1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/assembler.hpp" 27 #include "asm/assembler.inline.hpp" 28 #include "ci/ciEnv.hpp" 29 #include "ci/ciUtilities.hpp" 30 #include "code/compiledIC.hpp" 31 #include "compiler/compileTask.hpp" 32 #include "compiler/disassembler.hpp" 33 #include "compiler/oopMap.hpp" 34 #include "gc/shared/barrierSet.hpp" 35 #include "gc/shared/barrierSetAssembler.hpp" 36 #include "gc/shared/cardTableBarrierSet.hpp" 37 #include "gc/shared/cardTable.hpp" 38 #include "gc/shared/collectedHeap.hpp" 39 #include "gc/shared/tlab_globals.hpp" 40 #include "interpreter/bytecodeHistogram.hpp" 41 #include "interpreter/interpreter.hpp" 42 #include "interpreter/interpreterRuntime.hpp" 43 #include "jvm.h" 44 #include "memory/resourceArea.hpp" 45 #include "memory/universe.hpp" 46 #include "nativeInst_aarch64.hpp" 47 #include "oops/accessDecorators.hpp" 48 #include "oops/compressedKlass.inline.hpp" 49 #include "oops/compressedOops.inline.hpp" 50 #include "oops/klass.inline.hpp" 51 #include "runtime/continuation.hpp" 52 #include "runtime/icache.hpp" 53 #include "runtime/interfaceSupport.inline.hpp" 54 #include "runtime/javaThread.hpp" 55 #include "runtime/jniHandles.inline.hpp" 56 #include "runtime/sharedRuntime.hpp" 57 #include "runtime/stubRoutines.hpp" 58 #include "utilities/globalDefinitions.hpp" 59 #include "utilities/powerOfTwo.hpp" 60 #ifdef COMPILER1 61 #include "c1/c1_LIRAssembler.hpp" 62 #endif 63 #ifdef COMPILER2 64 #include "oops/oop.hpp" 65 #include "opto/compile.hpp" 66 #include "opto/node.hpp" 67 #include "opto/output.hpp" 68 #endif 69 70 #include <sys/types.h> 71 72 #ifdef PRODUCT 73 #define BLOCK_COMMENT(str) /* nothing */ 74 #else 75 #define BLOCK_COMMENT(str) block_comment(str) 76 #endif 77 #define STOP(str) stop(str); 78 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 79 80 #ifdef ASSERT 81 extern "C" void disnm(intptr_t p); 82 #endif 83 // Target-dependent relocation processing 84 // 85 // Instruction sequences whose target may need to be retrieved or 86 // patched are distinguished by their leading instruction, sorting 87 // them into three main instruction groups and related subgroups. 88 // 89 // 1) Branch, Exception and System (insn count = 1) 90 // 1a) Unconditional branch (immediate): 91 // b/bl imm19 92 // 1b) Compare & branch (immediate): 93 // cbz/cbnz Rt imm19 94 // 1c) Test & branch (immediate): 95 // tbz/tbnz Rt imm14 96 // 1d) Conditional branch (immediate): 97 // b.cond imm19 98 // 99 // 2) Loads and Stores (insn count = 1) 100 // 2a) Load register literal: 101 // ldr Rt imm19 102 // 103 // 3) Data Processing Immediate (insn count = 2 or 3) 104 // 3a) PC-rel. addressing 105 // adr/adrp Rx imm21; ldr/str Ry Rx #imm12 106 // adr/adrp Rx imm21; add Ry Rx #imm12 107 // adr/adrp Rx imm21; movk Rx #imm16<<32; ldr/str Ry, [Rx, #offset_in_page] 108 // adr/adrp Rx imm21 109 // adr/adrp Rx imm21; movk Rx #imm16<<32 110 // adr/adrp Rx imm21; movk Rx #imm16<<32; add Ry, Rx, #offset_in_page 111 // The latter form can only happen when the target is an 112 // ExternalAddress, and (by definition) ExternalAddresses don't 113 // move. Because of that property, there is never any need to 114 // patch the last of the three instructions. However, 115 // MacroAssembler::target_addr_for_insn takes all three 116 // instructions into account and returns the correct address. 117 // 3b) Move wide (immediate) 118 // movz Rx #imm16; movk Rx #imm16 << 16; movk Rx #imm16 << 32; 119 // 120 // A switch on a subset of the instruction's bits provides an 121 // efficient dispatch to these subcases. 122 // 123 // insn[28:26] -> main group ('x' == don't care) 124 // 00x -> UNALLOCATED 125 // 100 -> Data Processing Immediate 126 // 101 -> Branch, Exception and System 127 // x1x -> Loads and Stores 128 // 129 // insn[30:25] -> subgroup ('_' == group, 'x' == don't care). 130 // n.b. in some cases extra bits need to be checked to verify the 131 // instruction is as expected 132 // 133 // 1) ... xx101x Branch, Exception and System 134 // 1a) 00___x Unconditional branch (immediate) 135 // 1b) 01___0 Compare & branch (immediate) 136 // 1c) 01___1 Test & branch (immediate) 137 // 1d) 10___0 Conditional branch (immediate) 138 // other Should not happen 139 // 140 // 2) ... xxx1x0 Loads and Stores 141 // 2a) xx1__00 Load/Store register (insn[28] == 1 && insn[24] == 0) 142 // 2aa) x01__00 Load register literal (i.e. requires insn[29] == 0) 143 // strictly should be 64 bit non-FP/SIMD i.e. 144 // 0101_000 (i.e. requires insn[31:24] == 01011000) 145 // 146 // 3) ... xx100x Data Processing Immediate 147 // 3a) xx___00 PC-rel. addressing (n.b. requires insn[24] == 0) 148 // 3b) xx___101 Move wide (immediate) (n.b. requires insn[24:23] == 01) 149 // strictly should be 64 bit movz #imm16<<0 150 // 110___10100 (i.e. requires insn[31:21] == 11010010100) 151 // 152 class RelocActions { 153 protected: 154 typedef int (*reloc_insn)(address insn_addr, address &target); 155 156 virtual reloc_insn adrpMem() = 0; 157 virtual reloc_insn adrpAdd() = 0; 158 virtual reloc_insn adrpMovk() = 0; 159 160 const address _insn_addr; 161 const uint32_t _insn; 162 163 static uint32_t insn_at(address insn_addr, int n) { 164 return ((uint32_t*)insn_addr)[n]; 165 } 166 uint32_t insn_at(int n) const { 167 return insn_at(_insn_addr, n); 168 } 169 170 public: 171 172 RelocActions(address insn_addr) : _insn_addr(insn_addr), _insn(insn_at(insn_addr, 0)) {} 173 RelocActions(address insn_addr, uint32_t insn) 174 : _insn_addr(insn_addr), _insn(insn) {} 175 176 virtual int unconditionalBranch(address insn_addr, address &target) = 0; 177 virtual int conditionalBranch(address insn_addr, address &target) = 0; 178 virtual int testAndBranch(address insn_addr, address &target) = 0; 179 virtual int loadStore(address insn_addr, address &target) = 0; 180 virtual int adr(address insn_addr, address &target) = 0; 181 virtual int adrp(address insn_addr, address &target, reloc_insn inner) = 0; 182 virtual int immediate(address insn_addr, address &target) = 0; 183 virtual void verify(address insn_addr, address &target) = 0; 184 185 int ALWAYSINLINE run(address insn_addr, address &target) { 186 int instructions = 1; 187 188 uint32_t dispatch = Instruction_aarch64::extract(_insn, 30, 25); 189 switch(dispatch) { 190 case 0b001010: 191 case 0b001011: { 192 instructions = unconditionalBranch(insn_addr, target); 193 break; 194 } 195 case 0b101010: // Conditional branch (immediate) 196 case 0b011010: { // Compare & branch (immediate) 197 instructions = conditionalBranch(insn_addr, target); 198 break; 199 } 200 case 0b011011: { 201 instructions = testAndBranch(insn_addr, target); 202 break; 203 } 204 case 0b001100: 205 case 0b001110: 206 case 0b011100: 207 case 0b011110: 208 case 0b101100: 209 case 0b101110: 210 case 0b111100: 211 case 0b111110: { 212 // load/store 213 if ((Instruction_aarch64::extract(_insn, 29, 24) & 0b111011) == 0b011000) { 214 // Load register (literal) 215 instructions = loadStore(insn_addr, target); 216 break; 217 } else { 218 // nothing to do 219 assert(target == nullptr, "did not expect to relocate target for polling page load"); 220 } 221 break; 222 } 223 case 0b001000: 224 case 0b011000: 225 case 0b101000: 226 case 0b111000: { 227 // adr/adrp 228 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 229 int shift = Instruction_aarch64::extract(_insn, 31, 31); 230 if (shift) { 231 uint32_t insn2 = insn_at(1); 232 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 233 Instruction_aarch64::extract(_insn, 4, 0) == 234 Instruction_aarch64::extract(insn2, 9, 5)) { 235 instructions = adrp(insn_addr, target, adrpMem()); 236 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 237 Instruction_aarch64::extract(_insn, 4, 0) == 238 Instruction_aarch64::extract(insn2, 4, 0)) { 239 instructions = adrp(insn_addr, target, adrpAdd()); 240 } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 241 Instruction_aarch64::extract(_insn, 4, 0) == 242 Instruction_aarch64::extract(insn2, 4, 0)) { 243 instructions = adrp(insn_addr, target, adrpMovk()); 244 } else { 245 ShouldNotReachHere(); 246 } 247 } else { 248 instructions = adr(insn_addr, target); 249 } 250 break; 251 } 252 case 0b001001: 253 case 0b011001: 254 case 0b101001: 255 case 0b111001: { 256 instructions = immediate(insn_addr, target); 257 break; 258 } 259 default: { 260 ShouldNotReachHere(); 261 } 262 } 263 264 verify(insn_addr, target); 265 return instructions * NativeInstruction::instruction_size; 266 } 267 }; 268 269 class Patcher : public RelocActions { 270 virtual reloc_insn adrpMem() { return &Patcher::adrpMem_impl; } 271 virtual reloc_insn adrpAdd() { return &Patcher::adrpAdd_impl; } 272 virtual reloc_insn adrpMovk() { return &Patcher::adrpMovk_impl; } 273 274 public: 275 Patcher(address insn_addr) : RelocActions(insn_addr) {} 276 277 virtual int unconditionalBranch(address insn_addr, address &target) { 278 intptr_t offset = (target - insn_addr) >> 2; 279 Instruction_aarch64::spatch(insn_addr, 25, 0, offset); 280 return 1; 281 } 282 virtual int conditionalBranch(address insn_addr, address &target) { 283 intptr_t offset = (target - insn_addr) >> 2; 284 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 285 return 1; 286 } 287 virtual int testAndBranch(address insn_addr, address &target) { 288 intptr_t offset = (target - insn_addr) >> 2; 289 Instruction_aarch64::spatch(insn_addr, 18, 5, offset); 290 return 1; 291 } 292 virtual int loadStore(address insn_addr, address &target) { 293 intptr_t offset = (target - insn_addr) >> 2; 294 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 295 return 1; 296 } 297 virtual int adr(address insn_addr, address &target) { 298 #ifdef ASSERT 299 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 300 #endif 301 // PC-rel. addressing 302 ptrdiff_t offset = target - insn_addr; 303 int offset_lo = offset & 3; 304 offset >>= 2; 305 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 306 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 307 return 1; 308 } 309 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 310 int instructions = 1; 311 #ifdef ASSERT 312 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 313 #endif 314 ptrdiff_t offset = target - insn_addr; 315 instructions = 2; 316 precond(inner != nullptr); 317 // Give the inner reloc a chance to modify the target. 318 address adjusted_target = target; 319 instructions = (*inner)(insn_addr, adjusted_target); 320 uintptr_t pc_page = (uintptr_t)insn_addr >> 12; 321 uintptr_t adr_page = (uintptr_t)adjusted_target >> 12; 322 offset = adr_page - pc_page; 323 int offset_lo = offset & 3; 324 offset >>= 2; 325 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 326 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 327 return instructions; 328 } 329 static int adrpMem_impl(address insn_addr, address &target) { 330 uintptr_t dest = (uintptr_t)target; 331 int offset_lo = dest & 0xfff; 332 uint32_t insn2 = insn_at(insn_addr, 1); 333 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 334 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo >> size); 335 guarantee(((dest >> size) << size) == dest, "misaligned target"); 336 return 2; 337 } 338 static int adrpAdd_impl(address insn_addr, address &target) { 339 uintptr_t dest = (uintptr_t)target; 340 int offset_lo = dest & 0xfff; 341 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo); 342 return 2; 343 } 344 static int adrpMovk_impl(address insn_addr, address &target) { 345 uintptr_t dest = uintptr_t(target); 346 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 20, 5, (uintptr_t)target >> 32); 347 dest = (dest & 0xffffffffULL) | (uintptr_t(insn_addr) & 0xffff00000000ULL); 348 target = address(dest); 349 return 2; 350 } 351 virtual int immediate(address insn_addr, address &target) { 352 // Metadata pointers are either narrow (32 bits) or wide (48 bits). 353 // We encode narrow ones by setting the upper 16 bits in the first 354 // instruction. 355 if (Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010101) { 356 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 357 narrowKlass nk = CompressedKlassPointers::encode((Klass*)target); 358 Instruction_aarch64::patch(insn_addr, 20, 5, nk >> 16); 359 Instruction_aarch64::patch(insn_addr+4, 20, 5, nk & 0xffff); 360 return 2; 361 } 362 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 363 uint64_t dest = (uint64_t)target; 364 // Move wide constant 365 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 366 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 367 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 368 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 369 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 370 return 3; 371 } 372 virtual void verify(address insn_addr, address &target) { 373 #ifdef ASSERT 374 address address_is = MacroAssembler::target_addr_for_insn(insn_addr); 375 if (!(address_is == target)) { 376 tty->print_cr("%p at %p should be %p", address_is, insn_addr, target); 377 disnm((intptr_t)insn_addr); 378 assert(address_is == target, "should be"); 379 } 380 #endif 381 } 382 }; 383 384 // If insn1 and insn2 use the same register to form an address, either 385 // by an offsetted LDR or a simple ADD, return the offset. If the 386 // second instruction is an LDR, the offset may be scaled. 387 static bool offset_for(uint32_t insn1, uint32_t insn2, ptrdiff_t &byte_offset) { 388 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 389 Instruction_aarch64::extract(insn1, 4, 0) == 390 Instruction_aarch64::extract(insn2, 9, 5)) { 391 // Load/store register (unsigned immediate) 392 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 393 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 394 byte_offset <<= size; 395 return true; 396 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 397 Instruction_aarch64::extract(insn1, 4, 0) == 398 Instruction_aarch64::extract(insn2, 4, 0)) { 399 // add (immediate) 400 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 401 return true; 402 } 403 return false; 404 } 405 406 class AArch64Decoder : public RelocActions { 407 virtual reloc_insn adrpMem() { return &AArch64Decoder::adrpMem_impl; } 408 virtual reloc_insn adrpAdd() { return &AArch64Decoder::adrpAdd_impl; } 409 virtual reloc_insn adrpMovk() { return &AArch64Decoder::adrpMovk_impl; } 410 411 public: 412 AArch64Decoder(address insn_addr, uint32_t insn) : RelocActions(insn_addr, insn) {} 413 414 virtual int loadStore(address insn_addr, address &target) { 415 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 416 target = insn_addr + (offset << 2); 417 return 1; 418 } 419 virtual int unconditionalBranch(address insn_addr, address &target) { 420 intptr_t offset = Instruction_aarch64::sextract(_insn, 25, 0); 421 target = insn_addr + (offset << 2); 422 return 1; 423 } 424 virtual int conditionalBranch(address insn_addr, address &target) { 425 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 426 target = address(((uint64_t)insn_addr + (offset << 2))); 427 return 1; 428 } 429 virtual int testAndBranch(address insn_addr, address &target) { 430 intptr_t offset = Instruction_aarch64::sextract(_insn, 18, 5); 431 target = address(((uint64_t)insn_addr + (offset << 2))); 432 return 1; 433 } 434 virtual int adr(address insn_addr, address &target) { 435 // PC-rel. addressing 436 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 437 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 438 target = address((uint64_t)insn_addr + offset); 439 return 1; 440 } 441 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 442 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 443 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 444 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 445 int shift = 12; 446 offset <<= shift; 447 uint64_t target_page = ((uint64_t)insn_addr) + offset; 448 target_page &= ((uint64_t)-1) << shift; 449 uint32_t insn2 = insn_at(1); 450 target = address(target_page); 451 precond(inner != nullptr); 452 (*inner)(insn_addr, target); 453 return 2; 454 } 455 static int adrpMem_impl(address insn_addr, address &target) { 456 uint32_t insn2 = insn_at(insn_addr, 1); 457 // Load/store register (unsigned immediate) 458 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 459 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 460 byte_offset <<= size; 461 target += byte_offset; 462 return 2; 463 } 464 static int adrpAdd_impl(address insn_addr, address &target) { 465 uint32_t insn2 = insn_at(insn_addr, 1); 466 // add (immediate) 467 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 468 target += byte_offset; 469 return 2; 470 } 471 static int adrpMovk_impl(address insn_addr, address &target) { 472 uint32_t insn2 = insn_at(insn_addr, 1); 473 uint64_t dest = uint64_t(target); 474 dest = (dest & 0xffff0000ffffffff) | 475 ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32); 476 target = address(dest); 477 478 // We know the destination 4k page. Maybe we have a third 479 // instruction. 480 uint32_t insn = insn_at(insn_addr, 0); 481 uint32_t insn3 = insn_at(insn_addr, 2); 482 ptrdiff_t byte_offset; 483 if (offset_for(insn, insn3, byte_offset)) { 484 target += byte_offset; 485 return 3; 486 } else { 487 return 2; 488 } 489 } 490 virtual int immediate(address insn_addr, address &target) { 491 uint32_t *insns = (uint32_t *)insn_addr; 492 // Metadata pointers are either narrow (32 bits) or wide (48 bits). 493 // We encode narrow ones by setting the upper 16 bits in the first 494 // instruction. 495 if (Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010101) { 496 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 497 narrowKlass nk = (narrowKlass)((uint32_t(Instruction_aarch64::extract(_insn, 20, 5)) << 16) 498 + uint32_t(Instruction_aarch64::extract(insns[1], 20, 5))); 499 target = (address)CompressedKlassPointers::decode(nk); 500 return 2; 501 } 502 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 503 // Move wide constant: movz, movk, movk. See movptr(). 504 assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch"); 505 assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch"); 506 target = address(uint64_t(Instruction_aarch64::extract(_insn, 20, 5)) 507 + (uint64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16) 508 + (uint64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32)); 509 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 510 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 511 return 3; 512 } 513 virtual void verify(address insn_addr, address &target) { 514 } 515 }; 516 517 address MacroAssembler::target_addr_for_insn(address insn_addr, uint32_t insn) { 518 AArch64Decoder decoder(insn_addr, insn); 519 address target; 520 decoder.run(insn_addr, target); 521 return target; 522 } 523 524 // Patch any kind of instruction; there may be several instructions. 525 // Return the total length (in bytes) of the instructions. 526 int MacroAssembler::pd_patch_instruction_size(address insn_addr, address target) { 527 Patcher patcher(insn_addr); 528 return patcher.run(insn_addr, target); 529 } 530 531 int MacroAssembler::patch_oop(address insn_addr, address o) { 532 int instructions; 533 unsigned insn = *(unsigned*)insn_addr; 534 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 535 536 // OOPs are either narrow (32 bits) or wide (48 bits). We encode 537 // narrow OOPs by setting the upper 16 bits in the first 538 // instruction. 539 if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) { 540 // Move narrow OOP 541 uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o)); 542 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 543 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 544 instructions = 2; 545 } else { 546 // Move wide OOP 547 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 548 uintptr_t dest = (uintptr_t)o; 549 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 550 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 551 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 552 instructions = 3; 553 } 554 return instructions * NativeInstruction::instruction_size; 555 } 556 557 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) { 558 // Metadata pointers are either narrow (32 bits) or wide (48 bits). 559 // We encode narrow ones by setting the upper 16 bits in the first 560 // instruction. 561 NativeInstruction *insn = nativeInstruction_at(insn_addr); 562 assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 && 563 nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 564 565 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 566 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 567 return 2 * NativeInstruction::instruction_size; 568 } 569 570 address MacroAssembler::target_addr_for_insn_or_null(address insn_addr, unsigned insn) { 571 if (NativeInstruction::is_ldrw_to_zr(address(&insn))) { 572 return nullptr; 573 } 574 return MacroAssembler::target_addr_for_insn(insn_addr, insn); 575 } 576 577 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp) { 578 if (acquire) { 579 lea(tmp, Address(rthread, JavaThread::polling_word_offset())); 580 ldar(tmp, tmp); 581 } else { 582 ldr(tmp, Address(rthread, JavaThread::polling_word_offset())); 583 } 584 if (at_return) { 585 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 586 // we may safely use the sp instead to perform the stack watermark check. 587 cmp(in_nmethod ? sp : rfp, tmp); 588 br(Assembler::HI, slow_path); 589 } else { 590 tbnz(tmp, log2i_exact(SafepointMechanism::poll_bit()), slow_path); 591 } 592 } 593 594 void MacroAssembler::rt_call(address dest, Register tmp) { 595 CodeBlob *cb = CodeCache::find_blob(dest); 596 if (cb) { 597 far_call(RuntimeAddress(dest)); 598 } else { 599 lea(tmp, RuntimeAddress(dest)); 600 blr(tmp); 601 } 602 } 603 604 void MacroAssembler::push_cont_fastpath(Register java_thread) { 605 if (!Continuations::enabled()) return; 606 Label done; 607 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 608 cmp(sp, rscratch1); 609 br(Assembler::LS, done); 610 mov(rscratch1, sp); // we can't use sp as the source in str 611 str(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 612 bind(done); 613 } 614 615 void MacroAssembler::pop_cont_fastpath(Register java_thread) { 616 if (!Continuations::enabled()) return; 617 Label done; 618 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 619 cmp(sp, rscratch1); 620 br(Assembler::LO, done); 621 str(zr, Address(java_thread, JavaThread::cont_fastpath_offset())); 622 bind(done); 623 } 624 625 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 626 // we must set sp to zero to clear frame 627 str(zr, Address(rthread, JavaThread::last_Java_sp_offset())); 628 629 // must clear fp, so that compiled frames are not confused; it is 630 // possible that we need it only for debugging 631 if (clear_fp) { 632 str(zr, Address(rthread, JavaThread::last_Java_fp_offset())); 633 } 634 635 // Always clear the pc because it could have been set by make_walkable() 636 str(zr, Address(rthread, JavaThread::last_Java_pc_offset())); 637 } 638 639 // Calls to C land 640 // 641 // When entering C land, the rfp, & resp of the last Java frame have to be recorded 642 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 643 // has to be reset to 0. This is required to allow proper stack traversal. 644 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 645 Register last_java_fp, 646 Register last_java_pc, 647 Register scratch) { 648 649 if (last_java_pc->is_valid()) { 650 str(last_java_pc, Address(rthread, 651 JavaThread::frame_anchor_offset() 652 + JavaFrameAnchor::last_Java_pc_offset())); 653 } 654 655 // determine last_java_sp register 656 if (last_java_sp == sp) { 657 mov(scratch, sp); 658 last_java_sp = scratch; 659 } else if (!last_java_sp->is_valid()) { 660 last_java_sp = esp; 661 } 662 663 str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset())); 664 665 // last_java_fp is optional 666 if (last_java_fp->is_valid()) { 667 str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset())); 668 } 669 } 670 671 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 672 Register last_java_fp, 673 address last_java_pc, 674 Register scratch) { 675 assert(last_java_pc != nullptr, "must provide a valid PC"); 676 677 adr(scratch, last_java_pc); 678 str(scratch, Address(rthread, 679 JavaThread::frame_anchor_offset() 680 + JavaFrameAnchor::last_Java_pc_offset())); 681 682 set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch); 683 } 684 685 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 686 Register last_java_fp, 687 Label &L, 688 Register scratch) { 689 if (L.is_bound()) { 690 set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch); 691 } else { 692 InstructionMark im(this); 693 L.add_patch_at(code(), locator()); 694 set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch); 695 } 696 } 697 698 static inline bool target_needs_far_branch(address addr) { 699 if (AOTCodeCache::is_on_for_dump()) { 700 return true; 701 } 702 // codecache size <= 128M 703 if (!MacroAssembler::far_branches()) { 704 return false; 705 } 706 // codecache size > 240M 707 if (MacroAssembler::codestub_branch_needs_far_jump()) { 708 return true; 709 } 710 // codecache size: 128M..240M 711 return !CodeCache::is_non_nmethod(addr); 712 } 713 714 void MacroAssembler::far_call(Address entry, Register tmp) { 715 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 716 assert(CodeCache::find_blob(entry.target()) != nullptr, 717 "destination of far call not found in code cache"); 718 assert(entry.rspec().type() == relocInfo::external_word_type 719 || entry.rspec().type() == relocInfo::runtime_call_type 720 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 721 if (target_needs_far_branch(entry.target())) { 722 uint64_t offset; 723 // We can use ADRP here because we know that the total size of 724 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 725 adrp(tmp, entry, offset); 726 add(tmp, tmp, offset); 727 blr(tmp); 728 } else { 729 bl(entry); 730 } 731 } 732 733 int MacroAssembler::far_jump(Address entry, Register tmp) { 734 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 735 assert(CodeCache::find_blob(entry.target()) != nullptr, 736 "destination of far call not found in code cache"); 737 assert(entry.rspec().type() == relocInfo::external_word_type 738 || entry.rspec().type() == relocInfo::runtime_call_type 739 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 740 address start = pc(); 741 if (target_needs_far_branch(entry.target())) { 742 uint64_t offset; 743 // We can use ADRP here because we know that the total size of 744 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 745 adrp(tmp, entry, offset); 746 add(tmp, tmp, offset); 747 br(tmp); 748 } else { 749 b(entry); 750 } 751 return pc() - start; 752 } 753 754 void MacroAssembler::reserved_stack_check() { 755 // testing if reserved zone needs to be enabled 756 Label no_reserved_zone_enabling; 757 758 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 759 cmp(sp, rscratch1); 760 br(Assembler::LO, no_reserved_zone_enabling); 761 762 enter(); // LR and FP are live. 763 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone))); 764 mov(c_rarg0, rthread); 765 blr(rscratch1); 766 leave(); 767 768 // We have already removed our own frame. 769 // throw_delayed_StackOverflowError will think that it's been 770 // called by our caller. 771 lea(rscratch1, RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry())); 772 br(rscratch1); 773 should_not_reach_here(); 774 775 bind(no_reserved_zone_enabling); 776 } 777 778 static void pass_arg0(MacroAssembler* masm, Register arg) { 779 if (c_rarg0 != arg ) { 780 masm->mov(c_rarg0, arg); 781 } 782 } 783 784 static void pass_arg1(MacroAssembler* masm, Register arg) { 785 if (c_rarg1 != arg ) { 786 masm->mov(c_rarg1, arg); 787 } 788 } 789 790 static void pass_arg2(MacroAssembler* masm, Register arg) { 791 if (c_rarg2 != arg ) { 792 masm->mov(c_rarg2, arg); 793 } 794 } 795 796 static void pass_arg3(MacroAssembler* masm, Register arg) { 797 if (c_rarg3 != arg ) { 798 masm->mov(c_rarg3, arg); 799 } 800 } 801 802 static bool is_preemptable(address entry_point) { 803 return entry_point == CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter); 804 } 805 806 void MacroAssembler::call_VM_base(Register oop_result, 807 Register java_thread, 808 Register last_java_sp, 809 address entry_point, 810 int number_of_arguments, 811 bool check_exceptions) { 812 // determine java_thread register 813 if (!java_thread->is_valid()) { 814 java_thread = rthread; 815 } 816 817 // determine last_java_sp register 818 if (!last_java_sp->is_valid()) { 819 last_java_sp = esp; 820 } 821 822 // debugging support 823 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 824 assert(java_thread == rthread, "unexpected register"); 825 #ifdef ASSERT 826 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 827 // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 828 #endif // ASSERT 829 830 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 831 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 832 833 // push java thread (becomes first argument of C function) 834 835 mov(c_rarg0, java_thread); 836 837 // set last Java frame before call 838 assert(last_java_sp != rfp, "can't use rfp"); 839 840 Label l; 841 if (is_preemptable(entry_point)) { 842 // skip setting last_pc since we already set it to desired value. 843 set_last_Java_frame(last_java_sp, rfp, noreg, rscratch1); 844 } else { 845 set_last_Java_frame(last_java_sp, rfp, l, rscratch1); 846 } 847 848 // do the call, remove parameters 849 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l); 850 851 // lr could be poisoned with PAC signature during throw_pending_exception 852 // if it was tail-call optimized by compiler, since lr is not callee-saved 853 // reload it with proper value 854 adr(lr, l); 855 856 // reset last Java frame 857 // Only interpreter should have to clear fp 858 reset_last_Java_frame(true); 859 860 // C++ interp handles this in the interpreter 861 check_and_handle_popframe(java_thread); 862 check_and_handle_earlyret(java_thread); 863 864 if (check_exceptions) { 865 // check for pending exceptions (java_thread is set upon return) 866 ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset()))); 867 Label ok; 868 cbz(rscratch1, ok); 869 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 870 br(rscratch1); 871 bind(ok); 872 } 873 874 // get oop result if there is one and reset the value in the thread 875 if (oop_result->is_valid()) { 876 get_vm_result_oop(oop_result, java_thread); 877 } 878 } 879 880 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 881 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions); 882 } 883 884 // Check the entry target is always reachable from any branch. 885 static bool is_always_within_branch_range(Address entry) { 886 if (AOTCodeCache::is_on_for_dump()) { 887 return false; 888 } 889 const address target = entry.target(); 890 891 if (!CodeCache::contains(target)) { 892 // We always use trampolines for callees outside CodeCache. 893 assert(entry.rspec().type() == relocInfo::runtime_call_type, "non-runtime call of an external target"); 894 return false; 895 } 896 897 if (!MacroAssembler::far_branches()) { 898 return true; 899 } 900 901 if (entry.rspec().type() == relocInfo::runtime_call_type) { 902 // Runtime calls are calls of a non-compiled method (stubs, adapters). 903 // Non-compiled methods stay forever in CodeCache. 904 // We check whether the longest possible branch is within the branch range. 905 assert(CodeCache::find_blob(target) != nullptr && 906 !CodeCache::find_blob(target)->is_nmethod(), 907 "runtime call of compiled method"); 908 const address right_longest_branch_start = CodeCache::high_bound() - NativeInstruction::instruction_size; 909 const address left_longest_branch_start = CodeCache::low_bound(); 910 const bool is_reachable = Assembler::reachable_from_branch_at(left_longest_branch_start, target) && 911 Assembler::reachable_from_branch_at(right_longest_branch_start, target); 912 return is_reachable; 913 } 914 915 return false; 916 } 917 918 // Maybe emit a call via a trampoline. If the code cache is small 919 // trampolines won't be emitted. 920 address MacroAssembler::trampoline_call(Address entry) { 921 assert(entry.rspec().type() == relocInfo::runtime_call_type 922 || entry.rspec().type() == relocInfo::opt_virtual_call_type 923 || entry.rspec().type() == relocInfo::static_call_type 924 || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type"); 925 926 address target = entry.target(); 927 928 if (!is_always_within_branch_range(entry)) { 929 if (!in_scratch_emit_size()) { 930 // We don't want to emit a trampoline if C2 is generating dummy 931 // code during its branch shortening phase. 932 if (entry.rspec().type() == relocInfo::runtime_call_type) { 933 assert(CodeBuffer::supports_shared_stubs(), "must support shared stubs"); 934 code()->share_trampoline_for(entry.target(), offset()); 935 } else { 936 address stub = emit_trampoline_stub(offset(), target); 937 if (stub == nullptr) { 938 postcond(pc() == badAddress); 939 return nullptr; // CodeCache is full 940 } 941 } 942 } 943 target = pc(); 944 } 945 946 address call_pc = pc(); 947 relocate(entry.rspec()); 948 bl(target); 949 950 postcond(pc() != badAddress); 951 return call_pc; 952 } 953 954 // Emit a trampoline stub for a call to a target which is too far away. 955 // 956 // code sequences: 957 // 958 // call-site: 959 // branch-and-link to <destination> or <trampoline stub> 960 // 961 // Related trampoline stub for this call site in the stub section: 962 // load the call target from the constant pool 963 // branch (LR still points to the call site above) 964 965 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset, 966 address dest) { 967 // Max stub size: alignment nop, TrampolineStub. 968 address stub = start_a_stub(max_trampoline_stub_size()); 969 if (stub == nullptr) { 970 return nullptr; // CodeBuffer::expand failed 971 } 972 973 // Create a trampoline stub relocation which relates this trampoline stub 974 // with the call instruction at insts_call_instruction_offset in the 975 // instructions code-section. 976 align(wordSize); 977 relocate(trampoline_stub_Relocation::spec(code()->insts()->start() 978 + insts_call_instruction_offset)); 979 const int stub_start_offset = offset(); 980 981 // Now, create the trampoline stub's code: 982 // - load the call 983 // - call 984 Label target; 985 ldr(rscratch1, target); 986 br(rscratch1); 987 bind(target); 988 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset, 989 "should be"); 990 emit_int64((int64_t)dest); 991 992 const address stub_start_addr = addr_at(stub_start_offset); 993 994 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); 995 996 end_a_stub(); 997 return stub_start_addr; 998 } 999 1000 int MacroAssembler::max_trampoline_stub_size() { 1001 // Max stub size: alignment nop, TrampolineStub. 1002 return NativeInstruction::instruction_size + NativeCallTrampolineStub::instruction_size; 1003 } 1004 1005 void MacroAssembler::emit_static_call_stub() { 1006 // CompiledDirectCall::set_to_interpreted knows the 1007 // exact layout of this stub. 1008 1009 isb(); 1010 mov_metadata(rmethod, nullptr); 1011 1012 // Jump to the entry point of the c2i stub. 1013 movptr(rscratch1, 0); 1014 br(rscratch1); 1015 } 1016 1017 int MacroAssembler::static_call_stub_size() { 1018 // isb; movk; movz; movz; movk; movz; movz; br 1019 return 8 * NativeInstruction::instruction_size; 1020 } 1021 1022 void MacroAssembler::c2bool(Register x) { 1023 // implements x == 0 ? 0 : 1 1024 // note: must only look at least-significant byte of x 1025 // since C-style booleans are stored in one byte 1026 // only! (was bug) 1027 tst(x, 0xff); 1028 cset(x, Assembler::NE); 1029 } 1030 1031 address MacroAssembler::ic_call(address entry, jint method_index) { 1032 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 1033 movptr(rscratch2, (intptr_t)Universe::non_oop_word()); 1034 return trampoline_call(Address(entry, rh)); 1035 } 1036 1037 int MacroAssembler::ic_check_size() { 1038 int extra_instructions = UseCompactObjectHeaders ? 1 : 0; 1039 if (target_needs_far_branch(CAST_FROM_FN_PTR(address, SharedRuntime::get_ic_miss_stub()))) { 1040 return NativeInstruction::instruction_size * (7 + extra_instructions); 1041 } else { 1042 return NativeInstruction::instruction_size * (5 + extra_instructions); 1043 } 1044 } 1045 1046 int MacroAssembler::ic_check(int end_alignment) { 1047 Register receiver = j_rarg0; 1048 Register data = rscratch2; 1049 Register tmp1 = rscratch1; 1050 Register tmp2 = r10; 1051 1052 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed 1053 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 1054 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align 1055 // before the inline cache check here, and not after 1056 align(end_alignment, offset() + ic_check_size()); 1057 1058 int uep_offset = offset(); 1059 1060 if (UseCompactObjectHeaders) { 1061 load_narrow_klass_compact(tmp1, receiver); 1062 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1063 cmpw(tmp1, tmp2); 1064 } else if (UseCompressedClassPointers) { 1065 ldrw(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1066 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1067 cmpw(tmp1, tmp2); 1068 } else { 1069 ldr(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1070 ldr(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1071 cmp(tmp1, tmp2); 1072 } 1073 1074 Label dont; 1075 br(Assembler::EQ, dont); 1076 far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1077 bind(dont); 1078 assert((offset() % end_alignment) == 0, "Misaligned verified entry point"); 1079 1080 return uep_offset; 1081 } 1082 1083 // Implementation of call_VM versions 1084 1085 void MacroAssembler::call_VM(Register oop_result, 1086 address entry_point, 1087 bool check_exceptions) { 1088 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1089 } 1090 1091 void MacroAssembler::call_VM(Register oop_result, 1092 address entry_point, 1093 Register arg_1, 1094 bool check_exceptions) { 1095 pass_arg1(this, arg_1); 1096 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1097 } 1098 1099 void MacroAssembler::call_VM(Register oop_result, 1100 address entry_point, 1101 Register arg_1, 1102 Register arg_2, 1103 bool check_exceptions) { 1104 assert_different_registers(arg_1, c_rarg2); 1105 pass_arg2(this, arg_2); 1106 pass_arg1(this, arg_1); 1107 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1108 } 1109 1110 void MacroAssembler::call_VM(Register oop_result, 1111 address entry_point, 1112 Register arg_1, 1113 Register arg_2, 1114 Register arg_3, 1115 bool check_exceptions) { 1116 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1117 assert_different_registers(arg_2, c_rarg3); 1118 pass_arg3(this, arg_3); 1119 1120 pass_arg2(this, arg_2); 1121 1122 pass_arg1(this, arg_1); 1123 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1124 } 1125 1126 void MacroAssembler::call_VM(Register oop_result, 1127 Register last_java_sp, 1128 address entry_point, 1129 int number_of_arguments, 1130 bool check_exceptions) { 1131 call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1132 } 1133 1134 void MacroAssembler::call_VM(Register oop_result, 1135 Register last_java_sp, 1136 address entry_point, 1137 Register arg_1, 1138 bool check_exceptions) { 1139 pass_arg1(this, arg_1); 1140 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1141 } 1142 1143 void MacroAssembler::call_VM(Register oop_result, 1144 Register last_java_sp, 1145 address entry_point, 1146 Register arg_1, 1147 Register arg_2, 1148 bool check_exceptions) { 1149 1150 assert_different_registers(arg_1, c_rarg2); 1151 pass_arg2(this, arg_2); 1152 pass_arg1(this, arg_1); 1153 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1154 } 1155 1156 void MacroAssembler::call_VM(Register oop_result, 1157 Register last_java_sp, 1158 address entry_point, 1159 Register arg_1, 1160 Register arg_2, 1161 Register arg_3, 1162 bool check_exceptions) { 1163 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1164 assert_different_registers(arg_2, c_rarg3); 1165 pass_arg3(this, arg_3); 1166 pass_arg2(this, arg_2); 1167 pass_arg1(this, arg_1); 1168 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1169 } 1170 1171 1172 void MacroAssembler::get_vm_result_oop(Register oop_result, Register java_thread) { 1173 ldr(oop_result, Address(java_thread, JavaThread::vm_result_oop_offset())); 1174 str(zr, Address(java_thread, JavaThread::vm_result_oop_offset())); 1175 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1176 } 1177 1178 void MacroAssembler::get_vm_result_metadata(Register metadata_result, Register java_thread) { 1179 ldr(metadata_result, Address(java_thread, JavaThread::vm_result_metadata_offset())); 1180 str(zr, Address(java_thread, JavaThread::vm_result_metadata_offset())); 1181 } 1182 1183 void MacroAssembler::align(int modulus) { 1184 align(modulus, offset()); 1185 } 1186 1187 // Ensure that the code at target bytes offset from the current offset() is aligned 1188 // according to modulus. 1189 void MacroAssembler::align(int modulus, int target) { 1190 int delta = target - offset(); 1191 while ((offset() + delta) % modulus != 0) nop(); 1192 } 1193 1194 void MacroAssembler::post_call_nop() { 1195 if (!Continuations::enabled()) { 1196 return; 1197 } 1198 InstructionMark im(this); 1199 relocate(post_call_nop_Relocation::spec()); 1200 InlineSkippedInstructionsCounter skipCounter(this); 1201 nop(); 1202 movk(zr, 0); 1203 movk(zr, 0); 1204 } 1205 1206 // these are no-ops overridden by InterpreterMacroAssembler 1207 1208 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } 1209 1210 void MacroAssembler::check_and_handle_popframe(Register java_thread) { } 1211 1212 // Look up the method for a megamorphic invokeinterface call. 1213 // The target method is determined by <intf_klass, itable_index>. 1214 // The receiver klass is in recv_klass. 1215 // On success, the result will be in method_result, and execution falls through. 1216 // On failure, execution transfers to the given label. 1217 void MacroAssembler::lookup_interface_method(Register recv_klass, 1218 Register intf_klass, 1219 RegisterOrConstant itable_index, 1220 Register method_result, 1221 Register scan_temp, 1222 Label& L_no_such_interface, 1223 bool return_method) { 1224 assert_different_registers(recv_klass, intf_klass, scan_temp); 1225 assert_different_registers(method_result, intf_klass, scan_temp); 1226 assert(recv_klass != method_result || !return_method, 1227 "recv_klass can be destroyed when method isn't needed"); 1228 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 1229 "caller must use same register for non-constant itable index as for method"); 1230 1231 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 1232 int vtable_base = in_bytes(Klass::vtable_start_offset()); 1233 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 1234 int scan_step = itableOffsetEntry::size() * wordSize; 1235 int vte_size = vtableEntry::size_in_bytes(); 1236 assert(vte_size == wordSize, "else adjust times_vte_scale"); 1237 1238 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1239 1240 // Could store the aligned, prescaled offset in the klass. 1241 // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 1242 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3))); 1243 add(scan_temp, scan_temp, vtable_base); 1244 1245 if (return_method) { 1246 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 1247 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 1248 // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 1249 lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3))); 1250 if (itentry_off) 1251 add(recv_klass, recv_klass, itentry_off); 1252 } 1253 1254 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 1255 // if (scan->interface() == intf) { 1256 // result = (klass + scan->offset() + itable_index); 1257 // } 1258 // } 1259 Label search, found_method; 1260 1261 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1262 cmp(intf_klass, method_result); 1263 br(Assembler::EQ, found_method); 1264 bind(search); 1265 // Check that the previous entry is non-null. A null entry means that 1266 // the receiver class doesn't implement the interface, and wasn't the 1267 // same as when the caller was compiled. 1268 cbz(method_result, L_no_such_interface); 1269 if (itableOffsetEntry::interface_offset() != 0) { 1270 add(scan_temp, scan_temp, scan_step); 1271 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1272 } else { 1273 ldr(method_result, Address(pre(scan_temp, scan_step))); 1274 } 1275 cmp(intf_klass, method_result); 1276 br(Assembler::NE, search); 1277 1278 bind(found_method); 1279 1280 // Got a hit. 1281 if (return_method) { 1282 ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 1283 ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0))); 1284 } 1285 } 1286 1287 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 1288 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData 1289 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 1290 // The target method is determined by <holder_klass, itable_index>. 1291 // The receiver klass is in recv_klass. 1292 // On success, the result will be in method_result, and execution falls through. 1293 // On failure, execution transfers to the given label. 1294 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 1295 Register holder_klass, 1296 Register resolved_klass, 1297 Register method_result, 1298 Register temp_itbl_klass, 1299 Register scan_temp, 1300 int itable_index, 1301 Label& L_no_such_interface) { 1302 // 'method_result' is only used as output register at the very end of this method. 1303 // Until then we can reuse it as 'holder_offset'. 1304 Register holder_offset = method_result; 1305 assert_different_registers(resolved_klass, recv_klass, holder_klass, temp_itbl_klass, scan_temp, holder_offset); 1306 1307 int vtable_start_offset = in_bytes(Klass::vtable_start_offset()); 1308 int itable_offset_entry_size = itableOffsetEntry::size() * wordSize; 1309 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 1310 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 1311 1312 Label L_loop_search_resolved_entry, L_resolved_found, L_holder_found; 1313 1314 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1315 add(recv_klass, recv_klass, vtable_start_offset + ioffset); 1316 // itableOffsetEntry[] itable = recv_klass + Klass::vtable_start_offset() + sizeof(vtableEntry) * recv_klass->_vtable_len; 1317 // temp_itbl_klass = itable[0]._interface; 1318 int vtblEntrySize = vtableEntry::size_in_bytes(); 1319 assert(vtblEntrySize == wordSize, "ldr lsl shift amount must be 3"); 1320 ldr(temp_itbl_klass, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1321 mov(holder_offset, zr); 1322 // scan_temp = &(itable[0]._interface) 1323 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1324 1325 // Initial checks: 1326 // - if (holder_klass != resolved_klass), go to "scan for resolved" 1327 // - if (itable[0] == holder_klass), shortcut to "holder found" 1328 // - if (itable[0] == 0), no such interface 1329 cmp(resolved_klass, holder_klass); 1330 br(Assembler::NE, L_loop_search_resolved_entry); 1331 cmp(holder_klass, temp_itbl_klass); 1332 br(Assembler::EQ, L_holder_found); 1333 cbz(temp_itbl_klass, L_no_such_interface); 1334 1335 // Loop: Look for holder_klass record in itable 1336 // do { 1337 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1338 // if (temp_itbl_klass == holder_klass) { 1339 // goto L_holder_found; // Found! 1340 // } 1341 // } while (temp_itbl_klass != 0); 1342 // goto L_no_such_interface // Not found. 1343 Label L_search_holder; 1344 bind(L_search_holder); 1345 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1346 cmp(holder_klass, temp_itbl_klass); 1347 br(Assembler::EQ, L_holder_found); 1348 cbnz(temp_itbl_klass, L_search_holder); 1349 1350 b(L_no_such_interface); 1351 1352 // Loop: Look for resolved_class record in itable 1353 // while (true) { 1354 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1355 // if (temp_itbl_klass == 0) { 1356 // goto L_no_such_interface; 1357 // } 1358 // if (temp_itbl_klass == resolved_klass) { 1359 // goto L_resolved_found; // Found! 1360 // } 1361 // if (temp_itbl_klass == holder_klass) { 1362 // holder_offset = scan_temp; 1363 // } 1364 // } 1365 // 1366 Label L_loop_search_resolved; 1367 bind(L_loop_search_resolved); 1368 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1369 bind(L_loop_search_resolved_entry); 1370 cbz(temp_itbl_klass, L_no_such_interface); 1371 cmp(resolved_klass, temp_itbl_klass); 1372 br(Assembler::EQ, L_resolved_found); 1373 cmp(holder_klass, temp_itbl_klass); 1374 br(Assembler::NE, L_loop_search_resolved); 1375 mov(holder_offset, scan_temp); 1376 b(L_loop_search_resolved); 1377 1378 // See if we already have a holder klass. If not, go and scan for it. 1379 bind(L_resolved_found); 1380 cbz(holder_offset, L_search_holder); 1381 mov(scan_temp, holder_offset); 1382 1383 // Finally, scan_temp contains holder_klass vtable offset 1384 bind(L_holder_found); 1385 ldrw(method_result, Address(scan_temp, ooffset - ioffset)); 1386 add(recv_klass, recv_klass, itable_index * wordSize + in_bytes(itableMethodEntry::method_offset()) 1387 - vtable_start_offset - ioffset); // substract offsets to restore the original value of recv_klass 1388 ldr(method_result, Address(recv_klass, method_result, Address::uxtw(0))); 1389 } 1390 1391 // virtual method calling 1392 void MacroAssembler::lookup_virtual_method(Register recv_klass, 1393 RegisterOrConstant vtable_index, 1394 Register method_result) { 1395 assert(vtableEntry::size() * wordSize == 8, 1396 "adjust the scaling in the code below"); 1397 int64_t vtable_offset_in_bytes = in_bytes(Klass::vtable_start_offset() + vtableEntry::method_offset()); 1398 1399 if (vtable_index.is_register()) { 1400 lea(method_result, Address(recv_klass, 1401 vtable_index.as_register(), 1402 Address::lsl(LogBytesPerWord))); 1403 ldr(method_result, Address(method_result, vtable_offset_in_bytes)); 1404 } else { 1405 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize; 1406 ldr(method_result, 1407 form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0)); 1408 } 1409 } 1410 1411 void MacroAssembler::check_klass_subtype(Register sub_klass, 1412 Register super_klass, 1413 Register temp_reg, 1414 Label& L_success) { 1415 Label L_failure; 1416 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 1417 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 1418 bind(L_failure); 1419 } 1420 1421 1422 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 1423 Register super_klass, 1424 Register temp_reg, 1425 Label* L_success, 1426 Label* L_failure, 1427 Label* L_slow_path, 1428 Register super_check_offset) { 1429 assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset); 1430 bool must_load_sco = ! super_check_offset->is_valid(); 1431 if (must_load_sco) { 1432 assert(temp_reg != noreg, "supply either a temp or a register offset"); 1433 } 1434 1435 Label L_fallthrough; 1436 int label_nulls = 0; 1437 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1438 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1439 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 1440 assert(label_nulls <= 1, "at most one null in the batch"); 1441 1442 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1443 Address super_check_offset_addr(super_klass, sco_offset); 1444 1445 // Hacked jmp, which may only be used just before L_fallthrough. 1446 #define final_jmp(label) \ 1447 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 1448 else b(label) /*omit semi*/ 1449 1450 // If the pointers are equal, we are done (e.g., String[] elements). 1451 // This self-check enables sharing of secondary supertype arrays among 1452 // non-primary types such as array-of-interface. Otherwise, each such 1453 // type would need its own customized SSA. 1454 // We move this check to the front of the fast path because many 1455 // type checks are in fact trivially successful in this manner, 1456 // so we get a nicely predicted branch right at the start of the check. 1457 cmp(sub_klass, super_klass); 1458 br(Assembler::EQ, *L_success); 1459 1460 // Check the supertype display: 1461 if (must_load_sco) { 1462 ldrw(temp_reg, super_check_offset_addr); 1463 super_check_offset = temp_reg; 1464 } 1465 1466 Address super_check_addr(sub_klass, super_check_offset); 1467 ldr(rscratch1, super_check_addr); 1468 cmp(super_klass, rscratch1); // load displayed supertype 1469 br(Assembler::EQ, *L_success); 1470 1471 // This check has worked decisively for primary supers. 1472 // Secondary supers are sought in the super_cache ('super_cache_addr'). 1473 // (Secondary supers are interfaces and very deeply nested subtypes.) 1474 // This works in the same check above because of a tricky aliasing 1475 // between the super_cache and the primary super display elements. 1476 // (The 'super_check_addr' can address either, as the case requires.) 1477 // Note that the cache is updated below if it does not help us find 1478 // what we need immediately. 1479 // So if it was a primary super, we can just fail immediately. 1480 // Otherwise, it's the slow path for us (no success at this point). 1481 1482 sub(rscratch1, super_check_offset, in_bytes(Klass::secondary_super_cache_offset())); 1483 if (L_failure == &L_fallthrough) { 1484 cbz(rscratch1, *L_slow_path); 1485 } else { 1486 cbnz(rscratch1, *L_failure); 1487 final_jmp(*L_slow_path); 1488 } 1489 1490 bind(L_fallthrough); 1491 1492 #undef final_jmp 1493 } 1494 1495 // These two are taken from x86, but they look generally useful 1496 1497 // scans count pointer sized words at [addr] for occurrence of value, 1498 // generic 1499 void MacroAssembler::repne_scan(Register addr, Register value, Register count, 1500 Register scratch) { 1501 Label Lloop, Lexit; 1502 cbz(count, Lexit); 1503 bind(Lloop); 1504 ldr(scratch, post(addr, wordSize)); 1505 cmp(value, scratch); 1506 br(EQ, Lexit); 1507 sub(count, count, 1); 1508 cbnz(count, Lloop); 1509 bind(Lexit); 1510 } 1511 1512 // scans count 4 byte words at [addr] for occurrence of value, 1513 // generic 1514 void MacroAssembler::repne_scanw(Register addr, Register value, Register count, 1515 Register scratch) { 1516 Label Lloop, Lexit; 1517 cbz(count, Lexit); 1518 bind(Lloop); 1519 ldrw(scratch, post(addr, wordSize)); 1520 cmpw(value, scratch); 1521 br(EQ, Lexit); 1522 sub(count, count, 1); 1523 cbnz(count, Lloop); 1524 bind(Lexit); 1525 } 1526 1527 void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass, 1528 Register super_klass, 1529 Register temp_reg, 1530 Register temp2_reg, 1531 Label* L_success, 1532 Label* L_failure, 1533 bool set_cond_codes) { 1534 // NB! Callers may assume that, when temp2_reg is a valid register, 1535 // this code sets it to a nonzero value. 1536 1537 assert_different_registers(sub_klass, super_klass, temp_reg); 1538 if (temp2_reg != noreg) 1539 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1540 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 1541 1542 Label L_fallthrough; 1543 int label_nulls = 0; 1544 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1545 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1546 assert(label_nulls <= 1, "at most one null in the batch"); 1547 1548 // a couple of useful fields in sub_klass: 1549 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 1550 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1551 Address secondary_supers_addr(sub_klass, ss_offset); 1552 Address super_cache_addr( sub_klass, sc_offset); 1553 1554 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1555 1556 // Do a linear scan of the secondary super-klass chain. 1557 // This code is rarely used, so simplicity is a virtue here. 1558 // The repne_scan instruction uses fixed registers, which we must spill. 1559 // Don't worry too much about pre-existing connections with the input regs. 1560 1561 assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super) 1562 assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter) 1563 1564 RegSet pushed_registers; 1565 if (!IS_A_TEMP(r2)) pushed_registers += r2; 1566 if (!IS_A_TEMP(r5)) pushed_registers += r5; 1567 1568 if (super_klass != r0) { 1569 if (!IS_A_TEMP(r0)) pushed_registers += r0; 1570 } 1571 1572 push(pushed_registers, sp); 1573 1574 // Get super_klass value into r0 (even if it was in r5 or r2). 1575 if (super_klass != r0) { 1576 mov(r0, super_klass); 1577 } 1578 1579 #ifndef PRODUCT 1580 incrementw(ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr)); 1581 #endif //PRODUCT 1582 1583 // We will consult the secondary-super array. 1584 ldr(r5, secondary_supers_addr); 1585 // Load the array length. 1586 ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes())); 1587 // Skip to start of data. 1588 add(r5, r5, Array<Klass*>::base_offset_in_bytes()); 1589 1590 cmp(sp, zr); // Clear Z flag; SP is never zero 1591 // Scan R2 words at [R5] for an occurrence of R0. 1592 // Set NZ/Z based on last compare. 1593 repne_scan(r5, r0, r2, rscratch1); 1594 1595 // Unspill the temp. registers: 1596 pop(pushed_registers, sp); 1597 1598 br(Assembler::NE, *L_failure); 1599 1600 // Success. Cache the super we found and proceed in triumph. 1601 1602 if (UseSecondarySupersCache) { 1603 str(super_klass, super_cache_addr); 1604 } 1605 1606 if (L_success != &L_fallthrough) { 1607 b(*L_success); 1608 } 1609 1610 #undef IS_A_TEMP 1611 1612 bind(L_fallthrough); 1613 } 1614 1615 // If Register r is invalid, remove a new register from 1616 // available_regs, and add new register to regs_to_push. 1617 Register MacroAssembler::allocate_if_noreg(Register r, 1618 RegSetIterator<Register> &available_regs, 1619 RegSet ®s_to_push) { 1620 if (!r->is_valid()) { 1621 r = *available_regs++; 1622 regs_to_push += r; 1623 } 1624 return r; 1625 } 1626 1627 // check_klass_subtype_slow_path_table() looks for super_klass in the 1628 // hash table belonging to super_klass, branching to L_success or 1629 // L_failure as appropriate. This is essentially a shim which 1630 // allocates registers as necessary then calls 1631 // lookup_secondary_supers_table() to do the work. Any of the temp 1632 // regs may be noreg, in which case this logic will chooses some 1633 // registers push and pop them from the stack. 1634 void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass, 1635 Register super_klass, 1636 Register temp_reg, 1637 Register temp2_reg, 1638 Register temp3_reg, 1639 Register result_reg, 1640 FloatRegister vtemp, 1641 Label* L_success, 1642 Label* L_failure, 1643 bool set_cond_codes) { 1644 RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg); 1645 1646 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1647 1648 Label L_fallthrough; 1649 int label_nulls = 0; 1650 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1651 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1652 assert(label_nulls <= 1, "at most one null in the batch"); 1653 1654 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1655 1656 RegSetIterator<Register> available_regs 1657 = (RegSet::range(r0, r15) - temps - sub_klass - super_klass).begin(); 1658 1659 RegSet pushed_regs; 1660 1661 temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs); 1662 temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs); 1663 temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs); 1664 result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs); 1665 1666 push(pushed_regs, sp); 1667 1668 lookup_secondary_supers_table_var(sub_klass, 1669 super_klass, 1670 temp_reg, temp2_reg, temp3_reg, vtemp, result_reg, 1671 nullptr); 1672 cmp(result_reg, zr); 1673 1674 // Unspill the temp. registers: 1675 pop(pushed_regs, sp); 1676 1677 // NB! Callers may assume that, when set_cond_codes is true, this 1678 // code sets temp2_reg to a nonzero value. 1679 if (set_cond_codes) { 1680 mov(temp2_reg, 1); 1681 } 1682 1683 br(Assembler::NE, *L_failure); 1684 1685 if (L_success != &L_fallthrough) { 1686 b(*L_success); 1687 } 1688 1689 bind(L_fallthrough); 1690 } 1691 1692 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 1693 Register super_klass, 1694 Register temp_reg, 1695 Register temp2_reg, 1696 Label* L_success, 1697 Label* L_failure, 1698 bool set_cond_codes) { 1699 if (UseSecondarySupersTable) { 1700 check_klass_subtype_slow_path_table 1701 (sub_klass, super_klass, temp_reg, temp2_reg, /*temp3*/noreg, /*result*/noreg, 1702 /*vtemp*/fnoreg, 1703 L_success, L_failure, set_cond_codes); 1704 } else { 1705 check_klass_subtype_slow_path_linear 1706 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, set_cond_codes); 1707 } 1708 } 1709 1710 1711 // Ensure that the inline code and the stub are using the same registers. 1712 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \ 1713 do { \ 1714 assert(r_super_klass == r0 && \ 1715 r_array_base == r1 && \ 1716 r_array_length == r2 && \ 1717 (r_array_index == r3 || r_array_index == noreg) && \ 1718 (r_sub_klass == r4 || r_sub_klass == noreg) && \ 1719 (r_bitmap == rscratch2 || r_bitmap == noreg) && \ 1720 (result == r5 || result == noreg), "registers must match aarch64.ad"); \ 1721 } while(0) 1722 1723 bool MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass, 1724 Register r_super_klass, 1725 Register temp1, 1726 Register temp2, 1727 Register temp3, 1728 FloatRegister vtemp, 1729 Register result, 1730 u1 super_klass_slot, 1731 bool stub_is_near) { 1732 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1733 1734 Label L_fallthrough; 1735 1736 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1737 1738 const Register 1739 r_array_base = temp1, // r1 1740 r_array_length = temp2, // r2 1741 r_array_index = temp3, // r3 1742 r_bitmap = rscratch2; 1743 1744 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1745 1746 u1 bit = super_klass_slot; 1747 1748 // Make sure that result is nonzero if the TBZ below misses. 1749 mov(result, 1); 1750 1751 // We're going to need the bitmap in a vector reg and in a core reg, 1752 // so load both now. 1753 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1754 if (bit != 0) { 1755 ldrd(vtemp, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1756 } 1757 // First check the bitmap to see if super_klass might be present. If 1758 // the bit is zero, we are certain that super_klass is not one of 1759 // the secondary supers. 1760 tbz(r_bitmap, bit, L_fallthrough); 1761 1762 // Get the first array index that can contain super_klass into r_array_index. 1763 if (bit != 0) { 1764 shld(vtemp, vtemp, Klass::SECONDARY_SUPERS_TABLE_MASK - bit); 1765 cnt(vtemp, T8B, vtemp); 1766 addv(vtemp, T8B, vtemp); 1767 fmovd(r_array_index, vtemp); 1768 } else { 1769 mov(r_array_index, (u1)1); 1770 } 1771 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1772 1773 // We will consult the secondary-super array. 1774 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1775 1776 // The value i in r_array_index is >= 1, so even though r_array_base 1777 // points to the length, we don't need to adjust it to point to the 1778 // data. 1779 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1780 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1781 1782 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1783 eor(result, result, r_super_klass); 1784 cbz(result, L_fallthrough); // Found a match 1785 1786 // Is there another entry to check? Consult the bitmap. 1787 tbz(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK, L_fallthrough); 1788 1789 // Linear probe. 1790 if (bit != 0) { 1791 ror(r_bitmap, r_bitmap, bit); 1792 } 1793 1794 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1795 // The next slot to be inspected, by the stub we're about to call, 1796 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1797 // have been checked. 1798 Address stub = RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub()); 1799 if (stub_is_near) { 1800 bl(stub); 1801 } else { 1802 address call = trampoline_call(stub); 1803 if (call == nullptr) { 1804 return false; // trampoline allocation failed 1805 } 1806 } 1807 1808 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1809 1810 bind(L_fallthrough); 1811 1812 if (VerifySecondarySupers) { 1813 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1814 temp1, temp2, result); // r1, r2, r5 1815 } 1816 return true; 1817 } 1818 1819 // At runtime, return 0 in result if r_super_klass is a superclass of 1820 // r_sub_klass, otherwise return nonzero. Use this version of 1821 // lookup_secondary_supers_table() if you don't know ahead of time 1822 // which superclass will be searched for. Used by interpreter and 1823 // runtime stubs. It is larger and has somewhat greater latency than 1824 // the version above, which takes a constant super_klass_slot. 1825 void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass, 1826 Register r_super_klass, 1827 Register temp1, 1828 Register temp2, 1829 Register temp3, 1830 FloatRegister vtemp, 1831 Register result, 1832 Label *L_success) { 1833 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1834 1835 Label L_fallthrough; 1836 1837 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1838 1839 const Register 1840 r_array_index = temp3, 1841 slot = rscratch1, 1842 r_bitmap = rscratch2; 1843 1844 ldrb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 1845 1846 // Make sure that result is nonzero if the test below misses. 1847 mov(result, 1); 1848 1849 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1850 1851 // First check the bitmap to see if super_klass might be present. If 1852 // the bit is zero, we are certain that super_klass is not one of 1853 // the secondary supers. 1854 1855 // This next instruction is equivalent to: 1856 // mov(tmp_reg, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); 1857 // sub(temp2, tmp_reg, slot); 1858 eor(temp2, slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); 1859 lslv(temp2, r_bitmap, temp2); 1860 tbz(temp2, Klass::SECONDARY_SUPERS_TABLE_SIZE - 1, L_fallthrough); 1861 1862 bool must_save_v0 = (vtemp == fnoreg); 1863 if (must_save_v0) { 1864 // temp1 and result are free, so use them to preserve vtemp 1865 vtemp = v0; 1866 mov(temp1, vtemp, D, 0); 1867 mov(result, vtemp, D, 1); 1868 } 1869 1870 // Get the first array index that can contain super_klass into r_array_index. 1871 mov(vtemp, D, 0, temp2); 1872 cnt(vtemp, T8B, vtemp); 1873 addv(vtemp, T8B, vtemp); 1874 mov(r_array_index, vtemp, D, 0); 1875 1876 if (must_save_v0) { 1877 mov(vtemp, D, 0, temp1 ); 1878 mov(vtemp, D, 1, result); 1879 } 1880 1881 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1882 1883 const Register 1884 r_array_base = temp1, 1885 r_array_length = temp2; 1886 1887 // The value i in r_array_index is >= 1, so even though r_array_base 1888 // points to the length, we don't need to adjust it to point to the 1889 // data. 1890 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1891 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1892 1893 // We will consult the secondary-super array. 1894 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1895 1896 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1897 eor(result, result, r_super_klass); 1898 cbz(result, L_success ? *L_success : L_fallthrough); // Found a match 1899 1900 // Is there another entry to check? Consult the bitmap. 1901 rorv(r_bitmap, r_bitmap, slot); 1902 // rol(r_bitmap, r_bitmap, 1); 1903 tbz(r_bitmap, 1, L_fallthrough); 1904 1905 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1906 // The next slot to be inspected, by the logic we're about to call, 1907 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1908 // have been checked. 1909 lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index, 1910 r_bitmap, r_array_length, result, /*is_stub*/false); 1911 1912 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1913 1914 bind(L_fallthrough); 1915 1916 if (VerifySecondarySupers) { 1917 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1918 temp1, temp2, result); // r1, r2, r5 1919 } 1920 1921 if (L_success) { 1922 cbz(result, *L_success); 1923 } 1924 } 1925 1926 // Called by code generated by check_klass_subtype_slow_path 1927 // above. This is called when there is a collision in the hashed 1928 // lookup in the secondary supers array. 1929 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass, 1930 Register r_array_base, 1931 Register r_array_index, 1932 Register r_bitmap, 1933 Register temp1, 1934 Register result, 1935 bool is_stub) { 1936 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, result, rscratch1); 1937 1938 const Register 1939 r_array_length = temp1, 1940 r_sub_klass = noreg; // unused 1941 1942 if (is_stub) { 1943 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1944 } 1945 1946 Label L_fallthrough, L_huge; 1947 1948 // Load the array length. 1949 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 1950 // And adjust the array base to point to the data. 1951 // NB! Effectively increments current slot index by 1. 1952 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, ""); 1953 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 1954 1955 // The bitmap is full to bursting. 1956 // Implicit invariant: BITMAP_FULL implies (length > 0) 1957 assert(Klass::SECONDARY_SUPERS_BITMAP_FULL == ~uintx(0), ""); 1958 cmpw(r_array_length, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 2)); 1959 br(GT, L_huge); 1960 1961 // NB! Our caller has checked bits 0 and 1 in the bitmap. The 1962 // current slot (at secondary_supers[r_array_index]) has not yet 1963 // been inspected, and r_array_index may be out of bounds if we 1964 // wrapped around the end of the array. 1965 1966 { // This is conventional linear probing, but instead of terminating 1967 // when a null entry is found in the table, we maintain a bitmap 1968 // in which a 0 indicates missing entries. 1969 // As long as the bitmap is not completely full, 1970 // array_length == popcount(bitmap). The array_length check above 1971 // guarantees there are 0s in the bitmap, so the loop eventually 1972 // terminates. 1973 Label L_loop; 1974 bind(L_loop); 1975 1976 // Check for wraparound. 1977 cmp(r_array_index, r_array_length); 1978 csel(r_array_index, zr, r_array_index, GE); 1979 1980 ldr(rscratch1, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1981 eor(result, rscratch1, r_super_klass); 1982 cbz(result, L_fallthrough); 1983 1984 tbz(r_bitmap, 2, L_fallthrough); // look-ahead check (Bit 2); result is non-zero 1985 1986 ror(r_bitmap, r_bitmap, 1); 1987 add(r_array_index, r_array_index, 1); 1988 b(L_loop); 1989 } 1990 1991 { // Degenerate case: more than 64 secondary supers. 1992 // FIXME: We could do something smarter here, maybe a vectorized 1993 // comparison or a binary search, but is that worth any added 1994 // complexity? 1995 bind(L_huge); 1996 cmp(sp, zr); // Clear Z flag; SP is never zero 1997 repne_scan(r_array_base, r_super_klass, r_array_length, rscratch1); 1998 cset(result, NE); // result == 0 iff we got a match. 1999 } 2000 2001 bind(L_fallthrough); 2002 } 2003 2004 // Make sure that the hashed lookup and a linear scan agree. 2005 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass, 2006 Register r_super_klass, 2007 Register temp1, 2008 Register temp2, 2009 Register result) { 2010 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, result, rscratch1); 2011 2012 const Register 2013 r_array_base = temp1, 2014 r_array_length = temp2, 2015 r_array_index = noreg, // unused 2016 r_bitmap = noreg; // unused 2017 2018 BLOCK_COMMENT("verify_secondary_supers_table {"); 2019 2020 // We will consult the secondary-super array. 2021 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 2022 2023 // Load the array length. 2024 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 2025 // And adjust the array base to point to the data. 2026 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 2027 2028 cmp(sp, zr); // Clear Z flag; SP is never zero 2029 // Scan R2 words at [R5] for an occurrence of R0. 2030 // Set NZ/Z based on last compare. 2031 repne_scan(/*addr*/r_array_base, /*value*/r_super_klass, /*count*/r_array_length, rscratch2); 2032 // rscratch1 == 0 iff we got a match. 2033 cset(rscratch1, NE); 2034 2035 Label passed; 2036 cmp(result, zr); 2037 cset(result, NE); // normalize result to 0/1 for comparison 2038 2039 cmp(rscratch1, result); 2040 br(EQ, passed); 2041 { 2042 mov(r0, r_super_klass); // r0 <- r0 2043 mov(r1, r_sub_klass); // r1 <- r4 2044 mov(r2, /*expected*/rscratch1); // r2 <- r8 2045 mov(r3, result); // r3 <- r5 2046 mov(r4, (address)("mismatch")); // r4 <- const 2047 rt_call(CAST_FROM_FN_PTR(address, Klass::on_secondary_supers_verification_failure), rscratch2); 2048 should_not_reach_here(); 2049 } 2050 bind(passed); 2051 2052 BLOCK_COMMENT("} verify_secondary_supers_table"); 2053 } 2054 2055 void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) { 2056 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 2057 assert_different_registers(klass, rthread, scratch); 2058 2059 Label L_fallthrough, L_tmp; 2060 if (L_fast_path == nullptr) { 2061 L_fast_path = &L_fallthrough; 2062 } else if (L_slow_path == nullptr) { 2063 L_slow_path = &L_fallthrough; 2064 } 2065 // Fast path check: class is fully initialized 2066 lea(scratch, Address(klass, InstanceKlass::init_state_offset())); 2067 ldarb(scratch, scratch); 2068 cmp(scratch, InstanceKlass::fully_initialized); 2069 br(Assembler::EQ, *L_fast_path); 2070 2071 // Fast path check: current thread is initializer thread 2072 ldr(scratch, Address(klass, InstanceKlass::init_thread_offset())); 2073 cmp(rthread, scratch); 2074 2075 if (L_slow_path == &L_fallthrough) { 2076 br(Assembler::EQ, *L_fast_path); 2077 bind(*L_slow_path); 2078 } else if (L_fast_path == &L_fallthrough) { 2079 br(Assembler::NE, *L_slow_path); 2080 bind(*L_fast_path); 2081 } else { 2082 Unimplemented(); 2083 } 2084 } 2085 2086 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 2087 if (!VerifyOops) return; 2088 2089 // Pass register number to verify_oop_subroutine 2090 const char* b = nullptr; 2091 { 2092 ResourceMark rm; 2093 stringStream ss; 2094 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 2095 b = code_string(ss.as_string()); 2096 } 2097 BLOCK_COMMENT("verify_oop {"); 2098 2099 strip_return_address(); // This might happen within a stack frame. 2100 protect_return_address(); 2101 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 2102 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 2103 2104 mov(r0, reg); 2105 movptr(rscratch1, (uintptr_t)(address)b); 2106 2107 // call indirectly to solve generation ordering problem 2108 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address())); 2109 ldr(rscratch2, Address(rscratch2)); 2110 blr(rscratch2); 2111 2112 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 2113 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 2114 authenticate_return_address(); 2115 2116 BLOCK_COMMENT("} verify_oop"); 2117 } 2118 2119 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 2120 if (!VerifyOops) return; 2121 2122 const char* b = nullptr; 2123 { 2124 ResourceMark rm; 2125 stringStream ss; 2126 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 2127 b = code_string(ss.as_string()); 2128 } 2129 BLOCK_COMMENT("verify_oop_addr {"); 2130 2131 strip_return_address(); // This might happen within a stack frame. 2132 protect_return_address(); 2133 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 2134 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 2135 2136 // addr may contain sp so we will have to adjust it based on the 2137 // pushes that we just did. 2138 if (addr.uses(sp)) { 2139 lea(r0, addr); 2140 ldr(r0, Address(r0, 4 * wordSize)); 2141 } else { 2142 ldr(r0, addr); 2143 } 2144 movptr(rscratch1, (uintptr_t)(address)b); 2145 2146 // call indirectly to solve generation ordering problem 2147 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address())); 2148 ldr(rscratch2, Address(rscratch2)); 2149 blr(rscratch2); 2150 2151 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 2152 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 2153 authenticate_return_address(); 2154 2155 BLOCK_COMMENT("} verify_oop_addr"); 2156 } 2157 2158 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 2159 int extra_slot_offset) { 2160 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 2161 int stackElementSize = Interpreter::stackElementSize; 2162 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 2163 #ifdef ASSERT 2164 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 2165 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 2166 #endif 2167 if (arg_slot.is_constant()) { 2168 return Address(esp, arg_slot.as_constant() * stackElementSize 2169 + offset); 2170 } else { 2171 add(rscratch1, esp, arg_slot.as_register(), 2172 ext::uxtx, exact_log2(stackElementSize)); 2173 return Address(rscratch1, offset); 2174 } 2175 } 2176 2177 void MacroAssembler::call_VM_leaf_base(address entry_point, 2178 int number_of_arguments, 2179 Label *retaddr) { 2180 Label E, L; 2181 2182 stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize))); 2183 2184 mov(rscratch1, RuntimeAddress(entry_point)); 2185 blr(rscratch1); 2186 if (retaddr) 2187 bind(*retaddr); 2188 2189 ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize))); 2190 } 2191 2192 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 2193 call_VM_leaf_base(entry_point, number_of_arguments); 2194 } 2195 2196 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 2197 pass_arg0(this, arg_0); 2198 call_VM_leaf_base(entry_point, 1); 2199 } 2200 2201 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 2202 assert_different_registers(arg_1, c_rarg0); 2203 pass_arg0(this, arg_0); 2204 pass_arg1(this, arg_1); 2205 call_VM_leaf_base(entry_point, 2); 2206 } 2207 2208 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, 2209 Register arg_1, Register arg_2) { 2210 assert_different_registers(arg_1, c_rarg0); 2211 assert_different_registers(arg_2, c_rarg0, c_rarg1); 2212 pass_arg0(this, arg_0); 2213 pass_arg1(this, arg_1); 2214 pass_arg2(this, arg_2); 2215 call_VM_leaf_base(entry_point, 3); 2216 } 2217 2218 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 2219 pass_arg0(this, arg_0); 2220 MacroAssembler::call_VM_leaf_base(entry_point, 1); 2221 } 2222 2223 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 2224 2225 assert_different_registers(arg_0, c_rarg1); 2226 pass_arg1(this, arg_1); 2227 pass_arg0(this, arg_0); 2228 MacroAssembler::call_VM_leaf_base(entry_point, 2); 2229 } 2230 2231 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 2232 assert_different_registers(arg_0, c_rarg1, c_rarg2); 2233 assert_different_registers(arg_1, c_rarg2); 2234 pass_arg2(this, arg_2); 2235 pass_arg1(this, arg_1); 2236 pass_arg0(this, arg_0); 2237 MacroAssembler::call_VM_leaf_base(entry_point, 3); 2238 } 2239 2240 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 2241 assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3); 2242 assert_different_registers(arg_1, c_rarg2, c_rarg3); 2243 assert_different_registers(arg_2, c_rarg3); 2244 pass_arg3(this, arg_3); 2245 pass_arg2(this, arg_2); 2246 pass_arg1(this, arg_1); 2247 pass_arg0(this, arg_0); 2248 MacroAssembler::call_VM_leaf_base(entry_point, 4); 2249 } 2250 2251 void MacroAssembler::null_check(Register reg, int offset) { 2252 if (needs_explicit_null_check(offset)) { 2253 // provoke OS null exception if reg is null by 2254 // accessing M[reg] w/o changing any registers 2255 // NOTE: this is plenty to provoke a segv 2256 ldr(zr, Address(reg)); 2257 } else { 2258 // nothing to do, (later) access of M[reg + offset] 2259 // will provoke OS null exception if reg is null 2260 } 2261 } 2262 2263 // MacroAssembler protected routines needed to implement 2264 // public methods 2265 2266 void MacroAssembler::mov(Register r, Address dest) { 2267 code_section()->relocate(pc(), dest.rspec()); 2268 uint64_t imm64 = (uint64_t)dest.target(); 2269 movptr(r, imm64); 2270 } 2271 2272 // Move a constant pointer into r. In AArch64 mode the virtual 2273 // address space is 48 bits in size, so we only need three 2274 // instructions to create a patchable instruction sequence that can 2275 // reach anywhere. 2276 void MacroAssembler::movptr(Register r, uintptr_t imm64) { 2277 #ifndef PRODUCT 2278 { 2279 char buffer[64]; 2280 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64); 2281 block_comment(buffer); 2282 } 2283 #endif 2284 assert(imm64 < (1ull << 48), "48-bit overflow in address constant"); 2285 movz(r, imm64 & 0xffff); 2286 imm64 >>= 16; 2287 movk(r, imm64 & 0xffff, 16); 2288 imm64 >>= 16; 2289 movk(r, imm64 & 0xffff, 32); 2290 } 2291 2292 // Macro to mov replicated immediate to vector register. 2293 // imm64: only the lower 8/16/32 bits are considered for B/H/S type. That is, 2294 // the upper 56/48/32 bits must be zeros for B/H/S type. 2295 // Vd will get the following values for different arrangements in T 2296 // imm64 == hex 000000gh T8B: Vd = ghghghghghghghgh 2297 // imm64 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh 2298 // imm64 == hex 0000efgh T4H: Vd = efghefghefghefgh 2299 // imm64 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh 2300 // imm64 == hex abcdefgh T2S: Vd = abcdefghabcdefgh 2301 // imm64 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh 2302 // imm64 == hex abcdefgh T1D: Vd = 00000000abcdefgh 2303 // imm64 == hex abcdefgh T2D: Vd = 00000000abcdefgh00000000abcdefgh 2304 // Clobbers rscratch1 2305 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64) { 2306 assert(T != T1Q, "unsupported"); 2307 if (T == T1D || T == T2D) { 2308 int imm = operand_valid_for_movi_immediate(imm64, T); 2309 if (-1 != imm) { 2310 movi(Vd, T, imm); 2311 } else { 2312 mov(rscratch1, imm64); 2313 dup(Vd, T, rscratch1); 2314 } 2315 return; 2316 } 2317 2318 #ifdef ASSERT 2319 if (T == T8B || T == T16B) assert((imm64 & ~0xff) == 0, "extraneous bits (T8B/T16B)"); 2320 if (T == T4H || T == T8H) assert((imm64 & ~0xffff) == 0, "extraneous bits (T4H/T8H)"); 2321 if (T == T2S || T == T4S) assert((imm64 & ~0xffffffff) == 0, "extraneous bits (T2S/T4S)"); 2322 #endif 2323 int shift = operand_valid_for_movi_immediate(imm64, T); 2324 uint32_t imm32 = imm64 & 0xffffffffULL; 2325 if (shift >= 0) { 2326 movi(Vd, T, (imm32 >> shift) & 0xff, shift); 2327 } else { 2328 movw(rscratch1, imm32); 2329 dup(Vd, T, rscratch1); 2330 } 2331 } 2332 2333 void MacroAssembler::mov_immediate64(Register dst, uint64_t imm64) 2334 { 2335 #ifndef PRODUCT 2336 { 2337 char buffer[64]; 2338 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, imm64); 2339 block_comment(buffer); 2340 } 2341 #endif 2342 if (operand_valid_for_logical_immediate(false, imm64)) { 2343 orr(dst, zr, imm64); 2344 } else { 2345 // we can use a combination of MOVZ or MOVN with 2346 // MOVK to build up the constant 2347 uint64_t imm_h[4]; 2348 int zero_count = 0; 2349 int neg_count = 0; 2350 int i; 2351 for (i = 0; i < 4; i++) { 2352 imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL); 2353 if (imm_h[i] == 0) { 2354 zero_count++; 2355 } else if (imm_h[i] == 0xffffL) { 2356 neg_count++; 2357 } 2358 } 2359 if (zero_count == 4) { 2360 // one MOVZ will do 2361 movz(dst, 0); 2362 } else if (neg_count == 4) { 2363 // one MOVN will do 2364 movn(dst, 0); 2365 } else if (zero_count == 3) { 2366 for (i = 0; i < 4; i++) { 2367 if (imm_h[i] != 0L) { 2368 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2369 break; 2370 } 2371 } 2372 } else if (neg_count == 3) { 2373 // one MOVN will do 2374 for (int i = 0; i < 4; i++) { 2375 if (imm_h[i] != 0xffffL) { 2376 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2377 break; 2378 } 2379 } 2380 } else if (zero_count == 2) { 2381 // one MOVZ and one MOVK will do 2382 for (i = 0; i < 3; i++) { 2383 if (imm_h[i] != 0L) { 2384 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2385 i++; 2386 break; 2387 } 2388 } 2389 for (;i < 4; i++) { 2390 if (imm_h[i] != 0L) { 2391 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2392 } 2393 } 2394 } else if (neg_count == 2) { 2395 // one MOVN and one MOVK will do 2396 for (i = 0; i < 4; i++) { 2397 if (imm_h[i] != 0xffffL) { 2398 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2399 i++; 2400 break; 2401 } 2402 } 2403 for (;i < 4; i++) { 2404 if (imm_h[i] != 0xffffL) { 2405 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2406 } 2407 } 2408 } else if (zero_count == 1) { 2409 // one MOVZ and two MOVKs will do 2410 for (i = 0; i < 4; i++) { 2411 if (imm_h[i] != 0L) { 2412 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2413 i++; 2414 break; 2415 } 2416 } 2417 for (;i < 4; i++) { 2418 if (imm_h[i] != 0x0L) { 2419 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2420 } 2421 } 2422 } else if (neg_count == 1) { 2423 // one MOVN and two MOVKs will do 2424 for (i = 0; i < 4; i++) { 2425 if (imm_h[i] != 0xffffL) { 2426 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2427 i++; 2428 break; 2429 } 2430 } 2431 for (;i < 4; i++) { 2432 if (imm_h[i] != 0xffffL) { 2433 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2434 } 2435 } 2436 } else { 2437 // use a MOVZ and 3 MOVKs (makes it easier to debug) 2438 movz(dst, (uint32_t)imm_h[0], 0); 2439 for (i = 1; i < 4; i++) { 2440 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2441 } 2442 } 2443 } 2444 } 2445 2446 void MacroAssembler::mov_immediate32(Register dst, uint32_t imm32) 2447 { 2448 #ifndef PRODUCT 2449 { 2450 char buffer[64]; 2451 snprintf(buffer, sizeof(buffer), "0x%" PRIX32, imm32); 2452 block_comment(buffer); 2453 } 2454 #endif 2455 if (operand_valid_for_logical_immediate(true, imm32)) { 2456 orrw(dst, zr, imm32); 2457 } else { 2458 // we can use MOVZ, MOVN or two calls to MOVK to build up the 2459 // constant 2460 uint32_t imm_h[2]; 2461 imm_h[0] = imm32 & 0xffff; 2462 imm_h[1] = ((imm32 >> 16) & 0xffff); 2463 if (imm_h[0] == 0) { 2464 movzw(dst, imm_h[1], 16); 2465 } else if (imm_h[0] == 0xffff) { 2466 movnw(dst, imm_h[1] ^ 0xffff, 16); 2467 } else if (imm_h[1] == 0) { 2468 movzw(dst, imm_h[0], 0); 2469 } else if (imm_h[1] == 0xffff) { 2470 movnw(dst, imm_h[0] ^ 0xffff, 0); 2471 } else { 2472 // use a MOVZ and MOVK (makes it easier to debug) 2473 movzw(dst, imm_h[0], 0); 2474 movkw(dst, imm_h[1], 16); 2475 } 2476 } 2477 } 2478 2479 // Form an address from base + offset in Rd. Rd may or may 2480 // not actually be used: you must use the Address that is returned. 2481 // It is up to you to ensure that the shift provided matches the size 2482 // of your data. 2483 Address MacroAssembler::form_address(Register Rd, Register base, int64_t byte_offset, int shift) { 2484 if (Address::offset_ok_for_immed(byte_offset, shift)) 2485 // It fits; no need for any heroics 2486 return Address(base, byte_offset); 2487 2488 // Don't do anything clever with negative or misaligned offsets 2489 unsigned mask = (1 << shift) - 1; 2490 if (byte_offset < 0 || byte_offset & mask) { 2491 mov(Rd, byte_offset); 2492 add(Rd, base, Rd); 2493 return Address(Rd); 2494 } 2495 2496 // See if we can do this with two 12-bit offsets 2497 { 2498 uint64_t word_offset = byte_offset >> shift; 2499 uint64_t masked_offset = word_offset & 0xfff000; 2500 if (Address::offset_ok_for_immed(word_offset - masked_offset, 0) 2501 && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) { 2502 add(Rd, base, masked_offset << shift); 2503 word_offset -= masked_offset; 2504 return Address(Rd, word_offset << shift); 2505 } 2506 } 2507 2508 // Do it the hard way 2509 mov(Rd, byte_offset); 2510 add(Rd, base, Rd); 2511 return Address(Rd); 2512 } 2513 2514 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb, 2515 bool want_remainder, Register scratch) 2516 { 2517 // Full implementation of Java idiv and irem. The function 2518 // returns the (pc) offset of the div instruction - may be needed 2519 // for implicit exceptions. 2520 // 2521 // constraint : ra/rb =/= scratch 2522 // normal case 2523 // 2524 // input : ra: dividend 2525 // rb: divisor 2526 // 2527 // result: either 2528 // quotient (= ra idiv rb) 2529 // remainder (= ra irem rb) 2530 2531 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2532 2533 int idivl_offset = offset(); 2534 if (! want_remainder) { 2535 sdivw(result, ra, rb); 2536 } else { 2537 sdivw(scratch, ra, rb); 2538 Assembler::msubw(result, scratch, rb, ra); 2539 } 2540 2541 return idivl_offset; 2542 } 2543 2544 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb, 2545 bool want_remainder, Register scratch) 2546 { 2547 // Full implementation of Java ldiv and lrem. The function 2548 // returns the (pc) offset of the div instruction - may be needed 2549 // for implicit exceptions. 2550 // 2551 // constraint : ra/rb =/= scratch 2552 // normal case 2553 // 2554 // input : ra: dividend 2555 // rb: divisor 2556 // 2557 // result: either 2558 // quotient (= ra idiv rb) 2559 // remainder (= ra irem rb) 2560 2561 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2562 2563 int idivq_offset = offset(); 2564 if (! want_remainder) { 2565 sdiv(result, ra, rb); 2566 } else { 2567 sdiv(scratch, ra, rb); 2568 Assembler::msub(result, scratch, rb, ra); 2569 } 2570 2571 return idivq_offset; 2572 } 2573 2574 void MacroAssembler::membar(Membar_mask_bits order_constraint) { 2575 address prev = pc() - NativeMembar::instruction_size; 2576 address last = code()->last_insn(); 2577 if (last != nullptr && nativeInstruction_at(last)->is_Membar() && prev == last) { 2578 NativeMembar *bar = NativeMembar_at(prev); 2579 if (AlwaysMergeDMB) { 2580 bar->set_kind(bar->get_kind() | order_constraint); 2581 BLOCK_COMMENT("merged membar(always)"); 2582 return; 2583 } 2584 // Don't promote DMB ST|DMB LD to DMB (a full barrier) because 2585 // doing so would introduce a StoreLoad which the caller did not 2586 // intend 2587 if (bar->get_kind() == order_constraint 2588 || bar->get_kind() == AnyAny 2589 || order_constraint == AnyAny) { 2590 // We are merging two memory barrier instructions. On AArch64 we 2591 // can do this simply by ORing them together. 2592 bar->set_kind(bar->get_kind() | order_constraint); 2593 BLOCK_COMMENT("merged membar"); 2594 return; 2595 } else { 2596 // A special case like "DMB ST;DMB LD;DMB ST", the last DMB can be skipped 2597 // We need check the last 2 instructions 2598 address prev2 = prev - NativeMembar::instruction_size; 2599 if (last != code()->last_label() && nativeInstruction_at(prev2)->is_Membar()) { 2600 NativeMembar *bar2 = NativeMembar_at(prev2); 2601 assert(bar2->get_kind() == order_constraint, "it should be merged before"); 2602 BLOCK_COMMENT("merged membar(elided)"); 2603 return; 2604 } 2605 } 2606 } 2607 code()->set_last_insn(pc()); 2608 dmb(Assembler::barrier(order_constraint)); 2609 } 2610 2611 bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) { 2612 if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) { 2613 merge_ldst(rt, adr, size_in_bytes, is_store); 2614 code()->clear_last_insn(); 2615 return true; 2616 } else { 2617 assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported."); 2618 const uint64_t mask = size_in_bytes - 1; 2619 if (adr.getMode() == Address::base_plus_offset && 2620 (adr.offset() & mask) == 0) { // only supports base_plus_offset. 2621 code()->set_last_insn(pc()); 2622 } 2623 return false; 2624 } 2625 } 2626 2627 void MacroAssembler::ldr(Register Rx, const Address &adr) { 2628 // We always try to merge two adjacent loads into one ldp. 2629 if (!try_merge_ldst(Rx, adr, 8, false)) { 2630 Assembler::ldr(Rx, adr); 2631 } 2632 } 2633 2634 void MacroAssembler::ldrw(Register Rw, const Address &adr) { 2635 // We always try to merge two adjacent loads into one ldp. 2636 if (!try_merge_ldst(Rw, adr, 4, false)) { 2637 Assembler::ldrw(Rw, adr); 2638 } 2639 } 2640 2641 void MacroAssembler::str(Register Rx, const Address &adr) { 2642 // We always try to merge two adjacent stores into one stp. 2643 if (!try_merge_ldst(Rx, adr, 8, true)) { 2644 Assembler::str(Rx, adr); 2645 } 2646 } 2647 2648 void MacroAssembler::strw(Register Rw, const Address &adr) { 2649 // We always try to merge two adjacent stores into one stp. 2650 if (!try_merge_ldst(Rw, adr, 4, true)) { 2651 Assembler::strw(Rw, adr); 2652 } 2653 } 2654 2655 // MacroAssembler routines found actually to be needed 2656 2657 void MacroAssembler::push(Register src) 2658 { 2659 str(src, Address(pre(esp, -1 * wordSize))); 2660 } 2661 2662 void MacroAssembler::pop(Register dst) 2663 { 2664 ldr(dst, Address(post(esp, 1 * wordSize))); 2665 } 2666 2667 // Note: load_unsigned_short used to be called load_unsigned_word. 2668 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 2669 int off = offset(); 2670 ldrh(dst, src); 2671 return off; 2672 } 2673 2674 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 2675 int off = offset(); 2676 ldrb(dst, src); 2677 return off; 2678 } 2679 2680 int MacroAssembler::load_signed_short(Register dst, Address src) { 2681 int off = offset(); 2682 ldrsh(dst, src); 2683 return off; 2684 } 2685 2686 int MacroAssembler::load_signed_byte(Register dst, Address src) { 2687 int off = offset(); 2688 ldrsb(dst, src); 2689 return off; 2690 } 2691 2692 int MacroAssembler::load_signed_short32(Register dst, Address src) { 2693 int off = offset(); 2694 ldrshw(dst, src); 2695 return off; 2696 } 2697 2698 int MacroAssembler::load_signed_byte32(Register dst, Address src) { 2699 int off = offset(); 2700 ldrsbw(dst, src); 2701 return off; 2702 } 2703 2704 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) { 2705 switch (size_in_bytes) { 2706 case 8: ldr(dst, src); break; 2707 case 4: ldrw(dst, src); break; 2708 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 2709 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 2710 default: ShouldNotReachHere(); 2711 } 2712 } 2713 2714 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes) { 2715 switch (size_in_bytes) { 2716 case 8: str(src, dst); break; 2717 case 4: strw(src, dst); break; 2718 case 2: strh(src, dst); break; 2719 case 1: strb(src, dst); break; 2720 default: ShouldNotReachHere(); 2721 } 2722 } 2723 2724 void MacroAssembler::decrementw(Register reg, int value) 2725 { 2726 if (value < 0) { incrementw(reg, -value); return; } 2727 if (value == 0) { return; } 2728 if (value < (1 << 12)) { subw(reg, reg, value); return; } 2729 /* else */ { 2730 guarantee(reg != rscratch2, "invalid dst for register decrement"); 2731 movw(rscratch2, (unsigned)value); 2732 subw(reg, reg, rscratch2); 2733 } 2734 } 2735 2736 void MacroAssembler::decrement(Register reg, int value) 2737 { 2738 if (value < 0) { increment(reg, -value); return; } 2739 if (value == 0) { return; } 2740 if (value < (1 << 12)) { sub(reg, reg, value); return; } 2741 /* else */ { 2742 assert(reg != rscratch2, "invalid dst for register decrement"); 2743 mov(rscratch2, (uint64_t)value); 2744 sub(reg, reg, rscratch2); 2745 } 2746 } 2747 2748 void MacroAssembler::decrementw(Address dst, int value) 2749 { 2750 assert(!dst.uses(rscratch1), "invalid dst for address decrement"); 2751 if (dst.getMode() == Address::literal) { 2752 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2753 lea(rscratch2, dst); 2754 dst = Address(rscratch2); 2755 } 2756 ldrw(rscratch1, dst); 2757 decrementw(rscratch1, value); 2758 strw(rscratch1, dst); 2759 } 2760 2761 void MacroAssembler::decrement(Address dst, int value) 2762 { 2763 assert(!dst.uses(rscratch1), "invalid address for decrement"); 2764 if (dst.getMode() == Address::literal) { 2765 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2766 lea(rscratch2, dst); 2767 dst = Address(rscratch2); 2768 } 2769 ldr(rscratch1, dst); 2770 decrement(rscratch1, value); 2771 str(rscratch1, dst); 2772 } 2773 2774 void MacroAssembler::incrementw(Register reg, int value) 2775 { 2776 if (value < 0) { decrementw(reg, -value); return; } 2777 if (value == 0) { return; } 2778 if (value < (1 << 12)) { addw(reg, reg, value); return; } 2779 /* else */ { 2780 assert(reg != rscratch2, "invalid dst for register increment"); 2781 movw(rscratch2, (unsigned)value); 2782 addw(reg, reg, rscratch2); 2783 } 2784 } 2785 2786 void MacroAssembler::increment(Register reg, int value) 2787 { 2788 if (value < 0) { decrement(reg, -value); return; } 2789 if (value == 0) { return; } 2790 if (value < (1 << 12)) { add(reg, reg, value); return; } 2791 /* else */ { 2792 assert(reg != rscratch2, "invalid dst for register increment"); 2793 movw(rscratch2, (unsigned)value); 2794 add(reg, reg, rscratch2); 2795 } 2796 } 2797 2798 void MacroAssembler::incrementw(Address dst, int value) 2799 { 2800 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2801 if (dst.getMode() == Address::literal) { 2802 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2803 lea(rscratch2, dst); 2804 dst = Address(rscratch2); 2805 } 2806 ldrw(rscratch1, dst); 2807 incrementw(rscratch1, value); 2808 strw(rscratch1, dst); 2809 } 2810 2811 void MacroAssembler::increment(Address dst, int value) 2812 { 2813 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2814 if (dst.getMode() == Address::literal) { 2815 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2816 lea(rscratch2, dst); 2817 dst = Address(rscratch2); 2818 } 2819 ldr(rscratch1, dst); 2820 increment(rscratch1, value); 2821 str(rscratch1, dst); 2822 } 2823 2824 // Push lots of registers in the bit set supplied. Don't push sp. 2825 // Return the number of words pushed 2826 int MacroAssembler::push(unsigned int bitset, Register stack) { 2827 int words_pushed = 0; 2828 2829 // Scan bitset to accumulate register pairs 2830 unsigned char regs[32]; 2831 int count = 0; 2832 for (int reg = 0; reg <= 30; reg++) { 2833 if (1 & bitset) 2834 regs[count++] = reg; 2835 bitset >>= 1; 2836 } 2837 regs[count++] = zr->raw_encoding(); 2838 count &= ~1; // Only push an even number of regs 2839 2840 if (count) { 2841 stp(as_Register(regs[0]), as_Register(regs[1]), 2842 Address(pre(stack, -count * wordSize))); 2843 words_pushed += 2; 2844 } 2845 for (int i = 2; i < count; i += 2) { 2846 stp(as_Register(regs[i]), as_Register(regs[i+1]), 2847 Address(stack, i * wordSize)); 2848 words_pushed += 2; 2849 } 2850 2851 assert(words_pushed == count, "oops, pushed != count"); 2852 2853 return count; 2854 } 2855 2856 int MacroAssembler::pop(unsigned int bitset, Register stack) { 2857 int words_pushed = 0; 2858 2859 // Scan bitset to accumulate register pairs 2860 unsigned char regs[32]; 2861 int count = 0; 2862 for (int reg = 0; reg <= 30; reg++) { 2863 if (1 & bitset) 2864 regs[count++] = reg; 2865 bitset >>= 1; 2866 } 2867 regs[count++] = zr->raw_encoding(); 2868 count &= ~1; 2869 2870 for (int i = 2; i < count; i += 2) { 2871 ldp(as_Register(regs[i]), as_Register(regs[i+1]), 2872 Address(stack, i * wordSize)); 2873 words_pushed += 2; 2874 } 2875 if (count) { 2876 ldp(as_Register(regs[0]), as_Register(regs[1]), 2877 Address(post(stack, count * wordSize))); 2878 words_pushed += 2; 2879 } 2880 2881 assert(words_pushed == count, "oops, pushed != count"); 2882 2883 return count; 2884 } 2885 2886 // Push lots of registers in the bit set supplied. Don't push sp. 2887 // Return the number of dwords pushed 2888 int MacroAssembler::push_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 2889 int words_pushed = 0; 2890 bool use_sve = false; 2891 int sve_vector_size_in_bytes = 0; 2892 2893 #ifdef COMPILER2 2894 use_sve = Matcher::supports_scalable_vector(); 2895 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2896 #endif 2897 2898 // Scan bitset to accumulate register pairs 2899 unsigned char regs[32]; 2900 int count = 0; 2901 for (int reg = 0; reg <= 31; reg++) { 2902 if (1 & bitset) 2903 regs[count++] = reg; 2904 bitset >>= 1; 2905 } 2906 2907 if (count == 0) { 2908 return 0; 2909 } 2910 2911 if (mode == PushPopFull) { 2912 if (use_sve && sve_vector_size_in_bytes > 16) { 2913 mode = PushPopSVE; 2914 } else { 2915 mode = PushPopNeon; 2916 } 2917 } 2918 2919 #ifndef PRODUCT 2920 { 2921 char buffer[48]; 2922 if (mode == PushPopSVE) { 2923 snprintf(buffer, sizeof(buffer), "push_fp: %d SVE registers", count); 2924 } else if (mode == PushPopNeon) { 2925 snprintf(buffer, sizeof(buffer), "push_fp: %d Neon registers", count); 2926 } else { 2927 snprintf(buffer, sizeof(buffer), "push_fp: %d fp registers", count); 2928 } 2929 block_comment(buffer); 2930 } 2931 #endif 2932 2933 if (mode == PushPopSVE) { 2934 sub(stack, stack, sve_vector_size_in_bytes * count); 2935 for (int i = 0; i < count; i++) { 2936 sve_str(as_FloatRegister(regs[i]), Address(stack, i)); 2937 } 2938 return count * sve_vector_size_in_bytes / 8; 2939 } 2940 2941 if (mode == PushPopNeon) { 2942 if (count == 1) { 2943 strq(as_FloatRegister(regs[0]), Address(pre(stack, -wordSize * 2))); 2944 return 2; 2945 } 2946 2947 bool odd = (count & 1) == 1; 2948 int push_slots = count + (odd ? 1 : 0); 2949 2950 // Always pushing full 128 bit registers. 2951 stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize * 2))); 2952 words_pushed += 2; 2953 2954 for (int i = 2; i + 1 < count; i += 2) { 2955 stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 2956 words_pushed += 2; 2957 } 2958 2959 if (odd) { 2960 strq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 2961 words_pushed++; 2962 } 2963 2964 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 2965 return count * 2; 2966 } 2967 2968 if (mode == PushPopFp) { 2969 bool odd = (count & 1) == 1; 2970 int push_slots = count + (odd ? 1 : 0); 2971 2972 if (count == 1) { 2973 // Stack pointer must be 16 bytes aligned 2974 strd(as_FloatRegister(regs[0]), Address(pre(stack, -push_slots * wordSize))); 2975 return 1; 2976 } 2977 2978 stpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize))); 2979 words_pushed += 2; 2980 2981 for (int i = 2; i + 1 < count; i += 2) { 2982 stpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 2983 words_pushed += 2; 2984 } 2985 2986 if (odd) { 2987 // Stack pointer must be 16 bytes aligned 2988 strd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 2989 words_pushed++; 2990 } 2991 2992 assert(words_pushed == count, "oops, pushed != count"); 2993 2994 return count; 2995 } 2996 2997 return 0; 2998 } 2999 3000 // Return the number of dwords popped 3001 int MacroAssembler::pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 3002 int words_pushed = 0; 3003 bool use_sve = false; 3004 int sve_vector_size_in_bytes = 0; 3005 3006 #ifdef COMPILER2 3007 use_sve = Matcher::supports_scalable_vector(); 3008 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 3009 #endif 3010 // Scan bitset to accumulate register pairs 3011 unsigned char regs[32]; 3012 int count = 0; 3013 for (int reg = 0; reg <= 31; reg++) { 3014 if (1 & bitset) 3015 regs[count++] = reg; 3016 bitset >>= 1; 3017 } 3018 3019 if (count == 0) { 3020 return 0; 3021 } 3022 3023 if (mode == PushPopFull) { 3024 if (use_sve && sve_vector_size_in_bytes > 16) { 3025 mode = PushPopSVE; 3026 } else { 3027 mode = PushPopNeon; 3028 } 3029 } 3030 3031 #ifndef PRODUCT 3032 { 3033 char buffer[48]; 3034 if (mode == PushPopSVE) { 3035 snprintf(buffer, sizeof(buffer), "pop_fp: %d SVE registers", count); 3036 } else if (mode == PushPopNeon) { 3037 snprintf(buffer, sizeof(buffer), "pop_fp: %d Neon registers", count); 3038 } else { 3039 snprintf(buffer, sizeof(buffer), "pop_fp: %d fp registers", count); 3040 } 3041 block_comment(buffer); 3042 } 3043 #endif 3044 3045 if (mode == PushPopSVE) { 3046 for (int i = count - 1; i >= 0; i--) { 3047 sve_ldr(as_FloatRegister(regs[i]), Address(stack, i)); 3048 } 3049 add(stack, stack, sve_vector_size_in_bytes * count); 3050 return count * sve_vector_size_in_bytes / 8; 3051 } 3052 3053 if (mode == PushPopNeon) { 3054 if (count == 1) { 3055 ldrq(as_FloatRegister(regs[0]), Address(post(stack, wordSize * 2))); 3056 return 2; 3057 } 3058 3059 bool odd = (count & 1) == 1; 3060 int push_slots = count + (odd ? 1 : 0); 3061 3062 if (odd) { 3063 ldrq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 3064 words_pushed++; 3065 } 3066 3067 for (int i = 2; i + 1 < count; i += 2) { 3068 ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 3069 words_pushed += 2; 3070 } 3071 3072 ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize * 2))); 3073 words_pushed += 2; 3074 3075 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 3076 3077 return count * 2; 3078 } 3079 3080 if (mode == PushPopFp) { 3081 bool odd = (count & 1) == 1; 3082 int push_slots = count + (odd ? 1 : 0); 3083 3084 if (count == 1) { 3085 ldrd(as_FloatRegister(regs[0]), Address(post(stack, push_slots * wordSize))); 3086 return 1; 3087 } 3088 3089 if (odd) { 3090 ldrd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 3091 words_pushed++; 3092 } 3093 3094 for (int i = 2; i + 1 < count; i += 2) { 3095 ldpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 3096 words_pushed += 2; 3097 } 3098 3099 ldpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize))); 3100 words_pushed += 2; 3101 3102 assert(words_pushed == count, "oops, pushed != count"); 3103 3104 return count; 3105 } 3106 3107 return 0; 3108 } 3109 3110 // Return the number of dwords pushed 3111 int MacroAssembler::push_p(unsigned int bitset, Register stack) { 3112 bool use_sve = false; 3113 int sve_predicate_size_in_slots = 0; 3114 3115 #ifdef COMPILER2 3116 use_sve = Matcher::supports_scalable_vector(); 3117 if (use_sve) { 3118 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 3119 } 3120 #endif 3121 3122 if (!use_sve) { 3123 return 0; 3124 } 3125 3126 unsigned char regs[PRegister::number_of_registers]; 3127 int count = 0; 3128 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 3129 if (1 & bitset) 3130 regs[count++] = reg; 3131 bitset >>= 1; 3132 } 3133 3134 if (count == 0) { 3135 return 0; 3136 } 3137 3138 int total_push_bytes = align_up(sve_predicate_size_in_slots * 3139 VMRegImpl::stack_slot_size * count, 16); 3140 sub(stack, stack, total_push_bytes); 3141 for (int i = 0; i < count; i++) { 3142 sve_str(as_PRegister(regs[i]), Address(stack, i)); 3143 } 3144 return total_push_bytes / 8; 3145 } 3146 3147 // Return the number of dwords popped 3148 int MacroAssembler::pop_p(unsigned int bitset, Register stack) { 3149 bool use_sve = false; 3150 int sve_predicate_size_in_slots = 0; 3151 3152 #ifdef COMPILER2 3153 use_sve = Matcher::supports_scalable_vector(); 3154 if (use_sve) { 3155 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 3156 } 3157 #endif 3158 3159 if (!use_sve) { 3160 return 0; 3161 } 3162 3163 unsigned char regs[PRegister::number_of_registers]; 3164 int count = 0; 3165 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 3166 if (1 & bitset) 3167 regs[count++] = reg; 3168 bitset >>= 1; 3169 } 3170 3171 if (count == 0) { 3172 return 0; 3173 } 3174 3175 int total_pop_bytes = align_up(sve_predicate_size_in_slots * 3176 VMRegImpl::stack_slot_size * count, 16); 3177 for (int i = count - 1; i >= 0; i--) { 3178 sve_ldr(as_PRegister(regs[i]), Address(stack, i)); 3179 } 3180 add(stack, stack, total_pop_bytes); 3181 return total_pop_bytes / 8; 3182 } 3183 3184 #ifdef ASSERT 3185 void MacroAssembler::verify_heapbase(const char* msg) { 3186 #if 0 3187 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed"); 3188 assert (Universe::heap() != nullptr, "java heap should be initialized"); 3189 if (!UseCompressedOops || Universe::ptr_base() == nullptr) { 3190 // rheapbase is allocated as general register 3191 return; 3192 } 3193 if (CheckCompressedOops) { 3194 Label ok; 3195 push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1 3196 cmpptr(rheapbase, ExternalAddress(CompressedOops::base_addr())); 3197 br(Assembler::EQ, ok); 3198 stop(msg); 3199 bind(ok); 3200 pop(1 << rscratch1->encoding(), sp); 3201 } 3202 #endif 3203 } 3204 #endif 3205 3206 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) { 3207 assert_different_registers(value, tmp1, tmp2); 3208 Label done, tagged, weak_tagged; 3209 3210 cbz(value, done); // Use null as-is. 3211 tst(value, JNIHandles::tag_mask); // Test for tag. 3212 br(Assembler::NE, tagged); 3213 3214 // Resolve local handle 3215 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp1, tmp2); 3216 verify_oop(value); 3217 b(done); 3218 3219 bind(tagged); 3220 STATIC_ASSERT(JNIHandles::TypeTag::weak_global == 0b1); 3221 tbnz(value, 0, weak_tagged); // Test for weak tag. 3222 3223 // Resolve global handle 3224 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3225 verify_oop(value); 3226 b(done); 3227 3228 bind(weak_tagged); 3229 // Resolve jweak. 3230 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 3231 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp1, tmp2); 3232 verify_oop(value); 3233 3234 bind(done); 3235 } 3236 3237 void MacroAssembler::resolve_global_jobject(Register value, Register tmp1, Register tmp2) { 3238 assert_different_registers(value, tmp1, tmp2); 3239 Label done; 3240 3241 cbz(value, done); // Use null as-is. 3242 3243 #ifdef ASSERT 3244 { 3245 STATIC_ASSERT(JNIHandles::TypeTag::global == 0b10); 3246 Label valid_global_tag; 3247 tbnz(value, 1, valid_global_tag); // Test for global tag 3248 stop("non global jobject using resolve_global_jobject"); 3249 bind(valid_global_tag); 3250 } 3251 #endif 3252 3253 // Resolve global handle 3254 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3255 verify_oop(value); 3256 3257 bind(done); 3258 } 3259 3260 void MacroAssembler::stop(const char* msg) { 3261 // Skip AOT caching C strings in scratch buffer. 3262 const char* str = (code_section()->scratch_emit()) ? msg : AOTCodeCache::add_C_string(msg); 3263 BLOCK_COMMENT(str); 3264 // load msg into r0 so we can access it from the signal handler 3265 // ExternalAddress enables saving and restoring via the code cache 3266 lea(c_rarg0, ExternalAddress((address) str)); 3267 dcps1(0xdeae); 3268 } 3269 3270 void MacroAssembler::unimplemented(const char* what) { 3271 const char* buf = nullptr; 3272 { 3273 ResourceMark rm; 3274 stringStream ss; 3275 ss.print("unimplemented: %s", what); 3276 buf = code_string(ss.as_string()); 3277 } 3278 stop(buf); 3279 } 3280 3281 void MacroAssembler::_assert_asm(Assembler::Condition cc, const char* msg) { 3282 #ifdef ASSERT 3283 Label OK; 3284 br(cc, OK); 3285 stop(msg); 3286 bind(OK); 3287 #endif 3288 } 3289 3290 // If a constant does not fit in an immediate field, generate some 3291 // number of MOV instructions and then perform the operation. 3292 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 3293 add_sub_imm_insn insn1, 3294 add_sub_reg_insn insn2, 3295 bool is32) { 3296 assert(Rd != zr, "Rd = zr and not setting flags?"); 3297 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3298 if (fits) { 3299 (this->*insn1)(Rd, Rn, imm); 3300 } else { 3301 if (g_uabs(imm) < (1 << 24)) { 3302 (this->*insn1)(Rd, Rn, imm & -(1 << 12)); 3303 (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1)); 3304 } else { 3305 assert_different_registers(Rd, Rn); 3306 mov(Rd, imm); 3307 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3308 } 3309 } 3310 } 3311 3312 // Separate vsn which sets the flags. Optimisations are more restricted 3313 // because we must set the flags correctly. 3314 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 3315 add_sub_imm_insn insn1, 3316 add_sub_reg_insn insn2, 3317 bool is32) { 3318 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3319 if (fits) { 3320 (this->*insn1)(Rd, Rn, imm); 3321 } else { 3322 assert_different_registers(Rd, Rn); 3323 assert(Rd != zr, "overflow in immediate operand"); 3324 mov(Rd, imm); 3325 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3326 } 3327 } 3328 3329 3330 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) { 3331 if (increment.is_register()) { 3332 add(Rd, Rn, increment.as_register()); 3333 } else { 3334 add(Rd, Rn, increment.as_constant()); 3335 } 3336 } 3337 3338 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) { 3339 if (increment.is_register()) { 3340 addw(Rd, Rn, increment.as_register()); 3341 } else { 3342 addw(Rd, Rn, increment.as_constant()); 3343 } 3344 } 3345 3346 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) { 3347 if (decrement.is_register()) { 3348 sub(Rd, Rn, decrement.as_register()); 3349 } else { 3350 sub(Rd, Rn, decrement.as_constant()); 3351 } 3352 } 3353 3354 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) { 3355 if (decrement.is_register()) { 3356 subw(Rd, Rn, decrement.as_register()); 3357 } else { 3358 subw(Rd, Rn, decrement.as_constant()); 3359 } 3360 } 3361 3362 void MacroAssembler::reinit_heapbase() 3363 { 3364 if (UseCompressedOops) { 3365 if (Universe::is_fully_initialized() && !AOTCodeCache::is_on_for_dump()) { 3366 mov(rheapbase, CompressedOops::base()); 3367 } else { 3368 lea(rheapbase, ExternalAddress(CompressedOops::base_addr())); 3369 ldr(rheapbase, Address(rheapbase)); 3370 } 3371 } 3372 } 3373 3374 // this simulates the behaviour of the x86 cmpxchg instruction using a 3375 // load linked/store conditional pair. we use the acquire/release 3376 // versions of these instructions so that we flush pending writes as 3377 // per Java semantics. 3378 3379 // n.b the x86 version assumes the old value to be compared against is 3380 // in rax and updates rax with the value located in memory if the 3381 // cmpxchg fails. we supply a register for the old value explicitly 3382 3383 // the aarch64 load linked/store conditional instructions do not 3384 // accept an offset. so, unlike x86, we must provide a plain register 3385 // to identify the memory word to be compared/exchanged rather than a 3386 // register+offset Address. 3387 3388 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 3389 Label &succeed, Label *fail) { 3390 // oldv holds comparison value 3391 // newv holds value to write in exchange 3392 // addr identifies memory word to compare against/update 3393 if (UseLSE) { 3394 mov(tmp, oldv); 3395 casal(Assembler::xword, oldv, newv, addr); 3396 cmp(tmp, oldv); 3397 br(Assembler::EQ, succeed); 3398 membar(AnyAny); 3399 } else { 3400 Label retry_load, nope; 3401 prfm(Address(addr), PSTL1STRM); 3402 bind(retry_load); 3403 // flush and load exclusive from the memory location 3404 // and fail if it is not what we expect 3405 ldaxr(tmp, addr); 3406 cmp(tmp, oldv); 3407 br(Assembler::NE, nope); 3408 // if we store+flush with no intervening write tmp will be zero 3409 stlxr(tmp, newv, addr); 3410 cbzw(tmp, succeed); 3411 // retry so we only ever return after a load fails to compare 3412 // ensures we don't return a stale value after a failed write. 3413 b(retry_load); 3414 // if the memory word differs we return it in oldv and signal a fail 3415 bind(nope); 3416 membar(AnyAny); 3417 mov(oldv, tmp); 3418 } 3419 if (fail) 3420 b(*fail); 3421 } 3422 3423 void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 3424 Label &succeed, Label *fail) { 3425 assert(oopDesc::mark_offset_in_bytes() == 0, "assumption"); 3426 cmpxchgptr(oldv, newv, obj, tmp, succeed, fail); 3427 } 3428 3429 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 3430 Label &succeed, Label *fail) { 3431 // oldv holds comparison value 3432 // newv holds value to write in exchange 3433 // addr identifies memory word to compare against/update 3434 // tmp returns 0/1 for success/failure 3435 if (UseLSE) { 3436 mov(tmp, oldv); 3437 casal(Assembler::word, oldv, newv, addr); 3438 cmp(tmp, oldv); 3439 br(Assembler::EQ, succeed); 3440 membar(AnyAny); 3441 } else { 3442 Label retry_load, nope; 3443 prfm(Address(addr), PSTL1STRM); 3444 bind(retry_load); 3445 // flush and load exclusive from the memory location 3446 // and fail if it is not what we expect 3447 ldaxrw(tmp, addr); 3448 cmp(tmp, oldv); 3449 br(Assembler::NE, nope); 3450 // if we store+flush with no intervening write tmp will be zero 3451 stlxrw(tmp, newv, addr); 3452 cbzw(tmp, succeed); 3453 // retry so we only ever return after a load fails to compare 3454 // ensures we don't return a stale value after a failed write. 3455 b(retry_load); 3456 // if the memory word differs we return it in oldv and signal a fail 3457 bind(nope); 3458 membar(AnyAny); 3459 mov(oldv, tmp); 3460 } 3461 if (fail) 3462 b(*fail); 3463 } 3464 3465 // A generic CAS; success or failure is in the EQ flag. A weak CAS 3466 // doesn't retry and may fail spuriously. If the oldval is wanted, 3467 // Pass a register for the result, otherwise pass noreg. 3468 3469 // Clobbers rscratch1 3470 void MacroAssembler::cmpxchg(Register addr, Register expected, 3471 Register new_val, 3472 enum operand_size size, 3473 bool acquire, bool release, 3474 bool weak, 3475 Register result) { 3476 if (result == noreg) result = rscratch1; 3477 BLOCK_COMMENT("cmpxchg {"); 3478 if (UseLSE) { 3479 mov(result, expected); 3480 lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true); 3481 compare_eq(result, expected, size); 3482 #ifdef ASSERT 3483 // Poison rscratch1 which is written on !UseLSE branch 3484 mov(rscratch1, 0x1f1f1f1f1f1f1f1f); 3485 #endif 3486 } else { 3487 Label retry_load, done; 3488 prfm(Address(addr), PSTL1STRM); 3489 bind(retry_load); 3490 load_exclusive(result, addr, size, acquire); 3491 compare_eq(result, expected, size); 3492 br(Assembler::NE, done); 3493 store_exclusive(rscratch1, new_val, addr, size, release); 3494 if (weak) { 3495 cmpw(rscratch1, 0u); // If the store fails, return NE to our caller. 3496 } else { 3497 cbnzw(rscratch1, retry_load); 3498 } 3499 bind(done); 3500 } 3501 BLOCK_COMMENT("} cmpxchg"); 3502 } 3503 3504 // A generic comparison. Only compares for equality, clobbers rscratch1. 3505 void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) { 3506 if (size == xword) { 3507 cmp(rm, rn); 3508 } else if (size == word) { 3509 cmpw(rm, rn); 3510 } else if (size == halfword) { 3511 eorw(rscratch1, rm, rn); 3512 ands(zr, rscratch1, 0xffff); 3513 } else if (size == byte) { 3514 eorw(rscratch1, rm, rn); 3515 ands(zr, rscratch1, 0xff); 3516 } else { 3517 ShouldNotReachHere(); 3518 } 3519 } 3520 3521 3522 static bool different(Register a, RegisterOrConstant b, Register c) { 3523 if (b.is_constant()) 3524 return a != c; 3525 else 3526 return a != b.as_register() && a != c && b.as_register() != c; 3527 } 3528 3529 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \ 3530 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \ 3531 if (UseLSE) { \ 3532 prev = prev->is_valid() ? prev : zr; \ 3533 if (incr.is_register()) { \ 3534 AOP(sz, incr.as_register(), prev, addr); \ 3535 } else { \ 3536 mov(rscratch2, incr.as_constant()); \ 3537 AOP(sz, rscratch2, prev, addr); \ 3538 } \ 3539 return; \ 3540 } \ 3541 Register result = rscratch2; \ 3542 if (prev->is_valid()) \ 3543 result = different(prev, incr, addr) ? prev : rscratch2; \ 3544 \ 3545 Label retry_load; \ 3546 prfm(Address(addr), PSTL1STRM); \ 3547 bind(retry_load); \ 3548 LDXR(result, addr); \ 3549 OP(rscratch1, result, incr); \ 3550 STXR(rscratch2, rscratch1, addr); \ 3551 cbnzw(rscratch2, retry_load); \ 3552 if (prev->is_valid() && prev != result) { \ 3553 IOP(prev, rscratch1, incr); \ 3554 } \ 3555 } 3556 3557 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword) 3558 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word) 3559 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword) 3560 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word) 3561 3562 #undef ATOMIC_OP 3563 3564 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \ 3565 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \ 3566 if (UseLSE) { \ 3567 prev = prev->is_valid() ? prev : zr; \ 3568 AOP(sz, newv, prev, addr); \ 3569 return; \ 3570 } \ 3571 Register result = rscratch2; \ 3572 if (prev->is_valid()) \ 3573 result = different(prev, newv, addr) ? prev : rscratch2; \ 3574 \ 3575 Label retry_load; \ 3576 prfm(Address(addr), PSTL1STRM); \ 3577 bind(retry_load); \ 3578 LDXR(result, addr); \ 3579 STXR(rscratch1, newv, addr); \ 3580 cbnzw(rscratch1, retry_load); \ 3581 if (prev->is_valid() && prev != result) \ 3582 mov(prev, result); \ 3583 } 3584 3585 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword) 3586 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word) 3587 ATOMIC_XCHG(xchgl, swpl, ldxr, stlxr, Assembler::xword) 3588 ATOMIC_XCHG(xchglw, swpl, ldxrw, stlxrw, Assembler::word) 3589 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword) 3590 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word) 3591 3592 #undef ATOMIC_XCHG 3593 3594 #ifndef PRODUCT 3595 extern "C" void findpc(intptr_t x); 3596 #endif 3597 3598 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) 3599 { 3600 // In order to get locks to work, we need to fake a in_VM state 3601 if (ShowMessageBoxOnError ) { 3602 JavaThread* thread = JavaThread::current(); 3603 JavaThreadState saved_state = thread->thread_state(); 3604 thread->set_thread_state(_thread_in_vm); 3605 #ifndef PRODUCT 3606 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 3607 ttyLocker ttyl; 3608 BytecodeCounter::print(); 3609 } 3610 #endif 3611 if (os::message_box(msg, "Execution stopped, print registers?")) { 3612 ttyLocker ttyl; 3613 tty->print_cr(" pc = 0x%016" PRIx64, pc); 3614 #ifndef PRODUCT 3615 tty->cr(); 3616 findpc(pc); 3617 tty->cr(); 3618 #endif 3619 tty->print_cr(" r0 = 0x%016" PRIx64, regs[0]); 3620 tty->print_cr(" r1 = 0x%016" PRIx64, regs[1]); 3621 tty->print_cr(" r2 = 0x%016" PRIx64, regs[2]); 3622 tty->print_cr(" r3 = 0x%016" PRIx64, regs[3]); 3623 tty->print_cr(" r4 = 0x%016" PRIx64, regs[4]); 3624 tty->print_cr(" r5 = 0x%016" PRIx64, regs[5]); 3625 tty->print_cr(" r6 = 0x%016" PRIx64, regs[6]); 3626 tty->print_cr(" r7 = 0x%016" PRIx64, regs[7]); 3627 tty->print_cr(" r8 = 0x%016" PRIx64, regs[8]); 3628 tty->print_cr(" r9 = 0x%016" PRIx64, regs[9]); 3629 tty->print_cr("r10 = 0x%016" PRIx64, regs[10]); 3630 tty->print_cr("r11 = 0x%016" PRIx64, regs[11]); 3631 tty->print_cr("r12 = 0x%016" PRIx64, regs[12]); 3632 tty->print_cr("r13 = 0x%016" PRIx64, regs[13]); 3633 tty->print_cr("r14 = 0x%016" PRIx64, regs[14]); 3634 tty->print_cr("r15 = 0x%016" PRIx64, regs[15]); 3635 tty->print_cr("r16 = 0x%016" PRIx64, regs[16]); 3636 tty->print_cr("r17 = 0x%016" PRIx64, regs[17]); 3637 tty->print_cr("r18 = 0x%016" PRIx64, regs[18]); 3638 tty->print_cr("r19 = 0x%016" PRIx64, regs[19]); 3639 tty->print_cr("r20 = 0x%016" PRIx64, regs[20]); 3640 tty->print_cr("r21 = 0x%016" PRIx64, regs[21]); 3641 tty->print_cr("r22 = 0x%016" PRIx64, regs[22]); 3642 tty->print_cr("r23 = 0x%016" PRIx64, regs[23]); 3643 tty->print_cr("r24 = 0x%016" PRIx64, regs[24]); 3644 tty->print_cr("r25 = 0x%016" PRIx64, regs[25]); 3645 tty->print_cr("r26 = 0x%016" PRIx64, regs[26]); 3646 tty->print_cr("r27 = 0x%016" PRIx64, regs[27]); 3647 tty->print_cr("r28 = 0x%016" PRIx64, regs[28]); 3648 tty->print_cr("r30 = 0x%016" PRIx64, regs[30]); 3649 tty->print_cr("r31 = 0x%016" PRIx64, regs[31]); 3650 BREAKPOINT; 3651 } 3652 } 3653 fatal("DEBUG MESSAGE: %s", msg); 3654 } 3655 3656 RegSet MacroAssembler::call_clobbered_gp_registers() { 3657 RegSet regs = RegSet::range(r0, r17) - RegSet::of(rscratch1, rscratch2); 3658 #ifndef R18_RESERVED 3659 regs += r18_tls; 3660 #endif 3661 return regs; 3662 } 3663 3664 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) { 3665 int step = 4 * wordSize; 3666 push(call_clobbered_gp_registers() - exclude, sp); 3667 sub(sp, sp, step); 3668 mov(rscratch1, -step); 3669 // Push v0-v7, v16-v31. 3670 for (int i = 31; i>= 4; i -= 4) { 3671 if (i <= v7->encoding() || i >= v16->encoding()) 3672 st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1), 3673 as_FloatRegister(i), T1D, Address(post(sp, rscratch1))); 3674 } 3675 st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2), 3676 as_FloatRegister(3), T1D, Address(sp)); 3677 } 3678 3679 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) { 3680 for (int i = 0; i < 32; i += 4) { 3681 if (i <= v7->encoding() || i >= v16->encoding()) 3682 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3683 as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize))); 3684 } 3685 3686 reinitialize_ptrue(); 3687 3688 pop(call_clobbered_gp_registers() - exclude, sp); 3689 } 3690 3691 void MacroAssembler::push_CPU_state(bool save_vectors, bool use_sve, 3692 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3693 push(RegSet::range(r0, r29), sp); // integer registers except lr & sp 3694 if (save_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3695 sub(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3696 for (int i = 0; i < FloatRegister::number_of_registers; i++) { 3697 sve_str(as_FloatRegister(i), Address(sp, i)); 3698 } 3699 } else { 3700 int step = (save_vectors ? 8 : 4) * wordSize; 3701 mov(rscratch1, -step); 3702 sub(sp, sp, step); 3703 for (int i = 28; i >= 4; i -= 4) { 3704 st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3705 as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1))); 3706 } 3707 st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp); 3708 } 3709 if (save_vectors && use_sve && total_predicate_in_bytes > 0) { 3710 sub(sp, sp, total_predicate_in_bytes); 3711 for (int i = 0; i < PRegister::number_of_registers; i++) { 3712 sve_str(as_PRegister(i), Address(sp, i)); 3713 } 3714 } 3715 } 3716 3717 void MacroAssembler::pop_CPU_state(bool restore_vectors, bool use_sve, 3718 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3719 if (restore_vectors && use_sve && total_predicate_in_bytes > 0) { 3720 for (int i = PRegister::number_of_registers - 1; i >= 0; i--) { 3721 sve_ldr(as_PRegister(i), Address(sp, i)); 3722 } 3723 add(sp, sp, total_predicate_in_bytes); 3724 } 3725 if (restore_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3726 for (int i = FloatRegister::number_of_registers - 1; i >= 0; i--) { 3727 sve_ldr(as_FloatRegister(i), Address(sp, i)); 3728 } 3729 add(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3730 } else { 3731 int step = (restore_vectors ? 8 : 4) * wordSize; 3732 for (int i = 0; i <= 28; i += 4) 3733 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3734 as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step))); 3735 } 3736 3737 // We may use predicate registers and rely on ptrue with SVE, 3738 // regardless of wide vector (> 8 bytes) used or not. 3739 if (use_sve) { 3740 reinitialize_ptrue(); 3741 } 3742 3743 // integer registers except lr & sp 3744 pop(RegSet::range(r0, r17), sp); 3745 #ifdef R18_RESERVED 3746 ldp(zr, r19, Address(post(sp, 2 * wordSize))); 3747 pop(RegSet::range(r20, r29), sp); 3748 #else 3749 pop(RegSet::range(r18_tls, r29), sp); 3750 #endif 3751 } 3752 3753 /** 3754 * Helpers for multiply_to_len(). 3755 */ 3756 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 3757 Register src1, Register src2) { 3758 adds(dest_lo, dest_lo, src1); 3759 adc(dest_hi, dest_hi, zr); 3760 adds(dest_lo, dest_lo, src2); 3761 adc(final_dest_hi, dest_hi, zr); 3762 } 3763 3764 // Generate an address from (r + r1 extend offset). "size" is the 3765 // size of the operand. The result may be in rscratch2. 3766 Address MacroAssembler::offsetted_address(Register r, Register r1, 3767 Address::extend ext, int offset, int size) { 3768 if (offset || (ext.shift() % size != 0)) { 3769 lea(rscratch2, Address(r, r1, ext)); 3770 return Address(rscratch2, offset); 3771 } else { 3772 return Address(r, r1, ext); 3773 } 3774 } 3775 3776 Address MacroAssembler::spill_address(int size, int offset, Register tmp) 3777 { 3778 assert(offset >= 0, "spill to negative address?"); 3779 // Offset reachable ? 3780 // Not aligned - 9 bits signed offset 3781 // Aligned - 12 bits unsigned offset shifted 3782 Register base = sp; 3783 if ((offset & (size-1)) && offset >= (1<<8)) { 3784 add(tmp, base, offset & ((1<<12)-1)); 3785 base = tmp; 3786 offset &= -1u<<12; 3787 } 3788 3789 if (offset >= (1<<12) * size) { 3790 add(tmp, base, offset & (((1<<12)-1)<<12)); 3791 base = tmp; 3792 offset &= ~(((1<<12)-1)<<12); 3793 } 3794 3795 return Address(base, offset); 3796 } 3797 3798 Address MacroAssembler::sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp) { 3799 assert(offset >= 0, "spill to negative address?"); 3800 3801 Register base = sp; 3802 3803 // An immediate offset in the range 0 to 255 which is multiplied 3804 // by the current vector or predicate register size in bytes. 3805 if (offset % sve_reg_size_in_bytes == 0 && offset < ((1<<8)*sve_reg_size_in_bytes)) { 3806 return Address(base, offset / sve_reg_size_in_bytes); 3807 } 3808 3809 add(tmp, base, offset); 3810 return Address(tmp); 3811 } 3812 3813 // Checks whether offset is aligned. 3814 // Returns true if it is, else false. 3815 bool MacroAssembler::merge_alignment_check(Register base, 3816 size_t size, 3817 int64_t cur_offset, 3818 int64_t prev_offset) const { 3819 if (AvoidUnalignedAccesses) { 3820 if (base == sp) { 3821 // Checks whether low offset if aligned to pair of registers. 3822 int64_t pair_mask = size * 2 - 1; 3823 int64_t offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3824 return (offset & pair_mask) == 0; 3825 } else { // If base is not sp, we can't guarantee the access is aligned. 3826 return false; 3827 } 3828 } else { 3829 int64_t mask = size - 1; 3830 // Load/store pair instruction only supports element size aligned offset. 3831 return (cur_offset & mask) == 0 && (prev_offset & mask) == 0; 3832 } 3833 } 3834 3835 // Checks whether current and previous loads/stores can be merged. 3836 // Returns true if it can be merged, else false. 3837 bool MacroAssembler::ldst_can_merge(Register rt, 3838 const Address &adr, 3839 size_t cur_size_in_bytes, 3840 bool is_store) const { 3841 address prev = pc() - NativeInstruction::instruction_size; 3842 address last = code()->last_insn(); 3843 3844 if (last == nullptr || !nativeInstruction_at(last)->is_Imm_LdSt()) { 3845 return false; 3846 } 3847 3848 if (adr.getMode() != Address::base_plus_offset || prev != last) { 3849 return false; 3850 } 3851 3852 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3853 size_t prev_size_in_bytes = prev_ldst->size_in_bytes(); 3854 3855 assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging."); 3856 assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging."); 3857 3858 if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) { 3859 return false; 3860 } 3861 3862 int64_t max_offset = 63 * prev_size_in_bytes; 3863 int64_t min_offset = -64 * prev_size_in_bytes; 3864 3865 assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged."); 3866 3867 // Only same base can be merged. 3868 if (adr.base() != prev_ldst->base()) { 3869 return false; 3870 } 3871 3872 int64_t cur_offset = adr.offset(); 3873 int64_t prev_offset = prev_ldst->offset(); 3874 size_t diff = abs(cur_offset - prev_offset); 3875 if (diff != prev_size_in_bytes) { 3876 return false; 3877 } 3878 3879 // Following cases can not be merged: 3880 // ldr x2, [x2, #8] 3881 // ldr x3, [x2, #16] 3882 // or: 3883 // ldr x2, [x3, #8] 3884 // ldr x2, [x3, #16] 3885 // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL. 3886 if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) { 3887 return false; 3888 } 3889 3890 int64_t low_offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3891 // Offset range must be in ldp/stp instruction's range. 3892 if (low_offset > max_offset || low_offset < min_offset) { 3893 return false; 3894 } 3895 3896 if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) { 3897 return true; 3898 } 3899 3900 return false; 3901 } 3902 3903 // Merge current load/store with previous load/store into ldp/stp. 3904 void MacroAssembler::merge_ldst(Register rt, 3905 const Address &adr, 3906 size_t cur_size_in_bytes, 3907 bool is_store) { 3908 3909 assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged."); 3910 3911 Register rt_low, rt_high; 3912 address prev = pc() - NativeInstruction::instruction_size; 3913 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3914 3915 int64_t offset; 3916 3917 if (adr.offset() < prev_ldst->offset()) { 3918 offset = adr.offset(); 3919 rt_low = rt; 3920 rt_high = prev_ldst->target(); 3921 } else { 3922 offset = prev_ldst->offset(); 3923 rt_low = prev_ldst->target(); 3924 rt_high = rt; 3925 } 3926 3927 Address adr_p = Address(prev_ldst->base(), offset); 3928 // Overwrite previous generated binary. 3929 code_section()->set_end(prev); 3930 3931 const size_t sz = prev_ldst->size_in_bytes(); 3932 assert(sz == 8 || sz == 4, "only supports 64/32bit merging."); 3933 if (!is_store) { 3934 BLOCK_COMMENT("merged ldr pair"); 3935 if (sz == 8) { 3936 ldp(rt_low, rt_high, adr_p); 3937 } else { 3938 ldpw(rt_low, rt_high, adr_p); 3939 } 3940 } else { 3941 BLOCK_COMMENT("merged str pair"); 3942 if (sz == 8) { 3943 stp(rt_low, rt_high, adr_p); 3944 } else { 3945 stpw(rt_low, rt_high, adr_p); 3946 } 3947 } 3948 } 3949 3950 /** 3951 * Multiply 64 bit by 64 bit first loop. 3952 */ 3953 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 3954 Register y, Register y_idx, Register z, 3955 Register carry, Register product, 3956 Register idx, Register kdx) { 3957 // 3958 // jlong carry, x[], y[], z[]; 3959 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 3960 // huge_128 product = y[idx] * x[xstart] + carry; 3961 // z[kdx] = (jlong)product; 3962 // carry = (jlong)(product >>> 64); 3963 // } 3964 // z[xstart] = carry; 3965 // 3966 3967 Label L_first_loop, L_first_loop_exit; 3968 Label L_one_x, L_one_y, L_multiply; 3969 3970 subsw(xstart, xstart, 1); 3971 br(Assembler::MI, L_one_x); 3972 3973 lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt))); 3974 ldr(x_xstart, Address(rscratch1)); 3975 ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian 3976 3977 bind(L_first_loop); 3978 subsw(idx, idx, 1); 3979 br(Assembler::MI, L_first_loop_exit); 3980 subsw(idx, idx, 1); 3981 br(Assembler::MI, L_one_y); 3982 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3983 ldr(y_idx, Address(rscratch1)); 3984 ror(y_idx, y_idx, 32); // convert big-endian to little-endian 3985 bind(L_multiply); 3986 3987 // AArch64 has a multiply-accumulate instruction that we can't use 3988 // here because it has no way to process carries, so we have to use 3989 // separate add and adc instructions. Bah. 3990 umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product 3991 mul(product, x_xstart, y_idx); 3992 adds(product, product, carry); 3993 adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product 3994 3995 subw(kdx, kdx, 2); 3996 ror(product, product, 32); // back to big-endian 3997 str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong)); 3998 3999 b(L_first_loop); 4000 4001 bind(L_one_y); 4002 ldrw(y_idx, Address(y, 0)); 4003 b(L_multiply); 4004 4005 bind(L_one_x); 4006 ldrw(x_xstart, Address(x, 0)); 4007 b(L_first_loop); 4008 4009 bind(L_first_loop_exit); 4010 } 4011 4012 /** 4013 * Multiply 128 bit by 128. Unrolled inner loop. 4014 * 4015 */ 4016 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z, 4017 Register carry, Register carry2, 4018 Register idx, Register jdx, 4019 Register yz_idx1, Register yz_idx2, 4020 Register tmp, Register tmp3, Register tmp4, 4021 Register tmp6, Register product_hi) { 4022 4023 // jlong carry, x[], y[], z[]; 4024 // int kdx = ystart+1; 4025 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 4026 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry; 4027 // jlong carry2 = (jlong)(tmp3 >>> 64); 4028 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2; 4029 // carry = (jlong)(tmp4 >>> 64); 4030 // z[kdx+idx+1] = (jlong)tmp3; 4031 // z[kdx+idx] = (jlong)tmp4; 4032 // } 4033 // idx += 2; 4034 // if (idx > 0) { 4035 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry; 4036 // z[kdx+idx] = (jlong)yz_idx1; 4037 // carry = (jlong)(yz_idx1 >>> 64); 4038 // } 4039 // 4040 4041 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 4042 4043 lsrw(jdx, idx, 2); 4044 4045 bind(L_third_loop); 4046 4047 subsw(jdx, jdx, 1); 4048 br(Assembler::MI, L_third_loop_exit); 4049 subw(idx, idx, 4); 4050 4051 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4052 4053 ldp(yz_idx2, yz_idx1, Address(rscratch1, 0)); 4054 4055 lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4056 4057 ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 4058 ror(yz_idx2, yz_idx2, 32); 4059 4060 ldp(rscratch2, rscratch1, Address(tmp6, 0)); 4061 4062 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 4063 umulh(tmp4, product_hi, yz_idx1); 4064 4065 ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian 4066 ror(rscratch2, rscratch2, 32); 4067 4068 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp 4069 umulh(carry2, product_hi, yz_idx2); 4070 4071 // propagate sum of both multiplications into carry:tmp4:tmp3 4072 adds(tmp3, tmp3, carry); 4073 adc(tmp4, tmp4, zr); 4074 adds(tmp3, tmp3, rscratch1); 4075 adcs(tmp4, tmp4, tmp); 4076 adc(carry, carry2, zr); 4077 adds(tmp4, tmp4, rscratch2); 4078 adc(carry, carry, zr); 4079 4080 ror(tmp3, tmp3, 32); // convert little-endian to big-endian 4081 ror(tmp4, tmp4, 32); 4082 stp(tmp4, tmp3, Address(tmp6, 0)); 4083 4084 b(L_third_loop); 4085 bind (L_third_loop_exit); 4086 4087 andw (idx, idx, 0x3); 4088 cbz(idx, L_post_third_loop_done); 4089 4090 Label L_check_1; 4091 subsw(idx, idx, 2); 4092 br(Assembler::MI, L_check_1); 4093 4094 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4095 ldr(yz_idx1, Address(rscratch1, 0)); 4096 ror(yz_idx1, yz_idx1, 32); 4097 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 4098 umulh(tmp4, product_hi, yz_idx1); 4099 lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4100 ldr(yz_idx2, Address(rscratch1, 0)); 4101 ror(yz_idx2, yz_idx2, 32); 4102 4103 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2); 4104 4105 ror(tmp3, tmp3, 32); 4106 str(tmp3, Address(rscratch1, 0)); 4107 4108 bind (L_check_1); 4109 4110 andw (idx, idx, 0x1); 4111 subsw(idx, idx, 1); 4112 br(Assembler::MI, L_post_third_loop_done); 4113 ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4114 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3 4115 umulh(carry2, tmp4, product_hi); 4116 ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4117 4118 add2_with_carry(carry2, tmp3, tmp4, carry); 4119 4120 strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4121 extr(carry, carry2, tmp3, 32); 4122 4123 bind(L_post_third_loop_done); 4124 } 4125 4126 /** 4127 * Code for BigInteger::multiplyToLen() intrinsic. 4128 * 4129 * r0: x 4130 * r1: xlen 4131 * r2: y 4132 * r3: ylen 4133 * r4: z 4134 * r5: tmp0 4135 * r10: tmp1 4136 * r11: tmp2 4137 * r12: tmp3 4138 * r13: tmp4 4139 * r14: tmp5 4140 * r15: tmp6 4141 * r16: tmp7 4142 * 4143 */ 4144 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, 4145 Register z, Register tmp0, 4146 Register tmp1, Register tmp2, Register tmp3, Register tmp4, 4147 Register tmp5, Register tmp6, Register product_hi) { 4148 4149 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, product_hi); 4150 4151 const Register idx = tmp1; 4152 const Register kdx = tmp2; 4153 const Register xstart = tmp3; 4154 4155 const Register y_idx = tmp4; 4156 const Register carry = tmp5; 4157 const Register product = xlen; 4158 const Register x_xstart = tmp0; 4159 4160 // First Loop. 4161 // 4162 // final static long LONG_MASK = 0xffffffffL; 4163 // int xstart = xlen - 1; 4164 // int ystart = ylen - 1; 4165 // long carry = 0; 4166 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 4167 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 4168 // z[kdx] = (int)product; 4169 // carry = product >>> 32; 4170 // } 4171 // z[xstart] = (int)carry; 4172 // 4173 4174 movw(idx, ylen); // idx = ylen; 4175 addw(kdx, xlen, ylen); // kdx = xlen+ylen; 4176 mov(carry, zr); // carry = 0; 4177 4178 Label L_done; 4179 4180 movw(xstart, xlen); 4181 subsw(xstart, xstart, 1); 4182 br(Assembler::MI, L_done); 4183 4184 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 4185 4186 Label L_second_loop; 4187 cbzw(kdx, L_second_loop); 4188 4189 Label L_carry; 4190 subw(kdx, kdx, 1); 4191 cbzw(kdx, L_carry); 4192 4193 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 4194 lsr(carry, carry, 32); 4195 subw(kdx, kdx, 1); 4196 4197 bind(L_carry); 4198 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 4199 4200 // Second and third (nested) loops. 4201 // 4202 // for (int i = xstart-1; i >= 0; i--) { // Second loop 4203 // carry = 0; 4204 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 4205 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 4206 // (z[k] & LONG_MASK) + carry; 4207 // z[k] = (int)product; 4208 // carry = product >>> 32; 4209 // } 4210 // z[i] = (int)carry; 4211 // } 4212 // 4213 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi 4214 4215 const Register jdx = tmp1; 4216 4217 bind(L_second_loop); 4218 mov(carry, zr); // carry = 0; 4219 movw(jdx, ylen); // j = ystart+1 4220 4221 subsw(xstart, xstart, 1); // i = xstart-1; 4222 br(Assembler::MI, L_done); 4223 4224 str(z, Address(pre(sp, -4 * wordSize))); 4225 4226 Label L_last_x; 4227 lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j 4228 subsw(xstart, xstart, 1); // i = xstart-1; 4229 br(Assembler::MI, L_last_x); 4230 4231 lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt))); 4232 ldr(product_hi, Address(rscratch1)); 4233 ror(product_hi, product_hi, 32); // convert big-endian to little-endian 4234 4235 Label L_third_loop_prologue; 4236 bind(L_third_loop_prologue); 4237 4238 str(ylen, Address(sp, wordSize)); 4239 stp(x, xstart, Address(sp, 2 * wordSize)); 4240 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product, 4241 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi); 4242 ldp(z, ylen, Address(post(sp, 2 * wordSize))); 4243 ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen 4244 4245 addw(tmp3, xlen, 1); 4246 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4247 subsw(tmp3, tmp3, 1); 4248 br(Assembler::MI, L_done); 4249 4250 lsr(carry, carry, 32); 4251 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4252 b(L_second_loop); 4253 4254 // Next infrequent code is moved outside loops. 4255 bind(L_last_x); 4256 ldrw(product_hi, Address(x, 0)); 4257 b(L_third_loop_prologue); 4258 4259 bind(L_done); 4260 } 4261 4262 // Code for BigInteger::mulAdd intrinsic 4263 // out = r0 4264 // in = r1 4265 // offset = r2 (already out.length-offset) 4266 // len = r3 4267 // k = r4 4268 // 4269 // pseudo code from java implementation: 4270 // carry = 0; 4271 // offset = out.length-offset - 1; 4272 // for (int j=len-1; j >= 0; j--) { 4273 // product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry; 4274 // out[offset--] = (int)product; 4275 // carry = product >>> 32; 4276 // } 4277 // return (int)carry; 4278 void MacroAssembler::mul_add(Register out, Register in, Register offset, 4279 Register len, Register k) { 4280 Label LOOP, END; 4281 // pre-loop 4282 cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches 4283 csel(out, zr, out, Assembler::EQ); 4284 br(Assembler::EQ, END); 4285 add(in, in, len, LSL, 2); // in[j+1] address 4286 add(offset, out, offset, LSL, 2); // out[offset + 1] address 4287 mov(out, zr); // used to keep carry now 4288 BIND(LOOP); 4289 ldrw(rscratch1, Address(pre(in, -4))); 4290 madd(rscratch1, rscratch1, k, out); 4291 ldrw(rscratch2, Address(pre(offset, -4))); 4292 add(rscratch1, rscratch1, rscratch2); 4293 strw(rscratch1, Address(offset)); 4294 lsr(out, rscratch1, 32); 4295 subs(len, len, 1); 4296 br(Assembler::NE, LOOP); 4297 BIND(END); 4298 } 4299 4300 /** 4301 * Emits code to update CRC-32 with a byte value according to constants in table 4302 * 4303 * @param [in,out]crc Register containing the crc. 4304 * @param [in]val Register containing the byte to fold into the CRC. 4305 * @param [in]table Register containing the table of crc constants. 4306 * 4307 * uint32_t crc; 4308 * val = crc_table[(val ^ crc) & 0xFF]; 4309 * crc = val ^ (crc >> 8); 4310 * 4311 */ 4312 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 4313 eor(val, val, crc); 4314 andr(val, val, 0xff); 4315 ldrw(val, Address(table, val, Address::lsl(2))); 4316 eor(crc, val, crc, Assembler::LSR, 8); 4317 } 4318 4319 /** 4320 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3 4321 * 4322 * @param [in,out]crc Register containing the crc. 4323 * @param [in]v Register containing the 32-bit to fold into the CRC. 4324 * @param [in]table0 Register containing table 0 of crc constants. 4325 * @param [in]table1 Register containing table 1 of crc constants. 4326 * @param [in]table2 Register containing table 2 of crc constants. 4327 * @param [in]table3 Register containing table 3 of crc constants. 4328 * 4329 * uint32_t crc; 4330 * v = crc ^ v 4331 * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24] 4332 * 4333 */ 4334 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp, 4335 Register table0, Register table1, Register table2, Register table3, 4336 bool upper) { 4337 eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0); 4338 uxtb(tmp, v); 4339 ldrw(crc, Address(table3, tmp, Address::lsl(2))); 4340 ubfx(tmp, v, 8, 8); 4341 ldrw(tmp, Address(table2, tmp, Address::lsl(2))); 4342 eor(crc, crc, tmp); 4343 ubfx(tmp, v, 16, 8); 4344 ldrw(tmp, Address(table1, tmp, Address::lsl(2))); 4345 eor(crc, crc, tmp); 4346 ubfx(tmp, v, 24, 8); 4347 ldrw(tmp, Address(table0, tmp, Address::lsl(2))); 4348 eor(crc, crc, tmp); 4349 } 4350 4351 void MacroAssembler::kernel_crc32_using_crypto_pmull(Register crc, Register buf, 4352 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4353 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4354 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4355 4356 subs(tmp0, len, 384); 4357 mvnw(crc, crc); 4358 br(Assembler::GE, CRC_by128_pre); 4359 BIND(CRC_less128); 4360 subs(len, len, 32); 4361 br(Assembler::GE, CRC_by32_loop); 4362 BIND(CRC_less32); 4363 adds(len, len, 32 - 4); 4364 br(Assembler::GE, CRC_by4_loop); 4365 adds(len, len, 4); 4366 br(Assembler::GT, CRC_by1_loop); 4367 b(L_exit); 4368 4369 BIND(CRC_by32_loop); 4370 ldp(tmp0, tmp1, Address(buf)); 4371 crc32x(crc, crc, tmp0); 4372 ldp(tmp2, tmp3, Address(buf, 16)); 4373 crc32x(crc, crc, tmp1); 4374 add(buf, buf, 32); 4375 crc32x(crc, crc, tmp2); 4376 subs(len, len, 32); 4377 crc32x(crc, crc, tmp3); 4378 br(Assembler::GE, CRC_by32_loop); 4379 cmn(len, (u1)32); 4380 br(Assembler::NE, CRC_less32); 4381 b(L_exit); 4382 4383 BIND(CRC_by4_loop); 4384 ldrw(tmp0, Address(post(buf, 4))); 4385 subs(len, len, 4); 4386 crc32w(crc, crc, tmp0); 4387 br(Assembler::GE, CRC_by4_loop); 4388 adds(len, len, 4); 4389 br(Assembler::LE, L_exit); 4390 BIND(CRC_by1_loop); 4391 ldrb(tmp0, Address(post(buf, 1))); 4392 subs(len, len, 1); 4393 crc32b(crc, crc, tmp0); 4394 br(Assembler::GT, CRC_by1_loop); 4395 b(L_exit); 4396 4397 BIND(CRC_by128_pre); 4398 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4399 4*256*sizeof(juint) + 8*sizeof(juint)); 4400 mov(crc, 0); 4401 crc32x(crc, crc, tmp0); 4402 crc32x(crc, crc, tmp1); 4403 4404 cbnz(len, CRC_less128); 4405 4406 BIND(L_exit); 4407 mvnw(crc, crc); 4408 } 4409 4410 void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf, 4411 Register len, Register tmp0, Register tmp1, Register tmp2, 4412 Register tmp3) { 4413 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4414 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4415 4416 mvnw(crc, crc); 4417 4418 subs(len, len, 128); 4419 br(Assembler::GE, CRC_by64_pre); 4420 BIND(CRC_less64); 4421 adds(len, len, 128-32); 4422 br(Assembler::GE, CRC_by32_loop); 4423 BIND(CRC_less32); 4424 adds(len, len, 32-4); 4425 br(Assembler::GE, CRC_by4_loop); 4426 adds(len, len, 4); 4427 br(Assembler::GT, CRC_by1_loop); 4428 b(L_exit); 4429 4430 BIND(CRC_by32_loop); 4431 ldp(tmp0, tmp1, Address(post(buf, 16))); 4432 subs(len, len, 32); 4433 crc32x(crc, crc, tmp0); 4434 ldr(tmp2, Address(post(buf, 8))); 4435 crc32x(crc, crc, tmp1); 4436 ldr(tmp3, Address(post(buf, 8))); 4437 crc32x(crc, crc, tmp2); 4438 crc32x(crc, crc, tmp3); 4439 br(Assembler::GE, CRC_by32_loop); 4440 cmn(len, (u1)32); 4441 br(Assembler::NE, CRC_less32); 4442 b(L_exit); 4443 4444 BIND(CRC_by4_loop); 4445 ldrw(tmp0, Address(post(buf, 4))); 4446 subs(len, len, 4); 4447 crc32w(crc, crc, tmp0); 4448 br(Assembler::GE, CRC_by4_loop); 4449 adds(len, len, 4); 4450 br(Assembler::LE, L_exit); 4451 BIND(CRC_by1_loop); 4452 ldrb(tmp0, Address(post(buf, 1))); 4453 subs(len, len, 1); 4454 crc32b(crc, crc, tmp0); 4455 br(Assembler::GT, CRC_by1_loop); 4456 b(L_exit); 4457 4458 BIND(CRC_by64_pre); 4459 sub(buf, buf, 8); 4460 ldp(tmp0, tmp1, Address(buf, 8)); 4461 crc32x(crc, crc, tmp0); 4462 ldr(tmp2, Address(buf, 24)); 4463 crc32x(crc, crc, tmp1); 4464 ldr(tmp3, Address(buf, 32)); 4465 crc32x(crc, crc, tmp2); 4466 ldr(tmp0, Address(buf, 40)); 4467 crc32x(crc, crc, tmp3); 4468 ldr(tmp1, Address(buf, 48)); 4469 crc32x(crc, crc, tmp0); 4470 ldr(tmp2, Address(buf, 56)); 4471 crc32x(crc, crc, tmp1); 4472 ldr(tmp3, Address(pre(buf, 64))); 4473 4474 b(CRC_by64_loop); 4475 4476 align(CodeEntryAlignment); 4477 BIND(CRC_by64_loop); 4478 subs(len, len, 64); 4479 crc32x(crc, crc, tmp2); 4480 ldr(tmp0, Address(buf, 8)); 4481 crc32x(crc, crc, tmp3); 4482 ldr(tmp1, Address(buf, 16)); 4483 crc32x(crc, crc, tmp0); 4484 ldr(tmp2, Address(buf, 24)); 4485 crc32x(crc, crc, tmp1); 4486 ldr(tmp3, Address(buf, 32)); 4487 crc32x(crc, crc, tmp2); 4488 ldr(tmp0, Address(buf, 40)); 4489 crc32x(crc, crc, tmp3); 4490 ldr(tmp1, Address(buf, 48)); 4491 crc32x(crc, crc, tmp0); 4492 ldr(tmp2, Address(buf, 56)); 4493 crc32x(crc, crc, tmp1); 4494 ldr(tmp3, Address(pre(buf, 64))); 4495 br(Assembler::GE, CRC_by64_loop); 4496 4497 // post-loop 4498 crc32x(crc, crc, tmp2); 4499 crc32x(crc, crc, tmp3); 4500 4501 sub(len, len, 64); 4502 add(buf, buf, 8); 4503 cmn(len, (u1)128); 4504 br(Assembler::NE, CRC_less64); 4505 BIND(L_exit); 4506 mvnw(crc, crc); 4507 } 4508 4509 /** 4510 * @param crc register containing existing CRC (32-bit) 4511 * @param buf register pointing to input byte buffer (byte*) 4512 * @param len register containing number of bytes 4513 * @param table register that will contain address of CRC table 4514 * @param tmp scratch register 4515 */ 4516 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, 4517 Register table0, Register table1, Register table2, Register table3, 4518 Register tmp, Register tmp2, Register tmp3) { 4519 Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit; 4520 4521 if (UseCryptoPmullForCRC32) { 4522 kernel_crc32_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4523 return; 4524 } 4525 4526 if (UseCRC32) { 4527 kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3); 4528 return; 4529 } 4530 4531 mvnw(crc, crc); 4532 4533 { 4534 uint64_t offset; 4535 adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4536 add(table0, table0, offset); 4537 } 4538 add(table1, table0, 1*256*sizeof(juint)); 4539 add(table2, table0, 2*256*sizeof(juint)); 4540 add(table3, table0, 3*256*sizeof(juint)); 4541 4542 { // Neon code start 4543 cmp(len, (u1)64); 4544 br(Assembler::LT, L_by16); 4545 eor(v16, T16B, v16, v16); 4546 4547 Label L_fold; 4548 4549 add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants 4550 4551 ld1(v0, v1, T2D, post(buf, 32)); 4552 ld1r(v4, T2D, post(tmp, 8)); 4553 ld1r(v5, T2D, post(tmp, 8)); 4554 ld1r(v6, T2D, post(tmp, 8)); 4555 ld1r(v7, T2D, post(tmp, 8)); 4556 mov(v16, S, 0, crc); 4557 4558 eor(v0, T16B, v0, v16); 4559 sub(len, len, 64); 4560 4561 BIND(L_fold); 4562 pmull(v22, T8H, v0, v5, T8B); 4563 pmull(v20, T8H, v0, v7, T8B); 4564 pmull(v23, T8H, v0, v4, T8B); 4565 pmull(v21, T8H, v0, v6, T8B); 4566 4567 pmull2(v18, T8H, v0, v5, T16B); 4568 pmull2(v16, T8H, v0, v7, T16B); 4569 pmull2(v19, T8H, v0, v4, T16B); 4570 pmull2(v17, T8H, v0, v6, T16B); 4571 4572 uzp1(v24, T8H, v20, v22); 4573 uzp2(v25, T8H, v20, v22); 4574 eor(v20, T16B, v24, v25); 4575 4576 uzp1(v26, T8H, v16, v18); 4577 uzp2(v27, T8H, v16, v18); 4578 eor(v16, T16B, v26, v27); 4579 4580 ushll2(v22, T4S, v20, T8H, 8); 4581 ushll(v20, T4S, v20, T4H, 8); 4582 4583 ushll2(v18, T4S, v16, T8H, 8); 4584 ushll(v16, T4S, v16, T4H, 8); 4585 4586 eor(v22, T16B, v23, v22); 4587 eor(v18, T16B, v19, v18); 4588 eor(v20, T16B, v21, v20); 4589 eor(v16, T16B, v17, v16); 4590 4591 uzp1(v17, T2D, v16, v20); 4592 uzp2(v21, T2D, v16, v20); 4593 eor(v17, T16B, v17, v21); 4594 4595 ushll2(v20, T2D, v17, T4S, 16); 4596 ushll(v16, T2D, v17, T2S, 16); 4597 4598 eor(v20, T16B, v20, v22); 4599 eor(v16, T16B, v16, v18); 4600 4601 uzp1(v17, T2D, v20, v16); 4602 uzp2(v21, T2D, v20, v16); 4603 eor(v28, T16B, v17, v21); 4604 4605 pmull(v22, T8H, v1, v5, T8B); 4606 pmull(v20, T8H, v1, v7, T8B); 4607 pmull(v23, T8H, v1, v4, T8B); 4608 pmull(v21, T8H, v1, v6, T8B); 4609 4610 pmull2(v18, T8H, v1, v5, T16B); 4611 pmull2(v16, T8H, v1, v7, T16B); 4612 pmull2(v19, T8H, v1, v4, T16B); 4613 pmull2(v17, T8H, v1, v6, T16B); 4614 4615 ld1(v0, v1, T2D, post(buf, 32)); 4616 4617 uzp1(v24, T8H, v20, v22); 4618 uzp2(v25, T8H, v20, v22); 4619 eor(v20, T16B, v24, v25); 4620 4621 uzp1(v26, T8H, v16, v18); 4622 uzp2(v27, T8H, v16, v18); 4623 eor(v16, T16B, v26, v27); 4624 4625 ushll2(v22, T4S, v20, T8H, 8); 4626 ushll(v20, T4S, v20, T4H, 8); 4627 4628 ushll2(v18, T4S, v16, T8H, 8); 4629 ushll(v16, T4S, v16, T4H, 8); 4630 4631 eor(v22, T16B, v23, v22); 4632 eor(v18, T16B, v19, v18); 4633 eor(v20, T16B, v21, v20); 4634 eor(v16, T16B, v17, v16); 4635 4636 uzp1(v17, T2D, v16, v20); 4637 uzp2(v21, T2D, v16, v20); 4638 eor(v16, T16B, v17, v21); 4639 4640 ushll2(v20, T2D, v16, T4S, 16); 4641 ushll(v16, T2D, v16, T2S, 16); 4642 4643 eor(v20, T16B, v22, v20); 4644 eor(v16, T16B, v16, v18); 4645 4646 uzp1(v17, T2D, v20, v16); 4647 uzp2(v21, T2D, v20, v16); 4648 eor(v20, T16B, v17, v21); 4649 4650 shl(v16, T2D, v28, 1); 4651 shl(v17, T2D, v20, 1); 4652 4653 eor(v0, T16B, v0, v16); 4654 eor(v1, T16B, v1, v17); 4655 4656 subs(len, len, 32); 4657 br(Assembler::GE, L_fold); 4658 4659 mov(crc, 0); 4660 mov(tmp, v0, D, 0); 4661 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4662 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4663 mov(tmp, v0, D, 1); 4664 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4665 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4666 mov(tmp, v1, D, 0); 4667 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4668 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4669 mov(tmp, v1, D, 1); 4670 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4671 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4672 4673 add(len, len, 32); 4674 } // Neon code end 4675 4676 BIND(L_by16); 4677 subs(len, len, 16); 4678 br(Assembler::GE, L_by16_loop); 4679 adds(len, len, 16-4); 4680 br(Assembler::GE, L_by4_loop); 4681 adds(len, len, 4); 4682 br(Assembler::GT, L_by1_loop); 4683 b(L_exit); 4684 4685 BIND(L_by4_loop); 4686 ldrw(tmp, Address(post(buf, 4))); 4687 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3); 4688 subs(len, len, 4); 4689 br(Assembler::GE, L_by4_loop); 4690 adds(len, len, 4); 4691 br(Assembler::LE, L_exit); 4692 BIND(L_by1_loop); 4693 subs(len, len, 1); 4694 ldrb(tmp, Address(post(buf, 1))); 4695 update_byte_crc32(crc, tmp, table0); 4696 br(Assembler::GT, L_by1_loop); 4697 b(L_exit); 4698 4699 align(CodeEntryAlignment); 4700 BIND(L_by16_loop); 4701 subs(len, len, 16); 4702 ldp(tmp, tmp3, Address(post(buf, 16))); 4703 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4704 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4705 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false); 4706 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true); 4707 br(Assembler::GE, L_by16_loop); 4708 adds(len, len, 16-4); 4709 br(Assembler::GE, L_by4_loop); 4710 adds(len, len, 4); 4711 br(Assembler::GT, L_by1_loop); 4712 BIND(L_exit); 4713 mvnw(crc, crc); 4714 } 4715 4716 void MacroAssembler::kernel_crc32c_using_crypto_pmull(Register crc, Register buf, 4717 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4718 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4719 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4720 4721 subs(tmp0, len, 384); 4722 br(Assembler::GE, CRC_by128_pre); 4723 BIND(CRC_less128); 4724 subs(len, len, 32); 4725 br(Assembler::GE, CRC_by32_loop); 4726 BIND(CRC_less32); 4727 adds(len, len, 32 - 4); 4728 br(Assembler::GE, CRC_by4_loop); 4729 adds(len, len, 4); 4730 br(Assembler::GT, CRC_by1_loop); 4731 b(L_exit); 4732 4733 BIND(CRC_by32_loop); 4734 ldp(tmp0, tmp1, Address(buf)); 4735 crc32cx(crc, crc, tmp0); 4736 ldr(tmp2, Address(buf, 16)); 4737 crc32cx(crc, crc, tmp1); 4738 ldr(tmp3, Address(buf, 24)); 4739 crc32cx(crc, crc, tmp2); 4740 add(buf, buf, 32); 4741 subs(len, len, 32); 4742 crc32cx(crc, crc, tmp3); 4743 br(Assembler::GE, CRC_by32_loop); 4744 cmn(len, (u1)32); 4745 br(Assembler::NE, CRC_less32); 4746 b(L_exit); 4747 4748 BIND(CRC_by4_loop); 4749 ldrw(tmp0, Address(post(buf, 4))); 4750 subs(len, len, 4); 4751 crc32cw(crc, crc, tmp0); 4752 br(Assembler::GE, CRC_by4_loop); 4753 adds(len, len, 4); 4754 br(Assembler::LE, L_exit); 4755 BIND(CRC_by1_loop); 4756 ldrb(tmp0, Address(post(buf, 1))); 4757 subs(len, len, 1); 4758 crc32cb(crc, crc, tmp0); 4759 br(Assembler::GT, CRC_by1_loop); 4760 b(L_exit); 4761 4762 BIND(CRC_by128_pre); 4763 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4764 4*256*sizeof(juint) + 8*sizeof(juint) + 0x50); 4765 mov(crc, 0); 4766 crc32cx(crc, crc, tmp0); 4767 crc32cx(crc, crc, tmp1); 4768 4769 cbnz(len, CRC_less128); 4770 4771 BIND(L_exit); 4772 } 4773 4774 void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf, 4775 Register len, Register tmp0, Register tmp1, Register tmp2, 4776 Register tmp3) { 4777 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4778 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4779 4780 subs(len, len, 128); 4781 br(Assembler::GE, CRC_by64_pre); 4782 BIND(CRC_less64); 4783 adds(len, len, 128-32); 4784 br(Assembler::GE, CRC_by32_loop); 4785 BIND(CRC_less32); 4786 adds(len, len, 32-4); 4787 br(Assembler::GE, CRC_by4_loop); 4788 adds(len, len, 4); 4789 br(Assembler::GT, CRC_by1_loop); 4790 b(L_exit); 4791 4792 BIND(CRC_by32_loop); 4793 ldp(tmp0, tmp1, Address(post(buf, 16))); 4794 subs(len, len, 32); 4795 crc32cx(crc, crc, tmp0); 4796 ldr(tmp2, Address(post(buf, 8))); 4797 crc32cx(crc, crc, tmp1); 4798 ldr(tmp3, Address(post(buf, 8))); 4799 crc32cx(crc, crc, tmp2); 4800 crc32cx(crc, crc, tmp3); 4801 br(Assembler::GE, CRC_by32_loop); 4802 cmn(len, (u1)32); 4803 br(Assembler::NE, CRC_less32); 4804 b(L_exit); 4805 4806 BIND(CRC_by4_loop); 4807 ldrw(tmp0, Address(post(buf, 4))); 4808 subs(len, len, 4); 4809 crc32cw(crc, crc, tmp0); 4810 br(Assembler::GE, CRC_by4_loop); 4811 adds(len, len, 4); 4812 br(Assembler::LE, L_exit); 4813 BIND(CRC_by1_loop); 4814 ldrb(tmp0, Address(post(buf, 1))); 4815 subs(len, len, 1); 4816 crc32cb(crc, crc, tmp0); 4817 br(Assembler::GT, CRC_by1_loop); 4818 b(L_exit); 4819 4820 BIND(CRC_by64_pre); 4821 sub(buf, buf, 8); 4822 ldp(tmp0, tmp1, Address(buf, 8)); 4823 crc32cx(crc, crc, tmp0); 4824 ldr(tmp2, Address(buf, 24)); 4825 crc32cx(crc, crc, tmp1); 4826 ldr(tmp3, Address(buf, 32)); 4827 crc32cx(crc, crc, tmp2); 4828 ldr(tmp0, Address(buf, 40)); 4829 crc32cx(crc, crc, tmp3); 4830 ldr(tmp1, Address(buf, 48)); 4831 crc32cx(crc, crc, tmp0); 4832 ldr(tmp2, Address(buf, 56)); 4833 crc32cx(crc, crc, tmp1); 4834 ldr(tmp3, Address(pre(buf, 64))); 4835 4836 b(CRC_by64_loop); 4837 4838 align(CodeEntryAlignment); 4839 BIND(CRC_by64_loop); 4840 subs(len, len, 64); 4841 crc32cx(crc, crc, tmp2); 4842 ldr(tmp0, Address(buf, 8)); 4843 crc32cx(crc, crc, tmp3); 4844 ldr(tmp1, Address(buf, 16)); 4845 crc32cx(crc, crc, tmp0); 4846 ldr(tmp2, Address(buf, 24)); 4847 crc32cx(crc, crc, tmp1); 4848 ldr(tmp3, Address(buf, 32)); 4849 crc32cx(crc, crc, tmp2); 4850 ldr(tmp0, Address(buf, 40)); 4851 crc32cx(crc, crc, tmp3); 4852 ldr(tmp1, Address(buf, 48)); 4853 crc32cx(crc, crc, tmp0); 4854 ldr(tmp2, Address(buf, 56)); 4855 crc32cx(crc, crc, tmp1); 4856 ldr(tmp3, Address(pre(buf, 64))); 4857 br(Assembler::GE, CRC_by64_loop); 4858 4859 // post-loop 4860 crc32cx(crc, crc, tmp2); 4861 crc32cx(crc, crc, tmp3); 4862 4863 sub(len, len, 64); 4864 add(buf, buf, 8); 4865 cmn(len, (u1)128); 4866 br(Assembler::NE, CRC_less64); 4867 BIND(L_exit); 4868 } 4869 4870 /** 4871 * @param crc register containing existing CRC (32-bit) 4872 * @param buf register pointing to input byte buffer (byte*) 4873 * @param len register containing number of bytes 4874 * @param table register that will contain address of CRC table 4875 * @param tmp scratch register 4876 */ 4877 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len, 4878 Register table0, Register table1, Register table2, Register table3, 4879 Register tmp, Register tmp2, Register tmp3) { 4880 if (UseCryptoPmullForCRC32) { 4881 kernel_crc32c_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4882 } else { 4883 kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3); 4884 } 4885 } 4886 4887 void MacroAssembler::kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 4888 Register len, Register tmp0, Register tmp1, Register tmp2, size_t table_offset) { 4889 Label CRC_by128_loop; 4890 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4891 4892 sub(len, len, 256); 4893 Register table = tmp0; 4894 { 4895 uint64_t offset; 4896 adrp(table, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4897 add(table, table, offset); 4898 } 4899 add(table, table, table_offset); 4900 4901 // Registers v0..v7 are used as data registers. 4902 // Registers v16..v31 are used as tmp registers. 4903 sub(buf, buf, 0x10); 4904 ldrq(v0, Address(buf, 0x10)); 4905 ldrq(v1, Address(buf, 0x20)); 4906 ldrq(v2, Address(buf, 0x30)); 4907 ldrq(v3, Address(buf, 0x40)); 4908 ldrq(v4, Address(buf, 0x50)); 4909 ldrq(v5, Address(buf, 0x60)); 4910 ldrq(v6, Address(buf, 0x70)); 4911 ldrq(v7, Address(pre(buf, 0x80))); 4912 4913 movi(v31, T4S, 0); 4914 mov(v31, S, 0, crc); 4915 eor(v0, T16B, v0, v31); 4916 4917 // Register v16 contains constants from the crc table. 4918 ldrq(v16, Address(table)); 4919 b(CRC_by128_loop); 4920 4921 align(OptoLoopAlignment); 4922 BIND(CRC_by128_loop); 4923 pmull (v17, T1Q, v0, v16, T1D); 4924 pmull2(v18, T1Q, v0, v16, T2D); 4925 ldrq(v0, Address(buf, 0x10)); 4926 eor3(v0, T16B, v17, v18, v0); 4927 4928 pmull (v19, T1Q, v1, v16, T1D); 4929 pmull2(v20, T1Q, v1, v16, T2D); 4930 ldrq(v1, Address(buf, 0x20)); 4931 eor3(v1, T16B, v19, v20, v1); 4932 4933 pmull (v21, T1Q, v2, v16, T1D); 4934 pmull2(v22, T1Q, v2, v16, T2D); 4935 ldrq(v2, Address(buf, 0x30)); 4936 eor3(v2, T16B, v21, v22, v2); 4937 4938 pmull (v23, T1Q, v3, v16, T1D); 4939 pmull2(v24, T1Q, v3, v16, T2D); 4940 ldrq(v3, Address(buf, 0x40)); 4941 eor3(v3, T16B, v23, v24, v3); 4942 4943 pmull (v25, T1Q, v4, v16, T1D); 4944 pmull2(v26, T1Q, v4, v16, T2D); 4945 ldrq(v4, Address(buf, 0x50)); 4946 eor3(v4, T16B, v25, v26, v4); 4947 4948 pmull (v27, T1Q, v5, v16, T1D); 4949 pmull2(v28, T1Q, v5, v16, T2D); 4950 ldrq(v5, Address(buf, 0x60)); 4951 eor3(v5, T16B, v27, v28, v5); 4952 4953 pmull (v29, T1Q, v6, v16, T1D); 4954 pmull2(v30, T1Q, v6, v16, T2D); 4955 ldrq(v6, Address(buf, 0x70)); 4956 eor3(v6, T16B, v29, v30, v6); 4957 4958 // Reuse registers v23, v24. 4959 // Using them won't block the first instruction of the next iteration. 4960 pmull (v23, T1Q, v7, v16, T1D); 4961 pmull2(v24, T1Q, v7, v16, T2D); 4962 ldrq(v7, Address(pre(buf, 0x80))); 4963 eor3(v7, T16B, v23, v24, v7); 4964 4965 subs(len, len, 0x80); 4966 br(Assembler::GE, CRC_by128_loop); 4967 4968 // fold into 512 bits 4969 // Use v31 for constants because v16 can be still in use. 4970 ldrq(v31, Address(table, 0x10)); 4971 4972 pmull (v17, T1Q, v0, v31, T1D); 4973 pmull2(v18, T1Q, v0, v31, T2D); 4974 eor3(v0, T16B, v17, v18, v4); 4975 4976 pmull (v19, T1Q, v1, v31, T1D); 4977 pmull2(v20, T1Q, v1, v31, T2D); 4978 eor3(v1, T16B, v19, v20, v5); 4979 4980 pmull (v21, T1Q, v2, v31, T1D); 4981 pmull2(v22, T1Q, v2, v31, T2D); 4982 eor3(v2, T16B, v21, v22, v6); 4983 4984 pmull (v23, T1Q, v3, v31, T1D); 4985 pmull2(v24, T1Q, v3, v31, T2D); 4986 eor3(v3, T16B, v23, v24, v7); 4987 4988 // fold into 128 bits 4989 // Use v17 for constants because v31 can be still in use. 4990 ldrq(v17, Address(table, 0x20)); 4991 pmull (v25, T1Q, v0, v17, T1D); 4992 pmull2(v26, T1Q, v0, v17, T2D); 4993 eor3(v3, T16B, v3, v25, v26); 4994 4995 // Use v18 for constants because v17 can be still in use. 4996 ldrq(v18, Address(table, 0x30)); 4997 pmull (v27, T1Q, v1, v18, T1D); 4998 pmull2(v28, T1Q, v1, v18, T2D); 4999 eor3(v3, T16B, v3, v27, v28); 5000 5001 // Use v19 for constants because v18 can be still in use. 5002 ldrq(v19, Address(table, 0x40)); 5003 pmull (v29, T1Q, v2, v19, T1D); 5004 pmull2(v30, T1Q, v2, v19, T2D); 5005 eor3(v0, T16B, v3, v29, v30); 5006 5007 add(len, len, 0x80); 5008 add(buf, buf, 0x10); 5009 5010 mov(tmp0, v0, D, 0); 5011 mov(tmp1, v0, D, 1); 5012 } 5013 5014 void MacroAssembler::addptr(const Address &dst, int32_t src) { 5015 Address adr; 5016 switch(dst.getMode()) { 5017 case Address::base_plus_offset: 5018 // This is the expected mode, although we allow all the other 5019 // forms below. 5020 adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord); 5021 break; 5022 default: 5023 lea(rscratch2, dst); 5024 adr = Address(rscratch2); 5025 break; 5026 } 5027 ldr(rscratch1, adr); 5028 add(rscratch1, rscratch1, src); 5029 str(rscratch1, adr); 5030 } 5031 5032 void MacroAssembler::cmpptr(Register src1, Address src2) { 5033 uint64_t offset; 5034 adrp(rscratch1, src2, offset); 5035 ldr(rscratch1, Address(rscratch1, offset)); 5036 cmp(src1, rscratch1); 5037 } 5038 5039 void MacroAssembler::cmpoop(Register obj1, Register obj2) { 5040 cmp(obj1, obj2); 5041 } 5042 5043 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 5044 load_method_holder(rresult, rmethod); 5045 ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 5046 } 5047 5048 void MacroAssembler::load_method_holder(Register holder, Register method) { 5049 ldr(holder, Address(method, Method::const_offset())); // ConstMethod* 5050 ldr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 5051 ldr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 5052 } 5053 5054 // Loads the obj's Klass* into dst. 5055 // Preserves all registers (incl src, rscratch1 and rscratch2). 5056 // Input: 5057 // src - the oop we want to load the klass from. 5058 // dst - output narrow klass. 5059 void MacroAssembler::load_narrow_klass_compact(Register dst, Register src) { 5060 assert(UseCompactObjectHeaders, "expects UseCompactObjectHeaders"); 5061 ldr(dst, Address(src, oopDesc::mark_offset_in_bytes())); 5062 lsr(dst, dst, markWord::klass_shift); 5063 } 5064 5065 void MacroAssembler::load_klass(Register dst, Register src) { 5066 if (UseCompactObjectHeaders) { 5067 load_narrow_klass_compact(dst, src); 5068 decode_klass_not_null(dst); 5069 } else if (UseCompressedClassPointers) { 5070 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5071 decode_klass_not_null(dst); 5072 } else { 5073 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5074 } 5075 } 5076 5077 void MacroAssembler::restore_cpu_control_state_after_jni(Register tmp1, Register tmp2) { 5078 if (RestoreMXCSROnJNICalls) { 5079 Label OK; 5080 get_fpcr(tmp1); 5081 mov(tmp2, tmp1); 5082 // Set FPCR to the state we need. We do want Round to Nearest. We 5083 // don't want non-IEEE rounding modes or floating-point traps. 5084 bfi(tmp1, zr, 22, 4); // Clear DN, FZ, and Rmode 5085 bfi(tmp1, zr, 8, 5); // Clear exception-control bits (8-12) 5086 bfi(tmp1, zr, 0, 2); // Clear AH:FIZ 5087 eor(tmp2, tmp1, tmp2); 5088 cbz(tmp2, OK); // Only reset FPCR if it's wrong 5089 set_fpcr(tmp1); 5090 bind(OK); 5091 } 5092 } 5093 5094 // ((OopHandle)result).resolve(); 5095 void MacroAssembler::resolve_oop_handle(Register result, Register tmp1, Register tmp2) { 5096 // OopHandle::resolve is an indirection. 5097 access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp1, tmp2); 5098 } 5099 5100 // ((WeakHandle)result).resolve(); 5101 void MacroAssembler::resolve_weak_handle(Register result, Register tmp1, Register tmp2) { 5102 assert_different_registers(result, tmp1, tmp2); 5103 Label resolved; 5104 5105 // A null weak handle resolves to null. 5106 cbz(result, resolved); 5107 5108 // Only 64 bit platforms support GCs that require a tmp register 5109 // WeakHandle::resolve is an indirection like jweak. 5110 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 5111 result, Address(result), tmp1, tmp2); 5112 bind(resolved); 5113 } 5114 5115 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp1, Register tmp2) { 5116 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 5117 ldr(dst, Address(rmethod, Method::const_offset())); 5118 ldr(dst, Address(dst, ConstMethod::constants_offset())); 5119 ldr(dst, Address(dst, ConstantPool::pool_holder_offset())); 5120 ldr(dst, Address(dst, mirror_offset)); 5121 resolve_oop_handle(dst, tmp1, tmp2); 5122 } 5123 5124 void MacroAssembler::cmp_klass(Register obj, Register klass, Register tmp) { 5125 assert_different_registers(obj, klass, tmp); 5126 if (UseCompressedClassPointers) { 5127 if (UseCompactObjectHeaders) { 5128 load_narrow_klass_compact(tmp, obj); 5129 } else { 5130 ldrw(tmp, Address(obj, oopDesc::klass_offset_in_bytes())); 5131 } 5132 if (CompressedKlassPointers::base() == nullptr) { 5133 cmp(klass, tmp, LSL, CompressedKlassPointers::shift()); 5134 return; 5135 } else if (!AOTCodeCache::is_on_for_dump() && 5136 ((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0 5137 && CompressedKlassPointers::shift() == 0) { 5138 // Only the bottom 32 bits matter 5139 cmpw(klass, tmp); 5140 return; 5141 } 5142 decode_klass_not_null(tmp); 5143 } else { 5144 ldr(tmp, Address(obj, oopDesc::klass_offset_in_bytes())); 5145 } 5146 cmp(klass, tmp); 5147 } 5148 5149 void MacroAssembler::cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2) { 5150 if (UseCompactObjectHeaders) { 5151 load_narrow_klass_compact(tmp1, obj1); 5152 load_narrow_klass_compact(tmp2, obj2); 5153 cmpw(tmp1, tmp2); 5154 } else if (UseCompressedClassPointers) { 5155 ldrw(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5156 ldrw(tmp2, Address(obj2, oopDesc::klass_offset_in_bytes())); 5157 cmpw(tmp1, tmp2); 5158 } else { 5159 ldr(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5160 ldr(tmp2, Address(obj2, oopDesc::klass_offset_in_bytes())); 5161 cmp(tmp1, tmp2); 5162 } 5163 } 5164 5165 void MacroAssembler::store_klass(Register dst, Register src) { 5166 // FIXME: Should this be a store release? concurrent gcs assumes 5167 // klass length is valid if klass field is not null. 5168 assert(!UseCompactObjectHeaders, "not with compact headers"); 5169 if (UseCompressedClassPointers) { 5170 encode_klass_not_null(src); 5171 strw(src, Address(dst, oopDesc::klass_offset_in_bytes())); 5172 } else { 5173 str(src, Address(dst, oopDesc::klass_offset_in_bytes())); 5174 } 5175 } 5176 5177 void MacroAssembler::store_klass_gap(Register dst, Register src) { 5178 assert(!UseCompactObjectHeaders, "not with compact headers"); 5179 if (UseCompressedClassPointers) { 5180 // Store to klass gap in destination 5181 strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes())); 5182 } 5183 } 5184 5185 // Algorithm must match CompressedOops::encode. 5186 void MacroAssembler::encode_heap_oop(Register d, Register s) { 5187 #ifdef ASSERT 5188 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 5189 #endif 5190 verify_oop_msg(s, "broken oop in encode_heap_oop"); 5191 if (CompressedOops::base() == nullptr) { 5192 if (CompressedOops::shift() != 0) { 5193 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5194 lsr(d, s, LogMinObjAlignmentInBytes); 5195 } else { 5196 mov(d, s); 5197 } 5198 } else { 5199 subs(d, s, rheapbase); 5200 csel(d, d, zr, Assembler::HS); 5201 lsr(d, d, LogMinObjAlignmentInBytes); 5202 5203 /* Old algorithm: is this any worse? 5204 Label nonnull; 5205 cbnz(r, nonnull); 5206 sub(r, r, rheapbase); 5207 bind(nonnull); 5208 lsr(r, r, LogMinObjAlignmentInBytes); 5209 */ 5210 } 5211 } 5212 5213 void MacroAssembler::encode_heap_oop_not_null(Register r) { 5214 #ifdef ASSERT 5215 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 5216 if (CheckCompressedOops) { 5217 Label ok; 5218 cbnz(r, ok); 5219 stop("null oop passed to encode_heap_oop_not_null"); 5220 bind(ok); 5221 } 5222 #endif 5223 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 5224 if (CompressedOops::base() != nullptr) { 5225 sub(r, r, rheapbase); 5226 } 5227 if (CompressedOops::shift() != 0) { 5228 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5229 lsr(r, r, LogMinObjAlignmentInBytes); 5230 } 5231 } 5232 5233 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 5234 #ifdef ASSERT 5235 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 5236 if (CheckCompressedOops) { 5237 Label ok; 5238 cbnz(src, ok); 5239 stop("null oop passed to encode_heap_oop_not_null2"); 5240 bind(ok); 5241 } 5242 #endif 5243 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 5244 5245 Register data = src; 5246 if (CompressedOops::base() != nullptr) { 5247 sub(dst, src, rheapbase); 5248 data = dst; 5249 } 5250 if (CompressedOops::shift() != 0) { 5251 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5252 lsr(dst, data, LogMinObjAlignmentInBytes); 5253 data = dst; 5254 } 5255 if (data == src) 5256 mov(dst, src); 5257 } 5258 5259 void MacroAssembler::decode_heap_oop(Register d, Register s) { 5260 #ifdef ASSERT 5261 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 5262 #endif 5263 if (CompressedOops::base() == nullptr) { 5264 if (CompressedOops::shift() != 0) { 5265 lsl(d, s, CompressedOops::shift()); 5266 } else if (d != s) { 5267 mov(d, s); 5268 } 5269 } else { 5270 Label done; 5271 if (d != s) 5272 mov(d, s); 5273 cbz(s, done); 5274 add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes); 5275 bind(done); 5276 } 5277 verify_oop_msg(d, "broken oop in decode_heap_oop"); 5278 } 5279 5280 void MacroAssembler::decode_heap_oop_not_null(Register r) { 5281 assert (UseCompressedOops, "should only be used for compressed headers"); 5282 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5283 // Cannot assert, unverified entry point counts instructions (see .ad file) 5284 // vtableStubs also counts instructions in pd_code_size_limit. 5285 // Also do not verify_oop as this is called by verify_oop. 5286 if (CompressedOops::shift() != 0) { 5287 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5288 if (CompressedOops::base() != nullptr) { 5289 add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5290 } else { 5291 add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5292 } 5293 } else { 5294 assert (CompressedOops::base() == nullptr, "sanity"); 5295 } 5296 } 5297 5298 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 5299 assert (UseCompressedOops, "should only be used for compressed headers"); 5300 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5301 // Cannot assert, unverified entry point counts instructions (see .ad file) 5302 // vtableStubs also counts instructions in pd_code_size_limit. 5303 // Also do not verify_oop as this is called by verify_oop. 5304 if (CompressedOops::shift() != 0) { 5305 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5306 if (CompressedOops::base() != nullptr) { 5307 add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5308 } else { 5309 add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5310 } 5311 } else { 5312 assert (CompressedOops::base() == nullptr, "sanity"); 5313 if (dst != src) { 5314 mov(dst, src); 5315 } 5316 } 5317 } 5318 5319 MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone); 5320 5321 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() { 5322 assert(Metaspace::initialized(), "metaspace not initialized yet"); 5323 assert(_klass_decode_mode != KlassDecodeNone, "should be initialized"); 5324 return _klass_decode_mode; 5325 } 5326 5327 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode(address base, int shift, const size_t range) { 5328 assert(UseCompressedClassPointers, "not using compressed class pointers"); 5329 5330 // KlassDecodeMode shouldn't be set already. 5331 assert(_klass_decode_mode == KlassDecodeNone, "set once"); 5332 5333 if (base == nullptr) { 5334 return KlassDecodeZero; 5335 } 5336 5337 if (operand_valid_for_logical_immediate( 5338 /*is32*/false, (uint64_t)base)) { 5339 const uint64_t range_mask = right_n_bits(log2i_ceil(range)); 5340 if (((uint64_t)base & range_mask) == 0) { 5341 return KlassDecodeXor; 5342 } 5343 } 5344 5345 const uint64_t shifted_base = 5346 (uint64_t)base >> shift; 5347 if ((shifted_base & 0xffff0000ffffffff) == 0) { 5348 return KlassDecodeMovk; 5349 } 5350 5351 // No valid encoding. 5352 return KlassDecodeNone; 5353 } 5354 5355 // Check if one of the above decoding modes will work for given base, shift and range. 5356 bool MacroAssembler::check_klass_decode_mode(address base, int shift, const size_t range) { 5357 return klass_decode_mode(base, shift, range) != KlassDecodeNone; 5358 } 5359 5360 bool MacroAssembler::set_klass_decode_mode(address base, int shift, const size_t range) { 5361 _klass_decode_mode = klass_decode_mode(base, shift, range); 5362 return _klass_decode_mode != KlassDecodeNone; 5363 } 5364 5365 static Register pick_different_tmp(Register dst, Register src) { 5366 auto tmps = RegSet::of(r0, r1, r2) - RegSet::of(src, dst); 5367 return *tmps.begin(); 5368 } 5369 5370 void MacroAssembler::encode_klass_not_null_for_aot(Register dst, Register src) { 5371 // we have to load the klass base from the AOT constants area but 5372 // not the shift because it is not allowed to change 5373 int shift = CompressedKlassPointers::shift(); 5374 assert(shift >= 0 && shift <= CompressedKlassPointers::max_shift(), "unexpected compressed klass shift!"); 5375 if (dst != src) { 5376 // we can load the base into dst, subtract it formthe src and shift down 5377 lea(dst, ExternalAddress(CompressedKlassPointers::base_addr())); 5378 ldr(dst, dst); 5379 sub(dst, src, dst); 5380 lsr(dst, dst, shift); 5381 } else { 5382 // we need an extra register in order to load the coop base 5383 Register tmp = pick_different_tmp(dst, src); 5384 RegSet regs = RegSet::of(tmp); 5385 push(regs, sp); 5386 lea(tmp, ExternalAddress(CompressedKlassPointers::base_addr())); 5387 ldr(tmp, tmp); 5388 sub(dst, src, tmp); 5389 lsr(dst, dst, shift); 5390 pop(regs, sp); 5391 } 5392 } 5393 5394 void MacroAssembler::encode_klass_not_null(Register dst, Register src) { 5395 if (CompressedKlassPointers::base() != nullptr && AOTCodeCache::is_on_for_dump()) { 5396 encode_klass_not_null_for_aot(dst, src); 5397 return; 5398 } 5399 5400 switch (klass_decode_mode()) { 5401 case KlassDecodeZero: 5402 if (CompressedKlassPointers::shift() != 0) { 5403 lsr(dst, src, CompressedKlassPointers::shift()); 5404 } else { 5405 if (dst != src) mov(dst, src); 5406 } 5407 break; 5408 5409 case KlassDecodeXor: 5410 if (CompressedKlassPointers::shift() != 0) { 5411 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5412 lsr(dst, dst, CompressedKlassPointers::shift()); 5413 } else { 5414 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5415 } 5416 break; 5417 5418 case KlassDecodeMovk: 5419 if (CompressedKlassPointers::shift() != 0) { 5420 ubfx(dst, src, CompressedKlassPointers::shift(), 32); 5421 } else { 5422 movw(dst, src); 5423 } 5424 break; 5425 5426 case KlassDecodeNone: 5427 ShouldNotReachHere(); 5428 break; 5429 } 5430 } 5431 5432 void MacroAssembler::encode_klass_not_null(Register r) { 5433 encode_klass_not_null(r, r); 5434 } 5435 5436 void MacroAssembler::decode_klass_not_null_for_aot(Register dst, Register src) { 5437 // we have to load the klass base from the AOT constants area but 5438 // not the shift because it is not allowed to change 5439 int shift = CompressedKlassPointers::shift(); 5440 assert(shift >= 0 && shift <= CompressedKlassPointers::max_shift(), "unexpected compressed klass shift!"); 5441 if (dst != src) { 5442 // we can load the base into dst then add the offset with a suitable shift 5443 lea(dst, ExternalAddress(CompressedKlassPointers::base_addr())); 5444 ldr(dst, dst); 5445 add(dst, dst, src, LSL, shift); 5446 } else { 5447 // we need an extra register in order to load the coop base 5448 Register tmp = pick_different_tmp(dst, src); 5449 RegSet regs = RegSet::of(tmp); 5450 push(regs, sp); 5451 lea(tmp, ExternalAddress(CompressedKlassPointers::base_addr())); 5452 ldr(tmp, tmp); 5453 add(dst, tmp, src, LSL, shift); 5454 pop(regs, sp); 5455 } 5456 } 5457 5458 void MacroAssembler::decode_klass_not_null(Register dst, Register src) { 5459 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5460 5461 if (CompressedKlassPointers::base() != nullptr && AOTCodeCache::is_on_for_dump()) { 5462 decode_klass_not_null_for_aot(dst, src); 5463 return; 5464 } 5465 5466 switch (klass_decode_mode()) { 5467 case KlassDecodeZero: 5468 if (CompressedKlassPointers::shift() != 0) { 5469 lsl(dst, src, CompressedKlassPointers::shift()); 5470 } else { 5471 if (dst != src) mov(dst, src); 5472 } 5473 break; 5474 5475 case KlassDecodeXor: 5476 if (CompressedKlassPointers::shift() != 0) { 5477 lsl(dst, src, CompressedKlassPointers::shift()); 5478 eor(dst, dst, (uint64_t)CompressedKlassPointers::base()); 5479 } else { 5480 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5481 } 5482 break; 5483 5484 case KlassDecodeMovk: { 5485 const uint64_t shifted_base = 5486 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 5487 5488 if (dst != src) movw(dst, src); 5489 movk(dst, shifted_base >> 32, 32); 5490 5491 if (CompressedKlassPointers::shift() != 0) { 5492 lsl(dst, dst, CompressedKlassPointers::shift()); 5493 } 5494 5495 break; 5496 } 5497 5498 case KlassDecodeNone: 5499 ShouldNotReachHere(); 5500 break; 5501 } 5502 } 5503 5504 void MacroAssembler::decode_klass_not_null(Register r) { 5505 decode_klass_not_null(r, r); 5506 } 5507 5508 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 5509 #ifdef ASSERT 5510 { 5511 ThreadInVMfromUnknown tiv; 5512 assert (UseCompressedOops, "should only be used for compressed oops"); 5513 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5514 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5515 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5516 } 5517 #endif 5518 int oop_index = oop_recorder()->find_index(obj); 5519 InstructionMark im(this); 5520 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5521 code_section()->relocate(inst_mark(), rspec); 5522 movz(dst, 0xDEAD, 16); 5523 movk(dst, 0xBEEF); 5524 } 5525 5526 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 5527 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5528 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5529 int index = oop_recorder()->find_index(k); 5530 assert(! Universe::heap()->is_in(k), "should not be an oop"); 5531 5532 InstructionMark im(this); 5533 RelocationHolder rspec = metadata_Relocation::spec(index); 5534 code_section()->relocate(inst_mark(), rspec); 5535 narrowKlass nk = CompressedKlassPointers::encode(k); 5536 movz(dst, (nk >> 16), 16); 5537 movk(dst, nk & 0xffff); 5538 } 5539 5540 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, 5541 Register dst, Address src, 5542 Register tmp1, Register tmp2) { 5543 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5544 decorators = AccessInternal::decorator_fixup(decorators, type); 5545 bool as_raw = (decorators & AS_RAW) != 0; 5546 if (as_raw) { 5547 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2); 5548 } else { 5549 bs->load_at(this, decorators, type, dst, src, tmp1, tmp2); 5550 } 5551 } 5552 5553 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, 5554 Address dst, Register val, 5555 Register tmp1, Register tmp2, Register tmp3) { 5556 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5557 decorators = AccessInternal::decorator_fixup(decorators, type); 5558 bool as_raw = (decorators & AS_RAW) != 0; 5559 if (as_raw) { 5560 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5561 } else { 5562 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5563 } 5564 } 5565 5566 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 5567 Register tmp2, DecoratorSet decorators) { 5568 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2); 5569 } 5570 5571 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 5572 Register tmp2, DecoratorSet decorators) { 5573 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2); 5574 } 5575 5576 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 5577 Register tmp2, Register tmp3, DecoratorSet decorators) { 5578 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 5579 } 5580 5581 // Used for storing nulls. 5582 void MacroAssembler::store_heap_oop_null(Address dst) { 5583 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 5584 } 5585 5586 Address MacroAssembler::allocate_metadata_address(Metadata* obj) { 5587 assert(oop_recorder() != nullptr, "this assembler needs a Recorder"); 5588 int index = oop_recorder()->allocate_metadata_index(obj); 5589 RelocationHolder rspec = metadata_Relocation::spec(index); 5590 return Address((address)obj, rspec); 5591 } 5592 5593 // Move an oop into a register. 5594 void MacroAssembler::movoop(Register dst, jobject obj) { 5595 int oop_index; 5596 if (obj == nullptr) { 5597 oop_index = oop_recorder()->allocate_oop_index(obj); 5598 } else { 5599 #ifdef ASSERT 5600 { 5601 ThreadInVMfromUnknown tiv; 5602 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5603 } 5604 #endif 5605 oop_index = oop_recorder()->find_index(obj); 5606 } 5607 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5608 5609 if (BarrierSet::barrier_set()->barrier_set_assembler()->supports_instruction_patching()) { 5610 mov(dst, Address((address)obj, rspec)); 5611 } else { 5612 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address 5613 ldr(dst, Address(dummy, rspec)); 5614 } 5615 } 5616 5617 // Move a metadata address into a register. 5618 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 5619 int oop_index; 5620 if (obj == nullptr) { 5621 oop_index = oop_recorder()->allocate_metadata_index(obj); 5622 } else { 5623 oop_index = oop_recorder()->find_index(obj); 5624 } 5625 RelocationHolder rspec = metadata_Relocation::spec(oop_index); 5626 mov(dst, Address((address)obj, rspec)); 5627 } 5628 5629 Address MacroAssembler::constant_oop_address(jobject obj) { 5630 #ifdef ASSERT 5631 { 5632 ThreadInVMfromUnknown tiv; 5633 assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5634 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop"); 5635 } 5636 #endif 5637 int oop_index = oop_recorder()->find_index(obj); 5638 return Address((address)obj, oop_Relocation::spec(oop_index)); 5639 } 5640 5641 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 5642 void MacroAssembler::tlab_allocate(Register obj, 5643 Register var_size_in_bytes, 5644 int con_size_in_bytes, 5645 Register t1, 5646 Register t2, 5647 Label& slow_case) { 5648 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5649 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 5650 } 5651 5652 void MacroAssembler::inc_held_monitor_count(Register tmp) { 5653 Address dst(rthread, JavaThread::held_monitor_count_offset()); 5654 #ifdef ASSERT 5655 ldr(tmp, dst); 5656 increment(tmp); 5657 str(tmp, dst); 5658 Label ok; 5659 tbz(tmp, 63, ok); 5660 STOP("assert(held monitor count underflow)"); 5661 should_not_reach_here(); 5662 bind(ok); 5663 #else 5664 increment(dst); 5665 #endif 5666 } 5667 5668 void MacroAssembler::dec_held_monitor_count(Register tmp) { 5669 Address dst(rthread, JavaThread::held_monitor_count_offset()); 5670 #ifdef ASSERT 5671 ldr(tmp, dst); 5672 decrement(tmp); 5673 str(tmp, dst); 5674 Label ok; 5675 tbz(tmp, 63, ok); 5676 STOP("assert(held monitor count underflow)"); 5677 should_not_reach_here(); 5678 bind(ok); 5679 #else 5680 decrement(dst); 5681 #endif 5682 } 5683 5684 void MacroAssembler::verify_tlab() { 5685 #ifdef ASSERT 5686 if (UseTLAB && VerifyOops) { 5687 Label next, ok; 5688 5689 stp(rscratch2, rscratch1, Address(pre(sp, -16))); 5690 5691 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5692 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 5693 cmp(rscratch2, rscratch1); 5694 br(Assembler::HS, next); 5695 STOP("assert(top >= start)"); 5696 should_not_reach_here(); 5697 5698 bind(next); 5699 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 5700 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5701 cmp(rscratch2, rscratch1); 5702 br(Assembler::HS, ok); 5703 STOP("assert(top <= end)"); 5704 should_not_reach_here(); 5705 5706 bind(ok); 5707 ldp(rscratch2, rscratch1, Address(post(sp, 16))); 5708 } 5709 #endif 5710 } 5711 5712 // Writes to stack successive pages until offset reached to check for 5713 // stack overflow + shadow pages. This clobbers tmp. 5714 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 5715 assert_different_registers(tmp, size, rscratch1); 5716 mov(tmp, sp); 5717 // Bang stack for total size given plus shadow page size. 5718 // Bang one page at a time because large size can bang beyond yellow and 5719 // red zones. 5720 Label loop; 5721 mov(rscratch1, (int)os::vm_page_size()); 5722 bind(loop); 5723 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5724 subsw(size, size, rscratch1); 5725 str(size, Address(tmp)); 5726 br(Assembler::GT, loop); 5727 5728 // Bang down shadow pages too. 5729 // At this point, (tmp-0) is the last address touched, so don't 5730 // touch it again. (It was touched as (tmp-pagesize) but then tmp 5731 // was post-decremented.) Skip this address by starting at i=1, and 5732 // touch a few more pages below. N.B. It is important to touch all 5733 // the way down to and including i=StackShadowPages. 5734 for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()) - 1; i++) { 5735 // this could be any sized move but this is can be a debugging crumb 5736 // so the bigger the better. 5737 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5738 str(size, Address(tmp)); 5739 } 5740 } 5741 5742 // Move the address of the polling page into dest. 5743 void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) { 5744 ldr(dest, Address(rthread, JavaThread::polling_page_offset())); 5745 } 5746 5747 // Read the polling page. The address of the polling page must 5748 // already be in r. 5749 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) { 5750 address mark; 5751 { 5752 InstructionMark im(this); 5753 code_section()->relocate(inst_mark(), rtype); 5754 ldrw(zr, Address(r, 0)); 5755 mark = inst_mark(); 5756 } 5757 verify_cross_modify_fence_not_required(); 5758 return mark; 5759 } 5760 5761 void MacroAssembler::adrp(Register reg1, const Address &dest, uint64_t &byte_offset) { 5762 relocInfo::relocType rtype = dest.rspec().reloc()->type(); 5763 uint64_t low_page = (uint64_t)CodeCache::low_bound() >> 12; 5764 uint64_t high_page = (uint64_t)(CodeCache::high_bound()-1) >> 12; 5765 uint64_t dest_page = (uint64_t)dest.target() >> 12; 5766 int64_t offset_low = dest_page - low_page; 5767 int64_t offset_high = dest_page - high_page; 5768 5769 assert(is_valid_AArch64_address(dest.target()), "bad address"); 5770 assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address"); 5771 5772 InstructionMark im(this); 5773 code_section()->relocate(inst_mark(), dest.rspec()); 5774 // 8143067: Ensure that the adrp can reach the dest from anywhere within 5775 // the code cache so that if it is relocated we know it will still reach 5776 if (offset_high >= -(1<<20) && offset_low < (1<<20)) { 5777 _adrp(reg1, dest.target()); 5778 } else { 5779 uint64_t target = (uint64_t)dest.target(); 5780 uint64_t adrp_target 5781 = (target & 0xffffffffULL) | ((uint64_t)pc() & 0xffff00000000ULL); 5782 5783 _adrp(reg1, (address)adrp_target); 5784 movk(reg1, target >> 32, 32); 5785 } 5786 byte_offset = (uint64_t)dest.target() & 0xfff; 5787 } 5788 5789 void MacroAssembler::load_byte_map_base(Register reg) { 5790 CardTable::CardValue* byte_map_base = 5791 ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base(); 5792 5793 // Strictly speaking the byte_map_base isn't an address at all, and it might 5794 // even be negative. It is thus materialised as a constant. 5795 #if INCLUDE_CDS 5796 if (AOTCodeCache::is_on_for_dump()) { 5797 // AOT code needs relocation info for card table base 5798 lea(reg, ExternalAddress(reinterpret_cast<address>(byte_map_base))); 5799 } else { 5800 #endif 5801 mov(reg, (uint64_t)byte_map_base); 5802 #if INCLUDE_CDS 5803 } 5804 #endif 5805 } 5806 5807 void MacroAssembler::load_aotrc_address(Register reg, address a) { 5808 #if INCLUDE_CDS 5809 assert(AOTRuntimeConstants::contains(a), "address out of range for data area"); 5810 if (AOTCodeCache::is_on_for_dump()) { 5811 // all aotrc field addresses should be registered in the AOTCodeCache address table 5812 lea(reg, ExternalAddress(a)); 5813 } else { 5814 mov(reg, (uint64_t)a); 5815 } 5816 #else 5817 ShouldNotReachHere(); 5818 #endif 5819 } 5820 5821 void MacroAssembler::build_frame(int framesize) { 5822 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5823 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5824 protect_return_address(); 5825 if (framesize < ((1 << 9) + 2 * wordSize)) { 5826 sub(sp, sp, framesize); 5827 stp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5828 if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize); 5829 } else { 5830 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 5831 if (PreserveFramePointer) mov(rfp, sp); 5832 if (framesize < ((1 << 12) + 2 * wordSize)) 5833 sub(sp, sp, framesize - 2 * wordSize); 5834 else { 5835 mov(rscratch1, framesize - 2 * wordSize); 5836 sub(sp, sp, rscratch1); 5837 } 5838 } 5839 verify_cross_modify_fence_not_required(); 5840 } 5841 5842 void MacroAssembler::remove_frame(int framesize) { 5843 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5844 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5845 if (framesize < ((1 << 9) + 2 * wordSize)) { 5846 ldp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5847 add(sp, sp, framesize); 5848 } else { 5849 if (framesize < ((1 << 12) + 2 * wordSize)) 5850 add(sp, sp, framesize - 2 * wordSize); 5851 else { 5852 mov(rscratch1, framesize - 2 * wordSize); 5853 add(sp, sp, rscratch1); 5854 } 5855 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 5856 } 5857 authenticate_return_address(); 5858 } 5859 5860 5861 // This method counts leading positive bytes (highest bit not set) in provided byte array 5862 address MacroAssembler::count_positives(Register ary1, Register len, Register result) { 5863 // Simple and most common case of aligned small array which is not at the 5864 // end of memory page is placed here. All other cases are in stub. 5865 Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE; 5866 const uint64_t UPPER_BIT_MASK=0x8080808080808080; 5867 assert_different_registers(ary1, len, result); 5868 5869 mov(result, len); 5870 cmpw(len, 0); 5871 br(LE, DONE); 5872 cmpw(len, 4 * wordSize); 5873 br(GE, STUB_LONG); // size > 32 then go to stub 5874 5875 int shift = 64 - exact_log2(os::vm_page_size()); 5876 lsl(rscratch1, ary1, shift); 5877 mov(rscratch2, (size_t)(4 * wordSize) << shift); 5878 adds(rscratch2, rscratch1, rscratch2); // At end of page? 5879 br(CS, STUB); // at the end of page then go to stub 5880 subs(len, len, wordSize); 5881 br(LT, END); 5882 5883 BIND(LOOP); 5884 ldr(rscratch1, Address(post(ary1, wordSize))); 5885 tst(rscratch1, UPPER_BIT_MASK); 5886 br(NE, SET_RESULT); 5887 subs(len, len, wordSize); 5888 br(GE, LOOP); 5889 cmpw(len, -wordSize); 5890 br(EQ, DONE); 5891 5892 BIND(END); 5893 ldr(rscratch1, Address(ary1)); 5894 sub(rscratch2, zr, len, LSL, 3); // LSL 3 is to get bits from bytes 5895 lslv(rscratch1, rscratch1, rscratch2); 5896 tst(rscratch1, UPPER_BIT_MASK); 5897 br(NE, SET_RESULT); 5898 b(DONE); 5899 5900 BIND(STUB); 5901 RuntimeAddress count_pos = RuntimeAddress(StubRoutines::aarch64::count_positives()); 5902 assert(count_pos.target() != nullptr, "count_positives stub has not been generated"); 5903 address tpc1 = trampoline_call(count_pos); 5904 if (tpc1 == nullptr) { 5905 DEBUG_ONLY(reset_labels(STUB_LONG, SET_RESULT, DONE)); 5906 postcond(pc() == badAddress); 5907 return nullptr; 5908 } 5909 b(DONE); 5910 5911 BIND(STUB_LONG); 5912 RuntimeAddress count_pos_long = RuntimeAddress(StubRoutines::aarch64::count_positives_long()); 5913 assert(count_pos_long.target() != nullptr, "count_positives_long stub has not been generated"); 5914 address tpc2 = trampoline_call(count_pos_long); 5915 if (tpc2 == nullptr) { 5916 DEBUG_ONLY(reset_labels(SET_RESULT, DONE)); 5917 postcond(pc() == badAddress); 5918 return nullptr; 5919 } 5920 b(DONE); 5921 5922 BIND(SET_RESULT); 5923 5924 add(len, len, wordSize); 5925 sub(result, result, len); 5926 5927 BIND(DONE); 5928 postcond(pc() != badAddress); 5929 return pc(); 5930 } 5931 5932 // Clobbers: rscratch1, rscratch2, rflags 5933 // May also clobber v0-v7 when (!UseSimpleArrayEquals && UseSIMDForArrayEquals) 5934 address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3, 5935 Register tmp4, Register tmp5, Register result, 5936 Register cnt1, int elem_size) { 5937 Label DONE, SAME; 5938 Register tmp1 = rscratch1; 5939 Register tmp2 = rscratch2; 5940 int elem_per_word = wordSize/elem_size; 5941 int log_elem_size = exact_log2(elem_size); 5942 int klass_offset = arrayOopDesc::klass_offset_in_bytes(); 5943 int length_offset = arrayOopDesc::length_offset_in_bytes(); 5944 int base_offset 5945 = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE); 5946 // When the length offset is not aligned to 8 bytes, 5947 // then we align it down. This is valid because the new 5948 // offset will always be the klass which is the same 5949 // for type arrays. 5950 int start_offset = align_down(length_offset, BytesPerWord); 5951 int extra_length = base_offset - start_offset; 5952 assert(start_offset == length_offset || start_offset == klass_offset, 5953 "start offset must be 8-byte-aligned or be the klass offset"); 5954 assert(base_offset != start_offset, "must include the length field"); 5955 extra_length = extra_length / elem_size; // We count in elements, not bytes. 5956 int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16); 5957 5958 assert(elem_size == 1 || elem_size == 2, "must be char or byte"); 5959 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 5960 5961 #ifndef PRODUCT 5962 { 5963 const char kind = (elem_size == 2) ? 'U' : 'L'; 5964 char comment[64]; 5965 snprintf(comment, sizeof comment, "array_equals%c{", kind); 5966 BLOCK_COMMENT(comment); 5967 } 5968 #endif 5969 5970 // if (a1 == a2) 5971 // return true; 5972 cmpoop(a1, a2); // May have read barriers for a1 and a2. 5973 br(EQ, SAME); 5974 5975 if (UseSimpleArrayEquals) { 5976 Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL; 5977 // if (a1 == nullptr || a2 == nullptr) 5978 // return false; 5979 // a1 & a2 == 0 means (some-pointer is null) or 5980 // (very-rare-or-even-probably-impossible-pointer-values) 5981 // so, we can save one branch in most cases 5982 tst(a1, a2); 5983 mov(result, false); 5984 br(EQ, A_MIGHT_BE_NULL); 5985 // if (a1.length != a2.length) 5986 // return false; 5987 bind(A_IS_NOT_NULL); 5988 ldrw(cnt1, Address(a1, length_offset)); 5989 // Increase loop counter by diff between base- and actual start-offset. 5990 addw(cnt1, cnt1, extra_length); 5991 lea(a1, Address(a1, start_offset)); 5992 lea(a2, Address(a2, start_offset)); 5993 // Check for short strings, i.e. smaller than wordSize. 5994 subs(cnt1, cnt1, elem_per_word); 5995 br(Assembler::LT, SHORT); 5996 // Main 8 byte comparison loop. 5997 bind(NEXT_WORD); { 5998 ldr(tmp1, Address(post(a1, wordSize))); 5999 ldr(tmp2, Address(post(a2, wordSize))); 6000 subs(cnt1, cnt1, elem_per_word); 6001 eor(tmp5, tmp1, tmp2); 6002 cbnz(tmp5, DONE); 6003 } br(GT, NEXT_WORD); 6004 // Last longword. In the case where length == 4 we compare the 6005 // same longword twice, but that's still faster than another 6006 // conditional branch. 6007 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 6008 // length == 4. 6009 if (log_elem_size > 0) 6010 lsl(cnt1, cnt1, log_elem_size); 6011 ldr(tmp3, Address(a1, cnt1)); 6012 ldr(tmp4, Address(a2, cnt1)); 6013 eor(tmp5, tmp3, tmp4); 6014 cbnz(tmp5, DONE); 6015 b(SAME); 6016 bind(A_MIGHT_BE_NULL); 6017 // in case both a1 and a2 are not-null, proceed with loads 6018 cbz(a1, DONE); 6019 cbz(a2, DONE); 6020 b(A_IS_NOT_NULL); 6021 bind(SHORT); 6022 6023 tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left. 6024 { 6025 ldrw(tmp1, Address(post(a1, 4))); 6026 ldrw(tmp2, Address(post(a2, 4))); 6027 eorw(tmp5, tmp1, tmp2); 6028 cbnzw(tmp5, DONE); 6029 } 6030 bind(TAIL03); 6031 tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left. 6032 { 6033 ldrh(tmp3, Address(post(a1, 2))); 6034 ldrh(tmp4, Address(post(a2, 2))); 6035 eorw(tmp5, tmp3, tmp4); 6036 cbnzw(tmp5, DONE); 6037 } 6038 bind(TAIL01); 6039 if (elem_size == 1) { // Only needed when comparing byte arrays. 6040 tbz(cnt1, 0, SAME); // 0-1 bytes left. 6041 { 6042 ldrb(tmp1, a1); 6043 ldrb(tmp2, a2); 6044 eorw(tmp5, tmp1, tmp2); 6045 cbnzw(tmp5, DONE); 6046 } 6047 } 6048 } else { 6049 Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB, 6050 CSET_EQ, LAST_CHECK; 6051 mov(result, false); 6052 cbz(a1, DONE); 6053 ldrw(cnt1, Address(a1, length_offset)); 6054 cbz(a2, DONE); 6055 // Increase loop counter by diff between base- and actual start-offset. 6056 addw(cnt1, cnt1, extra_length); 6057 6058 // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's 6059 // faster to perform another branch before comparing a1 and a2 6060 cmp(cnt1, (u1)elem_per_word); 6061 br(LE, SHORT); // short or same 6062 ldr(tmp3, Address(pre(a1, start_offset))); 6063 subs(zr, cnt1, stubBytesThreshold); 6064 br(GE, STUB); 6065 ldr(tmp4, Address(pre(a2, start_offset))); 6066 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 6067 6068 // Main 16 byte comparison loop with 2 exits 6069 bind(NEXT_DWORD); { 6070 ldr(tmp1, Address(pre(a1, wordSize))); 6071 ldr(tmp2, Address(pre(a2, wordSize))); 6072 subs(cnt1, cnt1, 2 * elem_per_word); 6073 br(LE, TAIL); 6074 eor(tmp4, tmp3, tmp4); 6075 cbnz(tmp4, DONE); 6076 ldr(tmp3, Address(pre(a1, wordSize))); 6077 ldr(tmp4, Address(pre(a2, wordSize))); 6078 cmp(cnt1, (u1)elem_per_word); 6079 br(LE, TAIL2); 6080 cmp(tmp1, tmp2); 6081 } br(EQ, NEXT_DWORD); 6082 b(DONE); 6083 6084 bind(TAIL); 6085 eor(tmp4, tmp3, tmp4); 6086 eor(tmp2, tmp1, tmp2); 6087 lslv(tmp2, tmp2, tmp5); 6088 orr(tmp5, tmp4, tmp2); 6089 cmp(tmp5, zr); 6090 b(CSET_EQ); 6091 6092 bind(TAIL2); 6093 eor(tmp2, tmp1, tmp2); 6094 cbnz(tmp2, DONE); 6095 b(LAST_CHECK); 6096 6097 bind(STUB); 6098 ldr(tmp4, Address(pre(a2, start_offset))); 6099 if (elem_size == 2) { // convert to byte counter 6100 lsl(cnt1, cnt1, 1); 6101 } 6102 eor(tmp5, tmp3, tmp4); 6103 cbnz(tmp5, DONE); 6104 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals()); 6105 assert(stub.target() != nullptr, "array_equals_long stub has not been generated"); 6106 address tpc = trampoline_call(stub); 6107 if (tpc == nullptr) { 6108 DEBUG_ONLY(reset_labels(SHORT, LAST_CHECK, CSET_EQ, SAME, DONE)); 6109 postcond(pc() == badAddress); 6110 return nullptr; 6111 } 6112 b(DONE); 6113 6114 // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2) 6115 // so, if a2 == null => return false(0), else return true, so we can return a2 6116 mov(result, a2); 6117 b(DONE); 6118 bind(SHORT); 6119 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 6120 ldr(tmp3, Address(a1, start_offset)); 6121 ldr(tmp4, Address(a2, start_offset)); 6122 bind(LAST_CHECK); 6123 eor(tmp4, tmp3, tmp4); 6124 lslv(tmp5, tmp4, tmp5); 6125 cmp(tmp5, zr); 6126 bind(CSET_EQ); 6127 cset(result, EQ); 6128 b(DONE); 6129 } 6130 6131 bind(SAME); 6132 mov(result, true); 6133 // That's it. 6134 bind(DONE); 6135 6136 BLOCK_COMMENT("} array_equals"); 6137 postcond(pc() != badAddress); 6138 return pc(); 6139 } 6140 6141 // Compare Strings 6142 6143 // For Strings we're passed the address of the first characters in a1 6144 // and a2 and the length in cnt1. 6145 // There are two implementations. For arrays >= 8 bytes, all 6146 // comparisons (including the final one, which may overlap) are 6147 // performed 8 bytes at a time. For strings < 8 bytes, we compare a 6148 // halfword, then a short, and then a byte. 6149 6150 void MacroAssembler::string_equals(Register a1, Register a2, 6151 Register result, Register cnt1) 6152 { 6153 Label SAME, DONE, SHORT, NEXT_WORD; 6154 Register tmp1 = rscratch1; 6155 Register tmp2 = rscratch2; 6156 Register cnt2 = tmp2; // cnt2 only used in array length compare 6157 6158 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 6159 6160 #ifndef PRODUCT 6161 { 6162 char comment[64]; 6163 snprintf(comment, sizeof comment, "{string_equalsL"); 6164 BLOCK_COMMENT(comment); 6165 } 6166 #endif 6167 6168 mov(result, false); 6169 6170 // Check for short strings, i.e. smaller than wordSize. 6171 subs(cnt1, cnt1, wordSize); 6172 br(Assembler::LT, SHORT); 6173 // Main 8 byte comparison loop. 6174 bind(NEXT_WORD); { 6175 ldr(tmp1, Address(post(a1, wordSize))); 6176 ldr(tmp2, Address(post(a2, wordSize))); 6177 subs(cnt1, cnt1, wordSize); 6178 eor(tmp1, tmp1, tmp2); 6179 cbnz(tmp1, DONE); 6180 } br(GT, NEXT_WORD); 6181 // Last longword. In the case where length == 4 we compare the 6182 // same longword twice, but that's still faster than another 6183 // conditional branch. 6184 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 6185 // length == 4. 6186 ldr(tmp1, Address(a1, cnt1)); 6187 ldr(tmp2, Address(a2, cnt1)); 6188 eor(tmp2, tmp1, tmp2); 6189 cbnz(tmp2, DONE); 6190 b(SAME); 6191 6192 bind(SHORT); 6193 Label TAIL03, TAIL01; 6194 6195 tbz(cnt1, 2, TAIL03); // 0-7 bytes left. 6196 { 6197 ldrw(tmp1, Address(post(a1, 4))); 6198 ldrw(tmp2, Address(post(a2, 4))); 6199 eorw(tmp1, tmp1, tmp2); 6200 cbnzw(tmp1, DONE); 6201 } 6202 bind(TAIL03); 6203 tbz(cnt1, 1, TAIL01); // 0-3 bytes left. 6204 { 6205 ldrh(tmp1, Address(post(a1, 2))); 6206 ldrh(tmp2, Address(post(a2, 2))); 6207 eorw(tmp1, tmp1, tmp2); 6208 cbnzw(tmp1, DONE); 6209 } 6210 bind(TAIL01); 6211 tbz(cnt1, 0, SAME); // 0-1 bytes left. 6212 { 6213 ldrb(tmp1, a1); 6214 ldrb(tmp2, a2); 6215 eorw(tmp1, tmp1, tmp2); 6216 cbnzw(tmp1, DONE); 6217 } 6218 // Arrays are equal. 6219 bind(SAME); 6220 mov(result, true); 6221 6222 // That's it. 6223 bind(DONE); 6224 BLOCK_COMMENT("} string_equals"); 6225 } 6226 6227 6228 // The size of the blocks erased by the zero_blocks stub. We must 6229 // handle anything smaller than this ourselves in zero_words(). 6230 const int MacroAssembler::zero_words_block_size = 8; 6231 6232 // zero_words() is used by C2 ClearArray patterns and by 6233 // C1_MacroAssembler. It is as small as possible, handling small word 6234 // counts locally and delegating anything larger to the zero_blocks 6235 // stub. It is expanded many times in compiled code, so it is 6236 // important to keep it short. 6237 6238 // ptr: Address of a buffer to be zeroed. 6239 // cnt: Count in HeapWords. 6240 // 6241 // ptr, cnt, rscratch1, and rscratch2 are clobbered. 6242 address MacroAssembler::zero_words(Register ptr, Register cnt) 6243 { 6244 assert(is_power_of_2(zero_words_block_size), "adjust this"); 6245 6246 BLOCK_COMMENT("zero_words {"); 6247 assert(ptr == r10 && cnt == r11, "mismatch in register usage"); 6248 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 6249 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 6250 6251 subs(rscratch1, cnt, zero_words_block_size); 6252 Label around; 6253 br(LO, around); 6254 { 6255 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 6256 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 6257 // Make sure this is a C2 compilation. C1 allocates space only for 6258 // trampoline stubs generated by Call LIR ops, and in any case it 6259 // makes sense for a C1 compilation task to proceed as quickly as 6260 // possible. 6261 CompileTask* task; 6262 if (StubRoutines::aarch64::complete() 6263 && Thread::current()->is_Compiler_thread() 6264 && (task = ciEnv::current()->task()) 6265 && is_c2_compile(task->comp_level())) { 6266 address tpc = trampoline_call(zero_blocks); 6267 if (tpc == nullptr) { 6268 DEBUG_ONLY(reset_labels(around)); 6269 return nullptr; 6270 } 6271 } else { 6272 far_call(zero_blocks); 6273 } 6274 } 6275 bind(around); 6276 6277 // We have a few words left to do. zero_blocks has adjusted r10 and r11 6278 // for us. 6279 for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) { 6280 Label l; 6281 tbz(cnt, exact_log2(i), l); 6282 for (int j = 0; j < i; j += 2) { 6283 stp(zr, zr, post(ptr, 2 * BytesPerWord)); 6284 } 6285 bind(l); 6286 } 6287 { 6288 Label l; 6289 tbz(cnt, 0, l); 6290 str(zr, Address(ptr)); 6291 bind(l); 6292 } 6293 6294 BLOCK_COMMENT("} zero_words"); 6295 return pc(); 6296 } 6297 6298 // base: Address of a buffer to be zeroed, 8 bytes aligned. 6299 // cnt: Immediate count in HeapWords. 6300 // 6301 // r10, r11, rscratch1, and rscratch2 are clobbered. 6302 address MacroAssembler::zero_words(Register base, uint64_t cnt) 6303 { 6304 assert(wordSize <= BlockZeroingLowLimit, 6305 "increase BlockZeroingLowLimit"); 6306 address result = nullptr; 6307 if (cnt <= (uint64_t)BlockZeroingLowLimit / BytesPerWord) { 6308 #ifndef PRODUCT 6309 { 6310 char buf[64]; 6311 snprintf(buf, sizeof buf, "zero_words (count = %" PRIu64 ") {", cnt); 6312 BLOCK_COMMENT(buf); 6313 } 6314 #endif 6315 if (cnt >= 16) { 6316 uint64_t loops = cnt/16; 6317 if (loops > 1) { 6318 mov(rscratch2, loops - 1); 6319 } 6320 { 6321 Label loop; 6322 bind(loop); 6323 for (int i = 0; i < 16; i += 2) { 6324 stp(zr, zr, Address(base, i * BytesPerWord)); 6325 } 6326 add(base, base, 16 * BytesPerWord); 6327 if (loops > 1) { 6328 subs(rscratch2, rscratch2, 1); 6329 br(GE, loop); 6330 } 6331 } 6332 } 6333 cnt %= 16; 6334 int i = cnt & 1; // store any odd word to start 6335 if (i) str(zr, Address(base)); 6336 for (; i < (int)cnt; i += 2) { 6337 stp(zr, zr, Address(base, i * wordSize)); 6338 } 6339 BLOCK_COMMENT("} zero_words"); 6340 result = pc(); 6341 } else { 6342 mov(r10, base); mov(r11, cnt); 6343 result = zero_words(r10, r11); 6344 } 6345 return result; 6346 } 6347 6348 // Zero blocks of memory by using DC ZVA. 6349 // 6350 // Aligns the base address first sufficiently for DC ZVA, then uses 6351 // DC ZVA repeatedly for every full block. cnt is the size to be 6352 // zeroed in HeapWords. Returns the count of words left to be zeroed 6353 // in cnt. 6354 // 6355 // NOTE: This is intended to be used in the zero_blocks() stub. If 6356 // you want to use it elsewhere, note that cnt must be >= 2*zva_length. 6357 void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) { 6358 Register tmp = rscratch1; 6359 Register tmp2 = rscratch2; 6360 int zva_length = VM_Version::zva_length(); 6361 Label initial_table_end, loop_zva; 6362 Label fini; 6363 6364 // Base must be 16 byte aligned. If not just return and let caller handle it 6365 tst(base, 0x0f); 6366 br(Assembler::NE, fini); 6367 // Align base with ZVA length. 6368 neg(tmp, base); 6369 andr(tmp, tmp, zva_length - 1); 6370 6371 // tmp: the number of bytes to be filled to align the base with ZVA length. 6372 add(base, base, tmp); 6373 sub(cnt, cnt, tmp, Assembler::ASR, 3); 6374 adr(tmp2, initial_table_end); 6375 sub(tmp2, tmp2, tmp, Assembler::LSR, 2); 6376 br(tmp2); 6377 6378 for (int i = -zva_length + 16; i < 0; i += 16) 6379 stp(zr, zr, Address(base, i)); 6380 bind(initial_table_end); 6381 6382 sub(cnt, cnt, zva_length >> 3); 6383 bind(loop_zva); 6384 dc(Assembler::ZVA, base); 6385 subs(cnt, cnt, zva_length >> 3); 6386 add(base, base, zva_length); 6387 br(Assembler::GE, loop_zva); 6388 add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA 6389 bind(fini); 6390 } 6391 6392 // base: Address of a buffer to be filled, 8 bytes aligned. 6393 // cnt: Count in 8-byte unit. 6394 // value: Value to be filled with. 6395 // base will point to the end of the buffer after filling. 6396 void MacroAssembler::fill_words(Register base, Register cnt, Register value) 6397 { 6398 // Algorithm: 6399 // 6400 // if (cnt == 0) { 6401 // return; 6402 // } 6403 // if ((p & 8) != 0) { 6404 // *p++ = v; 6405 // } 6406 // 6407 // scratch1 = cnt & 14; 6408 // cnt -= scratch1; 6409 // p += scratch1; 6410 // switch (scratch1 / 2) { 6411 // do { 6412 // cnt -= 16; 6413 // p[-16] = v; 6414 // p[-15] = v; 6415 // case 7: 6416 // p[-14] = v; 6417 // p[-13] = v; 6418 // case 6: 6419 // p[-12] = v; 6420 // p[-11] = v; 6421 // // ... 6422 // case 1: 6423 // p[-2] = v; 6424 // p[-1] = v; 6425 // case 0: 6426 // p += 16; 6427 // } while (cnt); 6428 // } 6429 // if ((cnt & 1) == 1) { 6430 // *p++ = v; 6431 // } 6432 6433 assert_different_registers(base, cnt, value, rscratch1, rscratch2); 6434 6435 Label fini, skip, entry, loop; 6436 const int unroll = 8; // Number of stp instructions we'll unroll 6437 6438 cbz(cnt, fini); 6439 tbz(base, 3, skip); 6440 str(value, Address(post(base, 8))); 6441 sub(cnt, cnt, 1); 6442 bind(skip); 6443 6444 andr(rscratch1, cnt, (unroll-1) * 2); 6445 sub(cnt, cnt, rscratch1); 6446 add(base, base, rscratch1, Assembler::LSL, 3); 6447 adr(rscratch2, entry); 6448 sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1); 6449 br(rscratch2); 6450 6451 bind(loop); 6452 add(base, base, unroll * 16); 6453 for (int i = -unroll; i < 0; i++) 6454 stp(value, value, Address(base, i * 16)); 6455 bind(entry); 6456 subs(cnt, cnt, unroll * 2); 6457 br(Assembler::GE, loop); 6458 6459 tbz(cnt, 0, fini); 6460 str(value, Address(post(base, 8))); 6461 bind(fini); 6462 } 6463 6464 // Intrinsic for 6465 // 6466 // - sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray 6467 // return the number of characters copied. 6468 // - java/lang/StringUTF16.compress 6469 // return index of non-latin1 character if copy fails, otherwise 'len'. 6470 // 6471 // This version always returns the number of characters copied, and does not 6472 // clobber the 'len' register. A successful copy will complete with the post- 6473 // condition: 'res' == 'len', while an unsuccessful copy will exit with the 6474 // post-condition: 0 <= 'res' < 'len'. 6475 // 6476 // NOTE: Attempts to use 'ld2' (and 'umaxv' in the ISO part) has proven to 6477 // degrade performance (on Ampere Altra - Neoverse N1), to an extent 6478 // beyond the acceptable, even though the footprint would be smaller. 6479 // Using 'umaxv' in the ASCII-case comes with a small penalty but does 6480 // avoid additional bloat. 6481 // 6482 // Clobbers: src, dst, res, rscratch1, rscratch2, rflags 6483 void MacroAssembler::encode_iso_array(Register src, Register dst, 6484 Register len, Register res, bool ascii, 6485 FloatRegister vtmp0, FloatRegister vtmp1, 6486 FloatRegister vtmp2, FloatRegister vtmp3, 6487 FloatRegister vtmp4, FloatRegister vtmp5) 6488 { 6489 Register cnt = res; 6490 Register max = rscratch1; 6491 Register chk = rscratch2; 6492 6493 prfm(Address(src), PLDL1STRM); 6494 movw(cnt, len); 6495 6496 #define ASCII(insn) do { if (ascii) { insn; } } while (0) 6497 6498 Label LOOP_32, DONE_32, FAIL_32; 6499 6500 BIND(LOOP_32); 6501 { 6502 cmpw(cnt, 32); 6503 br(LT, DONE_32); 6504 ld1(vtmp0, vtmp1, vtmp2, vtmp3, T8H, Address(post(src, 64))); 6505 // Extract lower bytes. 6506 FloatRegister vlo0 = vtmp4; 6507 FloatRegister vlo1 = vtmp5; 6508 uzp1(vlo0, T16B, vtmp0, vtmp1); 6509 uzp1(vlo1, T16B, vtmp2, vtmp3); 6510 // Merge bits... 6511 orr(vtmp0, T16B, vtmp0, vtmp1); 6512 orr(vtmp2, T16B, vtmp2, vtmp3); 6513 // Extract merged upper bytes. 6514 FloatRegister vhix = vtmp0; 6515 uzp2(vhix, T16B, vtmp0, vtmp2); 6516 // ISO-check on hi-parts (all zero). 6517 // ASCII-check on lo-parts (no sign). 6518 FloatRegister vlox = vtmp1; // Merge lower bytes. 6519 ASCII(orr(vlox, T16B, vlo0, vlo1)); 6520 umov(chk, vhix, D, 1); ASCII(cm(LT, vlox, T16B, vlox)); 6521 fmovd(max, vhix); ASCII(umaxv(vlox, T16B, vlox)); 6522 orr(chk, chk, max); ASCII(umov(max, vlox, B, 0)); 6523 ASCII(orr(chk, chk, max)); 6524 cbnz(chk, FAIL_32); 6525 subw(cnt, cnt, 32); 6526 st1(vlo0, vlo1, T16B, Address(post(dst, 32))); 6527 b(LOOP_32); 6528 } 6529 BIND(FAIL_32); 6530 sub(src, src, 64); 6531 BIND(DONE_32); 6532 6533 Label LOOP_8, SKIP_8; 6534 6535 BIND(LOOP_8); 6536 { 6537 cmpw(cnt, 8); 6538 br(LT, SKIP_8); 6539 FloatRegister vhi = vtmp0; 6540 FloatRegister vlo = vtmp1; 6541 ld1(vtmp3, T8H, src); 6542 uzp1(vlo, T16B, vtmp3, vtmp3); 6543 uzp2(vhi, T16B, vtmp3, vtmp3); 6544 // ISO-check on hi-parts (all zero). 6545 // ASCII-check on lo-parts (no sign). 6546 ASCII(cm(LT, vtmp2, T16B, vlo)); 6547 fmovd(chk, vhi); ASCII(umaxv(vtmp2, T16B, vtmp2)); 6548 ASCII(umov(max, vtmp2, B, 0)); 6549 ASCII(orr(chk, chk, max)); 6550 cbnz(chk, SKIP_8); 6551 6552 strd(vlo, Address(post(dst, 8))); 6553 subw(cnt, cnt, 8); 6554 add(src, src, 16); 6555 b(LOOP_8); 6556 } 6557 BIND(SKIP_8); 6558 6559 #undef ASCII 6560 6561 Label LOOP, DONE; 6562 6563 cbz(cnt, DONE); 6564 BIND(LOOP); 6565 { 6566 Register chr = rscratch1; 6567 ldrh(chr, Address(post(src, 2))); 6568 tst(chr, ascii ? 0xff80 : 0xff00); 6569 br(NE, DONE); 6570 strb(chr, Address(post(dst, 1))); 6571 subs(cnt, cnt, 1); 6572 br(GT, LOOP); 6573 } 6574 BIND(DONE); 6575 // Return index where we stopped. 6576 subw(res, len, cnt); 6577 } 6578 6579 // Inflate byte[] array to char[]. 6580 // Clobbers: src, dst, len, rflags, rscratch1, v0-v6 6581 address MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 6582 FloatRegister vtmp1, FloatRegister vtmp2, 6583 FloatRegister vtmp3, Register tmp4) { 6584 Label big, done, after_init, to_stub; 6585 6586 assert_different_registers(src, dst, len, tmp4, rscratch1); 6587 6588 fmovd(vtmp1, 0.0); 6589 lsrw(tmp4, len, 3); 6590 bind(after_init); 6591 cbnzw(tmp4, big); 6592 // Short string: less than 8 bytes. 6593 { 6594 Label loop, tiny; 6595 6596 cmpw(len, 4); 6597 br(LT, tiny); 6598 // Use SIMD to do 4 bytes. 6599 ldrs(vtmp2, post(src, 4)); 6600 zip1(vtmp3, T8B, vtmp2, vtmp1); 6601 subw(len, len, 4); 6602 strd(vtmp3, post(dst, 8)); 6603 6604 cbzw(len, done); 6605 6606 // Do the remaining bytes by steam. 6607 bind(loop); 6608 ldrb(tmp4, post(src, 1)); 6609 strh(tmp4, post(dst, 2)); 6610 subw(len, len, 1); 6611 6612 bind(tiny); 6613 cbnz(len, loop); 6614 6615 b(done); 6616 } 6617 6618 if (SoftwarePrefetchHintDistance >= 0) { 6619 bind(to_stub); 6620 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate()); 6621 assert(stub.target() != nullptr, "large_byte_array_inflate stub has not been generated"); 6622 address tpc = trampoline_call(stub); 6623 if (tpc == nullptr) { 6624 DEBUG_ONLY(reset_labels(big, done)); 6625 postcond(pc() == badAddress); 6626 return nullptr; 6627 } 6628 b(after_init); 6629 } 6630 6631 // Unpack the bytes 8 at a time. 6632 bind(big); 6633 { 6634 Label loop, around, loop_last, loop_start; 6635 6636 if (SoftwarePrefetchHintDistance >= 0) { 6637 const int large_loop_threshold = (64 + 16)/8; 6638 ldrd(vtmp2, post(src, 8)); 6639 andw(len, len, 7); 6640 cmp(tmp4, (u1)large_loop_threshold); 6641 br(GE, to_stub); 6642 b(loop_start); 6643 6644 bind(loop); 6645 ldrd(vtmp2, post(src, 8)); 6646 bind(loop_start); 6647 subs(tmp4, tmp4, 1); 6648 br(EQ, loop_last); 6649 zip1(vtmp2, T16B, vtmp2, vtmp1); 6650 ldrd(vtmp3, post(src, 8)); 6651 st1(vtmp2, T8H, post(dst, 16)); 6652 subs(tmp4, tmp4, 1); 6653 zip1(vtmp3, T16B, vtmp3, vtmp1); 6654 st1(vtmp3, T8H, post(dst, 16)); 6655 br(NE, loop); 6656 b(around); 6657 bind(loop_last); 6658 zip1(vtmp2, T16B, vtmp2, vtmp1); 6659 st1(vtmp2, T8H, post(dst, 16)); 6660 bind(around); 6661 cbz(len, done); 6662 } else { 6663 andw(len, len, 7); 6664 bind(loop); 6665 ldrd(vtmp2, post(src, 8)); 6666 sub(tmp4, tmp4, 1); 6667 zip1(vtmp3, T16B, vtmp2, vtmp1); 6668 st1(vtmp3, T8H, post(dst, 16)); 6669 cbnz(tmp4, loop); 6670 } 6671 } 6672 6673 // Do the tail of up to 8 bytes. 6674 add(src, src, len); 6675 ldrd(vtmp3, Address(src, -8)); 6676 add(dst, dst, len, ext::uxtw, 1); 6677 zip1(vtmp3, T16B, vtmp3, vtmp1); 6678 strq(vtmp3, Address(dst, -16)); 6679 6680 bind(done); 6681 postcond(pc() != badAddress); 6682 return pc(); 6683 } 6684 6685 // Compress char[] array to byte[]. 6686 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 6687 // Return the array length if every element in array can be encoded, 6688 // otherwise, the index of first non-latin1 (> 0xff) character. 6689 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 6690 Register res, 6691 FloatRegister tmp0, FloatRegister tmp1, 6692 FloatRegister tmp2, FloatRegister tmp3, 6693 FloatRegister tmp4, FloatRegister tmp5) { 6694 encode_iso_array(src, dst, len, res, false, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5); 6695 } 6696 6697 // java.math.round(double a) 6698 // Returns the closest long to the argument, with ties rounding to 6699 // positive infinity. This requires some fiddling for corner 6700 // cases. We take care to avoid double rounding in e.g. (jlong)(a + 0.5). 6701 void MacroAssembler::java_round_double(Register dst, FloatRegister src, 6702 FloatRegister ftmp) { 6703 Label DONE; 6704 BLOCK_COMMENT("java_round_double: { "); 6705 fmovd(rscratch1, src); 6706 // Use RoundToNearestTiesAway unless src small and -ve. 6707 fcvtasd(dst, src); 6708 // Test if src >= 0 || abs(src) >= 0x1.0p52 6709 eor(rscratch1, rscratch1, UCONST64(1) << 63); // flip sign bit 6710 mov(rscratch2, julong_cast(0x1.0p52)); 6711 cmp(rscratch1, rscratch2); 6712 br(HS, DONE); { 6713 // src < 0 && abs(src) < 0x1.0p52 6714 // src may have a fractional part, so add 0.5 6715 fmovd(ftmp, 0.5); 6716 faddd(ftmp, src, ftmp); 6717 // Convert double to jlong, use RoundTowardsNegative 6718 fcvtmsd(dst, ftmp); 6719 } 6720 bind(DONE); 6721 BLOCK_COMMENT("} java_round_double"); 6722 } 6723 6724 void MacroAssembler::java_round_float(Register dst, FloatRegister src, 6725 FloatRegister ftmp) { 6726 Label DONE; 6727 BLOCK_COMMENT("java_round_float: { "); 6728 fmovs(rscratch1, src); 6729 // Use RoundToNearestTiesAway unless src small and -ve. 6730 fcvtassw(dst, src); 6731 // Test if src >= 0 || abs(src) >= 0x1.0p23 6732 eor(rscratch1, rscratch1, 0x80000000); // flip sign bit 6733 mov(rscratch2, jint_cast(0x1.0p23f)); 6734 cmp(rscratch1, rscratch2); 6735 br(HS, DONE); { 6736 // src < 0 && |src| < 0x1.0p23 6737 // src may have a fractional part, so add 0.5 6738 fmovs(ftmp, 0.5f); 6739 fadds(ftmp, src, ftmp); 6740 // Convert float to jint, use RoundTowardsNegative 6741 fcvtmssw(dst, ftmp); 6742 } 6743 bind(DONE); 6744 BLOCK_COMMENT("} java_round_float"); 6745 } 6746 6747 // get_thread() can be called anywhere inside generated code so we 6748 // need to save whatever non-callee save context might get clobbered 6749 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed, 6750 // the call setup code. 6751 // 6752 // On Linux, aarch64_get_thread_helper() clobbers only r0, r1, and flags. 6753 // On other systems, the helper is a usual C function. 6754 // 6755 void MacroAssembler::get_thread(Register dst) { 6756 RegSet saved_regs = 6757 LINUX_ONLY(RegSet::range(r0, r1) + lr - dst) 6758 NOT_LINUX (RegSet::range(r0, r17) + lr - dst); 6759 6760 protect_return_address(); 6761 push(saved_regs, sp); 6762 6763 mov(lr, ExternalAddress(CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper))); 6764 blr(lr); 6765 if (dst != c_rarg0) { 6766 mov(dst, c_rarg0); 6767 } 6768 6769 pop(saved_regs, sp); 6770 authenticate_return_address(); 6771 } 6772 6773 void MacroAssembler::cache_wb(Address line) { 6774 assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset"); 6775 assert(line.index() == noreg, "index should be noreg"); 6776 assert(line.offset() == 0, "offset should be 0"); 6777 // would like to assert this 6778 // assert(line._ext.shift == 0, "shift should be zero"); 6779 if (VM_Version::supports_dcpop()) { 6780 // writeback using clear virtual address to point of persistence 6781 dc(Assembler::CVAP, line.base()); 6782 } else { 6783 // no need to generate anything as Unsafe.writebackMemory should 6784 // never invoke this stub 6785 } 6786 } 6787 6788 void MacroAssembler::cache_wbsync(bool is_pre) { 6789 // we only need a barrier post sync 6790 if (!is_pre) { 6791 membar(Assembler::AnyAny); 6792 } 6793 } 6794 6795 void MacroAssembler::verify_sve_vector_length(Register tmp) { 6796 if (!UseSVE || VM_Version::get_max_supported_sve_vector_length() == FloatRegister::sve_vl_min) { 6797 return; 6798 } 6799 // Make sure that native code does not change SVE vector length. 6800 Label verify_ok; 6801 movw(tmp, zr); 6802 sve_inc(tmp, B); 6803 subsw(zr, tmp, VM_Version::get_initial_sve_vector_length()); 6804 br(EQ, verify_ok); 6805 stop("Error: SVE vector length has changed since jvm startup"); 6806 bind(verify_ok); 6807 } 6808 6809 void MacroAssembler::verify_ptrue() { 6810 Label verify_ok; 6811 if (!UseSVE) { 6812 return; 6813 } 6814 sve_cntp(rscratch1, B, ptrue, ptrue); // get true elements count. 6815 sve_dec(rscratch1, B); 6816 cbz(rscratch1, verify_ok); 6817 stop("Error: the preserved predicate register (p7) elements are not all true"); 6818 bind(verify_ok); 6819 } 6820 6821 void MacroAssembler::safepoint_isb() { 6822 isb(); 6823 #ifndef PRODUCT 6824 if (VerifyCrossModifyFence) { 6825 // Clear the thread state. 6826 strb(zr, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 6827 } 6828 #endif 6829 } 6830 6831 #ifndef PRODUCT 6832 void MacroAssembler::verify_cross_modify_fence_not_required() { 6833 if (VerifyCrossModifyFence) { 6834 // Check if thread needs a cross modify fence. 6835 ldrb(rscratch1, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 6836 Label fence_not_required; 6837 cbz(rscratch1, fence_not_required); 6838 // If it does then fail. 6839 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::verify_cross_modify_fence_failure))); 6840 mov(c_rarg0, rthread); 6841 blr(rscratch1); 6842 bind(fence_not_required); 6843 } 6844 } 6845 #endif 6846 6847 void MacroAssembler::spin_wait() { 6848 for (int i = 0; i < VM_Version::spin_wait_desc().inst_count(); ++i) { 6849 switch (VM_Version::spin_wait_desc().inst()) { 6850 case SpinWait::NOP: 6851 nop(); 6852 break; 6853 case SpinWait::ISB: 6854 isb(); 6855 break; 6856 case SpinWait::YIELD: 6857 yield(); 6858 break; 6859 default: 6860 ShouldNotReachHere(); 6861 } 6862 } 6863 } 6864 6865 // Stack frame creation/removal 6866 6867 void MacroAssembler::enter(bool strip_ret_addr) { 6868 if (strip_ret_addr) { 6869 // Addresses can only be signed once. If there are multiple nested frames being created 6870 // in the same function, then the return address needs stripping first. 6871 strip_return_address(); 6872 } 6873 protect_return_address(); 6874 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 6875 mov(rfp, sp); 6876 } 6877 6878 void MacroAssembler::leave() { 6879 mov(sp, rfp); 6880 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 6881 authenticate_return_address(); 6882 } 6883 6884 // ROP Protection 6885 // Use the AArch64 PAC feature to add ROP protection for generated code. Use whenever creating/ 6886 // destroying stack frames or whenever directly loading/storing the LR to memory. 6887 // If ROP protection is not set then these functions are no-ops. 6888 // For more details on PAC see pauth_aarch64.hpp. 6889 6890 // Sign the LR. Use during construction of a stack frame, before storing the LR to memory. 6891 // Uses value zero as the modifier. 6892 // 6893 void MacroAssembler::protect_return_address() { 6894 if (VM_Version::use_rop_protection()) { 6895 check_return_address(); 6896 paciaz(); 6897 } 6898 } 6899 6900 // Sign the return value in the given register. Use before updating the LR in the existing stack 6901 // frame for the current function. 6902 // Uses value zero as the modifier. 6903 // 6904 void MacroAssembler::protect_return_address(Register return_reg) { 6905 if (VM_Version::use_rop_protection()) { 6906 check_return_address(return_reg); 6907 paciza(return_reg); 6908 } 6909 } 6910 6911 // Authenticate the LR. Use before function return, after restoring FP and loading LR from memory. 6912 // Uses value zero as the modifier. 6913 // 6914 void MacroAssembler::authenticate_return_address() { 6915 if (VM_Version::use_rop_protection()) { 6916 autiaz(); 6917 check_return_address(); 6918 } 6919 } 6920 6921 // Authenticate the return value in the given register. Use before updating the LR in the existing 6922 // stack frame for the current function. 6923 // Uses value zero as the modifier. 6924 // 6925 void MacroAssembler::authenticate_return_address(Register return_reg) { 6926 if (VM_Version::use_rop_protection()) { 6927 autiza(return_reg); 6928 check_return_address(return_reg); 6929 } 6930 } 6931 6932 // Strip any PAC data from LR without performing any authentication. Use with caution - only if 6933 // there is no guaranteed way of authenticating the LR. 6934 // 6935 void MacroAssembler::strip_return_address() { 6936 if (VM_Version::use_rop_protection()) { 6937 xpaclri(); 6938 } 6939 } 6940 6941 #ifndef PRODUCT 6942 // PAC failures can be difficult to debug. After an authentication failure, a segfault will only 6943 // occur when the pointer is used - ie when the program returns to the invalid LR. At this point 6944 // it is difficult to debug back to the callee function. 6945 // This function simply loads from the address in the given register. 6946 // Use directly after authentication to catch authentication failures. 6947 // Also use before signing to check that the pointer is valid and hasn't already been signed. 6948 // 6949 void MacroAssembler::check_return_address(Register return_reg) { 6950 if (VM_Version::use_rop_protection()) { 6951 ldr(zr, Address(return_reg)); 6952 } 6953 } 6954 #endif 6955 6956 // The java_calling_convention describes stack locations as ideal slots on 6957 // a frame with no abi restrictions. Since we must observe abi restrictions 6958 // (like the placement of the register window) the slots must be biased by 6959 // the following value. 6960 static int reg2offset_in(VMReg r) { 6961 // Account for saved rfp and lr 6962 // This should really be in_preserve_stack_slots 6963 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 6964 } 6965 6966 static int reg2offset_out(VMReg r) { 6967 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 6968 } 6969 6970 // On 64bit we will store integer like items to the stack as 6971 // 64bits items (AArch64 ABI) even though java would only store 6972 // 32bits for a parameter. On 32bit it will simply be 32bits 6973 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 6974 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp) { 6975 if (src.first()->is_stack()) { 6976 if (dst.first()->is_stack()) { 6977 // stack to stack 6978 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 6979 str(tmp, Address(sp, reg2offset_out(dst.first()))); 6980 } else { 6981 // stack to reg 6982 ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 6983 } 6984 } else if (dst.first()->is_stack()) { 6985 // reg to stack 6986 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 6987 } else { 6988 if (dst.first() != src.first()) { 6989 sxtw(dst.first()->as_Register(), src.first()->as_Register()); 6990 } 6991 } 6992 } 6993 6994 // An oop arg. Must pass a handle not the oop itself 6995 void MacroAssembler::object_move( 6996 OopMap* map, 6997 int oop_handle_offset, 6998 int framesize_in_slots, 6999 VMRegPair src, 7000 VMRegPair dst, 7001 bool is_receiver, 7002 int* receiver_offset) { 7003 7004 // must pass a handle. First figure out the location we use as a handle 7005 7006 Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register(); 7007 7008 // See if oop is null if it is we need no handle 7009 7010 if (src.first()->is_stack()) { 7011 7012 // Oop is already on the stack as an argument 7013 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 7014 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 7015 if (is_receiver) { 7016 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 7017 } 7018 7019 ldr(rscratch1, Address(rfp, reg2offset_in(src.first()))); 7020 lea(rHandle, Address(rfp, reg2offset_in(src.first()))); 7021 // conditionally move a null 7022 cmp(rscratch1, zr); 7023 csel(rHandle, zr, rHandle, Assembler::EQ); 7024 } else { 7025 7026 // Oop is in an a register we must store it to the space we reserve 7027 // on the stack for oop_handles and pass a handle if oop is non-null 7028 7029 const Register rOop = src.first()->as_Register(); 7030 int oop_slot; 7031 if (rOop == j_rarg0) 7032 oop_slot = 0; 7033 else if (rOop == j_rarg1) 7034 oop_slot = 1; 7035 else if (rOop == j_rarg2) 7036 oop_slot = 2; 7037 else if (rOop == j_rarg3) 7038 oop_slot = 3; 7039 else if (rOop == j_rarg4) 7040 oop_slot = 4; 7041 else if (rOop == j_rarg5) 7042 oop_slot = 5; 7043 else if (rOop == j_rarg6) 7044 oop_slot = 6; 7045 else { 7046 assert(rOop == j_rarg7, "wrong register"); 7047 oop_slot = 7; 7048 } 7049 7050 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 7051 int offset = oop_slot*VMRegImpl::stack_slot_size; 7052 7053 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 7054 // Store oop in handle area, may be null 7055 str(rOop, Address(sp, offset)); 7056 if (is_receiver) { 7057 *receiver_offset = offset; 7058 } 7059 7060 cmp(rOop, zr); 7061 lea(rHandle, Address(sp, offset)); 7062 // conditionally move a null 7063 csel(rHandle, zr, rHandle, Assembler::EQ); 7064 } 7065 7066 // If arg is on the stack then place it otherwise it is already in correct reg. 7067 if (dst.first()->is_stack()) { 7068 str(rHandle, Address(sp, reg2offset_out(dst.first()))); 7069 } 7070 } 7071 7072 // A float arg may have to do float reg int reg conversion 7073 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp) { 7074 if (src.first()->is_stack()) { 7075 if (dst.first()->is_stack()) { 7076 ldrw(tmp, Address(rfp, reg2offset_in(src.first()))); 7077 strw(tmp, Address(sp, reg2offset_out(dst.first()))); 7078 } else { 7079 ldrs(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 7080 } 7081 } else if (src.first() != dst.first()) { 7082 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 7083 fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 7084 else 7085 strs(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 7086 } 7087 } 7088 7089 // A long move 7090 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp) { 7091 if (src.first()->is_stack()) { 7092 if (dst.first()->is_stack()) { 7093 // stack to stack 7094 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 7095 str(tmp, Address(sp, reg2offset_out(dst.first()))); 7096 } else { 7097 // stack to reg 7098 ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 7099 } 7100 } else if (dst.first()->is_stack()) { 7101 // reg to stack 7102 // Do we really have to sign extend??? 7103 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 7104 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 7105 } else { 7106 if (dst.first() != src.first()) { 7107 mov(dst.first()->as_Register(), src.first()->as_Register()); 7108 } 7109 } 7110 } 7111 7112 7113 // A double move 7114 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp) { 7115 if (src.first()->is_stack()) { 7116 if (dst.first()->is_stack()) { 7117 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 7118 str(tmp, Address(sp, reg2offset_out(dst.first()))); 7119 } else { 7120 ldrd(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 7121 } 7122 } else if (src.first() != dst.first()) { 7123 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 7124 fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 7125 else 7126 strd(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 7127 } 7128 } 7129 7130 // Implements lightweight-locking. 7131 // 7132 // - obj: the object to be locked 7133 // - t1, t2, t3: temporary registers, will be destroyed 7134 // - slow: branched to if locking fails, absolute offset may larger than 32KB (imm14 encoding). 7135 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow) { 7136 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 7137 assert_different_registers(basic_lock, obj, t1, t2, t3, rscratch1); 7138 7139 Label push; 7140 const Register top = t1; 7141 const Register mark = t2; 7142 const Register t = t3; 7143 7144 // Preload the markWord. It is important that this is the first 7145 // instruction emitted as it is part of C1's null check semantics. 7146 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 7147 7148 if (UseObjectMonitorTable) { 7149 // Clear cache in case fast locking succeeds or we need to take the slow-path. 7150 str(zr, Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes())))); 7151 } 7152 7153 if (DiagnoseSyncOnValueBasedClasses != 0) { 7154 load_klass(t1, obj); 7155 ldrb(t1, Address(t1, Klass::misc_flags_offset())); 7156 tst(t1, KlassFlags::_misc_is_value_based_class); 7157 br(Assembler::NE, slow); 7158 } 7159 7160 // Check if the lock-stack is full. 7161 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7162 cmpw(top, (unsigned)LockStack::end_offset()); 7163 br(Assembler::GE, slow); 7164 7165 // Check for recursion. 7166 subw(t, top, oopSize); 7167 ldr(t, Address(rthread, t)); 7168 cmp(obj, t); 7169 br(Assembler::EQ, push); 7170 7171 // Check header for monitor (0b10). 7172 tst(mark, markWord::monitor_value); 7173 br(Assembler::NE, slow); 7174 7175 // Try to lock. Transition lock bits 0b01 => 0b00 7176 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 7177 orr(mark, mark, markWord::unlocked_value); 7178 eor(t, mark, markWord::unlocked_value); 7179 cmpxchg(/*addr*/ obj, /*expected*/ mark, /*new*/ t, Assembler::xword, 7180 /*acquire*/ true, /*release*/ false, /*weak*/ false, noreg); 7181 br(Assembler::NE, slow); 7182 7183 bind(push); 7184 // After successful lock, push object on lock-stack. 7185 str(obj, Address(rthread, top)); 7186 addw(top, top, oopSize); 7187 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7188 } 7189 7190 // Implements lightweight-unlocking. 7191 // 7192 // - obj: the object to be unlocked 7193 // - t1, t2, t3: temporary registers 7194 // - slow: branched to if unlocking fails, absolute offset may larger than 32KB (imm14 encoding). 7195 void MacroAssembler::lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow) { 7196 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 7197 // cmpxchg clobbers rscratch1. 7198 assert_different_registers(obj, t1, t2, t3, rscratch1); 7199 7200 #ifdef ASSERT 7201 { 7202 // Check for lock-stack underflow. 7203 Label stack_ok; 7204 ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 7205 cmpw(t1, (unsigned)LockStack::start_offset()); 7206 br(Assembler::GE, stack_ok); 7207 STOP("Lock-stack underflow"); 7208 bind(stack_ok); 7209 } 7210 #endif 7211 7212 Label unlocked, push_and_slow; 7213 const Register top = t1; 7214 const Register mark = t2; 7215 const Register t = t3; 7216 7217 // Check if obj is top of lock-stack. 7218 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7219 subw(top, top, oopSize); 7220 ldr(t, Address(rthread, top)); 7221 cmp(obj, t); 7222 br(Assembler::NE, slow); 7223 7224 // Pop lock-stack. 7225 DEBUG_ONLY(str(zr, Address(rthread, top));) 7226 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7227 7228 // Check if recursive. 7229 subw(t, top, oopSize); 7230 ldr(t, Address(rthread, t)); 7231 cmp(obj, t); 7232 br(Assembler::EQ, unlocked); 7233 7234 // Not recursive. Check header for monitor (0b10). 7235 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 7236 tbnz(mark, log2i_exact(markWord::monitor_value), push_and_slow); 7237 7238 #ifdef ASSERT 7239 // Check header not unlocked (0b01). 7240 Label not_unlocked; 7241 tbz(mark, log2i_exact(markWord::unlocked_value), not_unlocked); 7242 stop("lightweight_unlock already unlocked"); 7243 bind(not_unlocked); 7244 #endif 7245 7246 // Try to unlock. Transition lock bits 0b00 => 0b01 7247 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 7248 orr(t, mark, markWord::unlocked_value); 7249 cmpxchg(obj, mark, t, Assembler::xword, 7250 /*acquire*/ false, /*release*/ true, /*weak*/ false, noreg); 7251 br(Assembler::EQ, unlocked); 7252 7253 bind(push_and_slow); 7254 // Restore lock-stack and handle the unlock in runtime. 7255 DEBUG_ONLY(str(obj, Address(rthread, top));) 7256 addw(top, top, oopSize); 7257 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7258 b(slow); 7259 7260 bind(unlocked); 7261 }