merge two adjacent stores into one stp.
2425   if (!try_merge_ldst(Rw, adr, 4, true)) {
2426     Assembler::strw(Rw, adr);
2427   }
2428 }
2429 
2430 // MacroAssembler routines found actually to be needed
2431 
2432 void MacroAssembler::push(Register src)
2433 {
2434   str(src, Address(pre(esp, -1 * wordSize)));
2435 }
2436 
2437 void MacroAssembler::pop(Register dst)
2438 {
2439   ldr(dst, Address(post(esp, 1 * wordSize)));
2440 }
2441 
2442 // Note: load_unsigned_short used to be called load_unsigned_word.
2443 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
2444   int off = offset();
2445   ldrh(dst, src);
2446   return off;
2447 }
2448 
2449 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
2450   int off = offset();
2451   ldrb(dst, src);
2452   return off;
2453 }
2454 
2455 int MacroAssembler::load_signed_short(Register dst, Address src) {
2456   int off = offset();
2457   ldrsh(dst, src);
2458   return off;
2459 }
2460 
2461 int MacroAssembler::load_signed_byte(Register dst, Address src) {
2462   int off = offset();
2463   ldrsb(dst, src);
2464   return off;
2465 }
2466 
2467 int MacroAssembler::load_signed_short32(Register dst, Address src) {
2468   int off = offset();
2469   ldrshw(dst, src);
2470   return off;
2471 }
2472 
2473 int MacroAssembler::load_signed_byte32(Register dst, Address src) {
2474   int off = offset();
2475   ldrsbw(dst, src);
2476   return off;
2477 }
2478 
2479 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) {
2480   switch (size_in_bytes) {
2481   case  8:  ldr(dst, src); break;
2482   case  4:  ldrw(dst, src); break;
2483   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
2484   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
2485   default:  ShouldNotReachHere();
2486   }
2487 }
2488 
2489 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes) {
2490   switch (size_in_bytes) {
2491   case  8:  str(src, dst); break;
2492   case  4:  strw(src, dst); break;
2493   case  2:  strh(src, dst); break;
2494   case  1:  strb(src, dst); break;
2495   default:  ShouldNotReachHere();
2496   }
2497 }
2498 
2499 void MacroAssembler::decrementw(Register reg, int value)
2500 {
2501   if (value < 0)  { incrementw(reg, -value);      return; }
2502   if (value == 0) {                               return; }
2503   if (value < (1 << 12)) { subw(reg, reg, value); return; }
2504   /* else */ {
2505     guarantee(reg != rscratch2, "invalid dst for register decrement");
2506     movw(rscratch2, (unsigned)value);
2507     subw(reg, reg, rscratch2);
2508   }
2509 }
2510 
2511 void MacroAssembler::decrement(Register reg, int value)
2512 {
2513   if (value < 0)  { increment(reg, -value);      return; }
2514   if (value == 0) {                              return; }
2515   if (value < (1 << 12)) { sub(reg, reg, value); return; }
2516   /* else */ {
2517     assert(reg != rscratch2, "invalid dst for register decrement");
2518     mov(rscratch2, (uint64_t)value);
2519     sub(reg, reg, rscratch2);
2520   }
2521 }
2522 
2523 void MacroAssembler::decrementw(Address dst, int value)
2524 {
2525   assert(!dst.uses(rscratch1), "invalid dst for address decrement");
2526   if (dst.getMode() == Address::literal) {
2527     assert(abs(value) < (1 << 12), "invalid value and address mode combination");
2528     lea(rscratch2, dst);
2529     dst = Address(rscratch2);
2530   }
2531   ldrw(rscratch1, dst);
2532   decrementw(rscratch1, value);
2533   strw(rscratch1, dst);
2534 }
2535 
2536 void MacroAssembler::decrement(Address dst, int value)
2537 {
2538   assert(!dst.uses(rscratch1), "invalid address for decrement");
2539   if (dst.getMode() == Address::literal) {
2540     assert(abs(value) < (1 << 12), "invalid value and address mode combination");
2541     lea(rscratch2, dst);
2542     dst = Address(rscratch2);
2543   }
2544   ldr(rscratch1, dst);
2545   decrement(rscratch1, value);
2546   str(rscratch1, dst);
2547 }
2548 
2549 void MacroAssembler::incrementw(Register reg, int value)
2550 {
2551   if (value < 0)  { decrementw(reg, -value);      return; }
2552   if (value == 0) {                               return; }
2553   if (value < (1 << 12)) { addw(reg, reg, value); return; }
2554   /* else */ {
2555     assert(reg != rscratch2, "invalid dst for register increment");
2556     movw(rscratch2, (unsigned)value);
2557     addw(reg, reg, rscratch2);
2558   }
2559 }
2560 
2561 void MacroAssembler::increment(Register reg, int value)
2562 {
2563   if (value < 0)  { decrement(reg, -value);      return; }
2564   if (value == 0) {                              return; }
2565   if (value < (1 << 12)) { add(reg, reg, value); return; }
2566   /* else */ {
2567     assert(reg != rscratch2, "invalid dst for register increment");
2568     movw(rscratch2, (unsigned)value);
2569     add(reg, reg, rscratch2);
2570   }
2571 }
2572 
2573 void MacroAssembler::incrementw(Address dst, int value)
2574 {
2575   assert(!dst.uses(rscratch1), "invalid dst for address increment");
2576   if (dst.getMode() == Address::literal) {
2577     assert(abs(value) < (1 << 12), "invalid value and address mode combination");
2578     lea(rscratch2, dst);
2579     dst = Address(rscratch2);
2580   }
2581   ldrw(rscratch1, dst);
2582   incrementw(rscratch1, value);
2583   strw(rscratch1, dst);
2584 }
2585 
2586 void MacroAssembler::increment(Address dst, int value)
2587 {
2588   assert(!dst.uses(rscratch1), "invalid dst for address increment");
2589   if (dst.getMode() == Address::literal) {
2590     assert(abs(value) < (1 << 12), "invalid value and address mode combination");
2591     lea(rscratch2, dst);
2592     dst = Address(rscratch2);
2593   }
2594   ldr(rscratch1, dst);
2595   increment(rscratch1, value);
2596   str(rscratch1, dst);
2597 }
2598 
2599 // Push lots of registers in the bit set supplied.  Don't push sp.
2600 // Return the number of words pushed
2601 int MacroAssembler::push(unsigned int bitset, Register stack) {
2602   int words_pushed = 0;
2603 
2604   // Scan bitset to accumulate register pairs
2605   unsigned char regs[32];
2606   int count = 0;
2607   for (int reg = 0; reg <= 30; reg++) {
2608     if (1 & bitset)
2609       regs[count++] = reg;
2610     bitset >>= 1;
2611   }
2612   regs[count++] = zr->raw_encoding();
2613   count &= ~1;  // Only push an even number of regs
2614 
2615   if (count) {
2616     stp(as_Register(regs[0]), as_Register(regs[1]),
2617        Address(pre(stack, -count * wordSize)));
2618     words_pushed += 2;
2619   }
2620   for (int i = 2; i < count; i += 2) {
2621     stp(as_Register(regs[i]), as_Register(regs[i+1]),
2622        Address(stack, i * wordSize));
2623     words_pushed += 2;
2624   }
2625 
2626   assert(words_pushed == count, "oops, pushed != count");
2627 
2628   return count;
2629 }
2630 
2631 int MacroAssembler::pop(unsigned int bitset, Register stack) {
2632   int words_pushed = 0;
2633 
2634   // Scan bitset to accumulate register pairs
2635   unsigned char regs[32];
2636   int count = 0;
2637   for (int reg = 0; reg <= 30; reg++) {
2638     if (1 & bitset)
2639       regs[count++] = reg;
2640     bitset >>= 1;
2641   }
2642   regs[count++] = zr->raw_encoding();
2643   count &= ~1;
2644 
2645   for (int i = 2; i < count; i += 2) {
2646     ldp(as_Register(regs[i]), as_Register(regs[i+1]),
2647        Address(stack, i * wordSize));
2648     words_pushed += 2;
2649   }
2650   if (count) {
2651     ldp(as_Register(regs[0]), as_Register(regs[1]),
2652        Address(post(stack, count * wordSize)));
2653     words_pushed += 2;
2654   }
2655 
2656   assert(words_pushed == count, "oops, pushed != count");
2657 
2658   return count;
2659 }
2660 
2661 // Push lots of registers in the bit set supplied.  Don't push sp.
2662 // Return the number of dwords pushed
2663 int MacroAssembler::push_fp(unsigned int bitset, Register stack, FpPushPopMode mode) {
2664   int words_pushed = 0;
2665   bool use_sve = false;
2666   int sve_vector_size_in_bytes = 0;
2667 
2668 #ifdef COMPILER2
2669   use_sve = Matcher::supports_scalable_vector();
2670   sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE);
2671 #endif
2672 
2673   // Scan bitset to accumulate register pairs
2674   unsigned char regs[32];
2675   int count = 0;
2676   for (int reg = 0; reg <= 31; reg++) {
2677     if (1 & bitset)
2678       regs[count++] = reg;
2679     bitset >>= 1;
2680   }
2681 
2682   if (count == 0) {
2683     return 0;
2684   }
2685 
2686   if (mode == PushPopFull) {
2687     if (use_sve && sve_vector_size_in_bytes > 16) {
2688       mode = PushPopSVE;
2689     } else {
2690       mode = PushPopNeon;
2691     }
2692   }
2693 
2694 #ifndef PRODUCT
2695   {
2696     char buffer[48];
2697     if (mode == PushPopSVE) {
2698       snprintf(buffer, sizeof(buffer), "push_fp: %d SVE registers", count);
2699     } else if (mode == PushPopNeon) {
2700       snprintf(buffer, sizeof(buffer), "push_fp: %d Neon registers", count);
2701     } else {
2702       snprintf(buffer, sizeof(buffer), "push_fp: %d fp registers", count);
2703     }
2704     block_comment(buffer);
2705   }
2706 #endif
2707 
2708   if (mode == PushPopSVE) {
2709     sub(stack, stack, sve_vector_size_in_bytes * count);
2710     for (int i = 0; i < count; i++) {
2711       sve_str(as_FloatRegister(regs[i]), Address(stack, i));
2712     }
2713     return count * sve_vector_size_in_bytes / 8;
2714   }
2715 
2716   if (mode == PushPopNeon) {
2717     if (count == 1) {
2718       strq(as_FloatRegister(regs[0]), Address(pre(stack, -wordSize * 2)));
2719       return 2;
2720     }
2721 
2722     bool odd = (count & 1) == 1;
2723     int push_slots = count + (odd ? 1 : 0);
2724 
2725     // Always pushing full 128 bit registers.
2726     stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize * 2)));
2727     words_pushed += 2;
2728 
2729     for (int i = 2; i + 1 < count; i += 2) {
2730       stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2));
2731       words_pushed += 2;
2732     }
2733 
2734     if (odd) {
2735       strq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2));
2736       words_pushed++;
2737     }
2738 
2739     assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count);
2740     return count * 2;
2741   }
2742 
2743   if (mode == PushPopFp) {
2744     bool odd = (count & 1) == 1;
2745     int push_slots = count + (odd ? 1 : 0);
2746 
2747     if (count == 1) {
2748       // Stack pointer must be 16 bytes aligned
2749       strd(as_FloatRegister(regs[0]), Address(pre(stack, -push_slots * wordSize)));
2750       return 1;
2751     }
2752 
2753     stpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize)));
2754     words_pushed += 2;
2755 
2756     for (int i = 2; i + 1 < count; i += 2) {
2757       stpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize));
2758       words_pushed += 2;
2759     }
2760 
2761     if (odd) {
2762       // Stack pointer must be 16 bytes aligned
2763       strd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize));
2764       words_pushed++;
2765     }
2766 
2767     assert(words_pushed == count, "oops, pushed != count");
2768 
2769     return count;
2770   }
2771 
2772   return 0;
2773 }
2774 
2775 // Return the number of dwords popped
2776 int MacroAssembler::pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode) {
2777   int words_pushed = 0;
2778   bool use_sve = false;
2779   int sve_vector_size_in_bytes = 0;
2780 
2781 #ifdef COMPILER2
2782   use_sve = Matcher::supports_scalable_vector();
2783   sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE);
2784 #endif
2785   // Scan bitset to accumulate register pairs
2786   unsigned char regs[32];
2787   int count = 0;
2788   for (int reg = 0; reg <= 31; reg++) {
2789     if (1 & bitset)
2790       regs[count++] = reg;
2791     bitset >>= 1;
2792   }
2793 
2794   if (count == 0) {
2795     return 0;
2796   }
2797 
2798   if (mode == PushPopFull) {
2799     if (use_sve && sve_vector_size_in_bytes > 16) {
2800       mode = PushPopSVE;
2801     } else {
2802       mode = PushPopNeon;
2803     }
2804   }
2805 
2806 #ifndef PRODUCT
2807   {
2808     char buffer[48];
2809     if (mode == PushPopSVE) {
2810       snprintf(buffer, sizeof(buffer), "pop_fp: %d SVE registers", count);
2811     } else if (mode == PushPopNeon) {
2812       snprintf(buffer, sizeof(buffer), "pop_fp: %d Neon registers", count);
2813     } else {
2814       snprintf(buffer, sizeof(buffer), "pop_fp: %d fp registers", count);
2815     }
2816     block_comment(buffer);
2817   }
2818 #endif
2819 
2820   if (mode == PushPopSVE) {
2821     for (int i = count - 1; i >= 0; i--) {
2822       sve_ldr(as_FloatRegister(regs[i]), Address(stack, i));
2823     }
2824     add(stack, stack, sve_vector_size_in_bytes * count);
2825     return count * sve_vector_size_in_bytes / 8;
2826   }
2827 
2828   if (mode == PushPopNeon) {
2829     if (count == 1) {
2830       ldrq(as_FloatRegister(regs[0]), Address(post(stack, wordSize * 2)));
2831       return 2;
2832     }
2833 
2834     bool odd = (count & 1) == 1;
2835     int push_slots = count + (odd ? 1 : 0);
2836 
2837     if (odd) {
2838       ldrq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2));
2839       words_pushed++;
2840     }
2841 
2842     for (int i = 2; i + 1 < count; i += 2) {
2843       ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2));
2844       words_pushed += 2;
2845     }
2846 
2847     ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize * 2)));
2848     words_pushed += 2;
2849 
2850     assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count);
2851 
2852     return count * 2;
2853   }
2854 
2855   if (mode == PushPopFp) {
2856     bool odd = (count & 1) == 1;
2857     int push_slots = count + (odd ? 1 : 0);
2858 
2859     if (count == 1) {
2860       ldrd(as_FloatRegister(regs[0]), Address(post(stack, push_slots * wordSize)));
2861       return 1;
2862     }
2863 
2864     if (odd) {
2865       ldrd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize));
2866       words_pushed++;
2867     }
2868 
2869     for (int i = 2; i + 1 < count; i += 2) {
2870       ldpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize));
2871       words_pushed += 2;
2872     }
2873 
2874     ldpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize)));
2875     words_pushed += 2;
2876 
2877     assert(words_pushed == count, "oops, pushed != count");
2878 
2879     return count;
2880   }
2881 
2882   return 0;
2883 }
2884 
2885 // Return the number of dwords pushed
2886 int MacroAssembler::push_p(unsigned int bitset, Register stack) {
2887   bool use_sve = false;
2888   int sve_predicate_size_in_slots = 0;
2889 
2890 #ifdef COMPILER2
2891   use_sve = Matcher::supports_scalable_vector();
2892   if (use_sve) {
2893     sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots();
2894   }
2895 #endif
2896 
2897   if (!use_sve) {
2898     return 0;
2899   }
2900 
2901   unsigned char regs[PRegister::number_of_registers];
2902   int count = 0;
2903   for (int reg = 0; reg < PRegister::number_of_registers; reg++) {
2904     if (1 & bitset)
2905       regs[count++] = reg;
2906     bitset >>= 1;
2907   }
2908 
2909   if (count == 0) {
2910     return 0;
2911   }
2912 
2913   int total_push_bytes = align_up(sve_predicate_size_in_slots *
2914                                   VMRegImpl::stack_slot_size * count, 16);
2915   sub(stack, stack, total_push_bytes);
2916   for (int i = 0; i < count; i++) {
2917     sve_str(as_PRegister(regs[i]), Address(stack, i));
2918   }
2919   return total_push_bytes / 8;
2920 }
2921 
2922 // Return the number of dwords popped
2923 int MacroAssembler::pop_p(unsigned int bitset, Register stack) {
2924   bool use_sve = false;
2925   int sve_predicate_size_in_slots = 0;
2926 
2927 #ifdef COMPILER2
2928   use_sve = Matcher::supports_scalable_vector();
2929   if (use_sve) {
2930     sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots();
2931   }
2932 #endif
2933 
2934   if (!use_sve) {
2935     return 0;
2936   }
2937 
2938   unsigned char regs[PRegister::number_of_registers];
2939   int count = 0;
2940   for (int reg = 0; reg < PRegister::number_of_registers; reg++) {
2941     if (1 & bitset)
2942       regs[count++] = reg;
2943     bitset >>= 1;
2944   }
2945 
2946   if (count == 0) {
2947     return 0;
2948   }
2949 
2950   int total_pop_bytes = align_up(sve_predicate_size_in_slots *
2951                                  VMRegImpl::stack_slot_size * count, 16);
2952   for (int i = count - 1; i >= 0; i--) {
2953     sve_ldr(as_PRegister(regs[i]), Address(stack, i));
2954   }
2955   add(stack, stack, total_pop_bytes);
2956   return total_pop_bytes / 8;
2957 }
2958 
2959 #ifdef ASSERT
2960 void MacroAssembler::verify_heapbase(const char* msg) {
2961 #if 0
2962   assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed");
2963   assert (Universe::heap() != nullptr, "java heap should be initialized");
2964   if (!UseCompressedOops || Universe::ptr_base() == nullptr) {
2965     // rheapbase is allocated as general register
2966     return;
2967   }
2968   if (CheckCompressedOops) {
2969     Label ok;
2970     push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1
2971     cmpptr(rheapbase, ExternalAddress(CompressedOops::base_addr()));
2972     br(Assembler::EQ, ok);
2973     stop(msg);
2974     bind(ok);
2975     pop(1 << rscratch1->encoding(), sp);
2976   }
2977 #endif
2978 }
2979 #endif
2980 
2981 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) {
2982   assert_different_registers(value, tmp1, tmp2);
2983   Label done, tagged, weak_tagged;
2984 
2985   cbz(value, done);           // Use null as-is.
2986   tst(value, JNIHandles::tag_mask); // Test for tag.
2987   br(Assembler::NE, tagged);
2988 
2989   // Resolve local handle
2990   access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp1, tmp2);
2991   verify_oop(value);
2992   b(done);
2993 
2994   bind(tagged);
2995   STATIC_ASSERT(JNIHandles::TypeTag::weak_global == 0b1);
2996   tbnz(value, 0, weak_tagged);    // Test for weak tag.
2997 
2998   // Resolve global handle
2999   access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2);
3000   verify_oop(value);
3001   b(done);
3002 
3003   bind(weak_tagged);
3004   // Resolve jweak.
3005   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
3006                  value, Address(value, -JNIHandles::TypeTag::weak_global), tmp1, tmp2);
3007   verify_oop(value);
3008 
3009   bind(done);
3010 }
3011 
3012 void MacroAssembler::resolve_global_jobject(Register value, Register tmp1, Register tmp2) {
3013   assert_different_registers(value, tmp1, tmp2);
3014   Label done;
3015 
3016   cbz(value, done);           // Use null as-is.
3017 
3018 #ifdef ASSERT
3019   {
3020     STATIC_ASSERT(JNIHandles::TypeTag::global == 0b10);
3021     Label valid_global_tag;
3022     tbnz(value, 1, valid_global_tag); // Test for global tag
3023     stop("non global jobject using resolve_global_jobject");
3024     bind(valid_global_tag);
3025   }
3026 #endif
3027 
3028   // Resolve global handle
3029   access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2);
3030   verify_oop(value);
3031 
3032   bind(done);
3033 }
3034 
3035 void MacroAssembler::stop(const char* msg) {
3036   BLOCK_COMMENT(msg);
3037   dcps1(0xdeae);
3038   emit_int64((uintptr_t)msg);
3039 }
3040 
3041 void MacroAssembler::unimplemented(const char* what) {
3042   const char* buf = nullptr;
3043   {
3044     ResourceMark rm;
3045     stringStream ss;
3046     ss.print("unimplemented: %s", what);
3047     buf = code_string(ss.as_string());
3048   }
3049   stop(buf);
3050 }
3051 
3052 void MacroAssembler::_assert_asm(Assembler::Condition cc, const char* msg) {
3053 #ifdef ASSERT
3054   Label OK;
3055   br(cc, OK);
3056   stop(msg);
3057   bind(OK);
3058 #endif
3059 }
3060 
3061 // If a constant does not fit in an immediate field, generate some
3062 // number of MOV instructions and then perform the operation.
3063 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm,
3064                                            add_sub_imm_insn insn1,
3065                                            add_sub_reg_insn insn2,
3066                                            bool is32) {
3067   assert(Rd != zr, "Rd = zr and not setting flags?");
3068   bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm);
3069   if (fits) {
3070     (this->*insn1)(Rd, Rn, imm);
3071   } else {
3072     if (uabs(imm) < (1 << 24)) {
3073        (this->*insn1)(Rd, Rn, imm & -(1 << 12));
3074        (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1));
3075     } else {
3076        assert_different_registers(Rd, Rn);
3077        mov(Rd, imm);
3078        (this->*insn2)(Rd, Rn, Rd, LSL, 0);
3079     }
3080   }
3081 }
3082 
3083 // Separate vsn which sets the flags. Optimisations are more restricted
3084 // because we must set the flags correctly.
3085 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm,
3086                                              add_sub_imm_insn insn1,
3087                                              add_sub_reg_insn insn2,
3088                                              bool is32) {
3089   bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm);
3090   if (fits) {
3091     (this->*insn1)(Rd, Rn, imm);
3092   } else {
3093     assert_different_registers(Rd, Rn);
3094     assert(Rd != zr, "overflow in immediate operand");
3095     mov(Rd, imm);
3096     (this->*insn2)(Rd, Rn, Rd, LSL, 0);
3097   }
3098 }
3099 
3100 
3101 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) {
3102   if (increment.is_register()) {
3103     add(Rd, Rn, increment.as_register());
3104   } else {
3105     add(Rd, Rn, increment.as_constant());
3106   }
3107 }
3108 
3109 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) {
3110   if (increment.is_register()) {
3111     addw(Rd, Rn, increment.as_register());
3112   } else {
3113     addw(Rd, Rn, increment.as_constant());
3114   }
3115 }
3116 
3117 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) {
3118   if (decrement.is_register()) {
3119     sub(Rd, Rn, decrement.as_register());
3120   } else {
3121     sub(Rd, Rn, decrement.as_constant());
3122   }
3123 }
3124 
3125 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) {
3126   if (decrement.is_register()) {
3127     subw(Rd, Rn, decrement.as_register());
3128   } else {
3129     subw(Rd, Rn, decrement.as_constant());
3130   }
3131 }
3132 
3133 void MacroAssembler::reinit_heapbase()
3134 {
3135   if (UseCompressedOops) {
3136     if (Universe::is_fully_initialized()) {
3137       mov(rheapbase, CompressedOops::base());
3138     } else {
3139       lea(rheapbase, ExternalAddress(CompressedOops::base_addr()));
3140       ldr(rheapbase, Address(rheapbase));
3141     }
3142   }
3143 }
3144 
3145 // this simulates the behaviour of the x86 cmpxchg instruction using a
3146 // load linked/store conditional pair. we use the acquire/release
3147 // versions of these instructions so that we flush pending writes as
3148 // per Java semantics.
3149 
3150 // n.b the x86 version assumes the old value to be compared against is
3151 // in rax and updates rax with the value located in memory if the
3152 // cmpxchg fails. we supply a register for the old value explicitly
3153 
3154 // the aarch64 load linked/store conditional instructions do not
3155 // accept an offset. so, unlike x86, we must provide a plain register
3156 // to identify the memory word to be compared/exchanged rather than a
3157 // register+offset Address.
3158 
3159 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
3160                                 Label &succeed, Label *fail) {
3161   // oldv holds comparison value
3162   // newv holds value to write in exchange
3163   // addr identifies memory word to compare against/update
3164   if (UseLSE) {
3165     mov(tmp, oldv);
3166     casal(Assembler::xword, oldv, newv, addr);
3167     cmp(tmp, oldv);
3168     br(Assembler::EQ, succeed);
3169     membar(AnyAny);
3170   } else {
3171     Label retry_load, nope;
3172     prfm(Address(addr), PSTL1STRM);
3173     bind(retry_load);
3174     // flush and load exclusive from the memory location
3175     // and fail if it is not what we expect
3176     ldaxr(tmp, addr);
3177     cmp(tmp, oldv);
3178     br(Assembler::NE, nope);
3179     // if we store+flush with no intervening write tmp will be zero
3180     stlxr(tmp, newv, addr);
3181     cbzw(tmp, succeed);
3182     // retry so we only ever return after a load fails to compare
3183     // ensures we don't return a stale value after a failed write.
3184     b(retry_load);
3185     // if the memory word differs we return it in oldv and signal a fail
3186     bind(nope);
3187     membar(AnyAny);
3188     mov(oldv, tmp);
3189   }
3190   if (fail)
3191     b(*fail);
3192 }
3193 
3194 void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
3195                                         Label &succeed, Label *fail) {
3196   assert(oopDesc::mark_offset_in_bytes() == 0, "assumption");
3197   cmpxchgptr(oldv, newv, obj, tmp, succeed, fail);
3198 }
3199 
3200 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
3201                                 Label &succeed, Label *fail) {
3202   // oldv holds comparison value
3203   // newv holds value to write in exchange
3204   // addr identifies memory word to compare against/update
3205   // tmp returns 0/1 for success/failure
3206   if (UseLSE) {
3207     mov(tmp, oldv);
3208     casal(Assembler::word, oldv, newv, addr);
3209     cmp(tmp, oldv);
3210     br(Assembler::EQ, succeed);
3211     membar(AnyAny);
3212   } else {
3213     Label retry_load, nope;
3214     prfm(Address(addr), PSTL1STRM);
3215     bind(retry_load);
3216     // flush and load exclusive from the memory location
3217     // and fail if it is not what we expect
3218     ldaxrw(tmp, addr);
3219     cmp(tmp, oldv);
3220     br(Assembler::NE, nope);
3221     // if we store+flush with no intervening write tmp will be zero
3222     stlxrw(tmp, newv, addr);
3223     cbzw(tmp, succeed);
3224     // retry so we only ever return after a load fails to compare
3225     // ensures we don't return a stale value after a failed write.
3226     b(retry_load);
3227     // if the memory word differs we return it in oldv and signal a fail
3228     bind(nope);
3229     membar(AnyAny);
3230     mov(oldv, tmp);
3231   }
3232   if (fail)
3233     b(*fail);
3234 }
3235 
3236 // A generic CAS; success or failure is in the EQ flag.  A weak CAS
3237 // doesn't retry and may fail spuriously.  If the oldval is wanted,
3238 // Pass a register for the result, otherwise pass noreg.
3239 
3240 // Clobbers rscratch1
3241 void MacroAssembler::cmpxchg(Register addr, Register expected,
3242                              Register new_val,
3243                              enum operand_size size,
3244                              bool acquire, bool release,
3245                              bool weak,
3246                              Register result) {
3247   if (result == noreg)  result = rscratch1;
3248   BLOCK_COMMENT("cmpxchg {");
3249   if (UseLSE) {
3250     mov(result, expected);
3251     lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true);
3252     compare_eq(result, expected, size);
3253 #ifdef ASSERT
3254     // Poison rscratch1 which is written on !UseLSE branch
3255     mov(rscratch1, 0x1f1f1f1f1f1f1f1f);
3256 #endif
3257   } else {
3258     Label retry_load, done;
3259     prfm(Address(addr), PSTL1STRM);
3260     bind(retry_load);
3261     load_exclusive(result, addr, size, acquire);
3262     compare_eq(result, expected, size);
3263     br(Assembler::NE, done);
3264     store_exclusive(rscratch1, new_val, addr, size, release);
3265     if (weak) {
3266       cmpw(rscratch1, 0u);  // If the store fails, return NE to our caller.
3267     } else {
3268       cbnzw(rscratch1, retry_load);
3269     }
3270     bind(done);
3271   }
3272   BLOCK_COMMENT("} cmpxchg");
3273 }
3274 
3275 // A generic comparison. Only compares for equality, clobbers rscratch1.
3276 void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) {
3277   if (size == xword) {
3278     cmp(rm, rn);
3279   } else if (size == word) {
3280     cmpw(rm, rn);
3281   } else if (size == halfword) {
3282     eorw(rscratch1, rm, rn);
3283     ands(zr, rscratch1, 0xffff);
3284   } else if (size == byte) {
3285     eorw(rscratch1, rm, rn);
3286     ands(zr, rscratch1, 0xff);
3287   } else {
3288     ShouldNotReachHere();
3289   }
3290 }
3291 
3292 
3293 static bool different(Register a, RegisterOrConstant b, Register c) {
3294   if (b.is_constant())
3295     return a != c;
3296   else
3297     return a != b.as_register() && a != c && b.as_register() != c;
3298 }
3299 
3300 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz)                   \
3301 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \
3302   if (UseLSE) {                                                         \
3303     prev = prev->is_valid() ? prev : zr;                                \
3304     if (incr.is_register()) {                                           \
3305       AOP(sz, incr.as_register(), prev, addr);                          \
3306     } else {                                                            \
3307       mov(rscratch2, incr.as_constant());                               \
3308       AOP(sz, rscratch2, prev, addr);                                   \
3309     }                                                                   \
3310     return;                                                             \
3311   }                                                                     \
3312   Register result = rscratch2;                                          \
3313   if (prev->is_valid())                                                 \
3314     result = different(prev, incr, addr) ? prev : rscratch2;            \
3315                                                                         \
3316   Label retry_load;                                                     \
3317   prfm(Address(addr), PSTL1STRM);                                       \
3318   bind(retry_load);                                                     \
3319   LDXR(result, addr);                                                   \
3320   OP(rscratch1, result, incr);                                          \
3321   STXR(rscratch2, rscratch1, addr);                                     \
3322   cbnzw(rscratch2, retry_load);                                         \
3323   if (prev->is_valid() && prev != result) {                             \
3324     IOP(prev, rscratch1, incr);                                         \
3325   }                                                                     \
3326 }
3327 
3328 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword)
3329 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word)
3330 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword)
3331 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word)
3332 
3333 #undef ATOMIC_OP
3334 
3335 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz)                            \
3336 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \
3337   if (UseLSE) {                                                         \
3338     prev = prev->is_valid() ? prev : zr;                                \
3339     AOP(sz, newv, prev, addr);                                          \
3340     return;                                                             \
3341   }                                                                     \
3342   Register result = rscratch2;                                          \
3343   if (prev->is_valid())                                                 \
3344     result = different(prev, newv, addr) ? prev : rscratch2;            \
3345                                                                         \
3346   Label retry_load;                                                     \
3347   prfm(Address(addr), PSTL1STRM);                                       \
3348   bind(retry_load);                                                     \
3349   LDXR(result, addr);                                                   \
3350   STXR(rscratch1, newv, addr);                                          \
3351   cbnzw(rscratch1, retry_load);                                         \
3352   if (prev->is_valid() && prev != result)                               \
3353     mov(prev, result);                                                  \
3354 }
3355 
3356 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword)
3357 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word)
3358 ATOMIC_XCHG(xchgl, swpl, ldxr, stlxr, Assembler::xword)
3359 ATOMIC_XCHG(xchglw, swpl, ldxrw, stlxrw, Assembler::word)
3360 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword)
3361 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word)
3362 
3363 #undef ATOMIC_XCHG
3364 
3365 #ifndef PRODUCT
3366 extern "C" void findpc(intptr_t x);
3367 #endif
3368 
3369 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[])
3370 {
3371   // In order to get locks to work, we need to fake a in_VM state
3372   if (ShowMessageBoxOnError ) {
3373     JavaThread* thread = JavaThread::current();
3374     JavaThreadState saved_state = thread->thread_state();
3375     thread->set_thread_state(_thread_in_vm);
3376 #ifndef PRODUCT
3377     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
3378       ttyLocker ttyl;
3379       BytecodeCounter::print();
3380     }
3381 #endif
3382     if (os::message_box(msg, "Execution stopped, print registers?")) {
3383       ttyLocker ttyl;
3384       tty->print_cr(" pc = 0x%016" PRIx64, pc);
3385 #ifndef PRODUCT
3386       tty->cr();
3387       findpc(pc);
3388       tty->cr();
3389 #endif
3390       tty->print_cr(" r0 = 0x%016" PRIx64, regs[0]);
3391       tty->print_cr(" r1 = 0x%016" PRIx64, regs[1]);
3392       tty->print_cr(" r2 = 0x%016" PRIx64, regs[2]);
3393       tty->print_cr(" r3 = 0x%016" PRIx64, regs[3]);
3394       tty->print_cr(" r4 = 0x%016" PRIx64, regs[4]);
3395       tty->print_cr(" r5 = 0x%016" PRIx64, regs[5]);
3396       tty->print_cr(" r6 = 0x%016" PRIx64, regs[6]);
3397       tty->print_cr(" r7 = 0x%016" PRIx64, regs[7]);
3398       tty->print_cr(" r8 = 0x%016" PRIx64, regs[8]);
3399       tty->print_cr(" r9 = 0x%016" PRIx64, regs[9]);
3400       tty->print_cr("r10 = 0x%016" PRIx64, regs[10]);
3401       tty->print_cr("r11 = 0x%016" PRIx64, regs[11]);
3402       tty->print_cr("r12 = 0x%016" PRIx64, regs[12]);
3403       tty->print_cr("r13 = 0x%016" PRIx64, regs[13]);
3404       tty->print_cr("r14 = 0x%016" PRIx64, regs[14]);
3405       tty->print_cr("r15 = 0x%016" PRIx64, regs[15]);
3406       tty->print_cr("r16 = 0x%016" PRIx64, regs[16]);
3407       tty->print_cr("r17 = 0x%016" PRIx64, regs[17]);
3408       tty->print_cr("r18 = 0x%016" PRIx64, regs[18]);
3409       tty->print_cr("r19 = 0x%016" PRIx64, regs[19]);
3410       tty->print_cr("r20 = 0x%016" PRIx64, regs[20]);
3411       tty->print_cr("r21 = 0x%016" PRIx64, regs[21]);
3412       tty->print_cr("r22 = 0x%016" PRIx64, regs[22]);
3413       tty->print_cr("r23 = 0x%016" PRIx64, regs[23]);
3414       tty->print_cr("r24 = 0x%016" PRIx64, regs[24]);
3415       tty->print_cr("r25 = 0x%016" PRIx64, regs[25]);
3416       tty->print_cr("r26 = 0x%016" PRIx64, regs[26]);
3417       tty->print_cr("r27 = 0x%016" PRIx64, regs[27]);
3418       tty->print_cr("r28 = 0x%016" PRIx64, regs[28]);
3419       tty->print_cr("r30 = 0x%016" PRIx64, regs[30]);
3420       tty->print_cr("r31 = 0x%016" PRIx64, regs[31]);
3421       BREAKPOINT;
3422     }
3423   }
3424   fatal("DEBUG MESSAGE: %s", msg);
3425 }
3426 
3427 RegSet MacroAssembler::call_clobbered_gp_registers() {
3428   RegSet regs = RegSet::range(r0, r17) - RegSet::of(rscratch1, rscratch2);
3429 #ifndef R18_RESERVED
3430   regs += r18_tls;
3431 #endif
3432   return regs;
3433 }
3434 
3435 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) {
3436   int step = 4 * wordSize;
3437   push(call_clobbered_gp_registers() - exclude, sp);
3438   sub(sp, sp, step);
3439   mov(rscratch1, -step);
3440   // Push v0-v7, v16-v31.
3441   for (int i = 31; i>= 4; i -= 4) {
3442     if (i <= v7->encoding() || i >= v16->encoding())
3443       st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1),
3444           as_FloatRegister(i), T1D, Address(post(sp, rscratch1)));
3445   }
3446   st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2),
3447       as_FloatRegister(3), T1D, Address(sp));
3448 }
3449 
3450 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) {
3451   for (int i = 0; i < 32; i += 4) {
3452     if (i <= v7->encoding() || i >= v16->encoding())
3453       ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2),
3454           as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize)));
3455   }
3456 
3457   reinitialize_ptrue();
3458 
3459   pop(call_clobbered_gp_registers() - exclude, sp);
3460 }
3461 
3462 void MacroAssembler::push_CPU_state(bool save_vectors, bool use_sve,
3463                                     int sve_vector_size_in_bytes, int total_predicate_in_bytes) {
3464   push(RegSet::range(r0, r29), sp); // integer registers except lr & sp
3465   if (save_vectors && use_sve && sve_vector_size_in_bytes > 16) {
3466     sub(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers);
3467     for (int i = 0; i < FloatRegister::number_of_registers; i++) {
3468       sve_str(as_FloatRegister(i), Address(sp, i));
3469     }
3470   } else {
3471     int step = (save_vectors ? 8 : 4) * wordSize;
3472     mov(rscratch1, -step);
3473     sub(sp, sp, step);
3474     for (int i = 28; i >= 4; i -= 4) {
3475       st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2),
3476           as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1)));
3477     }
3478     st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp);
3479   }
3480   if (save_vectors && use_sve && total_predicate_in_bytes > 0) {
3481     sub(sp, sp, total_predicate_in_bytes);
3482     for (int i = 0; i < PRegister::number_of_registers; i++) {
3483       sve_str(as_PRegister(i), Address(sp, i));
3484     }
3485   }
3486 }
3487 
3488 void MacroAssembler::pop_CPU_state(bool restore_vectors, bool use_sve,
3489                                    int sve_vector_size_in_bytes, int total_predicate_in_bytes) {
3490   if (restore_vectors && use_sve && total_predicate_in_bytes > 0) {
3491     for (int i = PRegister::number_of_registers - 1; i >= 0; i--) {
3492       sve_ldr(as_PRegister(i), Address(sp, i));
3493     }
3494     add(sp, sp, total_predicate_in_bytes);
3495   }
3496   if (restore_vectors && use_sve && sve_vector_size_in_bytes > 16) {
3497     for (int i = FloatRegister::number_of_registers - 1; i >= 0; i--) {
3498       sve_ldr(as_FloatRegister(i), Address(sp, i));
3499     }
3500     add(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers);
3501   } else {
3502     int step = (restore_vectors ? 8 : 4) * wordSize;
3503     for (int i = 0; i <= 28; i += 4)
3504       ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2),
3505           as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step)));
3506   }
3507 
3508   // We may use predicate registers and rely on ptrue with SVE,
3509   // regardless of wide vector (> 8 bytes) used or not.
3510   if (use_sve) {
3511     reinitialize_ptrue();
3512   }
3513 
3514   // integer registers except lr & sp
3515   pop(RegSet::range(r0, r17), sp);
3516 #ifdef R18_RESERVED
3517   ldp(zr, r19, Address(post(sp, 2 * wordSize)));
3518   pop(RegSet::range(r20, r29), sp);
3519 #else
3520   pop(RegSet::range(r18_tls, r29), sp);
3521 #endif
3522 }
3523 
3524 /**
3525  * Helpers for multiply_to_len().
3526  */
3527 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
3528                                      Register src1, Register src2) {
3529   adds(dest_lo, dest_lo, src1);
3530   adc(dest_hi, dest_hi, zr);
3531   adds(dest_lo, dest_lo, src2);
3532   adc(final_dest_hi, dest_hi, zr);
3533 }
3534 
3535 // Generate an address from (r + r1 extend offset).  "size" is the
3536 // size of the operand.  The result may be in rscratch2.
3537 Address MacroAssembler::offsetted_address(Register r, Register r1,
3538                                           Address::extend ext, int offset, int size) {
3539   if (offset || (ext.shift() % size != 0)) {
3540     lea(rscratch2, Address(r, r1, ext));
3541     return Address(rscratch2, offset);
3542   } else {
3543     return Address(r, r1, ext);
3544   }
3545 }
3546 
3547 Address MacroAssembler::spill_address(int size, int offset, Register tmp)
3548 {
3549   assert(offset >= 0, "spill to negative address?");
3550   // Offset reachable ?
3551   //   Not aligned - 9 bits signed offset
3552   //   Aligned - 12 bits unsigned offset shifted
3553   Register base = sp;
3554   if ((offset & (size-1)) && offset >= (1<<8)) {
3555     add(tmp, base, offset & ((1<<12)-1));
3556     base = tmp;
3557     offset &= -1u<<12;
3558   }
3559 
3560   if (offset >= (1<<12) * size) {
3561     add(tmp, base, offset & (((1<<12)-1)<<12));
3562     base = tmp;
3563     offset &= ~(((1<<12)-1)<<12);
3564   }
3565 
3566   return Address(base, offset);
3567 }
3568 
3569 Address MacroAssembler::sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp) {
3570   assert(offset >= 0, "spill to negative address?");
3571 
3572   Register base = sp;
3573 
3574   // An immediate offset in the range 0 to 255 which is multiplied
3575   // by the current vector or predicate register size in bytes.
3576   if (offset % sve_reg_size_in_bytes == 0 && offset < ((1<<8)*sve_reg_size_in_bytes)) {
3577     return Address(base, offset / sve_reg_size_in_bytes);
3578   }
3579 
3580   add(tmp, base, offset);
3581   return Address(tmp);
3582 }
3583 
3584 // Checks whether offset is aligned.
3585 // Returns true if it is, else false.
3586 bool MacroAssembler::merge_alignment_check(Register base,
3587                                            size_t size,
3588                                            int64_t cur_offset,
3589                                            int64_t prev_offset) const {
3590   if (AvoidUnalignedAccesses) {
3591     if (base == sp) {
3592       // Checks whether low offset if aligned to pair of registers.
3593       int64_t pair_mask = size * 2 - 1;
3594       int64_t offset = prev_offset > cur_offset ? cur_offset : prev_offset;
3595       return (offset & pair_mask) == 0;
3596     } else { // If base is not sp, we can't guarantee the access is aligned.
3597       return false;
3598     }
3599   } else {
3600     int64_t mask = size - 1;
3601     // Load/store pair instruction only supports element size aligned offset.
3602     return (cur_offset & mask) == 0 && (prev_offset & mask) == 0;
3603   }
3604 }
3605 
3606 // Checks whether current and previous loads/stores can be merged.
3607 // Returns true if it can be merged, else false.
3608 bool MacroAssembler::ldst_can_merge(Register rt,
3609                                     const Address &adr,
3610                                     size_t cur_size_in_bytes,
3611                                     bool is_store) const {
3612   address prev = pc() - NativeInstruction::instruction_size;
3613   address last = code()->last_insn();
3614 
3615   if (last == nullptr || !nativeInstruction_at(last)->is_Imm_LdSt()) {
3616     return false;
3617   }
3618 
3619   if (adr.getMode() != Address::base_plus_offset || prev != last) {
3620     return false;
3621   }
3622 
3623   NativeLdSt* prev_ldst = NativeLdSt_at(prev);
3624   size_t prev_size_in_bytes = prev_ldst->size_in_bytes();
3625 
3626   assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging.");
3627   assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging.");
3628 
3629   if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) {
3630     return false;
3631   }
3632 
3633   int64_t max_offset = 63 * prev_size_in_bytes;
3634   int64_t min_offset = -64 * prev_size_in_bytes;
3635 
3636   assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged.");
3637 
3638   // Only same base can be merged.
3639   if (adr.base() != prev_ldst->base()) {
3640     return false;
3641   }
3642 
3643   int64_t cur_offset = adr.offset();
3644   int64_t prev_offset = prev_ldst->offset();
3645   size_t diff = abs(cur_offset - prev_offset);
3646   if (diff != prev_size_in_bytes) {
3647     return false;
3648   }
3649 
3650   // Following cases can not be merged:
3651   // ldr x2, [x2, #8]
3652   // ldr x3, [x2, #16]
3653   // or:
3654   // ldr x2, [x3, #8]
3655   // ldr x2, [x3, #16]
3656   // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL.
3657   if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) {
3658     return false;
3659   }
3660 
3661   int64_t low_offset = prev_offset > cur_offset ? cur_offset : prev_offset;
3662   // Offset range must be in ldp/stp instruction's range.
3663   if (low_offset > max_offset || low_offset < min_offset) {
3664     return false;
3665   }
3666 
3667   if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) {
3668     return true;
3669   }
3670 
3671   return false;
3672 }
3673 
3674 // Merge current load/store with previous load/store into ldp/stp.
3675 void MacroAssembler::merge_ldst(Register rt,
3676                                 const Address &adr,
3677                                 size_t cur_size_in_bytes,
3678                                 bool is_store) {
3679 
3680   assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged.");
3681 
3682   Register rt_low, rt_high;
3683   address prev = pc() - NativeInstruction::instruction_size;
3684   NativeLdSt* prev_ldst = NativeLdSt_at(prev);
3685 
3686   int64_t offset;
3687 
3688   if (adr.offset() < prev_ldst->offset()) {
3689     offset = adr.offset();
3690     rt_low = rt;
3691     rt_high = prev_ldst->target();
3692   } else {
3693     offset = prev_ldst->offset();
3694     rt_low = prev_ldst->target();
3695     rt_high = rt;
3696   }
3697 
3698   Address adr_p = Address(prev_ldst->base(), offset);
3699   // Overwrite previous generated binary.
3700   code_section()->set_end(prev);
3701 
3702   const size_t sz = prev_ldst->size_in_bytes();
3703   assert(sz == 8 || sz == 4, "only supports 64/32bit merging.");
3704   if (!is_store) {
3705     BLOCK_COMMENT("merged ldr pair");
3706     if (sz == 8) {
3707       ldp(rt_low, rt_high, adr_p);
3708     } else {
3709       ldpw(rt_low, rt_high, adr_p);
3710     }
3711   } else {
3712     BLOCK_COMMENT("merged str pair");
3713     if (sz == 8) {
3714       stp(rt_low, rt_high, adr_p);
3715     } else {
3716       stpw(rt_low, rt_high, adr_p);
3717     }
3718   }
3719 }
3720 
3721 /**
3722  * Multiply 64 bit by 64 bit first loop.
3723  */
3724 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
3725                                            Register y, Register y_idx, Register z,
3726                                            Register carry, Register product,
3727                                            Register idx, Register kdx) {
3728   //
3729   //  jlong carry, x[], y[], z[];
3730   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
3731   //    huge_128 product = y[idx] * x[xstart] + carry;
3732   //    z[kdx] = (jlong)product;
3733   //    carry  = (jlong)(product >>> 64);
3734   //  }
3735   //  z[xstart] = carry;
3736   //
3737 
3738   Label L_first_loop, L_first_loop_exit;
3739   Label L_one_x, L_one_y, L_multiply;
3740 
3741   subsw(xstart, xstart, 1);
3742   br(Assembler::MI, L_one_x);
3743 
3744   lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt)));
3745   ldr(x_xstart, Address(rscratch1));
3746   ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian
3747 
3748   bind(L_first_loop);
3749   subsw(idx, idx, 1);
3750   br(Assembler::MI, L_first_loop_exit);
3751   subsw(idx, idx, 1);
3752   br(Assembler::MI, L_one_y);
3753   lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
3754   ldr(y_idx, Address(rscratch1));
3755   ror(y_idx, y_idx, 32); // convert big-endian to little-endian
3756   bind(L_multiply);
3757 
3758   // AArch64 has a multiply-accumulate instruction that we can't use
3759   // here because it has no way to process carries, so we have to use
3760   // separate add and adc instructions.  Bah.
3761   umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product
3762   mul(product, x_xstart, y_idx);
3763   adds(product, product, carry);
3764   adc(carry, rscratch1, zr);   // x_xstart * y_idx + carry -> carry:product
3765 
3766   subw(kdx, kdx, 2);
3767   ror(product, product, 32); // back to big-endian
3768   str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong));
3769 
3770   b(L_first_loop);
3771 
3772   bind(L_one_y);
3773   ldrw(y_idx, Address(y,  0));
3774   b(L_multiply);
3775 
3776   bind(L_one_x);
3777   ldrw(x_xstart, Address(x,  0));
3778   b(L_first_loop);
3779 
3780   bind(L_first_loop_exit);
3781 }
3782 
3783 /**
3784  * Multiply 128 bit by 128. Unrolled inner loop.
3785  *
3786  */
3787 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z,
3788                                              Register carry, Register carry2,
3789                                              Register idx, Register jdx,
3790                                              Register yz_idx1, Register yz_idx2,
3791                                              Register tmp, Register tmp3, Register tmp4,
3792                                              Register tmp6, Register product_hi) {
3793 
3794   //   jlong carry, x[], y[], z[];
3795   //   int kdx = ystart+1;
3796   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
3797   //     huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry;
3798   //     jlong carry2  = (jlong)(tmp3 >>> 64);
3799   //     huge_128 tmp4 = (y[idx]   * product_hi) + z[kdx+idx] + carry2;
3800   //     carry  = (jlong)(tmp4 >>> 64);
3801   //     z[kdx+idx+1] = (jlong)tmp3;
3802   //     z[kdx+idx] = (jlong)tmp4;
3803   //   }
3804   //   idx += 2;
3805   //   if (idx > 0) {
3806   //     yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry;
3807   //     z[kdx+idx] = (jlong)yz_idx1;
3808   //     carry  = (jlong)(yz_idx1 >>> 64);
3809   //   }
3810   //
3811 
3812   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
3813 
3814   lsrw(jdx, idx, 2);
3815 
3816   bind(L_third_loop);
3817 
3818   subsw(jdx, jdx, 1);
3819   br(Assembler::MI, L_third_loop_exit);
3820   subw(idx, idx, 4);
3821 
3822   lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
3823 
3824   ldp(yz_idx2, yz_idx1, Address(rscratch1, 0));
3825 
3826   lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt)));
3827 
3828   ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
3829   ror(yz_idx2, yz_idx2, 32);
3830 
3831   ldp(rscratch2, rscratch1, Address(tmp6, 0));
3832 
3833   mul(tmp3, product_hi, yz_idx1);  //  yz_idx1 * product_hi -> tmp4:tmp3
3834   umulh(tmp4, product_hi, yz_idx1);
3835 
3836   ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian
3837   ror(rscratch2, rscratch2, 32);
3838 
3839   mul(tmp, product_hi, yz_idx2);   //  yz_idx2 * product_hi -> carry2:tmp
3840   umulh(carry2, product_hi, yz_idx2);
3841 
3842   // propagate sum of both multiplications into carry:tmp4:tmp3
3843   adds(tmp3, tmp3, carry);
3844   adc(tmp4, tmp4, zr);
3845   adds(tmp3, tmp3, rscratch1);
3846   adcs(tmp4, tmp4, tmp);
3847   adc(carry, carry2, zr);
3848   adds(tmp4, tmp4, rscratch2);
3849   adc(carry, carry, zr);
3850 
3851   ror(tmp3, tmp3, 32); // convert little-endian to big-endian
3852   ror(tmp4, tmp4, 32);
3853   stp(tmp4, tmp3, Address(tmp6, 0));
3854 
3855   b(L_third_loop);
3856   bind (L_third_loop_exit);
3857 
3858   andw (idx, idx, 0x3);
3859   cbz(idx, L_post_third_loop_done);
3860 
3861   Label L_check_1;
3862   subsw(idx, idx, 2);
3863   br(Assembler::MI, L_check_1);
3864 
3865   lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
3866   ldr(yz_idx1, Address(rscratch1, 0));
3867   ror(yz_idx1, yz_idx1, 32);
3868   mul(tmp3, product_hi, yz_idx1);  //  yz_idx1 * product_hi -> tmp4:tmp3
3869   umulh(tmp4, product_hi, yz_idx1);
3870   lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt)));
3871   ldr(yz_idx2, Address(rscratch1, 0));
3872   ror(yz_idx2, yz_idx2, 32);
3873 
3874   add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2);
3875 
3876   ror(tmp3, tmp3, 32);
3877   str(tmp3, Address(rscratch1, 0));
3878 
3879   bind (L_check_1);
3880 
3881   andw (idx, idx, 0x1);
3882   subsw(idx, idx, 1);
3883   br(Assembler::MI, L_post_third_loop_done);
3884   ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt)));
3885   mul(tmp3, tmp4, product_hi);  //  tmp4 * product_hi -> carry2:tmp3
3886   umulh(carry2, tmp4, product_hi);
3887   ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt)));
3888 
3889   add2_with_carry(carry2, tmp3, tmp4, carry);
3890 
3891   strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt)));
3892   extr(carry, carry2, tmp3, 32);
3893 
3894   bind(L_post_third_loop_done);
3895 }
3896 
3897 /**
3898  * Code for BigInteger::multiplyToLen() intrinsic.
3899  *
3900  * r0: x
3901  * r1: xlen
3902  * r2: y
3903  * r3: ylen
3904  * r4:  z
3905  * r5: tmp0
3906  * r10: tmp1
3907  * r11: tmp2
3908  * r12: tmp3
3909  * r13: tmp4
3910  * r14: tmp5
3911  * r15: tmp6
3912  * r16: tmp7
3913  *
3914  */
3915 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen,
3916                                      Register z, Register tmp0,
3917                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4,
3918                                      Register tmp5, Register tmp6, Register product_hi) {
3919 
3920   assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, product_hi);
3921 
3922   const Register idx = tmp1;
3923   const Register kdx = tmp2;
3924   const Register xstart = tmp3;
3925 
3926   const Register y_idx = tmp4;
3927   const Register carry = tmp5;
3928   const Register product  = xlen;
3929   const Register x_xstart = tmp0;
3930 
3931   // First Loop.
3932   //
3933   //  final static long LONG_MASK = 0xffffffffL;
3934   //  int xstart = xlen - 1;
3935   //  int ystart = ylen - 1;
3936   //  long carry = 0;
3937   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
3938   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
3939   //    z[kdx] = (int)product;
3940   //    carry = product >>> 32;
3941   //  }
3942   //  z[xstart] = (int)carry;
3943   //
3944 
3945   movw(idx, ylen);       // idx = ylen;
3946   addw(kdx, xlen, ylen); // kdx = xlen+ylen;
3947   mov(carry, zr);        // carry = 0;
3948 
3949   Label L_done;
3950 
3951   movw(xstart, xlen);
3952   subsw(xstart, xstart, 1);
3953   br(Assembler::MI, L_done);
3954 
3955   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
3956 
3957   Label L_second_loop;
3958   cbzw(kdx, L_second_loop);
3959 
3960   Label L_carry;
3961   subw(kdx, kdx, 1);
3962   cbzw(kdx, L_carry);
3963 
3964   strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt)));
3965   lsr(carry, carry, 32);
3966   subw(kdx, kdx, 1);
3967 
3968   bind(L_carry);
3969   strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt)));
3970 
3971   // Second and third (nested) loops.
3972   //
3973   // for (int i = xstart-1; i >= 0; i--) { // Second loop
3974   //   carry = 0;
3975   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
3976   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
3977   //                    (z[k] & LONG_MASK) + carry;
3978   //     z[k] = (int)product;
3979   //     carry = product >>> 32;
3980   //   }
3981   //   z[i] = (int)carry;
3982   // }
3983   //
3984   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi
3985 
3986   const Register jdx = tmp1;
3987 
3988   bind(L_second_loop);
3989   mov(carry, zr);                // carry = 0;
3990   movw(jdx, ylen);               // j = ystart+1
3991 
3992   subsw(xstart, xstart, 1);      // i = xstart-1;
3993   br(Assembler::MI, L_done);
3994 
3995   str(z, Address(pre(sp, -4 * wordSize)));
3996 
3997   Label L_last_x;
3998   lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j
3999   subsw(xstart, xstart, 1);       // i = xstart-1;
4000   br(Assembler::MI, L_last_x);
4001 
4002   lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt)));
4003   ldr(product_hi, Address(rscratch1));
4004   ror(product_hi, product_hi, 32);  // convert big-endian to little-endian
4005 
4006   Label L_third_loop_prologue;
4007   bind(L_third_loop_prologue);
4008 
4009   str(ylen, Address(sp, wordSize));
4010   stp(x, xstart, Address(sp, 2 * wordSize));
4011   multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product,
4012                           tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi);
4013   ldp(z, ylen, Address(post(sp, 2 * wordSize)));
4014   ldp(x, xlen, Address(post(sp, 2 * wordSize)));   // copy old xstart -> xlen
4015 
4016   addw(tmp3, xlen, 1);
4017   strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt)));
4018   subsw(tmp3, tmp3, 1);
4019   br(Assembler::MI, L_done);
4020 
4021   lsr(carry, carry, 32);
4022   strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt)));
4023   b(L_second_loop);
4024 
4025   // Next infrequent code is moved outside loops.
4026   bind(L_last_x);
4027   ldrw(product_hi, Address(x,  0));
4028   b(L_third_loop_prologue);
4029 
4030   bind(L_done);
4031 }
4032 
4033 // Code for BigInteger::mulAdd intrinsic
4034 // out     = r0
4035 // in      = r1
4036 // offset  = r2  (already out.length-offset)
4037 // len     = r3
4038 // k       = r4
4039 //
4040 // pseudo code from java implementation:
4041 // carry = 0;
4042 // offset = out.length-offset - 1;
4043 // for (int j=len-1; j >= 0; j--) {
4044 //     product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry;
4045 //     out[offset--] = (int)product;
4046 //     carry = product >>> 32;
4047 // }
4048 // return (int)carry;
4049 void MacroAssembler::mul_add(Register out, Register in, Register offset,
4050       Register len, Register k) {
4051     Label LOOP, END;
4052     // pre-loop
4053     cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches
4054     csel(out, zr, out, Assembler::EQ);
4055     br(Assembler::EQ, END);
4056     add(in, in, len, LSL, 2); // in[j+1] address
4057     add(offset, out, offset, LSL, 2); // out[offset + 1] address
4058     mov(out, zr); // used to keep carry now
4059     BIND(LOOP);
4060     ldrw(rscratch1, Address(pre(in, -4)));
4061     madd(rscratch1, rscratch1, k, out);
4062     ldrw(rscratch2, Address(pre(offset, -4)));
4063     add(rscratch1, rscratch1, rscratch2);
4064     strw(rscratch1, Address(offset));
4065     lsr(out, rscratch1, 32);
4066     subs(len, len, 1);
4067     br(Assembler::NE, LOOP);
4068     BIND(END);
4069 }
4070 
4071 /**
4072  * Emits code to update CRC-32 with a byte value according to constants in table
4073  *
4074  * @param [in,out]crc   Register containing the crc.
4075  * @param [in]val       Register containing the byte to fold into the CRC.
4076  * @param [in]table     Register containing the table of crc constants.
4077  *
4078  * uint32_t crc;
4079  * val = crc_table[(val ^ crc) & 0xFF];
4080  * crc = val ^ (crc >> 8);
4081  *
4082  */
4083 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
4084   eor(val, val, crc);
4085   andr(val, val, 0xff);
4086   ldrw(val, Address(table, val, Address::lsl(2)));
4087   eor(crc, val, crc, Assembler::LSR, 8);
4088 }
4089 
4090 /**
4091  * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3
4092  *
4093  * @param [in,out]crc   Register containing the crc.
4094  * @param [in]v         Register containing the 32-bit to fold into the CRC.
4095  * @param [in]table0    Register containing table 0 of crc constants.
4096  * @param [in]table1    Register containing table 1 of crc constants.
4097  * @param [in]table2    Register containing table 2 of crc constants.
4098  * @param [in]table3    Register containing table 3 of crc constants.
4099  *
4100  * uint32_t crc;
4101  *   v = crc ^ v
4102  *   crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24]
4103  *
4104  */
4105 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp,
4106         Register table0, Register table1, Register table2, Register table3,
4107         bool upper) {
4108   eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0);
4109   uxtb(tmp, v);
4110   ldrw(crc, Address(table3, tmp, Address::lsl(2)));
4111   ubfx(tmp, v, 8, 8);
4112   ldrw(tmp, Address(table2, tmp, Address::lsl(2)));
4113   eor(crc, crc, tmp);
4114   ubfx(tmp, v, 16, 8);
4115   ldrw(tmp, Address(table1, tmp, Address::lsl(2)));
4116   eor(crc, crc, tmp);
4117   ubfx(tmp, v, 24, 8);
4118   ldrw(tmp, Address(table0, tmp, Address::lsl(2)));
4119   eor(crc, crc, tmp);
4120 }
4121 
4122 void MacroAssembler::kernel_crc32_using_crypto_pmull(Register crc, Register buf,
4123         Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) {
4124     Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit;
4125     assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2);
4126 
4127     subs(tmp0, len, 384);
4128     mvnw(crc, crc);
4129     br(Assembler::GE, CRC_by128_pre);
4130   BIND(CRC_less128);
4131     subs(len, len, 32);
4132     br(Assembler::GE, CRC_by32_loop);
4133   BIND(CRC_less32);
4134     adds(len, len, 32 - 4);
4135     br(Assembler::GE, CRC_by4_loop);
4136     adds(len, len, 4);
4137     br(Assembler::GT, CRC_by1_loop);
4138     b(L_exit);
4139 
4140   BIND(CRC_by32_loop);
4141     ldp(tmp0, tmp1, Address(buf));
4142     crc32x(crc, crc, tmp0);
4143     ldp(tmp2, tmp3, Address(buf, 16));
4144     crc32x(crc, crc, tmp1);
4145     add(buf, buf, 32);
4146     crc32x(crc, crc, tmp2);
4147     subs(len, len, 32);
4148     crc32x(crc, crc, tmp3);
4149     br(Assembler::GE, CRC_by32_loop);
4150     cmn(len, (u1)32);
4151     br(Assembler::NE, CRC_less32);
4152     b(L_exit);
4153 
4154   BIND(CRC_by4_loop);
4155     ldrw(tmp0, Address(post(buf, 4)));
4156     subs(len, len, 4);
4157     crc32w(crc, crc, tmp0);
4158     br(Assembler::GE, CRC_by4_loop);
4159     adds(len, len, 4);
4160     br(Assembler::LE, L_exit);
4161   BIND(CRC_by1_loop);
4162     ldrb(tmp0, Address(post(buf, 1)));
4163     subs(len, len, 1);
4164     crc32b(crc, crc, tmp0);
4165     br(Assembler::GT, CRC_by1_loop);
4166     b(L_exit);
4167 
4168   BIND(CRC_by128_pre);
4169     kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2,
4170       4*256*sizeof(juint) + 8*sizeof(juint));
4171     mov(crc, 0);
4172     crc32x(crc, crc, tmp0);
4173     crc32x(crc, crc, tmp1);
4174 
4175     cbnz(len, CRC_less128);
4176 
4177   BIND(L_exit);
4178     mvnw(crc, crc);
4179 }
4180 
4181 void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf,
4182         Register len, Register tmp0, Register tmp1, Register tmp2,
4183         Register tmp3) {
4184     Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit;
4185     assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3);
4186 
4187     mvnw(crc, crc);
4188 
4189     subs(len, len, 128);
4190     br(Assembler::GE, CRC_by64_pre);
4191   BIND(CRC_less64);
4192     adds(len, len, 128-32);
4193     br(Assembler::GE, CRC_by32_loop);
4194   BIND(CRC_less32);
4195     adds(len, len, 32-4);
4196     br(Assembler::GE, CRC_by4_loop);
4197     adds(len, len, 4);
4198     br(Assembler::GT, CRC_by1_loop);
4199     b(L_exit);
4200 
4201   BIND(CRC_by32_loop);
4202     ldp(tmp0, tmp1, Address(post(buf, 16)));
4203     subs(len, len, 32);
4204     crc32x(crc, crc, tmp0);
4205     ldr(tmp2, Address(post(buf, 8)));
4206     crc32x(crc, crc, tmp1);
4207     ldr(tmp3, Address(post(buf, 8)));
4208     crc32x(crc, crc, tmp2);
4209     crc32x(crc, crc, tmp3);
4210     br(Assembler::GE, CRC_by32_loop);
4211     cmn(len, (u1)32);
4212     br(Assembler::NE, CRC_less32);
4213     b(L_exit);
4214 
4215   BIND(CRC_by4_loop);
4216     ldrw(tmp0, Address(post(buf, 4)));
4217     subs(len, len, 4);
4218     crc32w(crc, crc, tmp0);
4219     br(Assembler::GE, CRC_by4_loop);
4220     adds(len, len, 4);
4221     br(Assembler::LE, L_exit);
4222   BIND(CRC_by1_loop);
4223     ldrb(tmp0, Address(post(buf, 1)));
4224     subs(len, len, 1);
4225     crc32b(crc, crc, tmp0);
4226     br(Assembler::GT, CRC_by1_loop);
4227     b(L_exit);
4228 
4229   BIND(CRC_by64_pre);
4230     sub(buf, buf, 8);
4231     ldp(tmp0, tmp1, Address(buf, 8));
4232     crc32x(crc, crc, tmp0);
4233     ldr(tmp2, Address(buf, 24));
4234     crc32x(crc, crc, tmp1);
4235     ldr(tmp3, Address(buf, 32));
4236     crc32x(crc, crc, tmp2);
4237     ldr(tmp0, Address(buf, 40));
4238     crc32x(crc, crc, tmp3);
4239     ldr(tmp1, Address(buf, 48));
4240     crc32x(crc, crc, tmp0);
4241     ldr(tmp2, Address(buf, 56));
4242     crc32x(crc, crc, tmp1);
4243     ldr(tmp3, Address(pre(buf, 64)));
4244 
4245     b(CRC_by64_loop);
4246 
4247     align(CodeEntryAlignment);
4248   BIND(CRC_by64_loop);
4249     subs(len, len, 64);
4250     crc32x(crc, crc, tmp2);
4251     ldr(tmp0, Address(buf, 8));
4252     crc32x(crc, crc, tmp3);
4253     ldr(tmp1, Address(buf, 16));
4254     crc32x(crc, crc, tmp0);
4255     ldr(tmp2, Address(buf, 24));
4256     crc32x(crc, crc, tmp1);
4257     ldr(tmp3, Address(buf, 32));
4258     crc32x(crc, crc, tmp2);
4259     ldr(tmp0, Address(buf, 40));
4260     crc32x(crc, crc, tmp3);
4261     ldr(tmp1, Address(buf, 48));
4262     crc32x(crc, crc, tmp0);
4263     ldr(tmp2, Address(buf, 56));
4264     crc32x(crc, crc, tmp1);
4265     ldr(tmp3, Address(pre(buf, 64)));
4266     br(Assembler::GE, CRC_by64_loop);
4267 
4268     // post-loop
4269     crc32x(crc, crc, tmp2);
4270     crc32x(crc, crc, tmp3);
4271 
4272     sub(len, len, 64);
4273     add(buf, buf, 8);
4274     cmn(len, (u1)128);
4275     br(Assembler::NE, CRC_less64);
4276   BIND(L_exit);
4277     mvnw(crc, crc);
4278 }
4279 
4280 /**
4281  * @param crc   register containing existing CRC (32-bit)
4282  * @param buf   register pointing to input byte buffer (byte*)
4283  * @param len   register containing number of bytes
4284  * @param table register that will contain address of CRC table
4285  * @param tmp   scratch register
4286  */
4287 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len,
4288         Register table0, Register table1, Register table2, Register table3,
4289         Register tmp, Register tmp2, Register tmp3) {
4290   Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit;
4291 
4292   if (UseCryptoPmullForCRC32) {
4293       kernel_crc32_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3);
4294       return;
4295   }
4296 
4297   if (UseCRC32) {
4298       kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3);
4299       return;
4300   }
4301 
4302     mvnw(crc, crc);
4303 
4304     {
4305       uint64_t offset;
4306       adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset);
4307       add(table0, table0, offset);
4308     }
4309     add(table1, table0, 1*256*sizeof(juint));
4310     add(table2, table0, 2*256*sizeof(juint));
4311     add(table3, table0, 3*256*sizeof(juint));
4312 
4313     { // Neon code start
4314       cmp(len, (u1)64);
4315       br(Assembler::LT, L_by16);
4316       eor(v16, T16B, v16, v16);
4317 
4318     Label L_fold;
4319 
4320       add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants
4321 
4322       ld1(v0, v1, T2D, post(buf, 32));
4323       ld1r(v4, T2D, post(tmp, 8));
4324       ld1r(v5, T2D, post(tmp, 8));
4325       ld1r(v6, T2D, post(tmp, 8));
4326       ld1r(v7, T2D, post(tmp, 8));
4327       mov(v16, S, 0, crc);
4328 
4329       eor(v0, T16B, v0, v16);
4330       sub(len, len, 64);
4331 
4332     BIND(L_fold);
4333       pmull(v22, T8H, v0, v5, T8B);
4334       pmull(v20, T8H, v0, v7, T8B);
4335       pmull(v23, T8H, v0, v4, T8B);
4336       pmull(v21, T8H, v0, v6, T8B);
4337 
4338       pmull2(v18, T8H, v0, v5, T16B);
4339       pmull2(v16, T8H, v0, v7, T16B);
4340       pmull2(v19, T8H, v0, v4, T16B);
4341       pmull2(v17, T8H, v0, v6, T16B);
4342 
4343       uzp1(v24, T8H, v20, v22);
4344       uzp2(v25, T8H, v20, v22);
4345       eor(v20, T16B, v24, v25);
4346 
4347       uzp1(v26, T8H, v16, v18);
4348       uzp2(v27, T8H, v16, v18);
4349       eor(v16, T16B, v26, v27);
4350 
4351       ushll2(v22, T4S, v20, T8H, 8);
4352       ushll(v20, T4S, v20, T4H, 8);
4353 
4354       ushll2(v18, T4S, v16, T8H, 8);
4355       ushll(v16, T4S, v16, T4H, 8);
4356 
4357       eor(v22, T16B, v23, v22);
4358       eor(v18, T16B, v19, v18);
4359       eor(v20, T16B, v21, v20);
4360       eor(v16, T16B, v17, v16);
4361 
4362       uzp1(v17, T2D, v16, v20);
4363       uzp2(v21, T2D, v16, v20);
4364       eor(v17, T16B, v17, v21);
4365 
4366       ushll2(v20, T2D, v17, T4S, 16);
4367       ushll(v16, T2D, v17, T2S, 16);
4368 
4369       eor(v20, T16B, v20, v22);
4370       eor(v16, T16B, v16, v18);
4371 
4372       uzp1(v17, T2D, v20, v16);
4373       uzp2(v21, T2D, v20, v16);
4374       eor(v28, T16B, v17, v21);
4375 
4376       pmull(v22, T8H, v1, v5, T8B);
4377       pmull(v20, T8H, v1, v7, T8B);
4378       pmull(v23, T8H, v1, v4, T8B);
4379       pmull(v21, T8H, v1, v6, T8B);
4380 
4381       pmull2(v18, T8H, v1, v5, T16B);
4382       pmull2(v16, T8H, v1, v7, T16B);
4383       pmull2(v19, T8H, v1, v4, T16B);
4384       pmull2(v17, T8H, v1, v6, T16B);
4385 
4386       ld1(v0, v1, T2D, post(buf, 32));
4387 
4388       uzp1(v24, T8H, v20, v22);
4389       uzp2(v25, T8H, v20, v22);
4390       eor(v20, T16B, v24, v25);
4391 
4392       uzp1(v26, T8H, v16, v18);
4393       uzp2(v27, T8H, v16, v18);
4394       eor(v16, T16B, v26, v27);
4395 
4396       ushll2(v22, T4S, v20, T8H, 8);
4397       ushll(v20, T4S, v20, T4H, 8);
4398 
4399       ushll2(v18, T4S, v16, T8H, 8);
4400       ushll(v16, T4S, v16, T4H, 8);
4401 
4402       eor(v22, T16B, v23, v22);
4403       eor(v18, T16B, v19, v18);
4404       eor(v20, T16B, v21, v20);
4405       eor(v16, T16B, v17, v16);
4406 
4407       uzp1(v17, T2D, v16, v20);
4408       uzp2(v21, T2D, v16, v20);
4409       eor(v16, T16B, v17, v21);
4410 
4411       ushll2(v20, T2D, v16, T4S, 16);
4412       ushll(v16, T2D, v16, T2S, 16);
4413 
4414       eor(v20, T16B, v22, v20);
4415       eor(v16, T16B, v16, v18);
4416 
4417       uzp1(v17, T2D, v20, v16);
4418       uzp2(v21, T2D, v20, v16);
4419       eor(v20, T16B, v17, v21);
4420 
4421       shl(v16, T2D, v28, 1);
4422       shl(v17, T2D, v20, 1);
4423 
4424       eor(v0, T16B, v0, v16);
4425       eor(v1, T16B, v1, v17);
4426 
4427       subs(len, len, 32);
4428       br(Assembler::GE, L_fold);
4429 
4430       mov(crc, 0);
4431       mov(tmp, v0, D, 0);
4432       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
4433       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
4434       mov(tmp, v0, D, 1);
4435       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
4436       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
4437       mov(tmp, v1, D, 0);
4438       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
4439       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
4440       mov(tmp, v1, D, 1);
4441       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
4442       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
4443 
4444       add(len, len, 32);
4445     } // Neon code end
4446 
4447   BIND(L_by16);
4448     subs(len, len, 16);
4449     br(Assembler::GE, L_by16_loop);
4450     adds(len, len, 16-4);
4451     br(Assembler::GE, L_by4_loop);
4452     adds(len, len, 4);
4453     br(Assembler::GT, L_by1_loop);
4454     b(L_exit);
4455 
4456   BIND(L_by4_loop);
4457     ldrw(tmp, Address(post(buf, 4)));
4458     update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3);
4459     subs(len, len, 4);
4460     br(Assembler::GE, L_by4_loop);
4461     adds(len, len, 4);
4462     br(Assembler::LE, L_exit);
4463   BIND(L_by1_loop);
4464     subs(len, len, 1);
4465     ldrb(tmp, Address(post(buf, 1)));
4466     update_byte_crc32(crc, tmp, table0);
4467     br(Assembler::GT, L_by1_loop);
4468     b(L_exit);
4469 
4470     align(CodeEntryAlignment);
4471   BIND(L_by16_loop);
4472     subs(len, len, 16);
4473     ldp(tmp, tmp3, Address(post(buf, 16)));
4474     update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
4475     update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
4476     update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false);
4477     update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true);
4478     br(Assembler::GE, L_by16_loop);
4479     adds(len, len, 16-4);
4480     br(Assembler::GE, L_by4_loop);
4481     adds(len, len, 4);
4482     br(Assembler::GT, L_by1_loop);
4483   BIND(L_exit);
4484     mvnw(crc, crc);
4485 }
4486 
4487 void MacroAssembler::kernel_crc32c_using_crypto_pmull(Register crc, Register buf,
4488         Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) {
4489     Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit;
4490     assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2);
4491 
4492     subs(tmp0, len, 384);
4493     br(Assembler::GE, CRC_by128_pre);
4494   BIND(CRC_less128);
4495     subs(len, len, 32);
4496     br(Assembler::GE, CRC_by32_loop);
4497   BIND(CRC_less32);
4498     adds(len, len, 32 - 4);
4499     br(Assembler::GE, CRC_by4_loop);
4500     adds(len, len, 4);
4501     br(Assembler::GT, CRC_by1_loop);
4502     b(L_exit);
4503 
4504   BIND(CRC_by32_loop);
4505     ldp(tmp0, tmp1, Address(buf));
4506     crc32cx(crc, crc, tmp0);
4507     ldr(tmp2, Address(buf, 16));
4508     crc32cx(crc, crc, tmp1);
4509     ldr(tmp3, Address(buf, 24));
4510     crc32cx(crc, crc, tmp2);
4511     add(buf, buf, 32);
4512     subs(len, len, 32);
4513     crc32cx(crc, crc, tmp3);
4514     br(Assembler::GE, CRC_by32_loop);
4515     cmn(len, (u1)32);
4516     br(Assembler::NE, CRC_less32);
4517     b(L_exit);
4518 
4519   BIND(CRC_by4_loop);
4520     ldrw(tmp0, Address(post(buf, 4)));
4521     subs(len, len, 4);
4522     crc32cw(crc, crc, tmp0);
4523     br(Assembler::GE, CRC_by4_loop);
4524     adds(len, len, 4);
4525     br(Assembler::LE, L_exit);
4526   BIND(CRC_by1_loop);
4527     ldrb(tmp0, Address(post(buf, 1)));
4528     subs(len, len, 1);
4529     crc32cb(crc, crc, tmp0);
4530     br(Assembler::GT, CRC_by1_loop);
4531     b(L_exit);
4532 
4533   BIND(CRC_by128_pre);
4534     kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2,
4535       4*256*sizeof(juint) + 8*sizeof(juint) + 0x50);
4536     mov(crc, 0);
4537     crc32cx(crc, crc, tmp0);
4538     crc32cx(crc, crc, tmp1);
4539 
4540     cbnz(len, CRC_less128);
4541 
4542   BIND(L_exit);
4543 }
4544 
4545 void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf,
4546         Register len, Register tmp0, Register tmp1, Register tmp2,
4547         Register tmp3) {
4548     Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit;
4549     assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3);
4550 
4551     subs(len, len, 128);
4552     br(Assembler::GE, CRC_by64_pre);
4553   BIND(CRC_less64);
4554     adds(len, len, 128-32);
4555     br(Assembler::GE, CRC_by32_loop);
4556   BIND(CRC_less32);
4557     adds(len, len, 32-4);
4558     br(Assembler::GE, CRC_by4_loop);
4559     adds(len, len, 4);
4560     br(Assembler::GT, CRC_by1_loop);
4561     b(L_exit);
4562 
4563   BIND(CRC_by32_loop);
4564     ldp(tmp0, tmp1, Address(post(buf, 16)));
4565     subs(len, len, 32);
4566     crc32cx(crc, crc, tmp0);
4567     ldr(tmp2, Address(post(buf, 8)));
4568     crc32cx(crc, crc, tmp1);
4569     ldr(tmp3, Address(post(buf, 8)));
4570     crc32cx(crc, crc, tmp2);
4571     crc32cx(crc, crc, tmp3);
4572     br(Assembler::GE, CRC_by32_loop);
4573     cmn(len, (u1)32);
4574     br(Assembler::NE, CRC_less32);
4575     b(L_exit);
4576 
4577   BIND(CRC_by4_loop);
4578     ldrw(tmp0, Address(post(buf, 4)));
4579     subs(len, len, 4);
4580     crc32cw(crc, crc, tmp0);
4581     br(Assembler::GE, CRC_by4_loop);
4582     adds(len, len, 4);
4583     br(Assembler::LE, L_exit);
4584   BIND(CRC_by1_loop);
4585     ldrb(tmp0, Address(post(buf, 1)));
4586     subs(len, len, 1);
4587     crc32cb(crc, crc, tmp0);
4588     br(Assembler::GT, CRC_by1_loop);
4589     b(L_exit);
4590 
4591   BIND(CRC_by64_pre);
4592     sub(buf, buf, 8);
4593     ldp(tmp0, tmp1, Address(buf, 8));
4594     crc32cx(crc, crc, tmp0);
4595     ldr(tmp2, Address(buf, 24));
4596     crc32cx(crc, crc, tmp1);
4597     ldr(tmp3, Address(buf, 32));
4598     crc32cx(crc, crc, tmp2);
4599     ldr(tmp0, Address(buf, 40));
4600     crc32cx(crc, crc, tmp3);
4601     ldr(tmp1, Address(buf, 48));
4602     crc32cx(crc, crc, tmp0);
4603     ldr(tmp2, Address(buf, 56));
4604     crc32cx(crc, crc, tmp1);
4605     ldr(tmp3, Address(pre(buf, 64)));
4606 
4607     b(CRC_by64_loop);
4608 
4609     align(CodeEntryAlignment);
4610   BIND(CRC_by64_loop);
4611     subs(len, len, 64);
4612     crc32cx(crc, crc, tmp2);
4613     ldr(tmp0, Address(buf, 8));
4614     crc32cx(crc, crc, tmp3);
4615     ldr(tmp1, Address(buf, 16));
4616     crc32cx(crc, crc, tmp0);
4617     ldr(tmp2, Address(buf, 24));
4618     crc32cx(crc, crc, tmp1);
4619     ldr(tmp3, Address(buf, 32));
4620     crc32cx(crc, crc, tmp2);
4621     ldr(tmp0, Address(buf, 40));
4622     crc32cx(crc, crc, tmp3);
4623     ldr(tmp1, Address(buf, 48));
4624     crc32cx(crc, crc, tmp0);
4625     ldr(tmp2, Address(buf, 56));
4626     crc32cx(crc, crc, tmp1);
4627     ldr(tmp3, Address(pre(buf, 64)));
4628     br(Assembler::GE, CRC_by64_loop);
4629 
4630     // post-loop
4631     crc32cx(crc, crc, tmp2);
4632     crc32cx(crc, crc, tmp3);
4633 
4634     sub(len, len, 64);
4635     add(buf, buf, 8);
4636     cmn(len, (u1)128);
4637     br(Assembler::NE, CRC_less64);
4638   BIND(L_exit);
4639 }
4640 
4641 /**
4642  * @param crc   register containing existing CRC (32-bit)
4643  * @param buf   register pointing to input byte buffer (byte*)
4644  * @param len   register containing number of bytes
4645  * @param table register that will contain address of CRC table
4646  * @param tmp   scratch register
4647  */
4648 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len,
4649         Register table0, Register table1, Register table2, Register table3,
4650         Register tmp, Register tmp2, Register tmp3) {
4651   if (UseCryptoPmullForCRC32) {
4652     kernel_crc32c_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3);
4653   } else {
4654     kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3);
4655   }
4656 }
4657 
4658 void MacroAssembler::kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf,
4659         Register len, Register tmp0, Register tmp1, Register tmp2, size_t table_offset) {
4660     Label CRC_by128_loop;
4661     assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2);
4662 
4663     sub(len, len, 256);
4664     Register table = tmp0;
4665     {
4666       uint64_t offset;
4667       adrp(table, ExternalAddress(StubRoutines::crc_table_addr()), offset);
4668       add(table, table, offset);
4669     }
4670     add(table, table, table_offset);
4671 
4672     // Registers v0..v7 are used as data registers.
4673     // Registers v16..v31 are used as tmp registers.
4674     sub(buf, buf, 0x10);
4675     ldrq(v0, Address(buf, 0x10));
4676     ldrq(v1, Address(buf, 0x20));
4677     ldrq(v2, Address(buf, 0x30));
4678     ldrq(v3, Address(buf, 0x40));
4679     ldrq(v4, Address(buf, 0x50));
4680     ldrq(v5, Address(buf, 0x60));
4681     ldrq(v6, Address(buf, 0x70));
4682     ldrq(v7, Address(pre(buf, 0x80)));
4683 
4684     movi(v31, T4S, 0);
4685     mov(v31, S, 0, crc);
4686     eor(v0, T16B, v0, v31);
4687 
4688     // Register v16 contains constants from the crc table.
4689     ldrq(v16, Address(table));
4690     b(CRC_by128_loop);
4691 
4692     align(OptoLoopAlignment);
4693   BIND(CRC_by128_loop);
4694     pmull (v17,  T1Q, v0, v16, T1D);
4695     pmull2(v18, T1Q, v0, v16, T2D);
4696     ldrq(v0, Address(buf, 0x10));
4697     eor3(v0, T16B, v17,  v18, v0);
4698 
4699     pmull (v19, T1Q, v1, v16, T1D);
4700     pmull2(v20, T1Q, v1, v16, T2D);
4701     ldrq(v1, Address(buf, 0x20));
4702     eor3(v1, T16B, v19, v20, v1);
4703 
4704     pmull (v21, T1Q, v2, v16, T1D);
4705     pmull2(v22, T1Q, v2, v16, T2D);
4706     ldrq(v2, Address(buf, 0x30));
4707     eor3(v2, T16B, v21, v22, v2);
4708 
4709     pmull (v23, T1Q, v3, v16, T1D);
4710     pmull2(v24, T1Q, v3, v16, T2D);
4711     ldrq(v3, Address(buf, 0x40));
4712     eor3(v3, T16B, v23, v24, v3);
4713 
4714     pmull (v25, T1Q, v4, v16, T1D);
4715     pmull2(v26, T1Q, v4, v16, T2D);
4716     ldrq(v4, Address(buf, 0x50));
4717     eor3(v4, T16B, v25, v26, v4);
4718 
4719     pmull (v27, T1Q, v5, v16, T1D);
4720     pmull2(v28, T1Q, v5, v16, T2D);
4721     ldrq(v5, Address(buf, 0x60));
4722     eor3(v5, T16B, v27, v28, v5);
4723 
4724     pmull (v29, T1Q, v6, v16, T1D);
4725     pmull2(v30, T1Q, v6, v16, T2D);
4726     ldrq(v6, Address(buf, 0x70));
4727     eor3(v6, T16B, v29, v30, v6);
4728 
4729     // Reuse registers v23, v24.
4730     // Using them won't block the first instruction of the next iteration.
4731     pmull (v23, T1Q, v7, v16, T1D);
4732     pmull2(v24, T1Q, v7, v16, T2D);
4733     ldrq(v7, Address(pre(buf, 0x80)));
4734     eor3(v7, T16B, v23, v24, v7);
4735 
4736     subs(len, len, 0x80);
4737     br(Assembler::GE, CRC_by128_loop);
4738 
4739     // fold into 512 bits
4740     // Use v31 for constants because v16 can be still in use.
4741     ldrq(v31, Address(table, 0x10));
4742 
4743     pmull (v17,  T1Q, v0, v31, T1D);
4744     pmull2(v18, T1Q, v0, v31, T2D);
4745     eor3(v0, T16B, v17, v18, v4);
4746 
4747     pmull (v19, T1Q, v1, v31, T1D);
4748     pmull2(v20, T1Q, v1, v31, T2D);
4749     eor3(v1, T16B, v19, v20, v5);
4750 
4751     pmull (v21, T1Q, v2, v31, T1D);
4752     pmull2(v22, T1Q, v2, v31, T2D);
4753     eor3(v2, T16B, v21, v22, v6);
4754 
4755     pmull (v23, T1Q, v3, v31, T1D);
4756     pmull2(v24, T1Q, v3, v31, T2D);
4757     eor3(v3, T16B, v23, v24, v7);
4758 
4759     // fold into 128 bits
4760     // Use v17 for constants because v31 can be still in use.
4761     ldrq(v17, Address(table, 0x20));
4762     pmull (v25, T1Q, v0, v17, T1D);
4763     pmull2(v26, T1Q, v0, v17, T2D);
4764     eor3(v3, T16B, v3, v25, v26);
4765 
4766     // Use v18 for constants because v17 can be still in use.
4767     ldrq(v18, Address(table, 0x30));
4768     pmull (v27, T1Q, v1, v18, T1D);
4769     pmull2(v28, T1Q, v1, v18, T2D);
4770     eor3(v3, T16B, v3, v27, v28);
4771 
4772     // Use v19 for constants because v18 can be still in use.
4773     ldrq(v19, Address(table, 0x40));
4774     pmull (v29, T1Q, v2, v19, T1D);
4775     pmull2(v30, T1Q, v2, v19, T2D);
4776     eor3(v0, T16B, v3, v29, v30);
4777 
4778     add(len, len, 0x80);
4779     add(buf, buf, 0x10);
4780 
4781     mov(tmp0, v0, D, 0);
4782     mov(tmp1, v0, D, 1);
4783 }
4784 
4785 SkipIfEqual::SkipIfEqual(
4786     MacroAssembler* masm, const bool* flag_addr, bool value) {
4787   _masm = masm;
4788   uint64_t offset;
4789   _masm->adrp(rscratch1, ExternalAddress((address)flag_addr), offset);
4790   _masm->ldrb(rscratch1, Address(rscratch1, offset));
4791   if (value) {
4792     _masm->cbnzw(rscratch1, _label);
4793   } else {
4794     _masm->cbzw(rscratch1, _label);
4795   }
4796 }
4797 
4798 SkipIfEqual::~SkipIfEqual() {
4799   _masm->bind(_label);
4800 }
4801 
4802 void MacroAssembler::addptr(const Address &dst, int32_t src) {
4803   Address adr;
4804   switch(dst.getMode()) {
4805   case Address::base_plus_offset:
4806     // This is the expected mode, although we allow all the other
4807     // forms below.
4808     adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord);
4809     break;
4810   default:
4811     lea(rscratch2, dst);
4812     adr = Address(rscratch2);
4813     break;
4814   }
4815   ldr(rscratch1, adr);
4816   add(rscratch1, rscratch1, src);
4817   str(rscratch1, adr);
4818 }
4819 
4820 void MacroAssembler::cmpptr(Register src1, Address src2) {
4821   uint64_t offset;
4822   adrp(rscratch1, src2, offset);
4823   ldr(rscratch1, Address(rscratch1, offset));
4824   cmp(src1, rscratch1);
4825 }
4826 
4827 void MacroAssembler::cmpoop(Register obj1, Register obj2) {
4828   cmp(obj1, obj2);
4829 }
4830 
4831 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) {
4832   load_method_holder(rresult, rmethod);
4833   ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset()));
4834 }
4835 
4836 void MacroAssembler::load_method_holder(Register holder, Register method) {
4837   ldr(holder, Address(method, Method::const_offset()));                      // ConstMethod*
4838   ldr(holder, Address(holder, ConstMethod::constants_offset()));             // ConstantPool*
4839   ldr(holder, Address(holder, ConstantPool::pool_holder_offset()));          // InstanceKlass*
4840 }
4841 
4842 void MacroAssembler::load_klass(Register dst, Register src) {
4843   if (UseCompressedClassPointers) {
4844     ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes()));
4845     decode_klass_not_null(dst);
4846   } else {
4847     ldr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
4848   }
4849 }
4850 
4851 void MacroAssembler::restore_cpu_control_state_after_jni(Register tmp1, Register tmp2) {
4852   if (RestoreMXCSROnJNICalls) {
4853     Label OK;
4854     get_fpcr(tmp1);
4855     mov(tmp2, tmp1);
4856     // Set FPCR to the state we need. We do want Round to Nearest. We
4857     // don't want non-IEEE rounding modes or floating-point traps.
4858     bfi(tmp1, zr, 22, 4); // Clear DN, FZ, and Rmode
4859     bfi(tmp1, zr, 8, 5);  // Clear exception-control bits (8-12)
4860     bfi(tmp1, zr, 0, 2);  // Clear AH:FIZ
4861     eor(tmp2, tmp1, tmp2);
4862     cbz(tmp2, OK);        // Only reset FPCR if it's wrong
4863     set_fpcr(tmp1);
4864     bind(OK);
4865   }
4866 }
4867 
4868 // ((OopHandle)result).resolve();
4869 void MacroAssembler::resolve_oop_handle(Register result, Register tmp1, Register tmp2) {
4870   // OopHandle::resolve is an indirection.
4871   access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp1, tmp2);
4872 }
4873 
4874 // ((WeakHandle)result).resolve();
4875 void MacroAssembler::resolve_weak_handle(Register result, Register tmp1, Register tmp2) {
4876   assert_different_registers(result, tmp1, tmp2);
4877   Label resolved;
4878 
4879   // A null weak handle resolves to null.
4880   cbz(result, resolved);
4881 
4882   // Only 64 bit platforms support GCs that require a tmp register
4883   // WeakHandle::resolve is an indirection like jweak.
4884   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
4885                  result, Address(result), tmp1, tmp2);
4886   bind(resolved);
4887 }
4888 
4889 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp1, Register tmp2) {
4890   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
4891   ldr(dst, Address(rmethod, Method::const_offset()));
4892   ldr(dst, Address(dst, ConstMethod::constants_offset()));
4893   ldr(dst, Address(dst, ConstantPool::pool_holder_offset()));
4894   ldr(dst, Address(dst, mirror_offset));
4895   resolve_oop_handle(dst, tmp1, tmp2);
4896 }
4897 
4898 void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) {
4899   if (UseCompressedClassPointers) {
4900     ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
4901     if (CompressedKlassPointers::base() == nullptr) {
4902       cmp(trial_klass, tmp, LSL, CompressedKlassPointers::shift());
4903       return;
4904     } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0
4905                && CompressedKlassPointers::shift() == 0) {
4906       // Only the bottom 32 bits matter
4907       cmpw(trial_klass, tmp);
4908       return;
4909     }
4910     decode_klass_not_null(tmp);
4911   } else {
4912     ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
4913   }
4914   cmp(trial_klass, tmp);
4915 }
4916 
4917 void MacroAssembler::store_klass(Register dst, Register src) {
4918   // FIXME: Should this be a store release?  concurrent gcs assumes
4919   // klass length is valid if klass field is not null.
4920   if (UseCompressedClassPointers) {
4921     encode_klass_not_null(src);
4922     strw(src, Address(dst, oopDesc::klass_offset_in_bytes()));
4923   } else {
4924     str(src, Address(dst, oopDesc::klass_offset_in_bytes()));
4925   }
4926 }
4927 
4928 void MacroAssembler::store_klass_gap(Register dst, Register src) {
4929   if (UseCompressedClassPointers) {
4930     // Store to klass gap in destination
4931     strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes()));
4932   }
4933 }
4934 
4935 // Algorithm must match CompressedOops::encode.
4936 void MacroAssembler::encode_heap_oop(Register d, Register s) {
4937 #ifdef ASSERT
4938   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
4939 #endif
4940   verify_oop_msg(s, "broken oop in encode_heap_oop");
4941   if (CompressedOops::base() == nullptr) {
4942     if (CompressedOops::shift() != 0) {
4943       assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
4944       lsr(d, s, LogMinObjAlignmentInBytes);
4945     } else {
4946       mov(d, s);
4947     }
4948   } else {
4949     subs(d, s, rheapbase);
4950     csel(d, d, zr, Assembler::HS);
4951     lsr(d, d, LogMinObjAlignmentInBytes);
4952 
4953     /*  Old algorithm: is this any worse?
4954     Label nonnull;
4955     cbnz(r, nonnull);
4956     sub(r, r, rheapbase);
4957     bind(nonnull);
4958     lsr(r, r, LogMinObjAlignmentInBytes);
4959     */
4960   }
4961 }
4962 
4963 void MacroAssembler::encode_heap_oop_not_null(Register r) {
4964 #ifdef ASSERT
4965   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
4966   if (CheckCompressedOops) {
4967     Label ok;
4968     cbnz(r, ok);
4969     stop("null oop passed to encode_heap_oop_not_null");
4970     bind(ok);
4971   }
4972 #endif
4973   verify_oop_msg(r, "broken oop in encode_heap_oop_not_null");
4974   if (CompressedOops::base() != nullptr) {
4975     sub(r, r, rheapbase);
4976   }
4977   if (CompressedOops::shift() != 0) {
4978     assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
4979     lsr(r, r, LogMinObjAlignmentInBytes);
4980   }
4981 }
4982 
4983 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
4984 #ifdef ASSERT
4985   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
4986   if (CheckCompressedOops) {
4987     Label ok;
4988     cbnz(src, ok);
4989     stop("null oop passed to encode_heap_oop_not_null2");
4990     bind(ok);
4991   }
4992 #endif
4993   verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2");
4994 
4995   Register data = src;
4996   if (CompressedOops::base() != nullptr) {
4997     sub(dst, src, rheapbase);
4998     data = dst;
4999   }
5000   if (CompressedOops::shift() != 0) {
5001     assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5002     lsr(dst, data, LogMinObjAlignmentInBytes);
5003     data = dst;
5004   }
5005   if (data == src)
5006     mov(dst, src);
5007 }
5008 
5009 void  MacroAssembler::decode_heap_oop(Register d, Register s) {
5010 #ifdef ASSERT
5011   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
5012 #endif
5013   if (CompressedOops::base() == nullptr) {
5014     if (CompressedOops::shift() != 0 || d != s) {
5015       lsl(d, s, CompressedOops::shift());
5016     }
5017   } else {
5018     Label done;
5019     if (d != s)
5020       mov(d, s);
5021     cbz(s, done);
5022     add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes);
5023     bind(done);
5024   }
5025   verify_oop_msg(d, "broken oop in decode_heap_oop");
5026 }
5027 
5028 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
5029   assert (UseCompressedOops, "should only be used for compressed headers");
5030   assert (Universe::heap() != nullptr, "java heap should be initialized");
5031   // Cannot assert, unverified entry point counts instructions (see .ad file)
5032   // vtableStubs also counts instructions in pd_code_size_limit.
5033   // Also do not verify_oop as this is called by verify_oop.
5034   if (CompressedOops::shift() != 0) {
5035     assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5036     if (CompressedOops::base() != nullptr) {
5037       add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes);
5038     } else {
5039       add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes);
5040     }
5041   } else {
5042     assert (CompressedOops::base() == nullptr, "sanity");
5043   }
5044 }
5045 
5046 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
5047   assert (UseCompressedOops, "should only be used for compressed headers");
5048   assert (Universe::heap() != nullptr, "java heap should be initialized");
5049   // Cannot assert, unverified entry point counts instructions (see .ad file)
5050   // vtableStubs also counts instructions in pd_code_size_limit.
5051   // Also do not verify_oop as this is called by verify_oop.
5052   if (CompressedOops::shift() != 0) {
5053     assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5054     if (CompressedOops::base() != nullptr) {
5055       add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes);
5056     } else {
5057       add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes);
5058     }
5059   } else {
5060     assert (CompressedOops::base() == nullptr, "sanity");
5061     if (dst != src) {
5062       mov(dst, src);
5063     }
5064   }
5065 }
5066 
5067 MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone);
5068 
5069 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() {
5070   assert(UseCompressedClassPointers, "not using compressed class pointers");
5071   assert(Metaspace::initialized(), "metaspace not initialized yet");
5072 
5073   if (_klass_decode_mode != KlassDecodeNone) {
5074     return _klass_decode_mode;
5075   }
5076 
5077   assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift()
5078          || 0 == CompressedKlassPointers::shift(), "decode alg wrong");
5079 
5080   if (CompressedKlassPointers::base() == nullptr) {
5081     return (_klass_decode_mode = KlassDecodeZero);
5082   }
5083 
5084   if (operand_valid_for_logical_immediate(
5085         /*is32*/false, (uint64_t)CompressedKlassPointers::base())) {
5086     const size_t range = CompressedKlassPointers::klass_range_end() - CompressedKlassPointers::base();
5087     const uint64_t range_mask = (1ULL << log2i(range)) - 1;
5088     if (((uint64_t)CompressedKlassPointers::base() & range_mask) == 0) {
5089       return (_klass_decode_mode = KlassDecodeXor);
5090     }
5091   }
5092 
5093   const uint64_t shifted_base =
5094     (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift();
5095   guarantee((shifted_base & 0xffff0000ffffffff) == 0,
5096             "compressed class base bad alignment");
5097 
5098   return (_klass_decode_mode = KlassDecodeMovk);
5099 }
5100 
5101 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
5102   switch (klass_decode_mode()) {
5103   case KlassDecodeZero:
5104     if (CompressedKlassPointers::shift() != 0) {
5105       lsr(dst, src, LogKlassAlignmentInBytes);
5106     } else {
5107       if (dst != src) mov(dst, src);
5108     }
5109     break;
5110 
5111   case KlassDecodeXor:
5112     if (CompressedKlassPointers::shift() != 0) {
5113       eor(dst, src, (uint64_t)CompressedKlassPointers::base());
5114       lsr(dst, dst, LogKlassAlignmentInBytes);
5115     } else {
5116       eor(dst, src, (uint64_t)CompressedKlassPointers::base());
5117     }
5118     break;
5119 
5120   case KlassDecodeMovk:
5121     if (CompressedKlassPointers::shift() != 0) {
5122       ubfx(dst, src, LogKlassAlignmentInBytes, 32);
5123     } else {
5124       movw(dst, src);
5125     }
5126     break;
5127 
5128   case KlassDecodeNone:
5129     ShouldNotReachHere();
5130     break;
5131   }
5132 }
5133 
5134 void MacroAssembler::encode_klass_not_null(Register r) {
5135   encode_klass_not_null(r, r);
5136 }
5137 
5138 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
5139   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5140 
5141   switch (klass_decode_mode()) {
5142   case KlassDecodeZero:
5143     if (CompressedKlassPointers::shift() != 0) {
5144       lsl(dst, src, LogKlassAlignmentInBytes);
5145     } else {
5146       if (dst != src) mov(dst, src);
5147     }
5148     break;
5149 
5150   case KlassDecodeXor:
5151     if (CompressedKlassPointers::shift() != 0) {
5152       lsl(dst, src, LogKlassAlignmentInBytes);
5153       eor(dst, dst, (uint64_t)CompressedKlassPointers::base());
5154     } else {
5155       eor(dst, src, (uint64_t)CompressedKlassPointers::base());
5156     }
5157     break;
5158 
5159   case KlassDecodeMovk: {
5160     const uint64_t shifted_base =
5161       (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift();
5162 
5163     if (dst != src) movw(dst, src);
5164     movk(dst, shifted_base >> 32, 32);
5165 
5166     if (CompressedKlassPointers::shift() != 0) {
5167       lsl(dst, dst, LogKlassAlignmentInBytes);
5168     }
5169 
5170     break;
5171   }
5172 
5173   case KlassDecodeNone:
5174     ShouldNotReachHere();
5175     break;
5176   }
5177 }
5178 
5179 void  MacroAssembler::decode_klass_not_null(Register r) {
5180   decode_klass_not_null(r, r);
5181 }
5182 
5183 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
5184 #ifdef ASSERT
5185   {
5186     ThreadInVMfromUnknown tiv;
5187     assert (UseCompressedOops, "should only be used for compressed oops");
5188     assert (Universe::heap() != nullptr, "java heap should be initialized");
5189     assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
5190     assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop");
5191   }
5192 #endif
5193   int oop_index = oop_recorder()->find_index(obj);
5194   InstructionMark im(this);
5195   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5196   code_section()->relocate(inst_mark(), rspec);
5197   movz(dst, 0xDEAD, 16);
5198   movk(dst, 0xBEEF);
5199 }
5200 
5201 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
5202   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5203   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
5204   int index = oop_recorder()->find_index(k);
5205   assert(! Universe::heap()->is_in(k), "should not be an oop");
5206 
5207   InstructionMark im(this);
5208   RelocationHolder rspec = metadata_Relocation::spec(index);
5209   code_section()->relocate(inst_mark(), rspec);
5210   narrowKlass nk = CompressedKlassPointers::encode(k);
5211   movz(dst, (nk >> 16), 16);
5212   movk(dst, nk & 0xffff);
5213 }
5214 
5215 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators,
5216                                     Register dst, Address src,
5217                                     Register tmp1, Register tmp2) {
5218   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
5219   decorators = AccessInternal::decorator_fixup(decorators, type);
5220   bool as_raw = (decorators & AS_RAW) != 0;
5221   if (as_raw) {
5222     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2);
5223   } else {
5224     bs->load_at(this, decorators, type, dst, src, tmp1, tmp2);
5225   }
5226 }
5227 
5228 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators,
5229                                      Address dst, Register val,
5230                                      Register tmp1, Register tmp2, Register tmp3) {
5231   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
5232   decorators = AccessInternal::decorator_fixup(decorators, type);
5233   bool as_raw = (decorators & AS_RAW) != 0;
5234   if (as_raw) {
5235     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
5236   } else {
5237     bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
5238   }
5239 }
5240 
5241 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
5242                                    Register tmp2, DecoratorSet decorators) {
5243   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2);
5244 }
5245 
5246 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
5247                                             Register tmp2, DecoratorSet decorators) {
5248   access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2);
5249 }
5250 
5251 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1,
5252                                     Register tmp2, Register tmp3, DecoratorSet decorators) {
5253   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3);
5254 }
5255 
5256 // Used for storing nulls.
5257 void MacroAssembler::store_heap_oop_null(Address dst) {
5258   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg);
5259 }
5260 
5261 Address MacroAssembler::allocate_metadata_address(Metadata* obj) {
5262   assert(oop_recorder() != nullptr, "this assembler needs a Recorder");
5263   int index = oop_recorder()->allocate_metadata_index(obj);
5264   RelocationHolder rspec = metadata_Relocation::spec(index);
5265   return Address((address)obj, rspec);
5266 }
5267 
5268 // Move an oop into a register.
5269 void MacroAssembler::movoop(Register dst, jobject obj) {
5270   int oop_index;
5271   if (obj == nullptr) {
5272     oop_index = oop_recorder()->allocate_oop_index(obj);
5273   } else {
5274 #ifdef ASSERT
5275     {
5276       ThreadInVMfromUnknown tiv;
5277       assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop");
5278     }
5279 #endif
5280     oop_index = oop_recorder()->find_index(obj);
5281   }
5282   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5283 
5284   if (BarrierSet::barrier_set()->barrier_set_assembler()->supports_instruction_patching()) {
5285     mov(dst, Address((address)obj, rspec));
5286   } else {
5287     address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address
5288     ldr_constant(dst, Address(dummy, rspec));
5289   }
5290 
5291 }
5292 
5293 // Move a metadata address into a register.
5294 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
5295   int oop_index;
5296   if (obj == nullptr) {
5297     oop_index = oop_recorder()->allocate_metadata_index(obj);
5298   } else {
5299     oop_index = oop_recorder()->find_index(obj);
5300   }
5301   RelocationHolder rspec = metadata_Relocation::spec(oop_index);
5302   mov(dst, Address((address)obj, rspec));
5303 }
5304 
5305 Address MacroAssembler::constant_oop_address(jobject obj) {
5306 #ifdef ASSERT
5307   {
5308     ThreadInVMfromUnknown tiv;
5309     assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder");
5310     assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop");
5311   }
5312 #endif
5313   int oop_index = oop_recorder()->find_index(obj);
5314   return Address((address)obj, oop_Relocation::spec(oop_index));
5315 }
5316 
5317 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
5318 void MacroAssembler::tlab_allocate(Register obj,
5319                                    Register var_size_in_bytes,
5320                                    int con_size_in_bytes,
5321                                    Register t1,
5322                                    Register t2,
5323                                    Label& slow_case) {
5324   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
5325   bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
5326 }
5327 
5328 void MacroAssembler::verify_tlab() {
5329 #ifdef ASSERT
5330   if (UseTLAB && VerifyOops) {
5331     Label next, ok;
5332 
5333     stp(rscratch2, rscratch1, Address(pre(sp, -16)));
5334 
5335     ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
5336     ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
5337     cmp(rscratch2, rscratch1);
5338     br(Assembler::HS, next);
5339     STOP("assert(top >= start)");
5340     should_not_reach_here();
5341 
5342     bind(next);
5343     ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
5344     ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
5345     cmp(rscratch2, rscratch1);
5346     br(Assembler::HS, ok);
5347     STOP("assert(top <= end)");
5348     should_not_reach_here();
5349 
5350     bind(ok);
5351     ldp(rscratch2, rscratch1, Address(post(sp, 16)));
5352   }
5353 #endif
5354 }
5355 
5356 // Writes to stack successive pages until offset reached to check for
5357 // stack overflow + shadow pages.  This clobbers tmp.
5358 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
5359   assert_different_registers(tmp, size, rscratch1);
5360   mov(tmp, sp);
5361   // Bang stack for total size given plus shadow page size.
5362   // Bang one page at a time because large size can bang beyond yellow and
5363   // red zones.
5364   Label loop;
5365   mov(rscratch1, (int)os::vm_page_size());
5366   bind(loop);
5367   lea(tmp, Address(tmp, -(int)os::vm_page_size()));
5368   subsw(size, size, rscratch1);
5369   str(size, Address(tmp));
5370   br(Assembler::GT, loop);
5371 
5372   // Bang down shadow pages too.
5373   // At this point, (tmp-0) is the last address touched, so don't
5374   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
5375   // was post-decremented.)  Skip this address by starting at i=1, and
5376   // touch a few more pages below.  N.B.  It is important to touch all
5377   // the way down to and including i=StackShadowPages.
5378   for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()) - 1; i++) {
5379     // this could be any sized move but this is can be a debugging crumb
5380     // so the bigger the better.
5381     lea(tmp, Address(tmp, -(int)os::vm_page_size()));
5382     str(size, Address(tmp));
5383   }
5384 }
5385 
5386 // Move the address of the polling page into dest.
5387 void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) {
5388   ldr(dest, Address(rthread, JavaThread::polling_page_offset()));
5389 }
5390 
5391 // Read the polling page.  The address of the polling page must
5392 // already be in r.
5393 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) {
5394   address mark;
5395   {
5396     InstructionMark im(this);
5397     code_section()->relocate(inst_mark(), rtype);
5398     ldrw(zr, Address(r, 0));
5399     mark = inst_mark();
5400   }
5401   verify_cross_modify_fence_not_required();
5402   return mark;
5403 }
5404 
5405 void MacroAssembler::adrp(Register reg1, const Address &dest, uint64_t &byte_offset) {
5406   relocInfo::relocType rtype = dest.rspec().reloc()->type();
5407   uint64_t low_page = (uint64_t)CodeCache::low_bound() >> 12;
5408   uint64_t high_page = (uint64_t)(CodeCache::high_bound()-1) >> 12;
5409   uint64_t dest_page = (uint64_t)dest.target() >> 12;
5410   int64_t offset_low = dest_page - low_page;
5411   int64_t offset_high = dest_page - high_page;
5412 
5413   assert(is_valid_AArch64_address(dest.target()), "bad address");
5414   assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address");
5415 
5416   InstructionMark im(this);
5417   code_section()->relocate(inst_mark(), dest.rspec());
5418   // 8143067: Ensure that the adrp can reach the dest from anywhere within
5419   // the code cache so that if it is relocated we know it will still reach
5420   if (offset_high >= -(1<<20) && offset_low < (1<<20)) {
5421     _adrp(reg1, dest.target());
5422   } else {
5423     uint64_t target = (uint64_t)dest.target();
5424     uint64_t adrp_target
5425       = (target & 0xffffffffULL) | ((uint64_t)pc() & 0xffff00000000ULL);
5426 
5427     _adrp(reg1, (address)adrp_target);
5428     movk(reg1, target >> 32, 32);
5429   }
5430   byte_offset = (uint64_t)dest.target() & 0xfff;
5431 }
5432 
5433 void MacroAssembler::load_byte_map_base(Register reg) {
5434   CardTable::CardValue* byte_map_base =
5435     ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base();
5436 
5437   // Strictly speaking the byte_map_base isn't an address at all, and it might
5438   // even be negative. It is thus materialised as a constant.
5439   mov(reg, (uint64_t)byte_map_base);
5440 }
5441 
5442 void MacroAssembler::build_frame(int framesize) {
5443   assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR");
5444   assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment");
5445   protect_return_address();
5446   if (framesize < ((1 << 9) + 2 * wordSize)) {
5447     sub(sp, sp, framesize);
5448     stp(rfp, lr, Address(sp, framesize - 2 * wordSize));
5449     if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize);
5450   } else {
5451     stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
5452     if (PreserveFramePointer) mov(rfp, sp);
5453     if (framesize < ((1 << 12) + 2 * wordSize))
5454       sub(sp, sp, framesize - 2 * wordSize);
5455     else {
5456       mov(rscratch1, framesize - 2 * wordSize);
5457       sub(sp, sp, rscratch1);
5458     }
5459   }
5460   verify_cross_modify_fence_not_required();
5461 }
5462 
5463 void MacroAssembler::remove_frame(int framesize) {
5464   assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR");
5465   assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment");
5466   if (framesize < ((1 << 9) + 2 * wordSize)) {
5467     ldp(rfp, lr, Address(sp, framesize - 2 * wordSize));
5468     add(sp, sp, framesize);
5469   } else {
5470     if (framesize < ((1 << 12) + 2 * wordSize))
5471       add(sp, sp, framesize - 2 * wordSize);
5472     else {
5473       mov(rscratch1, framesize - 2 * wordSize);
5474       add(sp, sp, rscratch1);
5475     }
5476     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
5477   }
5478   authenticate_return_address();
5479 }
5480 
5481 
5482 // This method counts leading positive bytes (highest bit not set) in provided byte array
5483 address MacroAssembler::count_positives(Register ary1, Register len, Register result) {
5484     // Simple and most common case of aligned small array which is not at the
5485     // end of memory page is placed here. All other cases are in stub.
5486     Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE;
5487     const uint64_t UPPER_BIT_MASK=0x8080808080808080;
5488     assert_different_registers(ary1, len, result);
5489 
5490     mov(result, len);
5491     cmpw(len, 0);
5492     br(LE, DONE);
5493     cmpw(len, 4 * wordSize);
5494     br(GE, STUB_LONG); // size > 32 then go to stub
5495 
5496     int shift = 64 - exact_log2(os::vm_page_size());
5497     lsl(rscratch1, ary1, shift);
5498     mov(rscratch2, (size_t)(4 * wordSize) << shift);
5499     adds(rscratch2, rscratch1, rscratch2);  // At end of page?
5500     br(CS, STUB); // at the end of page then go to stub
5501     subs(len, len, wordSize);
5502     br(LT, END);
5503 
5504   BIND(LOOP);
5505     ldr(rscratch1, Address(post(ary1, wordSize)));
5506     tst(rscratch1, UPPER_BIT_MASK);
5507     br(NE, SET_RESULT);
5508     subs(len, len, wordSize);
5509     br(GE, LOOP);
5510     cmpw(len, -wordSize);
5511     br(EQ, DONE);
5512 
5513   BIND(END);
5514     ldr(rscratch1, Address(ary1));
5515     sub(rscratch2, zr, len, LSL, 3); // LSL 3 is to get bits from bytes
5516     lslv(rscratch1, rscratch1, rscratch2);
5517     tst(rscratch1, UPPER_BIT_MASK);
5518     br(NE, SET_RESULT);
5519     b(DONE);
5520 
5521   BIND(STUB);
5522     RuntimeAddress count_pos = RuntimeAddress(StubRoutines::aarch64::count_positives());
5523     assert(count_pos.target() != nullptr, "count_positives stub has not been generated");
5524     address tpc1 = trampoline_call(count_pos);
5525     if (tpc1 == nullptr) {
5526       DEBUG_ONLY(reset_labels(STUB_LONG, SET_RESULT, DONE));
5527       postcond(pc() == badAddress);
5528       return nullptr;
5529     }
5530     b(DONE);
5531 
5532   BIND(STUB_LONG);
5533     RuntimeAddress count_pos_long = RuntimeAddress(StubRoutines::aarch64::count_positives_long());
5534     assert(count_pos_long.target() != nullptr, "count_positives_long stub has not been generated");
5535     address tpc2 = trampoline_call(count_pos_long);
5536     if (tpc2 == nullptr) {
5537       DEBUG_ONLY(reset_labels(SET_RESULT, DONE));
5538       postcond(pc() == badAddress);
5539       return nullptr;
5540     }
5541     b(DONE);
5542 
5543   BIND(SET_RESULT);
5544 
5545     add(len, len, wordSize);
5546     sub(result, result, len);
5547 
5548   BIND(DONE);
5549   postcond(pc() != badAddress);
5550   return pc();
5551 }
5552 
5553 // Clobbers: rscratch1, rscratch2, rflags
5554 // May also clobber v0-v7 when (!UseSimpleArrayEquals && UseSIMDForArrayEquals)
5555 address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3,
5556                                       Register tmp4, Register tmp5, Register result,
5557                                       Register cnt1, int elem_size) {
5558   Label DONE, SAME;
5559   Register tmp1 = rscratch1;
5560   Register tmp2 = rscratch2;
5561   int elem_per_word = wordSize/elem_size;
5562   int log_elem_size = exact_log2(elem_size);
5563   int klass_offset  = arrayOopDesc::klass_offset_in_bytes();
5564   int length_offset = arrayOopDesc::length_offset_in_bytes();
5565   int base_offset
5566     = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE);
5567   // When the length offset is not aligned to 8 bytes,
5568   // then we align it down. This is valid because the new
5569   // offset will always be the klass which is the same
5570   // for type arrays.
5571   int start_offset = align_down(length_offset, BytesPerWord);
5572   int extra_length = base_offset - start_offset;
5573   assert(start_offset == length_offset || start_offset == klass_offset,
5574          "start offset must be 8-byte-aligned or be the klass offset");
5575   assert(base_offset != start_offset, "must include the length field");
5576   extra_length = extra_length / elem_size; // We count in elements, not bytes.
5577   int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16);
5578 
5579   assert(elem_size == 1 || elem_size == 2, "must be char or byte");
5580   assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2);
5581 
5582 #ifndef PRODUCT
5583   {
5584     const char kind = (elem_size == 2) ? 'U' : 'L';
5585     char comment[64];
5586     snprintf(comment, sizeof comment, "array_equals%c{", kind);
5587     BLOCK_COMMENT(comment);
5588   }
5589 #endif
5590 
5591   // if (a1 == a2)
5592   //     return true;
5593   cmpoop(a1, a2); // May have read barriers for a1 and a2.
5594   br(EQ, SAME);
5595 
5596   if (UseSimpleArrayEquals) {
5597     Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL;
5598     // if (a1 == nullptr || a2 == nullptr)
5599     //     return false;
5600     // a1 & a2 == 0 means (some-pointer is null) or
5601     // (very-rare-or-even-probably-impossible-pointer-values)
5602     // so, we can save one branch in most cases
5603     tst(a1, a2);
5604     mov(result, false);
5605     br(EQ, A_MIGHT_BE_NULL);
5606     // if (a1.length != a2.length)
5607     //      return false;
5608     bind(A_IS_NOT_NULL);
5609     ldrw(cnt1, Address(a1, length_offset));
5610     // Increase loop counter by diff between base- and actual start-offset.
5611     addw(cnt1, cnt1, extra_length);
5612     lea(a1, Address(a1, start_offset));
5613     lea(a2, Address(a2, start_offset));
5614     // Check for short strings, i.e. smaller than wordSize.
5615     subs(cnt1, cnt1, elem_per_word);
5616     br(Assembler::LT, SHORT);
5617     // Main 8 byte comparison loop.
5618     bind(NEXT_WORD); {
5619       ldr(tmp1, Address(post(a1, wordSize)));
5620       ldr(tmp2, Address(post(a2, wordSize)));
5621       subs(cnt1, cnt1, elem_per_word);
5622       eor(tmp5, tmp1, tmp2);
5623       cbnz(tmp5, DONE);
5624     } br(GT, NEXT_WORD);
5625     // Last longword.  In the case where length == 4 we compare the
5626     // same longword twice, but that's still faster than another
5627     // conditional branch.
5628     // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when
5629     // length == 4.
5630     if (log_elem_size > 0)
5631       lsl(cnt1, cnt1, log_elem_size);
5632     ldr(tmp3, Address(a1, cnt1));
5633     ldr(tmp4, Address(a2, cnt1));
5634     eor(tmp5, tmp3, tmp4);
5635     cbnz(tmp5, DONE);
5636     b(SAME);
5637     bind(A_MIGHT_BE_NULL);
5638     // in case both a1 and a2 are not-null, proceed with loads
5639     cbz(a1, DONE);
5640     cbz(a2, DONE);
5641     b(A_IS_NOT_NULL);
5642     bind(SHORT);
5643 
5644     tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left.
5645     {
5646       ldrw(tmp1, Address(post(a1, 4)));
5647       ldrw(tmp2, Address(post(a2, 4)));
5648       eorw(tmp5, tmp1, tmp2);
5649       cbnzw(tmp5, DONE);
5650     }
5651     bind(TAIL03);
5652     tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left.
5653     {
5654       ldrh(tmp3, Address(post(a1, 2)));
5655       ldrh(tmp4, Address(post(a2, 2)));
5656       eorw(tmp5, tmp3, tmp4);
5657       cbnzw(tmp5, DONE);
5658     }
5659     bind(TAIL01);
5660     if (elem_size == 1) { // Only needed when comparing byte arrays.
5661       tbz(cnt1, 0, SAME); // 0-1 bytes left.
5662       {
5663         ldrb(tmp1, a1);
5664         ldrb(tmp2, a2);
5665         eorw(tmp5, tmp1, tmp2);
5666         cbnzw(tmp5, DONE);
5667       }
5668     }
5669   } else {
5670     Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB,
5671         CSET_EQ, LAST_CHECK;
5672     mov(result, false);
5673     cbz(a1, DONE);
5674     ldrw(cnt1, Address(a1, length_offset));
5675     cbz(a2, DONE);
5676     // Increase loop counter by diff between base- and actual start-offset.
5677     addw(cnt1, cnt1, extra_length);
5678 
5679     // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's
5680     // faster to perform another branch before comparing a1 and a2
5681     cmp(cnt1, (u1)elem_per_word);
5682     br(LE, SHORT); // short or same
5683     ldr(tmp3, Address(pre(a1, start_offset)));
5684     subs(zr, cnt1, stubBytesThreshold);
5685     br(GE, STUB);
5686     ldr(tmp4, Address(pre(a2, start_offset)));
5687     sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size);
5688 
5689     // Main 16 byte comparison loop with 2 exits
5690     bind(NEXT_DWORD); {
5691       ldr(tmp1, Address(pre(a1, wordSize)));
5692       ldr(tmp2, Address(pre(a2, wordSize)));
5693       subs(cnt1, cnt1, 2 * elem_per_word);
5694       br(LE, TAIL);
5695       eor(tmp4, tmp3, tmp4);
5696       cbnz(tmp4, DONE);
5697       ldr(tmp3, Address(pre(a1, wordSize)));
5698       ldr(tmp4, Address(pre(a2, wordSize)));
5699       cmp(cnt1, (u1)elem_per_word);
5700       br(LE, TAIL2);
5701       cmp(tmp1, tmp2);
5702     } br(EQ, NEXT_DWORD);
5703     b(DONE);
5704 
5705     bind(TAIL);
5706     eor(tmp4, tmp3, tmp4);
5707     eor(tmp2, tmp1, tmp2);
5708     lslv(tmp2, tmp2, tmp5);
5709     orr(tmp5, tmp4, tmp2);
5710     cmp(tmp5, zr);
5711     b(CSET_EQ);
5712 
5713     bind(TAIL2);
5714     eor(tmp2, tmp1, tmp2);
5715     cbnz(tmp2, DONE);
5716     b(LAST_CHECK);
5717 
5718     bind(STUB);
5719     ldr(tmp4, Address(pre(a2, start_offset)));
5720     if (elem_size == 2) { // convert to byte counter
5721       lsl(cnt1, cnt1, 1);
5722     }
5723     eor(tmp5, tmp3, tmp4);
5724     cbnz(tmp5, DONE);
5725     RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals());
5726     assert(stub.target() != nullptr, "array_equals_long stub has not been generated");
5727     address tpc = trampoline_call(stub);
5728     if (tpc == nullptr) {
5729       DEBUG_ONLY(reset_labels(SHORT, LAST_CHECK, CSET_EQ, SAME, DONE));
5730       postcond(pc() == badAddress);
5731       return nullptr;
5732     }
5733     b(DONE);
5734 
5735     // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2)
5736     // so, if a2 == null => return false(0), else return true, so we can return a2
5737     mov(result, a2);
5738     b(DONE);
5739     bind(SHORT);
5740     sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size);
5741     ldr(tmp3, Address(a1, start_offset));
5742     ldr(tmp4, Address(a2, start_offset));
5743     bind(LAST_CHECK);
5744     eor(tmp4, tmp3, tmp4);
5745     lslv(tmp5, tmp4, tmp5);
5746     cmp(tmp5, zr);
5747     bind(CSET_EQ);
5748     cset(result, EQ);
5749     b(DONE);
5750   }
5751 
5752   bind(SAME);
5753   mov(result, true);
5754   // That's it.
5755   bind(DONE);
5756 
5757   BLOCK_COMMENT("} array_equals");
5758   postcond(pc() != badAddress);
5759   return pc();
5760 }
5761 
5762 // Compare Strings
5763 
5764 // For Strings we're passed the address of the first characters in a1
5765 // and a2 and the length in cnt1.
5766 // There are two implementations.  For arrays >= 8 bytes, all
5767 // comparisons (including the final one, which may overlap) are
5768 // performed 8 bytes at a time.  For strings < 8 bytes, we compare a
5769 // halfword, then a short, and then a byte.
5770 
5771 void MacroAssembler::string_equals(Register a1, Register a2,
5772                                    Register result, Register cnt1)
5773 {
5774   Label SAME, DONE, SHORT, NEXT_WORD;
5775   Register tmp1 = rscratch1;
5776   Register tmp2 = rscratch2;
5777   Register cnt2 = tmp2;  // cnt2 only used in array length compare
5778 
5779   assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2);
5780 
5781 #ifndef PRODUCT
5782   {
5783     char comment[64];
5784     snprintf(comment, sizeof comment, "{string_equalsL");
5785     BLOCK_COMMENT(comment);
5786   }
5787 #endif
5788 
5789   mov(result, false);
5790 
5791   // Check for short strings, i.e. smaller than wordSize.
5792   subs(cnt1, cnt1, wordSize);
5793   br(Assembler::LT, SHORT);
5794   // Main 8 byte comparison loop.
5795   bind(NEXT_WORD); {
5796     ldr(tmp1, Address(post(a1, wordSize)));
5797     ldr(tmp2, Address(post(a2, wordSize)));
5798     subs(cnt1, cnt1, wordSize);
5799     eor(tmp1, tmp1, tmp2);
5800     cbnz(tmp1, DONE);
5801   } br(GT, NEXT_WORD);
5802   // Last longword.  In the case where length == 4 we compare the
5803   // same longword twice, but that's still faster than another
5804   // conditional branch.
5805   // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when
5806   // length == 4.
5807   ldr(tmp1, Address(a1, cnt1));
5808   ldr(tmp2, Address(a2, cnt1));
5809   eor(tmp2, tmp1, tmp2);
5810   cbnz(tmp2, DONE);
5811   b(SAME);
5812 
5813   bind(SHORT);
5814   Label TAIL03, TAIL01;
5815 
5816   tbz(cnt1, 2, TAIL03); // 0-7 bytes left.
5817   {
5818     ldrw(tmp1, Address(post(a1, 4)));
5819     ldrw(tmp2, Address(post(a2, 4)));
5820     eorw(tmp1, tmp1, tmp2);
5821     cbnzw(tmp1, DONE);
5822   }
5823   bind(TAIL03);
5824   tbz(cnt1, 1, TAIL01); // 0-3 bytes left.
5825   {
5826     ldrh(tmp1, Address(post(a1, 2)));
5827     ldrh(tmp2, Address(post(a2, 2)));
5828     eorw(tmp1, tmp1, tmp2);
5829     cbnzw(tmp1, DONE);
5830   }
5831   bind(TAIL01);
5832   tbz(cnt1, 0, SAME); // 0-1 bytes left.
5833     {
5834     ldrb(tmp1, a1);
5835     ldrb(tmp2, a2);
5836     eorw(tmp1, tmp1, tmp2);
5837     cbnzw(tmp1, DONE);
5838   }
5839   // Arrays are equal.
5840   bind(SAME);
5841   mov(result, true);
5842 
5843   // That's it.
5844   bind(DONE);
5845   BLOCK_COMMENT("} string_equals");
5846 }
5847 
5848 
5849 // The size of the blocks erased by the zero_blocks stub.  We must
5850 // handle anything smaller than this ourselves in zero_words().
5851 const int MacroAssembler::zero_words_block_size = 8;
5852 
5853 // zero_words() is used by C2 ClearArray patterns and by
5854 // C1_MacroAssembler.  It is as small as possible, handling small word
5855 // counts locally and delegating anything larger to the zero_blocks
5856 // stub.  It is expanded many times in compiled code, so it is
5857 // important to keep it short.
5858 
5859 // ptr:   Address of a buffer to be zeroed.
5860 // cnt:   Count in HeapWords.
5861 //
5862 // ptr, cnt, rscratch1, and rscratch2 are clobbered.
5863 address MacroAssembler::zero_words(Register ptr, Register cnt)
5864 {
5865   assert(is_power_of_2(zero_words_block_size), "adjust this");
5866 
5867   BLOCK_COMMENT("zero_words {");
5868   assert(ptr == r10 && cnt == r11, "mismatch in register usage");
5869   RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks());
5870   assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated");
5871 
5872   subs(rscratch1, cnt, zero_words_block_size);
5873   Label around;
5874   br(LO, around);
5875   {
5876     RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks());
5877     assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated");
5878     // Make sure this is a C2 compilation. C1 allocates space only for
5879     // trampoline stubs generated by Call LIR ops, and in any case it
5880     // makes sense for a C1 compilation task to proceed as quickly as
5881     // possible.
5882     CompileTask* task;
5883     if (StubRoutines::aarch64::complete()
5884         && Thread::current()->is_Compiler_thread()
5885         && (task = ciEnv::current()->task())
5886         && is_c2_compile(task->comp_level())) {
5887       address tpc = trampoline_call(zero_blocks);
5888       if (tpc == nullptr) {
5889         DEBUG_ONLY(reset_labels(around));
5890         return nullptr;
5891       }
5892     } else {
5893       far_call(zero_blocks);
5894     }
5895   }
5896   bind(around);
5897 
5898   // We have a few words left to do. zero_blocks has adjusted r10 and r11
5899   // for us.
5900   for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) {
5901     Label l;
5902     tbz(cnt, exact_log2(i), l);
5903     for (int j = 0; j < i; j += 2) {
5904       stp(zr, zr, post(ptr, 2 * BytesPerWord));
5905     }
5906     bind(l);
5907   }
5908   {
5909     Label l;
5910     tbz(cnt, 0, l);
5911     str(zr, Address(ptr));
5912     bind(l);
5913   }
5914 
5915   BLOCK_COMMENT("} zero_words");
5916   return pc();
5917 }
5918 
5919 // base:         Address of a buffer to be zeroed, 8 bytes aligned.
5920 // cnt:          Immediate count in HeapWords.
5921 //
5922 // r10, r11, rscratch1, and rscratch2 are clobbered.
5923 address MacroAssembler::zero_words(Register base, uint64_t cnt)
5924 {
5925   assert(wordSize <= BlockZeroingLowLimit,
5926             "increase BlockZeroingLowLimit");
5927   address result = nullptr;
5928   if (cnt <= (uint64_t)BlockZeroingLowLimit / BytesPerWord) {
5929 #ifndef PRODUCT
5930     {
5931       char buf[64];
5932       snprintf(buf, sizeof buf, "zero_words (count = %" PRIu64 ") {", cnt);
5933       BLOCK_COMMENT(buf);
5934     }
5935 #endif
5936     if (cnt >= 16) {
5937       uint64_t loops = cnt/16;
5938       if (loops > 1) {
5939         mov(rscratch2, loops - 1);
5940       }
5941       {
5942         Label loop;
5943         bind(loop);
5944         for (int i = 0; i < 16; i += 2) {
5945           stp(zr, zr, Address(base, i * BytesPerWord));
5946         }
5947         add(base, base, 16 * BytesPerWord);
5948         if (loops > 1) {
5949           subs(rscratch2, rscratch2, 1);
5950           br(GE, loop);
5951         }
5952       }
5953     }
5954     cnt %= 16;
5955     int i = cnt & 1;  // store any odd word to start
5956     if (i) str(zr, Address(base));
5957     for (; i < (int)cnt; i += 2) {
5958       stp(zr, zr, Address(base, i * wordSize));
5959     }
5960     BLOCK_COMMENT("} zero_words");
5961     result = pc();
5962   } else {
5963     mov(r10, base); mov(r11, cnt);
5964     result = zero_words(r10, r11);
5965   }
5966   return result;
5967 }
5968 
5969 // Zero blocks of memory by using DC ZVA.
5970 //
5971 // Aligns the base address first sufficiently for DC ZVA, then uses
5972 // DC ZVA repeatedly for every full block.  cnt is the size to be
5973 // zeroed in HeapWords.  Returns the count of words left to be zeroed
5974 // in cnt.
5975 //
5976 // NOTE: This is intended to be used in the zero_blocks() stub.  If
5977 // you want to use it elsewhere, note that cnt must be >= 2*zva_length.
5978 void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) {
5979   Register tmp = rscratch1;
5980   Register tmp2 = rscratch2;
5981   int zva_length = VM_Version::zva_length();
5982   Label initial_table_end, loop_zva;
5983   Label fini;
5984 
5985   // Base must be 16 byte aligned. If not just return and let caller handle it
5986   tst(base, 0x0f);
5987   br(Assembler::NE, fini);
5988   // Align base with ZVA length.
5989   neg(tmp, base);
5990   andr(tmp, tmp, zva_length - 1);
5991 
5992   // tmp: the number of bytes to be filled to align the base with ZVA length.
5993   add(base, base, tmp);
5994   sub(cnt, cnt, tmp, Assembler::ASR, 3);
5995   adr(tmp2, initial_table_end);
5996   sub(tmp2, tmp2, tmp, Assembler::LSR, 2);
5997   br(tmp2);
5998 
5999   for (int i = -zva_length + 16; i < 0; i += 16)
6000     stp(zr, zr, Address(base, i));
6001   bind(initial_table_end);
6002 
6003   sub(cnt, cnt, zva_length >> 3);
6004   bind(loop_zva);
6005   dc(Assembler::ZVA, base);
6006   subs(cnt, cnt, zva_length >> 3);
6007   add(base, base, zva_length);
6008   br(Assembler::GE, loop_zva);
6009   add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA
6010   bind(fini);
6011 }
6012 
6013 // base:   Address of a buffer to be filled, 8 bytes aligned.
6014 // cnt:    Count in 8-byte unit.
6015 // value:  Value to be filled with.
6016 // base will point to the end of the buffer after filling.
6017 void MacroAssembler::fill_words(Register base, Register cnt, Register value)
6018 {
6019 //  Algorithm:
6020 //
6021 //    if (cnt == 0) {
6022 //      return;
6023 //    }
6024 //    if ((p & 8) != 0) {
6025 //      *p++ = v;
6026 //    }
6027 //
6028 //    scratch1 = cnt & 14;
6029 //    cnt -= scratch1;
6030 //    p += scratch1;
6031 //    switch (scratch1 / 2) {
6032 //      do {
6033 //        cnt -= 16;
6034 //          p[-16] = v;
6035 //          p[-15] = v;
6036 //        case 7:
6037 //          p[-14] = v;
6038 //          p[-13] = v;
6039 //        case 6:
6040 //          p[-12] = v;
6041 //          p[-11] = v;
6042 //          // ...
6043 //        case 1:
6044 //          p[-2] = v;
6045 //          p[-1] = v;
6046 //        case 0:
6047 //          p += 16;
6048 //      } while (cnt);
6049 //    }
6050 //    if ((cnt & 1) == 1) {
6051 //      *p++ = v;
6052 //    }
6053 
6054   assert_different_registers(base, cnt, value, rscratch1, rscratch2);
6055 
6056   Label fini, skip, entry, loop;
6057   const int unroll = 8; // Number of stp instructions we'll unroll
6058 
6059   cbz(cnt, fini);
6060   tbz(base, 3, skip);
6061   str(value, Address(post(base, 8)));
6062   sub(cnt, cnt, 1);
6063   bind(skip);
6064 
6065   andr(rscratch1, cnt, (unroll-1) * 2);
6066   sub(cnt, cnt, rscratch1);
6067   add(base, base, rscratch1, Assembler::LSL, 3);
6068   adr(rscratch2, entry);
6069   sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1);
6070   br(rscratch2);
6071 
6072   bind(loop);
6073   add(base, base, unroll * 16);
6074   for (int i = -unroll; i < 0; i++)
6075     stp(value, value, Address(base, i * 16));
6076   bind(entry);
6077   subs(cnt, cnt, unroll * 2);
6078   br(Assembler::GE, loop);
6079 
6080   tbz(cnt, 0, fini);
6081   str(value, Address(post(base, 8)));
6082   bind(fini);
6083 }
6084 
6085 // Intrinsic for
6086 //
6087 // - sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray
6088 //     return the number of characters copied.
6089 // - java/lang/StringUTF16.compress
6090 //     return index of non-latin1 character if copy fails, otherwise 'len'.
6091 //
6092 // This version always returns the number of characters copied, and does not
6093 // clobber the 'len' register. A successful copy will complete with the post-
6094 // condition: 'res' == 'len', while an unsuccessful copy will exit with the
6095 // post-condition: 0 <= 'res' < 'len'.
6096 //
6097 // NOTE: Attempts to use 'ld2' (and 'umaxv' in the ISO part) has proven to
6098 //       degrade performance (on Ampere Altra - Neoverse N1), to an extent
6099 //       beyond the acceptable, even though the footprint would be smaller.
6100 //       Using 'umaxv' in the ASCII-case comes with a small penalty but does
6101 //       avoid additional bloat.
6102 //
6103 // Clobbers: src, dst, res, rscratch1, rscratch2, rflags
6104 void MacroAssembler::encode_iso_array(Register src, Register dst,
6105                                       Register len, Register res, bool ascii,
6106                                       FloatRegister vtmp0, FloatRegister vtmp1,
6107                                       FloatRegister vtmp2, FloatRegister vtmp3,
6108                                       FloatRegister vtmp4, FloatRegister vtmp5)
6109 {
6110   Register cnt = res;
6111   Register max = rscratch1;
6112   Register chk = rscratch2;
6113 
6114   prfm(Address(src), PLDL1STRM);
6115   movw(cnt, len);
6116 
6117 #define ASCII(insn) do { if (ascii) { insn; } } while (0)
6118 
6119   Label LOOP_32, DONE_32, FAIL_32;
6120 
6121   BIND(LOOP_32);
6122   {
6123     cmpw(cnt, 32);
6124     br(LT, DONE_32);
6125     ld1(vtmp0, vtmp1, vtmp2, vtmp3, T8H, Address(post(src, 64)));
6126     // Extract lower bytes.
6127     FloatRegister vlo0 = vtmp4;
6128     FloatRegister vlo1 = vtmp5;
6129     uzp1(vlo0, T16B, vtmp0, vtmp1);
6130     uzp1(vlo1, T16B, vtmp2, vtmp3);
6131     // Merge bits...
6132     orr(vtmp0, T16B, vtmp0, vtmp1);
6133     orr(vtmp2, T16B, vtmp2, vtmp3);
6134     // Extract merged upper bytes.
6135     FloatRegister vhix = vtmp0;
6136     uzp2(vhix, T16B, vtmp0, vtmp2);
6137     // ISO-check on hi-parts (all zero).
6138     //                          ASCII-check on lo-parts (no sign).
6139     FloatRegister vlox = vtmp1; // Merge lower bytes.
6140                                 ASCII(orr(vlox, T16B, vlo0, vlo1));
6141     umov(chk, vhix, D, 1);      ASCII(cm(LT, vlox, T16B, vlox));
6142     fmovd(max, vhix);           ASCII(umaxv(vlox, T16B, vlox));
6143     orr(chk, chk, max);         ASCII(umov(max, vlox, B, 0));
6144                                 ASCII(orr(chk, chk, max));
6145     cbnz(chk, FAIL_32);
6146     subw(cnt, cnt, 32);
6147     st1(vlo0, vlo1, T16B, Address(post(dst, 32)));
6148     b(LOOP_32);
6149   }
6150   BIND(FAIL_32);
6151   sub(src, src, 64);
6152   BIND(DONE_32);
6153 
6154   Label LOOP_8, SKIP_8;
6155 
6156   BIND(LOOP_8);
6157   {
6158     cmpw(cnt, 8);
6159     br(LT, SKIP_8);
6160     FloatRegister vhi = vtmp0;
6161     FloatRegister vlo = vtmp1;
6162     ld1(vtmp3, T8H, src);
6163     uzp1(vlo, T16B, vtmp3, vtmp3);
6164     uzp2(vhi, T16B, vtmp3, vtmp3);
6165     // ISO-check on hi-parts (all zero).
6166     //                          ASCII-check on lo-parts (no sign).
6167                                 ASCII(cm(LT, vtmp2, T16B, vlo));
6168     fmovd(chk, vhi);            ASCII(umaxv(vtmp2, T16B, vtmp2));
6169                                 ASCII(umov(max, vtmp2, B, 0));
6170                                 ASCII(orr(chk, chk, max));
6171     cbnz(chk, SKIP_8);
6172 
6173     strd(vlo, Address(post(dst, 8)));
6174     subw(cnt, cnt, 8);
6175     add(src, src, 16);
6176     b(LOOP_8);
6177   }
6178   BIND(SKIP_8);
6179 
6180 #undef ASCII
6181 
6182   Label LOOP, DONE;
6183 
6184   cbz(cnt, DONE);
6185   BIND(LOOP);
6186   {
6187     Register chr = rscratch1;
6188     ldrh(chr, Address(post(src, 2)));
6189     tst(chr, ascii ? 0xff80 : 0xff00);
6190     br(NE, DONE);
6191     strb(chr, Address(post(dst, 1)));
6192     subs(cnt, cnt, 1);
6193     br(GT, LOOP);
6194   }
6195   BIND(DONE);
6196   // Return index where we stopped.
6197   subw(res, len, cnt);
6198 }
6199 
6200 // Inflate byte[] array to char[].
6201 // Clobbers: src, dst, len, rflags, rscratch1, v0-v6
6202 address MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
6203                                            FloatRegister vtmp1, FloatRegister vtmp2,
6204                                            FloatRegister vtmp3, Register tmp4) {
6205   Label big, done, after_init, to_stub;
6206 
6207   assert_different_registers(src, dst, len, tmp4, rscratch1);
6208 
6209   fmovd(vtmp1, 0.0);
6210   lsrw(tmp4, len, 3);
6211   bind(after_init);
6212   cbnzw(tmp4, big);
6213   // Short string: less than 8 bytes.
6214   {
6215     Label loop, tiny;
6216 
6217     cmpw(len, 4);
6218     br(LT, tiny);
6219     // Use SIMD to do 4 bytes.
6220     ldrs(vtmp2, post(src, 4));
6221     zip1(vtmp3, T8B, vtmp2, vtmp1);
6222     subw(len, len, 4);
6223     strd(vtmp3, post(dst, 8));
6224 
6225     cbzw(len, done);
6226 
6227     // Do the remaining bytes by steam.
6228     bind(loop);
6229     ldrb(tmp4, post(src, 1));
6230     strh(tmp4, post(dst, 2));
6231     subw(len, len, 1);
6232 
6233     bind(tiny);
6234     cbnz(len, loop);
6235 
6236     b(done);
6237   }
6238 
6239   if (SoftwarePrefetchHintDistance >= 0) {
6240     bind(to_stub);
6241       RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate());
6242       assert(stub.target() != nullptr, "large_byte_array_inflate stub has not been generated");
6243       address tpc = trampoline_call(stub);
6244       if (tpc == nullptr) {
6245         DEBUG_ONLY(reset_labels(big, done));
6246         postcond(pc() == badAddress);
6247         return nullptr;
6248       }
6249       b(after_init);
6250   }
6251 
6252   // Unpack the bytes 8 at a time.
6253   bind(big);
6254   {
6255     Label loop, around, loop_last, loop_start;
6256 
6257     if (SoftwarePrefetchHintDistance >= 0) {
6258       const int large_loop_threshold = (64 + 16)/8;
6259       ldrd(vtmp2, post(src, 8));
6260       andw(len, len, 7);
6261       cmp(tmp4, (u1)large_loop_threshold);
6262       br(GE, to_stub);
6263       b(loop_start);
6264 
6265       bind(loop);
6266       ldrd(vtmp2, post(src, 8));
6267       bind(loop_start);
6268       subs(tmp4, tmp4, 1);
6269       br(EQ, loop_last);
6270       zip1(vtmp2, T16B, vtmp2, vtmp1);
6271       ldrd(vtmp3, post(src, 8));
6272       st1(vtmp2, T8H, post(dst, 16));
6273       subs(tmp4, tmp4, 1);
6274       zip1(vtmp3, T16B, vtmp3, vtmp1);
6275       st1(vtmp3, T8H, post(dst, 16));
6276       br(NE, loop);
6277       b(around);
6278       bind(loop_last);
6279       zip1(vtmp2, T16B, vtmp2, vtmp1);
6280       st1(vtmp2, T8H, post(dst, 16));
6281       bind(around);
6282       cbz(len, done);
6283     } else {
6284       andw(len, len, 7);
6285       bind(loop);
6286       ldrd(vtmp2, post(src, 8));
6287       sub(tmp4, tmp4, 1);
6288       zip1(vtmp3, T16B, vtmp2, vtmp1);
6289       st1(vtmp3, T8H, post(dst, 16));
6290       cbnz(tmp4, loop);
6291     }
6292   }
6293 
6294   // Do the tail of up to 8 bytes.
6295   add(src, src, len);
6296   ldrd(vtmp3, Address(src, -8));
6297   add(dst, dst, len, ext::uxtw, 1);
6298   zip1(vtmp3, T16B, vtmp3, vtmp1);
6299   strq(vtmp3, Address(dst, -16));
6300 
6301   bind(done);
6302   postcond(pc() != badAddress);
6303   return pc();
6304 }
6305 
6306 // Compress char[] array to byte[].
6307 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
6308 // Return the array length if every element in array can be encoded,
6309 // otherwise, the index of first non-latin1 (> 0xff) character.
6310 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
6311                                          Register res,
6312                                          FloatRegister tmp0, FloatRegister tmp1,
6313                                          FloatRegister tmp2, FloatRegister tmp3,
6314                                          FloatRegister tmp4, FloatRegister tmp5) {
6315   encode_iso_array(src, dst, len, res, false, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5);
6316 }
6317 
6318 // java.math.round(double a)
6319 // Returns the closest long to the argument, with ties rounding to
6320 // positive infinity.  This requires some fiddling for corner
6321 // cases. We take care to avoid double rounding in e.g. (jlong)(a + 0.5).
6322 void MacroAssembler::java_round_double(Register dst, FloatRegister src,
6323                                        FloatRegister ftmp) {
6324   Label DONE;
6325   BLOCK_COMMENT("java_round_double: { ");
6326   fmovd(rscratch1, src);
6327   // Use RoundToNearestTiesAway unless src small and -ve.
6328   fcvtasd(dst, src);
6329   // Test if src >= 0 || abs(src) >= 0x1.0p52
6330   eor(rscratch1, rscratch1, UCONST64(1) << 63); // flip sign bit
6331   mov(rscratch2, julong_cast(0x1.0p52));
6332   cmp(rscratch1, rscratch2);
6333   br(HS, DONE); {
6334     // src < 0 && abs(src) < 0x1.0p52
6335     // src may have a fractional part, so add 0.5
6336     fmovd(ftmp, 0.5);
6337     faddd(ftmp, src, ftmp);
6338     // Convert double to jlong, use RoundTowardsNegative
6339     fcvtmsd(dst, ftmp);
6340   }
6341   bind(DONE);
6342   BLOCK_COMMENT("} java_round_double");
6343 }
6344 
6345 void MacroAssembler::java_round_float(Register dst, FloatRegister src,
6346                                       FloatRegister ftmp) {
6347   Label DONE;
6348   BLOCK_COMMENT("java_round_float: { ");
6349   fmovs(rscratch1, src);
6350   // Use RoundToNearestTiesAway unless src small and -ve.
6351   fcvtassw(dst, src);
6352   // Test if src >= 0 || abs(src) >= 0x1.0p23
6353   eor(rscratch1, rscratch1, 0x80000000); // flip sign bit
6354   mov(rscratch2, jint_cast(0x1.0p23f));
6355   cmp(rscratch1, rscratch2);
6356   br(HS, DONE); {
6357     // src < 0 && |src| < 0x1.0p23
6358     // src may have a fractional part, so add 0.5
6359     fmovs(ftmp, 0.5f);
6360     fadds(ftmp, src, ftmp);
6361     // Convert float to jint, use RoundTowardsNegative
6362     fcvtmssw(dst, ftmp);
6363   }
6364   bind(DONE);
6365   BLOCK_COMMENT("} java_round_float");
6366 }
6367 
6368 // get_thread() can be called anywhere inside generated code so we
6369 // need to save whatever non-callee save context might get clobbered
6370 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed,
6371 // the call setup code.
6372 //
6373 // On Linux, aarch64_get_thread_helper() clobbers only r0, r1, and flags.
6374 // On other systems, the helper is a usual C function.
6375 //
6376 void MacroAssembler::get_thread(Register dst) {
6377   RegSet saved_regs =
6378     LINUX_ONLY(RegSet::range(r0, r1)  + lr - dst)
6379     NOT_LINUX (RegSet::range(r0, r17) + lr - dst);
6380 
6381   protect_return_address();
6382   push(saved_regs, sp);
6383 
6384   mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper));
6385   blr(lr);
6386   if (dst != c_rarg0) {
6387     mov(dst, c_rarg0);
6388   }
6389 
6390   pop(saved_regs, sp);
6391   authenticate_return_address();
6392 }
6393 
6394 void MacroAssembler::cache_wb(Address line) {
6395   assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset");
6396   assert(line.index() == noreg, "index should be noreg");
6397   assert(line.offset() == 0, "offset should be 0");
6398   // would like to assert this
6399   // assert(line._ext.shift == 0, "shift should be zero");
6400   if (VM_Version::supports_dcpop()) {
6401     // writeback using clear virtual address to point of persistence
6402     dc(Assembler::CVAP, line.base());
6403   } else {
6404     // no need to generate anything as Unsafe.writebackMemory should
6405     // never invoke this stub
6406   }
6407 }
6408 
6409 void MacroAssembler::cache_wbsync(bool is_pre) {
6410   // we only need a barrier post sync
6411   if (!is_pre) {
6412     membar(Assembler::AnyAny);
6413   }
6414 }
6415 
6416 void MacroAssembler::verify_sve_vector_length(Register tmp) {
6417   if (!UseSVE || VM_Version::get_max_supported_sve_vector_length() == FloatRegister::sve_vl_min) {
6418     return;
6419   }
6420   // Make sure that native code does not change SVE vector length.
6421   Label verify_ok;
6422   movw(tmp, zr);
6423   sve_inc(tmp, B);
6424   subsw(zr, tmp, VM_Version::get_initial_sve_vector_length());
6425   br(EQ, verify_ok);
6426   stop("Error: SVE vector length has changed since jvm startup");
6427   bind(verify_ok);
6428 }
6429 
6430 void MacroAssembler::verify_ptrue() {
6431   Label verify_ok;
6432   if (!UseSVE) {
6433     return;
6434   }
6435   sve_cntp(rscratch1, B, ptrue, ptrue); // get true elements count.
6436   sve_dec(rscratch1, B);
6437   cbz(rscratch1, verify_ok);
6438   stop("Error: the preserved predicate register (p7) elements are not all true");
6439   bind(verify_ok);
6440 }
6441 
6442 void MacroAssembler::safepoint_isb() {
6443   isb();
6444 #ifndef PRODUCT
6445   if (VerifyCrossModifyFence) {
6446     // Clear the thread state.
6447     strb(zr, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset())));
6448   }
6449 #endif
6450 }
6451 
6452 #ifndef PRODUCT
6453 void MacroAssembler::verify_cross_modify_fence_not_required() {
6454   if (VerifyCrossModifyFence) {
6455     // Check if thread needs a cross modify fence.
6456     ldrb(rscratch1, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset())));
6457     Label fence_not_required;
6458     cbz(rscratch1, fence_not_required);
6459     // If it does then fail.
6460     lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::verify_cross_modify_fence_failure)));
6461     mov(c_rarg0, rthread);
6462     blr(rscratch1);
6463     bind(fence_not_required);
6464   }
6465 }
6466 #endif
6467 
6468 void MacroAssembler::spin_wait() {
6469   for (int i = 0; i < VM_Version::spin_wait_desc().inst_count(); ++i) {
6470     switch (VM_Version::spin_wait_desc().inst()) {
6471       case SpinWait::NOP:
6472         nop();
6473         break;
6474       case SpinWait::ISB:
6475         isb();
6476         break;
6477       case SpinWait::YIELD:
6478         yield();
6479         break;
6480       default:
6481         ShouldNotReachHere();
6482     }
6483   }
6484 }
6485 
6486 // Stack frame creation/removal
6487 
6488 void MacroAssembler::enter(bool strip_ret_addr) {
6489   if (strip_ret_addr) {
6490     // Addresses can only be signed once. If there are multiple nested frames being created
6491     // in the same function, then the return address needs stripping first.
6492     strip_return_address();
6493   }
6494   protect_return_address();
6495   stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
6496   mov(rfp, sp);
6497 }
6498 
6499 void MacroAssembler::leave() {
6500   mov(sp, rfp);
6501   ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
6502   authenticate_return_address();
6503 }
6504 
6505 // ROP Protection
6506 // Use the AArch64 PAC feature to add ROP protection for generated code. Use whenever creating/
6507 // destroying stack frames or whenever directly loading/storing the LR to memory.
6508 // If ROP protection is not set then these functions are no-ops.
6509 // For more details on PAC see pauth_aarch64.hpp.
6510 
6511 // Sign the LR. Use during construction of a stack frame, before storing the LR to memory.
6512 // Uses value zero as the modifier.
6513 //
6514 void MacroAssembler::protect_return_address() {
6515   if (VM_Version::use_rop_protection()) {
6516     check_return_address();
6517     paciaz();
6518   }
6519 }
6520 
6521 // Sign the return value in the given register. Use before updating the LR in the existing stack
6522 // frame for the current function.
6523 // Uses value zero as the modifier.
6524 //
6525 void MacroAssembler::protect_return_address(Register return_reg) {
6526   if (VM_Version::use_rop_protection()) {
6527     check_return_address(return_reg);
6528     paciza(return_reg);
6529   }
6530 }
6531 
6532 // Authenticate the LR. Use before function return, after restoring FP and loading LR from memory.
6533 // Uses value zero as the modifier.
6534 //
6535 void MacroAssembler::authenticate_return_address() {
6536   if (VM_Version::use_rop_protection()) {
6537     autiaz();
6538     check_return_address();
6539   }
6540 }
6541 
6542 // Authenticate the return value in the given register. Use before updating the LR in the existing
6543 // stack frame for the current function.
6544 // Uses value zero as the modifier.
6545 //
6546 void MacroAssembler::authenticate_return_address(Register return_reg) {
6547   if (VM_Version::use_rop_protection()) {
6548     autiza(return_reg);
6549     check_return_address(return_reg);
6550   }
6551 }
6552 
6553 // Strip any PAC data from LR without performing any authentication. Use with caution - only if
6554 // there is no guaranteed way of authenticating the LR.
6555 //
6556 void MacroAssembler::strip_return_address() {
6557   if (VM_Version::use_rop_protection()) {
6558     xpaclri();
6559   }
6560 }
6561 
6562 #ifndef PRODUCT
6563 // PAC failures can be difficult to debug. After an authentication failure, a segfault will only
6564 // occur when the pointer is used - ie when the program returns to the invalid LR. At this point
6565 // it is difficult to debug back to the callee function.
6566 // This function simply loads from the address in the given register.
6567 // Use directly after authentication to catch authentication failures.
6568 // Also use before signing to check that the pointer is valid and hasn't already been signed.
6569 //
6570 void MacroAssembler::check_return_address(Register return_reg) {
6571   if (VM_Version::use_rop_protection()) {
6572     ldr(zr, Address(return_reg));
6573   }
6574 }
6575 #endif
6576 
6577 // The java_calling_convention describes stack locations as ideal slots on
6578 // a frame with no abi restrictions. Since we must observe abi restrictions
6579 // (like the placement of the register window) the slots must be biased by
6580 // the following value.
6581 static int reg2offset_in(VMReg r) {
6582   // Account for saved rfp and lr
6583   // This should really be in_preserve_stack_slots
6584   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
6585 }
6586 
6587 static int reg2offset_out(VMReg r) {
6588   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
6589 }
6590 
6591 // On 64bit we will store integer like items to the stack as
6592 // 64bits items (AArch64 ABI) even though java would only store
6593 // 32bits for a parameter. On 32bit it will simply be 32bits
6594 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
6595 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp) {
6596   if (src.first()->is_stack()) {
6597     if (dst.first()->is_stack()) {
6598       // stack to stack
6599       ldr(tmp, Address(rfp, reg2offset_in(src.first())));
6600       str(tmp, Address(sp, reg2offset_out(dst.first())));
6601     } else {
6602       // stack to reg
6603       ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first())));
6604     }
6605   } else if (dst.first()->is_stack()) {
6606     // reg to stack
6607     str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first())));
6608   } else {
6609     if (dst.first() != src.first()) {
6610       sxtw(dst.first()->as_Register(), src.first()->as_Register());
6611     }
6612   }
6613 }
6614 
6615 // An oop arg. Must pass a handle not the oop itself
6616 void MacroAssembler::object_move(
6617                         OopMap* map,
6618                         int oop_handle_offset,
6619                         int framesize_in_slots,
6620                         VMRegPair src,
6621                         VMRegPair dst,
6622                         bool is_receiver,
6623                         int* receiver_offset) {
6624 
6625   // must pass a handle. First figure out the location we use as a handle
6626 
6627   Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register();
6628 
6629   // See if oop is null if it is we need no handle
6630 
6631   if (src.first()->is_stack()) {
6632 
6633     // Oop is already on the stack as an argument
6634     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
6635     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
6636     if (is_receiver) {
6637       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
6638     }
6639 
6640     ldr(rscratch1, Address(rfp, reg2offset_in(src.first())));
6641     lea(rHandle, Address(rfp, reg2offset_in(src.first())));
6642     // conditionally move a null
6643     cmp(rscratch1, zr);
6644     csel(rHandle, zr, rHandle, Assembler::EQ);
6645   } else {
6646 
6647     // Oop is in an a register we must store it to the space we reserve
6648     // on the stack for oop_handles and pass a handle if oop is non-null
6649 
6650     const Register rOop = src.first()->as_Register();
6651     int oop_slot;
6652     if (rOop == j_rarg0)
6653       oop_slot = 0;
6654     else if (rOop == j_rarg1)
6655       oop_slot = 1;
6656     else if (rOop == j_rarg2)
6657       oop_slot = 2;
6658     else if (rOop == j_rarg3)
6659       oop_slot = 3;
6660     else if (rOop == j_rarg4)
6661       oop_slot = 4;
6662     else if (rOop == j_rarg5)
6663       oop_slot = 5;
6664     else if (rOop == j_rarg6)
6665       oop_slot = 6;
6666     else {
6667       assert(rOop == j_rarg7, "wrong register");
6668       oop_slot = 7;
6669     }
6670 
6671     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
6672     int offset = oop_slot*VMRegImpl::stack_slot_size;
6673 
6674     map->set_oop(VMRegImpl::stack2reg(oop_slot));
6675     // Store oop in handle area, may be null
6676     str(rOop, Address(sp, offset));
6677     if (is_receiver) {
6678       *receiver_offset = offset;
6679     }
6680 
6681     cmp(rOop, zr);
6682     lea(rHandle, Address(sp, offset));
6683     // conditionally move a null
6684     csel(rHandle, zr, rHandle, Assembler::EQ);
6685   }
6686 
6687   // If arg is on the stack then place it otherwise it is already in correct reg.
6688   if (dst.first()->is_stack()) {
6689     str(rHandle, Address(sp, reg2offset_out(dst.first())));
6690   }
6691 }
6692 
6693 // A float arg may have to do float reg int reg conversion
6694 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp) {
6695  if (src.first()->is_stack()) {
6696     if (dst.first()->is_stack()) {
6697       ldrw(tmp, Address(rfp, reg2offset_in(src.first())));
6698       strw(tmp, Address(sp, reg2offset_out(dst.first())));
6699     } else {
6700       ldrs(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first())));
6701     }
6702   } else if (src.first() != dst.first()) {
6703     if (src.is_single_phys_reg() && dst.is_single_phys_reg())
6704       fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
6705     else
6706       strs(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first())));
6707   }
6708 }
6709 
6710 // A long move
6711 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp) {
6712   if (src.first()->is_stack()) {
6713     if (dst.first()->is_stack()) {
6714       // stack to stack
6715       ldr(tmp, Address(rfp, reg2offset_in(src.first())));
6716       str(tmp, Address(sp, reg2offset_out(dst.first())));
6717     } else {
6718       // stack to reg
6719       ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first())));
6720     }
6721   } else if (dst.first()->is_stack()) {
6722     // reg to stack
6723     // Do we really have to sign extend???
6724     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
6725     str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first())));
6726   } else {
6727     if (dst.first() != src.first()) {
6728       mov(dst.first()->as_Register(), src.first()->as_Register());
6729     }
6730   }
6731 }
6732 
6733 
6734 // A double move
6735 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp) {
6736  if (src.first()->is_stack()) {
6737     if (dst.first()->is_stack()) {
6738       ldr(tmp, Address(rfp, reg2offset_in(src.first())));
6739       str(tmp, Address(sp, reg2offset_out(dst.first())));
6740     } else {
6741       ldrd(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first())));
6742     }
6743   } else if (src.first() != dst.first()) {
6744     if (src.is_single_phys_reg() && dst.is_single_phys_reg())
6745       fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
6746     else
6747       strd(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first())));
6748   }
6749 }
6750 
6751 // Implements lightweight-locking.
6752 //
6753 //  - obj: the object to be locked
6754 //  - t1, t2, t3: temporary registers, will be destroyed
6755 //  - slow: branched to if locking fails, absolute offset may larger than 32KB (imm14 encoding).
6756 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow) {
6757   assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking");
6758   assert_different_registers(basic_lock, obj, t1, t2, t3, rscratch1);
6759 
6760   Label push;
6761   const Register top = t1;
6762   const Register mark = t2;
6763   const Register t = t3;
6764 
6765   // Preload the markWord. It is important that this is the first
6766   // instruction emitted as it is part of C1's null check semantics.
6767   ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes()));
6768 
6769   if (UseObjectMonitorTable) {
6770     // Clear cache in case fast locking succeeds.
6771     str(zr, Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes()))));
6772   }
6773 
6774   // Check if the lock-stack is full.
6775   ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
6776   cmpw(top, (unsigned)LockStack::end_offset());
6777   br(Assembler::GE, slow);
6778 
6779   // Check for recursion.
6780   subw(t, top, oopSize);
6781   ldr(t, Address(rthread, t));
6782   cmp(obj, t);
6783   br(Assembler::EQ, push);
6784 
6785   // Check header for monitor (0b10).
6786   tst(mark, markWord::monitor_value);
6787   br(Assembler::NE, slow);
6788 
6789   // Try to lock. Transition lock bits 0b01 => 0b00
6790   assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea");
6791   orr(mark, mark, markWord::unlocked_value);
6792   eor(t, mark, markWord::unlocked_value);
6793   cmpxchg(/*addr*/ obj, /*expected*/ mark, /*new*/ t, Assembler::xword,
6794           /*acquire*/ true, /*release*/ false, /*weak*/ false, noreg);
6795   br(Assembler::NE, slow);
6796 
6797   bind(push);
6798   // After successful lock, push object on lock-stack.
6799   str(obj, Address(rthread, top));
6800   addw(top, top, oopSize);
6801   strw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
6802 }
6803 
6804 // Implements lightweight-unlocking.
6805 //
6806 // - obj: the object to be unlocked
6807 // - t1, t2, t3: temporary registers
6808 // - slow: branched to if unlocking fails, absolute offset may larger than 32KB (imm14 encoding).
6809 void MacroAssembler::lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow) {
6810   assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking");
6811   // cmpxchg clobbers rscratch1.
6812   assert_different_registers(obj, t1, t2, t3, rscratch1);
6813 
6814 #ifdef ASSERT
6815   {
6816     // Check for lock-stack underflow.
6817     Label stack_ok;
6818     ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset()));
6819     cmpw(t1, (unsigned)LockStack::start_offset());
6820     br(Assembler::GE, stack_ok);
6821     STOP("Lock-stack underflow");
6822     bind(stack_ok);
6823   }
6824 #endif
6825 
6826   Label unlocked, push_and_slow;
6827   const Register top = t1;
6828   const Register mark = t2;
6829   const Register t = t3;
6830 
6831   // Check if obj is top of lock-stack.
6832   ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
6833   subw(top, top, oopSize);
6834   ldr(t, Address(rthread, top));
6835   cmp(obj, t);
6836   br(Assembler::NE, slow);
6837 
6838   // Pop lock-stack.
6839   DEBUG_ONLY(str(zr, Address(rthread, top));)
6840   strw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
6841 
6842   // Check if recursive.
6843   subw(t, top, oopSize);
6844   ldr(t, Address(rthread, t));
6845   cmp(obj, t);
6846   br(Assembler::EQ, unlocked);
6847 
6848   // Not recursive. Check header for monitor (0b10).
6849   ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes()));
6850   tbnz(mark, log2i_exact(markWord::monitor_value), push_and_slow);
6851 
6852 #ifdef ASSERT
6853   // Check header not unlocked (0b01).
6854   Label not_unlocked;
6855   tbz(mark, log2i_exact(markWord::unlocked_value), not_unlocked);
6856   stop("lightweight_unlock already unlocked");
6857   bind(not_unlocked);
6858 #endif
6859 
6860   // Try to unlock. Transition lock bits 0b00 => 0b01
6861   assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea");
6862   orr(t, mark, markWord::unlocked_value);
6863   cmpxchg(obj, mark, t, Assembler::xword,
6864           /*acquire*/ false, /*release*/ true, /*weak*/ false, noreg);
6865   br(Assembler::EQ, unlocked);
6866 
6867   bind(push_and_slow);
6868   // Restore lock-stack and handle the unlock in runtime.
6869   DEBUG_ONLY(str(obj, Address(rthread, top));)
6870   addw(top, top, oopSize);
6871   strw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
6872   b(slow);
6873 
6874   bind(unlocked);
6875 }