1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/assembler.hpp" 27 #include "asm/assembler.inline.hpp" 28 #include "ci/ciEnv.hpp" 29 #include "ci/ciUtilities.hpp" 30 #include "code/compiledIC.hpp" 31 #include "compiler/compileTask.hpp" 32 #include "compiler/disassembler.hpp" 33 #include "compiler/oopMap.hpp" 34 #include "gc/shared/barrierSet.hpp" 35 #include "gc/shared/barrierSetAssembler.hpp" 36 #include "gc/shared/cardTableBarrierSet.hpp" 37 #include "gc/shared/cardTable.hpp" 38 #include "gc/shared/collectedHeap.hpp" 39 #include "gc/shared/tlab_globals.hpp" 40 #include "interpreter/bytecodeHistogram.hpp" 41 #include "interpreter/interpreter.hpp" 42 #include "interpreter/interpreterRuntime.hpp" 43 #include "jvm.h" 44 #include "memory/resourceArea.hpp" 45 #include "memory/universe.hpp" 46 #include "nativeInst_aarch64.hpp" 47 #include "oops/accessDecorators.hpp" 48 #include "oops/compressedKlass.inline.hpp" 49 #include "oops/compressedOops.inline.hpp" 50 #include "oops/klass.inline.hpp" 51 #include "runtime/continuation.hpp" 52 #include "runtime/icache.hpp" 53 #include "runtime/interfaceSupport.inline.hpp" 54 #include "runtime/javaThread.hpp" 55 #include "runtime/jniHandles.inline.hpp" 56 #include "runtime/sharedRuntime.hpp" 57 #include "runtime/stubRoutines.hpp" 58 #include "utilities/globalDefinitions.hpp" 59 #include "utilities/powerOfTwo.hpp" 60 #ifdef COMPILER1 61 #include "c1/c1_LIRAssembler.hpp" 62 #endif 63 #ifdef COMPILER2 64 #include "oops/oop.hpp" 65 #include "opto/compile.hpp" 66 #include "opto/node.hpp" 67 #include "opto/output.hpp" 68 #endif 69 70 #include <sys/types.h> 71 72 #ifdef PRODUCT 73 #define BLOCK_COMMENT(str) /* nothing */ 74 #else 75 #define BLOCK_COMMENT(str) block_comment(str) 76 #endif 77 #define STOP(str) stop(str); 78 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 79 80 #ifdef ASSERT 81 extern "C" void disnm(intptr_t p); 82 #endif 83 // Target-dependent relocation processing 84 // 85 // Instruction sequences whose target may need to be retrieved or 86 // patched are distinguished by their leading instruction, sorting 87 // them into three main instruction groups and related subgroups. 88 // 89 // 1) Branch, Exception and System (insn count = 1) 90 // 1a) Unconditional branch (immediate): 91 // b/bl imm19 92 // 1b) Compare & branch (immediate): 93 // cbz/cbnz Rt imm19 94 // 1c) Test & branch (immediate): 95 // tbz/tbnz Rt imm14 96 // 1d) Conditional branch (immediate): 97 // b.cond imm19 98 // 99 // 2) Loads and Stores (insn count = 1) 100 // 2a) Load register literal: 101 // ldr Rt imm19 102 // 103 // 3) Data Processing Immediate (insn count = 2 or 3) 104 // 3a) PC-rel. addressing 105 // adr/adrp Rx imm21; ldr/str Ry Rx #imm12 106 // adr/adrp Rx imm21; add Ry Rx #imm12 107 // adr/adrp Rx imm21; movk Rx #imm16<<32; ldr/str Ry, [Rx, #offset_in_page] 108 // adr/adrp Rx imm21 109 // adr/adrp Rx imm21; movk Rx #imm16<<32 110 // adr/adrp Rx imm21; movk Rx #imm16<<32; add Ry, Rx, #offset_in_page 111 // The latter form can only happen when the target is an 112 // ExternalAddress, and (by definition) ExternalAddresses don't 113 // move. Because of that property, there is never any need to 114 // patch the last of the three instructions. However, 115 // MacroAssembler::target_addr_for_insn takes all three 116 // instructions into account and returns the correct address. 117 // 3b) Move wide (immediate) 118 // movz Rx #imm16; movk Rx #imm16 << 16; movk Rx #imm16 << 32; 119 // 120 // A switch on a subset of the instruction's bits provides an 121 // efficient dispatch to these subcases. 122 // 123 // insn[28:26] -> main group ('x' == don't care) 124 // 00x -> UNALLOCATED 125 // 100 -> Data Processing Immediate 126 // 101 -> Branch, Exception and System 127 // x1x -> Loads and Stores 128 // 129 // insn[30:25] -> subgroup ('_' == group, 'x' == don't care). 130 // n.b. in some cases extra bits need to be checked to verify the 131 // instruction is as expected 132 // 133 // 1) ... xx101x Branch, Exception and System 134 // 1a) 00___x Unconditional branch (immediate) 135 // 1b) 01___0 Compare & branch (immediate) 136 // 1c) 01___1 Test & branch (immediate) 137 // 1d) 10___0 Conditional branch (immediate) 138 // other Should not happen 139 // 140 // 2) ... xxx1x0 Loads and Stores 141 // 2a) xx1__00 Load/Store register (insn[28] == 1 && insn[24] == 0) 142 // 2aa) x01__00 Load register literal (i.e. requires insn[29] == 0) 143 // strictly should be 64 bit non-FP/SIMD i.e. 144 // 0101_000 (i.e. requires insn[31:24] == 01011000) 145 // 146 // 3) ... xx100x Data Processing Immediate 147 // 3a) xx___00 PC-rel. addressing (n.b. requires insn[24] == 0) 148 // 3b) xx___101 Move wide (immediate) (n.b. requires insn[24:23] == 01) 149 // strictly should be 64 bit movz #imm16<<0 150 // 110___10100 (i.e. requires insn[31:21] == 11010010100) 151 // 152 class RelocActions { 153 protected: 154 typedef int (*reloc_insn)(address insn_addr, address &target); 155 156 virtual reloc_insn adrpMem() = 0; 157 virtual reloc_insn adrpAdd() = 0; 158 virtual reloc_insn adrpMovk() = 0; 159 160 const address _insn_addr; 161 const uint32_t _insn; 162 163 static uint32_t insn_at(address insn_addr, int n) { 164 return ((uint32_t*)insn_addr)[n]; 165 } 166 uint32_t insn_at(int n) const { 167 return insn_at(_insn_addr, n); 168 } 169 170 public: 171 172 RelocActions(address insn_addr) : _insn_addr(insn_addr), _insn(insn_at(insn_addr, 0)) {} 173 RelocActions(address insn_addr, uint32_t insn) 174 : _insn_addr(insn_addr), _insn(insn) {} 175 176 virtual int unconditionalBranch(address insn_addr, address &target) = 0; 177 virtual int conditionalBranch(address insn_addr, address &target) = 0; 178 virtual int testAndBranch(address insn_addr, address &target) = 0; 179 virtual int loadStore(address insn_addr, address &target) = 0; 180 virtual int adr(address insn_addr, address &target) = 0; 181 virtual int adrp(address insn_addr, address &target, reloc_insn inner) = 0; 182 virtual int immediate(address insn_addr, address &target) = 0; 183 virtual void verify(address insn_addr, address &target) = 0; 184 185 int ALWAYSINLINE run(address insn_addr, address &target) { 186 int instructions = 1; 187 188 uint32_t dispatch = Instruction_aarch64::extract(_insn, 30, 25); 189 switch(dispatch) { 190 case 0b001010: 191 case 0b001011: { 192 instructions = unconditionalBranch(insn_addr, target); 193 break; 194 } 195 case 0b101010: // Conditional branch (immediate) 196 case 0b011010: { // Compare & branch (immediate) 197 instructions = conditionalBranch(insn_addr, target); 198 break; 199 } 200 case 0b011011: { 201 instructions = testAndBranch(insn_addr, target); 202 break; 203 } 204 case 0b001100: 205 case 0b001110: 206 case 0b011100: 207 case 0b011110: 208 case 0b101100: 209 case 0b101110: 210 case 0b111100: 211 case 0b111110: { 212 // load/store 213 if ((Instruction_aarch64::extract(_insn, 29, 24) & 0b111011) == 0b011000) { 214 // Load register (literal) 215 instructions = loadStore(insn_addr, target); 216 break; 217 } else { 218 // nothing to do 219 assert(target == nullptr, "did not expect to relocate target for polling page load"); 220 } 221 break; 222 } 223 case 0b001000: 224 case 0b011000: 225 case 0b101000: 226 case 0b111000: { 227 // adr/adrp 228 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 229 int shift = Instruction_aarch64::extract(_insn, 31, 31); 230 if (shift) { 231 uint32_t insn2 = insn_at(1); 232 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 233 Instruction_aarch64::extract(_insn, 4, 0) == 234 Instruction_aarch64::extract(insn2, 9, 5)) { 235 instructions = adrp(insn_addr, target, adrpMem()); 236 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 237 Instruction_aarch64::extract(_insn, 4, 0) == 238 Instruction_aarch64::extract(insn2, 4, 0)) { 239 instructions = adrp(insn_addr, target, adrpAdd()); 240 } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 241 Instruction_aarch64::extract(_insn, 4, 0) == 242 Instruction_aarch64::extract(insn2, 4, 0)) { 243 instructions = adrp(insn_addr, target, adrpMovk()); 244 } else { 245 ShouldNotReachHere(); 246 } 247 } else { 248 instructions = adr(insn_addr, target); 249 } 250 break; 251 } 252 case 0b001001: 253 case 0b011001: 254 case 0b101001: 255 case 0b111001: { 256 instructions = immediate(insn_addr, target); 257 break; 258 } 259 default: { 260 ShouldNotReachHere(); 261 } 262 } 263 264 verify(insn_addr, target); 265 return instructions * NativeInstruction::instruction_size; 266 } 267 }; 268 269 class Patcher : public RelocActions { 270 virtual reloc_insn adrpMem() { return &Patcher::adrpMem_impl; } 271 virtual reloc_insn adrpAdd() { return &Patcher::adrpAdd_impl; } 272 virtual reloc_insn adrpMovk() { return &Patcher::adrpMovk_impl; } 273 274 public: 275 Patcher(address insn_addr) : RelocActions(insn_addr) {} 276 277 virtual int unconditionalBranch(address insn_addr, address &target) { 278 intptr_t offset = (target - insn_addr) >> 2; 279 Instruction_aarch64::spatch(insn_addr, 25, 0, offset); 280 return 1; 281 } 282 virtual int conditionalBranch(address insn_addr, address &target) { 283 intptr_t offset = (target - insn_addr) >> 2; 284 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 285 return 1; 286 } 287 virtual int testAndBranch(address insn_addr, address &target) { 288 intptr_t offset = (target - insn_addr) >> 2; 289 Instruction_aarch64::spatch(insn_addr, 18, 5, offset); 290 return 1; 291 } 292 virtual int loadStore(address insn_addr, address &target) { 293 intptr_t offset = (target - insn_addr) >> 2; 294 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 295 return 1; 296 } 297 virtual int adr(address insn_addr, address &target) { 298 #ifdef ASSERT 299 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 300 #endif 301 // PC-rel. addressing 302 ptrdiff_t offset = target - insn_addr; 303 int offset_lo = offset & 3; 304 offset >>= 2; 305 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 306 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 307 return 1; 308 } 309 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 310 int instructions = 1; 311 #ifdef ASSERT 312 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 313 #endif 314 ptrdiff_t offset = target - insn_addr; 315 instructions = 2; 316 precond(inner != nullptr); 317 // Give the inner reloc a chance to modify the target. 318 address adjusted_target = target; 319 instructions = (*inner)(insn_addr, adjusted_target); 320 uintptr_t pc_page = (uintptr_t)insn_addr >> 12; 321 uintptr_t adr_page = (uintptr_t)adjusted_target >> 12; 322 offset = adr_page - pc_page; 323 int offset_lo = offset & 3; 324 offset >>= 2; 325 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 326 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 327 return instructions; 328 } 329 static int adrpMem_impl(address insn_addr, address &target) { 330 uintptr_t dest = (uintptr_t)target; 331 int offset_lo = dest & 0xfff; 332 uint32_t insn2 = insn_at(insn_addr, 1); 333 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 334 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo >> size); 335 guarantee(((dest >> size) << size) == dest, "misaligned target"); 336 return 2; 337 } 338 static int adrpAdd_impl(address insn_addr, address &target) { 339 uintptr_t dest = (uintptr_t)target; 340 int offset_lo = dest & 0xfff; 341 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo); 342 return 2; 343 } 344 static int adrpMovk_impl(address insn_addr, address &target) { 345 uintptr_t dest = uintptr_t(target); 346 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 20, 5, (uintptr_t)target >> 32); 347 dest = (dest & 0xffffffffULL) | (uintptr_t(insn_addr) & 0xffff00000000ULL); 348 target = address(dest); 349 return 2; 350 } 351 virtual int immediate(address insn_addr, address &target) { 352 // Metadata pointers are either narrow (32 bits) or wide (48 bits). 353 // We encode narrow ones by setting the upper 16 bits in the first 354 // instruction. 355 if (Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010101) { 356 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 357 narrowKlass nk = CompressedKlassPointers::encode((Klass*)target); 358 Instruction_aarch64::patch(insn_addr, 20, 5, nk >> 16); 359 Instruction_aarch64::patch(insn_addr+4, 20, 5, nk & 0xffff); 360 return 2; 361 } 362 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 363 uint64_t dest = (uint64_t)target; 364 // Move wide constant 365 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 366 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 367 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 368 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 369 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 370 return 3; 371 } 372 virtual void verify(address insn_addr, address &target) { 373 #ifdef ASSERT 374 address address_is = MacroAssembler::target_addr_for_insn(insn_addr); 375 if (!(address_is == target)) { 376 tty->print_cr("%p at %p should be %p", address_is, insn_addr, target); 377 disnm((intptr_t)insn_addr); 378 assert(address_is == target, "should be"); 379 } 380 #endif 381 } 382 }; 383 384 // If insn1 and insn2 use the same register to form an address, either 385 // by an offsetted LDR or a simple ADD, return the offset. If the 386 // second instruction is an LDR, the offset may be scaled. 387 static bool offset_for(uint32_t insn1, uint32_t insn2, ptrdiff_t &byte_offset) { 388 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 389 Instruction_aarch64::extract(insn1, 4, 0) == 390 Instruction_aarch64::extract(insn2, 9, 5)) { 391 // Load/store register (unsigned immediate) 392 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 393 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 394 byte_offset <<= size; 395 return true; 396 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 397 Instruction_aarch64::extract(insn1, 4, 0) == 398 Instruction_aarch64::extract(insn2, 4, 0)) { 399 // add (immediate) 400 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 401 return true; 402 } 403 return false; 404 } 405 406 class AArch64Decoder : public RelocActions { 407 virtual reloc_insn adrpMem() { return &AArch64Decoder::adrpMem_impl; } 408 virtual reloc_insn adrpAdd() { return &AArch64Decoder::adrpAdd_impl; } 409 virtual reloc_insn adrpMovk() { return &AArch64Decoder::adrpMovk_impl; } 410 411 public: 412 AArch64Decoder(address insn_addr, uint32_t insn) : RelocActions(insn_addr, insn) {} 413 414 virtual int loadStore(address insn_addr, address &target) { 415 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 416 target = insn_addr + (offset << 2); 417 return 1; 418 } 419 virtual int unconditionalBranch(address insn_addr, address &target) { 420 intptr_t offset = Instruction_aarch64::sextract(_insn, 25, 0); 421 target = insn_addr + (offset << 2); 422 return 1; 423 } 424 virtual int conditionalBranch(address insn_addr, address &target) { 425 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 426 target = address(((uint64_t)insn_addr + (offset << 2))); 427 return 1; 428 } 429 virtual int testAndBranch(address insn_addr, address &target) { 430 intptr_t offset = Instruction_aarch64::sextract(_insn, 18, 5); 431 target = address(((uint64_t)insn_addr + (offset << 2))); 432 return 1; 433 } 434 virtual int adr(address insn_addr, address &target) { 435 // PC-rel. addressing 436 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 437 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 438 target = address((uint64_t)insn_addr + offset); 439 return 1; 440 } 441 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 442 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 443 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 444 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 445 int shift = 12; 446 offset <<= shift; 447 uint64_t target_page = ((uint64_t)insn_addr) + offset; 448 target_page &= ((uint64_t)-1) << shift; 449 uint32_t insn2 = insn_at(1); 450 target = address(target_page); 451 precond(inner != nullptr); 452 (*inner)(insn_addr, target); 453 return 2; 454 } 455 static int adrpMem_impl(address insn_addr, address &target) { 456 uint32_t insn2 = insn_at(insn_addr, 1); 457 // Load/store register (unsigned immediate) 458 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 459 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 460 byte_offset <<= size; 461 target += byte_offset; 462 return 2; 463 } 464 static int adrpAdd_impl(address insn_addr, address &target) { 465 uint32_t insn2 = insn_at(insn_addr, 1); 466 // add (immediate) 467 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 468 target += byte_offset; 469 return 2; 470 } 471 static int adrpMovk_impl(address insn_addr, address &target) { 472 uint32_t insn2 = insn_at(insn_addr, 1); 473 uint64_t dest = uint64_t(target); 474 dest = (dest & 0xffff0000ffffffff) | 475 ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32); 476 target = address(dest); 477 478 // We know the destination 4k page. Maybe we have a third 479 // instruction. 480 uint32_t insn = insn_at(insn_addr, 0); 481 uint32_t insn3 = insn_at(insn_addr, 2); 482 ptrdiff_t byte_offset; 483 if (offset_for(insn, insn3, byte_offset)) { 484 target += byte_offset; 485 return 3; 486 } else { 487 return 2; 488 } 489 } 490 virtual int immediate(address insn_addr, address &target) { 491 uint32_t *insns = (uint32_t *)insn_addr; 492 // Metadata pointers are either narrow (32 bits) or wide (48 bits). 493 // We encode narrow ones by setting the upper 16 bits in the first 494 // instruction. 495 if (Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010101) { 496 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 497 narrowKlass nk = (narrowKlass)((uint32_t(Instruction_aarch64::extract(_insn, 20, 5)) << 16) 498 + uint32_t(Instruction_aarch64::extract(insns[1], 20, 5))); 499 target = (address)CompressedKlassPointers::decode(nk); 500 return 2; 501 } 502 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 503 // Move wide constant: movz, movk, movk. See movptr(). 504 assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch"); 505 assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch"); 506 target = address(uint64_t(Instruction_aarch64::extract(_insn, 20, 5)) 507 + (uint64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16) 508 + (uint64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32)); 509 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 510 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 511 return 3; 512 } 513 virtual void verify(address insn_addr, address &target) { 514 } 515 }; 516 517 address MacroAssembler::target_addr_for_insn(address insn_addr, uint32_t insn) { 518 AArch64Decoder decoder(insn_addr, insn); 519 address target; 520 decoder.run(insn_addr, target); 521 return target; 522 } 523 524 // Patch any kind of instruction; there may be several instructions. 525 // Return the total length (in bytes) of the instructions. 526 int MacroAssembler::pd_patch_instruction_size(address insn_addr, address target) { 527 Patcher patcher(insn_addr); 528 return patcher.run(insn_addr, target); 529 } 530 531 int MacroAssembler::patch_oop(address insn_addr, address o) { 532 int instructions; 533 unsigned insn = *(unsigned*)insn_addr; 534 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 535 536 // OOPs are either narrow (32 bits) or wide (48 bits). We encode 537 // narrow OOPs by setting the upper 16 bits in the first 538 // instruction. 539 if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) { 540 // Move narrow OOP 541 uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o)); 542 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 543 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 544 instructions = 2; 545 } else { 546 // Move wide OOP 547 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 548 uintptr_t dest = (uintptr_t)o; 549 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 550 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 551 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 552 instructions = 3; 553 } 554 return instructions * NativeInstruction::instruction_size; 555 } 556 557 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) { 558 // Metadata pointers are either narrow (32 bits) or wide (48 bits). 559 // We encode narrow ones by setting the upper 16 bits in the first 560 // instruction. 561 NativeInstruction *insn = nativeInstruction_at(insn_addr); 562 assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 && 563 nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 564 565 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 566 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 567 return 2 * NativeInstruction::instruction_size; 568 } 569 570 address MacroAssembler::target_addr_for_insn_or_null(address insn_addr, unsigned insn) { 571 if (NativeInstruction::is_ldrw_to_zr(address(&insn))) { 572 return nullptr; 573 } 574 return MacroAssembler::target_addr_for_insn(insn_addr, insn); 575 } 576 577 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool in_nmethod, Register tmp) { 578 ldr(tmp, Address(rthread, JavaThread::polling_word_offset())); 579 if (at_return) { 580 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 581 // we may safely use the sp instead to perform the stack watermark check. 582 cmp(in_nmethod ? sp : rfp, tmp); 583 br(Assembler::HI, slow_path); 584 } else { 585 tbnz(tmp, log2i_exact(SafepointMechanism::poll_bit()), slow_path); 586 } 587 } 588 589 void MacroAssembler::rt_call(address dest, Register tmp) { 590 CodeBlob *cb = CodeCache::find_blob(dest); 591 if (cb) { 592 far_call(RuntimeAddress(dest)); 593 } else { 594 lea(tmp, RuntimeAddress(dest)); 595 blr(tmp); 596 } 597 } 598 599 void MacroAssembler::push_cont_fastpath(Register java_thread) { 600 if (!Continuations::enabled()) return; 601 Label done; 602 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 603 cmp(sp, rscratch1); 604 br(Assembler::LS, done); 605 mov(rscratch1, sp); // we can't use sp as the source in str 606 str(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 607 bind(done); 608 } 609 610 void MacroAssembler::pop_cont_fastpath(Register java_thread) { 611 if (!Continuations::enabled()) return; 612 Label done; 613 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 614 cmp(sp, rscratch1); 615 br(Assembler::LO, done); 616 str(zr, Address(java_thread, JavaThread::cont_fastpath_offset())); 617 bind(done); 618 } 619 620 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 621 // we must set sp to zero to clear frame 622 str(zr, Address(rthread, JavaThread::last_Java_sp_offset())); 623 624 // must clear fp, so that compiled frames are not confused; it is 625 // possible that we need it only for debugging 626 if (clear_fp) { 627 str(zr, Address(rthread, JavaThread::last_Java_fp_offset())); 628 } 629 630 // Always clear the pc because it could have been set by make_walkable() 631 str(zr, Address(rthread, JavaThread::last_Java_pc_offset())); 632 } 633 634 // Calls to C land 635 // 636 // When entering C land, the rfp, & resp of the last Java frame have to be recorded 637 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 638 // has to be reset to 0. This is required to allow proper stack traversal. 639 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 640 Register last_java_fp, 641 Register last_java_pc, 642 Register scratch) { 643 644 if (last_java_pc->is_valid()) { 645 str(last_java_pc, Address(rthread, 646 JavaThread::frame_anchor_offset() 647 + JavaFrameAnchor::last_Java_pc_offset())); 648 } 649 650 // determine last_java_sp register 651 if (last_java_sp == sp) { 652 mov(scratch, sp); 653 last_java_sp = scratch; 654 } else if (!last_java_sp->is_valid()) { 655 last_java_sp = esp; 656 } 657 658 str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset())); 659 660 // last_java_fp is optional 661 if (last_java_fp->is_valid()) { 662 str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset())); 663 } 664 } 665 666 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 667 Register last_java_fp, 668 address last_java_pc, 669 Register scratch) { 670 assert(last_java_pc != nullptr, "must provide a valid PC"); 671 672 adr(scratch, last_java_pc); 673 str(scratch, Address(rthread, 674 JavaThread::frame_anchor_offset() 675 + JavaFrameAnchor::last_Java_pc_offset())); 676 677 set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch); 678 } 679 680 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 681 Register last_java_fp, 682 Label &L, 683 Register scratch) { 684 if (L.is_bound()) { 685 set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch); 686 } else { 687 InstructionMark im(this); 688 L.add_patch_at(code(), locator()); 689 set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch); 690 } 691 } 692 693 static inline bool target_needs_far_branch(address addr) { 694 if (AOTCodeCache::is_on_for_dump()) { 695 return true; 696 } 697 // codecache size <= 128M 698 if (!MacroAssembler::far_branches()) { 699 return false; 700 } 701 // codecache size > 240M 702 if (MacroAssembler::codestub_branch_needs_far_jump()) { 703 return true; 704 } 705 // codecache size: 128M..240M 706 return !CodeCache::is_non_nmethod(addr); 707 } 708 709 void MacroAssembler::far_call(Address entry, Register tmp) { 710 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 711 assert(CodeCache::find_blob(entry.target()) != nullptr, 712 "destination of far call not found in code cache"); 713 assert(entry.rspec().type() == relocInfo::external_word_type 714 || entry.rspec().type() == relocInfo::runtime_call_type 715 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 716 if (target_needs_far_branch(entry.target())) { 717 uint64_t offset; 718 // We can use ADRP here because we know that the total size of 719 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 720 adrp(tmp, entry, offset); 721 add(tmp, tmp, offset); 722 blr(tmp); 723 } else { 724 bl(entry); 725 } 726 } 727 728 int MacroAssembler::far_jump(Address entry, Register tmp) { 729 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 730 assert(CodeCache::find_blob(entry.target()) != nullptr, 731 "destination of far call not found in code cache"); 732 assert(entry.rspec().type() == relocInfo::external_word_type 733 || entry.rspec().type() == relocInfo::runtime_call_type 734 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 735 address start = pc(); 736 if (target_needs_far_branch(entry.target())) { 737 uint64_t offset; 738 // We can use ADRP here because we know that the total size of 739 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 740 adrp(tmp, entry, offset); 741 add(tmp, tmp, offset); 742 br(tmp); 743 } else { 744 b(entry); 745 } 746 return pc() - start; 747 } 748 749 void MacroAssembler::reserved_stack_check() { 750 // testing if reserved zone needs to be enabled 751 Label no_reserved_zone_enabling; 752 753 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 754 cmp(sp, rscratch1); 755 br(Assembler::LO, no_reserved_zone_enabling); 756 757 enter(); // LR and FP are live. 758 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone))); 759 mov(c_rarg0, rthread); 760 blr(rscratch1); 761 leave(); 762 763 // We have already removed our own frame. 764 // throw_delayed_StackOverflowError will think that it's been 765 // called by our caller. 766 lea(rscratch1, RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry())); 767 br(rscratch1); 768 should_not_reach_here(); 769 770 bind(no_reserved_zone_enabling); 771 } 772 773 static void pass_arg0(MacroAssembler* masm, Register arg) { 774 if (c_rarg0 != arg ) { 775 masm->mov(c_rarg0, arg); 776 } 777 } 778 779 static void pass_arg1(MacroAssembler* masm, Register arg) { 780 if (c_rarg1 != arg ) { 781 masm->mov(c_rarg1, arg); 782 } 783 } 784 785 static void pass_arg2(MacroAssembler* masm, Register arg) { 786 if (c_rarg2 != arg ) { 787 masm->mov(c_rarg2, arg); 788 } 789 } 790 791 static void pass_arg3(MacroAssembler* masm, Register arg) { 792 if (c_rarg3 != arg ) { 793 masm->mov(c_rarg3, arg); 794 } 795 } 796 797 static bool is_preemptable(address entry_point) { 798 return entry_point == CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter); 799 } 800 801 void MacroAssembler::call_VM_base(Register oop_result, 802 Register java_thread, 803 Register last_java_sp, 804 address entry_point, 805 int number_of_arguments, 806 bool check_exceptions) { 807 // determine java_thread register 808 if (!java_thread->is_valid()) { 809 java_thread = rthread; 810 } 811 812 // determine last_java_sp register 813 if (!last_java_sp->is_valid()) { 814 last_java_sp = esp; 815 } 816 817 // debugging support 818 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 819 assert(java_thread == rthread, "unexpected register"); 820 #ifdef ASSERT 821 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 822 // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 823 #endif // ASSERT 824 825 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 826 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 827 828 // push java thread (becomes first argument of C function) 829 830 mov(c_rarg0, java_thread); 831 832 // set last Java frame before call 833 assert(last_java_sp != rfp, "can't use rfp"); 834 835 Label l; 836 if (is_preemptable(entry_point)) { 837 // skip setting last_pc since we already set it to desired value. 838 set_last_Java_frame(last_java_sp, rfp, noreg, rscratch1); 839 } else { 840 set_last_Java_frame(last_java_sp, rfp, l, rscratch1); 841 } 842 843 // do the call, remove parameters 844 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l); 845 846 // lr could be poisoned with PAC signature during throw_pending_exception 847 // if it was tail-call optimized by compiler, since lr is not callee-saved 848 // reload it with proper value 849 adr(lr, l); 850 851 // reset last Java frame 852 // Only interpreter should have to clear fp 853 reset_last_Java_frame(true); 854 855 // C++ interp handles this in the interpreter 856 check_and_handle_popframe(java_thread); 857 check_and_handle_earlyret(java_thread); 858 859 if (check_exceptions) { 860 // check for pending exceptions (java_thread is set upon return) 861 ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset()))); 862 Label ok; 863 cbz(rscratch1, ok); 864 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 865 br(rscratch1); 866 bind(ok); 867 } 868 869 // get oop result if there is one and reset the value in the thread 870 if (oop_result->is_valid()) { 871 get_vm_result_oop(oop_result, java_thread); 872 } 873 } 874 875 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 876 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions); 877 } 878 879 // Check the entry target is always reachable from any branch. 880 static bool is_always_within_branch_range(Address entry) { 881 if (AOTCodeCache::is_on_for_dump()) { 882 return false; 883 } 884 const address target = entry.target(); 885 886 if (!CodeCache::contains(target)) { 887 // We always use trampolines for callees outside CodeCache. 888 assert(entry.rspec().type() == relocInfo::runtime_call_type, "non-runtime call of an external target"); 889 return false; 890 } 891 892 if (!MacroAssembler::far_branches()) { 893 return true; 894 } 895 896 if (entry.rspec().type() == relocInfo::runtime_call_type) { 897 // Runtime calls are calls of a non-compiled method (stubs, adapters). 898 // Non-compiled methods stay forever in CodeCache. 899 // We check whether the longest possible branch is within the branch range. 900 assert(CodeCache::find_blob(target) != nullptr && 901 !CodeCache::find_blob(target)->is_nmethod(), 902 "runtime call of compiled method"); 903 const address right_longest_branch_start = CodeCache::high_bound() - NativeInstruction::instruction_size; 904 const address left_longest_branch_start = CodeCache::low_bound(); 905 const bool is_reachable = Assembler::reachable_from_branch_at(left_longest_branch_start, target) && 906 Assembler::reachable_from_branch_at(right_longest_branch_start, target); 907 return is_reachable; 908 } 909 910 return false; 911 } 912 913 // Maybe emit a call via a trampoline. If the code cache is small 914 // trampolines won't be emitted. 915 address MacroAssembler::trampoline_call(Address entry) { 916 assert(entry.rspec().type() == relocInfo::runtime_call_type 917 || entry.rspec().type() == relocInfo::opt_virtual_call_type 918 || entry.rspec().type() == relocInfo::static_call_type 919 || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type"); 920 921 address target = entry.target(); 922 923 if (!is_always_within_branch_range(entry)) { 924 if (!in_scratch_emit_size()) { 925 // We don't want to emit a trampoline if C2 is generating dummy 926 // code during its branch shortening phase. 927 if (entry.rspec().type() == relocInfo::runtime_call_type) { 928 assert(CodeBuffer::supports_shared_stubs(), "must support shared stubs"); 929 code()->share_trampoline_for(entry.target(), offset()); 930 } else { 931 address stub = emit_trampoline_stub(offset(), target); 932 if (stub == nullptr) { 933 postcond(pc() == badAddress); 934 return nullptr; // CodeCache is full 935 } 936 } 937 } 938 target = pc(); 939 } 940 941 address call_pc = pc(); 942 relocate(entry.rspec()); 943 bl(target); 944 945 postcond(pc() != badAddress); 946 return call_pc; 947 } 948 949 // Emit a trampoline stub for a call to a target which is too far away. 950 // 951 // code sequences: 952 // 953 // call-site: 954 // branch-and-link to <destination> or <trampoline stub> 955 // 956 // Related trampoline stub for this call site in the stub section: 957 // load the call target from the constant pool 958 // branch (LR still points to the call site above) 959 960 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset, 961 address dest) { 962 // Max stub size: alignment nop, TrampolineStub. 963 address stub = start_a_stub(max_trampoline_stub_size()); 964 if (stub == nullptr) { 965 return nullptr; // CodeBuffer::expand failed 966 } 967 968 // Create a trampoline stub relocation which relates this trampoline stub 969 // with the call instruction at insts_call_instruction_offset in the 970 // instructions code-section. 971 align(wordSize); 972 relocate(trampoline_stub_Relocation::spec(code()->insts()->start() 973 + insts_call_instruction_offset)); 974 const int stub_start_offset = offset(); 975 976 // Now, create the trampoline stub's code: 977 // - load the call 978 // - call 979 Label target; 980 ldr(rscratch1, target); 981 br(rscratch1); 982 bind(target); 983 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset, 984 "should be"); 985 emit_int64((int64_t)dest); 986 987 const address stub_start_addr = addr_at(stub_start_offset); 988 989 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); 990 991 end_a_stub(); 992 return stub_start_addr; 993 } 994 995 int MacroAssembler::max_trampoline_stub_size() { 996 // Max stub size: alignment nop, TrampolineStub. 997 return NativeInstruction::instruction_size + NativeCallTrampolineStub::instruction_size; 998 } 999 1000 void MacroAssembler::emit_static_call_stub() { 1001 // CompiledDirectCall::set_to_interpreted knows the 1002 // exact layout of this stub. 1003 1004 isb(); 1005 mov_metadata(rmethod, nullptr); 1006 1007 // Jump to the entry point of the c2i stub. 1008 if (codestub_branch_needs_far_jump()) { 1009 movptr(rscratch1, 0); 1010 br(rscratch1); 1011 } else { 1012 b(pc()); 1013 } 1014 } 1015 1016 int MacroAssembler::max_static_call_stub_size() { 1017 // isb; movk; movz; movz; movk; movz; movz; br 1018 return 8 * NativeInstruction::instruction_size; 1019 } 1020 1021 void MacroAssembler::c2bool(Register x) { 1022 // implements x == 0 ? 0 : 1 1023 // note: must only look at least-significant byte of x 1024 // since C-style booleans are stored in one byte 1025 // only! (was bug) 1026 tst(x, 0xff); 1027 cset(x, Assembler::NE); 1028 } 1029 1030 address MacroAssembler::ic_call(address entry, jint method_index) { 1031 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 1032 movptr(rscratch2, (intptr_t)Universe::non_oop_word()); 1033 return trampoline_call(Address(entry, rh)); 1034 } 1035 1036 int MacroAssembler::ic_check_size() { 1037 int extra_instructions = UseCompactObjectHeaders ? 1 : 0; 1038 if (target_needs_far_branch(CAST_FROM_FN_PTR(address, SharedRuntime::get_ic_miss_stub()))) { 1039 return NativeInstruction::instruction_size * (7 + extra_instructions); 1040 } else { 1041 return NativeInstruction::instruction_size * (5 + extra_instructions); 1042 } 1043 } 1044 1045 int MacroAssembler::ic_check(int end_alignment) { 1046 Register receiver = j_rarg0; 1047 Register data = rscratch2; 1048 Register tmp1 = rscratch1; 1049 Register tmp2 = r10; 1050 1051 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed 1052 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 1053 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align 1054 // before the inline cache check here, and not after 1055 align(end_alignment, offset() + ic_check_size()); 1056 1057 int uep_offset = offset(); 1058 1059 if (UseCompactObjectHeaders) { 1060 load_narrow_klass_compact(tmp1, receiver); 1061 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1062 cmpw(tmp1, tmp2); 1063 } else if (UseCompressedClassPointers) { 1064 ldrw(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1065 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1066 cmpw(tmp1, tmp2); 1067 } else { 1068 ldr(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1069 ldr(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1070 cmp(tmp1, tmp2); 1071 } 1072 1073 Label dont; 1074 br(Assembler::EQ, dont); 1075 far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1076 bind(dont); 1077 assert((offset() % end_alignment) == 0, "Misaligned verified entry point"); 1078 1079 return uep_offset; 1080 } 1081 1082 // Implementation of call_VM versions 1083 1084 void MacroAssembler::call_VM(Register oop_result, 1085 address entry_point, 1086 bool check_exceptions) { 1087 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1088 } 1089 1090 void MacroAssembler::call_VM(Register oop_result, 1091 address entry_point, 1092 Register arg_1, 1093 bool check_exceptions) { 1094 pass_arg1(this, arg_1); 1095 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1096 } 1097 1098 void MacroAssembler::call_VM(Register oop_result, 1099 address entry_point, 1100 Register arg_1, 1101 Register arg_2, 1102 bool check_exceptions) { 1103 assert_different_registers(arg_1, c_rarg2); 1104 pass_arg2(this, arg_2); 1105 pass_arg1(this, arg_1); 1106 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1107 } 1108 1109 void MacroAssembler::call_VM(Register oop_result, 1110 address entry_point, 1111 Register arg_1, 1112 Register arg_2, 1113 Register arg_3, 1114 bool check_exceptions) { 1115 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1116 assert_different_registers(arg_2, c_rarg3); 1117 pass_arg3(this, arg_3); 1118 1119 pass_arg2(this, arg_2); 1120 1121 pass_arg1(this, arg_1); 1122 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1123 } 1124 1125 void MacroAssembler::call_VM(Register oop_result, 1126 Register last_java_sp, 1127 address entry_point, 1128 int number_of_arguments, 1129 bool check_exceptions) { 1130 call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1131 } 1132 1133 void MacroAssembler::call_VM(Register oop_result, 1134 Register last_java_sp, 1135 address entry_point, 1136 Register arg_1, 1137 bool check_exceptions) { 1138 pass_arg1(this, arg_1); 1139 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1140 } 1141 1142 void MacroAssembler::call_VM(Register oop_result, 1143 Register last_java_sp, 1144 address entry_point, 1145 Register arg_1, 1146 Register arg_2, 1147 bool check_exceptions) { 1148 1149 assert_different_registers(arg_1, c_rarg2); 1150 pass_arg2(this, arg_2); 1151 pass_arg1(this, arg_1); 1152 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1153 } 1154 1155 void MacroAssembler::call_VM(Register oop_result, 1156 Register last_java_sp, 1157 address entry_point, 1158 Register arg_1, 1159 Register arg_2, 1160 Register arg_3, 1161 bool check_exceptions) { 1162 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1163 assert_different_registers(arg_2, c_rarg3); 1164 pass_arg3(this, arg_3); 1165 pass_arg2(this, arg_2); 1166 pass_arg1(this, arg_1); 1167 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1168 } 1169 1170 1171 void MacroAssembler::get_vm_result_oop(Register oop_result, Register java_thread) { 1172 ldr(oop_result, Address(java_thread, JavaThread::vm_result_oop_offset())); 1173 str(zr, Address(java_thread, JavaThread::vm_result_oop_offset())); 1174 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1175 } 1176 1177 void MacroAssembler::get_vm_result_metadata(Register metadata_result, Register java_thread) { 1178 ldr(metadata_result, Address(java_thread, JavaThread::vm_result_metadata_offset())); 1179 str(zr, Address(java_thread, JavaThread::vm_result_metadata_offset())); 1180 } 1181 1182 void MacroAssembler::align(int modulus) { 1183 align(modulus, offset()); 1184 } 1185 1186 // Ensure that the code at target bytes offset from the current offset() is aligned 1187 // according to modulus. 1188 void MacroAssembler::align(int modulus, int target) { 1189 int delta = target - offset(); 1190 while ((offset() + delta) % modulus != 0) nop(); 1191 } 1192 1193 void MacroAssembler::post_call_nop() { 1194 if (!Continuations::enabled()) { 1195 return; 1196 } 1197 InstructionMark im(this); 1198 relocate(post_call_nop_Relocation::spec()); 1199 InlineSkippedInstructionsCounter skipCounter(this); 1200 nop(); 1201 movk(zr, 0); 1202 movk(zr, 0); 1203 } 1204 1205 // these are no-ops overridden by InterpreterMacroAssembler 1206 1207 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } 1208 1209 void MacroAssembler::check_and_handle_popframe(Register java_thread) { } 1210 1211 // Look up the method for a megamorphic invokeinterface call. 1212 // The target method is determined by <intf_klass, itable_index>. 1213 // The receiver klass is in recv_klass. 1214 // On success, the result will be in method_result, and execution falls through. 1215 // On failure, execution transfers to the given label. 1216 void MacroAssembler::lookup_interface_method(Register recv_klass, 1217 Register intf_klass, 1218 RegisterOrConstant itable_index, 1219 Register method_result, 1220 Register scan_temp, 1221 Label& L_no_such_interface, 1222 bool return_method) { 1223 assert_different_registers(recv_klass, intf_klass, scan_temp); 1224 assert_different_registers(method_result, intf_klass, scan_temp); 1225 assert(recv_klass != method_result || !return_method, 1226 "recv_klass can be destroyed when method isn't needed"); 1227 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 1228 "caller must use same register for non-constant itable index as for method"); 1229 1230 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 1231 int vtable_base = in_bytes(Klass::vtable_start_offset()); 1232 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 1233 int scan_step = itableOffsetEntry::size() * wordSize; 1234 int vte_size = vtableEntry::size_in_bytes(); 1235 assert(vte_size == wordSize, "else adjust times_vte_scale"); 1236 1237 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1238 1239 // Could store the aligned, prescaled offset in the klass. 1240 // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 1241 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3))); 1242 add(scan_temp, scan_temp, vtable_base); 1243 1244 if (return_method) { 1245 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 1246 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 1247 // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 1248 lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3))); 1249 if (itentry_off) 1250 add(recv_klass, recv_klass, itentry_off); 1251 } 1252 1253 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 1254 // if (scan->interface() == intf) { 1255 // result = (klass + scan->offset() + itable_index); 1256 // } 1257 // } 1258 Label search, found_method; 1259 1260 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1261 cmp(intf_klass, method_result); 1262 br(Assembler::EQ, found_method); 1263 bind(search); 1264 // Check that the previous entry is non-null. A null entry means that 1265 // the receiver class doesn't implement the interface, and wasn't the 1266 // same as when the caller was compiled. 1267 cbz(method_result, L_no_such_interface); 1268 if (itableOffsetEntry::interface_offset() != 0) { 1269 add(scan_temp, scan_temp, scan_step); 1270 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1271 } else { 1272 ldr(method_result, Address(pre(scan_temp, scan_step))); 1273 } 1274 cmp(intf_klass, method_result); 1275 br(Assembler::NE, search); 1276 1277 bind(found_method); 1278 1279 // Got a hit. 1280 if (return_method) { 1281 ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 1282 ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0))); 1283 } 1284 } 1285 1286 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 1287 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData 1288 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 1289 // The target method is determined by <holder_klass, itable_index>. 1290 // The receiver klass is in recv_klass. 1291 // On success, the result will be in method_result, and execution falls through. 1292 // On failure, execution transfers to the given label. 1293 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 1294 Register holder_klass, 1295 Register resolved_klass, 1296 Register method_result, 1297 Register temp_itbl_klass, 1298 Register scan_temp, 1299 int itable_index, 1300 Label& L_no_such_interface) { 1301 // 'method_result' is only used as output register at the very end of this method. 1302 // Until then we can reuse it as 'holder_offset'. 1303 Register holder_offset = method_result; 1304 assert_different_registers(resolved_klass, recv_klass, holder_klass, temp_itbl_klass, scan_temp, holder_offset); 1305 1306 int vtable_start_offset = in_bytes(Klass::vtable_start_offset()); 1307 int itable_offset_entry_size = itableOffsetEntry::size() * wordSize; 1308 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 1309 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 1310 1311 Label L_loop_search_resolved_entry, L_resolved_found, L_holder_found; 1312 1313 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1314 add(recv_klass, recv_klass, vtable_start_offset + ioffset); 1315 // itableOffsetEntry[] itable = recv_klass + Klass::vtable_start_offset() + sizeof(vtableEntry) * recv_klass->_vtable_len; 1316 // temp_itbl_klass = itable[0]._interface; 1317 int vtblEntrySize = vtableEntry::size_in_bytes(); 1318 assert(vtblEntrySize == wordSize, "ldr lsl shift amount must be 3"); 1319 ldr(temp_itbl_klass, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1320 mov(holder_offset, zr); 1321 // scan_temp = &(itable[0]._interface) 1322 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1323 1324 // Initial checks: 1325 // - if (holder_klass != resolved_klass), go to "scan for resolved" 1326 // - if (itable[0] == holder_klass), shortcut to "holder found" 1327 // - if (itable[0] == 0), no such interface 1328 cmp(resolved_klass, holder_klass); 1329 br(Assembler::NE, L_loop_search_resolved_entry); 1330 cmp(holder_klass, temp_itbl_klass); 1331 br(Assembler::EQ, L_holder_found); 1332 cbz(temp_itbl_klass, L_no_such_interface); 1333 1334 // Loop: Look for holder_klass record in itable 1335 // do { 1336 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1337 // if (temp_itbl_klass == holder_klass) { 1338 // goto L_holder_found; // Found! 1339 // } 1340 // } while (temp_itbl_klass != 0); 1341 // goto L_no_such_interface // Not found. 1342 Label L_search_holder; 1343 bind(L_search_holder); 1344 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1345 cmp(holder_klass, temp_itbl_klass); 1346 br(Assembler::EQ, L_holder_found); 1347 cbnz(temp_itbl_klass, L_search_holder); 1348 1349 b(L_no_such_interface); 1350 1351 // Loop: Look for resolved_class record in itable 1352 // while (true) { 1353 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1354 // if (temp_itbl_klass == 0) { 1355 // goto L_no_such_interface; 1356 // } 1357 // if (temp_itbl_klass == resolved_klass) { 1358 // goto L_resolved_found; // Found! 1359 // } 1360 // if (temp_itbl_klass == holder_klass) { 1361 // holder_offset = scan_temp; 1362 // } 1363 // } 1364 // 1365 Label L_loop_search_resolved; 1366 bind(L_loop_search_resolved); 1367 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1368 bind(L_loop_search_resolved_entry); 1369 cbz(temp_itbl_klass, L_no_such_interface); 1370 cmp(resolved_klass, temp_itbl_klass); 1371 br(Assembler::EQ, L_resolved_found); 1372 cmp(holder_klass, temp_itbl_klass); 1373 br(Assembler::NE, L_loop_search_resolved); 1374 mov(holder_offset, scan_temp); 1375 b(L_loop_search_resolved); 1376 1377 // See if we already have a holder klass. If not, go and scan for it. 1378 bind(L_resolved_found); 1379 cbz(holder_offset, L_search_holder); 1380 mov(scan_temp, holder_offset); 1381 1382 // Finally, scan_temp contains holder_klass vtable offset 1383 bind(L_holder_found); 1384 ldrw(method_result, Address(scan_temp, ooffset - ioffset)); 1385 add(recv_klass, recv_klass, itable_index * wordSize + in_bytes(itableMethodEntry::method_offset()) 1386 - vtable_start_offset - ioffset); // substract offsets to restore the original value of recv_klass 1387 ldr(method_result, Address(recv_klass, method_result, Address::uxtw(0))); 1388 } 1389 1390 // virtual method calling 1391 void MacroAssembler::lookup_virtual_method(Register recv_klass, 1392 RegisterOrConstant vtable_index, 1393 Register method_result) { 1394 assert(vtableEntry::size() * wordSize == 8, 1395 "adjust the scaling in the code below"); 1396 int64_t vtable_offset_in_bytes = in_bytes(Klass::vtable_start_offset() + vtableEntry::method_offset()); 1397 1398 if (vtable_index.is_register()) { 1399 lea(method_result, Address(recv_klass, 1400 vtable_index.as_register(), 1401 Address::lsl(LogBytesPerWord))); 1402 ldr(method_result, Address(method_result, vtable_offset_in_bytes)); 1403 } else { 1404 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize; 1405 ldr(method_result, 1406 form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0)); 1407 } 1408 } 1409 1410 void MacroAssembler::check_klass_subtype(Register sub_klass, 1411 Register super_klass, 1412 Register temp_reg, 1413 Label& L_success) { 1414 Label L_failure; 1415 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 1416 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 1417 bind(L_failure); 1418 } 1419 1420 1421 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 1422 Register super_klass, 1423 Register temp_reg, 1424 Label* L_success, 1425 Label* L_failure, 1426 Label* L_slow_path, 1427 Register super_check_offset) { 1428 assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset); 1429 bool must_load_sco = ! super_check_offset->is_valid(); 1430 if (must_load_sco) { 1431 assert(temp_reg != noreg, "supply either a temp or a register offset"); 1432 } 1433 1434 Label L_fallthrough; 1435 int label_nulls = 0; 1436 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1437 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1438 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 1439 assert(label_nulls <= 1, "at most one null in the batch"); 1440 1441 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1442 Address super_check_offset_addr(super_klass, sco_offset); 1443 1444 // Hacked jmp, which may only be used just before L_fallthrough. 1445 #define final_jmp(label) \ 1446 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 1447 else b(label) /*omit semi*/ 1448 1449 // If the pointers are equal, we are done (e.g., String[] elements). 1450 // This self-check enables sharing of secondary supertype arrays among 1451 // non-primary types such as array-of-interface. Otherwise, each such 1452 // type would need its own customized SSA. 1453 // We move this check to the front of the fast path because many 1454 // type checks are in fact trivially successful in this manner, 1455 // so we get a nicely predicted branch right at the start of the check. 1456 cmp(sub_klass, super_klass); 1457 br(Assembler::EQ, *L_success); 1458 1459 // Check the supertype display: 1460 if (must_load_sco) { 1461 ldrw(temp_reg, super_check_offset_addr); 1462 super_check_offset = temp_reg; 1463 } 1464 1465 Address super_check_addr(sub_klass, super_check_offset); 1466 ldr(rscratch1, super_check_addr); 1467 cmp(super_klass, rscratch1); // load displayed supertype 1468 br(Assembler::EQ, *L_success); 1469 1470 // This check has worked decisively for primary supers. 1471 // Secondary supers are sought in the super_cache ('super_cache_addr'). 1472 // (Secondary supers are interfaces and very deeply nested subtypes.) 1473 // This works in the same check above because of a tricky aliasing 1474 // between the super_cache and the primary super display elements. 1475 // (The 'super_check_addr' can address either, as the case requires.) 1476 // Note that the cache is updated below if it does not help us find 1477 // what we need immediately. 1478 // So if it was a primary super, we can just fail immediately. 1479 // Otherwise, it's the slow path for us (no success at this point). 1480 1481 sub(rscratch1, super_check_offset, in_bytes(Klass::secondary_super_cache_offset())); 1482 if (L_failure == &L_fallthrough) { 1483 cbz(rscratch1, *L_slow_path); 1484 } else { 1485 cbnz(rscratch1, *L_failure); 1486 final_jmp(*L_slow_path); 1487 } 1488 1489 bind(L_fallthrough); 1490 1491 #undef final_jmp 1492 } 1493 1494 // These two are taken from x86, but they look generally useful 1495 1496 // scans count pointer sized words at [addr] for occurrence of value, 1497 // generic 1498 void MacroAssembler::repne_scan(Register addr, Register value, Register count, 1499 Register scratch) { 1500 Label Lloop, Lexit; 1501 cbz(count, Lexit); 1502 bind(Lloop); 1503 ldr(scratch, post(addr, wordSize)); 1504 cmp(value, scratch); 1505 br(EQ, Lexit); 1506 sub(count, count, 1); 1507 cbnz(count, Lloop); 1508 bind(Lexit); 1509 } 1510 1511 // scans count 4 byte words at [addr] for occurrence of value, 1512 // generic 1513 void MacroAssembler::repne_scanw(Register addr, Register value, Register count, 1514 Register scratch) { 1515 Label Lloop, Lexit; 1516 cbz(count, Lexit); 1517 bind(Lloop); 1518 ldrw(scratch, post(addr, wordSize)); 1519 cmpw(value, scratch); 1520 br(EQ, Lexit); 1521 sub(count, count, 1); 1522 cbnz(count, Lloop); 1523 bind(Lexit); 1524 } 1525 1526 void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass, 1527 Register super_klass, 1528 Register temp_reg, 1529 Register temp2_reg, 1530 Label* L_success, 1531 Label* L_failure, 1532 bool set_cond_codes) { 1533 // NB! Callers may assume that, when temp2_reg is a valid register, 1534 // this code sets it to a nonzero value. 1535 1536 assert_different_registers(sub_klass, super_klass, temp_reg); 1537 if (temp2_reg != noreg) 1538 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1539 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 1540 1541 Label L_fallthrough; 1542 int label_nulls = 0; 1543 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1544 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1545 assert(label_nulls <= 1, "at most one null in the batch"); 1546 1547 // a couple of useful fields in sub_klass: 1548 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 1549 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1550 Address secondary_supers_addr(sub_klass, ss_offset); 1551 Address super_cache_addr( sub_klass, sc_offset); 1552 1553 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1554 1555 // Do a linear scan of the secondary super-klass chain. 1556 // This code is rarely used, so simplicity is a virtue here. 1557 // The repne_scan instruction uses fixed registers, which we must spill. 1558 // Don't worry too much about pre-existing connections with the input regs. 1559 1560 assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super) 1561 assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter) 1562 1563 RegSet pushed_registers; 1564 if (!IS_A_TEMP(r2)) pushed_registers += r2; 1565 if (!IS_A_TEMP(r5)) pushed_registers += r5; 1566 1567 if (super_klass != r0) { 1568 if (!IS_A_TEMP(r0)) pushed_registers += r0; 1569 } 1570 1571 push(pushed_registers, sp); 1572 1573 // Get super_klass value into r0 (even if it was in r5 or r2). 1574 if (super_klass != r0) { 1575 mov(r0, super_klass); 1576 } 1577 1578 #ifndef PRODUCT 1579 incrementw(ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr)); 1580 #endif //PRODUCT 1581 1582 // We will consult the secondary-super array. 1583 ldr(r5, secondary_supers_addr); 1584 // Load the array length. 1585 ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes())); 1586 // Skip to start of data. 1587 add(r5, r5, Array<Klass*>::base_offset_in_bytes()); 1588 1589 cmp(sp, zr); // Clear Z flag; SP is never zero 1590 // Scan R2 words at [R5] for an occurrence of R0. 1591 // Set NZ/Z based on last compare. 1592 repne_scan(r5, r0, r2, rscratch1); 1593 1594 // Unspill the temp. registers: 1595 pop(pushed_registers, sp); 1596 1597 br(Assembler::NE, *L_failure); 1598 1599 // Success. Cache the super we found and proceed in triumph. 1600 1601 if (UseSecondarySupersCache) { 1602 str(super_klass, super_cache_addr); 1603 } 1604 1605 if (L_success != &L_fallthrough) { 1606 b(*L_success); 1607 } 1608 1609 #undef IS_A_TEMP 1610 1611 bind(L_fallthrough); 1612 } 1613 1614 // If Register r is invalid, remove a new register from 1615 // available_regs, and add new register to regs_to_push. 1616 Register MacroAssembler::allocate_if_noreg(Register r, 1617 RegSetIterator<Register> &available_regs, 1618 RegSet ®s_to_push) { 1619 if (!r->is_valid()) { 1620 r = *available_regs++; 1621 regs_to_push += r; 1622 } 1623 return r; 1624 } 1625 1626 // check_klass_subtype_slow_path_table() looks for super_klass in the 1627 // hash table belonging to super_klass, branching to L_success or 1628 // L_failure as appropriate. This is essentially a shim which 1629 // allocates registers as necessary then calls 1630 // lookup_secondary_supers_table() to do the work. Any of the temp 1631 // regs may be noreg, in which case this logic will chooses some 1632 // registers push and pop them from the stack. 1633 void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass, 1634 Register super_klass, 1635 Register temp_reg, 1636 Register temp2_reg, 1637 Register temp3_reg, 1638 Register result_reg, 1639 FloatRegister vtemp, 1640 Label* L_success, 1641 Label* L_failure, 1642 bool set_cond_codes) { 1643 RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg); 1644 1645 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1646 1647 Label L_fallthrough; 1648 int label_nulls = 0; 1649 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1650 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1651 assert(label_nulls <= 1, "at most one null in the batch"); 1652 1653 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1654 1655 RegSetIterator<Register> available_regs 1656 = (RegSet::range(r0, r15) - temps - sub_klass - super_klass).begin(); 1657 1658 RegSet pushed_regs; 1659 1660 temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs); 1661 temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs); 1662 temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs); 1663 result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs); 1664 1665 push(pushed_regs, sp); 1666 1667 lookup_secondary_supers_table_var(sub_klass, 1668 super_klass, 1669 temp_reg, temp2_reg, temp3_reg, vtemp, result_reg, 1670 nullptr); 1671 cmp(result_reg, zr); 1672 1673 // Unspill the temp. registers: 1674 pop(pushed_regs, sp); 1675 1676 // NB! Callers may assume that, when set_cond_codes is true, this 1677 // code sets temp2_reg to a nonzero value. 1678 if (set_cond_codes) { 1679 mov(temp2_reg, 1); 1680 } 1681 1682 br(Assembler::NE, *L_failure); 1683 1684 if (L_success != &L_fallthrough) { 1685 b(*L_success); 1686 } 1687 1688 bind(L_fallthrough); 1689 } 1690 1691 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 1692 Register super_klass, 1693 Register temp_reg, 1694 Register temp2_reg, 1695 Label* L_success, 1696 Label* L_failure, 1697 bool set_cond_codes) { 1698 if (UseSecondarySupersTable) { 1699 check_klass_subtype_slow_path_table 1700 (sub_klass, super_klass, temp_reg, temp2_reg, /*temp3*/noreg, /*result*/noreg, 1701 /*vtemp*/fnoreg, 1702 L_success, L_failure, set_cond_codes); 1703 } else { 1704 check_klass_subtype_slow_path_linear 1705 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, set_cond_codes); 1706 } 1707 } 1708 1709 1710 // Ensure that the inline code and the stub are using the same registers. 1711 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \ 1712 do { \ 1713 assert(r_super_klass == r0 && \ 1714 r_array_base == r1 && \ 1715 r_array_length == r2 && \ 1716 (r_array_index == r3 || r_array_index == noreg) && \ 1717 (r_sub_klass == r4 || r_sub_klass == noreg) && \ 1718 (r_bitmap == rscratch2 || r_bitmap == noreg) && \ 1719 (result == r5 || result == noreg), "registers must match aarch64.ad"); \ 1720 } while(0) 1721 1722 bool MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass, 1723 Register r_super_klass, 1724 Register temp1, 1725 Register temp2, 1726 Register temp3, 1727 FloatRegister vtemp, 1728 Register result, 1729 u1 super_klass_slot, 1730 bool stub_is_near) { 1731 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1732 1733 Label L_fallthrough; 1734 1735 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1736 1737 const Register 1738 r_array_base = temp1, // r1 1739 r_array_length = temp2, // r2 1740 r_array_index = temp3, // r3 1741 r_bitmap = rscratch2; 1742 1743 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1744 1745 u1 bit = super_klass_slot; 1746 1747 // Make sure that result is nonzero if the TBZ below misses. 1748 mov(result, 1); 1749 1750 // We're going to need the bitmap in a vector reg and in a core reg, 1751 // so load both now. 1752 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1753 if (bit != 0) { 1754 ldrd(vtemp, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1755 } 1756 // First check the bitmap to see if super_klass might be present. If 1757 // the bit is zero, we are certain that super_klass is not one of 1758 // the secondary supers. 1759 tbz(r_bitmap, bit, L_fallthrough); 1760 1761 // Get the first array index that can contain super_klass into r_array_index. 1762 if (bit != 0) { 1763 shld(vtemp, vtemp, Klass::SECONDARY_SUPERS_TABLE_MASK - bit); 1764 cnt(vtemp, T8B, vtemp); 1765 addv(vtemp, T8B, vtemp); 1766 fmovd(r_array_index, vtemp); 1767 } else { 1768 mov(r_array_index, (u1)1); 1769 } 1770 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1771 1772 // We will consult the secondary-super array. 1773 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1774 1775 // The value i in r_array_index is >= 1, so even though r_array_base 1776 // points to the length, we don't need to adjust it to point to the 1777 // data. 1778 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1779 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1780 1781 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1782 eor(result, result, r_super_klass); 1783 cbz(result, L_fallthrough); // Found a match 1784 1785 // Is there another entry to check? Consult the bitmap. 1786 tbz(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK, L_fallthrough); 1787 1788 // Linear probe. 1789 if (bit != 0) { 1790 ror(r_bitmap, r_bitmap, bit); 1791 } 1792 1793 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1794 // The next slot to be inspected, by the stub we're about to call, 1795 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1796 // have been checked. 1797 Address stub = RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub()); 1798 if (stub_is_near) { 1799 bl(stub); 1800 } else { 1801 address call = trampoline_call(stub); 1802 if (call == nullptr) { 1803 return false; // trampoline allocation failed 1804 } 1805 } 1806 1807 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1808 1809 bind(L_fallthrough); 1810 1811 if (VerifySecondarySupers) { 1812 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1813 temp1, temp2, result); // r1, r2, r5 1814 } 1815 return true; 1816 } 1817 1818 // At runtime, return 0 in result if r_super_klass is a superclass of 1819 // r_sub_klass, otherwise return nonzero. Use this version of 1820 // lookup_secondary_supers_table() if you don't know ahead of time 1821 // which superclass will be searched for. Used by interpreter and 1822 // runtime stubs. It is larger and has somewhat greater latency than 1823 // the version above, which takes a constant super_klass_slot. 1824 void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass, 1825 Register r_super_klass, 1826 Register temp1, 1827 Register temp2, 1828 Register temp3, 1829 FloatRegister vtemp, 1830 Register result, 1831 Label *L_success) { 1832 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1833 1834 Label L_fallthrough; 1835 1836 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1837 1838 const Register 1839 r_array_index = temp3, 1840 slot = rscratch1, 1841 r_bitmap = rscratch2; 1842 1843 ldrb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 1844 1845 // Make sure that result is nonzero if the test below misses. 1846 mov(result, 1); 1847 1848 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1849 1850 // First check the bitmap to see if super_klass might be present. If 1851 // the bit is zero, we are certain that super_klass is not one of 1852 // the secondary supers. 1853 1854 // This next instruction is equivalent to: 1855 // mov(tmp_reg, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); 1856 // sub(temp2, tmp_reg, slot); 1857 eor(temp2, slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); 1858 lslv(temp2, r_bitmap, temp2); 1859 tbz(temp2, Klass::SECONDARY_SUPERS_TABLE_SIZE - 1, L_fallthrough); 1860 1861 bool must_save_v0 = (vtemp == fnoreg); 1862 if (must_save_v0) { 1863 // temp1 and result are free, so use them to preserve vtemp 1864 vtemp = v0; 1865 mov(temp1, vtemp, D, 0); 1866 mov(result, vtemp, D, 1); 1867 } 1868 1869 // Get the first array index that can contain super_klass into r_array_index. 1870 mov(vtemp, D, 0, temp2); 1871 cnt(vtemp, T8B, vtemp); 1872 addv(vtemp, T8B, vtemp); 1873 mov(r_array_index, vtemp, D, 0); 1874 1875 if (must_save_v0) { 1876 mov(vtemp, D, 0, temp1 ); 1877 mov(vtemp, D, 1, result); 1878 } 1879 1880 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1881 1882 const Register 1883 r_array_base = temp1, 1884 r_array_length = temp2; 1885 1886 // The value i in r_array_index is >= 1, so even though r_array_base 1887 // points to the length, we don't need to adjust it to point to the 1888 // data. 1889 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1890 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1891 1892 // We will consult the secondary-super array. 1893 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1894 1895 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1896 eor(result, result, r_super_klass); 1897 cbz(result, L_success ? *L_success : L_fallthrough); // Found a match 1898 1899 // Is there another entry to check? Consult the bitmap. 1900 rorv(r_bitmap, r_bitmap, slot); 1901 // rol(r_bitmap, r_bitmap, 1); 1902 tbz(r_bitmap, 1, L_fallthrough); 1903 1904 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1905 // The next slot to be inspected, by the logic we're about to call, 1906 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1907 // have been checked. 1908 lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index, 1909 r_bitmap, r_array_length, result, /*is_stub*/false); 1910 1911 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1912 1913 bind(L_fallthrough); 1914 1915 if (VerifySecondarySupers) { 1916 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1917 temp1, temp2, result); // r1, r2, r5 1918 } 1919 1920 if (L_success) { 1921 cbz(result, *L_success); 1922 } 1923 } 1924 1925 // Called by code generated by check_klass_subtype_slow_path 1926 // above. This is called when there is a collision in the hashed 1927 // lookup in the secondary supers array. 1928 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass, 1929 Register r_array_base, 1930 Register r_array_index, 1931 Register r_bitmap, 1932 Register temp1, 1933 Register result, 1934 bool is_stub) { 1935 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, result, rscratch1); 1936 1937 const Register 1938 r_array_length = temp1, 1939 r_sub_klass = noreg; // unused 1940 1941 if (is_stub) { 1942 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1943 } 1944 1945 Label L_fallthrough, L_huge; 1946 1947 // Load the array length. 1948 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 1949 // And adjust the array base to point to the data. 1950 // NB! Effectively increments current slot index by 1. 1951 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, ""); 1952 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 1953 1954 // The bitmap is full to bursting. 1955 // Implicit invariant: BITMAP_FULL implies (length > 0) 1956 assert(Klass::SECONDARY_SUPERS_BITMAP_FULL == ~uintx(0), ""); 1957 cmpw(r_array_length, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 2)); 1958 br(GT, L_huge); 1959 1960 // NB! Our caller has checked bits 0 and 1 in the bitmap. The 1961 // current slot (at secondary_supers[r_array_index]) has not yet 1962 // been inspected, and r_array_index may be out of bounds if we 1963 // wrapped around the end of the array. 1964 1965 { // This is conventional linear probing, but instead of terminating 1966 // when a null entry is found in the table, we maintain a bitmap 1967 // in which a 0 indicates missing entries. 1968 // As long as the bitmap is not completely full, 1969 // array_length == popcount(bitmap). The array_length check above 1970 // guarantees there are 0s in the bitmap, so the loop eventually 1971 // terminates. 1972 Label L_loop; 1973 bind(L_loop); 1974 1975 // Check for wraparound. 1976 cmp(r_array_index, r_array_length); 1977 csel(r_array_index, zr, r_array_index, GE); 1978 1979 ldr(rscratch1, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1980 eor(result, rscratch1, r_super_klass); 1981 cbz(result, L_fallthrough); 1982 1983 tbz(r_bitmap, 2, L_fallthrough); // look-ahead check (Bit 2); result is non-zero 1984 1985 ror(r_bitmap, r_bitmap, 1); 1986 add(r_array_index, r_array_index, 1); 1987 b(L_loop); 1988 } 1989 1990 { // Degenerate case: more than 64 secondary supers. 1991 // FIXME: We could do something smarter here, maybe a vectorized 1992 // comparison or a binary search, but is that worth any added 1993 // complexity? 1994 bind(L_huge); 1995 cmp(sp, zr); // Clear Z flag; SP is never zero 1996 repne_scan(r_array_base, r_super_klass, r_array_length, rscratch1); 1997 cset(result, NE); // result == 0 iff we got a match. 1998 } 1999 2000 bind(L_fallthrough); 2001 } 2002 2003 // Make sure that the hashed lookup and a linear scan agree. 2004 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass, 2005 Register r_super_klass, 2006 Register temp1, 2007 Register temp2, 2008 Register result) { 2009 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, result, rscratch1); 2010 2011 const Register 2012 r_array_base = temp1, 2013 r_array_length = temp2, 2014 r_array_index = noreg, // unused 2015 r_bitmap = noreg; // unused 2016 2017 BLOCK_COMMENT("verify_secondary_supers_table {"); 2018 2019 // We will consult the secondary-super array. 2020 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 2021 2022 // Load the array length. 2023 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 2024 // And adjust the array base to point to the data. 2025 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 2026 2027 cmp(sp, zr); // Clear Z flag; SP is never zero 2028 // Scan R2 words at [R5] for an occurrence of R0. 2029 // Set NZ/Z based on last compare. 2030 repne_scan(/*addr*/r_array_base, /*value*/r_super_klass, /*count*/r_array_length, rscratch2); 2031 // rscratch1 == 0 iff we got a match. 2032 cset(rscratch1, NE); 2033 2034 Label passed; 2035 cmp(result, zr); 2036 cset(result, NE); // normalize result to 0/1 for comparison 2037 2038 cmp(rscratch1, result); 2039 br(EQ, passed); 2040 { 2041 mov(r0, r_super_klass); // r0 <- r0 2042 mov(r1, r_sub_klass); // r1 <- r4 2043 mov(r2, /*expected*/rscratch1); // r2 <- r8 2044 mov(r3, result); // r3 <- r5 2045 mov(r4, (address)("mismatch")); // r4 <- const 2046 rt_call(CAST_FROM_FN_PTR(address, Klass::on_secondary_supers_verification_failure), rscratch2); 2047 should_not_reach_here(); 2048 } 2049 bind(passed); 2050 2051 BLOCK_COMMENT("} verify_secondary_supers_table"); 2052 } 2053 2054 void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) { 2055 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 2056 assert_different_registers(klass, rthread, scratch); 2057 2058 Label L_fallthrough, L_tmp; 2059 if (L_fast_path == nullptr) { 2060 L_fast_path = &L_fallthrough; 2061 } else if (L_slow_path == nullptr) { 2062 L_slow_path = &L_fallthrough; 2063 } 2064 // Fast path check: class is fully initialized 2065 lea(scratch, Address(klass, InstanceKlass::init_state_offset())); 2066 ldarb(scratch, scratch); 2067 cmp(scratch, InstanceKlass::fully_initialized); 2068 br(Assembler::EQ, *L_fast_path); 2069 2070 // Fast path check: current thread is initializer thread 2071 ldr(scratch, Address(klass, InstanceKlass::init_thread_offset())); 2072 cmp(rthread, scratch); 2073 2074 if (L_slow_path == &L_fallthrough) { 2075 br(Assembler::EQ, *L_fast_path); 2076 bind(*L_slow_path); 2077 } else if (L_fast_path == &L_fallthrough) { 2078 br(Assembler::NE, *L_slow_path); 2079 bind(*L_fast_path); 2080 } else { 2081 Unimplemented(); 2082 } 2083 } 2084 2085 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 2086 if (!VerifyOops) return; 2087 2088 // Pass register number to verify_oop_subroutine 2089 const char* b = nullptr; 2090 { 2091 ResourceMark rm; 2092 stringStream ss; 2093 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 2094 b = code_string(ss.as_string()); 2095 } 2096 BLOCK_COMMENT("verify_oop {"); 2097 2098 strip_return_address(); // This might happen within a stack frame. 2099 protect_return_address(); 2100 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 2101 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 2102 2103 mov(r0, reg); 2104 movptr(rscratch1, (uintptr_t)(address)b); 2105 2106 // call indirectly to solve generation ordering problem 2107 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address())); 2108 ldr(rscratch2, Address(rscratch2)); 2109 blr(rscratch2); 2110 2111 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 2112 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 2113 authenticate_return_address(); 2114 2115 BLOCK_COMMENT("} verify_oop"); 2116 } 2117 2118 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 2119 if (!VerifyOops) return; 2120 2121 const char* b = nullptr; 2122 { 2123 ResourceMark rm; 2124 stringStream ss; 2125 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 2126 b = code_string(ss.as_string()); 2127 } 2128 BLOCK_COMMENT("verify_oop_addr {"); 2129 2130 strip_return_address(); // This might happen within a stack frame. 2131 protect_return_address(); 2132 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 2133 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 2134 2135 // addr may contain sp so we will have to adjust it based on the 2136 // pushes that we just did. 2137 if (addr.uses(sp)) { 2138 lea(r0, addr); 2139 ldr(r0, Address(r0, 4 * wordSize)); 2140 } else { 2141 ldr(r0, addr); 2142 } 2143 movptr(rscratch1, (uintptr_t)(address)b); 2144 2145 // call indirectly to solve generation ordering problem 2146 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address())); 2147 ldr(rscratch2, Address(rscratch2)); 2148 blr(rscratch2); 2149 2150 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 2151 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 2152 authenticate_return_address(); 2153 2154 BLOCK_COMMENT("} verify_oop_addr"); 2155 } 2156 2157 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 2158 int extra_slot_offset) { 2159 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 2160 int stackElementSize = Interpreter::stackElementSize; 2161 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 2162 #ifdef ASSERT 2163 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 2164 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 2165 #endif 2166 if (arg_slot.is_constant()) { 2167 return Address(esp, arg_slot.as_constant() * stackElementSize 2168 + offset); 2169 } else { 2170 add(rscratch1, esp, arg_slot.as_register(), 2171 ext::uxtx, exact_log2(stackElementSize)); 2172 return Address(rscratch1, offset); 2173 } 2174 } 2175 2176 void MacroAssembler::call_VM_leaf_base(address entry_point, 2177 int number_of_arguments, 2178 Label *retaddr) { 2179 Label E, L; 2180 2181 stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize))); 2182 2183 mov(rscratch1, RuntimeAddress(entry_point)); 2184 blr(rscratch1); 2185 if (retaddr) 2186 bind(*retaddr); 2187 2188 ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize))); 2189 } 2190 2191 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 2192 call_VM_leaf_base(entry_point, number_of_arguments); 2193 } 2194 2195 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 2196 pass_arg0(this, arg_0); 2197 call_VM_leaf_base(entry_point, 1); 2198 } 2199 2200 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 2201 assert_different_registers(arg_1, c_rarg0); 2202 pass_arg0(this, arg_0); 2203 pass_arg1(this, arg_1); 2204 call_VM_leaf_base(entry_point, 2); 2205 } 2206 2207 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, 2208 Register arg_1, Register arg_2) { 2209 assert_different_registers(arg_1, c_rarg0); 2210 assert_different_registers(arg_2, c_rarg0, c_rarg1); 2211 pass_arg0(this, arg_0); 2212 pass_arg1(this, arg_1); 2213 pass_arg2(this, arg_2); 2214 call_VM_leaf_base(entry_point, 3); 2215 } 2216 2217 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 2218 pass_arg0(this, arg_0); 2219 MacroAssembler::call_VM_leaf_base(entry_point, 1); 2220 } 2221 2222 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 2223 2224 assert_different_registers(arg_0, c_rarg1); 2225 pass_arg1(this, arg_1); 2226 pass_arg0(this, arg_0); 2227 MacroAssembler::call_VM_leaf_base(entry_point, 2); 2228 } 2229 2230 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 2231 assert_different_registers(arg_0, c_rarg1, c_rarg2); 2232 assert_different_registers(arg_1, c_rarg2); 2233 pass_arg2(this, arg_2); 2234 pass_arg1(this, arg_1); 2235 pass_arg0(this, arg_0); 2236 MacroAssembler::call_VM_leaf_base(entry_point, 3); 2237 } 2238 2239 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 2240 assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3); 2241 assert_different_registers(arg_1, c_rarg2, c_rarg3); 2242 assert_different_registers(arg_2, c_rarg3); 2243 pass_arg3(this, arg_3); 2244 pass_arg2(this, arg_2); 2245 pass_arg1(this, arg_1); 2246 pass_arg0(this, arg_0); 2247 MacroAssembler::call_VM_leaf_base(entry_point, 4); 2248 } 2249 2250 void MacroAssembler::null_check(Register reg, int offset) { 2251 if (needs_explicit_null_check(offset)) { 2252 // provoke OS null exception if reg is null by 2253 // accessing M[reg] w/o changing any registers 2254 // NOTE: this is plenty to provoke a segv 2255 ldr(zr, Address(reg)); 2256 } else { 2257 // nothing to do, (later) access of M[reg + offset] 2258 // will provoke OS null exception if reg is null 2259 } 2260 } 2261 2262 // MacroAssembler protected routines needed to implement 2263 // public methods 2264 2265 void MacroAssembler::mov(Register r, Address dest) { 2266 code_section()->relocate(pc(), dest.rspec()); 2267 uint64_t imm64 = (uint64_t)dest.target(); 2268 movptr(r, imm64); 2269 } 2270 2271 // Move a constant pointer into r. In AArch64 mode the virtual 2272 // address space is 48 bits in size, so we only need three 2273 // instructions to create a patchable instruction sequence that can 2274 // reach anywhere. 2275 void MacroAssembler::movptr(Register r, uintptr_t imm64) { 2276 #ifndef PRODUCT 2277 { 2278 char buffer[64]; 2279 os::snprintf_checked(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64); 2280 block_comment(buffer); 2281 } 2282 #endif 2283 assert(imm64 < (1ull << 48), "48-bit overflow in address constant"); 2284 movz(r, imm64 & 0xffff); 2285 imm64 >>= 16; 2286 movk(r, imm64 & 0xffff, 16); 2287 imm64 >>= 16; 2288 movk(r, imm64 & 0xffff, 32); 2289 } 2290 2291 // Macro to mov replicated immediate to vector register. 2292 // imm64: only the lower 8/16/32 bits are considered for B/H/S type. That is, 2293 // the upper 56/48/32 bits must be zeros for B/H/S type. 2294 // Vd will get the following values for different arrangements in T 2295 // imm64 == hex 000000gh T8B: Vd = ghghghghghghghgh 2296 // imm64 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh 2297 // imm64 == hex 0000efgh T4H: Vd = efghefghefghefgh 2298 // imm64 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh 2299 // imm64 == hex abcdefgh T2S: Vd = abcdefghabcdefgh 2300 // imm64 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh 2301 // imm64 == hex abcdefgh T1D: Vd = 00000000abcdefgh 2302 // imm64 == hex abcdefgh T2D: Vd = 00000000abcdefgh00000000abcdefgh 2303 // Clobbers rscratch1 2304 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64) { 2305 assert(T != T1Q, "unsupported"); 2306 if (T == T1D || T == T2D) { 2307 int imm = operand_valid_for_movi_immediate(imm64, T); 2308 if (-1 != imm) { 2309 movi(Vd, T, imm); 2310 } else { 2311 mov(rscratch1, imm64); 2312 dup(Vd, T, rscratch1); 2313 } 2314 return; 2315 } 2316 2317 #ifdef ASSERT 2318 if (T == T8B || T == T16B) assert((imm64 & ~0xff) == 0, "extraneous bits (T8B/T16B)"); 2319 if (T == T4H || T == T8H) assert((imm64 & ~0xffff) == 0, "extraneous bits (T4H/T8H)"); 2320 if (T == T2S || T == T4S) assert((imm64 & ~0xffffffff) == 0, "extraneous bits (T2S/T4S)"); 2321 #endif 2322 int shift = operand_valid_for_movi_immediate(imm64, T); 2323 uint32_t imm32 = imm64 & 0xffffffffULL; 2324 if (shift >= 0) { 2325 movi(Vd, T, (imm32 >> shift) & 0xff, shift); 2326 } else { 2327 movw(rscratch1, imm32); 2328 dup(Vd, T, rscratch1); 2329 } 2330 } 2331 2332 void MacroAssembler::mov_immediate64(Register dst, uint64_t imm64) 2333 { 2334 #ifndef PRODUCT 2335 { 2336 char buffer[64]; 2337 os::snprintf_checked(buffer, sizeof(buffer), "0x%" PRIX64, imm64); 2338 block_comment(buffer); 2339 } 2340 #endif 2341 if (operand_valid_for_logical_immediate(false, imm64)) { 2342 orr(dst, zr, imm64); 2343 } else { 2344 // we can use a combination of MOVZ or MOVN with 2345 // MOVK to build up the constant 2346 uint64_t imm_h[4]; 2347 int zero_count = 0; 2348 int neg_count = 0; 2349 int i; 2350 for (i = 0; i < 4; i++) { 2351 imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL); 2352 if (imm_h[i] == 0) { 2353 zero_count++; 2354 } else if (imm_h[i] == 0xffffL) { 2355 neg_count++; 2356 } 2357 } 2358 if (zero_count == 4) { 2359 // one MOVZ will do 2360 movz(dst, 0); 2361 } else if (neg_count == 4) { 2362 // one MOVN will do 2363 movn(dst, 0); 2364 } else if (zero_count == 3) { 2365 for (i = 0; i < 4; i++) { 2366 if (imm_h[i] != 0L) { 2367 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2368 break; 2369 } 2370 } 2371 } else if (neg_count == 3) { 2372 // one MOVN will do 2373 for (int i = 0; i < 4; i++) { 2374 if (imm_h[i] != 0xffffL) { 2375 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2376 break; 2377 } 2378 } 2379 } else if (zero_count == 2) { 2380 // one MOVZ and one MOVK will do 2381 for (i = 0; i < 3; i++) { 2382 if (imm_h[i] != 0L) { 2383 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2384 i++; 2385 break; 2386 } 2387 } 2388 for (;i < 4; i++) { 2389 if (imm_h[i] != 0L) { 2390 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2391 } 2392 } 2393 } else if (neg_count == 2) { 2394 // one MOVN and one MOVK will do 2395 for (i = 0; i < 4; i++) { 2396 if (imm_h[i] != 0xffffL) { 2397 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2398 i++; 2399 break; 2400 } 2401 } 2402 for (;i < 4; i++) { 2403 if (imm_h[i] != 0xffffL) { 2404 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2405 } 2406 } 2407 } else if (zero_count == 1) { 2408 // one MOVZ and two MOVKs will do 2409 for (i = 0; i < 4; i++) { 2410 if (imm_h[i] != 0L) { 2411 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2412 i++; 2413 break; 2414 } 2415 } 2416 for (;i < 4; i++) { 2417 if (imm_h[i] != 0x0L) { 2418 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2419 } 2420 } 2421 } else if (neg_count == 1) { 2422 // one MOVN and two MOVKs will do 2423 for (i = 0; i < 4; i++) { 2424 if (imm_h[i] != 0xffffL) { 2425 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2426 i++; 2427 break; 2428 } 2429 } 2430 for (;i < 4; i++) { 2431 if (imm_h[i] != 0xffffL) { 2432 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2433 } 2434 } 2435 } else { 2436 // use a MOVZ and 3 MOVKs (makes it easier to debug) 2437 movz(dst, (uint32_t)imm_h[0], 0); 2438 for (i = 1; i < 4; i++) { 2439 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2440 } 2441 } 2442 } 2443 } 2444 2445 void MacroAssembler::mov_immediate32(Register dst, uint32_t imm32) 2446 { 2447 #ifndef PRODUCT 2448 { 2449 char buffer[64]; 2450 os::snprintf_checked(buffer, sizeof(buffer), "0x%" PRIX32, imm32); 2451 block_comment(buffer); 2452 } 2453 #endif 2454 if (operand_valid_for_logical_immediate(true, imm32)) { 2455 orrw(dst, zr, imm32); 2456 } else { 2457 // we can use MOVZ, MOVN or two calls to MOVK to build up the 2458 // constant 2459 uint32_t imm_h[2]; 2460 imm_h[0] = imm32 & 0xffff; 2461 imm_h[1] = ((imm32 >> 16) & 0xffff); 2462 if (imm_h[0] == 0) { 2463 movzw(dst, imm_h[1], 16); 2464 } else if (imm_h[0] == 0xffff) { 2465 movnw(dst, imm_h[1] ^ 0xffff, 16); 2466 } else if (imm_h[1] == 0) { 2467 movzw(dst, imm_h[0], 0); 2468 } else if (imm_h[1] == 0xffff) { 2469 movnw(dst, imm_h[0] ^ 0xffff, 0); 2470 } else { 2471 // use a MOVZ and MOVK (makes it easier to debug) 2472 movzw(dst, imm_h[0], 0); 2473 movkw(dst, imm_h[1], 16); 2474 } 2475 } 2476 } 2477 2478 // Form an address from base + offset in Rd. Rd may or may 2479 // not actually be used: you must use the Address that is returned. 2480 // It is up to you to ensure that the shift provided matches the size 2481 // of your data. 2482 Address MacroAssembler::form_address(Register Rd, Register base, int64_t byte_offset, int shift) { 2483 if (Address::offset_ok_for_immed(byte_offset, shift)) 2484 // It fits; no need for any heroics 2485 return Address(base, byte_offset); 2486 2487 // Don't do anything clever with negative or misaligned offsets 2488 unsigned mask = (1 << shift) - 1; 2489 if (byte_offset < 0 || byte_offset & mask) { 2490 mov(Rd, byte_offset); 2491 add(Rd, base, Rd); 2492 return Address(Rd); 2493 } 2494 2495 // See if we can do this with two 12-bit offsets 2496 { 2497 uint64_t word_offset = byte_offset >> shift; 2498 uint64_t masked_offset = word_offset & 0xfff000; 2499 if (Address::offset_ok_for_immed(word_offset - masked_offset, 0) 2500 && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) { 2501 add(Rd, base, masked_offset << shift); 2502 word_offset -= masked_offset; 2503 return Address(Rd, word_offset << shift); 2504 } 2505 } 2506 2507 // Do it the hard way 2508 mov(Rd, byte_offset); 2509 add(Rd, base, Rd); 2510 return Address(Rd); 2511 } 2512 2513 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb, 2514 bool want_remainder, Register scratch) 2515 { 2516 // Full implementation of Java idiv and irem. The function 2517 // returns the (pc) offset of the div instruction - may be needed 2518 // for implicit exceptions. 2519 // 2520 // constraint : ra/rb =/= scratch 2521 // normal case 2522 // 2523 // input : ra: dividend 2524 // rb: divisor 2525 // 2526 // result: either 2527 // quotient (= ra idiv rb) 2528 // remainder (= ra irem rb) 2529 2530 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2531 2532 int idivl_offset = offset(); 2533 if (! want_remainder) { 2534 sdivw(result, ra, rb); 2535 } else { 2536 sdivw(scratch, ra, rb); 2537 Assembler::msubw(result, scratch, rb, ra); 2538 } 2539 2540 return idivl_offset; 2541 } 2542 2543 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb, 2544 bool want_remainder, Register scratch) 2545 { 2546 // Full implementation of Java ldiv and lrem. The function 2547 // returns the (pc) offset of the div instruction - may be needed 2548 // for implicit exceptions. 2549 // 2550 // constraint : ra/rb =/= scratch 2551 // normal case 2552 // 2553 // input : ra: dividend 2554 // rb: divisor 2555 // 2556 // result: either 2557 // quotient (= ra idiv rb) 2558 // remainder (= ra irem rb) 2559 2560 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2561 2562 int idivq_offset = offset(); 2563 if (! want_remainder) { 2564 sdiv(result, ra, rb); 2565 } else { 2566 sdiv(scratch, ra, rb); 2567 Assembler::msub(result, scratch, rb, ra); 2568 } 2569 2570 return idivq_offset; 2571 } 2572 2573 void MacroAssembler::membar(Membar_mask_bits order_constraint) { 2574 address prev = pc() - NativeMembar::instruction_size; 2575 address last = code()->last_insn(); 2576 if (last != nullptr && nativeInstruction_at(last)->is_Membar() && prev == last) { 2577 NativeMembar *bar = NativeMembar_at(prev); 2578 if (AlwaysMergeDMB) { 2579 bar->set_kind(bar->get_kind() | order_constraint); 2580 BLOCK_COMMENT("merged membar(always)"); 2581 return; 2582 } 2583 // Don't promote DMB ST|DMB LD to DMB (a full barrier) because 2584 // doing so would introduce a StoreLoad which the caller did not 2585 // intend 2586 if (bar->get_kind() == order_constraint 2587 || bar->get_kind() == AnyAny 2588 || order_constraint == AnyAny) { 2589 // We are merging two memory barrier instructions. On AArch64 we 2590 // can do this simply by ORing them together. 2591 bar->set_kind(bar->get_kind() | order_constraint); 2592 BLOCK_COMMENT("merged membar"); 2593 return; 2594 } else { 2595 // A special case like "DMB ST;DMB LD;DMB ST", the last DMB can be skipped 2596 // We need check the last 2 instructions 2597 address prev2 = prev - NativeMembar::instruction_size; 2598 if (last != code()->last_label() && nativeInstruction_at(prev2)->is_Membar()) { 2599 NativeMembar *bar2 = NativeMembar_at(prev2); 2600 assert(bar2->get_kind() == order_constraint, "it should be merged before"); 2601 BLOCK_COMMENT("merged membar(elided)"); 2602 return; 2603 } 2604 } 2605 } 2606 code()->set_last_insn(pc()); 2607 dmb(Assembler::barrier(order_constraint)); 2608 } 2609 2610 bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) { 2611 if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) { 2612 merge_ldst(rt, adr, size_in_bytes, is_store); 2613 code()->clear_last_insn(); 2614 return true; 2615 } else { 2616 assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported."); 2617 const uint64_t mask = size_in_bytes - 1; 2618 if (adr.getMode() == Address::base_plus_offset && 2619 (adr.offset() & mask) == 0) { // only supports base_plus_offset. 2620 code()->set_last_insn(pc()); 2621 } 2622 return false; 2623 } 2624 } 2625 2626 void MacroAssembler::ldr(Register Rx, const Address &adr) { 2627 // We always try to merge two adjacent loads into one ldp. 2628 if (!try_merge_ldst(Rx, adr, 8, false)) { 2629 Assembler::ldr(Rx, adr); 2630 } 2631 } 2632 2633 void MacroAssembler::ldrw(Register Rw, const Address &adr) { 2634 // We always try to merge two adjacent loads into one ldp. 2635 if (!try_merge_ldst(Rw, adr, 4, false)) { 2636 Assembler::ldrw(Rw, adr); 2637 } 2638 } 2639 2640 void MacroAssembler::str(Register Rx, const Address &adr) { 2641 // We always try to merge two adjacent stores into one stp. 2642 if (!try_merge_ldst(Rx, adr, 8, true)) { 2643 Assembler::str(Rx, adr); 2644 } 2645 } 2646 2647 void MacroAssembler::strw(Register Rw, const Address &adr) { 2648 // We always try to merge two adjacent stores into one stp. 2649 if (!try_merge_ldst(Rw, adr, 4, true)) { 2650 Assembler::strw(Rw, adr); 2651 } 2652 } 2653 2654 // MacroAssembler routines found actually to be needed 2655 2656 void MacroAssembler::push(Register src) 2657 { 2658 str(src, Address(pre(esp, -1 * wordSize))); 2659 } 2660 2661 void MacroAssembler::pop(Register dst) 2662 { 2663 ldr(dst, Address(post(esp, 1 * wordSize))); 2664 } 2665 2666 // Note: load_unsigned_short used to be called load_unsigned_word. 2667 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 2668 int off = offset(); 2669 ldrh(dst, src); 2670 return off; 2671 } 2672 2673 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 2674 int off = offset(); 2675 ldrb(dst, src); 2676 return off; 2677 } 2678 2679 int MacroAssembler::load_signed_short(Register dst, Address src) { 2680 int off = offset(); 2681 ldrsh(dst, src); 2682 return off; 2683 } 2684 2685 int MacroAssembler::load_signed_byte(Register dst, Address src) { 2686 int off = offset(); 2687 ldrsb(dst, src); 2688 return off; 2689 } 2690 2691 int MacroAssembler::load_signed_short32(Register dst, Address src) { 2692 int off = offset(); 2693 ldrshw(dst, src); 2694 return off; 2695 } 2696 2697 int MacroAssembler::load_signed_byte32(Register dst, Address src) { 2698 int off = offset(); 2699 ldrsbw(dst, src); 2700 return off; 2701 } 2702 2703 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) { 2704 switch (size_in_bytes) { 2705 case 8: ldr(dst, src); break; 2706 case 4: ldrw(dst, src); break; 2707 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 2708 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 2709 default: ShouldNotReachHere(); 2710 } 2711 } 2712 2713 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes) { 2714 switch (size_in_bytes) { 2715 case 8: str(src, dst); break; 2716 case 4: strw(src, dst); break; 2717 case 2: strh(src, dst); break; 2718 case 1: strb(src, dst); break; 2719 default: ShouldNotReachHere(); 2720 } 2721 } 2722 2723 void MacroAssembler::decrementw(Register reg, int value) 2724 { 2725 if (value < 0) { incrementw(reg, -value); return; } 2726 if (value == 0) { return; } 2727 if (value < (1 << 12)) { subw(reg, reg, value); return; } 2728 /* else */ { 2729 guarantee(reg != rscratch2, "invalid dst for register decrement"); 2730 movw(rscratch2, (unsigned)value); 2731 subw(reg, reg, rscratch2); 2732 } 2733 } 2734 2735 void MacroAssembler::decrement(Register reg, int value) 2736 { 2737 if (value < 0) { increment(reg, -value); return; } 2738 if (value == 0) { return; } 2739 if (value < (1 << 12)) { sub(reg, reg, value); return; } 2740 /* else */ { 2741 assert(reg != rscratch2, "invalid dst for register decrement"); 2742 mov(rscratch2, (uint64_t)value); 2743 sub(reg, reg, rscratch2); 2744 } 2745 } 2746 2747 void MacroAssembler::decrementw(Address dst, int value) 2748 { 2749 assert(!dst.uses(rscratch1), "invalid dst for address decrement"); 2750 if (dst.getMode() == Address::literal) { 2751 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2752 lea(rscratch2, dst); 2753 dst = Address(rscratch2); 2754 } 2755 ldrw(rscratch1, dst); 2756 decrementw(rscratch1, value); 2757 strw(rscratch1, dst); 2758 } 2759 2760 void MacroAssembler::decrement(Address dst, int value) 2761 { 2762 assert(!dst.uses(rscratch1), "invalid address for decrement"); 2763 if (dst.getMode() == Address::literal) { 2764 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2765 lea(rscratch2, dst); 2766 dst = Address(rscratch2); 2767 } 2768 ldr(rscratch1, dst); 2769 decrement(rscratch1, value); 2770 str(rscratch1, dst); 2771 } 2772 2773 void MacroAssembler::incrementw(Register reg, int value) 2774 { 2775 if (value < 0) { decrementw(reg, -value); return; } 2776 if (value == 0) { return; } 2777 if (value < (1 << 12)) { addw(reg, reg, value); return; } 2778 /* else */ { 2779 assert(reg != rscratch2, "invalid dst for register increment"); 2780 movw(rscratch2, (unsigned)value); 2781 addw(reg, reg, rscratch2); 2782 } 2783 } 2784 2785 void MacroAssembler::increment(Register reg, int value) 2786 { 2787 if (value < 0) { decrement(reg, -value); return; } 2788 if (value == 0) { return; } 2789 if (value < (1 << 12)) { add(reg, reg, value); return; } 2790 /* else */ { 2791 assert(reg != rscratch2, "invalid dst for register increment"); 2792 movw(rscratch2, (unsigned)value); 2793 add(reg, reg, rscratch2); 2794 } 2795 } 2796 2797 void MacroAssembler::incrementw(Address dst, int value) 2798 { 2799 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2800 if (dst.getMode() == Address::literal) { 2801 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2802 lea(rscratch2, dst); 2803 dst = Address(rscratch2); 2804 } 2805 ldrw(rscratch1, dst); 2806 incrementw(rscratch1, value); 2807 strw(rscratch1, dst); 2808 } 2809 2810 void MacroAssembler::increment(Address dst, int value) 2811 { 2812 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2813 if (dst.getMode() == Address::literal) { 2814 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2815 lea(rscratch2, dst); 2816 dst = Address(rscratch2); 2817 } 2818 ldr(rscratch1, dst); 2819 increment(rscratch1, value); 2820 str(rscratch1, dst); 2821 } 2822 2823 // Push lots of registers in the bit set supplied. Don't push sp. 2824 // Return the number of words pushed 2825 int MacroAssembler::push(unsigned int bitset, Register stack) { 2826 int words_pushed = 0; 2827 2828 // Scan bitset to accumulate register pairs 2829 unsigned char regs[32]; 2830 int count = 0; 2831 for (int reg = 0; reg <= 30; reg++) { 2832 if (1 & bitset) 2833 regs[count++] = reg; 2834 bitset >>= 1; 2835 } 2836 regs[count++] = zr->raw_encoding(); 2837 count &= ~1; // Only push an even number of regs 2838 2839 if (count) { 2840 stp(as_Register(regs[0]), as_Register(regs[1]), 2841 Address(pre(stack, -count * wordSize))); 2842 words_pushed += 2; 2843 } 2844 for (int i = 2; i < count; i += 2) { 2845 stp(as_Register(regs[i]), as_Register(regs[i+1]), 2846 Address(stack, i * wordSize)); 2847 words_pushed += 2; 2848 } 2849 2850 assert(words_pushed == count, "oops, pushed != count"); 2851 2852 return count; 2853 } 2854 2855 int MacroAssembler::pop(unsigned int bitset, Register stack) { 2856 int words_pushed = 0; 2857 2858 // Scan bitset to accumulate register pairs 2859 unsigned char regs[32]; 2860 int count = 0; 2861 for (int reg = 0; reg <= 30; reg++) { 2862 if (1 & bitset) 2863 regs[count++] = reg; 2864 bitset >>= 1; 2865 } 2866 regs[count++] = zr->raw_encoding(); 2867 count &= ~1; 2868 2869 for (int i = 2; i < count; i += 2) { 2870 ldp(as_Register(regs[i]), as_Register(regs[i+1]), 2871 Address(stack, i * wordSize)); 2872 words_pushed += 2; 2873 } 2874 if (count) { 2875 ldp(as_Register(regs[0]), as_Register(regs[1]), 2876 Address(post(stack, count * wordSize))); 2877 words_pushed += 2; 2878 } 2879 2880 assert(words_pushed == count, "oops, pushed != count"); 2881 2882 return count; 2883 } 2884 2885 // Push lots of registers in the bit set supplied. Don't push sp. 2886 // Return the number of dwords pushed 2887 int MacroAssembler::push_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 2888 int words_pushed = 0; 2889 bool use_sve = false; 2890 int sve_vector_size_in_bytes = 0; 2891 2892 #ifdef COMPILER2 2893 use_sve = Matcher::supports_scalable_vector(); 2894 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2895 #endif 2896 2897 // Scan bitset to accumulate register pairs 2898 unsigned char regs[32]; 2899 int count = 0; 2900 for (int reg = 0; reg <= 31; reg++) { 2901 if (1 & bitset) 2902 regs[count++] = reg; 2903 bitset >>= 1; 2904 } 2905 2906 if (count == 0) { 2907 return 0; 2908 } 2909 2910 if (mode == PushPopFull) { 2911 if (use_sve && sve_vector_size_in_bytes > 16) { 2912 mode = PushPopSVE; 2913 } else { 2914 mode = PushPopNeon; 2915 } 2916 } 2917 2918 #ifndef PRODUCT 2919 { 2920 char buffer[48]; 2921 if (mode == PushPopSVE) { 2922 os::snprintf_checked(buffer, sizeof(buffer), "push_fp: %d SVE registers", count); 2923 } else if (mode == PushPopNeon) { 2924 os::snprintf_checked(buffer, sizeof(buffer), "push_fp: %d Neon registers", count); 2925 } else { 2926 os::snprintf_checked(buffer, sizeof(buffer), "push_fp: %d fp registers", count); 2927 } 2928 block_comment(buffer); 2929 } 2930 #endif 2931 2932 if (mode == PushPopSVE) { 2933 sub(stack, stack, sve_vector_size_in_bytes * count); 2934 for (int i = 0; i < count; i++) { 2935 sve_str(as_FloatRegister(regs[i]), Address(stack, i)); 2936 } 2937 return count * sve_vector_size_in_bytes / 8; 2938 } 2939 2940 if (mode == PushPopNeon) { 2941 if (count == 1) { 2942 strq(as_FloatRegister(regs[0]), Address(pre(stack, -wordSize * 2))); 2943 return 2; 2944 } 2945 2946 bool odd = (count & 1) == 1; 2947 int push_slots = count + (odd ? 1 : 0); 2948 2949 // Always pushing full 128 bit registers. 2950 stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize * 2))); 2951 words_pushed += 2; 2952 2953 for (int i = 2; i + 1 < count; i += 2) { 2954 stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 2955 words_pushed += 2; 2956 } 2957 2958 if (odd) { 2959 strq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 2960 words_pushed++; 2961 } 2962 2963 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 2964 return count * 2; 2965 } 2966 2967 if (mode == PushPopFp) { 2968 bool odd = (count & 1) == 1; 2969 int push_slots = count + (odd ? 1 : 0); 2970 2971 if (count == 1) { 2972 // Stack pointer must be 16 bytes aligned 2973 strd(as_FloatRegister(regs[0]), Address(pre(stack, -push_slots * wordSize))); 2974 return 1; 2975 } 2976 2977 stpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize))); 2978 words_pushed += 2; 2979 2980 for (int i = 2; i + 1 < count; i += 2) { 2981 stpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 2982 words_pushed += 2; 2983 } 2984 2985 if (odd) { 2986 // Stack pointer must be 16 bytes aligned 2987 strd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 2988 words_pushed++; 2989 } 2990 2991 assert(words_pushed == count, "oops, pushed != count"); 2992 2993 return count; 2994 } 2995 2996 return 0; 2997 } 2998 2999 // Return the number of dwords popped 3000 int MacroAssembler::pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 3001 int words_pushed = 0; 3002 bool use_sve = false; 3003 int sve_vector_size_in_bytes = 0; 3004 3005 #ifdef COMPILER2 3006 use_sve = Matcher::supports_scalable_vector(); 3007 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 3008 #endif 3009 // Scan bitset to accumulate register pairs 3010 unsigned char regs[32]; 3011 int count = 0; 3012 for (int reg = 0; reg <= 31; reg++) { 3013 if (1 & bitset) 3014 regs[count++] = reg; 3015 bitset >>= 1; 3016 } 3017 3018 if (count == 0) { 3019 return 0; 3020 } 3021 3022 if (mode == PushPopFull) { 3023 if (use_sve && sve_vector_size_in_bytes > 16) { 3024 mode = PushPopSVE; 3025 } else { 3026 mode = PushPopNeon; 3027 } 3028 } 3029 3030 #ifndef PRODUCT 3031 { 3032 char buffer[48]; 3033 if (mode == PushPopSVE) { 3034 os::snprintf_checked(buffer, sizeof(buffer), "pop_fp: %d SVE registers", count); 3035 } else if (mode == PushPopNeon) { 3036 os::snprintf_checked(buffer, sizeof(buffer), "pop_fp: %d Neon registers", count); 3037 } else { 3038 os::snprintf_checked(buffer, sizeof(buffer), "pop_fp: %d fp registers", count); 3039 } 3040 block_comment(buffer); 3041 } 3042 #endif 3043 3044 if (mode == PushPopSVE) { 3045 for (int i = count - 1; i >= 0; i--) { 3046 sve_ldr(as_FloatRegister(regs[i]), Address(stack, i)); 3047 } 3048 add(stack, stack, sve_vector_size_in_bytes * count); 3049 return count * sve_vector_size_in_bytes / 8; 3050 } 3051 3052 if (mode == PushPopNeon) { 3053 if (count == 1) { 3054 ldrq(as_FloatRegister(regs[0]), Address(post(stack, wordSize * 2))); 3055 return 2; 3056 } 3057 3058 bool odd = (count & 1) == 1; 3059 int push_slots = count + (odd ? 1 : 0); 3060 3061 if (odd) { 3062 ldrq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 3063 words_pushed++; 3064 } 3065 3066 for (int i = 2; i + 1 < count; i += 2) { 3067 ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 3068 words_pushed += 2; 3069 } 3070 3071 ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize * 2))); 3072 words_pushed += 2; 3073 3074 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 3075 3076 return count * 2; 3077 } 3078 3079 if (mode == PushPopFp) { 3080 bool odd = (count & 1) == 1; 3081 int push_slots = count + (odd ? 1 : 0); 3082 3083 if (count == 1) { 3084 ldrd(as_FloatRegister(regs[0]), Address(post(stack, push_slots * wordSize))); 3085 return 1; 3086 } 3087 3088 if (odd) { 3089 ldrd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 3090 words_pushed++; 3091 } 3092 3093 for (int i = 2; i + 1 < count; i += 2) { 3094 ldpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 3095 words_pushed += 2; 3096 } 3097 3098 ldpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize))); 3099 words_pushed += 2; 3100 3101 assert(words_pushed == count, "oops, pushed != count"); 3102 3103 return count; 3104 } 3105 3106 return 0; 3107 } 3108 3109 // Return the number of dwords pushed 3110 int MacroAssembler::push_p(unsigned int bitset, Register stack) { 3111 bool use_sve = false; 3112 int sve_predicate_size_in_slots = 0; 3113 3114 #ifdef COMPILER2 3115 use_sve = Matcher::supports_scalable_vector(); 3116 if (use_sve) { 3117 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 3118 } 3119 #endif 3120 3121 if (!use_sve) { 3122 return 0; 3123 } 3124 3125 unsigned char regs[PRegister::number_of_registers]; 3126 int count = 0; 3127 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 3128 if (1 & bitset) 3129 regs[count++] = reg; 3130 bitset >>= 1; 3131 } 3132 3133 if (count == 0) { 3134 return 0; 3135 } 3136 3137 int total_push_bytes = align_up(sve_predicate_size_in_slots * 3138 VMRegImpl::stack_slot_size * count, 16); 3139 sub(stack, stack, total_push_bytes); 3140 for (int i = 0; i < count; i++) { 3141 sve_str(as_PRegister(regs[i]), Address(stack, i)); 3142 } 3143 return total_push_bytes / 8; 3144 } 3145 3146 // Return the number of dwords popped 3147 int MacroAssembler::pop_p(unsigned int bitset, Register stack) { 3148 bool use_sve = false; 3149 int sve_predicate_size_in_slots = 0; 3150 3151 #ifdef COMPILER2 3152 use_sve = Matcher::supports_scalable_vector(); 3153 if (use_sve) { 3154 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 3155 } 3156 #endif 3157 3158 if (!use_sve) { 3159 return 0; 3160 } 3161 3162 unsigned char regs[PRegister::number_of_registers]; 3163 int count = 0; 3164 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 3165 if (1 & bitset) 3166 regs[count++] = reg; 3167 bitset >>= 1; 3168 } 3169 3170 if (count == 0) { 3171 return 0; 3172 } 3173 3174 int total_pop_bytes = align_up(sve_predicate_size_in_slots * 3175 VMRegImpl::stack_slot_size * count, 16); 3176 for (int i = count - 1; i >= 0; i--) { 3177 sve_ldr(as_PRegister(regs[i]), Address(stack, i)); 3178 } 3179 add(stack, stack, total_pop_bytes); 3180 return total_pop_bytes / 8; 3181 } 3182 3183 #ifdef ASSERT 3184 void MacroAssembler::verify_heapbase(const char* msg) { 3185 #if 0 3186 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed"); 3187 assert (Universe::heap() != nullptr, "java heap should be initialized"); 3188 if (!UseCompressedOops || Universe::ptr_base() == nullptr) { 3189 // rheapbase is allocated as general register 3190 return; 3191 } 3192 if (CheckCompressedOops) { 3193 Label ok; 3194 push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1 3195 cmpptr(rheapbase, ExternalAddress(CompressedOops::base_addr())); 3196 br(Assembler::EQ, ok); 3197 stop(msg); 3198 bind(ok); 3199 pop(1 << rscratch1->encoding(), sp); 3200 } 3201 #endif 3202 } 3203 #endif 3204 3205 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) { 3206 assert_different_registers(value, tmp1, tmp2); 3207 Label done, tagged, weak_tagged; 3208 3209 cbz(value, done); // Use null as-is. 3210 tst(value, JNIHandles::tag_mask); // Test for tag. 3211 br(Assembler::NE, tagged); 3212 3213 // Resolve local handle 3214 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp1, tmp2); 3215 verify_oop(value); 3216 b(done); 3217 3218 bind(tagged); 3219 STATIC_ASSERT(JNIHandles::TypeTag::weak_global == 0b1); 3220 tbnz(value, 0, weak_tagged); // Test for weak tag. 3221 3222 // Resolve global handle 3223 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3224 verify_oop(value); 3225 b(done); 3226 3227 bind(weak_tagged); 3228 // Resolve jweak. 3229 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 3230 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp1, tmp2); 3231 verify_oop(value); 3232 3233 bind(done); 3234 } 3235 3236 void MacroAssembler::resolve_global_jobject(Register value, Register tmp1, Register tmp2) { 3237 assert_different_registers(value, tmp1, tmp2); 3238 Label done; 3239 3240 cbz(value, done); // Use null as-is. 3241 3242 #ifdef ASSERT 3243 { 3244 STATIC_ASSERT(JNIHandles::TypeTag::global == 0b10); 3245 Label valid_global_tag; 3246 tbnz(value, 1, valid_global_tag); // Test for global tag 3247 stop("non global jobject using resolve_global_jobject"); 3248 bind(valid_global_tag); 3249 } 3250 #endif 3251 3252 // Resolve global handle 3253 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3254 verify_oop(value); 3255 3256 bind(done); 3257 } 3258 3259 void MacroAssembler::stop(const char* msg) { 3260 // Skip AOT caching C strings in scratch buffer. 3261 const char* str = (code_section()->scratch_emit()) ? msg : AOTCodeCache::add_C_string(msg); 3262 BLOCK_COMMENT(str); 3263 // load msg into r0 so we can access it from the signal handler 3264 // ExternalAddress enables saving and restoring via the code cache 3265 lea(c_rarg0, ExternalAddress((address) str)); 3266 dcps1(0xdeae); 3267 } 3268 3269 void MacroAssembler::unimplemented(const char* what) { 3270 const char* buf = nullptr; 3271 { 3272 ResourceMark rm; 3273 stringStream ss; 3274 ss.print("unimplemented: %s", what); 3275 buf = code_string(ss.as_string()); 3276 } 3277 stop(buf); 3278 } 3279 3280 void MacroAssembler::_assert_asm(Assembler::Condition cc, const char* msg) { 3281 #ifdef ASSERT 3282 Label OK; 3283 br(cc, OK); 3284 stop(msg); 3285 bind(OK); 3286 #endif 3287 } 3288 3289 // If a constant does not fit in an immediate field, generate some 3290 // number of MOV instructions and then perform the operation. 3291 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 3292 add_sub_imm_insn insn1, 3293 add_sub_reg_insn insn2, 3294 bool is32) { 3295 assert(Rd != zr, "Rd = zr and not setting flags?"); 3296 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3297 if (fits) { 3298 (this->*insn1)(Rd, Rn, imm); 3299 } else { 3300 if (g_uabs(imm) < (1 << 24)) { 3301 (this->*insn1)(Rd, Rn, imm & -(1 << 12)); 3302 (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1)); 3303 } else { 3304 assert_different_registers(Rd, Rn); 3305 mov(Rd, imm); 3306 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3307 } 3308 } 3309 } 3310 3311 // Separate vsn which sets the flags. Optimisations are more restricted 3312 // because we must set the flags correctly. 3313 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 3314 add_sub_imm_insn insn1, 3315 add_sub_reg_insn insn2, 3316 bool is32) { 3317 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3318 if (fits) { 3319 (this->*insn1)(Rd, Rn, imm); 3320 } else { 3321 assert_different_registers(Rd, Rn); 3322 assert(Rd != zr, "overflow in immediate operand"); 3323 mov(Rd, imm); 3324 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3325 } 3326 } 3327 3328 3329 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) { 3330 if (increment.is_register()) { 3331 add(Rd, Rn, increment.as_register()); 3332 } else { 3333 add(Rd, Rn, increment.as_constant()); 3334 } 3335 } 3336 3337 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) { 3338 if (increment.is_register()) { 3339 addw(Rd, Rn, increment.as_register()); 3340 } else { 3341 addw(Rd, Rn, increment.as_constant()); 3342 } 3343 } 3344 3345 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) { 3346 if (decrement.is_register()) { 3347 sub(Rd, Rn, decrement.as_register()); 3348 } else { 3349 sub(Rd, Rn, decrement.as_constant()); 3350 } 3351 } 3352 3353 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) { 3354 if (decrement.is_register()) { 3355 subw(Rd, Rn, decrement.as_register()); 3356 } else { 3357 subw(Rd, Rn, decrement.as_constant()); 3358 } 3359 } 3360 3361 void MacroAssembler::reinit_heapbase() 3362 { 3363 if (UseCompressedOops) { 3364 if (Universe::is_fully_initialized() && !AOTCodeCache::is_on_for_dump()) { 3365 mov(rheapbase, CompressedOops::base()); 3366 } else { 3367 lea(rheapbase, ExternalAddress(CompressedOops::base_addr())); 3368 ldr(rheapbase, Address(rheapbase)); 3369 } 3370 } 3371 } 3372 3373 // this simulates the behaviour of the x86 cmpxchg instruction using a 3374 // load linked/store conditional pair. we use the acquire/release 3375 // versions of these instructions so that we flush pending writes as 3376 // per Java semantics. 3377 3378 // n.b the x86 version assumes the old value to be compared against is 3379 // in rax and updates rax with the value located in memory if the 3380 // cmpxchg fails. we supply a register for the old value explicitly 3381 3382 // the aarch64 load linked/store conditional instructions do not 3383 // accept an offset. so, unlike x86, we must provide a plain register 3384 // to identify the memory word to be compared/exchanged rather than a 3385 // register+offset Address. 3386 3387 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 3388 Label &succeed, Label *fail) { 3389 // oldv holds comparison value 3390 // newv holds value to write in exchange 3391 // addr identifies memory word to compare against/update 3392 if (UseLSE) { 3393 mov(tmp, oldv); 3394 casal(Assembler::xword, oldv, newv, addr); 3395 cmp(tmp, oldv); 3396 br(Assembler::EQ, succeed); 3397 membar(AnyAny); 3398 } else { 3399 Label retry_load, nope; 3400 prfm(Address(addr), PSTL1STRM); 3401 bind(retry_load); 3402 // flush and load exclusive from the memory location 3403 // and fail if it is not what we expect 3404 ldaxr(tmp, addr); 3405 cmp(tmp, oldv); 3406 br(Assembler::NE, nope); 3407 // if we store+flush with no intervening write tmp will be zero 3408 stlxr(tmp, newv, addr); 3409 cbzw(tmp, succeed); 3410 // retry so we only ever return after a load fails to compare 3411 // ensures we don't return a stale value after a failed write. 3412 b(retry_load); 3413 // if the memory word differs we return it in oldv and signal a fail 3414 bind(nope); 3415 membar(AnyAny); 3416 mov(oldv, tmp); 3417 } 3418 if (fail) 3419 b(*fail); 3420 } 3421 3422 void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 3423 Label &succeed, Label *fail) { 3424 assert(oopDesc::mark_offset_in_bytes() == 0, "assumption"); 3425 cmpxchgptr(oldv, newv, obj, tmp, succeed, fail); 3426 } 3427 3428 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 3429 Label &succeed, Label *fail) { 3430 // oldv holds comparison value 3431 // newv holds value to write in exchange 3432 // addr identifies memory word to compare against/update 3433 // tmp returns 0/1 for success/failure 3434 if (UseLSE) { 3435 mov(tmp, oldv); 3436 casal(Assembler::word, oldv, newv, addr); 3437 cmp(tmp, oldv); 3438 br(Assembler::EQ, succeed); 3439 membar(AnyAny); 3440 } else { 3441 Label retry_load, nope; 3442 prfm(Address(addr), PSTL1STRM); 3443 bind(retry_load); 3444 // flush and load exclusive from the memory location 3445 // and fail if it is not what we expect 3446 ldaxrw(tmp, addr); 3447 cmp(tmp, oldv); 3448 br(Assembler::NE, nope); 3449 // if we store+flush with no intervening write tmp will be zero 3450 stlxrw(tmp, newv, addr); 3451 cbzw(tmp, succeed); 3452 // retry so we only ever return after a load fails to compare 3453 // ensures we don't return a stale value after a failed write. 3454 b(retry_load); 3455 // if the memory word differs we return it in oldv and signal a fail 3456 bind(nope); 3457 membar(AnyAny); 3458 mov(oldv, tmp); 3459 } 3460 if (fail) 3461 b(*fail); 3462 } 3463 3464 // A generic CAS; success or failure is in the EQ flag. A weak CAS 3465 // doesn't retry and may fail spuriously. If the oldval is wanted, 3466 // Pass a register for the result, otherwise pass noreg. 3467 3468 // Clobbers rscratch1 3469 void MacroAssembler::cmpxchg(Register addr, Register expected, 3470 Register new_val, 3471 enum operand_size size, 3472 bool acquire, bool release, 3473 bool weak, 3474 Register result) { 3475 if (result == noreg) result = rscratch1; 3476 BLOCK_COMMENT("cmpxchg {"); 3477 if (UseLSE) { 3478 mov(result, expected); 3479 lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true); 3480 compare_eq(result, expected, size); 3481 #ifdef ASSERT 3482 // Poison rscratch1 which is written on !UseLSE branch 3483 mov(rscratch1, 0x1f1f1f1f1f1f1f1f); 3484 #endif 3485 } else { 3486 Label retry_load, done; 3487 prfm(Address(addr), PSTL1STRM); 3488 bind(retry_load); 3489 load_exclusive(result, addr, size, acquire); 3490 compare_eq(result, expected, size); 3491 br(Assembler::NE, done); 3492 store_exclusive(rscratch1, new_val, addr, size, release); 3493 if (weak) { 3494 cmpw(rscratch1, 0u); // If the store fails, return NE to our caller. 3495 } else { 3496 cbnzw(rscratch1, retry_load); 3497 } 3498 bind(done); 3499 } 3500 BLOCK_COMMENT("} cmpxchg"); 3501 } 3502 3503 // A generic comparison. Only compares for equality, clobbers rscratch1. 3504 void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) { 3505 if (size == xword) { 3506 cmp(rm, rn); 3507 } else if (size == word) { 3508 cmpw(rm, rn); 3509 } else if (size == halfword) { 3510 eorw(rscratch1, rm, rn); 3511 ands(zr, rscratch1, 0xffff); 3512 } else if (size == byte) { 3513 eorw(rscratch1, rm, rn); 3514 ands(zr, rscratch1, 0xff); 3515 } else { 3516 ShouldNotReachHere(); 3517 } 3518 } 3519 3520 3521 static bool different(Register a, RegisterOrConstant b, Register c) { 3522 if (b.is_constant()) 3523 return a != c; 3524 else 3525 return a != b.as_register() && a != c && b.as_register() != c; 3526 } 3527 3528 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \ 3529 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \ 3530 if (UseLSE) { \ 3531 prev = prev->is_valid() ? prev : zr; \ 3532 if (incr.is_register()) { \ 3533 AOP(sz, incr.as_register(), prev, addr); \ 3534 } else { \ 3535 mov(rscratch2, incr.as_constant()); \ 3536 AOP(sz, rscratch2, prev, addr); \ 3537 } \ 3538 return; \ 3539 } \ 3540 Register result = rscratch2; \ 3541 if (prev->is_valid()) \ 3542 result = different(prev, incr, addr) ? prev : rscratch2; \ 3543 \ 3544 Label retry_load; \ 3545 prfm(Address(addr), PSTL1STRM); \ 3546 bind(retry_load); \ 3547 LDXR(result, addr); \ 3548 OP(rscratch1, result, incr); \ 3549 STXR(rscratch2, rscratch1, addr); \ 3550 cbnzw(rscratch2, retry_load); \ 3551 if (prev->is_valid() && prev != result) { \ 3552 IOP(prev, rscratch1, incr); \ 3553 } \ 3554 } 3555 3556 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword) 3557 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word) 3558 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword) 3559 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word) 3560 3561 #undef ATOMIC_OP 3562 3563 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \ 3564 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \ 3565 if (UseLSE) { \ 3566 prev = prev->is_valid() ? prev : zr; \ 3567 AOP(sz, newv, prev, addr); \ 3568 return; \ 3569 } \ 3570 Register result = rscratch2; \ 3571 if (prev->is_valid()) \ 3572 result = different(prev, newv, addr) ? prev : rscratch2; \ 3573 \ 3574 Label retry_load; \ 3575 prfm(Address(addr), PSTL1STRM); \ 3576 bind(retry_load); \ 3577 LDXR(result, addr); \ 3578 STXR(rscratch1, newv, addr); \ 3579 cbnzw(rscratch1, retry_load); \ 3580 if (prev->is_valid() && prev != result) \ 3581 mov(prev, result); \ 3582 } 3583 3584 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword) 3585 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word) 3586 ATOMIC_XCHG(xchgl, swpl, ldxr, stlxr, Assembler::xword) 3587 ATOMIC_XCHG(xchglw, swpl, ldxrw, stlxrw, Assembler::word) 3588 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword) 3589 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word) 3590 3591 #undef ATOMIC_XCHG 3592 3593 #ifndef PRODUCT 3594 extern "C" void findpc(intptr_t x); 3595 #endif 3596 3597 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) 3598 { 3599 // In order to get locks to work, we need to fake a in_VM state 3600 if (ShowMessageBoxOnError ) { 3601 JavaThread* thread = JavaThread::current(); 3602 JavaThreadState saved_state = thread->thread_state(); 3603 thread->set_thread_state(_thread_in_vm); 3604 #ifndef PRODUCT 3605 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 3606 ttyLocker ttyl; 3607 BytecodeCounter::print(); 3608 } 3609 #endif 3610 if (os::message_box(msg, "Execution stopped, print registers?")) { 3611 ttyLocker ttyl; 3612 tty->print_cr(" pc = 0x%016" PRIx64, pc); 3613 #ifndef PRODUCT 3614 tty->cr(); 3615 findpc(pc); 3616 tty->cr(); 3617 #endif 3618 tty->print_cr(" r0 = 0x%016" PRIx64, regs[0]); 3619 tty->print_cr(" r1 = 0x%016" PRIx64, regs[1]); 3620 tty->print_cr(" r2 = 0x%016" PRIx64, regs[2]); 3621 tty->print_cr(" r3 = 0x%016" PRIx64, regs[3]); 3622 tty->print_cr(" r4 = 0x%016" PRIx64, regs[4]); 3623 tty->print_cr(" r5 = 0x%016" PRIx64, regs[5]); 3624 tty->print_cr(" r6 = 0x%016" PRIx64, regs[6]); 3625 tty->print_cr(" r7 = 0x%016" PRIx64, regs[7]); 3626 tty->print_cr(" r8 = 0x%016" PRIx64, regs[8]); 3627 tty->print_cr(" r9 = 0x%016" PRIx64, regs[9]); 3628 tty->print_cr("r10 = 0x%016" PRIx64, regs[10]); 3629 tty->print_cr("r11 = 0x%016" PRIx64, regs[11]); 3630 tty->print_cr("r12 = 0x%016" PRIx64, regs[12]); 3631 tty->print_cr("r13 = 0x%016" PRIx64, regs[13]); 3632 tty->print_cr("r14 = 0x%016" PRIx64, regs[14]); 3633 tty->print_cr("r15 = 0x%016" PRIx64, regs[15]); 3634 tty->print_cr("r16 = 0x%016" PRIx64, regs[16]); 3635 tty->print_cr("r17 = 0x%016" PRIx64, regs[17]); 3636 tty->print_cr("r18 = 0x%016" PRIx64, regs[18]); 3637 tty->print_cr("r19 = 0x%016" PRIx64, regs[19]); 3638 tty->print_cr("r20 = 0x%016" PRIx64, regs[20]); 3639 tty->print_cr("r21 = 0x%016" PRIx64, regs[21]); 3640 tty->print_cr("r22 = 0x%016" PRIx64, regs[22]); 3641 tty->print_cr("r23 = 0x%016" PRIx64, regs[23]); 3642 tty->print_cr("r24 = 0x%016" PRIx64, regs[24]); 3643 tty->print_cr("r25 = 0x%016" PRIx64, regs[25]); 3644 tty->print_cr("r26 = 0x%016" PRIx64, regs[26]); 3645 tty->print_cr("r27 = 0x%016" PRIx64, regs[27]); 3646 tty->print_cr("r28 = 0x%016" PRIx64, regs[28]); 3647 tty->print_cr("r30 = 0x%016" PRIx64, regs[30]); 3648 tty->print_cr("r31 = 0x%016" PRIx64, regs[31]); 3649 BREAKPOINT; 3650 } 3651 } 3652 fatal("DEBUG MESSAGE: %s", msg); 3653 } 3654 3655 RegSet MacroAssembler::call_clobbered_gp_registers() { 3656 RegSet regs = RegSet::range(r0, r17) - RegSet::of(rscratch1, rscratch2); 3657 #ifndef R18_RESERVED 3658 regs += r18_tls; 3659 #endif 3660 return regs; 3661 } 3662 3663 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) { 3664 int step = 4 * wordSize; 3665 push(call_clobbered_gp_registers() - exclude, sp); 3666 sub(sp, sp, step); 3667 mov(rscratch1, -step); 3668 // Push v0-v7, v16-v31. 3669 for (int i = 31; i>= 4; i -= 4) { 3670 if (i <= v7->encoding() || i >= v16->encoding()) 3671 st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1), 3672 as_FloatRegister(i), T1D, Address(post(sp, rscratch1))); 3673 } 3674 st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2), 3675 as_FloatRegister(3), T1D, Address(sp)); 3676 } 3677 3678 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) { 3679 for (int i = 0; i < 32; i += 4) { 3680 if (i <= v7->encoding() || i >= v16->encoding()) 3681 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3682 as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize))); 3683 } 3684 3685 reinitialize_ptrue(); 3686 3687 pop(call_clobbered_gp_registers() - exclude, sp); 3688 } 3689 3690 void MacroAssembler::push_CPU_state(bool save_vectors, bool use_sve, 3691 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3692 push(RegSet::range(r0, r29), sp); // integer registers except lr & sp 3693 if (save_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3694 sub(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3695 for (int i = 0; i < FloatRegister::number_of_registers; i++) { 3696 sve_str(as_FloatRegister(i), Address(sp, i)); 3697 } 3698 } else { 3699 int step = (save_vectors ? 8 : 4) * wordSize; 3700 mov(rscratch1, -step); 3701 sub(sp, sp, step); 3702 for (int i = 28; i >= 4; i -= 4) { 3703 st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3704 as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1))); 3705 } 3706 st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp); 3707 } 3708 if (save_vectors && use_sve && total_predicate_in_bytes > 0) { 3709 sub(sp, sp, total_predicate_in_bytes); 3710 for (int i = 0; i < PRegister::number_of_registers; i++) { 3711 sve_str(as_PRegister(i), Address(sp, i)); 3712 } 3713 } 3714 } 3715 3716 void MacroAssembler::pop_CPU_state(bool restore_vectors, bool use_sve, 3717 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3718 if (restore_vectors && use_sve && total_predicate_in_bytes > 0) { 3719 for (int i = PRegister::number_of_registers - 1; i >= 0; i--) { 3720 sve_ldr(as_PRegister(i), Address(sp, i)); 3721 } 3722 add(sp, sp, total_predicate_in_bytes); 3723 } 3724 if (restore_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3725 for (int i = FloatRegister::number_of_registers - 1; i >= 0; i--) { 3726 sve_ldr(as_FloatRegister(i), Address(sp, i)); 3727 } 3728 add(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3729 } else { 3730 int step = (restore_vectors ? 8 : 4) * wordSize; 3731 for (int i = 0; i <= 28; i += 4) 3732 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3733 as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step))); 3734 } 3735 3736 // We may use predicate registers and rely on ptrue with SVE, 3737 // regardless of wide vector (> 8 bytes) used or not. 3738 if (use_sve) { 3739 reinitialize_ptrue(); 3740 } 3741 3742 // integer registers except lr & sp 3743 pop(RegSet::range(r0, r17), sp); 3744 #ifdef R18_RESERVED 3745 ldp(zr, r19, Address(post(sp, 2 * wordSize))); 3746 pop(RegSet::range(r20, r29), sp); 3747 #else 3748 pop(RegSet::range(r18_tls, r29), sp); 3749 #endif 3750 } 3751 3752 /** 3753 * Helpers for multiply_to_len(). 3754 */ 3755 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 3756 Register src1, Register src2) { 3757 adds(dest_lo, dest_lo, src1); 3758 adc(dest_hi, dest_hi, zr); 3759 adds(dest_lo, dest_lo, src2); 3760 adc(final_dest_hi, dest_hi, zr); 3761 } 3762 3763 // Generate an address from (r + r1 extend offset). "size" is the 3764 // size of the operand. The result may be in rscratch2. 3765 Address MacroAssembler::offsetted_address(Register r, Register r1, 3766 Address::extend ext, int offset, int size) { 3767 if (offset || (ext.shift() % size != 0)) { 3768 lea(rscratch2, Address(r, r1, ext)); 3769 return Address(rscratch2, offset); 3770 } else { 3771 return Address(r, r1, ext); 3772 } 3773 } 3774 3775 Address MacroAssembler::spill_address(int size, int offset, Register tmp) 3776 { 3777 assert(offset >= 0, "spill to negative address?"); 3778 // Offset reachable ? 3779 // Not aligned - 9 bits signed offset 3780 // Aligned - 12 bits unsigned offset shifted 3781 Register base = sp; 3782 if ((offset & (size-1)) && offset >= (1<<8)) { 3783 add(tmp, base, offset & ((1<<12)-1)); 3784 base = tmp; 3785 offset &= -1u<<12; 3786 } 3787 3788 if (offset >= (1<<12) * size) { 3789 add(tmp, base, offset & (((1<<12)-1)<<12)); 3790 base = tmp; 3791 offset &= ~(((1<<12)-1)<<12); 3792 } 3793 3794 return Address(base, offset); 3795 } 3796 3797 Address MacroAssembler::sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp) { 3798 assert(offset >= 0, "spill to negative address?"); 3799 3800 Register base = sp; 3801 3802 // An immediate offset in the range 0 to 255 which is multiplied 3803 // by the current vector or predicate register size in bytes. 3804 if (offset % sve_reg_size_in_bytes == 0 && offset < ((1<<8)*sve_reg_size_in_bytes)) { 3805 return Address(base, offset / sve_reg_size_in_bytes); 3806 } 3807 3808 add(tmp, base, offset); 3809 return Address(tmp); 3810 } 3811 3812 // Checks whether offset is aligned. 3813 // Returns true if it is, else false. 3814 bool MacroAssembler::merge_alignment_check(Register base, 3815 size_t size, 3816 int64_t cur_offset, 3817 int64_t prev_offset) const { 3818 if (AvoidUnalignedAccesses) { 3819 if (base == sp) { 3820 // Checks whether low offset if aligned to pair of registers. 3821 int64_t pair_mask = size * 2 - 1; 3822 int64_t offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3823 return (offset & pair_mask) == 0; 3824 } else { // If base is not sp, we can't guarantee the access is aligned. 3825 return false; 3826 } 3827 } else { 3828 int64_t mask = size - 1; 3829 // Load/store pair instruction only supports element size aligned offset. 3830 return (cur_offset & mask) == 0 && (prev_offset & mask) == 0; 3831 } 3832 } 3833 3834 // Checks whether current and previous loads/stores can be merged. 3835 // Returns true if it can be merged, else false. 3836 bool MacroAssembler::ldst_can_merge(Register rt, 3837 const Address &adr, 3838 size_t cur_size_in_bytes, 3839 bool is_store) const { 3840 address prev = pc() - NativeInstruction::instruction_size; 3841 address last = code()->last_insn(); 3842 3843 if (last == nullptr || !nativeInstruction_at(last)->is_Imm_LdSt()) { 3844 return false; 3845 } 3846 3847 if (adr.getMode() != Address::base_plus_offset || prev != last) { 3848 return false; 3849 } 3850 3851 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3852 size_t prev_size_in_bytes = prev_ldst->size_in_bytes(); 3853 3854 assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging."); 3855 assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging."); 3856 3857 if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) { 3858 return false; 3859 } 3860 3861 int64_t max_offset = 63 * prev_size_in_bytes; 3862 int64_t min_offset = -64 * prev_size_in_bytes; 3863 3864 assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged."); 3865 3866 // Only same base can be merged. 3867 if (adr.base() != prev_ldst->base()) { 3868 return false; 3869 } 3870 3871 int64_t cur_offset = adr.offset(); 3872 int64_t prev_offset = prev_ldst->offset(); 3873 size_t diff = abs(cur_offset - prev_offset); 3874 if (diff != prev_size_in_bytes) { 3875 return false; 3876 } 3877 3878 // Following cases can not be merged: 3879 // ldr x2, [x2, #8] 3880 // ldr x3, [x2, #16] 3881 // or: 3882 // ldr x2, [x3, #8] 3883 // ldr x2, [x3, #16] 3884 // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL. 3885 if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) { 3886 return false; 3887 } 3888 3889 int64_t low_offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3890 // Offset range must be in ldp/stp instruction's range. 3891 if (low_offset > max_offset || low_offset < min_offset) { 3892 return false; 3893 } 3894 3895 if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) { 3896 return true; 3897 } 3898 3899 return false; 3900 } 3901 3902 // Merge current load/store with previous load/store into ldp/stp. 3903 void MacroAssembler::merge_ldst(Register rt, 3904 const Address &adr, 3905 size_t cur_size_in_bytes, 3906 bool is_store) { 3907 3908 assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged."); 3909 3910 Register rt_low, rt_high; 3911 address prev = pc() - NativeInstruction::instruction_size; 3912 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3913 3914 int64_t offset; 3915 3916 if (adr.offset() < prev_ldst->offset()) { 3917 offset = adr.offset(); 3918 rt_low = rt; 3919 rt_high = prev_ldst->target(); 3920 } else { 3921 offset = prev_ldst->offset(); 3922 rt_low = prev_ldst->target(); 3923 rt_high = rt; 3924 } 3925 3926 Address adr_p = Address(prev_ldst->base(), offset); 3927 // Overwrite previous generated binary. 3928 code_section()->set_end(prev); 3929 3930 const size_t sz = prev_ldst->size_in_bytes(); 3931 assert(sz == 8 || sz == 4, "only supports 64/32bit merging."); 3932 if (!is_store) { 3933 BLOCK_COMMENT("merged ldr pair"); 3934 if (sz == 8) { 3935 ldp(rt_low, rt_high, adr_p); 3936 } else { 3937 ldpw(rt_low, rt_high, adr_p); 3938 } 3939 } else { 3940 BLOCK_COMMENT("merged str pair"); 3941 if (sz == 8) { 3942 stp(rt_low, rt_high, adr_p); 3943 } else { 3944 stpw(rt_low, rt_high, adr_p); 3945 } 3946 } 3947 } 3948 3949 /** 3950 * Multiply 64 bit by 64 bit first loop. 3951 */ 3952 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 3953 Register y, Register y_idx, Register z, 3954 Register carry, Register product, 3955 Register idx, Register kdx) { 3956 // 3957 // jlong carry, x[], y[], z[]; 3958 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 3959 // huge_128 product = y[idx] * x[xstart] + carry; 3960 // z[kdx] = (jlong)product; 3961 // carry = (jlong)(product >>> 64); 3962 // } 3963 // z[xstart] = carry; 3964 // 3965 3966 Label L_first_loop, L_first_loop_exit; 3967 Label L_one_x, L_one_y, L_multiply; 3968 3969 subsw(xstart, xstart, 1); 3970 br(Assembler::MI, L_one_x); 3971 3972 lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt))); 3973 ldr(x_xstart, Address(rscratch1)); 3974 ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian 3975 3976 bind(L_first_loop); 3977 subsw(idx, idx, 1); 3978 br(Assembler::MI, L_first_loop_exit); 3979 subsw(idx, idx, 1); 3980 br(Assembler::MI, L_one_y); 3981 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3982 ldr(y_idx, Address(rscratch1)); 3983 ror(y_idx, y_idx, 32); // convert big-endian to little-endian 3984 bind(L_multiply); 3985 3986 // AArch64 has a multiply-accumulate instruction that we can't use 3987 // here because it has no way to process carries, so we have to use 3988 // separate add and adc instructions. Bah. 3989 umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product 3990 mul(product, x_xstart, y_idx); 3991 adds(product, product, carry); 3992 adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product 3993 3994 subw(kdx, kdx, 2); 3995 ror(product, product, 32); // back to big-endian 3996 str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong)); 3997 3998 b(L_first_loop); 3999 4000 bind(L_one_y); 4001 ldrw(y_idx, Address(y, 0)); 4002 b(L_multiply); 4003 4004 bind(L_one_x); 4005 ldrw(x_xstart, Address(x, 0)); 4006 b(L_first_loop); 4007 4008 bind(L_first_loop_exit); 4009 } 4010 4011 /** 4012 * Multiply 128 bit by 128. Unrolled inner loop. 4013 * 4014 */ 4015 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z, 4016 Register carry, Register carry2, 4017 Register idx, Register jdx, 4018 Register yz_idx1, Register yz_idx2, 4019 Register tmp, Register tmp3, Register tmp4, 4020 Register tmp6, Register product_hi) { 4021 4022 // jlong carry, x[], y[], z[]; 4023 // int kdx = ystart+1; 4024 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 4025 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry; 4026 // jlong carry2 = (jlong)(tmp3 >>> 64); 4027 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2; 4028 // carry = (jlong)(tmp4 >>> 64); 4029 // z[kdx+idx+1] = (jlong)tmp3; 4030 // z[kdx+idx] = (jlong)tmp4; 4031 // } 4032 // idx += 2; 4033 // if (idx > 0) { 4034 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry; 4035 // z[kdx+idx] = (jlong)yz_idx1; 4036 // carry = (jlong)(yz_idx1 >>> 64); 4037 // } 4038 // 4039 4040 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 4041 4042 lsrw(jdx, idx, 2); 4043 4044 bind(L_third_loop); 4045 4046 subsw(jdx, jdx, 1); 4047 br(Assembler::MI, L_third_loop_exit); 4048 subw(idx, idx, 4); 4049 4050 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4051 4052 ldp(yz_idx2, yz_idx1, Address(rscratch1, 0)); 4053 4054 lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4055 4056 ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 4057 ror(yz_idx2, yz_idx2, 32); 4058 4059 ldp(rscratch2, rscratch1, Address(tmp6, 0)); 4060 4061 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 4062 umulh(tmp4, product_hi, yz_idx1); 4063 4064 ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian 4065 ror(rscratch2, rscratch2, 32); 4066 4067 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp 4068 umulh(carry2, product_hi, yz_idx2); 4069 4070 // propagate sum of both multiplications into carry:tmp4:tmp3 4071 adds(tmp3, tmp3, carry); 4072 adc(tmp4, tmp4, zr); 4073 adds(tmp3, tmp3, rscratch1); 4074 adcs(tmp4, tmp4, tmp); 4075 adc(carry, carry2, zr); 4076 adds(tmp4, tmp4, rscratch2); 4077 adc(carry, carry, zr); 4078 4079 ror(tmp3, tmp3, 32); // convert little-endian to big-endian 4080 ror(tmp4, tmp4, 32); 4081 stp(tmp4, tmp3, Address(tmp6, 0)); 4082 4083 b(L_third_loop); 4084 bind (L_third_loop_exit); 4085 4086 andw (idx, idx, 0x3); 4087 cbz(idx, L_post_third_loop_done); 4088 4089 Label L_check_1; 4090 subsw(idx, idx, 2); 4091 br(Assembler::MI, L_check_1); 4092 4093 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4094 ldr(yz_idx1, Address(rscratch1, 0)); 4095 ror(yz_idx1, yz_idx1, 32); 4096 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 4097 umulh(tmp4, product_hi, yz_idx1); 4098 lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4099 ldr(yz_idx2, Address(rscratch1, 0)); 4100 ror(yz_idx2, yz_idx2, 32); 4101 4102 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2); 4103 4104 ror(tmp3, tmp3, 32); 4105 str(tmp3, Address(rscratch1, 0)); 4106 4107 bind (L_check_1); 4108 4109 andw (idx, idx, 0x1); 4110 subsw(idx, idx, 1); 4111 br(Assembler::MI, L_post_third_loop_done); 4112 ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4113 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3 4114 umulh(carry2, tmp4, product_hi); 4115 ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4116 4117 add2_with_carry(carry2, tmp3, tmp4, carry); 4118 4119 strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4120 extr(carry, carry2, tmp3, 32); 4121 4122 bind(L_post_third_loop_done); 4123 } 4124 4125 /** 4126 * Code for BigInteger::multiplyToLen() intrinsic. 4127 * 4128 * r0: x 4129 * r1: xlen 4130 * r2: y 4131 * r3: ylen 4132 * r4: z 4133 * r5: tmp0 4134 * r10: tmp1 4135 * r11: tmp2 4136 * r12: tmp3 4137 * r13: tmp4 4138 * r14: tmp5 4139 * r15: tmp6 4140 * r16: tmp7 4141 * 4142 */ 4143 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, 4144 Register z, Register tmp0, 4145 Register tmp1, Register tmp2, Register tmp3, Register tmp4, 4146 Register tmp5, Register tmp6, Register product_hi) { 4147 4148 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, product_hi); 4149 4150 const Register idx = tmp1; 4151 const Register kdx = tmp2; 4152 const Register xstart = tmp3; 4153 4154 const Register y_idx = tmp4; 4155 const Register carry = tmp5; 4156 const Register product = xlen; 4157 const Register x_xstart = tmp0; 4158 4159 // First Loop. 4160 // 4161 // final static long LONG_MASK = 0xffffffffL; 4162 // int xstart = xlen - 1; 4163 // int ystart = ylen - 1; 4164 // long carry = 0; 4165 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 4166 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 4167 // z[kdx] = (int)product; 4168 // carry = product >>> 32; 4169 // } 4170 // z[xstart] = (int)carry; 4171 // 4172 4173 movw(idx, ylen); // idx = ylen; 4174 addw(kdx, xlen, ylen); // kdx = xlen+ylen; 4175 mov(carry, zr); // carry = 0; 4176 4177 Label L_done; 4178 4179 movw(xstart, xlen); 4180 subsw(xstart, xstart, 1); 4181 br(Assembler::MI, L_done); 4182 4183 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 4184 4185 Label L_second_loop; 4186 cbzw(kdx, L_second_loop); 4187 4188 Label L_carry; 4189 subw(kdx, kdx, 1); 4190 cbzw(kdx, L_carry); 4191 4192 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 4193 lsr(carry, carry, 32); 4194 subw(kdx, kdx, 1); 4195 4196 bind(L_carry); 4197 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 4198 4199 // Second and third (nested) loops. 4200 // 4201 // for (int i = xstart-1; i >= 0; i--) { // Second loop 4202 // carry = 0; 4203 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 4204 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 4205 // (z[k] & LONG_MASK) + carry; 4206 // z[k] = (int)product; 4207 // carry = product >>> 32; 4208 // } 4209 // z[i] = (int)carry; 4210 // } 4211 // 4212 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi 4213 4214 const Register jdx = tmp1; 4215 4216 bind(L_second_loop); 4217 mov(carry, zr); // carry = 0; 4218 movw(jdx, ylen); // j = ystart+1 4219 4220 subsw(xstart, xstart, 1); // i = xstart-1; 4221 br(Assembler::MI, L_done); 4222 4223 str(z, Address(pre(sp, -4 * wordSize))); 4224 4225 Label L_last_x; 4226 lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j 4227 subsw(xstart, xstart, 1); // i = xstart-1; 4228 br(Assembler::MI, L_last_x); 4229 4230 lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt))); 4231 ldr(product_hi, Address(rscratch1)); 4232 ror(product_hi, product_hi, 32); // convert big-endian to little-endian 4233 4234 Label L_third_loop_prologue; 4235 bind(L_third_loop_prologue); 4236 4237 str(ylen, Address(sp, wordSize)); 4238 stp(x, xstart, Address(sp, 2 * wordSize)); 4239 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product, 4240 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi); 4241 ldp(z, ylen, Address(post(sp, 2 * wordSize))); 4242 ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen 4243 4244 addw(tmp3, xlen, 1); 4245 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4246 subsw(tmp3, tmp3, 1); 4247 br(Assembler::MI, L_done); 4248 4249 lsr(carry, carry, 32); 4250 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4251 b(L_second_loop); 4252 4253 // Next infrequent code is moved outside loops. 4254 bind(L_last_x); 4255 ldrw(product_hi, Address(x, 0)); 4256 b(L_third_loop_prologue); 4257 4258 bind(L_done); 4259 } 4260 4261 // Code for BigInteger::mulAdd intrinsic 4262 // out = r0 4263 // in = r1 4264 // offset = r2 (already out.length-offset) 4265 // len = r3 4266 // k = r4 4267 // 4268 // pseudo code from java implementation: 4269 // carry = 0; 4270 // offset = out.length-offset - 1; 4271 // for (int j=len-1; j >= 0; j--) { 4272 // product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry; 4273 // out[offset--] = (int)product; 4274 // carry = product >>> 32; 4275 // } 4276 // return (int)carry; 4277 void MacroAssembler::mul_add(Register out, Register in, Register offset, 4278 Register len, Register k) { 4279 Label LOOP, END; 4280 // pre-loop 4281 cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches 4282 csel(out, zr, out, Assembler::EQ); 4283 br(Assembler::EQ, END); 4284 add(in, in, len, LSL, 2); // in[j+1] address 4285 add(offset, out, offset, LSL, 2); // out[offset + 1] address 4286 mov(out, zr); // used to keep carry now 4287 BIND(LOOP); 4288 ldrw(rscratch1, Address(pre(in, -4))); 4289 madd(rscratch1, rscratch1, k, out); 4290 ldrw(rscratch2, Address(pre(offset, -4))); 4291 add(rscratch1, rscratch1, rscratch2); 4292 strw(rscratch1, Address(offset)); 4293 lsr(out, rscratch1, 32); 4294 subs(len, len, 1); 4295 br(Assembler::NE, LOOP); 4296 BIND(END); 4297 } 4298 4299 /** 4300 * Emits code to update CRC-32 with a byte value according to constants in table 4301 * 4302 * @param [in,out]crc Register containing the crc. 4303 * @param [in]val Register containing the byte to fold into the CRC. 4304 * @param [in]table Register containing the table of crc constants. 4305 * 4306 * uint32_t crc; 4307 * val = crc_table[(val ^ crc) & 0xFF]; 4308 * crc = val ^ (crc >> 8); 4309 * 4310 */ 4311 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 4312 eor(val, val, crc); 4313 andr(val, val, 0xff); 4314 ldrw(val, Address(table, val, Address::lsl(2))); 4315 eor(crc, val, crc, Assembler::LSR, 8); 4316 } 4317 4318 /** 4319 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3 4320 * 4321 * @param [in,out]crc Register containing the crc. 4322 * @param [in]v Register containing the 32-bit to fold into the CRC. 4323 * @param [in]table0 Register containing table 0 of crc constants. 4324 * @param [in]table1 Register containing table 1 of crc constants. 4325 * @param [in]table2 Register containing table 2 of crc constants. 4326 * @param [in]table3 Register containing table 3 of crc constants. 4327 * 4328 * uint32_t crc; 4329 * v = crc ^ v 4330 * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24] 4331 * 4332 */ 4333 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp, 4334 Register table0, Register table1, Register table2, Register table3, 4335 bool upper) { 4336 eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0); 4337 uxtb(tmp, v); 4338 ldrw(crc, Address(table3, tmp, Address::lsl(2))); 4339 ubfx(tmp, v, 8, 8); 4340 ldrw(tmp, Address(table2, tmp, Address::lsl(2))); 4341 eor(crc, crc, tmp); 4342 ubfx(tmp, v, 16, 8); 4343 ldrw(tmp, Address(table1, tmp, Address::lsl(2))); 4344 eor(crc, crc, tmp); 4345 ubfx(tmp, v, 24, 8); 4346 ldrw(tmp, Address(table0, tmp, Address::lsl(2))); 4347 eor(crc, crc, tmp); 4348 } 4349 4350 void MacroAssembler::kernel_crc32_using_crypto_pmull(Register crc, Register buf, 4351 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4352 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4353 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4354 4355 subs(tmp0, len, 384); 4356 mvnw(crc, crc); 4357 br(Assembler::GE, CRC_by128_pre); 4358 BIND(CRC_less128); 4359 subs(len, len, 32); 4360 br(Assembler::GE, CRC_by32_loop); 4361 BIND(CRC_less32); 4362 adds(len, len, 32 - 4); 4363 br(Assembler::GE, CRC_by4_loop); 4364 adds(len, len, 4); 4365 br(Assembler::GT, CRC_by1_loop); 4366 b(L_exit); 4367 4368 BIND(CRC_by32_loop); 4369 ldp(tmp0, tmp1, Address(buf)); 4370 crc32x(crc, crc, tmp0); 4371 ldp(tmp2, tmp3, Address(buf, 16)); 4372 crc32x(crc, crc, tmp1); 4373 add(buf, buf, 32); 4374 crc32x(crc, crc, tmp2); 4375 subs(len, len, 32); 4376 crc32x(crc, crc, tmp3); 4377 br(Assembler::GE, CRC_by32_loop); 4378 cmn(len, (u1)32); 4379 br(Assembler::NE, CRC_less32); 4380 b(L_exit); 4381 4382 BIND(CRC_by4_loop); 4383 ldrw(tmp0, Address(post(buf, 4))); 4384 subs(len, len, 4); 4385 crc32w(crc, crc, tmp0); 4386 br(Assembler::GE, CRC_by4_loop); 4387 adds(len, len, 4); 4388 br(Assembler::LE, L_exit); 4389 BIND(CRC_by1_loop); 4390 ldrb(tmp0, Address(post(buf, 1))); 4391 subs(len, len, 1); 4392 crc32b(crc, crc, tmp0); 4393 br(Assembler::GT, CRC_by1_loop); 4394 b(L_exit); 4395 4396 BIND(CRC_by128_pre); 4397 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4398 4*256*sizeof(juint) + 8*sizeof(juint)); 4399 mov(crc, 0); 4400 crc32x(crc, crc, tmp0); 4401 crc32x(crc, crc, tmp1); 4402 4403 cbnz(len, CRC_less128); 4404 4405 BIND(L_exit); 4406 mvnw(crc, crc); 4407 } 4408 4409 void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf, 4410 Register len, Register tmp0, Register tmp1, Register tmp2, 4411 Register tmp3) { 4412 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4413 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4414 4415 mvnw(crc, crc); 4416 4417 subs(len, len, 128); 4418 br(Assembler::GE, CRC_by64_pre); 4419 BIND(CRC_less64); 4420 adds(len, len, 128-32); 4421 br(Assembler::GE, CRC_by32_loop); 4422 BIND(CRC_less32); 4423 adds(len, len, 32-4); 4424 br(Assembler::GE, CRC_by4_loop); 4425 adds(len, len, 4); 4426 br(Assembler::GT, CRC_by1_loop); 4427 b(L_exit); 4428 4429 BIND(CRC_by32_loop); 4430 ldp(tmp0, tmp1, Address(post(buf, 16))); 4431 subs(len, len, 32); 4432 crc32x(crc, crc, tmp0); 4433 ldr(tmp2, Address(post(buf, 8))); 4434 crc32x(crc, crc, tmp1); 4435 ldr(tmp3, Address(post(buf, 8))); 4436 crc32x(crc, crc, tmp2); 4437 crc32x(crc, crc, tmp3); 4438 br(Assembler::GE, CRC_by32_loop); 4439 cmn(len, (u1)32); 4440 br(Assembler::NE, CRC_less32); 4441 b(L_exit); 4442 4443 BIND(CRC_by4_loop); 4444 ldrw(tmp0, Address(post(buf, 4))); 4445 subs(len, len, 4); 4446 crc32w(crc, crc, tmp0); 4447 br(Assembler::GE, CRC_by4_loop); 4448 adds(len, len, 4); 4449 br(Assembler::LE, L_exit); 4450 BIND(CRC_by1_loop); 4451 ldrb(tmp0, Address(post(buf, 1))); 4452 subs(len, len, 1); 4453 crc32b(crc, crc, tmp0); 4454 br(Assembler::GT, CRC_by1_loop); 4455 b(L_exit); 4456 4457 BIND(CRC_by64_pre); 4458 sub(buf, buf, 8); 4459 ldp(tmp0, tmp1, Address(buf, 8)); 4460 crc32x(crc, crc, tmp0); 4461 ldr(tmp2, Address(buf, 24)); 4462 crc32x(crc, crc, tmp1); 4463 ldr(tmp3, Address(buf, 32)); 4464 crc32x(crc, crc, tmp2); 4465 ldr(tmp0, Address(buf, 40)); 4466 crc32x(crc, crc, tmp3); 4467 ldr(tmp1, Address(buf, 48)); 4468 crc32x(crc, crc, tmp0); 4469 ldr(tmp2, Address(buf, 56)); 4470 crc32x(crc, crc, tmp1); 4471 ldr(tmp3, Address(pre(buf, 64))); 4472 4473 b(CRC_by64_loop); 4474 4475 align(CodeEntryAlignment); 4476 BIND(CRC_by64_loop); 4477 subs(len, len, 64); 4478 crc32x(crc, crc, tmp2); 4479 ldr(tmp0, Address(buf, 8)); 4480 crc32x(crc, crc, tmp3); 4481 ldr(tmp1, Address(buf, 16)); 4482 crc32x(crc, crc, tmp0); 4483 ldr(tmp2, Address(buf, 24)); 4484 crc32x(crc, crc, tmp1); 4485 ldr(tmp3, Address(buf, 32)); 4486 crc32x(crc, crc, tmp2); 4487 ldr(tmp0, Address(buf, 40)); 4488 crc32x(crc, crc, tmp3); 4489 ldr(tmp1, Address(buf, 48)); 4490 crc32x(crc, crc, tmp0); 4491 ldr(tmp2, Address(buf, 56)); 4492 crc32x(crc, crc, tmp1); 4493 ldr(tmp3, Address(pre(buf, 64))); 4494 br(Assembler::GE, CRC_by64_loop); 4495 4496 // post-loop 4497 crc32x(crc, crc, tmp2); 4498 crc32x(crc, crc, tmp3); 4499 4500 sub(len, len, 64); 4501 add(buf, buf, 8); 4502 cmn(len, (u1)128); 4503 br(Assembler::NE, CRC_less64); 4504 BIND(L_exit); 4505 mvnw(crc, crc); 4506 } 4507 4508 /** 4509 * @param crc register containing existing CRC (32-bit) 4510 * @param buf register pointing to input byte buffer (byte*) 4511 * @param len register containing number of bytes 4512 * @param table register that will contain address of CRC table 4513 * @param tmp scratch register 4514 */ 4515 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, 4516 Register table0, Register table1, Register table2, Register table3, 4517 Register tmp, Register tmp2, Register tmp3) { 4518 Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit; 4519 4520 if (UseCryptoPmullForCRC32) { 4521 kernel_crc32_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4522 return; 4523 } 4524 4525 if (UseCRC32) { 4526 kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3); 4527 return; 4528 } 4529 4530 mvnw(crc, crc); 4531 4532 { 4533 uint64_t offset; 4534 adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4535 add(table0, table0, offset); 4536 } 4537 add(table1, table0, 1*256*sizeof(juint)); 4538 add(table2, table0, 2*256*sizeof(juint)); 4539 add(table3, table0, 3*256*sizeof(juint)); 4540 4541 { // Neon code start 4542 cmp(len, (u1)64); 4543 br(Assembler::LT, L_by16); 4544 eor(v16, T16B, v16, v16); 4545 4546 Label L_fold; 4547 4548 add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants 4549 4550 ld1(v0, v1, T2D, post(buf, 32)); 4551 ld1r(v4, T2D, post(tmp, 8)); 4552 ld1r(v5, T2D, post(tmp, 8)); 4553 ld1r(v6, T2D, post(tmp, 8)); 4554 ld1r(v7, T2D, post(tmp, 8)); 4555 mov(v16, S, 0, crc); 4556 4557 eor(v0, T16B, v0, v16); 4558 sub(len, len, 64); 4559 4560 BIND(L_fold); 4561 pmull(v22, T8H, v0, v5, T8B); 4562 pmull(v20, T8H, v0, v7, T8B); 4563 pmull(v23, T8H, v0, v4, T8B); 4564 pmull(v21, T8H, v0, v6, T8B); 4565 4566 pmull2(v18, T8H, v0, v5, T16B); 4567 pmull2(v16, T8H, v0, v7, T16B); 4568 pmull2(v19, T8H, v0, v4, T16B); 4569 pmull2(v17, T8H, v0, v6, T16B); 4570 4571 uzp1(v24, T8H, v20, v22); 4572 uzp2(v25, T8H, v20, v22); 4573 eor(v20, T16B, v24, v25); 4574 4575 uzp1(v26, T8H, v16, v18); 4576 uzp2(v27, T8H, v16, v18); 4577 eor(v16, T16B, v26, v27); 4578 4579 ushll2(v22, T4S, v20, T8H, 8); 4580 ushll(v20, T4S, v20, T4H, 8); 4581 4582 ushll2(v18, T4S, v16, T8H, 8); 4583 ushll(v16, T4S, v16, T4H, 8); 4584 4585 eor(v22, T16B, v23, v22); 4586 eor(v18, T16B, v19, v18); 4587 eor(v20, T16B, v21, v20); 4588 eor(v16, T16B, v17, v16); 4589 4590 uzp1(v17, T2D, v16, v20); 4591 uzp2(v21, T2D, v16, v20); 4592 eor(v17, T16B, v17, v21); 4593 4594 ushll2(v20, T2D, v17, T4S, 16); 4595 ushll(v16, T2D, v17, T2S, 16); 4596 4597 eor(v20, T16B, v20, v22); 4598 eor(v16, T16B, v16, v18); 4599 4600 uzp1(v17, T2D, v20, v16); 4601 uzp2(v21, T2D, v20, v16); 4602 eor(v28, T16B, v17, v21); 4603 4604 pmull(v22, T8H, v1, v5, T8B); 4605 pmull(v20, T8H, v1, v7, T8B); 4606 pmull(v23, T8H, v1, v4, T8B); 4607 pmull(v21, T8H, v1, v6, T8B); 4608 4609 pmull2(v18, T8H, v1, v5, T16B); 4610 pmull2(v16, T8H, v1, v7, T16B); 4611 pmull2(v19, T8H, v1, v4, T16B); 4612 pmull2(v17, T8H, v1, v6, T16B); 4613 4614 ld1(v0, v1, T2D, post(buf, 32)); 4615 4616 uzp1(v24, T8H, v20, v22); 4617 uzp2(v25, T8H, v20, v22); 4618 eor(v20, T16B, v24, v25); 4619 4620 uzp1(v26, T8H, v16, v18); 4621 uzp2(v27, T8H, v16, v18); 4622 eor(v16, T16B, v26, v27); 4623 4624 ushll2(v22, T4S, v20, T8H, 8); 4625 ushll(v20, T4S, v20, T4H, 8); 4626 4627 ushll2(v18, T4S, v16, T8H, 8); 4628 ushll(v16, T4S, v16, T4H, 8); 4629 4630 eor(v22, T16B, v23, v22); 4631 eor(v18, T16B, v19, v18); 4632 eor(v20, T16B, v21, v20); 4633 eor(v16, T16B, v17, v16); 4634 4635 uzp1(v17, T2D, v16, v20); 4636 uzp2(v21, T2D, v16, v20); 4637 eor(v16, T16B, v17, v21); 4638 4639 ushll2(v20, T2D, v16, T4S, 16); 4640 ushll(v16, T2D, v16, T2S, 16); 4641 4642 eor(v20, T16B, v22, v20); 4643 eor(v16, T16B, v16, v18); 4644 4645 uzp1(v17, T2D, v20, v16); 4646 uzp2(v21, T2D, v20, v16); 4647 eor(v20, T16B, v17, v21); 4648 4649 shl(v16, T2D, v28, 1); 4650 shl(v17, T2D, v20, 1); 4651 4652 eor(v0, T16B, v0, v16); 4653 eor(v1, T16B, v1, v17); 4654 4655 subs(len, len, 32); 4656 br(Assembler::GE, L_fold); 4657 4658 mov(crc, 0); 4659 mov(tmp, v0, D, 0); 4660 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4661 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4662 mov(tmp, v0, D, 1); 4663 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4664 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4665 mov(tmp, v1, D, 0); 4666 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4667 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4668 mov(tmp, v1, D, 1); 4669 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4670 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4671 4672 add(len, len, 32); 4673 } // Neon code end 4674 4675 BIND(L_by16); 4676 subs(len, len, 16); 4677 br(Assembler::GE, L_by16_loop); 4678 adds(len, len, 16-4); 4679 br(Assembler::GE, L_by4_loop); 4680 adds(len, len, 4); 4681 br(Assembler::GT, L_by1_loop); 4682 b(L_exit); 4683 4684 BIND(L_by4_loop); 4685 ldrw(tmp, Address(post(buf, 4))); 4686 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3); 4687 subs(len, len, 4); 4688 br(Assembler::GE, L_by4_loop); 4689 adds(len, len, 4); 4690 br(Assembler::LE, L_exit); 4691 BIND(L_by1_loop); 4692 subs(len, len, 1); 4693 ldrb(tmp, Address(post(buf, 1))); 4694 update_byte_crc32(crc, tmp, table0); 4695 br(Assembler::GT, L_by1_loop); 4696 b(L_exit); 4697 4698 align(CodeEntryAlignment); 4699 BIND(L_by16_loop); 4700 subs(len, len, 16); 4701 ldp(tmp, tmp3, Address(post(buf, 16))); 4702 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4703 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4704 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false); 4705 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true); 4706 br(Assembler::GE, L_by16_loop); 4707 adds(len, len, 16-4); 4708 br(Assembler::GE, L_by4_loop); 4709 adds(len, len, 4); 4710 br(Assembler::GT, L_by1_loop); 4711 BIND(L_exit); 4712 mvnw(crc, crc); 4713 } 4714 4715 void MacroAssembler::kernel_crc32c_using_crypto_pmull(Register crc, Register buf, 4716 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4717 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4718 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4719 4720 subs(tmp0, len, 384); 4721 br(Assembler::GE, CRC_by128_pre); 4722 BIND(CRC_less128); 4723 subs(len, len, 32); 4724 br(Assembler::GE, CRC_by32_loop); 4725 BIND(CRC_less32); 4726 adds(len, len, 32 - 4); 4727 br(Assembler::GE, CRC_by4_loop); 4728 adds(len, len, 4); 4729 br(Assembler::GT, CRC_by1_loop); 4730 b(L_exit); 4731 4732 BIND(CRC_by32_loop); 4733 ldp(tmp0, tmp1, Address(buf)); 4734 crc32cx(crc, crc, tmp0); 4735 ldr(tmp2, Address(buf, 16)); 4736 crc32cx(crc, crc, tmp1); 4737 ldr(tmp3, Address(buf, 24)); 4738 crc32cx(crc, crc, tmp2); 4739 add(buf, buf, 32); 4740 subs(len, len, 32); 4741 crc32cx(crc, crc, tmp3); 4742 br(Assembler::GE, CRC_by32_loop); 4743 cmn(len, (u1)32); 4744 br(Assembler::NE, CRC_less32); 4745 b(L_exit); 4746 4747 BIND(CRC_by4_loop); 4748 ldrw(tmp0, Address(post(buf, 4))); 4749 subs(len, len, 4); 4750 crc32cw(crc, crc, tmp0); 4751 br(Assembler::GE, CRC_by4_loop); 4752 adds(len, len, 4); 4753 br(Assembler::LE, L_exit); 4754 BIND(CRC_by1_loop); 4755 ldrb(tmp0, Address(post(buf, 1))); 4756 subs(len, len, 1); 4757 crc32cb(crc, crc, tmp0); 4758 br(Assembler::GT, CRC_by1_loop); 4759 b(L_exit); 4760 4761 BIND(CRC_by128_pre); 4762 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4763 4*256*sizeof(juint) + 8*sizeof(juint) + 0x50); 4764 mov(crc, 0); 4765 crc32cx(crc, crc, tmp0); 4766 crc32cx(crc, crc, tmp1); 4767 4768 cbnz(len, CRC_less128); 4769 4770 BIND(L_exit); 4771 } 4772 4773 void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf, 4774 Register len, Register tmp0, Register tmp1, Register tmp2, 4775 Register tmp3) { 4776 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4777 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4778 4779 subs(len, len, 128); 4780 br(Assembler::GE, CRC_by64_pre); 4781 BIND(CRC_less64); 4782 adds(len, len, 128-32); 4783 br(Assembler::GE, CRC_by32_loop); 4784 BIND(CRC_less32); 4785 adds(len, len, 32-4); 4786 br(Assembler::GE, CRC_by4_loop); 4787 adds(len, len, 4); 4788 br(Assembler::GT, CRC_by1_loop); 4789 b(L_exit); 4790 4791 BIND(CRC_by32_loop); 4792 ldp(tmp0, tmp1, Address(post(buf, 16))); 4793 subs(len, len, 32); 4794 crc32cx(crc, crc, tmp0); 4795 ldr(tmp2, Address(post(buf, 8))); 4796 crc32cx(crc, crc, tmp1); 4797 ldr(tmp3, Address(post(buf, 8))); 4798 crc32cx(crc, crc, tmp2); 4799 crc32cx(crc, crc, tmp3); 4800 br(Assembler::GE, CRC_by32_loop); 4801 cmn(len, (u1)32); 4802 br(Assembler::NE, CRC_less32); 4803 b(L_exit); 4804 4805 BIND(CRC_by4_loop); 4806 ldrw(tmp0, Address(post(buf, 4))); 4807 subs(len, len, 4); 4808 crc32cw(crc, crc, tmp0); 4809 br(Assembler::GE, CRC_by4_loop); 4810 adds(len, len, 4); 4811 br(Assembler::LE, L_exit); 4812 BIND(CRC_by1_loop); 4813 ldrb(tmp0, Address(post(buf, 1))); 4814 subs(len, len, 1); 4815 crc32cb(crc, crc, tmp0); 4816 br(Assembler::GT, CRC_by1_loop); 4817 b(L_exit); 4818 4819 BIND(CRC_by64_pre); 4820 sub(buf, buf, 8); 4821 ldp(tmp0, tmp1, Address(buf, 8)); 4822 crc32cx(crc, crc, tmp0); 4823 ldr(tmp2, Address(buf, 24)); 4824 crc32cx(crc, crc, tmp1); 4825 ldr(tmp3, Address(buf, 32)); 4826 crc32cx(crc, crc, tmp2); 4827 ldr(tmp0, Address(buf, 40)); 4828 crc32cx(crc, crc, tmp3); 4829 ldr(tmp1, Address(buf, 48)); 4830 crc32cx(crc, crc, tmp0); 4831 ldr(tmp2, Address(buf, 56)); 4832 crc32cx(crc, crc, tmp1); 4833 ldr(tmp3, Address(pre(buf, 64))); 4834 4835 b(CRC_by64_loop); 4836 4837 align(CodeEntryAlignment); 4838 BIND(CRC_by64_loop); 4839 subs(len, len, 64); 4840 crc32cx(crc, crc, tmp2); 4841 ldr(tmp0, Address(buf, 8)); 4842 crc32cx(crc, crc, tmp3); 4843 ldr(tmp1, Address(buf, 16)); 4844 crc32cx(crc, crc, tmp0); 4845 ldr(tmp2, Address(buf, 24)); 4846 crc32cx(crc, crc, tmp1); 4847 ldr(tmp3, Address(buf, 32)); 4848 crc32cx(crc, crc, tmp2); 4849 ldr(tmp0, Address(buf, 40)); 4850 crc32cx(crc, crc, tmp3); 4851 ldr(tmp1, Address(buf, 48)); 4852 crc32cx(crc, crc, tmp0); 4853 ldr(tmp2, Address(buf, 56)); 4854 crc32cx(crc, crc, tmp1); 4855 ldr(tmp3, Address(pre(buf, 64))); 4856 br(Assembler::GE, CRC_by64_loop); 4857 4858 // post-loop 4859 crc32cx(crc, crc, tmp2); 4860 crc32cx(crc, crc, tmp3); 4861 4862 sub(len, len, 64); 4863 add(buf, buf, 8); 4864 cmn(len, (u1)128); 4865 br(Assembler::NE, CRC_less64); 4866 BIND(L_exit); 4867 } 4868 4869 /** 4870 * @param crc register containing existing CRC (32-bit) 4871 * @param buf register pointing to input byte buffer (byte*) 4872 * @param len register containing number of bytes 4873 * @param table register that will contain address of CRC table 4874 * @param tmp scratch register 4875 */ 4876 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len, 4877 Register table0, Register table1, Register table2, Register table3, 4878 Register tmp, Register tmp2, Register tmp3) { 4879 if (UseCryptoPmullForCRC32) { 4880 kernel_crc32c_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4881 } else { 4882 kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3); 4883 } 4884 } 4885 4886 void MacroAssembler::kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 4887 Register len, Register tmp0, Register tmp1, Register tmp2, size_t table_offset) { 4888 Label CRC_by128_loop; 4889 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4890 4891 sub(len, len, 256); 4892 Register table = tmp0; 4893 { 4894 uint64_t offset; 4895 adrp(table, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4896 add(table, table, offset); 4897 } 4898 add(table, table, table_offset); 4899 4900 // Registers v0..v7 are used as data registers. 4901 // Registers v16..v31 are used as tmp registers. 4902 sub(buf, buf, 0x10); 4903 ldrq(v0, Address(buf, 0x10)); 4904 ldrq(v1, Address(buf, 0x20)); 4905 ldrq(v2, Address(buf, 0x30)); 4906 ldrq(v3, Address(buf, 0x40)); 4907 ldrq(v4, Address(buf, 0x50)); 4908 ldrq(v5, Address(buf, 0x60)); 4909 ldrq(v6, Address(buf, 0x70)); 4910 ldrq(v7, Address(pre(buf, 0x80))); 4911 4912 movi(v31, T4S, 0); 4913 mov(v31, S, 0, crc); 4914 eor(v0, T16B, v0, v31); 4915 4916 // Register v16 contains constants from the crc table. 4917 ldrq(v16, Address(table)); 4918 b(CRC_by128_loop); 4919 4920 align(OptoLoopAlignment); 4921 BIND(CRC_by128_loop); 4922 pmull (v17, T1Q, v0, v16, T1D); 4923 pmull2(v18, T1Q, v0, v16, T2D); 4924 ldrq(v0, Address(buf, 0x10)); 4925 eor3(v0, T16B, v17, v18, v0); 4926 4927 pmull (v19, T1Q, v1, v16, T1D); 4928 pmull2(v20, T1Q, v1, v16, T2D); 4929 ldrq(v1, Address(buf, 0x20)); 4930 eor3(v1, T16B, v19, v20, v1); 4931 4932 pmull (v21, T1Q, v2, v16, T1D); 4933 pmull2(v22, T1Q, v2, v16, T2D); 4934 ldrq(v2, Address(buf, 0x30)); 4935 eor3(v2, T16B, v21, v22, v2); 4936 4937 pmull (v23, T1Q, v3, v16, T1D); 4938 pmull2(v24, T1Q, v3, v16, T2D); 4939 ldrq(v3, Address(buf, 0x40)); 4940 eor3(v3, T16B, v23, v24, v3); 4941 4942 pmull (v25, T1Q, v4, v16, T1D); 4943 pmull2(v26, T1Q, v4, v16, T2D); 4944 ldrq(v4, Address(buf, 0x50)); 4945 eor3(v4, T16B, v25, v26, v4); 4946 4947 pmull (v27, T1Q, v5, v16, T1D); 4948 pmull2(v28, T1Q, v5, v16, T2D); 4949 ldrq(v5, Address(buf, 0x60)); 4950 eor3(v5, T16B, v27, v28, v5); 4951 4952 pmull (v29, T1Q, v6, v16, T1D); 4953 pmull2(v30, T1Q, v6, v16, T2D); 4954 ldrq(v6, Address(buf, 0x70)); 4955 eor3(v6, T16B, v29, v30, v6); 4956 4957 // Reuse registers v23, v24. 4958 // Using them won't block the first instruction of the next iteration. 4959 pmull (v23, T1Q, v7, v16, T1D); 4960 pmull2(v24, T1Q, v7, v16, T2D); 4961 ldrq(v7, Address(pre(buf, 0x80))); 4962 eor3(v7, T16B, v23, v24, v7); 4963 4964 subs(len, len, 0x80); 4965 br(Assembler::GE, CRC_by128_loop); 4966 4967 // fold into 512 bits 4968 // Use v31 for constants because v16 can be still in use. 4969 ldrq(v31, Address(table, 0x10)); 4970 4971 pmull (v17, T1Q, v0, v31, T1D); 4972 pmull2(v18, T1Q, v0, v31, T2D); 4973 eor3(v0, T16B, v17, v18, v4); 4974 4975 pmull (v19, T1Q, v1, v31, T1D); 4976 pmull2(v20, T1Q, v1, v31, T2D); 4977 eor3(v1, T16B, v19, v20, v5); 4978 4979 pmull (v21, T1Q, v2, v31, T1D); 4980 pmull2(v22, T1Q, v2, v31, T2D); 4981 eor3(v2, T16B, v21, v22, v6); 4982 4983 pmull (v23, T1Q, v3, v31, T1D); 4984 pmull2(v24, T1Q, v3, v31, T2D); 4985 eor3(v3, T16B, v23, v24, v7); 4986 4987 // fold into 128 bits 4988 // Use v17 for constants because v31 can be still in use. 4989 ldrq(v17, Address(table, 0x20)); 4990 pmull (v25, T1Q, v0, v17, T1D); 4991 pmull2(v26, T1Q, v0, v17, T2D); 4992 eor3(v3, T16B, v3, v25, v26); 4993 4994 // Use v18 for constants because v17 can be still in use. 4995 ldrq(v18, Address(table, 0x30)); 4996 pmull (v27, T1Q, v1, v18, T1D); 4997 pmull2(v28, T1Q, v1, v18, T2D); 4998 eor3(v3, T16B, v3, v27, v28); 4999 5000 // Use v19 for constants because v18 can be still in use. 5001 ldrq(v19, Address(table, 0x40)); 5002 pmull (v29, T1Q, v2, v19, T1D); 5003 pmull2(v30, T1Q, v2, v19, T2D); 5004 eor3(v0, T16B, v3, v29, v30); 5005 5006 add(len, len, 0x80); 5007 add(buf, buf, 0x10); 5008 5009 mov(tmp0, v0, D, 0); 5010 mov(tmp1, v0, D, 1); 5011 } 5012 5013 void MacroAssembler::addptr(const Address &dst, int32_t src) { 5014 Address adr; 5015 switch(dst.getMode()) { 5016 case Address::base_plus_offset: 5017 // This is the expected mode, although we allow all the other 5018 // forms below. 5019 adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord); 5020 break; 5021 default: 5022 lea(rscratch2, dst); 5023 adr = Address(rscratch2); 5024 break; 5025 } 5026 ldr(rscratch1, adr); 5027 add(rscratch1, rscratch1, src); 5028 str(rscratch1, adr); 5029 } 5030 5031 void MacroAssembler::cmpptr(Register src1, Address src2) { 5032 uint64_t offset; 5033 adrp(rscratch1, src2, offset); 5034 ldr(rscratch1, Address(rscratch1, offset)); 5035 cmp(src1, rscratch1); 5036 } 5037 5038 void MacroAssembler::cmpoop(Register obj1, Register obj2) { 5039 cmp(obj1, obj2); 5040 } 5041 5042 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 5043 load_method_holder(rresult, rmethod); 5044 ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 5045 } 5046 5047 void MacroAssembler::load_method_holder(Register holder, Register method) { 5048 ldr(holder, Address(method, Method::const_offset())); // ConstMethod* 5049 ldr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 5050 ldr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 5051 } 5052 5053 // Loads the obj's Klass* into dst. 5054 // Preserves all registers (incl src, rscratch1 and rscratch2). 5055 // Input: 5056 // src - the oop we want to load the klass from. 5057 // dst - output narrow klass. 5058 void MacroAssembler::load_narrow_klass_compact(Register dst, Register src) { 5059 assert(UseCompactObjectHeaders, "expects UseCompactObjectHeaders"); 5060 ldr(dst, Address(src, oopDesc::mark_offset_in_bytes())); 5061 lsr(dst, dst, markWord::klass_shift); 5062 } 5063 5064 void MacroAssembler::load_klass(Register dst, Register src) { 5065 if (UseCompactObjectHeaders) { 5066 load_narrow_klass_compact(dst, src); 5067 decode_klass_not_null(dst); 5068 } else if (UseCompressedClassPointers) { 5069 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5070 decode_klass_not_null(dst); 5071 } else { 5072 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5073 } 5074 } 5075 5076 void MacroAssembler::restore_cpu_control_state_after_jni(Register tmp1, Register tmp2) { 5077 if (RestoreMXCSROnJNICalls) { 5078 Label OK; 5079 get_fpcr(tmp1); 5080 mov(tmp2, tmp1); 5081 // Set FPCR to the state we need. We do want Round to Nearest. We 5082 // don't want non-IEEE rounding modes or floating-point traps. 5083 bfi(tmp1, zr, 22, 4); // Clear DN, FZ, and Rmode 5084 bfi(tmp1, zr, 8, 5); // Clear exception-control bits (8-12) 5085 bfi(tmp1, zr, 0, 2); // Clear AH:FIZ 5086 eor(tmp2, tmp1, tmp2); 5087 cbz(tmp2, OK); // Only reset FPCR if it's wrong 5088 set_fpcr(tmp1); 5089 bind(OK); 5090 } 5091 } 5092 5093 // ((OopHandle)result).resolve(); 5094 void MacroAssembler::resolve_oop_handle(Register result, Register tmp1, Register tmp2) { 5095 // OopHandle::resolve is an indirection. 5096 access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp1, tmp2); 5097 } 5098 5099 // ((WeakHandle)result).resolve(); 5100 void MacroAssembler::resolve_weak_handle(Register result, Register tmp1, Register tmp2) { 5101 assert_different_registers(result, tmp1, tmp2); 5102 Label resolved; 5103 5104 // A null weak handle resolves to null. 5105 cbz(result, resolved); 5106 5107 // Only 64 bit platforms support GCs that require a tmp register 5108 // WeakHandle::resolve is an indirection like jweak. 5109 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 5110 result, Address(result), tmp1, tmp2); 5111 bind(resolved); 5112 } 5113 5114 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp1, Register tmp2) { 5115 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 5116 ldr(dst, Address(rmethod, Method::const_offset())); 5117 ldr(dst, Address(dst, ConstMethod::constants_offset())); 5118 ldr(dst, Address(dst, ConstantPool::pool_holder_offset())); 5119 ldr(dst, Address(dst, mirror_offset)); 5120 resolve_oop_handle(dst, tmp1, tmp2); 5121 } 5122 5123 void MacroAssembler::cmp_klass(Register obj, Register klass, Register tmp) { 5124 assert_different_registers(obj, klass, tmp); 5125 if (UseCompressedClassPointers) { 5126 if (UseCompactObjectHeaders) { 5127 load_narrow_klass_compact(tmp, obj); 5128 } else { 5129 ldrw(tmp, Address(obj, oopDesc::klass_offset_in_bytes())); 5130 } 5131 if (CompressedKlassPointers::base() == nullptr) { 5132 cmp(klass, tmp, LSL, CompressedKlassPointers::shift()); 5133 return; 5134 } else if (!AOTCodeCache::is_on_for_dump() && 5135 ((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0 5136 && CompressedKlassPointers::shift() == 0) { 5137 // Only the bottom 32 bits matter 5138 cmpw(klass, tmp); 5139 return; 5140 } 5141 decode_klass_not_null(tmp); 5142 } else { 5143 ldr(tmp, Address(obj, oopDesc::klass_offset_in_bytes())); 5144 } 5145 cmp(klass, tmp); 5146 } 5147 5148 void MacroAssembler::cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2) { 5149 if (UseCompactObjectHeaders) { 5150 load_narrow_klass_compact(tmp1, obj1); 5151 load_narrow_klass_compact(tmp2, obj2); 5152 cmpw(tmp1, tmp2); 5153 } else if (UseCompressedClassPointers) { 5154 ldrw(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5155 ldrw(tmp2, Address(obj2, oopDesc::klass_offset_in_bytes())); 5156 cmpw(tmp1, tmp2); 5157 } else { 5158 ldr(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5159 ldr(tmp2, Address(obj2, oopDesc::klass_offset_in_bytes())); 5160 cmp(tmp1, tmp2); 5161 } 5162 } 5163 5164 void MacroAssembler::store_klass(Register dst, Register src) { 5165 // FIXME: Should this be a store release? concurrent gcs assumes 5166 // klass length is valid if klass field is not null. 5167 assert(!UseCompactObjectHeaders, "not with compact headers"); 5168 if (UseCompressedClassPointers) { 5169 encode_klass_not_null(src); 5170 strw(src, Address(dst, oopDesc::klass_offset_in_bytes())); 5171 } else { 5172 str(src, Address(dst, oopDesc::klass_offset_in_bytes())); 5173 } 5174 } 5175 5176 void MacroAssembler::store_klass_gap(Register dst, Register src) { 5177 assert(!UseCompactObjectHeaders, "not with compact headers"); 5178 if (UseCompressedClassPointers) { 5179 // Store to klass gap in destination 5180 strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes())); 5181 } 5182 } 5183 5184 // Algorithm must match CompressedOops::encode. 5185 void MacroAssembler::encode_heap_oop(Register d, Register s) { 5186 #ifdef ASSERT 5187 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 5188 #endif 5189 verify_oop_msg(s, "broken oop in encode_heap_oop"); 5190 if (CompressedOops::base() == nullptr) { 5191 if (CompressedOops::shift() != 0) { 5192 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5193 lsr(d, s, LogMinObjAlignmentInBytes); 5194 } else { 5195 mov(d, s); 5196 } 5197 } else { 5198 subs(d, s, rheapbase); 5199 csel(d, d, zr, Assembler::HS); 5200 lsr(d, d, LogMinObjAlignmentInBytes); 5201 5202 /* Old algorithm: is this any worse? 5203 Label nonnull; 5204 cbnz(r, nonnull); 5205 sub(r, r, rheapbase); 5206 bind(nonnull); 5207 lsr(r, r, LogMinObjAlignmentInBytes); 5208 */ 5209 } 5210 } 5211 5212 void MacroAssembler::encode_heap_oop_not_null(Register r) { 5213 #ifdef ASSERT 5214 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 5215 if (CheckCompressedOops) { 5216 Label ok; 5217 cbnz(r, ok); 5218 stop("null oop passed to encode_heap_oop_not_null"); 5219 bind(ok); 5220 } 5221 #endif 5222 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 5223 if (CompressedOops::base() != nullptr) { 5224 sub(r, r, rheapbase); 5225 } 5226 if (CompressedOops::shift() != 0) { 5227 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5228 lsr(r, r, LogMinObjAlignmentInBytes); 5229 } 5230 } 5231 5232 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 5233 #ifdef ASSERT 5234 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 5235 if (CheckCompressedOops) { 5236 Label ok; 5237 cbnz(src, ok); 5238 stop("null oop passed to encode_heap_oop_not_null2"); 5239 bind(ok); 5240 } 5241 #endif 5242 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 5243 5244 Register data = src; 5245 if (CompressedOops::base() != nullptr) { 5246 sub(dst, src, rheapbase); 5247 data = dst; 5248 } 5249 if (CompressedOops::shift() != 0) { 5250 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5251 lsr(dst, data, LogMinObjAlignmentInBytes); 5252 data = dst; 5253 } 5254 if (data == src) 5255 mov(dst, src); 5256 } 5257 5258 void MacroAssembler::decode_heap_oop(Register d, Register s) { 5259 #ifdef ASSERT 5260 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 5261 #endif 5262 if (CompressedOops::base() == nullptr) { 5263 if (CompressedOops::shift() != 0) { 5264 lsl(d, s, CompressedOops::shift()); 5265 } else if (d != s) { 5266 mov(d, s); 5267 } 5268 } else { 5269 Label done; 5270 if (d != s) 5271 mov(d, s); 5272 cbz(s, done); 5273 add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes); 5274 bind(done); 5275 } 5276 verify_oop_msg(d, "broken oop in decode_heap_oop"); 5277 } 5278 5279 void MacroAssembler::decode_heap_oop_not_null(Register r) { 5280 assert (UseCompressedOops, "should only be used for compressed headers"); 5281 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5282 // Cannot assert, unverified entry point counts instructions (see .ad file) 5283 // vtableStubs also counts instructions in pd_code_size_limit. 5284 // Also do not verify_oop as this is called by verify_oop. 5285 if (CompressedOops::shift() != 0) { 5286 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5287 if (CompressedOops::base() != nullptr) { 5288 add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5289 } else { 5290 add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5291 } 5292 } else { 5293 assert (CompressedOops::base() == nullptr, "sanity"); 5294 } 5295 } 5296 5297 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 5298 assert (UseCompressedOops, "should only be used for compressed headers"); 5299 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5300 // Cannot assert, unverified entry point counts instructions (see .ad file) 5301 // vtableStubs also counts instructions in pd_code_size_limit. 5302 // Also do not verify_oop as this is called by verify_oop. 5303 if (CompressedOops::shift() != 0) { 5304 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5305 if (CompressedOops::base() != nullptr) { 5306 add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5307 } else { 5308 add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5309 } 5310 } else { 5311 assert (CompressedOops::base() == nullptr, "sanity"); 5312 if (dst != src) { 5313 mov(dst, src); 5314 } 5315 } 5316 } 5317 5318 MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone); 5319 5320 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() { 5321 assert(Metaspace::initialized(), "metaspace not initialized yet"); 5322 assert(_klass_decode_mode != KlassDecodeNone, "should be initialized"); 5323 return _klass_decode_mode; 5324 } 5325 5326 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode(address base, int shift, const size_t range) { 5327 assert(UseCompressedClassPointers, "not using compressed class pointers"); 5328 5329 // KlassDecodeMode shouldn't be set already. 5330 assert(_klass_decode_mode == KlassDecodeNone, "set once"); 5331 5332 if (base == nullptr) { 5333 return KlassDecodeZero; 5334 } 5335 5336 if (operand_valid_for_logical_immediate( 5337 /*is32*/false, (uint64_t)base)) { 5338 const uint64_t range_mask = right_n_bits(log2i_ceil(range)); 5339 if (((uint64_t)base & range_mask) == 0) { 5340 return KlassDecodeXor; 5341 } 5342 } 5343 5344 const uint64_t shifted_base = 5345 (uint64_t)base >> shift; 5346 if ((shifted_base & 0xffff0000ffffffff) == 0) { 5347 return KlassDecodeMovk; 5348 } 5349 5350 // No valid encoding. 5351 return KlassDecodeNone; 5352 } 5353 5354 // Check if one of the above decoding modes will work for given base, shift and range. 5355 bool MacroAssembler::check_klass_decode_mode(address base, int shift, const size_t range) { 5356 return klass_decode_mode(base, shift, range) != KlassDecodeNone; 5357 } 5358 5359 bool MacroAssembler::set_klass_decode_mode(address base, int shift, const size_t range) { 5360 _klass_decode_mode = klass_decode_mode(base, shift, range); 5361 return _klass_decode_mode != KlassDecodeNone; 5362 } 5363 5364 static Register pick_different_tmp(Register dst, Register src) { 5365 auto tmps = RegSet::of(r0, r1, r2) - RegSet::of(src, dst); 5366 return *tmps.begin(); 5367 } 5368 5369 void MacroAssembler::encode_klass_not_null_for_aot(Register dst, Register src) { 5370 // we have to load the klass base from the AOT constants area but 5371 // not the shift because it is not allowed to change 5372 int shift = CompressedKlassPointers::shift(); 5373 assert(shift >= 0 && shift <= CompressedKlassPointers::max_shift(), "unexpected compressed klass shift!"); 5374 if (dst != src) { 5375 // we can load the base into dst, subtract it formthe src and shift down 5376 lea(dst, ExternalAddress(CompressedKlassPointers::base_addr())); 5377 ldr(dst, dst); 5378 sub(dst, src, dst); 5379 lsr(dst, dst, shift); 5380 } else { 5381 // we need an extra register in order to load the coop base 5382 Register tmp = pick_different_tmp(dst, src); 5383 RegSet regs = RegSet::of(tmp); 5384 push(regs, sp); 5385 lea(tmp, ExternalAddress(CompressedKlassPointers::base_addr())); 5386 ldr(tmp, tmp); 5387 sub(dst, src, tmp); 5388 lsr(dst, dst, shift); 5389 pop(regs, sp); 5390 } 5391 } 5392 5393 void MacroAssembler::encode_klass_not_null(Register dst, Register src) { 5394 if (CompressedKlassPointers::base() != nullptr && AOTCodeCache::is_on_for_dump()) { 5395 encode_klass_not_null_for_aot(dst, src); 5396 return; 5397 } 5398 5399 switch (klass_decode_mode()) { 5400 case KlassDecodeZero: 5401 if (CompressedKlassPointers::shift() != 0) { 5402 lsr(dst, src, CompressedKlassPointers::shift()); 5403 } else { 5404 if (dst != src) mov(dst, src); 5405 } 5406 break; 5407 5408 case KlassDecodeXor: 5409 if (CompressedKlassPointers::shift() != 0) { 5410 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5411 lsr(dst, dst, CompressedKlassPointers::shift()); 5412 } else { 5413 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5414 } 5415 break; 5416 5417 case KlassDecodeMovk: 5418 if (CompressedKlassPointers::shift() != 0) { 5419 ubfx(dst, src, CompressedKlassPointers::shift(), 32); 5420 } else { 5421 movw(dst, src); 5422 } 5423 break; 5424 5425 case KlassDecodeNone: 5426 ShouldNotReachHere(); 5427 break; 5428 } 5429 } 5430 5431 void MacroAssembler::encode_klass_not_null(Register r) { 5432 encode_klass_not_null(r, r); 5433 } 5434 5435 void MacroAssembler::decode_klass_not_null_for_aot(Register dst, Register src) { 5436 // we have to load the klass base from the AOT constants area but 5437 // not the shift because it is not allowed to change 5438 int shift = CompressedKlassPointers::shift(); 5439 assert(shift >= 0 && shift <= CompressedKlassPointers::max_shift(), "unexpected compressed klass shift!"); 5440 if (dst != src) { 5441 // we can load the base into dst then add the offset with a suitable shift 5442 lea(dst, ExternalAddress(CompressedKlassPointers::base_addr())); 5443 ldr(dst, dst); 5444 add(dst, dst, src, LSL, shift); 5445 } else { 5446 // we need an extra register in order to load the coop base 5447 Register tmp = pick_different_tmp(dst, src); 5448 RegSet regs = RegSet::of(tmp); 5449 push(regs, sp); 5450 lea(tmp, ExternalAddress(CompressedKlassPointers::base_addr())); 5451 ldr(tmp, tmp); 5452 add(dst, tmp, src, LSL, shift); 5453 pop(regs, sp); 5454 } 5455 } 5456 5457 void MacroAssembler::decode_klass_not_null(Register dst, Register src) { 5458 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5459 5460 if (CompressedKlassPointers::base() != nullptr && AOTCodeCache::is_on_for_dump()) { 5461 decode_klass_not_null_for_aot(dst, src); 5462 return; 5463 } 5464 5465 switch (klass_decode_mode()) { 5466 case KlassDecodeZero: 5467 if (CompressedKlassPointers::shift() != 0) { 5468 lsl(dst, src, CompressedKlassPointers::shift()); 5469 } else { 5470 if (dst != src) mov(dst, src); 5471 } 5472 break; 5473 5474 case KlassDecodeXor: 5475 if (CompressedKlassPointers::shift() != 0) { 5476 lsl(dst, src, CompressedKlassPointers::shift()); 5477 eor(dst, dst, (uint64_t)CompressedKlassPointers::base()); 5478 } else { 5479 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5480 } 5481 break; 5482 5483 case KlassDecodeMovk: { 5484 const uint64_t shifted_base = 5485 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 5486 5487 if (dst != src) movw(dst, src); 5488 movk(dst, shifted_base >> 32, 32); 5489 5490 if (CompressedKlassPointers::shift() != 0) { 5491 lsl(dst, dst, CompressedKlassPointers::shift()); 5492 } 5493 5494 break; 5495 } 5496 5497 case KlassDecodeNone: 5498 ShouldNotReachHere(); 5499 break; 5500 } 5501 } 5502 5503 void MacroAssembler::decode_klass_not_null(Register r) { 5504 decode_klass_not_null(r, r); 5505 } 5506 5507 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 5508 #ifdef ASSERT 5509 { 5510 ThreadInVMfromUnknown tiv; 5511 assert (UseCompressedOops, "should only be used for compressed oops"); 5512 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5513 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5514 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5515 } 5516 #endif 5517 int oop_index = oop_recorder()->find_index(obj); 5518 InstructionMark im(this); 5519 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5520 code_section()->relocate(inst_mark(), rspec); 5521 movz(dst, 0xDEAD, 16); 5522 movk(dst, 0xBEEF); 5523 } 5524 5525 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 5526 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5527 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5528 int index = oop_recorder()->find_index(k); 5529 assert(! Universe::heap()->is_in(k), "should not be an oop"); 5530 5531 InstructionMark im(this); 5532 RelocationHolder rspec = metadata_Relocation::spec(index); 5533 code_section()->relocate(inst_mark(), rspec); 5534 narrowKlass nk = CompressedKlassPointers::encode(k); 5535 movz(dst, (nk >> 16), 16); 5536 movk(dst, nk & 0xffff); 5537 } 5538 5539 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, 5540 Register dst, Address src, 5541 Register tmp1, Register tmp2) { 5542 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5543 decorators = AccessInternal::decorator_fixup(decorators, type); 5544 bool as_raw = (decorators & AS_RAW) != 0; 5545 if (as_raw) { 5546 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2); 5547 } else { 5548 bs->load_at(this, decorators, type, dst, src, tmp1, tmp2); 5549 } 5550 } 5551 5552 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, 5553 Address dst, Register val, 5554 Register tmp1, Register tmp2, Register tmp3) { 5555 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5556 decorators = AccessInternal::decorator_fixup(decorators, type); 5557 bool as_raw = (decorators & AS_RAW) != 0; 5558 if (as_raw) { 5559 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5560 } else { 5561 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5562 } 5563 } 5564 5565 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 5566 Register tmp2, DecoratorSet decorators) { 5567 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2); 5568 } 5569 5570 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 5571 Register tmp2, DecoratorSet decorators) { 5572 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2); 5573 } 5574 5575 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 5576 Register tmp2, Register tmp3, DecoratorSet decorators) { 5577 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 5578 } 5579 5580 // Used for storing nulls. 5581 void MacroAssembler::store_heap_oop_null(Address dst) { 5582 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 5583 } 5584 5585 Address MacroAssembler::allocate_metadata_address(Metadata* obj) { 5586 assert(oop_recorder() != nullptr, "this assembler needs a Recorder"); 5587 int index = oop_recorder()->allocate_metadata_index(obj); 5588 RelocationHolder rspec = metadata_Relocation::spec(index); 5589 return Address((address)obj, rspec); 5590 } 5591 5592 // Move an oop into a register. 5593 void MacroAssembler::movoop(Register dst, jobject obj) { 5594 int oop_index; 5595 if (obj == nullptr) { 5596 oop_index = oop_recorder()->allocate_oop_index(obj); 5597 } else { 5598 #ifdef ASSERT 5599 { 5600 ThreadInVMfromUnknown tiv; 5601 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5602 } 5603 #endif 5604 oop_index = oop_recorder()->find_index(obj); 5605 } 5606 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5607 5608 if (BarrierSet::barrier_set()->barrier_set_assembler()->supports_instruction_patching()) { 5609 mov(dst, Address((address)obj, rspec)); 5610 } else { 5611 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address 5612 ldr(dst, Address(dummy, rspec)); 5613 } 5614 } 5615 5616 // Move a metadata address into a register. 5617 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 5618 int oop_index; 5619 if (obj == nullptr) { 5620 oop_index = oop_recorder()->allocate_metadata_index(obj); 5621 } else { 5622 oop_index = oop_recorder()->find_index(obj); 5623 } 5624 RelocationHolder rspec = metadata_Relocation::spec(oop_index); 5625 mov(dst, Address((address)obj, rspec)); 5626 } 5627 5628 Address MacroAssembler::constant_oop_address(jobject obj) { 5629 #ifdef ASSERT 5630 { 5631 ThreadInVMfromUnknown tiv; 5632 assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5633 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop"); 5634 } 5635 #endif 5636 int oop_index = oop_recorder()->find_index(obj); 5637 return Address((address)obj, oop_Relocation::spec(oop_index)); 5638 } 5639 5640 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 5641 void MacroAssembler::tlab_allocate(Register obj, 5642 Register var_size_in_bytes, 5643 int con_size_in_bytes, 5644 Register t1, 5645 Register t2, 5646 Label& slow_case) { 5647 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5648 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 5649 } 5650 5651 void MacroAssembler::inc_held_monitor_count(Register tmp) { 5652 Address dst(rthread, JavaThread::held_monitor_count_offset()); 5653 #ifdef ASSERT 5654 ldr(tmp, dst); 5655 increment(tmp); 5656 str(tmp, dst); 5657 Label ok; 5658 tbz(tmp, 63, ok); 5659 STOP("assert(held monitor count underflow)"); 5660 should_not_reach_here(); 5661 bind(ok); 5662 #else 5663 increment(dst); 5664 #endif 5665 } 5666 5667 void MacroAssembler::dec_held_monitor_count(Register tmp) { 5668 Address dst(rthread, JavaThread::held_monitor_count_offset()); 5669 #ifdef ASSERT 5670 ldr(tmp, dst); 5671 decrement(tmp); 5672 str(tmp, dst); 5673 Label ok; 5674 tbz(tmp, 63, ok); 5675 STOP("assert(held monitor count underflow)"); 5676 should_not_reach_here(); 5677 bind(ok); 5678 #else 5679 decrement(dst); 5680 #endif 5681 } 5682 5683 void MacroAssembler::verify_tlab() { 5684 #ifdef ASSERT 5685 if (UseTLAB && VerifyOops) { 5686 Label next, ok; 5687 5688 stp(rscratch2, rscratch1, Address(pre(sp, -16))); 5689 5690 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5691 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 5692 cmp(rscratch2, rscratch1); 5693 br(Assembler::HS, next); 5694 STOP("assert(top >= start)"); 5695 should_not_reach_here(); 5696 5697 bind(next); 5698 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 5699 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5700 cmp(rscratch2, rscratch1); 5701 br(Assembler::HS, ok); 5702 STOP("assert(top <= end)"); 5703 should_not_reach_here(); 5704 5705 bind(ok); 5706 ldp(rscratch2, rscratch1, Address(post(sp, 16))); 5707 } 5708 #endif 5709 } 5710 5711 // Writes to stack successive pages until offset reached to check for 5712 // stack overflow + shadow pages. This clobbers tmp. 5713 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 5714 assert_different_registers(tmp, size, rscratch1); 5715 mov(tmp, sp); 5716 // Bang stack for total size given plus shadow page size. 5717 // Bang one page at a time because large size can bang beyond yellow and 5718 // red zones. 5719 Label loop; 5720 mov(rscratch1, (int)os::vm_page_size()); 5721 bind(loop); 5722 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5723 subsw(size, size, rscratch1); 5724 str(size, Address(tmp)); 5725 br(Assembler::GT, loop); 5726 5727 // Bang down shadow pages too. 5728 // At this point, (tmp-0) is the last address touched, so don't 5729 // touch it again. (It was touched as (tmp-pagesize) but then tmp 5730 // was post-decremented.) Skip this address by starting at i=1, and 5731 // touch a few more pages below. N.B. It is important to touch all 5732 // the way down to and including i=StackShadowPages. 5733 for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()) - 1; i++) { 5734 // this could be any sized move but this is can be a debugging crumb 5735 // so the bigger the better. 5736 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5737 str(size, Address(tmp)); 5738 } 5739 } 5740 5741 // Move the address of the polling page into dest. 5742 void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) { 5743 ldr(dest, Address(rthread, JavaThread::polling_page_offset())); 5744 } 5745 5746 // Read the polling page. The address of the polling page must 5747 // already be in r. 5748 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) { 5749 address mark; 5750 { 5751 InstructionMark im(this); 5752 code_section()->relocate(inst_mark(), rtype); 5753 ldrw(zr, Address(r, 0)); 5754 mark = inst_mark(); 5755 } 5756 verify_cross_modify_fence_not_required(); 5757 return mark; 5758 } 5759 5760 void MacroAssembler::adrp(Register reg1, const Address &dest, uint64_t &byte_offset) { 5761 relocInfo::relocType rtype = dest.rspec().reloc()->type(); 5762 uint64_t low_page = (uint64_t)CodeCache::low_bound() >> 12; 5763 uint64_t high_page = (uint64_t)(CodeCache::high_bound()-1) >> 12; 5764 uint64_t dest_page = (uint64_t)dest.target() >> 12; 5765 int64_t offset_low = dest_page - low_page; 5766 int64_t offset_high = dest_page - high_page; 5767 5768 assert(is_valid_AArch64_address(dest.target()), "bad address"); 5769 assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address"); 5770 5771 InstructionMark im(this); 5772 code_section()->relocate(inst_mark(), dest.rspec()); 5773 // 8143067: Ensure that the adrp can reach the dest from anywhere within 5774 // the code cache so that if it is relocated we know it will still reach 5775 if (offset_high >= -(1<<20) && offset_low < (1<<20)) { 5776 _adrp(reg1, dest.target()); 5777 } else { 5778 uint64_t target = (uint64_t)dest.target(); 5779 uint64_t adrp_target 5780 = (target & 0xffffffffULL) | ((uint64_t)pc() & 0xffff00000000ULL); 5781 5782 _adrp(reg1, (address)adrp_target); 5783 movk(reg1, target >> 32, 32); 5784 } 5785 byte_offset = (uint64_t)dest.target() & 0xfff; 5786 } 5787 5788 void MacroAssembler::load_byte_map_base(Register reg) { 5789 CardTable::CardValue* byte_map_base = 5790 ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base(); 5791 5792 // Strictly speaking the byte_map_base isn't an address at all, and it might 5793 // even be negative. It is thus materialised as a constant. 5794 #if INCLUDE_CDS 5795 if (AOTCodeCache::is_on_for_dump()) { 5796 // AOT code needs relocation info for card table base 5797 lea(reg, ExternalAddress(reinterpret_cast<address>(byte_map_base))); 5798 } else { 5799 #endif 5800 mov(reg, (uint64_t)byte_map_base); 5801 #if INCLUDE_CDS 5802 } 5803 #endif 5804 } 5805 5806 void MacroAssembler::load_aotrc_address(Register reg, address a) { 5807 #if INCLUDE_CDS 5808 assert(AOTRuntimeConstants::contains(a), "address out of range for data area"); 5809 if (AOTCodeCache::is_on_for_dump()) { 5810 // all aotrc field addresses should be registered in the AOTCodeCache address table 5811 lea(reg, ExternalAddress(a)); 5812 } else { 5813 mov(reg, (uint64_t)a); 5814 } 5815 #else 5816 ShouldNotReachHere(); 5817 #endif 5818 } 5819 5820 void MacroAssembler::build_frame(int framesize) { 5821 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5822 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5823 protect_return_address(); 5824 if (framesize < ((1 << 9) + 2 * wordSize)) { 5825 sub(sp, sp, framesize); 5826 stp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5827 if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize); 5828 } else { 5829 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 5830 if (PreserveFramePointer) mov(rfp, sp); 5831 if (framesize < ((1 << 12) + 2 * wordSize)) 5832 sub(sp, sp, framesize - 2 * wordSize); 5833 else { 5834 mov(rscratch1, framesize - 2 * wordSize); 5835 sub(sp, sp, rscratch1); 5836 } 5837 } 5838 verify_cross_modify_fence_not_required(); 5839 } 5840 5841 void MacroAssembler::remove_frame(int framesize) { 5842 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5843 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5844 if (framesize < ((1 << 9) + 2 * wordSize)) { 5845 ldp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5846 add(sp, sp, framesize); 5847 } else { 5848 if (framesize < ((1 << 12) + 2 * wordSize)) 5849 add(sp, sp, framesize - 2 * wordSize); 5850 else { 5851 mov(rscratch1, framesize - 2 * wordSize); 5852 add(sp, sp, rscratch1); 5853 } 5854 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 5855 } 5856 authenticate_return_address(); 5857 } 5858 5859 5860 // This method counts leading positive bytes (highest bit not set) in provided byte array 5861 address MacroAssembler::count_positives(Register ary1, Register len, Register result) { 5862 // Simple and most common case of aligned small array which is not at the 5863 // end of memory page is placed here. All other cases are in stub. 5864 Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE; 5865 const uint64_t UPPER_BIT_MASK=0x8080808080808080; 5866 assert_different_registers(ary1, len, result); 5867 5868 mov(result, len); 5869 cmpw(len, 0); 5870 br(LE, DONE); 5871 cmpw(len, 4 * wordSize); 5872 br(GE, STUB_LONG); // size > 32 then go to stub 5873 5874 int shift = 64 - exact_log2(os::vm_page_size()); 5875 lsl(rscratch1, ary1, shift); 5876 mov(rscratch2, (size_t)(4 * wordSize) << shift); 5877 adds(rscratch2, rscratch1, rscratch2); // At end of page? 5878 br(CS, STUB); // at the end of page then go to stub 5879 subs(len, len, wordSize); 5880 br(LT, END); 5881 5882 BIND(LOOP); 5883 ldr(rscratch1, Address(post(ary1, wordSize))); 5884 tst(rscratch1, UPPER_BIT_MASK); 5885 br(NE, SET_RESULT); 5886 subs(len, len, wordSize); 5887 br(GE, LOOP); 5888 cmpw(len, -wordSize); 5889 br(EQ, DONE); 5890 5891 BIND(END); 5892 ldr(rscratch1, Address(ary1)); 5893 sub(rscratch2, zr, len, LSL, 3); // LSL 3 is to get bits from bytes 5894 lslv(rscratch1, rscratch1, rscratch2); 5895 tst(rscratch1, UPPER_BIT_MASK); 5896 br(NE, SET_RESULT); 5897 b(DONE); 5898 5899 BIND(STUB); 5900 RuntimeAddress count_pos = RuntimeAddress(StubRoutines::aarch64::count_positives()); 5901 assert(count_pos.target() != nullptr, "count_positives stub has not been generated"); 5902 address tpc1 = trampoline_call(count_pos); 5903 if (tpc1 == nullptr) { 5904 DEBUG_ONLY(reset_labels(STUB_LONG, SET_RESULT, DONE)); 5905 postcond(pc() == badAddress); 5906 return nullptr; 5907 } 5908 b(DONE); 5909 5910 BIND(STUB_LONG); 5911 RuntimeAddress count_pos_long = RuntimeAddress(StubRoutines::aarch64::count_positives_long()); 5912 assert(count_pos_long.target() != nullptr, "count_positives_long stub has not been generated"); 5913 address tpc2 = trampoline_call(count_pos_long); 5914 if (tpc2 == nullptr) { 5915 DEBUG_ONLY(reset_labels(SET_RESULT, DONE)); 5916 postcond(pc() == badAddress); 5917 return nullptr; 5918 } 5919 b(DONE); 5920 5921 BIND(SET_RESULT); 5922 5923 add(len, len, wordSize); 5924 sub(result, result, len); 5925 5926 BIND(DONE); 5927 postcond(pc() != badAddress); 5928 return pc(); 5929 } 5930 5931 // Clobbers: rscratch1, rscratch2, rflags 5932 // May also clobber v0-v7 when (!UseSimpleArrayEquals && UseSIMDForArrayEquals) 5933 address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3, 5934 Register tmp4, Register tmp5, Register result, 5935 Register cnt1, int elem_size) { 5936 Label DONE, SAME; 5937 Register tmp1 = rscratch1; 5938 Register tmp2 = rscratch2; 5939 int elem_per_word = wordSize/elem_size; 5940 int log_elem_size = exact_log2(elem_size); 5941 int klass_offset = arrayOopDesc::klass_offset_in_bytes(); 5942 int length_offset = arrayOopDesc::length_offset_in_bytes(); 5943 int base_offset 5944 = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE); 5945 // When the length offset is not aligned to 8 bytes, 5946 // then we align it down. This is valid because the new 5947 // offset will always be the klass which is the same 5948 // for type arrays. 5949 int start_offset = align_down(length_offset, BytesPerWord); 5950 int extra_length = base_offset - start_offset; 5951 assert(start_offset == length_offset || start_offset == klass_offset, 5952 "start offset must be 8-byte-aligned or be the klass offset"); 5953 assert(base_offset != start_offset, "must include the length field"); 5954 extra_length = extra_length / elem_size; // We count in elements, not bytes. 5955 int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16); 5956 5957 assert(elem_size == 1 || elem_size == 2, "must be char or byte"); 5958 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 5959 5960 #ifndef PRODUCT 5961 { 5962 const char kind = (elem_size == 2) ? 'U' : 'L'; 5963 char comment[64]; 5964 os::snprintf_checked(comment, sizeof comment, "array_equals%c{", kind); 5965 BLOCK_COMMENT(comment); 5966 } 5967 #endif 5968 5969 // if (a1 == a2) 5970 // return true; 5971 cmpoop(a1, a2); // May have read barriers for a1 and a2. 5972 br(EQ, SAME); 5973 5974 if (UseSimpleArrayEquals) { 5975 Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL; 5976 // if (a1 == nullptr || a2 == nullptr) 5977 // return false; 5978 // a1 & a2 == 0 means (some-pointer is null) or 5979 // (very-rare-or-even-probably-impossible-pointer-values) 5980 // so, we can save one branch in most cases 5981 tst(a1, a2); 5982 mov(result, false); 5983 br(EQ, A_MIGHT_BE_NULL); 5984 // if (a1.length != a2.length) 5985 // return false; 5986 bind(A_IS_NOT_NULL); 5987 ldrw(cnt1, Address(a1, length_offset)); 5988 // Increase loop counter by diff between base- and actual start-offset. 5989 addw(cnt1, cnt1, extra_length); 5990 lea(a1, Address(a1, start_offset)); 5991 lea(a2, Address(a2, start_offset)); 5992 // Check for short strings, i.e. smaller than wordSize. 5993 subs(cnt1, cnt1, elem_per_word); 5994 br(Assembler::LT, SHORT); 5995 // Main 8 byte comparison loop. 5996 bind(NEXT_WORD); { 5997 ldr(tmp1, Address(post(a1, wordSize))); 5998 ldr(tmp2, Address(post(a2, wordSize))); 5999 subs(cnt1, cnt1, elem_per_word); 6000 eor(tmp5, tmp1, tmp2); 6001 cbnz(tmp5, DONE); 6002 } br(GT, NEXT_WORD); 6003 // Last longword. In the case where length == 4 we compare the 6004 // same longword twice, but that's still faster than another 6005 // conditional branch. 6006 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 6007 // length == 4. 6008 if (log_elem_size > 0) 6009 lsl(cnt1, cnt1, log_elem_size); 6010 ldr(tmp3, Address(a1, cnt1)); 6011 ldr(tmp4, Address(a2, cnt1)); 6012 eor(tmp5, tmp3, tmp4); 6013 cbnz(tmp5, DONE); 6014 b(SAME); 6015 bind(A_MIGHT_BE_NULL); 6016 // in case both a1 and a2 are not-null, proceed with loads 6017 cbz(a1, DONE); 6018 cbz(a2, DONE); 6019 b(A_IS_NOT_NULL); 6020 bind(SHORT); 6021 6022 tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left. 6023 { 6024 ldrw(tmp1, Address(post(a1, 4))); 6025 ldrw(tmp2, Address(post(a2, 4))); 6026 eorw(tmp5, tmp1, tmp2); 6027 cbnzw(tmp5, DONE); 6028 } 6029 bind(TAIL03); 6030 tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left. 6031 { 6032 ldrh(tmp3, Address(post(a1, 2))); 6033 ldrh(tmp4, Address(post(a2, 2))); 6034 eorw(tmp5, tmp3, tmp4); 6035 cbnzw(tmp5, DONE); 6036 } 6037 bind(TAIL01); 6038 if (elem_size == 1) { // Only needed when comparing byte arrays. 6039 tbz(cnt1, 0, SAME); // 0-1 bytes left. 6040 { 6041 ldrb(tmp1, a1); 6042 ldrb(tmp2, a2); 6043 eorw(tmp5, tmp1, tmp2); 6044 cbnzw(tmp5, DONE); 6045 } 6046 } 6047 } else { 6048 Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB, 6049 CSET_EQ, LAST_CHECK; 6050 mov(result, false); 6051 cbz(a1, DONE); 6052 ldrw(cnt1, Address(a1, length_offset)); 6053 cbz(a2, DONE); 6054 // Increase loop counter by diff between base- and actual start-offset. 6055 addw(cnt1, cnt1, extra_length); 6056 6057 // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's 6058 // faster to perform another branch before comparing a1 and a2 6059 cmp(cnt1, (u1)elem_per_word); 6060 br(LE, SHORT); // short or same 6061 ldr(tmp3, Address(pre(a1, start_offset))); 6062 subs(zr, cnt1, stubBytesThreshold); 6063 br(GE, STUB); 6064 ldr(tmp4, Address(pre(a2, start_offset))); 6065 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 6066 6067 // Main 16 byte comparison loop with 2 exits 6068 bind(NEXT_DWORD); { 6069 ldr(tmp1, Address(pre(a1, wordSize))); 6070 ldr(tmp2, Address(pre(a2, wordSize))); 6071 subs(cnt1, cnt1, 2 * elem_per_word); 6072 br(LE, TAIL); 6073 eor(tmp4, tmp3, tmp4); 6074 cbnz(tmp4, DONE); 6075 ldr(tmp3, Address(pre(a1, wordSize))); 6076 ldr(tmp4, Address(pre(a2, wordSize))); 6077 cmp(cnt1, (u1)elem_per_word); 6078 br(LE, TAIL2); 6079 cmp(tmp1, tmp2); 6080 } br(EQ, NEXT_DWORD); 6081 b(DONE); 6082 6083 bind(TAIL); 6084 eor(tmp4, tmp3, tmp4); 6085 eor(tmp2, tmp1, tmp2); 6086 lslv(tmp2, tmp2, tmp5); 6087 orr(tmp5, tmp4, tmp2); 6088 cmp(tmp5, zr); 6089 b(CSET_EQ); 6090 6091 bind(TAIL2); 6092 eor(tmp2, tmp1, tmp2); 6093 cbnz(tmp2, DONE); 6094 b(LAST_CHECK); 6095 6096 bind(STUB); 6097 ldr(tmp4, Address(pre(a2, start_offset))); 6098 if (elem_size == 2) { // convert to byte counter 6099 lsl(cnt1, cnt1, 1); 6100 } 6101 eor(tmp5, tmp3, tmp4); 6102 cbnz(tmp5, DONE); 6103 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals()); 6104 assert(stub.target() != nullptr, "array_equals_long stub has not been generated"); 6105 address tpc = trampoline_call(stub); 6106 if (tpc == nullptr) { 6107 DEBUG_ONLY(reset_labels(SHORT, LAST_CHECK, CSET_EQ, SAME, DONE)); 6108 postcond(pc() == badAddress); 6109 return nullptr; 6110 } 6111 b(DONE); 6112 6113 // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2) 6114 // so, if a2 == null => return false(0), else return true, so we can return a2 6115 mov(result, a2); 6116 b(DONE); 6117 bind(SHORT); 6118 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 6119 ldr(tmp3, Address(a1, start_offset)); 6120 ldr(tmp4, Address(a2, start_offset)); 6121 bind(LAST_CHECK); 6122 eor(tmp4, tmp3, tmp4); 6123 lslv(tmp5, tmp4, tmp5); 6124 cmp(tmp5, zr); 6125 bind(CSET_EQ); 6126 cset(result, EQ); 6127 b(DONE); 6128 } 6129 6130 bind(SAME); 6131 mov(result, true); 6132 // That's it. 6133 bind(DONE); 6134 6135 BLOCK_COMMENT("} array_equals"); 6136 postcond(pc() != badAddress); 6137 return pc(); 6138 } 6139 6140 // Compare Strings 6141 6142 // For Strings we're passed the address of the first characters in a1 6143 // and a2 and the length in cnt1. 6144 // There are two implementations. For arrays >= 8 bytes, all 6145 // comparisons (including the final one, which may overlap) are 6146 // performed 8 bytes at a time. For strings < 8 bytes, we compare a 6147 // halfword, then a short, and then a byte. 6148 6149 void MacroAssembler::string_equals(Register a1, Register a2, 6150 Register result, Register cnt1) 6151 { 6152 Label SAME, DONE, SHORT, NEXT_WORD; 6153 Register tmp1 = rscratch1; 6154 Register tmp2 = rscratch2; 6155 Register cnt2 = tmp2; // cnt2 only used in array length compare 6156 6157 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 6158 6159 #ifndef PRODUCT 6160 { 6161 char comment[64]; 6162 os::snprintf_checked(comment, sizeof comment, "{string_equalsL"); 6163 BLOCK_COMMENT(comment); 6164 } 6165 #endif 6166 6167 mov(result, false); 6168 6169 // Check for short strings, i.e. smaller than wordSize. 6170 subs(cnt1, cnt1, wordSize); 6171 br(Assembler::LT, SHORT); 6172 // Main 8 byte comparison loop. 6173 bind(NEXT_WORD); { 6174 ldr(tmp1, Address(post(a1, wordSize))); 6175 ldr(tmp2, Address(post(a2, wordSize))); 6176 subs(cnt1, cnt1, wordSize); 6177 eor(tmp1, tmp1, tmp2); 6178 cbnz(tmp1, DONE); 6179 } br(GT, NEXT_WORD); 6180 // Last longword. In the case where length == 4 we compare the 6181 // same longword twice, but that's still faster than another 6182 // conditional branch. 6183 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 6184 // length == 4. 6185 ldr(tmp1, Address(a1, cnt1)); 6186 ldr(tmp2, Address(a2, cnt1)); 6187 eor(tmp2, tmp1, tmp2); 6188 cbnz(tmp2, DONE); 6189 b(SAME); 6190 6191 bind(SHORT); 6192 Label TAIL03, TAIL01; 6193 6194 tbz(cnt1, 2, TAIL03); // 0-7 bytes left. 6195 { 6196 ldrw(tmp1, Address(post(a1, 4))); 6197 ldrw(tmp2, Address(post(a2, 4))); 6198 eorw(tmp1, tmp1, tmp2); 6199 cbnzw(tmp1, DONE); 6200 } 6201 bind(TAIL03); 6202 tbz(cnt1, 1, TAIL01); // 0-3 bytes left. 6203 { 6204 ldrh(tmp1, Address(post(a1, 2))); 6205 ldrh(tmp2, Address(post(a2, 2))); 6206 eorw(tmp1, tmp1, tmp2); 6207 cbnzw(tmp1, DONE); 6208 } 6209 bind(TAIL01); 6210 tbz(cnt1, 0, SAME); // 0-1 bytes left. 6211 { 6212 ldrb(tmp1, a1); 6213 ldrb(tmp2, a2); 6214 eorw(tmp1, tmp1, tmp2); 6215 cbnzw(tmp1, DONE); 6216 } 6217 // Arrays are equal. 6218 bind(SAME); 6219 mov(result, true); 6220 6221 // That's it. 6222 bind(DONE); 6223 BLOCK_COMMENT("} string_equals"); 6224 } 6225 6226 6227 // The size of the blocks erased by the zero_blocks stub. We must 6228 // handle anything smaller than this ourselves in zero_words(). 6229 const int MacroAssembler::zero_words_block_size = 8; 6230 6231 // zero_words() is used by C2 ClearArray patterns and by 6232 // C1_MacroAssembler. It is as small as possible, handling small word 6233 // counts locally and delegating anything larger to the zero_blocks 6234 // stub. It is expanded many times in compiled code, so it is 6235 // important to keep it short. 6236 6237 // ptr: Address of a buffer to be zeroed. 6238 // cnt: Count in HeapWords. 6239 // 6240 // ptr, cnt, rscratch1, and rscratch2 are clobbered. 6241 address MacroAssembler::zero_words(Register ptr, Register cnt) 6242 { 6243 assert(is_power_of_2(zero_words_block_size), "adjust this"); 6244 6245 BLOCK_COMMENT("zero_words {"); 6246 assert(ptr == r10 && cnt == r11, "mismatch in register usage"); 6247 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 6248 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 6249 6250 subs(rscratch1, cnt, zero_words_block_size); 6251 Label around; 6252 br(LO, around); 6253 { 6254 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 6255 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 6256 // Make sure this is a C2 compilation. C1 allocates space only for 6257 // trampoline stubs generated by Call LIR ops, and in any case it 6258 // makes sense for a C1 compilation task to proceed as quickly as 6259 // possible. 6260 CompileTask* task; 6261 if (StubRoutines::aarch64::complete() 6262 && Thread::current()->is_Compiler_thread() 6263 && (task = ciEnv::current()->task()) 6264 && is_c2_compile(task->comp_level())) { 6265 address tpc = trampoline_call(zero_blocks); 6266 if (tpc == nullptr) { 6267 DEBUG_ONLY(reset_labels(around)); 6268 return nullptr; 6269 } 6270 } else { 6271 far_call(zero_blocks); 6272 } 6273 } 6274 bind(around); 6275 6276 // We have a few words left to do. zero_blocks has adjusted r10 and r11 6277 // for us. 6278 for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) { 6279 Label l; 6280 tbz(cnt, exact_log2(i), l); 6281 for (int j = 0; j < i; j += 2) { 6282 stp(zr, zr, post(ptr, 2 * BytesPerWord)); 6283 } 6284 bind(l); 6285 } 6286 { 6287 Label l; 6288 tbz(cnt, 0, l); 6289 str(zr, Address(ptr)); 6290 bind(l); 6291 } 6292 6293 BLOCK_COMMENT("} zero_words"); 6294 return pc(); 6295 } 6296 6297 // base: Address of a buffer to be zeroed, 8 bytes aligned. 6298 // cnt: Immediate count in HeapWords. 6299 // 6300 // r10, r11, rscratch1, and rscratch2 are clobbered. 6301 address MacroAssembler::zero_words(Register base, uint64_t cnt) 6302 { 6303 assert(wordSize <= BlockZeroingLowLimit, 6304 "increase BlockZeroingLowLimit"); 6305 address result = nullptr; 6306 if (cnt <= (uint64_t)BlockZeroingLowLimit / BytesPerWord) { 6307 #ifndef PRODUCT 6308 { 6309 char buf[64]; 6310 os::snprintf_checked(buf, sizeof buf, "zero_words (count = %" PRIu64 ") {", cnt); 6311 BLOCK_COMMENT(buf); 6312 } 6313 #endif 6314 if (cnt >= 16) { 6315 uint64_t loops = cnt/16; 6316 if (loops > 1) { 6317 mov(rscratch2, loops - 1); 6318 } 6319 { 6320 Label loop; 6321 bind(loop); 6322 for (int i = 0; i < 16; i += 2) { 6323 stp(zr, zr, Address(base, i * BytesPerWord)); 6324 } 6325 add(base, base, 16 * BytesPerWord); 6326 if (loops > 1) { 6327 subs(rscratch2, rscratch2, 1); 6328 br(GE, loop); 6329 } 6330 } 6331 } 6332 cnt %= 16; 6333 int i = cnt & 1; // store any odd word to start 6334 if (i) str(zr, Address(base)); 6335 for (; i < (int)cnt; i += 2) { 6336 stp(zr, zr, Address(base, i * wordSize)); 6337 } 6338 BLOCK_COMMENT("} zero_words"); 6339 result = pc(); 6340 } else { 6341 mov(r10, base); mov(r11, cnt); 6342 result = zero_words(r10, r11); 6343 } 6344 return result; 6345 } 6346 6347 // Zero blocks of memory by using DC ZVA. 6348 // 6349 // Aligns the base address first sufficiently for DC ZVA, then uses 6350 // DC ZVA repeatedly for every full block. cnt is the size to be 6351 // zeroed in HeapWords. Returns the count of words left to be zeroed 6352 // in cnt. 6353 // 6354 // NOTE: This is intended to be used in the zero_blocks() stub. If 6355 // you want to use it elsewhere, note that cnt must be >= 2*zva_length. 6356 void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) { 6357 Register tmp = rscratch1; 6358 Register tmp2 = rscratch2; 6359 int zva_length = VM_Version::zva_length(); 6360 Label initial_table_end, loop_zva; 6361 Label fini; 6362 6363 // Base must be 16 byte aligned. If not just return and let caller handle it 6364 tst(base, 0x0f); 6365 br(Assembler::NE, fini); 6366 // Align base with ZVA length. 6367 neg(tmp, base); 6368 andr(tmp, tmp, zva_length - 1); 6369 6370 // tmp: the number of bytes to be filled to align the base with ZVA length. 6371 add(base, base, tmp); 6372 sub(cnt, cnt, tmp, Assembler::ASR, 3); 6373 adr(tmp2, initial_table_end); 6374 sub(tmp2, tmp2, tmp, Assembler::LSR, 2); 6375 br(tmp2); 6376 6377 for (int i = -zva_length + 16; i < 0; i += 16) 6378 stp(zr, zr, Address(base, i)); 6379 bind(initial_table_end); 6380 6381 sub(cnt, cnt, zva_length >> 3); 6382 bind(loop_zva); 6383 dc(Assembler::ZVA, base); 6384 subs(cnt, cnt, zva_length >> 3); 6385 add(base, base, zva_length); 6386 br(Assembler::GE, loop_zva); 6387 add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA 6388 bind(fini); 6389 } 6390 6391 // base: Address of a buffer to be filled, 8 bytes aligned. 6392 // cnt: Count in 8-byte unit. 6393 // value: Value to be filled with. 6394 // base will point to the end of the buffer after filling. 6395 void MacroAssembler::fill_words(Register base, Register cnt, Register value) 6396 { 6397 // Algorithm: 6398 // 6399 // if (cnt == 0) { 6400 // return; 6401 // } 6402 // if ((p & 8) != 0) { 6403 // *p++ = v; 6404 // } 6405 // 6406 // scratch1 = cnt & 14; 6407 // cnt -= scratch1; 6408 // p += scratch1; 6409 // switch (scratch1 / 2) { 6410 // do { 6411 // cnt -= 16; 6412 // p[-16] = v; 6413 // p[-15] = v; 6414 // case 7: 6415 // p[-14] = v; 6416 // p[-13] = v; 6417 // case 6: 6418 // p[-12] = v; 6419 // p[-11] = v; 6420 // // ... 6421 // case 1: 6422 // p[-2] = v; 6423 // p[-1] = v; 6424 // case 0: 6425 // p += 16; 6426 // } while (cnt); 6427 // } 6428 // if ((cnt & 1) == 1) { 6429 // *p++ = v; 6430 // } 6431 6432 assert_different_registers(base, cnt, value, rscratch1, rscratch2); 6433 6434 Label fini, skip, entry, loop; 6435 const int unroll = 8; // Number of stp instructions we'll unroll 6436 6437 cbz(cnt, fini); 6438 tbz(base, 3, skip); 6439 str(value, Address(post(base, 8))); 6440 sub(cnt, cnt, 1); 6441 bind(skip); 6442 6443 andr(rscratch1, cnt, (unroll-1) * 2); 6444 sub(cnt, cnt, rscratch1); 6445 add(base, base, rscratch1, Assembler::LSL, 3); 6446 adr(rscratch2, entry); 6447 sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1); 6448 br(rscratch2); 6449 6450 bind(loop); 6451 add(base, base, unroll * 16); 6452 for (int i = -unroll; i < 0; i++) 6453 stp(value, value, Address(base, i * 16)); 6454 bind(entry); 6455 subs(cnt, cnt, unroll * 2); 6456 br(Assembler::GE, loop); 6457 6458 tbz(cnt, 0, fini); 6459 str(value, Address(post(base, 8))); 6460 bind(fini); 6461 } 6462 6463 // Intrinsic for 6464 // 6465 // - sun.nio.cs.ISO_8859_1.Encoder#encodeISOArray0(byte[] sa, int sp, byte[] da, int dp, int len) 6466 // Encodes char[] to byte[] in ISO-8859-1 6467 // 6468 // - java.lang.StringCoding#encodeISOArray0(byte[] sa, int sp, byte[] da, int dp, int len) 6469 // Encodes byte[] (containing UTF-16) to byte[] in ISO-8859-1 6470 // 6471 // - java.lang.StringCoding#encodeAsciiArray0(char[] sa, int sp, byte[] da, int dp, int len) 6472 // Encodes char[] to byte[] in ASCII 6473 // 6474 // This version always returns the number of characters copied, and does not 6475 // clobber the 'len' register. A successful copy will complete with the post- 6476 // condition: 'res' == 'len', while an unsuccessful copy will exit with the 6477 // post-condition: 0 <= 'res' < 'len'. 6478 // 6479 // NOTE: Attempts to use 'ld2' (and 'umaxv' in the ISO part) has proven to 6480 // degrade performance (on Ampere Altra - Neoverse N1), to an extent 6481 // beyond the acceptable, even though the footprint would be smaller. 6482 // Using 'umaxv' in the ASCII-case comes with a small penalty but does 6483 // avoid additional bloat. 6484 // 6485 // Clobbers: src, dst, res, rscratch1, rscratch2, rflags 6486 void MacroAssembler::encode_iso_array(Register src, Register dst, 6487 Register len, Register res, bool ascii, 6488 FloatRegister vtmp0, FloatRegister vtmp1, 6489 FloatRegister vtmp2, FloatRegister vtmp3, 6490 FloatRegister vtmp4, FloatRegister vtmp5) 6491 { 6492 Register cnt = res; 6493 Register max = rscratch1; 6494 Register chk = rscratch2; 6495 6496 prfm(Address(src), PLDL1STRM); 6497 movw(cnt, len); 6498 6499 #define ASCII(insn) do { if (ascii) { insn; } } while (0) 6500 6501 Label LOOP_32, DONE_32, FAIL_32; 6502 6503 BIND(LOOP_32); 6504 { 6505 cmpw(cnt, 32); 6506 br(LT, DONE_32); 6507 ld1(vtmp0, vtmp1, vtmp2, vtmp3, T8H, Address(post(src, 64))); 6508 // Extract lower bytes. 6509 FloatRegister vlo0 = vtmp4; 6510 FloatRegister vlo1 = vtmp5; 6511 uzp1(vlo0, T16B, vtmp0, vtmp1); 6512 uzp1(vlo1, T16B, vtmp2, vtmp3); 6513 // Merge bits... 6514 orr(vtmp0, T16B, vtmp0, vtmp1); 6515 orr(vtmp2, T16B, vtmp2, vtmp3); 6516 // Extract merged upper bytes. 6517 FloatRegister vhix = vtmp0; 6518 uzp2(vhix, T16B, vtmp0, vtmp2); 6519 // ISO-check on hi-parts (all zero). 6520 // ASCII-check on lo-parts (no sign). 6521 FloatRegister vlox = vtmp1; // Merge lower bytes. 6522 ASCII(orr(vlox, T16B, vlo0, vlo1)); 6523 umov(chk, vhix, D, 1); ASCII(cm(LT, vlox, T16B, vlox)); 6524 fmovd(max, vhix); ASCII(umaxv(vlox, T16B, vlox)); 6525 orr(chk, chk, max); ASCII(umov(max, vlox, B, 0)); 6526 ASCII(orr(chk, chk, max)); 6527 cbnz(chk, FAIL_32); 6528 subw(cnt, cnt, 32); 6529 st1(vlo0, vlo1, T16B, Address(post(dst, 32))); 6530 b(LOOP_32); 6531 } 6532 BIND(FAIL_32); 6533 sub(src, src, 64); 6534 BIND(DONE_32); 6535 6536 Label LOOP_8, SKIP_8; 6537 6538 BIND(LOOP_8); 6539 { 6540 cmpw(cnt, 8); 6541 br(LT, SKIP_8); 6542 FloatRegister vhi = vtmp0; 6543 FloatRegister vlo = vtmp1; 6544 ld1(vtmp3, T8H, src); 6545 uzp1(vlo, T16B, vtmp3, vtmp3); 6546 uzp2(vhi, T16B, vtmp3, vtmp3); 6547 // ISO-check on hi-parts (all zero). 6548 // ASCII-check on lo-parts (no sign). 6549 ASCII(cm(LT, vtmp2, T16B, vlo)); 6550 fmovd(chk, vhi); ASCII(umaxv(vtmp2, T16B, vtmp2)); 6551 ASCII(umov(max, vtmp2, B, 0)); 6552 ASCII(orr(chk, chk, max)); 6553 cbnz(chk, SKIP_8); 6554 6555 strd(vlo, Address(post(dst, 8))); 6556 subw(cnt, cnt, 8); 6557 add(src, src, 16); 6558 b(LOOP_8); 6559 } 6560 BIND(SKIP_8); 6561 6562 #undef ASCII 6563 6564 Label LOOP, DONE; 6565 6566 cbz(cnt, DONE); 6567 BIND(LOOP); 6568 { 6569 Register chr = rscratch1; 6570 ldrh(chr, Address(post(src, 2))); 6571 tst(chr, ascii ? 0xff80 : 0xff00); 6572 br(NE, DONE); 6573 strb(chr, Address(post(dst, 1))); 6574 subs(cnt, cnt, 1); 6575 br(GT, LOOP); 6576 } 6577 BIND(DONE); 6578 // Return index where we stopped. 6579 subw(res, len, cnt); 6580 } 6581 6582 // Inflate byte[] array to char[]. 6583 // Clobbers: src, dst, len, rflags, rscratch1, v0-v6 6584 address MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 6585 FloatRegister vtmp1, FloatRegister vtmp2, 6586 FloatRegister vtmp3, Register tmp4) { 6587 Label big, done, after_init, to_stub; 6588 6589 assert_different_registers(src, dst, len, tmp4, rscratch1); 6590 6591 fmovd(vtmp1, 0.0); 6592 lsrw(tmp4, len, 3); 6593 bind(after_init); 6594 cbnzw(tmp4, big); 6595 // Short string: less than 8 bytes. 6596 { 6597 Label loop, tiny; 6598 6599 cmpw(len, 4); 6600 br(LT, tiny); 6601 // Use SIMD to do 4 bytes. 6602 ldrs(vtmp2, post(src, 4)); 6603 zip1(vtmp3, T8B, vtmp2, vtmp1); 6604 subw(len, len, 4); 6605 strd(vtmp3, post(dst, 8)); 6606 6607 cbzw(len, done); 6608 6609 // Do the remaining bytes by steam. 6610 bind(loop); 6611 ldrb(tmp4, post(src, 1)); 6612 strh(tmp4, post(dst, 2)); 6613 subw(len, len, 1); 6614 6615 bind(tiny); 6616 cbnz(len, loop); 6617 6618 b(done); 6619 } 6620 6621 if (SoftwarePrefetchHintDistance >= 0) { 6622 bind(to_stub); 6623 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate()); 6624 assert(stub.target() != nullptr, "large_byte_array_inflate stub has not been generated"); 6625 address tpc = trampoline_call(stub); 6626 if (tpc == nullptr) { 6627 DEBUG_ONLY(reset_labels(big, done)); 6628 postcond(pc() == badAddress); 6629 return nullptr; 6630 } 6631 b(after_init); 6632 } 6633 6634 // Unpack the bytes 8 at a time. 6635 bind(big); 6636 { 6637 Label loop, around, loop_last, loop_start; 6638 6639 if (SoftwarePrefetchHintDistance >= 0) { 6640 const int large_loop_threshold = (64 + 16)/8; 6641 ldrd(vtmp2, post(src, 8)); 6642 andw(len, len, 7); 6643 cmp(tmp4, (u1)large_loop_threshold); 6644 br(GE, to_stub); 6645 b(loop_start); 6646 6647 bind(loop); 6648 ldrd(vtmp2, post(src, 8)); 6649 bind(loop_start); 6650 subs(tmp4, tmp4, 1); 6651 br(EQ, loop_last); 6652 zip1(vtmp2, T16B, vtmp2, vtmp1); 6653 ldrd(vtmp3, post(src, 8)); 6654 st1(vtmp2, T8H, post(dst, 16)); 6655 subs(tmp4, tmp4, 1); 6656 zip1(vtmp3, T16B, vtmp3, vtmp1); 6657 st1(vtmp3, T8H, post(dst, 16)); 6658 br(NE, loop); 6659 b(around); 6660 bind(loop_last); 6661 zip1(vtmp2, T16B, vtmp2, vtmp1); 6662 st1(vtmp2, T8H, post(dst, 16)); 6663 bind(around); 6664 cbz(len, done); 6665 } else { 6666 andw(len, len, 7); 6667 bind(loop); 6668 ldrd(vtmp2, post(src, 8)); 6669 sub(tmp4, tmp4, 1); 6670 zip1(vtmp3, T16B, vtmp2, vtmp1); 6671 st1(vtmp3, T8H, post(dst, 16)); 6672 cbnz(tmp4, loop); 6673 } 6674 } 6675 6676 // Do the tail of up to 8 bytes. 6677 add(src, src, len); 6678 ldrd(vtmp3, Address(src, -8)); 6679 add(dst, dst, len, ext::uxtw, 1); 6680 zip1(vtmp3, T16B, vtmp3, vtmp1); 6681 strq(vtmp3, Address(dst, -16)); 6682 6683 bind(done); 6684 postcond(pc() != badAddress); 6685 return pc(); 6686 } 6687 6688 // Compress char[] array to byte[]. 6689 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 6690 // Return the array length if every element in array can be encoded, 6691 // otherwise, the index of first non-latin1 (> 0xff) character. 6692 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 6693 Register res, 6694 FloatRegister tmp0, FloatRegister tmp1, 6695 FloatRegister tmp2, FloatRegister tmp3, 6696 FloatRegister tmp4, FloatRegister tmp5) { 6697 encode_iso_array(src, dst, len, res, false, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5); 6698 } 6699 6700 // java.math.round(double a) 6701 // Returns the closest long to the argument, with ties rounding to 6702 // positive infinity. This requires some fiddling for corner 6703 // cases. We take care to avoid double rounding in e.g. (jlong)(a + 0.5). 6704 void MacroAssembler::java_round_double(Register dst, FloatRegister src, 6705 FloatRegister ftmp) { 6706 Label DONE; 6707 BLOCK_COMMENT("java_round_double: { "); 6708 fmovd(rscratch1, src); 6709 // Use RoundToNearestTiesAway unless src small and -ve. 6710 fcvtasd(dst, src); 6711 // Test if src >= 0 || abs(src) >= 0x1.0p52 6712 eor(rscratch1, rscratch1, UCONST64(1) << 63); // flip sign bit 6713 mov(rscratch2, julong_cast(0x1.0p52)); 6714 cmp(rscratch1, rscratch2); 6715 br(HS, DONE); { 6716 // src < 0 && abs(src) < 0x1.0p52 6717 // src may have a fractional part, so add 0.5 6718 fmovd(ftmp, 0.5); 6719 faddd(ftmp, src, ftmp); 6720 // Convert double to jlong, use RoundTowardsNegative 6721 fcvtmsd(dst, ftmp); 6722 } 6723 bind(DONE); 6724 BLOCK_COMMENT("} java_round_double"); 6725 } 6726 6727 void MacroAssembler::java_round_float(Register dst, FloatRegister src, 6728 FloatRegister ftmp) { 6729 Label DONE; 6730 BLOCK_COMMENT("java_round_float: { "); 6731 fmovs(rscratch1, src); 6732 // Use RoundToNearestTiesAway unless src small and -ve. 6733 fcvtassw(dst, src); 6734 // Test if src >= 0 || abs(src) >= 0x1.0p23 6735 eor(rscratch1, rscratch1, 0x80000000); // flip sign bit 6736 mov(rscratch2, jint_cast(0x1.0p23f)); 6737 cmp(rscratch1, rscratch2); 6738 br(HS, DONE); { 6739 // src < 0 && |src| < 0x1.0p23 6740 // src may have a fractional part, so add 0.5 6741 fmovs(ftmp, 0.5f); 6742 fadds(ftmp, src, ftmp); 6743 // Convert float to jint, use RoundTowardsNegative 6744 fcvtmssw(dst, ftmp); 6745 } 6746 bind(DONE); 6747 BLOCK_COMMENT("} java_round_float"); 6748 } 6749 6750 // get_thread() can be called anywhere inside generated code so we 6751 // need to save whatever non-callee save context might get clobbered 6752 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed, 6753 // the call setup code. 6754 // 6755 // On Linux, aarch64_get_thread_helper() clobbers only r0, r1, and flags. 6756 // On other systems, the helper is a usual C function. 6757 // 6758 void MacroAssembler::get_thread(Register dst) { 6759 RegSet saved_regs = 6760 LINUX_ONLY(RegSet::range(r0, r1) + lr - dst) 6761 NOT_LINUX (RegSet::range(r0, r17) + lr - dst); 6762 6763 protect_return_address(); 6764 push(saved_regs, sp); 6765 6766 mov(lr, ExternalAddress(CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper))); 6767 blr(lr); 6768 if (dst != c_rarg0) { 6769 mov(dst, c_rarg0); 6770 } 6771 6772 pop(saved_regs, sp); 6773 authenticate_return_address(); 6774 } 6775 6776 void MacroAssembler::cache_wb(Address line) { 6777 assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset"); 6778 assert(line.index() == noreg, "index should be noreg"); 6779 assert(line.offset() == 0, "offset should be 0"); 6780 // would like to assert this 6781 // assert(line._ext.shift == 0, "shift should be zero"); 6782 if (VM_Version::supports_dcpop()) { 6783 // writeback using clear virtual address to point of persistence 6784 dc(Assembler::CVAP, line.base()); 6785 } else { 6786 // no need to generate anything as Unsafe.writebackMemory should 6787 // never invoke this stub 6788 } 6789 } 6790 6791 void MacroAssembler::cache_wbsync(bool is_pre) { 6792 // we only need a barrier post sync 6793 if (!is_pre) { 6794 membar(Assembler::AnyAny); 6795 } 6796 } 6797 6798 void MacroAssembler::verify_sve_vector_length(Register tmp) { 6799 if (!UseSVE || VM_Version::get_max_supported_sve_vector_length() == FloatRegister::sve_vl_min) { 6800 return; 6801 } 6802 // Make sure that native code does not change SVE vector length. 6803 Label verify_ok; 6804 movw(tmp, zr); 6805 sve_inc(tmp, B); 6806 subsw(zr, tmp, VM_Version::get_initial_sve_vector_length()); 6807 br(EQ, verify_ok); 6808 stop("Error: SVE vector length has changed since jvm startup"); 6809 bind(verify_ok); 6810 } 6811 6812 void MacroAssembler::verify_ptrue() { 6813 Label verify_ok; 6814 if (!UseSVE) { 6815 return; 6816 } 6817 sve_cntp(rscratch1, B, ptrue, ptrue); // get true elements count. 6818 sve_dec(rscratch1, B); 6819 cbz(rscratch1, verify_ok); 6820 stop("Error: the preserved predicate register (p7) elements are not all true"); 6821 bind(verify_ok); 6822 } 6823 6824 void MacroAssembler::safepoint_isb() { 6825 isb(); 6826 #ifndef PRODUCT 6827 if (VerifyCrossModifyFence) { 6828 // Clear the thread state. 6829 strb(zr, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 6830 } 6831 #endif 6832 } 6833 6834 #ifndef PRODUCT 6835 void MacroAssembler::verify_cross_modify_fence_not_required() { 6836 if (VerifyCrossModifyFence) { 6837 // Check if thread needs a cross modify fence. 6838 ldrb(rscratch1, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 6839 Label fence_not_required; 6840 cbz(rscratch1, fence_not_required); 6841 // If it does then fail. 6842 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::verify_cross_modify_fence_failure))); 6843 mov(c_rarg0, rthread); 6844 blr(rscratch1); 6845 bind(fence_not_required); 6846 } 6847 } 6848 #endif 6849 6850 void MacroAssembler::spin_wait() { 6851 block_comment("spin_wait {"); 6852 for (int i = 0; i < VM_Version::spin_wait_desc().inst_count(); ++i) { 6853 switch (VM_Version::spin_wait_desc().inst()) { 6854 case SpinWait::NOP: 6855 nop(); 6856 break; 6857 case SpinWait::ISB: 6858 isb(); 6859 break; 6860 case SpinWait::YIELD: 6861 yield(); 6862 break; 6863 case SpinWait::SB: 6864 assert(VM_Version::supports_sb(), "current CPU does not support SB instruction"); 6865 sb(); 6866 break; 6867 default: 6868 ShouldNotReachHere(); 6869 } 6870 } 6871 block_comment("}"); 6872 } 6873 6874 // Stack frame creation/removal 6875 6876 void MacroAssembler::enter(bool strip_ret_addr) { 6877 if (strip_ret_addr) { 6878 // Addresses can only be signed once. If there are multiple nested frames being created 6879 // in the same function, then the return address needs stripping first. 6880 strip_return_address(); 6881 } 6882 protect_return_address(); 6883 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 6884 mov(rfp, sp); 6885 } 6886 6887 void MacroAssembler::leave() { 6888 mov(sp, rfp); 6889 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 6890 authenticate_return_address(); 6891 } 6892 6893 // ROP Protection 6894 // Use the AArch64 PAC feature to add ROP protection for generated code. Use whenever creating/ 6895 // destroying stack frames or whenever directly loading/storing the LR to memory. 6896 // If ROP protection is not set then these functions are no-ops. 6897 // For more details on PAC see pauth_aarch64.hpp. 6898 6899 // Sign the LR. Use during construction of a stack frame, before storing the LR to memory. 6900 // Uses value zero as the modifier. 6901 // 6902 void MacroAssembler::protect_return_address() { 6903 if (VM_Version::use_rop_protection()) { 6904 check_return_address(); 6905 paciaz(); 6906 } 6907 } 6908 6909 // Sign the return value in the given register. Use before updating the LR in the existing stack 6910 // frame for the current function. 6911 // Uses value zero as the modifier. 6912 // 6913 void MacroAssembler::protect_return_address(Register return_reg) { 6914 if (VM_Version::use_rop_protection()) { 6915 check_return_address(return_reg); 6916 paciza(return_reg); 6917 } 6918 } 6919 6920 // Authenticate the LR. Use before function return, after restoring FP and loading LR from memory. 6921 // Uses value zero as the modifier. 6922 // 6923 void MacroAssembler::authenticate_return_address() { 6924 if (VM_Version::use_rop_protection()) { 6925 autiaz(); 6926 check_return_address(); 6927 } 6928 } 6929 6930 // Authenticate the return value in the given register. Use before updating the LR in the existing 6931 // stack frame for the current function. 6932 // Uses value zero as the modifier. 6933 // 6934 void MacroAssembler::authenticate_return_address(Register return_reg) { 6935 if (VM_Version::use_rop_protection()) { 6936 autiza(return_reg); 6937 check_return_address(return_reg); 6938 } 6939 } 6940 6941 // Strip any PAC data from LR without performing any authentication. Use with caution - only if 6942 // there is no guaranteed way of authenticating the LR. 6943 // 6944 void MacroAssembler::strip_return_address() { 6945 if (VM_Version::use_rop_protection()) { 6946 xpaclri(); 6947 } 6948 } 6949 6950 #ifndef PRODUCT 6951 // PAC failures can be difficult to debug. After an authentication failure, a segfault will only 6952 // occur when the pointer is used - ie when the program returns to the invalid LR. At this point 6953 // it is difficult to debug back to the callee function. 6954 // This function simply loads from the address in the given register. 6955 // Use directly after authentication to catch authentication failures. 6956 // Also use before signing to check that the pointer is valid and hasn't already been signed. 6957 // 6958 void MacroAssembler::check_return_address(Register return_reg) { 6959 if (VM_Version::use_rop_protection()) { 6960 ldr(zr, Address(return_reg)); 6961 } 6962 } 6963 #endif 6964 6965 // The java_calling_convention describes stack locations as ideal slots on 6966 // a frame with no abi restrictions. Since we must observe abi restrictions 6967 // (like the placement of the register window) the slots must be biased by 6968 // the following value. 6969 static int reg2offset_in(VMReg r) { 6970 // Account for saved rfp and lr 6971 // This should really be in_preserve_stack_slots 6972 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 6973 } 6974 6975 static int reg2offset_out(VMReg r) { 6976 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 6977 } 6978 6979 // On 64bit we will store integer like items to the stack as 6980 // 64bits items (AArch64 ABI) even though java would only store 6981 // 32bits for a parameter. On 32bit it will simply be 32bits 6982 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 6983 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp) { 6984 if (src.first()->is_stack()) { 6985 if (dst.first()->is_stack()) { 6986 // stack to stack 6987 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 6988 str(tmp, Address(sp, reg2offset_out(dst.first()))); 6989 } else { 6990 // stack to reg 6991 ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 6992 } 6993 } else if (dst.first()->is_stack()) { 6994 // reg to stack 6995 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 6996 } else { 6997 if (dst.first() != src.first()) { 6998 sxtw(dst.first()->as_Register(), src.first()->as_Register()); 6999 } 7000 } 7001 } 7002 7003 // An oop arg. Must pass a handle not the oop itself 7004 void MacroAssembler::object_move( 7005 OopMap* map, 7006 int oop_handle_offset, 7007 int framesize_in_slots, 7008 VMRegPair src, 7009 VMRegPair dst, 7010 bool is_receiver, 7011 int* receiver_offset) { 7012 7013 // must pass a handle. First figure out the location we use as a handle 7014 7015 Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register(); 7016 7017 // See if oop is null if it is we need no handle 7018 7019 if (src.first()->is_stack()) { 7020 7021 // Oop is already on the stack as an argument 7022 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 7023 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 7024 if (is_receiver) { 7025 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 7026 } 7027 7028 ldr(rscratch1, Address(rfp, reg2offset_in(src.first()))); 7029 lea(rHandle, Address(rfp, reg2offset_in(src.first()))); 7030 // conditionally move a null 7031 cmp(rscratch1, zr); 7032 csel(rHandle, zr, rHandle, Assembler::EQ); 7033 } else { 7034 7035 // Oop is in an a register we must store it to the space we reserve 7036 // on the stack for oop_handles and pass a handle if oop is non-null 7037 7038 const Register rOop = src.first()->as_Register(); 7039 int oop_slot; 7040 if (rOop == j_rarg0) 7041 oop_slot = 0; 7042 else if (rOop == j_rarg1) 7043 oop_slot = 1; 7044 else if (rOop == j_rarg2) 7045 oop_slot = 2; 7046 else if (rOop == j_rarg3) 7047 oop_slot = 3; 7048 else if (rOop == j_rarg4) 7049 oop_slot = 4; 7050 else if (rOop == j_rarg5) 7051 oop_slot = 5; 7052 else if (rOop == j_rarg6) 7053 oop_slot = 6; 7054 else { 7055 assert(rOop == j_rarg7, "wrong register"); 7056 oop_slot = 7; 7057 } 7058 7059 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 7060 int offset = oop_slot*VMRegImpl::stack_slot_size; 7061 7062 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 7063 // Store oop in handle area, may be null 7064 str(rOop, Address(sp, offset)); 7065 if (is_receiver) { 7066 *receiver_offset = offset; 7067 } 7068 7069 cmp(rOop, zr); 7070 lea(rHandle, Address(sp, offset)); 7071 // conditionally move a null 7072 csel(rHandle, zr, rHandle, Assembler::EQ); 7073 } 7074 7075 // If arg is on the stack then place it otherwise it is already in correct reg. 7076 if (dst.first()->is_stack()) { 7077 str(rHandle, Address(sp, reg2offset_out(dst.first()))); 7078 } 7079 } 7080 7081 // A float arg may have to do float reg int reg conversion 7082 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp) { 7083 if (src.first()->is_stack()) { 7084 if (dst.first()->is_stack()) { 7085 ldrw(tmp, Address(rfp, reg2offset_in(src.first()))); 7086 strw(tmp, Address(sp, reg2offset_out(dst.first()))); 7087 } else { 7088 ldrs(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 7089 } 7090 } else if (src.first() != dst.first()) { 7091 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 7092 fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 7093 else 7094 strs(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 7095 } 7096 } 7097 7098 // A long move 7099 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp) { 7100 if (src.first()->is_stack()) { 7101 if (dst.first()->is_stack()) { 7102 // stack to stack 7103 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 7104 str(tmp, Address(sp, reg2offset_out(dst.first()))); 7105 } else { 7106 // stack to reg 7107 ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 7108 } 7109 } else if (dst.first()->is_stack()) { 7110 // reg to stack 7111 // Do we really have to sign extend??? 7112 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 7113 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 7114 } else { 7115 if (dst.first() != src.first()) { 7116 mov(dst.first()->as_Register(), src.first()->as_Register()); 7117 } 7118 } 7119 } 7120 7121 7122 // A double move 7123 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp) { 7124 if (src.first()->is_stack()) { 7125 if (dst.first()->is_stack()) { 7126 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 7127 str(tmp, Address(sp, reg2offset_out(dst.first()))); 7128 } else { 7129 ldrd(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 7130 } 7131 } else if (src.first() != dst.first()) { 7132 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 7133 fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 7134 else 7135 strd(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 7136 } 7137 } 7138 7139 // Implements lightweight-locking. 7140 // 7141 // - obj: the object to be locked 7142 // - t1, t2, t3: temporary registers, will be destroyed 7143 // - slow: branched to if locking fails, absolute offset may larger than 32KB (imm14 encoding). 7144 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow) { 7145 assert_different_registers(basic_lock, obj, t1, t2, t3, rscratch1); 7146 7147 Label push; 7148 const Register top = t1; 7149 const Register mark = t2; 7150 const Register t = t3; 7151 7152 // Preload the markWord. It is important that this is the first 7153 // instruction emitted as it is part of C1's null check semantics. 7154 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 7155 7156 if (UseObjectMonitorTable) { 7157 // Clear cache in case fast locking succeeds or we need to take the slow-path. 7158 str(zr, Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes())))); 7159 } 7160 7161 if (DiagnoseSyncOnValueBasedClasses != 0) { 7162 load_klass(t1, obj); 7163 ldrb(t1, Address(t1, Klass::misc_flags_offset())); 7164 tst(t1, KlassFlags::_misc_is_value_based_class); 7165 br(Assembler::NE, slow); 7166 } 7167 7168 // Check if the lock-stack is full. 7169 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7170 cmpw(top, (unsigned)LockStack::end_offset()); 7171 br(Assembler::GE, slow); 7172 7173 // Check for recursion. 7174 subw(t, top, oopSize); 7175 ldr(t, Address(rthread, t)); 7176 cmp(obj, t); 7177 br(Assembler::EQ, push); 7178 7179 // Check header for monitor (0b10). 7180 tst(mark, markWord::monitor_value); 7181 br(Assembler::NE, slow); 7182 7183 // Try to lock. Transition lock bits 0b01 => 0b00 7184 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 7185 orr(mark, mark, markWord::unlocked_value); 7186 eor(t, mark, markWord::unlocked_value); 7187 cmpxchg(/*addr*/ obj, /*expected*/ mark, /*new*/ t, Assembler::xword, 7188 /*acquire*/ true, /*release*/ false, /*weak*/ false, noreg); 7189 br(Assembler::NE, slow); 7190 7191 bind(push); 7192 // After successful lock, push object on lock-stack. 7193 str(obj, Address(rthread, top)); 7194 addw(top, top, oopSize); 7195 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7196 } 7197 7198 // Implements lightweight-unlocking. 7199 // 7200 // - obj: the object to be unlocked 7201 // - t1, t2, t3: temporary registers 7202 // - slow: branched to if unlocking fails, absolute offset may larger than 32KB (imm14 encoding). 7203 void MacroAssembler::lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow) { 7204 // cmpxchg clobbers rscratch1. 7205 assert_different_registers(obj, t1, t2, t3, rscratch1); 7206 7207 #ifdef ASSERT 7208 { 7209 // Check for lock-stack underflow. 7210 Label stack_ok; 7211 ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 7212 cmpw(t1, (unsigned)LockStack::start_offset()); 7213 br(Assembler::GE, stack_ok); 7214 STOP("Lock-stack underflow"); 7215 bind(stack_ok); 7216 } 7217 #endif 7218 7219 Label unlocked, push_and_slow; 7220 const Register top = t1; 7221 const Register mark = t2; 7222 const Register t = t3; 7223 7224 // Check if obj is top of lock-stack. 7225 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7226 subw(top, top, oopSize); 7227 ldr(t, Address(rthread, top)); 7228 cmp(obj, t); 7229 br(Assembler::NE, slow); 7230 7231 // Pop lock-stack. 7232 DEBUG_ONLY(str(zr, Address(rthread, top));) 7233 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7234 7235 // Check if recursive. 7236 subw(t, top, oopSize); 7237 ldr(t, Address(rthread, t)); 7238 cmp(obj, t); 7239 br(Assembler::EQ, unlocked); 7240 7241 // Not recursive. Check header for monitor (0b10). 7242 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 7243 tbnz(mark, log2i_exact(markWord::monitor_value), push_and_slow); 7244 7245 #ifdef ASSERT 7246 // Check header not unlocked (0b01). 7247 Label not_unlocked; 7248 tbz(mark, log2i_exact(markWord::unlocked_value), not_unlocked); 7249 stop("lightweight_unlock already unlocked"); 7250 bind(not_unlocked); 7251 #endif 7252 7253 // Try to unlock. Transition lock bits 0b00 => 0b01 7254 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 7255 orr(t, mark, markWord::unlocked_value); 7256 cmpxchg(obj, mark, t, Assembler::xword, 7257 /*acquire*/ false, /*release*/ true, /*weak*/ false, noreg); 7258 br(Assembler::EQ, unlocked); 7259 7260 bind(push_and_slow); 7261 // Restore lock-stack and handle the unlock in runtime. 7262 DEBUG_ONLY(str(obj, Address(rthread, top));) 7263 addw(top, top, oopSize); 7264 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7265 b(slow); 7266 7267 bind(unlocked); 7268 }