1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/assembler.hpp" 28 #include "asm/assembler.inline.hpp" 29 #include "ci/ciEnv.hpp" 30 #include "ci/ciUtilities.hpp" 31 #include "code/compiledIC.hpp" 32 #if INCLUDE_CDS 33 #include "code/SCCache.hpp" 34 #endif 35 #include "compiler/compileTask.hpp" 36 #include "compiler/disassembler.hpp" 37 #include "compiler/oopMap.hpp" 38 #include "gc/shared/barrierSet.hpp" 39 #include "gc/shared/barrierSetAssembler.hpp" 40 #include "gc/shared/cardTableBarrierSet.hpp" 41 #include "gc/shared/cardTable.hpp" 42 #include "gc/shared/collectedHeap.hpp" 43 #include "gc/shared/tlab_globals.hpp" 44 #include "interpreter/bytecodeHistogram.hpp" 45 #include "interpreter/interpreter.hpp" 46 #include "interpreter/interpreterRuntime.hpp" 47 #include "jvm.h" 48 #include "memory/resourceArea.hpp" 49 #include "memory/universe.hpp" 50 #include "nativeInst_aarch64.hpp" 51 #include "oops/accessDecorators.hpp" 52 #include "oops/compressedKlass.inline.hpp" 53 #include "oops/compressedOops.inline.hpp" 54 #include "oops/klass.inline.hpp" 55 #include "runtime/continuation.hpp" 56 #include "runtime/icache.hpp" 57 #include "runtime/interfaceSupport.inline.hpp" 58 #include "runtime/javaThread.hpp" 59 #include "runtime/jniHandles.inline.hpp" 60 #include "runtime/sharedRuntime.hpp" 61 #include "runtime/stubRoutines.hpp" 62 #include "utilities/globalDefinitions.hpp" 63 #include "utilities/powerOfTwo.hpp" 64 #ifdef COMPILER1 65 #include "c1/c1_LIRAssembler.hpp" 66 #endif 67 #ifdef COMPILER2 68 #include "oops/oop.hpp" 69 #include "opto/compile.hpp" 70 #include "opto/node.hpp" 71 #include "opto/output.hpp" 72 #endif 73 74 #include <sys/types.h> 75 76 #ifdef PRODUCT 77 #define BLOCK_COMMENT(str) /* nothing */ 78 #else 79 #define BLOCK_COMMENT(str) block_comment(str) 80 #endif 81 #define STOP(str) stop(str); 82 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 83 84 #ifdef ASSERT 85 extern "C" void disnm(intptr_t p); 86 #endif 87 // Target-dependent relocation processing 88 // 89 // Instruction sequences whose target may need to be retrieved or 90 // patched are distinguished by their leading instruction, sorting 91 // them into three main instruction groups and related subgroups. 92 // 93 // 1) Branch, Exception and System (insn count = 1) 94 // 1a) Unconditional branch (immediate): 95 // b/bl imm19 96 // 1b) Compare & branch (immediate): 97 // cbz/cbnz Rt imm19 98 // 1c) Test & branch (immediate): 99 // tbz/tbnz Rt imm14 100 // 1d) Conditional branch (immediate): 101 // b.cond imm19 102 // 103 // 2) Loads and Stores (insn count = 1) 104 // 2a) Load register literal: 105 // ldr Rt imm19 106 // 107 // 3) Data Processing Immediate (insn count = 2 or 3) 108 // 3a) PC-rel. addressing 109 // adr/adrp Rx imm21; ldr/str Ry Rx #imm12 110 // adr/adrp Rx imm21; add Ry Rx #imm12 111 // adr/adrp Rx imm21; movk Rx #imm16<<32; ldr/str Ry, [Rx, #offset_in_page] 112 // adr/adrp Rx imm21 113 // adr/adrp Rx imm21; movk Rx #imm16<<32 114 // adr/adrp Rx imm21; movk Rx #imm16<<32; add Ry, Rx, #offset_in_page 115 // The latter form can only happen when the target is an 116 // ExternalAddress, and (by definition) ExternalAddresses don't 117 // move. Because of that property, there is never any need to 118 // patch the last of the three instructions. However, 119 // MacroAssembler::target_addr_for_insn takes all three 120 // instructions into account and returns the correct address. 121 // 3b) Move wide (immediate) 122 // movz Rx #imm16; movk Rx #imm16 << 16; movk Rx #imm16 << 32; 123 // 124 // A switch on a subset of the instruction's bits provides an 125 // efficient dispatch to these subcases. 126 // 127 // insn[28:26] -> main group ('x' == don't care) 128 // 00x -> UNALLOCATED 129 // 100 -> Data Processing Immediate 130 // 101 -> Branch, Exception and System 131 // x1x -> Loads and Stores 132 // 133 // insn[30:25] -> subgroup ('_' == group, 'x' == don't care). 134 // n.b. in some cases extra bits need to be checked to verify the 135 // instruction is as expected 136 // 137 // 1) ... xx101x Branch, Exception and System 138 // 1a) 00___x Unconditional branch (immediate) 139 // 1b) 01___0 Compare & branch (immediate) 140 // 1c) 01___1 Test & branch (immediate) 141 // 1d) 10___0 Conditional branch (immediate) 142 // other Should not happen 143 // 144 // 2) ... xxx1x0 Loads and Stores 145 // 2a) xx1__00 Load/Store register (insn[28] == 1 && insn[24] == 0) 146 // 2aa) x01__00 Load register literal (i.e. requires insn[29] == 0) 147 // strictly should be 64 bit non-FP/SIMD i.e. 148 // 0101_000 (i.e. requires insn[31:24] == 01011000) 149 // 150 // 3) ... xx100x Data Processing Immediate 151 // 3a) xx___00 PC-rel. addressing (n.b. requires insn[24] == 0) 152 // 3b) xx___101 Move wide (immediate) (n.b. requires insn[24:23] == 01) 153 // strictly should be 64 bit movz #imm16<<0 154 // 110___10100 (i.e. requires insn[31:21] == 11010010100) 155 // 156 class RelocActions { 157 protected: 158 typedef int (*reloc_insn)(address insn_addr, address &target); 159 160 virtual reloc_insn adrpMem() = 0; 161 virtual reloc_insn adrpAdd() = 0; 162 virtual reloc_insn adrpMovk() = 0; 163 164 const address _insn_addr; 165 const uint32_t _insn; 166 167 static uint32_t insn_at(address insn_addr, int n) { 168 return ((uint32_t*)insn_addr)[n]; 169 } 170 uint32_t insn_at(int n) const { 171 return insn_at(_insn_addr, n); 172 } 173 174 public: 175 176 RelocActions(address insn_addr) : _insn_addr(insn_addr), _insn(insn_at(insn_addr, 0)) {} 177 RelocActions(address insn_addr, uint32_t insn) 178 : _insn_addr(insn_addr), _insn(insn) {} 179 180 virtual int unconditionalBranch(address insn_addr, address &target) = 0; 181 virtual int conditionalBranch(address insn_addr, address &target) = 0; 182 virtual int testAndBranch(address insn_addr, address &target) = 0; 183 virtual int loadStore(address insn_addr, address &target) = 0; 184 virtual int adr(address insn_addr, address &target) = 0; 185 virtual int adrp(address insn_addr, address &target, reloc_insn inner) = 0; 186 virtual int immediate(address insn_addr, address &target) = 0; 187 virtual void verify(address insn_addr, address &target) = 0; 188 189 int ALWAYSINLINE run(address insn_addr, address &target) { 190 int instructions = 1; 191 192 uint32_t dispatch = Instruction_aarch64::extract(_insn, 30, 25); 193 switch(dispatch) { 194 case 0b001010: 195 case 0b001011: { 196 instructions = unconditionalBranch(insn_addr, target); 197 break; 198 } 199 case 0b101010: // Conditional branch (immediate) 200 case 0b011010: { // Compare & branch (immediate) 201 instructions = conditionalBranch(insn_addr, target); 202 break; 203 } 204 case 0b011011: { 205 instructions = testAndBranch(insn_addr, target); 206 break; 207 } 208 case 0b001100: 209 case 0b001110: 210 case 0b011100: 211 case 0b011110: 212 case 0b101100: 213 case 0b101110: 214 case 0b111100: 215 case 0b111110: { 216 // load/store 217 if ((Instruction_aarch64::extract(_insn, 29, 24) & 0b111011) == 0b011000) { 218 // Load register (literal) 219 instructions = loadStore(insn_addr, target); 220 break; 221 } else { 222 // nothing to do 223 assert(target == nullptr, "did not expect to relocate target for polling page load"); 224 } 225 break; 226 } 227 case 0b001000: 228 case 0b011000: 229 case 0b101000: 230 case 0b111000: { 231 // adr/adrp 232 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 233 int shift = Instruction_aarch64::extract(_insn, 31, 31); 234 if (shift) { 235 uint32_t insn2 = insn_at(1); 236 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 237 Instruction_aarch64::extract(_insn, 4, 0) == 238 Instruction_aarch64::extract(insn2, 9, 5)) { 239 instructions = adrp(insn_addr, target, adrpMem()); 240 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 241 Instruction_aarch64::extract(_insn, 4, 0) == 242 Instruction_aarch64::extract(insn2, 4, 0)) { 243 instructions = adrp(insn_addr, target, adrpAdd()); 244 } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 245 Instruction_aarch64::extract(_insn, 4, 0) == 246 Instruction_aarch64::extract(insn2, 4, 0)) { 247 instructions = adrp(insn_addr, target, adrpMovk()); 248 } else { 249 ShouldNotReachHere(); 250 } 251 } else { 252 instructions = adr(insn_addr, target); 253 } 254 break; 255 } 256 case 0b001001: 257 case 0b011001: 258 case 0b101001: 259 case 0b111001: { 260 instructions = immediate(insn_addr, target); 261 break; 262 } 263 default: { 264 ShouldNotReachHere(); 265 } 266 } 267 268 verify(insn_addr, target); 269 return instructions * NativeInstruction::instruction_size; 270 } 271 }; 272 273 class Patcher : public RelocActions { 274 virtual reloc_insn adrpMem() { return &Patcher::adrpMem_impl; } 275 virtual reloc_insn adrpAdd() { return &Patcher::adrpAdd_impl; } 276 virtual reloc_insn adrpMovk() { return &Patcher::adrpMovk_impl; } 277 278 public: 279 Patcher(address insn_addr) : RelocActions(insn_addr) {} 280 281 virtual int unconditionalBranch(address insn_addr, address &target) { 282 intptr_t offset = (target - insn_addr) >> 2; 283 Instruction_aarch64::spatch(insn_addr, 25, 0, offset); 284 return 1; 285 } 286 virtual int conditionalBranch(address insn_addr, address &target) { 287 intptr_t offset = (target - insn_addr) >> 2; 288 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 289 return 1; 290 } 291 virtual int testAndBranch(address insn_addr, address &target) { 292 intptr_t offset = (target - insn_addr) >> 2; 293 Instruction_aarch64::spatch(insn_addr, 18, 5, offset); 294 return 1; 295 } 296 virtual int loadStore(address insn_addr, address &target) { 297 intptr_t offset = (target - insn_addr) >> 2; 298 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 299 return 1; 300 } 301 virtual int adr(address insn_addr, address &target) { 302 #ifdef ASSERT 303 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 304 #endif 305 // PC-rel. addressing 306 ptrdiff_t offset = target - insn_addr; 307 int offset_lo = offset & 3; 308 offset >>= 2; 309 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 310 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 311 return 1; 312 } 313 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 314 int instructions = 1; 315 #ifdef ASSERT 316 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 317 #endif 318 ptrdiff_t offset = target - insn_addr; 319 instructions = 2; 320 precond(inner != nullptr); 321 // Give the inner reloc a chance to modify the target. 322 address adjusted_target = target; 323 instructions = (*inner)(insn_addr, adjusted_target); 324 uintptr_t pc_page = (uintptr_t)insn_addr >> 12; 325 uintptr_t adr_page = (uintptr_t)adjusted_target >> 12; 326 offset = adr_page - pc_page; 327 int offset_lo = offset & 3; 328 offset >>= 2; 329 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 330 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 331 return instructions; 332 } 333 static int adrpMem_impl(address insn_addr, address &target) { 334 uintptr_t dest = (uintptr_t)target; 335 int offset_lo = dest & 0xfff; 336 uint32_t insn2 = insn_at(insn_addr, 1); 337 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 338 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo >> size); 339 guarantee(((dest >> size) << size) == dest, "misaligned target"); 340 return 2; 341 } 342 static int adrpAdd_impl(address insn_addr, address &target) { 343 uintptr_t dest = (uintptr_t)target; 344 int offset_lo = dest & 0xfff; 345 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo); 346 return 2; 347 } 348 static int adrpMovk_impl(address insn_addr, address &target) { 349 uintptr_t dest = uintptr_t(target); 350 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 20, 5, (uintptr_t)target >> 32); 351 dest = (dest & 0xffffffffULL) | (uintptr_t(insn_addr) & 0xffff00000000ULL); 352 target = address(dest); 353 return 2; 354 } 355 virtual int immediate(address insn_addr, address &target) { 356 // Metadata pointers are either narrow (32 bits) or wide (48 bits). 357 // We encode narrow ones by setting the upper 16 bits in the first 358 // instruction. 359 if (Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010101) { 360 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 361 narrowKlass nk = CompressedKlassPointers::encode((Klass*)target); 362 Instruction_aarch64::patch(insn_addr, 20, 5, nk >> 16); 363 Instruction_aarch64::patch(insn_addr+4, 20, 5, nk & 0xffff); 364 return 2; 365 } 366 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 367 uint64_t dest = (uint64_t)target; 368 // Move wide constant 369 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 370 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 371 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 372 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 373 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 374 return 3; 375 } 376 virtual void verify(address insn_addr, address &target) { 377 #ifdef ASSERT 378 address address_is = MacroAssembler::target_addr_for_insn(insn_addr); 379 if (!(address_is == target)) { 380 tty->print_cr("%p at %p should be %p", address_is, insn_addr, target); 381 disnm((intptr_t)insn_addr); 382 assert(address_is == target, "should be"); 383 } 384 #endif 385 } 386 }; 387 388 // If insn1 and insn2 use the same register to form an address, either 389 // by an offsetted LDR or a simple ADD, return the offset. If the 390 // second instruction is an LDR, the offset may be scaled. 391 static bool offset_for(uint32_t insn1, uint32_t insn2, ptrdiff_t &byte_offset) { 392 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 393 Instruction_aarch64::extract(insn1, 4, 0) == 394 Instruction_aarch64::extract(insn2, 9, 5)) { 395 // Load/store register (unsigned immediate) 396 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 397 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 398 byte_offset <<= size; 399 return true; 400 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 401 Instruction_aarch64::extract(insn1, 4, 0) == 402 Instruction_aarch64::extract(insn2, 4, 0)) { 403 // add (immediate) 404 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 405 return true; 406 } 407 return false; 408 } 409 410 class AArch64Decoder : public RelocActions { 411 virtual reloc_insn adrpMem() { return &AArch64Decoder::adrpMem_impl; } 412 virtual reloc_insn adrpAdd() { return &AArch64Decoder::adrpAdd_impl; } 413 virtual reloc_insn adrpMovk() { return &AArch64Decoder::adrpMovk_impl; } 414 415 public: 416 AArch64Decoder(address insn_addr, uint32_t insn) : RelocActions(insn_addr, insn) {} 417 418 virtual int loadStore(address insn_addr, address &target) { 419 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 420 target = insn_addr + (offset << 2); 421 return 1; 422 } 423 virtual int unconditionalBranch(address insn_addr, address &target) { 424 intptr_t offset = Instruction_aarch64::sextract(_insn, 25, 0); 425 target = insn_addr + (offset << 2); 426 return 1; 427 } 428 virtual int conditionalBranch(address insn_addr, address &target) { 429 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 430 target = address(((uint64_t)insn_addr + (offset << 2))); 431 return 1; 432 } 433 virtual int testAndBranch(address insn_addr, address &target) { 434 intptr_t offset = Instruction_aarch64::sextract(_insn, 18, 5); 435 target = address(((uint64_t)insn_addr + (offset << 2))); 436 return 1; 437 } 438 virtual int adr(address insn_addr, address &target) { 439 // PC-rel. addressing 440 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 441 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 442 target = address((uint64_t)insn_addr + offset); 443 return 1; 444 } 445 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 446 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 447 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 448 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 449 int shift = 12; 450 offset <<= shift; 451 uint64_t target_page = ((uint64_t)insn_addr) + offset; 452 target_page &= ((uint64_t)-1) << shift; 453 uint32_t insn2 = insn_at(1); 454 target = address(target_page); 455 precond(inner != nullptr); 456 (*inner)(insn_addr, target); 457 return 2; 458 } 459 static int adrpMem_impl(address insn_addr, address &target) { 460 uint32_t insn2 = insn_at(insn_addr, 1); 461 // Load/store register (unsigned immediate) 462 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 463 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 464 byte_offset <<= size; 465 target += byte_offset; 466 return 2; 467 } 468 static int adrpAdd_impl(address insn_addr, address &target) { 469 uint32_t insn2 = insn_at(insn_addr, 1); 470 // add (immediate) 471 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 472 target += byte_offset; 473 return 2; 474 } 475 static int adrpMovk_impl(address insn_addr, address &target) { 476 uint32_t insn2 = insn_at(insn_addr, 1); 477 uint64_t dest = uint64_t(target); 478 dest = (dest & 0xffff0000ffffffff) | 479 ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32); 480 target = address(dest); 481 482 // We know the destination 4k page. Maybe we have a third 483 // instruction. 484 uint32_t insn = insn_at(insn_addr, 0); 485 uint32_t insn3 = insn_at(insn_addr, 2); 486 ptrdiff_t byte_offset; 487 if (offset_for(insn, insn3, byte_offset)) { 488 target += byte_offset; 489 return 3; 490 } else { 491 return 2; 492 } 493 } 494 virtual int immediate(address insn_addr, address &target) { 495 uint32_t *insns = (uint32_t *)insn_addr; 496 // Metadata pointers are either narrow (32 bits) or wide (48 bits). 497 // We encode narrow ones by setting the upper 16 bits in the first 498 // instruction. 499 if (Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010101) { 500 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 501 narrowKlass nk = (narrowKlass)((uint32_t(Instruction_aarch64::extract(_insn, 20, 5)) << 16) 502 + uint32_t(Instruction_aarch64::extract(insns[1], 20, 5))); 503 target = (address)CompressedKlassPointers::decode(nk); 504 return 2; 505 } 506 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 507 // Move wide constant: movz, movk, movk. See movptr(). 508 assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch"); 509 assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch"); 510 target = address(uint64_t(Instruction_aarch64::extract(_insn, 20, 5)) 511 + (uint64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16) 512 + (uint64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32)); 513 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 514 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 515 return 3; 516 } 517 virtual void verify(address insn_addr, address &target) { 518 } 519 }; 520 521 address MacroAssembler::target_addr_for_insn(address insn_addr, uint32_t insn) { 522 AArch64Decoder decoder(insn_addr, insn); 523 address target; 524 decoder.run(insn_addr, target); 525 return target; 526 } 527 528 // Patch any kind of instruction; there may be several instructions. 529 // Return the total length (in bytes) of the instructions. 530 int MacroAssembler::pd_patch_instruction_size(address insn_addr, address target) { 531 Patcher patcher(insn_addr); 532 return patcher.run(insn_addr, target); 533 } 534 535 int MacroAssembler::patch_oop(address insn_addr, address o) { 536 int instructions; 537 unsigned insn = *(unsigned*)insn_addr; 538 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 539 540 // OOPs are either narrow (32 bits) or wide (48 bits). We encode 541 // narrow OOPs by setting the upper 16 bits in the first 542 // instruction. 543 if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) { 544 // Move narrow OOP 545 uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o)); 546 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 547 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 548 instructions = 2; 549 } else { 550 // Move wide OOP 551 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 552 uintptr_t dest = (uintptr_t)o; 553 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 554 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 555 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 556 instructions = 3; 557 } 558 return instructions * NativeInstruction::instruction_size; 559 } 560 561 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) { 562 // Metadata pointers are either narrow (32 bits) or wide (48 bits). 563 // We encode narrow ones by setting the upper 16 bits in the first 564 // instruction. 565 NativeInstruction *insn = nativeInstruction_at(insn_addr); 566 assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 && 567 nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 568 569 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 570 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 571 return 2 * NativeInstruction::instruction_size; 572 } 573 574 address MacroAssembler::target_addr_for_insn_or_null(address insn_addr, unsigned insn) { 575 if (NativeInstruction::is_ldrw_to_zr(address(&insn))) { 576 return nullptr; 577 } 578 return MacroAssembler::target_addr_for_insn(insn_addr, insn); 579 } 580 581 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp) { 582 if (acquire) { 583 lea(tmp, Address(rthread, JavaThread::polling_word_offset())); 584 ldar(tmp, tmp); 585 } else { 586 ldr(tmp, Address(rthread, JavaThread::polling_word_offset())); 587 } 588 if (at_return) { 589 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 590 // we may safely use the sp instead to perform the stack watermark check. 591 cmp(in_nmethod ? sp : rfp, tmp); 592 br(Assembler::HI, slow_path); 593 } else { 594 tbnz(tmp, log2i_exact(SafepointMechanism::poll_bit()), slow_path); 595 } 596 } 597 598 void MacroAssembler::rt_call(address dest, Register tmp) { 599 CodeBlob *cb = CodeCache::find_blob(dest); 600 if (cb) { 601 far_call(RuntimeAddress(dest)); 602 } else { 603 lea(tmp, RuntimeAddress(dest)); 604 blr(tmp); 605 } 606 } 607 608 void MacroAssembler::push_cont_fastpath(Register java_thread) { 609 if (!Continuations::enabled()) return; 610 Label done; 611 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 612 cmp(sp, rscratch1); 613 br(Assembler::LS, done); 614 mov(rscratch1, sp); // we can't use sp as the source in str 615 str(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 616 bind(done); 617 } 618 619 void MacroAssembler::pop_cont_fastpath(Register java_thread) { 620 if (!Continuations::enabled()) return; 621 Label done; 622 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 623 cmp(sp, rscratch1); 624 br(Assembler::LO, done); 625 str(zr, Address(java_thread, JavaThread::cont_fastpath_offset())); 626 bind(done); 627 } 628 629 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 630 // we must set sp to zero to clear frame 631 str(zr, Address(rthread, JavaThread::last_Java_sp_offset())); 632 633 // must clear fp, so that compiled frames are not confused; it is 634 // possible that we need it only for debugging 635 if (clear_fp) { 636 str(zr, Address(rthread, JavaThread::last_Java_fp_offset())); 637 } 638 639 // Always clear the pc because it could have been set by make_walkable() 640 str(zr, Address(rthread, JavaThread::last_Java_pc_offset())); 641 } 642 643 // Calls to C land 644 // 645 // When entering C land, the rfp, & resp of the last Java frame have to be recorded 646 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 647 // has to be reset to 0. This is required to allow proper stack traversal. 648 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 649 Register last_java_fp, 650 Register last_java_pc, 651 Register scratch) { 652 653 if (last_java_pc->is_valid()) { 654 str(last_java_pc, Address(rthread, 655 JavaThread::frame_anchor_offset() 656 + JavaFrameAnchor::last_Java_pc_offset())); 657 } 658 659 // determine last_java_sp register 660 if (last_java_sp == sp) { 661 mov(scratch, sp); 662 last_java_sp = scratch; 663 } else if (!last_java_sp->is_valid()) { 664 last_java_sp = esp; 665 } 666 667 str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset())); 668 669 // last_java_fp is optional 670 if (last_java_fp->is_valid()) { 671 str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset())); 672 } 673 } 674 675 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 676 Register last_java_fp, 677 address last_java_pc, 678 Register scratch) { 679 assert(last_java_pc != nullptr, "must provide a valid PC"); 680 681 adr(scratch, last_java_pc); 682 str(scratch, Address(rthread, 683 JavaThread::frame_anchor_offset() 684 + JavaFrameAnchor::last_Java_pc_offset())); 685 686 set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch); 687 } 688 689 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 690 Register last_java_fp, 691 Label &L, 692 Register scratch) { 693 if (L.is_bound()) { 694 set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch); 695 } else { 696 InstructionMark im(this); 697 L.add_patch_at(code(), locator()); 698 set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch); 699 } 700 } 701 702 static inline bool target_needs_far_branch(address addr) { 703 if (SCCache::is_on_for_write()) { 704 return true; 705 } 706 // codecache size <= 128M 707 if (!MacroAssembler::far_branches()) { 708 return false; 709 } 710 // codecache size > 240M 711 if (MacroAssembler::codestub_branch_needs_far_jump()) { 712 return true; 713 } 714 // codecache size: 128M..240M 715 return !CodeCache::is_non_nmethod(addr); 716 } 717 718 void MacroAssembler::far_call(Address entry, Register tmp) { 719 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 720 assert(CodeCache::find_blob(entry.target()) != nullptr, 721 "destination of far call not found in code cache"); 722 assert(entry.rspec().type() == relocInfo::external_word_type 723 || entry.rspec().type() == relocInfo::runtime_call_type 724 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 725 if (target_needs_far_branch(entry.target())) { 726 uint64_t offset; 727 // We can use ADRP here because we know that the total size of 728 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 729 adrp(tmp, entry, offset); 730 add(tmp, tmp, offset); 731 blr(tmp); 732 } else { 733 bl(entry); 734 } 735 } 736 737 int MacroAssembler::far_jump(Address entry, Register tmp) { 738 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 739 assert(CodeCache::find_blob(entry.target()) != nullptr, 740 "destination of far call not found in code cache"); 741 assert(entry.rspec().type() == relocInfo::external_word_type 742 || entry.rspec().type() == relocInfo::runtime_call_type 743 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 744 address start = pc(); 745 if (target_needs_far_branch(entry.target())) { 746 uint64_t offset; 747 // We can use ADRP here because we know that the total size of 748 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 749 adrp(tmp, entry, offset); 750 add(tmp, tmp, offset); 751 br(tmp); 752 } else { 753 b(entry); 754 } 755 return pc() - start; 756 } 757 758 void MacroAssembler::reserved_stack_check() { 759 // testing if reserved zone needs to be enabled 760 Label no_reserved_zone_enabling; 761 762 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 763 cmp(sp, rscratch1); 764 br(Assembler::LO, no_reserved_zone_enabling); 765 766 enter(); // LR and FP are live. 767 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone))); 768 mov(c_rarg0, rthread); 769 blr(rscratch1); 770 leave(); 771 772 // We have already removed our own frame. 773 // throw_delayed_StackOverflowError will think that it's been 774 // called by our caller. 775 lea(rscratch1, RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry())); 776 br(rscratch1); 777 should_not_reach_here(); 778 779 bind(no_reserved_zone_enabling); 780 } 781 782 static void pass_arg0(MacroAssembler* masm, Register arg) { 783 if (c_rarg0 != arg ) { 784 masm->mov(c_rarg0, arg); 785 } 786 } 787 788 static void pass_arg1(MacroAssembler* masm, Register arg) { 789 if (c_rarg1 != arg ) { 790 masm->mov(c_rarg1, arg); 791 } 792 } 793 794 static void pass_arg2(MacroAssembler* masm, Register arg) { 795 if (c_rarg2 != arg ) { 796 masm->mov(c_rarg2, arg); 797 } 798 } 799 800 static void pass_arg3(MacroAssembler* masm, Register arg) { 801 if (c_rarg3 != arg ) { 802 masm->mov(c_rarg3, arg); 803 } 804 } 805 806 static bool is_preemptable(address entry_point) { 807 return entry_point == CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter); 808 } 809 810 void MacroAssembler::call_VM_base(Register oop_result, 811 Register java_thread, 812 Register last_java_sp, 813 address entry_point, 814 int number_of_arguments, 815 bool check_exceptions) { 816 // determine java_thread register 817 if (!java_thread->is_valid()) { 818 java_thread = rthread; 819 } 820 821 // determine last_java_sp register 822 if (!last_java_sp->is_valid()) { 823 last_java_sp = esp; 824 } 825 826 // debugging support 827 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 828 assert(java_thread == rthread, "unexpected register"); 829 #ifdef ASSERT 830 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 831 // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 832 #endif // ASSERT 833 834 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 835 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 836 837 // push java thread (becomes first argument of C function) 838 839 mov(c_rarg0, java_thread); 840 841 // set last Java frame before call 842 assert(last_java_sp != rfp, "can't use rfp"); 843 844 Label l; 845 if (is_preemptable(entry_point)) { 846 // skip setting last_pc since we already set it to desired value. 847 set_last_Java_frame(last_java_sp, rfp, noreg, rscratch1); 848 } else { 849 set_last_Java_frame(last_java_sp, rfp, l, rscratch1); 850 } 851 852 // do the call, remove parameters 853 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l); 854 855 // lr could be poisoned with PAC signature during throw_pending_exception 856 // if it was tail-call optimized by compiler, since lr is not callee-saved 857 // reload it with proper value 858 adr(lr, l); 859 860 // reset last Java frame 861 // Only interpreter should have to clear fp 862 reset_last_Java_frame(true); 863 864 // C++ interp handles this in the interpreter 865 check_and_handle_popframe(java_thread); 866 check_and_handle_earlyret(java_thread); 867 868 if (check_exceptions) { 869 // check for pending exceptions (java_thread is set upon return) 870 ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset()))); 871 Label ok; 872 cbz(rscratch1, ok); 873 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 874 br(rscratch1); 875 bind(ok); 876 } 877 878 // get oop result if there is one and reset the value in the thread 879 if (oop_result->is_valid()) { 880 get_vm_result(oop_result, java_thread); 881 } 882 } 883 884 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 885 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions); 886 } 887 888 // Check the entry target is always reachable from any branch. 889 static bool is_always_within_branch_range(Address entry) { 890 if (SCCache::is_on_for_write()) { 891 return false; 892 } 893 const address target = entry.target(); 894 895 if (!CodeCache::contains(target)) { 896 // We always use trampolines for callees outside CodeCache. 897 assert(entry.rspec().type() == relocInfo::runtime_call_type, "non-runtime call of an external target"); 898 return false; 899 } 900 901 if (!MacroAssembler::far_branches()) { 902 return true; 903 } 904 905 if (entry.rspec().type() == relocInfo::runtime_call_type) { 906 // Runtime calls are calls of a non-compiled method (stubs, adapters). 907 // Non-compiled methods stay forever in CodeCache. 908 // We check whether the longest possible branch is within the branch range. 909 assert(CodeCache::find_blob(target) != nullptr && 910 !CodeCache::find_blob(target)->is_nmethod(), 911 "runtime call of compiled method"); 912 const address right_longest_branch_start = CodeCache::high_bound() - NativeInstruction::instruction_size; 913 const address left_longest_branch_start = CodeCache::low_bound(); 914 const bool is_reachable = Assembler::reachable_from_branch_at(left_longest_branch_start, target) && 915 Assembler::reachable_from_branch_at(right_longest_branch_start, target); 916 return is_reachable; 917 } 918 919 return false; 920 } 921 922 // Maybe emit a call via a trampoline. If the code cache is small 923 // trampolines won't be emitted. 924 address MacroAssembler::trampoline_call(Address entry) { 925 assert(entry.rspec().type() == relocInfo::runtime_call_type 926 || entry.rspec().type() == relocInfo::opt_virtual_call_type 927 || entry.rspec().type() == relocInfo::static_call_type 928 || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type"); 929 930 address target = entry.target(); 931 932 if (!is_always_within_branch_range(entry)) { 933 if (!in_scratch_emit_size()) { 934 // We don't want to emit a trampoline if C2 is generating dummy 935 // code during its branch shortening phase. 936 if (entry.rspec().type() == relocInfo::runtime_call_type) { 937 assert(CodeBuffer::supports_shared_stubs(), "must support shared stubs"); 938 code()->share_trampoline_for(entry.target(), offset()); 939 } else { 940 address stub = emit_trampoline_stub(offset(), target); 941 if (stub == nullptr) { 942 postcond(pc() == badAddress); 943 return nullptr; // CodeCache is full 944 } 945 } 946 } 947 target = pc(); 948 } 949 950 address call_pc = pc(); 951 relocate(entry.rspec()); 952 bl(target); 953 954 postcond(pc() != badAddress); 955 return call_pc; 956 } 957 958 // Emit a trampoline stub for a call to a target which is too far away. 959 // 960 // code sequences: 961 // 962 // call-site: 963 // branch-and-link to <destination> or <trampoline stub> 964 // 965 // Related trampoline stub for this call site in the stub section: 966 // load the call target from the constant pool 967 // branch (LR still points to the call site above) 968 969 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset, 970 address dest) { 971 // Max stub size: alignment nop, TrampolineStub. 972 address stub = start_a_stub(max_trampoline_stub_size()); 973 if (stub == nullptr) { 974 return nullptr; // CodeBuffer::expand failed 975 } 976 977 // Create a trampoline stub relocation which relates this trampoline stub 978 // with the call instruction at insts_call_instruction_offset in the 979 // instructions code-section. 980 align(wordSize); 981 relocate(trampoline_stub_Relocation::spec(code()->insts()->start() 982 + insts_call_instruction_offset)); 983 const int stub_start_offset = offset(); 984 985 // Now, create the trampoline stub's code: 986 // - load the call 987 // - call 988 Label target; 989 ldr(rscratch1, target); 990 br(rscratch1); 991 bind(target); 992 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset, 993 "should be"); 994 emit_int64((int64_t)dest); 995 996 const address stub_start_addr = addr_at(stub_start_offset); 997 998 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); 999 1000 end_a_stub(); 1001 return stub_start_addr; 1002 } 1003 1004 int MacroAssembler::max_trampoline_stub_size() { 1005 // Max stub size: alignment nop, TrampolineStub. 1006 return NativeInstruction::instruction_size + NativeCallTrampolineStub::instruction_size; 1007 } 1008 1009 void MacroAssembler::emit_static_call_stub() { 1010 // CompiledDirectCall::set_to_interpreted knows the 1011 // exact layout of this stub. 1012 1013 isb(); 1014 mov_metadata(rmethod, nullptr); 1015 1016 // Jump to the entry point of the c2i stub. 1017 movptr(rscratch1, 0); 1018 br(rscratch1); 1019 } 1020 1021 int MacroAssembler::static_call_stub_size() { 1022 // isb; movk; movz; movz; movk; movz; movz; br 1023 return 8 * NativeInstruction::instruction_size; 1024 } 1025 1026 void MacroAssembler::c2bool(Register x) { 1027 // implements x == 0 ? 0 : 1 1028 // note: must only look at least-significant byte of x 1029 // since C-style booleans are stored in one byte 1030 // only! (was bug) 1031 tst(x, 0xff); 1032 cset(x, Assembler::NE); 1033 } 1034 1035 address MacroAssembler::ic_call(address entry, jint method_index) { 1036 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 1037 // address const_ptr = long_constant((jlong)Universe::non_oop_word()); 1038 // uintptr_t offset; 1039 // ldr_constant(rscratch2, const_ptr); 1040 movptr(rscratch2, (intptr_t)Universe::non_oop_word()); 1041 return trampoline_call(Address(entry, rh)); 1042 } 1043 1044 int MacroAssembler::ic_check_size() { 1045 int extra_instructions = UseCompactObjectHeaders ? 1 : 0; 1046 if (target_needs_far_branch(CAST_FROM_FN_PTR(address, SharedRuntime::get_ic_miss_stub()))) { 1047 return NativeInstruction::instruction_size * (7 + extra_instructions); 1048 } else { 1049 return NativeInstruction::instruction_size * (5 + extra_instructions); 1050 } 1051 } 1052 1053 int MacroAssembler::ic_check(int end_alignment) { 1054 Register receiver = j_rarg0; 1055 Register data = rscratch2; 1056 Register tmp1 = rscratch1; 1057 Register tmp2 = r10; 1058 1059 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed 1060 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 1061 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align 1062 // before the inline cache check here, and not after 1063 align(end_alignment, offset() + ic_check_size()); 1064 1065 int uep_offset = offset(); 1066 1067 if (UseCompactObjectHeaders) { 1068 load_narrow_klass_compact(tmp1, receiver); 1069 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1070 cmpw(tmp1, tmp2); 1071 } else if (UseCompressedClassPointers) { 1072 ldrw(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1073 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1074 cmpw(tmp1, tmp2); 1075 } else { 1076 ldr(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1077 ldr(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1078 cmp(tmp1, tmp2); 1079 } 1080 1081 Label dont; 1082 br(Assembler::EQ, dont); 1083 far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1084 bind(dont); 1085 assert((offset() % end_alignment) == 0, "Misaligned verified entry point"); 1086 1087 return uep_offset; 1088 } 1089 1090 // Implementation of call_VM versions 1091 1092 void MacroAssembler::call_VM(Register oop_result, 1093 address entry_point, 1094 bool check_exceptions) { 1095 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1096 } 1097 1098 void MacroAssembler::call_VM(Register oop_result, 1099 address entry_point, 1100 Register arg_1, 1101 bool check_exceptions) { 1102 pass_arg1(this, arg_1); 1103 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1104 } 1105 1106 void MacroAssembler::call_VM(Register oop_result, 1107 address entry_point, 1108 Register arg_1, 1109 Register arg_2, 1110 bool check_exceptions) { 1111 assert_different_registers(arg_1, c_rarg2); 1112 pass_arg2(this, arg_2); 1113 pass_arg1(this, arg_1); 1114 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1115 } 1116 1117 void MacroAssembler::call_VM(Register oop_result, 1118 address entry_point, 1119 Register arg_1, 1120 Register arg_2, 1121 Register arg_3, 1122 bool check_exceptions) { 1123 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1124 assert_different_registers(arg_2, c_rarg3); 1125 pass_arg3(this, arg_3); 1126 1127 pass_arg2(this, arg_2); 1128 1129 pass_arg1(this, arg_1); 1130 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1131 } 1132 1133 void MacroAssembler::call_VM(Register oop_result, 1134 Register last_java_sp, 1135 address entry_point, 1136 int number_of_arguments, 1137 bool check_exceptions) { 1138 call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1139 } 1140 1141 void MacroAssembler::call_VM(Register oop_result, 1142 Register last_java_sp, 1143 address entry_point, 1144 Register arg_1, 1145 bool check_exceptions) { 1146 pass_arg1(this, arg_1); 1147 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1148 } 1149 1150 void MacroAssembler::call_VM(Register oop_result, 1151 Register last_java_sp, 1152 address entry_point, 1153 Register arg_1, 1154 Register arg_2, 1155 bool check_exceptions) { 1156 1157 assert_different_registers(arg_1, c_rarg2); 1158 pass_arg2(this, arg_2); 1159 pass_arg1(this, arg_1); 1160 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1161 } 1162 1163 void MacroAssembler::call_VM(Register oop_result, 1164 Register last_java_sp, 1165 address entry_point, 1166 Register arg_1, 1167 Register arg_2, 1168 Register arg_3, 1169 bool check_exceptions) { 1170 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1171 assert_different_registers(arg_2, c_rarg3); 1172 pass_arg3(this, arg_3); 1173 pass_arg2(this, arg_2); 1174 pass_arg1(this, arg_1); 1175 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1176 } 1177 1178 1179 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { 1180 ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); 1181 str(zr, Address(java_thread, JavaThread::vm_result_offset())); 1182 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1183 } 1184 1185 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { 1186 ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); 1187 str(zr, Address(java_thread, JavaThread::vm_result_2_offset())); 1188 } 1189 1190 void MacroAssembler::align(int modulus) { 1191 align(modulus, offset()); 1192 } 1193 1194 // Ensure that the code at target bytes offset from the current offset() is aligned 1195 // according to modulus. 1196 void MacroAssembler::align(int modulus, int target) { 1197 int delta = target - offset(); 1198 while ((offset() + delta) % modulus != 0) nop(); 1199 } 1200 1201 void MacroAssembler::post_call_nop() { 1202 if (!Continuations::enabled()) { 1203 return; 1204 } 1205 InstructionMark im(this); 1206 relocate(post_call_nop_Relocation::spec()); 1207 InlineSkippedInstructionsCounter skipCounter(this); 1208 nop(); 1209 movk(zr, 0); 1210 movk(zr, 0); 1211 } 1212 1213 // these are no-ops overridden by InterpreterMacroAssembler 1214 1215 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } 1216 1217 void MacroAssembler::check_and_handle_popframe(Register java_thread) { } 1218 1219 // Look up the method for a megamorphic invokeinterface call. 1220 // The target method is determined by <intf_klass, itable_index>. 1221 // The receiver klass is in recv_klass. 1222 // On success, the result will be in method_result, and execution falls through. 1223 // On failure, execution transfers to the given label. 1224 void MacroAssembler::lookup_interface_method(Register recv_klass, 1225 Register intf_klass, 1226 RegisterOrConstant itable_index, 1227 Register method_result, 1228 Register scan_temp, 1229 Label& L_no_such_interface, 1230 bool return_method) { 1231 assert_different_registers(recv_klass, intf_klass, scan_temp); 1232 assert_different_registers(method_result, intf_klass, scan_temp); 1233 assert(recv_klass != method_result || !return_method, 1234 "recv_klass can be destroyed when method isn't needed"); 1235 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 1236 "caller must use same register for non-constant itable index as for method"); 1237 1238 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 1239 int vtable_base = in_bytes(Klass::vtable_start_offset()); 1240 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 1241 int scan_step = itableOffsetEntry::size() * wordSize; 1242 int vte_size = vtableEntry::size_in_bytes(); 1243 assert(vte_size == wordSize, "else adjust times_vte_scale"); 1244 1245 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1246 1247 // Could store the aligned, prescaled offset in the klass. 1248 // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 1249 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3))); 1250 add(scan_temp, scan_temp, vtable_base); 1251 1252 if (return_method) { 1253 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 1254 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 1255 // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 1256 lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3))); 1257 if (itentry_off) 1258 add(recv_klass, recv_klass, itentry_off); 1259 } 1260 1261 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 1262 // if (scan->interface() == intf) { 1263 // result = (klass + scan->offset() + itable_index); 1264 // } 1265 // } 1266 Label search, found_method; 1267 1268 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1269 cmp(intf_klass, method_result); 1270 br(Assembler::EQ, found_method); 1271 bind(search); 1272 // Check that the previous entry is non-null. A null entry means that 1273 // the receiver class doesn't implement the interface, and wasn't the 1274 // same as when the caller was compiled. 1275 cbz(method_result, L_no_such_interface); 1276 if (itableOffsetEntry::interface_offset() != 0) { 1277 add(scan_temp, scan_temp, scan_step); 1278 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1279 } else { 1280 ldr(method_result, Address(pre(scan_temp, scan_step))); 1281 } 1282 cmp(intf_klass, method_result); 1283 br(Assembler::NE, search); 1284 1285 bind(found_method); 1286 1287 // Got a hit. 1288 if (return_method) { 1289 ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 1290 ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0))); 1291 } 1292 } 1293 1294 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 1295 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData 1296 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 1297 // The target method is determined by <holder_klass, itable_index>. 1298 // The receiver klass is in recv_klass. 1299 // On success, the result will be in method_result, and execution falls through. 1300 // On failure, execution transfers to the given label. 1301 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 1302 Register holder_klass, 1303 Register resolved_klass, 1304 Register method_result, 1305 Register temp_itbl_klass, 1306 Register scan_temp, 1307 int itable_index, 1308 Label& L_no_such_interface) { 1309 // 'method_result' is only used as output register at the very end of this method. 1310 // Until then we can reuse it as 'holder_offset'. 1311 Register holder_offset = method_result; 1312 assert_different_registers(resolved_klass, recv_klass, holder_klass, temp_itbl_klass, scan_temp, holder_offset); 1313 1314 int vtable_start_offset = in_bytes(Klass::vtable_start_offset()); 1315 int itable_offset_entry_size = itableOffsetEntry::size() * wordSize; 1316 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 1317 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 1318 1319 Label L_loop_search_resolved_entry, L_resolved_found, L_holder_found; 1320 1321 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1322 add(recv_klass, recv_klass, vtable_start_offset + ioffset); 1323 // itableOffsetEntry[] itable = recv_klass + Klass::vtable_start_offset() + sizeof(vtableEntry) * recv_klass->_vtable_len; 1324 // temp_itbl_klass = itable[0]._interface; 1325 int vtblEntrySize = vtableEntry::size_in_bytes(); 1326 assert(vtblEntrySize == wordSize, "ldr lsl shift amount must be 3"); 1327 ldr(temp_itbl_klass, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1328 mov(holder_offset, zr); 1329 // scan_temp = &(itable[0]._interface) 1330 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1331 1332 // Initial checks: 1333 // - if (holder_klass != resolved_klass), go to "scan for resolved" 1334 // - if (itable[0] == holder_klass), shortcut to "holder found" 1335 // - if (itable[0] == 0), no such interface 1336 cmp(resolved_klass, holder_klass); 1337 br(Assembler::NE, L_loop_search_resolved_entry); 1338 cmp(holder_klass, temp_itbl_klass); 1339 br(Assembler::EQ, L_holder_found); 1340 cbz(temp_itbl_klass, L_no_such_interface); 1341 1342 // Loop: Look for holder_klass record in itable 1343 // do { 1344 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1345 // if (temp_itbl_klass == holder_klass) { 1346 // goto L_holder_found; // Found! 1347 // } 1348 // } while (temp_itbl_klass != 0); 1349 // goto L_no_such_interface // Not found. 1350 Label L_search_holder; 1351 bind(L_search_holder); 1352 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1353 cmp(holder_klass, temp_itbl_klass); 1354 br(Assembler::EQ, L_holder_found); 1355 cbnz(temp_itbl_klass, L_search_holder); 1356 1357 b(L_no_such_interface); 1358 1359 // Loop: Look for resolved_class record in itable 1360 // while (true) { 1361 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1362 // if (temp_itbl_klass == 0) { 1363 // goto L_no_such_interface; 1364 // } 1365 // if (temp_itbl_klass == resolved_klass) { 1366 // goto L_resolved_found; // Found! 1367 // } 1368 // if (temp_itbl_klass == holder_klass) { 1369 // holder_offset = scan_temp; 1370 // } 1371 // } 1372 // 1373 Label L_loop_search_resolved; 1374 bind(L_loop_search_resolved); 1375 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1376 bind(L_loop_search_resolved_entry); 1377 cbz(temp_itbl_klass, L_no_such_interface); 1378 cmp(resolved_klass, temp_itbl_klass); 1379 br(Assembler::EQ, L_resolved_found); 1380 cmp(holder_klass, temp_itbl_klass); 1381 br(Assembler::NE, L_loop_search_resolved); 1382 mov(holder_offset, scan_temp); 1383 b(L_loop_search_resolved); 1384 1385 // See if we already have a holder klass. If not, go and scan for it. 1386 bind(L_resolved_found); 1387 cbz(holder_offset, L_search_holder); 1388 mov(scan_temp, holder_offset); 1389 1390 // Finally, scan_temp contains holder_klass vtable offset 1391 bind(L_holder_found); 1392 ldrw(method_result, Address(scan_temp, ooffset - ioffset)); 1393 add(recv_klass, recv_klass, itable_index * wordSize + in_bytes(itableMethodEntry::method_offset()) 1394 - vtable_start_offset - ioffset); // substract offsets to restore the original value of recv_klass 1395 ldr(method_result, Address(recv_klass, method_result, Address::uxtw(0))); 1396 } 1397 1398 // virtual method calling 1399 void MacroAssembler::lookup_virtual_method(Register recv_klass, 1400 RegisterOrConstant vtable_index, 1401 Register method_result) { 1402 assert(vtableEntry::size() * wordSize == 8, 1403 "adjust the scaling in the code below"); 1404 int64_t vtable_offset_in_bytes = in_bytes(Klass::vtable_start_offset() + vtableEntry::method_offset()); 1405 1406 if (vtable_index.is_register()) { 1407 lea(method_result, Address(recv_klass, 1408 vtable_index.as_register(), 1409 Address::lsl(LogBytesPerWord))); 1410 ldr(method_result, Address(method_result, vtable_offset_in_bytes)); 1411 } else { 1412 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize; 1413 ldr(method_result, 1414 form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0)); 1415 } 1416 } 1417 1418 void MacroAssembler::check_klass_subtype(Register sub_klass, 1419 Register super_klass, 1420 Register temp_reg, 1421 Label& L_success) { 1422 Label L_failure; 1423 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 1424 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 1425 bind(L_failure); 1426 } 1427 1428 1429 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 1430 Register super_klass, 1431 Register temp_reg, 1432 Label* L_success, 1433 Label* L_failure, 1434 Label* L_slow_path, 1435 Register super_check_offset) { 1436 assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset); 1437 bool must_load_sco = ! super_check_offset->is_valid(); 1438 if (must_load_sco) { 1439 assert(temp_reg != noreg, "supply either a temp or a register offset"); 1440 } 1441 1442 Label L_fallthrough; 1443 int label_nulls = 0; 1444 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1445 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1446 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 1447 assert(label_nulls <= 1, "at most one null in the batch"); 1448 1449 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1450 Address super_check_offset_addr(super_klass, sco_offset); 1451 1452 // Hacked jmp, which may only be used just before L_fallthrough. 1453 #define final_jmp(label) \ 1454 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 1455 else b(label) /*omit semi*/ 1456 1457 // If the pointers are equal, we are done (e.g., String[] elements). 1458 // This self-check enables sharing of secondary supertype arrays among 1459 // non-primary types such as array-of-interface. Otherwise, each such 1460 // type would need its own customized SSA. 1461 // We move this check to the front of the fast path because many 1462 // type checks are in fact trivially successful in this manner, 1463 // so we get a nicely predicted branch right at the start of the check. 1464 cmp(sub_klass, super_klass); 1465 br(Assembler::EQ, *L_success); 1466 1467 // Check the supertype display: 1468 if (must_load_sco) { 1469 ldrw(temp_reg, super_check_offset_addr); 1470 super_check_offset = temp_reg; 1471 } 1472 1473 Address super_check_addr(sub_klass, super_check_offset); 1474 ldr(rscratch1, super_check_addr); 1475 cmp(super_klass, rscratch1); // load displayed supertype 1476 br(Assembler::EQ, *L_success); 1477 1478 // This check has worked decisively for primary supers. 1479 // Secondary supers are sought in the super_cache ('super_cache_addr'). 1480 // (Secondary supers are interfaces and very deeply nested subtypes.) 1481 // This works in the same check above because of a tricky aliasing 1482 // between the super_cache and the primary super display elements. 1483 // (The 'super_check_addr' can address either, as the case requires.) 1484 // Note that the cache is updated below if it does not help us find 1485 // what we need immediately. 1486 // So if it was a primary super, we can just fail immediately. 1487 // Otherwise, it's the slow path for us (no success at this point). 1488 1489 sub(rscratch1, super_check_offset, in_bytes(Klass::secondary_super_cache_offset())); 1490 if (L_failure == &L_fallthrough) { 1491 cbz(rscratch1, *L_slow_path); 1492 } else { 1493 cbnz(rscratch1, *L_failure); 1494 final_jmp(*L_slow_path); 1495 } 1496 1497 bind(L_fallthrough); 1498 1499 #undef final_jmp 1500 } 1501 1502 // These two are taken from x86, but they look generally useful 1503 1504 // scans count pointer sized words at [addr] for occurrence of value, 1505 // generic 1506 void MacroAssembler::repne_scan(Register addr, Register value, Register count, 1507 Register scratch) { 1508 Label Lloop, Lexit; 1509 cbz(count, Lexit); 1510 bind(Lloop); 1511 ldr(scratch, post(addr, wordSize)); 1512 cmp(value, scratch); 1513 br(EQ, Lexit); 1514 sub(count, count, 1); 1515 cbnz(count, Lloop); 1516 bind(Lexit); 1517 } 1518 1519 // scans count 4 byte words at [addr] for occurrence of value, 1520 // generic 1521 void MacroAssembler::repne_scanw(Register addr, Register value, Register count, 1522 Register scratch) { 1523 Label Lloop, Lexit; 1524 cbz(count, Lexit); 1525 bind(Lloop); 1526 ldrw(scratch, post(addr, wordSize)); 1527 cmpw(value, scratch); 1528 br(EQ, Lexit); 1529 sub(count, count, 1); 1530 cbnz(count, Lloop); 1531 bind(Lexit); 1532 } 1533 1534 void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass, 1535 Register super_klass, 1536 Register temp_reg, 1537 Register temp2_reg, 1538 Label* L_success, 1539 Label* L_failure, 1540 bool set_cond_codes) { 1541 // NB! Callers may assume that, when temp2_reg is a valid register, 1542 // this code sets it to a nonzero value. 1543 1544 assert_different_registers(sub_klass, super_klass, temp_reg); 1545 if (temp2_reg != noreg) 1546 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1547 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 1548 1549 Label L_fallthrough; 1550 int label_nulls = 0; 1551 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1552 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1553 assert(label_nulls <= 1, "at most one null in the batch"); 1554 1555 // a couple of useful fields in sub_klass: 1556 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 1557 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1558 Address secondary_supers_addr(sub_klass, ss_offset); 1559 Address super_cache_addr( sub_klass, sc_offset); 1560 1561 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1562 1563 // Do a linear scan of the secondary super-klass chain. 1564 // This code is rarely used, so simplicity is a virtue here. 1565 // The repne_scan instruction uses fixed registers, which we must spill. 1566 // Don't worry too much about pre-existing connections with the input regs. 1567 1568 assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super) 1569 assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter) 1570 1571 RegSet pushed_registers; 1572 if (!IS_A_TEMP(r2)) pushed_registers += r2; 1573 if (!IS_A_TEMP(r5)) pushed_registers += r5; 1574 1575 if (super_klass != r0) { 1576 if (!IS_A_TEMP(r0)) pushed_registers += r0; 1577 } 1578 1579 push(pushed_registers, sp); 1580 1581 // Get super_klass value into r0 (even if it was in r5 or r2). 1582 if (super_klass != r0) { 1583 mov(r0, super_klass); 1584 } 1585 1586 #ifndef PRODUCT 1587 incrementw(ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr)); 1588 #endif //PRODUCT 1589 1590 // We will consult the secondary-super array. 1591 ldr(r5, secondary_supers_addr); 1592 // Load the array length. 1593 ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes())); 1594 // Skip to start of data. 1595 add(r5, r5, Array<Klass*>::base_offset_in_bytes()); 1596 1597 cmp(sp, zr); // Clear Z flag; SP is never zero 1598 // Scan R2 words at [R5] for an occurrence of R0. 1599 // Set NZ/Z based on last compare. 1600 repne_scan(r5, r0, r2, rscratch1); 1601 1602 // Unspill the temp. registers: 1603 pop(pushed_registers, sp); 1604 1605 br(Assembler::NE, *L_failure); 1606 1607 // Success. Cache the super we found and proceed in triumph. 1608 1609 if (UseSecondarySupersCache) { 1610 str(super_klass, super_cache_addr); 1611 } 1612 1613 if (L_success != &L_fallthrough) { 1614 b(*L_success); 1615 } 1616 1617 #undef IS_A_TEMP 1618 1619 bind(L_fallthrough); 1620 } 1621 1622 // If Register r is invalid, remove a new register from 1623 // available_regs, and add new register to regs_to_push. 1624 Register MacroAssembler::allocate_if_noreg(Register r, 1625 RegSetIterator<Register> &available_regs, 1626 RegSet ®s_to_push) { 1627 if (!r->is_valid()) { 1628 r = *available_regs++; 1629 regs_to_push += r; 1630 } 1631 return r; 1632 } 1633 1634 // check_klass_subtype_slow_path_table() looks for super_klass in the 1635 // hash table belonging to super_klass, branching to L_success or 1636 // L_failure as appropriate. This is essentially a shim which 1637 // allocates registers as necessary then calls 1638 // lookup_secondary_supers_table() to do the work. Any of the temp 1639 // regs may be noreg, in which case this logic will chooses some 1640 // registers push and pop them from the stack. 1641 void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass, 1642 Register super_klass, 1643 Register temp_reg, 1644 Register temp2_reg, 1645 Register temp3_reg, 1646 Register result_reg, 1647 FloatRegister vtemp, 1648 Label* L_success, 1649 Label* L_failure, 1650 bool set_cond_codes) { 1651 RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg); 1652 1653 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1654 1655 Label L_fallthrough; 1656 int label_nulls = 0; 1657 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1658 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1659 assert(label_nulls <= 1, "at most one null in the batch"); 1660 1661 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1662 1663 RegSetIterator<Register> available_regs 1664 = (RegSet::range(r0, r15) - temps - sub_klass - super_klass).begin(); 1665 1666 RegSet pushed_regs; 1667 1668 temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs); 1669 temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs); 1670 temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs); 1671 result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs); 1672 1673 push(pushed_regs, sp); 1674 1675 lookup_secondary_supers_table_var(sub_klass, 1676 super_klass, 1677 temp_reg, temp2_reg, temp3_reg, vtemp, result_reg, 1678 nullptr); 1679 cmp(result_reg, zr); 1680 1681 // Unspill the temp. registers: 1682 pop(pushed_regs, sp); 1683 1684 // NB! Callers may assume that, when set_cond_codes is true, this 1685 // code sets temp2_reg to a nonzero value. 1686 if (set_cond_codes) { 1687 mov(temp2_reg, 1); 1688 } 1689 1690 br(Assembler::NE, *L_failure); 1691 1692 if (L_success != &L_fallthrough) { 1693 b(*L_success); 1694 } 1695 1696 bind(L_fallthrough); 1697 } 1698 1699 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 1700 Register super_klass, 1701 Register temp_reg, 1702 Register temp2_reg, 1703 Label* L_success, 1704 Label* L_failure, 1705 bool set_cond_codes) { 1706 if (UseSecondarySupersTable) { 1707 check_klass_subtype_slow_path_table 1708 (sub_klass, super_klass, temp_reg, temp2_reg, /*temp3*/noreg, /*result*/noreg, 1709 /*vtemp*/fnoreg, 1710 L_success, L_failure, set_cond_codes); 1711 } else { 1712 check_klass_subtype_slow_path_linear 1713 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, set_cond_codes); 1714 } 1715 } 1716 1717 1718 // Ensure that the inline code and the stub are using the same registers. 1719 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \ 1720 do { \ 1721 assert(r_super_klass == r0 && \ 1722 r_array_base == r1 && \ 1723 r_array_length == r2 && \ 1724 (r_array_index == r3 || r_array_index == noreg) && \ 1725 (r_sub_klass == r4 || r_sub_klass == noreg) && \ 1726 (r_bitmap == rscratch2 || r_bitmap == noreg) && \ 1727 (result == r5 || result == noreg), "registers must match aarch64.ad"); \ 1728 } while(0) 1729 1730 bool MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass, 1731 Register r_super_klass, 1732 Register temp1, 1733 Register temp2, 1734 Register temp3, 1735 FloatRegister vtemp, 1736 Register result, 1737 u1 super_klass_slot, 1738 bool stub_is_near) { 1739 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1740 1741 Label L_fallthrough; 1742 1743 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1744 1745 const Register 1746 r_array_base = temp1, // r1 1747 r_array_length = temp2, // r2 1748 r_array_index = temp3, // r3 1749 r_bitmap = rscratch2; 1750 1751 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1752 1753 u1 bit = super_klass_slot; 1754 1755 // Make sure that result is nonzero if the TBZ below misses. 1756 mov(result, 1); 1757 1758 // We're going to need the bitmap in a vector reg and in a core reg, 1759 // so load both now. 1760 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1761 if (bit != 0) { 1762 ldrd(vtemp, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1763 } 1764 // First check the bitmap to see if super_klass might be present. If 1765 // the bit is zero, we are certain that super_klass is not one of 1766 // the secondary supers. 1767 tbz(r_bitmap, bit, L_fallthrough); 1768 1769 // Get the first array index that can contain super_klass into r_array_index. 1770 if (bit != 0) { 1771 shld(vtemp, vtemp, Klass::SECONDARY_SUPERS_TABLE_MASK - bit); 1772 cnt(vtemp, T8B, vtemp); 1773 addv(vtemp, T8B, vtemp); 1774 fmovd(r_array_index, vtemp); 1775 } else { 1776 mov(r_array_index, (u1)1); 1777 } 1778 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1779 1780 // We will consult the secondary-super array. 1781 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1782 1783 // The value i in r_array_index is >= 1, so even though r_array_base 1784 // points to the length, we don't need to adjust it to point to the 1785 // data. 1786 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1787 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1788 1789 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1790 eor(result, result, r_super_klass); 1791 cbz(result, L_fallthrough); // Found a match 1792 1793 // Is there another entry to check? Consult the bitmap. 1794 tbz(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK, L_fallthrough); 1795 1796 // Linear probe. 1797 if (bit != 0) { 1798 ror(r_bitmap, r_bitmap, bit); 1799 } 1800 1801 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1802 // The next slot to be inspected, by the stub we're about to call, 1803 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1804 // have been checked. 1805 Address stub = RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub()); 1806 if (stub_is_near) { 1807 bl(stub); 1808 } else { 1809 address call = trampoline_call(stub); 1810 if (call == nullptr) { 1811 return false; // trampoline allocation failed 1812 } 1813 } 1814 1815 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1816 1817 bind(L_fallthrough); 1818 1819 if (VerifySecondarySupers) { 1820 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1821 temp1, temp2, result); // r1, r2, r5 1822 } 1823 return true; 1824 } 1825 1826 // At runtime, return 0 in result if r_super_klass is a superclass of 1827 // r_sub_klass, otherwise return nonzero. Use this version of 1828 // lookup_secondary_supers_table() if you don't know ahead of time 1829 // which superclass will be searched for. Used by interpreter and 1830 // runtime stubs. It is larger and has somewhat greater latency than 1831 // the version above, which takes a constant super_klass_slot. 1832 void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass, 1833 Register r_super_klass, 1834 Register temp1, 1835 Register temp2, 1836 Register temp3, 1837 FloatRegister vtemp, 1838 Register result, 1839 Label *L_success) { 1840 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1841 1842 Label L_fallthrough; 1843 1844 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1845 1846 const Register 1847 r_array_index = temp3, 1848 slot = rscratch1, 1849 r_bitmap = rscratch2; 1850 1851 ldrb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 1852 1853 // Make sure that result is nonzero if the test below misses. 1854 mov(result, 1); 1855 1856 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1857 1858 // First check the bitmap to see if super_klass might be present. If 1859 // the bit is zero, we are certain that super_klass is not one of 1860 // the secondary supers. 1861 1862 // This next instruction is equivalent to: 1863 // mov(tmp_reg, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); 1864 // sub(temp2, tmp_reg, slot); 1865 eor(temp2, slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); 1866 lslv(temp2, r_bitmap, temp2); 1867 tbz(temp2, Klass::SECONDARY_SUPERS_TABLE_SIZE - 1, L_fallthrough); 1868 1869 bool must_save_v0 = (vtemp == fnoreg); 1870 if (must_save_v0) { 1871 // temp1 and result are free, so use them to preserve vtemp 1872 vtemp = v0; 1873 mov(temp1, vtemp, D, 0); 1874 mov(result, vtemp, D, 1); 1875 } 1876 1877 // Get the first array index that can contain super_klass into r_array_index. 1878 mov(vtemp, D, 0, temp2); 1879 cnt(vtemp, T8B, vtemp); 1880 addv(vtemp, T8B, vtemp); 1881 mov(r_array_index, vtemp, D, 0); 1882 1883 if (must_save_v0) { 1884 mov(vtemp, D, 0, temp1 ); 1885 mov(vtemp, D, 1, result); 1886 } 1887 1888 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1889 1890 const Register 1891 r_array_base = temp1, 1892 r_array_length = temp2; 1893 1894 // The value i in r_array_index is >= 1, so even though r_array_base 1895 // points to the length, we don't need to adjust it to point to the 1896 // data. 1897 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1898 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1899 1900 // We will consult the secondary-super array. 1901 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1902 1903 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1904 eor(result, result, r_super_klass); 1905 cbz(result, L_success ? *L_success : L_fallthrough); // Found a match 1906 1907 // Is there another entry to check? Consult the bitmap. 1908 rorv(r_bitmap, r_bitmap, slot); 1909 // rol(r_bitmap, r_bitmap, 1); 1910 tbz(r_bitmap, 1, L_fallthrough); 1911 1912 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1913 // The next slot to be inspected, by the logic we're about to call, 1914 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1915 // have been checked. 1916 lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index, 1917 r_bitmap, r_array_length, result, /*is_stub*/false); 1918 1919 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1920 1921 bind(L_fallthrough); 1922 1923 if (VerifySecondarySupers) { 1924 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1925 temp1, temp2, result); // r1, r2, r5 1926 } 1927 1928 if (L_success) { 1929 cbz(result, *L_success); 1930 } 1931 } 1932 1933 // Called by code generated by check_klass_subtype_slow_path 1934 // above. This is called when there is a collision in the hashed 1935 // lookup in the secondary supers array. 1936 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass, 1937 Register r_array_base, 1938 Register r_array_index, 1939 Register r_bitmap, 1940 Register temp1, 1941 Register result, 1942 bool is_stub) { 1943 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, result, rscratch1); 1944 1945 const Register 1946 r_array_length = temp1, 1947 r_sub_klass = noreg; // unused 1948 1949 if (is_stub) { 1950 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1951 } 1952 1953 Label L_fallthrough, L_huge; 1954 1955 // Load the array length. 1956 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 1957 // And adjust the array base to point to the data. 1958 // NB! Effectively increments current slot index by 1. 1959 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, ""); 1960 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 1961 1962 // The bitmap is full to bursting. 1963 // Implicit invariant: BITMAP_FULL implies (length > 0) 1964 assert(Klass::SECONDARY_SUPERS_BITMAP_FULL == ~uintx(0), ""); 1965 cmpw(r_array_length, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 2)); 1966 br(GT, L_huge); 1967 1968 // NB! Our caller has checked bits 0 and 1 in the bitmap. The 1969 // current slot (at secondary_supers[r_array_index]) has not yet 1970 // been inspected, and r_array_index may be out of bounds if we 1971 // wrapped around the end of the array. 1972 1973 { // This is conventional linear probing, but instead of terminating 1974 // when a null entry is found in the table, we maintain a bitmap 1975 // in which a 0 indicates missing entries. 1976 // As long as the bitmap is not completely full, 1977 // array_length == popcount(bitmap). The array_length check above 1978 // guarantees there are 0s in the bitmap, so the loop eventually 1979 // terminates. 1980 Label L_loop; 1981 bind(L_loop); 1982 1983 // Check for wraparound. 1984 cmp(r_array_index, r_array_length); 1985 csel(r_array_index, zr, r_array_index, GE); 1986 1987 ldr(rscratch1, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1988 eor(result, rscratch1, r_super_klass); 1989 cbz(result, L_fallthrough); 1990 1991 tbz(r_bitmap, 2, L_fallthrough); // look-ahead check (Bit 2); result is non-zero 1992 1993 ror(r_bitmap, r_bitmap, 1); 1994 add(r_array_index, r_array_index, 1); 1995 b(L_loop); 1996 } 1997 1998 { // Degenerate case: more than 64 secondary supers. 1999 // FIXME: We could do something smarter here, maybe a vectorized 2000 // comparison or a binary search, but is that worth any added 2001 // complexity? 2002 bind(L_huge); 2003 cmp(sp, zr); // Clear Z flag; SP is never zero 2004 repne_scan(r_array_base, r_super_klass, r_array_length, rscratch1); 2005 cset(result, NE); // result == 0 iff we got a match. 2006 } 2007 2008 bind(L_fallthrough); 2009 } 2010 2011 // Make sure that the hashed lookup and a linear scan agree. 2012 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass, 2013 Register r_super_klass, 2014 Register temp1, 2015 Register temp2, 2016 Register result) { 2017 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, result, rscratch1); 2018 2019 const Register 2020 r_array_base = temp1, 2021 r_array_length = temp2, 2022 r_array_index = noreg, // unused 2023 r_bitmap = noreg; // unused 2024 2025 BLOCK_COMMENT("verify_secondary_supers_table {"); 2026 2027 // We will consult the secondary-super array. 2028 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 2029 2030 // Load the array length. 2031 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 2032 // And adjust the array base to point to the data. 2033 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 2034 2035 cmp(sp, zr); // Clear Z flag; SP is never zero 2036 // Scan R2 words at [R5] for an occurrence of R0. 2037 // Set NZ/Z based on last compare. 2038 repne_scan(/*addr*/r_array_base, /*value*/r_super_klass, /*count*/r_array_length, rscratch2); 2039 // rscratch1 == 0 iff we got a match. 2040 cset(rscratch1, NE); 2041 2042 Label passed; 2043 cmp(result, zr); 2044 cset(result, NE); // normalize result to 0/1 for comparison 2045 2046 cmp(rscratch1, result); 2047 br(EQ, passed); 2048 { 2049 mov(r0, r_super_klass); // r0 <- r0 2050 mov(r1, r_sub_klass); // r1 <- r4 2051 mov(r2, /*expected*/rscratch1); // r2 <- r8 2052 mov(r3, result); // r3 <- r5 2053 mov(r4, (address)("mismatch")); // r4 <- const 2054 rt_call(CAST_FROM_FN_PTR(address, Klass::on_secondary_supers_verification_failure), rscratch2); 2055 should_not_reach_here(); 2056 } 2057 bind(passed); 2058 2059 BLOCK_COMMENT("} verify_secondary_supers_table"); 2060 } 2061 2062 void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) { 2063 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 2064 assert_different_registers(klass, rthread, scratch); 2065 2066 Label L_fallthrough, L_tmp; 2067 if (L_fast_path == nullptr) { 2068 L_fast_path = &L_fallthrough; 2069 } else if (L_slow_path == nullptr) { 2070 L_slow_path = &L_fallthrough; 2071 } 2072 // Fast path check: class is fully initialized 2073 lea(scratch, Address(klass, InstanceKlass::init_state_offset())); 2074 ldarb(scratch, scratch); 2075 subs(zr, scratch, InstanceKlass::fully_initialized); 2076 br(Assembler::EQ, *L_fast_path); 2077 2078 // Fast path check: current thread is initializer thread 2079 ldr(scratch, Address(klass, InstanceKlass::init_thread_offset())); 2080 cmp(rthread, scratch); 2081 2082 if (L_slow_path == &L_fallthrough) { 2083 br(Assembler::EQ, *L_fast_path); 2084 bind(*L_slow_path); 2085 } else if (L_fast_path == &L_fallthrough) { 2086 br(Assembler::NE, *L_slow_path); 2087 bind(*L_fast_path); 2088 } else { 2089 Unimplemented(); 2090 } 2091 } 2092 2093 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 2094 if (!VerifyOops) return; 2095 2096 // Pass register number to verify_oop_subroutine 2097 const char* b = nullptr; 2098 { 2099 ResourceMark rm; 2100 stringStream ss; 2101 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 2102 b = code_string(ss.as_string()); 2103 } 2104 BLOCK_COMMENT("verify_oop {"); 2105 2106 strip_return_address(); // This might happen within a stack frame. 2107 protect_return_address(); 2108 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 2109 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 2110 2111 mov(r0, reg); 2112 movptr(rscratch1, (uintptr_t)(address)b); 2113 2114 // call indirectly to solve generation ordering problem 2115 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address())); 2116 ldr(rscratch2, Address(rscratch2)); 2117 blr(rscratch2); 2118 2119 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 2120 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 2121 authenticate_return_address(); 2122 2123 BLOCK_COMMENT("} verify_oop"); 2124 } 2125 2126 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 2127 if (!VerifyOops) return; 2128 2129 const char* b = nullptr; 2130 { 2131 ResourceMark rm; 2132 stringStream ss; 2133 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 2134 b = code_string(ss.as_string()); 2135 } 2136 BLOCK_COMMENT("verify_oop_addr {"); 2137 2138 strip_return_address(); // This might happen within a stack frame. 2139 protect_return_address(); 2140 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 2141 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 2142 2143 // addr may contain sp so we will have to adjust it based on the 2144 // pushes that we just did. 2145 if (addr.uses(sp)) { 2146 lea(r0, addr); 2147 ldr(r0, Address(r0, 4 * wordSize)); 2148 } else { 2149 ldr(r0, addr); 2150 } 2151 movptr(rscratch1, (uintptr_t)(address)b); 2152 2153 // call indirectly to solve generation ordering problem 2154 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address())); 2155 ldr(rscratch2, Address(rscratch2)); 2156 blr(rscratch2); 2157 2158 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 2159 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 2160 authenticate_return_address(); 2161 2162 BLOCK_COMMENT("} verify_oop_addr"); 2163 } 2164 2165 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 2166 int extra_slot_offset) { 2167 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 2168 int stackElementSize = Interpreter::stackElementSize; 2169 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 2170 #ifdef ASSERT 2171 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 2172 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 2173 #endif 2174 if (arg_slot.is_constant()) { 2175 return Address(esp, arg_slot.as_constant() * stackElementSize 2176 + offset); 2177 } else { 2178 add(rscratch1, esp, arg_slot.as_register(), 2179 ext::uxtx, exact_log2(stackElementSize)); 2180 return Address(rscratch1, offset); 2181 } 2182 } 2183 2184 void MacroAssembler::call_VM_leaf_base(address entry_point, 2185 int number_of_arguments, 2186 Label *retaddr) { 2187 Label E, L; 2188 2189 stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize))); 2190 2191 mov(rscratch1, entry_point); 2192 blr(rscratch1); 2193 if (retaddr) 2194 bind(*retaddr); 2195 2196 ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize))); 2197 } 2198 2199 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 2200 call_VM_leaf_base(entry_point, number_of_arguments); 2201 } 2202 2203 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 2204 pass_arg0(this, arg_0); 2205 call_VM_leaf_base(entry_point, 1); 2206 } 2207 2208 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 2209 assert_different_registers(arg_1, c_rarg0); 2210 pass_arg0(this, arg_0); 2211 pass_arg1(this, arg_1); 2212 call_VM_leaf_base(entry_point, 2); 2213 } 2214 2215 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, 2216 Register arg_1, Register arg_2) { 2217 assert_different_registers(arg_1, c_rarg0); 2218 assert_different_registers(arg_2, c_rarg0, c_rarg1); 2219 pass_arg0(this, arg_0); 2220 pass_arg1(this, arg_1); 2221 pass_arg2(this, arg_2); 2222 call_VM_leaf_base(entry_point, 3); 2223 } 2224 2225 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 2226 pass_arg0(this, arg_0); 2227 MacroAssembler::call_VM_leaf_base(entry_point, 1); 2228 } 2229 2230 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 2231 2232 assert_different_registers(arg_0, c_rarg1); 2233 pass_arg1(this, arg_1); 2234 pass_arg0(this, arg_0); 2235 MacroAssembler::call_VM_leaf_base(entry_point, 2); 2236 } 2237 2238 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 2239 assert_different_registers(arg_0, c_rarg1, c_rarg2); 2240 assert_different_registers(arg_1, c_rarg2); 2241 pass_arg2(this, arg_2); 2242 pass_arg1(this, arg_1); 2243 pass_arg0(this, arg_0); 2244 MacroAssembler::call_VM_leaf_base(entry_point, 3); 2245 } 2246 2247 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 2248 assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3); 2249 assert_different_registers(arg_1, c_rarg2, c_rarg3); 2250 assert_different_registers(arg_2, c_rarg3); 2251 pass_arg3(this, arg_3); 2252 pass_arg2(this, arg_2); 2253 pass_arg1(this, arg_1); 2254 pass_arg0(this, arg_0); 2255 MacroAssembler::call_VM_leaf_base(entry_point, 4); 2256 } 2257 2258 void MacroAssembler::null_check(Register reg, int offset) { 2259 if (needs_explicit_null_check(offset)) { 2260 // provoke OS null exception if reg is null by 2261 // accessing M[reg] w/o changing any registers 2262 // NOTE: this is plenty to provoke a segv 2263 ldr(zr, Address(reg)); 2264 } else { 2265 // nothing to do, (later) access of M[reg + offset] 2266 // will provoke OS null exception if reg is null 2267 } 2268 } 2269 2270 // MacroAssembler protected routines needed to implement 2271 // public methods 2272 2273 void MacroAssembler::mov(Register r, Address dest) { 2274 code_section()->relocate(pc(), dest.rspec()); 2275 uint64_t imm64 = (uint64_t)dest.target(); 2276 movptr(r, imm64); 2277 } 2278 2279 // Move a constant pointer into r. In AArch64 mode the virtual 2280 // address space is 48 bits in size, so we only need three 2281 // instructions to create a patchable instruction sequence that can 2282 // reach anywhere. 2283 void MacroAssembler::movptr(Register r, uintptr_t imm64) { 2284 #ifndef PRODUCT 2285 { 2286 char buffer[64]; 2287 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64); 2288 block_comment(buffer); 2289 } 2290 #endif 2291 assert(imm64 < (1ull << 48), "48-bit overflow in address constant"); 2292 movz(r, imm64 & 0xffff); 2293 imm64 >>= 16; 2294 movk(r, imm64 & 0xffff, 16); 2295 imm64 >>= 16; 2296 movk(r, imm64 & 0xffff, 32); 2297 } 2298 2299 // Macro to mov replicated immediate to vector register. 2300 // imm64: only the lower 8/16/32 bits are considered for B/H/S type. That is, 2301 // the upper 56/48/32 bits must be zeros for B/H/S type. 2302 // Vd will get the following values for different arrangements in T 2303 // imm64 == hex 000000gh T8B: Vd = ghghghghghghghgh 2304 // imm64 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh 2305 // imm64 == hex 0000efgh T4H: Vd = efghefghefghefgh 2306 // imm64 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh 2307 // imm64 == hex abcdefgh T2S: Vd = abcdefghabcdefgh 2308 // imm64 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh 2309 // imm64 == hex abcdefgh T1D: Vd = 00000000abcdefgh 2310 // imm64 == hex abcdefgh T2D: Vd = 00000000abcdefgh00000000abcdefgh 2311 // Clobbers rscratch1 2312 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64) { 2313 assert(T != T1Q, "unsupported"); 2314 if (T == T1D || T == T2D) { 2315 int imm = operand_valid_for_movi_immediate(imm64, T); 2316 if (-1 != imm) { 2317 movi(Vd, T, imm); 2318 } else { 2319 mov(rscratch1, imm64); 2320 dup(Vd, T, rscratch1); 2321 } 2322 return; 2323 } 2324 2325 #ifdef ASSERT 2326 if (T == T8B || T == T16B) assert((imm64 & ~0xff) == 0, "extraneous bits (T8B/T16B)"); 2327 if (T == T4H || T == T8H) assert((imm64 & ~0xffff) == 0, "extraneous bits (T4H/T8H)"); 2328 if (T == T2S || T == T4S) assert((imm64 & ~0xffffffff) == 0, "extraneous bits (T2S/T4S)"); 2329 #endif 2330 int shift = operand_valid_for_movi_immediate(imm64, T); 2331 uint32_t imm32 = imm64 & 0xffffffffULL; 2332 if (shift >= 0) { 2333 movi(Vd, T, (imm32 >> shift) & 0xff, shift); 2334 } else { 2335 movw(rscratch1, imm32); 2336 dup(Vd, T, rscratch1); 2337 } 2338 } 2339 2340 void MacroAssembler::mov_immediate64(Register dst, uint64_t imm64) 2341 { 2342 #ifndef PRODUCT 2343 { 2344 char buffer[64]; 2345 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, imm64); 2346 block_comment(buffer); 2347 } 2348 #endif 2349 if (operand_valid_for_logical_immediate(false, imm64)) { 2350 orr(dst, zr, imm64); 2351 } else { 2352 // we can use a combination of MOVZ or MOVN with 2353 // MOVK to build up the constant 2354 uint64_t imm_h[4]; 2355 int zero_count = 0; 2356 int neg_count = 0; 2357 int i; 2358 for (i = 0; i < 4; i++) { 2359 imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL); 2360 if (imm_h[i] == 0) { 2361 zero_count++; 2362 } else if (imm_h[i] == 0xffffL) { 2363 neg_count++; 2364 } 2365 } 2366 if (zero_count == 4) { 2367 // one MOVZ will do 2368 movz(dst, 0); 2369 } else if (neg_count == 4) { 2370 // one MOVN will do 2371 movn(dst, 0); 2372 } else if (zero_count == 3) { 2373 for (i = 0; i < 4; i++) { 2374 if (imm_h[i] != 0L) { 2375 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2376 break; 2377 } 2378 } 2379 } else if (neg_count == 3) { 2380 // one MOVN will do 2381 for (int i = 0; i < 4; i++) { 2382 if (imm_h[i] != 0xffffL) { 2383 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2384 break; 2385 } 2386 } 2387 } else if (zero_count == 2) { 2388 // one MOVZ and one MOVK will do 2389 for (i = 0; i < 3; i++) { 2390 if (imm_h[i] != 0L) { 2391 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2392 i++; 2393 break; 2394 } 2395 } 2396 for (;i < 4; i++) { 2397 if (imm_h[i] != 0L) { 2398 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2399 } 2400 } 2401 } else if (neg_count == 2) { 2402 // one MOVN and one MOVK will do 2403 for (i = 0; i < 4; i++) { 2404 if (imm_h[i] != 0xffffL) { 2405 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2406 i++; 2407 break; 2408 } 2409 } 2410 for (;i < 4; i++) { 2411 if (imm_h[i] != 0xffffL) { 2412 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2413 } 2414 } 2415 } else if (zero_count == 1) { 2416 // one MOVZ and two MOVKs will do 2417 for (i = 0; i < 4; i++) { 2418 if (imm_h[i] != 0L) { 2419 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2420 i++; 2421 break; 2422 } 2423 } 2424 for (;i < 4; i++) { 2425 if (imm_h[i] != 0x0L) { 2426 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2427 } 2428 } 2429 } else if (neg_count == 1) { 2430 // one MOVN and two MOVKs will do 2431 for (i = 0; i < 4; i++) { 2432 if (imm_h[i] != 0xffffL) { 2433 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2434 i++; 2435 break; 2436 } 2437 } 2438 for (;i < 4; i++) { 2439 if (imm_h[i] != 0xffffL) { 2440 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2441 } 2442 } 2443 } else { 2444 // use a MOVZ and 3 MOVKs (makes it easier to debug) 2445 movz(dst, (uint32_t)imm_h[0], 0); 2446 for (i = 1; i < 4; i++) { 2447 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2448 } 2449 } 2450 } 2451 } 2452 2453 void MacroAssembler::mov_immediate32(Register dst, uint32_t imm32) 2454 { 2455 #ifndef PRODUCT 2456 { 2457 char buffer[64]; 2458 snprintf(buffer, sizeof(buffer), "0x%" PRIX32, imm32); 2459 block_comment(buffer); 2460 } 2461 #endif 2462 if (operand_valid_for_logical_immediate(true, imm32)) { 2463 orrw(dst, zr, imm32); 2464 } else { 2465 // we can use MOVZ, MOVN or two calls to MOVK to build up the 2466 // constant 2467 uint32_t imm_h[2]; 2468 imm_h[0] = imm32 & 0xffff; 2469 imm_h[1] = ((imm32 >> 16) & 0xffff); 2470 if (imm_h[0] == 0) { 2471 movzw(dst, imm_h[1], 16); 2472 } else if (imm_h[0] == 0xffff) { 2473 movnw(dst, imm_h[1] ^ 0xffff, 16); 2474 } else if (imm_h[1] == 0) { 2475 movzw(dst, imm_h[0], 0); 2476 } else if (imm_h[1] == 0xffff) { 2477 movnw(dst, imm_h[0] ^ 0xffff, 0); 2478 } else { 2479 // use a MOVZ and MOVK (makes it easier to debug) 2480 movzw(dst, imm_h[0], 0); 2481 movkw(dst, imm_h[1], 16); 2482 } 2483 } 2484 } 2485 2486 // Form an address from base + offset in Rd. Rd may or may 2487 // not actually be used: you must use the Address that is returned. 2488 // It is up to you to ensure that the shift provided matches the size 2489 // of your data. 2490 Address MacroAssembler::form_address(Register Rd, Register base, int64_t byte_offset, int shift) { 2491 if (Address::offset_ok_for_immed(byte_offset, shift)) 2492 // It fits; no need for any heroics 2493 return Address(base, byte_offset); 2494 2495 // Don't do anything clever with negative or misaligned offsets 2496 unsigned mask = (1 << shift) - 1; 2497 if (byte_offset < 0 || byte_offset & mask) { 2498 mov(Rd, byte_offset); 2499 add(Rd, base, Rd); 2500 return Address(Rd); 2501 } 2502 2503 // See if we can do this with two 12-bit offsets 2504 { 2505 uint64_t word_offset = byte_offset >> shift; 2506 uint64_t masked_offset = word_offset & 0xfff000; 2507 if (Address::offset_ok_for_immed(word_offset - masked_offset, 0) 2508 && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) { 2509 add(Rd, base, masked_offset << shift); 2510 word_offset -= masked_offset; 2511 return Address(Rd, word_offset << shift); 2512 } 2513 } 2514 2515 // Do it the hard way 2516 mov(Rd, byte_offset); 2517 add(Rd, base, Rd); 2518 return Address(Rd); 2519 } 2520 2521 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb, 2522 bool want_remainder, Register scratch) 2523 { 2524 // Full implementation of Java idiv and irem. The function 2525 // returns the (pc) offset of the div instruction - may be needed 2526 // for implicit exceptions. 2527 // 2528 // constraint : ra/rb =/= scratch 2529 // normal case 2530 // 2531 // input : ra: dividend 2532 // rb: divisor 2533 // 2534 // result: either 2535 // quotient (= ra idiv rb) 2536 // remainder (= ra irem rb) 2537 2538 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2539 2540 int idivl_offset = offset(); 2541 if (! want_remainder) { 2542 sdivw(result, ra, rb); 2543 } else { 2544 sdivw(scratch, ra, rb); 2545 Assembler::msubw(result, scratch, rb, ra); 2546 } 2547 2548 return idivl_offset; 2549 } 2550 2551 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb, 2552 bool want_remainder, Register scratch) 2553 { 2554 // Full implementation of Java ldiv and lrem. The function 2555 // returns the (pc) offset of the div instruction - may be needed 2556 // for implicit exceptions. 2557 // 2558 // constraint : ra/rb =/= scratch 2559 // normal case 2560 // 2561 // input : ra: dividend 2562 // rb: divisor 2563 // 2564 // result: either 2565 // quotient (= ra idiv rb) 2566 // remainder (= ra irem rb) 2567 2568 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2569 2570 int idivq_offset = offset(); 2571 if (! want_remainder) { 2572 sdiv(result, ra, rb); 2573 } else { 2574 sdiv(scratch, ra, rb); 2575 Assembler::msub(result, scratch, rb, ra); 2576 } 2577 2578 return idivq_offset; 2579 } 2580 2581 void MacroAssembler::membar(Membar_mask_bits order_constraint) { 2582 address prev = pc() - NativeMembar::instruction_size; 2583 address last = code()->last_insn(); 2584 if (last != nullptr && nativeInstruction_at(last)->is_Membar() && prev == last) { 2585 NativeMembar *bar = NativeMembar_at(prev); 2586 if (AlwaysMergeDMB) { 2587 bar->set_kind(bar->get_kind() | order_constraint); 2588 BLOCK_COMMENT("merged membar(always)"); 2589 return; 2590 } 2591 // Don't promote DMB ST|DMB LD to DMB (a full barrier) because 2592 // doing so would introduce a StoreLoad which the caller did not 2593 // intend 2594 if (bar->get_kind() == order_constraint 2595 || bar->get_kind() == AnyAny 2596 || order_constraint == AnyAny) { 2597 // We are merging two memory barrier instructions. On AArch64 we 2598 // can do this simply by ORing them together. 2599 bar->set_kind(bar->get_kind() | order_constraint); 2600 BLOCK_COMMENT("merged membar"); 2601 return; 2602 } else { 2603 // A special case like "DMB ST;DMB LD;DMB ST", the last DMB can be skipped 2604 // We need check the last 2 instructions 2605 address prev2 = prev - NativeMembar::instruction_size; 2606 if (last != code()->last_label() && nativeInstruction_at(prev2)->is_Membar()) { 2607 NativeMembar *bar2 = NativeMembar_at(prev2); 2608 assert(bar2->get_kind() == order_constraint, "it should be merged before"); 2609 BLOCK_COMMENT("merged membar(elided)"); 2610 return; 2611 } 2612 } 2613 } 2614 code()->set_last_insn(pc()); 2615 dmb(Assembler::barrier(order_constraint)); 2616 } 2617 2618 bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) { 2619 if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) { 2620 merge_ldst(rt, adr, size_in_bytes, is_store); 2621 code()->clear_last_insn(); 2622 return true; 2623 } else { 2624 assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported."); 2625 const uint64_t mask = size_in_bytes - 1; 2626 if (adr.getMode() == Address::base_plus_offset && 2627 (adr.offset() & mask) == 0) { // only supports base_plus_offset. 2628 code()->set_last_insn(pc()); 2629 } 2630 return false; 2631 } 2632 } 2633 2634 void MacroAssembler::ldr(Register Rx, const Address &adr) { 2635 // We always try to merge two adjacent loads into one ldp. 2636 if (!try_merge_ldst(Rx, adr, 8, false)) { 2637 Assembler::ldr(Rx, adr); 2638 } 2639 } 2640 2641 void MacroAssembler::ldrw(Register Rw, const Address &adr) { 2642 // We always try to merge two adjacent loads into one ldp. 2643 if (!try_merge_ldst(Rw, adr, 4, false)) { 2644 Assembler::ldrw(Rw, adr); 2645 } 2646 } 2647 2648 void MacroAssembler::str(Register Rx, const Address &adr) { 2649 // We always try to merge two adjacent stores into one stp. 2650 if (!try_merge_ldst(Rx, adr, 8, true)) { 2651 Assembler::str(Rx, adr); 2652 } 2653 } 2654 2655 void MacroAssembler::strw(Register Rw, const Address &adr) { 2656 // We always try to merge two adjacent stores into one stp. 2657 if (!try_merge_ldst(Rw, adr, 4, true)) { 2658 Assembler::strw(Rw, adr); 2659 } 2660 } 2661 2662 // MacroAssembler routines found actually to be needed 2663 2664 void MacroAssembler::push(Register src) 2665 { 2666 str(src, Address(pre(esp, -1 * wordSize))); 2667 } 2668 2669 void MacroAssembler::pop(Register dst) 2670 { 2671 ldr(dst, Address(post(esp, 1 * wordSize))); 2672 } 2673 2674 // Note: load_unsigned_short used to be called load_unsigned_word. 2675 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 2676 int off = offset(); 2677 ldrh(dst, src); 2678 return off; 2679 } 2680 2681 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 2682 int off = offset(); 2683 ldrb(dst, src); 2684 return off; 2685 } 2686 2687 int MacroAssembler::load_signed_short(Register dst, Address src) { 2688 int off = offset(); 2689 ldrsh(dst, src); 2690 return off; 2691 } 2692 2693 int MacroAssembler::load_signed_byte(Register dst, Address src) { 2694 int off = offset(); 2695 ldrsb(dst, src); 2696 return off; 2697 } 2698 2699 int MacroAssembler::load_signed_short32(Register dst, Address src) { 2700 int off = offset(); 2701 ldrshw(dst, src); 2702 return off; 2703 } 2704 2705 int MacroAssembler::load_signed_byte32(Register dst, Address src) { 2706 int off = offset(); 2707 ldrsbw(dst, src); 2708 return off; 2709 } 2710 2711 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) { 2712 switch (size_in_bytes) { 2713 case 8: ldr(dst, src); break; 2714 case 4: ldrw(dst, src); break; 2715 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 2716 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 2717 default: ShouldNotReachHere(); 2718 } 2719 } 2720 2721 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes) { 2722 switch (size_in_bytes) { 2723 case 8: str(src, dst); break; 2724 case 4: strw(src, dst); break; 2725 case 2: strh(src, dst); break; 2726 case 1: strb(src, dst); break; 2727 default: ShouldNotReachHere(); 2728 } 2729 } 2730 2731 void MacroAssembler::decrementw(Register reg, int value) 2732 { 2733 if (value < 0) { incrementw(reg, -value); return; } 2734 if (value == 0) { return; } 2735 if (value < (1 << 12)) { subw(reg, reg, value); return; } 2736 /* else */ { 2737 guarantee(reg != rscratch2, "invalid dst for register decrement"); 2738 movw(rscratch2, (unsigned)value); 2739 subw(reg, reg, rscratch2); 2740 } 2741 } 2742 2743 void MacroAssembler::decrement(Register reg, int value) 2744 { 2745 if (value < 0) { increment(reg, -value); return; } 2746 if (value == 0) { return; } 2747 if (value < (1 << 12)) { sub(reg, reg, value); return; } 2748 /* else */ { 2749 assert(reg != rscratch2, "invalid dst for register decrement"); 2750 mov(rscratch2, (uint64_t)value); 2751 sub(reg, reg, rscratch2); 2752 } 2753 } 2754 2755 void MacroAssembler::decrementw(Address dst, int value) 2756 { 2757 assert(!dst.uses(rscratch1), "invalid dst for address decrement"); 2758 if (dst.getMode() == Address::literal) { 2759 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2760 lea(rscratch2, dst); 2761 dst = Address(rscratch2); 2762 } 2763 ldrw(rscratch1, dst); 2764 decrementw(rscratch1, value); 2765 strw(rscratch1, dst); 2766 } 2767 2768 void MacroAssembler::decrement(Address dst, int value) 2769 { 2770 assert(!dst.uses(rscratch1), "invalid address for decrement"); 2771 if (dst.getMode() == Address::literal) { 2772 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2773 lea(rscratch2, dst); 2774 dst = Address(rscratch2); 2775 } 2776 ldr(rscratch1, dst); 2777 decrement(rscratch1, value); 2778 str(rscratch1, dst); 2779 } 2780 2781 void MacroAssembler::incrementw(Register reg, int value) 2782 { 2783 if (value < 0) { decrementw(reg, -value); return; } 2784 if (value == 0) { return; } 2785 if (value < (1 << 12)) { addw(reg, reg, value); return; } 2786 /* else */ { 2787 assert(reg != rscratch2, "invalid dst for register increment"); 2788 movw(rscratch2, (unsigned)value); 2789 addw(reg, reg, rscratch2); 2790 } 2791 } 2792 2793 void MacroAssembler::increment(Register reg, int value) 2794 { 2795 if (value < 0) { decrement(reg, -value); return; } 2796 if (value == 0) { return; } 2797 if (value < (1 << 12)) { add(reg, reg, value); return; } 2798 /* else */ { 2799 assert(reg != rscratch2, "invalid dst for register increment"); 2800 movw(rscratch2, (unsigned)value); 2801 add(reg, reg, rscratch2); 2802 } 2803 } 2804 2805 void MacroAssembler::incrementw(Address dst, int value) 2806 { 2807 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2808 if (dst.getMode() == Address::literal) { 2809 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2810 lea(rscratch2, dst); 2811 dst = Address(rscratch2); 2812 } 2813 ldrw(rscratch1, dst); 2814 incrementw(rscratch1, value); 2815 strw(rscratch1, dst); 2816 } 2817 2818 void MacroAssembler::increment(Address dst, int value) 2819 { 2820 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2821 if (dst.getMode() == Address::literal) { 2822 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2823 lea(rscratch2, dst); 2824 dst = Address(rscratch2); 2825 } 2826 ldr(rscratch1, dst); 2827 increment(rscratch1, value); 2828 str(rscratch1, dst); 2829 } 2830 2831 // Push lots of registers in the bit set supplied. Don't push sp. 2832 // Return the number of words pushed 2833 int MacroAssembler::push(unsigned int bitset, Register stack) { 2834 int words_pushed = 0; 2835 2836 // Scan bitset to accumulate register pairs 2837 unsigned char regs[32]; 2838 int count = 0; 2839 for (int reg = 0; reg <= 30; reg++) { 2840 if (1 & bitset) 2841 regs[count++] = reg; 2842 bitset >>= 1; 2843 } 2844 regs[count++] = zr->raw_encoding(); 2845 count &= ~1; // Only push an even number of regs 2846 2847 if (count) { 2848 stp(as_Register(regs[0]), as_Register(regs[1]), 2849 Address(pre(stack, -count * wordSize))); 2850 words_pushed += 2; 2851 } 2852 for (int i = 2; i < count; i += 2) { 2853 stp(as_Register(regs[i]), as_Register(regs[i+1]), 2854 Address(stack, i * wordSize)); 2855 words_pushed += 2; 2856 } 2857 2858 assert(words_pushed == count, "oops, pushed != count"); 2859 2860 return count; 2861 } 2862 2863 int MacroAssembler::pop(unsigned int bitset, Register stack) { 2864 int words_pushed = 0; 2865 2866 // Scan bitset to accumulate register pairs 2867 unsigned char regs[32]; 2868 int count = 0; 2869 for (int reg = 0; reg <= 30; reg++) { 2870 if (1 & bitset) 2871 regs[count++] = reg; 2872 bitset >>= 1; 2873 } 2874 regs[count++] = zr->raw_encoding(); 2875 count &= ~1; 2876 2877 for (int i = 2; i < count; i += 2) { 2878 ldp(as_Register(regs[i]), as_Register(regs[i+1]), 2879 Address(stack, i * wordSize)); 2880 words_pushed += 2; 2881 } 2882 if (count) { 2883 ldp(as_Register(regs[0]), as_Register(regs[1]), 2884 Address(post(stack, count * wordSize))); 2885 words_pushed += 2; 2886 } 2887 2888 assert(words_pushed == count, "oops, pushed != count"); 2889 2890 return count; 2891 } 2892 2893 // Push lots of registers in the bit set supplied. Don't push sp. 2894 // Return the number of dwords pushed 2895 int MacroAssembler::push_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 2896 int words_pushed = 0; 2897 bool use_sve = false; 2898 int sve_vector_size_in_bytes = 0; 2899 2900 #ifdef COMPILER2 2901 use_sve = Matcher::supports_scalable_vector(); 2902 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2903 #endif 2904 2905 // Scan bitset to accumulate register pairs 2906 unsigned char regs[32]; 2907 int count = 0; 2908 for (int reg = 0; reg <= 31; reg++) { 2909 if (1 & bitset) 2910 regs[count++] = reg; 2911 bitset >>= 1; 2912 } 2913 2914 if (count == 0) { 2915 return 0; 2916 } 2917 2918 if (mode == PushPopFull) { 2919 if (use_sve && sve_vector_size_in_bytes > 16) { 2920 mode = PushPopSVE; 2921 } else { 2922 mode = PushPopNeon; 2923 } 2924 } 2925 2926 #ifndef PRODUCT 2927 { 2928 char buffer[48]; 2929 if (mode == PushPopSVE) { 2930 snprintf(buffer, sizeof(buffer), "push_fp: %d SVE registers", count); 2931 } else if (mode == PushPopNeon) { 2932 snprintf(buffer, sizeof(buffer), "push_fp: %d Neon registers", count); 2933 } else { 2934 snprintf(buffer, sizeof(buffer), "push_fp: %d fp registers", count); 2935 } 2936 block_comment(buffer); 2937 } 2938 #endif 2939 2940 if (mode == PushPopSVE) { 2941 sub(stack, stack, sve_vector_size_in_bytes * count); 2942 for (int i = 0; i < count; i++) { 2943 sve_str(as_FloatRegister(regs[i]), Address(stack, i)); 2944 } 2945 return count * sve_vector_size_in_bytes / 8; 2946 } 2947 2948 if (mode == PushPopNeon) { 2949 if (count == 1) { 2950 strq(as_FloatRegister(regs[0]), Address(pre(stack, -wordSize * 2))); 2951 return 2; 2952 } 2953 2954 bool odd = (count & 1) == 1; 2955 int push_slots = count + (odd ? 1 : 0); 2956 2957 // Always pushing full 128 bit registers. 2958 stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize * 2))); 2959 words_pushed += 2; 2960 2961 for (int i = 2; i + 1 < count; i += 2) { 2962 stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 2963 words_pushed += 2; 2964 } 2965 2966 if (odd) { 2967 strq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 2968 words_pushed++; 2969 } 2970 2971 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 2972 return count * 2; 2973 } 2974 2975 if (mode == PushPopFp) { 2976 bool odd = (count & 1) == 1; 2977 int push_slots = count + (odd ? 1 : 0); 2978 2979 if (count == 1) { 2980 // Stack pointer must be 16 bytes aligned 2981 strd(as_FloatRegister(regs[0]), Address(pre(stack, -push_slots * wordSize))); 2982 return 1; 2983 } 2984 2985 stpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize))); 2986 words_pushed += 2; 2987 2988 for (int i = 2; i + 1 < count; i += 2) { 2989 stpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 2990 words_pushed += 2; 2991 } 2992 2993 if (odd) { 2994 // Stack pointer must be 16 bytes aligned 2995 strd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 2996 words_pushed++; 2997 } 2998 2999 assert(words_pushed == count, "oops, pushed != count"); 3000 3001 return count; 3002 } 3003 3004 return 0; 3005 } 3006 3007 // Return the number of dwords popped 3008 int MacroAssembler::pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 3009 int words_pushed = 0; 3010 bool use_sve = false; 3011 int sve_vector_size_in_bytes = 0; 3012 3013 #ifdef COMPILER2 3014 use_sve = Matcher::supports_scalable_vector(); 3015 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 3016 #endif 3017 // Scan bitset to accumulate register pairs 3018 unsigned char regs[32]; 3019 int count = 0; 3020 for (int reg = 0; reg <= 31; reg++) { 3021 if (1 & bitset) 3022 regs[count++] = reg; 3023 bitset >>= 1; 3024 } 3025 3026 if (count == 0) { 3027 return 0; 3028 } 3029 3030 if (mode == PushPopFull) { 3031 if (use_sve && sve_vector_size_in_bytes > 16) { 3032 mode = PushPopSVE; 3033 } else { 3034 mode = PushPopNeon; 3035 } 3036 } 3037 3038 #ifndef PRODUCT 3039 { 3040 char buffer[48]; 3041 if (mode == PushPopSVE) { 3042 snprintf(buffer, sizeof(buffer), "pop_fp: %d SVE registers", count); 3043 } else if (mode == PushPopNeon) { 3044 snprintf(buffer, sizeof(buffer), "pop_fp: %d Neon registers", count); 3045 } else { 3046 snprintf(buffer, sizeof(buffer), "pop_fp: %d fp registers", count); 3047 } 3048 block_comment(buffer); 3049 } 3050 #endif 3051 3052 if (mode == PushPopSVE) { 3053 for (int i = count - 1; i >= 0; i--) { 3054 sve_ldr(as_FloatRegister(regs[i]), Address(stack, i)); 3055 } 3056 add(stack, stack, sve_vector_size_in_bytes * count); 3057 return count * sve_vector_size_in_bytes / 8; 3058 } 3059 3060 if (mode == PushPopNeon) { 3061 if (count == 1) { 3062 ldrq(as_FloatRegister(regs[0]), Address(post(stack, wordSize * 2))); 3063 return 2; 3064 } 3065 3066 bool odd = (count & 1) == 1; 3067 int push_slots = count + (odd ? 1 : 0); 3068 3069 if (odd) { 3070 ldrq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 3071 words_pushed++; 3072 } 3073 3074 for (int i = 2; i + 1 < count; i += 2) { 3075 ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 3076 words_pushed += 2; 3077 } 3078 3079 ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize * 2))); 3080 words_pushed += 2; 3081 3082 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 3083 3084 return count * 2; 3085 } 3086 3087 if (mode == PushPopFp) { 3088 bool odd = (count & 1) == 1; 3089 int push_slots = count + (odd ? 1 : 0); 3090 3091 if (count == 1) { 3092 ldrd(as_FloatRegister(regs[0]), Address(post(stack, push_slots * wordSize))); 3093 return 1; 3094 } 3095 3096 if (odd) { 3097 ldrd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 3098 words_pushed++; 3099 } 3100 3101 for (int i = 2; i + 1 < count; i += 2) { 3102 ldpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 3103 words_pushed += 2; 3104 } 3105 3106 ldpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize))); 3107 words_pushed += 2; 3108 3109 assert(words_pushed == count, "oops, pushed != count"); 3110 3111 return count; 3112 } 3113 3114 return 0; 3115 } 3116 3117 // Return the number of dwords pushed 3118 int MacroAssembler::push_p(unsigned int bitset, Register stack) { 3119 bool use_sve = false; 3120 int sve_predicate_size_in_slots = 0; 3121 3122 #ifdef COMPILER2 3123 use_sve = Matcher::supports_scalable_vector(); 3124 if (use_sve) { 3125 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 3126 } 3127 #endif 3128 3129 if (!use_sve) { 3130 return 0; 3131 } 3132 3133 unsigned char regs[PRegister::number_of_registers]; 3134 int count = 0; 3135 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 3136 if (1 & bitset) 3137 regs[count++] = reg; 3138 bitset >>= 1; 3139 } 3140 3141 if (count == 0) { 3142 return 0; 3143 } 3144 3145 int total_push_bytes = align_up(sve_predicate_size_in_slots * 3146 VMRegImpl::stack_slot_size * count, 16); 3147 sub(stack, stack, total_push_bytes); 3148 for (int i = 0; i < count; i++) { 3149 sve_str(as_PRegister(regs[i]), Address(stack, i)); 3150 } 3151 return total_push_bytes / 8; 3152 } 3153 3154 // Return the number of dwords popped 3155 int MacroAssembler::pop_p(unsigned int bitset, Register stack) { 3156 bool use_sve = false; 3157 int sve_predicate_size_in_slots = 0; 3158 3159 #ifdef COMPILER2 3160 use_sve = Matcher::supports_scalable_vector(); 3161 if (use_sve) { 3162 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 3163 } 3164 #endif 3165 3166 if (!use_sve) { 3167 return 0; 3168 } 3169 3170 unsigned char regs[PRegister::number_of_registers]; 3171 int count = 0; 3172 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 3173 if (1 & bitset) 3174 regs[count++] = reg; 3175 bitset >>= 1; 3176 } 3177 3178 if (count == 0) { 3179 return 0; 3180 } 3181 3182 int total_pop_bytes = align_up(sve_predicate_size_in_slots * 3183 VMRegImpl::stack_slot_size * count, 16); 3184 for (int i = count - 1; i >= 0; i--) { 3185 sve_ldr(as_PRegister(regs[i]), Address(stack, i)); 3186 } 3187 add(stack, stack, total_pop_bytes); 3188 return total_pop_bytes / 8; 3189 } 3190 3191 #ifdef ASSERT 3192 void MacroAssembler::verify_heapbase(const char* msg) { 3193 #if 0 3194 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed"); 3195 assert (Universe::heap() != nullptr, "java heap should be initialized"); 3196 if (!UseCompressedOops || Universe::ptr_base() == nullptr) { 3197 // rheapbase is allocated as general register 3198 return; 3199 } 3200 if (CheckCompressedOops) { 3201 Label ok; 3202 push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1 3203 cmpptr(rheapbase, ExternalAddress(CompressedOops::base_addr())); 3204 br(Assembler::EQ, ok); 3205 stop(msg); 3206 bind(ok); 3207 pop(1 << rscratch1->encoding(), sp); 3208 } 3209 #endif 3210 } 3211 #endif 3212 3213 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) { 3214 assert_different_registers(value, tmp1, tmp2); 3215 Label done, tagged, weak_tagged; 3216 3217 cbz(value, done); // Use null as-is. 3218 tst(value, JNIHandles::tag_mask); // Test for tag. 3219 br(Assembler::NE, tagged); 3220 3221 // Resolve local handle 3222 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp1, tmp2); 3223 verify_oop(value); 3224 b(done); 3225 3226 bind(tagged); 3227 STATIC_ASSERT(JNIHandles::TypeTag::weak_global == 0b1); 3228 tbnz(value, 0, weak_tagged); // Test for weak tag. 3229 3230 // Resolve global handle 3231 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3232 verify_oop(value); 3233 b(done); 3234 3235 bind(weak_tagged); 3236 // Resolve jweak. 3237 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 3238 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp1, tmp2); 3239 verify_oop(value); 3240 3241 bind(done); 3242 } 3243 3244 void MacroAssembler::resolve_global_jobject(Register value, Register tmp1, Register tmp2) { 3245 assert_different_registers(value, tmp1, tmp2); 3246 Label done; 3247 3248 cbz(value, done); // Use null as-is. 3249 3250 #ifdef ASSERT 3251 { 3252 STATIC_ASSERT(JNIHandles::TypeTag::global == 0b10); 3253 Label valid_global_tag; 3254 tbnz(value, 1, valid_global_tag); // Test for global tag 3255 stop("non global jobject using resolve_global_jobject"); 3256 bind(valid_global_tag); 3257 } 3258 #endif 3259 3260 // Resolve global handle 3261 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3262 verify_oop(value); 3263 3264 bind(done); 3265 } 3266 3267 void MacroAssembler::stop(const char* msg) { 3268 BLOCK_COMMENT(msg); 3269 // load msg into r0 so we can access it from the signal handler 3270 // ExternalAddress enables saving and restoring via the code cache 3271 lea(c_rarg0, ExternalAddress((address) msg)); 3272 dcps1(0xdeae); 3273 SCCache::add_C_string(msg); 3274 } 3275 3276 void MacroAssembler::unimplemented(const char* what) { 3277 const char* buf = nullptr; 3278 { 3279 ResourceMark rm; 3280 stringStream ss; 3281 ss.print("unimplemented: %s", what); 3282 buf = code_string(ss.as_string()); 3283 } 3284 stop(buf); 3285 } 3286 3287 void MacroAssembler::_assert_asm(Assembler::Condition cc, const char* msg) { 3288 #ifdef ASSERT 3289 Label OK; 3290 br(cc, OK); 3291 stop(msg); 3292 bind(OK); 3293 #endif 3294 } 3295 3296 // If a constant does not fit in an immediate field, generate some 3297 // number of MOV instructions and then perform the operation. 3298 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 3299 add_sub_imm_insn insn1, 3300 add_sub_reg_insn insn2, 3301 bool is32) { 3302 assert(Rd != zr, "Rd = zr and not setting flags?"); 3303 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3304 if (fits) { 3305 (this->*insn1)(Rd, Rn, imm); 3306 } else { 3307 if (uabs(imm) < (1 << 24)) { 3308 (this->*insn1)(Rd, Rn, imm & -(1 << 12)); 3309 (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1)); 3310 } else { 3311 assert_different_registers(Rd, Rn); 3312 mov(Rd, imm); 3313 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3314 } 3315 } 3316 } 3317 3318 // Separate vsn which sets the flags. Optimisations are more restricted 3319 // because we must set the flags correctly. 3320 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 3321 add_sub_imm_insn insn1, 3322 add_sub_reg_insn insn2, 3323 bool is32) { 3324 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3325 if (fits) { 3326 (this->*insn1)(Rd, Rn, imm); 3327 } else { 3328 assert_different_registers(Rd, Rn); 3329 assert(Rd != zr, "overflow in immediate operand"); 3330 mov(Rd, imm); 3331 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3332 } 3333 } 3334 3335 3336 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) { 3337 if (increment.is_register()) { 3338 add(Rd, Rn, increment.as_register()); 3339 } else { 3340 add(Rd, Rn, increment.as_constant()); 3341 } 3342 } 3343 3344 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) { 3345 if (increment.is_register()) { 3346 addw(Rd, Rn, increment.as_register()); 3347 } else { 3348 addw(Rd, Rn, increment.as_constant()); 3349 } 3350 } 3351 3352 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) { 3353 if (decrement.is_register()) { 3354 sub(Rd, Rn, decrement.as_register()); 3355 } else { 3356 sub(Rd, Rn, decrement.as_constant()); 3357 } 3358 } 3359 3360 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) { 3361 if (decrement.is_register()) { 3362 subw(Rd, Rn, decrement.as_register()); 3363 } else { 3364 subw(Rd, Rn, decrement.as_constant()); 3365 } 3366 } 3367 3368 void MacroAssembler::reinit_heapbase() 3369 { 3370 if (UseCompressedOops) { 3371 if (Universe::is_fully_initialized() && !SCCache::is_on_for_write()) { 3372 mov(rheapbase, CompressedOops::base()); 3373 } else { 3374 lea(rheapbase, ExternalAddress(CompressedOops::base_addr())); 3375 ldr(rheapbase, Address(rheapbase)); 3376 } 3377 } 3378 } 3379 3380 // this simulates the behaviour of the x86 cmpxchg instruction using a 3381 // load linked/store conditional pair. we use the acquire/release 3382 // versions of these instructions so that we flush pending writes as 3383 // per Java semantics. 3384 3385 // n.b the x86 version assumes the old value to be compared against is 3386 // in rax and updates rax with the value located in memory if the 3387 // cmpxchg fails. we supply a register for the old value explicitly 3388 3389 // the aarch64 load linked/store conditional instructions do not 3390 // accept an offset. so, unlike x86, we must provide a plain register 3391 // to identify the memory word to be compared/exchanged rather than a 3392 // register+offset Address. 3393 3394 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 3395 Label &succeed, Label *fail) { 3396 // oldv holds comparison value 3397 // newv holds value to write in exchange 3398 // addr identifies memory word to compare against/update 3399 if (UseLSE) { 3400 mov(tmp, oldv); 3401 casal(Assembler::xword, oldv, newv, addr); 3402 cmp(tmp, oldv); 3403 br(Assembler::EQ, succeed); 3404 membar(AnyAny); 3405 } else { 3406 Label retry_load, nope; 3407 prfm(Address(addr), PSTL1STRM); 3408 bind(retry_load); 3409 // flush and load exclusive from the memory location 3410 // and fail if it is not what we expect 3411 ldaxr(tmp, addr); 3412 cmp(tmp, oldv); 3413 br(Assembler::NE, nope); 3414 // if we store+flush with no intervening write tmp will be zero 3415 stlxr(tmp, newv, addr); 3416 cbzw(tmp, succeed); 3417 // retry so we only ever return after a load fails to compare 3418 // ensures we don't return a stale value after a failed write. 3419 b(retry_load); 3420 // if the memory word differs we return it in oldv and signal a fail 3421 bind(nope); 3422 membar(AnyAny); 3423 mov(oldv, tmp); 3424 } 3425 if (fail) 3426 b(*fail); 3427 } 3428 3429 void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 3430 Label &succeed, Label *fail) { 3431 assert(oopDesc::mark_offset_in_bytes() == 0, "assumption"); 3432 cmpxchgptr(oldv, newv, obj, tmp, succeed, fail); 3433 } 3434 3435 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 3436 Label &succeed, Label *fail) { 3437 // oldv holds comparison value 3438 // newv holds value to write in exchange 3439 // addr identifies memory word to compare against/update 3440 // tmp returns 0/1 for success/failure 3441 if (UseLSE) { 3442 mov(tmp, oldv); 3443 casal(Assembler::word, oldv, newv, addr); 3444 cmp(tmp, oldv); 3445 br(Assembler::EQ, succeed); 3446 membar(AnyAny); 3447 } else { 3448 Label retry_load, nope; 3449 prfm(Address(addr), PSTL1STRM); 3450 bind(retry_load); 3451 // flush and load exclusive from the memory location 3452 // and fail if it is not what we expect 3453 ldaxrw(tmp, addr); 3454 cmp(tmp, oldv); 3455 br(Assembler::NE, nope); 3456 // if we store+flush with no intervening write tmp will be zero 3457 stlxrw(tmp, newv, addr); 3458 cbzw(tmp, succeed); 3459 // retry so we only ever return after a load fails to compare 3460 // ensures we don't return a stale value after a failed write. 3461 b(retry_load); 3462 // if the memory word differs we return it in oldv and signal a fail 3463 bind(nope); 3464 membar(AnyAny); 3465 mov(oldv, tmp); 3466 } 3467 if (fail) 3468 b(*fail); 3469 } 3470 3471 // A generic CAS; success or failure is in the EQ flag. A weak CAS 3472 // doesn't retry and may fail spuriously. If the oldval is wanted, 3473 // Pass a register for the result, otherwise pass noreg. 3474 3475 // Clobbers rscratch1 3476 void MacroAssembler::cmpxchg(Register addr, Register expected, 3477 Register new_val, 3478 enum operand_size size, 3479 bool acquire, bool release, 3480 bool weak, 3481 Register result) { 3482 if (result == noreg) result = rscratch1; 3483 BLOCK_COMMENT("cmpxchg {"); 3484 if (UseLSE) { 3485 mov(result, expected); 3486 lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true); 3487 compare_eq(result, expected, size); 3488 #ifdef ASSERT 3489 // Poison rscratch1 which is written on !UseLSE branch 3490 mov(rscratch1, 0x1f1f1f1f1f1f1f1f); 3491 #endif 3492 } else { 3493 Label retry_load, done; 3494 prfm(Address(addr), PSTL1STRM); 3495 bind(retry_load); 3496 load_exclusive(result, addr, size, acquire); 3497 compare_eq(result, expected, size); 3498 br(Assembler::NE, done); 3499 store_exclusive(rscratch1, new_val, addr, size, release); 3500 if (weak) { 3501 cmpw(rscratch1, 0u); // If the store fails, return NE to our caller. 3502 } else { 3503 cbnzw(rscratch1, retry_load); 3504 } 3505 bind(done); 3506 } 3507 BLOCK_COMMENT("} cmpxchg"); 3508 } 3509 3510 // A generic comparison. Only compares for equality, clobbers rscratch1. 3511 void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) { 3512 if (size == xword) { 3513 cmp(rm, rn); 3514 } else if (size == word) { 3515 cmpw(rm, rn); 3516 } else if (size == halfword) { 3517 eorw(rscratch1, rm, rn); 3518 ands(zr, rscratch1, 0xffff); 3519 } else if (size == byte) { 3520 eorw(rscratch1, rm, rn); 3521 ands(zr, rscratch1, 0xff); 3522 } else { 3523 ShouldNotReachHere(); 3524 } 3525 } 3526 3527 3528 static bool different(Register a, RegisterOrConstant b, Register c) { 3529 if (b.is_constant()) 3530 return a != c; 3531 else 3532 return a != b.as_register() && a != c && b.as_register() != c; 3533 } 3534 3535 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \ 3536 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \ 3537 if (UseLSE) { \ 3538 prev = prev->is_valid() ? prev : zr; \ 3539 if (incr.is_register()) { \ 3540 AOP(sz, incr.as_register(), prev, addr); \ 3541 } else { \ 3542 mov(rscratch2, incr.as_constant()); \ 3543 AOP(sz, rscratch2, prev, addr); \ 3544 } \ 3545 return; \ 3546 } \ 3547 Register result = rscratch2; \ 3548 if (prev->is_valid()) \ 3549 result = different(prev, incr, addr) ? prev : rscratch2; \ 3550 \ 3551 Label retry_load; \ 3552 prfm(Address(addr), PSTL1STRM); \ 3553 bind(retry_load); \ 3554 LDXR(result, addr); \ 3555 OP(rscratch1, result, incr); \ 3556 STXR(rscratch2, rscratch1, addr); \ 3557 cbnzw(rscratch2, retry_load); \ 3558 if (prev->is_valid() && prev != result) { \ 3559 IOP(prev, rscratch1, incr); \ 3560 } \ 3561 } 3562 3563 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword) 3564 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word) 3565 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword) 3566 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word) 3567 3568 #undef ATOMIC_OP 3569 3570 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \ 3571 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \ 3572 if (UseLSE) { \ 3573 prev = prev->is_valid() ? prev : zr; \ 3574 AOP(sz, newv, prev, addr); \ 3575 return; \ 3576 } \ 3577 Register result = rscratch2; \ 3578 if (prev->is_valid()) \ 3579 result = different(prev, newv, addr) ? prev : rscratch2; \ 3580 \ 3581 Label retry_load; \ 3582 prfm(Address(addr), PSTL1STRM); \ 3583 bind(retry_load); \ 3584 LDXR(result, addr); \ 3585 STXR(rscratch1, newv, addr); \ 3586 cbnzw(rscratch1, retry_load); \ 3587 if (prev->is_valid() && prev != result) \ 3588 mov(prev, result); \ 3589 } 3590 3591 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword) 3592 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word) 3593 ATOMIC_XCHG(xchgl, swpl, ldxr, stlxr, Assembler::xword) 3594 ATOMIC_XCHG(xchglw, swpl, ldxrw, stlxrw, Assembler::word) 3595 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword) 3596 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word) 3597 3598 #undef ATOMIC_XCHG 3599 3600 #ifndef PRODUCT 3601 extern "C" void findpc(intptr_t x); 3602 #endif 3603 3604 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) 3605 { 3606 // In order to get locks to work, we need to fake a in_VM state 3607 if (ShowMessageBoxOnError ) { 3608 JavaThread* thread = JavaThread::current(); 3609 JavaThreadState saved_state = thread->thread_state(); 3610 thread->set_thread_state(_thread_in_vm); 3611 #ifndef PRODUCT 3612 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 3613 ttyLocker ttyl; 3614 BytecodeCounter::print(); 3615 } 3616 #endif 3617 if (os::message_box(msg, "Execution stopped, print registers?")) { 3618 ttyLocker ttyl; 3619 tty->print_cr(" pc = 0x%016" PRIx64, pc); 3620 #ifndef PRODUCT 3621 tty->cr(); 3622 findpc(pc); 3623 tty->cr(); 3624 #endif 3625 tty->print_cr(" r0 = 0x%016" PRIx64, regs[0]); 3626 tty->print_cr(" r1 = 0x%016" PRIx64, regs[1]); 3627 tty->print_cr(" r2 = 0x%016" PRIx64, regs[2]); 3628 tty->print_cr(" r3 = 0x%016" PRIx64, regs[3]); 3629 tty->print_cr(" r4 = 0x%016" PRIx64, regs[4]); 3630 tty->print_cr(" r5 = 0x%016" PRIx64, regs[5]); 3631 tty->print_cr(" r6 = 0x%016" PRIx64, regs[6]); 3632 tty->print_cr(" r7 = 0x%016" PRIx64, regs[7]); 3633 tty->print_cr(" r8 = 0x%016" PRIx64, regs[8]); 3634 tty->print_cr(" r9 = 0x%016" PRIx64, regs[9]); 3635 tty->print_cr("r10 = 0x%016" PRIx64, regs[10]); 3636 tty->print_cr("r11 = 0x%016" PRIx64, regs[11]); 3637 tty->print_cr("r12 = 0x%016" PRIx64, regs[12]); 3638 tty->print_cr("r13 = 0x%016" PRIx64, regs[13]); 3639 tty->print_cr("r14 = 0x%016" PRIx64, regs[14]); 3640 tty->print_cr("r15 = 0x%016" PRIx64, regs[15]); 3641 tty->print_cr("r16 = 0x%016" PRIx64, regs[16]); 3642 tty->print_cr("r17 = 0x%016" PRIx64, regs[17]); 3643 tty->print_cr("r18 = 0x%016" PRIx64, regs[18]); 3644 tty->print_cr("r19 = 0x%016" PRIx64, regs[19]); 3645 tty->print_cr("r20 = 0x%016" PRIx64, regs[20]); 3646 tty->print_cr("r21 = 0x%016" PRIx64, regs[21]); 3647 tty->print_cr("r22 = 0x%016" PRIx64, regs[22]); 3648 tty->print_cr("r23 = 0x%016" PRIx64, regs[23]); 3649 tty->print_cr("r24 = 0x%016" PRIx64, regs[24]); 3650 tty->print_cr("r25 = 0x%016" PRIx64, regs[25]); 3651 tty->print_cr("r26 = 0x%016" PRIx64, regs[26]); 3652 tty->print_cr("r27 = 0x%016" PRIx64, regs[27]); 3653 tty->print_cr("r28 = 0x%016" PRIx64, regs[28]); 3654 tty->print_cr("r30 = 0x%016" PRIx64, regs[30]); 3655 tty->print_cr("r31 = 0x%016" PRIx64, regs[31]); 3656 BREAKPOINT; 3657 } 3658 } 3659 fatal("DEBUG MESSAGE: %s", msg); 3660 } 3661 3662 RegSet MacroAssembler::call_clobbered_gp_registers() { 3663 RegSet regs = RegSet::range(r0, r17) - RegSet::of(rscratch1, rscratch2); 3664 #ifndef R18_RESERVED 3665 regs += r18_tls; 3666 #endif 3667 return regs; 3668 } 3669 3670 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) { 3671 int step = 4 * wordSize; 3672 push(call_clobbered_gp_registers() - exclude, sp); 3673 sub(sp, sp, step); 3674 mov(rscratch1, -step); 3675 // Push v0-v7, v16-v31. 3676 for (int i = 31; i>= 4; i -= 4) { 3677 if (i <= v7->encoding() || i >= v16->encoding()) 3678 st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1), 3679 as_FloatRegister(i), T1D, Address(post(sp, rscratch1))); 3680 } 3681 st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2), 3682 as_FloatRegister(3), T1D, Address(sp)); 3683 } 3684 3685 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) { 3686 for (int i = 0; i < 32; i += 4) { 3687 if (i <= v7->encoding() || i >= v16->encoding()) 3688 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3689 as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize))); 3690 } 3691 3692 reinitialize_ptrue(); 3693 3694 pop(call_clobbered_gp_registers() - exclude, sp); 3695 } 3696 3697 void MacroAssembler::push_CPU_state(bool save_vectors, bool use_sve, 3698 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3699 push(RegSet::range(r0, r29), sp); // integer registers except lr & sp 3700 if (save_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3701 sub(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3702 for (int i = 0; i < FloatRegister::number_of_registers; i++) { 3703 sve_str(as_FloatRegister(i), Address(sp, i)); 3704 } 3705 } else { 3706 int step = (save_vectors ? 8 : 4) * wordSize; 3707 mov(rscratch1, -step); 3708 sub(sp, sp, step); 3709 for (int i = 28; i >= 4; i -= 4) { 3710 st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3711 as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1))); 3712 } 3713 st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp); 3714 } 3715 if (save_vectors && use_sve && total_predicate_in_bytes > 0) { 3716 sub(sp, sp, total_predicate_in_bytes); 3717 for (int i = 0; i < PRegister::number_of_registers; i++) { 3718 sve_str(as_PRegister(i), Address(sp, i)); 3719 } 3720 } 3721 } 3722 3723 void MacroAssembler::pop_CPU_state(bool restore_vectors, bool use_sve, 3724 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3725 if (restore_vectors && use_sve && total_predicate_in_bytes > 0) { 3726 for (int i = PRegister::number_of_registers - 1; i >= 0; i--) { 3727 sve_ldr(as_PRegister(i), Address(sp, i)); 3728 } 3729 add(sp, sp, total_predicate_in_bytes); 3730 } 3731 if (restore_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3732 for (int i = FloatRegister::number_of_registers - 1; i >= 0; i--) { 3733 sve_ldr(as_FloatRegister(i), Address(sp, i)); 3734 } 3735 add(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3736 } else { 3737 int step = (restore_vectors ? 8 : 4) * wordSize; 3738 for (int i = 0; i <= 28; i += 4) 3739 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3740 as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step))); 3741 } 3742 3743 // We may use predicate registers and rely on ptrue with SVE, 3744 // regardless of wide vector (> 8 bytes) used or not. 3745 if (use_sve) { 3746 reinitialize_ptrue(); 3747 } 3748 3749 // integer registers except lr & sp 3750 pop(RegSet::range(r0, r17), sp); 3751 #ifdef R18_RESERVED 3752 ldp(zr, r19, Address(post(sp, 2 * wordSize))); 3753 pop(RegSet::range(r20, r29), sp); 3754 #else 3755 pop(RegSet::range(r18_tls, r29), sp); 3756 #endif 3757 } 3758 3759 /** 3760 * Helpers for multiply_to_len(). 3761 */ 3762 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 3763 Register src1, Register src2) { 3764 adds(dest_lo, dest_lo, src1); 3765 adc(dest_hi, dest_hi, zr); 3766 adds(dest_lo, dest_lo, src2); 3767 adc(final_dest_hi, dest_hi, zr); 3768 } 3769 3770 // Generate an address from (r + r1 extend offset). "size" is the 3771 // size of the operand. The result may be in rscratch2. 3772 Address MacroAssembler::offsetted_address(Register r, Register r1, 3773 Address::extend ext, int offset, int size) { 3774 if (offset || (ext.shift() % size != 0)) { 3775 lea(rscratch2, Address(r, r1, ext)); 3776 return Address(rscratch2, offset); 3777 } else { 3778 return Address(r, r1, ext); 3779 } 3780 } 3781 3782 Address MacroAssembler::spill_address(int size, int offset, Register tmp) 3783 { 3784 assert(offset >= 0, "spill to negative address?"); 3785 // Offset reachable ? 3786 // Not aligned - 9 bits signed offset 3787 // Aligned - 12 bits unsigned offset shifted 3788 Register base = sp; 3789 if ((offset & (size-1)) && offset >= (1<<8)) { 3790 add(tmp, base, offset & ((1<<12)-1)); 3791 base = tmp; 3792 offset &= -1u<<12; 3793 } 3794 3795 if (offset >= (1<<12) * size) { 3796 add(tmp, base, offset & (((1<<12)-1)<<12)); 3797 base = tmp; 3798 offset &= ~(((1<<12)-1)<<12); 3799 } 3800 3801 return Address(base, offset); 3802 } 3803 3804 Address MacroAssembler::sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp) { 3805 assert(offset >= 0, "spill to negative address?"); 3806 3807 Register base = sp; 3808 3809 // An immediate offset in the range 0 to 255 which is multiplied 3810 // by the current vector or predicate register size in bytes. 3811 if (offset % sve_reg_size_in_bytes == 0 && offset < ((1<<8)*sve_reg_size_in_bytes)) { 3812 return Address(base, offset / sve_reg_size_in_bytes); 3813 } 3814 3815 add(tmp, base, offset); 3816 return Address(tmp); 3817 } 3818 3819 // Checks whether offset is aligned. 3820 // Returns true if it is, else false. 3821 bool MacroAssembler::merge_alignment_check(Register base, 3822 size_t size, 3823 int64_t cur_offset, 3824 int64_t prev_offset) const { 3825 if (AvoidUnalignedAccesses) { 3826 if (base == sp) { 3827 // Checks whether low offset if aligned to pair of registers. 3828 int64_t pair_mask = size * 2 - 1; 3829 int64_t offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3830 return (offset & pair_mask) == 0; 3831 } else { // If base is not sp, we can't guarantee the access is aligned. 3832 return false; 3833 } 3834 } else { 3835 int64_t mask = size - 1; 3836 // Load/store pair instruction only supports element size aligned offset. 3837 return (cur_offset & mask) == 0 && (prev_offset & mask) == 0; 3838 } 3839 } 3840 3841 // Checks whether current and previous loads/stores can be merged. 3842 // Returns true if it can be merged, else false. 3843 bool MacroAssembler::ldst_can_merge(Register rt, 3844 const Address &adr, 3845 size_t cur_size_in_bytes, 3846 bool is_store) const { 3847 address prev = pc() - NativeInstruction::instruction_size; 3848 address last = code()->last_insn(); 3849 3850 if (last == nullptr || !nativeInstruction_at(last)->is_Imm_LdSt()) { 3851 return false; 3852 } 3853 3854 if (adr.getMode() != Address::base_plus_offset || prev != last) { 3855 return false; 3856 } 3857 3858 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3859 size_t prev_size_in_bytes = prev_ldst->size_in_bytes(); 3860 3861 assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging."); 3862 assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging."); 3863 3864 if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) { 3865 return false; 3866 } 3867 3868 int64_t max_offset = 63 * prev_size_in_bytes; 3869 int64_t min_offset = -64 * prev_size_in_bytes; 3870 3871 assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged."); 3872 3873 // Only same base can be merged. 3874 if (adr.base() != prev_ldst->base()) { 3875 return false; 3876 } 3877 3878 int64_t cur_offset = adr.offset(); 3879 int64_t prev_offset = prev_ldst->offset(); 3880 size_t diff = abs(cur_offset - prev_offset); 3881 if (diff != prev_size_in_bytes) { 3882 return false; 3883 } 3884 3885 // Following cases can not be merged: 3886 // ldr x2, [x2, #8] 3887 // ldr x3, [x2, #16] 3888 // or: 3889 // ldr x2, [x3, #8] 3890 // ldr x2, [x3, #16] 3891 // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL. 3892 if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) { 3893 return false; 3894 } 3895 3896 int64_t low_offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3897 // Offset range must be in ldp/stp instruction's range. 3898 if (low_offset > max_offset || low_offset < min_offset) { 3899 return false; 3900 } 3901 3902 if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) { 3903 return true; 3904 } 3905 3906 return false; 3907 } 3908 3909 // Merge current load/store with previous load/store into ldp/stp. 3910 void MacroAssembler::merge_ldst(Register rt, 3911 const Address &adr, 3912 size_t cur_size_in_bytes, 3913 bool is_store) { 3914 3915 assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged."); 3916 3917 Register rt_low, rt_high; 3918 address prev = pc() - NativeInstruction::instruction_size; 3919 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3920 3921 int64_t offset; 3922 3923 if (adr.offset() < prev_ldst->offset()) { 3924 offset = adr.offset(); 3925 rt_low = rt; 3926 rt_high = prev_ldst->target(); 3927 } else { 3928 offset = prev_ldst->offset(); 3929 rt_low = prev_ldst->target(); 3930 rt_high = rt; 3931 } 3932 3933 Address adr_p = Address(prev_ldst->base(), offset); 3934 // Overwrite previous generated binary. 3935 code_section()->set_end(prev); 3936 3937 const size_t sz = prev_ldst->size_in_bytes(); 3938 assert(sz == 8 || sz == 4, "only supports 64/32bit merging."); 3939 if (!is_store) { 3940 BLOCK_COMMENT("merged ldr pair"); 3941 if (sz == 8) { 3942 ldp(rt_low, rt_high, adr_p); 3943 } else { 3944 ldpw(rt_low, rt_high, adr_p); 3945 } 3946 } else { 3947 BLOCK_COMMENT("merged str pair"); 3948 if (sz == 8) { 3949 stp(rt_low, rt_high, adr_p); 3950 } else { 3951 stpw(rt_low, rt_high, adr_p); 3952 } 3953 } 3954 } 3955 3956 /** 3957 * Multiply 64 bit by 64 bit first loop. 3958 */ 3959 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 3960 Register y, Register y_idx, Register z, 3961 Register carry, Register product, 3962 Register idx, Register kdx) { 3963 // 3964 // jlong carry, x[], y[], z[]; 3965 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 3966 // huge_128 product = y[idx] * x[xstart] + carry; 3967 // z[kdx] = (jlong)product; 3968 // carry = (jlong)(product >>> 64); 3969 // } 3970 // z[xstart] = carry; 3971 // 3972 3973 Label L_first_loop, L_first_loop_exit; 3974 Label L_one_x, L_one_y, L_multiply; 3975 3976 subsw(xstart, xstart, 1); 3977 br(Assembler::MI, L_one_x); 3978 3979 lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt))); 3980 ldr(x_xstart, Address(rscratch1)); 3981 ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian 3982 3983 bind(L_first_loop); 3984 subsw(idx, idx, 1); 3985 br(Assembler::MI, L_first_loop_exit); 3986 subsw(idx, idx, 1); 3987 br(Assembler::MI, L_one_y); 3988 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3989 ldr(y_idx, Address(rscratch1)); 3990 ror(y_idx, y_idx, 32); // convert big-endian to little-endian 3991 bind(L_multiply); 3992 3993 // AArch64 has a multiply-accumulate instruction that we can't use 3994 // here because it has no way to process carries, so we have to use 3995 // separate add and adc instructions. Bah. 3996 umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product 3997 mul(product, x_xstart, y_idx); 3998 adds(product, product, carry); 3999 adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product 4000 4001 subw(kdx, kdx, 2); 4002 ror(product, product, 32); // back to big-endian 4003 str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong)); 4004 4005 b(L_first_loop); 4006 4007 bind(L_one_y); 4008 ldrw(y_idx, Address(y, 0)); 4009 b(L_multiply); 4010 4011 bind(L_one_x); 4012 ldrw(x_xstart, Address(x, 0)); 4013 b(L_first_loop); 4014 4015 bind(L_first_loop_exit); 4016 } 4017 4018 /** 4019 * Multiply 128 bit by 128. Unrolled inner loop. 4020 * 4021 */ 4022 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z, 4023 Register carry, Register carry2, 4024 Register idx, Register jdx, 4025 Register yz_idx1, Register yz_idx2, 4026 Register tmp, Register tmp3, Register tmp4, 4027 Register tmp6, Register product_hi) { 4028 4029 // jlong carry, x[], y[], z[]; 4030 // int kdx = ystart+1; 4031 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 4032 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry; 4033 // jlong carry2 = (jlong)(tmp3 >>> 64); 4034 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2; 4035 // carry = (jlong)(tmp4 >>> 64); 4036 // z[kdx+idx+1] = (jlong)tmp3; 4037 // z[kdx+idx] = (jlong)tmp4; 4038 // } 4039 // idx += 2; 4040 // if (idx > 0) { 4041 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry; 4042 // z[kdx+idx] = (jlong)yz_idx1; 4043 // carry = (jlong)(yz_idx1 >>> 64); 4044 // } 4045 // 4046 4047 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 4048 4049 lsrw(jdx, idx, 2); 4050 4051 bind(L_third_loop); 4052 4053 subsw(jdx, jdx, 1); 4054 br(Assembler::MI, L_third_loop_exit); 4055 subw(idx, idx, 4); 4056 4057 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4058 4059 ldp(yz_idx2, yz_idx1, Address(rscratch1, 0)); 4060 4061 lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4062 4063 ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 4064 ror(yz_idx2, yz_idx2, 32); 4065 4066 ldp(rscratch2, rscratch1, Address(tmp6, 0)); 4067 4068 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 4069 umulh(tmp4, product_hi, yz_idx1); 4070 4071 ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian 4072 ror(rscratch2, rscratch2, 32); 4073 4074 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp 4075 umulh(carry2, product_hi, yz_idx2); 4076 4077 // propagate sum of both multiplications into carry:tmp4:tmp3 4078 adds(tmp3, tmp3, carry); 4079 adc(tmp4, tmp4, zr); 4080 adds(tmp3, tmp3, rscratch1); 4081 adcs(tmp4, tmp4, tmp); 4082 adc(carry, carry2, zr); 4083 adds(tmp4, tmp4, rscratch2); 4084 adc(carry, carry, zr); 4085 4086 ror(tmp3, tmp3, 32); // convert little-endian to big-endian 4087 ror(tmp4, tmp4, 32); 4088 stp(tmp4, tmp3, Address(tmp6, 0)); 4089 4090 b(L_third_loop); 4091 bind (L_third_loop_exit); 4092 4093 andw (idx, idx, 0x3); 4094 cbz(idx, L_post_third_loop_done); 4095 4096 Label L_check_1; 4097 subsw(idx, idx, 2); 4098 br(Assembler::MI, L_check_1); 4099 4100 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4101 ldr(yz_idx1, Address(rscratch1, 0)); 4102 ror(yz_idx1, yz_idx1, 32); 4103 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 4104 umulh(tmp4, product_hi, yz_idx1); 4105 lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4106 ldr(yz_idx2, Address(rscratch1, 0)); 4107 ror(yz_idx2, yz_idx2, 32); 4108 4109 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2); 4110 4111 ror(tmp3, tmp3, 32); 4112 str(tmp3, Address(rscratch1, 0)); 4113 4114 bind (L_check_1); 4115 4116 andw (idx, idx, 0x1); 4117 subsw(idx, idx, 1); 4118 br(Assembler::MI, L_post_third_loop_done); 4119 ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4120 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3 4121 umulh(carry2, tmp4, product_hi); 4122 ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4123 4124 add2_with_carry(carry2, tmp3, tmp4, carry); 4125 4126 strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4127 extr(carry, carry2, tmp3, 32); 4128 4129 bind(L_post_third_loop_done); 4130 } 4131 4132 /** 4133 * Code for BigInteger::multiplyToLen() intrinsic. 4134 * 4135 * r0: x 4136 * r1: xlen 4137 * r2: y 4138 * r3: ylen 4139 * r4: z 4140 * r5: tmp0 4141 * r10: tmp1 4142 * r11: tmp2 4143 * r12: tmp3 4144 * r13: tmp4 4145 * r14: tmp5 4146 * r15: tmp6 4147 * r16: tmp7 4148 * 4149 */ 4150 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, 4151 Register z, Register tmp0, 4152 Register tmp1, Register tmp2, Register tmp3, Register tmp4, 4153 Register tmp5, Register tmp6, Register product_hi) { 4154 4155 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, product_hi); 4156 4157 const Register idx = tmp1; 4158 const Register kdx = tmp2; 4159 const Register xstart = tmp3; 4160 4161 const Register y_idx = tmp4; 4162 const Register carry = tmp5; 4163 const Register product = xlen; 4164 const Register x_xstart = tmp0; 4165 4166 // First Loop. 4167 // 4168 // final static long LONG_MASK = 0xffffffffL; 4169 // int xstart = xlen - 1; 4170 // int ystart = ylen - 1; 4171 // long carry = 0; 4172 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 4173 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 4174 // z[kdx] = (int)product; 4175 // carry = product >>> 32; 4176 // } 4177 // z[xstart] = (int)carry; 4178 // 4179 4180 movw(idx, ylen); // idx = ylen; 4181 addw(kdx, xlen, ylen); // kdx = xlen+ylen; 4182 mov(carry, zr); // carry = 0; 4183 4184 Label L_done; 4185 4186 movw(xstart, xlen); 4187 subsw(xstart, xstart, 1); 4188 br(Assembler::MI, L_done); 4189 4190 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 4191 4192 Label L_second_loop; 4193 cbzw(kdx, L_second_loop); 4194 4195 Label L_carry; 4196 subw(kdx, kdx, 1); 4197 cbzw(kdx, L_carry); 4198 4199 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 4200 lsr(carry, carry, 32); 4201 subw(kdx, kdx, 1); 4202 4203 bind(L_carry); 4204 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 4205 4206 // Second and third (nested) loops. 4207 // 4208 // for (int i = xstart-1; i >= 0; i--) { // Second loop 4209 // carry = 0; 4210 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 4211 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 4212 // (z[k] & LONG_MASK) + carry; 4213 // z[k] = (int)product; 4214 // carry = product >>> 32; 4215 // } 4216 // z[i] = (int)carry; 4217 // } 4218 // 4219 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi 4220 4221 const Register jdx = tmp1; 4222 4223 bind(L_second_loop); 4224 mov(carry, zr); // carry = 0; 4225 movw(jdx, ylen); // j = ystart+1 4226 4227 subsw(xstart, xstart, 1); // i = xstart-1; 4228 br(Assembler::MI, L_done); 4229 4230 str(z, Address(pre(sp, -4 * wordSize))); 4231 4232 Label L_last_x; 4233 lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j 4234 subsw(xstart, xstart, 1); // i = xstart-1; 4235 br(Assembler::MI, L_last_x); 4236 4237 lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt))); 4238 ldr(product_hi, Address(rscratch1)); 4239 ror(product_hi, product_hi, 32); // convert big-endian to little-endian 4240 4241 Label L_third_loop_prologue; 4242 bind(L_third_loop_prologue); 4243 4244 str(ylen, Address(sp, wordSize)); 4245 stp(x, xstart, Address(sp, 2 * wordSize)); 4246 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product, 4247 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi); 4248 ldp(z, ylen, Address(post(sp, 2 * wordSize))); 4249 ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen 4250 4251 addw(tmp3, xlen, 1); 4252 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4253 subsw(tmp3, tmp3, 1); 4254 br(Assembler::MI, L_done); 4255 4256 lsr(carry, carry, 32); 4257 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4258 b(L_second_loop); 4259 4260 // Next infrequent code is moved outside loops. 4261 bind(L_last_x); 4262 ldrw(product_hi, Address(x, 0)); 4263 b(L_third_loop_prologue); 4264 4265 bind(L_done); 4266 } 4267 4268 // Code for BigInteger::mulAdd intrinsic 4269 // out = r0 4270 // in = r1 4271 // offset = r2 (already out.length-offset) 4272 // len = r3 4273 // k = r4 4274 // 4275 // pseudo code from java implementation: 4276 // carry = 0; 4277 // offset = out.length-offset - 1; 4278 // for (int j=len-1; j >= 0; j--) { 4279 // product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry; 4280 // out[offset--] = (int)product; 4281 // carry = product >>> 32; 4282 // } 4283 // return (int)carry; 4284 void MacroAssembler::mul_add(Register out, Register in, Register offset, 4285 Register len, Register k) { 4286 Label LOOP, END; 4287 // pre-loop 4288 cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches 4289 csel(out, zr, out, Assembler::EQ); 4290 br(Assembler::EQ, END); 4291 add(in, in, len, LSL, 2); // in[j+1] address 4292 add(offset, out, offset, LSL, 2); // out[offset + 1] address 4293 mov(out, zr); // used to keep carry now 4294 BIND(LOOP); 4295 ldrw(rscratch1, Address(pre(in, -4))); 4296 madd(rscratch1, rscratch1, k, out); 4297 ldrw(rscratch2, Address(pre(offset, -4))); 4298 add(rscratch1, rscratch1, rscratch2); 4299 strw(rscratch1, Address(offset)); 4300 lsr(out, rscratch1, 32); 4301 subs(len, len, 1); 4302 br(Assembler::NE, LOOP); 4303 BIND(END); 4304 } 4305 4306 /** 4307 * Emits code to update CRC-32 with a byte value according to constants in table 4308 * 4309 * @param [in,out]crc Register containing the crc. 4310 * @param [in]val Register containing the byte to fold into the CRC. 4311 * @param [in]table Register containing the table of crc constants. 4312 * 4313 * uint32_t crc; 4314 * val = crc_table[(val ^ crc) & 0xFF]; 4315 * crc = val ^ (crc >> 8); 4316 * 4317 */ 4318 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 4319 eor(val, val, crc); 4320 andr(val, val, 0xff); 4321 ldrw(val, Address(table, val, Address::lsl(2))); 4322 eor(crc, val, crc, Assembler::LSR, 8); 4323 } 4324 4325 /** 4326 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3 4327 * 4328 * @param [in,out]crc Register containing the crc. 4329 * @param [in]v Register containing the 32-bit to fold into the CRC. 4330 * @param [in]table0 Register containing table 0 of crc constants. 4331 * @param [in]table1 Register containing table 1 of crc constants. 4332 * @param [in]table2 Register containing table 2 of crc constants. 4333 * @param [in]table3 Register containing table 3 of crc constants. 4334 * 4335 * uint32_t crc; 4336 * v = crc ^ v 4337 * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24] 4338 * 4339 */ 4340 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp, 4341 Register table0, Register table1, Register table2, Register table3, 4342 bool upper) { 4343 eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0); 4344 uxtb(tmp, v); 4345 ldrw(crc, Address(table3, tmp, Address::lsl(2))); 4346 ubfx(tmp, v, 8, 8); 4347 ldrw(tmp, Address(table2, tmp, Address::lsl(2))); 4348 eor(crc, crc, tmp); 4349 ubfx(tmp, v, 16, 8); 4350 ldrw(tmp, Address(table1, tmp, Address::lsl(2))); 4351 eor(crc, crc, tmp); 4352 ubfx(tmp, v, 24, 8); 4353 ldrw(tmp, Address(table0, tmp, Address::lsl(2))); 4354 eor(crc, crc, tmp); 4355 } 4356 4357 void MacroAssembler::kernel_crc32_using_crypto_pmull(Register crc, Register buf, 4358 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4359 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4360 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4361 4362 subs(tmp0, len, 384); 4363 mvnw(crc, crc); 4364 br(Assembler::GE, CRC_by128_pre); 4365 BIND(CRC_less128); 4366 subs(len, len, 32); 4367 br(Assembler::GE, CRC_by32_loop); 4368 BIND(CRC_less32); 4369 adds(len, len, 32 - 4); 4370 br(Assembler::GE, CRC_by4_loop); 4371 adds(len, len, 4); 4372 br(Assembler::GT, CRC_by1_loop); 4373 b(L_exit); 4374 4375 BIND(CRC_by32_loop); 4376 ldp(tmp0, tmp1, Address(buf)); 4377 crc32x(crc, crc, tmp0); 4378 ldp(tmp2, tmp3, Address(buf, 16)); 4379 crc32x(crc, crc, tmp1); 4380 add(buf, buf, 32); 4381 crc32x(crc, crc, tmp2); 4382 subs(len, len, 32); 4383 crc32x(crc, crc, tmp3); 4384 br(Assembler::GE, CRC_by32_loop); 4385 cmn(len, (u1)32); 4386 br(Assembler::NE, CRC_less32); 4387 b(L_exit); 4388 4389 BIND(CRC_by4_loop); 4390 ldrw(tmp0, Address(post(buf, 4))); 4391 subs(len, len, 4); 4392 crc32w(crc, crc, tmp0); 4393 br(Assembler::GE, CRC_by4_loop); 4394 adds(len, len, 4); 4395 br(Assembler::LE, L_exit); 4396 BIND(CRC_by1_loop); 4397 ldrb(tmp0, Address(post(buf, 1))); 4398 subs(len, len, 1); 4399 crc32b(crc, crc, tmp0); 4400 br(Assembler::GT, CRC_by1_loop); 4401 b(L_exit); 4402 4403 BIND(CRC_by128_pre); 4404 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4405 4*256*sizeof(juint) + 8*sizeof(juint)); 4406 mov(crc, 0); 4407 crc32x(crc, crc, tmp0); 4408 crc32x(crc, crc, tmp1); 4409 4410 cbnz(len, CRC_less128); 4411 4412 BIND(L_exit); 4413 mvnw(crc, crc); 4414 } 4415 4416 void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf, 4417 Register len, Register tmp0, Register tmp1, Register tmp2, 4418 Register tmp3) { 4419 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4420 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4421 4422 mvnw(crc, crc); 4423 4424 subs(len, len, 128); 4425 br(Assembler::GE, CRC_by64_pre); 4426 BIND(CRC_less64); 4427 adds(len, len, 128-32); 4428 br(Assembler::GE, CRC_by32_loop); 4429 BIND(CRC_less32); 4430 adds(len, len, 32-4); 4431 br(Assembler::GE, CRC_by4_loop); 4432 adds(len, len, 4); 4433 br(Assembler::GT, CRC_by1_loop); 4434 b(L_exit); 4435 4436 BIND(CRC_by32_loop); 4437 ldp(tmp0, tmp1, Address(post(buf, 16))); 4438 subs(len, len, 32); 4439 crc32x(crc, crc, tmp0); 4440 ldr(tmp2, Address(post(buf, 8))); 4441 crc32x(crc, crc, tmp1); 4442 ldr(tmp3, Address(post(buf, 8))); 4443 crc32x(crc, crc, tmp2); 4444 crc32x(crc, crc, tmp3); 4445 br(Assembler::GE, CRC_by32_loop); 4446 cmn(len, (u1)32); 4447 br(Assembler::NE, CRC_less32); 4448 b(L_exit); 4449 4450 BIND(CRC_by4_loop); 4451 ldrw(tmp0, Address(post(buf, 4))); 4452 subs(len, len, 4); 4453 crc32w(crc, crc, tmp0); 4454 br(Assembler::GE, CRC_by4_loop); 4455 adds(len, len, 4); 4456 br(Assembler::LE, L_exit); 4457 BIND(CRC_by1_loop); 4458 ldrb(tmp0, Address(post(buf, 1))); 4459 subs(len, len, 1); 4460 crc32b(crc, crc, tmp0); 4461 br(Assembler::GT, CRC_by1_loop); 4462 b(L_exit); 4463 4464 BIND(CRC_by64_pre); 4465 sub(buf, buf, 8); 4466 ldp(tmp0, tmp1, Address(buf, 8)); 4467 crc32x(crc, crc, tmp0); 4468 ldr(tmp2, Address(buf, 24)); 4469 crc32x(crc, crc, tmp1); 4470 ldr(tmp3, Address(buf, 32)); 4471 crc32x(crc, crc, tmp2); 4472 ldr(tmp0, Address(buf, 40)); 4473 crc32x(crc, crc, tmp3); 4474 ldr(tmp1, Address(buf, 48)); 4475 crc32x(crc, crc, tmp0); 4476 ldr(tmp2, Address(buf, 56)); 4477 crc32x(crc, crc, tmp1); 4478 ldr(tmp3, Address(pre(buf, 64))); 4479 4480 b(CRC_by64_loop); 4481 4482 align(CodeEntryAlignment); 4483 BIND(CRC_by64_loop); 4484 subs(len, len, 64); 4485 crc32x(crc, crc, tmp2); 4486 ldr(tmp0, Address(buf, 8)); 4487 crc32x(crc, crc, tmp3); 4488 ldr(tmp1, Address(buf, 16)); 4489 crc32x(crc, crc, tmp0); 4490 ldr(tmp2, Address(buf, 24)); 4491 crc32x(crc, crc, tmp1); 4492 ldr(tmp3, Address(buf, 32)); 4493 crc32x(crc, crc, tmp2); 4494 ldr(tmp0, Address(buf, 40)); 4495 crc32x(crc, crc, tmp3); 4496 ldr(tmp1, Address(buf, 48)); 4497 crc32x(crc, crc, tmp0); 4498 ldr(tmp2, Address(buf, 56)); 4499 crc32x(crc, crc, tmp1); 4500 ldr(tmp3, Address(pre(buf, 64))); 4501 br(Assembler::GE, CRC_by64_loop); 4502 4503 // post-loop 4504 crc32x(crc, crc, tmp2); 4505 crc32x(crc, crc, tmp3); 4506 4507 sub(len, len, 64); 4508 add(buf, buf, 8); 4509 cmn(len, (u1)128); 4510 br(Assembler::NE, CRC_less64); 4511 BIND(L_exit); 4512 mvnw(crc, crc); 4513 } 4514 4515 /** 4516 * @param crc register containing existing CRC (32-bit) 4517 * @param buf register pointing to input byte buffer (byte*) 4518 * @param len register containing number of bytes 4519 * @param table register that will contain address of CRC table 4520 * @param tmp scratch register 4521 */ 4522 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, 4523 Register table0, Register table1, Register table2, Register table3, 4524 Register tmp, Register tmp2, Register tmp3) { 4525 Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit; 4526 4527 if (UseCryptoPmullForCRC32) { 4528 kernel_crc32_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4529 return; 4530 } 4531 4532 if (UseCRC32) { 4533 kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3); 4534 return; 4535 } 4536 4537 mvnw(crc, crc); 4538 4539 { 4540 uint64_t offset; 4541 adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4542 add(table0, table0, offset); 4543 } 4544 add(table1, table0, 1*256*sizeof(juint)); 4545 add(table2, table0, 2*256*sizeof(juint)); 4546 add(table3, table0, 3*256*sizeof(juint)); 4547 4548 { // Neon code start 4549 cmp(len, (u1)64); 4550 br(Assembler::LT, L_by16); 4551 eor(v16, T16B, v16, v16); 4552 4553 Label L_fold; 4554 4555 add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants 4556 4557 ld1(v0, v1, T2D, post(buf, 32)); 4558 ld1r(v4, T2D, post(tmp, 8)); 4559 ld1r(v5, T2D, post(tmp, 8)); 4560 ld1r(v6, T2D, post(tmp, 8)); 4561 ld1r(v7, T2D, post(tmp, 8)); 4562 mov(v16, S, 0, crc); 4563 4564 eor(v0, T16B, v0, v16); 4565 sub(len, len, 64); 4566 4567 BIND(L_fold); 4568 pmull(v22, T8H, v0, v5, T8B); 4569 pmull(v20, T8H, v0, v7, T8B); 4570 pmull(v23, T8H, v0, v4, T8B); 4571 pmull(v21, T8H, v0, v6, T8B); 4572 4573 pmull2(v18, T8H, v0, v5, T16B); 4574 pmull2(v16, T8H, v0, v7, T16B); 4575 pmull2(v19, T8H, v0, v4, T16B); 4576 pmull2(v17, T8H, v0, v6, T16B); 4577 4578 uzp1(v24, T8H, v20, v22); 4579 uzp2(v25, T8H, v20, v22); 4580 eor(v20, T16B, v24, v25); 4581 4582 uzp1(v26, T8H, v16, v18); 4583 uzp2(v27, T8H, v16, v18); 4584 eor(v16, T16B, v26, v27); 4585 4586 ushll2(v22, T4S, v20, T8H, 8); 4587 ushll(v20, T4S, v20, T4H, 8); 4588 4589 ushll2(v18, T4S, v16, T8H, 8); 4590 ushll(v16, T4S, v16, T4H, 8); 4591 4592 eor(v22, T16B, v23, v22); 4593 eor(v18, T16B, v19, v18); 4594 eor(v20, T16B, v21, v20); 4595 eor(v16, T16B, v17, v16); 4596 4597 uzp1(v17, T2D, v16, v20); 4598 uzp2(v21, T2D, v16, v20); 4599 eor(v17, T16B, v17, v21); 4600 4601 ushll2(v20, T2D, v17, T4S, 16); 4602 ushll(v16, T2D, v17, T2S, 16); 4603 4604 eor(v20, T16B, v20, v22); 4605 eor(v16, T16B, v16, v18); 4606 4607 uzp1(v17, T2D, v20, v16); 4608 uzp2(v21, T2D, v20, v16); 4609 eor(v28, T16B, v17, v21); 4610 4611 pmull(v22, T8H, v1, v5, T8B); 4612 pmull(v20, T8H, v1, v7, T8B); 4613 pmull(v23, T8H, v1, v4, T8B); 4614 pmull(v21, T8H, v1, v6, T8B); 4615 4616 pmull2(v18, T8H, v1, v5, T16B); 4617 pmull2(v16, T8H, v1, v7, T16B); 4618 pmull2(v19, T8H, v1, v4, T16B); 4619 pmull2(v17, T8H, v1, v6, T16B); 4620 4621 ld1(v0, v1, T2D, post(buf, 32)); 4622 4623 uzp1(v24, T8H, v20, v22); 4624 uzp2(v25, T8H, v20, v22); 4625 eor(v20, T16B, v24, v25); 4626 4627 uzp1(v26, T8H, v16, v18); 4628 uzp2(v27, T8H, v16, v18); 4629 eor(v16, T16B, v26, v27); 4630 4631 ushll2(v22, T4S, v20, T8H, 8); 4632 ushll(v20, T4S, v20, T4H, 8); 4633 4634 ushll2(v18, T4S, v16, T8H, 8); 4635 ushll(v16, T4S, v16, T4H, 8); 4636 4637 eor(v22, T16B, v23, v22); 4638 eor(v18, T16B, v19, v18); 4639 eor(v20, T16B, v21, v20); 4640 eor(v16, T16B, v17, v16); 4641 4642 uzp1(v17, T2D, v16, v20); 4643 uzp2(v21, T2D, v16, v20); 4644 eor(v16, T16B, v17, v21); 4645 4646 ushll2(v20, T2D, v16, T4S, 16); 4647 ushll(v16, T2D, v16, T2S, 16); 4648 4649 eor(v20, T16B, v22, v20); 4650 eor(v16, T16B, v16, v18); 4651 4652 uzp1(v17, T2D, v20, v16); 4653 uzp2(v21, T2D, v20, v16); 4654 eor(v20, T16B, v17, v21); 4655 4656 shl(v16, T2D, v28, 1); 4657 shl(v17, T2D, v20, 1); 4658 4659 eor(v0, T16B, v0, v16); 4660 eor(v1, T16B, v1, v17); 4661 4662 subs(len, len, 32); 4663 br(Assembler::GE, L_fold); 4664 4665 mov(crc, 0); 4666 mov(tmp, v0, D, 0); 4667 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4668 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4669 mov(tmp, v0, D, 1); 4670 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4671 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4672 mov(tmp, v1, D, 0); 4673 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4674 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4675 mov(tmp, v1, D, 1); 4676 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4677 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4678 4679 add(len, len, 32); 4680 } // Neon code end 4681 4682 BIND(L_by16); 4683 subs(len, len, 16); 4684 br(Assembler::GE, L_by16_loop); 4685 adds(len, len, 16-4); 4686 br(Assembler::GE, L_by4_loop); 4687 adds(len, len, 4); 4688 br(Assembler::GT, L_by1_loop); 4689 b(L_exit); 4690 4691 BIND(L_by4_loop); 4692 ldrw(tmp, Address(post(buf, 4))); 4693 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3); 4694 subs(len, len, 4); 4695 br(Assembler::GE, L_by4_loop); 4696 adds(len, len, 4); 4697 br(Assembler::LE, L_exit); 4698 BIND(L_by1_loop); 4699 subs(len, len, 1); 4700 ldrb(tmp, Address(post(buf, 1))); 4701 update_byte_crc32(crc, tmp, table0); 4702 br(Assembler::GT, L_by1_loop); 4703 b(L_exit); 4704 4705 align(CodeEntryAlignment); 4706 BIND(L_by16_loop); 4707 subs(len, len, 16); 4708 ldp(tmp, tmp3, Address(post(buf, 16))); 4709 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4710 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4711 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false); 4712 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true); 4713 br(Assembler::GE, L_by16_loop); 4714 adds(len, len, 16-4); 4715 br(Assembler::GE, L_by4_loop); 4716 adds(len, len, 4); 4717 br(Assembler::GT, L_by1_loop); 4718 BIND(L_exit); 4719 mvnw(crc, crc); 4720 } 4721 4722 void MacroAssembler::kernel_crc32c_using_crypto_pmull(Register crc, Register buf, 4723 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4724 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4725 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4726 4727 subs(tmp0, len, 384); 4728 br(Assembler::GE, CRC_by128_pre); 4729 BIND(CRC_less128); 4730 subs(len, len, 32); 4731 br(Assembler::GE, CRC_by32_loop); 4732 BIND(CRC_less32); 4733 adds(len, len, 32 - 4); 4734 br(Assembler::GE, CRC_by4_loop); 4735 adds(len, len, 4); 4736 br(Assembler::GT, CRC_by1_loop); 4737 b(L_exit); 4738 4739 BIND(CRC_by32_loop); 4740 ldp(tmp0, tmp1, Address(buf)); 4741 crc32cx(crc, crc, tmp0); 4742 ldr(tmp2, Address(buf, 16)); 4743 crc32cx(crc, crc, tmp1); 4744 ldr(tmp3, Address(buf, 24)); 4745 crc32cx(crc, crc, tmp2); 4746 add(buf, buf, 32); 4747 subs(len, len, 32); 4748 crc32cx(crc, crc, tmp3); 4749 br(Assembler::GE, CRC_by32_loop); 4750 cmn(len, (u1)32); 4751 br(Assembler::NE, CRC_less32); 4752 b(L_exit); 4753 4754 BIND(CRC_by4_loop); 4755 ldrw(tmp0, Address(post(buf, 4))); 4756 subs(len, len, 4); 4757 crc32cw(crc, crc, tmp0); 4758 br(Assembler::GE, CRC_by4_loop); 4759 adds(len, len, 4); 4760 br(Assembler::LE, L_exit); 4761 BIND(CRC_by1_loop); 4762 ldrb(tmp0, Address(post(buf, 1))); 4763 subs(len, len, 1); 4764 crc32cb(crc, crc, tmp0); 4765 br(Assembler::GT, CRC_by1_loop); 4766 b(L_exit); 4767 4768 BIND(CRC_by128_pre); 4769 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4770 4*256*sizeof(juint) + 8*sizeof(juint) + 0x50); 4771 mov(crc, 0); 4772 crc32cx(crc, crc, tmp0); 4773 crc32cx(crc, crc, tmp1); 4774 4775 cbnz(len, CRC_less128); 4776 4777 BIND(L_exit); 4778 } 4779 4780 void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf, 4781 Register len, Register tmp0, Register tmp1, Register tmp2, 4782 Register tmp3) { 4783 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4784 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4785 4786 subs(len, len, 128); 4787 br(Assembler::GE, CRC_by64_pre); 4788 BIND(CRC_less64); 4789 adds(len, len, 128-32); 4790 br(Assembler::GE, CRC_by32_loop); 4791 BIND(CRC_less32); 4792 adds(len, len, 32-4); 4793 br(Assembler::GE, CRC_by4_loop); 4794 adds(len, len, 4); 4795 br(Assembler::GT, CRC_by1_loop); 4796 b(L_exit); 4797 4798 BIND(CRC_by32_loop); 4799 ldp(tmp0, tmp1, Address(post(buf, 16))); 4800 subs(len, len, 32); 4801 crc32cx(crc, crc, tmp0); 4802 ldr(tmp2, Address(post(buf, 8))); 4803 crc32cx(crc, crc, tmp1); 4804 ldr(tmp3, Address(post(buf, 8))); 4805 crc32cx(crc, crc, tmp2); 4806 crc32cx(crc, crc, tmp3); 4807 br(Assembler::GE, CRC_by32_loop); 4808 cmn(len, (u1)32); 4809 br(Assembler::NE, CRC_less32); 4810 b(L_exit); 4811 4812 BIND(CRC_by4_loop); 4813 ldrw(tmp0, Address(post(buf, 4))); 4814 subs(len, len, 4); 4815 crc32cw(crc, crc, tmp0); 4816 br(Assembler::GE, CRC_by4_loop); 4817 adds(len, len, 4); 4818 br(Assembler::LE, L_exit); 4819 BIND(CRC_by1_loop); 4820 ldrb(tmp0, Address(post(buf, 1))); 4821 subs(len, len, 1); 4822 crc32cb(crc, crc, tmp0); 4823 br(Assembler::GT, CRC_by1_loop); 4824 b(L_exit); 4825 4826 BIND(CRC_by64_pre); 4827 sub(buf, buf, 8); 4828 ldp(tmp0, tmp1, Address(buf, 8)); 4829 crc32cx(crc, crc, tmp0); 4830 ldr(tmp2, Address(buf, 24)); 4831 crc32cx(crc, crc, tmp1); 4832 ldr(tmp3, Address(buf, 32)); 4833 crc32cx(crc, crc, tmp2); 4834 ldr(tmp0, Address(buf, 40)); 4835 crc32cx(crc, crc, tmp3); 4836 ldr(tmp1, Address(buf, 48)); 4837 crc32cx(crc, crc, tmp0); 4838 ldr(tmp2, Address(buf, 56)); 4839 crc32cx(crc, crc, tmp1); 4840 ldr(tmp3, Address(pre(buf, 64))); 4841 4842 b(CRC_by64_loop); 4843 4844 align(CodeEntryAlignment); 4845 BIND(CRC_by64_loop); 4846 subs(len, len, 64); 4847 crc32cx(crc, crc, tmp2); 4848 ldr(tmp0, Address(buf, 8)); 4849 crc32cx(crc, crc, tmp3); 4850 ldr(tmp1, Address(buf, 16)); 4851 crc32cx(crc, crc, tmp0); 4852 ldr(tmp2, Address(buf, 24)); 4853 crc32cx(crc, crc, tmp1); 4854 ldr(tmp3, Address(buf, 32)); 4855 crc32cx(crc, crc, tmp2); 4856 ldr(tmp0, Address(buf, 40)); 4857 crc32cx(crc, crc, tmp3); 4858 ldr(tmp1, Address(buf, 48)); 4859 crc32cx(crc, crc, tmp0); 4860 ldr(tmp2, Address(buf, 56)); 4861 crc32cx(crc, crc, tmp1); 4862 ldr(tmp3, Address(pre(buf, 64))); 4863 br(Assembler::GE, CRC_by64_loop); 4864 4865 // post-loop 4866 crc32cx(crc, crc, tmp2); 4867 crc32cx(crc, crc, tmp3); 4868 4869 sub(len, len, 64); 4870 add(buf, buf, 8); 4871 cmn(len, (u1)128); 4872 br(Assembler::NE, CRC_less64); 4873 BIND(L_exit); 4874 } 4875 4876 /** 4877 * @param crc register containing existing CRC (32-bit) 4878 * @param buf register pointing to input byte buffer (byte*) 4879 * @param len register containing number of bytes 4880 * @param table register that will contain address of CRC table 4881 * @param tmp scratch register 4882 */ 4883 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len, 4884 Register table0, Register table1, Register table2, Register table3, 4885 Register tmp, Register tmp2, Register tmp3) { 4886 if (UseCryptoPmullForCRC32) { 4887 kernel_crc32c_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4888 } else { 4889 kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3); 4890 } 4891 } 4892 4893 void MacroAssembler::kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 4894 Register len, Register tmp0, Register tmp1, Register tmp2, size_t table_offset) { 4895 Label CRC_by128_loop; 4896 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4897 4898 sub(len, len, 256); 4899 Register table = tmp0; 4900 { 4901 uint64_t offset; 4902 adrp(table, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4903 add(table, table, offset); 4904 } 4905 add(table, table, table_offset); 4906 4907 // Registers v0..v7 are used as data registers. 4908 // Registers v16..v31 are used as tmp registers. 4909 sub(buf, buf, 0x10); 4910 ldrq(v0, Address(buf, 0x10)); 4911 ldrq(v1, Address(buf, 0x20)); 4912 ldrq(v2, Address(buf, 0x30)); 4913 ldrq(v3, Address(buf, 0x40)); 4914 ldrq(v4, Address(buf, 0x50)); 4915 ldrq(v5, Address(buf, 0x60)); 4916 ldrq(v6, Address(buf, 0x70)); 4917 ldrq(v7, Address(pre(buf, 0x80))); 4918 4919 movi(v31, T4S, 0); 4920 mov(v31, S, 0, crc); 4921 eor(v0, T16B, v0, v31); 4922 4923 // Register v16 contains constants from the crc table. 4924 ldrq(v16, Address(table)); 4925 b(CRC_by128_loop); 4926 4927 align(OptoLoopAlignment); 4928 BIND(CRC_by128_loop); 4929 pmull (v17, T1Q, v0, v16, T1D); 4930 pmull2(v18, T1Q, v0, v16, T2D); 4931 ldrq(v0, Address(buf, 0x10)); 4932 eor3(v0, T16B, v17, v18, v0); 4933 4934 pmull (v19, T1Q, v1, v16, T1D); 4935 pmull2(v20, T1Q, v1, v16, T2D); 4936 ldrq(v1, Address(buf, 0x20)); 4937 eor3(v1, T16B, v19, v20, v1); 4938 4939 pmull (v21, T1Q, v2, v16, T1D); 4940 pmull2(v22, T1Q, v2, v16, T2D); 4941 ldrq(v2, Address(buf, 0x30)); 4942 eor3(v2, T16B, v21, v22, v2); 4943 4944 pmull (v23, T1Q, v3, v16, T1D); 4945 pmull2(v24, T1Q, v3, v16, T2D); 4946 ldrq(v3, Address(buf, 0x40)); 4947 eor3(v3, T16B, v23, v24, v3); 4948 4949 pmull (v25, T1Q, v4, v16, T1D); 4950 pmull2(v26, T1Q, v4, v16, T2D); 4951 ldrq(v4, Address(buf, 0x50)); 4952 eor3(v4, T16B, v25, v26, v4); 4953 4954 pmull (v27, T1Q, v5, v16, T1D); 4955 pmull2(v28, T1Q, v5, v16, T2D); 4956 ldrq(v5, Address(buf, 0x60)); 4957 eor3(v5, T16B, v27, v28, v5); 4958 4959 pmull (v29, T1Q, v6, v16, T1D); 4960 pmull2(v30, T1Q, v6, v16, T2D); 4961 ldrq(v6, Address(buf, 0x70)); 4962 eor3(v6, T16B, v29, v30, v6); 4963 4964 // Reuse registers v23, v24. 4965 // Using them won't block the first instruction of the next iteration. 4966 pmull (v23, T1Q, v7, v16, T1D); 4967 pmull2(v24, T1Q, v7, v16, T2D); 4968 ldrq(v7, Address(pre(buf, 0x80))); 4969 eor3(v7, T16B, v23, v24, v7); 4970 4971 subs(len, len, 0x80); 4972 br(Assembler::GE, CRC_by128_loop); 4973 4974 // fold into 512 bits 4975 // Use v31 for constants because v16 can be still in use. 4976 ldrq(v31, Address(table, 0x10)); 4977 4978 pmull (v17, T1Q, v0, v31, T1D); 4979 pmull2(v18, T1Q, v0, v31, T2D); 4980 eor3(v0, T16B, v17, v18, v4); 4981 4982 pmull (v19, T1Q, v1, v31, T1D); 4983 pmull2(v20, T1Q, v1, v31, T2D); 4984 eor3(v1, T16B, v19, v20, v5); 4985 4986 pmull (v21, T1Q, v2, v31, T1D); 4987 pmull2(v22, T1Q, v2, v31, T2D); 4988 eor3(v2, T16B, v21, v22, v6); 4989 4990 pmull (v23, T1Q, v3, v31, T1D); 4991 pmull2(v24, T1Q, v3, v31, T2D); 4992 eor3(v3, T16B, v23, v24, v7); 4993 4994 // fold into 128 bits 4995 // Use v17 for constants because v31 can be still in use. 4996 ldrq(v17, Address(table, 0x20)); 4997 pmull (v25, T1Q, v0, v17, T1D); 4998 pmull2(v26, T1Q, v0, v17, T2D); 4999 eor3(v3, T16B, v3, v25, v26); 5000 5001 // Use v18 for constants because v17 can be still in use. 5002 ldrq(v18, Address(table, 0x30)); 5003 pmull (v27, T1Q, v1, v18, T1D); 5004 pmull2(v28, T1Q, v1, v18, T2D); 5005 eor3(v3, T16B, v3, v27, v28); 5006 5007 // Use v19 for constants because v18 can be still in use. 5008 ldrq(v19, Address(table, 0x40)); 5009 pmull (v29, T1Q, v2, v19, T1D); 5010 pmull2(v30, T1Q, v2, v19, T2D); 5011 eor3(v0, T16B, v3, v29, v30); 5012 5013 add(len, len, 0x80); 5014 add(buf, buf, 0x10); 5015 5016 mov(tmp0, v0, D, 0); 5017 mov(tmp1, v0, D, 1); 5018 } 5019 5020 void MacroAssembler::addptr(const Address &dst, int32_t src) { 5021 Address adr; 5022 switch(dst.getMode()) { 5023 case Address::base_plus_offset: 5024 // This is the expected mode, although we allow all the other 5025 // forms below. 5026 adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord); 5027 break; 5028 default: 5029 lea(rscratch2, dst); 5030 adr = Address(rscratch2); 5031 break; 5032 } 5033 ldr(rscratch1, adr); 5034 add(rscratch1, rscratch1, src); 5035 str(rscratch1, adr); 5036 } 5037 5038 void MacroAssembler::cmpptr(Register src1, Address src2) { 5039 uint64_t offset; 5040 adrp(rscratch1, src2, offset); 5041 ldr(rscratch1, Address(rscratch1, offset)); 5042 cmp(src1, rscratch1); 5043 } 5044 5045 void MacroAssembler::cmpoop(Register obj1, Register obj2) { 5046 cmp(obj1, obj2); 5047 } 5048 5049 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 5050 load_method_holder(rresult, rmethod); 5051 ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 5052 } 5053 5054 void MacroAssembler::load_method_holder(Register holder, Register method) { 5055 ldr(holder, Address(method, Method::const_offset())); // ConstMethod* 5056 ldr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 5057 ldr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 5058 } 5059 5060 // Loads the obj's Klass* into dst. 5061 // Preserves all registers (incl src, rscratch1 and rscratch2). 5062 // Input: 5063 // src - the oop we want to load the klass from. 5064 // dst - output narrow klass. 5065 void MacroAssembler::load_narrow_klass_compact(Register dst, Register src) { 5066 assert(UseCompactObjectHeaders, "expects UseCompactObjectHeaders"); 5067 ldr(dst, Address(src, oopDesc::mark_offset_in_bytes())); 5068 lsr(dst, dst, markWord::klass_shift); 5069 } 5070 5071 void MacroAssembler::load_klass(Register dst, Register src) { 5072 if (UseCompactObjectHeaders) { 5073 load_narrow_klass_compact(dst, src); 5074 decode_klass_not_null(dst); 5075 } else if (UseCompressedClassPointers) { 5076 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5077 decode_klass_not_null(dst); 5078 } else { 5079 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5080 } 5081 } 5082 5083 void MacroAssembler::restore_cpu_control_state_after_jni(Register tmp1, Register tmp2) { 5084 if (RestoreMXCSROnJNICalls) { 5085 Label OK; 5086 get_fpcr(tmp1); 5087 mov(tmp2, tmp1); 5088 // Set FPCR to the state we need. We do want Round to Nearest. We 5089 // don't want non-IEEE rounding modes or floating-point traps. 5090 bfi(tmp1, zr, 22, 4); // Clear DN, FZ, and Rmode 5091 bfi(tmp1, zr, 8, 5); // Clear exception-control bits (8-12) 5092 bfi(tmp1, zr, 0, 2); // Clear AH:FIZ 5093 eor(tmp2, tmp1, tmp2); 5094 cbz(tmp2, OK); // Only reset FPCR if it's wrong 5095 set_fpcr(tmp1); 5096 bind(OK); 5097 } 5098 } 5099 5100 // ((OopHandle)result).resolve(); 5101 void MacroAssembler::resolve_oop_handle(Register result, Register tmp1, Register tmp2) { 5102 // OopHandle::resolve is an indirection. 5103 access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp1, tmp2); 5104 } 5105 5106 // ((WeakHandle)result).resolve(); 5107 void MacroAssembler::resolve_weak_handle(Register result, Register tmp1, Register tmp2) { 5108 assert_different_registers(result, tmp1, tmp2); 5109 Label resolved; 5110 5111 // A null weak handle resolves to null. 5112 cbz(result, resolved); 5113 5114 // Only 64 bit platforms support GCs that require a tmp register 5115 // WeakHandle::resolve is an indirection like jweak. 5116 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 5117 result, Address(result), tmp1, tmp2); 5118 bind(resolved); 5119 } 5120 5121 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp1, Register tmp2) { 5122 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 5123 ldr(dst, Address(rmethod, Method::const_offset())); 5124 ldr(dst, Address(dst, ConstMethod::constants_offset())); 5125 ldr(dst, Address(dst, ConstantPool::pool_holder_offset())); 5126 ldr(dst, Address(dst, mirror_offset)); 5127 resolve_oop_handle(dst, tmp1, tmp2); 5128 } 5129 5130 void MacroAssembler::cmp_klass(Register obj, Register klass, Register tmp) { 5131 assert_different_registers(obj, klass, tmp); 5132 if (UseCompressedClassPointers) { 5133 if (UseCompactObjectHeaders) { 5134 load_narrow_klass_compact(tmp, obj); 5135 } else { 5136 ldrw(tmp, Address(obj, oopDesc::klass_offset_in_bytes())); 5137 } 5138 if (CompressedKlassPointers::base() == nullptr) { 5139 cmp(klass, tmp, LSL, CompressedKlassPointers::shift()); 5140 return; 5141 } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0 5142 && CompressedKlassPointers::shift() == 0) { 5143 // Only the bottom 32 bits matter 5144 cmpw(klass, tmp); 5145 return; 5146 } 5147 decode_klass_not_null(tmp); 5148 } else { 5149 ldr(tmp, Address(obj, oopDesc::klass_offset_in_bytes())); 5150 } 5151 cmp(klass, tmp); 5152 } 5153 5154 void MacroAssembler::cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2) { 5155 if (UseCompactObjectHeaders) { 5156 load_narrow_klass_compact(tmp1, obj1); 5157 load_narrow_klass_compact(tmp2, obj2); 5158 cmpw(tmp1, tmp2); 5159 } else if (UseCompressedClassPointers) { 5160 ldrw(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5161 ldrw(tmp2, Address(obj2, oopDesc::klass_offset_in_bytes())); 5162 cmpw(tmp1, tmp2); 5163 } else { 5164 ldr(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5165 ldr(tmp2, Address(obj2, oopDesc::klass_offset_in_bytes())); 5166 cmp(tmp1, tmp2); 5167 } 5168 } 5169 5170 void MacroAssembler::store_klass(Register dst, Register src) { 5171 // FIXME: Should this be a store release? concurrent gcs assumes 5172 // klass length is valid if klass field is not null. 5173 assert(!UseCompactObjectHeaders, "not with compact headers"); 5174 if (UseCompressedClassPointers) { 5175 encode_klass_not_null(src); 5176 strw(src, Address(dst, oopDesc::klass_offset_in_bytes())); 5177 } else { 5178 str(src, Address(dst, oopDesc::klass_offset_in_bytes())); 5179 } 5180 } 5181 5182 void MacroAssembler::store_klass_gap(Register dst, Register src) { 5183 assert(!UseCompactObjectHeaders, "not with compact headers"); 5184 if (UseCompressedClassPointers) { 5185 // Store to klass gap in destination 5186 strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes())); 5187 } 5188 } 5189 5190 // Algorithm must match CompressedOops::encode. 5191 void MacroAssembler::encode_heap_oop(Register d, Register s) { 5192 #ifdef ASSERT 5193 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 5194 #endif 5195 verify_oop_msg(s, "broken oop in encode_heap_oop"); 5196 if (CompressedOops::base() == nullptr) { 5197 if (CompressedOops::shift() != 0) { 5198 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5199 lsr(d, s, LogMinObjAlignmentInBytes); 5200 } else { 5201 mov(d, s); 5202 } 5203 } else { 5204 subs(d, s, rheapbase); 5205 csel(d, d, zr, Assembler::HS); 5206 lsr(d, d, LogMinObjAlignmentInBytes); 5207 5208 /* Old algorithm: is this any worse? 5209 Label nonnull; 5210 cbnz(r, nonnull); 5211 sub(r, r, rheapbase); 5212 bind(nonnull); 5213 lsr(r, r, LogMinObjAlignmentInBytes); 5214 */ 5215 } 5216 } 5217 5218 void MacroAssembler::encode_heap_oop_not_null(Register r) { 5219 #ifdef ASSERT 5220 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 5221 if (CheckCompressedOops) { 5222 Label ok; 5223 cbnz(r, ok); 5224 stop("null oop passed to encode_heap_oop_not_null"); 5225 bind(ok); 5226 } 5227 #endif 5228 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 5229 if (CompressedOops::base() != nullptr) { 5230 sub(r, r, rheapbase); 5231 } 5232 if (CompressedOops::shift() != 0) { 5233 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5234 lsr(r, r, LogMinObjAlignmentInBytes); 5235 } 5236 } 5237 5238 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 5239 #ifdef ASSERT 5240 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 5241 if (CheckCompressedOops) { 5242 Label ok; 5243 cbnz(src, ok); 5244 stop("null oop passed to encode_heap_oop_not_null2"); 5245 bind(ok); 5246 } 5247 #endif 5248 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 5249 5250 Register data = src; 5251 if (CompressedOops::base() != nullptr) { 5252 sub(dst, src, rheapbase); 5253 data = dst; 5254 } 5255 if (CompressedOops::shift() != 0) { 5256 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5257 lsr(dst, data, LogMinObjAlignmentInBytes); 5258 data = dst; 5259 } 5260 if (data == src) 5261 mov(dst, src); 5262 } 5263 5264 void MacroAssembler::decode_heap_oop(Register d, Register s) { 5265 #ifdef ASSERT 5266 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 5267 #endif 5268 if (CompressedOops::base() == nullptr) { 5269 if (CompressedOops::shift() != 0) { 5270 lsl(d, s, CompressedOops::shift()); 5271 } else if (d != s) { 5272 mov(d, s); 5273 } 5274 } else { 5275 Label done; 5276 if (d != s) 5277 mov(d, s); 5278 cbz(s, done); 5279 add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes); 5280 bind(done); 5281 } 5282 verify_oop_msg(d, "broken oop in decode_heap_oop"); 5283 } 5284 5285 void MacroAssembler::decode_heap_oop_not_null(Register r) { 5286 assert (UseCompressedOops, "should only be used for compressed headers"); 5287 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5288 // Cannot assert, unverified entry point counts instructions (see .ad file) 5289 // vtableStubs also counts instructions in pd_code_size_limit. 5290 // Also do not verify_oop as this is called by verify_oop. 5291 if (CompressedOops::shift() != 0) { 5292 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5293 if (CompressedOops::base() != nullptr) { 5294 add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5295 } else { 5296 add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5297 } 5298 } else { 5299 assert (CompressedOops::base() == nullptr, "sanity"); 5300 } 5301 } 5302 5303 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 5304 assert (UseCompressedOops, "should only be used for compressed headers"); 5305 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5306 // Cannot assert, unverified entry point counts instructions (see .ad file) 5307 // vtableStubs also counts instructions in pd_code_size_limit. 5308 // Also do not verify_oop as this is called by verify_oop. 5309 if (CompressedOops::shift() != 0) { 5310 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5311 if (CompressedOops::base() != nullptr) { 5312 add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5313 } else { 5314 add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5315 } 5316 } else { 5317 assert (CompressedOops::base() == nullptr, "sanity"); 5318 if (dst != src) { 5319 mov(dst, src); 5320 } 5321 } 5322 } 5323 5324 MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone); 5325 5326 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() { 5327 assert(UseCompressedClassPointers, "not using compressed class pointers"); 5328 assert(Metaspace::initialized(), "metaspace not initialized yet"); 5329 5330 if (_klass_decode_mode != KlassDecodeNone) { 5331 return _klass_decode_mode; 5332 } 5333 5334 if (CompressedKlassPointers::base() == nullptr) { 5335 return (_klass_decode_mode = KlassDecodeZero); 5336 } 5337 5338 if (operand_valid_for_logical_immediate( 5339 /*is32*/false, (uint64_t)CompressedKlassPointers::base())) { 5340 const size_t range = CompressedKlassPointers::klass_range_end() - CompressedKlassPointers::base(); 5341 const uint64_t range_mask = (1ULL << log2i(range)) - 1; 5342 if (((uint64_t)CompressedKlassPointers::base() & range_mask) == 0) { 5343 return (_klass_decode_mode = KlassDecodeXor); 5344 } 5345 } 5346 5347 const uint64_t shifted_base = 5348 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 5349 guarantee((shifted_base & 0xffff0000ffffffff) == 0, 5350 "compressed class base bad alignment"); 5351 5352 return (_klass_decode_mode = KlassDecodeMovk); 5353 } 5354 5355 void MacroAssembler::encode_klass_not_null(Register dst, Register src) { 5356 switch (klass_decode_mode()) { 5357 case KlassDecodeZero: 5358 if (CompressedKlassPointers::shift() != 0) { 5359 lsr(dst, src, CompressedKlassPointers::shift()); 5360 } else { 5361 if (dst != src) mov(dst, src); 5362 } 5363 break; 5364 5365 case KlassDecodeXor: 5366 if (CompressedKlassPointers::shift() != 0) { 5367 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5368 lsr(dst, dst, CompressedKlassPointers::shift()); 5369 } else { 5370 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5371 } 5372 break; 5373 5374 case KlassDecodeMovk: 5375 if (CompressedKlassPointers::shift() != 0) { 5376 ubfx(dst, src, CompressedKlassPointers::shift(), 32); 5377 } else { 5378 movw(dst, src); 5379 } 5380 break; 5381 5382 case KlassDecodeNone: 5383 ShouldNotReachHere(); 5384 break; 5385 } 5386 } 5387 5388 void MacroAssembler::encode_klass_not_null(Register r) { 5389 encode_klass_not_null(r, r); 5390 } 5391 5392 void MacroAssembler::decode_klass_not_null(Register dst, Register src) { 5393 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5394 5395 switch (klass_decode_mode()) { 5396 case KlassDecodeZero: 5397 if (CompressedKlassPointers::shift() != 0) { 5398 lsl(dst, src, CompressedKlassPointers::shift()); 5399 } else { 5400 if (dst != src) mov(dst, src); 5401 } 5402 break; 5403 5404 case KlassDecodeXor: 5405 if (CompressedKlassPointers::shift() != 0) { 5406 lsl(dst, src, CompressedKlassPointers::shift()); 5407 eor(dst, dst, (uint64_t)CompressedKlassPointers::base()); 5408 } else { 5409 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5410 } 5411 break; 5412 5413 case KlassDecodeMovk: { 5414 const uint64_t shifted_base = 5415 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 5416 5417 if (dst != src) movw(dst, src); 5418 movk(dst, shifted_base >> 32, 32); 5419 5420 if (CompressedKlassPointers::shift() != 0) { 5421 lsl(dst, dst, CompressedKlassPointers::shift()); 5422 } 5423 5424 break; 5425 } 5426 5427 case KlassDecodeNone: 5428 ShouldNotReachHere(); 5429 break; 5430 } 5431 } 5432 5433 void MacroAssembler::decode_klass_not_null(Register r) { 5434 decode_klass_not_null(r, r); 5435 } 5436 5437 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 5438 #ifdef ASSERT 5439 { 5440 ThreadInVMfromUnknown tiv; 5441 assert (UseCompressedOops, "should only be used for compressed oops"); 5442 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5443 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5444 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5445 } 5446 #endif 5447 int oop_index = oop_recorder()->find_index(obj); 5448 InstructionMark im(this); 5449 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5450 code_section()->relocate(inst_mark(), rspec); 5451 movz(dst, 0xDEAD, 16); 5452 movk(dst, 0xBEEF); 5453 } 5454 5455 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 5456 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5457 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5458 int index = oop_recorder()->find_index(k); 5459 assert(! Universe::heap()->is_in(k), "should not be an oop"); 5460 5461 InstructionMark im(this); 5462 RelocationHolder rspec = metadata_Relocation::spec(index); 5463 code_section()->relocate(inst_mark(), rspec); 5464 narrowKlass nk = CompressedKlassPointers::encode(k); 5465 movz(dst, (nk >> 16), 16); 5466 movk(dst, nk & 0xffff); 5467 } 5468 5469 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, 5470 Register dst, Address src, 5471 Register tmp1, Register tmp2) { 5472 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5473 decorators = AccessInternal::decorator_fixup(decorators, type); 5474 bool as_raw = (decorators & AS_RAW) != 0; 5475 if (as_raw) { 5476 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2); 5477 } else { 5478 bs->load_at(this, decorators, type, dst, src, tmp1, tmp2); 5479 } 5480 } 5481 5482 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, 5483 Address dst, Register val, 5484 Register tmp1, Register tmp2, Register tmp3) { 5485 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5486 decorators = AccessInternal::decorator_fixup(decorators, type); 5487 bool as_raw = (decorators & AS_RAW) != 0; 5488 if (as_raw) { 5489 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5490 } else { 5491 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5492 } 5493 } 5494 5495 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 5496 Register tmp2, DecoratorSet decorators) { 5497 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2); 5498 } 5499 5500 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 5501 Register tmp2, DecoratorSet decorators) { 5502 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2); 5503 } 5504 5505 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 5506 Register tmp2, Register tmp3, DecoratorSet decorators) { 5507 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 5508 } 5509 5510 // Used for storing nulls. 5511 void MacroAssembler::store_heap_oop_null(Address dst) { 5512 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 5513 } 5514 5515 Address MacroAssembler::allocate_metadata_address(Metadata* obj) { 5516 assert(oop_recorder() != nullptr, "this assembler needs a Recorder"); 5517 int index = oop_recorder()->allocate_metadata_index(obj); 5518 RelocationHolder rspec = metadata_Relocation::spec(index); 5519 return Address((address)obj, rspec); 5520 } 5521 5522 // Move an oop into a register. 5523 void MacroAssembler::movoop(Register dst, jobject obj) { 5524 int oop_index; 5525 if (obj == nullptr) { 5526 oop_index = oop_recorder()->allocate_oop_index(obj); 5527 } else { 5528 #ifdef ASSERT 5529 { 5530 ThreadInVMfromUnknown tiv; 5531 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5532 } 5533 #endif 5534 oop_index = oop_recorder()->find_index(obj); 5535 } 5536 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5537 5538 if (BarrierSet::barrier_set()->barrier_set_assembler()->supports_instruction_patching()) { 5539 mov(dst, Address((address)obj, rspec)); 5540 } else { 5541 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address 5542 ldr_constant(dst, Address(dummy, rspec)); 5543 } 5544 5545 } 5546 5547 // Move a metadata address into a register. 5548 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 5549 int oop_index; 5550 if (obj == nullptr) { 5551 oop_index = oop_recorder()->allocate_metadata_index(obj); 5552 } else { 5553 oop_index = oop_recorder()->find_index(obj); 5554 } 5555 RelocationHolder rspec = metadata_Relocation::spec(oop_index); 5556 mov(dst, Address((address)obj, rspec)); 5557 } 5558 5559 Address MacroAssembler::constant_oop_address(jobject obj) { 5560 #ifdef ASSERT 5561 { 5562 ThreadInVMfromUnknown tiv; 5563 assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5564 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop"); 5565 } 5566 #endif 5567 int oop_index = oop_recorder()->find_index(obj); 5568 return Address((address)obj, oop_Relocation::spec(oop_index)); 5569 } 5570 5571 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 5572 void MacroAssembler::tlab_allocate(Register obj, 5573 Register var_size_in_bytes, 5574 int con_size_in_bytes, 5575 Register t1, 5576 Register t2, 5577 Label& slow_case) { 5578 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5579 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 5580 } 5581 5582 void MacroAssembler::inc_held_monitor_count(Register tmp) { 5583 Address dst(rthread, JavaThread::held_monitor_count_offset()); 5584 #ifdef ASSERT 5585 ldr(tmp, dst); 5586 increment(tmp); 5587 str(tmp, dst); 5588 Label ok; 5589 tbz(tmp, 63, ok); 5590 STOP("assert(held monitor count underflow)"); 5591 should_not_reach_here(); 5592 bind(ok); 5593 #else 5594 increment(dst); 5595 #endif 5596 } 5597 5598 void MacroAssembler::dec_held_monitor_count(Register tmp) { 5599 Address dst(rthread, JavaThread::held_monitor_count_offset()); 5600 #ifdef ASSERT 5601 ldr(tmp, dst); 5602 decrement(tmp); 5603 str(tmp, dst); 5604 Label ok; 5605 tbz(tmp, 63, ok); 5606 STOP("assert(held monitor count underflow)"); 5607 should_not_reach_here(); 5608 bind(ok); 5609 #else 5610 decrement(dst); 5611 #endif 5612 } 5613 5614 void MacroAssembler::verify_tlab() { 5615 #ifdef ASSERT 5616 if (UseTLAB && VerifyOops) { 5617 Label next, ok; 5618 5619 stp(rscratch2, rscratch1, Address(pre(sp, -16))); 5620 5621 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5622 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 5623 cmp(rscratch2, rscratch1); 5624 br(Assembler::HS, next); 5625 STOP("assert(top >= start)"); 5626 should_not_reach_here(); 5627 5628 bind(next); 5629 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 5630 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5631 cmp(rscratch2, rscratch1); 5632 br(Assembler::HS, ok); 5633 STOP("assert(top <= end)"); 5634 should_not_reach_here(); 5635 5636 bind(ok); 5637 ldp(rscratch2, rscratch1, Address(post(sp, 16))); 5638 } 5639 #endif 5640 } 5641 5642 // Writes to stack successive pages until offset reached to check for 5643 // stack overflow + shadow pages. This clobbers tmp. 5644 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 5645 assert_different_registers(tmp, size, rscratch1); 5646 mov(tmp, sp); 5647 // Bang stack for total size given plus shadow page size. 5648 // Bang one page at a time because large size can bang beyond yellow and 5649 // red zones. 5650 Label loop; 5651 mov(rscratch1, (int)os::vm_page_size()); 5652 bind(loop); 5653 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5654 subsw(size, size, rscratch1); 5655 str(size, Address(tmp)); 5656 br(Assembler::GT, loop); 5657 5658 // Bang down shadow pages too. 5659 // At this point, (tmp-0) is the last address touched, so don't 5660 // touch it again. (It was touched as (tmp-pagesize) but then tmp 5661 // was post-decremented.) Skip this address by starting at i=1, and 5662 // touch a few more pages below. N.B. It is important to touch all 5663 // the way down to and including i=StackShadowPages. 5664 for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()) - 1; i++) { 5665 // this could be any sized move but this is can be a debugging crumb 5666 // so the bigger the better. 5667 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5668 str(size, Address(tmp)); 5669 } 5670 } 5671 5672 // Move the address of the polling page into dest. 5673 void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) { 5674 ldr(dest, Address(rthread, JavaThread::polling_page_offset())); 5675 } 5676 5677 // Read the polling page. The address of the polling page must 5678 // already be in r. 5679 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) { 5680 address mark; 5681 { 5682 InstructionMark im(this); 5683 code_section()->relocate(inst_mark(), rtype); 5684 ldrw(zr, Address(r, 0)); 5685 mark = inst_mark(); 5686 } 5687 verify_cross_modify_fence_not_required(); 5688 return mark; 5689 } 5690 5691 void MacroAssembler::adrp(Register reg1, const Address &dest, uint64_t &byte_offset) { 5692 relocInfo::relocType rtype = dest.rspec().reloc()->type(); 5693 uint64_t low_page = (uint64_t)CodeCache::low_bound() >> 12; 5694 uint64_t high_page = (uint64_t)(CodeCache::high_bound()-1) >> 12; 5695 uint64_t dest_page = (uint64_t)dest.target() >> 12; 5696 int64_t offset_low = dest_page - low_page; 5697 int64_t offset_high = dest_page - high_page; 5698 5699 assert(is_valid_AArch64_address(dest.target()), "bad address"); 5700 assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address"); 5701 5702 InstructionMark im(this); 5703 code_section()->relocate(inst_mark(), dest.rspec()); 5704 // 8143067: Ensure that the adrp can reach the dest from anywhere within 5705 // the code cache so that if it is relocated we know it will still reach 5706 if (offset_high >= -(1<<20) && offset_low < (1<<20)) { 5707 _adrp(reg1, dest.target()); 5708 } else { 5709 uint64_t target = (uint64_t)dest.target(); 5710 uint64_t adrp_target 5711 = (target & 0xffffffffULL) | ((uint64_t)pc() & 0xffff00000000ULL); 5712 5713 _adrp(reg1, (address)adrp_target); 5714 movk(reg1, target >> 32, 32); 5715 } 5716 byte_offset = (uint64_t)dest.target() & 0xfff; 5717 } 5718 5719 void MacroAssembler::load_byte_map_base(Register reg) { 5720 CardTable::CardValue* byte_map_base = 5721 ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base(); 5722 5723 // Strictly speaking the byte_map_base isn't an address at all, and it might 5724 // even be negative. It is thus materialised as a constant. 5725 #if INCLUDE_CDS 5726 if (SCCache::is_on_for_write()) { 5727 // SCA needs relocation info for card table base 5728 lea(reg, ExternalAddress(reinterpret_cast<address>(byte_map_base))); 5729 } else { 5730 #endif 5731 mov(reg, (uint64_t)byte_map_base); 5732 #if INCLUDE_CDS 5733 } 5734 #endif 5735 } 5736 5737 void MacroAssembler::load_aotrc_address(Register reg, address a) { 5738 #if INCLUDE_CDS 5739 assert(AOTRuntimeConstants::contains(a), "address out of range for data area"); 5740 if (SCCache::is_on_for_write()) { 5741 // all aotrc field addresses should be registered in the SCC address table 5742 lea(reg, ExternalAddress(a)); 5743 } else { 5744 mov(reg, (uint64_t)a); 5745 } 5746 #else 5747 ShouldNotReachHere(); 5748 #endif 5749 } 5750 5751 void MacroAssembler::build_frame(int framesize) { 5752 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5753 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5754 protect_return_address(); 5755 if (framesize < ((1 << 9) + 2 * wordSize)) { 5756 sub(sp, sp, framesize); 5757 stp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5758 if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize); 5759 } else { 5760 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 5761 if (PreserveFramePointer) mov(rfp, sp); 5762 if (framesize < ((1 << 12) + 2 * wordSize)) 5763 sub(sp, sp, framesize - 2 * wordSize); 5764 else { 5765 mov(rscratch1, framesize - 2 * wordSize); 5766 sub(sp, sp, rscratch1); 5767 } 5768 } 5769 verify_cross_modify_fence_not_required(); 5770 } 5771 5772 void MacroAssembler::remove_frame(int framesize) { 5773 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5774 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5775 if (framesize < ((1 << 9) + 2 * wordSize)) { 5776 ldp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5777 add(sp, sp, framesize); 5778 } else { 5779 if (framesize < ((1 << 12) + 2 * wordSize)) 5780 add(sp, sp, framesize - 2 * wordSize); 5781 else { 5782 mov(rscratch1, framesize - 2 * wordSize); 5783 add(sp, sp, rscratch1); 5784 } 5785 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 5786 } 5787 authenticate_return_address(); 5788 } 5789 5790 5791 // This method counts leading positive bytes (highest bit not set) in provided byte array 5792 address MacroAssembler::count_positives(Register ary1, Register len, Register result) { 5793 // Simple and most common case of aligned small array which is not at the 5794 // end of memory page is placed here. All other cases are in stub. 5795 Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE; 5796 const uint64_t UPPER_BIT_MASK=0x8080808080808080; 5797 assert_different_registers(ary1, len, result); 5798 5799 mov(result, len); 5800 cmpw(len, 0); 5801 br(LE, DONE); 5802 cmpw(len, 4 * wordSize); 5803 br(GE, STUB_LONG); // size > 32 then go to stub 5804 5805 int shift = 64 - exact_log2(os::vm_page_size()); 5806 lsl(rscratch1, ary1, shift); 5807 mov(rscratch2, (size_t)(4 * wordSize) << shift); 5808 adds(rscratch2, rscratch1, rscratch2); // At end of page? 5809 br(CS, STUB); // at the end of page then go to stub 5810 subs(len, len, wordSize); 5811 br(LT, END); 5812 5813 BIND(LOOP); 5814 ldr(rscratch1, Address(post(ary1, wordSize))); 5815 tst(rscratch1, UPPER_BIT_MASK); 5816 br(NE, SET_RESULT); 5817 subs(len, len, wordSize); 5818 br(GE, LOOP); 5819 cmpw(len, -wordSize); 5820 br(EQ, DONE); 5821 5822 BIND(END); 5823 ldr(rscratch1, Address(ary1)); 5824 sub(rscratch2, zr, len, LSL, 3); // LSL 3 is to get bits from bytes 5825 lslv(rscratch1, rscratch1, rscratch2); 5826 tst(rscratch1, UPPER_BIT_MASK); 5827 br(NE, SET_RESULT); 5828 b(DONE); 5829 5830 BIND(STUB); 5831 RuntimeAddress count_pos = RuntimeAddress(StubRoutines::aarch64::count_positives()); 5832 assert(count_pos.target() != nullptr, "count_positives stub has not been generated"); 5833 address tpc1 = trampoline_call(count_pos); 5834 if (tpc1 == nullptr) { 5835 DEBUG_ONLY(reset_labels(STUB_LONG, SET_RESULT, DONE)); 5836 postcond(pc() == badAddress); 5837 return nullptr; 5838 } 5839 b(DONE); 5840 5841 BIND(STUB_LONG); 5842 RuntimeAddress count_pos_long = RuntimeAddress(StubRoutines::aarch64::count_positives_long()); 5843 assert(count_pos_long.target() != nullptr, "count_positives_long stub has not been generated"); 5844 address tpc2 = trampoline_call(count_pos_long); 5845 if (tpc2 == nullptr) { 5846 DEBUG_ONLY(reset_labels(SET_RESULT, DONE)); 5847 postcond(pc() == badAddress); 5848 return nullptr; 5849 } 5850 b(DONE); 5851 5852 BIND(SET_RESULT); 5853 5854 add(len, len, wordSize); 5855 sub(result, result, len); 5856 5857 BIND(DONE); 5858 postcond(pc() != badAddress); 5859 return pc(); 5860 } 5861 5862 // Clobbers: rscratch1, rscratch2, rflags 5863 // May also clobber v0-v7 when (!UseSimpleArrayEquals && UseSIMDForArrayEquals) 5864 address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3, 5865 Register tmp4, Register tmp5, Register result, 5866 Register cnt1, int elem_size) { 5867 Label DONE, SAME; 5868 Register tmp1 = rscratch1; 5869 Register tmp2 = rscratch2; 5870 int elem_per_word = wordSize/elem_size; 5871 int log_elem_size = exact_log2(elem_size); 5872 int klass_offset = arrayOopDesc::klass_offset_in_bytes(); 5873 int length_offset = arrayOopDesc::length_offset_in_bytes(); 5874 int base_offset 5875 = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE); 5876 // When the length offset is not aligned to 8 bytes, 5877 // then we align it down. This is valid because the new 5878 // offset will always be the klass which is the same 5879 // for type arrays. 5880 int start_offset = align_down(length_offset, BytesPerWord); 5881 int extra_length = base_offset - start_offset; 5882 assert(start_offset == length_offset || start_offset == klass_offset, 5883 "start offset must be 8-byte-aligned or be the klass offset"); 5884 assert(base_offset != start_offset, "must include the length field"); 5885 extra_length = extra_length / elem_size; // We count in elements, not bytes. 5886 int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16); 5887 5888 assert(elem_size == 1 || elem_size == 2, "must be char or byte"); 5889 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 5890 5891 #ifndef PRODUCT 5892 { 5893 const char kind = (elem_size == 2) ? 'U' : 'L'; 5894 char comment[64]; 5895 snprintf(comment, sizeof comment, "array_equals%c{", kind); 5896 BLOCK_COMMENT(comment); 5897 } 5898 #endif 5899 5900 // if (a1 == a2) 5901 // return true; 5902 cmpoop(a1, a2); // May have read barriers for a1 and a2. 5903 br(EQ, SAME); 5904 5905 if (UseSimpleArrayEquals) { 5906 Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL; 5907 // if (a1 == nullptr || a2 == nullptr) 5908 // return false; 5909 // a1 & a2 == 0 means (some-pointer is null) or 5910 // (very-rare-or-even-probably-impossible-pointer-values) 5911 // so, we can save one branch in most cases 5912 tst(a1, a2); 5913 mov(result, false); 5914 br(EQ, A_MIGHT_BE_NULL); 5915 // if (a1.length != a2.length) 5916 // return false; 5917 bind(A_IS_NOT_NULL); 5918 ldrw(cnt1, Address(a1, length_offset)); 5919 // Increase loop counter by diff between base- and actual start-offset. 5920 addw(cnt1, cnt1, extra_length); 5921 lea(a1, Address(a1, start_offset)); 5922 lea(a2, Address(a2, start_offset)); 5923 // Check for short strings, i.e. smaller than wordSize. 5924 subs(cnt1, cnt1, elem_per_word); 5925 br(Assembler::LT, SHORT); 5926 // Main 8 byte comparison loop. 5927 bind(NEXT_WORD); { 5928 ldr(tmp1, Address(post(a1, wordSize))); 5929 ldr(tmp2, Address(post(a2, wordSize))); 5930 subs(cnt1, cnt1, elem_per_word); 5931 eor(tmp5, tmp1, tmp2); 5932 cbnz(tmp5, DONE); 5933 } br(GT, NEXT_WORD); 5934 // Last longword. In the case where length == 4 we compare the 5935 // same longword twice, but that's still faster than another 5936 // conditional branch. 5937 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 5938 // length == 4. 5939 if (log_elem_size > 0) 5940 lsl(cnt1, cnt1, log_elem_size); 5941 ldr(tmp3, Address(a1, cnt1)); 5942 ldr(tmp4, Address(a2, cnt1)); 5943 eor(tmp5, tmp3, tmp4); 5944 cbnz(tmp5, DONE); 5945 b(SAME); 5946 bind(A_MIGHT_BE_NULL); 5947 // in case both a1 and a2 are not-null, proceed with loads 5948 cbz(a1, DONE); 5949 cbz(a2, DONE); 5950 b(A_IS_NOT_NULL); 5951 bind(SHORT); 5952 5953 tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left. 5954 { 5955 ldrw(tmp1, Address(post(a1, 4))); 5956 ldrw(tmp2, Address(post(a2, 4))); 5957 eorw(tmp5, tmp1, tmp2); 5958 cbnzw(tmp5, DONE); 5959 } 5960 bind(TAIL03); 5961 tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left. 5962 { 5963 ldrh(tmp3, Address(post(a1, 2))); 5964 ldrh(tmp4, Address(post(a2, 2))); 5965 eorw(tmp5, tmp3, tmp4); 5966 cbnzw(tmp5, DONE); 5967 } 5968 bind(TAIL01); 5969 if (elem_size == 1) { // Only needed when comparing byte arrays. 5970 tbz(cnt1, 0, SAME); // 0-1 bytes left. 5971 { 5972 ldrb(tmp1, a1); 5973 ldrb(tmp2, a2); 5974 eorw(tmp5, tmp1, tmp2); 5975 cbnzw(tmp5, DONE); 5976 } 5977 } 5978 } else { 5979 Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB, 5980 CSET_EQ, LAST_CHECK; 5981 mov(result, false); 5982 cbz(a1, DONE); 5983 ldrw(cnt1, Address(a1, length_offset)); 5984 cbz(a2, DONE); 5985 // Increase loop counter by diff between base- and actual start-offset. 5986 addw(cnt1, cnt1, extra_length); 5987 5988 // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's 5989 // faster to perform another branch before comparing a1 and a2 5990 cmp(cnt1, (u1)elem_per_word); 5991 br(LE, SHORT); // short or same 5992 ldr(tmp3, Address(pre(a1, start_offset))); 5993 subs(zr, cnt1, stubBytesThreshold); 5994 br(GE, STUB); 5995 ldr(tmp4, Address(pre(a2, start_offset))); 5996 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 5997 5998 // Main 16 byte comparison loop with 2 exits 5999 bind(NEXT_DWORD); { 6000 ldr(tmp1, Address(pre(a1, wordSize))); 6001 ldr(tmp2, Address(pre(a2, wordSize))); 6002 subs(cnt1, cnt1, 2 * elem_per_word); 6003 br(LE, TAIL); 6004 eor(tmp4, tmp3, tmp4); 6005 cbnz(tmp4, DONE); 6006 ldr(tmp3, Address(pre(a1, wordSize))); 6007 ldr(tmp4, Address(pre(a2, wordSize))); 6008 cmp(cnt1, (u1)elem_per_word); 6009 br(LE, TAIL2); 6010 cmp(tmp1, tmp2); 6011 } br(EQ, NEXT_DWORD); 6012 b(DONE); 6013 6014 bind(TAIL); 6015 eor(tmp4, tmp3, tmp4); 6016 eor(tmp2, tmp1, tmp2); 6017 lslv(tmp2, tmp2, tmp5); 6018 orr(tmp5, tmp4, tmp2); 6019 cmp(tmp5, zr); 6020 b(CSET_EQ); 6021 6022 bind(TAIL2); 6023 eor(tmp2, tmp1, tmp2); 6024 cbnz(tmp2, DONE); 6025 b(LAST_CHECK); 6026 6027 bind(STUB); 6028 ldr(tmp4, Address(pre(a2, start_offset))); 6029 if (elem_size == 2) { // convert to byte counter 6030 lsl(cnt1, cnt1, 1); 6031 } 6032 eor(tmp5, tmp3, tmp4); 6033 cbnz(tmp5, DONE); 6034 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals()); 6035 assert(stub.target() != nullptr, "array_equals_long stub has not been generated"); 6036 address tpc = trampoline_call(stub); 6037 if (tpc == nullptr) { 6038 DEBUG_ONLY(reset_labels(SHORT, LAST_CHECK, CSET_EQ, SAME, DONE)); 6039 postcond(pc() == badAddress); 6040 return nullptr; 6041 } 6042 b(DONE); 6043 6044 // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2) 6045 // so, if a2 == null => return false(0), else return true, so we can return a2 6046 mov(result, a2); 6047 b(DONE); 6048 bind(SHORT); 6049 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 6050 ldr(tmp3, Address(a1, start_offset)); 6051 ldr(tmp4, Address(a2, start_offset)); 6052 bind(LAST_CHECK); 6053 eor(tmp4, tmp3, tmp4); 6054 lslv(tmp5, tmp4, tmp5); 6055 cmp(tmp5, zr); 6056 bind(CSET_EQ); 6057 cset(result, EQ); 6058 b(DONE); 6059 } 6060 6061 bind(SAME); 6062 mov(result, true); 6063 // That's it. 6064 bind(DONE); 6065 6066 BLOCK_COMMENT("} array_equals"); 6067 postcond(pc() != badAddress); 6068 return pc(); 6069 } 6070 6071 // Compare Strings 6072 6073 // For Strings we're passed the address of the first characters in a1 6074 // and a2 and the length in cnt1. 6075 // There are two implementations. For arrays >= 8 bytes, all 6076 // comparisons (including the final one, which may overlap) are 6077 // performed 8 bytes at a time. For strings < 8 bytes, we compare a 6078 // halfword, then a short, and then a byte. 6079 6080 void MacroAssembler::string_equals(Register a1, Register a2, 6081 Register result, Register cnt1) 6082 { 6083 Label SAME, DONE, SHORT, NEXT_WORD; 6084 Register tmp1 = rscratch1; 6085 Register tmp2 = rscratch2; 6086 Register cnt2 = tmp2; // cnt2 only used in array length compare 6087 6088 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 6089 6090 #ifndef PRODUCT 6091 { 6092 char comment[64]; 6093 snprintf(comment, sizeof comment, "{string_equalsL"); 6094 BLOCK_COMMENT(comment); 6095 } 6096 #endif 6097 6098 mov(result, false); 6099 6100 // Check for short strings, i.e. smaller than wordSize. 6101 subs(cnt1, cnt1, wordSize); 6102 br(Assembler::LT, SHORT); 6103 // Main 8 byte comparison loop. 6104 bind(NEXT_WORD); { 6105 ldr(tmp1, Address(post(a1, wordSize))); 6106 ldr(tmp2, Address(post(a2, wordSize))); 6107 subs(cnt1, cnt1, wordSize); 6108 eor(tmp1, tmp1, tmp2); 6109 cbnz(tmp1, DONE); 6110 } br(GT, NEXT_WORD); 6111 // Last longword. In the case where length == 4 we compare the 6112 // same longword twice, but that's still faster than another 6113 // conditional branch. 6114 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 6115 // length == 4. 6116 ldr(tmp1, Address(a1, cnt1)); 6117 ldr(tmp2, Address(a2, cnt1)); 6118 eor(tmp2, tmp1, tmp2); 6119 cbnz(tmp2, DONE); 6120 b(SAME); 6121 6122 bind(SHORT); 6123 Label TAIL03, TAIL01; 6124 6125 tbz(cnt1, 2, TAIL03); // 0-7 bytes left. 6126 { 6127 ldrw(tmp1, Address(post(a1, 4))); 6128 ldrw(tmp2, Address(post(a2, 4))); 6129 eorw(tmp1, tmp1, tmp2); 6130 cbnzw(tmp1, DONE); 6131 } 6132 bind(TAIL03); 6133 tbz(cnt1, 1, TAIL01); // 0-3 bytes left. 6134 { 6135 ldrh(tmp1, Address(post(a1, 2))); 6136 ldrh(tmp2, Address(post(a2, 2))); 6137 eorw(tmp1, tmp1, tmp2); 6138 cbnzw(tmp1, DONE); 6139 } 6140 bind(TAIL01); 6141 tbz(cnt1, 0, SAME); // 0-1 bytes left. 6142 { 6143 ldrb(tmp1, a1); 6144 ldrb(tmp2, a2); 6145 eorw(tmp1, tmp1, tmp2); 6146 cbnzw(tmp1, DONE); 6147 } 6148 // Arrays are equal. 6149 bind(SAME); 6150 mov(result, true); 6151 6152 // That's it. 6153 bind(DONE); 6154 BLOCK_COMMENT("} string_equals"); 6155 } 6156 6157 6158 // The size of the blocks erased by the zero_blocks stub. We must 6159 // handle anything smaller than this ourselves in zero_words(). 6160 const int MacroAssembler::zero_words_block_size = 8; 6161 6162 // zero_words() is used by C2 ClearArray patterns and by 6163 // C1_MacroAssembler. It is as small as possible, handling small word 6164 // counts locally and delegating anything larger to the zero_blocks 6165 // stub. It is expanded many times in compiled code, so it is 6166 // important to keep it short. 6167 6168 // ptr: Address of a buffer to be zeroed. 6169 // cnt: Count in HeapWords. 6170 // 6171 // ptr, cnt, rscratch1, and rscratch2 are clobbered. 6172 address MacroAssembler::zero_words(Register ptr, Register cnt) 6173 { 6174 assert(is_power_of_2(zero_words_block_size), "adjust this"); 6175 6176 BLOCK_COMMENT("zero_words {"); 6177 assert(ptr == r10 && cnt == r11, "mismatch in register usage"); 6178 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 6179 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 6180 6181 subs(rscratch1, cnt, zero_words_block_size); 6182 Label around; 6183 br(LO, around); 6184 { 6185 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 6186 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 6187 // Make sure this is a C2 compilation. C1 allocates space only for 6188 // trampoline stubs generated by Call LIR ops, and in any case it 6189 // makes sense for a C1 compilation task to proceed as quickly as 6190 // possible. 6191 CompileTask* task; 6192 if (StubRoutines::aarch64::complete() 6193 && Thread::current()->is_Compiler_thread() 6194 && (task = ciEnv::current()->task()) 6195 && is_c2_compile(task->comp_level())) { 6196 address tpc = trampoline_call(zero_blocks); 6197 if (tpc == nullptr) { 6198 DEBUG_ONLY(reset_labels(around)); 6199 return nullptr; 6200 } 6201 } else { 6202 far_call(zero_blocks); 6203 } 6204 } 6205 bind(around); 6206 6207 // We have a few words left to do. zero_blocks has adjusted r10 and r11 6208 // for us. 6209 for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) { 6210 Label l; 6211 tbz(cnt, exact_log2(i), l); 6212 for (int j = 0; j < i; j += 2) { 6213 stp(zr, zr, post(ptr, 2 * BytesPerWord)); 6214 } 6215 bind(l); 6216 } 6217 { 6218 Label l; 6219 tbz(cnt, 0, l); 6220 str(zr, Address(ptr)); 6221 bind(l); 6222 } 6223 6224 BLOCK_COMMENT("} zero_words"); 6225 return pc(); 6226 } 6227 6228 // base: Address of a buffer to be zeroed, 8 bytes aligned. 6229 // cnt: Immediate count in HeapWords. 6230 // 6231 // r10, r11, rscratch1, and rscratch2 are clobbered. 6232 address MacroAssembler::zero_words(Register base, uint64_t cnt) 6233 { 6234 assert(wordSize <= BlockZeroingLowLimit, 6235 "increase BlockZeroingLowLimit"); 6236 address result = nullptr; 6237 if (cnt <= (uint64_t)BlockZeroingLowLimit / BytesPerWord) { 6238 #ifndef PRODUCT 6239 { 6240 char buf[64]; 6241 snprintf(buf, sizeof buf, "zero_words (count = %" PRIu64 ") {", cnt); 6242 BLOCK_COMMENT(buf); 6243 } 6244 #endif 6245 if (cnt >= 16) { 6246 uint64_t loops = cnt/16; 6247 if (loops > 1) { 6248 mov(rscratch2, loops - 1); 6249 } 6250 { 6251 Label loop; 6252 bind(loop); 6253 for (int i = 0; i < 16; i += 2) { 6254 stp(zr, zr, Address(base, i * BytesPerWord)); 6255 } 6256 add(base, base, 16 * BytesPerWord); 6257 if (loops > 1) { 6258 subs(rscratch2, rscratch2, 1); 6259 br(GE, loop); 6260 } 6261 } 6262 } 6263 cnt %= 16; 6264 int i = cnt & 1; // store any odd word to start 6265 if (i) str(zr, Address(base)); 6266 for (; i < (int)cnt; i += 2) { 6267 stp(zr, zr, Address(base, i * wordSize)); 6268 } 6269 BLOCK_COMMENT("} zero_words"); 6270 result = pc(); 6271 } else { 6272 mov(r10, base); mov(r11, cnt); 6273 result = zero_words(r10, r11); 6274 } 6275 return result; 6276 } 6277 6278 // Zero blocks of memory by using DC ZVA. 6279 // 6280 // Aligns the base address first sufficiently for DC ZVA, then uses 6281 // DC ZVA repeatedly for every full block. cnt is the size to be 6282 // zeroed in HeapWords. Returns the count of words left to be zeroed 6283 // in cnt. 6284 // 6285 // NOTE: This is intended to be used in the zero_blocks() stub. If 6286 // you want to use it elsewhere, note that cnt must be >= 2*zva_length. 6287 void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) { 6288 Register tmp = rscratch1; 6289 Register tmp2 = rscratch2; 6290 int zva_length = VM_Version::zva_length(); 6291 Label initial_table_end, loop_zva; 6292 Label fini; 6293 6294 // Base must be 16 byte aligned. If not just return and let caller handle it 6295 tst(base, 0x0f); 6296 br(Assembler::NE, fini); 6297 // Align base with ZVA length. 6298 neg(tmp, base); 6299 andr(tmp, tmp, zva_length - 1); 6300 6301 // tmp: the number of bytes to be filled to align the base with ZVA length. 6302 add(base, base, tmp); 6303 sub(cnt, cnt, tmp, Assembler::ASR, 3); 6304 adr(tmp2, initial_table_end); 6305 sub(tmp2, tmp2, tmp, Assembler::LSR, 2); 6306 br(tmp2); 6307 6308 for (int i = -zva_length + 16; i < 0; i += 16) 6309 stp(zr, zr, Address(base, i)); 6310 bind(initial_table_end); 6311 6312 sub(cnt, cnt, zva_length >> 3); 6313 bind(loop_zva); 6314 dc(Assembler::ZVA, base); 6315 subs(cnt, cnt, zva_length >> 3); 6316 add(base, base, zva_length); 6317 br(Assembler::GE, loop_zva); 6318 add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA 6319 bind(fini); 6320 } 6321 6322 // base: Address of a buffer to be filled, 8 bytes aligned. 6323 // cnt: Count in 8-byte unit. 6324 // value: Value to be filled with. 6325 // base will point to the end of the buffer after filling. 6326 void MacroAssembler::fill_words(Register base, Register cnt, Register value) 6327 { 6328 // Algorithm: 6329 // 6330 // if (cnt == 0) { 6331 // return; 6332 // } 6333 // if ((p & 8) != 0) { 6334 // *p++ = v; 6335 // } 6336 // 6337 // scratch1 = cnt & 14; 6338 // cnt -= scratch1; 6339 // p += scratch1; 6340 // switch (scratch1 / 2) { 6341 // do { 6342 // cnt -= 16; 6343 // p[-16] = v; 6344 // p[-15] = v; 6345 // case 7: 6346 // p[-14] = v; 6347 // p[-13] = v; 6348 // case 6: 6349 // p[-12] = v; 6350 // p[-11] = v; 6351 // // ... 6352 // case 1: 6353 // p[-2] = v; 6354 // p[-1] = v; 6355 // case 0: 6356 // p += 16; 6357 // } while (cnt); 6358 // } 6359 // if ((cnt & 1) == 1) { 6360 // *p++ = v; 6361 // } 6362 6363 assert_different_registers(base, cnt, value, rscratch1, rscratch2); 6364 6365 Label fini, skip, entry, loop; 6366 const int unroll = 8; // Number of stp instructions we'll unroll 6367 6368 cbz(cnt, fini); 6369 tbz(base, 3, skip); 6370 str(value, Address(post(base, 8))); 6371 sub(cnt, cnt, 1); 6372 bind(skip); 6373 6374 andr(rscratch1, cnt, (unroll-1) * 2); 6375 sub(cnt, cnt, rscratch1); 6376 add(base, base, rscratch1, Assembler::LSL, 3); 6377 adr(rscratch2, entry); 6378 sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1); 6379 br(rscratch2); 6380 6381 bind(loop); 6382 add(base, base, unroll * 16); 6383 for (int i = -unroll; i < 0; i++) 6384 stp(value, value, Address(base, i * 16)); 6385 bind(entry); 6386 subs(cnt, cnt, unroll * 2); 6387 br(Assembler::GE, loop); 6388 6389 tbz(cnt, 0, fini); 6390 str(value, Address(post(base, 8))); 6391 bind(fini); 6392 } 6393 6394 // Intrinsic for 6395 // 6396 // - sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray 6397 // return the number of characters copied. 6398 // - java/lang/StringUTF16.compress 6399 // return index of non-latin1 character if copy fails, otherwise 'len'. 6400 // 6401 // This version always returns the number of characters copied, and does not 6402 // clobber the 'len' register. A successful copy will complete with the post- 6403 // condition: 'res' == 'len', while an unsuccessful copy will exit with the 6404 // post-condition: 0 <= 'res' < 'len'. 6405 // 6406 // NOTE: Attempts to use 'ld2' (and 'umaxv' in the ISO part) has proven to 6407 // degrade performance (on Ampere Altra - Neoverse N1), to an extent 6408 // beyond the acceptable, even though the footprint would be smaller. 6409 // Using 'umaxv' in the ASCII-case comes with a small penalty but does 6410 // avoid additional bloat. 6411 // 6412 // Clobbers: src, dst, res, rscratch1, rscratch2, rflags 6413 void MacroAssembler::encode_iso_array(Register src, Register dst, 6414 Register len, Register res, bool ascii, 6415 FloatRegister vtmp0, FloatRegister vtmp1, 6416 FloatRegister vtmp2, FloatRegister vtmp3, 6417 FloatRegister vtmp4, FloatRegister vtmp5) 6418 { 6419 Register cnt = res; 6420 Register max = rscratch1; 6421 Register chk = rscratch2; 6422 6423 prfm(Address(src), PLDL1STRM); 6424 movw(cnt, len); 6425 6426 #define ASCII(insn) do { if (ascii) { insn; } } while (0) 6427 6428 Label LOOP_32, DONE_32, FAIL_32; 6429 6430 BIND(LOOP_32); 6431 { 6432 cmpw(cnt, 32); 6433 br(LT, DONE_32); 6434 ld1(vtmp0, vtmp1, vtmp2, vtmp3, T8H, Address(post(src, 64))); 6435 // Extract lower bytes. 6436 FloatRegister vlo0 = vtmp4; 6437 FloatRegister vlo1 = vtmp5; 6438 uzp1(vlo0, T16B, vtmp0, vtmp1); 6439 uzp1(vlo1, T16B, vtmp2, vtmp3); 6440 // Merge bits... 6441 orr(vtmp0, T16B, vtmp0, vtmp1); 6442 orr(vtmp2, T16B, vtmp2, vtmp3); 6443 // Extract merged upper bytes. 6444 FloatRegister vhix = vtmp0; 6445 uzp2(vhix, T16B, vtmp0, vtmp2); 6446 // ISO-check on hi-parts (all zero). 6447 // ASCII-check on lo-parts (no sign). 6448 FloatRegister vlox = vtmp1; // Merge lower bytes. 6449 ASCII(orr(vlox, T16B, vlo0, vlo1)); 6450 umov(chk, vhix, D, 1); ASCII(cm(LT, vlox, T16B, vlox)); 6451 fmovd(max, vhix); ASCII(umaxv(vlox, T16B, vlox)); 6452 orr(chk, chk, max); ASCII(umov(max, vlox, B, 0)); 6453 ASCII(orr(chk, chk, max)); 6454 cbnz(chk, FAIL_32); 6455 subw(cnt, cnt, 32); 6456 st1(vlo0, vlo1, T16B, Address(post(dst, 32))); 6457 b(LOOP_32); 6458 } 6459 BIND(FAIL_32); 6460 sub(src, src, 64); 6461 BIND(DONE_32); 6462 6463 Label LOOP_8, SKIP_8; 6464 6465 BIND(LOOP_8); 6466 { 6467 cmpw(cnt, 8); 6468 br(LT, SKIP_8); 6469 FloatRegister vhi = vtmp0; 6470 FloatRegister vlo = vtmp1; 6471 ld1(vtmp3, T8H, src); 6472 uzp1(vlo, T16B, vtmp3, vtmp3); 6473 uzp2(vhi, T16B, vtmp3, vtmp3); 6474 // ISO-check on hi-parts (all zero). 6475 // ASCII-check on lo-parts (no sign). 6476 ASCII(cm(LT, vtmp2, T16B, vlo)); 6477 fmovd(chk, vhi); ASCII(umaxv(vtmp2, T16B, vtmp2)); 6478 ASCII(umov(max, vtmp2, B, 0)); 6479 ASCII(orr(chk, chk, max)); 6480 cbnz(chk, SKIP_8); 6481 6482 strd(vlo, Address(post(dst, 8))); 6483 subw(cnt, cnt, 8); 6484 add(src, src, 16); 6485 b(LOOP_8); 6486 } 6487 BIND(SKIP_8); 6488 6489 #undef ASCII 6490 6491 Label LOOP, DONE; 6492 6493 cbz(cnt, DONE); 6494 BIND(LOOP); 6495 { 6496 Register chr = rscratch1; 6497 ldrh(chr, Address(post(src, 2))); 6498 tst(chr, ascii ? 0xff80 : 0xff00); 6499 br(NE, DONE); 6500 strb(chr, Address(post(dst, 1))); 6501 subs(cnt, cnt, 1); 6502 br(GT, LOOP); 6503 } 6504 BIND(DONE); 6505 // Return index where we stopped. 6506 subw(res, len, cnt); 6507 } 6508 6509 // Inflate byte[] array to char[]. 6510 // Clobbers: src, dst, len, rflags, rscratch1, v0-v6 6511 address MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 6512 FloatRegister vtmp1, FloatRegister vtmp2, 6513 FloatRegister vtmp3, Register tmp4) { 6514 Label big, done, after_init, to_stub; 6515 6516 assert_different_registers(src, dst, len, tmp4, rscratch1); 6517 6518 fmovd(vtmp1, 0.0); 6519 lsrw(tmp4, len, 3); 6520 bind(after_init); 6521 cbnzw(tmp4, big); 6522 // Short string: less than 8 bytes. 6523 { 6524 Label loop, tiny; 6525 6526 cmpw(len, 4); 6527 br(LT, tiny); 6528 // Use SIMD to do 4 bytes. 6529 ldrs(vtmp2, post(src, 4)); 6530 zip1(vtmp3, T8B, vtmp2, vtmp1); 6531 subw(len, len, 4); 6532 strd(vtmp3, post(dst, 8)); 6533 6534 cbzw(len, done); 6535 6536 // Do the remaining bytes by steam. 6537 bind(loop); 6538 ldrb(tmp4, post(src, 1)); 6539 strh(tmp4, post(dst, 2)); 6540 subw(len, len, 1); 6541 6542 bind(tiny); 6543 cbnz(len, loop); 6544 6545 b(done); 6546 } 6547 6548 if (SoftwarePrefetchHintDistance >= 0) { 6549 bind(to_stub); 6550 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate()); 6551 assert(stub.target() != nullptr, "large_byte_array_inflate stub has not been generated"); 6552 address tpc = trampoline_call(stub); 6553 if (tpc == nullptr) { 6554 DEBUG_ONLY(reset_labels(big, done)); 6555 postcond(pc() == badAddress); 6556 return nullptr; 6557 } 6558 b(after_init); 6559 } 6560 6561 // Unpack the bytes 8 at a time. 6562 bind(big); 6563 { 6564 Label loop, around, loop_last, loop_start; 6565 6566 if (SoftwarePrefetchHintDistance >= 0) { 6567 const int large_loop_threshold = (64 + 16)/8; 6568 ldrd(vtmp2, post(src, 8)); 6569 andw(len, len, 7); 6570 cmp(tmp4, (u1)large_loop_threshold); 6571 br(GE, to_stub); 6572 b(loop_start); 6573 6574 bind(loop); 6575 ldrd(vtmp2, post(src, 8)); 6576 bind(loop_start); 6577 subs(tmp4, tmp4, 1); 6578 br(EQ, loop_last); 6579 zip1(vtmp2, T16B, vtmp2, vtmp1); 6580 ldrd(vtmp3, post(src, 8)); 6581 st1(vtmp2, T8H, post(dst, 16)); 6582 subs(tmp4, tmp4, 1); 6583 zip1(vtmp3, T16B, vtmp3, vtmp1); 6584 st1(vtmp3, T8H, post(dst, 16)); 6585 br(NE, loop); 6586 b(around); 6587 bind(loop_last); 6588 zip1(vtmp2, T16B, vtmp2, vtmp1); 6589 st1(vtmp2, T8H, post(dst, 16)); 6590 bind(around); 6591 cbz(len, done); 6592 } else { 6593 andw(len, len, 7); 6594 bind(loop); 6595 ldrd(vtmp2, post(src, 8)); 6596 sub(tmp4, tmp4, 1); 6597 zip1(vtmp3, T16B, vtmp2, vtmp1); 6598 st1(vtmp3, T8H, post(dst, 16)); 6599 cbnz(tmp4, loop); 6600 } 6601 } 6602 6603 // Do the tail of up to 8 bytes. 6604 add(src, src, len); 6605 ldrd(vtmp3, Address(src, -8)); 6606 add(dst, dst, len, ext::uxtw, 1); 6607 zip1(vtmp3, T16B, vtmp3, vtmp1); 6608 strq(vtmp3, Address(dst, -16)); 6609 6610 bind(done); 6611 postcond(pc() != badAddress); 6612 return pc(); 6613 } 6614 6615 // Compress char[] array to byte[]. 6616 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 6617 // Return the array length if every element in array can be encoded, 6618 // otherwise, the index of first non-latin1 (> 0xff) character. 6619 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 6620 Register res, 6621 FloatRegister tmp0, FloatRegister tmp1, 6622 FloatRegister tmp2, FloatRegister tmp3, 6623 FloatRegister tmp4, FloatRegister tmp5) { 6624 encode_iso_array(src, dst, len, res, false, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5); 6625 } 6626 6627 // java.math.round(double a) 6628 // Returns the closest long to the argument, with ties rounding to 6629 // positive infinity. This requires some fiddling for corner 6630 // cases. We take care to avoid double rounding in e.g. (jlong)(a + 0.5). 6631 void MacroAssembler::java_round_double(Register dst, FloatRegister src, 6632 FloatRegister ftmp) { 6633 Label DONE; 6634 BLOCK_COMMENT("java_round_double: { "); 6635 fmovd(rscratch1, src); 6636 // Use RoundToNearestTiesAway unless src small and -ve. 6637 fcvtasd(dst, src); 6638 // Test if src >= 0 || abs(src) >= 0x1.0p52 6639 eor(rscratch1, rscratch1, UCONST64(1) << 63); // flip sign bit 6640 mov(rscratch2, julong_cast(0x1.0p52)); 6641 cmp(rscratch1, rscratch2); 6642 br(HS, DONE); { 6643 // src < 0 && abs(src) < 0x1.0p52 6644 // src may have a fractional part, so add 0.5 6645 fmovd(ftmp, 0.5); 6646 faddd(ftmp, src, ftmp); 6647 // Convert double to jlong, use RoundTowardsNegative 6648 fcvtmsd(dst, ftmp); 6649 } 6650 bind(DONE); 6651 BLOCK_COMMENT("} java_round_double"); 6652 } 6653 6654 void MacroAssembler::java_round_float(Register dst, FloatRegister src, 6655 FloatRegister ftmp) { 6656 Label DONE; 6657 BLOCK_COMMENT("java_round_float: { "); 6658 fmovs(rscratch1, src); 6659 // Use RoundToNearestTiesAway unless src small and -ve. 6660 fcvtassw(dst, src); 6661 // Test if src >= 0 || abs(src) >= 0x1.0p23 6662 eor(rscratch1, rscratch1, 0x80000000); // flip sign bit 6663 mov(rscratch2, jint_cast(0x1.0p23f)); 6664 cmp(rscratch1, rscratch2); 6665 br(HS, DONE); { 6666 // src < 0 && |src| < 0x1.0p23 6667 // src may have a fractional part, so add 0.5 6668 fmovs(ftmp, 0.5f); 6669 fadds(ftmp, src, ftmp); 6670 // Convert float to jint, use RoundTowardsNegative 6671 fcvtmssw(dst, ftmp); 6672 } 6673 bind(DONE); 6674 BLOCK_COMMENT("} java_round_float"); 6675 } 6676 6677 // get_thread() can be called anywhere inside generated code so we 6678 // need to save whatever non-callee save context might get clobbered 6679 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed, 6680 // the call setup code. 6681 // 6682 // On Linux, aarch64_get_thread_helper() clobbers only r0, r1, and flags. 6683 // On other systems, the helper is a usual C function. 6684 // 6685 void MacroAssembler::get_thread(Register dst) { 6686 RegSet saved_regs = 6687 LINUX_ONLY(RegSet::range(r0, r1) + lr - dst) 6688 NOT_LINUX (RegSet::range(r0, r17) + lr - dst); 6689 6690 protect_return_address(); 6691 push(saved_regs, sp); 6692 6693 mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper)); 6694 blr(lr); 6695 if (dst != c_rarg0) { 6696 mov(dst, c_rarg0); 6697 } 6698 6699 pop(saved_regs, sp); 6700 authenticate_return_address(); 6701 } 6702 6703 void MacroAssembler::cache_wb(Address line) { 6704 assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset"); 6705 assert(line.index() == noreg, "index should be noreg"); 6706 assert(line.offset() == 0, "offset should be 0"); 6707 // would like to assert this 6708 // assert(line._ext.shift == 0, "shift should be zero"); 6709 if (VM_Version::supports_dcpop()) { 6710 // writeback using clear virtual address to point of persistence 6711 dc(Assembler::CVAP, line.base()); 6712 } else { 6713 // no need to generate anything as Unsafe.writebackMemory should 6714 // never invoke this stub 6715 } 6716 } 6717 6718 void MacroAssembler::cache_wbsync(bool is_pre) { 6719 // we only need a barrier post sync 6720 if (!is_pre) { 6721 membar(Assembler::AnyAny); 6722 } 6723 } 6724 6725 void MacroAssembler::verify_sve_vector_length(Register tmp) { 6726 if (!UseSVE || VM_Version::get_max_supported_sve_vector_length() == FloatRegister::sve_vl_min) { 6727 return; 6728 } 6729 // Make sure that native code does not change SVE vector length. 6730 Label verify_ok; 6731 movw(tmp, zr); 6732 sve_inc(tmp, B); 6733 subsw(zr, tmp, VM_Version::get_initial_sve_vector_length()); 6734 br(EQ, verify_ok); 6735 stop("Error: SVE vector length has changed since jvm startup"); 6736 bind(verify_ok); 6737 } 6738 6739 void MacroAssembler::verify_ptrue() { 6740 Label verify_ok; 6741 if (!UseSVE) { 6742 return; 6743 } 6744 sve_cntp(rscratch1, B, ptrue, ptrue); // get true elements count. 6745 sve_dec(rscratch1, B); 6746 cbz(rscratch1, verify_ok); 6747 stop("Error: the preserved predicate register (p7) elements are not all true"); 6748 bind(verify_ok); 6749 } 6750 6751 void MacroAssembler::safepoint_isb() { 6752 isb(); 6753 #ifndef PRODUCT 6754 if (VerifyCrossModifyFence) { 6755 // Clear the thread state. 6756 strb(zr, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 6757 } 6758 #endif 6759 } 6760 6761 #ifndef PRODUCT 6762 void MacroAssembler::verify_cross_modify_fence_not_required() { 6763 if (VerifyCrossModifyFence) { 6764 // Check if thread needs a cross modify fence. 6765 ldrb(rscratch1, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 6766 Label fence_not_required; 6767 cbz(rscratch1, fence_not_required); 6768 // If it does then fail. 6769 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::verify_cross_modify_fence_failure))); 6770 mov(c_rarg0, rthread); 6771 blr(rscratch1); 6772 bind(fence_not_required); 6773 } 6774 } 6775 #endif 6776 6777 void MacroAssembler::spin_wait() { 6778 for (int i = 0; i < VM_Version::spin_wait_desc().inst_count(); ++i) { 6779 switch (VM_Version::spin_wait_desc().inst()) { 6780 case SpinWait::NOP: 6781 nop(); 6782 break; 6783 case SpinWait::ISB: 6784 isb(); 6785 break; 6786 case SpinWait::YIELD: 6787 yield(); 6788 break; 6789 default: 6790 ShouldNotReachHere(); 6791 } 6792 } 6793 } 6794 6795 // Stack frame creation/removal 6796 6797 void MacroAssembler::enter(bool strip_ret_addr) { 6798 if (strip_ret_addr) { 6799 // Addresses can only be signed once. If there are multiple nested frames being created 6800 // in the same function, then the return address needs stripping first. 6801 strip_return_address(); 6802 } 6803 protect_return_address(); 6804 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 6805 mov(rfp, sp); 6806 } 6807 6808 void MacroAssembler::leave() { 6809 mov(sp, rfp); 6810 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 6811 authenticate_return_address(); 6812 } 6813 6814 // ROP Protection 6815 // Use the AArch64 PAC feature to add ROP protection for generated code. Use whenever creating/ 6816 // destroying stack frames or whenever directly loading/storing the LR to memory. 6817 // If ROP protection is not set then these functions are no-ops. 6818 // For more details on PAC see pauth_aarch64.hpp. 6819 6820 // Sign the LR. Use during construction of a stack frame, before storing the LR to memory. 6821 // Uses value zero as the modifier. 6822 // 6823 void MacroAssembler::protect_return_address() { 6824 if (VM_Version::use_rop_protection()) { 6825 check_return_address(); 6826 paciaz(); 6827 } 6828 } 6829 6830 // Sign the return value in the given register. Use before updating the LR in the existing stack 6831 // frame for the current function. 6832 // Uses value zero as the modifier. 6833 // 6834 void MacroAssembler::protect_return_address(Register return_reg) { 6835 if (VM_Version::use_rop_protection()) { 6836 check_return_address(return_reg); 6837 paciza(return_reg); 6838 } 6839 } 6840 6841 // Authenticate the LR. Use before function return, after restoring FP and loading LR from memory. 6842 // Uses value zero as the modifier. 6843 // 6844 void MacroAssembler::authenticate_return_address() { 6845 if (VM_Version::use_rop_protection()) { 6846 autiaz(); 6847 check_return_address(); 6848 } 6849 } 6850 6851 // Authenticate the return value in the given register. Use before updating the LR in the existing 6852 // stack frame for the current function. 6853 // Uses value zero as the modifier. 6854 // 6855 void MacroAssembler::authenticate_return_address(Register return_reg) { 6856 if (VM_Version::use_rop_protection()) { 6857 autiza(return_reg); 6858 check_return_address(return_reg); 6859 } 6860 } 6861 6862 // Strip any PAC data from LR without performing any authentication. Use with caution - only if 6863 // there is no guaranteed way of authenticating the LR. 6864 // 6865 void MacroAssembler::strip_return_address() { 6866 if (VM_Version::use_rop_protection()) { 6867 xpaclri(); 6868 } 6869 } 6870 6871 #ifndef PRODUCT 6872 // PAC failures can be difficult to debug. After an authentication failure, a segfault will only 6873 // occur when the pointer is used - ie when the program returns to the invalid LR. At this point 6874 // it is difficult to debug back to the callee function. 6875 // This function simply loads from the address in the given register. 6876 // Use directly after authentication to catch authentication failures. 6877 // Also use before signing to check that the pointer is valid and hasn't already been signed. 6878 // 6879 void MacroAssembler::check_return_address(Register return_reg) { 6880 if (VM_Version::use_rop_protection()) { 6881 ldr(zr, Address(return_reg)); 6882 } 6883 } 6884 #endif 6885 6886 // The java_calling_convention describes stack locations as ideal slots on 6887 // a frame with no abi restrictions. Since we must observe abi restrictions 6888 // (like the placement of the register window) the slots must be biased by 6889 // the following value. 6890 static int reg2offset_in(VMReg r) { 6891 // Account for saved rfp and lr 6892 // This should really be in_preserve_stack_slots 6893 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 6894 } 6895 6896 static int reg2offset_out(VMReg r) { 6897 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 6898 } 6899 6900 // On 64bit we will store integer like items to the stack as 6901 // 64bits items (AArch64 ABI) even though java would only store 6902 // 32bits for a parameter. On 32bit it will simply be 32bits 6903 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 6904 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp) { 6905 if (src.first()->is_stack()) { 6906 if (dst.first()->is_stack()) { 6907 // stack to stack 6908 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 6909 str(tmp, Address(sp, reg2offset_out(dst.first()))); 6910 } else { 6911 // stack to reg 6912 ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 6913 } 6914 } else if (dst.first()->is_stack()) { 6915 // reg to stack 6916 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 6917 } else { 6918 if (dst.first() != src.first()) { 6919 sxtw(dst.first()->as_Register(), src.first()->as_Register()); 6920 } 6921 } 6922 } 6923 6924 // An oop arg. Must pass a handle not the oop itself 6925 void MacroAssembler::object_move( 6926 OopMap* map, 6927 int oop_handle_offset, 6928 int framesize_in_slots, 6929 VMRegPair src, 6930 VMRegPair dst, 6931 bool is_receiver, 6932 int* receiver_offset) { 6933 6934 // must pass a handle. First figure out the location we use as a handle 6935 6936 Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register(); 6937 6938 // See if oop is null if it is we need no handle 6939 6940 if (src.first()->is_stack()) { 6941 6942 // Oop is already on the stack as an argument 6943 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 6944 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 6945 if (is_receiver) { 6946 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 6947 } 6948 6949 ldr(rscratch1, Address(rfp, reg2offset_in(src.first()))); 6950 lea(rHandle, Address(rfp, reg2offset_in(src.first()))); 6951 // conditionally move a null 6952 cmp(rscratch1, zr); 6953 csel(rHandle, zr, rHandle, Assembler::EQ); 6954 } else { 6955 6956 // Oop is in an a register we must store it to the space we reserve 6957 // on the stack for oop_handles and pass a handle if oop is non-null 6958 6959 const Register rOop = src.first()->as_Register(); 6960 int oop_slot; 6961 if (rOop == j_rarg0) 6962 oop_slot = 0; 6963 else if (rOop == j_rarg1) 6964 oop_slot = 1; 6965 else if (rOop == j_rarg2) 6966 oop_slot = 2; 6967 else if (rOop == j_rarg3) 6968 oop_slot = 3; 6969 else if (rOop == j_rarg4) 6970 oop_slot = 4; 6971 else if (rOop == j_rarg5) 6972 oop_slot = 5; 6973 else if (rOop == j_rarg6) 6974 oop_slot = 6; 6975 else { 6976 assert(rOop == j_rarg7, "wrong register"); 6977 oop_slot = 7; 6978 } 6979 6980 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 6981 int offset = oop_slot*VMRegImpl::stack_slot_size; 6982 6983 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 6984 // Store oop in handle area, may be null 6985 str(rOop, Address(sp, offset)); 6986 if (is_receiver) { 6987 *receiver_offset = offset; 6988 } 6989 6990 cmp(rOop, zr); 6991 lea(rHandle, Address(sp, offset)); 6992 // conditionally move a null 6993 csel(rHandle, zr, rHandle, Assembler::EQ); 6994 } 6995 6996 // If arg is on the stack then place it otherwise it is already in correct reg. 6997 if (dst.first()->is_stack()) { 6998 str(rHandle, Address(sp, reg2offset_out(dst.first()))); 6999 } 7000 } 7001 7002 // A float arg may have to do float reg int reg conversion 7003 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp) { 7004 if (src.first()->is_stack()) { 7005 if (dst.first()->is_stack()) { 7006 ldrw(tmp, Address(rfp, reg2offset_in(src.first()))); 7007 strw(tmp, Address(sp, reg2offset_out(dst.first()))); 7008 } else { 7009 ldrs(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 7010 } 7011 } else if (src.first() != dst.first()) { 7012 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 7013 fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 7014 else 7015 strs(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 7016 } 7017 } 7018 7019 // A long move 7020 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp) { 7021 if (src.first()->is_stack()) { 7022 if (dst.first()->is_stack()) { 7023 // stack to stack 7024 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 7025 str(tmp, Address(sp, reg2offset_out(dst.first()))); 7026 } else { 7027 // stack to reg 7028 ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 7029 } 7030 } else if (dst.first()->is_stack()) { 7031 // reg to stack 7032 // Do we really have to sign extend??? 7033 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 7034 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 7035 } else { 7036 if (dst.first() != src.first()) { 7037 mov(dst.first()->as_Register(), src.first()->as_Register()); 7038 } 7039 } 7040 } 7041 7042 7043 // A double move 7044 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp) { 7045 if (src.first()->is_stack()) { 7046 if (dst.first()->is_stack()) { 7047 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 7048 str(tmp, Address(sp, reg2offset_out(dst.first()))); 7049 } else { 7050 ldrd(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 7051 } 7052 } else if (src.first() != dst.first()) { 7053 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 7054 fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 7055 else 7056 strd(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 7057 } 7058 } 7059 7060 // Implements lightweight-locking. 7061 // 7062 // - obj: the object to be locked 7063 // - t1, t2, t3: temporary registers, will be destroyed 7064 // - slow: branched to if locking fails, absolute offset may larger than 32KB (imm14 encoding). 7065 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow) { 7066 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 7067 assert_different_registers(basic_lock, obj, t1, t2, t3, rscratch1); 7068 7069 Label push; 7070 const Register top = t1; 7071 const Register mark = t2; 7072 const Register t = t3; 7073 7074 // Preload the markWord. It is important that this is the first 7075 // instruction emitted as it is part of C1's null check semantics. 7076 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 7077 7078 if (UseObjectMonitorTable) { 7079 // Clear cache in case fast locking succeeds. 7080 str(zr, Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes())))); 7081 } 7082 7083 // Check if the lock-stack is full. 7084 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7085 cmpw(top, (unsigned)LockStack::end_offset()); 7086 br(Assembler::GE, slow); 7087 7088 // Check for recursion. 7089 subw(t, top, oopSize); 7090 ldr(t, Address(rthread, t)); 7091 cmp(obj, t); 7092 br(Assembler::EQ, push); 7093 7094 // Check header for monitor (0b10). 7095 tst(mark, markWord::monitor_value); 7096 br(Assembler::NE, slow); 7097 7098 // Try to lock. Transition lock bits 0b01 => 0b00 7099 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 7100 orr(mark, mark, markWord::unlocked_value); 7101 eor(t, mark, markWord::unlocked_value); 7102 cmpxchg(/*addr*/ obj, /*expected*/ mark, /*new*/ t, Assembler::xword, 7103 /*acquire*/ true, /*release*/ false, /*weak*/ false, noreg); 7104 br(Assembler::NE, slow); 7105 7106 bind(push); 7107 // After successful lock, push object on lock-stack. 7108 str(obj, Address(rthread, top)); 7109 addw(top, top, oopSize); 7110 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7111 } 7112 7113 // Implements lightweight-unlocking. 7114 // 7115 // - obj: the object to be unlocked 7116 // - t1, t2, t3: temporary registers 7117 // - slow: branched to if unlocking fails, absolute offset may larger than 32KB (imm14 encoding). 7118 void MacroAssembler::lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow) { 7119 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 7120 // cmpxchg clobbers rscratch1. 7121 assert_different_registers(obj, t1, t2, t3, rscratch1); 7122 7123 #ifdef ASSERT 7124 { 7125 // Check for lock-stack underflow. 7126 Label stack_ok; 7127 ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 7128 cmpw(t1, (unsigned)LockStack::start_offset()); 7129 br(Assembler::GE, stack_ok); 7130 STOP("Lock-stack underflow"); 7131 bind(stack_ok); 7132 } 7133 #endif 7134 7135 Label unlocked, push_and_slow; 7136 const Register top = t1; 7137 const Register mark = t2; 7138 const Register t = t3; 7139 7140 // Check if obj is top of lock-stack. 7141 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7142 subw(top, top, oopSize); 7143 ldr(t, Address(rthread, top)); 7144 cmp(obj, t); 7145 br(Assembler::NE, slow); 7146 7147 // Pop lock-stack. 7148 DEBUG_ONLY(str(zr, Address(rthread, top));) 7149 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7150 7151 // Check if recursive. 7152 subw(t, top, oopSize); 7153 ldr(t, Address(rthread, t)); 7154 cmp(obj, t); 7155 br(Assembler::EQ, unlocked); 7156 7157 // Not recursive. Check header for monitor (0b10). 7158 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 7159 tbnz(mark, log2i_exact(markWord::monitor_value), push_and_slow); 7160 7161 #ifdef ASSERT 7162 // Check header not unlocked (0b01). 7163 Label not_unlocked; 7164 tbz(mark, log2i_exact(markWord::unlocked_value), not_unlocked); 7165 stop("lightweight_unlock already unlocked"); 7166 bind(not_unlocked); 7167 #endif 7168 7169 // Try to unlock. Transition lock bits 0b00 => 0b01 7170 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 7171 orr(t, mark, markWord::unlocked_value); 7172 cmpxchg(obj, mark, t, Assembler::xword, 7173 /*acquire*/ false, /*release*/ true, /*weak*/ false, noreg); 7174 br(Assembler::EQ, unlocked); 7175 7176 bind(push_and_slow); 7177 // Restore lock-stack and handle the unlock in runtime. 7178 DEBUG_ONLY(str(obj, Address(rthread, top));) 7179 addw(top, top, oopSize); 7180 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7181 b(slow); 7182 7183 bind(unlocked); 7184 }