1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26 #include "asm/assembler.hpp"
27 #include "asm/assembler.inline.hpp"
28 #include "ci/ciEnv.hpp"
29 #include "ci/ciUtilities.hpp"
30 #include "code/compiledIC.hpp"
31 #include "compiler/compileTask.hpp"
32 #include "compiler/disassembler.hpp"
33 #include "compiler/oopMap.hpp"
34 #include "gc/shared/barrierSet.hpp"
35 #include "gc/shared/barrierSetAssembler.hpp"
36 #include "gc/shared/cardTableBarrierSet.hpp"
37 #include "gc/shared/cardTable.hpp"
38 #include "gc/shared/collectedHeap.hpp"
39 #include "gc/shared/tlab_globals.hpp"
40 #include "interpreter/bytecodeHistogram.hpp"
41 #include "interpreter/interpreter.hpp"
42 #include "interpreter/interpreterRuntime.hpp"
43 #include "jvm.h"
44 #include "memory/resourceArea.hpp"
45 #include "memory/universe.hpp"
46 #include "nativeInst_aarch64.hpp"
47 #include "oops/accessDecorators.hpp"
48 #include "oops/compressedKlass.inline.hpp"
49 #include "oops/compressedOops.inline.hpp"
50 #include "oops/klass.inline.hpp"
51 #include "runtime/continuation.hpp"
52 #include "runtime/icache.hpp"
53 #include "runtime/interfaceSupport.inline.hpp"
54 #include "runtime/javaThread.hpp"
55 #include "runtime/jniHandles.inline.hpp"
56 #include "runtime/sharedRuntime.hpp"
57 #include "runtime/stubRoutines.hpp"
58 #include "utilities/globalDefinitions.hpp"
59 #include "utilities/powerOfTwo.hpp"
60 #ifdef COMPILER1
61 #include "c1/c1_LIRAssembler.hpp"
62 #endif
63 #ifdef COMPILER2
64 #include "oops/oop.hpp"
65 #include "opto/compile.hpp"
66 #include "opto/node.hpp"
67 #include "opto/output.hpp"
68 #endif
69
70 #include <sys/types.h>
71
72 #ifdef PRODUCT
73 #define BLOCK_COMMENT(str) /* nothing */
74 #else
75 #define BLOCK_COMMENT(str) block_comment(str)
76 #endif
77 #define STOP(str) stop(str);
78 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
79
80 #ifdef ASSERT
81 extern "C" void disnm(intptr_t p);
82 #endif
83 // Target-dependent relocation processing
84 //
85 // Instruction sequences whose target may need to be retrieved or
86 // patched are distinguished by their leading instruction, sorting
87 // them into three main instruction groups and related subgroups.
88 //
89 // 1) Branch, Exception and System (insn count = 1)
90 // 1a) Unconditional branch (immediate):
91 // b/bl imm19
92 // 1b) Compare & branch (immediate):
93 // cbz/cbnz Rt imm19
94 // 1c) Test & branch (immediate):
95 // tbz/tbnz Rt imm14
96 // 1d) Conditional branch (immediate):
97 // b.cond imm19
98 //
99 // 2) Loads and Stores (insn count = 1)
100 // 2a) Load register literal:
101 // ldr Rt imm19
102 //
103 // 3) Data Processing Immediate (insn count = 2 or 3)
104 // 3a) PC-rel. addressing
105 // adr/adrp Rx imm21; ldr/str Ry Rx #imm12
106 // adr/adrp Rx imm21; add Ry Rx #imm12
107 // adr/adrp Rx imm21; movk Rx #imm16<<32; ldr/str Ry, [Rx, #offset_in_page]
108 // adr/adrp Rx imm21
109 // adr/adrp Rx imm21; movk Rx #imm16<<32
110 // adr/adrp Rx imm21; movk Rx #imm16<<32; add Ry, Rx, #offset_in_page
111 // The latter form can only happen when the target is an
112 // ExternalAddress, and (by definition) ExternalAddresses don't
113 // move. Because of that property, there is never any need to
114 // patch the last of the three instructions. However,
115 // MacroAssembler::target_addr_for_insn takes all three
116 // instructions into account and returns the correct address.
117 // 3b) Move wide (immediate)
118 // movz Rx #imm16; movk Rx #imm16 << 16; movk Rx #imm16 << 32;
119 //
120 // A switch on a subset of the instruction's bits provides an
121 // efficient dispatch to these subcases.
122 //
123 // insn[28:26] -> main group ('x' == don't care)
124 // 00x -> UNALLOCATED
125 // 100 -> Data Processing Immediate
126 // 101 -> Branch, Exception and System
127 // x1x -> Loads and Stores
128 //
129 // insn[30:25] -> subgroup ('_' == group, 'x' == don't care).
130 // n.b. in some cases extra bits need to be checked to verify the
131 // instruction is as expected
132 //
133 // 1) ... xx101x Branch, Exception and System
134 // 1a) 00___x Unconditional branch (immediate)
135 // 1b) 01___0 Compare & branch (immediate)
136 // 1c) 01___1 Test & branch (immediate)
137 // 1d) 10___0 Conditional branch (immediate)
138 // other Should not happen
139 //
140 // 2) ... xxx1x0 Loads and Stores
141 // 2a) xx1__00 Load/Store register (insn[28] == 1 && insn[24] == 0)
142 // 2aa) x01__00 Load register literal (i.e. requires insn[29] == 0)
143 // strictly should be 64 bit non-FP/SIMD i.e.
144 // 0101_000 (i.e. requires insn[31:24] == 01011000)
145 //
146 // 3) ... xx100x Data Processing Immediate
147 // 3a) xx___00 PC-rel. addressing (n.b. requires insn[24] == 0)
148 // 3b) xx___101 Move wide (immediate) (n.b. requires insn[24:23] == 01)
149 // strictly should be 64 bit movz #imm16<<0
150 // 110___10100 (i.e. requires insn[31:21] == 11010010100)
151 //
152 class RelocActions {
153 protected:
154 typedef int (*reloc_insn)(address insn_addr, address &target);
155
156 virtual reloc_insn adrpMem() = 0;
157 virtual reloc_insn adrpAdd() = 0;
158 virtual reloc_insn adrpMovk() = 0;
159
160 const address _insn_addr;
161 const uint32_t _insn;
162
163 static uint32_t insn_at(address insn_addr, int n) {
164 return ((uint32_t*)insn_addr)[n];
165 }
166 uint32_t insn_at(int n) const {
167 return insn_at(_insn_addr, n);
168 }
169
170 public:
171
172 RelocActions(address insn_addr) : _insn_addr(insn_addr), _insn(insn_at(insn_addr, 0)) {}
173 RelocActions(address insn_addr, uint32_t insn)
174 : _insn_addr(insn_addr), _insn(insn) {}
175
176 virtual int unconditionalBranch(address insn_addr, address &target) = 0;
177 virtual int conditionalBranch(address insn_addr, address &target) = 0;
178 virtual int testAndBranch(address insn_addr, address &target) = 0;
179 virtual int loadStore(address insn_addr, address &target) = 0;
180 virtual int adr(address insn_addr, address &target) = 0;
181 virtual int adrp(address insn_addr, address &target, reloc_insn inner) = 0;
182 virtual int immediate(address insn_addr, address &target) = 0;
183 virtual void verify(address insn_addr, address &target) = 0;
184
185 int ALWAYSINLINE run(address insn_addr, address &target) {
186 int instructions = 1;
187
188 uint32_t dispatch = Instruction_aarch64::extract(_insn, 30, 25);
189 switch(dispatch) {
190 case 0b001010:
191 case 0b001011: {
192 instructions = unconditionalBranch(insn_addr, target);
193 break;
194 }
195 case 0b101010: // Conditional branch (immediate)
196 case 0b011010: { // Compare & branch (immediate)
197 instructions = conditionalBranch(insn_addr, target);
198 break;
199 }
200 case 0b011011: {
201 instructions = testAndBranch(insn_addr, target);
202 break;
203 }
204 case 0b001100:
205 case 0b001110:
206 case 0b011100:
207 case 0b011110:
208 case 0b101100:
209 case 0b101110:
210 case 0b111100:
211 case 0b111110: {
212 // load/store
213 if ((Instruction_aarch64::extract(_insn, 29, 24) & 0b111011) == 0b011000) {
214 // Load register (literal)
215 instructions = loadStore(insn_addr, target);
216 break;
217 } else {
218 // nothing to do
219 assert(target == nullptr, "did not expect to relocate target for polling page load");
220 }
221 break;
222 }
223 case 0b001000:
224 case 0b011000:
225 case 0b101000:
226 case 0b111000: {
227 // adr/adrp
228 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be");
229 int shift = Instruction_aarch64::extract(_insn, 31, 31);
230 if (shift) {
231 uint32_t insn2 = insn_at(1);
232 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 &&
233 Instruction_aarch64::extract(_insn, 4, 0) ==
234 Instruction_aarch64::extract(insn2, 9, 5)) {
235 instructions = adrp(insn_addr, target, adrpMem());
236 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 &&
237 Instruction_aarch64::extract(_insn, 4, 0) ==
238 Instruction_aarch64::extract(insn2, 4, 0)) {
239 instructions = adrp(insn_addr, target, adrpAdd());
240 } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 &&
241 Instruction_aarch64::extract(_insn, 4, 0) ==
242 Instruction_aarch64::extract(insn2, 4, 0)) {
243 instructions = adrp(insn_addr, target, adrpMovk());
244 } else {
245 ShouldNotReachHere();
246 }
247 } else {
248 instructions = adr(insn_addr, target);
249 }
250 break;
251 }
252 case 0b001001:
253 case 0b011001:
254 case 0b101001:
255 case 0b111001: {
256 instructions = immediate(insn_addr, target);
257 break;
258 }
259 default: {
260 ShouldNotReachHere();
261 }
262 }
263
264 verify(insn_addr, target);
265 return instructions * NativeInstruction::instruction_size;
266 }
267 };
268
269 class Patcher : public RelocActions {
270 virtual reloc_insn adrpMem() { return &Patcher::adrpMem_impl; }
271 virtual reloc_insn adrpAdd() { return &Patcher::adrpAdd_impl; }
272 virtual reloc_insn adrpMovk() { return &Patcher::adrpMovk_impl; }
273
274 public:
275 Patcher(address insn_addr) : RelocActions(insn_addr) {}
276
277 virtual int unconditionalBranch(address insn_addr, address &target) {
278 intptr_t offset = (target - insn_addr) >> 2;
279 Instruction_aarch64::spatch(insn_addr, 25, 0, offset);
280 return 1;
281 }
282 virtual int conditionalBranch(address insn_addr, address &target) {
283 intptr_t offset = (target - insn_addr) >> 2;
284 Instruction_aarch64::spatch(insn_addr, 23, 5, offset);
285 return 1;
286 }
287 virtual int testAndBranch(address insn_addr, address &target) {
288 intptr_t offset = (target - insn_addr) >> 2;
289 Instruction_aarch64::spatch(insn_addr, 18, 5, offset);
290 return 1;
291 }
292 virtual int loadStore(address insn_addr, address &target) {
293 intptr_t offset = (target - insn_addr) >> 2;
294 Instruction_aarch64::spatch(insn_addr, 23, 5, offset);
295 return 1;
296 }
297 virtual int adr(address insn_addr, address &target) {
298 #ifdef ASSERT
299 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be");
300 #endif
301 // PC-rel. addressing
302 ptrdiff_t offset = target - insn_addr;
303 int offset_lo = offset & 3;
304 offset >>= 2;
305 Instruction_aarch64::spatch(insn_addr, 23, 5, offset);
306 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo);
307 return 1;
308 }
309 virtual int adrp(address insn_addr, address &target, reloc_insn inner) {
310 int instructions = 1;
311 #ifdef ASSERT
312 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be");
313 #endif
314 ptrdiff_t offset = target - insn_addr;
315 instructions = 2;
316 precond(inner != nullptr);
317 // Give the inner reloc a chance to modify the target.
318 address adjusted_target = target;
319 instructions = (*inner)(insn_addr, adjusted_target);
320 uintptr_t pc_page = (uintptr_t)insn_addr >> 12;
321 uintptr_t adr_page = (uintptr_t)adjusted_target >> 12;
322 offset = adr_page - pc_page;
323 int offset_lo = offset & 3;
324 offset >>= 2;
325 Instruction_aarch64::spatch(insn_addr, 23, 5, offset);
326 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo);
327 return instructions;
328 }
329 static int adrpMem_impl(address insn_addr, address &target) {
330 uintptr_t dest = (uintptr_t)target;
331 int offset_lo = dest & 0xfff;
332 uint32_t insn2 = insn_at(insn_addr, 1);
333 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30);
334 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo >> size);
335 guarantee(((dest >> size) << size) == dest, "misaligned target");
336 return 2;
337 }
338 static int adrpAdd_impl(address insn_addr, address &target) {
339 uintptr_t dest = (uintptr_t)target;
340 int offset_lo = dest & 0xfff;
341 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo);
342 return 2;
343 }
344 static int adrpMovk_impl(address insn_addr, address &target) {
345 uintptr_t dest = uintptr_t(target);
346 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 20, 5, (uintptr_t)target >> 32);
347 dest = (dest & 0xffffffffULL) | (uintptr_t(insn_addr) & 0xffff00000000ULL);
348 target = address(dest);
349 return 2;
350 }
351 virtual int immediate(address insn_addr, address &target) {
352 // Metadata pointers are either narrow (32 bits) or wide (48 bits).
353 // We encode narrow ones by setting the upper 16 bits in the first
354 // instruction.
355 if (Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010101) {
356 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
357 narrowKlass nk = CompressedKlassPointers::encode((Klass*)target);
358 Instruction_aarch64::patch(insn_addr, 20, 5, nk >> 16);
359 Instruction_aarch64::patch(insn_addr+4, 20, 5, nk & 0xffff);
360 return 2;
361 }
362 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be");
363 uint64_t dest = (uint64_t)target;
364 // Move wide constant
365 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
366 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch");
367 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff);
368 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff);
369 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff);
370 return 3;
371 }
372 virtual void verify(address insn_addr, address &target) {
373 #ifdef ASSERT
374 address address_is = MacroAssembler::target_addr_for_insn(insn_addr);
375 if (!(address_is == target)) {
376 tty->print_cr("%p at %p should be %p", address_is, insn_addr, target);
377 disnm((intptr_t)insn_addr);
378 assert(address_is == target, "should be");
379 }
380 #endif
381 }
382 };
383
384 // If insn1 and insn2 use the same register to form an address, either
385 // by an offsetted LDR or a simple ADD, return the offset. If the
386 // second instruction is an LDR, the offset may be scaled.
387 static bool offset_for(uint32_t insn1, uint32_t insn2, ptrdiff_t &byte_offset) {
388 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 &&
389 Instruction_aarch64::extract(insn1, 4, 0) ==
390 Instruction_aarch64::extract(insn2, 9, 5)) {
391 // Load/store register (unsigned immediate)
392 byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
393 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30);
394 byte_offset <<= size;
395 return true;
396 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 &&
397 Instruction_aarch64::extract(insn1, 4, 0) ==
398 Instruction_aarch64::extract(insn2, 4, 0)) {
399 // add (immediate)
400 byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
401 return true;
402 }
403 return false;
404 }
405
406 class AArch64Decoder : public RelocActions {
407 virtual reloc_insn adrpMem() { return &AArch64Decoder::adrpMem_impl; }
408 virtual reloc_insn adrpAdd() { return &AArch64Decoder::adrpAdd_impl; }
409 virtual reloc_insn adrpMovk() { return &AArch64Decoder::adrpMovk_impl; }
410
411 public:
412 AArch64Decoder(address insn_addr, uint32_t insn) : RelocActions(insn_addr, insn) {}
413
414 virtual int loadStore(address insn_addr, address &target) {
415 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5);
416 target = insn_addr + (offset << 2);
417 return 1;
418 }
419 virtual int unconditionalBranch(address insn_addr, address &target) {
420 intptr_t offset = Instruction_aarch64::sextract(_insn, 25, 0);
421 target = insn_addr + (offset << 2);
422 return 1;
423 }
424 virtual int conditionalBranch(address insn_addr, address &target) {
425 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5);
426 target = address(((uint64_t)insn_addr + (offset << 2)));
427 return 1;
428 }
429 virtual int testAndBranch(address insn_addr, address &target) {
430 intptr_t offset = Instruction_aarch64::sextract(_insn, 18, 5);
431 target = address(((uint64_t)insn_addr + (offset << 2)));
432 return 1;
433 }
434 virtual int adr(address insn_addr, address &target) {
435 // PC-rel. addressing
436 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29);
437 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2;
438 target = address((uint64_t)insn_addr + offset);
439 return 1;
440 }
441 virtual int adrp(address insn_addr, address &target, reloc_insn inner) {
442 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be");
443 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29);
444 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2;
445 int shift = 12;
446 offset <<= shift;
447 uint64_t target_page = ((uint64_t)insn_addr) + offset;
448 target_page &= ((uint64_t)-1) << shift;
449 uint32_t insn2 = insn_at(1);
450 target = address(target_page);
451 precond(inner != nullptr);
452 (*inner)(insn_addr, target);
453 return 2;
454 }
455 static int adrpMem_impl(address insn_addr, address &target) {
456 uint32_t insn2 = insn_at(insn_addr, 1);
457 // Load/store register (unsigned immediate)
458 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
459 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30);
460 byte_offset <<= size;
461 target += byte_offset;
462 return 2;
463 }
464 static int adrpAdd_impl(address insn_addr, address &target) {
465 uint32_t insn2 = insn_at(insn_addr, 1);
466 // add (immediate)
467 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
468 target += byte_offset;
469 return 2;
470 }
471 static int adrpMovk_impl(address insn_addr, address &target) {
472 uint32_t insn2 = insn_at(insn_addr, 1);
473 uint64_t dest = uint64_t(target);
474 dest = (dest & 0xffff0000ffffffff) |
475 ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32);
476 target = address(dest);
477
478 // We know the destination 4k page. Maybe we have a third
479 // instruction.
480 uint32_t insn = insn_at(insn_addr, 0);
481 uint32_t insn3 = insn_at(insn_addr, 2);
482 ptrdiff_t byte_offset;
483 if (offset_for(insn, insn3, byte_offset)) {
484 target += byte_offset;
485 return 3;
486 } else {
487 return 2;
488 }
489 }
490 virtual int immediate(address insn_addr, address &target) {
491 uint32_t *insns = (uint32_t *)insn_addr;
492 // Metadata pointers are either narrow (32 bits) or wide (48 bits).
493 // We encode narrow ones by setting the upper 16 bits in the first
494 // instruction.
495 if (Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010101) {
496 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
497 narrowKlass nk = (narrowKlass)((uint32_t(Instruction_aarch64::extract(_insn, 20, 5)) << 16)
498 + uint32_t(Instruction_aarch64::extract(insns[1], 20, 5)));
499 target = (address)CompressedKlassPointers::decode(nk);
500 return 2;
501 }
502 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be");
503 // Move wide constant: movz, movk, movk. See movptr().
504 assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch");
505 assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch");
506 target = address(uint64_t(Instruction_aarch64::extract(_insn, 20, 5))
507 + (uint64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16)
508 + (uint64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32));
509 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
510 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch");
511 return 3;
512 }
513 virtual void verify(address insn_addr, address &target) {
514 }
515 };
516
517 address MacroAssembler::target_addr_for_insn(address insn_addr, uint32_t insn) {
518 AArch64Decoder decoder(insn_addr, insn);
519 address target;
520 decoder.run(insn_addr, target);
521 return target;
522 }
523
524 // Patch any kind of instruction; there may be several instructions.
525 // Return the total length (in bytes) of the instructions.
526 int MacroAssembler::pd_patch_instruction_size(address insn_addr, address target) {
527 Patcher patcher(insn_addr);
528 return patcher.run(insn_addr, target);
529 }
530
531 int MacroAssembler::patch_oop(address insn_addr, address o) {
532 int instructions;
533 unsigned insn = *(unsigned*)insn_addr;
534 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
535
536 // OOPs are either narrow (32 bits) or wide (48 bits). We encode
537 // narrow OOPs by setting the upper 16 bits in the first
538 // instruction.
539 if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) {
540 // Move narrow OOP
541 uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o));
542 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16);
543 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff);
544 instructions = 2;
545 } else {
546 // Move wide OOP
547 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch");
548 uintptr_t dest = (uintptr_t)o;
549 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff);
550 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff);
551 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff);
552 instructions = 3;
553 }
554 return instructions * NativeInstruction::instruction_size;
555 }
556
557 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) {
558 // Metadata pointers are either narrow (32 bits) or wide (48 bits).
559 // We encode narrow ones by setting the upper 16 bits in the first
560 // instruction.
561 NativeInstruction *insn = nativeInstruction_at(insn_addr);
562 assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 &&
563 nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
564
565 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16);
566 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff);
567 return 2 * NativeInstruction::instruction_size;
568 }
569
570 address MacroAssembler::target_addr_for_insn_or_null(address insn_addr, unsigned insn) {
571 if (NativeInstruction::is_ldrw_to_zr(address(&insn))) {
572 return nullptr;
573 }
574 return MacroAssembler::target_addr_for_insn(insn_addr, insn);
575 }
576
577 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool in_nmethod, Register tmp) {
578 ldr(tmp, Address(rthread, JavaThread::polling_word_offset()));
579 if (at_return) {
580 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore,
581 // we may safely use the sp instead to perform the stack watermark check.
582 cmp(in_nmethod ? sp : rfp, tmp);
583 br(Assembler::HI, slow_path);
584 } else {
585 tbnz(tmp, log2i_exact(SafepointMechanism::poll_bit()), slow_path);
586 }
587 }
588
589 void MacroAssembler::rt_call(address dest, Register tmp) {
590 CodeBlob *cb = CodeCache::find_blob(dest);
591 if (cb) {
592 far_call(RuntimeAddress(dest));
593 } else {
594 lea(tmp, RuntimeAddress(dest));
595 blr(tmp);
596 }
597 }
598
599 void MacroAssembler::push_cont_fastpath(Register java_thread) {
600 if (!Continuations::enabled()) return;
601 Label done;
602 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset()));
603 cmp(sp, rscratch1);
604 br(Assembler::LS, done);
605 mov(rscratch1, sp); // we can't use sp as the source in str
606 str(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset()));
607 bind(done);
608 }
609
610 void MacroAssembler::pop_cont_fastpath(Register java_thread) {
611 if (!Continuations::enabled()) return;
612 Label done;
613 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset()));
614 cmp(sp, rscratch1);
615 br(Assembler::LO, done);
616 str(zr, Address(java_thread, JavaThread::cont_fastpath_offset()));
617 bind(done);
618 }
619
620 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
621 // we must set sp to zero to clear frame
622 str(zr, Address(rthread, JavaThread::last_Java_sp_offset()));
623
624 // must clear fp, so that compiled frames are not confused; it is
625 // possible that we need it only for debugging
626 if (clear_fp) {
627 str(zr, Address(rthread, JavaThread::last_Java_fp_offset()));
628 }
629
630 // Always clear the pc because it could have been set by make_walkable()
631 str(zr, Address(rthread, JavaThread::last_Java_pc_offset()));
632 }
633
634 // Calls to C land
635 //
636 // When entering C land, the rfp, & resp of the last Java frame have to be recorded
637 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
638 // has to be reset to 0. This is required to allow proper stack traversal.
639 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
640 Register last_java_fp,
641 Register last_java_pc,
642 Register scratch) {
643
644 if (last_java_pc->is_valid()) {
645 str(last_java_pc, Address(rthread,
646 JavaThread::frame_anchor_offset()
647 + JavaFrameAnchor::last_Java_pc_offset()));
648 }
649
650 // determine last_java_sp register
651 if (last_java_sp == sp) {
652 mov(scratch, sp);
653 last_java_sp = scratch;
654 } else if (!last_java_sp->is_valid()) {
655 last_java_sp = esp;
656 }
657
658 // last_java_fp is optional
659 if (last_java_fp->is_valid()) {
660 str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset()));
661 }
662
663 // We must set sp last.
664 str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset()));
665 }
666
667 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
668 Register last_java_fp,
669 address last_java_pc,
670 Register scratch) {
671 assert(last_java_pc != nullptr, "must provide a valid PC");
672
673 adr(scratch, last_java_pc);
674 str(scratch, Address(rthread,
675 JavaThread::frame_anchor_offset()
676 + JavaFrameAnchor::last_Java_pc_offset()));
677
678 set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch);
679 }
680
681 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
682 Register last_java_fp,
683 Label &L,
684 Register scratch) {
685 if (L.is_bound()) {
686 set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch);
687 } else {
688 InstructionMark im(this);
689 L.add_patch_at(code(), locator());
690 set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch);
691 }
692 }
693
694 static inline bool target_needs_far_branch(address addr) {
695 if (AOTCodeCache::is_on_for_dump()) {
696 return true;
697 }
698 // codecache size <= 128M
699 if (!MacroAssembler::far_branches()) {
700 return false;
701 }
702 // codecache size > 240M
703 if (MacroAssembler::codestub_branch_needs_far_jump()) {
704 return true;
705 }
706 // codecache size: 128M..240M
707 return !CodeCache::is_non_nmethod(addr);
708 }
709
710 void MacroAssembler::far_call(Address entry, Register tmp) {
711 assert(ReservedCodeCacheSize < 4*G, "branch out of range");
712 assert(CodeCache::find_blob(entry.target()) != nullptr,
713 "destination of far call not found in code cache");
714 assert(entry.rspec().type() == relocInfo::external_word_type
715 || entry.rspec().type() == relocInfo::runtime_call_type
716 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type");
717 if (target_needs_far_branch(entry.target())) {
718 uint64_t offset;
719 // We can use ADRP here because we know that the total size of
720 // the code cache cannot exceed 2Gb (ADRP limit is 4GB).
721 adrp(tmp, entry, offset);
722 add(tmp, tmp, offset);
723 blr(tmp);
724 } else {
725 bl(entry);
726 }
727 }
728
729 int MacroAssembler::far_jump(Address entry, Register tmp) {
730 assert(ReservedCodeCacheSize < 4*G, "branch out of range");
731 assert(CodeCache::find_blob(entry.target()) != nullptr,
732 "destination of far call not found in code cache");
733 assert(entry.rspec().type() == relocInfo::external_word_type
734 || entry.rspec().type() == relocInfo::runtime_call_type
735 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type");
736 address start = pc();
737 if (target_needs_far_branch(entry.target())) {
738 uint64_t offset;
739 // We can use ADRP here because we know that the total size of
740 // the code cache cannot exceed 2Gb (ADRP limit is 4GB).
741 adrp(tmp, entry, offset);
742 add(tmp, tmp, offset);
743 br(tmp);
744 } else {
745 b(entry);
746 }
747 return pc() - start;
748 }
749
750 void MacroAssembler::reserved_stack_check() {
751 // testing if reserved zone needs to be enabled
752 Label no_reserved_zone_enabling;
753
754 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset()));
755 cmp(sp, rscratch1);
756 br(Assembler::LO, no_reserved_zone_enabling);
757
758 enter(); // LR and FP are live.
759 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone)));
760 mov(c_rarg0, rthread);
761 blr(rscratch1);
762 leave();
763
764 // We have already removed our own frame.
765 // throw_delayed_StackOverflowError will think that it's been
766 // called by our caller.
767 lea(rscratch1, RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry()));
768 br(rscratch1);
769 should_not_reach_here();
770
771 bind(no_reserved_zone_enabling);
772 }
773
774 static void pass_arg0(MacroAssembler* masm, Register arg) {
775 if (c_rarg0 != arg ) {
776 masm->mov(c_rarg0, arg);
777 }
778 }
779
780 static void pass_arg1(MacroAssembler* masm, Register arg) {
781 if (c_rarg1 != arg ) {
782 masm->mov(c_rarg1, arg);
783 }
784 }
785
786 static void pass_arg2(MacroAssembler* masm, Register arg) {
787 if (c_rarg2 != arg ) {
788 masm->mov(c_rarg2, arg);
789 }
790 }
791
792 static void pass_arg3(MacroAssembler* masm, Register arg) {
793 if (c_rarg3 != arg ) {
794 masm->mov(c_rarg3, arg);
795 }
796 }
797
798 static bool is_preemptable(address entry_point) {
799 return entry_point == CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter);
800 }
801
802 void MacroAssembler::call_VM_base(Register oop_result,
803 Register java_thread,
804 Register last_java_sp,
805 address entry_point,
806 int number_of_arguments,
807 bool check_exceptions) {
808 // determine java_thread register
809 if (!java_thread->is_valid()) {
810 java_thread = rthread;
811 }
812
813 // determine last_java_sp register
814 if (!last_java_sp->is_valid()) {
815 last_java_sp = esp;
816 }
817
818 // debugging support
819 assert(number_of_arguments >= 0 , "cannot have negative number of arguments");
820 assert(java_thread == rthread, "unexpected register");
821 #ifdef ASSERT
822 // TraceBytecodes does not use r12 but saves it over the call, so don't verify
823 // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");
824 #endif // ASSERT
825
826 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result");
827 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
828
829 // push java thread (becomes first argument of C function)
830
831 mov(c_rarg0, java_thread);
832
833 // set last Java frame before call
834 assert(last_java_sp != rfp, "can't use rfp");
835
836 Label l;
837 if (is_preemptable(entry_point)) {
838 // skip setting last_pc since we already set it to desired value.
839 set_last_Java_frame(last_java_sp, rfp, noreg, rscratch1);
840 } else {
841 set_last_Java_frame(last_java_sp, rfp, l, rscratch1);
842 }
843
844 // do the call, remove parameters
845 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l);
846
847 // lr could be poisoned with PAC signature during throw_pending_exception
848 // if it was tail-call optimized by compiler, since lr is not callee-saved
849 // reload it with proper value
850 adr(lr, l);
851
852 // reset last Java frame
853 // Only interpreter should have to clear fp
854 reset_last_Java_frame(true);
855
856 // C++ interp handles this in the interpreter
857 check_and_handle_popframe(java_thread);
858 check_and_handle_earlyret(java_thread);
859
860 if (check_exceptions) {
861 // check for pending exceptions (java_thread is set upon return)
862 ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset())));
863 Label ok;
864 cbz(rscratch1, ok);
865 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry()));
866 br(rscratch1);
867 bind(ok);
868 }
869
870 // get oop result if there is one and reset the value in the thread
871 if (oop_result->is_valid()) {
872 get_vm_result_oop(oop_result, java_thread);
873 }
874 }
875
876 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
877 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
878 }
879
880 // Check the entry target is always reachable from any branch.
881 static bool is_always_within_branch_range(Address entry) {
882 if (AOTCodeCache::is_on_for_dump()) {
883 return false;
884 }
885 const address target = entry.target();
886
887 if (!CodeCache::contains(target)) {
888 // We always use trampolines for callees outside CodeCache.
889 assert(entry.rspec().type() == relocInfo::runtime_call_type, "non-runtime call of an external target");
890 return false;
891 }
892
893 if (!MacroAssembler::far_branches()) {
894 return true;
895 }
896
897 if (entry.rspec().type() == relocInfo::runtime_call_type) {
898 // Runtime calls are calls of a non-compiled method (stubs, adapters).
899 // Non-compiled methods stay forever in CodeCache.
900 // We check whether the longest possible branch is within the branch range.
901 assert(CodeCache::find_blob(target) != nullptr &&
902 !CodeCache::find_blob(target)->is_nmethod(),
903 "runtime call of compiled method");
904 const address right_longest_branch_start = CodeCache::high_bound() - NativeInstruction::instruction_size;
905 const address left_longest_branch_start = CodeCache::low_bound();
906 const bool is_reachable = Assembler::reachable_from_branch_at(left_longest_branch_start, target) &&
907 Assembler::reachable_from_branch_at(right_longest_branch_start, target);
908 return is_reachable;
909 }
910
911 return false;
912 }
913
914 // Maybe emit a call via a trampoline. If the code cache is small
915 // trampolines won't be emitted.
916 address MacroAssembler::trampoline_call(Address entry) {
917 assert(entry.rspec().type() == relocInfo::runtime_call_type
918 || entry.rspec().type() == relocInfo::opt_virtual_call_type
919 || entry.rspec().type() == relocInfo::static_call_type
920 || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type");
921
922 address target = entry.target();
923
924 if (!is_always_within_branch_range(entry)) {
925 if (!in_scratch_emit_size()) {
926 // We don't want to emit a trampoline if C2 is generating dummy
927 // code during its branch shortening phase.
928 if (entry.rspec().type() == relocInfo::runtime_call_type) {
929 assert(CodeBuffer::supports_shared_stubs(), "must support shared stubs");
930 code()->share_trampoline_for(entry.target(), offset());
931 } else {
932 address stub = emit_trampoline_stub(offset(), target);
933 if (stub == nullptr) {
934 postcond(pc() == badAddress);
935 return nullptr; // CodeCache is full
936 }
937 }
938 }
939 target = pc();
940 }
941
942 address call_pc = pc();
943 relocate(entry.rspec());
944 bl(target);
945
946 postcond(pc() != badAddress);
947 return call_pc;
948 }
949
950 // Emit a trampoline stub for a call to a target which is too far away.
951 //
952 // code sequences:
953 //
954 // call-site:
955 // branch-and-link to <destination> or <trampoline stub>
956 //
957 // Related trampoline stub for this call site in the stub section:
958 // load the call target from the constant pool
959 // branch (LR still points to the call site above)
960
961 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset,
962 address dest) {
963 // Max stub size: alignment nop, TrampolineStub.
964 address stub = start_a_stub(max_trampoline_stub_size());
965 if (stub == nullptr) {
966 return nullptr; // CodeBuffer::expand failed
967 }
968
969 // Create a trampoline stub relocation which relates this trampoline stub
970 // with the call instruction at insts_call_instruction_offset in the
971 // instructions code-section.
972 align(wordSize);
973 relocate(trampoline_stub_Relocation::spec(code()->insts()->start()
974 + insts_call_instruction_offset));
975 const int stub_start_offset = offset();
976
977 // Now, create the trampoline stub's code:
978 // - load the call
979 // - call
980 Label target;
981 ldr(rscratch1, target);
982 br(rscratch1);
983 bind(target);
984 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset,
985 "should be");
986 emit_int64((int64_t)dest);
987
988 const address stub_start_addr = addr_at(stub_start_offset);
989
990 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
991
992 end_a_stub();
993 return stub_start_addr;
994 }
995
996 int MacroAssembler::max_trampoline_stub_size() {
997 // Max stub size: alignment nop, TrampolineStub.
998 return NativeInstruction::instruction_size + NativeCallTrampolineStub::instruction_size;
999 }
1000
1001 void MacroAssembler::emit_static_call_stub() {
1002 // CompiledDirectCall::set_to_interpreted knows the
1003 // exact layout of this stub.
1004
1005 isb();
1006 mov_metadata(rmethod, nullptr);
1007
1008 // Jump to the entry point of the c2i stub.
1009 if (codestub_branch_needs_far_jump()) {
1010 movptr(rscratch1, 0);
1011 br(rscratch1);
1012 } else {
1013 b(pc());
1014 }
1015 }
1016
1017 int MacroAssembler::max_static_call_stub_size() {
1018 // isb; movk; movz; movz; movk; movz; movz; br
1019 return 8 * NativeInstruction::instruction_size;
1020 }
1021
1022 void MacroAssembler::c2bool(Register x) {
1023 // implements x == 0 ? 0 : 1
1024 // note: must only look at least-significant byte of x
1025 // since C-style booleans are stored in one byte
1026 // only! (was bug)
1027 tst(x, 0xff);
1028 cset(x, Assembler::NE);
1029 }
1030
1031 address MacroAssembler::ic_call(address entry, jint method_index) {
1032 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
1033 movptr(rscratch2, (intptr_t)Universe::non_oop_word());
1034 return trampoline_call(Address(entry, rh));
1035 }
1036
1037 int MacroAssembler::ic_check_size() {
1038 int extra_instructions = UseCompactObjectHeaders ? 1 : 0;
1039 if (target_needs_far_branch(CAST_FROM_FN_PTR(address, SharedRuntime::get_ic_miss_stub()))) {
1040 return NativeInstruction::instruction_size * (7 + extra_instructions);
1041 } else {
1042 return NativeInstruction::instruction_size * (5 + extra_instructions);
1043 }
1044 }
1045
1046 int MacroAssembler::ic_check(int end_alignment) {
1047 Register receiver = j_rarg0;
1048 Register data = rscratch2;
1049 Register tmp1 = rscratch1;
1050 Register tmp2 = r10;
1051
1052 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed
1053 // before the inline cache check, so we don't have to execute any nop instructions when dispatching
1054 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align
1055 // before the inline cache check here, and not after
1056 align(end_alignment, offset() + ic_check_size());
1057
1058 int uep_offset = offset();
1059
1060 if (UseCompactObjectHeaders) {
1061 load_narrow_klass_compact(tmp1, receiver);
1062 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset()));
1063 cmpw(tmp1, tmp2);
1064 } else if (UseCompressedClassPointers) {
1065 ldrw(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes()));
1066 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset()));
1067 cmpw(tmp1, tmp2);
1068 } else {
1069 ldr(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes()));
1070 ldr(tmp2, Address(data, CompiledICData::speculated_klass_offset()));
1071 cmp(tmp1, tmp2);
1072 }
1073
1074 Label dont;
1075 br(Assembler::EQ, dont);
1076 far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1077 bind(dont);
1078 assert((offset() % end_alignment) == 0, "Misaligned verified entry point");
1079
1080 return uep_offset;
1081 }
1082
1083 // Implementation of call_VM versions
1084
1085 void MacroAssembler::call_VM(Register oop_result,
1086 address entry_point,
1087 bool check_exceptions) {
1088 call_VM_helper(oop_result, entry_point, 0, check_exceptions);
1089 }
1090
1091 void MacroAssembler::call_VM(Register oop_result,
1092 address entry_point,
1093 Register arg_1,
1094 bool check_exceptions) {
1095 pass_arg1(this, arg_1);
1096 call_VM_helper(oop_result, entry_point, 1, check_exceptions);
1097 }
1098
1099 void MacroAssembler::call_VM(Register oop_result,
1100 address entry_point,
1101 Register arg_1,
1102 Register arg_2,
1103 bool check_exceptions) {
1104 assert_different_registers(arg_1, c_rarg2);
1105 pass_arg2(this, arg_2);
1106 pass_arg1(this, arg_1);
1107 call_VM_helper(oop_result, entry_point, 2, check_exceptions);
1108 }
1109
1110 void MacroAssembler::call_VM(Register oop_result,
1111 address entry_point,
1112 Register arg_1,
1113 Register arg_2,
1114 Register arg_3,
1115 bool check_exceptions) {
1116 assert_different_registers(arg_1, c_rarg2, c_rarg3);
1117 assert_different_registers(arg_2, c_rarg3);
1118 pass_arg3(this, arg_3);
1119
1120 pass_arg2(this, arg_2);
1121
1122 pass_arg1(this, arg_1);
1123 call_VM_helper(oop_result, entry_point, 3, check_exceptions);
1124 }
1125
1126 void MacroAssembler::call_VM(Register oop_result,
1127 Register last_java_sp,
1128 address entry_point,
1129 int number_of_arguments,
1130 bool check_exceptions) {
1131 call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
1132 }
1133
1134 void MacroAssembler::call_VM(Register oop_result,
1135 Register last_java_sp,
1136 address entry_point,
1137 Register arg_1,
1138 bool check_exceptions) {
1139 pass_arg1(this, arg_1);
1140 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
1141 }
1142
1143 void MacroAssembler::call_VM(Register oop_result,
1144 Register last_java_sp,
1145 address entry_point,
1146 Register arg_1,
1147 Register arg_2,
1148 bool check_exceptions) {
1149
1150 assert_different_registers(arg_1, c_rarg2);
1151 pass_arg2(this, arg_2);
1152 pass_arg1(this, arg_1);
1153 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
1154 }
1155
1156 void MacroAssembler::call_VM(Register oop_result,
1157 Register last_java_sp,
1158 address entry_point,
1159 Register arg_1,
1160 Register arg_2,
1161 Register arg_3,
1162 bool check_exceptions) {
1163 assert_different_registers(arg_1, c_rarg2, c_rarg3);
1164 assert_different_registers(arg_2, c_rarg3);
1165 pass_arg3(this, arg_3);
1166 pass_arg2(this, arg_2);
1167 pass_arg1(this, arg_1);
1168 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
1169 }
1170
1171
1172 void MacroAssembler::get_vm_result_oop(Register oop_result, Register java_thread) {
1173 ldr(oop_result, Address(java_thread, JavaThread::vm_result_oop_offset()));
1174 str(zr, Address(java_thread, JavaThread::vm_result_oop_offset()));
1175 verify_oop_msg(oop_result, "broken oop in call_VM_base");
1176 }
1177
1178 void MacroAssembler::get_vm_result_metadata(Register metadata_result, Register java_thread) {
1179 ldr(metadata_result, Address(java_thread, JavaThread::vm_result_metadata_offset()));
1180 str(zr, Address(java_thread, JavaThread::vm_result_metadata_offset()));
1181 }
1182
1183 void MacroAssembler::align(int modulus) {
1184 align(modulus, offset());
1185 }
1186
1187 // Ensure that the code at target bytes offset from the current offset() is aligned
1188 // according to modulus.
1189 void MacroAssembler::align(int modulus, int target) {
1190 int delta = target - offset();
1191 while ((offset() + delta) % modulus != 0) nop();
1192 }
1193
1194 void MacroAssembler::post_call_nop() {
1195 if (!Continuations::enabled()) {
1196 return;
1197 }
1198 InstructionMark im(this);
1199 relocate(post_call_nop_Relocation::spec());
1200 InlineSkippedInstructionsCounter skipCounter(this);
1201 nop();
1202 movk(zr, 0);
1203 movk(zr, 0);
1204 }
1205
1206 // these are no-ops overridden by InterpreterMacroAssembler
1207
1208 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { }
1209
1210 void MacroAssembler::check_and_handle_popframe(Register java_thread) { }
1211
1212 // Look up the method for a megamorphic invokeinterface call.
1213 // The target method is determined by <intf_klass, itable_index>.
1214 // The receiver klass is in recv_klass.
1215 // On success, the result will be in method_result, and execution falls through.
1216 // On failure, execution transfers to the given label.
1217 void MacroAssembler::lookup_interface_method(Register recv_klass,
1218 Register intf_klass,
1219 RegisterOrConstant itable_index,
1220 Register method_result,
1221 Register scan_temp,
1222 Label& L_no_such_interface,
1223 bool return_method) {
1224 assert_different_registers(recv_klass, intf_klass, scan_temp);
1225 assert_different_registers(method_result, intf_klass, scan_temp);
1226 assert(recv_klass != method_result || !return_method,
1227 "recv_klass can be destroyed when method isn't needed");
1228 assert(itable_index.is_constant() || itable_index.as_register() == method_result,
1229 "caller must use same register for non-constant itable index as for method");
1230
1231 // Compute start of first itableOffsetEntry (which is at the end of the vtable)
1232 int vtable_base = in_bytes(Klass::vtable_start_offset());
1233 int itentry_off = in_bytes(itableMethodEntry::method_offset());
1234 int scan_step = itableOffsetEntry::size() * wordSize;
1235 int vte_size = vtableEntry::size_in_bytes();
1236 assert(vte_size == wordSize, "else adjust times_vte_scale");
1237
1238 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
1239
1240 // Could store the aligned, prescaled offset in the klass.
1241 // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
1242 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3)));
1243 add(scan_temp, scan_temp, vtable_base);
1244
1245 if (return_method) {
1246 // Adjust recv_klass by scaled itable_index, so we can free itable_index.
1247 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
1248 // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
1249 lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3)));
1250 if (itentry_off)
1251 add(recv_klass, recv_klass, itentry_off);
1252 }
1253
1254 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) {
1255 // if (scan->interface() == intf) {
1256 // result = (klass + scan->offset() + itable_index);
1257 // }
1258 // }
1259 Label search, found_method;
1260
1261 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset()));
1262 cmp(intf_klass, method_result);
1263 br(Assembler::EQ, found_method);
1264 bind(search);
1265 // Check that the previous entry is non-null. A null entry means that
1266 // the receiver class doesn't implement the interface, and wasn't the
1267 // same as when the caller was compiled.
1268 cbz(method_result, L_no_such_interface);
1269 if (itableOffsetEntry::interface_offset() != 0) {
1270 add(scan_temp, scan_temp, scan_step);
1271 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset()));
1272 } else {
1273 ldr(method_result, Address(pre(scan_temp, scan_step)));
1274 }
1275 cmp(intf_klass, method_result);
1276 br(Assembler::NE, search);
1277
1278 bind(found_method);
1279
1280 // Got a hit.
1281 if (return_method) {
1282 ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset()));
1283 ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0)));
1284 }
1285 }
1286
1287 // Look up the method for a megamorphic invokeinterface call in a single pass over itable:
1288 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData
1289 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index
1290 // The target method is determined by <holder_klass, itable_index>.
1291 // The receiver klass is in recv_klass.
1292 // On success, the result will be in method_result, and execution falls through.
1293 // On failure, execution transfers to the given label.
1294 void MacroAssembler::lookup_interface_method_stub(Register recv_klass,
1295 Register holder_klass,
1296 Register resolved_klass,
1297 Register method_result,
1298 Register temp_itbl_klass,
1299 Register scan_temp,
1300 int itable_index,
1301 Label& L_no_such_interface) {
1302 // 'method_result' is only used as output register at the very end of this method.
1303 // Until then we can reuse it as 'holder_offset'.
1304 Register holder_offset = method_result;
1305 assert_different_registers(resolved_klass, recv_klass, holder_klass, temp_itbl_klass, scan_temp, holder_offset);
1306
1307 int vtable_start_offset = in_bytes(Klass::vtable_start_offset());
1308 int itable_offset_entry_size = itableOffsetEntry::size() * wordSize;
1309 int ioffset = in_bytes(itableOffsetEntry::interface_offset());
1310 int ooffset = in_bytes(itableOffsetEntry::offset_offset());
1311
1312 Label L_loop_search_resolved_entry, L_resolved_found, L_holder_found;
1313
1314 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
1315 add(recv_klass, recv_klass, vtable_start_offset + ioffset);
1316 // itableOffsetEntry[] itable = recv_klass + Klass::vtable_start_offset() + sizeof(vtableEntry) * recv_klass->_vtable_len;
1317 // temp_itbl_klass = itable[0]._interface;
1318 int vtblEntrySize = vtableEntry::size_in_bytes();
1319 assert(vtblEntrySize == wordSize, "ldr lsl shift amount must be 3");
1320 ldr(temp_itbl_klass, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize))));
1321 mov(holder_offset, zr);
1322 // scan_temp = &(itable[0]._interface)
1323 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize))));
1324
1325 // Initial checks:
1326 // - if (holder_klass != resolved_klass), go to "scan for resolved"
1327 // - if (itable[0] == holder_klass), shortcut to "holder found"
1328 // - if (itable[0] == 0), no such interface
1329 cmp(resolved_klass, holder_klass);
1330 br(Assembler::NE, L_loop_search_resolved_entry);
1331 cmp(holder_klass, temp_itbl_klass);
1332 br(Assembler::EQ, L_holder_found);
1333 cbz(temp_itbl_klass, L_no_such_interface);
1334
1335 // Loop: Look for holder_klass record in itable
1336 // do {
1337 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size);
1338 // if (temp_itbl_klass == holder_klass) {
1339 // goto L_holder_found; // Found!
1340 // }
1341 // } while (temp_itbl_klass != 0);
1342 // goto L_no_such_interface // Not found.
1343 Label L_search_holder;
1344 bind(L_search_holder);
1345 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size)));
1346 cmp(holder_klass, temp_itbl_klass);
1347 br(Assembler::EQ, L_holder_found);
1348 cbnz(temp_itbl_klass, L_search_holder);
1349
1350 b(L_no_such_interface);
1351
1352 // Loop: Look for resolved_class record in itable
1353 // while (true) {
1354 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size);
1355 // if (temp_itbl_klass == 0) {
1356 // goto L_no_such_interface;
1357 // }
1358 // if (temp_itbl_klass == resolved_klass) {
1359 // goto L_resolved_found; // Found!
1360 // }
1361 // if (temp_itbl_klass == holder_klass) {
1362 // holder_offset = scan_temp;
1363 // }
1364 // }
1365 //
1366 Label L_loop_search_resolved;
1367 bind(L_loop_search_resolved);
1368 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size)));
1369 bind(L_loop_search_resolved_entry);
1370 cbz(temp_itbl_klass, L_no_such_interface);
1371 cmp(resolved_klass, temp_itbl_klass);
1372 br(Assembler::EQ, L_resolved_found);
1373 cmp(holder_klass, temp_itbl_klass);
1374 br(Assembler::NE, L_loop_search_resolved);
1375 mov(holder_offset, scan_temp);
1376 b(L_loop_search_resolved);
1377
1378 // See if we already have a holder klass. If not, go and scan for it.
1379 bind(L_resolved_found);
1380 cbz(holder_offset, L_search_holder);
1381 mov(scan_temp, holder_offset);
1382
1383 // Finally, scan_temp contains holder_klass vtable offset
1384 bind(L_holder_found);
1385 ldrw(method_result, Address(scan_temp, ooffset - ioffset));
1386 add(recv_klass, recv_klass, itable_index * wordSize + in_bytes(itableMethodEntry::method_offset())
1387 - vtable_start_offset - ioffset); // substract offsets to restore the original value of recv_klass
1388 ldr(method_result, Address(recv_klass, method_result, Address::uxtw(0)));
1389 }
1390
1391 // virtual method calling
1392 void MacroAssembler::lookup_virtual_method(Register recv_klass,
1393 RegisterOrConstant vtable_index,
1394 Register method_result) {
1395 assert(vtableEntry::size() * wordSize == 8,
1396 "adjust the scaling in the code below");
1397 int64_t vtable_offset_in_bytes = in_bytes(Klass::vtable_start_offset() + vtableEntry::method_offset());
1398
1399 if (vtable_index.is_register()) {
1400 lea(method_result, Address(recv_klass,
1401 vtable_index.as_register(),
1402 Address::lsl(LogBytesPerWord)));
1403 ldr(method_result, Address(method_result, vtable_offset_in_bytes));
1404 } else {
1405 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize;
1406 ldr(method_result,
1407 form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0));
1408 }
1409 }
1410
1411 void MacroAssembler::check_klass_subtype(Register sub_klass,
1412 Register super_klass,
1413 Register temp_reg,
1414 Label& L_success) {
1415 Label L_failure;
1416 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr);
1417 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr);
1418 bind(L_failure);
1419 }
1420
1421
1422 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
1423 Register super_klass,
1424 Register temp_reg,
1425 Label* L_success,
1426 Label* L_failure,
1427 Label* L_slow_path,
1428 Register super_check_offset) {
1429 assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset);
1430 bool must_load_sco = ! super_check_offset->is_valid();
1431 if (must_load_sco) {
1432 assert(temp_reg != noreg, "supply either a temp or a register offset");
1433 }
1434
1435 Label L_fallthrough;
1436 int label_nulls = 0;
1437 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; }
1438 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; }
1439 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; }
1440 assert(label_nulls <= 1, "at most one null in the batch");
1441
1442 int sco_offset = in_bytes(Klass::super_check_offset_offset());
1443 Address super_check_offset_addr(super_klass, sco_offset);
1444
1445 // Hacked jmp, which may only be used just before L_fallthrough.
1446 #define final_jmp(label) \
1447 if (&(label) == &L_fallthrough) { /*do nothing*/ } \
1448 else b(label) /*omit semi*/
1449
1450 // If the pointers are equal, we are done (e.g., String[] elements).
1451 // This self-check enables sharing of secondary supertype arrays among
1452 // non-primary types such as array-of-interface. Otherwise, each such
1453 // type would need its own customized SSA.
1454 // We move this check to the front of the fast path because many
1455 // type checks are in fact trivially successful in this manner,
1456 // so we get a nicely predicted branch right at the start of the check.
1457 cmp(sub_klass, super_klass);
1458 br(Assembler::EQ, *L_success);
1459
1460 // Check the supertype display:
1461 if (must_load_sco) {
1462 ldrw(temp_reg, super_check_offset_addr);
1463 super_check_offset = temp_reg;
1464 }
1465
1466 Address super_check_addr(sub_klass, super_check_offset);
1467 ldr(rscratch1, super_check_addr);
1468 cmp(super_klass, rscratch1); // load displayed supertype
1469 br(Assembler::EQ, *L_success);
1470
1471 // This check has worked decisively for primary supers.
1472 // Secondary supers are sought in the super_cache ('super_cache_addr').
1473 // (Secondary supers are interfaces and very deeply nested subtypes.)
1474 // This works in the same check above because of a tricky aliasing
1475 // between the super_cache and the primary super display elements.
1476 // (The 'super_check_addr' can address either, as the case requires.)
1477 // Note that the cache is updated below if it does not help us find
1478 // what we need immediately.
1479 // So if it was a primary super, we can just fail immediately.
1480 // Otherwise, it's the slow path for us (no success at this point).
1481
1482 sub(rscratch1, super_check_offset, in_bytes(Klass::secondary_super_cache_offset()));
1483 if (L_failure == &L_fallthrough) {
1484 cbz(rscratch1, *L_slow_path);
1485 } else {
1486 cbnz(rscratch1, *L_failure);
1487 final_jmp(*L_slow_path);
1488 }
1489
1490 bind(L_fallthrough);
1491
1492 #undef final_jmp
1493 }
1494
1495 // These two are taken from x86, but they look generally useful
1496
1497 // scans count pointer sized words at [addr] for occurrence of value,
1498 // generic
1499 void MacroAssembler::repne_scan(Register addr, Register value, Register count,
1500 Register scratch) {
1501 Label Lloop, Lexit;
1502 cbz(count, Lexit);
1503 bind(Lloop);
1504 ldr(scratch, post(addr, wordSize));
1505 cmp(value, scratch);
1506 br(EQ, Lexit);
1507 sub(count, count, 1);
1508 cbnz(count, Lloop);
1509 bind(Lexit);
1510 }
1511
1512 // scans count 4 byte words at [addr] for occurrence of value,
1513 // generic
1514 void MacroAssembler::repne_scanw(Register addr, Register value, Register count,
1515 Register scratch) {
1516 Label Lloop, Lexit;
1517 cbz(count, Lexit);
1518 bind(Lloop);
1519 ldrw(scratch, post(addr, wordSize));
1520 cmpw(value, scratch);
1521 br(EQ, Lexit);
1522 sub(count, count, 1);
1523 cbnz(count, Lloop);
1524 bind(Lexit);
1525 }
1526
1527 void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass,
1528 Register super_klass,
1529 Register temp_reg,
1530 Register temp2_reg,
1531 Label* L_success,
1532 Label* L_failure,
1533 bool set_cond_codes) {
1534 // NB! Callers may assume that, when temp2_reg is a valid register,
1535 // this code sets it to a nonzero value.
1536
1537 assert_different_registers(sub_klass, super_klass, temp_reg);
1538 if (temp2_reg != noreg)
1539 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1);
1540 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
1541
1542 Label L_fallthrough;
1543 int label_nulls = 0;
1544 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; }
1545 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; }
1546 assert(label_nulls <= 1, "at most one null in the batch");
1547
1548 // a couple of useful fields in sub_klass:
1549 int ss_offset = in_bytes(Klass::secondary_supers_offset());
1550 int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1551 Address secondary_supers_addr(sub_klass, ss_offset);
1552 Address super_cache_addr( sub_klass, sc_offset);
1553
1554 BLOCK_COMMENT("check_klass_subtype_slow_path");
1555
1556 // Do a linear scan of the secondary super-klass chain.
1557 // This code is rarely used, so simplicity is a virtue here.
1558 // The repne_scan instruction uses fixed registers, which we must spill.
1559 // Don't worry too much about pre-existing connections with the input regs.
1560
1561 assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super)
1562 assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter)
1563
1564 RegSet pushed_registers;
1565 if (!IS_A_TEMP(r2)) pushed_registers += r2;
1566 if (!IS_A_TEMP(r5)) pushed_registers += r5;
1567
1568 if (super_klass != r0) {
1569 if (!IS_A_TEMP(r0)) pushed_registers += r0;
1570 }
1571
1572 push(pushed_registers, sp);
1573
1574 // Get super_klass value into r0 (even if it was in r5 or r2).
1575 if (super_klass != r0) {
1576 mov(r0, super_klass);
1577 }
1578
1579 #ifndef PRODUCT
1580 incrementw(ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr));
1581 #endif //PRODUCT
1582
1583 // We will consult the secondary-super array.
1584 ldr(r5, secondary_supers_addr);
1585 // Load the array length.
1586 ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes()));
1587 // Skip to start of data.
1588 add(r5, r5, Array<Klass*>::base_offset_in_bytes());
1589
1590 cmp(sp, zr); // Clear Z flag; SP is never zero
1591 // Scan R2 words at [R5] for an occurrence of R0.
1592 // Set NZ/Z based on last compare.
1593 repne_scan(r5, r0, r2, rscratch1);
1594
1595 // Unspill the temp. registers:
1596 pop(pushed_registers, sp);
1597
1598 br(Assembler::NE, *L_failure);
1599
1600 // Success. Cache the super we found and proceed in triumph.
1601
1602 if (UseSecondarySupersCache) {
1603 str(super_klass, super_cache_addr);
1604 }
1605
1606 if (L_success != &L_fallthrough) {
1607 b(*L_success);
1608 }
1609
1610 #undef IS_A_TEMP
1611
1612 bind(L_fallthrough);
1613 }
1614
1615 // If Register r is invalid, remove a new register from
1616 // available_regs, and add new register to regs_to_push.
1617 Register MacroAssembler::allocate_if_noreg(Register r,
1618 RegSetIterator<Register> &available_regs,
1619 RegSet ®s_to_push) {
1620 if (!r->is_valid()) {
1621 r = *available_regs++;
1622 regs_to_push += r;
1623 }
1624 return r;
1625 }
1626
1627 // check_klass_subtype_slow_path_table() looks for super_klass in the
1628 // hash table belonging to super_klass, branching to L_success or
1629 // L_failure as appropriate. This is essentially a shim which
1630 // allocates registers as necessary then calls
1631 // lookup_secondary_supers_table() to do the work. Any of the temp
1632 // regs may be noreg, in which case this logic will chooses some
1633 // registers push and pop them from the stack.
1634 void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass,
1635 Register super_klass,
1636 Register temp_reg,
1637 Register temp2_reg,
1638 Register temp3_reg,
1639 Register result_reg,
1640 FloatRegister vtemp,
1641 Label* L_success,
1642 Label* L_failure,
1643 bool set_cond_codes) {
1644 RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg);
1645
1646 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1);
1647
1648 Label L_fallthrough;
1649 int label_nulls = 0;
1650 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; }
1651 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; }
1652 assert(label_nulls <= 1, "at most one null in the batch");
1653
1654 BLOCK_COMMENT("check_klass_subtype_slow_path");
1655
1656 RegSetIterator<Register> available_regs
1657 = (RegSet::range(r0, r15) - temps - sub_klass - super_klass).begin();
1658
1659 RegSet pushed_regs;
1660
1661 temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs);
1662 temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs);
1663 temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs);
1664 result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs);
1665
1666 push(pushed_regs, sp);
1667
1668 lookup_secondary_supers_table_var(sub_klass,
1669 super_klass,
1670 temp_reg, temp2_reg, temp3_reg, vtemp, result_reg,
1671 nullptr);
1672 cmp(result_reg, zr);
1673
1674 // Unspill the temp. registers:
1675 pop(pushed_regs, sp);
1676
1677 // NB! Callers may assume that, when set_cond_codes is true, this
1678 // code sets temp2_reg to a nonzero value.
1679 if (set_cond_codes) {
1680 mov(temp2_reg, 1);
1681 }
1682
1683 br(Assembler::NE, *L_failure);
1684
1685 if (L_success != &L_fallthrough) {
1686 b(*L_success);
1687 }
1688
1689 bind(L_fallthrough);
1690 }
1691
1692 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
1693 Register super_klass,
1694 Register temp_reg,
1695 Register temp2_reg,
1696 Label* L_success,
1697 Label* L_failure,
1698 bool set_cond_codes) {
1699 if (UseSecondarySupersTable) {
1700 check_klass_subtype_slow_path_table
1701 (sub_klass, super_klass, temp_reg, temp2_reg, /*temp3*/noreg, /*result*/noreg,
1702 /*vtemp*/fnoreg,
1703 L_success, L_failure, set_cond_codes);
1704 } else {
1705 check_klass_subtype_slow_path_linear
1706 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, set_cond_codes);
1707 }
1708 }
1709
1710
1711 // Ensure that the inline code and the stub are using the same registers.
1712 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \
1713 do { \
1714 assert(r_super_klass == r0 && \
1715 r_array_base == r1 && \
1716 r_array_length == r2 && \
1717 (r_array_index == r3 || r_array_index == noreg) && \
1718 (r_sub_klass == r4 || r_sub_klass == noreg) && \
1719 (r_bitmap == rscratch2 || r_bitmap == noreg) && \
1720 (result == r5 || result == noreg), "registers must match aarch64.ad"); \
1721 } while(0)
1722
1723 bool MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass,
1724 Register r_super_klass,
1725 Register temp1,
1726 Register temp2,
1727 Register temp3,
1728 FloatRegister vtemp,
1729 Register result,
1730 u1 super_klass_slot,
1731 bool stub_is_near) {
1732 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2);
1733
1734 Label L_fallthrough;
1735
1736 BLOCK_COMMENT("lookup_secondary_supers_table {");
1737
1738 const Register
1739 r_array_base = temp1, // r1
1740 r_array_length = temp2, // r2
1741 r_array_index = temp3, // r3
1742 r_bitmap = rscratch2;
1743
1744 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS;
1745
1746 u1 bit = super_klass_slot;
1747
1748 // Make sure that result is nonzero if the TBZ below misses.
1749 mov(result, 1);
1750
1751 // We're going to need the bitmap in a vector reg and in a core reg,
1752 // so load both now.
1753 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset()));
1754 if (bit != 0) {
1755 ldrd(vtemp, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset()));
1756 }
1757 // First check the bitmap to see if super_klass might be present. If
1758 // the bit is zero, we are certain that super_klass is not one of
1759 // the secondary supers.
1760 tbz(r_bitmap, bit, L_fallthrough);
1761
1762 // Get the first array index that can contain super_klass into r_array_index.
1763 if (bit != 0) {
1764 shld(vtemp, vtemp, Klass::SECONDARY_SUPERS_TABLE_MASK - bit);
1765 cnt(vtemp, T8B, vtemp);
1766 addv(vtemp, T8B, vtemp);
1767 fmovd(r_array_index, vtemp);
1768 } else {
1769 mov(r_array_index, (u1)1);
1770 }
1771 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word.
1772
1773 // We will consult the secondary-super array.
1774 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset())));
1775
1776 // The value i in r_array_index is >= 1, so even though r_array_base
1777 // points to the length, we don't need to adjust it to point to the
1778 // data.
1779 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code");
1780 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code");
1781
1782 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord)));
1783 eor(result, result, r_super_klass);
1784 cbz(result, L_fallthrough); // Found a match
1785
1786 // Is there another entry to check? Consult the bitmap.
1787 tbz(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK, L_fallthrough);
1788
1789 // Linear probe.
1790 if (bit != 0) {
1791 ror(r_bitmap, r_bitmap, bit);
1792 }
1793
1794 // The slot we just inspected is at secondary_supers[r_array_index - 1].
1795 // The next slot to be inspected, by the stub we're about to call,
1796 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap
1797 // have been checked.
1798 Address stub = RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub());
1799 if (stub_is_near) {
1800 bl(stub);
1801 } else {
1802 address call = trampoline_call(stub);
1803 if (call == nullptr) {
1804 return false; // trampoline allocation failed
1805 }
1806 }
1807
1808 BLOCK_COMMENT("} lookup_secondary_supers_table");
1809
1810 bind(L_fallthrough);
1811
1812 if (VerifySecondarySupers) {
1813 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0
1814 temp1, temp2, result); // r1, r2, r5
1815 }
1816 return true;
1817 }
1818
1819 // At runtime, return 0 in result if r_super_klass is a superclass of
1820 // r_sub_klass, otherwise return nonzero. Use this version of
1821 // lookup_secondary_supers_table() if you don't know ahead of time
1822 // which superclass will be searched for. Used by interpreter and
1823 // runtime stubs. It is larger and has somewhat greater latency than
1824 // the version above, which takes a constant super_klass_slot.
1825 void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass,
1826 Register r_super_klass,
1827 Register temp1,
1828 Register temp2,
1829 Register temp3,
1830 FloatRegister vtemp,
1831 Register result,
1832 Label *L_success) {
1833 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2);
1834
1835 Label L_fallthrough;
1836
1837 BLOCK_COMMENT("lookup_secondary_supers_table {");
1838
1839 const Register
1840 r_array_index = temp3,
1841 slot = rscratch1,
1842 r_bitmap = rscratch2;
1843
1844 ldrb(slot, Address(r_super_klass, Klass::hash_slot_offset()));
1845
1846 // Make sure that result is nonzero if the test below misses.
1847 mov(result, 1);
1848
1849 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset()));
1850
1851 // First check the bitmap to see if super_klass might be present. If
1852 // the bit is zero, we are certain that super_klass is not one of
1853 // the secondary supers.
1854
1855 // This next instruction is equivalent to:
1856 // mov(tmp_reg, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1));
1857 // sub(temp2, tmp_reg, slot);
1858 eor(temp2, slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1));
1859 lslv(temp2, r_bitmap, temp2);
1860 tbz(temp2, Klass::SECONDARY_SUPERS_TABLE_SIZE - 1, L_fallthrough);
1861
1862 bool must_save_v0 = (vtemp == fnoreg);
1863 if (must_save_v0) {
1864 // temp1 and result are free, so use them to preserve vtemp
1865 vtemp = v0;
1866 mov(temp1, vtemp, D, 0);
1867 mov(result, vtemp, D, 1);
1868 }
1869
1870 // Get the first array index that can contain super_klass into r_array_index.
1871 mov(vtemp, D, 0, temp2);
1872 cnt(vtemp, T8B, vtemp);
1873 addv(vtemp, T8B, vtemp);
1874 mov(r_array_index, vtemp, D, 0);
1875
1876 if (must_save_v0) {
1877 mov(vtemp, D, 0, temp1 );
1878 mov(vtemp, D, 1, result);
1879 }
1880
1881 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word.
1882
1883 const Register
1884 r_array_base = temp1,
1885 r_array_length = temp2;
1886
1887 // The value i in r_array_index is >= 1, so even though r_array_base
1888 // points to the length, we don't need to adjust it to point to the
1889 // data.
1890 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code");
1891 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code");
1892
1893 // We will consult the secondary-super array.
1894 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset())));
1895
1896 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord)));
1897 eor(result, result, r_super_klass);
1898 cbz(result, L_success ? *L_success : L_fallthrough); // Found a match
1899
1900 // Is there another entry to check? Consult the bitmap.
1901 rorv(r_bitmap, r_bitmap, slot);
1902 // rol(r_bitmap, r_bitmap, 1);
1903 tbz(r_bitmap, 1, L_fallthrough);
1904
1905 // The slot we just inspected is at secondary_supers[r_array_index - 1].
1906 // The next slot to be inspected, by the logic we're about to call,
1907 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap
1908 // have been checked.
1909 lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index,
1910 r_bitmap, r_array_length, result, /*is_stub*/false);
1911
1912 BLOCK_COMMENT("} lookup_secondary_supers_table");
1913
1914 bind(L_fallthrough);
1915
1916 if (VerifySecondarySupers) {
1917 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0
1918 temp1, temp2, result); // r1, r2, r5
1919 }
1920
1921 if (L_success) {
1922 cbz(result, *L_success);
1923 }
1924 }
1925
1926 // Called by code generated by check_klass_subtype_slow_path
1927 // above. This is called when there is a collision in the hashed
1928 // lookup in the secondary supers array.
1929 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass,
1930 Register r_array_base,
1931 Register r_array_index,
1932 Register r_bitmap,
1933 Register temp1,
1934 Register result,
1935 bool is_stub) {
1936 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, result, rscratch1);
1937
1938 const Register
1939 r_array_length = temp1,
1940 r_sub_klass = noreg; // unused
1941
1942 if (is_stub) {
1943 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS;
1944 }
1945
1946 Label L_fallthrough, L_huge;
1947
1948 // Load the array length.
1949 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes()));
1950 // And adjust the array base to point to the data.
1951 // NB! Effectively increments current slot index by 1.
1952 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "");
1953 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes());
1954
1955 // The bitmap is full to bursting.
1956 // Implicit invariant: BITMAP_FULL implies (length > 0)
1957 assert(Klass::SECONDARY_SUPERS_BITMAP_FULL == ~uintx(0), "");
1958 cmpw(r_array_length, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 2));
1959 br(GT, L_huge);
1960
1961 // NB! Our caller has checked bits 0 and 1 in the bitmap. The
1962 // current slot (at secondary_supers[r_array_index]) has not yet
1963 // been inspected, and r_array_index may be out of bounds if we
1964 // wrapped around the end of the array.
1965
1966 { // This is conventional linear probing, but instead of terminating
1967 // when a null entry is found in the table, we maintain a bitmap
1968 // in which a 0 indicates missing entries.
1969 // As long as the bitmap is not completely full,
1970 // array_length == popcount(bitmap). The array_length check above
1971 // guarantees there are 0s in the bitmap, so the loop eventually
1972 // terminates.
1973 Label L_loop;
1974 bind(L_loop);
1975
1976 // Check for wraparound.
1977 cmp(r_array_index, r_array_length);
1978 csel(r_array_index, zr, r_array_index, GE);
1979
1980 ldr(rscratch1, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord)));
1981 eor(result, rscratch1, r_super_klass);
1982 cbz(result, L_fallthrough);
1983
1984 tbz(r_bitmap, 2, L_fallthrough); // look-ahead check (Bit 2); result is non-zero
1985
1986 ror(r_bitmap, r_bitmap, 1);
1987 add(r_array_index, r_array_index, 1);
1988 b(L_loop);
1989 }
1990
1991 { // Degenerate case: more than 64 secondary supers.
1992 // FIXME: We could do something smarter here, maybe a vectorized
1993 // comparison or a binary search, but is that worth any added
1994 // complexity?
1995 bind(L_huge);
1996 cmp(sp, zr); // Clear Z flag; SP is never zero
1997 repne_scan(r_array_base, r_super_klass, r_array_length, rscratch1);
1998 cset(result, NE); // result == 0 iff we got a match.
1999 }
2000
2001 bind(L_fallthrough);
2002 }
2003
2004 // Make sure that the hashed lookup and a linear scan agree.
2005 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass,
2006 Register r_super_klass,
2007 Register temp1,
2008 Register temp2,
2009 Register result) {
2010 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, result, rscratch1);
2011
2012 const Register
2013 r_array_base = temp1,
2014 r_array_length = temp2,
2015 r_array_index = noreg, // unused
2016 r_bitmap = noreg; // unused
2017
2018 BLOCK_COMMENT("verify_secondary_supers_table {");
2019
2020 // We will consult the secondary-super array.
2021 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset())));
2022
2023 // Load the array length.
2024 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes()));
2025 // And adjust the array base to point to the data.
2026 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes());
2027
2028 cmp(sp, zr); // Clear Z flag; SP is never zero
2029 // Scan R2 words at [R5] for an occurrence of R0.
2030 // Set NZ/Z based on last compare.
2031 repne_scan(/*addr*/r_array_base, /*value*/r_super_klass, /*count*/r_array_length, rscratch2);
2032 // rscratch1 == 0 iff we got a match.
2033 cset(rscratch1, NE);
2034
2035 Label passed;
2036 cmp(result, zr);
2037 cset(result, NE); // normalize result to 0/1 for comparison
2038
2039 cmp(rscratch1, result);
2040 br(EQ, passed);
2041 {
2042 mov(r0, r_super_klass); // r0 <- r0
2043 mov(r1, r_sub_klass); // r1 <- r4
2044 mov(r2, /*expected*/rscratch1); // r2 <- r8
2045 mov(r3, result); // r3 <- r5
2046 mov(r4, (address)("mismatch")); // r4 <- const
2047 rt_call(CAST_FROM_FN_PTR(address, Klass::on_secondary_supers_verification_failure), rscratch2);
2048 should_not_reach_here();
2049 }
2050 bind(passed);
2051
2052 BLOCK_COMMENT("} verify_secondary_supers_table");
2053 }
2054
2055 void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) {
2056 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required");
2057 assert_different_registers(klass, rthread, scratch);
2058
2059 Label L_fallthrough, L_tmp;
2060 if (L_fast_path == nullptr) {
2061 L_fast_path = &L_fallthrough;
2062 } else if (L_slow_path == nullptr) {
2063 L_slow_path = &L_fallthrough;
2064 }
2065 // Fast path check: class is fully initialized
2066 lea(scratch, Address(klass, InstanceKlass::init_state_offset()));
2067 ldarb(scratch, scratch);
2068 cmp(scratch, InstanceKlass::fully_initialized);
2069 br(Assembler::EQ, *L_fast_path);
2070
2071 // Fast path check: current thread is initializer thread
2072 ldr(scratch, Address(klass, InstanceKlass::init_thread_offset()));
2073 cmp(rthread, scratch);
2074
2075 if (L_slow_path == &L_fallthrough) {
2076 br(Assembler::EQ, *L_fast_path);
2077 bind(*L_slow_path);
2078 } else if (L_fast_path == &L_fallthrough) {
2079 br(Assembler::NE, *L_slow_path);
2080 bind(*L_fast_path);
2081 } else {
2082 Unimplemented();
2083 }
2084 }
2085
2086 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) {
2087 if (!VerifyOops) return;
2088
2089 // Pass register number to verify_oop_subroutine
2090 const char* b = nullptr;
2091 {
2092 ResourceMark rm;
2093 stringStream ss;
2094 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line);
2095 b = code_string(ss.as_string());
2096 }
2097 BLOCK_COMMENT("verify_oop {");
2098
2099 strip_return_address(); // This might happen within a stack frame.
2100 protect_return_address();
2101 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
2102 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
2103
2104 mov(r0, reg);
2105 movptr(rscratch1, (uintptr_t)(address)b);
2106
2107 // call indirectly to solve generation ordering problem
2108 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address()));
2109 ldr(rscratch2, Address(rscratch2));
2110 blr(rscratch2);
2111
2112 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
2113 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
2114 authenticate_return_address();
2115
2116 BLOCK_COMMENT("} verify_oop");
2117 }
2118
2119 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) {
2120 if (!VerifyOops) return;
2121
2122 const char* b = nullptr;
2123 {
2124 ResourceMark rm;
2125 stringStream ss;
2126 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line);
2127 b = code_string(ss.as_string());
2128 }
2129 BLOCK_COMMENT("verify_oop_addr {");
2130
2131 strip_return_address(); // This might happen within a stack frame.
2132 protect_return_address();
2133 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
2134 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
2135
2136 // addr may contain sp so we will have to adjust it based on the
2137 // pushes that we just did.
2138 if (addr.uses(sp)) {
2139 lea(r0, addr);
2140 ldr(r0, Address(r0, 4 * wordSize));
2141 } else {
2142 ldr(r0, addr);
2143 }
2144 movptr(rscratch1, (uintptr_t)(address)b);
2145
2146 // call indirectly to solve generation ordering problem
2147 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address()));
2148 ldr(rscratch2, Address(rscratch2));
2149 blr(rscratch2);
2150
2151 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
2152 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
2153 authenticate_return_address();
2154
2155 BLOCK_COMMENT("} verify_oop_addr");
2156 }
2157
2158 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
2159 int extra_slot_offset) {
2160 // cf. TemplateTable::prepare_invoke(), if (load_receiver).
2161 int stackElementSize = Interpreter::stackElementSize;
2162 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
2163 #ifdef ASSERT
2164 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
2165 assert(offset1 - offset == stackElementSize, "correct arithmetic");
2166 #endif
2167 if (arg_slot.is_constant()) {
2168 return Address(esp, arg_slot.as_constant() * stackElementSize
2169 + offset);
2170 } else {
2171 add(rscratch1, esp, arg_slot.as_register(),
2172 ext::uxtx, exact_log2(stackElementSize));
2173 return Address(rscratch1, offset);
2174 }
2175 }
2176
2177 void MacroAssembler::call_VM_leaf_base(address entry_point,
2178 int number_of_arguments,
2179 Label *retaddr) {
2180 Label E, L;
2181
2182 stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize)));
2183
2184 mov(rscratch1, RuntimeAddress(entry_point));
2185 blr(rscratch1);
2186 if (retaddr)
2187 bind(*retaddr);
2188
2189 ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize)));
2190 }
2191
2192 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2193 call_VM_leaf_base(entry_point, number_of_arguments);
2194 }
2195
2196 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2197 pass_arg0(this, arg_0);
2198 call_VM_leaf_base(entry_point, 1);
2199 }
2200
2201 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2202 assert_different_registers(arg_1, c_rarg0);
2203 pass_arg0(this, arg_0);
2204 pass_arg1(this, arg_1);
2205 call_VM_leaf_base(entry_point, 2);
2206 }
2207
2208 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0,
2209 Register arg_1, Register arg_2) {
2210 assert_different_registers(arg_1, c_rarg0);
2211 assert_different_registers(arg_2, c_rarg0, c_rarg1);
2212 pass_arg0(this, arg_0);
2213 pass_arg1(this, arg_1);
2214 pass_arg2(this, arg_2);
2215 call_VM_leaf_base(entry_point, 3);
2216 }
2217
2218 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2219 pass_arg0(this, arg_0);
2220 MacroAssembler::call_VM_leaf_base(entry_point, 1);
2221 }
2222
2223 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2224
2225 assert_different_registers(arg_0, c_rarg1);
2226 pass_arg1(this, arg_1);
2227 pass_arg0(this, arg_0);
2228 MacroAssembler::call_VM_leaf_base(entry_point, 2);
2229 }
2230
2231 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2232 assert_different_registers(arg_0, c_rarg1, c_rarg2);
2233 assert_different_registers(arg_1, c_rarg2);
2234 pass_arg2(this, arg_2);
2235 pass_arg1(this, arg_1);
2236 pass_arg0(this, arg_0);
2237 MacroAssembler::call_VM_leaf_base(entry_point, 3);
2238 }
2239
2240 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2241 assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3);
2242 assert_different_registers(arg_1, c_rarg2, c_rarg3);
2243 assert_different_registers(arg_2, c_rarg3);
2244 pass_arg3(this, arg_3);
2245 pass_arg2(this, arg_2);
2246 pass_arg1(this, arg_1);
2247 pass_arg0(this, arg_0);
2248 MacroAssembler::call_VM_leaf_base(entry_point, 4);
2249 }
2250
2251 void MacroAssembler::null_check(Register reg, int offset) {
2252 if (needs_explicit_null_check(offset)) {
2253 // provoke OS null exception if reg is null by
2254 // accessing M[reg] w/o changing any registers
2255 // NOTE: this is plenty to provoke a segv
2256 ldr(zr, Address(reg));
2257 } else {
2258 // nothing to do, (later) access of M[reg + offset]
2259 // will provoke OS null exception if reg is null
2260 }
2261 }
2262
2263 // MacroAssembler protected routines needed to implement
2264 // public methods
2265
2266 void MacroAssembler::mov(Register r, Address dest) {
2267 code_section()->relocate(pc(), dest.rspec());
2268 uint64_t imm64 = (uint64_t)dest.target();
2269 movptr(r, imm64);
2270 }
2271
2272 // Move a constant pointer into r. In AArch64 mode the virtual
2273 // address space is 48 bits in size, so we only need three
2274 // instructions to create a patchable instruction sequence that can
2275 // reach anywhere.
2276 void MacroAssembler::movptr(Register r, uintptr_t imm64) {
2277 #ifndef PRODUCT
2278 {
2279 char buffer[64];
2280 os::snprintf_checked(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64);
2281 block_comment(buffer);
2282 }
2283 #endif
2284 assert(imm64 < (1ull << 48), "48-bit overflow in address constant");
2285 movz(r, imm64 & 0xffff);
2286 imm64 >>= 16;
2287 movk(r, imm64 & 0xffff, 16);
2288 imm64 >>= 16;
2289 movk(r, imm64 & 0xffff, 32);
2290 }
2291
2292 // Macro to mov replicated immediate to vector register.
2293 // imm64: only the lower 8/16/32 bits are considered for B/H/S type. That is,
2294 // the upper 56/48/32 bits must be zeros for B/H/S type.
2295 // Vd will get the following values for different arrangements in T
2296 // imm64 == hex 000000gh T8B: Vd = ghghghghghghghgh
2297 // imm64 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh
2298 // imm64 == hex 0000efgh T4H: Vd = efghefghefghefgh
2299 // imm64 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh
2300 // imm64 == hex abcdefgh T2S: Vd = abcdefghabcdefgh
2301 // imm64 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh
2302 // imm64 == hex abcdefgh T1D: Vd = 00000000abcdefgh
2303 // imm64 == hex abcdefgh T2D: Vd = 00000000abcdefgh00000000abcdefgh
2304 // Clobbers rscratch1
2305 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64) {
2306 assert(T != T1Q, "unsupported");
2307 if (T == T1D || T == T2D) {
2308 int imm = operand_valid_for_movi_immediate(imm64, T);
2309 if (-1 != imm) {
2310 movi(Vd, T, imm);
2311 } else {
2312 mov(rscratch1, imm64);
2313 dup(Vd, T, rscratch1);
2314 }
2315 return;
2316 }
2317
2318 #ifdef ASSERT
2319 if (T == T8B || T == T16B) assert((imm64 & ~0xff) == 0, "extraneous bits (T8B/T16B)");
2320 if (T == T4H || T == T8H) assert((imm64 & ~0xffff) == 0, "extraneous bits (T4H/T8H)");
2321 if (T == T2S || T == T4S) assert((imm64 & ~0xffffffff) == 0, "extraneous bits (T2S/T4S)");
2322 #endif
2323 int shift = operand_valid_for_movi_immediate(imm64, T);
2324 uint32_t imm32 = imm64 & 0xffffffffULL;
2325 if (shift >= 0) {
2326 movi(Vd, T, (imm32 >> shift) & 0xff, shift);
2327 } else {
2328 movw(rscratch1, imm32);
2329 dup(Vd, T, rscratch1);
2330 }
2331 }
2332
2333 void MacroAssembler::mov_immediate64(Register dst, uint64_t imm64)
2334 {
2335 #ifndef PRODUCT
2336 {
2337 char buffer[64];
2338 os::snprintf_checked(buffer, sizeof(buffer), "0x%" PRIX64, imm64);
2339 block_comment(buffer);
2340 }
2341 #endif
2342 if (operand_valid_for_logical_immediate(false, imm64)) {
2343 orr(dst, zr, imm64);
2344 } else {
2345 // we can use a combination of MOVZ or MOVN with
2346 // MOVK to build up the constant
2347 uint64_t imm_h[4];
2348 int zero_count = 0;
2349 int neg_count = 0;
2350 int i;
2351 for (i = 0; i < 4; i++) {
2352 imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL);
2353 if (imm_h[i] == 0) {
2354 zero_count++;
2355 } else if (imm_h[i] == 0xffffL) {
2356 neg_count++;
2357 }
2358 }
2359 if (zero_count == 4) {
2360 // one MOVZ will do
2361 movz(dst, 0);
2362 } else if (neg_count == 4) {
2363 // one MOVN will do
2364 movn(dst, 0);
2365 } else if (zero_count == 3) {
2366 for (i = 0; i < 4; i++) {
2367 if (imm_h[i] != 0L) {
2368 movz(dst, (uint32_t)imm_h[i], (i << 4));
2369 break;
2370 }
2371 }
2372 } else if (neg_count == 3) {
2373 // one MOVN will do
2374 for (int i = 0; i < 4; i++) {
2375 if (imm_h[i] != 0xffffL) {
2376 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4));
2377 break;
2378 }
2379 }
2380 } else if (zero_count == 2) {
2381 // one MOVZ and one MOVK will do
2382 for (i = 0; i < 3; i++) {
2383 if (imm_h[i] != 0L) {
2384 movz(dst, (uint32_t)imm_h[i], (i << 4));
2385 i++;
2386 break;
2387 }
2388 }
2389 for (;i < 4; i++) {
2390 if (imm_h[i] != 0L) {
2391 movk(dst, (uint32_t)imm_h[i], (i << 4));
2392 }
2393 }
2394 } else if (neg_count == 2) {
2395 // one MOVN and one MOVK will do
2396 for (i = 0; i < 4; i++) {
2397 if (imm_h[i] != 0xffffL) {
2398 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4));
2399 i++;
2400 break;
2401 }
2402 }
2403 for (;i < 4; i++) {
2404 if (imm_h[i] != 0xffffL) {
2405 movk(dst, (uint32_t)imm_h[i], (i << 4));
2406 }
2407 }
2408 } else if (zero_count == 1) {
2409 // one MOVZ and two MOVKs will do
2410 for (i = 0; i < 4; i++) {
2411 if (imm_h[i] != 0L) {
2412 movz(dst, (uint32_t)imm_h[i], (i << 4));
2413 i++;
2414 break;
2415 }
2416 }
2417 for (;i < 4; i++) {
2418 if (imm_h[i] != 0x0L) {
2419 movk(dst, (uint32_t)imm_h[i], (i << 4));
2420 }
2421 }
2422 } else if (neg_count == 1) {
2423 // one MOVN and two MOVKs will do
2424 for (i = 0; i < 4; i++) {
2425 if (imm_h[i] != 0xffffL) {
2426 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4));
2427 i++;
2428 break;
2429 }
2430 }
2431 for (;i < 4; i++) {
2432 if (imm_h[i] != 0xffffL) {
2433 movk(dst, (uint32_t)imm_h[i], (i << 4));
2434 }
2435 }
2436 } else {
2437 // use a MOVZ and 3 MOVKs (makes it easier to debug)
2438 movz(dst, (uint32_t)imm_h[0], 0);
2439 for (i = 1; i < 4; i++) {
2440 movk(dst, (uint32_t)imm_h[i], (i << 4));
2441 }
2442 }
2443 }
2444 }
2445
2446 void MacroAssembler::mov_immediate32(Register dst, uint32_t imm32)
2447 {
2448 #ifndef PRODUCT
2449 {
2450 char buffer[64];
2451 os::snprintf_checked(buffer, sizeof(buffer), "0x%" PRIX32, imm32);
2452 block_comment(buffer);
2453 }
2454 #endif
2455 if (operand_valid_for_logical_immediate(true, imm32)) {
2456 orrw(dst, zr, imm32);
2457 } else {
2458 // we can use MOVZ, MOVN or two calls to MOVK to build up the
2459 // constant
2460 uint32_t imm_h[2];
2461 imm_h[0] = imm32 & 0xffff;
2462 imm_h[1] = ((imm32 >> 16) & 0xffff);
2463 if (imm_h[0] == 0) {
2464 movzw(dst, imm_h[1], 16);
2465 } else if (imm_h[0] == 0xffff) {
2466 movnw(dst, imm_h[1] ^ 0xffff, 16);
2467 } else if (imm_h[1] == 0) {
2468 movzw(dst, imm_h[0], 0);
2469 } else if (imm_h[1] == 0xffff) {
2470 movnw(dst, imm_h[0] ^ 0xffff, 0);
2471 } else {
2472 // use a MOVZ and MOVK (makes it easier to debug)
2473 movzw(dst, imm_h[0], 0);
2474 movkw(dst, imm_h[1], 16);
2475 }
2476 }
2477 }
2478
2479 // Form an address from base + offset in Rd. Rd may or may
2480 // not actually be used: you must use the Address that is returned.
2481 // It is up to you to ensure that the shift provided matches the size
2482 // of your data.
2483 Address MacroAssembler::form_address(Register Rd, Register base, int64_t byte_offset, int shift) {
2484 if (Address::offset_ok_for_immed(byte_offset, shift))
2485 // It fits; no need for any heroics
2486 return Address(base, byte_offset);
2487
2488 // Don't do anything clever with negative or misaligned offsets
2489 unsigned mask = (1 << shift) - 1;
2490 if (byte_offset < 0 || byte_offset & mask) {
2491 mov(Rd, byte_offset);
2492 add(Rd, base, Rd);
2493 return Address(Rd);
2494 }
2495
2496 // See if we can do this with two 12-bit offsets
2497 {
2498 uint64_t word_offset = byte_offset >> shift;
2499 uint64_t masked_offset = word_offset & 0xfff000;
2500 if (Address::offset_ok_for_immed(word_offset - masked_offset, 0)
2501 && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) {
2502 add(Rd, base, masked_offset << shift);
2503 word_offset -= masked_offset;
2504 return Address(Rd, word_offset << shift);
2505 }
2506 }
2507
2508 // Do it the hard way
2509 mov(Rd, byte_offset);
2510 add(Rd, base, Rd);
2511 return Address(Rd);
2512 }
2513
2514 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb,
2515 bool want_remainder, Register scratch)
2516 {
2517 // Full implementation of Java idiv and irem. The function
2518 // returns the (pc) offset of the div instruction - may be needed
2519 // for implicit exceptions.
2520 //
2521 // constraint : ra/rb =/= scratch
2522 // normal case
2523 //
2524 // input : ra: dividend
2525 // rb: divisor
2526 //
2527 // result: either
2528 // quotient (= ra idiv rb)
2529 // remainder (= ra irem rb)
2530
2531 assert(ra != scratch && rb != scratch, "reg cannot be scratch");
2532
2533 int idivl_offset = offset();
2534 if (! want_remainder) {
2535 sdivw(result, ra, rb);
2536 } else {
2537 sdivw(scratch, ra, rb);
2538 Assembler::msubw(result, scratch, rb, ra);
2539 }
2540
2541 return idivl_offset;
2542 }
2543
2544 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb,
2545 bool want_remainder, Register scratch)
2546 {
2547 // Full implementation of Java ldiv and lrem. The function
2548 // returns the (pc) offset of the div instruction - may be needed
2549 // for implicit exceptions.
2550 //
2551 // constraint : ra/rb =/= scratch
2552 // normal case
2553 //
2554 // input : ra: dividend
2555 // rb: divisor
2556 //
2557 // result: either
2558 // quotient (= ra idiv rb)
2559 // remainder (= ra irem rb)
2560
2561 assert(ra != scratch && rb != scratch, "reg cannot be scratch");
2562
2563 int idivq_offset = offset();
2564 if (! want_remainder) {
2565 sdiv(result, ra, rb);
2566 } else {
2567 sdiv(scratch, ra, rb);
2568 Assembler::msub(result, scratch, rb, ra);
2569 }
2570
2571 return idivq_offset;
2572 }
2573
2574 void MacroAssembler::membar(Membar_mask_bits order_constraint) {
2575 address prev = pc() - NativeMembar::instruction_size;
2576 address last = code()->last_insn();
2577 if (last != nullptr && nativeInstruction_at(last)->is_Membar() && prev == last) {
2578 NativeMembar *bar = NativeMembar_at(prev);
2579 if (AlwaysMergeDMB) {
2580 bar->set_kind(bar->get_kind() | order_constraint);
2581 BLOCK_COMMENT("merged membar(always)");
2582 return;
2583 }
2584 // Don't promote DMB ST|DMB LD to DMB (a full barrier) because
2585 // doing so would introduce a StoreLoad which the caller did not
2586 // intend
2587 if (bar->get_kind() == order_constraint
2588 || bar->get_kind() == AnyAny
2589 || order_constraint == AnyAny) {
2590 // We are merging two memory barrier instructions. On AArch64 we
2591 // can do this simply by ORing them together.
2592 bar->set_kind(bar->get_kind() | order_constraint);
2593 BLOCK_COMMENT("merged membar");
2594 return;
2595 } else {
2596 // A special case like "DMB ST;DMB LD;DMB ST", the last DMB can be skipped
2597 // We need check the last 2 instructions
2598 address prev2 = prev - NativeMembar::instruction_size;
2599 if (last != code()->last_label() && nativeInstruction_at(prev2)->is_Membar()) {
2600 NativeMembar *bar2 = NativeMembar_at(prev2);
2601 assert(bar2->get_kind() == order_constraint, "it should be merged before");
2602 BLOCK_COMMENT("merged membar(elided)");
2603 return;
2604 }
2605 }
2606 }
2607 code()->set_last_insn(pc());
2608 dmb(Assembler::barrier(order_constraint));
2609 }
2610
2611 bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) {
2612 if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) {
2613 merge_ldst(rt, adr, size_in_bytes, is_store);
2614 code()->clear_last_insn();
2615 return true;
2616 } else {
2617 assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported.");
2618 const uint64_t mask = size_in_bytes - 1;
2619 if (adr.getMode() == Address::base_plus_offset &&
2620 (adr.offset() & mask) == 0) { // only supports base_plus_offset.
2621 code()->set_last_insn(pc());
2622 }
2623 return false;
2624 }
2625 }
2626
2627 void MacroAssembler::ldr(Register Rx, const Address &adr) {
2628 // We always try to merge two adjacent loads into one ldp.
2629 if (!try_merge_ldst(Rx, adr, 8, false)) {
2630 Assembler::ldr(Rx, adr);
2631 }
2632 }
2633
2634 void MacroAssembler::ldrw(Register Rw, const Address &adr) {
2635 // We always try to merge two adjacent loads into one ldp.
2636 if (!try_merge_ldst(Rw, adr, 4, false)) {
2637 Assembler::ldrw(Rw, adr);
2638 }
2639 }
2640
2641 void MacroAssembler::str(Register Rx, const Address &adr) {
2642 // We always try to merge two adjacent stores into one stp.
2643 if (!try_merge_ldst(Rx, adr, 8, true)) {
2644 Assembler::str(Rx, adr);
2645 }
2646 }
2647
2648 void MacroAssembler::strw(Register Rw, const Address &adr) {
2649 // We always try to merge two adjacent stores into one stp.
2650 if (!try_merge_ldst(Rw, adr, 4, true)) {
2651 Assembler::strw(Rw, adr);
2652 }
2653 }
2654
2655 // MacroAssembler routines found actually to be needed
2656
2657 void MacroAssembler::push(Register src)
2658 {
2659 str(src, Address(pre(esp, -1 * wordSize)));
2660 }
2661
2662 void MacroAssembler::pop(Register dst)
2663 {
2664 ldr(dst, Address(post(esp, 1 * wordSize)));
2665 }
2666
2667 // Note: load_unsigned_short used to be called load_unsigned_word.
2668 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
2669 int off = offset();
2670 ldrh(dst, src);
2671 return off;
2672 }
2673
2674 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
2675 int off = offset();
2676 ldrb(dst, src);
2677 return off;
2678 }
2679
2680 int MacroAssembler::load_signed_short(Register dst, Address src) {
2681 int off = offset();
2682 ldrsh(dst, src);
2683 return off;
2684 }
2685
2686 int MacroAssembler::load_signed_byte(Register dst, Address src) {
2687 int off = offset();
2688 ldrsb(dst, src);
2689 return off;
2690 }
2691
2692 int MacroAssembler::load_signed_short32(Register dst, Address src) {
2693 int off = offset();
2694 ldrshw(dst, src);
2695 return off;
2696 }
2697
2698 int MacroAssembler::load_signed_byte32(Register dst, Address src) {
2699 int off = offset();
2700 ldrsbw(dst, src);
2701 return off;
2702 }
2703
2704 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) {
2705 switch (size_in_bytes) {
2706 case 8: ldr(dst, src); break;
2707 case 4: ldrw(dst, src); break;
2708 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
2709 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
2710 default: ShouldNotReachHere();
2711 }
2712 }
2713
2714 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes) {
2715 switch (size_in_bytes) {
2716 case 8: str(src, dst); break;
2717 case 4: strw(src, dst); break;
2718 case 2: strh(src, dst); break;
2719 case 1: strb(src, dst); break;
2720 default: ShouldNotReachHere();
2721 }
2722 }
2723
2724 void MacroAssembler::decrementw(Register reg, int value)
2725 {
2726 if (value < 0) { incrementw(reg, -value); return; }
2727 if (value == 0) { return; }
2728 if (value < (1 << 12)) { subw(reg, reg, value); return; }
2729 /* else */ {
2730 guarantee(reg != rscratch2, "invalid dst for register decrement");
2731 movw(rscratch2, (unsigned)value);
2732 subw(reg, reg, rscratch2);
2733 }
2734 }
2735
2736 void MacroAssembler::decrement(Register reg, int value)
2737 {
2738 if (value < 0) { increment(reg, -value); return; }
2739 if (value == 0) { return; }
2740 if (value < (1 << 12)) { sub(reg, reg, value); return; }
2741 /* else */ {
2742 assert(reg != rscratch2, "invalid dst for register decrement");
2743 mov(rscratch2, (uint64_t)value);
2744 sub(reg, reg, rscratch2);
2745 }
2746 }
2747
2748 void MacroAssembler::decrementw(Address dst, int value)
2749 {
2750 assert(!dst.uses(rscratch1), "invalid dst for address decrement");
2751 if (dst.getMode() == Address::literal) {
2752 assert(abs(value) < (1 << 12), "invalid value and address mode combination");
2753 lea(rscratch2, dst);
2754 dst = Address(rscratch2);
2755 }
2756 ldrw(rscratch1, dst);
2757 decrementw(rscratch1, value);
2758 strw(rscratch1, dst);
2759 }
2760
2761 void MacroAssembler::decrement(Address dst, int value)
2762 {
2763 assert(!dst.uses(rscratch1), "invalid address for decrement");
2764 if (dst.getMode() == Address::literal) {
2765 assert(abs(value) < (1 << 12), "invalid value and address mode combination");
2766 lea(rscratch2, dst);
2767 dst = Address(rscratch2);
2768 }
2769 ldr(rscratch1, dst);
2770 decrement(rscratch1, value);
2771 str(rscratch1, dst);
2772 }
2773
2774 void MacroAssembler::incrementw(Register reg, int value)
2775 {
2776 if (value < 0) { decrementw(reg, -value); return; }
2777 if (value == 0) { return; }
2778 if (value < (1 << 12)) { addw(reg, reg, value); return; }
2779 /* else */ {
2780 assert(reg != rscratch2, "invalid dst for register increment");
2781 movw(rscratch2, (unsigned)value);
2782 addw(reg, reg, rscratch2);
2783 }
2784 }
2785
2786 void MacroAssembler::increment(Register reg, int value)
2787 {
2788 if (value < 0) { decrement(reg, -value); return; }
2789 if (value == 0) { return; }
2790 if (value < (1 << 12)) { add(reg, reg, value); return; }
2791 /* else */ {
2792 assert(reg != rscratch2, "invalid dst for register increment");
2793 movw(rscratch2, (unsigned)value);
2794 add(reg, reg, rscratch2);
2795 }
2796 }
2797
2798 void MacroAssembler::incrementw(Address dst, int value)
2799 {
2800 assert(!dst.uses(rscratch1), "invalid dst for address increment");
2801 if (dst.getMode() == Address::literal) {
2802 assert(abs(value) < (1 << 12), "invalid value and address mode combination");
2803 lea(rscratch2, dst);
2804 dst = Address(rscratch2);
2805 }
2806 ldrw(rscratch1, dst);
2807 incrementw(rscratch1, value);
2808 strw(rscratch1, dst);
2809 }
2810
2811 void MacroAssembler::increment(Address dst, int value)
2812 {
2813 assert(!dst.uses(rscratch1), "invalid dst for address increment");
2814 if (dst.getMode() == Address::literal) {
2815 assert(abs(value) < (1 << 12), "invalid value and address mode combination");
2816 lea(rscratch2, dst);
2817 dst = Address(rscratch2);
2818 }
2819 ldr(rscratch1, dst);
2820 increment(rscratch1, value);
2821 str(rscratch1, dst);
2822 }
2823
2824 // Push lots of registers in the bit set supplied. Don't push sp.
2825 // Return the number of words pushed
2826 int MacroAssembler::push(unsigned int bitset, Register stack) {
2827 int words_pushed = 0;
2828
2829 // Scan bitset to accumulate register pairs
2830 unsigned char regs[32];
2831 int count = 0;
2832 for (int reg = 0; reg <= 30; reg++) {
2833 if (1 & bitset)
2834 regs[count++] = reg;
2835 bitset >>= 1;
2836 }
2837 regs[count++] = zr->raw_encoding();
2838 count &= ~1; // Only push an even number of regs
2839
2840 if (count) {
2841 stp(as_Register(regs[0]), as_Register(regs[1]),
2842 Address(pre(stack, -count * wordSize)));
2843 words_pushed += 2;
2844 }
2845 for (int i = 2; i < count; i += 2) {
2846 stp(as_Register(regs[i]), as_Register(regs[i+1]),
2847 Address(stack, i * wordSize));
2848 words_pushed += 2;
2849 }
2850
2851 assert(words_pushed == count, "oops, pushed != count");
2852
2853 return count;
2854 }
2855
2856 int MacroAssembler::pop(unsigned int bitset, Register stack) {
2857 int words_pushed = 0;
2858
2859 // Scan bitset to accumulate register pairs
2860 unsigned char regs[32];
2861 int count = 0;
2862 for (int reg = 0; reg <= 30; reg++) {
2863 if (1 & bitset)
2864 regs[count++] = reg;
2865 bitset >>= 1;
2866 }
2867 regs[count++] = zr->raw_encoding();
2868 count &= ~1;
2869
2870 for (int i = 2; i < count; i += 2) {
2871 ldp(as_Register(regs[i]), as_Register(regs[i+1]),
2872 Address(stack, i * wordSize));
2873 words_pushed += 2;
2874 }
2875 if (count) {
2876 ldp(as_Register(regs[0]), as_Register(regs[1]),
2877 Address(post(stack, count * wordSize)));
2878 words_pushed += 2;
2879 }
2880
2881 assert(words_pushed == count, "oops, pushed != count");
2882
2883 return count;
2884 }
2885
2886 // Push lots of registers in the bit set supplied. Don't push sp.
2887 // Return the number of dwords pushed
2888 int MacroAssembler::push_fp(unsigned int bitset, Register stack, FpPushPopMode mode) {
2889 int words_pushed = 0;
2890 bool use_sve = false;
2891 int sve_vector_size_in_bytes = 0;
2892
2893 #ifdef COMPILER2
2894 use_sve = Matcher::supports_scalable_vector();
2895 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE);
2896 #endif
2897
2898 // Scan bitset to accumulate register pairs
2899 unsigned char regs[32];
2900 int count = 0;
2901 for (int reg = 0; reg <= 31; reg++) {
2902 if (1 & bitset)
2903 regs[count++] = reg;
2904 bitset >>= 1;
2905 }
2906
2907 if (count == 0) {
2908 return 0;
2909 }
2910
2911 if (mode == PushPopFull) {
2912 if (use_sve && sve_vector_size_in_bytes > 16) {
2913 mode = PushPopSVE;
2914 } else {
2915 mode = PushPopNeon;
2916 }
2917 }
2918
2919 #ifndef PRODUCT
2920 {
2921 char buffer[48];
2922 if (mode == PushPopSVE) {
2923 os::snprintf_checked(buffer, sizeof(buffer), "push_fp: %d SVE registers", count);
2924 } else if (mode == PushPopNeon) {
2925 os::snprintf_checked(buffer, sizeof(buffer), "push_fp: %d Neon registers", count);
2926 } else {
2927 os::snprintf_checked(buffer, sizeof(buffer), "push_fp: %d fp registers", count);
2928 }
2929 block_comment(buffer);
2930 }
2931 #endif
2932
2933 if (mode == PushPopSVE) {
2934 sub(stack, stack, sve_vector_size_in_bytes * count);
2935 for (int i = 0; i < count; i++) {
2936 sve_str(as_FloatRegister(regs[i]), Address(stack, i));
2937 }
2938 return count * sve_vector_size_in_bytes / 8;
2939 }
2940
2941 if (mode == PushPopNeon) {
2942 if (count == 1) {
2943 strq(as_FloatRegister(regs[0]), Address(pre(stack, -wordSize * 2)));
2944 return 2;
2945 }
2946
2947 bool odd = (count & 1) == 1;
2948 int push_slots = count + (odd ? 1 : 0);
2949
2950 // Always pushing full 128 bit registers.
2951 stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize * 2)));
2952 words_pushed += 2;
2953
2954 for (int i = 2; i + 1 < count; i += 2) {
2955 stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2));
2956 words_pushed += 2;
2957 }
2958
2959 if (odd) {
2960 strq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2));
2961 words_pushed++;
2962 }
2963
2964 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count);
2965 return count * 2;
2966 }
2967
2968 if (mode == PushPopFp) {
2969 bool odd = (count & 1) == 1;
2970 int push_slots = count + (odd ? 1 : 0);
2971
2972 if (count == 1) {
2973 // Stack pointer must be 16 bytes aligned
2974 strd(as_FloatRegister(regs[0]), Address(pre(stack, -push_slots * wordSize)));
2975 return 1;
2976 }
2977
2978 stpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize)));
2979 words_pushed += 2;
2980
2981 for (int i = 2; i + 1 < count; i += 2) {
2982 stpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize));
2983 words_pushed += 2;
2984 }
2985
2986 if (odd) {
2987 // Stack pointer must be 16 bytes aligned
2988 strd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize));
2989 words_pushed++;
2990 }
2991
2992 assert(words_pushed == count, "oops, pushed != count");
2993
2994 return count;
2995 }
2996
2997 return 0;
2998 }
2999
3000 // Return the number of dwords popped
3001 int MacroAssembler::pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode) {
3002 int words_pushed = 0;
3003 bool use_sve = false;
3004 int sve_vector_size_in_bytes = 0;
3005
3006 #ifdef COMPILER2
3007 use_sve = Matcher::supports_scalable_vector();
3008 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE);
3009 #endif
3010 // Scan bitset to accumulate register pairs
3011 unsigned char regs[32];
3012 int count = 0;
3013 for (int reg = 0; reg <= 31; reg++) {
3014 if (1 & bitset)
3015 regs[count++] = reg;
3016 bitset >>= 1;
3017 }
3018
3019 if (count == 0) {
3020 return 0;
3021 }
3022
3023 if (mode == PushPopFull) {
3024 if (use_sve && sve_vector_size_in_bytes > 16) {
3025 mode = PushPopSVE;
3026 } else {
3027 mode = PushPopNeon;
3028 }
3029 }
3030
3031 #ifndef PRODUCT
3032 {
3033 char buffer[48];
3034 if (mode == PushPopSVE) {
3035 os::snprintf_checked(buffer, sizeof(buffer), "pop_fp: %d SVE registers", count);
3036 } else if (mode == PushPopNeon) {
3037 os::snprintf_checked(buffer, sizeof(buffer), "pop_fp: %d Neon registers", count);
3038 } else {
3039 os::snprintf_checked(buffer, sizeof(buffer), "pop_fp: %d fp registers", count);
3040 }
3041 block_comment(buffer);
3042 }
3043 #endif
3044
3045 if (mode == PushPopSVE) {
3046 for (int i = count - 1; i >= 0; i--) {
3047 sve_ldr(as_FloatRegister(regs[i]), Address(stack, i));
3048 }
3049 add(stack, stack, sve_vector_size_in_bytes * count);
3050 return count * sve_vector_size_in_bytes / 8;
3051 }
3052
3053 if (mode == PushPopNeon) {
3054 if (count == 1) {
3055 ldrq(as_FloatRegister(regs[0]), Address(post(stack, wordSize * 2)));
3056 return 2;
3057 }
3058
3059 bool odd = (count & 1) == 1;
3060 int push_slots = count + (odd ? 1 : 0);
3061
3062 if (odd) {
3063 ldrq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2));
3064 words_pushed++;
3065 }
3066
3067 for (int i = 2; i + 1 < count; i += 2) {
3068 ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2));
3069 words_pushed += 2;
3070 }
3071
3072 ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize * 2)));
3073 words_pushed += 2;
3074
3075 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count);
3076
3077 return count * 2;
3078 }
3079
3080 if (mode == PushPopFp) {
3081 bool odd = (count & 1) == 1;
3082 int push_slots = count + (odd ? 1 : 0);
3083
3084 if (count == 1) {
3085 ldrd(as_FloatRegister(regs[0]), Address(post(stack, push_slots * wordSize)));
3086 return 1;
3087 }
3088
3089 if (odd) {
3090 ldrd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize));
3091 words_pushed++;
3092 }
3093
3094 for (int i = 2; i + 1 < count; i += 2) {
3095 ldpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize));
3096 words_pushed += 2;
3097 }
3098
3099 ldpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize)));
3100 words_pushed += 2;
3101
3102 assert(words_pushed == count, "oops, pushed != count");
3103
3104 return count;
3105 }
3106
3107 return 0;
3108 }
3109
3110 // Return the number of dwords pushed
3111 int MacroAssembler::push_p(unsigned int bitset, Register stack) {
3112 bool use_sve = false;
3113 int sve_predicate_size_in_slots = 0;
3114
3115 #ifdef COMPILER2
3116 use_sve = Matcher::supports_scalable_vector();
3117 if (use_sve) {
3118 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots();
3119 }
3120 #endif
3121
3122 if (!use_sve) {
3123 return 0;
3124 }
3125
3126 unsigned char regs[PRegister::number_of_registers];
3127 int count = 0;
3128 for (int reg = 0; reg < PRegister::number_of_registers; reg++) {
3129 if (1 & bitset)
3130 regs[count++] = reg;
3131 bitset >>= 1;
3132 }
3133
3134 if (count == 0) {
3135 return 0;
3136 }
3137
3138 int total_push_bytes = align_up(sve_predicate_size_in_slots *
3139 VMRegImpl::stack_slot_size * count, 16);
3140 sub(stack, stack, total_push_bytes);
3141 for (int i = 0; i < count; i++) {
3142 sve_str(as_PRegister(regs[i]), Address(stack, i));
3143 }
3144 return total_push_bytes / 8;
3145 }
3146
3147 // Return the number of dwords popped
3148 int MacroAssembler::pop_p(unsigned int bitset, Register stack) {
3149 bool use_sve = false;
3150 int sve_predicate_size_in_slots = 0;
3151
3152 #ifdef COMPILER2
3153 use_sve = Matcher::supports_scalable_vector();
3154 if (use_sve) {
3155 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots();
3156 }
3157 #endif
3158
3159 if (!use_sve) {
3160 return 0;
3161 }
3162
3163 unsigned char regs[PRegister::number_of_registers];
3164 int count = 0;
3165 for (int reg = 0; reg < PRegister::number_of_registers; reg++) {
3166 if (1 & bitset)
3167 regs[count++] = reg;
3168 bitset >>= 1;
3169 }
3170
3171 if (count == 0) {
3172 return 0;
3173 }
3174
3175 int total_pop_bytes = align_up(sve_predicate_size_in_slots *
3176 VMRegImpl::stack_slot_size * count, 16);
3177 for (int i = count - 1; i >= 0; i--) {
3178 sve_ldr(as_PRegister(regs[i]), Address(stack, i));
3179 }
3180 add(stack, stack, total_pop_bytes);
3181 return total_pop_bytes / 8;
3182 }
3183
3184 #ifdef ASSERT
3185 void MacroAssembler::verify_heapbase(const char* msg) {
3186 #if 0
3187 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed");
3188 assert (Universe::heap() != nullptr, "java heap should be initialized");
3189 if (!UseCompressedOops || Universe::ptr_base() == nullptr) {
3190 // rheapbase is allocated as general register
3191 return;
3192 }
3193 if (CheckCompressedOops) {
3194 Label ok;
3195 push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1
3196 cmpptr(rheapbase, ExternalAddress(CompressedOops::base_addr()));
3197 br(Assembler::EQ, ok);
3198 stop(msg);
3199 bind(ok);
3200 pop(1 << rscratch1->encoding(), sp);
3201 }
3202 #endif
3203 }
3204 #endif
3205
3206 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) {
3207 assert_different_registers(value, tmp1, tmp2);
3208 Label done, tagged, weak_tagged;
3209
3210 cbz(value, done); // Use null as-is.
3211 tst(value, JNIHandles::tag_mask); // Test for tag.
3212 br(Assembler::NE, tagged);
3213
3214 // Resolve local handle
3215 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp1, tmp2);
3216 verify_oop(value);
3217 b(done);
3218
3219 bind(tagged);
3220 STATIC_ASSERT(JNIHandles::TypeTag::weak_global == 0b1);
3221 tbnz(value, 0, weak_tagged); // Test for weak tag.
3222
3223 // Resolve global handle
3224 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2);
3225 verify_oop(value);
3226 b(done);
3227
3228 bind(weak_tagged);
3229 // Resolve jweak.
3230 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
3231 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp1, tmp2);
3232 verify_oop(value);
3233
3234 bind(done);
3235 }
3236
3237 void MacroAssembler::resolve_global_jobject(Register value, Register tmp1, Register tmp2) {
3238 assert_different_registers(value, tmp1, tmp2);
3239 Label done;
3240
3241 cbz(value, done); // Use null as-is.
3242
3243 #ifdef ASSERT
3244 {
3245 STATIC_ASSERT(JNIHandles::TypeTag::global == 0b10);
3246 Label valid_global_tag;
3247 tbnz(value, 1, valid_global_tag); // Test for global tag
3248 stop("non global jobject using resolve_global_jobject");
3249 bind(valid_global_tag);
3250 }
3251 #endif
3252
3253 // Resolve global handle
3254 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2);
3255 verify_oop(value);
3256
3257 bind(done);
3258 }
3259
3260 void MacroAssembler::stop(const char* msg) {
3261 // Skip AOT caching C strings in scratch buffer.
3262 const char* str = (code_section()->scratch_emit()) ? msg : AOTCodeCache::add_C_string(msg);
3263 BLOCK_COMMENT(str);
3264 // load msg into r0 so we can access it from the signal handler
3265 // ExternalAddress enables saving and restoring via the code cache
3266 lea(c_rarg0, ExternalAddress((address) str));
3267 dcps1(0xdeae);
3268 }
3269
3270 void MacroAssembler::unimplemented(const char* what) {
3271 const char* buf = nullptr;
3272 {
3273 ResourceMark rm;
3274 stringStream ss;
3275 ss.print("unimplemented: %s", what);
3276 buf = code_string(ss.as_string());
3277 }
3278 stop(buf);
3279 }
3280
3281 void MacroAssembler::_assert_asm(Assembler::Condition cc, const char* msg) {
3282 #ifdef ASSERT
3283 Label OK;
3284 br(cc, OK);
3285 stop(msg);
3286 bind(OK);
3287 #endif
3288 }
3289
3290 // If a constant does not fit in an immediate field, generate some
3291 // number of MOV instructions and then perform the operation.
3292 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm,
3293 add_sub_imm_insn insn1,
3294 add_sub_reg_insn insn2,
3295 bool is32) {
3296 assert(Rd != zr, "Rd = zr and not setting flags?");
3297 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm);
3298 if (fits) {
3299 (this->*insn1)(Rd, Rn, imm);
3300 } else {
3301 if (g_uabs(imm) < (1 << 24)) {
3302 (this->*insn1)(Rd, Rn, imm & -(1 << 12));
3303 (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1));
3304 } else {
3305 assert_different_registers(Rd, Rn);
3306 mov(Rd, imm);
3307 (this->*insn2)(Rd, Rn, Rd, LSL, 0);
3308 }
3309 }
3310 }
3311
3312 // Separate vsn which sets the flags. Optimisations are more restricted
3313 // because we must set the flags correctly.
3314 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm,
3315 add_sub_imm_insn insn1,
3316 add_sub_reg_insn insn2,
3317 bool is32) {
3318 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm);
3319 if (fits) {
3320 (this->*insn1)(Rd, Rn, imm);
3321 } else {
3322 assert_different_registers(Rd, Rn);
3323 assert(Rd != zr, "overflow in immediate operand");
3324 mov(Rd, imm);
3325 (this->*insn2)(Rd, Rn, Rd, LSL, 0);
3326 }
3327 }
3328
3329
3330 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) {
3331 if (increment.is_register()) {
3332 add(Rd, Rn, increment.as_register());
3333 } else {
3334 add(Rd, Rn, increment.as_constant());
3335 }
3336 }
3337
3338 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) {
3339 if (increment.is_register()) {
3340 addw(Rd, Rn, increment.as_register());
3341 } else {
3342 addw(Rd, Rn, increment.as_constant());
3343 }
3344 }
3345
3346 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) {
3347 if (decrement.is_register()) {
3348 sub(Rd, Rn, decrement.as_register());
3349 } else {
3350 sub(Rd, Rn, decrement.as_constant());
3351 }
3352 }
3353
3354 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) {
3355 if (decrement.is_register()) {
3356 subw(Rd, Rn, decrement.as_register());
3357 } else {
3358 subw(Rd, Rn, decrement.as_constant());
3359 }
3360 }
3361
3362 void MacroAssembler::reinit_heapbase()
3363 {
3364 if (UseCompressedOops) {
3365 if (Universe::is_fully_initialized() && !AOTCodeCache::is_on_for_dump()) {
3366 mov(rheapbase, CompressedOops::base());
3367 } else {
3368 lea(rheapbase, ExternalAddress(CompressedOops::base_addr()));
3369 ldr(rheapbase, Address(rheapbase));
3370 }
3371 }
3372 }
3373
3374 // this simulates the behaviour of the x86 cmpxchg instruction using a
3375 // load linked/store conditional pair. we use the acquire/release
3376 // versions of these instructions so that we flush pending writes as
3377 // per Java semantics.
3378
3379 // n.b the x86 version assumes the old value to be compared against is
3380 // in rax and updates rax with the value located in memory if the
3381 // cmpxchg fails. we supply a register for the old value explicitly
3382
3383 // the aarch64 load linked/store conditional instructions do not
3384 // accept an offset. so, unlike x86, we must provide a plain register
3385 // to identify the memory word to be compared/exchanged rather than a
3386 // register+offset Address.
3387
3388 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
3389 Label &succeed, Label *fail) {
3390 // oldv holds comparison value
3391 // newv holds value to write in exchange
3392 // addr identifies memory word to compare against/update
3393 if (UseLSE) {
3394 mov(tmp, oldv);
3395 casal(Assembler::xword, oldv, newv, addr);
3396 cmp(tmp, oldv);
3397 br(Assembler::EQ, succeed);
3398 membar(AnyAny);
3399 } else {
3400 Label retry_load, nope;
3401 prfm(Address(addr), PSTL1STRM);
3402 bind(retry_load);
3403 // flush and load exclusive from the memory location
3404 // and fail if it is not what we expect
3405 ldaxr(tmp, addr);
3406 cmp(tmp, oldv);
3407 br(Assembler::NE, nope);
3408 // if we store+flush with no intervening write tmp will be zero
3409 stlxr(tmp, newv, addr);
3410 cbzw(tmp, succeed);
3411 // retry so we only ever return after a load fails to compare
3412 // ensures we don't return a stale value after a failed write.
3413 b(retry_load);
3414 // if the memory word differs we return it in oldv and signal a fail
3415 bind(nope);
3416 membar(AnyAny);
3417 mov(oldv, tmp);
3418 }
3419 if (fail)
3420 b(*fail);
3421 }
3422
3423 void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
3424 Label &succeed, Label *fail) {
3425 assert(oopDesc::mark_offset_in_bytes() == 0, "assumption");
3426 cmpxchgptr(oldv, newv, obj, tmp, succeed, fail);
3427 }
3428
3429 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
3430 Label &succeed, Label *fail) {
3431 // oldv holds comparison value
3432 // newv holds value to write in exchange
3433 // addr identifies memory word to compare against/update
3434 // tmp returns 0/1 for success/failure
3435 if (UseLSE) {
3436 mov(tmp, oldv);
3437 casal(Assembler::word, oldv, newv, addr);
3438 cmp(tmp, oldv);
3439 br(Assembler::EQ, succeed);
3440 membar(AnyAny);
3441 } else {
3442 Label retry_load, nope;
3443 prfm(Address(addr), PSTL1STRM);
3444 bind(retry_load);
3445 // flush and load exclusive from the memory location
3446 // and fail if it is not what we expect
3447 ldaxrw(tmp, addr);
3448 cmp(tmp, oldv);
3449 br(Assembler::NE, nope);
3450 // if we store+flush with no intervening write tmp will be zero
3451 stlxrw(tmp, newv, addr);
3452 cbzw(tmp, succeed);
3453 // retry so we only ever return after a load fails to compare
3454 // ensures we don't return a stale value after a failed write.
3455 b(retry_load);
3456 // if the memory word differs we return it in oldv and signal a fail
3457 bind(nope);
3458 membar(AnyAny);
3459 mov(oldv, tmp);
3460 }
3461 if (fail)
3462 b(*fail);
3463 }
3464
3465 // A generic CAS; success or failure is in the EQ flag. A weak CAS
3466 // doesn't retry and may fail spuriously. If the oldval is wanted,
3467 // Pass a register for the result, otherwise pass noreg.
3468
3469 // Clobbers rscratch1
3470 void MacroAssembler::cmpxchg(Register addr, Register expected,
3471 Register new_val,
3472 enum operand_size size,
3473 bool acquire, bool release,
3474 bool weak,
3475 Register result) {
3476 if (result == noreg) result = rscratch1;
3477 BLOCK_COMMENT("cmpxchg {");
3478 if (UseLSE) {
3479 mov(result, expected);
3480 lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true);
3481 compare_eq(result, expected, size);
3482 #ifdef ASSERT
3483 // Poison rscratch1 which is written on !UseLSE branch
3484 mov(rscratch1, 0x1f1f1f1f1f1f1f1f);
3485 #endif
3486 } else {
3487 Label retry_load, done;
3488 prfm(Address(addr), PSTL1STRM);
3489 bind(retry_load);
3490 load_exclusive(result, addr, size, acquire);
3491 compare_eq(result, expected, size);
3492 br(Assembler::NE, done);
3493 store_exclusive(rscratch1, new_val, addr, size, release);
3494 if (weak) {
3495 cmpw(rscratch1, 0u); // If the store fails, return NE to our caller.
3496 } else {
3497 cbnzw(rscratch1, retry_load);
3498 }
3499 bind(done);
3500 }
3501 BLOCK_COMMENT("} cmpxchg");
3502 }
3503
3504 // A generic comparison. Only compares for equality, clobbers rscratch1.
3505 void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) {
3506 if (size == xword) {
3507 cmp(rm, rn);
3508 } else if (size == word) {
3509 cmpw(rm, rn);
3510 } else if (size == halfword) {
3511 eorw(rscratch1, rm, rn);
3512 ands(zr, rscratch1, 0xffff);
3513 } else if (size == byte) {
3514 eorw(rscratch1, rm, rn);
3515 ands(zr, rscratch1, 0xff);
3516 } else {
3517 ShouldNotReachHere();
3518 }
3519 }
3520
3521
3522 static bool different(Register a, RegisterOrConstant b, Register c) {
3523 if (b.is_constant())
3524 return a != c;
3525 else
3526 return a != b.as_register() && a != c && b.as_register() != c;
3527 }
3528
3529 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \
3530 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \
3531 if (UseLSE) { \
3532 prev = prev->is_valid() ? prev : zr; \
3533 if (incr.is_register()) { \
3534 AOP(sz, incr.as_register(), prev, addr); \
3535 } else { \
3536 mov(rscratch2, incr.as_constant()); \
3537 AOP(sz, rscratch2, prev, addr); \
3538 } \
3539 return; \
3540 } \
3541 Register result = rscratch2; \
3542 if (prev->is_valid()) \
3543 result = different(prev, incr, addr) ? prev : rscratch2; \
3544 \
3545 Label retry_load; \
3546 prfm(Address(addr), PSTL1STRM); \
3547 bind(retry_load); \
3548 LDXR(result, addr); \
3549 OP(rscratch1, result, incr); \
3550 STXR(rscratch2, rscratch1, addr); \
3551 cbnzw(rscratch2, retry_load); \
3552 if (prev->is_valid() && prev != result) { \
3553 IOP(prev, rscratch1, incr); \
3554 } \
3555 }
3556
3557 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword)
3558 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word)
3559 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword)
3560 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word)
3561
3562 #undef ATOMIC_OP
3563
3564 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \
3565 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \
3566 if (UseLSE) { \
3567 prev = prev->is_valid() ? prev : zr; \
3568 AOP(sz, newv, prev, addr); \
3569 return; \
3570 } \
3571 Register result = rscratch2; \
3572 if (prev->is_valid()) \
3573 result = different(prev, newv, addr) ? prev : rscratch2; \
3574 \
3575 Label retry_load; \
3576 prfm(Address(addr), PSTL1STRM); \
3577 bind(retry_load); \
3578 LDXR(result, addr); \
3579 STXR(rscratch1, newv, addr); \
3580 cbnzw(rscratch1, retry_load); \
3581 if (prev->is_valid() && prev != result) \
3582 mov(prev, result); \
3583 }
3584
3585 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword)
3586 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word)
3587 ATOMIC_XCHG(xchgl, swpl, ldxr, stlxr, Assembler::xword)
3588 ATOMIC_XCHG(xchglw, swpl, ldxrw, stlxrw, Assembler::word)
3589 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword)
3590 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word)
3591
3592 #undef ATOMIC_XCHG
3593
3594 #ifndef PRODUCT
3595 extern "C" void findpc(intptr_t x);
3596 #endif
3597
3598 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[])
3599 {
3600 // In order to get locks to work, we need to fake a in_VM state
3601 if (ShowMessageBoxOnError ) {
3602 JavaThread* thread = JavaThread::current();
3603 JavaThreadState saved_state = thread->thread_state();
3604 thread->set_thread_state(_thread_in_vm);
3605 #ifndef PRODUCT
3606 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
3607 ttyLocker ttyl;
3608 BytecodeCounter::print();
3609 }
3610 #endif
3611 if (os::message_box(msg, "Execution stopped, print registers?")) {
3612 ttyLocker ttyl;
3613 tty->print_cr(" pc = 0x%016" PRIx64, pc);
3614 #ifndef PRODUCT
3615 tty->cr();
3616 findpc(pc);
3617 tty->cr();
3618 #endif
3619 tty->print_cr(" r0 = 0x%016" PRIx64, regs[0]);
3620 tty->print_cr(" r1 = 0x%016" PRIx64, regs[1]);
3621 tty->print_cr(" r2 = 0x%016" PRIx64, regs[2]);
3622 tty->print_cr(" r3 = 0x%016" PRIx64, regs[3]);
3623 tty->print_cr(" r4 = 0x%016" PRIx64, regs[4]);
3624 tty->print_cr(" r5 = 0x%016" PRIx64, regs[5]);
3625 tty->print_cr(" r6 = 0x%016" PRIx64, regs[6]);
3626 tty->print_cr(" r7 = 0x%016" PRIx64, regs[7]);
3627 tty->print_cr(" r8 = 0x%016" PRIx64, regs[8]);
3628 tty->print_cr(" r9 = 0x%016" PRIx64, regs[9]);
3629 tty->print_cr("r10 = 0x%016" PRIx64, regs[10]);
3630 tty->print_cr("r11 = 0x%016" PRIx64, regs[11]);
3631 tty->print_cr("r12 = 0x%016" PRIx64, regs[12]);
3632 tty->print_cr("r13 = 0x%016" PRIx64, regs[13]);
3633 tty->print_cr("r14 = 0x%016" PRIx64, regs[14]);
3634 tty->print_cr("r15 = 0x%016" PRIx64, regs[15]);
3635 tty->print_cr("r16 = 0x%016" PRIx64, regs[16]);
3636 tty->print_cr("r17 = 0x%016" PRIx64, regs[17]);
3637 tty->print_cr("r18 = 0x%016" PRIx64, regs[18]);
3638 tty->print_cr("r19 = 0x%016" PRIx64, regs[19]);
3639 tty->print_cr("r20 = 0x%016" PRIx64, regs[20]);
3640 tty->print_cr("r21 = 0x%016" PRIx64, regs[21]);
3641 tty->print_cr("r22 = 0x%016" PRIx64, regs[22]);
3642 tty->print_cr("r23 = 0x%016" PRIx64, regs[23]);
3643 tty->print_cr("r24 = 0x%016" PRIx64, regs[24]);
3644 tty->print_cr("r25 = 0x%016" PRIx64, regs[25]);
3645 tty->print_cr("r26 = 0x%016" PRIx64, regs[26]);
3646 tty->print_cr("r27 = 0x%016" PRIx64, regs[27]);
3647 tty->print_cr("r28 = 0x%016" PRIx64, regs[28]);
3648 tty->print_cr("r30 = 0x%016" PRIx64, regs[30]);
3649 tty->print_cr("r31 = 0x%016" PRIx64, regs[31]);
3650 BREAKPOINT;
3651 }
3652 }
3653 fatal("DEBUG MESSAGE: %s", msg);
3654 }
3655
3656 RegSet MacroAssembler::call_clobbered_gp_registers() {
3657 RegSet regs = RegSet::range(r0, r17) - RegSet::of(rscratch1, rscratch2);
3658 #ifndef R18_RESERVED
3659 regs += r18_tls;
3660 #endif
3661 return regs;
3662 }
3663
3664 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) {
3665 int step = 4 * wordSize;
3666 push(call_clobbered_gp_registers() - exclude, sp);
3667 sub(sp, sp, step);
3668 mov(rscratch1, -step);
3669 // Push v0-v7, v16-v31.
3670 for (int i = 31; i>= 4; i -= 4) {
3671 if (i <= v7->encoding() || i >= v16->encoding())
3672 st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1),
3673 as_FloatRegister(i), T1D, Address(post(sp, rscratch1)));
3674 }
3675 st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2),
3676 as_FloatRegister(3), T1D, Address(sp));
3677 }
3678
3679 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) {
3680 for (int i = 0; i < 32; i += 4) {
3681 if (i <= v7->encoding() || i >= v16->encoding())
3682 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2),
3683 as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize)));
3684 }
3685
3686 reinitialize_ptrue();
3687
3688 pop(call_clobbered_gp_registers() - exclude, sp);
3689 }
3690
3691 void MacroAssembler::push_CPU_state(bool save_vectors, bool use_sve,
3692 int sve_vector_size_in_bytes, int total_predicate_in_bytes) {
3693 push(RegSet::range(r0, r29), sp); // integer registers except lr & sp
3694 if (save_vectors && use_sve && sve_vector_size_in_bytes > 16) {
3695 sub(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers);
3696 for (int i = 0; i < FloatRegister::number_of_registers; i++) {
3697 sve_str(as_FloatRegister(i), Address(sp, i));
3698 }
3699 } else {
3700 int step = (save_vectors ? 8 : 4) * wordSize;
3701 mov(rscratch1, -step);
3702 sub(sp, sp, step);
3703 for (int i = 28; i >= 4; i -= 4) {
3704 st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2),
3705 as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1)));
3706 }
3707 st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp);
3708 }
3709 if (save_vectors && use_sve && total_predicate_in_bytes > 0) {
3710 sub(sp, sp, total_predicate_in_bytes);
3711 for (int i = 0; i < PRegister::number_of_registers; i++) {
3712 sve_str(as_PRegister(i), Address(sp, i));
3713 }
3714 }
3715 }
3716
3717 void MacroAssembler::pop_CPU_state(bool restore_vectors, bool use_sve,
3718 int sve_vector_size_in_bytes, int total_predicate_in_bytes) {
3719 if (restore_vectors && use_sve && total_predicate_in_bytes > 0) {
3720 for (int i = PRegister::number_of_registers - 1; i >= 0; i--) {
3721 sve_ldr(as_PRegister(i), Address(sp, i));
3722 }
3723 add(sp, sp, total_predicate_in_bytes);
3724 }
3725 if (restore_vectors && use_sve && sve_vector_size_in_bytes > 16) {
3726 for (int i = FloatRegister::number_of_registers - 1; i >= 0; i--) {
3727 sve_ldr(as_FloatRegister(i), Address(sp, i));
3728 }
3729 add(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers);
3730 } else {
3731 int step = (restore_vectors ? 8 : 4) * wordSize;
3732 for (int i = 0; i <= 28; i += 4)
3733 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2),
3734 as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step)));
3735 }
3736
3737 // We may use predicate registers and rely on ptrue with SVE,
3738 // regardless of wide vector (> 8 bytes) used or not.
3739 if (use_sve) {
3740 reinitialize_ptrue();
3741 }
3742
3743 // integer registers except lr & sp
3744 pop(RegSet::range(r0, r17), sp);
3745 #ifdef R18_RESERVED
3746 ldp(zr, r19, Address(post(sp, 2 * wordSize)));
3747 pop(RegSet::range(r20, r29), sp);
3748 #else
3749 pop(RegSet::range(r18_tls, r29), sp);
3750 #endif
3751 }
3752
3753 /**
3754 * Helpers for multiply_to_len().
3755 */
3756 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
3757 Register src1, Register src2) {
3758 adds(dest_lo, dest_lo, src1);
3759 adc(dest_hi, dest_hi, zr);
3760 adds(dest_lo, dest_lo, src2);
3761 adc(final_dest_hi, dest_hi, zr);
3762 }
3763
3764 // Generate an address from (r + r1 extend offset). "size" is the
3765 // size of the operand. The result may be in rscratch2.
3766 Address MacroAssembler::offsetted_address(Register r, Register r1,
3767 Address::extend ext, int offset, int size) {
3768 if (offset || (ext.shift() % size != 0)) {
3769 lea(rscratch2, Address(r, r1, ext));
3770 return Address(rscratch2, offset);
3771 } else {
3772 return Address(r, r1, ext);
3773 }
3774 }
3775
3776 Address MacroAssembler::spill_address(int size, int offset, Register tmp)
3777 {
3778 assert(offset >= 0, "spill to negative address?");
3779 // Offset reachable ?
3780 // Not aligned - 9 bits signed offset
3781 // Aligned - 12 bits unsigned offset shifted
3782 Register base = sp;
3783 if ((offset & (size-1)) && offset >= (1<<8)) {
3784 add(tmp, base, offset & ((1<<12)-1));
3785 base = tmp;
3786 offset &= -1u<<12;
3787 }
3788
3789 if (offset >= (1<<12) * size) {
3790 add(tmp, base, offset & (((1<<12)-1)<<12));
3791 base = tmp;
3792 offset &= ~(((1<<12)-1)<<12);
3793 }
3794
3795 return Address(base, offset);
3796 }
3797
3798 Address MacroAssembler::sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp) {
3799 assert(offset >= 0, "spill to negative address?");
3800
3801 Register base = sp;
3802
3803 // An immediate offset in the range 0 to 255 which is multiplied
3804 // by the current vector or predicate register size in bytes.
3805 if (offset % sve_reg_size_in_bytes == 0 && offset < ((1<<8)*sve_reg_size_in_bytes)) {
3806 return Address(base, offset / sve_reg_size_in_bytes);
3807 }
3808
3809 add(tmp, base, offset);
3810 return Address(tmp);
3811 }
3812
3813 // Checks whether offset is aligned.
3814 // Returns true if it is, else false.
3815 bool MacroAssembler::merge_alignment_check(Register base,
3816 size_t size,
3817 int64_t cur_offset,
3818 int64_t prev_offset) const {
3819 if (AvoidUnalignedAccesses) {
3820 if (base == sp) {
3821 // Checks whether low offset if aligned to pair of registers.
3822 int64_t pair_mask = size * 2 - 1;
3823 int64_t offset = prev_offset > cur_offset ? cur_offset : prev_offset;
3824 return (offset & pair_mask) == 0;
3825 } else { // If base is not sp, we can't guarantee the access is aligned.
3826 return false;
3827 }
3828 } else {
3829 int64_t mask = size - 1;
3830 // Load/store pair instruction only supports element size aligned offset.
3831 return (cur_offset & mask) == 0 && (prev_offset & mask) == 0;
3832 }
3833 }
3834
3835 // Checks whether current and previous loads/stores can be merged.
3836 // Returns true if it can be merged, else false.
3837 bool MacroAssembler::ldst_can_merge(Register rt,
3838 const Address &adr,
3839 size_t cur_size_in_bytes,
3840 bool is_store) const {
3841 address prev = pc() - NativeInstruction::instruction_size;
3842 address last = code()->last_insn();
3843
3844 if (last == nullptr || !nativeInstruction_at(last)->is_Imm_LdSt()) {
3845 return false;
3846 }
3847
3848 if (adr.getMode() != Address::base_plus_offset || prev != last) {
3849 return false;
3850 }
3851
3852 NativeLdSt* prev_ldst = NativeLdSt_at(prev);
3853 size_t prev_size_in_bytes = prev_ldst->size_in_bytes();
3854
3855 assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging.");
3856 assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging.");
3857
3858 if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) {
3859 return false;
3860 }
3861
3862 int64_t max_offset = 63 * prev_size_in_bytes;
3863 int64_t min_offset = -64 * prev_size_in_bytes;
3864
3865 assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged.");
3866
3867 // Only same base can be merged.
3868 if (adr.base() != prev_ldst->base()) {
3869 return false;
3870 }
3871
3872 int64_t cur_offset = adr.offset();
3873 int64_t prev_offset = prev_ldst->offset();
3874 size_t diff = abs(cur_offset - prev_offset);
3875 if (diff != prev_size_in_bytes) {
3876 return false;
3877 }
3878
3879 // Following cases can not be merged:
3880 // ldr x2, [x2, #8]
3881 // ldr x3, [x2, #16]
3882 // or:
3883 // ldr x2, [x3, #8]
3884 // ldr x2, [x3, #16]
3885 // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL.
3886 if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) {
3887 return false;
3888 }
3889
3890 int64_t low_offset = prev_offset > cur_offset ? cur_offset : prev_offset;
3891 // Offset range must be in ldp/stp instruction's range.
3892 if (low_offset > max_offset || low_offset < min_offset) {
3893 return false;
3894 }
3895
3896 if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) {
3897 return true;
3898 }
3899
3900 return false;
3901 }
3902
3903 // Merge current load/store with previous load/store into ldp/stp.
3904 void MacroAssembler::merge_ldst(Register rt,
3905 const Address &adr,
3906 size_t cur_size_in_bytes,
3907 bool is_store) {
3908
3909 assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged.");
3910
3911 Register rt_low, rt_high;
3912 address prev = pc() - NativeInstruction::instruction_size;
3913 NativeLdSt* prev_ldst = NativeLdSt_at(prev);
3914
3915 int64_t offset;
3916
3917 if (adr.offset() < prev_ldst->offset()) {
3918 offset = adr.offset();
3919 rt_low = rt;
3920 rt_high = prev_ldst->target();
3921 } else {
3922 offset = prev_ldst->offset();
3923 rt_low = prev_ldst->target();
3924 rt_high = rt;
3925 }
3926
3927 Address adr_p = Address(prev_ldst->base(), offset);
3928 // Overwrite previous generated binary.
3929 code_section()->set_end(prev);
3930
3931 const size_t sz = prev_ldst->size_in_bytes();
3932 assert(sz == 8 || sz == 4, "only supports 64/32bit merging.");
3933 if (!is_store) {
3934 BLOCK_COMMENT("merged ldr pair");
3935 if (sz == 8) {
3936 ldp(rt_low, rt_high, adr_p);
3937 } else {
3938 ldpw(rt_low, rt_high, adr_p);
3939 }
3940 } else {
3941 BLOCK_COMMENT("merged str pair");
3942 if (sz == 8) {
3943 stp(rt_low, rt_high, adr_p);
3944 } else {
3945 stpw(rt_low, rt_high, adr_p);
3946 }
3947 }
3948 }
3949
3950 /**
3951 * Multiply 64 bit by 64 bit first loop.
3952 */
3953 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
3954 Register y, Register y_idx, Register z,
3955 Register carry, Register product,
3956 Register idx, Register kdx) {
3957 //
3958 // jlong carry, x[], y[], z[];
3959 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
3960 // huge_128 product = y[idx] * x[xstart] + carry;
3961 // z[kdx] = (jlong)product;
3962 // carry = (jlong)(product >>> 64);
3963 // }
3964 // z[xstart] = carry;
3965 //
3966
3967 Label L_first_loop, L_first_loop_exit;
3968 Label L_one_x, L_one_y, L_multiply;
3969
3970 subsw(xstart, xstart, 1);
3971 br(Assembler::MI, L_one_x);
3972
3973 lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt)));
3974 ldr(x_xstart, Address(rscratch1));
3975 ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian
3976
3977 bind(L_first_loop);
3978 subsw(idx, idx, 1);
3979 br(Assembler::MI, L_first_loop_exit);
3980 subsw(idx, idx, 1);
3981 br(Assembler::MI, L_one_y);
3982 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
3983 ldr(y_idx, Address(rscratch1));
3984 ror(y_idx, y_idx, 32); // convert big-endian to little-endian
3985 bind(L_multiply);
3986
3987 // AArch64 has a multiply-accumulate instruction that we can't use
3988 // here because it has no way to process carries, so we have to use
3989 // separate add and adc instructions. Bah.
3990 umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product
3991 mul(product, x_xstart, y_idx);
3992 adds(product, product, carry);
3993 adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product
3994
3995 subw(kdx, kdx, 2);
3996 ror(product, product, 32); // back to big-endian
3997 str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong));
3998
3999 b(L_first_loop);
4000
4001 bind(L_one_y);
4002 ldrw(y_idx, Address(y, 0));
4003 b(L_multiply);
4004
4005 bind(L_one_x);
4006 ldrw(x_xstart, Address(x, 0));
4007 b(L_first_loop);
4008
4009 bind(L_first_loop_exit);
4010 }
4011
4012 /**
4013 * Multiply 128 bit by 128. Unrolled inner loop.
4014 *
4015 */
4016 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z,
4017 Register carry, Register carry2,
4018 Register idx, Register jdx,
4019 Register yz_idx1, Register yz_idx2,
4020 Register tmp, Register tmp3, Register tmp4,
4021 Register tmp6, Register product_hi) {
4022
4023 // jlong carry, x[], y[], z[];
4024 // int kdx = ystart+1;
4025 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
4026 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry;
4027 // jlong carry2 = (jlong)(tmp3 >>> 64);
4028 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2;
4029 // carry = (jlong)(tmp4 >>> 64);
4030 // z[kdx+idx+1] = (jlong)tmp3;
4031 // z[kdx+idx] = (jlong)tmp4;
4032 // }
4033 // idx += 2;
4034 // if (idx > 0) {
4035 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry;
4036 // z[kdx+idx] = (jlong)yz_idx1;
4037 // carry = (jlong)(yz_idx1 >>> 64);
4038 // }
4039 //
4040
4041 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
4042
4043 lsrw(jdx, idx, 2);
4044
4045 bind(L_third_loop);
4046
4047 subsw(jdx, jdx, 1);
4048 br(Assembler::MI, L_third_loop_exit);
4049 subw(idx, idx, 4);
4050
4051 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
4052
4053 ldp(yz_idx2, yz_idx1, Address(rscratch1, 0));
4054
4055 lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt)));
4056
4057 ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
4058 ror(yz_idx2, yz_idx2, 32);
4059
4060 ldp(rscratch2, rscratch1, Address(tmp6, 0));
4061
4062 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3
4063 umulh(tmp4, product_hi, yz_idx1);
4064
4065 ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian
4066 ror(rscratch2, rscratch2, 32);
4067
4068 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp
4069 umulh(carry2, product_hi, yz_idx2);
4070
4071 // propagate sum of both multiplications into carry:tmp4:tmp3
4072 adds(tmp3, tmp3, carry);
4073 adc(tmp4, tmp4, zr);
4074 adds(tmp3, tmp3, rscratch1);
4075 adcs(tmp4, tmp4, tmp);
4076 adc(carry, carry2, zr);
4077 adds(tmp4, tmp4, rscratch2);
4078 adc(carry, carry, zr);
4079
4080 ror(tmp3, tmp3, 32); // convert little-endian to big-endian
4081 ror(tmp4, tmp4, 32);
4082 stp(tmp4, tmp3, Address(tmp6, 0));
4083
4084 b(L_third_loop);
4085 bind (L_third_loop_exit);
4086
4087 andw (idx, idx, 0x3);
4088 cbz(idx, L_post_third_loop_done);
4089
4090 Label L_check_1;
4091 subsw(idx, idx, 2);
4092 br(Assembler::MI, L_check_1);
4093
4094 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
4095 ldr(yz_idx1, Address(rscratch1, 0));
4096 ror(yz_idx1, yz_idx1, 32);
4097 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3
4098 umulh(tmp4, product_hi, yz_idx1);
4099 lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt)));
4100 ldr(yz_idx2, Address(rscratch1, 0));
4101 ror(yz_idx2, yz_idx2, 32);
4102
4103 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2);
4104
4105 ror(tmp3, tmp3, 32);
4106 str(tmp3, Address(rscratch1, 0));
4107
4108 bind (L_check_1);
4109
4110 andw (idx, idx, 0x1);
4111 subsw(idx, idx, 1);
4112 br(Assembler::MI, L_post_third_loop_done);
4113 ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt)));
4114 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3
4115 umulh(carry2, tmp4, product_hi);
4116 ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt)));
4117
4118 add2_with_carry(carry2, tmp3, tmp4, carry);
4119
4120 strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt)));
4121 extr(carry, carry2, tmp3, 32);
4122
4123 bind(L_post_third_loop_done);
4124 }
4125
4126 /**
4127 * Code for BigInteger::multiplyToLen() intrinsic.
4128 *
4129 * r0: x
4130 * r1: xlen
4131 * r2: y
4132 * r3: ylen
4133 * r4: z
4134 * r5: tmp0
4135 * r10: tmp1
4136 * r11: tmp2
4137 * r12: tmp3
4138 * r13: tmp4
4139 * r14: tmp5
4140 * r15: tmp6
4141 * r16: tmp7
4142 *
4143 */
4144 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen,
4145 Register z, Register tmp0,
4146 Register tmp1, Register tmp2, Register tmp3, Register tmp4,
4147 Register tmp5, Register tmp6, Register product_hi) {
4148
4149 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, product_hi);
4150
4151 const Register idx = tmp1;
4152 const Register kdx = tmp2;
4153 const Register xstart = tmp3;
4154
4155 const Register y_idx = tmp4;
4156 const Register carry = tmp5;
4157 const Register product = xlen;
4158 const Register x_xstart = tmp0;
4159
4160 // First Loop.
4161 //
4162 // final static long LONG_MASK = 0xffffffffL;
4163 // int xstart = xlen - 1;
4164 // int ystart = ylen - 1;
4165 // long carry = 0;
4166 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
4167 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
4168 // z[kdx] = (int)product;
4169 // carry = product >>> 32;
4170 // }
4171 // z[xstart] = (int)carry;
4172 //
4173
4174 movw(idx, ylen); // idx = ylen;
4175 addw(kdx, xlen, ylen); // kdx = xlen+ylen;
4176 mov(carry, zr); // carry = 0;
4177
4178 Label L_done;
4179
4180 movw(xstart, xlen);
4181 subsw(xstart, xstart, 1);
4182 br(Assembler::MI, L_done);
4183
4184 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
4185
4186 Label L_second_loop;
4187 cbzw(kdx, L_second_loop);
4188
4189 Label L_carry;
4190 subw(kdx, kdx, 1);
4191 cbzw(kdx, L_carry);
4192
4193 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt)));
4194 lsr(carry, carry, 32);
4195 subw(kdx, kdx, 1);
4196
4197 bind(L_carry);
4198 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt)));
4199
4200 // Second and third (nested) loops.
4201 //
4202 // for (int i = xstart-1; i >= 0; i--) { // Second loop
4203 // carry = 0;
4204 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
4205 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
4206 // (z[k] & LONG_MASK) + carry;
4207 // z[k] = (int)product;
4208 // carry = product >>> 32;
4209 // }
4210 // z[i] = (int)carry;
4211 // }
4212 //
4213 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi
4214
4215 const Register jdx = tmp1;
4216
4217 bind(L_second_loop);
4218 mov(carry, zr); // carry = 0;
4219 movw(jdx, ylen); // j = ystart+1
4220
4221 subsw(xstart, xstart, 1); // i = xstart-1;
4222 br(Assembler::MI, L_done);
4223
4224 str(z, Address(pre(sp, -4 * wordSize)));
4225
4226 Label L_last_x;
4227 lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j
4228 subsw(xstart, xstart, 1); // i = xstart-1;
4229 br(Assembler::MI, L_last_x);
4230
4231 lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt)));
4232 ldr(product_hi, Address(rscratch1));
4233 ror(product_hi, product_hi, 32); // convert big-endian to little-endian
4234
4235 Label L_third_loop_prologue;
4236 bind(L_third_loop_prologue);
4237
4238 str(ylen, Address(sp, wordSize));
4239 stp(x, xstart, Address(sp, 2 * wordSize));
4240 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product,
4241 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi);
4242 ldp(z, ylen, Address(post(sp, 2 * wordSize)));
4243 ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen
4244
4245 addw(tmp3, xlen, 1);
4246 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt)));
4247 subsw(tmp3, tmp3, 1);
4248 br(Assembler::MI, L_done);
4249
4250 lsr(carry, carry, 32);
4251 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt)));
4252 b(L_second_loop);
4253
4254 // Next infrequent code is moved outside loops.
4255 bind(L_last_x);
4256 ldrw(product_hi, Address(x, 0));
4257 b(L_third_loop_prologue);
4258
4259 bind(L_done);
4260 }
4261
4262 // Code for BigInteger::mulAdd intrinsic
4263 // out = r0
4264 // in = r1
4265 // offset = r2 (already out.length-offset)
4266 // len = r3
4267 // k = r4
4268 //
4269 // pseudo code from java implementation:
4270 // carry = 0;
4271 // offset = out.length-offset - 1;
4272 // for (int j=len-1; j >= 0; j--) {
4273 // product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry;
4274 // out[offset--] = (int)product;
4275 // carry = product >>> 32;
4276 // }
4277 // return (int)carry;
4278 void MacroAssembler::mul_add(Register out, Register in, Register offset,
4279 Register len, Register k) {
4280 Label LOOP, END;
4281 // pre-loop
4282 cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches
4283 csel(out, zr, out, Assembler::EQ);
4284 br(Assembler::EQ, END);
4285 add(in, in, len, LSL, 2); // in[j+1] address
4286 add(offset, out, offset, LSL, 2); // out[offset + 1] address
4287 mov(out, zr); // used to keep carry now
4288 BIND(LOOP);
4289 ldrw(rscratch1, Address(pre(in, -4)));
4290 madd(rscratch1, rscratch1, k, out);
4291 ldrw(rscratch2, Address(pre(offset, -4)));
4292 add(rscratch1, rscratch1, rscratch2);
4293 strw(rscratch1, Address(offset));
4294 lsr(out, rscratch1, 32);
4295 subs(len, len, 1);
4296 br(Assembler::NE, LOOP);
4297 BIND(END);
4298 }
4299
4300 /**
4301 * Emits code to update CRC-32 with a byte value according to constants in table
4302 *
4303 * @param [in,out]crc Register containing the crc.
4304 * @param [in]val Register containing the byte to fold into the CRC.
4305 * @param [in]table Register containing the table of crc constants.
4306 *
4307 * uint32_t crc;
4308 * val = crc_table[(val ^ crc) & 0xFF];
4309 * crc = val ^ (crc >> 8);
4310 *
4311 */
4312 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
4313 eor(val, val, crc);
4314 andr(val, val, 0xff);
4315 ldrw(val, Address(table, val, Address::lsl(2)));
4316 eor(crc, val, crc, Assembler::LSR, 8);
4317 }
4318
4319 /**
4320 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3
4321 *
4322 * @param [in,out]crc Register containing the crc.
4323 * @param [in]v Register containing the 32-bit to fold into the CRC.
4324 * @param [in]table0 Register containing table 0 of crc constants.
4325 * @param [in]table1 Register containing table 1 of crc constants.
4326 * @param [in]table2 Register containing table 2 of crc constants.
4327 * @param [in]table3 Register containing table 3 of crc constants.
4328 *
4329 * uint32_t crc;
4330 * v = crc ^ v
4331 * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24]
4332 *
4333 */
4334 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp,
4335 Register table0, Register table1, Register table2, Register table3,
4336 bool upper) {
4337 eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0);
4338 uxtb(tmp, v);
4339 ldrw(crc, Address(table3, tmp, Address::lsl(2)));
4340 ubfx(tmp, v, 8, 8);
4341 ldrw(tmp, Address(table2, tmp, Address::lsl(2)));
4342 eor(crc, crc, tmp);
4343 ubfx(tmp, v, 16, 8);
4344 ldrw(tmp, Address(table1, tmp, Address::lsl(2)));
4345 eor(crc, crc, tmp);
4346 ubfx(tmp, v, 24, 8);
4347 ldrw(tmp, Address(table0, tmp, Address::lsl(2)));
4348 eor(crc, crc, tmp);
4349 }
4350
4351 void MacroAssembler::kernel_crc32_using_crypto_pmull(Register crc, Register buf,
4352 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) {
4353 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit;
4354 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2);
4355
4356 subs(tmp0, len, 384);
4357 mvnw(crc, crc);
4358 br(Assembler::GE, CRC_by128_pre);
4359 BIND(CRC_less128);
4360 subs(len, len, 32);
4361 br(Assembler::GE, CRC_by32_loop);
4362 BIND(CRC_less32);
4363 adds(len, len, 32 - 4);
4364 br(Assembler::GE, CRC_by4_loop);
4365 adds(len, len, 4);
4366 br(Assembler::GT, CRC_by1_loop);
4367 b(L_exit);
4368
4369 BIND(CRC_by32_loop);
4370 ldp(tmp0, tmp1, Address(buf));
4371 crc32x(crc, crc, tmp0);
4372 ldp(tmp2, tmp3, Address(buf, 16));
4373 crc32x(crc, crc, tmp1);
4374 add(buf, buf, 32);
4375 crc32x(crc, crc, tmp2);
4376 subs(len, len, 32);
4377 crc32x(crc, crc, tmp3);
4378 br(Assembler::GE, CRC_by32_loop);
4379 cmn(len, (u1)32);
4380 br(Assembler::NE, CRC_less32);
4381 b(L_exit);
4382
4383 BIND(CRC_by4_loop);
4384 ldrw(tmp0, Address(post(buf, 4)));
4385 subs(len, len, 4);
4386 crc32w(crc, crc, tmp0);
4387 br(Assembler::GE, CRC_by4_loop);
4388 adds(len, len, 4);
4389 br(Assembler::LE, L_exit);
4390 BIND(CRC_by1_loop);
4391 ldrb(tmp0, Address(post(buf, 1)));
4392 subs(len, len, 1);
4393 crc32b(crc, crc, tmp0);
4394 br(Assembler::GT, CRC_by1_loop);
4395 b(L_exit);
4396
4397 BIND(CRC_by128_pre);
4398 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2,
4399 4*256*sizeof(juint) + 8*sizeof(juint));
4400 mov(crc, 0);
4401 crc32x(crc, crc, tmp0);
4402 crc32x(crc, crc, tmp1);
4403
4404 cbnz(len, CRC_less128);
4405
4406 BIND(L_exit);
4407 mvnw(crc, crc);
4408 }
4409
4410 void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf,
4411 Register len, Register tmp0, Register tmp1, Register tmp2,
4412 Register tmp3) {
4413 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit;
4414 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3);
4415
4416 mvnw(crc, crc);
4417
4418 subs(len, len, 128);
4419 br(Assembler::GE, CRC_by64_pre);
4420 BIND(CRC_less64);
4421 adds(len, len, 128-32);
4422 br(Assembler::GE, CRC_by32_loop);
4423 BIND(CRC_less32);
4424 adds(len, len, 32-4);
4425 br(Assembler::GE, CRC_by4_loop);
4426 adds(len, len, 4);
4427 br(Assembler::GT, CRC_by1_loop);
4428 b(L_exit);
4429
4430 BIND(CRC_by32_loop);
4431 ldp(tmp0, tmp1, Address(post(buf, 16)));
4432 subs(len, len, 32);
4433 crc32x(crc, crc, tmp0);
4434 ldr(tmp2, Address(post(buf, 8)));
4435 crc32x(crc, crc, tmp1);
4436 ldr(tmp3, Address(post(buf, 8)));
4437 crc32x(crc, crc, tmp2);
4438 crc32x(crc, crc, tmp3);
4439 br(Assembler::GE, CRC_by32_loop);
4440 cmn(len, (u1)32);
4441 br(Assembler::NE, CRC_less32);
4442 b(L_exit);
4443
4444 BIND(CRC_by4_loop);
4445 ldrw(tmp0, Address(post(buf, 4)));
4446 subs(len, len, 4);
4447 crc32w(crc, crc, tmp0);
4448 br(Assembler::GE, CRC_by4_loop);
4449 adds(len, len, 4);
4450 br(Assembler::LE, L_exit);
4451 BIND(CRC_by1_loop);
4452 ldrb(tmp0, Address(post(buf, 1)));
4453 subs(len, len, 1);
4454 crc32b(crc, crc, tmp0);
4455 br(Assembler::GT, CRC_by1_loop);
4456 b(L_exit);
4457
4458 BIND(CRC_by64_pre);
4459 sub(buf, buf, 8);
4460 ldp(tmp0, tmp1, Address(buf, 8));
4461 crc32x(crc, crc, tmp0);
4462 ldr(tmp2, Address(buf, 24));
4463 crc32x(crc, crc, tmp1);
4464 ldr(tmp3, Address(buf, 32));
4465 crc32x(crc, crc, tmp2);
4466 ldr(tmp0, Address(buf, 40));
4467 crc32x(crc, crc, tmp3);
4468 ldr(tmp1, Address(buf, 48));
4469 crc32x(crc, crc, tmp0);
4470 ldr(tmp2, Address(buf, 56));
4471 crc32x(crc, crc, tmp1);
4472 ldr(tmp3, Address(pre(buf, 64)));
4473
4474 b(CRC_by64_loop);
4475
4476 align(CodeEntryAlignment);
4477 BIND(CRC_by64_loop);
4478 subs(len, len, 64);
4479 crc32x(crc, crc, tmp2);
4480 ldr(tmp0, Address(buf, 8));
4481 crc32x(crc, crc, tmp3);
4482 ldr(tmp1, Address(buf, 16));
4483 crc32x(crc, crc, tmp0);
4484 ldr(tmp2, Address(buf, 24));
4485 crc32x(crc, crc, tmp1);
4486 ldr(tmp3, Address(buf, 32));
4487 crc32x(crc, crc, tmp2);
4488 ldr(tmp0, Address(buf, 40));
4489 crc32x(crc, crc, tmp3);
4490 ldr(tmp1, Address(buf, 48));
4491 crc32x(crc, crc, tmp0);
4492 ldr(tmp2, Address(buf, 56));
4493 crc32x(crc, crc, tmp1);
4494 ldr(tmp3, Address(pre(buf, 64)));
4495 br(Assembler::GE, CRC_by64_loop);
4496
4497 // post-loop
4498 crc32x(crc, crc, tmp2);
4499 crc32x(crc, crc, tmp3);
4500
4501 sub(len, len, 64);
4502 add(buf, buf, 8);
4503 cmn(len, (u1)128);
4504 br(Assembler::NE, CRC_less64);
4505 BIND(L_exit);
4506 mvnw(crc, crc);
4507 }
4508
4509 /**
4510 * @param crc register containing existing CRC (32-bit)
4511 * @param buf register pointing to input byte buffer (byte*)
4512 * @param len register containing number of bytes
4513 * @param table register that will contain address of CRC table
4514 * @param tmp scratch register
4515 */
4516 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len,
4517 Register table0, Register table1, Register table2, Register table3,
4518 Register tmp, Register tmp2, Register tmp3) {
4519 Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit;
4520
4521 if (UseCryptoPmullForCRC32) {
4522 kernel_crc32_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3);
4523 return;
4524 }
4525
4526 if (UseCRC32) {
4527 kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3);
4528 return;
4529 }
4530
4531 mvnw(crc, crc);
4532
4533 {
4534 uint64_t offset;
4535 adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset);
4536 add(table0, table0, offset);
4537 }
4538 add(table1, table0, 1*256*sizeof(juint));
4539 add(table2, table0, 2*256*sizeof(juint));
4540 add(table3, table0, 3*256*sizeof(juint));
4541
4542 { // Neon code start
4543 cmp(len, (u1)64);
4544 br(Assembler::LT, L_by16);
4545 eor(v16, T16B, v16, v16);
4546
4547 Label L_fold;
4548
4549 add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants
4550
4551 ld1(v0, v1, T2D, post(buf, 32));
4552 ld1r(v4, T2D, post(tmp, 8));
4553 ld1r(v5, T2D, post(tmp, 8));
4554 ld1r(v6, T2D, post(tmp, 8));
4555 ld1r(v7, T2D, post(tmp, 8));
4556 mov(v16, S, 0, crc);
4557
4558 eor(v0, T16B, v0, v16);
4559 sub(len, len, 64);
4560
4561 BIND(L_fold);
4562 pmull(v22, T8H, v0, v5, T8B);
4563 pmull(v20, T8H, v0, v7, T8B);
4564 pmull(v23, T8H, v0, v4, T8B);
4565 pmull(v21, T8H, v0, v6, T8B);
4566
4567 pmull2(v18, T8H, v0, v5, T16B);
4568 pmull2(v16, T8H, v0, v7, T16B);
4569 pmull2(v19, T8H, v0, v4, T16B);
4570 pmull2(v17, T8H, v0, v6, T16B);
4571
4572 uzp1(v24, T8H, v20, v22);
4573 uzp2(v25, T8H, v20, v22);
4574 eor(v20, T16B, v24, v25);
4575
4576 uzp1(v26, T8H, v16, v18);
4577 uzp2(v27, T8H, v16, v18);
4578 eor(v16, T16B, v26, v27);
4579
4580 ushll2(v22, T4S, v20, T8H, 8);
4581 ushll(v20, T4S, v20, T4H, 8);
4582
4583 ushll2(v18, T4S, v16, T8H, 8);
4584 ushll(v16, T4S, v16, T4H, 8);
4585
4586 eor(v22, T16B, v23, v22);
4587 eor(v18, T16B, v19, v18);
4588 eor(v20, T16B, v21, v20);
4589 eor(v16, T16B, v17, v16);
4590
4591 uzp1(v17, T2D, v16, v20);
4592 uzp2(v21, T2D, v16, v20);
4593 eor(v17, T16B, v17, v21);
4594
4595 ushll2(v20, T2D, v17, T4S, 16);
4596 ushll(v16, T2D, v17, T2S, 16);
4597
4598 eor(v20, T16B, v20, v22);
4599 eor(v16, T16B, v16, v18);
4600
4601 uzp1(v17, T2D, v20, v16);
4602 uzp2(v21, T2D, v20, v16);
4603 eor(v28, T16B, v17, v21);
4604
4605 pmull(v22, T8H, v1, v5, T8B);
4606 pmull(v20, T8H, v1, v7, T8B);
4607 pmull(v23, T8H, v1, v4, T8B);
4608 pmull(v21, T8H, v1, v6, T8B);
4609
4610 pmull2(v18, T8H, v1, v5, T16B);
4611 pmull2(v16, T8H, v1, v7, T16B);
4612 pmull2(v19, T8H, v1, v4, T16B);
4613 pmull2(v17, T8H, v1, v6, T16B);
4614
4615 ld1(v0, v1, T2D, post(buf, 32));
4616
4617 uzp1(v24, T8H, v20, v22);
4618 uzp2(v25, T8H, v20, v22);
4619 eor(v20, T16B, v24, v25);
4620
4621 uzp1(v26, T8H, v16, v18);
4622 uzp2(v27, T8H, v16, v18);
4623 eor(v16, T16B, v26, v27);
4624
4625 ushll2(v22, T4S, v20, T8H, 8);
4626 ushll(v20, T4S, v20, T4H, 8);
4627
4628 ushll2(v18, T4S, v16, T8H, 8);
4629 ushll(v16, T4S, v16, T4H, 8);
4630
4631 eor(v22, T16B, v23, v22);
4632 eor(v18, T16B, v19, v18);
4633 eor(v20, T16B, v21, v20);
4634 eor(v16, T16B, v17, v16);
4635
4636 uzp1(v17, T2D, v16, v20);
4637 uzp2(v21, T2D, v16, v20);
4638 eor(v16, T16B, v17, v21);
4639
4640 ushll2(v20, T2D, v16, T4S, 16);
4641 ushll(v16, T2D, v16, T2S, 16);
4642
4643 eor(v20, T16B, v22, v20);
4644 eor(v16, T16B, v16, v18);
4645
4646 uzp1(v17, T2D, v20, v16);
4647 uzp2(v21, T2D, v20, v16);
4648 eor(v20, T16B, v17, v21);
4649
4650 shl(v16, T2D, v28, 1);
4651 shl(v17, T2D, v20, 1);
4652
4653 eor(v0, T16B, v0, v16);
4654 eor(v1, T16B, v1, v17);
4655
4656 subs(len, len, 32);
4657 br(Assembler::GE, L_fold);
4658
4659 mov(crc, 0);
4660 mov(tmp, v0, D, 0);
4661 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
4662 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
4663 mov(tmp, v0, D, 1);
4664 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
4665 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
4666 mov(tmp, v1, D, 0);
4667 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
4668 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
4669 mov(tmp, v1, D, 1);
4670 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
4671 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
4672
4673 add(len, len, 32);
4674 } // Neon code end
4675
4676 BIND(L_by16);
4677 subs(len, len, 16);
4678 br(Assembler::GE, L_by16_loop);
4679 adds(len, len, 16-4);
4680 br(Assembler::GE, L_by4_loop);
4681 adds(len, len, 4);
4682 br(Assembler::GT, L_by1_loop);
4683 b(L_exit);
4684
4685 BIND(L_by4_loop);
4686 ldrw(tmp, Address(post(buf, 4)));
4687 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3);
4688 subs(len, len, 4);
4689 br(Assembler::GE, L_by4_loop);
4690 adds(len, len, 4);
4691 br(Assembler::LE, L_exit);
4692 BIND(L_by1_loop);
4693 subs(len, len, 1);
4694 ldrb(tmp, Address(post(buf, 1)));
4695 update_byte_crc32(crc, tmp, table0);
4696 br(Assembler::GT, L_by1_loop);
4697 b(L_exit);
4698
4699 align(CodeEntryAlignment);
4700 BIND(L_by16_loop);
4701 subs(len, len, 16);
4702 ldp(tmp, tmp3, Address(post(buf, 16)));
4703 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
4704 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
4705 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false);
4706 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true);
4707 br(Assembler::GE, L_by16_loop);
4708 adds(len, len, 16-4);
4709 br(Assembler::GE, L_by4_loop);
4710 adds(len, len, 4);
4711 br(Assembler::GT, L_by1_loop);
4712 BIND(L_exit);
4713 mvnw(crc, crc);
4714 }
4715
4716 void MacroAssembler::kernel_crc32c_using_crypto_pmull(Register crc, Register buf,
4717 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) {
4718 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit;
4719 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2);
4720
4721 subs(tmp0, len, 384);
4722 br(Assembler::GE, CRC_by128_pre);
4723 BIND(CRC_less128);
4724 subs(len, len, 32);
4725 br(Assembler::GE, CRC_by32_loop);
4726 BIND(CRC_less32);
4727 adds(len, len, 32 - 4);
4728 br(Assembler::GE, CRC_by4_loop);
4729 adds(len, len, 4);
4730 br(Assembler::GT, CRC_by1_loop);
4731 b(L_exit);
4732
4733 BIND(CRC_by32_loop);
4734 ldp(tmp0, tmp1, Address(buf));
4735 crc32cx(crc, crc, tmp0);
4736 ldr(tmp2, Address(buf, 16));
4737 crc32cx(crc, crc, tmp1);
4738 ldr(tmp3, Address(buf, 24));
4739 crc32cx(crc, crc, tmp2);
4740 add(buf, buf, 32);
4741 subs(len, len, 32);
4742 crc32cx(crc, crc, tmp3);
4743 br(Assembler::GE, CRC_by32_loop);
4744 cmn(len, (u1)32);
4745 br(Assembler::NE, CRC_less32);
4746 b(L_exit);
4747
4748 BIND(CRC_by4_loop);
4749 ldrw(tmp0, Address(post(buf, 4)));
4750 subs(len, len, 4);
4751 crc32cw(crc, crc, tmp0);
4752 br(Assembler::GE, CRC_by4_loop);
4753 adds(len, len, 4);
4754 br(Assembler::LE, L_exit);
4755 BIND(CRC_by1_loop);
4756 ldrb(tmp0, Address(post(buf, 1)));
4757 subs(len, len, 1);
4758 crc32cb(crc, crc, tmp0);
4759 br(Assembler::GT, CRC_by1_loop);
4760 b(L_exit);
4761
4762 BIND(CRC_by128_pre);
4763 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2,
4764 4*256*sizeof(juint) + 8*sizeof(juint) + 0x50);
4765 mov(crc, 0);
4766 crc32cx(crc, crc, tmp0);
4767 crc32cx(crc, crc, tmp1);
4768
4769 cbnz(len, CRC_less128);
4770
4771 BIND(L_exit);
4772 }
4773
4774 void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf,
4775 Register len, Register tmp0, Register tmp1, Register tmp2,
4776 Register tmp3) {
4777 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit;
4778 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3);
4779
4780 subs(len, len, 128);
4781 br(Assembler::GE, CRC_by64_pre);
4782 BIND(CRC_less64);
4783 adds(len, len, 128-32);
4784 br(Assembler::GE, CRC_by32_loop);
4785 BIND(CRC_less32);
4786 adds(len, len, 32-4);
4787 br(Assembler::GE, CRC_by4_loop);
4788 adds(len, len, 4);
4789 br(Assembler::GT, CRC_by1_loop);
4790 b(L_exit);
4791
4792 BIND(CRC_by32_loop);
4793 ldp(tmp0, tmp1, Address(post(buf, 16)));
4794 subs(len, len, 32);
4795 crc32cx(crc, crc, tmp0);
4796 ldr(tmp2, Address(post(buf, 8)));
4797 crc32cx(crc, crc, tmp1);
4798 ldr(tmp3, Address(post(buf, 8)));
4799 crc32cx(crc, crc, tmp2);
4800 crc32cx(crc, crc, tmp3);
4801 br(Assembler::GE, CRC_by32_loop);
4802 cmn(len, (u1)32);
4803 br(Assembler::NE, CRC_less32);
4804 b(L_exit);
4805
4806 BIND(CRC_by4_loop);
4807 ldrw(tmp0, Address(post(buf, 4)));
4808 subs(len, len, 4);
4809 crc32cw(crc, crc, tmp0);
4810 br(Assembler::GE, CRC_by4_loop);
4811 adds(len, len, 4);
4812 br(Assembler::LE, L_exit);
4813 BIND(CRC_by1_loop);
4814 ldrb(tmp0, Address(post(buf, 1)));
4815 subs(len, len, 1);
4816 crc32cb(crc, crc, tmp0);
4817 br(Assembler::GT, CRC_by1_loop);
4818 b(L_exit);
4819
4820 BIND(CRC_by64_pre);
4821 sub(buf, buf, 8);
4822 ldp(tmp0, tmp1, Address(buf, 8));
4823 crc32cx(crc, crc, tmp0);
4824 ldr(tmp2, Address(buf, 24));
4825 crc32cx(crc, crc, tmp1);
4826 ldr(tmp3, Address(buf, 32));
4827 crc32cx(crc, crc, tmp2);
4828 ldr(tmp0, Address(buf, 40));
4829 crc32cx(crc, crc, tmp3);
4830 ldr(tmp1, Address(buf, 48));
4831 crc32cx(crc, crc, tmp0);
4832 ldr(tmp2, Address(buf, 56));
4833 crc32cx(crc, crc, tmp1);
4834 ldr(tmp3, Address(pre(buf, 64)));
4835
4836 b(CRC_by64_loop);
4837
4838 align(CodeEntryAlignment);
4839 BIND(CRC_by64_loop);
4840 subs(len, len, 64);
4841 crc32cx(crc, crc, tmp2);
4842 ldr(tmp0, Address(buf, 8));
4843 crc32cx(crc, crc, tmp3);
4844 ldr(tmp1, Address(buf, 16));
4845 crc32cx(crc, crc, tmp0);
4846 ldr(tmp2, Address(buf, 24));
4847 crc32cx(crc, crc, tmp1);
4848 ldr(tmp3, Address(buf, 32));
4849 crc32cx(crc, crc, tmp2);
4850 ldr(tmp0, Address(buf, 40));
4851 crc32cx(crc, crc, tmp3);
4852 ldr(tmp1, Address(buf, 48));
4853 crc32cx(crc, crc, tmp0);
4854 ldr(tmp2, Address(buf, 56));
4855 crc32cx(crc, crc, tmp1);
4856 ldr(tmp3, Address(pre(buf, 64)));
4857 br(Assembler::GE, CRC_by64_loop);
4858
4859 // post-loop
4860 crc32cx(crc, crc, tmp2);
4861 crc32cx(crc, crc, tmp3);
4862
4863 sub(len, len, 64);
4864 add(buf, buf, 8);
4865 cmn(len, (u1)128);
4866 br(Assembler::NE, CRC_less64);
4867 BIND(L_exit);
4868 }
4869
4870 /**
4871 * @param crc register containing existing CRC (32-bit)
4872 * @param buf register pointing to input byte buffer (byte*)
4873 * @param len register containing number of bytes
4874 * @param table register that will contain address of CRC table
4875 * @param tmp scratch register
4876 */
4877 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len,
4878 Register table0, Register table1, Register table2, Register table3,
4879 Register tmp, Register tmp2, Register tmp3) {
4880 if (UseCryptoPmullForCRC32) {
4881 kernel_crc32c_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3);
4882 } else {
4883 kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3);
4884 }
4885 }
4886
4887 void MacroAssembler::kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf,
4888 Register len, Register tmp0, Register tmp1, Register tmp2, size_t table_offset) {
4889 Label CRC_by128_loop;
4890 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2);
4891
4892 sub(len, len, 256);
4893 Register table = tmp0;
4894 {
4895 uint64_t offset;
4896 adrp(table, ExternalAddress(StubRoutines::crc_table_addr()), offset);
4897 add(table, table, offset);
4898 }
4899 add(table, table, table_offset);
4900
4901 // Registers v0..v7 are used as data registers.
4902 // Registers v16..v31 are used as tmp registers.
4903 sub(buf, buf, 0x10);
4904 ldrq(v0, Address(buf, 0x10));
4905 ldrq(v1, Address(buf, 0x20));
4906 ldrq(v2, Address(buf, 0x30));
4907 ldrq(v3, Address(buf, 0x40));
4908 ldrq(v4, Address(buf, 0x50));
4909 ldrq(v5, Address(buf, 0x60));
4910 ldrq(v6, Address(buf, 0x70));
4911 ldrq(v7, Address(pre(buf, 0x80)));
4912
4913 movi(v31, T4S, 0);
4914 mov(v31, S, 0, crc);
4915 eor(v0, T16B, v0, v31);
4916
4917 // Register v16 contains constants from the crc table.
4918 ldrq(v16, Address(table));
4919 b(CRC_by128_loop);
4920
4921 align(OptoLoopAlignment);
4922 BIND(CRC_by128_loop);
4923 pmull (v17, T1Q, v0, v16, T1D);
4924 pmull2(v18, T1Q, v0, v16, T2D);
4925 ldrq(v0, Address(buf, 0x10));
4926 eor3(v0, T16B, v17, v18, v0);
4927
4928 pmull (v19, T1Q, v1, v16, T1D);
4929 pmull2(v20, T1Q, v1, v16, T2D);
4930 ldrq(v1, Address(buf, 0x20));
4931 eor3(v1, T16B, v19, v20, v1);
4932
4933 pmull (v21, T1Q, v2, v16, T1D);
4934 pmull2(v22, T1Q, v2, v16, T2D);
4935 ldrq(v2, Address(buf, 0x30));
4936 eor3(v2, T16B, v21, v22, v2);
4937
4938 pmull (v23, T1Q, v3, v16, T1D);
4939 pmull2(v24, T1Q, v3, v16, T2D);
4940 ldrq(v3, Address(buf, 0x40));
4941 eor3(v3, T16B, v23, v24, v3);
4942
4943 pmull (v25, T1Q, v4, v16, T1D);
4944 pmull2(v26, T1Q, v4, v16, T2D);
4945 ldrq(v4, Address(buf, 0x50));
4946 eor3(v4, T16B, v25, v26, v4);
4947
4948 pmull (v27, T1Q, v5, v16, T1D);
4949 pmull2(v28, T1Q, v5, v16, T2D);
4950 ldrq(v5, Address(buf, 0x60));
4951 eor3(v5, T16B, v27, v28, v5);
4952
4953 pmull (v29, T1Q, v6, v16, T1D);
4954 pmull2(v30, T1Q, v6, v16, T2D);
4955 ldrq(v6, Address(buf, 0x70));
4956 eor3(v6, T16B, v29, v30, v6);
4957
4958 // Reuse registers v23, v24.
4959 // Using them won't block the first instruction of the next iteration.
4960 pmull (v23, T1Q, v7, v16, T1D);
4961 pmull2(v24, T1Q, v7, v16, T2D);
4962 ldrq(v7, Address(pre(buf, 0x80)));
4963 eor3(v7, T16B, v23, v24, v7);
4964
4965 subs(len, len, 0x80);
4966 br(Assembler::GE, CRC_by128_loop);
4967
4968 // fold into 512 bits
4969 // Use v31 for constants because v16 can be still in use.
4970 ldrq(v31, Address(table, 0x10));
4971
4972 pmull (v17, T1Q, v0, v31, T1D);
4973 pmull2(v18, T1Q, v0, v31, T2D);
4974 eor3(v0, T16B, v17, v18, v4);
4975
4976 pmull (v19, T1Q, v1, v31, T1D);
4977 pmull2(v20, T1Q, v1, v31, T2D);
4978 eor3(v1, T16B, v19, v20, v5);
4979
4980 pmull (v21, T1Q, v2, v31, T1D);
4981 pmull2(v22, T1Q, v2, v31, T2D);
4982 eor3(v2, T16B, v21, v22, v6);
4983
4984 pmull (v23, T1Q, v3, v31, T1D);
4985 pmull2(v24, T1Q, v3, v31, T2D);
4986 eor3(v3, T16B, v23, v24, v7);
4987
4988 // fold into 128 bits
4989 // Use v17 for constants because v31 can be still in use.
4990 ldrq(v17, Address(table, 0x20));
4991 pmull (v25, T1Q, v0, v17, T1D);
4992 pmull2(v26, T1Q, v0, v17, T2D);
4993 eor3(v3, T16B, v3, v25, v26);
4994
4995 // Use v18 for constants because v17 can be still in use.
4996 ldrq(v18, Address(table, 0x30));
4997 pmull (v27, T1Q, v1, v18, T1D);
4998 pmull2(v28, T1Q, v1, v18, T2D);
4999 eor3(v3, T16B, v3, v27, v28);
5000
5001 // Use v19 for constants because v18 can be still in use.
5002 ldrq(v19, Address(table, 0x40));
5003 pmull (v29, T1Q, v2, v19, T1D);
5004 pmull2(v30, T1Q, v2, v19, T2D);
5005 eor3(v0, T16B, v3, v29, v30);
5006
5007 add(len, len, 0x80);
5008 add(buf, buf, 0x10);
5009
5010 mov(tmp0, v0, D, 0);
5011 mov(tmp1, v0, D, 1);
5012 }
5013
5014 void MacroAssembler::addptr(const Address &dst, int32_t src) {
5015 Address adr;
5016 switch(dst.getMode()) {
5017 case Address::base_plus_offset:
5018 // This is the expected mode, although we allow all the other
5019 // forms below.
5020 adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord);
5021 break;
5022 default:
5023 lea(rscratch2, dst);
5024 adr = Address(rscratch2);
5025 break;
5026 }
5027 ldr(rscratch1, adr);
5028 add(rscratch1, rscratch1, src);
5029 str(rscratch1, adr);
5030 }
5031
5032 void MacroAssembler::cmpptr(Register src1, Address src2) {
5033 uint64_t offset;
5034 adrp(rscratch1, src2, offset);
5035 ldr(rscratch1, Address(rscratch1, offset));
5036 cmp(src1, rscratch1);
5037 }
5038
5039 void MacroAssembler::cmpoop(Register obj1, Register obj2) {
5040 cmp(obj1, obj2);
5041 }
5042
5043 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) {
5044 load_method_holder(rresult, rmethod);
5045 ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset()));
5046 }
5047
5048 void MacroAssembler::load_method_holder(Register holder, Register method) {
5049 ldr(holder, Address(method, Method::const_offset())); // ConstMethod*
5050 ldr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool*
5051 ldr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass*
5052 }
5053
5054 // Loads the obj's Klass* into dst.
5055 // Preserves all registers (incl src, rscratch1 and rscratch2).
5056 // Input:
5057 // src - the oop we want to load the klass from.
5058 // dst - output narrow klass.
5059 void MacroAssembler::load_narrow_klass_compact(Register dst, Register src) {
5060 assert(UseCompactObjectHeaders, "expects UseCompactObjectHeaders");
5061 ldr(dst, Address(src, oopDesc::mark_offset_in_bytes()));
5062 lsr(dst, dst, markWord::klass_shift);
5063 }
5064
5065 void MacroAssembler::load_klass(Register dst, Register src) {
5066 if (UseCompactObjectHeaders) {
5067 load_narrow_klass_compact(dst, src);
5068 decode_klass_not_null(dst);
5069 } else if (UseCompressedClassPointers) {
5070 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5071 decode_klass_not_null(dst);
5072 } else {
5073 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5074 }
5075 }
5076
5077 void MacroAssembler::restore_cpu_control_state_after_jni(Register tmp1, Register tmp2) {
5078 if (RestoreMXCSROnJNICalls) {
5079 Label OK;
5080 get_fpcr(tmp1);
5081 mov(tmp2, tmp1);
5082 // Set FPCR to the state we need. We do want Round to Nearest. We
5083 // don't want non-IEEE rounding modes or floating-point traps.
5084 bfi(tmp1, zr, 22, 4); // Clear DN, FZ, and Rmode
5085 bfi(tmp1, zr, 8, 5); // Clear exception-control bits (8-12)
5086 bfi(tmp1, zr, 0, 2); // Clear AH:FIZ
5087 eor(tmp2, tmp1, tmp2);
5088 cbz(tmp2, OK); // Only reset FPCR if it's wrong
5089 set_fpcr(tmp1);
5090 bind(OK);
5091 }
5092 }
5093
5094 // ((OopHandle)result).resolve();
5095 void MacroAssembler::resolve_oop_handle(Register result, Register tmp1, Register tmp2) {
5096 // OopHandle::resolve is an indirection.
5097 access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp1, tmp2);
5098 }
5099
5100 // ((WeakHandle)result).resolve();
5101 void MacroAssembler::resolve_weak_handle(Register result, Register tmp1, Register tmp2) {
5102 assert_different_registers(result, tmp1, tmp2);
5103 Label resolved;
5104
5105 // A null weak handle resolves to null.
5106 cbz(result, resolved);
5107
5108 // Only 64 bit platforms support GCs that require a tmp register
5109 // WeakHandle::resolve is an indirection like jweak.
5110 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
5111 result, Address(result), tmp1, tmp2);
5112 bind(resolved);
5113 }
5114
5115 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp1, Register tmp2) {
5116 const int mirror_offset = in_bytes(Klass::java_mirror_offset());
5117 ldr(dst, Address(rmethod, Method::const_offset()));
5118 ldr(dst, Address(dst, ConstMethod::constants_offset()));
5119 ldr(dst, Address(dst, ConstantPool::pool_holder_offset()));
5120 ldr(dst, Address(dst, mirror_offset));
5121 resolve_oop_handle(dst, tmp1, tmp2);
5122 }
5123
5124 void MacroAssembler::cmp_klass(Register obj, Register klass, Register tmp) {
5125 assert_different_registers(obj, klass, tmp);
5126 if (UseCompressedClassPointers) {
5127 if (UseCompactObjectHeaders) {
5128 load_narrow_klass_compact(tmp, obj);
5129 } else {
5130 ldrw(tmp, Address(obj, oopDesc::klass_offset_in_bytes()));
5131 }
5132 if (CompressedKlassPointers::base() == nullptr) {
5133 cmp(klass, tmp, LSL, CompressedKlassPointers::shift());
5134 return;
5135 } else if (!AOTCodeCache::is_on_for_dump() &&
5136 ((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0
5137 && CompressedKlassPointers::shift() == 0) {
5138 // Only the bottom 32 bits matter
5139 cmpw(klass, tmp);
5140 return;
5141 }
5142 decode_klass_not_null(tmp);
5143 } else {
5144 ldr(tmp, Address(obj, oopDesc::klass_offset_in_bytes()));
5145 }
5146 cmp(klass, tmp);
5147 }
5148
5149 void MacroAssembler::cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2) {
5150 if (UseCompactObjectHeaders) {
5151 load_narrow_klass_compact(tmp1, obj1);
5152 load_narrow_klass_compact(tmp2, obj2);
5153 cmpw(tmp1, tmp2);
5154 } else if (UseCompressedClassPointers) {
5155 ldrw(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes()));
5156 ldrw(tmp2, Address(obj2, oopDesc::klass_offset_in_bytes()));
5157 cmpw(tmp1, tmp2);
5158 } else {
5159 ldr(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes()));
5160 ldr(tmp2, Address(obj2, oopDesc::klass_offset_in_bytes()));
5161 cmp(tmp1, tmp2);
5162 }
5163 }
5164
5165 void MacroAssembler::store_klass(Register dst, Register src) {
5166 // FIXME: Should this be a store release? concurrent gcs assumes
5167 // klass length is valid if klass field is not null.
5168 assert(!UseCompactObjectHeaders, "not with compact headers");
5169 if (UseCompressedClassPointers) {
5170 encode_klass_not_null(src);
5171 strw(src, Address(dst, oopDesc::klass_offset_in_bytes()));
5172 } else {
5173 str(src, Address(dst, oopDesc::klass_offset_in_bytes()));
5174 }
5175 }
5176
5177 void MacroAssembler::store_klass_gap(Register dst, Register src) {
5178 assert(!UseCompactObjectHeaders, "not with compact headers");
5179 if (UseCompressedClassPointers) {
5180 // Store to klass gap in destination
5181 strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes()));
5182 }
5183 }
5184
5185 // Algorithm must match CompressedOops::encode.
5186 void MacroAssembler::encode_heap_oop(Register d, Register s) {
5187 #ifdef ASSERT
5188 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
5189 #endif
5190 verify_oop_msg(s, "broken oop in encode_heap_oop");
5191 if (CompressedOops::base() == nullptr) {
5192 if (CompressedOops::shift() != 0) {
5193 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5194 lsr(d, s, LogMinObjAlignmentInBytes);
5195 } else {
5196 mov(d, s);
5197 }
5198 } else {
5199 subs(d, s, rheapbase);
5200 csel(d, d, zr, Assembler::HS);
5201 lsr(d, d, LogMinObjAlignmentInBytes);
5202
5203 /* Old algorithm: is this any worse?
5204 Label nonnull;
5205 cbnz(r, nonnull);
5206 sub(r, r, rheapbase);
5207 bind(nonnull);
5208 lsr(r, r, LogMinObjAlignmentInBytes);
5209 */
5210 }
5211 }
5212
5213 void MacroAssembler::encode_heap_oop_not_null(Register r) {
5214 #ifdef ASSERT
5215 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
5216 if (CheckCompressedOops) {
5217 Label ok;
5218 cbnz(r, ok);
5219 stop("null oop passed to encode_heap_oop_not_null");
5220 bind(ok);
5221 }
5222 #endif
5223 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null");
5224 if (CompressedOops::base() != nullptr) {
5225 sub(r, r, rheapbase);
5226 }
5227 if (CompressedOops::shift() != 0) {
5228 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5229 lsr(r, r, LogMinObjAlignmentInBytes);
5230 }
5231 }
5232
5233 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
5234 #ifdef ASSERT
5235 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
5236 if (CheckCompressedOops) {
5237 Label ok;
5238 cbnz(src, ok);
5239 stop("null oop passed to encode_heap_oop_not_null2");
5240 bind(ok);
5241 }
5242 #endif
5243 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2");
5244
5245 Register data = src;
5246 if (CompressedOops::base() != nullptr) {
5247 sub(dst, src, rheapbase);
5248 data = dst;
5249 }
5250 if (CompressedOops::shift() != 0) {
5251 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5252 lsr(dst, data, LogMinObjAlignmentInBytes);
5253 data = dst;
5254 }
5255 if (data == src)
5256 mov(dst, src);
5257 }
5258
5259 void MacroAssembler::decode_heap_oop(Register d, Register s) {
5260 #ifdef ASSERT
5261 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
5262 #endif
5263 if (CompressedOops::base() == nullptr) {
5264 if (CompressedOops::shift() != 0) {
5265 lsl(d, s, CompressedOops::shift());
5266 } else if (d != s) {
5267 mov(d, s);
5268 }
5269 } else {
5270 Label done;
5271 if (d != s)
5272 mov(d, s);
5273 cbz(s, done);
5274 add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes);
5275 bind(done);
5276 }
5277 verify_oop_msg(d, "broken oop in decode_heap_oop");
5278 }
5279
5280 void MacroAssembler::decode_heap_oop_not_null(Register r) {
5281 assert (UseCompressedOops, "should only be used for compressed headers");
5282 assert (Universe::heap() != nullptr, "java heap should be initialized");
5283 // Cannot assert, unverified entry point counts instructions (see .ad file)
5284 // vtableStubs also counts instructions in pd_code_size_limit.
5285 // Also do not verify_oop as this is called by verify_oop.
5286 if (CompressedOops::shift() != 0) {
5287 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5288 if (CompressedOops::base() != nullptr) {
5289 add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes);
5290 } else {
5291 add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes);
5292 }
5293 } else {
5294 assert (CompressedOops::base() == nullptr, "sanity");
5295 }
5296 }
5297
5298 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
5299 assert (UseCompressedOops, "should only be used for compressed headers");
5300 assert (Universe::heap() != nullptr, "java heap should be initialized");
5301 // Cannot assert, unverified entry point counts instructions (see .ad file)
5302 // vtableStubs also counts instructions in pd_code_size_limit.
5303 // Also do not verify_oop as this is called by verify_oop.
5304 if (CompressedOops::shift() != 0) {
5305 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5306 if (CompressedOops::base() != nullptr) {
5307 add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes);
5308 } else {
5309 add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes);
5310 }
5311 } else {
5312 assert (CompressedOops::base() == nullptr, "sanity");
5313 if (dst != src) {
5314 mov(dst, src);
5315 }
5316 }
5317 }
5318
5319 MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone);
5320
5321 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() {
5322 assert(Metaspace::initialized(), "metaspace not initialized yet");
5323 assert(_klass_decode_mode != KlassDecodeNone, "should be initialized");
5324 return _klass_decode_mode;
5325 }
5326
5327 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode(address base, int shift, const size_t range) {
5328 assert(UseCompressedClassPointers, "not using compressed class pointers");
5329
5330 // KlassDecodeMode shouldn't be set already.
5331 assert(_klass_decode_mode == KlassDecodeNone, "set once");
5332
5333 if (base == nullptr) {
5334 return KlassDecodeZero;
5335 }
5336
5337 if (operand_valid_for_logical_immediate(
5338 /*is32*/false, (uint64_t)base)) {
5339 const uint64_t range_mask = right_n_bits(log2i_ceil(range));
5340 if (((uint64_t)base & range_mask) == 0) {
5341 return KlassDecodeXor;
5342 }
5343 }
5344
5345 const uint64_t shifted_base =
5346 (uint64_t)base >> shift;
5347 if ((shifted_base & 0xffff0000ffffffff) == 0) {
5348 return KlassDecodeMovk;
5349 }
5350
5351 // No valid encoding.
5352 return KlassDecodeNone;
5353 }
5354
5355 // Check if one of the above decoding modes will work for given base, shift and range.
5356 bool MacroAssembler::check_klass_decode_mode(address base, int shift, const size_t range) {
5357 return klass_decode_mode(base, shift, range) != KlassDecodeNone;
5358 }
5359
5360 bool MacroAssembler::set_klass_decode_mode(address base, int shift, const size_t range) {
5361 _klass_decode_mode = klass_decode_mode(base, shift, range);
5362 return _klass_decode_mode != KlassDecodeNone;
5363 }
5364
5365 static Register pick_different_tmp(Register dst, Register src) {
5366 auto tmps = RegSet::of(r0, r1, r2) - RegSet::of(src, dst);
5367 return *tmps.begin();
5368 }
5369
5370 void MacroAssembler::encode_klass_not_null_for_aot(Register dst, Register src) {
5371 // we have to load the klass base from the AOT constants area but
5372 // not the shift because it is not allowed to change
5373 int shift = CompressedKlassPointers::shift();
5374 assert(shift >= 0 && shift <= CompressedKlassPointers::max_shift(), "unexpected compressed klass shift!");
5375 if (dst != src) {
5376 // we can load the base into dst, subtract it formthe src and shift down
5377 lea(dst, ExternalAddress(CompressedKlassPointers::base_addr()));
5378 ldr(dst, dst);
5379 sub(dst, src, dst);
5380 lsr(dst, dst, shift);
5381 } else {
5382 // we need an extra register in order to load the coop base
5383 Register tmp = pick_different_tmp(dst, src);
5384 RegSet regs = RegSet::of(tmp);
5385 push(regs, sp);
5386 lea(tmp, ExternalAddress(CompressedKlassPointers::base_addr()));
5387 ldr(tmp, tmp);
5388 sub(dst, src, tmp);
5389 lsr(dst, dst, shift);
5390 pop(regs, sp);
5391 }
5392 }
5393
5394 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
5395 if (CompressedKlassPointers::base() != nullptr && AOTCodeCache::is_on_for_dump()) {
5396 encode_klass_not_null_for_aot(dst, src);
5397 return;
5398 }
5399
5400 switch (klass_decode_mode()) {
5401 case KlassDecodeZero:
5402 if (CompressedKlassPointers::shift() != 0) {
5403 lsr(dst, src, CompressedKlassPointers::shift());
5404 } else {
5405 if (dst != src) mov(dst, src);
5406 }
5407 break;
5408
5409 case KlassDecodeXor:
5410 if (CompressedKlassPointers::shift() != 0) {
5411 eor(dst, src, (uint64_t)CompressedKlassPointers::base());
5412 lsr(dst, dst, CompressedKlassPointers::shift());
5413 } else {
5414 eor(dst, src, (uint64_t)CompressedKlassPointers::base());
5415 }
5416 break;
5417
5418 case KlassDecodeMovk:
5419 if (CompressedKlassPointers::shift() != 0) {
5420 ubfx(dst, src, CompressedKlassPointers::shift(), 32);
5421 } else {
5422 movw(dst, src);
5423 }
5424 break;
5425
5426 case KlassDecodeNone:
5427 ShouldNotReachHere();
5428 break;
5429 }
5430 }
5431
5432 void MacroAssembler::encode_klass_not_null(Register r) {
5433 encode_klass_not_null(r, r);
5434 }
5435
5436 void MacroAssembler::decode_klass_not_null_for_aot(Register dst, Register src) {
5437 // we have to load the klass base from the AOT constants area but
5438 // not the shift because it is not allowed to change
5439 int shift = CompressedKlassPointers::shift();
5440 assert(shift >= 0 && shift <= CompressedKlassPointers::max_shift(), "unexpected compressed klass shift!");
5441 if (dst != src) {
5442 // we can load the base into dst then add the offset with a suitable shift
5443 lea(dst, ExternalAddress(CompressedKlassPointers::base_addr()));
5444 ldr(dst, dst);
5445 add(dst, dst, src, LSL, shift);
5446 } else {
5447 // we need an extra register in order to load the coop base
5448 Register tmp = pick_different_tmp(dst, src);
5449 RegSet regs = RegSet::of(tmp);
5450 push(regs, sp);
5451 lea(tmp, ExternalAddress(CompressedKlassPointers::base_addr()));
5452 ldr(tmp, tmp);
5453 add(dst, tmp, src, LSL, shift);
5454 pop(regs, sp);
5455 }
5456 }
5457
5458 void MacroAssembler::decode_klass_not_null(Register dst, Register src) {
5459 assert (UseCompressedClassPointers, "should only be used for compressed headers");
5460
5461 if (CompressedKlassPointers::base() != nullptr && AOTCodeCache::is_on_for_dump()) {
5462 decode_klass_not_null_for_aot(dst, src);
5463 return;
5464 }
5465
5466 switch (klass_decode_mode()) {
5467 case KlassDecodeZero:
5468 if (CompressedKlassPointers::shift() != 0) {
5469 lsl(dst, src, CompressedKlassPointers::shift());
5470 } else {
5471 if (dst != src) mov(dst, src);
5472 }
5473 break;
5474
5475 case KlassDecodeXor:
5476 if (CompressedKlassPointers::shift() != 0) {
5477 lsl(dst, src, CompressedKlassPointers::shift());
5478 eor(dst, dst, (uint64_t)CompressedKlassPointers::base());
5479 } else {
5480 eor(dst, src, (uint64_t)CompressedKlassPointers::base());
5481 }
5482 break;
5483
5484 case KlassDecodeMovk: {
5485 const uint64_t shifted_base =
5486 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift();
5487
5488 if (dst != src) movw(dst, src);
5489 movk(dst, shifted_base >> 32, 32);
5490
5491 if (CompressedKlassPointers::shift() != 0) {
5492 lsl(dst, dst, CompressedKlassPointers::shift());
5493 }
5494
5495 break;
5496 }
5497
5498 case KlassDecodeNone:
5499 ShouldNotReachHere();
5500 break;
5501 }
5502 }
5503
5504 void MacroAssembler::decode_klass_not_null(Register r) {
5505 decode_klass_not_null(r, r);
5506 }
5507
5508 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
5509 #ifdef ASSERT
5510 {
5511 ThreadInVMfromUnknown tiv;
5512 assert (UseCompressedOops, "should only be used for compressed oops");
5513 assert (Universe::heap() != nullptr, "java heap should be initialized");
5514 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
5515 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop");
5516 }
5517 #endif
5518 int oop_index = oop_recorder()->find_index(obj);
5519 InstructionMark im(this);
5520 RelocationHolder rspec = oop_Relocation::spec(oop_index);
5521 code_section()->relocate(inst_mark(), rspec);
5522 movz(dst, 0xDEAD, 16);
5523 movk(dst, 0xBEEF);
5524 }
5525
5526 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
5527 assert (UseCompressedClassPointers, "should only be used for compressed headers");
5528 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
5529 int index = oop_recorder()->find_index(k);
5530 assert(! Universe::heap()->is_in(k), "should not be an oop");
5531
5532 InstructionMark im(this);
5533 RelocationHolder rspec = metadata_Relocation::spec(index);
5534 code_section()->relocate(inst_mark(), rspec);
5535 narrowKlass nk = CompressedKlassPointers::encode(k);
5536 movz(dst, (nk >> 16), 16);
5537 movk(dst, nk & 0xffff);
5538 }
5539
5540 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators,
5541 Register dst, Address src,
5542 Register tmp1, Register tmp2) {
5543 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
5544 decorators = AccessInternal::decorator_fixup(decorators, type);
5545 bool as_raw = (decorators & AS_RAW) != 0;
5546 if (as_raw) {
5547 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2);
5548 } else {
5549 bs->load_at(this, decorators, type, dst, src, tmp1, tmp2);
5550 }
5551 }
5552
5553 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators,
5554 Address dst, Register val,
5555 Register tmp1, Register tmp2, Register tmp3) {
5556 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
5557 decorators = AccessInternal::decorator_fixup(decorators, type);
5558 bool as_raw = (decorators & AS_RAW) != 0;
5559 if (as_raw) {
5560 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
5561 } else {
5562 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
5563 }
5564 }
5565
5566 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
5567 Register tmp2, DecoratorSet decorators) {
5568 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2);
5569 }
5570
5571 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
5572 Register tmp2, DecoratorSet decorators) {
5573 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2);
5574 }
5575
5576 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1,
5577 Register tmp2, Register tmp3, DecoratorSet decorators) {
5578 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3);
5579 }
5580
5581 // Used for storing nulls.
5582 void MacroAssembler::store_heap_oop_null(Address dst) {
5583 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg);
5584 }
5585
5586 Address MacroAssembler::allocate_metadata_address(Metadata* obj) {
5587 assert(oop_recorder() != nullptr, "this assembler needs a Recorder");
5588 int index = oop_recorder()->allocate_metadata_index(obj);
5589 RelocationHolder rspec = metadata_Relocation::spec(index);
5590 return Address((address)obj, rspec);
5591 }
5592
5593 // Move an oop into a register.
5594 void MacroAssembler::movoop(Register dst, jobject obj) {
5595 int oop_index;
5596 if (obj == nullptr) {
5597 oop_index = oop_recorder()->allocate_oop_index(obj);
5598 } else {
5599 #ifdef ASSERT
5600 {
5601 ThreadInVMfromUnknown tiv;
5602 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop");
5603 }
5604 #endif
5605 oop_index = oop_recorder()->find_index(obj);
5606 }
5607 RelocationHolder rspec = oop_Relocation::spec(oop_index);
5608
5609 if (BarrierSet::barrier_set()->barrier_set_assembler()->supports_instruction_patching()) {
5610 mov(dst, Address((address)obj, rspec));
5611 } else {
5612 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address
5613 ldr(dst, Address(dummy, rspec));
5614 }
5615 }
5616
5617 // Move a metadata address into a register.
5618 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
5619 int oop_index;
5620 if (obj == nullptr) {
5621 oop_index = oop_recorder()->allocate_metadata_index(obj);
5622 } else {
5623 oop_index = oop_recorder()->find_index(obj);
5624 }
5625 RelocationHolder rspec = metadata_Relocation::spec(oop_index);
5626 mov(dst, Address((address)obj, rspec));
5627 }
5628
5629 Address MacroAssembler::constant_oop_address(jobject obj) {
5630 #ifdef ASSERT
5631 {
5632 ThreadInVMfromUnknown tiv;
5633 assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder");
5634 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop");
5635 }
5636 #endif
5637 int oop_index = oop_recorder()->find_index(obj);
5638 return Address((address)obj, oop_Relocation::spec(oop_index));
5639 }
5640
5641 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
5642 void MacroAssembler::tlab_allocate(Register obj,
5643 Register var_size_in_bytes,
5644 int con_size_in_bytes,
5645 Register t1,
5646 Register t2,
5647 Label& slow_case) {
5648 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
5649 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
5650 }
5651
5652 void MacroAssembler::verify_tlab() {
5653 #ifdef ASSERT
5654 if (UseTLAB && VerifyOops) {
5655 Label next, ok;
5656
5657 stp(rscratch2, rscratch1, Address(pre(sp, -16)));
5658
5659 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
5660 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
5661 cmp(rscratch2, rscratch1);
5662 br(Assembler::HS, next);
5663 STOP("assert(top >= start)");
5664 should_not_reach_here();
5665
5666 bind(next);
5667 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
5668 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
5669 cmp(rscratch2, rscratch1);
5670 br(Assembler::HS, ok);
5671 STOP("assert(top <= end)");
5672 should_not_reach_here();
5673
5674 bind(ok);
5675 ldp(rscratch2, rscratch1, Address(post(sp, 16)));
5676 }
5677 #endif
5678 }
5679
5680 // Writes to stack successive pages until offset reached to check for
5681 // stack overflow + shadow pages. This clobbers tmp.
5682 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
5683 assert_different_registers(tmp, size, rscratch1);
5684 mov(tmp, sp);
5685 // Bang stack for total size given plus shadow page size.
5686 // Bang one page at a time because large size can bang beyond yellow and
5687 // red zones.
5688 Label loop;
5689 mov(rscratch1, (int)os::vm_page_size());
5690 bind(loop);
5691 lea(tmp, Address(tmp, -(int)os::vm_page_size()));
5692 subsw(size, size, rscratch1);
5693 str(size, Address(tmp));
5694 br(Assembler::GT, loop);
5695
5696 // Bang down shadow pages too.
5697 // At this point, (tmp-0) is the last address touched, so don't
5698 // touch it again. (It was touched as (tmp-pagesize) but then tmp
5699 // was post-decremented.) Skip this address by starting at i=1, and
5700 // touch a few more pages below. N.B. It is important to touch all
5701 // the way down to and including i=StackShadowPages.
5702 for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()) - 1; i++) {
5703 // this could be any sized move but this is can be a debugging crumb
5704 // so the bigger the better.
5705 lea(tmp, Address(tmp, -(int)os::vm_page_size()));
5706 str(size, Address(tmp));
5707 }
5708 }
5709
5710 // Move the address of the polling page into dest.
5711 void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) {
5712 ldr(dest, Address(rthread, JavaThread::polling_page_offset()));
5713 }
5714
5715 // Read the polling page. The address of the polling page must
5716 // already be in r.
5717 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) {
5718 address mark;
5719 {
5720 InstructionMark im(this);
5721 code_section()->relocate(inst_mark(), rtype);
5722 ldrw(zr, Address(r, 0));
5723 mark = inst_mark();
5724 }
5725 verify_cross_modify_fence_not_required();
5726 return mark;
5727 }
5728
5729 void MacroAssembler::adrp(Register reg1, const Address &dest, uint64_t &byte_offset) {
5730 relocInfo::relocType rtype = dest.rspec().reloc()->type();
5731 uint64_t low_page = (uint64_t)CodeCache::low_bound() >> 12;
5732 uint64_t high_page = (uint64_t)(CodeCache::high_bound()-1) >> 12;
5733 uint64_t dest_page = (uint64_t)dest.target() >> 12;
5734 int64_t offset_low = dest_page - low_page;
5735 int64_t offset_high = dest_page - high_page;
5736
5737 assert(is_valid_AArch64_address(dest.target()), "bad address");
5738 assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address");
5739
5740 InstructionMark im(this);
5741 code_section()->relocate(inst_mark(), dest.rspec());
5742 // 8143067: Ensure that the adrp can reach the dest from anywhere within
5743 // the code cache so that if it is relocated we know it will still reach
5744 if (offset_high >= -(1<<20) && offset_low < (1<<20)) {
5745 _adrp(reg1, dest.target());
5746 } else {
5747 uint64_t target = (uint64_t)dest.target();
5748 uint64_t adrp_target
5749 = (target & 0xffffffffULL) | ((uint64_t)pc() & 0xffff00000000ULL);
5750
5751 _adrp(reg1, (address)adrp_target);
5752 movk(reg1, target >> 32, 32);
5753 }
5754 byte_offset = (uint64_t)dest.target() & 0xfff;
5755 }
5756
5757 void MacroAssembler::load_byte_map_base(Register reg) {
5758 #if INCLUDE_CDS
5759 if (AOTCodeCache::is_on_for_dump()) {
5760 address byte_map_base_adr = AOTRuntimeConstants::card_table_address();
5761 lea(reg, ExternalAddress(byte_map_base_adr));
5762 ldr(reg, Address(reg));
5763 return;
5764 }
5765 #endif
5766 CardTable::CardValue* byte_map_base =
5767 ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base();
5768
5769 // Strictly speaking the byte_map_base isn't an address at all, and it might
5770 // even be negative. It is thus materialised as a constant.
5771 mov(reg, (uint64_t)byte_map_base);
5772 }
5773
5774 void MacroAssembler::load_aotrc_address(Register reg, address a) {
5775 #if INCLUDE_CDS
5776 assert(AOTRuntimeConstants::contains(a), "address out of range for data area");
5777 if (AOTCodeCache::is_on_for_dump()) {
5778 // all aotrc field addresses should be registered in the AOTCodeCache address table
5779 lea(reg, ExternalAddress(a));
5780 } else {
5781 mov(reg, (uint64_t)a);
5782 }
5783 #else
5784 ShouldNotReachHere();
5785 #endif
5786 }
5787
5788 void MacroAssembler::build_frame(int framesize) {
5789 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR");
5790 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment");
5791 protect_return_address();
5792 if (framesize < ((1 << 9) + 2 * wordSize)) {
5793 sub(sp, sp, framesize);
5794 stp(rfp, lr, Address(sp, framesize - 2 * wordSize));
5795 if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize);
5796 } else {
5797 stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
5798 if (PreserveFramePointer) mov(rfp, sp);
5799 if (framesize < ((1 << 12) + 2 * wordSize))
5800 sub(sp, sp, framesize - 2 * wordSize);
5801 else {
5802 mov(rscratch1, framesize - 2 * wordSize);
5803 sub(sp, sp, rscratch1);
5804 }
5805 }
5806 verify_cross_modify_fence_not_required();
5807 }
5808
5809 void MacroAssembler::remove_frame(int framesize) {
5810 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR");
5811 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment");
5812 if (framesize < ((1 << 9) + 2 * wordSize)) {
5813 ldp(rfp, lr, Address(sp, framesize - 2 * wordSize));
5814 add(sp, sp, framesize);
5815 } else {
5816 if (framesize < ((1 << 12) + 2 * wordSize))
5817 add(sp, sp, framesize - 2 * wordSize);
5818 else {
5819 mov(rscratch1, framesize - 2 * wordSize);
5820 add(sp, sp, rscratch1);
5821 }
5822 ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
5823 }
5824 authenticate_return_address();
5825 }
5826
5827
5828 // This method counts leading positive bytes (highest bit not set) in provided byte array
5829 address MacroAssembler::count_positives(Register ary1, Register len, Register result) {
5830 // Simple and most common case of aligned small array which is not at the
5831 // end of memory page is placed here. All other cases are in stub.
5832 Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE;
5833 const uint64_t UPPER_BIT_MASK=0x8080808080808080;
5834 assert_different_registers(ary1, len, result);
5835
5836 mov(result, len);
5837 cmpw(len, 0);
5838 br(LE, DONE);
5839 cmpw(len, 4 * wordSize);
5840 br(GE, STUB_LONG); // size > 32 then go to stub
5841
5842 int shift = 64 - exact_log2(os::vm_page_size());
5843 lsl(rscratch1, ary1, shift);
5844 mov(rscratch2, (size_t)(4 * wordSize) << shift);
5845 adds(rscratch2, rscratch1, rscratch2); // At end of page?
5846 br(CS, STUB); // at the end of page then go to stub
5847 subs(len, len, wordSize);
5848 br(LT, END);
5849
5850 BIND(LOOP);
5851 ldr(rscratch1, Address(post(ary1, wordSize)));
5852 tst(rscratch1, UPPER_BIT_MASK);
5853 br(NE, SET_RESULT);
5854 subs(len, len, wordSize);
5855 br(GE, LOOP);
5856 cmpw(len, -wordSize);
5857 br(EQ, DONE);
5858
5859 BIND(END);
5860 ldr(rscratch1, Address(ary1));
5861 sub(rscratch2, zr, len, LSL, 3); // LSL 3 is to get bits from bytes
5862 lslv(rscratch1, rscratch1, rscratch2);
5863 tst(rscratch1, UPPER_BIT_MASK);
5864 br(NE, SET_RESULT);
5865 b(DONE);
5866
5867 BIND(STUB);
5868 RuntimeAddress count_pos = RuntimeAddress(StubRoutines::aarch64::count_positives());
5869 assert(count_pos.target() != nullptr, "count_positives stub has not been generated");
5870 address tpc1 = trampoline_call(count_pos);
5871 if (tpc1 == nullptr) {
5872 DEBUG_ONLY(reset_labels(STUB_LONG, SET_RESULT, DONE));
5873 postcond(pc() == badAddress);
5874 return nullptr;
5875 }
5876 b(DONE);
5877
5878 BIND(STUB_LONG);
5879 RuntimeAddress count_pos_long = RuntimeAddress(StubRoutines::aarch64::count_positives_long());
5880 assert(count_pos_long.target() != nullptr, "count_positives_long stub has not been generated");
5881 address tpc2 = trampoline_call(count_pos_long);
5882 if (tpc2 == nullptr) {
5883 DEBUG_ONLY(reset_labels(SET_RESULT, DONE));
5884 postcond(pc() == badAddress);
5885 return nullptr;
5886 }
5887 b(DONE);
5888
5889 BIND(SET_RESULT);
5890
5891 add(len, len, wordSize);
5892 sub(result, result, len);
5893
5894 BIND(DONE);
5895 postcond(pc() != badAddress);
5896 return pc();
5897 }
5898
5899 // Clobbers: rscratch1, rscratch2, rflags
5900 // May also clobber v0-v7 when (!UseSimpleArrayEquals && UseSIMDForArrayEquals)
5901 address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3,
5902 Register tmp4, Register tmp5, Register result,
5903 Register cnt1, int elem_size) {
5904 Label DONE, SAME;
5905 Register tmp1 = rscratch1;
5906 Register tmp2 = rscratch2;
5907 int elem_per_word = wordSize/elem_size;
5908 int log_elem_size = exact_log2(elem_size);
5909 int klass_offset = arrayOopDesc::klass_offset_in_bytes();
5910 int length_offset = arrayOopDesc::length_offset_in_bytes();
5911 int base_offset
5912 = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE);
5913 // When the length offset is not aligned to 8 bytes,
5914 // then we align it down. This is valid because the new
5915 // offset will always be the klass which is the same
5916 // for type arrays.
5917 int start_offset = align_down(length_offset, BytesPerWord);
5918 int extra_length = base_offset - start_offset;
5919 assert(start_offset == length_offset || start_offset == klass_offset,
5920 "start offset must be 8-byte-aligned or be the klass offset");
5921 assert(base_offset != start_offset, "must include the length field");
5922 extra_length = extra_length / elem_size; // We count in elements, not bytes.
5923 int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16);
5924
5925 assert(elem_size == 1 || elem_size == 2, "must be char or byte");
5926 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2);
5927
5928 #ifndef PRODUCT
5929 {
5930 const char kind = (elem_size == 2) ? 'U' : 'L';
5931 char comment[64];
5932 os::snprintf_checked(comment, sizeof comment, "array_equals%c{", kind);
5933 BLOCK_COMMENT(comment);
5934 }
5935 #endif
5936
5937 // if (a1 == a2)
5938 // return true;
5939 cmpoop(a1, a2); // May have read barriers for a1 and a2.
5940 br(EQ, SAME);
5941
5942 if (UseSimpleArrayEquals) {
5943 Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL;
5944 // if (a1 == nullptr || a2 == nullptr)
5945 // return false;
5946 // a1 & a2 == 0 means (some-pointer is null) or
5947 // (very-rare-or-even-probably-impossible-pointer-values)
5948 // so, we can save one branch in most cases
5949 tst(a1, a2);
5950 mov(result, false);
5951 br(EQ, A_MIGHT_BE_NULL);
5952 // if (a1.length != a2.length)
5953 // return false;
5954 bind(A_IS_NOT_NULL);
5955 ldrw(cnt1, Address(a1, length_offset));
5956 // Increase loop counter by diff between base- and actual start-offset.
5957 addw(cnt1, cnt1, extra_length);
5958 lea(a1, Address(a1, start_offset));
5959 lea(a2, Address(a2, start_offset));
5960 // Check for short strings, i.e. smaller than wordSize.
5961 subs(cnt1, cnt1, elem_per_word);
5962 br(Assembler::LT, SHORT);
5963 // Main 8 byte comparison loop.
5964 bind(NEXT_WORD); {
5965 ldr(tmp1, Address(post(a1, wordSize)));
5966 ldr(tmp2, Address(post(a2, wordSize)));
5967 subs(cnt1, cnt1, elem_per_word);
5968 eor(tmp5, tmp1, tmp2);
5969 cbnz(tmp5, DONE);
5970 } br(GT, NEXT_WORD);
5971 // Last longword. In the case where length == 4 we compare the
5972 // same longword twice, but that's still faster than another
5973 // conditional branch.
5974 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when
5975 // length == 4.
5976 if (log_elem_size > 0)
5977 lsl(cnt1, cnt1, log_elem_size);
5978 ldr(tmp3, Address(a1, cnt1));
5979 ldr(tmp4, Address(a2, cnt1));
5980 eor(tmp5, tmp3, tmp4);
5981 cbnz(tmp5, DONE);
5982 b(SAME);
5983 bind(A_MIGHT_BE_NULL);
5984 // in case both a1 and a2 are not-null, proceed with loads
5985 cbz(a1, DONE);
5986 cbz(a2, DONE);
5987 b(A_IS_NOT_NULL);
5988 bind(SHORT);
5989
5990 tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left.
5991 {
5992 ldrw(tmp1, Address(post(a1, 4)));
5993 ldrw(tmp2, Address(post(a2, 4)));
5994 eorw(tmp5, tmp1, tmp2);
5995 cbnzw(tmp5, DONE);
5996 }
5997 bind(TAIL03);
5998 tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left.
5999 {
6000 ldrh(tmp3, Address(post(a1, 2)));
6001 ldrh(tmp4, Address(post(a2, 2)));
6002 eorw(tmp5, tmp3, tmp4);
6003 cbnzw(tmp5, DONE);
6004 }
6005 bind(TAIL01);
6006 if (elem_size == 1) { // Only needed when comparing byte arrays.
6007 tbz(cnt1, 0, SAME); // 0-1 bytes left.
6008 {
6009 ldrb(tmp1, a1);
6010 ldrb(tmp2, a2);
6011 eorw(tmp5, tmp1, tmp2);
6012 cbnzw(tmp5, DONE);
6013 }
6014 }
6015 } else {
6016 Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB,
6017 CSET_EQ, LAST_CHECK;
6018 mov(result, false);
6019 cbz(a1, DONE);
6020 ldrw(cnt1, Address(a1, length_offset));
6021 cbz(a2, DONE);
6022 // Increase loop counter by diff between base- and actual start-offset.
6023 addw(cnt1, cnt1, extra_length);
6024
6025 // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's
6026 // faster to perform another branch before comparing a1 and a2
6027 cmp(cnt1, (u1)elem_per_word);
6028 br(LE, SHORT); // short or same
6029 ldr(tmp3, Address(pre(a1, start_offset)));
6030 subs(zr, cnt1, stubBytesThreshold);
6031 br(GE, STUB);
6032 ldr(tmp4, Address(pre(a2, start_offset)));
6033 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size);
6034
6035 // Main 16 byte comparison loop with 2 exits
6036 bind(NEXT_DWORD); {
6037 ldr(tmp1, Address(pre(a1, wordSize)));
6038 ldr(tmp2, Address(pre(a2, wordSize)));
6039 subs(cnt1, cnt1, 2 * elem_per_word);
6040 br(LE, TAIL);
6041 eor(tmp4, tmp3, tmp4);
6042 cbnz(tmp4, DONE);
6043 ldr(tmp3, Address(pre(a1, wordSize)));
6044 ldr(tmp4, Address(pre(a2, wordSize)));
6045 cmp(cnt1, (u1)elem_per_word);
6046 br(LE, TAIL2);
6047 cmp(tmp1, tmp2);
6048 } br(EQ, NEXT_DWORD);
6049 b(DONE);
6050
6051 bind(TAIL);
6052 eor(tmp4, tmp3, tmp4);
6053 eor(tmp2, tmp1, tmp2);
6054 lslv(tmp2, tmp2, tmp5);
6055 orr(tmp5, tmp4, tmp2);
6056 cmp(tmp5, zr);
6057 b(CSET_EQ);
6058
6059 bind(TAIL2);
6060 eor(tmp2, tmp1, tmp2);
6061 cbnz(tmp2, DONE);
6062 b(LAST_CHECK);
6063
6064 bind(STUB);
6065 ldr(tmp4, Address(pre(a2, start_offset)));
6066 if (elem_size == 2) { // convert to byte counter
6067 lsl(cnt1, cnt1, 1);
6068 }
6069 eor(tmp5, tmp3, tmp4);
6070 cbnz(tmp5, DONE);
6071 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals());
6072 assert(stub.target() != nullptr, "array_equals_long stub has not been generated");
6073 address tpc = trampoline_call(stub);
6074 if (tpc == nullptr) {
6075 DEBUG_ONLY(reset_labels(SHORT, LAST_CHECK, CSET_EQ, SAME, DONE));
6076 postcond(pc() == badAddress);
6077 return nullptr;
6078 }
6079 b(DONE);
6080
6081 // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2)
6082 // so, if a2 == null => return false(0), else return true, so we can return a2
6083 mov(result, a2);
6084 b(DONE);
6085 bind(SHORT);
6086 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size);
6087 ldr(tmp3, Address(a1, start_offset));
6088 ldr(tmp4, Address(a2, start_offset));
6089 bind(LAST_CHECK);
6090 eor(tmp4, tmp3, tmp4);
6091 lslv(tmp5, tmp4, tmp5);
6092 cmp(tmp5, zr);
6093 bind(CSET_EQ);
6094 cset(result, EQ);
6095 b(DONE);
6096 }
6097
6098 bind(SAME);
6099 mov(result, true);
6100 // That's it.
6101 bind(DONE);
6102
6103 BLOCK_COMMENT("} array_equals");
6104 postcond(pc() != badAddress);
6105 return pc();
6106 }
6107
6108 // Compare Strings
6109
6110 // For Strings we're passed the address of the first characters in a1
6111 // and a2 and the length in cnt1.
6112 // There are two implementations. For arrays >= 8 bytes, all
6113 // comparisons (including the final one, which may overlap) are
6114 // performed 8 bytes at a time. For strings < 8 bytes, we compare a
6115 // halfword, then a short, and then a byte.
6116
6117 void MacroAssembler::string_equals(Register a1, Register a2,
6118 Register result, Register cnt1)
6119 {
6120 Label SAME, DONE, SHORT, NEXT_WORD;
6121 Register tmp1 = rscratch1;
6122 Register tmp2 = rscratch2;
6123 Register cnt2 = tmp2; // cnt2 only used in array length compare
6124
6125 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2);
6126
6127 #ifndef PRODUCT
6128 {
6129 char comment[64];
6130 os::snprintf_checked(comment, sizeof comment, "{string_equalsL");
6131 BLOCK_COMMENT(comment);
6132 }
6133 #endif
6134
6135 mov(result, false);
6136
6137 // Check for short strings, i.e. smaller than wordSize.
6138 subs(cnt1, cnt1, wordSize);
6139 br(Assembler::LT, SHORT);
6140 // Main 8 byte comparison loop.
6141 bind(NEXT_WORD); {
6142 ldr(tmp1, Address(post(a1, wordSize)));
6143 ldr(tmp2, Address(post(a2, wordSize)));
6144 subs(cnt1, cnt1, wordSize);
6145 eor(tmp1, tmp1, tmp2);
6146 cbnz(tmp1, DONE);
6147 } br(GT, NEXT_WORD);
6148 // Last longword. In the case where length == 4 we compare the
6149 // same longword twice, but that's still faster than another
6150 // conditional branch.
6151 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when
6152 // length == 4.
6153 ldr(tmp1, Address(a1, cnt1));
6154 ldr(tmp2, Address(a2, cnt1));
6155 eor(tmp2, tmp1, tmp2);
6156 cbnz(tmp2, DONE);
6157 b(SAME);
6158
6159 bind(SHORT);
6160 Label TAIL03, TAIL01;
6161
6162 tbz(cnt1, 2, TAIL03); // 0-7 bytes left.
6163 {
6164 ldrw(tmp1, Address(post(a1, 4)));
6165 ldrw(tmp2, Address(post(a2, 4)));
6166 eorw(tmp1, tmp1, tmp2);
6167 cbnzw(tmp1, DONE);
6168 }
6169 bind(TAIL03);
6170 tbz(cnt1, 1, TAIL01); // 0-3 bytes left.
6171 {
6172 ldrh(tmp1, Address(post(a1, 2)));
6173 ldrh(tmp2, Address(post(a2, 2)));
6174 eorw(tmp1, tmp1, tmp2);
6175 cbnzw(tmp1, DONE);
6176 }
6177 bind(TAIL01);
6178 tbz(cnt1, 0, SAME); // 0-1 bytes left.
6179 {
6180 ldrb(tmp1, a1);
6181 ldrb(tmp2, a2);
6182 eorw(tmp1, tmp1, tmp2);
6183 cbnzw(tmp1, DONE);
6184 }
6185 // Arrays are equal.
6186 bind(SAME);
6187 mov(result, true);
6188
6189 // That's it.
6190 bind(DONE);
6191 BLOCK_COMMENT("} string_equals");
6192 }
6193
6194
6195 // The size of the blocks erased by the zero_blocks stub. We must
6196 // handle anything smaller than this ourselves in zero_words().
6197 const int MacroAssembler::zero_words_block_size = 8;
6198
6199 // zero_words() is used by C2 ClearArray patterns and by
6200 // C1_MacroAssembler. It is as small as possible, handling small word
6201 // counts locally and delegating anything larger to the zero_blocks
6202 // stub. It is expanded many times in compiled code, so it is
6203 // important to keep it short.
6204
6205 // ptr: Address of a buffer to be zeroed.
6206 // cnt: Count in HeapWords.
6207 //
6208 // ptr, cnt, rscratch1, and rscratch2 are clobbered.
6209 address MacroAssembler::zero_words(Register ptr, Register cnt)
6210 {
6211 assert(is_power_of_2(zero_words_block_size), "adjust this");
6212
6213 BLOCK_COMMENT("zero_words {");
6214 assert(ptr == r10 && cnt == r11, "mismatch in register usage");
6215 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks());
6216 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated");
6217
6218 subs(rscratch1, cnt, zero_words_block_size);
6219 Label around;
6220 br(LO, around);
6221 {
6222 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks());
6223 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated");
6224 // Make sure this is a C2 compilation. C1 allocates space only for
6225 // trampoline stubs generated by Call LIR ops, and in any case it
6226 // makes sense for a C1 compilation task to proceed as quickly as
6227 // possible.
6228 CompileTask* task;
6229 if (StubRoutines::aarch64::complete()
6230 && Thread::current()->is_Compiler_thread()
6231 && (task = ciEnv::current()->task())
6232 && is_c2_compile(task->comp_level())) {
6233 address tpc = trampoline_call(zero_blocks);
6234 if (tpc == nullptr) {
6235 DEBUG_ONLY(reset_labels(around));
6236 return nullptr;
6237 }
6238 } else {
6239 far_call(zero_blocks);
6240 }
6241 }
6242 bind(around);
6243
6244 // We have a few words left to do. zero_blocks has adjusted r10 and r11
6245 // for us.
6246 for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) {
6247 Label l;
6248 tbz(cnt, exact_log2(i), l);
6249 for (int j = 0; j < i; j += 2) {
6250 stp(zr, zr, post(ptr, 2 * BytesPerWord));
6251 }
6252 bind(l);
6253 }
6254 {
6255 Label l;
6256 tbz(cnt, 0, l);
6257 str(zr, Address(ptr));
6258 bind(l);
6259 }
6260
6261 BLOCK_COMMENT("} zero_words");
6262 return pc();
6263 }
6264
6265 // base: Address of a buffer to be zeroed, 8 bytes aligned.
6266 // cnt: Immediate count in HeapWords.
6267 //
6268 // r10, r11, rscratch1, and rscratch2 are clobbered.
6269 address MacroAssembler::zero_words(Register base, uint64_t cnt)
6270 {
6271 assert(wordSize <= BlockZeroingLowLimit,
6272 "increase BlockZeroingLowLimit");
6273 address result = nullptr;
6274 if (cnt <= (uint64_t)BlockZeroingLowLimit / BytesPerWord) {
6275 #ifndef PRODUCT
6276 {
6277 char buf[64];
6278 os::snprintf_checked(buf, sizeof buf, "zero_words (count = %" PRIu64 ") {", cnt);
6279 BLOCK_COMMENT(buf);
6280 }
6281 #endif
6282 if (cnt >= 16) {
6283 uint64_t loops = cnt/16;
6284 if (loops > 1) {
6285 mov(rscratch2, loops - 1);
6286 }
6287 {
6288 Label loop;
6289 bind(loop);
6290 for (int i = 0; i < 16; i += 2) {
6291 stp(zr, zr, Address(base, i * BytesPerWord));
6292 }
6293 add(base, base, 16 * BytesPerWord);
6294 if (loops > 1) {
6295 subs(rscratch2, rscratch2, 1);
6296 br(GE, loop);
6297 }
6298 }
6299 }
6300 cnt %= 16;
6301 int i = cnt & 1; // store any odd word to start
6302 if (i) str(zr, Address(base));
6303 for (; i < (int)cnt; i += 2) {
6304 stp(zr, zr, Address(base, i * wordSize));
6305 }
6306 BLOCK_COMMENT("} zero_words");
6307 result = pc();
6308 } else {
6309 mov(r10, base); mov(r11, cnt);
6310 result = zero_words(r10, r11);
6311 }
6312 return result;
6313 }
6314
6315 // Zero blocks of memory by using DC ZVA.
6316 //
6317 // Aligns the base address first sufficiently for DC ZVA, then uses
6318 // DC ZVA repeatedly for every full block. cnt is the size to be
6319 // zeroed in HeapWords. Returns the count of words left to be zeroed
6320 // in cnt.
6321 //
6322 // NOTE: This is intended to be used in the zero_blocks() stub. If
6323 // you want to use it elsewhere, note that cnt must be >= 2*zva_length.
6324 void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) {
6325 Register tmp = rscratch1;
6326 Register tmp2 = rscratch2;
6327 int zva_length = VM_Version::zva_length();
6328 Label initial_table_end, loop_zva;
6329 Label fini;
6330
6331 // Base must be 16 byte aligned. If not just return and let caller handle it
6332 tst(base, 0x0f);
6333 br(Assembler::NE, fini);
6334 // Align base with ZVA length.
6335 neg(tmp, base);
6336 andr(tmp, tmp, zva_length - 1);
6337
6338 // tmp: the number of bytes to be filled to align the base with ZVA length.
6339 add(base, base, tmp);
6340 sub(cnt, cnt, tmp, Assembler::ASR, 3);
6341 adr(tmp2, initial_table_end);
6342 sub(tmp2, tmp2, tmp, Assembler::LSR, 2);
6343 br(tmp2);
6344
6345 for (int i = -zva_length + 16; i < 0; i += 16)
6346 stp(zr, zr, Address(base, i));
6347 bind(initial_table_end);
6348
6349 sub(cnt, cnt, zva_length >> 3);
6350 bind(loop_zva);
6351 dc(Assembler::ZVA, base);
6352 subs(cnt, cnt, zva_length >> 3);
6353 add(base, base, zva_length);
6354 br(Assembler::GE, loop_zva);
6355 add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA
6356 bind(fini);
6357 }
6358
6359 // base: Address of a buffer to be filled, 8 bytes aligned.
6360 // cnt: Count in 8-byte unit.
6361 // value: Value to be filled with.
6362 // base will point to the end of the buffer after filling.
6363 void MacroAssembler::fill_words(Register base, Register cnt, Register value)
6364 {
6365 // Algorithm:
6366 //
6367 // if (cnt == 0) {
6368 // return;
6369 // }
6370 // if ((p & 8) != 0) {
6371 // *p++ = v;
6372 // }
6373 //
6374 // scratch1 = cnt & 14;
6375 // cnt -= scratch1;
6376 // p += scratch1;
6377 // switch (scratch1 / 2) {
6378 // do {
6379 // cnt -= 16;
6380 // p[-16] = v;
6381 // p[-15] = v;
6382 // case 7:
6383 // p[-14] = v;
6384 // p[-13] = v;
6385 // case 6:
6386 // p[-12] = v;
6387 // p[-11] = v;
6388 // // ...
6389 // case 1:
6390 // p[-2] = v;
6391 // p[-1] = v;
6392 // case 0:
6393 // p += 16;
6394 // } while (cnt);
6395 // }
6396 // if ((cnt & 1) == 1) {
6397 // *p++ = v;
6398 // }
6399
6400 assert_different_registers(base, cnt, value, rscratch1, rscratch2);
6401
6402 Label fini, skip, entry, loop;
6403 const int unroll = 8; // Number of stp instructions we'll unroll
6404
6405 cbz(cnt, fini);
6406 tbz(base, 3, skip);
6407 str(value, Address(post(base, 8)));
6408 sub(cnt, cnt, 1);
6409 bind(skip);
6410
6411 andr(rscratch1, cnt, (unroll-1) * 2);
6412 sub(cnt, cnt, rscratch1);
6413 add(base, base, rscratch1, Assembler::LSL, 3);
6414 adr(rscratch2, entry);
6415 sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1);
6416 br(rscratch2);
6417
6418 bind(loop);
6419 add(base, base, unroll * 16);
6420 for (int i = -unroll; i < 0; i++)
6421 stp(value, value, Address(base, i * 16));
6422 bind(entry);
6423 subs(cnt, cnt, unroll * 2);
6424 br(Assembler::GE, loop);
6425
6426 tbz(cnt, 0, fini);
6427 str(value, Address(post(base, 8)));
6428 bind(fini);
6429 }
6430
6431 // Intrinsic for
6432 //
6433 // - sun.nio.cs.ISO_8859_1.Encoder#encodeISOArray0(byte[] sa, int sp, byte[] da, int dp, int len)
6434 // Encodes char[] to byte[] in ISO-8859-1
6435 //
6436 // - java.lang.StringCoding#encodeISOArray0(byte[] sa, int sp, byte[] da, int dp, int len)
6437 // Encodes byte[] (containing UTF-16) to byte[] in ISO-8859-1
6438 //
6439 // - java.lang.StringCoding#encodeAsciiArray0(char[] sa, int sp, byte[] da, int dp, int len)
6440 // Encodes char[] to byte[] in ASCII
6441 //
6442 // This version always returns the number of characters copied, and does not
6443 // clobber the 'len' register. A successful copy will complete with the post-
6444 // condition: 'res' == 'len', while an unsuccessful copy will exit with the
6445 // post-condition: 0 <= 'res' < 'len'.
6446 //
6447 // NOTE: Attempts to use 'ld2' (and 'umaxv' in the ISO part) has proven to
6448 // degrade performance (on Ampere Altra - Neoverse N1), to an extent
6449 // beyond the acceptable, even though the footprint would be smaller.
6450 // Using 'umaxv' in the ASCII-case comes with a small penalty but does
6451 // avoid additional bloat.
6452 //
6453 // Clobbers: src, dst, res, rscratch1, rscratch2, rflags
6454 void MacroAssembler::encode_iso_array(Register src, Register dst,
6455 Register len, Register res, bool ascii,
6456 FloatRegister vtmp0, FloatRegister vtmp1,
6457 FloatRegister vtmp2, FloatRegister vtmp3,
6458 FloatRegister vtmp4, FloatRegister vtmp5)
6459 {
6460 Register cnt = res;
6461 Register max = rscratch1;
6462 Register chk = rscratch2;
6463
6464 prfm(Address(src), PLDL1STRM);
6465 movw(cnt, len);
6466
6467 #define ASCII(insn) do { if (ascii) { insn; } } while (0)
6468
6469 Label LOOP_32, DONE_32, FAIL_32;
6470
6471 BIND(LOOP_32);
6472 {
6473 cmpw(cnt, 32);
6474 br(LT, DONE_32);
6475 ld1(vtmp0, vtmp1, vtmp2, vtmp3, T8H, Address(post(src, 64)));
6476 // Extract lower bytes.
6477 FloatRegister vlo0 = vtmp4;
6478 FloatRegister vlo1 = vtmp5;
6479 uzp1(vlo0, T16B, vtmp0, vtmp1);
6480 uzp1(vlo1, T16B, vtmp2, vtmp3);
6481 // Merge bits...
6482 orr(vtmp0, T16B, vtmp0, vtmp1);
6483 orr(vtmp2, T16B, vtmp2, vtmp3);
6484 // Extract merged upper bytes.
6485 FloatRegister vhix = vtmp0;
6486 uzp2(vhix, T16B, vtmp0, vtmp2);
6487 // ISO-check on hi-parts (all zero).
6488 // ASCII-check on lo-parts (no sign).
6489 FloatRegister vlox = vtmp1; // Merge lower bytes.
6490 ASCII(orr(vlox, T16B, vlo0, vlo1));
6491 umov(chk, vhix, D, 1); ASCII(cm(LT, vlox, T16B, vlox));
6492 fmovd(max, vhix); ASCII(umaxv(vlox, T16B, vlox));
6493 orr(chk, chk, max); ASCII(umov(max, vlox, B, 0));
6494 ASCII(orr(chk, chk, max));
6495 cbnz(chk, FAIL_32);
6496 subw(cnt, cnt, 32);
6497 st1(vlo0, vlo1, T16B, Address(post(dst, 32)));
6498 b(LOOP_32);
6499 }
6500 BIND(FAIL_32);
6501 sub(src, src, 64);
6502 BIND(DONE_32);
6503
6504 Label LOOP_8, SKIP_8;
6505
6506 BIND(LOOP_8);
6507 {
6508 cmpw(cnt, 8);
6509 br(LT, SKIP_8);
6510 FloatRegister vhi = vtmp0;
6511 FloatRegister vlo = vtmp1;
6512 ld1(vtmp3, T8H, src);
6513 uzp1(vlo, T16B, vtmp3, vtmp3);
6514 uzp2(vhi, T16B, vtmp3, vtmp3);
6515 // ISO-check on hi-parts (all zero).
6516 // ASCII-check on lo-parts (no sign).
6517 ASCII(cm(LT, vtmp2, T16B, vlo));
6518 fmovd(chk, vhi); ASCII(umaxv(vtmp2, T16B, vtmp2));
6519 ASCII(umov(max, vtmp2, B, 0));
6520 ASCII(orr(chk, chk, max));
6521 cbnz(chk, SKIP_8);
6522
6523 strd(vlo, Address(post(dst, 8)));
6524 subw(cnt, cnt, 8);
6525 add(src, src, 16);
6526 b(LOOP_8);
6527 }
6528 BIND(SKIP_8);
6529
6530 #undef ASCII
6531
6532 Label LOOP, DONE;
6533
6534 cbz(cnt, DONE);
6535 BIND(LOOP);
6536 {
6537 Register chr = rscratch1;
6538 ldrh(chr, Address(post(src, 2)));
6539 tst(chr, ascii ? 0xff80 : 0xff00);
6540 br(NE, DONE);
6541 strb(chr, Address(post(dst, 1)));
6542 subs(cnt, cnt, 1);
6543 br(GT, LOOP);
6544 }
6545 BIND(DONE);
6546 // Return index where we stopped.
6547 subw(res, len, cnt);
6548 }
6549
6550 // Inflate byte[] array to char[].
6551 // Clobbers: src, dst, len, rflags, rscratch1, v0-v6
6552 address MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
6553 FloatRegister vtmp1, FloatRegister vtmp2,
6554 FloatRegister vtmp3, Register tmp4) {
6555 Label big, done, after_init, to_stub;
6556
6557 assert_different_registers(src, dst, len, tmp4, rscratch1);
6558
6559 fmovd(vtmp1, 0.0);
6560 lsrw(tmp4, len, 3);
6561 bind(after_init);
6562 cbnzw(tmp4, big);
6563 // Short string: less than 8 bytes.
6564 {
6565 Label loop, tiny;
6566
6567 cmpw(len, 4);
6568 br(LT, tiny);
6569 // Use SIMD to do 4 bytes.
6570 ldrs(vtmp2, post(src, 4));
6571 zip1(vtmp3, T8B, vtmp2, vtmp1);
6572 subw(len, len, 4);
6573 strd(vtmp3, post(dst, 8));
6574
6575 cbzw(len, done);
6576
6577 // Do the remaining bytes by steam.
6578 bind(loop);
6579 ldrb(tmp4, post(src, 1));
6580 strh(tmp4, post(dst, 2));
6581 subw(len, len, 1);
6582
6583 bind(tiny);
6584 cbnz(len, loop);
6585
6586 b(done);
6587 }
6588
6589 if (SoftwarePrefetchHintDistance >= 0) {
6590 bind(to_stub);
6591 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate());
6592 assert(stub.target() != nullptr, "large_byte_array_inflate stub has not been generated");
6593 address tpc = trampoline_call(stub);
6594 if (tpc == nullptr) {
6595 DEBUG_ONLY(reset_labels(big, done));
6596 postcond(pc() == badAddress);
6597 return nullptr;
6598 }
6599 b(after_init);
6600 }
6601
6602 // Unpack the bytes 8 at a time.
6603 bind(big);
6604 {
6605 Label loop, around, loop_last, loop_start;
6606
6607 if (SoftwarePrefetchHintDistance >= 0) {
6608 const int large_loop_threshold = (64 + 16)/8;
6609 ldrd(vtmp2, post(src, 8));
6610 andw(len, len, 7);
6611 cmp(tmp4, (u1)large_loop_threshold);
6612 br(GE, to_stub);
6613 b(loop_start);
6614
6615 bind(loop);
6616 ldrd(vtmp2, post(src, 8));
6617 bind(loop_start);
6618 subs(tmp4, tmp4, 1);
6619 br(EQ, loop_last);
6620 zip1(vtmp2, T16B, vtmp2, vtmp1);
6621 ldrd(vtmp3, post(src, 8));
6622 st1(vtmp2, T8H, post(dst, 16));
6623 subs(tmp4, tmp4, 1);
6624 zip1(vtmp3, T16B, vtmp3, vtmp1);
6625 st1(vtmp3, T8H, post(dst, 16));
6626 br(NE, loop);
6627 b(around);
6628 bind(loop_last);
6629 zip1(vtmp2, T16B, vtmp2, vtmp1);
6630 st1(vtmp2, T8H, post(dst, 16));
6631 bind(around);
6632 cbz(len, done);
6633 } else {
6634 andw(len, len, 7);
6635 bind(loop);
6636 ldrd(vtmp2, post(src, 8));
6637 sub(tmp4, tmp4, 1);
6638 zip1(vtmp3, T16B, vtmp2, vtmp1);
6639 st1(vtmp3, T8H, post(dst, 16));
6640 cbnz(tmp4, loop);
6641 }
6642 }
6643
6644 // Do the tail of up to 8 bytes.
6645 add(src, src, len);
6646 ldrd(vtmp3, Address(src, -8));
6647 add(dst, dst, len, ext::uxtw, 1);
6648 zip1(vtmp3, T16B, vtmp3, vtmp1);
6649 strq(vtmp3, Address(dst, -16));
6650
6651 bind(done);
6652 postcond(pc() != badAddress);
6653 return pc();
6654 }
6655
6656 // Compress char[] array to byte[].
6657 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
6658 // Return the array length if every element in array can be encoded,
6659 // otherwise, the index of first non-latin1 (> 0xff) character.
6660 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
6661 Register res,
6662 FloatRegister tmp0, FloatRegister tmp1,
6663 FloatRegister tmp2, FloatRegister tmp3,
6664 FloatRegister tmp4, FloatRegister tmp5) {
6665 encode_iso_array(src, dst, len, res, false, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5);
6666 }
6667
6668 // java.math.round(double a)
6669 // Returns the closest long to the argument, with ties rounding to
6670 // positive infinity. This requires some fiddling for corner
6671 // cases. We take care to avoid double rounding in e.g. (jlong)(a + 0.5).
6672 void MacroAssembler::java_round_double(Register dst, FloatRegister src,
6673 FloatRegister ftmp) {
6674 Label DONE;
6675 BLOCK_COMMENT("java_round_double: { ");
6676 fmovd(rscratch1, src);
6677 // Use RoundToNearestTiesAway unless src small and -ve.
6678 fcvtasd(dst, src);
6679 // Test if src >= 0 || abs(src) >= 0x1.0p52
6680 eor(rscratch1, rscratch1, UCONST64(1) << 63); // flip sign bit
6681 mov(rscratch2, julong_cast(0x1.0p52));
6682 cmp(rscratch1, rscratch2);
6683 br(HS, DONE); {
6684 // src < 0 && abs(src) < 0x1.0p52
6685 // src may have a fractional part, so add 0.5
6686 fmovd(ftmp, 0.5);
6687 faddd(ftmp, src, ftmp);
6688 // Convert double to jlong, use RoundTowardsNegative
6689 fcvtmsd(dst, ftmp);
6690 }
6691 bind(DONE);
6692 BLOCK_COMMENT("} java_round_double");
6693 }
6694
6695 void MacroAssembler::java_round_float(Register dst, FloatRegister src,
6696 FloatRegister ftmp) {
6697 Label DONE;
6698 BLOCK_COMMENT("java_round_float: { ");
6699 fmovs(rscratch1, src);
6700 // Use RoundToNearestTiesAway unless src small and -ve.
6701 fcvtassw(dst, src);
6702 // Test if src >= 0 || abs(src) >= 0x1.0p23
6703 eor(rscratch1, rscratch1, 0x80000000); // flip sign bit
6704 mov(rscratch2, jint_cast(0x1.0p23f));
6705 cmp(rscratch1, rscratch2);
6706 br(HS, DONE); {
6707 // src < 0 && |src| < 0x1.0p23
6708 // src may have a fractional part, so add 0.5
6709 fmovs(ftmp, 0.5f);
6710 fadds(ftmp, src, ftmp);
6711 // Convert float to jint, use RoundTowardsNegative
6712 fcvtmssw(dst, ftmp);
6713 }
6714 bind(DONE);
6715 BLOCK_COMMENT("} java_round_float");
6716 }
6717
6718 // get_thread() can be called anywhere inside generated code so we
6719 // need to save whatever non-callee save context might get clobbered
6720 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed,
6721 // the call setup code.
6722 //
6723 // On Linux, aarch64_get_thread_helper() clobbers only r0, r1, and flags.
6724 // On other systems, the helper is a usual C function.
6725 //
6726 void MacroAssembler::get_thread(Register dst) {
6727 RegSet saved_regs =
6728 LINUX_ONLY(RegSet::range(r0, r1) + lr - dst)
6729 NOT_LINUX (RegSet::range(r0, r17) + lr - dst);
6730
6731 protect_return_address();
6732 push(saved_regs, sp);
6733
6734 mov(lr, ExternalAddress(CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper)));
6735 blr(lr);
6736 if (dst != c_rarg0) {
6737 mov(dst, c_rarg0);
6738 }
6739
6740 pop(saved_regs, sp);
6741 authenticate_return_address();
6742 }
6743
6744 void MacroAssembler::cache_wb(Address line) {
6745 assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset");
6746 assert(line.index() == noreg, "index should be noreg");
6747 assert(line.offset() == 0, "offset should be 0");
6748 // would like to assert this
6749 // assert(line._ext.shift == 0, "shift should be zero");
6750 if (VM_Version::supports_dcpop()) {
6751 // writeback using clear virtual address to point of persistence
6752 dc(Assembler::CVAP, line.base());
6753 } else {
6754 // no need to generate anything as Unsafe.writebackMemory should
6755 // never invoke this stub
6756 }
6757 }
6758
6759 void MacroAssembler::cache_wbsync(bool is_pre) {
6760 // we only need a barrier post sync
6761 if (!is_pre) {
6762 membar(Assembler::AnyAny);
6763 }
6764 }
6765
6766 void MacroAssembler::verify_sve_vector_length(Register tmp) {
6767 if (!UseSVE || VM_Version::get_max_supported_sve_vector_length() == FloatRegister::sve_vl_min) {
6768 return;
6769 }
6770 // Make sure that native code does not change SVE vector length.
6771 Label verify_ok;
6772 movw(tmp, zr);
6773 sve_inc(tmp, B);
6774 subsw(zr, tmp, VM_Version::get_initial_sve_vector_length());
6775 br(EQ, verify_ok);
6776 stop("Error: SVE vector length has changed since jvm startup");
6777 bind(verify_ok);
6778 }
6779
6780 void MacroAssembler::verify_ptrue() {
6781 Label verify_ok;
6782 if (!UseSVE) {
6783 return;
6784 }
6785 sve_cntp(rscratch1, B, ptrue, ptrue); // get true elements count.
6786 sve_dec(rscratch1, B);
6787 cbz(rscratch1, verify_ok);
6788 stop("Error: the preserved predicate register (p7) elements are not all true");
6789 bind(verify_ok);
6790 }
6791
6792 void MacroAssembler::safepoint_isb() {
6793 isb();
6794 #ifndef PRODUCT
6795 if (VerifyCrossModifyFence) {
6796 // Clear the thread state.
6797 strb(zr, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset())));
6798 }
6799 #endif
6800 }
6801
6802 #ifndef PRODUCT
6803 void MacroAssembler::verify_cross_modify_fence_not_required() {
6804 if (VerifyCrossModifyFence) {
6805 // Check if thread needs a cross modify fence.
6806 ldrb(rscratch1, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset())));
6807 Label fence_not_required;
6808 cbz(rscratch1, fence_not_required);
6809 // If it does then fail.
6810 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::verify_cross_modify_fence_failure)));
6811 mov(c_rarg0, rthread);
6812 blr(rscratch1);
6813 bind(fence_not_required);
6814 }
6815 }
6816 #endif
6817
6818 void MacroAssembler::spin_wait() {
6819 block_comment("spin_wait {");
6820 for (int i = 0; i < VM_Version::spin_wait_desc().inst_count(); ++i) {
6821 switch (VM_Version::spin_wait_desc().inst()) {
6822 case SpinWait::NOP:
6823 nop();
6824 break;
6825 case SpinWait::ISB:
6826 isb();
6827 break;
6828 case SpinWait::YIELD:
6829 yield();
6830 break;
6831 case SpinWait::SB:
6832 assert(VM_Version::supports_sb(), "current CPU does not support SB instruction");
6833 sb();
6834 break;
6835 default:
6836 ShouldNotReachHere();
6837 }
6838 }
6839 block_comment("}");
6840 }
6841
6842 // Stack frame creation/removal
6843
6844 void MacroAssembler::enter(bool strip_ret_addr) {
6845 if (strip_ret_addr) {
6846 // Addresses can only be signed once. If there are multiple nested frames being created
6847 // in the same function, then the return address needs stripping first.
6848 strip_return_address();
6849 }
6850 protect_return_address();
6851 stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
6852 mov(rfp, sp);
6853 }
6854
6855 void MacroAssembler::leave() {
6856 mov(sp, rfp);
6857 ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
6858 authenticate_return_address();
6859 }
6860
6861 // ROP Protection
6862 // Use the AArch64 PAC feature to add ROP protection for generated code. Use whenever creating/
6863 // destroying stack frames or whenever directly loading/storing the LR to memory.
6864 // If ROP protection is not set then these functions are no-ops.
6865 // For more details on PAC see pauth_aarch64.hpp.
6866
6867 // Sign the LR. Use during construction of a stack frame, before storing the LR to memory.
6868 // Uses value zero as the modifier.
6869 //
6870 void MacroAssembler::protect_return_address() {
6871 if (VM_Version::use_rop_protection()) {
6872 check_return_address();
6873 paciaz();
6874 }
6875 }
6876
6877 // Sign the return value in the given register. Use before updating the LR in the existing stack
6878 // frame for the current function.
6879 // Uses value zero as the modifier.
6880 //
6881 void MacroAssembler::protect_return_address(Register return_reg) {
6882 if (VM_Version::use_rop_protection()) {
6883 check_return_address(return_reg);
6884 paciza(return_reg);
6885 }
6886 }
6887
6888 // Authenticate the LR. Use before function return, after restoring FP and loading LR from memory.
6889 // Uses value zero as the modifier.
6890 //
6891 void MacroAssembler::authenticate_return_address() {
6892 if (VM_Version::use_rop_protection()) {
6893 autiaz();
6894 check_return_address();
6895 }
6896 }
6897
6898 // Authenticate the return value in the given register. Use before updating the LR in the existing
6899 // stack frame for the current function.
6900 // Uses value zero as the modifier.
6901 //
6902 void MacroAssembler::authenticate_return_address(Register return_reg) {
6903 if (VM_Version::use_rop_protection()) {
6904 autiza(return_reg);
6905 check_return_address(return_reg);
6906 }
6907 }
6908
6909 // Strip any PAC data from LR without performing any authentication. Use with caution - only if
6910 // there is no guaranteed way of authenticating the LR.
6911 //
6912 void MacroAssembler::strip_return_address() {
6913 if (VM_Version::use_rop_protection()) {
6914 xpaclri();
6915 }
6916 }
6917
6918 #ifndef PRODUCT
6919 // PAC failures can be difficult to debug. After an authentication failure, a segfault will only
6920 // occur when the pointer is used - ie when the program returns to the invalid LR. At this point
6921 // it is difficult to debug back to the callee function.
6922 // This function simply loads from the address in the given register.
6923 // Use directly after authentication to catch authentication failures.
6924 // Also use before signing to check that the pointer is valid and hasn't already been signed.
6925 //
6926 void MacroAssembler::check_return_address(Register return_reg) {
6927 if (VM_Version::use_rop_protection()) {
6928 ldr(zr, Address(return_reg));
6929 }
6930 }
6931 #endif
6932
6933 // The java_calling_convention describes stack locations as ideal slots on
6934 // a frame with no abi restrictions. Since we must observe abi restrictions
6935 // (like the placement of the register window) the slots must be biased by
6936 // the following value.
6937 static int reg2offset_in(VMReg r) {
6938 // Account for saved rfp and lr
6939 // This should really be in_preserve_stack_slots
6940 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
6941 }
6942
6943 static int reg2offset_out(VMReg r) {
6944 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
6945 }
6946
6947 // On 64bit we will store integer like items to the stack as
6948 // 64bits items (AArch64 ABI) even though java would only store
6949 // 32bits for a parameter. On 32bit it will simply be 32bits
6950 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
6951 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp) {
6952 if (src.first()->is_stack()) {
6953 if (dst.first()->is_stack()) {
6954 // stack to stack
6955 ldr(tmp, Address(rfp, reg2offset_in(src.first())));
6956 str(tmp, Address(sp, reg2offset_out(dst.first())));
6957 } else {
6958 // stack to reg
6959 ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first())));
6960 }
6961 } else if (dst.first()->is_stack()) {
6962 // reg to stack
6963 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first())));
6964 } else {
6965 if (dst.first() != src.first()) {
6966 sxtw(dst.first()->as_Register(), src.first()->as_Register());
6967 }
6968 }
6969 }
6970
6971 // An oop arg. Must pass a handle not the oop itself
6972 void MacroAssembler::object_move(
6973 OopMap* map,
6974 int oop_handle_offset,
6975 int framesize_in_slots,
6976 VMRegPair src,
6977 VMRegPair dst,
6978 bool is_receiver,
6979 int* receiver_offset) {
6980
6981 // must pass a handle. First figure out the location we use as a handle
6982
6983 Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register();
6984
6985 // See if oop is null if it is we need no handle
6986
6987 if (src.first()->is_stack()) {
6988
6989 // Oop is already on the stack as an argument
6990 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
6991 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
6992 if (is_receiver) {
6993 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
6994 }
6995
6996 ldr(rscratch1, Address(rfp, reg2offset_in(src.first())));
6997 lea(rHandle, Address(rfp, reg2offset_in(src.first())));
6998 // conditionally move a null
6999 cmp(rscratch1, zr);
7000 csel(rHandle, zr, rHandle, Assembler::EQ);
7001 } else {
7002
7003 // Oop is in an a register we must store it to the space we reserve
7004 // on the stack for oop_handles and pass a handle if oop is non-null
7005
7006 const Register rOop = src.first()->as_Register();
7007 int oop_slot;
7008 if (rOop == j_rarg0)
7009 oop_slot = 0;
7010 else if (rOop == j_rarg1)
7011 oop_slot = 1;
7012 else if (rOop == j_rarg2)
7013 oop_slot = 2;
7014 else if (rOop == j_rarg3)
7015 oop_slot = 3;
7016 else if (rOop == j_rarg4)
7017 oop_slot = 4;
7018 else if (rOop == j_rarg5)
7019 oop_slot = 5;
7020 else if (rOop == j_rarg6)
7021 oop_slot = 6;
7022 else {
7023 assert(rOop == j_rarg7, "wrong register");
7024 oop_slot = 7;
7025 }
7026
7027 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
7028 int offset = oop_slot*VMRegImpl::stack_slot_size;
7029
7030 map->set_oop(VMRegImpl::stack2reg(oop_slot));
7031 // Store oop in handle area, may be null
7032 str(rOop, Address(sp, offset));
7033 if (is_receiver) {
7034 *receiver_offset = offset;
7035 }
7036
7037 cmp(rOop, zr);
7038 lea(rHandle, Address(sp, offset));
7039 // conditionally move a null
7040 csel(rHandle, zr, rHandle, Assembler::EQ);
7041 }
7042
7043 // If arg is on the stack then place it otherwise it is already in correct reg.
7044 if (dst.first()->is_stack()) {
7045 str(rHandle, Address(sp, reg2offset_out(dst.first())));
7046 }
7047 }
7048
7049 // A float arg may have to do float reg int reg conversion
7050 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp) {
7051 if (src.first()->is_stack()) {
7052 if (dst.first()->is_stack()) {
7053 ldrw(tmp, Address(rfp, reg2offset_in(src.first())));
7054 strw(tmp, Address(sp, reg2offset_out(dst.first())));
7055 } else {
7056 ldrs(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first())));
7057 }
7058 } else if (src.first() != dst.first()) {
7059 if (src.is_single_phys_reg() && dst.is_single_phys_reg())
7060 fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
7061 else
7062 strs(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first())));
7063 }
7064 }
7065
7066 // A long move
7067 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp) {
7068 if (src.first()->is_stack()) {
7069 if (dst.first()->is_stack()) {
7070 // stack to stack
7071 ldr(tmp, Address(rfp, reg2offset_in(src.first())));
7072 str(tmp, Address(sp, reg2offset_out(dst.first())));
7073 } else {
7074 // stack to reg
7075 ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first())));
7076 }
7077 } else if (dst.first()->is_stack()) {
7078 // reg to stack
7079 // Do we really have to sign extend???
7080 // __ movslq(src.first()->as_Register(), src.first()->as_Register());
7081 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first())));
7082 } else {
7083 if (dst.first() != src.first()) {
7084 mov(dst.first()->as_Register(), src.first()->as_Register());
7085 }
7086 }
7087 }
7088
7089
7090 // A double move
7091 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp) {
7092 if (src.first()->is_stack()) {
7093 if (dst.first()->is_stack()) {
7094 ldr(tmp, Address(rfp, reg2offset_in(src.first())));
7095 str(tmp, Address(sp, reg2offset_out(dst.first())));
7096 } else {
7097 ldrd(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first())));
7098 }
7099 } else if (src.first() != dst.first()) {
7100 if (src.is_single_phys_reg() && dst.is_single_phys_reg())
7101 fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
7102 else
7103 strd(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first())));
7104 }
7105 }
7106
7107 // Implements lightweight-locking.
7108 //
7109 // - obj: the object to be locked
7110 // - t1, t2, t3: temporary registers, will be destroyed
7111 // - slow: branched to if locking fails, absolute offset may larger than 32KB (imm14 encoding).
7112 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow) {
7113 assert_different_registers(basic_lock, obj, t1, t2, t3, rscratch1);
7114
7115 Label push;
7116 const Register top = t1;
7117 const Register mark = t2;
7118 const Register t = t3;
7119
7120 // Preload the markWord. It is important that this is the first
7121 // instruction emitted as it is part of C1's null check semantics.
7122 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes()));
7123
7124 if (UseObjectMonitorTable) {
7125 // Clear cache in case fast locking succeeds or we need to take the slow-path.
7126 str(zr, Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes()))));
7127 }
7128
7129 if (DiagnoseSyncOnValueBasedClasses != 0) {
7130 load_klass(t1, obj);
7131 ldrb(t1, Address(t1, Klass::misc_flags_offset()));
7132 tst(t1, KlassFlags::_misc_is_value_based_class);
7133 br(Assembler::NE, slow);
7134 }
7135
7136 // Check if the lock-stack is full.
7137 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
7138 cmpw(top, (unsigned)LockStack::end_offset());
7139 br(Assembler::GE, slow);
7140
7141 // Check for recursion.
7142 subw(t, top, oopSize);
7143 ldr(t, Address(rthread, t));
7144 cmp(obj, t);
7145 br(Assembler::EQ, push);
7146
7147 // Check header for monitor (0b10).
7148 tst(mark, markWord::monitor_value);
7149 br(Assembler::NE, slow);
7150
7151 // Try to lock. Transition lock bits 0b01 => 0b00
7152 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea");
7153 orr(mark, mark, markWord::unlocked_value);
7154 eor(t, mark, markWord::unlocked_value);
7155 cmpxchg(/*addr*/ obj, /*expected*/ mark, /*new*/ t, Assembler::xword,
7156 /*acquire*/ true, /*release*/ false, /*weak*/ false, noreg);
7157 br(Assembler::NE, slow);
7158
7159 bind(push);
7160 // After successful lock, push object on lock-stack.
7161 str(obj, Address(rthread, top));
7162 addw(top, top, oopSize);
7163 strw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
7164 }
7165
7166 // Implements lightweight-unlocking.
7167 //
7168 // - obj: the object to be unlocked
7169 // - t1, t2, t3: temporary registers
7170 // - slow: branched to if unlocking fails, absolute offset may larger than 32KB (imm14 encoding).
7171 void MacroAssembler::lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow) {
7172 // cmpxchg clobbers rscratch1.
7173 assert_different_registers(obj, t1, t2, t3, rscratch1);
7174
7175 #ifdef ASSERT
7176 {
7177 // Check for lock-stack underflow.
7178 Label stack_ok;
7179 ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset()));
7180 cmpw(t1, (unsigned)LockStack::start_offset());
7181 br(Assembler::GE, stack_ok);
7182 STOP("Lock-stack underflow");
7183 bind(stack_ok);
7184 }
7185 #endif
7186
7187 Label unlocked, push_and_slow;
7188 const Register top = t1;
7189 const Register mark = t2;
7190 const Register t = t3;
7191
7192 // Check if obj is top of lock-stack.
7193 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
7194 subw(top, top, oopSize);
7195 ldr(t, Address(rthread, top));
7196 cmp(obj, t);
7197 br(Assembler::NE, slow);
7198
7199 // Pop lock-stack.
7200 DEBUG_ONLY(str(zr, Address(rthread, top));)
7201 strw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
7202
7203 // Check if recursive.
7204 subw(t, top, oopSize);
7205 ldr(t, Address(rthread, t));
7206 cmp(obj, t);
7207 br(Assembler::EQ, unlocked);
7208
7209 // Not recursive. Check header for monitor (0b10).
7210 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes()));
7211 tbnz(mark, log2i_exact(markWord::monitor_value), push_and_slow);
7212
7213 #ifdef ASSERT
7214 // Check header not unlocked (0b01).
7215 Label not_unlocked;
7216 tbz(mark, log2i_exact(markWord::unlocked_value), not_unlocked);
7217 stop("lightweight_unlock already unlocked");
7218 bind(not_unlocked);
7219 #endif
7220
7221 // Try to unlock. Transition lock bits 0b00 => 0b01
7222 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea");
7223 orr(t, mark, markWord::unlocked_value);
7224 cmpxchg(obj, mark, t, Assembler::xword,
7225 /*acquire*/ false, /*release*/ true, /*weak*/ false, noreg);
7226 br(Assembler::EQ, unlocked);
7227
7228 bind(push_and_slow);
7229 // Restore lock-stack and handle the unlock in runtime.
7230 DEBUG_ONLY(str(obj, Address(rthread, top));)
7231 addw(top, top, oopSize);
7232 strw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
7233 b(slow);
7234
7235 bind(unlocked);
7236 }